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PREFACE.

. THE work on Algebra of which this volume forms the first
part, is so far elementary that it begins at the beginning of
the subject. It is not, however, intended for the use of
absolute beginners.

The teaching of Algebra in the earlier stages ought to
consist in a gradual generalisation of Arithmetic; in other
words, Algebra ought, in the first instance, to be taught as
Arithmetica Universalis in the strictest sense. I suppose
that the student has gone in this way the length of, say, the
solution of problems by means of simple or perhaps even
quadratic equations, and that he is more or less familiar
with the construction of literal formule, such, for example,
as that for the amount of a sum of money during a given
term at simple interest.

Then it becomes necessary, if Algebra is to be any-
thing more than a mere bundle of unconnected rules, to
lay down generally the three fundamental laws of the
subject, and to proceed deductively—in short, to introduce
the idea of dlgebraic Form, which is the foundation of all
the modern developments of Algebra and the secret of analy-
tical| geometry, the most beautiful of all its applications.
Such is the course followed from the beginning in this

work.
b
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vi PREFACE.

As mathematical education stands at present in this
country, the first part might be used in the higher classes
of our secondary schools and in the lower courses of our
" colleges and universities. It will be seen on looking through
the pages that the only knowledge required outside of
Algebra proper is familiarity with the definition of the
trigonometrical functions and a knowledge of their funda-
mental addition-theorem.

The first object I have set before me is to develop
Algebra as a science, and thereby to increase its usefulness
as an educational discipline. I have also endeavoured so
to lay the foundations that nothing shall have to be un-
learned and as little as possible added when the student
comes to the higher parts of the subject. The neglect of
this consideration I have found to be one of the most
important of the many defects of the English text-books
hitherto in vogue. 'Where immediate practical application
comes in question, I have striven to adapt the matter to
that end as far as the main general educational purpose
would allow. I have also endeavoured, so far as possible,
to give complete information on every subject taken up, or,
in default of that, to indicate the proper sources; so that
the book should serve the student both as & manual and
as a book of reference. The introduction here and there of
historical notes is intended partly to serve the purpose just
mentioned, and partly to familiarise the student with the
great names of the science, and to open for him a vista
beyond the boards of an elementary text-book.

As examples of the special features of this book, I may
ask the attention of teachers to Chapters iv. and v. With
respect to the opening chapter, which the beginner will

¢




PREFACE. vil

doubtless find the hardest in the book, I should mention
that it was written as a suggestion to the teacher how to
connect the general laws of Algebra with the former ex-
perience of the pupil. In writing this chapter I had to
remember that I was engaged in writing not a book on the
philosophical nature of the first principles of Algebra, but
the first chapter of a book on their consequences. Another
peculiarity of the work is the large amount of illustrative
matter, which I thought necessary to prevent the vagueness
which dims the learner’s vision of pure theory; this has
swollen the book to dimensions and corresponding price
that require some apology. The chapters on the theory of
the complex variable and on the equivalence of systems of
equations, the free use of graphical illustrations, and the
elementary discussion of problems on maxima and minima,
although new features in an English text-book, stand so
little in need of apology with the scientific public that I
offer none. .

The order of the matter, the character of the illustra-
tions, and the method of exposition generally, are the result
of some ten years’ experience as a university teacher. I
have adopted now this, now that deviation from accepted
English usages solely at the dictation of experience. It
was only after my own ideas had been to a considerable
extent thus fixed that I did what possibly I ought to have
done sooner, viz., consulted foreign elementary treatises.
I then found that wherever there had been free considera-
tion of the subject the results had been much the same.
I thus derived moral support, and obtained numberless hints
on matters of detail, the exact sources of which it would be
difficult to indicate. I may mention, however, as specimens

2



viii PREFACE.

of the class of treatises referred to, the elementary text-
books of Baltzer in German and Collin in French. Among
the treatises to which I am indebted in the matter of theory
and logic, I should mention the works of De Morgan, Pea-
cock, Lipschitz, and Serret. Many of the exercises have
been either taken from my own class examination papers
or constructed expressly to illustrate some theoretical point
discussed in the text. For the rest I am heavily indebted
to the examination papers of the various colleges in Cam-
bridge. I had originally intended to indicate in all cases
the sources, but soon I found recurrences which rendered
this difficult, if not impossible.

The order in which the matter is arranged will doubt-
less seem strange to many teachers, but a little reflection
will, I think, convince them that it could easily be justified.
There is, however, no necessity that, at a first reading, the
order of the chapters should be exactly adhered to. I think
that, in a final reading, the order I have given should be
followed, as it seems to me to be the natural order into
which the subjects fall after they have been fully com-
prehended in their relation to the fundamental laws of
Algebra. .

With respect to the very large number of Exercises,
I should mention that they have been given for the con-
venience of the teacher, in order that he might have, year
by year, in using the book, a sufficient variety to prevent
mere rote-work on the part of his pupils. I should much
deprecate the idea that any ome pupil is to work all the
exercises at the first or at any reading 'We do too much
of that kind of work in this country.

I have to acknowledge personal obligations to Professor




PREFACE. ix

Tarr, to Dr. THOMAS MUIR, and to my assistant, Mr. R. E.
ALLARDICE, for criticism and suggestions regarding the
theoretical part of the work; to these gentlemen and to
Messrs. MackaY and A. Y. FRAsgRr for proof reading, and
for much assistance in the tedious work of verifying the
answers to exercises. In this latter part of the work I
am also indebted to my pupil, Mr. J. MACKENZE, and to
my old friend and former tutor, Dr. DAvID RENNET of
Aberdeen.

Notwithstanding the kind assistance of my friends and
the care I have taken myself, there must remain many
errors both in the text and in the answers to the exercises,
notification of which either to my publishers or to myself
will be gratefully received.

G. CHRYSTAL.

EpINBURGH, 26th June 1886.
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CHAPTER I

The Fundamental Laws and Processes of Algebra
a8 exhibited in ordinary Arithmetic.

§ 1.] The student is already familiar with the distinction
between abstract and concrete arithmetic. The former is con-
cerned with those laws of, and operations with, numbers that are
independent of the things numbered ; the latter is taken up
‘with applications of the former to the numeration of various
classes of things.

. Confining ourselves for the present to abstract arithmetic,
let us consider the following series of equalities :—

2623 1023 2623 x 3+ 1023 x 61 70272

61 "3 T 61x3 = g3 "84

The first step is merely the assertion of the equivalence of
two different sets of operations with the same numbers. The
second and third steps, though doubtless based on certain simple
laws from which also the first is a consequence, nevertheless
require for their direct execution the application of certain rules,
of a kind to which the name arithmetical is appropriated.

We have thus shadowed forth two great branches of the
higher mathematics. One, algebra, strictly so called, i.c. the
theory of operation with numbers, or, more generally speaking,
with quantities; the other, the higher arithmetic, or theory of
numbers. These two sciences are identical as to their funda-
mental laws, but differ widely in their derived processes. As is
usual in elementary text-books, the elements of both will be
treated in this work.

VOL. I. B
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§ 2.] Ordinary algebra is simply the general theory of those
operations with quantity of which the operations of ordinary
abstract arithmetic are a particular case.

The fundamental laws of this algebra are therefore to be
sought for in ordinary arithmetic.

However various and complex the operations of arithmetic
may seem, it appears on consideration that they are merely the
result of the application of a very small number of fundamental
principles. To make this plain we return for a little to the very
elements of arithmetic.

ADDITION,
AND THE GENERAL LAWS CONNECTED THEREWITH.

. § 3.] When a group of things, no matter how unlike, is con-
sidered merely with reference to the number of individuals it
contains, it may be represented by another group, the individuals
of which are all alike, provided only there be as many individuals
in the representative as in the original group. The members of
our representative group may be merely marks (1s say) on a
piece of paper. The process of counting a group may therefore
be conceived as the successive placing of 1s in our representa-
tive group, until we have as many 1s as there are individuals
in the group to be numbered. This process of adding a 1 is
represented by writing + 1. 'We may thus have

+1, +1+1, +1+1+1, +1+4+1+1+1, &c,

as representative groups or “numbers.” As the student is of
course aware, these symbols in ordinary arithmetic are abbreviated

into 1, 2 3, 4,&c.
Hence using the symbol “=" to stand for “the same as,” or

“replaceable by,” or “equal to,” we have, as definitions of 1, 2,
3, 4, &c.,

1=4+1,
2=+1+1,
3=+1+1+1,

4=+1+1+1+1, &e.
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And there is a further arrangement for abridging the repre-
sentation of large numbers, which the student is familiar with as
the decimal notation. With numerical notation we are not
further concerned at present, but there is a view of the above
equalities which is important. After the group +1+ 1+ 1 has
been finished it may be viewed as representing a single idea to
the mind, viz. the number “three.” In other words, we may
look at +1+1+1 as a series of successive additions, or we
may think of it as a whole When it is necessary for any
purpose to emphasise the latter view, we enclose + 1 +1+ 1 in a
bracket, thus (+ 1 + 1 + 1); and it will be observed that precisely
the same result is attained by writing the symbol 3 in place of
+1+1+1, for in the symbol 3 all trace of the formation of
the number by successive addition is lost. We might therefore
understand the equality or equation

3 =+1+1+1
to mean (+1+1+1)=+1+1+1,

and then the equation is a case of the algebraical Law oF
ASSOCIATION. T

The full meaning of this law will be best understood by con-
sidering the case of two groups of individuals, say one of three
and another of four. If we wish to find the number of a group
made up by combining the two, we may adopt the child’s process
of counting through them in succession, thus,

+1+1+1] +141+4+1+1=17.

But by the law of association we may write for+1+1 +1,

(+1+1+1),
and for+1+1+1+1,

(+1+1+1+1),
and we have +(+1+1+1)+(+1+1+1+1)=7,
or +3+4=17.

It will be observed that we have added a + in each case before
the bracket, and it may be asked how this is justified. The
‘answer is simply that setting down a representative group of :
three individuals is an operation of exactly the same nature as
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| setti ing down a group of one. The law of association for addition
' worded in this way for the simple case before us would be this:
To set down a representatxve group of three individuals is the same
" a8 to set down in succession three representative individuals.
The principle of association may be carried further. The
representative group + 3 + 4 may itself enter either as a whole
or by its parts into some further enumeration, e.g.
+6+(+3+4) =+6+3+4
is an example of the law of association which the student will
have no difficulty in interpreting in the manner already indi-
cated. The ultimate proof of the equality may be regarded as
resting on a decomposition of all the symbols into a succession
of units. There is, of course, no limit to the complication of
associations. Thus we have
[(+9+8) + {+6+(+5+3)}] + {+6+(+3+5)}
=(+9+8) + {+6+(+5+3)} + 6+(+3+5),
+9+8+6+(+56+3)+6+3+5,
=+9+8+6+5+3+6+3+5,

each single removal of a bracket being an assertion of the law
of association. The student will remark the use of brackets of
different forms to indicate clearly the different associations.

§ 4.] It follows from the definitions

3=+1+1+1, 2=+1+1,
that +3+2=+2+3;
and by a similar proof we might show that
+3+4+6 =+3+6+4=+4+3+6, &c;
in other words, the order in which a series of additions is arranged
13 indifferent.

This is the algebraical LAw or COMMUTATION, and it will
be observed that its application is unrestricted in arithmetical
operations where additions alone are concerned. The statement
of this law at once suggests a principle of great importance in
algebra, viz. the attachment of the “symbol of operation” or
“ operator ” to the number, or, more generally speaking, “ subject”
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or “operand” on which it acts. Thus in the above equations
the + before the 3 is supposed to accompany the 3 when it is
transferred from one part of the chain of additions to another.

" The operands in + 3, + 4, and + 6 are already complex ; and
it may be shown by a further application of the reasoning used
in the beginning of this article that the operand may be complex
to any degree without interfering with the validity of the commu-
tative law ; e.g.

+ {+3+(+2+3)} + (+6+8)
=+(+6+8) + {+3+(+2+3)},
of which a proof might also be given by first dissociating, then
commutating the individual terms + 6, + 8, + 3, &c., and then
reassociating.
SUBTRACTION.

§ 5.] For algebraical purposes the most convenient course is
to define subtraction as the inverse of addition. Thus the ques-
tion, What is the result of subtracting b from a ? is regarded as
the same as the question, What must be added to + b to produce

+a? and the quantity which is the answer to this question is
symbolised by + @ — 5. In other words, + a — b is defined by the
equation

+(+6-0)+b = +a.

Starting with this definition and the assumption that there is always
an answer fo our question, i.e. that the quantity +a—>0 always
exists, we may show that the laws of association and commuta-
tion hold for chains of operations whose successive links are
additions and subtractions.

§ 6.] We thus have

+a+(+b-¢)=+(+a+bd)-c;
or, which is the same thing,
' +a+(+b-c)=+a+b-c
For* {+(+a+d)-c} + c= +(+a+d),
by the definition of subtraction, = +a+b.

* When + occurs before the first number of a chain of additions and sub-
tractions it is generally omitted for brevity.
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+a+(+b-c)+ec=+a+ {+(+b-c)+¢},
by law of association for addition,
=+a+ {+b},
by definition of subtraction,
=+a+b

Hence {+(+a+b)—c} +c=+a+(+b-c)+¢

whence* +(+a+d)-c=+a+(+b-0o)
Again, +a-(+b-c)=+a-b+c (1).
For by definition of subtraction
{+a-(+b-¢)} +(+b-¢)= +a (2),

and by the associative and commutative laws for addition
{+a-b+c} +(+b—c)

+a-b+ec+(+b-c),
+a-b+(+b-c)+q
+(+a-b)+d
+a ' (3)
applying the definition of subtraction twice over.

From (2) and (3) we have

{+a-(+b=-¢)} +(+b-c) ={+a-b+c} +(+b-0),
whence +a-(+b-c)=+a-b+ec

§ 7.] The results just arrived at, taken along with those of
§ 3 above, may be looked upon as establishing the law of associa-
tion for addition and subtraction. This law may be symbolised
as follows : — ,

x(kakbtck &) = £(xa)=(£d) (k)= &,

with the following law of signs : —
+(+a)=+a, —(+a)=-a
+(-a)=-a -(-0)=+a.

* The assumption that is made should be carefully noted. It is that
if A+B=C+B then A=C. It would be out of place to discuss this assump-
tion here ; we simply point it out and call the student’s attention to a similar
one that we make on p. 15, viz. that if Ax B=Cx B then A=C.
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The same may be stated in words as follows :—If any number of
quandities affected with the signs + or — occur in a bracket, the bracket
may be removed, all the signs remaining the same if a + precede the
bracket, each + being changed into a — and each — into a + if a — precede
the bracket. -

In the above symbolical statement double signs ( =) have
been used for compactness. The student will observe that with
three letters 2 x 2 x 2 x 2, i.e. 16, cases are included. Thus the
law gives

+(+a+b+e)=+a+b+e, -
+(-a+b+tc)=—-a+d+e,
-(-a+b+c)=+a-b-g¢ &ec

§ 8.] Since +a —c+¢= +a, by the definition of subtraction,
we have
+a+b-c=+(+a-c)+c+(+b-c),
=+(+a-c) + {+(+d-c)+¢},
by law of commutation for addition,
+(+e-c)+ {+b},
by definition of subtraction,
+a—c+b (1).
+a-(+b+c),
by law of association for addition and
subtraction,
=+a-(+c+d),
by law of commutation for addition,

Also +a-b-¢

Il

=+a-c-b (2),
by law of association for addition and
subtraction.

Equations (1) and (2) may be regarded as extending the law
of commutation to the sign —.* We can now state this law fully

as follows :—
taxtb=xbh+aq,

* It might be objected here that it has not been shown that — ¢ may come
into the first place in the chain of operations. The answer to this would be
that +a - ¢~ b may either be a complete chain in itgelf or merely the latter
part of a longer chain, say p+a-c-5. In the second case our proof would
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or in words :—In any chain of additions and subiractions the different
members may be written in any order, each with ils proper sign
attached. .

Here the full significance of the attachment of the operator
to the operand appears. Thus in the following instance the
quantities change places, carrying their signs of operation with
them in accordance with the commutative law—

+3-2+1-1=+3+1-1-2,
+3-1+1-2,
=-2-1+1+3.
§9.] It will not have escaped the student that, in the as-
" sumption that +a - b is a quantity that always exists, we have
already transcended the limits of ordinary arithmetic. He will
therefore be the less surprised to find that many of the cases
included under the laws of association and commutation exhibit
operations that are not intelligible in the ordinary arithmetical
sense.

It a=3 and b=2,
then by the law of association and by the definition of sub-
traction +3-2=+14+2-2,
=+1,

in accordance with ordinary arithmetical notions.
On the other hand, if ’
a=2and b=3,
then by the laws of association and commutation and by the
definition of subtraction

show that p+a—~c-b=p-c+a-b; and the nature of algebraic generality
requires that +a — ¢ - b should not have any property in composition which it
has not per s¢. On the same ground the (+a - ) of § 1, which was originally
defined as a single quantity, is resolved into +a -5, and made subject to the
laws of commutation and association, so that (+a—b) may now be written
+a-b, -b+a, —(-a+bd), and so on. As to all questions of this kind see
the concluding remarks of this chapter. It may condace to clearness in fol-
lowing some of the above discussions to remember that the primary view of a
chain of operations written in any order is that the operations are to be
carried out successively from left to right; e.g. if we think merely of the last
addition, + 2+ 8 + 5+ 6 in more fully expressive symbols means (+ 2+ 8 + 5)+6,
t.e. +10+6.



1] ESSENTIALLY NEGATIVE QUANTITIES. 9

+2-3=+2-(+2+1),

=+2-2-1,
=-1+2-29,
=-1

Here we have a question asked to which there is no ordinary
arithmetical answer, and an answer arrived at which has no
meaning in ordinary arithmetic.

Such an operation as + 2 - 3, or its algebraical equivalent,

-1, is to be expected as soon as we begin to reason about
operations according to general laws without regard to the appli-
cation or interpretation of the results to be arrived at. It must
be remembered that the result of a series of operations may be
looked on either as an end in itself, say the number of in-
dividuals in a group, or it may be looked upon merely as an
operand destined to take place"in further operations. In the
latter case, if additions and subtractions be in question, it must
have either the + or the — sign, and either is as likely to occur
and is as reasonably to be expected as the other. Thus, as the
results of any partial operation, + 1 and — 1 mean respectively
1 to be added and 1 to be subtracted.

The fact that the operations end in results that have no
direct interpretation need not disturb the student. He must
remember that algebra is the general theory of those operations
with quantity of which ordinary arithmetical operations are
particular cases. He may be assured from the way in which the
general laws of algebra are established that when algebraical
results admit of arithmetical meanings, these results will be arith-
metically right, even when some of the steps by which they have
been arrived at may not be arithmetically interpretable. On the
other hand, when the end results are not arithmetically intelli-
gible, it is merely in the first instance a question of the con-
sistency of algebra with itself. As to what the application of
such purely algebraical results may be, that is simply a question
of the various uses of algebra ; some of these will be indicated in
the course of this treatise, and others will be met with in abun-
dance by the student in the course of his mathematical studies.
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It will be sufficient at this stage to give one example of the
advantage that the introduction of algebraic generality gives in
arithmetical operations. +a—b asks the question what must
be added to + b to give +a. If a=3 and b= 2, the answeris1;
if a=2 and b= 3, arithmetically speaking, there is no answer,
because 3 is already greater than 2. But if we regard + a — b as
asking what must be added to or subtracted from +b to get
+ a, then the evaluation of + ¢ —b in any case by the laws of
algebra will give a result whose sign will indicate whether
addition or subtraction must be resorted to, and to what extent ;
eg., if a=3 and b=2, the result is + 1, which means that 1
must be added; if a=2 and b=3, the result is — 1, which
means that 1 must be subtracted.

§ 10.] The application of the commutative and associative
laws for addition and subtraction leads us to a useful practical rule
for reducing to its simplest value an expression consisting of a
chain of additions and subtractions.

‘We have, for example,

+a-b+tc+d-e—f+g
=+a+c+d+g-b-e-J,
+(@a+c+d+g)—-(b+e+)),
+ {+(a+c+d+g)—(d+e+f)} (1),
- {+0+e+f)—(a+c+d+g)} (2).

If a+¢+d+g be numerically greater than b+e+ f, (1) is
the most convenient form ; if a+c¢+d+ g be numerically less
than b+ e+ f, (2) is the most convenient. The two taken to-
gether lead to the following rule for evaluating a chain of
additions and subtractions :—*

Add all the quantities affected with the sign + , also all those affected
with the sign — , take the difference of the two sums and affiz the sign
of the greater.

Numerical example :—

+8-5+6+8-9-10+2
=4+(3+6+8+2)-(5+9+10),
=+19-24,
=—(24-19)= - 5.

* Such a chain is usually spoken of as an ‘‘algebraical sum.”
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§ 11.] The special case + a — a deserves close attention. A
special symbol, viz. 0, is used to denote it. The operational
definition of O is therefore given by the equations

ta-a=-a+a=0.
In accordance with this we have, of course, the results,
b+0=0b=0-0,
and +0= -0,

as the student may prove by applying the laws of association
and commutation along with the definition of 0.

§ 12.] It will be observed that 0, as operationally defined, is
to this extent indefinite that the a used in the above definition
may have any value whatever.

It remains to justify the use of the 0 of the ordinary
numerical notation in the new meaning. This is at once done
when we notice that in a purely quantitative sense 0 stands for
the limit of the difference of two quantities that have been made
to differ by as little as we please.

Thus, if we consider a + z and a,

+(@a+z)-a=+a-a+z =2

If we now cause the 2z to become smaller than any assignable
quantity, the above equation becomes an assertion of the identity
of the two meanings of 0.

MULTIPLICATION.

§ 13.] The primary definition of multiplication is as an ab-
breviation of addition. Thus+a+a,+a+a+a,+a+a+a+a,
&c., are abbreviated into+ax 2, +ax3,+a x4, & ; and in
accordance with this notation + a is also represented by +a x 1.
a x 2 is called the product of a by 2, or of @ into 2; @ is also
called the multiplicand and 2 the multiplier. Instead of the
sign x, a dot, or mere apposition, is often used where no am-
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bigunity can arise. Thus a x 2, a.2, and a2 all denote the same
thing.

§ 14.] So long as a and b represent integral numbers, as is
supposed in the primary definition of multxplxca.tlon, it is easy to

prove that
axb=bxa;

or, adopting the principle of attachment of operator and operand,
with full symbolism (see above, § 4),
xaxb=xbxa
The same may be established for any number of integers, e.g.
xaxbxe=xaxexbhb = xbxc¢xa, &
In other words, the order of operations in a chain of multiplications is
indifferent.

This is the CoMMUTATIVE LAW for multiplication.

§ 15.] We may introduce the use of brackets and the idea of
association in exactly the same way as we followed in the case
of addition. - Thus in x @ x ( x b x ¢) we are directed to multiply
a by the product of b by c. The LAW OF ASSOCIATION asserts that
this is the same as multiplying @ by b, and then multiplying this
product by ¢. Thus

xax(xbxc)=xaxbxe.

The like holds for a bracket containing any number of factors.
In the case where g, b, ¢, &c., are integers, a proof of the truth
of this law might be given resting on the definition of multi-
plication and on the laws of association and commutation for
addition.

§ 16.] Even in arithmetic the operation of multiplication is
extended to cases which cannot by any stretch of language be
brought under the original definition, and it becomes important
to inquire what is common to the different operations thus com-
prehended under one symbol. The answer to this question,
which has at different times greatly perplexed inquirers into the
first principles of algebra, is simply that what is common is the
formal laws of operation which we are now establishing, viz. the
associative and commutative laws, and another presently to be
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mentioned. These alone define the fundamental operations of

addition, multiplication, and division, and anything further that .
appears in any particular case (¢.g., the statement that $ x } is

3 of 4) is merely a matter of some interpretation, arithmetical

or other, that is given to a symbolical result demonstrably- in

accordance with the laws of symbolical operation.

Acting on this principle we now lay down the laws of com-
mutation and association as holding for the operation of multi-
plication, and, indeed, as in part defining it. :

§ 17.] The consideration of complex multipliers or complex
multiplicands introduces the last of the three great laws of
algebra.

It is easy enough, if we conﬁne ourselves to the primary
definition of multiplication, to prove that

_t+ax(+b+c) =+axb+axg
+ax(+b-¢) = +axb-axe
(+a-b)x(+c-d) = +axc—axd-bxc+bxd

These suggest the following, which is called the DISTRIBUTIVE
Law:—

The product of two expressions, each of whick consists of a chain
of additions and subtractions, is equal to the chain of additions and
sublractions obtained by multiplying each constituent of the first expres-
sion by each constituent of the second, sefting down all the partial
products thus oblained, and prefiring the + sign if the two constituents
previously had like signs, the — sign if the constituents previously had

Symbolically thus

(xaxbd)x(tcxd)

=(%a)x(xc)+(*a)x (:l:d)+(:l=b) x(%c)

+(£d) x (x4,
with the following law of signs :—
(+a)x(+c)=+ac, (+a)x(-c)=—ac

(-a)x(+c)=-aq, (—a)x(-¢)= +ac

There are sixteen different cases included in the above equation,
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as will be seen by taking every combination of one or other of
the double signs before each letter.

There may, of course, be as many constituents in each
bracket as we please. If, for example, there be m in one
bracket and n in the other, there will be mn partial products
and 27+ * different arrangements of the signs.

The distributive law, suggested, as we have seen, by the
primary definition of multiplication, is now laid down as a law
of algebra. It forms the connecting link between addition and
multiplication, and, along with the commutative and associative
laws, completes the definition of both these operations.

§ 18.] By means of the distributive law we can prove another
property of 0. For r if b be any definite quantity, subject without
“restriction to the laws of algebra, we have

+ba-ba= +bx(+a-a)=(+a—-a)x(+Db),
=-bx(+a-a)=(+a—-a)x (=),
whence 0=(+8)x0=0x(+8)=(-0)x0=0x(-0b);
or briefly bx0=0xb=0.

DIVISION.

§ 19.] Division for the purposes of algebra is best defined as
the inverse operation to multiplication. The quotient of a by 5,
or, as 1t is written, a + b, is defined to be that which, when
multiplied by 3, gives a. Thus a+5 derives its meaning from

the equation
(a+d)xb=a.

In a + b, a is called the dividend and b the divisor. Some-
times g is called the antecedent and b the consequent of the
quotient.

Another notation for a quotient is very often used, viz. ; or

a/b. As this is the notation of fractions, and therefore has
a meaning already attached to it in the case where ¢ and b
are integers, it is incumbent upon us to justify its use in another
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e
b’
that is, b times a of the bth parts of unity,is evidently a times unity,
t.e. @ ; also, by the definition of a =5, b times ¢ +b is a. Hence

meaning. To do this we have simply to remark that b times.

we conclude that Z is operationally equivalent to @ +b in the
case where ¢ and b are integers. No further justification is
necessary, for when either a or 3, or both, are not integers, %
loses its meaning as primarily defined, and there is no obstacle
to regarding it as an alternative notation for @ +b.

In the above definition we have not written the signs + or —
before a and b, but they were omitted simply for brevity, and
one or other must be understood before each letter. We shall
continue to omit them until the question as to their manipulation
arises.

§ 20.] Since division is fully defined as the inverse of multi-
plication, we ought to be able to deduce all its laws from the
definition and the laws of multiplication.

We have *

{axb+c} x c=ax,
by definition of division ;

also {a+cxbd} x e=(@+c)xbxg
by law of association for
multiplication,

=(a-+c)xcxd,
by law of commutation for
multiplication,
=axb,
by definition of division.

Therefore axb=-c=a-+cxb

* Here again the remark made in the last part of the note at the foot of
" p. 8 applies, viz. @ x b ¢ primarily means, if we think only of the last
operation, the same a8 (@xb)-+-c; a-+cxb the same as (a--¢)xbd; and
soon. As in the case of +a, when xa comes first in a chain of operations,
x is omitted for brevity.
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Again, {a—b—c} x (bxe) = {@+b)+c} x cxb,
by association and commu-
tation for multiplication,
=(@<+b)xb,
=4,
_ by definition of division ;
also {a+c+b} x (bxe)={la+c)+=b} x bxg,
=(@a+c)xe
= a
Therefore a+b+c=a+c+0b
In this way we establish the law of commutation for division.

Taking multiplication and division together and attaching
the symbol of operation to the operand, we may now give the
full statement of this law as follows :—

In any chain of multiplications and divisions the order of the
constituents is indifferent, provided the proper sign be attached to each
constituent and move with it.

Or, in symbols, for two constituents,

X X - X X
XaXb=%Xb%a,

there being 4 cases here included, e.g.

+axb=xb+a,
+a+b= +b+a, and s0 on.
§ 21.] fax(+e)} x c=ax {p+c)xd},
=axb;
also {(@axbd)+c} x c=axb
Therefore ax(d+c)=(axb)+c
or, which is the same thing, =axb+e
Again, {a+(xo)} x (bxc)=a;
also {a+bsc} x (bxe)= {(a+bd)+c} x cxd,
=(a=b) x b,
=a.

Therefore a+(bxc)=a+b+ec
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These are instances of the law of association for division and
multiplication combined, which we may now state as follows :—
When a bracket contains a chain of multiplications and divisions,
1 the bracket may be removed, every sign being unchanged if a x precede
. the bracket ; every sign being reversed if a < precede the bracket.
Or in symbols for two constituents,

F(FaXb)=%(Xa)X (X0)
with the following law of signs :—
x(xa)= xa x (+a)=+a,
+(xa)=+a, + (+a)= xa
In the above equation eight cases are included, e.g.,

x(+axb)=+axb
+(+axd)=xa+h
+(+a+bd)=xaxh,
and so on.
§ 22.] Just as in sybtraction we denote the special case
+a - a by a separate symbol 0, so in division we denote x a-a
by a separate symbol.1. From this point of view 1 has a purely
“operational meaning, and we can prove for it the following laws
analogous to those established for 0 in § 11 :—

xe+ao=+axa=1,
bx1=b=b+1,
xl==+1

Like 0, 1 has both a quantitative and a purely operational
meaning. Quantitatively we may look on it as the limit of the
quotient of two quantities that differ from each other by a
quantity which is as small a fraction as we please of either. For
example, consider @ + z and ¢, then the equation

(@+z)ra=a+a+z+a
=1l+z+a _
becomes, when z is made as small a fraction of a as we please,
an assertion of the compatibility of the two meanings of 1.
It should be noted that, owing to the one-sidedness of the

law of distribution (i.e, owing to the fact that in ordinary
VOL. L C
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algebra b+ ( x a+c) = x (b+a)+ (b +c) is not a legitimate trans-
formation), there is no analogue for 1 to the equation

i bx0=0,
which is true in the case of 0.

§ 23.] If the student will now compare th'ellgv,vg of association
and commutation for addition and subtraction on the one hand
and for multiplication and divigion on the other, he will find them
to be formally identical. It follows, therefore, that so far as these
Taws are concerned there is virtually no distinction between addi-
tion and subtraction on the one hand and multiplication and
division on the other, except the accident that we use the signs

+ and — in the one case and x and <+ in the other,—a conclusion
at first sight a little startling. This duality ceases wherever the
law of distribution is concerned.

§ 24.] We have already been led to consider such expressions
a8 + (+2) and + (- 2), and to see that + a may, according to
the value given to a, be made to stand for + ( + 2), that is, + 2 or

+ (- 2), that is, — 2. The mere fact that a particular sign, say +,

stands before a certain letter, indicates nothing as to its reduced
or ultimate value ; the sign + merely indicates what has to be
done with the letter when it enters into operation.

In what precedes as to division, and in fact in all our general
formule, we may therefore suppose the letters involved to stand
for positive or negative quantities at pleasure, without affecting
the truth of our statement in the least.

For example, by the law of distribution,

(@a-b)(c+d)=ac+ad-bc—-bd;

here we may, if we like, suppose d to stand for —d'.
We thus have
@-b)fc+(-d)) =ac+a(-d)-bc~- b(-a),

which gives, when we reduce by means of the law of signs
proper to the case,

(@-b)(c-d)=ac-ad —bc+bd,
which is true, being in fact merely another case of the law of
distribution, which we have reproduced by a substifution from
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the former case. This principle of substitution is one of the most
important elements in the science; it is this that gives to
algebraic calculation its immense power and almost endless
capability of development.

§ 25.] We have now to consider the effect of explicit signs
attached to the constituents of a quotient. As this is closely
bound up with the operation of the distributive law for division,
it will be best to take the two together.

The full symbolical statement of this law for a dividend
having two constituents is as follows :—

(Faxd)+(x)=(Ea)+(xc)+(xd)=(xc),
with the following law of signs,
(+a)+(+¢)= +a+c, (+a)+(-¢)=-a=+c
(-a)+(+0)= —a+gq (-a)=(-c)= +a=+c.
Or briefly in words—

In division the dividend may be distributed, the signs of the partial
quotients following the same law as in multiplication.

The above equation includes of course eight cases. It will
be sufficient to give the formal proof of the correctness of the
law for one of them, say

(+a-b)=(-c)=-a+c+b+ec
We have {(+a-08)+(-¢)} x (-¢) = +a-1b,
by definition of division.
Again, {-a+c+b+c} x (-¢)
=+(@+c)xec—(d=c)xe
by law of distribution,
= +a-b by definition of division.

I

Hence (+a-b)+(-¢)
since each multiplied by - ¢ gives the same result.

§ 26.] The law of distribution has only a limited application
to division, for although, as just proved, the dividend may be
distributed, the same is not true of the divisor. Thus it is not
true that

—a+c+b=+c

a+-@G+c)=a+b+a+c,
or that a+(b-c)=a+b-a+q
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as the student may readily satisfy himself in a variety of
ways.

§ 27. ] As we have now completed the establishment of the
fundamental laws of ordinary algebra, it may be well to insist
once more upon the exact position which they hold in the
science. To speak, as is sometimes done, of the proof of these
laws in all their generality, is an abuse of terms. They are
simply laid down as the canons of the science. The best ev1-
dence that this is their Teal position is the fact that algebras are
in use whose fundamental laws differ from those of ordinary
algebra. In the algebra of quaternions, for example, the law
of commutation for multiplication and division does not hold
genera.lly.‘ﬁ

What we have been mainly concerned with in the present
chapter is (1st) to see that the laws of ordinary algebra shall be
self-consistent ; (2nd) to take care that the operations they lead
to shall contain those of ordinary arithmetic as particular cases.

In so far as the abstract science of ordinary algebra is con-
cerned, the definitions of the letters and symbols used are simply
the general laws laid down for their use. When we come to the
| application of the formul® of ordinary algebra to any particular
, purpose, such as the calculation of areas, for example, we have
{ in the first instance to see that the meanings we attach to the
¢ symbols are in accordance with the fundamental laws above

stated. When this is established the formule of algebra become
" mere machines for the saving of mental labour.
§ 28.] We now collect, for the reader’s convenience, the
general laws of ordinary algebra.

e ——

LAW OF ASSOCIATION.
For addition and subtrac- For multiplication and divi-
tion— sion—
s(xarb)= £ (2a)£(2b), | X(XaXd)=X(%a)i(X0)
with the following law of signs:—
The concurrence of like signs gives the direct sign.
o The concurrence of unlike signs the inverse sign.
7\‘7 NIR | humnllﬁ‘r‘\ £ 'u'l'uﬁw'fm’ ,u‘/ Nerm Zﬁdﬁ“’r‘;’"ﬁ/
il conachio a(‘.7“ ?](. »f, a,f’/mn¢m+ o
uév,,é Lis, " _; Yl guetedl Gerskmdhe).0himd.
/) 7/ .7? .
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Thus—
+(+a)=+a, +(-a)=-a
-(-a)=+a, —(+a)=—a.

SYNOPTIC TABLE OF LAWS.

21

x(xa)= xa,
+(+a)= xaq,

x (+a)=-a,
+(xa)=-+a

LAw oF COMMUTATION.

For addition and subtrac-
tion—
ta+tb= *b+a,

the operand always carrying its

Properties
0= +a-aq
+h+0=xb-0,
+0=-0.

For multiplication and divi-
sion—

X Xh_XpX
XaXb=%XbXaq,

own sign of operation with it.

of 0 and 1.
1= xa-a,
Xbx1=3Xb+1,
i x1==1.

LAW oF DISTRIBUTION.

For multiplication—
(taxd)x(xctd)= +(
H(20) x(£9)

with the following law of signs:

ta)x () +(*a) x(£d)
+(£b) x (% d),

If a partial product has constituents with like signs, it must

have the sign +.

If the constituents have unlike signs, it must have the

sign —.
Thus—
+(+a)x(+c)=+axq,

+(+a)x(-0)= —axg

+(-a)x(-¢)=+axe, +(-a)x(+c)=-axec
Property of 0.
O0xb=bx0=0.

For division—

(£a£b)+(xo)= +(£a)+(Fc)+(£d)+(*c),
with the following law of signs:—
If the dividend and divisor of a partial quotient have like

signs, the partial quotient must

have the sign +.

If they have unlike signs, the partial quotient must have the

sign - .
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Thus—
+(+a)+=(+c)=+a+e¢, +(+a)=(-¢)=-a—+q
+(-a)+=(-¢)=+a+¢, +(-a)+(+¢)=-a—+c
N.B.—The divisor cannot be distributed.

Property of 0.
0+b=0.
N.B.—Nothing is said regarding 5-=-0. This case will be
discussed later on.

Exercrses 1.

In working this set of examples the student is expected to avoid quoting
derived formule that he may happen to recollect, and to refer every step to
the fundamental principles discussed in the above chapter.

(1.) Point out in what sense the usual arrangement of the multiplication
of 865 by 492 is an instance of the law of distribution.

(2.) I have a multiplying machine, but the most it can do at one time is
to multiply a number of 10 digits by another number of 10 digits. Explain
how I can use my machine to multiply 18693456783231 by 46581230245932.

(3.) To divide 5004 by 12 is the same as to divide 5004 by 3, and then
divide the quotient thus obtained by 4. Of what law of algebra is this an
instance ?

(4.) If the remainder on dividing N by @ be R, and the quotient P, and
if we divide P by & and find a remainder S, show that the remainder on
dividing N by ab will be aS+R.

Illustrate with 5015=12.

(5.) Show how to multiply two numbers of 10 digits each 8o as to obtain
merely the number of digits in the product, and the first three digits on the
left of the product.

Illustrate by finding the number of digits, and the first three left-hand
digits in the following :—

1st. 3659803456789325678 x 342073489379265.
2nd. 2%. ’

_—— (6.) Express in the simplest form—

={-(-(-(C... (-1 ...
1st. Where there are 2n brackets.
2nd. Where there are 2n+1 brackets; n being any whole number
whatever. ’

—-- (7.) Simplify and condense as much as possible—

2a~- {8a-[a-(b~a)]}.
(8.) Simplify— B
1st. 8 {4-5[6-7(8-910-11)]},

ond. 3 {}-3-33-+H-M1}.
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Y (9.) Simplify—
1-(2-(3=(4— . .. —(9-(10-11)) . . . ))). ‘Jfﬁ E;

(10.) Distribute the following products:—1st. (e+3)x(a+8); 2nd.
(a~0)x(a+b); 3rd. (3a~6D)x(3a+6b); 4th. (da- §d) x (3a+ 2d).
(11.) Simplify, by expanding and condensing as much as possible—
{m+)a+n+1)b}{(m-1)a+(n-1)b}
+{(m+1l)a-(n+1)b} {(n-1)a-(n-1)b}.

(12.) Simplify—
-+ (-5}

(13.) Simplify—

(-6 - (oD

(14.) Expand and condense as much as possible—

(de+3y+32) 3z - 3y +d2).

Historical Note.—The separation and classification of the fundamental laws
of Algebra has been a slow process, extending over more than 2000 years. It is
most likely that the first ideas of algebraic identity were of geometrical origin.
In the second book of Euclid’s Elements (about 300 B.c.), for example, we have a
series of propositions which may be read as algebraical identities, the operands
being lines and rectangles. In the extant works of the great Greek Algebraist
Diophantos (350 ?) we find what has been called a syncopated algebra. He uses
contractions for the names of the powers of the variables ; has a symbol a to
denote subtraction ; and even enunciates the abstract law for the multiplication
of positive and negative numbers ; but has no idea of independent negative quan-
tity. The Arabian mathematicians, as regards symbolism, stand on much the
same platform ; and the same is true of the great Italian mathematicians, Ferro,
Tartaglia, Cardano, Ferrari, whose time falls in the first half of the sixteenth
century. In point of method the Indian mathematicians Aryabhatta (476),
Brahmagupta (598), Bhascara (1114), stand somewhat higher, but their works
had no direct influence on Western science.

Algebra in the modern sense begins to take shape in the works of Regiomon.
tanus (1436-1476), Rudolff (about 1520), Stifel (1487-1667), and more particularly
Viéte (1540-1603) and Harriot (1560-1621). The introduction of the various

signs of operation may be dated, with more or less certainty, as follows: %

and apposition to indicate multiplication, as old as the use of the Arabic numerals
in Europe ; +and —, Rudolff 1525, and Stifel 1544 ; =, Recorde 1552 ; vinculum,
Vidte, 1591 ; brackets, first by Girard, 1629, but not in familiar use till the

. elghteenth century 3 < >, Harriot’s Praais, published 1631 X, Oughtred,
and -+, Pell, about 1631.

It was not until the Geometry of Descartes appeared (in 1637) that the im-
portant idea of using a single letter to denote a quantity which might be either
positive or negative became familiar to mathematicians.

The establishment of the three great laws of operation was left for the present
century. The chief contributors thereto were Peacock, De Morgan, D. F. Gregory,
Hankel, and others, working professedly at the philosophy of the first principles ;
and Hamilton, Grassmann, Peirce, and their followers, who threw a flood of light
on the subject by conceiving algebras whose laws differ from those of ordinary
algebra. To these should be added Argand, Cauchy, Gauss, and others, who
developed the theory of imaginaries in ordinary algebra.




CHAPTER 1L
Monomials—Laws of Indices—Degree.
THEORY OF INDICES.

§ 1.] The product of a number of letters, or it may be num-
bers, each being supposed simple, so that multiplication merely
and neither addition nor subtraction nor division occurs, is called
an snéegral term, or more fully a rational integral monomial (i.e., one-
termed) algebraical function,e.g.,a x 3 x 6 xzxaxzxzxyxbxb

By the law of commutation we may arrange the constituents
of this monomial in any order we please. It is usual and con-
venient to arrange and associate together all the factors that are
mere numbers and all the factors that consist of the same letter ;
thus the above monomial would be written

(Bx6)x(@xa)x(dxd)x(zxzxz)xy

3 x 6 can of course be replaced by 18, and a further contrac-
tion is rendered possible by the introduction of indices or ex-
ponents. Thus a x @ is written o°, and is read “a square,” or
“a to the second power.” Similarly b x b is replaced by &', and
% x z x z by 2°, which is read “z cube,” or “z to the third power.”
. 'We are thus led to introduce the abbreviation 2 forz xz x z x. . .
where there are 7 factors, n being called the index or exponent,®
while z” is called the nth power of , or = to the nth power.

§ 2.] It will be observed that in order that the above defini-
tion may have any meaning the exponent n must be a positive

* In accordance with this definition 2! of course means simply «, and is
usually so written.
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integral number. Confining ourselves for the present to this
.case, we can deduce the following “laws of indices.”

1. (a.) am™ x q" = am+n’
and generally a™® xa*xaPx. . .=qgntntp+...
am™ men
B a0 if m>n,
(7) (am)n =gm = (an )m_
L (@) (ab)™ = amb™
and generally (abe . .. = ambmem . . .
e\™ a™
@ (5) =%
To prove 1. (a), we have, by the definition of an index,
a*xa*=(axaxa ... mfactors)x (@axaxa ... n factors),
=axaxa ... m+n factors, by the law of association,

=a™+n by the definition of an index.

Having proved the law for two factors, we can easily extend
it to the case of three or more,
for a™ x a® x a? = (a™ x a™) x a?, by law of association,
=a™+" x a?, by case already proved,
=qgm+mM+7 by case already proved,
=gntntp ;

and so on for any number of factors.

In words this law runs thus: The product of any number of
powers of one and the same letter is equal to a power of that
letter whose exponent is the sum of the exponents of these
powers.

To prove L. (B),

aﬂ

E.—=(axax .. . mfactors) =+ (e xa x . . . n factors),
by definition of an index,
=axaxa ... mfactors ~a-+a-= . .. m divisions,

by law of association.
Now if m >n we may arrange these as follows :—
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a™ —
;;:(axax ... m—n factors) x (¢ < @) x (@ ~a) . . . n factors
by laws of association and commutation,
=axax. .. m-—n factors, by the properties of division,

=a™ "

If m < m, the rearrangement of the factors may be effected
thus—

m R
:—n= <(axax...n—mfactors) x (¢ +a)x (¢ +a) . . . nfactors
= g™
1
= an—m

To prove 1. (y),

(@™)* = a™ x a™ x . . . n factors, by definition,
=(exax ... mfactors)x (axax ... mfactors)
x. . . n sets, by definition,

=axax ... mnfactors, by law of association,
= a™®, by definition.
To prove II. (a),
(ab)™ = (ad) x (ab) x . . . m factors, by definition,
=(@xax ... mfactors) 2(bxbx ... mfactors),
by laws of association and commutation,
= a™b™, by definition.
Again, (abeyr = {(ab)c}™
(ab)™c™, by last case
= (a™b™) c™, by last case
=a™b™c™, and so on,
Hence the mth power of the product of any number of letters
is equal to the product of the mth powers of these letters.
To prove II. (B),

m
(%) = (@+bx(@=+b)x ... m factors, by definition,
=(@xax ... mfactors)+ (bxbx . .. m factors),
by association and commutation,
= g™ = b™,
aﬂ
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In words: The mth power of the quotient of two letters is
the quotient of the mth powers of these letters.

§ 3.] In so far as positive integral indices are concerned the
above laws are a deduction from the definition and from the
laws of algebra. The use of indices is not confined to this case,
however, and the above are laid down as the laws of indices
generally. The question of the meaning of fractional and negative
indices is deferred till a later chapter, but the student will have
no difficulty in working the examples given below. All he has
to do is to use the above laws whenever it is necessary, without
regard to any restriction on the value of the indices.

§ 4.] The following examples are worked to familiarise the
student with the meaning and use of the above laws. At first
he should be careful to refer each step to the proper law, and to
see that he takes no step which is not sanctioned by some one
of the laws of indices, or by one of the fundamental laws of
algebra.

Example 1.
(a3b3c5) x (aBB8elt) =~ (adbPc®)
= a®aSb*8c5c!! < at - BB = ¢'%, by association and commutation,
= @3 +5p2+60+1 - gb - B3 - 19, by law of indices, I. (a),
= (a¥+® =- a®) x (B2 +0 + B3) x (P+11 +-¢18), by association and com-

mutation,
= @3+~ x p+6-3 % S +11~-18 Ly law of indices, 1. (8),
= a'lPe.
Example 2.
xg 2
(1522%5) x (12—,4—5)
= 152(x2 2 indi
15%(222(33)(25)® x (l 2 y“ z5)'-" by laws of indices, IL (a)and IL (8),
_ (8 x 5)%rtyS:1004
= @ x )R by L. () and IL (a),
32 ¢ [Le8y8210
= by L (@ and 1 (),

= 3T x5 42xaB x yf 2 9B x 0 210,
= 53 4B 1 B,

('3
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THEORY OF DEGREE.

§ 5.] The result of multiplying or dividing any number of
letters or numbers one by another, addition and subtraction
being excluded, for example, 3 x @ x  x b =+ ¢+y x d, is called a
(rational) monomial algebraical function of the numbers and letters
involved, or simply a ferm. If the monomial either does not
contain or can be so reduced as not to contain the operation of
division, it is said to be infegral ; if it cannot be reduced so as
to become entirely free of division it is said to be fractional. In
drawing this distinction, division by mere numbers is usually
disregarded, and even division by certain specified letters may be
disregarded, as will be explained presently.

§ 6.] The number of times that any particular lett.er occurs
by way of multiplication in an integral monomial is called the
degree (or dimension) of the monomial in that particular letter;
and the degree of the monomial in any specified letters is the
sum of its degrees in each of these letters. For example, the
degree of 6 xa x @ x  x  x z x ¥ x ¢, that is, of 6a’z’y’, in a is 2,
in z 3,in y 2, and the degree in z and y is 5, and in a, 2,and y 7.

In other words, the degree is the sum of the indices of the
named letters. The choice of the letters which are to be taken
into account in reckoning the degree is quite arbitrary; one
choice being made for one purpose, another for another. When
certain letters have been selected, however, for this purpose, it
is usual to call them the variables, and to call the other letters,
including mere numbers, constants. The monomial is usually
arranged so that all the constants come first and the variables
last ; thus, z and y being the variables, we write 32a’bez’y’; and
the part 32a’bc is called the coefficient.

In considering whether a monomial is integral or not division
by constants is not taken into account.

§ 7.] The notion of degree is an exceedingly important one,
and the student must at once make himself perfectly familiar
with it. He will find as he goes on that it takes to a la.rge
extent in algebra the same place as numerical magnitude in
arithmetic.

e e =
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The following theorems are particular cases of more general
ones to be proved by and by.

The degree of the product of two or more monomials is the sum
of their respective degrees.

If the quotient of two momemials be infegral, ils degree is the excess
of the degree of the dividend over that of the divisor.

For let A =cdymur . ..
A'=cdymmu? | L
where ¢ and ¢ are the coefficients, #, 4, 2, 4 . . . the variables, and

L,mmnp...U mn,p...areof course positive integral numbers.
Then the degree d of A is given by d=l+m+2+p+ .. ., and
the degree @’ of A' by d'=0'+m'+n' +p' +. . )

But A xA'=(cdymrur .. ) x (Y P L L)

=(cx ) zl+l'y1n+n’zm+n'up+1/ ..
the degree of which is (+ )+ (m+m)+(n+n')+(p+p) . . .
that is, (+m+n+p ... )+ +m' +n +p'+ . . .), that is
d + d'y which proves the first proposition for two factors. The
law of association enables us at once to extend it to any number
of factors.

Again let Q=A < A’, and let Q be integral and its degree 8.
Now we have by the definition of division Q x A’=A. Hence
by last proposition the degrees of A and A’ being d and d, as
before, we have d=38 + d', and thence §=d - d'.

As an example, let A=62"", A'=72"y', then AxA'=
422"%" and A+ A’ =$2"" The degree of A x A’ is 24, that is,
14 + 10 ; that of A=A’ is 4, that is, 14 — 10.

The student will probably convince himself most easily of
the truth of the two propositions by considering particular cases

such as these; but he should study the general proof as an
{ exercise in abstract reasoning, for on such reasoning he will have
| to rely more and more as he goes on.

Exerorses II.
Wherever it is possible in working the following examples, the student
should verify the laws of degree, §§ 5-7.
(1.) Simplify— 57 x 124 x 8322 x (33 x 43 x §)?
(3 x 15 x 23)10 ’
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2
(2.) Which is greater (2’)32, or2t? Find the difference between them.
(3.) Simplify— 2
o2
2(29*”
(4.) Simplify— 36%a7b5c3d?
81asc®
(5.) Express in its simplest form—
(_a‘g’_y" ) . ( a®h3r® )3 b2cAady \4
Py aPbcty? (

x aiPyp )
(6.) Simplify— 45a’b2c‘ 243atbicix)?
27a*b‘c "180a%hc
(7.) Simplify— (3-'1’.'12)’ 9,51,9 - ).
- v B ) 7
(8.) Simplify— (r"u’g’)’ x (y’*’r’){x( )7
() =)
(9.) Simplify—- m+n am\n+1 1+m
G ()~ (a-») -
(10.) Simplify— (a?= 99 x (a?~7)" —P} :
@y S
(11.) Simplify— (z"‘xx‘-f)ﬂx(g)
T (@FExa)p( +r)'c’ ’
12.) Simplify— xP\P+e p+e b
i 4 g e

(18.) Simplify—

{E) <G}t x (errxier).
(14.) Prove that—
(y=) (2 )P (zy) > _(eyz)ptatr
(yr = Tar ~)p(zr g = Npa(ar =Yy =Nyr T grye
(15.) Distribute the product—
(P-c-at—otan- ")(1,,_c Foatgas )
(16.) Distribute— (a P+b—';) (“”"b'i

(17.) If m=a*, n=a¥, a®=(m¥n*)*; show that ryz=1.




CHAPTER IIIL

Fundamental Formuls relating to Quotients or
Fractions, with Applications to Arithmetical
Fractions and to the Theory of Numbers.

OPERATIONS WITH FRACTIONS.

§ 1.] Before proceeding to cases where the fundamental
laws are masked by the complexity of the operations involved,
we shall consider in the light of our newly-acquired principles
a few cases with most of which the student is already partly
familiar. He is not in this chapter to look so much for new
results as to exercise his reasoning faculty in tracing the opera-
tion of the fundamental laws of algebra. It will be well, how-
ever, that he should bear in mind that the letters used in the
following formule may denote any operands subject to the laws
of algebra, e.g., mere numbers integral or fractional, single letters,
or any functions of such, however complex.

§ 2.] Bearing in mind the equivalence of the notation %

and a b, the laws of association and commutation for multipli-

cation and division, and finally the definition of a quotient, we
have

o= =) =pxatpl,

=a+b+pxp,
=a-=-b,
pa a

that is, 175:5.
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Read forwards and backwards this equation gives us the
important proposition that we may divide or multiply the nuwmerator
and denominator of a fraction by the same quantity withou! altering

§ 3.] Using the principle just established, and the law of
distribution for quotients we have
P00 P
¢~ Tt

+ ga + pb
¢
i.e., lo add or subtract two fractions, transform each by multiplying
numerator and denominator so that both shall have the same denomi-
nator, add or subtract the numerators, and write underneath the com-
mon denominator.

The rule obviously admits of extension to the addition in
the algebraic sense (that is, either addition or subtraction) of any
number of fractions whatever.

Take, for example, the case of t.hree —

b

c e _ adf = cbf
ibid 5 imvtmvi&y by § 2,
= *f‘—i&bg}f +ebd , by law of distribution.

The following case shows a modification of the process, which
often leads to a simpler end result. Suppose b =Ir, ¢ =Ir, then
taking a particular case out of the four possible arrangements
of sign,

a p_a p
D g ki
_ar e
Tl Ire
ar - pc

lor

Here the common denominator lc» is simpler than bg, which is
Uer.

The same result would of course be arrived at by following
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the process given above, and simplifying the resulting fraction
at the end of the operation, thus—

a_ p alr —

T I ), as above,
_(ar —po)l
T Per

by using the law of distribution in the numerator, and the laws
of association and commutation in the denominator,

by§2

§ 4.] The following are merely particular cases of the laws
of association and commutation for multiplication and division:—

(‘b_‘) x (‘fl = (a-+b) x (¢ +d),

ar
lcr

=a+bxc=+d,
=axcb=d,
= (ac) + (bd),
=H’

or, in words : To multiply two fractions, multiply their numerators
together for the numeralor, and the demominators together for the
denominator of the product.

Again,
()+(Q-esr=s

=a<+b--cxd,
=axd-=b=c,

= (ad) -+ (),
ad

= 3

be

o ()

by last case. In words: To divide one fraction by another, invert the
latter and then multiply.
VOL. 1. D
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§ 5.] In last paragraph, and in § 2 above, we have for
simplicity omitted all explicit reference to sign. In reality we
have not thereby restricted the generality of our conclusions, for
by the principle of substitution (which is merely another name
for the generality of algebraic formule) we may suppose the p,
for example, of § 2 to stand for — v, say, and we then have

(o) _a

(—w)p ~ b’

i.e., taking account of the law of signs,
Twa_ 8,

-—wb b’

and so on.

Exercises III
v/ (1.) Express in its simplest form—

2 g

z-y + y-=z
v (2.) Express in its simplest form—
a b
a-bti-a
(3.) Simplify— P+Q P- Q
P-Q P+Q
where P=z+y, Q=2-y.
(4.) Simplify— 1- z(1-y)
x+y
1-y
1 +m
v (5.) Simplify— 1 1 1
ab ac be
a?-(b-c)?
@
(6.) Simplify— B b
(e-aza)x(a+azs)
(7.) Simplify— 1 1 2

aryTa-y Fryr

@ s (e (5162
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v (9.) Simplify— a b
(G-2)+(5-a
(10.) Simplify— afa - b) - b(a+b)
a b .
a+b a-b
v/ (11.) Simplify— 1-z  1+z |
T+z+a® 1-z+23
(12.) Simplify—
l+z (9:+1)’
o+ 1 Bzl
1+2
(13.) Simplify—
al+ b ab(
(a+b) (1 1)
" (14.) Show that (x’ -a?)? (-8

—“I_A’ (@ - b%)  Pat—b b‘)

is independent of z.

(15.) Simplify— a
¢
b—d—‘——i-
S
v (16.) Simplify— 1 o
a-2b- L i
a 2b—a————_ %
(17.) Simplify— a+db
at+b+ ————
_b+L
@ a+b

APPLICATIONS TO THE THEORY OF NUMBERS.

v § 6.] In the applications that follow the student should look
somewhat closely at the meanings of some of the terms employed.
This is necessary because, unfortunately, some of these terms,
such as infegral, factor, divisible, etc., are used in algebra generally
in a sense very different from that which they bear in ordinary
arithmetic and in the theory of numbers.

An indeger, unless otherwise stated, means for the present a
positive (or megalive) integral number. 'The ordinary motion of
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greater. and less in connection with such numbers, irrespective of
their sign, is assumed as too simple to need definition.* When
an integer @ can be produced by multiplying together two others,
b and ¢, b and ¢ are called factors of a, and a is said to be exactly
divisible by b and by ¢, and to be a multiple of b or of ¢. Since
the product of two integers, neither of which is unity, is an
integer greater than either of the two, it is clear that no infeger is
exactly divisible by another greater than itself.

It is also obvious that every integer (other than unity) has
at least two divisors, viz., unity and itself; if it has more, it
is called a composite integer, if it has no more, a prime integer.
For example, 1, 2, 3, 5, 7,11, 13 . . . are all prime integers,
whereas 4, 6, 8, 10, 12, 14 are composite,

If an integer divide each of two others it is said to be a

common factor or common measure of the two. If two integers
have no common measure except unity they are said to be prime
o each other. It is of course obvious that two integers, such as
6 and 35, which are prime fo each other, need not be themselves
prime integers. We may also speak of a common measure of more
than two integers, and of a group of more than two integers
that are prime to each other, meaning, in the latter case, a set
of integers no two of which have any common measure.
v §7.] If we consider any composite integer N, and take in
order all the primes that are less than it, any one of these either
will or will not divide N. Let the first that divides N be a,
then N =aN,, where N, is an integer ; if N, be also divisible by a
we have N =aN,, and N =a(aN,)=a'N,; and clearly, finally,
say N =a®N,, where Ng is either 1 or no longer divisible by a.
Na is now either prime or is divisible by some prime > a, and
<Na, and, a fortiori, <N, say b; we should on the last supposi-
tion have N =05Np, where Ng <N, and 50 on. The process
clearly must end with unity, so that we get

N=a%f ...,
where @, , . . . are primes, and e, B, . . . positive integers. It

* This is a very different thing from the algebraical notion of greater and
less. See chapters on Ratio and on Surds.
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is to be .observed that a%, 35, . . . are powers of primes, and
therefore, as we shall prove presently, prime to each other. It
18 therefore always possible to resolve every composite integer into factors
that are powers of primes,; and we shall presently show that this
resolution can be effected in one way only. 3/34!-
v§s8 ] If a be divisible by c, then any integral multiple of a, say, ma,
is divisible by ¢ ; and if a and b be each divisible by c, then the algebraic
sum of any integral multiples of @ and b, say ma + nb, is divisible by c.
For by hypothesis ¢ = a¢c and b = B¢, where « and S are in-
tegers, hence ma = mac = (ma)c, where ma is an integer, that is, ma
is ‘divisible by ¢. And ma + nb = mac + nfc = (ma + nB)c, where
ma +nf3 is an integer, that is, ma + nd is divisible by ¢. The .
student should observe that by virtue of the extension of the
notion of divisibility by the introduction of negative integers,
any of the numbers in the above proposition may be negative.
v §9.] From the last article we can deduce a proposition which
at once gives us the means of finding the greatest common measure
of two integers, or of proving that they are prime to each other.
I If a = pb + ¢, where a, b, ¢, p are all integers, then the G.C.M. of Gl L

aand bisthe G.CM.of bandc. sy 77*MS7+3 “WM“

To prove this it is necessary and it is sufficient to show—
(1st) that every divisor of b and ¢ divides ¢ and 5; (2nd) that
every divisor of ¢ and b divides b and c.

Since a=pb+c¢ it follows from § 8 that every divisor of
b and ¢ divides g, that is, every divisor of b and ¢ divides @ and &.

Again, since a = pb + ¢, it follows that ¢ = a — pb, hence, again
by § 8, every divisor of & and b divides ¢, that is, every divisor of
a and b divides b and ¢. Thus the two pa.rts of the proof are
furnished.

Let now a and b be two numbers whose G.C.M. is required ;
they will not be equal, for then the'G.C.M. would be either of them.
Let b denote the less, and divide a by 3, the quotient being p and
the remainder ¢, where of course ¢ <b.* Next divide b by ¢, the
quotient being ¢, the remainder d; then divide ¢ by d, the quo-
tient being r, the remainder ¢, and so on.

* For a formal definition of the remainder see § 11.
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Since a>b, b>¢, ¢>d, d>e, ete., it is clear that the re-
mainders must diminish down to zero. We thus have the
following series of equations :—

a=pb+c
b=gqc+d
c=rd+e

m = wn.
Hence the G.C.M. of a and b is the same as that of b and ¢, which
is the same as that of ¢ and d, that is, the same as that of d and e,
and finally the same as that of m and #n. But since m = wn, the
G.C.M. of m and = is n, for n is the greatest divisor of = itself.
Hence the G.C.M. of @ and b is the divisor corresponding to the
remainder O in the chain of divisions above indicated.

If n be different from unity, then ¢ and  have a G.C.M. in
the ordinary sense.

If n be equal to unity, then they have no common divisor
except unity, i.e.,, they are prime to-each other.

v § 10.] It should be noticed that the essence of the foregoing
algorithm for finding the G.C.M. of two integers is the substitu-
tion for the original pair of successive -pairs of continually de-
creasing numbers, each pair having the same G.C.M. All that is
necessary is that p,¢, 7. . . be integers, and that a, b, ¢, d,e. . .
be in decreasing order of magnitude.

The process might therefore be varied in several ways.
Taking advantage of the use of negative integers, we may some-
times abbreviate it by taking a negative instead of a positive
remainder, when the former happens to be numerically less than
the latter.

For example, take a = 4328, b = 1595,
we might take 4328 =2 x1595+1133
or 4323 =3 x 16956 - 462 ;
the latter is to be preferred, because 462 is less than 1133, In practice the
negative sign of 462 may be neglected in the rest of the operation, which may
be arranged as follows, for the sake of comparison with the ordinary process
already familiar to the student :—
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1595)4323(3 /49,'_' >:i/595 =3
4785 ,’&7{"’4' s
462)1595(3 Hz3209-2
1386 "J I’N =
by - b 4323=3./S95 ~4o2

209)462(2 IS95 =3 462 +209
418 . 462 = 2.2074- 44
_— 209 = S. W4 — 1/

44)209(5 4«2 S/
220
11)44(4

44

G.C.M.=11. P

By means of the algorithm for the G.C.M. we may prove
the following proposition, of whose truth the student is in all
probability already convinced by experience :—

If a and b be prime to each other, and h any integer, tlwn any
common factor of ah and b must divide h exactly.

For, since @ and b are prime, we have by § 9,

a=pb +¢ ah =pbh + ch
b=gc +d bh =qch +dh
¢ =rd +e p(1). Hence < ch=rdh +eh »(2)
!l =vm+1 th =vmh +h

Now, since any common factor of ak and b is & common
factor of ah and bh, it follows from the first of equations (2) that
such a common factor divides ck exactly, and by the second that
it also divides dk exactly, and so on ; and, finally, by the last of
equations (2), that any common fa.ctor of ah and b divides kb
exactly.

In particular, since b is a factor of itself, we have

Cor. 1. If b divide ah exactly and be prime to a, it must divide h
exactly.

Cor. 2. If o' be prime to a and to b and fo c, elc., then it is
prime to tlmr product abe .

For, if a’ bad any factor in common with abc . . ., ie, with
a (b . . .), then, since ¢’ is prime to @, that factor, by the propo-
sition above, must divide bc . . . exactly ; hence, since a' is prime
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to b, the supposed factor must divide ¢ ... exactly, and so on.
But in this way we exhaust all the factors of the product, since
all are prime to a’. Hence no.such factor can exist, that is, a’ is
prime to abc . . .

An easy extension of this is the following :—

Cor 3. If all the integers ', V', ¢, . . . be prime to all the inlegers
a,b,c, . . ., then the product a'b'c’ . . . is prime to the product abc . .

A particular case of which is

Cor. 4. If a be prime to a (and in particdar if both be primes),
then any integral power of o' is prime to any integral power of a.

v § 11.] It is obvious that, if @ and b be two integers, we can
in an infinite number of ways put a into the form ¢b + r, where
g and r are integers, for, if we take ¢ any integer whatever, and
find r so that a —gb =7, then a=gb + 1.

There are two important special cases, those, viz., where we
restrict 7 to be numerically less than b, and either (1) positive
or (2) negative. In each of these cases the resolution of a is
always possible in_one way only. For, in case 1, if ¢gb be the
greatest multiple of & which does not exceed a, then « —gb=r,
where 7<b; hence a=¢gb+r; and in case 2, if ¢'b be the least
multiple of b which is not less than a, then a — ¢'b= —+, where
7'<b.  Also the resolution is unique ; for suppose, in case 1, that
there were two resolutions, another being a = xb + p, say ; then
gb +r=xb + p, therefore r—p="(g— Xx)b; hence 7 —p is divisible
by b; but, r and p being each positive, and each numerically <,
7 — p is numerically less than b, and therefore cannot be divisible
by . Hence there cannot be more than one resolution of the
form 1. Similar reasoning applies to case 2.

r and 7’ are often spoken of as the least positive and negative
remainders of a with respect to . When the remainder is spoken
of without qualification the least positive remainder is meant. If
a more general term is required, corresponding to the removal
of the restriction r numerically <&, the word 7esidue is used.

It is obvious, from the definitions laid down in § 6, that a is
or is not exactly divisible by b according as the least remainder of a
with respect to b does or does not vanish.
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The student will also prove without difficulty that if the re- ° - ';{,‘4 r
mainders of a and of o' with respect to b be the same, then a—a'is, .

divisible by b ; and conversely.

§ 12.] When the quotient a/b cannot be expressed as an in-
teger, it is said to be fractional or essentially fractional ; if a> b, afb
is called in this case an improper fraction ; if a <b, a proper fraction.

Hence no true fraction proper or improper can be equal to an
indeger.

Every improper fraction a/b can be expressed in the form q + /b,
where g is an integer and r/b a proper fraction. For, if r be the
least positive remainder when a is divided by b, a =g¢b +r, and
a/b=(gb + r)/b =g + r/b, where ¢ and r are integers and r <b.

If two improper fractions afb and o' [b’ be equal, their integral

parts and their proper fractional parts must be equal separately. For, -

if this were not so, we should have, say, a/b=g+1/b, o[V
=¢ +7/t, and g+rfb=¢ +7/b'; whence g—¢ =/ -r[b=
(r'b—7b')/bb'. Now r’b<b'b and 7b’<b¥, hence 'd — rb’ is numeri-
cally <b0’. In other words, the integer ¢ — ¢ is equal to a proper
fraction, which is impossible.

§ 13.] We can now prove that an integer can be resolved into
Jactors which are powers of primes in one way only.

For, since the factors in question are powers of primes, they
are prime to each other. Let, if possible, there be two such
resolutions, viz. a'd’¢’ . .. and a"d"¢" ... of the same integer N.
Since a'd’¢’ . . .=a"b"c" . . ., therefore a’¥’c’ . . . is exactly divisible
by a”. Now, since a” is a power of a prime, it will be prime to
all the factors a’, ¥, ¢, . . . save one, say a’, which is a power of
the same prime. Moreover, such a factor as a’ (that is, a power
of the prime of which a” is a power) must occur, for, if it did
not, then all the factors of a'd’c’ . .. would be prime to a”, and
a” could not be a factor of N. It follows, then, that o’ must be
divisible by a”.

Again, since a"b"¢” . . .=a'b'c’ . . ., therefore a"d’c” . . . is
divisible by a/, and it follows as before that a” is divisible by a'.

But, if two integers be such that each is divisible by the
other, they must be equal (§ 6); hence a" =a".

I
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Proceeding in this way we can show that each factor in the
one resolution occurs in the other.

§ 14.] Every remainder in the ordinary process for finding the
G.C.M. of two positive integers a and b can be expressed in the form
+ (Aa - Bb), where A and B are positive integral numbers. The
upper sign being used for the 1st, 3rd, bth, elc., and the lower for the
Ond, 4th, elc., remainders. . .

For, by the equations in § 9, we have successively—

¢=+ {a—pb} 1);
d=b-gc=b-g(a-pb),

= - {ga—(1+pg)h} 2;
e=c—rd,

= {a-pb}+r{qa—-(1+pgh},

=+ {(L+gr)a—(p+r+pg)d} 3);

and so on. It is evident in fact that, if the theorem holds for
any two successive remainders, it must hold for the next. Now
equations (1), (2), and (3) prove it for the first three remainders ;
hence it holds for the fourth ; hence for the fifth ; and so on.

In the chapter on Continued Fractions, a convenient process
will be given for calculating the successive values of A and B
for each remainder. In the meantime it is sufficient to have
established the existence of these numbers, and to have seen a
straightforward way of finding them.

Cor. 1. Since g, the G.C.M.of a and b, s the last remainder, we
can always express g in the form—

g= *(Aa~B)) (4),
where A and B are positive integers.

Cor. 2. If a be prime to b, g=1; hence, If a and b be two
infegers prime to each other, two inlegers, A and B, can always be
Jound such that—

Aa-Bb= %1 (5).

N.B.—It is clear that 4 must be prime to B. For, since afg
and b/g are integers, I and m say, we have, from (4),

= +(A4l- Bm); )
hence, if 4 and B had any common factor it would divide 1 (by
§ 8 above).
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Cor. 3. From Cor. 1 and § 8 we see that every common
Jactor of a and b must be a factor in their G.C.M.

A result which may be proved otherwise, and will probably
be considered obvious. -

Cor. 4. Hence, to find the G.C.M. of more than two integers a, b,
& d. .. wemust first find g the G.C. M. of a and b, then ¢ the
G.C.M. of g and c, then g" the G.C.M. of ¢ and d, and so on, the last
G.C.M. found being the G.C.M. of all the given integers.

For every common factor of g, b, ¢ must be a factor in a and
b, that is, must be a factor in ¢; hence, to.find the greatest com-
mon factor in a, b, ¢, we must find the greatest common factor
in g and ¢; and so on.

Example 1. To express the G.C.M. of 565 and 60 in the form A565 - B60.
We have 565 =9 x 60+25, 60=2x25+10, 25=2x10+5, 10=2x 5.
Hence the G.C.M. is 5, and we have successively
25=565-9x 60 ;
10=60-2 {565 -9 x 60 }
=-{2x565-19x60} ;
5=25-2x10
=566-9x60+2 {2x565—19x60}
=5 x 565 ~ 47 x 60.

Example 2. Show that two integers A and B can be found so that
5A-7B=1.
We have 7=1x5+2, §= 2x2+1 ; whence 2=7-5, 1=5-2(7-5)
=8x5-2xT.
Hence A =38, B=2, are integers satisfying the requirements of the
question,

Example 3. Ifa, b,¢,d, . . . be a series of integers whose G.C.M. is g;
show that integers (positive or negative) A, B, C, D, . . . can be found
such that

g=Aa+Bb+Ce+Dd+ .
(Gauss's Disquisitiones Arithmeticee, Th. 40).

Find A, B, C, D, when =386, =24, c=18, d=30.

This result may be easily arrived at by repeated apphcanon of corollaries
1and 4 of thisarticle. § = + v, . =47 .. 1

Example 4. The proper fraction p/ab, where a is prime to 5, can be de-
composed, and that in one way only, into the form

a’ b’

aty b
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where a’ and b’ are both positive, a’<a, b'<b, and k is the integral part of
a'fa+b'[b; that is to say, 0 or 1, according to circumstances.

Illustrate with 6/36.

Since ¢ is prime to , by Cor. 2 above,

Aa-Bb=%1;
multiplying this equation by £p/ad, we have

by

If the upper sign has to be taken, resolve pA and pB as follows (§ 11):—
pA=1b+b (¥ positive <b),

pB=ma-a (@' ... <a)
Then (1) becomes
! '
%: —m+%+% ‘ (2).

Now, since p/ab is a proper fraction, the integral part on the right-hand side
of (2) must vanish ; hence, since the integral part of a'/a+&'/b cannot exceed
1, we must have I-m=0, or I -m= -1.

If the lower sign has to be taken in (1), we have merely to take the
resolutions

PA=Ib-b (V' positive <b),
) pB=ma+a (a@'. . .<a),

and then proceed as before. 'We leave the proof that the resolution is unique
to the ingenuity of the reader.

Illustration. . 36=5x7.

Now 3x5-2x7=1, (Seeexample 2 above)
6 6

whence 335=3—5(3x5—2x7),
L18_12
-7 .
_2x7+4_3x5-3
T 5

4 3
—2+7—3+§'
3 4

_§+7_

N.B.—If negative numerators are allowed, it is obvious that pfab can
always be decomposed (sometimes in more ways than one) into an algebraic
sum of two fractions a’/a and /b, where a’ and b’ are numerically less than
a and b respectively. For example, we have 6/35=38/5—8/7=4/7 - 2/5.

Example 5. If the n integers a, b, ¢, d . . . be prime to each other, the
proper fraction p/abed . . . may be resolved in one way only into the form
LI —k
atstetat - x,
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where @, B, v, 5, . . . are all positive, a<a, B<b, y<¢, 8<d, . . . and ¥
has, according to circumstances, one or other of the integral values,
0,1,2...2-1

(Gauss’s Disquisitiones Arithmeticee, Th. 310).
This may be established by means of example 3.

Example 6. Work out the resolution of example 5 for the fraction
10720/17017.

§ 15.] We conclude this chapter with a proposition which is
as old as Euclid (ix. 20),* viz.—

The number of prime integers is infinite.

For if the number be finite, let p be the last prime integer,
and consider the product

1.2.3.4...p-1.p

composed of all the integers up to p, this product is exactly
divisible by every integer less than p; hence 1.2.3.4 . ..
p-1. p+1 is not divisible by p or by any integer less than p.
This last integer is therefore either a prime or is divisible by
some prime greater than p. In either case the hypothesis that
p is the last prime breaks down. Hence the number of primes
is infinite.

Exercises 1V, A=5B bl
v (1.) If the two fractions A/B, a/b be equal, and the latter be at its lowesi;B/:""/4 o ‘7‘3
terms, prove that A=pua, B=pub, where x is an integer. Mg
v (2.) Prove that the sum or difference of two odd numbers is always even ;
the sum or difference of an odd and an even number always odd ; the product
of any number of odd numbers always odd ; the quotient of one odd number .o
by another always odd, if it be integral 3 331}, wene ) e o (b e 2net = 29.2mt

oo, Sanpire.

V (8.) If a be prime to b, then—
1 Bin Mt "‘7'#[’1 reandy

1st. (@+b)™ and (- by™ have at most the G.C.M. 2™,
2nd. a™+ ™ and a™ - b™ have at most the G.C. M. 2.
8rd. a+band a?+ b~ ab have at most the G.C. M. 3. \

v (4.) The difference of the squares of any two odd numbers is exactly
divisible by 8. @11 - @ A a4l (mow) 2 Y (a0 W)Y
v/ (5.) The sum of the squareg of three consecutive odd numbers increased

by 1 is a multiple of 12. @ »s fz+df tants) 'l = 11 e 3w 34

* Most of the foregoing propositions regarding integral numbers were
known to the old Greek geometers.
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(6.) If two fractions be each at their lowest terms, neither their sum nor
their difference can be an integer unless the denominators be equal.
v (7.) Resolve 45738 and 297675 into their prime factors.
v (8.) Find the G.C.M. of 54643 and 91319, using negative remainders
whenever it is of advantage to do so.

(9.) Prove that the L.C.M. of two integers is the quotient of their prodnct
by their G.C.M.

(10.) If g,, gs, g5 be the G.C.M.’s, 7, I, I the L.C.M.'s, of b and ¢, c and
a, @ and b respectively, G the G.C.M., and L the L.C.M., of the three a, b,
¢, show that

__abcG .

9995

b/

919293
v (11.) When 2 is divided by y, the quotient is % and the remainder v;
show that, when 2 and uy are divided by v, the remainders are the same, and
the quotients differ by unity. "
ERal

A=Wy o |

ar

‘



CHAPTER 1IV.

Distribution of Products—Multiplication of Rational
Integral Functions—Resulting General Principles.

GENERALISED LAW OF DISTRIBUTION.

v§ 1.] We proceed now to develop some of the more important
consequences of the law of distribution. This law has already been
stated in the most general manner for the case of two factors,
each of which is the sum of a series of terms ; viz., we multiply
every term of the one factor by every term of the other, and set
down all the partial products thus obtained each with the sign
before it which results from a certain law of signs.

Let us now consider the case of three factors, say

(@+b+c+.. )@ +b+c+... )@+ +c"+...)
First of all, we may replace the first two factors by the process
just described, viz., we may write
(aa' +ab +ac’ +...+ba' + 00" +bc' +.. ) (@ +b"+¢"...)
Then we may repeat the process, and write
ad’a” +aa't” +an’c” +. . .

+ab'a” +ab'd” +abc" +. ..

+ac'a” +ac'h” +ac’c"+. ..

+ba'a” + ba'd” + ba'c" +. .. &ec.,
where the original product is finally replaced by a sum of
partial products, each of three letters. We have simplified the

matter by writing + before every term in the original factors, but

the proper application of the law of signs at each step will pre-
sent no difficulty to the student.
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The important thing to remark is that we might evidently
have arrived at the final result by the following process, which
is really an extension of the original rule for two factors :—

Form all possible partial products by taking a term from each
Sactor (never more than one from each); determine the sign by the law
of signs (i.e., if there be an odd number of negative terms in the partial
product, take the sign — ; if an even number of such or none, take the
sign + ). Set down all the partial products thus obtained.

Cor. The number of terms resulting from the distribution of a
product of brackets which confain I, m, n, . . . terms respectively is
Ixmxn... For, taking the first two brackets alone, since .
each term of the first goes with each term of the second, the
whole number of terms arising from the distribution of these is
I xm. Next, multiplying by the third bracket, each of the I x m
terms already obtained must be taken with each of the n terms
of the third. We thus get (! x m) x m, that is, / x m x n terms.
By proceeding in this way we establish the general result.

It should be noted, however, that all the terms are supposed
to be unlike, and that no condensation or reduction, owing to like

" terms occurring more than once, or to terms destroying each

other, is supposed to be made. Cases occur in § 2 below in
which the number of terms is reduced in this way.

If the student have the least difficulty in following the
above he will quickly get over it by working out for himself the
results stated below, first by successive distribution, and then by
applying the law just given.

(a+3)(c+d)(e+f) )
= ace+agf + ade -+ adf + bee + bef + bde + bif
(2x2x2=8 terms),

(@-b)(c—a)(e-f)
= ace - agf — ade +adf — bee + bef + bde — bdf,

(a-b)(c-d)(e+f+9)
= ace-+acf + acg — ade — adf - adg — bee  bef — beg + bde + bdlf + bdg
(2x2x3=12 terms).

v § 2.] It was proved above that in the most general case of
distribution the number of resulting terms is the product of the
numbers of terms in the different factors of the product. An
examination of the particular cases where reductions may be
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afterwards effected will lead us to some important practical
results, and will also bring to notice certain important principles.
Consider the product (z +b)(a+b5). By the general rule the
distribution will give 2 x 2 =4 terms. We observe, however,
that only two letters, ¢ and b, occur in the product, and that
only three really distinct products of two factors, viz., a x a,
a x b, b x b, that is, a*, ab, }*, can be formed with these; hence
among the four terms one at least must occur more than once.
In fact, the term a x b (or b x a) occurs twice, and the result of
the distribution is, after collection,

(a+b)(a+d)=a"+2ab+b"
This may of course be written

(a+b)'=d"+2ab+8 1)
Similarly (@a-b)=a"-2ab+¥ ).
In the case (@a+b)(a-d)=a"-0 (3),

the term ab occurs twice, once with the + and again with the —
sign, so that these two terms destroy each other when the final
result is reduced.

Before proceeding to another example, let us write down all
the possible products of three factors that can be made with two
letters, @ and 5. There are a°, a'b, ab’, ¥*, four in all.

Hence in the distribution of (a + b)’, that is, of (a + b) (¢ + b)
(a + b), which by the general rule would give 2 x 2 x 2 =8 terms,
only four really distinct terms can occur. Let us see what terms
recur, and how often they do so. a’ and 4* evidently occur each
only once, because to get three as, or three bs, one must be
taken from each bracket, and this can be done in one way only.
a'b may be got by taking b from the first bracket and a from
each of the others, or by taking the b from the second, or from
the third, in all three ways; and the same holds for ab’. Thus
the result is

(a+b)°=a'+3a’0 + 3ab’ + b° (4).
In a similar way the student may establish for himself that
(@a-0)=a"~3d"b+ 3ab* - 0° (5),

(a=b)' =a' + 4a°h + 6a°" = 4ab’ + ' (6),
VOL. L E
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and, remembering that the possible binary products of three
letters abc are a’, V°, ¢, b, ca, ab, six in number, that—
(@+b+c)=a"+8 +¢" + 2bc + 2ca + 2ad (),
(@+b~cf'=d"+b + ¢ —2bc — 2ca + 2ab (8),
&e.

The ternary products of three letters, abe, are o, a%, d’,
ab’, ac’, abe, V°, b%, bc’, ¢. The enumeration is made more certain
and systematic by first taking those in which & occurs thrice,
then those in which it occurs twice, then those in which it occurs
once, and lastly, those in which it does not occur at all.*

Bearing this in mind the student, by following the method
we are illustrating, will easily show that

(@a+b+c)'=(@a+b+c)(@a+b+c)(a+b+c),
=a'+ 0"+ ¢ + 3% + 3b’ + 3c'a + 3ca’
+ 3a’h + 3ab* + 6abe (9),

from which again he may derive, by substituting (see chap. i
§ 24) — ¢ for ¢ on both sides, the expansion of (¢ + - ¢)’, and so
on. He should not neglect to verify these results by successive
distributions, thus :—

(@+b+c)f=(@+db+c)(a+b+c)
=(a"+ b+ + 2bc + 2ca + 2ab) (a + b+ ¢)
=a' + ab® + ac® + 2abe + 2ca’ + 24°b
+a’ + b + bc® + 20 + 2abc + 2ab’
+ca® + b + ¢ + 2b¢® + 2¢%a + 2abc
= &e.

It is by such means that he must convince himself of the
coherency of algebraical processes, and gain for himself taste and
skill in the choice of his methods.

* There is another way of classifying the products of different orders which
the student should notice, viz., according to ¢ All the terms that can be
derived from one another by interchanges among the variables are said to be
of the same type. For example, consider the ternary products of abe, from a3, -
we derive by interchange of b and a, »*; from this again, by interchange of -
b and ¢, ¢*: no more can be got in this way, so that a?, 83, & form one ternary
type; b, b, cla, ca®, a%, ab?, form another ternary type; and ade a third.
Thus the ternary products of three variables fall into three types.
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Let us consider one more case, viz., (b+c)(c+a)(a+b).
Here even all the ten permissible ternary products of abc¢ cannot
occur, for a’, b°, ¢® are excluded by the nature of the case, since
a occurs in only two of the brackets ; and the same is true of 5
and ¢ In fact, by the process of enumeration and counting of
recurrences, we get

(B +c)(c+a)(a+b)=bc"+b%+ca’ + c'a+ ab’ + a’b + 2abe (10).

In the product (b - c) (c — a) (a — b) the term abc occurs twice
with opposite signs, and there is a further reduction, viz,

(b-c)(c—a)(a-b)=bc-b'c+ca’ - c'a+ab’—a’d (11).

Z Notgliggu—-Tnstead of writing out at length the sum of all the terms of
th\murtype, say bc+ca +ab, the abbreviation Zbc is often used ; that is to
say, we write only one of the terms in question, and prefix the Greek letter
Z, which stands for ‘“sum,” or, more fully, ‘‘sum of all terms of the same
type as.” The exact meaning of Z depends on the number of variables that
are in question. For example, if there be only two variables, a and b, then
Zab means simply ab ; if there be four variables, a, b, ¢, d, then Zab means
ab+ac+ad+bc+bd+cd. Again, if there be two variables, a, b, Za® means
a®b+ab?; if there be three, a, b, ¢, Za% means a%+ab®+a +acd+ b% + be®.
Usually the context shows how many variables are understood ; but, if this
is not 8o, it may be indicated either by writing the variables under the 2,
thus Eab or otherwise.

Thls notation is much used in the higher mathematics, and will be found
very useful in saving labour even in elementary work. For example, the
results (4), (9), and (10) above may be written—

(a+bP=2a3+83a% ;
(a+b+cP=Za’+8Za%+ Babe ;
(b+¢)(c+a) (a+b)=Za% + 2abe.

By means of the ideas explained in the present article the reader should
find no difficulty in establishing the following, which are generalisations of
(1) and (9) :—

(@+d+c+d+ . . . P=Za+2Zab (12),
(@+b+c+d+ . . .P=Za+8Za%+6Zabe (18),

the number of variables being any whatever.

%ﬂmm is another abbreviative notation, closely allied to the
one we have just been explaining, which is sometimes useful, and which often
appears in Continental works. If we have a product of terms or functions of
a given set of variables, which are all different, but of the same type (that is,

derivable from each other by interchanges, see p. 50), this is contracted by
writing only one of the terms or functions, and prefixing the Greek letter II,
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which stands for ‘‘ product of all of the same type as.” Thus, in the case of
three variables, a, b, ¢,

Ma?b means a?b x ad® x a’c x ac? x ¢ x be? ;
II(d+¢) means (b+¢)(c+a)(a+b);

b+e b+e\fc+a \/a+b
(e ) monns (o) () (20)
and so on.
We might, for example, write (10) above—
II(b + ¢) = Zb% + 2abe.

v § 3.] Hitherto we have considered merely factors made up of
letters preceded by the signs + and —. The case where they are
affected by numerical coefficients is of course at once provided
for by the principle of association. Or, what comes to the same
thing, cases in which numerical coefficients occur can be derived
by substitution from such as we have already considered. For
example— )

(3a+ 2b)"= {(3a)+(20)}°
=(3a)° + 3(3a)(2D) + 3(3a) (2b)" + (2b)’,
whence, by rules already established for monomials,
= 27a" + 54a° + 36ab° + 80",
(@—2b+5¢"= {(a)+(—2b) +(5c) }*
=(a)" + (- 28)* + (5¢)" + 2( — 2b) (5¢) + 2(bc) (a) + 2(a) (- 20)
=a'+ 48" + 25¢" — 20bc + 10ca — 4ab.

