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ALGEBRA.

CHAPTER I

FUNDAMENTAL PROCESSES OF ALGEBRA.

SECTION 1.

Definitions and Notation.

1. Algebra, according to the usual definition, 1s
that branch of mathematics in which the quantities
considered are represented by the letters of the
alphabet, ‘and the operations to be performed upon
them are indicated by signs. In this sense it would
embrace almost the whole science of mathematics,
elementary geometry alone being excepted. It is,
consequently, subject in common use to some limita-
tions, which will be more easily understood, when
we are advanced in the science.

2. The sign 4 is called plus or more, or the poss~
tive sign, and placed between two quantities denotes
that they are to be added together.

Thus 3 45 is 3 plus or more 5, and denotes the sum of
3and 5. Likewise a4} b is the sum of a and b, or of the

quantities which a and b represent.
L]



2 ALGEBRA. [em. 1. § 0.

Signs of Addition, Subtraction, Multiplication, and Division.

3. The sign — is called minus or less, or the
negative sign, and placed between two quantities
denotes that the quantity which foliows it is to be
subtracted from the one which precedes it.

Thus 7 — 2 is 7 minus or less 2 and denotes the remain.
der after subtracting 2 from 7. Likewise a—b is the
remainder afier subtracting b from a.

4. The sign X is called the sign of multiplication,
and placed between two quantities denotes that they
are to be multiplied together. A point is often used
instead of this sign, or, when the quantities to be
multiplied together are represented by letters, the
sign may be altogether omitted.

Thus 3 X5 x 7, t;r 3.5.7 is the continued product of
3,5,and 7. Likewise 12 x a x b, or 12. 2.0, or 12ad,
is the continued product of 12, a, and b. :

5. The factor of a product is sometimes called
its coefficient, and the numerical factor is called the
numerical coefficient. When no coefficient is writ-
ten, the coefficient may be considered to be unity.

Thus, in the expression 15 a b, 15 is the numerical co-
efficient of ab; and, in the expression zy, 1 may be re-
garded as the coefficient of z y.

6. The continued product of a quantity multiplied
. repeatedly by itself, is called the power of the quan-
tity ; and the number of times, which the quantity
is taken as a factor, is called the czponent of the
power. :
The power is expressed by writing the quantity
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Coefficient, Power. Root.

once with the exponent to the right of the quantity,
and a little above it. When no exponent is written,
the exponent may be considered to be unity.

Thus the fifth power of a is written a*; but when a stands
by itself, it may be regarded as a'.

7. The root of a quantity is the quantity which,
multiplied a certain number of times by itself, pro-
duces the given quantity ; and the index of the root
1s the number of times which the root is contained
as a factor in the given quantity.

The sign o/~ is called the radical sign, and when
prefixed to a quantity indicates that its root is to be
extracted, the index of the root being placed to the
left of the sign and a little above it. 'T'he index 2 is
generally omitted, and the radical sign, without any
index, is regarded as indicating the second or square
root.

Thus, :/a or 4/a is the square root of a,

:/a is the third or cube root of a,
:/a is the fourth root of a,
:/a is the nth root of a.

8. The signs <+ and : are called the signs of di-
vision, and either of them placed between two quan-
tities denotes that the quantity which precedes it is
to be divided by the one which follows it. The
process of division is also indicated by placing the
dividend over the divisor with a line between them.

Thus, a=-b, or a: b, or % denotes the quotient of a di-

vided by b.
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Signs of Equality and Inequality. Algebraic Quantity.

. 9. The sign = is called equal to, and placed be-
tween two quantities denotes that they are equal to
each other, and the expression in which this sign
occurs is called an equation.

Thus, the equation a = b denotes that a is equal to b.

10: The sign > is called greater than, and the :ign
< is called less than ; and the expression in which
either of these signs occurs is called an inequality.

Thus, the inequality @ > b denotes that a is greater than
b; and the inequality @ < b denotes that « is less than b;
the greater quantity being always placed at the opening of
the sign.

11. An algebraic quantity is any quantity written
in algebraic language.

12. An algebraic quantity, in which the letters
are not separated by the signs -}- and —, is called a
monomial, or a quantity composed of a single term,
or simply a term.

Thus, 3 a?, — 10 a® z are monomials.

13. An algebraic expression composed of several
terms, connected together by the signs |+ and —,
is called a polynomial, one of two terms is called a
binomial, one of three a trinomial, &c.

Thus, a? - b is a binomial,

¢z —y is a trinomial, &ec.

14. The value of a polynomial is evidently not
affected by changing the order of its terms.

Thus, a —b—c--d is thesame as a—c—b--d, or
a4-d—b-—-c,or —b}d4a—c, &c.
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.

Degree, Dimension, Vinculum, Bar, Parenthesis, Similar Terms.

15. Each literal factor of a term is called a dimen-
sion, and the degree of a term is the number of its
dimensions.

The degree of a term s, therefore, found by taking
the sum of the exponents of its literal factors.

Thus, 7z is of one dimension, or of the first degree;
5a2 b c is of four dimensions, or of the fourth degree, &c.

16. A polynomial is homogeneous, when all its
terms are of the same degree.

Thus, 3a —2 b 4 ¢ is homogeneous of the first degree,
8a%b—16 4?2 -}-b* is homogeneous of the fourth degree.

17. A vinculum or bar , placed over a
quantity, or a parenthesis ( ) enclosing it, is used to
express that all the terms of the quantity are to be
considered together.

~ Thus, (a4 b--c) xd is the product of a | b+ ¢ by d,
V22 + 32, or o/ (22 4 »?) is the square root of 22 4 y2.

The bar is.sometimes placed vertically. i
Thus, a|z45a%]|22—3c |2’
—2b| +3 +4d
+3c|] —2d — 1

is the same as

(a—2b+43c) 24 (5a°43— 2d)z2+(—3c+4d--1)zs

18. Stmilar terms are those in which the literal
factors are identical.

Thus, 7 ab and — 3 a b are similar terms,
and — 5a* b® and 3 a* b® are similar;
but 2 a* b® and 2 a® b* are not similar.

l.
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Reduction of Polynomials.

19. The terms of a polynomial which are preceded
by the sign - are called the positive terms, and those
which are preceded by the sign — are called the
ngative terms.

When the first term is not preceded by any sign 1t
is to be regarded as positive.

20. The following rule for reducing polynomials,
which contain similar terms, is too obvious to require
demonstration.

Find the sum of the similar positive terms by add-
ing their coeflicients, and in the same way the sum
of the similar negative terms. The difference of
these sums preceded by the sign of the greater, may
be substituted as a single term for the terms from
which it is obtained.

When these sums are equal they cancel each other,
and the corresponding terms are to be omitted.

Thus, a2b—9ab?4-8a2b45c—3a2b48ab24
Ra?b4c4ab?>—8cis the same as 8a2b —2¢.

21. EXAMPLES.

1. Reduce the polynomial 10 a* 4 3 a* 4 6 a* — at —
6 at to its simplest form. « Ans. 13 et

2. Reduce the polynomial 5643 /ab2c—7ab--
17a¢b4-2/ ab?c—6a'b—8/al’c—10ab+49a'd

to its simplest form, Ans. 8a'b—3 / alec.
3. Reduce the polynomial 3¢ —2a —7f+43f+2a
44 f—8a to its simplest form. Ans. 0.

Y
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Addition.

SECTION II.
Addition.

92. Addition consists 1 finding the quantity
eyuivalent to the aggregate or sum of several differ-
eLt quantities.

23. Problem. To find the sum of any gwen
quantities.

Solution. The following solution requires no de-
monstration.

The quantities to be added are to be written after
each other with the proper sign between them, and
the polynomial thus obtained can be reduced to its
simplest form by art. 20.

24. EXAMPLES.

1. Find the sum of a and a. Ans.2a.
2. I'ind the sum of Ll z and 9 z. Ans. 20z,
3. Find the sum of 11z and — 9 z, Ans. 2 z.
4. Find the sum of — 11 z and 9 z. Ans. —2 z.
5. Find the sum of — 11z and —9z.  Ans. — 20z
6. Find the sum of a and — b. Ans. a — b,
7. Find the sum of —6f,9f, 13f, and —8f. Ans.8f.
8. Find the sum of — 125, —4band 13b. Ans. —3b.
9. Find the sum of /z +az—ab,ab— 7z 41y,

az+4-zy—4dadb, /z+ vz —2andz2y4-zytaz
Ans. 2 Vz +3az—4abt4zy—az,
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Subtraction. *

10. Find the sum of 722 —6 /z} 5123 —g
—3—y7 —8—g
—22 4 z—33z2—14Tg
—222 -3 /743232 —1—¢
48z —52324+9—¢

Ans, 42243 /7 +2+456g.

SECTION IIl.

Subtraction.

25. Subtraction consists in finding the difference
between two quantities.

26. Problem. To subtract one quantity from
another. '

Solution.. Let A denote the aggregate of all the positive
terms of the quantity to be subtracted, and B the aggregate
of all its negative terms; then 4 — B is the quantity to be
subtracted, and let C' denote the quantity from which it is
to be taken. '

If A alone be taken from C, the remainder C — A is as
much too small as the quantity subtracted is too large, that
is, as much as A4 is larger than A — B. The required re-
mainder is, consequently, obtained by increasing C— A by
the excess of A4 above A — B, that is, by B, and it is thus
found to be C— A 4 B.

The same result would be obtained by adding to C the
quantity A — B, with its signs reversed, so as to make it
— A B. Hence,

To subtract one quantity from another, change the
signs of the quantity to be subtracted from 4 to —.
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d Multiplication of Monomials.

and from — to -+, and add it with its signs thus re-
versed to the quantity from which it is to be taken.

27. EXAMPLES.

1. From a takeb+-c. Ans. a—b—c.
2. From a take —b. Ans. a4 b.

3. From 5a take —S5a. Ans 10 a.

4. From 7a take 12 a. Ans. — S a.

5. From —19a take —20a. Ans. a.

6. From 12 take —7. Ans. 19,

7. From —2 take 5. Ans. — 7.

8. From — 11 take —20. °~  d4=ns. 9.
9. From3a4a—176—105+413a—2a
take 6b—8a—b—2a-+4+3d49a—5k
Ans. 15a—32b—8d45h
10. Reduce 32 a3 b— (5 a-}- 17 b) to its simplest

form. Ans 27a—14b.
11. Reduce a 45— (Ra—3b) —(5a+470)—
(— 13 a + 2 b) to its simplest form. Ans. Ta—5b.
SECTION IV.

Multiplication.

28. Problem. To find the continued product of
several monomials.

Solution. ‘T'he required product is indicated by writing
the given monomials after each other with the sign of multi.
plication between them, and thus a monomial is formed,
which is the continued product of all the factors of the given
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Multiplication of Polynomials.

monomials. But, as the order of the factors may be changed
at pleasure, the numerical factors may all be united in one
product.

Hence the coefficient of the product of given mono-
mials is the product of their cocflicients.

The different powers of the same letter may also be

. brought together, and since, by art. 6, each exponent de-

notes the number of times which the letter occurs as a factor

in the corresponding term, the number of times which it

occurs as a factor in the product must be equal to the sum
of the exponents.

Hence every letter which is contained in any of
the given factors must be written in the product, with
an exponent equal to the sum of all its exponents in
the different factors.

29. EXAMPLES.

1. Multiply ab by cde. Ans. abcde.
2. Find the continued productof 3abd,2cd, andefg.
Ans.6abcdefg.
3. Multiply a™ by a™. Ans. amtn,
4. Find the continued product of 5 a3, a7, 7 a®, and 3 a®.
Ans. 105 a2,

5. Multiply 7a352 by 10ab5c®d.  Ans. 70a* b7 2d.
6. Find the continued product of 5 a3 b%, a2 b8, aud

dabdc. Ans. 20 a8 D15 ¢,
7. Find the continued product of a™bP c1, a" b ¢*, and
amtnd Ans, a?™+2n pptrt+1 cate

30. Problem. To find the product of two poly-

nomials.
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Multiplication of Polynomials.

Sovlution. Denote the aggregate of all the positive terms
of one factor by A and of the other by B, and those of their
negative terms respectively by C and D ; and, then, the fac-
tors are A — C and B—D.

Now if A — C is multiplied by B it is taken as many
times too often as there are units in D ; so that the required
product must be the product of A — C by B, diminished
by the product of A — C by D ; that is,

A—C)(B—D)=(A—C)B—(A—C)D.
Again, by similar reasoning, the product of 4 — C' by B,
that is, of B by A — C, must be
(A—C)B=AB— BC,
and that of (4 — C) by D must be
(A—C)D = AD — CD;
and, therefore, the required product is, by art. 26,
(A—C)(B—D)=AB—BC—AD + CD.

The positive terms of this product, AB and CD, are ob-
tained from the product of the positive terms A and B, or
from that of the negative terms — C and — D; but the
negative terms of the product, as — BC and — AD, are
obtained from the product of the negative term of one factor
by the positive term of the other,as — C by B or — D by A.
Hence,

The product of two polynomials is obtuined by
multiplying each term of one factor by each term of
the other, as in art. 28, and the product of two terms
which have the samme sign is to be affected with the
sign -+, while the product of two terms which have
contrary signs is to be affected by the sign —.

The result is to be reduced as in art. 20.
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Multiplication of Polynomials.

31. ExampPLEs.

1. Multiply 22 y2 by =z - 9.
Ans. 28 4 22y4-z y2 -5
2. Multiply 26 -zy87azbyaz+5az.
Ans. 6 a2®+6a22ys 4242 28,

3. Multiply — a by b. Ans. —ab.
4. Multiply a by —b. Ans. —ab,
5. Multiply — a by —b. Ans. ab.
6. Multiply —3 a by 14c. Ans. —42ac.

7. Multiply —6a352 by —11ab3¢c. Ans. 66a*b°c.
8. Find the continued product of — a, — a, — a, and
—a. : Ans. at.
9. Find the continued product of — a2b, c®e, — a, — 322,
c,—R2az, —3abez, —7, and b3 23,
Ans. 42 a5 b5 3¢5 27,
10. Find the continued product of 7abz, —az, —z,
b227, —2b, — 3, and — 5 a7 b3 25. .
Ans, —210 a® b7 2%,
11. Multiply a4 b by ¢ 4 d.
Ans. ac+ad4bc+4bd.
12. Multiply a® 4 b2 —c by a2 — b3
Ans. a5 —a2 b3+ a2 0® — a®c— b3 4 b3c.
13. Multiplya+ b6+ cby a4 bdb—ec.
Ans. a?+2ab 4 b2—c3,
14. Multiply 22 —32—7 by z —2.
Ans. 23— 5122 —z 4 14,
15. Multiply a® + a4 a8 by a®2— 1.  Ans. a® —a?
16. Multiply 8 a® 53 4 36 a® b* 4 54 a7 b5 4 27 a8 b8
by 8 a® b3 — 36 a8 b* + 54 a7 b5 — 27 ab b8, '
Ans. 64 a'8 56 — 432 a6 b8 - 972 a1 H10 — 729 @12 H3%.



ch 1. §1v.] MULTIPLICATION. 13

Product of Sum and Difference ; of Homogeneous Quantities.

17. Find the continued product of 3z 4+2y,2z—3y,
" —z+4y,and —Rz- .
Ans. 1224 —1623y —1322y2 - 11zy3 -6 y4.
18. Multiply a 4 b by a —b. Ans. a® — b2,
19. Multiply 2 a3z 47 a%25 by 2 a3z — 7 a? 25
Ans. 4 a822 — 49 ot 2'°,

32. Corollary. The continued product of several
monomials is, as in examples 8 and 9, positive, when
the number of negative factors is even; and it is
negative, as in example 10, when the number of
negative factors is odd.

33. Corollary. The product of the sum of two
numbers by their difference is, as in examples 18 and
19, equal to the difference of their squares.

34. Theorem. 'The product of homogeneous
polynomials is also homogeneous, and the degree of
the product is equal to the sum of the degrees of the
factors.

Demonstration. TFor the number of factors in each term
of the product is equal to the sum of the numbers of factors
in all the terms from which it is obtained; and, therefore,
by art. 15, the degree of each term of the product is equal
to the sum of the degrees of the factors. Thus, in example
16, the degree of each factor is 12, and that of the product
is 12412 or 24.
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Division of Monomials.

SECTION V.
Division

35. Problem. To divide one monomial by an-
other.

Solution. Since the dividend is the product of the divisor
and quotient, the quotient must be obtained by suppressing
in the dividend all the factors of the divisor which are ex-
plicitly contained in the dividend, and simply indicating the
division with regard to the remaining factors of the divisor.
Hence, from art. 28,

Suppress the greatest common factor of the nu-
merical coefficients.

Suppress each letter of the divisor or dividend in
the term in which it has the least exponent, and re-
tain it in the other term, giving it an exponent
equal to the difference of its exponents in the two
terms. But when a letter occurs in only one term,
it is to be retained in that term, with its erponent
unchanged.

The required quotient ts, then, equal to the quo-
tient of the remaining portion of the dividend divided
by that of the divisor, and may be indicated as in
art. 8; or, when the divisor is reduced to unity, the
quotient is simply equal to the remaining portum of
the dividend.

The sign of the quotient must, from art. 30, be the same
as that of the divisor when the dividend is positive, and it
must be the reverse of that of the divisor when the dividend
is negative ; whence we readily obtain the rule.
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Division of Monomials.

When the divisor and dividend are both affected by
the same sign, the quotient is positive; but when
they are affected by contrary signs, the quotient is
negative.

The rule for the signs in both division and multiplication
may be expressed still more concisely as follows.

Like signs give - ; unlike signs give —.

36. EXAMPLES.

1. Divides65ab by 5 . Ans. '_{;_9 —135.

2. Divide —132a5b3¢ by 11a383.  Ans. — 12 a®c.

3. Divide 144a b3c2d®e by —112abdtc e k.

An ded
TYYY
4. Divide — 135 by — 5 a. Ans. 277.

- : 1
5. Divide 7 a3 22 by 21 a5 22, Ans. o
6. Divide a™ by a™. Ans. a™—*,
.. Sam—rbr—9
7. Divide —3 a™b" by —4 aPbtc". Ans. —ir
8. Divide a by — a. Ans. — 1.
9. Divide —a by a. Ans. — 1.
10. Divide — a by — a. - Ans. 1.

87. Corollary. If the rule for the exponents is applied
to the case in which the exponent of a letter in the dividend
is equal to its exponent in the divisor, when, for instance,
a™ is to be divided by a™, the exponent of the letter in the
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Exponent equal to Zero. Negative Exponents.

quotient becomes zero. But the quotient of a quantity di-
vided by itself is unity.

Whence any quantity mth an e.zponent equal to
Zero s unity.. .

Thus, a4 a*=a'=1.

38. Corollary. When, in example 6 of art. ﬁ, the ex-
ponent n of « in the divisor is greater than its exponent m
in the dividend, the exponent m —n in the quotient is nega-

tive ; and a negative exponent is thus substituted for the
usual fractional form of the quotient.

Thus, if m is zero, we have
1
cr =1t — = a-", .
‘ aAd+-ar=1-=+a pe a s
In the same way we should have
ablB+a’ b Bd=alb?B a2 B dl=a—4c—5d"
Any quotient of monomials may thus be expressed

by means of negative exponents without using frac-
tional forms.

39. EXAMPLES.

1. Divide 5 a% 53 c2d by 15a b5 2 d3 2.
Ans. 3-1a3b—2d—2.—2
2. Divide 6a7b by 9a d".
Ans. $a5b—6 =2.3-148 56,
3. Divide 1 by 8 a? &.
Ans. $a~1"ph—1=8-1g-1p—1,
4. Divide 3 by a. Ans, 381,
40. Corollary. Quantities, thus expressed by
means of fractional exponents, may be used in all
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calculations, and may be added, subtracted, multi-
plied, or divided by the rules already given, the
sigus being carefully attended to.

41. EXAMPLES.

1. Find the sum of 7a—3+49a™b—P—6Gab—2c*, —3a~3,
5a*b-?+11ab~2c, a"3—14amb~r,
Ans. 8a=345ab"%¢.
2. Reduce the polynomial 9 a=3b-2c4— 7 ba—34
(18a—3b—5a" ™ +4c*—3.25) — (3a*b™—a—3p—24
+8¢* —5.25) to its simplest form,
Ans.10a=3b"2c4+4-11a"3b—8a* b™—2c*4-2.25.
3. Multiply a—™ by a™. Ans. a=m+n —=qgn—m,
4. Multiply a™ by a—=. Ans, a™—»,
5. Multiply a=™ by a—™. Ans.a=m—n —=q—m+m,
6. Find the continued product of 11 a=2, —2a~5, 4 a®,

and —9ad’. Ans. 792 ab.
7. Find the continued product of 2 a—3, 7 a—9, and
—3ab. . Ans. — 424~ 6 = — é?‘
8. Find the continued product of 543 b—4, 10 a2 b5 c:‘and
—38ad Ans. — 150 a2 b c.

9. Multiply —13a~1bc¢=3by —4a—35—-6¢2
Ans. 52a—4b—5c— 1,

10. Divide a—™ by a®. Ans.a=™—n =g~ m+w,
11. Divide a™ by —». Ans, am+»,
12. Divide a =™ by a—*. Ans. a=mtn —qr—m,

13. Pivide 14a~8bc?d—leby2abd—3c5dh.
Ans. Ta~9htc—2d—3¢h—1
14. Divide —3 a™ by 2 a™+nbc—1.
Ans. —3a—"b- e
2
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42. Problem. To divide one polynomial by an-
ocher.

Solution. The term of the dividend, which contains the
highest power of any letter, must be the product of the term
of the divisor which contains the highest power of the same
letter, muliiplied by the term of the quotient which contains
the highest power of the same letter.

A term of the quotient is consequently obtained by
dividing, as in art. 35, the term of the dividend
which contains e highest power of any letter by
that term of the divisor which contains the highest
power of the same letter.

But the dividend is the sum of the products of the divisor
by all the terms of the quotient ; and, therefore,

If the product of the divisor by the term just found
s subtracted from the dividend, the remainder must
be equal to the sum of the products of the divisor by
the remaining terms of the quotient, and may be
used as a new dividend to obtain another term of the \
quotient.

By pursuing this process until the dividend is
entirely exhausted, ull the terms of the quotient may

“be obtained.

It facilitates the application of this method to ar-
range the terms of the dividend and divisor according
to the powers of some letter, the term which conlains
the highest power being placed first, that which con-
tains the next to the highest power being placed next,
and so on.



cu. 1. § v.] DIVISION. 19

Division of Polynomials.

43. EXAMPLES.

1. Divide —16 a3 23}~ a5 64 26 by 422}-a®—4 az.

Solution. 1n the following solution the dividend and di-
visor are arranged according to the powers of the letterz ;
the divisor is placed at the rlght of the dividend with the
quotient below it.

As each term of the quotient is obtained, its product by
the divisor is placed below the dividend or remainder from
which it is obtained, and is subtracted from this dividend
or remainder. .

G4 16— 16 a® 23 4 b 422—4 a z 4 a? = Divisor.
64 15 —64a254-16 224 | 16 29416 ¢ 23412 u® 224 a3 2}-at
64 w25 — 16 a? 24 — 16 «3 23 4 a = 1st Remainder.
64 a 15— 64 a® 24 16 3 23
43 a2 24 —32 a3 23 4 a8 = 2d Remainder.
48 a2t — 48 a3 13 4 12 a* 12
16 a? 43 — 12 0* 724 a6 = 3d Remainder.
16a%23 —16a*22 + 4 a2
4 a*22—4 a5z 4 af = 4th Remainder.
4at22—4a5z -} ab

0.

Ans. 16 24 416 a 23+ 12a%2% -4 a2z at
2. Divide b ¢® — 3z by ¢3. Ans b—az.
3. Divide a?+2 a b} b2 by a - b. Ans. a b,
4. Divide — a8 {4 4 15 al! b5 — 48 a4 b6 — 20 a7 b7 by
10a° 62 —ab b. Ans. a? b3 —5 a5 b*—Q a8 b5,
5. Divide 1 — 182248124 by 1 4624922
Ans. 1 — 62z 923
6. Divide 81 a® 416 612 — 72 a* I8 by 9 at 4 1242 B3
-4 48, Ans. 9 at— 12 a? b3 -4 b8



20 ALGRBRA. fem. 1. §v.

Division of Polynomials.

7. Divide 1= — 3 4= y= | 3 12= ytn __y= by 9=
322y | Bam gy
Ans. 1= 322 y* 4 2= y*> |- y3=.
8. Divide —1 4 a3a3by —14-a=.
Ans. 14 an 4+ aal
9. Divide 2a*— 13 a® b+ 31 a2 62— 38 a b3 - 24 b*
by2a?—3ab 4 452 Ans. a®—5ab4 653
10. Divide a2 — b2 by a — b. Ans. a 4 b.
11. Divide a® — 6 by a— b. Ans.a®+ ab 4 b2
12. Divide a* — b% by a —b.
Ans. a3+ a?b 4 ab2 |- B3,
13. Divide a®>— 4% by a—b.
Ans. a* 4 a3 b 4 a5 a b3 4 bt
44. Corollary. The quotient can be obtained with
equal facility by using the terms which contain the
lowest powers of a letter instead of those which con-
tain the highest powers.

In this case, it is more convenient to place the term
containing the lowest power first, and that containing
the next lowest next, and so on. .

This order of terms is called an arrangement ac-
cording to the ascending powers of the letter ; whereas
that of the preceding article is called an arrangement
according to the descending powers of the letter.

45. Corollary. Negative powers are considered to
be lower than positive powers, or than the power
zero, and the larger the absolute value of the expo-
nent the lower the power.

Thus a5z 86—tz 34+ a3 fa12+4a"222

is arranged according to the ascending powers of z, and
according to the descending powers of a.
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46. EXAMPLES.

1. Divide a* 4 0> —a~2—a~4 by a®—a~3,
Ans, a*+14a~9%,
®. Divide 4a*5=6412a%56-54+9 a0~ 4—0-242q~2
—a=45>by2a®b-343ab=2—b6-1 4 a—2b.
Ans.2a2b-3 4+ 3ab—23 4 b-1—a—2p,

47. In the course of algebraic investigations, it is
often convenient to separate a quantity into its fac-
tors. This is done, when one of the factors is
known, by dividing by the known factor and the
quotient is the other factor.

And when a letter occurs as a factor of all the
terms of a quantity, it is a factor of the quantity, and
may be taken out as a factor, with an exponent equal
to the lowest exponent which it has in any term, and
indeed by means of negative exponents any mono-
mial may be taken out as a factor of a quantity.

48. EXAMPLES.

1. Take out 8a?b as a factor of 15a55% - 6a3d -

9a%l? 4 3a?b. Ans.3a2b (5a3b4+2a43541).
2. Take out a™ as a factor of 3a™+ V4 2 a™.
Ans. a™ (3a42).

3. Take out 2a3bd5¢ as a factor of 6 a8b7c34+6ab%¢c
—2ab+42—alc.
Ans. 2a3050(B3a%0%c+3a-203—a~2b—4c"14
a=3p=5.-1—-2-1g=1p=5,
4. Take out b as a factor of a*—15— b=,
Ans. b(a*—1—b*"1),
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Diffcrence of two Powers divisible by Difference of their Roots.

‘49, Theorem. The difference of two integral pos-
- itive powers of the same degree is divisible by the
difference of their roots. '
Thus, a* — b* is divisible by a — b.
Demonstration. Divide a® — b* by a — b, as in art. 42,
proceeding only to the first remainder, as follows,
a* — b a—b
a*—ar—1p|a"—1

1st Remainder = a*~15—b% = b (a*~1—bn-1),

Now, if the factor a*—1—b*—1 of this remainder is di-
visible by @ — b, the remainder itself is divisible by a — b,
and therefore a®—b* is also divisible by @ — b ; that is, if
the proposition is true for any power, as the (» — 1)st, it
also holds for the nth, or the next greater.

But from examples, 10, 11, 12, 13 of art. 43, the propo-
sition holds for the 2d, 3d, 4th, and 5th; and therefore it
must be true for the 6th, 7th, 8th, &c. powers; that is, for
any positive integral power.

50. Corollary. The division of a*—b" by a — b may be
continued for the purpose of showing the form of the quotient,
a—b* a—b
a* —a*~10| a*14a"2b+a 3624 &c..... +abr24Hm1

a—1b—p

a=1p— a*—2}52
ar—2 §H3 - Hp»
ar—20p3 — gr—3pd

&ec. . .
adpr=2 —Ph»
a2 b*—2% — g bp*—?
abr—1l —p»

ab*=1—p
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that is, .

ar— b

.b =a" 14 a*2b+4-a* 3024 &c..... +abr 2407,

Q —
o that each term of the quotient is obtained from the pre-
ceding term by diminishing the exponent of @ by unity and
increasing that of & by unity; and the number of terms is
equal to the exponent n.

51 Corollary. If b is put equal to & in the preceding
quotlent each of its terms becomes equal to a*—!, which }
gives the peculiar result

T
52. There are sometimes two or more terms in
the divisor, or in the dividend, or in both, which
econtain the same highest power of the letter accord-
ing to which the terms are arranged.

In this case, these terms are to be united in one
by taking out their common factor; and the com-
pound terms thus formed are to be used as simple
ones. It is more convenient to arrange the terms
which contain the same power of the letter in a
column under each other, the vertical bar being used
as in art. 17 ; and to arrange the terms in the ver-
tical columns according to the powers of some letter
common to them.

53. EXAMPLES.

" 1. Divide 'a9:;‘—69z3—4ab,z9—2a9z-|-2abz+
a—»¥ by az—bz—a—0b.
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Solution.
a|13—4ab2®*—2a® |24a?] a|z—a
—b2 +2ab| —b%|—b| —b
a®|13—a? |2* a|3fa|z—a
- | —2ab 46| —b| 40
iy

a|22—2a? |24 a®
1st Rem. —2a b +2ab| —088
+ 63
a3 | 29 —a? z
—2ab b
Fool T
—a |z4d
2d Remainder +%’ab —b
—a |z4a®
+2ab ib’
— b
8d Remainder 0.

In this quotient, the coefficient a -~ b of 23, the coefficient
a—b of z and the term — a -}- b are successively obtained
by dividing the coeflicient a® — 62 of 23 in the dividend, the
coefficient a® — 2 a b 4 b2 of 22 in the first remainder, and
the coeficient — a2 4-2ab— b of z in the second re-
mainder, by the coefficient a—b of z in the divisor.

Ans. (a4b)22 4 (a—b)z— (a—D).
2. Divide (6 b — 10) a* — (7 b — 23 b4-20)a®*— (363

 —22594-31b—5) a4 (452 — 9 b3 45b—5) a4 b9

—2b by (83b—6)a+ b2—2b.
Ans. 2a3—(3b—4) a4 (4b—1)a+ 1.
8. Divide — a% — (b3 —2 ¢?) at 4 (b* — c*) a®}- (b6 -
b4 +-b%ct) by a®— 63— A,
Ans, —at— (22— ) B — b4 — b2 8,
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4, Divide y3|a5—3y*| 2t—ys 2343 8
—y —3y +4 10 y¢ —3ys

+37 + 32| —9y!

+3y | —103| 3y

— 2y 612
by y|22—38ylz—° oy
+1] — '

Ans. y? a:3—3y3lrt’.
—yl +3

" v

23

a
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Terms of a fraction may be multiplied or divided by the same quantity.

CHAPTER II.

FRACTIONS AND PROPORTIONS.

SECTION L

Reduction of Fractions.

54. When a quotient is expressed by placing the
dividend over the divisor with a line between them,
it is called a fraction ; its dividend is called the
numerator of the fraction, and its divisor the de-
nominator of the fraction; and the numerator and
denominator of a fraction are called the terms of the
fraction.

When a quotient is expressed by the sign (:) it is
called a ratio; its dividend is called the antecedent of
the ratio, and its divisor the consequent of the ratio ;
and the antecedent and consequent of a ratio are
called the zerms of the ratio.

565. Theorem. The value of a fraction, or of a
ratio, is not changed by multiplying or dividing
both its terms by the same quantity.

Progf. For dividing both these terms by a quantity is
the same as striking out a factor common to the two terms

of a quotient, which, as is evident from art. 35, does not’

affect the value of the quotient. Also multiplying both
terms by a quantity is only the reverse of the preceding
process, and cannot therefore change the value of the frac-
tion or ratio.

56. 'T'he terms of a fraction can often be simplified
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by dividing them by a common factor or divisor.
But when they have no common divisor, the fraction
is said to be in its lowest terms.

A fraction is, consequently, reduced to its lowest
terms, by dividing its terms by their greatest com~
mon factor or divisor.

87. Problem. To find the greatest common di-
visor of several monomials.

Solution. It is equal to the product of the greatest

- common divisor of the coefficients, by those different

literal factors .which are common to all the mono-

mials, each literal factor being raised to the lowest
power which it has in either of the monomials.

58. EXAMPLES.

1, Find the greatest common divisor of 75 a3 18 ¢ d! 29
and 50 a3 2 d1! 25, Ans. 25 a3 ¢ d11 25,
121 a b2 c3d4 25 y6

RaE AT Ry to its lowest

2. Reduce th ractiqn

11d23y5
terms. i
Ans, 12ad 3¢
. 17a36 .
3. Reduce the fraction to its Jowest terms.
51 a b® a?
Ans. W.

uantities is the same with the greatest common di-
visor of the least of them, and of their remainder
after division. :

s Demonstration. Let the greatest of the two quantities be
A, and the least B let the entire part of their quotient after
division be @, and the remainder R ; and let the greatest

g %"' 59. Lemma. The greatest common divisor of two
q



W ALGEBRA. leB. . § u.

Greatest Common Divisor.

common divisor of A and B be D, and that of B and R be
E. We are to prove that
D=E.
Now since R is the remainder of the division of 4 by B,

we have
K) R=A—B'Q;

and, consequently, D, which is a divisor of A and B, must
divide R; that is, D is a common divisor of B and R, and
cannot therefore be greater than their greatest common
divisor E.

Again, we have

A=R+4B.Q,

and, consequently, E, which is a divisor of B and R, must
divide A ; that is, E is a common divisor of A and B, and
cannot therefore be greater than their greatest common
divisor D.

D and E, then, are two quantities such that neither is
greater than the other; and must therefore be equal.

60. Problem. To find the greatest common divi-
sor of any two quantities.

Solution. Divide the greater quantity by the less,
and the remainder, which is less than either of the
given quantities, 1s, by the preceding article, divisible
by the greatest common divisor.

In the same way, from this remainder and the
divisor a still smaller remainder can be found, which
18 divisible by the greatest common divisor ; and, by
continuing this process with each remainder and its
corresponding divisor, quantities smaller and small-
er are found, which are all divisible by the greatest
common divisor, until at length the common divisor
stself must be altained.
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The greatest common divisor, when obtained, is at
once recognised from the fact, that the preceding di-
wvisor s ezactly divisible by it without any remainder.

The quantity thus obtained, must be the greatest common
divisor required ; for, from the preceding article, the great-
est common divisor of each remainder and its divisor is the
same with that of the divisor and its dividend, that is, of the
preceding remainder and its divisor ; hence, it is the same
with that of any divisor and its dividend, or with that of the
given quantities.

61. Corollary. When the rematnders decrease to
unity, the given quantities have no common divisor,
and are said to be incommensurable or prime to each
other.

62. EXAMPLES.

1. Find the greatest common divisor of 1825 and 1995

Solution, 1995 | 1825
1825 |1
1825 [ 170, 1st Rem.
1700 |10
1701125, 2d Rem.
1251
12545, 3d Rem.
902
45135, 4th Rem.
35|1
85710, 5th Rem.
303
10{5, 6th Rem.
10/2 Ans. 5
fabal gn
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Greatest Common Divisor,

This process may be written more neatly and concisely
as follows,

1905|1825 |1
1825} 1700 [ 10
“170| 135(1
125 902
45| 351
35| 30(3
10| 5(2
10
2. Find the greatest common divisor of 13212 and 1851.
Ans. 3.
3. Find the greatest common divisor of 1221 and 333.
Ans. 111,

63. The above rule requires some modification in
its application to polynomials.

Thus it frequently happens in the successive divisians,
that the term of the dividend, from which the term of the
quotient is to be obtained, is not divisible by the corre-
sponding term of the divisor. This, sometimes, arises from
a monomial factor of the divisor which is prime to the
dividend, and which may be suppressed.

For, since the greatest common divisor of two quantities
is only the product of their common factors, it is not affected
by any factor of the one quantity which is prime to the
other.

Hence any monomial factor of either dividend or
sts divisor is to be suppressed which is prime ‘o the
other of these two quantities, and when there is such
a factor it is readily obilained by inspection.
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But if, after this reduction, the first term of the dividend,
when arranged according to the powers of some letter, is
still not divisible by the first term of the divisor similarly

arranged ; it follows from the precedmg reasoning that it
can lead to no error to

Multiply the dividend by some monomial factor
which will render its first term divisible by the first
term of the divisor, and which s prime to the re-
duced divisor. Such a factor can always be obtained
by stmple inspection.

When the given quantities have any common mo-
nomial factor it is easily obtatned from inspection, /
and it should be suppressed at first, and afterwards
multiplied by the greatest common divisor of the re-
maining polynomials.

Since any quantity which is divisible by A4 is also divis-
ible by — A4 ; and any quantity which is divisible by — A
is also divisible by A4 ;

All the signs of any divisor may be reversed at
pleasure.

64. EXAMPLES.

1. Find the greatest common divisor of 6 a? 23-}- 21 a322
—27a%and 424 - 5a%22 - 21 a3 7.

Solution. These quantities have no common monomial
factor ; but the monomial factor 3 a? common to all the
terms of the first of them, and the factor £ common to all
the terms of the second, being suppressed in columns 1 and



32

ALGEBRA.

len. 1. § 1

Greatest Comion Divisor.

