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PREFACE.

‘We have endeavoured in the present work to combine some of
the modern developments of Higher Algebra with the subjects
usually included in works on the Theory of Equations. The
first eleven Chapters contain all the propositions ordinarily
found in elementary treatises on the subject. In these
Chapters we have not hesitated to employ the more modern
notation wherever it appeared that greater simplicity or com-
prehensiveness could be thereby obtained.

Regarding the algebraical and the numerical solution of
equations as essentially distinet problems, we have purposely
omitted in Chap. VI. numerical examples in illustration of the
modes of solution there given of the cubic and biquadratic
equations. Such examples do not render clearer the conception
of an algebraical solution ; and, for practical purposes, the
algebraical formula may be regarded as almost useless in the
case of equations of a degree higher than the second.

In the treatment of Elimination and Linear Transformation,
as well as in the more advanced treatment of Symmetric Fune-
tions, a knowledge of Determinants isindispensable. 'We have
found it necessary, therefore, to give a Chapter on this subject.
It has been our aim to make this Chapter as simple and intelli-
gible as possible to the beginner; and at the same time to omit
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no proposition which might be found useful in the application
of this calculus. For many of the examples in this Chapter,
as well as in other parts of the work, we are indebted to the
kindness of Mr. Cathcart, Fellow of Trinity College.

‘We have approached the consideration of Covariants and
Invariants through the medium of the functions of the diffe-
rences of the roots of equations—this appearing to us the sim-
plest mode of presenting the subject to beginners. We have
attempted at the same time to show how this mode of treatment
may be brought into harmony with the more general problem of
the linear transformation of algebraic forms. In the Chapters
on this subject we have confined our attention to the quadratic,
ocubic, and quartic; regarding any complete discussion of the
Covariants and Invariants of higher binary forms as too diffi-
cult for a work like the present.

Of the works which have afforded us assistance in the more
elementary part of the subject, we wish to mention particularly
the Traité d’ Algébre of M. Bertrand, and the writings of the
late Professor Young* of Belfast, which have contributed so
much to extend and simplify the analysis and solution of
numerical equations.

In the more advanced portions of the subject we are
indebted mainly, among published works, to the Lessons
Introductory to the Modern Higher Algebra of Dr. Salmon, and
the Zheorie der bindren algebraischen Formen of Clebsch; and
in some degree to the Théorie des Formes binaires of the
Chev. F. Faa De Bruno. 'We must record also our obligations

* Theory and Solution of Algebraical Egquations, London, 1835 ; dnalysis and
Solution of Cubic and Biquadratic Equations, London, 1842 ; and Theory and
Solution of Algebraical Equations of the Higher Orders, London, 1843.
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in this department of the subject to Mr. Michael Roberts, from
whose papers in the Quarterly Journal and other periodicals,
and from whose professorial lectures in the University of
Dublin, very great assistance has been derived. Many of the
examples also are taken from Papers set by him at the Uni-
versity Examinations.

In connexion with various parts of the subject several
other works have been consulted, among which may be
mentioned the treatises on Algebra by Serret, Meyer Hirsch,
and Rubini, and papers in the mathematical journals by Boole,
Cayley, Hermite, and Sylvester.

In preparing the present edition Ethe fourth) we have
thought it desirable to divide the work into two volumes. It
is hoped that this arrangement will be found for the conve-
nience of students. The first volume contains all that is
usually given in elementary works on the Theory of Equations,
together with a short chapter on Complex Numbers and the
Complex Variable; and in the second, which begins with the
chapter on Determinants above referred to, will be found those
subjects which are more appropriately included under the title
of Modern Higher Algebra.

TriNiTy CoLLEGE,
July, 1899.
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THEORY OF EQUATIONS,

INTRODUCTION.

1. Definitions.—Any mathematical expression involving a
quantity is called a function of that quantity.

‘We shall be employed mainly with such algebraical fune-
tions as are rational and integral. By a rational function of a
quantity is meant one which contains that quantity in a rational
form only ; that is, a form free from fractional indices or radical
signs. By an infegral function of a quantity is meant one in
which the quantity enters in an integral form only; that is,
never in the denominator of a fraction. The following expres-
sion, for example, in which # is a positive integer, is & rational
and integral algebraical function of z :—

at+ bz e+ ... ... + ke + 1.

It is to be observed that this definition has reference to the
quantity z only, of which the expression is regarded as a funec-
tion. The several coefficients a, b, ¢, &c., may be irrational or
fractional, and the function still remain rational and integral
in z.

A function of « is represented for brevity by F(z), /(z), ¢ (z),
or some such symbol.

The name polynomial is given to the algebraical function
to express the fact that it is constituted of a number of terms

B
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2 Introduction.

containing different powers of z connected by the signs plus or
minus. For certain values of « regarded as variable one poly-
nomial may become equal to another differently constituted.
The algebraical expression of such a relation is called an equa-
tion ; and any value of z which satisfies this equation is called a
root of the equation. The determination of all possible roots
constitutes the complete solution of the equation.

It is obvious that, by bringing all the terms to one side, we
may arrange any equation according to descending powers of z
in the following manner :—

G+ QT+ BT Lo AT+ Ay = 0.

The highest power of z in this equation being , it is said to
be an equation of the n* degree in 2. For such an equation wo
shall, in general, employ the form here written. The suffix
attached to the letter a indicates the power of = which each coef-
ficient accompanies, the sum of the exponent of # and the suffix
of a being equal to # for each term. An equation is not altered
if all its terms be divided by any quantity. We may thus, if
we please, dividing by a,, make the coefficient of #” in the above
equation equal to unity. It will often be found convenient tc
make this supposition ; and in such cases the equation will be
written in the form

P Pt P P = 0.