The student will observe that in the final result the general
form by means of which this result was obtained has been lost, so
far at least as the numerical co-efficients are concerned.

v § 4] It is very important to notice that the principle of
substitution may also be used to deduce results for trinomials
from results already obtained for binomials. Thus from (a + 8)° =
a® + 3a’b + 3ab® + ', replacing b throughout by b + ¢, we have

{a+(+c)}’=a"+3a’(b+c)+3a(b+c)+ (b+c)
=g'+ 3a'h + 3a’
+ 3a(b’ + 2bc + )
+b* + 3b% + 3bc" + ¢,
whence (a+b+¢) =a'+8"+c" + 30+ 3bc" + 3c%a + 3ea®
+ 30" + 3ab” + 6abe.
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By association of parts of the factors, and by partial distri-
bution in the earlier parts of a reduction, labour may often be
saved and elegance attained.

For example—

“(a+d+e-d)(a-d+c+d)
= {(a+)+(b-ad)} {(a+c)-(d-d)},
=(a+cf'-(b-dp,
by formula (3) above,
=(a*+2ac+c®) - (b - 2bd + d¥),
=a?- b +c2 - d¥+ 2ac + 2bd.
Again, .
(a+d+c)(b+c—-a)(cta-b)(a+bd-c¢c)
= {(@+c)+a} {(d+c)-a} {a. (6-¢)} {a+(®-0},
= {G+ep-a'} {@-0-or)>
by a double application of formula (3),
= {P+2c+?-a?} {a*-bB*+2c-c2},
= {2bc+(b’+c’—'a’)} {2c-(B*+-a?)},
=(2bc)? - (B*+¢*-a?)?,
by formula (3),
=452 — (b + A + at + 2572 - 2c%a3 - 24%09),
=203+ 2c%3 + 2030 — ot - bt — A, @\
a result which the student will meet with again, eA pd
v §6.] There is an important general theorem which follows
so readily from the results established in §§ 1 and 2 that we may
give it here. If all the terms in all the factors of a product be
simple letters unaccompanied by numerical coefficients, and all affected
with the positive sign, then the sum of the coefficients in the distribuied
value of the product will be I x m xn . . ., where I, m, n, . . . are
the numbers of the terms in the respective factors.

This follows at once from the consideration that no terms
can be lost since all are positive, and that the numerical co-
efficient of any term in the distribution is simply the number of
times that that term occurs.

Thus in formula (4), (6), and (10) in § 2 above we have
1+3+3+1 =2x2x92 - '
1+4+6+4+1 =2x2x2x2

1+41+1+4+1+14+1+2=2x2x2,
&e.
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In formule (8) and (11) of § 2, and in the formuls of § 3,

the theorem does not hold on account of the appearance of
negative signs and numerical coefficients.

ExXERcIsgs V.
V/(1.) How many terms are there in the distributed product (a,+a,)
(b1 + by +b5) (1 + 63+ e+ ¢) (dy + dy + dy + dy+ ) §
Distribute, condense, and arrange the following :—
v (2) (2+y)(z-9) (@ -1 (@ +)
v (8.) @+97) (@0 -1 (A +90)
v (4) (z+yM=-yP.
(5.) (z+2y)Xz— 2y)%.
(8.) (b+c)(c+a)(a+d)(b-c)le—a)(a-1b). )
(7.) (2 +z+1p. (C)]
(8.) (8a+2b-1).
2
v (9.) (a.‘+x+1+:—:+£,)-
(10.) (@ +b+c), and (@ - b-c).
v/(11.) Write down all the quaternary products of the three letters z, ¥, z;
point out how many different types they fall into, and how many products
there are of each type.
v/ (12.) Do the same thing for the ternary products of the four letters a, b, ¢, d.
(13.) Extend the theorem of § 5 to the case where there arc numerical
coefficients (all positive).
Find the sum of the coefficients in the expansion of (2a + 3+ 4c)*.
Distribute and condense the following, arranging terms of the same type
together : —
x y z x y z
a0 (Lt eras) (et alatars
(16.) (x+y+zP-o(y+2-2)-yYz+z—y)-2(x+y —2).
(16.) (b—c)(b+c—a)+(c-a)(c+a-b)+(a—-d)(a+d-c).
V(17.) (b+e)(y+2)+(c+a)(z+2)+(a+b) (z+y) - (a+b+c) (@ +y+32)
(18.) Za(b+c-a)(b+c—a).® N +
(19.) Show that (z+y)=2(z2 +1?) (z +y) - (BB -y (eey’= 28+11 =89 N
(20.) Show that " 6,43
alz~ by - da®Hz - a)z - b + 6ab¥x — a)¥z - b) - 4ab¥z-a )Xz - b)+b4(fr-a)a=t&'
=(at - 4a%h + 6a%b® - 4ab®+ b)xt.
(21.) Show that
(2* - ay®) (27 ~ ay®) = (xx' Layy')® - a(zy' L yx'}? ;
(2 - ay*P = (23 + azy) - of Bty + ) ;

* Wherever in this set of exercises the abbreviative symbols £ and II are
used, it is understood that three letters only are involved. The student who
finds difficulty with the latter part of this set of exercises, should postpone
them until he has read the rest of this chapter.
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(«® - By? - C22+ BCu?) (2 —~ By'? - Cz¥+ BCu'3)
= {zz' + Byy' £C(z2' + Buu') }* - B {ay’ + 2’y Cluz’ +u'z) }
- C { =’ - Byu'&(z’ — Buy') }*+ BC {y2' —aw'E(ua’ - 2y') }*
Lagrange.
These theorems are of great importance in the theory of numbers ; they
show that the products and powers of numbers having a certain form are
numbers of the same form. They are generalisations of the formulee numbered
V. in the table at the end of this chapter.
Distribute, condense, and arrange—
V(22.) ZaSbe-Ti(b+e). = date —zabe maly (/o)
(23.) Za(Za®+ Zbc)+ZaZa® - Z(b+cP. of By T p.fo-)
(24.) (b-c)(b+cP+(c—a)(c+aP+(a-b)(a+b).
(25.) Distribute
{(a+bp? - abxy +(a—-by? } {(a - b)z? +abay +(a+b) } ;
and arrange the result in the form

Axt+ Ba:‘y+Ca:.’y’+ Day*+Eyt.
(26.) Show that

{B -2 +8xy(2e+9) }® + { 9P - 3+ Bay(2y +2) } 2

=2Tzy(z+y) (22 + 2y + 2P
(27.) Show that

E{2AB+ay+y?) (P +az+P) - (P+yz+2P ) =3 { Iyt
(28.) Show that
3 {Za¥b+cP+2abcZa} = {The )
(29.) Show that Z(a.—' b)(@-c)= {Za®~Zbc}.
(80.) Show that
(Babe— 26 - o+ Ao~ PP _(3dob— 26~ -+ 4(db - 7P
a? - d? )

GENERAL THEORY OF INTEGRAL FUNCTIONS.

v'§ 6.] As we have now made a beginning of the investigation
of the properties of rational integral algebraical functions, it will
be well to define precisely what is meant by this term.

We have already (chap. ii. § 5) defined a rational integral
algebraical term as the product of a number of positive integral
powers of various letters, z,y,2, . . ., called the variables, multi-
plied by a coefficient, which may be a positive or negative number,
or a mere letter or function of a letter or letters, but must not
contain or depend upon the variables.

A rational integral algebraical function is the algebraical sum of
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a series of rational integral algebraical terms. Thus, if 7, 9,2, . . . be
the variables, {,m,n ..., I,m',n' ..., I"ym",n" ... positive in-
tegral numbers, and C, C’, C” coefficients as above defined, then
the type of such a function as we have defined is

Cafyman .+ CAf Y™y L+ O YL+ &
For shortness, we shall, when no ambiguity is to be feared, speak
of it merely as an “integral function.”

To fix the notion, we give a few special examples. Thus
(a) 83+ 3xy+ 2y is an integral function of z and y.
(B) ax®+bxy+cy?, a, b, c being independent of x and y, is an integral
function of z and y. )
(y) 82®- 223+ 38z+1 is an integral function of = alone.

@) :—:+% +—': -1 is an integral function, if x,%,2 be regarded as the
variables ; but is not an integral function if the variables be taken
tobex, y, 2 a, b, ¢, or a, b, c alone.

Each term has a “degree,” according to the definition of
chap. ii. § 6, which is in fact the sum of the indices of the vari-
ables. The degrees of the various terms will not in general be
alike ; but the degree of an inlegral function is defined to be the
degree of the term of highest degree that occurs in .

For example, the degree of (a) above, in = and y, is the 3rd, of (8) the
2nd in zand y, and the 1st in a, b, ¢, of (y) in 2 the 3rd, of () in z, y, 2 the 1st.

v/ § 7.] From what has already been shown in this chapter it
appears that in the result of the distribution of a product of any
number of integral functions, each term arises as the product of
a number of integral terms, and is therefore itself integral.
Moreover, by chap. ii. § 7, the degree of each such term is the
sum of the degrees of the terms from which it arises. Hence
the following general propositions :—

The product of any number of integral funmctions is an indegral
Sfunction.
The highest * term in the distributed product is the product of the

* By ‘““highest term " is meant term of highest degree, by ‘‘lowest term ”
term of lowest degree. If there be a term which does not contain the vari-
ables at all, its degree is said to be zero, and it of course would be the lowest
term in an integral function, for example, +1 in (y) above.
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highest terms of the several factors, and the lowest term is the product
of their lowest terms. )

The degree of the product of a number of integral functions is the
sum of the degrees of the several factors. .

Every identity already given in this chapter, and all those
that follow, will afford the student the means of verifying these
propositions in particular cases. It is therefore needless to do
more than call his attention to their importance. They form, it
may be said, the corner-stones of the theory of algebraic forms.

INTEGRAL FUNCTIONS OF ONE VARIABLE.

v § 8.] The simplest case of an integral function is that where
there is only one variable z. As this case is of great importance,
we shall consider it at some length. The general type is

D +Pn_ 121+ ... + D2+ P,
where p,, p,, .. . pn are the various coeﬁiclents and nis a mg ve
integral number, which, being the index of the hxghest term, 1s
the degree of the function. The function has in general  + 1
terms, but of course some of these may be wanting, or, which
amounts to the same thing, one or more of the letters p,, 2,,. . . Pa
may have zero value.

v § 9.] When products of integral functions of one variable
have to be distributed, it is usually required at the same time to
arrange the result according to powers of z, as in the typical
form above indicated. We proceed to give various instances
of this process, using in the first place the method described in
the earlier part of this chapter. The student should exercise
himself by obtaining the same results by successive distribution
or otherwise.

In the case of two factors (z + a) (x + b), we see at once that
the highest term is 2', and the lowest ab. A term in z will be
obtained in two ways, viz. az and bz; hence

(z+a)(z+b)=2"+(@+bz+adb . . . (1)
This virtually includes all possible cases; e.g., putting — a for a we get

(z+(-a))(@+b) =22+ ((—a)+d)z+(-a)d,
=2*+(-a+bd)z-abd.
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Similarly (z—a)(z-b)=22+(-a-d)z+ab,
=23~ (@a+b)z+abd.

(x-a)(z—a)=2+(-a-a)x+a?,
= 2% 2az + a3, etc.

Cases in which numbers occur in place of @ and b, or in which 2 is affected
with coefficients in the two factors, may be deduced by specialisation or other
modification of formula (1), e.g.,

(x-2)(x+8) =2+ (-2+8)x+(-2) (+8),
=az342-6.

(px+q)(rz+s)=p z+§)r(z+;) ,

8
—or(e+9)(=+2),
- — q qs

=pr i z’+(—+ )z+; = }

=pre®+ pr(q ).’c+ pr—

= prz*+(rg+ps)z+gs,
which might of course be obtained more quickly by directly distributing the
product and collecting the powers of z.

In the case of three factors of the first degree, say (z+a)
(z +a) (z +a,), the highest term is z*; terms in 2* are obtained
by taking for the partial products z from two of the three brackets
only, then an @ must be taken from the remaining bracket ; we thus
get a2, a2, a2’; thatis, (2, + @, + a,) 2° is the term in 2".  To get
the term in z, z must be taken from one bracket, and as from the
two remaining in every possible way ; this gives (a,a, + a,a, + 0 a)z.
The last or absolute term is of course a,aa,.
Thus (z + a,) (z + a,) (z + a,)
=2+ (@, +a,+a)2 + (a0, +aa,+aa)z+aaa, (2)
By substitution all other cases may be derived from (2), e.g.,
(@-a)z-a)(@-a)
=2"-(a,+a,+a) +(a0,+aa +aa)z-aaa (3),
(z+1)(z+2)(z—3)=2"- Tz~ 6, and so0 on.
After what has been said it is easy to find the form of the

distribution of a product of n factors of the first degree. The
result is

(z+a)(z+a)...(z+ay)
=z"+Paz* 1 +Pa*-2+...+P_12+P, (4),
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where P, signifies the algebraic sum of all the as, P, the alge-
braic sum of all the products that can be formed by taking two
of them at a time, P, the sum of all the products three at a time,
and so on, P, being the product of them all.

v/ § 10.] The formula (4) of § 9 of course includes (1) and (2)
already given, and there is no difficulty in adapting it to special
cases where negative signs, &c., occur. The following is par-
ticularly important :—

(z-a) (z-a)...(z-a,)
=g ~Par1+Pa-2-. . .+ (-11P, _z+(-1)*"P, (1)
Here P, P, &c., have a slightly different meaning from that
attached to them in § 9 (4), viz., here P, for example, is not the
sum of all the products of — a,—-a,,...-a, taken three at a
time, but the sum of the products of +a,, +a, . ..+a, taken
three at a time; and the coefficient of z"-% is therefore — P,,
since the concurrence of three negative signs gives a negative
sign. As a special case of (1) let us take
(z-a)(z—-2a) (z—3a)(z—4a)=2'-P2' + P2'-Pz +P,.
Here P, =a + 2a + 3a + 4a = 10g,
P=1x24"+1x3e"+1x4a"+2x3a"+2x4a"+ 3 x 4a’
= 35a’,
P,=2x3x4a"+1x3x4a’+1x2x4a"+1x2x3a’
=50a’,
P,=1x2x3x4a" =24a".
So that (2 —a) (z - 2a) (z — 3a) (z — 4a)
=2'—10a2" + 35a’2" - 502’z + 24a".
v § 11.] Another important case of § 9 (4) is obtained by
-making @ =a,=a,...=aqa,, each =a say. The left-hand side
then becomes (z + a)". Let us see what the values of P, P, . .
P, become. P, obviously becomes na, and P, becomes a”. Consider
any other, say P, ; the number of terms in it is the number of
different sets of 7 things that we can choose out of n things.
This number is, of course, independent of the nature of the
things chosen ; and, although we have no means as yet of calcu-
lating it, we may give it a name. The symbol generally in use
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for it is ,C,, the first suffix denoting the number of things chosen
from, the second the number of things to be chosen. Again,
each term of P, consists of the product of r letters, and, since in
the present case each of these is a, each term will be a”. All
the terms being equal, and there being ,C, of them, we have in
the present case P, =,C,a". Hence

(z + a)* =2 + naz™-1 + ﬂC,_.,a?:;:""2 + “Csasx"‘s +...+a%;

or, if we choose, since ,C,=n, ,C, =1, we may write

(z+a)r=2"+ Cuaz* 1+ Cp’s*2+...+ C,_a" 2+ ,Ca"(1)

This 1s the “ binomial theorem” for positive integral exponents, and
the numbers ,C,, ,Cs, ,Cy - - . are called the binomial coefficients of
the nth order. They play an important part in algebra ; in fact,
the student has already seen that, besides their function in the
binomial expansion, they answer a series of questions in the
theory of combinations. When we come to treat that subject
more particularly we shall investigate a direct expression for ,C,
in terms of #n and . Later in this chapter we shall give a pro-
cess for calculating the coefficients of the different orders by
successive additions.
By substituting successively —a, +1, and — 1 for a in (1)
we get
(z - a)n =" — ‘Claz"" + nczaﬂzn-z —- ncaasxn-s +...
+(- 1)”"Cna,“ (2);
(@+1)*=2"+,Ciz" 1+ ,C*+...+,C, 3);
@-1)"=a"- Cp"! +,Ca"—. .. + (- 1)%Cs (4);
and an infinity of other results can of course be obtained by
substituting various values for z and a.

v § 12.] In expanding and arranging products of two integral
functions of one variable, the process which is sometimes called
the long rule for mulliplication is often convenient. It consists
simply in taking one of the functions arranged according to

descending powers of the variable and multiplying it successively
by each of the terms of the other, beginning with the highest
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and proceeding to the lowest, arranging the like terms under
one another. Thus we arrange the distribution of
(@ +22 + 22+ 1)(z"-2z+ 1)
as follows :— 2+ 22+ 22+1
- z+1
2+ 2 + 28+ 2
- 2-2"-2"- 2
+ £+22"+2+1
Z+ o+ L+ I+ z+1;

or again - (pd’ + gz + 1) (12" + gz + p)
pr +qz +r :
re +gz +p
prrt - +grd + 7%
+ pgz® + ¢ +qrr
+ ' +pgz +pr

pret + (pg+ ) + (P° + @' + )" + (pg + gr)z + pr.
The advantage of this scheme consists merely in the fact that
like powers of z are placed in the same vertical column, and that
there is an orderly exhaunstion of the partial products, so that
none are likely to be missed. It possesses none of the funda-
mental importance which might be suggested by its prominent
position in English elementary text-books.

V/'§ 13.] Method of Detached Coefficients.—When all the powers
are present a good deal of labour may be saved by merely
writing the coefficients in the scheme of § 12, which are to be
multiplied together in the ordinary way. The powers of z can
be inserted at the end of the operation, for we know that the
highest power in the product is the product of the highest powers
in the two factors, and the rest follow in order. Thus we may
arrange thé two multiplications given above as follows : —

1+2+2+1
1-1+1
1+2+2+1
-1-2-2-1
+1+2+2+1
1+1+1+1+1+1;
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whence
@+2+22+1)(@" -2+ ) =2+ +2P+2" + 2+ 1.
Again,
P +q +r
r +9q +p

pr +qr +7°
+pq +q" +qr
+p' +pg +pr

pro(gr+pg)+ @'+ +17)+(pg+qr) +pr;
whence :

(P2’ + gz + 1) (r2’ + gz + p)
=pre' + (pg+qr) 2+ (" + ¢ + 1) + (pg + gr) x + pr.

The student should observe that the use of brackets in the
last line of the scheme in the second example is necessary to
preserve the identity of the several coefficients.

It has been said that this method is applicable directly only
when all the powers are present in both factors, but it can he
made applicable to cases where any powers of z are wanting by
introducing these powers multiplied by zero coefficients. For
example—

(2* - 22"+ 1) (z* + 22" + 1)
=(2'+ 02" - 22" + 0z + 1) (z' + 02" + 22" + 0z + 1),

1+40-2+0+1
1+0+2+0+1

1+40-2+0+1
+0+0+0+0+0*
+2+0-4+0+2
+0+0+0+0+0"
+14+40-2+0+1

1+0+0+0-2+0+0+0+1
2'+0z' + 02" + 0 - 22' + 02 + 02" + 0z + 1 ;

whence
(@ -22"+1)(z"'+ 22"+ 1) =2" - 22* + 1.
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The process might, of course, be abbreviated by omitting the
lines marked *, which contain only zeros, care being taken to
place the commencement of the following lines in the proper
columns ; and, in writing out the result, the terms with zero
coefficients might be omitted at once. With all these simplifica-
tions, the process in the present case is still inferior in brevity
to the following, which depends on the use of the identities
(A+B)(A-B)=A'-B',and (A+B)'=A"+2AB+B"

(-2 +1)(2" + 22"+ 1)=("+ 1 - 22") (=" + 1 + 22)

Or
st.'-l@f:h: (x'ﬂf'ﬂ)(x'fz{‘o 0)= = (x‘ + 1)' - (2‘6')'
&0 (%) )t =2"+ 2"+ 1 - 42’
P Ry . =2'-2'+1.

The method of detached coefficients can be applied with ad-
vantage in the case of integral functions of two letters which are
homogeneous (see below, § 20), as will be seen by the following

example :—
@ -2y +y) (& - 22y + 224" - ¢f),
1-2+2-1
1-1+1
1-2+2-1
-1+2-2+1
+1-2+2-~1

1-3+56-5+3-1,
=g’ ~ 32'y + 52"y’ — 52"y’ + Say' — o".

If the student will work out the above distribution, arrange
his work after the pattern of the long rule, and then compare,
he will at once see that the above scheme represents all the
eagential detail required for calculating the coefficients.

The reason of the applicability of the process is simply that
the powers of # diminish by unity from left to right, and the
powers of y in like manner from right to left.

We shall give some further examples of the method of
detached coefficients, by using it to establish several important
results.
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v'§ 14.] Addition Rule for calculating the Binomial Coefficients.

We have to expand (z+ 1), (z+1)°, . . . (z+1)*. Let us
proceed by successive distribution, using detached coefficients.
‘)J‘\%LN 1 o 1+1 (The coefficients of z + 1),
('m (13} 1 1+1
CW’JC "" -
‘ﬂ.‘u mwve-u\_x 1+1
te l‘”‘”"f' T B +1+1
"' 19487171,% 1+2+1  (The coefficients of (z + 1)),
Imies 1+1
7030 00: 3 —_—
59900 1+2+1
1'9,3 +1+2+1 .
T ] Al

1+ 3+ 3+ 1 (The coefficients of (z+ 1)°).

The rule which here becomes apparent is as follows :—

To obtain the binomial coefficients of any order from those of the
previous order (1st) write down the first coefficient of the previous order ;
(2nd) add the second of the previous order to the first of the same ;
(3rd) add the third of the previous order to the second of the same ;
and so on, taking zeros when the coefficients of the previous order run
out. We thus get in succession, the first, second, third, elc., coefficients
of the new order. For example, those of the fourth order are

1+(1+3)+(3+3)+(3+1)+(1+0),
that is, 1+4 +6 +4 41,
which agrees with the result obtained by a different method
above, § 2 (6).

‘We have only to show that this process is general. Suppose
we had obtained the expansion of (z+ 1)", viz., using the nota-

tion of § 11,
(z+1)r=2r+ Caz"1+ Ca*-2+ Ca*-%+... .+ C _z+ C,.
Hence

(E+1rtl=(z+1)*x(z+1) '
=@ +,Ca* 1+ Car-2+...+,C _2+ C)(z+1);

n n-1
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using detached coefficients, we have the scheme
1+,C+,C+,GC.. .+,.C"_l +,C,

1+1
1 + G, + 0. . + 2Chn
+1 +2C. + nCpnoi +2Cn
1+(1+nC)+(uCi+nCe) + « . - . +(aCrcr +nCn) + (aCn +O).
" Hence (z + 1)n+?

=zr+1 +(l +1|Cl)zl+(ncl +ncﬁ)x“_1 +(nC2+nCS)x”-2+' °t

in which the coefficients are formed from the coefficients of the
nth order, precisely after the law stated above, namely,
n+|Cr = nCr + nCr-l .

This law is therefore general, and enables us whenever we
know the binomial coefficients of any rank to calculate those of
the next ; from these again those of the next, and so on. A (y
table of these numbers carried to a considerable extent is given } 7 7
at the end of this chapter, among the results and formule col-
lected for reference there.

v § 15.] We -may calculate the powers of 2’+2’+z+1 by
means of the following scheme, in which the lines of coefficients
of the constantly-recurring multiplier, namely, 1 +1 + 1 + 1, are
for brevity omitted.

Power.
1st. 1+1+1+ 1
+1+1+ 1+ 1
+14+ 1+ 1+ 1
+ 1+ 1+ 1+ 1
2nd. 1+2+3+ 4+ 3+ 2+ 1
+14+2+ 3+ 44+ 3+ 2+ 1
+1+ 2+ 3+ 44+ 3+ 2+ 1
+ 14+ 24+ 3+ 4+ 3+ 2+ 1
3rd. 1+3+6+10+12+12+10+ 6+ 3+ 1
+1+3+ 6+10+12+12+10+ 6+ 3+ 1
+14+ 3+ 6+10+12+12+10+ 6+ 3+1
+ 1+ 3+ 6+10+12+12+10+ 6+3+1

4th. 1 +4+10+20+31+40+44+40+31+20+10+4+1
and so on.
VOL. I F
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The rule clearly is—To get from the coefficients of any order
the rth of the succeeding, add to the rth of that order the three preced-
ing coefficients, taking zeros when the coefficients required by the rule do
not exist.

The rule for calculating the coefficients of the powers of
Z*+2" 142" 24+ . . . +2+1 is obtained from the above by
putting N’m place of 3.

These results may be regarded as a generalisation of the pro-
cess for tabulating the binomial coefficients. They are useful
in the Theory of Probability.

v § 16.] As the student will easily verify, we have

@-9) @ +ay+y)=2"-¢ (1),

@+9) (@ -zy+y)=2"+¢ (2)-
The following is a generalisation of the first of these :—
If n be any integer,

(T-y)(@t+2y+an-tt . gy ynd),
1+1+1+ ... +1+1
1-1
1+1+1+ ... +1+1
-1-1- ... -1-1-1
1+040+0... +0+0-1
=at-yn (3)
Again, n being an odd number,
@F+y)@ -y +an8yi— | | —gyn-Tyn-l),
( - sign going with odd powers of y)
1-1+1-...-1+1
1+1
1-1+1-...-1+1
+1-1+...+1-14+1
1+0+0+...+0+0+1

=ahyn (4).



v.] EXERCISES. 67

And, similarly, # being an even number,
(+y)@E -2y +an3yP— . .. +ayri-ynl)
=-y* . . . . . . (5)
The last two may be considered as generalisations of (2), and of
(z + 9) (x — y) = 2 — ¢’ respectively.

Exgrcises VI

v (1.) The variables being z, , z, point out the integral functions among the
following, and state their degree :—
(a) 8%+ 2xy+3y3;
3.2 38
8 x’+:z_y+y—”
(7) Pyz+ '+ ey +3+ 0 +28;
(o) B B
, 2z - zyz | xyd?
Distribute the following, and arrange according to powers of = :—
Y (2) 6{z-{(z-1)} {z-Kz-1)} + 20{z-(z-1) }{z- Hz-1)}.
v (8) B2tD(@+8)_dz+1)(2e+1)
) 3 [

(4) {(-2)(z-8)+(x-8)(x-1)+(x-1)(x~-2)}
x {(z+2)(x+8)+(z+8)(z+1)+(z+1)(z+2)},
‘/(5.) {z+a} {22+ (B+c+be} { 22— (a+d+cx?+(be+ca+ablx—abe}. (Ip.58
(6.) {(z+p)(z-9q) (x+1) }{(z-p) (z+q) (-1 }.
(7.) (@ -9*)(2* - 29°) (=* - 8y?) (2 - 49%) (27 - 7).
(8.) {ax+(d-cly}{bz+(c-a)y}{x+(a-dly};* and show that the
sum of the coefficients of z% and 43 is zero.
(9.) Show that
(z+§a)* - 10a(z+ §a)® + 862Xz + §a)* - 50a%(x+ §a) + 24a*
=(- 1) (a* - §a?).
(10.) Show that

(:o+ gy)(z +;y)(x +§y) - (a: + gy)(z +€y)(m + gy)
=HE-y)(g-7)(r-p)(p-9),
nr
Distribute and arrange according to powers of z, the following :—
(1L) {(®+cr+(c+ak+(a+d) } {(b-ckP+(c-a)+(a-b)} .
V(12) @ -z+1) (@ +2+1) (@3- 22+1) (2 +22+1).

* In working some of these exercises the student will find it convenient to
refer occasionally to the table of identities given at the end of this chapter.
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(18.) {52 - dx(z - y) +(x - yP }(22+ 3y).
v/ (14.) (222 - Sy + 2%) (2% + By + 20%).

(16.) {(Z+z2+1) (@ -2+1)(22-1)}2

(16.) (B -P+2-1¥ P+ +2+1)%

(17.) (3=z* - 32 +dz+ ) (320 + 42 - bz + 4).

(18.) (24— axdy + abz’y* + bry® + y*) (a2® — aby + by?).

(19.) (2 +ax+BP+ (2 +ax- PP+ (2 - ax + BB+ (22 - ax - B*P.

(20.) (24 - 2a%3 +a*p.

(21.) (24 -a").

(22.) (3z+3).

(28.) (a+dz?8.

(24.) { (#+1%) (-1}

(25.) Q+z+a23+23+24).

(26.) Calculate the coefficient of 2% in the expansion of (1+z+ ).

(27.) Calculate the coefficient of 28 in (1 — 2+ 827+ 4x° - 24).

(28.) Show that

(a@+b)¥a® + b%) + Bab(a + b at + b%) + 15a%¥a + b) (a® + 1%)
+ 86a%b%(al + %) + 70aht=(a + D)B.
(29.) Show that
C1HaCat+,Ca+ . . . + Co=2-1;
1+,C+,Ce+ . . . =,C1+.Cs+.Cs+ . . .
-Cr=--Icr+2n—lcr—l+-—!cr—!'

(80.) There are five boxes each containing five counters marked with the
numbers 0, 1, 2, 8, 4; a counter is drawn from each of the boxes and the
numbers drawn are added together. In how many different ways can the
drawing be made so that the sum of the nnmbersshallbesti N:{X'-"f‘f‘ﬂ"'”‘

(81.) Show that & )

-y~ 3+a~YY+ . ..+t N=an -2 -ly - xy" T4y

Exercises VII.

Distribute the following, and arrange according to descending powers
of 2 :—

(1.) (8z+4) (42 +5) (52+8) (6z+7).

(2) (pe+g-r7)(gz+7r—p)(re+p-q)

(8.) (z-a)(z- 2a)(z~ 3a)(z- 4a)(z+a)(z+2a)(z+8a)(z+4u)

(4.) (2®+822+8z+1)(a®~82*+8z-1).

(5.) {23 +322+ 5=+ 8) (422 + §22 + f+1).

(6.) -1 (@ -fe+ ] @+ @+ +1)

(7.) (iz’+'£z+’—;) (%‘a:’+’§z+£) (’-l'z'+7%z+%‘),
(8.) (22— ).

(9.) {(z+y) (@ -zy+y7)}%

(10.) (& - yMe-+ o)



w.] HOMOGENEOUS FUNCTIONS. 69

(11.) In the product (z+a)(z+b) (z+c), > disappears, and in the product
(z-a) (z+3)(z+¢), = disappears ; also the coefficient of = in the former is .
equal to the coefficient of 2? in the latter. Show that a is either 0 or 1.

Prove the following identities :—

(12.) (b-c)(z-aP+(c-a)(z~b)}*+(a~b) (x - c}+(b-c) (c-a)(a~b)=0.
(18.) Z(2a-b—c)(z-b) (x—c)=2(b~c)¥z—a).

(14.) (s-aP+(s-dP+(s—cP+3abc=s,

where 2=a+b+e.

(15.) (s—a)'+(s-dY+(s—cy=2(s-d)s—c)?+2(s-c)¥(s—a)
+2(s-a)(s-b)3,
where 3s=a+d+e.

(18.) (as-+be)(ds+ca)(cs+ab)=(d+c)Xc+a)(a+Db)® where s=a+b+ec
(17.) s(s-a-d)(s—d-b)(s—c~-d)=(s—a)(s—b) (s —c) (s - d) - abed,

where 2s=a+b+c+d.
(18.) 16(s-a)(s—d)(s8—c) (s~ d)=4(bc+ad)® - (P +c* - a® - d*)3,
where 28=a+b+c+d.

(19.) Z(b-c)8=38I(d - c)*+2(Za® - Zbc)®.
(20.) If U, =(d—cy*+(c~a)*+(a—b)", then
Upys—(a?+02+ - be-ca-ab)U, - (b-c)(c-a)(a-b5)U,=0.
(21.) If py=a+b+e¢, p,=be+ca+ab, py=abe, s,=a*+b*+c", show that
Q=P =P8~ 20y H=P18~ P +3p;,
‘n=Pl'n-l_P!’-—l+Wn—l‘
(22.) If po=(b-c)(c—a)+(c-a)(a-bd)+(a~d)(b-c),
p3=(b-c)(c~a)(a-0),
s, =(-cpr+(c-a)+(a-bd),
show that
8=~y %=3py $,=2p", %= -bpps,
8= -2 +3py, &=Tpjp;, 268,5=21s"

HOMOGENEITY.

v § 17.] An integral function of amy number of variables is said
to be homogeneous when the degree of every term in # is the same.
In such a function the degree of the function (§ 6) is of course
the same gs the degree of every term, and the number of terms
which (in the most general case) it can have is the number of
different products of the given degree that can be formed with
the given number of variables. If there be only two variables,
and the degree be 7, we have seen that the number of possible
terms is n + 1.
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For example, the most general homogeneous integral functions of = and y
of the 1st, 2nd, and 3rd degrees are*

Az+ By (1),

Az®+ Bay + Cy?* (2)

Aa® + B’y + Cay? + Dy? (3),
&e.

A, B, C, etec., representing the coefficients as usual.
For three variables the corresponding functions are

Az+By+Cz (4),

Az?+By?+C22+ Dyz + Ezz + Fay (6),

Aa3+ By + C22 + Py + P'y*z + Q¥ + Q2% + Ry + R'ay + Sayz (6),
&ec.

As the case of three variables is of considerable importance, we shall in-
vestigate an expression for the number of terms when the degree is =.

‘We may classify them into—(1st) those that do not contain 2 ; (2nd) those
that contain  ; (8rd) those that contain 22. . . (n+ 1th) those that contain z=.

The first set will simply be the terms of the nth degree made up with
y and 2z, n+1 in number ; the second set will be the terms of the (n —1th) de-
gree made up with y and z, # in number, each with z thrown in; the third
set the terms in y and z of (n - 2th) degree, n—1 in number, each with 22
thrown in ; and so on. Hence, if N denote the whole number of terms,

N=n+l+n+n-1+n-2+... +2+1
Reversing the right-hand side, we may write
N=1 +2+48 +4+..... +n+n+l

Now, adding the two left-hand and the two right-hand sides of these equali-
ties, we get

2N=n+2+n+2+n+2+ . . . +n+2+n+2=(n+1)(n+2),
since there are n+ 1 terms each=n+2.
‘Whence N=4(n+1)(n+2).

For example, let n=38; N=4(3+1)(8+2)=10, which is in fact the number
of terms in (6), above.

In the above investigation we have been led incidentally to sum an
arithmetical series (see the chapter on Arithmetical and Geometrical Progres-
sion) ; if we attempted the same problem for 4, 5 . . . m variables, we should
have to deal with more and more complicated series. A complete solution
for a function of the nth degree in m variables will be given in the second
part of this work.

* Homogeneous integral functions are called binary, ternary, &c., accord-
ing a8 the number of variables is 2, 8, &c. ; and quadric, cubic, &c., according
as the degree is 2, 3, &c. Thus (3) would be called a binary cubic; (5) a
ternary quadric ; and so on.
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The following is a fundamental property of homogeneous
functions :—If each of the variables in a homogeneous function of the
nth degree be multiplied by the same quantity p, the result is the same
as if the function tiself were multiplied by p™.

Let us consider, for simplicity, the case of three variables;
and let

F = AzPytsr + A2?y@2" + . . .,
where p + g+ r=p' +¢ +1 = &ec., each =n.

If we multiply z, y, 2, each by p, we have

F' = A(pz)?(py)d(p2)” + A'(pz)? (py)? (p2)" + . . .,
=ApPta+rgPydyr 4 Alp?P' + 0 gl 4 |

by the laws of indices. Hence, since p+¢g+r=p +¢ +7 = &ec.
=n, we have

F = p" { AzPytsr + AzPyr + .. L,
= ”F’

which establishes the proposition in the present case. The
reasoning is clearly general.*

* This property might be made the definition of a homogeneous function.
Thus we might define a homogeneous function to be such that, when each
of its variables is multiplied by p, its value is multiplied by p* ; and define =
to be its degree. If we proceed thus, we naturally arrive at the idea of homo-
geneous functions which are not integral or even rational ; and we extend the
notion of degree -in -a-cerresponding way. For example—(a® - 33)/(x+y) is
a homogeneous function of the 2nd degree, for ((px)®-(pyP)/( (p)+(py))
=pXa® - yP)/(x+y). Similarly Vz®+33, 1/(z*+1?) are homogeneous functions,
whose degrees are § and — 2 respectively (see chap. x). Although these ex-
tensions of the notions of homogeneity and degree have not the importance of
the simpler cases discussed in the text, they are occasionally useful. The
distinction of homogeneous functions as a separate class is made by Euler in
his Introductio in Analysin Infinitorum (1748), (t. i. chap. v.), in the course
of an elementary classification of the various kinds of analytical functions.
He there speaks not only of homogeneous integral functions, but also of
homogeneous fractional fanctions, and of homogeneous functions of fractional
or negative degrees.
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Example.
Consider the homogeneons integral function, 8z%-2xy+ 3 of the 2nd
degree. We have

8(pe? - 2(p) (py) + (py)' =36~ 2%y + 49,
=p%(827 - 20y +3°),
in accordance with the theorem above stated.
The following property is characteristic of homogeneous integral
functions of the first degree.

If we substibute for the variables 2, y, 2, . . . Az, + pz,, Ay,
+ pYy AZ, + pRy . . . respectively, the result is the same as that
obtained by adding the results of substituting z,, y,, 2, . . . and z,,

Yo % . - . respectively for z,y, z, . . . in the function, after multi-
i plying these results by A and p respectively.
Example.

|
| Consider the function Az+ By+ Cz.
‘ We have

> ANz, + ptg) + By, + ) + C(Azy + uzy)
=AMz, + BAy; + CAz; + ANzg + BAy, + Chz,y
=MA=, + By, + Cz) + w(Azy + By, + Cz,).
This property is of great importance in Analytical Geometry.

« § 18.] Law of Homogeneity.—Since every term in the product
of two homogeneous functions of the mth and nth degrees re-
spectively is the product of a term (of the mth degree) taken
from one function and a term (of the nth degree) taken from
the other, we have the following important law :—

! The product of two homogeneous integral functions, of the mth and
nth degrees respectively, is a homogeneous infegral function of the
(m + n)th degree.

The student should never fail to use this rule to test the
distribution of a product of homogeneous functions. If he finds
any term in his result of a higher or lower degree than that
indicated by the rule, he has certainly made some mistake. He
should also see whether all possible terms of the right degree are
present, and satisfy himself that, if any are wanting, it is owing
to some peculiarity in the particular case in hand that this is so,
and not to an accidental omission.

The rule has many other uses, some of which will be illus-
trated immediately.

Applidy profama .
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v'§ 19.] If the student has fully grasped the idea of a homeo-
geneous integral function, the most general of its kind, he will
have no difficulty in rising to a somewhat wider generality,
viz., the most general integral function of the nth degree in m
variables, unrestricted by the condition of homogeneity or other-
wise.

Since any integral term whose degree does mot exceed the
nth may occur in such a function, if we group the terms into
such as are of the Oth, 1st, 2nd, 3rd, . . . nth degrees respectively,
we see at once that we obtain the most general type of such a
function by simply writing down the sum of all the homogeneous
integral functions of the m variables of the Oth, 1st, 2nd, 3rd, . . .
nth degrees, each the most general of its kind.

For example, the most general integral function of z and y of the third

degree is
A + Bz + Cy + D2? + Exy + Fy* + Ga® + Ha2y + Izy2 + J9P.
The student will have no difficulty, after what has been done
in § 17 above, in seeing that the number of terms in the general
integral function of the nth degree in two variables is

(n+1)(n+2)

SYMMETRY.

v/§ 20.] There is a peculiarity in certain of the functions we
have been dealing with in this chapter that calls for special notice
here. This peculiarity is denoted by the word symmetry; and
doubtless it has already caught the student’s eye. What we
have to do here is to show how a mathematically accurate
definition of symmetry may be given, and how it may be used
in algebraical investigations.

1st Definition.—An integral function* is said to be symmetrical
with respect to any two of its variables when the inierchange of these
two throughout the function leaves its value unaltered.

* As a matter of fact these definitions and much of what follows are
applicable to functions of any kind, as the student will afterwards learn.
According to Baltzer, Lacroix (1797) was the first to use the term Symmeiric
Function, the older name having been Invariable Function.
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-~

For example, 2a+8b+3c
becomes, by the interchange of 4 and ¢,
2a + 3¢+ 8b,

which is equal to 2a + 85+ 8¢ by the commautative law. Hence 2a+ 3b+ 8¢ is
symmetrical with respect to band ¢. The same is not true with respect to
a and b, or a and c; for the interchange of a and b, for example, would
produce 2b + 3a + 8¢, that is, 8a + 2b + 8¢, which is not in general equal to*
2a +8b +3¢.

2nd Definition.—A4n infegral function is said to be sgmmetm;al
(with_respect to all its variables) when the interchange of any pair
whatever of ils variadles would leave its value unaltered.

For example, 3z + 8y + 8z is a symmetrical function of z, y, 2. So is
yz+2z+xy, and 2(2?+y'+2%) +3zyz. Taking the last, for instance, if we
interchange y and 2, we get

* 22 + 22+ ) + Sazy
that is, 2(z%+y2 +2%) + Sayz,
and so for any other of the three possible interchanges.

On the other hand, z® +y% + 2% is not a symmetrical function of z, ¥, z,

for the three interchanges z with y, z with z, y with z give respectively

yz+2% + 2%,

2ty +yz+2%,

2z 4+ Ay +y'r,
and, although these are all equal to each other, no one of them is equal to the
original function. It will be observed from this instance that asymmetrical
functions have a propgrty—which symmetrical functions have not—of assuming
different values when the variables are interchanged : thus z’y+y’z+z’z is
susceptible of two different values under this treatment, and is therefore a
two-valued function. The study of functions from this point of view has
developed into a great branch of modern algebra, called the theory of substitu-
tions, which is intimately related with many other branches of mathematics,
and, in particular, forms the basis of the theory of the algebraical solution of
equations. (See Jordan, T'raité des Substitutions, and Serret, Cours &’ 4lgebre
Supérieure.)

All that we require here is the definition and its most elementary con-

sequences.

3rd Definition.—A function is said to be collaterally symmetrical

in two sels of mnhbles{ z'::' T Z"}, each of the same number,

* It may not be amiss to remind the student that for the present ‘‘ equal
to" means ‘‘ transformable by the fundamental laws of algebra into.”
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when the simultaneous inderchanges of two of the first set, and of the
corresponding two of the second set, leave tis value unaltered.
For example, atz+ by +c%,
and (b+c)z+(c+a)y+(a+d)z,
are evidently symmetrical in this sense.

Other varieties of symmetry might be defined, but it is need-
less to perplex the student with further definitions. If he fully
master the 1st and 2nd, he will have no difficulty with the 3rd
or any other case. At first he should adhere somewhat strictly
to the formal use of, say, the 2nd definition ; but, after a very
little practice, he will find that in most cases his eye will enable
him to judge without conscious effort as to the symmetry or
asymmetry of any function.*

+/§ 21.] From the above definitions, and from the meaning of
the word “equal ” in the calculation of algebraical identities, we
have at once the following :—

Rule of Symmetry.—The algebraical sum, product, or quotient of
two symmetrical functions is a symmetrical fumction.

Observe, however, that the product, for example, of two
asymmetrical functions is not necessarily asymmetrical

Thus a+b+c and be+ca +ab being both symmetrical, their product,
(@ +b+c) (be+ ca + ab) = b3+ be? + a + ca? + a?b + ab® + 3abe,
is symmetrical.
Again, a’c and ab’c? are both asymmetrical functions of a, b, ¢, yet their

product,
(a%bc) x (ab%c?) =adbicd,
is a symmetrical function.

v'§ 22.] It will be interesting to see what alterations the
restriction of symmetry will make on some of the general forms
of integral functions written above.

Since the question of symmetry has nothing to do with
degree, it can only affect the coefficients. Looking then at the

* There is a class of functions of great importance closely allied to symme-
trical functions, which the student should note at this stage, viz., those that
change their sign merely when any pair of the variables are interchanged.
Such functions are called ‘“‘alternating.’’ An example is (y - z) (z— ) (- y).
Obviously the product or quotient of two alternating functions of the same
set of variables is a symmetric function. The term Alternating Function is
due to Cauchy (1812).
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homogeneous integral functions of two variables on page 70, we
see that, in order that the interchange of z and y may produce
no change of value, we must have A=Bin § 17 (1); A=Cin
(2), A =D, and B=C in (3).

Hence the symmetrical homogeneous integral functions of z and y of 1st,

.50 ‘and, 8rd, &c. d are
Cﬂg egroes

Povmse

Tadios oo 8]
~ut —'.A‘v*-/'

5. Az+Ay (1)
Az*+ Bay + Ay® (2),
Az?+ Bay &+ Bay® + Ay 3),
c.
The corresponding functions of z, y, z are
Ax+ Ay +Az (4),
Az?+ Ay®+ A2'+ Byz + Bz + Bay (5),

Az'+Ay'+Az'+Pyz’+Py‘z+Pn’+Pz’z+ny’+Pz-’y+Sxyz (6),

The most general symmetrical mbegra.l function of 2, ¥ of the 3rd degree
will be the algebraic sum of three functions, such as (1), (2), and (8); namely,

Az+ Ay + Ba®+ Czy + By + Da® + Ea?y + Ezy? + Dy
And so on.

If the student find any difficulty in detecting what terms
ought to have the same coefficient, let him remark that they.are
all derivable from each other by interchanges of the variables,
Thus, to get all the terms that have the same coefficient as 2’ in
(6), putting y for z, we get 4*; putting z for z, we get 2*; and we
cannot by operating in the same way upon any of these produce
any more terms of the same type. Hence 2, ¢, 2’ form one
group, having the same coefficient. Next take yz*; the inter-
changes z and y, z and 2, y and z produce z2', y2’, y°z; applying
these interchanges to the new terms, we get only two more new
terms—=zz", zy" ; hence the six terms, y2*, y'z, 2", 2%z, 2y, 2y, form
another group ; zyz is evidently unique, being itself symmetrical.

v § 23.] The rule of symmetry is exceedingly useful in abbre-
viating algebraical work.

Let it be required, for example, to distribute the product (a+b+c)
(a®+ 5%+ ¢ - bc — ca — ab), each of whose factors is symmetrical in a, b,¢. The
distributed product will be symmetrical in a, b, ¢. Now we see at once that the
term a® occurs with the coefficient unity, hence the same must be true of &*
and ¢®. Again the term d% has the coefficient 0, 80 also by the principles of
symmetry must the five other terms, b¢?, c%a, ca? ab? a%, belonging to the
same group. Lastly, the term — abc is obtained by taking a from the first
bracket, hencg it must occur by taking b, and by taking ¢, that is, the abe
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term must have the coefficient —3. We have therefore shown that (a+b+c)
(a%+82+c3 - be —ca — ab)=a®+ b+ c* - 8abe ; and the principles of symmetry
have enabled us to abbreviate the work by about two-thirds,

, PRINCIPLE OF INDETERMINATE COEFFICIENTS.

v'§ 24.] A still more striking use of the general principles of
homogeneity and symmetry can be best illustrated in conjunction
with the application of another principle, which is an immediate
consequence of the theory of integral functions.

‘We have laid down that the coefficients of an integral function
are independent of the variables, and therefore are not altered by
giving any special values to the variables. If, therefore, on either
side of any algebraic identity involving integral functions we determine
the coefficients, either by general considerations regarding the forms of
the functions involved, or by considering particular cases of the identity,
then these coefficients ave determined once for all. This has (not very
happily, it must be confessed) been called the principle of inde-
terminate coefficients. As applied to integral functions it results
from the most elementary principles, as we have seen ; when
infinite series are concerned its use requires further examination
(see the chapter on Series in the second part of this work).

The following are examples :—

(z+y)"=(z +y)(z +y), being the product of two homogeneous
symmetrical functions of z and y of the 1st degree, will be a
homogeneous symmetrical integral function of the 2nd degree,
therefore (z+y)'=Az"+ Bay + Ay’ (1).

We have to determine the coefficients A and B.

Since the identity holds for all values of z and y, it must
hold when z=1 and y =0, therefore

(1+0)"=A1"+B1x0 + A0*,
1=A
We now have  (z+9)'=2"+Bay +¢';
this must hold when =1 and y= -1,

therefore (1-1Y=1+B.1l(-1)+1,
that is, , 0=2-B,
whence B=2.

Thus finally (Z+y)=2"+2zy+9.
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This method of working may seem at first sight somewhat startling, but
a little reflection will convince the learner of its soundness. We know, by
the principles of homogeneity and symmetry, that a general identity of the
form (1) exists, and we determine the_ coefficients by the consideration that
the identity must hold in any particular case. The student will naturally ask
how he is to be guided in selecting the particular cases in question, and
whether it is material what cases he selects. The answer to the latter part of
this question is that, except as to the labour involved in the calculation, the
choice of cases is immaterial, provided enough are taken to determine all the
coefficients. This determination will in general depend upon the solution of
a system of simultaneous equations of the 1st degree, whose number is the
number of the coefficients to be determined. (See below, chap. xvi.) So far
as possible, the particular cases should be chosen so as to give equations each
of which contains only one of the coefficients, so that we can determine them
one at a time as was done above.

The student who is already familiar with the solution of simultaneous
equations of the 1st degree may work out the values of the coefficients by
means of particular cases taken at random. Thus, for example, putting z=2,
y=3, and =1, y=4 successively in (1) above, we get the equations

25=13A + 6B,
26=17A +4B,

which, when solved in the usual way, give A=1, and B=2, as before.

We give one more example of this important process :—
By the principles of homogeneity and symmetry we must have
(Z+y+2) (@22 +y3+22 - yz -2z~ zy)

=A@+ +2) + B(yz® + y% + 22 + 2P + 2y¥ + 2%) + Cayz.
Putting 2=1, y=0, 2=0, we get 1=A.

Using this value of A, and putting z=1, y=1, z=0, we get

2x1=2+Bx2,

that is, 2=2+Bx2,

therefore 2B =0,

and therefore B=0.

Using these values of A and B, and putting z=1, y=1, 2=1, we get
83x0=8+C,

that is, 0=38+C,

therefore C=-8;

and we get finally

(e+y+2)(@+y+2 -y —ay) =2+’ +2* - Szyz (2),
as in § 23.

v § 25.] Reference Table of Identities.—Most of the results given
below will be found useful by the student in his occasional calcu-
lations of algebraical identities. ~Some examples of their use
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have already been given, and others will be found among the
Exercises in this chapter. Such of the results as have not
already been demonstrated above may be established by the
student himself as an exercise.

A (z+a)(z+b)=2"+(a+b)z+ab; l
X (z+a)(@+d)(z+c)=2"+(a+d+c)

+ (be + ca + ab)z + abc ;
and generally (L)

L (z+a)(z+ae). .. (@+a,)=2"+Par-14+P "2
+ ...+P,_ 12+ P, (see §9)
(zxy) =2"=2zy+9"; )
(@xy) =2+ 32"y + 32y’ = ¢/;
&e. ;
the numerical coefficients being taken from the following
table of binomial coefficients :—

Power. Coefficients.
1] 11
2 | 121
3 | 133 1 *
4| 1 46 4 1 (1)
5| 1510 10 5 1
6 | 1 615 20 15- 6 1
7 | 1 7921 3 35 21 7 1
8 | 1 828 56 70 56 28 8 1
9 | 1 936 84126126 84 36 9 1
10 | 11045120210 252 210120 45 10 1
11 | 11155165330 462 462 330 165 5511 1
12 | 11266 220 495 792 924 792 495 230 66 12 1
&e.

* This table first occurs in the Arithmetica Integra of Stifel (1544), in
connection with the extraction of roots. It does not appear that he was
aware of the application to the expansion of a binomial. The table was dis-
cussed and much used by Pascal, and now goes by the name of Pascal’s
Arithmetical Triangle. The factorial formulee for the binomial coefficients
(see the second part of this work) were discovered by Newton.



80 TABLE OF IDENTITIES. [cHAP.

X (zxy)Fzy=(zFy) (IIL)
X (@+y)(@-y)=2—9; )
@xy) (@ Fay+y) =22y
and generally v,

(z-y) @+ Y+ ... +ay i+ Yt =2" -y
(z+y)(@E*t-a+ ... Foy lxyr ) =22y
upper or lower sign according as n is odd or even. J

@ +9) (@ +y") =@ Fyy) + (@ £92); )
@ -9) @ -y") =@ £ yy) - (& £ 32)’;
@+ +) @+ + ) =(z +yy +25) + (y7 - y2)
(g2 + @y -2y
@B+y+2+u) @+ Y+ 2+ 0 = (2 + gy + 27 +w)
+ (zy -y + 2w —u2)’
+ (22 -y — =’ +uy)
+ (2w’ +y2 — 2y - ux')".
@+ry+y) (@ -zy+y) =2 +2Y +y" (VL)
(a+b+c+d) =a*+ b+ +d' + 2ab + 2ac + 2ad
+ 2bc + 2bd + 2cd ;
and generally (VIL)
(s, +ay . . . +a,)" =sum of squares of a,a,...a,+
twice sum of all partial products fwo and two.

C (@+b+c)=0a"+0b"+c + 3b% + 3bc" + 3c’a + 3ca’ + 3a’d
+ 3ab’ + 6abe
=a*+ 0" + ¢ + 3be(b + ¢) + 3calc + a) (VIIL)
+ 3ab(a + b) + 6abe.

(@+b+c)(@'+b +c"—bc—ca—ab)=a'+b"+ ' — 3abe. (IX).
(b=c)(c-a)(@a-b)= —a'(b—c)-b(c—a)-c(a-1),
}(X-)

L(V.)*

= = bo(b - ¢) - cafc — a) - abla - b),

= + b - b'c+ca’ - c'a+ab’ - a’d.

* These identities furnish, tnéer alia, proofs of a series of propositions in
the theory of numbers, of which the following is typical :—If each of two
integers be the sum of two squares, their product can be exhibited in two
ways a8 the sum of two integral squares. (
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| (b+¢)(c+a) (a+8)=a"d+c)+ B¥c +a) + c(a + b) + 2abe,
| = bo(b + ¢) + calc + a) + ab(a + b) + 2abe, }(XL)
| =be" + b% + ca® + c’a + ab® + a’b + 2abc.
| (a+b+c)(a’+ 8"+ ) = be(b + c) + cafc + a) + ab(a + D) }(xn)
: +a@+ 0+ |
b be ab)=a’(b+c) + b Ma+d
(@+b+ ) (be + ca + ab) a(++3:1; (c+a)+c(a+D) }(xm.)
b —b)(a+b—c)=ab+c)+ b Mo +?)
b+c-a)c+a )(tl-i;'_;)_c?£2z;c.+ c+a)+ca }(XIV.)
b — b - b —c)= 20" + 2c%’ »
A
b-c)+(c-a)+(a-0)=0; ]

a(b-c)+bc—a)+c(a—-0)=0; (XVL)
G+ec)yd-c)+(c+a)(c—a)+(a+b)(a-b)=0. f

Exercises VIII

V/(1.) Write down the most general rational integral symmetrical function
of z, 9, 2, u of the third degree.

(2.) Distribute the product (2% +y%+2%)(2y®+y:*+22?). Show that
it is symmetrical ; count the number of types into which its terms fall ; and
state how many of the types corresponding to its degree are missing.

v (8.) Construct a homogeneous integral function of = and y of the first
degree, which shall vanish when 2=y, and become 1 when z=>5 and y=2.

v/ (4.) Construct an integral function of z and y of the first degree which
shall vanish when =2/, y=y/, and also when z=2", y=y".

(6.) Construct a homogeneous integral function of z and y of the second
degree which shall vanish when z=z, y=¥’, and also when z=2", y=y3’, and
shall become 1 when 2=1, y=1.

6.) If A(x-8)(z—5)+B(x-5)(z-7)+C(xz-7)(x-8)=8z-120,
for all values of z, determine the coefficients A, B, C.

+v17.) Show that 522+ 192+ 18 can be put into the form
Uz~ 2)(2=8) +mie-9) (@~ 1)+ ala~1) (e~ 2);
and find I, m, n. *)
(8.) Assuming that (z—1)(z- 2)(z- 8) can be put into the form
Yz —1)(x+2)(z+3)+m(z-2) (2 +8) (x+ 1) +n(x-3) (x+1) (2 +2),
determine the numbers I, m, n.

* Important in connection with Hero’s formula for the area of a plane
. triangle.
| VOL. L

% M axt+hysc = ((a-ﬁ)@—o\ 4—»\(4-5}(1»09 +n£y—g({-@)

| {1 p*w?(l‘ﬁ nf %ﬁ,vﬁ
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(9.) Find a rational integral function of z of the third degree which

shall have the values P, Q, R, S when 2=a, =5, z=¢, =d, respectively.

(10.) Find the coefficients of ¥% and y2? in the expansion of

(az + by + cz) (a%x + by + ¢%) (a®e + By + c%).

(11.) Expand and simplify 2(y*+2% - 2%) (y +2 - 2).

Prove the following identities :—

(12.) (ad+bep+(a+b+c—d)a+b—c+d)b+d)b—d)=(5- & +ab+cd).

*(13.) Z(6+ 3 - a?+ bo+ o +ab)¥c — b)) =4(B* - &) (3 - a?) (a? - B2).

(14.) Z(ca - %) (ab - %) =(Zbc) (Zbe - Za?).

(16.) 2(b¢ - b'e) (b¢" — b'"c) = Za?Za’a” - Zaa'Zaa’.

(16.) 3T(y+2) - 8Zyz=2x(Zz - 1) (Zx - 2) - Zx(z - 1) (z - 2).

(17.) Z(8*+¢* - a%)/2bc=(4p, 03 — P* — 6p5)/2P;, Where p,= - Za, p,=Zbe,

= - abe.
(18.) TNy +2) + 20%%* — Za(y +2)*= A Zyz).
(19.) Z(z+y-2){(y-2P-(z-2)(z~y)} =Za? - Bayz.
(20.) M(axbtetd)=Za®~ 423 + 6Za'ht + 4Za'b?c? — 4042332,
(21.) Show that
(B + P+ 22~ 8zyz=X3+ Y3+ Z3 - 3XYZ, where X =22+ 2yz, &c.
Also that )
(Z2® - Bxyz) (Z® - 8z'y'? )= Z(ax’ + y2' +y'2) - 8Il(ax’ + yZ +/'2).

(These identities have an important meaning in the theory of numbers.)

(22.) Show that, if # be a positive integer, then

1 1
1-3+4-. . . -2 (neven)= 2(n+2 e te)
1 1
1-3+d-. . .+ (n odd)= 2(1:L-1-+H3 g )-
(Blissard.)

* In this example T is not used in its strict sense, but refers only to
cyclical interchanges of abe. Thus, Za¥(b - ¢) is, strictly speaking, =0 ; but,
if = be used in the present sense, it is a¥(b - c) + b%(c - a) + c¥(a - b).

PR
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CHAPTER V.

Division of Integral Functions—Transformation of
Quotients.

v'§ 1.] The operations of this chapter are for the most part
inverse to those of last. Thus, A and D being any integral
functions of one variable z,* and ‘Q a function such that
D x Q= A, then Q is called the quotient of A by D ; A is called
the dividend and D the divisor. We symbolise Q by the nota-
tion A+ D, A/D, or %, as explained in chap. i

The operation of finding Q is called division, but we prefer

‘that the student should class the operations of this chapter under

the title of transformation of quotients.

A and D being both integral functions, Q will be a rational
function of z, but will not necessarily be an integral function.

When the quotient can be transformed so as to become integral, A
18 said to be exactly divisible by D.

When the quotient cannot be so transformed, the quotient s said
to be fractional or essendially fractional.

It is of course obvious that an essentially integral fumction canmot
be equal, in the identical sense, to an essentially fractional function.

V' § 2.] When the quotient is integral its degree is the ezcess of the

degree of the dividend over the degree of the divisor. For, denoting

* For reasons partly explained below the student must be cautious in
applying many of the propositions of this chapter to functions of 1nore vari-
ables than one ; or at least in such cases he must select one of the variables
at a time, and think of it as the variable for the purposes of this chapter.
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the degrees of the functions represented by the various letters
by suffixes, we have
A = QpDu ;

therefore, by chap. iv. § 7, m =p + n, that is, p=m —a.

v § 3.] If the degree of the dividend be less than that of the divisor
the quotient is essentially fractional. For, m being < n, suppose, if
possible, that the quotient is integral, of degree p say, then

A,=QD,
therefore m =p +n; but p cannot be less than 0 by our hypo-
thesis, and m is already less than n, hence the quotient cannot
be integral, that is, it must be fractional
v §4) If 4, D, Q, R, be all integral functions, and if A=
@D + R, then R will be exactly divisible by D or not according as A4
18 ezactly divisible by D or not.

For since A=QD+R,
A QD+R _ R
D= b ~Up
R A
therefore DD

Now, if A be exactly divisible by D, A/D will be integral, and
A/D - Q will be integral, that is, R/D will be integral, that is, R
will be exactly divisible by D. '

Again, if A be not exactly divisible by D, A/D will be
fractional. Hence R/D must be fractional, for, if it were
integral, Q + R/D would be integral, that is, A/D would be in-
tegral, which is contrary to hypothesis.

INTEGRAL QUOTIENT AND REMAINDER.

Vv § 5.] The following is the fundamental theorem in the
transformation of quotients.
A, and Dy, being integral functions of the degrees m and n respect-
ively, we can always transform the quotient A./D,, as follows .—

Am_ R
D_,,f = Pm-,. + D”’
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where Py, _p, i8 an integral function of degree m —n, and R (if # do
not vanish) an indegral function whose degree is n — 1 af the uimost.
This transformation is effected by a series of steps. We shall
first work out a particular case, and then give the general proof.
Let Ag =828+ 82° — 202* + 402® - 5022+ 80z - 10,
D, =2x*+ 3823 - 4a3 + 62 -8,
maultiply the divisor D, by the quotient of the highest term of the dividend
by the highest term of the divisor (that is, multiply D, by 8a%/2x¢=4z?),
and subtract the result from the dividend A, We have
Ag=828+ 8x°— 2024+ 4023 - 502° + 80z — 10
425D, = 82 + 1225 — 1624 + 2423 — 3222
Ag—-42°D;= - 42°- 4o4+1623-1822+802-10
=Ag say;
therefore . Ag=42"D,+ Ay (1).
Repeat the same process with the residue A in place of Ag and we have

Ag= — 4o — dzA + 162% — 1827+ 80z - 10
-2D,= —42®— 624+ 82— 1223+162

A;+22D = 224 +82° — 627+14z-10
=A,say;
therefore Ay=-2eD,+A, (2).
And again with A,,

A =204+ 8% - 627 + 142~ 10
1xD =224+ 82> - 42+ 62— 8

A-D;=  52-2+ 8z- 2
=A;8ay;
therefore A,=D,+A, (8).
Here the process must stop, unless we agree to admit fractional multi-
pliers of D, ; for the quotient of the highest term of A4 by the highest term of
D, is 5z3/24, that is, §/z, which is a fractional function of 2. Such a con-
tinuation of the process does not concern us now, but will be considered below.
Meantime, from (1) we have
Ag=42"D,+ A, 4);
and, using (2) to replace Ay, o
. Ag=42D,- 22D+ A, (6);
and finally, using (8),
Ag=42"D,— 2D+ Dy + A,,
=(42- 2c+1)D,+ A, (6).
Ag_ (4822 +1)D +A,
b

Hence . pom 5N
4 D‘

=t 4,
=4x? 2z+1+D‘,
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or, replacing the letters by the functions they represent,

828+ 82° — 2024 + 402 — 502 + 302 - 10
224 + 323 — 4o + 62~ 8

52% - 227+ 82 -2 7
A+ SP I+ 62— 8 @.

Since 6 —4=2 it will be seen that we have established the above theorem
for this special case. It so happens that the degrees of the residues Ay A,
A diminish at each operation by unity only ; but the student will easily see
that the diminution might happen to be more rapid ; and, in particular, that
the degree of the first residue whose degree falls under that of the divisor
might happen to be less than the degree of the divisor by more than unity.
But none of these possibilities will affect the proof in any way.

‘We shall return to the present case immediately, but in the first place we
may give a general form to the proof of the important proposition which we
are illustrating.

V§6] Let Ap=pam+pam-l+pam-2s&e.;
D, =ga® + g1 +¢a"? + &e.

Multiplying D, by the quotient p 2™/g 2", that is, by (p,/g,) 2™,
and subtracting the result from A,, we get

= 4P-22+1+

A, - ;.’z"""D,.= (pl —%’;q—‘)z"“1+ (p,—%)z’"‘* + &e.,

=Am-, 82y,
whence, denoting /g, by r for shortness, we get
Ap=r2""7"D, + A,,_, (1).
Treating A,,_, in the same way, we get
Ap-= szm—n—lD” +Ap, (2)'
And so on, so long as the degree of the residue is not less
than n, the last such equation obtained being—

A,=uwD,+R (3),
where R is of degree n—1 at the utmost. Using all these
equations in succession we get

Ap=r2m-"D, +sz2™-%-1D, +. . .+wD,+R
=(rg™-tr+sgm-n-ly. L +w)D,+R;
wh.ence, dividing both sides by D, -and distributing on the
right,
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%—"Z:n‘"'"+szz"“"'1+. .. +w+g’—”,
which, bearing in mind the character of R, gives a general proof
of the proposition in question.

v § 7.] We have shown that the transformation of § 5 can
always be effected in a particular way, but this gives no assur-
ance that the final result will always be the same. The proof
that this really is so, is furnished by the following proposition :—

The quotient A/D of two integral functions can be put info the
form P + R/D, where P and R are integral functions, and the degree
of R is less than that of D, in one way ondy.

If possible let

A R
ﬁ =P+ ﬁl
A _, K
and ]—) =P+ ﬁs
where P, R, and P, R’, both satisfy the above requirements ;
R , R,
then P+ D= P+ D’
subtracting P +g from both sides, we have
, R R
P-P=p-p
whence . 1—?'—1%3' =P-P.

Now, since the degrees of R and R’ are both less than the degree
of D, it follows that the degree of R’ ~ R is less than that of D.
Therefore by § 3, the left-hand side, (R'—R)/D, is essentially
fractional, and cannot be equal to the right, which is integral,
unless R’ — R =0, in which case we must also have P-P' =0,
that is, R=R’, and P=P".

v § 8] The two propositions of §§ 5, 7, give a peculiar
importance to the functions P and R, of which the following
definition may now legitimately be given :—

If the quotient A/D be transformed info P + R/D, P and R being
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integral and R of degree less than D, P is called the integral quotient,
and R the remainder of A when divided by D.

v§9.] We can now express the condition that one integral
function A may be exactly divisible by another D. For if R
be the remainder, as above defined, we have, P being an integral
function,—

A ‘R
p-F+p
whence, subtracting P from both sides,

A R
p~F=p

Now, if A be exactly divisible by D, A/D will be integral, and
therefore A/D — P will be integral. Hence R/D must be integral ;
but, since the degree of R is less than that of D, this cannot be
the case unless R vanish identically.

The, mecessary and sufficient condition for exact divisibility is
therefore that the remainder shall vanish.

When the divisor is of the nth degree, the remainder will in
general be of the (n — 1)th degree, and will contain n coefficients,
every one of which must vanish if the remainder vanish. In
general, therefore, when the divisor is of the nth degree, n conditions
are necessary to secure exact divisibilidy.

v § 10.] Having examined the exact meaning and use of the
integral quotient and remainder, we proceed to explain a con-
venient method for calculating them. The process is simply a
succinct arrangement of the calculation of §§ 5, 6. It will be
sufficient to take the particular case of § 5.

The work may be arranged as follows : —

82 + 8z' - 207" + 402° - 502" + 30z — 10| 22* + 32° - 42* + 62— 8
82' + 122" - 162* + 244" — 32" 47" -2z + 1

- 42" - 42'+167°- 182"+ 30z- 10
- 42°- 62'+ 82122+ 162

2+ 82— 62"+ 142-10
2+ 32~ 42°+ 6z- 8

52~ 2'+ 8z- 2
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Or, observing that the term — 10 is not wanted till the last
operation, and therefore need not be taken down from the upper
line until that stage is reached, and observing further that the
method of detached coefficients is clearly applicable here just as
in multiplication, we may arrange the whole thus:—

8+ 8-20+40-50+30-10|2+3-4+6-8
8+12-16+24-32 4-2+1

- 4- 4+16-18+30
- 4- 6+ 8-12+16

2+ 8- 6+14-10
2+ 3- 4+ 6- 8

5- 2+ 8- 2

Therefore, Integral quotient = 42" — 2z + 1.
Remainder =52 - 22" + 8z - 2.

The process may be verbally described as follows : —

Arrange both dividend and divisor according to descending powers
of #, filling in missing powers with zero coefficients.  Find the quotient
of the highest term of the dividend by the highest term of the divisor;
the result is the highest term of the ““ integral quotient.”

Multiply the divisor by the term thus obtained, and subtract the
result from the dividend, taking down only one term to the right beyond
these affected by the subtraction ; the result thus oblained will be less in
degree than the dividend by one af least. Divide the highest term of
this result by the highest of the divisor ; the result is the second ferm
of the “ integral quotient.” ‘

Multiply the divisor by the new term just obtained, and subtract,
de., as before.

The process continues until the result after the last subtraction is
less in degree than the divisor ; this last result is the remainder as
above defined.

v §11.] The following are some examples of the use of the “ long
rule ” for division :—
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v Example 1.
5, 10, 5 1\ . 11
. (J!‘—EZ'+3—6$2—8—6E+3—6)—.-(2’—§I+I)‘
1-§+ 38— Fotody |1 -4 +1
1-3+ % I-4+}
~br i ¥
TAE oA
$-dst+ds
-ty
0+0 ,
The remainder vanishes, therefore the division is exact, and the quotient is
z’—lz 1
3%t5

* v Example 2.
(B +p2?+qr+7) = (z-a).

1+p +¢ +r : 1-a
1-a 1+(a+p)+(a*+ap+q)
(a+p)+q

(a+p) - (a®+ap)
(a* +ap+q)+r
(a® +ap+q) - (a*+a%p+aq)

(a®+ap+ag+7).
Hence the integral quotient is
B+ (a+p)z+ (a®+ap+q);
and the remainder is . '
a*+a¥p+ag+r.

The student should observe the use of brackets throughout to preserve the
identity of the coefficients.

* \/Example 3.
(a* - 8%+ 6a%b? — 3ab® + b4) = (a? — ab+ %),

1st. Let us consider ¢ as the variable. Since the expressions are homo-
geneous, we may omit the powers of b in the coefficients, and use the numbers

merely.
1-3+6-3+11-1+1
1-1+1 |1-2+3
-2+5-3  a?-2ab+3b
-2+2-2
3-1+1
3-3+3
2-2

2ab® - 2b4,
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whence . 2 a8
at-3a%h+6a%? - Bab®+ b4 o 2ab® - 2b4
T b1 P =a 2ab+3b’+ﬁ_ab+ .

2nd. Let us consider b as the variable. We must then arrange according
to descending powers of b, thus—
(b4 - 3ad® + 6a%D® - 3a%h + at) < (V% - ab +a?).
Detach the coefficients, and proceed as before. It happens in this particular
case that the mere numerical part of the work is exactly the same as before ;
the only difference is in the insertion of the powers of a and b at the end.
Thus the integral quotient is 42— 2baz + 8a? and the remainder is 2ba® - 2a*,
whence
at— 303 + 6077 — 3aBd + 1 _ 2a% — 20
a’-ab+ ¥ =82l -20b+ ¥+ o
v§ 12.] The process of long division may be still further
abbreviated (after expertness and accuracy have been acquired)
by combining the operations of multiplying the divisor and sub-
tracting. Then only the successive residues need be written.
Thus contracted the numerical part of the operations of example 3
" in last paragraph would run thus :—
1-8+6-8+1|1-1+1
-2+5-8+1[1-2+8
3-1+1
2-2

BINOMIAL DIVISOR—REMAINDER THEOREM.
* V' § 13.] The case of a binomial divisor of the first degree is of
special importance. Let the divisor be z —a, and the dividend
DA+ DI+ pa b L P (T + P,
Then, if we employ the method of detached coefficients, the
_calculation runs as follows :—

Po+p, +P,t ... +PprtpPn)l-a
po _pou pn
(o +p) +2, + (B, + )
(P2 +p,) - (po+p)a +(p +po+p,)
(po"-! + D0+ ) + Pa :

(P’ +pe+p) = (P& +pa+ple !
(P’ +Pl“'.+ P +py)
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The integral quotient is therefore
A+ (pat+p)e 2+ (pa’ +pa+p) i+,

The law of formation of the coefficients is evidently as follows —

The first i3 the first coefficient of the dividend.

The second is obtained by mulliplying s predecessor by o and
adding the second coefficient of the dividend.

The third by multiplying the second just obtained by a, and adding
the third coefficient of the dividend. And so on.

It is also obvious that the remainder, which in the present case i3
of zero degree in z (that 13, does not contain z), is obtained from the last
coefficient of the integral quotient by multiplying that coefficient by a
and adding the last coefficient of the dividend.

The operations in any numerical instance may be convemently
arranged as follows :—

(224~ 827+ 6z~ 4)-(z-2).
240-3+ 6- 4
0+4+8+10+32

2+4+5+16+28.

Integral quotient = 22® + 42*+ bz + 16.
Remainder =28.

The figures in the first line are the coefficients of the dividend.
The first coefficient in the second line is 0.
The first coefficient in the third line results from the addition of the two

" above it.

The second figure in the second line is obtained by multiplying the first
coefficient in the third line by 2.

The second figure in the third line by addmg the two over it.

And so on.

Example 2.
If the divisor be 2+ 2, we have only to observe that this is the same as

* The student should observe that this arrangement of the calculation of
the remainder is virtually a handy method for calculating the value of an in-
tegral function of z for any particular value of z, for 28 is 2x2¢-38x2?
+6 x 2 -4, that is to say, the value of 224 - 823+ 6z~ 4 when z=2 (see § 14).
This method is often used, and always saves arithmetic when some of the
coefficients are negative and others positive.
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z~(-2); and we see that the proper result will be obtained by operating
throughout as before, using — 2 for our multiplier instead of + 2.
(224 — 823 + 6z — 4) - (z+2)
=(24-822+ 6z - 4)=+-(x-(-2)).
240-3+ 6-4
0-4+8-10+8
2-4+6- 4+4.

Integral quotient = 222 - 423 + b — 4.
Remainder =4,

Example 3.
The following example will show the student how to bring the case of any
binomial divisor of the first degree under the case of z - a.
3zt — 223+ 827 - 22 +3_ 24— 223 +327-22+3
3z+2 3(z+1)
=5¥8z‘—2x‘+3x’—2:c+3
z—(-14)
Transforming now the quotient inside the bracket { } , we have
3-2+8-2+ 8
0-2+ § — 344184

C YT IFTITTS

Integral quotient = 823 — 4a3+ 3 - 52,
Remainder =385,

‘Whence

L ) L (EETE RS o P L

3z+2 —(—i)
= - i g
D42+ Yz -§3+ Tora’
Hence, for the division originally proposed, we have—

Integral quotient = z* — $z°+ Yz - §3. V
Remainder =288,

The process employed in examples 2 and 3 above is clearly
applicable in general, and the student should study it attentively
as an instance of the use of a little transformation in bringing
cases apparently distinct under a common treatment.

v § 14.] Reverting to the general result of last section, we see
that the remainder, when written out in full, is

PO +pat 14 L L. 4+ Ppoia+ Py
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Comparing this with the dividend
PPN+ L+ Pa T+ Pa,y
we have the following “ remainder thegrem ” :—
When an integral function of z is divided by « — a, the remainder
18 obtained by substituting a for = in the function in question.

A(Z"” In other words, the remainder is the same function of « as

the dividend is of z.

Partly on account of the great importance of this theorem,
partly as an exercise in general algebraical reasoning, we give
another proof of it.

Let us, for shortness, denote

P+ pE 1+ L+ pao 2+ pa bY f(2),
fla) will then, naturally, denote the result of substituting a for
z in f(z), that is,
. POt +pa®lt L. 4Py 0 Py )

Let x(z) denote the integral quotient, and R the remainder,
when f(z) is divided by 2 — «. Then x(z) is an integral function
of z of degree n— 1, and R is a constant (that is, is independent
of z), and we have

f(2)

Z-a

_ R

= X@+ —.,

whence, multiplying by z — a, we get the identity
f(@)=(z - a)x(z) + R.

Since this holds for all values of z, we get, putting z=a

throughout,
f(@)=(a - a)x(o) + R,

where R remains the same as before, since it does not depend on
z, and therefore is not altered by giving any particular value
to . )

Since x(a) is finite if a be finite, (@ — a)x(x) =0 x x(2)=0;
and we get finally

fo)=R,

which, if we remember the meaning of f(a), proves the “re-
mainder theorem.”
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Cor. 1. Since z + a =2 — ( — a), it follows that
The remainder, when an integral function f(z) is divided by
z+a, 48 f( - a). '
For example, the remainder, when 2# - 82+ 22* - 52 + 6 is divided by z+10,
is (- 10)% - 8( - 10)8+2( — 10)*— 6( — 10) + 6 =13256.

Cor. 2. The remainder, when an inlegral function of =, f(z), is
- . b
divided by az + b, wf(-;).

This is simply the generalisation of example 3, § 13, above.
By substitution we may considerably extend the application
of the remainder theorem, as the following example will show :—

Consider pm(z*)™+pm(z")™ 1+ . . .+p (@) +p, and z*-a" Writing
for 2 moment £ in place of 2, and a in place of a®, we have to deal with
P+ Pmaf™ 1+ . . . +pf+p,and £—a. Now the remainder, when the
former of these is divided by the latter, is pna™+pm.10™" 1+ . . . +pa+pp
Hence the remainder, when pm(z*)™ + pm_1(2*)™ "1+ . . . +pa"+p, is divided
by a* - a®, is pu(a™)™ +pm_1(@)™ 1+ . . . +pa"+p,.

APPLICATION OF REMAINDER THEOREM TO THE DECOMPOSITION
/ OF AN INTEGRAL FUNCTION INTO LINEAR FACTORS.
§15.] Ifa, a,, . . . a, be r different values of z, for which the
integral function of the nth degree f(x) vanishes, r being <n, then
f(z) = (Z - al)(z - u'l) e (z - a"')¢ﬂ—f(z)’ ¢”-'(2}) bem'g an intcgral

" function of z of the (n — r)th degree.

For, since the remainder, f(=,), when f(z) is divided by z - a,,
vanishes, therefore f(z) is exactly divisible by z - a,, and we have
) f(@)=(z - a))bn_(2),
where ¢,,_,(z) is an integral function of z of the (n — 1)th degree.
Since this equation subsists for all values of z, we have

f(a!) = (0, - “x)¢n—x(¢n),
that is, by hypothesis, 0= (a; — a,)$n_,(as).
Now, since a, and a, are different by hypothesis, a;—a,+0;
therefore ¢,_,(a,)=0.

Hence $p-,(2) is divisible by {z — a),
that is, $n-1(2) = (2~ ax)Pn-s(2) ;
whence f(@)=(z-a,) (@~ as)bn-s(2).
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From this again,
=f(“1) = (aa - al) (an - a’) ¢n-:(“a)’

which gives, since a,, a,, a; are all nnequa.l, $n-s(x3) =0; whence
¢,,_,(£0) (z- a5)Pn- 5(%) ; so that

f@) =@~ a) (@~ a) (@ - a)bn-s(2).
Proceeding in this way step by step, we finally establish the
theorem for any number of factors not exceeding n.

Cor. 1. If an integral function be divisible by the factors z — a,,
z-a, . .. z—a,, all of the first degree, and all different, it is
divisible by their product; and, conversely, if it is divisible by the
product of any number of such factors, all of the first degree and all
different, it is divisible by each of them separately. The proof of
this will form a good exercise in algebraical logic.

Cor. 2. The particular case of the above theorem, where the
number of factors is equal to the degree of the function, is of
special interest. We have, then,

f@)=(z-0)(z-0a) .. .(z-on)P
Here P is of zero degree, that is, is a constant. To determine it
we have only to compare the coeflicients of 2* on the left and
right hand sides, which must be equal by chap. iv. § 24. Now
f(z) stands for pz®+p2"~'+. . .+ ppZ+p, Hence P=p,
and we have

J@)=p(z—-a)(z—0a) .. (z-ay,)
In other words—If n different values of z can be found, for which
the integral function f(z) vamishes, then f(z) can be resolved info n
Jactors of the first degree, all differend.

The student must observe the “if” here. We have not
shown that n such particular values of z can always be found,
or how they can be found, but only that if they can be found the
factorisation may be effected. The question as to the finding of
a, a, . . . &c., belongs to the Theory of Equations, into which
we are not yet prepared to enter.

»/§ 16.] The student who has followed the above theory will
natirally put to himself the question, ¢ Can more than n values
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of z be found for which an integral function of z of the nth degree
vanishes, and if so, what then?” The following theorem will
answer this question, and complete the general theory of factorisa-
tion so far as we can now follow it.

If an integral function of  of the nth degree vanish for more than
n different values of z, it must vanish idendically, that is, each of its
coefficients must vanish.

Let a,az . . . ay be n of the values for which f(z) vanishes,
then by § 15 above, if p, be the coefficient of the highest power
of z in f(z), we have

f@)=pla-a)@=a) . . . (&-on) ).

Now let 8 be another value (since there are more than =) for
which f(z) vanishes, then, since (1) is true for all values of z, we

have
0=f(B)=p(B-a;)(B-a) ... (B-as)  (2)
Since, by hypothesis, a, @, . . . a, and B are all different,

none of the differences, 8- a,, 8- a, . . . 8- ay, can vanish, and
therefore their product cannot vanish. Hence (2) gives p, = 0.
This being so, f(z) reduces to pz®-1+pan-2+ ... +p,_ .z

+pn. We have now, therefore, a function of the (» — 1)th degree

which vanishes for more than n, therefore for more than (rn — 1),
values of its variable. We can, by a repetition of the above
reasoning, prove that the highest coefficient p, of this function
vanishes. Proceeding in this way we can show, step by step,
that all the coefficients of f(z) vanish.

As an example of this case the student may take the following :—

(xz+1) (x—1) - 2*+1 will be found to vanish for z=1, =2, z=8 ; that is,
for three particular values of z, but its degree is the second, hence it must
vanish identically ; and this it evidently does, for

(z+1)(x-1)-2*+1=22-1-23+1
=022+0,
that is, the function vanishes for all values of .

Cor. If two integral functions of x, whose degrees are m and n
respectively, m being >n, be equal in value for more than m different
values of z, a fortiori, if they be equal for all values of =, that is fo

VOL L H
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say, identically equal, then the coefficients of like powers of = in the
two must be equal.

We may, without loss of generality, suppose the two functions
to be each of degree m, for, if they be not equal in degree, this
simply means that the coefficients of z»+1, 2»+2, . . 2™ in one
of them are zero. 'We have therefore, by hypothesis,

PEPHPI 4 L A P =g A+ @I L L L+ g,
and therefore

(Po=g)a™ + (B = @)™ 1+ . .. + (P~ qm) =0,
for more than m values of z.
Hence we must have
2-%=0, P-¢.=0,...Pm—gm=0;
that is,
Po=90s Pi=Qs .+ Pm=qm-

This is of course merely another form of the principle of in-
determinate coefficients. The present view of it is, however, im-
portant and instructive, for we can now say that, if any function
of z can be transformed into an integral function of z, then this trans-

| formation is unique.
+'§ 17.] The danger with the theory we have just been ex-
pounding is not so much that the student may refuse his assent
to the demonstrations given, as that he may fail to apprehend
fully the scope and generality of the conclusions. We proceed,
therefore, before leaving the subject, to illustrate very fully the
use of the remainder theorem in various particular cases.

v Example 1.—To determine the value of the constant % in order that
2+ 627+ 4z +k
may be exactly divisible by z+ 2.

The remainder, after dividing by z+2, that is, by z-(-2), is (-2)*
+6(—2)"+4(-2)+%, that is, 8+% The condition for exact divisibility is
therefore 8 + =0, that is, k= - 8.

+ Example 2.—To determine whether
8- 2 - Tz -2 1)
is divisible by (z+1) (z~2).

If we put = -1 in the function (1) we get

-8-2+7-2=0,
hence it is divisible by z+1.
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If we put =2 we get
24-8-14-2=0,
hence it is divisible by z - 2.

Hence by § 15 it is divisible by (z+1) (x-2). The quotient in this case

is easily obtained, for, since the degree of (1) is the third, we must have
823 - 223 - T~ 2=(z+1) (- 2) (ax+b) (2),
where a and b are numbers to be determined.

If we observe that the highest term 32® on the left must be equal to the
product z x z x ax of the three highest terms of the factors on the right, we
see that 8z>=ax® hence a=38. And, since the product of the three lowest
terms of the factors on the right must be equal to — 2, the lowest term on the
left, we got — 2b= — 2, that is, 5=1. Hence finally

823 - 23 -7z -2=(2+1) (- 2) (8x+1).
v Example 8.—If n be a positive integer,

when is divided by | the rem. is that is

" —~aqn z-a a* —a® | 0 always.

" —an z+a (-a)*-a* | 0if n be even, — 2a" if n be odd.
" +an z-a a® +ar | 2a" always,

*+an z+a (-a)y+ar I 0 if 7 be odd, 2a" if n be even.

Hence 2" - a” is exactly divisible by z—a for all integral values of », and by
z+a if n be even. a"+a” is exactly divisible by z+a if n be odd, but is
never exactly divisible by 2~ a (so long as @ 4 0). These results agree with
those given above, chap. iv, § 16.

Example 4.—To prove that
a®(b—c)+b(c-a)+Xa-b)=—(at+b+c)(b-c)(c-a)a—b)

First of all regard P=a?d- ¢) +5%(c - a) +c*a - ) as a function of a. P

is an integral function of @ of the 3rd degres ; and, if we put a=5,
P=0%b - c)+ b¥(c - b) + c&(b - b)
=0;

and similarly, if we put a=¢, P=0 ; therefore P is exactly divisible both
bya-band bya-c.

