
Line6 Linux USB driver
Version 0.9.1beta

Markus Grabner

August 23rd, 2010

c©2005-2010 Markus Grabner

1

Contents

1 Introduction 4

2 Supported devices 4

3 User-space access 5

4 POD series driver features 5

4.1 POD series parameter setting 5

4.1.1 Single parameter access 7

4.1.2 Batch access (current channel) 7

4.1.3 Batch access (any channel, effects setup, and amp setup) 8

4.2 Tuner .. . 8

4.3 PCM audio .. . 9

4.3.1 Audio playback 9

4.3.2 Audio capture 10

4.3.3 Synchronized playback and capture 10

4.3.4 Signal routing 10

4.3.5 Audio clipping 10

4.3.6 Notes on sample conversion 11

4.3.7 Hard disc recording 11

4.3.8 ALSA controls .. . 11

4.4 MIDI .. 12

4.5 Missing features 12

5 TonePort driver features 12

5.1 PCM audio .. . 12

5.2 Source Select 13

6 Variax driver features 13

6.1 Read/write parameters 13

6.2 Guitar model parameters 14

6.3 Other parameters 14

7 Driver configuration 14

7.1 Standard kernel setup 14

7.2 Impulse response measurement 15

7.3 Checkpoints 15

2

8 Driver test suite 15

9 Known issues 16

9.1 POD series 16

9.2 Variax 16

10 Feedback 16

11 ChangeLog 16

11.1 Kernel driver 16

11.2 Re-amping tool 18

12 Disclaimer 19

3

1 Introduction

This document describes a Linux USB driver for Line6 hardware such as the POD series and the Variax
workbench. Note that the software is really just the driver layer which provides access to the underlying
hardware (via the USB interface). However, on top of this driver, applications with a command line or
graphical user interface can easily be built.

So far I do not have the USB specifications of these devices, soobviously not all features that are available
in the corresponding Windows software distributed by Line6are supported by this Linux driver.

2 Supported devices

The POD series portion of this driver has been specifically designed for the PODxt Pro product by Line6,
which is the only device from the POD series that is availableto me. However, users reported that they
have been able to use the driver also with other Line6 products. Table 1 shows a list of devices which are
recognised by the driver, and the level of support for each device. Note that I can test the driver only with
few of these devices myself, support statements for other devices are based on user feedback. If you have
problems with one of the devices listed as supported, pleasecontact me.

id name support

0x4250 BassPODxt yes
0x4642 BassPODxt Live yes
0x4252 BassPODxt Pro yes
0x4750 GuitarPort yes
0x5051 Pocket POD yes
0x4153 POD Studio GX yes
0x4150 POD Studio UX1 yes
0x4151 POD Studio UX2 yes
0x414a POD X3 no
0x414b POD X3 Live no
0x5044 PODxt yes
0x4650 PODxt Live∗) yes
0x5050 PODxt Pro∗) yes
0x4147 TonePort GX∗) yes
0x4141 TonePort UX1 yes
0x4142 TonePort UX2 yes
0x534d Variax workbench∗) partial

Table 1: Devices recognized by the driver, those marked with“ ∗)” are available for me for testing

If your Line6 product is not yet included in this list, you caneasily determine its product id by the command

lsusb -d 0e41:

0e41 is Line6’ vendor id, so output is restricted to Line6 devices(this does not yet require the driver to be
loaded). The output should be something like

Bus 001 Device 004: ID 0e41:5050 Line6, Inc. PODxt Pro

where5050 is the product id of the PODxt Pro.

If you are successful in using the driver for a Line6 product different from the ones listed in Table 1 by
modifying the arraysline6_id_tableandline6_name_table in the filedriver.c accordingly, please
let me know which device you are using and which product id youfound out.

4

Support for the Variax workbench is limited to the actual controls on the guitar (tone, volume, model) and
read-only access to the guitar model parameters.

