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PREFACE.

THE present treatise contains all the propositions which
are usually included in elementary treatises on the Theory
of Equations, together with a collection of examples for
‘exercise.

As the Theory of Equations involves a large number of
interesting and important results, which can be demonstrated
with simplicity and clearness, the subject may advantage-
ously engage the attention of a student at an early period
of his mathematical course. The present treatise may be
read by those who are familiar with Algebra, since no
higher knowledge is assumed, except in Arts. 149, 175, 268,
308...314, and Chapter XXXI., which may be postponed by
those who are not acquainted with De Moivre’s Theorem in
Trigonometry. This work may be regarded as a sequel to that
on Algebra by the present writer, and accordingly the student
has occasionally been referred to the treatise on Algebra for
preliminary information on some topics here discussed.

In composing the present work, the author has obtained
assistance from the treatises on Algebra: by Bourdon, Lefe-
bure de Fourcy, and Mayer and Choquet; on special points
he has consulted other writers, who are named in their ap-
propriate places in the course of the work.

The examples have been selected from the College and
University examination papers, and the results have been
given where it appeared necessary; in most cases however,
from the nature of the example, the student will be able
immediately to test the correctness of his result.
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In order to exhibit a comprehensive view of the sub-
ject, the present treatise includes investigations which are
not to be found in all the preceding elementary treatises,
and also some investigations which are not to be found in
any of them. Among these may be mentioned Cauchy’s
proof that every equation has a root, Horner’s method, the
theories of elimination and expansion, Cauchy’s theorem on
the number of imaginary roots, the researches of Professor
Sylvester respecting Newton’s Rule, and the theory of
determinants. The account of determinants has been princi-
pally taken from a treatise on that subject by Baltzer, which
was published at Leipsic in 1857 ; this is an excellent work,
distinguished for the completeness of its proofs of the funda-
mental theorems, and for the numerous applications of those
theorems which it affords.

For the parts of the Theory of Equations which are
beyond an elementary treatise, the advanced student may
consult Serret's Cours d'Algebre Supérieure: there, for
example, will be found a demonstration of the theorem,
that the general algebraical solytion of an equation of a
degree above the fourth is impossible. The article Equation,
by Professor Cayley, in the ninth edition of the Encyclope-
dta Britannica should also be noticed. Valuable historical
information, relating to the higher parts of the subject, will
be found in papers on Approzimation and Numerical So-
lution, by Mr James Cockle, in the Lady’s and Gentleman’s
Diary for the years 1854 and 1855, and also in papers on
Equations of the Fifth Degree by the same author in the
same work, for the years 1848, 1851, 1856, 1857, 1858, and
1860.

I. TODHUNTER.

8t Jonn’s CoLLEGE,
March, 1880.
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THEORY OF EQUATIONS.

I. INTRODUCTION. -

‘1. TaE reader can easily obtain a general idea of the object
of the following treatise by a reference to the theory of quad-
ratic equations which he is supposed to have already studied.
The equation ax’+ bx + ¢ =0 bhas two roots, namely,

—b=,/6"—4ac
2a ’

and with respect to these roots, we know that their sum is — 2,
and their product is : ; that is, their sum is equal to the coeffi-
a

cient of the second term of the equation =+ -2 z+ 5: 0, with its

sign changed, and their product is equal to the last term of this
equation, (See Algebra, Chap. xx11.) Now it may be said that
the general object of the following pages is to establish results
with respect to equations of a higher degree than the second,
similar to those which have been established in Algebra respect-
ing equations of the second degree. The results obtained will be
useful in other branches of mathematics, and the methods of
investigation will afford valuable exercise to the student, since
they are not too difficult for a person who has gained a knowledge
of Algebra, and at the same time have sufficient variety to oc-
cupy his attention.

2. The words equaiion and root are already familiar to the
student from their use in Algebra; but for distinctness we will
give a definition of them. ’

T.E ' 2

37



2 INTRODUCTION.

Any Algebraical expression which contains  may be called
a function of z, and may be denoted by f(x). Any quantity
which substituted for = in f(x) makes JS(x) vanish, is called a
root of the equation f () =0.

An expression of the form

ax® + bzt et 4 ... +hx 4+,

where % is a positive integer, and the coefficients a, b, ¢ ... k, [,
do not involve @, is called a rational integral function of « of
the »* degree ; and if we wish to find what value of # makes
this function va.nish we have to find a root of a rational integral
equation of the n™ degree; this is the kind of equation which
we shall consider in the present treatise. In such an equation
we may if we please divide by the coefficient of the highest
power of x, so as to leave that power with only unity for its
coefficient ; the equa.tmn then takes the form

" +pa Tt + pal T+ L +p__,ac’+p__z+p,, 0.

‘We shall say that the equation is now in its mmplest Jorm ;
as will be seen hereafter, some of the-properties of equations can
be enunciated more. concisely when the equation is in this form
than when 2" has a coefficient which is not unity. If we do
not wish to suppose the coefficient of z* to be unity, we may
conveniently denote it by p,; then the equation takes the form

P +p X+t .+ p,_ &+ p,_x+p,=0.
The term p, is called the term 'mdepmdent of x.

3, It must then be remembered that by equation we mean
rational integral equation; an equation which is not of this form
may often be reduced to it by algebraical transformations; for
example, the equation aa’+bx+c,/z=f may be reduced to a
rational integral form by transposing ¢ ./ and f and thén
squaring ; it will thus become a rational integral equation of
the fourth degree. Equations which involve logarithmic fuuc-
tions, or exponential functions, or trigonometrical functions, or
irrational algebraical functions, will not be directly included in
our invostigations; for example, such equations as tan z—¢"=0,.
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or zlogz—~a=0, will not be included. However, the theory
which will be given of rational integral equations will indirectly
throw some light on these excluded equations.

And when we speak of any function f(x) we shall always
mean a rational integral function of «, unless the contrary is
specified,

4. A remark of some importance must be made with respect
to the coefficients Py, P,y Pay +-- Py in the equation

P+ T+ pa Tt L+ p, 2+ p, x+p,=0.

In the quadratic equation ax® +bx+ c¢=0 we are able to solve
the equation without knowing what particular numbers are de-
noted by a, b, ¢; all we require to know is that a, b, c are some
numbers independent of x. If we have to solve the equation
'~ 12x¢+15=0 we may either transpose the 15 and complete
the square in the ordinary way, or we may take the general
formulse given in Art. 1, and put in them a=1, =-12,¢c=15.
If we wish to solve an equation without having the numerical
values of the coefficients previously assigned, we are seeking
what may be called the algebraical solution of the equation;
and if we can effect the algcbraical solution of the general
cquation of any degree, we may obtain a numerical solution of
an equation of that degree, by substituting the numerical values
of the coefficients in the general formula which gives the alge-
braical solution. As we proceed we shall find that the algebraical
solution of equations up to the fourth degree inclusive has been
effected ; but both in equations of the third degree and of the
fourth degree, when we substitute the numerical values of the
coefficients in- a specific equation in the general formula, the
result takes a form which is sometimes practically useless. And
beyond equations of the fourth degree the general algebraical
solution of equations has not been, carried, and it appears cannot
be carried. o

But with respect to what may be called the arithmetical solu-
tion of equations in which the coefficients are given numbers,
more success has been obtained. Thus, for example, although

11—



4 INTRODUCTION.

we cannot solve algebraically the general equation of the fifth
degree, we can by numerical calculation discover any root which
an equation of the fifth degree with known numerical coefficients
may have, or at least we can approximate as closely as we please
to such a root.

5. Let us denote by JS(x) the expression

PEAPE T HPpE T 4+ p, @ 4P, TP,
then the value of this expression when 2=a may be denoted by
f(a). We will shew how the numerical value of f(a) may be
most easily calculated, supposing that the coeflicients of f(x), and
also a itself, are specified numbers.
Take for example an expression of the tlm'd degree ; then
we wish to find the numerical value of

p,a + p,a + P2 + Py

First obtain pa;
add p,, this gives Pa+ D5
multiply by a, this gives p.a'+pa;
add p,, this gives P&+ PG+ p,;
multiply by a, this gives  p,a’+p,a’+pa;
add p,, this gives P&+ pa’ +pa+p,.

'We may arrange the process in the following way;
P ol Dy <)

P o’ + pa P’ +pa’ +pa

pa+p,  pa'+pa+p, P +pa’+patp,
We may proceed in the same way whatever may be the
degree of f(x). For example, required the numerical value of
3t — 22® — 5z + 7 when 2= 3.

3 -2 0 -6 + 7
+9 +21 +63 +174
+7 +21 +58 +181

Thus the result is 181,
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6. If any rational integral function of x vanishes when
X =a, the function is divisible by x — a.

Let. f(x) denote the function; then we have given that
S (a)=0, and we have to prove that f(x) is divisible by = — a.

Divide /() by #—a by common algebra until the remainder
no longer contains x; let @ denote the quotient and R the re-
mainder if there be one, Then f(z)=@Q(z—a)+ R Tn thig
identity put @ for «; since @ is a rational integral function of =
it cannot become infinite when x=a ; therefore @ (x —a) vanishes
when 2 =a, Also f(z) vanishes when x = a by supposition, Thus
R vanishes when z=a; but R does not contain x, so that if it
vanishes when z=a it always vanishes, That is, R=0and —a
divides /().

7. The above demonstration is important and instructive;

we may however prove the theorem in another way, which will
moreover have the advantage of exhibiting the form of the

quotient . Suppose
@ =@ +p @ AN 4D, AP, T D,
then since f(a) = 0 we have f(x) =f(z) — f(a)
=P, (x. - a'-) +p}1 (m’.-_‘l - ._l) + P (z.—! - a’._’) +oetp, (Z - a’)'
Now the terms z*—a", "' —a*"}, ... are all divisible by z—a
(see Algebra, Art. 483). By performing the division we obtain
for the quotient
Po(@ t+ax™ + 0% P+ ...+ a2 +a"T)
+p, (@ +ax" P+ a4+ 0™
+ o
+P,,(z+0)
+2,-
‘We may rearrange the quotient thus :
PE + (A +p) @M+ (" + P+ p) T+
+p &t P+ D,
and we may denote it by
(AR Kl Xl S A T
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The new coefficients are therefore connected with each other
and with the old coefficients by the formule

9o =Dy "1 =0g,+Dyy 9:3=0G,+Pay =0+ Pyy ceores ]
that is, each new coefficient 18 found by multiplying the preceding
new coefficient by a and then adding the corresponding old coeffi-
ctent, It will be observed that these new coefficients are succes-
-stvely determined by the process of Art. 5.

8. If x-a divide f (x) which is any rational integral func-
tion of x, then a 18 a root of the equation f (x)=0.

For let @ denote the quotient when f(x) is divided by z— a,
then f(x)=@ (x—a). In this identity put @ for x, then @ is not
infinite, and therefore @ (x—a) vanishes. Thus f(x) vanishes
‘when x=a, and therefore @ is a root of the equation f () =0.

9. To find the remainder when any rational integral function
of x 18 divided by x — ¢, where ¢ 8 any constant,

Let f'(x) denote any rational integral function of z, and divide
S(x) by x—c until the remainder is independent of z; let @
denote the quotient and R the remainder, Then

J(@)=Q@x—-c)+ R.
In this identity put ¢ for «, then @ is not infinite, and therefore
@ (%~ c) vanishes ; thus f(c) = R. Thatis, Ris equal to f(c) when
x = c, but R does not contain «, so that R is equal to f(c) always.

For example; if 8x*—22®—bx+ T is divided by «— 3, the
quotient is 32’+ 72* + 212 + 58, and the remainder is 181; see
Arts. 5 and 7. o

For another example let us divide the same expression by z—4:

3- 2 0- 5+ 7
+12 +40 +160 + 620
+10+40 + 155 + 627

Thus the quotient is 32°+ 102* + 40z + 155, and the remainder
is 627. ' :

This process is a particular case of Synthetic Division, see
Algebra, Chapter LvIIL.
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10. Let f(z) be any rational integral function of =, and
suppose x+y put for x; then we propose to arrange f(x+Y)
according to powers of y, and to determine the coefficients of
‘the different powers.

Let f(z) =pa* +pa* " +pa"*+ ... +p,_x+p,; then
S(@+y) =po(@+y)+p,(m+y) "+ py(@+y)"" + .o + p_, (2 +9) +p..

Expand (z+)", (z+y)"", ... by the Binomial Theorem, and
arrange the whole result according to powers of y; we thus
obtain for f(x+ y) the following series : '

PP pa" T L+ p 4P,

+y {npozc"" +(n=-1)pa"?+ (n-2)pa""+... +p__l}

1.2
+...

+ ¥ {"(n"'l)Po i -1)(n-2)pa*+... + 2p,_,}

+ g-llé_{n (n=1)...(n=r+1)p 2"+ (n—1) (n-2)...(n—r) p 2" "'+ }

+ ...
s
+ —ll{lfp.,} :
The first line of this series is obviously f(x). 'We shall denote
the coefficient of y by f"(z), the coefficient of i% by f"(), the

coefficient of "[/:; by /" (x), and so on} this notation becomes
inconvenient when the number of accents is large, and so in

general the coofficient of . will bo denoted by f(). Henos

G
Sern)~fa) +1 @+ g/ O @) +

y’ r y‘ 'n
et Ef () + ... +Ef ().
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By inspection it will be seen that the functions f(x), /'(z), /" (x),
J"(®), ... f"(x) are connected by the following general law : in
order to obtain f"*'(x) we multiply each term in f"(x) by the
exponent of « in that term and then diminish the exponent by
unity,

11. Let us suppose, for example, that f(x) is of the fourth

degree ; let ’
S @) =pat+ p@+pi+pz + p,.

Then  f'(z)=4pa’+ 3pa’+ 2pz +p,,
J"(x)=4.3pax"+3.2px+2p,,
J"(x)=4.3.2px+3.2p,,

J"(x)=4.3.2.p,;

S =f@ v @+ L3 @+ T @) + %;f""(m)-

If we suppose numerical values assigned to p,, p;, »,, ?,, 2, and
x, we may calculate separately f(z), f'(«), ... by the method of
Art. 5; we shall however hereafter, in explaining Horner’s method
of solving equations, shew how these calculations may be most
conveniently and systematically conducted.

For another example suppose that /' (z) =p (z + ¢)*.
" Then f(x) =p{x" +nex™? +n_(1n—T.l) L+ nc"‘x+c"} ;
therefore
J'(@® =:p {m"‘+n(n—l)cx""+m—Tl—)én;2) " L+ nc""} H

that is S'(@)=pn(x+c)*:
similarly S (@) =pn(n-1)(z+c)*",
S (@)=pn(n-1)(n-2)(z+c)"?
and so on.
Suppose that ¢ (x) and (z) are two rational integral functions
of x, and that f(x)=¢ (x) +y (z); then it is easily seen that
S(@)=¢' (@) +y/(x), and f"(z) = ¢"(x) + y"(z), and 50 on.
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12. If we write the series for f(z +%), beginning with the
highest power of y, we shall have
n

Fer9)=ps+ o mway ™+ {pos -1 pa+ 2D pt)

+{ptn-9 s B=P G o MmO gy

+ e
‘ “1...(n—r+1
* {pr+ (n—r+ l)pr—lx-'- oo +n (n 1) L’_'(n = )pow'} ¥y

+ o+ S (2).

This may be seen from the form already given for f(x +y), or by
expanding separately every term in f(x+y), and arranging ac-
cording to descending powers of .

13. The function /' (z) is called the first derived function of
JS(z), the function f”(x) is called the second derived function of
S (@), and 80 on. The reader, when he is acquainted with the ele-
ments of the Differential Calculus, will see that each derived
function is the differential coefficient with respect to x of the
immediately preceding derived function, and that the expression
for f (z + y) in powers of y is an example of Taylor's Theorem.

Moreover, it must be observed that f/(x) is deduced from f(x)
in precisely the same way as f'(z) is deduced from f(x). Thus
S () i8 the first derived function of /”(x), and /™ () is the second
derived function of f'(x), and so on, Hence by the preceding
Article we have ]

£+ 9)=f @y @+ L5 /@ +;J—; S+

3/'_—‘1 Sr@+.. + ‘Z”_-ll F(@).

ot
|

Similarly £ (a-+9) =/"(@) + 1" @) + L5 /@) + .

ot é'_%f'(mp ot l%f(x).

And so on.
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14, In any rational integral function of x arranged according
to descending powers of x, any term which occurs may be made to
contain the sum of all which follow it, as many times as we please,
by taking x large enough, and any term may be made to coniain
the sum of all which precede it, as many times as we please, by
taking x small enough.

Let pa" +pa* ' +pa**+...+p, ' +p, _x+p, be any ra-
tional integral function of «; suppose for example that the +* term
p,_, & "' occurs; that is, suppose p,_, not zero. Let ¢ denote the
numerical value of the greatest of the coeflicients p, p . ,...p..
The sum of all the terms which follow the * term cannot exceed

N xl-r«'-l__
Cg(e* 42+ +2+ 1), that s, ngl. The ratio of the +*
.. p_ (x=1)x> . (-1 .
term to this lszz—q—l—((wT,—,‘,l)—_T)—,thatls,qp?;—i_(u—_”)n. Bytakmga:

large enough, the numerator can be made as large as we please,
and the denominator as near to ¢ as we please ; thus the ratio can
be made as great as we please.

This proves the first part of the proposition. To prove the

second part put x=§ , then we obtain the series

Y P+ PY+PY + o+ DT DY
We have now to prove that by taking = small enough, that
is by taking y large enough, any term p,y” which occurs can be
made to beat as great a ratio as we please to the sum of the terms
Po+pY+...+p,_y"" which precede it; this has been already
proved in the first part.

15. One of the first questions which can occur in the theory
of equations is whether a root must exist for every equation ; and
we shall now give some simple propositions which establish the
existence of a root in certain cases. 'We shall require a theorem
which is often assumed as obvious, but which may be proved in
the manner shewn in the next Article.

16. Let f(x) be any rational integral function of x, and f(a),
J'(b), the values of f(x) corresponding to the values ¢ and b of «;
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then as x changes from a to  the function f(x) will change from
S (a) to £(b), and will pass through every intermediate value.

Let any value ¢ be ascribed to , and let f(c) be the corre-
sponding value of f(x); let ¢+ A be another value which may be
ascribed to x ; then by taking /4 small enough f(c+ %) may be
made to differ as little as we please from f'(c). For
‘ — ’ h’ " h“‘ ] h‘ "
Sle+h)=rf(c) +hf (c)+mf (©)+...+ Tf——lf (c)+Ef (c).
"Then, by Art. 14, by taking % small enough, the first term of the

2 3
series Af"(c), TILQ S"(c), % S (¢), +.. which does not vanish, can

"be made to contain the sum of all which follow it as often as we
please, and by taking % small enough this term will itself be ren-
dered as small as we please. Therefore /(¢ + &) —f(c) tan be made
as small as we please by taking % small enough. This shews that
as x changes, f(x) changes gradually, so that if f(x) takes any
value for an assigned value of z, it will take another value as near
as we please to the former, by taking another value of 2 which is
sufficiently near to the assigned value. Hence as 2 changes from
a to b, the function f(x) must pass without any interruption from
the value f'(a) to the value f'(b); for to assert that there eould be
inferruption would amount to asserting that f(x) could take a
certain value, and could not take & second value as near as we
please to the first value.

17. We do not assert in the preceding Atticle that f(z)
always increases from f(a) to f(b), or always decreases from f(a)
to f(b); it may be sometimes increasing and sometimes decreasing.
What we assert is, that it passes without any sudden change of
value, from the value f(a) to the value /(). The proposition is
one of great importance, and probably will appear nearly evident
to the student on reflection. It is obvious that f(x) has some
finite value for every finite value ascribed to z; also we have
proved that an indefinitely small change in 2 can only make an
indefinitely small change in f(z), so that there can be no break in
the succession of values which f(x) assumes,
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18. The student who is acquainted with Co-ordinate Geo-
metry will find it useful and interesting to illustrate the present
subject by conceiving curves drawn to represent the functions.
Thus let /(x) be denoted by y, so that 3= f(«) may be conceived to
be the equation to a curve ; then by supposing this curve drawn
for the part lying between =a and z = b, a good idea is obtained
of the necessary consecutiveness in the values assumed by f(x)
between the values f(a) and f'(b).

It must be observed that we do not restrict a, b, /(a), f(b), to
be positive quantities; and by values intermediate between f(a)
and f(b) we mean intermediate in the algebraical sense; that
is, any quantity z is intermediate between f(a) and f(b) which
makes z —f (a) and f () —z of the same sign.

19. If two numbers substituted for x in a rational integral
* expression f (x) give results with contrary signs, one root at least of
the equation f (x) =0 lies between those values of x.

Let a and b denote the two numbers ; then f(a) and £ (b) have
contrary signs. By Art. 16, as « changes gradually from ‘a to b,
the expression f(x) passes without any interruption of value from
f(a) to £(b); but since f(a) and f(b) are of contrary signs the
value zero lies between them, so that f(x) must be equal to zero
for some value of # between a and b; that is, there is a root of the
equation f(x) = 0 between a and b.

‘We do not say that there s only one root. And we do not
say that if f(a) and f(b) are of the same sign there will be no
root of the equation f(x) = 0 between a and b.

20. An equation of an odd degree has at least one real root.
Let the equation be denoted by /(x) = 0, where
S (@) =ps" +P2 7 4+ P+ Dy,
and # is an odd number.

‘When « is large enough the first term of f(x), namely pz",
will be larger than the sum of all the rest by Art. 14, and there-
fore the sign of f(z) will be the same as the sign of p2". Thus,
by taking « large enough, the sign of f(z) can be made the same
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as the sign of p, when z is positive, and the contrary to that of p,
when « is negative. Since then f(x) changes its sign as x passes
from a suitable negative value to a suitable positive value, there
must be some intermediate value of x which makes f(x) vanish ;
that is, there must be some real root of the equation f(x)=0.

‘We may determine whether this root is positive or negative,
For when we put zero for 2 the sign of f(x) is the same as that of

p.. Thusif p, and p, have the same sign, 80 tha.t;—"‘- is positive,

(]
there will certainly be a negative root of the equation f(z)=0;
and if p, and p, have contrary signs, so that ;,7: is .negative, there
will certainly be a positive root of the equation f(x)=0. Thus if
an equation be of an odd degree, and be brought into its simplest

form by dividing by the coefficient of the highest power of , it
will have a real root of the sign contrary to that of the last term.,

21. An equation of an even degree which is in its simplest form,
and has its last term negative, has at least two real roots of contrary
signs.

Let f(x)=0 be the equation; then when x is zero f(z) is
negative by supposition. When « is large enough f(z) is posi-
tive, whether x is positive or negative. Thus there is some
negative value of « which makes f(x) vanish, and also some posi-
tive value of « which makes f(z) vanish. That is, the equation
S (z) =0 has certainly one negative root and one positive root.

22. If the rational integral expression f(x) consists of a set of
terms in which the coefficients are all of one sign, followed by a set
of terms in which the coefficients are all of the contrary sign, the
equation £ (x) =0 has one positive root and only one positive root.

By Arts. 20 and 21 the equation f(x)=0 must have one
positive root; we will shew that it has only one positive root.

Let f(@)=pa+pa"+px" " +...+p, z+p,.
Suppose the coefficients p,, p,, ... p, all positive, and the remaining
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coefficients negative; let p,,,==P,,,, p,,,==P,,,, ... p=-1D’,.
Then we may write f(x) thus,

Sf@)=a" {poa:’+plw +pX +...+p'—%—“ - I—;;—'-...—;ﬁ:,}‘

The expression pax" +px ™ +pa™*+...+p_ increases as = in-
creases, unless » = 0, and then it remains constant; the expression
P P P, .

_..;‘4. a',;’+ 4= e diminishes as x increases. Thus as  in-
creases from zero onwards, the two expressions cannot be equal

more than once, That is, f(x) =0 has only one positive root.

The demonstration will be the same if we suppose the first set
of coefficients negative and the second set positive.

23. To prevent any mistake it will be useful to draw attention
to the precise results obtained in the last three Articles.

In Art. 20 it is proved that the equation considered has at least
one real root; it is not proved that it has one only. In Art. 21
it is proved that the equation considered has ut least two real roots;
it is not proved that it has only two. In Art. 22 it is proved that
the equation considered has one positive root and only one positive
root : it is not proved that it has no negative root.

24, The propositions in Arts. 20, 21, and 22, as to the exist-
ence of roots in certain cases, depend upon the fact that we are
able to shew that f(x) undergoes a change of sign or changes of
sign. We cannot infer conversely that if f(x) never changes its.
sign within a certain range of values for 2 there is no root of the
equation f(x)=0 within that range of values for . Take for
example o' — 6z + 9 ; this expression never changes its sign, and
yet it vanishes when @ =3: the expression is equal to (z — 3)"
But if the equation f(x) =0 has no root within an assigned range
of values for 2 we are sure that f(x) never changes its sign within
that range of values for .

The following statements respecting the absence of roots will be
seen to be obviously true:
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(1) If the coefficients in f(z) are all pos.itive, the equation
J (x) =0 has no positive root,

(2) 1If all the coefficients of the even powers of  in f'(x) have
one sign, and all the coefficients of the odd powers of 2 the contrary
sign, the equation f(z) =0 has no negative rqot.

(3) If f(x) involves only even powers of  and the coefficients
are all of the same sign, the equation f (x) = 0 has no real root,

It is supposed in this case that there is a term independent
of &.

(4) If f(x) involves only odd powers of x and the coefficients
are all of the same sign, the equation f(x)= 0 has no real root,
except =0, '

It is supposed in this case, of course, that there is no term in-
dependent of .

We say in the last two cases that the equation has no real
root, and we do not say that the equation has no root, for we
know that by virtue of some conventions an equation may in some
cases have imaginary roots ; see Algebra, Chapter xxv. And in
fact we shall now proceed to shew that imaginary roots must
exist, ' :

II. ON THE EXISTENCE OF A ROOT,

25. 'We shall now prove that every rational integral equation
has a root, either real or of the form a + b ,/— 1, where @ and b are

real ; such an expression as @ +b,/— 1, where a and b are real, we
shall call an imaginary expression. That is, when we use the term
¢maginary we shall always mean that the expression to which we

apply this term is of the form a+ 5,/ =1, where a and b are real.

26. The student is supposed to know that by virtue of certain
conventions, imaginary expressions can be used in algebraical
investigations, and theorems can be cstablished respecting them.
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Thus, for example, the positive value of the square root of a®+ b*
is called the modulus of each of the expressions @ +5,/—1 and
a-b J:_i ; and with this definition we can shew that the modulus
of the product of two imaginary expressions is the product
of the moduli of those two expressions. For the product of
a+b,/=T and o' +¥ /-1 is aa’—bb' + (ab’' +a'8) /-1, and the
modulus of this is the positive value of the square root of
(aa’ — Bb')* + (ab’ + a’b)’, that is, of (a®+b8°) (a” + b"*); that is, the
modulus is the product of the moduli of the two given expressions.
Also an imaginary expression a+b5,/—1 is considered to vanish
when @ and b vanish; that is, an imaginary expression vanishes
when its modulus vanishes. Thus, by what has just been shewn, if
the product of two imaginary expressions vanishes, the modulus of
one of the expressions must vanish ; so that if’ the product of two
or more imaginary expressions vanishes, one of the expressions them-
selves must vanish ; and if one of the expressions vanishes the pro-
duct vanishes. '

27. The student who has not paid attention to the subject of
imaginary expressions may consult the Algebra, Chap. xxv. The
proof however that every equation has a root, real or imaginary, to
which we shall now proceed, is somewhat difficult; the student
therefore on reading this subject for the first time may assume this
proposition, and reserve the remainder of the present Chapter for
future consideration.

28. 'We shall first shew that a root, real or imaginary, exists
for each of the following four equations :

=1, o=-1, &=+/-1, 2"=-/-L
(1) «*=1. It is obvious that =1 is a root of this equation.

(2) «"=-1. If nis an odd number it is obvious that x=~1
is a root of this equation. If » is an even number suppose it equal
to 2m; we have then to shew that there is a solution of &™=—1;
this amounts to shewing that there is a solution of z™= -leJ- 1, md
is therefore included in the next two cases,
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(3) a*=+,/1. If nis an odd number it must be of one of
the two forms 4m + 1 and 4m + 3; in the former case+,/—11is a
root, since (+,/~1)**! = + /=1, and in the latter case—,/—1isa
root, since (- /=1)****=+,/=1. If n is an even number suppose
it equal to mp, where m is an odd number, and p is some power of
2, say 2% Put y=o, then the equation ™ =+,/~1 may be
written y™=+,/-1, and by what has been already shewn + /=1
or —,/-1 is a suitable value of y, according as m is of the form
4r+1 or 4r+3. We have then to find a value of 2 which will
satisfy o*=+,/-1 or a*=—,/-1, where p=2. The required
value can be obtained by common Algebra. For take the square
root of +,/=1 or of —«/=1; this will give an expression of the
form a+ B/—1, where a and B are real; take the square root of
a +}9J:f, which will give a similar expression; and so on: see
Algebra, Chapter xxv. Thus after ¢ extractions of the square root
we arrive al an expression @+b./~1, such that (a+0./—1)
=+ =T or =—,/-1.

(4) a"=-,/=1. This case is treated like (3). If »bean odd
number, —,/=1 or +,/=1 is a root, according as n is of the form

4m+1 or 4m+3. If n be an even number suppose it equal to mp,
where m is an odd number and p = 27, and proceed as before.

29. Every rational integral equation has a root real or
tmaginary. :

Let f(x) =pga+pa* " +pa" "+ ... +p,_a'+p, _ x+p, Where
the coefficients p,, 2, .+ Pogs Po_ys P, may be either real or
tmaginary; we have to shew that the equation f(x)=0 has a root
either real or imaginary. If any imaginary expression be substi-
tuted for z in f(x), we shall obtain a result of the form Us+ vJ-1,
where U and V are real quantities, and we have to shew that an
imaginary expression must exist which will make U=0and V'=0.
This we prove in the following manner. Since U*+ V* is always
a real positive quantity, if it cannot be zero there must be some
value which is not greater than any other value, that is, there must

T. E. 2
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be some value which cannot be diminished ; but we shall now prove
that if U*+7V* have any value different from zero we can diminish
that value by a suitable change in the expression which is substi-
tuted for «; so that it follows that U+ 7V* must be capable of the
value zero, that is, U and 7 must vanish simultaneously.

- Buppose a particular value assigned to x, namely, a+5/=1;
let f(x) then become P+Q,/—1, where P and @ are not both
zero. Now put a+5,/=1+4 for 2 in f(x) ; the value which f(x)
then takes may be found by first expanding f(x + %) in powers of
%, and then putting a +b,/=1 for z. Suppose then

f(m+’b)=X+hxl+'h§X”+ ....... +h‘[;P¢l£')

2
where X, X’, X", ... are functions of «; see Art. 10. Puta+b /-1

for x, then X becomes P+Q,. /1. Some of the coefficients
X', X”,... may vanish for this value of x, but they cannot all

vanish, since the last coefficient, which is that of %, is p, |n.

Suppose %™ the lowest power of A for which the coefficient does
not vanish, and denote the coefficient of 4™ by R+8./=1, so that
R and § are not both zero. Thus when a+b./=1+A is substi-
tuted for x the function f'(x) becomes

P+ Q-1+ (R+8 /)" +...,

where the terms not expressed can only involve powers of A
higher than 4™, Denote this by P+ @'/=1.

Let h=et, where € is a real positive quantity. By Art. 28
it is in our power to take ¢ so that ¢™ may be +1 or —1; thus we
can make

PrQJ-1=P+QJ-T=(R+8/-1)e"+...,
so that P’=P-I=R¢"+.’..,
Q=Q+8"+...,
and P4+ Q=P +Q'=2(PR+QS)< + ...,
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where the terms not expressed can only involve powers of e
higher than "

Now ¢ may be taken so small that the sign of all the terms
involving € in the value of P*+Q" will be the same as the sign
of =2 (PR +@QS8) ¢, provided PR+ QS be not zero; see Art. 14.

‘We will first suppose that PR+QS is not zero. Then the
sign of P*+Q"—P*—@" is the same as thesign of +2 (PR+QS) ¢",
when e is taken small enough ; and we can ensure that this sign
shall be negative by supposing that ¢*is —1 or + 1, according as
PR+ QS is positive or negative. We can therefore make P*+ @
less than P*+ @°.

Next suppose that PR+ @S is zero. Then instead of taking
"==1, take f"=+,/—1. Proceeding as before we shall obtain

| P+QJT=P+Q. /- T=(R+SJ-D) =T+ ...,
80 that P=P=x8+...,
@=Q« R+ ...,
and PQr =P+ Qe 2(QR-PS) " + ...,

where the terms not expressed can only involve powers of e
higher than €™

Now (PR+@8)+(QR-PS)'=(P'+@")(R*+85"); and this
cannot be zero, because by supposition P*+@* is not zero, and
R*+8* likewise is different from zero. Thus since PR+ QS is
zero, QR—PS§ is not zero. Therefore the sign of P+ @*— P*—@*
will be the same as the sign of =2 (QR-PS) <" when e is taken
‘small enough ; and we can ensure that this sign shall be negative
by supposing that ¢* is — /=1 or +,/=1, according as QR —PS is
positive or negative. We can therefore make P*+ Q" less than
P4 @ .

‘We have thus shewn that when U*+7V* has any value different
from zero we can diminish that value by & suitable change in the
expression which is substituted for x; that is, U*+V* is not
susceptible of any positive value which cannot be diminished ;

2—%
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hence, as we have already stated, it must be possible that U =0
and V=0 simultaneously.

30. It remains to be shewn that a and b in the expression

a+b,/=1, which is the value of « that makes f(x) vanish, are
JSinite.

‘We have f(z)= w“{l+£‘-+£‘—+...+£‘—_}.
s@=pafie Loy Py B
Substitute a +b./—1 for ; then f(x) becomes
Ty r P p
2,(a+b/-1) {l+ L 2 ot » ___} .
° 'J po(a’+b~/_l) po(a’+b'~/—1). po(a"'bN/"l)
- Take any term of the series within the brackets, for example,
that involving p,; we have

2, =12,(a—b./—1)’=p,(a’—b’) _2p,a,b./—-1
p(a+bd/=1y  2(@+¥)  p(a’+¥)  p,(a’+b)
=4+ B[], say.

Then it is evident that 4 and B diminish without limit as
a and b increase without limit. Thus denoting the value of f(x)
when 2=a +b,/=1 by U+V,/=1, we have

U+VJ-1=p,(a+ b/-1y{1+4'+ B \J-T},

where A’ and B’ diminish without limit as @ and b increase with-
out limit.

If we put a—b./=1 for x we shall obtain a result which can

be deduced from that just given by changing the sign of 4/=1:
thus

U=V J-1=p,(a-bJ-1)" {1+ 4'- B'J-_l};
therefore ~ U*+V*=p*(a"+b°)" {(1+ 4'y'+ B},

and this increases without limit when @ and & increase without
limit; for the factor (a'+?8)" increases without limit, and the
factor (14+4')'+B” tends to unity as its limit. Thus U*+V*
cannot vanish when a and b are indefinitely great, or when either
of them is indefinitely great.
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31. It will be observed in the demonstration of Article 29,
that the coefficients of the proposed equation may be either real
or imaginary. We shall however in the subsequent part of this
book always suppose the coefficients to be real unless the contrary
be stated. '

32. The proof given in this Chapter of the existence of a root
of an equation is called Cauchy’s proof. The subject has recently
been again discussed by mathematicians, and two memoirs will be
found on it in the Tenth Volume of the Transactions of the
Cambridge Philosophical Society, one by Mr De Morgan, and the
other by Mr Airy; there is a supplement to the latter. It ap-
pears from Mr De Morgan’s memoir that the proof known as
Cauchy’s had been previously given in substance by Argand,

) ‘We may briefly notice an objection which has sometimes
been urged against Cauchy’s proof. It has been said that it is

conceivable, until the contrary is shewn, that U*+ V' may ap-

proach indefinitely near to some limit greater than zero without ever

reaching this limit. But this objection can be removed by the aid
of Art. 30. Let 2 stand for U*® + V*, that is, for '

S@+b =D x fa-bJ=1):
then we know that # is finite for finite values of ¢ and 3, and infi-
nite for infinite values of a and 5. Hence the least value of 2
must occur when a and b have finite values; and if the least value
of z were not zero the demonstration of Art. 29 would be contra-
dicted.

The student who is acquainted with the elements of Geometry
of Three Dimensions will be assisted by supposing @, b, and % to be
coordinates of a point in space, and imagining the surface deter-
mined by the relation

z=f(a+bJ=1) x fla-bJ=1).
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III. PROPERTIES OF EQUATIONS.

33. Every equation has as many roots as the number which
expresses 1t8 degree, and no more.

Suppose the equation to be of the n* degree, and denote it by
S () =0, where f(z)=pa" +p,&" " +pa" " +...... +p,_x+p,. By
Chapter 11. the equation f(x) = 0 has a root either real or imaginary ;
let @, denote that root. Therefore f(x) is divisible by x—a,, by
Art. 6; so that f(x) =(x— a,) ¢, (z), where ¢, (x) is some integral
algebraical function of  of the (= —1)™ degree. Again by Chapter
11. the equation ¢, () =0 has a root either real or imaginary; let
a, denote that root. Therefore ¢, () is divisible by = —a,, by
Art. 6; so that ¢, (z) =(z—a,) ¢, (), where ¢, (x) is some rational
integral algebraical function of  of the (» — 2)* degree. Therefore
S(@)=(x—a)(x—-a) ¢, (x). By proceeding in this way we shall
obtain 7 factors of f(x) denoted by z—a,, x—a,, ...... z-a;
and the only other factor must be p, because the coefficient of «"
in f(x) is p,, Thus

S (@) =P, (- a’n) (- an) (x-ay)...... (=— a,).
Hence the equation f(x) =0 has n roots, because /' (x) vanishes when

we put for  any one of the » quantities a,, a,, ......a,. And the
equation has no more than = roots, because if we ascribe to = a
value ¢ which is not one of the n values a, a, ...... a,, the value
of f(x) becomes

b, (G - a’l) (c - a:) (c - aa) """ (c - a‘);
this is not zero because every factor is different from zero; and the
product of factors real or imaginary will not vanish if none of the
factors vanish; see Art. 26.

34. The roots in the preceding Article are all either real, or of
the form a + b,/ — 1, where @ and b are real. And some of the
roots @, @, ...... @, may be equal so that there are not necessarily
n different roots of an equation of the n* degree. The student may
perhaps be disposed to doubt the propriety of saying that an equa-
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tion of the n* degree has always n roots, when these roots are not
necessarily all different. It is however found convenient to con-
sider that an equation of the n* degree always has # roots, although
some of the roots may be equal; just as in common algebra it is
found convenient to speak of the quadratic equation ax® + bz +c¢=0
as having fwo equal roots when b*=4aé, rather than as hiving
then only one root.

35. The only preceding Article of the book which can be at
all affected by the consideration of the possibility of equal roots,
which has just been introduced, is Article 22. In that Article it
is shewn that an equation of a certain form cannot have two different
positive roots, but the demonstration there given does not exclude
the possibility of a second root or of more roots equal to the root
which necessarily exists. After we have proved Descartes’s Rule
of Signs however it will be obvious that the equation in question
can have only one positive root without any repetition.

36. If we know a root &, of the equation f(x) =0 we know
that f(x)=(x—a,) ¢, (x) where ¢, (x) is a function of 2 one degree
lower than f(x); and the remaining roots of the equation f(x)=0
can be found if we can solve the equation ¢, (x)=0 which is one
degree lower than the equation f(z)=0. Similarly if we know
two roots a, and a, of the equation f(x)=0 we know that
Sf@)=(z—a)@—a),(x) where ¢, (x) is a function of z two de-
grees lower than f(x); and the remaining roots of the equation
S () =0 can be found if we can solve the equation ¢, (x)=0, which
is two degrees lower than the equation f(z)=0. And so on,

37. If f(x) be any rational integral algebraical function of z
of the n* degree, we have shewn that f(x) must be capable of
resolution into n factors of the first degree, so that

f@)=p,(z-a)(@-a).....(z-a,),
where a, a,, ...... a, are either real or imaginary. It is to be
observed that there is only one system of factors into which f(x)
can be resolved ; this has already appeared when the quantities
a,, a,,...a, are all unequal, but it still remains to be shewn that when

12 Tgre
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some of the quantities a,,a,,...a,, are equal, f(x) cannot be formed
in different ways in which the same factors occur with different
exponents, If possible suppose that

f@)=p, @-a) @-a)(@-a).....
and also JS(@)=p, (x-a,p(z-a)(x—-a,)......
Suppose r greater than p; then dividing by (z~a,)» we have

P (x—a)?(z—-a,)(x-a)..... =p,(x—-a) (x-a,).....,
Now the left-hand member vanishes when & =a,, but the right-
hand member does not ; the expressions then cannot be identical,
and therefore /(%) cannot admit of more than one system of factors.

38. If any rational tntegral function of x of the n* degree
vanishes for more than n dyfferent values of x every coefficient in the
Sunction must be zero, 8o that the function must be zero jfor every
value of X.

For if any coefficient in the function is not zero the function
will not vanish for more than % different values of x, so that if the
function does vanish for more than = different values of « every
coefficient in the function must be zero.

39, The proof in the preceding Article makes the proposition
depend upon the fact that an equation of the n™ degree has =
roots, and thus ultimately upon the investigations in Chapter 11,
‘We may however establish the proposition by an inductive proof
which does not require the investigations in Chapter 11,

Suppose it true that when a function of z of the n* degree
vanishes for more than 5 different values of « every coefficient in the
function is zero; and that we require to shew that when a function
of x of the (n+1)"* degree vanishes for more than n + 1 different
values of z every coefficient in the function is zero.

Let f(zx)=ga"*' +ga" +ga" "' +...... +g¢%x+4q,,,, and suppose
that more than n + 1 values of  make f(x) vanish. Let a be one
of these values so that f(a)=0. Then f(z)=f(x) -/ (a)

=g, (@ -a"")+¢, (@ -a")+¢,(=" ' -a"") + ... +¢,(—a). ‘
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This may be written in the form

f@)=(z-a)¢ (),
where ¢ () is a function of « of the n* degree. Since then there
are more than n different values of z, exclusive of @, which make
Jf(x) vanish, there are more than n different values of 2 which make
@ () vanish; therefore by supposition every coefficient in ¢ (x) is
zero. Now by Art. 7,

S (2) =g +(q,8+9)2" " + (g0°+ qa+q) 8 " + ...... ;

thus g, = 0 because the coefficient of «* is zero, then ¢, =0 because
the coeflicient of 2*~! is also zero, then g, =0 because the coefficient
of 2*~* is also zero, and =0 on.

Thus every coefficient in £ (x) is zero.

This establishes the proposition, since it is known to be true
for expressions of the first and second degree,

40, If f(x) be any function of 2 of the n* degree we have
shewn that /() may be resolved into n factors of the first degree.
Each of these factors will divide f(z) so that f(x) will admit of =
divisors of the first degree. Similarly as the product of any fwo
of the factors of the first degree contained in f/(z) will be a factor
of the second degree contained in f(x), it follows that f(x) will

. enin—=1)
admit of 1.9
we see that f(x) will admit of as many divisors of the »* degree
as there are combinations of » things taken r at a time, that is, /()
will admit of n(n— l)...[(;.—r+ 1)

But it must be remembered that the divisors of any degree,
as for example the second, will not necessarily be all different, be-
cause the factors of the first degree in f(x) are not necessarily all
different. The proposition however shews that there cannot be

more than n(n- 1)'&(’”_“‘ 1) different divisors of the 7 degree.

divisors of the second degree. Proceeding thus

divisors of the 7* degree.
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41. In an equation with real coefficients imaginary roots occur
in pairs.
Let f(x) be a rational integral function of « in which the coeffi-
cients are all real; then if a+ﬂJ—T is a root of the equation
S(x)=0 soalsoma—ﬁ,/ 1 a root.
For when a+ 8.,/ =1 is put for = the function f(x) takes the -

form P + QB./ =1, where P and @ involve even powers of 8. This
is obvious, because if such an expression as 2" be expanded, where

z=a +B,/—1, the even powers of B/ =1 will give rise to real
terms, so that ./ — 1 will occur only in connexion with odd powers
of B. And as the coefficients in £ (x) are supposed real ./ —1 cannot
occur except with some odd power of 8. If then a—f8./=1 be
substituted for # in f(x) the result will be obtained by changing
the sign of B in the result obtained by substituting a + 8,/ —1 for
«; the result is therefore P - @8 J:T
Now suppose that a + 8,/ — 1 is a root of f (2) = 0; then

: P+QBJ~T=0,
and, as a real quantity P cannot be equal to an imaginary quan-
tity — Q8 J 1, this requires

P=0, and @=0.
And then a— 8,/ =1 is also a root of f(x)=0.

42. Thus if f(x) be a rational integral function of z with real
coefficients, and have a factor # — a, where @, =a + 8./ -1, it has
also a factor #—a, where a,=a—B,/—1. The product of the

two factors z—a—ﬂJ——l and x—a+/3~/t-f, is (@—a)'+ B or
x' — 2ax + a* + 3*; that is, the product is a real quadratic factor.

43. We have thus arrived at the result that any rational
integral function of = with real coefficients may be regarded as the
product of real factors, either simple or quadratic; and that there
is only one such system of factors for any given function, Thus
J'(x) must be of the form (x- a)(x—b)(x~ c)...(x—k) ¢ (x), where
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a, b, ¢,...k are all the real roots of f(x)=0, and ¢ (z) is a function
consisting of the product of quadratic factors which cannot change
its sign, : ’

44. In the manner of Art. 41 it may be shewn that if the
coefficients of any rational integral function f () of = be themselves
rational, and the equation f(x) = 0 has a root of the form a+./b

where /b is a surd, the equation has also a root «—,/b. Thus f(z)
has a rational quadratic factor (x— a)* 6.

45. To investigats the relations between the coefficients of the
Junction £ (x) and the roots of the equation f(x) = 0.

Let S@=a"+pa* " +px* + ... +p, _ x+D,;
and suppose that the roots of the equation f(x) =0 are @, a,, ...a,;

then
f@)=@-a)(z-a)..(®-a)
Since these two expressions for / (x) are identically equal, relations

exist between the coefficients p , p,,...p,, and the quantities
a,, a,,...a; these relations we shall now exhibit. :
By ordinary multiplication we obtain
(z-u)(x-a)=2"—(a,+a)z+aa,
(z - ax)(” - a,)(:c— an) =o'~ (a'l +a,+ aa) '

+(ag,+a0, +a0)z-ana,

(x-a)(x—a)(xz-a,)(®-a)=2'-(a, +a,+a,+a)a’
+(a@,+a0,+aa +a0, +aa, +aa)
—(a00,+a00 +aaa +a00)r+aaoa,.

Now in these results we see that the following laws hold:

I The number of terms on the right-hand side is one more
than the number of the simple factors which are multiplied
together.

II. The exponent of 2 in the first term is the same as the
number of the simple factors, and in the other terms each exponent
is less than that of the preceding term by unity,
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III. The coefficient of the first term is unity; the coefficient
of the second term is the sum of the second terms of the simple
factors; the coeflicient of the third term is the sum of the products
of every two of the second terms of the simple factors; the coeffi-
cient of the fourth term is the sum of the products of the second
terms of the simple factors taken three at a time, and so on;
the last term is the product of all the second terms of the simple
factors.

‘We shall now prove that these laws always hold whatever be
the number of simple factors. Suppose these laws to hold when
n—1 factors are multiplied together; that is, suppose
(z-a)(x—a)...(z—a,)=2""+qa "+ 2" " +...4 ¢, _x+q,_,,
where g, = the sum of the terms —aq,, —-a,,...-q,__,,

¢, = the sum of the products of these terms taken two at a
time,

¢, = the sum of the products of these terms taken three at
a time, '

..................

¢,_, = the product of all these terms,
Multiply both sides of this identity by another factor z —a_; thus
(z-a)(@-a)..(x-a)=2"+(g,-a) 2"+ (g,~g,a) "
+(0,-¢3) &+ e~ q,_a.
Now ¢,-a,=-a,-a,—...—a,_ -a,
= the sum of all the terms —a,, — a,,... —a,;
q,-96,=¢,+0,(a,+a,+..+a,)
= the sum of the products taken two and two of all
the terms ~a,, —-a,,...—a,;
q,~908,=9,-a,(s0a,+0a,+..)
=the sum of the products taken three and three of
all the terms —a,, —a,,...~a,;

- ¢,_,a,=the product of all the terms ~a,, ~a,,...~a,
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Hence if the laws hold when n~1 factors are multiplied together
they hold when n factors are multiplied together ; but they have
been proved to hold 'when> four factors are multiplied together,
therefore they hold when five factors are multiplied together, and
80 on ; thus they hold universally.

‘We have used the inductive method in establishing these laws;
but they may also be obtained in another way: see Algebra,
Art. 506.

Since if @,, a,, ... a, are the roots of the equation

Lrpa Tt +p T 4+ p,_w+p =0,

the left-hand member is equivalent to the product of the factors
z—-a, £—a, ... x—a_, we have the following results. In any
equation in its simplest form the coefficient of the second term is
equal to the sum of the roots with their signs changed ; the coeffi-
cient of the third term is equal to the sum of the products of every
two of the roots with their signs changed; the coefficient of the
fourth term is equal to the sum of the products of every three
of the roots with their signs changed;...... the last term is the
product of all the roots with their signs changed.

Or we may enunciate the laws thus: the coefficient of the
second term with s sign changed is equal to the sum of the roots;
the coefficient of the third term is equal to the sum of the pro-
ducts of every two of the roots; the coefficient of the fourth term
with it8 sign changed is equal to the sum of the products of every
three of the roots; and so on. Thus generally if p denote as
usual the coefficient of #*~" in the equation, (—1)"p,=the sum
of the products of every « of the roots.

46. It might appear perhaps that the relations given in
the preceding Article would enable us to find the roots of any
proposed equation ; for they supply equations involving the roots,
and the number of these equations is the same as the number
of the roots, so that it might be supposed practicable to eliminate
all the roots but one and thus to determine that root. But on
attempting this elimination we merely reproduce the proposed
equation itself. Take, for example, the equation of the third
degree
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S+paf+px+p,=0;
suppose the roots to be a, b, ¢; then

—a-b-c=p,
ab+be+ca=p,
—-abc:p,.

In order to eliminate b and ¢ and so to obtain an equatiag
which contains only @, the simplest method is to multiply the
first of the above three equations by @', and the second by a,
and add the results to the third. Thus ’

—a’—a'b—-a'c+a’b+ abe + ca’—abc =p,a° + pa+p,;

that is, : d+pa'+pa+p,=0;

we have thus the proposed equation with a instead of z to
represent the unknown quantity. And it is not difficult to.see
that we ought to expect a cubic equation in @, if we eliminate
b and ¢ from the relations we are considering. For the letters
a, b, ¢ represent the roots without any distinction of one root
from the others; thus any equation which we deduce for deter-
nining @ ought to allow of three values for a, since @ may stand
for any one of the three roots of the proposed equation. Thus
we may feel certain that we shall only reproduce the original
form of the proposed equation by performing any algebraical
operations on the relations which connect the known coefficients
of the equation with its unknown roots, with the view of elimi-
nating all the roots but one.

47. Although the relations given in Art. 45 will not de-
termine the roots of any proposed equation, we shall find that
they will enable us to deduce various important results with
respect to equations. For example, if a,, a,, ...... a, are the roots
of the equation ‘

+pad T +p L, _x+p, =0,
we have -p=a+a+a,+..+a,
D=0, + 00+ ... +Ga + ...}

thus 2'-2,=a’+a'+a’+..+af,
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that is p,*— 2p, is equal to the sum of the squares of the roots
of the proposed equation. If then in any equation p*-2p, is
negative, the roots of the equation cannot be all real. '

48. In the same manner as in the preceding Article we
may deduce other relations involving the roots. Thus for ex-
ample .
(-1)""'p,_, =the sum of the products of the roots n -1 at a time,

(-1)"p, = the product of all the roots ;

therefore by division

-1—’—"—"=1—+1—+...+l
pll al al an

= the sum of the reciprocals of the roots.

Pacy_ 1.1 l)
Also p, 7 _(a‘+a'+"'+a")(a,+a,+"'+a._

=n+t2+ A+ T+ 20
@y 8 a2, 4
therefore ot P DL SN S Y S Gy
s “a 1 % b,

IV. 'TRANSFORMATION OF EQUATIONS.

49. The general object of the present Chapter is to deduce
from a given equation another equation the roots of which shall
have an assigned relation to those of the given equation. It
will be seen as we proceed that various transformations of this
kind can be effected ‘without knowing the roots of the given
equation ; and hereafter examples will occur shewing that such
transformations may be of use in the solution of equations,

50. To transform an equation into another the roots of which
are those of the proposed equation with contrary signs.

Let f (ai)=0 denote the proposed equation; assume y=-z,
20 that when « has any particular value, ¥ has numerically the
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same value but with the contrary sign; thus ¢=-y, and the
required equation is Y (- y)=0.

If f(@)=pa+pa'+pa"*+..+p,_z+p,,
the equation f(-y) =0 is

Py +p,(-9) T 40, (-9 + o —p Y +p.=0,

that is, PY -y 4y = kp _y=p =0;
thus the transformed equation may be obtained from the pro-
posed equation by changing the sign of the coefficient of every other
term beginning with the second.

51. The rule at the end of the preceding Article assumes
that the proposed equation has all the terms which can occur
in an equation of its degree, that is, it is assumed that no co-
efficient is zero. But suppose we take an example in which
this is not the case; thus let it be required to transform the
equation

e’ +3 -4’ -4+ T=0,
into another in which the roots shall be numerically the same
but with contrary signs. Put.x=-y, and we get
y'-3y+ 4y +4y+7=0.
We may if we please write the original equation thus,
o'+ 32’ + Ot — 42” + 0x* — 4+ T=0;
then the transformed equation according to the rule in Art. 50, is
Y -3y+0y'+4 + 0y’ + 4y +- T=0,
that is, Y-8+ 4 +4y+T=0,
as before.
An equation is said to be complets when it has all the terms
which can occur in an equation of its degree, that is, when no
coefficient is zero. And we shall sometimes find it useful to
render an equation complete by the artifico used above, that is,
by introducing the missing terms with zero for the ooefficient
of each of them.



TRANSFORMATION OF EQUATIONS. 83

52. To transform an equation into another the roots of which

are oqual to those of the proposed equation multiplied by a given
quantity.

Let f(x)=0 denote the proposed equation; and let it be

required to transform it into another the roots of which are
k.times a8 large, Assume y=~/kx, so that when o has any par-
ticular value, the value of y is % times as large; thus x=%,
and the required equation is f (‘;‘—;) =0,

53. For example, transform the equation

into another the roots of which are % times as large. Put m-—.—%
and then multiply throughout by 4*; thus we obtain

This example will shew us an application which may be made
of the present transformation. The coefficients of the proposed
equation are not all integers; by properly assuming % we may
make the coefficients of the transformed equation all integers.
For instance, if % =6, the transformed equation is
¥ -9y + 45y -48=0.

Generally, suppose the proposed equation to be

+pat+patt ... +p,_2+p,=0,
then if we put &= k’ and multiply throughout by £, all that

is necessary to ensure that the coefficients of the transformed

equation shall be integers is, that for each term of the transformed
-equation p/&y"™", every prime factor which occurs in the deno-

minator of p, shall occur to at least as high & power in ",

T, E. 3
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54. To transform an equation into another the roots of which
shall be less tham those of the proposed equation by a constant
difference.

Let f(x)=0 denote the proposed equation; and let it be
required to transform this equation into another the roots of
which shall be less than the roots of the proposed equation by
a constant difference k. Assume y=z-4%, so that when = has
any particular value, the value of y is less by &; thus x=%+y,
and the required equation is f (£ + ) =0.

By Art. 10 the expa.n&ed form-of the equation f(k+y)=0 is

s0rr B+ L@+ G @y T 0

Thus if f(x)=pa"+p & +p "+ ...+p,_T+p,
the equa.tion S (k+y)=0 when arranged according t3 descending
powers of y is by Art. 12

Po-'/""(Px"'”Pok)?/'" {p,+(n l)p']g+ (n 1) k’}y'-’

+ ...

+ {p,+ (n-r+l)p,_k Frovennt (n=1) 'E(n_r"'l)pok'}y'"
e+ f(R)=0.
A good practical mode of conducting the operation will be
found in Chapter xviiI.

55. If an equation is to be transformed into another the
roots of which exceed those of the proposed equation by the
constant quantity 4, we use the method of the preceding Article,
Let the proposed equation be denoted by f(z)=0, and suppose
y=x+h; then &=y—h, and the required equation is f(y—£) = 0.
Thus we have only to put —% for % in the result of the preced-
ing Article, and we obtain the required equation. But in fact
this is included in the preceding Article; for that Article does
not require % to be necessarily a positive quantity.

656. The principal use of the transformation in Art. 54 is to’
obtain from a proposed equation another which wants an as-

(<]
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signed term. Thus if we wish the transformed equation in y to
be without its second term, we take % such that p, +npk=0,
that is, k=—1%;—. If we wish the transformed equation in y

[
to be without its third term, we must find % from the quadratic

equation
n(n 1) P =

p,+(n-1)pk+

And generally, if we wish the transformed equation in y to be
without its (r+1)* term, we must find % from an equation of
the #* degree, namely

_ 1) . [rjn—r
Pok"";bl’;k” rﬁ: I))p]c T+ B 2,=0.

We shall see hereafter that the solution of an equation is some-
times facilitated by first removing some assigned term.

57. For example, transform the equation 2’ — 62" +4x+5=0
into another without its second term. Here p,=1, p,=—6; thus
% =2, and the required equation is

(W +2)°—6(y+2)'+4(y+2)+5=0,
that is, y'-8y-3=0.

Again, transform the equation #’-2z*— 4xz+9 = 0 into another
without its third term. . Put y + % for «; the transformed equa-
tion is

(y+k)*-2(y+k)y’-4(y+k)+9=0,
thatis, y*+y° (3k—2)+y (A" 4k—4) + X'~ 2%°— 4k +9=0.

If the third term is to disappear %2 must be found from the
equation 34*—4k—4=0; this gives k=2 or —%. With the
value &k =2 the transformed equation is

¥’*+4y°+1=0,
With the value %z =—$ the transformed equation is

¥ -ty + 220,
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58. To transform an equation into another the roots of which
are the reciprocals of the roots of the proposed equation.

Let f(x) =0 denote the proposed equation. .Assume y=é ,
so that when « has any pérticu]ar value, the value of y is the

reciprocal of that value; thus z=£ and the required equation is
1
—)=0.
7G)
Thus if f(x) =pa"+pa" '+ pa™ "+ ...+ p,_x+p, the equa-

tionf@):O is

that is, PY DY P, YT+ +py+p,=0.