2, give the first lines of the following form of the process,
which is similar to that in art. 62,

Col. 1. Col. 2. Col. 8.
22347a22—9a® 413 4-5a%z4-21 @ |2
1423449 a 22 — 63 a3 4234 14a22—18a® |—2
1423 —5a22—39a22 | —14a22+5a22+39ad
6laz*}-39a22—63a3| —1422-5a24394% | —9
18224 13az—21a |—1422—Rlaz . —7z
12622 4-91 a z— 147 a2 26az-39a?

126 22 —45az — 351 a® 2z43all
136 ¢ 2 4 204 a® Rz43
Ans. 2z 4 3a. cee

Column 3, in this form, is the line of quotiepts. The 1st
line of col.&is first divided by that of col. £, and the re-
mainder is the 3d line of col. 2; this remainder, simplified
by the suppression of the factor a, is the 4th line of col. 2,
and is used to divide the 1st line of col. 1. The 2d line of
col. 1 is the 1st line multiplied by 7 in order to render its
first term divisible by the first term of the new divisor ; the
remainder of the division is the 4th line of col. 1, which is
simplified in the 5th line by the suppression of the factor 3a.
The 6th line of col. 1 is the 5th line, multiplied by 7 in
order to render its first term divisible by the first term of the
divisor already used ; for it is to be observed, that a divisor
should continue to be used until a remainder is obtained in
which the first term ceases to be divisible by the first term of
the divisor, that is, until the exponent of its leading letter is
smaller than that in the first term of the divisor. The re-
mainder arising from the division of the 5th line of col. 1 by
the 4th line of col. 2 is the 8th line of col. 1, which, re-
duced by the suppression of the factor 684 is the last line
of col. 1. The remainder of the division of the 4th line of ,
col. 2 and the last line of col. 1 is the 6th line of col. 2;
which reduced by the suppression of the factor 13 z, is the
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7th line of col.l2, being the same with the last line of col. 1
The remainder of the last division is therefore zero, and the
last divisor 2 z -} 3 a is the greatest common divisor,
. 2. Find the greatest common divisor of 21 a3 b 27 —
21a* 526 —168a’ba3 and 14a?b3c2* — 14 a3 b3¢c23 -}
28atb3c12—42a5 b3cz— 140 ab B3¢,

Solution. Since 7 a®b is a monomial factor of the two
given quantities, suppress it, and they become

3az?! —3a%26 —24a523,

2b2ca4—2ab2c234-4 a2 b2 c12—6a3d? ca—20at b2e.

The greatest common divisor of these two quantities,
found as in the preceding example, is z — 2 a, which, mul-
tiplied by the common monomial factor 7 a2 b, gives 7 a% b
(z —2 a) for the required greatest common divisor.

3. Find the greatest common divisor of 23 — @ and

22 — a3, i . Ans. 2 — a.
4. Find the greatest common divisor of 53— 104264
1563 and 3a3+ 6a2b-6a b2} 353 Ans. a}-b.
5. Find the greatest common divisor of z4-}- 234224z
—4 and 24422348322} 42—10. Ans. z—1.
6. Find the greatest common divisor of 7 a2° {21 a 244~
"14azand 32643253241 —322 Ans. 22 -z,

7. Find the greatest common divisor of 81 atz1—24 a7z
and 3az’—-2a2264+3 a3 P2at2t. Ans.3a12—2az.
8. Find the greatest common divisor of 234z — 10 and
74 — 16. Ans.z—2. . ~

65. When there are several terms in the given
polynomials, which contain the same power of the
letter according to which the terms are arranged,
these terms are to be united in one, as in art. 563, and
" the compound terms thus formed are to be treated as
monomials.
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66.

EXAMPLES.

L l?ind the greatest common divisor of

— 22 | yi— 8t | O

-—Oz 223

1828
—18 x
—3 23
—_T7 2
+ 62

and

A

v — 423

TEs]”

4423y
12 29

+27 28

—1228

Solution. The factor (%4 3z)y is a common factor
of all the terms, and is therefore to be suppressed, in order
to be multiplied by the greatest common divisor of the re-

maining polynomials.

The polynomials thus become

g|yt—22% | y3 —32% | y?4-229
-3 y‘+gz +9z inz
and yP—38z|y3—412 47z,
s y+

The suppression of the factor (z—3) y in the first of
these polynomials reduces it to

3’;33

y’—3zy +22,

by which the second is to be divided, and the rest of the

process is as follows:
Col. 1.
y’—gz y—4zry-t-4s

y’:%s'y’—i!sy-l—%:

—"y’—sy 2x

— __2’
y+42
y+93

Col. 2.
y’—3 zy-4-2s=

—2y
—2:,y’—3z|_y+2:

—2:' y’—...z y+4s
Iy—?:
y+2

y—2z
2
¥

-y
+2=
-1

et
1

Ans (v +9) (24 32) y = (435} (y* + 2).
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The third line of col. 1 is the remainder of the division
of the 1st line of col. 1 by the 1st line of col. 2; and this
remainder, reduced by the suppression of the factor z is the
4th line of col. 1. The 5th line of col. 2 is the remainder
of the division of the 1st line of col. 2 by the 4th line of
“col. 1, and this remainder, reduced by the suppression of the
factors — z - 1 is the last line of col. 2. The 4th line of
eol. 1 is exactly divisible by the last line of col. 2, and there-
fore the greatest common divisor is the product of (2248 z)
ybyy+2. Ans. (224 32) (2 4+ 2y).

2. Find the greatest common divisor of the polynomials
a4+ 2+2%2ab+42ac+2bc and o — 52— B2—

Rbe. Ans.a+b 4 c.
8. Find the greatest common divisor of the polynomials
at—25%|a? 4 b4 and a3 +3ba?4-3b%| a4 B3
—2c —21838 — | —b2
T r

Ans. ®+2ab+ 03— 3,
4. Find the gteatest eommon divisor of the polynomials

:Iys IJA a+:a ys_:: y
and . 3z-9— .
ly— ly3+2.r‘3 y:_-:-’ly

—2
Ans. y(y—1) (z—1).

67. Problem. To reduce fractions to a common
denominator.

Solution. Multiply both terms of each fraction
by the product of all the other denominators.
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Common Denominator.

For the value of each fraction is, from art. 55, not
changed by this process; and as each of the denominators
thus obtained is the product of all the denominators, the
fractions are all reduced to the same denominator,

68. But fractions can be reduced to a common denomi-
nator which is smaller than their continued product, when-
ever their denominatozs have a common multiple less than
this product. For, by art. 55,

» [Fractions may be redvced to a common denomi-
nator, which is a common multiple of their denomi-
nators, by multiplying both their terms by the quo-
tients, respectively obtained from the division of the
common denominator by their denominators.

69. Corollary. An entire quantity may, by the
preceding article, be reduced to an equivalent frac-
tional expression having any required denominator,
by regarding it as a fraction, the denominator of
which is unity.

70. EXAMPLES.

1. Reduce g, {2;’ %, to the common denominator 24. ®
A 9 16 20
"

2. Reduce —. @b 3e to the common denomi-

a2 9’8“’4 d
nator 4 c2d,
4a%b 6ed 3ac?d Bac

Ans. i3 184’ 1dd 1ad
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Common Denominator.

a+4+bd 1 c+d
3. Reduce gy o 1, iy Yy to the common
denominator a% — b3, .

a*42ab4® a*—b a—b c4d
T a—0 - @@ ¥ — b

71. Problem. To find the least common multiple
of given quantilies.

Ans

Solution. When the given quantities are decom~
posed into their simplest factors, as is the case with
monomials, their least common multiple is readily
obtained ; for it is obviously equal to the product of
all the unlike factors, each factor being raised to a
power equal to the highest power which it has in
either of the given quantities.

But the common factors can always be obtained
Jrom the process of finding the greatest common
divisor.

72. EXAMPLES.

1. Find the least common multiple of 2 a3 b2 ¢ z, 3 a5
6323, 6acx=2.83acz, 9c"x1°=3c"x19, 24 a® =
R, 3 a8, Ans. 23.32 . a802c7 210 = TR a8 b2 ¢7 210,
2. Find the least common multiple of 16 a z, 40 b5 z,
- 2547 b2 Ans. 400 a7 b5 22,
8. Find the least common multiple of 2", z*—1, z~-9,
>3 Ans. 2.
4. Find the least common multiple of 6 (a 4 b) 2=,
54(a—b), (a-Hb)", 81 (a—b)?am+2, 8 (a-b) 2,
Ans. 648 (a - b)" (a — b)3 g™ +3,
4
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Sum and Difference of Fractions.

5. Find the least common multiple of a? 42 a b 02,
at4ab4-402 a®— 02 a®+3ab+2 3 a®4-a?b
—abd—=08 Ans. (a4-5)% (a—0b) (a-20)%

-

1
\

v
SECTION 1.

Addition and Subtraction of Fractions.

73. Problem. To find the sum or difference qf
given fractions.

Solution. When the given fractions have the
same denominator, their sum or difference is a frac-
tion which has for its denominator the given com-~
mon denominator, and for its numerator the sum o1
the difference of the given numerators.

When the given fractions have different denomi-
nators, they are to be reduced to a common denoms-
nator by arts. 67 and 68.

74. ExAﬁrLEs.

1. Find the sum of %, —, and — &. -

b’'d’ .
adf 4 bcf—0bde
A 5df .
bec—ad
Ans. —<a

Ans

2. Subtract ;’i from ‘-;—
a-;b and a;b

4. Subtract a_—;-__b from g—;—b.

8. Find the sum of Ans. a.

Ans. b.
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Sum and Difference of Fractions.

. . a
5. Reduce to one fraction the expression b +ec.

a+be
b
5df beg
8b2c 662
16abc+l5cdf-—4beg

Ans.

6. Reduce to one fractnon Y +

Ans. 24 2
. a
7. Reduce to one fraction ;T + z—s.zg . l
ax*—bz+1 .
Ans. ———T——c
d fract; a z
8. Reduce to one fraction P +z+ py—t
a’+z’
iy
9. Reduce to one fraction
“ 3 3 1 1—=2
\5 4(1—zj9+8(1-—z)+8(1 +z)_ 41 + 2°)
Ans 14+z4 22
, ) 1—-z—z4+a:5
v 10. Reduce to one fraction
3h Py 5
(/..—23)2'*'(/. + z)(h—zz)— Atz
20 hz—22 23

(/ b4 z) (b — 22)%
11. Reduce to one fraction
a3

(@+063 (a4 b)? gabr
@t abd-b3
Ans _(ﬁb?—.
> 75. Corollary. It follows, from examples 3 and 4,
that the sum of half the sum and half the difference




40 ALGEBRA, [cn. 1. § m

Product and Quotient of Fractions.

of two quantities is equal to the greater of the two
quantities ; and that the difference of half their sum
and half their difference is equal to the smaller of
them. S b

SECTION II.

Multiplication and Division of Fractions.

76. Problem. To find the continued product of
several fractions.

Solution. The continued product of given frac-
tions is a fraction the numerator of which is the
continued product of the given numerators, and the
denominator of which is the continued product of the
given denominators.

77. Problem. To divide by a fraction.
Solution. Multiply by the divisor tnverted.

The preceding rules for the addition, subtraction, multi
plication, and division of fractions require no other demon-
strations than those usually given in arithmetic.

78. When the quantities multiplied or divided
contain fractional terms, it is generally advisable to
reduce them to a single fraction by means of art. 73

79. EXAMPLES.

. a ¢ e ace
1. Multiply together 5 d and ¥ Ans. baf

., 6a3d5 3a2dd 9 as
2. Mllltlp]y 7—ds—e9' y 2()_5'.. Ans, W.
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Product and Quotient of Fractions. Reciprocal.

., a b
3. Multiply 5 by - Ans. 1.
. az az
4. Multiply a+a—z by z — atz
4 a® 23
ns. -
... G [ ad
5. Divide Y by 7 Ans, be
- a b
6. Divide 1 by P Ans. s
g 10a32%5 . 3aby? 20 212
7. Dmde E-W Y -8—7?. AM. Wo
;4 az
.. 2 % _az
8. Divide 22 4 pom by Ptk
a?
Ans. afw

80. The reciprocal of a quantity is the quotient
obtained from the division of unity by the quantity.

Thus, the reciprocal of a is?l'- or a—1, that of a* is al"'
or a—*, that of a—* is a*, and that of g— isl = ‘bior %.

Hence the product of a quantity by its reciprocal is unity;
the reciprocal of a fraction is the fraction inverted ; and the

reciprocal of the power of a quantity is the same power with
its sign reversed.

81. Corollary. 'To divide by a quantity is the
same as to multiply by its reeiproeal ; and, con-
versely, to multiply by a quantity is the same as to
divide by its reciprocal.

‘.



12 ALGEBRA, [ca. m. § ne

Powers changed irom one Term to the other of a Fraction.

Now a fraction is multiplied either by multiplying its
numerator or by dividing its denominator ; and it is divided
either by disiding its numerator or by multiplying its de-
nominator. Hence,

It has the same-.effect to multiply one of the terms
of a fraction by a quantity, which it has to multiply
the other term by the reciprocal of the quantity.

82. Corollary.” If either term of a fraction is mul-
tiplied by the power of a quantity, this factor may
be suppressed, and introduced as a factor into the
other term with the sign of the power reversed.

By this means, a fraction can be freed from nega-
tive. exponents.

83. EXAMPLES.

a-31?

1. Free the fraction rEIvy from negative exponents.

2
Ans. 9——d

ade

aSh—3c—2 .
from negative exponents

2. Free the fraction
a=2c2d

a’
Ans. _b3 C‘ -‘7.
a=3c¢-5d-1le

3. Free the fraction mfi‘_s__f_'ﬂ

from negative ex-

nent: y: | bdle
ponen ’_. ns. a‘-_c3ﬁ'
-2
4. Free the fraction :3—_}’:% from negative expo-
nents. ' ‘ ¥; | 24327

Ans ST
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Product of Means equals that of Extremes.

-2 4 y—2
XZ 5. Free the fraction u from negative ex-

T+s
, 2yap g oo
poneFts. A W

84. The' preceding rules for fractions may all be
applied to ratios by substituting the term antecedent
Jor numerator, and consequent for denominator.

SECTION IV.

Proportions.

85. A proportion is the equation formed of two °
equal ratios.

Thus, if the two ratios 4 : B and C: D are equal the

equation
A:B=C:D
is a proportion ; and it may also be written
4_¢
B — D

The first and last terms of a proportion are called
its ezxtremes ; and the second and third its means.

Thus, A and D are the extremes of this proportion, and
B and C its means.

86. If the ratios of the preceding proportion are reduced
to a common consequent, in the same way in which frac.
tions are, by art. 67, reduced to a common denommator, we
have '

% 4 x%:BxD:Bx C:Bx D;
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Product of Means equals that of Extremes.

thatis, A x D and B x C have the same ratio to B x D,
and are consequently equal, that is,

AXD=BXxUC,
or the product of the means of a proportion is equal
to the product of its extremes.
This proposition is called the test of proportions,
that is, if four quantities are such that the product
of the first and last of them is equal to the product

of the second and third, these four quantities form a
proportion.

Demonstration. Let A, B, C, D be four quantities such
that

AxD=BxC.
We have, by dividinéyB x D,
A xD:Bx"D=BxC':BxD,
or, by reducing these ratios to lower terms, as in art. 40,
A:B=C:D;
that is, A, B, C, D form a proportion.

87. Corollary. If A, B, C, D form a proportion, we
obtain from the preceding test

A:C=B:D
B:A=D:C
B:D=A:C
D:C=B:A, &o.;

that is, the terms of a proportion may be transposed
A any way wAick s consisient with the application
of the test.
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To find the Fourth Term of a Proportion.

——

88. Problem. Given three terms of a proportion,
to find the fourth.

Solution. The following solution is immediately obtained
from the test.

When the required term is an extreme, divide the
product of the means by the given extreme, and the
quotient is the requfired extreme.

When the required term is a mean, divide the
product of the extremes by the given mean, and the
quotient is the required mean.

89. EXAMPLES.

1. Given the three first terms of a proportion respectively
A, B, C; find the fourth, Ans. =
2. Given the three first terms of a proportion respectively
Rab? 3a2d, 653; find the fourth, Ans. 9a b2
3. Given the three first terms of a proportion respectively
a™, a*, a? ; find the fourth, Ans. " +p—™,
4. Given the first term of a proportion a3 %, the second
3 a8 b3, the fourth 7a b ; find the third. Ans. a4
5. Given the first term of a proportion 6 a™—2 b, the third
15 a8 b5, the fourth 40 a— ™ =1 ; find the second.
Ans. 16 a=—4b—4,
6. Given the three last terms of a proportion respectively
a®—b2, 2 (“Tlf'b)’ a?4-2ab-4-5b2; find the first.
Ans. 2 (a—b).
90. When both the means of a proportion are the
same quantity, this common mean is called the mean
proportional between the extremes.
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Mean Proportional. Coatinued Proportion.

Thus, when
A:B=B:C,

B is a mean proportional between A and C.

91, If the test is applied to the preceding proportion it
gives
B2=AxC;
whence
B=yAXC;
that is, the mean proportional between two quantz'tz'eg-f}'
is the square root of their product. A
{ \‘ ' \
92. A succession of several equal ratios is called a
continued proportion.

Th ] ’ 4\{.'
. A:B=C:D=E:F, &c. ,\{}'z,\
N\
W

is a continued proportion.

93. Theorem. The sum of any number of ante-
cedents in a continued proportion is to the sum of the
corresponding consequents, as one antecedent ts to its
consequent.

Demonstration. Denote the value of each of the ratios in
the continued proportion of the preceding article by M, and
we have

M=A:B=C:D=E:F, &c.;
whence
A=Bx M
C=D X M
E=Fx M, &c.:

‘and the sum of these equatior.s is
A4+CH+E+ &c.=(B+D+ F+&e)x M;
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Ratio of Sum of Antecedents to Sum of Consequents.

whence
A4+ CHE+4&c. A C E

94. Corollary. FEither antecedent may be repeat-
ed any number of times in the above sum, provided
its consequent is also repeated the same number of
times.

95. Corollary. Either antecedent may be sub-
tracted instead of being added, provided its conse-
quent is also subtracted.

96 Corollary. The application of these results to the
proportion

A:B=C:D,
gives _ B
A+C:B4+D=A:B=2C: D
A—C.:B—D=A4:B=C:D
mA4+nC:mB4+nD=A:B=C:D
mA—aC:mB—nD=A:B=C:D;

whence
A4+C:B4+D=A—C:B—D
mA4+nC:mB+nD=mA—nC:mB—nD;

or, transposing the means as in art. 87,
A+C:A—C=B+D:B—D
mA4+nC:mA—nC=mB+4nD:mB—nD;

that is, the sum of the antecedents of a proportion is

to the sum of the consequents, as the difference of the

antecedents is to the difference of the consequents, o~

as either antecedent is to its consequent.
Likewise,the sum of the antecedents is to their

difference, as the sum of the consequents is to their
difference.

\
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Ratio of Sum of two first Terms to that of two last.

Moreover, in finding these sums and differences,
each antecedent may be multiplied by any number,
provided tls consequent is multiplied by the same
number.

97. Corollary. These rules may also be applied to the
proportion
A:C=B:D

A:B=C:D
by transposing its means, and give
A4+B:C4+D=A—B:C—D
=mA+4nB:mCt+nD=mA—nB:mC—nD
=A:C=B:D;
and

obtained from

A4+B:A—B=C+D:C—D
mA+nB:mA—nB=mnC+nD:mC—nD;
that is, the sum of the first two terms of a proportion
ts to the sum of the last two, as the difference of the
Jirst two terms is to the difference of the last two, or
as the first term is to the third, or as the second is to

the fourth.

Likewise, the sum of the first two terms is to their
difference, as the sum of the last two is to their dif-
Jerence.

Moreover, tn finding these sums and differences,
both the antecedents may be multiplied by the same
number, and both the consequents may be multiplied
by any number. '

d

98. T'wo proportions, as

A:B=C:D
and
E:F=G:H,




cn. 11 § 1v.] PROPORTIONS, 49

Ratio of Reciprocals.

may evidently be multiplied together, term by term,
and the result

AXE:BXF=CXG:DxH
is a new proportion.

99. Likewise, all the terms of a proportion may
be raised to the same power.
Thus, A:B=C:D
gives
A3:B3=C?:D?
vA:y/B=yC:yD
A®:B*=C™: D™
JA:UB=C: gD
A= : B~ =C—™:D~™,
100. Theorem. The reciprocals of two quantities
are in the inverse ratio of the quantities themselves.

1 1

Thus A:B__—f:;f'

Demonstration. For A, B, %, and;ll- are four quantities
such that the product of the first A and the last ::— is the
- sane with that of the second B and the third L; each pro-

B
duct being equal to unity,
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Letters used for unknown Quantities.

CHAPTER IIL

EQUATIONS OF THE FIRST DEGREE.

SECTION 1.

Putting Problems into E&uaﬁons.

101. The first step in the algebraic solution of a
problem is the expressing of its conditions in alge-
braic language; this is called putting the problem
tnto equations. '

102. No rule can be given for putting questions
into equations, which is universally applicable. The
following rule, can, however, be used in most cases,
and problems, in which it will not succeed, must be
considered as exercises for the ingenuity.

Represent the required quantities by letters of the
alphabet. Perform or indicate upon these letters the
same opexations which it is necessary to perform
upon their values, when obtained, in order to verify
them.

It is usual to represent the unknown quantities by
the last letters of the alphabet, as v, v, z, y, 2.

103. ExaMPi.ES

The following problems are to be put into equations.

1 A person had a certain sum of money before him
From this he first took away the third part, and put in its
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Examples of putting Questions into Equations.

stead 8 50 ; a short tine after, from the sum thus increased
he took away the fourth part, and put again in its stead
$70. He then counted his money, and found $ 120.
What was the original sum 7
Method of putting into equations. Let
z — the original sum expressed in dollars.

After taking away the third part and putting in its stead

8 50, there remains two thirds of the original sum increased
by 8 50, or ’

2 = 4 50. ,

If from this sum is taken a fourth part, there remains
three fourths ; to which is to be added 70, giving

£ (32+50) +70 = 32 4-1073;
which is found to be equal to $ 120. We have, therefore,
for the required equation,

37+ 1073 = 120.

2. A merchant adds yearly to his capital one third of it,

but takes from it at the end of each year $ 1000 for his -

e .nenses. At the end of the third year, after deducting the
last 8 1000, he finds himself in possession of twice the sum
he had at first. How much did he possess originally ?

Ans, If z = the original capital in dollars, the required
equation is

$4z— 41113 =2z,

3. A courier, who goes 311 miles every 5 hours, is sent
from a certain place; when he was gone 8 hours, another
was sent after him at the rate of 223 miles every 3 hours.
How soon will the second overtake the first?

Solutian. 1f z = the required number of hours, the num-
ber of hours which the first courier is on the road is z 4 8;
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Examples of putting Questions into Equations.

and the distance which he goes is obtained from the pro-
portion
6 : z-}-8=2313 : distance gone by st courier,
whence, by art. 88,
distance gone by 1st courier = $§ (z 4 8).

The distance gone by the second courier is obtained from
the proportion
3 : z = 22} : distance gone by 2d courier ;

whence
distance gone by 2d courier = 1§ z,

But as both couriers go the same distance, the required
equation is
Bt 8=z
4. A courier went from this place, n days ago, at the
rate of a miles a day. Another has just started, in pursuit

of him, at the rate of b miles a day. In how many days
will the second courier overtake the first ?

Ans. If z = the required number of days, the required

equation is
bz=a(z-}n)

5. A regiment marches from the place A, on the road to
B, at the rate of 7 leagues every 2 days; 8 days after,
another regiment marches from 1B, on the road to A, at the
rate of 31 leagues every 6 days. If the distance between
A and B is 80 leagues, in how many days after the depar-
ture of the first regiment will the two regiments meet ?

Ans. If z = the required number of days, the required
equation is

32+ (2—8)=80.
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Examples of putting Questions into kquations.

6. A hostile corps has set out two days ago from a certain
place, and goes 27 miles daily. Another corps wishes ta
march in pursuit of it from the same place, and so quickly
that it may reach the other in 6 days. How many miles
must it march daily to accomplish it ?

Ans. If z = the required number of miles, the required
equation is

6 z = 216.

7. From two different sized orifices of a reservoir, the
water runs with unequal velocities. We know that the ori-
fices are in size as 5 : 13, and the velocities of the fluid are
as 8:7; we know farther, that in a certain time there
issued from the one 561 cubic feet more than there did
from the other. How much water, then, did each orifice
discharge in this space of time ?

Solution. Let z = the quantity discharged by the first
orifice.

As the size of the second orifice is 3ths of that of the
first, the water discharged from the second orifice, if it
flowed at the same rate, would be

19 7,
But as the water flows from the second orifice with a
velocity Zths of that which it should have to discharge 42 z
in the given time, its actual discharge must be

(¥ 2)=§z;
whence the required equation is
23 x — z = 561.

8. A dog pursues a hare. When the dog started, the hare
had made 50 paces before him. The hare takes 6 paces
to the dog’s five; and 9 of the hare’s paces are equal to 7
of the dog’s. How many paces can the hare take before

the dog catches her?
6.
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Examples of putting Questions into Equations.

Ans. If z = the required number of paces, the required

equation is
4z — z=>50.

9 A work is to be printed, so that each page may con-
tair a certain number of lines, and each line a certain num-
be of letters. If we wished each page to contain 3 lines
more, and each line 4 letters more, then there would be
224 letters more on each page; but if we wished to have
2 lines less in a page, and 3 letters less in each line, then
each page would contain 145 letters less. How many lines
are there in each page? and how many letters in each line?

Solution. Let
x = the number of lines in a page,
== the number of letters in a line,
and we shall have
z y = the number of letters in a page. *
But if there were 3 lines more in a page, and 4 letters
more in a line, the number of letters in a page would be
(z+3) (y+4)—zy+4s4+3y+12,
which exceeds the required number of letters in a page by
4z+43y+12;
whence we have for one of the required equations
42z4+3y412=1224;
and, in the same way, the condition, that 2 lines less in »
page and 3 letters less in a line make 145 letters less in
a page, gives the equation

v
zy—(@—N—3)=15; o7 I
or . ‘

3242y —6=145,
10. Three soldiers, in a battle, make $ 96 booty, which

they wish to share equally. In order to do this, 4, who
made most, gives B and C as much as they already had; in
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Examples of putting Questions into Equations.

the same manner, B next divided with 4 and C, and after
this, C with 4 and B. If, then, by these means, the in-
tended equal division is effected, how much booty d% each @&
soldier make ? N ’T o ' 7
Ans. If £ = A’s booty, " - .
y = B’s booty, J'i‘%}— ';‘/ i 2" - Pﬁ' * '
z = C’s booty, 0'4’3
the required equations are
2ty +z=96
4r—4y—42=0y—2z—22
4rz—4y—4z2=T72—z—y.

“11. A certain pumber consists of three digits, of which
the digit occupying the place of tens is half the sum of the
other two. If . this number be divided by the sum of its
digits, the quotient is 48 ; but if 198 be subtracted from it,
then we obtain for the remainder a number consisting of
the same digits, but in an inverted order. What number
is this? '

Ans. If z = the digit which is in the place of units,
y = that in the place of tens,
% = that in the place of hundreds. —

The number is =100z 4 10 y -} =,
and the required equations are

y=2%(z+2)
100z+10y+z_48 \
e+y+z i
1002410y 4 2 —198=1002 4 10 y - =. \ ‘
12. A person goes to a tavern with a certain sum of
money in his pocket, where he spends 2 shillings ; he then
borrows as much money as he had left, and going to another
tavern, he there spends 2 shillings also; then borrowing
again as much money as was left, he went to a third tavern,



656 ALGEBRA. [co. . § .

Examples of putting Questions into Equations.

where likewise he spent 2 shillings, and borrowed as much
as he had left; and again spending 2 shillings at a fourth
tavern, he then had nothing remaining. What had he at
first?

Ans. If z == the shillings he had at first,

the required equation is
8z —30=0.

13. A person possessed a certain capital, which he placed
out 2' a certain interest. Another person, who possessed
$ 10 000 more than the first, and who put out his capital
1 per cent. more advantageously than the first did, had an
income greater by $ 800. A third person, who possessed
8 15 000 more than the first, and who put out his capital 2
per cent. more advantageously than the first, had an income
greater by 8 1500. Required the capitals of the three per-
sons, and the three rates of interest.

Ans. If z — the capital of the first,
y = his rate of interest per cent.

the required equations are

100003,-]}-0;4_:0000___800’
150003/-[-;30::-’-30000=1500‘

14. A person has three kinds of goods, which together
cost $230,5,. The pound of each article costs as many
twenty-fourths of a dollar as there are pounds of that ar-
ticle ; but he has one third more of the second kind than he
has of the first, and 3} times as much of the third as he has
of the second. How many pounds has he of each article?

Ans. If £ = the number of pounds of the ﬁrst

the required equation is

2o 2 o 89 41 29 =200
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Examples of putting Questions into Equations.

15. A person buys some pieces of cloth, at equal prices,
for $60. Had he got 3 pieces more for the same sum,
each piece would have cost him $ 1 less. How many pieces
did he buy?

Ans. If = the number of pieces bought
the required equation is
60
==zt l

16. Two drapers A and B cut, each of them, a certain
number of yards from a piece of cloth; A however 3 yards
less than B, and jointly receive for them $35. ¢ At my
own price,” said A to B, “I should have received $ 24 for
your cloth.” ¢ must admit,” answered the other, * that, at
my low price, I should have received for your cloth no more
than § 121.” How many yards did each sell?

Solution. Let x = the number of yards sold by 4 ;
then z 4 3 = the number sold by B.
Now since A would have sold = - 3 yards for $24,

A’s price per yard = +3 ;
and since B would have sold z yards for § 123,
. 12325
B’s price per yard = s —az

Hence
. 4z
the sum for wblch A sells z yards — P4
the sum for which B sells 2 - 3 yards = % (:r + 3),
and the required equation is
Uz + 25 (1‘ -|- 3)__
z-+3
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Examples of putting Questions into Equations.

17. Two travellers, A and B, set out at the same time
from two different places, C and D; A, from Cto D; and
DB, from D to C. When they met, it appeared that A had
already gone 30 miles more than B; aund, according to the
rate at which they are travelling, 4 calculates that he capn
reach the place D in 4 days, and that B can arrive at the
place Cin 9 days. What is the distance between C and D1
" Ans. If, when they meet,

z = the distance gone by A4,
then, 2 — 30 — the distance gone by B ;
the whole distance = 2z —30;
and the required equation is
4z _ 9(z—30)
z—30 z

18. Some merchants jointly form a certain capital, in
such a way that each contributes 10 times as many dollars
as they are in number; they trade with this capital, and
gain as many dollars per cent. as exceed their number
by 8. Their profit amounts to $285. How many were
there of them? .

Ans, If z = the number of merchants, the required
equation is
e 1o 2* (z 1 8) = 288.

19. Part of the property of a merchant is invested at such
a rate of compound interest, that it doubles in a nuriber
of years equal to twice the rate per cent. What is the rate

f interest?!

Ans. If z = the rate per cent., the required equation is
1004-2\ %z

N T 2.
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Degree of an Equation.

SECTION II.

Reduction and Classification of Equations.

104. The portions of an equation, which are sepa~
rated by the sign =, are called its members ; the one
at the left of the sign being called its first member,
and the other its second member.

105. Equations are divided into classes according
to the form in which the unknown quantities are
contained in them. But before deciding to which
class an equation belongs, it should be freed from
fractions, from negative exponents, and from the
radical signs which affect its unknown quantities ;
its members should, if possible, be reduced to a series
of monomials, and the polynomials thus obtained
should be reduced to their simplest forms.

106. When the equation is thus reduced, it is said
to be of the same degree as the number of dimen-
sions of the unknown quantities in that term which
contains the greater number of dimensions of the
unknown quantities.

Thus, r and y being the unknown quantities, the equa~
tions
az4b=c¢,

10z + Y= 3,
are of the first degree;

*+3z41=385,.

Y = ll,

are of the second degree, &ec.
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Transcendental Equations; Roots of Equations.

107. But when an equation does not admit of
being reduced to a series of monomials, or, when
being so reduced, it contains terms in which the un-
known quantities or their powers enter otherwise
than as factors, it is said to be transcendental ; and
the consideration of such equations belongs to the
higher branches of mathematics.

Thus, =15

(z4a)ytd =,
are transcendental equations,

108. An equation is said to be solved, when the
values of its unknown quantities are obtained ; and
these values are called the roots of the equation.

109. The reduction and solution of all equations
depends upon the self-evident proposition, that

Both members of an equation may be increased,
diminished, multiplied, or divided by the same quan-
tity, without destroying the equality.

110. Corollary. If all the terms of an equation
have a common factor, this factor may be suppressed.

111. ExaMPLES.
1. If the factor common to the terms of the equation
a? 25 4 3 a® 22 = a? 2?2
is suppressed, what is the resulting equation?
Ans. 23 43 a=1
2. If the factor common to the terms of the equatior
a+3a*tlz=a""1
is suppressed, what is the resulting equation?
Ans. a4-3a%z =1
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To free an Equation from Fractions.

112. Problem. To free an equation from frac-
tions.

Solution. Reduce, by arts. 67 and 68, all the
terms of the equation to fractions having a common
denominator, and suppress the common denominator,
prefizing to the numerators the signs of their re-
spective fractions.

Demonstration. For suppressing the denominator of a
fraction is the same as multiplying the fraction by its de-
nominator ; and, consequently, both the members of this
equation are, by the preceding process, multiplied by the
common denorminator.

113. Corollary. It must be strictly observed that,
when the denominator of a fraction is removed, the
sign, which precedes the fraction, affects all the
terms of the numerator. If therefore this sign is
negative, all the signs of the numerator are to be
reversed.

114. ExampLys.

1. Free the equation
a c a—c¢ 1
52 Taz "%z 'z
from fractions.
Solution. This equation, when its terms are reduced to
a common denominator, is
ﬂ be a—c¢ bdhx bd
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To free an Equation from Fractions.

Suppressing the common denominator, we have
ad+tbc—(a—c)=bdhz—bd,
ad}-bc—at-c=bdhz—bd.
2. Free the equation

3a—52 2a-—z_a+f
a—c + d _a—t:__dz

or

from fractions.
Ans.3ad—5dz4-2a*—azx—2actcr=ad
df—ad2®z+ cd?z.
8. Free the equation
8z —6— 20
z-42 E Y]

Ans. 2422 — 18 22 — 36 7 =20 2 - 40.

4. Free the equation
18+z 20z49 65
6(8—z)  19—7z 4 (3—a)
from fractions. v
Ans. 684 —214 2 — 14 22 = 612 x-}- 324 — 240 2° —
3705 - 1365 z.

from fractions.

5. Free the equation

zty 22—y 1 1 + 1
z—y 14y 71—y =zty ' aP—y? -

r"DT fractions.
Ans. 2422y + 3 — 22+ 22y —yP=zty—z
y+1

6. Free the equation
a _a4-b*

¥ c— b*
from fractions.
Ans. a®* —avb* = a* b J- b2
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To free a Fraction from negative Exponents.

115. Corollary. If the given equation contains
negative exponents, it can be freed from them by
“irts. S0 and 82.

116. ExamMPLES.

1. Free the equation

from fractions and negative exponents,

Ans. 28z =2?—1.
~¥" 2. Free the equation
Vi ot _ar—a=

a4 a"* z8—z—0
from fractions and negative exponents.
Ans. 748 q2% — 2% = q1* 220 — 224, ,

\‘, At
117. Theorem. A term tnay be transposed fr{)m

one member of an equation to the other member, by
merely reversing its sigm ; that is, it may be sup-
pressed in one member and annexed to the other
member with its sign reversed from -+ to —, or
from — to 4.

~  Proof. For suppressing it in the member in which it at
first occurs is the same as subtracting it from that member ;
and annexing it to the other member with its sign reversed
is, by art. 26, subtracting it from the other member; and,
therefore, by art. 109, the equality is preserved.

118. Corollary. All the terms of an equation may
be transposed to either member, leaving zero in the
other member ; and the polynomial thus formed may
be rediced 1o its simplest form, by arts. 20 and 110
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Equations reduced to their simplest forms.

119. ExampLES.

1. Reduce the equation
Tzt 62rtl142r  3Fan4- 6278
z—1" z41 2?2 —1
to its simplest form in a series of monomials,

Solution. This equation, freed from fractions by arts,
112 and 113, is

Tart 14720 =62 +2 522+l —2r—Fr — G2+, -
which becomes, by the transposition of its terms and by the
reduction of art. 20,

l2z’f+‘+ 11z* =0,
and, by striking out the factor z*,
12z4-11=0.

2. Reduce the equation
7241 _z=1 _ z-4-1
2—1 (z41)27 z—1
to its simplest form in a series of monomials.
Ans. 2284-1=0.

3. Reduce the equation
ar?4-bztc _az?—bz—c
24+1 - 221
to its simplest form.

Ans. bz 4 c—a=0,
4. Reduce the equation
a+4a* a"—a="
z° 2= 20 —z—*

to its simplest form.

Ans. a®* = z".‘
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Equations of the First Degree.

SECTION II.

Solution of Equations of the First Degree, with one unknown quantity.

120. Theorem. Every equation of the first de-
gree, with one unknown quantity, can be reduced to

the form
A$+B=0;

tn which A and B denote any known quantities,
whether positive or negative, and x is the unknown
quantity.

Proof. When an equation of the first degree with one
unknown quantity is reduced, as in art. 118, its first mem-
ber is composed of two classes of terms, one of which con-
tains the unknown quantity, and the other does not, If the
unknown quantity, which we may suppose to be z, is taken
out as a factor from the terms in which it is contained, and
its multiplier represented by A, the aggregate of the first
class of terms is represented by A z; and the aggregate of
the terms of the second class may be represented by B ;
whence the equation is represented by

Az4+B=0.

121. Problem. To solve an equation of the first
degree with one unknown quantity.

Solution. Having reduced the given equation to the form
Az4+ B=0,
transpose B to the second member by art. 117, and we have
Az= —B.
Dividing both members of this equation by 4, gives
B

T = ——.

6*
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Cases in Equations in the First Degree.

