
Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

1

We do ScicosLab - and other things - not because
they are easy but because they are hard

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

2

Scicos architecture

Editor Compiler Simulator

Code Gen.

Blocks library

Scilab Scilab+CAML “C”

Results

For internal sim.

For standalone
applications

scs_m %cpr

Scilab

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

3

Simulink, Scicos and Kepler architectures:
different names, same s**t

Simulink Scicos Kepler

Main entity Diagram Diagram Work flow

Atomic entity Block (C) Block (C, Scilab) Actor (Java)

Sub assembly SubDiagram SuperBlock Composite Actor

Connection Link (line) Link Relation

Script language Matlab (*.m) Scilab (*.sci) Not Available

Code
Generation

Real Time
Workshop

Scicos Code
Generators

Not available

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

4

Scicos block : how does it work ?

Interfacing function: the Scicos block “user's interface”.
A Scilab script that is launched when you “double click” over
a Scicos block.

Computational function: the Scicos block simulation function.
The code (typically a C function compiled as shared library) called
during the simulation.

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

5

Scicos block computational function
#include <windows.h> /* Compiler's include files's */
#include "scicos_block4.h" /* Specific for Scicos block development */
#include "machine.h"

void custom_bock(scicos_block *block, int flag)
{
 //** scicos_block is a “C” complex data structure that contains in/out ports parameters and values, block's parameters and states

switch(flag) {

 case Init: //** It is called just ONE TIME before simulation start. Put your initialization code here
 break;

 case StateUpdate: //** It is called EACH CYCLE. Read the input ports and update the internal state of the block
 //** Use this section for OUTPUT blocks (e.g. D/A converter, digital output, etc.)
 break;

 case OutputUpdate://** It is called EACH CYCLE. Read the internal state and update the output
 //** Use this section for INPUT block (e.g. A/D converter, digital input, etc.)
 break;

 case Ending://** It is called just ONE TIME at simulation end. Put your “shut down” code here.
 break;

 } // close the switch

} // close the computational function

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

6

The origin of Scicos computational function

B

Output

xk1=A xkB uk ; StateUpdate

yk=C xkD uk ;OutputUpdate

+

A

C +

xk1 xk

D

uk yk
1
z

Input

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

7

Develop a block in Scicos

 Interfacing functions : SIM_ONE.sci

Folder:
C:\Documents and Settings\Simone Mannori\Desktop\Florence
2010\D2\vector\src\sim_one

 Computational function : sim_one.c

Develop a block with two input ports, each port is a vector of three double.
The output is a scalar (double): cumulative dot product of the two input vector.

The script builder : build.sce

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

8

Code Generation for embedded applications:

 Scicos-FLEX

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

9

Scicos (Scicos-FLEX) architecture

Editor Compiler Simulator

Code Gen.

Blocks library

Scilab Scilab+CAML “C”

Results

For internal sim.

For standalone
applications

Scicos-FLEX Files for FLEX
integration

scs_m %cpr

Scilab

Scilab

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

10

Scicos-FLEX: where the files are ?

All the “custom” development (like Scicos-FLEX) are store inside the “contrib”
folder. For Scicos-FLEX is just “contrib”.

This folder contains several sub folders:

"dspicdspic" : most of the code is here (code generator, interfacing functions, etc.)

"RT_template": the files that “program” the code generator.

“flex_usb2udp_gateway”: code for FLEX / PC communication protocol

“MSVC2008_Patch” : patch for old Scilab 4.1.2 version (obsolete)

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

11

Scicos-FLEX: “contrib/RT_template”

"RT_template" folder

 * dspic.gen : this file specify the elements of the tool chain; in this case:

 * conf_embcodegen.oil : the template Makefile. For Erika is an “.oil” file
 This is the standard "pattern" used to automatically generate the
 *.oil file that guide the cross compilation

 * erika.cmd: a list a Scilab command used to "program" the code generator

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

12

Scicos-FLEX: erika.cmd
Actually, “erika.cmd” is just a Scilab script, a sequence of Scilab functions
activated in sequence inside the code generator (Scicos-ITM) main loop.