59. To transform an equation into another the roots of which
are the squares of the roots of the proposed equation.

Let f () = 0 denote the proposed equation. Assume y= =z, so
that when z has any particular value the value of y is the square

of that value: thus = ~/_;/ and the required equation is f .(J y)=0.

Thus if f(x)=px"+p & '+pa" "+ ...+p,_x+p, the equa-
tion f(J/y) =0 is
: n-1 n-! 5

p..:'/’+p.y Pyt e tpY

By transposing and squaring we have

+p,=0.

ry +p.y"_2+p.3/"—‘+ ) (p,y”—l+ Py° +. )

The equation will be in a rational form when both sides are
developed, and by bringing all the terms to one side we obtain

20V + (20,05=2.0) 5+ (20,0, Py = 29,0 Y™ '+ - =0,
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60. These cases of transformation of equations might be
increased, but we have given sufficient to explain this part of the
subject. 'We will conclude with three examples which will illus-
trate the use of some of the relations established in Art. 45.

(1) If the roots of the equation «*+ pa® + gz +7=0 be g, b, ¢,
form the equation of which the roots are

a b ¢
b+c’ c+a’ a+b’

Denote the required equation by
¥y+Py'+Qy+R=0.
Then we have, by Art. 45,

a b c
gt orataey
_ ab be + ca
Q=G7oc+a) T cra@+b) @ pGro)’
—R= abe .
T (@B+c)(c+a)(a+d)’

and a+b+ec=—p, ab+bc+ca=g, abc=—r.

Thus we may now proceed to express the values of P, @, and
R in terms of p, ¢, and v. For example

”r

E=GraGra@+b)’

now by actual multiplication we find
(6 +c) (c +a)(a+b)=(a+b+c) (ab + be + ca) — abe
=—pg+7;
r .
r—pq° .
Similarly we can express P and @.

therefore R=
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But we may evade the trouble of this process by an algebraical
artifice, 'We have

a a _a
+¢ a+b+c—-a -p-a
x

-

Thus if y ==ria’ when « takes the value a the value of y is

b—f_—c-; and similarly w}nen « takes the values b and ¢ the values of

y are respectively &%‘ and ‘%b .

Thus the required equation will be obtained by eliminating

. x
between the proposed equation and y =— Pyl

Hence 2= —-1—1_%/ ; and by substituting this value in the pro-
posed equation we obtain

2y Py py
o (1+yw? (Q+y)® l+y

or Cr(1+g)+p% (L +9)—pay (1 +9)*-py"=0,
that is (r —pé)y'+ (Br+p"—2p9)y" + (3r—pg)y +r=0.

Hence by this method we arrive indirec;tly at the values of P, Q,
and R: we see that ‘

+r=0,

a b c _ _Sr+p'-2pg

b+c cratart r—pg
ab + be + ca _3r-pm¢
(b+c)(c+a) (c+a)(a+d) (a+b)(b+c) r-pg’
abe ”r

Brora)@rh) r-pg

The last result has already been obtained by direct investiga-
tion.
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- (2) Required to transform the equation 2® + gz +r=0 into
another the roots of which are the squares of the differences of the
roots of the proposed equation.

Let a, b, ¢ denote the roots of the proposed equation; then, by
Art, 45,
a+b+c=0, ab + be+ca=gq, abc=—r;
therefore ' a*+b+c=-2.
The roots of the transformed equation are to be (a - b)*, (b—c)’,
and (a —c)’; now

(a-b)’:a’—2afz-+b’=a,'+6’+é’-2ab—-c"=a,'+b’+¢:'---“"—(‘:;‘Lc -
=‘—2q+gcr-—o’; -

thus if y=— 2q+%-w‘, when « takes the value ¢ the value of y

is (a—b)*; and similarly when « takes the values a and b, the values
of y are respectively (b —c)* and (c—a)*. Thus the transformed
equation will bé obtuned by eliminating 2 between the proposed

equation and y_—2q+__.x’

Thus o +qr+r=0,
and . 2+ (2g+y)z—2r=0;
therefore (g+y)z—3r=0.

Hence z =q3_+:‘_/ 3 snbstltutmg this value in the proposed equatlon

and reducing, we have finally
¥+ 6gy° +9¢°y + 2T + 4¢° =0,

Thus if 277* + 4¢® is positive the transformed equation has a
real negative root by Art. 20; and therefore the proposed equation
must have two imaginary roots, since it is only such a pair of roots
which can produce a negative root in the transformed equation.

If 27+* + 4¢® is zero the transformed equation has one root equal
to zero, and therefore the proposed equation must have two equal
roots.
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(3) Required to transform the equation o*+ pz’ + gz +r=0
into another the roots of which are the squares of the differences
of the roots of the proposed equation.

Putz=o - — ; thus the proposed equation becomes

(x’—?—‘; +p z’-— +q(a{—-— +r=0,

that is, &P+ g +9 =0,
7 _2 pq
where q q—3. = E?—-g‘-'l-ﬂ

Each root of the last equation exceeds the corresponding root of
the proposed equation by 35 and thus the squares of the differences

of the roots of the last equation are the same as the squares of the
differences of the roots of the proposed equation. Therefore by the
former example the required equation is

¥ +6q'y + 99"y + 2T + 4¢" =

that is,
¥ +2 (3 -2y + (Bg-pYy + L= 91’“272"7) +4(3g-2"_,,

Hence if a, b, ¢ are the roots of &*+ px’ +gz +r=0, we see
that

«

4 (@=8)+ (B —c)+(c—-a)=-2(3¢g-p),
(@=8)'(®~c)' + (b—c)'(c—a)' + (c—a)'(a—b) = (3¢ - P°),

(6= -0 (e =a)'= - gr{(2" - 9pr + 210)" +4 3327’} .

V. DESCARTESS RULE OF SIGNS.

6l. We have already in Arts. 21...24 given instances of the
connexion which exists between the signs of the coefficients in £ ()
and the nature of the roots of the equation f(x)=0, and we now
proceed to investigate a general theorem on the subject after some

preliminary definitions,
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. 62. 'When each term of a set of terms has one of the signs +
and — before it, then in considering the terms in order, a continua-
tion is said to occur-when a sign is the same as the immediately
preceding sign, and a ckange is said to occur when a sign is the
contrary to the immediately preceding sign. Thus in the expres-
sion x°— 32’ —4a’ + Tz’ + 3z + 2¢° — '~z + 1, there are four con-
tinuations and four changes ; the first continuation occurs at —4z",
the second at+ 3z*, the third at + 22° the fourth at —x; the first
change occurs at — 3«7, the second at + 72", the third at —a', the
fourth at +1.

It is obvious that in any complete equation the number of
continuations together with the number of changes is equal to the
number which expresses the degree of the equation; see Art. 51.
And if in any complete equation we put — for , the continuations
and changes in the original equation become respectively changes
and continuations in the new equation. In an equation f(z)=0
which is not complete, the sum of the numbers of the changes of
f (=) and f(—=) cannot be greater than the degree of the equation;
because if terms are missing in f(x), although it may happen that
the number of changes in f() or in f(~) is thus diminished, it
cannot be increased.

‘We shall now enunciate and prove a theorem which is called
Descartes’s Rule of Signs.

63. In any equation, complets or incomplete, the number of
positive roots cannot exceed the mumber of changes in the signs of
the coeffictents, and in any complete equation the number of negative
roots cannot exceed the number of continuations in the signs of the

‘We shall first shew that if any polynomial be multiplied by a
factor 2—a there will be at least one more changs in the product
than in the original polynomial

Suppose for example that the signs of the terms in the original
polynomial are + +-——+—~+~—+., We have to multiply the
polynomial by a binomial in which the signs of the terms are + —.
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Then writing down only the signs which occur in the process and
in the result we have -

tt———t———
+ -
th——— b — -+

ettt =t =

tE—FRpt—t—F+—

A double sign is placed where the sign of any term in the product
is ambiguous. . The following laws will be seen by inspection to
hold. .

(1) Every group of continuations in the original polynomial
has a group of the same number of ambiguities corresponding to
it in the new polynomial.

(2) In the new polynomial the signs before and after an
ambiguity or a group of ambiguities are contrary,

(3) In the new polynomial a change of sign is introduced at
the end. ' »

Now in the new polynomial take the most unfavourable case
and suppose all the ambiguities to be replaced by continuations;
by the second law we may then without influencing the number of
continuations adopt the upper sign for the ambiguities ; and thus
the signs of the original polynomial will be repeated in the new
polynomial, except that by the third law there is an additional
change of sign introduced at the end of the new polynomial. Thus
in the most unfavourable case there is one more change of sign in
the new polynomial than in the original polynomial.

If then we suppose the product of all the factors corresponding
to the negative and imaginary roots of an equation already formed,
by multiplying by the factor corresponding to each positive root
we introduce at least one change of sign. Therefore no equation
can have more positive roots than it has changes of sign.

To prove the second part of Descartes’s rule of signs we suppose
the equation complete, and put —y for «; then the original conti-
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nuations of sign become changes of sign. And the transformed
equation cannot have more positive roots than it has changes ; and
thus there cannot be more negative roots of the original equation
than the number of continuations of sign in that original equation.

64. "Whether the equation f(x)=0 be complete or not its
roots are equal in magnitude but contrary in sign to the roots of
J(—=) =0, that is, the negative roots of f(x)=0 are the positive roots
of f(-—x)=0; and whether the equation be complete or not the
number of the positive roots of f(—x)=0 cannot exceed the number
of changes of sign in f(~). Thus the whole rule of signs may be
enunciated in the following manner : an equation f(x)=0 cannot
have more positive roots than f(x) has changes of sign, and cannot
have more negative roots than f(—z) has changes of sign.

65. For example, take the equation «*+ 32*+5x—7=0.
Here there is one change of sign, and therefore there cannot be
more than one positive root. And by writing —« for  we obtain
the equation z*+3xz*—5x—7=0; here there is one chauge of
sign, and therefore there cannot be more than one positive root,
so that the original equation cannot have more than one negative
root. Thus the original equation cannot have more than two
real roots, '

In this example we know by Art. 21 that theire 78 one
positive root, and that there is one negative root; and we have
Jjust ascertained that there cannot be more than one of each.

Again, consider the equation «*+gx+7r=0, where ¢ and »
are both positive. Here there is no change of sign, and therefore
no positive root ; this also appears from Art. 24. If we write
— 2 for 2, we obtain an equation with one change of sign, so that
the original equation cannot have more than one negative root,
and therefore the original equation must have two imaginary
roots. ’

Again, consider the equation a’—gqz+7=0, where ¢ and »
are both positive. Here there are two changes of sign, and there-
fore there cannot be more than two positive roots, If we write
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—a for «, we obtain an equation with one change of sign, so that
the original equation cannot have more than one negative root.

In this example we know by Art. 20 that there i8 one nega-
tive root, and we have just ascertained that there cannot be more
than one; whether the other two roots are real positive quan-
tities or imaginary, we cannot infer from Descartes’s rule of signs.
But from Art. 60 it follows that the equation which has for its
roots the squares of the differences of the roots of the proposed
equation i8 y*—6gy’+9¢'y+27r'—4¢°=0; and by Descartes’s
rule of signs, or by Art. 24, if 27+'—4¢® is negative, the last
equation has no negative root, and therefore the original equation
no imaginary roots ; also if 277°— 4¢® i8 positive, the last equation
has a negative root by Art. 20, and therefore the original equation
must have two imaginary roots,

66. The student should observe that the results given in
Art. 24, are all consistent with Descartes’s rule of signs, and
may all be deduced from it. Also the proposition in Art. 22 is
included in Descartes’s rule of signs; and we learn from this
rule that such an equation as that considered in Art. 22 can have
only one positive root, without repetition ; see Art. 35.

67. It is shewn in the proof of Descartes’s rule of signs,
that on multiplying a polynomial by the factor which corresponds
to a real positive root, one change of sign af least is introduced ;
it may be observed, that the number of the changes of sign
introduced must be an odd number. For suppose in the first
place that the last sign in the original polynomial is +; then
since the first sign is +, the whole number of changes of sign
in the original polynomial must be an even number or zero; and
the sign of the last term of the new polynomial is —, so that
the number of changes of sign in the new polynomial is an odd
number. Therefore an odd number of changes of sign must have
been introduced. Next suppose that the last sign in the original
polynomial is —, so that the last sign in the new polynomial is + ;
then there must be an odd number of changes of sign in the
original polynomial, and an even pumber of changes of sign in
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the new polynomial. Therefore an odd number of changes of
sign must have been introduced.

68. When all the roots of an equation £ (x)=0 are real, the
nwumber of positive roots is equal to the number of changes of sign
in f(x), and the number of negative roots is equal to the number
of changes of sign in f(-x).

Let n denote the degree of the equation, m the number of
positive roots, and m' the number of negative roots, u the number
of changes of sign in f(x), and u’ the number of changes of sign
in f(~x). 8ince all the roots of the equation are real m + m'=n.
Also m cannot be greater than p, and m’ cannot be greater than
M, by Art. 63.. Therefore p+p’=mn, for the sum of p and p’
cannot exceed #. Thus m +m'=p + x'. And m cannot be greater
than p; nor can m be less than p, for then m’ would be greater
than p/, which is impossible. Thus m = p, and m’' =y’

In this proposition we assume that f(x) has a term in-
dependent of z, so that the equation f(x)=0 is not satisfied by
2=0. A root zero cannot properly be considered either positive
or negative.

If we wish to introduce the consideration of zero roots we may
proceed thus: suppose the equation to have m positive roots, m’
negative roots, and the root zero repeated » times. Then we have
m+m'+r=mn, so that m+m'=n—». And we can shew that
p+p can be neither less nor greater than n—7; so that
p+p'=n—r Then as before m=p and m’ = p'.

69. Suppose p the number of changes of sign in f(z), and p’
the number of changes of sign in f(—«). Then the equation
Jf(x) =0 cannot have more than y positive roots, and cannot have
more than ' negative roots, and therefore cannot have mere
than p+p' real roots. Hence if n is greater than p+p’ the
equation f(z) =0 must have at least »— p — ' imaginary roots.
In the next two Articles we shall shew more definitely what
inferences we can draw as to the number of imaginary roots
of an equation when that equation is not complete.
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70. If any group consisting of an even number of terms is
defictent in amy equation there are at least as many imaginary
roots of the equation.

Suppose the 27 terms which mlght occur in f(z) between
2™ and 2™ to be deficient; then the equation f(x)=0 will
have at least 2 imaginary roots. Let 4 and B denote the co-
efficients of 2™ and ™ * respectively in f(z), and suppose the
deficient terms introduced with coefficients ¢,, g,, g,,..-; and de-
note the new function by # (). Then in the expression

A" + g™t + g™+ .. + ¢, 2T + B!

the number of changes of sign together with the number of
continuations of sign is 2r +1; in other words the number of
changes of sign in this expression, together with the number of
changes of sign which it would present if the sign of = were
changed, is 27+ 1. But now let the hypothetical terms be re-
moved; then if 4 and B are of contrary signs there will be one
change of sign for f(z), and no change of sign for f(-«); and
if 4 and B are of the same sign there will be one change of sign
for f(—=) and no change of sign for f(x). Therefore in both
cases the loss of 27 terms ensures the loss of 2r from the sum
of the number of changes of sign in ¥ (z) and in F (- z),

And this result holds for every deficient group consisting of
an even number of terms, Thus there are at least as many
imaginary roots of the equation f(x)=0 as the sum of the num-
bers of terms in such deficient groups.

71. If any group consisting of an odd number of terms s
defictent in any equation, the equation has at least one more than
that number of imaginary roots if the deficient group i8 between
two terms of the same sign, and the equation has at least one
less than that number of imaginary roots if the deﬁcmw group
18 between two terms of contrary signs.

Suppose the 27 + 1 terms which might occur in' f(z) between
x™ and =™ to be deficient. Let 4 and B denote the coefficients
of 2™ and «™*~* in f(x) respectively; then if 4 and B are of
the same sign the equation f'(x) =0 has at least 27 + 2 imaginary
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roots ; if 4 and B are of contrary signs the equation f(x)=0
has at least 27 imaginary roots.

Suppose the deficient terms introduced with coefficients ¢,, ¢,,
gys---; and denote the new function by #(x). Then in the ex-
Ppression .

Adz™ +qa™ +q a2+ ...+ q,,, 2"V + Byt
the number of changes of sign together with the number of
continuations of sign is 27+ 2; or in other words the number
of changes of sign in this expression, together with the number
of changes of sign which it would present if the sign of = were
chariged, is 2r + 2. But when the hypothetical terms are removed
there will be no change of sign either for f(z) or f(—«) if 4 and
B have the same sign, and there will be one change of sign for
JS () and one change of sign for f(—«) if 4 and B have contrary
signs. Therefore the loss of 2r +1 terms from # (z) ensures the
loss of 27+ 2, or of 2r, from the sum of the number of changes
of sign in ¥ (x) and in F (- z), according as the deficient group is
between two terms of the same sign, or of contrary signs,

And this result holds for every deficient group consisting of
an odd number of terms; therefore there will be at least as many
imaginary roots of the equation f(zr)=0 as the sum furnished
by considering the deficient groups.

72. Thus as an example of Art. 71 we see that if a single
term is deficient any where in f(x) between two terms of the
same sign, there must be at least two imaginary roots; if a
single term is deficient between two terms of contrary signs we
cannot deduce from this fact any inference as to the number
of imaginary roots. .

It will be observed that when in consequence of the deficiency
of terms the sum of the number of changes of sign in f(z) and
f(—=) falls short of the number which expresses the degree of
the equation f(z) =0, the difference is always an even number.
This appears from the examination of the two possible cases in
Arts. 70 and 71.. That is, with the notation of Art. 69, the
number 7 — p— p’ is always an even number. This might have
been anticipated from Art. 41,
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+ VI. ON EQUAL ROOTS.

73. It is sometimes convenient or necessary to know whether
a proposed equation has equal 700ts, as we shall see in the course
of the work, We shall therefore now explain how we can de-
termine whether an equation has equal roots, and how we can
remove factors which correspond to the equal roots when they
exist, and thus reduce the equation to one which has only un-
equal roots. We have first to prove a property concerning the
Jfirst derived function of a given function,

74, Let £(x) be any rational integral function of x and f'(x)
the first derived function; then will

“z-a z-b Tz Tk
where a, b, ¢,...k, are the roots real or imaginary of the equation
f(x)=0.
For let p, be the coefficient of the highest power of « in £ (z),
then we have identically by Art. 33,

S (@) =po(2~a) (=) (®-c).. (9c k). @
Put y + 2 for «; thus
Sy+2)=p,(y+2-a)(y+2-b)(y+2~c)...(y +2—k);

expand each side in a series proceeding according to ascending
powers of z; then the left-hand side becomes by Art. 10,

SO+ @ 2+S" —+ e

Thus the coefficient of 2 is f’(y), and therefore f'(y) must be
equal to the coefficient of z on the right-hand side, that is, to .

P(y=b)(y—0)...(y-k)+p,(y-a)(y—c)...(y - k) + ...,
that is, to
f@) @), fO) JS®

y—-a y b y—-o -..+y__k.
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And as it is immaterial what symbol we use for a variable which
may have any value, we may change y into ; thus we have

JS@ [ [, | [
S(@)= z-a o-btz-c Vo k @
The result here obtained is true if among the quantities a, §, ¢, ...k,
there should occur one or more equal to a, or equal to b,... and
so on. Suppose that on the whole a occurs exactly » times,
b exactly s times, ¢ exactly ¢ times,...; then (1) may be written
f(z) =Iso(x_ a’)'(z—b).(x—c)"" ’
and (2) may be written
[ (@)= ".'f(x) vl (x) tf (‘”)

mambw—c

75. The equation £ (x) =0 has or has not equal roots according
as £ (x) and {' (x) have or have not a common measure which in-
volves x.

Suppose @, b, c,...k the roots real or imaginary of the equation
S (x) =0, so that /(z) =p,(x - a)(x—b) (x—~c)... (x—k); then

S (@) =p,(c-b)(x—c)...(x—k)+p,(x—a)(x—c)...(x=Fk) + ...
If a, b, c,...k are all unequal, none of the factors 2 —a, x— b,
z—c,...c—k will divide f/'(x), for (x—a) for example divides
every term in f"(x), except the first; and no product of any number
of them will divide /’(«). Thus if /(x) has no equal factors f(x)
and f'(z) have no common measure. Hence if f(x) and f'(x)
have a common measure the factors of f(x) cannot be all unequal.
Next suppose that the equation f(z)=0 has equal roots;
suppose that a occurs r times, that b occurs s times, that ¢ occurs
¢ times, and so on, Then :
£ (@) =p,(@—a)" (z—B) (@ — o). { vty }

- In this case the factor (z—a)™' (x—b)""' (x—c)* ... occurs in
every term of /' (z). Thus if f(x) has equal factors, f(x) and /" (x)
have a common measure. Hence if /() and f'(x) have no com-
mon measure f(z) has no equal factors,

T. E. &
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76. For example, consider the equation
f@) =2 — 110" + 4422 ~T6z + 48 = 0,
Here S (x)=4a" — 332"+ 882 —T6.
It will be found that f(x) and f’(x) have the common measure
x — 2; this shews that (x— 2)* is a factor of £ (). It will be found
that
S (@) =(x—-2)* (2"~ Tz + 12) = (# - 2)*(z - 3)(x — 4);
thus the roots of the equation f (x) =0 are 2, 2, 3, 4.
Again, consider the equation
S(x)=22"- 122"+ 192"~ 6+ 9 = 0.

Here f(x) and /" (x) will be found to have the common measure
2 -3; and f(x)=(x—3)°(22* + 1). Thus the roots of the equation

f(z)=0are 3, 3,+ J(-%), _J(_%)

77. 1In the enunciation of Art. 75, the words « whick involves
x” occur at the end. We mean to indicate by these words that
we do not regard the factor p,, although that may in a certain
sense be considered as a common measure of f(x) and f' ().

As we are here for the first time making an important use
of common measures of expressions it will be convenient to in-
troduce a remark on the subject. It is usual to consider the
theory of common measures and of the greatest common measure
in works on Algebra; but the theory is Rot necessary at an early
stage of mathematical study, and becomes more intelligible after
the result has been obtained which we have given in Art. 33.
Let f(x) and ¢ (x) denote two rational integral functions of x;
then f(x) and ¢ (x) may be resolved into factors, so that

f(x) =po(x - “1) (x - a’g)(m— as)"',
b (@) =g,z =) (® =) (& =,)...;

‘and each of the functions can be thus resolved in only one way.
Hence the function of « of the highest degree which will divide
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both f(x) and ¢ (x) is the product of all the common factors of
the first degree in 2; and this we may call the greatest common
measure of f(x) and ¢ (x).

Here we have taken no notice of p, and ¢,; but we may if
we please find their greatest arithmetical common measure if they
are numbers, or if they are both functions of another quantity,
as y, we may find the greatest common measure of these functions
of y.

78. Suppose f(x) =p,(x ~ a)"(x —b)'(x—c)*...; then we have
found in Art. 75 that f(x) and f’(z) have the common measure
(z—a)y™(x—b)x—c)... Thus the common measure involves
all the equal factors which occur in f(x), but the exponent in each
case is less than the corresponding exponent in f(x) by unity. If
we divide /() by the common measure of /(x) and /" (x), the quotient
involves all the factors which occur in f(x), each factor occurring
singly. Thus the equation obtained by putting this quotient equal
to zero contains without repetition all the roots which the equation

J(x)=0 has. '

79. Woe see that if the factor (x—a)” occurs in f(x) the factor
(z— a)""! occurs in f’(x); so that the equation f"(x)=0 has r—1 roots
each equal to @. Now f”(x) is the first derived function of f”(x);
thus if r—1 be greater than unity f”(x) and f”'(z) will have a
common measure, and the equation f”(x) =0 will have » — 2 roots
equal to a. Thus in this way we can shew that if (x—a) isa
factor of f(x) then the derived functions f'(z), £ (2),.../ " (x), all
vanish when  =a.

This may also be proved in the following way.

Let f (:c) =(z —a)" ¢(x), where ¢ () is a rational integral func-
tion of x which is supposed not to contain the factor z—a; put
" w=a+2; thus
Fo(a+2)=f(a+2)

, . . z' . zl
- =f(a)+f (a)z+ et S (@) E+ vee +f" (@) —@_
‘ A2
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As the left-hand member of this identity is divisible by 2~ the
right-hand member must be so too. Therefore we must_ have

S(@)=0, S (a)=0,......f " (a) =0,
And as the left-hand member is not divisible by a power of 2
higher than 2" the right-hand member cannot be, and therefore
JS"(a) is not zero. Thus the number of terms in the series f (x),
S (x), f"(),...which vanish when x = @, is the same as the exponent
of z—a in f(x).
For example, suppose
J(x) =" + 2a* + 32° + T + 82+ 3;

here it will be found that £ () is the first of the series f(z), /" (2),...
which does not vanish when @ =~ 1; thus the factor (x +1)®occurs
in f(z). It will be found that f(z) = (x + 1)*(z* — 2 + 3).

For another example we will investigate the conditions which
must hold in order that the equation
. &+ g’ +re+s=0
may have three equal roots,
Here S(@)=2*+qx' + re +3,
S (&) =42 + 2q + 7,
S (x)=122" + 2q.
Hence from f” (z) = 0 we obtain

ot T (1)
Substitute this value in f(x) =0 and f"(x) = 0: thus
bq*
—§6+m+3 Oerreeiiiiiiiin (2),
2%
x(—-?+2q>+'r=0 ........................ @), .
From (3) we obtain
Bmm T e ceeeneen (),
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and substituting this in (2) we have

37 5 _
- -;? - % = 0 ......... €eesesssescesscsnee (5).
And from (1) and (4) »*=- 3—%: ............................... (6).
Hence (5) becomes & =— % .................................... (7).

Thus (6) and (7) express the required conditions.

Conversely if (6) and (7) be satisfied, it will be found that
S (@), f'(x) and f”(x) all vanish when « =—%; .

80. We will briefly indicate another way in which the test
for equal roots may be investigated. If the equation f(x)=0 has
more than one root equal to a, then it follows that if f(x) be
divided by  — a the quotient will vanish when #=a. Hence by
taking the form of the quotient given in Art. 7, we must have

np @+ (n—1)pa**+ ... +2ap,_,+p,_,=0;"
that is, f” (x) vanishes when # =a. ’

81. It appears then that when we wish to determine the
equal roots of an equation f(x)=0, we may begin by finding the
greatest common measure of f(z) and f'(x); then we equate this
greatest common measure to zero, and we have an equation to
solve which has for its roots those roots of the equation f(x)=0
which are repeated. As this greatest common measure may be
itself a complex expression, involving repeated factors, it is useful
to have a systematic process by which the roots may be obtained
with as little trouble as possible. This we shall now give.

82. Suppose f(x)=0 to be an equation which has equal

roots ; and let
S)=X XXX} X"

where the product of all the factors which occur singly in f ()
is denoted by X, the product of all the factors which occur
just twice is denoted by X% the product of all the factors which
occur just three times is denoted by X and so on. Any one
or more of the quantities X,, X,, X,,... will be unity, if there is
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no factor in f(x) which is repeated just the corresponding number
of times.

Now form the first derived function f’(z) of f(z), and then
obtain the greatest common measure of f(x) and f'(z). We will
denote this greatest common measure by f,(z), so that

Si(x) =X XXP.. X ",
Next obtain the greatest common measure of £, (z) and its first
derived function £, (x), and denote it by f,(x), so that
Sim)=XX2... X" :
Proceed in this way and form in succession
Si@)=XX>. X "2
Si@x= X,.X
f m—1 (.’E) = Xm’
Su(®)= L
Now form a new series of functions by dividing each term of the

series f(z), f, (&), f,(%),...f,,(x) down to f,_ (x) by the immediately
succeeding term. Thus we get

S(=) =
m:XlX,.--X,.,—'#.(x) say,

£i() ~ -
f,(:) = X,..X,,=d¢,(x) say,

..................

fm—!<m) — -
@ X . X.=9¢,_() say,

f~f"———:&g) = X, =¢,(x) say.
Then finally ' .

¢, () $e(@) _ Fps () _ _

5@ X, W—X,, (@) =X, ., b.()=1X,.
Thus the factors X,, X,... X, are now separated, and by solving
the equations X, =0, X,=0,... X, =0, we obtain all the roots of
the proposed equation f(x)=0; and any root found from X =0
occurs » times in the equation f(x) =0.
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83. For an example of the process of the preceding Article
suppose that

F@) =2+ — 82" 62 + 21a* + 92 — 220" — 4= + 8.

Then retaining the notation of the preceding Article we shall find
that Si(@)=a*+a*- 32" + 2,
flx)=2-1,
£i@=1
o, (z) =a*~ b’ + 4,
by (%) =2+ 20" — 2 - 2,
¢, (x)=2-1,
X,.—-a:— 2,
X,=2'+3x+2,
X,=z-1. )
Therefore f(2) = (- 2) (2" + 3z + 2)*(z - 1)*
=(z=-2)(x+1)'(x+2)"(x-1)%

Thus the roots of the equation f(x)=0 are 2,-1,-1,~2, -2,
1,1, L '

84. When the coefficients of an equation are all commen-
surable quantities the expressions X,, X,,... of Art. 82 have
likewise all their coefficients commensurable. Hence if one and
only one of the roots of an equation, with commensurable quanti-
ties for coefficients, is repeated = times, that root must be a com-
mensurable quantity ; for it will be determined by an equation
X_=0 which involves no incommensurable quantities,

Hence we can deduce the following results:

If an equation of the-third degree with commensurable quan-
tities for coefficients have no commensurable roots it has no equal
roots. For if an equation of the third degree have equal roots,
there must be either one root occurring three times, or one root
occurring twice and another root occurring once; and in either
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case, as we have just seen, if the coeflicients are commensurable
quantities so also are the roots.

If an equation of the fourth degree with commensurable quan-
tities for coefficients have no commensurable roots it cannot have
either one root occurring four times, or one root occurring three
times and another root occurring once. If then such an equation
have equal roots it must have two incommensurable roots each
repeated twice. Thus if f(x)=0 be the equation f(x) must be a
perfect square.

If an equation of the fifth degree with commensurable quan-
tities for coefficients have no commensurable roots it has no equal
roots. For it will be found on examining every case which can
exist that if there be equal roots there must be one or more com-
mensurable roots. Suppose, for example, that the equation has
two roots each occurring twice and another root occurring once ;
then if the coefficients are commensurable quantities the unrepeated
root must be a commensurable quantity.

VII. LIMITS OF THE ROOTS OF AN EQUATION.
SEPARATION OF THE ROOTS.

85. In the present Chapter we shall first investigate some
theorems which will shew between what limits all the real roots
of any proposed equation must lie; and we shall then consider
to some extent the possibility of discovering limits between which
the real roots separately lie. The advantage of such a Chapter
arises from the fact that the algebraical solution of the general
equation of any degree above the fourth has not been obtained; and
as we shall see hereafter, the numerical solution of equations is
a systematic process based on the supposition that we have some
knowledge of the approximate values of particular roots.

It is to be observed that unless anything to the contrary
is specially stated, the whole of the present Chapter relates to the
real roots of equations.
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'86. When we say that a certain quantity is a superior limit
of the positive roots of an equation, we mean that no positive
root can be greater than that quantity.

87. The numerically greatest megative coefficient increased by
unity 18 a superior limit of the positive roots of an equation which
3 tn its simplest form.

Let f(x)=0 be the equation; suppose it of the n™ degree.
Let p be the numerically greatest negative coefficient which occurs
in f(z). Then if such a value be found for # that f(x) is positive
for that value of # and for all greater values, that value is a
superior limit of the positive roots of the equation f(x)=0; now
if any positive value of 2 make

& -pE T+ T+ L+ 2+ 1)

positive, it will a fortior: make f(x) positive That is, f(x) is

posmve for a positive value of = if " — p l is positive, and

therefore a fortior: if «"~1-p ;:—11 is positive, that is if

(="-1) (1 - xf;l) is positive; and the last expression is positive
if -1 is greater than p. Thus f(x) is positive if  is equal to
p+1 or greater than p + 1; that is, p + 1 is a superior hnut of the
positive roots of the equatlon S(z)=0.

88. In the equation f(x)=0 put —y for 2, and if » is an
odd number change the sign of every term so that the coefficient
of y* may be +1. Let ¢ be the numerically greatest negative
coefficient of the equation in this form ; then ¢ +1 is a limit of
the positive values of y, and therefore — (¢ + 1) is a limit of the
negative values of .

Hence all the roots of the equation f(x) = 0 must lie between
p+1land—(g+1)
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Hence a fortiort if m be the numerical value of the greatest
coefficient in an equation without regard to sign, all the roots of
the equation lie between m +1 and — (m + 1),

89, In an equation of the n™ degree in its simplest form if
p be the numerical value of the greatest megative coefficient, and
x"~ the highest power of x which has a mnegative coefficient, 1 +[p
18 @ superior limit of the positive roots,

Let f(x) =0 be the proposéd equation; since all the terms
which precede 2"~ have positive coefficients f(x) will certainly
be positive for a positive value of x if

—p (@ T+ 2T L+ + 1)

—r+l__
be positive, that is, if 2" —pa—’”m__ll be positive. Hence, sup-

posing z greater than unity, f(x) will be positive a fortior: if
n=r+1
«—p

—1 is positive, that is if «*(z— 1)— pa*~"*'is positive, that

is if 2" (w—1) - p is positive, that is a fortiori if (z—1)" is equal
to or greater than p. Hence if =1+ J/p or any greater value,
Jf(z) is positive, that is 1+ J/p is a superior limit of the positive
roots of the equation f(x)=0.

90. If each megative coefficient be taken positively and divided
by the sum of all the positive coefficients which precede it, the
greatest of all the fractions thus formed increased by unity, &
a superior limit of the positive roots.

" Let the equation be f(x) =0, where f(z) denotes
P+ DL P - p " p I T L —p T LD,
Now we have
= (x—1) ("' +a" "+ .. +z+ 1) +1;
let all the terms of the equation with positive coefficients be

transformed by means of this formula, and let the others remain
unchanged. Thus f(x) becomes :



" LIMITS OF THE ROOTS OF AN EQUATION. 59

P-1z" +p (2—1)a" "+ p(x—1)a" "+ ... + py(x - 1) + p,
+p (-1 +p (x=1)"°+ ... +p(x-1) +p,
+p, =12+ ... +p,(z-1) +p,
— p‘m'_'
+ ..
Consider now the successive vertical columns of this expression.
‘Where there is no negative coefficient the value of the column
is positive if « is greater than unity. To ensure a positive value
of the columns in which a negative coefficient occurs we must
have '
(p, +p, +p,) (x—1) greater than p,,

.........

Therefore 2 must be ter than — 22 4 1.... and ter
groa pPo+p+p, ] gres

than 2. +1,... Therefore if 2 be taken equal
Po+p Pyt +P,,
to the greatest of the expressions thus obtained, that value of =,

or any greater value, will inake f(x) positive; that is, the greatest
of the expressions is a suberior limit of the positive roots of the
equation f(x)=0.

91. We will now illustrate the rules by two examples. First,
take the equation

' 2° + 8x* — 142 — 532 + 562 - 18 =0,

By Art. 87 we have 53 + 1, that is 54, as a superior limit of
the positive roots.

By Art. 89, since n=5 and r=2, we have 1+J5§ as a
limit, so that 9 is a limit,

By Art. 90 we have to take the greatest of the following ex-

. b3 +1 18
’1+8 7’ 1+8+56

pressions ; 114-48 +1 + 1, that is, we must take

§9§ +1; so that 7 is a limit,
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Again, take the equation
o’ —ba* — 132 + 2* + 2 — 70 =0,
Here Arts, 87 and 89 give 70+ 1 as a limit; and Art. 90 gives

z49+ 1, so that 19 is a limit.

Thus, in both these examples, Art. 90 supplies us with the
smallest superior limit. It is easy to see that Art. 89 always
gives a smaller limit than Art. 87, except when »=1, and then
the two limits coincide. Art. 89 is advantageous in general when
several positive coefficients occur before the first negative coeffi-
cient, so that » is large. Art. 90 always gives a smaller limit than
Art. 87, except when the greatest negative coefficient is preceded
by only one positive coefficient, namely that of the first term,
and then the two limits coincide. Art. 90 is advantageous in
general when large positive coefficients occur before the first large
negative coefficient.

92. By particular artifices we may frequently obtain a smaller
superior limit than the general rules supply.

Consider the first example of the preceding Article, Here
we have to find a superior limit of the positive roots of f(z) =0,
where f (x) may be written thus,

(o 14 9y |
«* (- 53) + 8« (:c—§-)+56(a;_.2_8>,

now if x be equal to 4, or to any greater number, the expressions
within the brackets are all positive, and 8o f («) is positive. Thus
4 is a superior limit of the positive roots of the equation f(z)=0.

Again, consider the second example of the preceding Article.
Here we may write f(x) thus,
o* (o — b — 13) + 2a* + 2 — 70;
now by the aid of Art. 87 we see that ' —5x—13 is positive
if #=13+1 or any greater number, and obviously 22'+2— 70
is positive when =14 or any greater number. Thus 14 is a
superior limit of the positive roots of the equation f(z)=0.
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93. We may now easily find an inferior limit of the positive
roots of an equation, that is a number which is not greater than
any of the positive roots, For transform the proposed equation
into one whose roots are the reeiprocals of the roots of the pro-
posed equation, and then the reciprocal of the superior limit of the
positive roots of the transformed equation will be an inferior
limit of the positive roots of the proposed equation. Thus sup-

pose the proposed equation to be

S +p Tt +pa T+ +p,_x+p,=0;

put.'ll for z, and multiply by " and divide by p_, so that the
transformed equation is

»y Py a Pip Py, 1
+at e L+ 2y Ly —=0),
y », y P.'/, P.y b,
Let a superior limit of the positive roots of this equation be found
by one of the preceding Articles, and denote it by L; then
1

jA is an inferior limit of the positive roots of the proposed equa-

tion. Suppose that we use Art. 87; let% denote that coeflicient

which is numerically the greatest of the negative coefficients of
p,

the transformed equation; then 1-<* is a superior limit of the

p.

(o

is an inferior limit of the positive roots of the proposed equation.
Here p, isin fact the numerically greatest among those coefficients
of the proposed equation which have the contrary sign to the

sign of p,.

positive roots of the transformed equation, and therefore

For example, in the first equation of Art: 91 we have p,=—18
-18 . 18 e
and p =56; thus 1566’ that is 7z s an inferior limit of
the positive roots.

~
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94. We will now explain another method of determining
a superior limit to the positive roots of an equation; this method
is called Newton’s Method. '
Let f(xz) =0 denote the equation which is to be considered;

put &+ y for « and expand f(k+y) by Art. 10. Thus the equa-
tion becomes

f(h)+yf’(h)+%’f”(h) + .o+ gf"(h)=0.

Now suppose % positive and of such a value that f(), f/'(k),
S"(R),......f" (k) are all positive; then no positive value of y can
satisfy the above equation. But y=x -4, and as y cannot be-
positive,  cannot be greater than %4; thus % is a superior limit
of the positive roots of the equation f(x) =0. We may observe
that if the proposed equation is in its simplest form /™ (%) is neces-
sarily positive, being equal to |n.

95. For example, take the equation
& + &' ~ 42° — 62° — 700 + 500 = 0.
Here S (h)=Rh*+ k*— 44°~ 64*~ 7004 + 500,
S (h) = 5h*+ 4R°*=12h°~12h - 700,

S/ (0) = 10+ 68125 -6,

S =104+ 4h—4,

EA

1 "y
@/ W=kl

- It is convenient to begin with the last function of 4 and
ascend regularly. Any positive value of A makes /"' (k) positive;
hi=1 makes f"(h) positive; & =2 makes f”(k) positive; h=4
makes f'(h) positive; & =5 makes f (%) positive. Then it will be
found that 4 = 5 makes all the functions of % positive; and there-
fore 5 is a superior limit of the positive roots of the proposed
equation,

It must be observed, that when according to the method here
given we begin with the 'last function and increase the value
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of % suitably as we ascend to the other functions, we shall not
_ require ever to re-examine the sign of those functions of % which
we have passed. For suppose, for example, we have ascertained
that a certain value ¢ when put for % renders all the functions
of % positive up to (k). Then put a greater value for %, say
a+b; and since
t ]
S+t =f (@) + " (@) + g @) + o

and all the terms on the right-hand side are positive by sup-
position, f”(a + b) is positive also. Hence in the preceding ex-
ample, when it was found that A=5 rendered f (k) positive, it
was unnecessary to try whether this value of % rendered the other
functions of % positive, because the method of proceeding ensured
this result.

96. To find the limits of the negative roots of an equation
J()=0 we put —y for x, and then find the limits of the positive
roots of the transformed equation in y; then these limits, with
their signs changed, will be limits of the negative roots of.the
proposed equation.
Take, for example, the equation
°— Ta'~ 162+ 32+ dx + 48 = 0;
put —y for z and we obtain
¥4+ Ty~ 15"~ 39"+ 4y - 48=0.

By Art. 90 we have

48 . .
37547 1, that is 5, as a superior
limit of the positive roots, and by Art. 93 we have 4_8% as
an inferior limit of the positive roots. Thus the negative roots
of the proposed equation must lie between — 5 and — %g .

97. Having thus shewn how limits may be found between
which all the real positive roots of an equation must lie, and
limits between which all the real negative roots of an equation

must lie, we proceed to give some theorems with respect to the
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situation of the roots taken singly or in groups. It will be seen
hereafter that the complete investigation of this part of the
subject is involved in Sturm’s Theorem. . '

98. If we substitute successively for x in £(x) two gquantities
which include between them an odd number of roots of the equation
f(x)=0, we shall obtain results with contrary signs; if we sub-
stitute successively two quantities which include between them no
root or an even number of roots we shall obtain results with the
same 8ign.

Suppose A and p two quantities of which A is the greater;
let @, b, ¢, ..., &, be all the real roots of the equation f(x) = 0 which
lie between A and p; by Art. 43 we have

S (@)= (x—a)(x-b)(x—c)...(x - k)Y (),
where y/(z) is a function formed of the product of quadratic factors
which can never change their sign, and of real factors which
cannot change their sign while x lies between A and p.

- Substitute successively A and p for ; thus
SQ)=A-a)A-d)A-c)...A-E)¢ (A),
S = (=) (1= B) (s = &) e- (s = R) g ).
Now all the factors A—a, A—b, A —¢,... \—k, are positive, and
all the factors p—a, p —b, p—c,... p—Fk, are negative; and y(A)
and ¢ (1) have the same sign. Therefore /() and /(1) have the
same sign or contrary signs, according as the number of the roots
a, b, c,..., k, is even or odd.

99. Hence conversely, if two quantities when substituted
for z in f(x) give results with contrary signs an odd number
of the roots of the equation f(x)=0 must lie between the two
quantities ; if they give results with the same sign either no roof
or an even number of roots must lie between the two quantities.

This result includes that of Art. 19 as a particular case.

100. It is to be observed that the demonstration in Art. 98
does not require the roots a, b, ¢,...,%, to be all unequal; only
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it must be remembered that a root repeated m times is to be
counted as m roots.

‘We see that if f(A) and f(u) be of the same sign, either no
root of the equation f(x)=0 lies between A and g, or else an
even number of roots. Now in the preceding Articles of the
present Chapter an argument of the following kind has been
sometimes used ; the value w or any greater value of x makes f (x)
positive, therefore p is & superior limit of the positive roots of
the equation f(x)=0. It must be observed that by the words
makes f(x) positive, we mean makes f(x) a positive quantity and
not zero. For example, if f(x) = (¢ — 4)*(x — 1), then if 2 is greater
than unity f(z) eannot become negative; but we must not infer
that unity is a superior limit of the positive roots, for 4 is a root,

If then we only know that f(z) cannot become negative for
any value of x greater than u, we cannot infer that there is
no root greater than u; but we may infer that there is either
7m0 root or else a root or roots each repeated an even number
of times.

101. 'We shall now investigate an important theorem which
furnishes relations between the roots of the equation f(z)=0
and the roots of the equation f”(z)=0, where f'(x) is the first
derived function of f(x). The theorem is sometimes called by
the name of Rolle, who first used it.

102. A4 real root of the equation f'(x)=0 lies between every
adjacent two of the real roots of the equation f(x) = 0.

Let the real roots of the equation f(x)=0 arranged in de-
scending order of algebraical magnitude be denoted by a, b, ¢,...k.
Let ¢ () be the product of the quadratic factors corresponding
to the imaginary roots of the equation f(x)=0, so that ¢ (x)
cannot change its sign. Then by Art. 43

F@)=(a-a)@—b)(&0)... @~ B)$ (@)
In this identity put y+z for x; thus
Sy+R)=(y+z—a)(y+2-d)(y+2-0)...(y+2—k) p(y +2).
T. E, )
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Suppose each member of this identity expanded in a series pro-
ceeding according to ascending powers of z. The coefficient of
z on the left-hand side will be f”/(y); see Art. 10. The coefficient
of z on the right-hand side will be

{0-00-9--6-B+0-90-9..6-B+..}40)

+y-a)(y-B)@y-0)...(-F ')

By equating these coeflicients of 2, and changing y into z in
the resulting identity, we have :

f'(@) ={(:c- B)(@=0)...(x — k) + (2 — ) (& —0)...(x — F) + ...}¢(x)

+(@—a)(xz-b)(x—c)...(x—k)¢'(2).

Now put successively a, b, c,..., &, for z; the last term on the right-
hand side of the identity vanishes in every case, and therefore the
sign of f”(a) is the same as the sign of (a—b)(a-c)...(a—k), the
sign of /'(b) is the same as the sign of (b—a)(b—c)...(b—k), the
sign of f7(c) is the same as the sign of (c—a)(c—D)...(c—%), and
80 on; and these signs are alternately positive and negative, for
the first expression has 7o negative factor, the second expression
has one negative factor, the third expression has fwo negative
factors, and so on. Hence by Art. 99 an odd number of the roots
of the equation f’(z)=0 lies between every adjacent two of the
roots of the equation f(x)=0.

103. The demonstration of the preceding Article implies
that the roots a, b, c,... %k, are all unequal. Suppose however
that the root @ is repeated » times, that the root b is repeated
8 times, that the root ¢ is repeated ¢ times, and so on. We ghall
have

@)= (o= ay @8 (o —cY...$(d),
f'(x)=¢(w){r(x—a '-'(m-b)'(z-c)t...+s(x-a)'(z-b)'-’(m-c)f...+...}
+(x~a) (z-b)' (x—c)...¢' ().
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Let f,(x) denote the greatest common measure of f(x) and f"(z),
that is, let f,(x)=(z—a) " (x - b)"*(x - c)**... Then

.‘;((x))-jt(z){r(x b)(x—c)... +8(x-a)(m—c)... +. }
+ (x—a)(x—=b)(z—c)...¢'(x).

Call this expression ¥ (x); then as before we see that the equa-
tion F (z) =0 has an odd number of roots between ¢ and 5, an
odd number between b and ¢, and so on. And since we have
S’ (x) =f,(x) F (x), whenever F (x) vanishes so also does f'(x).
Thus an odd number of the roots of the equation f'(z) =0 lies
between every adjacent two unequal roots of the equation f'(z) = 0.

‘With respect to the equal roots of the equa.tion S(x)=0, we
know that the root @ which is repeated r times in the equation
Jf(x)=0 is repeated »—1 times in the equation f’(x)=0; simi-
larly the root b which is repeated s times in the equation f(z)=0
is repeated 8— 1 times in the equation f’(x) =0: and so on.

It will be convenient for us to imagine that the  roots equal
to a of the equation f(z)=0 include »—1 intervals, in each of
which a root a occurs of the equation f/(x)=0; and similarly
for the other repeated roots. With this conception we may
regard the enunciation of Art. 102 as holding universally, whe-
ther the roots of the equation f(z) =0 are all unequal or not.

104. No more than one root of the equation f(z)=0 can
lie between any adjacent two of the roots of the equation f'(x) = 0.
For if there could be more than one there would be a root or
roots of the equation f”(x)=0 comprised between them, and so
the two roots of the equation f”(x) = 0 which were by supposition
adjacent would not be adjacent. '

And similarly the equation f(x)=0 cannot have more than
one root greater than the greatest root of the equation f”(x)=0,
or more than one root less than the least root of the equation
7'(@)=0.

If the equation f(x) =0 has all its roots real, so also has the
equation f”(x)=0; for the latter equation is of a degree lower

55—
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than the former by unity, and a root of the latter equation exists
between each adjacent two of the roots of the former equation.
And generally if the equation f(x)=0 has m real roots the equa-
tion f”(x) =0 has certainly 7 — 1 real roots, and may have more.

105. Since f”(x) is the first derived function of f’(z), the
equation /”(x)=0 has an odd number of roots between every
two adjacent roots of the equation f’(x)=0. Thus if the equa-
tion f(x) =0 has m real roots, the equation f'(x)=0 has at least
m—1 real roots, and the equation f"(x)=0 has at least m — 2
real roots. Proceeding in this way we arrive at the result that
if the equation f(x) =0 has m real roots, the equation f"(x)=0
has at least m —r real roots.

Hence if the equation f"(xz) =0 has p imaginary roots, the
equation f(x) = 0 has at least 1 imaginary roots. For if the equa-
tion f(x)=0 had less-than p imaginary roots it would have more
than n—p real roots, supposing n the degree of the equation ;
thus the equation f"(x)=0 would have more than n— u—# real
roots, and as this equation is of the degree n» —7 it could not
have so many as p imaginary roots, which is contrary to the
supposition.

For example, let f(z) =2 (1 - z)"

The equation f(x) =0 has all its roots real, namely, n equal
to zero, and n equal to unity. Hence the equation /" (z) =0 will
have all its n roots real and all lying between O and 1; this
equation is .

4 . nn+l  am-1)(n+1)(n+2) ,
O—I—I T %+ 13 1.3 o= ...

106. From Art. 105 we may deduce the following simple
test, which will often indicate the existence of imaginary roots in
an equation,

Let p,_,, p,, and p,,, be the coefficients of three consecutive terms.
an f(x), then if p® is less than p,_,p,,, there must be a pair of
imaginary roots in the equation f(x) =0,
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" Take the (n—r—1)* derived function of f(x) and equate it to
zero; thus

+1 Nn —17r
pow' ]I:ﬁ+ . +pr—|w :‘l%"__l_.'.p'x]n_'r-{-pr_‘_l ]n—-r—l =0.
lr+ . .
Put}/ for 2, and multiply by y"*', and divide by p, ,,[n—7r-1;
thus
7 (n—7)p, y,+(n—r+ 1)(n—17) ?L—iy'"+ e =0,

P 1.2 P

If the roots of this equation are all real the sum of their squares
is positive; and therefore, by Art. 47,

(n=7)p} (m-r+l)(n-7)p,,
P y

is positive. Therefore

n-—r+1l

g .
p,’ is greater than P

Pl‘—l;pri-l’

and a fortiort

p,” is greater thanp _,p ...

If then this condition does not hold there must be a pair of
imaginary roots in the derived equation, and therefore also in the
original equation. See also Art. 331.

107. If we know all the real roots of the equation f’(z)=0
we can determine how many real roots the equation /f(x)=0 has.
For let the roots of the equation f'(z)=0 be a, B, y,..., &,
arranged in descending order of algebraical magnitude. Substi-
tute for « in f(x) successively a, B, v,..., k, and observe the signs
of the results. Then one root or no root of the equation f(x)=0
lies between any adjacent two substituted values, according as
the corresponding results have contrary signs or the same sign.
This follows from Arts. 98 and 104.
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The equation f(x) =0 has one root algebraically greater than
a, or none, according as f(a) is negative or positive; and it has
one root algebraically less than « if the equation be of an even
degree and f () be negative, or if the equation be of an odd degree
and f(x) be positive, otherwise not. See Arts. 98 and 104.

Hence the number of real roots of the equation f(x) =0 will
be the same as the number of changes of sign in the series ob-
tained by substituting +, a, 8, y,... K, -, for z in f(z) suc-
cessively. If however f(x) vanishes when any of the substitutions
are made, it indicates that the equation f(z)=0 has equal roots,
and the number of these may be discovered by Chap. vI.

108. As an example we will investigate the conditions that
the equation #’— gz ++=0 may have all its roots possible, sup-
posing ¢ a positive quantity. Here f'(x)=32’—g, so that the

roots of the equation f(z)=0 are = \/ (2); tet =+ J )
- /)
Then  f(&)=+(5) - g (§) +r=-2(%)"+n
/@) = (—) +q(% >§+r% 2 (g)*w.

] 8
First suppose (g) greater than (%) ; then if = be positive
JS(a) and £(B) are both positive, and the equation f(x)=0 has only
one real root, which is algebraically less than B3; if r be negative
Jf(a) and f(B) are both negative, and the equation f(x)=0 has
only one real root, which is greater than a.

Next suppose ( ) less than <3> then f(a) is negative and

f(B) is positive, and the equation f(x)=0 has three real roots,
namely one greater than a, one between a and 8, and one algebrai-
cally less than B.
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109. A method of discovering the situation of the real roots
of an equation was indicated by Waring, and reproduced by
Lagrange, which we shall now explain; it is called Waring's
Method of separating the Roots.

Let us suppose that the equal roots of an equation, if it has
any, have been discovered and the corresponding factors removed,
so that we have to deal with an equation which has only unequal
roots. Let f(x)=0 represent this equation. Suppose & to be
a quantity which is less than the difference of any two roots,
and let 8 be a superior limit to the positive roots. Substitute
for x in f(x) successively 8, s — %, 8 — 2k, s— 3k,... and so on down
to a quantity which is algebraically less than the least root which
the equation can have; and observe the series of the signs of
the results. Then when a change of sign occurs one root exists
between the two corresponding substituted values, and when
there is a continuation of sign no root exists in that interval.
For since k is less than the difference of any two of the roots
we are sure that more than one root cannot occur in each in-
terval.

‘We have then to consider how the quantity # may be de-
termined. - Suppose that the equation has been formed which
has for its roots the squares of the differences of the roots of
the proposed equation, and that an inferior limit of the positive
roots of this equation has been found; denote this by 8. Then
A/8 is a suitable value for %.

We have already in Art. 60 given an example of the con-
struction of an equation which has for its roots the squares of
the differences of the roots of a proposed equation, and we shall
hereafter consider the question generally: see Chapter xx. It
will then be found that on account of the complexity of the result
obtained, Waring’s method of separating the roots of a proposed
equation is generally useless in practice for equations of a degree
higher,than the third, although theoretically it attains its proposed
object. :
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110. As an example of Waring’s method take the equation
a*— 3’ ~ 4 +13=0.

By Art. 60 the equation which has for its roots the squares of
the differences of the roots of the proposed equation is

4= 42+ 441y — 49 =0,
Put y= ;; thus 402" 4412+ 422~ 1=0,

that is, 492 — 9)+42( ~22)=05
thus 9 is a superior limit to the values of 2, and therefore 1 is

9

an inferior limit to the values of y. Hence \/ %, that is, % , i8

less than the difference of any two roots of the proposed equa-
tion.

Now 4 +1, that is 5, is a superior 11m1t of the positive roots
of the proposed equation, by Art. 87. And — (1 + ~/13) is nume-
rically a superior limit to the negative roots, by Arts. 96 and 89.
Thus all the roots of the proposed equation lie between 5 and — 5.
By substituting in succession for = the values 5, 5-3, 5—%,...
it will be found that one root lies between 3 and 2%, one root
between 2% and 2, and one root between —2 and —2}.

111. 'We will conclude this Chapter with a proposition which
may serve as an example of some of the principles already esta-
blished. In the equation f(x)=0,
where Sf(@)=pa"+pa"+. . +x-1
if ¢ is the numerical value of the numerically greatest coefficient,

and 7 is positive and less than ———

less than 2r.
When « is zero f(x) is negative. Now a positive value of x
will make f(x) positive, a fortiori, if it make
z—r—g(@+z* ' +... + 2+ &)

5o 4q , there is a real positive root

a1

positive, that is, if it make x — r— ¢ga® ! 1_ —— positive.
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Hence a fortiori f(x) is positive if  is less than unity and
(1-2)(x~r)—ga* is positive. Now put 2r for z in the last ex-
pression and it becomes r{l—2r—4g¢r}, and this is positive be-
cause by supposition (2 +4q) is less than unity. Thus f(x) is
positive when z=2r; and f(x) is negative when =0 therefore
a root of the equation f(z) =0 lies between 0 and 27.

In like manner if the last term in f(x) is r instead of — 7 and

7 18 positive and less than
between 0 a{nd -2

Trig the equation f(x)=0 has a root

VIII. COMMENSURABLE ROOTS.

112. By a commensurable root is meant a root which can be
expressed exactly in a finite form, whole or fractional ; so that it
involves no irrational quantities. 'We shall now shew that when
the coefficients of an equation are rational numbers, whole or frac-
tional, the commensurable roots of the equation can easily be
found.

We have seen in Art. 53 that if the coefficients of an equation
are rational but not all integers, we can transform the equation
into' another which has all its coefficients integers and the coeffi-
cient of its first term unity. We may therefore confine ourselves
to equations of the latter form ; and we shall first shew that equa-
tions of that form cannot have rational fractional roots.

113. If the coefficients of an equation are whole numbers,
and the coefficient of its first term wunity, the equation cannot
have a rational fractional root,

Let the equation be
Z+pa A pa Tt L +p, @t p,_a+p =0, »
and if possible suppose it to have a rational fractional root which
in its lowest terms is expressed by g. Substitute this value for x,
and multiply all through by "~ ; thus
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7t 20" +pa" b+ ... + p“"“'b‘,ﬂ +p,_ab"t+p b= 0,

and therefore
_ % =plau—l +p,a""b +... +p._'aa n—3 +p__‘ab"" +p.b'_l.

The last result is impossible because the right-hand member of
the equation is an- énteger, and the left-hand member is not an
a

integer. 'Therefore 3

cannot be a root of the proposed equation.

114, Thus we are only concerned with the investigation ' of
integral commensurable roots, and we shall now explain the method
by which they may be found. The method is sometimes called
the Method of divisors, and sometimes Newton's Method.

Let the equation be
T+pa T +p T+ +p, & +p,_x+p,=0,

and suppose & an integral root. Then substituting and writing
the terms in the reverse order we have

P+P._a+p,_ 0+ .. +pa Tt +pa T +a" =0,
and therefore by division by &

}—;—“ P DA e+ DA pa 4@ =0,
Hence % must be an integer; demote it by ¢, and divide
" again by a; thus

H17 Py +‘f“" +P g F e DA T P L@ =0,
Hence g‘%’ must be an integer; denote it by ¢, and divide

3 q] +p n—g 3
again by @, and we shall find that == must be an integer,
Proceeding in this way after dividing n times by a we shall arrive
at a result denoted by q—“'% +1=0.
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Hence the following conditions are necessary in order that the
integer a may be a root of the equation f(x)=0.

The last term of the equation must be divisible by a. Add to
the quotient thus obtained the coefficient of x in the equation;
the sum must be divisible by . Add to the quotient thus ob-
tained the coefficient of «* in the equation; the sum must be
divisible by a. Proceed in this way until »—1 divisions have
been effected, add to the quotient the coefficient of "~ ; the sum
must be divisible by a and the quotient must be —1.