3 User-space access

Since the driver operates in kernel space, it has to provide an interface to the supported features for user-
space programs. The current device settings are available via sysfs, i.e., a directory is automatically created
under/sys/bus/usb/devices as soon as the Line6 device is connected. The name of this newly created
directory (calledsysfs directory in the following) depends on the actual USB bus number the device is
connected to. A small utility is included in the driver package to identify this directory. The command

line6_find_device.pl sysdir POD

prints the sysfs directory assigned to he first Line6 device on the bus whose name matches “POD”. The
scriptcreate_links.pl creates easy to remember symbolic links to the sysfs directories of all detected
Line6 devices. The links are created in the current directory and have the formname:interface (e.g.,
PODxtLive:1 for the Variax interface of the PODxt Live). Note, however, that the links will become
invalid if you disconnect the device and connect it to a different USB port.

There also exists a raw MIDI interface for binary access and blocking reads (see Section 4.4), which are
features typically required by applications that interactively control an external device.

4 POD series driver features

This is a brief list of supported features. See below for details on how to access them.

• Reading/writing individual parameters

• Reading/writing complete channel, effects setup, and amp setup data

• Channel switching

• Tuner access

• Playback/capture/mixer device for any ALSA-compatible PCM audio application

• Signal routing (record clean/processed guitar signal, re-amping)

• Development tools

4.1 POD series parameter setting

The driver supports three types of access to POD’s parametersettings. Accessing single parameters (Sec-
tion 4.1.1) is most useful for shell scripts and on the command line. Batch access (Sections 4.1.2 and 4.1.3)
is used to load or save all parameters of a channel, effects setup, or amp setup in a single step. Interactive
(GUI) applications should use the MIDI interface instead (Section 4.4), which supports blocking mode and
avoids continuous polling of the device.

5

amp1_engage mid

amp_model mod_enable

amp_model_setup mod_param_1

amp_switch_select mod_param_1_double_precision

band_1_frequency mod_param_1_note_value

band_1_gain mod_param_2

band_2_frequency mod_param_3

band_2_gain mod_param_4

band_3_frequency mod_param_5

band_3_gain mod_pre_post

band_4_frequency mod_volume_mix

band_4_gain modulation_lo_cut

band_5_frequency modulation_model

band_5_gain noise_gate_enable

band_6_frequency pan

band_6_gain presence

bass reverb_decay

bypass_volume reverb_enable

cabinet_model reverb_mix

chan_vol reverb_pre_delay

comp_enable reverb_pre_post

compression_gain reverb_tone

compression_threshold reverb_type

delay_enable roomlevel

delay_model stomp_enable

delay_param_1 stomp_model

delay_param_1_double_precision stomp_param_1_note_value

delay_param_1_note_value stomp_param_2

delay_param_2 stomp_param_3

delay_param_3 stomp_param_4

delay_param_4 stomp_param_5

delay_param_5 stomp_param_6

delay_pre_post stomp_time

delay_reverb_lo_cut tap

delay_verb_model tempo_lsb

delay_volume_mix tempo_msb

di_delay treble

di_model tuner

drive tweak

effect_setup tweak_param_select

eq_enable vol_pedal_position

eq_pre_post volume_pedal_minimum

fx_loop_on_off volume_pre_post

gate_decay_time volume_tweak_pedal_assign

gate_threshold wah_enable

highmid wah_model

lowmid wah_position

mic_selection

Table 2: POD series control parameters corresponding to Appendix C of the “PODxt (Pro) Pilot’s Hand-
book” by Line6

6

name access description

bypass_volume read/write signal volume when processing unit is bypassed
channel read/write the current channel number (write an ASCII number to it to

switch to a different channel)
clip read only wait for audio clipping (see Section 4.3.5)
device_id read only numeric value identifying a member of the POD family
dirty read only 1 if any channel parameter has been modified since the last

channel recall, 0 otherwise
firmware_version read only firmware version of the POD device (as displayed on the last

page in the SYSTEM menu)
fx_loop_on_off read/write turns on (64-127) or off (0-63) the analog effects loop (this

parameter is omitted from Appendix C of the Line6 manual)
midi_mask read/write MIDI channel mask (see Section 4.4)
midi_postprocess read/write MIDI postprocessing flag (see Section 4.4)
name read only name of the current channel
serial_number read only serial number of device

