
RT-Druid Code generator Plugin reference
manual

A tool for the design of embedded real-time systems

version: 1.4.9
March 5, 2009

About Evidence S.r.l.
Evidence is a spin-off company of the ReTiS Lab of the Scuola Superiore S. Anna, Pisa,
Italy. We are experts in the domain of embedded and real-time systems with a deep
knowledge of the design and specification of embedded SW. We keep providing signifi-
cant advances in the state of the art of real-time analysis and multiprocessor scheduling.
Our methodologies and tools aim at bringing innovative solutions for next-generation
embedded systems architectures and designs, such as multiprocessor-on-a-chip, recon-
figurable hardware, dynamic scheduling and much more!

Contact Info
Address:
Evidence Srl,
Via Carducci 64/A
Località Ghezzano
56010 S.Giuliano Terme
Pisa - Italy
Tel: +39 050 991 1122, +39 050 991 1224
Fax: +39 050 991 0812, +39 050 991 0855

For more information on Evidence Products, please send an e-mail to the following
address: info@evidence.eu.com. Other informations about the Evidence product line
can be found at the Evidence web site at: http://www.evidence.eu.com.

This document is Copyright 2005-2008 Evidence S.r.l.

Information and images contained within this document are copyright and the property of Evidence

S.r.l. All trademarks are hereby acknowledged to be the properties of their respective owners. The

information, text and graphics contained in this document are provided for information purposes only by

Evidence S.r.l. Evidence S.r.l. does not warrant the accuracy, or completeness of the information, text,

and other items contained in this document. Matlab, Simulink, Mathworks are registered trademarks

of Matworks Inc. Microsoft, Windows are registered trademarks of Microsoft Inc. Java is a registered

trademark of Sun Microsystems. OSEK is a registered trademark of Siemens AG. The Microchip Name

and Logo, and Microchip In Control are registered trademarks or trademarks of Microchip Technology

Inc. in the USA. and other countries, and are used under license. All other trademarks used are

properties of their respective owners. This document has been written using LaTeX and LyX.

2

http://www.evidence.eu.com

Contents

1. Introduction 5

2. An overview of RT-Druid Code Generator and Erika Enterprise 6
2.1. Software design with RT-Druid . 6
2.2. The open architecture of the RT-Druid tool 7
2.3. RT-Druid integration with Eclipse . 7
2.4. Multiprocessor Version . 9
2.5. Multiprocessor extensions for Altera Nios II (Target specific info) 9

2.5.1. Integration with Nios II IDE . 9
2.6. Code generation . 10

3. Creating an RT-Druid project 12

4. OIL syntax and OIL file generation 15
4.1. OIL Basics . 15
4.2. The CPU Object . 17
4.3. The OS Object . 17

4.3.1. Compilation attributes . 17
4.3.2. OSEK attributes . 18
4.3.3. Multi-core attributes . 19
4.3.4. Nios II target attributes . 19
4.3.5. CPU DATA sections . 19
4.3.6. MCU DATA sections . 22
4.3.7. BOARD DATA sections . 22
4.3.8. Library configuration . 23
4.3.9. Kernel Conformance class . 26
4.3.10. ORTI file generation and kernel awareness with Lauterbach Trace32 27

4.4. The Application mode Object . 28
4.5. The Task Object . 29

4.5.1. Autostart attribute . 29
4.5.2. Priority attribute . 29
4.5.3. Relative Deadline attribute . 30
4.5.4. Activation attribute . 31
4.5.5. Schedule attribute . 31
4.5.6. Event attribute . 31
4.5.7. Resource attribute . 32
4.5.8. Stack attribute . 32

3

Contents

4.5.9. Mapping tasks to CPUs using the CPU ID attribute 32
4.5.10. Source files for each CPU . 33
4.5.11. Intertask notifications . 33

4.6. The Resource Object . 33
4.7. The Event Object . 34
4.8. The Counter object . 34
4.9. The Alarm Object . 35
4.10. Notes on source files . 35
4.11. OIL extensions for multiprocessing . 36

4.11.1. Partitioning support . 36
4.11.2. Master CPU . 37
4.11.3. Specification of the source files. 37

5. Code generation and the Build process 40
5.1. Setting the OIL configuration file . 40
5.2. Starting the Project Build procedure . 42
5.3. RT-Druid Console . 43
5.4. Erika Enterprise Signatures . 44
5.5. Project cleanup . 46
5.6. Application Debug and Run . 47
5.7. Application debug using Lauterbach Trace32 47

6. Script File 52
6.1. Introduction . 52
6.2. Quick introduction to ANT . 52
6.3. Launching Ant . 53
6.4. An Ant build script file format example 54
6.5. Task “rtdruid.Oil.Configurator” . 54

7. Standalone version of RT-Druid 55
7.1. Introduction . 55
7.2. Code generation . 55
7.3. Template code instantiation . 55

8. History 57

A. OIL definition 58

4

1. Introduction

This document provides the user with a basic understanding of the architecture, the
features and the operations of the RT-Druid Code generator tool and the associated
Erika Enterprise Kernel.

The Code generator tool is part of the RT-Druid design framework for architecture level
modeling. The RT-Druid toolset consists of a core component, required for all operations,
and a number of plugins providing time verification and automatic generation of the
implementation of real-time embedded software.

The modular structure of RT-Druid is now fully integrated with the open Eclipse
framework. The Eclipse environment can easily be extended with third party compo-
nents and plug-ins, further improving the configurability and extensibility of RT-Druid.

This user guide document covers the code generation plugin. It consists of an overview,
explaining the architectural concepts, the standards and the inputs and outputs of the
code generator tool. In the first section: Overview of RT-Druid Code Generator and
Erika Enterprise, the tool and the real-time Erika Enterprise OS are introduced, the code
generation process is outlined and the relationships among the products and the Eclipse
development environment are explained.

The second part contains the basic information for operating with the tool and pro-
viding the right configuration input for the following code generation phase. Chapter
3 explains the basic steps that are necessary to start an Rt-Druid project and how to
define the basic configuration info that is required by the tool. A fundamental part
of the configuration tool is contained in the OIL input file. Syntax and methods for
generating the OIL description of the system are the subject of Chapter 4.

The Erika Enterprise specific extensions to the OIL language that are necessary to
define task placement and other features of multiprocessor systems are described in
Section 4.11.

The operations that are required for the code generation phase, together with a de-
tailed description of the input and output data at each step is the subject of the Chapter
5. The kernel configuration and the explanation of the programming model that needs
to be used for RT-Druid/Erika Enterprise applications are also described in Chapter 5.

5

2. An overview of RT-Druid Code Generator
and Erika Enterprise

RT-Druid is an open and extensible environment, based on XML and open standards
(Java) allowing generation of portable OSEK C code from OIL definitions to create
applications that run in real-time in a variety of environments, including dsPIC, AVR,
ARM7, Altera Nios II, and others.

Generated code can run on any OSEK-compliant system, but the RT-Druid framework
is optimized for running in conjunction with the Erika Enterprise kernel.

Because of its generic framework, the RT-Druid give a extensible modeling and analysis
platform for modeling any hardware and software, providing compatibility with most of
the model-based methodologies for functional design on the market. The tool is designed
aiming at the following general goals:

Modularity: once the kernel module is installed, each design activity in the develop-
ment flow is in charge of a module that can be separately purchased and used as
standalone component.

Portability across different execution environments: the tool is designed and imple-
mented in Java for maximum portability to different environments and operating
systems (MS Windows 2000/Xp, Linux, Macintosh).

Extensibility: future extensions include custom plug-ins and integration with third party
production tools for code generation complying with industrial standards: such as
the OSEK and its related standards (OIL, ORTI) in the automotive domain. In
particuler, future enhancements include:

• Graphic interface for placement and configuration options

• Support for the ORTI standard for debugging

• Support for the Lauterbach tools, for tracing and measurement of time-related
attributes.

2.1. Software design with RT-Druid

The architecture of the RT-Druid family of tools is shown in Figure 2.1. Model informa-
tion (i.e. for both the functional and the architecture-level components) is stored in an
internal repository and it is made available by means of an open format based on XML.

The toolset architecture is based on a kernel, or Core module, providing management
of internal data structure and basic services for GUI and additional plugin modules.

6

2. An overview of RT-Druid Code Generator and Erika Enterprise

Plugins exploit kernel services in order to provide support to the design stages in a
completely independent way. Here is a list of the plugins currently available:

• RT-Druid Modeler;

• RT-Druid Schedulability Analyzer;

• RT-Druid Code generator for multiprocessors (including extensions for Altera pro-
grammable HW);

Future extensions include

• Trace viewer/Analyzer;

• Scheduling Simulator;

• Importers from Mathworks Simulink, ASCET and UML 2.0 models.

2.2. The open architecture of the RT-Druid tool

RT-Druid allows saving all system information in an open XML format. Information
about the system model, configuration information and the result of operations per-
formed by plug-in tools, such as schedulability analysis, tracing or debugging info, can
easily be made available to external or third party tools. Similarly, OIL files can be
imported from or exported to third party products.

2.3. RT-Druid integration with Eclipse

RT-Druid is entirely written in Java. It is based on well-known development frameworks
such as Eclipse, the framework originally propoted by IBM and now released as an open
source development environment [3], and on the W3C XML standard. The RT-Druid
tool makes use of several Eclipse plug-ins, including EMF [2], GEF [4] and CDT [1]1.

The integration of RT-Druid with the Eclipse framework easily allows any user to
perform the operations of editing, compiling, debugging and running the software. The
required commands and action sequences are those common to all Eclipse projects,
including CDT.

Similarly, operation for creating a new project, as shown in the following Chapter 3
and editing of the configuration files follow the standard Eclipse pattern. The result of
the generation of the configuration file by the RT-Druid wizard and the result of most
operations performed by RT-Druid are shown in a dedicated Eclipse console (as happens
for most Eclipse plug-ins, for details, please see Section 5).

1CDT is the Eclipse component in charge of C/C++ project management.

7

2. An overview of RT-Druid Code Generator and Erika Enterprise

Figure 2.1.: The plug-in architecture of RT-Druid.

8

2. An overview of RT-Druid Code Generator and Erika Enterprise

Integration with Eclipse is not only at GUI interface level, but it also allows performing
operations in batch (command line) mode according to the ANT standard [7]. RT-Druid
extends the ANT commands (“TASK” in ANT terminology) adding the capability for
code generation and the execution of the compilation scripts starting from an OIL file.

2.4. Multiprocessor Version

RT-Druid provides special support for the development of multiprocessor applications
together with the Erika Enterprise kernel. Currently supported features include:

• Multiprocessor systems with shared memory.

• Support for code placement in a multiprocessor system.

Programming-level implementation is independent from code placement on processors,
meaning that the programmer do not need to be aware of the existence of multiple
processors. The code generator provides the correct implementation of system primitives
based on the placement of the threads and resources as specified in the RT-Druid (OIL)
configuration part. Independence from placement options provides:

• Easy testing of different placement configurations.