Again, regard P as a function of b alone. It is an integral function of b,
and vanishes when b=c, hence it is exactly divisible by 4—c. We have,

therefore, . .
P=Q(a-b)(a~-c)(b-c). 5

Since P, regarded as a function of @, b, and ¢, is of the 4th degree, it - '
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follows that Q must be an integral function of a, b, ¢ of the first degree.
Hence, !, m, n being mere numbers which we have still to determine, we
have
a%(b - ¢) + B¢ - a) + @ — b)=(la+mb +nc) (b - ¢) (a - ¢) (@ - b)
= —(la+mb+nc)(b—c)c-a)(a-D>)

To determine ? we have merely to compare the coefficients of a% on both
sides. It thus results by inspection that =1; and similarly m=1, n=1;
the last two inferences being also obvious by the law of symmetry. We have
therefore finally

a¥b-c)+¥c-a)+cHa-b)=~(a+b+c)(b—-c)(c-a)(a-D).
Example 5.—To show that
P =20+ 2% + 2% - at - b4 — 4
=(@+d+c)(-a+b+é)(a-b+c)(a+b-c).

First, regarding P as an integral function of @, and dividing it by a+b+¢,
that is, by @ - (~ b -¢), we have for remainder
2033+ 23— b— )3+ WA~ b~ (—b-c)t-bt—ct

=253 + 20763 + 4bc® + 28+ 204 + 4b%¢ +- 2b%¢*
— b8 - 4% - 63— 4bP - A -bh -t
=0.
Hence P is exactly divisible by a+b+c.

Observing that the change of a into-a, or of b into -5, or of ¢ into ~¢,
does not alter P, all the powers of these letters therein occurring being even,
we see that P must also be divisible by—a+b+¢, a—b+¢, and a+d-c.
We have thus found four factors of the 1st degree in a, b, ¢, and there can
be no more, since P itself is of the 4th degree in these letters. This being
established, it is easy to prove, as in example 4, that the constant multiplier
is+1; and thus the result is established.

EXPANSION OF RATIONAL FRACTIONS IN SERIES BY MEANS OF
CONTINUED DIVISION.

§ 18.] If we refer back to §§ 5 and 6, and consider the analysis
there given, we shall see that every step in the process of long
division gives us an algebraical identity of the form

Rl
£=Q+p M,

where Q' is the part of the quotient already found, and R’ the
‘residue, at the point where we suppose the operation arrested.
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For example, if we stop at the end of the second operation,
82" + 82° — 202* + 402° - 502" + 30z - 10
22" + 32 — 4<" + 62 - 8
=4z,_2z+2z‘+8x’—6£+ 14z-10
2z' + 32 - 42" + 62— 8
Again, instead of confining ourselves to integral terms in z, and
therefore arresting the process when: the remainder, strictly so-
called, is reached, we ‘may continue the operation to any extent.
In this case if we stop after any step we get an identity of the
form (1). The part Q' will be of the form

M N T
-1 — —
Az? 4+ BzP ...+Kz+L+z+?+...+ 2),

) U \4 Z
and R’ of the form aearit gt g (3).
For example, consider
2 +2%+ 3z +4
P2tz+1

and let us conduct the division in the contracted manner of § 12, but insert
the powers of x for greater clearnesa.
B+2+ 8z +4 | B+x+1

1 2 8 1 2
+20+ 2 +4 z+l+;+9—;+z—.+z—,~

z+3
+2-1
z
3.2
z 2
1.8
+?+z—’
2 1
taATH
_8_2
P
3 2
B4+2224 8z +4 1.2 8 1 2 A 2

whence

— izl S etltptaatatataga W
an identity which the student should verify by multiplying both sides by
2t+z+l

§ 19.] When we prolong the operation of division indefinitely
in this way we may of course arrange either dividend or divisor,
or both, according to ascending powers of z. Taking the latter
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arrangement we get a new kind of result, which may be illus-
trated with the fraction used above.

‘We now have
4+4+82+20%+ 2 | 14z+23
- 2-284+ 23 |4d-z-234+ 835 -2 -

- P+2°
+ 823+ 24
— 274 — 328
- a5+ 28
- + 828 +27,
+23+82+4 3t 427
whence izl =4—z—a:‘+8z‘—2z‘—z’+za——+:—c+—l (5).

| And, in general, proceeding in a similar way with two integral
functions, A and D, we get

A R
p=¥*p

where Q=A+Br+...+Kzp (6),
R" =LaP+l + Mapt2 4, , | + TaPt+n (7).

§ 20.] The results of §§ 18, 19, show us that we can, by the
ordinary process of continued long division, expand any rational fraction
as a “series” either of descending or of ascending powers of z, con-
taining as many terms as we please, plus a “residue,” which is ilself
a rational fraction.

T These series (the Q' or Q" parts above) belong, as we shall
see hereafter, to the general class of “ Recurring Series.”

. The following are simple examples of the processes we have been describ-
ing :—

11—1=1+z+x’+. . .+x"+f';; (8).
\ e
-lia-:=l-a:+.z’—. . .+(-1)-a,-—‘111_1:§'ﬂ (10).
\ Al TR
} I+T+.1T-Tz"=l_z+zﬂ+1_”+’+zh“_ﬁ+" ot
ﬁ,=l+2z+8x’+. . .+(u+1)m"+(“—+2%:—f)§ﬂ)ﬂq

(18).
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EXPRESSION OF ONE INTEGRAL FUNCTION IN POWERS OF
ANOTHER.

§ 21.] We shall have occasion in a later chapter to use two
particular cases of the following theorem.
If P and Q be integral functions of the mthwndnthdegrm
respectively (m > n), then P may always be put into the form
’ P=R+RQ+RQ'+...+RQ? : . (1),
| where B, B, . . . By are inlegral functions, the degree of each of
" which is n — 1 at most, and p is a positive integer, which cannol exceed
m/n. A
Proof: Divide P by Q, and let the quotient be Q, and the
remainder R,
If the degree of Q, be greater than that of Q, divide Q, by
Q, and let the quotient be Q, and the remainder R,
Next divide Q, by Q, and let the quotient be Q, and the
 remainder R, and so on, until a quotient Q,_, is reached,
whose degree is less than the degree of Q. Q,-,, for convenience,
we call also R,, We thus have

P=QQ+R, ]
Q,=QQ+R,
Q=QQ+R, ).

Qp-s=Qp-Q+ By,
Q-1=Ryp
Now, using in the first of these the value of Q, given by the

second, we obtain
P=QQ+R)Q+R,
=R, +RQ+QQ,.
Using the value of Q, given by the third, we obtain
P=R +RQ+RQ +QQ, (3).
And so on.
We thus obtain finally the required result; for, R, R, . .

R, being remainders after divisions by Q (whose degree is n),
none of these can be of higher degree than % —1; moreover,
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since the degrees of Q,; Q, Q, - . . Qp-, are m—n, m - 2n,
m-3n,. . . m—np, p cannot exceed m/n.

The two most important particular cases are those in which Q=2 -a, and

. Q=2*+pz+7y. We then have

P=ay+ay(x-a)+ . . . +ta(c-a),
where @y, @,, . . . a, are constants ;
P=(ay+ ) + (@, + bz) (P + B+ 7)+ . . . +(ap+bgr) (22 +Bz+)?,
where ay, @, . . . Gp, by, by, . . . bp are constants, and p > m/2.
Example 1.
Let P=5a- 1122+ 102 -2,
Q=z-1.
The calculation of the successive remainders proceeds as follows (see
§13),

5~11+410-2
0+ 5- 6+4
5~ 6+ 4/+2
0+ 5-1
5- 1+ 8
0+ 5
5|+ 4
0

|+5;

and we find
bz’ -1122+102-2=2+8(x-1)+4(z-1)?+5(z-1¥. v

Example 2.
P=2a8+82" + 428+ 423+ 82+ 1,
Q=2?-z+1.
The student will find
Ry=11z, R,= -222+7, R,=192- 22, Ry;=7z+15, R;=1;
so that
P=1lz+(-222+7) (2®—z+1)+(192-22) (z2* -2+ 1)}
+(T2+16) (22 -2+ 13+ (B -2+ 1)4

Exgroses IX.

Transform the following quotients, finding both integral quotient and

remainder where the quotient is fractional.

(1.) (2~ b2+ ba® - 1)/(2*+ 8z +1).

(2.) (628 + 22° — 1924+ 8128 - 872+ 272 ~ 7)/(223 - 8z + 1),

(8.) (42°— 224+ 82—z +1)/(2 - 22 +1).

(4.) (#*- 8z+15)(2?+ 8z + 16)/(z® - 25).

(5.) {(z=1)(z-2)(z-3)(z—4) (x~5)-760(x - 6)+120(z~7) } = (z - 6)
(z-17).
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(8.) (28+4a® - 8zt — 162+ 223 + 2+ 8)/(2® + 42° + 22+ 1).
(7.) (2728 +10a2 +1)/(32° - 22 +1).

(8.) (a3- 923+ 282~ 15) (x - 7)/(a - 8z +7).

(9.) (P+H23+ B +Frz+1)/(2 - e +1).

(10.) (A +42*+ 32+ 3z +3)/(2 +22+1).

(1L) (F+ )2z +1).

(12.) (B -2+1) (@ -1)/(2A +22+1).

(18.) (2B - 2*y*)/(z - y).

(14.) (9a*+ 222+ b4)/(8a3 + 2ab + B3).

(15.) (a7 +b)/(a +b).

(18.) (z*+3A - T2%%)/(z*+ Bzy +1°).

(17.) (25 — 22y + 42%y® - 82 + 16234 — 82y%)/(2 - 83%).
(18.) (a4 + Bady + 7T2*y? + 152 + 1294)/(z + 4y). .
(19.) (1+z+22+a3+ b+ 28+ 27 + 28+ 20 +210)/(1 - 28+ 28).
(20.) (®—52%+ 8)/(2*+z+2).

(21.) (aba®+ (ac - bd)® - (af + cd)x + df)f(az - d).

(22.) {a*?+ a®c®+ b33 + 2adbe — 2ab%c - 2abc®} < {a? - (@ - b) (a-c)}.
(23.) (1+b+c¢—be—b% - be?)/(1 - be).

(24.) {(az+by)+(az~byP~(ay~ba)* +(ay + beP}/ {(a+ by~ Bab(z* - ¥)}.
(25.) {(a*+B%+8%a3}/{(a+b)—ba}.

(26.) {(a3+2y+ 100 - (& -2y + 9}/ {2h + ety +-9}.
27.) {(z+y) -7 -y }H (&2 +zy + R

(28.) {(z+1)6-a8-1}/{a®+z+1}.

(29.) {ab(z*+y*)+xy(a®+ )}/ {ablz® - y*) - zy(a? - B%)}.
(80.) (a®-+ 2433+ 2a%* — 31%)/(a? - 2ab + b2).

(81.) (- 32— 2z +4)/(z+2).

(82.) (8- 42® — 342 + 76 +106)/(z — 7).

(88.) Find the remainder when 23— 62?+ 8z - 9 is divided by 22+8.

(34.) Find the remainder when pa®+g2*+ gz +p is divided by z—1; and
find the condition that the function in question be exactly divisible by z?- 1.

(85.) Find the condition that Az*"+ Bamy"+Cy® be exactly divisible by
Pz™ 4+ Qym.

(36.) Find the conditions that z®+ax®+bx+c¢ be exactly divisible by
24 pr+q. .

(87.) If z—a be a factor of 2® + 2az — 853, then a=%b.

(38.) Determine A, u, », in order that a*+82%+X\a%+ux+» be exactly
divisible by (2*-1) (z+2).

(89.) If a*+42+6px?+4gz+7r be exactly divisible by 23+ 82*+9z+38,
find p, g, 7.

(40.) Show that p2%+(p*+q)*+(2pg+7)e+¢2+3s, and pad+(p*— gl
+ 7z - g*+3, either both are, or both are not, exactly divisible by 2+ px+4g.

(41.) Find the condition that (@™ +az™1+. . . +1)/(@*+2*+. . . +1)
be integral.

(42.) Expand 1/(3z+1) in a series of ascending, and also in a series of
descending, powers of « ; and find in each case the residue after » terms.



106 EXERCISES. [cHAP. V.

(43.) Express 1/(a?- az+2?) in the form A + Bz +Cx®+ D2®+R, where A,
B, C, D are constants, and R a certain rational function of z.

. . 22—~ o3
(44.) Divide l+z+ﬁ+f2,a+' ..byl-=z

{ (45.) Show that, if y<1, then approximately 1/(1+y)=1-y, 1/(1-y)
=14y, the error in the former case being less than 100y per cent.
. Find similar approximations for 1/(1+y)* and 1/(1-y)*, where n is a
positive integer.

(46.) If a>1, show that a*>1+n(a-1), n being a positive integer.
Hence, show that when n is increased without limit a® becomes infinitely
great or infinitely small according as a> or <1.

(47.) Show that when an integral function flz) is divided by (z-a,)
(2-ay), the remainder is {fla)(z~a;)~/(a,)(@—as)}/(ay—a;). Gemeralise
this theorem.

(48.) Show that flz)-fla) is exactly divisible by #-a; and that, if
flz)=pa*+p2 1+ px2~3+ . . . +p,, then the quotient is x(z)=pz""
+(poa + )2+ (P + P+ 1)+ . L L+ (P P L L L 4P, )

Hence show that when f{z) is divided by (x-a)?, the remainder is
x{(a) (z-a)+fla),
where Aa)=par+pa+. . . +p,,

x(@)=npyar-t+(n-1)par—2+. . . +p, ;.

(49.) If a»+py21+. . . +p,, and 2 1+g2*2+. . . +¢,;, have the
same linear factors with the exception of z - a, which is a factor in the first
only, find the relations connecting the coefficients of the two functions.

(60.) If, when y+c is substituted for z in a*+a,2*1+. . . +a,, the
result is y»+ b,y 1+ . . . +,, show that b, b, ,,. . . b, are the remainders
when the original function is divided by z-¢, and the successive quotients
by z—-c. Hence obtain the result of substituting y+8 for = in 2°- 152¢
+202% - 1722 -2+ 8.

(561.) Express (z3+3z+1)¢ in the form A+ B(z+2)+C(z+2)?+&c., and
also in the form Az+B+(Cz+D)(z*+z+1)+(Ex+F)(2* + 2+ 1)+ &c.

(52.) If, when P and P’ are divided by D, the remainders are R and R’,
show that, when PP’ and RR' are divided by D, the remainders are identical.

(53.) When P is divided by D the remainder is R ; and when the integral
quotient obtained in this division is divided by D’ the remainder is 8 and the
integral quotient Q. R’, 8, Q’, are the corresponding functions obtained by
first dividing by D’ and then by D. Show that Q=Q’, and that each is the
integral quotient when P is divided by DD’; also that SD+R=8'D'+R/,
and that each of these is the remainder when P is divided by DD’.



CHAPTER VL

Greatest Common Measure and Least Common
Multiple.

§ 1.] Having seen how to test whether one given integral
function is exactly divisible by another, and seen how in certain
cases to find the divisors of a given integral function, we are
naturally led to consider the problem — Given two integral
functions, to find whether they have any common divisor or not.

‘We are thus led to lay down the following definitions :—

Any integral function of = which divides exactly two or more given
integral functions of z is called a common measure of these functions.

The integral function of highest degree in x which divides exactly
each of two or more given integral functions of x is called the greatest
common measure (G.C.M.) of these functions.

§ 2.] A more general definition might be given by suppos-
ing that there are any number of variables, z, ¥,z u, &c.; in
that case the functions must all be 4ntegral in z, g, 2, %, &c., and
the degree must be reckoned by taking all these variables into
account. This definition is, however, of comparatively little
importance, as it has been applied in practice only to the case of
monomial functions, and even there it is not indispensable. As
it has been mentioned, however, we may as well exemplify its
use before dismissing it altogether.

Let the monomials be 432a'b%"y'z, 270a"%%%"7, 90a"0’y7,
the variables being z, y, 2, then the G.CM. is 2%y, or Ca'y’,
where C is a constant coefficient (i.e., does not depend on the
variables z, ¥, 2).

The general rule, of which the above is a particular case, is
as follows :—
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The G.C.M. of any number of momomials is the product of the
variables, each raised lo the lowest power* in which it occurs in any
one of the given functions.

This product may of course be multiplied by any constant
coefficient.

G.C.M. OBTAINED BY INSPECTION.

§ 3.] Returning to the practically important case of integral
functions of one variable z, let us consider the case of a number
of integral functions P, P/, P”, &c., each of which has been re-
solved into a product of positive integral powers of certain factors
of the 1st degree, say & — a, z — 8, z— v, &c. ; so that

P =pz-a)¥z-BPz-v)r. . .
P =g o)~ AP 7Y - -
P =p'(x-a)®(z-B¥(@z-7. . .,

By § 156 of chap. v., we know that every measure of
P can contain only powers of those factors of the 1st degree
that occur in P, and can contain none of those factors in a higher
power than that in which it occurs in P, and the same is true for
P, P", &. Hence every common measure of P, P’, P’, &c., can
contain only such factors as are common to P, P’, P, &c. Hence
the greatest common measure of P, P, P", d&c., contains simply all the
Jactors that are common to P, P', P’, &e., each raised to the lowest
power in which &t occurs in any one of these fumctions.

Since mere numbers or constant letters have nothing to do
with questions relating to the integrality or degree of algebraical
functions, the G.C.M. given by the above rule may of course be
multiplied by any numerical or constant coefficient.

Example 1.
P =22 6x+4=2(z-1)(z-2),
P'=62*-6z-12=6(x+1)(x-2).
Hence the G.C.M. of P and P is - 2.

* If any variable does not occur at all in one or more of the given fanc-
tions, it must of course be omitted altogether in the G.C.M.

R T
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Example 2.
P =28-58+ 7+ 22 -8z +4=(x- 1)z +1) (z-2)?,
P =28 —72°+ 1724 — 182% — 1022+ 20z — 8=(z — 1)X(z+1) (z - 2)%,
P =28-8xt -3+ 72— 4=(x~ 1) (x+ 1)}z - 2)%.

The G.C.M. is (z~-1) (z+1) (z— 2)3, that is, 2# - 423+ 823 + 4x - 4.

§ 4] It will be well at this stage to caution the student
against being misled by the analogy between the algebraical and
the arithmetical G.C.M. He should notice that no mention is
made of arithmetical magnitude in the definition of the algebraical
G.CM. The word “greatest” used in that definition refers
merely to degree. It is not even true that the arithmetical
G.C.M. of the two numerical values of two given functions of z,
obtained by giving z any particular value, is the arithmetical
value of the G.C.M. when that particular value of z is substituted
therein ; nor is it possible to frame any definition of the alge-
braical G.C.M. so that this shall be true.*

The student will best satisfy himself of the truth of this remark by study-
ing the following example :—

The algebraical G.C.M. of 2?—38z+2 and #*-2z-2 is 2z-2. Now put
2=381. The numerical values of the two functions are 870 and 928 respect-
ively ; the numerical value of 2~2 is 29 ; but the arithmetical G.C.M. of
870 and 928 is not 29 but 58,

LONG RULE FOR G.C.M.

§ 5.] In chap. v. we have seen that in certain cases in-
tegral functions can be resolved into factors; but no general
method for accomplishing this resolution exists apart from the
theory of equations. Accordingly the method given in § 3
for finding the G.C.M. of two integral functions is not one of
perfectly general application.

The problem admits, however, of an elementary solution by
a method which is fundamental in many branches of algebra.
This solution rests on the following proposition :—

If A=BQ+R, 4, B, Q, R being all integral functions of z,
then the G.C. M. of A and B is the same as the G.C.M. of B and R.

To prove this we have to show—(1st) that every common

* To avoid this confusion some writers on algebra have used instead of the
words *‘ greatest common measure” the term ¢ Aighest common factor.”
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divisor of B and R divides A and B; (2nd) that every common
divisor of A and B divides B and R.

Now, since A = BQ + R, it follows, by § 4, chap v., that
every common divisor of B and R divides A, hence every common
divisor of B and R divides A and B.

Again, R = A - BQ, hence every common divisor of A and B
divides R, hence every common divisor of A and B divides B and R.

Let now A and B be two integral functions whose G.C. M. is required ;
and let B be the one whose degree is not greater than that of the other.
Divide A by B, and let the quotient be Q,, and the remainder B,.

Divide B by R, and let the quotient be Q,, and the remainder R,

Divide B, by R, and let the quotient be Q,, and the remainder B,
and so on.

Since the degree of each remainder i3 less by unity at least than the
degree of the corresponding divisor, R,, R,, R,, &c. go on diminishing in
degree, and the process must come to an end in one or other of two ways.

1. Either the division at a certain stage becomes exact, and the
remainder vanishes ;

IL. Or a stage is reached at which the remainder is reduced to a
constand.

Now we have, by the process of derivation above described,

A =BQ+R,
B =RQ,+FR,

R, =RQ,+R, 1)
.Ru-.a =Ru-|Qn +.Ru

Hence by the fundamental proposition the pairs of functions

%}II{B }11:1}11%} . ﬁ."}g?.} all have the same G.C.M.

s

InCase LR,=0and R,_;=Q,R,_,. Hence the G.C. M. of
R,..and R, _, that is, of Q.R,-, and R,_,, is R,,_,, for this
divides both, and no function of higher degree than itself can
divide R,,_,. Hence R,,_, is the G.C.M. of A and B.

In Case IL R, =constant. In this case A and B have no
G.C.M,, for their G.C.M. is the G.C.M. of R,_, and R, that is,
their G.C.M. divides the constant R,. But no integral function
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(other than a constant) can divide a constant exactly. Hence
A and B have no G.C.M. (other than a constant).

If, therefore, the process ends with a zero remainder, the last divisor
is the G.C.M., if it ends with a constant, there is no G.C. M.

§ 6.] It is important to remark that it follows from the
nature of the above process for finding the G.C.M., which con-
sists essentially in substituting for the original pair of functions
pair after pair of others which have the same G.C.M., that we
may, ol any stage of the process, multiply either the divisor or the
remainder by an integral function, provided we are sure that this
Jumction and the remainder or divisor, as the case may be, have no
common factor. We may similarly remove from either the divisor or
the remainder a factor which is not common o both. We may remove
a factor which is common to both, provided we introduce it info the G.C. M.,
as ultimately found. It follows of course, a fortiori, that a numerical
Jactor may be introduced into or removed from divisor or remainder at any
stage of the process. This last remark is of great use in enabling us
to avoid fractions and otherwise simplify the arithmetic of the pro-
cess. In order to obtain the full advantage of it, the student
should notice that, in what has been said, “ remainder” may mean
not only the remainder properly so called at the end of each sepa-
rate division, but also, if we please, the “ remainder in the middle of
any such division,” or “residue,” as we called it in § 18, chap. v.

Some of these remarks are exemplified in the following
examples :—

Example 1.
To find the G.C. M. of 2°— 2zt - 2%+ 823~ 7z +2 and 24 - 42+ 8.
28—~ 204 - 203+ 82— Tz+2 |2t 4x+8
o ) - 427+ 8z z+1
- 2)— 224 - 2% +1223 - 10z + 2
A+ B- 623+ bx-1
o - 4438
- 622+ 9z-4

oz - 4z+8 |x*-623+92—-4
#-623+ 92— 4z z+2
T 3)6 - 922 +3
Tt 3 41
223 — 1222+ 182 -8
T 9) 922182+ 9
D- 2+1
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2 -623+9x-4 :E’_:@H-l
2-284+ z z+1
-4)— 4P+ 8z 4

2-22+1
2 -22+1

0
Hence the G.C. M. is 2® - 22+ 1.

It must be observed that what we have written in the place
of quotients are not really quotients in the ordinary sense, owing
to the rejection of the numerical factors here and there. In
point of fact the quotients are of no importance in the process,
and need not be written down ; neglecting them, carrying out the
subtractions mentally, and using detached coefficients, we may
write the whole calculation in the following compact form :—

1-2-2+ 8- 7+2|1+0+0- 443
+=-2 -2-2+12-10+2 6-9+ 0+38 =3
1+1- 6+ 5-1 2-8+ 0+1

1- 6+ 9-4 9-18+9 =9
-4 - 4+ 8-4 1- 2+1
1- 241
0

G.C.M., 2*-22+1.
Example 2. .
Bequired the G.C.M. of 4at+ 262+ 412%-22~-24 and 824+ 202°+ 822°
-8z - 32.
Bearing in mind the general principle on which the rule for finding the
G.C.M. is founded, we may proceed as follows, in order to avoid large num-
bers as much as possible : —

‘44+26+41- 2- 24|3+20+32- 8- 32
x2 1+ 6+ 9+ 6+ 8 2+ 5~ 26- 56
2+12+18+ 12+ 16 -53-318-424 -+ -53
7+44+ 68+ 16 1+ 6+ 8
1+29+146+184
=23 234138 +184
1+ 6+ 8
0

The G.C.M. is 22+ 6z+8.

Here the second line on the left is obtained from the first by subtracting
the first on the right. By the general principle referred to, the function
284 62%+ 923+ 62+ 8 thus obtained, and 8x*+ 20+ 8223 - 8z — 82, have the
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same G.C.M. as the original pair. Similarly the fifth line on the left is‘the
result of subtracting from the line above three times the second line on the
right.

If the student be careful to pay more attention to the prin-
ciple underlying the rule than to the mere mechanical application
of it, he will have little difficulty in devising other modifications
of it to suit particular cases.

METHOD OF ALTERNATE DESTRUCTION OF HIGHEST AND
LOWEST TERMS.

§7.] If I, m, p, q be constant quantities (such that lg— mp is

not zero), and if
P=IA+mB (1),

_ Q=pA +¢B ()
where A and B, and therefore P and Q, are integral functions, then
the G.C.M. of P and Q 1is the same as the G.C.M. of A and B.

For it is clear from the equations as they stand that every
divisor of A and B divides both P and Q. Again, we have

gP-mQ=q(IA +mB) -m (pA +¢B) = (lg-mp)A  (3),

e —PP+IQ=-p(lIA+mB)+I1(pA+¢B)=(lg-mp)B  (4),
hence (provided /g —mp does not vanish), since /, p, m, ¢, and
therefore lg — mp, are all constant, it follows that every divisor of
P and Q divides A and B. Thus the proposition is proved.

In practice ! and m and p and ¢ are so chosen that the
highest terin “shall “disappear in /A +mB, and the lowest in
pA + ¢B. 7 Thé process will be easily understood from the follow-
ing example :—

Example 1.
Let A= 4z* + 262% + 412 - 2z — 24,
B=324+2023+32r* - 82-382;
then - 3A +4B =223+ 52 - 26z - 56,
4A - 3B=T724+ 4423+ 682 + 162,
Rejecting now the factor z, which clearly forms no part of the G.C.M., we
have to find the G.C. M. of
A'=723+ 4422+ 682+ 16,
B’ =223+ 527 - 26z - 56.
VOL. I. 1
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Repeating the above process—

2A' - 7B’ =532+ 318z + 424,

7A’+2B' =532%+ 8182 + 424z,
the G.C.M. of which is 5322+ 3182 +424. Hence this, or, what is the same
thing, «*+ 6+ 8, is the G.C.M. of the two given functions.

When the functions differ in degree, we may multiply the one
of lower degree by such a power of z as shall make its degree
equal to that of the other, and use it thus modified in order to
destroy the two highest terms, using it in its original form when
the two lower terms have to be destroyed.

When detached coefficients are employed, this merely amounts
to shifting the coefficients one or more places to the right or left.
For example,

Example 2.

To find the G.C. M. of 2* - 823+ 222+ - 1, and «® - 2® — 22+ 2, we have the
following calculation : —

A 1-3+2+ 1-1
B |1-1-2+2
A" =- A +Be 2-4+ 1+1
B = 2A +B | 2-5+ 8+0
A"= A'-PB 1- 2+1
B" = 3A'—1; 6-14+8
A= BA"-B" 2_é
B"= 8A"-B" 2-9

The G.C.M. is 2z-2, or z-1.

There is a certain restriction to be attended to here, which the student
will readily discover by going over the theory again, with the necessary modi-
fications introduced.

The failing case of the original process, where lg -~ mp=0, may be treated
in a similar manner, the exact details of which we leave to be worked out as
an exercise by the learner.

§ 8.] The following example shows how, by a semi-tentative
process, the desired result may often be obtained very quickly :—
Example.
A=2r4-327- 827 +4,
B=2xt-23 - 923+ 4z +4.
Every common divisor of A and B divides A - B, that is,
- 22" + 62' — 4, that is, rejecting the numerical factor — 2,
z(z' - 3z + 2), that is, 2 (z— 1) (z — 2). We have therefore merely
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to select those factors of z (z-1)(z— 2) which divide both A
and B. =z clearly is not a common divisor, but we see at once,
by the remainder theorem (§ 13, chap. v.), that both z — 1 and
z - 2 are common divisors. Hence the G.C.M. is (z - 1) (z - 2),
or o’ —3z+ 2.

§ 9.] The student should observe that the process for finding
the G.C.M. has the valuable peculiarity not only of furnishing
the G.C.M., but also of indicating when there is none.

Example.
A=2?-8z+1,
B=x*-4r+6.
Arranging the calculation in the abridged form, we have
1-3+1 ' 1-4+6
2+1 ' -1+45

11
The last remainder being 11, it follows that there is no G.C.M.

G.C.M. OF ANY NUMBER OF INTEGRAL FUNCTIONS.

§ 10.] It follows at once, by the method of proof given in
§ 5, that every common divisor of two integral fumctions A and B is
a dwisor of their G.C.M.

This principle enables us at once to find the G.C.M. of any
number of integral functions by successive application of the
process for two. Consider, for example, four functions, A, B, C, D.
Let G, be the G.C.M. of A and B, then G, is divisible by every
common divisor of A and B. Find now the G.CM. of G, and
C, G, say. Then G, is the divisor of highest degree that will
divide A, B, and C. Finally, find the G.C.M. of G, and D, G,
say. Then G, is the G.C.M. of A, B, C, and D.

GENERAL PROPOSITIONS REGARDING ALGEBRAICAL PRIMENESS.

§ 11.] We now proceed to establish a number of propositions
for integral functions analogous to those given for integral
numbers in chap. iii, again warning the student that he must
not confound the algebraical with the arithmetical results;
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although he should allow the analogy to lead him in seeking for
the analogous propositions, and in devising methods for proving
them,

Definition.—Two inlegral functions are said to be prime to each
other when they have no common divisor.
TR f Proposition.—A4 and B being any two integral functions, there
{ { emist always two inlegral functions, L and M, prime fo each other, such
{thath and B have a G.C. M., G)the'n

L4-MB=G;
lmnd,iandebeprimtoeachother,
L4 -MB=1.

To prove this, we show that any one of the remainders in
the process for finding the G.C.M. of A and B may be put into
the form PA — QB, where P and Q are integral functions of z.

We have, from the equalities of § 5,

R=A-QB (1),
- Rt =B - Q:Rx (2)’
R,=R -QR, (3),
Rn = Rﬂ-s - Qn -1 (4)
Equation (1) at once establishes the result for R, (only here

P=1,Q=Q).
From (2), using the value of R, given by (1),
R,=B-Q(A-QB)=(-QA-(-1-QQ)B,
which establishes the result for R,.
From (3), using the results already obtained, we get
R.=A—Q1B—Q‘{(—Q‘)A—(— 1 _Q1Q|)B}
=(1+QQ)A-(Q +Q,+QQQ,)B,
which establishes the result for R,, since Q,, Q,, Q, are all in-
tegral functions. Similarly we establish the result for R,, R,,
&c.
Now, if A and B have a G.C.M,, this is the last remainder
which does not vanish, and therefore we must have

G=LA-MB (L),
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where L and M are integral functions ; and these must be prime
to each other, for since G divides both A and B, % =a, say, and
(E} =b, say, are integral functions; we have therefore, dividing
both sides of (I.) by G,

1=La-Mb;
so that any common divisor of L and M would divide unity.

If A and B have no G.C.M,, the last remainder, R, is a
constant ; and we have, say, R,, = L'A — M'B, where L' and M’
are integral functions. Dividing both sides by the constant Ry,
and putting L=L'/R,, M=M//R,, so that L and M are still
integral functions, we have

1=LA-MB (IL)

Here again it is obvious that L and M have no common divisor,
for such divisor, if it existed, would divide unity.

The proposition just proved is of considerable importance in
algebraical analysis. We proceed to deduce from it several con-
clusions, the independent proof of which, by methods more
analogous to those of chap. iii., § 10, we leave as an exercise
to the learner. Unless the contrary is stated, all the letters
used denote integral functions of =

§ 12.] If A be prime to B, then any common divisor of AH and
B must divide H. “

For, since A is prime to B, we have

LA-MB=1,
whence
LAH-MBH=H,

which shows that any common divisor of AH and B divides H.
If A and B have a G.C.M. a somewhat different proposition
may be established by the help of equation (L) of § 11. The
discovery and proof of this may be left to the reader.
Cor. 1. If B divide AH and be prime to A, it must divide H.
Cor. 2. If A’ be prime to each of the functions 4, B, C, &e., #
18 prime to their product ABC . . .



118 ALGEBRAIC PRIMENESS. [cEAP.

Cor. 3. If each of the functions A, B, C . . . be prime to each
of the functions A', B', C" . . . , then theproduct ABC . . . is prime
to the product A'B'C'

Cor. 4. If 4 bepnmetoA’ thmA“wpmnctoA"" a and o'
being any positive integers.

Cor. 5. If a given set of integral functions be each resolved into a
product of powers of the integral factors A, B, C . . . which are
prime to each other, then the G.C.M. of the set is found by writing
down the product of all the factors that are common to all the given
Junctions, each raised to the lowest power in which & occurs in any of
these functions.

This is a generalisation of § 3 above.

After what has been done it seems unnecessary to add de-
tailed proofs of these corollaries.

LEAST COMMON MULTIPLE.

§ 13.] Closely allied to the problem of finding the G.C.M. of
a set of integral functions is the problem of finding the infegral
Junction of least degree which is divisible by each of them. This
function is called their least common multiple (L.C.M.)

§ 14.] Asin the case of the G.C.M, the degree may, if we
please, be reckoned in terms of more variables than one; thus
the L.C.M. of the monomials 3z’y?, 62°y2", 8ayzu, the variables
being z, ¥, z, 4, i8 2’2"y, or any constant multiple thereof.

The general rule clearly is to write down all the variables, each
raised to the highest power in which it occurs in any of the mono-
mials.

§ 15.] Confining ourselves to the case of integral functions
of a single variable z, let us investigate what are the essential
factors of every common multiple of two given integral functions
% A and B. Let G be the G.C.M. of A and B (if they be prime
to each other we may put G =1); then

A =aG, B=IG,

where a and b are two integral functions which are prime to each
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other. Let M be any common multiple of A and B. Since M
is divisible by A we must have

M=PA,
where P is an integral function of z.
Therefore M = PaG.

Again, since M is divisible by B, that is, by G, therefore
M/bG, that is, PaG/bG, that is, Pa/b must be an integral function.
Now b is prime to a ; hence, by § 12, b must divide P, that is,
P = Qb, where Q is integral. Hence finally

M = QadG.

This is the general form of all common multiples of A and B.

Now a, b, G are given, and the part which is arbitrary is the
integral function Q. Hence we get the least common multiple
by making the degree of Q as small as possible, that is, by making
Q any constant, unity say. The L.C.M. of A and B is therefore
abQ, or (aG) (bG)/G, that is, AB/G. In other words, the L.C.M.
of two indegral functions i3 their product divided by their G.C.M.

§ 16.] The above reasoning also shows that every common
maultiple of two integral functions is a multiple of their least common
multiple.

The converse proposition, that every multiple of the L.C.M.
is a common multiple of the two functions, is of course obvious.

These principles enable us to find the L.C.M. of a set of any
number of integral functions A, B, C, D, &c. For, if we find
the L.C.M,, L, say, of A and B; then the L.C.M,, L, say, of L,
and C; then the L.C.M., L, say, of L, and D, and so on, until all
the functions are exhausted, it follows that the last L.C.M. thus
obtained is the L.C.M. of the set.

§ 17.] The process of finding the L.C.M. has neither the
theoretical nor the practical importance of that for finding
the G.C.M. In the few cases where the student has to solve the
problem he will probably be able to use the following more direct

. process, the foundation of which will be obvious after what has
been already said.

If a set of integral functions can all be exhibiled as powers of a
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set of integral factors A, B, C, &c., which are either all of the first

degree and all different, or else are all prime to each other, then the

L.C.M. of the set is the product of all these factors, each being raised

to the highest power in which it occurs in any of the given functions.
For example, let the functions be

(- 1)+ 232 +2+1),

(x—-2)%(z~8) (@*-2+1)3

(2= 1%z - 2%z - 8)Yz2+z+1)3,
then, by the above rule, the L.C. M. is

(2- 1)z~ 2)%(z — 3)4 (2 + 23+ 2+ 1)¥(&® — 2+ 1)%,

ExEercises X.

Find the G.C.M. of the following, or else show that they have no C.M.
(1) (2-1p, 25-1. ‘

(2) #5-1, zt-23+82%—22+1.

(3.) #-22+1, z+22+1.

(4.) 2°+1, 2+1.

(5.) B-a23-8x+12, 23+423-3z-18,

(6.) a*—T72®— 2223+ 1392+ 105, «*-82%- 1122+ 1162+ 70.

(7.) oA — 28623 +225, at+ 1423 — 48022 - 690z — 225.

(8.) PB—2A-823+12, 2P+4x'-823-18. .

(9.) -2 -2 +42 +2-2, 2P+2x4 27827 -Tx -2

(10.) 2P +628-8aA+1, 21347210 325-32%-2.

(11.) 1223 +1823+ 6z +1, 1623+162%+7x+1.

(12.) b3+ 3827 — 195z - 600, 43— 1523 — 38z + 65.

(13.) 16a* - 562 — 8823 +278x+105, 162 — 642 — 442>+ 2322 +70.

(14.) 7z +62* - 822 - 62 +1, 1lat+152%—229-5z+1.

(15.) z*+64a, (z+2a) -16at

(16.) 92t +4a3+1, 8a/23+a%+1.

(17.) 23+ 3pa®— (1+3p), p2®—3(1+3p)ke+(8+8p).

(18.) #* - 8(a — b} H{#{a? - Sab)x — 2a%(2a - 3b),

24— (3a+b)® + (522 + 2ab)a? - a¥(ba + 3b)e + 2a%(a + b).

(19.) namH - (n+1)m+1, 2 nz+(n-1).

(20.) Show that 23+ pa*+gx+1, «*+g¢a2*+px+]1, cannot have a common
measure, unless p+¢g+2=0.

(21.) Show that, if ax®*+bz+¢, ca®+dz+a have a common measure of the
first degree, then a4b+¢=0.

(22.) Find the value of a for which {2*-ax?+192-a—-4}/{2*- (a+1)?
+238z-a~-7} admits of being expressed as the quotient of two integral
functions of lower degree.

(23.) If ax*+8bx’+d, ba®+8dx+e have a common measure, then
(ae - 4bdP=27(ad? + He)®.

(24.) Az3+Bxy+Cy?, Ba®-2(A-C)ry- By? cannot have a common
measure unless the first be a square.
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(26.) a®+bd2+cx+d, da+cx?+bx+a will have a common measure of
the 2nd degree, if
abe — a®b - b’d +acd _ ac® — bed - a® + ad? _d(ac— bd)
T ac-bd T ab-cd a?-d?

ac—-bd -
and show that these conditions are equivalent to only one, nmely, ac-bd=
ad-dd.
(26.) Find two integral functions P and Q, such that )
P(2? - 32 +2)+ Q@ +x+1)=1.
(27.) Find two integral functions P and Q, such that
P23 - T3+ T2 -2)+ Q2+l +x-1)=2x-1.
Find the L.C.M. of the following :—
(28.) a®—-abt, a®+a®h, a®+ b8+ a%b¥a?+b2%).
(29.) 2-22-142+24, 2°-22%2-52+6, 22-4x+3.
(80.) 323 +22 - 8x+4, 33+7a3—4, B3+ 23-x-2, 823+2% -8z-2.
(81.) 28-122+16, at—42%—2*+20x—20, o+ 323 —112%~3z+10.
(82.) 28+ 2a2®+ a2t +b5a’z+af, 2®+a%-axd-ad.
(83.) If #®+azx+b, 2’+a’z+d have a common measure of the first
degree, then their L.C.M. is
.7:"+d;,7‘;,— x2 4+ i aa’' - (b v ) }x+bb’a' a
(84.) Show that the L.C.M. of two integral functions A and B can always
be expressed in the form PA +QB, where P and Q are integral functions.



CHAPTER VIL

On the Resolution of Integral Functions into
Factors.

§ 1.] Having seen how to determine whether any given
integral function is a factor in another or not, and how to deter-
mine the factor of highest degree which is common to two integral
functions, it is natural that we should put to ourselves the ques-
tion, How can any given integral functions be resolved into in-
tegral factors ?

TENTATIVE METHODS.

§ 2.] Confining ourselves at present to the case where
factors of the first degree, whose coefficients are rational integral
functions of the coefficients of the given function, are suspected
or known to exist, we may arrive at them in various ways.

For example, every known identity resulting from the distri-
bution of a product of such factors, when read backwards, gives
a factorisation.

Thus (z+y)(z—y) =2"—9, tells us that 2" - 3" may be re-
solved into the product of two factors, z+y and z—y. In a
similar way we learn that z + y + 2 is a factor in 2’ + " + 2 — 3zyz.
The student should again refer to the table of identities, given
on pp. 79-81, and study it from this point of view.

When factors of the first degree with rational integral
coefficients are known to exist, it is usually not difficult to find
them by a tentative process, because the number of possible
factors is limited by the nature of the case.
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Example 1.

Consider 2% - 12x + 32, and let us assume that it is resolvable into (z-a)
(x-0b).

Then we have

22 - 122+ 82=2- (@ + b} +ab,
and we have to find @ and b, so that
ab=+82, a+b=+12.

We remark, first, that @ and b must have the same sign, sinee their pro-
duct is positive ; and that that sign must be +, since their sam is positive.
Further, the different ways of resolving 82 into a product of integers are
1x382, 2x16, 4x8; and of these we must choose the one which gives
a+b = +12, namely, the last, that is, =4, 5=8.

So that

Example 2.

22— 122+ 82=(z~ 4) (z—8).
o8 - 222 — 232+ 60=(z - a) (z - b) (z - c) say.
Here —abe= +60.

Now the divisors of 60 are 1, 2, 8, 4, 5, 6, 10, 12, 15, 20, 30, 60 ; and we
have therefore to try £ 1, 2+ 2, #+8, &. The theorem of remainders
(chap. v. § 14) at once shows that z+1, x -1, 2+ 2, x - 2, are all inadmissible.
On the other hand, for -3 we have (see chap. v. § 13)

1-2-23+60
0+3+ 3-60

1+1-20 +0
that is, - 3 ¢s a factor ; and the other factor is 2+« — 20, which we resolve
by inspection, or, as in Example 1, into (z - 4) (z+5).
Hence 8 — 27 - 282+ 60= (2 - 8) (x — 4) (z+5).

Example 3.
82% — 19z + 16 =(ax + b) (cx +d).

Here ac=+6, bd = +15; and we have more cases to consider. We might
have any one of the 32 factors, zx1, x£8, z£5, 2£15, 2zt1, 2r+3, 22+5,
2x+15, &c. A glance at the middle coefficient, - 19, at once excludes a
large number of these, and we find, after a few trials,

622 - 192+ 15 = (2% - 8) (8 — 5).

§ 3.] In cases like those of last section, we can often detect
a factor by suitably grouping the terms of the given function.
For it follows, from the general theory of integral functions
already established, that if P can be arranged as the sum of a
series of groups in each of which Q is a factor, then Q is a factor
in P; and, if P can be arranged as the sum of a series of groups
in each of which Q is a factor, plus a group in which Q is not a
factor, then Q is not a factor in P.
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Example 1.

8 — 222 - 232+ 60
=¥ z-2)-23(x- 2)+14,

that is, z - 2 is not a factor.

o® - 222 — 232+ 60
=a%z - 8)+2?- 23z + 60
=Xz~ 8)+z(z - 3) - 20z + 60
=2z~ 8)+x(x - 8)- 20(z - 3),

that is, 2 - 3 is g factor.
Example 2.

72+ (1+pgky +qy°
=pz* +zy+pgzy + q*
=2pz+y)+qy(pr+y),

that is, px+y is a factor, the other being z+gy.
Example 3.

B+ (m+n+1)X2%a + (m+ n+mn)ea + mna®
=28+2%a+(m+ n) (2%a +2a?) + mn(za®+ a?)
=zXz+a)+(m+n)ea(z +a)+ mna*(x+ a)
= {2+ (m +n)ea + mna®} (z +a)
= {x(x+ ma) + na(zx+ma)} (z+a)
=(z+ma)(z+na) (z+a).

GENERAL SOLUTION FOR A QUADRATIC FUNCTION.

§ 4.] For tentative processes, such as we have been illustrat-
ing, no general rule can be given ; and skill in this matter is one
of those algebraical accomplishments which the student must
cultivate by practice. There is, however, one case of great im-
portance, namely, that of the integral function of the second degree
in one variable, for which a systematic solution can be given.

We remark, first of all, that every function of the form
Z’ + pz + q can -be made a complete square, as far as z is con-
cerned, by the addition of a constant. Let the constant in
question be a, s0 that we have

rpr+qg+a=(z+B)=2"+2Bz+0
B being by hypothesis another constant. Then we must have
p=2B, g+a=p.
The first of these equations gives 8 =p/2, the second a=pf"'-¢

=(p/2)*-¢ Thus our problem is solved by adding to 2’ + pz + ¢
the constant (p/2)* - ¢.
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The same result is obtained for the more general form,
az’ + bz + ¢, as follows :—

b c
ax’+bx+c=a(x’+—a:+ )
a @

Now, from the case just treated, we see that z°+ (b/a)z + c/a is
made a complete square in z by the addition of (b/2a)’ - c/a,
that is, (* - 4ac)/4a”. Hence az’+ bz + ¢ will be made a com-
plete square in z by the addition of a(b’ - 4ac)/4a’, that is,
(0" - 4ac)/4a. We have, in fact,
. 0’ - dac b\’
az’ +bx+c+ A _a(z+%) .

§ 5.] The process of last article at once suggests that
ax’ + bx + ¢ can always be put into the form a {(z +1)"-m'},
where I and m are constant.

In point of fact, we have

ax’+bx+c=a,{z’+éx+c_}
a a

el () - () +: )
{25

In other words, our problem is solved if we make ! =b/2a and
find m, so that m’ = (b° - 4ac)/4a’.
This being done, the identity X"~ A"=(X-A)(X+A) at
once gives us the factogisation of az” + bz + ¢ ; for we hg.ve
ar® +br +c=a {(z + 1)’ — m%
=a{(z+1) +m}{(x+1)-m}.
Example 1.
Consider 622 - 192+ 15 ; we have
. 19 15
8e?- 192+15=6{x’—-62:+—€}

_ 19 (19\* 19 15
=o{=-232+(33) - 15+

N (e |

=-__ 2= l_ ’- i i =
Here ! 13’ and m (12) ; 80 that our problem is solved if we takem—l—z-
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We get, therefore,

_ = _1y 1 {( _19 _l}
622 192:+15-6¥(ac - +12} 2-13)-13

_af22-3\(3z-5
_6(' 2 )( 3
=(22-3)(32-5);
the same result as we obtained above (in § 2, example 3), by a tentative
Pprocess.
Example 2.
Consider 28 - 52+ 6. We may regard this as (2*)?- 5(2%)+6, that is to
say, as an integral fanction of 3 of the second degree. We thus see that
28— 523+ 6=(2%)? - 5(2%) + 6,
=(2* - 8)(2*-2).

INTRODUCTION INTO ALGEBRA OF SURD AND
IMAGINARY NUMBERS.

§ 6.] The necessities of algebraic generality have already led
us to introduce essentially negative quantity. So far, algebraic
quantity consists of all conceivable multiples positive or negative
of 1. To give this scale of quantity order and coherence, we
introduce an extended definition of the words greater than and
less than, as follows :—a 4s said fo be greater or less than b, according
as a — b is positive or negative.

Example.

(+3)—(+2)= +1 therefore +3> +2; (-8)-(-5)= +2 therefore ~8> -5;
(+8)-(-5)=+8 therefore +3> ~5; (~7)—(-3)= ~ 4 therefore -7 < - 8.
Hence it appears that, according to the above definition, any
negative quantity, however great numerically, is less than any
positive quantity, however small numerically ; and that, in the
case of negative quantities, descending order of numerical magni-
tude is ascending order of algebraical magnitude.

We may therefore represent the whole ascending series of
algebraical quantity, so far as we have yet had occasion to con-
sider it, as follows :—

—0...-1...-3...0...+4%...+41...+00.
The most important part of the operations in last article
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is the finding of the quantity m, whose square shall be equal to
a given algebraical quantity. We say algebraical, for we must
contemplate the possibility of (5" 4ac)/4a’, say k& for shortness,
assuming any value between — o and + w. When m is such that
m*=k, then m is called the square root of k, and we write m = /k.
We are thus brought face to face with the problem of finding
the square root of any algebraical quantity ; and it behoves us
to look at this question somewhat closely, as it leads us to a new
extension of the field of algebraical operations, similar to that
which took place when we generalised addition and subtraction
by the introduction of negative quantity.

1st. Let us suppose that % is a positive number, and either
a square integer = + «’, say, or the square of a rational number
= + (x/A)’, say, where « and A are both integers, or, which is
the same thing [since (x/A)" = «"/A"], the quotient of two square
integers. Then our problem is solved if we take

m= +x 0rm= -«

in the one case, or

m= +«/A, orm= —«fA
in the other; :
for m'=(xk)’=x"=k,

o= (+3)'-6) -

which is the sole condition required.

It is interesting to notice that we thus obtain two solutions
of our problem ; and it will be afterwards shown that there are
no more. Either of these will do, so far as the problem of
factorisation in § 5 is concerned, for all that is there required is
any one value of the square roof.

More to the present purpose is it to remark that this is the
nly case in which m can be rational ; for if m be rational, that
8, = + x/A where x and A are integers, then m"= (x/A)", that is,

= (k/A)’, that is, £ must be the square of a rational number.
2nd. Let £ be positive, but nof the square of a rational
number ; then everything is as before, except that no exact
arithmetical expression can be found for m. We can, by the
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arithmetical process for finding the square root, find a rational
value of m, say v, such that m'=(%¢)’ shall differ from £ by
less than any assigned quantity, however small; but no such
rational expression can be absolutely exact. In this case m
is called a surd number. When £ is positive, and not a square
number, as in the present case, it is usual to use ~/k to denote
the mere (signless) arithmetical value of the square root, which
has an actual existence, although it is not capable of exact arith-
metical expression ; and to denote the two algebraical values of
m by+ &/k. Thus, if 2= + 2, we write m= + 4/2. In any
practical application we use some rational approximation of
sufficient accuracy; eg. if £ = + 2, and it is necessary to be
exact to the 1/10,000th, we hay use m = +1-4142.

A special chapter will be devoted to the discussion of surd
numbers ; all that it is necessary in the meantime to say further
concerning them is, that they, or the symbols representing them,
are of course to be subject to all the laws of ordinary algebra.

3rd. Let % be negative = — ¥/, say, where £’ is a mere arithmeti-
cal number. A new difficulty here arises ; for, since the square of
everyalgebraical quantity between — o and + o« (except 0, which,
of course, is not in question unless &' = 0) is positive, there exists
no quantity m in the range of algebraical quantity, as at present
constituted, which is such that m’= — ¥. If we are as hitherto
to maintain the generality of all algebraical operations, the only
resource is to widen the field of algebraical quantity still farther.
This is done by introducing an ideal, so called imaginary, unit
commonly denoted by the letter i,* whose definition is, that it
is such that

: =~ 1

It is, of course, at once obvious that i has no arithmetical
existence whatsoever, and does not admit of any arithmetical
expression, approximate or other. We form multiples and sub-
multiples of this unit, positive or negative, by combining it with
quantities of the ordinary algebraical, now for distinction called
real, series, viz.,

* Occasionally also by «.
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—o...-1...-%...0...+%...+1... +
We thus obtain a new series of purely imaginary quantity:—
—@i...—%...—$... 00 .. +H... 41, +0i¥

These new imaginary quantities must of course, like every other
quantity in the science, be subject to all the ordinary laws of
algebra when combined either with real quantities or with one
another. All that the student requires to know, so far at least
as operations with them are concerned, beyond the laws already
laid down, is the defining property of the new unit i, viz,, ©'= — 1.

When purely real and purely imaginary numbers are com-
bined by way of algebraical addition, forms arise like p + ¢i, where
p and g are real numbers positive or negative. Such forms are
called complez numbers ; and it will appear later that every alge-
braical function of a complex number can itself be reduced to
a complex number. In other words, it comes out in the end

" that the field of ordinary algebraical quantity is rendered com-
plete by this last extension.

The further consequences of the introduction of complex
numbers will be developed in a subsequent chapter. In the
meantime we have to show that these ideal numbers suffice for
our present purpose. That this is so is at once evident ; for, if
we denote by /X’ the square root of the arithmetical number
¥, so that +/k’ may be either rational or surd as heretofore, but
certainly real, then m = + i 4/k’ gives two solutions of the problem
in hand, since we have

m' = ( +4 \/ 4 ), .
=(zi ) x (£iE),
upper signs going together or lower together,
() x (VE)
(-1) = &)
=-FK.
§ 7.] We have now to examine the bearing of the discus-
sions of last paragraph on the problem of the factorisation of
az’ + bz +c.

* The symbol « is here used as an abbreviation for a real quantity as
great as we please.
VOL. L K

I
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It will prevent some confusion in the mind of the student if
we confine ourselves in the first place to the supposition that a, , ¢
denote positive or negative rational numbers. Then /= b/2a is in all
cases a real rational number, and we have the following cases :—

1st. If b*— 4ac is the positive square of a rational number,
then m has a real rational value, and

a’ +br+c=a(@+l+m)(z+1-m)
is the product of two linear factors whose coefficientsarereal rational
numbers. Example 1, § 5, will serve as an illustration of this case.
2nd. If &' - 4ac is positive, but not the square of a rational
number, then m is real, but not rational ; and the coefficients in
the factors are irrational.

Example 1.
2+2-1=22+2+1-2,

=(z+1)’_(‘\/2)’s
=(z+1+4/2)(x+1-4/2).

3rd. If b - 4ac is negative, then m is imaginary, and the
coefficients of the factors are complex numbers.

Example 2.
2+22+5=2+22+1+4,
=(z+1) - (2),
=(x+1+2i) (z+1-2i).
Example 3.

?+2+8=23+2+1+2,
=(z+1) - (in/2)3,
=(z+1+in/2) (2 +1-1in/2).
4th. There is another case, which forms the transition
between the cases where the co-efficients in the factors are real
and the case where they are imaginary.
If b° — 4ac=0, then m=0,
and we have az’ +bz+c=a(z +1)°;
in other words, ax’+ bz + ¢ is a complete square, as far as z is
concerned. The two factors are now z+! and z+!, that is,
both real, but identical.
We have, therefore, incidentally the important result that
a2’ + bz + ¢ 18 a complete square in z if V' — dac = 0.
Example 4.
82 -8z+1%
=8(z2-2.3¢+1),
=8(z- %)
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§ 8.] There is another point of view which, although usually
of less importance than that of last section, is sometimes taken.

Paying no attention to the values of a, b, ¢, but regarding
them merely as functions of certain other letters which they may
happen to contain, we may inquire under what circumstances the

coefficients of the factors will be algebraically rational functions of |

those letters. .

In order that this may be the case it is clearly necessary and
sufficient that b° - 4ac be a complete square in the letters in
question, = P* gay. :

T e @)

Craram Cram)
=alz+— +-— T+ ———),
2a 2a 2a

which is rational, since P is so.
If 5' - 4ac = — P, where P is rational in the present sense,

then \
az’+ba:+c=a{ (z+2%)’— (2%1') },

—-a(z+ i+-Ii> (x+—b—P')
B %" 2a" 2 %4’/

where the coefficients are rational, but not real.

Example 5.
P+ (ptgke+g

_sz'+P+qz+ }

(el () -(59 )
=pi( +P+9) (P2pq)}

—p( +p+q+p q)(“p;q p-q
A1) (o0

=(z+1)(pz+9);

a result which would, of course, be more easily obtained by the
tentative processes of §§ 2, 3.
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~ § 9] It should be observed that the factorisation for
a2’ + bz + ¢ leads at once to the factorisation of the homogeneous
function az® + bzy + ¢y’ of the second degree in two variables ; for

az’ + bay +
= 16)-)
_ay'{y %” b';afac {y %a &/b’_m ;
=“t“ %*/’%ﬂﬂ'y}{“(ﬁ-«/%‘—w -’/}-

By operating in a similar way any homogeneous function of
two variables may be factorised, provided a certain non-homo-
geneous function of one variable, having the same coefficients, can
be factorised.

Example 1. From
2 +22+8=(x+1+ in/2)2+1-1ir/2),
2+ 22y + 8= {e+ (1 +in/2} {z+ (1 - in/2)y}.

Example 2. From
28— 228 - 282+ 60 =(2 - 8) (z - 4) (x+5),

we deduce

we deduce

o8 — 2% — 28213 + 60y =(z - 8y) (x - 4y) (z + By).

§ 10.] By using the principle of substitution a great many
apparently complicated cases may be brought under the case of
the quadratic function, or under other equally simple forms.
The following are some examples :—

Example 1.
Aoy +yf =@+ - (@),
=2+ +ay) (2 + 92 - 2y),

={(=n) + e H(-3) + 2}

={(=+39) - (V3r) H(-3) - (V39 )

={arG+VEr Her G-V o (-5+VE) )
{a+(-5-VE)v}
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Here the student should observe that, if resolution into quadratic factors only
is required, it can be effected with real coefficients ; but, if the resolution be
carried to linear factors, complex coefficients have to be introduced.

Example 2, -
2+y=(z+y) (@ -zy+y?)

= {p+y} {ac+(-1+\/3 )y} {”+(-1‘V8 )”}

Example 8.
o+ yt= (22 + Y - 252
=(="+9°) - (V2zy)*
=@+ /20y +y") (2 - /2y +57).
Again
§+\/2'cy+y’=(z+ﬂy)’+-2-y’

(e )~y
—{z+ (l+t)y}{z+ a- ;)y}

The similar resolution for «3- 4/2xy+y® will be obtained by changing the
sign of 4/2. Hence finally
w4yt

{z+15(1+17y} {z+2a-iw} {z—v2(1+1)y} {z— (1—;73,}

Example 4.
2 - Y= (207 - ()
=(*-4%) (@ +9°)
= {@- PP+ %
=@ -y") (*+2Y +9) (@ +9°) (- 2 + ) _
=(z+y)(z-y) (z+) (- 1) (@ + 2% +y') (- 2 + o),
where the last two factors may be treated as in example 1.

Example 5.
26%% + 26%a% + 2a°0* — ad - YA~ 4
=4b%* - (a?- B - ¢?)?
(2bc+a? - b3 - ¢3) (2bc — a? + b2+ ¢%)
{a? - (b= e’} {(b+¢)* - a%}
=(a+b-c)(a-b+c)(b+c+a)(b+c—a).

* The student should observe that the decomposition a%+y?+zy=

(2 +y+~zy) (@+y - Vzy), which is often given by beginners when they are

asked to factorise z*+3%+zy, although it is a true algebraical identity, is no

lution of the problem of factorisation in the ordinary sense, inasmuch as

he two factors contain A/zy, and are therefore not mtxonal mtagml functions
f and v —-
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RESULTS OF THE APPLICATION OF REMAINDER THEOREM.

§ 11.] It may be well to call the student’s attention once
more to the use of the theorem of remainders in factorisation.
 For every value o of = that we can find which causes the integral

Junction f(z) to vanish we have a factor z — a of f(z).

It is needless, after what has been shown in chap. v., §§ 13-16,
to illustrate this point further.

It may, however, be useful, although at this stage we cannot
prove all that we are to assert, to state what the ultimate result
of the rule just given is as regards the factorisation of integral
functions of one variable. If f(z) be of the nth degree, its coeffi-
cients being any given numbers, real or imaginary, rational or
irrational, it is shown in the chapter on Complex Numbers
that there exist n values of z (called the roots of the equation
Jf(z)=0) for which f(z) vanishes. These values will in general
be all different, but two or more of them may be equal, and one
or all of them may be complex numbers.

If, however, the coefficients of f(z) be all real, then there
will be an even number of complex roots, and it will be possible
to arrange them in pairs of the form A + pi.

It is not said that algebraical expressions for these roots in
terms of the coefficients of f(z) can always be found ; but, if
these coefficients be numerically given, the values of the roots
can always be approximately calculated.

From this it follows that f(z) can in all cases be resolved into n
linear factors, the coefficients of which may or may not be all real.

If the coefficients of f(z) be all real, then it can be resolved into a
product of p linear and q quadratic factors, the coefficients in all of
which are real numbers which may in all cases be calculated approzi-
mately. We have, of course, p + 2q = n, and either p or q¢ may be zero.

The student will find, in §§ 1-10 above, illustrations of these
statements in particular cases; but he must observe that the
general problem of factorising an integral function of the nth
degree is coextensive with that of completely solving an equation
of the same degree. When the one problem is solved the other
is, and vice versa.
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FACTORISATION OF FUNCTIONS OF MORE THAN ONE VARIABLE.

§ 12.] When the number of variables exceeds unity the problem of
Jactorisation of an integral function (excepting special cases, such as
homogeneous functions of two variables) is not in gemeral soluble, at
least in ordinary algebra.

To establish this it is sufficient to show the insolubility of
the problem in a particular case.

Let us suppose that 2?+3°+1 is resolvable into a product of factors which
are integral in « and y, that is, that

2+ +1=(px+qy+7) @z+qy+7),

then P+12+1=pp'B+ o'+
+(pd +2'q)y + (o' +p'r)z
+(gr’ +q'7)y.
Since this is, by hypothesis, an identity, we have
=1 1) P9 +p'q=0 (4)
- qg'=1 (2 P +p'r=0] (5)
=1 (3) gr' +¢'r=0 (6).

First, we observe that, on account of the equations (1) (2) (3), none of the six
quantities p ¢ 7 p’ ¢’ 7’ can be zero; and further, p’=;, q =-1q—, 7’ =%;_ Hence,
as logical consequences of our hypothesis, we have from (4) (6) and (6)—

P, 9_ .
¢'p~° @
1;’ + ;f =0 (8)
r
—g + a =0 9);
and, from these again, if we multiply by pg, 7, and g7 respectively, we get
P+¢*=0 (10)
2+r=0 (11)
¢+r=0 ’ (12).
Now from (11) and (12) by subtraction we derive
PP-g=0 (13);
and from (10) and (13) by addition
202=0,

from this it follows that p=0, which is in contradiction with the equation (1).
Hence the resolution in this case is impossible.
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§ 13.] Nevertheless, it may happen in particular cases that
the resolution spoken of in last article is possible, even when the
function is not homogeneous. This is obvious from the truth
of the inverse statement that, if we multiply together two
integral functions, no matter of how many variables, the result
is integral.

One case is 8o important in the applications of algebra to
geometry, that we give an investigation of the necessary and
sufficient condition for the resolvability.

Consider the general function of x and y of the second degree, and write it

F= aa:’+9szy_tbg’+ng+2fy+c e

1st. Disregarding y in the meantime, and arranging this as a function
of z alone, we have, if a0,

F=a{z,+2(hy+y)z+by’+2fy+c}
a a
=a {*+2Pz+Q} , say (where P=h—y:_g, Q=”v’+2fy+c)

a
=a {(z+PP-(P1- Q)}
=az+P+VP-Q)(@+P - VF-Q)

Now, since P and Q do not contain «, and P is rational with respect to y,
the necessary and sufficient condition that the two factors be rational with
respect to y as well as x is that A/P%— Q shall be rational as regards y. This
will be if, and cannot be unless, P2 - Q be a complete square with respect to y.

Now,

2 _
proq(h ol -aly'+ 3y +o)
(B~ ab)y?+ 2(gh — af)y + ¢° - a0)
s
The condition that this be a complete square, is by § 7, above,
4 (gh - af '~ 4(h? - ab) (¢* - ac)=0 ;

that is, -a {abe+2fgh—af? - bg* - ch3} =0.

Now, since a0, this condition reduces to

e, T - abe+2fgh—a oh’— Coa 1

v It '{g-qfs‘{:l o =, lsﬁz( )' 2

2nd. If a=0, but b=0=0 we mgy arrive at tile samhe result by first arranging

F according to powers of %, and proceeding as before.
8rd. If a=0, =0, and A = 0, the present method fails altogether, but F

now reduces to
F=2hxy+ 292+ 2fy+¢,

and it is evident, since 2* and y2? do not occur, that if this be resolvable into

P27
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linear factors the result must be of the form 2i(xz+p)(y+¢). We must
therefore have 29=2hq,

2f =2hp,

c=2hpq.
Now the first two of these give fg = A%pg, that is, 2hpg = 2”
whence using the third,
ch=2fy,

or, since A3 0, 2fgh - ch3=0 (2);
but this is precisely what (1) reduces to when a=0, =0, so that in this
third case the condition is still the same.

Moreover, it is easy to see that when (2) is satisfied the resolution is
possible, being in fact

2ha.'y+"g.z+2fy+c—2h(z+h) (y+i) ).

which is obviously an identity if c=2fg/h.

4th. If =0, =0, A=0, F reduces to 2gz+2fy+¢. In this case we may
hold that F is resolvable, it being now in fact itself a linear factor. It is
interesting to observe that in this case also the condition (1) js satisfied.

Returning to the most general case, where a does not vanish, we observe
that, when the condition (1) is satisfied,

\/P,_—Q_‘\/h a.b( gh af

so that the required resolution becomes
_ r+VRi Zab g
F_“{“_—a_y*a a(h.’ ab)mb}
h-~Nh=ab g gh-af }

et Ny B

To the coefficients in the factors various forms may be given by using the
relation (1) ; but they will not be rational functions unless 42 - ab be a com-
plete square, and they will be imaginary unless A*—-ab is positive. The dis-
tinction between these cases is of fundamental importance in the analytical
theory of curves of the second degree.

The function abdc+ 2fgh — af 2 - bg® — ch?, whose vanishing is the condition
for the resolvability of the function of the second degree, is called the Dis-
criminant of that function.

It should be noticed that the resolvability of

F=a2'+ 2hzy + by + 29z + 2fy + ¢
carries with it the resolvability of the homogeneous function of
three variables having the same coefficients, viz.,

F = a2’ + by + ¢’ + 2fyz + 292z + 2hay,
as is at once seen by writing z/z y/z ,in place of z and y.
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Exeroisgs XI.

Factorise the following functions :—
(1.) (@ +B)3+(@+c)?—(c+dP—-(b+a2)> (2.) 4a%? - (a?+ 5% - )2
(3.) (@*-23-B2P-4(B2-2P.  (4.) (52°—11z+12)? - (422 - 15z +6)%.
(5.) {#~(B+yke+py}®-(x-v)Hz-a)  (6.) 2B~9S
(7.) 22— (8.) z%+6xy+9y2—4.  (9.) 2289+3z-2.
(10.) =%+ 62 - 16. (11.) 23-10z+18. (12.) «*+z - 30.
(18.) 2%+ 142+ 56. (14.) 2+ 4z+7. (15.) 222+ 52— 12.
(18.) 2*+2x/(p+9) +24. (17.) 2*—2bx/(b+c) + (b - ¢)/(b+c).
(18.) (P+pgf - (p+g)  (19.) ab(z® - 3?) +zy(a® - b?).
(20.) pglz+y)?-(p+q) (B -y +(z-y) (21.) 21623+ 71z - 105.
(22.) 28— 1423+1482z.  (23.) a®— 1822+ Bdx — 72,
(24.) 2*-8x24z-8. (25.) 23+ 3pa®+(3p® - ¢*)x +p(p* - %)
(26.) (p+g)*+(p-q)=* - (p+gke—(p-q)
(21.) &~ (14+p+p"+ (p+7* + PR - 7.
(28.) 24— (a+b)2 + (a® +ab®)x — a?b3.
(29.) 2®+2%a +2ta® — z%at — za® - af. '
(80.) (1+xP(1+2) - (1+y)X1+a?). (81.) ot - 2%+
(32.) Assuming 2+ y#= (2*+ pay + ¥?) (x® + gy + ¥*), determine p and q.
Factorise
(83.) HA+yA-2(x*+ %) +1.
(34.) Determine 7 and s in terms of p and ¢ in order that 22-a® may be a
factor in * + pad+ g2* +rz + 5.
Factorise
(85.) (@™tn)? — (2man) ~ (a"a™)? + (a™tn)2,
(36.) (2*+a?)¥(2* + a%? + af) - (23 + 2fat + ab).
(87.) zy* - 2xy - PP +2+2y-1. (88.) 22+ zxy+ 7z + Sy +3.
(39.) 222+ 2y - 8y* -2 —4y-1. (40.) 2y +7z+3y+21.
(41.) 2% 2y2 - 822+ Tyz+ 22+ 2y,
(42.) Determine A so that (z+6y—1)(6z+y — 1)+ X8z + 2y +1)(2x+3y+1)
may be resolvable into two linear factors.
(43.) Find an equation to determine X so that axz®+ by®+ 2hay + 29z + 2fy
+ ¢+ Azy, may be resolvable into two linear factors ; and find the value of A
when ¢=0.
(44.) Find the condition that (ax+By+v2) (a'z+B'y+7'7) - (a"z+8"y
+/"2)3 break up into two linear factors.
(45.) If (z+p) (z+29)+(x+2p) (x+q) be a complete square in z, then
9p"+2pq+9q’=0.
(46.) If (z+b) (2 +c)+(x+¢) (x+a)+(z+a) (x+b) be a complete square in
z, show that a=b=¢=0.
Factorise
(47.) a®+ b+ - Sabe. (48.) 2*+8axy +y° - ad.
(49.) (x—22B+ (2?18 +(1 -z, (50.)* Z(y?+2?) (2 +2%) (y - 2).

* Regarding the meaning of = in (50.), (51.), &c., see the footnote on p. 82.
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(61.) S(2®+93) (z—py).  (62.) e yP-23).  (53.) (Sz)*- 2

(54.) Simplify {Z(x*+1° - 2%) (2 +22 - 1?) } M(z L y L 2).

(55.) Show that Z(y™z*-ymz™) and Sa™(y™zP—yP2™) are each exactly
divisible by (y - 2)(z-z) (x-¥).

(56.) Show that na"t! — (n+ 1) +1 is exactly divisible by (z- 1)

(57.) Show that Zax%y+ 2 - x)® is exactly divisible by Za® - 2Zyz.

(58.) Show that (z+y+2)¥H1 — ¥l _ ¢+l 2t jg exactly divisible by
(y+2) z+2) (z+y).

(69.) (y—z)irtl4(z — z)+ 4 (- y)™t! is exactly divisible by (y —2) (2 - )
(2-). ’

(60.) If n be of the form 6m — 1, then (y —2)*+ (z - 2)* + (x — y)" is exactly
divisible by Zx? - Zzy ; and if » be of the form 6m + 1, the same function is
exactly divisible by (Za? - Zzy)3.

(61.) If & and b be not zero, it is impossible so to determine p and ¢ that
z+py + gz shall be a factor of 23+ ay®+ b2>.



CHAPTER VIIL

Rational Fractions.

§ 1.] By a rational algebraical fraction is meant simply the
quotient of any integral function by any other integral function.

Unless it is otherwise stated it is to be understood that we
are dealing with functions of a single variable z.

If in the rational fraction A/B the degree of the numerator
isjgreater than or equal to the degree of the denominator, the
fraction is called an tmproper fraction, if less, a proper fraction.

GENERAL PROPOSITIONS REGARDING PROPER AND
IMPROPER FRACTIONS.

§ 2.] Every improper fraction can be expressed as the sum of
an tntegral function and a proper fraction ; and conversely, the sum
of an integral function and a proper fraction may be exhibited as an
tmproper fraction.

For if in %’“ the degree m of A,, be greater than the

n

degree n of By, then, by the division-transformation (chap. v.),
we obtain

An_ R
IT"—Qm-n'*'B—“y

which proves the first part of our statement, since Q,,_, is
integral, and the degree of R is <.

Again, if P, be any integral function whatever, A,/B, a
proper fraction (that is, m <n), then
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P, + Am _Q'LA_'A,

B’l B’l
which is an improper fraction, since the degree of the numerator
viz., n +p, is > n.
Examples of these transformations have already been given
under division.
It is important to remark that, if two improper fractions be
equal, then the integrol parts and the properly fractional parts must be

equal separately.

For let %’::Q,,._,,+l%,
and ;;,;':f' =Quw-n+ B—l’i"
by the above transformation.

Then, if %;" = %’;’:',
we have Qmn-n+ B'E,, =Q' ' -n' + BE’;"
Hence Qmon— Q' -n' = B’gﬁiy"l.

Now, since the degrees of R’ and R are less than n’ and =
respectively, the degree of the numerator on the right-hand
side of this last equation is less than n+a'. Hence, unless
Qn-n—Qm' -n=0, we have an integral function equal to a
proper fraction, which is impossible (see chap. v.,§ 1) 'We must
therefore have
Qmn-n=Q'm' -, and consequently —R—=£’
-n m-n) B, B’,,’

N.B.—From this of course it follows that m —n=m' - n'.

As an example, consider the improper fraction (z3+ 25 + 8z + 4)/(#* + z+ 1),
and let us multiply both numerator and denominator by «*+22+1; we thus
obtain the fraction

(25 + 4ot + 823 + 1223 + 11z + 4) /(24 + 82 + 423 + 8+ 1),
which, by chap. iii., § 2, must be equal to the former fraction. Now transform
each of these by the long-division transformation, and we obtain respectively

z+3
SR
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2+522+7x+8
and A= Y S i

The integral parts of these are equal ; and the fractional parts are also equal
(see next section).

§ 3.] Since by chap. iii., § 2, we may divide both numerator
and denominator of a fraction by the same divisor, if the nu-
merator and denominator of a rational fraction have any common
factors, we can remove them. Hence every rational fraction can
be so0 simplified that its numerator and denominator are algebraically
prime to each other ; when thus simplified the fraction is said to be at
“its lowest terms.” :

The common factors, when they exist, may be determined by
inspection (e.g., by completely factorising both numerator and
denominator by any of the processes described in chap. vii.);
or, in the last resort, by the process for finding the G.C.M., which
will either give us the common factor required, or prove that
there is none.

Example 1.
2+ 523+ 72 +8

2 +322+ 4z + 8c+1
By either of the processes of chap. vi. the G.C.M. will be found to be z*+ 2+ 1.
Dividing both numerator and denominator by this factor, we get, for the

lowest terms of the given fraction,
z+3

Brz+1
The simplification might have been effected thus. Observing that both
numerator and denominator vanish when x = —1, we see that z+1 is a com-
mon factor. Removing this factor we get
' _ @zt
s+ + 2+ 1
Here numerator and denominator both vanish when 2 = - 1, hence there is the °
common factor z+1. Removing this we get
_z+3
Z+z+1
It is now obvious that numerator and denominator are prime to each

other ; for the only possible common factor is 2+ 8, and this does not divide
the denominator which does not vanish when z = - 8.

§ 4.] The student should note the following conclusion from
the above theory, partly on account of its practical usefulness,
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partly on account of its analogy with a similar proposition in
arithmetic.

If two rational fractions, P/Q, P'|Q, be equal, and P/Q be at its
lowest terms, then P' = AP, @ = AQ, where A is an tnlegral fumction
of x, which will reduce to a constant if P'/Q be also at its lowest
terms.

To prove this, we observe that

p_P
Q Q
'P
whence P = Q—,
Q

%1_) must be integral, that is, @'P must be divisible by Q ;
but P is prime to Q, therefore by chap. vi, § 12, Q' = AQ, where
A is an integral function of z. We now have

P’:A&Pi=

so that P’ = AP, Q = AQ.

If P'/Q be at its lowest terms, P’ and Q' can have no com-
mon factor; so that in this case A must be a constant, which
may of course happen to be unity.

that is,

2

DIRECT OPERATIONS WITH RATIONAL FRACTIONS.

§ 5.] The general principles of operation with fractions
have already been laid down; all that the student has now to
learn is the application of the knowledge of the properties of
integral functions to facilitate such operation in the case of
rational fractions. The most important of these applications is
the use of the G.C.M. and the L.C.M,, and of the dissection of
functions by factorisation, )

No general rules can be laid down for such transformations as we proceed
to exemplify in this article. But the following pieces of general advice will
be found useful.

Never make a step that you cannot justify by reference to the fundamental

laws of algebra. In other respects make the freest use of your judgment as
to the order and arrangement of stepes.
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Take the earliest opportunity of getting rid of redundant members of a
function, unless you see some direct reason to the cbntrary.

Cultivate the use of brackets as a means of keeping composite parts of a
fanction together, and do not expand such brackets until you see that some-
thing is likely to be gained thereby, inasmuch as it may turn out that the
whole bracket is a redundant member, in which case the labour of expanding
is thrown away, and merely increases the risk of error.

Take a good look at each part of a composite expression, and be guided in
your treatment by its construction, e.g., by the factors you can perceive it to
contain, by its degree, and so on.

Avoid the unthinking use of mere rules, such as that for long division,
that for finding the G.C.M., &c., a8 much as possible ; and use instead pro-
cesses of inspection, such as dissection into factors; and general principles,
such as the theorem of remainders. In other words, use the head rather than
the fingers. Baut, if you do use a rule involving mechanical calculation, be
patient, accurate, and systematically neat in the working. It is well known
to mathematical teachers that quite half the failures in algebraical exercises
arise from arithmetical inaccuracy and slovenly arrangement.

) Make every use you can of general ideas, such as homogeneity and sym-
metry, to shorten work, to foretell results without labour, and to control
results and avoid errors of the grosser kind.

Example 1. Express as a single fraction in its simplest form—

23+ 423+3z+4 2P+ 427 -3x-2
z2+1 x2-1

Transform each fraction by division, then

=F say.

x -z+2
F—(%+4)+ﬁi—(2’t+4)—?_—1—,
_zE-1)-(-z+2)(2*+1)

- z¢-1 ’

_ 2232932

T aA-1

_2at~-2'-1)

=g

Example 2. Express as a single fraction

1 1 1 1
P-80+32—1 P-D-z+] -20+2—1 o-208+22—2x+1
‘We have

F=

?-823+8z2-1=(z-1p;
P-2-2+1 =2+1-zz+1)=(z+1)(2?-2+1-2),
=(z+1)(z-1);
A2+ 22— 1=at-1- 2z ~1),
=(@*-1)(z- 1),
=(z-1p(z+1);
b - 234+ 22% - 2w+ 1=(22+ 1) - 2x(2? +1),
=(a+1)(z-1)%
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Whence
1

1 1 1
F_m—(.'c+1)(z—1)’-(z-—1)'(z+1)-(=’+1)(z-1)”
_@+])-(z-1) (#F@+1)+(z-1)(z+]1)
T@+)@-1F (z-1PE+1)@+1)’

_ 2 _ 22
TE+)(-1p (z-1P@+1)(@+1)
234123

(x+1)(a:"+1)(a: 17

(?—l)(m ®
_ 2
R e e

Example 3.
(:+: W zfy+z'+y')
(z+y)( s )(Hy)( )

2 -zy+y° 2+ay+y?

=(a i) ()
o fay@ey)
o +ahyP+

Example 4. Simplify—
F= 2 b-c 2 c-a 2 a-b
b=¢ (c a)(a- b) c-a (a b)(b-¢) *taot B-c)(c-a)
2c-a)(@a-b)+(b-cP+2a-b)(b-c)+(c— -aP+2b-c)(c-a)+(a— b)’
(b-c)(c-a)(a-b)

_{®-9+(c-a)+(a-d)}s
= E ?
_0_ 0
ke ~F-Ac-a)@-5)" "
it being of course supposed that the denominator does not vanish.

Example 5.
=By B @
(a=d)(a—c) (b-c)(b—a) (c—a)(c-d)
—a¥b-c)-tHc-a)-Ha-b)
= (b-c)(c-a)(a-D)

Now we observe that when b=c¢ the numerator of F becomes 0, hence b-¢
is a factor ; by symmetry c~a and a—b must also be factors. Hence the
numerator is divisible by (b-¢)(¢—a)(a—b). Since the degree of the numer-
ator is the 4th, the remaining factor, owing to the symmetry of the expression,
must be Pa+Pb+Pe. Comparing the coefficients of a® in

VOL. 1.

L
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—adb-c)-bc-a)-cXa-b)

and Pla+b+¢)(b-c)(c—a)(a-1D),
we see that P=+1.
Hence, finally, F=a+b+e
Example 6.
ad+pa+q B+pb+q cA4pc+q

=@-ba-0@-a) G-a)-0(=-H" c-a)c-b)(z-c)

_ I'.=(b—.-.)(a.’+pa+q)(z-b)(.zv:—¢:)+ &c. +&e. |
(d-¢)(c-a)(a-d)(z-u)(z-Db)(x-¢c) ’

=(b-c)(a*+pa+q){z®— (b+cke+be} + &e. + &e. |
&ec.

Now, collect the coefficients of 2%, x, and the absolute term in the numerator,
observing that the two &c.’s stand for the result of exchanging @ and  and a
and ¢ respectively in the first term. We have in the coefficient of «* a part
independent of p and g, viz.,

aXb-c)+¥c-a)+cMa-b)= ~-(b~c)(c-a)(a-b) 1)
The parts containing p and g respectively are
{a(b-c)+¥c-a)+c(a-b)} p=0
and {B=c)+(c-a)+(a-b)} g=0.
The coefficient of =2 therefore reduces to (1).
Next, in the coefficient of z we have the three parts,
- {a¥¥® - ) + 0¥ - a?) + Ha? - BB)} =0,
- {a(BP -+ K- a®) +da?- )} p
=-(b-c)(c-a)(a-bdy 2),
and - {(B-)+(-a?)+(a*- 1)} g=0.
Finally, in the absolute term,
abe {a(b - c)+bc—a)+ca-b)}=0,
abe {(b-c)+(c-a)+(a-b)} p=0,
{be(b - )+ ca(c - a)+abla-b)} ¢
=-(b-c)(c-a)(a-bd)y (3).
Hence, removing the common factor (b-c) (c—a)(a - b), which now appears
both in numerator and denominator, and changing the sign on both sides,
we have
F= - Ztpetq |
(z-a)(z-d)(x~c)

The student should observe here the constant usé of the identities on pp.
79-81, and the abbreviation of the work by two-thirds, effected by taking ad-
vantage of the principle of symmetry. In actual practice the greater part of
the reasoning above written would of course be conducted mentally.
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INVERSE METHOD OF PARTIAL FRACTIONS.

§ 6.] Since we have seen that a sum of rational fractions can
always be exhibited as a single rational fraction, it is naturally
suggested to inquire how far we can decompose a given rational
fraction into others (usually called “partial fractions”) having
denominators of lower degrees.

Since we can always, by ordinary division, represent (and that
in one way only) an improper fraction|as the sum of an integral
function and a proper fraction, we need only consider the latter
kind of fraction.

The fundamental theorem on which the operation of dissec-
tion into “ partial fractions” depends is the following :—

If A/PQ be a rational proper fraction whose denominator contains
two tndegral factors, P and Q, which are algebraically prime to each
other, then we can always decompose A[PQ indo the sum of two proper
Sractions, P'/P + @ /Q.

Proof.—Since P and Q are prime to each other, we can (see
chap. vi,, § 11) always find two integral functions, L and M,
such that

LP+MQ=1 (1).
Multiply this identity by A/PQ, and we obtain
A AL AM
P——Q = —Q— + —P— (2).

In general, of course, the degrees of AL and AM will be higher
than those of Q and P respectively. If this be so, transform
AL/Q and AM/P by division into S + Q’/Q and T + P’/P, so that
S, T, Q, and P’ are integral, and the degrees of P’ and Q' less
than those of P and Q respectively. We now have
1%=8+T+£—,+%' (8),

where S + T is integral, and §+g— a proper fraction. But the

left-hand side of (3) is a proper fraction. Hence S+ T must
vanish identically, and the result of our operations will be simply

Py
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A P Q
PQ"PTQ
which is the transformation required.
To give the student a better hold of the above reasoning, we
work out a particular case.

Consider the fraction

(4),

+1
F_(a:'+8w"+9z+l)(a:“+z+l)
Here A=xt+1, P=22+822+22+1, Q=23 +2+1.
Carrying out the process for finding the G.C.M. of P and Q, we have
1+1+1)148+2+1(1+2
2+1+1
~1-11+1+1(-1+0
0+1
+1 .
whence, denoting the remainders by R, and R,,
P=(z+2)Q+R, Q= -2R,+R,
From these successively we get
R,=P-(z+2)Q,
=R,=Q+«R,,
=Q+aP-x(z+2)Q,
1 =(-22-22+1)Q+zP. ).
In this case, therefore,
=-o'-22+1, L=2.
Multiplying now by A/PQ on both sides of (1), we obtain (putting in the
actual values of P and Q in the present case)
(z‘+1)( -22-2+1) (ef+1)x
2+83+2+1 d+z+l
_ -2t -2 - 2241 P4z
B +825+ 22 +1 tErer1’
or, carrying out the two divisions,
=-2+a2- 1+—x’+—2+z' 14— -1
2+ 32+ 22+ 1 Brz+l
or, seeing that the integral part vanishes, as it ought to do,
F= 2+2 + -1
TB+8%+2+1 L+ +1’
which is the required decomposition of F into partial fractions.

§ 7.] Having shown a priori the possibility of decomposition
into partial fractions, we have now to examine the special cases
that occur, and to indicate briefer methods of obtaining results
which we know must exist.
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We have already stated that it may be shown that every
integral function B may be resolved into prime factors with real
coefficients, which belong to one or other of the types (z - a)",
@+ Bz+y).

1st. Take the case where there is a single, not repeated,
factor, z—a. Then the fraction F = A/B may be written

' A
F=e-an
say, where z — a and Q are prime to each other. Hence, by our
general theorem, we may write .
P Q
“z-<"Q )
each number being a proper fraction.

In this case the degree of P’ must be zero, that is, P’ is a
constant.

It may be determined by methods similar to those used in
chap. v, § 21. See below, example 1.

P’ determined, we go on to decompose the proper fraction
Q'/Q, by considering the other factors in its denominator.

