
The Populus Help System 
Beginning with Populus release 5.3, we changed the help system from a set of individual html 
files to a single large pdf document, accessible via Adobe Acrobat Reader.  This will improve the 
appearance of our help screens, and make future modifications much easier. 

To minimize downloaded file sizes, we will no longer provide both English and Spanish help 
files simultaneously; rather we will offer English or Spanish versions of the entire Populus 
package.  The Spanish version will show Spanish-language help files when they are available, 
and English for those models that are not yet translated. 

Populus will start Acrobat Reader in the background, and display the full system when help is 
requested, with a set of bookmarks for easy navigation.  After looking at a help screen, we 
suggest that you minimize the reader rather than closing it, to speed subsequent access.  The 
Populus help system is configured so that users may print pages (and we permit printing for any 
non-profit teaching use), but cannot extract, edit, or alter them for other applications. 
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Density-Independent Population Growth 

Density-independent growth models offer an extremely simple perspective on changes in 
population size by assuming away many potential complications.  For example, two sets of 
counteracting processes affect population size; birth and immigration increase populations while 
death and emigration decrease them.  To simplify, assume that (a) immigration and emigration 
balance, leaving birth and death as the only determinants of population density.  Let's also 
assume that (b) all individuals are identical (especially with respect to their probabilities of dying 
or producing offspring), (c) the population consists entirely of parthenogenetic females, so that 
we can ignore complications associated with mating, and (d) environmental resources are 
infinite, so that the only factors affecting population size are the organisms' intrinsic birth and 
death rates.  These assumptions allow a simplistic model of population growth, and it is 
instructive to present the model in two formats for different kinds of life histories. 

Case I.  Exponential Growth with Continuous Breeding 

First we will consider an organism like Homo sapiens or the bacteria in a culture flask, 
with continuous breeding and overlapping generations.  All ages will be present simultaneously, 
and population size will change steadily in small increments with the birth and death of 
individuals at any time.  This continuous population growth is best described by a differential 
equation, with instantaneous rates defined over infinitely small time intervals.  

 If:  N = population size 

 b = instantaneous birth rate per female 

 d = instantaneous death rate per female 

then population growth is given as: 

 ( )d
d
N b d N
t
= −

If we collect the per capita birth and death rates in a single parameter r = b - d called the 
intrinsic rate of increase or exponential growth rate, then: 

 d
d
N rN
t
=  

This expression states that population growth is proportional to N and the instantaneous growth 
rate, r.  When r = 0, birth and death rates balance, individuals just manage to replace themselves, 
and population size remains constant.  When r < 0, the population shrinks toward extinction, and 
when r > 0, it grows. 

We integrate the differential form of this continuous growth model to project future 
population sizes: 

 ( ) ( )0 rtN t N e=
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Although r is an instantaneous rate, its numerical value is only defined over a finite interval.  If 
this rate remains constant, then we can predict future population size, N(t) from a knowledge of 
the constant growth rate (r), the present population size, N(0), and the time over which growth 
occurs (t). 

Case II. Geometric Growth with Discrete Generations 

Now we consider a density-independent growth model that is more appropriate for many 
plants, insects, mammals, and other organisms that reproduce seasonally.  Individuals in such a 
population comprise a series of cohorts whose members are at the same developmental stage.  
Assume that an interval begins with the appearance of newborns, and that if individuals survive 
long enough, they produce another cohort of offspring at the beginning of the next interval.  
Parents may all die before the offspring are born (like annual plants), or they may survive to 
reproduce again so that generations are partially overlapping (like many mammals).  In either 
case youngsters appear in nearly synchronous groups separated by intervals without recruitment. 
 This discrete population growth is best described by a finite difference equation. 

 If:  Nt = population size at time t 

 b = births per female per interval 

 p = probability of surviving the interval, then: 

 ( )1t t tN pN pbN p pb+ = + = +

Redefining the collective term with birth and death rates as a single parameter λ = (p + pb), 
which gives the number of survivors plus their progeny, 

tN

0 ( )1 2
t

t t tN N N Nλ λ λ λ− −= = =

λ is the geometric growth factor, or per capita change in population size over a discrete interval, 
t.  If λ = 1, then individuals just manage to replace themselves and population size remains 
constant.  If λ < 1, the population shrinks toward extinction, and if λ > 1, it grows larger.  As long 
as λ remains constant, we can predict future population sizes from the growth rate (λ), the present 
population size (N0), and the interval over which growth occurs (t), using the equation 

  0
t

tN Nλ=
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Density-Dependent Population Growth 

This module simulates density-dependent population growth, assuming a linear negative 
feedback of population size on per capita growth.  It requires specification of a starting population 
size N(0), a maximum sustainable population size or environmental carrying capacity K, a per 
capita intrinsic growth rate r, and (optionally) a feedback lag τ.  The program includes continuous, 
lagged continuous, and discrete simulations. 

Density-dependent models assume that population size affects per capita growth.  While the 
feedback of density on growth can take many forms, the logistic model imposes a negative linear 
feedback.  Note that if K is the environmental carrying capacity (quantified in terms of individuals, 
N), then K – N gives a measure of the unused carrying capacity, and (K - N)/K gives the fraction of 
carrying capacity still remaining.  Thus 

d
d
N
t

rN K N
K

=
−F
H
I
K  

If N is near zero, the carrying capacity is largely unused, and dN/Ndt is near r.  If N = K, the 
environment is totally used or occupied, and dN/Ndt = 0.  In this continuous, differential equation 
model, r is an instantaneous rate, but its numerical value is defined over a finite time period. 

To project a time trajectory of logistic population growth, we need to integrate the 
differential equation from time (0) to time (t). 

( )
( )
( )

( )0
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0
rt

KN t
K N

e
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−
=  −  +   

 

A plot of N(t) with respect to time gives a sigmoid (S-shaped) trajectory, where growth is nearly 
exponential when N is near zero, and slows to equilibrium at N = K.  When initial population size 
exceeds the carrying capacity, numbers fall in an asymptotic approach toward K 

Sometimes the feedback of density on per capita growth rate is not instantaneous.  For 
example, the effect of malnutrition on population growth might not be strongly evident before 
malnourished juveniles reach reproductive age.  We can simulate this process by assuming that 
growth rates are affected by population size in some previous time period.  Thus 

( ) ( )d 1
d

N tN rN t
t K

τ −  = −   
 

where τ is a time lag.  There is no definite integral for this equation, so we project time trajectories 
by summing instantaneous changes in population size via numerical integration.  Because the lag is 
delayed by an amount τ, a growing population may reach and overshoot the carrying capacity 
before the negative feedback term causes the population to stop growing or decline.  The resulting 
oscillation may damp to a stable equilibrium or continue indefinitely as a limit cycle. 
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A population with discrete generations or cohorts cannot adjust instantaneously to changes 
in density-dependent feedback, because births occur only once in each generation or cohort 
interval.  There is an implicit lag associated with the period of discrete population growth 
increments.  With the lagged logistic model of the previous section, lag time, τ, could vary in 
length; but with a discrete logistic model it is constant, fixed by the interval of discrete time steps.  
As a result, r and K alone determine the dynamics.  When r is small, the population may not grow 
fast enough to overshoot carrying capacity within the lag time of a single cohort interval; but as r 
increases, sustained oscillations are more likely.  Several approaches have been used to formulate 
difference equations analogous to the continuous logistic equation, but they yield similar results.  
The version implemented in Populus is: 

N N et t
r N

K
t

+

−FH
I
K=1

1
 

With a small population-growth rate, r, this discrete model gives a sigmoid approach to 
equilibrium, just like continuous and lagged logistic models.  With increasing r values, discrete 
logistic dynamics show damped oscillation; then 2-point cycles of constant period and amplitude; 
and then cycles that include 4 points, 8 points, 16 points, etc., before repeating.  Finally, very large 
r values cause population size to fluctuate in a way that is extremely sensitive to initial conditions, 
and never settles into a precisely repeating cycle, a regime that mathematicians term “chaotic.” 
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Age-Structured Population Growth 

Youngsters and oldsters give birth and die at different rates.  To keep track of these 
differences and their effect on population growth, biologists divide an organism’s life into a series 
of discrete intervals, each representing a cohort of individuals that are about the same age and have 
similar expectations of survival and fertility.  By listing Sx, the number of surviving individuals in 
each cohort by age, x, we can specify the composition of an age-structured population.  We can also 
tabulate age-specific changes of fertility and survival in a life table, or lxmx schedule.  The first 
component, lx, is the average probability of survival from birth to age x.  The second component, 
mx, is the average number of female offspring that a female can expect to acquire when she reaches 
age x.  With these life history parameters, we can then project population growth by cohort, or with 
a weighted average of fertility and survival rates over all ages. 

This Populus module provides three different visual representations of a life history, 
allowing students to see a life-table or lxmx schedule, a life-cycle graph of the age classes and 
transition probabilities, or a population state vector listing Sx, the number of survivors in each age 
class, with the Leslie projection matrix.  Students can compare views, and provide the data to 
initiate a demographic projection in any of the three formats.  There are output graphs showing 
changes in population size, population composition, the expectation of future progeny, and a 
tabular output illustrating the computations that project population composition, based on the lxmx 
schedule, the initial Sx values, and assumptions about the timing of reproduction and population 
censuses. 

1 2 3p1 p2

f2

f3

f1

Figure 1.  Hypothetical life cycle graph illustrating the process of demographic projection.  Shaded circles 
represent three successive ages, with arrows indicating the transition probabilities.  The projection interval is 
the same as the discrete period between reproductive seasons.  Each arrow indicates the passage of a projection 
interval, so that progeny born to age-1 parents will themselves be 1 year of age at the next time step, when their 
parents will have reached age 2. 

There are several ways of specifying the age-specific fertilities and probabilities of survival 
for a demographic projection.  Fertilities can be tabulated as the average number of offspring 
accruing to a female when she reaches age x (this is the mx of an lxmx schedule), or the number of 
progeny of an age x female that are expected to be alive after the next projection interval (this is the 
fx from the first row of a Leslie Matrix).  Survival probabilities can be specified over x projection 
steps from age 0 to age x (this is lx) or a single projection step from ages x-1 to x, or x to x+1 (this is 
the px just below the diagonal of a Leslie Matrix).  The different styles of visual representation 
require Populus to convert and manipulate these survival and fertility parameters, and the exact 
details depend on assumptions about the timing of population censuses and reproduction of the 
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organisms in question.  When reproduction occurs seasonally at discrete intervals and the 
population census comes immediately after reproduction, then  

1
     and     x

x x x
x

l
xp f p m

l −
= =  

If censuses are made immediately before reproduction, then newborn individuals must survive a 
full projection interval before they are tabulated in their first census, so 

1
1     and     x

x x x
x

lp f l m
l
+= =  

Finally, when reproduction is continuous rather than pulsed in discrete seasons, the length of 
projection time steps is arbitrary, and probabilities of survival and reproduction are averages of the 
values at the beginning and end of each interval. 

1 11

1

1     and     
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x x x x x
x x

x x

l l m p mlp f
l l

+ +

−
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Projecting a Constant lxmx Schedule 
Consider a hypothetical population with discrete reproduction, comprised at an initial post-

reproductive census only of S0 newborn individuals.  At the next census, l1S0 of those newborns 
will still be alive; they will have just passed age 1, each producing m1 newborn progeny of their 
own, so that the new population is comprised of two cohorts.  If lx and mx values remain constant, 
this process can be projected indefinitely. 

x lx mx Sx(0) Sx(1) Sx(2) Sx(3) Sx(4) Sx(5) 
0 1.0 0 4 2 6 5.5 10.3 12.1 
1 0.5 1 0 2 1 3 2.8 5.1 
2 0.25 5 0 0 1 0.5 1.5 1.4 
3 0 - 0 0 0 0 0 0 
  ΣSx = N 4 4 8 9 14.5 18.5 

The first three columns in this table give x, lx and mx.  The shaded fourth column gives a 
hypothetical initial population, consisting in this case of 4 newborn individuals.  The projection of 
this population to subsequent time steps 1-5 is made for each succeeding time step by first 
tabulating the number of 1- and 2-step-old adults, and then adding the progeny they can expect on 
reaching each age x.  The projection shows that if lx and mx remain unchanged, the ratio of 
successive population sizes, 1tN Ntλ += , often converges on a constant value, and the 
proportional representation of each age class then reaches a constant Stable Age Distribution.  
Thus, a population with a constant age-specific schedule of survival and reproduction may be 
started with any arbitrary composition, but will usually settle down to a constant growth rate, λ, and 
a stable age distribution. 

It is also possible to project the constant growth of an age structured population with some 
simple weighted average rate estimates.  The Net Reproductive Rate, R0, gives the number of 
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female progeny expected to accrue during the entire lifetime of an individual female.  It is 
calculated as 

0 x xR l m=∑  

which is the sum of offspring produced in each age interval, weighted by the mother’s probability 
of surviving to that age.  The mean generation length or cohort generation time, Tc, is estimated as 

0

x x x
c

x x

xxl m xl m
T

l m R
≈ =∑ ∑
∑

 

the weighted average of a female's ages when each of her progeny are born.  From these two 
averages, we can approximate population growth, λ or r, as 

0 0ln          or          
c c

R Rr
T T

λ≈ ≈  

This approximation is fairly accurate for semelparous life histories (where organisms only breed 
once, like the Onchorhynchus salmon of the North Pacific) or populations that are not growing 
significantly.  For iteroparous (multiple-brooding) life histories in growing populations, we 
determine r with any desired precision by successive approximation using the Lotka-Euler 
equation, 

1rx
x xe l m− =∑  

Matrix Projection 
The Populus program represents population composition as a vector whose elements are Sx 

values, the numbers of individuals in each age class.  To project a subsequent composition, this 
vector is multiplied by a transformation matrix (the "Leslie Matrix"), which has age-specific 
fertility values, fx, in its first row, and probabilities of surviving from one age to the next, px, below 
the diagonal.  The product of this matrix multiplication is a new vector, specifying the Sx values of 
the population at the next succeeding census.  Students who need to review the basics of matrix 
multiplication can consult the Populus book.  The Lotka-Euler equation is the characteristic 
equation of this projection matrix, and λ is its dominant eigenvalue. 
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Computational Notes 
Reproductive Value, Vx, is a function of age.  This is the expected number of future female 

progeny for a female of age x, relative to the expected future output of a newborn female, R0. 

rx
ry

x y y
x y x

eV e
l

∞
−

=

    =      
∑ l m  

When students elect to initiate a demographic simulation by specifying elements of the 
Leslie Matrix and population state vector, it is necessary for our program to specify lx in terms of 
px, and mx in terms of fx and px.  For continuously reproducing organisms, I am not aware that these 
relations have been published previously.  The solution worked out by Populus programmer Amos 
Anderson is that 

1
1 1

1
0 0 1 1
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−
= − −
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Any mx can then be found recursively, working backward from the first mx = 0. 

References 

Alstad, D. N. 2001. Basic Populus Models of Ecology. Prentice Hall.  Upper Saddle River, NJ. 
Chapter 3.  

Case, T. J. 2000. An Illustrated Guide to Theoretical Ecology. Oxford University Press. New York.  
pp. 45-103. 

Caswell, H. 1989. Matrix Population Models. Sinauer Associates, Sunderland, MA. 328 pp. 

Jenkins, S. H. 1988. Use and abuse of demographic models of population growth.  Bulletin of the 
Ecological Society of America 69:201-7. 

Lanciani, C. A. 1987. Teaching quantitative concepts of population ecology in general biology 
courses.  Bulletin of the Ecological Society of America, 68:492-95. 

Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33:183-
212. 

May, R. M. 1976. Estimating r: a pedagogical note. American Naturalist 110:496-499. 



© D. N. Alstad, University of Minnesota 

Stage-Structured Populations 

Matrix projection is easily adapted to population analyses using categories other than age.  
For example, many perennial plants pass through a series of recognizable life-history stages, 
beginning as seeds, germinating to form vegetative stages that may grow for several years, and 
finally developing reproductive structures that produce new seeds.  The precise duration of each 
stage can vary from plant to plant, depending on environmental conditions such as access to 
light, water, and soil nutrients.  Seeds might germinate at their first opportunity, or remain 
dormant in the soil for an extended period.  Vegetative stages with ample resources may produce 
flowers and seeds from an early age.  In contrast, “century plants” of the desert southwest (Agave 
kaibabensis) grow as vegetative rosettes for many years before producing a single flower stalk 
and dying.  It can be difficult or impossible to determine the age of such plants, and much more 
convenient to base demographic analyses on the stages of their life history.  Some plants 
reproduce both sexually and vegetatively, so the analysis of these life cycles can be complex. 

Caswell (1982, 1989) introduced graphical techniques that make it easier to keep track of 
complex stage-structured life cycles.  The first example in Figure 1 shows a Caswell life-cycle 
graph for an age-structured population, but with four stages, represented by numbered circles.  

Arrows connect stage nodes i and j if individuals in stage i at time t can contribute individuals to 
node j at time t+1, by surviving, growing, or reproducing.  Survival and fertility parameters are 
defined just as they were in Populus simulations of Age-Structured Population Growth, and the 
stage-projection matrix that corresponds to this life-cycle diagram is 
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Notice that it has the same form as the Leslie matrix of the previous section. 

An important difference between stage- and age-structured populations is that the 
organisms may remain in one stage over several projection intervals.  The second diagram in 
Figure 1 illustrates such cases.  The coefficients “p” give the probabilities of moving from one 
stage to the next; s values give the probability of remaining in the same stage through the next 
time step; and f is the fertility coefficient, as before.  The matrix that we use to project the 
changing composition of this population over time must include the probabilities of advancing to 
a new stage and remaining in the same stage at each time step.  Probabilities of advancing, p, run 
diagonally across the age projection matrix in positions where the row (i) and column (j) 
addresses are .  Probabilities of remaining in place at the next census, s, go diagonally 
across the projection matrix in positions where .  The stage-projection matrix 
corresponding to life cycle B of Figure 4.8 is 

1i j= +
i j=
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B   

Life-cycle graphs can illustrate natural histories that are even more complex.  All of the 
projection matrices we have studied to this point confine reproductive parameters to the top row; 
new individuals are always in stage 1 when first counted.  This is not necessarily the case in 
stage-structured populations.  The third case in Figure 4.8 represents a life cycle where 
individuals produce stage-1 progeny if they reach stage 4, but also produce stage-2 progeny if 
they reach stage 3.  These two kinds of progeny could be seeds and vegetative tillers, 
respectively.  Now the projection matrix will have reproductive parameters below its top line. 
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C   

It is also possible for a plant to regress to some earlier stage.  For example, a large vegetative 
plant that suffers heavy herbivory and loses much of its biomass may regress to a small 
vegetative stage. 

These examples of age- and stage-structured population growth demonstrate that the tools 
of matrix projection are quite flexible, facilitating study of both simple and complex life cycles.  
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They also allow conclusions to be drawn about the dynamics of structured populations, directly 
from properties of the projection matrix.  Advanced students who wish to explore these 
techniques further will find valuable guidance in Caswell (1989). 
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Lotka-Volterra Competition 

 Density-dependent growth models like the logistic equation simulate an intraspecific 
competitive process; resources become limiting as the population increases, and the per capita 
growth rate declines.  In this program, an additional term is added to the logistic to represent 
interspecific density-dependent effects, and a pair of the resulting expressions comprise the "Lotka-
Volterra competition equations," which provide a simple and historically important vehicle for 
thinking about competitive interactions. 

 In the Lotka-Volterra equations, densities of both species are subtracted from the carrying 
capacity to give a density-dependent feedback term, and the number of interspecific competitors is 
weighted by a term called the competition coefficient which varies with the species' similarity in 
resource requirements.  Thus 

( )1 1 21
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K N NN r N
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where N1 represents the density of species 1, K1 is the environmental carrying capacity of species 1, 
r1 is its intrinsic rate of increase, and α is the competition coefficient, a proportionality constant 
defining the amount of K1 used by every individual of species 2.  In the second expression, β is an 
analogous coefficient weighting the effect of each species 1 individual on K2

 Although we have no closed form solution for these equations, we can still gain interesting 
insights about their dynamics near the equilibrium where dN1/dt = dN2/dt = 0.  Trivial equilibria 
occur when r or N = 0; a more interesting case occurs when 

1 1 2 2 2   and   N K N N K N1α β= − = −  

These are the equations for straight lines in N2 vs N1 coordinate space, the "Zero-Net-Growth 
Isoclines" which specify density ratios where dN1/dt = 0 and dN2/dt = 0, respectively. 
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Infectious Microparasitic Diseases 

 Parasites ranging from viruses and bacteria to fungi, helminths and arthropods cause 
infectious diseases that may have a strong influence on the dynamics of their hosts.  The World 
Health Organization estimates that 33.6 million people world-wide carried the human 
immunodeficiency virus at the end of 1999.  Most of those people will die within the next 
decade, and 70% of this mortality will be concentrated in sub-Saharan Africa, which has already 
sustained 84% of the 16.3 million world-wide AIDS deaths since the beginning of the epidemic.  
Host-parasite interactions differ from those of predators and prey because the diseases do not 
necessarily kill the host, and because recovered hosts may develop an immunity to reinfection. 

 To simplify analysis of host-parasite dynamics, it is useful to distinguish between micro- 
and macroparasites.  Microparasites (like the virus that caused smallpox) usually reproduce at 
high rates within the host; the duration of infection is short compared with host lifespan, and 
recovered hosts may be immune for life.  In contrast, macroparasites (like intestinal flatworms) 
typically cause chronic and persistent infections, and the severity of the resulting disease depends 
on the number of parasites present in a given host. 

 This Populus simulation presents a model by Anderson and May (1979, 1982) that 
pertains most closely to microparasitic infections.  It describes a host population of size N, 
containing susceptible individuals (S) who are not infected, and infected individuals (I ) who can 
pass the parasite to others.  It may also include recovered individuals (R) who have encountered 
the disease and developed immunity.  Susceptible individuals arise through birth or the loss of 
immunity at per capita rates b and γ, respectively.  Individuals leave the susceptible class 
through natural mortality (rate d), or by acquiring the parasite (rate β ) after encountering an 
infected host.  Individuals leave the infected category through natural mortality (rate d), disease-
induced mortality (rate α), or through recovery (rate ν) of hosts that become immune. 

The model assumes that (1) individuals are uninfected at birth, (2) newly infected hosts can 
transmit the disease immediately, (3) there is no age structure among hosts, (4) the disease does 
not affect host fecundity, and (5) host populations are large enough so that random events can be 
ignored (6) there is no density-dependent feedback among hosts except the interaction with 
parasites, and (7) that infections occur randomly in proportion to the density of susceptible and 
infected individuals and the transmission coefficient, βSI. 

 Based on these assumptions, dynamics of the three host classes can be specified as 
follows: 

 ( )d
d
S  = b S I R dS SI + R
t

β γ+ + − −

 ( )d
d
I = SI d I
t

β α υ− + +

 ( )d
d
R = I  d R
t

ν γ− +

 Although microparasites often reproduce rapidly within a susceptible host, rates of 
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transmission between hosts are a critical feature of their dynamics.  We define R0, the net 
reproductive rate of the disease, as the number of newly infected individuals produced by each 
infected host when the disease is rare and most of the host population is susceptible.  Intuitively, 
this net reproductive rate should increase with the transmission rate, β, and the number of 
susceptible individuals, S; it should also increase with the average persistence of infected disease 
carriers, which is the inverse of the sum of their rates of disappearance due to natural mortality 
(d), diseased-induced mortality (α), and host recovery (ν).  Thus, 

 0
SR  = 

+d +
β

α ν

Since R0 must equal or exceed 1.0 for the disease to persist, we can set R0 = 1 and rearrange 
equation 4 to specify the susceptible host density (S) necessary to sustain the parasite (assuming 
that the various rates remain constant).  This minimum is often called the disease's threshold 
host-population density, ST; it is a minimum resource concentration required by the parasite. 

 T
dS   α ν
β

+ +
=

The implication is that the disease will go extinct unless S > ST. 

 Populus runs a simplified version of this model with only susceptible and infected hosts, 
ignoring acquired immunity.  It also runs a modification suggested by Getz and Pickering (1983) 
in which disease transmission is frequency dependent, rather than density dependent.  This 
difference is effected by changing the Anderson-May disease transmission term βSI. to (βSI.)/N.  
In this version, there is no minimum susceptible density required to sustain the disease. 
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Macroparasitic Infections 

Helminthes like intestinal tapeworms and nematodes tend to produce chronic infections in which 
both morbidity and parasite reproduction depend on the worm burden of individual hosts.  
Parasites are often over-dispersed, so that a few hosts harbor many worms, and host-to-host 
variance in parasite loads may be extreme.  As a result, it is not sufficient to divide a host 
population into susceptible, infected and resistant classes; successful macroparasite models must 
track the worm burden of individual hosts, either explicitly, or by assuming some probability 
distribution of parasite loads.  This module implements a basic model by Roy Anderson and 
Robert May (cf. A & M 1978; M & A 1978, 1979) that characterizes between-host variation in 
worm burdens with a negative binomial distribution.  We also incorporate a modified version of 
the model by Andy Dobson and Peter Hudson (1992) that introduces a “hypobiotic” stage of 
arrested parasite development which occurs following infection, but before maturation into adult 
worms that affect host vitality.  Dobson & Hudson instituted this modification to portray the 
biology of Trichostrongylus tenuis, a nematode parasite of red grouse in England and Scotland. 
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β
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transmision
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Figure 1. Schematic of a basic Anderson-May macroparasite model with direct transmission.  Eggs or parasite larvae 
are shed from the host into the environment, and infect new victims without passage through a secondary host.  
Redrawn after Hudson (http://www.abo.fi/fak/mnf/biol/nni/prc1_phuds.html). 
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Parameters for the basic Anderson & May macroparasite model are: 

 H = total host population size (numbers) 
 P = total parasite population size (total numbers of adult worms) 
 W = population of free-living infective stage (eggs & larvae) 
 b = the host birth rate (/time) 
 d = the host natural mortality rate (/time) 
 α = disease-induced mortality rate (/worm/time) 
 β = transmission rate per host contact (/host/time) 
 λ = birth rate of parasite eggs or larvae (/time) 
 k = negative binomial aggregation parameter (a dimensionless constant inversely 

proportional to assumed parasite aggregation among hosts) 
 μP = natural mortality rate of adult parasites (/time) 
 γ = infective stage mortality rate (/time) 

Based on these assumptions, we can specify a differential equation for the dynamics of hosts and 
parasites in each shaded box of the schematic as follows: 

 ( )d
d
H b d H P
t

α= − −  (1) 

 ( )
2d

d P
P WH d P
t H

β μ α α 1P k
k
+⎛= − + + − ⎜

⎝ ⎠
⎞
⎟  (2) 

 d
d
W P W WH
t

λ γ β= − −  (3)

The final term in equation (2), 
2 1P k

H k
α +⎛

⎜
⎝ ⎠

⎞
⎟ , scales the negative effect of parasite-induced host 

mortality on parasite dynamics with parasite abundance and aggregation. 