Table 3: Additional POD series control parameters (including those introduced with firmware version 2.0
or later)

4.1.1 Single parameter access

In the sysfs directory, the driver creates several files corresponding to the “PODxt MIDI Controls” specified
in Appendix C of the “PODxt (Pro) Pilot’s Handbook” by Line6 and the document “MIDI Continuous
Controller Reference”1 (see also the filecontrol.h). Assume for the following that this directory is the
current working directory. If you modify the settings at your POD device, the modifications are reflected
in the “content” of these virtual files. So the command

cat treble

will report the current position of the “treble” dial in the range of 0-127 in ASCII representation. Likewise,
by using

echo 64 > presence

you can set the presence dial to the position half way betweenminimum and maximum (of course the dial
is not moved physically, but you can observe the changes in the POD device display if the device is in edit
mode). A complete list of parameters that can be manipulatedin a similar way is given in Tables 2 and 3.

4.1.2 Batch access (current channel)

You can access all current channel parameters with a single read or write access to the special filedump,
which is a binary representation of the current channel settings. You can save your favorite sound by using

cp dump ~/my_favorite_sound.pod

and restore it later to the currently active channel by

cp ~/my_favorite_sound.pod dump

If you are lucky enough to own both a PODxt Pro and a PODxt Live,you can even copy a channel from
one device to the other by the following command (see also Section 3):

cp PODxtPro:0/dump PODxtLive:0/dump

1available fromhttp://www.line6.com/support/manuals, authentication required

7

name access range description

dump_buf read/write 160 bytes parameter buffer for access to internal
memory

retrieve_channel write 0-127 number of channel to retrieve into
dump_buf

store_channel write 0-127 number of channel to store contents of
dump_buf to

retrieve_effects_setup write 0-63 number of effects setup to retrieve into
dump_buf

store_effects_setup write 0-63 number of effects setup to store con-
tents ofdump_buf to

retrieve_amp_setup write 0-63 number of amp model to retrieve into
dump_buf

store_amp_setup write 0-63 number of amp model to store contents
of dump_buf to

finish write – execute previously buffered “store” op-
erations

name_buf read 16 bytes name of the most recently retrieved
channel, effects setup, or amp setup

Table 4: Access to PODxt Pro’s internal memory

Writing to dump does not store the settings in the POD device internal memory, i.e., your changes will be
lost as soon as you switch to a different channel (unless you pressed “SAVE” twice before). A method for
permanent storage is presented in the next section.

4.1.3 Batch access (any channel, effects setup, and amp setup)

You can also access data different from the current channel.Writing an ASCII number (in the range 0-127)
to the special fileretrieve_channel requests transmission of all data for this channel. Once completed,
data are stored by the driver in an internal buffer, which canbe accessed viadump_buf. Note that reading
from this file blocks the caller until the transmission of previously requested data is actually completed.

Storing data to an arbitrary channel follows a similar procedure. First you have to copy your data to the
file dump_buf, then the required channel number has to be written tostore_channel. This procedure
can be repeated for several channels and must be followed by asingle write access (with arbitrary data)
to finish. Accessing effects and amp setups is similar, however, fewer storage places are available. See
Table 4 for a summary of these features.

Storing data to the POD device requires channel numbers (written tostore_channel) to strictly increase,
otherwise the device will crash after receiving thefinish command. The same has been observed for
mixing data for channels, effects setups, and amp setups.

The scriptretrieve_all_data.shcopies all channel, effects setup, and amp setup data into a newly cre-
ated directorydata. Likewise, the scriptstore_all_data.sh restores the POD device to the previously
stored state.

