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 PREFACE.

TrE solution of the general quadratic equation was known as
early as the ninth century; that of the general cubic and quartic
equations was discovered in the sixteenth century. During the suc-
ceeding two centuries many unsuccessful attempts were made to
solve the general equations of the fifth and higher degrees. In 1770
Lagrange analyzed the methods of his predecessors and traced all
their results to one principle, that of rational resolvents, and proved
that the general quintic equation cannot be solved by rational re-
solvents. The impossibility of the algebraic solution of the general
equation of degree n (n>4), whether by rational or irrational resolv-
ents, was then proved by Abel, Wantzel, and Galois. Out of these
algebraic investigations grew the theory of substitutions and groups.
The first systematic study of substitutions was made by Cauchy
(Journal de Uécole polytechnique, 1815).

The subject is here presented in the historical order of its devel-
opment. The First Part (pp. 1-41) is devoted to the Lagrange-
Cauchy-Abel theory of general algebraic equations. The Second
Part (pp. 42-98) is devoted to Galois’ theory of algebraic equations,
whether with arbitrary or special coefficients. The aim has been
to make the presentation strictly elementary, with practically no
dependence upon any branch of mathematics beyond elementary
algebra. There occur numerous illustrative examples, as well as
sets of elementary exercises.

In the preparation of this book, the author has consulted, in

addition to various articles in the journals, the following treatises;
iii
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Lagrange, Réflexions sur la résolution algébrique des équations;
Jordan, T'raité des substitutions et des équations algébriques; Serret,
Cours &’ Algébre supérieure; Netto-Cole, T'heory of Substitutions and
s Applications to Algebra; Weber, Lehrbuch der Algebra; Burn-
side, The Theory of Groups Pierpont, Galois’ Theory of Algebraic
Equations, Annals of Math., 2d ser., vols. 1 and 2; Bolza, On the
Theory of Substitution-Groups and its Applications to Algebraic
Equations, Amer. Journ. Math., vol. XIII.

The author takes this opportunity to express his indebtedness
to the following lecturers whose courses in group theory he has at-
tended: Oscar Bolza in 1894, E. H. Moore in 1895, Sophus Lie in
1896, Camille Jordan in 1897.

But, of all the sources, the lectures and publications of Professor
Bolza have been of the greatest aid to the author. In particular,
the examples (§ 65) of the group of an equation have been borrowed
with his permission from his lectures.

The present elementary presentation of the theory is the out-
come of lectures delivered by the author in 1897 at the University
of California, in 1899 at the University of Texas, and twice in 1902
at the University of Chicago.

Cricaco, August, 1902
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THEORY OF ALGEBRAIC EQUATIONS.

FIRST PART.

THE LAGRANGE-ABEL-CAUCHY THEORY OF
GENERAL ALGEBRAIC EQUATIONS.

CHAPTER 1.

SOLUTION OF THE GENERAL QUADRATIC, CUBIC, AND QUARTIC
EQUATIONS. LAGRANGE’'S THEOREM* ON THE IRRATION-
ALITIES ENTERING THE ROOTS.

i. Quadratic equation. The roots of z?+pr+9=0 are
T =H—-p+VPp'—49), Z=H-p-Vp'—49).

By addition, subtraction, and multiplication, we get

z,+z,=—p, xn_xz=\/P2_4Q: 1Ty =q.
Hence the irrationality v/ p*—4q, which occurs in the expressions
for the roots, is rationally expressible in terms of the roots, being
equal to z,—2, Unlike the last function, the functions z,+z,
and z,z, are symmetric in the roots and are rational functions of

the coefficients.
2. Cubic equation. The general cubic equation may be written

(1) 28— 2t +cx—cy=0.
Setting £=y+4c,, the equation (1) takes the simpler form
(2 ¥’ +py+g=0,

* Réflexions sur la résolution algébrique des équations, uvres de Lagrange,
Paris, 1869, vol. 3; first printed by the Berlin Academy, 1770-71,
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if we make use of the abbreviations

€)) P=6—1c¢? ¢=—G+icc—he"

The cubic (2), lacking the square of the unknown quantity, is
called the reduced cubic equation. When it is solved, the roots
of (1) are found by the relation z=y+ §c,.

The cubic (2) was first solved by Scipio Ferreo before 1505.
The solution was rediscovered by Tartaglia and imparted to
Cardan under promises of secrecy. But Cardan broke his promises
and published the rules in 1545 in his Ars Magna, so that the
formulee bear the name of Cardan. The following method of
deriving them is essentially that given by Hudde in 1650. By
the transformation

@ y=2-2,

the cubic (2) becomes 2*— ﬁ?;—’ +¢=0, whence
ps

(5) 2% 4q2t— »2—7-=0.

Solving the latter as a quadratic equation for 23, we get

#=—13q+VR, R=1g+p"
Denote a definite one of the cube roots of —4g++'R by

¥/ —W+VR.

The other two cube roots are then

0¥/ ~1+VE, @Y ~1tVE,
where w is an imaginary cube root of unity found as follows. The
three cube roots of unity are the roots of the equation

r*—1=0, or (r—1)(r*+r+1)=0.

The roots of r*+r+1=0 are —3+%V —3=wand —3— 3}V —3=0w?,
Then
(6) w*+w+1=0, o*=1.
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In view of the relation
(—3¢+VE)(~1¢~VE)=1¢—B=~ ",
a particular cube root {/lja}q——\/ﬁ may be chosen so that
Y —4+VE - ¥/ —g—VR=—1p.
s 0/ “3HVE - 0/ “4—VR=—1p,
WY~ +VE - 0y~ 1g—VE=—1p.

Hence the six roots of equation (5) may be separated into pairs
in such a way that the product of two in any pair is —4p. The

root paired with z is therefore —-;J—z, and their sum z—% is, in

view of (4), a root y of the cubic (2). In particular, the two roots
of a pair lead to the same value of y, so that the siz roots of (5)
lead to only three roots of the cubic, thereby explaining an apparent
difficulty. Since the sum of the two roots of any pair of roots
of (5) leads to a root of the cubic (2), we obtain Cardan’s formulse
for the roots y,, y,, ¥, of (2):

y=¥ 3 +VR+Y ~4g-VE,
™ h=0/ —3g+VR+w' ¥/ —3g—V'R,
Y=0’ V/-%q+\/l_3+w 'é/l—}q—\/l—i.

Multiplying these expressions by 1, «? w and adding, we get,
by (6),

=
- —3g+VR=3y, +oy+oyy).
Using the multipliers 1, w, w?, we get, similarly,
2
: ¥ —4—VR=4(y,+ oy, +oy).
Cubing these two expressions and subtracting the results, we get
‘\/R='51£{(yx+wz?/z+w%)s_,(y1+wyz+w2ys)3}

"‘—T-s_———?:(y;"yz)(yz_ Ys)(Ys—Y1),
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upon applying the Factor Theorem and the identity w—w?=+" —3.
Hence all the irrationalities occurring in the roots (7) are rationally
expressible in terms of the roots, a result first shown by Lagrange.
The function
(= %) (%~ %) (Y —9,)* = — 27¢*— 4p*
is called the discriminant of the cubic (2).
The roots of the general cubic (1) are

Z=y,+¥6, Ty=y,+ic, Z=Y+ic.
S T TL=Y Yy T—T=Y;~ Yy T~ T,=Y3—Yy
(8) (2, —2) (2, — 23) (73— 7,) = (¥, — ¥:) (Y2 — ¥) (¥ — )

18 —_—
- VR~ VI

EXERCISES.

1. Show that z, + 0z, + wzy =y, + WY, + WY, 2, + WL + W32y =Yy, + WY, + WPy,.

2. The cubic (2) has one real root and two imaginary roots if R>0; three
real roots, two of which are equal, if R=0; three real and distinct roots if
R <0 (the so-called irreducible case).

3. Show that the discriminant (z,—z;)%(z;—2,)*(z;—=,)? of the cubic (1)
equals

¢,%c3? +18¢,c,05 — 4y — 4, %y — 27,2,
Hint: Use formula (8) in connection with (3).

4. Show that the nine expressions /{//—iq+\/1—3+{/'—}q—\/1—3, where
all combinations of the cube roots are taken, are the roots of the cubics
Y+py+9=0, y+wpy+g=0, y'+w'py+q=0.

5. Show that ¥, +4;+Ys=0, Y Y+y¥s+y¥s=p, YWYs=—¢.
6 Show that z,+ 3+ Ty =¢,, T,%,+2,Ty+2,T3=C;, T,2,T3=C,, using Ex, 5,
How may these results be derived directly from equation (1)?

8. Aside from the factor §, the roots of the sextic (5) are
Oy =2, + w2, + 0z, b=z, + wr,+wa,,
Go=0¥), =T, + 0t + 0T, =0 =T+ wr,+ 0,
Py=wh =2, 0z, +0’T,, Y=, =7t wr, + 0z,

These functions differ only in the permutations of z,, z,, z,. As
there are just six permutations of three letters, these functions
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give all that can be obtained from ¢, by permuting z,, «,, z,. For
this reason, ¢, is called a siz-valued function.
Lagrange’s a priort solution of the general cubic (1) consists

in determining these six functions ¢,, ..., ¢, directly. They are
the roots of the sextic equation (¢—¢,)...(t—¢e)=0, whose
coefficients are symmetric functions of ¢,, . . . , ¢4 and consequently

symmetric functions of z,, z,, z; and hence * are rationally expressible
in terws of ¢;, ¢;, €. Since ¢,=w¥,, P;=w(,, etc., we have by (6)

E=d)(E—d)(E—dg)=t"—¢%,
(t“SbA)(t'Sl's)(t"‘/’o) = t'“‘l’c‘-

Hence the resolvent sextic becomes
)] ' — (42 + ¢ +¢,% =0,
But $di=2+ 2"+ 2’ + (0 + ) (2,7, + 2,25+ 7,7;)
= (2, +2,+ 25)* — 3(2,2, + 2,25 + 2,25) = ¢,>— 3¢,
in view of Ex. 6, page 4. Also, ¢,*+¢,® equals

2(x,* + 1, + %) — (2,2, + 3,2,% + 2,25 + 2,257 + 2,225 + T,7,7) + 122, 7,7,
=3(2,*+2,°+ 2,°) — (2, + 2, + 75)° + 18z,2,7,
=2¢,*—9¢,c,+27c,.

Hence equation (9) becomes
18— (2¢,*—9c,c, +27¢,)t%+ (¢,2— 3c,) 3=0.

Solving it as a quadratic equation for {3, we obtain two roots 6
and @', and then obtain

¢1=W’ ¢'4=W°

Here ¥/6 may be chosen to be an arbitrary one of the cube roots
of 6, but ¥/@ is then that definite cube root of ¢’ for which

(10) VO G=c2—3c,
We have therefore the following known expressions:

zl+wx,+w’x,=’€/§, 2,402, + oz, =V, z4z,+z,=c,

* The fundamental theorem on symmetric functions is proved in the
Appendix.
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Multiplying them by 1, 1, 1; then by w?, w, 1; and finally by w, «?, 1;
and adding the resulting equations in each case, we get

=, +¥ 0+,
(11) z=3(c,+ 0¥ 0+w Y0,
Ty=3(c,+w V0+w? 0).

4. Quartic equation. The general equation of degree four,
(12) '+ az®+bx?+cx+d=0,
may be written in the form

(2% + 3ax)?={}a®-b)x*—cz—d.

With Ferrari, we add (z?+ %az)y+ }y? to each member. Then
(13)  (@*+iez+dy)’=(e’-b+y)a’+ (Jay—c)z+ 1y’ —

We seek a value y, of y such that the second member of (13) shall
be a perfect square. Set

(14) a’—4b+4y,=t2
The condition for a perfect square requires that

(15) 127+ (Jay, — o)z +1y,>—d (&t +”‘”‘ ) .

| Yay,—c\*_ (3ay,—c)
. 2_g_ —
- dy’—d ( t T a’—4b+4y,’

Hence y, must be a root of the cubic, called the resolvent,
(16) y*—by*+ (ac—4d)y—a’d+4bd— c*=

In view of (15), equation (13) leads to the two quadratic
equations

@17 z*+(3a— )z + 3y, — (Yay, — ) /t=0,

(18) 2?4+ (3a+3t)x + 3y, + (Jay, —c)/t=0.

Let z, and z, be the roots of (17), z; and z, the roots of (18). Then
T, +a,=—%a+3t, zx,=3%y,—(ay,—c)/t,
T+z,=—a—4t, zx,=1y,+(ay,—o)/L.
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By addition and subtraction, we get
(19) T+ T — T — T =t, T,0+IT,=Y,

ILa solving (17) and (18), two radicals are introduced, one equal
to z,—z, and the other equal to z,—z, (see § 1). Hence all the
irrationalities entering the expressions for the roots of the general
quartic are rational functions of its roots.

If, instead of y,, another root of the resolvent cubic (16) be
employed, quadratic equations different from (17) and (18) are
obtained, such, however, that their four roots are z,, z,, z,, z,,
but paired differently. It is therefore natural to expect that the
three roots of (16) are

(20) N=T1T,+TTy,  Yy=T,T3+T,T, Yy=T,T,+ T, Ts.

It is shown in the next section that this inference is correct.

6. Without having recourse to Ferrari’s device, the two quad-
ratic equations whose roots are the four roots of the general quartic
equation (12) may be obtained by an & priort study of the rational
functions z,x,+ 2z, and z,+z,—2z;,—z,=t. The three quantities
(20) are the roots of (y—y,)(y—y)(y—ys)=0, or

@) Y=Y+t Y)Y+ Yt Yils+ Y)Y —YiYsYs=0.

Its coefficients may be expressed * as rational functions of a, b, ¢, d;

Y1+ Yt Ys =22, + T, + T, %+ 2T+ 2,2, + 27, =,
YUY+ YYs+YsYs = — 4T, 2,75T,
+(&,+ T+ Ty + 2) (33,855 + 2,5,8,+ T,207, + 2,257,)
=ac—4d, :
YsYsYs= (T12,5 + T, 2,2, + T,2o%4 + 2,257
+ 2, 2,2eT { (B + 23+ T3+ 2,)* — 42T, + 2,25+ ..+ 2,70 }
=c?+d(a?—4b).

* This is due to the fact (shown in § 29, Ex. 2, and § 30) that any per-
mutation of z,, 2, Zy, , merely permutes y,, y,, ¥s, S0 that any symmetric
function of ¥y, y;, ¥, is & symmetric function of z), 2,, 3, x, and hence rationally
expressible in terms of g, b, ¢, d.
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Hence equation (21) is identical with the resolvent (16). Next,

= (2,4 2, + 1, +2,)* — 4(2, + 1,) (2, + 2,)
=a*— 4,2, + 2,25+ . . . +2,2,) +42,7,+ 47,7,
—4b+4y,.

Again, z,+z,+2,+2,=—a. Hence
T, t+z,=41t-a), zy+z,=3(—t—a).
To find z,z, and z,z,, we note that their sum is y,, while

t—
—c=2,3,(T3+2,) + TyZy (2, + 2,) = xr’”z( > +xtz4< a)

2Ty =(c—%ay,+3y,)/t,  xx=(—c+iay,+ity,)/t.

Hence z, and z, are the roots of (17), z, and z, are the roots of (18).

6. Lagrange’s & priori solution of the quartic (12) is quite
similar to the preceding. A root y,=z,z,+ 2z, of the cubic (16)
is first obtained. Then z,2,=2, and z,z,=2, are the roots of

—y2+d=0.
Then z,+z, ana z,+z, are found from the relations
(@ +2) + (25 +2) = —a,
2%, +2;) + 2,23+ 2,) = 22,2 + 2,72, + 2,27y + 2,27 = —c.

—az,+c az,—C
o Hyta=
2—2 =2

Hence z, and z, are given by a quadratic, as also z; and z,.
7. In solving the auxiliary cubic (16), the first irrationality
entering (see § 2) is
A=Y~ Y) (Y= Y)Y —¥»)-

But Yh—Y=(z,— z)(z,—xy),

Y= Y=(@—2) (% —2), Y—Y=(E—2) (B —2),
in view of (20). Hence
(22) 4= (2,— 2)(2,— 2,) (2, — 2,) (23— 23) (23— 2) (23— 2.

S Ttz =



8Ec. 7] THEORY OF ALGEBRAIC EQUATIONS.
By § 2, the reduced form of (16) is 3*+Py+Q=0, where

P=ac—4d—3b?,
(23) {omeads jabe-+ §bd—c— b,

Applying (8), with a change of sign, we get
(24) d=6V=3ViQ*+ &P%



CHAPTER II
SUBSTITUTIONS; RATIONAL FUNCTIONS.

8. The operation which replaces z, by 4, 2, by zp, 2, by 27, . . .,
z, by ., where a, §,..., v form a permutation of 1, 2,..., n,
is called a substitution on z,, z,, 2,,..., Zo. It is usually des-

ignated
(:lcl T, Ty ... x,.>.
Ta Ty T 0. Ty

But the order of the columns is immaterial; the substitution may
also be written

Ty Ty By oeee Ta) 0 (Tw Ty Ty Ty oall)
Ty Ta T ... )’ Ty Ta Ty Ty ...)0 00

The substitution which leaves every letter unaltered,
Ty Ty Ty o0 Tp
Ty Ty Ty .. o)’
is called the identical substitution and is designated I.
9. THEOREM. The number of distinct substitutions on n letters
sal=n(n-1)...3-2.1,
For, to every permutation of the n letters there corresponds a
substitution.
ExampLE. The 31=6 substitutions on n =3 letters are:

I= (-‘51 3 z,) a= (-'51 Ty -"’a) b= (-‘”1 3 3:)
Ty Ty /)’ Ty T3 2,/ Zy Ty Ty) !
= (zn z; xs) d= (x, z3 1'3) e= (3’1 T3 3:)
T, T3 %)’ T3 X3 x,)° T, Ty xg) "
Applying these substitutions to the function ¢ =z, + wz,+ w’r,, we obtain
the following six distinct functions (cf. § 3):

$r=z+ 0B, +0'5,=¢, ¢a=1,+0r;+0'r =0}, O =23+ 0z, + 'z =0,
¢c_:c,+wx,+ui , Y4 =23+ wz;+ 0z, =wi;, ‘/’e=$,+wx|+w’z,=-a)¢e,
10
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Applying them to the function ¢=(z, —z,)(x,—z;)(z,—z,), we obtain
$r=damgp=9, Pe=Pa=c¢e=—¢.
Hence ¢ remains unaltered by I, a, b, but is changed by c, d, e.
10. Product. Apply first a substitution s and afterwards a
substitution ¢, where

8=<x, z ... x,.)’ t=<”"‘, Ty ... a:,.>.
Ta z’ cee &y o' Zp’ cee Xy
The resulting permutation z«, zy, . .., @, can be obtained directly

from the original permutation z,, z,, ..., z, by applying a single
substitution, namely,
u=(x, Ty ... a:,.).
To Ty ... TV
We say that u is the product of s by ¢ and write u=st.

Similarly, sty denotes the substitution w which arises by apply-
ing first s, then ¢, and finally v, so that stv=uv=w. The order
of applying the factors is from left to right.*

ExamrrLes. For the substitutions on three letters (§ 9),

ab=ba=I, ac=d, ca=e, ad=e, da=c,
aa=>b, bb=a, abc=Ic=c, aca=da=c.

Applying the substitution a to the function ¢, we get ¢a; applying the
substitution ¢ to ¢a, we get ¢a. Hence ¢ac=¢4. Likewise ¢ap=¢r=9¢,
fra=g.

11, Multiplication of substitutions is not commutative in
general.

Thus, in the preceding example, ac#ca, ad#da. - But ab=ba,
so that a and b are said to be commutative,

12. Multiplication of substitutions is associative: st-v=s-tv.

Let s, t, and their product st=wu have the notations of § 10. If

_[(te Ty ... T _[(%Ta Ty ... T
v= (x.,n Ty ... :w')’ then tv= (x," zzv ... :c,,">‘

e tomemme (F1 Tz e Tn N _ (T Ty e Tp) (Ta T .
o Bev=uy= (z,." Tyt ... :v»") (:t,. Ty oo ) \T oo B s-to.
Examrre. For 3 letters, ac-a=da=c, a-ca=ae=c.

# This.is the modern use. The inverse order ts, vs was used by Cayley
and Serret.
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18. Powers. We write s? for ss, s® for sss, etc. Then
(25) gmgn =gm+n (m and n positive integers).

For, by the associative law, smgn=gm.ggn—1=gm+ign=1=

14. Period. Since there is only a finite number n! of distinct
substitutions on n letters, some of the powers

. 8, 8, 8% ... adinfinitum

must be equal, say sm=sm+n where m and n are positive integers.
Then sm=gms», in view of (25). Hence s* leaves unaltered each
of the n letters, so that s"=1.

The least positive integer o such that s°=1 is called the period
of 8. It follows that
(26) s, 8 ...87 =]

are all distinct; while s°+!, 87+3, ..., 8% 1, g% are repetitions
of the substitutions (26). Hence the first ¢ powers are repeated
periodically in the infinite series of powers.

ExawmpLes. From the example in § 10, we get
a*=b, a’=a%a=ba=I, whence ais of period 3;
bi=a, b*=blb=ab=I, whenceb is of period 3;
¢, d, e are of period 2; I is of period 1.

15. Inverse substitution. To every substitution s there corre-
sponds one and only one substitution s’ such that ss’=1. If

8=<x, Z ... x,,>’ then s,=(x¢ T ... :cv>

Ta Ty ... Ty T T, ... Zp)°

Evidently s’s=I. We call &’ the inverse of s and denote it hence-
forth by s~*. Hence

ss~l=g"1=1, (s~V)l=s,
If s is of period o, then s~'=3°~1, Since s replaces a rational
function f=f(z,, ..., 2s) by fe=f(%a, ..., z.), 87! replaces }, by f.
ExamprLes. For the substitutions on 3 letters (§ 9),
_ [z, z, T —1_ (T T T z
e=@nan) -GRR=GE)-

b—l=a, cl'=¢, d-'=d, e lme, I-'m].
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These results also follow from those of the examples in § 14. For the
functions of § 9 the substitution a replaces ¢ by ¢ia; a—!=b replaces ¢a by ¢.

16. THEOREM. If st=sr, then t=r.

Multiplying st and sr on the left by 8™, we get

8~ st=t, 8 lsr=r.

17. TeEerEM. If l3=78, then t=r.
18. Abbreviated notation for substitutions. Substitutions like

a= (z; z, x.), b= (xl zy zz), q= (-"z Ty 7, z.),

Ty Ty T, Ty Ty 2, Ty Ty Ty Ty
which replace the first letter in the upper row by the second letter
in the upper row, the second by the third letter in the upper row,
and so on, finally, the last letter of the upper row by the first letter
of the upper row, are called circular substitutions or cyecles. In-
stead of the earlier double-row notation, we employ a single-row
notation for cycles. Thus

a= (xlxzzs)y b= (%xsxz)y q= (zzzazl‘h)'

Evidently (z,2,7,) =(2,25%,) =(zs%,2;), since each replaces z; by
2, %, by z,, and z5 by z,. A cycle 18 not altered by a cyclic permu~
tation of s letters.

Any substitution can be expressed as a product of circular
substitutions affecting different letters. Thus

e e

A cycle of a single letter is usually suppressed, with the under-
standing that a letter not expressed is unaltered by the substitution.
Thus (z,)(x,%,) is written (z,x).

A circular substitution of two letters is called a transposition.

19. Tables of all substitutions on n letters, for n=3, 4, 5.

For n=3, the 31=6 substitutions are (compare § 9):

I=identity, a=(zz2,), b=(z,2:7,),
c=(z1y), d=(z2), e=(z7).
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For n=4, the 24 substitutions are (only the indices being written):
I=identity;
6 transpositions: (12), (13), (14), (23), (24), (34);
8 cycles of 3 letters: (123), (132), (124), (142), (134), (143), (234),
(243);
6 cycles of 4 letters: (1234), (1243), (1324), (1342), (1423),(1432);
3 products of 2 transpositions: (12)(34), (13)(24), (14)(23).

For n=>5 the 51=120 substitutions include
I =identity;

%—4 =10 transpositions of type (12);

5';—'3=20 cycles of type (123);

§i§ﬁ=3o cycles of type (1234);

54_35_2_1 =24 cycles of type (12345);
5.3=15 * products of type (12)(34);
20 t products of type (123)(45).

EXERCISES.

1. The period of (123...7) isn; its inverseis (nn—1...321),

2. The period of any substitution is the least common multiple of the
periods of its cycles. Thus (123)(45) is of period 6.

3. Give the number of substitutions on 6 letters of each type.

4. Show that the function z,x;+ e, is unaltered by the substitutions I,

@2, (@), @) (@), (@) @), @a) @y, (2awe), @eas).

5. Show that z,z,+ zsr, is changed into z,z;+ 2,2, by (z,%;), (z,2)), (2,252,),
(z2,2), (2,2%s), (22570, (X,2,%4Ty), (T TTE,).

6. Write down the eight substitutions on four letters not given in Exs,
4 and 5, and show that each changes z,x,+zz, into z,z,+ z,z,.

* Since the omitted letter may be any one of five, while one of the four
chosen letters may be associated with any one of the other three letters.
1 The same number as of type (123), since (45) =(54).



€HAPTER IIL.
SUBSTITUTION GROUPS; RATIONAL FUNCTIONS.

20. A set of distinct substitutions s,, s,, ..., 8, forms a group
if the product of any two of them (whether equal or different) is a
substitution of the set. The number m of distinct substitutions
in a group is called its order, the number n of letters operated on
by its substitutions is called its degree. The group is designated
G,

All the n! substitutions on n letters form a group, called the
symmetric group on n letters G%. In fact, the product of any
two substitutions on n letters is a substitution on 7 letters. The
name of this group is derived from the fact that its substitutions
leave unaltered any rational symmetric function of the letters.

Exampre 1. For the six substitutions on n=3 letters, given in § 9, the
multiplication table is as follows:*

lIabcde
I [{I a b ¢c d e
a |a b I d e ¢
&% b |bIaecd
¢c |[c e d I b a
d |[d ¢c e aIbd
e e d ¢c b al

Thus ad =e is given in the intersection of row a and column d.
ExampLe 2. The substitutions 7, a, b form a group with the multiplica-

tion table
I a b
I I abd
a a b I
b b I a

* It was partially established in the example of § 10.
. 15
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If 8 is a substitution of period m, the substitutions
I,8,8,...,8m !
form a group of order m called a cyclic group.

ExampLe 3. I, a=(123), b =a?=(132) form a cyclic group (Ex. 2).
ExamrLE 4. I, 8=(123)(45), 82 =(132), s*=(45), s*=(123), 8*=(132)(45)
form a cyclic group of order 6 and degree 5.

21. FUNDAMENTAL THEOREM. All the substitutions on =z,
T,, . .., Tn which leave unaltered a rational function ¢(x,, Z,, . .. , Tn)
form a group G.

Let ¢, denote the function obtained by applying to ¢ the sub-
stitution s. If @ and b are two substitutions which leave ¢ unaltered,
then ¢o=¢, dp=¢. Hence

(Pa)o=(Po=hp=¢, or Pap=0.
Hence the product ab is one of the substitutions which leave ¢
unaltered. Hence the set has the group property.
The group G .is called the group of the function ¢, while ¢ is
said to belong to the group G.

ExampLe 1. The only substitutions on 3 letters which leave unaltered
the function (z;—%;)(%; —2,) (73 —%,) are (by § 9) I, a=(z,2,73), b= (T,7:7,).
Hence they form a group (compare Ex. 2, § 20). Another function belonging
to this group is

(#,+wz;+wx,)?,  an imaginary cube root of unity.

ExamrLE 2. The only substitution on 3 letters which leaves unaltered
Z,+wzxy + w'z,y is the identity I (§9). Thus the substitution I alone forms
a group G, of order 1.

ExaMpLE 3. The rational functions occurring in the solution of the
quartic equation (§ 4) furnish the following substitution groups on four
letters:

“a) The symmetric group Gy, of all the substitutions on 4 letters.

b) The group to which the function y, =z,2; + 25z, belongs (Exs. 4-6, p. 14):

Gy=1{1, (12), (34), (12)(39), (13)(24), (14)(23), (1324), (1423)}.

¢) Since y,=z,2,+z,x, is derived from y,=z,z,+z5x, by interchanging
z, and z,, the group of y, is derived from G by interchanging z, and z; within
its substitutions. Hence the group of y, is

Gy =11, (13), (24), (13)(24), (12)(34), (14)(32), (1234), (1432)}.
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d) The group of y;=z,z,+2,z;, derived from G, by interchanging z,
and z,, is:

G ={I, (14), (32), (14)(32), (13)(42), (12)(43), (1342), (1243)}.
¢) The function z,+z,—z;—z, belongs to the group
Hy={I, (12), (34), (12)(34)}.
Since all the substitutions of H, are contained in the group G;, H, is called
a subgroup of G;. But H, is not a subgroup of Gy'.
) The function ¢=y, + wy,+w?y;, or
¢=2,2,+ 237+ (2,23 + T,7,) + 0} (2,24 + T,Ty),

remains unaltered by the substitutions which leave y,, y,, and y, simulta-
neously unaltered and by no other substitutions. Hence the group of ¢ is
composed of the substitutions common to the three groups G, Gy, Gy,
forming their greatest common subgroup:

G={I,r=(12)(34), s=(13)(24), t=(14)(23) }
That these four substitutions form a group may be verified directly:
ri=] s*=I, *=I,
r8=8r=t, rt=Ir=s, st=ts=r.

Hence any two of its substitutions are commutative. This commutative
group G, is therefore a subgroup of G;, Gy, and Gy”.

22. THEOREM. Every substitution can be expressed as a product
of transpositions in vartous ways.

Any substitution can be expressed as a product of cycles on
different letters (§ 18). A single cycle on n letters can be expressed
as a product of n—1 transpositions:

(1234 ...7n)=(12)(13)(14) . . . (1n).

Exampies.  (123)(456) =(12)(13)(45)(46),
(132) =(13)(12) = (12)(23) =(12)(23)(45)(45).