Anderson and May also proposed a simplified version of this model by assuming that the 
infective stages (W) are short lived, and hence likely to be at their equilibrium based on current 
values of H and P.  If dW/dt = 0, then equation (3) can be solved for W as a function of H and P, 

H PW
H

β λ
γ β

=
+

.  Substituting this value into equation (2) rephrases the model in two equations, 

allowing a two-dimensional isocline analysis: 

 d
d
H rH P
t

α= −  (4) 

 ( )
2

0

d
d P
P HP P kd P
t H H H k

λ μ α α 1+⎛= − + + − ⎜+ ⎝ ⎠
⎞
⎟  (5) 

Here r = b - d and H0 = γ/β, which varies inversely with the transmission efficiency of the 
parasite. 
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The dynamics of this model depend on the parasite birth rate, λ, the host and parasite death rates, 
d and μP, respectively, and the disease-induced host mortality rate α.  If 

 ( ) ( ) 1
P

kd b d
k

λ μ α +⎛− + + > − ⎜
⎝ ⎠

⎞
⎟  (6) 

then the parasite is capable of regulating host at an equilibrium where P*/H* = (b-d)/ α.  If 
inequality (6) is not met, but 

 ( ) 0P dλ μ α− + + >  (7) 

then hosts grow exponentially at a rate lower than the disease-free rate.  Finally, if inequality (7) 
is not met, then the parasite cannot be maintained (May & Anderson 1979). 
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Figure 2.  Schematic of the Dobson & Hudson red grouse model, with an arrested "hypobiotic" stage after host 
infection.  Redrawn after Dobson & Hudson 1992. 
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For the Dobson & Hudson Red Grouse model incorporating “hypobiosis,” a quiescent stage of 
arrested development by the parasite after entering a host bird, there are three additional 
parameters: 

 μA = natural mortality rate of arrested parasites (/time) 
 δ = the effect of parasites on grouse fecundity (/worm/time) 
 θ = the rate at which arrested larvae develop into adult worms (/time) 

The Dobson & Hudson model is decoupled, like the two-equation simplified version of 
Anderson & May; it assumes that the infective stages outside the host are short-lived relative to 
the arrested and adult stages in the host, with densities near the equilibrium determined by host 
(H) and parasite (P) densities.  As a result, there are three equations representing hosts (H), and 
the arrested (A) and adult parasite (P) stages. 

 ( ) ( )d
d
H b d H P
t

α δ= − − −  (8) 

 
( ) ( )

0

d
d A
A HP PAd A
t H H H

λ μ θ α= − + + −
+

 (9) 

 ( )
2d

d P
P A d P
t H

θ μ α α 1P k
k
+⎛= − + + − ⎜

⎝ ⎠
⎞
⎟  (10) 

The dynamics of the Dobson & Hudson model show that parasite effects on host fecundity 
introduce oscillations in host and parasite abundance when α/δ > k.  While the presence of an 
arrested host stage affects the period of cycles caused by this fecundity effect, the arrested stage 
does not cause oscillations on its own. 
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Evolution of Disease Virulence 

Why are some parasites highly virulent, while others are much less harmful to their hosts?  
Selection should favor a level of virulence that maximizes the rate of increase of the pathogen. 
Theoretically, this optimum virulence depends on the functional relationship between a 
pathogen's transmissibility, and its effect on host mortality. 

How can genotypes with reduced virulence become established in a host population, if these 
genotypes suffer a reproductive disadvantage relative to their more virulent progenitors?  Most 
disease models shown that the Ro of a pathogen strain depends directly on the density of 
susceptible hosts in the population.  When this density is high, a parasite may benefit from an 
increased rate of transmission, even if this results in killing the present host more quickly.  But if 
susceptible hosts are rare, then a more temperate parasite may be favored, since this pathogen 
strain will be maintained within a host longer despite its lower infectivity. 

This Populus module demonstrates a model by Richard Lenski and Robert May; it assumes that 
any evolutionary change in the virulence of a parasite will affect the density of susceptible hosts, 
and this change in the density of susceptible hosts will generate new selective pressures on the 
pathogen.  Thus, the model synthesizes ecological dynamics and evolutionary genetics.  The 
framework is almost identical to an Anderson & May micro-parasitic disease model with only 
infected and susceptible hosts (there is no immune class).  We define parameters for the model as 
follows: 

 H = density of susceptible hosts e = disease induced death rate (virulence) 
 I = density of infected hosts b = transmission rate per contact 
 d = death rate not due to infection a = birth rate of susceptible hosts 
 p = fraction of birth rate "a" for infected hosts 

(actually, a = a0 - a1(H - I), whereby a0 is the density-independent component of the birth rate, 
and a1 is the density-dependent component).  With these parameters, the dynamics of the 
susceptible and infected host classes are 

 d
d
H aH apI dH bHI
t
= + − −  (1) 

 d
d
I bHI dI eI
t
= − −  (2) 

We can imagine several routes by which transmission and virulence could be coupled.  If we 
assume that virulence is a strictly increasing function of the transmission rate, then there are 
three possibilities:  (a) an ever increasing, nonlinear relationship, by which a small increase in 
the transmission rate b is associated with a large increase in virulence,  (b) a linear relationship 
between b and e, or  (c) a saturating relationship between virulence and transmission rate, such 
that a small increasing in e confers a large increase in b. 
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It is probably easiest to understand this model via alternating analyses of infected and susceptible 
host dynamics.  Assume that e, the disease-induced mortality rate, is a strictly increasing 
function of the pathogen's transmission rate, b.  The relationship can be described as: 

  (3) e b c c b c b( ) = + +1 2 3
2

where c1, c2, and c3 are constants.  If c3 = 0, this relationship is linear; if c3 = c2 = 0, then 
virulence is constant and independent of the transmission rate.  

Substituting this function for e(b) into equation 2, we find that: 

 ( ) (2
2 3 1

d
d
I b H c c b d c

I t
= − − − + )  (4) 

To find the value of b that optimizes the per capita rate of increase of the disease, we can 
differentiate this expression with respect to b, set it equal to 0, and solve for b. 

 b
H c

copt =
− 2

32
b g
b g  (5) 

Thus, if b b , an increase in the rate of transmission will be favored at the expense of higher 
virulence, and if b b , selection will favor decreased virulence.  Note that b  depends 
directly on the density of susceptible hosts. 

< opt
> opt opt

At a particular ecological equilibrium, the disease will reduce H down to H*.  However, any 
strain of parasite that is associated with a lower threshold density of susceptible hosts (less than 
H*) will be able to invade this system at its ecological equilibrium, and then further reduce the 
density of susceptible hosts to a new value of H*.  A mutant parasite with a transmission rate b' 
and a virulence level e' can invade if: 

 ( )
( )

*d 0   and thus   
d

d eI b H d e b
I t b d e

′+′ ′
′ ′= − − > >

′ +
 (6) 

If these conditions are satisfied, then the new mutant will invade and reduce the density of 
susceptible hosts to an even lower level, thus driving the previously existing strain of pathogens 
extinct.  Assuming a nonlinearly increasing relationship between b and e, this strain will have a 
new value of b' < b, and e' < e.  Successive iterations of this feedback between ecological and 
evolutionary dynamics leads to progressive reductions in H*, b, and e.  (Note however, that 
selection cannot favor a totally non-transmissible and absolutely avirulent parasite because such 
a strain would always have a negative rate of increase in a population of susceptible hosts.) 

For any given parasite strain, H* will be given by: 

 H
d c

b c c b
* =

+
+ +

1

2 3

b g
b g  (7) 

To find the minimum density of susceptible hosts given the above constraints, we differentiate 
H* with respect to b and set this equal to 0: 
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*

1
3 2

d ( ) 0
d
H d cc
b b

+
= − =  (8) 

Solving for b, we find that b
d c

c
* =

+F
HG

I
KJ

1

3

1
2b g .  Plugging this value back into the expression for H* 

yields the minimum possible density of susceptible hosts.  Note that the value of b* above is 
NOT the optimal transmission rate for ALL strains of the disease, but only applies to the 
culmination of successive evolutionary and ecological iterations.  A parasite with a transmission 
rate b* is, at its ecological equilibrium, not invasible by any other strain of parasite with any 
other values for b and e. 

In the treatment above, we solve for an ecological equilibrium density of hosts, obtain the 
optimal transmission rate that corresponds to this density, and then solve for a new ecological 
equilibrium ... and so on, until we reach the minimum density of susceptible hosts that we can 
sustain give our constraints of c1, c2, and c3.  This decoupling of the ecological and evolutionary 
processes is one extreme approach that is valid if we assume that ecological time scales are 
always faster than evolutionary time scales (which may or may not be true).  An alternative 
approach is to integrate the dynamics numerically so that the evolutionary optimum is tracked 
instantaneously as the ecological dynamics unfold.  To do this, we use equations 1 & 2 and set  
b = bopt, and e = e(bopt).  Thus, as H decreases due to the spread of the disease, bopt and e(bopt) 
also decrease.  The same trend towards reduced virulence is observed as previously described, 
and we obtain the same final equilibrium values.  In addition, we can observe plots of how the 
densities of H and I change over time, and how the values of bopt and e(bopt) also change. 

According to resource-based competition theory, two consumers that share a single limiting 
resource cannot stably coexist in a homogeneous habitat.  Moreover, the consumers can be 
ranked by competitive ability according to the equilibrial density of resource that would remain 
in the presence of that consumer alone (R*).  Thus, any consumer that holds the resource at a 
lower concentration than another consumer can invade and competitively displace the first.  With 
respect to this model, the competing consumers are the different parasite genotypes, and the 
limiting resource is the density of uninfected hosts. 
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Population Biology of Bacterial Plasmids 

Many bacteria carry extra-chromosomal genetic elements that can confer important adaptations.  
For example, bacterial antibiotics that inhibit the growth of competitors are often the product of 
‘bacteriocinogenic plasmids’ that code both a toxic agent and a mechanism that makes the host 
cell resistant to its effect.  These extra-chromosomal elements are replicated and transmitted 
vertically in the course of bacterial cell division, and may have infectious horizontal transmission 
between cells via either a protein-encapsulated viral particle, or cell-to-cell contact in bacterial 
conjugation.  Horizontal transmission may occur within- and between bacterial species, and even 
between different genera.  It is the mechanism by which multiple drug resistances have been 
acquired by important human pathogens. 

This Populus module simulates the population dynamics of a conjugationally transmitted 
plasmid, based on a model by Frank Stewart and Bruce Levin (1977).  It describes the growth of 
bacteria with and without plasmids, in liquid culture with two distinct modes of resource supply.  
The first, which Stewart and Levin call the ‘equable mode,’ is a chemostat.  Fresh sterile medium 
(with resource concentration c μg/ml) drips in at a constant rate, W ml per hr.  With culture 
volume V, the flow rate through the habitat is W

Vρ =  turnovers per hr.  The second, ‘seasonal’ 

mode of resource supply involves serial transfer.  In this case, bacteria are introduced into a 
culture containing R0 μg/ml of resource, and grow until its concentration is lowered to the point 
where their population is static.  Then an aliquot of the static culture is withdrawn and used to 
inoculate the succeeding culture vessel, resulting in a boom and bust cycle of resource 
availabilities contrasting with the steady-state chemostat.  For both regimes of resource supply, 
bacteria with and without plasmids grow at rates that are assumed by be saturating functions of 
resource concentration. 

The parameters of the Stewart-Levin Plasmid model are as follows: 
V = volume of the culture habitat. 
n, n+, n* =  densities of plasmid-free cells, plasmid-carrying cells that acquired the extra-

chromosomal element vertically or were part of the initial inoculum, and plasmid-
carrying transconjugant cells that acquired the element via horizontal infection. 

r = concentration of limiting resource in the culture habitat. 
ψ(r), ψ+(r) = growth rate of plasmid-free and plasmid-bearing bacterial cells, which are 

functions of resource concentration. 
e, e+ = quantities of resource required for one cell division. 
φ(r), φ+(r) = rates of resource uptake for plasmid-free and plasmid-bearing cells, which are 

functions of resource concentration. 
τ = vegetative segregation rate (rate of plasmid loss per bacterial cell division).  Simulation 

options allow this parameter to be set constant or to vary proportionally with ψ. 
γ = conjugational transfer parameter.  Simulation options allow this parameter to be set 

constant or to vary proportionally with ψ. 
c = concentration of resource in the inflowing stock medium. 
W = rate at which nutrient solution enters; also the washout rate of medium and bacteria 
ρ = W/V, the culture turnover rate. 
R0 = initial concentration of limiting resources in ‘seasonal’ serial culture. 
d = fraction of stationary-phase cells transferred to fresh habitat in serial inoculation. 
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N = n + n+ +n*, the total concentration of bacteria. 
α = α(r) = 1 - ψ+/ ψ = the selective-growth-rate advantage of plasmid-free cells over 

plasmid-carrying cells, a function of resource concentration. 
β = β(r) = 1 - φ+/φ = the selective resource-uptake-rate advantage of plasmid-free cells 

over plasmid-carrying cells, a function of resource concentration. 
F, F+ = n/N and (n+ + n*)/N, the frequencies of plasmid-free and plasmid-bearing cells. 
P, P+, Q, Q+ = parameters allowing growth rate to be specified as a hyperbolic function of 

resource concentration. 

To simulate the equable or chemostat mode of resource supply, we integrate differential 
equations characterizing the dynamics of n, n+, n*, and r (equations 1-4).  The original Stewart 
and Levin paper tracked n, n+, and r, but at Bruce’s suggestion we have subdivided the plasmid-
carrying bacteria into vertically and horizontally infected classes so that students can observe the 
quantitative effect of transconjugation. 

 ( ) ( ) ( )* *
d
d
n n r n n n n n n
t

ψ γ τ+ += − + + + − ρ  (1) 

 ( ) ( )*
d
d
n n n r n n
t

ψ τ ρ+
+ + += + − − +  (2) 

 ( )*
* *

d
d
n n n n n n
t *γ τ ρ+= + − −  (3) 

 ( ) ( ) ( ) ( )*
d
d
r c r e r n n e r n
t

ρ ψ ψ+ + += − − + −  (4) 

Equation (1) for non-plasmid-carrying bacteria has four terms.  The first, , models their 
population growth, which is a saturating function of resource concentration, r.  The second term, 

, models transconjugation, which is proportional to the contract rate between 

plasmid-carrying and non-carrying cells.  The third term, 

( )n rψ+

( *n n nγ +− + )
( )*n nτ ++ + , implements the 

segregational loss of the extra-chromosomal element during bacterial cell division, and the last 
term, nρ− , models washout, as new medium drips into the chemostat.  Terms in equations (2-4) 
are analogous.  We assume that rate constants for the two classes of plasmid-bearing bacteria are 
the same. 

For the seasonal mode of resource supply modeling a serial transfer experiment, we have a 
corresponding set of differential equations describing the dynamics between transfers.  In each 
case, the equation is the same as its equable analog, without the ρ term modeling chemostat 
throughput. 

 ( ) ( ) ( )*
d
d
n n r n n n n n
t

ψ γ τ+ += − + + + *  (5) 

 ( ) ( )*
d
d
n n n r n
t

ψ τ+
+ += + − +  (6) 

 ( )*
*

d
d
n n n n n
t *γ τ+= + −  (7) 
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 ( ) ( ) ( )*
d
d
r e r n n e r
t

ψ+ + += − + − nψ  (8) 

Numerical integration of these equations runs for a finite time interval (the time between serial 
transfers), and is then interrupted while resource concentration is restored to R0, and bacterial cell 
densities are diluted before beginning a new growth interval. 

The dynamics of this model are most interesting when there are differences in the resource-
dependent-growth and -uptake rates of bacteria with and without plasmids, so that natural 
selection operates on their relative frequencies.  Stewart and Levin define several new 
parameters so that these differences can be easily specified.  First, so that the bacterial growth 
rates can be saturating, hyperbolic (Monod) functions of resource availability, they define P and 
Q, such that  

 ( ) ( )         and         Pr P rr r
Q r Q r

ψ ψ +
+

+
= =

+ +
 

Then, to implement differences in population growth and resource uptake with and without the 
plasmid, 

 ( ) ( )
( ) ( ) ( )

( )
1          and         1

r e
r r

r e
ψ ψ

α β
ψ ψ
+ += − = −

r
r

+  

For most of the comparative simulations in their paper, Stewart & Levin use standard values of  
P = 0.738 per hr, Q = 4/0 μg/ml, and e = 6.25 x10-7 μg/cell derived from Bruce’s empirical 
research. 

Plasmid bearing cells must synthesize more DNA than non-bearing cells; they are likely to 
require more resource uptake per cell cycle, to grow more slowly, and hence to be at a selective 
disadvantage relative to non-plasmid-bearing cells unless they confer some important adaptation.  
One consequence of these differences is that a plasmid can only be maintained (or invade and 
become established) in continuous chemostatic culture if the cell density and transconjugation 
rate are sufficient to offset segregational loss and the selective disadvantage associated with the 
plasmid, 
 Nγ αρ τ> +  

It should seem intuitively reasonable that it will be easier to maintain a plasmid in cultures with a 
sluggish turnover rate (small ρ) and/or a higher input resource concentration, c, which will raise 
resource-dependent uptake and growth rates.  Stewart and Levin arrive analytically at a concise 
summary of these effects, pointing out that if cγ/eτ < 1, then plasmid-bearing cells are incapable 
of establishment and maintenance in the culture.  If cγ/eτ > 1, then there is a limiting value of ρ 
below which the plasmid can become established and persist.  By implication, 

“There is a broad range of conditions where conjugative plasmids can become established and 
where plasmid-bearing bacteria will maintain high frequencies, even when these factors 
considerably reduce the fitness of their host cells. 
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The implications of this conclusion frighten us.  It suggests that the more prudent use of antibiotics 
need not result in a decrease in the frequency of bacteria carrying R Factors.  It also suggests that if 
the containment procedures fail and the chimeric plasmids being produced by recombinant DNA 
techniques become incorporated on a conjugative plasmid, they too could become established and 
maintained in natural populations of bacteria, even if their carriage reduces the fitness of their host 
cell.”  (Stewart & Levin, p. 223) 

When plasmid-bearing cells have a selective growth-rate advantage (α is negative, presumably 
because the plasmid confers some important adaptation), then plasmid-free cells are only 
maintained in the culture by segregational loss of the cytoplasmic element.  Then the equilibrial 
frequency of plasmid-free cells is determined by the relative rates of conjugational transfer and 
segregational loss as 

 F
N
τ

γ αψ
=

−
 

In the seasonal model of resource supply with constant transconjugation and segregation 
parameters, differences in the growth rates of plasmid-bearing and plasmid-free cells are much 
less important in determining whether the plasmid can invade and reach high frequency, so long 
as the serial transfer interval is long relative to the time required for bacteria to exhaust the 
resources in each serial transfer.  This occurs because the constant γ remains high even as growth 
rate slows.  If γ ψ∝ , then the values of γ, τ and α all play a role in determining the equilibrial 
frequency of the plasmid. 

Reference 

Stewart, F. M. and B. R. Levin. 1977. The population biology of bacterial plasmids: a priori 
conditions for the existence of conjugationally transmitted factors.  Genetics 87:209-228. 
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Temperate Phage 

This Populus module simulates a model by Frank Stewart and Bruce Levin (1984) depicting the 
population biology of virulent and temperate bacteriophage interacting with sensitive, lysogenic, 
and resistant bacterial hosts.  Virulent bacteriophage adsorb to specific receptor sites on a 
sensitive host and inject their genetic material, initiating a latent period of phage reproduction.  
The host cell then lyses, releasing infective phage particles.  “Temperate” phage reproduce by 
this same lytic process; however their genetic material may also be stabilized as a “prophage” 
that persists through many host replication cycles in descendents of the infected cell.  The 
bacteria that carry a prophage, called “lysogens,” are immune to further infection by phage of the 
same type, but many be induced to enter a lytic cycle.  “Resistant” hosts are bacteria to which 
neither virulent nor temperate phage adsorb. 

Stewart and Levin use this model to explore classic ecological questions of predator-prey or 
host-parasite interaction, “(i) What stabilizes the association between these populations?  (ii) 
What is the role of phage in regulating the densities of bacterial populations? And (iii) What are 
the directions and effects of selection in these populations?  Superimposed on these questions is 
that of the nature of the selective pressures leading to the evolution and maintenance of these two 
distinct mechanisms of phage replication.” (S & L, p. 94) 

Parameters of the model are as follows: 

T, V = population densities of Temperate and Virulent phage, respectively, in particles per ml. 

S, L, R = population densities of Sensitive, Lysogenic, and Resistant host bacteria, in cells per 
ml. 

r = concentration of a unique limiting resource in the culture vessel, μg/ml. 

ΨL(r), ΨS(r), ΨR(r) = host bacterial growth rates, which are assumed to be monotonically 
increasing functions of resource concentration. 

e = conversion efficiency, a constant defining the rate of resource uptake, which increases 
proportionally with the bacterial growth rate. 

δV, δT = constants defining the rate of phage adsorption in proportion to the joint densities of 
sensitive hosts and phage particles. 

βV, βT = the number of free viral particles produced per infection of virulent and temperate 
type. 

λ = the proportion of temperate phage adsorptions onto sensitive hosts that produce lysogens.  
The remaining adsorptions (1- λ) lyse. 

ξ = lysogen induction rate, per cell per hr. 

τ = rate of prophage loss through vegetative segregation, per cell, per hr. 

C = the concentration of limiting resources in the input stock solution, μg/ml. 

ρ = the flow/dilution rate of the culture chemostat, per hour. 

P = is the maximum bacterial growth rate on unlimited resources. 
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Q = half-saturation constant, the concentration of resources at which the bacteria grow at half 
their maximal rate. 

α = a selection coefficient defining the proportional difference in growth rates between the 
different host-cell types. 

Stewart and Levin assume that these populations grow without lags in a chemostat, with inputs 
of fresh stock medium determining both the rate of resource supply, and the washout/mortality 
rate of the bacteria and free virus particles.  Bacterial growth is assumed to be a hyperbolic 
function of resource concentration, so for example, 

 ( ) L
L

L

P rr
Q r

ψ =
+

 (1) 

In their paper, they consider 5 increasingly complex cases with different numbers of participants. 

Case I. Lysogens and free phage.  In this simplest case it is assumed that τ = 0, so that there is no 
segregational loss producing sensitive hosts.  Then it is only necessary to model resource 
concentration and the densities of lysogens and free temperate phage particles, with three 
equations: 

 ( ) ( )d
d L
r C r e r L
t

ρ ψ= − −  (2) 

 ( )d
d L
L r L L L
t

ψ ξ ρ= − −  (3) 

 d
d T L
T L LT T
t

ξβ δ ρ= − −  (4) 

This simple interaction will persist as long as the growth of lysogens exceeds their loss due to 
induction and washout, ( )L rψ ξ ρ> + .  As soon as τ > 0, then segregational loss of the viral 
genome will produce sensitive hosts, as follows: 

Case II. Temperate phage, lysogens and sensitive cells.  Here to simplify the equations with 
multiple host types, selection coefficients, α are used to set the proportional differences in host 
growth rates.  Then the model takes the form 

 ( ) ( ) { }d 1
d L
r C r e r L S
t

ρ ψ α= − − + − S⎡ ⎤⎣ ⎦  (5) 

 ( ) ( )d
d L T
L r L ST L
t

ψ λδ ξ ρ τ= + − + +  (6) 

 ( ) ( )d 1
d S L T
S r S ST L S
t

α ψ δ τ= − − + − ρ  (7) 

 ( )d 1
d T T T T
T L ST LT T
t

ξβ β λ δ δ ρ= + − − −  (8) 

If lysogens are maintained as in the previous case and there is a non-zero rate of segregational 
loss, then sensitive cells will be present at a frequency depending on the rates of segregation and 
growth, and the infection rates.  With a positive segregation rate, temperate phage cannot persist 
without sensitive hosts; but if sensitive cells have a growth advantage and phage cannot be 
maintained in sensitive-only culture, then sensitive bacteria may eliminate lysogens and free 
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temperate phage.  The Stewart and Levin stability analysis of this case is complex, and interested 
students should consult their paper. 