[Ccode,FCode] = gen_blocks(); //** generate the code of the “dynamic” C and FORTRAN
 //** Scicos blocks

[Code,Code_common]=make_standalonert(); //** generate the code for the main code

Files = write_code(Code,CCode,FCode,Code_common); //** generate the source files

imp_dspicf(rpat,template); //** “dspic/macros/misc” copy several aux files for cross
 //** compilations

EE_get_diagram_info(rdnom,XX); //** explore the diagram and produce an optimized
 //** Makefile that compile ONLY the block really used

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

13

Scicos-ITM: “contrib/ITM/macros”
"dspic/macros" folder (Scilab scripts) :

“codegen” : the files of the code generator

“flex_blocks” : interfacing functions of the FLEX blocks

“misc” : various interfacing functions;

“palettes” : palette *.cosf files for Scicos

"dspic/NativeInteger" : interfacing and computational functions for native
 integer blocks for Scicos.

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

14

Scicos-FLEX : simple example

Test_1
t1

Sine
PIN: 1

GPOUT

FLEX

11

“Desktop\Florence 2010\Evidence\FLEX\Test_1.cos

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

15

Scicos-FLEX : simple example

t1

Sine
PIN: 1

GPOUT

FLEX

11

“Desktop\Florence 2010\Evidence\FLEX\Test_1.cos

Scicos Notes

Initialization:
int t1_init()

Init() One-to-one correspondence

Run time (periodic)

int t1_isr(double t)

OuputUpdate()
StateUpdate()

Inside our code generator we
have merged the the two calls in
a single function (called
<name>_isr()) that summarize
the job.

Simulation ends
int t1_end()

Ending() One-to-one correspondence

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

16

Scicos code generation and rapid prototyping

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

17

Two types of HIL mode
Basically, there are two ways to implement HIL with Scicos:

Interpreted: the simulation runs as usual BUT the user activates the “real
time” option inside the simulation's control panel. Scicos-HIL.
(DEMO+VIDEO)

Standalone: you generate a “C” code and you compile it for the target
platform. You run the code on the target and you recover the data using
specific Scicos blocks (Scicos-RTAI, Scicos-FLEX). (VIDEO)

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

18

Scicos-HIL

What is “Hardware In the Loop” ?

What is necessary to implement HIL ?

HIL means that part of your system is “virtual” e.g. running on a suitable
computer. The “virtual section” is connected to the real, physical, system
using A/D (sensors) and D/A (actuators) interfaces;

You need a simulator with real time capability and I/O interfaces
support.

Why do we need Hardware In the Loop ?
Because HIL is a very effective technique for model validation and controller
tuning. Do you want to spend your life debugging low level codes ?

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

19

Scicos-HIL : Hardware In the Loop

In its base form Scicos-HIL is constituted
by four blocks

 Analog Input

 Analog Output

 Digital Input

 Digital Output

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

20

Device driver support for Scicos
Open Source: Comedi (www.comedi.org) is the only available option for
a complete OS solution (GLP2 license). Comedi covers the most used
data acquisition cards available on the market.

Proprietary. Unfortunately, some manufactures provide neither detailed
technical specifications of their cards nor an open source driver. From
ScicosLab standpoint it is not a problem, because the only thing that you
really need is a shared library (*.dll or *.so).

Custom. You can develop custom driver or use “direct access” code
inside a Scicos block. If you develop “direct access” blocks you need to
run Scicos (ScicosLab) as a “root” user.

http://www.comedi.org/

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

21

ScicosLab includes real time support ?
Yes, of course.

The quality of service is very operating system dependent.

Windows does not offer guarantee about quality of service. The minimum
sampling time is around 20ms.

Recent Linux kernels are 95% “soft” real time up to 1.0 ms sampling time.

There are many “hard” real time Linux versions/patches (RTAI, Xenomai,
RT_PREEMPT). ScicosLab could be easily modified in order to use the RT
services available. For the maximum compatibility we suggest the POSIX
compliant API offered by RT_PREEMPT.

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

22

Ball and beam experiment with ScicosLab

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

23

Ball and beam: the MODEL

() () () M
bA

TC

bA

TCV

b

U
mxJR

KK
mxJR
KKK

mxJ
mgx

22

2

2 cos
+

+
+

−
+

= ωθω̇

ωθ =˙

vx =˙

Why it is so hard to control ? Just look at the model ...