23. TuHEOREM. Of the various decompositions of a given substi-
tution s into a product of transpositions, all contain an even number
of transpositions (whence s 8 called an even substitution), or all
contain an odd number of transpositions (whence s 18 called an odd
substitution).
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A single transposition changes the sign of the alternating
function *
P=(2,— %) (2, —2s) (7, —2,) . . . (2, —Tn)
(T 2)(2,— ) - . . (Ty—n)
“(Zn—y—Zn).

Thus (x,z,) affects only the terms in the first and second lines of
the product, and replaces them by

(23— 2,) (2 — z) (2, — %)) . . . (T,—T)
(@ =) (23— ) . . - (X< Zn).
Hence, if s is the product of an even number of transpositions,
it leaves ¢ unaltered; if s is the product of an odd number of trans-
positions, it changes ¢ into —d¢.
CoroLLARY. The totality of even substitutions on n letters
forms a group, called the alternating group on n letters.
ExampLE 1. The alternating group on 3 letters is (§§ 9, 19)
G ={I, (123), (132)}.
ExampLE 2. The alternating group on 4 letters is (§ 19)
’Gu“) ={I, (12)(34), (13)(24), (14)(23), and the 8 cycles of three letters}.
24. TuEOREM. The order of the alternating group on n letters
ts $-n! -
Denote the distinct even substitutions by

(e) €1y €35 €3y« ooy Cke
Let ¢ be a transposition. Then the products
() al, e, ety ..., el

are all distinct (§ 17) and being odd are all different from the
substitutions (e). Moreover, every odd substitution s occurs in

* It may be expressed as the determinant

1 2 22 ...z
1 23 22 ... 2!

1 5,“ ;,uz' . ;c':t.—l
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the set (o), since st is even and hence identical with a certain e;,
so that

s=ei " l=¢f.
Hence the 2k substitutions given by (e¢) and (o) furnish all the n!
substitutions on n letters without repetitions. Hence k=4%-n!

25. As shown in § 21, every rational function $(z,, ..., )
belongs to a certain group G of substitutions on «,, . . ., Z,, namely,
is unaltered by the substitutions of G and changed by all other
substitutions on z,,...,z,. We next prove the inverse theorem:

Given a group G of substitutions on z,, . . ., Z,, we can construct
a rational function ¢(z,, ... ,z,) belonging to G.

Let G={a=1,b,¢,..., 1} and consider the function

V=mz,+mzx,+ ... +Mp2n,
where m,, m,, ..., m, are all distinct. Then V is an nlvalued
function. Applying to V the substitutions of G, we get
27 Vo=V, V..., Vi

all of which are distinct. Applying to (27) any substitution ¢
of G, we get
(28) Vaor Viey o -+« Vige

These values are a perrautation of the values (27). since ac, be, ... ,lc
all belong to the group G and are all distinet (§ 17). Hence any
symmetric function of V,, Vi,..., V; is unaltered by all the
substitutions of @. By suitable choice of the parameter p, the
symmetric function
$=@—=V)o—Vo)(p—Vo) ... (o—V1)
will be altered by every substitution s not in G. Indeed,
s = (P— Va)(.o_ Vbc)(P— Vca) o (P_ VIc)
is not identical with ¢ since V, is different from V, V3, V., ..., V.
ExampLe 1. For G={I, a=(z,2,x;), b =(z,747;) }, take
V =2, + wz,+ w’z;.
Then Va=w?V, Vp=wV. Hence
V4+Vat+Vo=(1+w+0?)V=0, VVa+VVs+VaVp=0, VVaVp=V".
The function V* belongs to @ (see Ex. 1, § 21).
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ExampLE 2. For G ={I, c=(z,z,)}, take the V of Ex. 1. Then
VVe=(2,+ wx; + 0*zs) (2, + 0z + w*x;) =c,*—3c,
is unaltered by all six substitutions on the three letters. But
$=(0—V)(o—Vo) =p*— (22, —z,—z)p+ ¢, -3¢,

for p0, is changed by every substitution on the letters not in G. Hence,
for any p#0, ¢ belongs to G.

EXERCISES.
Ex. 1. If wis a primitive uth root of unity,
(m+ oty oz + ... Fob—lzg)n

belongs to the cyclic group {I, a, a? ..., a*—'}, where a=(z, z,...zy).

Ex. 2. Taking V =z,+z,—2,—iz, and s=(z,7.)(z5z,), show that
VVe=1(x;—x)?+%(x;—x,)? belongs to Gy of § 21, that V+V, belongs to H,
of § 21, while (0—V)(p—V,), for p>0, belongs to thesgroup {I, s}

Ex 3. Taking V =z,+iz,—x;—iz, and ¢=(z,z,)(z,x,), show that VV,
belongs to the group {I, t}

Ex. 4. If a,, a,, .. ., an are any distinct numbers, the function

V=2%2,%.. Za%

isnlvalued, and V+ Vp+Ve+ ... + Vi belongs to {I,b,¢c,. .,I.
Ex. 5. If ¢ belongs to G and ¢’ belongs to G, constants a and a’ exist
such that a¢+a’¢’ belongs to the greatest common subgroup of G and @',

26. TuEOREM. The order of a subgroup ts a divisor of the order
¢f the group.

Consider a group G of order N and a subgroup H composed of
the substitutions

(29) hy=I, by, hy...., hp.

If G contains no further substitutions. N=P, and the theorem
is true. Let next G contain a substitution g, not in H. Then
G contains the products

(30) 925 hoGas BeGas « « « 5 hpgs.

The latter are all distinet (§ 17), and all different from the sub-
stitutions (29), since hag,=hs requires that g,=hs'hg=a sub-
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stitution of H contrary to hypothesis. Hence the substitutions
(29) and (30) give 2P distinct substitutions of G. If there are
no other substitutions in G, N=2P and the theorem is true. Let
next G contain a substitution g; not in one of the sets (29) and (30).
Then G contains

(31) 9o haGs: kg - - -  hpGs.

As before, the ;substitutions (31) are all distinct and all different
from the substitutions (29). Moreover, they are all different from
the substitutions (30), since hag,=hpg, requires that gy=~h: 'hyg,
shall belong to the set (30), contrary to hypothesis. We now
have 3P distinct substitutions of G. Either N=3P or else (
contains a substitution g, not in one of the sets (29), (30) (31®
In the latter case, G contains the products

(32) 1P X 0 X N heg,,

all of which are distinct and all different from the substitutions
(29), (30), (31), so that we have 4P distinct substitutions. Pro-
ceeding in this way, we finally reach a last set of P substitutions

(33) gvs hogv, he@s, - - ., hpgs,
since the order of H is finite (§ 9). Hence N=vP.
DerFiniTION. The number v=£ is called the index of @

P
the subgroup H under G, and the relation is exhibited in Y )l.[
the adjacent scheme.

CoroLLARY. The order of any group H of substitutions on n
letters is a divisor of n! Indeed H is a subgroup of the symmetric
group G,, on n letters.

27. THEOREM. The period of any substitution contained in a
group G of order N is a divisor of N.

If the group G contains a substitution s of period P, it contains
the cyclic subgroup H of order P:

H={s, 8% ...,sP71 sP=T}.

Then, by § 26, P is a divisor of N.
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CoRrOLLARY.* If the order N of a group G is a prime number,
G is a cyclic group composed of the first N powers of a substitution
of period N.

28. As shown in § 26, the N substitutions of a group @ can
be arranged in a rectangular array with the substitutions of any
subgroup H in the first row:

h=Ih, hy ... hp
9 hg Mgy ... heg,
9 Mhgs hygs ... hpg,
gy hzgv hggv cee hpgu
Here ¢,=1, 95, 95, ..., g» are called the right-hand multipliers.
They may be chosen in various ways: g, is any substitution of @
not in the first row; g, any substitution of G not in the first and
second rows; g, any substitution of G not in the first, second, and
third rows; ete. '
Similarly, a rectangular array for the substitutions of G' may
be formed by employing left-hand multipliers.
29. THEOREM. If ¢ is a rational function of z,. . .., z, belonging
to a subgroup H of index v under G, then ¢ is v-valued under G.
Apply to ¢ all the N substitutions of G arranged in a rect-
angular array, as in § 28. All the substitutions belonging to a
row give the same value since

‘ﬁn,ga = (‘/’h, )a,, = (Sl’)a, = ¢'a¢-

Hence there result at most v values. But, if

¢aa=¢’a', B<a),

then ¢,¢,;‘=¢. so that g.g5! is a substitution h; leaving ¢

* This result is a special case of the following theorems, proved in any
treatise on groups:

If the order of a group is divisible by a prime number p, the group contains
a subgroup of order p (Cauchy)

If pt is the highest power of the prime number p dividing the order of a
group, the group contains a subgroup of order p* (Sylow).
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unaltered. Hence ga=h.g,, contrary to the assumption made in
forming the rectangular array.

DerintTiON. The v distinet functions ¢, ¢g, ¢g,, ..., ¢,, are
called the conjugate values of ¢ under the group G.

Taking G to be the symmetric group G, we obtain Lagrange’s
result:

The number of distinct values which a rational function of n
letters takes when operated on by all n! substitutions is a divisor of n!

ExampLE 1. To find the distinct conjugate values of the functions
d=(z,—z)) (2, —2)(23—)), 0=(2,+w2,+0'z)*

under the symmetric group Gy on 3 letters, we note that they belong to the
subgroup Gy={I, a =(x,2,x;), b=(xzsz,)}, as remarked in § 21, Ex. 1. The
rectangular array and the conjugate values are:

' I’ a=(-’”.1‘21'3)- b =("’1’"312) 0
c=(zxy), ac=(zg), be=(zz) 0c

ExampLe 2. To obtain the conjugate values of z,z,+z., under the
symmetric group G, on 4 letters, we rearrange the results of Exs. 4, 5, 6,
page 14, and exhibit a rectangular array of the substitutions of G,, with
those of Gy in the first row:

I,  (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)
(234), (1342), (23), (132), (143), (124), (14), (1243)
(243), (1432), (29), (142), (123), (134), (1234), (13),

4
—4

%3+ T2,
,%y + T2
,%4+ LTy

30. TuEOREM. The p distinct values which a rational function
¢z, . . ., ) takes when operated on by all n! substitutions are the
roots of an equation of degree p whose coefficients are rational functions
of the elementary symmetric functions '

(34) =z +2+.. . 42n, =L+ T Tst.. . FTnyTnyeee,
Cn=Z,Z5 . . . Tn.
Let the p distinct values of ¢(z,, . .., z,) be designated
(35) =0 P Py o.oy o

They are the roots of an equation (y—¢)(y—¢s) ... (Y—¢p)=0
whose coefficients ¢, + @, +.. .+ . ..., L PP, . .. ¢, are symmetric
functions of ¢,, @, ..., . After proving that they are symmetric
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functions of z,, z,, . . ., £, we may conclude (Appendix) that they
are rational functions of the expressions (34). We have therefore
only to prove that any substitution s on z,, ..., z, merely
interchanges the functions (35). Let s replace the functions
(35) by respectively

(36) Bl Bo Por - os o

In the first place, each ¢’ is identical with a function (35).
For, there exists a substitution ¢ which replaces ¢, by ¢,, and s
replaces @; by ¢;, so that ts replaces ¢, by ¢;. Hence there is a
substitution on z.,...,Z, which replaces ¢, by ¢’ so that ¢/
occurs in the set (35).

In the second place, the functions (36) are all distinet. For,
if ¢i=¢j}, we obtain, upon applying the substitution s~, ¢;=¢y
contrary to assumption.

DeriNiTION. The equation having the roots (35) is called the
resolvent equation for ¢.

Compare the solution of the general cubic (§ 3) and general quartic (§ 5).

31. LAGRANGE’Ss THEOREM. Ifa rational function ¢(z,, ..., Ts)
remains unaltered by all the substitutions which leave another rational
function ¢(z,, z,, ..., x,) unaltered, then ¢ is a rational function
ofpandc,c, ..., cCn.

The function ¢ belongs to a certain group

H={h=I,hy ks, ..., hp}.

Let v be the index of H under the symmetric group G,;. Consider
a rectangular array of the substitutions of G, with those of H
in the first row:

I hy ...hp | ¢ =¢| ¢=¢
92 oGy <. heg, | by =0¢s | =0,

g hgy ... hegy | dg,=¢, | dg,=¢,

Then ¢,, ¢, ..., ¢, are all distinct (§ 29); but ¢,, ¢,,..., ¢, need
not be distinct since ¢ belongs to a group G which may be larger
than H. Under any substitution s on z,, z,, . . ., Z,, the functions
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i ¢« .. , ¢, are merely permuted (§ 30). Moreover, if s replaces
¢; by ¢, it replaces ¢; by ¢, Set
g =(—¢)t—¢)) ... (t—¢s),

A(t)ag(t)( “""/' + 95;,, +t—?:bv)’

so that A{¢) is an integral function of degree v—1 in ¢. Since
A(f) remains unaltered under every substitution s, its coefficients
are rational symmetric functions of z,, z,,..., 2, and hence are
rational functions of the expressions (34). Taking ¢,=¢ for ¢,
we get * .

A(ﬁ"x)“(‘/’n“‘ﬁz)(‘/’x_ﬁ[’a) (=) =9 (d) ‘}l’u

@7 $= ;((¢¢)>

The theorem may be given the convenient symbolic form:

G:¢$
If | , then ¢=Rat. Func. (¢; ¢;,. .., Cs).
H:¢ .

Taking first H=G and next H=1I, we obtain the corollaries:

CoroLLARY 1. If two rational functions belong to the same group,
either 18 a ralional function of the other and c,, ¢,, . . . , Cp.

CoROLLARY 2. Every rational function of z,, Z,, ..., Zn 1S @
rational function of any n'l-valued function (such as V of § 25) and
€1y CyeeeyCne

ExaMpLE 1. The functions 4 and 6 of Ex. 1, § 29, belong to the same
group G‘” We may therefore express 4 in terms of 6. By §§ 2, 3,

BY/ =8 4=z, + w0z (ay oz +otayt =G0,

The expression for 6=¢,® in terms of 4 is given in § 34 below.

* The relation (37) is valid aslong as z,, ,, . . ., z» denote indeterminate
quantities, since ¢,, ..., ¢» are algebraically distinct so that ¢’(¢) is not
identically zero. In case special values are assigned to z,, ..., z» such that
two or more of the functions ¢y, ..., ¢, become numerically equal, then
g'(¢) =0, and ¢ is not a rational function of ¢, ¢,, ..., cn. In this case, see
Lagrange, (uvres, vol. 3, pp. 374-388; Serret, Algébre, 11, pp. 434-441.
But this subject is considered in Part II.

]
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ExampLe 2. The function y,=zz,+z, belongs to the group G, and
t=ux,+x,—;—x, belongs to the subgroup H, (§ 21). Hence y, is a rational
function of ¢ and the coefficients a, b, ¢, d of the equation whose roots are
zl, z); 1., Z,. By § 5; yl=*(t2_a2+4b)'

ExampLE 3. The function ¢,=z,+wz,+w?z; has 3!=6 values. Hence
every rational function of z,, z,, z, is a rational function of ¢, and ¢, ¢, c;.
The expressions for z,, z;, zy themselves follow from the formule (11) of § 3.

Thus
.
z'-}(c.+¢.+ = ¢l3°’).
G:¢ )
82. THEOREM. If vI|{ , then ¢ salisfies an equation of degree v
Y

whose coeffictents are rational functions of ¢, ¢, ..., ca.
Asin § 29, we consider the v conjugate values of ¢ under @G;

) boyy bop o5 Yo,

Under any substitution of the group G, these values are merely
permuted amongst themselves. Hence any symmetric function
of them is unaltered under every substitution of G and therefore,
by Lagrange’s Theorem, is a rational function of ¢, ¢, ..., cu.
The same is therefore true of the coefficients of the equation

(w—@)(w—¢y,) . . . (W—¢y,)=0.



CHAPTER 1IV.
THE GENERAL EQUATION FROM THE GROUP STANDPOINT.

33. In the light of the preceding theorems, we now reconsider
Cardan’s solution (§ 2) of the reduced cubic equation y*+py+4q=0.
The determination of its roots ¥,, ¥,, ¥, depends upon the chain
of resolvent equations:

A3
g=L4 2, where 6= Y20~ ) ts-w(0-9);

P=—2+¢, where 2=3(y, +oy,+o);

e B g P e, @D
h=2—3, Y=wi=7, Y=w2—g-

Initially given are the elementary symmetric functions
Y+%+4=0, ¥%h+%Yt+YYh=P —YYYs=9,
belonging to the symmetric group G, on y,, ¥, ¥s. Solving a
quadratic resolvent equation, we find the two-valued function £,
which belongs to the subgroup G, of G, (§ 21, Ex. 1). Solving
next a cubic resolvent equation, we find the six-valued function z,
which belongs to the subgroup G, of G (§ 21, Ex. 2). Theny,, ¥,, ¥,
are rational functions of 2, p, g, since they belong to the respective

groups

G'=1I, (y)}, G'=1{I, (v}, G'"=1{I, (y92)},
each containing G, (also direct from § 31, Cor. 2). From the
group standpoint, the solution is therefore expressed by the scheme:

Gy:p, q
2
3 Is:e Gy, Gy, |G2m:ys
G,:2 é,:z 122 G,z

7
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84. The same method leads to a solution of the general cubic
2’ —cx?+cz—cy=0.
To the symmetric group G, on z,, ,, , belong the functions
i+, +23=0;, T+ Tyt TTy=0C, TyTTy=Cy
To the subgroup Gy={I, (z,2,2,), (,2,%,)} belongs the function
4= (2,—2,)(2,— 23) (23— 1,).
In view of Ex. 3, page 4, 4 is a root of the binomial resolvent
A2 =c,%c,® + 18¢,c,0s— 4c,° — 4c, 3¢y — 27c,2.
By § 3 and § 2, we have for ¢, =2, + w2, + Wy, § =, + W*T, + Wy,
¢ +dli= 2¢,°—9c,c,+27c,,
O —dd= _3\/_—3(‘”1_‘”2)(“’2_%)(%—37:) =-3vV-34.
s 9 3=%(2¢,3—9¢,c,+27¢,—3V =3 4),
&3=3(2¢,*—9¢c,c;+27¢c,+ 3V =3 4).
After determining * ¢, by extracting a cube root, the value of
duis (§ 3)
. d=(c,>—3c)) + ¢
Then, asin § 3, x,, 2,, z; are rationally expressible in terms of ¢, :
n=¥c,+¢+4), T,=¥cto¥+wd), z=3(c,twd +u’).
35. The solution given in § 5 of the general quartic equation

(12) : z'+ax®+bz?+cx+d=0
may be exhibited from the group standpoint by the scheme:
Gyuia, b, ¢, d

Gy Yy=2%+ 257, =(2,+2,—7,—2)°
/H4 ity 2T, T3 tT,, 207, TyT,
H,:z,—z, H:zy—z,
Here H,={I, (z,z,)}, Hy'={I, (z,x,)}, Gy and H, being given in § 21.

* For another method see Ex. 4, page 41.
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36. Lagrange’s second solution of (12) is based upon the direct
computation of the function z,+z,—z,—s,. Its six conjugate
values under G, are +¢,, +t,, +t, where

=212~ 2= L=+ 23— 2,— %, l=2,12,—1,—7
The resolvent sextic is therefore

* (# =6 =)= 7) =o.
Its coefficients may be computed * easily by observing that
t2=a’—4b+4y,, t,’=a’—4b+4y,, t’=a*—4b+4y,,
as follows from § 5. Using the results there established, we get
82+ t,2+ £, =3a® — 12b+ 4(y, + y,+ y,) = 30— 8b,
tl’t,’-i- t,’t,’+ t,’t,’ =3(a*—4b)*+ 8(a®—4b)(y,+ Y+ y,)

+ 16(%,Y,+ Y15+ ¥,Ys)
=3a*—16a?b+ 16b?+ 16ac— 64d,

tn’tzztaz =(a?—4b)*+4(a*—4b)*(y,+y,+ Ys)

+ 16(a? — 4b)(y,y,+ ¥s¥s+ ¥.¥s) + 64y,9,9,
= {8c+a(a?—4b)}2.

The resolvent becomes a cubic equation upon setting t?>=g. De-
note its roots by a,=t?, 0,=t,?2, g,=t2. Then

zl+xz—:v,—:c‘=\/c7;, T+, —z,—r,=Va,

T+ 2,—2,— 2=V, z,+7,+2,+1,=—a.
From these we get
(38) % H=H -0+ Vot Vot Vay), 7, =H—a+ Vo, ~V5,-V3,),

z,=H—a—V5,+V0,~Va), z,=H(—a—Ve,—V,+ V).
The signs of Vo, and \/c—r; may be chosen arbitrarily, while that
of Vg, follows from
(39) Vo,Vo,Va,=ttt,=4ab—8c—ad.
Indeed, we may determine the sign in
Lt t,= % {8c+ a(a®—4b)}

* Compare Ex. 5, page 41.
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by taking z,=1, r,=2,=2,=0, whence a= —1, b=c=d=0, t,t,t,=1.

87. The following solution of the quartic is of greater interest
as it leads directly to a 24-valued function V, in terms of which
all the roots are expressed rationally. As in § 5, we determine
¥, and ¢, belonging to G and H, respectively, by solving a cubic
and a quadratic equation. To the subgroup

G, =11, (zz,)(z4z,)}
of H, belongs the function ¢=V?, while to G, belongs V, where
V=(x,—,)+uz,—1,).

Under H,, ¢ takes a second value ¢ ={(z,—x,)—1(zs—2z,)}%

Then
22— (¢+ )zt ¢ =0

is the resolvent equation for ¢. But

¢ ={(z,—2,)’+ (7,— )"} = {a® - 2b—2y,}*=1{3a® - 8b—1?}?,
g+ =2{(z;—2,)’— (2,— )’} =2(2, — 2, + 2, — 2) (2, — 7, — T, + 7,)

=2(4ab—8c—a®) +t,
in view of (39). After finding ¢ and ¢,, we get
V=NV¢. V=V =(z,—1,)—i(z,—2,),

(40) V,=%(3a>—8b—t*)+V.
Having the four functions ¢, V, V,, and z,+ z,+ 2,4+ z,= —a, we get
(41) {x1=*(_a+t+ V+V1)7 xz=i(_a+t_V_V1)7
r,=H—a—t—iV+iV,), z,=H—-a—t+iV—-1iV)).

88. The solution of the general cubic (§ 34) and the solution of
the general quartic (§ 37) each consists essentially in finding the
value of a function which is altered by every substitution on the
roots and which therefore belongs to the identity group G,. Like-
wise, the general equation of degree n,

(42) Zr—c a4 car i — ...+ (—1)"c, =0,

could be completely solved if we could determine one value of a
function belonging to the group G,; for example,
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(43) V=mz,+mzx,+ ... +myz,  (m’salldistinct).

In fact, each z; is a rational function of V, ¢,,..., c, by § 31. For
the cubic and quartic, the scheme for determmmg such a function
V was as follows:

Ge:cyy G,y Cy Gyia,b,c,d
3 50 (2, + 0z, + wig)® 2(7,, 1T, X, + X,
Gy 7+ wr, + Wiz, 2H,:x,+x2—x,—x‘
G, (2, — 2, + 1w, —1z,)?
Gz, — T,z — iz,
The same plan of solution applied to (42) gives the following scheme ;

/IGM:C” CayeeeyCn

}ll:f, E+R(cy... )8! +...=0
@
Il{:"b PP+ RS, €y e ooy )L L. =0
JIW g4
p
GV, Vet R . v, c)VP—iet. .. =0

Such resolvent equations would exist in view of the theorem of
§ 32. In case the resolvent equations were all binomial, the
funetion V (and hence z,,..., z,) would be found by the extraction
of roots of known quantities, so that the equation would be solvable
by radicals. We may limit the discussion to binomial equations
of prime degree, since 22¢=A may be replaced by the chain of
equations 2#=u, u?=A. The following question therefore arises:

G:¢
Ifv A , when will the resolvent equation for ¢ take the form

(44) ¢v=Rat. Func. (¢, ¢, ¢ ¢+, Cn)-
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Since v is assumed to be prime, there exists a primitive vth root
of unity, namely a number w having the properties

wr=1, wk1 for any positive integer k< v.
Hencc the roots of (44) may be written

(45) ¢, o, 0%, ..., 07N,

Let ¢,=¢, ¢,, ..., ¢, denote the conjugate functions to ¢ under G

(their number is v by § 29). Now ¢ belongs to the group H by

hypothesis. Let ¢, belong to the group H,, ¢s to H,, ..., ¢, toH,.

Since the roots (45) differ only by constant factors, they belong

to the same group. Hence a necessary condition is that
H=H.=H,=...=H,.

89. The first problem is to determine the group to which belongs
the function ¢, into which ¢ is changed by a substitution s, when
it is given that ¢ belongs to the group

H={h=1I, h,, ..., hp}.
If a substitution ¢ leaves ¢, unaltered, so that ¢,,=¢,, then
Poos—t={ss-1=¢.
Hence sos~'=h, where h is a substitution of H. Then
o=s8""hs.
Inversely, every substitution s~'hs leaves ¢, unaltered. Hence
¢, belongs to the group
{s™hs=1I, 87*hs,..., s'hps},
which will be designated s~*Hs. 'We may state the theorem:
I} ¢ belongs to the subgroup H of index v under G, the conjugates
¢, ¢02’ LRRY] ¢,an
of ¢ under G, belong to the respective groups
H, g,"'Hg,, ..., 9.7 Hg..
DeriNiTIONS. The latter groups are said to form a set of con-

jugate subgroups of G.. In case they are all identical, H is called
a self-conjugate subgroup of G (or an invariant subgroup of G).
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Hence a necessary condition that the general equation of
degree n shall be solvable by radicals under the plan of solution
proposed in § 38 is that each group in the series shall be a self-
conjugate subgroup of prime index under the preceding group.

Note that the group G,={I} is self-conjugate under every
group G since g—Ig=1.

ExamrLE 1. Let G be the symmetric group G; on 3 letters and let H
be the group Gy={I, (z,2,x;), (z,z57;)}. Let g,=(x,z;). Then

¢ =(z,+ w0z, +0'z,), ‘ﬁvz =(2,+ 0’1, +oz;)*
form a set of conjugate functions under G. Now ¢ belongs to H and ¢,
belongs to the group {I, (z,z;r,), (x,2,75)}, whose substitutions are derived
from those of H by interchanging the letters x, and z,, since that interchange
replaces ¢ by ¢p,. 'To proceed by the general method, we would compute
(2273) 7N (@) (T%s) = (2425%5),  (%3T) ~H(2123%3) (25T,) = (2,2:T5).

By either method we find ‘that the group of ¢ and ¢q, are identical, so that
G, is eelf-conjugate under Gy Also, G, is self-conjugate under G;. Hence
the necessary condition that the general cubic shall be solvable by radicals
is satisfied.

ExampLE 2. Consider the conjugate values z,, ,, z, of z; under Gy

I, (;25) £
9:.=(@%;), (2,259, =(2,2,%5) | T
gs=(z,3), (T)gs=(T,2:7,) | Ty
Hence H = {I, (z,z;)} is not self-conjugate under G,. Here
g, Hyy =1, (zzg) } = H, g5~'Hgy={I, (z,z,) | = H.

40. DerFiniTIONS. Two substitutions @ and a’ of a group G
are called conjugate under @ if there exists a substitution g belong-
ing to G such that g~'ag=a’. Then a’ is called the transform
of a by g.

There is a simple method of finding g~'ag without performing
the actual multiplication. Suppose first that a is a circular sub-
stitution, say a=(afyd), while g is any substitution, say

o=(Z505:0 %)

il (CET XY g (BT
cot= (FET5 ) =Rl R e k)
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Hence g~lag=(d’f’y’d") may be obtained by applying the substi-
tution g to the letters of the cycle a=(afyd).

Let next a=a,a,a,. .., where a,, a,,... are circular substitu-
tions. Then

g7lag=g"'a,g-97'ag-gag . ..
Hence g~—'ag is obtained by applying g within the eycles of a.
Thus (123)—1-(12)(34) - (123) =(23)(14).

CoroLLARY. Since any substitution transforms an even sub-
stitution into an even substitution, the alternating group G;n,is a
self-conjugate subgroup of the symmetric group Gh..

41. TuEOREM. Of the following groups on four letlers:

Gy Gy, G=11, (12)(34), (13)(24), (14)(23)},
G,=1{I, (12)34)}, G,={I},

each 1s a self-conjugate subgroup of (he preceding group.

By the Corollary of § 40, Gy, is self-conjugate under G.,. To
show that G, is self-conjugate under G, (as well as under G,,),
we observe that G, contains all the substitutions of the type (a8)(yd),
while the latter is transformed into a substitution of the form
(a’8)(y'®¥') by any given substitution on four letters. That G,
is self-conjugate under G, follows from the fact that (12)(34),
(13)(24), (14)(23) all transform (12)(34) into itself.*

42, The necessary condition (§39) that the general quartic
z*+ax’+br’+cx+d=0

shall be solvable by radicals is satisfied in view of the preceding
theorem. We proceed to determine a chain of binomial resolvent
equations of prime degree which leads to a 24-valued function

V=2—2,+1zs—1,,

* This also follows from § 21, Ex. (f), since rs =sr gives s—rs=7r.
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in terms of which the roots ,, z,, 5, «, are rationally expressible.
Let

(20) D=L+ Ty Y=+ BT Ys=T,Te+ 2%
asin § 4. The scheme for the solution is the following:;
Gy:a, b, ¢, d

-

3 1} d = (2= 25) (% — 23) (%, = ) (0= 2,) (2, — 2) (% — 2,)
2G¢ (A=Yt wy,+w,
91 14 =@+ (2 +2,—2y—7,)
1 1V =2, — 2, iy —iz,
Referring to formulee (22), (23), (24) of § 7, and setting P=—41,
Q=16J, we get

4=16V13-21J3,
ac E bd ¢ a*d abc b*

Hence 4 is a root of the binomial resolvent 4%=256(1%—27J2).
The resolvent for ¢, is the binomial equation

(p— b)) (P—wd))(P—w’P,) =P*—,*=0.
By Lagrange’s Theorem, ¢,® is a rational function of 4, @, b, ¢, d.
To determine this function, set ¢,=y, + w*,+wys. Then (§§ 2, 7)
$:*— b =3V =3t —¥) (Yo—Ys) (Ya—¥) = —3V =3 4.
"+ ¢,°=2(y,*+¥,° +¥5°) + 12,9595+ 3(w + )7,

where 0=y,",+y,," + ¥ *Y. ¥’ +¥.*Ys+Yy,* satisfies the rela-
tions

(YY) Y, + Y Y+ Yls) =0+ 3y YsYs

U +Y.+Ys)*=30+6u,%ys + ¥ +,° + ¥s*.

o Pl b0 =2y, +y,+ys)* — 9y + Yot Y)Y+ Vil YaYs) + 279,99,
=2b*—9b(ac—4d) +27(c*+ a*d—4bd) = —432J ,
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upon applying the relationsin § 5. Hence
O, =43V —-34-216J.