Case III.  Temperate phage, lysogens, sensitive, and resistant hosts.  In this case, the model 
includes five equations: 

 ( ) ( ) { } { }d 1 1
d L S
r C r e r L S R
t

ρ ψ α α= − − + − + − R⎡ ⎤⎣ ⎦  (9) 

 ( ) ( )d
d L T
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t
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 ( ) ( )d 1
d S L T
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t

α ψ δ τ= − − + − ρ  (11) 

 ( ) ( )d 1
d R L
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t
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 ( )d 1
d T T T T
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t

ξβ β λ δ δ ρ= + − − −  (13) 

In some cases, resistant hosts will be unable to invade this system, and the equilibria will be the 
same as those of the previous case.  Alternatively, if resistant cells have a higher growth rate than 

both sensitive cells and lysogens, then R Sα α< , and R
ξ τα

ρ ξ τ
+

<
+ +

, and they will ultimately 

eliminate sensitive cells, lysogens, and phage from the culture.  The final possibility  with this 

system occurs when 1
ˆS R
ρα α
ψ

< < − .  Then there is an equilibrium with all three cell types 

present. 

Case IV.  Lysogens and sensitive bacteria with virulent and temperate phage. 
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For this version of the model, if ˆ ˆV V S L
ρδ β <
+

, temperate phage eliminate the virulent phage.  If 

( )1V V T Tδ β λ β> − δ  and S
τ ξα
ψ
+

<  where
1 R

ρψ
α

=
−

, then virulent phage will eliminate the 
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temperate phage.  Finally, if ˆ ˆV V S L
ρδ β >
+

 and either ( )1V V T Tδ β λ β< − δ  or S
τ ξα
ψ
+

> , then 

both host types and both phage types can coexist. 

Case V.  Sensitive, lysogenic, and resistant bacteria with temperate and virulent phage. 

 ( ) ( ) ( ) ( )d
d L S R
r C r e r L r S r R
t

ρ ψ ψ ψ= − − + +⎡ ⎤⎣ ⎦  (19) 
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 ( )d 1
d T T T T
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t
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 ( )d
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V S L V V
t

β δ= + − ρ  (24) 

For this case, if R Sα α<  and/or 0Rα > , then resistant bacterial will eliminate sensitive and 
lysogenic bacteria.  Alternatively, if R Sα α>  and/or 0Rα < , then the presence of resistant hosts 
will have little qualitative effect on the equilibria summarized for Case IV. 

Reference 
Stewart, F. M. and B. R. Levin. 1984. The population biology of bacterial viruses: why be 

temperate? Theoretical Population Biology 26:93-117. 
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 Haploid Hosts and Parasites 

 This model simulates allelic frequency trajectories in a simple host-parasite interaction.  
Both host and parasite are assumed to be haploid, with a single di- or tri-allelic autosomal locus. 
 Allelic frequencies are h1, h2, and h3 (optionally) in the host, and p1, p2 and p3 in the parasite.  
Parasite 1 is most successful on host 1, and suffers a fitness penalty when it encounters host 2 (or 
3).  Host 1 suffers a fitness penalty when it is attacked by parasite 1, but not from encountering 
parasite 2 (or 3).  Encounters are assumed to occur in proportion to the genotypic frequencies. 
 
 To run the model, specify initial allelic frequencies for the host and parasite, the fitness 
penalty for parasitized hosts and rebuffed parasites, a mutation or migration rate for the parasites, 
the number of host generations to be simulated, and the number of parasite generations per host 
generation. 
 
 This model incorporates variations in parasite specificity and host resistance.  Because 
type 1 parasites prosper on type 1 but not on type 2 hosts, the success of type 1 parasites will 
depend on the relative frequencies of type 1 and type 2 hosts.  Similarly, the success of type 1 
hosts will vary with the relative frequency of the parasite types.  This frequency-dependent 
coevolutionary interaction implies that rare types will realize a fitness advantage relative to the 
more common ones, giving the model an inherent tendency toward oscillation.  Depending on 
the fitness coefficients and mutation-migration rates, these oscillations can damp to equilibrium 
or form stable limit cycles. 
 
 The recursion equations that are iterated for each new generation of the diallelic version 
are as follows: 
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where s is the penalty to the host of being parasitized, and t is the penalty to the parasite of being 
rebuffed. 
 
 Marginal and mean fitnesses in recursions for the tri-allelic version incorporate additional 
terms: 
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A Threshold Model of AIDS 

 The interaction between human immunodeficiency virus (HIV) and the immune system 
has a complex and protracted development.  In a typical progression, the virus replicates rapidly 
during the first weeks or months following infection.  Then an immune response produces 
antibodies ("seroconversion") that reduce viral abundance, and HIV antigens may be 
undetectable during a variably long asymptomatic interval before the development of AIDS 
(Acquired Immunodeficiency Syndrome).  Viral abundance and growth rates during this interval 
are low, and there is a constant or slowly decreasing concentration of CD4+ T-lymphocytes, 
helper cells that bind HIV at the CD4 receptor and contribute soluble components of the immune 
defense.  Finally, CD4+ cell densities collapse, viral replication increases, and the victim 
succumbs to opportunistic infections or malignancies. 

 HIV is an RNA retrovirus; its replication in infected cells is mediated by reverse 
transcription to a corresponding DNA provirus.  Because the mutation rate during reverse 
transcription is quite high, 10-4 or more per base, and because the entire genome comprises about 
104 bases, every virus is likely to be unique.  Viral isolates from a single patient comprise an 
assemblage of closely related genotypes, called a quasispecies.  These mutants may have 
important differences in replication rate, virulence, cell tropism, and surface antigens.  For 
example, there are five hypervariable regions (V1-V5) in gp120, the viral envelope protein.  The 
change of a single amino acid among 30 in the V3 loop can inhibit binding of host antibodies.  
These "escape mutants" then increase in abundance until they are countered by a new immune 
response.  Thus HIV is extraordinarily variable, and this variability allows it to continually 
sidestep the host's immune system.  As the asymptomatic period continues, this frequency-
dependent selection gradually increases viral antigenic diversity. 

 Three mechanistic classes of hypotheses have been advanced to integrate these 
observations.  (1) Immunological theories suggest that HIV gradually weakens the immune 
system by killing CD4+ cells, or that homologies between the gp120 protein and molecules 
produced by the major histocompatibility complex may induce autoimmune disorders.  (2) 
Cofactor theories derive from the observation that HIV replicates in activated CD4+ cells, hence 
other infectious agents that result in CD4+ activation may enhance the growth of HIV.  This 
implies that opportunistic infections are a cause rather than a consequence of AIDS.  (3) 
Virological theories focus on evolutionary changes in the viral quasispecies to explain the long 
asymptomatic period and eventual development of AIDS.  This Populus simulation reproduces a 
virological model presented by Nowak, et al. (1991). 

 The threshold model makes three basic assumptions.  (1) Replication errors alter viral 
antigenic properties with sufficient frequency that the viral population can persist, despite the 
continued induction of neutralizing antibodies.  (2) There are both general and specific 
components of the CD4+ T-lymphocyte defense against HIV.  Some CD4+ cells direct immuno-
logical attack on only a single viral strain or subset of the quasispecies, while others are cross-
reactive against all strains, presumably by addressing a more conservative aspect of the viral 
phenotype.  (3) HIV can infect and kill any CD4+ cells, without regard to the unique genotype of 
the virus, or the binding specificities of the CD4+ cells and their products. 

 These assumptions imply a fundamental asymmetry in the interaction between HIV and 
the immune system.  Effects of the virus are generalized across all CD4+ cell types, while effects 
of the immune system may be either specialized on a single viral strain, or cross-reactive.  The 
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resulting dynamics can be explored by analyzing the behavior of a system of differential 
equations that specifies changes in the abundances of HIV strains (vi), total CD4+ cells (y), 
strain-specific CD4+ cells (xi), and cross-reactive CD4+ cells (z) with respect to time.  Taking 
these singly, the dynamics of the ith among n different viral strains are given as 

 i
i i i ii i

dv  =  (   ,  y ) -  (   z +   ) ,  i = 1,  2,...,  nf pv v s xdt
 (1) 

where the term fi(vi,y) is the reproductive rate of strain i, defined as (riy + ri')vi to include a per 
capita rate of replication (riy) from infected CD4+ cells (y), and a background rate of replication 
(ri') from macrophage, monocytes, etc.  The term sizvi sets a death rate of strain i due to cross-
reactive CD4+ cells, and the term pixivi gives the death rate to strain-i-specific CD4+ cells.  
Changes in the total abundance of CD4+ cells (y) are given as 

 dy = K - dy - u v y
dt

 (2) 

 i
i i

dx  = k  y - u v  ,  i = 1,  2,..., nv xdt
 (3) 

Here K is the rate at which CD4+ cells recruit from the thymus, d is their per capita death rate, 
and uvy is the rate at which they are killed by the total quasispecies of n HIV strains.  The 
dynamics of strain-i-specific CD4+ cells are 

The recruitment term in this equation, kviy, includes an activation rate, as cells from the total 
CD4+ pool (y) turn on a specific response in proportion to the abundance (vi) of strain i.  Strain-
specific T-cells are killed by the virus at a rate uvxi.  Changes in the abundance of cross-reactive 
CD4+ cells are specified analogously, as 

 dz = k v y - u v z
dt

′  (4) 

 The total number of equations in this system varies with n, the number of antigenically 
different viral strains, which is a function of the viral replication rates and the probability that the 
new mutant will evade recognition by extant strain-specific antibodies.  The creation of these 
new escape mutants is a stochastic process, modeled by drawing a random number r between 0 
and 1.  The random r is compared with QvΔt, the product of a mutation rate term, Q, the total 
abundance of all combined viral strains v = Σvi, and Δt, the time step over which mutations 
occur.  If r < QvΔt then we create a new viral strain with an initial density of vi0, and a new 
strain-specific CD4+ cell type with an initial density of 0 (i.e., xi0 = 0).  The growth rate of the 
new strain is drawn from an exponential distribution whose mean is a model parameter. 

 Numerical simulations and analytical studies of this model reveal three parameter regions 
with qualitatively different dynamics.  (1) In a parameter range where viral replication rates 
(fi[vi,y]) and/or cytopathic effects (uvxi and uvz) are large relative to the immune response (siz + 
pixi), the virus outruns the combined effects of both general and specific host defenses and the 
victim suffers acute viremia.  There is strong selection for the fastest-growing viral strain, and 
little viral diversity develops.  (2) When viral replication and cytopathic effects are small with 
respect to the cross-reactive immune response alone (siz), the immune system can hold viral 
densities at a low, chronic level indefinitely.  Escape mutants may increase diversity slowly, but 
in this parameter range there is no critical threshold beyond which viral dynamics explode. 

 A far more interesting set of dynamics ensues in parameter range (3) where viral 
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reproduction is able to outrun the cross-reactive immune response, but not the combined effects 
of the strain-specific and cross-reactive defenses.  This implies that 

 px > r - s z > 0  (5) 

Under these conditions, only the generation of new escape mutants allows the virus to persist.  
The number of different antigenic strains increases over time, and there is a threshold diversity 
beyond which the immune system can no longer constrain viral growth.  Nowak et al. (1991) 
illustrate this effect analytically with a simplified version of the model.  Assume that all viral 
strains have the same replication rate, r, independent of CD4+ cell abundance, and that s and p in 
equations 1 and 4 are constant across all strains.  Under these conditions, specific and cross-
reactive CD4+ cell abundances approach x and z, respectively, and equation 1 (specifying the 
viral dynamics) simplifies to 

 i
i

dv =  (  r - s z - p  )vdt ix  (6) 

The immune system will control strain i if r - sz - pxi < 0, and it will control the entire viral 
quasispecies if this inequality holds over all n strains.  This implies an upper limit, nc, to the 
number of strains that can be controlled, such that 

 c
p xn <  = n r - s z

 (7) 

The analogous threshold for the full model (equations 1-4) with ri, si, ui, pi, and ki all varying 
from strain to strain is 

 c

p k
u = n r d s k-  + 1

K u
′ ′  (8) 
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 In simulations with the threshold model, the diversity of antigenic strains (as measured 
by Simpson's index, which incorporates both the number of strains and the equitability of their 
abundances) is low during the acute phase that follows initial infection.  This is partly because 
the simulations begin with a single strain and new mutants accrue gradually; but even if the 
initial infection includes numerous antigenic types, as is likely from unprotected sexual contact 
or contaminated needles, strain-specific differences in the viral replication rate will cause one or 
a few fast-growing strains to dominate in the interval before an immune response develops. 

 After the initial viremia is suppressed, antigenic diversity increases with a series of 
smaller viral peaks as new strains arise and are controlled by the induction of specific responses. 
 The peaks are lower because cross-reactive immunity increases as new antibodies are induced.  
The immune system may also select for slower growing mutants, because slow strains spend a 
larger portion of their generation inside host cells where they are protected from immune attack. 
 When the threshold diversity is finally exceeded, the viral population escapes not from an 
immune system which has gradually been weakened, but from one which is fully activated and 
functioning at maximum capacity.  During the final, acute viremia of AIDS, antigenic diversity 
falls again, as a result of selection for the most rapidly growing viral strains. 
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 Stochastic processes affect the accrual of new antigenic strains, their replication rates, 
and the effectiveness of immune responses.  As a result, progress of the disease varies among 
runs with the same parameter values, especially with respect to the length of the asymptomatic 
interval.  The chance appearance of a viral strain with an unusually high replication rate can 
produce many escape mutants and accelerate the onset of AIDS.  It also suggests that the weaker 
immune system of infants and the aged (smaller x or z) may lower the threshold and speed the 
disease, consistent with empirical observation. 
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Resource Competition 

The traditional Lotka-Volterra model of competition is phenomenological (May 1975); 
its inter- and intraspecific feedbacks are related to population density by simple proportionality 
constants, without specifying the mechanisms of interaction between competitors.  The models in 
this set introduce a mechanistic basis for competition.  They define a “resource” as something 
that is consumed, with positive effect on the per capita growth rate of consumers.  Consumers 
draw down resources, leading to potential equilibria where the consumption and renewal of 
resources on one hand, and the per capita birth and mortality of consumers on the other, both 
balance.  When two species compete for the same resource, the consumer with the lowest break-
even resource requirement can competitively exclude the less efficient species.  Because all 
organisms consume resources and most risk being consumed as resources by others, mechanistic 
models of resource competition have made an important contribution to community ecology. 

The Stewart & Levin Model 
The resource competition model introduced by Frank Stewart and Bruce Levin (1973) 

was conceived to illustrate the interaction of bacteria in lab culture.  There are two versions of 
the model representing different culture conditions.  One version, called the “equable” mode, 
models a chemostat; fresh, sterile growth medium flows at constant rate into the mixed culture 
vessel, where the resources that it contains are taken up by bacterial consumers.  The constant 
input is matched by a constant output or overflow, containing bacteria, waste products, and 
unconsumed resources.  The ratio of flow to volume of the culture vessel determines a turnover, 
or washout rate, at which a constant fraction of the consumer population is eliminated and 
replaced.  The model assumes that consumer-population growth is an increasing function of 
ambient resource concentration, and consumption is proportional to consumer-population 
density.  With consumers initially at low density, resource concentration in the culture will be 
near its concentration in the inflow medium, but as consumers increase, ambient resource 
concentration declines, consumer growth slows, and the system may come to equilibrium. 

The second version of this model, called the “seasonal” mode, is analogous to a serial 
dilution culture.  In this case, a series of culture vessels is filled with fresh, sterile medium.  One 
vessel is inoculated with bacterial consumers whose populations grow, drawing down resource 
concentrations until those resources are exhausted.  Then a fraction of this culture is withdrawn 
and transferred to the next vessel, where the process is repeated.  The dynamics of serial dilution 
contrast sharply with the steady-state conditions of a chemostat; they illustrate a pattern of 
seasonal cycles in which resources are alternately abundant and scarce. 

A key component of both versions is the uptake function that specifies how consumers’ 
resource use increases with resource concentration.  Stewart & Levin use a hyperbolic function, 

, which causes uptake to saturate as resources become more abundant. ( )i jrϕ

( ) i j
i j

j i

a r
r

r b
ϕ =

+
 

Here  is the resource uptake rate of consumer species i with respect to r( )i jrϕ j, the concentration 

of resource j at time t, ai is the maximum growth rate of consumers on unlimited resources (a 
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constant), and bi is the resource 
concentration at which consumers realize 
half their maximum growth rate (the 
“half-saturation constant”).  The 
denominator becomes dominated by rj as 
rj becomes large, causing the uptake rate, 

, to saturate at a( )i jrϕ i.  Values for ai and 

bi then determine the rates of uptake and 
consumer population growth with respect 
to resource concentration.  In the graph at 
right, consumer species 1 (a1 = 10, b1 = 5) 
grows rapidly with abundant resources, 
while species 2 (a2 = 1, b2 = 0.05) has a 
higher growth rate when resources are 
scarce, but saturates at a lower maximum rate.  Using the metaphor of the authors, Species 1 is 
an “exploiter,” while Species 2 is a “gleaner.” 
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Stewart & Levin Parameter Definitions: 
V = culture vessel volume 
w = flow rate of culture medium through the vessel 
ρ = w/V = turnover/washout rate of the equable-mode chemostat 
d = dilution fraction, the fraction of organisms in culture transferred to new culture volume in 

serial dilution (seasonal mode) 
cj = the concentration of resource j in the inflow culture medium 
eij = the amount of resource j required to make a single new individual of consumer species i 
rj(t) = concentration of the jth resource at time t 
ni(t) = concentration of the ith consumer species at time t 
φij(rj) = uptake rate for an individual of the ith species for the jth resource, which is a 

hyperbolic function of resource concentration such that ( ) i j
i j

j i

a r
r

r b
ϕ =

+
 

ai = maximal growth rate of consumers on unlimited resources, for the above uptake function 
bi = half saturation constant of consumers for the above uptake function. 

The basic equations for the equable form of the model are 

 ( ) (d
d

j )j j i ij
i

r
c r n r

t
ρ= − −∑ jϕ  (1) 

 
( )d

d
ij ji

i
ijj

rn n
t e

ϕ
ρ

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (2) 

Resources (1) increase with flow in proportion to the difference between ambient concentration 
and concentration in the fresh medium, and decrease in proportion to uptake and the abundance 
of consumers.  Consumer population growth (2) is proportional to consumer population size; and 
this proportionality is set by the difference between resource uptake (permitting the “birth” of 
new consumers) and “death” due to washout.  By indexing the parameters, it is possible to run 
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the model with one consumer species on one resource (i = j = 1), two consumer species on one 
resource (i = 2, j = 1), and two consumer species on two resources (i = j = 2).  For the seasonal 
model, the corresponding equations are 

 ( )d
d

j
i ij j

i

r
n r

t
ϕ= −∑  (3) 

 
( )d

d
ij ji

i
ijj

rn n
t e

ϕ⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (4) 

Because the culture is no longer a continuous-flow system, the seasonal-mode resource equation 
(3) lacks an inflow term, and the consumer equation (4) lacks a washout term. 

Running this model in the equable mode with a single consumer species, there is a stable 
equilibrium when , so that the supply and uptake of resources balance, 

and

( ) ( ) 0j j j jc r n rρ ϕ− − =

( )j j

j ij

r
e

ϕ
ρ=∑ , so that the growth of new consumers matches their washout rate.  If flow 

through the chemostat increases to the point where consumers can no longer replace themselves 
within the average residence time of the vessel, then they are gradually eliminated.  In the 
seasonal mode, the consumer population size when resources are exhausted at the end of a 

season is 1
j

t t
j ij

r
n n d

e−= +∑ .  At equilibrium, 1t tn n −= , and 1ˆ
1

j

j ij

r
n

d e
=

− ∑ , implying that 

resources just suffice to replace consumers that are left behind when transferring an inoculum 
from one serial culture to the next.  Both the equable and seasonal models demonstrate similar 
equilibria when two consumer species compete for two resources.  The stability criteria are a 
little more complex, so interested readers are referred to the original Stewart and Levin paper.  
Summarizing for the cases with one consumer on a single resource or two consumer species on 
two resources, both versions illustrate the “competitive exclusion principle.” 
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Populus simulation for the Stewart & Levin Resource Competition Model with two consumer species 
competing for a single resource in seasonal mode.  Coexistence is possible because one species is the 
superior competitor at low resource concentration, while the other is superior at high concentration. 
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When two consumer species compete for a single resource in the equable mode, 
competitive exclusion is once again the rule; there are no conditions allowing stable coexistence.  
The seasonal mode, however, is considerably more interesting.  Here the boom and bust cycles 
of high and low resource availability can sustain two different harvesting strategies.  Graphs at 
the bottom of the previous page show the time trajectory and phase plane graph for the default 
case.  The successive oscillations of the time trajectory on the left show up as loops in the phase 
diagram on the right, with the successive peaks connected by a straight downward line for each 
serial dilution.  Each growth loop in the phase diagram starts out to the right, because species 1 
grows more rapidly at high initial resource concentration, then it turns upward because species 2 
grows better when resources are nearly depleted.  In essence, coexistence is possible because one 
species is the superior competitor at low resource concentration, the other is superior at high 
concentration, and the continuous cycle of availability in the serial dilution culture prevents 
either consumer from extirpating its competitor. 

The Tilman Model 
 A more complex model studied by Minnesota colleague Dave Tilman and his students 
extends the mathematical analysis of Stewart and Levin, and adds graphical perspectives to 
explore competition for multiple resources available in varying ratios.  This work has guided 
long-term experiments in prairie, old-field, and oak-savanna systems at our Cedar Creek research 
station in Minnesota, but Dave’s early resource competition experiments pitted algal consumers 
against each other in chemostatic culture; that is probably the easiest venue for thinking about 
the underlying ideas.  The basic mathematical structure of the Tilman model is similar to that of 
Stewart and Levin, with some changes of nomenclature that we will duplicate for comparison 
with the original papers. 

Tilman Parameter Definitions: 
Ni = the population density (expressed either as number of individuals per unit area or 

biomass per unit area) of consumer species i 
Rj = the concentration or availability of limiting resource j 
ri = the maximal per capita growth rate of consumer species i 
kij = the concentration of resource j at which consumer species i attains half of its maximal 

growth rate, the “half-saturation constant” 
mi = the mortality or washout rate (per capita) of consumer species i 
Sj = the "supply" point or maximum concentration of resource j in the habitat, 
aj = a constant determining the rate at which the resource is converted from unavailable to 

available form, 
cij = a function (or constant) setting the consumption rate of resource j by consumer species i. 

The Populus version of this model can incorporate up to three species of consumers and 
three resources, by subscripting the parameters.  The simplest instance portrays a single 
consumer species using a single resource, so the indexing subscripts for consumers and resources 
are i = j = 1.  Then changes in ambient resource concentration and consumer population density 
are given as 
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These expressions have the same structure as those of Stewart & Levin, except that resource 
uptake is incorporated into the consumers’ per capita growth rate, which saturates via the same 

hyperbolic Monod function, d
d

i ji

i j

r RN
N t R k

=
ij+

.  One further difference is that the aj and mj terms 

decouple resource supply from the washout mortality rate, extending the model beyond its 
chemostat origin, where flow links resource supply with mortality. 
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The two figures above show Populus simulations of equations (5) & (6) for two different 
consumer species.  For consumer #1 on the left, r1 = 2 and k1 = 5.  For consumer #2 on the right, 
r1 = 1 and k2 = 0.5.  For both species, ci = 0.1, aj = mj = 0.5, and S1 = R1 = 20.  Comparing the 
two, species #1 grows more rapidly, but has a higher half-saturation constant, k.  Species #2 
grows more slowly, but its low k allows it to continue growing at resource concentrations below 

the equilibrial requirement of species #1, (the R* at which 1d 0
d
N

N t
= ). 

When two or more consumer 
species compete for a single resource, the 
species with the lowest R* wins.  The 
simulation at right combines the same two 
species, above, in competition for a single 
resource.  The rapid growth of species #1 
carries it to high initial density, but 
resources are quickly drawn below its 
break-even requirement ( *

1R  = 1.66).  
Species #2 then displaces species #1 from 
the culture, lowering resource 0 5 10 15 200
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concentration to its own *
2R  = 0.5.  At equilibrium (where d 0

d d
i

i

N
N t t

= =
dR ), population growth 

equals population loss and resource supply equals resource consumption.  Setting equations (5) 
and (6) equal to zero and solving, we have 

 * ij i
j

i i

k m
R

r m
=

−
 (7) 
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a S R
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c m
−
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It is instructive to vary k, m, and r for several species consuming a single resource, to 
determine whether each species does indeed reduce the resource down to its R* when growing in 
monoculture, and then to let all three consumer species compete for the same resource, to see 
whether the species with the lower R* is the superior competitor at equilibrium. 

Competition for Two Essential Resources 
When two different resources are both essential, like the mineral nutrients and light 

required by plants, a consumer’s growth rate is determined by the resource whose available 
supply is lowest relative to need.  The resource competition model of equations (5) and (6) is 
easily generalized to j = 2 essential resources: 
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Here the MIN notation stipulates that the growth rate of consumer species i is determined either 
by resource j = 1, or by j = 2, whichever resource leads to the lower growth rate. 

To understand the dynamics of competition for two or more essential resources, it is 
helpful to think about the consumers’ allocation of foraging effort.  On a phase-plane graph with 
axes representing the concentrations of R1 
and R2, a consumer’s minimum requirements 
form an L-shaped zero-net-growth isocline.  
All points on the “L” represent levels of R1 

and R2 availability for which d 0
d
N
t
= .  They 

divide the plot space into a shaded region 
above and to the right, where there are 
sufficient resources available for the 
consumer population to grow, and a region 

below and to the left where d 0
d
N
t
< , because 

Resource 1

dN
dt = 0
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individuals do not have enough resources to 
replace themselves.  At points along the 
lower limb, consumers are limited by *

2R , it’s 
minimum requirement for Resource 2, and at 
points along the upper limb, consumers are 
limited by *

1R , it’s minimum requirement for 
Resource 1.  At the corner, consumer growth 
is simultaneously limited by both R1 and R2.  
A consumer that is foraging optimally for 
essential resources harvests them in this 

simultaneously limiting 
*
2
*
1

R
R

 ratio.  When 

resource concentrations lie above and to the right of the isocline so that the consumer population 

grows, this 
*
2
*
1

R
R

 ratio determines the slope of an optimal foraging vector; the growing consumer 

population will draw resource concentrations down and to the left along this vector slope until 
they reach the isocline.  The consumer illustrated above is an efficient user of R2 (because *

2R  is 
low), but requires much more R1, so the leftward component of its foraging vector is larger than 

the downward component.  If the environment supplies resources in the 
*
2
*
1

R
R

 ratio set by supply 

point S1, then consumers will come to equilibrium at a point on the vertical leg of the isocline, 
limited by R1.  In contrast, from supply point S2 where there is much more R1 than R2 available, 
consumers will come to equilibrium at a point on the horizontal leg of the isocline, limited by R2. 