4.2 Tuner

There are four special files for tuner access (see Table 5).tuner_note reports the current note as an
integer. It is incremented by one with each half tone, see Table 6 for the values for standard guitar tuning.
The deviation from the ideal frequency is given in cents (from -50 to 50) and can be accessed via the file
tuner_pitch. If note and pitch can’t be determined (e.g., when more strings are hit simultaneously), the

8

driver returns the values -4 and -104 for note and pitch, respectively. The tuner’s base frequency (typically
440Hz) and the muting mode can be read from and written to the files tuner_freq andtuner_mute,
respectively. The scripttuner.sh demonstrates these features.

name access description

tuner_note read only current note
tuner_pitch read only current pitch
tuner_freq read/write tuner base frequency in Hertz (typically 440)
tuner_mute read/write tuner muting mode (0: bypass, 1: mute)

Table 5: Special files for tuner access

E A D G B E
17 22 27 32 36 41

Table 6: Guitar strings and their corresponding values reported by the tuner

Transmission of these values is never initiated by the POD device, but must be explicitly requested by the
PC. Therefore reading from these files always blocks the calling process for a short time.

Access to the tuner files requires that the tuner is actually switched on. Otherwise a read attempt results in
an error (error code-ENODEV).

4.3 PCM audio

The driver registers the POD device as an ALSA device that canbe used by any ALSA-compatible PCM
audio application (e.g.,xmms andalsaplayer). Refer to the documentation of your audio application on
how to select a particular device for capture and/or playback. You can verify the registration of the ALSA
device by the command

aplay -l

The output should contain some lines similar to

card 2: PODxtLive [PODxt Live], device 0: PODxt Live [PODxt Live]

Subdevices: 1/1

Subdevice #0: subdevice #0

4.3.1 Audio playback

The ALSA device name you should use for playback isplughw:n (wheren is the card number as reported
by aplay -l). Use the following command to play a WAV-file:

aplay -D plughw:n my_audio_file.wav

See the fileaplay.sh for an example. Note thataplay doesn’t decode MP3, but instead tries to play it as
raw audio, which produces nothing but (white) noise! Use theplainhw as the mixer, e.g.

alsamixergui -D hw:2

Turn the master volume (“OUTPUT” dial) all the way down to zero before using the POD device as an
ALSA device, especially when using headphones! PCM audio can be much louder than the guitar signal!

9

Computer

Amp+FX

Guitar Input

Computer

Amp+FX

Guitar Input
Computer

Amp+FX

Output

(a) mode 0: send pro-
cessed guitar

Computer

Amp+FX

Guitar Input

Computer

Amp+FX

Guitar Input
Computer

Amp+FX

Output

(b) mode 1: send clean
guitar

Computer

Amp+FX

Guitar Input

Computer

Amp+FX

Guitar Input
Computer

Amp+FX

Output

(c) mode 2: send clean
guitar re-amp playback

Computer

Amp+FX

Guitar Input

Computer

Amp+FX

Guitar Input
Computer

Amp+FX

Output

(d) mode 3: send re-amp
playback

Figure 1: different signal routing options

4.3.2 Audio capture

Audio capture is also implemented via the ALSA interface. The filearecord.sh is an example of how to
call ALSA’s recording utilityarecord for recording either in POD’s native format or with resampling to a
more common format.

4.3.3 Synchronized playback and capture

Sometimes it is required that the playback and capture channel are triggered exactly at the same time (e.g.,
recording with a pilot track, re-amping). This feature is provided by the ALSA user-level library (func-
tion snd_pcm_link) and is supported by this driver. It is demonstrated in the accompanying application
reamping, which routes a previously recorded dry guitar signal through the POD device and stores the
processed signal (see Section 4.3.4 for details on signal routing). The program is invoked as

reamping dry_signal.wav processed_signal.wav

The default is to use ALSA devicehw:0, use the option-D to select a different one (in the same way as
with the commandaplay). Currently only WAV files in POD’s native sampling format are supported. A
compatible dry guitar signal can be recorded by the scriptrecord_dry.sh. Both programs are not part of
the driver distribution, but contained in a separate package.

4.3.4 Signal routing

Normally audio data transmitted to the PC by the POD device have been processed by the amp and effects
modeler stages, and audio data sent to the device are directly output without further processing. However,
it is also possible to record the clean guitar signal (while still hearing the processed signal, e.g., in the
headphones), and to apply the amp and effects processing in asecond stage (re-amping). Four different
configurations exist (see Figure 1), switching between themis accomplished by writing one of the numbers
0 to 3 (as ASCII) to the special filerouting. The monitoring level of the guitar signal can be read from
and written tomonitor_level, which ranges from 0 to 65535.