In view of Lagrange’s Theorem, y,, y,, and y, are rational functions
of ¢,. These functions may be determined as follows:

61 P=9>+ 4.+ ys* + (0 +0*) (Y, Y+ Y,Ys +YaYs)
=Y+ Y2+ Ys)*— 3 Ya+Y1Ys T+ Y2Ys)
=b?—3ac+12d=H.

H
From y+y,+y=b, Y+wyp+o’ys=¢, ¥+o*,+wy,=1,
&

y,=§(b+¢l+%), y,=§,(b+w=¢l+”’?f’), ya=i(b+a'¢1+9g;’)-

Setting ¢=z,+x,—z;—=z,, we obtain for A=¢,/t the binomial
resolvent

P=gi+(—tb+dy,),
upon replacing ¢? by its value given in § 5. Next, we have (§ 37)

V= (=) =)+ 200 —) )
=B i)

=i(4ab—8c-a') +3V3 (¢1_11).
¢1 ¢l

The values of z,, &,, %;, z, are then given by (41) in connection

with (40).

SERIES OF COMPOSITION OF THE SYMMETRIC GROUP ON n LETTERS.

43. DerFiNiTIONS. Let a given group G have a maximal self-
conjugate subgroup H, namely, a self-conjugate subgroup of @
which is not contained in a larger self-conjugate subgroup of G.
Let H have a maximal self-conjugate subgroup K. Such a series
of groups, terminating with the identity group G,

G, H, K' eeey M’ G”
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in which each group is a maximal self-conjugate subgroup of the
preceding group, forms a series of composition of G. The num-
bers A (the index of H under G), p (the index of K under H), ...,
p (the index of G; under M) are called the factors of composition
of G.

If the series is composed of the groups G' and G, alone, the
group G is called simple. Thus a simple group is one containing
no self-conjugate subgroup other than itself and the identity group.
A group which is not simple is called a composite group.

Examrre 1. For the symmetric group on 3 letters, a series of composition

i8 Gy, G;, G, (see Ex. 1, § 39). Since the indices 2, 3 are prime numbers, the
self-conjugate subgroups are maximal (see § 26).

ExaMPLE 2. A series of composition of the symmetric group on 4 letters
is Gy, Gy, Gy, Gy, Gy (§ 41), the indices being prime numbers.

ExaMpLE 3. A cyclic group of prime order is a simple group (§ 26).

44. Lemma. If a group on n letters contains all circular sub-
slitutions on 3 of the n letters, it s either the symmetric group Gy,
or else the alternating group Gin:.

It is required to show that every even substitution s can be
expressed as a product of circular substitutions on 3 letters. Let

s=bly...by—ibty, .

" where ¢,...,1, are transpositions (§§ 22, 23), and ¢,t, If ¢,
and ¢, have one letter in common, then

tit,=(aB)(ar) =(afy).

If, however, , and ¢, have no letter in common, then

tit;=(a3)(y0) = (aB)(ay)(ra)(yd) = (afy)(rad).

Similarly, £, is either the identity or else equivalent to one cycle
on 3 letters or to a product of two such cycles.

Hence the group contains all even substitutions on the n letters.

45. TurorEM. The symmetric group on m>4 letters contains
no self-conjugate subgroup besides 1tsclf, the identity @,, and the
alternating group Giyny, so that the latter is the only maximal self-
conjugale subgroup of G (n>4).
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That the alternating group is self-conjugate under the symmetric
group was shown in § 40.

Let G, have a self-conjugate subgroup H which contains a
substitution s not the identity I.

Suppose first that s contains cycles of more than 2 letters:

s=(abc...d)(ef...)...

Let a, B, 3 be any three of the n letters and 7, ¢,..., ¢,...the
remaining n—3 letters. Then H contains the substitutions

8=(afy...8ed...)ee., 8$=ar...d(d...)...,

the letters indicated by dots in s, being the same as the correspond-
ing letters in s,. The fact that s, (and likewise s;) belongs to H

follows since
_(abc... def...
7= afBr... 0ed...

is a substitution on the n letters which transforms s into s, (§ 40),
while any substitution ¢ of Gy, transforms a substitution s of the
self-conjugate subgroup H into a substitution belonging to H
(§ 39). Since H is a group, it contains the product s,s,~*, which
reduces to (afd). Hence H contains a circular substitution on
3 letters chosen arbitrarily from the n letters. Hence H is either
Gar or Gy (§ 44).

Suppose next that s contains only transpositions and at least
two transpositions. The case s=(ab)(ac) ...=(abc) ... has been
treated. Let therefore

s=(ab)(cd)(ef) . . . (im).

Let a, B3, 7, & be any four of the n letters, and ¢, ¢, ..., A, p the
others. Then the self-conjugate subgroup H contains the sub-
stitutions

8,=(af)(70)(ep) . . . (A1), 8,=(ar)(BO)(ep) . .. (A)
and therefore also the product s,s,~, which reduces to (ad)(3y).
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Since n>4, there is a letter o different from a, 3, y, 3. Hence H
contains (ap)(8y) and therefore the product
(a0)(Br) - (ar)(Br)=(ade).

It follows as before that H is either Gy, or Gip,.

Suppose finally that s=(ab). Then the self-conjugate subgroup
H contains every transposition, so that H=G,,.

46. THEOREM. The alternating group on n>4 letters is simple.

Let Gyn: have a self-conjugate subgroup H larger than the
identity group G,. Of the substitutions of H different from the
identical substitution I, consider those which affect the least
number of letters. All the cycles of any one of them must contain
the same number of letters; otherwise a suitable power would
affect fewer letters without reducing to the identity I. Again,
none of these substitutions contains more than 3 letters in any
cycle. For, if H contains

§=(12342...0)(...) ...,
then H contains its transform by the even substitution o=(234);
8,=0"180=(13421...0)(...) ...,

where the dots indicate the same letters as in s. Hence H would
contain
8s,71=(142),
affecting fewer letters than does s. Finally, none of the substi-
tutions in question contain more than a single cycle. For, if H
contains either ¢ or s, where
t=(12)(34) ..., s=(123)(456)...,

it would contain the transform of one of them by the even substi-
tution x=(125) and consequently either ¢-x~'x or s=!-x~ls«.
The latter leaves 4 unaltered and affects no letter not contained
in s; the former leaves 3 and 4 unaltered and affects but a single
letter 5 not contained in {. In either case, there would be a reduc-
tion in the number of letters affected.

The substitutions, different from I, which affect the least num-
ber of letters are therefore of one of the types (ab), (abc). The
former is excluded as it is odd. Hence H contains a substitution
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(abc). Let a, B, y be any three of the n letters, d, ¢,..., v the
others. Then (abc) is transformed into (afy) by either of the
substitutions

7=<abcde...n> 8=(abcde...n)

afBrde... v aBred...vp?

where the dots in r indicate the same letters asin s. Since r=s(de¢),
one of the substitutions r, s is even and hence in G;,:.. Hence,
for n>4, H contains all the circular substitutions on 3 of the »
letters, so that H=Gj,,.

47. It follows from the two preceding theorems that, for n>4,
there i3 a single series of composition of the symmetric group on 7
letters : Gpi, Gyn;, G, The theorem holds also for n=3, since
the only subgroup of G, of order 3 is G,, while the three subgroups
of G, of order 2 are not self-conjugate (§ 39, Ex. 2). The case
n=4 is exceptional, since Gy, contains the self-conjugate subgroup
G, (§41).

Ezxcept for n=4, the factors of composition of the symmetric group
on n letters are 2 and in).

48, It was proposed in § 38 to solve the general equation of
degree n by means of a chain of binomial resolvent equations of
prime degrees such that a root of each is expressible as a rational
function of the roots z,, «,, ..., z, of that general equation. As
shown in §§ 38-39, a necessary condition is the existence of a
series of groups

(46) G, H,K,...,M, G,

each a self-conjugate subgroup of prime index under the preceding
group. In the language of § 43, this condition requires that Gy,
shall have a series of composition (46) with the factors of com-
position all prime. By § 47, this condition is not satisfied if n55,
since #n!is then not prime. But the condition is satisfied if n=3
or if n=4 (§ 39, Ex. 1; § 41). Under the proposed plan of solu-
tion, the general equation of degree n>4 is therefore not solvable
by radicals, whereas the general cubic and general quartic equa-
tions are solvable by radicals under this plan (§ 34, § 42).
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To complete the proof of the impossibility of the solution by
radicals of the general equation of degree n>4, it remains to show
that the proposed plan is the only possible method. This* was
done by Abel (@&uuvres, vol. 1, page 66) in 1826 by means of the
theorem:

Every equation which is solvable by radicals can be reduced to a
chain of binomial equations of prime degrees whose roots are rational
funetions of the roots of the given equation.

As the direct proof of this proposition from our present stand-
point is quite lengthy, it will be deferred to Part II (see § 94),
where a proof is given in connection with the more general theory
due to Galois.

EXERCISES.

1. If H={L h,, ..., hp} is a subgroup of G of index 2, H is self-conjugate
under G.

Hint: The substitutions of G not in H may be written g, gh,, ..., ghp;
or also g, kg, .. ., hpg. Hence every kg is some ghq, so that for every hg,
g 'hyg is some ha.

2. The group Gy of §21 has the self-conjugate subgroups G,, G,, H,,
C,=1{I, (1324), (12)(34), (1423)}. The only remaining self-conjugate sub-
groups are ¢, and G;.

3. If 2 group contains all the circular substitutions on m+2 letters, it
contains all the circular substitutions on m letters. Hint:
(123..mm+1m+2)(mm—1...32m+21m+1)=(123...m—1m).

4. Compute directly the function ¢,* of § 34 as follows:

95 =2 + 25° + 2y° + 62,2575 + Bw(2, 7, + 7,357 + 3,°75) + 30(21%5* + 7,72 + 22%57)
=28+ 2, + 25" + 62,357 — §(2,°2; + 2,2, + 2073 + 2,7, + 2,72y + 27,7) —§\/——34,
since

2020y — 2,857 + Ty 2yP — Ty Ty + 2,70y — 237 = — (2, —33) (2 —2) (23 —2) = — 4.
Twice the remaining part of ¢,® equals 2¢,*—9c¢,c;+27¢, by § 3.

5. Compute directly the coefficients in § 36 as follows:

4242+t =33%2—23zx;=3a*—8b,
Uty = 2x,° +232,2,2,— Z2,(2* + 252 +2,7)
=232} +232,2,0,— S2; 22} =4ab—8c—a®.

* For the simpler demonstration by Wantzel, see Serret, Algébre, II, 4th
or 5th Edition, p. 512,



SECOND PART.
GALOIS’ THEORY OF ALGEBRAIC EQUATIONS.

CHAPTER V. )

ALGEBRAIC INTRODUCTION TO GALOIS’ THEORY.

49. Differences between Lagrange's and Galois’' Theories. Here-
tofore we have been considering with Lagrange the general equation
of degree n, that is, an equation with independent variables as
coefficients and hence (see page 101) with independent quantities
Zy, Tayes.y Ty 88 rToOts. Hence we have called two rational
functions of the roots equal only when they are identical for all
sets of values of 2, ..., Zp.

But for an equation whose roots are definite constants, we
must consider two rational functions of the roots to be equal when
their numerical values are equal, and it may happen that two
functions of different form have the same numerical value.

Thus the roots of z*+x?+2+1=0 are

T,=—1, Ty=+1i, Tg=—1 (i=V=-1).

Hence the functions z,% z,%, and x, are numerically equal although
of different form. We may not apply to the equation z,%=z,?
the substitution (z,2,x,), since 227z Again, the totality of the
substitutions on the roots which leave the function z,> numerically
unaltered do not form a group, since the substitutions are I, (z,z,),

(z2,), (2,2,2,).
42
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Again, the roots of z*+1=0 are

1t
=)
Hence z,’=¢?=1, z,x,=e?’=7. The functions z,?> and x,z, differ
in form, but are equal numerically. Also, z,? equals z,?, but differs
from z,’ and z,2. The 12 substitutions which leave 2, numerically
unaltered are 1,(23),(24),(34),(234),(243),(13),(13)(24),(213),(413),
(4213), (4132), the first six leaving z,?> formally unaltered and the
last six replacing z,2 by z;>. They do not form a group, since the
product (13)(23) is not one of the set.

There are consequently essential difficulties in passing from
the theory of the general equation to that of special equations.
This important step was made by Galois.*

In rebuilding our theory, special attention must be given to
the nature of the coefficients of the equation under discussion,

Ty=¢, Ty=1e, Ty=—¢, T,=—1¢ (

1) Zr—ca e x" 2 — ... +(—1)"cn=0.

Here c,,...,cn may be definite constants, or independent
variables, or rational functions of other variables. Whereas, in
the Lagrange theory, roots of unity and other constants were
employed without special notice being taken, in the Galois theory,
particular attention is paid to the nature of all new constants
introduced.

- 50. Domain of Rationality. To specify accurately what
shall be understood to be a solution to a given problem, we must
state the nature of the quantities to be allowed to appear in the
solution. For example, we may demand as a solution a real num-

* Bvariste Galois was killed in a duel in 1832 at the age of 21. His chief
memoir was rejected by the French Academy as lacking rigorous proofs.
The night before the duel, he sent to his friend Auguste Chevalier an account
of his work including numerous important theorems without proof. The
sixty pages constituting the collected works of Galois appeared, fifteen years
after they were written, in the Journal de mathématiques (1846), and in
uvres mathématiques D’ EVARISTE GALOIS, avec une introduction pcr
M. Emile Picard, Paris 1897,
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ber or we may demand a positive number; for constructions by
elementary geometry, we may admit square roots, but not higher
roots of arbitrary positive numbers. In the study of a given
equation, we naturally admit into the investigation all the irra-
tionalities appearing in its coefficients; for example, +/3 in con-
sidering z?+(2—5V3)z+2=0. We may agree beforechand to
admit other irrationalities than those appearing in the coefficients.

In a given problem, we are concerned with certain constants
or variables

(2 R,R’ ..., R®

together with all quantities derived from them by a finite number
of additions, subtractions, multiplications, and divisions (the
divisor not being zero). The resulting system of quantities is
called the domain of rationality * (R, R, ..., R®™).

ExampLE 1. The totality of rational numbers forms a domain. It is con-
tained in every domain R. For if w be any element =0 of R, then w+w=1
belongs to R; but from 1 may be derived all integers by addition and sub-
traction, and from these all fractions by division.

ExampLe 2. The numbers a+bi, where i=V'—1, while a and b take
all rational values, form a domain (7). But the numbers a+bi, where a and
b take only integral values do not form a domain.

DEFINITION. An equation whose coefficients are expressible
as rational functions with integral coefficients of the quantities
R',R",..., R® will be said to be algebraically solvable (or solvable
by radicals) with respect to their domain, if its roots can be de-
rived from R’, R”,... by addition, subtraction, multiplication,
division, and extraction of at root of any index, the operations
being applied a finite number of times.

51, The term rational function is used in Galois’ theory only

* Rationalititsbereich (Kronecker), Korper (Weber), Field (Moore).

+ If we admitted the extraction of all the pth roots, we would admit the
knowledge of all the pth roots of unity. This need not be admitted in Galois’
theory (see § 89, Corollary).
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in connection with a domain of rationality B. An integral rational
funetion for R of certain quantities u, », w, . . . is an expression
(3) 2 Cyk... uvuwk ...,
i, k...

where %, 7, k, . . . are positive integers, and each coefficient Cy . . .
is a quantity belonging to R. The quotient of two such functions
(3) is a rational function for R.

Thus, 3u+4/2 is a rational function of % in (v'2), but not in (1).

52. Equality. As remarked in § 49, two expressions involving
only constants are regarded as equal when their numerical values
are the same. Consider two rational functions

d(u,v,w,...), ¢(u,v,w,...)

with coefficients in a domain R=(R’, R”,..., R®). In case R/,
R”,... are all constants, we say that ¢ and ¢ are equal if, for
every set of numerical values u,, v,, w;, ... which u, v, w, ... can
assume, the resulting numerical values of ¢ and ¢ are equal. In
case R, R”,..., R® depend upon certain independent variables
v, r, ..., rm, we say that ¢ and ¢ are equal if, for every set of
numerical values which %, v, w,..., 7, v’,..., ™ may assume,
the resulting numerical values of ¢ and ¢ are equal. When not
equal in this sense, ¢ and ¢ are said to be distinct or different.

For example, if w and v are the roats of z?+2px+1=0, the functions
u+v and —2puv are rational functions in the domain (o), and these rational
functions are equal.

DEFINITION. A rational function ¢(z,, ..., z,) is said to be
unaltered by a substitution 8 on x,,..., z, if the function
Ps(Zy, . . -, q) is equal to ¢ in the sense just explained. For
brevity, we shall often say that ¢ then remains numerically un-
altered by s. If z,, ,,..., 2, are independent variables, as in
Lagrange’s theory, and if ¢, is identically equal to ¢, i.e., for all
values of z,,..., Zn, we say that ¢ remains formally unaltered
by s. For examples, see § 49.

63. The preceding definitions are generalizations of those
employed in the Lagrange theory. The so-called general equation
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of degree n may be viewed as an extreme case of the equations (1)
whose coefficients ¢,, ..., ¢, are rational functions in the domain
(R, R”,...,R®). In fact, since its coefficients are independent
variables belonging to the domain, they may be taken to replace
an equal number of the quantities R’, R”,... defining the do-
main, so that the general equation appears in the form

2+ RV Rz 24 ... + R™ =0,

Its roots are likewise independent variables (p. 101), so that two
rational functions of the roots are equal only when identically equal.

54. Reducibility and irreducibility. An integral rational func-
tion F(x) whose coefficients belong to a domain R is said to be
reducible in R if it can be decomposed into integral rational factors
of lower degree whose coefficients likewise belong to R; irreducible
in R if no such decomposition is possible.*

ExamprE 1. The function z2+1 is reducible in the domain (z) since it

has the factors z+¢ and z+¢, rational in (). But z?+1, which is a rational
function of z in the domain of rational numbers, is irreducible in that domain.

ExaMpLE 2. z*+1is reducible in any domain to which either V' 2,0or vV =2,
li, belongs, but is irreducible in all other domains. In fact, its

V2

linear factors are z+ €, z+te =z €*; while every quadratic factor is of the
form z*+1, or z?+azx+1, a*=+2.

If F(z) is reducible in R, F(x)=0 is said to be a reducible
equation in R; if F(z) is irreducible in R, F(x)=0 is said to be
an irreducible equation in R.

55. THEOREM. Let the equations F(z)=0 and G(x)=0 have
- their coefficients in a domain R and let F(z)=0 be irreducible in R.
If one root of F(x)=0 satisfies G(x)=0, then every root of F(z)=0
satisfies G(x)=0 and F(x) is a divisor of G(z) in R.

After dividing out the coefficients of the highest power of z, let

F(@)=(z—£)(2—8) ... (z—&a), G@)=(2—n) ... (Z—19m).

* A method to decompose a given integral function by a finite number
of rational operations has been given by Kronecker, Werke, vol. 2, p. 256,

or ¢, Or €=
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At least one & equals an 3. Let &=1,..., §,=1,, while the
remaining §’s differ from each 7. Then the function

H@)=(x—§)...-&)=@—7) ... (x—1,)

is the highest common factor of F(z) and G(z). But Euclid’s
process for finding this highest common factor involves only
the operation division, so that the coefficients of H(x) are
rational functions of those of F(z) and G(z) and consequently
belong to the domain R. Hence F(z)=H(x) -Q(z), where H(x)
and Q(z) are integral functions with coefficients in R. Since F(x)
is irreducible in R, Q(x) must be a constant, evidently 1. Hence
F(x)=H(x), so that F(z) is a divisor of G(z) in R.

CoroLLARY 1. If G(z) is of degree Sn—1, then G(z)=0. A
root of an irreducible equation in R does not satisfy an equation
of lower degree in R.

CoroLLARY II. If also G(x)=0 is irreducible, then G(z) is a
divisor of F(z), as well as F(z) a divisor of G(z). If two irreducible
equations in R have one root in common, they are identical.



CHAPTER VI
THE GROUP OF AN EQUATION.

EXISTENCE OF AN 7!-VALUED FUNCTION; GALOIS’ RESOLVENT.
56. Let there be given a domain R and an equation

(1) f@=2r—c 2 +ea"?— ... +(—1)"c,=0,

whose coefficients belong to R. We assume that its roots =z,
Zy, ..., T, are all distinct* It is then possible to construct a
rational function V, of the roots with coefficients in R such that
V, takes n! distinct values under the n! substitutionsonz, , ..., z,.
Such a function is

Vism@+myTy+ ... + My,

if m,,...,m, are properly chosen in the domain R. Indeed,
the two values V, and V;, derived from V, by two distinct sub-
stitutions a@ and b respectively, are not equal for all values of
My, ..., My, since z,,...,%, are all distinct. It is therefore
possible to choose values of m,,...,m, in R which satisfy none
of the #n!(n!—1) relations of the form V,=V,.
Then from an equation V, =V, will follow a’=a.
As an example, consider the equation z®+z?+z+ 1 =0, with the roots
Ty=—1, Z=+i=A/—1, z,=—1,
and let R be the domain of all rational numbers. The six functions
—my+imy—imy, —m—imy+imy, imy—my—im,,
—imy+1im;—my, —im,—my+im;, M —iMy—ms,

* Equal roots of F(x) =0 satisfy also F’(z) =0, whose coefficients likewise
belong to R, and consequently also H(z) =0, where H(z) is the highest com-
mon factor of F(z) and F'(z). If F(x)-+H(x)=Q(z), the equation Q(z) =0
has its coefficients in R and has distinct roots. After solving Q(z) =0, the
roots of F(z) =0 are all known,

48
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arising from the 3! permutations of z,, z,, z,, will all be distinct if no one of
the following relations holds:
my—my=0, m—my=0, m;—my;=0,

@+ 1)ym—2im,+(t—1)m; =0, (E—1)my+ (i +1)m;—2im; =0,

E—=Dm—2im;+(@+1)my =0,  (i+Dm,+(@E—1)m;—2imy =0,

—2imy+ (2 —1)m;+ (¢ + 1)my =0, —2imy+ (v + 1)my+ (i —1)my=0,
of which the last six differ only by permutations of m,, m, m;, We may,
for example, take my=0 and any rational values »0 for m,; and m, such
that m,»<cm,, where cis 1, £¢,14¢, $(1+¢). Thus mz, +z, is a six-valued
function in R if m, is any rational number different from 0 and 1.

[In the domain (i), we may take mz,+z,, where m;»0, 1, +17, 147,
$(1+9).]

57. The n!values of the function V, are the roofs‘ of an equation
4 FV)=(V=-V)(V-V))...(V-Va)=0,

whose coefficients are integral rational functions of m,, ..., my,
¢, - » « y Cn With integral coeflicients and hence belong to the domain
R (§ 50). If F(V) is reducible in R, let Fy(V) be that irreducible
factor for which F(V,)=0; if F(V) is irreducible in R, let Fo(V)
be F(V) itself. Then

(6) Fy(V)=0
18 an irreducible equation called the Galois resolvent of equation (1).
Recurring to the example of the preceding section, take
Vi=z—z,, Vi=2—a,, Vi=z;—2,
Then the six values of V, are £V, +V,, &V, where
Vi=i+1, V,=2i, Vy=—t+1.
The equation (4) now becomes
V=V (V=Y )(V? =V =(V?-2))(V* +4)(V?+21)
=V4+4V4+4V?+16=0.
The irreducible factors of F(V) in the domain of rational numbers are
Vitda=(V=V)(V+V,), V?=2V42=(V-VY)(V-V),
Vi4t2V42=(V+V)(V+V)Y.
The Galois resolvent (5) is therefore
F(V)=V?-2V+2=0.
[For the domain (), the Galois resolvent is V—V, =V —i—1=0.]
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58. THEOREM. Any rational function, with coeffictents in a
domain R, of the roots of the given equation (1) is a rational function,
with coefficients in R, of an n'-valued function V,:

(6) @y, Toy o . o, TR)=O(V)).
Let first the coefficients ¢, . . ., ¢, in equation (1) be arbitrary
quantities so that the roots z,, ..., z, are independent variables.

We may then apply the proof in § 31 of Lagrange’s Theorem,
taking for ¢ the function V, which is unaltered by the identical
substitution alone, and obtain a relation

(6) ¢=AVy)+F(Vy,
where F’(V) is the derivative of F(V) defined by (4). We next
give toc,, .. ., c, their special values in R, so that z,, . . ., z, become

the roots of the given equation. Since F’(V,)s0, relation (6’)
becomes the desired relation (6), expressing ¢ as a rational function
of V, with coefficients in R.

CoroLLARY. If s be any substitution on the letters z,, . . . , x,,, then

(7) Ds(Tyy Tay o o o, Ta) =O(V,),
provided mo reduction* in the form of @(V,) has been made by
means of the equation F(V,)=0 of § 57.
As an example, we recur to the equation z*+2?+z+1=0, and seek an
expression for the function ¢=z, in terms of V,=z,—x,. Then
F(V)=V*+4V4+4V?+16, F'(V)=6V°+16V3+8YV,

_ T3 T oz s Zs Ty

V) F(V){V—V1+V+Vl+V—V,+V—V,+V+V,+ V4, %
=—2V5—4V4—-12V3—-8V?-16V —48,

upon setting z,=—1, x,=%, 23=—1, V,=1+1, V,=2¢, Vi=—i+1. Hence

_ NV _ —2V5—4V,*—12V,—8V,*—16V,—48
Y UA) 6V +16V, 187,

In verification, we find that
AV)=At+1)=—48/—16, F'(V,)=16i—48, &(V) =1i=xz,.

3

=o(V).

* That such a reduction invalidates the result is illustrated in the example
of §59.
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In view of the corollary, we should have
7=0(=V)), 7=0)), z;=0(V,), z=0¢(=V,), z,=0(=V)).
To verify these results, we note that

167 —48 . —80
Sieiras- v PV m g V)=

while #(V,) and #(V,), #(—V,), and @(—V,), z; and 2, are conjugate
imaginaries, and z, is real.

—80

(=V)= -1,

59. As a special case of the preceding theorem, the roots of the
gtven equation are rational functions of V, with coeffictents in R :

)] r=¢(V), z.=¢(V)), ..., x,.=¢v,.(V}).

Hence the determination of V, is equivalent to the solution of the
given equation.

Since each V, is a rational function of z,, . . ., z, with coefficients
in R, it follows that all the roots of the Galois resolvent are rational
functions with coefficients in R of any one root V,.

ExampLE. For the equation z*+2?+z+1=0, and V,=2,—z,, we have
gy=—1, 2,=V,—1, z=-V,+1, V,=2V,—-2, Vy=-V,+2.

Although z; and V,—1 are numerically equal, the functions z, and —V,—1,
obtained by applying the substitution (z,r,;), are not equal. The relation
z,=V;—1 is a reduced form of z,=®@(V,), obtained in virtue of the identity
V,3—2V,+2=0 (§ 57). Thus

—2V 5 —4V,4—12V 3 —8V*—16V,—48 = —48V, +32,
6V,5+16V,5+8V,=16V,—64,

—48V,+32_(=38V,+2)(V,+2) _—3V,’—4V,+4_—10V,+10 .. |
16V,—64  (V1—4)(V,+2) V,?-2V,—-8 —-10

It happens, however, that the equality z,=V;—1 leads to an equality
z,=V,--1=—V,+1 upon applying the substitution (z,r;). The fact that
the identical substitution and (z,z,), but no other substitutions on z,, z,, z;,
lead to an equality when applied to z,=V,—1 finds its explanation in the
general theorems next established.
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_ THE GROUP OF AN EQUATION.
60. Let the roots of Galois’ resolvent (5) be designated

) Vv Vo, Voyoro s Vi
the substitutions by which they are derived from V, being
(10) I,ab,..., L

These substitutions form a group G, called the group of the given
equation (1) with respect to the domain of rationality R.

The proof consists in showing that, if r and s are any two of
the substitutions (10), the product rs occurs among those substi-
tutions. Let therefore V, and V, be roots of (5). Then

F 0( Vr) =0.
Now V, is a rational function of V, with coefficients in R:
(11) ’ Vr=0(Vl)y

the function 8 being left in its unreduced form as determined in § 58.
Hence F[6(V,)]=0, so that one root V, of the equation (5) irre-
ducible in R satisfies the equation

(12) F{o(V)]=0,
with coefficients in B. Hence (§ 55) the root V, of (5) satisfies (12).
s F0(V,)]=0.
In view of the corollary of § 58, it follows from (11) that
(V)e=Vr0e=0(V,).

Hence Fy(V,,)=0, so that V,, occurs among the roots (9).

ExampLE. For the equation 28+ 22+ 2+1=0 and the domain R of rational
numbers, the Galois resolvent was shown in § 57 to be V2—2V +2 =0, having
the roots ¥V, and V;. Since V; was derived from V, by the substitution (z,zy),
the group of the equation x°+x?+z+1=0 with respect to R is {I, (z,7y)}.

For the domain (7), the Galois resolvent was shown to be V—V,=0.
Hence the group of the equation with respect to (2) is the identity.
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81. The group G of order N of the equation (1) with the roots
Z,, %5, . . . , T possesses the following two fundamental properties:

A. Every rational function ¢(z,, 2,, ..., Z,) of the roots which
remains unaltered by all the substitutions of G lies in the domain R.

B. Every rational function ¢(z,,%,,...,T,) of the roots which
equals a quantity in R remains unaltered by all the substitutions of G.

By a rational function ¢=¢(z,, ..., z,) of the roots is meant
a rational function with coefficients in B. Then by § 58

(13)  ¢=0(V), ¢a=0(Va), gpo=0(V3),..., s=0(V),

where @ is a rational function with coefficients in R.
Proof of A. If p=epg=¢p= ... =dy, it follows from (13) that

= O )+ (Vo) + (V) + ... +0(V)}.