• Easy extension to a higher degree of parallelism and seamless porting of existing
single processor applications

2.5. Multiprocessor extensions for Altera Nios II (Target

specific info)

The multiprocessor extensions allow for processor specific features including compatibil-
ity with multicore targets like Altera Nios II, allowing reuse of standard Altera periph-
erals and device drivers. Integration with Altera’s development tools, including Nios
II IDE is also supported: basically, Eclipse CDT is extended by RT-Druid in order to
allow creation and manegement of projects for multiprocessor systems based on Erika
Enterprise.

2.5.1. Integration with Nios II IDE

The required commands and action sequences for editing, compiling, debugging and
running code produced in the RT-Druid framework are identical to those common to
Nios II IDE projects.

Integration with the Nios II IDE is not yet fully automated. In the description of
the system, RT-Druid requires information related to the HW architecture running the
system, such as the number of available CPUs and the available RAM addresses. In the

9

2. An overview of RT-Druid Code Generator and Erika Enterprise

current version, this information needs to be provided by the user by writing suitable
entries inside the configuration file, and it needs to be consistent with the definitions
provided inside Altera’s SOPCbuilder.

The compilation stage, however, offers full integration with the Nios II IDE environ-
ment. The compilation stage is handled by Eclipse, and in particular by CDT, starting
from the scripts generated by RT-Druid which, in turn, exploits the compilation envi-
ronment made available by Altera Nios II IDE. The end-result is a sequence of steps
identical to those performed when commanding from the Eclipse interface the compi-
lation of a standard Nios II IDE project, with the only difference that an RT-Druid
project allows handling code distributed among multiple processors, whereas standard,
automatically handled Nios II IDE projects assume deployment of a project for each
CPU.

2.6. Code generation

The RT-Druid Code Generator is a plugin that is used to automatically generate con-
figuration code at compile time. The steps performed by the Code Generator upon a
compilation request are described in this section.

Creation of the build directory and its content Starting from an OIL configuration
file, the tool creates a directory that will contain all the generated files2. The directory
will be the default directory for all the operations of the C/C++ compiler. In the
following, we assume that the name selected for this directory in the configuration file
is Debug.

The first file that is created is the makefile, created inside the Debug directory itself.
The makefile is used to compile the application source code. The makefile structure
may depend on the final target architecture.

On a multicore system, the makefile is responsible of triggering the compilation of a
separate image for each CPU. In that case, together with the makefile, the tool also
generates a file common.mk (inside the Debug directory), containing common makefile
settings for the CPUs in the project.

Creation of the CPU build directories. Following the creation of the project main
directory, the RT-Druid Code Generator creates a directory for each CPU inside the it.
If the system for which the project is compiled is a single-processor, only one folder is
created. The name of the cpu folders follows the name/ID definitions provided in the
OIL file for the CPUs3.

All CPU folders contain the same files, with the exception of the folder for the Master
CPU4, which contains the extra file common.c, containing information common to all

2For Altera Nios II users: That directory has the same meaning of those created by Altera Nios II
IDE projects for the parameter configurations, like Debug, Release, and so on.

3CPU names/IDs must not contain spacing characters
4For informations about the Master CPU, please refer to Section 4.11.2

10

2. An overview of RT-Druid Code Generator and Erika Enterprise

Figure 2.2.: Folders and files created by RT-Druid for an Altera Nios II multicore design.

the CPUs in the system. In the examples shipped with Erika Enterprise cpu0 is the
predefined ID for the Master CPU.

For each CPU the Code generator produces the following files (see Figure 2.2):

eecfg.h. This file contains the declarations of all the RTOS symbols (tasks, resources,
alarms, events, and so on) that are visible from the given CPU. The objects visible
from a CPU are the objects allocated on it, plus the objects on other CPUs that
may be referred by the code running on the CPU itself.

eecfg.c. This file contains the configuration data structures of the Erika Enterprise
kernel, providing information on the OIL file local objects options.

cpu.mk. This file contains the rules used to compile the source code allocated to the
CPU. Together with the common.mk file it provides information equivalent to the
contents of the makefile created by the Nios II IDE C/C++ Application Projects.

subdir.mk. This file contains the list of the files that must be compiled and linked in
order to generate the executable to be run on the CPU. The files depend on the
partitioning configuration defined in the OIL file.

Warning: To be included inside subdir.mk, a file needs to be listed inside
the OIL declaration. The behavior is different from normal Altera Nios II
Projects where the fact that a file is inserted in a project implies that it will
be automatically added to the subdir.mk and compiled.

11

3. Creating an RT-Druid project

Following the standard Eclipse convention, the creation of a new RT-Druid project starts
from the wizard for project creation, accessible in several ways, such as, for example,
by pressing the “File” button in the menubar and then the “New” and the “Project”
buttons in sequence (see Figure 3.1).

After that, the wizard asks for a project template (see Figure 3.2), which is a pre-built
application that you can use, and after that for the project name and optionally for the
name of the home folder for the project. The use of spacing characters in the project
name is strongly discouraged and strictly forbidden for the names of all files inside
the project folder, since they would create problems with the make and gcc tools when
compiling a project, since (make and gcc treat spaces as separators inside lists of file
names (see Figure 3.3).

Once these steps are completed, the project is created and a OIL configuration file
template is automatically generated and inserted into the project.

To edit the OIL File, just double click on in in the Navigation sidebar, and a dedicated
OIL Editor will appear.

12

3. Creating an RT-Druid project

Figure 3.1.: Activating the “New Project” Wizard.

Figure 3.2.: Choosing a template application for your new RT-Druid Project.

13

3. Creating an RT-Druid project

Figure 3.3.: Choosing a meaningful name for your new RT-Druid Project.

14

4. OIL syntax and OIL file generation

OIL (OSEK Implementation Language) is a part of the OSEK/VDX standard, that is
used for OS and application configuration. The specification of the OIL file structure
and syntax is provided in the OSEK/VDX web site at http://www.osek-vdx.org [5].

In the RT-Druid and in the Erika Enterprise RTOS the configuration of the system is
defined inside an OIL file. In this chapter we only provide a quick introduction of the
OIL Language (see [5] for a complete description), together with a specification of the
specific OIL attributes implemented by RT-Druid.

Standard OIL has no knowledge of multiprocessor systems, nor of distribution of
threads and resources. Erika Enterprise provides mechanisms for resource sharing with
predictable blocking time in a distributed environment. We defined a set of OIL exten-
sions (see Section 4.11) which explicitly deals with the additional syntax features that
are needed for the definition of a multiprocessor system, including placement of threads
and resources.

4.1. OIL Basics

In Erika Enterprise all the RTOS objects like tasks, alarms, resources, are static and
predefined at application compile time. To specify which objects exists in a particular
application, Erika Enterprise uses the OIL Language, which is a simple text description
language.

Here is an example of the OIL File for the dsPIC (R) DSC device:

CPU mySystem {

OS myOs {

EE_OPT = "DEBUG";

CPU_DATA = PIC30 {

APP_SRC = "code1.c";

APP_SRC = "code2.c";

MULTI_STACK = FALSE;

ICD2 = TRUE;

};

MCU_DATA = PIC30 {

MODEL = 33 FFJ256GP710;

};

BOARD_DATA = EE_FLEX {

USELEDS = TRUE;

}

15

http://www.osek-vdx.org

4. OIL syntax and OIL file generation

KERNEL_TYPE = FP;

};

TASK myTask {

PRIORITY = 1;

STACK = SHARED;

SCHEDULE = FULL;

};

TASK myTask {

PRIORITY = 1;

STACK = SHARED;

SCHEDULE = FULL;

};

};

The example contains a single object called CPU, which contains all the specifications
and the values used by the system. Inside the CPU, are described the objects which are
present in the application: an OS, which specifies the global attributes for the system,
and, in the example, two TASKs.

The OIL File is parsed by the RT-Druid code generator and, as a result, part of the
RTOS source code is generated and compiled together with the application.

An OIL file consists of two parts: a set of definitions and a set of declarations. Defini-
tions are used to define data types, constants and kernel objects that need to be provided
in the declaration part for configuring a specific kernel. In other words, the definition
part tells the configurator that there exists different objects like tasks, resources, and
so on, describing their attributes and types, like in a C struct declaration. Then, the
declaration part is used to specify which objects are really present in a particular appli-
cation.

In RT-Druid, the definition part of the OIL file is fixed and is contained inside the
RT-Druid Eclipse Plugins. The definition part including all the attributes which can
be specified by users is included in Appendix A. The user has only to provide the
declaration part, specifying for a particular application the objects to be created.

The OIL file basically contains the description of a set of objects. A CPU is a container
of these objects. Other objects include the following:

• OS is the Operating System which runs on the CPU. This object contains all the
global settings which influence the compilation process and the customization of
the Erika Enterprise RTOS.

• APPMODE defines the different application mode. These modes are then used to
control the autostart feature for tasks and alarms in the OIL file.

• TASK is an application task handled by the OS.

• RESOURCE is a resource (basically a binary mutex) used for mutual exclusion.

16

4. OIL syntax and OIL file generation

• EVENT is a synchronization flag used by extended tasks.

• COUNTER is a software source for periodic / one shot alarms.

• ALARM is a notification mechanism attached to a counter which can be used to
activate a task, set an event, or call a function.

All the attributes in the OIL file can be:

• numbers, i.e. the PRIORITY attribute;

• strings, i.e. the APP_SRC attribute;

• enumerations, i.e. the KERNEL_TYPE attribute.

Attributes can have a default value, as well as an automatic value specified with the
keyword AUTO. Some of the attributes can be specified more than once in the OIL file,
such as the APP_SRC, and the configurator treats them as a set of values; i.e., in the case
of APP_SRC, the set of application files to be compiled.

Finally, some items can in reality contain a set of sub-attributes, like in a C-language
struct definition. For example, CPU_DATA contains a PIC30 object, which is detailed by a
set of attributes.

4.2. The CPU Object

The CPU object is only used as a container of all the other objects, and does not have
any specific attribute.

4.3. The OS Object

The OS Object is used to define the Erika Enterprise global configuration as well as the
compilation parameters.

The attributes which can be specified for the OS object are specified in the following
subsections.

4.3.1. Compilation attributes

The OIL file includes a set of fields for controlling the command line parameters which
are passed to the compiler tools. The meaning of those elements is the following:

• EE_OPT contains a list of additional compilation flags passed to the Erika Enterprise
makefile. In practice, the EE_OPT makefile variable controls which files has to be
compiled and with which options. The EE_OPT attributes are translated in #defines
in the C code.

17

4. OIL syntax and OIL file generation

• CFLAGS contains the list of additional C compiler options.

• ASFLAGS contains the list of additional assembly options.