Resource 1

R2*

R1*
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S2

When two or more species consume two essential resources, the relative position of their 
isoclines illustrates interspecific differences in resource-use efficiency.  The phase diagram 
below reproduces the same isocline displayed above as that of consumer #1, and adds a second 
consumer with different resource requirements.  The *

ijR  values are now double subscripted to 
denote the minimum requirement of species i for resource j, and the isoclines indicate a tradeoff 
in foraging efficiency.  Species #1 is an efficient harvester of Resource 2, but requires a high 
concentration of Resource 1.  In contrast, Species #2 is an efficient harvester of Resource 1, but 
requires a high concentration of Resource 2.  
This means that the optimal foraging slope of 

Species #1, given by the 
*
12
*
11

R
R

 ratio, will have 

a larger horizontal than vertical component, 
while the optimal foraging slope of Species 

#2, given by the 
*
22
*
21

R
R

ratio will be more 

vertical than horizontal.  The net effect of 
foraging by both consumer species is found 
by adding the two vectors, giving an Resource 1R11*

dN2
dt = 0

dN1
dt = 0

R22*

R21*

R12*
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intermediate slope.  When resource 
availabilities are above and to the right of 
both isoclines, then both consumer species 
can grow, and their combined usage draws 
resources down along this summation vector.  
From supply point S1 at right, Resource 2 is 
more available than Resource 1.  The 
foraging vectors draw resource concentration 

into the region where 1d 0
d
N
t
< , ultimately 

ending with Species 2 alone at an equilibrium 
determined by *

21R .  From supply point S2, 
Resource 1 is more available than Resource 2.  The foraging vectors draw resource concentration 

into the region where 2d 0
d
N
t
< , ultimately ending with Species 1 alone at an equilibrium 

determined by *
12R .  From supply points within the shaded zone projecting up and to the right 

from the joint equilibrium where the isoclines cross, the combined foraging of the two consumer 
species draws resources down to the joint equilibrium point, and the two species coexist. 

Resource 1R11*

R22*

R21*

R12*

The graph below shows Populus simulations of two species competing in environments 
that provide Resource 1 and Resource 2 in three different supply ratios.  As before, Species 1 is 
an efficient consumer of Resource 2 but requires a high concentration of Resource 1, while 
Species 2 is an efficient consumer of resource 1 but requires a high concentration of Resource 2.  
The parameter values that position these isoclines are r1 = 1, m1 = 0.5, k11 = 6, k12 = 4, c11 = 0.24, 
c12 = 0.12, and r2 = 1.8, m2 = 0.5, k21 = 5, k22 = 24, c21 = 0.1, c22 = 0.2.  From the supply point 
with low R1(0) = 14 and high R2(0) = 30, the dynamics lead to competitive exclusion of Species 
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1, and an equilibrium point on the Species 2 isocline.  From the supply point with high  
R1(0) = 30 and high R2(0) = 30, the dynamics lead to coexistence at the joint equilibrium where 
the two isoclines cross.  From the supply point with high R1(0) = 30 and low R2(0) = 14, the 
dynamics lead to competitive exclusion of Species 2, and an equilibrium point on the Species 1 
isocline.  Thus the outcome of competition for two resources depends on the relative availability 
of the resources.  This is determined by resource supply rates and species-specific loss rates in a 
given habitat.  Two species can coexist stably when consuming two essential resources if each is 
limited by a different resource, and if each, relative to the other species, consumes more of the 
resource that limits it 

Competition for Two Switching Resources 
 Although most plant resources are nutritionally essential, animal resources are often 
nutritionally substitutable.  There are many ways that two nutritionally substitutable resources 
can affect the consumer growth rate.  An animal could be a generalist, foraging for all resources.  
Alternatively, a small animal living in a patchy environment could specialize and consume only 
one resource.  This strategy might be favored when there are costs to foraging for both resources 
simultaneously, such as the cost of traveling from one patch to the next, the risk of predation 
during such travel, etc.  If an animal specializes on one particular resource at any given instant, 
but may change back and forth to another resource, it is said to be “switching.”  In the idealized 
extreme, an animal might consume only the resource that leads to the higher growth rate at any 
given instant.  Animals that foraged in such a switching manner could have their growth modeled 
as follows: 
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 (11) 

Here the MAX notation stipulates that the growth rate of consumer species i is determined either 
by resource j = 1, or by j = 2, whichever resource leads to the higher growth rate.  In the resource 
equation (11), cij is a positive constant if j is the resource that yields the higher growth rate for 
consumer species i, or cij = 0 if j is the resource that yields the lower growth rate for consumer 
species i.  At any given instant, each 
consumer species will consume only that 
single resource that leads to the higher 
growth rate. 

Resource 1
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When two or more consumers 

switch between nutritionally substitutable 
resources, their isoclines have the form of 
an inverted and reversed “L.”  As was the 
case with essential resources, there is only a
single joint equilibrium where the two 
isoclines cross, and together they divide the 
phase space into 6 regions.  For the two-
species, two-resource example at right, 
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neither species can persist in zone A.  In zone B, Species 1 dominates; Species 2 cannot persist 
even if 1 is absent.  In zone C, Species 1 competitively displaces Species 2.  In zone D, both 
species coexist.  In zone E, Species 2 competitively displaces Species 1, and in zone F, Species 2 
dominates; Species 1 cannot persist even if 2 is absent (Tilman 1982). 
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Discrete Predator-Prey Models 

 This section of the Populus package contains a set of simulations taken from Mike 
Hassell's Dynamics of Arthropod Predator-Prey Systems and related primary literature.  The 
models illustrate different components of predator-prey interaction, and permit analyses of their 
dynamic consequences.  Conforming to the discrete seasonality of most arthropods, the 
simulations are phrased as finite recursion equations of the basic form 

( )1 f ,t t tN N Nλ+ = tP  

( )1 1 f ,t t tP cN N P+ = − t⎡ ⎤⎣ ⎦  

where Nt, Nt+1, Pt, Pt+1 give the prey and predator population densities in successive generations, 
respectively, λ is the geometric growth factor for the prey (which can remain constant or change 
as a function of prey density), and c is the number of predators produced for each prey individual 
attacked (the "numerical response" of the predator).  The function f(Nt, Pt), gives prey survival 
with respect to predator and prey densities, and can be varied to reflect various predator-foraging 
behaviors. 

 The biology of arthropod predators spans a wide range of complexity.  Among the 
simplest are hymenopteran and dipteran parasitoids that seek hosts and lay one or more eggs 
whose subsequent development kills and consumes the victim.  In contrast to predators, where 
immatures and both adult sexes must locate and consume prey, only the adult female parasitoid 
searches; moreover, the number of progeny that she produces is likely to be a simple function of 
the number of hosts attacked.  The models in this group are framed without the complications of 
age structure, consistent with the simple biology of parasitoids and their hosts. 

Reference 
Hassell, M. P. 1978. The Dynamics of Arthropod Predator-Prey Systems. Monographs in 

Population Biology, Princeton University Press. Princeton, NJ. 
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The Nicholson-Bailey Model 

 The predator-prey model formulated by Nicholson (1933) and Nicholson and Bailey 
(1935) offers a basic starting point for comparison with more complex and realistic models.  It is 
based on two simplifying assumptions: (1) the number of encounters, Ne, between Pt parasitoids 
or predators with host or prey is proportional to host density, Nt, and (2) these encounters are 
randomly distributed among hosts.  This means that some hosts will be encountered more than 
once, and some will not be encountered at all.  The number of hosts not parasitized is given by 
the zero term of the Poisson distribution, 

0 exp e

t

Np
N

⎛ ⎞−
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⎝ ⎠
 

and the number of hosts actually parasitized is 

1 exp e
a t

t

NN N
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The number of encounters between Pt parasitoids and their hosts Nt, can be restated as 

e tN aN Pt=  

where a is a proportionality constant called the parasitoid's area of discovery.   It is a measure of 
searching efficiency, and can be thought of as the proportion of all hosts that will be encountered 
by an individual parasitoid during its lifetime.  It follows that Ne/Nt = aPt, and the number of 
parasitized hosts can be rewritten as 

( )1 expa t tN N aP= − −⎡ ⎤⎣ ⎦  

This expression implies that parasitism will rise as a saturating function of aPt, because parasites 
encounter fewer and fewer unparasitized hosts as their numbers and searching efficiency 
increase.  Nicholson called this relationship a competition curve. 

 If the host survival function (the number of hosts remaining unattacked) is 

( ) ( )f , expt t tN P aP= −  

then the discrete recursion equations defining host and parasatoid dynamics are 

( )1 expt tN N aλ+ = − tP  

( )1 1 expt t tP N aP+ = − −⎡ ⎤⎣ ⎦  

where λ is the intrinsic geometric growth factor of the hosts. 

 This model is directly analogous to the Lotka-Volterra predator-prey model, save for its 
formulation as a pair of finite difference equations.  While the continuous Lotka-Volterra version 
is neutrally stable, the Nicholson-Bailey dynamics give an unstable, increasing oscillation.  May 
(1973, 1975) showed that this difference in the models' dynamics is attributable to the built-in 
time lag associated with the discrete Nicholson-Bailey difference equations. 
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 The introduction of density-dependent host growth has a stabilizing influence on 
Nicholson-Bailey dynamics.  If you choose the density-dependent option, Populus substitutes a 
host recursion suggested by Beddington, Free and Lawton (1975) as follows: 

1 exp 1t t
NN N r aP
K

λ+ t
⎧ ⎫⎛ ⎞= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 

The parasitoid recursion remains as above.  The stability of this density-dependent version is 
determined by the host reproductive rate (given here as r = ln λ) and by a, the parasitoids’ 
searching efficiency or area of discovery.  If the parasitoid is extremely efficient (large a) it is 
able to hold hosts below their carrying capacity and dynamics are affected most strongly by the 
unstable host-parasitoid interaction.  If the parasitoid is inefficient (small a), host dynamics are 
stabilized by the density-dependent feedback. 
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Nicholson-Bailey with Spatial Structure 

This simulation comes not from Hassell’s book, but from a paper by Hassell, Comins & 
May (1991).  It assumes that the environment is subdivided into an array of rectangular 
patches.  In each generation, two processes affect the dynamics.  First, the host and 
parasitoid populations in each rectangular patch interact according to the Nicolson-Bailey 
recursions, 

1
taP

t tN λN e−
+ =  

1 1 taP
t tP N e−
+ ⎡ ⎤= −⎣ ⎦  

Second, there is a dispersal phase in which a fixed fraction of the hosts (μN) and 
parasitoids (μP) in each patch are distributed equally among the eight adjoining patches. 

While the simple Nicholson-Bailey recursions give an increasing oscillation which 
ultimately extinguishes host or parasitoids, this spatially structured arrangement allows 
more possibilities.  In general, dispersal may cause the global persistence of the locally 
unstable Nicholson-Bailey interaction.  The probability of global persistence increases 
with the size and complexity of the spatial array and decreases as hosts become more 
vagile.  When the interaction persists, several different spatial patterns are possible, 
including spiral waves of changing host and parasitoid density, fixed “crystal lattices,” 
and purely chaotic variation, depending on the parameter values used.  For a more 
detailed discussion, students should consult the primary reference. 

The simulation produces four different output screens.  Three present the spatial array of 
patches, color-coding the local abundance of interacting parties.  One screen gives the 
ratio of prey to parasitoids (N/P), one gives prey density (N), and the third gives 
parasitoid density (P).  On all three screens, colors are coded in spectral order, with long 
wavelengths representing high densities or ratios, and short wavelengths representing low 
ones.  A legend below the spatial array gives the specific values (which change from 
generation to generation) represented by each color.  The final output is a graph of 
average prey and parasitoid densities per patch, across the entire array, as it changes with 
time. 
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Functional Responses 

 As host density increases, the number of hosts parasitized per parasitoid should increase.  
Holling (1959) called this the predator's functional response (following Solomon, 1949), and 
suggested that it might take three forms: 

   Type I, prey consumption rises linearly to a plateau 

   Type II, consumption rises asymptotically to saturation 

   Type III, consumption is a sigmoid function of prey density 

 We can simulate a linear functional response (Type I, with insatiable parasitoids) by 
assuming that our host survival function f(Nt, Pt) = exp(-a'TPt), where Pt is the parasitoid density 
at time t, a' is the parasitoids’ instantaneous search rate, and T is the fixed, constant search time 
available.  Then 

( )1 expt tN N a Tλ+ ′= − tP  

( )1 1 expt tP cN a TP+ ′= − − t⎡ ⎤⎣ ⎦  

where again Nt and Pt are the host and parasitoid population densities at time t, λ is the intrinsic 
growth factor of the hosts, and c is the numerical response indicating the number of parasitoids 
(often 1) produced per host consumed.  Note that a'T is equivalent to Nicholson's area of 
discovery, a, if the searching time, T, is one full generation; so this linear-functional-response 
formulation is identical to the basic Nicholson-Bailey model. 

 Often some handling time, Th, is required for a parasotoid to oviposit on each host, and 
search time is consequently reduced.  As host density rises, handling consumes an increasing 
proportion of the parasitoids’ time budget, and the functional response is a saturating, Type II 
function.  If a' and Th are both constant and parasitoid search is random, the prey survival 
function 

( )f , exp
1

t
t t

h t

a TPN P
a T N

⎛ ⎞′−
= ⎜ ⎟′+⎝ ⎠

 

illustrates this sort of response, giving the difference equations 

1 exp
1

t
t t

h t

a TPN N
a T N

λ+
⎛ ⎞′−

= ⎜ ⎟′+⎝ ⎠
 

1 1 exp
1

t
t t

h t

a TPP cN
a T N+

⎡ ⎤⎛ ⎞′−
= −⎢ ⎥⎜ ⎟′+⎝ ⎠⎣ ⎦

 

The dynamics of interactions with a Type II functional response are always less stable than the 
simple Nicholson-Bailey analog, because the hosts escape at high density.  The magnitude of this 
destabilizing effect is determined by the ratio of Th to total search time T, and is relatively 
unimportant if Th/T << 1 (Hassell and May, 1973). 

 Sigmoid Type III functional responses result when one or more of the components of 
parasitoid searching activity (a', T, or both) are increasing functions of prey density.  It is often 
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suggested that a type III functional response results when the parasitoids learn to be more 
efficient as prey density rises, but in fact responses should be sigmoid whenever payoffs at the 
lowest host densities are below some threshold required for constant searching activity.  Hassell 
developed a Type III model in which a' varies with host density according to the expression 

1
t

t

bNa
cN

′ =
+

 

where b and c are constants (again, c is the numerical response, often 1.0 for parasitoids).  This 
yields the prey survival function 

( ) 2f , exp
1

t t
t t

t h t

bTN PN P
cN bT N

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

 

and the resulting difference equations for a simulation are 

1 2exp
1

t t
t t

t h t

bTN PN N
cN bT N

λ+
⎛ ⎞−

= ⎜ ⎟⎜ ⎟+ +⎝ ⎠
 

1 21 exp
1

t t
t t

t h t

bTN PP cN
cN bT N+

⎡ ⎤⎛ ⎞−
= −⎢ ⎥⎜ ⎟⎜ ⎟+ +⎢ ⎥⎝ ⎠⎣ ⎦

 

 Sigmoid functional responses are potentially stabilizing, because the parasitoids impose a 
density-dependent effect on hosts at low density.  While this stabilizing influence is observable 
in a continuous, differential equation formulation like the theta-logistic model, Hassell and 
Comins (1978) showed that it is too subtle to overcome the instability inherent in difference 
equation models with a one-generation delay between changes in predator density and prey 
mortality. 
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Non-Random Searching 

 The Nicholson-Bailey assumption that parasitoids forage randomly is obviously 
oversimplified.  Real hosts are likely to be distributed in a patchwork of high and low densities, 
and parasitoids can be expected to respond by orienting toward high-density patches.  Because 
this parasitoid aggregation has the effect of giving hosts a refuge at low densities, it is a 
potentially important stabilizing factor in the dynamic interaction (Murdoch and Oaten 1975, 
Hassell 1978). 

 This simulation reproduces a model by May (1978), who assumed that parasitoid attacks 
show a negative binomial pattern.  A negative binomial distribution is specified by its mean, and 
a clumping parameter, k.  Distributions with a small k value (< 1) are strongly clumped, while 
those with large k (> 8) approach Poisson randomness.  By specifying the statistical distribution 
of parasitoid attacks, May was able to model the dynamic effects of aggregation without 
explicitly including details of orientation and foraging behavior.  His recursion equations are 

1 1
k

t
t t

aPN N
k

λ
−

+
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

1 1 1
k

t
t t

aPP N
k

−

+
⎡ ⎤⎛ ⎞= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 

where all parameters are as given for the basic Nicholson-Bailey version, save for k, the negative 
binomial dispersion parameter, which can be interpreted as a coefficient of variance of parasitoid 
density among patches.  Note that this recursion approaches Nicholson-Bailey as k approaches 
infinity.  The dynamics of this model show diverging oscillations if k > 1, but the effect of 
parasitoid aggregation produces damped oscillations or a monotonic approach to equilibrial 
parasitoid and host densities if k < 1. 

Populus also includes a version of this model with density-dependent prey growth.  In 
this case, the prey recursion is 

1 exp 1
k

t t
t t

rN aPN N
K k

λ
−

+
−⎛ ⎞⎧ ⎫ ⎛ ⎞= +⎨ ⎬ ⎜ ⎟⎜ ⎟⎩ ⎭ ⎝ ⎠⎝ ⎠

 

where this upper case K is the environmental carrying capacity and again, r = ln λ.  Interested 
students should see Hassell (1978) or Bedington, Free, and Lawton (1975, 1976) for the complex 
stability analysis of this model; but in general, stability varies inversely with host growth rate and 
directly with density dependence and the ratio r/K. 
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Predator Interference 

 Parasitoids that aggregate in patches of high host density are likely to encounter one 
another in the course of their foraging activities.  Many species have been shown to display 
aggressive behavior toward other nearby females; these interactions waste searching time and 
increase the parasitoids' tendency for dispersal.  The first of two parasitoid interference models 
included in Populus is attributable to Hassell and Varley (1969).  It assumes that the negative 
relationship between searching efficiency, a, and parasitoid density is linear on log-log scales 

m
ta QP−=  

where both Q and m are constants.  The interference constant, m, is interpretable as the slope of 
this decline in search efficiency with parasitoid density.  This leads to the recursions  

( )1
1 exp m

t t tN N QPλ −
+ = −  

( )1
1 1 exp m

t t tP N QP −
+

⎡ ⎤= − −⎣ ⎦  

The stability of this model increases as values of m vary from 0 to 1.0, and declines as the 
intrinsic growth rate of hosts increases (Hassell and May 1973). 

 Models with a linear relationship between searching efficiency and parasitoid density are 
obviously oversimplified; efficiency cannot rise indefinitely as parasitoids become increasingly 
rare.  We have therefore included a curvilinear model by Beddington (1975) who assumes that 
parasitoids encounter one another randomly at a rate, b, which is analogous to the rate of their 
encounter with hosts (a') introduced in the functional response models.  He further assumes that 
after each encounter between parasitoids there is a period of wasted time, Tw, during which no 
further searching takes place.  Beddington's recursions are 

1
1

exp
1

t
t t

w t

a TPN N
bT P

λ+
−

⎛ ⎞′−
= ⎜ ⎟+⎝ ⎠

 

1
1

1 exp
1

t
t t

w t

a TPP cN
bT P+

−

⎡ ⎤⎛ ⎞′−
= −⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

 

In effect, this model allows the interference coefficient, m, to vary between 0 and 1.0 and its 
stability properties are similar to those of the linear version.  It collapses back to the basic 
Nicholson-Bailey model if bTw = 0.  Students who are interested in interference are directed to 
Hassell's book for discussions of its importance at equilibrial densities, and its relation to 
aggregation and nonrandom foraging. 
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Threshold Predator Reproduction 

 Simulations appropriate to a predator-prey interaction should differ in several respects 
from the parasitoid-host models in this set.  Since predators usually consume many prey 
individuals that are smaller than the consumers themselves, the numerical response, c, will often 
be less than 1.0; in addition, since a certain amount of energy and resources are likely for the 
predators to mature and maintain themselves without reproducing, the functional relationship 
between prey availability and predator reproduction is unlikely to be a simple proportionality.  
Hassell's book describes a model by Beddington, Free, and Lawton (1976) that relates a 
predator's lifetime fecundity to the number of prey consumed as 

a

t

NF c
P

β
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

where c is the efficiency of prey conversion into predators (the numerical response) and β is the 
minimum threshold prey consumption required before predators begin to reproduce.  Assuming 
that prey population growth is density-dependent, this assumption leads to the recursion 
equations 

1 exp 1 t
t t

NN N r aP
K+ t

⎧ ⎫⎛ ⎞= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 

( ){ }1 1 expt t tP c N aP Pβ+ t⎡ ⎤= − − −⎡ ⎤⎣ ⎦⎣ ⎦  

 If β = 0, this model collapses to the density-dependent version of Nicholson-Bailey, but 
with c β > 0, the equilibrial densities of predators and prey are no longer globally stable.  Instead, 
they have a local basin of attraction that shrinks as the cβ product increases.  One practical 
implication of this behavior is that the success of such a predator in biological control releases 
would be sensitive to the initial densities of predator and prey. 
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Hosts and Parasitoids with Insecticide 

 Because parasitoids are often released for biological control purposes in the context of an 
integrated program that includes pesticide applications, it is important to model the effect of 
insecticides on the dynamics of host-parasitoid interaction.  This set of models was developed by 
Hassell (1984) using recursions of the same general form as others in this series from his 1978 
book, with a host survival function that incorporates negative binomial clumping of the searching 
parasitoids and a type II functional response.  Because the model is discrete, it is possible that 
insecticide may have different effects depending on the timing of the application relative to host 
and parasitoid life cycles.  For this reason, four sub-models are presented as follows: 

 Model 1. In this case, insecticides act before parasitism and kill only hosts.  The 
recursions are: 

( )1 f ,t t tN FN N I P+ = t⎡ ⎤⎣ ⎦  

( )1 1- f ,t t t tP N N I P+ = ⎡ ⎤⎣ ⎦  
where 

( ) ( )
1f ,
1

k
t

t t
t

aPN I P
k N Iθ

−
⎡ ⎤+

= ⎢ ⎥+⎣ ⎦
 

Model 2. Here, insecticides act after parasitism and kill only hosts. 

( )1 f ,t t tN FN N P+ = t I  

( )1 1- f ,t t t tP N N P+ = ⎡ ⎤⎣ ⎦  
where 

( ) ( )
1f ,

1

k
t

t t
h t

aPN P
k aT N

−
⎡ ⎤+

= ⎢ ⎥+⎣ ⎦
 

Model 3. Next, insecticides act after parasitism and kill both hosts and parasitoids at the same 
rate. 

( )1 f ,t t tN FN N P+ = t I  

( )1 1- f ,t t t tP N I N P+ = ⎡ ⎤⎣ ⎦  
where 

( ) ( )
1f ,

1

k
t

t t
h t

aPN P
k aT N

−
⎡ ⎤+

= ⎢ ⎥+⎣ ⎦
 

Model 4. Finally, if insecticides act before parasitism and also kill adult parasitoids at the same 
rate. 

( )1 f ,t t t tN FN N I P I+ ′=  

( )1 1- f ,t t t tP N I N I P I+ ′= ⎡ ⎤⎣ ⎦  
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where 

( ) ( )
1f ,
1

k
t

t t
t

aP IN I P I
k aN I

−
⎡ ⎤′+′ = ⎢ ⎥+⎣ ⎦

 

 The simulations show that insecticide applications are likely to lower the equilibrial host 
density resulting from host-parasitoid interactions alone unless adult parasitoids are affected 
(Model 4), but that in this latter case, equilibrial host densities rise.  The degree of host 
depression that results from the insecticide application increases with the clumping of the 
parasitoid and the growth rate of the host.  Model 2 consistently produces the lowest host 
equilibria, and Model 4 the highest. 
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Polyphagous Predators 

 The preceding models in this set have all dealt with single pairs of predator and prey 
species.  Natural interactions are rarely so isolated, and this simulation allows exploration of a 
more complex system with one predator and two competing prey species.  It uses a discrete 
analog of the Lotka-Volterra competition model to describe the interaction between competing 
prey as 

( ){ }1 expt t t tX X g X Yλ α+ = − +  

( ){ }1 expt t tY Y g Y Xλ β+ ′= − + t  

where X and Y denote the two competing prey densities, g and g' are constants, and α and β are 
competition coefficients like those of the Lotka-Volterra model.  This competition model retains 
the linear Lotka-Volterra isoclines, but its dynamics are complicated by the lags inherent in the 
discrete formulation (May 1974). 