The second member is a symmetric function of the N roots (9) of
Galois’ resolvent (5) and hence is a rational function of its coeffi-
cients which belong to R. Hence ¢ lies in R.

Proof of B. If ¢ equals a quantity r lying in R, we have, in
view of (13), the equality

o(V,)—r=0.
Hence V, is a root of the equation, with coefficients in R,
(14) *(V)—r=0.

Since one root V, of the irreducible Galois resolvent equation (5)
satisfies (14), all the roots V,, V,, ..., V; of (5) satisfy (14),
in view of § 55. Hence

o(V)—r=0, O(V,)—r=0, ..., @(V;)—r=0.

It therefore follows from (13) that ¢=eg=¢p= ... =¢. Hence
¢ remains unaltered by all the substitutions of G.

62. By arational relation between the roots z,, . . ., Z, is meant
an equality ¢(z,, ..., Z,)=¢(Zy, ..., %s) between two rational
functions, with coefficients n R. Then ¢—¢ is a rational function,
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equal to the quantity zero belonging to R, and therefore (by B)
is unaltered by every substitution s of G. Hence ¢;—¢,=¢—¢=0,
so that ¢,=¢,. Hence the result:
Any rational relation between the roots remains true if both
members be operated upon by any substitution of the group G.
ExampLE. For the domain of rational numbers, it was shown in § 60

that the equation z*+x3+z+1=0 has the group {I, (z;7,)}. The rational
relation (§ 59, Example)

z,=V,—1=z,—2,—1
leads to a true relation zy=z;—z,—1=V;—1 under the substitution (z,x).
If we apply (z,z,), we obtain a false relation z, =z, —z,—1.
63. THEOREM. Properties A and B completely define the group G
of the equation : any group having these properties 1s identical with G.
Suppose first that we know of a group

@={I,a,V,... n)

that every rational function of the roots z,, . . ., z,, which remains
unaltered by all the substitutions of G’, lies in B. The equation

FW)=(WV-=V)V-V)V-=Vp)...(V=V@u)=0

has its coefficients in R since they are symmetric functions of
Vy Vayeooy Ve and therefore unaltered by the substitutions
of G’. Since F'(V)=0 admits the root V, of the irreducible Galois
resolvent (5), it admits all the roots V,, V,, ..., V; of (5). Hence
I, a,..., I occur among the substitutions of G, so that G is a
subgroup of G.

Suppose next that we know of a group

G’l= {I, all, bll, ceey rll}
that every rational function of z,, ..., z, which lies in R remains
unaltered by all the substitutions of @’. Then the rational function

Fy(V,), being equal to the quantity zero lying in R, remains un-
altered by a”, b”, ..., 7, so that

0=F0(Vl) =Fo(Va") =E0(Vb" = ... =F(Vp).
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Hence V,, Vo, ..., V,” occur among the roots Vy, Vg, ..., V; of
Fy(V)=0. Hence G” is a subgroup of G.

If both properties hold for a group, G’=G"’; then G’ contains
G as a subgroup and @ is a subgroup of G. Hence '=G@"=G.

It follows that the group of a given equation for a given domain
is unique. In particular, the group of an equation is independent
of the special nl-valued function V, chosen.

ExamrLE. For the equation z°+2%+2+1=0 and the domain R of all
rational numbers, the functions +V,, +V,, £V, of § 57 are each 6-valued.
Employing V,, we obtain the Galois resolvent

(V=V)(V=Vy)=V1—-2V+2=0
and the group {I, 2,7;)}. Evidently no change results from the employment
of V,. If we employ either —V, or —V§, we obtain the Galois resolvent
(V4+VY(V+Vy) =V?+2V +2=0
and the group {I, (z;z5)}. If we employ either V, or —V,, we get
(V=V)(V+Vy) =V?+4=0.
Since V,=z;—z,, the substitution replacing V, by —V, is (z2,), so that
the group is again {I, (z,75)}.

ACTUAL DETERMINATION OF THE GROUP & OF A GIVEN EQUATION.

64. Group of the general equation of degree n. Its coefficients
€, . - . ,Cn are independent variables, and likewise its roots (p. 101).
We proceed to show that, for a domain R contarning the coefficients
and any assigmed constants, the group of the general equation of
degree n vs the symmetric group Gni. It is only necessary to show
that the Galois resolvent F(V)=0 is of degree n!. In the relation
Fy(V,)=0, we replace V, and the coefficients c,,.... ¢, by their
expressions in terms of z,, . . ., Z,. Since the latter are independent,
the resulting relation must be an identity (see p. 101) and hence
remain true after any permutation of =z,,...,z,. By suitable
permutations,V, is changed into V,, .... Vp in turn, whilec,, . . ., ¢a,
being symmetric functions, remain unaltered. Hence Fy(V,)=0,
veey Fo(Va)=0. Hence Fy(V)=0 has n! distinct roots.

Another proof follows from § 63 by noting that properties A
and B hold for the symmetric group Gy when z,, . .., Z, are inde-
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pendent variables. Thus A states that every symmetric function
of the roots is rationally expressible in terms of the coefficients.

85. To determine the group of a special equation, we usually
resort to some device. It is generally impracticable to construct
an nl-valued function and then determine the Galois resolvent (5);
or to apply properties A and B directly, since they relate to an
infinite number of rational functions of the roots. Practical
use may, however, be made of the following lemma, involving a
knowledge of a single rational function:

LemMma. If a rational function {(z,,...,z,) remains formally
unaltered by the substitutions of a group G’ and by no other substi-
tutions, and if ¢ equals a quantity lying in the domain R, and if the
conjugates of ¢ under Gp are all distinct, then the group of the given
equation for the domain R is a subgroup of G'.

In view of the first part of § 63, it is only necessary to show
that every rational function ¢(z,, . .., #,), which remains numeri-
cally unaltered by all the substitutions of @', lies in R. If G’ is
of order P, we can set

$=p(Gitdut ... +o0),

80 that ¢ can be given a form such that it is formally unaltered by
all the substitutions of G’. Then, by Lagrange’s Theorem (§ 31),
¢ is a rational function of ¢ and hence equals a quantity lying
in R.

Exampre 1. To find the group of 22 —1 =0 for the domain R of all rational
numbers. The roots are

o=1, =H-1+v/=3), z=H-1-v/=3).

Taking ¢ =2,, it follows from the lemma that G'is a subgroup of G’ = {1, (z,z,)}.
Since z, does not lie in R, G is not the identity (property A). Hence G=G".

ExampLE 2. To find the group @ of y*—7y+7=0 for the domain R of
all rational numbers.

For the cubic y*+py+¢=0, we have (§2)

D=(y:—4:) (2 —¥2)*(¥s—¥,)* = —27¢* —4p"

For pe= 7, ¢=7, we get D=7, Hence the function

U=y U=y W=y |
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has a value +7 lying in R and its conjugates ¢ and —¢ under G, are distinct.
By the lemma, G is therefore a subgroup of the alternating group G, and
hence either Gy itself or the identity G,. Now, if the group of the equation
were Gy, its roots would lie in B. But * a rational root of an equation of
the form y®—7y +7=0, having integral coefficients and unity as the coefficient
of the highest power, is necessarily an integer. By trial, +1, 47 are not
roots. Hence the roots areall irrational. Hence the group G is G.

ExampLE 3. Find the group of z‘4+1=0 for the domain of rational
numbers.

‘We seek a rational function of the roots ,, z;, 2,, z, which equals a rational

number. Let us try the function y,=zx,+z, Specializing the result
holding for the general quartic equation (§ 4), we find that, for the quartic
z*+1=0, the resolvent equation (16) for y, is

y*—4y=0.
By a suitable choice of notation to distinguish the roots z:, we may set

= —2) y2=07 Ys= +2.

Hence y, equals a rational number and its conjugates under G,, are all distinct.
Hence G is a subgroup of Gy, the group to which z,z,+zyz, belongs formally
(§21). Similarly, by considering the conjugate functions y,=z,z,+,z,,
and y;=z,2,+x,%,, we find that G is a subgroup of Gj and Gy’. Hence G
is a subgroup of G, (§ 21). Hence G is G,, G,

G ={I, (z@) (@)}, Gi=1{I, (z2)(22)}, or Gy ={I, (z:z)(z:2s)}.

Now GG, since no root of z*+1=0 is rational.

If G, consider f,=z,+z,—z;—z, For the general quartic equation
zt+az®+br?+cx+d=0, we have ¢{?=a’—4b+4y, by §5. Hence, for
z4+1=0, ¢,?=—8. Since ¢, is not rational, G>=G,.

If G}, consider ty=z,+z,—z,—z;. In general, {,?=a*—4b+4y,, Here
t;*=+8. Since # is not rational, G=Gj’. .

If G; consider f,=z,+zy—x;—z, In general, t,>=a?—4b+4y,. Here
t,>=0. Since a conjugate —¢t, of ¢, equals ¢, no conclusion may be drawn
from the use of t;,, But ¢=z,2;,—z,z, is unaltered by G;. Now

: P =273+ 2,20 — 43,2, %37, =y, —4 = —4,
Hence ¢ is not rational, so that G=Gj,.
The group of z¢+1=0 for the domain of rational numbers is therefore G,
EXERCISES.
Find for the domain of rational numbers the group of

1, 2*+2?+2z+1=0 (using the lemma, § 65).
2. (z—1)(z+1)(z—2) =0.

* Dickson, College Algebra (John Wiley & Sons), p. 198,
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3. 28=2=0. [z, ,, z, and (z, —z,)(z; — ;) (x5 —z,) are irrational.]

4. z*+28+2?+x+1=0 with roots z,=¢, z,=¢3, zy=¢4, z,=¢*, where
¢ is an imaginary fifth root of unity. Since the resolvent for z,z,+zsz, is
y’—y?’—3y+2=0 with the roots 2, 3(—1+4/5), G is a subgroup of Gi.
The latter has the subgroup C,= {1, (1234), (13)(24), (1432) }, to which belongs
& =222, + 2,05 + 2%z, +x*z,. Here ¢, =e*+ 3+ e+ 2= —1 is rational. The
tix conjugates to ¢, under G,, are distinct; they are obtained from ¢, by
applying I, (12)(34), (12), (14), (23), (34); their values are —1, 4, 1+2¢+ ¢,
14+26%+¢4, 1426+, 1426+ €% respectively. Hence @ is a subgroup
of C,. To Gy={I, (13)(24)} belongs

(@ =iy —iz)? = (1 +20) (3 + 6 — e4— &) = £A/B(1+21).

Hence G<G;. Evidently G»=G,. Hence G=C,.

5. Show that, for the domain (1, %), the group of z¢+1=0 is G;.

6. Show that, for the domain (1, w), w=imaginary cube root of unity,
the group of z°—2=0is Cy={I, (z,2,%5), (T,757,)}.

Hint: (2, + w2, + wizg)® and (2, + w’z, + wzs)® have distinct rational values.

TRANSITIVITY OF GROUP; IRB;EDU(}IBILITY OF EQUATION.

66. A group of substitutions on n letters is transitive if it
contains a substitution which replaces an arbitrarily given letter
by another arbitrarily given letter; otherwise the group is intran-
sitive.

Thus the group G, = {1, (z,2,)(z;z,), (2,7)(2:%,), (%,2,)(2275)} is transitive;
I replaces z, by z,, (z,7,)(wz,) replaces z, by z,, (z,s)(x,z,) replaces x, by z,,
(z,z,)(z,x;) replaces z; by z,, Having a substitution s which replaces =z,
by any given letter z; and a substitution ¢ which replaces z, by any given
letter z;, the group necessarily contains a substitution which replaces z;
by z;, namely, the product s—'.

The group H,={I, (z,z,), (xs%,), (x,%;)(zsx,)} is intransitive.

87. TueoreM. The order of a transitive group on n letters s
divisible by n.

Of the substitutions of the given group G, those leaving =z,
unaltered form a subgroup H={I, h,,..., h,}. Consider a rect-
angular array (§ 28) of the substitutions of G with those of H in
the first row, choosing as g, any substitution replacing z, by ,,
as g, any substitution replacing z, by z;, etc. Then all the sub-
stitutions of the second row and no others will replace z, by z,,
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all of the third row and no others will replace z, by z,, ete. Since
G is transitive, there are v=n rows. But the order of @ is
divisible by v (§ 26).

Examples of transitive groups: G;(, G®), G,[(9, G,(9, G, G¥.

The least order of a transitive group on n letters is therefore n.
A transitive group on n letters of order n is called a regular group.
Thus G, and G are regular.

68. THEOREM. If an equation is irreducible for the domain R,
its group for R s transitive; if reducible, the group s intransitive.

First, if f(x)=0 is irreducible in R, its group for R is transitive.
For, if intransitive, G contains substitutions replacing z, by =,,
Ty ooy Ty, but not by Zmyy, ..., s, the notation for the roots
being properly chosen. Hence every substitution of G' permutes
Z,..., Tm amongst themselves and therefore leaves unaltered
any symmetric function of them. Hence the function g¢(r)=
(z—z,)(x—1,) . .. (—Zm) has its coefficients in R, so that g(z)
is a rational factor of f(z), contrary to the irreducibility of f(zx).

Let next f(z) be reducible in R and let g(z)=(z—=z,) ... (z—zp)
be a rational factor of f(z), m being<n. The rational relation
g(x,)=0 remains true if operated upon by any substitution of G
(§ 62). Hence no substitution of G' can replace z, by one of the
roots Tmyy, - - -, Tn; for, if so, g(z)=0 would have as root one of
the quantities Zm4,, . . ., Tn, contrary to assumption. Hence @ is
intransitive.

ExampLE 1. The equation z®—1=0 is reducible in the domain R of
rational numbers; its group for R is {I, (z,z;)} by § 65, Ex. 1, and is intran-
sitive. A like result holds for z® +z?+z+1=0 (§ 60).

ExampLE 2. The equation y®—7y+7=0 is irreducible in the domain
R of rational numbers, since its left member has no linear factor in R (§ 65,
Ex. 2). Hence its group for R is transitive. By § 65, the group is G4®).

ExampLE 3. The equation z*+1=0 is irreducible in the domain R of
rational numbers (§ 54, Ex. 2). Hence its group for R is transitive, and
so is of order at least 4. We may therefore greatly simplify the work in
§ 65, Ex. 3, for the determination of the group G.

ExaMpLE 4. The equation z*+1=0 is reducible in the domain (1, 7).
Its group G is intransitive (see Ex. 5, page 58).
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RATIONAL FUNCTIONS BELONGING TO A GROUP.

69. THEOREM. Those substitutions of the group G of an equation
which leave unaltered a rational function ¢ of its roots form a group.

Let I, a, b, ..., k be all the substitutions of G which leave ¢
unaltered (in the numerical sense, § 52). Apply to the rational
relation ¢=¢, the substitution b of the group G. Then (§ 62)
Po=¢w. Hence Pap=¢p, so that the product ab is one of the
substitutions leaving ¢ unaltered. Hence the substitutions I,
a,b,...,kform a group H.

No matter what group ¢ belongs to formally (§ 21), we shall
henceforth say that ¢ belongs to the group H, a subgroup of G.

ExampLE. For the domain R of rational numbers the group of z¢+1=0 is

Gi= {1, (z;7,) (2520, (2,%3)(2,2), (2,2 (%:%5) },
by § 65, Ex. 3. Of the 12 substitutions which leave z,? numerically unaltered
(§ 49), only I and (z,z,)(x,x,) occur in G,. Hence the functior z,? of the -
roots of 24+ 1 =0 belongs to the group {I, (z,z,)(z,z,)}.

70. TueoreM. If H s any subgroup of the group G of a given
equation for a domain R, there exists a rational function of its roots
with coeffictents in R which belongs to H.

Let V, be any ntvalued function of the roots with coefficients
in R (§56). Let V,, Vi, ..., Vi be the functions derived from
V, by applying the substitutions of H. Then the product

¢=0—V)(o—Va) ... (0—Vi)

in which p is a suitably chosen quantxty in R, is a rational function

of the roots with coefficients in B which belongs to H (compare
25).

; 7) 1. TrEOREM. If a rational function ¢ of the roots of an equation

belongs to a subgroup H of index v, under the group G of the equation

for a domain R, then ¢ takes v distinct values when operated upon

by all the substitutions of G; they are the roots of a resolvent equation

- with coefficients in R,
(15) IW=Y—)y—¢) ... (y—¢,)=0.
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The proof that there are exactly v distinct values of ¢ under the
substitutions of @ is the same as in § 29, the term distinct now
having the meaning given in § 52.

Any substitution of the group G' merely permutes the functions
&y &ay < .y ¢y (compare § 30), so that any symmetric function of
them is unaltered by all the substitutions of G' and hence equals a
quantity in B (Theorem A, § 61). Hence the coefficients of (15)
lie in R.

REMARK. The resolvent equation (15) i3 irreductble in R.

Let y(y) be a rational factor of g(y). Applying to the rational
relation y(¢,)=0 the substitutions of G, we get r(¢,)=0,...,
7(¢.)=0. Hence y(y)=0 admits all the roots of g(y)=0, so that

W) =9(y).

ExampLE 1. For the domain R of rational numbers, the group G of
22 +23+x+1=0 is {I, (z,25)}, by § 60. The conjugates to z,—z, under G
are ¢, =2, —z,, $,=x3—,. They are the roots of

Y — (1 + )y + i =y* —2y+2=0.

ExAMPLE 2. For the domain (1, ?), the groupGof z*+1=0is {I,(z,2,) (z,%,) },
by Ex. 5, page 58, employing the notation of § 49 for the roots. The con-
jugates to z; under G are ¢, =2z,, ¢, =x;. They are the roots of

Yy —(e— )y + o(—e) =y*—i=0.
1t is irreducible in (1, 7), since 4/T=(1+13) +A/2.

72. LAGRANGE’S THEOREM GENERALIZED BY Garois. If a
rational function ¢(z,, x,, . . . , ) of the roots of an equation f(x)=0
with coeffictents in a domain R remains unaltered by all those sub-
stitutions of the group G of f(x)=0 which leave another rational
function ¢(z,, 2,, . . ., Tn) unaltered, then ¢ is a rational function of
¢ with coefficients in R.

The function ¢ belongs to a certain subgroup H of G, say of
index v. By means of a rectangular array of the substitutions
of G with those of H in the first row, we obtain the v distinct con-
jugate functions ¢,, ¢, . . ., ¢, and a set of functions ¢,, @,, . .., ¢,
not necessarily distinet, but such that a substitution of G@ which
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replaces ¢; by ¢; will replace ¢; by ¢; (compare § 31). If g(¢)
be defined by (15), then

A(t)sg(t)(tf:bl+ tf:m cor t_‘f¢)

is an integral function of ¢ which remains unaltered by all the
substitutions of G, so that its coefficients lie in R (§ 71). Taking

$y=¢ for t, we get g=A(¢)+g'(¢).

For examples, see § 58. The function V, is unaltered by the identical
substitution only, which leaves unaltered any rational function.

REDUCTION OF THE GROUP BY ADJUNCTION.

78. For the domain R=(1) of all rational numbers, the group of the
equation z3+2?+z+1=0 is G,={I, (z,%5)}; while its group for the domain
R’=(1, 7) is the identity G, (see § 60). In the language of Galois and
Kronecker, we derive the domain R’ =(1, 7) from the included domain R =(1)
by adjoining the quantity ¢ to the domain R. By this adjunction the group
G, of z°+a*+z+1 is reduced to the subgroup G,. The adjoined quantity ¢
is here a rational function of the roots, ¢ =x,= —z;, in the notation of § 49
for the roots. The Galois resolvent V?—2V +2=0 for R becomes reducible
in R, viz., (V—1—=1)(V +¢—1) =0.

For the domain R=(1), the group of *4+1=0 is G,; for the domain (1, 1),
its group is the subgroup G;={I, (z,z5)(x,x)}, by. § 65. By the adjunc-
tion of 7 to the domain R, the group is reduced to a subgroup G;. Here
t=z}=x’=—2,"=—r2=2,1, in the notation of §49. The subgroup of
G, to which z,? belongs is Gj. If we afterwards adjoin 4/2, the roots will
all belong to the enlarged domain (1, 7, A/2), so that the group reduces to
the identity. For example, z, =(1+1%) +4/2.

For the domain R=(1), the group of 2*—2=0 is G,; for the domain
(1, w), w being an imaginary cube root of unity, the group is the cyclic group
C,; (Exercises 3 and 6, page 58). Call the roots

2,=V2, 1,=0¥2=wz, B=0"/2=wl,
Then w=z,/z,, a rational function belonging to C;. In fact, (z,2,z;) replaces
z,/z, by %3/z,=w=2,/z,, (T,2:7;) replaces z,/r, by z,/z;=w—?=w; while
these two substitutions and the identity are the only substitutions leaving
z,/x, unaltered. If we subsequently adjoin /2, the roots all belong to the
enlarged domain (1, , ©/2), so that the group reduces to the identity.
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74. In general, we are given a domain R=(R’, R”,...) and
an equation f(z)=0 with coefficients in that domain. Let G be
its group for R. Adjoin a quantity £&. The irreducible Galois
resolvent F(V)=0 for the initial domain R may become reducible
in the enlarged domain R,=({; R, R”,...). Let AV, &) be
that factor of Fy(V) which is rational and irreducible in R, and
vanishes for V=V,. If V,, V,,..., V;are the roots of A(V, §)=0,
then G’={I, a, ..., k} is the group of f(x)=0 in R, (§ 57). Hence
@’ is a subgroup of @, including the possibility G’ =@, which occurs
if F(V) remains irreducible after the adjunction of &, so that
AV, &)=Fy V).

THEOREM. By an adjunction, the group G is reduced to a sub-
group G’.

75. Suppose that, as in the examples in § 73, the quantity
adjoined to the given domain R is a ratlonal function ¢(z,, 2, . . . ,25)
of the roots with coefficients in R.

THEOREM. By the adjunction of a rational function J(z,, . ..,Zy)
belonging to a subgroup H of G, the group G of the equation vs reduced
precisely to the subgroup H. '

It is to be shown that the group H has the two cliaracteristic
properties (§ 61) of the group of the equation for the new domain
R,=(¢; R’, R”,...). First, any rational function ¢(z,,...,Z,)
which remains unaltered by all the substitutions of H is a rational
function of ¢ with coefficients in R (§ 72) and hence lies in R,.
Second, any rational function ¢(z,, . . . , z,) which equals a quantity
p in R, remains unaltered by all the substitutions of H. For the
relation ¢=p may be expressed as a rational relation in B and
hence leads to a true relation when operated upon by any sub-
stitution of G (§ 62) and, in particular, by the substitutions of
the subgroup H. The latter leave ¢, and hence also p, unaltered.
Hence the left member ¢ of the relation remains unaltered by all
the substitutions of H.



CHAPTER VII.

SOLUTION BY_MEANS OF RESOLVENT EQUATIONS,

76. Before developing the theory further, it is desirable to
obtain a preview of the applications to be made to the solution
of any given equation f(z)=0. Suppose that we are able to solve
the resolvent equation (15), one of whose roots is the rational
function ¢ belonging to the subgroup H of the group G of f(z)=0.
Since ¢ is then known, it may be adjoined to the given domain
of rationality (R’, R”,...). For the enlarged domain R,=
(¢; R, R”,...), the group of f(z)=0 is H. Let y(z,,...,z,)
be a rational function with coefficients in R, which belongs to a
subgroup K of H. Suppose that we are able to solve the resolvent
equation one of whose roots is y. Then y may be adjoined to the
domain R,. For the enlarged domain R,=(y, ¢; R’, R",...), the
group of f(z)=0is K. Proceeding in this way, we reach a final
domain R, for which the group of f(z)=0 is the identity G,. Then
the roots x,, ..., %, being unaltered by the identity, lie in this
domain R, (property A, § 61). The solution of f(x)=0 may there-
fore be accomplished if all the resolvent equations can be solved.
To apply Galois’ methods to the solution of each resolvent, the
first step is to find its group for the corresponding domain of
rationality.

77. Isomorphism. Let G be the group of a given equation
f(x)=0 for a given domain R. Let ¢(z,,...,z,) be a rational
function of its roots with coefficients in R and let ¢ belong to a
subgroup H of index v under G. Consider a rectangular array

64
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ot the substitutions of G with those of H in the first row, and the
resulting functions conjugate to ¢:

hy=I hy, ... khp |¢=¢
9 h’zgz «eo hegy ‘/’z ‘/’a,

gv hzgv vee hpgy ¢ ¢'ﬂv
Apply any substitution g of the group G to the v conjugates

(16) & boy bageees bove
The resulting functions
(17) S[’m ‘r”u,m ‘l’ﬂ,w ey ¢0,0

are merely a permutation of the functions (16), as shown in § 29,
Hence to any substitution g of the group G on the letters z,, . . ., z,,
there corresponds one definite substitution

(¢ ¢92 . ¢ay ) = (‘/’”‘ )
$o ¢u,v . S[’a 9 Pa.0
on the letters (16). We therefore obtain * a set I' of substitutions
7. not all of which are distinct in certain cases (Exs. 2 and 3 below).

THEOREM. The set I' of substitutions y forms a group.
For to g, ¢/, and gg’ correspond respectively

bo; ) (‘r’v ) bo; )
<¢a:a T S[’a:o (S[’a:w’ )
To compute the product y7’, we vary the order cf the letters in the
first line of 7’ and have

r=ng) 1= () 1"

Hence if I contains y and 7, it contains the product y7’.
Since I' contains a substitution replacing ¢ by ¢, for any
$=1,...,v, the group I is transttive (§ 66).

* For a definition ¢f I" without using the function ¢, see § 104,
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DEeriniTiONS. The group I' is said to be isomorphic to G, since
to every substitution g of G corresponds one substitution y of I,
and to the product g¢’ of any two substitutions of G corresponds
the product 7y’ of the two corresponding substitutions of I'. If,
inversely, to every substitution of I' corresponds but one substi-
tution of G, the groups are said to be simply isomorphic;* other-
wise, multiply isomorphic.*

ExampLE 1. Let G=G,®), H=G,, ¢ =z, +wz;+wz,. Set (compare § 9)

=9, da=¢a, Gr=P, di=¢e, Ps=¢d, Ps=ge.

Then a =(z,z,z,) replaces ¢, by ¢, =w?,, and ¢, by ¢ =w¢,. Hence a replaces
¢1 by w'd=ds, ¢s by 1 =¢,, ¢y by w),=¢;, ¢5 by w'$,=¢,. Hence to a
corresponds a=(¢¢»)s)(¢Pefs). Similarly, we find that to c=(z,z,) corre-
sponds y=(¢,¢,)(¢:¢5)(¢s¢s). Hence to b=a? corresponds 8=a? to d=a—'ca
corresponds 8 =a—!ya, to e=b—'cb corresponds ¢=8-1y3. We have therefore
the following holoedric isomorphism between G and I':

I I

a=(2,%,7s) a={(1205)($ududs)
b=(zz5z,) B=($ds)(udsde)
c=(z,%,) 7 =100 (d205) (¢ds0)
d=(z,z,) 0=(¢:00) (¢390) (rde)
e=(z,,) e=(¢s¢s) (¢100) ($200)

It may be verified directly that to b, d, e correspond B, 3, ¢, respectively.
. Since I, a, B, 1, J, & replace ¢; by ¢, s, ¢s, 4, s, $s, Tespectively, I is tran-
mt“l,;uurm 2. Let G=G,(9, H=G,, § =(z,—2,)(z5—2z). Set
=9, ¢i=(T,—7)(T,—73), ¢5=(2,—2)(T3—1p).
We obtain the following meriedric isomorphism between G and I':
I, (@) (z2d), (@3) (T, (22)(2a) |1

(zz52), (T,252), (zz2y), (zz,2,) (C2A)
(z22y),  (TZT), (212525), (€XXA) (O]

The group I' is transitive since it contains substitutions replacing ¢, by
&1y ¢a OF &

* Other terms are holoedric and meriedric for simple and multiple
isomorphism,
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78. Order of the group I'. To find the number of distinct
substitutions in I", we seek the conditions under which two sub-
stitutions y and y’ of I' are identical. Using the notation of § 77,
the conditions are .

¢ﬂ,‘0=¢'ﬂ,'0' (=1,2,...,v),

if we set g,=I1. Applying to this identity the substitution g=1g;~?,
we get

$=do,09 10,1

Hence g,9’9~'9;~*=h, where h is some substitution leaving ¢ unal-
tered and hence in the group H. Then

7 =gihy; (i=1,2,...,).

But g;~'hg; belongs to the group H;=g,~'Hyg; of the function ¢
(§ 39). Hence ¢’g~! belongs simultaneously to H,, H,,...,H,,
and therefore to their greatest -common subgroup J.

Inversely, any substitution ¢ of J leaves ¢, ¢,, ..., ¢, unal-
tered and hence corresponds to the identity in I'. Then g and
g’ =og correspond to substitutions y and 7’ which are identical.

If G 13 of order k and if the greatest common subgroup J of H,,
H,,...,H, is of order j, then I' v of order k/j.

ExampLE 1. For G=G,, H=G,, the order of I" is 6 (§ 77, Ex. 1).

ExampLe 2. For G=G\?, H=G, (§ 77, Ex. 2), we have H,=H,=H,,
since G, is self-conjugate under G,; (§ 41). Hence k=12, j=4, so that the
order of I' is 3.

Exampie 3. For G=G\), H,=G,, ¢ =2,z,+z,7,, We set (§ 29, Ex. 2)

Q=22+ 22, (=T T3+, P3=T,T+T,T;.

Then H,=Gs, Hy=G;, Hy=Gy’, J=G, (§21). Hence I is of order 2% =6.
This result may be verified directly. There are only 6 possible substitutions
on 3 letters ¢,, ¢,, ¢5. But the substitutions of G which lead to the identical
substitution of I" must leave ¢;, ¢,, ¢; all unaltered and hence belong to the
greatest common subgroups G, of H,, H,, H,. Hence exactly four substitu-
tions of G correspond to each substitution of I',so that the order of I' is 24 =6.
The four substitutions of any set form one row of the rectangular array for
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@G,, with the substitutions I, (z,x,)(zsz,), (2,25)(2,2,), (2,2)(2,25) of G, in the
first row. As right-hand multiphers we may take

ni=I, ¢;=(x22), ¢:=(22%3), 9u=2), gi=(zT), Go=(s7y).
To the four substitutions of the first row, the four of the second row,...,
correspond

I, (), (Gidstha), (dads), (dds), (du).