2nd. Suppose there is a repeated factor (z-—a)"; say B=
(z - a)"Q, where Q does not contain the factor z—a. We may,
by the general principle, write

PI Ql
F= (————x —gT Y
P’ is now an integral function, whose degree is less than r;
hence, by chap. v., § 21, we may put it into the form
P=ag+a(z=a)+...+a_(z—a)},
and therefore write

=% & e O @
F_(x_a)r+(z_a)r—1+ +:c a+Q (2)v
where a,, @, . . . a,., are constants to be determined. See

below, example 2.
3rd. Let there be a factor (z* + Bz + y)", 8o that
B=(2"+ Bz + y)Q,
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Q being prime to 2* + Bz +y. Now, we have
PI QI
F=+—F—<+A.
@+Bz+7) Q
P’ is in this case an integral function of degree 2s—1 at most,
We may therefore write, see chap. v., § 21,
P’ = (a, + bz) + (@, + bz) (" + Bz + 7)

+ (@ + ) (@ + Pz + )
+ (a'l—l + b.-,Z) (:U' + Bx + 7)‘-1.
We thus have
a, + b a, + b ‘L'_l_”l-l_"’ (3)’

P @ By T @ Bary T TP By T Q
where the 2s constants a,, b, &c., have to be determined by any

appropriate methods. See examples 3 and 4.
In the particular case where s =1, we have, of course, merely

%Wtbr  Q
TPty Q ().

By operating successively in the way indicated we can decompose
every rational fraction into a sum of partial fractions, each of which
belongs to one or other of the two types p.[(z— o), (a, + bz)/(2* + Br
+y)*, where a, B, y, Pr, Gy, by are all real constants, and r and s positive
integers.

It is important to remark that each such partial fraction
has a separate and independent existence, and that if necessary
or convenient the constant or constants belonging to it can be
determined quite independently of the others.

§ 8]. We now proceed to exemplify the practical carrying
out of the above theoretical process; and we recommend the
student to study carefully the examples given, as they afford a
capital illustration of the superior power of general principles as
contrasted with “rule of thumb” in Algebra.

Example 1. It is required to determine the partial fraction, corresponding
to -1, in the decomposition of
(42 - 1623+ 1722 - 82+ 7)[(z - 1) (2 - 2)%(z2 +1).
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‘We have
F_w-lez'+l7x’—8z+7_l_+ Q . )
T (@-1)(x-20(xi+1)  z-1 (z-2)%23+1) !
and we have to find the constant p.
From identity (1), multiplying both sides by (z-1)(z- 2)%=z2+1), we
deduce the identity, .
47t - 1623+ 1722 - 82+ 7T=p(z - 2)X2*+1)+Q'(x- 1) (2).
Now (2) being true for all values of z, must hold when z=1; in this case it
becomes

4=2p, that is, p=2.
Hence the required partial fraction is 2/(z - 1).

If it be required to determine also the integral -function Q’, this can be
done at once by putting p=2 in (2), and subtracting 2 (x - 2)}z3+1) from
both sides. We thus obtain

24 - 83+ 72 -1=Q'(z-1) . (3).

This being an identity, the left-hand side must be divisible by x~1.* It is
so in point of fact ; and, after carrying out the division, we get

' 23 - 622 +z+1=Q (4),
which determines Q'.

The student may verify for practice that we do actually have
424 -1623+172* -8z +7_ 2 +2z’-6x‘+x+1
@-1)(z-2%22+1) =z-1' (z-2)%z3+1)

Example 2. Taking the same fraction as in example 1, to determine the
group of partial fractions corresponding to (x - 2)%
‘We have now .
428 - 1622+ 172° - 82+ 7 ay Q

20}
E-DE-2P@+D) —@-ortzstE-n@sn
whence
A - 162+ 1722 - 8z + T=ap(z - 1) (23 + 1)+ a(x - 2) (z - 1) 22+ 1)
+Q(z-20 (@).

In identity (2) put =2, and we get
—5:5“0, that is, Qy= -1

Putting now ay= -1 in (2), subtracting (-1)(z-1)(2*+1) from both sides
and dividing both sides by 2 - 2, we have

4B -7+ 2 - 8=ay(z~-1) (z*+1)+Q'(z-2) (8).
Put =2 in this last identity, and there results
+5=>5a,, that is, a,= +1.
The group of partial fractions required is therefore
~1f(z-27+1/(z-2).
If required, Q' may be determined as in example 1 by means of (3).

* If it is not then there has been a mistake in the working.
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Example 3. Lastly, let us determine the partial fraction corresponding to
2%+1 in the above fraction.
‘We must now write
4z‘-16a.‘+17z’—8::+7_¢z+b+ Q' )
@-D@-20@+1) @+1i (@-1)(x-2p g
1°, Whence, multiplying by (x - 1) (z-2)?
4x‘-16x'+17x’—8x+7=(ax+b)(z—1)(x—2)’+Q, @);
2+1 41 ’
whence
12~ 162+18+ 20— (0 +3) (x-5+;f;+—})+q',
(w2 +b)(@-b)+ EH LAY o

(7b+a)a::§b - 7a)+ Q o).

=(az+b)(z-5)+7a+

Now the proper fractions on the two sides of (8) must be equal—that is, we
must have the identity
(7b+aYe+(b-7a)=8z-8,
therefore 7%+a=8,b-7a= -6,
Multiplying these two equations by 7 and by 1 and adding, we get
50b="50, that is, 5=1.
Either of them then gives =1, hence the required partial fraction is
(z+1)/(z*+1).
2°, Another method for obtaining this result is as follows :—Remembering
that 23+ 1=(z+1%) (2~ 1) (sea chap. vii.), we see that z?+1 vanishes when
z=1
Now we have
428 - 1623+ 172 - 82+ 7 =(az+d) (z - 1) (z - 23+ Q'(x*+1)
=(az+b)(2* - 623+ 82~ 4)+Q(2*+1)  (4).
Put in this identity =1, and observe that
=3 xP3=(-1)x(-1)=+1,
P=Bxi=(-1)xt=—-1;

and we have : 8¢-8=(as+d)(7¢+1),
=(7b+aY+(b-"Ta);
whence (7b+a-8Yi=~b+7a-86,

an equality which is impossible * unless both sides are zero, hence
7b+a-8=0, -b+7a-6=0,
from which a and b may be determined as before.
8°. Another method of finding @ and b might be used in the present case.

* For no real multiple differing from zero of the imaginary unit can be a
real quantity. See above, chap. vii.,, § 6. The student should recur to this
case again after reading the chapter on Complex Numbers.
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We suppose that the partial fractions corresponding to all the factors
except 2+ 1 have already been determined. We can then write
2 1 1 ax+d
PSS W ) PR A
From this we obtain the identity
4ot - 1628+ 172 - 82+ 7
=2z - 22 +1) - (2~ 1) (@ +1)+(z~1) (z-2) (2*+1)
+(az+b)(z-1)(z-2);

(5).

whence
-4+ 8+ dz - 4
=(az+5) (z-1) (@~ 2P;
and, dividing by (z-1) (z-2)?,
z+1=az+b.
This being of course an identity, we must have
a=1, b=1
Another process for finding the constants in all the partial fractions depends
on the method of equating coefficients (see chap. v., § 16), and leads to their
determination by the solution of an equal number of simultaneous equations
of the first degree.
The following simple case will sufficiently illustrate this method :—
Example 4.
To decompose (82 - 4)/(x - 1) (z - 2) into partial fractions.
‘We have
32-4 a b
(z-1)(z- 2)“2Ti+z—_§'
therefore ) 8z - d=a(z-2)+H=z-1),
=(a+dke—(2a+D).
Hence, since this last equation is an identity, we have
a+b=8, 2a+b=4.
Hence, solving these equations for a and & (see chapter on Linear Equations),
we find a=1, b=2.
Example 5. We give one more instructive example. To decompose
F=__ %Ttpztq
, @=a)(@-b)(@-o
we may write
_@4petg A B C
(z-a)(z-b)(x~¢c) z-a z-b z-c
where A, B, C are constants.
Now
Z+pr+g=A-b)(z-c)+B(z-c)(z-a)+Cz~a)(z-b) (2).
Herein put z=a, and there results
a*+pa+g=A(a-b)(a-c);
= @+patq
“(@-d)(a-c)

@

whence



154 EXERCISES. - [cHAP.

¥ +pb+
By symmetry = B=a)B-0) a‘;’ 0 _qc),
= Stpe+q
T(c-a)(c-b)
We have therefore
2+pr+q
(z-a)(z-b)(z-¢)
a’+pa+q Y+pbtgq SA+pct+q ),

“@-D@-c@-a) G-0G-a)@-5" (c-a)c-d) -0
an identity already established above, § 5, example 6. It may strike the
student a8 noteworthy that it is more easily established by the inverse than
by the direct process. The method of partial fractions is in point of fact a
fruitful source of complicated algebraical identities.

ExErorses XII.

Express the following as rational fractions at their lowest terms.
(1.) (#®+22% -2+ 6)/(z* - 22+ 4 - 4).
(2.) (928 + 532 — 9z — 18)/(42? + 44z + 120).
HA+20-22-1 2428 -82%-b6z-2
@) rrr s -te-2 ArP-Z-1
(4.) (323 - 23—z -1)/(8x*+ 523+ 8z +1) + (23 + 327 + 5z + 8)/(z* + 2+ z - 3).
(5.) (2*- 22 +1)/(x*~ 2x +1) + (a8 + 223 +1)/(z+ 22 +1).
(6.) (62 + 180z - 9a%x — 10a%)/(92° + 1222 — 11a% — 10a8).
(7.) A -a?)/{(1+ax)’-(a+=z)*}.
8.) {(w+z+2)(w+2)-yly+2)}/{(w+z+2)(w+2) - Yz +y)}.
1 1 1 1

®) (1-z)(1-zﬂ)’/{(l-z)f(l-z)(l-zi)f(l-zf)"}‘
(10.) {(al+bm)*+(am~bl)*}/{(ap+bg)*+(ag - bp)}.
(L) {p3+(k-s)x+7}?— {pad+ (k+s)x+r)?

Y Apt+ e +rii- {p¥+ (k- tz+r}?

z-y 1 1
12) oro oty Tw 3) =@tz tastr @b

(14.) 1/(a-2b-1/(a - 2b - 1/(a - 2b))).
(15.) 1/(6z+6)—1/(2 - 2) +4/(3 - 3z=')

8- y' ac y z+y 1
(16) _____ &{z’+y’ m+u!

1 -z\ / 1-2

(17, (1+x )/ 1—+'z‘T)'
6x 80:c'+4x 4z
(18) 3,75~ 9a44 tszi2
1 2 2

(x+1P (+1) (@+1)

(19.) +
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2. 1 5 1 1 %+1
20) Gie-D e ) T iEFIR 1P S@rz+1)
1 1 2 2

(21) @rE+2r (@+optz+l z+o

(22.) (a+b)/(@+a) +(a - b)/(x - a) - 2a(z +b)/(@+a?).

(28.) {(@-y)(x+y)} +{(@-/(@+y}+ {@-y)/(+}>
28 -3x+2 z’+2z+1

(24) (z’+2r’+22+1) (:r.‘ bz + 4

@) (1) aw',,f“‘iiflz

z+y

)
(26.) 0+ sy mw—q'

1 1 1 1
atp 72 ¢l )
il e '{(2‘“3 :+§)(”’+;= 2)}
1

yj
1
(23)%(“ o) (z—a) 2a(a+c)(z+a) (c‘ a’)(z+c)

20 180 = 420 280 180 420 280
(29){1+x+7i_m z__+3_5:+4} {l—é_i z-2 z-8 z—4 4}'
(80.) {(xy - 10+ (z+y - 2)(z+y - 22y)} [ {(zy + 1) - (+y)*}.

(8L) 1+ +22-3y=)/(1 +y +2).
(82.) {a(@+2b) +b(b+2) +clc+2a) } [ {a? - b2 — ¢® - 2be}.

-(33) (@+0P+(b+c) - (a+2b+c)p
: (a+d)(d+c)(a+2b+c)
28+ al a*x?
BL) FraF-a) iR - T A = =@y
ad+(2ac — b%)ad + ¢t + (ac— b%)a? — bea®

(35.) B 2abe + (Zac T P + 26 + A ¢ a‘+(ac PRt b
2+ +zt+y - :cy+1+x’+y’+x y+ay+1
z-y-1 z+y-1
(37)@! 102%y? + by + (baty — 10023 +9°)
(® - 8zy?)? + (8% - ¥°)?
(b+c)?+ 2B~ %) +(b - c)’
(38.) 2
- 2""”'“‘){(b Frpcat (b+c)'-'
(89.) ZP*+c2-ad)f(a-b)(a—c).  (40.) (Zx)(Za%)fzyz - Z(y +2)/x.
(41.) Z(b+c)/(c-a)(a-b). (42.) Zbe(a+2)/(a-b)(a-c).
(48.) Z(B*+be+3)/(a-b)(a ).
(44 {TI(1 - 2%+ TI(z - y2)} /(1 Fog).
(45.) {Z(b+c)*-8I(b+c)}/{Zad - abc}.
1-2 z-y y-1 (1-2)(z-y)(y-1)

) Tz tarytyri T AT i)y 1)

(36.)
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(y-2P+(z-2)+(x-y)? 1 1
) e gt ma )
(8. b-c c a a-b (b-c)(c- a)(a-1)
)z -a a': b z-¢ (z-a)(z-b)(z-c)
(49.) Z(a+p)(a+g)f(a-b)(@a-c)(a+z)
(50.) Za3/(a-b)(a-c)(z-a). (51.) Za?®/(a?- %) (a?-c*)(x*+al).
gg—; Z(y* +2 - ) fydz - y) (x - 2).
a(b—;:)'+b(c—a)'+c(a—b)’+(b’—c’)(b+c)+(c’—a’)(cia)+(a’-b’)(ajb)
a¥(b—c)+bHc—a)+cXa-b) :
(54.) {(@+y)+(y+2P} {(z+ 2+ @ +w0)}
V@ era)+y+)Eru) P+ {ry) Erw) - (Gra)E+a)]
" Prove the following identities :—
(56.) Za¥/(a - b)(a - c)=Za.
(66.) du?~v)=au(l —uv), c(v*—u)=dv(1-uv),
where u=(ab-c?)/(bc—ad), v=(ab-c%/(ca-"b%).
(67.) 2(a-+a)(a-+6) (a+y)/a(a~b)(a-c)(a-d)= - afy/abod.
(b’ AP+ (- a?)P +(a? - B2
8.) G—cp+c-apr(a—tp LG+
(69.) (ab - ed) (a® - b*+ ¢* ~ d?) + (ac — bd) (a® + b2 - ¢* - d7)
) (@ B A @) (@ B - - d) + 4(ab —od) (ac - bd)
(b+c)(a+d)
. S@roP+@ray
ab(c-b)+ b (a—c)+ (b - a)
) T -0 6-a) Zat - Zb' - abe.
(81.) {Z(y-2}/{Z(y-2)*} - 4l(y - 2= { Z=* - Zyz}>.
Decompose the following into sums of partial fractions.

(62.) @*-1)/(z-2)(z-3). (68.) #(z~1)(x~2)(z~8).
(64.) 80a2/(z*—1)(=*- 4). (65.) (2*+4)(z+ 1)}z - 2)(z+83).
(66.) (23— 2)/(a® - 1). (67.) (B+z+1)/(z+1)(@+1).

(68.) (2x-8)/(x-1)(z?+1)3 (69.) 1/(z-a)(z-b)(2?-2px+9), p*<q.
(70.) Q+z+20)/(1-z-z4+25). (71.) 18/(x*+42+8).
(72.) (@+8)/(x*-1). (78.) (2 +o7 -2t - 23).

(74.) Express (82+z+1)/(z*-1) as the sum of two rational fractions
whose denominators are -1 and 2¢+1.

(75.) Expand 1/(8 -~ z)(2+=z) in a series of ascending powers of z, using
peartial fractions and continued division.

(76.) Expand in like manner 1/(1 - z)}(1 +23).

(77.) Show that
f&+c+d)/(b—a)(c-a)(d-a)(z—a):(z—a—b—c-d)/(z—a)(z—b)(z-c)(z—d).



CHAPTER IX.
Further Application to the Theory of Numbers.

ON THE VARIOUS WAYS OF REPRESENTING INTEGRAL AND
FRACTIONAL NUMBERS.

§ 1.] The following general theorem lies at the root of the
theory of the representation of numbers by means of a systematic
scale of notation :—

Let 7,y 74y Ty o o o Ty Tnyy - . . denote a series of numbers*
restricted in no way, except that there are as many in the series as we
please, then any indeger N may be expressed in the finite form—

N=p,+pr, + s+ rirs+ « o o +Pprly o . . Ty,
where Py < T\, Pr<Tey Po<Tsy + « - Pn<Tntre Whenr,ryrs. .. are
given, this can be done in one way only. ‘

For, divide N by r,, the quotient being N, and the remainder
P, ; divide N, by r,, the quotient being N, and the remainder p,,
and 8o on until the last quotient, say p,, is less than the next
number in the series which falls to be taken as divisor. Then,
of course, the process stops. We now have

N =p,+ N, (Po<my) n,
Ni=p,+ Ny (p<1) (2),
No=p,+ Niry  (Pa<?s) : (3),
Na-, =P;.-1 + Pun(Pn-1<7n) (n).

* In this chapter, unlees the contrary is distinctly implied, every letter
used denotes a positive integral number.



158 FACTORIAL SERIES FOR AN INTEGER. [oBAP.

From (1), using (2), we get
N = p, + r,(p, + Nyro),
= Po + pity + 17N,
Thence, using (3),
N =, + pi1, + D75 + 717475 N,
and so on.
Thus we obtain finally
N=p,+p1 + DT+ DTy +. o . +PliTe . . . Iy (A).
Again, the resolution is possible in one way only. For suppose
we also had
N=p,/ +p/1+p/rirs + prirsrs+ . . . +p/rirs .. .1y (B),
then, equating (A) and (B), and dividing both sides by r,, we
should have

*:1'1 + (D P+ Plals+ o . APl .. L Ty)
= ]:_" + (D) P TP+ P Ty L Ty) (C).
1

But the two brackets on the right and left of (C) contain integers, -
and p,/r, and p,’/r, are, by hypothesis, each proper fractions.
Hence we must have p,/r, = p,/r, ; that is,
Po= Po',
and
DDyt Palalat o o o FPalds . . L Ty
=P+ P T P Tt o o . AP T . Ty (D).
Proceeding now with (D) as we did before with (C), we shall
prove p,=p,'; and so on. In other words, the two expressions
(A) and (B) are identical.
Example.—Let N =719, and let the numbers 7,, 75, 75 . . . be the natural
series 2, 8, 4, 5. . . . Carrying out the divisions indicated above, we have
2)719
8)359 . .
Hs. . .

5)29. . .
5...

™ O O e
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Hence 2=1, ;=2 py=3, p;y=4, p=5;
and we have 719=1+2x2+3x2.83+4x2.3.4+5x2.3.4.5.

§ 2.] There is a corresponding proposition for resolving a
fraction, viz, 7, 1, . . . 75, &c., being as before,
Any proper fraction A|B can be expressed in the form

é=1'9+&+—"—’-’— oo+ —p"—-—+F,
B r rry rrg, e ... Ty
where p,<ty, Pa<Ty . . . Pn<¥n,; and F is either zero or can be made .
as small as we please by taking a sufficient number of the integers
TyTo « o« «Tne When 1,7, . . . 7q . . . are given, this resolution
can be effected in one way only.
The reader will have no difficulty in deducing this proposition
from that of last paragraph. It may also be proved thus:—

B Br r o

Now we may put Ar,/B into the form p, + ¢,/B where ¢,<B.
We then have

é _nt ¢.,/B
B~ r
where p, <7,, since, by hypothesis, A<B.
Hence

A_p 1 g
§_7:|+7T;.]—3 1).

Treating the proper fraction ¢,/B in the same way as we treated
A/B, we have

1
Bzl
where Pa<Tsy §3<B (2).
Similarly,
G _t, 1 6
B r, o B

where Ps<Ts ¢s<B, &c. (3),
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And, finally,
Ioy P, 1 n
B 7, . B’
where Pn<Tn, gn<B (n).
Now, using equations (1), (2) .. . (n) in turn, we deduce
successively,

A_Pn P, O
B B’

Y I . BN U
T, T T TrB

0 N S U
T, Ty T4 TeeeTh
I Al
... 7TaB (A)
where p,<7,, ,<7q . . . Pp<Tn, ¢n<B.

It appears therefore that F=g,/r/r, . . . 7, B, which can
clearly be made as small as we please by sufficiently increasing
the number of factors in its denominator. This of course in-
volves a corresponding increase in the number of the terms of
the preceding series.

It may happen, of course, that g, vanishes, and then F=0.
We leave it as an exercise for the student to prove that this case
occurs when 7,1, . . . r, is a multiple of B, and that if A/B be
at its lowest terms it cannot occur otherwise. He ought also to
find little difficulty in proving that the resolution is unique
whenr, 7, . . . r,, . . . are given.

Example 1. Let A/B=444/576, and let the numbers #,, 7, &c., be 2, 4,
8, 8, &c. )

We find 444 l 2
576 2 2.4 2 B
Example 2. A/B=11/18, 7, 7y, &c., being 2, 8, 4, 5,6 . . . &e.
3
11 1+ 2 2, 0 + 1 + 3

137272.372.3.4 2345 2.8.4.5.6 2.3.4.5.6x13
Since 7, 7y &c., are arbitrary, we may so choose them that the numer-
ators p,, pg, &c., shall each be unity. We thus have a process for decompos-
ing any fraction into a sum of others with unit numerators.
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Example 3.
1

2x

18)22(1
13

9
2%

18)18(1
18

5
3 x
13)15(1
13

2
7%

18)14(1
13

1
13 x
13)13(1
13

0

‘Whence

m1, 1 1 1 1
3=2%z.2%2.2.3v2.2.5.712.2.8.7. 18

Here we have chosen at each step the least multiplier possible. When
this is done, it may be shown that the successive remainders diminish down
to zero, the successive multipliers increase, amd the process may be brought
to an end. If this restriction on the multiplier be not attended to, the reso-
lution may be varied in most cases to a considerable extent. Since, however,
we always divide by the same divisor B, there are only B possible remainders,
viz,, 0,1, 2, . . . B—1, hence after B-1 operations at most the remainder
maust recur if the operation has not terminated by the occurrence of a zero.

Example 4. Thus we have

2—1 —1_’
3=2%33
11 1 1
also st ats et topte s
Example 5
7 1 1 1
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1.1 1 1 1 1 1 1

also =t = —
st etr e metEetE et et et ¥
11 1 1

also =8%t6.3%6.3.3%6.3.3. 2

“and so on.

§ 3.] The most important practical case of the proposition in
§ 1 is that where r, r,, . . . are all equal, say each =r. Then
we have this result—

Every integer N can be expressed, and that in one way only, in
Sed oty
- Jorm
h%m‘ﬁ' ] ald n-1
19%% r.lb() Dot + Py +. 0ok + Py

where p,, p,, . . . P, are each < r.

In other words, detaching the coefficients, and agreeing that
their position shall indicate the power of r, which they multiply,
and that apposition shall indicate addition (and not multiplica-
tion as usual), we see that, r being any integer whatever chosen
as the radiz of a scale of notation, any integer whatever may be
represented in the form p,p,., . . . 2, p,; where each of the
letters or digits p,, p,, . . - pn must have some one of the integral
values 0,1,2,3, . .. r—1. :

For example, if =10, any integer may be represented by
PP - - - PP Where Do, D, . . . pn have each some one of the
values 0, 1, 2, 3, 4, 5,6, 7, 8, 9.

The process of § 1 at once furnishes us with a rule for finding
successively the digits p, p,, p, . . . namely, divide the given integer
N by the chosen radiz r, the remainder will be p, ; divide the integral
quotient of last division by r, the remainder will be p,, and so on.

Usually, of course, the integer N will be given expressed in
some particular scale, say the ordinary one whose radix is 10;
and it will be required to express it in some other scale whose
radix is given. In that case the operations will be carried on in -
the given scale.

The student will of course perceive that all the rules of ordi-
nary decimal arithmetic are applicable to arithmetic in any scale,
the only difference being that in the scale of 7, say, there are
only 7 digits, 0, 1, 2, 3, 4, 5, 6, and that the “carriages” go by
7’s and not by 10’s.
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If the radix of the scale exceeds 10, new symbols must of
course be invented to represent the digits. In the scale of 12,
for example, digits must be used for 10 and 11, say = for 10
and e for 11.

Example 1. To convert 186991 (radix 10) into the scale of 12.
12)136991 .

12)11415 . . .

12)051 . . .

12)7_9 .

-3
N w L.

The result is 6733e.

Example 2, To convert 6783e (radix 12) into the scale of 7.
7)67383¢

T)el7 . ..

7)961 . . .

T)ed . ..

Tl ...

1...

W DO O -

The result is 136991.
Although this method is good practice, the student may very probably
prefer the following :—
6788¢ (radix 12) means
6x1244+7x1284+8x122+8x12+11,
Using the process of chap. v., § 18, ex. 1, we have

6+ 7+ 8+ 3+ 11
+ 72+ 948 +11412 + 136980

6+79+951 +11415+ 136991 .

§ 4.] From one point of view the simplest scale of notation
would be that which involves the fewest digits. In this respect
the binary scale possesses great advantages, for in it every digit
is either 0 or 1. For example, 365 expressed in this scale is
101101101, Al arithmetical operations then reduce to the
addition of units. The counterbalancing disadvantage is the
enormous length of the notation when the numbers are at all
large.

‘With any radix whatever we can dispense with the latter part
of the digits allowable in that scale provided we allow the use of
negative digits. For let the radix be r, then whenever, on
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dividing by r, the positive remainder p is greater than r/2, we
can add unity to the quotient and take — (r — p) for a negative
remainder, where of course r—p < r/2. For example, 3978362
(radix 10) might be written 4022442, where 2 stands for—2;
8o that in fact 4022442 stands for 410°+0-10° - 2-10* - 210
+410°- 410 + 2.
Example 1. Work out the product of 1698 and 814 in the binary scale.
1698=11010100010
314= 100111010

11010100010
11010100010
11010100010
11010100010
110101000100

10000010001010110100 (=588172 radix 10).*

Example 2. Express 1698 and 314 in the scale of 5, using no digit greater
than 8, and work out the product of the two transformed numbers.

5)1698 DTS
5339 ...3 5%3...1
5%8...1 2. ..8
518, .. 8 2...2
2...8 _
23318
2281
28313
181711
102111
102111

121121303 *
The student may verify that 121121303 (radix 5)=533172 (radix 10).
Example 8. S8how how to weigh a weight of 815 lba.: first, with a series
of weights of 1 1b., 2 Iba., 22 1bs., 2% lbs, &c., there being one of each kind ;
second, with a series of weights of 1 1b., 3 1ba., 83 Ibs., 83 Ibs., &c., there being
one only of each kind.

* The arrangement of the multiplication is purposely varied, because,
although it is of no consequence here, sometimes the one order is more con-
venient, sometimes the other. A similar variety is introduced in § 6, examples
1and 2.
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First. Express 815 in the binary scale. 'We have

815=100111011,
816=1+2+23+2¢+25+28,

Hence we must put in one of the scales of the balance the weights 1 Ib., 2 lbs.,
23 1ba., 24 1bs., 2° Ibs., and 2° lbs.
Second. Express 815 in the ternary scale, using no digit greater than
unity. We have _
316=110100.

Hence over against the given weight we must put the weights 8¢ bs. and 8°
1bs. ; and on the same side as the given weight the weight 32 1ba.

§ 5.] If we specialise the proposition of § 2 by making
7,=7, ... ="ry, each =7 say, we have the following":— Every proper
fraction A|B can be expressed, and that in one way only, in the form—

A D P D Pn .
-E—r +1—'.+1‘+' . -+;“—+F,
where p,, Dy . . . Pn are each < r, and F either is zero, or cam be
made as small as we pleass by sufficiently increasing n.
If r be the radix of any particular scale of notation, the fraction
BB P
p + ? + + por
is usually called a radix fraction. We may detach the coeffi-
cients and place them in apposition, just as in the case of
integers, a point being placed first to indicate fractionality.
Thus we may write

A
5= PP - - Pu

where , in the first place after the radix point stands for p,/r,
P, in the second place stands for p,/r", and so on.

Since the digits p,p,p, . . . P are the integral part of the
quotient obtained by dividing As* by B, the radix fraction can-
not terminate unless A7 is a multiple of B for some value of n.
Hence, if we suppose A/B reduced to its lowest terms, so that A
is prime to B, we see that the radix fraction cannot terminate
unless the prime factors of B (see chap. iii., § 10) be powers of
prime factors which occurin . For example, sincer=10=2 x 5,
no vulgar fraction can reduce to a terminating decimal fraction
unless its denominator be of the form 2m5%.
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In all cases, however, where the radix fraction does not
terminate, its digits must ‘repeat in a cycle of not more than
B -1 figures ; for in the course of the division no more than B -1
different remainders can occur (if we exclude 0), and as soon as
one of the remainders recurs the figures in the quotient begin
to recur.

Example 1. To express 2/3 as a radix fraction in the scale of 10 to within
1/100000th—

87 3x10°" 10 °’
6x10‘+6x10'+6x10’+6x10+6+ 2/3

108 100000’
6.6 .66
~E+E’+W+W+W+F,
28 1
where ¥= 160000 <100000°
In other words, we have to the required degree of accuracy
—= *66666.

It is obvious from the repetition of the figures that lf we take n 6's after the
point we shall have the value of 2/8 correct within 1/10%th of ita value.

Example 2. Let the fraction be 5/64. Since 64=2% this fraction ought
to be expressible as a terminating decimal. We have in fact

5 _ 5000000 78125
64 84x10° 10°°
=-078126.
Example 8. To express 2/38 as a radix fraction in the scale of 2 to
within 1/2¢th.
2 2x2%_128/8 42+2/3

Ex28 2" -2
Neglectmg?/-, whichis < 2,,and expressing 42 in the scale of 2, we have

2_101010 :
= =" 010 (radix 2).
3 26 101010 ( )

§ 6.] When a fraction is given expressed as a radix fraction
in any scale, and it is required to express it as a radix fraction in
some other scale, the following process is convenient :—

Let ¢ be the fraction expressed in the old scale, r the new
radix, and suppose

= _.Pl + D Ds
f
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then r¢=p,+%+%’+ ..

=P+ ¢, 8ay.
Now ¢, is a proper fraction, hence p, is the integral part of r¢.
Again r¢,=p.+%'+ e

=Ps+ ¢y 88Y.

So that p, is the integral part of r¢,, and so on.

It is obvious that a vulgar fraction in any scale of notation
must transform into a vulgar fraction in any other ; and we shall
show in a later chapter (see Geometrical Progression) that every
repeating radix fraction can be represented by a vulgar fraction.
Hence it is clear that every fraction which is a terminating or a
repeating radix fraction in any scale can be represented in any
other scale by a radix fraction which either terminates or else
repeats. It is not, however, true that a terminating radix fraction
always transforms into a terminating radix fraction or a repeater
into a repeater. Non-terminating non-repeating radix fractions
transform, of course, into non-terminating non-repeating radix
fractions, otherwise we should have the absurdity that a vulgar
fraction can be transformed into a non-terminating non-repeating
radix fraction. ‘

It is obvious that all the rules for operating with decimal
fractions apply to radix fractions generally.

Example 1. Reduce 3-168 and 11'346 to the scale of 7, and multiply the
latter by the former in that scale ; the work to be accurate to 1/1000th

throughout.
The required degree of accuracy involves the 5th place after the radical
point in the scale of 7.
168 *346
- _T
1176 2)°322
_T 7
1)°232 2)954
_T _T
1)624 6)°678
_1 7
4)°368 4)746
7 7

2):576 5)-222
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3-168=3°11142 (radix 7). 11346 =14°22645.

1422646
811142

4601601
142266
14227
1423

632

82

50°64146

On account of the duodecimal division of the English foot into 12 inches,
the duodecimal scale is sometimes convenient in mensuration.

Example 2. Find the number of square feet and inches in a rectangular
carpet, whose dimensions are 21’ 83" by 18’ 113°. Expressing these lengths
in feet and duodecimals of a foot we have

21’ 33"=19-36.
18’ 11§"=11"¢9.
19-86
9ell

19360
1936
1763

13¢

209°78
209 (radix 12)=288+9 =297 (radix 10) feet.
*78 (radix 12)=7 x 12+ 8 =92 square inches.
Hence the area is 297 feet 92 inches.

§ 7.] If a number N be empressed in the scale of r, and if we
divide N and the sum of its digits by r — 1, or by any factor of r- 1,
the remainder is the same in both cases.

Let N=p,+pr+ps+ ... +ps™
Hence N-(p+p+. . +p)=00-1)+p,("-1)+. . .

+ pa(r™-1) (1).

Now, m being any integer, 7 — 1 is divisible by 7 -1 (see
chap. v.,, § 17). Hence every term on the right is divisible by
r—1, and therefore by any factor of r — 1. Hence p being r - 1,
or any factor of it, and x some integer, we have

N-(po+p+ .. .+p5)=pp (2).
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Suppose now that the remainder, when N is divided by p, is o,
8o that N=vp + 0. Then (2) gives

: Potpit . Apa=(V-pp+o (3
which shows that when p,+ 2, . . . +p, is divided by p the re-
mainder is o

Cor. 1. In the ordinary scale, if we divide any integer by 9 or by
3, the remainder i3 the same as the remainder we obtain by dividing
the sum of ils digits by 9 or by 3.

For example, 31692 - 9 gives for remainder 3, and so does
(B+1+6+9+2)=9.

Cor. 2. It also follows that the sum of the digits of every
multiple of 9 or 3 must be a multiple of 9 or 3. For example,

2x9=18 1+8=9
13x9=117 1+1+7=9
128 x 9 =1152 1+1+5+2=9
128 x 3 =384 3+8+4=156=5x3.

§8.] On corollary 1 of § 7 is founded the well-known
method of checking arithmetical calculations called “casting
out the nines.” -

t L=MN; then,if L=19+L,M=m9 + M, N=29 + N’,
so that L', M’, N’ are the remainders when L, M, N are divided
by 9, we have— '

19 +L'=(m9 +M)(n9 +N),

=mn81 + (M'n + N'm)9 + M'N’,

=(mn9 + M'n + N'm)9 + M'N’;
whence it appears that L' and M'N’ must have the same re-
mainder when divided by 9. L', M, N’ are obtained in accord-
ance with corollary 1 of § 7 by dividing the sums of the digits
in the respective numbers by 9.

Example 1. Suppose we wish to test the multiplication
47928 x 568 =27220264.

To get the remainder when 47923 is divided by 9, proceed thus: 4+7=11,
cast out 9 and 2.s left ; 24+9=11, cast out 9; 2+2+8=7. The remainder
is 7. Similarly from 568 the remainder is 1, and from 27220264, 7. Now
7x1+9 gives of course the same remainder as 7+9. There is therefore a
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strong presumption that the above multiplication is correct. It should be
observed, however, that there are errors which this test would not detect ; if
we replaced the product by 27940597, for instance, The test woul

satisfied, but the result would be wrong.

In applying this test to division, say to the case L/M=N+P/M, since
we have L=MN +P, and therefore L - P=MN, we have to cast out the nines
from L, P, M, and N, and so obtain L/, P, M, and N’ say. Then the test is
that L' — P shall be the same as the result of castirig out the nines from M'N’.

Example 2. Let us test—
27220662--568 = 47928 + 398-:-568,

or 27220662 = 47923 x 568 + 898.
Here L'-P=0-2=-2,
M. N'=7x1=9-2.
The test is therefore satisfied.

§ 9.* The following is another interesting method for ex-
panding any proper fraction A/B in a series of fractions with
unit numerators :—

Let ¢y Qe Gay - + Gy GNA Ty Ty, Ty o . . Ty, be the quotients and
remainders respectively when B is divided by A, 1\, 19y . + . Ty, TE-
spectively, then

Al 1.1

=——— —...+~(—_—1)”——1+F ),
B ¢ a9 994 Ns---9n

where F=(—1)rn/q\qs « . . qnB, that is, F is numerically less than

ags - - - gne
For we have by hypothesis

B = Ag, +r, therefore A/B =1/g,-n/g,B (2),

B =14, + r,, therefore r,/B =1/g, — 7,/¢,B (3),

B =1y, + ry therefore r,/B=1/g, - 7,/¢,B (4),
and so0 on.

From (2), (3), (4), we have successively
' A 1 1 1 (r,

B~ 2 20" 4a.\B/

* In his Essai &’ Analyse Numérique sur la Transformation des Fractions
(@wvres, t. vii. p. 818), on which the present chapter is founded, Lagrange
attributes the theorem of § 9 to Lambert (1728-1777). Heis, Sammlung von
Beispielen und Aufgaben aus der allgemeinen Arithmetik und Algebra (1882), p.
322, has applied series of this character to express incommensurable numbers
such as logarithms, square roots, &c.

- 4 . - R PeCINN
e #uﬁ eat oF ml ek 8 ““""Ll"l'l o .

4 :‘h"A\'T/I r.’\") .
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1 1 1 1 (r;
= e - — +—_ —
o 9% 0959 019:9s B

and so on. )
Since 7y, 7, . . . 7, go on diminishing, it is obvious that if
A and B be integers as above supposed, the process of successive
division must come to a stop, the last remainder being 0. Hence
every vulgar fraction can be converted into a terminating series
of the form
1 1 1

— — — + —
& 0% 099
13_1 1 1 1
244~ 2 218721824 218.24.61°
From this resolution we conclude that 1/2—-1/2.18 represents 118/244 within
1/26th, and that 1/2 - 1/2.13 +1/2.13.24 represents 113/244 within 1/624th.

Example.

Exercises XIII.

(1.) Express 16935 (scale of 10) in the scale of 7.

(2.) Express 16-935 (scale of 10) in the scale of 7.

(8.) Expreas 81534 (scale of 10) in the scale of 11.

(4.) Express r7€9¢e (scale of 12) in the scale of 10.

(5.) Express 178¢54 (scale of 12) in the scale of 9.

(6.) Express 845°861 (scale of 7) in the scale of 3.

(7.) Express 112/315 (scale of 10) as a radix fraction in the scale of 6.

(8.) Express 3169 in the form p+¢3+78.5+88.5.7 +&c., where p<3,
g<b, r<7, &ec.

(9.) Express 7/11 in the form p/2+¢/2.8+7/2.8.4+&c., where p<2,
g<8, r<4, &c.

(10.) Express 113/804 in the form p/8 +¢/8.5 -+ r/8%.5 + 5/82 5% + ¢/3%.5% + &c.
where p<38, ¢<b, r<3, &c.

(11.) Muitiply 81263 by 56341 in the scale of 7.

(12.) Find correct to 4 places 81°3482 x 150323, both numbers being in
the scale of 6.

(18.) Find to 5 places 81°3432+-2-67812, both numbers being in the
scale of 12.

(14.) Extract the square root of 865:788 (scale of 9) to 3 places.

(15.) Express 887/1108 in the form 1/¢, — 1/¢:¢s+ 1/¢,9495 — &c-

(16.) Show how to make up a weight of 85 Ibs. by taking single weights
of the series 1 1b., 2 lbs., 2% 1bs., &c.

(17.) With a set of weights of 1 1b., 5 1bs., 52 Ibs., &c., how can 7 cwt. be
weighed ¥ First, by putting weights in one scale only and using any number
of equal weights not exceeding four. Second, by putting weights in either
scale but not using more than two equal weighta.
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(18.) Find the area of a rectangle 35 ft. 8} in. by 28 ft. 6% in.

(19.) Find the area of a square whose side is 17 ft. 4 in.

(20.) Find the volume of a cube whose edge is 8 ft. 9} in.

(21.) Find the side of a square whose area is 139 sq. ft. 130 sq. in.

(22.) Expressed in a certain scale of notation, 79 (scale of 10) becomes 142,
find the radix of that scale.

(28.) In what scale of notation does 801 represent a square integer ¢

(24.) A number of 8 digits in the scale of 7 has its digits reversed when
expressed in the scale of 9 ; find the digits.

(25.) If 1 be added to the product of four consecutive integers the result
is always a square integer ; and in four cases out of five the last digit (in the
common scale) is 1, and in the remaining case 5.

(26.) Any integer of four digits in the scale of 10 is divisible by 7, pro-
nded its first and last digits be equal, and the hundreds digit twice the tens

(27 ) If any integer be expressed in the scale of 7, the difference between
the sums of the integers in the odd and even places respectively, gives the
same remainder when divided by r+1 as does the integer itself when so
divided. Deduce a test of multiplication by *‘ casting out the elevens.”

(28.) The difference of any two integers which are expressed in the scale
of 10 by the same digits differently arranged, is always divisible by 9.

(20.) If a number expressed in the ordinary scale consist of an even
number of digits so arranged that those equidistant from the beginning and
end are equal, it is divisible by 11.

(80.) Two integers expressed in the ordinary scale are such that one has
zeros in all the odd places, the other zeros in all the even places, the re-
maining digits being the same in both, but not necessarily arranged in the
same order. Show that the sum of the two integers is divisible by 11.

(81.) The rule for identifying leap year is that the number formed by the
two last digits of the year must be divisible by 4. Show that this is a
general criterion for divisibility by 4, and state the corresponding criterion
for divisibility by 2~

(82.) If the last three digits of an integer be py», 1y, show that the integer
will be exactly divisible by 8, provided p, + 2p, + 4p, be exactly divisible by 8.

(88.) Show that the sum of all the numbers which can be formed with the
digits 38, 4, 5 is divisible by the sum of these digits and generalise the theorem.

(34.) If p/n and (n—p)/n be converted into circulating decimals, find the
relation between the figures in their periods, and p<n.

(85.) If in converting the proper fraction a/b into a decimal, a remainder
equal to b—a occurs, show that half the circulating period has been found,
and that the rest of it will be found by subtracting in order from 9 the digits
already found. QGeneralise this theorem.

(86.) In the scale of 11 every integer which is a perfect 5th power ends in
one or other of the three digits 0, 1, =.

(87.) In the scale of 10 the difference between the square of every number
of two digits and the square of the number formed by reversing the digits, is
divisible by 99.
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(88.) A number of six digits whose 1st and 4th, 2nd and 6th, 8rd and 6th
digits are respectively the same, is divisible by 7, by 11, and by 18.

(89.) Show that the units digit of every integral cube is either the same
as that of the cube root or else is the complementary digit. (By the comple-
mentary digit to 8 is meant 10 - 8, that is, 7.)

(40.) If in the scale of 12 8 square integer (not a multiple of 12) ends
with 0, the preceding digit is 8, and the cube of the square root ends with 60.

(41.) If a be such that a™+a=r, then any number is divisible by a™,
provided the first m integers py, 2y, . . . Pm-1 Of its expression in the scale of
r are such that po+pa+ . . . +pm—a™! is divisible by ™.

(42.) The digits of a are added, the digits of this sum added, and so on,
till a single digit is arrived at. This last is denoted by ¢(a). Show that
Pa+bd)=¢{p(a)+¢(d)}; and that the values of ¢(8z) for n=1, 2,. . . a,
successively consist of the nine digits continually repeated in descending
order.

(48.) A number of 8 digits is doubled by rqversing its digits: show that
the same holds for the number formed by the first and last digit, and that
such a number can be found in only one scale out of three.



CHAPTER X
Irrational Functions.

GENERALISATION OF THE CONCEPTION OF AN INDEX.

?
INTERPRETATION OF 2°, 29, =™,

§ 1.] The definition of an index given in chap. ii, § 1, be-
comes meaningless if the index be other than a positive
integer.

In accordance with the generalising spirit of algebra we
agree, however, that the use of indices shall not be restricted to
this particular case. We agree, in fact, that no restriction is to
be put upon the value of the index; and lay down merely that
the use of the indices shall in every case be subject to the laws
already derived for positive integral indices. Less than this we
cannot do, since these laws were derived from the fundamental
laws of algebra themselves, to which every algebraical symbol
must be subject.

The question now arises, What signification shall we attri-
bute to 2™ in these new cases ? We are not at liberty to proceed
arbitrarily, and give any meaning we please, for we have already
by implication defined #™, inasmuch as it has been made subject .
to the general laws laid down for indices.

§ 2.] Case ofz? where P and q are any positive integers. Let z

denote the value of zﬂ whatever it may be; then, since aﬂ is to
- be subject to the first law of indices, we must have—




CHAP, X. RESTRICTIONS ON THE VALUE OF k. 175

A=zxzxz ... q factors,
2 2 P
=29 x 29 x 29 x ¢ factors,
PP PL..... q terms,
=ATa'q
=P,

In other words, 2 is such that its gth power is z?, that is, 2
is what is called the gth root of z?, which is usually denoted

by V/z».

Hence
In particular, if p=1,
1
2= Yz

‘We have now to consider how far an algebraical value of
the ¢th root of every algebraical quantity can be found.

In the case of a real positive quantity %, since 27 passes con-
tinuously* through all positive values between 0 and + o as z
passes through all positive values between 0 and + o0, it is clear
that, for some value of z between 0 and + o, we must have
2=k In other words, there exists a real positive value of

ik
Unless the contrary is stated we shall, when % is positive,

1

?
zl =

Vzr.

take (k)¢ as standing for this real positive value.

The student should, however, remark that when ¢ is even
= 9r say, there is at least one other real value of ¥/k; for, since
(-2)r=2%, if we have found a positive value of z such that
2% =k, that value with its sign changed will also satisfy the re-
quirements of the problem.

Next let £ be a negative quantity. If ¢ be odd, then, since
22 passes through all values from — co to 0 as z passes through
all values from — o to 0, there must be some one real negative
value of 2, such that 22=% In other words, if ¢ be odd, there

* For a fuller discussion of the point here involved see the chapter on the
Variation of Functions. .
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is a real negative value of %/%; and this we shall understand for
1

the present to be the value of (£)J.

If ¢ be even, then since every even power of a real quantity
(no matter whether + or -) is positive, there is no real value
of z. Hence, if & be négative and g even, ¥/ is imaginary. This
case must be left for future discussion.

It will be useful however for the student to know that
ultimately it will be proved that %/ has in every case ¢ different
values, expressions for which, in the form of complex numbers,
can be found. Of these values one, or at most two, may be real
as indicated above (see chap. xii.)

Only in the case where % is the pth power of a rational
quantity can 2/% be rational.

Example.
If k= + A%,

2;‘\’/khmatwo real values, +4 and - A.
If k= +A%H,

m:/k has one real value, +A.
If k= - A%+,

2F’:e/k has one real value, - A.

In all cases, for the present at least, we think only of the real
value (if any) of %/k that has the same sign as k iiself; and this we
1

take to be the value of 4.

?
§ 3.] Having obtained an interpretation of z¢ by asserting
its subjection to one of the laws of indices, it remains to show
that this interpretation is consistent with the other laws. Per-
haps the simplest way of doing this is to re-prove these laws for
the new symbol.
To prove law I (B) of chap. ii, § 2, let

Rial R

2, ¢ 1, 8, all positive integers.
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Let us suppose also that « is real and positive. Then, bearing
?
in mind our present understanding as to the meanings of z?

and z°, we see that z must be real and positive.

RS ORC:
{@}
ki

by laws of positive integral indices,
It iy
f} q

P r
by meanings given to 22 and z°,
=P '9’,
by laws of positive integral indices.
Hence 2z is the g¢sth root of z»-7, and we know that it is
positive ; we may, therefore, by our interpretation of a fractional
index, write
pe-gr
z=x 2,

R

?_
=29 F,
which proves law I. (B) in the present case.
The student should examine for himself the cases that arise
when z is negative.

§ 4.] To prove law IL (a) of chap. ii, § 2, that is, to prove,

? ppp
say, that (abc)? = a%%?, p and ¢ being positive integers.

The student will be able to consider for himself the effect of
supposing one or more of the quantities a, b, c negative. We there-
fore take, for simplicity, the case where they are all positive.
Then - z= af—z’bgc% is positive.

VOL. I N
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P PP\Q
Hence (aqchq

\e/ P\a/ P\Y
= aﬂ) (bq) (Cq) ’
by the laws of positive integral indices,
= aPbPc?,
by the meaning of a fractional index,
= (abc)?,
by the laws of positive integral indices.
Hence g= f/(abc)p’
and, z being positive, we may write

2
z = (abe)?,
by the meaning of a fractional index.
ppp

Hence a?b9ct = (abc)q
We leave as an exercise for the student the verification of
the consistency of the interpretation of a frwctiona.l index with

the remaining laws (aﬂ)‘ = aﬂ' and (a/b)q = aﬂ/bﬂ cautioning him
that he is not to assume anything regarding indices except the
laws for positive integral indices, and the newly found interpre-

?
tation of z2.

§ 6.] Before passing on to another case it may be well to
call atwntlon to pa.radoxes that arise if the strict limitation as to

sign of aﬂ be departed from.
~ By the interpretation of a fractional index
()= ¥/a'= =2
But =2,
which is right if we take zt to stand for the positive value of
Y/z' ; but leads to the paradox 2" = — 2’ if we admit the negative
value. -
A similar difficulty would arise in the application of the law
(@) =2mn = (2)™ ;
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for example, (44)" = (4"
would lead to (£22= =4,
that is, 4==+4

if both values were admitted. Such difficulties are always apt

P
to arise with 22 where the fraction p/g is not at its lowest terms.
The true way out of all such difficulties is to look upon and
discuss 2" as a continuously varying function of n, which is called
the exponential function. In the meantime fractional indices are
introduced merely as a convenient notation in dealing with
quantities which are (either in form or in essence) irrational ;
and for such purposes the limited view we have given will be
sufficient.

§ 6.] Case of 2°. This case arises naturally as the extreme
case of law L (B), when n=m; for, if we are to maintain that
law intact, we must have, provided z+ 0,*

m_
that is, 22=1.
This interpretation is clearly consistent with law I (a), for
2" x 20 = gm+0
simply means
™ x1=a™,
which is true, whatever the interpretation of 2™ may be.
Again, 2™ = (@),
that is 20 = (2™, _
simply means 1 =1 by our interpretation ;
and ™0 = (20,
or 20 = ()™,
gives 1=1m,

which is right, even if m be a positive fraction, provided we
adopt the properly restricted interpretation of a fractional index
given above.

" The reader may examine the other cases for himself.

* This provision is important since the form 0° is indeterminate.
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§ 7.] Case of z~™, where m is any real positive (or signless)’
number, and z 0.
Let z =2~"™, then, since 2™+ 0, we have
Z2=2"™ x g™ --2",
z-mtm
=
if law L (a) is to hold for negative indices. Whence

2=

E I TR

by last section. In other words, z=™ is the reciprocal of z™,
As an example of the reconciliation of this with the other
laws, let us prove that

() ==

By the interpretation of z"" we have

(b)-m ( )

am
b
by the laws already established,
1
o
1 1
om
a-ﬂ
=5
by the interpretation of negative indices.
And similarly for the other. laws.

§ 8.] The student should render himself familiar with the
expression of the results of the laws of indices in the equivalent
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forms with radicals ; and should also, as an exercise, work out
demonstrations of these results without using fractional indices
at all.

For example, he should prove directly that

Yz =0 );
VAL CEVALLE @5 |
Yak/y¥z = Yy ®);

-

7!7" \/ (4)-.

EXAMPLES OF OPERATION WITH IRRATIONAL FORMS,

»

§ 9.] Beyond the interpretations of 22 z°, z-™, the student has
nothing new to learn, so far as mere manipulation is concerned,
regarding fractional indices and irrational expressions in general.
Still some practice will be found necessary to acquire the requisite
facility. We therefore work out a few examples of the more
commonly occurring transformations. In some cases we quote
at each step the laws of algebra which are appealed to; in others
we leave it as an exercise for the student to supply the omission
of such references.

Example 1.
To express A'Y/B in the form :/P.
1 11
A"Y/B=AB™=(A™mB", by law of indices, L. (v),
1
=(A™B)™ by law of indices, II. (a),
- ?\‘/T
=V A™B.
Example 2.
VA="V&r;
. 1 »
for A A=A™ =A™,

="V
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LA
=zPx 2™, by law of indices, I. (a),

=a;"~'/a?.

Yzp

To express Ir as the root of a rational function of z and Y.

<L

Example 5.
V32=416x2,
=V16x4/2,
=4X‘\/2.
Example 6.
2x /2% o/2x /4
=2x2*x2‘x2’,
=2l+§+i+§,

Example 7.
(o-2)2- (DI

=(a-)":f(1—g =
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n 2n
=a (] __:c) .
Example 8.

Nyt x Nyt =
=Nzy+a) x Vely+2),
=Nzx Ny+zxVax Vy+z,
=Nzx {My+a}?,
=(y+z)xVz=.

Example 9.

A/240+ /10" .
=A/16x3x5+VEx2x5,
=A/16V3V5 + V4V 25,
=A/B6(40/3+24/2).

Example 10.

(V/3+24/2 +84/6) (/8 — 24/2+84/6),
=(a/3+34/6)* - (24/2)},
=(n/8)3+64/34/6 +(34/6)* - (24/2)",
=3+64/3x6+8'x6-22x2,
=49 +64/18,
=49+184/2.

Example 11.
(NITz4+NTT2) ¢
= {a-ata+af}’,
=(1-zp+(1 +z)
i -ofa s+t -2+t
+6(1-z)(1+z),
=848 +4(1 -1+ 1 -2 +1+2)
=843+ 8V1-2.

z+y z—y
N a=yt N axy
_(‘\/ﬁ-z)’-f-(\/:c-!/)’ ,

T NE-y)(=ty)
_zty+z-y

Example 12.

=&
2

=JE

183
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Example 18.
(a:*— *+z‘*—z‘*) x (:z:‘l +1 +x"*)
=x*—x*+z*-z"=
+a:*—=r:i e
e e +z'*—z'i,

QS. . %x*+z*—z'*—x"*.
A A Example 14.

A/(a?-b) - 7_
8= N/a+ (; + ,\/a____«/(; b)=‘\/a+\/b.
We have
_a+Na = a-Na-} (@+Na-b)(a- Va - b)
P+ +2N/ y ,

ot NV,
=a+A/b.
Hence, extracting the square root, we have

8= A/a+a/b.

RATIONALISING FACTORS.

§ 10.] Given certain irrationals, say W/p, Jg, N7, We may
consider rational, and it may be also integral, functions of these.
For example, ! J/p +m /g +n N1, and I /p)* +m Npg + n( Ng)',
are integral functions of v/p, /g, N7, of the first and second
degrees respectively, provided /, m, n do not contain »/p, +/g, ~/7.
Again, (I V/p +m Nq)/(l ¥g + m +/7) is a rational, but not integral,
function of these irrationals. 4/l+/p+m+/g, on the other
hand, is an irrational function of /p and A/g.

The same ideas may also be applied to higher irrationals,

11
such as g™, ¢*, &c.

§ 11.] Confining ourselves for the present to quadratic
irrationals, we shall show that every rational function of a
given set of quadratic irrationals, v/p, /g, /7, &c., can be
reduced to a linear integral function of the square roots of p, g, 7,
and of their products, pg, pr, ¢r, pgr, &c.
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This reduction is effected mainly by means of rationalising
Jactors, whose nature and use we proceed to explain.

If P be any inlegral function of certain given irrationals, Q
another integral function of the same, such that the product QP is
rational so far as the giwen irrationals are concerned, then Q is called
a rationalising factor of P with respect to the given irrationals.

It is, of course, obvious that, if one rationalising factor, Q,
has been obtained, we may obtain as many others as we please
by multiplying Q by any rational factor.

§ 12.] Case of monomials— '

1°. Suppose we have only quadratic irrational forms to deal
with, say two such, viz. pt and ¢

Then the most general monomial integral function of these
} L= A(pt)™+}(gh)™+1,
where A is rational. There is no need to consider even indices,
gince (pt)¥™ =p™ is rational.

Now I reduces to

I=(Ap™g")prigh,
where the part within brackets is rational.
Hence a rationalising factor is pigt, for we have
Iptgt = (Ap™¢™)pg,
which is rational.
Example. A rationalising factor of 16. 2%, 8%, 5t is 2¥3¥5d, that is, (30)%.
1 1 1

2°. Suppose we have the irrationals 2, ¢f, 7, say, and

consider

1= Agigiri»
which is the most general monomial integral function of these.
A rationalising factor clearly is
1_1 1.7 1_2
lq ty u’

s-lt-m u-n

or pesqgtrow.

* Where of course l<s, m<t, n<u, for if they were not they could be
reduced by a preliminary process like that in case 1°. |
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Example.
‘1=31. a‘.s’.?a,
=s1.8't¥ gt i

=(31.8.74.8% 5t 7h.
The rationalising factor is 3". st 7.

§ 13.] Case of binomials—

1°. The most general form when only quadratic irrationals
are concerned is @ A/p + b 4/g, where a and b are rational ; for, if
we suppose p a complete square, this reduces to the more special
form A + B4/g, where A and B are rational.

A rationalising factor clearly is a/p—ba/q. For, if

_ I=a+/p+bg
Lanp-bvg) =(aNp)' - 0 V9),
= a’p -0 'y
which is rational.

The two forms a /p + b A/q and a \/p — b A/g are said to be con-
Jugate to each other with reference to Ng, and we see that any binomial
integral function of quadrabic irrationals is rationalised by multiplying
it by tis conjugale.

2°. Let us consider the forms ap’?ibqg, to which binomial
integral functions of given irrationals can always be reduced.* Let

s 8
z=apy, y=10bg,
- B
I= apy - bqar
=z-9
Let m be the L.C.M. of the two integers y, 8. Now, using
the formula established in chap. iv., § 16, we have
@ l+z™%qy+ ..ty ey Hl=g™ -y
na m
Here 2™ —y™=(a™p v —b™g 3), where ? and ’"TB are in-
tegers, since m is divisible by both y and §, that is, 2™ —y™ is
rational.
* Tartaglia’s problem. See Cossali Storia dell’ Algebra (1797), vol. ii. p. 266.
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A rationalising factor is therefore 2m-1+a2m-2y+ . . |

- 8

+zy™2 + ™1 in which 2 is to be replaced by apv, and y by bgd.

The form apv + bg® may be treated in like manner by means
of formule 4 or 5 of chap. iv., § 16.

Example.
I=3.28 4. st
Here m=6, z=8.2%, y=1.8¢;
and a rationalising factor is
+aty +ay + 2y Loyt +o

=g5.9%48¢. 4,00, 8% 1 8% 432,88 192, 43,08 8t 5. 4. b gt g5 8Y,
=90.2.28+80.8.91. 84 1 30,528+ 9. 43,98 8h 4 5. 40 oh 8y g8 8t
§ 14.] Trinomials with quadratic irrationals. This case is
somewhat more complicated. Let c{  KEm ’..Sl
I=wp+ g+ Wri®
and let us first attempt to get rid of the irrational 4/r. This
we can do by multiplying by the conjugate of V/p + Vg + /7
with respect to /7, viz., &/p + /g — &/r. 'We then have
(Vp + Vg = VL = (Vp + VO - (V7))
=p+g-r+2+Vpg ).
To get rid of Npg we must multiply by the conjugate of
p+q—r+2 Npg with respect to ~/pg. Thus finally
(p+g-r-2vp)(Vp + Vg - NNI=(p+q-1V -2V,
=p'+¢ +7" — 2pg - 2pr - 2¢r.
Hence a rationalising factor of I is
(p+g-7-2~pg) (Vp + Vg~ V),
or
(VP - Vg + /1) (VP = Vg = /) (Vp + Vg - 1) (2)
By considering attentively the factor (2) the student will see

* This is really the most general form, for an/p+ba/q+ca/r may be
writtenVa%+ Vg + Ner.
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that s constituent factors are obtained by taking every possible
arrangement of the signs + and — in
+ /P ENgE N :
except the arrangement + + + which occurs in the given trinomial.
Example 1. A rationalising factor of

A/2-A/8+A/b
is (V2-~/8-A/5) (V2 +4/8+4/5) (V2 +4/3 - A/6).
Example 2. A rationalising factor of :
1+24/3-84/2
is (1+2+/8+84/2) (1 - 24/3+ 34/2) (1 - 24/8 — 84/2).

In actual practice it is often more convenient to work out
the rationalisation by successive steps, instead of using at once
the factor as given by the rule. But the rule is important,
because i¢ is general, and will furnish the rationalising factor for a
sum of any number of quadratic irrationals.

Example 8. The rationalising factor of
14n/2-n/8+/4
is (14+4/2 - A/8 = A/4) (1 +A/2+ A/8+a/4) (1 + A/2+ /8 = A/4)
X (1-a/2 - A/8+/4) (1 - A/2 — A/8 — a/4) (1 - A/2+A/3+A/4)
X (1-A/2+4/3 - A/4).

Before giving a formal proof of the general truth of this
rule, it will be convenient to enunciate one or two general pro-
positions which are of considerable importance, both for future
application and for making clear the general character of the
operations which we are now discussing, .

§ 15.] Every integral function of a series of square roots,
VD, Vg W, dc., can be expressed as the sum of a rational term
and rational multiples of Np, Ng, Nr, &c., and of their products
Npq, Nor, Npgr, de.

First, let there be only one square root, say +/p, and consider
any rational integral function of +/p, say ¢(a/p). Every term
of even degree in 4/p will be rational, and every term of odd
degree, such as A( v/p)*™+! may be reduced to (Ap™)+/p, that



x.] RATIONALISATION OF ANY INTEGRAL FUNCTION. 189

is, will be a rational multiple of +/p. Hence, collecting all the
even terms together, and all the odd terms together, we have

(VP)=P+Qp 1),
where P and Q are rational.

Next, suppose the function to contain two square roots, say
(P, ~q). First of all, proceeding as before, and attending
to 1/p alone, we get

4’(\/?’ ‘\/Q)=P+Q‘\/P’

where P and Q are rational, so far as a/p is concerned, but are
each rational integral functions of v/g. Reducing now each of
these with reference to /g we shall obtain, as in (1),

P=P+Q g Q=P"+Q Vg
and finally,

(Vo Vo) =P +Q g+ (P +Q V) Vp,
=P +P" Vp+QVg+Q Vpg 2),
" which proves the proposition for two irrationals.
If there be three, we have now to treat P, P”, Q’, Q" by means
of (1), and we shall evidently thereby arrive at the form
A+BNp+CVg+D~r+ENgr+F ~rp+G~pg+ Hw/pgr,and

80 on.

Cor. It follows at once from the process by which we arrived
at (1) that
(- Vp)=P-Qp.

Hence if $(+/p) be any integral function of v/p, $(— /D) is @
rationalising factor of ¢(~/p); and, more generally, if &( Np, Ve,
NT . . .) be an indegral function of Np, g, T . . . then,if we
take any one of them, say A/q, and, change ifs sign, the product
(VD Va, VT .. ) x K Ao, - g, Afr . . ) is rational, so far
as +/q 8 concerned.
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" Example 1. If ¢(z)=a’+2+2z+1, find the values of ¢(1+4/3) and
#(1-~/3) and $(1+4/8) x $(1 - /3).
H1+A/3)=(1+A/8P+(1+A/8)*+(1+4/8)+1,
=1+84/3+8.8+3+/3
+1+24/3+3
+1+4/8
+1,
=16+94/8.
¢(1-4/8) is deduced by writing — /3 in place of + /8 everywhere in the
above calculation. Hence
H(1-~/3)=16-9/3 ;
H(1+/3) x K1 - /3)=(16)" - (/3"
=256—248,
Example 2. Find the value of z’+3*+2%-zyz, when z=a/g-/r,
Y=Nr-/p, 2=NP- 2
B+ +2 - ayz=(\g~ NP+ (Nr - A/DP+ (/P - /gP
= (Ng=a/7) (W1 = /D) (WP~ A1)
=qVg - 3gn/r+3ra/q—ra/T,
+&e.
+&ec.
- (g-7)\/p-&c. - &e.
=2Ag-rWp+2Ar-pNe+2Ap- qu
Example 8. Evaluate (1+y+2)(1+2z+2)(1+z+y)when 2=4/2, y=4/8,
z=4/b.
(1+y+2)(1+z+2)(1+2+y)
=1+2z+y+2)+22+(y+2xe+yz+&e. + &e.
+2(y? +2%)+ &e. + &e. +2xyz,
=142+ P +2+ 2+ 2+ +(2+ 22 +2%)y
+(2+22+ )2+ Syz + Sz + 3zy + 222,
=11+10VZ+ 9438+ 775+ 34/15 + 3310+ 8V/8+ 2+/30.

§ 16.] We can now prove very easily the general proposition
indicated above in § 14.

If P be the sum of any number of square rools, say /p, g,
A1 . . ., the rationalising factor Q is obtained for P by multiplying
together all the different factors that can be obtained from P as
Jollows :—Keep the sign of the first term unchanged, and take every
possible arrangement of sign for the following terms, except that which
occurs in P itself.

For the factors in the product Q x P contain every possible
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arrangement of the signs of all but the first term. Hence along with
the + sign before any term,say that containing #/g, there will occur
every possible variety of arrangement of all the other signs ; and
the same is true for the — sign before 1/g. Hence, if we denote
the product of all the factors containing + /g by ¢(+/g), the
product of all those factors that contain — /¢ will differ from
¢(+/q) only in having — /g in place of + a’g, that is, may be
denoted by ¢(— a/g). Hence we may write Qx P =¢(4/g)
x ¢(— A/q), which, by § 15, cor. 1, is rational so far as /g is
concerned. The like may of course be proved for every one of
the irrationals/p, v/g, o/r. ... Hence Q x P is entirely rational,
as was to be shown.

§ 17.] Every rational function, whether integral or not, of any
number of square rools; Np, NG, NT . . ., can be expressed as the sum of
a rational part and rational multiples of Np, Ng, N'r, dc., and of their
products ~pq, ~pr, Var, Npgr, de*

For every rational function is the quotient of two rational
integral functions, say R/P. Let Q be a rationalising factor of
P (which we have seen how to find), then

R _RQ

PTPQ
But PQ is now rational, and RQ is a rational infegral function of
D, /g, Nr. . ., and can therefore be expressed in the re-
quired form. Hence the proposition is established.

1
Example 1. To express TF V2773 8 & sum of rational multiples of

square roots. Rationalising tho denominator we obtain by successive steps,

1 _ 1+a/2-4/8
T+/24/8 (1+ /27— (v/3)

* Besides its theoretical interest, the process of reducing a rational func-
tion of quadratic irrationals to a linear function of such irrationals is important
from an arithmetical point of view ; inasmuch as the linear function is in
general the most convenient form for calculation. Thus, if it be required to
calculate the value of 1/(1+4/2+4/38) to six places of decimals, it will be
found more convenient to deal with the equivalent form &+ }4/2 - }a/6.
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_1+4/2-4/8
T2
_V/21+/2- «/

2x2

=14(v/2+2-4/6),
=$+1iv2-14/6.

Example 2. Evaluate (-2 +1)/(2®+2z+1), where z=4/3 +A/5.

P-z+1_9+2VI5-V3-4/5
P+z+l 94+ 2V15+V3+5

(9+2\/15)2 2(9+24/18) (V/3 +«/5)+(\/s+\/5)’
(9+2V15p - (VB +/5)

_ 149 - 384/3 - 305+ 3815
1ss+s4V15

_(149- ss«/s - 30"/5+38+/15) (133 - 344/15)
133734 x 15

+4s7+4eV3 1140/5 - 12V15
349

GENERALISATION OF THE FOREGOING THEORY.

§ 18.] It may be of use to the student who has already
made some progress in algebra to sketch here a generalisation of
the theory of §§ 13-17. It is contained in the following pro-
positions :—

. .
I.EveryiMegraIﬁmdioncfp;mberedmedtothefmn
1 3
A+ Apr+ Ap*+. . .+ A, ,p ,whereA A, ... As, are.
1

rational, as far as p is concerned.
After what has been done this is obvious.
1 1 1
II. Every integral function of ¥, g™, 1™, di., can be expressed as
2 i-1 1 1 2 m- l 1 32 n- l

a,hmarfum:twnofﬂp‘ U ™™ ;™
dc., and of the products of these quandities, t'wo, three, de., at a tzme
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11 31
viz, o ¢™, pt g™, dc., the coefficients of the linear fumction being
11 1

rational, so far as pY, g™, ™, dec., are concerned.

Proved (as in § 15 above) by successive applications of I.

1 2
II. A rationalising factor of Ao+ A, p*+ Ap™+ . .
a-1

+Ap,p ® can always be found.
We shall prove this for the case n=3, but it will be seen
that the process is general.

Let P=A,+Apt+ Apd ),
then PP =pA, + Agh+ Ap} (@)
and P8P =pA, + pA, p} + A p} (3).

Let us now put z for p, and y for p3, on the right-hand sides of
(1), (2), and (3); we may then write them

(Ao-P)+Az+Ay=0 - (1),
(pA,-7'P) + A+ Ay =0 )
(pA, - p'P) + pAz + Ay =0 (3),

whence, eliminating z and y, we must have (see chap. xvi., § 8)
(A.—P) (A - pA.A,) + (pA, - pIP) (PA/' - AdA,)
+ (pA, - pIP) (A" - A,A,) =0 (4).
Whence
{(AS - PAA,) + (A, - AA )b + (A - AA,pH) P
= Ao(Ao’ -pAA) +PA1(PA1’ - AoAx) + PAn(Au’ - AoAr)
=AS+pA’+ p'A - 3pAAA, (%)
Hence a rationalising factor of P is
(A‘,’ _PA)AI) + (PA: - AoAlh’i + (Al’ - A0A1)Pl (6)’
and the rationalised result is
Al +pAl+p'A - 3pAA LA, (7).
The reader who is familiar with the elements of the theory
of determinants will see from the way we have obtained them
that (6) and (7) are the expansions of

1 A, A‘ '
b A A (6),
A, A,

VOL. I. 0o
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and
A, A A
PA, A, A ()
PAl PAl A,

and will have no difficulty in writing down the rationalising
factor and the result of rationalisation in the general case.

IVv. 4 ratumalmng Jactor can be found for any rational integral
1

fmwtwn of 7, q"", . . . &c., by first rationalising with respect
1

P %, then rationalising the result with respect to g’T‘, and so on,
1 11

V. Every rational function of g, g™, v, whether integral or mot,

12 -1 1 2

can be expressed as a linear fumction of prp‘ PV
m-1

™ . ; and of the products p‘q”‘v”' . , the coefficients of
the function being rational, sofaraspT q’",ﬂ'arecmwermd.

For every such function has the form P/Q where P and Q
are rational and integral functions of the given irrationals; and,
if R be the rationalising factor of Q, PR/QR will be of the form
required.

Example 1. Show that a rationalising factor of zt +y¥ +2z1 is
(@l +y1 +2 —yhed ol iy
x(2d +yd +21 +2ybad - shat —ziyl)
x (zd +yt + 28 —y¥ b 1 2dad iyt
x (@l +yd 421y ot — adgh poziyh);
and that the result of the rationalisation is (z+y+2)* - 27zyz.

Exercises XIV.
Express as roots of rational numbers—
(L) 2¥x8-¥x4abxot, (2) {J(6h}+ {2/ Eh)
(8.) SN2V (4) {/(6%81)} x {/(169)}.
Simplify the following—
(8.) {(a—2b-2)Wafb} x %/alkn-1plin-1),
(6.) (z(b+0)l(o - a.)) 1Ka-1b) (z(c+a)Ka - b)) 1/b-0) » (z(a+b)l('b - c)) 1c-a),

(1) YW ()= Y 2 x " .
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(8) @ 1-y~N)j@-t-y-d. 9) (-2+2- ) (z-2+271).
(10.) (z+2~1)2(2d-z—1)8,
(1) @ -zt +1) (@ +at+1)(z-ad+1).
(12.) (24 -z~ foyk 4 Batyl) (k< yh).
(18.) (2t +492)/(ad + 2Ay% + 29).
(14.) 24 -1+ 2828 - 1)+ 128+ 1/(2E +1)). _
(16.) (22/m = 2V /nyl/n 4 y3im) (1 4 g1 AnyL 20 o g L1m) (1/m — yLIm),
(16.) Show that z/(z} - 1) - 2#/(2A + 1) - 1/(ad - 1)+ 1/(z} + 1) =B+ 2.
(17.) If ¢(z)=(a*-a=)f(a*+a=), F(z)=2/(a*+a"%),
then Hz+y)= {$(z)+ W)}/ {1+ px)(y)} ;
Fz+y)=Fx)F(y)/{1+¢(z)p(y) }.
(18.) If z#[y2=1, then zP-m/ys—n=znp/s—m = zn—ma[p,
(19.) If m=a*, n=a», mn*=a?h, then zyz=1.
Transform the following into sums of simple irrational terms :—
(20.) a/af(n/a+A/b)+A/b/(\/a~ /D).
(21.) (24/5 - 84/2+34/6)%.
(22.) (2+1-A/2+4/8)(2+1+4/2 - A/8)(2+1~A/2 - 4/8), arranging ac-
cording to powers of .
(28.) (1//z+1/n/a) (= - ad)/{(/a+n/2) - (v/a— n/z)%}.
(24') ‘\/(a"" {a(l "M)ls'\/m}’)-FG(m— l)/2\/m
A(a*+ {a(1 - m)/8n/m }?) - alm - 1)[2a/m’
N(pla+2)+~/(pla-z) _2
(5.) Ypfa+e)—n/(pla-ay "R W1

(26.) —— ——— ~"—, where z=4/(abd).

(27.) llw(p q)+\/p+'\/q}+1/{\/(p 9) - Np-~a} +1/(n/p - A/9).
COIVAT=— == | VA =vail S

(29.) (\/(e+b+c)+a/(a—b+c)/(A/(@a+b+e)—A/(@a-b+c))>

(80.) {(\/(2 - 9)+/p- D)\ (P~ 9)- NP~ A)}.

(31.) (22— 6z+5)/( &2+ /4 +1).

(82.) (@*+8 /22 +1)/(z+ o/2-1).

(38.) {¥/(@+8)- ¥ (@~} {(&/(a+B)P+(Y(a-B)Y - /(a- B}
(34 Show that(} % ://8 :; +( +://8 :; Lae- %22 (- 2))
(35.) (V(P+1)+A/(#*-1))2+(V/(P*+1)-A/(#2-1))2=(P*-§)\/(P* +1).
(36.) v/ {n/(@*+ /(@) + N8+ /(@) } =(ad +B3).
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(87.) (V== /P Vz+ V).
(88.) (1+A/8+A/B+A/T)(1—A/8=A/5+AST). ¢
(89.) Z(/B+A/)[(\b+a/c - A/a)— 4Za(A/b+ A/)I( /b +A/c = \/a).

Rationalise the following : —

(40.) 8.5% -4k, (41.) SA/(b+c—a).
(42.) A/6+4/8+4/4~A/6. (48.) 8.28 +4.28-1.
(44.) ad+3¥ 4 b (45.) 224241,

(46.) Tfu=aa/(1+ %)+ yn/(L +2%), then /(1 + %) =y -+ N/((1+ 21 +99).
(47.

2
) Vo= +ne-a +V@-9
_y =t +@-2+ @yl +(y-2)z -2z -y)t
- B+yP+2 -z -2y
(48.) If 2=1/(A/b+a/c—4/a), y=1/(a/c+a/a—a/b), e=1[(r/a+A/b
=A/e), u=1/(na+a/b+a/c),
then O(-z+y+2+u)/(Se— uP=1(d+c - a)/8abe.
oys

Historical Note.—The use of exponents began in the works of the German
““ Cossists,” Rudolff (1625) and Stifel (1544), who wrote over the contractions
for the names of the lst, 2nd, 8rd, . . . powers of the variable, which had been
used in the syncopated algebra, the numbers 1, 2, 3,. . . Stifel even states
expressly the laws for multiplying and dividing powers by adding and subtracting
the exponents, and indicates the use of negative exponents for the reciprocals of
positive integral powers. Bombelli (1579) writes _, 1, 2, 8,. . ., where
we should write 2%, z, 23 2%, . . . Stevin (1585) uses in a similar way (©), @,
, @, . . ., and suggests, although he does not practically use, fractional
powers such as @), (@), which are equivalent to the z3, z3, of the present day.

Vidte (1591) and Oughtred (1681), who were in full possession of a literal
calculus, used contractions for the names of the powers thus—Ag, Ac, Agg, to
signify A3, A%, A, Harriot (1631) simply repeated the letter thus, aa, aaa,
aaaa, for a3, ad, a'. Herigone (1634) used numbers written after the letter,
thus, A, A2, A3,. . . Descartes introduced the modern forms A, A%, A3, . . .
The final development of the general idea of an index unrestricted in magnitude,
that is to say of an exponential function a%, is due to Newton, and came in
company with his discovery of the general form of the binomial coefficients as
functions of the index. He says, in the letter to Oldenburg of 18th June 16786,
‘‘Since algebraists write a3, a3, af, &c., for aa, aaa, aaaa, &c., so I write
a:, al, al, for A/a, A/ad, A/c.a®; and I write @), a3, a=®, &c., for %, ala’
aaa &

The sign A/ was first used by Rudolff; both he and Scheubel (1561), used
m/ to denote 4th root, and 4/ to denmote cube root. Stifel used both A/%
and o/ to denote square root, A/33. to denote fourth root, and so on. Girarg.
(1633) uses the notation of the present day A/, A, &c. Other authors of the
17th century wrote A/2:, A/3:, &c. . So late as 1722, in the second edition of
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Newton's Arithmetica Universalis, the usage fluctuates, the three forms /3 :,
A/%:, &Y all occurring.

In an incomplete mathematical treatise, entitled De Arte Logistica, &c.,
which was found among the papers of Napier of Merchiston (1550-1617 ; pub-
lished by Mark Napier, Edinburgh, 1839), and shows in every line the firm grasp
of the great inventor of logarithms, a remarkable system of notation for irration-
e
als is described. Napier takes the figure and divides it thus 4][8][6.
e[
He then uses _J, |_J, L_, &c., which are in effect a new set of symbols for the
nine digits 1, 2, 8, &c., s radical signs. Thus L |10 stands for A/10, L_10 for
V10, _P10 for ¥/10, 10 for ¥/10, _] 2 or =] for /10 ; and so on.

Many of the rules for operating with irrationals at present in use have come,
in form at least, from the German mathematicians of the 16th century, more
particularly from Scheubel, in whose Algebra Compendiosa Facilisque Descriptio
(1661) is given the rule of chap. xi. § 9, for extracting the square root of a
binomial surd. In substance many of these rules are doubtless much older (as
old as Book X. of Euclid’s Elements, at least) ; they were at all events more or
less familiar to the contemporary mathematicans of the Italian school, who did
8o much for the solution of equations by means of radicals, although in symbol-
ism they were far behind their transalpine rivals. See Hutton's Mathematical
Dictionary, Art. Algebra. T -

The process explained at the end of next chapter for extracting the square or
cube root by successive steps is found in the works of the earliest European
writers on algebra, for example, Leonardo Fibonacci (c. 1200), and Luca Pacioli (c.
1500). The first indication of a general method appears in Stifel’s Arithmetica
Integra, where the necessary table of binomial coefficients (see p. 79) is given.
It 18 not quite clear from Stifel’s work that he fully understood the nature of the
process and clearly saw its connection with the binomial theorem. The general
method of root extraction, together with the triangle of binomial coefficients, is
given in Napier's De Arte Logistica. He indicates along the two sides of his
triangle the powers of the two variables (preecedens and succedens) with which
each coefficient is associated, and thus gives the binomial theorem in diagram-
matic form. His statement for the cube is—* Supplementum triplicationis tribus
constat numeris; primus est, duplicati preecedentis triplum multiplicatum per
succedens ; secundus est, preecedentis triplum multiplicatum per duplicatum suc-
cedentis ; tertius est, ipsum triplicatum succedentis.” In modern notation,

(a+b)® - a®=8a% + 3ab®+ .



CHAPTER XI
Arithmetical Theory of Surds.
ALGEBRAICAL AND ARITHMETICAL IRRATIONALITY.

§ 1.] In last chapter we discussed the properties of irra-
tional functions in so far as they depend merely on outward
form ; in other words, we considered them merely from the
algebraical point of view. 'We have now to consider certain
peculiarities of a purely arithmetical nature. Let p denote any
commensurable number,; that is, either an integer, or a proper or
improper vulgar fraction with a finite number of digits in its
numerator and denominator ; or, what comes to the same thing,
let » denote a number which is either a terminating or repeating
decimal. Then, if #» be any positive integer, »/» will not be
commensurable unless p be the nth power of a commensurable
number ;* for if y/p=F%, where % is commensurable, then, by the

definition of A/p, p =", that is, p is the nth power of a commen-
surable number.

If therefore 2 be not a perfect nth power, ~/p is incommensur-
able. For distinction’s sake %/p is then called a surd number.
In other words, we define a surd number as the sncommensurable

"| root of a commensurable number.

Surds are classified according to the index n of the root to
be extracted, as quadratic, cubic, biquadratic or quartic, quintic,
. . n-tic surds.

* This is briefly put by saying that p is a perfect nth power.
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The student should attend to the last phrase of the definition of a surd ;
because incommensurable roots might be conceived which do not come under
the above definition ; and to them the demonstrations of at least some of the
propositions in this chapter would not apply. For example, the number e
(see the chapter on the Exponential Theorem in Part II. of this work) is incom-
mensurable, and A/¢ is incommensurable ; hence a/¢ is not a surd in the exact

sense of the definition. Neither is 4/A/2+1, for A/2+1 is incommensurable.
On the other hand, 4/4/2, which can be expressed in the form :/ 2, does come
under that definition, although not as a quadratic but as a diguadratic surd.
He should also observe that an algebraically irrational function, say a/z,
may or may not be arithmetically irrational, that is, surd, strictly so called,
according to the value of the variable 2. Thus /4 is not a surd, but o/2 is.

CLASSIFICATION OF SURDS.

§ 2.] A single surd number, or, what comes to the same, a
rational multiple of a single surd, is spoken of as a simple mono-
mial surd number. The sum of two such surds, or of a rational
number and a simple monomial surd number, as a simple binomial
surd number, and so on.

The propositions stated in last chapter amount to a proof of
the statement that every rational function of surd numbers can
be expressed as a simple surd number, monomial, binomial,
trinomial, &c., as the case may be.

§ 3.] Two surds are said to be similar when they can be expressed
as rational multiples of one and the same surd.

For example, ~/18 and /8 can be expressed respectively in
the forms 3 4/2 and 2 4/2, and are therefore similar; but /6
and /2 are dissimilar.

Again, /54 and /16, being expressible in the forms 3%/2
and 2 /2, are each similar to /2.

All the surds that arise from the extraction of the same nih root
are said to be equiradical.

Thus pt, pt, pt, p¥ are all equiradical with pi.

1 g

1

There are n — 1 distinct surds equiradical with p», viz., p», p*
n-1

.p ™, and no more.
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mn . »
For, if we consider »» where m >, then we have p™ =

» i 2
p**n where p and v are integers, and v <n. Hence p®=p* p®
= a rational multiple of one of the above series.

AUl the surds oquiradical with p"-l- are rational functions (namely,
poitos inlegrad povers) of % and every raional uncion of 2 o of
wdseqrdradiwlwithp%ﬂwybeezpressedasalimarfmﬁmofthe
n—1 distined surds whz;ch are egquiradical with p’l‘, that s, in the

1 n-1

form Ao+ A"+ AP+ .. . + Ay 0™, where Ay, 4,, . .
1

A,_, are rational so far as p® is concerned.
This is merely a restatement of § 18 of chap. x.

§ 4.] The product or quotient of two similar quadratic surds is
rational, and if the product or quotient of the two quadratic surds s
rational they are similar.

For, if the surds are similar, they are expressible in the
forms A +/p and B/p, where A and B are rational ; therefore
AVpxBap=ABp; and A./p/Bsp=A/B, which proves the
proposition, since ABp and A/B are rational.

Again, if A/p x J/g=A, or A/p/[Jg=B, where A and B are
rational, then in the one case »/p=(A/g) /g, in the other A/p
=B+/g. But A/q and B are rational. Hence +/p and +/g are
similar in both cases.

The same is not true for surds of higher index than 2, but
the product of two similar or of two equiradical surds is either rational
or an equiradical surd.

INDEPENDENCE OF SURD NUMBERS.

§6.] If p, ¢ 4, B be all commensurable, and /p and /g
_incommensurable, then we canmot have

VMp=A+BW g

h
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For, squaring, we should have as a consequence,
p=A"+B'q+2AB Jg;
whence
_p-A'-BYy
Ve
which asserts, contrary to our hypothesis, that /g is commensur-
able. -

It is of course supposed that A=+0. Since every rational
function of 4/¢ may (chap. x., § 15) be expressed in the form
A + B Jg, the above theorem is equivalent to the following :—

One quadratic surd cammot be expressed as a rational function of
another which is dissimilar to if.

Since every rational equation between /p and /g, which is
not a mere equation between commensurables (for example,
( ~/3)' +(#/2)" = 5), is reducible to the form

A~pg+BNp+CVg+D=0,

where A, B, C, D are rational ; and since this equation may im-
mediately be reduced to another of the form
Np=L+Mdg,
where L and M are rational, it follows that
No rational relation, which is not a mere equation between rational
numbers, can subsist between two dissimilar quadratic surds.

§ 6.] 4 quadratic surd canmot be a rational function of two dis-
similar quadratic surds.

Suppose, if possible, that +/p is a rational function of 4/g and
&/r; then, since (chap. x., § 15) every such function reduces
to A + B ¥g+ C~/r+ DVgr, where A, B, C, D are rational, we
should have _ _

Vp=A+BVg+Cr+Dvgr.
If we square, this leads to
p=(A+Bvg+CWr+Dgr),

which is a rational equation connecting two dissimilar quadratic
surds, »/g and /7, and is not a mere equation between mt.ionsl
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numbers ; but no such equation can exist by § 5 above. Hence
Vp cannot be a rational function of #/g and Wr.

An important particular case of the above is the following :—

A quadratic surd cannot be the sum of two dissimilar quadratic
surds.

It will be a good exercise for the student to prove this
directly.

§ 7.] The theory, which we have established so far for
quadratic surds, may be generalised, and also extended to surds
whose index exceeds 2. This is not the place to pursue the
matter farther, but the reader who has followed so far will find
the ideas gained useful in paving the way to an understanding
of the delicate researches of Lagrange, Abel, and Galois regarding
the algebraical solution of equations whose degree exceeds the
4th. '

§ 8.] It follows as a necessary consequence of §§ 5 and 6,
that, if we are led to any equation such as
A+BVp+CVg+DVpg=0,
then we must have
A=0, B=0, C=0, D=0.
One case of this is so important that we enunciate and prove it
separately.
If 2, y, z, u be all commensurable, and \/y, and »/u tncommen-
surable, and if z+ N/y=z+ A/u, then must z=z and y = u.
For if z+ 2z, but =a + z say, where @ + 0, then by hypothesis
a+z2+ y=2z+ A/u,
whence a+ y= u,
@ +y+2aay=u,

u-a'-
Vy= 2a ?

which asserts that ./y is commensurable. But this is not so.
Hence we must have z=2z; and, that being so, we must also
have A/y= a/u, that is, y =u.
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SQUARE ROOTS OF SIMPLE SURD NUMBERS.