Hence, to solve an equation of the first degree, re-
duce it, as in art. 120, and transpose its known
terms to the second member, and all its unknown
terms to the first member ; and the value of the un-
known quantity is equal to the quotient arising from
the division of the second member by the multiplier
of the unknown quantity in the first member.

122. Corollary. When 4 and B are both positive
or both negative, the value of z is, by art. 35, nega-
tive; but when A and B are unlike in their signs,
one positive and the other negative, z is positive.

123. Corollary. When we have

B =0,
the value of z is
0
r = — Z = 0.
124. Corollary. When we have
A =0,
the value of z is
se_2B
=%

But the smaller a divisor is, the oftener must it be con-
tained in the dividend, that is, the larger must the quotient
be ; and when the divisor is zero, it must be contained an
infinite number of times in the dividend, or the quotient
must be infinite. Infinity is represented by the sign @
We have, then, in this case,

I =—®
The given equation is, however, in this case,
Oxr4+B=0,
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Cases in Equations of the First Degree.

which reduces itself to
B =0,
an obvious absurdity, unless B is zero.

The sign o is, therefore, rather to be regarded as
the expression of the peculiar species of absurdity
which arises from diminishing the denominator of a
fraction till it becomes zero.

125. Corollary. When- we have

A=0,and B =0,
the value of z is

which is equal to any quantity whatever, and 1s
called an indeterminate expression.

The given equation is, indeed, in this case
0Xz+4+0=0,
an equation which is satisfied by any value whatever
of z, and is called an identical equation.

126. ExAMPLES.

" 1. Solve the equation
’ 8z2—5=13—"7z.
Ans.z=1}
2. Solve the equation

z z z z
Ans. 7 =116}48
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Equations of the First Degree with one unknown quantity.

3. Solve the equation
az4c=bz+4d.

d—c
.AM. T = a_b'
4, Solve the equation ’
a(d?4-2%) a
dz =ac+ d’
Ans. z = i.
c

5. Solve the equation
cz™ fa™
atbz diez
cd—af af—cd
bf—ce  ce—bf

Ans. z =

6. Solve the equation

B8abec a3 b3 (Ra4-0)2z __ bz
et Tagopt a((lj-—}-b)ﬂ =8ezt~
Ans. z=-ﬂ-.
a+-b

7. Two capitalists calculate their fortunes, and it appears
that one is twice as rich as the other, and that together they
possess $ 38 700. What is the capital of each?

Ans. The one has 8 12 900, the other § 25 800.

8. To find two such numbers, that the one may be m -

times as great as the other, and that their sum = a,
dns. —°— and —=
T w1 mF1
9, The sum of $ 1200 is to be divided between two per-

sous, A and B, so that A’s share is to B’s as 2 to 7. How
much does each receive ?

Ans. A 8266%, B $9333.
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Equations of the First Degree with one unknown quantity.

10. To divide a number a into two such parts, that the
first part is to the second as m to n.

Ans. and ———

m + m -|- n’
11. How much money have I, when the 4th and 5th
parts of it amount together to $ 2,251

Ans. 85.

12. Find a number such, that when it is divided succes-
sively by m and by n, the sum of the quotients = a.

Ans. ’—n—_'_—“ .
13. Divide the number 46 into two parts, so that when
the one is divided by 7, and the other by 3, the sum of the

quotients = 10. Ans. 28 and 18,

14. All my journeyings taken together, says a traveller,
amount to 3040 miles; of which I have travelled 3} times
as much by water as on horseback, and 2} times as much
on foot as by water. How many miles did he travel in each
of these three ways ?

Ans. 240 miles on horseback, 840 miles by water, and
1960 miles on foot.

15. Divide the number a into three such parts, that the
second may be m times, and the third n times as great as

the first,
a ma na

‘l4m4n’l4mgn’ l4+mtn

16. A bankrupt leaves $ 21 000 to be divided among four
creditors A, B, C, D, in proportion to their claims. Now
A’s claim isto B'sas2:3; B’sclaim: C's=4:5; and
C’s claim: D’s = 6:7. How much does each creditor

receive ?
Ans. A $3200, B 84800, C 86000, D 37000,

Ans
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Equations of the First Degree with one unknown quantity.

17. Divide the number a into three such parts, that the
1st shall be to the 2d as m to n; and the 2d part : the
3d=p:q.

ns mpa npa nga
) mp+np+ng’ mp+np+nqg’ mp+np-ng

18. There are two numbers whose sum is 96, and differ-
cnce 16 ; what are they? Ans. 56 and 40.

19. A father gives to his five sons $ 1000, which they
are to divide according to their ages, so that each elder son
shall receive $20 more than his next younger brother.
What is the share of the youngest? Ans. 160.

20. One has six sons, each whereof is 4 years older than
his next younger brother; and the eldest is three times as
old as the youngest. What is the age of the e)dest?

Ans. 30 years,

21. There is a certain fish whose head is 9 inches ;
the tail is as long as the head and half the back ; and the
back is as long as both the head and the tail together.
What is the length of the fish?

. Ans. 72 inches,

22. Five gamesters have lost jointly $ 40§ ; B’s loss
amounts to } dollar more than triple A’s; C’s loss is $2
less than twice B’s; D lost } dollar less than A and B
together; and E twice as much as B less § dollar. How
much did each of them lose?

Ans. A 82, B 863, C 811, D $8}, E $12}.

23. A mason, 12 journeymen, and 4 assistants, reccive
together 8 72 wages for a certain time. The mason re-
ceives $ 1 daily, each journeyman § dollar, and each as-
sistant } dollar. How many days must they have worked
for this money ? Ans. 9 days.
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Equations of the First Degree with one unknown quantity.

24. Find a number such that if you multiply it by 5,
subtract 24 from the product, divide the remainder by G,
and add 13 to the quotient, you will obtain this number.

Ans. 54.

25. A courier left this place n days ago, and makes a
miles daily. He is pursued by another making b miles
daily. In how many days will the second overtake the
first ? Ans

days

26. A courier started from a certain place 12 days ago,
and is pursued by another, whose speed is to that of the first
as 8:3. In how many days will the second overtake the
first ? Ans. 7} days.

27. A courier started from this place n days ago, and
is pursued by another whose speed is to that of the first
as p isto g. In how many days will the second overtake
the first? Ans. 9

P—q

28. Two bodies move in opposite directions ; one moves

¢ feet in a second, the other C feet. The two places, from

which they start at the same time, are distant a feet from.

one another. 'When will they meet?

Ans. In C—_l_—_— seconds.
29, Two bodies move in the same direction from two
places at a distance of a feet apart; the one at the rate of

¢ feet in a second, the other pursuing it at the rate of C .

feet in a second When will they meet ?
) a
' Ans. In 6——-_6 seconds.
30. At 12 o’clock, both hands of a clock are together.

When and how often will these hands be together in the
next 12 hours?



2 ALGEBRA. [cB. ni. § nr.

Equations of the First Degree with one unknown quantity.

Ans. At 58 minates past 1, at 104 minutes past 2,
at 164 minutes past 3, and so on, in each successive
hour, 5#; minutes later.

31. Two bodies move after one another in the circum-
ference of a circle, which measures p feet. At first they
are distant from each other by an arc measuring « feet,
the first moves ¢ feet, the second C feet, in a second.
When will those two bodies meet for the first time, second
time, and so on, supposing that they do not disturb each
other’s motion 1

a p+ta?2pta
Ans. In C—c¢’' C—¢ C—c¢

32 When will they meet if the first begins to move ¢
seconds sooner than the second ?
In a+ct ptatct 2p+atct
C—¢ C—c¢’ C—c¢
83. But when will they meet, if the first begins to move
t seconds later than the second ?
a—ct pta—ct 2p4a—ct
C—c¢' C—c¢c ' C—c

, &c., seconds.

Anas,, , &c¢., seconds,

Ans. In ,&c., seconds.

84. When will they meet, if the first, instead of running
in the same direction with the second, runs in the opposite
direction, and starts at the same time ?

a pta 2p+a 3pta
C+c’' C+c’ C+c’ C+c

85. When will they meet, if, moving in an opposite di-
rection to the second, the first starts ¢ seconds sooner than
the second !

Ans. In , &c., seconds,

a—ct pta—ct 2p+a—ct
Ans. In Cfec CFec —C+c , &c., seconds.

Lo d

y
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Equations of the First Degree with one unknown quantity.

36. But when will they meet, if, moving in an opposite
direction to the second, the first starts ¢ seconds later than
the second ?

a+ct p+a-|-ct Lptaitct
Ans. In Cic Cxe' Cxe

37. A wine merchant has two kinds of wine; the one
costs 9 shillings per gallon, the other 5. He wishes to mix
both wines together, in such quantities, that he may have
50 gallons, and each gallon, without profit or loss, may be
sold for 8 shillings. How must he mix them ?

Ans. 373 gallons of the wine at 9 shillings, with 12}
gallons of that at 5 shillings.

,&c., seOOnds.)\\\
\

38. A wine merchant has two kinds of wine; the one
costs a shillings per gallon, the other & shillings. How
must he mix both these wines together, in order to have =
gallons, at a price of c¢ shillings per gallon?

(a ) b)n

gallons of the wine at b shillings, and *— (
gallons of that at a shlllmgs

39. To divide the number a into two such parts, that,
if the first is multiplied by m and the second by n, the sum
of the products is b.

b—na ma—>b

Ans. and

m—n m—n"

40. One of my acquaintances is now 30, his younger
brother 20 ; and consequently 3 : 2 is the ratio of his age
to his brother's. In how many years will their ages be as
5:41 Ans. In 20 years.

41. What two numbers are those, whose ratio = a : b;
bat, if ¢ is added to both of them the resulting ratio =m : n!
ac(m—n) br(m—-n)
. an
an—bm au—bm

Ans

P N
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Equations of the First Degree with one unknown quantity.

42, Find a number such that & times the number is as
much above 20, as the number itself is below 20.
Ans. 63.

43. A person wished to buy a house, and in order to
raise the requisite capital, he draws the same sum from
each of his debtors. He tried, whether, if he obtained
8250 from each, it would be sufficient for the purpose ;
he found, however, that he should then still lack $ 2000.
He tried it, therefore, with $340; but this gave him 8 830
more than he required. How many debtors had he ?

Ans. 32.

44. A father leaves a number of children, and a certain
sum, which they are to divide amongst them as follows:
The first is to receive $ 100, and then the 10th part of the
remainder; after this, the second has $200, and the 10th
part of the remainder; again, the third receives $ 300, and
the 10th part of the remainder; and so on, each succeed-
ing child is to receive $ 100 more than the one preceding,
and then the 10th part of that which still remains. But
it is found that all the children have received the same
sum. What was the fortune left? and what was the num-
ber of children?

Ans. The fortune was $ 8100, and the number of
children 9.

45. Divide the number 10 into two such parts, that the
difference of their squares may be 20. Ans. 6 and 4.

46. Divide the number a into two such parts, that the
difference of their squares may be .

2 2__
Ans. @ +b a2—b

%a ™5
47. What two numbers are they whose difference is &
and the difference of whose squares is 451

Ans. T and 2.
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Examples of unknown quantity equal to Zero.

48. What two numbers are they whose difference is a,
and the difference of whose squares is b ?

—a? 2
Ansb a ndb—_—'_-i.
2a

‘T %a

127, Corollary. When the solution of a problem
gives zero for the value of either of the unknown
guantities, this value is sometimes a true solution ;
and sometimes it indicatés an impossibility in the
proposed question. In any such case, therefore, it is
necessary to return to the data of the problem and
investigate the signification of this result.

128. ‘ExAMPLES.

1. In what cases would the value of the unknown quan-
tity in example 25 of art. 126 become zero? and what
. would this value signify ?

Solution. As the value of the unknown quantity of the
example is the fraction, which is its answer ; it is zero, when

na__ o

b—a™
or, clearing from fractions, when

na—=20;
that is, when .
n =0, or when a = 0;
and, in either case, this value signifies that the couriers are
together at the outset; and zero must, therefore, be regarded
as a real solution.

2. In what cases would the value of the unknown quan-
tity in example 35 of art. 126 become zero? and what
wou'd this value signify?
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Examples of unknown quantity equal to Zero.

2]

Ans. When ¢t = %, or =p-‘|:—a, or = ~pj—a’ &ec.,
and either of these equations signifies that the bodies are
together when the second body starts, the first body hav-
ing just arrived at the point of departure of the second,
and zero is, therefore, to be regarded_as a real solution

3. In what cases would the value of one of the unknowr.

quantities in example 38 of art. 126 become zero? and
what would this value signify?

Ans. When either
a=corh=c;
and, in either case, these equations indicate that the price
of one of the wines is just that of the required mixture,
and, of course, needs none of the other wine added to it
to make it of the required value ; and zero, must, there-
fore, be regarded as a true solution.

4. In what cases would the value of one of the unknown

quantities in example 39 of art, 126 become zero? and
what would this value signify 1

Ans, When
b=na,or=ma;
and these equations indicate that a is itself such that,
multiplied either by m or by n, it gives a product = b;
and zero may be regarded as a true solution, expressing
that one of the parts is zero, while the other is the num-
ber a itself.

5. In what cases would the value of one of the unknown

quantities in example 41 of art. 126 become zero? and
what would this value signify ?

Ans. First. When
a=0,0rb=0,
and, in this case, zero is a true solution by regarding all
numbers as having the same ratio to zero.
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Cases in which the value of an unknown quantity is infinite.

Secondly. When c=0, :
and, in this case, the problem is impossible, for no two
numbers can be in the ratio a : b, and, without having
any thing added to or subtracted from them, acquire the
different ratio m : n.

Thirdly. When m=n,
and, in this case, the problem is impossible, for no two
numbers, whose ratio = a : b, and which are therefore
unequal, can, by the addition of ¢ to each of them,
become equal to each other, as required by the ratio /
m:n=m:m=1.

129. When the solution of a problem gives, for
"the values of one of its unknown quantities, any
fractions, the denominators of which are zero, while
the numerators are not zero; such values are, gener-
ally, to be regarded as indicating an absurdity in the
enunciation of the problem.

130. ExXamMPLES.

1. In what case does the denominator of the fractional
value of the unknown quantity in example 25 of art. 126
become zero? and what is the corresponding absurdity in
the enunciation of the problem?

Ans. When a==b,

and the absurdity is, that, while the couriers are travel-

ling at the same rate, it is required to determine the time

in which one will overtake the other.

2. In what case do the denominators of the fract
values of the unknown quantity in example 38 of art.
become zero? and what is the corresponding absurdi

the enunciation of the problem?
e
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Ans. When a=2b,
and the absurdity is that, while both the wines are of the

same value, they should give a mixture of a value differ- .

ent from their common value.

3. In what case would the denominators of the fractional
values of the unknown quantities in example 41 of art. 126
become zero? and what is the corresponding absurdity of
the enunciation ?

Ans. When
an=—>"bm, thatis, whena:b—=m: n;
and the absurdity is, that the ratio of two unequal num-

bers should not be changed by increasing them both by

the same quantity.

4. In what case would the denominators of the fractional
values of the unknown quantities in example 48 of art. 126
become zero? and what ‘is the corresponding absurdity of
the enunciation ?

Ans. When a=0,

and the absurdity is, that the squares of two equal nuyﬁs"‘

bers should differ. v

131. Corollary. When the solution of a problem
gives for the value of either of its unknown quanti-
ties a fraction whose terms are each equal to zero,
this value generally indicates that the conditions of
the problem are not sufficient to determine this un-
known quantity, and that it may have any value
whatever. In some cases, however, there are lim-
tations to the change of value of the unknown
quantity.
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132. EXAMPLES.

1. In what case would both the terms of the fractional
value of the unknown quantity in example 25 of art. 126
become zero? and how could this value be a solution ?

Ans. When b= a,andn=20;

and these equations signify, that the couriers travel equally

fast, and start at the same time ; and, therefore, they re-

main together, and any number whatever may be taken
as the value of the unknown quantity.

2. In what case would both the terms of either of the
fractional values of the unknown quantity in example 31
of art. 126 become zero? and how could this value be a
solution ?

Ans. When a=0,and C = ¢;
and these equations signify, that the bodies move equally
fast, and start from the same place ; they, therefore, re-
main together, and any number whatever may be taken
as the value of the unknown quantity.

But, in this case, all the algebraic values of the un-
known quantity but the first ;become infinite, as they
should, because they are obtained on the supposition, that
the second body has passed round the circle once, twice,
&ec., oftener than the first body ; which is here impos-
sible.

3 In what case would all the terms of the fractiona.
values of the unknown quantities in example 38 of art, 126
become zero? and how could they, then, satisfy the con-
d:tions of the problem ?

Ans. When a="b=c;

and these equations signify, that the wines and the mix-

ture are all of the same value; in whatever proportion,

therefore; the wines are mixed together, the mixture
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must be of the required value. But the values of the
unknown quantities are still subject to the limitation that
their sum is n.

4. In what case would the terms of the fractional values
of the unknown quantities in example 39 of art. 126 be-
come zero? and how could they, then, satisfy the con-
ditions of the problem ?

Ans. When
m=n,andb=na=ma;

and these equations signify, that the sum b of the pro-

ducts of the parts of a multiplied by m = n is to be equal

to the product of a multiplied by n ; and this is, evidently,
the case into whatever parts a is divided.

5. In what cases would all the terms of the fractional
values of the unknown quantities in example 41 of art. 126
become zero? and how could they, then, satisfy the con-
ditions of the problem? '

Ans. First. When

a:b=m:n,and c = 0;

for these equations indicate that the two required numbers
are only subject to the condition that their ratio = a : b,

Secondly. When

m=n,and a:b=m:n=m:m =1, that is, a =5;
for these equations indicate that the two numbers are to
be equal ; and that they are to remain equal, when they
are increased by ¢, which would always be the case.

6. In what case would all the terms of the fractional
values of the unknown quantities in example 48 of art. 126
become zero? and how could these values be solutions ?

Ans. When a=0,and b =0;

and their equations indicate that the numbers are to be

equal, and that their squares are to be equal, which is

always the case with equal numbers.
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133. Corollary. When the solution of a problem
gives a negative value to either of the unknown
quantities, this value is not generally a true solution
of the problem ; and if the solution gives no other
than negative values for this quantity, the problem
is generally impossible.

But, in this case, the negative of the negative
value of the unknown quantity is positive; so that
the enunciation of the problem can often be cor-
rected by changing it, so that this unknown quan-
tity may be added instead of being subtracted, and
the reverse.

134. EXAMPLES.

1. In what case would the value of the unknown quan-
tity in example 25 of art. 126 be negative? why should it be
so? and could the enunciation be corrected for this case?

Ans. When a>b;

that is, when the second courier goes slower than the one

he is pursuing, in which case he evidently cannot over-

take him; and the enunciation does not, in this case,
admit of a legitimate correction.

2. In what case would the values of the unknown quan-
tities in examples 29, 31, 32 of art. 126 be negative 7 why
should this be so? and could the enunciations be corrected

- for this case?
Ans. When c>C;

that is, when the first body moves faster than the second,

in which case the second cannot overtake it.

The enunciation may be corrected for this case by
supposing the bodies to travel in the opposite direction to
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that which they are at present taking, that is, by suppos-
ing the first body to pursue the second.

Examples 31 and 32 are not, however, impossible in
this case ; for, from the very nature of their circular mo-
tion, the first body is necessarily pursuing the second even
in their present direction; the second body must not,
however, be considered as a feet or a - ¢ ¢ feet behind
the first, but as p — a or p — (a - ¢ t) feet before it.

3. In what cases would the values of the unknown quan-
tity in example 33 of art. 126 be negative? why should this
be the case? and could the enunciation be corrected for
this case ?

Ans. First. When C < e,
which is subject to the same remarks as in the preceding
question.
Secondly. When C>e,
andct>a,or >p-ta,or >2p+a,&e.,

that is, when the first body does not start until the second
body has passed it once, or twice, or three times, &c.; and
if the bodies were moving in the same straight line, the
enunciation would not admit of legitimate correction. As
it is, however, the first body is still pursued by the second,
and is pt-a—ct,2p4-a—ct, &c., feet before the
second, when it starts; so that all the values given for the
unknown quantity are correct, except the negative ones,

4. In what cases would the values of the unknown quan-
tity in example 35 of art. 126 be negative? why should this
be the case? and could the enunciation be corrected for
this case ?

Ans, When
ct>a,or >p-ta,or>2p+4a, &ec.;

that is, when the first body has passed the second once,

twice, &c., before the second begins to move.

If the bodies were moving in the same straight line,



CH. 1L § 111.] EQUATIONS OF THE FIRST DEGREE. 83

Cases of negative value of unknown quantity.

the second body would be obliged to change its direction,

"~ and move in the same direction with the first, and even
with this change of enunciation the problem is impossible,
if the second body moves slower than the first,

But as it is, the bodies are still moving towards each
other in the circumference of the circle; their distance
apart at the instant when the second body starts being
pta—ct,or2p-ta—ct, &c., feet; so that all the
positive values of the unknown quantity remain as true
solutions.

5. In what cases would the values of either of the un-
known quantities in example 38 of art. 126 be negative ?
why should this be the case? and could the enunciation be
corrected for this case ?

Ans. If we suppose, as we evidently may, that a > b;
one of the values is negative,

First, When a<c;
that is, when the price of the most expensive wine is less
than that of the required mixture.

Secondly. When b>c¢;

that is, when the price of the least expenslve wine is

more than that of the mixture.

In either case the problem is altogether impossible,
for two wines cannot be mixed together so as to produce

a wine more valuable than either of them without a gain, -

or less valuable than either of them, without a loss.

6. In what cases would the value of either of the un-
known quantities in example 39 of art. 126 be negative?
why should this be s0? and could the enunciation be cor-
rected for this case?

Ans. Supposing, as we may, that m > n;

First When na>>b
that is, when the sum & of the products is less than the
product of a by the least of the numbers m and n.

ay"



84 ALGEBRA. [cm. 1. §

Cases of negutive value of unknown quantity.

Secondly. When ma<b;
that is, when the sum & of the products is greater than
the product of a by the greater of the numbers m and n.

In either of these cases, the problem is plainly impos-
sible ; and, in the corrected enunciation, a should be the
difference of the required numbers, and b the difference
of the products obtained from multiplying one of the
numbers by m and the other by n.

7. In what cases would the values of the unknown quan-
tities in example 41° of art. 126 be negative? why should
this be so? and could the enunciation be corrected for this
case ?

Ans. First. When
m>n,andan<bm,ora:dm:n;

that is, when the first ratio is less than the second, and

the second is greuter than unity.

Secondly. When
mnanda:b>m:n;

that is, when the second ratio is less than the first, and

also less than unity.

In either case the problem is impossible, and ¢ is to
be subtracted instead of being added in the corrected
enunciation.

8. In what case would the value of one of the unknown
quantities in example 46 of art. 126 be negative? why
should this be so? and could the enunciation be corrected
for this case ?

Ans. When b> a?;

that is, when the difference of the squares of the parts of a

is to be greater than the square of the number itself, which

can never be the case; for the greatest possible difference
of squares corresponds to the case in which one of the
parts is the number a itself, and the other is zero; and
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the difference of the squares is then just equal to the
square of a.

The enunciation is corrected for this case by stating it
as in example 48,

135. Corollary. It follows from example 7 of the
preceding section that a fraction or ratio, which is
greater than unity, is increased by diminishing both
its terms by the same quantity; and a fraction or
ratio, which is less than unity, is diminished by di-
minishing both its terms by the same quantity ; but
the reverse is the case, when the terms are increased
instead of being diminished. .: ,

Z ) ’v i\‘l,lrf"\w
SECTION IV.

Equations of the First Degree containing two or more unknown quantities.

136. In the solution of complicated problems in-
volving several equations, it is often found convenient
to use the same letter to denote similar quantities,
accents or numbers being placed to its right or left,
above or below, so as to distinguish its different val-
ues.

Thus, a, a, a' a*, av,... a®, &ec.

a®, a®, a®, a¥, ... a", &c.

aQ, @&, a, a,...a,, &c.

'a, ‘"a, M™a, Wa,....%a, &ec.

lay %a, %, ta,...."%a, &ec.

1a, 4, 88, ..., &c.

al, %a,, a3, 7, 3a",....%", &ec.
may all be used to denote different quantities, though they
generally are supposed to imply some similarity between the

R
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quantities which they represent. Care must be taken not
to confound the accents and the numbers in parentheses at
the right with exponents.

137. Problem. To solve an equation with several
unknown gquantitics.

Solution. Solve the given equation precisely as if
all its unknown quantities were known, except any
one of them which may be chosen at pleasure ; and
sn the value of this unknown quantity, which is thus
obtuined in terms of the other unknown gquantities,
any values whatever may be substituted for the other
unknown quantities, und the corresponding value of
the chosen unknown quantity is thus obtained.

138. Corollary. An equation which contains sev-
eral unknown quantities is not, therefore, sufficient to
determine their values, and is called indeterminate.

139. Scholium. 'The roots of an indeterminate
equation are sometimes subject to conditions which
cannot be expressed by equations, and which limit
their values; such, for instance, as that they are to
be whole numbers. But their investigation depends,
in such cases, upon the particular properties of differ-
ent numbers, and belongs, thetefore, to the Theory
of Numbers.

140. Theoremn. Every equation of the first de-
gree can be reduced to the form

Az+By+Cz-+&ec. + M=0;
in which A, B, C, §c. and M are known quantities,
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either positive or negative, and X, y, z, &c. are the
unknown quantities.

Proof. When an equation of the first degree is reduced,
as in art. 118, the aggregate of all its known terms may
be denoted by M. Each of the other terms must have one
of the unknown quantities as a factor ; and, by art. 106,
ouly one of them, and that one taken but once as a factor.
Taking out, then, each unknown quantity as a factor from
the terms in which it occurs, and representing its multiplier
by some letter, as A, B, C, &c., the corresponding un-
known quantities being represented by z, y, z, &c., the
equation becomes '

Az+By+4 Cz+4 &e. 4+~ M=0.

141. Problem. To solve any equation of the first
degree.

Solution. Having reduced the equation to the form
Az+By+Cz+4 &ec.+M=0,
find, as in art. 137, the value of either of the unknown
quantities, as z, for instance, which is, by art. 121,
—By—Cz—&c.— M

r = ’

and any quantities at pleasure may be substituted for y,
z, &c.

142. Problem. To solve several equations with
several nknown quantitics.

First Method of Solution called that of Elimina-
tion by Substitution. Find the value of either of the
unkuown quantities in one of the equations in which
it occurs, and substitute its value thus found, which
is generally in terms of the other unknown quanti-
ties, in all the other equations in which it occurs.
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The new equations thus formed, together with
those in which this unknown quantity does not occur,
are one less in number than the given equations,
and contain one unknown quantity less, and may,
by a succession of similar eliminations be still far-
ther reduced in number and in the number of their
unknown quantities, until only one equation is finally
obtained ; and the solution of all the given equations
is thus reduced to that of one equation.

143. Corollary. When there are just as many
equations as unknown quantities, the final equation
of the preceding solution will, in general, contain
but one unknown quantity, the value of which may
be thence obtained ; and this value, being substituted
in the values of the other quantities, will lead to
the determination of the values of all the unknown
quantities.

144. Corollary. When the number of unknown
quantities is more than that of the given equations,
the final equation will contain several unknown
quantities, and will therefore be indeterminate ; so
that a problem is indeterminate, which gives fewer
equations than unknown quantities.

145. Corollary. When the number of unknown
quantities is less than that of the given equations,
only as many of the given equations are required to
determine the values of the unknown quantities as
there are unknown quantities; and the problem is
therefore impossible, when the values of the uu-
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known quantities determined from the requisite
equations do not satisfy the remaining equations.

" Ll
E\\N‘ 146. Problem. To solve two equations of the first
. degree with two unknown quantities.

Solution. Suppose, as in art. 140, the given equations to
be reduced to the forms
‘ Az4-By4+M=0,
Az4By+M=0:
in which z and y are the unknown quantities.
The value of z, obtained from the first of these equa-
tions, is
—By—M
A 3
which, substituted in the second equation, gives
— / —
LBy AM Bytm=o.
The value of y is found from this equation, by art. 121,
to be

T =

AM—AM
Y=AB—2 B’
which, substituted in the above value of 2, gives
o BM'—B'M
TAB—AB

147. Corollary. 'The value of z, obtained by the
preceding solution would be zero, if its numerator
were zero, that is, if ,

BM =B'M.
But, in this case, if the first of the given equations is

multiplied by B/, and the second by B, these products be.

come, by transposition and substitution,
|«
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ABz=—BB'y—B M,
A'Bz=—BBy—BM=—BBy—BM;
whence
ABz—A Bz;
that is, the given equations involve the condition that two
different multiples of z are equal. But this is impossible,
unless ’

z=0,
The value of y would, likewise, be zero, if we had
AM=AM,

which leads to conclusions with regard to y, similar to those
Just obtained with regard to .

148. Corollary. The denominators of the values
of both the unknown quantities would be zero, if

we had
AB = A B.

But, in this case, if the first of the given equations is
multiplied by B’ and the second by B, these products be-
come, by transposition and substitution,

ABz4{BBy=—BM,
A'Bi:4+BBy—=AB:2+BBy=—BM;
whence, we must have
B M=BM;
that is, they involve the impossibility that the two unequal
quantities B’ M and B M' are equal.

149. Corollary. Both the terms of the fractional
value of z would be zero, if we had '

BM =B M,and AB'= A B.

But, in this case, if the first of the given equations is mul-
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tiplied by B’ and the second by B, the products become, by
substitution,

AB'z+4+BB y+B M—=0,

A'Bz+BB y+BM—ABz+BBy+BM=0;
that is, the two given equations are equivalent to but one,
and are, as in art. 144, indeterminate.

The product of the two equations
" BM =B M,and A B'=A'B,
ABB M =A'BDB M,
which, divided by B B/, is
AM =AM,
8o that both the terms of the value of y would also be
zero, :

150. EXAMPLES,

1. Solve the two equations
3z42y =118,
z4 6y =191
Ans. =16,y =35.
2. Solve the two equations

x
zt+3="o

=1.

Ans.2=12,y=86,

z
3_

Ve

- 3 Solve the two equations
T4z 22—y

5y—7 | 423

3 6 =18 — 5z,

Ans. =3, y==2
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4. Solve the two equations
az=0by,
z4y=c

Ans. z = .b_c Y= i
) ab 7 atb
5. A says to B, “give me $ 100, and I shall have as
much as you.” ¢ No,” says B to A, *give me rather
# 100, and then I shall have twice as much as you.” Hoﬁw:éz\ ‘
many dollars has each?  Ans. 4 $500, and B $700.0"\-v
6. Said a lad to his father, “How old are we?” * Six
years ago,” answered the latter, “I was one third more than
three times as old as you; but three years hence, I shall be
obliged to multiply your age by 2} in order to obtain my.
own.” What is the age of each?
Ans. The father 36, the son 15 years,

7. A cistern containing 210 buckets, may be filled by 2
pipes. By an experiment, in which the first was open 4,
and the second 5 hours, 90 buckets of water were obtained.
By another experiment, when the first was open 7, and the
other 3} hours, 126 buckets were obtained. How many
buckets does each pipe discharge in an hour? .

Ans. The first pipe discharges 15, and the second pipe
discharges 6 buckets.

8. There is a fraction such, that if 1 be added to its nu-
merator its value becomes — §; and if 1 be added to its
denominator its value becomes — }. What fraction is it ?

Ans. .

9. Required to find two numbers such, that if the first be
increased by a, and the second by b, the product of these
two sums exceeds the product of the two numbers them- _
selves by ¢; if on the other hand, the first be increased by
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a’, and the second by ¥, the product of these sums exceeds
the products of the two numbers themselves by ¢'.

Ans. The first is dc—actaadb—add

b —ab , the second
be—¥ c+abb'—a’bb’
is
ab—ald

10. A person had two barrels, and a certain quantity of
wine in each. In order to obtain an equal quantity in each,
he poured out as much of the first cask into the second, as
. the second already contained ; then, again, he poured out
as much of the second into the first as the first then con-
tained, and lastly, he poured out again as much from the
first into the second as the second still contained. At last
Pe had 16 gallons of wine in each cask. How many gal-
lons did they contain originally?

Ans. The first 22, the second 10 gallons.

11.-21 Ibs. of silver lose 2 Ibs. in water, and 91bs. of cop-
per lose 11b. in water. Now, ifa composition of silver and
copper weighing 148 bs. loses 14% Ibs. in v\{ater, how many

lbs, does it contain of each metal ? -~ 5 e _ /

Ans. 1121bs. of silver, and 3611\35 ofg!i copper.

12. A given piece of metal, which weighs plbs., loses

elbs. in water. This piece, however, is composed of two

other metals A and B such, that plbs. of A lose albs. in

water, and plbs. of B lose blbs. How much does this
picce contain of each metal ?

Ans (”b ’)"lbs of A, and (° “)”lb. of B.

13. According to Vitruvius, the crown of Hiero, king of
Syracuse, weighed 201bs., and-lost 1} lbs. in water. Assum-
ing that it consists of gold and silver only, and that 19,64 lbs.
of gold lose 11b. in water, and 10,5 Ibs. of silver lase 11b. in

P

-
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water. How much gold, and bow much silver, did this
crown contain ?

Ans. 14,77 ..1bs. of gold, and 5,22...1bs. of silver.

151. Problem. To solve any number of equations’

of the first degree with the same number of unknown
quantities.

Solution. Let there be three equations with three un-
known quantities ; these equations may, by art. 140, be
reduced to the forms

Az4+By+4Cz24+M=0,
A'z4By+Cz+ M=0,
A’z 4 B'y4C'z+ M'=0. N

The value of z, given by the first of these equations, is

—By—Cz—M

z = ;

A
which, being substituted in the other two equations, and the
resulting equations being reduced, as in art. 140, gives
(AB'—A'B)y+(AC—A'C)z+AM—A'M =0,
(AB"—A"B)y+(AC'—A"C)z+AM'—A"M = 0.

These equations, being solved, as in art. 146, give
_(A'C"—A"CYMH(A'C—A M (A C—A'C) M
Y ={(aB"—A"B\C+(A’'B—AB")C+(AB—A'B)C"
(A"B—A'B"YM+(AB"—A"B)M'+(A'B—AB M |
(4'B"—A"B")C+(A"B—AB")C'+(4AB'—A'B)C'"”
in which the terms are arranged in groups in order to dis-
play the symmetry of the result; and these values, being
substituted in the value of z, give
r— (B"C—B'CYM+(BC'—B'C)M' +(B'C—BC)M"
T (A'B"—A"B')C+(A"B—AB")C' + (AB'—A'B\CV

z =
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If this method of solution be applied to a greater number

_ of equations, it will lead to similar results.

+

152. ExAMPLES.

1. Solve the three ‘equations
it y+ z=6,
2z+3y +42=20,
3247y +4562=32
Ans. z2=1,y=2,2=3
2. Solve the three equations

y+3z=41,
z 4 1z = 203,
y+1z2=34.

Ans. 2 =18,y =32,z2= 10
8. Solve the three equations
8—3z—3z2=y—109,
* z + 'é' y= 26’
by=14z
Ans. z=04, y —80, z=— 100
4. Solve the four equations
s+ g+ =4 u=1,
16z 4+ 8y + 4z42u=09,
812427y 4 9z -+43u=36,
256z 164y 16z 4 4 u = 100.
Ans. 1=}, y=3},z2=} u=0.
5. The sums of three numbers, taken two and two, are
a, b, c. What are they ?
Ans. 3 (a+4b—c), 3(a+4-c—D), 3 (b+c—a).
6. A, B, C compare their fortunes. A says to B, *“ give
me 8700 of your money, and I shall have twice as much
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as you retain;”’ B says to C, *““ give me § 1400, and I shall
have thrice as much as you have remaining ; ”’ C says to A,
¢ give me $ 420, and then I shall have 5 times as much as
you retain,” How much has each?

Ans. A $980, B 8 1540, C 8 2380.

7. Three soldiers, in a battle, make $96 booty, which
they wish to share equally. In order to do this, A, who
made most, gives B and C as much as they already had; in
the same manner, B then divided with A and C'; and after
this, C with A4 and B. If, by these means, the intended
equal division is effected, how much booty did each soldier

make ? © " Ans. A 852, B $28, C §16.

8 A, B, C, D, E play together on this condition, that he
who loses shall give to all the rest as much as they already
have. First A loses, then B, then C, then D, and at last
also E. All lose in turn, and yet at the end of the 5th
game they a. have the same sum, viz. each §32. How
much had each wx:n they began to play?

Ans. A 881, B 841, C$21, D 811, E 86'\\';#

. . \
153. Second Method of solving the Probiem of
art. 142, called that of Elimination by Comparison.
Find the value of either of the unknown quantities
in all the equations in which it is contained ; place
either of the values thus obtained equal lo each of
the others, and the equations thus formed will be one
less in number than those from which they are ob-
tained, and will contain one unknown quantity less.
By continuing this process on these new equations,

_the number of equations will finally be reduced to
one. :

v

<

/
A
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Examples to be solved by Elimination by Comparison. *

154. ExampLES.

1. To solve any two equations of the first degree with
two unknown quantities.

Solution. These equations may, as in art. 146, be re-
duced to the forms
Az4+ By+ M =0,
A'z+ By+ M =0.

The values of z, obtained from these equations, are

,=:£%:£
—By—M
r = .Z' H

which, being placed équal to each other, give
—By—M_ —By—MN
A o A ’
AM—AMN

Yy=ap—aB

BM —B M

AB —A B’

being-the same values as those obtained in art. 146,

whence

and, therefore,

zT =

2. Solve the three equations

tyta=w
1 1 1 7
zty T
1 1 1 5
Ty tTI=w
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Examples to be solved by Elimination by Comparison.

&olution. The values of z, obtained from these equa-
tions, are

12y=
T Byz—12z— 12y
12y=z
7yz—l2z+l2y
12y2

T5yzf2z—12y°’
the first of which being placed equal to each of the others
gives, by reduction,

z =4,
y=3;

whence we get, from either value of z, by substitution,
z=2.