79. Of special importance is the case in which H,, H,,...,H,
are identical, so that H is self-conjugate under G. Then J=H,
so that the order k/j of I' equals the index v of H under G. Hence
the number of distinet substitutions of I' equals the number of
letters ¢, ..., ¢, upon which its substitutions operate, or the
order and the degree of the group I' are equal. Moreover, I' was
seen to be transitive. Hence I is a reqular group (§ 67).

DeriniTION* When H is self-conjugate under G, the group I"
is called the quotient-group of G by H and designated G/H. In
particular, the order of G/H is the quotient of the order of G by
that of H.

ExamrLE 1. By Examples 1 and 2 of § 77, the quotient-group G,/G, is
a regular group on six letters; the quotient-group G,;/G, is the cycle group
{1, ($19:¢s), ($1¢s¢) }, which is a regular group.

ExaMpPLE 2. We may not employ the symbol G,,/Gs, since G; is not
self-conjugate under G,, (§ 78, Ex. 3).

ExampLE 3. Consider the groups G, and G, on three letters. To G,
belongs ¢, = (x; —2,) (2, — ;) (¥;—2,) ; under G, it takes a second value ¢, = —¢,
(§9). We obtain the following isomorphism between G, and I':

1, (zix7s), (maymy) | 1
(zzza) ’ (x lxx) ’ (2} lzz) ’ (¢l¢2)
Since G is self-conjugate under G,, we have I'=G,/Gy={I, (i) }.

CoroLLARY. If H 1is a self-conjugate subgroup of G of prime
index v, then I' s a cyclic group of order v (§ 27).

Tllustrations are afforded by the groups Gy,/G, and G,/G; of Exs. 1 and 2.

REMARK. Any substitution group G is simply isomorphic with
a regular group. In proof, we have merely to take as ¢ any n!-
valued function V,, whence I" will be of order equal to the order
of G.

* Holder, Math. Ann., vol. 24, page 81.
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80. Let H be a maximal self-conjugate subgroup of G (§ 43).
The quotient-group I'=G/H is then simple (§ 43). For if I' has
a self-conjugate subgroup 4 distinct from both I" and the identity
G,, there would exist, in view of the correspondence between G
and I', a self-conjugate subgroup D of G, such that D contains
H but is distinet from both G and H. This would contradict the
hypothesis that H was maximal.

For example, if H is a self-conjugate subgroup of G of prime index v,
it is necessarily maximal. Then I is a cyclic group of prime order v (Cor.,
§ 79) and consequently a simple group.

81. The importance of the preceding investigation of the group
T of substitutions on the letters ¢, ¢,, . . ., ¢, lies in the significance
of I' in the study of the resolvent equation

(15) I =Y—)y—¢2) ... (y—¢)=0,

whose coefficients belong to the given domain R. We proceed
to prove the
THEOREM. For the domain R, the group of the equation (15) s I'.
We show that I" has the characteristic properties A and B of
§ 61. Any rational function p(¢,, ¢y, ..., ¢) with coefficients
in R may be expressed as a rational function r(z,,x,, ..., Z,)
with coefficients in R:

(18) P(‘ﬁn Doy e ooy P)=r(Ty, T3y . . ., Tn).

From this rational relation we obtain a true relation (§ 62) upon
applying any substitution g of the group Gon z,,...,z,. Butg
gives rise to a substitution y of the group I'on ¢,,...,¢.. Hence
the resulting relation is

(19) Or(u Pas e o oy ) =721, Ty, -+« y Tn).

To prove A, let p(¢, . . .,¢$,) remain unaltered by all the sub-
stitutions of I, so that p,=p, for any y in I". Then, by (18) and
(19), ro=r, for any g in G. Hence r lies in the domain R (property
A for the group G). Hence p lies in R.

To prove B, let p lie in the domain R. Then, by (18), r lies
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in R. Hence r,=r, for any g in G (property B for the group @).
Hence, by (18) and (19), p,=p, so that p remains unaltered by all
the substitutions y of I'.

Cor. 1. Since I' is transitive (§ 77), equation (15) is irreducible
in R (§ 68). This was shown otherwise in § 71.

Cor. 2. If the group H to which ¢ belongs is self-conjugate
under @, the group of the resolvent (15) is regular (§ 79). The
resolvent is then said to be a regular equation.

Cor. 3. If H is a self-conjugate subgroup of G of prime index v,
the group of (15) is eyelic (§ 79, Corollary). The resolvent is then
said to be a cyclic equation of prime degree v.

Cor. 4. If H is a maximal self-conjugate subgroup of @, the
group of (15) is simple (§ 80). The resolvent is then said to be
a regular and simple equation.

82. THEOREM. The solution of any given equation can be reduced
to the solution of a chain of simple regular equations.

Let G be the group of the given equation for a given domain R,
and let a series of composition (§ 43) of G be

G, HK,...,M,G,

the factors of composition being A (index of H under @), x (index
of K under H),...,p (index of G, under M). Let ¢, ¢,...,7, V
be rational functions of the roots belonging to H, K, ..., M, G,,
respectively (§ 70). Then ¢ is a root of a resolvent equation
of degree A with coefficients in R, which is a simple regular equation
(§ 81, Cor.4). By the adjunction of ¢ to the domain R, the
group G of the equation is reduced to H (§ 75). Then ¢ is a root
of a simple regular equation of degree x4 with coefficients in the
enlarged domain (¢, R). By the adjunction of ¢, the group is
reduced to K. When, in this way, the group has reduced to the
identity @,, the roots z,,...,z, lie in the final domain reached
(compare § 76).

In particular, if the factors of composition A, p,...,p are all
prime numbers, the resolvent equations are all regular cyclic equations
of prime degrees (§ 81, Cor. 3).
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83. THEOREM. A cyclic equation of prime degree p s solvable
by radicals.

Let R be a given domain to which belong the coefficients of the
given equation f(r)=0 with the roots z,,x,,...,Z,-,, and for
which the group of f(x) =0is the cyclic group G={7,s,8%,...,8?"},
where 8=(Z,%,...%p—,). Adjoin to the domain R an imaginary
pth root of unity * w and let the group of f(z)=0 for the enlarged
domain R’ be G’. Consider the rational functions, with coefficients
in R', ’

(20) 0;=z,+ 'z + 0¥z, + . .. +P iz, .

Under the substitution s, 6; is changed into w=if;, Hence 07 =86;
is unaltered by s and therefore by every substitution of G and of
the subgroup G’ (§74). Hence 6; lies in the domain R’ (§ 61).
Extracting the pth root, we have 6;=+/8;. Since the function (20)
belongs to the identity group, it must be possible, by Lagrange’s
Theorem (§ 72), to express the roots x,, 2, ...,z,_, rationally
in terms of 6;. The actual expressions for the roots were found
in the following elegant way by Lagrange. We have, by (20),

Tyt +z, + .. F2p=cC
Ttwz, +olr, + ... for iz, =V8,
Tyt to'z, +... 40Xz, =8,

Zo+ Pz, + @ Nz, + .,

. ooV, =8,
where c=%/8, is the negative of the coeficient of zr~* in f(z)=0.
Multiplying these equations by 1, w™, w™%, . .., w~®=1%, respect~
ively, and adding the resulting equations, and then dividing by p,
we get |

z¢=%% ctw VO, +w-V8,+ ... +’w-<r—l>"{’/0,,_.} ,

* As shown in § 89, w can be determined by a finite number of applications
of the operation extraction of a single root of a known quantity.
1 Since 1+ wt+w¥+ ... +0@—-1¢=0 for =1, 2,...,p—1.
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for ©=0, 1,..., p—1. The value of one of these p—1 radicals,

say ~/8,, may be chosen arbitrarily; but the others are then fully
determined, being rationally expressible in terms of that one.
Indeed,

{/0—,- +({'/0—,)550,-+0f

. becomes w™0;+(w~'0,)* upon applying the substitution s and
hence is unaltered by s, and is therefore in the domain R’.

84. From the results of §§ 82-83, we have the following

TrEOREM. If the group of an equation has a series of composition
for which the factors of composition are all prime numbers, the equation
8 solvable by radicals, that 3, by the extraction of roots of known
quantities.

The group property thus obtained as a sufficient condition for
the algebraic solvability of a given equation will be shown (§ 92)
to be also a necessary condition.



CHAPTER VIII.
REGULAR CYCLIC EQUATIONS; ABELIAN EQUATIONS.

85. Let f(z)=0 be an equation whose group @ for a domain R
consists of the powers of a circular substitution s=(z,...z,):

G={I,s,s%...,8"7 1,

n being any integer. Since the cyclic group G is transitive and of
order equal to its degree, it is regular (§ 67). Inversely, the gen-
erator 8 of a transitive cyclic group is necessarily a circular sub-
stitution on the n letters.*

The equation f(z)=0 then has the properties:

(a) It is irreducible, since its group is transitive (§ 68).

(b) All the roots are rational functions, with coefficients in R,
of any one root z,. Indeed, there are only n substitutions in the
transitive group on n letters, and consequently a single substitution
(the identity) leaving x, unaltered. Since z, belongs to the identity
group, the result follows by Lagrange’s Theorem (§ 72). Let
z,=0(z,). To this rational relation we may apply all the substi-
tutions of G (§ 62). Hence

(21) T, =0(z,), 2,=0(x;), ..., Ta=0(2n_,), z,=0(x,).

DEFINITION. An irreducible equation for a domain R between
whose n roots exist relations of the form (21), 6 being a rational
function with coefficients in R, is called an Abelian equation.}

* A non-circular substitution, as ¢{=(zz,z;)(z2;), generates an intransi-
tive group. Thus the powers of ¢ replace z, by z,, z,, or z; only.

1 More explicitly, uniserial Abelian (einfache Abel’sche, Kronecker)
A more general type of ‘‘ Abelian equations” was studied by Abel, Guvres,
I, No. XT, pp. 114-140.

73
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86. TuEOREM. The group G of an Abelian equation 18 a regular

cyclic group.
Denote any substitution of the group G by

g=(x, T, Ty .. Ix,.)

Ta Ty Ty ... T)°

Applying to the rational relations (21) the substitutions g (§ 62),
z,=0(za), 2,=0(zp), ..., za=0(z,).

But, by (21), 6(zd) =% a4,, holding also for a=n if we agree to set
T;=Tipn==itn= ... It follows that

Ty=Tatyy Tr=Tptpy + ¢y Ta=Tvyq.

Since the equation is irreducible, its roots are all distinct. Hence,
aside from multiples of =,
B=a+1, r=B+1=a+2, O0=r+l=a+3,...

. g= (xl T, X cee Ty

o Ta ZTayy Taty oo« Tagn—
Since ¢ replaces z; by #;.4,, it is the power a—1 of the circular
substitution s=(z,x,z, . ..z,) which replaces z; by z;,,. Hence
G is a subgroup of G'={I, s, §%,..., s""'}. But G is transitive,
since the equation is irreducible. Hence G=G".

5_
ExampLe. The equation z*+z2+2z?+2+1 sz—_i. =0 has the roots

Ty=¢, T,=¢€) zz=¢b z,=¢,
where ¢ is an imaginary fifth root of unity. Hence
=2 =1, T,=z T,=z’
Moreover, the equation is irreducible in the domain R of all rational numbers

(§ 88). This may be verified directly by observing that the linear factors
are z — ¢! and hence irrational, while

i+t +ri+z+1=(2’+ar+r) (2 +bdz+rY)
gives a+b=1, ab+r+r-'=1, ar-'4+br=1, so that either
a=3(1xV3), b=31FV3E), r=1,
=T =1 . 3 -
or, a-—m’ b—r+1’ rM+ri+ri4r+1=0.
Hence the group for R is a cyclic group. Compare Ex., 4, page 58.
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87. Cyclotomic equation for the pth roots of unity, p being
prime,
(22) P~ r=24 ., +2+1=0.
Let ¢ be one root of (22), so that =1, e<1. Then
(23) g &% &3...,

are all roots of (22) and are all distinct. Hence they furnish
all the roots of (22). As shown in the Theory of Numbers, there
exists,* for every prime number p, an integer g such that gm—1is
divisible by p for m=p—1 but not for a smaller positive integer m.
Such an integer g is called a primitive root of p. It follows that
the series of integers

1, g9, ..., g*73,
when divided by p, yield in some order the remainders
1, 2, 3, ..., p—1.
Hence the roots (23) may be written
Ty=¢, =9, Ty=e0, ..., T, =97,
So =0, Ty=TI, ..., Tpo =Tp_,, T, =1,
the last relation following from the definition of g, thus?
(P70 =P = clter=¢,

Hence the roots have the property indicated by formule (21). In
view of the next section, we may therefore state the

TrEOREM. The cyclotomic equation for the tmaginary pth roots
of unity, p being prime, is an Abelian equation with respect to the
domain of all rational numbers.

* For example, if p=5, we may take g=2, since
2!—1=1, 2?—1=3, 2!°—1=7, 2¢—1=15,
For p=5 the results of this section were found in the example of § 86.
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88. Irreducibility of the cyclotomic equation (22) in the domain
R of all rational numbers.* Suppose that
it L ot 1=(2) (),
where ¢ and ¢ are integral functions of degree < p—1 with integral t
coefficients. Taking z=1, we get
p=¢(1)-(1).
Since p is prime, one of the integral factors, say ¢(1), must be +1.

Since ¢(z)=0 has at least one root in common with (22), whose
roots are (23), at least one of the expressions ¢(¢t) is zero. Hence

(24) P(e) - p(e?)- P(e%) . . . p(ep~1)=0.
For any positive integer s less than p, the series
(25) &, €, ¥, ..., P

is identical, apart from the order of the terms, with the series (23).
For, every number (25) equals a number (23), and the numbers
(25) are all distinct. In fact, if

er=¢, whence %=1, (03r<p, 03I<p)

then (r—t)s, and consequently also r—{, is divisible by p, so that
r=t. Hence (24) holds true when ¢ is replaced by ¢. Hence

$(2)-$(27) .. . p(zP~1)=0
is an equation having all the numbers (23) as roots. Its left mem=
ber is therefore divisible by =1+ ... +z+1, so that
$(2) B ... Y@ =Q(x)- (@~ +zp =+ ... +z+1),
where Q(x) is an integral function with integral coefficients. Set~
ting z=1, we get
[V =[£1P~'=p-Q(1).
Since + 1 isnot divisible by p, the assumption that zr—1+ ... +2+1
is reducible in R leads to a contradiction.

* The proof is that by Kronecker, Crelle, vol. 29; other proofs have been
given by Gauss, Eisenstein (Crelle, vol. 39, p. 167), Dedekind (Jordan,
. Traité des substitutions, Nos. 413—-414).
1 If rational, then integral (Weber, Algebra, I, 1895, p. 27).
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89. THEOREM. Any Abelian equation 13 solvable by radicals.

Let n be the degree of the Abelian equation. By § 86, its
group G is a regular cyclic group {I, s, 8%,..., s"~*} of order m,
Set n=p-n’, where p is prime. Set s»=¢’. Then the group

H={I, ¢, 3%..., s'"’—l}

is a subgroup of G of prime index p. It is self-conjugate, since
8 Pg/0g8 — g—Bgapgh — gap —g'a

by § 13. Hence H may be taken as the second group of a series
of composition of G. Proceeding with H as we did with G, we
finally reach the conclusion:

The factors of composition of a cyclic group of order n are the
prime factors of n each repeated as often as it occurs in n.

In view of the remark at the end of § 82, it now follows that
any Abelian equation of degree n can be reduced to a chain of Abelian
equations whose degrees are the prime factors of n.

We may now show by induction that every Abelian equation
of prime degree p is solvable by radicals. We suppose solvable
all Abelian equations of prime degrees less than a certain prime p.
Among them are the Abelian equations of prime degrees to which
can be reduced the Abelian equation of degree p—1, giving an
imaginary pth root of unity (§87). The latter being therefore
known, every Abelian equation of degree p is solvable by radicals
(§83). Now an Abelian equation of degree 2 is solvable by radicals.
Hence the induction is complete.

It follows now that an Abelian equation of any degree is solvable.

CorOLLARY. If p is a prime number, all the pth roots of unity
can be found by a finite number of applications of the operation
extraction of a single root of a known quantity, the index of each
radical being a prime divisor of p—1.

90. LEmMMA. If p be prime, and if A be a quantity lying in a
domain R but not the pth power of a quantity in R, then zP—A 18
trreducible in R.

For, if reducible in R, so that

P—A=$,(2) $@) ...,
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the several factors are of the same degree only when each is of
degree 1, the only divisor of p. In the latter case, the roots would
all lie in R, contrary to assumption. Let then ¢, be of higher de-
gree than ¢, and set

$@)=(z—2) ... (2—2)), $(@)=(@—2)...(z—23),
so that n,—n,>0. The last coefficients in the products are
127 . . T =0, o)z ) = 20T,
respectively, since the roots of 22— A =0 are
(26) z, I, T, ..., P,

w being an imaginary pth root of unity. But the last coefficients,
and their quotient +w°z,™, where m=n,—n,>0,liein R. Since
p and m are relatively prime, integers 4 and v exist for which

mu—pv=1.
S (rrym)r=wrer Pt l=0tr Avg, = AV,

where 2’ is one of the roots (26). Hence 4,2/, and consequently
2/, lies in B. Then A equals the pth power of a quantity 2’ in R,
contrary to assumption. Hence 27— A must be irreducible.

91. THEOREM. A binomial equation of prime degree p,

2?—A=0,
can be solved by means of a chain of Abelian equations of prime degree.
Let R be the given domain to which A belongs. Adjoin w

and denote by R’ the enlarged domain. Then the roots (26)
satisfy the relations

L=0T), Ty3=Wl, ..., Tp=wIp_y, I,=WTp,

of the type (21) of § 85, 6(x) being here the rational function wz.
The discussion in § 90 shows that zr— A is either irreducible in the
enlarged domain R’ or else has all its roots in R’. In the former
case, the group of 22— A =0 for R’ is a regular cyclic group (§ 86);
in the latter case, the group for R’ is the identity. But w itself is
determined by an Abelian equation (§ 87). Hence, in either case,
7#— A =0 is made to depend upon a chain of Abelian equations,
whose degrees may be supposed to be prime (§ 89).



CHAPTER IX.
CRITERION FOR ALGEBRAIC SOLVABILITY,

92. We are now in a position to complete the theory of the
algebraic solution of an arbitrarily given equation of degree n,

(¢)) f(z)=0.

A group property expressing a sufficient condition for the algebraic
solvability of (1) was established in § 84. To show that this
property expresses a necessary condition, we begin with a dis-
cussion of equation (1) under the hypothesis that it is solvable
by radicals, namely (§ 50), that its roots z,, .. ., z, can be derived
from the initially given quantities R’, R”,... by addition, sub-
traction, multiplication, division, and extraction of a root of any
index. These indices may evidently be assumed to be prime
numbers. If &, 7,..., ¢ denote all the radicals which enter the
expressions for all the roots z,, z,,..., %,, the solution may be
exhibited by a chain of binomial equations of prime degree;

EA=L(R',R",...), »=M,R,R",..), ...,
¢p=P(...,n, & R, E”,..0),
z;=R(¢,...,n & R, R",...) (t=1,... » N,

L, M,..., P, R;being rational functions with integral coefficients,
in which some of the arguments £, 7, ... written may be wanting.
By §91, each of these binomial equations, and therefore also the
complete chain, can be replaced by a chain of Abelian equations
of prime degrees;

729
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o(y; R',R",...)=0, Abelian for domain R;
Y(; y,R,R’,...)=0, Abelian for (y, R);
6(w;...,2,y,R,R",...)=0, Abelianfor(...,z v, R);
z;=04w,...,2,y,R,R",...) (t=1,...,n).

We begin by solving the first Abelian equation @#(y)=0 and
adjoining one of its roots, say y, to the original domain R; the
group G of (1) then reduces to a certain subgroup, say H,
including the possibility H=G (§ 74). Then we solve the second
Abelian equation ¥(z)=0 and adjoin one of its roots, say z, to the
enlarged domain (y, R); the group H reduces to a certain sub-
group, say J, including the possibility J=H. Proceeding in this
way, until the last equation 8(w)=0 has been solved and one of
its roots, say w, has been adjoined, we finally reach the domain
(w,..., 2 y, R), with respect to which the group of (1) is the
identity G,, since all the roots z; lie in that domain.

By every one of these successive adjunctions, either the group
of equation (1) is not reduced at all or else the group is reduced
to a self-conjugate subgroup of prime index. This theorem, due to
Galois, is established as a corollary in the next section; its impor-
tance is better appreciated if we remark that each adjoined
quantity is not supposed to be a rational function of the roots, in
contrast with § 75, so that we shall be able to draw an important
conclusion, due to Abel, concerning the nature of the irrationalities
occurring in the expressions for the roots of a solvable equation

94).

@ From this theorem of Galois, it follows that the different groups
through which we pass in the process of successive adjunction
of a root of each Abelian equation in the chain to which the given
solvable equation was reduced must form a series of composition
of the group G of the given equation having only prime numbers
as factors of composition. Indeed, the series of groups beginning
with @ and ending with the identity G, are such that each is a self-
conjugate subgroup of prime index under the preceding. Hence
the sufficient condition (§ 84) for the algebraic solvability of a
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given equation is also a necessary condition, so that we obtain
Galois’ criterion for algebraic solvability:

In order that an equation be solvable by radicals, it 18 necessary
and suffictent that its group have a series of composition in which
the factors of composition are all prime numbers.

93. Theorem of Jordan,* as amplified and proved by Hélder: ¢

For a given domain R let the group G, of an equation F(x)=0
be reduced to G,’ by the adjunction of all the roots of a second equation
F,(2)=0, and let the group G, of the second equation be reduced to
G, by the adjunction of all the roots of the first equation F,(z)=0.
Then G and @, are self-conjugate subgroups of G, and G, re-
spectively, and the quotient-groups G,/G, and @,/G, are simply
18omoryphic.

Let ¢,(&,, &, ..., &) be a rational function, with coefficients
in R, of the roots of the first equation which belongs to the sub-
group Gy’ of the group G, of the first equation (§ 70). By hypothe-
sis, the adjunction of the roots %, 7,,...,7m of the equation
F,(x) =0 reduces the group G, to G,/. Hence ¢, lies in the enlarged
domain, so that

(27) $(éy, & e ° )=y M2y e erm),

the coefficients of the rational function ¢, being in R.

Let ¢, ¢5 ..., ¢r denote all the numerically distinet values
which ¢, can take under the substitutions (on §,,..., §,) of G,.
Then G/ is of index k under G, (§ 71). Let ¢,, ¢,, ..., ¢; denote
all the numerically distinct values which ¢, can take under the
substitutions (on 7,,...,9m) of G,. The k quantities ¢ are the
roots of an irreducible equation in R (§ 71); likewise for the [
quantities ¢. Since these two irreducible equations have a com-
mon root ¢; = ¢,, they are identical (§ 55, Cor.II). Hence ¢, ..., ¢
coincide in some order with ¢,, ..., ¢;; in particular, k=1I.

If s, is a substitution of G, which replaces ¢, by its conjugate ¢,
then s; transforms G/, the group of ¢, by definition, into the group
of ¢; of the same order as G,’. But ¢;, being equal to a ¢, lies in

* Traité des substitutions, pp. 269, 270, t+ Math. Annalen, vol. 34.
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the domain R'=(R; 9,, ..., 7m), and hence is unaltered by the
substitutions of the group G,” of the equation F,(z)=0 for that
domain R’ (§ 61, property B). Hence the group of ¢; contains
all the substitutions of G’; being of the same order, the group
of ¢; is identical with G,'. Hence G, 18 self-conjugate under G,.
The group of the irreducible equation satisfied by ¢, is therefore
the quotient-group G,/G, (§79).

Let H, be the subgroup of G, to which belongs ¢,(9,, 15, - - - , Jm)-
Since ¢, is a root of an irreducible equation in R of degree I=k,
the group H, is of index k under G, (§ 71). By the adjunction of
¢, (or, what amounts to the same thing in view of (27), by the
adjunction of ¢,), the group G, of equation F,(z) =0 for R is reduced
to H, (§ 75). If not merely ¢,(¢,, ..., &), but all the &’s them-
sclves be adjoined, the group G, reduces perhaps further to a
subgroup of H,. Hence G, is contained in H,. We thus have
the preliminary result: If the group of F,(x)=0 reduces to a
subgroup of index % on adjoining all the roots of F,(z)=0, then
the group of F,(x)=0 reduces to a subgroup of index k,, k, Sk,
on adjoining all the roots of F,(z)=0.

Interchanging F, and F, in the preceding statement we obtain
the result: If the group of F,(xr)=0 reduces to a subgroup of
index k, on adjoining all the roots of F,(z)=0, then the group of
F,(=)=0 reduces to a subgroup of index k,, k,Sk,, on adjoining
all the roots of F,(xr)=0. Since the hypothesis for the second
statement is identical with the conclusion for the first statement,
it follows that

k,=k, klgk! kz§ku

so that k,=k. Hence the group G,’ of the theorem is identical
with the group H, of all the substitutions in G, which leave ¢,
unaltered. It follows that G, is self-conjugate under G, (for the
same reason that G, is self-conjugate under @,). The irreducible
equation in R satisfied by ¢, has for its group the quotient-group
G,/G, .

But the two irreducible equations for R satisfied by ¢, and ¢,,
respectively, were shown to be identical. Hence the groups
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G,/G/ and G,/G, differ only in the notations employed for the
letters on which they operate, and hence are simply isomorphic.

CoroLLARY. For the particular case in which the second equa-
tion is an Abelian equation of prime degree p, all of its roots are
rational functions in R of any one root, so that by adjoining one
we adjoin all its roots. By the adjunction of any one root of an
Abelian equation of prime degree p, the group of the given equation

F,(x)=0 either 18 mot reduced at all or else 18 reduced to a self-
conjugate subgroup of index p.

94. If G, is simple and if the adjunction causes a reduction,
then G, is reduced to the identity. Hence the group G,’=H,, to
which belongs ¢,, is the identity. Hence the roots 5, 7, - .., 9m
of F,(z)=0 are rational functions in R of ¢, (§ 72) and therefore,
in view of (27), of the roots £,, ..., &, of Fy(2)=0.!

If the group of an equation F,(z)=0 for a domain R 1s reduced
by the adjunction of all the roots of an equation F,(x)=0 whose group
for R is simple, then all the roots of F,(z)=0 are rational functions
in R of the roots of Fy(x)=0.

Since the group of a solvable equation f(z)=0 has a series of
composition in which the factors of composition are all prime num-
bers, the equation can be replaced by a chain of resolvent equations
each an Abelian equation of prime degree (end of § 82, §85).
The adjunction of a root of each resolvent reduces the group of the
equation and the group of the resolvent is simple, being cyclic of
prime order. Hence the roots of each Abelian resolvent equation
are all rational functions of the roots of f(x)=0. But the radicals
entering the solution of an Abelian equation of prime degree are
rationally expressible in terms of its roots and an imaginary pth
root of unity (§ 83),

R/0,=z+ w2, + 0+ ... +0P 2y, ...

and hence are rationally expressible in terms of the roots of f(x)=0
and pth roots of unity. We therefore state Abel’s Theorem:

The solution of an algebraically solvable equation can always
be performed by a chain of binomial equations of prime degrees whose
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roots are rationally expresstble in terms of the roots of the given equation
and of certain roots of unity.

The roots of an algebraically solvable equation can therefore
be given a form such that all the radicals entering them are
rationally expressible in terms of the roots of the equation and of
certain roots of unity. This result was first shown empirically by
Lagrange for the general quadratic, cubic, and quartic equations
(see Chapter I).

The Theorem of Abel supplies the step needed to complete the
proof of the impossibility of the algebraic solution of the general
equation of degree n >4 (§ 48).

95. By way of illustrating Galois’ theory, we proceed to give
algebraic solutions of the general equations of the third and fourth
degrees by chains of Abelian equations.

For the cubic z®—¢,z?+ c,z—cy,=0, let the domain of rationality
be R=(c,, ¢, ¢;). The group of the cubic for R is the symmetric
group G4 (§ 64). To the subgroup G, belongs

4 =(2,— 2,)(2,— 2,) (23— ;).
In view of Ex. 3, page 4, 4 is a root of the equation
(28) 4 =c,?c,’ + 18c,c,05— 40, — 4c,3cy— 2742,
Its second root —4 is rationally expressible in terms of the first
root 4, and (28) is irreducible since 4 is not in R for general c,, c,, c,.
Hence (28) is Abelian (§ 85). By adjoining 4 to R, the group
reduces to Gy (§ 75). Solve the Abelian equation w?+w+1=0

(§ 87) and adjoin w to the domain (4, R). To the enlarged domain
R'=(w, 4, ¢,, ¢;, ¢5) belong the coefficients of the function

=2, +wz,+ a)’.'c,;
By § 34, ¢,® has a value lying in R’, namely,
&.2=32c,*—9¢,¢,+27c,— 3(w—w?)4].

This binomial is an Abelian equation for the domain R’ (§ 91).
By the adjunction of ¢, the group of the cubic reduces to the
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identity. Hence z,, z,, z, lie in the domain (¢, w, 4, ¢, &, ¢).
Thus, by § 34,
\ 2 __ 2__
zl='§(01+¢1+01 ‘/’302), xz=‘§‘(cl+wz¢l+w('c_l_f3'ci))-
1 1
We may, however, solve the cubic without adjoining w. In
the domain (4, ¢,, ¢, ¢), the cubic itself is an Abelian equation,
since its group Gj is cyclic (§ 85). By the adjunction of a root z,
of this Abelian equation, the group reduces to the identity, so that
z, and z, must lie in the domain (z,, 4, ¢, ¢,, ¢;). The explicit
expressions for z, and z; are given by Serret, Algébre supérieure,
vol. 2, No. 511:

z,=2lA {(6c,—2¢,*)z, >+ (9cs—Te,c,+ 2, — )z, + 4c,2 — . %c,— 3y + 0,4},

the value of z, being obtained by changing the sign of 4 throughout.
96. For the general quartic z*+ax®+b2?+cx+d=0, the group
for the domain R=(a, b, ¢, d) is G,,. To the subgroup G,, belongs

4= (2,—2,)(2,— 23) (T, — ) (T, — ) (2, — 2,) (T — 7).
Since 42 is an integral function of a, b, ¢, d with rational coefficients
(§ 42), we obtain 4 by solving an equation which is Abelian for R.
After the adjunction of 4, the group is G,,. To the subgroup G,
¢f G, belongs the function y,=z,z,+ 2.z, It satisfies the cubic
resolvent equation (§ 4)

(16) y3—by?+ (ac—4d)y — a’d+4bd—c*=0.