If at any step the required condition is not satisfied the inte-
ger a is not a root.

115. We have in the preceding Article found the conditions
which are mecessary in order that the integer @ may be a root of
the equation f(x) =0; it is easy to see that if the last of these con-
ditions is satisfied the integer a is a root. For that last con-
dition may be expressed thus;

3::+13"—“+ &‘-’+...+%+%‘=—1,

.a a7t a

and if this is true we see by multiplying by a" that a is a root of
JS(x)=0.

In order then to find all the commensurable roots of an equa-
tion we have only to determine all the divisors of the last term,
and try whether they satisfy the conditions of Art. 114. The
labour will often be lessened by first finding positive and negative
limits of the roots, because of course no integer need be tried which
does not fall within these limits.

116. For an example take the equation
2 ~32"—82-10=0.
Here 1+10 is a superior limit of the positive roots, by Art. 87 ;
and by writing —y for & we obtain the equation

| 3y (y —g)“+10=0,” :
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for which 3 is a superior, limit of the positive roots. Hence all
the roots of the proposed equation lie between 11 and —3. Thé
divisors of —10 which fall between these limits are 10, 5, 2, 1, -1,
—2; and we proceed to try if any of these numbers are roots.

+10 + 56 +2 +41 -1 -2
-1 -2 -5 =10 10 b
-9 10 -13 -18 2 -3

-2 -18 - 2
-5 -21 -5
-1 -21 + 5

In the first line all the divisors of the last term are written
which it is necessary to try, and beneath each divisor the results
are placed which arise from carrying on the trial with that divisor.
Thus taking the divisor 10, we first divide the last term —10 by
it, and set down the quotient —1; then we add this to the coef-
ficient of x which is —8, and set down the sum —9; tkis i3 not
divisible by 10, so that 10 is not a root. With respect to 5 all
the conditions are fulfilled, so that 5 is a root. With respect
to +2 and — 2 we arrive at points where exact division is not
possible, so that these numbers are not roots. With respect to +1
and —1 the final condition is not satisfied, so that these numbers
are not roots.

Thus the only commensurable root is 5; and denoting the
equation by f(z) =0, we know that x— 5 is a factor of f(x). The
other factor will be found to be «*+ 2z + 2. '

For another example take the equation
x* + 5zt + * — 162" — 202 — 16 = 0.

It will be found that the commensurable roots are 2, —2,
and —4.

117. It is usual to omit +1 and —1 from the divisors to be
tried, as it is simpler to test whether these values are roots by
substituting them for # in the given equation.
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-+ If any powers of x are missing from the proposed equation
they should be supposed to be introduced with zero coefficients ;
see Art. 51.

When we have ascertained by the method here exemplified
that certain numbers g, b, c,..., are the only commensurable roots
of an equation f(x) =0, it still remains to determine whether any
of these roots are repeated. 'We may divide f () by the product
(x—a)(z—B)(x—c)... and denoting the quotient by ¢ (x) we may
apply the method to the equation ¢ (z)=0, and thus determine
whether any of the quantities @, b, ¢,... are roots of this equation.
Proceeding in this way we shall determine the repeated roots of
the equation f(x)=0, and how often each roof is repeated.

Or we may apply the test of equal roots found in Chapter vI,
to the equation f () =0.

118, Suppose that instead of taking an equation, with unity
for the coefficient of the first term, as in Art. 114, we take an
equation with any integer p, for the coefficient of the first term.
The only difference in the resulting conditions is that the last
quotient must be — p, and not — 1. Suppose for example

22~ 122"+ 132 - 15=0.
Here -1354- 1 is a superior limit of the positive roots by Art. 87,

and there is no negative root by Art. 24, and by trial we see that
1 is not a root; thus the only divisors of the last term to be
used are 5 and 3. The process being arranged as before we
have

5 3

-3 -5
10 8
2

-10

-2

Thus 5 is a root, for all the conditions are satisfied, the last
quotient being — 2; and 3 is not a root, because 8 is not divisible
by 3.
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It must be remembered that if the coefficient of the first term
is not unity the equation may have a commensurable fractional
root; see Art. 113.

119. The number of divisors of the last term which it is
necessary to try may sometimes be diminished by the following
principle. Suppose a a root of the equation f(z)=0; for = put
m+y, then @ —m is a value of ¥ which satisfies the equation
JS(m+y)=0. The term independent of y in this equation is f(m),
and all the coefficients of y are integers, if the coeficients in
JS(x) are integers and m also an integer ; see Art. 10, Thus if
a be an integer aym is an integer and must therefore divide
JS(m) by Art. 114, Thus any integer a which divides the last
term of f(x) is to be rejected if @ —m does not divide f (m).

Here m may be any integer positive or negative; the values
+1 and ~1 are advantageous from the ease with which f(m)
can then be calculated.

Take for example the second equation given in Art. 116; here
4 divides the last term, but 4 + 1 does not divide /(- 1) which is
—9; thus 4 cannot be a root of the proposed equation.

Again, take the example &®— 20z + 164x—400=0. This
equation has no negative root by Art. 24; and by writing it

in the form «*(x— 20)+ 164 (x-—%ol——o), we see that 20 is a

superior limit of the positive roots. The positive divisors of
the last term which are less than 20 are 2, 4, 5, 8, 10, and 16. Of
these 5, 8, and 10 are not roots; for f(1)=-— 255, and this is
not divisible by 5—1, or by 8 -1, or by 10 —1. Thus the only
divisors of the last term which remain for trial are 2, 4, and 16;
it will be found that 4 is a root.

120. As an example of a rational fractional root, consider
the equation 4a*— 11a*+ Tx — 6 =0, that is,
11 7T 3

S— —L— ==
o 4ac’+4:a: 3 0.
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First, put w=%, in order to transform the equation into ome

with integral coefficients; see Art. 53. Thus
y'-11y*+ 14y - 24=0,
that is, y'+ 0y’ - 113"+ 14y - 24 =0.

By Arts. 89 and 96 all the roots of this equation must lie
between 1+,/24 and —(1+4/24); and we see by trial that +1
and —1 are not roots. Thus the only divisors of the last term
to be tried are 4, 3, 2, -2, —3,-4. Also f(1)=-20, and this is
not divisible by 4—1 or by —2—1; thus the numbers 4 and
— 2 may be rejected. The process being arranged as before we
have

3 2 -3-4
-8 -12 8 6
6 2 22 20

2 1 -5
-9 -10 -16
~3 -5 4
-3 4
-1 -1

Thus 3 and — 4 are roots; and since x=%, we have g and — 2

as roots of the original equation.

+ IX. OF THE DEPRESSION OF EQUATIONS.

121. In the present Chapter we shall shew how the solution
of an equation may be made to depend upon the solution of an
equation of lower degree, in certain cases where known relations
subsist among the roots; this process is called the depression of
. equations.

122. When two equations have a root or roots in common,
it 18 requared to determine the root or roots.
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Suppose the equations f(z)=0 and F(z)=0 to have a com-
mon root @ ; then f(x) and F(z) have the common factor z — a.
Hence the greatest common measure of f(z) and F(x) must
have x—a as a factor. Similarly every factor common to f(x)
and F(x) will be a factor of their greatest common measure, and
no other factors will occur in the greatest common measure. .

Hence, if we find the greatest common measure of f(x) and
F(x),and equate it to zero, the roots of this equation will coincide
with the required roots which are common to the equations
S(x)=0 and F(z)=0.

If any factor is repeated in f(x) and F (z) it will also be
repeated in their greatest common measure.

123. Suppose, for example, we have the two equations
a'+ 32’ — ba* - 6x—-8=0
and '+ 2*— 92*+ 102~ 8=0.

The greatest common measure of the expressions which form
the left-hand members of these equations is o+ 2z—8; and if
this be put equal to zero we obtain x=—4, or x=2. Thus 2
and — 4 are the roots common to the two equations,

124. Suppose we know that there exists between @ and 3,
two roots of the equation f(z)=0, the relation pa +g¢b=r; it is
required to determine these roots.

Since @ and b are roots of the equation f(z)=0, we have -

F(@=0,and f£(3)=0; but b="q”“, therefore f(’ ‘qf’“ —0.

Thus a is a common root of the equations f(x)=0 and f z —qpx ) =0.

Hence a may be found by the preceding Article, Thus « is
known aund then b from the relation pa+qb=r. Hence f(z)
may be divided by the product of the factors x—a and x-b;
and if the quotient be equated to zero we obtain an equation
for determining the remaining roots of the equation f(z) = 0,
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125. Suppose, for example, that we have the equation
=T+ 112"~ Tz +10=0................... (1),

and that it is known that two of its roots @ and b are connected
by the relation b=2a + 1.

Substitute 22+ 1 for z in (1) ; thus
(2e+1)*—7(22+1)°+11 (22+1)"-7(22+1) +10=0,
that is 162" — 242" ~ 162" — 42 + 8=0,
or ot~ 62— 4o’ -2 +2=0..ccccevrirnninnnnnn. 2).

The greatest common measure of the left-hand members of
(1) and (2) will be found to be £ —2. Thus =2, and therefore
b=>5; that is, 2 and 5 are two of the roots of the proposed equa~
tion, Then it will be found that .

2~ T2’ + 112" = T2 + 10 = (- 2) (z - ) («*+ 1),
. 80 that the other roots are = ,/(—1). !

126. It may happen that another pair of roots a and 8 is
subject to the same condition pa+gB8=r. In this case the ex-
pressions /() and f T—Tpx) will have for their greatest common
measure an expression of the second degree in 2 which will in-
volve the factors 2 —a and z—a.

If the roots @ and b are both repeated in the equation f(z)=0,
the factor 2 —a will be repeated in the greatest common measure

of f(z) and f(" ’q”’”) '

127. Generally suppose that two roots @ and b of the equa-
tion f(x) =0 are connected by the relation b=c¢(a). Then the
equations f(z)=0 and f{¢(x)}=0 have a common root, namely
a, and we may determine this common root by Art. 122.

128. There is a case in which the method of Arts. 124 and
126 does not assist us in solving a proposed equation. Suppose,

T. E, 9
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for example, we have an equation f(x)=0, and it is known that
the roots of this equation occur in pairs, and that each pair of
roots @ and b satisfies the relation ¢+ d=2r. Then according
to Art. 124 we should proceed to investigate the common roots
of the equations f(x)=0 and f(2r—x)=0. But these equations
will be found to coincide completely ; for by supposition f (@) =0,
that is, f(2r—5) =0, and f(b)=0, that is, f(2r—a)=0, so that
the roots ¢ and b are common to the two equations. Similarly
every other pair of roots is common to the two equations, and
so the two equations must coincide.

129. There are various ways in which we may depress the
equation in the case comsidered in the preceding Article; we
will explain two of them as they furnish exercises on the subject
of the present Chapter.

L We may proceed thus. Assume a—b= 2z, so that we
have simultaneously

f(a):O, a+bd= 21‘, a—-b=2z

From the second and third of these equations a=2+r. Substitute
in the first equation, so that f(2+7)=0. From this equation
values of z must be found, and then corresponding values of @ and
b. It is easy to shew that the equation f(r +2)=0 only involves
even powers of 2, and so if we regard z® as the unknown quantity
the degree of this equation will be half the degree of the proposed
equation. For let @ and b be one pair of roots of the proposed
equation, a and B another pair, and so on ; then

f(@)=(z—a)(x—b)(x—a)(z-B) ...

Slr+r)=(z+r—a)(z+r-0)(z+r—a)(z+r—B)...

(e S ) (e SR 0) (o ) (422 ) .
-5 Y- (5}

that is, /(2 + r) involves only even powers of 2
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In fact, a8 no distinction in theory exists between the roots
a and b, it might have been expected that an equation which

should be constructed to have ‘%b for a root would also have

b—Ta as a root ; and such is the case.

IL We may also proceed thus. Assume 2=abd. Then
(z—a)(x-by=o'—(a+b)x+ab=2"-2rz+2. .

Hence if z be suitably determined, «*—2rz+2 will be a factor
of f(z). Perform the process of dividing f(x) by o'~ 2rzx+2
until the remainder takes the form Px+¢@, where P and @ are
functions of 2, but do not contain x. Hence the necessary and
sufficient conditions for «’—2rx+2z being a factor of f(x) are
P=0 and Q=0. Find by Art. 122 a value of z which will
satisfy both these equations; then find ¢ and 4 from

a+b=2r and z =ab.

130. Suppose we know that between three roots a, 8, ¢ of
the equation f(x)=0, the relation pa+g¢b+rc =g exists; it is
required to determine these roots.

Since a, b, and ¢ are roots of the equation f(z) =0, we bave

F@=0, f()=0, f()=0. Thus
7@=0, £@)=0, 7(*-22=) 0,

Suppose b eliminated between the last two equations ; we thus
obtain an equation which we may denote by ¢ (a)=0. Thus the
equations f(x)=0, and ¢ (z)=0 have a common root a, and this
may be found by Art. 122,

131. 'We will here give a few miscellaneous examples con-
nected with the subject of the present Chapter.

—2
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(1) Itis requiréd to determine the roots of the equation -
2 +pd T+ p @+ . 4+p,=0, ‘
which are all in arithmetical progression.
Denote them by @, a+b, a+2b, ......
By Art. 47,
—p,=a+(a+b)+(a+2b)+ ... + (a+n—1b),

2 -2p,=a +(a+b) + (a+20)"+... (a+n—10B)".
n(n-1)
2
n (n—12(2n—1) ¥

That is, —p,=na+ 5,

2'-2p,=na'+n(n—-1)ab+
see Algebra, Chapter xxx.

By squaring the first result and subtracting it from % times
the second we obtain -
] 2 ¢t ]
(n~1) p,*~2np, _mE-1¥ ;
12
thus b is known, and then a can be found.

(2) The equation o* + 32*—122°— 482 — 64 = 0 has two roots
which are equal in magnitude and of opposite signs ; find them.

Here the equation obtained by changing the sign of  will have
a root in common with the proposed equation. That is, the
proposed equation has a root in common with the equation

ot — 3a®— 122+ 482 — 64 =0.

Then by Art. 122 we may proceed to find the greatest common
measure of the left-hand members of these equations. Or thus;
by subtraction,

62°~96x=0;
therefore either =0, or else *=16.

The former does not give a root ; the latter gives x =4 ; and
+4 and — 4 are roots of the proposed equation. '
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(3) The equation 3z~ 192+ 92"~ 19+ 6 = 0-has two roo's
the product of which is 2; find them.

Suppose y to denote one root ; thengis another; hence
-198"+ 99" 19y + 6 =0.........c0eeu(1);

and 3 G)'—ls @'w (;)'-19 G)+6=O,

that is, 6y*— 38y"+ 363"~ 152y + 48 =0,
or 3y'—19y*+18y’~ 76y +24=0......... ().

The greatest common measure of the left-hand members of
(1) and (2) is 3y*— 19y + 6; and putting this equal to zero we
obtain y=4,0or y=6. Thus } and 6 are the required roots.

X. RECIPROCAL EQUATIONS,

182. A reciprocal equation is one which is not changed
when the unknown quantity is changed into its reciprocal.
Hence if a be a root of such an equation, the reciprocal of a,

that is, %, is also & root. 'We shall see that the solution of a

reciprocal equation may be made to depend on the solution of
an equation of not higher than half the degree of the proposed
equation. 'We shall first determine the relations which must hold
among the coefficients of an equation in order that it may be a
reciprocal equation, and shall then shew how the equation may
be depressed and so rendered easier of solution.

133. To find the conditions that a proposed equation may be
a reciprocal equation.

Let the equation be
P 4 p T+ o+ p, 2+ p, @ +p,=0...(1)
Change % into ;, then multiply by z* and divide by p,, and



86 RECIPROCAL EQUATIONS.
re-arrange the terms; thus we have

ar g Dama gt Paca oy +;m'+p' x+%—0...(2).
In order that (2) may coincide with (1), the coefficients of
the same powers of « must be coincident ; thus
- Pu—sg 1
pl p;,-l p. pp. .pn—l ﬁ: ’ pu— _ZI-’ ==

from the last equation we have p =1, therefore p =+1, or -1,
and this gives rise to two classes of reciprocal equations.

I. Suppose p,=1; then we obtain

pl=p-—|, P!=pn—l’ coe pn—!=pl’ pn—l::pl"
Thus an equation is a reciprocal equation when the coefficients of
the terms equidistant from the first and last are equal.

II. Suppose p,=—1; then we obtain

Dy==Perrs Py="DPu g - Puy="DPgy Pu,==D

In this case if the equation is of an even degree, wo have among
the above series of conditions p =-p,, where m=4n, and this
is impossible unless p,=0. Thus an equation is a reciprocal
equation when the coefficients of terms equidistant from the
beginning and end are equal in magnitude and of contrary signs ;
with the condition that if the equation is of an even degree
the coefficient of the middle term is zero.

134. A reciprocal equation of the first class of an odd degree
has a root —1, as is obvious by inspection. Thus if f(x)=0
denote the equation, f(x) is divisible by 2+ 1; see Art. 6. Let
¢ (x) be the quotient, then ¢ (2)=0 will be a reciprocal equation
of an even degree with its last term positive. ‘

A reciprocal equation of the second class of an odd degree has
a root + 1, as is obvious by inspection. Thus if f(z)=0 denote
the equation, f() is divisible by z—1; see Art. 6. Let ¢ (x) be
the quotient, then ¢ (x)=0 will be a reciprocal equatlon of an
even degree with its last term positive.
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A reciprocal equation of the second class of an even degree
has a root +1, and & root —1, as is obvious by inspection.
Thus, if f(z)=0 denote the equation, f(x) is divisible by =*—1;
seo Art. 36. Let ¢(x) be the quotient, then ¢(x)=0 will be a
reciprocal equation of an even degree with its last term positive.

135. The statements made in the preceding Article respect-
ing the results of certain divisions will probably be admitted as
obvious. But it is easy to give formal proofs. Consider the
last case, that of a reciprocal equation of the second class of an
even degree. Suppose f(x)=0 to represent the equation; then

we know that f(z) is such that f(x) =—"f (:—c) , and we know

that f(x) is divisible by #*—1; we wish to prove that the quotient
is a function which has the coeﬂiclents of the terms equidistant
from the first and last equal,

We have f(m)=—£¢'f(5)3

. f:_l_
i) “%f(’l“)wﬂl%‘

thereforew, 1=~

76
And this shews the truth of the statement, since — is what we

1-5

obtain when we change « into % in —f—;g_af)l— .

136. It follows from Art. 134 that any reciprocal equation
is either of an even degree with its last term positive, or may
be depressed to this form. We may then consider this as the
standard form of a reciprocal equation, and we shall now shew
that such an equation may be depressed to one of half its degree.

The fact that a reciprocal equation could be thus depressed
was noticed by De Moivre in 1718: see his Doctrine of Chances,
first edition, page 113.
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137. It is required to depress a reciprocal equation which
8 of an even degree with its last term positive.

Let the equation be 2™+ p 2™ '+ p ™ *+ ...+ p2’+pz + 1 =0.
Divide by «™ and collect the terms in pairs whlch are equidistant
from the begmmng and end; thus

x"'+;,;+p, (x"‘"+F) +p,(a: x,}_, +..=0,

Now assume m+%=y; then

..............................

and generally, 27+ + w-,,l—— (x’+ a;’) (m+1) (m’“'+ ,l., ,

so that we can express &**' + mT‘l;: as a rational function of y of

the degree p+1. Hence by substitution in the above equation
we obtain an equation in y of the degree m. Then from each
value of y we deduce two corresponding values of « from the equa-
tion o*—yx+1=0.

138. The general relation in the preceding Article may be
thus expressed ;

1 - C
m’“+—m—(w+ )y (a:' ‘+w—,—_,-). .
This shews that we may regard the quantities
1 1
+#,d+?,
as forming a recurring series in which the scale of relation is
1-y+1; see Algebra, Chapter xL1X. We shall hereafter give

in Chapter xx1. a general expression for a? +$ in terms of y.
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139, For an example of a reciprocal equation take the equation
28 + 2~ 132 +132* -2 - 2= 0.

Here +1 and -1 are roots by inspection ; and we can therefore
- divide the left-hand member by 2*~1. Thus we obtain

22 + 2’11+ 2+ 2=0;

therefore m’+ + = ( )——_0

Put x+1‘ =y ; thus

Y- 2+——-1—1=0

15
or~y'+%-—2-=0;

therefore y=g or-3.°

§’ or m+1=—3;

Hence a:+-1-=
x 2

therefore =2 or - or—(—3d=f)

140. The following equation may be transformed into a re-
ciprocal equation :

"+ pa™ L p ™t 4L+ p ™+, " 4 p Ot
+ e+ p "+ p "+ =0,

For assume z=2 ,/c, and divide by ¢™; we thus obtain a reciprocal
equation in 2 of the standard form.

XI. BINOMIAL EQUATIONS.

141, An equation of the form z*— 4 =0 where 4 is a known
quantity is called a binomial equation.
The roots of this equation are all different because the first
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derived function .of 2"~4 is nz"", and no value of & will make
a”~4 and na®™" vanish simultaneously-; see Art. 75.

142, If 2"~ A4=0 we have z=%/4; that is, = is equal to
an 7n* root of 4. But the equation z"—4 =0 has n roots by
Art. 33, and these roots are all different by Art. 141. Hence
we obtain the following important result, any algebraical quantity
has n different n® soots. By an algebraical quantity here we
mean either a real quantity, or an imaginary quantity of the

form p+g./-1.

143. Let a denote one of the n* roots of any quantity 4,
so that a*=4. Then in the equation a*~A4=0 assume x=ay,
so that a"y"—A4 =0; therefore y*~1=0. Hence y=12/1, that is,
y is equal to an #n™ root of unity. And x=ay=an/1; but x=73/4;
therefore /4 =a%/1. Thus all the n* roots of "any algebraical
quantity may be found by multiplying any one of them in succes-
ston by the values of the n™ roots ef unity.

144. Let us now suppose that 4 is a real positive quantity,
and that we have to solve the equation a*~A4 =0 and the equation
2'+A=0. Let a be the arithmetical value of the ™ root of 4,
which may always be obtained, at least approximately, by the aid
of the Binomial Theorem ; see Algebra, Chapter xxxvi. Assume
« = ay, then the proposed equations become respectively y*—1 =0,
and y"+1=0. These equations can both be solved by the
aid of Trigonometry ; see T'rigonometry, Chapter xxirr. We shall
however now consider these equations without using the Trigono-
metrical expressions; and although we are not able to solve them
generally by means of algebraical expressions, we shall be able to
prove important results respecting them. '

145. If a be any root of the equation x*-1=0, then o™ t8
also @ root, where m is any integer, positive or negative.

For (a")*=a™=(a")"=1"=1.
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146. If a be any root of the equation x"+1=0, then o™ is
also a root, where m is any odd integer positive or negative.,

For (a")*=a™=(a")"= (- 1)"=-1, if m be odd.

147.  If m be prime to n, the equations x*~1=0 and x"-1=0
have no common root except unity.

Let p and ¢ be two integers which satisfy the relation
pm—gn=1; such integers can always be found by Algebra ; see
Algebra, Chapter xLvi. And suppose that a is a common root
of the two equations. Then a™=1, therefore a™=1; and a*=1,
therefore a™=1. Hence, by division, a*" ™=1; thatis a=1.

148. If n i8 a prime number, and a any root of the equation
x2~1=0, except unity, then all the roots of the equation will be
Surnished by the geries a, o, o®,...a".

For these quantities are all roots by Art. 145. 'We have there-
fore only to shew that no two of them are equal. If possible,
suppose a’=d'; then a"’=1; and thus the equations z*-1=0
and "~ 1= 0 have a common root which is not unity, But this
is impossible by Art. 147, since »— 8 is less than n and therefore
prime to it.

149. If = is not a prime number, and a is any root of the
equation #"—1=0, it is true by Art. 145 that any power of a is
also a root ; but it is not necessarily true that the successive powers
of a will furnish all the roots. Suppose for example that n = pq ;
and let e be a root of the equation 2* —1=0; then « is also a root
of the equation #"—1=0, and so is any power of a. But we can-
not obtain more than p different values by taking powers of a; for
at'=a’xa=a, a®**=of xa’*=af, and s0 on. Thus the powers of
a will not furnish aZ the roots of the equation z*—1=0.

If » be not a prime number it is still true that some of the
roots of the equation 2"—1=0 have the property of furnishing all
the roots by their successive powers. This we shall shew from
the Trigonometrical expressions for the roots.
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For let r be any integer ; then

2w — . 2w
€08 —+,/—18in —
n n
is & root ; denote it by a. Suppose  prime to n, then the succes-

sive powers of a will furnish all the roots.

For let s and ¢ be two integers, neither of which exceeds n;
then o' and of will not be equal. For

a'=cos-287rr+~/—lsin287”,

. 2trw . 2trw
o' =cos——+ —lsan;

9
and in order that these should be equal %":—r and ::—" must either

be equal or differ by a multiple of four right angles. See Plans
T'rigonometry, Art. 93. Thus

Q;_t)r must be an integer ;

but this is impossible since  is prime to n and 8 ~ ¢ is less than n.

150. The solution of the equation x*—1=0 where n is the
product of different prime numbers can be made to depend upon the
solution of equations of a similar form hawving for the index of x
the different prime factors of n.

Suppose, for example, that » is the product of three prime
factors m, p, ¢. Let a be a root of the equation z™~1=0, let 8
be a root of the equation @*—1=0, let y be a root of the equation
a'~1=0; these roots being all supposed different from unity.
Then the roots of the equation z*—1=0 will be the terms of the
product

(l+a+a®+...+a™ )1 +B+ B +... +F ) (1+y+y'+ oo +97)

First, any term of this product is 4 root. For suppose a"S%*
to denote such a term ; then (a’8%y)"=1, since a™=1, f™=1, and
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¥*=1. Secondly, no two terms of this product are equal. For,
if possible, suppose o' §'y*=af B7y*; then o "=B*y"*." The
quantity on the left-hand side is & root of the equation z™—-1=0,
and the quantity on the right-hand side is a root of the equation
«"—1=0; but since m is prime to pg it is impossible that these
equations can have any common root except unity.

Similarly we may proceed when » has more than three prime
factors. .

151. Next suppose that the prime factors of n occur more
than once in n; for example, let n=p.w.x, where p, 7, x are
respectively any powers of the prime numbers m, p, and q.
Then it will still be true that if we obtain the p roots of
the equation a*—1=0, the ax roots of the equation &"-1=0,
and the x roots of the equation 2*~1=0, and take every possible
product of these roots, one from each system, we shall obtain all
the roots of the equation *—1=0. But, by Art. 149, the roots
of each system cannot necessarily be represented by the powers of
one root taken arbitrarily.

Similarly we may proceed when n involves more than three
different primes.

152. 1t is usual to add one more proposition respecting the
equation 2"—1=0 when # is & power of a prime; and we will give
it here although it is of little practical importance. Suppose, for
example, that n = m® where m is a prime number. Let a be a root
of the equation 2™ —1 =0, let 8 be a root of the equation #™—a =0,
and let y be a root of the equation #™—8=0. Then the roots of
the equation 2"~ 1= 0.will be the terms of the product
(+a+a'+..+a™ ) (14+8+ % .. + L) (L4 y+ 9+ .. +9"70).

First, any term of the product is a root. For suppose a"f3'y* to
denote such a term; then (a"8'y")*=a™B™y"=1. Secondly, no
two terms of this product are equal. For, if possible, suppose
a"B'y'=a’B7y"; thus a'=a?, where

o T

: 8 17
l=r+—+—SandA=p+ —+ —.
m - m m m
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Therefore a’-2=1, therefore a”— 1= 0, where v=m*(!—1). But
m*(l-"\)=m*(r—p) + m(#—0o)+t—7, and this is prime to m,
and therefore to m’; and therefore the equations z*~1=0 and
2”—1=0 cannot have a common root different from unity.

153. The preceding Article is of little practical importance,
because the operations which it involves cannot be generally
effected. Suppose that we can solve the equation a™—1=0, and
. 80 find a; then all the quantities 1, a, o, ... a™"}, are roots of
the equation 2" ~1=0; so that we thus obtain m roots. But to
find B8 we have to solve the equation #™—a =0, that is, we have to
find /o where a=%/1; and there is no algebraical method of
effecting this generally.

Thus, for example, when we have solved the equations 2*~1=0
and 2*—~1=0 we can immediately form all the solutions of the
equation '*—1=0 by Art. 150. But we cannot practically solve
the equations 2°~1=0 or 2~ 1=0 by the method of Art. 162;
we can only obtain three roots of the former equation and five
roots of the latter equation.

1564. We will now indicate the methods by which we can
practically solve the equations #*—1=0 and ¢" + 1=0, when n is
not too great.

‘We may observe however that if » be any power of 2 these
equations may be solved by the process given in Algebra for
extracting the square root of a binomial surd, repeated as often as
is necessary ; see Art. 28. If n=pm, where p= 2", assume 2=y,
thus the equations 2*—1=0 and «"+1=0 become respectively
y"=1=0and y™+1=0. Then if y can be found we can deduce
by the process of extracting the square root repeated  times,

155. In the equation 2*—1=0 suppose that = is an odd
number, and let z=2m + 1. The equation 2" *'~1 =0 has only.one
real root, namely + 1; for it has no negative root, and if 2 be made
equal to any other quantity than unity &™*' will not be equal to
unity; thus the equation has only one real root, Divide &™*'~1

~
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by «—1; thus we reduce the equation to be solved to the fol-
lowing, -
e+ ™.+ 2+ 1=0.
This is a reciprocal equation, and its solution can be made to
depend upon the solution of an equation of the degree m.

156. In the equation 2"—1=0 suppose that » is an even
number, and let »=2m. The only real roots of the equation are
+1 and —1; and we may divide #™—1 by the product of z—1
and z+ 1, that is, by 2'—1. Thus we reduce the equation to be
solved to the following,

™ ™t L+ +1=0.

This is a reciprocal equation, and its solution can be made to
depend upon the solution of an equation of the degree m — 1.

The equation ™ —1=0 may also be conveniently treated by
writing it thus, (@™~1)(2™+ 1)=0, and so resolving it into the
equations #™—1=0 and 2™ +1=0. Or we may adopt the method
given in Art. 154.

157. In the equation 2”+1=0, suppose that » is an odd
number, and let n=2m+1. The equation «™*'+1=0 has
only one real root, namely —1; and we may divide z™* +1
by x+1, and thus reduce the equation to be solved to the
following,

- g™ - L+~ 2+ 1=0;
this is a reciprocal equation, and its solution can be made to
depend upon the solution of an equation of the degree m.

If » is an odd number in the equation z*+1=0, and we
change « into —x, we obtain «*—1=0; so we may if we please
solve the latter equation, and then change the signs of the roots,
and thus obtain the solution of the former equation.

158, In the equation «*+1=0, suppose that » is an even
number ; then the equation has no real root. The equation is
a reciprocal equation, and its solution may be made to depend
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upon the solution of an equation of half the degree. "Or the
equation may be treated by the method given in Art, 154,

159. Thus in the four preceding Articles we have shewn how
the solution of the proposed equations can be made to depend
upon the solution of other equations which are not of higher
degrees than half the degrees of the proposed equations. In
each case we remove the factors which correspond to the real
roots and then put z+ é=z, and obtain an equation in 2z Now
it may be observed that this equation in z will have all its roots

real. For suppose that a+8,/—1 denotes one of the imaginary
values of ; then the corresponding value of 2 is

NN S . J_ , that is, a + B/ =1+ ‘N—

and this is a real quantity, namely, 2a, provided that a*+8*=1.
‘We shall shew that a*+ % is =1,

Since a+ B8,/=1 is a root of the proposed equation 2" +1=0,
by Art. 41, a—8,/—1 is also a root. Thus

(@+BJ=1Iy==1, and (a—B/=1)==1;

hence by multiplication (a*+ B°)*=1; therefore o'+ f*==1, and
since a® + 8 is necessarily positive it must be equal to + 1. ’

160. 'We will now consider some examples of the equations

2*+1=0 and 2" -1=0.
(1) 2°~1=0; this gives (x—1)(x"+2+1)=0.

Hence the roots are 1 a.nd_—ltg— V=3 ; these values are then

the three cube roots of +1, By changing their signs we shall
obtain the three cube roots of —1, or in other words the roots
of the equation &’+1 =0,
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(3) #+1=0. Putz+i=z; weget#-2=0,

Thus z=-l=,,/2.
Therefore 2*+1=(2'+2,/2 + 1) (@ =22+ 1);

and the solution can be completed by finding the roots of two
quadratic equations,

(8) «’-1=0. This gives (x—1)(x*+2"+a"+x+1)=0.

Hence we have to solve at:'+l +w+‘%+1=0, that is

o
#'+8—-1=0. Thus z=_1;"/5.
Therefore :
#?-1=(e-1) (et 204 1) (242t 58 41);

and the solution can be completed by finding the roots of two
quadratic equations. The roots with their signs changed will
be roots of the equation *+1=0.

161. If we attempt to solve the equation &’—1=0, we ob-
tain an equation of the third degree in z; and if we attempt to
solve the equation 2’—1=0 we obtain an equation of the fourth
degree in z. 'We shall in the next two Chapters shew how to
solve equations of the third and fourth degrees; it will however
be found that the methods of solution are of little practical value
when the equations to be solved have all their roots real, which
is the case we have here to consider, by Art. 159.

162. In an equation of the form ™ +pz* +¢=0, we can
by the solution of a quadratic equation find the values of 2%
and then the method of the present Chapter may be applied to'
find the values of z.

‘We will close this Chapter by a proposition respecting the
number of values of the product of two surd quantities.

T. E. -
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163. Suppose 4 and B any two algebmea.l quantities, and
m and n any positive integers. Then3/4 has m different values,
and /B has n different values by Art. 142, Hence the product
of 3/4 and /B cannot have more than mn different values;
and we shall shew that it cannot have 80 many values unless
m and.n are prime to each other. This we shall shew by
proving the following proposition ; the number of different values
of the product of %A andJBwequaltothckastconwnm
multiple of m and n.

Let a be one value of %/4; then all the values of 3/4 are
included in a%/1. Let b be one of the values of J/B; then all
the values of /B are included in 1. Hence all the values
of the product are included in ab x %/1 x %/1; and therefore the
number of the different values of the product is the same as the
number of the different values of %/1x /1. Let » be the least
common multiple of m and n; then (3/1x3/1)’=1. Thus
Y1 x Y1 is equal to an +* root of umity, and therefore cannot
have more than r different values,

‘We have however still to shew that %/1 x /1 really has r
different values. Let p be the greatest common measure of m
and 7, and let m=pp, and n=pv. Let a denote a value of 4/1,
and B a value of {/1; then 3/1 x 3/1 may be written thus Z/a x Z/8,
or 2/aB. Now af has px v values, and as each p* root of af
has p values we have in all puv values, that is » values. And
these values are all different. ¥or let o’ denote another of the
values, and 8’ another of the v values, and suppose if possible

that W= J/aB; raise both sides to the p* power, then o’8’=ap;
therefore — =§. The left-hand member is a root of the equation
2 —1=0, and the right-hand member is a root of the equation
2”—1=0; and these equations can have no common root except
unity by Art. 147. Thus there are uv different values of af, and
r different values of 3/1 x /1.

164. The essential part of the preceding Article is sometimes

treated thus, We have J/1x /1 =1 ,andxf"'*”be reduced




CUBIC EQUATIONS, 99
to its lowest terms, the numerator will be an integer and the

min 1
denominator will be r; thus 1™ =1 which hag r different
values., This method however is unsatisfactory, because the
ordinary theory of surds in Algebra is only proved there for the
arithmetical values of the surds, and thus does not furnish the

1 1 min -
relation 1*x1*=1>, in the sense in which this relation is here
red - .

+ XII CUBIC. EQUATIONS.

165. It is unnecessary to say anythirig on the solution of
quadratic equations because that subject is fully considered in
treatises on Algebra. We propose in the present Chapter to give
the solution of equations of the third degree which are also called
cubic equations, '

It appears from Art. 56, that any proposed equation can
always be transformed into another equation without the second
term, .As the roots of a cubic equation without the second term
are more simple expressions than the roots of a complete cubic
equation, we shall suppose that the cubic equation which we have
to solve is without the second term. The process which we shall
now give is usually called Cardan’s solution of a cubic equation.

: 166.' To solve the equation x° + qx +r=0,

Assume =y +2, 80 that y and z are two quantities which
are at present unknown. Substitute for  in the given equation;
thus

(y+2°+q(y+2)+r=0,

that is, ¥ +2°+ (3yz+q)(y+2) +r=0.

Now we have made only one assumption with respect to the
two quantities y and 2, namely that their sum is the value of
a root of the proposed equation, We are therefore at liberty

T—%
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to mo.ke.a.nother assumption; suppose then that 3yz+4¢=0.
Thus we have -
T YP+2+r=0

Substitute for 2 in terms of y; thus
8
v+(-55) +r-0

that is yery-L=0.
Hence y‘-—— \/4 27
ad  Aeorepeoge \/4 27

Also 2=y +2; it will lead to the same result in the value
of  whether we adopt the upper sign or lower sign in the
values of 3* and 2°; for distinctness suppose the upper sign taken.
Therefore

””={“%‘\/(i 2q'7 J4 27

Thus the expression for « is the sum of two cube roots, and
a8 every quantity has three cube roots, we must examine whieh
cube roots are to be used in the present case. Let

a=—(—1+J 3),
then by Art. 160, the threecuberootsofla.rel,a,a.nda
Let m denote one of the cube roots of —-—+ \/(4 27) then
the other cube roots are ma and mad®; let n denote one of-the

8
cube roots of —g - J (§+§qf) ; then the other cube roots

are na and na®. If we could ascribe to each of the cube roots
which occur in the expression for # any one of its three values,
we should obtain on the whole nine values of . But a cubic
equation can only have three roots, so that we are led to con-
clude that only three values will be admissible for = .And
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in fact the process of solution requires that yz_-g , and it is

this condition which determines the admissible values of the cube
roots. Suppose that m and n are so taken as to satisfy the

condition mn=—2; thus we can have y=m and 2=n as ad-

3 ’
missible values. Then we can also have y =am and z=a"s;
and we can also have y=a'm and z=an; for in these two cascs

we have the relation yzz—% satisfied. No other pair of values

however is admissible; for insfance, if we suppose y=m and
2z =an, we get yz= _9_34 and not ——, and any other pair of values

except those which we have admitted will make yz-—a—g

a'g . q
or =_‘§‘th Of—s.

167. For example, suppose #*+62—20=0. Here ¢=6 and

r=-20; thus
z=(10+,/108)} + (10 - J108)i.
By numerical work it may be ascertained that
(10 +,/108)¥=2-732 ..., and (10 - /T08)4=—732...,
80 that we may presume that z=2 is a root, and this will be found
the case on trial. Instead of expressing the other two roots by the
method of the preceding Article it will be preferable to depress the
equation to a quadratic. Since 2 is a root of the proposed equa-
tion we kmow that o® + 62— 20 is divisible by =~ 2, and we find
that :
o +6x— 20=(x - 2)(x*+ 2z +10);
therefore the other two roots of the proposed equation may be
found by solving the equation
2+ 2+10=0;

thus these roots are

—1%,/-9 thatls .1=3,/-1.
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In the preceding example we may verify by #rial that
(10+,/108) =1+ /3 and (10-,/108)}=1- /3,

and so find the root 2 without any numerical extraction of
roots. There is however no algebraical process by which we can
universally obtain the cube root of an expression of the form
a+,/b in a finite form ; see Algebra, Art. 310, We may apply
the binomial theorem to find the value of (@ + ,/5)} in an infinite
series ; in this case in order to obtain a convergent series, we
must expand in ascending powers of &/b or of a, according as 1/
is less or greater than a; see Algebra, Chapters xxxvI, and xL.

168. We have seen im Axt. 166, that although apparently
nine values are furnished for « only three are really admissible.
‘We may see a reason for the occurrence of the nine values. For

the relation yz= —% was assumed, but this was transformed into

3
y'z'=—2q—7 in the process; and the latter relation would not be

changed if ¢ were changed into ga or into ga®. Thus, in solving
the equation a®+ gz +r=0, we really found nine solutions, three
belonging to this equation, three to the equation &*+ qax+ r=0,
and three to the equation a®+ga®z+7=0.

169. Let ys now consider more particularly the form of the
roots of the proposed cubic equation. 'We will assume that ¢ and
7 denote real quantities, The expressions for y* and 2* may be
either real or imaginary.

First suppose that these expressions are real. We may then
suppose that m and n denote respectively the arithmetical values of
the cube roots of y* and z°. The proposed cubic equation has in‘
this case one root which is certainly real, namely m + n; the other
two roots are ma + na® and ma*+na. By substituting for a ite
value these roots become respectively
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—El)(m+n)+%(m—n)J:_3,

and (m+n)— (m—n)J_ﬁ

and these roots are imaginary unless m =n. When m=n the
cubic equation 'has two equal roots each being equal to —m
or —n, The condition wh.ich is necessary and sufficient to ensure

s
m=mn, that is, y*= z'lstlm.t;4 T =0,

Conversely, if the roots of the cubic equation are all real and
unequal the expressions for y* and 2’ must be imaginary.

Next suppose that the expressions for y* and 2° are 1magu1ary 3

£,
27

from Art. 142 that y* a.nd 2’ will each have cube roots of a cer-

tain form. We may therefore suppose that m=p+v,/—1, and
as 2* only differs from y* in the sign of the radical, we can take

n=p-v/=1." In this case the roots of the proposed cubic
equation are all real, namely,

p+v=1+p—v /=1, that is 2y,
+vd=1)a+(—-v=1)a", that is — u—v,/3,
and w+v-1)a*+ (u—v=1)a, that is = +v /3.

that is, suppose that ’: + o= is & negative quantity. We know

170. It will now be seen that Cardan’s solution of & cubic
equation is of little practical use when the roots of the proposed
eqpation are real and unequal. For in this case the expressions
for y* and 2 are imaginary; and although we know that cube roots
of these expressions exist, there is no arithmetical method of obtain-
ing them, and no algebraical method of obtaining them exactly.
‘We have the roots in this case exhibited in a form which is alge-
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braically correct, but arithmetically of little value. For example,

take the equation
o’ —152-4=0.

Here r=~4 and ¢=~15. Hence we obtain
z=(2+J-121)}+ (2- /- T2D)3;
that is, z=(2+11,J=1)}+(2-11/70)k
Now here we have no obvious mode of extracting the cube
roots. It may be verified by trial that

@+11,/-T)=2+/=],
dnd (2-11/=Tj=2-/-1.
Thus - z=2+,/-1+2-J=1=4
. Hence 4 isa root, The other roots can then be found by the
méthod of Art. 169; or we may proceed thus,
o= 16e— 4 = (x - 4)(z* + 42+ 1).
We have therefore to solve the equation 2*+ 4z +1=0; the
roots are — 2 +,/3,
Again, consider the equation #* - 3.Y2x~2=0, -
Here r=-2 and ¢=-3Y2. Thus
w=(1+,/-1}+ (1-J/=T)h
It may be verified by trial that

(1+J/=1)k= “43J21+"/23721J_f

(1-yTIy J;’J; Sl leJ“_l'

Thus
,./3+1 J3-1 J3+1 J3-1 _a8+1
sz tem N My T YT
The other roots may then be found; they are

1-3 2
7 BT
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171. The case in which the three roots of a cubic equation
are real and unequal is sometimes called the #rreducible case, and
sometimes it is said that Cardan’s solution fails in this case; these
expressions are used to indicate the fact that the roots are in this
case presented to us in a form which is very inconvenient for
arithmetical purposes.

'We may however use the binomial theorem in order to ap-
proximate to the cttbe root of an expression of the form p +qa/- 1.
For if ¢ be numerically less than p we can expand (p + q.,/:_l)i in
a converging series proceeding according to ascending powers of
g/~ 1; see Algebra, Chapter xxxvi. We can thus obtain approxi-
mately (p+¢./—1)} in the form P+ @Q,/~1; and then (p-g,/=1)}
will have an approximate value P—Q./—1; and the sum of the
two cube roots will be 2P. But if ¢ be numerically greater than
p we may proceed thus;

p+ef-1=J=1(@g-pJ-1);
hence (p+gJ-1}= (W Dhg-pJ-T0
Now —./—1 is a cube root of ,/—1 as we find by trial, so that

wohave  (p+gJ/-1)=-J=T(g-pJ-1)L

And we can expand (g—p,/~1)} in a converging series pro-
ceeding according to ascending powers of p,/—1; and thus we
. may find as before the sum of the cube roots of p+g¢,/—1 and
p-g9J/-1

The case in which p=g¢ is reslly involved in the second
example of the preceding Article.

It may be observed that by means of De Moivre's theorem,

we can express the cube root of any quantity p+ gJ/~1in a form
involving Trigonometrical functions.

172. Tt appears from the preceding Articles that the cubic
equation 2+ gz +r =0 may always be solved by Cardan’s process
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without any difficulty when ¢ i8 a positivé quantity, and also

when ¢ is & negative quantity provided ¢* is numerically less than

21", and in these cases two of the roots are imaginary. If ¢* is

a negative quantity and numerically greater than —— 27" » Cardan’s

solution is inconvenient, and in this case all the roots are real,

- 27y

If ¢* be negative and numerically equal to —— <% that

f + 1'- =0, the proposed cubic equation has two of its roots equa.l

4

]
by Art. 60. We have by Art. 166 in this case m=n= —-2-;
andthethreefootsa.re2m,—m, and —m, :

In every case where one root of a cubic equation has been
found we can, if we please, depress the equation to ‘a quadratic,
and so find the other two roots, instead of finding the other two
roots hy the process of the preceding Articles,

173.. . We will briefly indicate the results which are obtained
in the solution of a complete cubic equation. Let the equation be

ax® + 3ba® + 3ex+d=0;

assume z=z—g, then we obtain

2+gz+7r=0,
h _go W d S o
waere 1=~ "TTaTFTF"
Hence by Cardan’s method

e=(-5+ /7 ” 9’*( Q/ga,g;)*.

The condition which must hold if there are equal roots is  *

.2 o
;—+-2—7--—0, s
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that is
(28° - 3abe + a'd)* + 4 (ac - b = 0.

It will be found by common Algebraical work that this can be
put in the form
(ad - be)* — 4(b* — ac)(c"— bd) = 0.

174. ‘Some cubic equations in which the coefficients have
. special values may be solved without using Carda.ns method.
For example, suppose

o+ 3x=a’-a"
This may be written '

a:'+3a:.=(a—-1->.+3( _Y
R S

and now we see that one root is given by m=a—é.

Again, suppose we have the complete cubic equation
' Prat +br+c=0,
and that the relation 3ac=5" holds among the coefficients. The

proposed equation may be written
A - =ax’ +bx +c,
therefore - 3aba’ = 3ba’e" + 3b%ax + °,
therefore (a®~3ab)a®=a’s" + 3ba’c+ 3b%ax + b°= (ax + b)°,
therefore z)a’=3ab=ax +b,
therefore x= %ﬁ .

175. A process is given in the Z'rigonometry, Chapter xvir,
by which we may obtain the roots of a cubic equation in the
srreducible case, by the aid of the Trigonometrical Tebles. This
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is a matter of very little practical value, but we will shew how
the Trigonometrical Tables may also be used for examples which
do not belong to the irreducible case.

Suppose &+ gz + r=0; then

f’q
V427 427

If qispositive, usume%:ftan’o then we get
= :+—sec0)+ I rseeO)i
o= (-5+500) + (-5-3

(- )

If q is negative, and 4¢* numenea.lly less than 27+%, assume
g—. i in'@;. then we get

m=(—% +'§.cos0)*+ (—-%—gcow)i

= {(oos—g)’ + (sing)*} X

176. An important cubic equation occurs in many mathe-
matical investigations, and it may be noticed here although not
connected with the special subject of this Chapter.

We propose to shew that the roots of the equation f(z)=0
are all real, where f(x) denotes ‘

(z—a)(z—b)(z—c) —a’" (- a) —b"(z - b)— *(x—c) — 2a'b'c".
The equation may be written thus,

(x—a){(x—b)(w—c)—a’} {b"(a: B+ (@ - c)+2a. =0.
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" Let A and % denote the roots of the quadratic equation
(z—-d)(x—¢)—a”=0,
and suppose % not less than k. Then by solving the quadratic
equation it will be seen that A is greater than & or ¢, and that
k is less than b or ¢. Substitute sucoessively + w0, &, &, — o for
% in f(x); the results will be respectively
] ]
s, = {BJB-0)+¢JE-0) , {FI@-B-dVe-B) , -a.
*  Thus the equation f(x)=0 has three real roots, one greater
than A, one between 4 and %, and one less than %.

/

177. There are two cases which réquire further examination
a8 they are not provided for by this demonstration, (1) that in
which A=k (2) that in which 4 or % is a root of the cubic
equation,

(1) Suppose A=k Since the roots of the quadratic equa-
tion are equal we shall obtain the condition (b—c)*+ 4a™=0;
therefore b=c and a'=0. Hence it will be found that ¢ is a root
of the cubic equation; and on dividing f(z) by «— ¢ and equating
the quotient to zero we obtain a quadratic equation which has
real roots.

(2) Suppose that % or % is a root of the cubic equation; for
example, suppose that & is, Then the process of Art. 176 shews
that the cubic equation has also a real root less than %; thus
it has two real roots, and the third root must therefore also be
real. Similarly if £ be a root of the cubic equation, it has a real
root greater than 4; and thus the third root must also be real.

178. 'We may investigate the condition which must hold in
order that A or £ may be a root of the cubic equation. Suppose
that A is a root of the quadratic equation and also of the cubic
equation,

Since A is a root of the quadratic equation, we have
A=d)A=c)=a"=0.00eeerinrnnns 1);
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and since A is also supposed to be a root of the cubic. equation,
we obtain . -
b*(A—b) +¢*(A—c) +2a'bc' =0......(2).
From (1) and (2) we deduce

LB A=bB) +c*(A=c) + 26 /A=) (A =c) =0,

. ]
that is, {b’,/(x—b) + c',J()\—c)} -0;
"therefore (A=) =c"(A=0)uuurrrrrrnnns (3).
From (2) and (3) we obtain o
a’d ~ a'l
A—b=—7, A—0=—T ............ (4);
and therefore AR ®).

Hence the relation (5) must hold among the coefficients of
the cubic equation in order that one of the roots of the quadratic
equation may also be a root of the cubic equation.

Conversely, if (5) holds we may give to A the single value
determined by (4), and then both (1) and (2) will be satisfied; and
thus the quadratic equation and the cubic equation will have a
common root. ,

In obtaining (4) and (5) we assume that neither &' nor ¢
vanishes, .

Suppose that %’ vanishes; then from (3) either ¢’ vanishes or
A=c. If A=c then from (1) it follows that a’ must vanish.

179. Let us now investigate the conditions in order that
the cubic equation may have equal roots.

If neither 4 nor & is a root of the cubic equation, the demon-
stration in Art. 176 shews that the roots of the cubic equation
are unequal. But the process of Art. 176 may be conducted so
as to use either of the quadratic equations

(x—c)(z—a)-b"=0, or (z—a)(x—-b)—c"=0,
instead of the quadratic equation
(z-b)(x—c)—a" =0,
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Hence the cubic equation cannot have equal roots unless it

has a root in common with any one of these quadratic equations,

. Hence from equation (5) we obtain the following as necessary
conditions for the existence of equal roots of the cubic equation,

{4 da’ a't’
G——F=0=—37=C—=—7F
a b ¢ ‘
Conversely, if these conditions hold the cubic equation has
equal roots, For denote these equal quantities by r, so that
b b= da’ ;cib_’. C
=7+ ) —'""'To c=r rE
substitute for a, b, ¢ in the cubic equation, and it becomes
bl cI . cl al a'bl
(z=1)'—(x-7)* U +7)=0;
80 that the root 7 occurs twice, and the other root is
' Ve ca  a'¥
r+—+5 +—.
‘ a b c
This assumes that o', &', and ¢’ are all different from zero.
Suppose now that one of these quantities va:njshes, say a'.
Then from the quadratic equation
(x-b)(x—c)—a"=0
it follows that  must be equal to ¢ or b. Suppose x=c; then
from the other quadratic equations we see that
¥=0 and (¢—a)(c—b)—c*=0.

If o/, ¥ and ¢’ all vanish then in order that there may be equal
roots, two of the three a, b, ¢ must be equal ; if they are all equal
the cubic equation reduces to (x—a)*=0,
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+ XIIL . BIQUADRATIC EQUATIONS.

180. We shall now proceed to explain some methods for the
solution of equations of the fourth degree, which are also called
biquadratic equations. 'We suppose the biquadratic equation
which is to be solved to be deprived of its second term, for a
reason already given; see Art. 165, The first solution which
we shall give is ealled Descartes’s Solution,

181, To solve the equation
' o +grt +re+8=0,

Assume &+ grltf+re+e=(2"+ e +Sf)(—ex+9g);

we have then to shew that the quantities ¢, /, and g can be found.
Multiply together the factors on the right-hand side, and equate
the coefficients of the several powers of  to those on the left-hand
side; thus : '

g+f-e'=gq, elg-f)=7r gf=s;
that is, g+f=q+c’, g"'f=£) af"‘—‘"

Find g and f in terms of ¢ from the first two of these equa-
tions, and substitute in the third; thus

<q+e’+§> (q+e’—-§)=4s.

From this equation by reduction we obtain
e+ 2ge* + (¢ — 48)e’ — " = 0,

This may be considered as a cubic equation for finding ', and
it will certainly have one real positive root by Art. 20. When
¢' is known we can find ¢, and then g and f become known. Thus
the expression a*+g2*+rz+8 is resolved into the product of
two real quadratic factors, and we can obtain the four roots of
the proposed biquadratic equation by solving the two quadratic
equations

C+ex+f=0, a'—ex+g=0.
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182. It will be observed that in ome of the two assumed
quadratic factors we introduced the term ex, and in the other
quadratic factor the term —ex; and the reason for this is that
there is no term involving g* in the expression which we wish
to resolve into quadratic factors. Now e is equal to the sum of
the two roots of the second quadratic equation given at the end
of the preceding Article, so that ¢ is equal to the sum of two of
the roots of the proposed biquadratic equation. Out of the
Jour roots of a biquadratic equation fwo roots can be selected

in % ways, that is, in 6 ways; and thus we see the reason why

the equation in e should be of the sixth degree. But as the sum
of the four roots of the biquadratic equation is zero by Art, 45,
the sum of any two roots is equal in magnitude and opposite in
sign to the sum of the remaining two roots; and thus we see
the reason why the equation in e only involves even powers of e,
so that the values of €' can be found by the solution of a cubic
equation.

‘We may observe that when we have found ¢* we can give
either sign to the value of ¢, which we obtain by extracting the
square root ; for by changing the sign of ¢ we merely interchange
the values of f and g, and this has no influence on the results
which are obtained by solving the biquadratic equation.

183. Suppose, for example, that x*—10x*—20x—16=0.
Here ¢=-10, r=-20, 8=-16. The cubic equation in e*
becomes ¢ —20¢*+ 164¢* —400=0, and a root of this is ¢'=4;
see Art. 119, Thus ¢=2; then f=2, and g=—8; therefore

«*'— 102"~ 202 — 16 = («° + 2z + 2) (2" — 22 - 8).
The four roots of the proposed biquadratic equation will be found
to be 4, -2, —1+,/-1, and ~1-,/~1.

184, Thus it appears that the solution of a biquadratic equa-
tion can be effected if we can obtain one root of a certain auxiliary
cubic equation. It becomes therefore a point of importance to
ascertain when this cubic equation falls under the dirreducible

T. E. K
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case; see Art. 171. This gives occasion for the following pro-
position. The auxiliary cubic equation will not fall under the
irreducible case when the lnquadmm equation has two real roots
and two imaginary roots.

For suppose the imaginary roots of the biquadratic equation
to be denoted by a+8./—1 and a—B,/~1; then since the sum
of the four roots is zero, the two real roots will be of the forms
~a+y and —a—v. By taking the sum of every pair of these
roots we obtain the expressions « 2a, =(y+8,/~1), and +(y—B,/-1).
Thus the three values of ¢ will be (2a), (y+B./-1),, and

(y=BJ-1)%; if y is not zero two of these values of ¢' are
imaginary, and if y i8 zero the values of ¢* are all real, but two
of them are equal; thus the cubic equation in ¢° will not fall
under the irreducible case.

185. 1If the roots of the biquadratic equation are all real the
roots of the auxiliary cubic equation will be all real. If the roots
of the biquadratic equation are all imaginary they will be of the
forms a+B8,/-1 and —asy,/~1. By taking the sum of every
pair of these roots we obtain the expressions & 2a, %= (8 +y)J/=1,
and =(8—v)./—1; thus the values of ¢' are 4a%, — (8 +7)’, and
~(B8-9)", and so are all real.

Hence if the biquadratic equation has its roots all real or all
imaginary, the auxiliary cubic equation will in general fall under
the irreducible case; we say in general, because it may happen that
the cubic equation has two of its roots equal, and then it does not
fall under the irreducible case.

186. We have in the two preceding Articles shewn what will
be the forms of the roots of the anxiliary cubic equation cor-
responding to the various forms of the roots of the proposed
biquadratic equation, 'We will now state conversely what will be
the forms of the roots of the proposed biquadratic equation cor-
responding to the various forms of the roots of the auxiliary
cubic equation. Since the last term of the cubic equation is
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negative, there must be one positive root ; and as the product of
the roots is positive, by Art. 45, the only cases which can occur
are, (1) all the roots positive, (2) one positive root and two nega-
tive roots, (3) one positive root and two imaginary roots, The
following results follow from Arts. 184 and 185.

(1) 1If the cubic equation has all its roots positive, the roots
of the biquadratic equation are all real.

(2) If the cubic equation has one positive root and two
negative roots, the biquadratic equation has two real roots and
two imaginary roots, or else four imaginary roots,

(3) If the cubic equation has one positive root and two ima-
ginary roots, the biquadratic equation has two real roots and two
imagi roots,

Z 187. The four roots of the biquadratic equation can be ex-
pressed very simply in terms of the three roots of the auxiliary
cubic equation. Let o', 8 y* denote the three values of &' ob-
tained from the cubic equation

e+ 2g¢* + (¢"— 48) '~ "= 0,
Then by Art. 45 we have r*=da'8%" and —2¢=a'+ 8" +".
Thus we may put r=afy, and take a as a value of ¢; therefore

- 1 r
— p® —_ $__
o'+ ex+f=a +ax+2(q+a a)

= ot az 4 (2" =y~ 2y).
By solving the equation &* + ex + /=0 we shall therefore obtain
z=3(-a-B-7), or a=}(ca+Biy)
Similarly, by putting «* —ex + g = 0 we shall obtain
z=g(a-B+y), or w=j(a+B-7)
Thus the four roots of the biquadratic equation are
JCa-B-y) 3atBry) 3a-B+1) Fla+B-r
8—2
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In order that the biquadratic equation may have equal roots
the auxiliary cubic equation must have equal roots. - For suppose,
for example, that

§<—a—ﬁ-7>=§<—a+/3+y>, |
then . B4y=0,
therefore ‘ B=7;
and a similar result will follow in any other case.