§ 9.] Since the square of every simple binomial surd number
takes the form p + /g, it is natural to inquire whether 4/p + +/¢
can always be expressed as a simple binomial surd number, that
is, in the form 4/z + A/y, where z and y are rational numbers.
Let us suppose that such an expression exists; then

\/j’+79= Nz + ~/!/,

whence P+ Ng=z+y+ 2y

If this equation be true, we must have, by § 8,
z+y=p (1),
2Vzy= Ng (2);

and, from (1) and (2), squaring and subtracting, we get
@+y) - 4ay=p'-g,

that is, (z-9)'=p"-¢ (3).

Now (3) gives either

z-y=+ Vp'—g (4),
or z-y= - “/I_”t_q (4%).
Taking, meantime, (4) and combining it with (1), we have
@+y)+@-y)=p+ Np'—¢ (5),
@+9)-@-9)=p-vo'-¢ (6);
whence 2=p+ MNP —g,
2y=p- N/ pi -q5
that is, z= IL’*QP_—Q (7),
= s
y:ﬂ__fl_i (8)-

If we take (4*) instead of (4), we simply interchange the values
of z and y, which leads to nothing new in the end.
Using the values of (7) and (8) we obtain the following result: —
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Jo=x [P+ Vép'—q),
Jy=+ /P;'s/z(ii-_q),

gince, by (2), 24/z x 4/y = + a/g, we must take either the two
upper signs together or the two lower.

If we had started with 4/ — #/g, it would have been neces-
sary to choose a/z and a/y with opposite signs,
Finally therefore we have

ST s ( JELT=D | i -9>> o),

V- Jg=1% ( JP + Jgp'~ 9 _ \/p - Jép'~9)>(9-).

The identities (9) and (9*) are certainly true; we have in fact
already verified one of them, see chap. x., § 9, ex. 14. They
will not, however, furnish a solution of our problem, unless the
values of z and y be rational. For this it is necessary and
sufficient that p*— ¢ be a positive perfect square, and that p be
positive. Hence the square voot of p + a/q can be expressed as a

(4. Simple binomial surd number, provided p be positive and p* - g be a

positive perfect square.

Example 1. Simplify /19— 4V/21.
Let V19 - 4V21 =Nz + V.
Then z+y=19,
2‘\/5\/17: - 4‘\/2—1,
(2 - =861 — 336
=25,
z-y=+D) say,
z+y=19;
whence z=12, y=7,
} Nz=£/TE, Vy=FVi,
80 that V19 - 4V21 = £ (V12- V7).
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Example 2. To find the condition that a/A/p+A/g may be expressible in
the form (a/z+4/y) :/p we have

4

NNP+Na=Npx A/ 1+Valp.
Now 4/ 1+~glp will be expressible in the form a/z-+n/y, provided
1-g/p be a positive perfect square ; this, therefore, is the required condition.
For example,

Vivirevii= Yix Vsiade
= & V/7(n/3+~/2).

Example 8, It is obvious that in certain cases &/ p+a/gq+A/r+4/s must
be expressible in the form a/z+A/y+4/z. To find the condition that this
may be so, and to determine the values of 2, y, 2, let

NP+ N+ NN a= Tk Ay ),
then P+Ng+NTHNs=z+y+2+ 2V + 2V + 2y (2).
Now let us suppose that
2\V/yz =\/E (8),
2Vzy="s (6).
From (4) and (5) we have by multiplication
4z\z=N'rs;
. 8
whence, by using (8), z=% J; (6).
Proceeding in like manner with y and z, we obtain
v=1,/% Y

5=* ﬁ ‘ (8).
It is further necessary, in order that (2) may hold, that the values (6), (7),
(8) shall satisfy the equation
z+y+z=p (9),
that is, we must have

78 qs qr _. .
'\/;" N/: + '\/: % 10
Since in (10) the signs throughout must be positive, each of the square
roots must be rational. Hence we must have
S @ Tr_.s.
q =at, r -—ﬂ' ' g —‘Y' H
where a, 8, v are rational numbers, such that

a+B+y=2p,
whence, in turn, we obtain
g=py, r=ve, s=af.
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ARITHMETICAL METHODS FOR FINDING APPROXIMATE RATIONAL
VALUES FOR SURD NUMBERS.

§ 10.] It has already been stated that a rational approxima-
tion, as close as we please, can always be found for every surd
number. It will be well to give here one method at least by
which such approximations can be obtained. 'We begin with the
approximation to a quadratic surd; and we shall afterwards

" show that all other cases may be made to depend on this,

- § 11.] First of all, we may point out that in every case we
may reduce our problem to the finding of the integral part of
the square root of an integer. Suppose, for example, we wish
to find the square root of 3:689 correct to five places of decimals.
Then, since /3689 = /' 36890000000/10°, we have merely to
find the square root of the integer 36890000000 correct to the
last integral place, and then count off five decimal places.

§ 12.] The following propositions are all that are required
for the present purpose :—

1. The result of subtracting (A + B)* from N is the same as the .

result of first sublracting A’, then 24 B, and finally B,

This s obvious, since (4 + B)'= A*+ 24B + B°.

II. If the first p out of the n digits of the square root of the
integer N have been found, so that PYO™? is a first apprazimation
to NN, then the next p— 1 digits will be the first p— 1 digits of the
indegral part.of the quotient {N — (P107-2)"} /2P10"-2.

Let the whole of the rest of the square root be Q. Then

VN =P10"-7 4 Q,

where 107-1<P <107, Q< 10%-7;
whence N =(P1077)’ + 2PQ10"-? + Q’,
N-(F107 Qe 2 ).
2P10"-? 2P107-7-
Now

Q'/2P107-2<10%*-2)/2 x 10P-110"-P<10"-P+1/2,
Hence Q/2P10™? will at most affect the (n— 2p)th place
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from the right, that is, since Q contains n —p digits, the first
n—-p-(n—2p+1)=p-1 digits in the quotient on the left-hand
side of (1) will be correct.

§ 13.] In the actual calculation of the square root the first
few figures may be found singly by successive trials. Proposi-
tion I. being used to find the residues which must, of course,
always be positive. Then proposition IL may be used to find
the succeeding digits in larger and larger groups. The approxi-
mation can thus be carried out with great rapidity, as will be
seen by the following example :—

Let it be required to find the square root of N =680100000000000000,
which, for shortness, we write 6801(14).

Obviously 8(8)<A/N <9(8), in other words, o/N contains 9 digits, and the
first is 8.

Now N —(8(8))2=401(14), which is the first residue. We have now to
find the greatest digit = which can stand in the second place, and still leave
the square of the part found less than N, that is (by proposition I.), leave the
residue 401(14) — 2 x 8(8) x 2(7) — {«(7)}2 positive. It is found by inspection
that x=2. Carrying out the subtractions indicated, that is, subtracting
{16(8)+2(7)} x 2(7)=162x 2(14) from 401(14), we have now as residue
7700(12).

The double of the whole of the part of o/N now found is 164(7); and
we have next to find y as large as may be, so that 7700(12) - {164(7)+ y(6)}
x y(6) shall remain positive. This value of y is seen to be 4. It might, of
course, be found (by proposition IL) by dividing 7700(12) by 164(7), and
taking the first figure of the quotient.

The residue is now 112400(10). The process of finding the first four
digits in this way may be arranged thus :—

8(8) : 6801(14) 8(8)
16(8) 6400(14)
162(7) 401(14) +2(7)
164(7) 324(14)
1644(6) 7700(12) +4(6)
1648(6) 6576(12)
16486(5) 112400(10)  +6(5)
16492(5) 98916(10)

134840(9)

‘We might, of course, continue in the same way, figure by figure, as long as
we please ; and we might omit the records in brackets of the zeros in each line.

Having, however, already found four figures, we can find three more by
dividing the residue 134840(9) by 16492(5), which is the double of 8246(5),
the part of /N already found.
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131936

29040
16492

125480
115444

10086000(4)

The next three digits are therefore 817. 10036000(4) is not the residue;
for we have only subtracted from A/N as yet {8246(5)}* and 2 x 8246(b)
x 817(2). Subtracting also {817(2)}? we get the true residue, viz.,
93685110000. We may now divide this by 2x8246817(2), that is, by
1649368400, and thus get the last two figures. We have then

10086000(4)
667489(4)

1649363400 | 93685110000 | 56
8246817000

11216940000
9896180400

1820759600

‘We have now found the whole of the integral part of A/6801(14), namely,
824681756,

If it were desired to carry the approximation farther, 8 places after the
decimal point could at once be found by dividing the true residue
(1820759600 — 562) by 2 x 824681756, If we require no more places than those
8 places, then the residue is of no importance, and we may save labour by
adopting the abbreviated method of long division (see Brook Smith’s Arith-
metic, chap. vi. § 158). Thus

1820769600
3136

1848RRER1R | 1320756464 l 80076736
1819490810

1265654
1154554

111100
98962

12138
11545

593
495

98
98
0

16492(5)' 184840(9) | 817(2)
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We thus find A/6801(14)=2824681756°80076736. On verifying, the reader
will find that in point of fact
: (824681756-80076736)%=680100000000000001°82 . . .

It will be a good exercise for him to find out how many decimal places of
the square root of a given integer must be found before the square of the
approximation ceases to be incorrect in the last integral place. .

§ 14.] By continually extracting the square root (that is to
say, by extracting the square root, then extracting the square
root of the square root, and so on,) we may bring any number
greater than unity as near unity as we please. In other words,
by making n sufficiently great, N*/*" may be made to differ from 1
by less than any assignable quantity.

For let it be required to make N*/*" less than 1 + a where a is
any positive quantity. This will be done if 2® be made such
that (1+a)">N. Now (chap. iv., § 11)(1+a)" =1+ 2% +a
series of terms, which are all positive. Hence it will be sufficient
if we make 1+ 2%a>N, that is, if we make 2%a > N — 1, that
is, if we make 27> (N — 1)/a, which can always be done, since
by making n sufficiently great 2* may be made to exceed any
quantity, however great.

Example. How many times must we extract the square root beginning

with 61 in order that the final result may differ from 1 by less than 001%

‘We must have
2* > (51-1)/°001,
2* > 50000.
Now 218-32768, 21%=65636,
hence we must make n=16.

In other words, if we extract the square root sixteen times, beginning
with 51, the result will be less than 1-001.

§ 15.] It follows from § 14 that we can approximate to any
1

surd whatever, say p®, by the process of extracting the square
root. For (see chap. ix., § 2) let 1/n be expressed in the binary
scale, then we shall have

1_n,8, 2
”—§+2,+2,+... +p

where each of the numerators Dy s - . . s either 0 or 1,and p is

either absolutely 0, or <1/2" where r is as great as we choose.
VOL. I. P
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Hence
1
p;=p22;+%+}2_’:+' TS
n m
=p’><p”><p%...xp" ().

Now, excepting the last, each of these factors is either 1, or of
the form p'/*’, which can be approximated to as closely as we please
by continued extraction of the square root. If x=0, the last
factor is 1 ; and if u<1/2", since r may be as great as we choose,
we can make it differ from 1 by as small a fraction as we choose.
It follows therefore that the product on the right hand of (1)
may be found in rational terms as accurately as we please.
1

Example. To find an approximate value of 515,
‘We have

1 1,1,1,1.,1 ,1 1 /1 ,1 1
gmatatptatmtmtamtontmtoamts
whemu<;i-
Now we have, correct to the fourth decimal place, the following values :—

51!§’= 267234,
51;_‘=1 *27857,
51;7 =1-06386,
51;‘0 =1-01548,
51;17’ =1+00885,
51%‘—’= 100096,
51%‘4: 100023,
51;1t= 100006,
BI;T’= 1-00002,
51;7" <1°00001.
Hence, multiplying the first nine ;mmben together, we get

518 = 3-70841.
The correct value is 3:708429. . . .

§ 16.] The method just explained, although interesting in
theory, would be very troublesome in practice.
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The method given in § 13 for extracting the square root may
be easily generalised into a method for extracting an nth root
directly, figure by figure, and group by group of figures. The
student will be able to establish for himself two propositions,
counterparts of I. and II., § 12, and to arrange an algorithm for
the economical calculation of the residues. A method of this
kind is given in most arithmetical text-books for extracting the
cube root, but it is needless to reproduce it here, as the extrac-
tion of cube and higher roots, and even of square roots, is now
accomplished in practice by means of logarithmic or other tables
{see chapter on Logarithms).

Our reason for dwelling on the more elementary methods of
this chapter is a desire to cultivate in the mind of the learner
exact ideas regarding the nature of approximative calculation—
a process which lies at the root of many useful applications of
mathematics.

SQUARE ROOT OF AN INTEGRAL FUNCTION OF 2,

§ 17.] When an integral function of zis a complete square
as regards z, its square root can be found by a method analogous
to that explained in § 12, for finding the square root of a number.
Although the method is of little interest, either theoretically or
practically, we give a brief sketch of it here, because it illustrates
at once the analogy and the fundamental difference between
arithmetical and algebraical operations.*

1. We may restate Proposition I. of § 12, understanding now
A and B to mean integral functions of z.

IL If F=p2 + p 221 4. . . + Pon, and if JF = (g2 + g2™1

Foo ot gt PN 4 (g P+, . . +q)=P+0Q, say; and if
we suppose the first p terms, namely, P=qa" + ¢ 1 +. ..+ @n-pt
a-P+1 of JJF to be known, then the next p terms will be the first p
terms in the integral part of (F — P*)/2P. .

For we have F=P'+2PQ+Q’;

* The method was probably obtained by analogy from the arithmetical
process. It was first given by Recorde in The Whetstone of Witte (black
letter, 1567), the earliest English work on algebra.
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F-P* 2
hence W—_—Q"-ﬁ.

Now the degree of the integral part of Q°/2P is 2(n—p)-n
=n-2p. Hence Q'/2P will at most affect the term in z7-%.
Hence (F — P*)/2P will be identical with Q down to the term in
27-%+1 inclusive. In other words, the first n—p—(n—-2p)=p
terms obtained by dividing F — P* by 2P will be the p terms of
the square root which follow P.

We may use this rule to obtain the whole of the terms one
at a time, the highest being of course found by inspection as the
square root of the highest term of the radicand ; or we may ob-
tain a certain number in this way, and then obtain the rest by
division.*

The process will be understood from the following example,
in which we first find three of the terms of the root singly, and
then deduce the remaining two by division :—

Example.
To find the square root of .
2104 620 + 1328 + 427 — 182% — 1225+ 1428 — 1223+ 922 — 2z + 1

146+18+ 4-18-12+14-1249-2+1|+1
1 1
6+13+ 4-18-12+14-12+0-2+1|+3
2+38 6+ 9
4+ 4-18-12+14-1240-2+1+2
24642 4+12+ 4
~ 8-22-12414-1240-2+1|-4
2+6+4—4 - 8-24-16+16
2+ 4- 2-1249-2+1|+1-1
24+6+4-8 2+ 6+ 4~ 8
- 2- 6- 44+9-2+1
- 2- 6- 448
1-2+1

* Just as in division, we may, if we please, arrange the radicand according
to ascending powers of z. The final result will be the same whichever arrange-
ment be adopted provided the radicand is a complete square. If this is not
the case the operation may be prolonged indefinitely just as in continued
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Hence the square root is 5+ 8a#+22%-42°+2—1; and, since the residue
23— 22+ 1 is the square of the two last terms, namely, -1, we see that the
radicand is an exact square. Of course we obtain another value of the square
root by changing the sign of every coefficient in the above result.

A similar process can be arranged for the extraction of the
cube root ; but it is needless to pursue the matter further.

§ 18.] The student should observe that in the simpler cases
the root can be obtained by inspection ; and that in all cases the
method of indeterminate coefficients renders any special algorithm
for the ‘éxtraction of roots querﬂuous. This will be understood

16_extraciion of roots
from the following example.

Example.
To extract the square root of
0+ 629+ 1328 + 427 ~ 1828 - 1220+ 1424 - 122° + 922 - 2241 (1).
If the radicand be a complete square, its square root must be of the form

25+ pat + 2P+ ra + se+-t (2).
The square of (2) is .
2104 270 + (P2 + 29 )8+ (20g + 27027 + (2pr + P+ 28)8+. . . (8).

Now this must be identical with (1) ; hence we must have
2p=6, p°+2=18, 2pg+2r=4, 2pr+g*+2s=-18,

The first of these equations gives p=38 ; p being thus known, the second
gives ¢=2; p and ¢ being known, the third gives r=-4; and p, g, 7 being
known, the last gives s=1. We could now find ¢ in like manner ; but it is
obvious from the coefficient of = that ¢=~1.

Hence the square root is

2 +824+ 223 - 42+~ 1.

N.B.—The equating of the coefficients of the remaining terms of (1) and
(8) will simply give equations that are satisfied by the values of p, g, 7, s already
found, always supposing that the given radicand is an exact square.

A process exactly similar to the above will furnish the reot of an exact
cube, an exact 4th power, and so on.

Exercises XV.

Express the following as linear functions of the irrationals involved.
(L) /(n/11+4/8+A/14). (2.) V/12/(1+4/2)(/6 - A/3).
(8.) (1-~/2+4/8)/[(1+4/2+4/8)+(1 - A/2 - A/8)/(1+4/2 = A/8).
(4.) (8- /B)/(/3 +4/6)*+(8+4/6)/(n/8 - A/5).
(5.) A/B/(n/3+ /5~ 24/2) - A/2/(n/3+A/2 - 4/5).
(8.) (7 - 2/5)(5+A/7)(31+18r/5)/(6 — 24/7)(8+ A/6) (11 + 44/7).
(7.) A/(25+104/6). (8.) A/(8/2+4/2).

division. We leave the learner to discover the meaning of the result obtained

in such cases. The full discussion of the matter would require some refer-
ence to the theory of infinite series.
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(9.) A/(128 - 224/2). (10.) A/(44/2+124/26).

(11.) /{(8+44/10)/(8 - 4/10)}.

(12.) A/(7+4A/8)+A/(5 —24/6).

(18.) A/(15—4x/14)+1/A/(15+ 4a/14).

(14.) 1/a/(16+24/68) +1/+/(16 — 24/68).

(16.) 1/a/(164/8+64/21) + A/(164/3 — 64/21).

(16.) Calculate to five places of decimals the value of (A/(5424/8)
= A/(6 = 24/8))/(n/(5 +24/6) + A/(5 - 24/8)).

(17.) Calculate to seven places of decimals the value of A/(4/16+4/13)
+4/(A/15 - A/18).

Simplify—

(18.) V/{8+n(9-79} +/{8-(O-F)}.

(19.) a/{a+b-c+2a/(¥a-0))}.

(20.) A/{a®-2+ar/(a®-4)}.

@) Gor) ()

(22.) Show that o/{2+a/(2-~/2)} = ~/{‘2_+\/(:‘A;;«/‘2)}

2-4/(2+4/2) .
+ /\/ { 2 } :

(28.) Express in a linear form /(5 + /6 + A/10+4/15). .

(24.) » ”» A/(25 — 44/8 - 124/2 +6+/6).

(25.) If a?d=be, then a/(a+A/b+A/c+A/d) can always be expressed in
the form (n/z+A/y)(\/X+4/Y). Show that this will be advantageous if
a?- b and a? - ¢ are perfect squares.

(26.) If &/(a+A/b)=z+A/y, where a, b, z, y are rational, and /b and
A/y irrational, then ~Y(a—a/b)=2z-/y. Hence show that, if a?-b=23,
where [z is rational, and if =z be such that 4z%—S8az=a, then &/(a+a/b)
=z+ /(2 ~2).

(27.) Express in linear form &/(99 — 854/8).

(28.) " » ~/(895+984/18).

(29.) » » V(1782 4+744/5).

(30.) Show that /(90 +84A/7)— &/(90 — 844/7)=24/7.

(8L.) If 2= &/(p+9)+ ~/(p-q), and p*—g3=7> show that o*—8rz—-2p
=0.

(82.) If pyd + qyb +r=0, where p, g, r, y are all rational, and y# irrational,
then p=0, ¢=0, r=0. Hence show that, if z, y, z be all rational, and
2}, o4, 24 all irrational, then neither of the equations a3 +y¥=z, A+ =2} is
possible.

(83.) Find, by the full use of the ordinary rule, the value of o/10 to 5
places of decimals; and find as many more figures as you can by division
alone. Use the value of 4/10 thus found to obtain A/*004.

Extract the square root of the following :—
(84.) (yz+2x+ay)® - dayz(z+ ).
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(85.) 2523+ 993 +23+ 6yz — 102z — 30xy.

(86.) 924+ 2423+ 102 82+ 1. (87.) ot — 423+ 223+ 42+ 1.

(88.) 4t — 1228y + 26a% — 24P+ 1654,

(89.) 28— 624+ 42+ 92% — 122+ 4.

(40.) 428~ 1225+ 5ot + 222% — 282* — 8z + 16.

(41.) 27(p+9)(p* +¢°) - 2AP* +4pg + )

(42.) 22— 2za/2+ 82— 20/ +1.

(48.) Extract the cube root of

829 — 1228+ 627 — 878 + 864" ~ 9aA + b4x® — 2723 - 27.

(44.) Extract the cube root of

18(2® +p’g +pg* + ¢*) = 24/8(6p° + 3p%g - 8pg® - B¢®).

(45.) Show that \ can be determined so that 2#+ 6%+ 72% — 62+ \ shall be
an exact square.

(46.) Find a, b, ¢, 8o that o8- 82°+aat+b2®+cx®— 442+ 4 shall be an
exact square.

(47.) If ax*+ bz®+cx® be subtracted from (z’+9.1:+4)’ the remainder is an
exact square ; find a, b, c.

(48.) lf:d'+az'+bm‘+w'+dz’+a+fbe an exact square, nhow that

d=a* - §a’ + 15+ }ac,
e= — a®+ 3a’h - §a’c - jad®+ 4be,
J=viya® - fga'h + yalc+ g5a?h? - Jabe+ i ;
And that the square root is
2+ jazd + (- ja? +3b)k + (Fya® - ad + ¢).

(49.) 428+ 122"+ bt — 22 are the first four terms of an exact square ; find
the remaining three terms.

(50.) If 28+ 3dz®+ ex*+ fx*+ g2+ hz+k® be a perfect cube, find its cube
root ; and determine the coefficients ¢, f, g, A, in terms of d and %.

(51.) Show that

b¥a-b)(c—-b){(a—b)*+(c-b)3} —ab’c(a®+c3)+ b (a—-b+c)
is an exact cube.

(52.) Express a/{l1+z+2*+2*+.. .ado} in the form a+dz+ed+

. as far as the 4th power of 2. To how many terms does the square of
your result agree with 1+z+23+2%+. . .

(53.) Express, by means of the ordinary rule for extracting the square
root, ~/(1-=x)asan ascending series of integral powers of z, as far as the
4th power.

(64.) Express a/(z+1) as a descending series of powers of 2, calculating
six terms of the series.

(65.) Show that Lambert’s theorem (chap. ix. § 9) can be used to find
rational approximations to surd numbers. Apply it to show that 4/2=1+1/2
—-1/2.5+1/2.5.7-1/2.5.7.197 approximately ; and estimate the error.



CHAPTER XII
Complex Numbers.
ON THE FUNDAMENTAL NATURE OF COMPLEX NUMBERS.

§ 1.] The attempt to make certain formuls for factorisation
as general as possible has already shown us the necessity of in-
troducing into algebra an imaginary unit 4, having the property
= —1. It is obvious from its definition that i cannot be equal to
any real quantity, for the squares of all real quantities are positive.
The properties of ¢ as a subject of operation are therefore to be
deduced entirely from its definition, and from the general laws
of algebra to which, like every other algebraical quantity, it
must be subject.

Since ¢ must, when taken along with other algebraical quan-
tities, obey all the laws of algebra, we may consider any real
multiples of ¢, say yi and %%, where y and y are positive or
negative, and we must have yi=dy, i +yi=(y+¥)i=i{y +¥),
and 80 on ; exactly as if ¢ were a real quantity.

By taking all real multiples of ¢ from — wito + o i, we have
a continuous series of purely imaginary quantity,

—0t...-%t...0...+1...+018 L,
whose unit is i, and which corresponds to the series of real
quantity,

-—®o...-1...0...+41.. .4+ 11,

whose unit is 1.

No quantity of the series I. (except 0i) can be equal to any
quantity of the series I, for the square of any real multiple of 3,
say ¢, is "' =9(— 1)= —¢’, that is, is a negative quantity.
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Hence no purely imaginary quantity except 0t can be equal to a real
quantity. Since 0i=(+a—a)i= + (ai) - (ai) = 0, if the same
laws are to apply to imaginary as to real quantity, we infer that
0:i=0. Hence 0 is the middle value of the series of purely
imaginary, just as it is of the series of real quantity; it is, in
fact, the only quantity common to the two series.

Conversely, if yi=0, we infer that y=0. For, since yi=0,
yi x yi=0, that is, —4*=0; hence y=0.

§ 2.] If we combine, by addition, any real quantity z with a
purely imaginary quantity yi, there arises a mixed quantity z + yi,
to which the name complex number is applied.

We may consider the infinite series of complex numbers
formed by giving all possible real values to z, and all possible
real values to . We thus have a doubly infinite series of com-
plex quantjty. The student should note at the outset this double
character of complex quantity, on account of the contrast which
thus arises between purely real or purely imaginary quantity
on the one hand, and complex quantity on the other. Thus there
is only one way of varying z continuously (without repetition of
intermediate values) from — 1 to + 2, say, if z is to be always
real ; and only one way of varying z in like manner from - to
+ 2i, if z is to be always purely imaginary. But there are an
infinite number of ways of varying z continuously from —1 +4
to 2 + 34, say, if there be no restriction upon the nature of z,
except that it is to be a complex number. ’

This will be best under- '
stood if we adopt the
diagrammatic method of P
representing complexnum-
bers originally suggested 7 o
by Argand. 6

Let XOX’, YOY' be X 0 M X
two rectangular axes. We
shall call XOX’ the axis of ol g
real quantity, or z-axis;
and YOY’ the axis of purely imaginary quantity, or y-axis. To
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represent any complex number z + i we measure from O (called
the origin) a distance OM, containing z units of length, to the
right or left according as z is positive or negative ; and we draw
MP, containing ¥ units of length, upwards or downwards accord-
ing a8 y is positive or negative. The point P, or, as is more
convenient from some points of view, the “radius vector” OP, is
then said to represent the complex number z + %i. It is obvious
that to every conceivable complex number there corresponds one
and only one point in the plane of XX’ and YY’; and, conversely,
that to every one of the doubly infinite series of points in that
plane there corresponds one and only one complex number.

If P lie on the axis XX', then y =0, and the number z + yi is
wholly real. If P lie on the axis YY’, then 2=0, and 2+ i is
wholly imaginary. Now there is only one way of passing from
any point on XX’ to any other point, if we are not to leave the
axis, namely, we must pass
along the z-axis; and the
(Q same is true for the axis YY'.

Y

If, however, we are not re-
P stricted as to our path, there
A are an infinity of ways of
X O, PM QNX passing from one point in the

plane of XX’ and YY’ to any
Fig.2 other point in the same

plane. If we draw any con-
tinuous curve whatever from P to Q, and imagine a point to
travel along it from P to Q, the value of z corresponding to the
moving point will vary continuously from the value OM to the
value ON, and the value of y in like manner from MP to NQ.
Hence there are as many ways of varying z + i from OM + MPi
to ON + NQi as there are ways of drawing a continuous curve
from P to Q.

Similar remarks apply when P and Q happen, as they may .
in particular cases, to be both on the z-axis, or both on the
y-axis, provided that there is no restriction that the varying
quantity shall be always real or always imaginary. There are

v’
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many other properties of complex numbers, which are best under-
stood by studying Argand’s diagram, and we shall return to it
again in this chapter. In the meantime, however, to prevent
confusion in the mind of the reader, we shall confine ourselves
for a little to purely analytical considerations.

§ 3] If z+4i=0, then z=0, y=0.* For it follows from
z+%i=0 that z= —4. Hence, if ¥ did not vanish, we should
have a real quantity z equal to a purely imaginary quantity — yi,
which is impossible. 'We must therefore have y =0 ; and conse-
quently z= - 0i=0.

Cor. Hence if z+yi=2' + i, then must =2’ and y=y.

Forz + yi =2’ + /i gives, if we subtract ' + ¥4 from both sides,

(z-7) +(y-9)i=0.
Hence 2-2'=0, y-y =0,
that is, z=2, y=v.

RATIONAL FUNCTIONS OF COMPLEX NUMBERS.

§ 4] We have seen that so long as we operate upon real
quantities, provided we confine ourselves to the rational opera-
tions—addition, subtraction, multiplication, and division, we
reproduce real quantities and real quantities only. On the
other hand, if we use the irrational operation of root extraction,
it becomes necessary, if we are to keep up the generality of
algebraical principles, to introduce the imaginary unit <. We are
thus led to the consideration of complex numbers. The ques-
tion now naturally presents itself, “If we operate, rationally or
irrationally, in accordance with the general laws of algebra on
quantities real or complex as now defined, shall we always re-
produce quantities real or complex as now defined ; or may it
happen that at some stage it will be necessary in the interest of
algebraic generality to introduce some new kind of imaginary
quantity not as yet imagined ?” The answer to this question
is that, 8o far at least as the algebraical operations of addition,

* Here and hereafter in this chapter, when we write the form 2+, it is
understood that this denotes a complex number in its sxmplest form, so that
2 and y are real.
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subtraction, multiplication, division, and root extraction are
concerned, no further extension of the conception of algebraic
quantity is needed. It is, in fact, one of the main objects of
the present chapter to prove that algebraic operations on com-
plex numbers reproduce only complex numbers.

§ 5.] The sumor product of any number of complex numbers, and
the quotient of two complex numbers, may be expressed as a complex
number.

Suppose we have, say, three complex numbers, z, + ¥4, Z, + ¥,
3 + Y3, then :

(@ + 9:9) + (@ + 98) — (@ + 98) = (@ + 2o = T) + (4 + % — o),
by the laws of algebra as already established.

But z, + 2, — z; and ¥, + y, — y, are real, since z,, Zg, 2, ¥, Yo ¥5
areso. Hence (2, + 2, — %) + (4, + ¥: — ¥,)i is in the standard form
of a complex number. The conclusion obviously holds, however
many terms there may be in the algebraic sum.

Again, consider the product of two complex numbers, z, + ¢,
and z, + y;&. We have, by the law of distribution,

(xl + .’/li) (z: + .%1) =2,%; + !/;!/ni' + zl!/:’: + Z.yxi-
Hence, bearing in mind the definition of ¢, we have

@ + 9:8) (2 + 98) = (2% — 99) + (@ + B )iy
which proves that the product of two complex numbers can be -
expressed as a complex number.
To prove the proposition for a product of three complex
numbers, say for
P =@ +9:) (7 + 45i) (2 + 9),
we have merely to apply the law of association, and write

P= {(@ +9:) (% + 42} (@ + 9:5)-
We have already shown that the function within the crooked
brackets reduces to a complex number; hence P is the product
of two complex numbers. Hence, again, by what we proved
above, P reduces to a complex number. In this way we can
extend the theorem to a product of any number of complex
numbers, .
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Lastly, consider the quotient of two complex numbers. We
have
z + Yt _ (2, + 9:3) (z, — ¥4d) *
Ttyd (@) - @)
_ @@+ y.y,) = (@9: — 2t
zﬁ + y’
_ (xlxﬁ+ylyi) _ (xlyl )
"\t +y) z) + 9,
This proves that the quotient of two complex numbers can
always be reduced to a complex number.

Cor. 1. Since every rational function involves only the opera-
tions of addition, subtraction, multiplication, and division, it
follows from what has just been shown that every rational function
of one or more complex numbers can be reduced to a complex number.

If f(z + i) be an integral function of = + yi, whose coefficients
are all real, and we reduce it to the form P + Qi, where P and Q
are real, then it is obvious that P can contain only even powers
of y, and Q only odd powers of y. If, therefore, we change the
sign of y, P will remain unaltered, and Q will simply change its
sign. Hence, if f(z + yi) = P + Qi, then f(z — yi) =P - Qi.

Cor. 2. If (= + yi) be any rational function of = + yi, having all
ils coefficients real, and if

oz +yi) =X +Yj,

' then $(z— i) =X - Yi.

Cor. 3. Still more generally, if $(z, + Yyi, s + Ysdy - « . Ty + Ynf)
be any rational function of n complex numbers, hamng all s coefficients
real, and if

M+ 98, Tt Yy - . . T+ Yal) =X+ Y4,
then KT =%, T Yh . . . T Yai) =X - Vi

Cor. 4. If all the coefficients of the integral function ¢(z) be
real, and if ¢(z) vanish when z=z + yi, then ¢(z) vanishes when
z2=2—yi.

* Here we perform an operation which we might describe as *realising ”
the denominator ; it is analogous to the process of rationalising described in
chap. x.
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For, by Cor. 1, ¢(z +yi)=X + Yi where X and Y are real.
Hence, if $(z + i) = 0, we have X + Yi=0. Hence, by §3,X=0
and Y=0. Therefore ¢(z—yi)=X-Yi=0-0i=0.

Cor. 5. If all the coefficients of the integral fumction (2,
Z3y « - . 2p) be real, and if the function vanish when z,, z,, . . . 2,
are equal to T, +Yd, To+Yd, . . . Tp+ Yui Tespectively, then the
Jumction will also vanish when 2, z,, . . . 2, are equal to z, — y,i,
Ty—Ysby - - . Ty — Yol Tespectively.

Example 1.
8(3+26) — 2(2 - 84) + (8+ 87) =9+ 61 — 4 + 6+ 6+ 84,

=11+420s.

Example 2.

(2 +82) (2 - 5) (8 + 2¢)=(2 - 5¢) (6 — 6 + 93 + 43),

=(2-54)134,
=26 + 65,
=654 261,

Example 3.

(b+c—ai)(c+a-b)(a+b-ci) .
= {II(b+¢) — Bbe(b+c)} + {abe - Za(a+b) (a+c)}s,
=2abc+ {abe — Za® - Za¥(b+c) — 3abe} 4,
=2abc— {a*+ P+ 3+ (b+c) (c+a) (a+d)}i.

Example 4.
To show that the values of the powers of ¢ recur in a cycle of 4.
‘We have i=i, #=-1, P=?xi=-4, W=PP=+1,
PB=txi=i, P=xP=-1 F=¢xB=-7 S=txii=4+1;
and, in general,
. i‘“+l=i, gnt+2_ _ 1, int8_ -1, FHn+1) - +1.
Example 5.
8+5i_(3+5)(2+3:) _6-16+19:_ 9 19,
2-8~  4+9 13 ~ 13713"
Example 6.

(z+yir ="+ C@ Y yi) +,Ca*~pip+ . . .,
=(@" -, Co" 2+, Ca=Yt-. . . )
. +(xCran—ly - Cam =32+ Cam=%y5— . . )i
In particular

(z+ )t = (4 - 82 + y') + (42 — dzyP)i.

Example 7.

A-z+1
N e
(24883 - (2+879)+1
CF3RP+2C+8n)+1
_-5+12{-2-8i+1
T ob+120+2+8i+1"

then B2+ 89)=
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_ =649 8(-2+3i)(-2-157)
T -2+150 229 ’
3 \ .
=m{4+45'—61+301},
147 72,
=299 T 229"
From this we infer that

. 147 72,
H2-3)=050 230"

a conclusion which the student should verify by direct calculation.

CONJUGATE COMPLEX NUMBERS, NORMS, AND MODULL

§ 6.] Two complex numbers which differ only in the sign
of their imaginary part are said to be conjugate. Thus — 3 — 2i,
and — 3 + 2i are conjugate, so are — 41 and + 44 ; and, generally,
z+yt and 2 - 4.

Using this nomenclature we may enunciate Cor. 3 of § &
as follows :—

If the coefficients of the rational function ¢ be real, then
the values of

DT+ Y, T+Ydy o . . Tyt Ynl)
and DT =Yty Ta—Ysdy . . . Tn—Ynl),
where the values of the variables are conjugate, are conjugate
complex numbers.

The sum and the product of two conjugate complex numbers are
real.

For (z+93) + (x— 1) = 2z,
and @+y)(-yi)=2"-y'V'=2"+9¢"

Conversely, if both the sum and the product of two complex numbers
be real, then either both are real or they are conjugate.

For let (+y)+ (@ +y9)=s (1),
@+y)@+yi)=p @
where both s and p are real.
We may write (1) and (2) as follows,
@+2)+@y+y)i=s 1),
(@2 —yy) + (zy +ay)i=p (2).
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From (1’) and (2') we infer, by § 3, that

z+2 =s (3), y+y =0 (4),
22 -y =p (5) 2y +2y=0 (6).

Now (4) gives ¥ = —y, and this reduces (6) to
Y@ -2)=0 (7).

Hence either y=0 or ' ~2=0.

If y=0, then ¥ = —y=0, and the two complex numbers
are both real.

If # —z=0, then 2’ =z. Hence, since y = — y, we have

r+yi=z-yi,
that is to say, «’ + y'¢ is the conjugate of z + yi.

The equations (3) and (5) enable us to calculate the values
of z and v, and therefore of 2’ and #, in terms of s and p. The
results are z=2'=35/2, y= -y = »/(p-5’/4), as the reader will
easily verify.

§ 7.] By the norm of the complex number z +yi is meant
2* + 4 ; this is often denoted by norm (z + ¥3), so that

’ norm (z + yi) =2" + ¢
We have also norm (z-yi)=2"+ (-y)'=2"+ 4"

Hence, since (z + y3) (z — yi) =2" + ¢/}, it follows that a complex
number and its conjugate have the same norm ; and the norm is the
product of the two.

By the modulus of a complex number is meant the positive
value of the square root of the norm. The modulus of z + i is
often denoted by mod (z + yi). We have, therefore, by definition

mod (z+ )= + &' +9)

It is obvious that a complez number and its conjugate have the
same modulus ; and that this modulus is the positive value of the
square root of their product.

In other words,

mod (z + ¢i) =mod (z-yi) = + ~N({z+ ) @ - ).
Examples.
Norm ( -8+ 4i)=( - 8)+43=25,™
Mod (- 8+47)= + /(-8 + 4'=5.
Mod ( - 8- 48)=+A/(=8)7+ (- 4)?=5. -
Mod (1+4)= +a/(13+13)=4/2.
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It should be noticed that if y =0, that is, if the complex
number be wholly real, then the modulus reduces to + /2%,
which is simply the value of z taken with the positive sign,
or, say, the numerical value of z. For example, mod (- 3)

=+ V(-3)\=+ 3 For this reason continental writers fre-
tion for “the iiliﬁlencal value ‘of 27 We shall occasionally
make use of this convenient contraction.

For reasons that will be understood by referring once more to § 2, the
ordinary algebraical ideas of greater and less which apply to real quantities
* cannot be attached to complex numbers. The reader will, however, find that
for many purposes the measure of the mngmtude of a complex number is

tude” mlem to be understood, but we may remark that, in Argand’s dmgram,
the re presentatlve points of all complex numbers whose moduli are less than
p lie within a circle whose_centre is at the origin and whose radius is p.

§ 8.] If a complex number vamish its modulus vanishes ; and,
conversely, if the modulus vanish the complexz number vanishes.

For if z+yi=0, then, by § 3, =0 and y=0. Hence

NE' +9)=0.

Again, if V(2 +y) =0, then 2° + 4" =0; but, since both z
and y are real, both 2’ and y* are ‘positive, hence their sum
cannot be zero unless each be zero. Therefore z=0 and y=0.

If two complex numbers are equal their moduli are equal ; but the
converse is not true.

For, if z+yi=2"+y/4 then, by § 3, 2=2/, y=y. Hence
VE +y) = N+ Y.

On the other hand, it does not follow from 2* + 4 =2" +y"*
that z=2, y=y. Hence the converse is not true.

§ 9.] Provided all the coefficients in ¢(z + yi) be real, we have
seen (§ 5, Cor. 2) that if

dz+yt)=X+Yi,
where X and Y are real, then
Mz - yi) =X - Yi. :
Now norm ¢(z + ¥i) =norm (X + Y3), (a .
=X'+Y"
=(X +Yi) (X - Y3),
=z + yi)b(z - 4i).

VOL. I Q
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Hence .
norm §(a + yi) = norm $(z - yi) = Sz + y)E—30) (1),
From this again it follows, since the modulus is merely the positive
value of the square root of the norm, that
mod $(z + yi) =mod - yi) = + Nz +y)plz ) (2).
In like manner it follows from § 5, Cor. 3, that

mod (2, +Yd, Za+Yh . . . T+ Yni)

=mod (z, —~ Yt Ta—Ysby - . - Tn—Yni)
=+ M@, +yh ZtYd .. . Tyt Ynt)
x‘i’(zl'“.’/li, A~ """n"?/ni)] (3)

A similar theorem holds also for the norm.
The theorems expressed by (2) and (3) are very useful in
practice, as will be seen in the examples worked below.
It should be observed that (3) contains certain remarkable
particular cases.
For example, let (2, + ¥,5, Zs+Yshy . - . Ty + Yut) = (2, + ¥18)
@ +98) . . . (@n+yni). Then we have
mod {(z, + :8) (Ts + ¥sk) . . . (Zn + Yni)}
=+ V(@ +98) @+ ) - . . (@0t Ynd)
x (2~ 418)(@s — 9st) - . . (@ —Yad)),
+ VETF) @ Y9 - - @+ )
(+ VaTryd)(+ vz +90) . . . (+ N+,
=mod (2, + %,f) x mod (Z; + ¥sf) x . .. x mod (z, + ¥ni) (4).
In other words, the modulus of the product of n complex numbers
138 equal to the product of their moduli.
Again, let ¢ be the quotient (z, +¥.i)/(z, + ¥:i). By (3) we

have—
mod (z:+y1>= \/(::‘*‘%) (:1 .'/li)
+ Yst. + Y5t Yt
= &'+
* \/ 7' +y

_t+ NE@'+y,)
+ (g +95)
_mod (z, + 9,1
" mod (2 + 44f) ©)
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In other words, the modulus of the quotient of two complex num-
bers is the quotient of their moduli.

§ 10.] The particular cases (4) and (5) of last paragraph are
so important that we shall give an independent proof of them.
We do so the more willingly that we shall light upon some in-
teresting results by the way.

Consider, in the first place, the product of two complex
numbers, z, + y3, 2, + y5. We have

(@ +98) @ + 9) = (@ — YY) + (2.6 + 2.)iy
hence .
norm {(z, + i) (% + ¥:8)} = norm {(2.7, - 9,9) + (29 + 24 )8}
= @2 — 9%) + (2% + 7Y,
by definition,

=22 + Y + 3y + 2 Y
= xl’(zl' + .'/n') +¥ 1’@/:. + zl')i
=@ +9.) (@ +9:)
= norm (2, + ¥,3) x norm (2, + ¥f).

Hence

mod {(z, + 4:6)(%, + )} =mod (z, + ¥,5) x mod (2, + ¥si).
Having proved the theorem for two factors, we can establish it
for three thus.

Mod {(z, + 4:) (s + ¥s8) (2 + %:i)}
=mod [ {@ +9:) (@ + 9:8)} @ + 99)];
=mod {(z, +9d) (7 + ysi)} x mod (z + 4,
by the case already established, since (z, + #,t) (z, + ¥s8) is a com-
plex number, '
=mod (z, + y4) x mod (2, + ¥,f) x mod (2, + ¥sf),
once more by the case first established.

By proceeding in this way we establish the theorem for any
number of factors.

Cor. In the course of the above demonstration we arrived
at the identity -

@ +9°) @ +90) = @2~ y99)' + @ +24)" b .
If we give to z,, ¥,, Zy, ¥, positive integral values, this gives us
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the proposition that the product of two integers, each of which is the
sum of two square inlegers, is itself the sum of two square integers ;
and the formula indicates how one pair of values of the two
integers last mentioned can be found. Again

(@ + 4:8) (@ + ¥5d) (@ + 98) = (2245 — 298 — TYathr — TahY)
+ (12 + Yo + YTy — YiY o)
Hence, if we calulate the norm directly from this last result,
and also by the rule for a product, we have

@ +9) @' +9) (@ + ) = (2127 — 298 ~ 2ty — Zah%a)”
+ (125, + Yo + Y2 — YY)

This shows that the product of three sums of two integral squares
18 the sum of two tnlegral squares, and shows one way at least of
finding the two last mentioned integers.

Similar results may of course be obtained for a product of
any number of factors.

Next consider the quotient (z, + %,)/(z; + yi). We have

norm (2% y";) =norm { (x,x: b 1/.,:/.) ( : my,)i } ,
+ 9 L\z’+y, z' + Y,
_ @7+ 99)" + (35 — 29)°
@ +w)
(zl + ?/l') (Z, + 7/:')
(@ +95)
xx + .1/1
5: + .'/s
_ norm (z, + %1f)
“norm (%, + Y)’

’

Hence
mod T, + 3/11: =m0d (zl + .’/l‘:)_
+ y.t) mod (z, + ¥)

Example 1.
Find the modulus of (2+3.3 (8- 24) (6 - 44).
Mod {(2 + 8) (3 — 24) (6 - 4i)}
=mod (2 + 87) x mod (3 — 2¢) x mod (6 ~ 42),
=4/(13) x 4/(18) x A/(52),
=264/(18). v
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Example 2.
Find the norm of (1/2+1%4/8) (A/3 +1/5)/(A/2 +$/5).
(\/2+17/3) (/8 +14/6)
Norm i V2+in/5
- i (\/2+14/3) (/8 +14/5) } % { (v/2—9/8) (/8 —ir/5)
N2 +iNB NZ—in5 ’
_(2+8)(3+5)_40
BT

Example 8.

Find the modulusof {(8+7)+ (8~ )i} {(x + )+ (y— a)i} {(a+B)+(a - B)}.
The modulus is A/({(B+7)+(B-7 }H{(y+aP+(y-aP} {(a+By+(a-B)})
=V8(E+7) (V¥ +a) (®+ ).

Example 4.

To represent 26 x 20 x 34 as the sum of two integral squares.

Using the formula of § 10 we have

26 x 20 x 34 = (134 57) (22 +42) (3%+59),
=(1.2.3-1.4.5-2.5.5-8.5.4)*+(5.2.8 +4.8.1+5.1.2 - 5.4.5)3,
=12421 483,
§ 11.] The modulus of the sum of n complex numbers is never
greater than the sum of their moduli, and is in general less.
For two complex numbers, 2 =2, + ¥y, % =2, +yd, this
amounts to proving that
+ N +z) '+ +9)' P + V@) + V@ )
Since all the square roots are positive, this again amounts to
proving that ’
@+z) ++y) o+ vy 2 NET ) @ 9D
that is, if we subtract 2," + y," + 2.’ + y,' from both sides, we have
to prove that

22,2, + 2% ¥ 2N @' +9)) (@ + %) ;
that is, that T2+ 93 P N (@' +9) @ +y)
~ If the left-hand side be negative, as might happen, then it
is obviously not greater than the right, which is positive by our
previous understanding ; and our theorem is established.
If the left-hand be positive, it will be sufficient to prove that

xl.xl. + 23:15.!/1?/9 + y.'%' b xl’x!. + .’/1.%. + xl.y: + xn..'ll' H
that is, that 02"y, + 2.’y — 22.29,9s ;
that is, that 0 ¥ (29, — 2)"
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Now, since =, 2, ¥, ¥, are all real (z,y, — 2,y,)* cannot be less
than 0, and will, in fact, be greater than 0 unless z,y, — 2, = 0.
The theorem is therefore proved for two complex numbers.

Consider now three complex numbers, 2,, 2, 2, Then, re-
membering that 2, + 2, is a complex number, we see by the case
just proved that

mod (2, + 2, + z,) =mod {(2, + 2,) + 2}
P mod (2, + 2,) + mod 2,
Also, by the case just proved,
mod (2, + 2,) 3 mod 2, + mod z,.
Hence mod (2, + 2, + 2,) 3 mod 2, + mod z, + mod 2z,

Proceeding in this way we establish the theorem for any
number of complex numbers.*

It will be seen immediately that Argand’s diagram gives an
intuitive proof of the present theorem.

§ 12.] We have seen already that when PQ =0, then either
P=0 or Q=0, providled P and Q be real quantities. It is
natural now to inquire whether the same will hold if P and Q
be complex numbers.

If P and Q be complex numbers then PQ is a complex
number. Also, since PQ=0, by § 8 mod (PQ)=0. But mod
(PQ)=mod P xmod Q, by § 10. Hence mod P x mod Q=0.
Now mod P and mod Q are both real, hence either mod P =0
ormod Q=0. Hence, by § 8, either P=0 or Q=0.

We conclude, therefore, that if PQ=0 then either P=0 or
@ =0, whether P and Q be real quantities or complex numbers.

DISCUSSION OF COMPLEX NUMBERS BY MEANS OF
ARGAND’S DIAGRAM.

§ 13.] Returning now to Argand’s diagram, let us consider
the complex number % + yi, which is represented by the radius
vector OP (Fig. 1). Let OP, which is regarded as a signless
magnitude, or, what comes to the same thing, as always having

* The student will observe that we cannot infer the truth of a similar
theorem for the norms.

—_—
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the positive sign, be denoted by r, and let the angle XOP,
measured counter-clock-wise, be denoted by 6.
We have seen that if OP represent z + yi, then z and y are

—> —>
the projections of r on X'OX and Y'OY respectively. Hence
we have, by the geometrical definitions of cosf and siné,

r=+ 4/ (a:' + ‘_I/') (l))
; = cosf, %= siné, (2)

From (1) it appears that r, that is OP, is the modulus of the
complex number. The equations (2) uniquely determine the
angle 6, provided we restrict it to be less than 2w, and agree
that it is always to be measured counter-clock-wise. We call
0 the amplitude of the complex number. It follows from (2)
that every complex number can be expressed in terms of its
modulus and amplitude ; for we have

% + yi = r(cosf + i sinf) 3).

This new form possesses many important advantages.
Since two conjugate complex
numbers differ only in the sign of

Y

the coefficient of 4, it follows that P
the radii vectores which represent

them are the images of each other /

in the axis of z (Fig. 3). Hence * Q X
two such have the same modulus,

as we have already shown analytic-

ally ; and, if the amplitude of the

one be 6, the amplitude of the other )
will be 27— 6. In other words, the v
amplitudes of two conjugate complex numbers are conjugate
angles.

Example.
8

-1+i= V2( ;) \/2) V2(ms -HsmT

‘1“"‘\/2('72-—*) ~/2(co8 5 +i sin 5F).

P

Fig 3.
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§ 14.] If OP, OQ’ (Fig. 4) represent the complex numbers

Y

Fig. 4.

v’

z+yi and 2 + yi, and if
—
PQ be drawn parallel and equal

p—

to OQ’, then OQ will represent

the sum of z+y and 2’ +y'%
-—

For the projection of OQ on the

2-axis is the algebraic sum of the
a

-—
projections of OP and PQ on the

—

same axis, that is to say, the projection of OQ on the z-axis is

—

z+2. Also the projection of OQ on the y-axis is, by the same
reasoning, y+%. Hence OQ represents the complex number
(z +2') + (v + ¥')i, which is equal to (z + yi) + (2’ + ¥'5).

By similar reasoning we may show that if OP,, OP,, OP,, OP,,

9
OP,, say, represent five complex numbers, and if P,Q; be parallel
- — —
and equal to OP,, Q,Q, parallel and equal to OP;, and so on, then

0Q, represents the com-
plex number which is
the sum of the complex
numbers represented by
op,, Op,, OPR,, OP,
OP,. '

This is precisely what

is known as the polygon -

law for compounding
vectors. Since O0Q, is
‘never greater than the
perimeter OP,Q,Q.Q.Q:,
and is in general less,
Fig. 5 gives us an in-
tuitive geometrical proof

Fig s

that the modulus of a sum of complex numbers is in general less .

than the sum of their moduli.
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§ 15.] If we employ the new form obtained for a complex
number, and work out the product of two complex numbers,
r,(cosb, + i sinf,) and r,(cosé, + 1 siné,), we have
r,(cosf, + 4 siné,)r,(cosd, + ¢ sind,)

= 1,7, { (cos, cosf, — sind, sind,) + (sinb, cosd, + cosd, sinb,)i } ,

=17, {cos(6, + 6,) + ¢ sin(6, + 6,) } (1).
We thus prove that the product of two complex numbers is a
complex number, whose modulus 7,7, is the product of the moduli
of the two numbers, results already established ; and we have
the new theorem that the amplitude of the product is the sum of the
amplitudes of the factors.

This last result is clearly general ; for, if we multiply both
sides of (1) by an additional factor, r,(cosf, + ¢ sin6,), we have
r,(cosé, + i sind,)ry(cosl, + ¢ sinb,)r,(cosb, + ¢ 8inb,)

=7, { cos(f, + 6,) + 4 sin(f, + 0,)} 75(cosb, + ¢ 8ind,),
=r1y, {cos(8, + 6, + 6,) + i sin(6, + 6, + 6,) } ,
by. the case already proved,
=rr.r, {cos(6, + 6, +0,) +4 8in(6, + 6, + 6,) } .
Proceeding in this way we ultimately prove that
7,(cosf, + ¢ siné,)r,(cosb, + ¢ sinb,). . . r,(cosb, + i 8inb,)
=17y ..7Tn {c0o8(0, + 0;. ..+ 0p) +i8in(6, + 6, +. . . + 6,)} (2).
This result may be expressed in words thus—

The product of n complex numbers is a complex number, whose
modulus is the product of the moduli, and whose amplitude is the sum
of the amplitudes of the n complex numbers.

If we put r,=17,. . .=1, each =1 say, we have
(cosb, + i sinf,)(cosl, + ¢ sinb,). . .(cosby, + i sinby)
=co8(f, +6;. . .+0,)+isin(d,+6,+. . .+6y) (3)-

This is the most general form of what is known as Demoivre’s
Theorem. T
If we put 6,=6,=. . .=0,, each =6, then (3) becomes

(cosf + % sinf)® = cosnf + i sinnd (4),
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which is the usual form of Demoivre’s theorem.* It is an analy-
tical result of the highest importance, as we shall see presently.
The theorem for a quotient corresponding to (1) may be
obtained thus—
r(cosf + i sinf)
7'(cos@’ + ¢ sin@)
_ 7(cosf + i sin6)(cosd’ — i sinf’)

P 7"

7'(cos"@’ + sin’d’)

=T {(cosf cos®’ + sind sind’) + (sind cosd — cosd sind')},
7

=; {cos(8 — &) + 4 sin(6 — ¢)} . (6)-

Hence the quotient of two complex numbers is a complex number
whose modulus is the quotient of the moduli, and whose amplitude is
the difference of the amplitudes of the two complex numbers.

§ 16.] There is an instructive way of looking at the results
of last paragraph which is worthy of the reader’s notice.

‘We may write r(cosf + 4 8in6) in the form

7(cos@ + 4 sin6) 1(cosO + i sin0) (1).
Now 1(cos0 +1 8in0) is represented by a vector OA of unit
length lying along OX. Hence we may regard r(cosf + ¢ sinf)
as an operator which performs the double function of turning
OA through an angle 6, and of lengthening it in the ratio r:1 ;
80 that it finally converts OA into OP. ’

If this view of r(cosf++¢ sinf) be admissible, then in the

product
7(cos® + 4 &ind'yr(cosd + ¢ sinb) (2)
7(cos® +4i sin@’) must perform the same function as r(cosd +
i ginf) did in (1). That is to say, ¥(cosé’ + ¢ sin¢’) must be re-
garded as turning OP through an angle ¢, and lengthening it in
the ratio 7.
The final result is clearly the same as if we had turned OA

* This theorem was first given in Demoivre’s Miscellanea Analytica (Lond.
1780), p. 1, in the form
2=} ¥/ {1+ /(P - 1)} +3/ ¥/ {1+ (P-1)}, Where z=cosd, I=cosnd.
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through the angle 8 + ¢, and lengthened it in the ratio =': 1.
In other words, the operators
7'(cos®’ + ¢ 8ind’)r(cosf + i sind)
and 7’ {cos(f + &) + i sin(6 + 6')}
ought to be equivalent.

This agrees with § 15 (1). We can now proceed to combine
as many operators of the form r(cosf +i sinf) as we please;
and we see intuitively that their combined effect is that of an
operator whose modulus is the product of their moduli, and whose
amplitude is the sum of their amplitudes. We thus obtain a
proof, or at least a beautiful illustration, of § 15 (3) and (4).

IRRATIONAL OPERATIONS WITH COMPLEX NUMBERS.

§ 17.] Since every irrational algebraical function involves
only root extraction in addition to the four rational operations,
and since we have shown that rational operations with complex
numbers reproduce complex numbers and such only, if we could
prove that the nth root of a complex number has for its value,
or values, a complex number, or complex numbers and such only,
then we should have established that all algebraical operations
with complex numbers reproduce complex numbers and such
only.

The chief means of arriving at this result is Demoivre’s
. theorem ; but, before resorting to this powerful analytical engine,
we shall show how to treat the particular case of the square root
without its aid.

Let us suppose that

NE+y)=X+Yi (1).
Then z+yi=X"-Y"+ 2XYi
Hence, since X and Y are real, we must have, by § 3,
X'-Y'=z @),
2XY =y 3).

Squaring both sides of (2) and (3), and adding, we deduce
X'+ YY) =2"+¢;
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whence, since X* + Y* is neces'sarily positive, we deduce
X'+Y'=+ J@'+9) (4).
From (2) and (4), by addition, we derive
2X'= + JE@' +Y) +2,

that is, X'= :M{
‘We therefore have X=4= J u(—z‘;ﬁz (5).

In like manner we derive from (4) and (4), by subtraction, &c.,

Y=2 /i__“/_("_;_@;" (6).

Since z* +y" is numerically greater than 2', + (' +%’) is
numerically greater than 2. Hence the quantities under the
sign of the square root in (5) and (6) are both real and positive.
The values of X and Y assigned by these equations are therefore
real.

Since 2XY =y, like signs must be taken in (5) and (6), or
unlike signs, according as y i8 positive or negative.

We thus have finally

Vergy= ]/ LENE, JIEAEL

if y be positive, -
o (TP

if ¥ be negative.
N.B.—Although the values of X and Y are in all cases real,

they will not be rational unless 2* + 4" be the square of a rational
number.

Example 1.

Express A/(8 + 61) as a complex number.
Let N(8+6i)=z+yi.
Then z3-92=8, 2uy=6.
Hence (2*+ 432 =64 +86=100.
Hence 22 +y1=10;

and 22 —y?=8.
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Therefore 223=18, 2y3=2,
Hence z=+%3, y==%1. )
Since 2ry=6, we must have either x=+8 and y=+1, or 2=-8 and
=-1
Y Finally, therefore, we have
A/(8+60)=%(3+17);
the correctness of which can be immediately verified by squaring.

Example 2. o
. 58)+3 . 58)-8
ve-to=x{ | [VOOYE_; JVE3L
Example 3.
Express o/(+1%) and o/( —¢) as complex numbers,
Let N(+9)=z+yi;
then t=a% -y + 2xyt.
Hence 2-y3=0 (a), 2y =1 ®).

From (a) we have (z+y) (2-y)=0; that is, either y= -z or y=2. The
former alternative is inconsistent with (8) ; hence the latter must be accepted.
‘We then have, from (8), 22°=1, whence 2%=1/2 and z==x1/A/2. Since
y=z, we have, finally,

V=22 ()
Similarly we show that
N iz :i:lv-;- ).
Example 4. ., fo X7, Bal é_ca

To express the 4th roots of +1 and —1 as complex numbers,
M +1= JJ+l=AE1=4/+10r o/ -1=%10r %1
Hence we obtain 4 4th roots of +1, namely, +1, -1, +1%, —4.
Again N -1= JN-1= J £i.
Hence, by example 8,
\‘/—1=:!:17+2’, or:l:lv_zl. .
§ 18.] We now proceed to the general case of the mth root
of any complex number, (cos6 + i sinf).
Since r is a positive number, 3/r has (see chap. x. § 2)
one real positive value, which we may denote by 7/

Consider the n complex numbers—
1

" 0 .. 86
a cos;‘+zsm;) (1),

1
r,,(ws 2T+o+isin2"+0) @),
n n .

Elem I lrjyl/.//y
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1
™ (cos dr+ 0 +isin dr+ 0 0) 3),
n n
1
™ (cos 23"; 6 +1isin 2”: 0) (s+1), -

s _ 3 i
™ (cos 2n ;)" 6 +48in In ’1')"' ha g) (n).
No two of these are equal, since the amplitudes of any two

differ by less than 2x. The nth power of any one of them is
r(cos6 + i &in) ; for, take the s + 1th, for example, and we have

{ 1 2sr+60 ., . 231r+0) }"
7 { cos +18ln
n n

( 1)“( 2+ .. 231r+0)”
= cos + 18I0 s
n n
0, .. 27+ 0)
+isinn ,
n
by Demoivre'’s theorem,
=r(cos(2sm + 0) + i sin(2sm + 6) ),
=7(cosd + i sinf).
Hence the complex numbers (1), (2), . . . (n), are n different
nth roots of r(cosf + i sinf).

‘We cannot, by giving values to s exceeding n — 1, obtain any
new values of the nth root, for the values of the series (1), (2),
. . . (n), repeat, owing to the periodicity of the trigonometrical
functions involved. We have, for example, r'*(cos. (2nr + 6)/n +
i sin. (2n7 + 6)[n) =7/"(cos.f/n + 4 sin. 6/n) ; and so on.

We can, in fact, prove that there cannot be more than
values of the nth root. Let us denote the complex number
7(cosd + ¢ 8ind) by «, for shortness; and let z stand for any nth
root of . Then must 2% =a, and therefore 2# —a=0. Hence
every nth root of o, when substituted for z in 2 — a, causes this
integral function of z to vanish. Hence, if 2, 2, . . . 2, be s nth
roots of a, z2—2,2—2 . . . 2—2, will all be factors of 2 —a.
Now #* — a is of the nth degree in 2, and cannot have more than

( 2sm +
=r(cosn
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n factors (see chap. v., § 16). Hence s cannot exceed 7 ; that is
to say, there cannot be more than n nth roots of a.

We conclude therefore that every complex number has n nth
roots and no more ; and each of these nth roots can be expressed as a
complex number.

Cor. 1. Since every real number is merely a complex number
whose imaginary part vanishes, it follows that every real number,
whether positive or negative, has n nth rools and no more, each of
which is expressible as a complex number.

Cor. 2. The imaginary nth roots of any real mumber can be
arranged in conjugate pairs. For we have seen that, if z + i be
any nth root of @, then (z+#i)®—a=0. Hence, if a be real
(but not otherwise), it follows, by § 5, Cor. 4, that (z— yi)* - a=0;
that is, # — yi is also an nth root of a.

N.B—This does not hold for the roots of a complezx number
generally, —

19.] Every real positive quantity can be written in the
form

7(cos0 + ¢ 8in0) (A);
and evtmeal___n_qgg@v_e_qpmﬁtx_in the form
r(cosm + i sinm) ®);

where 7 is a real positive quantity. Hence, if we know the n
nth roots of cos0 + ¢ sin0, that is, of + 1, and the n nth roots of
cos 7 + i sin m, that is, of — 1, the problem of finding the n nth
roots of any real quantity, whether positive or negative, is
reduced to finding the real positive value of the nth root of a
real positive quantity r (see chap. xi. § 15).

By means of the nth roots of 1 we can, therefore, com-
pletely fill the lacuna left in chap. x. § 2. In addition to their
use in this respect, the nth roots of +1 play an exceedingly im-
portant part in the theory of equations, and in higher algebra
generally. We therefore give their fundamental properties here,
leaving the student to extend his knowledge of this part of
algebra as he finds need for it.

Putting r=1 and =0, in § 18 (1). .. (n), and remembering
that 1/ =1, we obtain for the n nth roots of + 1,
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cos0 + ¢ 8in0 1),
2r . . 2x
c0s — +1 8in —- (2),
cos&-".+ixsin2—s‘7r (s+1),
n n
cos An =D +1 sin An = L) (n).
n n
Putting r = 1, 6 ==, we obtain, for the nth roots of -1,
k3 . . T ,
cos —+i sin (1),
v . . 3m ,
cos —- +1 sin — 2,
cos (2s+ D +1 8in (Zs+r (s+1),
n n
cos @; i +1 8in (2n; i (n).

Cor. 1. Since co0s.2(n — 1)r/n = cos.2x/n, sin.2(n—1)r/n=
- 8in.27/n; c08.2(n—2)r/n = cos.4m/n, 8in.2(n — 2)w/n = — sin.4x/n,
and 8o on, we can arrange the roots of + 1 as follows .—
nth roots of + 1, n even,=2m say,
+1, cos glrd:isin 2-1r, cos 4—1-r:!:isin 4—", e
n n n n

cos 2______(m; L +14 gin 2—(m; l)", -1 (C).

nth roots of + 1, #n odd, = 2m + 1 say,
+1,cosz1-r:tisin2—1r, oos4—1r:tisinﬂr,...
n n n n

2mw . . 2mw
pekhbuly 3 —_—
cos —— +1 sin — ).
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Similarly we can-arrange the roots of — 1, as follows :—
nth roots of — 1, n even, = 2m say,
cos’—r:hisin"—r, cos3—7r:!:isin3—1r. .
n n n n
cos (2m; 1)r +isin (2m; 1) (B).

nth roots of — 1, # odd,=2m + 1 say,
cos Tigin”, cos oFigin oF.
n n n

cos (2m; L *4 gin (Zm,: 1)”, -1 (F).

From (C), (D), (E), (F), we see, in accordance with chap. x.
§ 2, that the nth root of + 1 has one real value if % be odd, and
two real values if # be even ; and that the nth root of — 1 has
one real value if #n be odd, and no real value if # be even.

‘We have also a verification of the theorem of § 18, Cor. 2,
that the imaginary roots of a real quantity consist of a set of
pairs of cenjugate complex numbers.

Cor. 2. The first of the imaginary roots of + 1 in the series
(1) . . . (n), namely, cos.2x/n + ¢ sin.2x/n, is called a primitive®
nth root of + 1. Let us denote this root by w.

Then since, by Demoivre’s theorem,

(21r..21r' 28 . . 2w
o*={(cos —+¢8M —) =cos — +18In —,
n n n n
and, in particular,
n
W= (cos 27::+i sin %r) = co82r + % sin2mw,

=1,

; oL,
* Bya primitivygjimnginary nth root of +1 in general is meant an nth root # *Tenp.ze,
which is not also a root of lower order. For example, cos.2x/8 +1 sin.2x/3
is a 6th root of +1, but it is also a cube root of +1, therefore cos.2x/3+
i8in.2x/8 is not a primitive 6th root of+1. It is obvious that cos.2x/n+
+sin.2x/n is a primitive nth root ; but there are in general others, and it may
be shown that any one of these has the property of Cor. 2.
VOL. L ,

%) bansa: u/l’l"/"““":

R
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we see that, if v be a primitive imaginary néh root of + 1, then the
n nth roots of + 1 are ]

o, 0 o' .. . o® (G).
Similarly, if o’ = cos. x/n + ¢ sin. «/n, which we may call a primitive
imaginary nth root of — 1, then the n nih roots of — 1 are

0, 0% W, . . W1 (H).

§ 20.] The results of last paragraph, taken in conjunction
with the remainder theorem (see chap. v. § 15), show that

Every binomial integral function, 2™ + A, can be resolved into n
Jactors of the first degree, whose coefficients may or may not be wholly
real, or indo at most two real factors of the first degree, and a number
of real factors of the second degree.*

Take, for example, 2™ —qa*. This function vanishes whenever we sub-
stitate for z any 2mth root of a®; that is, it vanishes whenever z has any
of the values aw, aw® . . . aw®™ where w stands for a primitive 2mth root
of +1.

+Hence the resolution into linear factors is given by

2 — g = (2 — qw) (2 - aw®) . . . (- aw™).
To obtain the resolution into real factors, we observe that, corresponding

to the roots +a and —a, we have the factors z—a, z+a; and that, corre-
sponding to the roots a(cos.2sx/n=k1 sin.2sx/n), we have the factors

z-u co8 — —ai sin — ){z—a cos — +at sin —
n n n n
2sx\? Py
E(x—acos—) +a? sin?—,
n n

=22 - 2ax cos 2%’rﬂz’.
Hence the resolution into real factors is given by
2t — ¥ = (2 - a) (2+a) (- 202 008 2 +0%) (e - 202 co8 = +aY). . .
‘We may treat ¥+ qm, 3+ — g?m+l, and g?™+14 g3, in a gimilar way.

Example 1.

To find the cube roots of +1and ~1. We have +1=1{cos0+4% sin0}.
Hence the cube roots of +1 are

cos0 + 1% 8in0, cos.2x/31% sin.2x/8,

* The solution of this problem was first found in a geometrical form by
Cotes ; it was published without demonstration in the Harmonia Mensurarum
(1722), p. 118. Demoivre (Misc. Anal., p. 17) gave a demonstration, and also
found the real quadratic factors of the trinomial 1 +2 cosfa+ 2™,

({\&aﬁﬁmﬁhl (429, pulis-e.
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that is to say, +1, -1/2£iA/8/2.
Again —~1=1{cosx+4sinr}. Hence the cube roots of -1 are
cos.x/81 sin.x/8, cosx + ¢ sinw,
that is to say, 1/2+in/3/2, - 1.
Example 2.

To find the cube roots of 1+4. We have 1+i=4/2(1/A/2+%1/4/2)
=a/2(cos 45°+1 sin 45°). Hence the cube roots of 1+1, are

2¥(cos 15°+1 sin 15°), 2¥(cos 185°+1 sin 185°), 2¥(cos 225°+ ¢ ain 225°),
that is,
2¥(cos 16° +1 sin 15°), 2¥( — cos 45°+1 sin 45°), 28( - cos 45° - § sin 45°),

, A/8+1
that fs, M2z 2vz) 2‘( Vz*'vz)
. (WB+1)+(n/8-1)i -1¢
. that is, Py . =

Here it will be observed that one of the roots has no conjugate companion
root, as it would necessarily have if the radicand were real.

Example 3.

To find approximately one of the imaginary 7th roots of +1. One of the
imaginary roots is

cos 51°25'438” + 1 gin 51°25'43".
By the table of natural sines and cosines, this gives
*6234898 + ‘78188181

as one approximate value for the 7th root of +1.

Example 4.

If  be one of the imaginary cube roots of +1, to uhow that 1 +w+w3=0,

and that (wz + wdy) (v + wy) is real.
We have 1+w+w?=(1-w?)/(1-w)=0, since wP=1 mdl -w%0.

(w2 + wty) (022 + wy) = 323 + (ot + )2y + ¥yt
Now o?=1; and w*+w?*=wdw+w?=w+w?= -1, since 1+ w+w3=0,

Hence
(we+wy) (v + wy) =2 — 2y + 3%

FUNDAMENTAL PROPOSITION IN THE THEORY OF EQUATIONS.

§ 21.] Iff(e)=Ad,+ Az + A2 +. .. + A2 be an integral func-
tion of z of the nth degree, whose coefficients Ay, A4, . . . A, are given
complex numbers, or, in particular, real numbers, where, of course,
Ay #+0, then f(2) can always be expressed as the product of n factors,
each of the first degree in z, say z—2,, 2~2, 2~2...2— 2,
2,2, . . . 2, being in general complex numbers.
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It is obvious that this proposition can be deduced from the
following subsidiary theorem :—
One value of 2, s'ngmralaoomplacnumber,malways be found
which causes f(z) to vanish.
- For, let us suppose that f(z)=0, then, by the remainder
theorem, f(z) =fi(2)(z — 2,) where f,(2) is an integral function of z
of the n— 1th degree. Now, by our theorem, one value of z at
least, say 2, can be found for which f(2) vanishes. We have,
therefore, f(2) =0; and therefore f,(z) = fi(2) (2 — ), where fy(2)
is now of the n - 2th degree; and so on. Hence we prove

finally that
fRA=AEz-2)(z—2) ... (2—2),
where A is a constant.

§ 22.] To prove the subsidiary theorem of last paragraph,
we have to show that a value of z can always be found which
shall render mod f(z) smaller than any assignable quantity. This
will be established if we show that however small mod f(2) be,
provided it be not zero, we can always, by properly altering z,
make mod f(z) smaller still.

Let us suppose that z is altered to z + k, where h is a com-
plex number, say 7(cosé + i sinf).

Since _

Sfe+h)=Ac+A(z+h)+ Az +h) +.. .+ Apz + B)™,
we have, arranging according to powers of A,
fe+B)=fR)+Bh+BA +.. . + A" (1).
Here A,, depends neither on % nor on z, and, by our hypothesis,
cannot vanish. B, B,...B,_, are all functions of 2, and one or
more of them may vanish. Let us suppose that B, (m <n)is
the first that does not vanish.
We may divide both sides of (1) by f(2), and write
fe+h) 1 Bmi  Bmi m+1 g Anpo
TR C M ” LIRSS “ L

Now By,/f (2), &c., are all complex numbers, hence we may
write

7 = bn(cosag + 14 sma.,,,)
f() -l d
(n(,n 7/ dnodv\. ’y’\m msc/(lo’kn(c"’ ﬂf‘ \Aa’..“,/ 3607

*) Gass’s 1
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. ]i,'zz; = b 4 1(00SGm 41 + i SiDag4.2), &0,

where by, b+, &c., are all finite, since mod f(2) is, by hypothe-
sis, +0.

Also k™ = y™(cosmb + & ginm#), &e.

Hence, using Demoivre’s theorem, we may write (2) in the
form

1 (;.<:)h) =1 + byyr™ { co8(mB + ayy) + i 8In(MO + ap)}

+ b b1 {co8(m + 10 + agyy,) + 48I0(m + 16 + apq)}

+ bpr™ { cos(nd + ay) + 4 8In(n6 + ay)} (3).

Here we have A, and therefore r and 6, at our disposal. Let

us 80 choose § that m@ + a,, =, and let us denote the resulting

values of m + 10 + apyr, M+ 20 + apys, &, by @ i1y @ty &c.
‘We then have, from (3),

f (;Zz)h) =1 -br™+ b,,,+,r"""l { cos@ iy + 4 8IDG gyt }
+ by { cosy, + i 8ind',, } (4).

Now since mod(1 — b#™) =1 — b,#™* and since (by § 11)
the modulus of a sum never exceeds the sum of the moduli of
the constituents, we deduce from (4) that

f(z + k)
mod 7 )}1 D™ +.Dg g™+, L L+ D

:bl—bm#“{l—(b;,"—m*'r+. ..+bb—"1“'"')} (5).

Here r is still at our disposal.

Since by making r infinitely small each of the terms,
bintr"/Oms Omio? [Om - « - bpr® ™[bp, i3 made infinitely small,
and therefore their sum is. made infinitely small, it follows that
for some finite value of r the quantity inside the crooked bracket

* This assumes, of course, that 1 - b,,r™ is positive ; but it will be seen
from what follows that we may always suppose r™<1/b,, in which case
1 - br* i8 positive.

ey
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on the right-hand side of (5) will be positive, and hence the whole
of the right-hand side of (5) < 1.

We conclude therefore that it is possible so to choose r and
0, that is, so to choose %, that

od (f(z + h)) ’

J@)
. mod f(z + k)
that is, so that m_odf(_z)_ <1;
that is, so that mod f(z + k) <mod f(2).

In other words, so long as mod f{(2) is not zero, we can so alter
2 a8 to diminish mod f(2).

It follows then that one value at least can always be found
for z such that mod f(2) = 0, that is, such that f(2) = 0.

We have now established that in all cases

JR=AE-2)(2-2) . . . (2—2)
where A is a constant.

%, % . + . %, may be real, or they may be complex numbers
of the general form z+yi. They may be all different, or one
or more of them may be identical, as may be easily seen by
considering the above demonstration.

§ 23.] The general proposition established in last pa.mgmph
is equivalent to the following :—

If f(z) be an integral function of z of the nth degree, there are
n values of z for which f(2) vanishes. These values may be real or
complex nwmbers, and may or may not be all unequal.

We have already seen in chap. v. § 16, that there cannot
be more that # values of z for which f(2) vanishes, otherwise
all its coefficients would vanish, that is, the function would
vanish for all values of 2. 'We have also seen that the constant
A is equal to the coefficient A, We have therefore the unique

resolution
fO=Anz-2)(z-2) . . . (z-2).

§ 24.] If the coefficients of f(z) be all real, then we have
seen that if f(z + yi) vanish f(z — yi) will also vanish. In this
case the imaginary values among 2, 2, ... 2z, will occur in
conjugate pairs.
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If a + Bi, « — Bi, be such a conjugate pair, then, correspond-
ing to them, we have the factor

(z-a-PBi)(z-a+Pi)=(c-a) + B
that is to say, a real factor of the second degree.

It may of course happen that the conjugate pair a+ i is
repeated, say s times, among the values 2,, 2, . . . 2z, In that
case we should have the factor (z — a)" + 8* repeated s times ; so
that there would be a factor {(z — a)* + 8%}* in the function f{2).

Hence, every integral function of 2z, whose coefficients are all real,
can be resolved indo a product of real factors, each of which is either
a positive integral power of a real integral function of the first degree,
or a positive indegral power of a real integral function of the second
degree.

This is the general proposition of which the theorem of § 20
is a particular case.

Exercises XVI.

Express as complex numbers—
(1.) (a+ %P +(a-t).

145 1-4
@) Tratioa

2+86i 7-26i

@) sy ts-a

+o\_ (2-a\!
@) ¢ -G
) 89 —74/(16) + (+/8 — 64/5) .
: 8- (a/8-34/5)
(6.) Show that
—1444/8\" [ -1-4a/8\"
() (5520 =
if » be any integer which is not a multiple of 3.
(7.) Expand and arrange according to powers of z—
(2-1-14/2) (2—1+144/2) (- 2+t4/8) (- 2~ 14/8).
(8.) Show that
{(2a—-b-c)+i(b-c)n/8}3={(2b~-c—-a)+i(c—a)a/8}3
(9.) Show that
{(\/8+1)+(A/3-1)}3=16(1+7).
(10.) If £+ 7% be a value of = for which ax+bx+¢=0, a, b, ¢ being all
real, then 2a¢n+bn=0, an*=af?+ bt +c.
(11.) If a/(z+y)=X +Yi, show that 4(X2- Y9)=2/X +y/Y.
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(12.) If n be a multiple of 4, show that
14204383+, . . +(n+1)y"=§n+2-ni).
(18.) Show that in general
mod(u +v) > modu — modv.

(14.) Find the modulus of
(2 - 84) (8 + 41)
(6+4) (16— &)
(15.) Find the modulus of

fm+ /(@) .
(16.) Find the modulus of
b- - —bi).
(17.) Show that 0~ +eale=ad)+aka -

mod (1+4z+222+%22+. . . ad © )=1/a/(1+2?), whére z < 1.
(18.) Find the moduli of (z+yi)® and (2 +yi)y*/(z - yi)"
Express the following as complex numbers :—

(19.) /=724 (20.) V6 +ia/13.
(2L.) V' =7/36+233. (22.) Viab+2(a®- B)i.
(28.) Vi+ 2 /(@@ - 1) (24.) V1+in/(xF-1).

(25.) Find the 4th roots of — 119 +120x.

(26.) Resolve 2 - a® into factors of the first degree.

(27.) Resolve z®+1 into real factors of the first or of the second degree.

(28.) Resolve af+28+azt+28+23+2+1 into real factors of the second
degree.
(29.) Resolve z™ —~ 2 cos fa™x™+a* into real factors of the first or of the
second degree.

(80.) If wbean imaginarynth root of + 1,showthatl + w+ wi+... + w*1=0,

(81.) Show that, if w be an imaginary cube root of + 1, then

B+ +2 - 8zyz=(z+y+2) (2+ wy + %) (2 + By + w2),

(z+wy+ w2+ (z+ oty +wzP=(22-y-2)(2y-2-2) (-2 ~y).
(82.) Show that (z+y)™— 2™ —y™ is divisible by 2*+zy +y* for every odd
value of m which is greater than 8 and not a multiple of 8.
(88.) Show that
2rw . 2rw . 2rw 2re).\ " .
{(XcosT—Ysm—"—)+(Xsm +Y cos2 );} =(X+Yi.

n

and

Historical Note.—Imaginary quantities appear for the first time in the works
of the Italian mathematicians of the 16th century. Cardano, in his Artis
Magne sive de regulis Algebraicis Liber Unus (1645), points out (cap. xxxvii. p. 66)
that, if we solve in the usual way the problem to divide 10 into two parts whose
product shall be 40, we arrive at two formule which, in modern notation, may
be written 5+4/—15, 5—A/—15. He leaves his reader to imagine the mean-
ing of these ‘“sophistic” numbers, but shows that, if we add and multiply
them in formal accordance with the ordinary algebraic rules, their sum and pro-
duct do come out as required in the evidently impossible problem ; and he adds
“hucusque progreditur Arithmetica subtilitas, cujus hoc extremum ut dixi adeo
est subtile, ut sit inutile.” Bombelli in his Algebra (1572), following Cardano,
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devoted considerable attention to the theory of complex numbers, more especially
in connection with the solution of cubic equations.

There is clear indication in the fragment de Arte Logistica (see above, p. 197),
that Napier was in possession to some extent at least of the theory. He was
fully cognisant of the independent existence of negative quantity (* quantitates
defectivee minores nihilo”); and draws a clear distinction between the roots
of positive and of negative numbers. He points out (Napier's Ed., p. 85) that
roots of even order have no real value, either positive or negative, when the
radicand is negative. Such roots he calls “nugacia ;” and expressly warns
against the error of supposing that LI - 9= —(J 9. In this passage there occurs
the curious sentence * Hujus arcani magni algebraici fundamentum superius
Lib. i cap. 6, jecimus : quod (qQuamvis & nemine quod sciam revelatum sit) quan-
tum tamen emolumenti adferat huic arti, et ceteris mathematicis postea patebit.”
There is nothing farther in the fragment de Arte Logistica to show how deeply he
had penetrated the secret which was to be hidden from mathematicians for 200
years,

The theory of imaginaries received little notice until attention was drawn
to it by the brilliant results to which the use of them led Euler (1707-1783)
and his contemporaries and followers. Notwithstanding the use made by
Euler and others of complex numbers in many important investigations, the
fundamental principles of their logic were little attended to, if not entirely
misunderstood. To Argand belongs the honour of first clearing up the matter
in his Essai sur une manidre de représenter les quantités smaginasres dans les
constructions géoméirigues (1808). He there gives geometrical constructions
for the sum and product of two complex numbers, and deduces a variety of
conclusions therefrom. He also was the first to thoroughly understand and
answer the question of § 21 regarding the existence of a root of every integral
function. Argand’s results appear to have been at first little noticed ; and, as a
matter of history, it was Gauss who first initiated mathematicians into the true
theory of the imaginaries of ordinary algebra. He first used the phrase com-
plexz number, and introduced the symbol ¢ for the imaginary unit. He illus-
trated the twofold nature of a complex number by means of a diagram, as
Argand had done; gave a masterly discussion of the fundamental principles
of the subject in his memoir on Biquadratic Residues (1831 ; see his Works,
vol. ii., pp. 101 and 171) ; and furnished three distinct proofs of the proposi-
tion that every equation has a root.

From the researches of Cauchy (1789-1857) and Riemann (1826-1866) on
complex numbers has sprung a great branch of modern pure mathematics, called
on the Continent function-theory. The student who wishes to attain a full
comprehension of the generality of even the more elementary theorems of algebraic
analysis, will find a knowledge of the theory of complex quantity indispensable ;
and without it he will find entrance into many parts of the higher mathematics
impossible.

For further information we may refer the reader to Peacock’s Algebra, vol. ii.
(1845), to De Morgan’s Trigonometry and Double Algebra (1849), where a list
of most of the English writings on the subject is given; and to Hankel’s
Vorlesungen ber die complexen Zahlen (1867), where a full historical account
of continental researches will be found. It may not be amiss to add that the
theory of complex numbers is closely allied to Hamilton’s theory of Quaternions,
Grassmann’s Ausdehnungslehre, and their modern developments.



CHAPTER XIIIL
Ratio and Proportion.
RATIO AND PROPORTION OF ABSTRACT QUANTITIES.

§ 1.] The vatio of the abstract quantity a to the abstract quantity
b is simply the quotient of a by b.

When the quotient a5, or a/b, or g, is spoken of as a ratio,

it is often written a: b ; a is called the anfecedent and & the con-
sequent of the ratio.

There is a certain convenience in introducing this new name,
and even the new fourth notation, for a quotient. So far, how-
ever, as mere abstract quantity is concerned, the propositions
which we proceed to develop are simply results in the theory
of algebraical quotients, arising from certain conditions to which
we subject the quantities considered.

If a>b, that is, if a — b be positive, ¢ : b is said to be a ratio
of greater inequality.

If a <b, that is, if a — b be negative, a: b is said to be a ratio
of less inequality.

‘When two ratios are multiplied together, they are said to be
compounded. Thus, the ratio aa’: b’ is said to be compounded of
the ratios a: b and a': ¥'.

The compound of two equal ratios, a: b and a: b, viz., a*: }",
is called the duplicate of the ratio a : b.

Similarly, ¢®: b* is the triplicate of the ratio a: b.*

* Formerly a®: 4% was spoken of as the double of the ratio @: 5. Similarly

A/a : /b was called the half or subduplicate of a : b, al : b as the sesquiplicate
ofa:bd
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§ 2.] Four abstract numbers, a, b, ¢, d, are said to be proportional
when the ratio a : b i3 equal to the ratio c:d.

We then write

a:b=c:d*
a and d are called the extremes, and b and ¢ the means, of the pro-
portion. a and ¢ are said to be homologues, and 4 and d to be
homologues.

Ifa, b ¢cd e f,&c,besuch that a:b=b:c=c:d=d:e=¢:f
=&c., a, b, ¢, d, ¢, f, &c., are said to be in continued proportion.

If a, b, ¢ be in continued proportion, b is said to be a mean
proportional between a and c.

If a, b, ¢, d be in continued proportion, b and ¢ are said to be
two mean proportionals between a and d; and so on.

§ 3.] If b be positive, and a > b, the ratio a: b is diminished by | Smuar‘
adding the same positive quantily to both antecedent and consequent ; \ I 139
and increased by sublracting the same positive quantity (<b) from '
both antecedent and consequent. ‘

If a < b, the words increased and diminished must be mterdmnged :

in the above statement.
a+z_a_bla+2z)-ad+z)

For, bvz b Wb+a)

_z(b—a)

T+
Now, if a> b, b—a is negative; and z, b, b + z, are all positive
by the conditions imposed ; hence z(b - a)/b(b + z) is negative.

a+z a

H —— — = is negativ

enee bez b BT
. e+ _a

that is, m<$

Again, — =T

But, since a>bd, a — b is posltxve, and z and b are positive, and,
gince £<b, bz is positive. Hence 2(a — b)/)(b — z) is positive.