The group of this resolvent for the domain (4, a, b, ¢, d) is a cyclic
group of order 3 (§ 79, Cor.), so that the resolvent is Abelian. By
the adjunction of y,, the group of the quartic reduces to G,. To
the subgroup G, of G, belongs the function t=2z+2,—2y—z,. It
is determined by the Abelian equation (§ 5)

(29) t?=a’—-4b+4y,.

By the adjunction of ¢, the group reduces to G,. To the identity
subgroup G, of @, belongs z,; it is a root of (17), § 4:

, 23+ (a—1)z+ 3y, — (3ay, — ) /t=0.
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After the adjunction of a root z, of this Abelian equation, the
group is the identityG,. Hence (§ 72) all the roots lie in the domain
(2, t,y,,4,a,b,¢,d). Thisisevident for z,, since z, +z,= —}(a—1t).
For z, and z,, we have

Zy+ T, =2, +2,—t, T3—2,=(Y—Yy) + (T,—T,),

while y, and y, are rationally expressible in terms of y,, 4, and
the coefficients of (16), as shown at the end of §95. In fact,
(%1 —¥2)(¥2—¥s)(y1—ys) has the value 4 by § 7.

97. Another method of solving the general quartic was given
in § 42. For the domain R=(w, a, b, ¢, d), where w is an imaginary
cube root of unity, the group is G,, (§ 64). After the adjunction
of 4, the group is G,,. To the self-conjugate subgroup G, belongs
¢, =y, +wy,+w;, where y,=z,z,+ z5,, etc., so that ¢, is a rational
function of z,, z,, x,, z,, with coefficients in R. By § 42,

¢2=3(w—w?4—216J,

so that ¢, 1s determined by an equation which is Abelian for the
domain (4, w, a, b, ¢, d). Then, by § 42, y,, ¥,, ¥s belong to the
enlarged domain (¢,, 4, w, a, b, ¢, d).

By the adjunction of ¢, a root of the binomial Abelian equa-
tion (29), the group reduces to G,. By the adjunction * of both
1=V =1 and V=z,—z,+1iz,—iz,, which is a root of a binomial
quadratic equation (§ 42), the group reduces to the identity G,.
The expressions for x,, z,, Z;, &, in terms of ¢, V, 7, and a, are
given by formula (41), in connection with (40), of § 37.

* Without adjoining ¢ and V, we may determine ¢,=z,+2;—2,—z, from
t,*=a’—4b+4y,. Then t{,=z,+z,—z,—x, is known, since ¢,;t;=4ab—8c—a®
by formula (39) of § 36, where ¢, =¢. Then

= —a+{+t+4), T=i(—a+t—t,—t,eto.



CHAPTER X.
METACYCLIC EQUATIONS; GALOISIAN EQUATIONS.

98. Analytic representation of substitutions. Given any sub-
stitution
o= (xo 2 N x,._,)
Tag Tp Te ooo T )’
so that a,b, ..., k form a permutation of 0,1,..., n—1,it is pos-
sible to construct a function ¢(2) of one variable z such that

$(0)=a, ¢(1)=b, §2)=¢c, ..., ¢(n—-1)=Fk.

Indeed, such a function is given by Lagrange’s Ini;erpolation-
Formula,
aF(z) bF(z)

kF(2)
@)= 70yt e=DF @

(z—n+1)F'(n—1)"

where F(z)=2(z—1)(2—2)...(2—n+1) and F’(2) is the deriva-
tive of F(z). Then the substitution s is represented analytically

(x‘ )
«’)

‘We confine our attention to the case in which » is a prime num-
ber p, and agree to take z,=2,, p==;4p=.... Then (asin § 86)
the circular substitution ¢t=(2,z,z,...zp_,) may be represented

in the form
t= (xlﬂ)

Let @ be the largest group of substitutions on z,, ;, ..., Zp—
&

+aoot
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under which the cyclic group H={I,¢,13,...,1*~1} is self-conjugate.
The general substitutions g of G and % of H may be written

= Zs = Zs =
=) =)=

By hypothesis, g~%g belongs to H and hence is of the form ¢2.

—1_ (Té(2) -1y (T —14,— [ Téz)
§ (zz )’ g (xtﬂ)’ gl (%ﬂ)).

But * replaces zg.) by Ts:)4e- Hence must
Ti(e+1)= T(z) +a
Taking in turn 2=0, 1, 2, . . ., and writing ¢(0)=b, we get

Te)=Tb+ar Te2)=T1)+a=Tb42ay T =Td2)+a=Tb4aay oo

By simple induction, we get Zyz=2=b4s for any integer z. Hence

x
(30) o= (%)
Here a and b= ¢(0) are integers. Also a is not divisible by p, since
g~ g is not the identity. The distinct substitutions* g are obtained
by taking the values
a=1,2,...,p-1; b=0,1,2,...,p—1.

The resulting p(p—1) substitutions form a group called the meta-
cyclic group of degree p. This follows from its origin or from

() G ) = Crrne) = Grrcirn)
Laz4b/ \Taz+3 La(az+b)+ A Zaaz+ab+8) )

RemARK. The only circular substitutions of period p in the
metacyclic group are the powers of . For a=1, (30) becomes #;
for a1, (30) leaves one root unaltered, namely, that one whose
index z makes az+b and z differ by a multiple of p.

* Formula (30) does, indeed, define a substitution on x,, , . . . , Zn—y,

(a:o z, Ty eee )

Td Tagb Tyaqdb oo /)’

since b, a+b, 2a+bd, ..., (p—1)a+b give the remainders 0, 1, 2, .., p—1,
in some order, when divided by p. In proof, the remainders are all different,
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99. A metacyclic equation of degree p is one whose group G
for a domain R is the metacyclic group of degree p. It is irre-
ducible since @ is transitive, its cyclic subgroup H being transitive.
Again, all its roots are rational functions of two of the roots with
coefficients in R. For, by the adjunction of two roots, say z.
and z,, the group reduces to the identity. Indeed, if g leaves
zu and z, unaltered, then

(au+b)—u, (av+d)—v-

are multiples of p, so that their difference (a—1)(x—v) is a multi-
ple of p, whence a=1, and therefore b=0. Hence the identity .
alone leaves zy and z, unaltered.

DeFINITION.  For a domain R, an irreducible equatlon of prime
degree whose roots are all rational functions of two of the roots is"
called a Galoisian equation.

Hence a metacyclic equation s a Galozszan equatwn

100. Given, inversely, a Galoisian equation of prime degree p,
we can readily determine its group G for a domain R. ' The equa-
tion being irreducible, its group is transitive, so that the order
of G is divisible by p (§ 67). Hence G contains a cyclic subgroup
H of order p (see foot-note to § 27). Let x, and z, denote the two
roots in terms of which all the roots are supposed to be rationally
expressible. Among the powers of any circular substitution of
period p, there is one which replaces z, by z,. Hence, by a suitable
choice of notation for the remaining roots, we may assume that
H contains the substitution

=Ty 2, Ty . . Tpy) -
To show that H is self-conjugate under @, it suffices to prove
that any clrcular substitution, contained in G,
r= (x1 zl x‘lz xlp_l)

is a power of ¢; for, the transform of ¢t by any substitution of G will .
then belong to H (§ 40). Since every two adjacent letters in r
are different, ¢,,,—1%, is never a multiple of p and hence, for at
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least two values 4 and v of z chosen from the series 0, 1,..., p—1,
gives the same remainder when divided by p. Hence

iy py—ip = Tiy 4~y 88Y =Tk

Since r is a power of a circular substitution replacing z, by z,, we
may assume that 4,=0, 7,=1. The hypothesis then gives

zig=0d(z;, =) (a=0, 1,..., p—1),

where 0, is a rational function with coefficients in R. Applying
to these rational relations the substitutions 7t *# and r*t™® of the
group @, we obtain, by § 62,

Ti gy u—in=0a(Zo, Tk); Tioy,—i,=0uzy, Tk).
‘Hence the subscripts in the left members are equal, so that
ia+p—'ia+b=7:ﬁ—iv=c (a=0, 1, ceay p—l),

omitting multiples of p. Hence every subscript in r exceeds by ¢
. the (u—v)th subscript preceding it. Hence r is a power of .

Since G has a self-conjugate eyclic subgroup H, it is contamed
in the metacyclic group of degree p (§ 98).

The group of a Galoisian equation of prime degree p 18 a subgroup
of the metacyclic group of degree p.

101. A metacyclic equation is readily solved by means of a
chain of two Abelian equations. Let ¢=R(x,, z,,..., Zp—,) belong
to the subgroup H of G. Then

¢1=¢y ¢'3=R($0, Loy Tyy oeey xzp—z)r ooy ¢P—1=R(xo: Tp—yy Tap—2y ++e) z(P-l)')

are the p—1 values of ¢ under G. But ¢, is changed into ¢; by
the substitution which replaces z, by zj,. It follows that the
p—1 values of ¢ are permuted cyclically under the p(p—1) sub-
stitutions of G. The group of the resolvent equation

(w=¢)(w—¢,) ... (w—¢p_)=0

is therefore a cyclic group of order p—1, so that the resolvent
is an Abclian equation (§ 85). By the adjunction of ¢, the group
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of the original equation reduces to the cyclic group H, so that it
is Abelian in the enlarged domain. '

The method applies also to any Galoisian equation. Its group
G is a subgroup of the metacyclic group and yet contains H as a
subgroup. The order of @ is therefore pd, where d is a divisor
of p—1. The two auxiliary Abelian equations are then of degrees
d and p respectively. Applying § 89, we have the results:

A Galoisian equation can be solved by a chain of Abelian equations
of prime degree and hence 18 solvable by radicals.

ExamrLE 1. Let A be a quantity lying in a given domain R but not
the pth power of a quantity in B. Then the equation

zP—A =0
is irreducible in R (§ 90). Its roots are
Ty Ty=0T, T=0'%, ... y Tp— =wp-la;°.

All the roots are rationally expressible in terms of z, and z;:

z ,
zi= (;;) o (i=0,1,..., p—1).
The equation is therefore a Galoisian equation. For the function ¢ belonging
to the cyclic subgroup H we may take
z_1, zy

== =—=

s T,

The resolvent equation w?P—'+ ... +®+1=0 is indeed  Abelian (§ 87).

After the adjunction of w, zP—A =0 becomes an Abelian equation (§ 91).
ExampLE 2. To solve the quintic equation *

(o) ¥ +py*+iply+r=0,
set y-z—%. Then (compare the solution of the cubie, § 2)

ps
2t 7;

~5 s +7=0.

. * 0 o=2+ (B)

sf=—3+VQ, Q=7+ (5) .

If ¢ is an imaginary fifth root of unity, the roots of (e) are

y=A+B, yy=¢A+¢e'B, y;=e?A+6B, y,=cA+¢'B, y,=¢'A+4B,

where
A={,"';—+‘\/6y B=: J_%_VQ-

* Compare Dickson’s College Algebra, pages 189 and 193.
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Evidently A and B may be expressed as linear functions of y, and y,. Hence
¥, Y Ys are rational functions of y, and y, with coefficients in the domain
R=(e, p, 7). For general p and r, equation (e) is irreducible in R, since no
‘one of itsroots lies in R and since it has no quadratlc factor in R (as may be
shown from the form of the roots). Hence (¢) is a Galoisian equation.

102. LeymMa. If L is a self-conjugate subgroup of K of prime
index v and if k 1s any substitution of K not contained in L, then k*,
and no lower power of k, belongs to L, and the period of k is divisible
by v. '

By the Corollary of § 79, the quotient-group K/L is a eyclic
group

Lnr ..ot

Hence to k corresponds a power of 7, say r*, where « is not divisible
by v. Then to k* corresponds (y<)»=1, so that k” belongs to L.
If 0<m< v, k™ does not belong to L, since (y<)™=1I requires that
xm be divisible by the prime number v.

Let the period g of k be written in the form

p=qv+r 02 z<).

Since k”=h, a substitution of L, we get I=k”=h%". Hence

k™=h=e, so that t=0, in view of the earlier result concerning
powers of k. Hence p is divisible by v.

103. TueoreM(Galois). Every irreducible equation of prime degree

p which vs solvable by radicals vs a Galoisian equation.
Let G be the group of the equation for a domain R and let

(31) GH,..., J,KL...,G

be a series of composition of G. Since the equation is solvable by
radicals, the factors of composition are all prime numbers (§ 92).
Since the equation is irreducible in R, G is transitive (§ 68), so that
its order is divisible by p (§ 67). Hence (foot-note to §27), @
contains a circular substitution of period p, say t=(z, z, . . . z,_,).
Let K denote the last group in the series (31) which contains ¢.
Then the group L, immediately following K, and of prime index v
under K, does not contain ¢. Since t’=1 belongs to L, while no
lower power of ¢ belongs to L, it follows from § 102 that v=p.
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To show that L is the identity G,, suppose that L contains a
substitution s replacing z. by a different letter z5. Then u=sts—8
leaves z, unaltered and belongs to K. Since a—f is not divisible
by p and since ¢ does not belong to L, it follows that u does not
belong to L. By the Lemma of § 102, the period of u is divisible
by v=p. This is impossible since « is a substitution on p letters,
one of which remains unaltered.

Since L=@, and the index of L under K is p, the group K is
the cyclic group of order p formed by the powers of ¢&. Since the
group J immediately preceding K in the series (31) contains the
cyclic group K as a self-conjugate subgroup, J is contained in
the metacyclic group of degree p (§ 98). By the remark at the
end of § 98, J contains no circular substitutions of period p other
than the powers of ¢t. If J’ be the group immediately preceding
J in the series (31), so that J is self-conjugate under J”, the trans-
form of ¢ by any substitution of J’ belongs to J and is a circular
substitution of period p, and therefore is a power of £. Hence the
cyclic group K is self-conjugate under J’, as well as under J.
Hence J’ is contained in the metacyclic group (§ 98). Proceeding
i1 this way until we reach the group @, we find that G is contained
11 the metacyclic group. The theorem therefore follows from § 101.



CHAPTER XI.
AN ACCOUNT OF MORE TECHNICAL RESULTS,

104. Second definition of the group I" of § 77. To show that
I' is completely defined by the given groups G and H and is entirely
independent of the function ¢ used in defining it, we define a group
I', independently of functions belonging to H and prove that
r=r.

Consider a rectangular array of the substitutions of G' with
those of the subgroup H in the first row:

n|g=I1 h ... M
(32) 72192 hags .. hegs

| gy hgy oo Mgy
where 7; denotes the jth row of the array. Let g be any substitu-
tion of G. Since g9, . . ., g.g lie in the array (32), we may write

(33) 99=hogs, g9=hpgps ..., gg=hege.

Hence the products of the substitutions in the array (32) by g¢
on the right-hand may be written (retaining the same order);

Ta ha’ga (hzhﬂ')gd e (h'thd')gd
(34) rp hﬂ'gﬂ (hzhﬂ')gﬁ e (h‘lh’)gp

T hx'gx (h:hx')gk (hthl’)gl '
Now ko, hhd, ..., lha form a permutation of h,=1I, h,, ..., k.
Hence the substitutions in the first row of (34) are identical, apart
from their order, with those of the ath row of (32). Similarly
94

.
Lt e e i U US S S ——
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for the other rows. Hence the multiplication of (32) on the right
by g gives rise to the following permutation of the rows:

Ty Ty
= (rl.rzp. .. r‘)’
To identify the group I', of these substitutions y with the group

I' given by the earlier definition, we note that to g corresponds,
under the earlier definition,

<¢'a, $o, -+ Yo, > <¢a, da, - ¢'a.,>
$o,0 bo0 + - Yog $oa Sl’op $0.)’
since, by (33), ¢g,0=¢h go.=¢0. etc. But this substitution differs

from y only in notation. Hence I',=1TI".

ExampLE 1. Let G be the cyclic group {I, ¢, ¢?, 3, ¢4, cb}, where ¢*=I,
and let H be the subgroup {I, ¢*}. The array is

I ¢
e ct
ry | c? b

To ¢ corresponds (ryryry). Hence I'={I, (ryr,ry), (ryrsrs) }.

ExaMpLE 2. Let G be the alternating group G and let H be the com-
mutative subgroup G, (§ 21, Ex. f). The rects.ngular array for G is given
in § 77, Ex. 2. Multiplying its substitutions on the right hy (z@) %9,
we obtain the array

(zz)(zsz), I, (@) (z,2),  (®2s) (2320
(22320, (z22y), (z,2475), (CX XN
(z%%s), (7579, (zaziry), (z124xs)

Hence each row as a whole remaing unaltered, so that to (z,7)(z.%,) corre-
sponds the identity. A like regult follows for (z,z,)(2,z,) and for the product
(z,z,)(z5x5) of the two. But (z,z,r,) applied as a right-hand multiplier
gives rise to the permutation (r,r,rs) of the rows, as follows immediately from
the formation of the rectangular array by means of the right-hand multipliers
(z;zyr) and (22,20 Hence I'={I, (ryryry), (ryryrs)}.

105. Constaney of the factors of composition. By the criterion
of §92, an equation is solvable by radicals if, and only if, the
group G of the equation has a series of composition in which the
factors of composition are all prime numbers. In applying the
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criterion, it might be necessary to investigate all the series of com-
positions of G to decide whether or not there is one series with
the factors of composition all prime. The practical value of the
criterion is greatly enhanced by the theorem of C. Jordan:*

If a group has two different series of composition, the factors of
composttion for one series are the same, apart from their order, as
the factors of composition for the other series.

ExawrLe 1. Let Gy, G, H,be defined asin § 21; G,, G;, G5 as in Example
3of § 65; and let .

C.=1{I, (zxsayx), (2,2))(2s7,), (XX 22%y)}, Hy={I, (z,25)}, Hy={I, (xazg)}-
Then G; has the following series of compositions:

G, G, G, G,; Gy, G, G, G,; Gy, G, G7,Gy;

Gy, C,, Gy, G5 Gy, H,, Gy, Gy; Gy, Hy, H,, Gy; Gy, H,, H3, G,
In each case the factors of composition are 2, 2, 2.

ExamrLE 2. Let C,; be the cyclic group formed by the powers of the
circular substitution a =(z,z,x;...x,;;). Its subgroups are

Cy=1{I, a* a*, a%, a®, a'}, C"_‘{Ira’:a.’ a’},

Cy=1{I,a', a%}, C,=1{I,a%}, Cx“il’o
The only series of composition of C,; are the following:
Clz: Cdr C,, Cl; Cm Co: CZ} Cl; Cny CM Cl’ Cl'
The factors of composition are respectively 2, 2, 3; 2, 3, 2; 3, 2, 2.

106. Constancy of the factor-groups. In a series of composi-
tion of G,
¢, q,q,...,Q,

each group is a maximal self-conjugate subgroup of the preceding
group (§ 43). The succession of quotient-groups

G/&, G'/G", G"/G", ...

forms a series of factor-groups of G. Each factor-group is simple
(§80). The theorem of Jordan on the constancy of the numerical

* Traité des substitutions, pp. 42-48. For a shorter proof, see Netto-Cole,
Theory of Substitutions, pp. 97-100.
+ Every subgroup is self-conjugate since a~'afa*=af (§13).
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factors of composition is included in the following theorem of
Holder:*

For two sertes of composition of a group, the factor-groups of one
series are identical, apart from their order, with the factor-groups of
the other serves.

Thus, in Example 1 of § 105, the factor-groups are all cyclic groups of

order 2. In Example 2, the factor-groups for the respective series are
Kz» jK,,.K,; Kz; Ka» Kzi Ks: Kz: KI)

where K, and K, are cyclic groups of orders 2 and 3 respectively. That
C,/C, is the cyclic group K, follows from § 104, Ex. 1, by setting a?=c.
That Cy,/C, is K, follows readily from § 104,

107. Holder’s investigation { on the reduction of an arbitrary
equation to a chain of auxiliary equations is one of the most im-
portant of the recent contributions to Galois’ theory. The earlier
restriction to algebraically solvable equations is now removed.
As shown in § 82, the solution of a given equation can be reduced
to the solution of a chain of simple regular equations by employing
rational functions of the roots of the given equation. The groups
of the auxiliary equations are the simple factor-groups G of the
given equation. Can any one of these simple groups be avoided
by employing accessory <rrationalities, namely, quantities not
rational functions of the roots of the given equation? That this
question is to be answered in the negative is shown by Holder’s
result that the factor-groups of G must occur among the groups
of the auxiliary simple equations however the latter be chosen.
Any auxiliary compound may first be replaced by a chain of
equivalent simple equations. The number of factor-groups of G
therefore gives the minimum number of necessary auxiliary simple
equations. If this minimum number is not exceeded, then Holder s
theorem states that all the roots of all the auxiliary equations are

* Holder, Math. Ann., vol. 34, p. 37; Burnside, The Theory of Groups,
p. 118; Pierpont, Galois’ Theory of Algebraic Equations, Annals of Math.,
1900, p. 51.

1 Mathematische Annalen, vol. 34, p. 26; Pierpont, l. c., p. 52.
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rational functions of the roots of the given equation and the quan-
tities in the given domain of rationality.

Holder’s proof of these results, depending of course upon the
constancy of the factor-groups of G, is based upon the fundamental
theorem of § 93.

The special importance thus attached to simple groups has
led to numerous investigations of them. Several infinite systems
of simple groups have been found and a table of the known simple
groups o{ composite orders less than one million has been prepared.*

For full references and for further developments of Galois’
theory, the reader may consult Encyklopidie der Mathematischen
Wissenschaften, 1, pp. 480-520.

* Dickson, Linear Groups, pp. 307-310, Leipzig, 1901.



APPENDIX.

RELATIONS BETWEEN THE ROOTS AND COEFFICIENTS OF AN
EQUATION.

Let z,, :i,, ..., zp denote the roots of an equation f(z)=0 in
which the coefficient of z» has been made unity by division. Then
@)=(z—z)(x—2)) . .. (z—1),

as shown in elementary algebra by means of the factor theorem.
Writing f(z) in full, and expanding the second member, we get

=@ttt err T — L (D=2 — (24 7+ L )
+ (2,2, + T, Ty + Loyt . o o + Ty Tp)T" 3
— oo H(=Drzz, ... 2pe

Equating coefficients of like powers of z, we get

() Ty+2t oo +Tu=Cy Tyt .. FTno@a=Csyeury Tyo..Ty=Cp.

These combinations of z,,...,z, are called the elomentary sym-
metric functions of the roots. Compare Exs. 5 and 6 of page 4.

FUNDAMENTAL THEOREM ON SYMMETRIC FUNCTIONS.*

Any integral symmetric function of x,,,, . . ., Zn can be expressed
in one and only one way as an integral function of the elementary
symmetric functions c;, ¢;y . . ., Cn.

A term z,™z,mix,ms ... is called higher than z,muzmzgms. .,
if the first one of the differences m,—n,, my—n,, my—n,, . . ., which

* The proof is that by Gauss, Gesammelte Werke, 111, pp. 37, 38.
99
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does not vanish, is posttive. Then ¢, ¢,, ¢y, ..., ¢; have for their
highest terms z,, z,2,, %%, ..., Z,T,...%; respectively. In
general, the function c,2c,®c,r . . . has for its highest term

xl¢+3+‘l+--- xzﬂ+7+--- x’7+... .

Hence it has the same highest term as ¢,"c,f’c,'. . . if, and only if,

a+B+r+ oo =d+f+7+ o BHrt oo =+ + ...,
=

whicn require that a=do/, g=p8, r=7,...
Let S be a given symmetric function. ILet its highest term be

h=azezfayal...z” ... (aSA5750...5v).

We build the symmetric function
o=a clﬂ-—ﬁ czﬁ—‘y 037—6

PN g

In its expansion in terms of z,,..., 2, by means of formule (),
its terms are all of the same degree and the highest term is evi-
dently h. The difference

S,=8—¢a
is a symmetric function simpler than S, since the highest term A
has been cancelled. Let the highest term of S, be

h=a,zszfrizhzh ...
-A symmetric function with a still lower highest term is given by
8,=18,—a, ¢~By cfr~n eh=Y
Since the degrees of S, and S, are not greater than the degree of S,
and since there is only a finite number of terms z,mux,mz,m,. .,
of a given degree which are lower than the term h, we must ulti-
mately obtain, by a repetition of the process, the symmetric

function 0;
0=Sy—ai ;% Pr el e e . o«

We therefore reach the desired result
S=a, et PcfY... +a 7 Pichi .. .+ ..o tape e Piclr-m . .,
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To show that the expression of a symmetric function S in terms
of ¢, ..., ¢y is unique, suppose that S can be reduced to both
Pley, &y ..y ca) and P(cy, €, . .., Cq), Where ¢ and ¢ are different
integral functions of ¢;,..., ¢,. Then ¢—¢, considered as a func-
tion of ¢,..., s, is not identically zero. After collecting like
terms in ¢—¢, let bec,fes ... be a term with b#0. When ex-
pressed in 7, . . ., Zy, it has for its highest term

b xl¢+ﬁ+7+--- xzﬂ+1+--- z’Y'l'n- e

As shown above, a different term b’c;*'c,f’c,” . .. has a different
highest term. Hence of these highest terms one must be higher
than the others. Since the coefficient of this term is not zero,
the function ¢—¢ cannot be identically zero in z,,..., z,. This
contradicts the assumption that S=¢, S=¢, for all values of
Zyyenny Tne .

CoRrOLLARY. Any integral symmetric function of x, ..., T, with
tntegral coefficients can be expressed as an integral function of ¢,, ..., Cn
with integral coefficients. '

Examples showing the practical value of the process for the
computation of symmetric functions are given in Serret, Algébre
supérieure, fourth or fifth edition, vol. 1, pp. 389-395.

.ON THE GENERAL EQUATION.

Let the coefficients ¢, ¢,, . . ., ¢4 be indeterminate quantities.
The roots z,, z,, ..., z, are functions of ¢,, .. ., cs; the notation
Z,..., 2, is definite for each set of values of ¢,,..., c,. We
proceed .to prove the theorem:*

If a rational, integral function of =z, ..., z, with constant
coefficients equals zero, it is identically zero.

Let ¢{z,, ..., 2,]=0. Let &, ..., £, denote indeterminates
and o,, . . ., o, their elementary symmetric functions &, +. . .+&a,
cees &.8...6a. Then

*This proof by Moore is more explicit than that by Weber, Algebra, 11
(1900), § 566.
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Hﬁ€.l, ceey €.,f|=- Ploy . ..y 04,

the product extending over the n! permutations s,,..., 8, of
1,...,n, and ¥ denoting a rational, integral function. Hence

H‘ﬁ[z.l, coor T ]=Pley . . o, €a]=0,
since one factor ¢{z,,...,2,] is zero. Since ¢,...,c, are
indeterminates, Y[e,, ..., ¢,] must be identically zero, i.e.,
formally in ¢;, ..., ca. Consider ¢, ..., ¢, to be functions of
new indeterminates ¥,, ..., ¥s. Then

Ple, Wy e cos Yn)y oo vy Wy o +y Yn)]=0
formally in y,, . . ., Y. Hence, by a change of notation,
Ploy(yy oo oy &ndyeveey on(éyy ooy £a)]=0
formally in &, ..., £,. Hence, for some factor,
(T A E U
formally in &;,..., €x. As a mere change of notation,
déy ...y Eal=0.

As an application, we may make a determination of the group
of the general equation more in the spirit of the theory of Galois
than that of § 64. If, in the domain R=(e,, ..., ¢,), a rational
function ¢(z,, ..., T») with coefficients in R has a value lying
in R, there results a relation

dz,, .. ., za]=0,

upon replacing ¢, . . ., ¢, by the elementary symmetric functions
of Z,..., Tn. By the theorem above, {[2,, . . ., #,,]=0, so that

¢(zau ey xa,)‘#zu coey Za)
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Jackson's Directions for Laboratory Work in Physiological Chemistry..8vo, 1
Johnson's Rapid Methods for the Chemical Analysis of Special Steels, Steel-
making Alloys and Graphite........................ Large 12mo, 3
Landauer’s Spectrum Analysis. (Tingle.)................ ... ... ..., 8vo, 3
Lassar-Cohn’s Application of Some General Reactions to Investigations in
Organic Chemistry. (Tingle.).. .12mo, 1
Leach’s Inspection and Analysis of Food with Speclal Refefence to State
Control.. e e ..8vo, 7
Lob's Electrochemxstry of Orgamc Compounds (Lorenz ) ............ .8vo, 3
Lodge's Notes on Assaying and Metallurg\cal Laboratory hxperxme'nts .8vo, 3
Low's Technical Method of Ore Analysis................ 3
Lowe’s Paint for Steel Structures....... 1
Lunge's Tethno-chémical Analysis. (Cohn ) e 1
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* McKay and Larsen’s Principles and Practice of Butter-making........ 8vo, $1 50

Maire’s Modern Pigments and their Vehicles................ i
Mandel's Handbook for Bio-chemical Laboratory.. . 12mo,
* Martin's Laboratory Guide to Qualitative Analysns wnth the Blowplpe

12mo,

Mason's Examination of Water. (Chemical and Bacteriological.)......12mo,

Water-supply. (Considered Principally from a Sanitary Standpoint.)

8vo,

* Mathewson'’s Pirst Principles of Chemical Theory.. .....8vo0,

Matthews's Laboratory Manual of Dyeing and Textnle Che-msq' ...... 8vo,

Textile Fibres. 2d Edition, Rewritten......................... 8vo,

* Meyer's Determination of Radicles in Carbon Compounds. (Tingle.)