 Adding a predator to this system gives the recursions 

( ){ }1
1 exp m

t t t t X tX X g X Y a Pλ α −
+ = − + −  

( ){ }1
1 exp m

t t t t Y tY Y g Y X a Pλ β −
+ ′= − + −  

( ) ( )1 1
1 1 exp 1 expm m

t t X t t Y tP X a P Y a P− −
+

⎡ ⎤ ⎡= − − + − −⎣ ⎦ ⎣
⎤
⎦  

where, X and Y are the two competing prey, P is the predator, a is the area of discovery of the 
searching predator, and m is an interference constant, interpretable as the slope of the decline in 
search efficiency with increasing predator density.  When m = 0, this simulation is analogous to 
the basic Nicholson-Bailey model, and increasing interference lends additional stability.  With 
complete niche overlap ( 1αβ ≥ ) competitive coexistence is impossible, but with 1αβ < , a 
predator can stabilize an otherwise unstable competitive interaction if it prefers the superior 

competitor (i.e., if 1aX
aY

≠ ). 

 If this random predator is replaced by one that switches, changing its preference between 
prey types to focus on the more common one (Murdoch 1969), it can be a stronger stabilizing 
influence.  Hassell models two competing prey and a switching predator with the following 
system: 

( ) ( ){ }1
1 exp 1 m

t t t t X tX X g X Y E a Pλ α −
+ = − + − +  

( ) ( ){ }1
1 exp 1 m

t t t t Y tY Y g Y X E a Pλ β −
+ ′= − + − −  

{ }( ) { }( )1 1
1 1 exp 1 1 exp 1m m

t t X t t Y tP X E a P Y E a P− −
+

⎡ ⎤ ⎡= − − + + − − − ⎤
⎣ ⎦ ⎣ ⎦  

where 

t t

t t

X YE s
X Y

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠
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and s varies from 0 to 1 to express the degree of switching.  When density-dependent 
competition between prey species is strong (αβ near 1.0) this switching predator exerts a 
powerful stabilizing influence. 
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Competing Predators 

 Hassell (1978) predicates his discussion of multi-parasitoid systems on a sequential 
model with one predator (P) acting first, and then a second (Q) acting on the surviving prey.  A 
system with simultaneous attack by both parasitoids would be equivalent if one is the superior 
competitor, winning in all cases of multiple parasitism.  This scenario is illustrated by equations 
of the general form 

1 1 2f ( ) f ( )t t tN N P Qtλ+ =  

( )1 11 ft t tP N P+ = −⎡ ⎤⎣ ⎦  

( ) ( )1 1 2 f 1 ft t t tQ N P Q+ = −⎡ ⎤⎣ ⎦  

where f1 (Pt) and f2 (Qt) are prey survival probabilities after the searching of predators P and Q, 
and N gives the number of prey.  Since the most interesting outcomes of this model are cases that 
permit the stable coexistence of all three parties, Hassell includes parasitoid aggregation similar 
to that in the non-random searching model (above), giving the recursions 

1 2
1 2

1
1 2

1 1
k k

t t
t t

a P a QN N
k k

λ
− −

+

⎧ ⎫⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎪ ⎪= + +⎨ ⎬⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 

1
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a PP N
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−

+

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥= − +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦
 

1 2
1 2

1
1 2

1 1 1
k k

t t
t t

a P a QQ N
k k

− −

+

⎡ ⎤⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎫⎪⎢ ⎥= + − +⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟ ⎬
⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎪⎭⎣ ⎦

 

Here k1 and k2 are the negative binomial dispersion coefficients describing the clumping of P and 
Q in patches of high host density (May 1978, May and Hassell 1981).  When k1 = k2 = ∞ this 
formulation reduces to a three-species Nicholson-Bailey model. 

 The stability analysis of this model given by May and Hassell (1981) shows that three-
species equilibria are most likely when both parasitoid-host links are stabilizing; i.e., when k < 1 
for both parasitoids.  Stable coexistence is also more likely if the inferior competitor (Q) has the 
higher searching efficiency. 
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Host, Parasitoid and Hyperparasitoid 

 The final model we have taken from Hassell's 1978 book is a three-trophic-level 
simulation illustrating host (N) and parasitoid (P) interacting with a hyperparasitoid (Q).  The 
hyperparasitoid is assumed to reproduce only in hosts that have been previously attacked by the 
parasitoid.  Hassell's model invokes aggregation for its stability, as in the previous models of 
nonrandom searching and competing predator, using the recursions 

1
1

1
1

1
k

t
t t

a PN N
k

λ
−

+

⎧ ⎫⎛ ⎞⎪ ⎪= +⎨ ⎬⎜ ⎟
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⎬
⎥⎪ ⎪ ⎪⎩ ⎭ ⎩⎣ ⎦ ⎣ ⎪⎭⎦

 

All terms retain the meanings introduced earlier in this set.  In particular, a1 and a2 are the 
searching efficiencies of the parasitoid and hyperparasitoid, respectively, and k1 and k2 are their 
dispersion coefficients. 

Thorough stability analysis by May and Hassell (1981) shows local stability of the three-
party interaction as long as the parasitoid and hyperparasitoid both aggregate in patches where 
the density of their respective prey is high.  In particular, such interactions are more likely to be 
stable when the searching efficiency of the hyperparasitoid is higher than that of the 

parasitoid 2

1
1a

a
⎛ ⎞

>⎜ ⎟
⎝ ⎠

. 
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Continuous Predator-Prey Models 

The Lotka-Volterra Model 
 Let's assume (1) that except for the presence of predators, prey live in an ideal (density-
independent) environment, (2) that the predator's environment is similarly ideal and its population 
growth is limited only by the availability of prey, (3) that both predators and prey reproduce 
continuously with ageless populations of identical individuals, and (4) that the predation rate is 
proportional to the rate of encounter between predators and prey, which is a random function of 
population density.  These simplifying assumptions underlie a very basic model of predator-prey 
dynamics, embodied in the Lotka-Volterra predator-prey equations. 

 If N is the number of prey and P is the number of predators, then in the absence of 
predators, prey grow exponentially, 

d
d
N
t

r N= 1  

where r1 is the prey intrinsic growth rate.  Without prey, the predator population will starve, 

2
d
d
P d P
t
=−  

where -d2 is a measure of the predators' starvation rate. 

 The chance of encounter between predator and prey is CNP, where C is a constant related to 
prey escape ability and the number of prey a predator takes per unit time.  CN is often called the 
"functional response" of the predator; by giving C a constant value, we are assuming that the 
number of prey taken by each predator varies linearly with prey abundance. 

 Bringing the two species together and introducing the encounter rate into both equations, we 
have 

1
d
d
N r N CNP
t
= −  

2
d
d
P d P gCNP
t
=− +  

where g is a constant defining the conversion efficiency of prey into predators.  The product gCN is 
the predator's "numerical response.”  It measures the per capita production of the predator progeny 
as a function of prey density. 

 The behavior of this model at equilibrium can be analyzed by setting 

d d 0
d d
N P
t t
= =  

Then 
1 2    and    r dP N

C g
= =

C
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These expressions imply that there is a constant number of predators (r1/C) above which prey 
densities will decrease and below which they will increase.  Likewise, there is a constant number of 
prey (d2/gC) above which predator densities will increase and below which they will decrease. 

Populus includes an option for adding density-dependent feedback to the prey equation of 
this basic Lotka-Volterra model.  The predator and prey equations are then 

2
d
d
P = - d P + gCNP
t

1
d
d
N K - N= r N  - CNP
t K

⎡ ⎤
⎢ ⎥⎣ ⎦

With the addition of this feedback term, the prey isocline then becomes
1 1r rP = N

C CK
−  

this is a straight line with a y- intercept of r1/C, a slope of -r1/(CK), and an x-intercept of K, which 
together with the original predator isocline produces a damped oscillation. 

Populus also incorporates the option to add a saturating functional response to the basic 
Lotka-Volterra predator prey model, with or without density-dependent prey.  To begin thinking 
about more complex functional responses, it is useful to dissect the predation process a little 
further.  Suppose that the number of prey attacked, Na, is no longer a constant fraction of all prey, 
CN, but instead is determined by the area an individual predator can search per unit time, a, the 
time spent searching, Ts, and the prey density N: 

a sN aT N=  

Then, suppose that each prey item consumed involves some handling time, Th.  Imagine eating a 
lobster.  Handling time must be subtracted from the total time available, Tt, in proportion to the 
number of prey eaten: 

s t hT T T Na= −  

substituting, 

( )a t hN aN T T N= − a  

which can be solved for Na, yielding 

1
t

a
h

aNTN
aNT

=
+

 

The functional response is the predators’ per capita rate of prey consumption, or the number of 
prey attacked per unit time,  

1
a

t h

N aN
T aN

=
+ T

 

Now rebuild a predator prey model by substituting this saturating functional response into the basic 
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Lotka-Volterra equations: 

1
d
d 1 h

N aNr N P
t aN
= −

+ T
 

2
d
d 1 h

P ad P g P
t a
= − +

+
N
NT

 

Setting these differential equations equal to zero and solving for the isoclines, we have 
1

1 h
rP rT N
a

= +  

( )
2

2 h

dN
a g d T

=
−

 

The predator isocline thus remains a vertical line determined by the ratio of constants, but the prey 
isocline is now a line with positive slope, causing a diverging oscillation. 

If we invoke both options, adding both density-dependent prey growth and a saturating functional 
response, the model becomes; 

1
d
d 1 h

N K N aNr N P
t K aN

−⎛ ⎞= −⎜ ⎟ +⎝ ⎠ T
 

2
d
d 1 h

P ad P g P
t a
= − +

+
N
NT

 

Hence the predator isocline remains unchanged as a vertical line positioned by the ratio of constant 
parameter values, but the prey isocline is 

21 1
1

h
h

r rP N rT N
a aK

⎛ ⎞ ⎛= + − −⎜ ⎟ ⎜
⎝ ⎠ ⎝

1rT
K

⎞
⎟
⎠

 

This quadratic isocline is a humped function with a y-intercept of 1r
a

, and an x-intercept of K.  If 

the predator isocline crosses on the downslope of this hump, the model produces a converging 
oscillation.  If it crosses on the upslope, the joint equilibrium is unstable, and oscillations may 
diverge to a limit cycle. 

The Theta-Logistic Model 

 Populus includes a second predator-prey model (the "theta-logistic") which makes fewer 
simplifying assumptions, introducing nonlinear functional responses and density-dependent prey 
population growth.  The rate of change in the prey population size with time is described by the 
following equation: 
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( )1
d 1 f
d
N Nr N N P
t K

θ⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎟⎜⎜= − −⎟⎟⎜⎜ ⎟⎟⎟⎜⎜ ⎝ ⎠ ⎟⎟⎜⎝ ⎠
 

In this equation, P is predator population size, f(N) is the predator's functional response, and the 
prey population-growth rate in the absence of the predator is given by the rN(1 - (N/K)θ).  This is 
the familiar logistic model of population growth with an additional term, given by the Greek letter 
theta, which allows different types of density dependence.  If theta is large, the probabilities of birth 
and death do not change much until the prey population approaches its carrying capacity.  If theta is 
small, per capita birth or death rates (or both) decrease rapidly with increasing population size, 
even at small population densities.  This model of density-dependent population growth was 
originally proposed by Gilpin and Ayala (1973). 

 The population dynamics of the predator are described by 

[ ]d f ( )
d
P gP N D
t
= −  

The term f(N) is again the functional response.  D represents the intake rate of prey required for a 
predator to just replace itself in the next generation.  This form of the predator growth equation 
makes two implicit assumptions; (i) the predator population density does not affect an individual 
predator's chances of birth or death directly (only indirectly via effects on the prey population size), 
and (ii) the number of surviving offspring produced by a predator is directly proportional to the 
amount of prey it consumes. 

 The remaining component of the model is the functional response, denoted by f(N).  The 
functional responses of many predators have been determined in laboratory experiments in which 
different numbers of prey are placed in an arena with a predator for a specified amount of time.  
The Canadian ecologist, C. S. Holling (1965) categorized the functional responses into 4 possible 
types.  Three of these have been frequently observed (Hassell 1978) and are discussed in most 
ecology textbooks.  The type 1 response rises linearly with prey density; the type 2 response rises at 
a continually decreasing rate, and the type 3 response is sigmoid ('S' - shaped). 

 The type 1 functional response by definition is given by a constant C multiplied by prey 
population density N.  There are many different mathematical formulas for representing type 2 and 
type 3 responses, but the following two are most common: 

f N CN
hCN

a f =
+1

 for the type 2 response, and 

f N CN
hCN

a f =
+

2

21
 for the type 3 functional response. 

The parameters C and h can have a number of different possible biological interpretations.  As the 
number of prey becomes very large, both of the above functional responses approach an asymptotic 
value of 1/h.  One possible interpretation of h is that it represents the amount of time required to 
handle a single prey item; at very high prey populations, a predator spends almost all of its time 
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handling (and very little time searching), so the rate at which it catches prey is just 1/h.  Under this 
interpretation, prey are never captured while another prey item is being handled, and are captured at 
a rate CN (type 2) or CN2 (type 3) while the predator is searching for prey. 
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Genetic Drift: A Monte Carlo Model 

This simulation uses a random number generator to sample genes from a small parental 
population and pass them on to offspring.  Population size is assumed to remain constant from 
generation to generation, and allelic frequency changes result only from the random sampling 
process.  Drift can be simulated for 1 to 10 diallelic loci simultaneously.  To run the model, you 
must specify a population size, N, and initial allelic frequencies for each locus. 

Suppose that a population consists of one male and one female, and that both are 
heterozygous at a locus with two mutant alleles.  There are four alleles in the total gene pool, 2 A 
alleles and 2 a alleles, so p = q = 0.5.  The female will produce A and a eggs in equal frequency, 
and the male will produce half A and half a sperm.  The probability of two independent events 
occurring together is the product of their individual probabilities, so if gametes are chosen at 
random and fused to form a filial population of two individuals, the probability that the first 
individual will be an AA is (0.5*0.5) = 0.25, and the probability that both progeny will be AA's is 
(0.5*0.5)*(0.5*0.5) = 0.0625.  Thus if N = 2, there is 1 chance in 16 that allelic frequency will 
change from p = 0.5 to p = 1.0 in a single generation simply through the random sampling of 
gametes. 

In addition to the drift from p = 0.5 to p = 1.0, there are other possible outcomes; p could 
change to 0, 0.25, or 0.75, and the likelihood of these events is calculated similarly (you should be 
able to do it).  A computer model which uses random numbers to mimic this stochastic sampling 
process is called a "Monte Carlo Simulation." 

The process of genetic drift and its implications are discussed in most treatments of 
population genetics or evolutionary biology.  For examples, see 
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Genetic Drift: A Markov Model 

A “Markov” model is one in which some system is projected forward by repeatedly 
multiplying some representation of its current state by a transition function.  Suppose that a 
population has a constant size with one individual.  Let's call the number of A alleles at a locus the 
"state" of the population, which can thus be 0, 1, or 2.  If pt(0) is the probability that the population 
is in state 0 (with no A alleles), then 

 t+ t t tp  =  p  +  p  +  p1 0 1 0 1
4

1 0 2a f a f a f a fF
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K  (1) 
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and in general 
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Using vector-matrix notation (where P is the matrix of transition probabilities and pt is the state 
vector at time t), 

  (5) = t+1 tPp p

The individual terms of the transition matrix for a population of any size (N = the number of diploid 
individuals) are given by the jth term in the binomial expansion of (p+q)2N as 
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We can simulate the rate of losses or fixations that are likely among a large sample of populations 
of a given size using this Markov model. 
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Inbreeding 

 This module simulates inbreeding in a finite population, showing both expected values of 
the inbreeding coefficient, F, and realized values observed in a Monte Carlo drift simulation.  No 
selection operates; changes in allele frequencies and F are due entirely to chance sampling effects. 

 Two alleles that are “autozygous” or "identical by descent" are copies of the same ancestral 
allele.  The inbreeding coefficient F can be interpreted as the probability that an individual's alleles 
at a particular locus are identical by descent.  It can also be interpreted as the probability that two 
alleles drawn randomly from different individuals in the population one generation earlier are 
identical by descent.  F = zero means that there has been no inbreeding, while F = 1 means the 
population is completely inbred.  In this case, all individuals in the population are genetically 
identical. 

 In the absence of new genetic variation contributed by mutation or immigration, F increases 
in finite populations over time.  Simply by chance, some alleles will be lost and others will increase 
in frequency.  The result is that individuals in later generations have greater and greater 
probabilities of carrying copies of the same ancestral allele. 

 The exact rate at which the inbreeding coefficient is expected to increase is given by: 

11 1
2

t

tF
N

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

where Ft is the inbreeding coefficient in generation t, and N is the population size.  At the outset, 
when t = 0, it is assumed that there is random mating and F = 0.  The equation (and intuition) tells 
us that the inbreeding coefficient is expected to increase more slowly in larger populations and 
more rapidly in smaller populations.  The Populus simulation of inbreeding graphs this theoretical 
inbreeding coefficient, Ft, as a smooth, continuous curve. 

 Population of a given size will not necessarily have exactly the same inbreeding coefficient, 
even if they have been mating randomly for the same number of generations.  The equation gives 
an expected F, but there is variation around that expectation.  Just by chance a finite population can 
evolve to F = 1 more quickly than expected, or even move temporarily towards F = 0.  The 
theoretical model tells us what to expect on average.  The Populus inbreeding module also graphs 
the actual autozygosity of individuals, Fi and the entire population Fp that result from a Monte 
Carlo simulation.  These two measures differ when individuals are autozygous (carry alleles that 
are identical by common descent), but do not carry the same allele.  Under these conditions, it is 
possible for Fi to be larger than Fp.  It is also possible to reach Fi = 1.0 before Fp = 1.0.  In this case 
every individual has become autozygous, but some are autozygous for different alleles.  Such a 
population may return to some Fi < 1.0, but Fp = 1.0 is always an absorbing state. 

 Unless there are other forces operating, drift leads inevitably to fixation of one allele, at 
which point Fp = 1.  All finite populations are headed to the same end, but vary in the rate at which 
they approach that end. 
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Population Structure 

 Simple population genetic models usually assume that mating is completely random so that 
frequencies of the different genotypes in each new generation can be estimated from allelic 
frequencies among the uniting gametes.  In natural populations with a patchy distribution, this 
assumption will be violated if the probability of within-patch matings is higher than that of 
between-patch matings.  This "population structuring" has interesting genetic consequences that 
can be illustrated with a simple example: 

 Suppose that mice have a polymorphic enzyme system with two different alleles, and we 
have determined the genotype of every individual from the population living in a barn.  In addition, 
suppose that mice seldom move between parts of the barn, so that the population is subdivided 
("structured") into partially isolated subpopulations or "demes."  Genetic drift will raise the 
frequency of "a" alleles in some demes and lower it in others.  Suppose further that the "a" allele 
frequency in half of the demes drifts to p = 1.0, and in the other half to p = 0.  Overall allelic 
frequency throughout the entire barn is p = 0.5, and the expected frequency of heterozygotes is 
2p(1-p), or 1/2.  However, demes where p = 1.0 will produce only "aa" genotypes, and demes 
where p = 0 will produce only "bb" genotypes, and there are no heterozygotes in the entire barn.  
This difference between the observed and expected heterozygote frequencies is evidence of 
population structure. 

 Inbreeding is a second process that reduces heterozygosity, and is conceptually related to 
population structuring.  In the most extreme inbreeding system, hermaphroditic selfing, all of the 
progeny of homozygotes and half the progeny of heterozygotes will be homozygotes, so population 
heterozygosity will decline by 1/2 each generation.  Less extreme inbreeding systems will produce 
a proportionally weaker decline in heterozygosity depending on the mating probability and 
relatedness of relatives. 

 Sewall Wright introduced several related "inbreeding coefficients" which allow us to 
measure and distinguish the genetic consequences of mating and dispersal patterns.  To define 
them, we use three different estimates of heterozygosity: 

 Hi is the observed frequency of heterozygous individuals in a deme, or subpopulation, 
averaged among demes.  It is also the probability that one particular gene locus in an individual will 
be heterozygous. 

 Hs is the expected frequency of heterozygous individuals in the deme or subpopulation.  It is 
calculated as 2p(1-p), where p is the allelic frequency in that deme, and averaged among demes. 

 Ht is the expected frequency of heterozygotes in the entire population, calculated as 2p(1-p), 
where p is the population-wide allelic frequency. 

 Wright's three hierarchical inbreeding coefficients are then defined as follows: 

 Fis is the heterozygote deficiency caused by nonrandom mating within the demes or 
subpopulations, calculated as 
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 Fst is the heterozygote deficiency caused by population subdivision and the divergent drift 
of allelic frequencies in the separate demes, calculated as 
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 Fit measures the overall inbreeding coefficient resulting from both causes, and is calculated 
as 
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 Our simulation assumes that a population is subdivided into a number of demes whose size 
(and drift rate) can be set by the user.  Gametes are chosen randomly to form a new population each 
generation.  Users can also set a migration rate, causing a fraction of the individuals in each deme 
to be replaced every generation by migrants that are representative of the population-wide allelic 
frequency.  Two output graphs plot the allelic frequencies in all demes, and the three inbreeding 
coefficients, Fis, Fst, and Fit. 

 Different combinations of drift and gene flow will affect the equilibrial F-values.  In this 
simulation F-statistics will also be affected initially by historical disequilibria.  The demes can be 
initiated independently at different (or similar) frequencies to illustrate this founder effect. 

 Our program uses the expressions given above to calculate the F-statistics in a simple and 
instructive way.  Students should be aware, however, that the algorithms used in real empirical 
research are more complex, incorporating either sample-size adjustments (Nei and Chesser 1983) 
or analyses of variance on the allelic frequencies (Weir and Cockerham 1984). 
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Drift and Selection 

 This module simulates the operation of natural selection in a finite population.  Both genetic 
drift and natural selection affect allele frequencies; by adjusting population size and the relative 
fitnesses of the several genotypes, the user can study the interaction of these two evolutionary 
forces. 

 Drift tends to eliminate genetic variation.  In any finite population, one allele will eventually 
increase to fixation, at a rate that depends on the population size. 

 Selection can either maintain or eliminate genetic variation.  Selection in favor of the 
heterozygote genotype creates a stable polymorphism, but selection in favor of one of the two 
homozygotes eliminates variation in deterministic models. 

 When both selection and drift operate, there is an opposition of evolutionary forces if the 
heterozygote is most fit, with selection acting to maintain variation and drift acting to eliminate it.  
Which force predominates depends on the relative strengths of drift and selection.  Drift is very 
strong if population size is small, and is weak if population size is large.  Selection is strong if the 
relative fitnesses, "w" parameters, differ greatly, and is weak is the w's are similar. 

 Kimura has provided a rule of thumb comparing the strengths of selection and drift, as 
follows:  Define s, the selection coefficient such that homozygotes have fitnesses 1-s relative to the 
heterozygote fitness of 1.  N is the population size.  Selection predominates when 4Ns >> 1, and 
drift predominates when 4Ns << 1.  By “predominate” we mean selection (or drift) usually wins the 
battle to maintain (or eliminate) variation.  When 4Ns is close to 1, then we cannot predict the 
evolutionary outcome with any certainty. 
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Woozleology 

In his book The Blind Watchmaker, Richard Dawkins confronts the old saw analogizing 
evolution to the chance typewriter keystrokes of a monkey, who "sooner or later," will reproduce 
the works of Shakespeare.  He sketches a computer program that uses cumulative selection to 
model "evolution" of the phrase "METHINKS IT IS LIKE A WOOZLE."  Hamlet and Polonius 
thought the cloud that they were observing looked like a weasel, but my daughter Amy, who was 3 
years old when I first coded this model, considered Milne the pinnacle of English literature.  There 
are 26 letters in the alphabet and spaces function like an additional letter.  Since the phrase has 28 
characters and spaces, we expect the monkey to type it correctly by chance once in 2728 attempts.  
In fact, cumulative selection is a much more effective and rapid process.  This metaphorical 
simulation works in the following way: 

(a) An initial phrase consisting of 28 randomly chosen letters or spaces becomes the first-
generation "parent."  Populus steps through the 28 letter positions, drawing a random integer 
from the range 1 through 27 for each position.  If the draw for a position is 1, the program 
assigns an A; if the draw is 26 it assigns a Z.  Draws of 27 receive a blank space. 

(b) This "parent" phrase (which is probably nonsense) is then allowed to "reproduce."  If we set 
"broodsize" to 10, then Populus makes 10 descendent copies of the original phrase.  For each 
letter or space in the parent phrase, the program tests a random real number from the range 0 to 
1 against the user-specified "mutation rate."  This determines whether that position in the copy 
receives the original parental letter, or a new, randomly chosen character.  For example, if the 
mutation rate is set at 0.1 and Populus draws a random real number equal to or greater than 0.1, 
then the original parental letter from that position is copied faithfully.  If the draw is less than 
0.1, that position in the offspring copy phrase receives a "mutant" letter, determined by another 
integer draw from the range 1 through 27. 

(c) Next, selection operates on the progeny.  Each phrase is compared with the target phrase 
"METHINKS IT IS LIKE A WOOZLE," and the copy that matches the target at the largest 
number of positions becomes the next-generation parent.  It is copied in turn to provide a new 
generation of progeny, and the process continues until cumulative mutation and selection 
produce the target phrase. 