• LDFLAGS Contains the list of additional linker parameters.

• LDDEPS Contains the list of additional library dependencies which have to be added
to the makefile rules.

• LIBS Contains the list of additional libraries that needs to be linked.

Example of declaration:

CPU mySystem {

OS myOs {

EEOPT = "MYFLAG1 ";

EEOPT = "MYFLAG2 ";

CFLAGS = "-G0";

CFLAGS = "-O0 -g";

CFLAGS = "-Wall -Wl,-Map -Wl,project.map";

ASFLAGS = "-g";

LIBS = "-lm";

...

};

...

}

4.3.2. OSEK attributes

The OIL file includes a set of attributes which are part of the OSEK/VDX specification.
The meaning of those attributes is the following:

• STATUS specifies if the kernel should be compiled with STANDARD status or EXTENDED
status. With the STANDARD status, only a subset of the error codes are reported by
the kernel primitives to reduce the system footprint. This setting only applies to
the OSEK/VDX conformance classes.

• The settings STARTUPHOOK, ERRORHOOK, SHUTDOWNHOOK, PRETASKHOOK, POSTTASKHOOK

specifies which particular hook routine should be included in the kernel.

• USEGETSERVICEID specifies if the Service ID debugging functionality of the ErrorHook()
routine should be included in the kernel.

• USEPARAMETERACCESS specifies if the ErrorHook() should have access to the param-
eters passed to the primitives.

• USERESSCHEDULER specifies if the kernel includes the RES_SCHEDULER resource.

18

4. OIL syntax and OIL file generation

Example of declaration:

CPU mySystem {

OS myOs {

STATUS = STANDARD ;

STARTUPHOOK = TRUE;

ERRORHOOK = TRUE;

SHUTDOWNHOOK = TRUE;

PRETASKHOOK = FALSE;

POSTTASKHOOK = FALSE;

USEGETSERVICEID = FALSE;

USEPARAMETERACCESS = FALSE;

USERESSCHEDULER = TRUE;

...

};

...

}

4.3.3. Multi-core attributes

The attributes STARTUPSYNC, and USEREMOTETASK are described in the Erika Enterprise
Manual for the Altera Nios II target, since they are specific for that architecture.

4.3.4. Nios II target attributes

The attributes NIOS2_MUTEX_BASE, NIOS2_SYS_CONFIG, NIOS2_APP_CONFIG, IPIC_GLOBAL_NAME,
IPIC_LOCAL_NAME, MP_SHARED_RAM, MP_SHARED_ROM, NIOS2_DO_MAKE_OBJDUMP, SYSTEM_LIBRARY_NAME,
SYSTEM_LIBRARY_PATH, NIOS2_PTF_FILE, are described in the Erika Enterprise Manual for
the Altera Nios II target.

4.3.5. CPU DATA sections

The CPU_DATA section of the OS object is used to specify the configuration of a core in a
single or in a multiple core device.

In general, the OIL file will contain a CPU_DATA section for each core in the system.
There is a specific CPU_DATA section for each architecture supported by Erika Enterprise.

In particular, the CPU_DATA sections currently supported are NIOSII, PIC30 and AVR_5,
which contain the following attributes:

• ID is a symbolic name uniquely identifying the CPU. The name used for the CPU_ID

attribute must be the same name that is used when allocating objects to a partic-
ular CPU.

CPUs with no name automatically get a default name default_cpu. If more than
one CPU gets default_cpu, an error is raised, because different CPUs cannot have
the same name.

19

4. OIL syntax and OIL file generation

default_cpu is subsumed also when allocating Tasks (see Section 4.5.9), and coun-
ters (see Section 4.8) to a CPU, and when the Master CPU is assigned (see Section
4.11.2).

For single processor systems, it is safe to avoid any declaration of the CPU_ID field
in the entire OIL file. In this way, all the objects will be mapped to the only CPU
in the system, named default_cpu.

Example of declaration:

CPU mySystem {

OS myOs {

CPU_DATA = NIOSII {

ID = "mycpu";

...

}

...

};

...

}

• APP_SRC declares a list of all files containing code to be executed on the CPU.

Example of declaration:

CPU mySystem {

OS myOs {

CPU_DATA = NIOSII {

APP_SRC = "file1.c";

APP_SRC = "file2.c";

...

}

...

};

...

}

• MULTI_STACK defines if the system supports multiple stacks for the application tasks
(TRUE) or not (FALSE). The default value is FALSE.

If set to TRUE, it is possible to specify if IRQs are executed using a dedicated stack
space. The attribute IRQ_STACK is used for this purpose.

Some architectures also allow the specification of a DUMMY_STACK, which specifies if
the background task is using a shared stack (SHARED value) or a dedicated stack
segment (PRIVATE value). Erika Enterprise schedules the main() function as a back-
ground task, also called “dummy” task. For example, the Altera Nios II archi-
tecture provides support for the above described mechanism, while the dsPIC (R)
DSC family does not support it.

20

4. OIL syntax and OIL file generation

• STACK_TOP contains the highest address from which the stack space starts. The
address can be provided as a symbol, assuming that the symbol is associated to
a value in some other part of the OIL declaration or in some application file. For
example, in the Altera Nios II HW version of Erika Enterprise, the typical value for
this attribute is __alt_stack_pointer, that is the symbol used inside the Altera
Nios II System libraries as the initial stack pointer.

• SYS_SIZE is used to declare the total size of the memory that is allocated to the
task stacks.

• SHARED_MIN_SYS_SIZE used to declare the minimum size of the shared stack space.
The dimension of the shared stack space is computed as the difference between the
available space (SYS_SIZE) and the space required for implementing the private
stack spaces. RT-Druid guarantees that the remaining size is higher than or equal
to the value defined with the SHARED_MIN_SYS_SIZE directive (an error is raised
otherwise). The default value for this attribute is zero.

• The attributes ICD2 and ENABLE_SPLIM are described in the Erika Enterprise Manual
for the Microchip PIC24, dsPIC30 (R) DSC and dsPIC33 (R) DSC targets.

• The specific attributes about the AVR_5 architecture are described in the Erika
Enterprise Manual for the Atmel AVR5 targets.

Here is an example of a declaration of a Nios II CPU_DATA:

CPU mySystem {

OS myOs {

CPU_DATA = NIOSII {

ID = "cpu2";

MULTI_STACK = TRUE {

IRQ_STACK = FALSE;

DUMMY_STACK = SHARED;

};

APP_SRC = "cpu2_startup.c";

STACK_TOP = 0x20004000;

SHARED_MIN_SYS_SIZE = 1800;

SYS_SIZE = 0x1000;

IPIC_LOCAL_NAME = "IPIC_INPUT_CPU0";

};

...

};

...

}

The same example can be written in two stages by splitting the declaration of the
structure. The only requirement is that the separate declarations do not contain any
conflicting assignment to the same field name. The previous example can be rewritten
as follows:

21

4. OIL syntax and OIL file generation

CPU mySystem {

OS myOs {

CPU_DATA = NIOSII {

ID = "cpu2";

MULTI_STACK = TRUE {

IRQ_STACK = FALSE;

DUMMY_STACK = SHARED;

};

APP_SRC = "cpu2_startup.c";

};

CPU_DATA = NIOSII {

ID = "cpu2";

STACK_TOP = 0x20004000;

SHARED_SYS_SIZE = 1800;

SYS_SIZE = 0x1000;

IPIC_LOCAL_NAME = "IPIC_INPUT_CPU0";

};

CPU_DATA = NIOSII {

/* The ID is not defined , this section refers

to the "default_cpu" */

STACK_TOP = "alt_data_end";

};

...

};

...

}

4.3.6. MCU DATA sections

The MCU_DATA section of the OS object is used to specify the configuration of peripherals
which are present in a specific microcontroller.

The following microcontrollers are supported:

• Microchip PIC24 microcontrollers and dsPIC DSCs. Please refer to the Erika
Enterprise Manual for the Microchip PIC24, dsPIC30 (R) DSC and dsPIC33 (R)
DSC targets.

4.3.7. BOARD DATA sections

The BOARD_DATA section of the OS object is used to specify the configuration of the board
where the microcontroller is placed. For example, the board configuration includes the
configuration of the external devices like leds, buttons, displays, and other peripherals.

The following boards are supported:

22

4. OIL syntax and OIL file generation

• NO_BOARD is a placeholder to specify that no board configuration is required.

• EE_FLEX is the Evidence / Embedded Solutions FLEX Board based on the Microchip
dsPIC (R) DSC. For details, please refer to the Erika Enterprise Manual for the
Microchip PIC24, dsPIC30 (R) DSC and dsPIC33 (R) DSC targets.

• MICROCHIP_EXPLORER16 is the Microchip Explorer 16 evaluation board. For details,
please refer to the Erika Enterprise Manual for the Microchip PIC24, dsPIC30 (R)
DSC and dsPIC33 (R) DSC targets.

• MICROCHIP_DSPICDEM11PLUS is the Microchip dsPIC Demo Plus 1.1 evaluation board.
For details, please refer to the Erika Enterprise Manual for the Microchip PIC24,
dsPIC30 (R) DSC and dsPIC33 (R) DSC targets.

• ATMEGA_STK50X is the Atmel STK 500 evaluation board for the AVR5 architecture.
For details, please refer to the Erika Enterprise Manual for the Atmel AVR5 targets.

• XBOW_MIB5X0 is the Crossbow MIB 5x0 board used to program wireless sensor
network hardware. For details, please refer to the Erika Enterprise Manual for the
Atmel AVR5 targets.

4.3.8. Library configuration

Typical microcontroller applications needs to link external libraries to the application
code. Erika Enterprise supports both the linking of external binary libraries as well as
the development of library code that can be automatically built by the Erika Enterprise
build scripts.

Linking an external third-party binary library

A third-party binary library is typically provided as a binary archive with a “.a” exten-
sion.

If you need to link this kind of library to your executable, just add the following lines
to the OIL file:

CPU mySystem {

OS myOs {

LDFLAGS = "-Llibrarypath";

LIBS = "-llibraryname";

};

};

These lines have the effect to add the proper option to tell the linker to load the
library you specified.

23

4. OIL syntax and OIL file generation

Building and using libraries which are integrated in the Erika Enterprise build
system

In this case, the target is to use the library code which is provided in the Erika Enterprise
build tree. Basicaly, the OIL file can specify a set of libraries which are distributed
with or are supported by Erika Enterprise and that have to be linked together with the
application. The specification is done by using the LIB attribute.

An example of this kind of library are the Scicos library, and other communication
libraries which can be found under the ee/contrib directory of the Erika Enterprise source
tree.

The list of supported libraries depends on the target and can be found in the Erika
Enterprise Manual for the specific target.