"We choose the ball and beam, not because it is easy, but because it is hard”.

()θsin
7
5 gv =˙

• Non linear (in many ways)

• Unstable

• Complex (4th order)

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

24

Ball and beam experiment challenge
Additional difficulties:

• Cheap (low performances) easy to find LEGO components; low
cost DAQ card (USB Dux) usable also on laptop PCs

• Full state LQR digital feedback controller

• ONLY one sensor (ball position)

• We need an state OBSERVER in order to recreate the full
system’s state

• We are not satisfied of the accuracy of a simple state feedback:
we want zero error in the ball position (steady state). We add an
additional digital integrator in the position feedback loop.

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

25

Ball and beam experiment: linear model

Linearized_Sys
y=Cx+Du
xd=Ax+BuS/H

Ball_Position

Motor_In

Feedback

+

+SetPoint

F

State_FeedBack

Error

+

-

Ball and Beam : Linear Plant Model Ball and Beam : Linear Plant Model

Observer

Sys_In
Sys_Out

Sys_0_Out
Sys_0_State

Discrete_Integrator

In Out

TsTs Ts/10Ts/10

Ball_PosErr

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

26

Ball and beam experiment: non linear model
bb_non_linear

S/H
Motor_Current

Motor_Voltage

Feedback

+

+

F

State_Feedback

Error

+

-

Ball_Position

Beam_Angle

NonLinearModel

Motor_Voltage
Motor_Current
Beam_Angle
Ball_Position

Discrete_Integrator

In Out

Observer

Sys_In
Sys_Out

Sys_O_Out
Sys_O_State

SetPoint

Ball and Beam : Non Linear Plant ModelBall and Beam : Non Linear Plant Model

TsTs

Ts/10Ts/10

 /* [x_dot v_dot theta_dot omega_dot] ; [x v theta omega] */

 block->xd[0] = v ;
 block->xd[1] = 5.0/7.0*g*sin(theta) ;
 block->xd[2] = omega ;
 block->xd[3] = (m*g*x)/(Jb+m*x*x)*cos(theta)-
 (Kv*Kc*Kc*Kt)/(Ra*(Jb+m*x*x))*omega +
 (Kc*Kt)/(Ra*(Jb+m*x*x))*Um ;

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

27

Hardware In the Loop experiment with ScicosLab

bb_hil

SUM

+

+

F

Error

+

-

DeadBandComp
Expression
Mathematical

Motor

Ball_Position(mm)Integrator

Observer

Sys_In
Sys_Out

Sys_O_State
Sys_O_Out

Plant

M_In x_Out
0.00

-K -

M_Limit

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

28

Ball position sensor

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

29

Standalone HIL mode

We have developed two ways to implement HIL in standalone mode:

Scicos-RTAI: the code is generated from a Scicos diagram (super block)
and compiled for a Linux RTAI target (usually x86 type). The compiled
code runs as RTAI task (in user space). You can interact with the task
using RTAI-Lab (see next slide).
(www.rtai.org)

Scicos-FLEX: the code is generated from a Scicos diagram (superblock)
and cross-compiled for a specific target (Microchip DSPIC). The code is
“flashed” in the chip. You can interact with the task using specific Scicos
blocks and USB communication.
(http://www.evidence.eu.com/content/view/175/216)

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

30

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

31

How to mix Modelica and Scicos-HIL blocks

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

32

Scicos-HIL : Hardware In the Loop

In its basic form Scicos-HIL is constituted
by four blocks

 Analog Input

 Analog Output

 Digital Input

 Digital Output

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

33

Modelica and Scicos-HIL
Within some hardware and software (operating system) limitation you can run a
Modelica simulation in real time and interface it with real signals using Scicos-HIL.

A simple RCL circuit is simulated and the input and output signals are visualized
using a real scope connected at the D/A outputs of a data acquisition card.

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

34

As the previous example, but using an electrical circuits that uses op-amp.

This circuit is simpler to realize
than the previous one because it
uses standard components of
reasonable values.

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

35

Joystick interface
Scicos-HIL can be extended to support HID
(Human Interface Devices) like mouse and
joystick.

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

36

Joystick interface Human input for HIL/SIL Modelica applications.

“Test_2.cos”

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

37

Joystick interface
Human input for HIL/SIL
Modelica applications.