* Formerly in writing proportions the sign :: (originally introduced by
Oughtred) was used instead of the ordinary sign of equality.
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a-z. 2
b-z" b’
The rest of the proposition may be established in like manner.
The reader will obtain an instructive view of this proposition
by comparing it with exercise 7, p. 262.
§ 4.] Permutations of a Proportion. <~

Hence

If ab=c:d (1),
then bia=d:c (2),
aze=b:d 3),
and c:a=d:b (4).
For, from (1), we have %:%
11
Hence a ¢’
b d
that is, b_d,
a ¢
that is, b:a=d:q
which establishes (2).
Againsfmm(l)! g=f’
5-a
multiplying both sides by (’_f we have
a b_c,b
b*c=a*e’
that is e b,
t] ¢ d’
that is, a:c=b:d,

which proves (3).

(4) follows from (3) in the same way as (2) from (1).

§ 5.] The product of the extremes of a proportion is equal to the
product of the means ; and, conversely, if the product of two quantities
be equal to the product of two others, the four form a proportion, the
exiremes being the constituents of one of the products, the means the
constituents of the other.
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For, if a:b=c:d,
that i a_c
a1 e
then ’ gxw=§xbd,
whence ad = be.
Again, if ad = be,
1 1
then adxm_bcxb—d,
whence §=2,

Cor. If three of the terms of a proportion are given, the remaining
one 1s uniquely determined.
For, when three of the quantities a,), ¢,d are given, the equation
ad = be,
which results by the above from their being in proportion, be-
comes an equation of the first degree (see chap. xvi.) to deter-
mine the remaining one.

Suppose, for example, that the 1st, 8rd, and 4th terms of the proportion are
$, 4, and §; and let = denote the unknown second term.

Then }rz=4:%;

whence $xz=%}x4§.

Multiplying by %, we have z=}x¢$x},
=‘.’-,

§ 6.] Relations conmecting quantities in continued proportion.
If three quantities, a, b, ¢, be in continued proportion, then
ac=a":0"=b":c";
and b= ~ae.
If four quamtities, a, b, ¢, d, be in continued proportion, then
a:d=a":0=0":=¢":d",
and b = a4, c= Vad.
For the general proposition, see exercise 12, p. 262.
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For, if a:b=b:q
a b
then 3=
Therefore ‘fxé=éxé,
b7¢ ¢ ¢
a b a
whence Pl Rt (1).
Also ac="b",
whence b = Nac (2).

Equations (1) and (2) establish the first of the two proposi-
tions above stated.

in, if a:b=b:e=c:d,
Again,
a b
then 3=2
a_c¢
b d
Also %=%’, |
a a a b ¢ a
henco 3X3%5=c*a" b’
that is, %,=s,
a & P
therefore PR (3).
3
Farther, since 3 = %‘,
V=a'd;
whence b= v/d'd. (4).
. b
Also, since g=?,
o,

s
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whence = a ’:'d R
. = ad’:
8o that c= Nad (5).

1t should be noticed that the result (2) shows that the finding of a mean
proportional between two given quantities @ and ¢ depends on the extraction
of a square root. For example, the mean proportional between 1 and 2 is
Vixe=~2=14142. ..
Again, (4) and (5) enable us to insert two mean proportionals between two
given quantities by extracting certain cube roots. For example, the two
mean proportionals between 1 and 2 are

Yix2=23/2=125609 . . .
2
and R/ TxP=gp=15874 . . .
Conversely, of course, the finding of the cube root of 2, which again corre-
_sponds to the famous Delian problem of antiquity, the duplication of the
cube, could be made to depend on the finding of two mean proportionals, a
result well known to the Greek geometers of Plato’s time.
§ 7.] After what has been done, the student will have no
difficulty in showing that

if a:b=c:d,
then ma : mb = nc: nd (1),
and ma : nb =me: nd (2).
§ 8.] Also that
if a,:b,=c¢:d,
a,:b..=c,:d,,
an:bn.=cn:dm

then Ay, ..0n:00,...0,=¢CC...Cn:ddy...dy (1).
Cor.
If a:b=c:d,
then carbh=cndn
(Here n, see chap. x., may be positive or negative, integral or
fractional, provided a®, &c. be real, and of the same sign as g,
&e.)
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§9.] If a:b=c:d, )
then atb:b=cxd:d (1),
a+b:a-b=c+d:c-d (2),
la+mb:pa+gb=1lc+md:pc+qd (3),

la™ + mb" : pa” + gb" = lc" + md" : pc” + qd” (4),

where [, m, p, g, r, are any quantities, positive or negative.
Also, if  a,:b=0,:b,=ay:b,=...=ay:by,
then each of these ratios is equal to
G+t . +An: b +b 4, ..+, %);
and also to
Ve +lar +. . g ) DT+ IDT + . L+ 1baT) (6).
Though outwardly somewhat different in appearance, these
six results are in reality very much allied ~Two different
methods of proof are usually given..

FIRST METHOD.
Let us take, for example, (1) and (2).
a ¢

Since 3=2°
therefore %:k 1 =‘-;:!: 1;
whence (_zib_cid 5
. b - d )

this establishes the two results in (1).
Writing these separately we have
c+d
—d_ ’
c - .
d J
(a+d) (a-d) (c+4d) (c-d)
b / b  d / a’
a+bd.c+d
a-b c-d’

«

! [~
Sh @\+
[~ oN

whence

that is,

which establishes (2).
Similar treatment may be applied to the rest of the six

results.
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SECOND METHOD.

Let us take, for example, (2).
Since a/b=c/d, we may denote each of these ratios by the
same symbol, p, say. We then have

e_ S_ .
b"P’ d"'P:
whence a=pb ¢= (a).
Now, using (a), we have
ath_pbed
a-b pb-b’
Mt 1)
blp-1)
_rtl
=i
In exactly the same way, we have
c+d_pi+d
c-d pd-d’
e+l
=01
a+d p+1 c+d
Hence a=b=p-1-e=d’
Again, let us take (5).
G % _GH_ % =
‘We have kel bﬂ,each p, 8ay,
hence a,=pb, ay=pby ... an=pby;
theref: a_,j-a,...+a,.=pb,+pb,+...+pb,.
O B Wby .. ¥by bABt... 40
___p(b,+b,+...+b,.)
b+ 0g4...+by
=P,
hence

a, +o. ota,
bl s b,'+b,. .. +bﬂ.
VOL. I. 8
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Finally, let us take (6).
Since a7 = (pb) = p'b/,
a;T = (pb,)" = pby, &c.
we have
Ve e+ o+ nag) = (TG + I+ L+ b)),
=pN/(bbT+UbT+. . . +1ba),
(see chap. x., § 4). It follows that

Voo +lar+. . +la) e _a, &e.

VObT+bf +. o +bb) | b b

Of the two methods there can be no doubt that the second
is the clearest and most effective. The secret of its power lies
in the following principle :—

In establishing an equation between conditioned quantities, if we
first express all the gquantities involved in the equation in terms of the
Sfewest quantities possible under the conditions, then the verification of
the equation involves merely the establishment of an algebraical identity.
In establishing (2), for instance, we expressed all the quantities
involved in terms of the three b, d, p, 80 many being necessary,
by § 5, to determine a proportion.

A good deal of the art of algebraical manipulation consists
in adroitly taking advantage of this principle, without at the
same time destroying the symmetry of the functions involved.

§ 10.] The following general theorem contains, directly or
indirectly, all the results of last article as particular cases; and
will be found to be a compendium of a very large class of
favourite exercises on the present subject, some of which will
be found at the end of the present paragraph.

If ¢z, 2 . . . Zy) be any homogeneous integral function of the
variables z,, @, . . . Zn of the rih degree, or a homogeneous function
of degree 1, according lo the extended motion of homogeneity and
degree given at the foot of p. 71, and if

G ib=a:0=. . .=ay:by
then each of these ratios is equal to
JP@y s . . . an): (b, by . . . by).
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This theorem is an immediate consequence of the property
of homogeneous functions given in chap. iv., p 71.

Example 1.
Which is the greater ratio, 2*+y?:2+y, or2’~y*:2-y,  and y being
each positive ?
24y -y _(@+y7)(@-y) - @ -y @+y)
z+y  =-y (z+y)(z-y)
“(+y) @-y)’
2zy(z-y)
=@ty E-y
2y
z+y

Now, if =z and y be each positive, — 2y/(z+y) i essentially negative.
Hence
B+y:zty<-y2:iz-y.

Example 2.

If a:b=c:d, and A:B=C:D, then an/A - b7/B:ea/C—-da/D=aa/A
+5A/B :¢a/C+da/D.

Let each of the ratios a:band ¢: d=p, and each of the two A : B and
C:D=o, then a=pb, c=pd; A=0B, C=0¢D. We then have

arn/A -b/B_ ppVoB - bVB
eA/C-d/D" pineD-dVD'

(pn/o=1)5+/B _br/B (@)
=(pVe-1)dn/D " d/D )

In the same way we get
an/A+ba/B_ (pa/o+1)ba/B _ 5A/B 8).

en/C+an/D ™ (pa/o +1)dn/D ~dr/D
From (a) and (8) the required result follows.

Example 8.
If b be a mean proportional between @ and ¢, show that
(@+b+c)(a-b+c)=a +b3+c (a),
and (@+b+cP+ad+ b +c2=2(a+b+c¢)(a+c) 8)-
Taking (a) we have
(a+b+c)(a-b+c)=(a+c+b)(a+ec-b),

=(a+cp-»
Now, by data, a/b=>/c, and therefore 3®*=ac ; hence
(a+cy-bv=(a+cf~aq
=a¥+ac+cl,
=a+b 4,
since $®*=ac. Hence (a) is proved.
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Taking now (8), and, for variety, adopting the second method of § 9, let
us put
a b
Hence a=pb, b=pc ; 8o that a=p(pc)=pc.
‘We have now to verify the identity

(Pt pet et + (o) + (pe)' + =2 +pe+¢) (e +¢) ; -

that is to say,
- {(P+p+1P+(p* + P+ 1)} =2(p*+p+1) (P +1)* &)
ow
{@*+p+ 12+ + 2+ 1} =(P+p+1){(PP+p+ 1)+ (P~ p+1)} &,
=2("+p+1) (P*+1)¢%,
which proves the truth of (), and therefore establishes (8).
Example 4.*

If z/(b+c~ a)=y/(c+a~b)=2/(a+b~c), then (b~ ckx+(c-a)y+(a—bR=0.
Let us put
» y z
btc—a cta-b atb-c P

then z=(b+c-a)p,=

y=(c+a—D)p,

z2=(a+b-c)p.

Now, fx:?m the last three equations, we have—
(b-cke+(c-aly+(a-b)

=(b-c)(b+ec-a)+(c-a)(c+a-Db)p+(a—-b)(a+b-c)p,

{ (B3~ B+ —a?+a%-B3%) - (a(b—c)+ b(c—a)+c(a b))} p,

H

= {0-0}p,
Example 6.

It bateoy ex+az_ay+be ‘()
b-¢c  c-a  a-b o h
then (@+b+c)(x+y+2)=ax+by+cz (2)-

Let each of the ratios in (1) be equal to p, then
bz+cy=p(b—c) (3),
cx+az=p(c-a) (4),
ay+bdz=p(a-b) (5),

From (8), (4), (6), by addition,
(B+e)ke+(c+aly+(a+de=p {(b-c)+(c-a)+(a-D)},
=p0,
=0 (6).
If now we add az+ by+ ¢z to both sides of (6) we obtain equation (2).

* Examples 4, 5, and 6 illustrate a species of algebraical transformation
which is very common in geometrical applications. In reslity they are ex-
amples of a process which is considered more fully in chap. xiv.
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v A
} Example 6. * ~
If cy+bz _ ‘azper _ betay ,
gb+rc—pa” rct+pa—gb” pa+gb-rc
show that
z
a {pala+b+c)-gh(a+b—c)-re(a—b+c)}
= Yy '
“b{gh{a+b+c)-pafa+b-c)-re(-a+b+c)}
. @-

= {re(a+b+c)-gb(—a+b+c)-pa(a—b+ec)}

Let each of the fractions of (1) be =p; and observe that the three
equations, '
' az+cz =(rc +pa-gdlp (B)
bz+ay=(pa+gdb -rclp (v)

cy+bz =(gb +rc - pa)p (a)
)

zyz
which thus arise are symmetrical in the triple set z abe } , 80 that the simul-
ner

taneous interchange of the letters in two of the vertical columns simply
changes each of the equations (8) into another of the same set. It follows,
then, that a similar interchange made in any equation derived from (8) will
derive therefrom another equation also derivable from (8).

Now, if we multiply both sides of (8) by b, and both sides of (v) by ¢, we
obtain, by addition from the two equations thus derived,

2ez+a {cy+b2} = p {bre+pa-gb)+cpa+gb-rc)} ).
Now, using the value of cy + bz given by (a), we have
2bez+ pa(gd + 1~ pa)=p {pa(d+c) - gb(b - ¢) - re( - b+c) } (6).

Subtracting pa{gb+ r¢ — pa) from both sides of (5), we have
:2bex=p {pa(a+b+c)~gh(a+b-c)-rc(a-d+c)}  (6).
.. From (6), we have

z =% I
a {pa(a+b+c)-gha+b—c)-rdla-b+c)} ~ 2abc ’

: @ap wap
We may in (7) make the interchange (mbt; , OF (intg , and we shall
Y zer

obtain two other equations derivable from (8) by a process like that used to
derive (7) itself. These interchanges leave the right-hand side of (7) un-
altered, but change the left-hand side into the second and third members of
(2) respectively. Hence the three members of (2) are all equal, each being in
fact equal to p/2abe.

This is a good example of the use of the principle of symmetry in compli-
cated algebraical calculations.
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Exkrcises XVIIL.

(1.) Which is the greater ratio, 6:7 or 151 :208 ¢

(2.) If the ratio 3 : 4 be duplicated by subtracting « from both antecedent
and consequent, show that z=14.

(8.) What quantity = added to the antecedent and to the consequent of
a: b will convert this ratio into¢: d?

(4.) Find the fourth proportional to 34, 6%, 64 ; also the third proportional
to 14+ 4/2 and 8+24/2.

(5.) Insert a mean proportional between 11 and 19 ; and also two mean
proportionals between the same two numbers.

(6.) Find a simple surd number which shall be a mean proportional be-
tween A/7 — A/b and 114/7 +134/5.

(7.) If z and y be such that, when they are added to the antecedent and

consequent mpectlvely ot' the ratio a:d, m valge is unaltered, show that
z:iy=a: b. -F,h‘ 14-5 ’-l+(‘

(8.) If z and y be ;'uch that when they are added respectively to the ante-
cedent and consequent, and to the consequent and antecedent of a : b the two
resulting ratios are equal, show that either z=y or z+y=-a-b.

(9.) Find a quantity = such that when it is added to the four given quan-
tities a, b, ¢, d, the result is four quantities in proportion. Exemplify with
8, 4, 9, 18; and with 3, 4, 13, 2.

(10.) If four quantities be proportional, the sum of the greatest and least
is always greater than the sum of the other two.

(11.) If the ratio of the difference of the antecedents of two ratios to the
sum of their consequents is equal to the difference of the two ratios, then the
antecedents are in the duplicate ratio of the consequents.

(12.) If the % quantities a,, a3 . . . @, be in continued proportion, then
a: a-___al.-l . a,--lza'n—l . a'n—l=&c_ . and

="Va 8, ="V a0 ... a,="Varra %

(13.) If (pa+gb+re+sd)(pa—gb—re+sd)
= (pa - gb-+rc—sd) (pa +b - re—ad),
then be:ad=ps:qr;

and, if either of the two sets a, 3, ¢, d, or p: g, 7, 8, form a proportion, the
other will also.

(14). Ifa:b=c:d=e:f,
then ad+8ath+ 8 : 3+ 3+ P=a+1: 3+ (@);
a’c’ a’c’ aa I\/b’d’ vif3 d_z:
..a'4f+c'bf+o'bd : Bee+ dPas+lac ®);

pa-ge+re:pb-gd+rf= nface: N/odf
=a/(a? -+ 63+ 2ac) : /(B — AP+ 2+ 2d) (7).
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(16.) Ifa:a'=b:?¥,
then amtn i gmhn 4 imtn : g'mtr g g'mpng jimtn
=(a+dmtn:(a’+ D)yt
(16.) Ifa:b=c:d,and a: B=y:3,
then a*a?+ (a% + ad?)aB + 136° : (a®+ 1) (a*+ B7)
=P+ (d+cdyyd + a3 : (B +d°) (v +89).

(17.) Ifa :d=b:c=c:d, then

(@3 + B3+ (B + -+ d%)=(ad+ be+cd) (a);
B -cP+(c-a)+(d-bP=(a-d) ®;
ab+cd+ad=(a+b+c)(b-c+d) ;
a+b-c-a=@1N0-d) @;
(@+b+e+d)(a-b- c+@—w (e

(18.) If a, b, ¢, be in continued proportion,
then att+ab+b: b +be+c=a:c (a);
a¥a-b+c)(a+b+c)=at+a%h?+ it ®;
(b+°)’+(°+“)’+(“+b)’——-(a+b+c) -

b-¢ c-a
(19.) If @, b, ¢, d, be in continued proportion,
then (@~c)(b-ad)—-(a-d) (b-c)=(b-c)® (a);
Nab+Nbe+Ned=(a+b+c) (b +c+d) 8).
(20.) If ab=cd=¢f,

then ac+osten _  a+d+e
: dbfld+b+f) B +d¥?+1b*
a__b_b c _W-ad)+(cd-af)
(21.) If Py then each of them = S T
(22.) If E_2_¢
e oy
Z_Y_2,
then o8 o
(28.) If 2%+8y:8y+4z:42+6c=4a~5b:80~a:2b - 8a,
then 72+ 6y +82=0.

(24) fax +cy:by+dz=ay +cz:bz+dz=az +cz: bz + dy, and if
z4+y+2%40, ab—cd+0, ad-bc+0, then each of these ratios =a+c:b+d;
and 22 +y? + P=yz+ 20+ 2y,

(26.) If(a—ny+ﬂu)/l'=(b—lz+nz)/m’-(c—mz+ly)/n’ then

-n'b )/ ( na-le ( U'b-m'a [n.*
ll'+mm +nn’ L W rmm' +nn’ [m={2 ' +mm’ +nn)

* Important in the theory of the central axis of a system of forces, &c.
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RATIO AND PROPORTION OF CONCRETE QUANTITIES.

§ 11.] We have now to consider how the theorems we have
established regarding the ratic and proportion of abstract num-
bers are to be applied to concrete quantities. We shall base
this application on the theory of units. This, for practical pur-
poses, is the most convenient course, but the student is not to
suppose that it is the only one open to us. It may be well to
recall once more that any theory may be expressed in algebraical
symbols, provided the fundamental principles of its logic are in
agreement with the fundamental laws of algebraical operation.

§ 12.] If A and B be two concrete quaniities of the same kind,
which are expressible in terms of ome and the same unit by the com-
mensurable numbers a and b respectively, then the ratio of A to B is
defined to be the ratio or quotient of these abstract numbers, viz., a: b,
or afb.

It should be observed that, by properly choosing the unit, the ratio of
two concrete quantities which are each commensurable with any finite unit at
all can always be expressed as the ratio of two integral numbers. For ex-
ample, if the quantities be lengths of 3} feet and 4§ feet respectively, then,
by taking for unit §th of a foot, the quantities are expressible by 26 and 86
respectively ; and the ratio is 26 : 85. This follows also from the algebraical
theorem that (3+3)/(4 + §)=26/35.

If A, B be two concrete quantities of the same kind, whose ratio is
a:b, and C, D two other concrete quantities of the same kind (but not
necessarily of the same kind as 4 and B), whose ratio s ¢ :d, then
4, B, C, D are said to be proportional when the ratio of A to B is
equal to the ratio of C to D, that is, when

a:b=c:d

We may speak of the ratio A:B, of the concrete magnitudes
themselves, and of the proportion A : B=C : D, without alluding
explicitly to the abstract numbers which measure the ratios; but
all conclusions regarding these ratios will, in our present manner
of treating them, be interpretations of algebraical results such as
we have been developing in the earlier part of this chapter, ob-
tained by operating with a, b, ¢, d. The theory of the ratio and
proportion of concrete quantity is thus brought under the theory
of the ratio and proportion of abstract quantities.
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There are, however, several points which require a nearer
examination.

§ 13.] In the first place, it must be noticed that in a concrete
ratio the antecedent and the consequent must be quantities of the
same kind ; and in a concrete proportion the two first terms must

be alike in kind, and the two last alike in kind. Thus, from the

present point of view at least, there is no sense in speaking of
the ratio of an area to a line, or of a ton of coals to a sum of
money. * Accordingly, some of the propositions proved above—
those regarding the permutations of a proportion, for instance—
could not be immediately cited as true regarding a proportion
among four concrete magnitudes, unlgss all the four were of the
same kind. .

This, however, is a mere matter of the interpretation of
algebraical formulee—a matter, in short, regarding the putting of
a problem into, and the removing of it from, the algebraical
machine.

§ 14.] A more important question arises from the considera-
tion that, if we take two concrete
magnitudes of the same kind at random,
there is no reason to expect that there
exists any unit in terms of which each Q
is. exactly expressible by means of com-
mensurable numbers.

Let us consider, for example, the
historically famous case of the side AB
and diagonal AC of a square ABCD. On the diagonal AC lay
off AF = AB, and draw FE perpendicular to AC. It may be
readily shown that

B A

BE = EF = FC.
Hence CF=AC - AB (1),
CE =CB - CF (2).

Now, if AB and AC were each commensurably expressible in
terms of any finite unit, each would, by the remark in § 12, be an
integral multiple of a certain finite unit. But from (1) it follows
that if this were so, CF would be an integral multiple of the
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same unit ; and, again, from (2), that CE would be an integral
multiple of the same unit. Now CE and CF are the side and
diagonal of a square, CFEG, whose side is less than half the side
of ABCD; and from CFEG could in turn be derived a still
smaller square whose side and diagonal would be integral mul-
tiples of our supposed unit; and so on, until we had a square
as small as we please, whose side and diagonal are integral
multiples of a finite unit; which is absurd. Hence the side
and diagonal of a square are not magnitudes such as A and B
are supposed to be in our definition of concrete ratio.

§ 15.] The difficulty which thus arises in the theory of con-
crete ratio is surmounted as follows : —

We assume, as axiomatic regarding concrete ratio, that if
A’ and A” be two quantities respectively less and greater than
A, then the ratio A:B is greater than A’:B and less than
A”:B; and we show that A’ and A” can be found such that,
while each is commensurable with B, they differ from each other,
and therefore each differs from A by as little as we please.

Suppose, in fact, that we take for our unit the nth part of B,
then there will be two consecutive integral multiples of B/n, say
mB/n and (m + 1)B/n, between which A will lie. Take these
for our values of A’ and A”; then

A'_("H'I)B_"LB
T n n’

A" -
B

n

Hence A” — A’ can, by sufficiently increasing », be made as small
as we please.

We thus obtain, in accordance with the definition of § 12,
two ratios, m/n and (m + 1)/n, between which the ratio A : B lies,
each of which may be made to differ from A :B by as little as
we please.

Practically speaking, then, we can find for the ratio of two
incommensurables an expression which shall be as accurate as
we please.
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Example.

If B be the side, and A the diagonal of a square, to find a rational value
of A : B which shall be correct to 1/1000th.

If we take for unit the 1/1000th part of B, then B=1000, and A?=
2,000,000. Now 14143=1999896, and 1415%=2002225. Hence 1414/1000
<A/B<1415/1000. But 1415/1000 — 1414/1000=1/1000. Hence we have
A/B=1"414, the error being<1/1000.

§ 16.] The theory of proportion given in Euclid's Elements gets over the
difficulty of incommensurables in a very ingenious although indirect manner.
No working definition of a ratio is attempted, but the proportionality of four
magnitudes is defined substantially as follows :—

If there be four magnitudes A, B, C, D, such that, always,

mA>, =, or <aB,
according as mC>, =, or <nD,
m and n being any integral numbers whatsoever, then A, B, C, D are said to
be proportional.

Here no use is made of the notion of a unit, so that the difficulty of in-
commensurability is not raised. On the other hand, there is substituted a
somewhat indirect and complicated method for testing the subsistence or non-
subsistence of proportionality.

It is easy to see that if A, B, C, D be proportional according to the
algebraical definition, they have the property of Euclid’s definition. For, if
a:b and ¢:d be the numerical measures of the ratios A:B and C:D, we
have

a_c
=d
hence ma_me
nb ~ nd’
from which it follows that ma>, =, or <nb, according as me>, =, or <nd.

The converss, viz., that, if A, B, C, D be proportional according to Euclid’s
definition, then

can be proved by means of the following lemma.
Given any commensurable quantity afb, another commensurable quaniily
can be found which shall exceed or fall short of afb by as little as we please.
Let n be an integral number, and let mb be the least multiple of b which
exceeds na, so that

na=mb~r,
where r<b.
Dividing both sides of this equation by 23, we have
a_m_1
b n ab’
whence m a_r



268 COMPARISON OF THEORIES. [omAP.

so that m/n exceeds a/b by r/nb. Now, since r never exceeds the given
quantity b, by making » sufficiently great, we can make r/zb as small as we
please ; that is to say, we can make m/n exceed a/b by as little as we please.

Similarly we may show that another commensurable quantity may be
found falling short of a/b by as little as we please.

From this it follows that if two commensurable guantma differ by ever so
little, we can always find another commensurable quantity which lies between
them ; for we can find another commensurable quantity which exceeds the less
of the two by less than the difference between it and the greater.

Suppose now that

ma>, =, or <nb,
according as me>, =, or <nd,
m and n being any integers whatever, then we must have
a_c
b d

For, if these fractions (which we may suppose to be commensurable by
virtye of § 15,) differ by ever so little, it will be poasible to find another
fraction, n/m say, where n and m are integers, which lies between them.
Hence, if a/b be the less of the two, we must have

a n .
3<;,thntm,ma<nb,
c_n .
aTm that is, me>nd.

In other words we have found two integers, m and =, such that we have
at once
ma <nb
and me>nd.

But,. by hypothesis, when ma <nb, we must have mc<nd. Hence the
fractions a/b and ¢/d cannot be unequal.

“ VARIATION.”

§ 17.] There are an infinite number of ways in which we
may conceive one quantity y to depend upon, be calculable from,
or, in technical mathematical language, be a function of, another
quantity z. Thus we may have, for example,

y =3z,
y=17,
y=az+),
y=a+bz+e,

y=2‘\/x:
and so on.
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For convenience z is called the independent variable, and y the
dependent variable ; because we imagine that any value we please
is given to z, and the corresponding value of y derived from it
by means of the functional relation. All the other symbols of
quantity that occur in the above equations, such as 3, 17, a, b, ¢,
2, &c., are supposed to remain fixed, and are therefore called
conslamls. .

Here we attach meanings to the words variable and constant
more in accordance with their use in popular language than
those given above (chap. ii., § 6).

The justification of the double usage, if not already apparent,
will be more fully understood when we come to discuss the
theory of equations, and to consider more fully the variations of
functions of various kinds (see chaps. xv.-xviii.).

§ 18.] In the meantime, we propose to discuss very briefly
the simplest of all cases: of the functional dependence of one
quantity upon another, that, viz., which is characterised by the
following property.

Let the following scheme

Values of the Corresponding Values of
Independent Variable. | the Dependent Variable.

z y
z’ y

denote any two corresponding pairs whatever of values of the
independent and dependent variables, then the dependence is to
be such that always ‘

y:y=z:2 (1).

It is obvious thav this property completely determines the
nature of the dependence of y upon 2, as soon as any single cor-
responding pair of values are given. Suppose, in fact, that,
when z has the value z,, y has the value ,, then, by (1),

y_=.

?/o—a'o,
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whence y= ("ﬁ' .
Z,

Now we may keep z, and y, as a fixed standard pair, for
reference as it were ; their ratio y,/z, is therefore a given con-
stant quantity, which we may denote by a, say. We therefore

have
y=az (2)

that is to say, y is a given constant multiple of z; or, in the
language of chap. iv., § 17, a homogeneous integral function of =
of the first degree.

Example. Let us suppose that we have for any two corresponding pairs
¥, %, and ¢/, 2, the relation y :2=y : 2’ ; and that when =8, y=6. Then
since 6 and 8 are corresponding pairs y:x=6:8. Hence y/z=6/8=2
Hence y=22.

Conversely, of course, the property (2) leads to the properl:y
(1). For, from (2),
y=az;
hence, if # and ¥ be other two corresponding values,

y =az.
y_®_ 2
Hence Vw7

When y depends on z in the manner just explained it is said
to vary directly as z, or, more shortly, o vary as z.
A better * phrase, which is also in use, is “y is proportional
to z.”
This particular connection between y and z is sometimes
expressed by writing
Y=o

* The use of the word Variation in the present connection is unfortunate,
because the qualifying particle ““as” is all that indicates that we are here
concerned not with variation in general, as explained in § 17, but merely with
the simplest of all the possible kiuds of it. There is a tendency in uneducated
minds to suppose that this simplest of all kinds of functionality is the only
one ; and this tendency is encouraged by the retention of the above piece of
antiquated nomenclature.
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§ 19.] In place of 2, we might write in equation (2) 7', 1/z,
1/2%, z + b, and so on; we should then have

y=ad (o),
y=3 ®),
y=3 )
y=alz+d) @
The corresponding forms of equation (1) would then be
y:y=2":2" ’ (),
y:!/':i:% 8
11 A
.'/:.'/=;l‘? 6]
y:y=z+b:2+d )

y is then said to vary as, or be proportioned to, 2%, 1/z, 1/2',
z+b In cases (8) and (y) y is sometimes said to vary inversely
as 7, and inversely as the square of z respectively.

Still more generally, instead of supposing the dependent
variable to depend on one independent variable, we may suppose
the dependent variable « to depend on two or more independent
variables, z, ¥, 2, &c.

For example we may have, corresponding to (2),

u = axy (‘)1
u=azys (s
u=0(z+9) ()
u=a§ 6).
And, corresponding to (1),
u:u =ay:zy (©),
u:u =ayz: 2y? ),
ww=z+y:7+y ™)
uu =$:; (@)

In case (¢) w is sometimes said to vary as z and y jointly ;
in case (6) directly as z and inversely as y.



272 PROPOSITIONS REGARDING VARIATION. [cHAP.

§ 20.] The whole matter we are now discussing is to a large
extent an affair of nomenclature and notation, and a little
attention to these points is all that the student will require to
prove the following propositions. We give the demonstrations
in one or two specimen cases.

(1.) If 2y, and yocz, then 22

Proof.—By data z=ay, y = bz, where a and b are constants;
therefore 2=abz. Hence 2z, since ab is constant.

(2.) If g2, and y, =z, then yy, < 2,2,

Proof.—By data y, =a,z,, ¥, = a,%,, where a, and a, are con-
stants, Hence y,4, = a,a:2,%, which proves the proposition, since
a,a, is constant.

In general if y, <2, Yoo @ . . . Yn =Ty then Y4 . . . Yn
BTy . . . Ty And, in particular, if y oz, then yf® oc 2™

(3.) If yo<z, then 2y < 2z, whether z be variable or constant.

(4.) If 2ocay, then z o< 2[y, and y oz/z.

(6.) If = depend on z and y, and on these alone, and if z<z
when y i3 constant, and z o<y when z i8 constant, then 2z =y when
both z and y vary.

Proof.—Consider the following system of corresponding
values of the variables involved.

Dependent Independent
Variable, Variables.
2 z, ¥
2 z, y.
7 Z, 9.

Then, since y has the same value for both z and z,, we have,
by data,

zZ Z

2, 2
Again, since ' is the same for both 2, and #, we have, by
data,
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A,
7y
From these two equations we have
2 7 z y

—x5==x%,

5 77y
that is,

n | n
a\
<8

1
which proves that zoc2y.

A good example of this case is the dependence of the area of a triangle
upon its base and altitude.
‘We have
Area « base (altitude constant).
Area o altitude (base constant).

Hence area o base x altitude, when both vary.

(6.) In a similar manner we may prove that if z depend on
Ty Ty - . « Zn, and on these alone, and vary as any one of these when
the rest remain constant, then z<z,@, . . . Zn, when all vary.

(7.) If zocz (y constant) and z<1/y (z constant), then zo<zfy,
when both vary.

For example, if V, P, T denote the volume, pressure, and absolute tem-

perature of a given mass of a perfect gas. Then
V < 1/P (T constant), V « T (P constant).
Hence in general V o« T/P.

Example 1.

If s < £ when f is constant, and s « f when ¢ is constant, and 2s=7 when
t=1, find the relation connecting s, f, ¢.

It follows by a slight extension of § 20 (5), that when f and ¢ both vary,
s « fi>, Hence s=af?? where a is a constant, which we have to determine.

Now, when t=1, s=47, hence 4 f=af13, that is, 4 f=af; in other words,
we must have a=4. The relation required is, therefore, s=%/72.

Example 2. .

The thickness of a grindstone is unaltered in the using, but its radius
gradually diminishes. By how much must its radius diminish before the
half of its mass is worn away? Given that the mass varies directly as the
square of the radius when the thickness remains unaltered.

Let m denote the mass, r the radius, then by data, m=ar® where a is
constant.

Let now r become 7/, and, in consequence, m become 4m, then dm=ar?,
hence

VOL. I. - T
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whence

It follows, therefors, that the radius of the stone must be diminished in
the ratio 1: 4/2.

Example 8.

A and B are partners in a business in which their interests are in the
ratio @: 5. They admit C to the partnership, without altering the whole
amount of capital, in such a way that the interests of the three partners in
the business are then equal. C pays £c for the privilege. How is this sum
to be divided between A and B? and what capital had each in the business
originally #

Solution—Since what C pays in is his share of the capital, they each
have finally £¢ in the business ; let now £z be A’s share of C’s payment, so
that £(c - ) is B’s share of the same. In effect, A takes £ and B £(c-=x)
out of the business. Hence they had originally £(c+x) and £(c+c-x) in
the business. By data, then, we must have

c+x _a

%-z 5’
hence bc+z)=a(2c-x);
we have, therefore, be + bx=2ac - ax.

From this last equation we derive, by adding ax - bc to both sides,
(a+b)x=(2a-b)e.
Hence, dividing by a+ b, we have
z= (2a-b)c

a+bd a
Hence C—z=c—(2z;:)c.
_(2b-a) .
T ).

It appears, then, that A and B take £(2a - b)c/(a+b) and £(2b - a)c/(a +b)
respectively out of the business. C’s payment must be divided between
them in the ratio of these sums, that is, in the ratio 2a—b:2b-a. They
had in the business originally £3ac/(a +5) and £8bc/(a+ b) respectively.

Exercises XVIII.

(1.) If y< z, and if y=38§ when 2=63}, find the value of ¥ when z=4§.

(2.) y varies inversely as 2* ; and 2 varies directly as 2%, When =2, y+2
=840 ; when z=1, y-2=1275. For what value of z is y=2%

(8)zx u-—v; ux z; v « 2% When =2, 2=48; when =5, 2=30.
For what values of z is z=0?
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(4.) If zyx 2*+4?% and 2=3 when y=4, find the equation connecting
y and z.

(5.) If z+y «c 2~y, then 23+9® <« 2y, and ¥+ < zy(z+y).

6.) If (x+y+2) (x+y-2) (x—y +2) (—2+y+2) x 2%73, then either 2¥+y?
« 23 orad+yd-22 e oy,

(7.) If zc y, then =¥+ 93 < 2y.

@) If:c’+5—,o: z‘—’;,, then yw1/z.

(9.) If zec g3, yP oc A, 2% « uS, %7 o v, then (2/v) (y/v) (2/v) (u/v) is constant.

(10.) Two trains take 8 seconds to clear each other when passing in
opposite directions, and 85 seconds when passing in the same direction : find
the ratio of their velocities.

(11.) A watch loses 2} minutes per day. It is set right on the 15th March
at 1 p.M. : what will the proper time be when it indicates 9 A.M. on the 20th
April ?

(12.) A small disc is placed between two infinitely small sources of radiant
heat of equal intensity, at a point on the line joining them equidistant from
the two., It is then moved parallel to itself through a distance a/24/3 towards
one of the two sources, a being the distance between them : show that the
whole radiation falling on the disc is trebled.

(The radiation falling on the disc varies inversely as the square of the dis-
tance from the source, when the disc is moved parallel to itself towards or
from the source.)

(13.) The radius of a cylinder is 7, and its height A. It is found that by
increasing either its radius or its height by « its volume is increased by the
same amount. Show that z=+(r—2k)/h. What condition is there upon »
and A in order that the problem may be possible ¢ :

(Given that the volume of a cylinder varies directly as its height, when
its radius is constant; and directly, as the square of its radius, when its
height is constant. )

(14.) A solid spherical mass of glass, 1 inch in diameter, is blown into a
shell bounded by two concentric spheres, the diameter of the outer one being
8 inches. Calculate the thickness of the shell. (The volume of a sphere
varies directly as the cube of its diameter.)

(15.) Find the radius of a sphere whose volume is the sum of the volumes
of two spheres whose radii are 8} feet and 6 feet respectively.

(16.) Two equal vessels contain spirit and water, the ratios of the amount
of spirit to the amount of water being p: 1 and p': 1 respectively. The con-
tents of the two are mixed : show that the ratio of the amount of spirit to the
amount of water in the mixture is p+p'+2pp' : 2+p+p"



CHAPTER XIV.

On Conditional Equations in General.
DEFINITIONS AND GENERAL NOTIONS.

§ 1.] It will be useful for the student at this stage to attempt
to form a wider conception than we have hitherto presupposed of
what is meant by an analyfical function in general. Dividing the
subjects of operation into variables (z, 9, 2, . . .) and constants
(@, b, ¢, . . .), we have already seen what is meant by a rational
integral algebraical function of the variables z, ¢, 2, . . .; and we
have also had occasion to consider rational fractional algebraical
functions of 2, %, 2, . . . We saw that in distinguishing the
nature of such functions attention was paid to the way in which
the variables alone were involved in the function. We have al-

ready been led to consider functions like 4/ + /3, or 4/ z + /4,
or az! + bzt + ¢, where the variables are involved by way of root
extraction. Such functions as thesé are called irrational alge-
braical functions. These varieties exhaust the category of what
are usually called algebraical fumctions. In short, any indelli-
gible concatenation of operations, in which the operands selected for
notice and called the variables are involved in no other ways than by
addition, subtradion, multiplication, division, and root exiraction, is
called an algebraical function of these variables.

Although we have thus exhausted the category of algebraical
functions, we have by no means exhausted the possibilities of
analytical expression. Consider for example a% where, as usual,
z denotes a variable and a a constant. Here 2 is not involved
in any of the ways recognised in the definition of an algebraical
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function, but appears as an index or exponent. a® is therefore
called an exponential function of 2 It should be carefully noted
that the discrimination tarns solely on the way in which the
variable enters. Thus, while a® is an exponential function of z,
2% is an algebraical function of z. There are other functions in
ordinary use,—for example, sinz, logz, and an infinity besides
that might be imagined,—which do not come under the category
of algebraical ; all such, for the present, we cless under the general
title of transcendental fumctions, so that transcendental simply
means non-algebraical. We use the term analytical function, or
simply funclion, to include all functions, whether algebraical or
transcendental, and we denote a function of the variables z, ¥,
%, . . ., in which the constants a, b, ¢, . . . are alap involved, by

(Y 2.. .abe¢..);
or, if explicit mention of the constants is unnecessary, by

@y 5. . )

§ 2.] Consider any two funtions whatever, say ¢(z, 4, % . . .
a,b¢...)pand ¥ (2,9 2...a b ¢ ...) of the variables
% %, 2 . . . involving the constants a, b, ¢, . . .

If the equation

Mz Y 2...6be.. . )=¢¥zy92...0b¢...) (1)
be satisfied for all values of the variables z, 4, 2, . . ., it is called
an identical equation, or an idenfity ; and what is understood is
that the left-hand side can be transformed into the right, or wvice
versa, by merely applying the fundamental laws of algebra, and
the definitions of the operations involved, no reference whatever
being necessary to the values of the letters z, 4,2, . . .4, b ¢,

With equations of this kind the student is already very
familiar.

If, on the other hand, the equation (1) is not safisfed for all
values of the variables 2, ¢, 2,..., it is called an equation of
condition, or a conditional equation,* because, although the

* When it is necessary to distinguish between an equation of identity and
an equation of condition, the sign = is used for the former, and the sign =
for the latter. Thus, we should write (z+1) (z—1)=a*-1 ; but 2z+2=2. -
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equation is not satisfied by all values of the variables, we
know, or suppose, that it will be satisfied on condition that
certain particular values be given to the variables. Examples of
such equations have already occurred, more especially in chap.
xiii. One of the earliest may be seen in chap. iv., § 24,
where, inter alia, it was required to determine B so that we
should have 2B + 2 =2 ; in other words, to find a value of z to
satisfy the equation
2c+2=23 (2).

Every determinate problem, wherein it is required to deter-
mine certain unknown quantities in terms of certain other given
or known quantities by means of certain given conditions, leads,
when expressed in analytical language, to one or more equations
of condition ; to as many equations, in fact, as there are condi-
tions. The quantities involved are therefore divided into two
classes, known and unknown. The known quantities are denoted
by the so called constant letters ; the unknown by the variable
letters. Hence, in the present chapter, constant and known are
convertible terms ; and so are variable and unknown. The con-
stants may be actual numerical quantities, real and positive or
negative (-4, — 4, 0, +1, +§, &c.), or complex numbers (- 1,
1+ 2i, &c.); or they may be letters standing for any such
quantities in general.

§ 3.] Equations are classified according to their form, and
according to the number of variables that occur in them.

If transcendental functions appear, as, for example, in
2% = 3% + 2, the equation is said to be franscendental. With
such for the present we ghall have little to do.

If only algebraical functions appear, as, for example, in
Nz+y+ Yz—y=1, the equation is called an algebraical equa-
tion. Such an equation may, of course, be rational or irra-
tional, and, if rational, either fractional or integral, according to
circumstances.

It will be shown presently that every algebraical equation
can be connected with, or made to depend upon, an equation

of the form oz, 9 2...)=0,
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where ¢ is a rational integral function. Such equations are
therefore of great analytical importance ; and it is to them that
the “Theory of Equations,” as ordinarily developed, mainly
applies. ' An integral equation of this kind is described by
assigning its degree and the number of its variables. The de-
gree of the equation is simply the degree of the function ¢.
Thus, z* + 22y + 4 — 2 = 0 is said to be an equation of the second
degree in two variables.

§ 4.] Equations of condition may occur in sets of ome or
of more than one. In the latter case we speak of the set as
a set or system of simulfaneous equations.

The main problem which arises in connection with every system
of equations of condition is to find a set of values of the variables
which shall render every equation of the systeln am identity lileral or
numerical.

Such a set of values of the variables is said to satisfy the
system, and is called a solution of the system of equations. If
there be only one equation, and only one variable, a value of
that variable which satisfies the equation is called a root.

It is important to distinguish between two very different
kinds of solution. When the values of the variables which con-
stitute the solution are closed expressions, that is, functions of
known form of the constants in the given equations, we have
what may be called a formal solution of the system of equa-
tions. In particular, if these values be algebraical functions of
the constants, we have an algebraical solution. Such solutions
cannot in general be found. In the case of integral algebraical
equations of one variable, for example, if the degree exceed the
fourth, it has been shown by Abel and others that algebraical
solutions do not exist except in special cases, so that the
formal solution, if it could be found, would involve transcen-
dental functions.

When the values of the variables which constitute the solution
are given approzimalely as numbers, real or complex, the solution
is said to be an approximate numerical solution. In this case the
words “render the equation a numerical identity " are understood
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to mean “reduce the two sides of the equation to values which

shall differ by less than some quantity which is assigned.” For

example, if real values of the two sides, say P and P, are in"~
question, then these must be made to differ by less than some

given small quantity, say 1/100,000 ; if complex values are in

question, say P+Qi and P’ + Q4 then these must be

80 reduced that the modulus of their difference, viz,

VP-P)+(Q-Q), shall be less than some given emall

quantity, say 1/100,000.

As a matter of fact, numerical solutions can often be ob-
tained where formal solutions are out of the question. Integral
algebraical equations, for example, can always be solved numeri-
cally to any desired approximation, no matter what their degree.

Example 1.
22+2=2,
=0 is a solution, for this value of  reduces the equation to
2x0+2=2,

which is a numerical identity. Striotly speaking, this is a case of algebraical
solution.

Example 2.

»=0. .
2="0/a reduces the equation to

»

which is a literal identity ; hence z=0%%/a is an algebraical solution.
Example 8.

M -
2 e,
a
22-2=0.
Here 2= +4/2 and x= - o/2 each reduce the equation to the identity
2-2=0 H

these therefore are two algebraical solutions.

On the other hand, 2= +1°4142 and = = ~ 1'4142 are approximate

numerical solutions, for each of them reduces z®-2 to — ‘00003836, which
differs from 0 by less than *00004.

Example 4.
(z-1)Y2+2=0.

2=1+4/2¢ and x=1-4/2i are algebraical solutions, as the student will
easily verify. )

2=1'0001+1'4142 and 2=1°0001~1'4142¢ are approximate numerical
solutions, for they reduce (z - 1)3+2 to ‘00003837 + ‘00028284¢ and ‘00003837
- 000282841 respectively, complex numbers whose moduli are each less than
+0008.
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Example 5.
z-y=1

Here z=1, y=0, is a solution ; so is =15, y="5; so is =2, y=1; and,
in fact, so is z=a+1, y=a, where a is any quantity whatsoever.
Here, then, there are an infinite number of solutions.
Example 6. Consider the following system of two equations :—
z-y=1, 2x+y=>.
Here =2, y=1 is a solution ; and, as we shall show in chap. xvi., there is
no other.

The definition of the solution of a conditional equation
suggests two remarks of some importance. -

1st. Every conditional equation is a hypothetical identity. In
all operations with the equation we suppose the variables to have such
values as will render it an identity.

2nd. The ultimate test of every solution is that the values which it
assigns o the variables shall satisfy the equations when substituted
therein.

No matter how elaborate or ingenious the process by which
the solution has been obtained, if it do not stand this test, it is
no solution ; and, on the other hand, no matter how simply ob-
tained, provided it do stand this test, it is a solution.* In fact,
as good a way of solving equations as any other is to guess a
solution and test its accuracy by substitution.t

§ 5.] The consideration of particular cases, such as examples
1-6 of § 4, teaches us that the number of solutions of a system of
one or more equations may be finite or infinite. If the number
be finite, we say that the solution is determinate (singly determi-
nate, or multiply determinate according as there are one or more
solutions) ; if the number be infinite, we say that the solution is
indeterminate.

The question thus arises, Under what circumstances is the
solution of a system of equations determinate? Part at least of
the answer is given by the following fundamental propositions :—

Proposition 1. The solution of a system of equations is in general

* A little attention to these self-evident truths would save the beginner
from many a needless blunder.
+ This is called solving by *‘inspection.”
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determinate (singly, or multiply according to circumstances) when the
number of the equations is eqial o the number of the variables.
Rightly considered, this is an ultimate logical principle which
may be discussed, but not in any strictly general sense proved.
Let us illustrate by a concrete example. The reader is aware
that a rectilinear triangle is determinable in a variety of ways
by means of three elements, and that consequently three condi-
tions will in general determine the figure. To translate this into
analytical language, let us take for the three determining elements
the three sides, whose lengths, at present unknown, we denote
by z, g, 2, respectively. Any three conditions upon the triangle
may be translated into three equations connecting z, ¥, 2 with
certain given or constant quantities; and these three equations
will in general be sufficient to determine the three variables,
%, 4, 2 'The general principle common to this and like cases is
simply proposition I. The truth is that this proposition stands
less in need of proof than of limitation. What is wanted is an
indication of the circumstances under which it is liable to excep-
tion. To return to our particular case: What would happen,
for example, if one of the conditions imposed upon our triangle
were that the sum of two of the sides should fall short of the
third by a given positive quantity? This condition could be
expressed quite well by an equation (viz., z + y = z — ¢, say), but
it is fulfilled by no real triangle.* Again, it might chance that
the last of the three given conditions was merely a consequence of
the two first. We should then have in reality only two conditions
—that is to say, analytically speaking, it might chance that the
last of the three equations was merely one derivable from the
two first, and then there would be an infinite number of solutions
of the system of three variables. Such a system is
z+y+z2= 6,
3z +2y+2=10,
20+y= 4,
for example, for, as the reader may easily verify, it is satisfied
byz=a - 2, y=8 - 2a, z = a, where a is any quantity whatsoever.

* See below, chap. xix.
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It will be seen in following chapters how these difficulties are
met in particular cases. Meantime, let us observe that, if we
admit proposition 1., two others follow very readily.

Proposition I1. If the number of equations be less than the number
of variables, the solution is in general indeterminate.

Proposition III. If the number of equations be greater than the
number of variables, there is in general no solution, and the system of
equations 1s said to be inconsistent.

For, let the number of variables be #, and the number of
equations m, say, where m < n Let us assign to the first n —m
variables any set of values we please, and regard these as constant.
This we may do in an infinity of ways. If we substitute any such
set of values in the m equations, we have now a set of m equa-
tions to determine the last m variables ; and this, by proposition
I, they will do determinately. In other words, for every set of
values we like to give to the first » — m variables, the m equations
give us a determinate set of values for the last m. We thus get an
infinite number of solutions ; that is, the solution is indeterminate.

Next, let m be >n. If we take the first n equations, these
will in general, by proposition 1., give a determinate set, or a
finite number of determinate sets of values for all the =
variables. If we now take one of these sets of values, and
substitute it in onme of the remaining m -z equations, that
equation will not in general be satisfied ; for, if we take an
equation at random, and a solution at random, the latter will
not in general fit the former. The system of m equations will
therefore in general be inconsistent.

It may, of course, happen, in exceptional cases, that this
proposition is not true; witness the following system of three
equations in two variables :—

z-y=1, 22+y=5, 3z+2=38,
which has the common solution z=2, y=1.

§ 6.] We have also the further question, When the system
is determinate, how many solutions are there} The answer
to this, in the case of integral equations, is furnished by the
two following propositions :—
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Proposition I An integral equation of the nth degree in one
variable has n roots and mo more, which may be real or complez, and
all unegqual or not all unequal, according to circumstances.

Proposition II. A determinate system of m integral equations with
m variables, whose degrees in these variables are p, q, 1, . . . respect-
ively, has, at most, pqr . . . solutions, and has, in general, just that
number. .

Proposition L was proved in the chapter on complex num-
bers, where it was shown that for any given integral function
of 2 of the nth degree there are just n values of z and no more
that reduce that function to zero, these values being real or
complex, and all unequal or not as the case may be.

Proposition II. will not be proved in this work, except in
particular cases which occur in chapters to follow. General
proofs will be found in special treatises on the theory of equa-
tions. We set it down here because it is a useful guide to the
learner in teaching him how many solutions he is to expect.
It will also enable him, occasionally, to detect when a system
is indeterminate, for, if a number of solutions be found exceed-
ing that indicated by proposition IL., then the system is certainly
indeterminate, that is to say, has an infinite number of solu-
tions.

Example. The system 2*+3?=1, 2 ~y=1, has, by proposition IL., 2x1=2

solutions. As a matter of fact, these solutions are =0, y= -1, and z=1,
y=0.

EQUIVALENCE OF SYSTEMS OF EQUATIONS.

§ 1.1 Two systems of equations, A and B (each of which may con-
sist of one or more equations), are said to be equivalent when every
solution of A4 i3 a solution of B, and every solution of B a solution
of A.

From any given system, A, of equations, we may in an in-
finity of ways deduce another system, B; but it will not
necessarily be the case that the two "systems are equivalent.
In other words, we may find in an infinity of ways a system,
B, of equations which will be satisfied by all values of the
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variables for which A is satisfied ; but it will not follow con-
versely that A will be satisfied for all values for which B is
satisfied. To take a very simple example, z — 1 = 0 is satisfied by
the value z=1, and by no other; z(z—1)=0 is satisfied by
z=1, that is to say, z(zx—1)=0 is satisfied when z~1=0 is
satisfied. On the other hand, z(z — 1) =0 is satisfied either by
z=0 or by z =1, therefore z— 1 =0 is not always satisfied when
#(z—1)=0is so; for =0 reduces -1 to ~1, and not to 0.
Briefly, z(z— 1) =0 may be derived from z—1=0, but is not
equivalent to z—1 = 0.

z(z—1)=0 is, in fact, more than equivalent to 2-1=0,
for it involves 2— 1 =0 and =0 as alternatives. It will be
convenient in such cases to say that 2(z— 1) =0 is equivalent to

z=0
z-1=0

‘When by any step we derive from one system another which
is exactly equivalent, we may call that step a reversible deriva-
tion, because we can make it backwards without fallacy. If
the derived system is not equivalent, we may call the step
irreversible, meaning t.hereby that the backward step requires
examination.

There are few parts of algebra more important than the
logic of the derivation of equations, and few, unhappily, that
are treated in more slovenly fashion in elementary teaching.
No mere blind adherence to set rules will avail in this matter;
while a little attention to a few simple principles will readily
remove all difficulty.

It must be borne in mind that in operating with conditional
equations we always suppose the variables to have such values
as will render the equations identities, although we may not at
the moment actually substitute such values, or even know them.
We are therefore at every step, hypothetically at least, applying the
Jundamental laws of algebraical transformation just as in chap. 1.

The following general principle, already laid down for real
quantities, and carefully discussed in chap. xii, § 12, for com-
plex quantities, may be taken as the root of the whole matter.

Let P and Q be two functions of the variables , y, 2, . . ., which
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do mot become infinite* for any values of those variables that we have
to consider.. If P x Q=0and Q=+ 0, then will P=0, and if P x Q=0
and P 0, then will @=0.

Otherwise, the only values of the variables which make P x Q=0
are such as make either P=0, or Q=0, or both P=0 and @=0.

§ 8.] It follows by the fundamental laws of algebra that if

P=Q (l)’

then PxR=Q=R (2),

where R is either constand or any function of the variables.
‘We shall show that fhis derivation is reversible.

For, if P+R=Q=R,
then : PxRyR=QxRzR,
that is, P=Q;

in other words, if (2) holds so does (1).

Cor. 1. If we transfer any term in an equation from the one side
to the other, at the same time reversing ifs sign of addition or subtrac-
tion ; or, if we reverse all the signs on both sides of an equation, we
deduce in each case an equivalent equation.

For, if P+Q=R+8, say,
then P+Q-S=R+S-8,
that is, P+Q-S=R

Again, if P+Q=R+S, »
then P+Q-P-Q-R-S=R+S-P-Q-R-§,
that is, -R-S=-P-Q,
or -P-Q=-R-S.

Cor. 2. Every equation can be reduced to an equivalent equation of
the form—
R=0.

For, if the equation be P=Q,

* In all that follows all functions of the variables that appear are supposed
not to become infinite for any values of the variables contemplated. Cases
where this understanding is violated must be considered separately.
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we have P-Q=Q-Q,

that is, P-Q=0,

which is of the form R=0.
Example,

-8r%+22% + Sz=2%~2-8.
Subtracting «* -z - 8 from both sides, we have the equivalent equation
-8z +a+42+8=0.
Changing all the signs, we have
83— 29— 42-8=0.
In this way an integral equation can always be arranged with all its terms on
one side, so that the coefficient of the highest term is positive.
§ 9.] It follows from the fundamental laws of algebra that

';f ' P=Q (1)’
then PR=QR (2),
the step being reversible if B is a constant differing from O, but not if
‘R be a function of the variables.* )

For, if PR=QR,
an equivalent equation is, by § 8,
PR-QR=0 )
that is, P-QR=0 (4).

Now, if R be a constant 0, it will follow from (4), by the
general principle of § 7, that
. P-Q=0

which is equivalent to P=Q
But, if R be a function of the variables, (4) may also be satisfied
by values of the variables that satisfy

, k=0 ®);
and such values will not in general satisfy (1).
In fact, (2) is equivalent, not to (1), but to (1) and (5) as

alternatives.

* This is spoken of as ‘‘multiplying the equation by R.” Similarly the
process of § 8 is spoken of as ‘‘adding or subtracting R to or from the equa-
tion.” This language is not strictly correct, but is so convenient that we
shall use it where no confusion is to be feared. :
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, Cor. 1. From the above it follows that dividing both sides of
an equation by any function other than a constant not equal to zero is not
a legitimate process of derivation, since we may thereby lose solutions.

Thus PR = QR is equivalent m{P‘Q=°};

R =0

whereas PR/R =QR/R*
gives P=qQ,
which is equivalent merely to

P-Q=0.

Example. If we divide both sides of the equation
(z-1)2=4(x-1) (a)

by 2 -1, we reduce it to aB3=4 )8

which is equivalent to (z—2)(z+2)=0.
(a), on the other hand, is equivalent to
(z-1)(z-2) (z+2)=0.
Hence (a) has the three solutions, z=1, z=2, = —2; while (8) has only the
two, z=2, z= -2,

Cor. 2. To multiply or divide both sides of an equation by
any constant quantity differing from zero is a reversible process
of derivation. Hence, if the coefficients of an integral equation be
Jractional either in the algebraical or in the arithmetical sense, we can
always find an equivalent equation in which the coefficients are all
integral, and have no common measure.

Also, we can always so arrange an integral equation that the co-
efficient of any term we please, say the highest, shall be + 1.

Example 1.
3x+2 + 6zx+3_22x+4
4 5 ~ 8
gives, on multiplying both sides by 40,

10(3z +2) + 8(62+ 8)=5(2z + 4),

that is, 802+ 20 + 48z + 24 =10z + 20,
whence, after subtracting 10z+ 20 from both sides,
68z +24=0.

* As we are here merely establishing a negative proposition, the reader
may, to fix his ideas, assume that all the letters stand for integral functions
of a single variable,



x1v.] FROM RATIONAL EQUATION. 289

whence again, after division o1 both sides by 68,
z+ 9— =0.

17
Example 2.

(p+q *p- qy) (u +p+q”)‘2”’”

If we multiply both sides by pg(p - g) (p+¢), that is, by pg(2* - ¢*), we derive
the equivalent equation
{@ -+ } {(P*-Pr+oy} = 2pq(p‘ @y,
thatis, .  (7*-@%'+2p0(0" - @Ry + 0% =2pg(P* - ¢ )0y,
which is equivalent to (7 - @ + %% =0.

Cor. 3. From every rational algebraical equation an integral equa-
tion can be deduced ; but it is possible that exirameous solutions may
be tniroduced in the process.

Suppose we have P=Q (a),
where P and Q are rational, but not integral. Let L be the
L.C.M. of the denominators of all the fractions that occur either
in P or in Q, then LP and LQ are both integral. Hence, if we
multiply both sides of (a) by L, we deduce the integral equation

LP=1Q ®).

Since, however, the multiplier L contains the variables, it is
possible that some of the solutions of L = 0 may satisfy (8), and
such solutions would in general be extraneous to («). We say
possible ; because P and Q contain fractions whose denominators
are factors in L. Hence the solutions of L =0 will in general
make either P or Q infinite, and therefore (P — Q)L not neces-
sarily zero. The point at issue will be best understood by study-
ing the two following examples :—

Example 1. 68
_g4Fo0e48 a2
-8+ z-2 z-8 (@)
If we multiply both sides by (z - 2) (x - 8), we deduce the equation }
(22— 8)(z-2) (- 8)+(2*- 62 +8) (x-3)=(z-2) (8),

which is integral, and is satisfied by any solution of (a). We must, however,
examine whether any of the solutions of (x-2)(xz-8)=0 satisfy (B).
These solutions are =2 and z=3. The second of these obviously does not
satisfy (8), and need not be considered ; but z=2 does satisfy (8), and we
must examine (a) to see"whether it satisfies that equation also.

VOL. I. U
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Now, since 2% - 6z + 8 = (¢ - 2) (z— 4), (a) may be written in the equivalent
form
%-8+z-4=2"2
z-3°
which is obviously not satisfied by z=2.

It appears, therefore, that in the process of integralisation we have intro-
duced the extraneous solution z=2.

Example 2. .

o3+ 22 -6e+8_z-2 (a).
z-2 z-3
Proceeding as before, we deduce
(22~ 8) (2 - 2) (z— 8)+ (23 - 82+8) (z- 8)=(z— 2} 8)

It will be found that neither of the values =2, z=38, satisfies (8').
Hence no extraneous solutions have been introduced in this case.

N.B.—The reason why x=2 satisfies (8) in example 1, is that the numer-
ator a®—6z+8 of the fraction on the left contains the factor z—2 which
occurs in the denominator.

Cor. 3. Raising both sides of an equation to the same integral
power 13 a legitimate, but not a reversible, process of derivation.

The equation P=Q (1),
is equivalent to P-Q=0 (2).

If we multiply by Pr-1+ P#-2Q + P*-3Q2+ . . .+ Q™1 we
deduce from (2)

Pr-Qr=0 (3),
which is satisfied by any solution of (1); (3), however, is not
equivalent to (1), but to

P=Q}

{P"'1+P"'2Q+ ..+ Qr=0

It will be observed that, if we start with an equation in the
standard form P — Q = 0, transfer the part Q to the right-hand
side, and then raise both sides to the nth power, the result is the
same as if we had multiplied both sides of the equation in its
original form by a certain factor, To make the introduction of
extraneous factors more evident we chose the latter process; but
in practice the former may happen to be the more convenient.*

If the reader will reflect on the nature of the process described
in chap. x. for rationalising an algebraical function by means
of a rationalising factor, he will see that by repeated operations of

* See below, § 12, Ex. 8.
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this kind every algebraical equation can be reduced to a rational
form ; but at each step extrareous solutions may be introduced.
Hence

cor./. From evéry algebracal equation we cam derive o rational
indegral equation, which will be satisfied by amy solution of the given
equation ; but it does not follow that every solution, or even that any
solution, of the derived equation will satisfy the original one.

Example 1. Consider the equation

Ne+1+Nz-1=1 (a),
where the square root is understood to have the positive sign.
() is equivalent to Nz+1=1-~z-1,

whence we derive, by squaring
z+l=14+z-1-2Vz-1,
which is equivalent to 1=-2Vz-1.
From this last again, by squaring, we derive
1=4(z-1),
which is equivalent to the integral equation
d-5=0 (p):
the only solution of which, as we shall see hereafter, is z=4%.
It happens here that z=% is not a solution of (a), for VE+1+F-1
=§+4=2
Example 2. . .
Nz+1-Nz-1=1 (o)
Proceeding exactly as before we have
z+l=1+2-1+2Vz-1,
1= +2Vz-1,
‘1=4(z-1),
42-5=0 (#)
Here (8') gives =4, which happens this time to be a solution of the
original equation.

We conclude this discussion by giving two propositions
applicable to systems of equations containing more than one
equation. These by no means exhaust the subject; but, as our
object here is merely to awaken the intelligence of the student,
the rest may be left to himself in the meantime.

§ 10.] From the system

P,=0, P,=0,...P,=0 (A)
we derive
LP+LP,+ .. .+L,P,=0, P;=0,...P,=0 (B),
and the two will be equivalent if L be a constant differing from 0.



292 EXAMPLES OF DERIVATION. [caAr.

Any solution of the system (A) reduces P, P,, . . . P, all
to 0, and therefore reduces L,P, + L,P,+. . . + L,P, to 0, and
hence satisfies (B).

Again, any solution of (B) reduces P,, P,, . . . P, all to 0,
and therefore redauces L,P,+LP,+ .. .+L,P,=0 to L,P,
= 0, that is to say; if L, be a constant + 0, to P,=0. Hence, in
this case, any solution of (B) satisfies (A).

If L, contain the variables, then (B) is equivalent, not to (A)
simply, but to

P,=0, P,=0,...P,=0
L,=0, P,=0,...P,=0 }
As a particular case of the above, we have that the two
systems
P=Q, R=8§;
and P+R=Q+8S, R=S
are equivalent. For these may be written
P-Q=0, R-8=0;
P-Q+R-8=0, R-8=0.

If I, V', m, m be constants, any one of which may be zero, but

which are such that Im’ — I'm + 0, then the two systems
U=0, U'=0,

and IU+lU0 =0, mU+m'U’' =0

are equivalent.

The proof is left to the reader. A special case is used in
chap. xvi, § 4.

§ 11.] Any solution of the system

P=Q, R=S8 (A)

i8 a soludion of the system
PR=QS, R=8 B);
but the two systems are not equivalent.
From P =Q, we derive
PR=QR,
which, since R =S, is equivalent to
PR=QS.
It follows therefore that any solution of (A) satisfies (B).
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Starting now with (B), we have

PR=Q8 (1),
R=S8S ).
Since R =S8 (1) becomes
PR=QR,
which is equivalent to
(P-QR=0,
that is, equivalent to
{ P-Q=0
R=0
Hence the system (B) is equivalent to
{ P=Q,R=S8S }
R=0,R=8J’
that is to say, to
{ P=QR=S8 }
R=0, S=0J°
In other words, (B) involves, besides (A), the alternative system,
R=0, S=0.
Example. From z-2=1-y, 2=1+y,

a system which has the single solution =2, y=1, we derive the system
z(z-2)=1-y"lz=1+y,
which, in addition to the solution £=2, y=1, has also the solution =0, y= -1
belonging to the system
z=0, 1+y=0,

§ 12.] In the process of solving systems of equations one of
the most commonly-occurring requirements is to deduce from two
or more of the equations another that shall not contain certain as-
signed variables. This is called * eliminating the variables in ques-
tion detween the equations used for the purpose.” In performing
the elimination we may, of course, use any legitimate process of
derivation, but strict attention must always be paid to the ques .
tion of equivalence. -~

Example. Given the system Py ,
z+y=1 (2)
it is required to eliminate y, that is, to deduce from (1) and (2) an equation
involving z alone.
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(2) is equivalent to

y=1-2z.
Hence (1) is equivalent to
224+ (1 -zpP=1,
that is to say, to
223 - 22 =0,
or, if we please, to
-2=0;

and thus we have eliminated y, and obtained an equation in z alone.
The method we have employed (simply substitution) is, of course, only
one among many that might have been selected.
Observe that, as a result of our reasoning, we have that the system (1) and
(2) is equivalent to the system
2 -2=0 (3),
‘zt+y=1 (4),
from which the reader will have no difficulty in deducing the solution of the
given system.

§ 13.] Although, as we have said, the solution of a system
of equations is the main problem, yet the reader will learn,
especially when he comes to apply algebra to geometry, that
much information—very often indeed all the information that is
required—may be derived from a system without solving it,
but merely by throwing it into various equivalent forms. The
derivation of equivalent systems, elimination, and other general
operations with equations of condition have therefore an im-
portance quite apart from their bearing on ultimate solution.

‘We have appended to this chapter a large number of exercises
in this branch of algebra, keeping exercises on actual solution for
later chapters, which deal more particularly with that part of
the subject. The student should work a sufficient number of the
following sets to impress upon his memory the general principles
of the foregoing chapter, and reserve such as he finds difficult for
occasional future practice.

The following are worked out as specimens of various artifices
for saving labour in calculations of the present kind :—

Example 1. Reduce the following equation to an integral form : —
azx?+bx+c _ax+d

FEr@tr - g (a)
‘We may write («) in the form
az+b)+c _ax+d @)

Hpr+q)+r pe+q
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Multiplying (8) by (pz+9) {z(pz+g)+7} , We obtain
2az+d)(pz+9)+ oo+ g)=2(ax+b) (pe+g)+rlaz+b) (7).
Now, () is equivalent to
o(px+q)=rlaz+b) (3),

which again is equivalent to
(ep—-ra)e+(cg—-rb)=0 (o).

The only possibly irreversible step here is that from (8) to (y).
Observe the use of the brackets in (S) and () to save useless detail. v

Example 2.
In lise
bogra (a—a:)(z+m)=(a+:c) (z-m) (a).
z+n z-n

Since z+m=z+n+m-n, z— m=x—-n-m-n, («) may be written in the
equivalent form,

@-2)(1+227) = @+2) (1- 58 ®
whence the equivalent form
-z a+x
(@ -z)- (a+a)+(m-n) m"'m) =0,
that is, '
—- 22+ 2&%‘”)_(:’—"'“)” =0 ).
Multiplying by - #(=*~n?), we deduce from (y) the integral equation
z {8 -2~ (m—n) (n+a)} =0 ().

In this case the only extraneous solutions that could be introduced are
those of 23 -n3=0.

Note the preliminary transformation in (8); and observe that the order
in which the operations of collecting and distributing and of using any
legitimate processes of derivation that may be necessary is quite unrestricted,
and should be determined by considerations of analytical simplicity. Note
also that, although we can remove the numerical factor 2 in (v), it is not
legitimate to remove the factor  ; =0 is, in fact, as the student will see by
inspection, one of the solutions of (a).

Example 3.
X, Y, Z, U denoting rational functions, it is required to rationalise the

equation .

VEXENYEN/ZEAT=0 (a).
We shall take + signs throughout; but the reader will see, on looking
through the work, that the final result would be the same whatever arrange-
ment of signs be taken.

From (a),
_ WEHA/Y=-NZ-NT,
whente, by squaring,

| X+Y+2VXY=2+U+2VZU (8).
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From (8),!
X+Y-Z-U=-2v/XY +2VZT,
whence, by squaring,
(X+Y-Z-Up=4XY +4ZU - 8V/XYZU ().
We get from (y),
X24 Y34 224 U2~ 2XY - 2XZ - 2XU - 2YZ - 2YU - 2ZU = - 8V XYZU,
whence, by squaring,

{X24+Y3+ 273+ U%-2XY - 2XZ - 2XU - 2YZ - 2YU - 2ZU}3=64XYZU (3).
Since X, Y, Z, U are, by hypothesis, all rational (3) is the required result.
As a particular instance, consider the equation .

N2z +84+482+2- V2215 -ABz=0 (a').

Here X=22+3, Y=8x+2, Z=2z+5, U=8x; and the student will find,
from (3) above, as the rationalised equation,

. (4827 + 1122+ 24)3=64(2x + 3) (82 + 2) (2x +5)3z (%).
After some reduction (3') will be found to be equivalent to
(=-3)2=0 (¢).

It may be verified that =38 is a common solution of (a’) and (¢').

Although, for the sake of the theoretical insight it gives, we have worked
out the general formula (3), and although, as a matter of fact, it contains as
particular cases very many of the elementary examples usually given, yet
it is by no means advisable that the student should work particular cases by
merely substituting in (3); for, apart from the disciplinary advantage, it
often happens that direct treatment is less laborious, owing to intervening
simplifications. Witness the following treatment of the particular case (a')
above given.

From (a'), by transposition,

Nox+84+V3x+2=N2+5+4/3z,
whence, by squaring,

bz + 5+ 2V6a3+ 182+ 6 =5z + 5+ 262 + 16z,
which reduces to the equivalent equation

A6+ 18z + 6 =N 627+ 162 8.
From (g'), by squaring,
’ 648 + 182 + 6= 623+ 15z,
which is equivalent to
z-3=0 (3").
Thus, not only is the labour less than that involved in reducing (3), b
(%) is itself somewhat simpler than (3). v
Example 4. If
z+y+2=0 (a),
show that

2P+ yz+ 3P =81(P + yz +2) 8
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We have
Pryz+e=yP+oy+2),
=(~z-zf+o ~2), by (),
=3+ 423,
=234 , by symmetry.
It follows then that Y by oty
2P+ + AP =8y + 8P (v
and SI(y+ yz+2°) =8(y* +yz+ 238 (3).
From (v) and (8), (8) follows at once.
Example 5. If
z+y+2=0 (a),
show that P
P+ +
z (y+2) (z+2) +52y2=0 @)
From (a), y+z=-2 (),
whence, squaring and then transposing, we have
P+3=2-22 ).
Similarly 2+z=-y ),
Bz=y - 2z (&),

From the last four equations we have
@ +20) P+l _ o (2~ 22) (- 22)
(y+2)(z+2) xy
- Ez’y’—z'z‘z—2y’z+4zyz”
xy

=2 (zy—2(x'—:;:)—z'+ 42’),

=2zy+42‘a:’—z%22x’(y'+z') .
Now, from (a), by squaring and transposing,

Zo*= - 2Zzy (9]

Also 22yt + ) =2ty z+y), ”

=- zz".’/’z, by (“))

= - ay2Zzy ().

If we use (¢) and (»), (¢) reduces to
SO +2) (P +2Y) _ _
eI

which is equivalent to (8).

The use of the principles of symmetry in conjunction with the Z notation
in shortening the calculations in this example cannot fail to strike the

reader. {

Example 6. If
yz-2'_z—y?
y+z  z+=z (@),
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and if z, y, % be all unequal, show that each of these expressions is equal to
(zy - 2%)/(z+y), and also to x+y+2
Denote each of the sides of (a) by U. Then we have

] .
y;';.; =U A (8)
Te=U -

Since y+2=0 and 2+2=0 would render the two sides of (a) infinite, we
may assume that values of z, y, z fulfilling these conditions are not in ques-
tion, and multiply (8) and (y) by y+z and 2+ respectively. We then

deduce
yz-2* - (y+2)U=0 (3),
-y- (2+2)U=0 (e).
From (3) and (e), by subtraction, we have
z{z-y) +(z* - 9°) - (z-y)U=0,

that is, (+y+2-U)(z-y)=0 ($).
Now z-y=0 is excluded by our data ; hence, by (¢), we must have

z+y+z-U=0, (),

that is, U=z+y+=z ).

We have thus established one of the desired conclusions. To obtain the
other it is sufficient to observe that () is symmetrical in #, y, z. For, if we
start with () and multiply by 2~z (which, by hypothesis, is #0), we obtain

y(z-2)+ (-2~ (z-2)U=0;
and, combining this by addition with (3),
zy-2-(z+y)U=0;
which gives (since z /y = 0),
=22
z+y :

The reader should notice here the convenient artifice of introducing an
auxiliary variable U. He should also study closely the logic of the process,
and be sure that he sees clearly the necessity for the restrictions z -y =0,
z+y 0.

Example 7. To eliminate #, y, z between the equations,

y’+z‘=ayz ’ (a):
Bai=bax (p)l
:c’+y‘=czy ()

where 230, y+0, 2+ 0,

In the first place, we observe that, although there are three variables, yet,
since the equations are homogeneous, we are only concerned with the ratios
of the three. We might, for example, divide each of the equations by 3;
we should then have to do merely with y/« and z/x, each of which might be
regarded as a single variable. There are therefore enough equations for the
purpose of the elimination.
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From (a) and (8) we deduce, by subtraction,
21 -y =(bx - ay)z (3.
‘We remark that it follows from this equation that & — ay 40 ; for bz —ay=0
would give 22=4%, and hence, by (v), z=0 (at least if we suppose bc+ 2a).
This being so, we may multiply (8) by (3z—ay)®. We thus obtain
2Xbx - ay P + 2X(bz — ay P = bao( b ~ ay )P,
whence, using (3), we have
(2*- P +2%bz ~ ay)=ba(bz - ay) (2' - 1),
which reduces, after transposition, to
(2~ y*P=ay(ax - by) (b ~ay),
that is to say, (= +y"f - 4"y =zy(az - by) (b - ay) (e)-
Using (vy), we deduce from (e) . ’
(- 4)YyP =ay(az - by) (b - ay),
whence, bearing in mind that 2y + 0, we get
- 4y =ab(®+93) - (a®+ )y,
which is equivalent to ¢ KY=ad )~ @+ ey

(a3 + B+ - d)ey=ab(x®+ %) (%)
Using () once more, and transposing, we reach finally
(a*+ ¥+ - 4 — abekey =0,
whence, since zy =0, we conclude that
A+P+-4-abe=0 (2),
so that () is the required result of eliminating «, y, 3 between the equations
(a), (B), (v). Such an equation as (») is often called the eliminant (or re-
sﬂt) of the given system of equations.
Example 8. Show that, if the two first of the following three equations be
given, the third can be deduced, it being supposed that 24y +z=+0.

aX3? +y3+2%) - ayaly + 2)+ 2 =0 (a),
aXB 4+ +2%) - aze(z + &) + 23 =0 (B),
X2+ 2y +y7) - azy(z+y) + 2P =0 (v

This is equivalent to showing that, if we eliminate z between (z) and (8), the
result is (y).
Arranging (a) and (8) according to powers of 2, we have

a% - of - ay+9P)a-+ (o - ay +4P)P=0 @),
a2 - o — ax+ 2+ (a® - az+23)P=0 (e).

Multiplying (3) and (e) by 2® and y? respectively, and subtracting, we get
dzyz-y)z + {o{e+y)-azy} @-yei=0,
whence, rejecting the faetor a(z - y),
azy + {a(z+y)-ay} 2=0 ®.

Again, multiplying (3) and (e) by e?-ax+2? and a?-ay+y® respectively,
and subtracting, we get, after rejecting the factor a3,

az+y)-ay + {a-(z+y)} =0 (")"
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Finally, multiplying ({) and () by a{z+y) -2y and axy respectively, and
subtracting, we get, since z + 0,

which gives

{dz+y) -2y} 2-azy {a-(z+y)} =0,
Ny +y) - azyz+y)+2yP=0, [/

the required result.

Exerorses XIX.
(On the reduction of equations to an tniegral form.)

Solve by inspection the following systems of equations :—

1)
(2)
8)
(4)

(5.)

28— 4-8(z+2)=0.
at+b_ 25
z-b z-a
(a-b)—at+53=0.
b -c)+ylc—a)+(a-b)=0,
ax(b - ¢)+dy(c—a)+da-b)=0.
z+y+z=a+b+e
ax+by+ez=ad+ b+,
ba+cy +az=bec+ca+ab.

(6.) For what values of @ and b does the equation

(z—a)(8z-2)=8x+bz+10

become an identity ?
Integralise the following equations ; and discuss in each case the equiva-
lence of the final equation to the given one.

)
8.)

' (9.)
(10.)
(1)
(12.)
(18.)

(14.)

where

z+a z-¢ z-a z+c
a? o | ke
Z-a z-b z-a  2-5
(8- a:)(x+10) (8+2z) (- 10)
z+11 z-11
Dipetq  Ppr+i
Prrz+2g B4+
(z-a) (z-b)® =P _,
(c-a) (a- b) (@a-b)(b-c) (b ¢)(c-a)
z+T+U z+T-U
22+ (2-t+52-8-1) z’+(2 sx+Y2-8~ e
2T=s+t~-3—-st -3
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Braz+d Z+ez+d_s+ax+d Btez+d
z+a z+c = z+a z+c

Rationalise the following equations and reduce the resulting equation to
as simple a form as possible :—
(168.) A/z+A/y+A/2=0, where @, y, z are rational functions of the

variables.
a7n)
(18.)
(19.)
(20.)

(21.)
(22.)
(28.)
(24.)

(25.)

(26.)
(27.)

(8.)
(29.)
(80.)

(s1.)
(82.)
where

Nera+Nz+b+Nz+e=0.

NTiz+Nitz-Itz=0.

[z-c+ {(z-c)’+y‘}‘]/[z+c+ {(x—c)’+y’}‘]=m.
z-a=Na— /(@ - 20).

21
‘\/z"‘\/z 7—\/(3 7)

‘\/z+8 ANz +48
Vx+8 Nz+29

N2xz N2z
NV2HAZ+7) N2-A(2-2)
Vzta+NVz-a+Nbrz+NVi-z=0.
NVl+z+23+N1-z+23
/(1 +z)+A/(1-2)
(y-2) (ax+ bR +(z-z) (ay + b} + (z - y) (az+ b)E=0.
2Ny -2=0; and show that Zz=4/3Zyz{(three variables z, y, z).

1 1 :
:\/(a:+‘\/ac—’Tl)+ A (z - \/x“_——i)_\/m)'
ot 4 5ab — 22=0.
~/ Ja+x Ve

e
~/a+»\/z+~/a Vz-Jb
ot 4yt 42b=0,
z+y+2z=0.

=1

Exxerorses XX,
(On the Transformation of Systems of Equations.)

In working this set the student should examine carefully the logic of every
step he takes, and satisfy himself that it is consistent with his data. He
should also make clear to himself whether each step is or is not reversible.

L) If

then

y:’+’;‘°+z+y+2 =0, z+y+2+0,

1
z+y+i

1 1
ztyt:T

1
y
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(2.) If 2+y3=23
then {@+2p}2+ {2 - 2)) 3= {(PB+2)x}3  (Tait).

(3.) If 2, y, 2 be real, and if 2¥y.— 2)+yA(z — 2) + %z — y) =0, then two at
least of the three must be equal.

4.) If @ty P=B+P+d,
then (z+y+2)2Hl=gintl L sntl o]
(5.) If :

B2+ 2pry +1%) (P2 + 298y + %) = (pge+ ps+qr.y +r=)l,
then either 32— 22=0, or ps - gr=0.

: s | by

@) 1f P b'—?“cﬂ A=0
where =+ +23

2 P 2 _
then Pa-ptapaptaE—p
where =0+ %%+ 322
(Important in the theory of the wave surface,— Z'ast.)
(1) 1f Yt2_242_24Y ond z4y+2=0,

b-¢c ¢c-a a-¥
show that each of them is equal to A/ Za3/2(Za? - Zbe).
8) If a(by + ez - ax) =b{cz + az - by) =c(ax+ by - cz),

and if a+bd+e=0,
then z+y+2=0.
0.) If T2y _yt+2_z+2z
@) 2a+b" 2b+¢ 2%+a’
Z2\3_Zazy Z2*
th
Jen ) =Zab = Zat'
2ab+ 5 ad—p
10) If = = ,
(10) o Y araen .
then Bry=yd+a
1L) If = (a-by  _a+d, ab
(11.) z=e+biqn iy V=i tary
then : (z-a)l-(y-b)i="0%.
(12.) If a=az+by+ez+dw,

B=bz+ay+dz+cw,

y=cx+dy+az+dw,

d=dx+cy+bz+aw,
and if
N S@, B v B=(a+B+y+d) (a=B+v-3) (a=B-vy+3) (a+B-7-3),
then

e, B v, 8)=fla, b ¢ d)f(z, Y, 2, w).
(13.) If 2+y+2=0, then = ( 1)
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a1 (3)"+(%)" ;(cf) ;= ! :(5) @7+ ()"

and F‘;‘:Fﬁ:m
i
show that (Z‘a.”"+") (h""'"" =dm.
(15.) If a-%:b—%:c—%, 1‘*0»3/*0,2*0,
then G+f-—z’=b+z,—z'=c+x’—y'-
b-c¢ c-a a-b

(18.) If 2+ (yz— 2)/(@+1°+#*) be unaltered by interchanging = and y, it
will be unaltered by interchanging = and z, provided , y, z be all unequal ;
and it will vanish if z+y+2=1.

(17.)'H%—w’=3—f—c—y’, and 2=y, then each of these is equal to
zyz/(2+y) - 28 and also to yz+22+2y.

(18.) Of the three equations

x y+z
B-wd (m+1pd—-(n+1)yz’
_ z+@
—w? (m+1w?-(n+1)=’
2 _ z+y
Z-w (m+1nd-(n+1lky’
where 2 +y+2, any two imply the third (Cayley).
(19.) Given

1 y v _
1+x+a=+1+y+zy+1+z+yz_1’
z Ty 1
1+m+:u+l+y+a:y+l+z+yz_l'
none of the denominators being zero, then z=y=2.
(20.) Given Z(y+2)*/z=38Zx, Zz+ 0, prove Z(y+z -2+ I(y+2-2z)=0.
(21.) Given Zx=0, prove Z(z®+y*)/(x+y) + SayzZ(1/x)=0.
(22.) Given Zz=0, prove that Zz*Zz%3" is independent of 2, y, =
(23.) If Zab= ~ bayzZay, then Zw=0, or Za* - Zady + T2+ 22ayz=0.
(24.) If O(23+1)=a?+1, I(z*-1)=a?~1, and Zey=0, then z+y+2=0
or =%a.
(25.) If z+y+2+u=0, then 42®+8Z(y +2) (u+y) (u+2)=0, where the
3 refers to the four variables z, y, 2, .

Exercises XXI.
(On Elimination.)
(1.) Eliminate = between the equations
z+ljz=y, 2f+1[/P=2
(2.) If 2=Nay3- a¥y, y=~az? - a¥fz, express \azi— a¥z in terms of .
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(8.) If #(z)=(a*-a=%)/(a"+a~*),
F(z)=2/(a*+a~*),
then Hz+y)=(d(z) + )1+ Hz)¢(y)),

F(z+y)=F(=)F(y)/(1+$x)p(y))
ai(y+z—z)=y(z+z~y)=z(z+y —z)’

(4.) Given = 5 2
rove that ab+c—-a) Yc+a-B) cla+d-c)
P z ¥ -z

(6.) Given bz+cy=cx+az=ay + bz, 2% +3*+23=2yz + 222+ 2xy, prove that
one of the functions a+b+c=0.
(6.) Show that the result of eliminating = and y between the equations
z Yy _, @ ¥_ =
2+3=L o +a=lL 2y=p,
is (b33 + a?d?)ipt + 2abc3dP (B33 + a?d? - 2a%H3)p? + abre’d¥(a? - ¢2) (B3 - dP) =0.
(7.) Eliminate @, y, 2/, ' from
az+by=c, B+yi=4, -
A by =, rryi=as, V=0
1 1 1 1 . . . . N :
(8.) Isza+m+z_+Tz=E’ with two similar equations in which b and ¢
take the place of @, show that 2(1/a)=0, provided a, b, ¢ be all different.
(9.) Show that any two of the following equations can be deduced from the
other three :—
ax+be=zu, byteca=wv, cz+db=vx, dutec=zy, ev+ad=yz.

(10.) Eliminate z, y, z from the three equations
(z+z-y)(xt+y-2)=ayz (z+y-2)(y+2-z)=bm, (y+2-2)E+z-y)

=cxy;
and show that the result is abe=(a+b+c—4p.V



CHAPTER XV.