Figures 1a to 1d correspond to those displayed in the PODxt system control panel under Windows, with
the exception of figure 1d. The Windows driver forces the instrument monitoring level to zero in re-amping
mode (which is most likely what you want). The Linux driver leaves this responsibility to the user, giving
additional flexibility to create fancy effects.

4.3.5 Audio clipping

Under some conditions (e.g., if channel volume and compressor gain are set to high values), the processed
signal exceeds the POD’s 24 bit audio range and must be clipped. This is clearly audible, and an application
might want to warn the user about it. A read request on theclip special file blocks the calling process
until an audio clipping event occurs. The return value is empty.

10

4.3.6 Notes on sample conversion

The POD device uses a rather uncommon sample format, namely 24 bit audio (little endian, stored in 3
bytes) at 39062.5 Hz sampling frequency2. ALSA only supports integer sampling frequencies, so I hope
you don’t mind that I rounded it up to 39063 :-) But more important, since you probably don’t have audio
files recorded with exactly this frame rate and sample format, you have to use ALSA’s built-in conversion
utilities by playing toplughw:n instead ofhw:n. The 16→24 bit conversion is supported in ALSA-1.0.4
and higher, without that the player simply refuses to use thedevice. The sample rate conversion has been
significantly improved in ALSA-1.0.6, but is still not perfect. Depending on the frequency distribution
of the music you want to listen to, this might be a problem or not (e.g., Gary Moore’s guitar on “Still
Got The Blues” sounds very strange, while his vocals are ok).If you need better sound quality, you
should use an external sample rate conversion utility such as the one included insox3. The small script
podxtpro_resample.sh feedssox with the parameters to do this conversion, such that

podxtpro_resample.sh my_song.mp3 my_song_resampled.wav

createsmy_song_resampled.wav (has to be WAV, unfortunately), which is perfectly suitablefor playback
on the POD device, frommy_song.mp3, which can be stored at any sample frequency and format that is
supported in MP3. Unless you plan to use only the parameter setting features of the driver, you need a
recent version of the Linux kernel and ALSA (seeINSTALL).

A patch to fix the resampling problem of ALSA-1.0.6 is also included in this package. This patch is already
incorporated in ALSA-1.0.7, so if you use this version, you neither need to manually resample your audio
files nor to patch and recompile the ALSA library. The same is true for SuSE’s version of ALSA-1.0.6
distributed with SuSE Linux 9.2, which also includes the patch.

ALSA-1.0.7 has a bug which causes the ALSA driver to crash when recording audio with resampling via
theplughw device, and ALSA-1.0.8 contains a broken resampler. The resampler of ALSA-1.0.9 has been
improved, but has a bug that produces noise when resampling amono audio stream. This has been fixed in
ALSA-1.0.10rc2, which is is therefore highly recommended.

4.3.7 Hard disc recording

The driver has been successfully used to record music with the open source digital audio workstation
softwareardour4. This requires thejack5 daemon to be started like

jackd -d alsa -d hw:1

However, this restricts all recordings to be taken at POD’s sample rate of 39063 Hz. Exporting audio to
a more common sample rate introduces some “tinny” artifacts(due to up- and subsequent downsampling)
that are not present when playing the recorded tracks inardour. A simple demo is available on the driver
web site6.

4.3.8 ALSA controls

The driver registers two volume controls, one for the PCM playback volume, and one for the monitor level
(see Section 4.3.4). Any ALSA mixer application can be used to adjust the volume settings, best results
are achieved with the KDE4 programkmix.

2This seems to be derived from the USB clock frequency (10 MHz)by a frequency divider (1/256).
3http://sox.sourceforge.net
4http://www.ardour.org
5http://jackit.sourceforge.net
6http://www.tanzband-scream.at/line6/download/Man_On_The_Mill.mp3

11

4.4 MIDI

In addition to the ASCII based special files in the sysfs directory, the driver registers a raw MIDI interface
for binary access to the POD device. It can be accessed via ALSA just like any MIDI-capable sound card.
However, you don’t have to connect a MIDI cable, data are still transmitted and received via the USB cable,
and the driver transparently provides the required translation.