Hence we can express the condition which must hold in order
that the proposed biquadratic equation may have equal roots; for
by Art. 173 the condition in order that the auxiliary cubic equa-
tion may have equal roots is

271° ~ T2¢s + 2¢°)* = 4 (¢* + 125)".
q

It will be seen, by Art. 79, that the conditions which must
hold in order that the proposed biquadratic equation may have
three equal roots may be expressed thus:

27r°—T72gs +2¢°=0, and ¢*+12s=0,

It will be useful to note the forms of these conditions for a
complete biquadratic equation.

Let the equation be
ax + 4bx® + 6ca’ + 4dx + ¢ =0;

assume m=z—%, then we obtain

2+gf+rz+8=0,

6c 65

where g=— =g
4d  12bc  8b°
T @ T@?
¢ 4bd  6b%c 3b*
“aT @t e T
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Hence we shgll find that
¢ +12= 22 (ao—4bd+ 36,
16 x 27

a8

and 277" -72¢s+2¢= (ad® + eb® + ¢* — ace — 2bcd).

Thus the condition for equal roots i
(ae — 4bd + 3¢*)* = 27 (ad’ + €b® + ¢® — ace — 2bcd)’;
and the conditions for three equal roots are
ae—4bd + 3¢ =0,
and ad’ + b’ + ¢ — ace — 2bed =0,

188. Another mode of solving a biqua/drat;lc equation has
been given under slightly different forms by various mathema-
ticians; and thus it is sometimes called Ferrari’s method, some-
times Waring's method, and sometimes Simpson’s method, We
will now explain it.

Let the biquadratic equation be

w‘+pm’4— g’ +rz+8=0;
add to both sides ax® + bx + ¢, and then let a, b, ¢ be so determined
as to render each side a perfect square.” We have then
e +pt+(g+a) o+ (r+d)x+e+c=ax’+br+e.

The right-hand member will be a peifect square if = 4ac. Sup-
pose the left-hand member to be equal to

2
(x’+%+m> ;

by comparing the coefficients we obtain
¢

2m+%—=q+a, pm=r+b m'=s+ec

These three relations express a, b, ¢ in terms of m; substituting
the values of @, b, and ¢ in the equation b*=4ac we obtain

(pm—r)’=4(2m'+%-.—q> (m® - 8).
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From this cubic equation m must be found, and then a, b,
and ¢. And since we now have

2
(x’+£‘?+m)'=ax’+bm+c=a¢’+bw+i,
2 4a

2ax+b
2da

Thus we have two quadratic equations to solve, namely,

we obtain x'+%+m=s=

2ax+b
PN

2ax +b

2Wa

189, It may be shewn that the auxiliary cubic equation
which this method requires us to solve will in general fall under
the irreducible case, unless the proposed biquadratic equation has
two real roots and two imaginary roots. For let a, 8, 7, 3, denote
‘the four roots of the proposed biquadratic equation; then from
considering the two quadratic equations obtained in Art. 188, it

follows that m + ff/_a must be equal to the product of two of the
four quantities a, 8, ¥, 8, and m— 2—:’/5 must be equal to the pro-

duct of the remaining two, Suppose then

& +Flema =0, and &+ 24 m - 0.

b b
m+m=aﬁ, and m—m=‘78;
thus m=1 (a8 +70)

Hence we infer by symmetry that the other two values of m

will be 7 (ay+ 85) and 3 (a3 + By).

It is obvious that if a, B, v, §, are all real, these three values of
m are all real; and it may be shewn that such will be the case
if a, B, y, 8, are all imaginary. If however two of the four
quantities are real and two imaginary, it will be found that two
of the values of m are imaginary and one real, or else they are
all real and two of them equal,



BIQUADRATIC EQUATIONS, 119

190. We will now give Euler's method of solving a biquad-
ratic equation. Suppose the equation to be

o +qglt+re+e=0,
Assume z=y +2z+ u; thus
=y + 2"+ u' + 2(y2 + 2u + uy),
that is, & -yt -2 —u'=2(yz +2u + uy).
Square both sides; thus

' — 2% (y* + 2"+ u) + (¥ + 27+ u°) = 4 (yz + 2u + uy)’
=4 (y"%2" + 2" + u"’) + Byzu (y + 2+ u).

Put  for y + 2+ u, and transpose; thus
a'— 22° (' + 2+ w') — Bayzu + (i +2° + u’)® — 4 (2" + 2%t + u'y") = 0.
In order that this equation may coincide with the proposed
biquadratic equation, we must have
g=-2('+7+u'), r=-8ywm,
8= (¥ +2"+u')" - 4(y%" + 2"’ + u'Y).

Thus y'+z'+u’=-—%,
) 1 —4s
yz’+z’q’+u’y’=z<q{—a)=q:ﬁ—,
o
¥ =i

Therefore it follows from Art. 45, that 4, 2*, and «* are the
values of ¢ furnished by the following cubic equation,

%t’ + ?'l‘—g’ t— ;_; =0,
Let the roots of this equation be denoted by ¢, ¢, and £,; then
y=a,ft, z=== [t u===,/t,
If we substitute these values in the expression for x, namely,
Y +2+u, we obtain eight different results on account of the am-

4+
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biguities in sign. But these results are not all admissible; for we
must have yzu=— —, so that the sign of the product of y, 2, and

8
4, must be the eontrary to the sign of »,

If we suppose r positive, we have the followmg admissible
values of z,

— =Nty =N NG NG =GN, NG =)

If we suppose 7 negative, we have the following admmslble
values of x,

~/t|+ ~/tn+~/ta’ N/t\_Jta- N/ta’ - N/tx'*' N/tn" N/ts! —~/t|_~/tn+'\/ts'
191. The reason why eight values of z present themselvés in

the preceding Article is because the relation yzu:—g- was

squared and used in the process in the form y%"u’= 6 $ for since

the relation in the latter form is not changed by changing the
sign of 7, the process really determines the roots of the biquadratic
equation z*+ qx’—7rz+8=0, as well as the roots of the blqua.d-
ratic equation '+ gx* +rx +8=0. :

The auxiliary cubic equation of Art. 181 will be found to
coincide with that of Art. 190 by supposing ¢'=4¢; thus the re-
marks made in Arts. 184...186, respecting the connexion between
the roots of the auxiliary cubic equation and the biquadratic
equation, and the circumstances under which the cubic equation
falls under the irreducible case, apply to Euler'’s method of solu-
tion as well as to Descartes’s,

192. 1t may happen that special forms of biquadratic equa-
tions admit of simpler solution than the general equation. The
following is an example. The biquadratic equation

'+ p2t+ g+ re+8=0

can be solved as a quadratic equation if p°— 4pg+ 8r=0. For
the equation a'+ pa’ + g2® + & + 8=0 may be written
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) N
z’(m+%) + (q—% x(a:'-l--r-p?)+s=0;
q-* .
4

and this may be solved asa quadratic equation, if —r;; =-}22 , that
| B
is, if p*—4pg +8r=0.

Some valuable remarks on Biquadratic Equations by Professor
R. 8. Ball will be found in the Quarterly Journal of Mathematics,
Vol. vi1. 1866.

XIV. STURM'S THEOREM.

193. In the preceding Chapters of the present work we have A
demonstrated various theorems respecting the roots of equations,
and have given the algebraical solution of equations of the third
and fourth degrees. We are now about to enter upon a different
part of the subject, namely, the methods of finding approximately
the numerical values of the roots of equations; the present
Chapter commences this part of the subject by proving Sturm’s
theorem, the object of which is to determine the situation and the
number of the real roots of any equation, We shall enunciate
and prove the theorem in the next Article; we shall then give
some remarks connected with the theorem, and finally apply it to
some examples,

- 194, Sturm’s Theorem. Let f(x)=0 be an equation cleared
of equal roots, and let f,(x) be the first derived function of f(z);
let the operation of finding the greatest common measure of f(x)
and f, (x) be performed with this modification, that the sign of
every remainder is changed before it is used as a divisor, and let
the operation be continued until the remainder is obtained which is
independent of x, and change the sign of that remainder also.

Let f, (), f,(2),...f.(x), be the series of modified remainders
thus obtained. Let a be any quantity, and 8 another which is
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algebraically greater, then the number of real roots of the equa-
tion f(x)=0 between a and B is the excess of the number of

changes of sign in the series f(x), f, (%), f,(%), .../, (x), when
= a, over the number of changes of sign when z= 8.

‘We shall call the whole series f(z), f, (z), f,(2),...[., (),
Sturm’s functions, and we shall call the series £, (z), £, (%), ... f.. (%),
the auwxiliary functions, so that the auxiliary functions consist of
Sturm’s functions omitting f (x).

Let ¢,, ¢,5--.9,_,, denote the successive quotients which
arigse in performing the operations indicated ; then we have the
following relations,

S@)=9./,(@) -/, ()
/(@) = 9./5(%) -/, (@),
/(@) = 4./, (@) - f=),

f'_,(x) = qll—lfnl-l () -/, ("”)‘

From these relations we can draw three inferences,

(1) The last of the functions f, (x) is not zero; for by supposi-
tion it is independent of x and if it were zero f(x) and f, (x) would
have a common measure, and then the equation f(z)=0 would
have equal roots by Art, 75, and this is contrary to the hypothesis,

(2) Two consecutive auxiliary functions cannot vanish simul-
taneously; for if they could all the succeeding auxiliary functions
would vanish including £, (x); and this is impossible by (1).

(3) When any auxiliary function vanishes the two adjacent
functions have contrary signs. Suppose for example that £, (x) =0;
then from the third of the above system of relations we have
L@ ==£ ()

Now no alteration can be made in the sign of any one of
Sturm’s functions except when x passes through a value which
makes that function vanish; and we shall now prove that when
x passes through a value which makes f(¢) vanish one change
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of sign is lost by Sturm’s functions, and that no change of sign is
lost or gained in consequence of x passing through a value which
makes one of the auxiliary functions vanish.

L Buppose ¢ a root of the equation f(x) =0, so that f(c) =0.

Let 4 be a positive quantity. Now f(c— %) may be expanded
in powers of A by Art. 10, and 4 may be taken so small that the
sign of the whole series shall be the same as the sign of the first
term that does not vanish, by Art. 14; that is, the sign of f(c - k)
will be the same as the sign of — Af,(c) since /(c) =0. The sign of

Ji(c— k) will be the same as the sign of f](c) when A is taken small
enough., Thus if x=c—4 and A is taken small enough, f(x) and
J, (x) have contrary signs.

Similarly, it may be shewn that if z=c+4 and % is taken

small enough, f(x) and f,(x) have the same sign.

Thus as x increases through a root of the equation f(x)=0,
Sturm’s functions lose one change of sign.

II. Let ¢ now denote a value of = which makes one of the
auxiliary functions vanish, for example, f,(z), so that £, (c)=0.
Then f,_,(c) and f,,,(c) have contrary signs, and thus just before
=c and also just after x=c, the three terms f,_ (), f,(2), f.,, ()
will present one permanence of sign and one change of sign; for if
fo_y(x) and £, (ac) have the same sign, f,(z) and f,, () have contrary
signs, and wice verss. Thus Sturm’s functions neither lose nor
gain a change of sign when » passes through a value which makes
one of the auxiliary functions vanish.

No value of = can make two consecutive functions simul-
taneously vanish. If two or more vanish simultaneously which are
not consecutive, then, if f(z) be one of them, it follows by L. that
a change of sign is lost as xincreases through that value, and if f(x)
be not one of them it follows by II. that no change of sign is lost.

Thus we have proved that as  increases, Sturm’s fanetions never
lose a change of sign except when x passes through a root of the
equation f(z)=0, and never gain a change of sign. Hence the
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number of changes of sign lost as x increases from any value a to
a greater value B, is equal to the number of the roots of the equa-
tion f(x)=0 which lie between a and B.

195. We have shewn that no alteration occurs in the number
of the changes of sign in Sturm’s functions in consequence of z
passing through a value which makes one of the auxiliary functions
vanish ; but alterations may take' place, and in general do take
place, with respect to the order in which the signs + and — are
distributed among the series of functions. Suppose, for example,
that @ and b are two roots of the equation f(x) =0 and that a is
less than b; then f(x) and f,(x) have contrary signs just defore
z=a and have the same sign just after x=a. Now just before x=b
the signs of f(x) and f(x) are again contrary. In fact the equa-
tion f,(x) =0 has one root between z=a and z=>5, and so f,(x)
must pass from positive to negative or vice versa between z =a and
2=>b. This transition of f,(x) from positive to negative or wice
versa between @ and b, cannot alter the whole number of changes
of sign in the series of Sturm’s functions, as we have proved, but
it does modify the distribution of the signs + and — among the
series, and thus renders it possible after a change has been lost as
2 increases through a, for another change to be lost as « increases
through b&.

The present Article adds nothing to the proof of Sturm’s
theorem ; but is merely intended to assist a student in the diffi-
.culty which is often felt as to how the changes of sign are lost.

196. In counting the number of changes of sign in the series
of Sturm’s functions, it may happen that the value of x which we
are considering makes one of the auxiliary functions vanish.
Then it is indifferent whether we ascribe the positive sign or
the negative sign to the vanishing function, sinee the signs of
the functions which precede and follow it are necessarily contrary,

197. In order to find the whole number of real roots of an
equation f(z)=0, we may first put —co for z and then + oo forzin
Sturm’s functions; the excess of the number of changes of sign in
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the first case over the number of changes of sign in the second
case is the whole number of real roots. When « is made equal to
+ o or —co the sign of any one of the functions will be the same
as the sign of the highest power of z in that function.

198. Let n denote the degree of f(x); then the number of the
auxiliary functions f,(x), f;(x),...will in general also be n; because
each remainder is generally of one degree lower than the preced-
ing remainder. We will suppose that the number of auxiliary
functions is the same as the degree of f(x), and we will suppose
that the highest power of « in £ (x) has a positive coefficient.

(1) - If the first terms in all the auxiliary functions have posi-
tive coefficients all the roots of the equation f(x)=0 are real. For
all Sturm’s functions will then be positive when 2= + oo, and they
will be alternately positive and negative when z=—c ; thus n
changes of sign are lost as  passes from — o to + .

(2) If the coefficients of the first terms are not all positive,
there will be a pair of imaginary roots for every change of sign in
the series formed of these coefficients, For suppose that in this
series of coefficients there are m changes of sign and 7z —m con-
tinuations of sign. Then when %=+ oo there are m changes of sign
and n —m continuations of sign in Sturm’s functions. Now change
2 from + o t0 — o0 ; then the changes of sign are replaced by con-
tinuations of sign and the continuations of sign by changes of sign,
80 that for £=—co there are n—m changes of sign. The excess of
the number of changes of sign when 2= — o over the number when
@ =+ oo ig therefore n — 2m; thus there are n — 2m real roots of the
equation f(x) =0, and therefore 2m imaginary roots.

Hence in order that an equation may have all its roots real, it
is necessary and sufficient that the coefficients of the first terms in
all the auxiliary functions should be of the same sign.

199. Suppose that among the auxiliary functions we find one,
as f,(x), which cannot change its sign; then we may disregard all
the functions which follow it, and count only the number of changes
of sign in the series f(x), f,(2), f.(x),.../.(x). For in the original
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demonstration of Sturm’s theorem the necessary property of the
last auxiliary function is that it should not wvamish, and as
J.(x) cannot vanish, the demonstration will hold for the series

(@) £,@) fi(@)-- S @)

This remark is of practical importance, because the labour
attending the formation of Sturm’s functions is considerable in
examples of equations of high degrees, and thus it is useful to
have a rule which sometimes relieves us from the necessity of
forming the entire series of functions.

200. Suppose ¢ (x) to be a function which has no factor in
common with f(x), and suppose that ¢ (z) and f,(z) take the
same sign when any root of the equation f(x)=0 is substituted
for # in them. Then we may use ¢(x) instead of f, (x) and deduce
the remaining auxiliary functions from f(x) and ¢(x) instead of
from f(x) and f,(z). For on recurring to the demonstration of
Sturm’s theorem it will be seen that with this new set of functions
the two fundamental properties are still true, namely, that no
change of sign is lost owing to the vanishing of any auxiliary
function, and that a change of sign is lost when f(z) vanishes.

201. We have hitherto supposed that the equation to be
treated by Sturm’s method is cleared of equal roots; we shall now
shew that this limitation is unnecessary, and that the theorem will
always give the number of distinct roots between assigned limits,
no regard being had to the repetition of any roots,

Suppose for example that the root @ occurs p times and the
root b occurs ¢ times in the equation f(x)=0.

Lt f(z)=(e-af (@-b) @@= (w-d)...

then J, (a:).= (x;a)"' (z-0)" {p(a:— b)x—-c)(z—a)...
+q(z—a)(x—c)(x-d)...

s}
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Thus (z-a "(z—b)';" i the greatest common measure of f ()
and f(x), and this expression will divide all the auxiliary func-
tions f,(x), f,(2),.. /. (x) which are formed as in Art. 194,

Now let () = (¢ —a)(x~ ) (x —c)(z—-d)...

and é(x)=p(x-b)(z—c)(x—d)...
+qx—-a)(@—-c)(xz-d)...
+(@-a)@@-"b)(x—d)...

+ ...

Then ¢(x) is not the first derived function of y(x), for that would
be what ¢(x) would become if »p =1 and ¢=1; but ¢(x) has the
same sign as the first derived function of y(z), when we make
x=a, or b, or ¢,... Hence, by Art. 200, we may determine the
situation of the real roots of the equation y(z) =0 by taking y(xz)
and ¢(x) as the first two of Sturm’s functions and forming the rest
from them. ' '

But the series of Sturm’s functions formed from f(z) and £, (x)
only differs from the series formed from y/(x) and ¢ (z) by reason of
the additional factor ( —a)*~! (x—b)"" in every term of the series.
Thus when any value is ascribed to z, the signs of the terms in
the former series will all be the same as those of the latter, or all
contrary; and thus the number of changes of sign will be the
same,

Hence by examining the series of Sturm’s functions formed
from f(x) and f,(x) we can ascertain how many of the roots of
the equation Y (x)=0 lie between assigned limits, that is, how
many distinct and separate roots of the equation f(x)=0 lie be-
tween those limits.

Thus we need not apply the test for equal roots before we
apply Sturm’s method; in fact, in calculating Sturm’s functions
weo shall be warned of equal roots if they exist by the fact that the
last remainder will be zero.
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202. 'We may observe that in the operation by which all the
* auxiliary functions after the first are found, we may always mul-
tiply or divide the divisors or dividends by any positive number
we please, as in the operation of finding the greatest common mea-
sure; for the auxiliary functions thus only become multiplied or
divided by positive numbers, so that their signs remain un-
changed. ' ’

‘We may by Sturm’s theorem determine the number of real
roots of any proposed equation. Then, by substituting successive
integers for x in the series of Sturm’s functions, we can determine
between what consecutive integers the roots lie; or if it is found
that more than one root lies between two assigned integers, we
can substitute for x successively fractions which lie between those
integers, until we at last determine intervals between which the
roots lie singly. '

203. We will now take some examples.
Suppose f(x)=a’— 32°— 4z +13=0.

Here J, (@)= 3a’~ 6z — 4,
Sy (@) =22 -5,
-f; (ac) =41,

The roots of the equation are all real by Art. 198. The following
is the series of signs corresponding to the values of z indicated.

fl@) A SE@ A
+ - - +

W = O

+ +
+ - - +
+ + + +

Here there are two changes of sign when z =2, and none when
x=23; thus there are two positive roots between 2 and 3, and no
other positive roots. '
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It will be found that when #=— 3, the succession of signs is
—+ —+, and when &=— 2 it i8 + + —+, so that one change of sign
is lost in proceeding from — 3 to — 2, and therefore the negative root
lies between —2 and — 3. To separate the two roots which lie be-
tween 2 and 3 we should substitute for  some number or numbers
lying between 2 and 3. Suppose, for example, we put 2 = 2% ; then
the succession of signsis — — 0 +, and thus we have only one change
of sign, whether we consider the 0 to carry the sign + or —. Thus
a change of sign is lost in proceeding from 2 to 2%, and therefore
one root lies between 2 and 2} ; hence the other root lies between
2} and 3.

Again, suppose f(x) ="~ 62°+ 52°+ 14z — 4 = 0.
Here J, (®) = 22"~ 92*+ 5z + 7, omitting a factor 2,
JSo(®) =172~ 572 - 5,
S () =152z — 457,
S (x)=+
In this example it will be found that the calculation of f,(x)
is somewhat complicated; it is sufficient for our purpose however

to know the sign, and thus when we ascertain that it is positive
we need not calculate it exactly, but merely put down f, (x) = +.

The roots of the equation are all real by Art. 198,

The following is the series of signs corresponding to the values
of z indicated. n
() /(@) f{=) /(@) S{=)
+ - o+ - 4+
-1 - - + -
0 - + - =
4

+ -
2 + - - -
+

[
|
++ + + o+t

4 + + + o+

There is one change of sign lost between — 2 and — 1, one be-
tween 0 and 1, and two between 3 and 4.

T. E. )
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If we put 3} for « the succession of signs is — 0 + + +, and thus
there is only one change of sign, so that one root of the equation
lies between 3 and 3}; therefore another root lies between 34
and 4.

Again, suppose f (x) = 22*~132°+ 102 - 49 =0.
Here J, (&) = 42’~ 13z + b, omitting a factor 2,
S () =132~ 15z + 98,

It is easy to see that the roots of the equation f,(x)=0 are
imaginary, that is, f,(x) cannot vanish for any real value of z;
therefore by Art. 199 we need not obtain any more of Sturm’s
functions in this example. When z=— o the succession of signs
is + —+, and when 2=+ o0 the succession of signs is +++; thus
the equation has two real roots and two imaginary roots. One of
the real roots is positive and the other negative by Art. 21.

XV. FOURIERS THEOREM.

204. Sturm’s theorem constitutes the complete solution of a
problem which has engaged the attention of many of the most
eminent mathematicians during the last two hundred years; this
theorem was published in the volume of Mémoires présentés......
par des Savants Etmngera, Paris, 1835.

Among those who attempted the solution of the problem
before Sturm two are deserving of especial notice, Budan and
Fourier; the methods of these two mathematicians start from a
theorem which English writers usually call Fourier's theorem, and
which French writers connect with the name of Budan as well as
with that of Fourier. Fourier’s work on equations was published
in 1831 after the death of the author; Budan published a work
on the subject in 1807. There is gvidence however that Fourier
had given the theorem in a course of lectures delivered before the
publication of Budan’s work. ‘We will now enunciate and prove
the theorem,
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205. Fouriers Theorem. Let f(x) be an algebraical function
of the n" degree; let f(x), f,(),...f.(x) be the successive derived
functions of f(x). Let a be any quantity and B another which
is algebraically greater; then the number of the real roots of
the equation f(x)=0 between a and B, cannot be greater than
the excess of the number of the changes of sign in the series
A=), f.(x), f,(®),...f,(x), when & =a, over the number of the changes
of sign when z=4.

We shall call the whole series f(), £, (), f,(2),...f, (), Fourier's
Junctions.
No alteration can occur in the sign of any one of Fourier’s

functions except when « passes through a value which makes that
function vanish. 'We shall now have four cases to consider.

L Suppose when x=c¢ that f(x) vanishes and that f,(x) does
not vanish. Put ¢—A for « where 4 is a positive quantity; then
h may be taken so small that the sign of f(c — £) is the same as
that of — 4f,(c), and the sign of f,(c— %) the same as that of f;(c);
see Art. 14. Thus if z=c—4 and % is taken small enough, f(z)
and f, () have contrary signs.

Similarly it may be shewn that if z=c+4% and % is taken
small enough, /() and f,(x) have the same sign.

Thus a8 x increases through a value ¢, which is an unrepeated
root of the equation f(x)=0, Fourier’s functions lose one change of
sign.

II. Suppose when z=c that f(z) vanishes and also the de-
rived functions £ (x), £, (®),... up to f,_ (x), and that f,(x) does not

vanish. Put ¢—% for = where 4 is a positive quantity; then A
may be taken so small that the signs of the series of terms

Sle=h), filc=h), fle=h)...fi(c=R), fle-P)

shall be respectively the same as the signs of the series of terms

R, Ry, (SR TSk = (e), £(0);
9—2x
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see Arts. 10 and 14. Thus if #=c— % and 4 is taken small enough,
the first » + 1 of Fourier’s functions present r changes of sign.

Similarly it may be shewn that if x=c+4% and % is taken
small enough, the first »+1 of Fourier's functions present no
change of sign.

Thug as z increages through a value ¢ v}hich is a root of the
equation f(z) =0 repeated r times, Fourier's functions lose r

changes of sign.

IIT. Suppose when x=c that one of the derived functions
vanishes, but neither of the two adjacent functions; thus let f,(x)
vanish when x=c but neither f,_ () nor f,, (x). Then if 4 is
taken small enough, when z=c—A% the signs of the three terms
Jooi(x), fi(x), f.,,(x), are respectively the same as the signs of
JSoei(0) = Af,4,(0), 4, (c), and when x =c +4 the signs are the same
8 tho signs of £,.,(c), H,y.(0) £ (). Thus if £_(c) and £,,,(¢)
have the same sign, Fourier’s functions lose two changes of sign as
« increases through ¢, and if f, l(c) and £, ,(c) have contrary
sighs Fourier's functions neither gain nor lose a change of sign.

IV. Suppose when x=c that several successive derived func-
tions vanish; for example, suppose when x=c¢ that the m func-
tions f (w)’ rﬂ(w)’ r+n—](w) vms}l and thatf, 1(m) and f;,,,,,(x)
do not vanish. By proceeding as before, and supposing % taken
small enough and positive, we shall obtain the following results
with respect to the m + 2 terms, f,_ (), () S, pmer (@) Sriul®)-

(1) Let m be even. Iff_ l(c) and f,, . (c) have the same sign,
the terms present m changes of sign when z=c¢ — 4, and no change
of sign when x=c +A. If f,_(c) and £, (c) have contrary signs,
the terms present m + 1 changes of sign when z=c¢ —#, and one
change of sign when £=c¢+ %. Thus in both cases Fourier’s func-
tions lose m changes of sign as « increases through ec.

(2) Let m be odd. If f,_(c) and f,,(c) have the same sign
the terms present s +1 changes of sign when 2 =c—4, and no
change of sign when z=c+4. Thus Fourier’s functions lose m + 1
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changes of sign as x increases through c¢. If f,_ (c) and f,,(c) have
contrary signs, the terms present m changes of sign when x=c -4,
and one change of sign when =c+#4. Thus Fourier's functions
lose m—1 changes of sign as « increases through c.

Thus on the whole Fourier’s functions never gain a change of
sign, but they do lose one change of sign when x increases through
a root of the equation f(z) =0; and thus the theorem is proved.

206. It will be observed that the demonstration of Art. 205
gives us something more than the enunciation to which for sim-
plicity we confined ourselves. For it appears that whenever an
alteration occurs in the number of the changes of sign of Fourier’s
functions, except by reason of the variable increasing through a
root of thie given equation, an even number of changes of sign is
lost. Thus on the whole we have the following result if we sub-
stitute successively a number a and a greater number 8 in Fourier’s
functions.

(1) Suppose that Fourier's functions lose no change of sign;
then no root of the given equation lies between a« and 8.

(2) Suppose that Fourier's functions lose an odd number of
changes of sign; then we are certain that some odd humber of
roots lies between a and S, but cannot tell what odd number, ex-
cept when only one change of sign is lost, and then we are certain
of one root.

(8) Suppose that Fourier’s functions lose an even number of
changes of sign; then we can only infer that there is either no
‘root or else some even number of roots between a and 8.

207. The advantage of Fourier’s theorem is that it can be
easily applied; because the successive derived functions of a given
function can be immediately formed. The disadvantage of the
theorem is that it may require an almost unlimited number of
trials, For if two roots are very nearly equal, it would require
very minute subdivision of an.interval in which they were con-
jectured to lie, in order to distinguish them from two imaginary
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roots. It would be mnecessary to apply the test for equal roots
before beginning Fourier’s process, as otherwise an even number of
repeated roots might remain undiscovered.

208. Budan and Fourier both gave methods for examining a
doubtful interval more closely in order to discover whether roots
of the proposed equation were or were not situated in the interval.
But it is unnecessary to explain these methods since Sturm'’s
theorem attains the proposed object with simplicity and certainty.

209. It may be shewn that Descartes’s rule of signs is
ineluded in Fourier’s Theorem.

Suppose that f(x)=0 is a complete equation.

If we put =0 in Fourier’s functions the signs are the same as
the signs in the expression f(x) taken from right to left; and if
we put #=o0 in Fourier's functions the signs are all positive.
Hence, by Fourier's theorem, the equation f(x)=0 cannot have
more positive roots than f(x) has changes of sign.

If the proposed equation be not complete, we may suppose the
absent terms supplied with zero coefficients, and such signs may be
ascribed to these coefficients as to make Fourier's functions have
the same number of changes of sign when these terms are counted
as when they are omitted.

The part of the rule of signs which relates to the negative
roots can be deduced from that part of it which refers to the posi-
tive roots; see Art. 63.

210. Fourier's theorem also includes the rule given by New-
ton for finding a superior limit to the positive roots of an equa-
tion; see Art. 94. For if f(x)=0 be the equation, Newton’s
method directs us to find %4 such that when =/ Fourier’s func-
tions are all positive; and then by Fourier’s theorem no roots of
the proposed equation exist between =% and =+ .
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’

XVI. LAGRANGES METHOD OF APPROXIMATION.

211. 'We have already shewn how the commensurable roots
of an equation may be found; we shall now consider how the

approximate numerical values of the real incommensurable roots
may be calculated.

By Sturm’s theorem we can always determine how many roots
lie within a given interval, and we may then divide that interval
into smaller intervals within which the roots lie singly. Suppose
then that we know that an equation has one root and only one
between two given quantities a and 8, and we wish to approxi-
mate to the value of this root. If we substitute any quantity y
which is intermediate between a and B8 for « in f(x), we shall
know by the sign of f(y) whether the root lies between a and y
or between y and 8. Suppose it to lie between « and y; then we
may substitute for # a quantity 8 which lies between a and vy, and
we shall know by thd sign of f(8) whether the root lies between
a and 8 or between 8 and y. This process may be continued to
any extent, and we may approximate as closely as we please to
the numerical value of the root; for by each operation we can .
thus halve the interval within which the root must lie,

The operation here described would however be very laborious
and methods have been proposed for attaining the reqyired result,
-with less calculation., 'We shall first explain Lagrange’s method.

212. Let f(x)=0 be an equation which is known to have
one root, and only one, between two conseecutive positive integers

aanda+1l. Putz=a+ }/, and substitute this value of « in the

proposed equation; thus f(a + }/) =0. If we clear this equation

of fractions, we obtain an equation in y of the same degree as the
original equation in z; denote it by ¢(y)=0. This equation in
v has. only one positive root, because the original equation in 2
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has only one root between @ and a+1. 'We may then determine,
the consecutive integers between which the value of y must lie,
by substituting in ¢(y) successively the values 1, 2, 3,... until
two consecutive results are obtained which are of contrary signs.
Suppose it is thus found that y lies between & and 6+ 1. Put

y=b+ %, and substitute; thus ¢ (b + ;) =0. Hence, as before,

Wwe obtain an equation in which the unknown quantity has only
one positive root, and we may determine the consecutive integers
between which the value of z must lie; let these be ¢ and ¢ + 1.

1
Thenputz=c+@—0; and so on.

Thus we shall obtain the required value of = to any degree of
approximation in the form of a continued fraction, namely,

1
r=a+—;

b+1
c+...

213. Next suppose that the equation f(x) =0 has more than
one root lying between the integers @ and a+1. By Sturm’s
theorem, or by some other method of separating the roots, we
may determine by what number the roots of the equation which
lie between the same two consecutive integers. must be multi-
plied in order that the products may lie between different con-
secutive integers. Transform the equation into another whose
roots are those of the proposed equation multiplied by the number
thus determined; and then the method of the preceding Article
may be applied to the transformed equation.

Or we may adopt the method of the preceding Article with-
out effecting this transformation. In this case the equation in y
will have more than one positive root and we must seek the
greatest integer in each root, and then proceed to the separate cal-
culation of the several resulting values of 2. It may happen that
the equation in y has more than one root between certain consecu-
tive integers; then the equation in z may be used to discriminate
them, and the calculation of each root continued; and so o,
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214. From the given equation f(x)=0 we deduce f (a + %) =0,
that is, supposing f () of the degree =,

S(a)+= f'( )+—f"(a) ;,fLF{;)+...+?%f.lg)=0;

multiply by y* and we obtain

yf@+y= sy LD +J"Tf:‘)=o.

Thus in order to form the equation in ¥ we must calculate the
numerical values of f(a), f'(a), f"(a),...; these calculations
may be performed in the manner explained in Art. 5; but, as we
have stated in Art. 11, the best method will be explained here-
after in the Chapter on Horner’s method. A similar remark
holds with respect to the formation of the equation in 2.

By referring to Arts. 54 and 58, we see that Lagrange's
method of approximation may be thus stated. Suppose a root of
an assigned equation to lie between @ and a+ 1, diminish the
roots of the equation by a, and take the reciprocal equation.
Find a root of the last equation lying between integers b and
b+ 1, diminish the roots by 3, and take the reciprocal equation.-
Find a root of the last equation lying between integers ¢ and
¢+ 1, diminish the roots by ¢, and take the reciprocal equatici.
Proceed in this way. Then the continued fraction

1
a+

b+

C+ ..
is a root of the original equation.

215. Example. «*—2zx-5=0.

By Art. 108, this equation has only one real root, and by
Art. 20, this root must be a positive quantity; it will be found
on trial to lie between 2 and 3.

[
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Assumew=2+§;then
f(2)=2"-2.2-5=-1,
(2= 3.2°-2 =10,
1@= 3.2 =6,
and the equation in y is —y® + 10y* + 6y + 1 = 0, that is,
¥*-10y"—6y—-1=0, say ¢(y)=0.

Here y =10 makes ¢ (y) negative, and y=11 makes ¢ (y)
positive; therefore the required value of y must lie between 10

and 11. Assume y = 10+%; then

$(10)=10°-10.10°~6.10- 1 = — 61,
#(10)= 3,10°—20.10-6 =094,

14"(10) = 3.10-10 =20,
and the equation in % is — 612°+ 942"+ 20z + 1 =0, that is,
d 612°— 942"~ 202 —1 =0, say y(z)=0.

Here z=2 makes (z) positix;e, 80 that the required value of z

must lie between 1 and 2. Assume z=1+ zl;; then

Y(1)=61.1"-94,1°-20.1-1=-54,
¥(l)= 183,1°-188.1-20 =-25,
()= 183.1-94 =89,
and the equation in u is — 54u’~ 254"+ 89u + 61 =0, that is,
54w+ 25%°— 89y - 61 =0.
This equation shews that the value of « must lie between 1
and 2; and we may proceed as before,

Hence x=3+ 1

10 +
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The convergeﬁts eorresponding to this continued fraction are
2 21 23 4
I' 100 0”2

44 i S
between I and the real value of the root is less than 2I2I+11)’

1.
672"

See Algebra, Chapter xriv. The difference

that is, less than

For another example take the equation 2*—7x+7=0. By
Art. 108 this equation has all itg roots real; and by Sturm’s
theorem it may be shewn that one root lies between 1 and 1}, and
that another rqot lies between 11 and 2. Therefore if we put

x=% and form an equation in a’ this equation will have omne

root hetween 2 and 3, a.nd one root hetween 3 and 4. The equa-
tlonmac’ls( ) -1 4720, that is, "~ 282"+ 56 = .

The raot which lies hetween 2 and 3 will be found to be

2+—1—1
1+ se

The roat which lies between 3 and 4 will be found to be’

3+l

1
1 + &e,

The roots of the original equation will be obtained by taking
half of each of these values.

24

Or we may apply Lagrange’s method to the original equation
without any preliminary transformation, Assumez=1+ 31/; thus

8
(1 +31/) —7(1+§)+7=o. This will give 3 4y*+3y+1=0,

say ¢(y)=0. Here ¢(1)is positive, ¢(2) is negative, and ¢(3) is
positive; thus one value of y must lie between 1 and 2, and the



140 LAGRANGE'S METHOD OF APPROXIMATION.

other between 2 and 3. Then we may put y=1+ % in order to

continue the approximation to the first root, and y=2 + s in
order to continue the approximation to the second root.

The equation ’—7z+ 7=0 has one negative root; we may
find it by -changing « into —2 and calculating the positive root
of the resulting equation, that is of the equation

(@)= 7 (~2) + T=0.

Or since the sum of the three roots of the equation 2*—7z+7=0
is zero, when two of the roots are calculated approximately the
third can be immediately found approximately.

216. If in following Lagrange’s method we airive at an equa-
tion which has an integer for a root, we obtain a finite continued
fraction as a root of the original equation, that is, we obtain a com-
mensurable fractional root. This of course cannot oceur if we have
previously determined all the commensurable roots both whole and
fractional of any proposed equation, and removed the corresponding
factors by division.

217. It may happen that in following Lagrange’s method we
arrive at an equation which is identical with one of those which
preceded it; in this case the quotients of the continued fraction
recur, so that the continued fraction is a periodic continued frac-
tion and its value can be found by solving a quadratic equation;
see Algebra, Chapter xLv. The roots of this quadratic equation
will involve a quadratic surd, and dotk of the roots will be roots of
the proposed equation by Art. 44.

218. We will here give the general process which has been
exemplified in Art. 215 in the second method of treating the
equation °— 7z + 7=0. The object in view, is to apply Lagrange’s
method of approximation when a proposed equation has more than
one root between consecutive integers. Let f(x)=0 be the pro-
posed equation; form the auwiliary functions f,(x), f,(z), f,(x),. .
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which occur in Sturm’s theorem, stopping when one is obtained
which is positive for all values of x; see Art. 199. Suppose that
more than one root of the proposed equation lies between the

consecutive integers ¢ and a + 1. Put a +% for z in the functions

S @), f,(®), f,(%),..., and denote what they become respectively by
F(y), F(y), Fy),... If in the latter series of functions we sub-
stitute successively any two pumbers, as & and & + 1, the difference
of the numbers of the changes of sign in the two cases will give us
the number of roots of the equation #(y)=0 which lie between
band b+1. For the results which we obtain by substituting b
and b+1 in F(y), F,(y), F,(y),..., are the same as those we should
obtain by substituting respectively a + % and a + 31 _}_ i in the series
J @), f,(=), f,(x),...; and therefore the difference of the numbers of
the changes of sign must be equal to the number of the roots of the
equation f(x) =0 which lie between a +% and a+ le- 1° that is, to
the number of the roots of the equation F(y)=0 which lie between
band b+ 1.

If then we find that more than one value of y lies between
the consecutive integers b and b+ 1, we substitute & +-zl— for y

in the series F(y), F,(y), F,(y),...; then, by giving two consecutive
integral values successively to z and substituting them we can
determine whether more than one value of z lies between two
consecutive integers,

‘We proceed in this way until we obtain an equation which has
only one root between consecutive integers; and after that we need
not pay any regard to Sturm’s functions but continue the calcula-
tion for this particular root by the method of Art. 212.

Thus we are able to separate the roots and can calculate them
without any omissions.

As we do not require to know the walues, but only the signs
of F(y), F\(y), F,(y), ., we may in all cases multiply these
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functions by such powers of y as will clear them of fractions; for y
is supposed to be a positive quantity, and therefore any power of y
is positive. Thus, for example, instead of F(y), that is, instead of

f(a + é) , We may use
n n—1 p7 + ?/'_' " o+ 1 f"(a)
yS@)+y 7S (@) + T S @) ek S0,
supposing that f (z) is of the degree n.

XVIL. NEWTON’S METHOD OF APPROXIMATION
WITH FOURIER'S ADDITIONS.

219. Woe shall now explain Newton’s method of approxima-
tion to the numerical value of a root of an equation.

Let f(z) =0 be an equation which has a root between certain
limits a and B the difference of which is a small fraction; let ¢ be
a quantity between a and B which is assumed as a first approxi-
mation to the required root, and let ¢+ % denote the exact value
of the root, so that /4 is a small fraction which is to be determined.
Thus f(c + &) = 0, that is, by Art. 10,

FEQ)+ Q) + 15 77 (0) + l’_g F7(E) + o +'é F*()=0.

Now since % is supposed to be a small fraction #°, %°,... will be>
small compared with %; if we neglect the squares and highem=—
powers of 4 in the above equation we obtain f(c) +Af"(c) = 0; thu==

NAQ)
h bl
s
Supposing then that we thus obtain an approximation to the==
()

value of %, we have ¢ — Fio) a8 a new approximation to the roo=
of the proposed equation. Denote this new approximation by ¢,

S(e)

and then proceeding as before we obtain ¢, — ) as a new ap-
1

proximation; and so on.

‘We shall presently examine move closely the conditions which
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must hold in order that this method may be safely applied. It is
of course obvious that such examination is necessary, since the pro-
cess is not universally applicable; for if f’(c) is small compared
with f(c) the supposed approximate value of % is not a small
fraction as it should be.

220. As an example of Newton’s method we will take the
equation which Newton himself selected, namely, &’ 2x—5 =0,
say f(x)=0. Here =2 makes f(x) negative, and z =3 makes
J () positive, so that a root of the equation f(x)=0 lies between
2 and 3. Again, x=2} makes f(x) positive, so that the root lies
between 2 and 24; also =22 makes f(x) positive; thus the
root cannot differ from 2‘1 by so much as ‘1. Suppose then
¢=21; then

c, =’c—f'{—((?) =c—% =21 —ﬁo—g—3=2'l - 0054 nearly;
thus ¢, = 20946 nearly. '

Then for a new approximation we have

¢, — j{((f:l)) =¢, — '00004852 nearly = 2:09455148 nearly.
1

221. This process is very simple in theory and not difficult in
practice; but it is not of certain success unless some precautions
are taken which we shall presently explain. For suppose that ¢
/()
"e)
not sure without further investigation that ¢, is nearer than ¢ to
the real value of the root. In the preceding example, after we
had’ ascertained that there was a root between 2 and 2-2, we
assumed 2'1 as a first approximation ahd deduced 2:0946 as a
new approximation. But we are not sure as yet that 2:0946 is
nearer to the root than 2-2; if however we put 21 for = we
find that f(x) is positive, and thus the required root must lie
between. 2 and 2-1, and now we know that 20946 is nearer than
22 to this root. But we do not know even now that 2:0946 is
nearer to the root than 2:1. If we put 2:0946 for = we find

is an approximate value of the root, and that ¢,=c — , We are
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that f(x) is positive, and this shews that the root lies between
2:0946 and 2; thus 2-0946 is nearer to the root than 2-1.

222, Fourier has given a rule by which we are saved the
trouble of such repeated examinations as we have exemplified in
the preceding Article; this rule guarantees the success of New-
ton’s method when certain conditions are satisfied, Fourier’s
supplement to Newton’s method depends upon a property of the
first derived function of a given function, which we will now
prove.

223. If @ and b are any two quantities, some quantity A inter-
mediate between @ and b exists, such that

SO -f(a)=(-a)f"(A).
For let F(z) denote f(2)~/ (@) - 3—u { £3) - f(a)} ; then F(z)

vanishes when « = @ and also when #=5. Therefore by Art. 102
the equation F'(x)=0 has a root between a and b. And, by Art. 11,

F'(x)=f"(x) _.ﬁ%))_:—-%(ﬂ) ; hence some quantity A intermediate be-

tween a and b must exist, such that f'(\) —‘f—%—:ﬁf—(@ =0; there-

fore f (8)—f (a) = (6 a) S (N).

224. Suppose that b is greater than a: then f(b) is algebrai-
cally greater or less than f(a) according as f’(\) is positive or
negative, If f’'(x) is positive between z=a and x=>5, then f’(})
is necessarily positive, and if f'(x) is negative between x=a and
x=>5, then f'()) is necessarily negative.

Hence we have the following result; if /*(x) is constantly posi-
tive through any interval, f(x) increases with & through that
interval, and if f”(x) is constantly negative, f(x) decreases as
increases through that interval. By the increase or decrease of
S (x) we mean algebraical increase or decrease. We may however
state our result thus; if /”(z) retain the same sign through any
interval, then as x increases through that interval f(x) increases
numerically when it has the same sign as f'(x), and decreasss
numerically when it has the contrary sign.
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225. We shall now enunciate and prove Fourier's rule. Let
JS(x)=0 be an equation which has one root and only one between
e and B; and suppose that the equation f’(x) =0 has no root
between a and B, and also that the equation f*(2) =0 has no root
between « and B; then Newton’s method of approximation will
certainly be successful if it be begun and continued from that limit
for which £(x) and /" (x) have the same sign.

It follows from our suppositions that f(2) changes sign once
and only once between a and 8, and that f”(x) and f”(x) do not
change sign between o and 8. We will suppose 8—a to be
positive. |

(1) Suppose that f(z) and f”(x) have the same sign when
z=a. Take a for the first approximation; then Newton’s second

approximation is a — ;,—8—;-. Let a+ % denote the true value of
the root; then f(a+#%)=0. Now by Art. 223, we have
J(a+h)—f(a)=hf'(\), where \ lies between a and a+%; thus

h= ;E)‘)) , and the true value of the root is a — ff ((‘;)) . We have
then to shew that a.-f( @) ; is nearer than a to the true value

G
of the root. 'Since 4 is necessarily a positive quantity, f(a) and

JS’(A) are of contrary signs, and f (a) is of the same sign as f”(a),
and therefore f(A) and f”'(a) are of contrary signs. Hence f'(x)
decreages numerically as « increases between o and B, by Art. 224,

% that f'(\) is numerically lessi than f”(a); therefore — f ((a;

8 a positive quantity which is numerically less than the positive

Quantity —./{((';3) . This shews that Newton’s second approxima-
tion js nearer to the true value of the root than the first approx-
imation,

Let o, =a }.f(( )) then f(a,) and f”(a,) have the same sign,

and the approximation can be continued from a,.
T. E a S
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(2) Suppose that f(z) and f”(x) have the same sign when
2=p. Take B for the first approximation, then Newton’s second
f'{((%)) Let B+ % denote the true value of

the root; then f(B+4%)=0. Now, by Art. 223, we have
J(B+h)=f(B)=hf'(\), where X lies between 8 and B+ k; thuws
S(B) S(B) .
h=-23-. We have then to shew that 8- =; s nearer than
70 T
B to the true value of the root. Since % is necessarily a negative
. quantity, f(8) and f’(\) are of the same sign, and f (B) is of the
same sign as f”(B), and therefore f“(\) and f'(B) are of the same
sign. Hence f’(z) increases numerically as @ increases between
a and B, by Art. 224, so that f'(\) is numerically less than f(B).

ff'% is a positive quantity which is numerically less

.‘;((/3 This shews that Newton's

second approximation is nearer to the true value of the root than
the first approximation.

approximation is 8-

Therefore

than the positive quantity

Let 8,=8 ff((?) then f(B,) and /" (B8,) ha;'e the same sign,

and the approximation can be continued from 8.

226. The preceding Article shews that the conditions given
by Fourier are sufficient to ensure the success of Newton’s method
of approximation. When these conditions are satisfied, and the
approximation is begun and continued from that limit for which
J(x) and f”(x) have the same sign, we obtain a succession of
values, which continuously increase up to the real value of the
root or diminish down to it, according as the limit from which we
start is less or greater than the true value of the root. We will
now briefly shew that Fourier's conditions are necessary.

If we start with an assumed value ¢, Newton’s second ap-

) , while the true value

A«
S()

of the root would be obtained by adding — jf% . Hence the

proximation corrects this by adding —
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permanence of sign of f’(x) is necessary in order that we may be
sure that f’(c) and f"(A) have the same sign; if these quantities
do not have the same sign the Newtonian correction has the wrong
sign, and Newton’s second approximation is further from the true
value of the root than the first approximation.

The permanence of sign of f”(z) is necessary in order to en-
sure that f’(\) is numerically less than f’(c). If this is not the
case the Newtonian correction is numerically greater than the
true correction, and thus, supposing the correction to be of the
right sign, the true value of the root lies detween Newton’s first
and second approximations. In this case Newton's second approxi-
mation may be nearer to the true value of the root than the first
approximation, but is not necessarily so.

227. In the example of Art. 220, it may be shewn that the
equation f(x) =0 has only one root between 2 and 2-1, and that
the equations f”(x) =0 and f”(x) =0 have no roots between these
limits; also f(x) and f”(x) are both positive when x=2-1.
Hence the Newtonian approximation will certainly succeed if it
be begun and continued from the limit 2°1,

For another example take the equation «®-Tx+7=0, say
S(@)=0. It may be shewn by trial that the equation has one
root between 1'3 and 1-4; the equations f’(z)=0, and f"(z) =0,
bave no roots between these limits; also f(x) and f”(x) are
both positive when x=1'3. Hence the Newtonian approxima-
tion will certainly succeed if it be begun and continued from the
limit 1-3.

228. We will now shew how to estimate the rapidity of the
approximation. Suppose ¢ to be the approximate value of the
root which has been obtained at any stage of the process; then
the true value of the root is ¢ - /‘(—,((f}%-, 80 that the numerical value
of the error at this stage is .‘/f,—(—(c)\)), which we will denote by 7,

The next approximate value will be ¢ — }—f% , and now the nu-
A0—2%
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S©) _ S < L=

A — 2, that i, r =0 L0,
SO F@ T
And by Art. 223, we have f'(c)—f'(N)=(c—X)f" (), where
r(e=N)Sf"(w)

7 . Now A
lies between ¢ and the real value of the root, so that ¢—\ is leas
”‘; (5)"). _Let the greatest
value which f”(z) can take between the limits considered be
divided by the least value which f’(x) can take, and denote the
quotient by ¢; then the error is a fortiori less than g7,

“ merical value of the error is

p lies between ¢ and A; thus the error is

than r; hence the error is less than

For example, in Art. 220, the root lies between 2 and 2-1.
Thus to find ¢ we divide the value of 6z when = =21 by the
value of 3a°—~ 2 when x=2; therefore ¢=1'26; and as ¢ is nearly
unity, the number of exact decimal places in the approximation
will be nearly doubled at each step.

229. The student who is acquainted with the elements of the
application of the Differential Calculus to the theory of curves,
will find it easy to illustrate geometrically Fourier’s rule for con-
ducting Newton’s approximation.

Suppose PQR to be a part of the curve determined by the
equation y=/(x). Then we may be supposed to know OM and
ON, and to require the value of 0Q; that is, we require to know
the point where the curve cuts the axis of «.

At the point P it is obvious that f(») is negative if Oy be the
positive direction of the axis of y; and /() is also negative at
P, since the curve at P is convex to the axis of . Draw the
tangent PT'; let OM =a, then MT = — %‘%)) as is known by the
Differential Calculus; so that, starting from M the Newtonian
approximation proceeds to 7. And as 7' falls between M and @
it is obvious that the method succeeds in this case, and that the
approximation can be continued from 7'



WITH FOURIER'S ADDITIONS. ' 149°

|

At the point R we have f(x) positive and f”'(x) negative.
Draw the tangent RS; then, starting from & the Newtonian ap-
proximation proceeds to S, and .S and N are on opposite sides of ¢.
Moreover there is no security that @S is less than @QXN, and there
is no security that the approximation can be continued from S.
Thus the approximation cannot be safely begun from .

The student may easily illustrate by figares the condition that
S'(x) and f”(x) should retain an unchanged sign between the
limits considered. _

If however, in any example, we know that N is less than

NM we may start from N, as the point .§ will then fall between
@ and M, and the approximation can be continued from S.

Let ON =f; then we may start from & if f{((,g; is less than
B-a. Messenger of Mathematics, Vol. 111, page 40.
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XVIII. HORNER'S METHOD.

230, We shall now explain the method of approximating
to the numerical value of a root of an equation which was in-
vented by the late W. G. Horner.

For the history of this part of the subject we refer to a memoir
by Professor De Morgan in the Companion to the Almanac for
1839.

Let f(x) =0 be any equation ; then f(a + ) =0 is an equation
the roots of which are less by @ than the roots of the first equation.
The equation f(a +«) =0 becomes when developed

' f7@)  sf"(a) S(a) _
f(a,)+a'f(a)+z'—m+w' E +..+x —E—O.

Now the essential part of Horner’s method consists of a pro-
cess by which the coefficients of the last equation may be system-
atically and economically calculated ; we have already observed
that such a process will be useful ; see Arts. 11, 54, and 214,

231. Suppose, for example, that -
 f(@)=4a"+Ba*+ 02+ D&’ + Bx+ F
then f(@) =4a’+Ba'+Ca®+ Da’+ Ea+ F,
f'(@) =54a*+4Ba’+3Ca’+ 2Da +E,

3/"(@) =104"+ 6Ba" + 3Ca+ D,

l "
Ef (a) =104a"+ 4Ba+C,

l% f""(a) =b4a + B,

é fll”l(a) =A.

(1) We may calculate f(a) in the manner explained in
Art. 5, thus;



HORNER’S METHOD. 151

4 =4,
4da+B = P say,
Pa+C=A4a*+Ba+C = @ say,

Qa+D=Aa’+ Ba® + Ca+ D = R say,
Ra+E=Ad*+Ba’+Co*+ Da+E=8 say,
Sa+ F=Aa*+ Ba'+ Ca’ + Da* + Ea + F = f (a).
Here each line is obtained by multiplying the preceding line
by a, and adding on in succession the terms B, C, D, E, F.

(2) Wemay now calculate f’(«) in the same way as f(a) was
calculated, using 4, P, @, R, S in the same wayas 4, B, C, D, E, F
were usgd ;

4 = 4,

da+ P=24a+ B=1T say,

Ta+ @ =34a*+2Ba + C = U say,

Ua+ R=44ad® +3Ba*+2Ca + D =V say,

Va +8 =b5A4a* +4Ba* + 3Ca’ + 2Da + E = f'(a).

. (3) We may now calculate } f"'(a) in the same way as f(a)
and f'(a) were calculated, using 4, 7, U, ¥ ;

4 =4, '
da + 7T =34a + B =W say,

Wa+ U= 640" +3Ba+C =X say,
Xa+V=104a*+6Ba’+3Ca+ D=4} f"(a).
1
I3

(4) We may now calculate
4, W, X;

S (a) in the same way, using

V. ' =A,
da+ W=44a + B= 7Y say,

Ya + X =104d* +4Ba +C= -11:,}- ().
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(5) We may now calculate r}_f (@) in the same way, using
Aand Y;
=4,

Ada+ Y=54a + B=_|]i_f/.///(a).

(6) Lastly, A= l1§f""'(«»).

The above process may be conveniently arranged thus ;

A B c . D y 4 F
42 P @ B S
P Q R S S @)
da T T T
y U T S'(a)
4_49 Wa Xa
W X 1.,
. §f (@)
Aa Ya
Y 1,
Ef (@)
Aa
1 fllll(
e

The quantity under any horizontal line is obtained by adding the
two quantities immediately over the line. '

We have thus shewn Horner’s process of forming the coeffi-
cients of the equation f(a+x)=0 when the equation is of the
Jifth degree ; we will hereafter prove that this process is applicable
whatever may be the degree of the equation, We will give a
numerical illustration of the process and then explain the use of
the process in approximating to the root of an equation.

For a numerical illustration suppose =2 and

F (@) =825 —2* + 4a? + bz — 8.
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3 0 -1 +4 +b ~8
6 12 2 B 4
) 11 26 b7 106
6 :  10 1
12 35 96 249
6 36 142
18 71 238

6 48
24 119
6

30 :
Thus /(2 + z) = 32°+ 802"+ 1192°+ 2382" + 2492 + 106.

232. Suppose, for example, that we have an'equation with a
root lying between 300 and 400 ; form a second equation the roots
of which are less than those of the first equation by 300, so that
the second equation has a root lying between 0 and 100. By
trial let the greatest multiple of 10 which is contained in this
root be found; suppose it to be 70; form a third equation the
roots of which are less than those of the second equation by 70,
80 that the third equation has a root between 0 and 10. By
trial let the greatest integer which is contained in this root be
found; suppose it to be 2; form a fourth equation the roots of
which are less than those of the third equation by 2, so that the

fourth equation has a root lying between 0 and 1. By trial let
the greatest number of tenths which is contained in this root be
found; suppose it to be 8 tenths; form a fifth equation the roots
of which are less than those of the fourth equation by ‘8, so that
the fifth equation has a root lying between 0 and ‘1. By trial
let the greatest number of hundredths which is contained in this
root, be.found; suppose it to be 7 hundredths.

Now suppose that ‘07 is exactly a root of the fifth equation;
it follows that 372-87 is exactly a root of the first equation.

Next suppose that ‘07 is not exactly a root of the fifth equa-

tion; then it follows that an equation exists the roots of which
are less than those of the first equation by 372:87, and which
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has a root lying between 0 and ‘01. Thus the first equation has
a root which lies between 372'87 and 372-88.

Thus we see how by a series of operations of the kind given
in Art. 231, we either arrive at the exact value of the root of
an equation, or we may approximate to it as closely as-we please.

233. In the preceding Article we have stated that certain
numbers must be found by ¢rial; we shall now shew that we
can easily guide ourselves in these trials. Let f(x)=0 be the
proposed equation, and suppose that by one or more operations
we have derived the equation which has its roots less than those
of the proposed equation by ¢, that is, suppose we have formed
the equation f(c+«)=0, and suppose that this last equation
has a small root. Then ¢ is an approximate value of a root of
the original equation ; hence by the preceding Chapter ¢ — f_"_((%)) will

be in general a nearer approximation to that root. Th —%}
is an approximate value of the number which we want in order
to continue the operation.

234, Example. Let f(z)=22"—4732"-2342—"711. It
will be found by trial that £(200) is negative and f(300) positive,
so that the equation f(x)=0 has a root between 200 and 300.
‘We proceed to diminish the roots by 200.

2 -473 - 234 ~711 (200
400 —14600 — 2966800
—78 14834 — 2967511
400 65400
327 50566 , -
400 T
197

Hence the equation which has its roots less than those of
F(@)=0 by 200 is 22*+ T27a’+ 50566z — 2967511 =0; so that
7(200) =— 2967511 and f”(200) = 50566.
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Hence £(200) ; is more than 50. We then proeeed to dimi-

" /7(200)
nish the roots of the equation just given by 50.
2 27 50566 — 2967511 (50
100 41350 4595800
827 91916 1628289

We thus find that 50 is too large a number, for we have

JS(250) = 1628289 a positive quantity, while f(200) is negative;

so that the root we are seeking is less than 250. In fact, in
guiding ourselves in the manner explained in Art. 233 we are
liable to select too large & number for trial, especially in the early
pert of the operation; a similar failure occurs sometimes in the
ordinary process of extracting the square root of a number.