(d) The Populus program incorporates a recombination process that was not part of the Dawkins 
scenario.  You can activate this feature by checking the diploid-sexual-process box in the input 
window and setting a non-zero crossover rate. Then Populus establishes two random parental 
phrases, P1 and P2.  One of the parental phrases is arbitrarily chosen to serve as the model for 
offspring copies, as before; but this time Populus draws two random real numbers from 0 to 1 at 
each letter position.  The program tests the first random draw against the "crossover rate."  If the 
draw equals or exceeds the crossover rate, then the previously chosen parental phrase is the copy 
model for this letter position in the offspring phrase.  If the draw is less than the specified 
crossover rate, transcription switches to the same letter position in the other parent, and 
continues from that second parent until another crossover occurs, further on.  The second 
random draw at each letter position determines whether a faithful copy or a random mutation is 
placed in the offspring phrase.  The best offspring phrases from first and last halves of the total 
brood become next-generation parents. 
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Depending on the parameter values specified, this program usually "evolves" the target 
phrase in a few dozen or a few hundred generations.  This shows that the cumulative interaction of 
mutation and selection can easily produce results that would be highly improbable from a single-
step random process.  As a model of evolution by natural selection, the metaphor has obvious 
limitations, including its unrelenting focus on a fixed future target, and its limited modeling of the 
chance processes in Mendelian inheritance.  Nevertheless, it provides elegant clarification of an 
issue that is misrepresented by creationists arguing from biological complexity in the tradition of 
Bishop Wilberforce. 
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Selection on a Diallelic Autosomal Locus 

 The process of evolution has two components, natural selection, and the inheritance 
mechanisms that make each individual genetically unique.  This Populus simulation offers a 
deterministic model of selection with few complications of inheritance; it assumes that 
population size is infinite so that there are no effects of sampling chance, that the selection 
regime remains constant, and that the phenotype is determined directly by a single autosomal 
gene locus, without environmental effects. 

 There are several points in a life cycle where selection might operate.  If we begin with 
newly fertilized zygotes, there may be individual differences (a) in survival to reproductive age, 
(b) mating ability, (c) the number of gametes produced, or (d) the probability that those gametes 
will fuse to form successful zygotes.  Here we will assume that selection is manifested in 
viability and fecundity differences between genotypes, ignoring the complications of sexual 
selection, mating systems, meiotic drive, etc. 

 Suppose that two different alleles (A and a) of a gene that affects viability and fecundity 
are present in a population.  We say that the population is polymorphic at this gene locus, and 
individuals can therefore have diploid genotypes of AA, Aa, or aa.  If these genotypes survive 
and reproduce themselves at different rates, population composition will change over time as the 
frequency of the more fit allele increases. 

 If the frequency of A alleles is p and the frequency of a alleles is (1-p) = q, and if mating 
is random so that the alleles combine in proportion to their frequencies, then the expected 
frequencies of AA's and aa's are p2 and q2, respectively.  Heterozygotes might be either Aa or aA, 
so their expected frequency is 2pq.  If each genotype has a different relative probability of 
survival and reproduction called its relative fitness (wAA, wAa and waa), we can formulate an 
equation to project the increasing frequency of the most fit genotype as 

p p p w qw
p w p q w q wt t

t AA Aa

t AA t t Aa t aa
+ =

+
+ +1 2 22

b g  

 This is called a recursion equation because pt+1 can be repeatedly substituted for pt to give 
a recursive prediction of allelic frequency as far into the future as we wish.  It helps the intuition 
to note that this equation multiplies current allelic frequency (pt) by a ratio of weighted averages. 
 The numerator is a weighted average giving mean fitness among the A-carrying genotypes, and 
the denominator is the weighted average fitness among all three genotypes. 
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Selection on a Multi-Allelic Locus 
 
 Many polymorphic gene loci have more than two alleles segregating in natural 
populations.  To develop a recursive model with multiple alleles at a single locus, we need a 
notation that allows us to keep track of their identities and frequencies; we will call the locus the 
A locus, and the alleles Ai, with frequencies pi, where i = 1, 2, .. n, n is the number of alleles, and 
the allelic frequencies sum to 1.0.  The genotypic frequencies are given by the square of the 
multinomial of allelic frequencies, so the frequency of het AiAj is 2pipj, and the frequency of 
homozygote AiAi is pi

2. 
 
 We will refer to the viability of AiAj as wij, and the viabilities of all the genotypes can be 
written in a square viability matrix with wij in row i and column j. 
 
  A1 A2 A3 
 A1 w11 w12 w13 
 A2 w21 w22 w23 
 A3 w31 w32 w33 
 
The weighted average of the elements in one row of this matrix gives the marginal fitness, wi, of 
the allele that occurs in all the genotypes of that row.  The weighting frequencies for calculating 
wi are the pj, the frequencies of the alleles that i is paired with in genotypic combinations.  The 
marginal fitness is the average fitness of the allele in all of its genotypic combinations, weighted 
by their frequencies, 
 i ij j

j
=  pw w∑  (1) 

 The system of recursions that allows us to predict future allelic frequency for the several 
segregating alleles at this locus is then 
 

 ii,t
i,t+1

p w
 = p

w
 (2) 

where the population mean fitness, w , is 
 
 i ij i

i i j
w =  =    jp pw w∑ ∑∑  (3) 

This recursion is exactly analogous to our two-allele recursion.  It is the frequency-weighted 
average fitness of all i-carrying genotypes over the population average fitness including all 
alleles. 
 
 
 Equilibria for this set of recursions are found by setting the pi,t+1 = pi,t and solving for p̂ , 
which gives 
 1 2 3 ...w w w w= = = =  (4) 
 
In words, all of the marginal fitnesses must be equal for the population to be in equilibrium.  
There are n trivial equilibria corresponding to fixation of each of the n alleles, and there may also 
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be interior polymorphic equilibria with several or all of the alleles maintained by selection.  For 
a  
three allele system, the general criterion for a stable, complete polymorphism (all of the alleles 
are maintained) is that the average fitness of the heterozygotess must be greater than the average 
fitness of the homozygotes. 
 
 The classic empirical example of a three-allele system is based on the three most 
common alleles at the human β-globin locus, HbβA, HbβC, and HbβS, which we will call A, C, 
and S.  S homozygotes have sickle-cell anemia, which occurs when the hemoglobin forms long 
crystals under low oxygen tension.  The table below is abstracted by Hartl and Clark (1989, p. 
171) from Cavalli-Sforza and Bodmer (1971).  It gives the observed genotypic counts and 
Hardy-Weinberg expectations for all six genotypes from a sample of 32,898 individuals from 72 
West African populations, with estimates of their fitnesses calculated from the 
observed/expected ratio, and relative fitnesses, normalized such that wAS = 1. 
 
     Genotype              
  AA SS CC AS AC SC 
 Observed 25374 67 108 5482 1737 130 
 Expected 25616 307 75 4967 1769 165 
 Obs/Exp 0.99 0.22 1.45 1.10 0.98 0.79 
 Rel Fitness 0.89 0.20 1.31 1 0.89 0.70 
 
 The first thing to be seen from this table is that if a population composed entirely of AA 
genotypes was invaded by a single S allele (which would occur in a heterozygote), S would 
increase in frequency, because a single S in a population of A alleles will have a marginal fitness 
of 1.0, which is greater than the population mean fitness of 0.89.  With only these two alleles 
present, the population will evolve to the familiar 2-allele equilibrium, 
 

 
2

SS AS
s

AA AS S

w wp
w w w S

−
=

− +
 (5) 

 
For the relative fitnesses in the table, the equilibrial frequency of S is 0.1209 and mean fitness at 
equilibrium is 0.9033. 
 
 

C

If a second mutation introduces the C allele into a population at equilibrium between A 
and S, its spread will be determined by its marginal fitness which is 

 
 C A AC S SC C Cw p w p w p w= + +  (6) 

 
When C is a rare mutant, the third term can be ignored, because pC ≈ 0.  Therefore, since pS = 
0.1209, pA = 1 - pS = 0.8791.  The marginal fitness of C when it is a rare mutant is thus 
 ( ) ( ) ( ) ( )0.8791 0.89 0.1209 0.70 0.8670Cw = + =  (7) 

 
which is less than the population mean fitness (at the equilibrium between A and S) of 0.9033.  
Thus C cannot invade when it is rare, even though a population that is fixed for C would have 
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global maximum mean fitness.  If C were to be introduced in sufficient numbers to include a 
contribution from the third term in equation 6, then C would fix. 
 Because empirical electrophoretic work in the 1970's revealed many examples where 
multiple alleles segregated together in wild populations, there was widespread interest in the  
hypothesis that these polymorphisms could be maintained by selection.  Subsequently, both 
analytical and numerical studies of this issue have demonstrated that the selective maintenance 
of multiple-allele polymorphisms is very unlikely. 
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Selection on a Sex-Linked Locus 

 This program shows how allelic frequencies change when the locus under selection is on a 
sex-determining chromosome.  There are five possible genotypes:  three in the homogametic sex 
(usually females) denoted XX, Xx, and xx, and two in the heterogametic sex (usually males), 
denoted XY and xY.  There are two allelic frequencies to keep track of, p in females and p in males, 
where p is the frequency of the "X" allele. 

 Selection on a sex-linked locus differs from selection on an autosomal locus in several 
respects: 

 1) Oscillations of allelic frequency - In the one-sex autosomal model there are never 
oscillations in allelic frequency over time.  However, in the sex-linked model there can be 
oscillations if allelic frequencies are initially different in males and females.  The default parameter 
values illustrate oscillations.  Notice that frequencies eventually become equal in the two sexes. 

 2) Genetic polymorphism - In the two-allele autosomal model there is only one mechanism 
that maintains genetic polymorphism: heterosis, or overdominance, where the heterozygote 
genotype has the highest fitness.  For the sex-linked case there are two ways:  either by this 
heterozygote advantage, or by differential selection in the two sexes (i.e., one allele is favored in 
one sex and the other allele is favored in the other sex).  See if you can find examples of both types 
of polymorphism. 
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Selection on Two Loci 
 
 This module shows how selection operates when two loci influence fitness.  There are more 
variables to keep track of than in the one-locus case.  With alleles "A" and "a" at one locus, and "B" 
and "b" at the other locus, there are four types of gametes:  AB, Ab, aB, ab.  A new parameter "D" 
measures the statistical association between alleles at the two loci. 
 
 Under a special circumstance, selection at two loci behaves just like selection at one locus.  
The special condition is additivity of fitness effects, i.e., the fitness of AABB individuals is just the 
sum of fitness effects of AA plus effects BB.  Under additivity, equilibria for each locus appear just 
as they would if the other locus were not there. 
 
 Another property of additive models is that D goes to zero, i.e., alleles at the two loci 
become randomly associated, even if they were initially non-randomly associated.  This also occurs 
when there is no selection, as shown by the default parameters.  The rate at which D goes to zero in 
these cases depends on R, the recombination fraction. 
 
 If fitness effects are non-additive ("epistasis"), then the situation can become very 
complicated.  D will not necessarily go to zero.  There can be many polymorphic equilibria, some 
stable and some unstable.  The principle of maximized mean fitness no longer applies.  The 
existence of certain equilibria is sensitive to R.  Usually, strong non-additive selection and small R 
causes equilibria with non-zero D, i.e., selection builds up combinations of alleles that work well 
together, even though recombination tends to tear them apart. 
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Selection and Mutation 

 Empirical studies of variability in natural populations often show rare, deleterious alleles 
that one might expect to be eliminated by natural selection.  Huntington's chorea, cystic fibrosis, 
Tay-Sachs syndrome, and sickle-cell anemia are human diseases caused by rare deleterious alleles.  
While an overdominant advantage affects the frequency of sickle-cell (and possibly Tay-Sachs) in 
some selective environments, others have no positive effect whatever.  Their frequency probably 
reflects a balance between the rates at which deleterious mutations appear and are eliminated by 
selection.  As an example, consider the case of a deleterious recessive.  At low frequencies (small 
q) its phenotype is seldom expressed because the heterozygous and homozygous genotypes in 
which it occurs are rare (2pq) and rare-squared (q2), respectively.  On the other hand, as the 
recessive becomes less common it appears through mutation from the alternative allelic type more 
frequently, because a larger fraction of the gene pool is mutable.  As a result, we can expect an 
equilibrial frequency where the rates of selective removal and mutational origin balance. 

 Selection-mutation balances are easily simulated with an analog of our autosomal selection 
model.  We will assume that selection operates against the "a" alleles, and that while p (the 
frequency of "A" alleles) changes under the influence of selection, mutation converts some "A" 
alleles to "a" at a rate μ per generation.  Since the interesting equilibria occur when "a" alleles are 
rare and reverse mutations will be unimportant, 

( ) ( )1AA Aapw qw
p p

w
μ+ −

′ =  

where wAA is the relative fitness of "AA" genotypes, etc. 

 Since gene expression is important in determining whether selection actually operates 
against an allele when it appears in heterozygotes, dominance has a strong effect on the mutation-
selection balance.  It is convenient to define one additional term, "h" such that wAA = 1, wAa = 1 - hs, 
and waa = 1 - s (where "s" is the selection coefficient against "aa").  When h = 0, "a" is completely 
recessive relative to "A," and when h = 1 it is completely dominant.  h = 1/2 gives the additive case 
where heterozygote phenotypes are exactly intermediate between the two homozygotes. 

 One of the interesting consequences of the selection-mutation balance is a reduction in 
population mean fitness of 1 - (1-μ) = μ, called the mutational load.  Counter-intuitively, this load is 
independent of s, the selection coefficient against the different mutations, because severely 
detrimental mutations reach a lower equilibrial frequency than those that suffer a minor penalty and 
affect a larger fraction of the population. 
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Interdemic Group Selection 

1. Levin and Kilmer (1974) presented a simulation of group selection assuming that a population 
is subdivided into separate, randomly interbreeding demes, and that frequencies of altruistic 
and egoistic alleles at a single locus are affected by (a) selection on individuals within each 
deme, (b) genetic drift, (c) the exchange of migrants between demes, and (d) demic survival 
rates that vary with the local frequency of altruistic and egoistic individuals. 

2. Simulation runs start with a single altruistic mutation, or a binomial sampling procedure 
establishes altruist frequencies in every deme near some arbitrary starting value.  In the later 
case, 2N random numbers are drawn for each deme, and one altruistic allele is tallied for 
every draw which is smaller than the specified starting frequency. 

3. Each generation incorporates four processes as follows: 

(a) First, natural selection operates on the individuals within each deme, using the simple, 
deterministic model of autosomal selection that we developed in lecture 6. 

(b) A binomial sample (as in 2 above) based on the altruist frequency resulting from 
individual selection is used to simulate genetic drift within each deme. 

(c) A portion of each deme is replaced by migrants from the population at large.  N random 
numbers are drawn for each deme, and the number of draws that are smaller than the 
specified migration rate sets the number of individuals to be replaced.  The appropriate 
alleles are eliminated from each deme by binomial sampling, and replaced from the 
population at large.  Sampling from the population-wide gene pool occurs without 
replacement.  Note therefore that this is an island model. 

(d) Finally, some demes are extinguished and replaced by colonists drawn from the 
population at large.  Probabilities of 
survival, PS are calculated for each 
deme as 
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Figure 2. Four different demic survival functions for the 
Levin and Kilmer model.  Curve shapes are specified by 
values of the a, b, and c fudge factors. 

  i
c

iPS  =  a +  bq (1) 

where qi is the frequency of 
altruistic alleles in the ith deme and 
coefficients a, b, and c define the 
functional dependence of survival 
on the ratio of altruistic and selfish 
genes, as illustrated. 

4. This model demonstrates that group 
selection is able to overcome 
countervailing selection at the 
individual level, but the range of 
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parameter values permitting this result is very restricted.  In general, 

a. Deme size must be very small, so that drift can cause interdemic variance in allelic 
frequencies.  Also, in natural populations (but not in this simulation) small deme sizes will 
maintain vulnerability to demographic stochasticity and demic extinction will be high.  
Although it is not a result of this simulation (which lacks mutation), small deme size also 
reduces the probability that a "cheating" trait will evolve within the deme. 

b. Gene flow between demes must be kept to a very low level, so that interdemic variance in 
allelic frequency is maintained. 

 

5. Based on simulations like this one, it became the prevailing consensus in the mid 70's that 
group selection was seldom likely to provide substantial opposition for individual selection. 
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Intrademic Group Selection 

1. Although a deme or randomly interbreeding subpopulation is the unit many evolutionists 
envision while thinking about group selection, D. S. Wilson has suggested alternative models 
focusing on the evolutionary consequence of various demic substructures.  For example, 
while many life histories have a dispersing phase which makes demes very large, ecological 
interactions that affect fitness often take place in much more localized units, which Wilson 
calls "trait groups."  After natural selection operates within these trait groups, demic 
frequency estimates require a weighted average among all trait groups in the deme. 

2. An intrademic group selection model envisages the following scenario: 

a. A large, randomly interbreeding deme with altruistic and egoistic alleles segregating at any 
desired starting frequency is randomly subdivided into trait groups.  Drift and founding 
effects will cause these groups to differ in altruist frequency. 

b. Natural selection operates within each trait group for one or more generations.  Our 
algorithm is the same as that described for selection on a single autosomal locus, except 
that fitnesses of the genotypes are 

 AA iW = + b q - s( )(1 1 )2

)

 (1) 

 AE iW = + b q - s( )(1 1  (2) 

 ( )1EEW = + ibq  (3) 

where A and E represent the altruistic and egoistic alleles, b is the benefit realized by 
recipients of the altruism, s is the cost sustained by altruists, and qi is the local frequency of 
altruistic alleles in the ith trait group.  This process affects both the allelic frequencies and 
sizes of the trait groups. 

c. After selection within the trait groups, a new weighted average allele frequency is 
calculated for the deme as a whole, and new trait groups are drawn, using a binomial 
sampling procedure based on this updated frequency.  The program draws 2N random 
numbers for each trait group and tallies one altruistic allele for each draw which is smaller 
than the overall demic frequency. 
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Kirkpatrick's Haploid Arbitrary Model of Sexual Selection 

 Elaborate sex-limited ornaments like the tails of peacocks and birds of paradise appear to 
increase their bearers' attractiveness to potential mates at a cost to their viability.  These 
observations have posed an interesting challenge to evolutionists because, while it is plausible that 
some such traits might function in the competition between males for matings (Darwin 1871), an 
explanation for female preference is much more difficult; why should females evolve a predilection 
to choose traits that reduce male viability? 

 R. A. Fisher suggested that the evolution of female choice would initially require a 
reproductive advantage.  For example, a female who chose mates possessing some attribute that 
conferred high viability might have highly viable progeny.  If females with the strongest 
preferences choose males with the most pronounced traits, the genetic correlation between female 
choice and male attribute could produce a "runaway process" in which the male character evolves 
beyond the point where it shifts from viability asset to liability under the impetus of enhanced 
mating success. 

 This simulation reproduces a two-locus haploid model by Mark Kirkpatrick (1982).  It 
assumes that there is a sex-limited diallelic locus in males (t), one allele (t1) conferring a "normal" 
or "cryptic" phenotype with high viability, and one (t2) conferring some arbitrary trait with reduced 
viability (1 - s, where s > 0).  In females, there is a corresponding diallelic locus (p) such that some 
females (p1) mate randomly or prefer normal males, while the others (p2) prefer males with the 
reduced-viability trait.  The intensity of female preferences is set by the parameter values a1 and a2; 
p2 females prefer to mate with t2 males by the factor a2 and a1 indicates the preference of p1 females 
for t1 males.  There is no cost to the females of choosing mates.  The recursion equations that 
Kirkpatrick developed from these assumptions are moderately complex and will not be given here; 
interested students are directed to the source. 

 Populus produces four different output screens for Kirkpatrick's model; 1) t2 vs. p2, the 
frequency of males with the secondary sexual characteristic vs the frequency of females that prefer 
the secondary males; 2) D vs. time, the linkage disequilibrium correlating the male trait and female 
choice alleles as selection proceeds; 3) male viability vs. time, illustrating declines in male viability 
if the secondary trait increases in frequency; 4) D vs. t2 and p2, in three dimensions. 

 These simulations produce lines of equilibria where the viability penalty experienced by 
males bearing the t2 trait is exactly balanced by their enhanced attractiveness to females (given as a 
heavy blue line on the t2 vs. p2 graph).  At low frequencies of the p2 female choice allele, this 
mating advantage is often insufficient to maintain t2 in the population, but at higher p2 frequencies 
polymorphic equilibria or even fixation of the t2 allele are possible.  There is no direct selection on 
females; p frequencies change only as a correlated response to changes in male trait frequency, so 
linkage disequilibrium between the male and female loci is critical to the evolution of female 
choice.  At polymorphic equilibria where p1, p2, t1, and t2 are all maintained in the population, this 
linkage disequilibrium (caused by non-random mating) is a permanent feature even with very high 
recombination rates.  Finally, note that when the slope of the line of polymorphic equilibria is 
steep, small changes in the frequency of female choice alleles can effect large shifts in the 
composition of the male population. 
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Handicap Models of Sexual Selection 

1. The "handicap" or "viability indicator" hypothesis was introduced by Zahavi (1975).  Zahavi's 
idea is that while conspicuous males suffer reduced viability, those that do survive to 
reproduce must be extraordinarily fit in other respects.  If this vitality is inherited by both sons 
and daughters it may suffice to compensate the sons' handicap, and females should evolve a 
preference for conspicuous mates.  John Maynard Smith (1976) outlined a handicap 
simulation which was developed and analyzed by Graham Bell (1978).  Later, Malte 
Andersson (1986) added a wrinkle that increases realism and the efficacy of the handicap 
process.  This Populus module reproduces both the Maynard Smith/Bell model, and 
Andersson's modification. 

a. Handicap models of sexual selection require at least three polymorphic gene loci; one to 
specify male ornamentation, one to specify viability, and one to specify female choice.  
Maynard Smith modeled a biparental, haploid system with free recombination.  This means 
that individuals carry only a single allelic copy of each gene, and there is an equal 
probability that this allele came from mother or father.  He also assumed a monogamous 
mating system to eliminate sexual selection mediated by a Fisherian mating advantage.  
This genetic system is quite unlike that of guppies, and the haploid simplification may be 
misleading (cf. Heisler and Curtsinger 1990).  Free recombination certainly sets up a 
worst-case scenario for the handicap process.  Sexual selection requires a correlation 
between the conspicuous trait and the high-viability allele, caused in this case by female 
choice; by reducing linkage disequilibrium, free recombination reduces the likelihood that 
conspicuous traits will spread by "hitch-hiking" with another favorably selected allele.  

b. Three diallelic loci in this simulation function as follows:  The A locus codes a male-limited 
ornament; A males develop the ornament, while a genotype males are always cryptic.  The 
B locus is expressed in both sexes; individuals with the B allele have a higher probability 
of survival to reproductive age than individuals with the b allele.  The C locus codes 
female-limited choosiness; C females prefer to mate with males displaying the ornament, 
while c females mate randomly.  We will refer to the frequencies of the A, B, and C alleles 
as p, q, and r, respectively, and to the a, b, and c frequencies as 1-p, 1-q, and 1-r. 

 trait freq state 
 -------- ------- ----------------------------- 
 male ornament p A present a absent 

 male/female fitness q B high b low 

 female choice r C choosy c random 

c. The Andersson version is identical, except that A males develop the ornament only if they 
are in good condition by virtue of carrying the B (high-viability) allele.  This means that a 
female who chooses an ornamented male always gets a B mate.  It maximizes the 
correlation between A and B alleles, and makes the Andersson sexual selection process 
work a little better than Maynard Smith/Bell. 