Variation of Functions.

v§ 1] view which we took of the theory of conditional
equations in,last chapter led us to the problem of finding a set
of values of the variables which should render a given conditional
equation an identity. There is another order of ideas of at least
equal analytical importance, and of wider practical utility, which
we now proceed to explain. Instead of looking merely at the
values of the variables z, , z . . . which satisfy the equation

S&yz. . )=0,

that is, which render the function f(z, 9,2 . . .) zero, we consider
all possible values of the variables, and all possible corresponding
values of the function ; or, at least, we consider a number of such
values sufficient to give us a clear idea of the whole ; then, among
the rest, we discover those values of the variables which render
the function zero. The two methods might be illustrated by the
two possible ways of finding a particular man in a line of soldiers.
We might either go straight to some part of the ranks where
a preconceived theory would indicate his presence ; or we might
walk along from one end of the line to the other looking till we
found him. In this new way of looking at analytical functions,
the graphical method, as it is called, is of great importance.
This consists in representing the properties of the function in
some way by means of a geometrical figure, so that we can with
the bodily eye take a comprehensive view of the peculiarities of
any individual case.
VOL L X
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GENERAL PROPOSITIONS REGARDING FUNCTIONS OF ONE
REAL VARIABLE

V'§ 2.] For the present we confine ourselves to the case of a
function of a single variable, f(z) ; and we suppose that all the
constants in the function are real numbers, and that only real
values are given to the) variable 2. 'We denote, as in chap.
xiii., § 17, f(z) by y, so that

y=f=) 1
and we shall, as in the place alluded to, speak of z and y as
the independent and dependent variables ; we are now, in fact,
merely following out more generally the ideas broached there.

Y

N,

% /M. ", \L 'R W" A 5

yﬂ F-g 1.

To obtain a graphical representation of the variation of the
function f(z) we take two lines X'OX, Y'OY, at right angles to
each other (co-ordinate azes). To represent the values of z we
measure z units of length, according to any convenient scale,
from the intersection O along X'OX to the right, if # have a
positive value, to the left if a negative value. To represent the
values of ¥ we measure lengths of as many units, according to the
same or, it may be, some other fixed scale, from X'OX parallel to
Y'OY, upwards or downwards according as these values are posi-
tive or negative.

For example, suppose that when we put z= -2, z= -1,
z= +1, 2= + 2, the corresponding values of
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-2, A(-1), f(+1), f(+2)

are +1, -2, +1, -1
respectively ; so that we have the following scheme of corre-
sponding values—

z Y
-2 +1
-1 -2
+1 +1
+2 -1

Then we measure off OM, (left) = 2, OM, (left) = 1, OM, (right)
=1, OM, (right) = 2 ; and M,P, (up) =1, M.P, (down) = 2, M;P,
(up) = 1, M,P, (down) =1.

To every value of the function, therefore, corresponds a re-
presentative point, P, whose abscissa (OM) and ordinate (MP)
represent the values of the independent and dependent variables ;
that is to say, the value of z and the corresponding value of f(z).
Now when we give 2 in succession all real values from — o to

+ o, y will in general * pass through a succession of real values
without at any stage making a sudden jump, or, as it is put, without
becoming discontinuous. The representative point will therefore
trace out a continuous curve, such as we have drawn in Fig. 1.
This curve we may call the graph of the function.

v § 3.] It is obvious that when we kmow the graph of a
function we can find the value of the fumction corresponding to any
value of the independent variable z with an accuracy that depends
merely on the precision of our dratwing instruments. All we
have to do is to measure off the value of z in the proper direc-
tion, OM, say; then draw a parallel through M, to the axis of
%, and find the point P, where this parallel meets the graph ;
then apply the compasses to M.P,, and read off the number of
units in M,P, by means of the scale of ordinates. This number,

* Wao shall return to the exceptional cases immediately.
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taken positive if P, be above the axis of z, negative if below, will
be the required value of the function.

The graph also enables us to the same extent to solve the
converse problem, Given the value of the function, to find the corre-
sponding value or values of the independent variable.

Suppose, for example, that Fig. 1 gives the graph of f(z),
and we wish to find the values of z for which f(z)= +1. All
we have to do is to measure ON, =1 upwards from O on the axis
of y; then draw a line (dotted in the figure) through N, parallel
to the axis of 2, and mark the points where this line meets the
graph. If P, be one of them, we measure N,P, (obviously = OM,)
by means of the scale of abscisss, and the number thus read off
is one of the values of z for which f(z) = +1; the others are
found by taking the other points of intersection, if such there be.

Observe that the process we have just described is equivalent
to solving the equation

f@)=+1.

In particular we might look for the values of z for which f(z)
reduces to zero. When f(z) becomes zero, that is, when the ordi-
nate of the graphic point is zero, the graph meets the axis of z.
The axis of z, then, in this case acts the part formerly played by
the dotted parallel, and the values of z required are — OM,,
-0M, +OM, +OM, +OM,, where OM, OM,, &c., stand
merely for the respective numbers of units in these lengths when
read off upon the scale of abscisse. Hence

By means of the graph of the function f(z) we can solve the

equation
fl2)=0 @)

The roots of this equation are, in point of fact, simply the values
of z which render the function f(z) zero; we may therefore,
when it is convenient to do so, speak of them as the roots of the
function itself.

§ 4] The connection between the general discussion of a
function by means of the graphical or any other method and the
problem of solving a conditional equation will now be apparent
to the reader, and he will naturally ask himself how the graph °
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- i8 to be obtained. #'We cannot, of course, lay down all the
infinity of points on the graph, but we can in various ways infer
its form. In particular, we can assume as many values of the
independent variable as we please, and, from the known form of
the function f(#), calculate the corresponding values of y. We
can thus lay down as many graphic points as we please. If care
be taken to get these points close enough where the form of the
curve appears to be changing rapidly, we can draw with a free
hand a curve through the isolated points which will approach
the actual graph sufficiently closely for most practical purposes.

When the form of the function is unknown, and has to be
determined by observation—as, for example, in the case of the
curve which represents the height of the barometer at different
times during the day—the course we have described is the one
actually followed, only that the value of y is observed and not
calculated.

Before going further into details it will be well to illustrate
by a simple example the above process, which may be unfamiliar
to many readers,

Example.
Let the fuanction to be discussed be 1-2% then the equation (1) which
determines the graph is y=1-23

‘We shall assume, for the present without proof, what will probably be at
once admitted by the reader, that, as z increases without break from 0 up to
+ o0, 2% increases without break from 0 up to+co ; and that 23 > = < 1, accord-
ingasz>=<1,

Consider, in the first place, merely poamve values of 2z When =0,

=1; and, so long as z<1, 1-2® is positive,. When z=1, y=1-1=0.
When z>1, then 2? >1 and 1 -2 is negative. Hence from =0 until z=1,
1 -« continually decreases numerically, but remains always positive. When
z=1, 1-2? becomes zero, and when z is further increased 1-2* becomes
negative, and remains so, but continually increases in numerical value.

‘We may represent these results by the following scheme of corresponding
values :—

z y

1

<+1 +

+1 0

>+1 -
400 -
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The general form of the graph, so far as the right-hand side of the axis of

y is concerned, will be as in Fig. 2. .
v As regards negative values of
« and the left-hand side of the
axis of y, in the present case,
it is merely necessary to notice
A that, if we put z = — @, the re-
sult, so far as 1 —2? is concerned,
isthesameas if we putz=+a;
forl-(—a)f*=1-(+a)* Hence,
x 8* M [0 M B . ® for every point P on the curve,
f whose o te gﬁd a&m are
+OM and+MP, there will be

f 8 point P’, whose,ordinate and)
¢ c fssgare —OMand +MP. P
fig.2. |v an are the images of each

other with respect to Y'Y ; and
the part AP'B’ of the graph is merely an image of the part APB with respect
to the line Y'Y.
Let us see what the graph tells us regarding the function 123,
First we see that the graph crosses the z-axis at two points and no more,
those namely for which z=+1and z=-1. Hence the function 1-22 has
only two roots, +1 and - 1; in other words, the equation

1-23=0

has two real roots, 2 =+ 1, 2=~ 1, and no more.

Secondly. Since the part BAB’ of the graph lies wholly above, and the
parts C'B’, CB, wholly below the z-axis, we see that, for all real values of =
lying between —1 and +1, the function 1-2? is positive, and for all other
real values of z negative.

Thirdly. We see that the greatest positive value of 1 -2 is 1, correspond-
ing to #=0; and that, by making z sufficiently great (numerically), we can
give 1 -z* a negative value as large, numerically, as we please,

All these results could be obtained by direct discussion of the funection,
but the graph indicates them all to the eye at a glance.

v § 5.] Hitherto we have assumed that there are no breaks or
discontinuities in the graph of the function. Such may, how-
ever, occur, and as it is necessary, when we set to work to
discuss by considering all possible cases, above all to be sure
that no possible case has escaped our notice, we proceed now to
consider the exceptions to the statement that the graph is in
general a continuous curve.

L. The function f (z) may become infinite for a finite value of z.
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¥ Example 1.

Consider the function 1/(1~z), When z is a very little less than +1,
say x="99999, then y=1/(1-x) gives y = + 1/°00001 = + 100000 ; that is to
say, y is positive and very large ; and it is obvious that, by bringing « suffi-
ciently nearly up to +1, we can give ¥ as large a positive value as we please.

On the other hand, if = be a very little greater than +1, say = = + 100001,
then y=1/(- ‘00001) = ~100000 ; and it is obvious that, by making = ex-
ceed 1 by a sufficiently small quantity, y can be made as large a negative
quantity as we please.

The graph of the function 1/(1 - ) for values of  near +1 is therefore as

follows : —

The branch BC ascends to A J.\’ﬁ.:\?-)}.m
an infinite distance along ¢ | " wnib offise seale
KAK' (a line parallel to the fnﬂ'n,'{oll,

y-axis at a distance from it ¢
=+1), continually coming ot {r\ x
nearer to KAK’, but never
reaching it at any finite dis-
tance from the z-axis. The "
branch DE comes up from an ° LA X
infinite distance along the
other side of KAK' in a similar £
manner.

Here, if we cause z to in-
crease from a value OL very
little less than+1 to a value Fig 3¢
OM very little greater, the
value of y will jump from a very large positive value +LC to a very large
negative value — MD ; and, in fact, the smaller we make the increase of z,
provided always we pass from the one side of +1 to the other, the larger will

K

be the jump in the value of y.
It appears then that, for z=+1, 1/(1-x) is both infinite and discon-
tinuous. .
Example 2.
x F y=1/(1-2p
vt X We leave the discussion to the
reader. The graph is as follows :—
The function becomes infinite
when %= +1; and, for a very small
increment of x near this value, the
increment of y is very large. In fact,
= if we increase or diminish # from the
° A " ¥ value +1 by an infinitely small
fig 4. amount, y will diminish by an in-
finitely great amount.
Here again we have infinite value of the function, and accompanying
d iscontinuity.

*' ?,wl '—'l‘ * [—s\w‘v’L
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I1. The value of the function might make a jump without becoming
infinite.

The graph for the neighbourhood of such a value would be

of the following nature, where,

Y / while z passes through the value
0 OM, y jumps from MP to MQ.

./'P Such a case cannot, as we shall
-_: i - immediately prove, occur with in-
tegral functions of z. In fact ji_
cannot occur with any algebraical
funiction, so that we mneed not

further consider it here. —

The cases we have just considered lead us to give the follow-
ing formal definition.

A function is said to be continuous when for an infinitely small
change in the value of the independent variable the change in the value
of the function i3 also infinitely small ; and o be discontinuous when
Jfor an infinitely small change of the independent variable the change in
the value of the function is either finite or infinitely great.

ITI. It may happen that the value of a function, all of whose con-
stants are real, becomes imaginary for a real value of its variable.

Example,

r This happens with the fanction +V1—22. If we confine ourselves to the
positive value of the square root, so that we have a single-valued function to

deal with, the graph is as follows :—
a semicircle, in fact, whose centre is at the

origin.
For all values of 2> +1, or < — 1, the

value of y=++1—a is imaginary; and the
graphic points for them cannot be constructed
in the kind of diagram we are now using.

A 9 A X The continuity of the function at A can-

Fig. 6. not, strictly speaking, be tested ; since, if we
attempt to increase z beyond +1, y becomes
imaginary, and there can be no question of the

magnitude of the increment, from our present point of view at least.*

No such case as this can arise so long as f(z) is a rational
algebraical function.

Fig. 5.

* Bee below, § 18.
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We have now enumerated the exceptional cases of functional
variation, so far at least as is necessary for present purposes.
Graphic points, at which any of the peculiarities just discussed
occur, may be generally referred to as critical points.

ON CERTAIN LIMITING CASES OF ALGEBRAICAL OPERATION.

v § 6.] We now lay down systematically the following propo-
sitions, some of which we have incidentally used already. The
reader may, if he chpose, take them as axiomatic, although, as
we shall see, they are not all independent. The important
matter is that they be thoroughly understood. To secure that
they be so we shall illustrate some of them by examples. In
the meantime we caution the reader that by “infinitely small”
or “infinitely great” we mean, in mathematics, * smaller than
.any assignable fraction of unity,” or “as small as we please,” and
“ greater than any assignable multiple of unity,” or “as great as
we please.” He must be specially on his guard against treating
the symbol o, which is simply an abbreviation for * greater than
dny assignablé magnitude,” as a definite quantity. There is no
justification for applying to it any of the laws of algebra, or for
operating with it as we do with an ordinary symbol of quantity.

L If P be constant or variable, provided it does mot become
infinitely great when Q becomes infinitely small, then when @ becomes
infinitely small PQ becomes infinilely small.

Observe that nothing can be inferred without further examin-
ation in the case where P becomes infinitely great when Q
becomes infinitely small. This case leads to the so-called inde-
terminate form « x 0.*

Example 1.

Let us suppose, for example, that P is constant, = 100000, say. Then, if
we make Q=1/100000, we reduce PQ to 1; if we make Q=1/100000000000,
we reduce PQ to 1/1000000 ; and so on. It is abundantly evident, therefore,
that by making Q sufficiently small PQ can be made as small as we please.

* Indeterminate forms are discussed in the chapter on Limits in the
second part of this work. ’
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Example 2.

Let P=2+1, Q=z-1.
Here, when « is made to approach the value+1, P approaches the finite
value +2, while Q approaghes the value 0. Suppose, for example, we put =1
+1/100000, then

PQ=(2+1/100000) x 1/100000,

=2/100000 +1/10%,
and so on. Obviously, therefore, by sufficiently diminishing Q, we can make
PQ as small as we please. .

Example 8.
P=1/=-1), Q=z-1. .
Here we have the peculiarity that, when Q is made infinitely small, P (see
below, proposition III.) becomes infinitely great. We can therefore no longer
infer that PQ becomes infinitely small because Q does so. In point of fact,
PQ=(z-1)/(z*-1)=1/(z+1), whic}l becomes 1/2 when z=1.

IL If P be either constant or variable, provided it do not become
infinitely small when Q becomes infinitely great, then when Q becomes
infinitely great PQ becomes infinitely gread.

The case where P becomes infinitely small when Q becomes
infinitely great must be further examined ; it is usually referred
to as the indeterminate form 0 x .

Example 1. .

Suppose P=1/100000. Then, by making Q=100000, we reduce PQ to 1 ;
by making Q=100000000000 we reduce PQ to 1000000 ; and so on. It is
clear, therefore, that by sufficiently increasing Q we could make PQ exceed
any number, however great.

The student should discuss the following for himself :—

Example 2.
P=z+1, Q=1/=z-1),
PQ=o, when z=1.
P=(z-1), Q=1/z-1)
PQ=0, when z=1.

IIL If P be either constant or variable, provided it do not become
infinitely small when Q becomes infinitely small, then when Q becomes
infinitely small P/Q becomes infinitely great.

The case where P and Q become infinitely small for the same
value of the variable requires further examination. This gives

Example 8.

the so-called indeterminate form g
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Example 1.

Suppose P constant=1/100000. If we make Q=1/100000, P/Q becomes
1; if we make Q=1/100000000000, P/Q becomes 1000000 ; and soon. Hence
we see that, if only we make Q small enough, we can make P/Q as large as
we please. .

The student should examine arithmetically the two following cases :—

Example 2.
P=z+1, Q=z-1,
P/Q = o, when z=1.

P=z-1, Q=z-1,
P/Q=1, when z=1.

IV. If P be either constamt or variable, provided it do not become
infinitely great when Q becomes infinitely greas, then when @ becomes
infinilely great P/Q becomes infinitely small.

The case where P and Q become infinitely great together re-

quires further examination. This gives the indeterminate form
© A

)

Example 1.

Suppose P constant=100000. If we make Q=100000, P/Q becomes 1;
if we make Q=100000000000, P/Q becomes 1/1000000 ; and so on. Hence by
sufficiently increasing Q we can make P/Q less than any assignable quantity.

Example 2.

Example 8.

P=z+1, Q=1/(z-1).
P/Q=0, when z=1.
P=1/z-1), Q=1/(z-1).
P/Q=w, when z=1.

V. If P and Q each become infinitely small, then P + Q becomes
infinitely small.

For, let P be the numerically greater of the two for any
value of the variable. Then, if the two have the same sign, and,
a fortiors, if they have opposite signs, numerically

P+Q<2P.

Now 2 is finite, and, by hypothesis, P can be made as small as

we please. Hence, by (I.) above, 2P can be made as small as

we please. Hence P + Q can be made as small as we please.
V1. If cither P or Q become infinitely great, or if P and Q each

Example 8.
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become infinitely great and both have finally the same sign, then P + Q
becomes infinitely great.

Proof similar to last.

The inference is not certain, if the two have not ultimately
the same sign. In this case there arises the indeterminate
form o - o,

Example 1.
P=a%(z-1)% Q=(2x-1)/(z-1),
when z=1, we have P=1/0=+w, Q=1/0= 4+, Also

_ = 2~1 2342-1
PH= et o -

=§=co, when z=1.

Example 2.
P=2Y(z-17 Q=-(2x-1)/(z-1)%
Here 2z=1 makes P=+0w, Q= -, 80 that we cannot infer P+Q=o.
In fact, in this case,

_@-1p_
e

for all values of z, or, say, for any value of 2 as nearly = +1 as we please. In
this case, therefore, by bringing x as near to +1 as we please, we cause the
value of P+ Q to approach as near to +1 as we please.

v §7.] The propositions stated in last paragraph are the funda-
mental principles of the theory of the limiting cases of algebrai-
cal operation. This subject will be further developed in the
chapter on Limits in the second part of this work.

In the meantime we draw the following concluplons, which
will be found useful in what follows:— ™M fut U

I If P=PP,... P, then P will remain finite if P,
P, . . . P, all remain finite.

P will become infinitely small if one or more of the functions
P, P, ... P, become infinitely small, provided none of the remain-
ing ones become infinitely great.

P will become infinitely great if one or more of the functions P,,
P, . . . P, become infinitely great, provided none of the remaining
ones become infinitely small.

IL IfS=P,+ P, +. . .+ Py, then S will remain finite if P,
P, . . . P, each remain finite.
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S will become Snfinitely small if P, P, . . . Py, each become in-
Simitely small.

S will become infinitely great if one or more of the functions P,,
P, . .. P, become infiniltely greal, provided all those that become
infinitely great have the same sign. ’

IIL. Consider the quotient P/Q.

P vill certainly be finite if both P and Q be finite

-Q
may be finite if P=0 and Q=0,
orif P=cw and Q=0.
gwilloertainly=0 if P=0, Q=0
orif P+ o, =®;
may be=0 if P=0, Q=0,
01"1sz=€0, Q=eo.
gwillmtainly=co f P=w, Q#wm,
or if P+ 0, Q=0;
may be=o if P=0, Q=0,
orif P=w, Q=.

ON THE CONTINUITY OF FUNCTIONS, MORE ESPECIALLY OF
RATIONAL FUNCTIONS.

§ 8.] We return now to the question of the continuity of
functions.

By the increment of a function f(x) corresponding to an increment
h of the independent variable z we mean f(x + k) ~ f(z).

For example, if f(x)=2% the increment is (x+A)? - 22=22zh + A2

If f(x)=1/z, the increment is 1/(z+A) - 1/z= — hjz(z+ k).

The increments may be either positive or negative, according
partly to choice and partly to circumstance. The increment of
the independent variable z is of course entirely at our disposal ;
but when any value is given to it, and when 2 itself is also
assigned, the increment of the function or dependent variable
is determined.
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Example.

Let thI:a function be 1/z, then if #=1, A=3, the corresponding increment
of 1/x is — 8/1(1+8)= - 8/4. If =2, h=3, the increment of 1/xis - 8/2(2+3)
= - 8/10, and so on.

If P be a function of z, and p denote its increment when z
is increased from z to z + h, then, by the definition of p, P + p is
the value of P when 2 is altered from z to z + A.

‘We can now prove the following propositions..—

L The algebraic sum of any finite number of continuous functions
18 @ condinuous function.

Let us consider S=P - Q + R, say. If the increments of P,
Q, R, when z is increased by 4, be 2, ¢, 7, then the value of S, when
z is changed to z+ A, is (P +p) - (Q +¢) + (R +7); and the in-
crement of S corresponding to & is p—g+r. Now, since P, Q,
R are continuous functions, their increments, p, ¢, r, each become
infinitely small when % becomes infinitely small. Hence, by § 7,
}{, p—g+7 becomes infinitely small when % becomes infinitely
small. Hence S is a continuous function.

The argument evidently holds for a sum of any number of
terms, provided there be not an infinite number of terms.

II. The product of a finite number of continuous functions is a
continuous function so long as all factors remain finite.

Consider, in the first place, PQ. Let the increments of P
and Q, corresponding to the increment % of the independent vari-
able z, be p and ¢ respectively. Then when z is changed to z + &
PQ is changed to (P +p)(Q +¢), that is, to PQ+pQ + ¢P + pg.
Hence the increment of PQ corresponding to A is

PQ+¢P +pq.

Now, since P and Q are continuous, p and ¢ each become in-
finitely small when % becomes infinitely small. Hence by § 7, I
and IL, it follows that »Q + ¢P +pgq becomes infinitely small
when % is made infinitely small ; at least this will certainly be
so, provided P and Q remain finite for the value of z in question,
which we assume to be the case.

It follows then that PQ is a continuous function.

Consider now a product of three continuous functions, say
PQR. By what has just been established, PQ is a continuous



xv.] ANY INTEGRAL FUNCTION CONTINUOQUS, 319

function, which we may denote by the single letter S; then
PQR = SR where S and R are continuous. But, by last case, SR
is a continuous function. Hence PQR is a continuous function.

Proceeding in this way, we establish the proposition for any
finite number of factors.

Cor. 1. If A be constant, and P a continuous function, then AP
i3 a condinuous function.

This can either be established independently, or considered
as a particular case of the main proposition, it being remembered
that the increment of a constant is zero under all circumstances.

Cor. 2. Aa™, where A is constant, and m a positive integer, i3 a

- continuous function.

Forzm=2xz . . . x % (m factors), and z is continuous, being
the independent variable itself. Hence, by the main proposi-
tion, 2™ is continuous. Hence, by Cor. 1, Az™ is a continuous
function.

Cor. 3. Every integral function of z is continuous; and cannot
become infinite for a finite value of .

For every integral function of z is a sum of a finite number
of terms such as Az2™, Now each of these terms is a continuous
function by Cor. 2. Hence, by proposition I., the integral func-
tion is continuous. That an integral function is always finite
for a finite value of its variable follows at once from §7, L

III. If P and Q be integral functions of =, then P/Q is finite and
continuous for all finite values of x, except such as render Q = 0.

In the first place, if Q= 0, then (see § 7, ITL) P/Q can only
become infinite if either P, or both P and Q, become infinite ; but
neither P nor Q can become infinite for a finite value of 2, because
both are integral functions of z. Hence P/Q can only become
infinite, if at all, for values of z which make Q = 0.

If a value which makes Q = 0 makes P = 0, then P/Q certainly
becomes infinite for that value. But, if such a value makes both
Q=0 and also P =0, then the matter requires further investi-
gation.

Next, as to continuity, let the increments of P and Q corre-

=\
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sponding to %, the increment of z, be p and ¢ as heretofore. Then
the increment of P/Q is

P+p P_pQ-¢P
Q+g Q QQ+g

Now, by hypothesis, p and ¢ each become infinitely small
when b does so. Also P and Q remain finite. Hence pQ — ¢P
becomes infinitely small. It follows then that (Q — ¢P)/Q(Q + ¢)
also becomes infinitely small when % does so, provided always
(see § 6) that Q does not vanish for the value of z in question.

'Example.

The increment of 1/(z-1) corresponding to the increment, 2, of z is
1/(z+h-1)-1)(x-1)= - hf(z- 1) (z+k-1). Now, if x=2, say, this becomes
—&/(1+4), which clearly becomes infinitely small when 4 is made infinitely
small. On the other hand, if #=1, the increment is —A/0{k ~ 33 which is
infinitely great so long as % has any value differing from 0 by ever so little.

§ 9.] When a function is finite and continuous between two
values of its independent variable z=a and z =¥, its graph forms
a continuous curve between the two graphic points whose

- abaciss® are @ and b; that is to say, the graph passes from the
one point to the other without break, and without passing any-

« where to an infinite distance.

| From this we can deduce the following important pro-

| position.

If f(z) be continuous from z=a to =", and if f(a) = p, f(b) =g,

| then, as = passes through every algebraical value between a and b, f(z)
| passes at least once, and, if more than once, an odd number of times
" through every algebraical value between p and q.

Let P and Q be the graphic points corresponding to 2 = @ and
z=0, AP and BQ their ordinates; then AP=p, BQ=¢. We
have supposed p and ¢ both positive ; but, if either were negative,
we should simply have the graphic point below the z-axis, and
the student will easily see by drawing the corresponding figure
that this would alter nothing in the following reasoning.

Suppose now r to be any number between p and ¢, and
draw a parallel UV to the z-axis at a distance from it equal
to r units of the scale of ordinates, above the axis if r be
positive, below if r be negative. The analytical fact that r is
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intermediate to p and ¢ is represented by the geometrical fact
that the points P and Q lie on opposite sides of UV.

Y
u._Pr P2 . Ps v
L2 1
0 A M, M, W; 8 X
‘g 7

Now, since the graph passes continuously from P to Q, it
must cross the intermediate line UV ; and, since it begins on one
side and ends on the other, it must do so either once, or thrice,
or five times, or some odd number of times.

Every time the graph crosses UV the ordinate becomes equal
to r; hence the proposition is proved.

Cor. 1. If f(a) be negative and f(b) be positive, or vice versa, then
Jf(z) has at least one root, and if more than one, an odd number of
roots between z = a and z = b, provided f(z) be continuous from z=a
loz=».

This is merely a particular case of the main proposition, for
0 is intermediate to any two values, one of which is positive and
the other negative. Hence as z passes from a to b f(z) must pass
at least once, and, if more than once, an odd number of times

through the value 0. Y

In fact, in this case,
the axis of z plays the

part of the parallel UV. o X l
Observe, however, in /-\
regard to the converse of Fig. 8- Fig 9

this proposition, that a

Junction may pass through the value O without changing its sign

For the graph may just graze the z-axis as in Figs, 8 and 9.
VOL. I Y
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Cor. 2. If f(a) and f(b) have like signs, then, if there be any real
roots of f(x) between = = a and x = b, there must be an even number,
provided f(z) be continuous between x=a and x =D.

Since an integral function is always finite and continuous for
a finite value of its variable, the restriction in Cor. 1 is always
satisfied, and we see that .

Cor. 3. An integral function can change sign only by passing
through the value 0.

Cor. 4. If P and Q be integral functions of z algebraically prime
to each other, P/Q can only change sign by passing through the values
0or w.

With the hint that the theorem of remainders will enable
him to exclude the ambiguous case 0/0, we leave the reader to
deduce Cor. 4 from Cor. 3. .

Example 1.
When 2=0, 1-23=+1; and when z=+2, 1-2®=-38. Hence, since
1 - 22 is continuous, for some value of = lying between 0 and +2, 1-2? must
become 0 ; for 0 is between +1 and —3. In point of fact, it becomes 0 once
between the limits in question.
Example 2.
y=28-622+11z-6.
When =0, y= -6; and when = +4, y=+6. Hence, between z=0 and
= +4 there must lie an odd number of roots of the equation
28~ 622+11x-6=0.
It is easy to verify in the present case that this is really so; for a3 - 622
+11z-6=(x-1)(x-2)(x-38); so that the roots in question are z=1, =2,
z=3.
The general form of the graph in the present case is as follows :—

\ — A

/ Fig 10.
Example 8.

\ When =0, 1/(1-2)=+1; and when 2= +2, 1/(1 -z)= -1 ; but since

1/(1 - z) becomes infinite and discontinuous between 2=0 and z= +2, viz.,
when z=1, we cannot infer that, for some value of = between 0 and + 2,
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1/(1 - z) will become 0, although 0 is intermediate to +1 and —1. In fact,

. 1/(1 -z) does not pass through the value 0 between z=0 and z= +2. \

§ 10.] It will be convenient to give here the following pro-
position, which is often useful in connection with the methods
we are now explaining,

If f(z) be an integral function of x, then by making x small '
enough we can always cause f(z) to have the same sign as ils lowest
term, and by making x large enough we can always cause f(z) to have
the same sign as its highest term.

Let us take, for simplicity, a function of the third degree,
say

y=pz’+ @ +12+5
If we suppose s+ 0, then it is clear, since by making z small
enough we can (see § 7, IL.) make pz® + g2* + 7z as small as we
please, that we can, by making = small enough, cause y to have
the same sign as s.

If s=0,
then we have y=p2+ g + 17,
=(p2’ + gz + 1)

Here by making z small enough we can cause pz* + gx + r to have
the same sign as r, and hence y to have the same sign as rz,
which is the lowest existing term in y.
Again, we may write
y=x’{p+§+£;+$}~
Here by making z large enough we may make g¢/z + r/2" + s/’ as
small as we please (see § 6, IV., and § 7, IL), that is to say,
cause p +¢/z + /2" + s/2’ to have the same sign as p. Hence by
making z large enough we can cause y to have the same sign
as pr’,
If we observe that, by chap. xiv., § 9, we can reduce every
integral equation to the equivalent form
J@ =2+ pu_ @™ 1+ . ..+ p,=0,
and further notice that, in this case, if # be odd,
f(+o)=+wo, fl-o)=-wo,
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and, if » be even,
A+o)=+o, f(-o)=+»,
we have the following important conclusions.

Cor. 1; Every integral equation of odd degree with real co-
efficients has at least ome real rool, and if i has more than one it
has an odd number.

Cor. 2. If an integral equation of even degree has any real roots
at all, it has an even number of such.

Cor. 3. Every integral equation with real coefficients, if it has any
complez rools, has an even number of such.

The student should see that he recognises what are the cor-
responding peculiarities in the graphs of integral functions of
odd or of even degree.

Example.
Show that the equation
o~ 6@“+lla:’ -z-4=0
has at least two real roots.
Let y=2'- 63+ 1123 -z~ 4.
‘We have the following scheme of corresponding values :—

z y
- + o

e 0 -4
+ao + o

Hence one root at least lies between — o and 0, and one at least between
0and +o. In other words, there are at least two real roots, one negative
the other positive.

‘We can also infer that, if the remaining two of the possible four be also
real, then they must be either both positive or both negative.

When the real roots of an integral equation are not very
close together the propositions we have just established enable
us very readily to assign upper and lower limits for each of
them ; and in fact to calculate them by successive approxima-
tion. The reader will thus see that the numerical solution of
m@g_gral equations rests merely on considerations rega.rdmg con-
tinuity, and may be considered quite apart from the question
of “their formal solution by means of algebraical functions or

otherwise.
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GENERAL PROPOSITIONS REGARDING MAXIMA AND MINIMA
VALUES OF FUNCTIONS OF ONE VARIABLE.

§ 11.] When f(z) in passing through any value, f(a) say, ceases to
increase and begins to decrease, f(a) s called a mazimum value of f(z).

When f(z) in passing through the value f(a) ceases to decrease and
begins to increase, f(a) is called a minimum value of f(z).

The points corresponding to maxima and minima values of
the function are obviously superior and inferior culminating
points on its graph, such as P, and P, in Fig. 1. They are
also points where, in general, the tangent to the graph is parallel
to the axis of 2 It should be noticed, however, that points
such as P and Q in Fig. 11 are maxima and minima points,
according to our present definition, although it is not true in
any proper sense that at them the tangent is parallel to OX. It

A/
mes

Fug. . "g 12

Q.

should also be observed that the tangent may be parallel to OX
and yet the point may not be a true maximum or minimum
point. Witness Fig. 12.

Woe shall include both maximum and minimum values as at
present defined under the obviously appropriate name of furning
values.

§ 12.] By considering an unbroken curve having maxima
and minima points (see Fig. 1) the reader will convince himself
graphically of the truth of the following propositions :—

L So long as f(z) remains continuous its mazima and minima
values succeed each other alternately.

IL If z=a, =20 be two roots of f(z) (a alg.<b), then, if f(z) be
not constant, but vary continuously between z = a and = = b, there must
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be either at least one mazimum or at least ome minimum value of f(2)
between xz=a and x="b.

In particular, if f(z) become positive immediately after z
passes through the value a, then there must be at least one
maximum before z reaches the value b; and, in like manner, if
J(z) become negative, at least one minimum.

§ 13.] It is obvious, from the definition of a turning value,
and also from the nature of the graph in the neighbourhood of
a culminating point, that we can always find two values of the func-
tion on opposite sides of a turning value, which shall be as mearly
equal as we please.  These two values will be each less or each greater
than the turning value according as the turning value is a maximum
or minimum.

Hence, if p be infinitely near a turning value of f(z) (less in
the case of a maximum, greater in the case of a minimum), then
two roots of f(z) — » will be infinitely nearly equal to one another.
It follows, therefore, that if p be actually equal to a turning value
of f(z), the function f(z) — p will have two of its roots equal. This
criterion may be used for finding turning values, as will be seen
in a later chapter.

CONTINUITY AND GRAPHICAL REPRESENTATION OF A
FUNCTION OF TWO INDEPENDENT VARIABLES.

§ 14. Let the function be demoted by f(z, y), and let us
denote the dependent variable by z; so that !

2= f(z, y).

We confine ourselves entirely to the case where f(z, y) is an integral
Sunction, and we suppose all the constanis to be real, and consider only
real values of = and y.  The value of z will therefore be always real.

Since there are now two independent variables, z and y,
there are two independent increments, say % and %, to consider.
Hence the increment of z, that is, f(z + A, ¥+ k) — f(z, ), now
depends on four quantities, z, 4, b, & Since, however, f(z, )
consists of a sum of terms such as Az™y™, it can easily be shown
by reasoning, like that used in the case of f(z), that the increment
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of z always becomes infinitely small when h and k are made infinitely
small. Hence, as z and y pass condinuously from one given pair of
values, say (a, b), to another given pair, say (o', b'), 2 passes continu-
ously from one value, say c, to another, say c'.

§ 15.] There is, however, a distinet peculiarity in the case
now in hand, inasmuch as there are an infinity of different ways
in which (z, y) may pass from (g, ) to (¢, ¥'). In fact we re-
quire now a two dimensional diagram fto represent the variations of
the independent variables. Let X'OX, Y'OY, be two lines in a

*

Fig 13,

.

Y

2
horizontal plane drawn from west to east and from south to
north respectively. Consider any point P in that plane, whose
abscissa and ordinate, with the usual understanding as to sign, are
zand y. Then P, which we may call the variable point, gives us
a graphic representation of the variables (z, ¥).

Let us suppose that for P, z=a, y=10, and that for another
point P, z=a', y=¥. Then it is obvious that, if we pass
along any continuous curve whatever from P to P, z will vary
continuously from ¢ to ¢/, and y will vary continuously from
b to '; and, conversely, that any imaginable combination of a
continuous variation of z from a to a’ with a continuous varia-
tion of y from b to ' will correspond to the passage of a point
from P to P’ along some continuous curve.

It is obvious, therefore, that the continuous variation of
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(2, y) from (e, b) to (', &) may be accomplished in an infinity
of ways. We may call the path-in which the point which repre-
sents the variables travels the graph of the variables.

To represent the value of the function z=f(z, y) we draw
through P, the variable point representing (z, y), a vertical line
PQ, containing 2 units of any fixed scale of length that may be
convenient, upwards if z be positive, downwards if z be negative.
Q is then the graphic point which represents the value of the
function z =f(z, ¥).

To every variable point in the plane XOY there corresponds
a graphic point, such as Q ; and the assemblage of graphic points
constitutes a surface which we call the graphic surface of the
function f{(z, ).

‘When the variable point travels along any particular curve S
in' the plane XOY, the graphic point of the function travels along
a particular curve = on the graphic surface; and it is obvious
that S is the orthogonal projection of Z on the plane XOY.

§ 16.] If we seek for values of the variables which correspond
to a given value ¢ of the function, we have to draw a horizontal
plane U, ¢ units above or below XOY according as ¢ is positive
or negative ; and find the curve = where this plane U meets the
graphic surface. This line = is what is usually called a confour
line of the graphic surface. The orthogonal projection S of =
upon XOY will be simply = itself transferred to XOY, and may
be called the contour line of the function for the value ¢. All the
variable points upon S correspond to pairs of values of (z, ¥),
for which f(z, y) has the given value c.

If we take a number of different values, ¢, ¢, ¢, . . . ¢, We
get a system of as many contour lines. Suppose, for example,
that the graph of the function were a rounded conical pesk, then
the system of contour lines would be like Fig. 14, where the
successive curves narrow in towards a point which corresponds
to a maximum value of the function.

Any reader who possesses a one-inch contoured Ordnance
Survey map has to hand an excellent example of the graphic
representation of a function. In this case z and y are the dis-
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tances east from the left-hand side of the map, and north from
the lower side ; and the function z is the elevation of the land

©Fig 14

at any point above the sea level. The study of such a map from
the present point of view will be an excellent exercise both in
geometry and in analysis.

An important particular case is that where we seek the
values of # and y which make f(z, y) =0. In this case the plane
U is the plane XOY. This plane cuts the graphic surface in a
continuous curve S (zero contour line), every point on which
has for its abscissa and ordinate a pair of values that satisfy
S, 9)=0.

The curve S in this case divides the plane into regions, such that
in any region f(x,y) has always either the sign + or the sign —,
and S always forms the boundary between two regions in which f(z, )

If we draw a continuous curve from a point in a + region
to a point in a — region it must cross the boundary S an odd
number of times. This corresponds to the analytical statement
that if f(a, b) be positive and f(a', V') be negative, then if (z, y) vary
continuously from (a, b) to (@', ¥'), f(z, y) will pass through the value
0 an odd number of times.

" The fact just established that all the “variable points” for
which f(z, y) =0 lie on a continuous curve gives us a beautiful
geometrical illustration of the fact established in last chapter, that
the equation f(z, ¥) = 0 has an infinite number of solutions, and

gives us the fundamental idea of co-ordinate geometry, viz., that
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‘a plane curve can be analylically represented by means of a single
equation connecting two variables.

Example.

Consider the function z=22+y%-1. If we describe, with O as centre, a
circle whose radius is unity, it will be seen that for all points inside this circle
z is negative, and for all points outside z is positive. Hence this circle is the
zero contour line, and for all points on it we have

23+ y2 -1=0.

INTEGRAL FUNCTIONS OF A SINGLE COMPLEX VARIABLE.

§ 17.] Here we confine ourselves to integral functions, but no longer
restrict either the constants of the function or its independent variable
z to be real.

Let us suppose that z=¢+%i, and let us adopt Argand’s
" method of representing £ + 7i
¢ graphically, so that, if OM =¢,

MP =1, in the diagram of Fig.

P 16, then P represents £ + 7.
‘ If P move continuously from
any position P to another P' the

Ao M = compler variable is said to vary

Fig 16, continuously. If the values of
(¢, 1) at P and P’ be (o, B) and
(a/, B') respectively, this is the
same as saying that £+ i i3 said fo vary continuously from the
value o + Bi to the value o’ + B'i, when & varies continuously from a
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to o, and » varies confinuously from B to 8. There are of course
an infinite number of ways in which this variation may be
accomplished.

§ 18.] Suppose now we have any integral function of  whose
constants may or may not be real. Then we have f(z) = (£ + 9i) ;
but this last can, by the rules of chap. xii., always be reduced
to the form £’ + #'é, where ¢’ and %’ are integral functions of &
and 7 whose constants are real (say real integral functions of
(¢,7)). Now, by § 14, ¢ and % are finite and continuous so
long as (&, n) are finite.  Hence f(£ + ni) varies continuously when
& + nt varies continuously. .

A graphic representation of the function f(£+ i) can be
obtained by constructing another diagram for the complex
number £ +79'i.  Then the continuity of f(§+17i) is ex-
pressed by saying that when the graph of the independent vari-
able is a continuous curve S, the graph of the dependent variable is
another continuous curve S'.

Example.
Let y=+/1-2%.
W
vy’
H
! 0 c =8 J g’ ¢
’ ny ' = Kl ¢ =
fig 17
¢ Fig 18

For simplicity, we shall confine ourselves to a variation of -« which admits
only real values ; in other words, we suppose 7 always = 0.

The path of the independent variable is then IACBJ, the whole extent
of the ¢-axis. In the diagram we have taken CA=CB=1; so that A and
B mark the points in the path for which the function begins to have, and
ceases to have, a real value.

Let Fig. 18 be the diagram of the dependent variable, y=§¢ +7%. If
A'C'=1(A’, B’ and @' are all coincident), then the path of the dependent
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variable is the whole of the %' —axis above @, together with A'C’, each
reckoned twice over. The pieces of the two pathis correspond as follows : —

Independent | pependent Variable.

]
Variable.
IA T'A' ‘
AC A'C
CB C'B’ i
BJ B'J’

§ 19.] ¢ and ' being functions of ¢ and %, we may represent
this fact to the eye by writing

&= ‘I’(& ’7): 7= '/’(fa 77)'

If we seek for values of (&, ») that make £ =0, that is the same
as seeking for values of (£, ) that make ¢(¢, 7)=0. All the
points in the diagram of the independent variable corresponding
to these will lie (by § 16) on a curve S.

Similarly all the points that correspond to %’ =0, that is, to
¥(&, 7) =0, lie on another curve T.

The points for which both £ = 0 and 5’ = 0,—in other words,
the points corresponding to roots of f(£ + 7i),—must therefore be
the intersections of the two curves S and T.

Example.
y=1>+8.
If we put #=¢+17i, and y=¢' +17'%, we have
¥+q'i=dE+m) +8,
=2(4- )+ (- 7).

Hence &=2(4-4n), n=8-
Hence the S and T curves, above spoken of, are given by the equations

24— tn)=0 ®),

g-1=0 (T).

These are equivalent to 1)=§ (8),

n=+§ (T.)

n=-§
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The student should have no difficulty in constructing these. The diagram
that results is

rig.lg

The S curve (a rectangular hyperbola as it happens) is drawn thick. The
T curve (two straight lines bisecting the angles between the axes) is dotted.
The intersections are P and Q.

Corresponding to P we have £=2, 7=2; corresponding to Q, (= -2,
n=-2,

It appears-therefore that the roots of the fanction are +2+2¢and -2 - 2i.
The student may verify that these values do in fact satisfy the equation v

22+ 8=0.

Exkrcises XXII.

(The student should trace some at least of the curves required in the
following graphic exercises by laying them down correctly to some convenient
scale. He will find this process much facilitated by using paper ruled into
small squares, which is sold under the name of Plotting Paper.)

Discuss graphically the following functions :—

1 1 1
(L) y=3- @)y=zi7" G)y=Foip
1 -1 z?
4.) Y=Go1p (5.) !l=:—_—2' ) y=5z—3°
(7.) Construct to scale the graph of y= —2?+82—-9 ; and obtain graphic-
ally the roots of the equation a?-8x+9=0 to at least three places of
decimals.
(8.) Solve graphically the equation
23— 1623+ 712 -129=0.
(9.) Discuss graphically the following question. Given that y is a con-
tinuous function of x, does it follow that z is a continuous function of y ¢
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(10.) Show that when 2, the increment of 2, is very small, the increment of
P+ Pn—1 214 L 24D,
is (np,,z"—1+(‘n—l)p,._1r'-7+. . .+ Lp)h.
(11.) If & be very small, and =1, find the increment of 22 - 922+ 12+ 5.
(12.) If an equation of even degree have its last term negative, it has at

least two real roots which are of opposite signs.
(13.) Indicate roughly the values of the real roots of

1023 - 1722+ 2+8=0.
(14.) What can you infer regarding the roots of
#-5x+8=07

(15.) Show by considerations of continuity alone that a®-1=0 cannot
have more than one real root, if # be odd.

(16.) If f{x) be an integral function of «, and if fla)= - p, fb)= +¢, where
2 and ¢ are both small, show that z=(ga+ pb)/(p+¢) is an approximation to
a root of the equation f{z)=0.

Draw a series of contour lines for the following functions, including in
each case the zero contour line :—

(17.) z=zy.  (18.) z=§- (19.) z=2*— 12 (20.) z=
Is the proposition of § 16 true for the last of these ?

Draw, the Argand diagram of the dependent variable in the following
cases, the path of the independent variable being in each case a circle of radius
unity whose centre is 0 :—

(21.) y=}:- (22) y=+n/e.  (28) y=4fr  (24) y=1-23

2ty

x




CHAPTER XVIL

Equations and Functions of the First Degree.
EQUATIONS WITH ONE VARIABLE.

§ 1.] It follows by the principles of chap. xiv. that every
integral equation of the first degree[can be reduced to an equiva-
lent equation of the form

az+b=0 1);

this may therefore be regarded as a general form, including all
such equations. As a particular case b may be zero; but we
suppose, for the present at least, that a is neither infinitely great
nor infinitely small.

Since a + 0, we may write (1) in the form

a{x-(—g)}=o 2);

whence we see that ome solution is ¢ = — b/a. We know
already, by the principles of chap. xiv., § 6, that an infegral equa-
tion of the first degree in one variable has one and ondy ome solution.
Hence we have completely solved the given equation (1).

It may be well to add another proof that the solution is unique.

Let us suppose that there are two distinct solutions, z=a, and z=8, of (1).
Then we must have

aa+b=0,
af+b=0.
From these, by subtraction, we derive
a(a-B)=0.
Now, by hypothesis, @ 3 0, therefore we must have a — =0, that is,a=8;
in other words, the two solutions are not distinct.
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§ 2.) Two equations of the first degree in one variable will in
general be inconsistent.

If the equations be  az+b =0 (1),
az+b =0 (@)
the necessary and sufficient condition for consistency is
ab' —a'b=0 )
The solution of (1) is # = — b/a, and the solution of (2) is
# = — V'/a’. These will not in general be the same; hence the

equations (1) and (2) will in general be inconsistent.
The necessary and sufficient condition that (1) and (2) be
consistent is '

LY ).

Since a + 0, a’ + 0, (4) is equivalent to
a'b=al,
or ab -a'b=0.

Obs. 1. If b=0, and ' = 0, then the condition of consistency
is satisfied. In this case the equations become az=0, a'z=0;
and these have in fact the common solution z = 0.

Obs. 2. When two equations of the first degree in one vari-
able are consistent, the one is derivable by multiplying the other
by a constant. In fact, since a + 0, if we also suppose b+ 0, we
derive from (3), by dividing by ab and then transposing,

« U
Pt s each = £, say ;

hence a=ka, U=k,
s0 that a'r+ b = kax + kb,
= k(ax + b).
If, thén, (3) be satisfied, (2) is nothing more or less than
k(az +b)=0

where % is a constant.

This might have been expected, for, transpositions apart, the
only way .of deriving from a single equation another perfectly
equivalent is to multiply the given equation by a constant.
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Exercises XXIII.
Solution of equations of the first degree in one variable—

1) AL (2- ”ﬁ'_l) =36,
1-1+(1-2)2
2) 3 =1
— et
51 62
@) =-1-1%+b
2 29
) AP Wt
)
z-5_ .
(5.) “68('32 — *5) + 400 =3"694z,
find x to 8 places of decimals.
a b
@) T 1la
) (a+2) (b +2) -alb +) =2,
r—-a x-—-¢C
@) i e

3
(9.) - a+2’ g cf—a+b+c—3x.
x—-a - b x—-c

(10.) (@3 +83)z +0® — B3 = — b4+ ab(a? + B2),
aL) ’i’;:“_”;_;?"q_

(12, (x-l)(z+2)(2z-2)=(zs—1)(9.z+1)(’29+1).
us.) ?11_9%2:'::-3_5}4"

(15.) 17_:111+szis:2£17'

(16.) i = S

VOL. L. VA
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(18.) 5—::::150 z+3) =0.

1) trn et e

(20, P

(@1.) (a+dp+c (@—b+e_  dab
(a—b+d (atbw+f (a+b)(a-b)

@) ey

(23.) aﬁ.*%:ﬁgm'

(24.) z—_*_:_—b+$=2.

(25) e e TR

1 2 1
@ra)@+0) (@+a)(@+e)  @ib)@re)

EQUATIONS WITH TWO VARIABLES.
§ 3.] A4 single equation of the first degree in two variables has an
infinite number of solutions. ‘
Consider the equation
ax+by+c=0 (1).
Assign to y any constant value we please, say S, then (1)
becomes
. ar+bB+c¢=0 (2).
We have now an equation of the first degree in one variable,
which, as we have seen, has one and only one solution, viz.,
z= — (5B + ¢)/a.
We have thus obtained for (1) the solution z= - (8 + ¢)/a,
y =3, where B may have any value we please. In other words,
we have found an infinite number of solutions of (1).

Example.
3x-2y+1=0,
the solutions are given by
28-1 .
= 3 y=8;

we have, for example, for = -2, = -1, =0, 8= +é, B=+1, B=+2, the
following solutions :—
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B | -2] -1 o +.12. +1 | +2
5 1 1
] -3 -1 -3 0 +§ +1
1
Y -2 -1 0 +3 +1 | +2

And so on.

The solution of a single equation of the first degree in two vari-
ables involves, as we have seen, one arbitrary constant, B. This is
sometimes expressed by saying that it has a onefold infinity .

of solutions. .

§ 4.] We should expect, in accordance with the principles of
chap. xiv., § 5, that a system of two equations each of the first
degree in two variables admits of definite solution.

The process of solution consists in deducing from the given
system an equivalent system of two equations in which the
variables are separated ; that is to say, a system such that z
alone appears in one of the equations and y alone in the other.

We may arrive at this result by any method logically con-
sistent with the general principles we have laid down in chap.
xiv., for the derivation of equations. The following proposition
affords one such method :—

If I, U, m, m' be constants, any one of which may be zero, but
which are such that Im' — I'm % 0, then the two systems

ar+by +¢c =0 (1),
az+by+c =0 (2),
and
Yax+by+c)+ l(@z+bdy+c)=0 (3),
m(az + by +¢) + m' @z + by +¢)=0 (4),
are equivalent.

It is obvious that any solution of (1) and (2) will satisfy (3)
and (4); for any such solution reduces both az+by+c¢ and
az+by+c to zero, and therefore also reduces the left-hand
sides of both (3) and (4) to zero.

Again, any solution of (3) and (4) is obviously a solution of
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m { laz+by+c)+ V(az+by+c)}:

-V {mlaz+by+c)+m(@z+by+c)} =0 (5),
-m{ laz+by+c)+ UV(az+by+c)}
+1 {m(az+by+c) +m(az+by+c)} =0 (6).
Now (5) and (6) reduce to
(m' —l'm)(az +by +¢)=0 ),
(m' —U'm)(@'z+by+¢)=0 (8),

and, provided im' — U'm + 0, (7) and (8) are equivalent to

: ax+by +¢ =0,

az+by+c¢=0.
We have therefore shown that every solution of (1) and (2) is a
solution of (3) and (4); and that every solution of (3) and (4) is
a solution of (1) and (2).
All we have now to do is to give such values tol, ', m, m

as shall cause y to disappear from (3), and z to dmappea.r from
(4). This will be accomplished if we make

I= +¥, I'= -3,

m=-a, m=+a;
so that m' —Um=ab' - a'b.
The system (3) and (4) then reduces to
(ab' — a'byz + ¢b' - cb=0 3),
(ab' —adb)y+ca-ca’ =0 - (4);

and this new system (3') (4') will be equivalent to (1) (2)
provided
abl —a'b+0 (9).
But (3') and (4') are each equations of the first degree in one
variable, and, since ad’—a'b+ 0, they each have one and only
one solution, viz.—

o =cb

Tab -ab
1___ac—ac (10).
Y=~ -ab

It therefore follows that the system
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ar+by +¢c =0 (1),
adx+by+c=0 (2),

has one and only one definite solution, viz. (10), provided
ab' —a'b+0 9).

The method of solution just discussed goes by the name of
cross mudtiplication, because it consists in taking the coefficient
of y from the second equation, multiplying the first equation
therewith ; then taking the coefficient of y from the first equation,
multiplying the second therewith, and finally subtracting the
two equations, with the result that a new equation appears not
containing y.

The following memoria technica for the values of 2 and y will enable the
student to recollect the values in (10).

The denominators are the same, viz., ab’ - @', formed from the coefficients

of z and y thus »

<
a' b

the line sloping down from left to right indicating a positive product, that
from right to left a negative product.

The numerator of z is formed from its denominator by putting ¢ and ¢’ in
place of @ and a’ respectively.

The numerator of y by putting ¢ and ¢’ in place of b and ¥'.

Finally, negative signs must be affixed to the two fractions.

Another way which the reader may prefer is as follows :—

Observe that we may write (10) thus,

=l by imes an,

where the common denominator and the two numerators are formed according

to the scheme
S
a' b’><c' @',

It is very important to remark that (1) and (2) are col-
zy
laterally symmetrical with respect to | ab |, see chap. iv., § 20.
al’
Hence, if we know the value of z, we can derive the value of y
by putting everywhere b for a, a for b, b’ for ¢/, and @’ for ¥'. In
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fact the value of y thus derived from the value of % in (10) is
—(ca’ — ¢'a)/(ba’ — ¥'a) ; and this is equal to - (ac’ — ac)/(ab - a'h),
which is the value of y given in (10).
Example 1.
" 8z+2y-8=0 (a),
-9z+4y+5=0 8).
Proceeding by direct application of (11), we have

+3><+2><—3><+3
- +5 -9
_10+12_ 11 _27-15_2

12¥18715° ¥YT1241876°
Or thus: multiply (a) by (2), and we have the equivalent system

6x+4y-6=0,
-9 +4y+5=0;
whence, by subtraction,
15z-11=0,
. . 11
which gives z=1z-
Again multiplying (a) by 3, and then adding (8) we have
10y - 4=0,
which gives
=32
T1005°
Example 2.
z, y_
;+ E—l.
z. ¥.1
atETy
1

Multiplying the first of these equations by 3 and subtracting the second, we
obtain :

1 1 __1_1
: @)y
that is, a:;ﬂ-z=7»p—:—yé ,
whence z=$8—_——g) .

Since the equations are symmetrical in (: g) we get the value of y by

interchanging « and B, viz.,
J_@?’(‘v a)
vB-4a)
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Sometimes, before proceeding to apply the above method, it
is convenient to replace the given system by another which is
equivalent to it but simpler.

Example 8.

a%*z + bty =2ab{a+b) (a),
b(2a+ b}z +a(a+ 2b)y =a® +a% + ab® + b 8).
By adding, we deduce from (a) and (B8)
(@ +byx+(a+dly=(a+b),
which is equivalent to
z+y=a+bd ().

It is obvious that (a) and (y) are equivalent to (a) and (8). Multiplying
(y) by 8 and subtracting, we have
" (a® - B)x=2a% + ab® - B3,
=b(2a - b) (@+b).

Hence z= Y2a-b)
< La - b
Since the original system is symmetrical in (z g), we have

_al2b-a)
a2 -a)

y

§ 5.] Under the theory of last paragraph a variety of par-
ticular cases in which one or more of the constants a, b, ¢,a’, ¥, ¢
involved in the two equations

ar+by +¢ =0,
adz+by+c =0,
become zero, are admissible ; all cases in short which do not

violate the condition ab’ — a'b=0.
Thus we have the following admissible cases :—

a=0 (1), ¥=0 (4),
b=0 (2), a=0and ¥=0 (5),
a=0 (3), a=0and 5=0 (6).

The following are exceptional cases, because they involve ab’ - a’d
=0:—

a=0anda' =0 (L), ’=0and =0 av.).
¢=0and b=0 (IL), a, b,.a', I all different
¥=0anda' =0 (IIL), from 0, but such that

ab —a'b=0 (V).
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We shall return again to the consideration of the exceptional
cases. In the meantime the reader should verify that the formula
(10) do really give the correct solution in cases (1) to (6), as by
theory they ought to do.
Take case (1) for example. The equations in this case reduce to
" by+e=0, a'z+by+c=0.
The first gives y= — ¢/b, and this value of y reduces the second to

’
a'z—%f+c'=0,

i1 s be—be'
hi = —,

which gives r=—

It will be found that (10) gives the same result, if we put a=0.

There is one special case that deserves particular notice, that,
viz., whelre ¢=0and ¢ =0; so that the two equations arg__holmo;__
geneous, viz.,

— ax+by =0 (o),
' az+by=0 (8).
If ab' —a'd+ 0, the formule (10) give =0, y=0 as the only
possible solution. If ab’ — a'b = 0, these formuls are no longer
applicable ; what then happens will be understood if we reflect
that, provided y =+ 0, () and (8) may be written
az +b=0 («),
az+b'=0 (8),
where z = z/y.

We now have two equations of the first degree in 2, which
are consistent (see § 2) since ad’ —a’b=0. Each of them gives
the same value of 2, viz.,2= — bfa, or z= — b'/a’ (these two being
equal by the condition ab' — a'd = 0).

If then ab' —a’'b+0, the only solution of () and (B) s z=0,
y=0; if ab'—a'b=0, z and y may have any values such that the
ratio zfy= —bja= - b'/a.

§ 6.] There is another way of arranging the process of solu-
tion, commonly called Bezout's method,* which is in reality merely
a variety of the method of § 4.

* For an account of Bezout’s methods, properly so called, see Muir's
papers on the ‘ History of Determinants ;" Proc., R.S.E., 1886.
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If X\ be any finite constant quantily whatever * then any solution of the
system

axr+by+c=0, a'z+by+c=0 (1)
s @ solution of the equation

(az+by+c)+Na'z+ by +c')=0 (2),
that is to say, of  (a+Ma')x+(b+A0")y+(c+A)=0 (8).

Now, since \ is at our disposal, we may so choose it that y shall disappear
from (3) ; then must

A +b=0 (4),
and (3) will reduce to (@a+Ma)x+(c+Ac)=0 (5).

From (4) we have A= - b/, and, using this value of A, we deduce from (5)
c+ N\ Ye—be

TS v e

which agrees with (10).
The value of y may next be obtamed by so determining A that z shall
disappear from (3). We thus get
' +a=0 (6),
B+N )y +(c+N)=0 (7),
and so on.
To make this method independent and complete, theoretically, it would
of course be necessary to add a proof that the values of z and y obtained do
in general actually satisfy (1) and (2) ; and to point ofit the exceptional case.

§ 7.] There is yet another way of proceeding, which is inter-
esting and sometimes practically useful.

The systems
az + by +c—0} 1
adz+by+¢=0 @)
and gy= -2+
2 I
az+by+c =0

are equivalent, provided 5+ 0, for the first equation of (2) is
derived from the first of (1) by the reversible processes of trans-
position and multiplication by a constant factor.

Also, since any solution of (2) makes y identically equal
to — (az +c¢)/b, we may replace y by this value in the second
equation of (2). We thus deduce the equivalent system,

* So far as logic is concerned A might be a function of the variables, but
for present purposes it is taken to be constant. A letter introduced in this
way ‘is usually called an *‘ indeterminate multiplier” ; more properly it should
be called an *‘undetermined multiplier.” 7
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axr + ¢
b

, (3).
a’x—q’!%j—c)+c'=0

y=-

Now, since b=+ 0, the second of the equations (3) gives

(@b —ab)z+ (b’ — b'c)=0 (4).
If a'b— ab’+ 0, (4) has one and only one solution, viz.,
be' = Ve
&= ab ®)

this value of z reduces the first of the equations (3) to
1§ a(be’ - ¥'c) +c},

Y= "3 ab-ab
abc’ — a'be
= T b(ab - by
. ca' ~ca .
that is, to Y= —ab (6)-

The equations (5) and (6) are equivalent to the system (3),
and therefore to the original system (1). Hence we have proved
that, if @b’ — a'b+ 0 and b + 0, the system (1) has one and only one
solution.

We can remove the restriction b+ 0; for if =0 the first
of the equations (1) reduces toaz + ¢=0. Hence (if a + 0, which
must be, since, if both @ = 0 and b = 0, then ab’ — a’b = 0) we have
z= —cfa, and this value of z reduces the second of equations
(1) to

a’c
——a—+b'y+c’=0,

which gives (since §’ cannot in the present case be 0 without
making ab’ —a’b=0) y=(ca’ - c'e)/ab’. Now these values of z
and y are precisely those given by (5) and (6) when b= 0. '

The excepted case b =0 is therefore included ; and the only
exceptional cases excluded are those that come under the condi-
tion ab’ — a’b=0.
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The method of this paragraph may be called solution by
substitution. The above discussion forms a complete and
independent logical treatment of the problem in hand. The
student may, on account of its apparent straightforwardness
and theoretical simplicity, prefer it to the method of § 4.
The defect of the method lies in its want of symmetry; the
practical result of which is that it often introduces needless
detail into the calculations. '

Example.
8xr+2y-3=0 (a),
-9x+4y+5=0 8).
From (a) we have y= —_3.;i3 ).

Using () we reduce (8) to
—9242( - 8x+8)+5=0,

that is, -152+11=0;
whence z= 1—1
15
This value of x reduces () to
-8x u +3
_ 15
y= —
_2
=z.
The solution of the system (a) and () is therefore
gl 2
15 ¥T§-

§ 8.1 Three equations of the first degree in two variables, say,
az+by+c=0, az+by+c=0, as+b"y+c" =0 (1),
will not be consistent unless
a’(be’ —be) +b"(ca’ — ca) + "(ad’ - a'd) =0 (2);
and they will in general be consistent if this condition be satisfied.

We suppose, for the present, that none of the three functions
ab’ —a'b, a"b—abd”, a'd” —a"b’ vanishes.* This is equivalent to
supposing that every pair of the three equations has a deter-
minate finite solution.

If we take the first two equations as a system, they have
the definite solution

* See below, § 25.
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_be - ¥c g & —Ca

@ —-av VTa—aw
The necessary and sufficient condition for the consistency of the
three equations is that this solution should satisfy the third
equation ; in other words, that

W =Ve . ca~ca .

ot Va0
Since ab’ — a'b + 0, this is equivalent to

a’(be’ — b'c) + b"(ca’ — c'a) + ¢"(ab’ — a'b) =0 (3).

The reader should notice that this condition may be written in
any one of the following forms by merely rearranging the
terms—

a(b'c” - b7¢) + b(c'a” - ¢"a’) + ¢(a’d” — a"b') =0 4),
a'(be” - b"c) +V(ca” - c"a) +c'(ab” —a"d) =0 (5),
ab’'c” - b7c’) +a'(b"c - be”) + a”(be’ - b'c) =0 (6),
b(ca” - c"a’) + b'(c"a — ca”) + b"(ca’ - c'a) =0 (7),
c(@'d” — a"d’) + c'(a”b — ab”) + ¢"(ab’ — a'b) =0 (8),
ab'c” — ab"c’ + bc'a” — bc"a’ + ca’d” — e’V =0 9).

The forms (4) and (5) could have been obtained directly by
taking the solution of the two last equations and substituting in
the first, and by solving the first and last and substituting in the
second, respectively. Each of these processes is obviously logically
equivalent to the one actually adopted above.

The forms (6), (7), (8) would result as the condition of the
consistency of the three equations

a+dy+a’=0, bz+bly+d"=0, cx+cy+c"=0 (10).
We have therefore the following interesting side result :—
Cor. If the three equations (1) be consistend, then the three equa-
tions (10) are consistent.

If the reader will now compare the present paragraph with § 2, he will
see that the function
ab' -a'b
plays the same part for the system
ax+b=0, a'z4+b' =0
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a.s.doea the function
a(b'd - V¢) + b(c'a” - 'a’) + c(a't” — a"D')

for the system
ax+by+e=0, a'z+b'y+c'=0, a"z+d"y+c"=0.
These functions are called the determinants of the respective systems of equa-
tions. They are often denoted by the notations
o a'b (11).
a b ¢
a b | for ab'd - ab’d +bd'a” - b'a’ +ca'd” - ca”b’ (12).
a" bV
The reader should notice—

1st. That the determinant is of the first degree in the constituents of any
one row or of any one column of the square symbol above introduced.

2nd. That if all the constituents be considered, its degree is equal to the
number of equations in the system.

A special branch of algebra is nowadays devoted to the theory of deter-
minants, so that it is unnecessary to pursue the matter in this treatise. For
the sake of more advanced students we have here and there introduced results
of this theory, but always in such a way as not to interfere with the progress
of such as may be unacquainted with them.

The reader may find the following memorie technice useful in enabling
him to remember the determinant of a system of three equations :—

For the form (4),
a

b c
a b’

to be interpreted like the similar scheme in § 4.
For the form (9),

NP / )

where the letters in the diagonal lines are to form products with the signs +
or —, according as the diagonals slope downwards from left to right or from
right to left.

N\

Example.
To show that the equations
8x+5y-2=0, 4x+6y-1=0, 2x+4y-3=0
are consistent.
Solving the first two equations, we have = -7/2, y=5/2. These values
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reduce 2z+4y -3 to-7+10- 3, which is zero. Hence the solution of the
first two equations satisfies the third ; that is, the three are consistent.

‘We might also use the general results of the above paragraph.

Since 3x6-5x4=-2, 5x2-3x4=-2, 4x4-2x6=+4, each pair
of equations has by itself a definite solution. Again, calculating the deter-
minant of the system by the rule given above, we have, for the value of the
determinant, — 54 - 10 - 32+24+12+60=0. Hence the system is consistent.

+3 + + 8 + 5

\><></
/><><\

ExEercises XXIV.
Solution of equations of the first degree in two variables—

(1.) z+iy=6, $x+iy=63

(2.) 2z+3y=18, 3z-2y=09.

(8.) 128z + 885y =834, 893z - ‘593y=3-71,
find « and y to 5 places of decimals.

{4.) z+y:2-y=5:3, x2+5y=36.

(5.) 8z+1=2y+1=38y+2x.

(6.) (x+3)(y+5)=(x-1)(y+2), 8x+5=9y+2.

(7.) z+y=a+d, (z+a)/(y+d)=b/a.

z
@) G5l matap=T
9.) ar+by=0, (a-b)x+(a+bly=2

(10.) (a+b)x-(a-by=¢, (a—Dbj+(a+by=c.
(11.) (@+dx+(a-dy=a+2ab-1?, (a-Dd)x+(a-d)y=a®+bd

z y Yy _ )
12) g st ety
(13.) (ap™+bg™)z + (ap™+1 + by +1)y =ap™+2+ bgm+7,

(ap™ +bgr)z+ (apn+1 + bty =ap™+2 -+ bgn +2,

(14.) Find X and g so that 23+ Ax®+ pux + abe may be exactly divisible by

z-band by z-ec.
Yy d .

(15.) If A+ 0, and if 2~ y=a - ba+7\ bIA= 1, +3 )\_1 be con
sistent, show that A= %4/ ab.

(16.) If the system (b+c)z+(c+a)y+(a+bd)=0, (c+a)e+(a+dy+(b+¢)
=0, (a+dx+(d+c)y+(c+a)=0, be consistent, then a®+ %+ ¢ - 3abe=0.

(17.) Find the condition that az+dy=c, a?x+¥y=c%, a%x+By=c be
consistent.
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(18.) Find an integral function of z of the first degree whose values shall
be +9 and +10 when « has the values — 8 and +2 respectively.

(19.) Find an integral function of z of the second degree, such that the
coefficient of its highest term is 1, and that it vanishes when 2=2 and when
z=-3.

(20.) Find an integral function of « of the second degree which vanishes
when z=0, and has the values -1 and +2 when z=-1 and 2=+38
respectively.

EQUATIONS WITH THREE OR MORE VARIABLES.

§ 9.] A single equation of the first degree in three variables admits
of a two-fold infinity of solutions.

For in any such equation, say

ar+by+cz+d=0,

we may assign to two of the variables any constant values we
please, say y =3, 2=, then the equation becomes an equation
of the first degree in one variable, which has one and only one
solution, viz.,

_ B+ey+d
. - a )
We thus have the solution
B+ey+d
LA LAL ay » y=B, z=7.

Since there are here two arbitrary constants, to each of
which an infinity of values may be given, we say that there is
a two-fold infinity of solutions.

§ 10.] A system of two equations of the first degree in three vari-
ables admits in general of a one-fold infinityof solutions.

Consider the equations

ax+by+ez+d=0, az+dy+cz+d =0 (1).
We suppose that the functions b’ — 'c, ca’ — c'a, ab’ — a'b, do not
all vanish ; or, what is the same thing, that not more than one
of them vanishes. Let ab’ —a'd be one of those which do not
vanish.

If we give to z any arbitrary constant value whatever, say
z =1, then the two given equations give definite values for z and
y. We thus obtain the solution
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(ba’ Veyy + (bd' - V'd) (ca’ - c'a)y + (da’ - d’a)
ab —a'b » ¥= .ab -a'b =7 (@)
Since we have here one arbitrary constant, there is a one-fold

infinity of solutions.
Cor. There is an important particular case of the above that

often occurs in practice, that, viz., where d=0 and d'=0
We then have, from (2),
._ Ve _o - ca
z= l ’ b 7’ ./ abl ’ b Y’ z= 7
This result can be written thus—
U S
b —bc ab’ —a'd’
S —
' —ca ab —a'dh’
Y
al —a'b ab —a'b’

Now, v being entirely at our disposal, we can so determine
it that y/(ab’ — a'b) shall have any value we please, say p. Hence,
p being entirely arbitrary, we have, as thc solution of the system,

ar +by +¢2 =0
3),
az + by +cz2=0 @)
z=p(bc - b'c), y=plca’-ca), z=plad —a'b) (%),

It will be observed that, although the individual values of
Z, 9, z depend on the arbitrary constant p, the ratios of =z, y, 2
are perfectly determined, viz., we have from (4)

ziy:z= (b - b'c): (o’ - c'a): (ab’ - a'b).

Example 1.
22+ 3y +4:=0,

3z -2y -62=0,

-2 -6 3 Z2

give ziy:z=-10:24: - 13;
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or, which is the same thing,
z=-10p, y=24p, z=-13p,

p being any quantity whatsoever.
Example 2.
ax+by+cz=0,
a*x+b%y +cz=0,
give z=(be® - Bc)p = — bep(b-¢),
y=(ca®-ca)p = ~ cap(c-a),
s=(ab®-a%)p= -abpla-b). = &Y

If we choose, we may replace —abcp by o, say, and we then have
2=o(b-c)la, y=clc-a)b, z=ola-b)e,
where o is arbitrary.
In other words, we have
z:y:z=(b-c)la:(c—a)fb:(a-b)e
§ 11.] A system of three equations of the first degree in three
variables, say

ar+by +cz2 +d =0 (1),
ax+by+cz+d =0 (2),
aAz+Vy+cz2+d" =0 (3),

has one and ondy one solution, provided
ab'e” — ab"c + be'a” — be"a’ + ca’d” — ca”b’ + 0 (4).
The three coefficients, ¢, ¢, ¢”, cannot all vanish, otherwise we
should have a system of three equations in two variables, z and

¥, & case already considered in § 8.
Let us suppose that ¢+ 0, then the following system

ax+by +¢c2 +d =0 (5),
dlax+by+czrd)—claz +by +cz2+d)=0 (6),
cClar+by+ez+d)—c@z+by+cz2+d)=0 ),

is obviously equivalent to (1), (2), and (3). Matters are so
arranged that z disappears from (6) and (7) ; and if, for short-
ness, we put

A=ac -a'¢, B=bl-Vbe, C=dd-de

A'=ac -a’c, B =bc" -bt, C'=dc"-d",
we may write the system (5), (6), (7) as follows :—

ax+by+ecz+d=0 (5",
Az+By+C=0 (6),
Az+By+C =0 (7).
VOL. L 24
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Now, provided AB' -AB+0 (8),
(6°) and (7) have the unique solution
BC'-BC
2= B —AB ©)
CA'-CA
== 10).
Y= AR AR (10)

These values of z and y enable us to derive from (5')
_a(BC'-BC) +HCA’' - C'A) + d(AB' - A’B) a1
. ¢(AB' - A'B) ’
(9), (10), and (11) being equivalent to (5°), (6'), (7'), that is, to
(1), (2), (8), constitute a unique solution of the three given
equations.
It only remains to show that the condition (8) is equivalent
to (4).
We have
AB' - A'B= (ac’ - a'c) (be” - b"c) — (ac” — a”"c) (be' — 'e),
=¢(ab'c” - ab"c + bc'a” — bc"a’ + ca’d” — ca”V’)  (12).
Hence, since ¢+ 0, (8) is equivalent to (4).

2

Although, in practice, the general formul® are very rarely used, yet it may
interest the student to see the values of z, y, = given by (9), (10), (11) ex-
panded in terms of the coefficients. We have

" —(BC' - B'C)=(de’ - d'c) (b - b"c) — (de” — d'c) (b’ — b'e).

Comparing with (12), we see that — (BC’'- B’C) differs from AB’'-A'B
merely in having & written everywhere in place of a (the dashes being
imagined to stand unaltered). Hence

—(BC' - B'C)=c(db'c” - db"¢’ + be'd” - be"d’ + cd'b” — ed™d').
So that we may write
2= db' - b"c')+d'(b"c - be") + a"(be’ - b'c) (13).
T abd-b)+a' (e - bd") +a’(be’ - b'c) :

We obtain the values of y and 2z by interchanging & and b and @ and ¢

respectively, namely,

_ _d(@d—a"d)+d'(a"c—ac’)+d"(ac’ - a'c) (14)
T T b(a’d - d"c)+b'(a"c - ad’) + b(ac’ - a'c) !
dd'a” - b"a')+d'(b"a - ba") + d"(ba’ - b'a) (15).

=T bd —ba)tc(ba-ba')+dba - ba)
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‘Written in determinant notation these would become

d b ¢ a b ¢

z=-(d bV |+|a b ¢ ’
a vy a ¥ as
a d ¢ a b ¢

y=—-|a d ¢|+|a ¥ ¢ ’
e &l |y e s
a b a a b ¢

z=—-|a ¥ d|+|a b ¢ ,
a’ ¥ a a vV as.

§ 12.] In the special case where d=0, d'=0, d"=0, the
equations (1), (2), (3) of last paragraph become

ar+by +c2 =0 1),
az+by+cz=0 (2),
a"z+by+cz2=0 3),

which are homogeneous in 2, ¥, 2.

If the determinant of the system, viz., a”(be’ — b'c) + b"(ca’ — c'a)
+¢"(ab’ —ab’), do mot vanish, we see from § 11 (9), (10), (11) (or
more easily from (13), 14), and (15) of the same section) that

z=0, y=0, z=0.

If the determinant does vanish, this conclusion does not necessariy
Jollow,

In fact, if we write (1), (2), (3) in the form

aZib¥4c=0 (1),
E4 z
T Y 9
az+bz+c 0 (2),
a2y +e=0 (3),
F4 F4

and regard z/z and y/z as variables, these equations are consistent,
since
a’(be - b'c) + b"(ca’ - c'a) + ¢"(ad’ —a'd) =0 4),
and any two of them determine the ratios z/z, y/z; so that we
have
z:y:2=bd —bc :ca’ —-ca :ab’ —a'h,
=b" —=b"c :ea” —¢"a :adb” —a"b,
=bc" =0"c:ca" - c"a' :a’b" —a’b.
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These different values of the ratios are in agreement, by virtue
of (4), as the student should verify by actual calculation.

Hence, if the determinant of a system of three homogeneous equa-
tions of the first degree in 2, y, z vanish, the values of =, y, z are inde-
terminate (there being a one-fold infinity of solutions), but their ratios
are determinate.

§ 13.] Knowing, as we now do, that a system of three equa-
tions of the first degree in z, y, z has in general one definite
solution and no more, we may take any logically admissible
method of obtaining the solution that happens to be convenient.
(1) We may guess the solution, or, as it is put, solve by inspec-
tion, verifying if necessary. (2) We may carry out, in the
special case, the process of § 11 ; this is perhaps'the most gene-
rally useful plan. (3) We may solve by substitution. (4) We
may use Bezout’s method. (5) We may derive from the given
system another which happens to be simpler, and then solve the
derived system. The following examples illustrate these different
methods :—

Example 1.
’ z z

z+y+z=a+b+e, (b-c)x+(c-aly+(a->b)=0, &+%+Z=3'

A glance shows us that this system is satisfied by z=a, y=5, 2=¢; and,
since the system has only one solution, nothing more is required.

Example 2.
3z+b6y—- 7z2-2=0 (a),
4z+8y-142+8=0 (8),
8z+6y— 82-3=0 ).
Multiplying (a) by 4 and (B) by 3, and subtracting, we obtain
4y-142+17=0 (8).
From (a) and (v), by subtraction,
y-2-1=0 (e).
Multiplying (e) by 4, and subtracting (3), we have, finally,
102-21=0;
whence z=21.
Using this value of z in (¢), we find -
y=381;

and, putting y=381, z=2"1 in (a), we find
z="4,
The solution of the system (a), (8), (v) is, therefore
z="4, y=381, 2=21
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Example 8.

Taking the equations (a), (8), () of last example, we might proceed by
substitution, as follows :—

From (a)

o108 )

7
+ga+

eﬂm

z= -
This value of z reduces (8) to
20 28 8

3YT3At3

+8y-142+8=0,
which is equivalent to
4y-142+17=0 (8.
Substituting the same value of « as before in (), we deduce
y-2-1=0 (€").
Now (¢’) gives

and this value of y reduces (') to

y=z+1,

- 10z+21=0,
hence z=21
The values of ¥ and 2 can now be obtained by using first (¢’) and then (a).
Example 4.
Taking once more the equations (a), (8), (v) of example 2, we might pro-
ceed by Bezout’s method.
If A and g be two arbitrary multipliers, we derive from (), (8), (v),
(8z+ 5y — 72— 2) + N4+ 8y — 142+ 8) +pu(3z+6y—82-8)=0  (&').
Suppose that we wish to find the value of 2. We determine A and x so that
(8') shall contain neither y nor 2. 'We thus have

8\ +6u+5=0 (),
- 14\ -8u-7=0 ",
(8+ 4N+ 3u)x— 2+ 8\ - 3u=0 ).

If we solve (¢’) and ({’), we obtain

The last equation (7’) thus becomes
(8--4-21)-2--3+21=0,
that is, Sx-2=0;
whence z="2[6="4.
The values of y and z may be obtained by a similar process.

Example 5.

A=-="1, pu=-°7

az+by+ez=0 (a),
(b+cye+(c+a)y+(a+bd)z=0 8),
a2 +b% + % =a¥b-c)+¥(c-a)+cXa-b) (v)
From (a) and (B8) we derive, by addition,
(@+b+c) (x+y+2)=0,
which, provided a+b+c¢=+0, is equivalent to
z+y+2=0 (9).
‘We can now, if we please, replace (a) and (8) by the equivalent simpler pair
(a) and (8).
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Now (see § 10), by virtue of (a) and (3), we have
x _l__ 2
b—¢ c-a a-b -
If none of the three, —¢, ¢c-a, a—b, vanish, we may write (v) in the form
a*(b- c) +b’(c u)—— +cXa- b)——a’(b c)+bc-a)+cXa-1b).

Using (¢) we can replace y/(c - a) and z/(a - b) by 2/(b-¢), and the last equa-
tion becomes

{@b- ) +B¥c - a) + cXa~ B} 2 =a¥b- )+ e - @) + Ha-B) ;
and, since a¥b —¢)+b¥(c—a)+cXa—b)=—(b-c)(¢c—a) (a—b), which does not
vanish, if our previous assumptions be granted, it follows that
x

i
Hence 2=5 - ¢, and, by symmetry, y=c-a, 2=a-b.
This solution might of course have been obtained at once by inspection.

Example 6.
z+ay+az+ad=0
/ x+by+b’z+b’=0§ (a).
: z+ ey +c%&+c3=0
From the identity

Brpt+gt+r=(E-a)(E-d)(E-o),
(see chap. iv., § 9), where
p=-a-b-¢, g=bct+ecatad, r=-abe,

r+agq +a’p+a’=0}

we have

r+bg + bip+ B=0
r+cg + clp+ =0
It appears, therefore, from (8) that

z=7, Y=¢ =z=p,
is a solution of (a¢). Hence, since («) has only one solution, that solutlon is

z=-abe, y=betcatad, z=-a-b-c
This result may be generalised and extended in various obvious ways.

§ 14.] A4 system of more than three equations of the first degree
in three variables will in general be inconsistent. To secure consistency
one condition must in general be satisfied for every equation beyond
three. Thizs may be seen by reflecting that the first three equa-
tions will in general uniquely determine the variables, and that
the values thus found must satisfy each of the remaining equa-
tions. Thus, in the case of four equations, there will be one
condition for consistency. The equation expressing this condition
could easily be found in its most general form ; but its expression
would be cumbrous and practically useless without the use of

(8)-
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determinantal or other abbreviative notation. There is, how-
ever, no difficulty in working out the required result directly in
any special case.

Example.

Determine the numerical constant p, so that the four equations,
2z-3y+52=18, 8z-y+4:=20, 4z+2y-z=5,
(p+1)+(p+2)y+(p+8)2=76,

shall be consistent.

If we take the first three equations, they determine the values of z, y, z,
namely, =1, y=38, z=b.
These values must satisfy the last equation ; hence we must have
(p+1)+(p+2)8+(p+3)6=76
which is equivalent to ’
9p=>54.

Hence p=86.

§ 15.] If the reader will now reconsider the course of reason-
ing through which we have led him in the cases of equations of
the first degree in one, two, and three variables respectively, he
will see that the spirit of that reasoning is general; and that,
by pursuing the same course step by step, we should arrive at
the following general conclusions :—

1. A4 system of n—r equations of the first degree in n variables
has in general a solution involving r arbitrary constants,; in other
words, has an r-fold infinity of different solutions.

I1. A4 system of n equations of the first degree in n variables has
a unique determinate solution, provided a certain function of the co-
efficients of the system; which we may call the determinant of the
system, does not vanish.

III. A4 system of n +r equations of the first degree in n variables
will in general be inconsistent. To secure consistency r different con-
ditions must in general be satisfied.

There would be no great difficulty in laying down a rule for calculating
step by step the function spoken of above as the determinant of a system of
n equations of the first degree in n variables; but the final form in which it
would thus be obtained would be neither elegant nor luminous. Experience
has shown that it is better to establish independently the theory of a certain
class of functions called determinants, and then to apply the properties of
these functions to the general theory of equations of the first degree. A
brief sketch of this way of proceeding is given in the next paragraph, and

will be quite intelligible to those acquainted with the elements of the theory
of determinants.
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GENERAL SOLUTION OF A SYSTEM OF LINEAR EQUATIONS
BY MEANS OF DETERMINANTS.

§ 16.] Consider the system

Ui=a,z, +tag +. . . +8,7,+6,=0 (1),
Ui=a,2, + 057 +. . .+0pZy +¢,=0 (2),
Up=an + CneZy+. « . + QppZpn + €, =0 (n).
where there are » variables, z,, x, . . . @y and n equations to
determine them.,
Let
Qy Ay Un
A = aﬂl a” am ;
Gpy Qpg. Ann

and let A, 4, . . . A, denote the determinants obtained from A
by replacing the constituents of the 1st, 2nd . . . nth columns
respectively, by the set ¢, ¢, . . . ¢p.

Also let the first minors of A be denoted by A,, A, .

A-lm Aan A‘l’ Am: &C., as nsual
Then, by the theory of determinants, we have

auAu + anAﬂ +. ..+ a'mAm =4
Ay + Ay +. . L+ Gy =

. . . . (a),
Gnly + GenAg +. . L+ annAm J
CGA,L+c Ay +. . .+ GAy=
and so on.
If the determinant A, which we call the determinant of the
system of equations, does not vanish, then A,,, A, .. . A, can-

not all vanish. Let us suppose that A, +0. Then, by chap.
xiv., § 10, the system

AU +A, U +...+A,U,=0,
U,=0, U,=0... U,=0,

is equivalent to the system (1), (2) . . . (n). If we collect the
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coefficients of the variables z,, 2, . . . Z,, in the first of these
equations, and attend to the relations (a), that equation reduces to
Az, + A, =0.

Since A + 0, this is equivalent to
Ty= = -

By exactly similar reasoning we could show thatz, = — A,/4, . . ..
Zp= - A,/A. Hence the solution, and the only solution, of (1),
2)...(n),is
n=-AfA z,= -AfA ... 3= - AgfA (B).

Although, from the way we have conducted the demonstration,
it is not necessary to verify that (8) does in fact satisfy (1),
(2) .. . (n), yet the reader should satisfy himself by substitu-
tion that this is really the case.

We have thus shown that a system of n equations of the first degree
in 1 variables has a unique determinate solution, provided ils determin-
ant does not vanish.

Next, let us suppose that in addition to the equations (1),
(2) . . . (n), above, we had another, namely,

Opr Tt ApprgBt ¢ o o Oy Tyt 0py, = 0, (‘n + l),
the system of n+ 1 equations thus obtained will in general
be inconsistent. )

The necessary and sufficient condition for consistency is that the
solution of the first n shall satisfy the n + 1th, namely, if A+0,

= Op Al"a'n+1,|Aa_- « o= O, nBn+ Cny A =0, that is,
a, Q) e ip G
Ay Gy e O G
e =0 )
Qpy QApng S Y Cn
Opt11Cntss » - » Cngan Cng

Lastly, let us consider the particular case of n homogeneous
equations of the first degree in n variables. In other words, let
us suppose that, in equations (1), (2) . . . (n) above, we have
6=0,6=0...c=0.
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1st. Suppose A=+ 0, then, since now A, =0, A;=0 ..
Ap=0, (B) gives 2, =0, 2, =0 . . . 2, =0.

2nd. Suppose A =0.

‘We may write the equations in the form

o, T

a'ux_n'f'aua'i-. .o+ an=0,
2! Zg

g— + By~ +. . . +0pn=0
!lx” ”131; m 1}
&, I,

Gpy— + Gpg— e« o+ Oy =0,
Ln In

These may be regarded as a system of n equations of the first
degree in the n — 1 variables @,/zy, 2,/Ts . . . Zn_,[%s; and, since
A =0, they are a consistent system. Using only the last n -1
of them, we find

Ao Qgg + « - Qoo Qg Qg . . . Ggnoy
L _{Gm O - - - Ganoy [, | G - - o Ganey
Opn Qng + + « Cnym-a Qny Qng - - - Quny
=—(- l)zn_ Au =ﬁn ,
ﬂ 17

In a similar way we prove that
x,/z,, = An/Am DRI zn—x/xn = A), n—x/Am .
Hence we have

Bt ... @ =A AL Lt Ay
and, by parity of reasoning,
Byt . .. iBp=An: Ay . .. 1A,
where r=2,=3 . . .=n, as we please. In other words, the ratios

of the variables are determinate, but their actual values are in-
delerminate, there being a one-fold infinity of different solutions.