‘We then try 40.
2 721 © 50566 — 2967511 (40
‘ 80 32280 3313840
807 82846 346329
Thus 40 is also too large, for £(240) is positive. We then try 30.
2 127 50566 —2967511 (30
_60 23610 2225280
787 74176 —742231
_60 25410
847 99586
60
907

Thus f(230)=— 742231 a megative quantity, so that 30 is the
Tight number.

Hence the equation which has its roots less than those of
f(z)=0 by 230 is 22+ 907"+ 99586z — 742231 =0.

£(230)

=T approximately.
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We proceed then to diminish the roots of the equation just
given by 7.
2 907 99586 ~ 742231 (7
14 6447 742231
921 106033 0

This shews that f(237)=0; so that 237 is u root of the

original equation.
The whole operation is usually exhibited thus;

2 —473 -9234 ~711 (237
400 ~14600 — 2966800
-173 — 14834 —2067511%
400 65400 2225280
327 50566* 742231
400 23610 742231
T27% 74176 ’
60 25410
787 99586+
60 6447
847 106033
60
907t
14
‘921

Here the mark * shews where the first part of the operation
ends, and the mark } shews where the second part of the operation
ends.

235. We will now take an example of an equation which
has no commensurable root. Let f(x) =a’— 32"~ 2z +5. It will
be found by trial that f(3) is negative and f(4) positive, so that
the equation f(x) =0 has a root between 3 and 4. The following
will be the operation for approximating to this root as far as
three places of decimals,



HORNER'S METHOD. 157

1 -3 -2 5 (3128

3 0 -6

0 ) J1*

3 9 761

3 7* — 239+

3 61 167128
6 761 — 071872
1 62 . -068273152
61 823t — 003598848
1 1264

62 8-3564
1 1268

63t 848321
02 050944

632 8534144
02 051008

6:34 85851562
02

6361
008

- 6368
-008

6376
1008

6384

Here to find the second figure of the root we have —-71- , SO

that *1 is the nearest number to be tried ; to find the third figure

—+23
of the root we have - 5§93

to be tried; to find the fourth figure of the root we ha..ve

o , so that ‘02 is the nearest number
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—-071872
T 784832
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, 80 that ‘008 is the nearest number to be tried. In

all these cases the number suggested is found to be correct.

236. As another example take the equation given in the pre-
ceding Article, and approximate to the root which it has between
1 and 2. The operation is usually exhibited thus;

1 -3 -2
1 -2
) 4
1 -1
1 —500%
1 4
00* — 496
2 8
T2 Z4880000+
) 601
4 — 4879399
2 602
600t - 487879700%
1 36216
601  —487843484
1 36252
602 - 487807232
1
60301
6
6036
6
6042
6

6048

5 (1-2016
-4

1000*
-992

8000000t
—4879399

3120601000}
— 2927060904

193540096
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The difference between this arrangement and that in Art. 235
arises from the fact that it is usual in practice to omit the decimal
points, just as they are omitted in the process for extracting the
square roots of numbers approximately. The following rule with
respect to the decimal part of the root will be sufficient, 'When
all the whole figures of the root have been found and the decimal
part of the root is about to appear, annex one cipher to the right
of the first working column, two ciphers to the right of the second
working column, three ciphers to the right of the third working
‘column, and so on if there are more than three working columns;
then proceed completely through one stage of the operation as if
the new figure of the root were a whole number. Then annex
ciphers again as before.

It will be observed that after the 2 in the root the next figure
considered as an integer would be approximately given by
8000
~ 248800
root and we annex another cipher to the first working column,
two more to the second working column, and three more to the
third, and proceed as before. The ciphers will serve to distin-
guish the several stages of the operation, so that the marks*t{}
may be omitted.

0’ and this is less than unity ; so a cipher is put in the

Tt is obvious that in all the preceding examples the first work-
ing column might have been shortened by performing in the head
the easy work which occurs, and putting down only the results,
but we have thought it clearer to exhibit the whole for the
student.

237. ' After a certain number of figures in the root have been
found correctly, an additional number may be obtained by a con-
tracted operation. We will exemplify this by calculating the
positive root of the equation 2®+3x*—2x—-5=0. We will first
perform the operation at full until five decimal places of the root
have been determmed.
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1 3 -2 —5 (1-33005
1 4 2
4 2 ~3000
1 5 o 2667
5 700 — 333000
1 189 332337
60 889 - — 663000000000
3 198 564352475125
63 108700 — 98647524875
3 - 2079
66 110779
3 2088
690 112867000000
3 3495025
693 112870495025
3 3495050
696 112873990075
3
699000
5
699005
5
699010
5
699015

The rule for contracting the operation is the following ; strike off
at every step one figure from the right of the last column but one,
two figures from the right of the last column but two, and so on.

We will now resume the example just considered and apply
this contracted process.
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1 699015 112873990075 — 98647524875 (1:33005873

55921 90299639432
11287454929 — 8347885443*
55921 7901261018 -
11287510850* — 446624425t
489 338625624
1128751574 - 107998801
489
1128752063+
2
112875208 )
- 2
112875210

At the point where the full operation terminated we have 8 sug-
gested for the next figure; we then reject 5 from the end of the
last working column but one, and 15 from the end of the last
working column but two. The first step in carrying on the work |
is to multiply 6990 by 8, and put the product in the next working
column; the product is considered to be 55921, because we con-
ceive 69901 multiplied by 8 and the last figure struck off, and so
55921 is nearer than 55920 to the true value. Then we add
55921 to 11287399007 ; the figure in the units’ place of the sum
we take to be 9 by allowing for the rejected 5. The mark * indi-
cates where the first stage of the contracted operation finishes.
Now strike off 0 from the end of the second working column and
90 from the end of the first working column, so that the first work-
ing column is reduced to 69. The next figure of the root is 7, and
this stage of the operation finishes where the mark { is put.
Strike off 3 from the end of the second working column and 69
from the end of the first working column. The first working
column now disappears, but still exercises a slight influence be-
cause the next figure in the root is 3, and when 69 is multiplied
by 3 and two figures rejected there remains a 2,

T. E, N\
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. Only two working‘oolumns are now left; the remainder of the
work coincides with the ordinary process of contracted division,
and it will supply eight more figures in the root.

11287521,0 —107998801 (1-330058739656798256

_ 101587689
11287521  —6411112

, A 5643761

112875,2 - 767351

677251

11287,5 -90100

79013

' 1128,7 —11087
10158

112,8 -929

' 902

11,2 —27

22

1,1 -5

The approximation may be relied upon very nearly up to the
last figure. For if the whole operation were performed at full,
the last working column would present a large number of figures
on the right-hand side of those here exhibited, but those which
are here exhibited would retain their places without alteration
except perhaps the exchange in some lines of the last figure for
another differing from it by unity.

238. The root found in the preceding Article is the numeri-
cal value of the negative root of the equation a*— 32*—2z+5 =0,
Hence the sum of the roots found in Arts, 235 and 236 should
exceed the root found in Art. 237 by 3; because the sum
of the three roots of the equation with their proper signs is 3.
This will be found to hold approximately; and the student may
exercise himself in carrying on the approximations to the two
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positive roots to more places of decimals than we have given, in
order to verify more clearly the connexion between the sum of
those two roots and the root calculated in Art. 237.

239. Various suggestions have been offered with the view of
saving labour in the use of Horner’s method. With respect to
such suggestions we may quote the following remarks which occur
in connexion with one of them. ‘“But considering that the
process is one which no person will very often perform, we doubt
whether to recommend even this abridgment. All such simplifica-
tions tend to make the computer lose sight of the uniformity of
method which runs through the whole; and we have always found
them, in rules which only occur now and then, afford greater as-
‘sistance in forgetting the method than in abbreviating it.” Penny
Cyclopeedia, article Involution.

240, Tn Art. 231 it was stated that it would be proved that
Horner’s method of forming the equation f(a+x)=0 is uni-
versally true. 'We will now consider this point.

Let f(x)=p2 +p & p s kp, 4D,
for 2 put ¥ + a, and suppose that f(x) then becomes

9y +aY T HGY T g Y 4
we have to prove that ¢, ¢,_,,...¢,, ¢,, are found correctly by
Horner’s process. It is obvious that g,=p,. Since y=2x—a the
following expressions are identically equal,
P+ P2+ p T+ L+ p, X+ D,
and g (x—a)+q,(x—a)" '+q,(x—a)+..+q,_ (x—a)+q,
Therefore ¢, is the remainder that would be found on dividing
J(x) by £—a; also the quotient arising from this division must be
identically equal to
g @—a) '+ q (x—a)+q,(t—a)"+..+q,_,.
‘ n—
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" Then again g,_, is the remainder that would be found on di-
viding the last expression by « — a; also the quotient arising from
this division must be identically equal to

9.(z—0a)" "+ ¢,(z—a)" "+ g,(z-a) "+ + g, .

Then again ¢,_, is the remainder that would be found on di-
viding the last expression by 2~ a; also the quotient arising from
this division must be identically equal to

qo(z - a)”-"*' 'A (m - a)l_"" Qs(x - a)-—"" et g
and so on.

Thus ¢,y ¢..)» Qu-gs Fu—gr--+ 8re the successive remainders
which occur in dividing, first f(z) by «—a, then the quotient by
x — a, then the new quotient by z—a; and so on, And we see
by Arts. 5, 7, and 9 that Horner’s process determines these succes-
sive remainders.

241. We have thus sufficiently discussed the subject of the
approximate values of the real roots of equations. There is no easy
practical method of calculating the imaginary roots of equations
at present known; but theoretically this may be made to depend
on what has been already given. For suppose a+bJ 1is an
imaginary root of an equation f(z)=0; then since the real and
imaginary parts of f(a + b J —1) must separately vanish, we obtain
- two results, which we may denote by P=0 and @=0, as in
Art. 41. Here P and @ will be functions of a and b, and if we
eliminate a or b from the equations P=90 and ¢=0, we obtain a
single equation involving one unknown quantity ; and we require
real values of this unknown quantity. Hence we can determine the
imaginary roots of a given equation if we can form a certain other
equation and determine its real roots. We shall hereafter shew
how to form the equation which results by eliminating one of two
unknown quantities from two given equations,

We shall in Chapter xx1. explain another method which has
been used for calculating the imaginary roots of equations. The
student may also consult Dr Rutherford’s essay on the Complete
Solution of Numerical Equations.
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XIX. SYMMETRICAL FUNCTIONS OF THE ROOTS.

242. A function of two or more quantities is said to be a
symmetrical function of those quantities if the function is not
altered when any two of the quantities are mterchanged

Thus, for example, a*+ b* + ¢’ is a symmetrical function of the
three quantities @, &, c; so also is ab+bc+ ca; for each of these
functions is unaltered when we interchange a and b, or @ and ¢, or
b and ¢,

243. The coefficients of an equation are symmetrical func-
tions of the roots of the equation.
For by Art. 45, if the equatxon be 2" +pa" " +pa" Tt + ... =0,
we have
— p,=the sum of the roots,
P, = the sum of the products of the roots taken two at a time,

and 50 on; and it is manifest that the functions of the roots which
occur here are symmetrical functions,

The object of the present Chapter is to shew that every rational
symmetrical function of the roots of an equation can be expressed
in terms of the coefficients of that equation. 'We shall begin with
proving Newton’s theorem for the sums of the powers of the roots
of an equation.

244. Let f(z) denote z"+pa*'+pa"*+ ...+p,, and let
a, b, ¢, d,... denote the roots. of the equation f(z) = 0.
Let Sy=a+b+c+d+...,
S,=a’+b'+c*+d +...,
S,=a*+8++d+...,

and so on; thus S, is the sum of the roots, S, is the sum of the
squares of the roots, S, is the sum of the cubes of the roots, and in
general §, is the sum of the m™ powers of the roots,
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By Art. 74 we have
F=LO S0 16

" The divisions indicated on the right-hand side of this identity
can all be exactly performed by Art. 7; and we have

‘:(xl = af"“ + (a +p)a" "+ (@® +p @+ p ) + ...

+(@"+p @ Hp a4 L p )T L

f(x) f@

and similar expressions hold for ooy 3 Reemnd’
By addition then we obtain
S@)=na 4 (S, +np )2 + (S, +p,S, +np) 0+ ...
+(S,+2,5,_, +p,S__;+ ek np )@ 4 L
Also f'(x)=na"'+(n—1)pa" "+ (n-2) pa" >+ ...
+(n-m)p, ™"+ ...
Equate the coefficients of the same powers of « in the identity ;
thus o
S,+np,=(n-1)p, or §,+p,=0,
S, +p,S, +np,=(n—2) p, or 8,+pS, +2p,=0,
and generally _
Sy +DS 4Dyt e +0p,=(n—m)p,,
or S+ P8\ +P Syt oo + 2, S, +mp,=0.
In this general result m is supposed to be less than n.

By means of the general result we can express the sum of the °
m™ powers of the roots in terms of the coefficients and the sums of
inferior powers of the roots ; and thus by repeated operations we
may express the sum of the m® powers of the roots in terms of the
coefficients only.
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. Next suppose that m is not restricted to be less than x.
Multiply the given equation f(x) = 0 by «™*; thus ™" f(2)=0,

that is, A +p ™ p ™t + L+ p =0,

Substitute for = successively @, b, ¢, .., and add the results;
thus

B+ P8y + DSyt oo +9.S,_ =0,

By this theorem we can express the sum of the m™ powers of
the roots of an equation in terms of the coefficients and the sums of
inferior powers of the roots when m is not less than n; and thus
by repeated operations we may express the sum of the m* powers
of the roots in terms of the coefficients.

Practically the followmg is a very convenient method. We

have
z z z
PIAELC IO
therefore
xf’ (a:) x ®x  x
f(a:) Z-a @b @0 "
A -1 -1
D
—n+S‘+S’+S“+
" a
Thus, if we actually divide xf”(x) by S (), the coefficients of
the terms in order will be », S, S,,.... The division may be

advantageously performed in the manner explained in the Algebra,
Chapter LVIIL

245. To find the sum of the negatwe powers of the roote of
the equation f (x) =0, we may put for x and find the sum of the

corresponding positive powers of the roots of the transformed equa-
tion in g.
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Or we may make m successively equal to n —1, n—2, n-3,...
in the result of the preceding Article; and thus obtain suc-
cessively S_,, S_,, §_,---+

246. The general problem of finding the value of any rational
symmetrical function of certain quantities may be reduced to the
problem of finding the value of certain simple functions, as we
shall now shew. . :

Any rational symmetrical function which is not integral will
be the quotient of one rational symmetrical integral function by
another ; so that only integral functions need be considered. Any
rational symmetrical integral function which is not homogeneous
will be the sum of two or more rational symmetrical integral func-
tions which are homogeneous; so that only homogeneous functions
need be considered. A homogeneous function may consist of
different parts in which although the sum of the exponents reniains
the same, the exponents themselves are different; in such a case
the homogeneous function is the sum of two or more homogeneous
functions of the same degree in which the exponents are the same
for all the terms. '

Hence it follows that we need only consider such rational
symmetrical functions as are integral and homogeneous, and in
which the exponents are the same for all the terms.

247. Let a, b, ¢, d,... denote the roofs of a given equation.

By Art. 244 we can express in terms of the coefficients the

value of
A"+ +c"+ A"+ ...

This function may be said to be of the Jirst order, since each
term involves only one of the roots, _
A function may be said to be of the second order when each
term involves two of the roots, as A
a"b +a"c’ + b7’ + ...

Here every permui:ation is to be formed of the roots taken two
at a time, and the exponent m placed over the first root and p over
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the second. We shall denote this function by Za™b*, as it is the
sum of all the terms which can be formed like a™?". .

A function may be said to be of the ¢hird order when each term
Involves three of the roots, as

a"Be+ a"d! +a"bd + ...

Here every perinutation is to be formed of the roots taken three
at a time, and the exponent m placed over the first root, p over
the second, and g over the third. 'We shall denote this function by
Sa™b’c', as it is the sum of all the terms which can be formed like
a™bc!.

Similarly we may have functions of the fourth and higher
orders, and may use a similar notation to represent them.

Since we have shewn how to express the function denoted by
S_ in terms of the coefficients of the equation it will be sufficient to
shew that any of the functions we have to consider can be expressed
in terms of such functions as S,

248. To find the valwe of the symmetrical function of the
second order Sa™b®.

‘We have S, =a"+b"+c"+...,
Sy=a"+ b+ +....
By multiplication we obtain

88,= a™P L™ M4 L
+a"B+a"e +b"at +...;
that is, 8.8, =8, + Za"b",
and therefore 3a™0 =SS, ~8,,,
This supposes that m and p are unequal. If we suppose p

equal to m the terms in Sa"5* become equal two and two, 8o that
this sum may be expressed thus, 23 (ab)"; and therefore

23 (ab)"= 8.~ S,..
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249, To find the value of the symmetrical function of the third

order Za™bPc?,

Wehave o™V =a"l +b"¢" +a"c"+..

S,=a"+b"+c"+...
By multiplication we obtain
S2a™ =a™ b + bt + M L,
+amb*t + b M L
+a"’c + ...
The terms on the right-hand side form three sets, which in our
notation are denoted by Za™*®%*, Sa?*b", Za™b’c'; thus
83" = Za™ b’ + ZaP* " + Sambct.

Substitute for Sa"8*, Sa™*%*, and Sa’*b™ their values from

Art, 248, and we obtain
20" = 8,88y = SusySy = SwsoSp = SpesSu + 28 atser

‘We have supposed m, p, ¢ all unequal. Suppose, however,

that m = p; then, as in Art. 248, we have
23 (ab)"c" = 828, — 5, Sy = 28, , S, + 28 g qe
If m =p =g, the sum Sa™b’c' reduces to 2. 33 (abe)™; thus
63, (abe)™ =85 — 38,8, +28,..

The method of this and the preceding Article may be con-
tinued to any extent, and thus a function of any order like
Sa™d and Sa™c¢' may be expressed in terms of the coefficients.

Hence by Art. 246, the object proposed in the present Chapter
can be attained.

250. We have shewn how the function denoted by S, can
be expressed in terms of the coefficients; and thus of course the
sum of any number of such functions as S, can be so expressed.
The following method will, however, be generally more advan-
tageous in such a case. If ¢ (x) denote any rational integral
function of «, it is required to express in terms of the coeflicients

the sum ¢ (a) + ¢ (8) + ¢ (c) + ..
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S@_1 11
‘We have 7—(};7 m"'x_b“"a:—_—c-i-...,

@S (@) _d(z)  $() @),
f@ x-a ta—bTw-c"

_$(=)-¢(a) ¢(¢) ¢(b) @) -d()

z—a xr—-c

L $(0) ¢<b> ¢<c>
to—ato-b -0
In this identity the integral parts and the fractional parts will

be separately equal; also such expressions as jﬁij;ﬂ are in-

tegral by Art. 7. Let ¢(z)/'(x) be divided by f(x), the process
being carried on until the remainder is an integral function of =
of lower degree than f(x); let B be this remainder. Then by
considering the fractional parts of the identity we have

R 4@ 90) , $() ,
f(®) x-a te-btz-c”

Multiply up; then
B=g™ {¢.(a) r$(®) +(0)+ }

+ terms involving lower powers of « than &'
Thus ¢(a) + ¢ (b) + ¢(c) + ... is equal to the coefficient of ="~ in R.

therefore

'251. Asan example of the formule of this Chapter suppose
it required to find the sums of the powers of the roots of the
equation o —a'—Tz*+x+6=0,

Sl=_pl=1)

S,==p,8,-2p,=1+14=15,

S;=—p8,-p,8,-3p,=15+7~8=19,

S==p8,-2,8,-pS,—4p,= 19+105- 1-24= 99,

S==p8,-25,-p,8,-p,8,= 99+133-15~- 6=211,

Se==p8,-2,8,~p,5,-p,8,=211 + 693 - 19 -90="795,
and so on. '
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Put }/ for 2 in the given equation; then

1 7 1 1
y+g¥-g¥ g¥+e="

Thus for the sums of negative powers of the roots of the
original equation we have

1
s_l=-§,

14 1 85
sechua (Dl
and so on.
These results may be easily verified, as the original equation has
been constructed so as to have for its. roots -2, -1, 1, 3,
Again, suppose we require the values of S,, S,, §; and §, in the
biquadratic equation
o'+ p’+ g+ re+8=0.
S, +p=0, therefore S,=-p,
S, +p8, + 29 =0, therefore ,=p* - 2g,
8, + pSy+ ¢S, + 3r = 0, therefore §,=—p(p" - 2¢) + pg—3r
=—p°+ 3pg - 3r,
S, +pS,+qS,+ 78, + 4e=
therefore S, =—p(—p°+ 3pg — 3r) —q(p* - 2q) + rp — 48
—4p'g+ 4rp+29° — 44

As another example, let a, B, ¥, 8 denote the four roots of the
biquadratic equation «*+ pa® + g2* + re +8=0;

let A=1(@B+y), B-i(ay+pd), C=3(eb+By);

and let it be required to find the value of the following sym-
metrical functions of the roots of the biquadratic equation,

(1) 4+B+0C,

(2) AB+BC+CA4,

(3) ABC.
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1) 4 +B+C’=%(a,3+a'y+ ad +By+ B3+ 78)=% ,
(5) 4B+BC+CA=3(By+atyd+..) =] Sa'By

= 5(875,~ 5, ~25,5,+25); by the mthod of Art. 249.

Then the values of S, S,, S, and S, may be substituted which
have already been obtained, and the value of ii&z’ﬁy will be
known. Or we may proceed thus,

Ea’ﬁy =3 a g‘)’s = aﬁysz % .

And afyd=s, and z§=’-’:—’-4, by Art. 48;
therefore 4B+ BC + CA = (pr—4a).

(3) ABO =5 @By + ... 0B +...) =2 3wByd + 5 Sty
The values of these two symmetrical functions may be found

by the methods of the present Chapter directly; or we may ab-
breviate those methods thus,

3a’Byd=afyd3a’ =2 (p" - 29),
3“'/9'1’=a’ﬁ'1’3'21"'=”<;‘gg) ,

for to find E:T, we have only to obtain the sum of the squares

of theroots of the equation in y which is formed by writing 31/ for .

Thus ABC =3 (s*+ p's — 4qa).

The values of the functions of 4, B, ¢ which have been found
may be verified; for 4, B, C, by Art, 189, are the roots of the
cubic equation in m in Art. 188,
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XX. APPLICATIONS OF SYMMETRICAL FUNCTIONS.

252. In the present Chapter we shall give two applications of
the theory of symmetrical functions of the roots of an equation ;
the first application will consist in forming the equation which has
for its roots the squares of the differences of the roots of a given
equation, and the second application will be to prove an important
theorem in elimination.

253. To jform the equation which has for its roots the squares
of the differences of the roots of a given equation.

Suppose the given equation to be of the n* degree, and
denote its roots by a, b, c,.... Then the roots of the required
equation will be (a —d)?, (@ —¢)f,...(b — ¢),... ; the number of these
is the same as the number of combinations of n things taken 2 ata

time, that is, %n(n—l); and this number will therefore denote the

degree of the required equation. Put m for % n(n—1), and suppose
that the required equation is denoted by
&+ g2 g a . +g,=0.

Also let s, denote the sum of the +* powers of the roots of this
equation. We have only to determine s,, s,,...s,, and then the

.8,
coefficients of the required equation will be found in succession by
the formule of Art. 244, namely, 8 +¢,=0, 3, +¢,8 +2¢,=0, and
80 on. ’

Let b (x)=(x—a)" +(@-b)"+(x—c)" +
then 28 =p(a) +P(d) + p(c)+ ...

Nowlet §,, S,, S,,... denote the sums of the powers of the roots
of the given equation ; thus

$(e)=nar = 28 ot 4 L =D s |
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Put for z in succession a, b, c,... and add ; thus

2s,=nS, - 2rS,S, _, + (2¢ 1) — 188, ,—..+nS,

gr*

~ The terms on the right-hand side which are equidistant from
the beginning and the end are equal ; therefore by rearranging
and dividing by 2 we obtain .

5, =nS, 28,8, , + 2 (2’ 2@r-Ngg
» 2r(2r-1)...(r+1) o,
+§(-1) e s,

Now §,, S,,... can be expressed in terms of the coefficients of
the given equation; thus s can be found, and then finally the
coefficients of the required equation.

254, The last term of the required equation, namely that
denoted by g, in the preceding Article, may be calculated in another
way. Let the given equation be denoted by f(x) =0, so that

| J(@)=(x—a)(z-b)(x-c)...
Then [f'(x)=(x—-b)(x—¢)...+(x—a)(z—c)...+
thus S (@)=(a-d)(a—c)...,
S'®)=0B-a)(d-c)...
Hence g,,=f"(a) f' () S (¢)-.-
Now let a, 3, ¥,... be the roots of the equation f'(x)=0; then
S (@)=n(z-a)@-p)(z-7)--;
therefore S (@) () .S (... .
=n"(a—a)(@a-B)(a—-7)...(b—a)(b-B)...(c~a)....
But (a—a)(d—a)(c—a)...=(~1)"f(a)...,
(@-B)@-B)(c=B)...=(-1)'S(B) ...,

and 80 on;
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thus S @S OF @)= DS @) SOSG)
for (~1)=9=1, =2 f (@) S(B) S (7) -+

Now f(a) f(B).S(7)... is & symmetrical function of the roots
of the derived equation f’(x) = 0, and may therefore be calculated.

255, 1In Art.109 we have explained one use which we may make
of the equation whose roots are the squares of the differences of
the roots of a proposed equation; namely, we may thus determine
the situation of the real roots of the proposed equation. But
Sturm’s theorem néw answers this purpose more readily. However
the equation which has for its roots the squares of the differences
of the roots of a proposed equation will sometimes on inspection
give information respecting the number of ¢maginary roots in the
proposed equation ; for it is obvious that if this new equation can
have negative roots the proposed equation must have tmaginary
roots ; and if the new equation has no negative roots the proposed
equation has no imaginary roots. Also if the new equation has
imaginary roots the proposed equation must have imaginary roots;
it will not however follow that if the new equation has no
imaginary roots the proposed equation has none. For example,
the proposed equation might be a biquadratic equation with roots
+\,/-1 and +p,/=1; in this case the new equation will only
have real negative roots.

Tt will be convenient to give the product of the squares of the
differences of the roots in algebraical equations of the second,
third, and fourth degrees.

1) ax® + 2bx + ¢ =0.
The product is 4—(67;“).
(2) o +pat +qr+r=0.

By Art. 60 the product is
- g7 {890 + 2P+ 4030~ 2}
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If the equation be
ax® + 3bx* + 3ex + d =0,
this becomes  ~ o {(20* - 3abo + )t + 4 a0 b’)’} ,
or more symmetrically
- %Z.{(ad-bc)'- 4@-a)@- b | .
3) o+ gt +re+8=0,

By Art. 187 the product is
@ -BYE -,
where o', ', y* are the roots of a certain cubic.
Hence the product is

- 517{(27# 72gs + 24" - 4(¢" +123)'} .

If the equation be
. ax' + 4b2® + 6ecx® + 4dx + 6 =0,
this becomes by Art, 187,'
256

aﬂ

{(ae — 4bd + 3¢")"— 27 (ad® + eb* +¢* — ace— 26«1)*} .

256. 'We shall now shew how to eliminate one of the unknown
quantities from two equations containing two unknown quantities,
by the theory of symmetrical functions,

Let the equations be
2+ p ™ +pa L +p, =0,
and g+ g + g+ + q,=0.

The coefficients p,, p,, Dy-++s Qo3 9y» G-+ 8re supposed rational
integral functions of a quantity ¥, and  is to be eliminated.

-
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Suppose. that from the first of these equations the values of 2
could be found in terms of y; let these values be denoted by
a, b, ¢,.... Substitute them in the second equation, and we obtain

m equations for determining ¥, namely
a8t +q,a T +q8% "+ .. +¢,=0,
gbt +q b+ g b+ ..+, =0,
g + ¢ + ¢+ ..+, =0,

cvereennes cerrnene}

80 that all admissible values of y are contained among the roots of
these equations, And conversely any root of any one of these
equations is an admissible value of y. For suppose, for example,
that the first of these equations has a root 3, and suppose, when
B is put for y in a, that the value is a; then z=a, y=8 will
satisfy the two original equations. For these values obviously
satisfy the second equation ; and the first equation is satisfied by
x = a, whatever y may be, and is therefore satisfied when we take
2=a and give to y in a the value 8. Hence it follows that by
multiplying together the left-hand members of the above equations
in y and equating the product to zero we obtain the final equation
in y. Now in this product no alteration is made by interchanging
any two of the quantities @, b, ¢, ..., 8o that the product is a
symmetrical function of these quantities, and the value of it can
therefore be expressed in terms of the coefficients p,, p,, p,,... of
the first equation. Thus we shall finally obtain a rational integral
equation in y, and this equation has for its roots all the admissible
values of ¥ and no others.

257. Fora pa.rticula.x: example, suppose that the first equa-
tion is a cubic in z, and the second a quadratic in , 8o that we
have to eliminate « from the equations

P& +pa’+px+p,=0, and g2’ +gx+¢,=0,

where the coefficients are supposed functions of y. Here with the
notation of the preceding Article we have
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(9,9"+ 2,8+ ¢,) (28" + 9,0 + ¢,) (6" + ¢,¢ + ¢,) = 0, that is,
g2 +¢,'abe +¢,'a%’e" + ¢,'¢,5a"" + ¢,'q,Ja"’ + g,"q,Sab
+ 9119% +9:9s *+ 7.9 1'24.66 + %9'1?:2“ b=0.

Also abo=-22, aptet=Dr,
2

Sa'h* = a’h'e’S = __;_(ps _%&)’
a’ po 3 2,

M’b’c:dcsab:_&Eab:_%’
D, D,

2
Ea=—£ly 2“":})_[:"2_1’_’)
b, by Py

Sa%e = abeSa =DrL2 |
P

o

Sa'h = abcz-_-—(”'—”'-a) by Art. 48,

And by substituting these values we shall obtain the equation
which results from the elimination of .

268, If we eliminats one wunknown quantity between two
equations of the degrees m and n respectively, the degree of the
resulting equdtion will not exceed mn.

Let the equations be
pa”+pa” Tt pa™ T+ +p,=0,
7,2 + q,x"“ +gx" "+ +¢,=0;

the coefficients in these equations are supposed to be functions of
y. Moreover it is now supposed that the sum of the exponents
of « and y in the same term is never greater than m in the first
equation, and never greater than n in the second equation ;
so that p, and g, may be of the degree p in y, but not higher.

12—
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Now suppose that x is eliminated by the method of Art. 257; the
first member of the final equation in y then consists of a series of
terms, each of which is the product of.m factors, and is of the
form ga" " x ¢b"*x ge"*x ... And as we know that the series
of terms forms a symmetrical function of g, b, ¢, ..., the aggregate
of the terms with the exponents just indicated will be

G,9:9; +0 2ATH0CE L

Now the degree of g.94,... is not higher than r+s+¢+..., 80
that we have only to shew that the degree of Sa™"d*¢c*™'... is
not higher than n—~r+n-8+n—t+..., and then it will follow
that the degree of the product is not higher than mn. The re-
quired result follows from two observations. (1) From the formule
of Art. 244, it can be shewn that §, does not involve higher
powers of y than 4. (2) From the process of Arts. 248 and 249,
it will follow that the value of Za*bk¢¥ .... will involve powers
and products of §,, S, S, ... Sxyptv+..; and in each term
the sum of the subscript letters attached to the symbol S is
Adp+v+...

Hence we conclude that in the final equation in y no power of
 higher than y™ will occur.

259. The preceding Article gives the limit which the degree
of the final equation in y cannot surpass; it may however in
particular cases fall short of this limit,

The theorem may be extended and the following general result
obtained ; if between any number of equations involving the
same number of unknown quantities all those quantities are
eliminated except one, the degree of the final equation cannot
exceed the product of the degrees of the original equations. See
Serret’s Cours d’'Algébre Supérieure.
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XXI. SUMS OF THE POWERS OF THE ROOTS.

260. By Newton's method, which is explained in Art. 244,
the sums of the powers of the roots of an equation may be found
successively; we shall now explain a method by which the sum for
any assigned integral power of the roots of an equation may be
obtained tndependently.

Let a, b, c,... denote the roots of an equation f(x) =0, so that
we have f(x)=(z—a)(x~b)(x—c)...; and suppose the equation
of the n™ degree. Then

£-0-9(-2(-)-

Take the logarithm of both sides, and then expand the loga-
rithms on the right-hand side; thus

log‘%=—£(a+b+c-_&-...)

—gi—; (@+d+c+...)

—371:”—,(a'+b'+c'+ )

Thus on the righthand side the coefficient of :—, is —%;

hence we have %‘=the coefficient of %, in the expansion of

~1lo ‘&x—) in descending powers of .
8 g po

" This supposes m positive; if the sum for any negative integral
Power is required we can change z into }/ and find the sum for the
Corresponding positive power of the roots of the equation in .
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261. For example, find the sum of the m® powers of the
roots of the equation &'—px +¢=0.

Iiere (a:) =1- (— - ;,) H
—lég‘f;(gz log{ 1; -—%)}
S (A VLI L)+

The complete coefficient of 1 - may be obtained by selection

from the various terms in the value of - logf(x) in which this

power of x can occur; these terms written in the reverse order

are
1/p q\" p q)"‘“ P q)'"'+
m\zx o m 1 ) m-2\z
The coeficient of z—l_ is therefore

1. 1 m-1
mp m-1 1

1 2)("' 3) o
—= 2("‘ 7" —

pﬂ—!q +

Thus §,=p"~mp™~q +——5—#""'¢'~

Suppose ¢=1, then the quadratic equation is & reciprocal
equation, and its roots are of the form a and%; see Art. 133.

Thu{s we have a+al'=p, and also
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L) 1 —_ ™ -3 m(m_3) m—t__
a +a—-—p —mp +——T—:2—p con

+ -1y m(m—r— I)E(m— 2r+1) e

We imv? thus obtained a general expression for a™+ % in
terms of powers of a+¢1—’; see Art. 138,
. Again, suppose ¢=—1; then the roots of the quadratic are of
the form a and —% : thus we get an expression for a™ + (— (_ll)" in
terms of powers of a—%.

262. Again, let it be required to find the sum of the m%
powers of the roots of the equation 2°—1=0.

‘1 1 1 1 1

r 2 i T

1

Here the coefficient of s

is zero unless m is a multiple of x,

and then the coefficient is %; 8o that S,=0 unless m is a multiple
of n, and then S, =n.

This result is often usefiil, and we will give three applications
of it in the following three Articles.

263. We will shew how to find the sum of selected terms of
a given series.

Suppose that the sum of a,+ax+ax + ... ad infinitum is
known, and denote it by ¢(z): and let it be required to find the
sum of the series

e +a,, " ta "+ ad infinitum.

Let a, B, ,... denote the n* roots of unity, that is, the n roots
of the equation «*—1=0. Multiply both sides of the given
identity by o*~*, and then change  into ax; thus
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"¢ (aa:) =aa" "+ a0 " e+ a0t " 00+ L.
Similarly,
B"$(Bry=a B "+a B""“w +a "% 4,
Y0 =ay T+ ay a4 ay T 4
and so on.

Add together the n identities which can thus be formed; then
on the righthand side we obtain n times the required series,
by Art. 262; thus

a-m. + an*_a:"'*' + an+hm~+” +
= g @)+ Fg (B 7 0m) +
As an example we will find the sum of
w+xE‘ +§+ ... ad tnfinttum.
Here m=1, n=3, ¢(z)=¢".
Thus the required sum
1
=5 {9 + £9(82)+ 78 ()}
Now a=1, g="1% +2*/3, ==i=J-3 ‘2*/—‘?'.
2 ‘V_
Hence ' ¢(ﬁa:) =

_= z,/3 . 2,/3
=e ’(cos-—‘2—/—+ —lsm-zi);

S = (onn 22/ Toin ).

" And finally the required sum is
1,1 --( a:J3 _ J/3sin st)

-— -——

3 3
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264. Again, by means of Art. 262 we can prove the following
theorem ; the expression (z+y)* —«* — 3" is divisible by «*+zy+3*
if n be an odd positive integer not divisible by 3, and it is
divisible by (=*+ 2y +y")* if » be a positive integer of the form
6m + 1. ’

Let 1, a, 8, be the three cube roots of unity, that is, the three
roots of the equation #*~1=0. Then the product of these roots
is 1, that is, af =1, by Art. 45; and 1+a™+B™=0, provided m
be not a multiple of 3, by Art. 262.

Thus o +ay +y' = (2~ ay) (x- By).

"Hence (x+y)"—«"—y" is divisible by a2+ zy + 4* provided
it vanishes when x=ay, and when z=pfy; and it is divisible
by (2* + zy + y*)*, provided its derived function also vanishes when
z=ay, and when z= Ly : this derived function, by Arts. 11, 13, is

n(x+y) " —nat
‘When z=ay we have A
@rgr - -y=y{t+ar-e-1} -y {pr-a-1,
and this vanishes when n is an odd integer which is not divisible
by 3.

Also, when 2 = ay,
n(z+y) " —na =ny™ {(1+ ) '—‘}~=ny"1 {(_ ﬁ)""‘—a"‘} ;

this vanishes if #—1 is an even inieger and a multiple of 3,
because o®=1, and f°=1. And if n-1 is an even integer and
a multiple of 3, it follows that » is an odd integer and not divisible
by 3, so that (x +y)"—«"—y" also vanishes.

The same results would be obtained by putting Sy for «.
Comptes Rendus......Vol. 1x. p. 360.
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265. The last application we shall make of Art. 262 is to
prove the following theorem.

Let § denote the sum of the series
n-3 (n-4)(n-5) (n->5)n-6)(n-T)
1- —2—- + 3 - [é + ..

an=r—-1)(n—r-2)...(n—2r+ 1)+

+C1)

Then § =,§,, if » is an odd positive integer divisible by 3,
8 =0 if nis an odd positive integer not divisible by 3,

§= —1—10 if » is an even positive integer divisible by 3,
N =7% if » is an even positive integer not divisible by 3.

In Art. 261 put 2y for ¢ and = +y for p, so that S, =2+ 3*;
thus, if » is a positive integer,
n - ﬂ—3 =
@+ 9y ==y =nay @+9) {(@+ 9y 250 oy (e +9)

+(n—4

lg(” -5 (ey)* (@ +y)" "= ... b ).

Let 1, a, B, denote the three cube roots of unity; put z=ay,
thgn the right-hand member of (1) becomes

na(l+a)y” {(1+a)"’—n;—23a(l+a)"‘+ @;ﬂ)—g"—-g) o (l+a)*7—,. }

But aﬁ=l,. and therefore B*=a8’=a; also a+B+1=0, so
that — B=a+1; thus e =(a+1)" Hence the right-hand member
of (1) reduces to

a(l +a)"y"{l 23, (”'41)_3(”‘5) -h

that is n (- B)"yS.
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Also when = ay the left-hand member of (1) becomes

v {(1 ray—a- 1} , that is, 3" {(_,e)-_ o'~ 1} :

Therefore (=B)'—a*=1=n(-B)"S.cceerirrcnrarrnnnns (2).

If n is an odd positiveintegerdivisible by 3, the left-hand member
of (2) is equal to —3 by Art. 262 ; therefore —3 =—nB"S=-nS;
therefore S= 3 .

n

If n is an odd positive integer not divisible by 3, the left-hand
member of (2) is zero by Art. 262 ; therefore S'=0.

If n isan even positiveintegerdivisible by 3, the left-hand member

of (2) is -1, and the right-hand member is »S; therefore S-—-l’a

If » is an even positive integer not divisible by 3, the left-hand
member of (2) is f"—-a*-1, that is 28", since o +/3"+1 -0 ;

thus 28*=nf"S, and therefore S=

It is to be observed that the series denoted by .S’ consists of a
finite number of terms ; in fact if n=2m or 2m + 1 there are m
terms in the series,

Crelle’s Mathematical Journal, Vol. xx. p. 321.

This Article serves to illustrate the present subject: but we
may observe that the result can be obtained more simply by
another method.

It is known, see Plcme Trwymwme&ry, Chapter xx, that
n(n-3 .—

®=3) 2 cos -

~

2cosn0=(2cos€)“-n(2cos€)""+

e 1),n(n—r—l)(n —‘rE2) v (n=2r+1) (2 cos 6"~ +...

Put 0=’%r; hence, transposing and dividing by #, we obtain

S=1(1-2cos”—"
) 3
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266. As another example of the theorem of Art. 260 we will .
shew how to express a"+y"+(—2—-y)" in terms of a"+ay + ',
and zy (x + y).

Let a=g+axy+y’, b=zy(er+y),
and put z for'—z —y.
Then x+y+2=0,
wy+yr+am=ay—(@+y)'=—a,
xyz==b;
thus @, y, and 2z are the roots of the cubic equation
t—at+b=0;

and therefore % (2" + 4" +2") is equal to the coefficient of%; in the
expansion of —log (1 —; + %) .

Now —log (l --':-, + %)

R YR + 1 b)’+ 1 (a_é)....
‘z"’(“ ?) %‘(“'? AN B
b\* b\*
‘We can then expand( —?) ’ ( _?)"" and collect the coeffi-

cient of any assigned power of % .

If n be an even number we thus obtain a formula for
(z+y)+a+9";
and if # be an odd number for
(z+y)-a"-y"
The following are special cases:
(+y) —a" -y =Tab=T(a"+ 2y + ) 2y (x+y),
(x+y)*+a" + y* =2a* + 8ab’
=2 (@ +ay +y") {(" + 2y + ) + &'y (= + 9}
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The general formule may be easily obtained by putting 2m and
2m + 1 for n. Thus it will be found that

L] ” - - - - .
(z+y) 24,-:"'+y"'___gn_ +n13 22 Jr—— (m —3)(m . 4)(m - b) pr—

+ oo+

(m_r_1)(m-r—2)...(m—-3r+l)a..-a'bsr+

2r H
and that
Sm+l_ o amtl_ 9w+l _ -
(x+y) 2ma:; ™ —a™ %+ (m 2{:}(—"” 3) a4
. (m—r— l)(m2-;:; 2)...(m —37) .

267. It has been proposed to make use of the values of the
sums of the powers of the roots of an equation in order to ap-
proximate to a root of the equation; we will give an account
of this method drawn from Murphy’s Treatise on the Theory of

- Algebraical Equations.

Let a, b, ¢,... denote the roots of an equation; suppose them
all real and @ numerically the greatest. We have

;S,,l ™t 4t L
S, a+b"+c"+...

v (g):;j%);l o
1+(%) +(5) +-

Thus if m be taken large enough the right-hand member can
be made to approach as near as we please to @, that is, to the value
of the numerically greatest root.

268. 'We may now examine how far the result of the pre-
ceding Article is modified by the presence of imaginary roots.
Let B+v./—1 and B -vy.—1 be a pair of conjugate imaginary
roots; their sum is 283 and their product is B8°+ 4", which is the
square of their modulus; see Algebra, Chap. xxv.
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Now ﬂ*y./-—l-——p.(‘gt;y:,‘/—l).
Assume E:coso, a.ndz=sin0,

p I

80 that | ta.n0=’—/; and p'=f"+9";

thus p is the modulus, Then the conjugate roots may be put in

the form p(cos @ ,/=1sin6); and by De Moivre’s theorem the
sum of the m™ powers of the two roots is 2u™cosmb.

Thus if the numerical value of the greatest real root be greater
than the greatest modulus of the imaginary roots, % will tend

to a limit as m is indefinitely increased, namely, to the numerically
greatest root; but if there is a modulus of the imaginary roots -
greater than the numerically greatest root, there will be no
limiting value of S—"’é—“ .

Example. 2°—2x-5=0. Here the series S, §,, §,,...... is
0, 4, 15, 8, 50, 91, 140, 432, 735, 1564, 3630, 6803, 15080, 31756,
64175, 138912, 287130, 598699,...... By dividing each term by
the preceding, we observe a tendency to a limit a little greater
than 2, so that we may conclude that there is a real root a little
greater than 2. The example however is not a very favourable
one for the method; for since the product of all the roots is b,
and the real root is rather greater than 2, the product of the
other two roots is nearly 25, These two roots are imaginary by
Art, 172, and as their modulus is the square root of their product,
the modulus is greater than 1-5; thus the modulus is not very

small compared with the real root, and so the expression %ﬂ
approaches slowly towards its limit.

269. We may obtain the product of the two numerically
greatest roots in certain cases, by a method similar to that in
Art. 267,
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For S y=a"+b"+c" +...,
S,

mél
Sppg=a@ ™ " L

Therefore 8,8, ,,— S, =a"0"(a~b)" +a"c"(a—c)"

+0%"(b—c)+...

=a™"'+" 4™+,

" 'We will denote this by u,,, so that

gl 7\ ¢ ra—c\' c" b-c)'
Y, =a ‘(a—b) {1 +b,,.(a—_b> +a“(a——z +..-}o
Hence by proceeding as in Arts. 267 and 268 we may obtain the

following results.

°
m

(1) If all the roots are real —™*! can be brought as near as

we please to the product of the two numerically greatest roots by
increasing m sufficiently.

(2). If there are real roots numerically greater than the
~modulus of any imaginary root, there is a limiting value of

%ﬂ, namely, the product of the two greatest of these roots.

(8) If there is a modulus of imaginary roots greater than the
" square root of the product of the two numerically greatest real

roots, there is a limiting value of 1—:‘"—“—1, namely, the square of that -

modulus, that is, the product of the corresponding imaginary roots.

(4) Thus the only case in which uq;““ can fail to have a limit

is when there is one real root, and only one, numerically greater
than the greatest modulus of the imaginary roots. In this case
that real root can be found by Art. 267,

270. 'We may also obtain in certain cases the sum of two
roots of an equation by a similar method.
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From the values of S, S,,,, S,,, and S,,,, we shall obtain

m+1) Cm
88 is= S 1S sg= "0 (@ + ) (a = 8)* + a™c™(a + c)(a—c)*
+b"c"(b+c)(b—c) +...;
we will denote this by v,. Then v, having the meaning assigned
in the preceding Article, we shall find that there is a limit of

-Z—'l in the cases named in the preceding Article, and that this limit

is the sum of the numerically greatest roots, or-the sum of the two
imaginary roots with the greatest modulus.

271. Thus in cases (1), (2), and (3) of Art. 269 we can get
the product of two roots by Art, 269 and their sum by Art. 270;
and in cases (1) and (2) we can get the sum of two roots by
Art. 270 and the greater of them by Art. 267.

272. Example. «'+a’+4w’—4x+1=0.

Here we obtain the following values:
for 8, S,,...—-1, -7, 23, - 3, - 116, 227, 202, - 15671,...;
for u,, u,,...— 72, — 508, — 2677, — 14137, —74961, — 397421,...;
for v,, v,,...164, 881, 4873, 25726, 136382,...

Here no definite limit is obtained by dividing each term in the
series S, §,,... by its predecessor; we are therefore sure of the
existence of imaginary roots. By dividing each term of the series
u,, U,,... by its predecessor, we obtain quotients which indicate
5:301... as the value of the product of two roots. By dividing
each term of the series #,, v,,... by the corresponding term of the
series u,, %,,... we obtain quotients which indicate —1-819... a8
the sum of these two roots. From these values we can obtain

approximate values of two imaginary roots.

Since the sum of all the four roots of the equation is —1, and
their product is 1, the sum of the remaining two roots is -819...

and their product 5—3;1— ; these two roots are therefore also
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‘Thus we shall find in this example- that the modulus of the
first pair of imaginary roots is about five times as great as the mo-
dulus of the other pair. Hence with the notation of Art. 269 we
shall find that in taking w_ =a"0" (¢ — )" and neglecting the other

terms, the error is about 51—_ of the whole quantity; and hence we

canjudge of the accuracy of our result. For example; we have
given above the values of u_ as far as u, and ,, so that we can
depend . upon having found the product of the .roots with an error

of only about (%,)thpa.rl; of the whole,

XXTL. ELIMINATION.

273. Suppose that we have to solve two simultaneous equa-
tions involving two urknown quantities; there are certain cases
in which the solution can be readily effected. Suppose that « and
y denote the unknown quantities; then if one of the equations
involves =™ and no other power of , we can immediately find =™
from this equation in .terms of y and substitute it in the other
equation ; we shall thus obtain an equation invelving y only, and
the roots of this equation may be found exactly or approximately
by methods already explained.

Again suppose that the equations are represented by 4 =0 and
B=0, and that 4 and B can be readily decomposed into factors;
suppose for example that A= UU'U"” and B=VV’. Then all the
solutions of the proposed equations are obtained by solving the
simultaneous equations U=0 and V=0, U=0and V'=0, U’'=0
and V=0,0'=0and ¥'=0, U"=0and V=0, U”=0and V'=0.
Thus the solution of the proposed equations is made to depend
upon the solution of other equations of lower degrees,

It may happen that one of the factors of 4 is identical with one
of the factors of B; for example, suppose that U and V are iden-

T. E, 13
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tical. Then any values of # and y which satisfy the equation
U=0 will satisfy the simultaneous equations 4 =0 and B=0.
Thus if U involves both 2 and y, we can assign any value we
please to one of the unknown quantities and determine the cor-
responding value of the other, and so obtain as many solutions as
we please, If U involves only one of the unknown quantities we
can satisfy the equations 4=0 and B =0, by giving to that un-
known quantity a value deduced from the equation U=0, and any
value we please to the other unknown quantity.

274. We have already shewn how by the aid of the theory of
symmetrical functions we ean eliminate one of the unknown quan-
tities from two equations, and so obtain a final equation which
involves only the other unknown quantity, 'We are now about to
explain another method of performing the elimination, which
depends on the process of finding the greatest common measure of
two algebraical expressions,

275. Let the two simultaneous equations be denoted by
Jil@ y)=0 and f,(x, y)=0. Suppose that z=a and y=p are
values which satisfy these equations; then the equationsf,(z, B)=0
and f,(x, B)=0 are satisfied by the value z=a. Hence f(z, B)
and f,(x, B) must have a common measure ; this common measure
must be such that when equated to zero it furnishes the value g,
and also any other value or values by which in conjunction with
y =P the proposed equations are satisfied.

Suppose then that we arrange f,(2, ) and f,(z, y) according to
descending powers of z, and proceed in the usual way to find
their greatest common measure, carrying on the operation until
we arrive at a remainder which is a function of y only, say ¢ (y).
Then no values of y will be admissible except such as make
¢ (y)=0; for unless ¢ (y) vanishes f,(x, ) and f,(z, y) have no
common measure and therefore do not vanish simultaneously.
It is not however true conversely that every value of y which
makes ¢(y) vanish is necessarily admissible. For it may happen
that in the process the coefficients of some of the powers of  are
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fractions involving y tn their denominators; and a value of y
which satisfies the equation ¢ (y)=0 may make some of these
denomiinators vanish, and thus introduce infinite or indeterminate
quantities. Suppose, for example, that we have

Si® Y=/ y)+ )

Then if ¢ is an integral expression it will not be rendered
infinite by any finite value of y, and any value of y which makes
¢ (y) vanish, combined with the corresponding value of = deduced
from the equation f,(, y) = 0, will make f,(z, y) vanish. Butif ¢
is a fraction, involving y in its denominator, ¢ may be infinite
when ¢ (y) vanishes, and f,(z, y) will not necessarily vanish when
¢(y)=0 and f(x, y)=0. The same exception may occur when we
carry on the process in the usual way, and introduce factors which
are not functions of « in order to avoid fractional coefficients.
Suppose, for example, that we multiply f,(z, ) by a quantity ¢ in
order to avoid the fractional coefficients which are functions of y;
and suppose we now have

%@ y) =9/, y) + $ (3).
If we find y from the equation ¢ (y) =0, and then 2 from the
equation f, (z, y)=0, the values so obtained must necessarily make

¢f, (%, y) vanish ; but it does not follow that f, (x, ) vanishes, for
it may be that the value of y which has been taken makes ¢ vanish.

Hence we require & rule which shall point out the admissible
solutions, and to this rule we shall now proceed. We shall
suppose that in finding the greatest common measure the usual
precautions are taken to avoid fractional coefficients. We may
assume that in the equations which we shall denote by 4 =0 and
B =0, neither 4 nor B contains any factor which is a function of y
only; for such a factor can be separately considered and all the
solutions found which depend on it. The method we are about to
explain is due to MM. Labatie and Sarrus; we shall give it from
the Algebra of MM. Mayer and Choquet.

276. Let the two simultaneous equations be denoted by
A=0 and B=0; we will suppose that neither 4 nor B has a

13—
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factor which is a function of y only, and that B is not of a higher
degree in 2 than 4. Let ¢ denote the factor by which 4 must be
multiplied in order that it may be divisible by B; let ¢ be the
quotient and 2R the remainder, where r is a function of y only.
Let ¢, denote the factor by which B must be multiplied in order
that it may be divisible by & ; let ¢, be the quotient and » R, the
remainder, where 7, is a function of y only. Proceed in this way,
and suppose, for example, that at the fourth division we have a
remainder which -does .mot contain «, and which we may denote
by 5. Thus we shall have the following identities :

¢4 =¢B + R,

¢ =qR +R,, 1)
R —g R +rR, [T
czlil:&Rm""":a )

Let d be the greatest common ‘measure.of ¢ and 7, let d, be the
greatest common measure of % and r, let dy be .the greatest

common measure of %2’ and 7,, let d, be the greatest .common

measure of 218 and r,. We shall now prove that the-solutions
1g .

of the equations 4 =0 and B=0 will be obtained by solving the

following systems :

<

2:0 and B =0,

20 and B =0,

:l. | e enresanes @)
(z’;=0 and B =0,

r

(?:=O andR,=0; )

that is, we shall shew in the first place that all the solutions
obtained from (2) do satisfy the equations 4 =0 and B =0, and in
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the second place that all the values of z and’ y which satisfy the
equations 4=0 and B=0 are included among. the solutions
obtained from the system (2).

Divide both members of the first identity (1) by d; thus

Now, by hypothesis, C%:md % are both integral funetions of y;

thus S%B is also an integral function; but by hypothesis B has no
factor which is a function of y only, and therefore d must
divide ¢.

The identity (3) shews that the va.lues of z and y which ss.tisfy

the equations -=0 and B=0 make ° 7 4 vanish §: but and & by

hypothesis have no common factor, and therefore these va.lues
make 4 vanish, Hence all the solutions of the equations 3=
and B = 0 satisfy the equations 4 =0 and B=0.

Again, multiply both members of the identity (3) by ¢,, and
substitute for ¢ B its equivalent obtained from the second of the
identities (1); thus

“y """ %p, 9
dA- p R"‘d"le

The expression c—‘%ﬂ’ is integral, for » and ¢ are divisible by

d ; moreover this expression is divisible by d,, for d, divides c—;l

and 7, and does not divide B. Divide by d,; then, for shortness,

utting M for Z and M| for 1224 ar+ 99, , we have

dd‘A MR+d'MR ........................... (4).

1 1



198 ELIMINATION,

Multiply both members of the second of the identities (1) by 5 ;
thus

S p_h
d— R+rR

Since d, will divide 2 and r,, it will divide %' B; but Z is
not divisible by d, and therefore %" must be. Divide by d,; then,

for shortness, putting &V for < y; and &, for & Zl J , We have

% B= s
Gt B=FR GV B (5).

The identities (4) and (5) shew that all the values of = and y

pi | i 8 e,
which make = b ! and B vanish, make ddl 4 and L dd B vanish; but

1 ]

;_f[ and - i ! have no common factor, and therefore all the solu-
1 1

tions of the equations 3 =0 and R=0 satisfy the equations
1
A=0and B=0.

Again, multiply both members of the identity (4) by ¢,, and
substitute for ¢ & its equivalent from the third of the identities
(1); thus

il &h
o A= (0,M,+ %0 M) R+ r MR,

By hypothesis d, divides the first member of this identity, and

also divides r,; it must therefore divide (q,M +c,rl M) R, but

R, i8 not divisible by d,; therefore ¢, M, + %C' M is divisible by d,.
1

Denote the quotient by M ; thus

c¢,C, r
ddl;d"A =M,R, +d—:M‘R"""'"""'"'"'"(6)'
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Multiply both members of the identity (5) by c,, and substitute
for ¢ R its equivalent from the third of the identities (1); thus
SB= (a7, 422 'N)R +r,N R,

‘We may prove as before that the coeflicient of R, is divisible by
d,, and denoting the quotient by N, we have

dd‘éB NR+2 R R ).

The identities (6) and (7) shew t]:at all the values of x and y

which make 5! and R, vanish, make the first members of these

identities vanish; but %% and 5 — have no common factor, and

dd d d,

therefore all the solutions of the equatlons 7 =0 and R, =0 satisfy
2

the equations 4 =0 and B=0.

In the same way as before if we multiply both members of
the identities (6) and (7) by c,, and substitute for ¢, R, its equiva-
lent from the fourth of the identities (1), we obtain

cccc

A AR D W @),
cc,c.C
H:E’j,B:N,R.+3fN. ..................... ),

where M, and IV, are integral functions of # and y. The identi-
ties (8) and (9) shew that all the solutions of the equations %=0

and R, =0 satisfy the equations 4 =0 and B=0.

‘We have thus proved the first part of the proposition, namely,
that all the solutions obtained from the system of equations (2)
do satisfy the equations 4 =0 and B=0; we have now to shew
that all the values of 2 and y which satisfy the equations 4=0
and B=0 are included among the solutions obtained from the

system (2).
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The identity (3) may be written
NA-MB=ZR.rinnnns (10).
Multiply (4) by B and (5) by 4 and subtract; thus
(M B-NA)R+(MB - NA) -3:152, =0,
and therefore by (10),
(M B~ NA)R——-RR =0,
and therefore
MB-NA=-2R v (11).
Multiply (6) by B'and (7) by 4 and subtract; thus
(M,B-NA)R +(MB-NA) 5—:1?,,- 0,
and therefore by (11)
(M B-NAR, +—.‘—!R R,=0,
and therefore
MB-NA=-T00 ceveenereren(12).

dd d,
Similarly from (8) and (9) we deduce

MB-NA _;:;::; ..................... (13).

The identity (13) shews that all the values of # and y which

make 4 and B vanish make 5 % % 2! vanish; so that one of the

17878

factors , and (%’ must vanish. Hence the equations

s
K
St

=0, §=o %-=o and 2£=0,

supply all the admissible values of y.

ls
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Suppose then that #=a and y=f are values which satisfy the
equations 4 =0 and B =0.

First suppose that 3 is a root of the equation £=0 ; then it is
manifest that the values x=a and y=pL satisfy the equations
”r
i 0 and B=0.

Next suppose that 8 is not a root of the equation -2:: 0, but is
a root of the equation d—— 0; since — 3 ” does not vanish when y=p,

1
it follows from (10) that the values ®=a and y =48 make R vanish,
and so they satisfy the equations 7'~0and R= 0.

dl
Next suppose that 8 is not a root of the equation (—:= 0, nor of
the .equation %= 0;. but is- a: root of the equation ;—'= 0; since

1 ]

d i 71 does not vanish when: y=B,.it follows from (11) that the

values z=aand y = B make B, vanish, and so they satisfy the equa-
tions 7= 0 and R,=0.