Similar to the procedure to identify the PCM device (Section4.3), you can use the command

amidi -l

to query existing MIDI interfaces on your system. The outputshould contain a line similar to

hw:1,0 PODxt Pro

You will most likely not want to manually communicate with the binary MIDI interface. You can ac-
cess it in your programs via the ALSA MIDI API or via a device file created by ALSA (which is called
/dev/snd/midiC1D0 for the example above).

The main differences between the MIDI interface and theraw special file explained in Section 7 are as
follows:

• The MIDI interface is bidirectional.

• The MIDI output interface can be filtered according to a givenchannel mask. A MIDI command
(with the command byte in the range from0x80 to 0xef) is transmitted only if the bit corresponding
to the MIDI channel is set in themidi_mask special file (which is “1” by default, i.e., only channel 0
is allowed for output). Note that the MIDI channel is encodedin the four lower bits of the command
byte.

• Data transmitted via the MIDI interface can be interpreted to a certain extent (e.g., requesting a
channel dump on channel change). To activate this feature, write “1” to the midi_postprocess

special file (write “0” to deactivate, which is the default).

4.5 Missing features

• Maintenance functions (such as firmware update)

• More consistency checks to avoid sending commands to the PODdevice that might cause it to crash

• Probably many more

5 TonePort driver features

5.1 PCM audio

The TonePort and similar devices can be used as full duplex ALSA PCM devices. Note, however, that
audio processing (e.g., amp modelling) is done in software on the PC in the original Line6 product. The
corresponding parameters of the POD series (Section 4.1) are therefore not available for TonePort devices.
Moreover, the TonePort doesn’t support hardware monitoring, this feature is therefore emulated by the
driver. Note that the driver can directly forward any audio data packet received via the capture channel to
the playback channel, which gives a latency of 2ms. In contrast, software such as jack typically maintains
larger buffers, which increases latency. Be sure not to enable the driver’s monitoring feature and other
software monitoring methods at the same time. The same ALSA controls are available for the TonePort as
for the POD series (Section 4.3.8). Playback and monitor level should not be set to the maximum value at
the same time since this can easily cause overdrive and a noisy signal.

The intensities of the two built-in LEDs (red and green) can be modified by writing values from 0 to 38 to
the special files in Table 7. Larger values cause the corresponding LED to blink.

12

name description

led_green intensity of green LED
led_red intensity of red LED

Table 7: TonePort control parameters

name description

Microphone microphone input
Line line input (stereo)
Instrument instrument input
Inst & Mic instrument and microphone input (mixed into a single signal)

Table 8: possible values for “PCM Capture Source” switch of UX1 devices

5.2 Source Select

The UX1 devices have different audio inputs, which can be selected for capturing by means of a mixer
control with the namePCM Capture Source. Use an application likealsamixer7 or kmix to modifiy
the value of the source select switch. Possible values are listed in Table 8.

I assume that similar features are available for UX2 devices, but didn’t yet receive any feedback on this,
hence the UX2 don’t have the source select switch.

6 Variax driver features

Most of the Variax parameters are read-only in the current version of the driver. Details are given in the
following subsections.

6.1 Read/write parameters

The Variax driver is similar to the POD series driver in the way data is accessed via the sysfs directory (see
Section 4.1.1) and via MIDI (see Section 4.4). However, onlyfew parameters are available with read/write
access in the current version (see table 9). The Variax interface supports explicit activation or deactivation
by writing “1” or “0” to the parameteractive, respectively. This is useful to avoid “zipper noise” which
is audible when the interface is active and one of the guitar’s dials is turned. The interface is initially active
on driver startup.

name description

model current model (encodes both the model dial and the pickup selector)
tone current position of tone dial
volume current position of volume dial
active current activation status