8. Solve the two equations
Ty= 2x—3y,
19z =60 y 4 621}.
Ans. T =88}, y = 173
4. Solve the three equations
3z 5y=161,
7z4+22z =209,
2 Yy + z = 89.
Ans. 2=17, y=22, z =45
5. Solve the three equations

\}

1 1
"+""=“s
l
\ -_— —_=0b
z ! 2z
1,1,
yTz="

Ans. 2=

2
afb—c?TahiFe T ife—a
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Examples to be solved by Elimination by Comparison.

6. Solve the three equations

P 3 l 4
o A
1 11
5 1 4 1
6z y ?“mﬁ

Ans. 2=6,y=9,2=4.

7 A person has two horses, and two saddles, one -of
which cost $ 50, the other $2. If he places the best sad-
dle upon the first horse, and the worst upon the second,
then the latter is worth $ 8 less than the other; but if he
puts the worst saddle upon the first horse, and the best upon
the other, then the latter is worth 3% times as much as the
first. What i is the value of each horse?

Ans. The first $ 30, the second $70.

8. What fraction is that, whose numerator being doubled,
and denominator increased by 7, the value becomes §; but
the denominator being doubled, and the numerator increased
by 2, the value becomes 1 Ans. %.

9. A wine merchant has two kinds of wine. If he mix 3
gallons of the worst with 5 of the best, the mixture is worth
81 per gallon ; but, if he mix 3} gallons of the worst with
8% gallons of the best, the mixture is worth $ 1,03} per
gallon. What does each wine cost per gallon?

Ans. 'The best $ 1,12, the worst $ 0,80.

10. A wine merchant has two kinds of wine. If he mix
a gallons of the first with b gallons of the second, the mix-
ture is worth ¢ dollars per gallon ; but, if he mix a’ galions
of the first with & gallons of the second, the mixture is
worth ¢’ dollars per gallon. What does each wine cost per
gallon? ’
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Ezamples to be solved by Elimination by Comparison.

Ans The firm STV e— (@) b e, the

ab—abd
—"(a'
second (atb)ac—(a+¥)ac dollars,
a'b—ab

11. Three masons, 4, B, C, are to build a wall. A and
B, jointly, could build this wall in 12 days; B and C could
accomplish it in 20 days; A and C would do it in 15 days.
What time would each take to do it alone?

Ans. A requires 20, B 30, C 60 days.

12. Three laborers are employed in a certain work. A4
and B would, together, complete it in a days; A and C
require b days; B and C require ¢ days. In what time
would each accomplish it singly ?

. 2abe . Qabe
Ans. A in —_b¢:+ac—ab days, B in b—c-}:—_a —ac days,
. Qabe
Cin a_b-]-—_iz'c—bc days,

13. A cistern may be filled by three pipes, 4, B, C. By
the pipes A and B, it could be filled in 70 minutes ; by the
pipes 4 and C, in 84 minutes; and by the pipes B and C,
in 140 minutes. In what time would each pipe fill it?

Ans. A in 105, B in 210, C in 420 minutes.

14. A, B, C play faro. In the first game A has the
bank, B and C stake the third part of their money, and
win. In the second game B has the bank, A and C stake
the third part of their money and also win. Then C takes
the bank, A and B stake the third part of their money and
also win. After this third game they count their money,
and find that they have all the same sum of 64 ducats,
How much had each when they began to play?

Ans. A had 75, B 63, C 54.
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Elimination by the method of the Greatest Common Divisor.

15. Five friends, A, B, C, D, E, jointly spend $879 at
an inn. This sum is to be paid by one of them; but, on
consultation, they find that none of them had, alone, enough
for this purpose. If, then, one of them is to pay it, the
others must give him a part of their money. A can pay,
if he receives one fourth; B, if he receives one fifth; C, if
he receives one sixth ; D, if he receives one seventh; and
E, if he receives one eighth of the others money. How
much has each?

—
Ans. A 8319, B 8459, C $543, D $599, E $ 639. _T”‘ L

‘165, Third Method of solving the Problem of art.
142, called that of Elimination by the method of the
greatest Common Divisor.

Solution. This method is generally inapplicable to trans-
cendental equations, but can be successfully applied in all-
other cases to eliminate one unknown quantity after an-
other, until the given equations are reduced to one.

In order to eliminate an unknown gquantity from
two equations which contain it, reduce them as in
arts. 105 and 118, and arrange their terms accord-
ing to the powers of the quantity to be eliminated,
taking out each power as a factor from the terms
which contain it.

It being now recollected that the second member of each
of these equations is zero, it will appear evident that, if the
first members are divided one by the other, the remainder
arising from this division must likewise be equal to zero ;
for this remainder is the difference between the dividend
and a certain multiple of the divisor, that is, between zero
and a certain multiple of zero.

('R
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Elimination by the method of the Greatest Cornmon Divisor,

Hence, divide one of these first members by the
other, and proceed, as in arts. 60, &c., to find their
greatest common divisor ; each successive remainder
may be placed equal to zero. But a remainder will
at last be obtained, which does not contain the quan-
tity to be eliminated ; and the equation, formed from
placing this remainder equal to zero, is the equation
Jrom which this quantity is eliminated.

By eliminating, in this way, the unknown quan-
tity from either of the equations which contain it,
taken with each of the others, a number of equations
ts formed one less than that of the given equations,
and containing one less unknown quantity ; and to
which this process of elimination may be again ap-
plied until one equation is finally obtained.

156. Scholium. It sometimes happens, that the
first members have a common divisor which contain
the given unknown quantity ; and, in this case, the
process cannot be continued beyond this divisor.

But as the given first members are multiples of their com-
mon divisor, they must be rendered equal to zero by those
values of the unknown quantities which render the com-
mon divisor equal to zero ; that is, the two given equations
are satisfied by such values of the unknown quantities;
g0 that, though they are in appearance distinct equations,
they are, in reality, equivalent to but one equation, that is,
to the equation formed by placing their common divisor
equal to zero.

157. Scholium. Care must be taken that no fac-
tor be suppressed which may be equal to zero.
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Examples of Elimination by the method of the Greatest Common Divisor

158. ExXAMPLES. ’

1. Obtain one equation with one unknown quantity from
the two equations .
B4yt —y345=0,
P4y2z—565=0,
by the elimination of z.
Solution. Divide the first members as follows.
2Bt ya?— y3—|-5|z3-|-7/9:c—
4 y2z—5
1st Rem. yz’—y’zf-y3+10
Divide the preceding divisor by this remainder after mul-
tiplying by y to render the first term divisible.
yo*+y’z—5y yB2—yPz—y34-10
yB—y2rl— Pz 4-10z|2t 9
P24+ Ry —10)z—5y
yrhA— 9 z—y'410y
2d Rem. 32— 10)z4y*—15y.
Divide the preceding divisor by this remainder after mul-
tiplying by (3 y3 — 10) to render the first term divisible.
y22—y?z—y34-10
3y3—10

33 |y2?2— 3y5 z— 3y5—100|| 33|24 y*
—10 +10y2| 44033 10| —15y
3|yt yi|= yz, — 445
--10|v —15y® 45y
— 4yd |z — 3y8—100 Multiply by
+2597] +409 (35°—10),
3y3—10

(35°—10) (—45°+25 %) z—95°+150 y°—700 3°-1000
(85°—10) (—49°254%) s —4y° 854°375y°
—5y°+ 65y — 325 y°4-1000,
whence the required equation 18
- —6y 46538 —325 y3 1 1000 = 0.
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Examples of Elimination by the method of the Greatest Common Divisor

2. Obtain one equation with one unknown quantity from
the two equations
24P =a,
B4y =19,
by the elimination of z.
Ans. (3 —a)8— (y5—0)3=0.
3. Obtain one equation with one unknown quantity from
the two equations
2} 2=2,
B4 By+22y02 4z Fyi=1,
by the elimination of z.
Ans. 38 —4y°4 14yt —20y249=0.
4. Obtain one equation with one unknown quantity from
the two equations
P2tzyty3=1,
Pt y3=0,
by the elimination of z.
: Ans. 4y5—6yt 4338 —1=0.
5. Obtain one equation with one unknown quantity from
the two equations

Bhydtzty=4,
P44 yz=3,
oy the elimination of z.
Ans, Either y—1=0, or y®—3y 4+ 21=0.
6. Obtain one equation with one unknown quantity from
the three equations
2+ Yy +z=a,
2242y +yz=4,
Tyz=c¢,
by the elimination of z and y.
Ans, 2—az? 4 bz—c=0.

¢
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Exzamples of Elimination by the method of the Greatest Common Divisor.

7. Obtain one equation with one unknown quantity from
the three equations

z4+y+2z2=a,

B4 y24-23=0,

zy+zztyz=c,
by the elimination of z and y.

Ans. These three equations involve an imposs:bility
unless :
ald—b—2¢c=0;
and in case this equation is satisfied by the given values
of a, b, and ¢, the three given equations are equivalent
to but two, one of them being superfluous, and, by the
elimination of z, they give the indeterminate equation
with two unknown quantities

v¥+yz422—ay—az4c=0. .

8. Obtain one equation with one unknown quantity from
the three equations '

z+y =4,
y+2£=2,
z422=10,

by the elimination of z and y.
Ans, 28—828 41624 4-z2—10 =0.

9. Obtain one equation with one unknown quantity from
the four equations

z+y+z4u=a,

zy+zz4zutyzfyutfzu=d -
ryz4zyutzzufyzu=c,
Tyzu=¢,

by the elimination of z, y, and z.
Ans. vt —aw4-bul—cufe=0.

\
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Elimination by Addition and Subtraction.

10. Solve the two equations
yr?—23}fz2=3,
yz(ys*4-1)—234-2=86.
Solution. The elimination of z gives
3y—3=0,0ry=1;
which, being substituted in the first of the given equations
produces z=3.

11. Solve the two equations
22 y'—8y?27 41622 =902y 460 (z—y?) —720 (y —1)
(*—4y+4)=z__ 12

5 3_?

Ans. z—=4,y=2.
12, Solve the three equations
zy+2=5’
zyz+ 22 =15,
2P+ 2y—2z4 22z =8.
! Ans. 2=2,y=1,2z =3,

o

v 159 Problem. To solve two equations of the first
degree by Elimination by Addition and Subtraction.

Solution. The given equations may, as in art. 146, be
reduced to the forms
Az-+By+M=0,
Az By+ M=0.
The process of the preceding article, being applied to
‘these equations in order to eliminate z, will be found to be
the same as to

Multiply the first equation by A’ the cocfficient of
~ tn the second, multiply the second by A the co-
efficient of x in the first, and subtract the first of
these products from the second.
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Examples of Elimination by Addition and Subtraction.

Thus, these products are )
AAz4+ABy+ A M=0,
AAz4+ABy+ AM=0;

and the difference is
(AB—AB)y+ AM — A M=0;
whence
_AM—AMN
Y=4Bp—aB
In the same way y might have been eliminated by multi-
Pplying the first equation by B’, and the second by B, and
the difference of these products is
(AB —A'B)z+ B M—BM=0;
whence
.= BM —-BM
AB —A' B’ )
the values of z and y thus obtained being the same as those
given in art. 146,

160. Corollary. This process may be applied with
the same facility to any equations of the first degree.

161. ExAMPLES.

1. Solve, by the preceding process, the two equations
13247y—341="74y + 43} z,
2z+4%3y=1
Ans. £ = —12, y=>50.

2. Solve, by the preceding process, the two equations
3z + ty= 6,
tz+ty=>5%
Ans, =12, y =186,
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3. Solve, by the preceding process, the three equations
2+ y+ z2=30,
8z +4y 42z = 50,
Rz +9y+3z=64.
Ans. z=4,y= — 7, 2=36%.
4. Solve, by the preceding process, the three equations
3z—100 =51y + 360,
2% z 4 200 = 163 z — 610,
2y +3z=>548
Ans. z =360, y = 124, z = 100.
5. Solve, by the preceding process, the four equations
z2—9y 4+3z—10u=2I,
224+ 7y— z— u= 683,
8z4+ y+456z4+ 2u =195,
4z—6y —22— 9 u=516.
Ans. =100, y= 60, 2= — 13, u=—50.
6. Solve, by the preceding process, the four equations
3z+ 3y + §2=758,
fz+dy+ 42=76
32+ g2+ 3u="79,
y+ z+4 u=24S
Ans, z =12, y=30, =168, u=50.
“ 7. Solve, by the preceding process, the six equations

zt+y42z24t4u =20,
z2t+y+ztudw=21,
sdytrttfo—22
zdyfutttuw=—23,
ztz4utt 4 w=24,
y+z4udft4 wv=25.

Ans. 2=2,y=3,2=4,u=056, t =6, v="T.
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Examples of Elimination by Addition and Subtraction.

8. A person has two large pieces of iron whose weight is
required. It is known that Zths of the first piece weigh
96 Ibs. less than $ths of the other piece; and that §ths of
the other piece weigh exactly as much as #ths of the first,
How much did each of these pieces weigh ?

Ans. The first weighed 720, and the second 512 lbs.

9. $2652 are to be divided amongst three regiments) jn
such a way, that each man of that regiment which fought
best, shall receive $1, and the remainder is to be divided
equally among the men of the other two regiments.) Were
the dollar adjudged to each man in the first regiment, then
each man of the two remaining regiments would receive
8 1; if the dollar were adjudged to the second regiment,
then each man of the other two regiments would receive
8 1 ; finally, if the dollar were adjudged to the third regi-
ment, each man of the other two regiments would receive
$31. What is the number of men in each regiment ?

Ans. 780 men in the first, 1716 in the second, and
2028 in the third regiment.

10. To find three numbers such that if 6 be added to
the first and second, the sums are to one another as 2 : 3;
if 5 be added to the first and third, the sums are as 7 : 11 ;
but if 36 be subtracted from the second and third, the re-

mainders are as 6 : 7.
Ans. 30, 48, 50,
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Indcterminate Coefficients.

CHAPTER IV.

NUMERICAL EQUATIONS.

SECTION L

Indeterminate Coefficients.

162. Theorem. If a polynomial
A4 Bz C2*+ D 2* 4 E 2* 4 &e.

8 such, as to be equal to zero independently of x,
that s, if it is equal to zero whatever values are
given to X, it must always be the case that

A=0,B=0,C=0,D =0, E=0, &c.;

that 1is, that the aggregate of all the coefficients of
each power of x is equal to zero, and also the aggre-
gate of all the terms which do not contain x is equal
to zero.

Proof. Since the equation
A4+ Bz+Ca® 4+ Dr3 4 &c.=0

is true for every value which can be given to z, it must be
true when we make

z=0;
in which case all the terms of the first member vamsh ex
cept the first, and we have

A=0.
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‘Indeterminate Coefficients.

This equation, being subtracted from the given equation,
ghes Bz 4 C22+ D234 &c. =0;
and, dividing by =z,
B4 Cz+ D224 &c.=0;
whence we may prove as above, that
B=0.
By continuing this process, we can prove that

C=0,D=0,E=0, &ec.

163. Theorem. If two polynomials
A+Bz+ C2*+ D 22+ E 2*+ &,
A+ Bz+4C2?+ D'a*+ E'z* 4 &e.
are identical, that is, equal, independently of x, it
must always be the case that
A=A, B=PRB,C=C, D=D, &c.

Proof. For the equation _
A+Bz4C224-&c. = A" B'z+4 Ca®4&ec.
gives, by transposition,
(A—A4') 4 (B—B)z4(C— €)1 &e. =0;
‘whence, by the preceding theorem,
A—A'=0,B—B'=0,C—C'=0, &ec.;

that is,
A=A, B=PB,C=0C, &c
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A Function ; its Variable, and Rate of Change.

SECTION II.

Derivation.

164. Definstion. When quantities are so connect-
ed that their values are dependent upon each other,
each is said to be a function of the others: which
are called variables when they are supposed to be
changeable in their values, and constants when they
are supposed to be unchangeable.

Thus if y=azx+5b
y is a function of the a, b, and z; but if z is variable while
a and b are constant, it is more usual to regard y as simply
4 function of z.

165. Definition. In the case of a change in the
valué of a function, arising from an infinitely small
change in the value of one of its variables, the rela-
tive rate of change of the function and the variable,
that is, the ratio of the change in the value of the
function to that in the value of the variable, is called
the derivative of the function.

The derivative of the derivative of a function is
called the second derivative of the function ; the de-
. rivative of the second derivative is called the third
dertvative ; and so on.

166. Corollary. The derivative of a constant ts
zero.

167. Corollary. The derivative of the variable,
regarded as a function of itself, s unity; and the
second derivative is zero.
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The Derivative of the sum of any Functions.

168. Theorem. The derivative of the sum of two
Junctions is the sum of their derivatives.

Proof. Let the two functions be u and v, and let their
values, arising from an infinitesimal change i in the value
of their variable, be »' and v'; the increase of their sum

will be
W +v) — ()
v —udv—o,
and therefore the derivative of the sum is

or

v—u  v—o
i + i
which is obviously the sum of their derivatives,

169. Corollary. By reversing the sign of v, it
may be shown, in the same way, that the dertvative
of the difference of two functions is the difference of
their derivatives.

170. Corollary. The derivative of the algebraic
sum of several functions connected by the signs -
and — is the algebraic sum of their derivatives.

171. Corollary. If, in this sum, any function is
repeated any number of times, its derivative must be
repeated the same number of times ; in other words,
if a function is multiplied by a constant its dertva-
tive must be multiplied by the same constant.

Thus, if the derivatives of u, v, and » are respectively
U, V, and W, and if g, b, ¢, and e are constant, the deriv-

ative of :
autbv—cwe

aUFbV—cW.

10*
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The Derivative of a Power.

172. Problem. To find the derivative of any
power of a variable.

Solution. Let the variable be a and the power a*, and
let b differ infinitely little from a; the derivative of a* is

then o —a
b—a"
Now when b is equal to a, the value of this quotient is,
by art. 51, na*—1;

and this must differ from the present value of this quotient,
by an infinitely small quantity, which being neglected gives
na*—1

Jor the derivative of a™.

The derivative of any power of a variable is,
therefore, found by multiplying by the exponent, and
diminishing the exponent by unity.

173. Corollary. The derivative of m a* when m is con-
stant and a variable is nm a»—1,

174. Problem. To find the derivative of any
power of a function.

Solution. Let the variable be a, the function %, and the
power u* ; let b differ infinitely little from a, and let v be
the corresponding value of u; if U is the derivative of u
and U? that of u®, we have

ot —ut 0 —u
U = b_a,and U._.b_a.
But, by art. 51,
v;—t:‘“ =nu-l,
vhich multiplied by
U=t

b—a
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The Derivative of a Power.

gives
U =

»—u* v—u__ " —u"

— -1
v—u b—a” b—a =nuw1 U,

The derivative of any power of a function ts,
therefore, found by multiplying by the exponent and
by the derivative of the function, and diminishing
the exponent by unity.

175. EXAMPLES.

Find the derivatives of the following functions in which
2 is the variable. )
1. 2% Ans. 2 z.
2. 3. ' Ans. 323
3 »Jazm4bzr  &ec.
Ans. nz*~14-mazm~14pbzr~1 4 &ec.

4 A4+Bz+4C2*4 D13+ Ezt Fa254 &c.

Ans. B4-2Cz+43D %44 E234-5 Fit4-&ec.

5. a4z ’ Ans, 1.
6. (a4 z)3 Ans. 2 (a4 z).
7. (a4 z)3 Ans. 3 (a4 z)%.
8. (a4 2)". Ans. n(af-z)"~L
9. (a4 bx) Ans. 2b (a4 b2).
10 (a4 d=x) Ans. nb (a+4baz)*—1,

176. Problem. To find the derivative of the pro-
duct of two functions.

Solution. Let u and v be the functions, and U and V
their derivatives ; then, since the derivative 18 the rate of
change of the function to that of the variable, it is evident
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The Derivative of a Product.

that when the variable is increased by the infinitesimal ¢,
that the functions will become

u4 Uiand 04 Vi,
The product will therefore change from

uv
to

(w4 Ui)(v4-Vi)=uvtoUi+u Vs-l- Uvs,
and the increase of the product is
oUituVi4UV3;
the ratio of which to ¢ is
vU4uV4UV;,
or, neglecting the infinitesimal U V', it is
vU+uV; ’
that is, the derivative of a product of two functions
ts equal to the sum of the two products obtained by

multiplying each function by the derivative of the
other function.

177. Corollary. The derivative of

(z—a)v

is, then,
n(z—a)*~lo4 (z—a) ¥,
because the derivative of
(2 — )"
is
n (z— a)*—-L\




ca. 1w, § u] NUMERICAL EQUATIONS, 117

Solution of Numerical Equations.

SECTION HI.

Numerical Equations.

178. Definition. A numericul equation is one all
whose coefficients are given in numbers, so that it
qvolves no literal expressions except those denoting
the unknown quantities.

179. Problem. To solve a numerical equation.

Solution. Let the equation be reduced as tn arts.
105 and 118, to the form

u=20.

Find by trial a value of the unknown quantity x
which nearly satisfies this equation, and let this
value be a; substitute this value in the given equa-
tion, and let the corresponding value of u be m. A
correction e in the value of a is then to be found,
which shall reduce the value of u from m to zero.
Now, if U is the derivative of u, and if M s the
value of U which corresponds to

z=a,
M is, by art. 165, the rate at which u changes in
comparison with z, so that when
z=a }e
‘wu=m -+ Me=0,
and therefore
m

e== — 1—";—-, rz=a}e=a— T

By this means a value of x is found which ¢s not
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Rate of Approzimation.

If also the value of Q_Nﬁ is found to be such that

N 1
M < %
then the inaccuracy of e® or of a' is

N 1
g © < e
that is, a' s accurate to the (2 g - k)th place of
decimals and the division of m by M may be carried
to this extent. .

182. Corollary. When the given equation has
the form
u = h,
in which A is a given number, it may be brought to
the form

u—h=0,
so that the value of the final member when
r=a
18
m — h,

while the value of the derivative is M, because A
does not vary, and, therefore,
m—h h—m

M T M
which is often a more convenient form in practice
than that of art. 179.

e == —
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Solution of Numerical Equations.

183. ExXAMPLES.

1. Solve the equation
BP—8z=—1,
which has three roots, the first being nearly 2, the second
nearly 0, and the third nearly — 2.
Solution. This equation, compared with arts. 179 - 182,
gives :
u=23—3z,h=—1,

U=23822—3; deriv.of U=61z.

Hence, if
a=2,

m=8—6=2, M=12—3=9, N=12,
N 12
SH =18 <LEk=0,
h—m —1—2
M — 9
ad=a}e=2—-03=17,
h—m'= — 813, M' = 567,
¢=—"15, g =0, a =155,
h —m" = — 0073875, M'' = 42075,
e = —-018, g" =1, a' = 1'532,
h— m'" = 0-000359232, M'"' — 4-041072,
e = 0-00008889, g — 4, a" = 1-53208889,
which is accurate to 2 g = 8 places of decimals,

=—3=—3,g=0,

This process may be arranged in the following form, in
the first column of which, 4 is placed at the top, and the
successive values of — m above each horizontal line with
those of & — m below it. In the second column are placed
the successive values of the divisor M. In the third column

the first approximation a is placed at the top of the table
1
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Solution of Numerical Equations.

and the successive values of e, above each line with those
of a - e below it.

M
h.—1° 2 a.
—_—m, —2
A—m. —3- 9 — 03 e
0-187 17 ate
—03813 567 —0-15
0926125 155
— 0073375 42075 |—0018
1:000359232 ~ 1532
0-000359232 4-041072 0-00008339
T 1-532088S9

In the same way may the second and third roots be
found, as follows.

N
When z_03,2M 546’ k=0.
-1 0
0.
—I —3- 0-3
0873 03
—0'127 —273 [ 004
0-980696 034
0019304 —26532 | 00073
— 1-000009615183 03473
~0-000009615183|— 2:63514813|— 0-0000036446

The second root = 0-3472963554

N 2
‘When z_.—-2,2M -3 k=0.
—_1 . —_9
2.
1- 9 01
1:159 —-19
0-159 783 [__002
1-004672 ~188
0004672 76032 0-000614

The third root = — 1-879386
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2. Solve the equation
28— 122 = — 132,
which has a root nearly equal to — 6.
Ans. — 587205266,
3 Solve the equation
24 4 822 416 z — 440,
which has two roots, the first being nearly 4 and the second
nearly —4. Ans. 3-97601 and — 4-350577.
4. Solve the equation
24 —20z = — 19,
which has two roots, the first being nearly 1, and the second
nearly 2. Ans. 1-0928 and 1-59407.
5. Solve the equation
523 —62z—=—2,
which has three roots, the first being nearly 1, the second

nearly 0, and the third nearly — 1.
Ans. 0856, 03785, —1-2345.

184. Problem. To find any root of a number.
Solution. If the required root is the nth root of the num-
her A, this problem is equivalent to solving the equation
™ =h;
so that, if the preceding solution is applied to this case, we
have

u=z", U=n 2"},
185. Corollary. When z = aq,
m=a", M=na""1, N=n(n—1)a"~*3
N n(n—1)a—2_ n—1
@M~ 2na-' T 2a’

186. Corollary. It may be observed, since
(102 ¢)* =103 ¢ ;
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Extraction of Roots.

s0 that if,
e < 10,
10® e << 10%+1, (10% e)* < 10=@+1) 5
and if
e>1,

100 e > 108, (10%e)* > 10°%;

that is, if the root is between 10* and 10> +! the nth pawer
is between 10" ® and 10*3+*; or, otherwise, if the left hand
significant figure of the root is b places from the decimal
point, that of the power must be as many as b times n
places from this point, and less than -1 times n places
from it ; which, combined with the preceding articles, gives
the following rule for finding the root of a number.

Divide the given number snto portions or periods
beginning with the decimal point, and let each por-
tion or period contain the number of places denoted
by the exponent of the power.

Find the greatest integral power contained in the
left hand period ; and the root of this power is the
left hand figure of the required root, and is just as
many places distant from the decimal point as the
corresponding period is removed by periods from
this point.

Raise the approximate root thus found to the given
power and subtract it from the given number, and
leave the remainder as a dividend.

Raise, again, this approximate root to the power
next inferior to the given power, and multiply it by
the exponent of the given power for a divisor.

The quotient of the dividend by the divisor gives
the next figure or figures of the root.
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Extraction of Roots.

The new approrimate root, thus found, is to be
used in the same way for a new approzimation.

The number of places to which each division may
usually be carried, is so far as to want but one place
of doubling the number of places, to which the pre-
ceding approrimation was found to be accurate.

186. ExampPLES.

1. Find the fourth root of
5327012345641,

Solution. In the following solution, the columns are the
same as the first and second columns in art. 183, except
that the top number of the second column is the root which
is separated by space into the parts obtained by each suc-
cessive division, and the number at the top of the first
column is divided by spaces into periods.

63 2701 2345+ 641 |2 T* 016

16
37 2701 2345 641 | 32000000
53 1441

1260 2345- 641 | 78732000

Ans. 270°16.

. Find the 4th root of 79502005521. Ans. 531.
. Find the 3d root of 75686967. Ans. 423.
. Find the 3d root of 128787625. Ans. 505.

. Find the 3d root of 20548344701. Ans. 5901.
. Find the 3d root of 512768384064, Ans. 8004.
. Find the 3d root of 524581674:625. Ans. 806'5.

TGN

* This figure must, in the present case, be found by trial, becanse the
first quotiont is su inaccurate.
1*
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Roots of Fractions.

8. Find the 3d root of 1003-003001. Ans. 10-01.
9. Find the 3d root of 0:756058031. Ans, 0911,
10. Find the 3d root of 0-:000003442951. Ans. 0-0151.
11. Find the 5th root of 418227202051. Ans. 211.
12. Find the 4th root of 75450765-3376.  Ans. 932.
13. Find the 5th root of 0-000016850581551.

Ans. 0-111.
14. Find the 4th root of 2526:88187761.  Ans. 7-09.
15. Find the 3d root of 12. Ans. 2280 1.
16. Find the 3d root of 28-25. Ans. 3:045 }-.

187. Corollary. 'T'he roots of fractions can be
found by reducing them to their lowest terms, and
extracting the roots of their numerators and denomi-
. nators separately.

The roots of mixed numbers can be found by
reducing them to improper fractions.

188. ExaMPLES.

1. Find the 3d root of 2. Ans. §.

2. Find the 3d root of }14%8. Ans. 3§.
3. Find the 3d root of A7fy. Ans. .
4. Find the 3d root of 643%%. Ans. -149.
6. Find the 4th root of 3}3. Ans. 14,

189. Corollary. In the case of the square root,

we have
u=24 U =2z,

m=a’, M=2a;
and, since the square of @ + & is
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The Sq Root of Numb

(a+h)P=a*4+2ah+hr=a*+(Ra+h)h
it is unnecessary to find the square of the whole root
at each successive approximation ; for the square of
a being already subtracted, it is sufficient to subtract
(2@ + k) k from the remainder, in order to obtain
the next remainder. In this way, we obtain the fol-
lowing rule for the extraction of the square root.

To extract the square root of a number, divide it
tnto periods of two figures each beginning with the
place of units.

.Find the greatest square contained sn the left
hand period, and i3 root is the left hand figure of
the required root.

Subtract the square of the root thus found from
the left hand period, and to the remainder bring
down the second period for a dividend.

Double the root for a divisor, and the quotient of
the dividend exclusive of its right hand figure, di-
vided by the divisor, is the next figure of the required
root ; which figure is also to be placed at the right
of the divisor.

Multiply the divisor, thus augmented, by the last
figure of the root, subtract the product from the
dividend, and to the remainder bring down the next
period for a new dividend.

Double the root now found for a new divisor and
continue the operation as before, until all the periods
are brought down.
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The Square Root of Numbers.

190. ExamPLEs.
1. Find the square root of 28111204.
Solution. The operation is as follows
' 28111204 |5302 = Ans.
25

1st Rem. 311|103 1st Divisor,
309

2d Rem. 212|106 2d Divisor.
3d Rem. 21204| 10602 3d Divisor.

21204
4th Rem, 0.
2. Find the square root of 61009. Ans. 247

3. Find the square root of 57198969. Ans. 7563.
4. Find the square root of 1607448649. Ans. 40093.
6. Find the square root of 48303584:206084.

Ans. 6950-078.

6. Find the square root of 0-000256. Ans. 0-016.
7. Find the square root of $§§. Ans. §§.
8. Find the square root of 1%. Ans. 14.
9. Find the square root of 5. Ans. 2:236 4.
10. Find the square root of 101. Ans. 10049 4.
11. Find the square root of 9-6. Ans. 3098 4.
12. Find the square root of 0-003.  Ans. 005477 4-.
13. Find the square root of 10. Ans. 316227 4-.

14. Find the square root of 1000.  Ans. 31:6227 .

191. Corollary. The roots of vulgar fractions and
mixed numbers may be computed in decimals by
first reducing them to decimals.
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The Square Root of Numbers.

192. ExaMPLES.
1. Find the square root of 14 to 4 places of decimals.
Ans. 02425 4.

2. Find the square root of & to 3 places of decimals,
Ans. 0645 4.
3. Find the square root of 13 to 2 places of decimals.
Ans. 132 4.
4. Find the square root of 114} to 3 places of decimals.
Ans. 3418 -
* 8. Find the 3d root of % to 3 places of decimals.
Ans. 08734-.
6. Find the 3d root of § to 3 places of decimals,
Ans. 0941 -,

7. Find the 3d root of 15§ to 3 places of decimals,
Ans. 2:5024-.
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Power of a Monomial.
CHAPTER V.
R * POWERS AND ROOTS.
WV
SECTION 1.

Powers and Roots of Monomials.

193. Problem. To find any power of a monomial.

Solution. The rule of art. 28, applied to this case, in
which the factors are all equal, gives for the coefficient of
the required power the same power of the given coefficient,
and for the exponent of each letter the given exponent
added to itself as many times as there are units in the ex-
ponent of the required power. Hence

Raise the coefficient of the given monomial to the
required power ; and multiply each exponent by the
ezponent of the required power.

194. Corollary. An even power of a negative
quantity is, by art. 32, positive, and an odd power is
negative.

195. ExaMPLES.

1. Find the third power of 2a2b5¢c.  Ans. 8a8b15¢3,

2. Find the mth power of a®, Ans. a™ ™,
8. Find the — mth power of a*. Ans. a==»,
4. Find the mth power of a—*. Ans. a==*

5. Find the — mth power of a—. Ans. a®~.




CH. V. §1.] POWERS AND ROOTS OF MONOMIALS. 131

Root of a Monomial ; imaginary quantity.

6. Find the 6th power of the 5th power of a3 b ¢2.
Ans, a% b30 ¢80,
7. Find the gth power of the — pth power of the mth
power of a—*, Ans. a™nr1,
8. Find the rth power of a™bd—*c? d.
Ans. anrb="rcPrd".
9. Find the —3d power of a—8b3c¢—5f6 z~1,
Ans. a8b—9 c18 f—18 43,

. at bs al6 520
10. Find the 4th power of — Erra Ans. de_‘T‘
11. Find the — 2 mth power of the — 1st power of = d“'
at™ him
Ans, ;;—.Tm‘.

12. Find the 5th power of —2 a2, Ans. —32al0,
13. Find the 4th power of —35=3.- Ans 815618,
14. Find the 5th power of the 4th power of the 3d power

of —a. Ans. a8,
15. Find the — 5th power of the — 3d power of —a.
Ans, —a'“

16. Find the — 4th power of the —3d power of — 3-.
‘ al?
ns. 'b—fg.

196. To find any root of a monomial.

Solution. Reversing the rule of art. 193, we obtain im-
mediately the following rule.

Eztract the required root of the coefficient ; and
divide each expenent by the exponent of the required
root. '

[ O
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Fractional Exponents ; imaginary quantities.

197. Corollary. 'The odd root of a positive quan-
tity is, by art. 194, positive, and that of a negative
quantity is negative. The even root of a positive
quantity may be either positive or negative, which is
expressed by the double sign = preceding it. But,
since the even powers of all quantities, whether
positive or negative, are positive, the even root of
a negative quantity can be neither a positive quan-
tity nor a negative.quantity, and it is, as it is called,
an imaginary quantity.

198. Corollary. When the exponent of a letter
is not exactly divisible by the exponent of the root
to be extracted, a fractional exponent is obtained,

which may consequently be used to represent the
radical sign.

199. ExAMPLES.

1. Find the mth root of a™*, Ans. a®,
2. Find the mth root of a—=* Ans. a=*,

3. Find the square root of 9 a4 52 f—13 g—8s,
Ans. =3 a2b f-6g—4",

. ad b0 ¢4 a2bSc

4, Find the 4th root of 16d8 6 Ans. :‘l':u-—da—z-‘

5. Find the 9th root of —236at589,  Ans, —24asb.

6. Find the mth root of a®, .

Ans. a™.

7. Find the mth root of 1 _g-a

« XN mth root O '&."o A”' —=_a ()
a™
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Calculus of Radicals.

a* br

8. Find the mth root of —— T Ans. % bm o 6 -‘—..
9. Find the 5th root of — a3 Ans. — ab.
10. Find the square root of a. Ans. ab.
11. Find the 3d root of —a. Ans. —ab.
12. Find the mth root of a. Ans. ab

200. Corollary. By taking out —1 as the factor
of a negative quantity, of which an even root is to be
extracted, the root of each factor may be extracted

separately. .

201. EXAMPLES.
1. Find the square root of — a2 Ans. ay/—1,
2. Find the 4th root of —at8¢3, ‘
3. Find the 8th root of —a.

Ans. ab’c& :/— 1.
Ans. ot :/—l

SECTION 1II.
Calculus of Radical Quantities.

202. Most of the difficulties in the calculation of
radical quantities will be found to disappear if frac-
tional exponents are substituted for the radical signs,
and if the rules, before given for exponents, are ap-
plied to fractional exponents.

In the results thus obtained, radical signs may
again be substituted for the fractional exponents ;

12
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Examples in the Calculus of Radical Quantities.

but, before this substitution s made, the fractional
ezponents in each term should be reduced to a com-
mon denominator, in order that one radical sign
may be sufficient for each term.

When numbers occur under the radical sign, they
should be separated into their factors, and the roots
of these factors should be extracted as far as pos-
sible.

Fractional exponents greater than unity should
often be reduced to mized numbers.

203. EXAMPLES.
1. Add together 7 o/ 54 a3 55 &3 and 8 o/ 16 a3 85
Solution. We have
TUMSPS=Ty2.B.dkc=7.28.3.aste¢
=o1.2% as' ¥ =a1.2bas sl
=2labcy2bs
3U/168b3=372a0i=3.2%.abk,

=3.2.2Ya088 c=6abcy2,
whence

79540355343 /1643853 =2labe o/ 26346 abc /209
=27abcy 28

2. From the sum of /24 and 4/ 54 subtract /6.
Ans. 4 /6.

8. From the sum of /45¢3 and o/ 5a2csubtract /8063,
: Ans. (e —rc) /5ec.
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4, Find the continued product of :} a, :/b, and :/c.
Ans. :/a be.

8. Find the continued product of av:/ z, b,:/y, c :/ 2.
Ans. abe :/ Ty

6. Multipsy ¢4/ ¢ by b4/ a. Ans. abe.
7 Multiply :/ a by :/ a. Ans. :/2 a7= aﬁ.
ﬂ+1l ma

8. Multiply Ja by :/a. Ans. a ™™ = an+»,
9. Multiply :/a3 by :/af‘. Ans. aﬁ=a9:/’a’.

10. Find the continued product of a"* 1' -1,
Ans a% =a v a

11. Multiply b":/a"3 by at ot
Ans. a¥2p-3 . — -b_v_

k
by -a-——b.

-2 ,
¥,i, ,K,
Ans. a® b "'—-aﬂJ
13, Multiply 3445 by 2—+/6. Ans. l—v5
14 Multiply 7424/6 by 9—54/6.
Ans. 3—174/6.

16 Multiply 13—4+/6 by 743 4/5.

Ans. 764-824/8.
16 Multiply 34543 by 3 —7v %
. Ans. —8—%Y /4.
17. Multiply —6—+/% by —544/3.  Ans. 24}.