Next suppose that B is not a root of any of the equations

T 20 Nao T i ion 2=0- si

d 0, a 0, a 0, but is a root of the equation 7 0; since
’é 31 (T’ does not vanish when y =g, it follows from (12) that the
valllx ; =a and y = make £, vanish, and so they satisfy the

equations %: 0 and B =0.
8

This proves the second part of the proposition.
The equation - 7% 0 which gives all the admissible
values of ¥ may be called the final equation in y.
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277 Examples.
(1) 2+3y2"+ By'—y+ Da+y'—y'+2y=0,
- o+ 2z +y'—-y=0.

Here we have x+ 2y for the first remainder, so that »=1, and
y'—y for the second remainder, which is independent of . The

only solutions are those furnished by ‘%= 0 and R =0, that is, by
1.
y'—y=0and 2+ 2y =0.
2) o+ 2y’ + 2y (y—2)x +y'— 4=0,
o'+ 2yx + 2y°— by + 2=0,

The first remainder here is (¥ — 2) (z + y +2); so that r=y -2
and R=x+y+2; the second remainder is y*— 5y + 6, which is

independent of . The solutions are those furnished by 3:0

and B=0, that is, by y—~2=0 and «'+2yx+2y'-by+2=0;

and those fumishedby:%=0 and R =0, that is, by '~ 5y +6=0
1

and z+y+2=0.

The final equation in y is (y— 2)(y*— 5y + 6) = 0.

(8) «*+3yx’-3'+ 3y'x-byx—x+y*—3y'—gy+3=0,
2*— 3yx*+ 3x'+ 3y’r — byxr —x — '+ 3y +y -3 =0.

The first remainder is 2(y — 1) (32*+y'—2y—3); the second
remainder is 8(y*—- 2y)x; the third remainder is y*~2y—3. The
solutions are those furnished by

y—1=0, and 2°- 3y’ + 32+ 3y’x — byx — - 3’ + 3y'+y-3 =0,
by y'—2y=0, and 3z’ +3*- 2y -3 =0, '
and by y*'~2y—-3=0, and x=0.

The final equation in y is (y - 1) (y*- 2y) (¥"- 2y — 8) = 0,
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- (4) (y-2)a'- 22+ 5y—-2=0,
yx’~bx+ 4y=0.

Here we multiply the left-hand member of the first expression
by y to render the division possible without introducing fractional
coefficients. Thus ¢=y. The first remainder is (3y—10)x + '+ 6y.
In order to carry on the division we now multiply ya*— 52 + 4y
by 3y-10, and perform the following operation:

(8y-10)a+5* + 63} (By - 10) ya? — (3y - 10) 5w+ (8y ~ 10) 4y{yx
(3y - 10)y’+ (" + 6y) y=
—(9°+ 6y’ + 15y — 50) = + 12y° — 40y
‘We may either regard the terms in the last line as forming the
second remainder, or we may continue the operation of division as
the remainder is not of a lower degree in « than the divisor; if we
adopt the latter plan we must again multiply by 3y — 10, which

will give rise to the same remainder as if we had originally multi-
plied by (3y —10)". Thus we continue the operation as follows:

—(y'+6y'+15y-50)(3y—10)x+(12y’—40y)(3y—10){—(y'+6y’+15y—50)
— (5P +6y"+15y—50)(3y—10)—(y+65+15y—50) (57+6)
*+125*+873°~200y+100y -

We have here a remainder independent of x, which is the
value of r; and d, here =y; so that the solutions are those
furnished by

y'+12y°+ 87y*— 200y + 100 =0, and (3y - 10)x + y*+ 6y = 0.

278. The following remarks may be made on the process of
Art. 276.

I 'We may always take ¢ such that ¢ and » have no common
factor. For if d be the greatest common measure of ¢ and r the
c
d A
coeflicients, as appears from the identity (3); thus ¢ is not the most

division of -, 4 by B can be effected without introducing fractionat
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simple factor which can be used as a multiplier of 4 before divid-
ing by B. Hence by choeosing the most simple factor we can make
d=1.

Similarly we may take ¢,, ¢,,..., such that ¢, and #, shall have
no common factor, and that ¢, and 7, shall have no common factor,
and so on.

Hence on the whole we may take ¢, ¢,, ¢,, ¢,,... 80 that d=1,
that d, is the greatest common measure of ¢ and r,, that d, is the

greatest common measure of ‘;ﬂ and r,, that d, is the greatest com-

1

mon measure of —f and , and so on,
dldl :

II. Suppose that the remainder independent.of 2 which has
been denoted by r, is zero; then: R, is-a common measure of 4
and B. Hence the solutions of the equations 4=0 and B=0
consist, (1) of an infinite number of values of x and y which may
be deduced from the single equation E,=0, (2) of the finite
number of values of z and y which may be obtained by solving
the equations % =0 and g =0. But since »,=0 it follows from

° 2 2
the identities (1) of Art. 276 that R, divides R and R,. Divide
the identities (3), (4), (5), (6), (7), (10), (11), (12) of Art. 276 by
R,; we thus obtain new identities in which 4, B, B, B, and R, are

A B R R R, ey s
replaced by E, 17,’ E, s 71?: and 7\?,' By means of these identi-

ties we can prove, as in Art. 276, that all the solutions of the

equations % =0 and I’% =0 will be obtained by solving the
£ £ ]
following systems:
r B
7= 0 and Z, =0,
"0 and B o
e 0 and y 0,
LA E, _
a '0 and o 0.



ELIMINATION. 205

For example, suppose o
2+ yx'~ (+ D)z +y-4*=0,
and &’ -y~ (y*+ 6y + 9z + ¥*+ 65"+ 9y =0.

Here the first division gives 2 {yz‘.’+ By + Dz (5P+ 37+ 43/)}
for the remainder, so that we may take

R=ys'+ (3y + 4) 2 — (¥"+ 35"+ 4y).
To perform the second division multiply the dividend by g,
and after one step in the division multiply again by y in order
to continue the division. ‘We then obtain 8 (y*+3y+2)(x-y)
for the remainder » R,. Divide R by @—y and the quotient is
yx +y*+ 3y + 4, and.there is no remainder,

Thus the solutions of the proposed equations consist, (1) of an
infinite number of values of x and y which may be deduced from
the single equation 2—y =0, (2) of the finite number of values
of « and y which may be obtained ‘by solving the equations

Y'+3y+2=0 and yx+y'+3y+4=0.

III. The demonstration in Art. 276 implicitly supposes that
the values of « and .y are finite; it is however possible to have
infinite solutions of .an equation. Suppose for example that
(y — 1) 2" — 2z + y* = 0; .then so long as y is not equal to unity the
two values of  furnished by this quadratic equation are finite. If
y approaches indefinitely near to unity one value of x increases
indefinitely ; see 4lgebra, Chapter xx11. Thus when y=1 we may
say that & has an infinite value.

‘We have not included such infinite values of # and ¥ in our
investigations in Art. 276; these can be easily discovered indepen-
dently. If, for example, we wish to ascertain whether an infinite

value of @ is admissible, we may put % for , then clear of frac-

tions, and suppose 2'=0; we have now fwo equations in ¥, and if
they have a common root or roots, such root or roots combined with
an infinite value of # may be said to satisfy the proposed equations.
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XXIIL EXPANSION OF A FUNCTION IN SERIES,

279. Suppose we have an equation connecting two unknown
quantities # and y. If we could solve the equation so as to obtain
the values of y in terms of #, we might expand each value of y in
a series proceeding according to powers of .  'We are now about
to explain a method for effecting these expansions of the values of
v in series, without having previously obtained the values of y in
finite terms.

The method in its complete form is due to Lagrange; it was
suggested by a process given by Newton which is called Newton's
Parallelogram. For the history of the method, and for full infor-
mation respecting it, the student may refer to Memoirs by Professor
De Morgan in the first volume of the Quarterly Journal of Mathe-
matics and in the ninth volume of the Cambridge Philosophical
Transactions ; from these memoirs the brief account of the method
which we shall give has been derived. An account of Newton’s
Parallelogram will also be found in the translation of Newton’s
work on Lines of the Third Order by C. R. M. Talbot, published
in 1861.

280. Let the equation be denoted by
Ay*+ B ..+ K+ ...+ 8y =0,

where 4, B, ...K, ...S, are all functions of . We suppose
a, B, ...x, ...c to be arranged in descending order of algebraical
magnitude; and throughout the investigation such words as greater
and less, greatest and least, are to have their algebraical meaning,

Let 4 be of the degree a, that is, suppose * the greatest power
of 2 which occurs in 4 ; let B be of the degree b, ......, KX of the
degree £, ...... , S of the degree 8. Our object now requires the
solution of the problem given in the next Article.

281. It is required to determine all the ways in which ¢ can
be taken so that two or more out of the following series of terms
may be equal and greater than any of the rest:

a+at, b+f4, ...... k+xty ...... 8+ at.
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Begin by supposing that ¢ is + o ; the first term is then greater
than any of the others. As ¢ diminishes each term diminishes, but
each term diminishes more slowly than any of the terms which pre-
cede it, Let ¢ bave that value for which a + a¢ first becomes equal
to one or more of the subsequent terms. This is found by taking
the greatest value of ¢ which can be obtained from the equations

a+at=b+p¢ a+at=c+7t, ..atat=k+«ki, ...a+at=8+0t,

that is, the greatest value of ¢ must be found from the set

b-a c-a k—a s8—a
acB asy e —
Let ic_—_a be the greatest of these values, if one is greater than
- K

any of the others; or if several are equal and greater than any of
the rest, let i—’:—: be the last of them; denote ’:;:by T

Let ¢ -continue to diminish from the value = until % + «¢ first
becomes equal to one or more of the similar subsequent terms,
This value of ¢ is found, as before, by taking the greatest value of
¢ which can be obtained from the equations

k+xt=0l+MN, k+xt=m+pt, ...... k+xt=8+ot,

that is, the greatest value must be tuken from the set
-k m-k- s—k

......

=, == .
k=N k—p’ K—0

Let the greatest of these be selected, if one is greater than any
of the others; or if several are equal and greater than any of the
rest let the last of them be selected; let v’ denote the value of the

n-k

k—v '

selected term, which we will suppose to be

Let ¢ continue to diminish from the value 7'; and proceed as
before to find another value =" from the equations

n+vi=p+wl,...... n+vi=8+at.
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This process must be continued until the term ¢ + ot is used in
obtaining a value of ¢,

Thus we see how all the suitable values of ¢ may be found.

282. Suppose now that 4 =a*(a, + 4,), where a, is indepen-
dent of x, and 4, vanishes when « is infinite; similarly let
B=2?(,+B,); and so on. Assume y=a'(u+U), where u is
independent of , and U vanishes when  is infinite. Substitute
these values in the proposed equation involving « and y; thus

watet(a + A4 )(u+ U)*+xb+B(b 4 B)u+ UP+...

oo et + K ) (u+T) ...+ a8tot (84 8,) (u+ U)"=0.

Since this is to hold for all values of z it must hold when « is
infinite; and this will not be the case if the highest power of .z
occurs in only one term. In other words, the sum of the coeffi-
cients of the highest power of 2 must vanish. At this point the
investigation of the preceding Article finds ite application.

By supposition 7 is the greatest admissible .value of ¢, and we
obtain for the part of the expression on .the left-hand side of the
above equation involving the highest power.of ,

gater {(a, +A) (Ut U)ot (b, + K) (4 U)“} .

When 2 is infinite the coefficient of %***" must vanish; this
gives the following equation for finding u,

From this equation values of » must be obtained, and to each
value of % corresponds a value of ¥ in which the term involving
the highest power of z is ux".

In a similar way by considering the value 7’ we arrive at the
following equation for determining ,

From this equation values of % must be found, and to each
value of % corresponds a value of y in which the term involving
the highest power of x is ux’.
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" By proceeding in this way, we shall obtain the highest power
of z in each value of ¥.

Next use one of the pairs of corresponding values of ¢ and
which have been determined ; put y=«'(u+ U), and substitute
this value of y in the original equation involving z and y. We
thus obtain an equation connecting z and U and known quantities,
‘We then apply the method to determine the highest power of z
in the values of U, and thus we obtain the second terms in the
expansions of the several values of y in series proceeding accord-
ing to descending powers of & And this process may be con-
tinued to any extent we please,

283. There is nothing in the preceding method which re-
quires the given exponents a, B, ...0, @, d,...s, to be integers;
they will however be such when we apply the method to deter-
mine the first terms in the case of equations of the kind considered
in the present Treatise.

‘We will now apply the method to an example,

Suppose we have the equation

¥ (& — 3z) + ¥ (&° + 22°) - y (42° + 3) + 32° =0,

The set of f;ermsé——a' c-a

a-fB’ a-y
3-2 5-2 6-2 .
-3’ I-1' i-0° The second and third of these are equal to
1, which is greater than%, which is the value of the first term.

Thus r=1. Hence we put y=x (v+ U), and substitute in the
proposed equation. The highest power of = is then 2%, and the
term involving it is

w'{(u+ U=t (w+T)+ 3}.

s »«s 18, in the present case,

The coefficient must vanish when « is infinite; this gives
uw'—4u+3=0. .
Tt is obvious that % =1 is a solution, and as the derived func-
tion 4u®—4 also vanishes when %=1, the root 1 is repeated.
T. E R %Y
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-Divide u'~4u + 3 by (u —1)*; the quotient is u*+2u+3. Thus
the other values of % are furnished by the equation '+ 2u +3 =0,
:and they are — 1+,/—2. We infer then that the proposed equa-
.tion will only furnish two real values of y in terms of z, and that
x is the first term in each of these values when they are expanded
Jin series according to descending powers of .

‘We may now put 2(1+U) for y in the proposed equation, and
proceed to find the values of U; we will resume this example
presently.

284, The following inferences may be drawn from Arts. 281
‘and 282.

1) If a+o, b+p, ..., k+x,..., 3+0 are all equal, the
quantities 7, 7, 7", ... are all equal to unity, _

(2) If of the quantities a+a, b+ B, ..., k+x, ..., s+0,
two or more are equal and greater than all the rest, then unity
occurs among the set 7, 7, 77, ... For it is obvious that t=1 is
a suitable value in the investigation of Art. 281, since this value
makes two or more of the terms there given equal, and greater
than all the rest.

These two inferences involve the theory of the rectilinear
asymptotes of algebraical curves.

In the remainder of this Article we suppose that a, B, v, ...
are all integers, and that o is zero.

(3) The first equation for % in Art. 282 will have a — x roots,
the second will have x — v roots, and so on; thus on the whole we
get a values for the first term of y, as should be the case, since
the proposed equation is of the degree a in y.

(4) Suppose that the degrees of all the functions of & from
K to XN inclusive are equal and higher than any of the others
Then out of the values of y there will be a — x which begin with
a positive power of «, and x — v which begin with the zero power
of x, and v which begin with a negative power of @. For the
«x—v values of y which begin with the zero power of » arise
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from the fact that by hypothesis the value ¢=0 makes all the
following terms equal and greater-than any which follow them,
k+«t, I+ M, ...n+vt. The a—« values of y which begin with a
positive power of x arise from positive values of ¢, and the corre-
sponding values of u obtained relative to the exponents a, B, ... x.
The v values of y which begin with a negative power of x arise
from negative values of ¢, and the corresponding values of u ob-
tained relative to the exponents v, ..., where ¢ =0.

(5) If A4, B, ... S, are all of the same degree except M, and
M is of a higher degree than the rest, there are a — i values of y
m—a
a— ’
and p values of y in which the highest power of x has the nega-

in which the highest power of x has the positive index

.. m-—a
tive index — .
'L

285. A remark should be made respecting the equation in U
which is obtained when the second terms in the values of y are
required; see Art. 282. Suppose we assume y =2af (u + U), where
w and ¢ are known, and substitute this value of y in the proposed
equation. 'We thus obtain an equation in U of the same degree
as the original equation in y. "However in general only some
of the values of U will be admissible. For, by supposition, U
vanishes when « is infinite, and so we must reject any value of U
which commences with a positive power of 2 or with the zero
power of . These rejected values of U must belong to the other
values of y with which we are not at the moment concerned, since
by supposition we are seeking only that particular value of y
which commences with wa?, or those particuldr values which so
commence if there are more than one, where # and ¢ have known
values.

286. Let us now resume the example in Art. 283. We have
to substitute « (u + U) for 7, and make w=1. 'We shall thus ob-
tain the following result after dividing by =,

U*...) + U*(4a’...) + U*(62%...) - U (102*...) - 2*...=0.
14—
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Here in the coefficients of the powers of U we have only ex-
pressed the highest powers of 2, Form the fractions according to
Art, 282; thus we obtain

5-5 b5-5 4-5 4-5
4-3° 4-2° 4-1° 1-0°

Here the first two terms are zero, and are algebraically greater
than the others; but a zero value is to be rejected as explained in
the preceding Article. 'We therefore proceed in the manner of
Art. 281, supposing that r=0, and that we have to find 7.
Thus we form the fractions ’

>

-5

'S

-b
-1’

Of these the second, which is -—%, is algebraically the greater.
Accordingly we put U =uz"3, and to find u we obtain the equa-
tion 6u’—2=0, so that u=*+/3. Thus the first term of U is
:/lﬁ or — 7%-_3 Therefore, as far as we have gone, we have

(]

[

y=z(l+——l~+ ) or y=z(l - -—1——+ )

o - N

287. The nature of the values of U may be seen by examin-
ing the formation of the general equation in U. Let us first put
«'u for y and then change  into w + U. When we put zfu fory
the left-hand member of the proposed equation will take the form

X, (0) 2™ + X, (w) 2™ + x,(w)a™ + ...

where #n,, 5, n,, ... are supposed in descending order of magnitude.
Denote this expression by ¢(x); then the equation in U will be
¢(u+ U)=0. We will suppose the exponents of y in the pro-
posed equation positive integers. The equation in U may be
written ’

¢ U+, _ U '+¢, T *+...+pU+¢=0,

where ¢, stands for Il;'ﬁ‘(u), and similar meanings belong o
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Po—ys Pogy - Now if no special value were assigned to u, the

coeflicients of the several powers of U in the above equation would -
be functions of w, all of the same degree, namely #,, Thus by
Art, 284 the values of U would all commence with the zero power
of . But if u be such that x,(x) =0, the function ¢ is of a lower
degree in 2 than the function ¢, ; hence one of the values of U
begins with a negative power of x, namely, with z-(m-n), "And
this is the value of U which we are seeking, because x,(u)=0 is
the equation from which u is to be’found according to our process.
If however the equation yx, (») =0 has equal roots, we obtain more
than one suitable value of U. Suppose, for example, that the
particular root which we have selected occurs four times; then
¢, will be of the degree n, in x, while ¢,, ¢,, b,, ¢, Will only be of
the degree n,. Hence, by Art. 284, there will be four suitable
values of U, each commencing with 2 raised to the negative

1
power — % (n,-n,).

‘We have here supposed that x,(«) and its derived functions
do not vanish for the value of % which is considered.

288. In what we have hitherto given we have investigated
values of y proceeding according to descending powers of . Thus
if we illustrate our results by geometry, and suppose curves traced
corresponding to the values of y in terms of =, the first term of
the series which we have found for a value of y will exhibit the
nature of the curve at a great distance from the origin.

But the method may also be applied to find the values of y
proceeding according to ascending powers of x, so that the first
term in a value of y will exhibit the nature of the curve close to
the origin, when the curve passes through the origin.

In order to apply the method to find the values of y proceed-
ing according to ascending powers of # we need only make the

following changes. 'We must suppose e, f3, ... o arranged in as-
cending order of algebraical magnitude; and 4, must vanish when
o vanishes and not when z is infinite, 8o that 2* must be the lowest
power of z in 4 and not, as before, the kighest power; a similar
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change of meaning must be made in B, and 5, and in the remain-
ing similar quantities.
Then when ¢ is + o the following quantities are in ascending
order of magnitude, a+at, b+ ¢, ... k+«xt, ... 8+0t.
As before, the greatest value of ¢ is to be found from the
equations '
a+at=b+ft a+at=c+yt, ...a+ab=k+xl, ... a +at=23+at.

XXIV. MISCELLANEOUS THEOREMS.

289, In the present Chapter we. shall collect some miscel-
laneous theorems of interest and importance, which will exemplify
many of the principles established in the preceding pages.

To prove that the following equation has no imaginary reots,

4 —BL+L’+ + LS A=0.
z—a z-b ok AT

It possible suppose that p +¢./—1 is a root; then p—gq,/—1
is also a root.. Substitute successively these values for z and sub-
tract one result from the other; thus

{ 4° + 5 + c__ + +L- =0
Gmarer* Grorer  Grore TR
and this is impossible unless ¢= 0.

Or we may prove the theorem thus. Denote the left-hand
member of the proposed equation by ¢(x), and suppose a, b, c, ...k
in ascending order of algebraical magnitude. When z is a little
greater than a the first term of ¢(x) is very large and posi-
tive, and by taking x sufficiently near to @ we may ensure a
positive value for ¢(x). When « is a little less than b the second
term of ¢(x) is very large and negative, and by taking « suffici-
ently near to b we may ensure a negative value for ¢(x). Thus
¢ (x) changes sign for some value of = between a and b. Similarly,
¢(x) changes sign for some value of x between b and c¢; and
8o on. In this way we may shew that the roots of the equation
¢(x) =0 are all real and unequal.
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The form in which the equation ¢ (x) =0 is presented, enables
us to recognise more easily the property we had to prove. But
our result will not be affected if we clear the equation of fractions,
80 as to bring it to the standard form; that is, in fact, if instead
of ¢(x) = 0 we consider the equation

¢ (=) (@ -a)(@—b)(z—c) ... (®—k)=0.

290. Required the values of the n quantities «,, ,, ,, ...,
from the following % equations,

%+, +2, +...+2,=0,

%, +ax, +ax, + ... +ax,=0,
) 3 3 8, _

a'r +a’c,+a’c+ ... +a’x =0,

n—-g "2, _
%, + .. + a2 =0,

n—2, =g
", +a,"", + a,

_ 6"z, +a " 'x, + 0w+ 1+ 0 e = b
Multiply these equations respectively by c,_,, ¢,_; .- ¢, ¢, 1;
where c,_,,¢,_,,.-- 6, ¢,, are at present undetermined, and add the
results. Assume c,_,, ¢, ,,...¢,, ¢,, such that the coefficients of

x,, @,...%,, vanish; then

@ (e, +ca " +ea Tt + .+ _a +c,_)=b.
From the assumption with respect to ¢,_,, ¢,_,,...¢,, ¢,, it follows
that a,, a,,...a, are the roots of the equation

's? T8

2 e 4ol e, _g+e,_ =0,
Therefore the left-hand side of this equatjon is identically equal to
(z—a)(z~-a,)...(2~a)

Hence substituting @, for 2 the equation which determines
may be put in the form :

) z (0, -a)(2,~a,)...(a,~a) =0
Thus «, is known; and the values of «,, ,,...%,, can be deduced
by symumetry.
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291. Required the values of the # quantities x, ¥, 2,... from
the following % equations,

z y 2 _

kl—a+k,—b+lcl-c+ .._'l,
z y z

k,—a+k,—b+k.—c+' =1
x y z -1

‘We may regard the n quantities %, k,,...%, as the roots of the
single equation

LI A =
| —atiost et 1,
which is of the n* degree with respect to % Assume k=a —¢; it
will follow that a - %,, a—%,, a—%,, ... are the values of the roots
of the following equation in #,

x y z _
1+t+t+b—a t+c—a =0

Multiply by the product of the denominators so as to put this
equation in the usual form ; thus

C+Ar AL+ ... +4,=0,

where the term independent of ¢, that is 4_, i8 (b — a)(c —a)...
Therefore, by Art. 45,
(a=k)(a-k)(a-k,)...=(-1)z(b-a)(c—a)...,

. __(a=k)(a=k)(a~F)...
that is, = = @—o)
From this expression the values of v, z,... may be deduced by
symmetrical changes in the letters a,'d, c...
Grunert’s Arckiv der Mathematik und Physik, Vol. xxu1. p. 235,
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292, To prove that the sum of the products of the » quanti-
ties ¢, ¢’ ¢’ ...c" taken m at a time is
(c=1)(c"'=1)...(c"*'-1) c"_"z,ﬂ’
(e=1)(c"=1)...(c"-1) :

Assume

(z+e)(@+c")...(x+0)=a"+pa™ ' + . +p @+ p(l).
Then by Art. 45 we have to find the value of p_. In (1) change
« into ;f and multiply by ¢*; thus
(z+")(z+ ) (+*) =2+ piea” + oo +p,_ T+ p " (2).

From (1) and (2) we obtain

T+ +p 2+ +p,_ D
o 1
=(@+0)(z* +pox*t +... +p,_ 'z +p ).

Equate the coefficients of #*~™*' in the two members of this iden-
tity; thus
pﬁl+c’+l _pmc'+p-—lcp;

m-1

nemtl
therefore D= Py ‘%?-:i—l) ......... (3).

(4

And p=c+c+...+c= :._—11); then by means of (3) we can

determine successively p,, p,, ,,...; and thus we shall arrive at
the required value for p_.

* 293. Let there be » quantities g, b, ¢,...; let 8, denote their
sum, g _, the sum of any n—1 of them, and so on; and let §
denote

(@) = 3(e,) + 38, ) — oo + (= 1)7"3(s)"
Here 3i(s,)” denotes the sum of such terms as (s,)" formed by

taking all possible selections of m quantities out of the n quanti-
ties @, b, ¢,... Then we shall shew that §=0 if r is less than =,
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and that § is divisible by abe... if r is equal to n or greater
than »; and in particular that .
S=|nabe..., when r=n,

[n+1

and S=-?(a+b+b+...)a1m..., when r =n +1.

‘We may separate § into two parts, one part in which @ occurs in
every term and another part in which a does not occur at all. We
may write the former part thus,

(8:-)' - 21 (8.-1)' + 21 (8’_.)' =t (— l)--la"
and the latter part thus,

=3+ 5 () e+ (S 1) R ()
where 3, indicates certain of the terms formerly included under 3,

and 3, indicates the remainder. Now suppose a=0, then §
vanishes; for we have in this case

(’.)' = 2:(‘.—1)' =0,
21 (8.-1)' - 2: (an—l)' = 0,
1 (Bang) = 3(8,) =0,

........................

Similarly, we may prove that S vanishes when 5=0, and when
¢=0, and s0 on. Thus we conclude that S is in general divisible
by each of the quantities g, b, c,... and therefore by their product.
But the product will be of » dimensions, and therefore if § be of
less than » dimensions it must be identically zero, And as § is
of r dimensions it follows that S vanishes when r is less than ﬂ,
and is divisible by abec... when # is not less than n.

‘When r=n we have therefore S= Aabe..., where A is some
numerical quantity which is to be determined. To determine A
suppose that g, b, c,... are all equal to unity; then S becomes

n*-n(n-1)+ n(n l)(n-2)

that is |n, by Algebra, Chapter xxxIx.
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Next, suppose »=n +1. Then S is divisible by abe...; and as
S is of n+ 1 dimensions, it must have a factor which is of one
dimension and symmetmca.l with respect. to @, b, c...; this factor
must therefore be a+b+¢ +.

Hence § = pabe...(@+b +c +...), where  is a numerical quan-
tity which is to be determined. To determine u suppose that
@; b, c,... are all equal to unity; then S becomes

wt —n(n- 1)"“ + n____(ln—21) (n ) M

and this must equal un. Hence by Algebra, Chapter xxXIX: We
[n+1

have p = 7+

294, Let [¢], denote e¢(c—1)(¢~2)...(c —»+1), whatever ¢
may be; then will

[a+ 8], =[a], +nla], b+ 2P @], 8], +...+ oL,

For suppose that a is a positive integer; then we know that this
theorem is true for any positive integral value of b, for it follows
by equating the coefficients of " in (1 +)*** and in (1 +2)*x (1 + )"
Hence since this is true for more than n values of b it is iden-
tically true by Art. 39; that is, when @ is a positive integer the
theorem is true for al/ values of b. Then since it is true for any
positive integral value of a, it is true for more than n values of a,
and therefore by Art. 39 it is true for all values of a.

Thus we are able to prove the proposed theorem, by assuming
the Binomial Theorem for a positive integral index and also the
Theorem of Art. 39, The theorem is sometimes called by the name
" of Vandermonde. The theorem is required in Euler’s proof of the
Binomial Theorem for any index, and as is well known, is there
established by an appeal to the principle of the perm«mema of
equivalent forms.
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295. Let ¢(z)=0 be an equation which has a root a, so that
We may suppose ¢ (x) = (x — a)y(x); then

S0 1-2)ven
logiiﬁln log (1 -g) +log y(x)
=—(9- ;;. )+108¢(w)

Suppose that log —— 4’( 2) can be expanded in a series involving posi-

tive and negative powers of z, and that log ¢ () can be expanded
in a series involving only positive powers of = ; then assuming the
identity of the two members of the equation we obtain this result,

— a = the coefficient of in the expansion of log'“ =)

296. The theorem of the preceding Article is given by
Murphy in his Theory of Equations and illustrated by examples ;
see his pages 77...82. The demonstration of the theorem is
imperfect, since the infinite series may be divergent; but the
theorem is of some importance. It had been noticed before Mur-
phy drew attention to it; see De Morgan’s Differential and Inte-
gral Calculus, pages 328 and 644, and also the Philosophical
Magazine for June 1848, page 421; according to the latter work
the theorem was given by Lagrange in 1768,

It appears that the process furnishes the numerically least
root of the equation to which it is applied; and some reason may
be assigned for this, at least when all the roots are real.

For suppose that the roots of the equation ¢ (x)=0 are
a, b, c,... in ascending order of magnitude, Then -

¢ (x) =4 (x- a)(x-b)(z-¢c)......,
where 4 is a constant,

Thus "’—i’”_)=3( )(1 )(1--) ...... ,

where B is a constant.
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Since @ is the numerically least root of the equation ¢(x)=0,
if  lies between a and b the expansions of

log (1 -—‘—1) , log(l —%’),‘ log (1—9), ......

¢()

be developed in the required form in a manner which is a.nthmeti-
cally intelligible and true. Then as z can have any value between
a a.nd b we may, by a natural extension of the theory of indeter-

will all glve convergent series; and hence we see that log ==— can

mmate coefficients, equate the coefficient of m the expansion of
logd’( )'bo -a

In the same way as the coefficient of é in the expansion of

og‘%x)isseentobe—a, we see that the coefficient of;l,—is—%;

thus we can determine the value of any assigned integral power of
the numerically least root of the equation ¢(z)=0.
297, For example, required a root of the equation
o +ex—-b=0.

Herei(—z—c- +w"",
4’() logc+log(l——+x'_l)

=logc-z—%z’——z‘- ey

where z=_ _“_--_l— (1_5)
cx

‘We have now to pick out the terms involving ;; we shall obtain

such a term from 2, from 2**, from 2™*!; and so on. Hence we
shall find for the root the series
b b8 200" 3n(3n-1)5""°

c cu+x + _2— é:?ﬂ '. 27 3 c"" +oeee
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298. Let ¢(x)=0 be an equation of which a,, a,,...a,, are
roots, so that we may suppose

$(@)=(z-0a)(z-a)...(z-a,) ¥(z);

then "’T(fl: (1-%) (1— %) (1-“—;) (@)

Take the logarithms of both sides; then, as in Art. 295, we infer
that — (@, +a,+... +a,) is equal to the coefficient ofé in the

expansion of log '—#g-) . 8ee Murphy’s Theory vf Equations, pages
82 and 83,

As in Art. 296 we may conclude that the process will give the
sum of the numerically least m roots,

299. 'We shall now give some theorems relating to the decom-
position of a rational fraction into other fractions, which relatively
to the original fraction are called partial fractions. :

Suppose that ¢ (x) is a function of = of the n'* degree; let the
roots of the equation ¢(z)=0 be all unequal and let them be
denoted by a, b, ¢,...k. Let y(x) be a function of 2 which is of the
(= — 1)* degree or of a lower degree. Then the following relation
will be identically true,

ye@) _ 4 B O K

provided proper constant values be assigned to 4, B, C,...K.

Forin order that this relation may be identicaily true it is neces-
sary and sufficient that the following should be identically true:
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The members of this equation are not of a higher degree than
that expressed by n— 1, hence the relation will be identically true
if n values of = can be found for which it is true; see Art. 39. And
by properly choosing 4, B, C,...K the relation can be made true
for the n values q, b, ¢,...%, of 2. For suppose =a, then all the
terms on the right-hand side vanish, except that which involves
4; and we obtain .

V-4 {22}
that is, by Art. 74,
V(@) =4 (a)

This determines 4; and similar values will be found for
B, C,...K,

300. Next suppose that y(z) is not of lower degree than ¢(x).
By common division we may obtain

Y@ _ iy 4+ L@
HERRCR AL
where F () and f(z) are integral functions of «, and f(2) is of a

lower degree than ¢ (x).  We may then. decompose '; g ; into

partial fractions in the manner shewn in the preceding Article.

Since we have

¥(@) =$(@) F (@) +/@);
it follows that y/(x) and f(x) have the same value when ¢ (z) vanishes.
¥(x)

Hence the partial fractions corresponding to =)’ when determin-

ed by the method of Art. 299, can be found without previously
dividing y(z) by ¢(x); we must however not omit the part F(x)

if we wish to obtain the complete value of IE ;
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301, Various Algebraical identities may be established by
means of the principles of the preceding two Articles,

For example, if # be any positive integer

L _1 =1
@+1)(@+2)..(x+n+1) z+1 la+2
n(n-1) 1 (=1)r
1.2 z+3 ' z+n+1’

For we may assume that the left-hand member can be put in
the form

___Al _él 4, 4, R
z+l z+2 T zrs Tt e 1)

and then we may determine 4,, 4,,...4_, : this is effected by
multiplying both sides by

(z+1) (z+2) ... (x+n+1),

and then substituting for 2 in succession the values —1, -2, ...

Again, if n be any positive integer

1 n n(n—1)
z+1 @i @+2)  @r)@+2)(@+3) "
(=1)"|n_ 1

YD) (@+9)... @rn+l) mtn+l’

For we may assume that the left-hand member can be put in
the form

4, 4, 4, A", .
ac+l+x+2+w+3+ """ trtn+1’

multiply both sides by (x+1)(x+2)... (¢+n+1) and then sub-
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stitute for 2 in succession the values —1, —2,.... Thus we shall
obtain :

‘A1= (1 - 1).=0’
4,=n(1-1)"=0,
n(n—1)

Ay=—g—5 (1-1y7*=0,

and by proceeding thus we find that 4, 4,,... 4_ are all zero, and
that 4_, =1.

Again, if m be any positive integer

(1 m y
1-9) {x+l+(m+l)(z+2)l—y )
m(m - 1) v\
*+ (e +1)(x+2)(x+3) (1 —y) Hee

[m ¥y \"
Y@ @r2) . (Fim+1) (—1 - 3,) }

1 _my mm-1) ¢ ()Y
...... P

T+l x+2° 1.2 z+3

This may be demonstrated in the way already exemplified by
assuming that the left-hand member can be put in the form

4, , 4, P .
cx+]l 2+2 x+3 7T

then we deduce
4,=(1-y+y =1,
d,=—my(l -y +y)" ' =—my,

m+1
x+m+1

and so on.

Or we may establish this result by the aid of the second ex-
ample. For if we expand the left-hand member in powers of y,
and compare the coefficients of 3" in the two sides, we find them
equal by the second example.

302. We have in Articles 299 and 300 given separately the
decomposition of a rational fraction when its denominator has
no repeated factors, on account of the simplicity,of the result; it

T. E. &)
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is however only. a particular case of the general mvestxgatlon to
which we now proceed,

Suppose that ¢(2) is a function of # which involves repeated
factors ; for example, let -

$(2) =P, (2~ a) (@ - ) (@ —c)'...(x - &),
and let y(x) be any other function of #. Then the expression
¥ (=)
$(@)

(1) Any factor 2 — % which is not repeated will give rise to a

may be resolved into the following parts.

single term a% .

(2) The factor (x— a) will give rise to the series of terms
4 + 4, + 4, + + A
—ay (z—a) (@—a)—* "7 z—a°
A similar series of terms will arise from each of the other
repeated factors.

(3) There will also be an integral expression if y(z) be not
of a lower degree than ¢ ().
For suppose ¢(x)=(x—a)"x(x); then we have identically,
whatever 4 may be,
Yo A4 y@-dx)
$@) G- T 4@ _
Now let 4 be determined by the equation y(a) — Ax (@) =0; then

§(x)—Ax(«) vanishes when x=a, and is therefore divisible by z-a
Therefore with this value of 4 we may put

¥ (@)~ 4x (2) = (z- a)¥, (2),

and therefore

v __4 v, (z)
@ @ @ x@
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In the same way we may decompose the last fraction and
obtain
¥, (=) 4, + ¥, (%) .
@) "x@®) @-a " @-a)"x@)
By proceeding in this way the required result is established,

303. It is easy to shew after the manner of Art. 37 that there

¥ (=),

¢ ()
a series of partial fractions each of which involves only one distinct

factor in its denominator. Hence we infer that the result obtained
must be the same in whatever order the operations are conducted,
that is, whatever factor we first consider.

is only one mode of decomposing -, into an integral function, and

Practically the best way to determine the numerators of the
partial fractions will often be the following. Put 2=a +4; thus

y@ __ v y(@a+h)
(m) (a: a) x(x) =W x(a+ k) ;

(a+h),
x(a+h)
and according to the notation already used the result must be

now expa.nd by some algebraical method ~——— ¥ in powers of A,

LALLL Sy WS TR
x(a+7)
That is, 4, must be the coefficient of A™ in the expansion of

Y (a+k)
x(a +4)

Similarly, the numerators of the other pa.rtml fractions may be
determined.

according to ascending powers of A.

304, In the next two Articles we shall give some theorems
relative to limits of the roots of an equation; they were communi-
cated to the writer by the late Professor de Morgan, in a letter
dated Feb. 6, 1858,

15—
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305. The following theorem relative to limits of the roots of
an equation will be found to include two of those which are given
in Chapter viL., and to add something to them,

Let f(x)=pa"+pa" + ...+ p,_ & +p,; then we proceed to
investigate a superior limit to the positive roots of the equation

S (@) =0.

Let a be equal to the coefficient of the first term, or to any-
thing less; let & be equal to the least of the positive coefficients
which immediately follow, and precede any negative coefficient,
or to anything less ; let ¢ be equal to the numerical value of the
numerically greatest negative coefficient, or to anything greater.
Suppose that 2" *"' is the first term with a negative coefficient.
Then f(z) is certainly positive when the following expression is
positive,

ac”+b (@4 L&) —e( ™ 2+ 1),
that is, when the following expression is positive,

ax.+bmn_xn-l: cwn—k_l.
z-1 x-1 "

that is, supposing x greater than unity, when
{a(a:— 1)+b}x“—(b+c).z"‘"+c
is positive, that is, @ fortiori, when
{a @-1)+ b}a."—(b+c)

is zero or positive,

(1) Take =0, and let ¢ be the numerically greatest negative
coefficient ; then f(x) is positive if a (x — 1) — ¢ is zero or positive

that is, if x=1+ f—‘ or anything greater, See Art. 87,
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(2) Take 5=0, and let ¢ be the numerically greatest negative
coefficient ; then f (z) is positive if @ (z—1)x"—¢ is zero or posi-
tive, and therefore a jfortiori if a (z—1)*"—¢ is so; that is, if

1
=1+ (2)"_;‘ or anything greater. See Art. 89.

(3) Put zero for a; then f(x) is positive if da*— (b+c) is
1
zero or positive, that is, if x= (I + %)‘ or anything greater, This

is a new limit, which may be less than that in (2) when b can be
taken greater than p,.

(4) If a is not greater than b we have f(x) positive if
{a(x— 1)+a}x’—(a+c)

1
is zero or positive, that is, if z = ( 1+ 2)"7‘ or anything greater,

This furnishes a less limit than that in (3) whenever b cannot
be taken so great as p,.

(5) Suppose that @ is not less than ¢; then from (2) we
obtain 1+ I'L", that is 2, as a superior limit,

(6) Suppose that b is not less than c¢; then from (3) we
obtain 2‘li as a superior limit,

(7) Suppose that neither @ nor b is less than c¢; then from
(4) we obtain 2&l as a superior limit.

306. We shall now give another theorem oﬁ the limits of
the roots of equations. It depends on the mode of calculating
the value of an expression of the form ax®+ ba"~ + cx"~* + ... for

an assigned value of «, which we have explained in Art. 5. If
denote that assigned value the calculation determines successively

af, ab+b, (ad+b)6, (af+8)0+c,......
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Let f(2)=0 be the equation. Arrange f(z) in groups, each
group consisting of all the positive terms which come together
followed by all the negative terms which come together before
the next positive term. Thus, writing only the signs, supposmg
we have the succession,

b mm b b — o —— 4,
then they will be arranged in groups thus,
(F+===) (=) (F+====), (+=), +

Let the first group involve the powers of x from «* to o™ .
both inclusive. Suppose the factor 2** removed by division.
Take 6 on trial as a value of x, and calculate the value when
#=0 of the quotient after division by «*~*. If the result is
positive denote it by 4 , and put 42" at the head of the next
group. Suppose this group to extend to the term 'involving 2*~",
After 42" has been prefixed to the second group divide by ™~
and find the value of the quotient when #=6. If the result be
positive. denote it by 4,, and put A"~ at the head of the next
group; and so on. If all the results be positive up to the last,
0 is a superior limit of the positive roots. The number. 6 to be
tried may be selected by one of the easier rules, remembering
that it is not likely a number will be required much higher than
the superior limit found from considering only the first group.

For example, take an equation of the 18% degree. We will
write down coefficients only, in groups,

(7+4+3-80-100) +(20-100) + (3 + 2+ 1 —-40-1000 — 1000)
+ (70— 8000 — 2000) + (1000 — 400 — 4000).

Here from considering only the first group we see that 2 is
too small; we will try 3. We proceed to calculate the value
when z =3 of

Ta* + 4a® + 32" — 802 - 100
7 4 3 -8 =100
7 25 78 154 362

Thus 4, = 362.
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‘We proceed to calculate the value when z=3 of
3622" + 202 —100
362 20 -100
362 1106 3218
Thus 4,= 3218,
‘We have next to calculate the value when =3 of
3218a® + 3x® + 2z* + a® — 402" — 10002 — 1000.

It is however sufficiently obvious now that we shall obtain posi-
tive results to be denoted by 4,, 4,, and 4;; so that 3 is a superior
limit of the positive roots. '

In this example the rule of Art. 90 would give 1 +§1919§,

which is more than 70; and the rule of Art, 89 would give
1+ JS_(;()Q, which is more than 11.

The following is a brief statement of the theorem. Divide
the whole expression into successive positive and integer lots,
4,-B,+C,—D,+...; p, q, 7, 8... representing the last expo-
nent of x in each lot. - Divide 4,— B, by 27, and ascertain a
value of , say A, which makes the quotient positive ; let / be this
quotient. Divide & + C, - D, by o, and ascertain a value of z,
say p, which is perhaps not greater than A but must not be less
than A, which makes the quotient positive ; let m be this quotient.
Continue the process with ma’ + E,—F,, and 8o on to the end.
The last value of z used is greater than any root of therequation ;
and the first value of x, namely A, is very often the last also.

XXV. CAUCHY'S THEOREM.

307. We shall devote the present Chapter to the demonstra-
tion of a remarkable theorem given by Cauchy, the object of which
is to ascertain how many roots real or imaginary lie within as-
signed limits ; in fact, the theorem proposes to effect with respect
to the roots in general what Sturm’s theorem effects with respect
to the real roots.
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308. Take any rectangular axes, and let x, y be the co-ordi-
nates of any point. Let ¢ (z) be any rational function of z;
then ¢ (z+y 4/ —1) can be expressed in the form p+¢,/—1. A
point whose co-ordinates are such that p and ¢ simultaneously
vanish, will be called a radical point. Describe any contour
ABCD ; then the number of radical points which lie within this
contour will be given by the following rule, Let a point move

round this contour in the positive direction, and note how oﬁ:en%

passes through the value 0 and changes its sign; suppose it to
change & times from + to —, and / times from — to +; then the

number of radical points which lie within the contour is (k~ 1)

"0 4

It is to be observed that the contour is supposed to be so
taken thaf no radical point lies on it ; also if any imaginary root
of the equation ¢ () =0 is repeated two, or three, or more times,
we consider that we have two, or three, or more radical points,
although these points coincide. By movement in the positive
direction we imply that a radius vector drawn from a fixed point
within the contour to the moving point passes over a positive
angle equal to four right angles, while the moving point passes
round the contour.

The theorem is proved by first considering the case of an in-
finitesimal contour, and then the case of a finite contour,
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309. Take any point @, which is not a radical point, within
the contour, and describe an infinitesimal contour including G.
Suppose that the moving point passes in the positive direction
round this infinitesimal contour; we have then four cases to
consider. -

(1) Suppose that neither p nor ¢ vanishes within or on the
contour, Here g does not change sign at all during the circuit ;

80 that the rule asserts that there is no radical point within the
contour, and this is true because p and ¢ do not vanish,

(2) Suppose that ¢ does not vanish within or on the contour,
but that p does. In this caseg may change sign as the moving

‘point passes through a position for which p vanishes. But at the
end of the circuit p has resumed its original sign, and thus there
must have been the same number of changes from + to — as from
—to +. Hence & and [ are equal, and the rule asserts that there
is no radical point within the contour, and this is true because ¢
does not vanish.

(3) Suppose that p does not vanish within or on the contour,
but that ¢ does. In this easeg never vanishes, so that the rule

asserts that there is no radical point within the contour, and this
" is true because p does not vanish.

(4) Suppose that both » and ¢ vanish within or on the con-
tour. If they do not vanish simultaneously we may divide the
space bounded by the contour into other spaces, for some of which
p alone vanishes, and for others ¢ alone vanishes; thus we obtain
two or more contours instead of one, and these fall under the
cases (2) and (3). We have then only to consider the case in
which p and ¢ vanish simultaneously, so that there is a radical
point within or on the contour. And we may suppose the con-
tour so small that there is only one distinct radical point within
it, and none o it.
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Let a, b be the co-ordinates of this radical point; and put

@=a+rcosf, and y=>5+rsin §; thus _
z+yJ—T1=a+b /=1 +r(cosd+,/~1sin),
=a+b /-1 + v, say.

Suppose now that the equation ¢(z) =0 has the root a + 5 ,/—1
repeated m times; then ¢(a+b,/—1+v) takes the form
cv™+cv™ £ 0™ + ..., where ¢, ¢, ¢,,... are certain imaginary
expressions of the standard form; so that we may suppose

c=h(cosa+,/—1sina), ¢ =4 (cosa,+/—1sina),..

Hence, by De Moivre'’s theorem we shall obtain

p _hcos(mb+a)+hrcos{(m+1)f+a}+hricos{(m+2)0+a}+...
g hsin(mf + o) + A sin{(m + 1)0 +a,} +h"sin{(m+2) 0 +a}+...

‘We may suppose # so small that the number of changes of sign
shall be unaffected by »; that is, we may proceed as if g =cot(mf+a)

And as mf increases from one multiple of = to the mext
multiple of , there is always one passage through zero accom-
panied by a change of sign from + to —. Thus we have %=2m,

and 1=0; 5o that 3 (k1) =m, acoording to the rule.

310. The theorem is thus proved for an infinitesimal contour; .
and we shall now consider the finite contour ABCD. Let the
contour be divided into an indefinitely large number of infini-
tesimal contours, these contours being so taken that no radical
point falls on any of them. Then the number of radical points
within 4BCD can be found by making a point describe all these
infinitesimal contours, and adding together the numbers furnished

by the rule, which we may denote by % % (k7). But the same

result will be obtained if we omit all the interior lines of division,
and retain only the boundary ABCD. For each point on any
interior line of division belongs to fwo contours, and is therefore
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traversed by the describing point twice and in contrary directions;
so that, if in one case there is a change ing from + to —, there is
& change in the other case from — to +, and on the whole the
number 13 (k-7) is unaffected, Henco the interior lines of

division may be omitted, and the meving point constrained to
describe the contour ABCD alone,

Thus the theorem is proved.

311. We can now immédiately deduce the theorem that an
equation of the »™ degree must have » roots. Suppose the contour
ABCD to be a circle with the origin as centre and an indefinitely

large radius. The value of Iq—,’ will now depend only on the term in-
volving the highest po‘we‘rbf zin ¢(2); and if we suppose that term

to be A (cos a+,/— 1 sin a)a", we shall have§=mt (0 +a). Thus

wo shall obtain &= 2n, and =0; g0 that 3 (k~1) =n.

312. 'We have drawn the figure in Art. 308 so that if from any
point within the contour a radius vector is drawn in one direction
it meets the contour in only one point. The figure however need
not be so restricted; it may be such that a radius vector drawn in
one direction may meet the contour any odd number of times.
Hence as a point moves round the contour the radius vector drawn
to the moving point from any fixed origin within the contour will
not always revolve in the same direction. By the positive direc-
tion of movement of the describing point we must understand that
for which, although the vectorial angle may not be always increas-
ing, yet on the whole the positive angle 2w is gained in the
circuit.

The demonstration will not be affected by the admission of the
kind of figure here contemplated; for the infinitesimal contours
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may still be supposed, if we please, ovals which have only one radius
vector drawn in any definite direction from a fixed origin. Or if
we do not adopt this restriction we must observe that at the end
of Art. 309, as § now does not always increase, there may be more

values of 6 for which g vanishes; than we contemplated ; but if so,

there will be exactly as many more changes from + to — as from
—to +. ‘

313. We have supposed throughout that there is no radical
point on a contour considered. If there be, no change is made in
our investigations except at the end of Art. 309; and here instead
of having the range 2= for 6 we have only =, so that m occurs
instead of 2m as the number of changes of sign.

314, Cauchy’s Theorem is given in the Penny Cyclopedia,
Article Theory of Equations, in Mr De Morgan’s T'rigonometry
and Double Algebra, and in Mr De Morgan’s Memoir to which
we have referred in Art. 32; from these sources the present
account of it has been derived.

XXVI. NEWTON'S RULE AND SYLVESTER'S
THEOREM.

315. Newton enunciated a rule respecting the number of
positive, of negative, and of imaginary roots in an equation,
which remained without demonstration until the recent researches
of Professor Sylvester, who has established a remarkable general
theorem which includes Newton's rule as a particular case. The
original sources of information on the subject are the Philosophical
Transactions for 1864, the publications of the London Mathema-
tical Society, No. 11, and the Philosophical Magazine for March,
1866; from these sources the exposition which we shall now give
has been essentially derived.

316. Woe begin by enunciating in substance Newton's rule.
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Let f(x) =0 be an algebraical equation of the n'* degree; and
suppose

f(‘”)=“o“"+m, -1 n("_ 1) a@ + ... +no_gta;

then a,, a,, a,,...a, may be termed the simple elements of f ().

Let a new series of quantities 4,, 4,, 4,,...4_ be formed in
the following way :

] —nt ]
4,=a’, 4 =0a’-aa, A,=a’-aa,......

.| =a’ —-a_a, A =a';
n n

n=) n=1 n=3"n?

then 4, 4,, 4,,...4_ may be termed the quadratic elements of f (x).

We shall call a, a,,, & succession of simple elements, and

4, 4., asuccession of quadratic elements ; and we shall call

a', ar-n)

4,4

r r+12
an associated couple of successions.

Now a succession may present either a permanence or a varia-
tion of sign ; and this will be termed for brevity a permanence or
a variation, Thus in an associated couple of successions we shall
have one of four cases; two permanences, or two variations, or a
superior permanence with an inferior variation, or a superior
variation with an inferior permanence: these may be called
respectively a double permanence, a double variation, a perma-
nence-variation and a variation-permanence.

The following is equivalent to Newton’s complete rule :
‘Write the whole series of quadratic elements of /() under the
whole series of simple elements in their natural order ; then:

The number of double permanences in the associated series is
a superior limit of the number of negative roots of the equation

JS(x)=0. . o .
The number of variation-permanences is a superior limit of
the number of positive roots.
From either of these two statements the other follows by
changing the sign of « in f (x).
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It follows from these two statements that the whole number
of real roots cannot exceed the number of permanences in the
series of quadratic elements; and therefore the number of imagi-
pary roots cannot be less than the number of variations in the
series of quadratic elements.

It should be noticed that writers who have quoted Newtons
rule seem always to have restricted themselves to that part which
relates to the number of imaginary roots. .

317, We will illustrate Newton’s rule by some examples,
Suppose 2x*— 132" + 10— 49 = 0,
Here the series of simple and quadratic elements are

13 10
2’ 0, __6—' a1 "49;
13 169 1199
Y 3 3 ~1g 0L

Thus whether we suppose the zero which forms the second of
the simple elements to be positive or negative, we find that there
is one double permanence, and one variation-permanence ; so there
cannot be more than one positive root, and there cannot be more
than one negative root: there are then certaihly two imaginary
roots,

These results agree with those in Art. 203, In this example
Descartes’s rule would indicate that there cannot be more than
three positive roots ; so that Newton's rule gives us fuller informa-
tion than Descartes’s.

Next suppose  2’+a*—a'—a+2'—2+1=0.

‘We will write down the series of simple elements, and the
signs of the quadratic elements :

, L1 111
' 6’ 15’ 20’ 15° 6’
+, +, +, +y - = +.

Here there are two double permanences, and two variation- -
permanences; so that by Newton’s rule there cannot be more
than two positive roots, and there cannot be more than two negs-
tive roots.

L
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Descartes’s rule would indicate that there cannot be more
than four positive roots,

In this example it may be shewn by Sturm’s theorem that
-all the roots are imaginary; or we may obtain the same result:
thus: It is obvious that there can be no positive root greater
than unity ; and the equation may be written in the forms

+(1-2)(1+2'-2)=0, 2’@+1)'(z-1)+z"-2+1=0,
which shew respectively that there is no positive root less than
unity, and no negative root.

Next suppose a° — 122° + 60x* + 1232" + 45672~ 89012 = 0.

‘We will write down the series of simple elements, and the
signs of the quadratic elements

1, -2, 4, 0, %1, 415:—7, - 89012,
+, 0, + - + +, +,

There is one double permanence whether we suppose the zero
in the upper series to be positive or negative, and one variation-
permanence if we suppose the zero in the lower series to be nega-
tive; so that by Newton’s rule there cannot be more than one
positive root, and there cannot be more than one negative root.

Descartes’s rule would indicate that there cannot be more
than three positive roots.

" In this example we know by Art. 21 that there is certa.mly
one positive root and one negative root ; it will be found on trial
that the former lies between 1 and 10, a.nd the latter between —1
and — 10,

318. The preceding examples shew that Newton’s rule may
often be applied with facility. It is obvious that it always tells
us as much as Descartes’s rule, and often tells us more. For with
respect to positive roots, for example, Deacartes’s rule takes the
number of variations in the series of simple elements, while
Newton’s rejects those variations which are unaccompanied by
& permanence in the series of quadratic elements,
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319. The following is Professor Sylvester’s Theorem :

Let f(x+\) be arranged according to powers of «; let the
series of simple elements and the series of quadratic elements be
formed, and let the number of double permanences be called the
number of double permanences due to A, and be denoted by = (A).
In like manner let the number of double permanences for
J(x +p) be called the number of double permanences due to p,

and be denoted by = (u). Suppose p greater than A; then
@ (1) — = (A) i8 either equal to the number of roots of the equa-

tion f(x) =0 between A and p, or surpasses that number by some
even integer. .

320. Before demonstrating this theorem we will shew that -
it includes Newton’s rule.

Put 0 for p and — o for . 'We have @ (—oc )=0; for when
Ais —oc, the simple elements of f(z+ A) are alternately positive
and negative, so that there can be no double permanences.

Thus w (0) == (0) — @ (— < ). :

Therefore, by the above theorem, = (0) is either equal to the
number of roots of the equation f(x) =0 between — o and 0, or
surpasses that number by some even integer. This establishes the
first part of Newton’s rule, from which the other parts follow.

321. The simple elements of /' (x + A) are
S LT 1.2 TN
l2 ’ ; n—1" n(n-—l) ln_z 9 eseee “f’(k)) ()‘)

It will make no change in sign if we multiply every element
by |n; thus the series becomes »
S ), SN, 12070, 137N, e [n=1f"(\), |nf(\).

In like manner by omitting the square of |r—1 from the ™
quadratic element we obtain the series

@M, G._,N), G_.(A),...... G, (A), G(\),
where  G,(A) stands for {f"(\)} -y, /" (NS (M),
-r+1
-7

denotmg
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‘We have then to determine the laws of the change in the
number of double permanences in the associated series

S, £, SR, e S, f@),
G.(8), G, (1) G,y (1), ... Gi(2), G(2),
as ¢ increases.

No change can take place except when ¢ passes through a value
which makes one or more terms vanish in either or both of the
series of elements, :

322. Tt will be necessary to investigate the value of the de-
rived function of a quadratic element; let @, (¢) denote the quadra-
tic element, and G”, (¢) its derived function.

To obtain @ (£) we must suppose & (¢ + %) to be expanded in
powers of A, and take the coefficient of 4.

Cult+ M) ={f"C+R)F =y f™ (E+ RS 4 F)
={frO+HmO+.F
=Yl /"B + Q) "‘“(‘) +.
The coefficient of % is
=) OS™ (@) = Yu ST OS)-

Now it is easily seen that

1.
Ymtr

thus @)= L0/ O-ul OO

2=Yn=

- L mip) gt gy AL TOF pmin gy S

= f (t)f (t) fm-n (t) f (t) +fm+l (t) Gm (‘)
f _Sre S

= i@ O ) 6




242  NEWTON'S RULE AND SYLVESTER'S THEOREM.

323. Suppose that a single term in the series of simple ele-
ments intermediate between the first and the last vanishes when
t=c, say S (c)=0.

Let % be an indefinitely small quantity ; this will be the mean-
ing of A& throughout the investigation : then f*(c+ %) has the sign
of 4f"*'(c). Thus the associated terms

SN e+R), fr(e+R), ST (e+h),
G, (c+h), G(c+h), G _/(c+h),
have the same signs as
S M) ST
H) ]
{re@}, —rmaro {rel.

If /**'(c) and /"' (c) have the same sign, the terms here con-

sidered have no double permanence. If f**'(c) and f*(c) have

contrary signs, there is one double permanence whether we suppose
h negative or positive.

Thus no change is made in the number of double permanences
when ¢ increases through the value c.

324. Suppose that a single term in the series of quadratic
elements intermediate between the first and last vanishes when
t=c, say G (c)=0.

Since @, (c) =0 it follows that f*~*(c) and /"*(c) have the same
sign. Thus the associated terms

S e+h), Srle+h), STHe+h),
@, (c+h), G (c+h), G_(c+h),
have the same signs as
S S ST
Gii(e)y BG (<), G,y ()
and by Art. 322 the sign of @', (c) is the same as that of

S
]‘f-l-l(c) Gr+l (c)'
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If f***(c) and f*(c) have contrary signs, the terms here con-
sidered have no double permanence.