Table 9: Variax workbench control parameters with read/write access

13

body mix6 save_tone

capacitance pickup1_angle taper

detune1 pickup1_enable tone_dump

detune2 pickup1_level tone_resistance

detune3 pickup1_position tuning1

detune4 pickup1_type tuning2

detune5 pickup2_angle tuning3

detune6 pickup2_enable tuning4

mix1 pickup2_level tuning5

mix2 pickup2_position tuning6

mix3 pickup2_type tuning_enable

mix4 pickup_phase volume_dump

mix5 pickup_wiring volume_resistance

Table 10: Variax model parameters (currently read-only)

name access description

bank read only name of current bank
dump read only binary representation of current model
name read only name of current model

Table 11: Additional Variax parameters

6.2 Guitar model parameters

Table 10 lists the parameters that describe the current guitar model. Most of them are self-explanatory
and correspond to similarly named controls in the “Variax Workbench” software delivered with the Variax
USB interface by Line6. The parameterpickup_wiring refers to the “series/parallel” switch, where “1”
means “series” and “0” means “parallel”. Thetone_dump andvolume_dump parameters are stored with
the guitar model, in contrast totone andvolume, which reflect the current position of the corresponding
dial on the guitar.

6.3 Other parameters

Table 11 lists a few other parameters which provide access tothe current model data and associated meta
data. Thedump special file behaves similar as the one provided by the POD driver (see Section 4.1.2),
except the fact that it is read-only in the current version.

The Variax driver can also be configured to provide theraw special file (see Section 7).

7 Driver configuration

7.1 Standard kernel setup

The driver supports some optional features, which are mainly used for debugging purposes and therefore
disabled by default. You can enable them by invoking

make xconfig

7Note that the GUI variant of the ALSA mixer (alsamixergui) does not work for this purpose.

14

������������	
���

������	�����
��

�
�
��

�
�
��
�
�
	
��
��
�
�
��

�����

���������� ����������

��������	��
�����������

����

�����
�����

�����
�����

Figure 2: impulse response measurement mode

in the driver source code directory, searching for Line6-related settings (menu Edit→Find), and checking
the appropriate boxes. Documentation of each feature is available in the configuration software. You will
be asked for the root password since this modifies the configuration header file of the running kernel. Be
careful not to modify any settings not related to the Line6 driver. This won’t modify your kernel’s behaviour
(unless you recompile it), but it might confuse other software which looks up the kernel configuration at
this place.

7.2 Impulse response measurement

When compiled with the “measure impulse response” option, the driver provides a mode in which a se-
quence of impulses is sent both to the right output of the device and to the right capture channel of the
ALSA subsystem (see Figure 2). The impulse sequence should be returned to the input of the device via an
external audio cable, and the returned signal is provided tothe left output of the device and the left capture
channel. The delay between the impulses on the right and leftcapture channel is the total A/D and D/A
latency of the device. The same measurement could be obtained by connecting the outputs of the device to
an oscilloscope, but I never tried to do so.

The impulse response measurement mode is entered by writinga value larger than 0 to the special file
impulse_volume. This value defines the amplitude of the impulses and ranges from 0 (off) to 127 (max-
imum). Moreover, the period of the impulse sequence can be modified by writing the desired time in
milliseconds between two impulses to the special fileimpulse_period (the default period is 100ms). The
driver returns to normal operation by writing 0 toimpulse_volume.

7.3 Checkpoints

The driver source code can be modified such that a checkpoint (file name and line number) is written to the
syslog before (almost) every statement, which is useful fordetailed tracing of the driver’s operation. This
optional feature is documented in the filecheckpoint/README.txt.

8 Driver test suite

The driver source code directory contains a tool (testsuite.sh) to test various features of the Line6 Linux
driver. It is started without parameters and offers the userseveral options to test Line6 devices connected
to the system. The tool is meant to be self-explanatory and interactively guides the user through the testing
process (thekdialog program distributed with KDE is required for user interaction, I am ready to accept
patches for other desktop environments). The user is asked whether the tests were successful (e.g., “did

15

you hear what you recorded?”). These test results and the system configuration are written to a log file
(testsuite.log).

9 Known issues

9.1 POD series

Due to some undocumented timing issues it takes several seconds at driver startup until the current channel
data has been received (i.e., the contents of the sysfs directory are valid). Moreover, the Variax driver
sometimes fails to properly initialize, requiring to unplug and reconnect the Workbench device from the
PC. The current channel number is only valid after it has beenchanged at least once.