Third Edition. ..o ettt it 12mo,

Miller’s Cyanide Process.. 12mo,

Manual of Assaying. 12mo,

Minet’s Production of Aluminum and its Industrial Use. (Waldo.)...12mo,

* Mittelstaedt’s Technical Calculations for Sugar Works. (Bourbakis.) 12mo,

Mixter's Elementary Text-book of Chemistry.. 12mo,

Morgan’s Elements of Physical Chemistry...... PN .12mo,

Qutline of the Theory of Solutions and its Results............... 12mo,

* Physical Chemistry for Electrical Engineers...................... 12mo,

% Moore’s Outlines of Organic Chemistry.......... 12mo,

Morse's Calculations used in Cane-sugar Pactories...............16mo, mor.

* Muir’s History of Chemical Theoriesand Laws..................... 8vo,

Mulliken's General Method for the Identification of Pure Organic Compounds.

Vol. I. Compounds of Carbon with Hydrogen and Oxygen. Large 8vo,
Vol. II. Nitrogenous Compounds. (In Preparation.)

Vol. III. The Commercial Dyestuffs.. ................. Large 8vo,

* Nelson's Analysis of Drugs and Medicines... .................... 12mo,

Ostwn.ld s Conversat:ons on Chemlstry Part One. (Ramsey.)...... 12mo,

Part Two. (Turnbull)..... 12mo,

Introduction to Chemistry. (Hall and Williams.) (In Preparation.)
Owen and Standage’s Dyeing and Cleaning of Textile Fabrics.......... 12mo,
* Palmer’s Practical Test Book of Chemistry. . .12mo,
* Pauli’s Physical Chemistry in the Service of Medlcme (Flscher ) .12mo,
Penfield’s Tables of Minerals, Including the Use of Minerals and Statistics

of Domestic Production...............cooiiiiiiiiiiii., 8vo,
Pictet's Alkaloids and their Chemical Constitution. (Biddle.)......... 8vo.
Poole’s Calorific Power of Fuels.................. ..., 8vo,
Prescott and Winslow's Elements of Water B..ctenoloxy. with Spcczal Refer-

ence to Sanitary Water Analysis.. . . .12mo,
* Reisig's Guide to Piece-Dyeing... .8vo,
Richards and Woodman's Air, Water, and Food irom a Samtary Stand-

oo 1 2 8vo.
Ricketts and Miller's Notes on Assaying... ieiieiieee.....8v0,
Rideal’s Disinfection and the Preservatlon of Food ................. 8vo,

Sewage and the Bacterial Purification of Sewage..... viieee....8vO,
Riggs’s Elementary Manual for the Chemical Laboratory............... 8vo,
Robine and Lenglen's Cyanide Industry. (LeClerc.)................ 8vo,
Ruddiman’s Incompatibilities in Prescriptions ....................... 8vo,

Whys in Pharmacy. .12mo,
* Ruer’'s Elements of Metallographv (Mathewson ) ................. 8vo,
Sabin’s Industrial and Artistic Technology of Paint and Varnish. . .8vo,
Salkowski's Physiological and Pathological Chemistry. (Orndorff. ) ..... 8vo,
Schimpf’s Essentials of Volumetric Analysis.. lZmo.

Manual of Volumetric Analysis. (Fxfth Edmon. Rewnf.ten) . .8vo,

* Qualitative Chemical Analysis........................... ... 8vo,
* Seamon’s Manual for Assayers and Chemists. .............. Large 12mo,
Smith’s Lecture Notes on Chemistry for Dental Students............. 8vo.
Spencer’s Handbook for Cané Sugar Manufacturers............... 16mo, mor.

Handbook for Chemists of Beet-sugar Houses............... 16mo, mor.
Stockbridge’s Rocks and Soils...........coviiiiiiiiiiiiiiiiin, 8vo,
Stone's Practical Testing of Gas and Gas Meters ................. 8vo,
* Tillman's Descriptive General Chemistry.. eiiietieeeiiae....8VO0,

* Elementary Lessonsin Heat ........... ...t 8vo,
Treadwell’s Qualitative Analysis. (Hall.).................cooo0an. . .8vo,

Quantitative Analysis. (Hall.).............coocvvveviiiet... .. .8v0,
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Turneaure and Russell's Public Water-supplus tiiiieiineiiess...8vo, 85

Van Deventer’s Physical Chemistry for B s. (Bolt;vood.i.<.... .12mo,
Venable's Methods and Devices for Bacterial Treatment of Sewage..... . 8vo,
Ward and Whipple's Freshwater Biology. (In Press.)

Ware s Beet-sugar Ma.nufacture and Reﬁmng Vol. I1.. iieees...8v0,
Vol. IL.. cevito....8v0,

Washington's Manual of the Chemical Analysis of Rocks ciiieiee. . .8VO,
* Weaver's Military Exploswes ..................................... 8vo,
Wells's Laboratory Guide in Qualitative Chemical Analysis. .. .....8vo,
. Short Course in Inorganic Qualitative Chemical Analysis for Engmeermg

. StUAENLS. v\t vttt 12mo,
Text-book of Chemical Arithmetic.. N 12mo,
Whipple's Microscopy of Drmkmg-water .8vo,
Wilson's Chlorination Process.. 12mo,
Cyanide Processes...........ooiiiiiiviriiieininiernnanennns 12mo,
Winton's Microscopy of Vegetable Foods..............coiviiiiianass 8vo,

Zsigmondy's Colloids and the Ultramicroscope. (Alexander.). Lur(o 12mo,

CIVIL ENGINEERING.

8883388 8888 888

BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEER-

ING. RAILWAY ENGINEERING.

Baker's Engineers’ Surveying Instruments. . .. .12mo,
Bixby's Graphical Computing Table.. .. Paper 19})(24{ inches.
Breed and Hosmer's Principles and Practlce of Surveymg Vol. I. Elemen-
ATy SUTVEYINE. .ottt i ittt ettt et e et e aenenennnn 8vo,
Vol. II. Higher Surveying... . .8vo,
* Burr's Ancient and Modern Engmeermg and the Isthmlan Canal ...... 8vo,
Comstock’s Field Astronomy for Engineers. . e . .8vo,
* Corthell's Allowable Pressure on Deep Foundatlons ............... l2mo.
Crandall’s Text-book on Geodesy and Least Squares.................. 8vo,
Davis's Elevation and Stadia Tables....................cocoiivan.. 8vo,
Elliott's Engineering for Land Drainage................,.cooiven... 12mo,
* Fiebeger's Treatise on Civil Engineering........ e 8vo,
FPlemer's Photographic Methods and Instruments....................... 8vo,
FPolwell's Sewerage. (Designing and Maintenance.).................... 8vo,
Preitag's Architectural Engineering..............cocovviiin.. 8vo,
French and Ives's Stereotomy.......c.covuvut .. 8vo,
Goodhue'’s Municipal Improvements.. .12mo,
* Hauch and Rice's Tables of Quantmes for Prelxmmary Estlmates .12mo,
Hayford's Text-book of Geodetic Astronomy..........coovvveunennann. 8vo,
Hering’'s Ready Reference Tables (Conversion Factors.)... ...16mo, mor.
Hosmer's Azimuth. .......cooo ittt ittt i i, 16mo, mor.
Howe's Retaining Walls for Earth..................... ... oouu., 12mo,
* Ives's Adjustments of the Engineer's Transit and Level....... 16mo, bds.
Ives and Hilts's Problems in Surveying, Railroad Surveying and Geod-
Y . vt e e e e e e 16mo, mor.
Johnson's (J. B.) Theory and Practice of Surveying. ......... Large 12mo,
Johnson's (L. J.) Statics by Algebraic and Graphic Methods............. 8vo,
Kinnicutt, Winslow and Pratt's Sewage Disposal. (In Press)
* Mahan's Descriptive Geometry.. .. .. . .8vo,
Merriman's Elements of Precise Surveylng and Geodesy .............. 8vo,
Merriman and Brooks's Handbook for Surveyors.............. 16mo, mor.
Nugent’s Plane Surveying...........ouueuuuiiiiiinineeeeennns
Ogden'’s Sewer ConstruCtion. ..oovviieieiiee s ieineriiiine i iennnes
Sewer Design.. ..ottt ittt i i i i e i
Parsons's Disposal of Municipal Refuse...............coiiiiiinean..
Patton's Treatise on Civil Engineering............. ....
Reed’s Topographical Drawing and Sketching.
Rideal’s Sewage and the Bacterial Purification of Sewage... . .8vo,
Riemer’s Shaft-sinking under Difficult Conditions. (Cormng n.nd Peele ). 8vo,
Siebert and Biggin's Modern Stone-cutting and Masonry.............. 8vo,
Smith’'s Manual of Topographical Drawing. (McMillan.).....cccceeeees .8v0,
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Soper'lAirmdVmﬁhtionofSubw.\ys............‘...........,.‘.
* Tracy's Exercises in Surveymg ............................
Tracy's Plane Surveying.. .

* Trautwine's Civil Engmeer s Pocket-book. .
Venable's Garbage Crematories in America. .

Methods and Devices for Bacterial Treatment of Sewnge .
Wait's Engineering and Architectural Jurisprudence.. . . .8vo,
Sheep,
Law Of CONEIACES. .. vv'uvren v e e e eneneneneneneneeeneeennnnns 8vo,
Law of Operations Preliminary to Construction in Engineering and
Architecture. ....... et ettt ee et e e e, 8vo,
Sheep,
Warren's Stereotomy—Problems in Stone-cuttmg .8vo,

* Wnterburya Vest-Pocket Hand-book of \{athemancs for Engmeers
2§ X 5% inches. mor.

* Enlarped Edition, Including Tables. ...........coocvvunnn.. .. mor.
Webb's Proolems in the Use and Adjustment of Engmeenng Instruments.
16mo, mor.

Wilson's Topographic Surveying............coiviveneiiiroennenennnn. 8vo,

BRIDGES AND ROOFS.

Boller’s Practical Treatise on the Construction of Iron Highway Bridges..8vo,

* Thames River Bridge. .. .................ooiiiian. Oblong paper,
Burr and Palk's Design and Construction of Metallic Bridges.......... &vo,
Influence Lines for Bridge and Roof Computatxons .................. 8vo,
Du Bois's Mechanics of Engineering. Vol. II.. veveen...Small 4to,
Foster’s Treatise on Wooden Trestle Bndges ....................... .o 4to,
Fowler's Ordmary Foundations. . PN cieenee..8v0,

Greene'’s Arches in Wood, Iron, and Stone ...8vo,

..8vo,
.. 8vo,
Grimm's Secondary Str&sss in Bndge Trusses ..8vo,
Heller's Stresses in Structures and the Accompanymg Deformauons . .8vo,

Howe's Design of Simple Roof-trusses in Wood and Steel. . e .8vo.
Symmetrical Masonry Arches.........ocovviinenninnennnnnennns 8vo,
Treatise on Arches.. .. .......couiiiiiirineineneennennennennns 8vo,

* Jacoby's Structural Details, or Elements of Design in Heavy Framing, 8vo,
Johnson, Bryan and Turneaure's Theory and Practice in the Designing of

Modern Framed Structures. ..........ccovieienenannn Small 4to,
* Johnson, Bryan and Turneaure's Theory and Practice in the Designing of
Modern Framed Structures. New Edition. PartI. ........ 8vo,
Merriman and Jacoby's Text-book on Roofs and Bridges:
Part I. Stresses in Simple Trusses..........vveeeerinnenennanas 8vo,
Part II. Graphic Statics........ooviiiiiiiniiininnennnienns 8vo,
Part III. Bridge Design.........oovteiiiininineninnennennnnn 8vo,
Part IV, Higher Structures........coovvviiiiiienennennnnnn, 8vo
Morison’s Memphis Bridge......... Oblong 4to.
Sondericker’s Graphic Statics, with Applications to Trusses, Beams, and
8 ) 8vo,
Waddell’s De Pontibus, Pocket-book for Bndge Engineers....... 16mo. mor.
* Specifications for Steel Bridges... .12mo,

‘Waddell and Harrington's Bridge Engmeermg (In Preparatlon )

HYDRAULICS.
Barnes's Ice Formation.....oovcvvivi i iiiiiiiiiiininnnns 8vo,
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from
an Orifice. (Trautwine.)......ooovevvivvnneenirnennnsnnsans 8vo,
Bovey’s Treatise on Hydraulics..............ooo i iiiiiiinnns 8vo,

Church’s Diagrams of Mean Velocity of Water in Open Channels.
Oblong 4to, paper,
Hydraulic Motors...........ooovi i, vetersees 8v0,
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Coffin's Graphical Solution of Hydraulic Problems............. 16mo, mor. $2 50
Flather's Dynamometers, and the \deasurement of Power............ 12mo, 3 00
Folwell's Water-supply Engineering. 4 00
Frizell's Water-power. .............covuinnnn. 5 00
Puertes’'s Water and Public Health......... 1 50
Water-filtration Works.............ooiviiiiiiiiniinenennenns 12 2 50
Ganguillet and Kutter's General Formula for the Uniform Flow of Water in

Rivers and Other Channels. (Hering and Trautwine.)....... 8vo, 4 00
Hazen's Clean Water and How to Get It.................... Large 12mo, 1 50

Filtration of Public Water-supplies.......................... 8vo, 3 00
Hazelhurst's Towers and Tanks for Water-works. . .8vo, 2 50
Herschel’s 115 Experiments on the Carrying Capacny of Large. R.wemd Metal

Conduits. .. .ive it i i i i i i s it e 8vo, 2 00
Hoyt and Grover's River Discharge...............ccoiviiiiiiiiinnen 8vo, 2 00
Hubbard and Kiersted’s Water-works Management and Maintenance.

8vo, 4 00
* Lyndon's Development and Electrical Distribution of Water Power.

8vo, 3 00
Mason's Water-supply. (Considered Principally from a Sanitary Stand-

POINE. ) ettt ittt ittt ie et e 8vo, 4 00
Merriman's Treatise on Hydraulics ...8vo, 5 00
* Molitor’s Hydraulics of Rivers, Weirs and Slutces ...8vo, 2 00
* Morrison and Brodie’'s High Masonry Dam Design................. 8vo, 1 50
* Richards's Laboratory Notes on Industrial Water Analysis.......... 8vo, 50
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-

supply. Second Edition, Revised and Enlarged.......Large 8vo, 6 00
* Thomas and Watt's Improvement of Rivers........................ 4to, 6 00
Turneaure and Russell’'s Public Water-supplies... . .8\'0, 5 00
Wegmann's Design and Construction of Dams. 5th Ed enlarged ..4to, 6 GO

Water-Supply of the City of New York from 1658 to 1895........... 4¢0, 10 00
Whipple's Value of Pure Water.............cooiiiveinn.... Large 12mo, 1 00
Williams and Hazen's Hydraulic Tables. .. ........cciviiniiinnenn. 8vo, 1 60
Wilson's Irrigation Engineering.............covivvieeeiiineenens....8v0, 4 00
Wood’'s Turbines.........coovvviiiieiiiiniiiiiiiieeiidineeeineeens...8vo, 2 50

MATERIALS OF ENGINEERING.

Baker’'s Roads and Pavements...........ccvtitiiniiiitnaecaneannns 8vo,
Treatise on Masonry Construction.. e 8vo,
Black’'s United States Public Works.. .v+eee.....Oblong 4to,
Blanchard's Bituminous Roads. (In Preparatlon )
Bleininger's Manufacture of Hydraulic Cement. (In Preparation.)
* Bovey's Strength of Materials and Theory of Structures................ 8vo,
Burr's Elasticity and Resistance of the Materials of Engineering . .8vo,
Byrne's Highway Construction. . .8vo,
Inspection of the Materials and Workma.nshtp Employed in Constmctton.
. 16mo,
Church’s Mechanics of Engineering..........covviiivniiinienncanennns 8vo,
Du Bois's Mechanics of Engineering.
Vol. I. Kinematics, Statics, Kinetics..................... Small -4to,
Vol. II. The Stresses in Framed Structures, Strength of Materials and
Theory of Flexures. .. .....c.coviiiiiiiiniinneinnnns Small 4to,
* Eckel's Cements, Limes, and Plasters..................ooiiinnn 8vo,
Stone and Clay Products used in Engtneenng (In Preparatlon )
Fowler's Ordinary Foundations.. . [ ..8vo,
* Greene's Structural Mechamcs ........... 8vo,
* Holley's Lead and Zinc Pigmen Large 12mo,
Holley and Ladd's Analysis of Mixed Paints, Color Pigments and Varnishes.
Large 12mo,
* Hubbard's Dust Preventives and Road Binders.................. 8vo,

Johnson’s (C. M.) Rapid Methods for the Chemical Analysts of Special Steels,
Steel-making Alloys and Graphite.. . .

Johnson s (J. B.) Materials of Construction

Keep'sCast ITon.......oovtiiniiiiiiiieranieecnneneeernnecsnanans

Lanza's Applied Mechanics. . . .

Lowe’s Paints for Steel SEFUCEUTES. «v + + v v eeeeeeneeeeeeanreannnns l2mo.
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Maire's Modern Pigments and their Vehicles........................ 12mo,
Maurer's Technical Mechanics..........coviiieiiini e 8vo,
Merrill’s Stones for Building and Decoration......................... 8vo,
Merriman’s Mechanics of Materials............covvieieinnenrnnenn.. 8vo,
* Strength of Materials..........covviivin i iniiiiiniinnnns 12mo,
Metcalf's Steel. A Manual for Steel-users. ..12mo,
- Morrison's Highway Engineering... .8vo,
Patton's Practical Treatise on Foundatlons .......................... 8vo,
Rice’s Concrete Block Manufacture..........covvvuieiinveneenennnans 8vo,
Richardson’s Modern Asphalt Pavement.. . .8vo,
Rxchey s Building Foreman'’s Pocket Book and Ready Reference lemo mor.

* Cement Workers’ and Plasterers’ Edition (Building Mechanics’ Ready

Reference Series)........oovviiviiiiieniee e, 16mo, mor.
Handbook for Superintendents of Construction.............16mo, mor.
* Stone and Brick Masons' Edition (Building Mechanics' Ready
Reference Series)......ocovviiivineineininiinneinn 16mo, mor.
#* Ries’s Clays: Their Occurrence, Propertles. and Uses.. .8vo,
# Ries and Leighton’s History of the Clay-working Industry of the Umted
T8 8vo.
Sabin's Industrial and Artistic Technology of Paint and Varnish........8vo,
* Smith's Strength of Material................coiiiiiiiiiiiinn., 12mo
Snow's Principal Species of Wood........ccovvviiiiiiiiiiiinnnnn, 8vo,
Spalding’s Hydraulic Cement.... 12mo,
Text-book on Roads and Pavements..............ooouveeennnnnn 12mo,
* Taylor and Thompson's Extracts on Reinforced Concrete Designs. . . .8vo,
Treatise on Concrete, Plain and Reinforced. ..................... 8vo,
Thurston's Materials of Engineering. In Three Parts.. . .8vo,
Part I. Non-metallic Materials of Engineering and Metallurgy . .8vo,
Part II. Iron and Steel.. . .8vo,
Part III. A Treatise on Brasm. Bronz&s. and Other Alloys and their
Constituents. .. ..votii ittt i i it i e
Tillson's Street Pavements and Paving Materials. . .
* Trautwine’s Concrete, Plain and Reinforced . ....................
Turneaure and Maurer's Principles of Reinforced Concrete Construction.
Second Edition, Revised and Enlarged..................... 8vo,
-Waterbury's Cement Laboratory Manual...........coviueeivnnn.. 12mo,
Wood's (De V.) Treatise on the Resistance of Matenals and an Appendix on
the Preservation of Timber.................oiviiiiiinnenn. 8vo,
Wood's (M. P.) Rustless Coatmgs Corrosion and Electrolysis of Iron and
Steel........ovvvnns e e ettt it et e aeans 8vo,
RAILWAY ENGINEERING.
Andrews's Handbook for Street Railway Engineers....... 3 X8 inches, mor
Berg’'s Buildings and Structures of American Railroads............ .. .4to,
Brooks’s Handbook of Street Railroad Location............... .16mo, mor.
Butts's Civil Engineer’s Field-book. . [ . .16mg, mor.
Crandall's Railway and Other Earthwork Tables erir e eeea e, 8vo,
Transition Curve.. veeveess.. . 16mo, mor.
* Crockett's Methods for Ea.rthwork Computatlons ................... 8vo,
Dredge's History of the Pennsylvania Railroad. (1879)................ Paper,
Pisher’s Table of Cubic Yards.......coovveiiiiinniiinennnnnns Cardboard,

Godwin’s Railroad Engineers’ Field-book and Explorers’ Guide. .16mo, mor.
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-

baANKMENES. .. oveviiietii i i i it e i 8vo,

Ives and Hilts's Problems in Surveying, Railroad Surveying ani Seodesy
18mo, mor.
Molitor and Beard’s Manual for Resident Engineers........... ..... 16mo,
Nagle's Field Manual for Railroad Engineers............. .... 16mo, mor.
* Orrock’s Railroad Structures and Estimates............ teeerasnrsans 8vo,
Philbrick’s Field Manual for Engineers...........c.covieiennann 16mo, mor.

Raymond’s Railroad Engineering. 3 volumes.
Vol. I. Railroad Field Geometry. (In Press.)
Vol. II. Elements of Railroad Engineering...........o0vvvunnn. 8vo,
Vel. I1I. Railroad Engineer's Field Book. (In Preparation.)
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Roberts’ Track Formule and Tables. (In Press.)

Searles’s Field Engineering..............ooiiiiiien.., «+...16mo, mor. $3 00
Railroad Spiral...........ocovvveeiinaan., . 16mo, mor. 1 50
Taylor’s Prismoidal Formulee nnd Enrthwork .8vo, 1 50

* Trautwine's Field Practice of Laying Out Circular Curves for Ratlroads
12mo, mor. 2 50

* Method of Calculating the Cubic Contents of Excavations and Em-
bankments by the Aid of Diagrams.. . . .8vo, 2 00
Webb's Economics of Railroad Construction.. unrge 12mo. 2 50
Railroad Construction. . ..16mo, mor. 5 00
Wellington's Economic Theory of the Locauon of Rallways ..... Large 12mo, & 00
Wilson's Elements of Railroad-Track and Construction....... veeve...12mo, 2 00

DRAWING.
Barr's Kinematics of Machinery.. 2 50
* Ba.rtlett s Mechamca.l Drawmg 3 00
o Abridged Ed.. 1 50
Bartlett and Johnson's Engineering Descriptive Geomntry (In Press.)

Coolidge's Manual of Drawing.. .............oiiivunennnn... 8vo, paper, 1 00

Coolidge and Freeman's Elements of General Drafting for Mechanical Engi-
T TP . Oblong 4to, 2 59
Durley’s Kinematics of Machines. .................ciiiiineinnnn.. 8vo, 4 0)
"Emch’s Introduction to Projective Geometry and its Applicatioa...... 8vo, 2 52
Hill's Text-book on Shades and Shadows, and Perspective 20
Jamison's Advanced Mechanical Drawing.................. 2 00
Elements of Mechanical Drawing................oiiiiiienuan.. 2 50

Jones's Machine Design:

Part I. Kinematics of Machinery.. ..
Part II. Form, Strength, and Proportlons of Parts

* Kimball and Barr's Machine Design ..................

MacCord's Elements of Descriptive Geometry..................c.....
Kinematics; or, Practical Mechanism............................
Mechanical Drawing... e
Velocity Diagrams..

McLeod'’s Descriptive Geometry

% Mahan's Descriptive Geometry and Stone- cuttmg ..................

Industrial Drawing. (Thompson.).. ettt .. .8V0,
Moyer's Descriptive Geometry... e . .8vo,
Reed's Topographxcal Drawing :md Sketchmg ........................ 4to,
Reid's Course in Mechanical Drawing.............cooiiiinin . 8vo,

Text-book of Mechanical Drawing and Elementary Machine Desngn .8vo,
Robinson’s Principles of Mechanism.. .. e ......8vo,
Schwamb and Merrill’s Elements of Mechamsm e . .8vo,
Smith (A. W.) and Marx's Machine Design.. .....8vo,
Smith’s (R. S.) Manual of Topographical Drawmg (McMnllan ) ........ 8vo,
* Titsworth's Elements of Mechanical Drawing............... Oblong 8vo,
Warren's Drafting Instruments and Operations. ................... 12mo,

Elements of Descriptive Geometry, Shadows, and Perspective ...... 8vo,

Elements of Machine Construction and Drawing.. ....8vo,

Elements of Plane and Solid Free-hand Geometncal Drawmg ..12mo,

General Problems of Shades and Shadows....................... 8vo,

Manual of Elementary Problems in the Linear Perspective of Forms and

Manual of Elementary Projection Drawing. .
Plane Problems in Elementary Geometry.. . .
Weisbach’s Kinématics and Power of Transmnss:on (Hermann and

D 2 V0 TR 8vo,

Wilson's (H. M.) Topographic Surveying..........c.oooiveiiiiunn, 8vo,
* Wilson's (V. T.) Descriptive Geometry...........coovvvvvunn. . 8vo,
Free-hand Lettering. ... .oovvti it iineenns 8vo,
Free-hand Perspective.........ocoiiii i iiniiineann 8vo,
Woolf's Elementary Course in Descriptive Geometry........... Large 8vo,
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ELECTRICITY AND PHYSICS.

* Abegg’s Theory of Electrolytic Dissociation. (von Ende.......... 12mo,
Andrews's Hand-book for Street Railway Engineering.. .. .3 X5 inches, mor.
Anthony and Ball's Lecture-notes on the Theory of Electrical Measure-

ments.. .12mo,
Anthony and Bmkett s Text book of Physlcs (Mag:e ). .. .Lo.rge 12mo,
Benjamin’s History of Electricity...........ccovvvevnnnn... e 8vo.
Betts's Lead Refining and Electrolysis,
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.). 8vo.
* Collins’'s Manual of Wireless Telegraphy and Telephony ............ 12mo,
Crehore and Squier’s Polarizing Photo-chronograph. .. Cerieeeas .8vo,
* Danneel’s Electrochemnstry (Merriam.)..... l2mo,
Dawson's * Engineering’’ and Electric Traction Pocket book 16mo mor.
Dolezalek’s Theory of the Lead Accumulator (Storage Bat.tery) (von Ende.)
12mo,
Duhem’s Thermodynamics and Chemistry. (Burgess.)................8vo,
Flather's Dynamometers, and the Measurement of Power............12mo,
* Getman's Introduction to Physicn.l Science. . ... i, 12mo,
Gilbert’'s De Magnete. (Mottelay).. ettt ttieceeeiaeaaa....8VO0,
* Hanchett's Alternating Currents.. N ceveeeee.. . 12mo,
Hering's Ready Reference Tables (Conversxon Factors) ........ 16mo, mor.
* Hobart and Ellis's High-speed Dynamo Electric Machinery.......... 8vo,
Holman's Precision of Measurements..............coovvevieenenneann. 8vo,
Telescopic Mirror-scale Method, Adjustments, and Tests.. . .Large 8vo,
* Karapetoff's Experimental Electrical Engineering..................... 8vo,
Kinzbrunner's Testing of Continuous-current Machines............... 8vo,
Landauer's Spectrum Analysis. (Tingle.)........................ ...8vo,

Le Chatelier's High-temperature Measurements. (Boudouard—Burgess.)12mo,

Lob’s Electrochemistry of Organic Compounds. (Lorenz.).............. 8vo,
* Lyndon's Development and Electrical Distribution of Water Power. .8vo,
* Lyons's Treatise on Electromagnetic Phenomena. Vols, I.and II. 8vo, each,
* Michie's Elements of Wave Motion Relating to Sound and Light. . ... 8vo,

Morgan'’s Outline of the Theory of Solution and its Results.......... 12mo,
* Physical Chemistry for Electrical Engineers.................. 12mo,
* Norris's Introduction to the Study of Electrical Engineering......... 8vo,

Norris and Dennison'’s Course of Problems on the Electrical Characteristics of
Circuits and Machines. (In Press.)

* Parshall and Hobart's Electric Machine Design........... 4to, half mor,
Reagan’s Locomotives: Simple, Compound, and Electric. New Edition.
Large 12mo,

* Rosenberg's Electrical Engineering. (Haldane Gee—Kinzbrunner.). .8vo,
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I........... .8vo,

Schapper’s Laboratory Guide for Students in Physical Chemistry.... .l2mo,
* Tillman’s Elementary Lessonsin Heat...................c.oo..... 8vo,
Tory and Pitcher's Manual of Laboratory Physics............ Large 12mo,
Ulke's Modern Electrolytic Copper Refining......................... 8vo,

LAW.
* Brennan's Hand-book of Useful Legal Information for Business Men.
leo. mor.
* Davis's Elements of Law.. ..8vo,
* Treatise on the Mlhtary Law of Umted States ................. 8vo,
* Dudley’s Military Law and the Procedure of Courts-martial.. Large 12mo,
Manual for Courts-martial..............cviiiiiiiiiiiie., 16mo, mor.
Wait's Engineering and Architectural Jurisprudence...................8vo,
Sheep,
Law of Contracts. .. ..vuueurneeriin ettt eeranes 8vo,
Law of Operations Preliminary to Construction in Engineering and
Architecture. . ... vovviiiiiieie i ittt i i 8vo,
Sheep,
Baker's Elliptic Functions.............cccoviiiiiiiiiiiiininuee....8v0,
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MATHEMATICS.