If f+(c) and /*(c) have the same sign, and @,,,(c) and @,_, (c)
have contrary signs, there is one double permanence whether we
suppose & negative or positive,

If f**!(c) has the same sign as f”(c), and @, (c) the same sign
as @,_ (c), there is no double permanence when 4 is negative, and
there are two when % is positive : thus in this case two double
permanences are gained when ¢ increases through the value c.

325. Suppose that several consecutive terms of the series of
simple elements vanish when ¢ = ¢, say

£ =0, fe)=0, ... "(c)=0.

Thus we suppose 8 consecutive terms to vanish, and as f"(c) is a
constant which cannot vanish, r + 8 cannot be greater tha.n n: we
suppose that » is not zero.

‘We have to consider the changes in the signs of
SE@ S S SO ST
Gr-l-n(t) ’ Grh—l (t)7 G'M—’ (t)’ ee Gr(t)’ Gr—l (t)’

produced when ¢ increases through the value ¢. Let ¢ (c) stand
for f"*(c) ; then when ¢=c +#A, the signs of the simple elements
~ here considered are the same as the signs of

é(c), hp(c)y, Wp(e), ... Kp(c), S '—l(c)-'
We proceed to investigate the signs of the quadratic elements:

G..(0) = {f o+ (0)} which is positive,

a,_,(c)={ ) } which is positive,
16—2
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6o+ H={ S+ B}~ e+ DS o4 )3

expand in powers of 4 and take the term which involves the lowest
power of % : thus we obtain

A
=779 $(c) =1
80 that the sign is the same as that of
A OXJOTons

‘We shall now shew that the other quadratic elements which we
have to consider are positive. For

G (c+h) ={f"(cm)}'-y,f--l(c+h)f-+'(c+h);

let u stand for r +8—m ; then by expanding and picking out the
term which involves the lowest power of 4 we obtain

(O 4 @ O ey

the sign of this is the same as the sign of

T—Ym’

that is as the sign of
r+8—-m+1 n-m+1
r+8—m n-m

that is as the sign of
1 1

r+8—-m n-—m'

Now 7+ s is not greater than » so that the sign is never negative;
the case in which » + 8 == will require further examination.

In this case
F@=0, fH()=0, ... f* () =0;
and as /7 (¢) is of n—r dimensions in ¢ it follows that all the roots

of f7(¢) =0 are equal to ¢. Thus f7(¢) is of the form C(¢—c)""
where C is a constant.
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Then f'+1 (i) = O(n - T) (t — c)l—y—"
SHER)=Cn-r)n-r-1)(-c)"";

and thus it will be found that @, (¢) is identically zero. And in
like manner it will be found that @, (¢), @,,,(t), ... &,_,(¢) are
all identically zero,

‘We will adopt the convention that these quadratic elements
which are identically zero shall be supposed to have the positive
sign ; and thus the case in which r+s8== will lead to the same
results as that in which r + s is less than n.

Thus finally the signs of the terms of the associated series
which we have to consider are the same as the signs of

o(c), hp(c), Ap(c)yeeerrernnnnn ke, S (c),
+, o+, Fee +, =7 P(e) SN e), +.

‘We can now ascertain the number of double permanences; the
following results will be easily obtained:

Suppose s even, and ¢(c) and f"~'(c) of the same sign; when
% is negative there is one double permanence, and when % is posi-
tive there are 8—1: thus 8—2 double permanences are gained
when ¢ increases through the value c.

Suppose s even, and ¢(c) and f"*(c) of contrary signs; when
% is negative there is no double permanence, and when % is posi-
tive there are s: thus g are gained. '

Suppose s odd, and ¢(c) and f/""'(c) of the same sign; when %
is negative there is no double permanence, and when % is positive
there are s —1: thus s — 1 are gained.

Suppose s odd, and ¢(c) and f""'(c) of contrary signs; when 4
is negative there is one double permanence, and when % is positive
. there are 8: thus s— 1 are gained.

Hence an even number of double permanences is gained when
¢ increases through the value c.
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326. Suppose that several consecutive terms of the series of
quadratic elements vanish when ¢ = ¢, say

(¢)=0, @, 4(c)=0,...... G.(c)=0.

Thus we suppose & consecutive terms to vanish, and as G (c) is a
constant which cannot vanish,  + s cannot be greater than n: we
suppose that » is not zero.

r+o—l

In consequence of the vanishing of the s consecutive quadratic
elements, we have the following conditions holding among the
simple elements comprised between f.,(c) and f,_ (c), both in-
clusive: ’

Jor(©)y Soras(€)s Srpeud(C)s-.. are all of the same sign;
Forws Forars(@) Forns(e)y are all of the same sign.

If the terms in the second set have the contrary sign to those
in the first set there is no double permanence when f=c+4,
whether we suppose % positive or negative.

‘We have then only to consider the case in which the terms in
the two sets have all the same sign.

Let @, () and G_(tf) be any two consecutive quadratic
elements comprised between G,,(¢) and @&, (f), both inclusive:
then @, (c+%) and @ _(c+4) shall have contrary signs when 4
is negative and the same sign when % is positive,

For by Art. 322,

o S0 Pl
Cal) = s 7@y G+ (yy Oa

Put ¢ + & for ¢, and expand in powers of &.
Suppose that in @, (c+ %) the term which involves the lowest

power of & is |£ %, so that R is the value of the p* differential

coefficient of G, (c) with respect to ¢. Then the term which

involves the lowest power of 4 in ' (c+#%) will be éh" .
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Hence from the above equation the term which involves the lowest
power of A in G, (c+ k) will be

7m+1f.+l(c) RIP

Se)le=1

Hence finally @, (c + %) has the sign of RA® and @,,,, (c+ k) has
the sign of RA™'; so that G , (c+%) and G, (c+%) have con-
trary signs when /% is negative, and have the same sign when %
is positive.

Thus the simple elements which we have to consider have all
the same sign; and the quadratic elements comprised. between
@, (c+k) and @ (c+h), both inclusive, have alternate signs when
h is negative and have the same sign when % is positive.

‘We can now determine the number of double permanences;
the following results will be easily obtained:

Suppose 8 even, and G,,,(c) and @, _,(c) of the same sign; when
k is negative there is one double permanence, and when 4 is posi-
tive there are s+ 1: thus s double permanences are gained when
¢ increases through the value c.

Suppose s even, and @,,,(c) and @,_,(c) of contrary signs; when
h is negative there is no double permanence, and when % is posi-
tive there are 8: thus s are gained.

Suppose s odd, and @, ,(c) and @,_ () of the same sign; when %
is negative there is no double permanence, and when % is positive

there are 8+ 1: thus s + 1 are gained.

r+e

h is negative there is one double permanence, and when 4 is posi-
tive there are 8: thus 8—1 are gained.

Suppose s odd, and @,,,(¢c) and @,_ (c) of contrary signs; when

Hence an even number of double permanences is gained when
t increases through the value ¢.

327. We now consider what takes place when an extreme
term vanishes.
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J"(t) and G"(¢) are constants, and can never vanish; and G(f)
is essentially positive.

Suppose however that f**(c)=0, f*?*(c)=0,... f(c)=0, so
that ¢ is a root repeated s times of the equation f(z)=0. Then,
ag in Art, 325, the last s+ 1 terms of the associated series will
have the same signs when ¢=c+ 4, as

Se), Hfe), 57 i () R ), RS (e),
3 8
+, 2—')’.—1: 5—7,_, ............ ‘;Tl-—'y" +.

Here when % is negative there are no double permanences,
and when /% is positive there are s: thus s double permanences
are gained when ¢ increases through the value c.

328. This completes the demonstration of the theorem. The
general result is that the number of double permanences belonging
to the associated series is increased by at least as many units as
there are real roots, equal or unequal, passed over as ¢ increases
from one specific value to another ; and the excess, if any, of such
number over the number of real roots will be an even number.

Thus, with the notation of Art. 319, we know that the num-
ber of real roots between A and p cannot exceed w(u) — = (A). If
we know that some of the double permanences gained arise from
the vanishing of any of the elements except f(f) we can of course
make a corresponding reduction in the extreme number of real
roots. Thus, for example, suppose that 8 double. permanences are
gained in the manner considered in Art. 325, then the number of
real roots between A and p is not greater than @ (u) — = (A) —a.

329. Some extension may be given to the theorem by ascrib-
ing another value to y,. The principal property of y, which is
required in the preceding investigation is that used in Art. 322,
namely,
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‘We may then examine what form of v, will satisfy this equa-
tion, We will solve the equation, though the process will require
from the student a knowledge of the elements of the Calculus of
Finite Differences. )

°
Put ¥,=—;
ur+ 1
thus —_ ur = ur+2 .
ur+l ur+l
therefore : Uy =20, ,, +u,=0,

The solution of this equation is
' u,=4 +B(r-1),
where 4 and B are constants. '

C+r-1
C+r ?

where C stands for %

The student who is not acquainted with the Calculus of Finite
Differences may easily verify that this value of y, satisfies the
relation

1
=2~y,
Tri2 b
‘We have also to satisfy the condition that , shall be positive,
and also the condition assumed in Art. 325, that #*1 _5 hall

be positive ; these conditions will be satisfied if C' be any positive
quantity, and also if ' be negative provided it does not lie between
0 and - n.

330. Professor Sylvester observes that his theorem bears the
same relation to Newton’s rule which Fourier’s theorem bears to
Descartes’s rule. Fourier’s theorem may be stated thus:
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Form the simple elements corresponding to f{xz+A) and to
S (x+p). Let p(A)and p(n) denote the corresponding numbers of
permanences of sign; and suppose p greater than A. Then
2(p)—p(A) is eithér equal to the number of roots of the equation
S (x)=0 between A and g, or surpasses that number by some even
integer.

331. We have given in Art. 106 a simple proposition which
resembles a special case of Newton’s rule; and it is easy to extend
the proposition so as to convert the resemblance into a coinci-
dence. For take the equation there obtained,

gy 0P, (oo 7'+1)(n ™) Przy g

+...=0;
Prsr Pena

this equation has at least as many imagma.ry roots as any of its
derived equations. Take the (»—1)* derived equation, which is

('r+l)1~y, r(n— r)p, (n r+1)(n-7)p,_,
1.2 Prpy 1.2 y
This equation has imaginary roots if
(n "')"Pr - (" T+ 1) (1‘ + l)pr-l Pria
is neaatlve and hence in this case the original equation
P +pa T +pat i+ +p =0
has imaginary roots.

1=0.

It will be found that the above condition is equivalent to
having one of the quadratic elements negative; and as the first
and last quadratic elements are positive, there must be at least
two variations in the quadratic elements and therefore at least
two imaginary roots. See Art. 316.

This special case of Newton’s rule, and only this, had been
established before Professor Sylvester’s investigations.

332. If we consider the intrinsic beauty of the theorem which
has now been expounded, the interest which belongs to the rule
associated with the great name of Newton, and the long lapse of
years during which the reason and extent of that rule remained
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undiscovered by mathematicians, among whom Maclaurin, Waring,
and Euler are explicitly included, we must regard . Professor
Sylvester’s investigations as among the most important contri-
butions made to the Theory of Equations in modern times, justly
to be ranked with those of Fourier, Sturm, and Cauchy.

XXVII. REMOVAL OF TERMS FROM AN
EQUATION.

333. We have already in Art. 56 shewn how to transform
an equation into another which shall want an assigned term. We
shall now consider this subject more generally, and shew how
theoretically any number of terms may be removed. The method
of transformation which we shall explain is called by the name of
its inventor Tschirnhausen.

334. Suppose we have the equation

+patTt HpatTi 4 L +p,_x+p, =0......c. (1)
- Assume
y=a,+ax+ag" +...... +a@E 2),
where m is an integer less than =, and a,, a,, ... a,, are constants

at present undetermined. We propose to eliminate «, and thus
form an equation in terms of y. Since there are as many values
of y as of = the equation in y will be of the degree n.

The elimination may be effected thus: raise the equation (2)
to the powers denoted by 2, 3,...n; and by means of (1) de-
press the exponents of z, so that none of them shall exceed n - 1,
in the following way,

P=—pxt-pati— ... -p,_,X-p,,

w‘+l=—p1x.—pg e —pn-lw’_‘pﬂw;

substitute for a* its value from the preceding line, and we have
«**! expressed in terms of «*~! and lower powers of z; then mul-
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tiply by « and substitute as before, and we have z** so expressed ;

and so on. Thus we shall obtain results of the following form :
y=b+bx+br’+...+b _2a"")
YP=c, tex+e X+ ... +e, 2",
y=k+ke+ka'+..+k_a"

Here d,, b, ... b,_, are integral homogeneous functions of the
second degree of the undetermined quantities a,, a,, ... a,; also
Cor Cpy e €,

_, are integral homogeneous functions of the ¢third
degree of a,, a,, ... a,, ; and s0 on,

Let 3, s,, 8,, ... denote the sums of the first, second, third, ...
powers of the roots of (1); and let §,, S,, S, ... denote the sums
of the first, second, third, ... powers of the roots of the required
equation in y. Then from (2) and (3) we have

S =na,+as +as +..+a, 8, +a8s,.,

m—1 m—1
J
S,=nb,+bs +bs, +...+b _s,_,
Sy=mc,+e8, +68, + ... +C_8 1y,  foeeeen (4).

S =nk,+ks +ksg,+...+k_s8,_..

Thus, as the sums of the powers of the roots of the equation
in y are known we can construct the equation ; see Art. 244,

Or we may proceed thus: from equations (3) we can obtain
the values of #, &', ... 2" in terms of the powers of y; then
by substituting in (2) we have the required equation in y. This
method has the advantage of giving « as a rational function of y,
and thus the value of each root of (1) will be known as soon as
the equution in ¥ is solved. ’

335, We may now take the hitherto undetermined quanti-
ties a,, a,,...a, 80 a8 to make some terms disappear from the
equation in y. For example, suppose we wish to make the coeffi-
cients of the m terms which succeed the first disappear; it will
be sufficient to put

8=0, 8,=0,..8.=0.

1 8 m
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But from equations (4) we see that S, is of the first degree
with respect to a,, a,,...a,, that S; is of the second degree, S,
of the third degree, and so on. Hence by Art. 259 the determi-
nation -of these quantities a,, @,, ... @,, of which one may be

assumed arbitrarily, will depend on the solution of an equation of
the degree |m — 1.

336. We shall make an application of the preceding method
which is of especial interest in connexion with equations of the
fifth degree : a preliminary proposition will be required, which
we shall now give.

337. An integral homogencous function of the second degree
of n wariables can be expressed as the sum of the squares of v
linear functions, the nwmber v not being greater than n.

Let V be an integral homogeneous function of the second
degree of the n variables z,, x,,...,.

If n=1, the function contains only one variable, so that it is
of the form Bx,%, that is, (x,./B8)"

Suppose that » is greater than 1, and that ¥ involves the
square of one of the variables, say z°; then by arranging in
powers of &, we obtain

V=Bx’+2Qx, + R,
where 8 is a constant, @ is a linear function of the n—1 varia-

bles, z,, «,,...x,, and R is an integral homogeneous function of
the second degree of these n— 1 variables.

Put X,:zlf%, VI=R_%’;
thus V=(X,JB)'+ 7,

and 7, is an integral homogeneous function of the second degree
of n— 1 variables at most.

Next suppose that 7 does not contain the square of any of the

variables ; then, arranging ¥V with respect to two variables z, and
x,, we have
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V = Bxx, + Qx, + Rz, +8

=8 zl+£> (w,+g)+S—%e.

Put X=§(wl+w’+ ﬂ
1
X, = (@ —2— /3
R
r,=,s'-%;

thus V=B(X1’—Xa’)+ Va=(X| '\/ﬁ)""(X:N/——_B—).." V!‘

Here X, and X, are linear functions which may involve the #
variables z,, z,, ... z,; and ¥, is an integral homogeneous function
of the second degree which involves at most n—2 variables.

Thus in the first case the function ¥V which involves n vari-
ables is made the sum of a certain square and of V,, where
¥V, involves only » — 1 variables at most ; and in the second case
V is made the sum of two squares and of V,, where ¥, involves
only n — 2 variables at most. Then by continuing the process on
V, or V, we can finally express ¥V as the sum of not more than
n squares.

338. Let there be an equation
L+pat T +pat T+ +p =0,
Assume y=0a,+ax+a2’ +ax’+agz'
Let the equation in y obtained by eliminating & be de-
noted by
Yoy 4y T + .. +q,=0.
Now from Art. 334 it will follow that g¢,, g,, ¢,, ... are re-
spectively of the first, second, third, ... degrees with respect to
the quantities a,, a,, @,, a,, a,. Suppose then that we wish to

make the second, third, and fourth terms of the equation in y
disappear. We put

91"_‘0, Q,=0, qg=0'
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The first of these equations is of the first degree. Suppose
we obtain @, from it in terms of @, a,, a,, a,, and substitute

in the second and third equations; and then denote these
equations by )
7,=0, ¢,=0.

Here ¢, is an integral homogeneous function of the second
degree with respect to a,, a,, a,, a, ; and ¢, is an integral homo-
geneous function of the third degree.

By Art. 337 the equation ¢/,=0 may be put in the form

Si+g+h+F =0,
where f, g, h, and % are linear functions. This equation will be
satisfied by putting .
Sf=9J -1, h=k,)-T1;
these two equations are linear. Suppose we deduce from them
the values of @, and a, in terms of a, and a, and substitute in
the equation ¢’,=0; and then denote this equation by
qlla = 0.

Here ¢”, is an integral homogeneous function of the third
degree with respect to ¢, and @,, One of these quantities may
be taken arbitrarily, a,nd the ot.her can then be found by the
solution of a cubic equation.

If we wish to make the second, third, and fifth terms
disappear from the equation in y the process will be similar
but the final equation will be of the fourth degree.

339. If with the transformation of Tschirnhausen we com-
bine that of changing the unknown quantity into its reciprocal
we can by the aid of a single equation of the third or fourth
degree remove from an equation the three terms which precede
the last, or the two terms which precede the last, together with
the fifth from the end.

340. Thus we see that the general equation of the fifth
degree can always be reduced to any one of the following forms:

L+pe+qg=0, 2®+pr’+q=0, «*+pax®+q=0, a*+px'+q=0.
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341, The foregoing Articles of the present Chapter have been
derived from Serret’s Cours d’Algébre Supérieure.

The reduction of the equation of the fifth degree to the form
of the preceding Article was given by Mr Jerrard; it appears
from a paper by Mr Harley in the Quarterly Journal of Mathe-
matics, Vol. v1., that the result had been previously obtained by
E. 8. Bring, a Swedish mathematician,

Mr Jerrard considered that the algebraical solution of equa-
tions of the fifth degree could be effected ; his proposed method
formed the subject of an enquiry by Sir W. R. Hamilton in
the Reports of the British Association, Vol. vi. Most mathema-
ticians admit that Abel bas demonstrated the impossibility of
the algebraical solution of equations of a higher degree than
the fourth., An abstract of Sir W. R, Hamilton’s exposition of
Abel's argument will be found in the Quarterly Journal of
Mathematics, Vol. v. ‘

A simpler demonstration due to Wantzel will be found in
Serret’s Cours d’Algébre Supérieure.

An Essay on the Resolution of Algebraical Equations by the
late Judge Hargreave has been recently published; the results
arrived at are to some extent at variance with those of Abel and
Sir W. R. Hamilton.

XXVIII. INTRODUCTION TO DETERMINANTS.

342. We now propose to give some account of the theory of
determinants, a branch of Mathematics of comparatively recent
origin, but already of great and rapidly increasing importance, In
the present Chapter we shall consider some particular examples and
illustrations which will enable the student to form a conception of
the nature and properties of determinants ; in the next Chapter
we shall demonstrate the principal general theorems of the subject,
and in the following Chapter we shall give some applications to
the theory of equations.
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Consider the simultaneous equations
ax+dy=c, agx+by=c,;
from these equations we obtain
o be, —bie, _ 00— a0,
ab,-apb,’ ab,—ab’

The common denominator a,b,—a.b, is called the determinant of
.the four quantities a,, b,, a,, b,, and is denoted by the following
symbol,

ay, b
a, b

3) g

The numerators of the values of x and y are also determinants ;
and we may exhibit the valdes of « and y thus,

a, b
LY bs

¢, b
b

cn’ 3

1

lax’ bl _| LY cx
’ =
LY bz | Ggy Cg

343. The determinants here considered are all said to be of
the second order, because they consist of terms each of which is the
product of fwo quantities. The quantities a,, b,, @,, b, which
occur in the determinant @ b,—apb, are called the constituents of
the determinant; the products a,b, and apb, are called the ele-
ments of that determinant. Thus a determinant of the second
order consists of two elements involving four constituents. In
the symbol used to denote this determinant the constituents are
arranged in a square forming two rows or two columns.

344. 'We shall now indicate some properties of determinants
of the second order. :
-Since we have

@y a

bl’ bs

a’l’ bl
=ab,
a, b,

il s—a’sb1=

it follows that the determinant is not altered by changing the rows
into columns. ’

T. E. B\
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345. The following identities may be easily verified.
_ ‘ b, a a,, b

= " s —3
b’, %, @) bl

b,, a,
b, @

a’, ’ bl
a,, b,

Thus in the determinant, if the two rows or the two columns are
interchanged, the sign of the determinant is altered, but not its
value; if both these interchanges are made, the determinant is
unaltered,

346, We have
pa,, b, —n| % b; pa,, pb, =p a,, bnl
pa’n’ bs al’ bn ’ a’s’ bs aa’ bs

Thus if each constituent in one row ox in one column is multiplied
by a given quantity, the determinant is multiplied by that
quantity.

347. We have

@y O

Qg, Gg

=0.

a, b, =0
a, b |
19 1

Thus if two rows or two columns are identical the determinant
vanishes.

348. It may be proved by developing the determinants that

’ ’
a’, b
’ !
ag, b,

'
a,, b,

'
ag, b,

’

a’y b,
’

a;, b, |

a,+a’y b +b’
a,+a,, by+b;/

al’ bl

+
ag b,

Thus the determinant, each of whose constituents is the sum of two
terms, is equivalent to the four determinants which can be formed
by taking instead of each column one of its partial columns, As
a special case, suppose @,'=b, and a,'=b,; then the second of the
above four determinants vanishes by Art. 347, and we have

bl, bl’
MY

’
a, b

a,, b

a,+b, b,+b/

—| % b,
a,+byy by +b,)

ag, b,
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349. By Art. 348 we have

a0, +bB,, a0, +5,8,
aga, +b.8,, aa, +b.p,

_ | %%y 39y +lblﬁu buBsI + aa,, lﬁnl 5.8, aa,
A,y Agag b.B,, b0, a0, b8, b.B,, as,
=00, (3 G ﬁlﬁl b, b "'lﬁ: a, b Bxan b, a

Qqy Oy by, b, a b by @

by Art. 346. ' By Art. 347 the first two of the four determinants
just written vanish. And by Art. 345

b, a a,, b,
by @y ay, b,
Thus we have left
(alBl ﬂxas) a” b ’ that is %1 Bl' @y, 1]
Ggy Bg a,, e
Therefore
| % ﬁl @ b = a’lal'*'blﬁn ala,-l'blﬁ’
% Bs a,, b, aa, +b,8,, ag,+58,

Thus the product of two determinants of the second order is a
determinant of the second order.

As a particular case, suppose the constituents a,, 8,, a,, S, to
be respectively equal to the constituents a,, &,, a,, b;; then we
find that the square of the determinant

a, b

%1 b, l

is equal to the determinant

a’+b? aa,+bb,

H)
aa,+bb, a+b,

17—2
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350. We will now proceed to determinants of the third order.
Consider the simultaneous equations

ax+by+ez=d, ax+dby+cz=d, ax+by+cz=d,;
from these equations we obtain

r= dl (baca - bsc:) + ds (bacl - bxca) + ds(blct - bscl) ,
@, (bscl - bac: +a, (bacl - bxcn) +a, (blcn - bscx)

and similar expressions for the values of ¥ and .

The denominator of the value of « is called a determinant of
the third order, involving the nine constituents a,, b,, ¢,, a,, b, ¢,,
a@,, b,, ¢,; the determinant consists of six elements, each element
being the product of three constituents. This determinant is d

noted by the following symbol, ,

@, b, ¢
a’n’ 29 cn
ag, by, ¢,

Since the value of this determinant is
a, (b,c, - blcs) +_ Gy (blcl - blca) +a, (blc! - b,c;),

we may express it in terms of determinants of the second order
thus

a b, ¢, +a,|b,, c | +a,|b, ¢
b, ¢, b, ¢ b, ¢,

The numerator of the value of x is also a determinant of the
third order; we have only to change a,, a,, @, into d,, d,, d,
respectively in the symbolical expressions already given for the
denominator, and we obtain symbolical expressions for the
numerator.

‘We shall now see that determinants of the third order have
the same properties as determinants of the second order.



INTRODUCTION TO DETERMINANTS, 261

351, Suppose @,=1, @,=0, and a,=0; then we have

1, %, e, b. e
0, bn Cy | = b” c’
0, b,y c5 2

Thus the determinant of the third order reduces in this case to
a determinant of the second order. The values of b, and ¢, have
no influence on the value of this determinant, and we may if we
please suppose them zero.

Hence we see that when we have any relation holding among
determinants of the third order we can deduce the correspond-
ing relation for determinants of the second order by supposing
certain constituents to vanish,

352, It may be shewn by developing the determinants that

al b” c’ +a’,bs’ cs +aa bl, cl
byy ¢, by ¢ by, ¢,
=a,| by by | +b, | ey 5|+, | @ a
Cgy C3 Qgy by, b,
that is, .
@, by ¢ @y gy Ay
gy by, co| = | by, by, b,
ay, by, ¢, €y Cy Gy

Thus the determinant is not altered by changing the rows into
columns,

353. The following identities may be easily verified, by
expressing the determinants of the third order in terms of deter-
minants of the second order and developing :

@) bp [ b, ay, ¢ b, ¢, a
g, byy 3| =—| by, ag, 6| = bgy ¢, ag
ayy b,y ¢, byy @y ¢4 by 55 a4

Thus if two columns are interchanged the sign of the determi-
nant is altered but not its value, and therefore if this operation is
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performed twice the determinant is unaltered. Hence, by Art. 352,
if two rows are interchanged the sign of the determinant is altered
but not its-value, and therefore if this operation is performed twice
the determinant is unaltered.

Hence too it follows that if two columns are interchanged and
also two rows the determinant is unaltered ; so that

a, b, ¢, by @y, o
gy byy 5| = | by, @y, ¢
ayy by ¢4 by a4, €,

354, As in Article 346 we may prove that if every consti-
tuent in one row or in one column is multiplied by a given
quantity the determinant is multiplied by that quantity.

355. It is easy to shew that

a, b, b, a, b, ¢
ag, by, b, |= 0 and | a,, b, c,|=0.
@y, b,y b, ay, by ¢

Thus if two rows or two columns are identical the determinant
vanishes.

356. It is easy to see that the determinant
a, +a’'+a”, b, ¢
a,+a) +a;, by, ¢
agta; +ag’y by, c;

is equivalent to the sum of the three determinants

’ ”
ay, by, ¢ a/y by, ¢ a”, b, ¢
’ n
gy by, co ag, by, ¢ ay’y by, ¢
N ’ n
@y byy |y la, by 3|, | by o l;

and a similar result would be obtained if each constituent in the
first column consisted of the sum of four terms, or of the sum of
five terms, and so on. Again, if each of the constituents b,, 8,, b,
is replaced by three terms, each of the above three determinants
becomes equivalent to the sum of three determinants; and so on.
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In this way the following determinant may be seen to be equiva-
lent to the sum of 27 determinants :

a,+a’+a”, b+b'+d", ¢, +¢ '+¢”
a,+a) +a;”y by+b/ +b,", c,+c/+c¢;”
ay+a) +a)”, by+b +b,", cg+c+c,”

The 27 determinants are to be formed by taking instead of
each column one of the partial columns ; thus for example three
of these determinants will be the three which are given above.

357. As a particular case of Art. 356 we will take the follow- -
ing determinant : ’
a0, +b,8 +cy,, aa+bB,+ ¢y, aa,+ b,B,+¢y,
aﬂal + bﬂﬂl + cﬂYl’ a'aﬂ + bSB’ + CQYE’ aﬂal + bﬁl + cﬁYﬂ
a0, + b8, + ¢y, aa,+ baﬂn + 6y 4,8, + 0,8, + ¢y,
It will be found that of the 27 determinants of which this may

be considered the sum, all except 6 vanish by Arts. 354 and 355.
For example, we have for one of the 27 determinants,

0,0,y @,0q, blﬁa a,0.B, | a,, a, b
@0, a0y, b, | that is, ay, a5 b,
a0, aza,, b,B, Gy G4y by

- by Art. 354; and this determinant vanishes by Art. 355. One of
the six determinants which remain is

a,a,, b8, C\Ys @, P75 | Ty b, ¢
aya,, bgﬂg’ ¢,7, | that is, agy b, ¢
asa,, b0, C3Ys ag, by, ¢,

Another of the six determinants which remain is
@0y, CYys buBa . al')’spa
aa, ¢y, b3, |thatis
@0y CyYsy Oyl

'_917333 a, b, ¢
that is, ag, by, ¢,

g, 'bu -Gy

a, ¢, b
gy Cqy .bs
gy €3 by

by Art. 353.
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‘The result is that the six determinants which do remain
constitute

. a, b, ¢
{ax(pﬂa_ﬂﬁ'n)+an(ﬁa%_ﬂl‘7-)+aa(ﬂxys_ﬁﬂn)} a, b, ¢
@y, by, Cs

ay By n| X ey by e

that is, | a,, B,, v, a,, b, c

a3 Ba’ s ayy by, ¢,

Hence we see that the product of two determinants of the
third order can be exhibited as a determinant of the third order.
If we suppose a,, b,, ... respectively equal to a,, B3,,... We obtain
a determinant of the third order which is equivalent to the square
of a determinant of the third order.

358. We have now given sufficient examples of the naturo
and properties of determinants to enable the student to form a
conception of the subject. We might have confined ourselves to
determinants of the third order, because by Art. 351 the pro-
perties of determinants of the second order can be immediately
derived from the corresponding properties of determinants of the
third order, but the method we have adopted will be of service to
the beginner. In the next Chapter we shall give general demon-
strations applicable to determinants of any order.

It will be observed that we introduce the subject of determi-
nants by considering the forms obtained in solving certain simul-
taneous equations, The student thus may see at once that the
expressions called determinants do naturally present themselves
in mathematics, It is however more convenient in treating the
general theory to give an independent definition of a determinant,
and this we shall do in the next Chapter. It will prepare the
student for that definition if we here consider the determinant of
the third order in this new light,
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359. The value of the determinant

a, b, e
a, b, ¢
a, b, c,

is @,bye, — 4,byC; + aghye, — @b,y + aghic, — aghye,.

The first element here is a,b.¢,, which is the product of con-
stituents situated diagonally in the square symbol denoting the
determinant. The other elements may all be deduced from the
first element in a way which we shall now explain. The suffixes
1, 2, 3 are to be attached to the letters a, b, ¢ in all the different
ways in which permutations can be made of these suffixes; and
. the sign + or — is to be prefixed to any element according as it can
be deduced from the first element by an even number or an odd
number of mutual interchanges of two suffixes. Thus the second
element given above is ab,c,; this can be derived from the first
element by interchanging the suffixes 2 and 3, and so according to
the rule it is to have the sign — prefixed. The third element is
apb.c,; this can be derived from the second element by interchang:
ing the suffixes 2 and 1, and therefore it can be derived from the
first element by two interchanges of two suffixes, and so according
to the rule it is to have the sign + prefixed. Similarly the remain-

ing elements with their proper signs may be determined.

360. The following examples are particular cases of determi-
nants of the third order, which the student may verify:

(1) a bk g
by b, f|=abo-af*~bg*— ot + 3fgh.
2

(2) 1, %y Y,
1, =, ¥, =%,Y,— XY, + XYy~ XY, + T Y, — X,Y,.
1’ $', yz

3) |1, a,+4a,aa, .
1’ bl + ba’ blba =(a1—bs)(bx"cs)(cx— s)“"(“."bx)(b-""x)(cra.)-
1, ¢,+¢,y ce, | . . .
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4) L, v -8
-y 1, al|=1+a"+B"+9"
B —a 1

XXIX., PROPERTIES OF DETERMINANTS.

361. Let there be = symbols a,, a,, ...a,; then one of these
symbols will be called Aigher than another when it has a greater
suffix, so that for example a, is higher than a, or a,, a, is higher
than a, or a, or a,, and so on.

Now suppose that permutations are formed of these symbols;
then whenever in a permutation the higher of two symbols pre-
cedes the other there is said to be a disarrangement. Thus, for

.example, in the permutation a,aaa, there are four disarrange-
ments, namely ¢.0,, a,a,, a,a,, and d.al.

362. The permutations of the symbols a,, a,,...a, may be
divided into two classes, those in which there is an even number
of disarrangements and those in which there is an odd number.

363. When in any permutation two symbols interchamge their
places while the others remain unchanged the number of disarrange-
ments 18 increased or diminished by an odd number.

Let g and % denote two symbols of which & is the higher.
Let 4 denote the group of symbols before ¢ and %, let B denote
the group between g and %, and let C denote the group after
gand k; so that the permutations which we have to compare may
be denoted by AgBkC and AkBgC. Then the difference of the
numbers of the disarrangements depends upon the symbols which
constitute the groups gBk and kBg. Let B consist of 8 symbols
and suppose that B, of them are higher than g and 8, of them
higher than % Then in the group gBk; besides the disarrange-
ments in B itself, there are 8- B, + B, disarrangements ; for g is
higher than B— B, of the symbols in B, and there are 8, symbols
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in B higher than k. In the group %Bg, besides the disarrange-
ments in B itself, there are 8— B, + B, + 1 disarrangements ; for &
is higher than B — B, symbols in B, and there are B, symbols in
B higher than g, and % is higher than g. Therefore the difference
of the numbers of the disarrangements is

ﬁ“ﬂa"‘ﬁl-"" 1- (ﬁ"ﬁl + B:)’
that is, 2 (8, — B;) + 1; thus this difference is an odd number.

364. By repeated interchanges of two symbols all the permu-
tations of a set of n symbols taken all together can be deduced
from a given permutation. In this mode of deriving the permu-
tations we shall, by Art. 363, obtain alternately permutations with
an even number of disarrangements and permutations with an odd
number of disarrangements. The whole number of the permu-
tations of a set of symbols taken all together is an even number ;
hence it follows that there are as many permutations with an even
number of disarrangements as there are with an odd number of
disarrangements.

365. Let there be »* quantities arranged in the form of a
square, thus

Gyyy Bpag By gy eveoenens a,,
Gy 1y Olggy Ty gy eeneeennn a,,
Gyy Gpgy Bygyoveacenes a, .

Here for any quantity a,, , the first suffix, », indicates the row, and
the second suffix, %, indicates the column in which the quantity

a,, appears.

The above symbol is used to denote the determinant of the n'
quantities occurring in it ; these quantities are called constituents
of the determinant. The value of the determinant is found by
taking the aggregate of a certain number of elements, each element
being the product of n constituents. The first element is the pro-
duct of the constituents @, ,, @4, @4, ..., Which lie in the
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diagonal drawn from the upper left-hand corner of the square to
the opposite corner ; we shall call this diagonal tke diagonal of the
square, for we shall only have occasion to refer to this diagonal
All the other elements are to be derived from the first element
@, By 30y 4.-.@, , Dy permutations of the second suffizes, the first
suffixes being left unchanged. The sign + or — is to be prefized to
each element of the determinant according as it is or is not of the
same class as the first element, the class being determined by the
number of disarrangements in the permutations of the second
suffixes ; see Art. 362.

366. The above determinant is said to be of the »® order
because each element is the product of # constituents. The num-
ber of elements is the same as the number of the permutations of
n things taken all together, that is |n; half of these elements will
have the sign + prefixed, and half of them the sign — prefixed. It
will be seen from the mode of formation of the elements, that each
element involves one and only one constituent out of each row or
each column in the symbol which denotes the determinant.

367. Instead of the above symbol for the determinant, it is
sometimes denoted by S+a, ,a,,a,,... , ,; that is, the first ele-
ment is written and the symbol & put before it to indicate the
aggregate of elements which can be derived from the first element
by suitable permutations and adjustment of the signs + and -.
The constituents of the determinant may be denoted in various
ways; thus sometimes (¢, £) is used instead of 4, ,, and in this case
we must remember that (i, &) and (%, <) in general denote different
quantities. In examples of determinants of low orders, we may
find it convenient to avoid double suffixes, and use the same letter
for all the constituents in one column, distinguishing the con-
stituents by single suffixes; this notation was adopted in the pre-
oceding Chapter.

368. The other elements of a determinant are derived from
the first element by permutations of the second suffixes while the
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first suffixes remain unchanged ; these elements may however be
derived in a different way, namely, by permutations of the first
suffixes while the second suffixes remain unchanged. For suppose
that a, B, 7,...v represents a certain permutation of the » numbers
1,2, 3,..n; then @, . a; g, y... @, , is an element of the determi-
nant which arises from the first element by changing the second
suffixes 1, 2,...n, into a, B, ,...v, respectively. This element may
however also be derived from the first element @, ,a,,...q, , if
the second suffixes are left unchanged and the first suffixes are
suitably changed, namely, a to 1, Bt02, yt03,...v to ». In these
two modes of derivation there is the same number of interchanges
of two suffixes, and therefore the same sign is obtained to prefix to
the element by the rule in Art. 365.

369. The value of a determinant i8 not altered if the successive
rows are changed into successive columms ; that is

al.l’ “l.l’ """"" al,n al,l, “s.n ......... a,‘.l
@y 1y Qg gyeeeseeces aZﬂ “1,” Qg gyeeevenees Oy 9
a,,. 19 Dy, gyecsvecees [ aL n) a’. myeceseaces [

For it is obvious from Art. 365, that the elements in these deter-

minants are of equal value; and they have the same signs, as
- appears from Art. 368.

_ 370. If two rows or two columns are interchanged, the sign of
the determinamt is changed, '

For let B denote the given determinant, R’ that which arises
from the interchange. Then the elements in R and R’ are the
same as to value, and we have only to examine their signs. The
first element in B’ can be derived from the first element in R by
. interchanging two of the second suffixes, and thus these. elements
have contrary signs in the two determinants, Then an element
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in R’ which arises from the first element in R’ by m interchanges
of the second suffixes will be deducible from the first element in, R
by m +1 interchanges, and therefore it will appear in R and R
with contrary signs prefixed.

371. If two rows or two columms are identical, the determinant
vanishes. A .

For by interchanging two rows or two columns, a determinant
is changed from R to — R by Art. 370. But if two rows or two
columns are identical, the interchange of these rows or columns
can have no influence on the determinant, so that R=— 2; and
therefore R = 0.

372. When all the constituents except one of a row or of a
column vanish, the determinant reduces to the product of that con-
stituent and of a determinant of the next inferior order.

. Consider, for example, the determinant

a, by, ¢, d
ag, by, €qy dy
aa’ bﬂ’ ca’ d’
0, 0,¢, 0

By three' successive interchanges of single rows we can bring
the row which contains ¢, to be the highest row ; and by two suc-
cessive interchanges of single columns we can bring the column |
which contains ¢, to be the first column. Thus, by Art. 370,

[ @y by, €y @, =('1)"‘ 04; 0, 0,0

@y, by, ¢y d, ¢, @, b, d,
ag, by, ¢ d, sy @y by, d
0, 0, c, 0 3y @y by, dy

The first element of the determinant on the right-hand side is
cabd,, and the other elements are to be derived from this by

permutations of the suffixes. But ¢, is the only constituent with
the suffix 4 which is not zero, and thus ¢, will be a factor of every
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element which does not vanish, and the other factor will be de-
ducible from a@,b,d, by permutations of the suffixes 1, 2, 3. Thus
the original determinant reduces to

(- 1)“’4" a, b, d,
ag, by, dy
gy ba" ds

This mode of demonstration applies, whatever may be the
order of the proposed determinant.

The negative sign which arises in this example from (-1)°
may if we please be removed by interchanging two rows or two
columns in the determinant of the third order.

'373. The top row of a determinant of the n'* order can be
brought to the bottom by mn—1 successive interchanges of two
rows; and similarly, the first column can be brought to the end
by n—1 successive interchanges of successive columns, Each of
these is called a cyclical interchange, and it is sometimes conve-
nient to effect any proposed interchange of rows or columns by a
series of cyclical interchanges, for the sake of greater symmetry in
the arrangement of rows and columns. In the preceding example
we may bring ¢, to the place which we want it to.occupy by per-
forming three successive cyclical interchanges of rows and two
successive cyclical interchanges of columns., Thus we obtain for
the original determinant the following forms successively :

(=1)" a4 b,y €5 dy| (=1)° |ay, by, 5, dy =110, 0 ¢, 0

@y by, C5y dy 0, 0, ¢, 0 Gy by, 0 &y
0, 0,¢, 0 , a,, by, ¢, d, gy byy gy dy
a, b, ¢, d, agy by, ¢, dyl’ gy by, Co5 dy

D™ o, ¢, 0, 0] (-1)* ¢, 0, 0, 0](~=1)",\|d,, a,, b,
b, ¢, dy, a ¢ dyy ay, b dyy ag, by
by €5, dyy a Cyy dyy @y, by dy, gy by

by, ¢, da: Gy Csy gy a5y by
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374. A determinant can always be expressed in the form of

a determinant of any higher order.
For example, by Art. 373,
a, b, ¢ 1,000 1, 0,0, 0, 0
ag, by, el = |Byay, b, 6| =|p 1, 0,0, 0
ay, by ¢4 Y Gg, by, ¢ v, B ay, by, ¢
3, ag, by, ¢, Py Y @y by

0, & a5 by, ¢,

where B, v, 8, i, v, p, 0, are any quantities, Similarly, we may
carry on this process to any extent.

375. Let ¢ and % denote any two suffixes out of the set
1, 2,...n; let R denote the determinant S=a, g,,...a,,;
and let 4, , denote the coefficient of @, , in B. Then each of the
expressions
LY. VY 2. PR SR Y . M

and @, Aty dy y+ . +a, A,
is equal to R or to 0, according as ¢ and % are equal or unequal.

For every element of B contains as a factor one out of the
constituents @, ,, @, s @ 3 --. @, ,, which form the ¢ row.
And since 4, , denotes the coefficient of @, , in R, we have

R=a . 4,,+0, 4.+ ...+ a4, ..
Similarly we have
R=a, A, +a, 4y ,+...+a, 4,

In the first of these expressions for R, put a,,=a,,
@y 3=y 4 ... and 50 on; thus we obtain the value of a determi-
nant with two rows identical, which is zero by Art. 371.

Similarly, in the second expression for B put @, ,=a,,,
Ay =0y 4, ... and 80 on ; thus we obtain the value of a determi-
nant with two columns identical, which is zero by Art. 371.
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376. If every constituent in one row or one column s multi-
plied by a given quantity, the determinant i multiplied by that
quantity.

For R=a,,4,,+a, .4, ,+:..+a,4,,; and if every term in
the #* row is multiplied by » we must put pa, , for a,,, pa,, for
@, 4, and 50 on; thus we obtain p times the former result for the
new determinant,

Similarly, we may prove the theorem in the case in which all
the constituents of a column are multiplied by a given quantity.

377. If each of the constituents in one row pr one column 1s
the sum of m terms, the determinant cam be considered as the sum
of m determinants,

Suppose, for example, that each constituent of the ¢ row is
the sum of m terms; and suppose that

@, =p+q+7 + ...
O =P+ Qg +Te+ ...

a‘..=pa+qa+ra+ oo

................

Then R= a A Fa A+ +a 4,
m PA G+ DA+ +p4,,
+ Qg+ @l e + 9.4,
+ A+ T d g + rd,,
R

Thus R may be considered as the sum of m determinants
which have for their i rows respectively

DPyy Pgy wevveneen Pos
Qis Gy vovevenne 9.
Tiy Tgy eevvnnens 7.,

...............
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378. We shall now shew how the coefficient of a,, in a de-
terminant can be itself exhibited as a determinant. In order to
obtain those elements of a determinant which involve a certain
constituent g, ,, and those alone, we may suppose all the consti-
tuents in the * row to be zero, except @, ,; then putting 1 for a,,
we shall obtain the required coefficient. In this way we get

Au= @y 1y oee Wypyy Byay Gygryy  ooo Gy

..............................

@y_z,19 oo Bgacyy Topny Gy agrr oo0 By p

0, .. O , 0 .. 0

Gty ovr Tgracy Fprs Gignagrr o0 Gippg

..............................

Byy oo Bpicyy Guay Busprs oo G,

Thus 4, , is here exhibited as a determinant of the n'* order.
We may, without influencing the value of 4,,, put 0 for each
constituent in the 4™ column except that which is 1.

By Art. 372, or by Art. 373, we may exhibit 4, , as a
determinant of the (n—1)® order. Thus, adopting the method
of Art. 373, we make ¢ — 1 cyclical changes in the rows and k-1
cyclical changes in the columns, Therefore

At,h="‘ Ao ners oo Ty Hpryy oo0 Fpan

...........................

LT ¢ Oy Quyy oo Gy
a,_,,H, eos a/,_,, al,l’ vee aL,_,
............ Neeteerarecenne
W_1,5415 o0 Bi_gms Bog1y oor Bogpa

where e= (_ 1 )(l—l+i— He=1) _ (__ 1)«")«-1).

379. By the aid of Arts. 375 and 378 we can express any de-
terminant of the n® order as the aggregate of = terms, each of
which is the product of one constituent and of a determinant of
the (n—1)* order; the determinants of the (n— 1)* order may
themselves be similarly treated ; and the process continued to any
extent. For example,
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wbyc,d |=ab,c,d | =blc,d,a,|+c|d,a,b i~d|ayb,ec,
b Co d: ba’ 29 ds Cp dv @y dv gy b Qyy b,, Cy
b cl’ s bc‘ Co dc Co do' a, d(' @y 64 @, b.) C, l
6 ¢, d, i |
=a, {b ) +d| 3 €y }
Cqy Oy l by €
b{c y @ |+d,' a,, ¢, |+a,]c,, d }
) @ ayy Cy Co 94
+c,{ s Dy +b, l s Oy }
“u b by d d,, a,
—d,{a., b,y ¢, |+b,|¢c, a,j+e,|a, b, }
b, ¢ Cir O ay, b

380. We now proceed to an important part of the subject,
that which relates to the multiplication of determinants.

Let there be two given sets of symbols, namely,

Bygy vovneenne a,,,
Gpry enennnns a, ,
and by ay eeeenen b,
Dogs woveveeee b,
From these let a third set of symbols be formed,
Cppp weeenenes Cus
Cpzs soveeenns Co

Let R denote the determinant S=¢,,6,...¢c,,. We shall
now prove the following results:

18—2
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(1) Suppose p less than n; then E=0.

2 Suppose p =n; then Z is equal to the product of the two
determinants which consist of the two given sets of symbols in the
order they occupy.

1

(3) Suppose p greater than n; then R is equal to the sum of a
set of products of pairs of determinants, each pair of determinants
being formed by taking any n columns out of the first given set
of symbols for one determinant, and the corresponding n columns
out of the other given set of symbols for the other determinant.

The first element of R is ¢, ,c,,...¢,,, and the value of

this is ‘ "
(Eal, 'bl. ') (Ea’. s, a) (Eal. !bl. !)

where in the first factor = denotes a summation with respect to 7,
in the second factor 3 denotes a summation with respect to s, in
the third factor = denotes a summation with respect to ¢, and so
on; and all these summations extend from 1 to p, both inclusive.
Thus the product may be obtained by taking the sum of the
values of the expression ’ V

[ . AN bL,bt,bl,
where 7, s, ¢, ... take all integral values from 1 to .

‘We may denote this sum by

Ef,a,l,.—(al.rdi,aal,! oo bl, 'bl, abgi "‘)’

The other elements of R are derived from the first element by
permutations of the second suffixes and prefixing the proper sign.
Now from the general value of ¢, , it follows that by changing the
second suffixes of the symbol ¢ no change is made in the suffixes
of the symbol a, but the first suffixes of the symbol 5 are cha.nged,
and these alone.

Hence we obtain a result which we may denote thus,
R=3 ,, (%,%,%,...2+b 05 05,,...)



PROPERTIES OF DETERMINANTS. 277

"~ Here 35, ,5,,5,,... constitutes a determinant of the n*
order, which is formed from the second given set of symbols by
taking certain columns, and the = refers to changes of the first
suffixes ; see Art. 368, 'We shall denote this determinant by Q.

Now, in the first place, suppose p less than n. The suffixes
r, 8, £, ... are n in number, and none of them can exceed p ; hence
it follows that there must be always two or more of them which
have the same value. Thus @ always vanishes, by Art. 371; and
therefore R vanishes.

Secondly, suppose p=n. Then the system of suffixes r, s, ¢,...
can be a permutation of the n symbols 1, 2,...n; and they can
be nothing else without making @ vanish. And by taking in
succession different permutations the sign of @ will change, but not
its value, by Art. 370. Thus the value of B reduces to the product
of the determinant formed out of the second given set of symbols,
into the sum of all the elements denoted by 3=a,,aq,,...q,,,
where 3 refers to changes of the second suffixes. Therefore when

p=mn

Lastly, suppose p greater than ». Then the system of suffixes
7, 8, {,... can be any combination of # numbers that can be formed
out of the p numbers 1, 2,...p; and the number of such combina-
V4
In[p—n’
binto a. Hence, as in the second case, we shall obtain PQ for
one term in R, which arises from the selection of a definite combina-

Let P denote what @ becomes by changing

tions is

mlp=n possible combinations, Therefore when

p is greater than n we have B =3PQ, where 3 refers to the sum-

mation of '3
[»lp=n

tions,

tion out of the

terms arising from all the possible combina-
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381. By the second case of the preceding Article we see that
the product of two determinants of the order n can be exhibited
as a determinant of the same order. Similarly, the product of
three determinants of the order » can be exhibited as a determi-
nant of the order » ; for we can first exhibit the product of two of
them as a new determinant of the order =, and then the product
of this new determinant and the third of the original determi-
nants can be exhibited as a determinant of the order n. Thus
we see that the product of any number of determinants which
are all of the same order can be exhibited as a determinant of
that order.

Hence generally the product of any number of determinants
of any orders can be exhibited as a determinant of the same order
as that of the determinant of the highest order among the factors.
For by Art. 374, all the other determinants may be made to be of
the same order as that which is of the highest order; and then -
the product of these determinants of the same order can be ex-
hibited as a determinant of that order.

382. Buppose we wish to form the product of the two deter-
minants

(%Y} @y

P
and | B, ,...5,,

| Bryer b |

By Art. 369 we may change the successive rows into successive
columns in either or both of these determinants. Thus, if we
denote the product by
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we may form the new constituents in four ways, for we may
adopt either of the following laws throughout,

€=, b, +a b, +...+a, b,

or ¢,=a,b, ,+a.,b,,+...+a,b,,
or ¢,=ab,,+a,b,.+...+a,b,,,
or ¢,,=a, b ,+a,.b,,+...+a,.b, .
383. Let 4,, denote the coefficient of &, , in a determinant £.
The system of symbols

.....................

@y, yy By, 39000y

Ao, 19 g gyee- g o

....................

'384. The determinant of a system which is the reciprocal of &
proposed system of n* symbols s the (n— 1) power of the determi-
nant of the proposed system. '

If we multiply the determinants

............

and @y Gy,

............

we obtain for the product
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where ¢, ,=4,,a,,+4, .0, ,+...+4, ,a,, Hence, by Art. 375,
the constituents of the last determinant have the value R or 0
according as ¢ and % are equal or unequal. Thus this determinant
reduces to its first element ¢, ,¢, ,...c, ,, that is, to B°. Therefore

4,,..4,,|R=R
4,.,...4,,

therefore 4,,,..4,,|=R""
A, . A,

385. Suppose we have a determinant of the n® order, and in
the square symbol denoting it suppose m columns and m rows
destroyed ; the remaining symbols may then be supposed moved
close up so as to form a mew square symbol which is a determinant
of the order n—m. This determinant is called & partial determi-
nant or a ménor determinant, with respect to the original determi-
nant. The symbols common to the m rows and columns will form
a square symbol which is a determinant of the order m. This is
also a partial determinant or minor determinant. The two
partial or minor determinants are said to be complementary to
each other.

386. Let R denote a determinant of the order ». A partial
determinant of the reciprocal system of the order m is numerically
equal to the product of ™~ into the complementary of the corre-
sponding partial determinant of the original system.

Let £, g,...7, 8,... denote one permutation of the » numbers
1, 2,...n; and let ¢, %,...%, v,... denote another permutation. .And
suppose f, ¢,... and 4, k... to be groups of m numbers each, while
r, 8,... and u, v,... are groups of n—m numbers each. Thus

4,, 4

£, 87 1 LA

(3 (' i" A

is a partial determinant of the reciprocal system of the order
m ; we shall denote it by S.
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Now

Qpyy Cpyyoeelyyy G, ees’

@sy TpiuyooaWyyy Gy oy oen

..............................

where ¢ is + 1 or —1 according as the permutations £ g, ..., s,...
and i, &, ... u, v,... belong to the same class or to different classes.

‘We now propose to obtain the product of these two deter-
minants. The determinant S may be raised to the order n by
inserting additional constituents; see Art. 374. Thus we may
put for S the following determinant,

4,,4,,,..4,,,4,,
A,." A'.h) 4,.0! A,,n'
Br(’ Bf,h’ 'Bfu! B:,n
Ba." 'Bc,l) 'Bn.n’ ‘Bl, (2N

..............................

where the constituents denoted by the letter B with suffixes are
all supposed zero, except those standing in zhe diagonal which are
all supposed equal to unity.

Now form the product of § and eR, which will be a new deter-
minant of the order n. Let the constituents of this new determi-
nant be denoted by the letter ¢ with two suffixes, the first of which
indicates as usual the row and the second the column. By
Art. 382 there are four ways by which we may determine the
constituents in the product of § and eR; we shall select the first
of these, according to which ¢, , is obtained by multiplying respec-
tively the constituents in the p* row of S by those in the ¢* row

of eR. Thus
=40, ,+4,,0,+..+4, 0 +4,0 +.
6 =4 a0, ,+4,,0 ,+...+4, a0 +4,0a +..

................................................
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Therefore by Art. 375, we have ¢, ,, ¢,,,...c, . all equal to R,
while all the other constituents in the first m rows of the determi-
nant which is the product of S and R are zero.

For the first term in the (m + 1)™ row, we have

6py1=B,,+B, ,a,+...+B a +B a +..=a,

because all the symbols denoted by B with suffixes which occur
here are zero except B, ,, and that is unity. For the second term
in the (m + 1)* row we have similarly

cu+l,!= a'.-

Proceeding in this way, we find that the (m+ 1)®* row in the
product of S and eR is the same as the (m + 1)® column in R,

Similarly, the (m + 2)* row in the product is the same as the
(m+ 2)* column in eR.

The determinant then which is equivalent to SeR reduces by
Art. 372 to the product of B™ and the following determinant of
the (n — m)® order,

............

1
Thus S ‘Rﬂ p [ 3] ar [ 24
a“, a,' .

............

387. The following examples may be verified by the student.
In examples (4), (5), and (6), we have determinants of which the
constituents are themselves determinants.

(l) 0, a, B, Y
a, 0,9, 8
B, Y:’ ‘r)l” a: =¢'¢l’+ﬁ’ﬂ"+7’7"—2mlﬂ 8 1—2MIW1-2Bprl

|'y, Bya,0
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(2) 0: a, ﬁ, b4 .
B —y.t 3 fﬁ =(0a,~ BB, + 1)
- 1’ -Bp - “1’ 0 .

(3) 0, o By )

—a, 0, v, B, |=0+6@++y +a+B +y)
- B) =Y 0) a + (aa'l - Bﬁl + Wl)’

) "Bp -a, 0

@ | (o] |99 |

g, @ j;h =a a’hr.q
g, a a,h h’baf
fh| |ab ke
(5) | g a Sie
j.,h h,g =’L a,h,g
a,h h’b hrb:f
h, b S 9t o
(6) bf |fe h, b
sel bl lors wh|
Siel |ag| |9 Y
k’,g o a f:h = the square of h,b,f|
kol lg,a]| |ak 9.5 ¢l
oSl |fih hb
7 la b c,dl_'_ b e a,d|+c,a b,dl=0,
Gy b| ¢y d, bn | la,d Cp @ bl’ d l
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-

XXX, APPLICATIONS OF DETERMINANTS.

388, Suppose we have to find the values of » unknown quan-
tities ,, &,,...x, from the following # simple equations

a, 1%, +a,.,x,+a»,_,x,+ ces +a,._a:.=u,,

a“m,+a“z,+a,',xa+ s +a,,..a:‘=u,,

a, T, +a, X+ aﬁ,ma+ oo+ Qp WLy =U,e

Let R denote the determinant 3+ga, ,a,,...a,,; and let 4,,
denote the coefficient of @, ,in K. Then the values of the unknown
quantities will be given by the formula

Re,=wd, ,+ud,,+...+ud,,,
where % may have any value between 1 and n both inclusive.

For let the given equations be multiplied respectively by
4,,, 4;,...4,,; and add the results. The coefficient of =, is

then
a,,4,,+a,,4,,+...+a,,4,,,

which is equal to B by Art. 375. The coefficient of =, is
a,“A,‘.,-o- a, A+ ... +a, A4, ,,
which is zero by Art. 375.
‘We may write the formula which gives #, thus
Re,=8,

where S is also a determinant, namely the determinant which is
obtained from R by removing the 2* column of R and substituting
for it the column formed of %, u,,... u,.

389. Suppose that the determinant R vanishes; then the
values of the unknown quantities become infinite. This indicates
that the given equations are inconsistent ; see Algebra, Chapter xv.
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390. Suppose that u,, u,,...wu, vanish, and that B also
vanishes. The method of Art. 388 gives for the unknown quan-

tities the indeterminate form g In this case we may take n—1

of the given equations, and these will be sufficient to determine
the ratios of n—1 of the unknown quantities to the remaining
unknown quantity.
These ratios can however-be at once assigned : we shall have
Xty iy . =4,, 4,1 4,,:
where ¢ is any integer not greater than .
For since B=0, we have by Art. 375, for all integral values
of ¢z and % between 1 and =,
o A +a, A +a, A4 +......=0;
and thus when |, x,, ;,... are taken in the ratios assigned above,
we have
@y Ty + Ay Ty + Uy (X + oeee. =0,
By taking n-1} of the given equations, and supposing
%, %,...u,  all zero, we shall obtain in general a single definite
value for the ratio of each of n—1 of the unknown quantities to
the remaining unknown quantity. Hence it follows that when

R =0 the ratios

A A v 4, ..

are independent of 1.