12. Multiply

a
b3 2
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18. Multiply 9424/ 10 by 9—24/10.  Ans. 41.

19. Multiply 24/8 +34/5—74/ 2 by v/ 72—54/20
—24v2. Ans. —1744424/10.

20. Multiply a4-+/b by a—4/b. Ans. a®—b,
21.

[

Multiply /a+4+/b6 by vy a—4/b. Ans. a—b.

22, Multiply o/ a--cv/ b by v/ a—cy/b. \
Ans. a— Sy B9,

23. Multiply v/ a3+ 5% by o a%— /5% .
Ans. ay/a— /b4

24. Divide :/ a by :/ b. Ans. 0%
25. Divide a by 4/ a. Ans, / a.
96. Divide 2ab%¢S by 44/ a®b 5 d. o
s
. Ans. QJT.
] [} 18 g7 '
27. Divide 4/ a®bc by /a3, Ans. Jb_c‘
.. ‘a a LN
28. Divide '\/T by ‘\/-b—' Ans. 4;—.
L my—n
29. Divide a* by . Ans.a 1 .
c
30. Divide c a¥ by da¥. Ans. 77
dya
31. Divide a® 6% by a-F -1, Ans, a’:/lﬂ.
c
82. Divide 20 by “'z‘:”? Ans, 2 ¥ 08
a3 bd¢ a¥

".‘._\‘
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To free an Equation from Radical Quantities.

204. Problem. To free an equation from radical
quantities.

First Method of Solution. F'ree the equation from
Jractions, as in art. 112.

Bring all the terms multiplied by either of the
radical quantities, whether they contain other radi-
cal quantities or not, to the first member, and all the
other terms to the second member of the equation.
Raise both members of the equation to that power,
which 13 of the same degree with the root of the radi-
cal factor of the first member, and this radical factor
will be made to disappear ; and by performing the
same process on the new equation thus formed, either
of the other radical quantities may be made to dis-
appear, and in most cases which occur in practice it
will be found that the equation can, in this way, be
Jreed from radical quantities.

205. ExamPLES.
1. Free the equation
(at2)F = 042t —(cf-o
from radical quantities.
Solution. The square of this equation is

atz=btz—20b+2)f (ct2 fcte;

hence, by transposition,

242 et =z—atbte,
the square of which is
4(b+2)(ct2)=(z—a-}btc)

12¢
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To free an Equation from Radical Quantities.

2. Solve the equation

:/z=a. .
Ans, z=a".

8. Solve the equation
5(9:— 1t =2 (2124)k.

Ans. z=1.
4. Solve the equation

1642 —z=2
(164 * Ans. z=238.

U 6. Solve the equation

@+ 40 =@+t B4

Ans. z=1

6. Free the equation

T+ =@—2f+1
from radical quantities.
Ans, 4231723434 2="57.

06. Scholium. There are cases, however, in which the
preceding method of solution is inapplicable on account of
the new radical quantities which are introduced by raising
the second member to the required power; but in all cases - .-
the following method will be found successful. " s s ".

207. Second Method of solving the problem of art.
204. Place each of the radical quantities equal to
some letter not before used in the equation, and raise
the equations thus formed to that power which is of
the same degree with the root of its radical quantity,
and substitute in the given equation for each radi-
cal quantity the corresponding letter. If, then, each
letter, thus introduced, is considered to represent a
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To free an Equation from Radical quantities.

new unknown quantity, the new equations, thus
Jormed, are of the same number with that of their
unknown quantities; and, since they are free from
radical quantities, all their unknown quantities buj ,
on: can be eliminated by the method of art. 155. 1

ﬁw/( 208. EXAMPLES.

1. Free the equation
@4+ —(@—zp )=
from radical quantities.
Solution. Place
y=@+z+1}
2= (22—z + l)'b;
PrB=24z41,
B=22—2z41;
and the given equation becomes

_———whence

y—z=1

If y and z are eliminated between these three equations,

the resulting equation is
2zt —81343922—624-28=0.
2. Free the equation
e+t a4aot=1
from radical quantities. ‘
Ans. ~z5+5z‘+4z3+7z9+82=0.°,w. <

209. When, in an equation, the same quantity is
affected by different radical signs, these radical signs,
axpressed by fractional exponents, may be reduced
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To free an Equation from Radical quantities.

to a common denominator, and, if a letter is placed
equal to that root of this quantity, which is of a de-
gree represented by the common denominator, these
different radical juantities may be represented by the
powers of this letter.

210. ExAMPLES.
1. Free the equation '
(a42)44 4 (a2 4 B(at o)t 4-Clat2)t =0
from radical quantities,

Solution. This equation becomes, by reducing all its
fractional exponents to the same denominator,

(a+2)T¥+4 (a+2)74 B (a4-5) 4 C(a+2) T =0;

whence, if we place
y=(a+z)ﬂ', or y3=a-z,
¥+ 4y*+By'+Cy=0,
$+AyP+By +C=0;

the solution of which gives the value of y, which, being
substituted in

we have

or

z=y® —a,
gives that of =

2. Free the equation
e+ 44+t =a
from radical quantities,

Ans. From the equation y8-}- y3{-y2=—a obtain the
value of g, and substitute it in 23 +4-7 = y5.
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Binomial Theorem.

3. Solve the equation

@z4+13y=3@2z4 13}
Ans. =368,
4. Solve the equation

G+e+a)i=14@34+21

Ans, z=2_5.

SECTION IN.

< ﬁ Powers of Polynomials.
2% N

" 211. Problem. To find any power of a binomial.

Solution. This power might be obtained directly by mul-
tiplication, but the operation is long and tedious, and can
be avoided by a process invented by Newton. To obtain
this process, let the given binomial be a{-z, let n be the
exponent of the power, and let the product be arranged
according to the powers of z, so that

(a4 2 =A+ Bz+ Cz®+4 D2* 4 Eat4&e.,
in which the coefficients, 4, B, C, &c., are to be deter-
mined ; none but positive integral powers of z are written in
the second member, because the product could, evidently,
give no others, and all the positive integral powers of z are
included, because the coefficients of any which are super-
fluous must be found to vanish.

First, To find the value of A. Let

z=0
and the development becomes
as = A.
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Secondly. To find the form in which a enters into the

development. Let
. a=1 =72,

and let the corresponding values of a*, B, C, &c., be
1, B, ', &c., and we have

(142 =14 B o+ C 22+ D' 23} &e.

ir. which 4/, B, C', &c., must be independent of a. The

product of this equation by a* is

a*(14-z)=(a+taz)*=a"4 B'a*z'+ C a" 2 2} &ec.,

in which, if we put z

ar' =z, 0r ' = —,

we have a
ar=a*"1z, a*2'2=a""%2%, &ec.,

and
(a42z)*=a*+4B'a*~124C a*~2234 D'a* 313 &ec.

Thirdly. To find the coefficients. The derivative of the
last equation is, by examples 4 and 8 of art. 175,

n(a4z)* 1= B'a*14-2C'a* %+ 3 D'a*3s2>-4 E'a* 13-}~
&ec.,

which, multiplied by (a--z), gives

n(a4z)*=B'a*2C a*1 23D’ a* 2224 E a* 313 &e
+ B'e* 1242 C' a*223{3D' a* %3} &e.

The product of (a + z)* by n gives, also,

n(a+z)* =ne*4-n B'ar1 z4-nC'am~2224-nD'a* 323+ &c.

which, compared with the preceding cquation, gives, by art.

163,

B =n,

2C+B=nB,or2C =(n—1)B', or C'=}(n—1)B';

3D'42C=nC, 3D'=(n—2)C', D=}(n—2)C;

4E+4-3D=nD', 4E=(n—3)D', E=}(n—3)D;

&ec. &ec. &ec. Y
S
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¢/~ The combination of these results gives

Sir Isaac Newton’s Binomial Theorem.

The first term of any power of a binomial ts tha
same power of the first term of the binomial.

In the following terms of the power the expon-
ent of the first term continually decreases by unity
whereas the exponent of the second term of the bine-
mial, which is unity in the second term of the power
continually increases by unity.

The coefficient of the second term of the power is
the exponent of the power.

If the coefficient of any term is multiplied by
the exponent which the first term of the binomial
has in that term, and divided by the place of the
term, the result is the coefficient of the mext fol-
lowing term.

212. Corollary. The equations of tha preceding article
give

B =n
I — n (”i— l)
c= 1. 2
,_n(r—1)(n—2)
D'= 1. 2. 3
&c.
Hence
(@4ap=atna-tzt 20D sy
"(——";' ‘)(";2)Mﬁ+"(”'2—l)(";2)(":3)a--w+&c.
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213. Corollary. 1f z is changed into — z in the pre-
ceding formula, it becomes .

(a—z)*=a*—na~1z 4 n__(ng— D) a3 73—

E_(_r%-&;_%) a3 12 4 &c.

the signs of every other term being reversed.

214. Corollary. ‘The preceding formula, written in the
reverse order of its terms, gives

(z+a)“—z‘+naz“"+ l) a2z"—2 4 &ec.
whence it appears that
The coeflicients of two terms which are equally

distant, the one from the first term, and the other
from the last term, are equal.

215. EXAMPLES.

1. Find the 6th power of 2’ — 3 b d,

Solution. Place z — 2%-6 =2ab?Be¢,

y=}bc*d;
and we have
zlf_*bcnd)c_ (z—y)e.
But, by the above formula,
(z—y)f=128—025y 152442 —20 2334 15 2%y4
—6zyd 4 y8;

in which, if we substitute the values of z and y, we have
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Rab=2¢--3bc?d)8=64a80"12c8 —48a%b%c7d+4-
15a'4 0cBd2—3a3b3c9d34 32 alcl0dt
—p g a3 d5 o gl b8 120,
- 2 Find the 10tL power of a4 b.
Ans. a19-4-10 a® b 45 a8 524120 a7 65 210 a8 b4 -}
252 a5 b5 - 210 a* 654120 a3 67445 626°-10 2 89
\ bio,
3. Find the 11th power of 1—z.
Ans. 1—11 z-4-5523—165 234330 24— 462 25-}-462 28
— 330274165 28 — 55 29 |- 11 210 — 211,
4. Find the 4th power of 5 —47z.
Ans. 625 — 2000 z-}- 2400 22 —1280 23 - 256 =4,

5. Find the 7th power of 3z 4 2.
Ans. phg oy By § S P P Ay 702y
+ 168x2y5 4224 zy6 | 128 y7.
6. Find the 4th power of 522 c®*d —4 abd?
Ans. 625 a8¢8 d4— 2000 a7 b ¢& d5 | 2400 af b2 c4 d6
— 128045632 d7 256 at b4d8. -

r,\ .
o’ 216. Problem. To find any power of a poly-
nomial.

Solution. Suppose the terms of the given polynomial to
be arranged according to the powers of any letter, as z, as

follows ;
atbz4c2?4dad+ert 4 &ec.,

in which the successive coefficients are denoted by the suc-
cessive letters of the alphabet. The following is

Arbogast’s rule for finding any power of the poly-
nomial.
k)
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The first term of the power s the same power of
the first term a of the given polynomial.

The coefficient of X in the second term is b times
the derivative of the first term taken with refercnce
to a.

To obtain any other coefficient from the preceding
coefficient ; let t be the letter farthest advanced in
the alphabet which is contained in any term of the
given coefficient.

Then r times the derivative of this term with ref-
erence o 4, is a term of the new coefficient ; but this
process is obviously inapplicable, or at least useless,
when q is the last letter of the given polynomial so
that t is zero.

If the given term contains the preceding letier p
as well as q, q. times its derivative with reference to
p, divided by the increased exponent of q, is also
a term of the new coefficient.

Thus the term 7" p* ¢’ gives, in the following
coefficient, the two terms
6 T p* ¢+ r and 6__’;__1 T p— g+
Proof. First. The value of the first term is obtained
precisely as in the binomial theorem by putting
z=0.
Secondly. Let V denote the given polynomial, so tha
V=a+br+c2?...4pazf gzt 4 &c
The derivative of V' with reference to p is, then,
Z’,
and that of V* is, by art. 172,
n Vr=lgs,
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the derivative of V with reference to g is
zo+], '
and that of V» is
n Vn=1 ga+1,

Let, now, the required power be the nth and let
Vri=A4+Bz4Ca®... + Pa® + Qz°+1 4 &e.
and let the derivatives of 4, B, C, ... P, Q, &c., with
reference to p be A/, B/, C', ... P!, Q', &c., and with
reference to ¢, A, B", C, ... P", Q", &c.; the deriva-
tives of the preceding equation with reference to p and ¢ are
nVrlg*=A'+B'z4C22... + P'2° 4+ Q 2°+1 4 &ec.
nVrlgstl=A"4+ B'z4C'22. .. 4+ P'2°4- Q" 22 +14 &e.

the first of which, multiplied by z, is
aVrlzgtl—=A'z 4 B'224-C13... 4 P'2v+1 4 Q'zv+24
&e.,
which, compared with the other, gives, by art. 163, for the
coefficient of z°+1,
P = Q//’
that is, the derivative of any coefficient with reference to any

letter p, is the same with that of the succeeding coefficient
with reference to the succeeding letter q.

Thirdly. Every term of Q, in which g is the letter far-
hest advanced in the alphabet, such as T p” ¢¢, must give
n Q" a similar term 0 T p* ¢°—1, or else, if

6=1,
a term T p*, in which there is no letter so far advanced as
¢. Every such term, as it belongs also to P, must be the
derivative of a similar term in P, that is, of a term in which
p is either the farthest advanced letter, or the next to the
farthest advanced letter. The terms of

P = Q"
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are, then, obtained from those of P by derivation, while
those of Q are obtained from those of its derivative Q" by a
process, which is the reverse of derivation, and which, by
art. 172, consists in multiplying by q, that is, in increasing
its exponent by unity, and dividing by its exponent thus in-
creased. This process is identical with the last paragraph of
the rule in this article, and the three preceding paragraphs
refer merely to those cases in which the increased exponent
of g is unity, so that the division by it is superfluous.

217, Corollary. If z is put equal to unity in the value

of
(a4 bz~ c2? 4 &ec.),
we have the value of
(e 46+ ¢+ &e.),

so that any power of a polynomial, the terms of
which contain no common letter, is readily found by
multiplying the successive terms, after the first, re-
spectively by z, 2%, 23, 24, &c., obtaining the power
of the polynomial thus formed, and putting

z=1
in the result.

218. EXAMPLES.

1. Find the 5th power of 14224 32%-}- 423
Solution. Represent the successive coefficients 1, 2, 3,
4 by a,b, ¢, and d, so that
a=1,0=2,¢c=8,d=4;
and the given polynomial becomes

at-bzr+tcr®}dad,

=~
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the fifth power of which, is found by the rule to be

a4 5atbz Satc |22 5atd |23420a3bd| xt
10 a3 b2 20a3bc 10 a3 3
10 a? 53 -+ 30 a2 b2¢
+ 5a bt
4-20a%cd |2’ 10 a3 d? | 28 30a2b R 2
+ 30 a2 )2d 60a%bcd 30a%c2d
30 a?b c? + 10a2 8 60 ab2cd
20 abdc R0 a b3d +20abcd
-+ b5 30 a b2 c2 5 b4d
5 bt IIO b3
30a%cd?|28 -+ 10a2d3 (20 J-20abd3|a10
30 ab2d® "4-60abcd? ~+ 30 ac?2d?
60 abc2d 20a c3d 30 b2 cd?
+ Sact 103 d?2 205 c3d
+2083cd 3062c2d e
+ 10 63 ¢3 5bct -
20acd3 |21+ 5adt|z1345bd4| 21345 cdix144d5215,
1- 1062 d3 +20bcd3| 4 10c2d3
-+30b6c2d?| 410c3d2

+ 5ctd
Now, if we substitute for a, b, ¢, d, their values, the pre-
ceding expression becownes
(1+4+22z+3a22+442%)5=14 10z 4 55 22 4 220 2?
-+ 690 2% 4 1772 25 | 3830 26 - 7040 27 4
11085 8 |- 14970 z° - 17203 21° - 16660 z11 4
13280 212 - 8320 213 |- 3840 214 -}- 1024 215,

2. Find the 3d power of a - bz -} ¢ 2%
Ans.a3-|-3a9bx+3a90|x‘3 6abc|?
+3ab? b
241 3bc2ad 328

3ac?
30%c
8. Find the 6th power of a 4 b 4 ¢.
Ans. a® +4-6a°b4-6ac 4 15at b2 430t b c 4
20a® 3+ 15a' ®4-60a%82¢c - 16a3b* 4 60a b ® -
13*
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60a2b3c}-6abs420a%cd4 904222} 30abic--
6 4-60a2bc34-60ab3c®-6b5c415ac4 4 60a b2
+1560c24-30abct 2033+ 6ac®4 1503 -
6bc5 8. ’
4. Find the 4th power of @® —a?z -} a 22 — 23,

Ans. g —4 gl 2410 al928 — 2069 23 4 31 aPzé —
— 400725444 a6 25 — 40 a®2" - 31 at2®—20a329- |-
10 a2 210 — 4 @ 211 |- 212,

5. Find the square of a}- bz 4-c23 4 d23 ezt |- /25

Ans. a®42abz+2ac|2?+2ad|2342ae|2442af|x®
+ 62| 4Rbc| +2bd| 420b:
+ | 42cd
+20f|2642cf |74 df |2® +2e f2®+ f3210;
+2 fl +2de| + e’f f {w"p
+

SECTION IV
Roots of Polynomials.

219. Problem. To find any root of a polyno-
mial.

Solution. If the root is arranged according to the pow-
ers of either of its letters as z, whether ascending or de-
scending, it is evident from the rule of art. 216, that

The term of the required root which contains the
highest power of x, ts found by extracting the root
of the corresponding term of the given polynomial.

If, now, R is the first portion of the root, and R’ the rest

of it, and if P is the given polynomial of which the nth root
is to be extracted, we have

P=(R+R)y=R"+4nR-1R 4 &e.
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or
P—R*=n R*-1 R 4 &c.
and
P— R
7R—”_—l = R’ + &ec.

and if, in P —R* and n.R*—1, only the first term is re-
tained, the first term of the quotient is the first term of R';
and a new portion of the root is thus found, which, com-
bined with those before found, gives a new value of R and
of P — R, which, divided by the value of n R*—1 already
obtained, gives a new term of the root, and so on.

(\\ﬁ Hence to obtain the second term of the root, raise
the first term of the root to the power denoted by the
exponent of the root, and subtract the result from the
Ziven polynomial, bringing down only the first term
of the remainder for a dividend.

Also raise the first term of the root to the power
denoted by the exponent one less than that of the
root, and multiply this power by the exponent of the
root for a divisor.

Divide the dividend by the divisor, and the quo-
tient is the second term of the root.

. The next term is found, by raising the root al-
ready found to the power denoted by the exponent of
the required root, subtracting this power from the
given polynomial, and dividing the first term of the
remainder by the divisor used for obtaining the sec-
ord term.

T'his divisor, indeed, being once obtained, is to be
used in each successive division, the successive divie
dends being the first terms of the successive remain-
ders. '
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220. EXAMPLES.

1. Find the 4th root of 81 28— 216 27 -}- 336 25 — 56 24
~ 22423464z 16.

Solution. 'The operation is as follows, in which the root
is written at the left of the given power, and the divisor at
the left of each dividend or remainder; and only the first
term of each remainder is brought down.

81 28—21627-4+33625—562—22475- 642+ 16‘ 3299792,
8] 28
Ist Rem. —216 27| 10828 = 4 X (3 22)3
8128216 27216 26 — 96 25 116 24 = (3 22— 2 z)¢
2d Rem. — 21628 | 108 25
8125—21627+83625—5624 22425+ 642416=(3:%—29—2)4
3d Rem. 0.

2. Find the 3d root of a3+ 3a2b+3a2¢c43ab?4-
6abc+3ac4-B430Rc+3bc24 8.
Ans. a4b+-c.

3. Find the 3d root of a3+4+6a2b—3a2c+12a 82—
2abc+3ac24+80B8—1282¢c46bc®—c3.
Ans. a4+2b—ec.

4. Find the 3d root of 343 28 — 441 2%y - 777 24 y3—
53123 y3 {444 22 y4 — 144 z y4 - 64 35,
Ans. 722 —8zy4-498
5. Find the 4th root of 81 a* —540a3 b — 72 a3 c4-
135002024360 a® b c + 24 a2 c? — 1500 a b3 — 600 a b2 ¢
—80abc®— 3¢ a P65 b 1909 §3 ¢ 4 290 H2 2 4
W oA 4t

Ans. 3a—5b—4ec. .-

<

;
.

e
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6. Find the 5th root of 16807 al0 45 — 12905 g8 ¢ 4
1215 g6 b3 — 24310 gt b7 ¢ — 245 ot b? — €80 g2 46 ¢ |- .
f2a2b64-24505¢c— b 1 1232042092 — P a—2bic— /V ,
00 a4 b8 @+ fra—4b3c+ 1P a—8 b7 241839 48U 3 |
— § a=8 b6 B — 589 a—10 h10 (3 | 20 a—12 ¢ 3} //
889 a— 1 b13 ¢4 — 49 @16 b12 ¢4 - AR @20 b15 (5, |

Ans. 7Ta?b—4 4-3a=4b%c.

7. Find the 9th root of y%7 27 4% -}-324 y23-2268y31 !
+ 10206 51 + 30618 y17 - 61236 15 - 78732 y13 4
59049 y!1 | 19633 49 i

Ans, y34+3y. .

221. Corollary. When the preceding method is applied
to the extraction of the square root, it admits of modifica-
tions similar to those of art. 189, and we have the following
rule

To extract the square root of a given polynomial.

Arrange its terms according to the powers of some
letter, extract the square root of the first term for the
Jirst term of the root.

Double the part of the root thus found.for a divi-
sor, subtract the square of this part of the root from
the given polynomial, and divide the first term of the
remainder by the divisor ; the quotient is the second
term of the root.

Double the terms of the root already found for a
new divisor ; subtract from the preceding remainder
the product of the last term of the root multiplied by
the preceding divisor augmented by the last term of
the root. Divide the first term of this new remain-
der by the first term of the corresponding divisor,
and the quotient is the next term of the root.
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Proceed in the same way, to find the other terms
of the root.

222. ExAMPLES.
1. Find the square root of 28 4 42542023 —16 z
+ 16.

Solution. In the following solution, the arrangement is
similar to that in the example of art. 190.

§+4ﬁ+20§—16z+16 2342292 + 4. Ans.

4254-2022— 162+ 16|23
4254 478

— 42442022 —162 4 16|22% 4 423
—A4zt— 8234 427

82341622— 16z 16|23 + 422 — 42z
82841622 —16z 4 16

0.
2. Find the square root of 25 a*— 30 a3 b + 49 a2 b3
—24a b’ + 16 b Ans. 5a2—3ab{-4082
8. Find the square root of 4 284 1225 4 524 —2 23
4722 —-2z4-1. Ans. 223 +322—2z2 4 1.
4. Find the square root of af —2a%z 4 3 a22? —
2az+ 2t Ans. a®—az-}-22

5. Find the square root of § -} 6z — 17 22 — 28 1?
449 2. Ans. § +2x—712%
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Solution of Binomial Equations.

SECTION V.

Binomial Equations.

223. Definition. When an equation with one un-
known quantity is reduced to a series of monomials,
and all its terms which contain the unknown quan-
tity are multiplied by the same power cf the un-
known quantity, it may be represented by the gen~
eral form

Az 4+ M=0,
and may be called a binomial equation.

224. Problem. To solve a binomial equation.

Solution. Suppose the given equation to be
Az +M=0.
Transposing M and dividing by A4, we have
. ™= §’
the nth root of which is . -
T= — i
- Hence, find the value of the power of the unknown
quantity which is contained in the given equation,
precisely as if this power were itself the unknown
quantity, and the given equations were of the first
degree. Extract that root of the resultl which is
denoted by the index of the power.

225. Corollary. Equations containing two or more au-
known quantities will often, by elimination, conduct to
binomial equations.

Co.o
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226. EXAMPLES.
1. Solve the two equations
zy' 42y —4yP®—8z416=0,
2y’ —4y"—4z2y348y34+3Rz—64=0.
Solution. 'The elimination of y between these two equa.
tions, by the process of art. 155, gives

822 —32=0,
whence we have
2=/,
z =39

Now the value of z,
' z=+42,
being substituted in the first of the given equations, pro-
duces
4y —4y3=0,
which is satisfied by the value of y,
y=0;
or if we divide by 4 y3, we have

y=1,
yz:/ l=xlor=Fy—1,
as will be shown when we treat of the theory of equations
Again, the value of z,
z=—2,

being substituted in the first of the given equations, pro.
duces

—4y34-32=0,
whence we have

=8, .
y=2or=—1+t -3,

as will be shown in the theory of equations.
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2. Solve the equation

322 4-2z=12242z2- 18

Ans. z==3.
3. Solve the equation
2z—7 __ z+41
z—1 = 2247
Ans, z= 4.
4. Solve the equation
1 26
z + -z- = pr — 1.
Ans. z=3.

5. Solve the equation
3 —_
4248 +2 a3 -|-:c 8 —a
GEY
Ans, z =2,
6. Solve the equation
viz4+2)=z+1.

Ans, z==%=1.

7. Solve the equation

v(®—8lz41)=1
Ans. z=0,orz= =38
8. Solve the two equations
B4 ys=2a,
23— y5 =20,
Ans. z:f/(a-{- b),y=:/(a--b).
"(9' Solve the two equations
7 ¥ —383 32— 1722=0,
Y84 17y% 424 —3322=0.
Ans.2—=0,and y=0;0orz==%5,and y=2.
"
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10. What number is it, whose half multiplied by its third
part, gives 864 1 Ans. 72.

11. What number is it, whose 7th and 8th parts multi-
plied together, and the product divided by 3, gives the
quotient 298% ? Ans. 224.

12. Find a number such, that if we first add to it 94,
then subtract it from 94, and multiply the sum thus obtained
by the difference, the product is 8512. Ans 18,

13. Find a number such, that if we first add it to a, then
subtract it from a, and multiply the sum by the difference,
the product is b. Ans. 4/ (a®—0b).

14. Find a number such, that if we first add it to a, then
subtract a from it, and multiply the sum by the difference,
the product is b. Ans. o/ (a® 4 b).

15. What two numbers are they whose product is 750,
and quotient 3} ? Ans. 50 and 15.

16. What two numbers are they whose product is a, and
quotient 51 Ans. 4/ab and / %.

17. What two numbers are they, the sum of whose
squares is 13001, and the difference of whose squares is
14497 Ans. 85 and 76.

18. What two numbers are they, the sum of whose
‘squares is a, and the difference of whese squares is b ?
Ans. v/} (a+b) and 4/ 3 (¢ —b).
19. What two numbers are to one another as 3 to 4, the
sum of whose squares is 3249007 Ans. 342 and 456.

20. What two numbers are as m to n, the sum of whose
squares is a 1 ma/ a na/a
q Ans. ——.:/h—an -, ‘-——2-.
VimTEE) | (2 )
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21. What two numbers are as m to =, the difference of
whose squares is a? . ms a nya
Ans, \—/(”;2—:7") and WGQ‘).
22. A certain capital is let at 4 per cent. ; if we multiply
the number of dollars in the capital, by the number of
dollars in the interest for 5 months, we obtain 117041%.
What is the capital ? Ans. §2650.

23. A person has three kinds of goods, which together
cost $5525. The pound of each article costs as many dol-

lars as there are pounds of that article ; but he has one "

third more of the second kind than he has of the first, and
34 times as much of the third as he has of the second
How many pounds has he of each?
Ans. 15 pounds of the first, 20 of the second and 70
of the third.

24. Find three numbers such, that the product of the
first and second is 6, that of the first and third is 10, and
the sum of the squares of the second and third is 34.

Ans. 2,3, 5.

25. Find three numbers such, that the product of the
first and secend is a, that of the first and third is b, and
~ that of the second and thlrd is c.

be
Ans. \/—s\/ b’ d\/z’

26. What number is it, whose third part, multiplied by
‘ts square, gives 19447 Ans. 18.

2%7. What number is it, whose half, third, and fourth,
multiplied together, and the product increased by 32, gives
46407 Ans. 48.

23. What number is that, whose fourth power divided by
3th of it, and 167 subtracted from the quotient, gives the
remainder 120007 Ans. 11}
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Cases of imaginary Solution.

29. Some merchants engage in business; each contrib-\l:,’r
utes a thousand times as many dollars as there are partners. ¥
They gain in this business $ 2560; and it is found that this
gain is exactly half their own number per ent, How meany
merchants are there ? | .o - wol Ans. 8, o

.K"

30. Find three numbers such ‘that the square of the first " '3‘
multiplied by the second is 112; the square of the second‘3
multiplied by the third is 588 ; and the square of the third
multiplied by the first is 576. Ans. 4,7, 12.

227. Corollary. When the solution of a problem
gives for either of its unknown quantities only imag-
inary values, the problem must be impossible.

228. EXAMPLE.

In what case would the value of the unknown quantity in
example 13 of art. 226 be imaginary ? and why should the
problem in this case be impossible ?

Ans. When b > a?,

that is, when the product of the sum and difference -

required to be greater than the square of a. Now if tie

required number is z, this product is 1.

(a4 2) (a —x) = a® — 2%; i

(o]
and, therefore, less than a?

& {?\;S

N

+»

N ,’hﬁ
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Equations of the Second Degree.

CHAPTER VL

EQUATIONS OF THE SECOND DEGREE

229. It may easily be shown, as in art. 120, that
iy equation of the second degree with one unknown
yuantity, may be reduced to the form

As*+ Bz 4+ M=0,
in which A 22 denotes the aggregate of all the terms
multiplied by the second power of the unknowr.
quantity, B z denotes all the terms multiplied by
the unknown quantity itself, and M denotes all the
terms which do not contain the unknown quantity,

230. Problem. To solve an equation of the sec-

~ond degree with one unknown quantity.

¢

N Ng
A
¥

Solution. Having reduced the given equation to the

form
A2+ Bzx+ M=0,
we could easily reduce it to an equation of the first degree,

‘by estracting its square root, if the first member were a

perfect square,

But this cannot be the case, unless the first term is a per-
fect square ; the equation can, however, always be brought
to a form in which its first term is a perfect square, by mul-
tiplying it byisome quantity which will render the coeffi-
cient of the first term a perfect square, multiplying by this
coefficient itself, for instance ; thus the given equation mul-
tiplied by A becomes

A3 ABz4 AM=0.

19
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Now that the equation is in this form, we can readily
ascertain whether its first member is a perfect square, by
attempting to extract its root, as follows :

A222 L ABz4- A4 M|Az+§B. Root.
A2 23

ABz+ AM|2A4x
A Bz} B?
AM—}B? Rem.
so that the first member is a perfect square only when the
remainder is zero, that is,
AM—}B2=0;
and, in every other case,
Az 4B

18 the root of the square which differs from it by this re-
mainder, that is,
A?*+ABz+ AN=(Az+31 B2+ AM—}B2=0;
or, transposing A M — 1 B?, we have

(Az4-31BR=}B*—AM
Now the square root of this last equation is

Az+3iB=xy (I B*—AM),

which, solved as an equation of the first degree, gives

_ —iBxy(}B—AM)

- A

_—Bxy(B*—44M)

—_— 2 A ’
in which either of the two signs 4 or —, may be used of

the double sign -, and we thus have the two roots of the
given eqnation

— B+ (B2—44 M)
2 A ’

T =
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Tmaginary Roots.

and
—B—/(B*—4AM)

r= 24

The equation
(Az4+3BP=}B—AH,
which is the same as '
A222 4+ ABz+ 1 B*=}1B*—AM,
is obtained immediately from the equation
A222+ ABz+ AM=0,

by transposing 4 M to the second member, and adding
1 B? to both members. Hence

To solve an equation of the second degree with
one unknown quantity.

Reduce it as in arts. 112 and 118, transposing
all the terms which contain the unknown gquantity
to the first member, and the other terms to the second
member.

Multiply the equation by any quantity, (the least
is to be preferred,) which will render the coefficient
of the second power of the unknown quantity an ex-
act square.

Add to this equation the square of the quotient,
arising from the division of the coefficient of the first
power of its unknown quantity, by twice the square
root of the coefficient of the second power of its un-
known quantity.

Extract the square root of the equation thus aug-
mented, and the result is an equation of the first
degree, to be solved as in art. 121.
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Affected Quadratic Equation.

231. Corollary. When we have
B*—4AM
a negative quantity, that is,
B*< 44M,
the roots of the given equation are imaginary.

(‘;J * 232. Scholium. The preceding method of solving

quadratic equations gives the form of the roots in all
cases, but otherwise it has no advantage in the solu-
tion of a numerical equation over the solution given
in Chapter IV.

The method of art. 182, applied to this case, gives
h=—M
u=A2*+|+ Bz, U=24z+4 B,
and when
z=a
m=Aa*}+Ba, M=24a-+} B.
But the process may be abbreviated precisely as in the case
of the square root in art. 189, by observing that

A(a+h)+4B(a+-h) = A B a+(2 A a4 B4Rk
=Aa*+}-Ba-t} (M4 AkR)A,
and if the root of the equation
A2+ Bz=—M
is called the quadratic root of — M, and — M the
quadratic power of its root, the rule for extracting its
root is the same as that for extracting the square
root in art. 189, except that QuaDRATIC must be sub-
stituted for sQUARE, the divisor 13, in each case,
2Aa-+4 B
instead of 2 a, the addition to the divisor before mul-
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Examples of Equations of the Second Degree.

tiplication ¥3 A h instead of h, and the division into - \
periods is useless. DA

233. EXAMPLES.

1. Solve the equation
8124 65z = 1491,
Solution. The First Method of art, 230. Multiply by 8

and the product is
9234152 =4473.

The square completed by the addition of
(¥P=@3@1=% =062

(3 z 4 §)* = 4479-25,
of which the square root is '
8z 25 = X 66927,

3z = 64427 or — 69°427

z = 21476 or — 23-14%.
:J‘« The Second Method of art. 232. In the second column
£ of this form, the number at the top of the column is the
root, the numbers above each line are the successive divi-
sors, and the numbers below are the increased divisors
before multiplication ; and it is to be observed, that by the
repetition of the increment the next divisor is obtained.

We have, then, for the first root

whence

1491 21-476
8 (20)2 4 5 X 20 = 1300
O | 125=6x2045
128x1= 128 128=125F3x 1
B | 131=6x128+3x1

1322 x4= 5288 |[1332=131}-3x4
1012~ | 1334 = 132243 x .4

18361 X 07 = 93527 | 133-61=133-4}-3x-07
7673 | 133-82=133-61 4-3x-07
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and for the second root

1491 — 23142
1100
391- — 115
372 — 124
19- — 133
13-33 — 1333
567 — 1336
53488 | — 13372 N
3212 | — 13384 7
2. Solve the equation )
48 165

z+8 z 10 5. '
Solution. This equation, reduced as in arts. 112 and
118, is
522 —522z4135=0;

which, multiplied by 5, becomes
25 22 — 260 2 = — 675.
Completing the square, we have
2523 —2602 | 676 = 676 — 675 =1,
the square root of which is '

52—260=4=1;
hence
z=14(26=1)="5% or =5.

3. Solve the equation

vRz4+7) 4+ v (B2—18) =y (Tz41).
Solution. This equation, being freed from radical signs,
as in art. 204, becomes

522—272—162 =0;
the roots of which are
z=9, or 2 = —3§.
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@‘f 4. Solve the two equations
(¥ 46) y+16 (z —4) = (z"—zz—j)g.v’+48’
(y-5)92+ 2023100 = 10F 02+ Ry + =

Solution. If we proceed to eliminate y between these
two equations, by the process of art. 155, the remainder of
the first division is

(22— 62+5)y°—(1022—60 z -} 50)y-}-24 22— 144 120,

23 —62-46
18 a factor of each of the coeflicients of y, and y%, and of
the terms which do not contain y.

in which

Before suppressing- this factor, we must see whether, as
in art. 157, it may not be equal to zero, in which case we
have '

, 2—6z46=0,
the roots of which are
z=~56,andz=1.

Now if the value

) z=25
is substituted in the given equations, each of them becomes
-which is satisfied by the value

- y =0,
or, dividing by y, we have

P —5y+6=0,
the roots of which are '

y=2,and y=3.

But if the value
z=1

is substituted in the given equations, each of them becomes



168 ALGEBRA. [cn. vt

Examples of Equations of the Second Degree.

y3—5y9+6y=0,
which is the same as the preceding equation, and gives
therefore the same values of y.

Having thus obtained all the roots of the given equation
corresponding to
22 —62 + 5= 0,

we may omit this factor of the above remainder, and it

becomes
»—10y424;

and as this does not contain z it is unnecessary to proceed
farther in the elimination of y, but we may obtain the roots
of the equation

¥—10y4-24 =0,
which are

y=4, and y=06,
and substitute them in the given equation to obtain the
corresponding values of z.
Thus, if the value
y==6

is substituted in the given equations, each of them becomes

522 — 48z 461 =0,
the roots of which are

z=1}(24 % v/ 171).
But if the value

y=4
is substituted in the given equations, each of them becomes
z—2=0,
whence
z=2.

The answer, therefore, is
z=5, or =1, in either of which cases, y =0, or =2, or =3;

orz=§(24:|:~/l7’l), in which case,y=6; s

LN

orz==2, in which case, y=4.

‘-
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7.

10.

11

12.

13.

14.

15.

Solve the equation
22 4 8 z = 209.
Ans. =11, or — 19,
Solve the equation ¢
422 —9z=522—255} —87.
Ans. z= 15}, or = — 16}.
Solve the equation
x 7
z - 60 ~3z—5
Ans, x=14, or = —10,

Solve the equation
8z g2
z4 2 3z
Ans. =10, or = —§.
Solve the equation
2243 _ 2%z
10—z ~ 25—3=z
Ans. z=13%%, or =8.

6}.