The LIB attribute can be used in one of the following ways:

• This first option helps to build the library files -only-. In particular, LIB can be
used to specify an OIL file which only compiles the supported libraries (that is, the
OIL file is used to configure the libraries but not the application). The following
example is an OIL file which only compiles the library mylib.a:

CPU mySystem {

OS myOs {

EE_OPT = "__BUILD_LIBS__";

LIB = ENABLE { NAME = "mylib"; };

CPU_DATA = PIC30;

};

};

Note: To compile all the libraries which are supported by a particular ar-
chitecture with a single OIL file, the following OIL file configuration can be
used:

CPU mySystem {

OS myOs {

EE_OPT = "__BUILD_ALL_LIBS__";

CPU_DATA = PIC30;

};

};

• LIB can be used for the on-the-fly creation of the library during the application
compilation process. That is, the build process will create the library as well as the
Erika Enterprise library libee.a. After that, the application code will be compiled
and linked with all the libraries just created. The following example can be used
to compile and link the library mylib.a.

24

4. OIL syntax and OIL file generation

CPU mySystem {

OS myOs {

EE_OPT = "__ADD_LIBS__";

LIB = ENABLE { NAME = "mylib"; };

...

};

...

};

• In this case, an application will be linked with a library which has been gener-
ated using a separate OIL file. The following example shows the OIL file which
can be used to link an already existing library which is located in the directory
librarypath. librarypath typically is the Debug directory of a project used to
build a library, as explained in the first bulled of this list.

CPU mySystem {

OS myOs {

LDFLAGS = "-Llibrarypath";

LIB = ENABLE { NAME = "mylib"; };

...

};

...

};

• Finally, please note that more than one library can be specified in a OIL file in
one of the following two ways:

CPU mySystem {

OS myOs {

LIB = ENABLE { NAME = "mylib1"; };

LIB = ENABLE { NAME = "mylib2"; };

LIB = ENABLE { NAME = "mylib3"; };

...

};

...

};

CPU mySystem {

OS myOs {

LIB = ENABLE {

NAME = "mylib1";

NAME = "mylib2";

NAME = "mylib3";

};

...

};

...

25

4. OIL syntax and OIL file generation

};

4.3.9. Kernel Conformance class

An explicit declaration of the kernel conformance class is required in the KERNEL_TYPE

definition. The definition is shown below:

ENUM [

FP {

BOOLEAN NESTED_IRQ;

},

EDF {

BOOLEAN NESTED_IRQ;

STRING TICK_TIME;

BOOLEAN REL_DEADLINES_IN_RAM = FALSE;

},

BCC1 ,

BCC2 ,

ECC1 ,

ECC2

] KERNEL_TYPE;

For the EDF kernel, it is possible to specify the tick length. given the tick length
for the circular timer, which is then used to compute the vaues to put on the relative
deadline task parameter. The tick time can be specified in various unit measures, such
as seconds (“s”), milliseconds (“ms”), microseconds (“us”), and nanoseconds (“ns”).
Please check the manual for the CPU architecture you are currently using for the proper
configuration of the tick parameter. The EDF kernel has an additional option which
allows to specify that relative deadlines should be stored in RAM and not in Flash, to
allow them to be changed at runtime.

Some examples of use within the declaration part are the following:

1. To configure the BCC1 conformance class:

KERNEL_TYPE = BCC1;

2. To configure the FP conformance class:

KERNEL_TYPE = FP;

By default, nested IRQs are set to FALSE.

3. To configure the EDF conformance class:

KERNEL_TYPE = EDF {

NESTED_IRQ = TRUE;

TICK_TIME = "10.5ns";

REL_DEADLINES_IN_RAM = TRUE;

};

26

4. OIL syntax and OIL file generation

Nested IRQs are set to TRUE.

4.3.10. ORTI file generation and kernel awareness with Lauterbach

Trace32

This section describes the steps to use the Lauterbach Trace32 ORTI support in Erika
Enterprise. To generate the ORTI information, the ORTI_SECTIONS attribute has to be
specified inside the OS object. The definition of ORTI_SECTIONS is the following:

ENUM [

NONE ,

ALL ,

OS_SECTION ,

TASK_SECTION ,

RESOURCE_SECTION ,

STACK_SECTION ,

ALARM_SECTION

] ORTI_SECTIONS[];

Basically, each ORTI section can be selected separately. If ALL is specified, then all
the ORTI sections are generated.

Notice that the ORTI support currently applies only to the Altera Nios II target.
RT-Druid provides the possibility to automatically generate an ORTI1 file. An ORTI

file is basically a text file that specifies which data structures the kernel information are
stored in. The file is parsed by an ORTI–enabled debugger, providing useful feedback
to the application developer during debug sessions.

Also, RT-Druid automatically produces a set of scripts that can be used to automat-
ically launch a Lauterbach Trace32 debugger [8]. The provided scripts automatically
load the FPGA hardware, and start a debug session for each CPU in the system.

To enable all these features, you need to specify a JAM file name2 inside the OS
section of the OIL file, as well as the specification of the ORTI sections that should be
generated, as follows:

CPU test_application {

OS EE {

...

NIOS2_JAM_FILE = "JAM_filename.jam";

ORTI_SECTIONS = ALL;

}

...

}

1ORTI is a standard file format specified by the OSEK/VDX consortium.
2JAM is one of the file formats containing the FPGA configuration that is accepted by Lauterbach

Trace32

27

4. OIL syntax and OIL file generation

File name Description

debug.bat This batch script loads the FPGA hardware
and starts a T32 instance for each CPU. You
can double click it on the Nios II IDE to di-
rectly launch the debug session.

debug_nojam.bat This batch script starts a T32 instance for
each CPU. You can double click it on the
Nios II IDE to directly launch the debug ses-
sion. You can use it if the FPGA has been
already programmed with the hardware con-
tents.

t32.cmm Main PRACTICE script, responsible for
loading the JAM file and starting all the T32
instances on every CPU.

testcase_data.cmm Internal file used for automatic testcase gen-
eration.

t32/* Internal PRACTICE scripts. They
are a copy of the files inside
components/evidence_ee/ee/pkg/cpu/nios2

/debug/lauterbach/t32.
cpuname/config.t32 Configuration file for T32. Contains the Mul-

ticore configuration information.
cpuname/orti.men Trace32 menu automatically generated using

the Lauterbach ORTI menu generator.
cpuname/system.orti The ORTI file, for each CPU.

cpuname/t32.cmm The main script file executed by each CPU.

Table 4.1.: Files generated for the Lauterbach Trace32 support. (cpuname represents
the name of the CPU as specified in the OIL file).

In the above example, ALL causes the generation of all the ORTI information, and
JAM_filename.jam is the path name of the JAM file specified in the NIOS2_JAM_FILE

attribute. If not specified, ../../fpga.jam is used.
As a result of the compilation process, a set of files are produced inside the Debug

directory (see Table 4.1 for a detailed list).
Please refer to Section 5.7 for information on how to use the ORTI Files and launch

a Lauterbach Trace32 session.

4.4. The Application mode Object

The APPMODE object is contained by the CPU object and is used to define an application
mode.

28

4. OIL syntax and OIL file generation

Example:

CPU test_application {

...

APPMODE myAppMode1;

APPMODE myAppMode2;

APPMODE myAppMode3;

...

}

4.5. The Task Object

The TASK object is contained inside the CPU object and it is used to specify the properties
of a task.

4.5.1. Autostart attribute

The AUTOSTART attribute specifies if the task should be automatically activated at system
startup by the StartOS() primitive.

If the task must be activated at startup, the AUTOSTART attribute has a value TRUE.
When TRUE, the APPMODE sub-attribute lists the application modes for which the task is
autostarted.

Example:

CPU test_application {

...

TASK myTask1 {

AUTOSTART = TRUE { APPMODE = myAppMode1; };

...

};

TASK myTask2 {

AUTOSTART = FALSE;

...

};

...

}

4.5.2. Priority attribute

In the FP kernel, the PRIORITY attribute specifies the task priority. In the EDF kernel,
the value specifies the task preemption level. The value is used by RT-Druid as a relative
ordering of priorities and not as an absolute priority value. Higher values correspond to
higher priorities.

Example:

29

4. OIL syntax and OIL file generation

CPU test_application {

...

TASK myTask1 {

PRIORITY = 1;

...

};

...

}

4.5.3. Relative Deadline attribute

The RELDLINE attribute specifies the task relative deadline. The value is used by RT-
Druid to compute the numerical value of the timing attribute. The value can be expressed
as a timing quantity such as seconds (“s”), milliseconds (“ms”), microseconds (“us”),
or nanoseconds (“ns”). The value is interpreted as a time, and it is divided by the
TICK_TIME attribute specified inside the OS attribute KERNEL_TYPE to obtain the final
tick value which is then programmed inside the microcontroller.

If a number is specified whithout any time unit (e.g. “1234” and not “1234ms”), then
the number is taken “as is” and then programmed to the target device.

Please remember that, to be complete, the OIL file should also include a specification
of the preemption level of the task by using the PRIORITY field.

Example:
The following example specifies the preemption level and the relative deadline of an

EDF task.

CPU test_application {

OS myOS {

...

KERNEL = EDF;

};

...

TASK myTask1 {

PRIORITY = 3;

REL_DEADLINE = "10ms";

...

};

...

TASK myTask2 {

PRIORITY = 4;

REL_DEADLINE = "1234";

...

};

...

}

30

4. OIL syntax and OIL file generation

4.5.4. Activation attribute

The ACTIVATION attribute specifies the number of pending activations which can be
stored by a task. It is only used in the BCC1, BCC2, ECC1, and ECC2 conformance classes.

Example:

CPU test_application {

...

TASK myTask1 {

ACTIVATION = 3;

...

};

...

}

4.5.5. Schedule attribute

The SCHEDULE attribute specifies if a task is full preemptive or non preemptive.
Example:

CPU test_application {

...

TASK myTask1 {

SCHEDULE = FULL;

...

};

TASK myTask2 {

SCHEDULE = NON;

...

};

...

}

4.5.6. Event attribute

The EVENT attribute is used to list the Events which belongs to a task. It is used in
conformance classes ECC1 and ECC2.

Example:

CPU test_application {

...

TASK myTask1 {

EVENT = "TimerEvent";

EVENT = "ButtonEvent";

...

};

...

31

4. OIL syntax and OIL file generation

}

4.5.7. Resource attribute

The RESOURCE attribute is used to list the Resources used by a task.
Example:

CPU test_application {

...

TASK myTask1 {

RESOURCE = "Resource1";

RESOURCE = "Resource2";

...

};

...

}

4.5.8. Stack attribute

The STACK attribute is used to specify if the task stack is shared or of the task should
have a separate private stack.

Example:

CPU test_application {

...

TASK myTask1 {

STACK = SHARED;

...

};

TASK myTask2 {

STACK = PRIVATE {

SYS_SIZE = 128;

};

};

...