2. An allelic-frequency recursion for this model would be frightfully complex, including 
marginal fitnesses for each of the six alleles across 32 genotypic combinations, and four 
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different linkage disequilibria among and between loci.  To avoid all this, our simulation 
follows genotypic frequencies through each generation with the following steps: 

a. To begin, we define an initial allelic frequency set, IfS = {p0, q0, r0}, and calculate a vector 
of genotypic frequencies, {ABC, ABc, AbC, Abc, aBC, aBc, abC, abc}, for both males and 
females.  We assume that the simulation begins in linkage equilibrium, thus frequencies 
will be {p0q0r0, p0q0(1-r0), p0(1-q0)r0, p0(1-q0)(1-r0), (1-p0)q0r0, (1-p0)q0(1-r0), (1-p0)(1-
q0)r0, (1-p0)(1-q0)(1-r0)}.  These two identical vectors of genotypic frequencies become the 
male and female zygotes. 

b. Our genetic assumptions imply that there will be sexual and genotypic differences in 
viability to reproductive age.  To accomplish this, we define a fitness set, FS = {α,β,ε}.  
We set α as the baseline survival probability, β as the effect of the A locus, and ε  as the 
effect of the B locus.  Thus males with the a allele and all females will enjoy an increment, 
β, in viability over males that carry the conspicuous A allele.  Likewise, individuals with 
the B allele will gain ε  probability of surviving over those with the b allele.  If there is no 
cost of female choice, the C-locus genotype has no effect on survival and either allele may 
be substituted, as indicated by question marks, below.  The viabilities are: 

 Genotype male viability female viability 

 AB? α ε+  α β ε+ +  

 Ab? α β  +a f* α β+  

 aB? α β ε+ +  α β ε+ +  

 ab? α β+  α β+  

*The survival of Ab? males is higher (α β+ ) in the Andersson version than in Maynard 
Smith/Bell (α), because Andersson's Ab? males do not express the handicapping trait.  
Since the FS values are probabilities of surviving to reproductive age, their values are con-
strained such that 0 ≤  α β ε, ,  ≤  1, and 0 ≤  α β ε+ +  ≤  1. 

c. After operating with this matrix of viabilities we re-normalize so that the adult male and 
female genotypic frequency vectors (which will no longer be identical) both sum to 1.0, 
and calculate male and female allelic frequencies at all three loci { ′ ′ ′p q rm m m, , }, 
{ ′ ′p q ′rf f, , f }.  The prime notation will refer to frequencies in the reproductive adults, after 
viability selection. 

d. 64 different mating combinations are possible between the eight male and female 
genotypes.  The probability of each mating is determined by the relevant male and female 
genotypic frequencies, and by female preference.  To quantify female preference factors 
for the Maynard Smith/Bell version, we will assume that C females mate with A males as 
long as they are available, and those that do not get an A male choose at random from those 
that remain.  Females with the c allele also mate at random among the males that are left 
over after C females choose.  Thus, for Maynard Smith/Bell only the A and C loci are 
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relevant to female choice, and there are four different preference classes with sixteen 
different combinations of male and female genotypes in each class: 

 preference factor 
 mating class if rf' > pm' if rf' ≤  pm' 
 --------- --------------- ---------------- 
 ??C female x A?? male pm' rf' 

 ??C female x a?? male rf' - pm' 0 

 ??c female x A?? male 0 m fp r′ ′−  

 ??c female x a?? male 1 - rf' 1 - pm' 
  ---------------- ---------------- 
  ∑ = 1 ∑ = 1 

Because the handicapping traits in Andersson's version are only expressed by males in 
good condition, both the A and B loci are relevant to female choice, and there are six 
classes of mating preference with eight or sixteen genotypic combinations in each class: 

 preference factor 
 mating class if rf' > p' if rf' ≤  pm' 
 --------- -------------------- -------------------- 
 ??C female x AB? male (8) ′pB m,  ′rf  

 ??C female x Ab? male(8) ′ − ′
′

− ′
r p

p
pm B m
b m

B m
,

,

,
c h

1
 0 

 ??C female x a?? male (16) ′ − ′
− ′ − ′

− ′
r p

p p
pm B m

b m b m

B m
,

,

,
c h1

1
,  0 

 ??c female x AB? male (8) 0 ′ − ′p rB m f,  

 ??c femalex Ab? male (8) 1
1

− ′
′

− ′
r

p
pf
b m

B m
d i ,

,
 ′pb m,  

 ??c femalex a?? male (16) 1
1

1
− ′

− ′ − ′
− ′

r
p p

pf
B m b m

B m
d i , ,

,
 1− ′ − ′p pB m b m, ,  

  ---------------- ---------------- 
  ∑ = 1  ∑  =  1
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e. Next, we estimate the expected frequency of each mating combination, based on female 
preference and the adult male and female genotypic frequencies.  Illustrating with Maynard 
Smith/Bell, assume that the number of choosy (??C) females exceeds the availability of 
conspicuous (A??) males ( ′ > ′r pf m ).  The total frequency of matings in the ??C female x 
A?? male preference class will be ′pm .  The sixteen genotypic combinations of matings 
within that class will each comprise a fraction of the class total proportional to their 
relative genotypic frequencies.  If we call the frequencies of the four female genotypes in 
this group (ABC, aBC, AbC, and abC) x1, x2, x3, and x4, and the frequencies of the male 
genotypes (ABC, AbC, ABc, and Abc) y1, y2, y3, and y4, then the relative probability of 
ABC female x ABC male matings will be 

 x y p

x y

m

i
i

i
i

1 1

1

4

1

4
′

F
HG
I
KJ
F
HG
I
KJ= =

∑ ∑

where the denominator sums the product of male and female genotypic frequencies for 
each of the 16 combinations in the ??C female x A?? male preference class.  We calculate 
relative probabilities for the other 15 matings in this class and for the other two classes 
similarly, changing the third term in the numerator to the appropriate female preference 
factor for each class (note that if f mr p′ ′> , all of the ornamented males will be mated by 
choosy females and ??c female x A?? male matings will not occur).  Our procedure is 
identical for the Andersson version, except that there are six mating preference classes, 
with eight or sixteen mating combinations. 

f. To complete the first generation, we tally the offspring genotypes that will result from each 
mating, weighted by the expected frequency of that mating.  We assume that each mating 
produces the same number of offspring, and tally weighted contributions from each mating 
to the appropriate progeny genotypes.  For example, the mating ABC female x ABC male 
will produce only one progeny genotype (ABC), but for the mating abC female x ABC 
male, the progeny will be ABC, AbC, aBC, and abC in equal proportions.  Since both the 
mating preferences (step d, above) and the genotypic frequencies (step c, above) sum to 
1.0, the resulting vector of progeny genotype frequencies does not need to be renormalized.  
Assuming that the sex ratios of our broods are balanced, we copy this output to form 
identical vectors of male and female genotypes to be used as zygotes for the next 
generation. 

g. The Populus handicap simulation allows several modifications of the basic Bell and 
Andersson models.  Bell's monogamous mating rules prevent sexual selection via a 
Fisherian mating advantage, but there is no reason why the handicap and Fisherian 
processes cannot function simultaneously.  Bell suggested a set of polygamous mating 
rules for this purpose: 



© D. N. Alstad, University of Minnesota 

 mating class preference factor 
 ------------------ ------------------------- 
 ??C female x A?? male ′rf  

 ??C female x a?? male 0 

 ??c female x A?? male  ′ − ′p rm f1d i
 ??c female x a?? male  1 1− ′ − ′p rm fb gd i
  ---------------- 
  1= ∑  

These preferences imply that choosy females mate only with conspicuous males, while ??c 
females mate randomly with any available male.  Purely Fisherian sexual selection can be 
modeled with these preferences if there is no survival advantage conferred by the B-locus 
genotype (i.e., if ε = 0).  When ε > 0, these mating preferences allow both sexual selection 
processes to function simultaneously. 

h. Time and risk are involved in the choice of mates, and this cost should rise as choosy 
females increase in frequency relative to the conspicuous AB? males that are their 
preferred mates.  Andersson suggested a simulation of this cost by eliminating a fraction 
μ ′

′

r
p

f

B m,
 from the adult mating ??C females.  The resulting simulations show that imposing a 

small cost on choosy females may facilitate the spread of conspicuous alleles via sexual 
selection. 

3. Handicap models illustrate a second-order selection process mediated by female choice.  If the 
fitness advantage of the B allele (ε) is sufficiently large relative to the cost of the A allele (β), 
then surviving A males will have a higher B allele frequency than the male population at large 
(Bell showed the criterion to be 2 .  As a result, females that choose a 
conspicuous male improve their chance of getting a B mate.  By this means both the A and B 
alleles become coupled in linkage disequilibrium with C.  Although B is the only allele 
directly favored by viability selection, both A and C will hitch-hike to higher frequencies 
because their occurrence is correlated with the occurrence of B.  This outcome is illustrated in 
a Populus run (Figure 3) on the next page. 

ε q qA m a m, ,− >c h β

a. It is logical to suppose that sexual selection becomes stronger as ε increases relative to β, 
and to some degree this is true; when B is strongly favored, A and C are hitchhiking on a 
vehicle that moves rapidly.  However, the opportunity for linkage disequilibrium is 
greatest at intermediate frequencies; if selection carries B to fixation, every genotype will 
include a B, and the correlations required for an increase in the frequencies of A and C 
disappear.  Thus there is a fundamental conceptual problem with handicap models having 
to do with the maintenance of additive genetic variance.  When the viability allele is 
strongly favored so that coupling yields a substantial boost for A and C, B passes very 
rapidly through the frequency range where the coupling correlation occurs.  As a result, 
sexual selection by the handicap process is likely to be either transient or subtle, and 
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Graham Bell concluded that the model has little evolutionary significance.  Andersson is 
somewhat more sanguine because his process is a little more effective in generating 
linkage disequilibria.  He also argues that there are likely to be many beneficial alleles at 
different loci increasing under selection; as each of these polymorphisms passes through 
intermediate frequencies, they may take turns advancing the A and C alleles.  Whatever the 
general evolutionary significance of handicaps, the models have didactic value, teaching 
our intuition about multi-locus models, linkage, and correlated responses. 
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Frequency-Dependent Selection: Diploid Model 

 “Frequency dependence” implies that the fitnesses of genotypes change as the genetic 
makeup of a population changes.  This contrasts with classical models of population genetics, 
which assume that genotypic fitnesses are constant. 

 This model simulates a situation in which a large population of diploid organisms is subject 
to frequency dependent selection.  Individuals are assumed to interact in pairs, in such a way that 
the fitness of each individual depends not only on its own genotype, but also on the genotype of its 
"social partner".  The model applies to any situation in which organisms come together in pairs to 
compete for resources, or to assist each other in obtaining resources.  For simplicity, pairs are 
assumed to form at random, like particles colliding randomly in a box. 

 The set up of the model is as follows.  There are assumed to be three autosomal genotypes, 
AA, Aa, and aa.  We must specify nine fitness parameters, one for each genotype interacting with 
each of the other genotypes: 

  Interacting with: 

  AA Aa aa 

 AA w1 w2 w3

Fitness of: Aa w4 w5 w6

 Aa w7 w8 w9

We assume random mating or random union of gametes, so genotypes are initially present in 
Hardy-Weinberg frequencies, before selection operates. 

 What is the fitness of each genotype when they interact randomly in pairs?  The fitness of 
AA will be w1 if it interacts with another AA, w2 if it interacts with an Aa, and w3 if it interacts with 
aa.  With randomly chosen "social partners", the probability of interacting with a particular 
genotype is simply its frequency in the population, so the total fitness of AA is 

( ) ( ) ( )2 2
1 2Fitness 2AA 3p w pq w q w= + +  

Similar calculations apply to the other genotypes.  Once we have calculated relative fitnesses in this 
way, the equation for the new allele frequency is the same as for the classical constant fitness 
model: 

( ) ( )Fitness Fitness
Population Mean Fitness

AA Aap q
p p

+⎛ ⎞
′ = ⎜ ⎟

⎝ ⎠
 

 This model differs from the classical constant-fitness model in some important ways.  Most 
importantly, mean fitness may not be maximized under frequency dependence.  It is possible to 
have stable genetic equilibria that are not maxima of the mean fitness surface; this means that the 
classical concept of an adaptive topography does not apply to frequency-dependent-selection 
models. 
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 For a more recent and more general general discussion of frequency dependent selection see 
the Philosophical Transactions of the Royal Society, London, Series B, Vol 319, 1988, which 
presents a collection of papers on the subject. 

Reference 
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Frequency-Dependent Selection: ESS Model 

 One way to deal with the complexities of frequency dependent selection is to simplify the 
genetics, while retaining the frequency dependent nature of the fitnesses.  The theory of 
Evolutionary Stable Strategies (ESS) does this by modeling frequency dependent evolution for a 
hypothetical asexual species. 

 This module simulates the evolution of discrete phenotypes in a large asexual population.  
In ESS terminology, the phenotypes are called "strategies", here denoted A, B, C, and D.  
Individuals interact in randomly formed pairs and affect each others fitness.  A and B are "pure 
strategies", i.e., these two types of individuals always behave the same way in their interactions 
with other individuals. C and D are "mixed strategies"; they sometimes behave like A, and 
sometimes like B. 

 An evolutionarily stable strategy is defined as a strategy that cannot be invaded by any other 
strategy when almost everyone in the population adopts it.  This module will allow you to specify 
two pure and two mixed strategies, and to determine which strategies can invade and which can be 
invaded. 

 The model functions as follows:  There is a "payoff matrix" for the two pure strategies, 
specifying the increment to fitness obtained by A or B when interacting with A or B: 

  Interacting with 
  A B 

A E1 E2Payoff to B E3 E4

The fitness of strategies A or B is given by a constant, and terms that reflect payoffs in random 
encounters with other A's and B's: 

Fitness of A = C + pE1 + qE2

Fitness of B = C + pE3 + qE4

where p and q are relative frequencies of A and B respectively, and C is the constant.  In these 
simulations we assume that C = 10. 

 In addition to the pure strategies A and B, there are two mixed strategies, C and D.  These 
mixed strategies sometimes behave like A, and sometimes like B. 

 The dynamics for any strategy are modeled after an asexual population.  For instance: 

( ) ( )Old Frequency of Fitness of 
New Frequency of 

Mean Fitness of Population
A A

A =  

This equation is used to determine whether a particular strategy can invade a population consisting 
primarily of another strategy. 
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An ESS is a strategy that cannot be invaded when common. In general, if the payoff matrix 
is 

 A B 
Strategy A E1 E2
Strategy B E3 E4

there will be a mixed ESS if E1 < E3 and E4 < E2, the ESS being to adopt behavior A with 
probability 

2 4

2 3 1

E E

4E E E E
−

+ − −
 

Try finding the ESS for the default payoff values on the input screen. 
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Density-Dependent Selection with Genetic Variation 
 
 This model shows simultaneous evolution of gene frequency and population size.  It is a 
hybrid model:  it combines elements of the genetic model of selection on one locus, and the 
ecological model of logistic growth.  There are assumed to be three genotypes that differ in 
intrinsic rate of increase (r) and carrying capacity (K).  The r's and K's affect both the growth of the 
population and the change in gene frequencies. 
 
 A particular population can be represented by a point on an (N, p) plane.  Over time, the 
point moves on the plane, showing how population size and gene frequency evolve. 
 
 This model was developed by Anderson (1971), Charlesworth (1971), and Roughgarden 
(1971).  Its basic features are as follows: 
 
 1) The fitness of a genotype depends on its r and K values, and on population density.  In 
particular, 
 

1 AA
AA AA

AA

rw r
K

= + − N  

 
where N is total population density. 
 
 2) It is often assumed that there is a trade-off between r and K values.  Some genotypes are 
highly fertile but not very good competitors at high density; these are the "r-strategists".  Other 
genotypes might be less fertile but produce more robust progeny that are good competitors at high 
density; these are the "K strategists". 
 
 3) In a stable environment in which all mortality is due to density-dependent selection, the 
K values of the different genotypes determine the ultimate pattern of genetic equilibrium.  If the 
heterozygote has the highest K, there will be a stable polymorphism; if it has the lowest K there will 
be an unstable polymorphic equilibrium.  If one of the homozygotes has the highest K then fixation 
of that type will be a stable equilibrium. 
 
 4) As in the logistic model without genetic variation, the magnitude of the r's determines 
whether there are oscillations in population size and/or gene frequency.  Generally an r value in the 
range of 2 will produce some oscillations. 
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Population and Quantitative Genetics 
 
 This module illustrates connections between simple population and quantitative genetic 
models.  For a given set of genotypic fitness values, the program will show how population mean 
fitness, heritability, and allelic frequencies change over time, and graph the adaptive topography. 
 
 The screens show four kinds of output, illustrating a one-locus deterministic selection 
model with random mating and discrete generations. 
 
1. For any given set of relative fitnesses, there exists a curve called the adaptive topography that 

shows how the average fitness in the population changes as a function of allelic frequency.  
Sewall Wright proved that allelic frequencies always change in such a way that the mean fitness 
increases over time, i.e., populations climb "adaptive peaks" and do not go down into "adaptive 
valleys".  To see this, try several different types of fitnesses.  If the heterozygote is the most fit 
genotype, then the adaptive topography will have a peak at intermediate allelic frequencies; the 
population will "climb" this peak.  If the heterozygote is the least fit, then there will be a valley 
at intermediate frequencies (verify that the population does not go down into the valley).  If one 
of the homozygotes is the most fit, then the function will have no peak, and the population will 
move to fixation for the fittest genotype. 

 
2. Heritability is defined as 
 

Additive Genetic Variance for Fitness
Total Genetic Variance for Fitness

 

 
The additive variance is that part of the variance that is attributable to the effects of alleles.  It 
does not include the variance that is due to interaction between alleles at a locus (that's 
dominance variance), to interaction between alleles at different loci (that's epistatic variance), or 
to environmental variation (that's environmental variance, Ve). 

 
 Notice that the heritability might rise or fall at first in any particular simulation, but 
eventually it goes to zero if you have specified enough generations to reach equilibrium.  This is 
because the additive variance (which is the numerator of the heritability) inevitably goes to zero 
for simple deterministic models. 

 
3. Mean fitness in a population changes as a function of time.  It differs from the adaptive 

topography, which shows how mean fitness changes as a function of allelic frequency.  Notice 
that for any fitnesses, the mean fitness will always increase over time. 

 
4. Allelic frequency trajectories, i.e., allelic frequency as a function of time.  Allelic frequencies 

can increase to one, decrease to zero, or reach a stable intermediate frequency, depending on the 
genotypic fitness values that you enter.  If one of the homozygotes is the most fit genotype, then 
the frequency will go to zero or one.  If the heterozygote is the most fit then there will be a 
stable intermediate equilibrium.  If the heterozygote is the least fit then there will be historical 
effects; i.e., the ultimate state reached by the population will depend on the initial allelic 
frequency. 
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Heritability 
 
 Heritability expresses the degree to which phenotypic variation is determined by genetic 
variation.  A heritability of 1.0 implies complete genetic determination, while a heritability of zero 
implies the opposite, that there is no genetic determination.  This module computes the theoretical 
heritability of a quantitative trait in a hypothetical infinite population, and also simulates a Monte 
Carlo breeding experiment to estimate heritability in a finite population. 
 
 The total variance of phenotypic values in a population can be broken down into 
components: additive variance, dominance variance, epistatic variance, and environmental 
variance.  The first three components added together constitute the total genetic variance. 
 
 Additive variance is the part of the variance that is due to the effects of individual alleles.  
Dominance variance arises from the inter-action of alleles at a single locus.  Epistatic variance 
arises from the interaction of different loci. 
 
 Evolutionary biologists and plant and animal breeders are particularly interested in the 
additive variance, because it is the "usuable" genetic variance.  That is, in a sexually reproducing 
species parents transmit alleles to their progeny, but not intact genotypes or multi-locus genotypes.  
For this reason, additive genetic variance is the most important quantity for predicting a 
population's response to selection.  With additive variance a population can evolve; without it, there 
is usually no evolutionary change. 
 
 The usual measure of heritability, which is called the “narrow-sense heritability,” is defined 
as the proportion of the total variance that is additive, i.e., 
 

2 a
n

a d i e

Vh
V V V V

=
+ + +

 

 
where h2 is heritability, the subscript n indicates narrow sense, and the subscripts a, d, i, and e refer 
to the additive, dominance, epistatic, and environmental variances, respectively. 
 
 In the Monte Carlo simulation, the heritability is estimated from the regression of offspring 
phenotypes on the average of the parental phenotypes.  The heritability estimate is equal to the 
slope of the best-fit line. 
 
 

Reference 
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Directional Selection on a Quantitative Trait 

 This module simulates an artificial selection experiment.  The user specifies genetic effects, 
population size, and the number of individuals selected to be parents of the next generation.  The 
program shows the distribution of phenotypes in each generation, and how the mean phenotype 
changes in the population over generations. 

 Phenotypic selection regimes can be classified into three categories, depending on which 
phenotypes are favored.  Stabilizing selection refers to selection in favor of the intermediate 
phenotypes.  Disruptive selection means selection in favor of the extremes.  Directional selection 
refers to selection in favor of one extreme, e.g., the biggest, tallest, etc.  This module simulates a 
directional selection experiment in a finite population. 

 If there is usable genetic variation (i.e., additive genetic variance), then directional selection 
changes the mean phenotype in the population.  The rate and magnitude of that change depend on a 
number of factors, including: 

 Allele frequency - alleles at intermediate frequencies contribute more usable genetic 
variance than alleles at extreme frequencies. 

 Population size - In very small populations, drift can cause the loss of usable genetic 
variation, inhibiting selection response.  It can also cause unselected alleles to increase in 
frequency, simply by chance.  In general, large populations respond more reliably to selection 
than small populations. 

 Number of individuals selected - Selecting the few most desirable individuals as parents of 
the next generation exerts a very strong selection pressure, but also increases the effect of drift.  
If you select too few individuals then the usable genetic variation might be lost; if you select 
too many, then the selection pressure is weak. 

 Genotypic values tell us what the phenotypes of the three genotypes would be in the 
absence of environmental effects.  If the genotypic values are very similar, there will not be 
much progress by selection.  If the genotypic values are very different then selection can 
usually change the population mean.  Selection progress is also strongly affected by the 
heterozygote genotypic value; if the heterozygote is the "best" genotype then the population 
cannot be changed as much as the case where a homozygote is the best genotype. 

 Environmental variance - If the environmental variance is large, then an individual's 
phenotype is not a very reliable indicator of his genotype.  Environmental effects are not 
transmitted to progeny, so large environmental variance inhibits selection response. 

 In a very large population, the expected response to one generation of directional selection 
is 2R h S= , where R is the selection response (measured as the difference between the mean 
phenotypes of parents and offspring), h2  is narrow sense heritability, and S is the selection 
differential (measured as the difference between the mean phenotype of all parents and the mean of 
the selected parents). 
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Insect Resistance Managment 

The Comins 2-Patch Model of Pesticide Resistance 
Hugh Comins (1977) modeled the evolution of pesticide resistance in a habitat with both treated 
and untreated regions, linked by insect movement and gene exchange.  In his model, larval pests 
in the treated region suffer mortality rates that vary with their genotype at a diallelic, autosomal 
resistance locus.  If resistant alleles are initially rare, this treatment depresses pest density.  After 
the survivors mature as adults, there is movement in both directions between the treated and 
untreated regions in proportion to insect abundance, so immigration into the treated area will 
exceed emigration.  Adults in both regions then reproduce, and early larval survival is assumed 
to be density-dependent. 

Treatment
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DD Mortality

Migration
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DD Mortality
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  Area

Untreated
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Parameters o

G = Rel

X = Pop

Y = Pop

r = the p
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w = resi

L = the 

K = gen
Figure 1. Schematic of the Comins pesticide-resistance-management model.  The 
habitat is divided into treated and untreated patches.  Increases in the frequency of
resistant alleles under viability selection in the treated area are mitigated by the 
introgression of susceptible alleles from the untreated area.
f the Comins model are as follows: 

ative size of the treated and untreated units (untreated is G times as large as treated). 
ulation size and population density of insects in the treated unit. 
ulation size of insects in the untreated unit, so that untreated density is Y/G. 
roportion of the insect population that moves from its natal location. 
tance allele frequency in the treated unit. 

stance allele frequency in the untreated unit. 

genotype-specific survival rate for resistant homozygotes exposed to the treatment. 

otype-specific survival rate for susceptible homozygotes exposed to the treatment. 
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h = the gene-expression parameter.  The genotype-specific survival rate for heterozygotes is 
, so when h = 0, resistance is fully recessive and when h = 1, resistance is 

fully dominant. 
( )1hL h K+ −

b = intensity of density-dependent mortality; if b = 1, mortality is sufficient to compensate in 
a single generation.  Values of b < 1 gives an undercompensating, monotonic approach 
to equilibrium, and b > 1 gives overcompensating oscillations. 

Numerical simulations of the Comins model invoke three steps in each generation.  Beginning 
with reproduction, there is density-dependent egg and larval survival of the general form 
suggested by May, Conway, Hassell and Southwood (1974), 

 1
1

b
tN Nλ t

−
+ =  (1) 

where b varies from 0 to 2, setting the intensity of density-dependent mortality.  He assumes that 
the two regions have the same equilibrial insect density, but that the untreated region is G times 
larger in total area.  His density-dependent reproduction equations for the treated (X) and 
untreated (Y) populations are 

 1 bX X −′ =  (2) 

 
1 bYY G

G

−
 ′ =  
 

 (3) 

Note that population growth rates in the treated and untreated regions are identical, and have 
been scaled out by expressing both densities in units of the equilibrial density. 

In the second step of each simulated generation, pesticide-induced mortality alters allelic 
frequencies in the treated region.  If R alleles are resistant and r alleles are susceptible, we can 
define the genotypic survival rates as 

Genotype Survival 
RR (resistant homozygotes) L 

Rr (heterozygotes) hL +(1-h)K 
rr (susceptible homozygotes K 

Where h sets the expression of the resistant allele.  If p and p’ are frequencies of the resistant 
allele in the treated region before and after pesticide application (and if q = 1 - p), then the 
recursion equations for surviving insect density and resistant allele frequency in the treated 
region are 

 ( ){ }2 1 2 2X Lp Lh K h p q Kq X′′ ′ ′ ′ ′ ′= + + − +    (4) 

 
( ){ }2 1Lp Lh K h pq X

p
X

′+ + −  ′ =
′′

 (5) 
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When adult insects mature, their densities and allelic frequencies in both the treated and 
untreated regions are altered by migration.  Comins models a migration process in which equal 
numbers of migrants move in both directions when the treated and untreated populations are at 
their density-dependent equilibria.  Defining r as the migration rate, this implies that rX ′′  and 
r Y
G

′  are the numbers of migrants that leave their origin.  Insect densities after migration will be 

 ( )1 rX r X Y
G

′′′ ′′ ′= − +  (6) 

 1 rY rX Y
G

 ′′ ′′= + − 
 

′  (7) 

If w and w’ are the frequencies of resistant alleles in the untreated area before and after 
migration, the altered allelic frequencies in the treated and untreated areas will be 

 
( )1 rr p X wY

Gp
X

′ ′′ ′− +
′′ =

′′′
 (8) 

 
1 rrp X wY

Gw
Y

 ′ ′′ ′+ − 
 ′ =
′′

 (9) 

Finally, to begin the next generation, we set 

                        X X Y Y p p w′′′ ′′ ′ ′= = = w=  

The fundamental question motivating this Comins model is whether the evolution of resistance 
under pesticide treatment can be counterbalanced or delayed by migration and the introgression 
of susceptible alleles from an adjacent untreated region.  In brief, the answer is that it can.  With 
additive gene expression and a 70% selection differential between homozygotes, the change 
from r = 0 to r = 0.5 delays resistance time (defined as the number of generations required to 
reach p = 0.5) from 5 to 56 generations.  Note however, that the delay will always be transient.  
So long as the untreated region is finite and there is no fitness cost of resistance in the absence of 
selection, migrants will gradually increase resistant allele frequency in the untreated region.  
Then introgression of susceptible alleles will slow, and ultimately resistance will fix, throughout.  
The persistence of susceptibility is strongly affected by model parameters; for example, it is 
reduced in proportion to the selection differential and the dominance of the resistance allele.  
More subtly, resistance is slowed with under-compensating density dependence and intermediate 
migrations rates (Comins 1977). 
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The Alstad &Andow Bt-Resistance-Management Model 

In 1995 when David Andow and I became interested in the problem of managing the evolution 
of European corn borer (ECB) resistance to transgenic Bt maize, I had already worked out a 
Populus simulation of the Comins patch model, and we decided to adapt it to incorporate several 
important features of ECB biology.  First, corn borers are bivoltine, so we doubled the Comins 
cycle and inserted a period of density-independent over-winter mortality just prior to the spring 
migration.  Second, ECB show a strong preference for phenologically advanced maize in the 
spring generation, such that there can be a 10-fold difference in oviposition in adjacent tall and 
short fields.  We knew that this preference biased migration could have an important influence 
on the evolution of resistance, so we incorporated it into the recursion equations that effect the 
simulated migration.  Note that as an ecological-genetic model, this simulation tracks both insect 
population density and the frequency of resistance alleles.  As a result, it projects the influence of 
model parameter values on both the rate of evolution, and the density of insects (and hence the 
damage that they cause).  It therefore allows us to evaluate both the evolutionary efficacy, and 
the probable grower acceptance of different management configurations. 