Exercises XXV.
Solution of equations of the first degree in three or more variables—

1. TrY¥ Eo z = i A
1) +4+6 =36, ¢ 20+9 10, 3 10+4 43,



XVL] EXERCISES. 363

(2) 2% +3y+42=29, Sw+2y+5:=32, 4x+8y+2e=25.

(8.) 8z4+12+68:=1, 38x—25y-382="5,

‘01z - *003y — *301z2="013 ;
calculate z, v, z to four places of decimals.
(4.) z+y+2=26, xz-y=4, x-z=6.
(5.) If
(x+1)? - A , Bz+C
(z+2) (P +z+1)" z+2 2B+z+1
determine the numerical constants A, B, C.

(6.) Find a linear function of # and y, which shall vanish when z=2/,
y=y’, and also when z=2", y=y", and which shall have the value +1 when
2=, y=y".

(7.) An integral function of x of the second degree vanishes when x=2,
and when z=38, and has the value —1 when = -2 ; find the fanction.

8.) y+z=a, z+z=b, z+y=c

y z
®.) F+et s -:_ =% tvatica a+b a- b
(10.) An integral function of # of the second degree takes the values A
B, C, when z has the values a, b, ¢ respectively ; find the function.
(11.) be(b - c)x +calc - a)y + aba - b)z=0,
(a+d- c):c+(b+c a)yy+(c+a-bdr=a2+b+c2,
Yc*x + la%y + a*b3z = abe(be + ca + abd).

12.) If > Y L E
a2) a+a+b+a+c+a 1

=2b, =2

z y z
a+p b+pterp
x Y z
then aty biy iy 0
. A}
(a+a)(a+ﬁ)’ (b+a)(b+p)’ (c+a)(6+ﬂ)’ (@+B)(b+B)(c+B)
(13.) ax+by+cz=a+b+c,

a%z+ by +ck=(a+b+c),
bex + cay + abz=0.
(14.) ax+cy+bz=cx+by+az=bx+ay+cz=a®+ 5+ - 3abe.
(15.) lz+my+nz=mn+nl+Im,
z+y+z=l+m+n,
(m-nke+(n-ly+(l-m)e=0.
(16.) le+my+nz=0,
(m+n)e+(n+ly+(+mz=l+m+n,
P+ miy +niz=p%
(17.) Show that (b-c)x+by —cz=0, (c-a)y+cz-azx=0, (a-d)z+ax-dy
=0, are consistent ; and that 222+ 3Zyz=Z(x +y) (z +2).
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(18.) Show that the system cy — b2=F, az— cx=g, bx— ay=~, has no finite
solution unless af+dg+ch=0, in which case it has an infinite number of
solutions,

Find a symmetrical form for the indeterminate solution involving one
arbitrary constant.

(19.) 82-2y+3u=0, 2-y+2=0, 3y+32—2u=0, +2y+38z+4u=8.

(20.) faz=p—-7,by=p—8,cz=7r-38,d(y+2)=8—-gq, e(z+x)=g—7, Az +Y)
=g-p+g, find zin terms of @, b, ¢, d, ¢, f, 9.

dz+z_Butz bvtz

(21.) 2y+z= 3 =1 =3
_z+y+z+uto-1_br+4y+32+2u+v+2
- 4 - 9

(22.) ax+dy=1, cx+dz=1, ez+fu=1, gu+hv=1, x+y+z+u+v=0.

(23.) Prove that, with a certain exception, the system U=0, V=0, W=0,
and AU +pV+rW=0, NU+u'V+r'W=0, N"U+u"V+»"W=0, are equi-
valent.

(24.) If z=by+cz+du, y=axr+ez+du,
z=ax+by+du, u=ax+by+e,

a b [ d

ariteriteritasiT

(24.) Show that the system ax+by+e+d=0, a'z+b'y+cz+d =0,
a"z+b"y+ "2+ d"=0, will be equivalent to only two equations if the system
ax+a'y+a’=0, be+dy+d"=0, cx+cy+c'=0, dz+d'y+d"=0, be con-
sistent, that is, if

then 1.

Y-8 _ He-be' _ bd Ve

dd—dd " dd-ad" ad —-a'd
Show that in the case of the system

= z.¥.2. zZ Y B
z+y+z=a+b+e, atste 1, Itpts 0,
the above two conditions reduce to one only, viz.,
be+ca+ab=0.

(25.) Show that the three equations
z=A+A'u+A", y=B+Bu+B"», 2=C+Cu+C,

where u and v are variable, are equivalent to a single linear equation con-
necting z, ¥, z; and find that equation.
(26.) If az+by+cz+d=D, show that

x=(§+q)(b-0)—%,
y=(’—,:+q)(c-a)—3ib,

(2 —a)-2
=(Bra)e-o-.

where p and g are arbitrary constants.
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(27.) If ax+ by +cz+d=0, a'z+b'y+c'z2+d =0, show that
z=p(bc’ —b'c) + {(b'-c')d - (b-c)d'}/{ad -c)+bc ~a')+c{a' - }")},
y=plca' -ca) + {(¢' —a')d - (c —a)d'}[{a(b' - ')+ b(c' - a') + (e’ - b')},
z=plad’ - a'b)+ {(a' - ¥')d - (a-b)d'}/{a(b' - &)+ (¢ - a')+e(a’ - b')},
where p is an arbitrary constant.
EXAMPLES OF EQUATIONS WHOSE SOLUTION IS EFFECTED BY
MEANS OF LINEAR EQUATIONS.

§ 17.] We have seen in chap. xiv. that every system of
algebraical equations can be reduced to a system of rational
integral equations such that every solution of the given system
will be a solution of the derived system, although the derived
gystem may admit of solutions called ‘extraneous,” which do not
satisfy the original system. It may happen that the derived
system is linear, or that it can, by the process of factorisation,
be replaced by equivalent alternative linear systems. In such
cases all we have to do is to solve these linear systems, and then
satisfy ourselves, either by substitution or by examining the
reversibility of the steps of the process, which, if any, of the
solutions obtained are extraneous. The student should now
re-examine the examples worked out in chap. xiv., find, wher-
ever he can, all the solutions of the derived equations, and
examine their admissibility as solutions of the original system
We give two more instances here.

Example 1. ) .

VEVE-D  VE V@D T VD @
(Positive values to be taken for all the square roots.)

If we rationalise the two denominators on the left, we deduce from (a) the
equivalent equation,
N {2-NZ-1} +a/{z+VE -1} =N2AP+1) (8)
From (8) we derive, by squaring both sides,
2242V — (28— 1)=2(22+1),

that is 224 2=223+2 ()
Now () is equivalent to ad-2=0,
that is, to 2{x-1)(z+1)=0 (8).
Again (3) is equivalent to the alternatives <z 1= 0>
z+1=0

that is to say, its solutions are 2=0, z=1, z=-1.
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Since, however, the step from (8) to (y) is irreversible, it is necessary to
examine which of these solutions actually satisfy (a).

Now z=0 gives A =it/ +i=a/2,
that is (see chap. xii., § 17, example 3),
1-4 1+4i_
vzt =V

which is correct.

Also, z=1 obviously satisfies (a).

But 2= -1 gives 2¢{=0, which is not true, hence = -1 is not a solution
of (a).

Remark that 2= -1 is a solution of the slightly different equation,

1 1 —
VeV E S VIRV i VISRt
Example 2.

B-yPP=z-y, 2u+3y-1=0, (a).
Since the first of these equations is equivalent to (z—¥)(z+y-1)=0, the
system (a) is equivalent to

( z-y=0, and 22+8y-1=0

z+y-1=0, and 2x+8y-1=0
now the solution of z-y=0, 2z+8y-1=0, is z=1/5, y=1/5; and the solu-
tion of 2+y-1=0, 2¢+3y-1=0 is =2, y=-1. Hence the solutions of
(a) are

8

DD Ol =
| R

§ 18.] The solution of linear systems is sometimes facilitated
by the introduction of Huxiliary Variables, or, as it is sometimes
put, by changing the variables. This artifice sometimes enables us
to abridge the labour of solving linear systems, and occasionally
to use methods appropriate to linear systems in solving systems
which are not themselves linear. The following are examples :—

Example 1.
(x-aP z-2a-b @
(Z+bP z+a+2b )
Let 24+ b=z, so that z=2-b ; and, for shortness, let c=a +b.
Then (a) may be written
(z—c® z-2¢
T ®)-

Fro: deri
m (B) we derive (z=c)¥z+c)=2%z-2),
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that is,
28— 22304 2263 — A =24 - 223,
which is equivalent to
2683z - A=0 (r)-
Now (v) bas the unique solution z=¢/2, which evidently satisfies (a).
Hence z=c/2 - b, that is, z=(a - b)/2, is the only finite solution of ().

Example 2.
a(z+y)+bz-y)+e=0, a'(x+y)+b(x-y)+=0 (a).
Let £=2+y, n=2-y, then the system (a) may be written
at+bn+c=0, a't+bdp+c'=0 (a’).
Now (') is a linear system in £ aud », and we have, by § 4,
be' Ve ca' -ca
= "Ca—ab (8).
Replacing ¢ and » by their values, we have
be' - b'e ca' -ca
ZHY=_0_op Y=o (-
From (v), by first adding and then subtracting, we obtain
z_bi'—b'c+c‘a’—c;a _b'-be—ca'+ca
=T 2w —ab) * YT @ -am)

Example 8.
cy+bz=az+cx=bxr+ay=abe.
Dividing by b¢, by ¢a, and by ab, we may write the given system in the
following equivalent form

Yy, z_
'5+—c~a (a),
zZ
2+‘—‘—b B8
x g_
E+b_° ()

Now, if we add the equations (8) and (), and subtract (a), we have
z.Y 2.8 _ (Y43 = _
(a‘f'z) + (z +a) (b+ c) b+c-a,
that is, 2z=b+c—a;

g=Hbtc-a)

whence )

By symmetry, we have
y=bct+a-D0)/2, 2=ca+b-c)2.

Here we virtually regard x/a, y/b, z/c as the variables, although we have
not taken the trouble to represent them by introducing new letters.
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Example 4.

-—— ==—q—= —_— (a.),

e +my+nz=d 8)
Represent each of the three equal functions in (a) by p. Then we have
(z-a)p=p, (y-b)a=p (z-0)r=p,
which are equivalent to
e=a+pp, y=b+gp, z=c+7p o)
Using (), we reduce (8) to
: Ya +pp)+m(b+gp) +n{c+7p)=d,
from which we obtain, for the value of the auxiliary p,
_d-la-mb-nc
T lptmg+nr
From (v) and () we have, finally,
d - la—mb—nc
P tmgnr
_mlaq - bp) +n(ar —cp) +pd
. lp+mq+nr
The values of y and z can be similarly found, or they can be written
down at once by considering the symmetry of the original system.

(8).

z=a+

Example 6.
r-2y+32=0 (a),
22 -8y+42=0 (8),
423 + 318 + 28— zyz =216 (7).

From (a) and (8) we have (see § 10 above),
a/1=y/2=z{1=p, say.

Hence z=p, Y=2p, == ().
By means of (3) we deduce from (v)

27p8=216,
which is equivalent to P=8. (e).

Now the three cube roots of 8 are (see chap. xii., § 20, example 1),
2, 2(-1+4+4/3¢), 2(-1-4/37),
Hence the solutions of (e) are
p=2, p=2(-1+a/3d), p=2(-1-A/3).
Hence, by (5), we obtain the three following solutions of (a), (8), () :—

x Y z
2 4 2
~1+/8i 2(-1+4/30) ~1+4/8i

—1-A/8i 2( -1 -A/80) -1-a/8i
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Since, by chap. xiv., §|6, the system in question has only three solutions,
we have obtained the complete solution.

N.B.—In general, if u;, %3 . . . %a—1 be homogeneous functions of the
first degree in # variables, and v a homogeneous function of the nth degree in
the same variables, the solution of the system,

=0, s ug=0 ... u_1=0, =0,
may be effected by solving a system of n — 1 linear equations in # — 1 variables,
and then extracting an nth root. See in this connection § 16 above.

Example 6. .
a2 +byt+c=0, a2+ +¢'=0.

If we regard =? and y? as the variables, we have to do with a linear system,

and we obtain, as heretofore,
2= (bc’ — blc)/(ab’ - a'd), y*=(ca’-c'a)/(ab’ —a'b).

2=+ —bo)fad - a'b), y=%N(ca’ - ca)f(ab - a'd).

Since either of the one pair of double signs may go with either of the other
pair, we thus obtain the full number of 2 x 2=4 solutions.
Example 7.

Hence

ay+bx+cxy=0, a'y+bz+czy=0.

These two equations evidently have the solution 2=0, y=0.
Setting these values aside, we may divide each of the two equations by
zy. We thus deduce the system

a1+b1+c=0, a’1+b’1+c’=o,
z ¥y z Yy

which is linear, if we regard 1/x and 1/y a8 the variables. Solving from this
point of view, we obtain

1_bd-be 1_ca'-ca

x abl Ib y abl J: b ’
from these we have

z=(ad’ - a'd)[(be' - V'c), y=(ad'—a'b)/(ca’~c'a).

‘We have thus found two out of the four solutions of the given system. There
are no more finite solutions.

Exerorses XXVI.

Equations which are linear or can be solved by means of linear systems—

(1) Nax+a/b \/a+»\/b
' Jax = b N
(@) Nztdm_A/z+2m
) Nz afz+m

8.) Vz+22-Vz+ll=1
(4.) Va4 NzE (a:+3)

VOL. L. 2B
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(5.)

(6.)
7.)

(8.)

(9.)
(10.)
(11.)

(12.)

(13.)
(14.)

(15.)
(16.)
a7.)
(18.)

(19.)

(20.)

(21.)

(22.)
(23.)
(24.)

(25.)
(26.)

(27.)
(28.)

(29.)

EXERCISES. ' [omAP.

Ju— 5
\/z+2+\/z—2=m.

’\/:?+V¢+ﬂ—\/¢—ﬂ=\/z+2ﬂ.
Netg-r+Vz+r-p+Nz+p-g=0.

1 1 e
Ve~ Na-pive Ve
z=A/(a? - NV 20— a) +a.

Nz +afa+ NNz~ aJa=N2/x+2:/b.
Nz + N8 - /(2 +a) =38,
1 2 1 b
Va9 V-9 o V¥-2=gVe-3.
w-z-Ny-z=Ny, Nb-z+Ny-z=Ay.

\/w—\/y=%. z-y=11,

(z-a)*-(y-0)'=0, (x-b)(y-a)=a(2b-a)
xz-y=8, x22-y*=45.
zfy=alb, *-yt=d.

z+ay+a*%+atu+at=0
z+ by + Bz + Bu+ =0,
x+cy+ %+ Fu+ ct=0,
z+dy+d+dPu+d*=0.
z+y+2=0, azx+by+ez=0,
bex + cay + abz= (b - &) (¢ - a?) (a® - ¥?).
me-ly ny-mz _ L-az _ 1
m{a—b) mn(db—c) nilc—a) Imn’
mnx+nly+imz=a+b+ec.
zry-soytE-alztE-y_Log .

b+c  c+a a+b
S(b-clx=0, Za(t?-cx=0, Za(b-cx=II(b-c).
Zx=1, Zz|(b-c)=1, Zz/(*-c%)=0.
ax+ky+z+u)=0, by+k(z+u+x)=0,
z+k(ut+z+y)=0, du+k(z+y+z)=0.
z+y+z=e, y+z+u=d, z+utz=c, utz+y=d

3 2 1 )
2 51 4x+7y-1§'vy.

z
1 1 12 Ty+2e+3y+2_o

.c+5+yT7=§5" zy+1
7zt 1, 9272 16.
2 2 2.0 00 Neo u2
N +»”'-A=1 A-'-l"'--k “=1.

Byt Fop Fry
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(80.) a(b-y)+ Ya-=z)= cla-z)b-y),
’ a¥(b-y)+b¥a—-z)=cHa~-xXb-y)
L) c+:+z+c+:+y=l’ c+¢;’+z+c+:’+y=a+b'
(32.) $+g=1, §+:_:=1, ‘54.3;:1.
(33.) $:+£=1, §+%=1, ;";4.;_::1.

(84.)  ayr—bzx-cxy= —ayz+ b - cry= - ayz - bex + cxy=2yz2.
(36.) Show that (1+&z)(1+ay)=1+1&, (1+mx)(1+by)=1+mz,
(1+nz)(1+ey)=1 +m,arenotconsistentunless(b—c)%+(c—a)%+(a-b):—‘=0.

If this condition be satisfied, then z=(c/n - b/m)/(b~¢); and particular
solutions for y and z are y= - 1/a, 3= -1/I.

GRAPHICAL DISCUSSION OF LINEAR FUNCTIONS OF ONE AND
OF TWO VARIABLES.
§ 19.] The graph of a linear function of ome variable is a

straight line.
Consider the function

y=ax+b. To find the
point where its graph cuts

A P/

Fig. /

OX, that is, to find 0 () ] X
the point for which ’
z=0, we have to .

8

measure OB=5 up- N
wards or downwards,

. . - fugA 2.
according as b is posi-
tive or negative (Figs. 1 and 2). Through B draw a line
parallel to the z-axis.

Let OM represent any positive value of z, and MP the cor-

responding value of y.
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By the equation to the graph, we have (y —b)/z=a. Now,
gince b= + OB= + MN in Fig. 20, = - OB = - MN in Fig. 21,
we have

y—b=PM - MN =PN in Fig. 1,
y-b=PM + MN =PN in Fig. 2.
Hence we have in both cases
EN_PN_y-b_,
BN OM™ =z )

In other words, the ratio of PN to BN is constant ; hence,
by elementary geometry, the locus of P is a straight line. Ifa
be positive, then PN and BN must have the same sign, and the
line will slope upwards, from left to right, as in Figs. 20 and 21;
if a be negative, the line will slope downwards, from left to
right, as in Figs. 3 and 4. The student will easily complete the
discussion by considering negative values of z.

\{

\A\ %
\"\ ° \N\ )

Fig 3. Fig. 4.

§ 20.] So long as the graphic line is not parallel to the axis
of =, that is, so long as a + 0, it will meet the axis in one point,
A, and in one only. In analytical language, the equation
az + b= 0 has one root, and one only.

Also, since a straight line has no turning points, a linear
function can have no turning values. In other words, if we
increase z continuously from — o to + ©, az + b either increases
continuously from — « to + o, or decreases continuously from
+ o to — 0 ; the former happens when a is positive, the latter
when a is negative.

Since az+ b passes only once through every value between
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+ o and — o0, it can pass only once through the value 0. We
have thus another proof that the equation az+b=0 has only
one root.

A purely analytical proof that az + b has no turning values
may be given as follows :—Let the increment of « be %, then the
increment of az + b is

{e(x+h)+ b} — {az+ b} =ah.

Now ah is independent of z, and, if & be positive, is always posi-
tive or always negative, according as a is positive or negative.
Hence, if a be positive, az + b always increases as z is increased ;
and if o be negative, az + b always decreases as z is increased.

§ 21.] We may investigate graphically the condition that the
two functions ax + b, a’z + b’ shall have the same root; in other
words, that the equations, az + =0, a'z+ b’ =0, shall be con-
sistent. Denote az+b and a'z+ b by y and % respectively, so
that the equations to the two graphs
are y=az+b y =az+?¥. If both
functions have the same root, the
graphs must meet OX in the same
point A. Now, if PPM PM be ordi-
nates of the two graphs corresponding
to the same abscissa OM, and if the
graphs meet OX in the same point A,
it is obvious that the ratio P'M/PM fig §
is constant. Conversely, if P'M/PM
is constant, then P'M must vanish when PM vanishes ; that is,
the graphs must meet OX in the same point. Hence the neces-
sary and sufficient analytical condition is that (a'z + b)/(az + b)
shall be constant, =% say. In other words, we must have

a'z + b =k(ax + ).
From this it follows that

. a' =ka, b=k,

and ab' —a'b=0.
These agree with the results obtained above in § 2.
§ 22.] By means of the graph we can illustrate various limit-

Y




374 GRAPHICAL DISCUSSION OF LIMITING CASES. [cHAP.

ing cases, some of which have hitherto been excluded from con-
sideration.

I Let =0, a+0. In this case OB=0, and B coincides
with O ; that is to say, the graph passes through O (see Figs.

Y
Y

Fig 6 Fg Y

6 and 7). Here the graph meets OX at O, and the root of
az=0 is = 0, as it should be.

IL Let 640 and a=0. In this case the equation to the
graph is y = b, which represents a line parallel to the z axis (see
Figs. 8 and 9). In this case the point of intersection of the

Y
Y

Fig 8. Fig. 9.

graph with OX is at an infinite distance, and OA=w. If we
agree that the solution of the equation az+b=0 shall in all
cases be 2= - bfa, then, when 640, a = 0, this will give z= w0,
\] in agreement with the conclusmn
just derived by considering the
graph.

0 % This case will be best understood
| — by approaching it, both geometric-

g8 ally and analytically, as a limit.
fig 10 Let us suppose that b= —1, and

that z is very small, = 1/100000, say. Then the graph cor-
responding to y =z/100000 - 1 is something like Fig. 10, where
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the intersection of BL with the axis of z is very far to the right
of O; that is to say, BL is nearly parallel to OX.
On the other hand, the equation

_T
100000

gives z=100000, a very large value of z. The smaller we
make a the more nearly will BL become parallel to OX, and the
greater will be the root of the equation az +5=0.

If, therefore, in any case where an equation of the first degree in
z was o be expected, we obtain the paradozical equation

b=0,
where b is a constant, this indicates that the root of the equation has
become infinite.

III. If a=0, b= 0, the equation to the graph becomes y =0,
which represents the axis of z itself. The graph in this case
coincides with OX, and its point of intersection with OX becomes
indeterminate. If we take the analytical solution of az+b=0
to be 2= —b/a in all cases, it gives us, in the present instance,
2=0/0, an indeterminate form, as it ought to do, in accordance
with the graphical result.

§ 23.] The graphic surface of a linear function of two inde-
pendent variables z and y, say z=az+by +¢, is a plane. It
would not be difficult to prove this, but, for our present pur-
poses, it is unnecessary to do so. We shall confine ourselves to
a discussion of the contour lines of the function.

The contour lines of the function z=ax +by +c¢ are a series of
parallel straight lines..

For, if & be any constant value of z, the corresponding con-
tour line has for its equation (see chap. xv.,§ 16)

ar+by+c=k (1).
Now (1) is equivalent to

= ( b)z - (2).

But (2), as we have seen in § 19 above, represents a straight
line, which meets the axes of z and y in A and B, so that

-1=0
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k-c -cla k-c¢
0B ==, °A=T/5=T'

Y

\;:y
{\\\
A\A’i X

fig 1

o

Let ¥ be any other value of z then the equation to the corre-

sponding contour line is
ax+by+e=¥ (3),

a K-c
or y=( 5)Et 5 (4).
Hence, if this second contour line meet the axes in A’ and B’
 respectively, we have

()B'=Iﬁ_‘_‘” OA'-]i_c
b a
Hence OA-E—O——AI
¢ OB 4 OB’

which proves that AB is parallel to A'B'.
The zero contour line of z=az + by + ¢ is given by the equa-
tion
ac+by+c=0 (5).
This straight line divides the plane XOY into two regions, such
that the values of z and y corresponding to any point in one of
them render ax + by + ¢ positive, and the values of z and y cor-
responding to any point in the other render az + by + ¢ negative.
§ 24.] Let us consider the zero contour lines, L and L/, of
two linear functions, z=az+by+c and Z =a'z+by+c. Since
the co-ordinates of every point on L satisfy the equation
ax+by+c=0 1),
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and the co-ordinates of every point on L’ satisfy the equation
adz+by+c=0 (2),

it follows that the co-ordinates of the point of intersection of L

and L’ will satisfy both (1) and (2); in other words, the co-

ordinates of the intersection will be a solution of the system

1), @)

Now, any two straight lines L and L’ in the same plane have
one and only one finite point of intersection, provided L and L’
be neither parallel nor coincident. Hence we infer that the
linear system (1), (2), has in general one and only one solution.

It remains to examine the two exceptional cases.

L Let L and L’ (Fig. 11) be parallel, and let them meet the
axes of X and Y in A, B and in A, B’ respectively. In this case
the point of intersection passes to an infinite distance, and both
its co-ordinates become infinite.

The necessary and sufficient condition that L and L' be
parallel is OA/OB=0A’/OB. Now, OA= -¢fa, OB= —¢/b;
and OA'= ~¢'/a,, OB'= —¢'[t’. Hence the necessary and suffi-
cient condition for parallelism is b/a = b'/a’, that is, ab’ —a’b = 0.

We have thus fallen upon the excepted case of §§ 4 and 5.
If we assume that the results of the general formule obtained
for the case ab’ — a'b + 0, namely,

_be-be _ca —ca

“ar—ab’ YT —ab’
hold also when ab’ —a'b=0, we see that in the present case
neither of the numerators b¢’' — b'c, ca’ — c'a, can vanish. For if,
say, b¢’' - b'c=0, then —c/b= —c'[V, that is, OB=OB’; and the
two lines AB, A'B/, already parallel, would coincide, which is not
supposed. .

It follows, then, that

b - Ve e’ - ca .
= - =w, ,'/=*-——=°°:

x

and the analytical result agrees with the graphical.

II. Let L and L' be coincident, then the intersection becomes
indeterminate. The conditions for coincidence are
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OA=0A’, OB=0B,

whence —-¢cla= -cfa’, —cfb=-c[V.
o a_b _c
These give STFT g

which again give
b -bc=0, ca'—ca=0, ab-ad=0.
We thus have once more the excepted case of §§ 4 and 5, but
this time with the additional peculiarity that b’ —bc=0 and
@ —ca=0,
If we assert the truth of the gemeral analytical solution in

this case also, we have

0’ y 0’

that is, the values of z and y are indeterminate, as they ought to
be, in accordance with the graphical result.

§ 25.] Since three straight lines taken at random in a plane
have not in general a common point of intersection, it follows
that the three equations,

ax+by+c=0, az+by+¢ =0, az+by+c"=0 (1),
have not in general a common solution. When these have a
common solution their three graphic lines, L, L/, L”, will bave a
common intersection. We found the analytical condition for
this to be

ab'c” —ab"c’ + be'a” — be"a’ + ca’t” — ca”t’ = 0 (2).
In our investigation of this condition we left out of account the
cases where any one of the three functions, ab’ — a'b, a"b — ab”,
a'b” — a”l’, vanishes.

‘We propose now to examine graphically the excepted cases.

First, we remark that if two of the functions vanish, the
third will also vanish; so that we need only consider (I.) the
case where two vanish, (IL.) the case where only one vanishes.

L al —-a'b=0, ab-ab”"=0.

This involves that L and L' are parallel, and that L and L" are
parallel ; so that all three, L, L', L", are parallel ; and we have,
in addition to the two given conditions, also a't” — a0’ = 0.
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Hence, since the condition (2) may be written
c(a't” —a"t’) + ¢'(a"b — ab”) + " (ab’ - a'b) = 0,
it appears that the general analytical condition for a common
solution is satisfied.

This agrees with the graphical result, for three parallel
straight lines may be regarded as having a common intersection
at infinity.

In the present case is of course included the two cases where
two of the lines coincide, or all three coincide. The correspond-
ing analytical peculiarities in the equations will be obvious to_
the reader.

IL ab' -a'b=0.

Here two of the graphic lines, L and L/, are parallel, and the
third, L”, is supposed to be neither coincident with nor parallel
to either.

Looking at the matter graphically, we see that in this case
the three lines cannot have a common intersection unless L and
L’ coincide, that is, unless

o =ka, b =kb c =k,
where % is some constant.

Let us see whether the condition (2) also brings out this result,
as it ought to do. ‘

Since abtl —a'b=0,
a b
we have T5F" k, say.
Hence '=ka, b =kb

Now, by virtue of these results, (2) reduces to
a’(be’ - b'e) + b"(ca’ — ¢'a) = 0,
that is, to .
a"(be’ — kbe) + b"(cka — c'a) = 0,
that is, to
(@"b - ab”) (¢' — kc) = 0,
which gives, since a"b — ab” 0,
¢ —ke=0,
that is, ¢ = ke
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Hence the agreement between the analysis and the geometry is
complete.*

§ 26.] It would lead us too far if we were to attempt here
to take up the graphical discussion of linear functions of three
variables. 'We should have, in fact, to go into a discussion of
the disposition of planes and lines in space of three dimensions.

We consider the subject, so far as we have pursued it, an
essential part of the algebraical training of the student. It will
help to give him clear ideas regarding the generality and
coherency of analytical expression, and will enable him at the
-same time to grasp the fundamental principles of the application
of algebra to geometry. The two sciences mutually illuminate
each other, just as two men each with a lantern have more light
when they walk together than when each goes a separate way.

Exercises XXVII.
Draw to scale the graphs of the following linear functions of z—

(l)y=x+1. (4) y=2x+38.
(2)y=-z+1. (5.) y=—-4x- 4.
B)y=-=z-1. (6.)y=-38=x-1)

(7.) Draw the graphs of the two functions, 3x~5 and 5z+7; and by
means of them solve the equation 3z - 5=>56z+7.

(8.) Draw to scale the contour lines of z=2x- 3y +1, corresponding to
z2=-2, z=-1, 2=0, z=+1, z=+2,

(9.) Draw the zero contour lines of z=5x+6y— 3 and 2 =8z-9y+1 ; and
by means of them solve the system

bx+6y-3=0, 8x-9y+1=0.

* It may be well to warn the reader explicitly that he must be careful to
use the limiting cases which we have now introduced into the theory of
equations with a proper regard to accompanying circumstances. Take, for
instance, the case of the paradoxical equation =0, out of which we manu.
factured a linear equation by writing it in the form 0z+5=0; and to which,
accordingly, we assigned onme infinite root. Nothing in the equation itself
prevents us from converting it in the same way into a*quadratic equation,
for we might write it 0z*+ 0z+b5=0, and say (see chap. xviii., § 5) that it
has two infinite roots. Before we make any such assertion we must be sure
beforehand whether a linear, or a quadratic or other equation was, generally
speaking, to be expected. This must, of course, be decided by the circum-
stances of each particular case.
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Also show that the two contour lines divide the plane into four regions,
such that in two of them (5z+ 6y - 8)(8x-9y+1) is always positive, and in
the othes two the same function is always negative.

(10.) Is the system,
3x-4y+2=0, 6z-8y+3=0, z-$y+1=0,
consistent or inconsistent ?
(11.) Determine the value of ¢ in order that the system
22+y-1=0, 4x+2y+3=0, (c+1l)x+(c+2y+5=0
may be consistent.

(12.) Prove graphically that, if ab’-a'b=0, then the infinite values of =
and y, which constitute the solution of

ax+by+c=0, a'z+by+c =0,
have a finite ratio, namely,
zfy=(bc’ ~ b'c)fea’ - c'a).
(18.) If (ax+ by +c)f/(a’z+b'y +¢') be independent of  and ¥, show that
ab —-a'b=0, ca'-ca=0, b'-b'¢c=0;
and that two of these conditions are sufficient.

(14.) Illustrate graphically the reasoning in the latter part of § 5 of the
preceding chapter.

(15.) Explain graphically the leading proposition in § 6.




CHAPTER XVIIL
Equations of the Second Degree.

EQUATIONS OF THE SECOND DEGREE IN ONE VARIABLE.

§ 1.] Every equation of the second degree (Quadratic Equa-

tion) in one variable, can be reduced to an equivalent equation.

of the form
a’+bz+c=0 1).

Either or both of the coefficients b and ¢ may vanish; but
we cannot (except as a limiting case, which we shall consider
presently) suppose a=0 without reducing the degree of the
equation.

By the general proposition of chap. xii, § 23, when q, b, ¢
are given, two values of = and no more can be found which
shall make the function az’+ bz + ¢ vanish ; that is, the equation
(1) has always two roots and no more. The roots may be equal or
unequal, real or imaginary, according to circumstances.

The general theory of the solution of quadratic equations is

thus to a large extent already in our hands. It happens,

however, that the formal solution of a quadratic equation is
always obtainable; so that we can verify the general proposition
by actually finding the roots as closed functions of the coefficients
a, b, ¢

§ 2.] We consider first the following particular cases :—

L c=0.

The equation (1) reduces to

a’ + bz =0,
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b
az(:c + —) =0,
@

z=0
{m+é=0}.
a
Hence the roots are =0, = — b/a.

I b=0,c=0.
The equation (1) now reduces to

that is, since a + 0,

which is equivalent to

az xz=0,
which, since a = 0, is equivalent to
z=0
{x:O
Hence the roots are =0, z=0. This might also be deduced
from (L)

Here the roots are equal. We might of course say that there
is only one root, but it is more convenient, in order to maintain
the generality of the proposition regarding the number of the
roots of an integral equation of the nth degree in one variable,
to say that there are two equal roots.

111 b=0.

The equation (1) reduces to
a’ +¢=0,
that is, since a + 0, to

e/ 0

which is equivalent to

Hence the roots are 2= — J(-c/a), z= + J(-c/a); that is,
the roots are equal, but of opposite sign. If c/a be negative,
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both roots will be real; if c/a be positive, both roots will be
imaginary, and we may write them in the more appropriate form
z= —ia/(c/a), = +1(c/a).

§ 3.] The general case, where all the three coefficients are
different from zero, may be treated in various ways; but a little
examination will show the student that all the methods amount
to reducing the equation

a’ +bx+c=0 . (1)
to an equivalent form, a(z + A)* + u = 0, which is treated like the
particular case III. of last paragraph.

1st Method.—The most direct method is to take advantage
of the identity of chap. xii, § 5. We have

— /(b — -b- J _
R et
2a 2a
hence the equation (1) is equivalent to
2 2
a{z_-b+ NE - 4ac)}{ -b- J(l_»—4ac)}=0'
2a 2a
that is, to
_ =b+ (V- da)
2a
_=b- .J(b’—4ac)_0J

=0

2a
The roots of (1) are therefore (—b+ N6 - 4ac)/2a, and
(-b- W& - 4ac)/2a.
2nd Method.—We may also adopt the ordinary process of
“ completing the square.” We may write (1) in the equivalent form
b ¢
#4oz= -2 @),

and render the left-hand side of (2) a complete square by adding
(5/2a)* to both sides. We thus deduce the equivalent equation

(“i)’_ﬁ ¢
2) 44 o’
b — dac
e (3
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The equation (3) is obviously equivalent to
LA J (”'_‘i_“
2a 4a
x+i=—\/(b'_%ac)
2a 4a

from which we deduce
z=(-b+ Vb —4ac)/2, z=(-b- Nb - 4ac)/2a,
a8 before.

"3rd Method.—By changing the variable, we can always make
(1) depend on an equation of the form az’+d=0. Let us
assume that z =2z + i, where 4 is entirely at our disposal, and =
is to be determined by means of the derived equation. Then,
by (1), we have

az+h) +bz+h)+¢c=0 (4).
It is obvious that this equation is equivalent to (1), provided z
be determined in terms of z by the equation z =2z + k.
Now (4) may be written
a2’ + (2ah + b)z + (ah" + bh +¢) =0 (6).
Since % is at our disposal, we may so determine it that 2ah
+b=0; that is, we may put A= —5/2¢. The equation (3)

then becomes
' b\’ b
az‘+a(—%) +b(-2—a) +¢=0,
. .
that is, af-'%to (6).

From (6) we deduce 2= + W/(b" - 4ac)/2a, 2= — J/(}" - 4ac)/2a.
Hence, since =2+ h = — b/2a + 2, we have
z=(-b+ V' - dac)/2a, z= (- b~ Nb - 4ac)/2a,
as before.
In solving any particular equation the student may either
quote the forms (- b+ ~b"— 4ac)/24, which give the roots in
all cases, and substitute the values which @, , ¢ happen to have

in the particular case, or he may work through the process of
VOL. I. 2¢
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the 2nd method in the particular case. The latter alternative
will in general be found the more conducive to accuracy.

§ 4] In distinguishing the various cases that may arise when
the coefficients a, b, ¢ are real rational numbers, we have merely
to repeat the discussion of chap. vii, § 7, on the nature of the
factors of an integral quadratic function.

We thus see that the roots of

a’ +bz+c=0,

(1) Will be real and unequal if b - 4ac be positive.

(2) Will be real and equal if " — 4ac = 0.

(3) Will be two conjugate complex numbers if -
be negative. The appropriate expressions in this case are
(-b+iNdac—0)/2a, (-b-i~Niac - )/2a.

(4) The roots will be rational if 5* — 4ac be positive and the
square of a rational number.

(5) The roots will be conjugate surds of the form A + /B
in the case where b — 4ac is positive, but not the square of a
rational number.

(6) If the coefficients a, b, ¢ be rational functions of any
given quantities p, ¢, 7, 5, . . . then the roots will or will not
be rational functions of p, g, 7, 8, . . . according as 3" - 4ac is or
is not the square of & rational function of p, ¢, 1, s,

It should be noticed that the conditions given as characterising
the above cases are not only sufficient but also necessary.

The cases where a, b, ¢ are either irrational real numbers, or
complex numbers of the general form a + ai, are not of sufficient
importance to require discussion here.

Example 1.
222 - 3z=0.
By inspection we see that the roots are =0, z=3/2,
Example 2.
. 222+ 8=0.

This equation is equivalent to 22+ 4 =0, whose roots are =21, z= - 21,

Example 3.
8622~ 22 -1=0.

The equation is equivalent to . .
= 5% =55
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. . 1
that s, to ( 35 35" 35 35=
Hence z- —3—5 = :l; 35"

Hence 16

= —3?‘ .
The roots are, therefore, +1/5 and —1/7.

Example 4.
23-22-2=0.
The roots are 1+4/3 and 1 - 4/8.
Example 5.

3% + 242+ 48 =0.
The given equation is equivalent to
23+ 82+16=0,
that is, to (z+4p=0.
Hence z= — 4£0 ; that is to say, the two roots are each equal to - 4.
Example 6.
2?- 42+ 7=0.
This is equivalent to *
x*—4x+4= -3,
that is, to (z-2)*=382
Hence the roots are 2+ 4/3i, 2~ 4/31.
Example 7.
E 2(p+q)’z+2p‘+l2p’q’+?q‘ 0.
This equation is equivalent to
{z-(p+9’}*=(p+q)' - 20* - 127°¢* - 2¢",
=-(p-g%
=(p-q)*
Hence the roots are (p+4)+(p - 9%, (p+9)* - (- g}

Exgroisgs XXVIII.

(1.) 23+=z=0.

(3.) (z+1)(z-1)+1=0.

(5.) (@=1)3+(z-2)*=0.

(7.) plz+a)-g(z+ByY=0.
(9.) 22°+382+5=382"+4z+1.
(11.) 25523 - 4812+ 182=0.
(18.) 22— 222+170=0.

(16.) 2®+1022+2597=0.
(17.) 2%+ 64/7z+55=0.

(19.) 23+(28 +12¢xc+97 +187¢=0.

(2.) (22-1) (82 - 2)=0.
(4.) (2-1P+8(z-1)=0.
(6.) 8(z—1)-2(z-2y3=0.
(8.) (pz+q)*+(gz+p)*=0-
(10.) 23+ 823+ 16z 1=(z+3)%.
(12.) 4*- 402 +107=0.
(14.) 23— 2012+200=0.
(18.) #*— 4z - 2597 =0.
(18.) 23-2(1+A/2)e+24/2=0.
(20.) «® (8~ 2:)x=388¢-381.



388 EQUATIONS REDUCIBLE TO QUADRATICS. [cHAP.

(2L) (z-1)(z-2)+(@—1) (2 - 8)+ (- 2) (z - 8)=0.

(22.) (2 1P+ (2—1)¥z - 2) - 2(+1)*=0.

(23.) -} (-H+(=-D(z-H=0.

(24.) (x~a)+(x-d=a?+b% (25.) 2*+4az=(b - c)*+ 4(bc — a?).
(26.) 2*+(b-clx=a?+bc+ca+abd.

m n
@) a:“+1=z(,\/;+ 4/,7‘)
(28.) (@+b) (aba? - 2)=(a?+ b3,
(29.) (a—b)a?— (a®+ab+ Bz +ab(2z + b) =0,
(30.) (c+a—2b)3+(a+b-2)x+(b+c—2a)=0.
(81.) (a®-ax+¢%)(a?+ax+c®)=at+ac+ch
(32.) 23-2(a?+ B3+ Pz +at+ A+ A+ B + Fa? + a3 =2abe(a + b +c).
(88.) (b0-c)(z—aP+(c—-a)(x—-bP+(a-b)(x- c)’ 0.
(34.) Evaluate A/(7+ /(7T +A/(7T+A/(7 . D)8
A2V YO 4 M, o e e X = ;...Hﬁ
EQUATIONS WHOSE SOLUTION CAN BE EFFECTED BY MEANS OF
QUADRATIC EQUATIONS.

§ 5.] Reduction by Factorisation.—If we know one root of an
integral equation :
fx)=0 (1,

say z = a, then, by the remainder theorem, we know that f{z) =
(z — a)¢(z), where ¢(x) is lower in degree by one than f(z)
Hence (1) is equivalent to
z-a=0

The solution of (1) now depends on the solution of ¢(z)=0. It
may happen that ¢(z) =0 is a quadratic equation, in which case
it may be solved as usual; or, if not, we may be able to reduce
the equation ¢(z) = 0 by guessing another root ; and so on.

Example 1.

To find the cube roots of - 1. )

Let = be any cube root of — 1, then, by the definition of a cube root, we
must have 23= —-1. 'We have therefore to solve the equation

2£+1=0.
‘We know one root of this equation, namely, 2= —1 ; the equation, in fact, is
equivalent to!
(x+1) (@@ -2+1)=0,
z+1=0 } A
22-z+1=0

The quadratic x>- 2+ 1=0, solved as usual, gives x=(1%i,/3)/2.

that is, to
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Hence the three cube roots of —1 are —1, (1+14/3)/2, (1- ia/8)/2, which
agrees with the result already obtained in chap. xii. by means of Demoivre’s
theorem.

Example 2.
: 72 - 1823+ 82+ 3=0.
This equation is obviously satisfied by =1. Hence it is equivalent to
(728 - 62 - 8) (2 - 1)=0.
The roots of the quadratic 722 - 6z ~3=0 are (3 & 4/30)/7. Hence the three
roots of the original cubic are 1, (3+2/30)/7, (3 - ~/30)/7.

It may happen that we are able by some artifice to throw an
integral equation into the form
PQR...=0,
where P, Q, R, . . . are all integral functions of = of the second
degree. The roots of the equation in question are then found
by solving the quadratics
P=0, Q=0, R=0,. ..

Do+ b+ c) - g(de® +ex+f =0,
This equation is obviously eqdivalent to
{/plaz® + b +¢) + A/g(dad + ex + 1)} {\/plaxd + bz +c) - A/q(d2® + ez + 1)} =0.
Hence its roots are the four roots of the two quadratics

(an/p+da/q) + (ba/p +en/g)o+(cA/p+/~/9) =0,
(an/p - dr/q)+ (ba/p — en/q)z+(cn/P - f~/2)=0,

which can be solved in the usual way.

§ 6.] Integralisation and Rationalisation.— We have seen in
chap. xiv. that every algebraical equation can be reduced to an
integral equation, which will be satisfied by all the finite roots of
the given equation, but some of whose roots may happen to be
extraneous to the given equation. The student should recur to
the principles of chap. xiv., and work out the full solutions of
as many of the exercises of that chapter as he can. In the exer-
cises that follow in the present chapter particular attention
should be paid to the distinction between solutions which are
and solutions which are not extraneous to the given equation.

The following additional examples will serve to illustrate the
point just alluded to, and to exemplify some of the artifices that
are used in the reduction of equations having special peculiarities.

Example 8.
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Example ].1
1 1 1
z¥atbtz-a¥s z+ad zoa-p="
If we combine the first and last terms, and also the two middle terms, we
derive the equivalent equation .
2 2 _,
Z—(a+0p E—(a-bp "
If we now multiply by {=*- (a +5)* {x*- (a - b)3} we deduce the equation
2x{22% - 2(a?+ )} =0 ;
and it may be that we introduce extraneous solutions, since the multiplier
used is a function of .
The equation last derived is equivalent to

{ z=01]
22— (a?+5%)=0
Hence the roots of the last derived equation are 0, +a/(a®+8%), —+/(a®+5°).
Now, the roots, if any, introduced by the factor {a*—(a + )} {23 - (a - b)%},
must be (a+b) or &(a-5). Hence none of the three roots obtained from
the last derived equation are, in the present case, extraneous.
Example 2.
a-z a+zx
Natfa-n) "t Jarnfarn -V (@)
If we rationalise the denominators on the left, we have
(=)o va—w>+(a_+z)(\/: NEED_ @
From (B), after multiplying both sides by , and transposing all the terms
that are rational in 2, we obtain

(@+2)T- (a-z2)¥=32v/a o
From (v), by squaring and transposing, we deduce
203 - 3a2? =2(a* - 22} ().
From (3), by squaring and transposing, we have finally the integral equation
(423 - 3a3)r*=0 (e).

The roots of (¢) are 0 (repeated four times, but that does not concern us so far
as the original irrational equation® (a) is concerned), and =+ a/8/2.

It is at once obvious that z=0 is a root of (a).

If we observe that ~/(1%+/8/2)=(1%4+/8)/2, we see that *as/3/2 are

roots of @, provided
2£\/8+2:!:\/3
EEINE N EIVE]

3:|:\/3+3:I:\/3_1
9-3 -

=1,
that is, provided

i

which is obviously true.
Hence all the three roots of (¢) are roots of (a).

* For we have established no theory regarding the number of the roots
of an irrational equation as such.
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Example 8.
A/(a+2) _ Af(a-z) (a).
Na+af(a+z)” AJa-~fa-x)
By a process almost identical with that followed in last example, we deduce
from (a) the equation

424 - 3a%*=0 8).
The roots of (8) are 0, and *a+/3/2 ; but it will be found that none of these
satisfy the original equation (a).
Example 4.

/(223 — 42 4+ 1)+ A/(23 - b2+ 2)=A/(263 - 22+ 3) + o /22 -8z +4) (a).
The given equation is equivalent to

/(227 - 4z + 1) = A/(2® - B2+ 4) = A/(22* - 22+ 8) - A/(2® - 52 +2).
From this last, by squaring, we deduce
323 - 7245 - 2V(2% - 4z +1) (£* - 32 +4)
=322 - T2+ 6 - 2V/(22% ~ 22+ 8) (#F - bz + 2),

which is equivalent to
/(24 - 102% + 2122 - 192+ 4) = /(204 - 122° + 1722 - 182 +6)  (8).
From (B8), by squaring and transposing and rejecting the factor 2, we deduce
2+23-1=0 ().
One root of (v) is z= -1, and () is equivalent to
(x+1)(2*+2-1)=0.
Hence the roots of () are —1 and (- 1£4/5)/2.

Now z= -1 obviously satisfies (a). We can show that the other two
roots of (y) are extraneous to (a); for, if = have either of the values
(-1%4/5)/2, then 2*+2z—1=0, therefore 2>= —z+1. Using this value of
2%, we reduce (a) to o/(~6x+38)=a/(~42+5). This last equation involves
the truth of the equation — 62+ 8= - 42+ 5, which is satisfied by 2= -1, and
not by either of the values z=( - 1%4/6)/2.

'N.B.—An interesting point in this example is the way the terms of (a)
are disposed before we square for the first time.

Example 5.
1-4/(1-2%) _opa/(1+2)+4/(1-2) (@
1+4/(1-2%)" “'A/(1+x)- /(1 -2) )
Multiply the numerator and denominator on the left by 1 - 4/(1 - z?*), and the
numerator and denominator on the right by /(1 +x) - /(1 - z), and we ob-
tain the equivalent equation

(1-T=a) _
=y

—

1-4/1-2%"

Multiply both sides of the last equation by 2%(1 - A/1 - 2?), and we deduce
{1- /(1 -2%)}3=272" ®).
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If 1, w, w? (see chap, xii., § 20) be the three cube roots of +1, then (ﬁ)ls

equivalent to
1-A/(1-2%)=32
1~ a/(1-a?)=8uwx (&)
1-a/(1-2%)=8u2

By rationalisation we deduce from (y) the three integral equations -

1022~ 62=0
(1+9u?)? - Bz =0 (@)
(1 +9w)e? - w2z =0

The roots of these equations (8) are 0, 8/5 ; 0, 8w/(1+9w?) ; 0, 6w?/(1+9w).
The student will have no difficulty in settling which of them satisfy the
original equation (a).
Exerorses XXIX.

(1) 25-1=(B+¥=2-1).

(2.) @ - (a+b+0)2 — (a3 + 83+ ¢~ be - ca — able + a3+ 3+ & — Sabe=0,

(3.) - 40z +39=0. .

(4.) #*+2(a - 2)2* +(a - 2)%2* + 2a¥a — 2)c + a*=0.

(5.) 22 -2 2x-8=0. (8.) ax®*+z+a+1=0.

(7.) * -8+ 422 - 32+ 1=0.

B2z 1 p P
(8.) p+?+?_x’+z +p8
(9.) #A-623+1022 - 82 +16=0.  (10.) z* - 6=bx(z*~z~1).
(1L) (23 + 6z+9) (2 + 82+ 16) = (23 + 42+ 4) (2 - 122+ 36).

Exzncises XXX.

0 =25 +3)/(+5-3)-

b
@) fatara]

9_1:’ z 1+9_'c’ 8x-8_ 822-8
z-8 = 2x-3
(4)9xf5 -2 12243 4xz+3 11

12 " fz-1 16 7z+9 48
(6) z-8=22 2.

m:-i-b az+b m+d+b
at+b— 2% c
) a:;:j-_b+ba:+a (a+d)(z+2)

Y ex+d ex+a cxta+d
z+a, ,2+d z+c_ ax bx 2cx
(8)} +iz P z-¢c F-ai
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a=c b-c _a+b-2%,
2b+2 2a+2 a+btz »
z+a z-a_z*+a? 2?-a?
{11.) :c_—;+5-|-_¢z—z’—a’+z’+a’
. (-a)(x-b)_(z-¢)(x-d),
az) z-a-b  z—-c-d
tarta?\! a+2r
) Glmis) =rtm
(14.) A2 +422+82+1_22'+ 2241
) 23 4+2+3 ~  z+1
5.) z _ 7% - 1 .
Y a3-20-16 2P+2x-86 2+10z+21
2+3% 2-3a_a+b a-b
08 o St Zvsa—a—btars’
(z—a)? (z-0p (- _
) e he-a e ae-a - aEH="

(10.)

Exgrcises XXXI.
(1) zta/z_xz-1)
Tae-AzT 4

) v;~+—2)=\/(z+2)+2\/z.

2
@) &t T ay=~jar 2
(4.) (a®+bx)a/(a?+ %) =(a*+ be)a/(a®+23).
(5.) 62(z~1)-8V3(z—2) (z+1) - 2(z- b)=4(z+8).
(8.) A/(z+a/2) = Nz~ afz)=an/z/r/(z+ /).
(7.) A +2)a/(1 -a3)+ (2 -1)=0.
(8.) (2~ 8)/n/(23 - 8z+36)=(z — 4)/n/(z* - 8z + 64).
(9.) (22— a)/a/(a? - az+a?) = (22 - b)/~/(2* - b+ 19).

,/ 3 . '/21:+1 21

e m=s( m‘\/ﬁﬁ '

(1L) A/(@+82+1) + a/(2? + 62+ 4) — A/(2*+ 62 - 3)=0.
(12.) A/(@®+B2)+ A /(B +az) =3(a +b).

(13.) \/%‘(ba:—a’)—’\/%(az-b’):a—b.

(14.) s/(a+2)+ /(b +x)=237/(a+b+x).
Consider more especially the case where a=b,
(15.) A/(z+4)~ a/(z— &) =r/(2~1).
(16.) 224/(22 +a%) + 224 /(2 + B3) =3 - 13,
(17.) A/(#*+42+3) - A/(2? + 82 +2) =2z +1).
Two solutions, 2= — 1 and another.

(18.) 2+ a®+ /(at + at) =223 + Af(2A + a¥).
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(19.) z=Naz+ - a/(ax+ ).

.7 12 1 6
(2 By ar s v iy s Ry ey Ry e
(21.) /(@ +2%)+ n/(282) = A/(a? + 3az) + n/(? + Saz).

0.

(22). ! 1 L I
(a+z)-afa” afa+a/(a+z)” sfla+z)- Af(a-2)

(23.) A/a+n/(a+2)- A/(a-2)= o/(a*~ ).

(24.) ma/(a+2) +na/(@ - x)=A/(m?+n?) V/(a? - 22).

(25.) Rationalise and solve Za/(z—b—-c)=4/x.

(26.) V@ +3) (@ +B) + AV +ai - VE L B) =nb+ 2

§ 7.] Reduction of Equations by change of Variable. 1f we have

an equation which is reducible to the form

{f@}" +p{f#)} +¢=0 (a),
then, if we put £ =f(z), we have the quadratic equation
§+pt+g=0 (B)

to determine £  Solving (B), we obtain for § the values
(-p* Np'—4g)/2. Hence (a) is equivalent to

f=—Rr A 40 .
i
f(x)=—p~\é(p'—4q)j (7)'
If the function f(z) be of the first or second degree in z, the
equations () can be solved at once ; and all the roots obtained
will be roots of ().

Even when the equations (y) are not, as they stand, linear
or quadratic equations, it may happen that they are reducible to
such, or that solutions can in some way be obtained, and thus
one or more solutions will be found for the original equation (a).

In practice it is unnecessary to actually introduce the
auxiliary variable §. We should simply speak of () as a
quadratic in f(z), and proceed to solve for f(r) accordingly.

Example 1.

£ P
x4+ 407-12=0.
‘We may write this cquation in the form

(20)" + 4(z¥) —12=0.
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2
It may therefore be regarded as a quadratic equation in 2¢. Solving, we find

2 ?
M=+2 =z9=-6.
From the first of these we have
xP=29,

Hence, if 1, w, «? . . . w*! be the pth roots of +1, we find the following »
values for x

3 ' [] (3
27, w2, 0'21‘, a1
P
In like manner, from 7= - 6, we obtain, if ¢ be even, the p values
L [X g g
62, wb?, w67, ...w" 6F;
and, if g be odd, the p values
K S | ] 1
- w6, w67, W'67,...w " 6P,
where o, w3, . . . 0?1 are the pth roots of - 1.
Example 2.
224+ 3=2+/(2* - 2+ 2)+2x.
This equation may be written °*

22— 2 +2- /(23— 2 +2)+1=0;
that is,

(Va2 -2 +2)2-20/23 -2 + 2 +1=0,
which i8 a quadratic in A/(2* - 22+2).

8olving this quadratic we have
V@B -22+2)=1.
Whence 23-2x+2=1,
that is, (z-1)3=0.

The roots of this last equation are 1, 1,and z=1 satisfiea the original equation.
Exzample 3.
‘ 23 _ 3-2¢18 4 32 =0,
We may write this equation as follows,
(2%)7 - 12(2%) +82=0;

that is, (2% - 4)(2% - 8)=0.

Hence the given equation is equivalent to
22=4
25=8

The first of these has for one real solution x=2; the second has the real
solution 2=38.
Example 4.
(z+a)(z+a+bd)(2+a+2b) (x+a+8b)=c.
Associating the two extreme and the two intermediate factors on the left
we may write this equation as follows,
{22+ (2a+ b} +ala+3b)} {2+ (2a+ 8b)e + (a+b) (a+2b)} =ct
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If £=23+ (2a + 8b)z + (a® + 3ab), the last equation may be written

He+208)=c;
that is, B2+ B=P+ch
Hence = -/ (P +c0).

The original equation is therefore equivalent to the two quadratics
22+ (2a+ 8b)x+a? + 3ab+ B3= A/ (b4 + ).

§ 8.] Reciprocal Equations.—A very important class of equa-
tions of the fourth degrée (biquadratics), can be reduced to
quadratics by the method we are now illustrating.

Consider the equations

ar' +bd' +c’ +bz+a=0 (1),
o'+ b+ —bx+a=0 (L),

‘where the coefficients equidistant from the ends are either equal,

or, in the case of the second and fourth coefficients, equal or .
numerically equal with opposite signs. Such equations are

called reciprocal. *

If we divide by ', we réduce (1) and (I.) to the forms
a(x'+$)+b x+$—1z)+c=0 (2),
a(z‘+;1,)+b(z—}c)+c=0 (L)

These are equivalent to
a(z+:l;)’+b(z+‘l—t)+c—2a=0 (3),
a.( —é)’+b(z—§)+c+2a=0 : (1IL.)

3 and III. are quadratics in z + 1/z, and z — 1/z respectively. If
their roots be «, 8, and v, 8 respectively, then (3) is equivalent to

1
Z+-=a
z

1
z+5—ﬂ

* If in equation (1) we write 1/ for x, we get an equation which is equiva-
lent to a£‘+b5'+)<(+a=0. Hence, if £ be any root of (1), 1/¢ is also a root.
In other words, two of the four roots of (1) are the reciprocals of the remaining
two. In like manner it may be shown that two of the roots of (I.) are the
reciprocals of the remaining two with the sign changed.
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that is, to )
-az+1=0
{a:’—ﬁz+l=0} ).
Similarly, III. is equivalent to
2-yx-1=0
{z’—&c—l:O} av.)

The four roots of the two quadratics (4) or (IV.), are the roots
of the biquadratic (1) or (L)
Generalisation of the Reciprocal Eguation—If we treat the
general biquadratic
ar'+ b’ + e’ +dr+e=0

in the same way as we treated equations (1) and (L), we reduce
it to the form
e /]
a(z'+a—z,) +b(z+b;) +¢=0,

Now, if e/a = d/b", this last equation may be written

d\, d ad
a(z+b;) +b z+b;)+c—27-0.
which is a quadratic in = + d/bx
Cor. It should be noticed that the following reciprocal equations

of the 5th degree can be reduced to reciprocal bigquadratics, and can
therefore be solved by means of quadratics, namely,

a+ b’ + e’ tbr+a=0,

where, in the ambiguities, the upper signs go together and the
lower signs together.
For the above may be written

a@ 1)+ bx(@® £ 1)+ ea’(z+ 1) =0,

from which it appears that either £+ 1 or z—1 is a factor on
the left-hand side. After this factor is removed, the equation
becomes a reciprocal biquadratic, which may be solved in the
manner already explained. The roots of the quintic are either
+1 or —1, and the four roots of this biquadratic.
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Example 1.
To find the fifth rootsof +1. Let x be any fifth root of +1; then 2°=1.
Hence we have to solve the equation
25-1=0.

z-1=0
B+ +x+1=0
The latter equation is a reciprocal biquadratic, and may be written

(=+2)s (s42) -1=0.

After solving this equation for 2+ 1/z, we find

This is equivalent to

z+1=—l_\/5.
z 2
These give the two qundratics
l+\/6 2 +1=0,
+1= */5 2 +1=0,

These again give the following four values for x—

—(1+a/6)/4£in/(10 - 24/6)/4, — (1= o/5)/4=£in/(10+24/5)/4,
these, together with 1, are the five fifth roots of +1. This will be found te
agree with the result obtained by using chap. xii., § 19.

Example 2.
(z+a)+(z+bd=17(a- )

This equation may be written
(z+a)t +(x+0)=17{(x+a)- (x+d)}4,
from which, by dividing by (z+ )%, we deduce
a 4

(:Ib +1= 17{”*“ 1} ,
or P+1=17(¢-1),
where §=(z+a)f(x+5).

This equation in £ is reciprocal, and may be written thus

(e e)’ 17(‘ +D+Y

Hence 2 '§
1.7
or f+z—-z-
From this last pair we deduce
£=2,0r}; and £=7—é:i—;/(—1-5—).
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Hence we have the four equations

z+a_ fﬂ'—i x+a 7:!:1\/(16)

z+d " z+b P z+b 8
From these, four values of 2 can at once be deduced. The real values are
z=a-2b, and z=5-2a.

§ 9.] By introducing auxiliary variables, we can always make
any IRRATIONAL equation in one variable depend on a system of
RATIONAL equations in one or more variables. For example, if we
have

JiEz+a) + JEz+b) + J+c)=d,
and we put u = A/(z+a), v = J(z+D), w = J(z +c), then we
deduce the rational system
v+v+w=d, u'=z+a, v'=z+b w=z+ec
Whether such a transformation will facilitate the solution de-
pends on the special circumstances of any. particular case. The
following is an example of the success of the artifice in question.
Example.
(a+x)}+(a-x)k=b.
‘We may write the given equation thus

(a+x)*+(a—z)*—iza)i{(a+x)+(a )k

a+.r)} (m)*{a+m l}}

Hence we deduce

Let now y={(a+a)fa-),
we then have y+l= (%)1@‘ +1)k

From the last equation we deduce

2a(y +1)*=b4y*+1),
which is a reciprocal biquadratic, and can therefore be solved by means of
quadratics, Having thus determined y, we deduce the value of z by means
of the equation (@ +x)/(a - )=y

Exercises XXXII.
(l)x"' a.‘"(b"+c")+b"c"' 0.

@) 5 e¥ +qe ’ =p; show that the sum of the two real values of z is
log.gl.
(3.) ox(P+a)/2pe — (a:‘lt+zllt)
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(&) (9°F - 2(s=)*a'+* gt

) 841~ D ge-a Lo,

(6.) (+N)+1/(z+N)=p

(7.) A-z+23)/(1+a?-2)=(1+a®+z)/(1 + 2 +2%).

(8.) ax®+bad+bx+a=0. (9.) ax®+ b2 - bxr-a=0.
(10.) azt+bad+c=0. (11.) axb+ b3 - br—a=0.
(12.) a2+ 2abod + b - =0, (18.) £ +1=0.

(14.) 25+ Tt + 923 — 923 — Tz~ 1=0.

(15.) 122% + 24+ 1823 - 1823 — 2 - 12=0.

(16.) Show that the biquadratic, axt+bz®+ a2+ dx+¢=0, can be solved
by means of quadratics, provided b/2a = 4ad/(4ac - b?).

(17.) 24+ 1023+222% - 152+ 2=0.

(18.) 2+ 2(p - q}* + (9 + )= + 2pq(p - 9} + pg(p* + pg + ¢°) =0.

(19.) 8/(2*- 7z +8) - 2/(a + Tz +2)=5

(20.) z‘(l +%)’—(32:’+z)=70. (@L) (1 - ) =1+ /(1 +20)z.

(22.) A/(2*+1)+4=5[r/(z2+1). (23.) (z+5)*+(z+5)‘5=2.

(24.) {(z+a)*-b}(z ap= {(”*“)‘ b}(z+a)!

(25.) 223 +2/(23+ 42— 5) =423+ 82+ 5.

(26.) 22+ 7z - 8=a/(23+142+2).

27.) (x- T+ (z+ 9} +2(2* + 20— 684 =70 - 22,

(28.) A/(2*+px+a)+ A/(2*+px+ b) + A/(£2+px+c)=0.

(29.) Show that the imaginary 7th roots of +1 are the roots of
P-az+1=0, 2*-Br+1=0, 23-+x+1=0, where a, B, 7, are the roots
of the cubic 28+ 22 - 22— 1=0.

(80.) 24+ }=2/24/(=* - }).

(81.) 5(1 +a%)/(1-2%)={(1+=)/(1 -=)}3

(82) (@a-2f+ (@~ bf=(a-b).

(83.) Yz+ Y(z-1)= Y(z+1).

(84.) (z+8)(x+8) (z+18) (z+18)=51.

SYSTEMS WITH MORE THAN ONE VARIABLE WHICH CAN BE
SOLVED BY MEANS OF QUADRATICS.

§ 10.] According to the rule stated without proof in chap.
xiv., § 6, if we have a system of two equations of the /th and
mth degrees respectively in two variables, z and y, that system
has in general /m solutions. Hence, if we eliminate y and
deduce from the given system an equation in z alone, that equa-
tion will in general be of the Imth degree, since there must in



xvi.] MOST GENERAL SYSTEM HAVING TWO SOLUTIONS. 401

general be as many different values of z as there are solutions of
the original systems. We shall speak of this equation as the
Resultant Equation in z. '

In like manner, if we have a system of three equations of
the Jth, mth, and nth degrees respectively, in three variables
z, ¥, 2, the system has in general Imn solutions; and the re-
sultant equation in z obtained by eliminating y and z will be of
the /mnth degree ; and so on.

From this it appears that the only perfectly general case in which
the solution of a system of equations will depend on a quadratic equation
is that in which all the equations but one are of the first degree, and
that one s of the second.

It is quite easy to obtain the solution in this case, and thus
verify in a particular instance the general rule from which we
have been arguing. All we have to do is to solve the n -1
linear equations, and thereby determine # — 1 of the variables as
linear functions of the nth variable. On substituting these
values in the nth equation, which we suppose of the second
degree in all the = variables, it becomes an equation of the
second degree in the nth variable. We thus obtain two values
of the nth variable, and hence two corresponding values for each
of the other » — 1 variables ; that is to say, we obtain two solu-
tions of the system. '

Example 1.
le+my+n=0 . (1),
ax? + 2hay + by + 292+ 2fy +¢=0 (2).
(1) is equivalent to
le+n
y=- 3);

m
and this value of y reduces (2) to

am®x® — 2hma(le + n) + b(lx + n)? +2gm%e - 2fm(lx +n) + em3=0,
that is,
(am?®— 2him + bB)a2 + 2(gm3 — hmn + bnd — flm e + (bn? — 2fmn+cm®)=0  (4).
The original system (1), (2) is therefore equivalent to (3), (4). Now (4) gives
two values for z, and for each of these (3) gives a corresponding value of y.
For example, the two equations
8z+2y+1=0, 2*+2y+y*-2+y+3=0,
will be found to be equivalent to
y=-§x-4, 2®-82+11=0.
VOL. L. 2D
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Hence the two solutions of the system are
z= 4+ A6, 4- f5;
y=-3-§/5, - +i/5.
Example 2.
Sx+2-2=1, z+y-82=2, «*+P+23=1
The system is equivalent to
z=-52-8, y=82+06, 002?+110z+33=0.
The solutions are

z=dFolgn/A, y=$Ei/2, 2= _Hiﬁ\/lilr
the upper signs going together and the lower together.

§ 11.] For the sake of contrast with the case last considered,
and as an illustration of an important method in elimination, let
us consider the most general system of two equations of the
second degree in two variables, namely—

a’ + 2kay + by + 22z +2fy +¢c =0 (1),
a2’ + 2hzy + by + 29z + 2f'y + ¢ =0 2).
We may write these equations in the forms—
b + 2(hx + f )y + (az* + 2gz + ¢) = 0,
Vy+2Wz+f)y+ (a2 + 292+ ¢) =0,
say b +py+q=0 ),
by +py+g=0 (2,
where p = 2(hz + f), ¢ = a2’ + 2g% + ¢, &e.
If we multiply (1) and (2') by %" and by b, and subtract, and
also multiply them by ¢’ and by ¢, and subtract, we deduce
(2 -p)y+ (g -b9)=0 3)
(bg-b) +(p'g-pgNy=0 OF
and, provided b¢' — ¥'g+ 0, (3) and (4) will be equivalent to (1')
and (2'). In general the values of z which make 3¢’ —¥'g=0
will not belong to the solutions of (3) and (4), nor will the value
y=0 belong to those solutions. Hence we may say that, in

general, the system
(pb - p'b)y + (¥g - bg) =0 (3),
(e -bd)y+(r'g-19)=0 4)
is equivalent to (1') and (2).
Again, if we multiply (3') and (4') by b'q - 3¢’ and by pb’ - p'd
respectively, and subtract, we deduce
(tg-bg) - (V' -p) (P'g-29)=0 ),
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and, provided b¢' — b'q + 0, (4') and (5) will be equivalent to (3')
and (4').

Hence we finally arrive at the conclusion that, in general, the
systein
{V'(az"+ 29z + ¢) - b(a's + 29’z + ¢')} - 4 {V'(hz + f)

- bkz+ f)} {(B'z+f)(az" + 292 + ¢) — (hz + f)(a'2" + 2¢'% + ¢')}
=0 6),
{o'(a2® + 2gz + c) - b(a's" + 29’z + ¢')} y R
+ 2 {(k'z + f)(az® + 29z + ¢) — (hx + f) (@' + 29’z + ¢)}
=0 7),
is equivalent to (1) and (2). @

The first of these is a biquadratic giving four values for z,
and since (7) is of the first degree in y, for each value of z we
obtain one and only one value of 4. We have therefore four
solutions, as the general rule requires.

In general the resultant biquadratic (6) will not be reducible
to quadratics. It may, however, happen to be so reducible in
particular cases.

I If, for example, b'/b = f’[f = ¢'[c, then (6) reduces to
[ {¥'(az + 29) — Wa'z + 2¢)}" — 4(b'h - BR){(h'z + f')(az + 29)

—(hx + f) (a'z + 2¢9") + (e - ke')} ] = 0,
two of whose roots are zero, the other two being determinable
by means of a quadratic equation.

II. Again, if o'/a="¥'[b="H}[h, it will be found that the two
highest terms disappear from (6). Hence in this case two of its
roots become infinite, and the remaining two can be found by
means of a quadratic equation.

III. If f=0,9=0, f'=0, g =0, it will be found that only
even powers of z occur in (6). The resultant then becomes a

"quadratic in 2*, A

IV. The resultant biquadratic may come under the reciprocal
class discussed in § 8 above.

Most of these exceptional cases are of interest in the theory
of conics, becauge they relate to cases where the intersection of
two conics can be constructed by means of the ruler and com-
passes alone. Another interesting case is given below.

e
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Example 1.
The system 3+ 22y +y2=17, £-2xy+5y°=5,
is equivalent to 122y + 142 - 80=0, 78x*-692x*+1600=0.
The solutions of which are—
z=+2, -2, +20/A/(73), -20/A/(73);
y=+1, =1, +1/\/(78), -—1/A/73).
Example 2.
(2 +2y)=U1+22y), n(y+2%)=m(1+2xy)
Here the elimination is easy, because the first equation is of the first degree
in y. We deduce from it .
-1
Y=o Tm)’
This reduces the second equation to
n(na® - 1)+ 8na(lx — n)3=4dm(le — n )+ dma(lz - n) (nx- 1),
which is equivalent to
(n2— dlm)at + 4(28 + mn)a® ~ 18nlad + 4(2n3+ Im e + (2 - 4mn)=0.
If n=1, this biquadratic is reciprocal, and its solution depends upon

(- 4m)E + 4(2 + m)E + (8m — 201) =0,
where ¢=2+1/x.

In general, if we have an equation of the first degree in =z
and y together with an equation of the nth degree in » and ¥,
the resultant equation in z will be of the nth degree. In par-
ticular cases, owing to the existence of zero or infinite roots,
or for other special reasons, this equation may be reducible to
quadratics.

Example. .

z+y=18, 3+3y3=4014,
y=18-2z, =*+(18-z*=4914.
The second of these two last equations reduces, as it happens, to
- 18z+17=0.
Hence the finite solutxons of the given system are
z=17,1;
y=1, 17.

§ 12.] A very important class of equations are the so called
Homogeneous Systems. The kind that most commonly occurs is
that in which each equation consists of a homogeneous function
of the variables equated to a constant. The artifice usually em-
ployed for solving such equations is to introduce as auxiliary
variables the ratios of all but one of the variables to that one.
Thus, for example, if the variables were 2 and y, we should put
y = vz, and then treat » and z as the new variables.

is equivalent to
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Example 1.
S2izy=12, xy-2Yr=1.
Put y=wvz, and the two equations become
2(1+0)=12, 2Yv-20")=1.
From these two we derive
X1 +v) - 1223(v - 20?) =0,

22{240*— 11o+1} =0,
Since 2 =0 evidently affords no solution of the given system, we see that the
original system is equivalent to
2X1+v)=12, 24°-11v+1=0.
Solving the quadratic for v, we find v=1/8 or 1/8.
Corresponding to v=1/3, the first of the last pair of equations gives 2>=9,
that is, = =+38.
Corresponding to v=1/8, we find in like wanner 2= % 44/(2/8).
Hence, bearing in mind that y is derived from the corresponding value of
2 by using the corresponding value of v in the equation y=wvr, we have, for
the complete set of solutions,
z=+38, -3, +4./(2/8), -4/(2/8);
y=+1, -1, +1/a/6, -1/a/6.

?+2pz=1, YP+2%z=m, +2y=n.
Let x=wuz, y=7z, then the equations become
(W3 +2013=1, (v*+2u)P=m, (1+2uv)k?=n.
Eliminating z, we have, since z=0 forms in general no part of any solution,
Mud+20)=Y1+2uv), n(v?+2u)=m(1+2uv).

We have already seen how to treat this pair of equations (see § 11, Ex.
2). The system has in general four different solutions, which can be obtained
by solving a biquadratic equation (reducible to quadratics when n=1).

If we take any one of these solutions, the equation (1+2uv)®=n gives
two values of z The relations z=uz, y=1z, then give one value of z and one
value of y corresponding to each of the two values of =.

We thus obtain all the eight solutions of the given system.

that is,

Example 2.

There is another class of equations in the solution of which
the artifice just exemplified is sometimes successful, namely,
that in which each equation consists of .a homogeneous function
of the variables equated to another homogeneous function of the

,variables of the same or of different degree.

Example 3.
The system
ad+bey+cyt=detey, a'B+bey+cy=dz+ey 1)
is equivalent to
(a+bv+e®)d=(d+ev)r, (a'+bv+c'BP2=(d'+ev)e (2)

where y=17z.
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From this last systen.l we derive the system
2 {(a+bv+cv®)(d' +ev) - (a'+ v+ v?)(d+ev)} =0

2{(a+bv+ el (d+ev)} =0 @)

which is equivalent (see chap. xiv., § 11) to (2), along with
(a+bv+c?®=0 (4),
(d+ev)e=0 (5).

If we observe that 2=0, y=0 is a solution of the system (1), and keep
account of it separately, and observe further that values of » which satisfy both
(4) and (5) do not in general exist, we see that the system (1) is equivalent to

(a+bv+c0?) (d' +¢'0) - (@' +b'v+c'0) (d+v) =0 (6)
along with (a+bv+ ey~ (d+ev)=0 7
and =0, y=0.

The solution of the given system now depends on the cubic (6). The
three roots of this cubic substituted in (7) give us three values of 2, and y =1
gives three corresponding solutions of (1). Thus, counting =0, y=0, we
have obtained all the four solutions of (1).

The cubic (6) will not be reducible to quadratics except in particular cases,
as, for example, when ad’ - a'd=0, or c¢' - c'e=0.

For example, the system

8% - 22y + 8y =2+12y, 627+ 3zy - 22 =2x+29y,
is equivalent to =0, y=0, together with
(1119 - 860+ 8)=0, (3-20+3kr=1+12n.
The values of » are 2/8, 4/37, and 0. Hence the solutions of the system are
x=0, 8, 185/227, 1/3;
y=0, 2, 20/227, O.

§ 13.] Symmetrical Systems.—A system of equations is said to
be symmetrical when the interchange of any pair of the variables
derives from the given system an identical system. For example

z+y=a, T+y=b; L+y=a $+z=a;
z+y+z=a, Z+y+2'=b ywrm+ay=c,
are all symmetrical systems.

There is a peculiarity in the solutions of such systems, which
can be foreseen from their nature. Let us suppose in the first place
that the system is such that it would in general have an even num-

ber of solutions, four say. If we take half the solutions, say

T =0,y O,

y= Bx ’ Bn
then, since the equations are still satisfied when the values of z
and y are interchanged, the remaining half of the solutions are

z= 0, B,

y=a, oy
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If the whole number of solutions were odd, five say, then
four of the solutions would be arranged as above, and the fifth
(if finite, which in many cases it would not be) must be such
that the values of z and y are equal ; otherwise the interchanges
of the two would produce a sixth solution, which is inadmissible,

* if the system have only five solutions.*

These considerations suggest two methods of solving such
equations.

1st Method.—Replace the variables by a new system of
variables, consisting of one, say z, of the former, and the ratios
to it of the others, u, v, . . . say. Eliminate z, v,. . . and
obtain an equation in % alone ; then this equation will be a re-
ciprocal equation ; for the values of u are

o B a B

“= Bx’ a, ﬁs’ a; &e.
that is to say, along with each root there is another, which is
its reciprocal. The degree of this resultant equation can there-
fore in all cases be reduced by adjoining a certain quadratic, just
as in the case of a reciprocal biquadratic.

2nd Method.—Replace the variables z, 9, 2, . . . by an equal
number of symmetric functions of 2, ¥, 2, . . ., say by 3z, Zay,
Zzyz, . . . &c., and solve for these.

The nature of the method, its details, and the reason of its
success, will be best understood by taking the case of two variables,
2 and .

Let us put w=z+y, v=ay. After separating the solutions,
if any, for which =y, we may replace the given system by a
system each equation of which is symmetrical. We know, by
the general theory of symmetric functions (see chap. xviii. § 4),
that every integral symmetric function can be expressed as an

(@d, it may be, u =1),

* We have supposed that for all the solutions (except one in the case of
an odd system) ##+y. It may, however, happen that x=y for one or more
solutions. Such solutions eannot be paired with others, since an interchange
of values does not produce a new solution. This peculiarity must always arise
in systems which are symmetrical as a whole, but not symmetrical in the
individual equations. As an example, we may take the symmetrical system
2*+y=a, y*+x=a, threec of whose solutions are such that z=y.
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integral function of # and v. Hence it will always be possible to
transform the given system into an equivalent system in % and ».

‘We observe further that, in general, 4 and » will each have
as many values as there are solutions of the given system, and
no more; but that the values of » and v corresponding to
two solutions, such as z=a,, y=8,, and z= B, ¥y = a,; are equal.
Hence in the case of symmetrical equations the number of solu-
tions of the system in % and v must in general be less than usual.

Corresponding to any particular values of u and v, say v =«,
v=p, we have the quadratic system z+y=a, zy=p, which
gives the two solutions

z=(a* NE Y -4B)/2, y=(a¥ NP Y —4ﬂ)/2
If we had a system in three variables, z, y, z, then we should
assume U=z +y+2 vV=yz+22+2y, w=2ys and attempt to
solve the system in w, v, #. Let u=a, v=0, w=1y, be any
solution of this system ; then, since

E-2)E-9)(E-2)=¢ -uf +ot-m,

we see that the three roots of

£-af'+BE-y=0

constitute a solution of the original system, and, since the
equations are symmetrical, any one of the six permutations of
these roots is also a solution. In this case, therefore, the
number of solutions of the system in 4, v, w would, in general,
be less than the corresponding number for the system in z, y, 2

The student should study the following examplesn the light
of these general remarks :—

Example 1. A(2*+y")+Bay +C(z+y)+D =0 a)
AP+ +Bay+C(z+y)+D'=0 ’
If we put y=u=, and then eliminate z by the method employed in § 11,
the resultant equation in » is
{(D'A)+(D'Byw+(D'Ay?}3
=(D'C)(1+9*{(C’'A)+(C'Bv+(C'Ap%} (2),
where (D’'A) stands for D'A — DA’, (D’'B) for D’'B- DB’, and so on.
The biquadratic (2) is obviously reciprocal, and can therefore be solved by
means of quadratics.
The solution can then be completed by means of the equation
{(D’A)+(D'B)v+(D'Ay%z+(D'C)(1+v)=0 (8)
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As an instance of this method the student should work out in full the
solution of the system
2= +1) - zy + 2z +y) - 89=0,
32+ ) - 4xy+ (xz+y)-50=0.
We may treat this example by the second method of the present para-
graph as follows. The system (1) may be written
A(z+y2+(B -2A yry+C(z+y)+D =0,
A'(z+yP2+(B - 2A"%y+C'(z+y)+D'=0;
. Au? +(B -2A »+Cu +D =0
that is, A4 (B~ 244 s D’ 0 (4).
Eliminating first %% and then v, we deduce the equivalent system
. (A'Bp+(A'Clu+(A'D)=0 (5),
(A'By?+ {(C'B) - 2(C'A)} u+ {(D'B)-2(D’A)} =0
where (A'B), &c., have the same meaning as above.
The system (5) has two solutions,
u=a, a’,
v=H, g,
gay, corresponding to which we find for the original system
z=(atVa'-48)j2, (d'E£Va"-4p)2,
y=(@FVa'=ip)2, (¢FVa2Tig)2,
in all four solutions.
This method should be tested on the numerical example given above.

Example 2. H+yi=82, z+y=4.
We have A+yp=(z+y) - 4y +9°) - BaYyd,
=(z+y)r - day{(z+y)* - 22y} - 62,
=ut— 4ulp+ 202

hence the given system is equivalent to
. ut— 4u0+202=82, u=4.
Using the value of  given by the second equation, we reduce the first to

2 - 32v+87=0.
The roots of this quadratic are 3 and 29. Hence the solution of the u, v
system is u=4, 4,
»=3, 29.

From z+y=4, 2y=29, we derive (z—y)2= - 100, that is, z~y==%10i,
combining this with z+y=4, we have 2=2=5¢, y=2F5:.

From z+y=4, zy=3, we find =38, y=1; z=1, y=38.

All the four solutions have thus been found.

Example 3. d=mr+ny, Yi=nxt+my (1.)

Let us put y=vx; then, removing the factor x in both equations, and
noting the corresponding solution, x=0, y=0, we have

B=m+ny, viz*=n-+mov.
These are equivalent to

P=m+nr, Wm+m)=me+n (2)
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The second of these may be written
(- 1)+ mr(v* - 1)=0 (3)
and is therefore equivalent to

v-1=0
v‘+(’£+l)v’+ (%"+l)v‘-‘+ (%'+1)v+1=0.}.

The second of these is a reciprocal biquadratic. Hence all the five roots of (8)
can be found without solving any equation of higher degree than the second.

To the root v=1 correspond the three solutions,

z=y=(m+al3, wo(m+a)l3, wm+ap?,
of the original system, where (m +2)!? is the real value of the cube root, and
w, w? are the imaginary cube roots of unity.

In like manner three solutions of (1) are obtained for each of the remain-
ing four roots of (3). Hence, counting x=0, y=0, we obtain all the sixteen
solutions of (1).

The reader should work out the details of the numerical case

at=22+3y, Y=8z+2y,
and calculate all the real roots, and all the coefficients i the complex roots,
to one or two places of decimals.

Example 4. yz+zx+ 2y =26,
vy +2)+ 2z +z)+2y(z+y)=162,
Yy Y2 +2°) + 2(2? + 27) + 2y (2 + y?) = 538.
If we put u=z+y +z, v=yz+2rx+zy, w=2zyz, the above system reduces to
v=26, uv—-38w=162, (u?-2v)v—uw=>538.
Hence 26u-8w=162, 26u?-uw=1890.
Hence 26u? + 81u — 2835 =0.
The roots of this quadratic are u=9, and u = - 815/26.

We thus obtain for the values of w, », w, 9, 26, 24, and - 815/26, 26,

-159. Hence we have the two cubics

? - £+ 26— 24 =0,

315
é“ +26t+159=0.

Twelve of the roots of the ongmnl system consist of the six permutations
of the three roots of the first cubic, together with the six permutations of the
roots of the second cubic.

The first cubic evidently has the root {=2; and the other two are easily
found to be 8 and 4. Hence we have the following six solutions : —

=2, 2, 8, 8, 4, 4;
y=8, 4, 4, 2, 2, 3;
==4, 8, 2, 4, 3, 2
Other six are to be found by solving the second cubic.

§ 14.] We conclude this chapter with a few miscellaneous
examples of artifices that are suggested merely by the peculi-
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arities of the particular casp. Some of them have a somewhat
more general character, as the student will find in working the
exercises in set xxxiv. A moderate amount of practice in solv-
ing puzzles of this description is useful as a means of cultivating
manipulative skill; but he should beware of wasting his time
over what is after all merely a chapter of accidents.

Example 1. oy "
axr a+0)c
an"zr:,;:z(z;z;;c- ery=e
Let a+z=(a+d+c), b+y=(a+d+ch;
the system then reduces to
a¥ft+ P n=(a+dp, E+n=1
This again is equivalent to
{@a+d)}-a}?=0, f+y=1.
Hence we have the solution {¢=a/(a +b), 7=>5/(a +b) twice over.
The solutions of the original system are therefore 2 =ac/(a +b), y=ac/(a + b)
twice over. '

Example 2.
ax®+ bxy + eyt =bs*+ cxy +ay’=d (1).
This system is equivalent to
(e -bx+(b-cxy+(c—-a)y?=0 (2),
ax?+bey +et=d (3).
The equation (2) (see chap. xvi., § 9) is equivalent to
B=(co+1)p, zy=(aoc+1)p, y=(bo+1)p (4),

where p and ¢ are undetermined.
Since 2% =(xy)?, we must have
(ca+1)(bo+1)=(ac+1)%
Hence we deduce 0=0, o= 5 4~ (5).
The first of these, taken in conjunction with (4), gives z=y ; and hence

d
=y=x —_—
=y \/a+b+c’
that is to say, two solutions of (1). If we take the second value of ¢ we find
_pde-aP _ _plc-a)(a-8) _,_ pla-b)
=y ve—oar V= b+c-2a ° y’—b-f-c—‘la (©)

where it remains to determine p. This can be done by substituting in (8).
We thus find

p=ad/(a®+ac? - ca®+ ab® - a?b - abc).
We now deduce from (6)
ae (o a)a? -
{(b+c- 2a) (P +ac* —ca’ + ab* — atb—abo)] 1P Y=
two more solutions of the original system.

+, &c.;
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Example 8.
yz=ad, =m=b, sy=c
These equations give
zxzy bxa
v &
that is, =22,

Hence z==bc/a ; the two last equations of the original system then give
y=%cafb, z=Zablc. The upper signs go together and the lower together ;
so that we have only obtained two out of the possible eight solutions.

Example 4. ’

zy+z)=a?, yz+z)=0, 2Az+y)=c.

This can be reduced to last by solving for yz, 2z, zy.

Example 5.

2(z+y+2)=a, Ya+y+2)=8, zz+y+z)=c’
Let z+y+2z=p. Then, if we add the three equations, we have

P=a+b+c
Hence p=x+/(a?+ ¥ +¢*) ; and we have
+aq? E3 +c
EV@T ey YTY@rray @+ it ay
Example 6.
To find the real solutions of
D2+ +=a® (1), Hy+2)+ni=bc  (4),
v+E+8=08 (2, oz+z)+E=ca  (5),
2+ +ql=c (3), $lz+y)+ai=ab  (6).

From (2), (3), and (4) we deduce
{Hy+2)+08}2 - (P + 82+ 8 B2+ 8+ =0;
that is, (E- 2P+ (8- &P+ (- nyf=0 (@)
Every solution of the given system must satisfy (7). Now, since (£~ yz)?,
(En—28)%, ($£~ny)* are all positive, provided =, y, z, & », ¢ be all real, it
fo