First two axes produce moving
values and the oscillation
propagate to the other two.

“Test_2.cos”

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

38

Controlled Nuclear Fusion for energy production

ITER (www.iter.org): Pin = 50 MWatt Pout = 500 MWatt Q = 10

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

39

Controlled Nuclear Fusion for energy production

Use some field coil to:

• Heath the plasma

• Force temperature/density profiles

• Containment (position control)

• Cancel internal instabilities

• Recovering of fusion byproducts (divertor)

Beware: this is only a part of the problem…

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

40

Flux Equations

()
() 0,,

,,
=+Φ

=+Φ

PPPTP

TTTPTC

IRWII
VIRWII

˙

˙

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

41

“Simple but not simpler”

()
() 0,,

,,
==+Φ

=+Φ

SSSSPS

PPPSPP

VIRWII
VIRWII

˙

˙

In the electric transformer “W”
is constant: geometry does not
change. The iron core is “rigid”
and well fixed.
Plasma geometry control (“W”)
is one of the challenges of this
problem.

In the real applications, “W” is
computed using many
magnetic field sensors placed
inside the “doughnut”.

In the simulations “W” is
computed using a very
complex model.

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

42

Controlled Nuclear Fusion for energy production

Understanding the application

Integrate plasma models (“numeric plasma”) in ScicosLab

Convert Matworks applications to ScicosLab/Scicos

Integrate ScicosLab in Kepler (Java, Eclipse)

Design a Scicos plasma profile controller

Develop a suitable Code Gen for the control system (Scicos-ITM)

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

43

Introduction

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

44

Kepler
Flexible integration of complex physical simulations
developed using other platforms (FORTRAN, C, Matlab, R,
etc.)

Strategic choice of ITM

ScicosLab / Scicos
Dedicated platform for design and simulation of complex
control systems

Built in code generation capabilities for simulation and
application on embedded systems

ScicosLab and Kepler together

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

45

Simulink, ScicosLab, Kepler
Simulink Scicos Kepler

Main entity Diagram Diagram Work flow

Atomic entity Block (C) Block (C, Scilab) Actor (Java)

Sub assembly SubDiagram SuperBlock Composite Actor

Connection Link (line) Link Relation

Script language Matlab (*.m) Scilab (*.sci) Not Available

Code
Generation

Real Time
Workshop

Scicos Code
Generators

Not available

The Bad The Ugly The good

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

46

Kepler

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

47

ScicosLab

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

48

Scicos-ITM How-To

1. Design the control system in ScicosLab

2. Prepare the controller for Code Generation

3. Generate the code using Scicos-ITM

4. Generate a Kepler actor using FC2K

5. Insert the actor inside the Kepler work flow

6. Run the Kepler simulation

7. Don't worry. Be happy :-)

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

49

From ScicosLab to Kepler

Editor Simulator

Scicos-ITM

Blocks Library

Results

FC2K Actors Library

SimulatorEditor

Results

Scicos simulation

Kepler simulation

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

50

The system: the floating apple

 I have an apple at y(0)=y0=1.0m.

 At t=0 I drop the apple, and the apple falls down.

 I'm not satisfied: I'd like to see the apple floating at a reference height (ref=0.5m).

 I need a controller to implement a closed loop feedback system.

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

51

Open Loop “PLANT” model

The “PLANT” : a free falling apple

F=G
ma mT

r2

F=m a a=F
m

aa=G
mT

r2 ; g=−9.81 m/ s2

v t =v0∫ a t dt y t = y0∫ v t dt

y t = y0
1
2

g t 2

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

52

Time continuous controller

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

53

Equivalent discrete system (plant + controller)
Using Euler, we create a discrete equivalent system

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

54

1. Design the control system in ScicosLab

Plant

Controller

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

55

2. Prepare the controller in Scicos for code generation

Controller

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

56

3. Generate the code using Scicos-ITM

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

57

4. Generate a
Kepler actor
using FC2K

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

58

5. Insert the actor inside the work flow

Controller

Plant

System

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

59

6. Run the Kepler simulation

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

60

Why you need a fusion power plant ?

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

61

Controlled Nuclear Fusion ...

Advanced Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

62

Controlled Nuclear Fusion as Warp Engine Starter

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