}

4.5.9. Mapping tasks to CPUs using the CPU ID attribute

The CPU_ID attribute is used to specify the CPU to which the task is allocated. The
placement of the tasks on the CPUs is defined before the compile time and can not
be changed during the system execution time. If the CPU identifier is missing, then
RT-Druid assumes the default value “default cpu”. An error is generated if the CPU
identifier specified for the task does not exist in the system.

Example:

32

4. OIL syntax and OIL file generation

CPU test_application {

...

TASK myTask1 {

CPU_ID = "cpu1";

...

};

...

}

4.5.10. Source files for each CPU

The source files implementing the tasks can be declared inside the OIL file in a dedicated
section named APP_SRC. This allows identification of the required files when producing
the executable code for each CPU. The makefile is automatically generated based on
this declaration, so that only the files implementing the task executing on the CPU need
to be compiled. If the task is moved to another CPU, the makefile is automatically
updated.

Example of declaration:

CPU mySystem {

TASK myTask {

APP_SRC = "file1.c";

APP_SRC = "file2.c";

...

}

...

}

4.5.11. Intertask notifications

The attribute LINKED is related to intertask notifications on multicore architectures and
is described in the Erika Enterprise Manual for the Altera Nios II target.

4.6. The Resource Object

The RESOURCE object is contained inside the CPU object and it is used to specify the
properties of a resource.

The Resource object contains an attribute named RESOURCEPROPERTY which can take
the following values:

• STANDARD is the default used for a normal resource. In that case, a set of source
files can be specified using the APP_SRC sub-attribute. These files typically contain
the resource data definition.

• LINKED resources are only links/alias for other resources.

33

4. OIL syntax and OIL file generation

• INTERNAL resources are currently not implemented.

Example:

CPU mySystem {

RESOURCE mutex {

RESOURCEPROPERTY = STANDARD {

APP_SRC = "shareddata.c";

};

};

...

};

4.7. The Event Object

The EVENT object is used to define a bit mask which then can be used by extended tasks.
Events with the same name are identical, and have the same mask. Events with the
same mask are not identical. If the value AUTO is specified for a mask, then RT-Druid
automatically computes the mask value.

Example:

CPU mySystem {

EVENT myEvent1 {

MASK = 0x01;

};

EVENT mtEvent2 {

MASK = AUTO;

};

...

};

4.8. The Counter object

The COUNTER object is the timing reference that is used by alarms.
The attributes of a counter are the following:

• CPU_ID is an indication of the CPU on which the counter is mapped. The default
value is default_cpu. If the identifier of the CPU does not exist in the system, an
error is generated.

• MINCYCLE is currently ignored by Erika Enterprise.

• MAXALLOWEDVALUE is currently ignored by Erika Enterprise.

• TICKSPERBASE is currently ignored by Erika Enterprise.

34

4. OIL syntax and OIL file generation

Example:

CPU mySystem {

COUNTER myTimer {

MINCYCLE = 32;

MAXALLOWEDVALUE = 127;

TICKSPERBASE = 23;

};

...

};

4.9. The Alarm Object

The ALARM Object is used to implement an asynchronous notification which can activate
a task, set an event or call a callback function. Alarms can be autostarted at boot time
depending on the application mode.

The attributes of an alarm are the following:

• COUNTER specifies the counter to which the alarm is statically linked.

• ACTION specifies the kind of action which has to be implemented when the alarm
fires. The action is specified using one of the following sub-attributes:

– ACTIVATETASK specifies that a task has to be activated. The name of the task
must be specified inside the TASK sub-attribute.

– SETEVENT specifies that an event has to be set on a task. The task name and
event must be specified inside the TASK and EVENT sub-attributes.

– ALARMCALLBACK specifies that an alarm callback has to be called. The name
of the callback is specified inside the attribute ALARMCALLBACKNAME.

• AUTOSTART specifies if the alarm has to be autostarted at system startup. If TRUE,
the alarm properties and the application modes for which the alarm should be
autostarted have to be specified in the sub-attributes ALARMTIME, CYCLETIME, and
APPMODE.

4.10. Notes on source files

If a system object (CPU, TASK or RESOURCE) is implemented by more than one
source file, all the corresponding file names need to appear in one or more corresponding
OIL declarations (not necessarily in order, as shown by the following examples for a
CPU, a task and a resource):

CPU_DATA = NIOSII {

ID = "cpu0";

APP_SRC = "cpu0_src0.c";

35

4. OIL syntax and OIL file generation

};

CPU_DATA = NIOSII {

ID = "cpu0";

APP_SRC = "cpu0_src1.c";

APP_SRC = "cpu0_src2.c";

APP_SRC = "cpu0_src3.c";

APP_SRC = "cpu0_src4.c";

};

TASK thread1 {

CPU_ID = "cpu1";

APP_SRC = "thread1_a.c";

APP_SRC = "thread1_b.c";

APP_SRC = "thread1_c.c";

};

RESOURCE mutex {

RESOURCEPROPERTY = STANDARD {

APP_SRC = "res_a.c";

APP_SRC = "res_b.c";

};

};

It is possible, even if we discourage its use, to list several file names in the same
declaration, separated by spaces:

APP_SRC = "cpu0_src1.c cpu0_src2.c";

If a file name appears more than once, all declarations following the first one are
ignored.

4.11. OIL extensions for multiprocessing

4.11.1. Partitioning support

When developing a multiprocessor application, the developer faces the job of mapping
a multitask application on the CPUs that are available in the system. That mapping
procedure involves the partitioning of the application tasks into the CPUs, meeting all
application constraints.

As the starting point, each CPU runs a copy of Erika Enterprise, and all the copies of
Erika Enterprise on the CPUs have the same configuration. Depending on the application
needs, for example, the kernel can be configured to have monostack or multistack sup-
port, which is useful when dealing with blocking primitives, and to support debugging
features such as hooks, and extended error status report. All these features are set at
the same time for all CPUs. For example, the case where a CPU runs with monostack
support while other CPUs run with multistack support is not possible.

36

4. OIL syntax and OIL file generation

From the OIL configuration point of view, the developer defines a set of CPUs in the
OIL configuration file using the CPU_DATA sections inside the OS object, and the job of
partitioning consists in placing the OIL objects into the existing CPUs.

The OIL Objects that must be explicitly mapped to a processor are Tasks and Coun-
ters. As explained in Sections 4.5.9 and 4.8 the OIL extensions implemented by RT-Druid
allow the specification of the CPU to which a TASK or COUNTER is allocated by using the
attribute CPU_ID. The link between the particular object (Task or Counter) and the
CPU is static and specified at compile time, and cannot be changed at runtime.

Other OIL Objects are automatically mapped by the system. In particular, Resources
will be local if the tasks using them are allocated to the same CPU or global otherwise.
Alarms are linked to a Counter (that in turn is mapped to a CPU). However, please note
that Alarm notifications can result in activation of remote tasks, and setting of events
on remote tasks.

Finally, other objects are local and are replicated on each CPU. Hooks and Application
Modes fall in this category. This means that each CPU will have its own copy of the hook
routines, and each CPU will be initialized passing an appropriate Application Model. It
is responsibility of the application developer that all CPUs are initialized with the same
Application mode.

4.11.2. Master CPU

When designing multiprocessor systems, the user must specify which CPU acts as “Mas-
ter CPU”3. Here is the definition of the MASTER_CPU attribute:

STRING MASTER_CPU = "default_cpu";

The default value for the MASTER_CPU attribute is default_cpu.
Example:

MASTER_CPU = "cpu0";

4.11.3. Specification of the source files.

In order to make easier the change among different application partitionings, each system
object should be implemented in a separate file. Then, each file is specified into the OIL
file as the implementation of the corresponding object, such as CPU_DATA, TASK, RESOURCE.
RT-Druid uses the information to create the subdir.mk files that are used by the makefile
scripts to compile the source code.

RT-Druid generates a subdir.mk file for each CPU, including all the files that refer to
the objects allocated to the CPU.

When a source file is specified inside a CPU_DATA element, the file is inserted in the
subdir.mk of that CPU.

3For details about the role of the Master CPU please look at the Multiprocessor Sections of the Erika

Enterprise manuals

37

4. OIL syntax and OIL file generation

When a source file is specified inside a TASK element, the file is inserted in the CPU
where the task is allocated.

When a source file is specified inside a RESOURCE element, the file is inserted in the
CPU where all the tasks using it are allocated in case it is a local resource, or on the
Master CPU if it is a global resource.

A source file name can be specified more than once inside the OIL file. However, it
will be inserted at most once for each CPU.

To better understand this situation, consider the following example:

CPU test_application {

OS EE {

MASTER_CPU = "cpu0";

CPU_DATA = NIOSII {

ID = "cpu0";

APP_SRC = "cpu0.c";

};

CPU_DATA = NIOSII {

ID = "cpu1";

APP_SRC = "cpu1.c";

};

};

TASK task0 {

CPU_ID = "cpu0";

APP_SRC = "task0.c";

RESOURCE = globalmutex;

};

TASK task1 {

CPU_ID = "cpu1";

APP_SRC = "task1.c";

RESOURCE = globalmutex;

RESOURCE = localmutex;

};

TASK task2 {

CPU_ID = "cpu1";

APP_SRC = "task2.c";

RESOURCE = localmutex;

};

RESOURCE globalmutex {

RESOURCEPROPERTY = STANDARD { APP_SRC = "globalmutex.c"; };

};

38

4. OIL syntax and OIL file generation

RESOURCE localmutex {

RESOURCEPROPERTY = STANDARD { APP_SRC = "localmutex.c"; };

};

};

cpu0’s subdir.mk will include the files cpu0.c, task0.c, and globalmutex.c; cpu1’s
subdir.mk will include the files cpu1.c, task1.c, task2.c, and localmutex.c.

39

5. Code generation and the Build process

This chapter describes in detail the automatic generation of the configuration code for
Erika Enterprise and the build process of an Erika Enterprise application. The process
of automatic generation of the configuration code is the method used by RT-Druid to
generate Erika Enterprise configuration code starting from an OIL configuration file. The
Build Process is the set of operations that are used to compile the application source
code together with the configuration source code.

Code Generation and Build Process need to be performed in two separate stages.
Each stage can be enabled or disabled by acting on the project properties. To open the
Project properties, right click on the project name in the navigation toolbar, and then
select “Properties”, as shown in Figure 5.1. After that, you can select “Builders” in the
left list, and activate only the desired subset of the build process. Please note, that all
checkboxes are typically checked, as shown in Figure 5.2.

The first entry in Figure 5.2 is relative to the RT-Druid Plugins shipped with Evidence,
whereas the others are part of the CDT [1] plugin.

5.1. Setting the OIL configuration file

Whenever you need to set or change the OIL file that is used for code generation, you
must go to the “Oil properties” tab in the project preference window. Open the Project
Preference Window as shown in Figure 5.1, then select the “Oil properties” item in the
left list, as shown in Figure 5.3. After, you can type the name of the Oil file in the
“File Name” textbox, or you can choose it by pressing the “Browse” button, as shown
in Figure 5.4. The file must have a .oil extension.