391, If u,, u,,...u, all vanish, and B doés not vanish, the
system of equations in Art. 388 has no solutions, except we suppose
@, «,,...x, all zero. The ¢ondition R=0 is thus necessary in
order that the unknown quantities may have values which are not
zero.

392. For example, in order that the equations
az+by+ez=0,
ax+by+ecz=0,
az+by+ez=0,
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may admit of solutions which are not zero we must have

a, by, ¢
Ay, bn Cg

@y by, € 1=

If this condition is satisfied the equations may be satisfied by

oy cz s | b o b

Ziy 1z by, e v c, a ag, b,
’

by < 1G5y Qg ay; b,

orx:y:z::|b, e Cyy Gy ag, b,
b

b, ¢ 10y G |Gy b.

orz:y:2z:|b,el: e, a a, b, ’
bn Cg Cqy Qg gy bl'

These three forms of solution coincide by Art. 390.

393. From the given equations in Art. 388 we have deduced

wd, +udy +u Ay, +...+u A, =B,
wd, g+ ugdy g+ udg o+ ... +u 4, =R,

wd, +ud, Fudy 4. +u A, =R,

Let p denote the determinant J=4, 4, ,...4,,; and let a,,
denote the coefficient of 4,, in p. 'We may from the above equa-
tions find the values of ,, u,,...u_ ; and by proceeding as in
Art. 388 we shall obtain the general result

pu,=R{xsa“ + &0, g+ ... +x_a,.,} .
By comparing this result with the given equation in Art. 388,

Q,

b 1%+ By 4Tyt een + @y (T, =y,

we have, since the values of %, must be identical,
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But p= B*~! by Art. 384 ; thus
. - E.—l a

394. We now proceed to apply determinants to another
problem, that of forming the product of all the differences of
given quantities.

Let n quantities be denoted by a,, a,,...a,. Let P denote the
product of the differences obtained by subtracting each of these n
quantities from all those which follow it, so that

P= (al - al) (as - al)"'(a. - an) (al - a’)(a‘ - a'.) e (au - a'n-—l)'

Then P may be exhibited as a determinant of the order n. For
consider the determinant

.....................

This determinant is & rational integral function of the quantities
a,, a,...a_ ; and it vanishes when any two of these quantities are
equal, by Art. 371. It is therefore divisible by the product
which we have denoted by P. Also both the determinant and

the product P are of the degree (n 1) in powers and products

of a, a,...a ; therefore the quotlent when the determinant is
divided by P is some number. And this number must be unity,
as we see by comparing the first element of the determinant with
the product of the first terms of the binomial factors of which P
is composed.

395. The above determmant of the n* order consists of |n
terms. The product P prxor to simplification and cancelling would

n(n-1)
involve a much larger number of terms, namely, 2 * . Thus the

determinant is an advantageous form for the product on account
of the saving in terms.
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396. We have

. 2 n=1 ] n—1
PP=|1, a, al..a 1, a,, a}...q
2 n—1 2 n—1
1, a4 at...q, « 1, a5 agy...a
n=1 H) n—1
}a,e'. . a 1, a,af..a

Now the product of these determinants can be exhibited as a
smgle determinant; adopting the last of the four methods given
in Art. 382, we have

........................

r

r r
where 8, =a +a + ... +a

397. Suppose, for example, that e, a ,...a_ are the roots of an
equation of the n* degree; then P’is the product of the squares
of the differences of the roots. Thus the product of the squares
of the differences of all the roots of an equation can be exhibited
as a determinant, the constituents of which are known in terms of
the coefficients of the given equation, for s, can be expressed in
terms of the coefficients.

398. Suppose we have fo find the values of the » unknown
quantities 2, «,, ... #, from the equations
T+ + et .., =],
moa + 0 +T0+ . tBa =1,
ze’+zal+x0l+ . x0’=",

n=1

e "t rael T b me T L e M =
The values of the unknown quantities will be determined by
the formula

= ("'l - t) (ag—1t) ... (@ — t).(“;u =t)... ("’-_"_‘)_ )
(a —a‘) (ag—a) ... (a_ —a)(a, —a)...(a,~¢)"
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For by Art. 388 we have Rz,=S,
where R=l 1, 1, 1, .1
a

| oY) ®g9 39 %

2 2 ) L]

I al ) @y ey o G
................................
=1 n-1 =1 n—-1

....................................

n=1 n—1 n—1 n—1 n—1
" i, T, a, e

Now let the 5 column in R be placed first, and the ¢** column in
S be placed first; see Art. 373. Then let the two determinants
be changed into products of differences by Art. 394; and by can-
celling common factors in the numerator and denominator we
obtain the value of z, in the form assigned above.

As a verification we observe that if a,=¢ the equations are
obviously satisfied by supposing o,=1, and all the other unknown
quantities zero.

399. The method of determinants may also be used to obtain
the resulting equation when certain quantities are eliminated
from given equations. Suppose we have to eliminate = from the
equations f(x) =0 and ¢ (x) =0, where

S(x)=a,+ax+ax’+ar’ ¢ (x)=b,+bx+ba".
‘We may proceed thus
S(@) =a,+az+azx’+agx’+0,
af (x) = 0 + az + a2’ + a2’ + aa’,
¢ (x)=>b,+bx+ba"+0+0,
ap(z)=0 +bx+bx'+b2’+0,

Zp(x) =0 + 0+ bz +b 2"+ ba'.
T.E 19
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Let B=| a,

then since by supposition f(x) = 0 and ¢ (x) =0, and therefore also
zf (x), ¢ (x), and ¢ (x) are all zero, it follows by Art. 391 that
R =0 is the necessary relation which must hold among the coeffi-

cients of f(x) and ¢ ().

400. We have given a particular example in the preceding
Article, as the general investigation to which we now proceed will
thus be more intelligible. Let

S@)=a,+ax+as’+...+az"=0,
p@E)=0b,+dbx+ba'+..+b2=0;
and suppose we have to eliminate x between these equations.

We have
S@)=a,+ax+ax’+... +aaz",

(@)=  ax+ax’+..+a,_2"+a g,

a7 f(x) = e +ax’+ ...
¢ @)=b,+bz+ba’+...+ba",
zp(x)=  br+ba’+...+b _&"+ba™",
"' (x) = bt +ba™ + ...

Let R denote the determinant of the order m + % which has for its
first » rows
@y G, @y ...a,, 0, 0, O,..

0 a,a,..a_,a, 0 O,..

0,0, a,..a,,, a,_, &, 0..
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and for its next m rows
5, 5,05,..58, 0 0,0
0, b, 6,..5_,0%, 0, O,..
00%,.5_,5_,5,0,..

then B =0 is the necessary relation among the coefficients in order
that f(z) and ¢ (z) may simultaneously vanish.

The relation B=0 has been called the resultant or the elim:-
nant of the proposed equations f(z) = 0 and ¢ (x) =0.

401. The terms in the quotient obtained by dividing one
algebraical expression by another may be exhibited as deter-
minants.

Let ¢(x)=0¢2"+ax" ' +a gz~ +...+ax>"+ ..,
Y(@)=02"+b2" +ba" "+ ...+ b2+ ..,
and let the quotient of ¢ (z) divided by y (x) be denoted by
/7l X ol R 2 s

Multiply by the denominator, and equate the coefficients of
™" on both sides. Thus -

a,=gb,+ q'—lbl +q, b+ ... + g0,

Similarly,
e = qr—lbo + qr—sbl +.ot qob'-) ’
a,_,= q,_bo+ ... +qb,_,,
al = QIbO + Qobn

‘We may regard these as »+ 1 equations for finding ¢,, ¢,_,, ... ¢,.
19—2
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q. |5 b, b,..5, [='@& ,b,b,.. &
0, b, b,...b,_, a,_, b, b, b_,
................... “ a_, 0,0,. g
0,0,0,..5, ay, 0,0, b,

Therefore by evaluating the determinant on the left-hand
side, and rearranging that on the right-hand side, we obtain

15,0, 0, 0, ... a,
=57 5,5, 0, 0, ... a,
by b, By 0, ... a,
b, b, b, b, ... @,
By Byy Bygy B,y vt

402. We will now give some applications of the theory of
determinants which occur in a case of the transformation of func-
tions by linear substitutions.

Let there be any function of the n independent variables
®,, ,, ...2,; and let these variables be expressed in terms of n
new independent variables y,, ¥,, ...y, by means of the following
n linear equations:

X, =ay, Y, + G Yt 0L,
By =0y Y, + By Yy + e+ Y,

T =a,,Y +a, Y, ...+, Y,
then by substituting the values of «,, «,, ... z,, the assigned func-
tion becomes a function of y,, 7,, ...7,.
Suppose now that we impose the condition that
eltal+. b=y Y e Y (2);

then certain relations will hold among the coefficients of the linear
equations (1); these relations we shall now demonstrate.
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L For every value of ¢ and % between 1 and » inclusive

] ]
a’+al +......+al =1 }
and Gy o+ Ty Byt eeenns +a,a,,=0

Substitute the values of =,, #,, ...z, from (1) in the identity
(2); and then by comparing the coefficients of like terms we
obtain (3).

II. From (1) we can express ¥,, ¥s,...Y, in terms of
%, %,, ... %,; we shall shew that for every value of ¢ between 1
and % inclusive )
V=0 2+ Wyt crevs F By Brenerannnnnnnns (4).
To establish this it will be sufficient to verify the statement:
substitute for z,, #,, ..., from (1) in (4); then by means of (3) it

17 )

-will be found that the right-hand member of (4) reduces to y,.

III. In the same way as we obtained (3) by substituting from
(1) in (2) we may obtain, by substituting from (4) in (2), the fol-
lowing results for every value of ¢z and %z between 1 and x both
inclusive:
al +ol+...+a =1,
@Oy + @ Oy gt e+ TG = 0.}

IV. The square of the following determinant is equal to

unity:

@y yy Qygyeee Gy
g1y Aggyeer gy

................. 0

Wy yy Opgy oo Ty

Denote the proposed determinant by R: then R*, by Art. 380,
is equal to the determinant

Ci 15 Cyg9 ++- Cpy
Cg1y Cg35 ++- Can

..................
Cu1y Cugr oo+ Cpn

where Con= By 10y 1+ G 3By g+ oo + @, T,



294 APPLICATIONS OF DETERMINANTS,

Thus, by (5), we have ¢,,=0 when ¢ is not equal to %, and
¢,;=1. Thus the latter determinant reduces to its first element,
that is, to unity: therefore R*=1.

V. Let A, , have the same meaning as in Art. 388: then
we obtain from (1) '

1 ‘-
Y= R{A,_.a:,+A,..x,+ +A,,.a:_}.

Hence, comparing this result with (4), we have

.|
a,.‘=—1—'é'—‘....................‘ .......... (6).

VI. The following partial determinants which can be formed
of the constituents of R are numerically equal:
' Oy, mi1

aﬁ-ﬂ.n-ﬂ’ a--c.l. m429 o0

Q,

mil,mia? o0 &,

milLn

................................

G pygs ooeoee -

and
al, 1 al.i’ A al..

@y 1y Vg 9y <0 O3

....................

Gy 1y

Denote the first determinant by P, and the second by @;
then by Art, 386,

Dppgy ooo Bpy oy

A iy Aigy.. 4

Az,n A:.n A!.-
4., 4,5 .- 4,

is numerically equal to B™~'P.
And by Art. 376 and equation (6),

Ay A,y Ay
Ay Ay, . A,

=EQ.
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Hence, since B*=1, we see that P and @ are numerically
equal.

403. We will finish with some examples.
(1) Shew that|a, b, ¢|=a®+b"+c*— 3abe.
. ¢ a b
b ¢ a
Shew that @ + b + ¢ must be a factor of this determinant.

(2) Shew that
a, b, ¢, d|=a'—-b"+c*—d"' - 2a°c* +2b°d"
dy, a, b, ¢ —4a°bd + 4b%ac — 4c’bd + 4d’ac.
¢, d, a b
b, ¢, d, a
Shew that a + b + ¢ + d must be a factor of this determinant.

(3) Let there be a determinant of the order  + 1 in which
all the constituents are equal to unity except those which form
the diagonal series, and these are 1, 1+a,, 1+a,,...1+q,: the
value of this determinant is aa,...a,.

For if any one of the quantities a,, a,,...a, vanishes the
determinant vanishes, because it then has two rows identical ;
thus the determinant is divisible by a,a, ... a,. And the quotient

of this division must be unity, as we see by considering the first
element of the determinant.

(4) Let there be a determinant of the order » in which all
the constituents are unity except those which form the diagonal
series, and these are 1+a,, 1+a,,...1+a_: the value of this
determinant is

1 al »

{ 1 1 l}
ag,...a, 1+; + =+t

For if any one of the quantities a,, a,,... a, vanishes the
determinant reduces to a case of the preceding example ; and the
term a@,...a, is found by considering the first element of the

determinant.
Quarterly Journal of Mathematics, Vol. 1. page 364.
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XXXI. TRIGONOMETRICAL FORMULAZE,

404. We will give in the present Chapter a few propositions
which bring the Theory of Equations into connexion with Trigo-

nometry., :

405. In Art. 272 of the Plane Trigomometry we have an
expression for tan n6 in powers of tan6, supposing n to be a positive
integer. Suppose now that tann is given, and we require tan 6.
Clear of fractions, and thus we obtain the following equation of
the n* degree for determining tan 6;

r=-1)(n-2)(n-3) .
LS LE N

nn-1),
ta.nnO{l———lg-—tan 0+

—ntang-"0DB=2) g
8

+n(n— D=2 (n-3)(n-4) tan®@—.....(1).
od
Now the value of tannf is not changed if we put instead of
6 any one of the following angles :

0+, 0+—21, 0+§E, 042,
n n n n

Hence we infer that the roots of (1) are
tan 6, tan(0+’—'), tan(0+2—”) ....... tan(0+’i_—l.w .
n n n

Let S denote the sum, and P the product, of the n quantities
just expressed ; then, by the aid of Art. 45, we may deduce from
(1) values for S and P: but for this purpose we shall have to
consider separately two cases.
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L Suppose n even. Then (1) becomes
n(n-1)
2
.\ ¥/ n-2 .
—ntan "= g (= )T tan,

3
In this case in order to put our equation in the standard form,
that is, with unity for the coefficient of the highest power of the

n0 + ... + (- 1)Ftan0}

ba.nné‘{l—

unknown quantity, we must divide by (—1)"tannf. Thus we
obtain

”(“_ I)L =—ncotnd, P= -(—L)n =(- 1)' (2).
(- 1)* tan nf -

S=

II. Suppose % odd. Then (1) becomes

tnnf {120 antg .. +n (- 1)7 tan0)

2
n-1
—ntan6— ”—(”—“—lly $80°0 + ... + (= 1) T tan6.
In this case in order to put our equation in the standard form,
n-1

we must divide by (—~1)*. Thus we obtain
»-1
S=pntannf, P=(-1)7 tannf.............. 3) .

406. Again, take equation (1) of Art, 405, and multlply by
cot*0; thus we have

tan nd {cot'o—”——(”2_ D cotr2g4 22 = 1)('(_ 2)(”'3) cot*6—. } |

n= D09 g

=ncot"'g -

+n(n—1)(n_2)5(”—3)("’_4). cot*%0 —
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Divide by tan zf, and we obtain an equation in the standard
form for determining cot@ when tannf is given. Hence, proceed-
ing as in Art. 404, we have

407. From équations (3) and (4) we see that, if n be any
ddd integer, the product

of {tan0+tan(0+£)+ ...... +tan(0+"—";+11r)}

into {cot0+ eot (0+Z-r)+......+cot (o.,li:l,, } .
n n

=n',

408. Propositions like those of Arts. 405 and 406 may be
easily deduced from other formulm of Trigonometry. We will
give one more,

By Art. 287 of the Plane Tngonometry we have, when n is
even,

g =)
wsn0=1-—[ 0+—T—sm0— .......... (5). '

Let cosnf =0; then we may put for § any one of the follow-
ing n values:

UL el
W’ T2 T Tom

Letm——, and « = cosec’d; then dludmg (5) by sin*0, we get

2
w -1 n'(n’ - 27) -3 _
0=x —-@x" E ﬁ- ......
The m values of x are
cose'* co! 3t sec' *—~ o
o o BoCt 5y eu e o T

lience, by Art. 45, the sum of these m quantities =



TRIGONOMETRICAL FORMULZ. 299

Thus, if » be an even integer,

409. 'We see by Art. 142 that any algebraical quantity has
n different n® roots. 1f then we have found an expression for
the n® root of an algebraicdl quantity that expression must be
susceptible of » different values, unless some restriction has been
introduced . in our reasoning by virtue of which this multiplicity
of values has been excluded. In other words, if two expressions
are asserted to be equal, one of them must in general admit of
as many values as the other.

Various Trigonometrical formule involving expansions were
given by some of the older mathematicians, as for instance by
Euler and Lagrange, which were not in accordance with the
principle here stated, and which have been shewn to be inaccurate
by Poinsot in a memoir, published in 1825, entitled Reckerches
sur Panalyse des sections angulaires. A memoir by Abel also
treats on the same subject: see his Oeuvres Complétes, Vol. 1.
page 91. We will illustrate the point by considering one case,
and will follow Poinsot, though his method is not very rigorous:
for a more elaborate investigation we refer to Abel.

410. Let it be required to investigate a series for (2 cos 6)"
in terms ef cosines or sines of multiples of 6;

The case in which n is a positive integer is treated in the
Plane Trigonometry, Art. 280 ; we proceed to the more general
proposition in which % is not restricted to be an integer, though
it is assumed to be positive.

First suppose cos§ positive; and let p denote the arithmetical
value of (2cos6)". Then we may put

(20080 =1"p.ceveurrieririininnee, ().

Now 2cos §=e9+ ¢, where ¢ is used for /=1 ; thus

(2 cos 0)*= (¢ +e~)"

= ™04 petn—2140 4

’-’—(T‘;—l) e84 ..
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But e = cosnd +sin nb,
6208 = cos (n— 2) 6 + ¢8in (n —2) 6,

and so on.

Hence (2co88) =c+s,
where ¢ stands for a certain series involving cosines, and s for a
corresponding series involving sines.

Again, 1p = (cos 2npwr + ¢ sin 2nuw) p,
where u denotes any integer,

If then we were to equate this to ¢ + s we should fall into the
error against which we are warned in Art. 409. We observe that
(1) remains unchanged when 0 is increased by any even multiple
of 2r. Let then ¢, and s_ denote what ¢ and 8 respectively be-
come when in them 6 is changed to 8 + 2mx. Then we may put

¢, + 8, = (co8 2num + ¢ 8in 2npar) po..renennnnnn. 2).

411. If we suppose = an integer, we have ¢, and s_ coin-
ciding with ¢ and s respectively. ~Then equating the real and
imaginary parts of (2) we obtain

c=p and 8=0.

The former agrees with the result which is obtained and more
closely discussed in the Plane Trigonometry, Art. 280.

412. But we now suppose that n is not an integer. The first
point to be established is that in equation (2) we must take m=p.
This point has sometimes been assumed; but Poinsot gives a
reason for it in the following manner. Let us suppose 6 to
diminish without limit. Then it will be found that

c~=oos2nm1r{l+n+?—(/’{2:——l)+ },

8, =sin 2mmr{l +n+n—(1,22_—1)+...}.
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The series within the brackets may be regarded as equal to 2",
by the Binomial Theorem ; so that

¢, = 2" cos 2nmm = p cos 2nm,
8, = 2" gin 2nmm = p sin 2nmar.
Hence by (2) we get
cos 2nmar + ¢ sin 2nmr = cos 2npw + o 8in Znprw ;

from which we conclude that m = p.

413. Thus, when % is not an integer, we have from (2)

p=—Sm _ and p= __om 3);

=cos2nm1r cessssesssevian
so that p may be expressed either in a series of cosines or in a
series of sines.
414. If we put m=0 in the first of equations (3) we obtain
p=cj

this coincides with Art. 280 of the Plane Trigonometry in form,
and we see that it is true 8o long as cos @ is positive.

Again, put m=0 in the second of equations (3); then, since
sin 2nmwr vanishes with m, it follows that s=0 so long as cos§ is
positive.

415. Let us now suppose that cos 0 is negative ; and let p de-

note as before the arithmetical value of (2 cos6)". Then we may
put

(2cos )" =(—1)"p.
Also (- 1)*=cos (2 + 1) nw + ¢ 8in (2p + 1) .

Hence instead of (2) we now obtain
¢, + 8, ={cos (2u+1) nw+ u8in (2p + 1) ma} p..cven(4).
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416. If we suppose n an integer, we have c,, and s_ coinciding
with ¢ and s respectively. Then equating the real and imaginary
parts of (4) we obtain

¢=—p and §=0.

The former agrees substantially with the result obtained in the
Plame T'rigonometry, Art. 280.

417. But we now suppose that » is not an integer. 'We first
shew, as in Art. 412, that m =g ; then, as in Art. 413, we have

8

4 P= E@m s ar

c
P= o8 @m + 1w ™
If we put m =0 in the first of equations (5) we obtain
’ c
- P s’
This shews that when cos@ is negative the numerjcal yalue of
(2 cos 9)" is not equal to ¢, but to ¢ divided by cosnw; and this
divisor is in geperal pot equal to unity.

Also, if we put 7=0 in the second of equations (5) we obtain
o= s
gin nr
thus s is in general not zero,

.
’

418. Return to equation (3) of Art. 413; and let us deter-
mine when p can be expressed by cosines only, and when by sines
only.

'We may suppose that n is equal to some integer together with
a proper fraction ; let this proper fraction in its lowest terms be
denoted by ; ; then we shall not require to consider a value of m

greater than s -1,

If p can be expressed by cosines only, it is obvious we must
have sin 2nmmr =0 ; thus m=0 is one value of m, and if s be even,

8.
m = is another.

2
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If p can be expressed by sines only, it is obvious we must have
must be an odd multiple of - ; thus

if r is odd and & a multiple of 4 we may take m=% or=3f .

rmm

cos 2nmm =0 ; therefore 2

419. Again, take the equations (5) of Art. 417; and let us
determine when p can be expressed by cosines only, and when by
sines only,

‘Use the same notgtion as before,

If p can be expressed by cosines only, it is obvious we must have
sin (2m + 1) nwr=0; therefore sin (2m + l): w=0; thus, if s is
: 8

odd, we can take 2m + 1 =3.

If p can be expressed by sines only, it is obvious we must have
cos (2m + 1) nr=0; therefore cos (2m +1) §w= 0; thus, if » is odd,

and % an odd integer, we may take 2m+l=-§ or 2m+1=-3§8 .

420. Abel shews that the formulwe here obtained for (2 cos 6)*
hold when n has any positive value ; and also when n has any
negative value numerically less than unity, except for those values
of 6 which make cos 6 vanish.

421. We might investigate series for (2 sin 6)" in the same
way as for (2 cos)*; or we may deduce the results by putting

’-;- 6 for 6 in the formul already obtained.

422. In the Plane Trigonometry, Chapter xxm1, the ex-
pression #™ —2z"cos a+1 is resolved into quadratic factors by a
process which depends on De Moivre’s Theorem, and which there-

fore involves the use of the imaginary symbol ,/—1. It has been
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lately shewn by mathematicians that the result can be obtained
without the use of the-imaginary symbol ; we will here reproduce
the process employed for this purpose by Professor Adams in
Vol. x1. of the Transactions of the Cambridge Philosophical

Society.

423, The relation between successive values of x"'+xi, cor-

responding to successive integral values of m is given by the
formula

s o (24]) (0 ) - (25

when m =1 this becomes

+= +l) +1>—2 -
w’ = (ﬁ 5 <ﬁ Z’ .
An exactly similar relation holds between the successive
values of 2cos mf ; thus
2cos (m+ 1) 0= (2 cos §) (2 cos mf) — 2 cos (m —1)0 ;
when m = 1 this becomes

2 co8 20 = (2 cos 0) (2 cos §) — 2.

Now let v, v,, v,,...7, be a series of quantities the successive

terms of whmh are connected by the same relation as that which
we have just seen to hold for the successive values of «™ +- },; and
of 2 cos m@ ; that is to say, let

v, =09, —

m+1 17m m-1*

Also, as in those cases, let v, =2, but let v, be any quantity
whatever ; thus we have

v, =0, — 2,

V=00, — v, ="~ 30,
and so on, :
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Hence it is obvious (1) that v, is a definite integral function of
v, of n dimensions, and that the coefficient of ," is unity; (2) that

if v,=2-+, then o,=2" + .; (3) that if v, = 2 cos ) then v, =2 cosn.

Hence v, — 2 cos na will vanish when v, is equal to any one of
the following n quantities: ‘ .
2cosa, 2cos(a+pf), 2cos(a+2B),...2co8(a+n—18),

where B is put for 27” Therefore v, — 2 cos na=
‘ {?,—2cosa}{v,—2cos(a+ﬁ)} {v,‘—2cos(a-|-'2,3)}...
...{v,—2cos(a+n_—i,3)}.

Now put +% for v,; thus we obtain

x'+$—2oosm= :
1 1 1 ,
{z-i-;—2oosa}{m+;—2cos(a+ﬁ)}{z+;—2cqs(a+2ﬁ)}...

{w+é—2cos(a+n—1ﬁ)}.

This gives the required resolution. ‘
Similarly if we put 2 cos 6 for v, we obtain 2 cos nf — 2 cos na =
{2c050—2cosa}{2cosO—2oos(a+ﬁ)}{20030—2cos(a+ 2/3)}
{2@0-2cos(a+ﬁp)}.

Hence we see that the two equations just found are particular
cases of the general equation from which they have been derived;
v, being in the former case numerically not less than 2, and in the
latter case numerically not greater than 2, Two special examples
may be formed by taking first # =1 or =0, and thenz=-~1 or 6=,

T. E. 20
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424, Various theorems may be obtained by the ‘aid of the
imaginary symbol, which can be verified if required by other
methods. )

For example, we have by Plane Trigonometry, Art. 287, if n
be an even integer,

008ﬂ9=1—TL2'sin’0+—’—('fL—-2') gin'd
—%ﬂﬁmo- ........... o () '
and if » be an odd integer,
g i -2 D g RO

Now substitute %2( - %) for sin 6, where ¢ denotes ,/—1; and

for brevity put p for z — % .
Then from (1) we deduce, when = is even,

YR AT ' (n'-2) |
3 P +?)= +2,L —-27|4—P
: +Z‘_'%L4’)p’+ ............... G);

and from (2) we deduce, when x is odd,.

%(z-_:_,)%p (2,[§1>p-+’l(“—‘—21,—)|(§’i-—§—')p'+ ........ ).

Thus we obtain the algebraical identities (3) and (4).

These may be verified by the aid of Art. 244. For supposé
S () =" px -1, so that the roots of f(x)=0 are of the form
af ' (x) _ x(2z—p) f+1 ( )( _)
Fa) ~F—pa-1 =1+ oo o1 =1+(1+ 1- z

e (o0 (- B0 B

1 1 .
z a.nd—;,andz—;:p. Then




TRIGONOMETRICAL FORMULZ, 307

First suppose n even; then by Art. 244 we have 2* + (-. %).,

that is 2” + # equal to the coefficient of — in the expression just

given. The terms involving odd powers of 2 will not furnish any
part of the coefficient, since n is even.

Nowthecoeﬁicientof%in(l+5:1—,>(1——) 151-0'-1 ths!tm2
The coeficient of % in (1 “;cl‘> (1 -l> s
P (/n-2 n—2 n—4
BT ) () 2)}
that is %{ ( +1) (2—1) } that is “;1;’2‘
The coefficient of xl,in (1 +wl’) (1—%)-5‘?—:13
’é{("—;—ﬂl) ’%ﬂz) ’3;—4+3)("—;f+4)
CR ) ()
that is%{(g— 1);'2-‘(?2-‘+ 1)(%‘4-2) + (g- 2)(%‘_ 1)3;(’5% 1)};
that is %(g-1);(g+l) 27”, that is%’?’_("_;jﬂ,

"And so on. Thus we obtain (3). Similarly by supposing » odd
we obtain (4).

5 .
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EXAMPLES.

L
1. Finp the quotient and the remainder whén
o+ T2t + 32 + 172" + 10z - 14

is divided by z - 4.

2. Expand (a+b2)" in powers of z, and then obtain the first
derived function of (a + bx)", :
. 8. Bhew that the equation o® +32"+z—6=0 has one root
and only one between 1 and 2.

| I, _
1. Find a root of the equation #*=+,/=1.
2. Find a root of the equation a:°=—-J-—_T.

Hi.
1. Form _i;he equation whose roots are ,1,1,-1,-2
"2, Form the equation whose roots are 1 = "2 and 2 +,/=3.
3. Form the equation of the eighth degree one of whose roots
is /2 + /3 +./-1. '
4. S?lve the following six equations int each of which one root
is given:
(1) «*-a"+32+5=0; 1-2/=1
(2) o' +4e’+ 68 +42+5=0; J-1.
(3) a'+2—262"+4lz+66=0; 3+,/-2.
(4) «*'+22°-42"—42+4=0; ,/2
() «*-22"-b2"-6x+2=0; 2+ /3.
(6) a*—o*—8z'+ 2+ 212"~ 9z 54=0; /2 +./-1.
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b. Solve the equation z®—a'+8z°-92—15=0, one root
being ,/3, and another 1—2,/-1.

6. The equation &*—4x'+x+¢=0 has one root =3; ﬁnd ¢
a.nd the other roots,

7. Find the sum of the reciprocals of the roots, the sum of
the squares of the roots, and the sum of the squares of the reci-
procals of the roots of «® — 6a° + 402 + 602* — —1 =0,

8. The equation &'—21a® + 1662" ~ 5462 + 580 = 0, has roots
of the form a, B, .+ B+ (a—8) =1 ; solve the equation,

9. Find the sum of the cubes of the roots of a given equation.
10. Form the equation the roots of which a, 8, v, 3, are

_;. (1+ ,/3*,/27),), and %(1,.\/3*&_273);

: ] : ]
and thence shew that p :ﬁB, + 21’ +...=0.

ay
11. If a, b, c,...are the roots of an equation, find the value of
@ a R
F+E+...+?+E;+.u

12. Assuming that the arithmetic mean of any number of
positive quantities is greater tha.n their geometric mean, shew

that if p®— 2p, is less than np", the equation has mposslble
roots,

13. If @, b, ¢,...are the roots of an equation in its simplest
form, shew that

(L=pg+p,= .y + (B, =Py +Ps— ..V = (L+ @) (1 + ) (1 + ¢°)...

14. If a, b, c,...are the roots of an equation in its simplest
form, shew that . ‘

P —2p,p,+2p,=a"" + a’c* + b'c* +
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IV,

1. Transform each of the following three equations into
another the roots of which are formed by adding to the roots of
the original equation the number assigned :

(1) 2*-3a'-a'+4=0; L (2) 2"+2+1=0; 3 °
3) 2+4’~2*+11=0; -3.

2. Transform each of the following four equations into
another wanting the second term : .

(1) #-32"+4x-4=0, (2) 2"-6"+122+19=0.
- (3) «'-82"+5=0. (4) «+5x*+32+a+ax-1=0,
3. Transform each of the following four equations into two
others each wanting the third term :
(1) 2*+562"+8xz-1=0. (2) 2*—6z"+92-10=0.
(3) «*—82"+18x"-15x+14=0. (4) a'-182°-60x"+x—2=0.

4, Transform the equation 2®+ 22+ %m+ % =0 into another

with integral coefficjents, and unity for the coefficient of the first
term. "

5. Remove the second term and solve the equation
2"~ 182"+ 1572z — 510 =0,

6. Transform each of the following two equations into
another whose roots are the squares of the differences of its roots;
and discuss the nature of the roots :

(1) @+Tz-1=0, @) «*-6x+6=0.

7. Transform «'—122°+122z—-3 =0 into an equation whose
roots shall be the reciprocals of those of the given equation; and
then diminish the roots of the transformed equation by unity.

8. Shew that the equation z*+a"—8x—15=0 has two real
roots of contrary signs, and that it cannot have more real roots;
and that they-lie between — 2 and 3.
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9. The roots of the equation «*+ pz*+gx +r=0 are denqted
. by a, b, ¢; transform the equation into others which have the
roots assigned in the following fourteen cases :

1) a0, ¢ (2) b+c,c+a, a+b.
1 1 1 a b ¢
@ i cvarars D W w
(5) b%F, o'a?, a%b". (6) WN(ka), N(kb), JJ(kc).

M) 3@+e-a), 3(c+a-b), 5 @+b=o).

8) b+c+ka, c+a+kb, atb+ ke

a b ¢
) b+c~a’ c+a—-b’ a+b-¢"

(10) Bo+, caty, @iz, (1) B+d, dray B
2 2 2 2 2
o b et Dok @ G
(14) b-c¢, ¢=b, c—a, a—c, a-b, b—a. ‘
10. The roots of the equation 2’+ga+7r=0 are denoted by
a, b, ¢; transform the equation into others which have the roots
assigned in the following two cases :

0 () (=) @)
(2) ba+ac, cb+ba, ac+ch.

11. If a, b, ¢ denote the roots of 2*— 62"+ 11lz—6 =0, form
the equation whose roots are
: 1 1 1
F+c’ f+at’ a'+b
12. If g, b, ¢ denote the roots of «’—2x'+2=0, form the
equation whose roots are
P+ Sf+a® a’+d
aa ? b‘ 2 cﬂ .
13. Shew that the third term of the equation
2 +pr +qr+r=0
cannot be removed if p* be less than 3q.
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.14, Shew that the second and fourth terms of the equation
' +pat+pa’+pa+p,=0
can be removed by the same transformation if 8p,=p, (4p, - »,*).
15. ~Solve the following two equations: o
(1) ='+42’+72"+62x-10=0. @) «*+42*+32"—2x—-6=0.
16. Shew that the equation 2®+42*+6x+3=0 does not

admit of the second and third terms being .removed by the same
transformation, but that it does if multiplied by .

17. Shew that it is possible to remove the second and third
terms of an equation of the n® degree if '

n x (sum of squares of roots) = square of sum of roots.

V.

1. Shew that the equation o'—4a*+3=0 has at least two
imaginary roots.
2. Shew that the equation a’— 2z*+2°-1=0 has at least
four imaginary roots.
3. What may be inferred respecting the roots of the follow-
ing two equations ?
(1) «'-b’+a’-2-1=0. (2) o™-a"+a"+2+1=0.

VL

. 1. Solve the following twenty equations, each of which has
equal roots :

(1) @-Ta*+165-12=0. (%) o'—3a’~92+27=0,
(3) @—a'-8z+12=0, (4) o~ baf—Bu+48=0,
() o+ 824 202+ 16=0. (8) z‘-1z+3=o.

2716
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(9) z*—112"+18z-8=0.
(10) «'-22"—2"—42+12=0.
(11) 2*-72*+132"+32-18=0,
(12) 2*—-42"—62'+362-27=0,
(13) z*+132*+ 332"+ 3]z +10=0.
(14) 22*-—122"+192°— 62 +9=0.
(16) &'+162"+ 792"+ 126z + 98 = (.
(16) 8z'+4a’-182"+11z—2=0.
(17) 2-a'-22"+22"+x-1=0.
(18) 2*—2z'- 6"+ 4a"+132+6 =0,
(19) «*-132*+672’- 171"+ 2162—-108=0.
(20) 2*-8z'+ 62— 32'-3x+2=0.

2. Find the condition that 2*—pa'+7=0 may have equal
roots.

3. Shew that 2* + gz* + 8= 0 cannot have three equal roots.

4. If *+p2*"'+...+p,=0 have two roots equal to q,
shew that p2"' + 2p,2" " + ... + np_=0 has a root equal to a,
5. If 2*+g2+r*+¢=0 has two equal roots, prove that
_one of them will be a root of the quadratic :

-i—‘i-'“g-:f_’:o.
VIL
1. Find limits to the poeitive and negative roots of
2-52+2'+ 122~ 12° +1=0.
2. Write 2* - 82 + 122"+ 162 - 39 = 0 30 as to shew that 6 is
8 superior limit of the positive roots.

3. Shew that the real roots of tha following six equations lie
between the limits respectively assigned :
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(1) @-2+42*~30+1=0; and 1.

(2) «*+2"~10"~2+15=0; —4 and 3.

(3) a’+5z'+2’~162"-202-16=0; —5 and 3, by Art. 92.
4) (=*-26)(c"+5x+1)+60x=0; —5 and 3.

(5) (@-4x-2)'-43=0; -2 and 6.

(6) «*+x*+ax'-25x—-36=0; —3 and 3, by Art. 92.

4. Find by Newton’s method limits to the roots of the
following five equations :

(1) a*-a*~52"+8c-9=0, (2) «'-b5z"+6x-1=0.
3) «'-+4’+x-4=0, (4) «'-5s°+112"-20=0.
(5) a'—2a"=32"-152—3=0.
5. Prove that a°+ 5z~ 202°~192—2=0 has one root be-

tween 2 and 3, but none greater than 3, and one root between — 5
and —4, but none less than -5,

6. Apply the method of Art. 102 to find the number and
situation of the real roots of the following six equations:

(1) 2*-122+17=0; (2) 2*~32+20=0.
(8) «*-3x+3=0. @) 42+ 92" 122+ 2=0,
(6) 2 -a's"+c" =0; (6) a*—pa+r=0,

7. Shew that the equation 3a'+8a®—6a’—24x+7=0 will
have four real roots if » is less than —8 and greater than —13,
and two real roots if » is greater than —8 and less than 19, and
no real root if » is greater than 19,

. VIIL

1. Obtain the commensurable roots of the following twelve
equations :, ‘

(1) a*—106z- 420=0. @) - 92'+2%z—24=0.
(3) "= 2 —25x+50=0. (4) 232"+ 20— 30,
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(5) 32— %" —6x+4=0. (6) 3a—26a"+34x—12=0.

() «*—2+82—16=0, 8) a'~a*—134"+160—48=0.

(9) #'-2"—a"+192-42=0. (10) a*+8"-Tz'—49z+56=0.
(11) 2°—32*—92°+ 212"~ 10z + 24 =0, '
(12) a— 72+ 11a*—Ta"+ 14a* — 28z + 40 = 0.

2. The coefficients of the equation f(xz)=0 are all integers:
shew that if #(0) and /(1) are both odd numbers the equation
can have no integral roots.

IX.

1. Solve the following four equations each of which has two
‘roots of the form a, —a: ’

(1) «*-2"-22"+8x-8=0. (2) z'+32°—To"~272-18=0.
(3) «'+32°+22"+92-3=0. (4) 2'+a"-1la"-9x+18=0.

2. Solve the following four equations in each of which the
roots are in Arithmetical Progression :

(1) 2*—62"+11lx—-6=0. (2 2*=92"+23x—-156=0.

(3) «'—8f+14x"+82-15=0. (4) «'+4a®—4a'—162=0.
3. Solve the following six equations in which certain con-

ditions relative to the roots are given :

(1) 3«®—2x°—27x+18=0; product of two roots is 2.

(2) «*—3a"—6x—2=0; product of two roots is —1.

(3) a*—4a"+ 52"~ 16z +4=0; product of two roots is 1.

(4) 2a*-52"+11a"~11z+ 6 =0 ; product of two roots is 1.

(5) «*—452"—40x+84=0; difference of two roots is 3.

(6) o —Tax'+152"— 152"+ 14x—8=0; one root double another.

4. Solve the following six equations in which the roots are of

the forms respectively assigned :
(1) «’-102"+272-18=0; a, 3a, 6a.
(2) «*-102"+ 35" —50x+24=0; a+1,a-1, b+1,5-1.



316 EXAMPLES,

(3) 6a*—4322+ 1072~ 108z + 36 =0; a, b, ‘g , % .
(4) «*+8a*+baP— 502"~ 362 +72=0; a, 2a, b, 2b, a+b.
(6) 2°—4a*+ 10a* 162"+ 44a?— 162+ 56 =0 ; @ \/2,/b, & /c.

(6) 2°—122'—22"+3872"+102-10=0; 1=,/a, b=,/2, &, /¢

«

5. Solve the following two pairs of equations, each- pair
having a root in common :
(1) #-32"-162-12=0; 2"— 72"+ 52+13=0.
(2) 2*-32"+112—-9=0; &*~52"+11zx~T7=0.
6. Solve 2’—72*+86=0, and a*—32"—10x+24=0, the

former of which has a root equal to three times one of the roots
of the latter.

7. Solve the following two equations which have two roots in
common : -

ot — 2o —T2* + 262 —-20=0; 2'+ 4o~ 22— 122 +8=0.

8. Find in terms of m and a the roots of the equation
&* + paat + (m* +m) a'c’ + ga'z + a* =0,

which are in Geometrical Progression ; and determine p and ¢ in
terms of m and a. '

X.

1. Solve the following ten reciprocal equations:
(1) a*—22+32"-22+1=0. (2) a'+ 42?52+ 4x+1=0,
(3) 2a'-b2'+6x'-bx+2=0. (4) o'+42"-102"+4x+1=0.
(5) 2*—-2a'-192'-192"-22+1=0. (6) 2’—4a‘+a’+a’—42+1=0.
(7) 6a2°-11x*~332"+33a"+11lz—6=0.
(8) 22°-bat+dat—4a?+52—2=0.
(9) 82°-16a'-252"-164"+8=0. (10) l+2'=a(l +2)"
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2. Obtain roots of the following four equations, and depress
the equations:
(1) o'-2+a'+a’ - 22"+ 1=0.
(2) o+ 22°— 82— Tat—Ta?— 8o+ 22+ 1 = 0.

(3) 2+ 2a"+ 32+ 20— 22— 32"~ 22~ 1 = 0. 4) «°-1=0.
3. Exhibit the roots of #*+ px’+ 1 =0 in the form
P 1
a, b, ;, 5’.

4. If a, b, c,... deniote the roots of the recurring eqmtidli
e +pr T g . kgt +p2 +1=0,

2 2 ) 2 bﬂ ¢
%;+:’—,+...+%,—+ &7+"'+f_{’+ o= (p*=2¢) —m

_ 5. In the recurring equation #™—pa™~' + ... = 0, if the terms
are alternately positive and negative and p not greater than 2n,
the roots cannot be all real.

XI.

1. Solve the following three equations ¢
(1) 2"~1=0. (2) 2*~1=0. (3) #+1=0.
2. Shew that the factors of a®+ b°+ ¢®~ 3abe are of the form
a + bi + ¢i% where *— 1=0.
.. 3. Shew that the factors of
' a*(a'—4bd — ) - b8 — dac— d°) + ¢* (¢ 4bd — 4"y — d* (d" - 4bc — b)
are of the form a + bk + ck*+ d&°; where £'~1=0.

XIL
1. Solve the following eight equations :
1) 2*-3x-2=0. @) 2=9%-28=0.
(8) a"-2z+6=0. (4) a:"-#3a:=g.
(5) 3aP—6a"~2=0, (6) o158~ 33z + 847 =0.

(7) *+6aa’=236a" (8) 2*~3(a'+b)x=2a(a’- 3b%).
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2. Determine the relation between ¢ and # necessary in order
that the equation &’ + gz + =0 may be put into the form
: a'= (a'+ ax + b)*;
and hence solye the equation 82*~ 36z +27=0, ~

3. If the roots of the equation o+ pa+gz+r=0 are in
Geometrical Progression, #p’=¢°. Hence solve the equation

—a'+22-8=0,
4. If the roots of the equation «*+ gz +7 =0 are diminished

by k, shew that the transformed equation will have its roots in
Geometrical Progression if 4 be such that 27rA*—9¢°4*— ¢*= 0.

5. If the roots of the equation #’+ 3pa*+ 3¢z + =0 are in
Harmonical Progression, 2¢*=r(3pq —r).

6. If the roots of the equation &®+ 3pa*+ 3¢z +#=0 are in
Harmonical Progression, the equation #x*+ 2¢°z+gr=0 contains
the greatest and least of themn.,

7. The impossible roots of 2* + gz + r = 0 being put under the
form a8,/ -1, shew that 8*=3a"+g¢. ‘

8. If », a+,/B,a—,/B, are the three roots of the equation
2 +pa® +pa+p,=0, of which r is real, and if 2*+m 2’ +m2z=0
is the equation resulting from the diminution of all the roots by r,

shew that a=—7—;—' +7 anpd B::—% (m, + 3p,— ).

9. Reduce the equation a’+pa*+gr+r=0 to the form
¥'-3y+m=0, by assuming x=ay+b; and solve this equation
by assuming y =2z + %, Hence shew that if the original equation

has equal roots,
4 (p"- 8q)°=(2p°~ Ipg + 277)".
10. Tf the roots of the equation a+ pa*+gr+7=0 are in
Harmenical Progression, so also are the roots of the equation

(p2-1) 9= (¢ 2pg + 31)3"+ (pg - 3)y - r=0.



EXAMPLES, 319

XIII.
1. Solve the following four equations :
(1) o'+ 42"+ 3o~ 44z -84 =0. (2) =*-62"—8z-3=0.

(3) a*—122"+ 492" T8z + 40=0.
(4) &'—2a2’+ (0’ 20°) &°+ 2ab°x — a’6°= 0. (Art, 192.)

2. If r"—p's=0 the equation x*+pa*+gz’+7rz+8=0 may
be solved as a quadratic. ' .

3. If s and p are positive, and 27p* less than 2563, the roots
of the equation z*+ pa®+ s =0 are all imaginary.

-4, Assuming that the equation '+ ga*+rx+8=0 has roots

of the form a=fB,/-1, shew that the values of @ and 8 may be
found by the equa.tlona

64a° + 32ga*+ (4"~ 165) a’—¢*=0, B'= m% Ty

XIV.

1. Apply Sturm’s Theorem to determine the situation of the
real roots of the following five equations in which the values of
some of Sturm’s functions are assigned :

(1) «*—42"-32+23=0; f,(x)=—491x+1371, fi(x)=—

(2) #*-4c’+2"+6x+2=0; f(x)=5x'—10a:—7, So(x)=x-1,
Ji@)=+.

(8) @+2’+z-1=0; f,(x)=32"-12x+17, Art. 199.

(4) 2-2'+a"-82+6=0; f,(x)=162"-23x+09.

(5) @°+52'—202"-192x—2=0; f,(x) =202+ 60"+ 362 ~9,
Ji(x) =962+ 187z + 67, f,(x) =43651z + 54571, f(x)=+.

2. Apply Sturm’s Theorem to shew that each of the follow-
ing two equations has only one real root; and determine its
situation:

(1) 2*+62°+10x-1=0. (2) a’-62"+8x+40=0.
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3. Determine the situation of the positive roots of the
equation 2°—22*+ 32" bz —1=0, having given

Jo(@)=6z(x~1)"+19z+6.
4. Apply Sturm’s Theorem to the following four equations ;
(1) +2"'-2z-1=0, (2) o*—4x’-4x+20=0,
3) #*+2s'-4x+10=0. (4) 2*—2+1=0.

XYV.

1. Shew that the equation
o' — 8~ 240 + 952 — 462 — 101 = 0
has all its real roots between —10 and 10, that it has onée real root
between —10 and —1, one between —1 and 0; no root between
0 and 1, and one at least between 1 and 10,

2. . Apply Fourier’s Théorem to the equation
'+ 32’ + 72"+ 102 +1=0.

XVL
1. Approximate by Lagrange's method to the positive root of
the equation 3x*—4x—-1=0.

2. Approximate by imgrmge’s method to tlie‘root of the
equation z+ #*— 22"~ 8z — 3= 0, which lies between 1 and 2.

XVIL

1. Apply Newton’s method to calculate the root which is
gituated between the assigned limits in the following five
equations : ,

(1) o«*-42-12=0; root between 2 and 3"

(2) o*-4a’-Tz+24=0; root between 2 and 3.

(3) «*~24z+44=0; root between 3-2 and 3-3,

(4) a’-15z-5=0; root between 4 and 41,

{6) «'-82"+122"+8w~4=0; root between 0 and 1,
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2. Apply Newton’s method to calculate a root of the follow-
ing two equations :
(1) «*+3x-5=0. (2) «’-32"-3z+20=0.

XVIIIL.

1. Apply Horner's method to calculate the root which is
situated between the assigned limits in the following three.
equations :

(1) 2°+102"+ 62— 120=0; root between 2 and 3.
(2) «*-22°+21z—23=0; root between 1 and 2.
(3) «'— 52"+ 3a’+ 352~ 70 =0; root between 2 and 3.

2. Solve the equation 2°—~17 =0 by Horner’s method.

3. Calculate the real roots of the following four equations
by Horner's method :

(1) «+z-3=0. (2) *+22—20=0.
(3) 32'+5u—40=0. (4) 2"+102"+8c—120=0.

XTIX.

1. Find the value of the following seven symmetrical func
tions of the roots a, b, ¢ of the equation «*+ pa®+qgx+r=0:

(1) (a+bd+ab)(b+c+be)(c+a+ca).
(2) (a+bd-2¢)(b+c—2a)(a+c—2b).
3) =S(a+b)’(a+c). (4) S(@+b-2¢)(b+c—2a).

' ] ] )
¢ 2. © 35 (1) (LY.
(N B-0(c-a)'(a—by.
2. If-a@, b, ¢, d are the roots of the equation
2+ pa’+ g + v + 8 =0,
find the value of 3 (a +b)(c + d).
T. E. 21
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3. In the equation z*+pa"'+..+p _ z+p =0, suppos
ing the roots to be @, b, ¢, ... ! find
(1) Sa". (2) S(@+d)(a+c)...(a+)).

(a+b)* a*
3) ET. 4) 25-.

4. Form the equation the roots of which are the squares of
the sums of every three roéts of the equation &* + pa® +rx+8=0.
Also form the equation the roots of which are the sums of the
squares of every three roots of the same equation.

5. If the equation &"+pa* '+ pa**+p &+ ...+p =0 is
transformed into another of which the roots are the sum of every
pair of roots of the original equation, find the first three coefficients
of the transformed equation.

XX.

1. Transform the following three equations into others whose
roots are the squares of the differences of their roots :

(1) 2*—42z+2=0. (2) a'+4z+3=0. (3) a'+1=0.

2. Eliminate « from the equations
ax'+ bx+c=0, ar*+bx+e'=0.

, XXI.
1. Find the sum of the assigned powers of the roots of the
following five equations :
(1) a*~2"-192°+492—-30=0; the cubes.
(2) #*-3a"-bxz+1=70; the fourth powers.
(3) &—2ax'— 22— 282"+ 722 +144=0; the cubes,
4 =+ 22+ 1=0; the inverse squares.
(6) a*~x-1=0; the sixth powers.
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2. If a b, ¢,... are the roots of 2"~ 1=0, find 3a™?".

3. If the sum of the 7 powers of the roots of the equation
a"+2+1 =0 be expressed by S, and the sum of the 7* powers of
their reciprocals by 3, prove that

8, ,~8, =1, and 3,_ -3 =n-2(-1)~

=1
4 In the equation 2"~ z*+1=0, find 3a""% 3a""* and Sa¢*;
supposing n greater than 3.

6. Find the sums of the +* and (2n)* powers of the roots of
the equation ™ — px”+ ¢ = 0, supposing n greater than 7,

XXIIL

1. Solve the equations
-1 +yx+y'—2y= O}
(y-1ax+y=0
2. Solve the equations
y-1)2+yy+1) "+ By +y-2)x+2y= 0}
(y-1)"+y(y+1)x+3y°-1=0
3. Shew that the following equations have no solution:

¥y~ ('~ 3y-1) 2 +y=0)
-y +3=0 f

XXIIL
1. TFind the first term of each value of y when expanded in
descending powers of « from the equation
Y2 -y’ + Jya®— y'x + 4y — 2 = 0.
2. Find the first term of each value of y when expanded in
ascending powers of « from the equation
@'+ 2+ 2y — 2yt + 2"y - oty + Y - By’ + 2y =0,
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‘MISCELLANEOUS EXAMPLES,

1. If there be » quantities @, b, c..., and if n functions of
them be taken of the form

(x-b)(x~c)...
(a-d)(a—c)...°
shew that the sum of these functions is unity.

2. Remove the term which involves the cube of the unknown
quantity from the equation

2+ 5a'+ 2002” - 11z + 6 = 0.

3. Shew how to transform an equation which has both
changes and continuations of signs (1) into one which has only
continuations of sign, (2) into one which has only changes of sign.

4. If p and q are positive, the equation «*—pa™+¢=0 has
four different real roots or none according as (%7) is greater or
less than (i) ) ; and it has two pairs of equal roots if

@) -G%

5. If —p,_ & —p,_ 27", —p,_ " ... are the negative
terms of an equation of the n™ degree, then the greatest root
of the equation will be less than the sum of the two greatest of

1 2 1
the quantities (p,_ ), (7._.) (Pass)’ -
6. If & be the last term of an equation of the n* degree
1
.whose roots are in geometrical progression, shew that %" is & root,
if » be odd. Shew that, in a similar manner, one root of an

equation of an odd degree whose roots are either in arithmetical
or harmonical progression may be found.

7. Find the greatest common measure of &*—a*~ 3z—1 and
o — 62* + 7o’ + Ta* — 62— 3.
Solve the equation x*— 6x*+ 72+ 7a'— 62—~ 3 =0.
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8. Diminish by % the roots of the equation -
o +gr'+re+8=0;
give such a value to 4 that the roots of the transformed equation

may be of the form a, 1_n' b, 3 and shew how this equation may ‘

be solved. Example. «'—2a'+16x+1=0.

9. Shew by the process for extracting the square root of an
algebraical expression that the equation z'+ pa’+qa’+rz+8=0
can be immediately reduced to quadratics if ps—4gs+7°=0,
or if p°—4pq+8r=0,

10. Prove that the equation z'+ g— gx*+ rx + 8=0 cannot have
all its roots real if ¢*++* is positive.

11. If f(z) be a rational integral function of w, either f (x)=0
or f’(x) =0 has certainly a real root.

12. Shew how to find the value of the semi-sjmmetrical
function a'b + &% + ¢’ of the roots of a cubic equation.

13. Leta, b, c, . k denote the roots of the equation ¢ (x)=0,
.which is of the »" degree and in its simplest form, and suppose
these roots all unequal : shew that the expression
A A
F@ FO TTOTTE®m
is equal to unity if »=x—1, and is zero if » is zero or any positive
integer less than n—1.
(_ l)ﬂ—l
abe...k’
14. If ¢(x)=a"-1, and q, b, ¢, ... are the roots of ¢(x)=0,
shew that

Shew also, that if #=—1 the expression=

e 1 1 l

e =gt — 4+
-1 z-a &= Tm—c "
15. Shew that the mtegral pa.rt of J3(./3 +4/5)""1 is divi-

sible by 2",
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ANSWERS.

L 1. «'+112°+ 472"+ 2052 + 830 ; remainder 3306,
V2+l J2-1 e
oL 1L 2J2) N2),/"1 2 iy
IIL. 7. -1; 36; 121, 8 a=5; B=.‘.
9. —p’+3pp,—~3p,. 10. «'—~22°—2z+1=0; then see Art. 48.

1L (p)- 2p)1”"‘p—% . 13. In the identity of Art. 45

substitute successively ,/—1 and —,/—1 for .

IV. 5. The roots are 6, 6 =7,/—1. 7. y‘—2y’+§=o,
8. 8ee Arts. 22 and 50. 15. Apply Example 14.

VL 1. (15)-7 is a root. (16) 5 18 a root. (17) The

root 1 occurs three times. (18) The root —1 occurs three times.
(19) 2 and 3 are roots. (20) The roots 1 and —1 are repeated.

3. Denote the root which is repeated by @, and the other by
b; then the left-hand member of the proposed equation must be
identical with (¢ —a)®(x—b) ; then we may equate coefficients.

VIL. 7. The roots of f/(x)=0 are —2, -1, 1; use Art. 102.

3 2
VIL 1 (4) 5. 6) 3
IX. 2. (8) -1,1,3, 5. (4 —4,-20,2
()33 @ 1ey2 (3) 2593 (8 3/
(5) -2, 1. (6) 1, 2.

4 (1)a=1. (2)a=3,b=2 (3)a=2b=3. (4)a=1,b=-3

5) a=1, b=-3, ¢c=-2. 6) a=3, b=-1, ¢=5.
5 (1) -1 @ 1. . 6. The roots are.6 and 2.
7. The common roots are given by '+ 2z -4 =0.
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8. Denote the roots by l%’ 7—3, af, af3®; equate their product

to @, and the sum of the products of every pair to {(m'+m)a’.
It may be shewn that p must be equal to g.

XIL 1. (1)2. @4 (8)-2 (4) Bb-2-4 (5)%(2i+2+2%).

. 6a .

(6) The root 11 occurs twice.  (7) Ao (8) 2a.
XIII. 1. (1) 3, -2 (2) The root —1 is repeated.
(3) Diminish the roots by 3, then the biquadratic can be solved.
XIV. 1. (1) A root between 2 and 3, another between

3 and 4, and two impossible roots. (2) Two roots between 0

and —1, and two between 2 and 3.

XVIIL. 1. (1) 2-833066480704857...
(2) 1-157451508098991... (8) 2-64575131106459059 ...
2. 2-57128159065823535 ...
3. (1) 1-2134116627622296... (2) 2'4695456501065939...
() 2:13781194169747 ... (4) 2:76834546088879 ...

XIX., 1. (1) (r—q)+p(r—q)+. (2) 2p°-9pq+27r.
(6 -w'epg-dn () 9g-3t () L2,

© L= 5 () £ (3q-p)Bpr-) -3 (pg-90)"

2. 2¢. 3. (1) 3p~pp, (2) If we denote the equation by
S (2)=0, the proposed expression following the symbol = becomes

f(=a) . .
SaCly" Hence the required sum is

% {S Sn—l +pa g™ cee (— 1)"p_S_l} .
(3) an%x +<“|_ 2n. (4) - (pl’— if::) Dy .
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5. Let the transformed equation be
"+ g™+ g g a .= 0;
; n(n-1) .
then m= —— Find the sums of the powers of the roots of
the transformed equation, and then the coefficients by Art. 244. We
) n-1)(n—-2
shall get ¢,=(n—1)p,; ¢,= %———)pﬁ (n-2)p,;

_-1)(n-2)(n-3)
3

pla+ (n - 2)’1’1pn+ (”’ - 4)1’3’

XXIL 1. The solutions are given by
¥'—2y=0 and (y—1)xz+y=0.

2. The solutions are given by
¥'—1=0 and (y-1)z+2y=0.
XXIL 1 g=a+..; y=fTat..; y=og+

2. Six values of the form y=a*(x+U), where u is to be
determined from 1-%'—u'+u*=0; three values of the form

y=a"3(uw+U7), where w is to be determined from 1-3u’=0; and

four values of the form y=2 X (w+ U), where « is to be deter-
mined from 3 —»*=0. .

MISCELLANEOUS EXAMPLES.

1. Call the sum ¢ () ; then shew that ¢ (z) — 1 is identically
zero by Art. 39.

2. y*—12y° +65y* — 8404+ 2037y — 1428 = 0.

15. Form a quadratic with roots /3 + ./5 and /3 - ,/5; then
use Art, 261; see also Algebra, Art. 526.
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