Briggs's Elements of Plane Analyti¢ Geometry. 2 12mo,
* Buchanan's Plane and Spherical Trigonometry. .
Byerly's Harmonic Functions. . ...........coiiiiiiiinin e,
Chandler’s Elements of the Infinitesimal Calculus................... 12mo,
* Coffin's Vector Analysis. ........ovviniiniennennrnnennennennnns 12mo,
Compton’s Manual of Logarithmic Computations................... 12mo,
* Dickson's College Algebra.............cocoeennnnnn veesss..Large 12mo,
* Introduction to the Theory of Algebraic Equations...... Large 12mo,
Emch’s Introduction to Projective Geometry and its Application...... 8vo,
FPiske's Functions of a Complex Variable.................coovvnan. 8vo,
Halsted's Elementary Synthetic Geometry.. PR
Elements of Geometry......c.vvieeetetneneeeesnnsennennaanan
* Rational Geometry..................
Synthetic Projective Geometry.
* Hancock’s Lectures on the Theory of Elliptic Functions. ........... 8vo,
Hyde's Grassmann's Space Analysis...........c.coiiiiiienennnnnnens 8vo,
* Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size, paper,
* 100 copies,
* Mounted on heavy cardboard, 8 X 10 inches,
* 10 copies,
Johnson’s (W. W.) Abridged Editions of Differential and Integral Calculus.
Large 12mo, 1 vol.
Curve Tracing in Cartesian Co-ordmates ...................... 12mo,
Differential Equations.. . ...... ... iiiiiiiieiererenennnnnnnn. 8vo,
Elementary Treatise on Differential Calculus..............Large 12mo,
Elementary Treatise on the Integral Calculus........ .. .Large 12mo,
* Theoretical Mechanics. . . ..12mo,
Theory of Errors and the Method of Least Squa.ra ...... 12mo,
Treatise on Differential Calculus................. ee.es..Large 12mo,
Treatise on the IntegralCalculus...................c.... Large 12mo,
Treatise on Ordinary and Partial Differential Equations. . .Large 12mo,
Karapetoff's Engineering Applications of Higher Mathematics. (In Preparati
Laplace’s Philosophical Essay on Probabilities. (Truscott and Emory.).12mo,
* Ludlow’s Logarithmic and Trigonometric Tables. . ................. 8vo,
* Ludlow and Bass's Elements of Trigonometry and Logarithmic and Other
Tables. . . .vuvtiini ittt iirettet ittt raeaes 8vo,
* Trigonometry and Tables published separately. .............. Each,
Macfarlane's Vector Analysis and Quaternions. . .. .........0veeenn.. 8vo,
McMahon's Hyperbolic Functions. .. ........ccvvtiiiiiinennnnnnnens 8vo,
Manning's Irrational Numbers and their Representation by Sequences and
S 5 T 12mo,
Mathematlcal Monographs. Edited by Mansfield Merriman and Robert
S. Woodward. . ....ooviiiiniineinininininnannns Octavo, each

No. 1. History of Modern Mathematics, by David Eugene Smith.
No. 2. Synthetic Projective Geometry, by George Bruce Halsted.
No. 3. Determinants, by Laenas Gifford Weld. No. 4. Hyper-
bolic Functions, by James McMahon. No. 5. Harmonic Func-
tions, by William E. Byerly. No. 6. Grassmann's Space Analysis,
by Edward W. Hyde. No. 7. Probability and Theory of Errors,
by Robert S. Woodward. No. 8. Vector Analysis and Quaternions,
by Alexander Macfarlane. No. 9. Differential Equations, by
William Woolsey Johnson. No. 10. The Solution of Equations,
by Mansfield Merriman. No. 11. Functions of a Complex Variable,
by Thomas S. Fiske.

Maurer's Technical Mechanics. . ......coievtiirienreitenennenanannnn 8vo,
Merriman's Method of Least Squares. .....c.coveeeveieneeneenenennns 8vo,
Solution of EQUations. . ......vvveierenrinenneerrnnennnneenns 8vo,

Moritz's Elements of Plane Trigonometry. (In Press.)
Rice and Johnson's Differential and Integral Calculus. 2 vols. in one.

Large 12mo,

Elementary Treatise on the Differential Calculus. ........ Large 12mo.
Smith’s History of Modern Mathematics. . . ... ......coovuveunrnnannn

* Veblen and Lennes's Introduction to the Real Infinitesimal Analysis of One

Variable. . o.vitiiiiiiiiiit i it i i e aaaee 8vo,
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¢ Waterbury's Vest Pocket Hand-book of Mathematics for Engineers
2] X 5% inches, mor. $1 00

* Enlarged Edition, Including Tables .......................... mor. 1 50
Weld's Determinants. . .. ....oouettieinerinninnnnnieeeeneneennns 8vo, 1 00
Wood's Elements of Co-ordinate Geometry. .. .........coovvvunn.... 8vo, 2 M0
Woodward’s Probability and Theory of Errors. . ........oooviiununnn, 8vo, 1 00

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND 'BOILERS.

Bacon's Forge Practice. ............cooiiiiiiiiiiiiiiniinnnnnn, 12mo, 1 50
Baldwin's Steam Heating for Buildings....................... ..., P 2 50
Barr's Kinematics of Machinery. . ............cooiiiiiiiininiin... 2 50
' Bmlett s Mechamcal Drawing.........coviiiiiiniininenniennen. 300
“ AbridgedEd................0 1 50
Bmlett and Johnson's Engineering Descriptive Geometry. (In Press.)
#* Burr's Ancient and Modern Engineering and the Isthmian Canal. . ... 3 50
Carpenter's Experimental Engineering. . . ...............o0iiiiun... 6 00
Heating and Ventilating Buildings. ............................ 4 00
‘ChrksTheGas.PetrolandOllEngme 4 00
pton's Pirst I in Metal Workmg ........................ 12mo, 1 &)
Compton and De Groodt's Speed Lathe. . ...........c...0ovvenn.. 12mo, 1 50
Coolidge’s Manual of Drawing. ...........co0viineennnn. . 8vo, paper, 1 00
Coolidge and Freeman’s Elements of General Drafting for Mechanical En-
BIDMCOTS. . o .t i ittt i it e e e Oblong 4to, 2 50
Cromwell’s Treatise on Belts and Pulleys. ... ..................... 12mo, 1 50
‘Treatise on Toothed Gearing. . ..............covvvinnvnnnn. 12mo, 1 50
Dingey's Machinery Pattern Making.............coooueeeennnnan.. 12mo, 2 00
Durley's Kinematics of Machines.......... et e, 8vo, 4 00
Planders’s Gear-cutting Machinery. ..... .................. Large 12mo, 3 00
Flather’'s Dynamometers and the Measurement of Power. ........... 12mo, 3 00
ROPE DrivIng. ... oottt i it 12mo, 2 00
Gill's Gu and Fuel Analysis for Engineers. . ...................... 12mo, 1 25
Goss's Locomotive Sparks. ..ottt 8vo, 2 00
Greene's Pumping Machinery. (In Preparation.)
Hering's Ready Reference Tables (Conversion Factors). ... .... 16mo, mor. 2 50
* Hobart and Ellis’s High Speed Dynamo Electric Machinery. ........ 8vo, 6 00
Hutton'sGas Engine. . .. ......ciiiiiiiiininn i iinnnnnnennnann 8vo, & 00
Jnmson s Advanced Mechamcal Drawing. .........oovvviiiiiiienn, 8vo, 2 00
of IDrawing. . ..oovevinnnnininn e 8vo, 2 50
Jones'sGas Engine. ........c.oiiiiiiiiiiiiiiiiii i 8vo. 4 00
Machine Design:
Part I. Kinematics of Machinery. . .................coouiun.. 1 50
Part II. Form, Strength, and Proportions of Farts. . 300
* Kent's Mechanical Engineer’s Pocket-Book................. 500
Kerr's Power and Power Transmission. . .........ooovvviinnnnnn.... 2 00
* Kimball and Barr's Machine Design...............covviivennnn., 3 00
Leonard’s Machine Shop Tools and Methods. . ...................... 4 00
®Levin'sGas Engine.. ... ...ttt i i i e, 4 00
* Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean)..8vo, 4 00
MacCord’s Kinematics; or, Practical Mechanism..................... 8vo, 5 0V
Mechanical Drawing. ...4to, 4 00
Velocity Diagrams. ....vovvuu it rnneeereeenneeinenoenneenenns 8vo, 1 50
MacPFarland’s Standard Reduction Factors for Gases. . . .............. 8vo, 1 50
Mahan's Industrial Drawing. (Thompson.). ... ..........ccovovniun. 8vo, 3 50
Mehrtens’'s Gas Engine Theory and Design................... Large 12mo, 2 50
Oberg's Handbook of Small Tools. .............ccovvvvvnnn.. Large 12mo, 3 00
* Parshall and Hobart's Electric Machine Design. Small 4to, half leather, 12 50
Peele’s Compressed Air Plant for Mines. . ............covvivvnnn.... 8vo, 3 00
Poole’s Calorific Power of Fuels. . ...ovvvtiieniiiiieiiianennnnn. 8vo, 3 00
* Porter's Engmeenng Reminiscences, 1855 to 1882. . ................ 8vo, 3 00
Reid's Course in Mechanical Drawing. . «....ovvvviniieenenennnn.. 8vo, 2 00
Text-book of Mechanical Drawing and Elementary Machine Design.8vo, 3 00
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Richards’'s Compressed Air. ...........ciiiiiinreennuonnacenennns 12mo,
Robinson’s Principles of Mechanism. . .. ............ccoviiinenen..
Schwamb and Merrill's Elements of Mechanism. ... .................

Smith (A. W.) and Marx's Machine Design. .. ............... .

Smith’s (O.) Press-workingof Metals.. ............c.iivvunininnnn.

Sorel's Carbureting and Combustion in Alcohol Engines. (Woodward and

Preston.). .....coiiiiiii i i e i e Large 12mo,

Stone’s Practical Testing of Gas and Gas Meters. .................... 8vo,

Thurston’s Animal as a Machine and Prime Motor, and the Laws of Energetics.

12mo,

Treatise on Friction and Lost Work in Machinery and Mill Work. . .8vo,

* Tillson’s Complete Automobile Instructor. ... ................0. 16mo,

* Titsworth's Elements of Mechanical Drawing........... Oblong 8vo,

Warren's Elements of Machine Construction and Drawing. . .......... 8vo,

* Waterbury's Vest Pocket Hand-book of Mathematics for Engineers.
2} X 5% inches, mor.

* Enlarged Edition, Including Tables..................... ... mor.
Weisbach’s Kinematics and the Power of Transmission. (Herrmann—
LT T 8vo,
Machinery of Transmission and Governors. (Rermann—XKIein.). .8vo,
Wood's TUIrDINeS. & .ot vtiietie i iieeeeeneeneonaenesneenennoenas 8vo,

MATERIALS OF ENGINEERING.

* Bovey's Strength of Materials and Theory of Structures. ........... 8vo,
Burr's Elasticity and Resistance of the Materials of Engineering. ...... 8vo,
Church's Mechanics of Engineering. .. .......ooviiiiiiinnennnnnnean, 8vo,
* Greene's Structural Mechanics. . . .........ciiiiiiiiiiiiiiiiiia.. 8vo,
* Holley's Lead and Zinc Pigments...............o0iiviinn.. Large 12mo
Holley and Ladd's Analysis of Mixed Paints, Color Pigments, and Varnishes.
Large 12mo,
Johnson's (C. M.) Rapid Methods for the Chemical Analysis of Special
Steels, Steel-Making Alloys and Graphite.. ......... Large 12mo,
Johnson’s (J. B.) Materials of Construction. . ............ccivviuvan.
Keep'sCast Iron. ......covviiiiiiiiiiiiin it .

Lanza's Applied Mechanics.
Lowe's Paints for Steel Structures
Maire's Modern Pigments and their Vehicles. . vnnerieennennnns
Maurer’s Technical Mechanics. . ............ooiiiiiiiiiiiiiiinn,
Merriman's Mechanics of Materials.. ............iiiiiieiineennnn.
* Strength of Materials. . .........c.iiiiiiiiiiininenennnnn.
Metcalf's Steel. A Manual for Steel-users.........................
Sabin's Industrial and Artistic Technology of Paint and Varnish
Smith’s ((A. W.) Materials of Machines
* Smith's (H. E.) Strength of Material.

Thurston’s Materials of Engineering.......................
Part I. Non-metallic Materials of Engineering, ................
Part II. IronandSteel..............ccoiiiiiiiiiiiiiinnnnns 8v
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their
CONSEIUENIES. o v vttt tee ittt ittt eeene e nnenaenns 8vo,
Wood's (De V.) Elements of Analytical Mechanics. . ......... ....... 8vo,
Treatise on the Resistance of Materials and an Appendix on the
Preservation of Timber.. ..............oiiiiiiiiiiiiininn, 8vo,
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and
S 7 N 8vo,

STEAM-ENGINES AND BOILERS.

Berry's Temperature-entropy Diagram. ... ... JE 12mo,
Carnot's Reflections on the Motive Power of Heat. (Thurston.)..... 12mo,
Chase's Art of Pattern MaKing.. ..........coiiiiinrnrnnnenennnnns 12mo,
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Crelchton s Steam-engme and other Heat Motors. ................... 8vo, $5
Dawson's * Engineering’’ and Electric Traction Pocket-! book .18mo, mor. §
#* Gebhardt's Steam Power Plant Engineering............ e 8vo, 6
Goss's Locomotive Performance........................co0vennnn, 8vo, §
Hemenway's Indicator Practice and Steam-engine Economy ......... 12mo, 2
Hutton's Heat and Heat-engines. . .............coiiiiiiinneennnn, 5
Mechanical Engineering of Power Plants. . .. . 5
Kent's Steam Boiler Economy ..................... e, 8vo, 4
Kneass's Practice and Theory of the Injector. . . 1
MacCord’s Slide-valves. . . .........cociiieiiiinnne, 2
Meyer's Modern Locomotive Construction. ...... 10
Moyer's Steam Turbine. . .. ................... 4
Peabody’s Manual of the Steam-engine Indicator 1
Tables of the Properties of Steam and Other Vapors and Temperature-
Entropy Table. ......ociiiiiiiiiii ittt i 8vo, 1
Thermodynamics of the Steam-engine and Other Heat-engines. . . .8vo, 5
Valve-gears for Steam-engines...............covevenenenennn.n. 8vo, 2
Peabody and Miller’s Steam-boilers. ............................... 8vo, 4
Pupin’s Thermodynamics of Reversible Cycles in Gases and 3aturated Vapors.
(Osterberg.). o coveiiit ittt it ettt ettt 12mo, 1
Reagan s Locomotives: Simple, Compound, and Electric. New Edition.
, Large 12mo, 3
Sinclair's Locomotive Engine Running and Management. ........... 12mo, 2
Smart’s Handbook of Engineering Laboratory Practice. ............ 12mo, 2
Snow's Steam-boiler Practice. . .. ........... ... il i, 8vo, 3
Spangler’s Notes on Thermodynamics. .. ......................... 12mo, 1
VAV BOATS. . oot i ittt it it e e e 8vo, 2
Spangler, Greene, and Marshall’s Elements of Steam-enginecring. ... .. 8vo, 3
Thomas'’s Steam-turbines. . ............. .. ... o i, 8vo, 4
‘Thurston’s Handbook of Engine and Boiler Trials, and the Use of the lndx-
cator and the Prony Brake....................ccivvunnn. 8vo, 5
Handy Tables.. ... ..ottt ittt ittt iininennn 8vo, 1
Manual of Steam-boilers, their Designs, Construction, and Operation 8vo, §
Manual of the Steam-engine........................... 2 vols., 8vo, 10
Part I. History, Structure, and Theory ... ............... 8vo, 6
Part II. Design, Construction, and Operation.............. 8vo, 6
‘Wehrenfennig's Analysis and Softening of Boiler Feed-water. (Patterson.)
8vo, 4
Weisbach’s Heat, Steam, and Steam-engines. (Du Bois.). . .......... 8vo, §
‘Whitham's Steam-engine Design. . .. ..............00iiiiiiennenn.. 8vo, §
‘Wood's Thermodynamics, Heat Motors, and Refrigerating Machines. . .8vo, 4
MECHANICS PURE AND APPLIED.
Church's Mechanics of Engxneenng e, v eeesse.8v0, 6
Notes and Examples in Mechamcs .......................... .8vo, 2
Dana's Text-book of Elementary Mechanics for Colleges and Schools l2mo, 1
Du Bois's Elementary Principles of Mechanics:
Vol. I. Kinematics. ... .......coiinviiiinnnenn. . .8vo, 3
Vol II. Statics. . .. vvotttiiiiiii ittt 8vo, 4
Mechanics of Engineering ...Small 4to, 7
....................... Small 4to, 10
* Greene's Structural Mechanics. .. ..., 8vo, 2
Hortmann's Elementary Mechanics for Engineering Students. (In Press.)
James's Kinematics of a Point and the Rational Mechanics of a Particle.
Large 12mo, 2
* Johnson's (W. W.) Theoretical Mechanics. . . ....... J N 12mo, 3
Lanza's Applied Mechanics. . ..............oov.en e 8vo, 7
* Martin’s Text Book on Mechanics, Vol. I, Statics. ................ 12mo, 1
* Vol. II, Kinematics and Kinetics.12mo, 1
Maurer's Technical Mechanics. . .. .. e, [ 8vo, 4
* Merriman's Elements of Mechanics. .. ..........covviiiuninn... .12mo, 1
Mechanics of Materials...........cocviiiiiiiii i, ....8v0, §
* Michie's Elements of Analytical Mechamcs .......... e 8vo, 4
Robinson’s Principles of Mechanism. ... ...............c00000000...8v0, 3
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Sanborn’s Mechanics Problems. . ........................... Large 12mo,

Schwamb and Merrill's Elements of Mechanism. ... ................. 8vo,
Wood s Elements of Analytml Mechamcs ......................... 8vo,
Principles of El y hanics. ........ciiiiiiiiiiieaaa. 12mo.
MEDICAL.

* Abderhalden’s Physiological Chemistry in Thirty Lectures. (Hall and
Defren.). ... .. . e e 8vo,

von Behring's Suppression of Tuberculosis. (Bolduan.)............ 12mo,
Bolduan's Immune Sera. . ......... ... ... .. ... i iiiiiiiiiiaaa., 12mo,
Bordet's Studies in Immunity. (Gay.) ............. ..ot 8vo,

Chapin's The Sources and Modes of Infection. (In Press.)
Davenport’s Statistical Methods with Special Reference to Biological Varia-

BIOMS. L .t vttt e e e iae e 16mo, mor.
Ehrlich’s Collected Studies on Immunity. (Bolduan.).. ............. 8vo,
Fischer's Oedema. (In Press.)

* Physiology of Alimentation.......................... Large 12mo,
de Pursac’'s Manual of Psychiatry. (Rosanoff and Collins.).. . .Large 12mo,
Hammarsten’s Text-book on Physiological Chemistry. (.\landel ). ....8vo,
Jackson's Directions for Laboratory Work in Physiological Chemlstry .8vo,
Lassar-Cohn’s Praxis of Urinary Analysis. (Lorenz.)............... 12mo,
Mandel's Hand-book for the Bio-Chemical Laboratory.............. 12mo,
* Nelson's Analysis of Drugs and Medicines. ...................... 12mo,

* Pauli's Physical Chemistry in the Service of Medicine. (Fischer.)..12mo,
* Pozzi-Escot's Toxins and Venoms and their Antibodies. (Cohn.). . 12mo,

Rostoski's Serum Diagnosis. (Bolduan.). . ....................... 12mo,
Ruddiman's Incompatibilities in Prescriptions.. ..................... 8vo,

Whysin Pharmacy. ... .....ciiiiiiiininniniininneeernnans 12mo,
Salkowski's Physiological and Pathological Chemistry. (Orndorff.) ....8vo,
* Satterlee’s Outlines of Human Embryology. . . .............co0... 12mo,
Smith's Lecture Notes on Chemistry for Dental Students............. 8vo,
* Whipple's Tyhpoid Fever. . ...............ooiiiiiiiinn. Large 12mo,
* Woodhull’s Military Hygiene for Officers of the Line . ....... Large 12mo,

* Personal Hygiene. ... .........0iiiiiiiiiiiiiiiiine vannn 12mo,
‘Worcester and Atkinson's Small Hospitals Establishment and Maintenance,
and Suggestions for Hospital Architecture, with Plans for a Small

Hospital. . ....o0 i 12mo,
METALLURGY.
Betts's Lead Refining by Electrolysis. ...............ciiiiiiinnnn.. 8vo,
Bolland's Encyclopedia of Founding and Dictionary of Foundry Terms used
in the Practice of Moulding. .. ............. ... ... ..., 12mo,
lron Founder.........ciiiiiiiioinneieniiiineeiinniaan, 12mo,
“ Supplement. ......coiiiiieiiii it e, 12mo,
Douglas’s Untechnical Addresses on Technical Subjects. . ........... 12mo,
Goesel's Minerals and Metals: A Reference Book. . .... .16mo, mor.
* Jles's Lead-smelting. .. ........0oi i e 12mo,
Johnson's Rapid Methods for the Chemical Analysis of Special Steels,
Steel-making Alloys and Graphite. ................. Large 12mo,
Keep'sCast Iron. ......ooviiiiiiiii ittt i, 8vo,
Le Chatelier's High-temperature Measurements. (Boudouard—Burgess.)
12mo,
Metcalf's Steel. A Manual for Steel-users.....................00.. 12mo,
Minet’s Production of Aluminum and its Industrial Use. (Waldo.). . 12mo,
* Ruer's Elements of Metallography. (Mathewson.)................. 8vo,
Smith's Materials of Machines. .....ccvvvieiieniiiii i, 12mo,
Tate and Stone's Foundry Practice...........cocoviiiiiiiiiiienn., 12mo,
Thurston's Materials of Engineering. In Three Parts. ............... 8vo,
Part I. Non-metallic Materials of Engineering, see Civil Engineering,
page 9.
Part II. Ironand Steel.........cooviiiiiiiuiiiiiiiinnnanan,
Part II1. A Treatise on Brasses, Bronzes, and Other Alloys and thar
Constituents. .ooooveroceronrerennacanas Cesecerientesanas 8vo,
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Uike's Modern Electrolytic Copper Refining
West's American Foundry Practice.......... e
Moulders’ Text Book. . .......cocvvviiiiiiiennnns [ 12mo,
MINERALOGY.
Baskerville’s Chemical Elements. (In Preparation.)
* Browning's Introduction to the Rarer Elements. ... ............... 8vo,
Brush's Manual of Determinative Mineralogy. (Penfield.)............ 8vo,
Butler's Pocket Hand-book of Minerals. .. .............. .16:n0, mor.
Chester’s Catalogue of Minerals. ...............oovviiiunnn... 8vo, paper,
Cloth,
*Crane's Gold and Silver. .........o vttt i 8vo,

Dana's First Appendix to Dana’s New *‘System of Mineralogy''. . Large 8vo,
Dana’s Second Appendix to Dana’'s New ,‘ System of Mineralogy."

Large 8vo,
Manual of Mineralogy and Petrography. . ..................... 12mo,
Minerals and How to Study Them. .. ........................ 12mo,
System of Mineralogy...................... Large 8vo, half leather,
Text-book of Mineralogy. . ..........c..ooviiiiniiiinnennnn... 8vo,
Douglas’s Untechnical Addresses on Technical Subjects. . ........... 12mo,
Eakle's Mineral Tables. ............oooviiiiiiiiiiiiiiiiinin... 8vo,
Eckel's Stone and Clay Products Used in Engineering. (In Preparation.)
Goesel's Minerals and Metals: A Reference Book.............. 16mo, mor.

Groth's The Optical Properties of Crystals. (Jackson.) (in Press.)
Groth's Introduction to Chemical Crystallography (Marshail). . . .....12mo,
* Hayes's Handbook for Field Geologists.................... .16mo, mor.
Iddings's Igneous ROCKS. . v tiii ittt ittt it ii i etee....8v0,
eiererens 8vo,
Johannsen s Determination of Rock-forming Minerals in Thm Secf.lons 8vo,
With Thumb Index
* Martin's Laboratory Guide to Qualitative Analysis with the Blow-

o3 ¥ T 12mo,
Merrill's Non-metallic Minerals: Their Occurrence and Uses. .......... 8vo,
Stones for Building and Decoration. .. ......................... 8vo,
* Penfield’s Notes on Determinative Mineraiogy and Record of Mineral Tests.
8vo, paper,
Tables of Minerals, Including the Use of Minerals and Statistics of
Domestic Production. ... ....c.oviviiiiiiiiii i, 8vo,
* Pirsson’s Rocks and Rock Minerals............................. 12mo,
* Richards’s Synopsis of Mineral Characters. .. ............... 12mo, mor.
* Ries's Clays: Their Occurrence, Properties and Uses................ 8vo,
* Ries and Leighton's History of the Clay-working Industry of the United
LS. . o v ettt it i i e e e e . .8vo,
* Tillman’s Text-! book of Important Minerals and Rocks.............. 8vo,
‘Washington’s Manual of the Chemical Analysis of Rocks. . ....... ....8vo,
MINING.
* Beard’s Mine Gases and Explosions. ......... Ceereeeeeee Large 12mo,
* Crane’s Gold and Silver. ................. P ...8vo,
* Index of Mining Engineering Literature...... e iee e, 8vo,
* 8vo, mor
* Ore Mining Methods, ....................... e 8vo,
Douglas’s Untechnical Addresses on Technical Subjects. . .12mo,
Eissler’'s Modern High Explosives.........coivtiieinrninnennennennn. 8vo,
Goesel's Minerals and Metals: A Reference Book.............. 16mo, mor.
Ihlseng's Manual of Mining, «.o0eevvn.... et eeeee e e, 8vo,
* Jles's Lead Smelting. ....co000000cc0s.. ettt e 12mo,
Peele’'s Compressed Air Plant for Mlnes ........................ 8vo,
Riemer's Shaft Sinking Under Difficult Condntlons. (Cormng and Peele.)8vo,
* Weaver's Military Explosives. .ov.vviviiiiiiiiinnenniinnnenan., 8vo,
Wilson's Hydraulic and Placer Mining. 2d edition, rewritten. .. ... .12mo,

Treatise on Practical and Theoretical Mine Ventilation ... .....12mo,
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SANITARY SCIENCE.

Association of State and National Food and Dairy Departments, Hartford

Meeting, 1906. . ...ttt
Jamestown Meeting, 1907. . .. ...............oooii..,
* Bashore’s Outlines of Practical Sanitation. ...... [N
Sanitation of a Country House. . .. ................ .o ...,
Sanitation of Recreation Camps and Parks. . ..................
Chapin’s The Sources and Modes of Infection. ([1 Press.)
Folwell's Sewerage. (Designing, Construction, and Maintenance.). . . .. 8vo,
Water-supply Engineering. . . .. e e e et et e e
Powler's Sewage Works Analyses. .. .........coiviiiiiinenninn...
Puertes's Water-filtration Works. ............. e
Water and Public Health. ...................... .. ... ...12mo,
Gerhard's Guide to Sanitary Inspections......... e e 12mo,
* Modern Baths and Bath Houses.. ...s...........ioaiaa.,. 8vo.
Sanitation of Public Buildings. .. ................ ... ... ..., 0,
* The Water Supply, Sewerage, and Plumbing of Modern City Bunldmgs
8vo,
Hazen's Clean Water and How to Get It. .. ........... ..... Large 12mo,
Filtration of Public Water-supplies. . ............0............. 8vo,

Kinnicut, Winslow and Pratt’s Sewage Disposal. (In Pre;s)
Leach’'s Inspection and Analysis of Food with Special Reference to State

vo,
Mason’s Examination of Water. (Chemical and Bacteriological).. . ..12mo,

Water-supply. (Considered principally from a Sanitary Standpomt)
8vo,

Mast's Light and the Behavior of Organisms. (In Press.)
* Merriman's Elements of Sanitary Engineering

Ogden's Sewer Construction ......ooovvieineveinnnnean..

Sewer Design.....ovviiitiiiineiiinneeenienanns .
Parsons's Disposal of Municipal Refuse. ............................ 8vo,
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysis. . ....................... 12mo,
* Price’s Handbook on Sanitation. . .............ooiviivininnnan., 12mo,
Richards's Cost of Cleanness. . .. ..........ocvvivninan.. PP 12mo,

Cost of Food. A Study in Dietaries. . .. ..................... 12mo,

Cost of Living as Modified by Sanitary Science. .. ............. 12mo,

Cost of Shelter. . .. ...ttt it ittt tnennnennnnan,s 12mo,
* Richards and Williams's Dietary Computer. ... ................... 8vo
Richards and Woodman's Air, Water, and Food from a Sanitary Stand-

POINL. & o vttt ettt it i e e 8vo,
* Richey’'s Plumbers’, Steam-fitters’, and Tinners' Edition (Building

Mechanics’ Ready Reference Series). ................ 16mo, mor.
Rideal's Disinfection and the Preservation of Food. .. ...............

# Sewage and Bacterial Purification of Sewage. . . .................
Soper's Air and Ventilation of Subways. ..........................
Turneaure and Russell's Public Water-supplies. .....................
Venable's Garbage Crematories in America. ... ...........

Method and Devices for Bacterial Treatment of Sewage
Ward and Whipple's Freshwater Biology. (In Press.)

Whipple's Microscopy of Drinking-water. ... ...................... .8vo,
* Typhoid Fever. ....ccviiiiiiniiniiiiiiiinnninnnnn Large 12mo,
Value of Pure Water. . . ............oiiiiiiiinnnenn. Large 12mo,
Winslow's Svstematic Relationship of the Coccacee...... .....Large 12mo,
MISCELLANEOUS.
Emmons's Geological Guide-book of the Rocky Mountain Excursion of the
International Congress oi Geologists. ................. Large 8vo.
Ferrel's Pooular Treatise on the Winds. ....................... «....8vo0,
Fitzgerald's Boston Machinist. . ................coiiiiviunann. ...18mo,
Gannett’s Statistical Abstract of the World. .. ............... «v...24mo,
Haines's American Railway Management. .. .................. «...12mo,

Hanausek's The Microscopy of Technical Products. (Winton).......8vo,
18
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Jacobs’s Betterment Briefs. A Collection of Published Papers on Or-

ganized Industrial Efficier.cy. . .............. ... . oL, 8vo,
_ Metcalfe’s Cost of Manufactures, and the Administration of Workshops..8vo.
Putnam's Nautical Charts. ............. ... iiiiiiiiiiinnnenn., 8vo,
Ricketts's History of R 1 Polytechnic Institute 1824-1894.

Large 12mo,

Rotherham’s Emphasised New Testament. .. ................. Large 8vo,
Rust’s Ex-Meridian Altitude, Azimuth and Star-finding Tables. ...... 8
Standage’s Decoration of Wood. Glass, Metal. etc.........
Thome's Structural and Physiological Botany., (Bennett)..........
Westermaier's Compendium of General Botany. (Schneider)
Winslow’s Elements of Applied Microscopy.........ccovvvveenunnnn.

HEBREW AND CHALDEE TEXT-BOOOKS.

Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.
(Tregelles.) . . ..o viiiiiiiiienierernenenn. Small 4to, half mor,
Green's Elementary Hebrew Grammar........cooiivveniennennnnn. 12mo,
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