Treatment

Reproduction

DD Mortality

Migration Reproduction

DD Mortality

Transgenic Bt Field Refuge Field

Reproduction Reproduction

MigrationDI Mortality DI Mortality

Treatment

DD Mortality DD Mortality

 
 

Figure 2.  Schematic of the Alstad-Andow simulation of high-dose/refuge resistant 
management for European corn borers in transgenic Bt maize.  Each arrow represents
a simple recursion equation, described below.  Generational densities in the graphical
output are estimated at the hexagonal markers, following density-dependent larval 
mortality. 
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Parameters of the model: 

G = Relative size of the toxic and nontoxic units (nontoxic is G times as large as toxic). 
X = Population size and population density of ECB in the toxic unit. 
Y = Population size of ECB in the nontoxic unit, so that nontoxic density is Y/G. 
µ = the density-independent over-winter survival rate. 

r = the proportion of the population that moves from its natal location.  Separate values, r1 
and r2 can be set for the first and second annual generations. 

s = a preference factor; the toxic maize is s times more attractive than the nontoxic maize.  
Separate values, s1 and s2 can be set for the first and second annual generations. 

p = resistance allele frequency in the toxic unit. 

w = resistance allele frequency in the nontoxic unit. 

F = the fecundity factor, interpretable as the average number of daughters produced per 
female. 

L = the genotype-specific survival rate for resistant homozygotes exposed to the toxin. 

K = the genotype-specific survival rate for susceptible homozygotes exposed to the toxin. 

h = the gene-expression parameter.  The genotype-specific survival rate for heterozygotes is 
, so when h = 0, resistance is fully recessive and when h = 1, resistance is 

fully dominant. 
( )1hL h K+ −

a = reciprocal of the threshold density below which density-dependent larval mortality 
disappears. 

b = intensity of density-dependent mortality; if b = 1, mortality is sufficient to compensate in 
a single generation.  Values of b < 1 gives an under-compensating, monotonic approach 
to equilibrium, and b > 1 gives overcompensating oscillations. 

Each simulation run commences with over-winter mortality acting on a population at equilibrium 
density, so that the numbers of spring survivors in toxic nontoxic units are µX and µY, 
respectively.  Then, to represent a single growing season four successive steps are implemented 
for each of two generations.  In the first step, migration of eclosing adults mixes a portion of the 
insects in toxic and nontoxic units, affecting the population densities and allelic frequencies. 

( )1 srX srYX r X
s G s G

′ = − + +
+ +

 

( )1 GrY GrXY r Y
s G s G

′ = − + +
+ +

 

( )1 srpX srwYr pX
s G s Gp
X

− + +
+ +′ =
′

 



© D. N. Alstad, University of Minnesota 

( )1 GrwY GrpXr wY
s G s Gw
Y

− + +
+ +′ =
′

 

The second step for each insect generation involves reproduction, so that local population sizes 
grow by the insect fecundity factor. 

X FX′′ ′=  

Y FY′′ ′=  

In the third step, selection resulting from the toxicity of the transgenic maize affects both insect 
density and allelic frequency in the toxic unit. 

( ){ }2 21 2X Lp Lh K h p q Kq X′′′ ′ ′ ′ ′ ′′= + + − +    

( ){ }2 1Lp Lh K h p q X
p

X

′ ′ ′ ′′+ + −  ′′ =
′′′

 

Finally, insects that survive the selection process experience density-dependent larval mortality 
before eclosing as winged adults of the succeeding generation. 

( )1 bX X aX −′′′′ ′′ ′′′= +  

1
baYY Y

G

−′′ ′′′ ′′= + 
 

 

After two insect generations in a single growing season, an episode of density-independent over-
winter mortality is imposed before the seasonal cycle begins again. 
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A Stepping-Stone Cline Model of Selection and Migration 

1. John Endler (1973) modeled a population arrayed in a linear string of semi-independent demes 
across some environmental gradient.  Each deme experiences selection pressures which vary 
with its position on the gradient, and exchanges migrants once each generation with the two 
neighboring demes. 

2. John published simulations of 50 such stepping-stone demes, assuming that the selection regime 
might vary from deme-to-deme in four different ways, as follows: 

a. In the "gradient mode," the fitness of AA genotypes decreases linearly while that of aa 
genotypes increases, from deme 1 to deme 50.  Heterozygote fitness remains constant at a 
value halfway between the homozygote maxima and minima. 

b. In the "heterozygous advantage mode," homozygote fitnesses remain as they were in the 
gradient mode, but the heterozygotes have a spatially constant fitness which is always greater 

0 10 20 30 40 50
1-h2-s

1-h2

Deme Position

c

R
el

at
iv

e 
Fi

tn
es

s

wAA

wAa

waa

1

h2

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

50
Deme Position

AA

Aa

aa

d

Lo
ca

l O
pt

im
um

 F
re

qu
en

cy

0 10 20 30 40 50
1-s

1

Deme Position

a

R
el

at
iv

e 
Fi

tn
es

s wAA

wAa

waa

0 10 20 30 40 50
1-h1-s

1-h1

Deme Position

b
R

el
at

iv
e 

Fi
tn

es
s wAA

wAa

waa

1
h1

 

Figure 1. Four selection regimes used in the Endler cline simulation.  Fifty demes are arranged as 
stepping stones accross an environmental gradient, and exchange genes once per generation with 
neighboring demes. 
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than either homozygote by a minimum amount, h1. 

c. In the "local heterozygous advantage mode," homozygote fitnesses are again as before, but 
heterozygote fitness also varies spatially, remaining a fixed amount, h2, greater than the most 
fit homozygote. 

d. In the "frequency-dependent mode," it is assumed that there is a locally optimal frequency of 
A alleles which decreases from deme 1 to deme 50.  The local fitness of each genotype is 
decremented by an amount which varies with the deviation of that genotype's frequency from 
the local optimum. 

3. In addition to these different patterns of selection, John allowed its overall intensity to be altered 
as well.  Let s represent the maximum genotype-specific change in relative fitness across the 
environmental gradient; if s = 1.0, then the relative fitness of AA genotypes declines from 1 in 
deme 1 to (1-1/49) in deme 2, (1-2/49) in 
deme 3, and so forth.  Gene flow migration 
is adjusted by varying the parameter g, the 
proportion of individuals in each deme 
coming from the adjacent demes in each 
generation.  Half of the migrants come from 
the deme above, and half from the deme 
below on the environmental gradient.  
Demes 1 and 50 receive the full g proportion 
of migrants from their only neighboring 
deme. 

4. The shape of the cline that develops in 
Endler's simulations depends on the nature 
of the spatially varying selection regime, but 
all of the clines are resistant to the 
attenuating effects of gene flow.  For the 
Populus run at right, I used the gradient 
model of selection with an overall intensity 
range of s = 0.9.  The graph shows two runs, both of which were allowed to come to 
equilibrium.  For the steeper cline, the migration rate between demes was g = 0.1, while for the 
other it was g = 0.9 
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Figure 2. Equilibrial cline following two runs of the 
gradient selection scheme, with migration rates of g = 
0.1 (steeper) and g = 0.9 (shallower). 

5. Those who refer to the original Endler paper should note a trivial error that demonstrates John's 
professorial aptitude.  Figs 4 and 6, which purport to graph the equilibrial p values actually 
graph equilibrial q's.  Populus output presents the p values, hence our graphs have similar 
shapes, but reversed slopes.  (When I showed John this paragraph, he laughed and said “Leave it 
in!”) 
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Multiple Niche Polymorphism 

Local environments experienced by organisms vary from place to place, and it is reasonable to 
expect that this variation might affect the relative fitness of different genotypes.  If the genotype 
with highest fitness varies from place to place, it is even possible that environmental variability 
may balance and sustain genetic variation. 

Levene (1953) proposed that the environment is subdivided into a series of different niches.  
Zygotes produced by population-wide random mating enter each niche type in proportion to their 
frequencies, and the three genotypes survive with different relative fitnesses in the different 
habitats.  Each niche type contributes a proportion of the next-generation zygotes which is fixed 
by the proportional area of each local environment, as illustrated on the left hand side of Figure 1 
(next page).  The model is frequency-dependent, because each allele suffers reduced competition 
in the preferred patches when it is rare. 

There are a total of m different niche types, and ci is the proportion of the zygotes that settle in 
each patch type i.  If there is a diallelic locus with genotypes A1A1, A1A2, and A2A2 (this treatment 
is from Hedrick 1985, and I will preserve his notation), and their relative fitnesses in patch type i 
are w11,i, 1, and w22,i, respectively, then the allelic frequency recursion for the ith niche is 

 ∆q
pq p w q w

wi
i

i

=
− − −1 111 22,c h c i, h  (1) 

where 
 w w p pq w qi i i= + +11

2
22

22, ,  (2) 

The recursion over all m niche types is the weighted average of frequency change among the 
niches 
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ii
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= =
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1 111 22
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,c h c h,  (3) 

Now, if our question is to determine whether selection in a variable environment can maintain 
genetic variation at the A locus, we're asking if there is a stable polymorphic equilibrium.  To 
facilitate analysis of the stability of this model, Hedrick (1985) rearranges equation 1 to define a 
function h(q) such that 

 h q q
pq

c
p w q w

wi
i

i
a f c h c h

= =
− − − iL

N
MM

O
Q
PP∑∆ 1 111 22, ,

1

 (4) 

This function is continuous and non-zero for the range , so that if you can show that 
h(0) is positive and h(1) is negative, then there must be a stable interior equilibrium.  For q = 0, 
equation 4 becomes 

0 q≤ ≤

 h c
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i

i
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,
 (5) 
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Figure 1. Schematic of the Levene and Dempster models of multiple-niche polymorphism.  In the 
Levene version, a constant number of fertile adults emerge from each patch type.  In Dempster’s, a 
constant number of zygotes enter each patch type, and fewer emerge after viability selection.  Redrawn 
after Hedrick, 1985. 

This expression must be positive for A2 to increase from low frequency, so the condition for a 
polymorphic equilibrium is 

 c
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We have rearranged the condition into the form recognizable as a harmonic mean of the relative 
fitness of A1A1 over all niches.  The same condition suffices to make h(1) negative.  So there will 
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be a stable polymorphic equilibrium if the harmonic means of the homozygote fitnesses over all 
niches are less than 1.  Note that this harmonic mean includes both the environmental 
proportions of the habitats (ci) and the relative fitness values (wxx). 

Relative fitnesses and the relative proportions of the niche types determine whether this 
frequency-dependent model suffices to maintain a segregating polymorphism, and in fact the 
parameters must rather finely balanced. 

Dempster (1955) pointed out that in the Levene model each niche contributes a constant 
proportion of the mating pool, independent of the composition of the niche.  Dempster called this 
the constant-fertile-adult-number hypothesis; Wallace calls it soft selection. 

Dempster proposed an alternative called the constant-zygote-number or hard selection 
hypothesis, illustrated on the right hand side of the figure on page 2.  Here, a constant proportion 
of the zygotes (ci) enter each niche before selection, and these proportions may subsequently be 
altered (ci') by selection within the niche.  The value of ci' is 

 ′ =c c w
wi
i i

i
 (9) 

where 

 w ci i= ∑ w  (10) 

Note that with this model the frequency dependence of Levene is absent. 

The stability condition for the Dempster version is that the arithmetic mean of the heterozygote 
fitnesses in the several niche types must exceed that of the homozygotes.  For the Populus 
simulation above right, all parameters were identical to those used in the stable Levene 
simulation on the left.  Because the arithmetic mean is always greater than the harmonic mean, 
the Levene soft-selection regime is more likely to maintain polymorphism than Dempster's hard 
selection.  This should seem intuitively reasonable, because the frequency dependent processes 
act to preserve a rare allele. 

Both Dempster and Levene assume that populations are panmictic.  Clearly many spatial habitats 
are sufficiently far apart that this is not true, and spatial selection models must be coupled with 
explicit treatments of migration. 
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 Spatial Dilemmas 

The appearance of cooperation among individuals who should be reproductive competitors is an 
interesting evolutionary challenge and a recurrent theme in behavioral ecology.  One of the 
central metaphors of this literature is a game called the prisoner's dilemma, in which two 
individuals each have the choice of cooperating or defecting from a common enterprise.  The 
reward (or payoff) realized by each strategy depends on the play of the opponent, and is typically 
represented in a payoff matrix.  For a player adopting the strategy in the left hand column against 
an opponent adopting the strategy across the top row we represent the matrix as follows: 

  Defect Cooperate 

 Defect P T 

 Cooperate S R 

The letters are mnemonic; P is the punishment for mutual defection, T is the temptation to 
defect, S is the "suckers payoff," and R is the reward for mutual cooperation.  If cooperation 
entails a cost and defectors obtain some rewards without paying that cost, then 

T > R > P > S 

Under these assumptions, defecting is an unbeatable strategy; it yields a higher payoff than 
cooperating, no matter what the opponent does.  Yet paradoxically, if both parties defect they 
receive smaller rewards than if both had cooperated, because R > P. 

While the basic prisoner's dilemma implies that defection should win and selfishness should be 
the state of nature, there are two potential means by which cooperation might be salvaged.  One 
approach, championed by Axelrod and Hamilton (1981), emphasizes repetition and learning.  If 
an individual is predictably selfish based on past experience, then it would make sense to defect 
from future encounters with that individual.  Axelrod (1984) sponsored a tournament between 
computer programs that played the prisoner's dilemma.  The program that amassed the largest 
reward over multiple rounds of play employed a strategy called “tit for tat.”  It cooperated on the 
first round, and on all subsequent rounds adopted the play made by the opponent in the previous 
round.  Tit for tat is nice, in that it is never first to defect; it is provokable, in that it responds at 
once to a defection; and it is forgiving, in that it answers renewed cooperation from the 
opponent.  Nowak and Sigmund (1993) have recently identified strategies capable of beating tit 
for tat if the players are error prone, but the example suffices to show that cooperation might 
plausibly evolve among animals that can recognize other individuals and remember their past 
performances. 

A second means of facilitating cooperation relies not on repetition and reprisal, but on the 
players' spatial distribution.  Nowak and May (1992) incorporate the prisoner's dilemma into a 
cellular automoton in which players are constrained to rectangular patches like the squares of a 
chessboard, interacting only with neighbors in the eight adjacent patches.  To simplify, they 
allow only two strategies, always defect, and always cooperate.  They also set R = 1, and S = P = 
0, allowing only one parameter, T, to vary from run to run.  In each round of play, patch owners 
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interact with all eight adjacent players and the sum of their payoffs from these encounters is 
tabulated.  To begin the next round, each patch is given to that individual among the previous 
owner and adjacent neighbors who accumulated the largest total payoff in the previous round. 

The contest for any particular square on this chessboard depends on the neighbors' scores, and 
hence on the behavior of the neighbors' neighbors.  As a result, these simple rules produce 
complex and interesting dynamics.  Under some conditions, groups of cooperators will grow, 
because they are beyond the reach of surrounding defectors.  Likewise, successful defectors tend 
to surround themselves with defectors, reducing their long-term prospects.  In general, the 
dynamics vary with the value of T, the temptation to defect.  With T > 1.8, clusters of defectors 
tend to grow, and with T < 2, clusters of cooperators tend to grow.  In the range 1.8 < T < 2.0, 
there is a rich diversity of chaotic spatial patterns, with long-term coexistence of both defectors 
and cooperators; their relative abundances asymptotically approach a stable ratio.  These 
conclusions are relatively insensitive to details of the game.  When P is given a small postive 
value so that T > R > P > S is strictly true, or when interactions are limited to the four neighbors 
on the sides of the prisoner's cell, or when interactions with oneself are included in the 
calculations, the sensitive range of T and the equilibrial frequencies of cooperators and defectors 
change slightly, but the basic dynamic patterns remain similar. 

 The spatial component gives this simple game massively parallel transfers of information 
from cell to cell.  The result is an unpredictable array of patterns, including blinking clusters of 
cooperators or defectors that wink on and off, gliders that move across the chessboard intact, and 
a rich collection of objects, patterns and tentacles.  Other simple games like hawk-dove give 
similarly complex and unpredictable dynamic patterns, and Sigmund (1992) speculates that some 
may be "as complex as universal computers."  The chaotic behavior of these simple systems is 
intriguing, and emphasizes the potential importance of spatial structure for the evolution of 
cooperation, and probably for biological interactions in general. 
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The Populus Interaction Engine 

The Populus Interaction Engine is a general-purpose tool designed to help you develop and 
analyze your own interesting new models of ecology and evolution.  It allows you visualize the 
dynamics and equilibria of a model that you design from first principles, or to modify the 
equations underlying an existing Populus model (or one from the literature) and examine the 
effect of those changes.  Models may be phrased as sets of continuous differential equations, or 
discrete, finite-difference equations.  The Interaction Engine will parse your expressions, 
perform a numerical integration or step the difference equations, and plot the resulting dynamics.  
The input screen presents a number of plotting options, allows changes in simulation length, and 
other details. 

The Interaction Engine produces three output types: an N vs t time trajectory, an N vs N phase-
plane graph which can display phase trajectories or isoclines, and a console output that simply 
writes the output data to file.  Equations for many interacting species can be plotted 
simultaneously on one N vs t graph when all of the populations are dependant (on the y-axis) and 
time is independant (on the x-axis).  Only 2 or 3 dimensions can be plotted on a computer screen, 
so if you want an N vs N phase-plane graph, you must specify two or three equations to be 
plotted.  The number of equations that can be incorporated in a model is limited only by your 
patience and the computational speed of your computer, but only two or three can be viewed 
simultaneously on a phase graph.  The console output is useful if you want the numerical output 
for manipulation with a spreadsheet, statistical package, or presentation graphics tool. 

Entering Equations 
To specify equations that can be interpreted clearly by the Interaction Engine parser, you need to 
include operators that we often leave out when we write on paper.  Here are some general 
suggestions and examples to guide your first efforts: 

In general, you can enter equations just as you would enter them on a graphing calculator.  They 
can contain parenthesis, operators, brackets, braces (eg (){}[]), functions (sin, cos, tan, ln, and !), 
variable parameters (N1, N2..), a time parameter (t), and common mathematical constants (e, π).  
The program does not differentiate between brackets, parenthesis, and braces; you can enter any, 
as long as they "balance" (eg. (1+2] is equivalent to (1+2)).  If functions are typed without space 
between the function name and a numerical operand, the combination is interpreted as a constant 
parameter, so sin 10 returns the sine of ten, but sin10 identifies the variable "sin10," which is not 
wisely named.  Values of e or π use the highest machine-specific precision unless you define a 
constant parameter with the names e or π and assign values truncated to lower precision.  The 
program accepts strings and constants defined and assigned numerical values by the user. 

Valid Operators, Functions,and Constants 
The difference between functions and operators is in the number of values they require.  A 
function will take one value, (sin 1.57) while an operator takes two (1*2), and constants require 
none at all.  This definition allows some operators that wouldn't normally be considered as such.  
Here is a list of valid functions, operators, and constants with short descriptions of their 
implementation. 
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Functions: 
sin x: 
cos x: 
tan x: 
asin x: arcsine(x), with x in the range [-1.0,1.0] 
acos x: arccosine(x), with x in the range [-1.0,1.0] 
atan x: arctangent(x), with x in the range [-pi/2,pi/2] 
ln x: natural log of x 
!: factorial.  This employs an approximation of the gamma function, producing values in the 

range [0,inf].  Even modest values of x, x! will overflow the Java double data type.  Unlike 
other functions, the factorial symbol, '!', is placed after the term it evaluates. 

abs x:  if x is less than zero, it is multiplied by -1. 
ipart x: returns the integer part of a number. 
fpart x: returns the fraction part of a number. 

Operators: 
+,-,*,/: the standard arithmetic operators. 
x%y:  modulo, equivalent to y*fpart (x/y). 
x^y:  exponentiation, x to the power of y. 
x sigfig y: formats x to y significant figures. 
x min y:  returns the smaller of two numbers x and y 
x max y:  returns the larger of two numbers x and y 
x random y: a real-time random number generator.  Each time the equation is evaluated, a 

different number will be produced somewhere in between x and y.  This functionality is 
undefined for continuous equations.  The numbers will be displayed in the java console for 
reference.  If you have the Interaction Engine set to long run-times you may want to increase 
the buffer/window size to see all of the generated values (for Windows users this is done by 
accessing "Properties") 

Constants: 
π:  the most precise representation of the mathematical constant π available. 
e:  the most precise representation of the mathematical constant 'e' (euler's number) available. 
rand:  produces a random value once between -1 and 1 before any equations are evaluated. i.e. 

this constant will be kept for all time t. the value used will be outputted to the java console for 
you to see what was used. 

normal:  produces a gaussian distributed random value once with a mean of 0.0 and a standard 
deviation of 1.0 before any equations are evaluated.  The value will be placed on the java 
console so you to see it after the fact. 

Error Messages 
1)  Brackets Unbalanced.  This means that the number of open brackets is not equal to the 

number of closed. 
2)  Two Operators Next to Each Other.  With 1+-1 the minus sign is not interpreted as a 

negation. 
3)  Invalid Token Inside of Open/Closed Bracket.  Indicates an operator on the wrong side of a 

bracket, or a parenthetic closure immediately following an opening. 
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4)  Invalid First Token, or Invalid Last Token.  An operator that is not both preceded and 
succeeded by numbers gives this error. 

5)  Two Adjacent Numbers Without Operator.  A space separates tokens, so if you put a space 
inside a number, then it is interpreted as 2 numbers and doesn't make sense. 

6)  Brackets in Incorrect Order. 
7)  Invalid Token Outside of Closed Bracket.  Multiplication is not assumed after a closing 

bracket. 
8)  Operator on Inside of Function.  You would see this if you typed sin * 8. 
9)  Invalid Decimal. 
10)  "Random" Not Defined for Continuous Equations.  Use rand for continuous equations and 

“random” for discrete difference equations. 
11)  Invalid index for N character(s).  The program looks for 'N's in your equations, and 

automatically calls them variable parameters.  It then looks for the characters directly after 
the N to distinguish multiple N parameters; if those characters are not numbers, then you 
will get this error. 

12)  Parameter N Index Not Defined.  You can't use a population of that doesn't exist.  Any index 
lower than 1 or greater than the total number of equations will give this error. 

14)  Parameter N(number) not used.  If you have selected not to calculate values for one of the 
equations, then you can't use it's population density in another equation. 

15)  Something Bad Happened.  This is for the grab-bag classification for equations that make no 
sense based on errors that we have not anticipated. 

Hints and Notes 
The “java console” refers to the window that said "Populus Starting…" when the Populus 

program was started up. The title of this window is "PopRun" and should be in the taskbar. 

The Populus Interaction Engine implemented for version 5.1 provides limited isocline analysis 
tool, currently functional when 2 equations are plotted, but not 3.  We will provide a more 
extensive isocline tool in subsequent versions. 

If you want a rand value generated with a different range than -1 to 1, then simply enter (r*abs 
rand+low), r being the range desired and low being the lower end of the range. 

The Default Example 
The Populus Interaction Engine allows you to simulate the population dynamics of a community 
consisting of any number of species, with a separate equation for the dynamics of each species.  
In one- and two-species cases, it can be used to model population growth, competition, and 
predation, which are explored in more detail in other Populus modules.  Using more species, you 
can examine the dynamics of communities in which several different pair-wise interactions 
occur.  Some of the possibilities which you may want to examine are: (1) a linear food chain; (2) 
a group of species all of which compete with each other; (3) two predator species, each of which 
eat two prey.  There are no restrictions on the kinds of ecological systems you can simulate with 
this general-purpose modeling engine. 

Differential equation models of three or more interacting populations differ from those with two 
populations in two important respects: (1) it is possible for the population dynamics to be chaotic 
when there are three or more species; and (2) indirect effects occur whenever species i affects the 
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per capita growth rate of species j, and j affects the population growth rate of k.  The default 
case represents the Gilpin (1979) one-predator-two-prey model, which exhibits chaotic behavior.  
Chaotic dynamics imply that the populations undergo continual change in which a particular set 
of population levels never occurs more than once, no matter how long the dynamics continue.  In 
addition, the difference between the population densities in two different systems that are 
initially very similar in population densities, increases rapidly (exponentially) with time.  For 
more information on chaos, see the book by Holden listed below.  Chaos cannot occur in systems 
of two ordinary differential equations, although it can occur in difference equation models with 
one or two species.  It is not yet known how frequently ecological models exhibit chaos.  Chaos 
seems to be relatively rare in Lotka-Volterra-type models, in which the per capita growth rate of 
each species is a linear function of the population density of each other species.  However, 
Michael Gilpin (see below) has demonstrated parameter values for a Lotka-Volterra one 
predator-two prey model that give chaotic dynamics. 

Indirect effects have received more study than chaos.  One of the simplest possible indirect 
effects occurs when there are three competing species.  Species 1, for example, has a direct 
negative effect on each of the other two species by the definition of competition.  However, it 
also has an indirect positive effect on each of the other two; it benefits species 2 by competing 
with (and reducing the population density of) competitor 3, and benefits species 3 by competing 
with species 2.  Thus, it is possible for an increase in the population density of species 1 to 
increase the equilibrium density of species 3, if the indirect effect is larger than the direct one.  
There are a large number of possible indirect effects when there are four or more species. 
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