Solve the equation
8+ (112—82) =194+ (3247). i
' Ans. =6, or = 11-8369.
Solve the equation
2?42z =10.
Ans. z=23166, or = — 4-:3166
Solve the equation
224 5 2=10.
Ans. z = 1-531, or = — 6531,
Solve the equation
22— 9z =—10.

15

Ans. z="77015, or = 1-2984. {
, ey

\

B

"'
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16, Solve the equation
212 4z =11 :
Ans, z =2108, or =..-—2"608.
17. Solve the equation
1022 — 14z =—38 \
Ans. z = 11359, or — -2641.
18, Solve the two equations
2z 43y =118,
5 2% — 7 y? = 4333.
Ans. z =35, and y = 16,
or z= — 220, and y = 1924,
19. Solve the two equations

2—yz+4+9=0, -

Y222 — P 144y—540=0. \
Ans. y=26, and z=3;
ory=10,andz=9, or=1.

20. Solve the three equations

zyz = 105,
zty+z=7,
¥+zy—7y—z422=0.

Ans. 2=15,y=—1, 2z=-—17;
orz=15,y=—"% 2z2=—1; -
orz=1", y=+vl5,z=—vl5;
orz=17 y=—v15,2=4 416

21. What two numbers are they, whose sum is 32, ana
product 24017 Ans. 12 and 20.

22. What two numbers are they, whose sum is a, and
product 5? .
Ans. }a-4-4/(3a®—0b), and } a—+/(} a®—D).

In what case would the values of these unknown quan-
tities be imaginary?
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Ans. When we have
b>}d,
b> ()%

that is, the product of two numbers cannot be greater
than the square of half their sum.,

that is,

23. What two numbers are they, whose difference is 5,
-and product 241 Ans. 8 and 3; or —3 and —8.

/
24. What two numbers are they, whose difference is a,

and product 6?
Ans. yat4/(b+1%4a?),and —}at4/ (044 a?).
25. Fipd a ,number, whose square exceeds it by 306.
—— Ans. 18, or — 17,

26. A person being asked his age, answered, ‘ My
mother was 20 years old when I was born,and her age
multiplied by mine, exceeds our united ages by 2500.”
What was his age ? Ans. 42.

\

R7. A person buys some pieces of cloth, at equal prices,
for $60. Had he got three more pieces for the same sum,
each piece would have cost him $ 1 less. How many pieces
did he buy? Ans. 12,

28. A person dies, leaving children, and a fortune of
$ 46800, which, by the will, is to be divided equally among
them. It happens, however, that immediately after the
death of the father, two of his children also die. . If] in
consequence of this, each remaining child receives $ 1950
more than'it was entitled to by the will, how many children
were there? Ans. 8.

29. T'wenty persons, men and women, spent $ 48 at an\
inn ; the men $24, and the women the same sum. Now,
on inspecting the bill, it is found that the men have to pay
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81 each more than the women. How many men, there-
fore, were there in the company? Ans. 8.

30. What two numbers are they, whose sum is 41, and
the sum of whose squares is 9017 Ans. 15 and 26.

31. What two numbers are they, whose sum is a, and the
sum of whose squares is b ?

Ans.tat4v(R6b—a?),and }a—} Ry 0—a?).

In what case would the values of these unknown quan-
tities be imaginary ?

Ans. When we have
a>20b;
that is, the square of the sum of two numbers cannot be
greater than twice the sum of their squares,

82. What two numbers are they, whose difference is 8,

and the sum of whose squares is 544 7
Ans. 12 and 20 ; or — 12 and —20.

33. What two numbers are they, whose difference is a,
end the sum of whose squares is b ?
Ans. Ja}4/(2b—a?), and —Jat}y/ (2b—ad).
In what case would the values of these unknown quan-
tities be imaginary ? \
Ans. When we have
a®>2b;
that is, the square of the difference of two numbers can-
not be greater than twice the sum of their squares,

34. Divide the number 39 into two parts, such that the\
sum of their cubes may be 17199. Ans. 15 and 24.

85. A person being asked about his yearly income, \
answered, ‘“ My income is such, that if I add $1578 to it,
and also subtract $ 142 from it, and extract the cube roots
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of the numbers thus obtained, the difference between the
roots is 10.”” What was his income? Ans. $150,

36. Find two numbers whose difference added to the dif-
ference of their squares, makes 150, and whose sum added
to the sum of their squares is 330.

Ans. The one is 15, or — 16; the other is 9, or —10.

87. What two numbers are they, whose sum, product,

and difference of their squares, are all equal to each other ?
Ans. (3=x=4/5), and } (1= 4/ 5).

38. Find a number consisting of three digits, such, that
the sum of the squares of the digits, without considering /
their position, may be 104 ; but the square of the middle
digit exceeds twice the product of the other two by 4;
farther, if 594 be subtracted from the number sought, the Voo
three digits are inverted. Ans. 862. "/, ’

234. Corollary. 'The preceding method is not
only applicable to equations of the second degree,
but to all equations of the form

A2**+ Bz"4+ M =0,
in which there are two terms multiplied by different
powers of z, the highest exponent being the double
of the lowest ; and # may be either integral or frac-
tional.

235. EXAMPLES.

1. Solve the equation
A4+ Bz M=0
Solution. If the square is completed, as in the preceding
article, and the square root extracted, the result is

A 43 B=xy(—A M4} BY):
\ lb.
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from which we obtain, by art. 224,

2

3.

o= (CABEVC ARSI BYL

Solve the equation
4 — 74 2% = — 1225.
Ans. z=+45,0or = £17.
Solve the equation
3 28 |- 42 23 = 3321.
Ans. =238, or = —:/41.
Solve the equation G
5yz—yz=6.
Ans. z =16, or 81.

)

Solve the equation

C+ et i=e
Ans. z =4, or 69.
Solve the equation

2416—7(z+ 16} = 10—z 16)}. ,
Ans. z=9,0or —12. .
Solve the equation '

23—1':2:*.

Ans. z=0,0r 1, or 4,

AN

Solve the equation
3 — 2% = 56.
Ans. z =4, or (—7)‘.
Solve the equation
2% + 2% — 756.
Ans. z =243, or (—28)’.

“




CH. v1.] EQUATIONS OF THE SECOND DEGREE. 175

Examples of Substitution of Unknown Quantities.

‘' 10. Solve the equation
(28 + 5)2 — 4 2% = 160.
Ans. 2 =3, or / —15.

\ 11. What two numbers are they, whose product is 255,
and the sum of whose squares is 514 ?
Ans. 15 and 17, or — 15 and —17.

12. What two numbers are they, whose product is a, and
\' the sum of whose squares is b ?

Ans. = / [h b+ v (3 03— a?)],.
and = / [§ b— v/ (} 62— a?)].

13. What number exceeds its square root by 20 ?
Ans. 25,

\

14. What number is it, the excess of whose square above
its square root is equal to 56 divided by the number ? Vr) _
N ;»" '

Ans. 4 or :/49.

‘
e

236. There are equations of higher degrees, which
can be reduced to equations of the second degree by
introducing other unknown quantities instead of those
contained in them. Thus if the same algebraic ex-
pression is involved in different ways, it will often
be found successful to consider this expression as the -
unknown quantity.

237. EXAMPLES.

1. Solve the two equations

(2 — 2 y)3 4 (22— 2B y)* - (s*—23y) (+ —2y) =18,
(P—BypP+(z -3y =7
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Solution. Consider
(22 — 23 y), and (z — 2),
us the unknown quantities, making
¥ =22—23y,
y=z—2y;
and the equations become
3422 L o'y = 18,
24y ="
Hence, by the elimination of y’, we have
234 72 =18,
and, therefore, )
2 =20t = —9;
and the corresponding values of y are
yYy=3,0or =—174;
that is,
2—Wy=2o0or=—09,
z — 2y=3,or=—"74.
The solution of these equations gives
z2==85, y=1;
or,
z=20}, y=1}; ‘
z =} (234/14001), y =} (319 1= 4/14001).
2. Solve the equation
s+ @+ 6 =243 46

Ans, =10, 0or —2.

or,

8. Solve the two equations

E+n+@etpt=12,
23 4 y3 = 189, :
Ans. z=5,0r =4; y=4, or =85.

~.

. \‘/

N
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238. Corollary. When there are two unknown
quantities which enter symmetricaliy into the given
equation, the solution is often simplified by substi-
tuting for them two other unknown quantities, one
of which is their product and the other their sum.

239. EXAMPLES.

1. Find two numbers whose sum is 5, and the sum of
whose fifth powers is 275.

Solution. Let the numbers be z and y, represent their
product by p, and we have
z+y=35,
25 } y3 =275,
But we also have
(z4y)=25+52'y +1023y2 10222+ Szt -9 - -
=25+y>+52y (2 + 5°) +10229* (z+ 9) 5

and
Pt yP=(2+y)—827y—3zy
=(@z+yP—38zy(z+4+y)

Hence
(z49)3=275645p (125 — 15p) 410 p? X 5 =55;
or, by reduction,
P2 — 25 p=— 114,
p=19, or=6;
and
z=2, or=3, or =1} (6 4 v —51),
y=3,0r=2, or=4§ (56 F / —51).

‘2. Solve the two equations

(z—y) (@ —y") =7,
(z+y) (B + 47 =17
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Solution. These equations become, by development,
P—dy—z =1,
BBy Py =175;
and, by the substitution of
z+y=s,
ZYy=rpi
they still farther become,
S —4sp=17,
3 —2sp=17.
If we eliminate p we have
53 = 343,
whence
s=17;

and this value gives, by substitution,
343 — 14 p =175,
p=12

Hence
=23, 0or=4;

y=4,or=3,
3. Solve the two equations o

2t+y==zy
2ty +atp=12
Ans. z=2,0r =} (—3 %/ 21);
y=2,or=4} (—3F v 21).
4. Solve the two equations
23 |- y3 =189,
22 y 4 z 42 = 180,
Ans. z =4, or = 5;
y=_5,or=4.
5. Solve the two equations
By =5,
zy=2.
Ans. 2=42,0or =4 1; o
y=:1:1,or=:’:2,v_}:?5‘\
e

RN
\
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’ Aé_

I

6. Solve the two equations - (2 ‘a
By 4zy2=6, :

By 422y =12

Ans. z=1,0or =2;

y=2o=1. =

I

7. Solve the two equations Ve R
4zy=96—:’y’, ¢ r
z-+y==6.

Ans. 2 =2,0r 4, or 3 & /' 21;
y=4,0r2,0r3 F 2L

8. Find two numbers such, that their sum and product
may together be 34, and the sum of their squares may ex-
ceed the sum of the numbers thefselves by 42.

Ans. 4 and 6;

or § (—11-4 4/ —59,) and } (—11— \/ —59).

9. What two numbers are they, whose sum is 3, and the
‘sum of whose fourth powers is 1717
) Ans, 2 and 1;

or § (34 v/ — 55), and } (3 — o/ —55).

10. What two numbers are they, whose product is 3, and
the sum of whose fourth powers is 821
Ans. £ 1, and 4 3;
ort+ ¢ —l,andF o+ —9

240. Corollary. In many cases, in which two un-
known quantitics enter into the given equatiors
symmetrically except in regard to their signs, the
solution is simplified by substituting for them two
other- unknown quantities, one of which is their dif-
ference, and the other is their sum or their product.
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241. EXAMPLES.

‘1. Solve the two equations
(z—9) @ +97) =13,
(z—y)zy=86.
_ Solution. These equations become, by the substitution
of

z—y =t
zY=p;
t(P+2p) =13,
tp=_06.,
By the elimination of p, ge have
=1,
t=1;
whence we find
p=6,

and
=3, or=—2;
y=2,or=—3.

2. Solve the two equations
22— =",
B 4 g =91 (z—y).
Solution. These equations become, by the substitution
of
4 y=s,
z—y=t;
st=17,
} (s343s2)=911¢.

Hence, by the elimination of ¢, we have
st — 2401 =0,
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and
s— o 20l = £ T,0or = Ty—1;
t==x1l,or=xF+ —L
z==+4, or=43y —1; =L
y:-_—l:3,or=,-_[:4\/—-l.,,’ ‘j ;kbi
3. Solve the two equations ‘)”.b . _.)

B—yd=1, >
@+ (z—y)—(@—yry =3
Ans. 2 =2,or=—1;
y=lo=—2
4. Solve the two equations
23 — 33 = 215,
B zyty2=43.
Ans. z=6,or =—1;
y=1,0or =—6. .

\

<4
5. Solve the two equations SEN

By —a? y? + 2 y° = 156,
2y (83— ) — 22 (z—y) + (s —yI=157.
Ans. =4, or =—3, or =} ( 14-4/—51);
g=3, or =4, or =} (—1v/—51).
or 2=} v(—TBP£2v/(620+ TBT)) — 78},
y=ct} v (—T5P£24/(624+T574)) + 78}
6. What two numbers are they, whose difference is 1,
and the difference of whose third powers is 77
Ans. 1 and 2, or —2 and — 1.
7. What two numbers are they, whose difference is 3,
and the sum of whose fourth powers is 2571
Ans. 4and 1, or — 4 and —1,
or } (= +/(—79) +3) and } (£ 4/ (—79)—3).

16

.
A .
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Examples of Equations of the Second Degree.

242. When the first member of one of the equa-
tions, reduced as in art. 118, is homogeneous in re-
gard to two unknown quantities, the solution s of-
ten simplified by substituting for the two unknown
quantities, two other unknown quantities, one of
which is their quotient.

The same method of simplification can also be
employed when such a homogencous equation is
readily obtained from the given equations.

243. EXAMPLES.

1. Solve the two equations
2—6zy-}8y2=0,
1y 462y 4-8y34(z—2y) (2 —by+4-4= 0
Solution. Retaining the unknown quantity y, introduce
instead of z, the unknown quantity g, such that
z
9= K
orz=—gqy;
from which the given equations become
Py?—69124-8y2=0,
P y* —699°+8y°+(9y—2y)(y*—5y-+4) =0.
Both these equations are satisfied by the value of y,
y=0,
whence
z=qy=0.
But if we divide the first of these equations by y¥, and the
second by y, we have
*—6g+8=0,
¢y —69y*+8y°+(9—2)(s?—5y+4)=0;
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Examples of Substitution of Unknown Quantities,

the first of which gives
g=2,0or=4.
The value of ¢, '
9=2
being substituted in the other equation, reduces the first
member to zero, and therefore y is indeterminate ; that is,
z and y may have any values whatever, with the limitation
that z is the double of y.
.'The value of g,
=4

being substituted in the other equation, gives

2P —By+4)=0;

y=10r=4,

whence
and
z =4, or = 16,
2. Solve the two equations
4232 =35
25 4 4 z y* = 65.
Solutiop. 13 times the first equation, diminished by the
second equation, is : ‘
122511823y — 4z y* = 0;
and, if we make
T=4Y,
12¢5454-13¢3y5—4qy5=0.
Which is satisfied by the value of y,

we have

Yy = 0;
and this value of y, being substituted in the given equations
produces '
25 =5,
- 25 =65;
which are evident impossibilities, and therefore the value
y = 0 is impossible.
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Examples of Substitution of Unknown Quantities.

Dividing, then, by 35, we have
12¢°+4+13¢3—49g=0;
which is satisfied by the value of ¢,
g=0;
dividing by g, we have
12¢*413¢®—4 =0,
whence .
g=4}org=4v—4%
Now the first of the given equations becomes, by the sube
stitution of
T=qY,
Y+ ¢y =5;
hence, by the substitution of the above values of g, we have
y = m, z =0 X @ = § = indeterminate ;
ory==2,z=1;

ory=ctviXv—3 s=y20.

8. Solve the two equations
81 z¢ 4 9 22 y? =20 4,

(¥ —y)* (8= y12y)*—92*(2y43)—12 y (z42y) =0. -

Ans. 1 =0, andy =0;
orz =2, and y =3;
orz = —14}, and y = — 2§ ;
or x = — 3, cand y == 4%;
orz=4§, andy=—1;

orz=§(—6xy—5,) and y = 14/ —5;
orz=:kt §  —35, and y =1.
4. Solve the two equations
B4 22y =3,
zyP24 227y =3.
Ans. z=1,and y= 1L
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5. What two numbers are they, twice the sum of whose
squares is 5 times their product, and the sum of whose sixth
powers is 65. Ans. 2 and 1, or —2 and — 1.

6. What two numbers are they, the difference of whose
fourth powers is 65, and the square of the sum of whose
squares is 169. Ans. =2, and 4 3.




186 ALGEBRA. [ca. vi. § 1

To find the last Term.

CHAPTER VIIL

PROGRESSIONS.

SECTION 1.
Arithmetical Progression.

244. An Arithmetical Progression, or a progres-
sion by differences, is a series of terms or quantities
which cortinually increase or decrease by a constant
quantity.

This constant increment or decrement is called the
common difference of the progression.

Throughout this section the following notation will be
retained. We shall use
a = the first term of the progression,
! = the last term,
r = the common difference,
n = the number of terms,
S = the sum of all the terms.

245. Problem. To find the last term of an arith-
metical progression when its firsc verm, common dif-
ference, and number of terms are known.

Solution. In this case a, r, and n, are supposed to be
known, and [ is to be found. Now the successive terms of
the series if it is increasing are

a,atr,at2r,a4+3r,a4-4r &c.;
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Sum of two T'erms equally distant from the extremes,

so that the nth term is obviously

l=a4(n—1)r
But if the series is decreasing, the last term must be
l=ma—(n—1)r

Both these cases are, however, included in one, if we
suppose r to be negative when the series is decreasing.

246. Corollary. In like manner any other term, such as
the mth, is

a-t(m—1)r

247. Corollary. By writing the series in an inverted
order, beginning with the last term, a new series is found,
of which the first term is /, and the common difference —r.
Hence the mth term of this series, that is, the mth term
counting from the last of the given series, is

l—(m—1)r

248. Corollary. The sum of the mth term and of the’
mth term from the last is, therefore,

[ad4m—1)r]+[I—m—1)r]=a+41;
that is, the sum of any two terms, taken at equal

distances from the two extremes of an arithmetical
series, is equal to the sum of the two extremes.

249. Problem. To find the sum of an arithmeti-
cal progression when its first term, last term, and
number of terms are known.

Sulution. In this case, @, [, and n are supposed to be
known, and S is to be found.
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To find the Sum of the Progression.

Suppose the terms of the series to be written as follows
first in the regular order, and then in an inverted order:

a, b, c, Y ¥

’ Lki .. ... ¢ba
The sum of the terms of each of these progressions being 8,

the sum of both of them must be 2 8, that is,

28= (@) FH(BH)H(cH) . . AHiFo)HEHB)H(Hra).
But by the preceding corollary, we have
at+l=b+k=cHi==&ec.
Hence 2 8 is equal to as many times (a -}- ) as there are
terms in the series, that is,

28 = (a4)n;
or S=1%} (a0 n;
that is, the sum of a progression is equal to half the
sum of the two extremes, multiplied by the number
of terms.

250. Corollary. From the equations
l=a+4 (n—1)r,
S=3(a4n;
either two of the quantities a, I, », #, and S can be deter
mined when the other three are known.

251. ExaMpLES.
1. Find the 100th term of the series 2, 9, 16, &c.
Ans. 695,

2. Find the sum of the preceding series.
Ans. 34850.

8. Find 8, when q, r, and n are known.
Ans. S=}[Ra+4(n—1)*]n
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4. Find »n and 8, when q, /, and r are known.

12—a
§= 2r
5. Find the number and sum of terms of the series of

which the first term is 6, the last term 796, and the com-

mon difference 10.
Ans. The number of terms — 80,

the sum — 32080.

6. Find r, when a, /, and » are known. ;

—_a
a—-1

7. Find the common difference and sum of the series, of
which the first term is 75, and the last term 15, and the
number of terms 13.

Ans. The common dlﬂ'erence =2,
the sum — 585.

8. Find r and n, when @, /, and S are known.
28
a0’
. r—a
T=28—(aty
9. Find the common difference and number of terms of

a series, of which the first term is 2, and the last term 345,
and the sum 8675.

Ans. r =

Ans. n =

Ans. The number of terms = 50,
the common difference = 7.

1. Find 2 and n, when a, r, and 8 are known. )( ]' '
dns = YETSH i) —(a—gr)

l— vierS4 (a—-*r)’]—*r
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Examples in Progression.

¢ 11. Find the last term and number of terms of a series,
of which the first term is 3, the common difference 4, and
the sum of the terms 105.
Ans. The last term = 27,
the number of terms = 7.

~

A 12 Find a and n, when [/, r, and S are known.

L I+3rsy[(+3r2—2r8]

Ans. n =

a=xy[(l+3r)2—2r8]44r

13. Find the first term and the number of terms of a
series, of which the last term is 13, the common diﬂ'eren&q’
\ L BN N

38, and the sum of the series 35. e )Y~
boer T Ans. The first term — l’,"k:

S IR the number of terms = 5.

14. Find / and r, when a, n, and S are known.
Ans. l=2—§—a,
n
r__2(S—an)
T a(m—1)"

15. Find the last term and common difference of a series,
of which the first term is §, the number of terms 12, and
the sum 100.

Ans. The last term = 16,
the common difference = 13§.

16. Find a and r, when /, n, and S are known.
Ans. a = 2_8_ I,
n
= 2(In—8)
T a(mn—1)"
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Examples in Progression.

17. Find the first term and common difference of a series,
of which the last term is 50, the number of terms 20, and

the sum 600.
Ans. The first term — 10,

the common difference — 23,;.

18. Find a and S8, when /, r, and n are known.
Ans, a=1l—(n—1)r,
S=4[RI—(r—1)r]n
&.ﬂ\ 19. Find tbe first term and sum of the terms of a series,
of which the last term is 100, the common difference }, and
the number of *erms 51.
Ans. The first term = 75, _—

¢ the sum of the terms = 4462%. - ‘ '

O

20. Find @ and {, when r, n, and S are known.

_ Ans. a=%—§(n—'l)r, ~

l=%+i(n-—-l)r.

21. Find the first and last terms of a series, of which the
common difference is 5, the number of terms 6, and the

sum 321.
Ans. The first term = 41,

the last term = 66.
22. Find the sum of the natural series of numbers ).,

2, 3, &c. up to n terms,
Ans. § n (n4 1)

23. Find the sum of the natural series of numbers frone

1 to 100.
Ans. 5050.

24, Find the sum of the odd numbers 1, 3,. 5, &c. up tc

8 terms.
Ans. n8
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Examples in Progression.

25. Find the sum of the odd numbers from 1 to 99.
Ans. 2500.

26. Find the sum of the even numbers 2, 4, 6, &c. up
to n terms.
Ans. n (n 4 1).
27. Find the sum of the even numbers from 2 to 100.
~ Ans. 2550.

28. One hundred stones being placed on the ground, in
a straight line, at a distance of 2 yards from each other ;
how far will a person travel, who shall bring them one by
one to a basket, placed at 2 yards from the first stone?

Ans. 11 miles, 840 yards.

29. We know, from natural philosophy, that, a body

. which falls in a vacuum, passes, in the first second of its

. fall, through a space of 1641, feet, but in each succeeding

second, 32} feet more than in the immediately preceding

one. Now, if a body has been falling 20 seconds, how

many feet will it have fallen the last second? and how
many in the whole time ?

Ans. 627} feet in the last second, and 6433} feet in
the whole time.

30. In a foundery, a person saw 15 rows of cannon-balls
placed one above another, and asked a bombardier how
many balls there were in the lowest row. ¢ You may
easily calculate that,” answered the bombardier. ¢ In all
these rows together, there are 4200 balls, and each row,
from the first to the last, contains 20 balls less than the
one immediately below it.”” How many balls, therefore,

were there in the lowest row 1
Ans. 420.

« 252. The arithmetical mean between several
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Arithmetical Mean.

quantities is the quotient of their sum divided by
their number.

Thus the arithmetical mean between the two quantities
a and b is half thelr sum, or } (2 b); that between the
four quantities -1, 7, 11,51is 6.

! 253. Problem. 'To find the arithmetical mean
between the terms of an arithmetical progression.

Scholium. It is, by the preceding definition

s
or, since ) "
. S=4}n(at),
it is
(a+0;

that is, half the sum of the extremes, and also, by art. 248,
half the sum of any two terms at equal distances from the
extremes. ’

254. Problem. 'To find the first and last terms of
a progression of which the arithmetical mean, the
number of terms, and the common difference are
known.

Solution. If we denote the arithmetical mean by M, we
have

w=5 =y @ty

which, substituted in the result of example 20, in art. 251,
gives
a=M—}(n—1)r,

I=M4+4(nr—1)r

255. Scholium. In very many of the problems

involving arithmetical progression, it is convenient
n
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Examples involving Arithmetic:l P’rogression.

to use for one of the unknown gquantities the arith-
metical mean. :

256. EXAMPLES.

1. Find five numbers in arithmetical progression whose
sum is 25, and whose continued product is 945.

Solution. Denote the arithmetical mean by M, and the
common difference by r, and we have, by art. 254,

25
and .
¥ the first term =M—2r=56—2r,
thesecondterm = M —r =5—r,
the third term =M =5,

the fourth term = M 4r =57,
the fifth term =M+42r=5-42r;

and the continued product of these terms is
(5—2r)(5—r)5(54r)(5+2r)= 3125—625 r2{-20 4 =945,
Hence we find

r==420or= 4 ¢ 54};
and the only rational series satisfying the condition is, there
fore, 1,3,5, 7, 9.

2. IMind four numbers in arithmetical progression whose
sum is 32, and the sum of whose squares is 276.
4ns. 5,7, 9, 11

3. A traveller sets out for a certain place, and travels
1 mile the first day, 2 the second, and so on. In five days
afterwards another sets out, and travels 12 miles a day.
How long and how far must he travel to overtake the first?

Ans. 3 days and 36 miles.
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4. Find four numbfs in arithmetical progression whose
sum is 28, and coptinued product 585«
Ans 15,9, 13.

5. The sum of the squares of the ﬁrst and last of four
numbers in arithmetical progression is 200, and the sum of
the squares of the second and third is 136; find them.

Ans. 2, 6,10, 14, .- -

6. Eélghteen numbers in arithmetical progression are
such, that the sum of the two mean terms is 314, and the
product of the extreme terms is 85}. Find the first term
and the common difference.

Ans. The first term is 3,
the common difference is 1}.

- -

SECTION II.

Geometrical Progression.

257. A Geometrical Progression, or a progression
by quotients, is a series of terms which increase or
decrease by a constant ratio.

a, l, n, and S will be used in this section as in the last,
to denote respective.y the first term, the last term, the num-
ber of terms, and the sum of the terms; and r will be used
to denote the constant ratio,

258. Problem. To find the last term of a geomet-
rical progression when its first term, ratio, and num~
ber of terms are known. '
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To find the last Term and Sum.

Solution. In this case @, r, and n are given, to find
Now the terms of the series are as follows:

a,ar,ar?, ar3...&c....ar*"1,
80 that, the last or nth term is
i: ar*-1; )
that is, the last term is equal to the product of the

first term by that power of the ratic whose exponent
3 one less than the number of terms.

259. Problem. To find the sum of a geometri-
cal progression, of which the first term, the ratio,
and the number of terms are known.

Solution. We have
S=a+4ar+t+ar?4&ec....4ar*3far*-1,

If we multiply all the terms of this equation by r, we have
rS=ar4-art4ard{&e.... -|-ar"“1+ark;

from which, subtracting the former equation, and striking
out the terms which cancel, we have

s

rS—S=ar*—a,
or .
(r—1)S=ar*—a=a(r*—1);
whence
ar*—a __a(r»—1)
r—1 = r—1

§=

Hence, to find the sum, multiply the first term by the
difference between unity and that power of the ratio
whose exponent is equal to the number of terms, and
divide the product by the difference between unity
and the ratio. '




CH. V1L, § I.] GEOMETRICAL PROGRESSION. 197

Examples in Geometrgal Progression.

260. Corollary. The two equations
l=ar"!
(r—1)S=a(r~—1)
' give the means of determining either two of the
quantities a, , r, n, and S, when the other three are
* known.
But it must be observed, that, since n is an exponent, it

can only be determined by the solution of an exponential
equation. :

261. EXAMPLES

1. Find the 8th term and the sum of the first 8 terms of
the progression 2, 6, 18, &c., of which the ratio is 3.
Ans. The 8th term is 4374,
the sum is 6560.

2. Find the 12th term and the sum of the first 12 terms
of the series 64, 16, 4,'1, 1, &c., of which the ratio is }.

Ans, The 12th term is gziug,

LiR the sum is 857555 F.
4 3. Find 8, when a, [, and r are known.
' rl—a
Ans, 8= p—

4. Find the sum of the geometrical progression of which
the first term is 7, the ratio , and the last term 1.
Ans. 12}.

5. Find r and S, when a, /, and n are known.

(Jlme Vi Ter

-1 l

Ans, r = J—- 8=

n—l ] =4 n—1

J——l vVi—ya
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6. Find the ratio and sum of the series of which the
first term is 160, the last term 33880, and the number of

terms 6, ’
Ans. The ratio is 3,

;he sum is 58240.

X. 7. Find r, when a, [, and § are known.
S—a

-

8. Find the ratio of the series of which the first termis
1620, the last term 20, and the sum 2420.

Ans. r =

Ans. §.
9. Find a and 8, when /, r, and n are known.
1
Ans. a = )
S= )

, rh— 1"
10. Find the first term and sum of the series of which

the last term is 1, the ratio §, and the number of terms 5.

Ans. The first term is 16,
the sum is 31.

+. 11. Find /, when a, r, and S are known. e
'
' Ans, 1=8—5=0 -
A==

. . .vv' ‘
12. Find the last term of the series of which the first ‘

term is 5, the ratio 4, and the sum 6.%.
Ans. 5. ‘
A 13. Find a, when [, r, and S are known. |

Ans. a=8—(S—1)r.

14. Find the first term of the series of which the last

term is g, the ratio 3, and the sum 6,8 5
: 4ns. 6.
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Infinite Geometrical Progression.

15. Find a and I, when r, n, and S are known,
r—1ns8

Ans, a = S
j_ (2= 8

ro—1
16. Find the first and last terms of the series of which
the ratio is 2, the number of terms 12, and the sum 4095.

Ans. The first term is 1,
the last term 2048.

262. An tnfinite decreasing geometrical progres-
sion is one in which the ratio is less than unity, and
the number of terms infinite.

263. Problem. To find the last term and the sum
of the terms of an infinite decreasing geometrical
progression, of which the first term and the ratio are
known.

Solution. Since r is less than unity, we may denote it

-by a fraction, of which the numerator is 1, and the denomi- -

nator ¢/ is greater than unity; and we have

. 1
f=;,—,
1 1
B e e
r _H,,._m._o.

Since, then, the number of terms is infinite, the formulas
for the last term and the sum become

l=ar*~1=aX 0=0,

. rl—a__ —a
= s ¢
a ar

—

== =r=7
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E les in Ge ical Progression.

Ly

that is, the last term {s zero, and the sum is fourd
by dividing the first term by the difference between
unity and the ratio.

264. Corollary. From the equation

a
1—r’

S =

either of the quantities a, r, and § may be found,
when the other two are known.

265. EXAMPLES.

1. Find the sum of the infinite progression, of which the
first term is 1, and the ratio .
Ans, 2.
2. Find the sum of the infinite progression of which the
first term is 0-7, and the ratio 0-1.
Ans. §.
8. Find r, in an infinite progression, when a and S are

known.

Ans: r= 1—%.

4. Find the ratio of an infinite progression, of which the
first term is 17, and the sum 18,
Ans. Py

6. Find a, in an infinite progression, when r and S are

known.
Ans, a =8 (1—r).

6. Find the first term of an infinite progression, of which -
the ratio is §, and the sum 6, qﬂc
Ans. 2

<\

p




CH. VIl § .] COMPOSITION OF EQUATIONS. 201

Form of any Equation.

CHAPTER VIIL

GENERAL THEORY OF EQUATIONS.

SECTION I.

Composition of Equations,

266. Any equation of the nth degree, with one
unknown quantity, when reduced as in art. 118, may
be represented by the form

Az 4 Bz*"'4Cz* 34 &c. + M =0.

If this equation is divided by A4, and the coefficients
B C &c H
A% 7

tazr-14-bx*~2| &ec. 4 m=0.

represented by a, b, &c., m, it is reduced to

267. Theorem. If any root of the equation
ez~ 140224 &ec.f-m =0
is denoted by X', the first member of this equation is
a polynomial, divisible by x — X/, without regard to
the value of x.
Proof. Denote z — z' by =), that is,
2l =2 — 2,
z =g 4 z),

If this value of z is substituted in the given equation, if
Pz js used to denote all the terms multiplied by z), or

or
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by any power of zi!), and Q used to denote the remaining
terms, the equation becomes
Pzl 4 Q=0.
Now the given equation is, by hypothesis, satisfied oy the
value of z.

=2,

or
M =0;

by which the preceding equation is reduced to
Q=0.

The terms not multiplied by @I, or a power of z(1), must,
therefore, cancel each other; and the first member of the

given equation becomes
Pz,

which is divieible by z (1), or its equal z — 7.

268. Corollary. The preceding division is easily effected
by subtracting from the polynomial

4t azr-14 b2 &c. +-m,
the expression
*daz -1t b~ &c. |- m=0,
which does not affect its value, but brings it to the form
™ —az'*ta(z*" 11—z 1)}-b (22— 2" %) f &,
of which each term is, by art. 49, divisible by z—2'. The

quotient is, by art. 50,
P P R e T 2234 o3[ zo-44 &
a ay ar'?
b bz
c

269. Corollary. The first term of the preceding quotient
is z*»—1; and if the coefficients of z*~%, £*-3, &c., are
denoted by &', &', &c., the quotient is

z*~l4-a'z*~34- ¥ z2~~3 4 &c.;
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Number of the Roots of an Equation.

and the equation of art. 267, is
(z—2)(z*"14-a' 2" 34 b 234 &c.) =0;
which is satisfied either by the value of z,
z=2a,
or by the roots of the equation
el tba - b a3 - &e. =0,
If now z" is one of the roots of this last equation, we
have in the same way
14 a4 &e. = (z—a")(z" 2+ a" 2" 3 &c.) =0,
and the given equation becomes
(z—12') (z—2") (a2} a" 2* 3} &c.) = 0;
which is satisfied by the value of 2",
z=12";
80 that z” is a root of the given equation,

By proceeding in this way to find the roots 2,
z", &c., the given equation may be reduced to the
form

(z—) (2 — o) (s —2") (5.—2™) &oe =0,
in which the number of factors r — 2/, z — 2/, &ec.
is the same with the degree n of the given equation;
and, therefore, the number of roots of an equation is
denoted by the degree of the equation ; that is, an
equation of the third degree has three roots, one of
the fourth degree has four roots, &c. But all these
roots are not necessarily real or rational ; they may,
on the contrary, be irrational or even imaginary.

70. Scholium. Some of the roots z/, 2/, 2", &c., are
often equal to each other, and in this case the number of
unequal roots is less than the degree of the equation.
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Imaginary Roots.

Thus the number of unequal roots of the equation of the

9th degree, :
(z—7)(z+4)B3(@=z—15=0,

is but three, namely, 7, —4, and 1, and yet it is to be re-

garded as having 9 roots, one equal to 7, three equal to —4,

and five equal to 1.

271. Corollary. 'The equation
"=a
wouid appear to have but one root, that is,
z = ,:/ a;
but it must, by art. 269, have n roots, or rather, the
nth root of a must have n different values.

272. EXAMPLES.

1. Find the two roots of the equation
23 =1
Ans. z=1,or =—1.
2. Find the three roots of the equation
23 =1,
Solution. Since one root of this equation is

r=1,
the equation
8—1=0

must be divisible by z — 1, and we have
Pel=(z—1)(22+241)=0.
Now {he roots of the equation )
242z41=0
are

t=}(—14+v—8),and =§ (—1—4/—38).
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Hence the required roots are
z=1,=4(—1+4++v—38), and =} (—1—/—3).

3. Find the four roots of the equation

=1,
Solution. The square root of this equation is
2=-+410r=—1;

80 that the required roots are
z=1l,=—],=¢/—],and=— o/ —1.

4. Find the five roots of the equation

=1
Solution. Since one root of this equation is
z=1,
the equation
25—1=0

must be divisible by z — 1, and we have

B—1=(z—1)(zt+}23422}z4+1) =0

Now the roots of the equation

dt ot fat1=0

can be found by the following peculiar process.

Divide by 22, and we have

z9+z-|-l+-:;-+:3=°~

If we make
1
y==z + z’
we have
1
P=22424 Pl
and

z’+;12=y9—2;

18
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which, being substituted in the preceding equation, gives
¥+y—1=0;
the roots of which are
y=4(—1+4y5), and =} (—1—y'5).
But the values of  deduced from the equation

1
=z o
or
2 —yz=—1,
are

z=3}[y+v (*—4)], and =} [y—v/ (*—4)],
m which y, being substituted, gives
2=} [—1—y 5V (—104245)],
and =} [— 1l —y/ 5+ (—104-24v5)]

5. Find the six roots of the equation
‘ 26 = 1.
Ans. z2=1,=—1, =} (—1x+v—3),
and =} (1 4/ —3).
We might proceed in the same way to higher equations,
such as the 8th, 9th, 12th, &c.; but, since much more
simple solutions are given by the aid of trigonometry, this
subject will be postponed to a more advanced part of the
course.

273. Corollary. Before proceeding farther, we
may remark, that the method of solution used in the
last example of the preceding article may be applied
to any equation of an even degree, in which the
successive coefficients of the different powers of z
are the same, whether the equation is arranged ac-
cording to the ascending or according to the descend-
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ing powers of z, as is the case in the following equa-
tion.

A2°" 4 B "1 C 2224 &e.
+C.’L‘9+B$+A=O.