Figure 5.1.: Opening the Project Properties.

40

5. Code generation and the Build process

Figure 5.2.: The Builders property page. All checkboxes are selected by default.

Figure 5.3.: Changing the current OIL file for code generation.

Figure 5.4.: Choosing an existing OIL file by browsing the filesystem.

41

5. Code generation and the Build process

Figure 5.5.: The “Build Project” option from the “Project” menu. Please note that the
“Build Automatically” option is not selected.

5.2. Starting the Project Build procedure

When the project Build is started, Eclipse executes the selected builders. Figure 5.2
shows the active Builders for a project.

A project Build command can be run explicitly upon user request, or automatically
upon saving a file (see the option “Build Automatically” in the “Project” menu). The
manual execution of the project Build command can be invoked by right clicking on the
project name in the navigation toolbar and then selecting “Build Project”, or directly
from the “Project” menu, after having selected the project in the navigation toolbar
(see Figure 5.5).

As a first step of the compilation process the RT-Druid builder is launched. In this
step the RT-Druid builder generates all the configuration scripts and the source code
that is needed for the next steps of the compilation process.

Warning: Be aware that when generating the code, the old build directories are
removed and completely overwritten!

RT-Druid performs a code generation when one of the following conditions apply:

• The OIL configuration file has been modified since the last build.

• The Project properties have been modified, including the case in which the OIL
configuration file name has been changed.

• One or more files be generated do not exist anymore.

• One or more files be generated is older than the OIL configuration file.

The modification of the application source files does not imply executing the RT-Druid
code generation step.

The RT-Druid code generation is forced every time the OIL configuration file changes
or the the project is cleaned as explained in Section 5.5.

After the RT-Druid builder generates the configuration source files and scripts, the
CDT builder is executed to compile the application. The CDT Builder executes the
make operation on the makefile that has been generated by RT-Druid.

42

5. Code generation and the Build process

Figure 5.6.: The Build progress window.

Figure 5.7.: Displaying the RT-Druid Console.

During the entire compilation phase, a progress window is displayed, as shown in
Figure 5.6. The compilation can be done in background by clicking on the “Run in
Background” button in the progress window.

5.3. RT-Druid Console

Once the compilation process is completed, or if the compilation is run in background, an
RT-Druid console can be used to browse the messages generated during code generation.
To do that, the following steps must be performed:

• Select the View “console” that typically appears in the part of the screen after a
build command.

• Click on the monitor icon in the console view button list, and then choose “RT-
Druid output” (see Figure 5.7).

As a result, a window like the one shown in Figure 5.8 appears. Please note that the
text in the window can be selected and copied as normal text.

The pop-up menu in Figure 5.8 can be obtained by right clicking on the console. The
menu allows to clear the content of the console, to find strings inside it, or to drop
the console1. Also note that upon a new build the new messages are appended to the
existing consoles.

1If the console is dropped, a new one will appear at the next build.

43

5. Code generation and the Build process

Figure 5.8.: The RT-Druid console.

Figure 5.9.: The “Windows/Preferences” menu item.

5.4. Erika Enterprise Signatures

The Erika Enterprise kernel may be distributed in binary form. A so called “binary
distribution” of Erika Enterprise does not include the kernel C source code, but only with a
set of include files and precompiled libraries. The Erika Enterprise code is configured using
#ifdef directives for efficiency reasons, and each library is the result of the compilation
of the Erika Enterprise code with a specific combination of #defines.

The configurations used when generating the Erika Enterprise libraries are described in
the ee\signature\signature.xml (for Altera Nios II, the file is inside the evidence_ee

SOPCBuilder component).
The location of the signature file is contained in the Eclipse preferences, under the

“Windows/Preferences” menu (see Figure 5.9). Then, inside the preferences Dialog box,
select “RT-Druid/Oil/OS Configurator” (see Figure 5.10).

In this box, the user can select if the code generator must be configured for a source
or for a binary distribution of Erika Enterprise. When using a Binary Distribution, the
signature file location must be specified. The standard location is “Nios II Devices
Drivers/evidence ee/ee/signature/signature.xml”, as shown by Figure 5.10. Figure 5.11
shows the default location of the Erika Enterprise signatures.

If the system is correctly configured the signature file is automatically found by RT-
Druid without need of the user intervention.

If RT-Druid is unable to find a library that can be used with the system being gen-
erated, an error message is printed on the RT-Druid console, and the Build process is
interrupted.

44

5. Code generation and the Build process

Figure 5.10.: The OS Configurator dialog box.

Figure 5.11.: The default location of the signature file.

45

5. Code generation and the Build process

Figure 5.12.: The “Clean...” command on the Project menu.

Figure 5.13.: The Clean dialog box. Please note the bottom left checkbox.

5.5. Project cleanup

RT-Druid provides the feature to clean all the files produced by the code generator. The
cleanup process removes, if it exists, the Build Directory.

To clean the project, just select the “Clean...” command inside the “Project” menu.
The project need not be be selected if the command is issued after selecting the project
itself.

Please note the checkbox on the bottom left that can be used to build the project
right after the cleanup has been completed (see Figures 5.13 and 5.13).

Figures 5.14 and 5.15 shows the Navigation toolbar “C/C++ projects”, before and
after a project clean. The Debug directory have been removed, together with the “Binary”
object list. During the cleanup, some errors may be shown in the Problem window.
They can be ignored, since they refer to files that have been removed and that will be
automatically re-created by RT-Druid at Build time.

Figure 5.14.: The Navigation toolbar before the Project clean.

46

5. Code generation and the Build process

Figure 5.15.: The Navigation toolbar after the Project clean. The errors in the Problem
window can be ignored, because they refer to files that have been removed
and that will be automatically created by RT-Druid at Build time.

5.6. Application Debug and Run

This section explicitly refers to the Altera Nios II target.
As a result of the compilation process, one ELF file for each CPU will be placed inside

the build directory. In the case of Altera Nios II, these ELF files are equivalent to those
built by traditional Altera Build Scripts. To Debug and Run them, the best option is
the creation of a “Multiprocessor collection”, as explained in the Altera documentation
[6].

5.7. Application debug using Lauterbach Trace32

This section explicitly refers to the Altera Nios II target.
This section shows how to run a Lauterbach debug session using the Trace32 scripts

and ORTI files automatically generated by RT-Druid (see Section 4.3.10 for more infor-
mation).

Warning: The scripts generated by RT-Druid suppose Lauterbach Trace32 being
installed in C:\t32, and the Lauterbach ORTI utility genmenu.exe being installed
insie C:\T32\demo\kernel\orti.

Once the application has been compiled, and the Trace32 scripts have been generated,
launch Trace32 by double clicking on the Debug/debug.bat file generated during the
compilation. The debugger opens up showing a window similar to the one in Figure
5.16.

Please note that each window has a title with the name of the CPU being under
debug. The menu list include a submenu named “ee cpu 0” containing the specification
of the ORTI related debug features.

By clicking on each menu item, you can get useful debug informations about Erika
Enterprise. In particular:

• Figure 5.17 shows the general information about the kernel global variables, such
as the name of the running task, the current priority of the running task, the last

47

5. Code generation and the Build process

Figure 5.16.: The Lauterbach Trace32 for Altera Nios II.

Figure 5.17.: General information about the Erika Enterprise status.

RTOS primitive called, the last error returned by an Erika Enterprise primitive, the
current application mode and the current system ceiling.

• Figure 5.18 shows, for each task, the task name, its current priority, which may be
different from the nominal priority when the task lock a resource, the task state,
the task stack, and the current pending activations.

• Figure 5.19 shows, for each resource, the resource name, the resource status, the
task that has locked the resource (if any), and the ceiling priority of the resource.

Figure 5.18.: Information about the tasks in the system.

48

5. Code generation and the Build process

Figure 5.19.: Information about the resources in the system.

Figure 5.20.: Information about the alarms in the system.

• Figure 5.20 shows, for each alarm in the system, the alarm name, the time to
which the alarm will fire, the cycle time of the alarm (0x0 means the alarm is not
cyclic), the alarm state, the action linked to the alarm notification, the counter to
which the alarm is attached, and its value.

• Finally, Figure 5.21 and Figure 5.22 show information about the stacks that has
been configured in the application. In particular, the first figure shows the stack
name, size, base address, direction, and fill pattern, while the second figure shows
in a graphical way the current stack usage. To obtain the graphical stack usage
estimation the application has to call EE_trace32_stack_init at system startup.
In this example, Stack0 is the shared stack used by the background task (the main

function), and by Task2. Stack1 is used by Task1, and Stack2 is the interrupt
stack.

The RT-Druid and Erika Enterprise Trace32 support also includes support for the Nios
II tracer module. As an example, Figure 5.23 shows the execution of an interrupt handler
as recorded by the tracer module. Figure 5.24 shows an interpretation of the context
changes and task status values using the ORTI information.

Figure 5.21.: The application stack list.

49

5. Code generation and the Build process

Figure 5.22.: A graphical view of the application stack usage.

Figure 5.23.: The execution of the Button IRQ as recorded by Lauterbach Trace32.

Figure 5.24.: The interpretation of a trace recorded with Lauterbach Trace32 showing
the context changes happened in the system.

50

5. Code generation and the Build process

Acknowledgements

We would like to thank Ing. Maurizio Menegotto from Lauterbach Italy Srl for his
support in the integration of RT-Druid and Erika Enterprise with the Lauterbach Trace32
Debugger and Tracer.

51

6. Script File

6.1. Introduction

The RT-Druid Toolset provides an uniform way of running a batch computation, that
supports both non-GUI usage (useful for automatic code generation) and an usage that
takes advantage of the Eclipse GUI . To do that, the RT-Druid Toolset enhanced the
support for the Apache Ant build tool. Apache Ant has been chosen because:

• it allows useful scripting with an expressive power similar to conventional makefiles;

• it is expandible with customized features;

• it supports seamlessy integration with the Eclipse platform, which has been used
as base for the graphical environment of the RT-Druid Toolset.

It is out of the scope of this section to describe Ant in detail. For more informations
about Apache Ant, please refer to http://ant.apache.org; a detailed manual of Ant
can be found at http://ant.apache.org/manual/intro.html.

6.2. Quick introduction to ANT

Ant is a Java-based build tool produced by the Apache Foundation1. Ant build files are
somehow similar to makefiles, except that they are written as XML files.

Targets. As in makefiles, Ant can handle “targets”. Each buildfile contains one project
and at least one (default) target. Targets contains (provoke the execution of) tasks. Each
task is run by a Java object that implements a particular Task interface. A target can
depend on other targets. You might have a target for compiling, for example, and a target
for creating a distributable. In that sense, “target”s are similar to makefile “rules”. You
can only build a distributable when you have compiled first, so the “distribute” target
depends on the “compile” target. Ant resolves these dependencies.