The driver is not really paranoid about being unloaded whilein use. While it survives disconnecting the
USB cable during operation, there might be situations whereit causes the machine to crash.

On the AMD64 platform, repeatedly performing batch writes (Section 4.1.3) can cause the USB subsystem
to hang, requiring to reload all involved kernel modules.

Some problems that can be experienced with the audio subsystem of the driver are actually related to old
versions of ALSA. See Section 4.3.6 for a discussion.

9.2 Variax

Under some (yet to be examined) conditions the driver blocksthe calling process when it tries to access its
sysfs directory. If you encounter this problem, disconnectand then reconnect the Variax workbench from
the PC (it may remain connected to the Variax).

10 Feedback

Any kind of feedback regarding the driver is highly appreciated. Please send an E-mail to the author
(grabner@icg.tugraz.at) and include the following data in your report:

• Line6 Linux USB driver version

• Linux kernel version

• ALSA library version

• Linux distribution

11 ChangeLog

11.1 Kernel driver

• version 0.9.1

– improved support for TonePort/POD Studio GX

– added support for TonePort/POD Studio UX1 and UX2

– support for Linux kernel≥ 2.6.35

– using standard Linux kernel configuration method

16

– improved device initialization

– power management handling (continue audio I/O after suspend/resume)

– test suite for interactive driver testing

– source code instrumentation tool (write checkpoints to syslog)

– optional impulse response measurement

• version 0.9.0 (never released officially)
• version 0.8.1

– signal monitoring for TonePort GX

– ALSA control for monitor level

– reduced latency

• version 0.8.0

– support for TonePort GX

• version 0.7.3

– support for Linux kernel≥ 2.6.23

– MIDI channel mask

– Debian packaging

• version 0.7.2

– support for Linux kernel≥ 2.6.21

– Variax workbench issue fixed

• version 0.7.1

– fixed support for Linux kernel< 2.6.18

• version 0.7.0

– support for Linux kernel≥ 2.6.18

– improved support for PODxt Live

– improved support for multiple devices

• version 0.6.5

– ALSA/jack issue fixed

• version 0.6.4

– consider model and firmware version when creating special files

• version 0.6.3

– device registration (e.g., for HAL)

• version 0.6.2

– floating point issues fixed

• version 0.6.1

– read-only access to Variax guitar model parameters

– access to POD firmware version and device id

– some kernel version and platform specific issues fixed

• version 0.6

17

– preliminary support for the Variax workbench

– Line6 device autodetection in demo scripts

• version 0.5.3

– some issues related to particular kernel versions fixed

• version 0.5.2

– support for Bass PODxt Live

• version 0.5.1

– bug fixed (noise after repositioning output stream pointer)

• version 0.5

– raw MIDI interface

– “pause” operation implemented

– support for Linux kernel≥ 2.6.12

– support for PPC platform

– query serial number

– some controls renamed according to updated Line6 manual

• version 0.4

– improved audio interface (including synchronized playback/capture)

– report when “SAVE” button pressed twice

– support for PODxt Pro controls introduced with firmware v2.14

• version 0.3

– tuner access

– signal routing

– store channels, amp setups, and effects setups

– AMD64 support

• version 0.2.2

– compatibility with kernel 2.6.8

• version 0.2.1

– more device ids

• version 0.2

– audio capture

– support for PODxt Pro controls introduced with firmware v2.0

• version 0.1

– audio playback

– PODxt Pro parameter access

11.2 Re-amping tool

• version 0.1

– re-amping in PODxt Pro native audio format

– dry guitar record script

18

12 Disclaimer

As this is experimental software, I certainly cannot be heldresponsible if your hardware goes up in flames
or has its firmware erased due to the use of this driver, or you suffer hearing damage from not following
the advice in Section 4.3.1. Neither of these events, however, occurred during development of the driver,
so feel free to use this software, but use it at your own risk!

Or, to say it with the words of the GPL:

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHERPARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREEDTO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

19