274. EXAMPLES.

1. Solve the equation
At B34 C2*4 Bz A=0.

Solution. Divide by 22, and we have

A zn_|.;‘§)+3(z+_;.)+0=o,
and, if we make

1
y=z + ;.’
we have

ﬁ+%=f—%

AP+ By C—24=0;
the roots of which are
_—}Biyv(242—AC+1B)
- 41 ,

and .

which are to be substituted in the values of z,

z=}yx vy,
deduced from the equation

1
y=z +;'.
2. Solve the equation
284825 —72t+ 623 —7224-3241=0.
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Solution. Divide by 23, and we have
1 1 1
(=+3)+3(=+5)—7(+3)+6=0;
and if we make

1
y=z+‘;a

we have
1
23} 3= ¥»—2,

1 1
Bt =5—3 x+;)=y3—3y;
and the equation becomes, by substitution,
, vr+342—10y=0.
The roots of this equation are
y=0,=2, and = —35;
and, therefore, the values of z are
z=4v—1=1Lo=}(—5x42)
3. Solve the equation
284226 —6214 2224+ 1=0.
Ans. 2= 1, or =4} v (—24£v3).
4. Solve the equation
28 —322—22—3242=0.
Ans. z=2,or =}, or=3}(—14+v—3).
275. Corollary. It follows, from art. 269, that an equa-

tion of the second degree has two roots, both of which are
given by the process of art. 230; and if the equation is re-

duced to the form
24 az4+b=0,
and the roots denoted by =’ and 2z, we have
Btaz4b=(z—7z)(z—2')=0.
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But the product (z—a’) (x—2") being arranged according
to powers of z, is
2} —(z' - 2'")z 4 2 2";

which, being compared with its equal,

24az+ b,

— (¢ 4 2")=gq,

'z =0b;

that is, the coefficient of z is the negative of the sum

of the roots of equation, and the term which does
not contaiu z is the product of the roots.

gives

276. Corollary. If the roots of the general equation of
the third degree

Btasttbzt-c=0

are denoted by
3’, zll’ zlll’

we have :
234 at4-bz4c=(z—2)(z—2")(z—2"")=0.
. But the product :
(z — ) (s —2") (z — =)
is, when arranged according to powers of z,
33_(21+z”+zlll) ﬁ + (zl zll_'_ zl zlll+zll zlll) z_zlzll zlll;
whence, by comparison with the given equation, we have
a=— (¢4 2"+ 2'"),
b=z 2" + z " + z ",
c =_zl zll zlll;
that is, the coefficient of 22 is the negative of the
sum of the roots, the coefficient of z is the sum of
the products of the roots multiplied together two
and two, and the term which does not contain z is

the negative of the continued product of the roots
18+
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277. Corollary. It may be shown in the same
way that, in the equation

*+taz" ' ba*"2+cz""3 + &e. =0,

the coefficient of z*~11s the negative of the sum of
the roots; the coefficient of z"~2 is the sum of the
products of the roots multiplied together two and two ;
the coefficient of ™3 is the negative of the sum of
the products of the roots multiplied together three
and three ; and so on, the last. term being the pro-
duct of the roots when n is even, and the negative
of this product when n is odd.

SECTION M.

Equal Roots.

278. Problem. To find the equal roots of an
equation.

Solution. Let z' be one of the equal roots which occurs
n times as a root of the given equation, the first member of
which is therefore divisible by (z— z’)». If the quotient is
a function of n denoted by X, the equation is, then,

z—2z)"X=0.
The derivative of this first member is, as in art. 177,
n(z—2)" "1 X4 (z—2')" Y,

provided that Y is the derivative of X. The factor z— =z’
occurs, then, (n—1) times in this derivative of the first
member, that is, once less than in the first member itself.
The greatest common divisor of the first member and its
derivative must, therefore, consist of the factors (x —z') of
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the first member, each being repeated once less than in the
first member. No one of them is, then, a factor of the
common divisor, unless it is more than once a factor of the
first member, that is, unless it corresponds to one of the
equal roots.

The equal roots of an equation are, therefore, ob-
tained by finding the greatest common divisor of its
first member and its derivative, and solving the
equation obtained from putting this common divisor
equal to zero.

279. Corollary. 'The common divisor must, it-
self, have equal roots, whenever a root is more than
twice a root of the given equation.

280. ExQMpLEs.

1. Find all the roots of the equation
B —7224+162—12=0
which has equal roots.
Solution. The derivative of this equation is
8322 —14z 4 16,

the greatest common divisor of which and the given first
member is

z—2.
The equation .
. z—2=0,
gives
z=2.

Now since the given equation has two roots eqﬁal to 2, it
must be divisible by

(z—2)2=122—4z}4,
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and we have
P—724162—12= (z—2)? (z—38) = 0;
whence
z=3
is the other root of the given equation.

2. Find all the roots of the equation
27 —9254 62141623 — 1222 —7246=0

which has equal roots.

Solution. The derivative of this equation is

728 —4514}- 24234522 —24 2z —7,
the greatest common divisor of which and the given equa-
tion gives
: B —a22—z41=0,

which is an equation of the third degree, and we may con-

sider it as a nmew equation, the equal roots of which are to
be found, if it has any.
Now its derivative is
322 =22 —1, .
and the common divisor of this derivative and the first mem-

ber gives
2—1=0,orz=1.
Hence the first member of
B—at—2x4+1=0
must be divisible by
(= —17,
and we have indeed

B—2—zt+1=(z—1)2(z41)=0.
The equal roots of the given equation are, therefore,
z=1,and = —1;
and its first member is divisible by
(¢ — 1) (= + 1),
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and is found by division to be

(a—1)3 (24 1) (2 42— 6).
The remaining roots are, therefore, found from solving the
quaarauc equation
»®+x—6=0
which gives + ’
=2, or=—3.
3. Find all the roots of the equation
P4322—92—-27=0
which has equal roots.
Ans. 2=8,0r =—3
4. Find all the roots of the equation
- B — 153 T52—125=10

which has equal roots.
Ans. 2 =25

5. Find all the roots of the equation
2#—9234-2922—392--18=0
which has equal roots.
Ans. =1, or=2,0r=3
6. Find all the roots of the equation
ot —2a3—592246024900=0

which has equal roots.
Ans. x= 6, or = —5.

7. Find all the roots of the equation
2 —623—82—3=0
which has equal roots.
Ans. 2=3,or =—1,
8. Find all the roots of the equation
#4 1223454221 1082481 =0

which has equal roots.
Ans, g = — & _
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9. Find all the roots of the equation
¥ -2t —223 - 422} 2—2=0
which has equal roots.
Ans. z==41,0r =2
10. Find all the roots of the equation
a8 —6x44234+922—12244=0
which has equal roots.
4ns. x=1,0or =—2,
11. Find the equal roots of the equation
28—827-2020 —4525 14524 —21 23—1022+4202—8=0.
Ans. z =1, 0or = 2.

SECTION III.

Real Roots.

281. Theorem. When an equation is reduced,
as in art. 266, and the values of its first member,
obtained by the substitution of two different numbers
Jor its unknown quantity, are affected by contrary
signs, the given equation must have a real root com-
prehended between these two numbers.

Proof. Tor, if the value of the less of the two numbers,
which are substituted for the unknown quantity is supposed
to be increased by imperceptible degrees until it attains the
value of the greater number, the value of the first member
must likewise change by imperceptible degrees, and must
pass through all the intermediate values between its two ex-
treme values. But the extreme values are affected with op-
posite signs, so that zero must be contained between them,
and must be one of the values attained by the first member ;
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that is, there must be a number which, substituted in the
first member, reduces it to zero, and this number is conse-
quently a root of the given equation.

282. Corollary. If the given equation has no real
root, the value of its first member will always be af-
Jected by the same sign, whatever numbers be sub-
stituted for its unknown quantity.

283. Theorem. When an uneven number of the
real roots of an equation are comprehended between
two numbers, the values of its first member obtoined,
by substituting these numbers for x, must be affected
with contrary signs ; but if an even number of roots
18 contained between them, the values obtained from
this substitution must be affected with the same sign.

Proof. Denote by z/, 2/, 2" &c. all the roots of the
given equation which are contained between the given num-
bers p and ¢ ; the first member of the given equation must,
by art. 269, be divisible by

(z—2') (x—2") (z — 2'") &ec.
If we denote the quotient of this division by ¥, the equation

Y=0
gives all the remaining roots of the given equation, so that
Y=0

cannot have any real root contained between p and ¢. .
The given first member being, therefore, represented by
—2)z—2)(z—2")....X Y
becomes
(p—2)(p—2)(p—2").... X Y,

wnen we substitute p for z, and denote the corresponding
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value of ¥ by ¥'; and when we substitute g for z, and de-
note the corresponding value of ¥ by Y, it becomes

(g—2)(g—z")(g—a").... X ¥".
The quotient of these two results is

(p—2) (p—2) (p—2").... ¥'
(7—=)(g—a")(g—2").... ¥"
which can be written

p—z’” YI
x .o .—W.

Now since each of the roots 2/, 2"/, z'", &c., is included
between p and g, the numerator and denominator of each
of the fractions

p—x p—2'
q_z/ X q—z"x q_zlll

p_z/ p__zl P—z'"
q — q_zu’ q_zm'

C.,

must be affected with contrary signs, and therefore each of
these fractions must be negative.

But since ¥’ and ¥ must, by art. 282, have the same
sign, the fraction
Yy
Y
is positive.
The product of all these fractions is therefore positive,
when the number of the fractions
p—z p—2z'
is even, that is, when the number of the roots, z', 2", z'",
&c., is even ; and this product is negative, when the num-
ber of these roots is uncven. The values which the given
first member obtains by the substitution of p and ¢ for =z
must, consequently, be affected with contrary signs in the
latter case; and with the same sign in the former case.

c.,
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284. Theorem. Every equation of an uneven
degree, has at least one real root affected with a sign
contrary to that of its last term, and the number of
all its roots is uneven. '

Proof. Let the equation be
"+ azr~14&c....4m=0,

in which 2 is uneven,

First, to prove that there is a real root, and that the
number of real roots is uneven. Every real root must be
contained between 4 and — . Now the substitution
of

=,
gives the value of the first member
artaaxr14+ban—24&ec.... 4 m;
the first term of which is infinitely greater than any other
term, or than the sum of all the other terms. The sign
of this result is therefore the same as that of its first term,
or positive.
Again, the substitution of .
T=—m
gives, since n is uneven,
—o"faxrl—ban~2 4 &ec....4-m,
which may be shown by the above reasoning to be negative.

The given equation must then, by art. 281, have at least
one real root, and by art. 283, the number of its real roots
must be uneven.

Secondly. To prove that one, at least, of the real roots
is affected with a contrary sign to that of the last term.
The substitution of

z =0,

reduces the given first member to its last term m.
19
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Comparing this with the above results, we see that, if =
is positive, the given equation must, by art. 281, have a real
root contained between 0 and — av, that is, a negative root ;
but if m is negative, there must be a real root contained
between 0 and - ao, that is, a positive root; so that there
must always be a root affected with a sign contrary to that
of m.

285. Theorem. The number of real roots if
there arc any, of an equation of an even degree
must be even, and if the last term is negative, there
must be at least two real roots, one positive and the
other negative.

Proof. Let the equation be

tazr—14-bzr—2 4 &e....4m=0,
in which n is even.

First. To prove that the number of real roots is even.
The substitution of

z= @
gives for the value of the first member
w*taw—14bar-2}-&c....+m,
which is positive.
The substitution of
rT—=—am
gnves for the value of the first member
o —aa*- 14 baor~24-&c....+m,
which is also positive.
Hence, if the given equation has any real root, there
must, by art. 283, be an even number of them.

Secondly. To prove that when m is negative, there must
be two real roots, the one positive, the other negative. The

substitution of
z=0
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reduces the given first member to its last term m, and this
result is therefore negative in the present case.

Comparing this with the above results, we see that there
must be a real root between 0 and - @, and also one be-
tween 0 and — a ; that is, the given equation has two real
roots, the one positive and the other negative.

286. Corollary. Since the number of real roots
of an equation of an uneven degree is uneven, and
that of an equation of an even degree is even, the
number of imaginary roots of every equation, which
has imaginary roots, must be even.

287. Theorem. Thenumber of real positive rools
of an equation is even, when its last term is posi-
tive ; and it is uneven, when the last term is nega-
tive.

Proof. The substitution of

z=m
gives, for the first member of the given equation, a positive
result ; while the substitution of

z=0
1educes the first member to its last term.

Hence if this last term is positive, the number of real
roots contained between 0 and m, that is, of positive roots,
must, by art. 283, be even ; and if this last term is negative,
the number of these roots must be uneven. ’

288. Theorem. If a function vanishes, that is,
is equal to zero for a given value X' of its variable
X ; the function and its derivative must have like
signs for a value of the variable whick exceeds X' by
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an infinitely small quantity, and unlike signs for a
value of the variable which is less than x' by an in-
Sfinitely small quantity.

Proof. Let the given function be u, and its derivate U,

and, as in art. 176, when the variable is increased by the
infinitesimal ¢, the function becomes

u Ui,
This value of the fungtion, when
u=0
is reduced to U4, which has, obviously, the same sign
with U.

In the same way when the variable is decreased by ¢, the

function becomes
u— Ui,
which, when
u=0,

is reduced to — U'¢, having the opposite sign to U.

289. Definition. A pair of two successive signs
in a row of signs, is called a permanence when the
two signs are alike, and a variation when they are
unlike. )

290. Sturm’s Theorem. Denote the first member

of the equation
*+az*!'4 & =0

by » and its derivative by U. Find the greatest
common divisor of % and U, and, in performing this
process, let the several remainders which are of con-
tinually decreasing dimensions in regard to z, be de-
noted, after reversing their signs, by

U, o, U, &e.
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Find the row of signs corresponding to the values
of

u, U, U, U, &c.,
for any value p of the variable, and also for a value
q of the variable.

The difference between the number of permanences
of the first row of signs, and that of the second, is
ezactly equal to the number of real roots of the given
equation comprised between p and q.

Proof. The method in which U’, U”, &c., are obtained
gives, at once, by denoting the successive quotients in the
process by m, m/, &c.

u=m U —=U'

U=mw U —U"

Ul=m" U''— g
&ec.

First. Two successive terms of the series cannot varish
at the same time, except for a value of z which is one of
the equal roots of the given equation. For when U" and
U, for instance, are zero, the equation

Ul=m Uy .
gives

U =0;

and, in the same way, it is shown that

U=0 and u =0,
so that the function and the derivative are both zero at the
same time, which, by art. 278, corresponds to the case of
one of the equal roots of the equation.

Secondly. If any term of the series, except the first o1
last, has a different sign in the row corresponding to the
value p of the variable from that which it has in the row

19
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corresponding to the value g of the variable, it must, by art.
281, vanish for some value of the variable contained be-
tween p and g. But for this value of the variable, the pre-
ceding term must have a different sign from the succeednng
terin; thus, when
U'=20
the equation
U= m" Uy — ygm
gives
U=—0U".
By the change of sign which the term undergoes in vanish-
ing, therefore, it can only change from forming a perman-
ence with one of its adjacent terms to forming one with the
other of these terms, and the change of sign of a term,
which is neither the first nor the last of the series, does not
increase or diminish the number of permanences of the row
of signs. -

Thirdly. When the first term u of the series, in chang-
ing its sign, vanishes, while the second term U does not
vanish, the corresponding value of the variable is, by art.
278, a root of the equation which is not one of the equal
roots. If, moreover, the variable is decreasing in value, the
mgns of these two terms constitute a permanence before the
change and a variation after the change. When the vari-
able, therefore, in decreasing passes through a value which is
one of the unequal roots of the equation, the number of per-
manences in the row of signs is increased by unity.

Fourthly. When the given equation has no equal roots,
u and U can, by art. 278, have no common divisor, and
therefore the last term of the series will not contain the
variable ; it must, therefore, be of a constant value and no
change of sign can arise from it. JIn this case, then, the
number of permanences must by the preceding division of the
proof be greater in the row which corresponds to the greater
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of the two limits p and q, than in the row which corre-
sponds to the less of these two limits, by a number which is
exactly equal to the number of real roots contained between
p and q.

Fifthly. When the given equation has equal roots, u and
U must, by art. 278, have a common divisor which will be
the last term of the series. This divisor must also, by art.
69, be a divisor of all the other terms of the series ; and
if the series is divided by it a new series

v, V, V', V", &c.,

is obtained, which has in all cases either the same signs
as the given series or the reverse signs, so that each pair
of successive signs is of the same name, whether perma-
nence or variation, in each series. And by dividing the
equations before found by this same common divisor, they
become

v=m V-V

V=w V' — Vu

&ec.

The first term of the new series has, by art. 278, the same
roots with the given series except that it has no equal roots,
and the last term is unity. The reasoning of the preceding
portion of this article may, therefore, be applied to the new
series ; and it follows that the theorem is applicable to the
case of an equation which has equal roots, as well as to one
which has unequal roots.

291. Corollary. If infinity is substituted for p
and negative tnfinity for q in the series of divisors,
the resulting rows of signs show at once the whole
number of real roots of the given equation.
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292. EXAMPLES.

1. Find the number of real roots of the equation
224 —202z419=0
and also the number contained between 1 and 2.

Solution. In this case, we have
u=2z—20z 19,
U=823—20;
and by the method of the common divisor
22t —20x 419|222 —5 z
Rzt — 512 :
—15z24+19|302°8—75 —R128
-+ 30 23 — 38 22
3822 — 75

57022 —1125| — 38 2
57022 —7221z

722 z — 1125
10830 z — 16875 | — 722
10830 z — 13718

— 3157
U =15z—19
U'" = 3157.
When, therefore, = @ the row of signs is
+ 4 4+
and when z = — w, it is
+, Ty T +;

there are then two real roots.

Again when z = 2, the row of signs is

+ 4+
and when z =1, itis
+; T T +;

the two real roots are therefore both between 1 and 2.
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2. Find the number of real roots of the equation

B+az45=0.
Solution. In this case, we have

u =23+4az4-b

U=322+4a

U=—2az—3b

U'=—4a3—270%
First case. When a is such that U" is negative, that is
when

—4a3R7b% or — A a3 < 18 or (—§a)P<(}30)?
the row of signs when z = @ is
-+, 4, =F (the reverse of a), —;
and when z = — itis
—, 4+, £ (like a), —,
go that there is only one real root.
The row of signs when = = 0 is, when b is positive,
+, + (like a), —, —,
8o that, in this case, the real root is megative.
This row, when b is negative, is
—, =% (like a), 4, —,
so that, in this case, the real root is positive, which agrees
with art. 284.
Second case. When a is negative and of such a value that

36y =—@ap
U'=0,
in which case the equation has the equal root, obtained from
the equation

that is

U=—2az—3b=0

35
-2a’

or
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and in this case the row of signs when z = is

+ 4+
and that when z = — @ is
] +’ —
go that the two different roots of the equation are, in this
case; real, -
The row of signs when z.= 0 is
== (like b), —, =~ (unlike b) ;
so that one of the roots is positive and the other negative.
Third case. When a is negative and of such a value that

U is positive or
(— $a)® > (4 5
in which case, the row of signs when z = is
+' +’ +’ +i
and when z = — itis
] +v - +;
so that all three of the roots of the equation are real.
The row of signs when z — 0 is
=+ (like b), —, =F (like b), —.
If, then, b is positive the equation has one positive real rool
and two negative ones; and if b is negative, it has two posi-
tive real roots and one negative one.
8. Find the number of real roots of the equation
z* 4 a=0.
Solution. In this case, we have
u =2+a
U=nz—1
U= —a.
First case. If n is even, the row of signs, when z =

is, then,
-+, -+, =F (unlike a);
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when 2 = — itis

i 4+, —, = (unlike a);
so that there is no real root when a is positive, and two
real roots when a is negative, which agrees with art. 285.

Second case. If n is odd, the row of signs when z = @

* -+, +, = (unlike a);

when 2z = — o it is

—, -+ F (unlike a);
go that, in either case, there is only one real root, which is,
by art. 284, of a sign unlike that of a.

4. Find the number of real roots of the equation

™+az+4b=0.
Solution. In this case, we have
u =z"+taz-4b,

U =nz""14aq,
U'=—(n—1)az—nb,
U= —a*(n— )"~ 1 —an (—b)*— 1,
First case. When n is even and greater than 2, and U”
positive, that is, when b is positive, and

()<=

the row of signs when z = w is

4, +, =F (unlike @), 4 ;

when 2 = — w itis

+, —, & (like a), +;
so that when a is positive, there is no real root, and when
a is negative there arc two real roots. In the latter case,
the row of signs when z = 0 is
+v =y T + ;

%0 that both the real roots are positive
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Second case. When n is even and greater than 2, and
U" zero, that is when b is positive and

a\" b a—1
(7) B (n —1
in which case, there is the equal root

== (n—l \l n°

The row of signs when z — @ is

4, -+, F (unlike a) ;
when 2 = — @ it is
+, —, £ (like a) ;
so that in either case there is no other real root than the
above equal root.

Third case. When n is even and greater than 2, and U”
negative, that is,

() (n—l) K

the row of signs when z = is

-+, +, = (unlike a), —
when 2 = — 0 it is
“+, —, & (like a), —
so that when a is negative there is no real root, and when a
is positive there are two real roots. In the latter case, the
row of signs when 2z = 0 is
=+ (like b), -}, =~ (unlike b), —

so that when b is positive, both the roots are negative, and
when b is negative, one of the roots is positive and the other
negative, which agrees with art. 287.

Fourth case. When n is odd, and U positive, that is,
when a is negative and

GO R GV
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in which case, the row of signs when z = w is

+ 4+ 4

when z = — @ itis
) +; ) +;
so that the equation has three real roots; the row of signs
when £ =0 is
=+ (like b), —, 7 (unlike b), 4 ;

so that when b is negative, one of the real roots isposi-
tive and the other two negative; and when b is positive,
one of the real roots is negative and the other two posi-
tive,

Fifth case. When n is odd, and U"' zero, that is, when
a is negative and

2)=(=)"

in which case, there is the equal root

nbd =l a
= Z—Da N—w

the row of signs when z = @ is

+ + +;
bt +’—;

so that there is another real root besides the above equal
root. The row of signs when z =0 is

=+ (like b), —, == (unlike b);
8o that one of the roots is positive and the other negative.

when z=—» it is

Sizth case. When n is odd, and U" negative, that is,

(—ﬁ0 <G
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in which case, the row of signs when z = is

+, 4+, = (unlike a), —;
when z = — o it is
—, +, = (like a), —,
so that there is only one real root, which, by art. 284, kas
1 sign contrary to that of its last term,

4. Find the number of real roots of the equation
3 —622419z2 —44=0.

Ans. It has one positive real root.
6. Find the number of real roots of the equation
¥ — 1044 3522—50z4 24 =0.

Ans. It has four positive real roots,
6. Find the number of real roots of the equation

23 —24a24432z2—21=0.
Ans. It has three positive real roots and one negative

. one.
7. Find the number of real roots of the equation

2 48224162 — 440 = 0.
Ans. One positive root and one negative root.

293. Sturm’s theorem is perfect in always giving
the number of real roots, but often requires so much
labor, that theorems, which are much less perfect,
may be used with great advantage.

294. Stern’s Theorem. Denote the first member
of the equation
zrn+az* ' &e.=0
by u and its first, second, &c. derivatives by U, U’,
&e.
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Find the row of signs corresponding to the values

of
u, U, U, U’, &c.,

for any value p of the variable, and also for a value
¢ of the variable.

The number of real roots of the equation, com-
prised between p and q, cannot be greater than the
diffcrence between the number of permanences of the
Jirst row of signs and that of the second row.

f'roof. First. It may be shown as in the third division
of the proof of art. 200, that one permanence at least is
always lost from the row of signs when the variable in de-
creasing passes through a value which is one of the roots of
the equation.

Secondly. When any term of the series except the first
or the last, vanishes, it passes, by art. 288, with the de-
creasing variable, from having the same sign with its deriv-
ative, which is the next term of the series, to having the
reverse sign of it. Even then, if it had before the change
the reverse sign of the preceding term and after the change
the same sign, it introduces a permanence which is only
sufficient to take the place of the other permanence which
is lost.  The number of permanences of the row of signs is
not, thercfore, augmented by the vanishing of such an inters
mediate term.

Thirdly. The last term of the series must be constant,
for the number of dimensions is diminished by each deriva-
tion ; and, therefore, as z decreases from a value p to a
smaller value g, the number of permanences of the row of
signs must be diminished by as large a number at least as
the number of roots comprised between p and gq.
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295. Definition. An equation
*+az"" & +k2+kz41=0.

is said to be complete in its form, when it containg
terms multiplied by every different power of z from
the highest to unity, and also a constant term, such
as [

296. Descartes’ Theorem. A complete equation
cannot have a greater number of positive roots than
there are variations in the row of signs of its terms,
nor a greater number of positive roots than there are
permanences in this row of signs.

Proof. If the equation is that of art. 205, the values of
u, U, U/, &c. in art. 204, are

u =2"tazr" 14 &ec. ;- hP 4 kz -1

U=na"'4(n—1)az*"2}&c.4+2hz}-k

U'=n(n—1)a"24(n—1)(n—2)az" 34 &c.4-2A

&e.
The row of signs when z = @ is
+, 4+ + +: &ec.,
consisting wholly of permanences.
When z = — it is
=+, F, =, F, &e,

in which the upper row of signs is used when n is even,
and the lower row when n is odd. In either case, this row
consists wholly of variations.

The row of signs when z =0 is

=+ (like 1), &= (like k), & (like 2 &)
that is, it is the same as the row of signs formed by the
terms of the equation taken in the inverse order.
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The limit of the number of positive roots is, therefore, by
art. 204, equal to the excess of the whole number of pairs
of successive signs of the terms, over the number of per-
manences ; that is, it is equal to the number of variations ;
and in the same way, the number of negative roots cannot
exceed the number of permanences. g

297. Corollary. 'The whole number of successions of
signs of an equation, that is, the sum of the permanences
and variations, is one less than the number of terms, or the
same as the degree of the equation, that is, the same as the
number of roots. '

If, therefore, all the roots are real, the number of
positive roots must be the same as the number of
variations, and the number of negative roots must be
the same as the number of permanences.

298. Scholium. Whenever a term is wanting in
an equation, its place may be supplied by zero, and
either sign may be prefixed.

299. Corollary. When the substitution of 4 0
for a term which is wanting gives a different num-
ber of permanences from that which is obtained by
the substitution of — 0, and consequently a difler-
ent number of variations also, the equation must
have imaginary roots.

300. Theorem. When the sign of the term whick
precedes a deficient term is the same with that whic
Jollows it, the equation must have tmaginary roots.

Proof. For if the terms which precede and follow the
deficient term are both positive, the substitution of +4- 0

gives two permanences; while the substitution of —( gives
m.
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two variations. The reverse is the case when both these
terme are negative. The equation must, therefore, in either
case, have imaginary roots.

301. Theorem. When two or more successive
terms of- an equation are wanting, the equation
must have imaginary roots.

Proof. For the second deficient term may be supplied
with zero affected by the same sign as that of the term pre-
ceding the deficient terms; and the first deficient term is
then preceded and followed by terms having the same sign,
80 that there must, by the preceding article, be imaginary
roots.

'302. Theorem. When an uneven number (m)
of successive terms is wanting in an equation, the
number of imaginary roots must be at least as great
as (m + 1), if the term preceding the deficient
terms has the same sign with the term following
them ; and the number of imaginary roots must be
at least as great as (m — 1), if the term preceding
the deficient terms has the reverse sign of the term
Jollowing them.

Proof. First. If the sign of the term preceding the de-
ficient terms is the same with the sign of the term following
them ; supply the place of each deficient term with zero
affected by this same sign. All the (m -} 1) successions,
dependent upon the deficient terms, must in this case be
permanences. But if the sign of every other zero beginning
with the first is reversed, namely, of the first, third, fifth,
&ec., all these permanences are changed into variations ; so

that (m -} 1) roots can be neither positive nor negative, and

are, consequently, imaginary
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Secondly. If the sign of the term preceding the deficient
terms is the reverse of the sign of the term following them ;
supply the place of the two last deficient terms with zero
affected by the same sign as that of the term preceding the
deficient terms. This case becomes the same as the pre-
ceding with (m —2) deficient terms, and there must there-
fore be (m — 1) imaginary roots.

303. Theorem. When an even number of suc-
cessive terms is wanting in an equation, the number
of imaginary roots must be at least as great as the
number of these deficient terms.

Proof. Let the place of the first deficient term be sup-
plied by zero affected with the same sign as that of the term
which follows the deficient terms.

The number of deficient terms is thus reduced to the
uneven number m — 1 ; and, as the term preceding the
deficient terms is now of the same sign with that of the
term following them, the number of imaginary roots of the
equation must, by the preceding article, be at least as great

as .
(m—1)4+1=mn.

304. A number, which is greater than the greatest
of the positive roots of an equation, is called a su-
perior limit of the positive roots; and one, which is
less than the least of the positive roots, is called an
inferior limit of the positive roots.

In the same way, a superior limit of the negative
roots is a number which, neglecting the signs, is
greater than the greatest negative root; and an infe-
rior limit of the negative roots is a number which is
less than the least negative root.
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305. Problem. To find a superior limit of the
positive roots.

Solution. 'The sum of all the negative terms being equal
to the sum of all the positive terms, must exceed each
positive term. Let, then, — § be the greatest negative co-
efficient of the equation of the nth degree, and m the ex-
ponent of the highest negative term; the sum of the nega-
tive terms, neglecting their signs, must evidently be less
than that of the series .

S+ 8Sz+4 S22 &e.... 4 Sz,
for each term of this series is greater than the correspond-
ing negative term of the equation.

But this series is a geometrical progression of which §
is the first term, S z™ the last term, and z the ratio ; so that
its sum is, by example 3, of art. 261,

Szmt1—8
z—1 '
and must be greater than any positive term, as z*, or
Sazn+1— 8§  Szam+l
=< z—1 <z—l“

(x—1)z» < Sam+],
(z—1)zr—m=1 8.
But, since A\
z—1<zand (z—1)*—m—1gn—m—1
we must have
=1 (z—1)z"-""1L8;
and, therefore,

Hence

or

-1 Vv

<14 &8

or
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If we, then, denote by L this superior limit of the positive
roots, we have
L=148;

that is, a superior limit of the positive roots is unity,
tncreased by that root of the greatest negative coeffi-
cient, whose index is equal to the excess of the degree
of the equation above the exponent of the first nega-
tive term. '

306. Problem. To find an inferior limit of the
positive roots.

Solution. Substitute in the given equation for z, the
value
. z= 7
and find, by the preceding article, a superior limit of the
positive values of y, afier the equation is reduced to the
usual form ; and denote this limit by L.

We have, then, -

y< I

and, therefore, ’
' 1 1

y 2T
or .

LT D>

so that 1 is an inferior limit of the positive roots of the

L'
given equation.

307. Problem. To find the limits of the negative
roots of an equation.

Solution. Substitute for z
zT=—Y,
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and the positive roots of the equation thus formed are the
negative roots of the given equation; and, therefore, the
limits of its positive roots become, by changing their signs,
the required limits.

308. Corollary. By the substitution of different
numbers for p and ¢, in arts. 290 or 294, the limits
between which each root is obtained can be narrowed
to any extent which may be desired, until they may
be adopted as the first approximations to the roots in
the method of art. 179. Thus, it is easy to obtain
the first left hand significant figure.

309. EXAMPLES.

1. Find the left hand significant figure of the real roots
of the equation
58—62+42=0.

Solution. First. In this case, 6 is the greatest negative
coeflicient and — 6 x is the first negative term, so that, by
art. 305,

14++6=236
is a superior limit of the positive roots.
To find the limit of the negative roots, let
r=—y,
and the equation becomes, by reveriﬂg its signs,
53—6y—2=0;
—(14+v6)=—35

is the superior limit of the negative roots, and the roots are
all contained between 4 and — 4.

80 that
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Secondly. Sturm’s theorem gives
u =523 —62-42

U=1522—6
U=22—1
Ut=3;

so that the row of signs when z =4 is

+ 4+
when = —4 itis
| +) - +;

so that the equation has three real roots,
The row of signs when z =0 is
+, Ty T + ’
so that two of the roots are positive and one is negative.

The substitution of positive integers, gives for the rows
of signs when ¢ =1
+1 +’ >+
so that both the positive roots are contained between 0
and 1.
The substitution of the positive decimals 01, 0-2, 03,
&ec., gives the following rows of signs.

=01

YTy T
z =02 y Ty T
=103 y =y =y
z=04| — —, —,
= 05 Ty T ’ ’
2 =06 | —, —, -,
=07 | —, 4, 4,
z =08 ) ) :‘::
z2=09 | 4, 4, 4, +;

so that one real root is contained between 03 and 04, and
the other between 0'S and 09 ; their first approximate val
ues are, then, 0-3 and 0-8.

The substitution of the negative integers gives, in the
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same way — 1, for an approximate value of the negative
root

2. Find the left hand significant figures of the roots of
the ‘equation
24 - 8234 16 x — 440 = 0.
Ans. 3 and — 4.

3. Find the first approximation to the roots of the equa-
ton 25— 1523 4 132 12 4- 36 z - 396 = 0.
Ans. 1, —1, —85.
4. Find, by Stern’s theorem, the greatest possible num-
ber of real roots which the equation
20— 102 — 24 -2 —11=0
can have between -1 and — 1.

Solution. In this case we have, by art. 294,
u =210 —1028—atf2—11
U =102°—802"—423+41
U' =90 28 — 560 26 — 12 23
Ur — 72027 —336025 — 24z
U™ — 5040 2® — 16800 z¢ — 24
Ur — 30240 75 — 67200 23
Uv = 151200 z* — 201600 22
Un — 604800 z3 — 403200 z
U — 1814600 22 — 403200
Uy = 362800 z
U= — 3628800 ;
the row of signs when z =1 is
—o_’_:—’—:_;_:+’+s+o+;
when z = —1 itis
_’+’—)+'—)+!—9—’+! —:+;

0 that the number of these roots cannot exceed 8.
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Again, when z is nfinitely little greater than zero, for
which value some of the differential coefficients vanish, the
row of signs is

so that there cannot be more than three roots between 0
and 1; and since the sign of the first term is the same
when z =20, that it is when z =1, there cannot, by art,
283, be an odd number of real roots between 0 and 1, and
ronsequently there cannot be more than 2. The row of
signs when z is less than zero by an infinitesimal is

') +’ ] +» _’+_» +’ T T +;

so that there can be no real root between 0 and — 1.

5. Find, by Stern’s and Descartes’ theorems, the greatest
possible number of real roots of the equation

2 —5zi 23— —1=0,

comprised between 0 and 1.
Ans, 2.

310. A Commensurable Root is a real root, which
can be exactly expressed by whole numbers or frac-
tions.

311. Problem. To find the commensurable roots
of the equation

*taz* "'+ bz* 4 &e.+lz+m=0,
tn which a, b, &c. are all integers, either positive or
negative.

Solution. Let one of the commensurable roots be, wi n
reduced to its lowest terms,

T = —.
q9
21
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As this root must verify the given equation, we have

P_"+aP""_|_b;_’:_:;+ac.+m=o;

qs qa—l
whence, multiplying by ¢*—1, and transposing, we obtain
%:: =—ap*~l—bp"~2g—&ec....—mg*"1;

and, therefore, as the second member is integral, the first
member must also be integral, or we must have

q=1,
whence
z=p;
that is, every commensurable root of the given equa-
tion must be an integer.
Again, the substitution of
z=p,
in the given equation, produces

prtap-14-&e....+kp4-lp4m=0;

whence, dividing by p, and transposing, we obtain .
%’-:—l—kp—&,c. cov—apr——pr—l;

and, therefore, as the second member is integral, the first
member must be so likewise ; that is, every integral root
must be a divisor of m.

If, now, we denote by m,

m = —;i +1
the preceding equation gives, by transposing and dividing
by p,

m'

> =—k—ip—hpl—gp’—&c.—apr—3—p*—9,

so that this integral root must likewise be a divisor of m’
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In the same way, if we use m", m'', mv, &c. as follow

m!
m! = k,
» +

"
=t

&ec., &c.;

this integral root must be a divisor of m', m", mv, &c. ,
and the last condition to be satisfied is

min—1] =0, or mi*~ll = xp,
4 s y 2

Hence to find all the commensurate roots of the given
equation, wrilc tn the same horizontal line all the tntegral
divisors of m, which are contained between the extreme limits
of the roots.

Write below these divisors all the corresponding values of
m’, m", &c., which are integral, remembering that a divisor
cdnnot be a root, when the value which it gives for cither
m', m”, m", &c., is fractional.

Proceed in this way till the values of mi*=1) are obtained,
and those divisors only are roots which give —p for the
value of this quantity,

312. EXAMPLES.

1. Find the commensurable roots of the equation
25— 192343422122 —40 = 0.

Solution. The extreme limits of the real roots are 74,
and —G69. Hence we have
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m = —40;

p = 64 2 ,—1,— 2, —4,— §5;
m = 4,2 —8,—28, 6, 3, 2N, 2W:
m = s » 30, 6,—18, 18, , 30;
m" = » T 4:—139_ l» _'28’ ;—25;
mv = y s — 2, —13, 1, 14, ’ 5;

and, therefore, 2, — 1, and —5 are roots of the given
equation, and its first member, divided by the factor

(z—2) (x4 1)(z45) =234 423—T72—10,
gives the quotient
®—4z44;

and, therefore, the remaining roots are those of the equation
2—4z4+4=0,
which are equal to each other, and each is
z =2
2. Find the commensurable roots of the equation
28—327—1026—22¢4-62°2122—32—10=0.
Ans. 5,1, —1, and —2.,
3. Find all the roots of the equation
1t4-23—2422}43. 20 =0
which has commensurable roots.
Ans. 1,8, —34 /53,
4. Find all the roots of the equation
8 —6224+192—44=0
which has a commensurable root.
Ans. 4,and 1 4 o/ —10.
5. Find all the roots of the equation
*—10234-3522—50z 24 =0

which has commensurable roots.
Ans. 1,2,3, 4.
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6. Find all the roots of the equation
—32t—8234-2422—924-27=0
which has commensurable and equal roots.
Ans. 3, —3, and & / —1
7. Find all the roots of the equation
28 —23 7t — 4813195224400 24375 =10
which has commensurable and glso equal roots.
Ans. 3,5, and —24 / —1.