Tasks. A task is a piece of code that can be executed. A task can have multiple at-
tributes (or arguments, if you prefer). The value of an attribute might contain references
to a property. These references will be resolved before the task is executed. A task is
more or less a method of a Java class inside Ant that run whenever it has to be executed.

1Small parts of this section are derived from the manual available at
http://ant.apache.org/manual/intro.html. Please refer to it for a complete explaination.

52

http://ant.apache.org
http://ant.apache.org/manual/intro.html
http://ant.apache.org/manual/intro.html

6. Script File

We can think as a shell command inside a makefile rule is like the invocation of an Ant
Task whose behavior is the same as the command. The RT-Druid Toolset expanded the
Ant tasks providing a set of new tasks for doing, for example, schedulability analysis
and code generation.

Types. A Type is used whenever the user needs to provide informations to a task, or
have to represent list of items, files, and so on. For example, the execution of the delete

task (for example inside a clean target) needs the list of files to be deleted, that is passed
using a type.

Properties. A project can have a set of properties. These might be set in the buildfile
by the property task, or might be set outside Ant. A property has a name and a value;
the name is case-sensitive. Properties may be used in the value of task attributes.
This is done by placing the property name between ${ and } in the attribute value.
For example, if there is a builddir property with the value build, then this could be
used in an attribute like this: ${builddir}/classes. This is resolved at run-time as
build/classes. Properties are very similar to makefile variables.

Case sensitivity. In general, the following rules apply for case sensitivity:

• XML element tags in the script files are case sensitive;

• attribute values surrounded by brackets are case sensitive;

• if attribute values refer to file names, the rules of the host OS applies (e.g. Windows
is case insensitive, whereas Linux is case sensitive);

• case sensitive words are written in the manual using a typewriter font;

6.3. Launching Ant

Ant can be launched from the command line. For example, to execute the script
build.xml with a parameter all as target (the same as doing make all with make-
files), you should execute the following command (this command works on Windows; we
used “\” to split the lines which are too long):

set CLASSPATH="C:\ Programmi\j2sdk1 .4.2_05\lib\tools.jar; \

C:\ Programmi\Evidence \eclipse\startup.jar"

java org.eclipse.core.launcher.Main \

-application org.eclipse.ant.core.antRunner all \

-buildfilebuild.xml

that is, the antRunner plugin of Eclipse is started, asking to execute the build.xml

script file running the all target. If the -buildfile option is not specified, the default
build file is build.xml.

53

6. Script File

6.4. An Ant build script file format example

An Ant build script is currently composed by an XML file that (more or less) sequen-
tially lists the commands run by the Ant. This section does not describe in detail
the Ant syntax. For details about the syntax of an Ant build script, please refer to
http://ant.apache.org/manual/intro.html.

The following lines show an Ant script that uses some of the RT-DruidToolset features.

<?xml version ="1.0" encoding ="UTF -8"?>

<project name=" rtdruid" default ="all" basedir =".">

<target name="all">

<rtdruid.Oil.Configurator

inputfile="conf.oil"

outputdir="Debug"

/>

</target >

</project >

A project named rtdruid is declared, with one target named all.
Target all calls a rtdruid.Oil.Configurator task, which performs the code generation

for a given OIL file. In particular, the target all reads the file conf.oil stored in the
current directory, and write the outputs inside the Debug directory.

6.5. Task “rtdruid.Oil.Configurator”

This task can be used to perform the code generation from an OIL file. The task
accepts two parameters, which are inputfile (an input OIL file) and outputdir (the
output directory where the generated files should be stored). If the output directory is
created if it does not alreday exist.

The typical usage of this ANT task is to exexute it inside the application working
directory, generating the configuration files in a subdirectory. Then, the user can run
the makefile which has been generated to compile the application.

An example of an rtdruid.Oil.Configurator task is the following:

...

<rtdruid.Oil.Configurator

inputfile="conf.oil"

outputdir="Debug"

/>

...

54

http://ant.apache.org/manual/intro.html

7. Standalone version of RT-Druid

7.1. Introduction

This chapter describes the standalone version of RT-Druid. The idea behind of the
standalone version is to provide the RT-Druid code generator plugin packed without the
Eclipse Framework, to have a simple and fast way to generate code and templates from
the command line.

The standalone version of RT-Druid is stored inside the bin directory inside the RT-
Druid installation directory.

7.2. Code generation

To generate code using the standalone version of RT-Druid, please run the following
command:

rtdruid_launcher.bat --oil filename --output dir

Where:

• filename is the name of the OIL file.

• dir is the directory where the generator should put the generated files. The
--output option is optional. If not specified, the default directory name used
is Debug.

7.3. Template code instantiation

This section explains how to obtain the automatic generation of a template example, as
it is done from the “New Project” menu item from the Eclipse Framework.

To obtain the list of available templates, please run the following command:

template .bat --list

as a result, the command displays a list of the available templates, with their IDs.
Then, to instantiate a template, please run the following command:

template .bat --template ID --output dir

Where:

• ID is one of the IDs returned using the --list command..

55

7. Standalone version of RT-Druid

• dir is the directory where the generator should put the generated files. The
--output option is optional. If not specified, the default directory name used
is the current directory.

56

8. History

Version Comment

1.2.x Versions for Nios II 5.0.
1.3.0 Minor updates for Nios II 5.1.
1.3.1 Updated Mutex information for Nios II 6.0.
1.3.2 Added ANT scripting chapter.
1.4.1 Moved OIL content to respective architecture manu-

als (mainly Nios II content).
1.4.2 Completely rewritten the OIL description. Included

support for PIC devices. Added standalone version.
1.4.3 Added EDF kernel attributes.
1.4.4 Typos.
1.4.5 Added AVR architecture details.
1.4.6 Added note on the library section.
1.4.7 Better explained library section. Now more than one

library can be specified. Updated OIL definition.
1.4.8 Updated OIL definition. Erika Enterprise Basic re-

named to Erika Enterprise.
1.4.9 Updated OIL for Nios II 8.0. Updated screenshots.

57

A. OIL definition

OIL_VERSION = "2.4";

IMPLEMENTATION ee {

OS {

STRING EE_OPT[];

STRING CFLAGS[];

STRING ASFLAGS[];

STRING LDFLAGS[];

STRING LDDEPS[];

STRING LIBS[];

ENUM [STANDARD, EXTENDED] STATUS = STANDARD;

BOOLEAN STARTUPHOOK = FALSE;

BOOLEAN ERRORHOOK = FALSE;

BOOLEAN SHUTDOWNHOOK = FALSE;

BOOLEAN PRETASKHOOK = FALSE;

BOOLEAN POSTTASKHOOK = FALSE;

BOOLEAN USEGETSERVICEID = FALSE;

BOOLEAN USEPARAMETERACCESS = FALSE;

BOOLEAN USERESSCHEDULER = TRUE;

BOOLEAN STARTUPSYNC = FALSE;

ENUM [ALWAYS, IFREQUIRED] USEREMOTETASK = IFREQUIRED;

STRING MP_SHARED_RAM = "";

STRING MP_SHARED_ROM = "";

STRING NIOS2_MUTEX_BASE;

STRING IPIC_GLOBAL_NAME;

STRING NIOS2_SYS_CONFIG;

STRING NIOS2_APP_CONFIG;

BOOLEAN NIOS2_DO_MAKE_OBJDUMP = FALSE;

STRING NIOS2_JAM_FILE;

STRING NIOS2_PTF_FILE;

STRING MASTER_CPU = "default_cpu";

58

A. OIL definition

ENUM [

NIOSII {

STRING ID = "default_cpu";

STRING APP_SRC[];

BOOLEAN [

TRUE {

BOOLEAN [

TRUE {

UINT32 SYS_SIZE;

},

FALSE

] IRQ_STACK;

ENUM [

SHARED,

PRIVATE {

UINT32 SYS_SIZE;

}

] DUMMY_STACK;

},

FALSE

] MULTI_STACK = FALSE;

STRING STACK_TOP;

UINT32 SYS_SIZE;

UINT32 SHARED_MIN_SYS_SIZE;

STRING SYSTEM_LIBRARY_NAME;

STRING SYSTEM_LIBRARY_PATH;

STRING IPIC_LOCAL_NAME;

},

PIC30 {

STRING ID = "default_cpu";

STRING APP_SRC[];

BOOLEAN [

TRUE {

BOOLEAN [

TRUE {

UINT32 SYS_SIZE;

},

FALSE

59

A. OIL definition

] IRQ_STACK;

},

FALSE

] MULTI_STACK = FALSE;

BOOLEAN ICD2 = FALSE;

BOOLEAN ENABLE_SPLIM = TRUE;

},

AVR_5 {

STRING ID = "default_cpu";

STRING APP_SRC[];

BOOLEAN [

TRUE {

BOOLEAN [

TRUE {

UINT32 SYS_SIZE;

},

FALSE

] IRQ_STACK;

ENUM [

SHARED,

PRIVATE {

UINT32 SYS_SIZE;

}

] DUMMY_STACK;

},

FALSE

] MULTI_STACK = FALSE;

UINT32 STACK_BOTTOM;

UINT32 SYS_SIZE; // available space for all user stacks

UINT32 SHARED_MIN_SYS_SIZE; // size of shared stack

ENUM [STOP, DIV1, DIV8, DIV32, DIV64, DIV256, DIV1024] TIMER0 = STOP;

ENUM [STOP, DIV1, DIV8, DIV64, DIV256, DIV1024] TIMER1 = STOP;

ENUM [STOP, DIV1, DIV8, DIV64, DIV256, DIV1024] TIMER2 = STOP;

ENUM [STOP, DIV1, DIV8, DIV64, DIV256, DIV1024] TIMER3 = STOP;

/* Interrupt Handlers * /

60

A. OIL definition

STRING HANDLER_IRQ0;// external interrupt request 0

STRING HANDLER_IRQ1;// external interrupt request 1

STRING HANDLER_IRQ2;// external interrupt request 2

STRING HANDLER_IRQ3;// external interrupt request 3

STRING HANDLER_IRQ4;// external interrupt request 4

STRING HANDLER_IRQ5;// external interrupt request 5

STRING HANDLER_IRQ6;// external interrupt request 6

STRING HANDLER_IRQ7;// external interrupt request 7

STRING HANDLER_T0_MATCH; // Timer/Counter 0 Compare Match

STRING HANDLER_T0_OVERFLW; // Timer/Counter 0 Overflow

STRING HANDLER_T1_EVENT; // Timer/Counter 1 Capture Event

STRING HANDLER_T1_MATCH_A; // Timer/Counter 1 Compare Match A

STRING HANDLER_T1_MATCH_B; // Timer/Counter 1 Compare Match B

STRING HANDLER_T1_MATCH_C; // Timer/Counter 1 Compare Match C

STRING HANDLER_T1_OVERFLW; // Timer/Counter 1 Overflow

STRING HANDLER_T2_MATCH; // Timer/Counter 2 Compare Match

STRING HANDLER_T2_OVERFLW; // Timer/Counter 2 Overflow

STRING HANDLER_T3_EVENT; // Timer/Counter 3 Capture Event

STRING HANDLER_T3_MATCH_A; // Timer/Counter 3 Compare Match A

STRING HANDLER_T3_MATCH_B; // Timer/Counter 3 Compare Match B

STRING HANDLER_T3_MATCH_C; // Timer/Counter 3 Compare Match C

STRING HANDLER_T3_OVERFLW; // Timer/Counter 3 Overflow

STRING HANDLER_SPI; // SPI Serial Transfer Complete

STRING HANDLER_US0_RX; // USART0 Rx complete

STRING HANDLER_US0_EMPTY; // USART0 Data Register Empty

STRING HANDLER_US0_TX; // Usart0 Tx complete

STRING HANDLER_US1_RX; // USART1 Rx complete

STRING HANDLER_US1_EMPTY; // USART1 Data Register Empty

STRING HANDLER_US1_TX; // Usart1 Tx complete

STRING HANDLER_ADC; // ADC Conversion Complete

STRING HANDLER_EEPROM; // EEPROM Ready

STRING HANDLER_ANALOG_COMP;// Analog Comparator

STRING HANDLER_2WSI;// Two-wire serial Interface

STRING HANDLER_SPM_READY; // Store program Memory Ready

*/

] CPU_DATA[];

ENUM [

61

A. OIL definition

PIC30 {

ENUM [

CUSTOM {

STRING MODEL;

STRING LINKERSCRIPT;

STRING DEV_LIB;

STRING INCLUDE_C;

STRING INCLUDE_S;

},

PIC24FJ128GA006, PIC24FJ128GA008,

PIC24FJ128GA010, PIC24FJ32GA002,

PIC24FJ32GA004, PIC24FJ64GA002,

PIC24FJ64GA004, PIC24FJ64GA006,

PIC24FJ64GA008, PIC24FJ64GA010,

PIC24FJ96GA006, PIC24FJ96GA008,

PIC24FJ96GA010, PIC24HJ128GP206,

PIC24HJ128GP210, PIC24HJ128GP306,

PIC24HJ128GP310, PIC24HJ128GP506,

PIC24HJ128GP510, PIC24HJ256GP206,

PIC24HJ256GP210, PIC24HJ256GP610,

PIC24HJ64GP206, PIC24HJ64GP210,

PIC24HJ64GP506, PIC24HJ64GP510,

PIC30F1010, PIC30F2010,

PIC30F2011, PIC30F2012,

PIC30F2020, PIC30F2021,

PIC30F2022, PIC30F2023,

PIC30F3010, PIC30F3011,

PIC30F3012, PIC30F3013,

PIC30F3014, PIC30F4011,

PIC30F4012, PIC30F4013,

PIC30F5011, PIC30F5013,

PIC30F5015, PIC30F5016,

PIC30F6010, PIC30F6010A,

PIC30F6011, PIC30F6011A,

PIC30F6012, PIC30F6012A,

PIC30F6013, PIC30F6013A,

PIC30F6014, PIC30F6014A,

PIC30F6015,

PIC33FJ128GP206, PIC33FJ128GP306,

PIC33FJ128GP310, PIC33FJ128GP706,

PIC33FJ128GP708, PIC33FJ128GP710,

PIC33FJ128MC506, PIC33FJ128MC510,

62

A. OIL definition

PIC33FJ128MC706, PIC33FJ128MC708,

PIC33FJ128MC710, PIC33FJ256GP506,

PIC33FJ256GP510, PIC33FJ256GP710,

PIC33FJ256MC510, PIC33FJ256MC710,

PIC33FJ64GP206, PIC33FJ64GP306,

PIC33FJ64GP310, PIC33FJ64GP706,

PIC33FJ64GP708, PIC33FJ64GP710,

PIC33FJ64MC506, PIC33FJ64MC508,

PIC33FJ64MC510, PIC33FJ64MC706,

PIC33FJ64MC710

] MODEL;

}

] MCU_DATA;

ENUM [

NO_BOARD,

EE_FLEX {

BOOLEAN USELEDS = FALSE;

BOOLEAN USELCD = FALSE;

ENUM [

DEMO {

ENUM [

ACCELEROMETER,

ADC_IN,

BUTTONS,

BUZZER,

DAC,

ENCODER,

IR,

LCD,

LEDS,

PWM_OUT,

PWM_MOTOR,

SENSORS,

TRIMMER,

USB,

ZIGBEE,

ALL

] OPTIONS[];

},

MULTI {

ENUM [

63

A. OIL definition

ETHERNET,

EIB,

ALL

] OPTIONS[];

},

STANDARD {

ENUM [

LEDS, LCD, ALL

] OPTIONS[];

}

] TYPE = STANDARD;

},

MICROCHIP_EXPLORER16 {

BOOLEAN USELEDS;

BOOLEAN USEBUTTONS;

BOOLEAN USELCD;

BOOLEAN USEANALOG;

}

MICROCHIP_DSPICDEM11PLUS {

BOOLEAN USELEDS;

BOOLEAN USEBUTTONS;

BOOLEAN USELCD;

BOOLEAN USEANALOG;

BOOLEAN USEAUDIO;

},

ATMEGA_STK50X,

XBOW_MIB5X0

] BOARD_DATA = NO_BOARD;

ENUM [

ENABLE {

STRING NAME[];

}

] LIB[];

ENUM [

FP {

BOOLEAN NESTED_IRQ;

},

EDF {

BOOLEAN NESTED_IRQ;

STRING TICK_TIME;

BOOLEAN REL_DEADLINES_IN_RAM = FALSE;

},

64

A. OIL definition

BCC1,

BCC2,

ECC1,

ECC2

] KERNEL_TYPE;

ENUM [

NONE,

ALL,

OS_SECTION,

TASK_SECTION,

RESOURCE_SECTION,

STACK_SECTION,

ALARM_SECTION

] ORTI_SECTIONS[];

};

APPMODE {

};

TASK {

BOOLEAN [

TRUE {

APPMODE_TYPE APPMODE[];

},

FALSE

] AUTOSTART;

UINT32 PRIORITY;

UINT32 RELDLINE;

UINT32 ACTIVATION = 1;

ENUM [NON, FULL] SCHEDULE;

EVENT_TYPE EVENT[];

RESOURCE_TYPE RESOURCE[];

ENUM [

SHARED,

PRIVATE {

UINT32 SYS_SIZE;

}

] STACK = SHARED;

STRING CPU_ID = "default_cpu";

65

A. OIL definition

STRING APP_SRC[];

TASK_TYPE LINKED[];

};

RESOURCE {

ENUM [

STANDARD {

STRING APP_SRC[];

},

LINKED {

RESOURCE_TYPE LINKEDRESOURCE;

},

INTERNAL

] RESOURCEPROPERTY;

};

EVENT {

UINT32 WITH_AUTO MASK = AUTO;

};

COUNTER {

UINT32 MINCYCLE;

UINT32 MAXALLOWEDVALUE;

UINT32 TICKSPERBASE;

STRING CPU_ID = "default_cpu";

};

ALARM {

COUNTER_TYPE COUNTER;

ENUM [

ACTIVATETASK {

TASK_TYPE TASK;

},

SETEVENT {

TASK_TYPE TASK;

EVENT_TYPE EVENT;

},

ALARMCALLBACK {

STRING ALARMCALLBACKNAME;

}

] ACTION;

66

A. OIL definition

BOOLEAN [

TRUE {

UINT32 ALARMTIME;

UINT32 CYCLETIME;

APPMODE_TYPE APPMODE[];

},

FALSE

] AUTOSTART;

};

};

67

Bibliography

[1] Eclipse Consortium. C/c++ development tools (CDT).
http://www.eclipse.org/cdt, 2005.

[2] Eclipse Consortium. The eclipse modeling framework (EMF).
http://www.eclipse.org/emf, 2005.

[3] Eclipse Consortium. The eclipse platform. http://www.eclipse.org, 2005.

[4] Eclipse Consortium. The graphical editing framework (GEF).
http://www.eclipse.org/gef, 2005.

[5] OSEK/VDX Consortium. OSEK OIL standard. http://www.osek-vdx.org, 2005.

[6] Altera Corporation. Creating multiprocessor nios ii systems tutorial. Nios II litera-
ture page, http://www.altera.com/literature/lit-nio2.jsp, 2005.

[7] The Apache Software Foundation. The apache ant project. http://ant.apache.org,
2005.

[8] Lauterbach GMBH. The Lauterbach Trace32 Debugger for Nios II.
http://www.lauterbach.com, 2005.

68

http://www.eclipse.org/cdt
http://www.eclipse.org/emf
http://www.eclipse.org
http://www.eclipse.org/gef
http://www.osek-vdx.org
http://www.altera.com/literature/lit-nio2.jsp
http://ant.apache.org
http://www.lauterbach.com

	Introduction
	An overview of RT-Druid Code Generator and Erika Enterprise
	Software design with RT-Druid
	The open architecture of the RT-Druid tool
	RT-Druid integration with Eclipse
	Multiprocessor Version
	Multiprocessor extensions for Altera Nios II (Target specific info)
	Integration with Nios II IDE

	Code generation

	Creating an RT-Druid project
	OIL syntax and OIL file generation
	OIL Basics
	The CPU Object
	The OS Object
	Compilation attributes
	OSEK attributes
	Multi-core attributes
	Nios II target attributes
	CPU_DATA sections
	MCU_DATA sections
	BOARD_DATA sections
	Library configuration
	Kernel Conformance class
	ORTI file generation and kernel awareness with Lauterbach Trace32

	The Application mode Object
	The Task Object
	Autostart attribute
	Priority attribute
	Relative Deadline attribute
	Activation attribute
	Schedule attribute
	Event attribute
	Resource attribute
	Stack attribute
	Mapping tasks to CPUs using the CPU ID attribute
	Source files for each CPU
	Intertask notifications

	The Resource Object
	The Event Object
	The Counter object
	The Alarm Object
	Notes on source files
	OIL extensions for multiprocessing
	Partitioning support
	Master CPU
	Specification of the source files.

	Code generation and the Build process
	Setting the OIL configuration file
	Starting the Project Build procedure
	RT-Druid Console
	Erika Enterprise Signatures
	Project cleanup
	Application Debug and Run
	Application debug using Lauterbach Trace32

	Script File
	Introduction
	Quick introduction to ANT
	Launching Ant
	An Ant build script file format example
	Task ``rtdruid.Oil.Configurator''

	Standalone version of RT-Druid
	Introduction
	Code generation
	Template code instantiation

	History
	OIL definition