313. Problem. To find the commensurable roots
of an equation.
Sotution. Reduce the equation to the form
Aaxr4Bazr—14&c....4 Lz M=0,
in which 4, B, &ec., are all integers, either positive or
negative.
Substitute for z the value

=4
=
and the equation becomes
Ly
An—1+ A“_l An—ﬂ +&'c +7 +M=o;
which, multiplied by 4»—1, is
y"+By* 144 Cy"2+&e....-+ A2 Ly+4- A" 1M =0,

The commensurable roots of this equation may be
Sound, as in the preceding article, and being divided
by A, will give the commensurable roots of the re-
quired equation.

314. Scholium. 'The substitution of

i
4
2
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is not always the one which leads to the most simple
result. But when 4 has two or more equal factors,
it is often the case that the substitution

T = —I
leads to an equation of the desired form, A’ being
the product of the prime factors of 4, and each fac-
tor need scarcely ever be repeated more than once.

315. EXAMPLES.

1. Find the commensurable roots of the equation
64 2¢ — 32828 | 57422 — 3932 -4- 90=0.

Solution. We have, in this case,
A =64 =25;

hence we may take A’ equal to some power of 2; and 1t is
easily seen that the third power will do, so that we may
make

z=1¢%y.
Heuce the given equation becomes

yt—41y34- 574 42— 3144 y 4- 5760 = 0.

The commensurable roots of which are found, as in art

311, to be
y =4,6,15,and 16;

go that the roots of the given equation are
z=4,% 1§, and 2.
2. Find the commensurable roots of the equation
8234 3422— 792 4-30=0.
Ans. §, %,and — 6
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3. Find the commensurable roots of the equation
2428 —2622+49x—1=0.
Ans. %, 3, and }.
4. Find the commensurable roots of the equation
323 —1422-4-212—10=0.
Ans. 1, §, and 2.

5. Find the commensurable roots of the equation
824 —382% 4-4922—2Rx--3=0.
Ans. },1, 1, and 3.
6. Find all the roots of the equation
62347224-3924-63=0
which has a commensurable root.
Ans. —§, and } =}  —251.

7. Find the commensurable roots of the equation
9204302542224 4102341722 —2024-4 = 0.
‘ Ans. § and —2,



48 ALGEBRA. ) |cn. 1x. ‘

Vaue of Continued Fractions.

CHAPTER IX.

CONTINUED FRACTIONS.

316. A continued fraction is one whose numeratoi
is unity, and its denominator an integer increased by
a fraction, whose numerator is likewise unity, and
which may be a continued fraction.

Thus,

1 and !

1 1
at3 ¢+b+1 :
¢+ I T &e.

are continued fractions.

317. Problem. To find the value of a continued
Jraction which is composed of a finite number of
Jractions.

Solution. Let the given fraction be
1

at

1
1
b4 :
c+2.

Beginning with the last fraction, we have successively

1 cd4-1
0+7= j-

1 d
17 cd4-1
c+7 +
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1 d__b(cd+1)+d
bp— =10+
c+7 cdF1= " cdFI
1 cd+1 cd+1
1 “bedt)+d (GeFl)dFbd
bt
C+-d-
1 _ad@et1tabtcd]
e+ GetNdTb
bt —
C+3'
1 _ (bet1yd+b
a+l T ad(be+1)Fab4cd41
bt (bet-1)d4b
‘+:T @b+ Dedfadfabr1’

and this method can easily be applied in any other case.

318. ExAMPLES.

1. Find the value of the continued fraction
1

—
24 —
3+ yy
2. Find the value of the continued fraction
1

41—
3+z Ans. oy,

Ans. 3§
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319. Problem. To find the value of an infinite
continued fraction.

Solution. Let the fraction be
1
1
a-- ot i
¢+ &ec.
An approzimate value of this fraction is obviously
obtained by omitting all its terms beyond any as-

sumed fraction, and obtaining the value of the re-
sulting fraction, as in the previous article.

Thus we obtain, successively,

1 1
= == 1st approx. value.
1 b
i = o5 F1 2d approx. value,
a + z
1 _ bed1
i = @ifDeta 3d approx. value.
a4 1 &c., &c.
o4 ry

and each of these values is easily shown to be more accu-
rate than the preceding; for the second value is what the
first becomes by substituting, for the denominator a, the

more accurate denominator a -} Ve the third is what the
second becomes by substituting, for the denominator b, the

more accurate denominator b -}- ?; and so on.
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Approximate Values of Continued Fractions.

320. Theorem. The numerator of any approxi-
mate value, as the nth, is obtained from the nume-
rators of the two preceding approximate values, the
(m — 1)st, and the (n — 2)nd, by multiplying the
(n — 1)st numerator by the nth denominator con-
tained in the given continued fraction, and adding
to the result the numerator of the (n — 2)nd ap-
prozimate value. .

The denominator of the nth approzimate value is
obtained in the same way from the two preceding
denominators.

Demonstration. Let the (n—3)rd, (n—2)nd, (n—1)st,
and nth approximate values be, respectively,

K L M N

T W
and let the (»n — 1)st and the nth denominators, contained
in the given continued fraction, be p and gq.

We shall suppose the proposition demonstrated for the
(n— 1)st approximate value, and shall prove that it can
thence be continued to the nth value; that is, we shall sup-
pose it proved that

M _pL+K

W= P K
Now it is plain, from the remarks at the end of the preced-
ing article, that the nth value is deduced from the (n—1)st,
by changing p into p %; which change, being made in

the preceding value, gives

N _ (P+DE+E _ Grimygrs
N = G+h)orm = GIFE) T
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Difference between successive Approximate Values.

Hence we have, by substituting

M=pL + K,
—pLI+KI;
N _ Mq+L

N T Mg+ L
that is, the value required to satisfy the theorem.

If, therefore, it can be shown that the proposition is true
for any approximate value, it follows that it must be true for
every succeeding value. But the comparison of the values
given in the preceding article shows that it is true for the
third value, and therefore for every succeeding value.

321, Theorem. If two succeeding approrimate
values are reduced to a common denominator equal
to the product of their denominators, the difference
of their numerators s unity.

Demonstration. Let the (n —2)nd, (n — 1)st, and ntb
approximate values be

L M an d N _Mq+L
L’ M Mg+ L’
the difference between the (n —2)nd and (n —1)st is
LM—LM
2R
and that between the (n — 1)st and nth is
M N—MN + (MM —MM)q4+ML—-ML
= =N = N
LM—L'M
== TN
of both which differences the numerators are the same;
and, therefore, this is always the case.
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Approximate Value compared with True Value.

Now the first and second approximate values, as given in
art, 319, are, when reduced to a common denominator,
ab4-1 and ab .
a(ab+41) a(ab4-1)°
the difference of the numerators of which is 1; and, there-
fore, unity must always be the difference of two such nu-
merators.

322. Theorem. The approzimate values of a con-
inued fraction are alternately larger and smaller
‘han its true value, the first being larger, the second
smaller, and so on alternately..

Demonstration. Since, in the preceding demonstration,
the subtraction of the (» — 1)st value from the (» — 2)nd,
gave a fraction having the same numerator as that obtained,
by its subtraction from the nth; we see that if the (n —1)st
value is larger than the (n — 2)nd, it must also be larger
than the nth; and if the (» — 1)st is smaller than the
(n —2)nd, it is also smaller than the nth,

But the true value is, by art. 319, nearer the (n—1)st value
than the (» — 2)nd, and nearer the nth than the (n —1)st;
so that when the (n—1)st value is larger than the (n—2)nd,
the true value must likewise be larger than the (n —2)nd,
and smaller than the (r — 1)st, and so on alternately ; but
when the (r — 1)st value is smaller than the (r —2)nd, the
true value must be smaller than the (n —2)nd, and larger
than the (n— I)st, and so on alternately.

Now the first value is, by the preceding article, larger
than the second, and therefore the true value is smaller than
the first, larger than the second, and so on alternately.

323. Theorem. FEach approvimate value of a

continued fraction differs from the true value by a
2
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Transformation of a Quantity to a Continued Fraction.

quantity less than the fraction whose numerator ¢s
unity, and whose denominator is the square of the
denominator of this approrimate value.

Demonstration. Let the denominator of the two succes
sive approximate values be M’ and N'; N’ must, by art,
320, be larger than M’; and the difference between these

two values must be
1

M N
But, by the preceding article, the true value is contained
between these two approximate values, and therefore differs
from either of them by a quantity less than their difference

Now, since
M N,
we have
M'2 < M NI’
and
1 1
5> WA

8o that the true value must differ from the approximate
value, whose denominator is M’, by a quantity less than
1
M2
that is, less than a fraction whose numerator is 1, and de-

nominator M'2,
L]

324. Problem. To transform any quantity into
a continued fraction.

Solution. Let X be the quantity to be trans-
Sormed. I'ind the greatest integer contained in X,
and denote it by A, and denote the excess of X abave

" A by the fraction -:—J ; and we have
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1
A+ 7=
and
_
X—4A
From this value of X', find the greatest integer con-
tained in X', and denote it by a, and the excess of X'

7 =

above a by z% ; whence

1

x—a

Ld z'” —_—
Sfrom which the greatest integer contained in x" is

to be found, and so on ; so that we have

@+ a'+&ec.

325. EXAMPLE.

Transform §§4 into a continued fraction.

Solution. We have, in this case, successively,

4=2;
a =1;
= %sgs,
a =2;
M = g’, o
a =1;

v =87 = a",
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and the required continued fraction is

326. Corollary. The values of &, a", &c., in the
case of a vulgar fraction, are evidently the quotients
which would be obtained by the process of finding
the greatest common divisor of the numerator and
denominator of X'

The preceding process might therefore be performed as
follows :

263|351|1=a
263

88|263|2 = a'
176
87|88|1 = a”
il
1|87|87 = a*
8
0"

327. Corollary. If a fraction or ratio is trans-
Jormed into a continued fraction by the preceding
process, the approximate values of this continued
Jraction are also approximate values of the given

Jraction or ratio, which are often of great practical
use.

Thus the approximate values of §§§, are

2, 3, 3 l{l;

of which the last differs from the true value by only gy,
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Approximate Values of Fraction or Ratio.

328. EXAMPLES.

1. Find approximate values of the fraction #§}.

Ans, 3, £%, 43, and }}4.
2. Find approximate values of the fraction y§%#.

Ans. gy, 2r) 3 TE e 35, and A%,
3. Find approximate values of the fraction g%wg%
Ans. o, &, o5 2% oily &c.
4. Find approximate values of the fraction 0-245,
Ans. } and }3
5. Find approximate values of the fraction 1-27.
Ans. 4, £, 4%, 3%, and &4

6. The lunar month consjsts of 27:321661 days. Find
approximate values for this time.

Ans. 27, 82, ©8p, 3807, &c. days, which show that
the moon revolves about 3 times in 82 days; or with
greater accuracy, 28 times in 765 days; and with still
more accuracy, 143 times in 3907 days.

7. The sidereal revolution of Mercury is 87-969255 days.
Find approximate values for this time.

Ans. 88, 2315, &c.

8. The sidereal revolution of Venus is 224-700817 days.
Find approximate values for this time.

Ans. 225, 433, U7, 2447, 2R, &,

9, The ratio of the circumference of a circle to its
diameter is 3:1415926535. Find approximate values for

this ratio. .
Ans. 3, 37, 131, 148, &o
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Approximate Roots of Equation.

329. Corollary. The process of art. 324 may be
applied to finding the real roots of an equation, the
approzimate values of which, obtained by this pro-
cess, can easily be reduced to decimals.

330. EXAMPLES.

1. Find the real root of the equation
23—3z—8=0.
Solution. We have, in this case,
4=2,
and if we substitute
z2=2 —l-,

in the given equation, we obtain
6r3—97%—62—1=0,
whence we have
a=2;
and the substitution of

¥=2-4 ;l-"
gives
. 2/3—30z'%—272"—0=0;
whence we have
a =32,
and so on.
The approximate values of z are, therefore,
2, 2} = 25, 23¢ = 2492, &ec.
2. Find the real root of the equation
P — 12z —28=0.
Ans. ¢ = 4-30213.
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3. Find the real root of the equation
P —=122a24572—94=0.
Ans. z = 3-36216.

331. Corollary. If the given equaﬁ'on s a bino-
mial one, as in art. 223, we can obtain, by this pro-
cess, a root of any degree whatever.

332. EXAMPLES.

1. Extract the square root of 5 by means of continued
~ fractions.

Solution. Representing this root by z, we have

2=25,
whence
A=2;
and the substitution of
1
= 2 + ;‘

gives
23 —42 —1=0;
whence we have
a—4;
and the substitution of

1
z'_4+7
gives
' — 42 — 1,

which, being precisely the same with the equation for &,
we may conclude that

4=a=ad =a" = a" = &ec.
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and the approximating values are

2%, 24, 241, A &o.;

and the value in decimals is
2:23606.

2. Extract the third root of 46 by means of continued

fractions.
Ans. 3:58305.

3. Extract the third root of 35 by means of continued

fractions.
Ans. 3271,

4. Extract the square root of 2 by means of continued

fractions.
Ans. 1-4142136.
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SECTION I

EXPONENTIAL EQUATIONS.

1. An Ezponential Equation is one in which the
unknown quantity occurs as an exponent.

2. Problem. To solve the exponential equation
b =m.

Solution. 'This equation is readily solved by
means of continued fractions, as explained in Alg.
art. 324.

3. EXAMPLES.

1. Solve the equation

3* = 100.
Solution. Since we have
34 =28l,

and
35 = 243,
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Solution of Exponential Equations.

the greatest integer contained in z must be 4. Substituting
then

1

Z—4+—z-',
we have

34 = 100,
or

1 1
3¢3¥ =81 X 3¥ = 100;

and

L
3% = ¥¢;
which being raised to the power denoted by z', is
100\ z/
»=(ar)

By raising 199 to different powers, the greatest integer
contained in 2’ is found to be 5. Substituting then

z’ = 5 + zll
we have

= ()= () (™

or
g — 10000000000 100\ =
= 346734201 < \Br
Hence
Ir
(1-0460353203)’c = '-89'11,

from which the greatest integer contained in z' is found to
be 4; and in the same way we might continue the process

The approximate values of z are, then,
4, 41, 44, = 419, &c.
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2. Find an approximate value for z, in the equation

3 = 15.
Ans, z = 2:46.

8. Find an approximate value for z, in the equation

10 = 3.
Ans, z = 0477,

4. Find apn approximate value for z, in the equation -

Br=t Ans. 7= 053,

4. Corollary. Whenever the values of b and m are both
larger or both smaller than unity, the value of z is positive.
But when one of them is larger than unity while the other
is smaller, the value of z must be negative ; for the positive
power of a quantity larger than unity must be larger than
unity, and the positive power of a quantity smaller than
unity is smaller than unity; whereas the negative power,
being the reciprocal of the corresponding positive power,
must be greater than unity, when the positive power is less
than unity, and the reverse.

Hence to solve the equation
b* =m,
in which one of the quantities, b and m, is greater
than unity, while the other is smaller than unity

make
. z=—1y,
which gives
b=Y =m,

(1) =

which may be solved as in the preceding article.
=3

or
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Positive and Negative Logarithms.

5. EXAMPLES.

1. Solve by approximation the equation

5 = 4.
§ Ans. . = — 025

2. Solve by approximation the equation

2 = 3.
b Ans. z = — 158,

SECTION II.

NATURE AND PROPERTIES OF LOGARITHMS.

6. The root of the equation
br=m
is called the logarithm of m ; and since, by the pre-
ceding section, this root can be found for any value
which m may have, it follows that every number
has a logarithm. The logarithm of a number is
usually denoted by log. before it, or simply by the
letter I.

7. But the value of the logarithm varies with the
value of b, and therefore the value of b, which is
called the base of the system of logarithms, is of
great importance ; and the logarithm of a number
may be defined as the ezponent of the power to which
the base of the system must be raised in order to
produce this number.
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Logarithm of Product and of Power.

8. Clorollary. When the base is less than unity, it
follows, from art. 3, that the logarithms of all num-
bers greater than unity are negative, while those of
all numbers less than unity are positive. -

But when, as is almost always- the case, the base
is greater than unity, the logarithms of all numbers
greater than unity are positive, while those of all
numbers less than unity are negative.

9. Corollary. Since
=1,
it follows, that the logarithm of unity is zero in all
systems.

10. Theorem. The sums of the logarithms of
several numbers is the logarithm of their continued
product.

Proof. Let the numbers be m, m', m", &c., and let b be
the base of the system ; we have then

brem —=m
bem =
blog-m'— m, &e. 3
the product of which is, by art. 28,
b 108 m - log. - log. m” - &e. —_ m m' m" &c.
Hence, by art. 7,
log. m m' m" &c. = log. m 4 log. m’ 4 log. m"" 4- &c.

11. Corollary. If the number of the factors, m, m', &c.
is #, and if they are all equal to each other, we have
log. m m m &c. = log. m - log. m - log. m 4 &e.

or .
log. m*» = n log. m ;
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Logarithm of Root, Quotient, and Reciprocal.

that 1s, the logarithm of any power of a number is
equal to the logarithm of the number multiplied by
the exponent of the power.

12. Corollary. If we substitute
p=m"
or »
m=4/p,
in the above equation, it becomes
log. p=mnlog. v p,
or
log. v p= lﬂg’_;_ﬂ;
that is, the logarithm of any root of a number is

equal to the logarithm of the number divided by the
exponent of the root.

13. Corollary. 'The equation
log. m m' = log. m - log. m/,
gives
log. m' = log. m m' — log. m;
that is, the logarithm of one factor of a product is
equal to the logarithm of the product diminished by
the logarithm of the other factor ; or, in other words,
The logarithm of the quotient is equal to the loga-
rithm of the dividend, diminished by the logarithm
of the divisor.

14. Corollary. We have, by arts. 13 and 9,
log. -117 =log. 1 —log. n
= —log. n;

that is, the logarithm of the reciprocal of a number
is the ncgative of the logarithm of the number.
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Logarithms in different Systems.

15. Corollary. Since zero is the reciprocal of in-
finity, we have
w log. 0 =—1log. o0 = — o}
that is, the logarithm of zero is negative infinity.

16. Corollary. Since we have )
bt =1,
the logarithm of the base of a system s unity.

17. Theorem. If the logarithms of all numbers
are calculuted in a given system, they can be ob-
tained for any other system by dividing the given
logarithms by the logarithm of the base of the re-
quared system taken in the given system.

Demonstration. Let b be the base of the given system,
and b that of the required system; and denote by log. the
logarithms in the given system, and by log.’ the logarithms
in the required system. Taking, then, any number m, we

have, by art. 7,

b log. m = m,
and

bllo‘l = — m ;
whence

b/lo‘.'- — blo‘. L

If we take the logarithms of each member of this equation
in the given system, we have, by arts. 11 and 16,

log./m X log. & = log m X log. b = log. m,
or, dividing by log. &',

log/! m = —=—

log. m
log. &
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Logarithms of a Power of 10.

SECTION III.

COMMON LOGARITHMS AND THEIR USES.

18. The base of the system of logarithms in com-
mon use is 10.

19. Corollary. Hence in common logarithms, we have
by arts. 16 and 9,
log 1=0,
log. 10 =1,
log. 100 = log. 102 =2,
log. 1000 = log. 103 = 3,
log. 10000 = log. 10* = 4,

&e., &c.,
also,
log. 0'1 =log. 10-1=—1,
log. 001 = log. 102 = — 2,
log. 0:001 = log. 10-3 = — 3,
&ec., &c.;

that is, the logarithm of a number, which is com~
posed of a figure 1 and cyphers, is equal to the num-~
ber of places by which the figure 1 is removed from
the place of units ; the logarithm being positive when
the figure 1 is to the left of the units’ place, and
negative when it is to the right of the units’ place.

20. Corollary. If, therefore, a number is

between 1 and 10, its log. is between 0 and 1,
if between 10 and 100, its log. is between 1 and 2,
if between 100 and 1000, its log. is between 2 and 3,

and so on.
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To find the Logarithm of a given Number.

But if between 0-1 and 1, its log. is between — 1 and 0,
if between 0-01and 01, its log. is between — 2 and —1,
and so on.

Hence, if the greatest integer contained in a loga- -
rithm is called its characteristic, the characteristic
of the logarithm of a number is equal to the num~
ber of places by which its first significant figure
on the left is removed from the units’ place, the
characteristic being positive when this figure is to
the left of the units’ place, negative when it is to the
right of the units’ place, and zero when it is in the
units’ place.

21. Logarithms have been found of such great
practical use, that much labor has been devoted to
the calculation and correction of logarithmic tables.
In the common tables they are given to 5, 6, or 7
places of decimals. In almost all cases, however,
5 places of decimals are sufficiently accurate; and
it is, therefore advisable to save unnecessary labor,
and avoid an increased liability to error, by omitting
the places which may be given beyond the first
five.

22. Problem. To find the logarithm of a given
number from the tables.

Solution. First. Find the characteristic by the
rule of art. 20.

The characteristic is the most important part of the loga-
rithm, and jyet the unskilful are very apt to err in regard to
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it, not appearing to consider that an error of a single unit
in its value will give a result 10 times as great or as small
as it should be.

If the characteristic thus found is negative, the
negative sign is usually placed above it, that this
sign may not be referred to the decimal part of the
logarithm, which is always positive. But calcula-
tors are in the habit of avoiding the perplexity of a
negative characteristic by subiracting its absolute
value from 10, and writing the difference in its
stead ; and, in the use of a logarithm so written, it
must not be forgotien that it exceeds the true value
by 10.

Secondly. In finding the decimal part of the loga-
rithm, the decimal point of the given number is to
be wholly disregarded, and any cyphers which may
precede its first significant figure on the left, or fol-
low its last significant figure on the right are to be
omitted.

When the number thus simplified is contained
within the limits of the tables, which we shall re-
gard as exlending to numbers consisting of four
places, the decimal part of its logarithm is found in
a horizontal line with its three first figures, and in
the column below its fourth figure ; the second, third,
and fourth figures, when wanting, being supposed
to be cyphers.

When the number consists of more than fous
places, and is therefore, beyond the limils of the
tables, point off its first four places on the left and
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consider them as integers, regarding the other places
as decimals.

Care must be taken not to confound the decimal point
thus introduced with the actual decimal point of the num-
ber, of which it is altogether independent.

Find, in the tables, the decimal logarithm corre-
sponding to the integral part of the number thus
pointed off ; and also the difference between this
logarithm and the one next above it, that is, the
logarithm of the number which exceeds this integral
part by unity ; this difference is often given in the
margin of the tables.

Multiply this difference by the decimal part of the
number as last pointed off, and omit in the product
as many places to the right as there are places in
this decimal part of the number.

The product, thus reduced, being added to the
decimal logarithm of the integral part of the num-
ber, is the decimal part of the required logarithm.

23. Corollary. This process for finding the decimal part
of the logarithin of a number, which exceeds the limits of
the tables, is founded on the following law, easily deduced
from the inspection of the tables.

If several numbers are nearly equal, their dif-
Jerences are proportional to the differences of their
logarithms.

24. EXAMPLES.

1 Find the logarithm of 0-00325787.
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Solution. 'The characteristic is — 3, instead of which
may be written 10 —3 = 7.
For the decimal part, the number is to be written
325787 ;
and we have
log. 3258 — log. 3257 = 13

now, multiplying by 87
and omitting two places 91
on the right, 104
we have 11
which, added to log. 3257 = 51282’
gives 51293 ;

and the required logarithm is
log. 0-00325787 = 3:51293,

or, it may be written,
7:51293.

2. Find the logarithm of 1-8924. Ans. 0-27701.
8. Find the logarithm of 757-823000. Ans. 8-87956.
4. Fiud the logarithm of 0:00041359.

Ans. 461657, or 6:61657
5. Find the logarithm of 0-12345.

Ans. T-09149, or 9-09149.

6. Find the logarithm of 99998. Ans. 499999,

© 25. Problem. 7o find the number corresponding
to a given logarithm.

Solution. First. In finding the figures of the
required number, the characteristic is to be neg-
lected.

e ——

— oy
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When. the decimal part of the given logarithm is
exactly contained in the tables, ils corresponding
number can be immediately found by inspection.

But when the given logarithm is not exactly con-
tained in the tables, the number, corresponding to
the logarithms of the table which is next below it,
gives the four first pluces on the left of the required
number.

One or two more places are found by annering
one or two cyphers to the difference between the
given logarithm and the logarithm of the tables
next below it, and dividing by the difference between
the logarithm of the tubles next below and that next
above the given logarithm. .

When tables are used in which the logarithms are given
to five places, the accuracy of the corresponding numbers is
never to be relied upon to more than 6 places, and rarely
to more than 5 places; so that in finding the last quotient,
one place is usually sufficient.

Secondly. The position of the decimal point of
the required number depends altogether upon the
characteristic of the given logarithm, and is easily
ascerlained by the rule of art. 20; cyphers being
prefized or annexed when required.

26. EXAMPLES.

1. Find the number, whose logarithm is 8:19325.

Solution. We have for the logarithm of the tables new
below the given logarithm
19312 = log. 1560.
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Hence .
the diff. between given log. and log. 1560 = 13,
also log. 1561 — log. 1560 = 28,

and the quotient
1380 — 46
gives the two additional places; so that the six places of the

required number are
156046 ;

and the number is, therefore,
156046000.

2. Find the number, whose logarithm is 2-13511.
Ans. 136:493.

8. Find the number, whose logarithm is 1-76888.
Ans. 587328.

4. Find the number, whose logarithm is 0-11111.
Ans. 1-29153.

6. Find the number, whose logarithm is 2-98357.
Ans. 0-0962875.

6. Find the number, whose logarithm, when written 10

more than it should be, is 9-35846.
Ans. 022828.

27. Problem. To find the product of two or more
Jfactors by means of logarithms.

Solution. F'ind the sum of the logarithms of the
factors, and the number, of which this sum is the
logarithm, is, by art. 10, the required product.

When the logarithm of any of the factors is writ-
ten, as in art. 22, 10 more thun its true value, as
many times 10 should be subtracted from the resull
as there are such logarithms.
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Involution by Logarithms.

28. EXAMPLES.

1. Find the continued product of 78:052, 0-6178, 341000,
100-008, and 0-0009.

Solution. We find, from the tables,

log. 78-052 = 1-89238
10 4 log. 0-6178 = 9-79085
log. 341000 = 5-53275
log. 100-008 = 2 00003
10 -} log. 00009 — 6-95424
log. 1479960 6-17025
and the required product is
~ 1479960.

In the sum of the preceding logarithms 20 was neglected,
because two of the logarithms were written 10 more than
they should be.

2. Find the continued product of 0-0001, 7,9004, 056,
0032569, and 17899-1.

Ans. 0 R257792.

8. Find the continued product of 3:1416, 0559, and
64-01.

) Ans. 11241,

4, Find the continued product of 3-26, 0-0025, 0-25,

and 0-003.
Ans. 000000611257,

29. Problem. To find any power of a gwen
number by means of logarithms.

Solution. Multiply the logarithm of the given
number by the ezponent of the required power, and
%
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the number, of which this product is the logarithm,
is, by art. 11, the required power.

When the logarithm of the given number s writ-
ten 10 more than it should be, as many limes 10
mnust be deducted from the product as there are untts
in the given exponent.

30. ExampPLES.

1. Find the 4th power of 0-98573.

Solution. We have, by the tables,

10 -} log. 093573 — 999375
multiply by 4
10 +4- log. 094406 — 997500
and the required power is
0-94106.

In the above product, 40 should have been neglected, but
in order to avoid a negative characteristic, only 30 was
neglected, leaving the exponent 10 too large.

2. Find the 3d power of 025, Ans. 0-015625.

3. Find the 7th power of 3-1416. Ans. 3020-28.

4. Find the square of 0 0031422,

Ans. 000000987325.

31. Problem. To Jind any root of a given num-
er by meuns of logarithms.

Solution.  Divide the lgarithm of the given

o3 umber by the cxponent of the required root, and the

snumber, of which this quotient s the logarithm, i,
by art. 12, the required root.
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Evolution by Logarithms.

When the logarithm of the given number has a
negative characteristic, instead of being increased
by 10, it should be increased by as many times 10 -
as there are units in the exponent of the root, and
the quotient will in this case exceed ils true value
by 10.

32. EXAMPLES.
1. Find the fifth root of 0-028145.

Solution. We have, by the tables,
50 - log. 0028145 — 48-44940,
which, divided by 5, gives
10 - log. 0-48964 — 9-68988,
and the required root is
0-48964.
2. Find the cube root of 0-002197. Ans. 0-13.
3. Find the 10th root of 0-000000001.  Ans. 0-12589.

4. Tind the square root of 238:149.  Ans. 15°4317.

33. The arithmetical complement of a logarithm
is the remainder after subtracting it from 10.

34. Corollary. The arithmetical complement of
the logarithm of a mumber is, by art. 14, and the
preceding article, the logarithm of its reciprocal in-
creased by 10.

35. Corollary. The most convenient method of
finding the arithmetical complement of a logarithm
is to subtract the first significant figure on the right
Jrom 10, and each figure to the left of this figure
Jrom 9.



280 LOGARITHMS. [§ .

Arithmetical Complement.

36. EXAMPLES.

1. Find the arithmetical complement of 9-62595.
Ans. 0-37405.

2. Find the arithmetical complement of the logarithm

of 6. Ans. 9-22185.
3. Find the arithmetical complement of the logarithm
of 0-07. Ans. 11-15490.

4. Find the reciprocal of 0-01115.
Solution. We have, by the tables,
log. 0-01115 (ar. co.) 1195273

subtract 10-
log. 89636 195273
and the retjuired reciprocal is
89-686.

5. Find the reciprocal of 2330. Ans. 0-00042018.
6. Find the reciprocal of GS-99. Ans. 0014494,

37. Problem. To find the quotient of one number
divided by another by means of logarithms.

Solution. * Subtract the logarithm of the divisor
Jrom that of the dividend, and the number, of which
the remainder is the logarithm, is, by art. 13, the
required quotient.

Or, since, by art. 81, multiplying by the reciprocal
of a number is the same as dividing by it, add the
logarithm of the dividend to the arithmctical comple-
ment -of the logarithm of this divisor, and the sum
diminished by 10 is the logarithin of the quotient.
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Division by Logarithms.

When the logarithm of the dividend is written 10
more than its true value, 20 must be subtracted from
the sum, instead of 10.

38. EXAMPLES.

1. Divide 0-01478 by 0-9243.
Solution. We have, by the tables,

10 4- log. 001478 816967

log. 0-9243 (ar. co.) lﬂE’A_lQ

10 4 log. 0-01599 820386

and the required quotient is
0-01599.

2. Divide 0-00815 by 0-0025. Ans, 3:26.
3. Divide 40-32 by 2240. Ans. 0-018.
4. Divide 0875 by 25. Ans. 0:035.
5. Divide 0-013 by 0-13. Ans. 0-1.

39. Corollary. The value of any fraction may
be found by adding together the logarithms of all
the factors of the numerator and the arithmnetical
complements of the logarithms of all the factors of
the denominator, and subtracting from the sum as
many times 10 as there are arithmetical complements
plus as many times 10 as there are logarithms of
the factors of the numerator, which are written
greater than their true value by 10 ; the remainder
is the logarithm of the fraction.
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Various Examples of the use of Logarithms.

40. EXAMPLES.

1 Find the value of the fraction
(0:327)" x 4/ 1981
(123)} x (0005)
Solution. We have, from the tables,
10 + log. (0-327)7 6-60185
log. » 19-81 0-64844
log. (123)} (ar. c0.) 997003
log. (0-005)2 (ar. co.) 14-60206
log. 66-433 182238
and the required value is
66-433.

2. Find the value of the fraction

5 70365 X 2
v 788")'

Ans. 02308
3. Find the value of the fraction
° (347 X + 0:0073
v N————)
16X 4§ Ans, 1:0666.

41. Corollary. The logarithm of the fourth term
of a proportion is found by adding together the
arithmetical complement of the logarithms of the
JSirst term and the logarithms of the second and
third terms.
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Various Examples of the use of Logarithms.

42. EXAMPLES.

1. Find the fourth term of the proportion
- 963 : 1279 =87 : z

Solution.,
log. 963 (ar. co.) 7:01637
log. 1279 3-10687
log. 8-7 0:93952
log. 11:555 1-06276
and we have
z = 11-555.

2. Find the fourth term of the proportion
0-0138: 0-319 = 765 : .
Ans. x = 17683,

43. Problem. To solve the exponential equation
a’*=m,

by means of logarithms.

Solution. The logarithms of the two members of this
equation give .
zlog. a = log. m;
hence
__log.m
" log. a’

or
log. z = log. 10g. m — log. log. a;

that is, the root of this equation is equal to the

logarithm of m divided by the logarithm of a, and

this quotient may be obtained by the aid of loga-

rithms. \
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Ezxponential Equatious.

44. EXAMPLES.

1. Solve the equation
625 — 3125.
Solution. We have, from the tables,
log. 3125 — 3-49485,
log. 625 = 2:79588;
and also
log. log. 3125 — log. 3-49485 — 0-54343
log. log. 625 = log. 279588 — 0-44652

log. z = log. 125 0-096ﬁ;
hence
z = 125.
2. Solve the equation
3* = 15.
Ans, z — 2464,

3. Solve the equation
10* =3.
Ans. z = 0477

THE END.




ERRATA.

Page 8, line 2, for —a38 —4/z read —a? —34/x.

»

”

”

”»

”»

”

”

w ow 8 » D g » 8 g-
11, ,, 2, , those » that.
16, ,, 6, , art. 30 » art. 36.
, last line, ,, fractional » Degative.
17,ex.11, , by —n » bya—n
22, line 12, ,, an—bn 5 an—bn

82, , 2, after algebraic work, interchange
“«Col. 1” and “Col. 2.

83,ex.7, for +3adad read - 3 a3 a8,

87, line 10, omit unlike.

43, last line, for 4 X B s AX D.

59, art. 106, 1. 4, for greater » greatest

Page 60, art. 109, add : But if a factor which may equal
zero 18 multiplied into an equation or taken away from it, the
possible solutions of the equation are increased or diminished.
Thus  — 1 =0 has only one root, namely 1. If the equa~
tion be multiplied by x, we obtain 22 — z — 0, which has
two roots, 1 and 0. If we next divide by # — 1, we obtain
=0, which no longer has the root 1.

Page 60, art. 110, add : after taking account of any solu-
tion of the equation which would be furnished by putting that
Sactor equal to zero.

Page 64, ex. 2, ans. for 2 a2 read 3 22,

»

120, line 3, , Of €2 » Of e
» art.182,1.7, ,, final » first.
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ERRATA.

Page 123, ex. 2, the answer should be — 5.871947344.

”»

”

for

» €X.3, the second answer should be — 4.350415.
» €X. 4, the answers should be 1.092411 and
1.591428,

» art. 186, fore read c.
124, lines 8, 9, ,, decimal point ,, unit’s place.
125, ex. 5, » 20548344701 , 205483447701.
126, art. 189, ,, & - ‘
132, ex. 4, ans. ,, 4 d3 24 »w 2d82A
184,line 17, ,, 302 a3 8c , 3N BB 3,
143, , -2,

wé——l)_ ar —2 3 read

n(n—1) —
-——2——a" x2,

Page 144, line 4, for a» —3z? read a®—3 a3,

”»

”»

”

”»

”»

”»

146, ,, 7, , 7 »n ¢
n w2l , 0Tprg+lr ,, 0Tprg—!'r.
w =2y 5 172 » 174

”»

152, ex. 4, ,, —144 2z w — 14 zgs,

168, ex. 6, , —213leqatdlec,, 4 24310atH c.
w FiRa—08 e, 4 10a—657 c2

162, line 16, ,, AN » AM.
164, lines 19, 20, for A €

165, line 1, w h » €

»  » =D, for 6 X 128 4-8 X 1read 12843 X 1.
167, , 8, , 4022 » +40z.
168, ,, -11,-2, for /171 » V271

170, ex. 17, the second answer should be -} .2641.
» ex. 20, ans. for /15 read o/ — 15.
172, ex. 81, ans. for (24/b—a2) ,, (25— a?).
181, ex. b, ans. ,, or=-+44 , or=—4.
182,line 13, ,, 4-6zy2 , —6zg2
»n n wlor(P—5y4+4 , (#—5y+44).
196, , 15, ,, ar—n »y ar®
198, ex. 9, ans. for { (r—1) »w L@ —1).
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Page 206, line 12,
for 3[—1—A5 1+ (—10424/5)]
read 1[—1-+4a/5 + 4/ (—10—245)]

» 210, line -9, for function of n read function of x.

» 217, ,, 4, ,, dllits roots read all its real roots.

s 2220 . -8, ,, increased ,, decreased.

» 227, 228, ex. 4, solution, the treatment of the first
and third cases requires correction. When a is negative
and z is even, the value of U" is the negative of that given
in the book, because (— a) must be used as a multiplier,
instead of a, in the process of division. Hence, whether
a be positive or negative,

. a\n" b \n—1 .
if (—-) < ( ) , there is no real root;

n n—1
. a\" b \r—1
if (—) > ( ) , there are two real roots.
n n—1
Page 232, line 10, for positive read negative.
» 240, ex. 3, » + 896 s — 896.
» 3 line -8, » 1814600 ", 1814400
w sy =y ,» 8362800 » 3628800.
» 241, ,, 4, read _»"I‘a_" Ty Ty —’—’+9+0
5w s » O, for three read two.
»w 3 lines 6-9, omit “ and since....... more than 2.”
» 255, line -7, for =" read «'.
» 267, , 2 5 art. 3 » Aart. 4.
» » 13, y» Sums yy Sum.
» 274, ex. 3, ans. ,, 8.87956 » 2.87956.
» 276, ex. 4, ans. ,, 1.29153 » 129155,
» 277, ex. 2, s 17,9004 s 1.9004.

» 0.2567792 » 0.25792
» 278, ex. 4, ans. ,, 987325 » 987375,
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