An equation is said to be complete when it contains terms
involving « in all its powers from n to 0, and incomplete when
some of the terms are absent ; or, in other words, when some of
the coefficients p,, p,, &ec., are equal to zero. The term p,,
which does not contain , is called the absolute term. An equa-
tion is numerical or algebraical according as its coefficients are
numbers or algebraical symbols.

2. Numerical and Algebraical Equations.—In many
researches in both mathematical and physical science the final
mathematical problem presents itself in the form of an equation
on whose solution that of the problem depends. It is natural,



Numerical and Algebraical Equations. 3

therefore, that the attention of mathematicians should have been
at an early stage in the history of the science directed towards
inquiries of this nature. The science of the Theory of Equa-
tions, as it now stands, has grown out of the successive attempts
of mathematicians to discover general methods for the solution
of equations of any degree. When the coefficients of an equation
are given numbers, the problem is to determine a numerical
value, or perhaps several different numerical values, which will
satisfy the equation. In this branch of the science very great
progress has been made; and the best methods hitherto advanced
for the discovery, either exactly or approximately, of the nume-
rical values of the roots will be explained in their proper places
in this work.

Equal progress has not been made in the general solution of
equations whose coefficients are algebraical symbols. The stu-
dent is aware that the root of an equation of the second degree,
whose coefficients are such symbols, may be expressed in terms
of these coefficients in a general formula; and that the nume-
rical roots of any particular numerical equation may be obtained
by substituting in this formula the particular numbers for the
symbols. It was natural to inquire whether it was possible to
discover any such formula for the solution of equations of higher
degrees. Such results have been attained in the case of equa-
tions of the third and fourth degrees. It will be shown that
in certain cases these formulas fail to supply the solution of
a numerical equation by substitution of the numerical coef-
ficients for the genéral symbols, and are, therefore, in this
respect inferior to the corresponding algebraical solution of
the quadratie.

Many attempts have been made to arrive at similar general
formulas for equations of the fifth and higher degrees; but it
may now be regarded as established by the researches of modern
analysts that it is not possible by means of radical signs, and /
other signs of operation employed in common algebra, to ex-|
press the root of an equation of the-fifth or any higher degree,
in terms of the coefficients.

B2



4 Introduction.

3. Polynomlials.—From the preceding observations it is
plain that one important objeot of the science of the Theory of
Equations is the discovery of those values of the quantity z
regarded as variable which give to the polynomial f(z) the
particular value zero. In attempting to discover such values of
z we shall be led into many inquiries concerning the values
assumed by the polynomial for other values of the variable.
We shall, in fact, see in the next chapter that, corresponding to
a continuous series of values of # varying from an infinitely
great negative quantity (- ) to an infinitely great positive
quantity (+ ), f(«) will assume also values continuously vary-
ing. The study of such variations is a very important part of
the theory of polynomials. The general solution of numerical
equations is, in fact, a tentative process ; and by examining the
values assumed by the polynomial for certain arbitrarily assumed
values of the variable, we shall be led, if not to the root itself,
at least to an indication of the neighbourhood in which it exists,
and within which our further approximation must be carried on.

A polynomial is sometimes called a quantic. It is convenient
to have distinet names for the quantics of various successive
degrees. The terms quadratic (or quadric), cubic, biquadratic (or
quartic), quintic, sextic, &c., are used to represent quantics of the
2nd, 3rd, 4th, 5th, 6th, &c., degrees ; and the equations obtained
by equating these quantics to zero are called guadratic, cubic,
biguadratic, &c., equations, respectively.



CHAPTER L

GENERAL PROPERTIES OF POLYNOMIALS.

4. In tracing the changes of value of a polynomial correspond-
ing to changes in the variable, we shall first inquire what terms
in the polynomial are most important when values very great
or very small are assigned to . This inquiry will form the
subjeot of the present and succeeding Articles.

‘Writing the polynomial in the form

a,l azl an,;l a“l
thecet— — + — —4
ay & a ™' @ 2”

it is plain that its value tends to become equal to a.z" as z tends
towards . The following theorem will determine a quantity
such that the substitution of this, or of any greater quantity,
for # will have the effect of making the term a,2" exceed the
sum of all the others. In what follows we suppose a, to be
positive; and in general in the treatment of polynomials and
equations the highest term is supposed to be written with the
positive sign.
Theorem.—If in the polynomial

Q2™ + a,x"“+a,a:""+...+a,_,ae+a.

the mlue x4 1, or any greater value, be substituted for z, where ax

48 that one of the coefficients a,, as, . . . a, whose numerical value i3
greatest, srrespective of sign, the term containing the highest power
of z will exceed the sum of all the terms which follow.

The inequality

BZ*> 0T+ GBI ..t Ap 2+ Gy
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is satisfied by any value of 2 which makes
3" > ap ("' + 2"+ ...+ + 1),

where a; is the greatest among the coefficients a,, a,, . . . sy, aa
without regard to sign. Summing the geometrio series within
the brackets, we have

-1 Gk
aoz“>ag;j, or f>;°—(z—_—l—)(-t"—1),
which is satisfied if @, (# — 1) be > or = as,
that is e>or=2%,1.
a,

The theorem here proved is useful in supplying, when the
coeficients of the polynomial are given numbers, a number such
that when 2 receives values nearer to + o the polynomial will
preserve constantly a positive sign. If we change the sign of z,
the first term will retain its sign if % be even, and will become
negative if # be odd ; so that the theorem also supplies a nega-
tive value of 2, such that for any value nearer to — o the
polynomial will retain constantly a positive sign if n be even,
and a negative sign if #n be odd. The constitution of the poly-
nomial is, in general, such that limits much nearer to zero than
those here arrived at can be found beyond which the function
preserves the same sign; for in the above proof we have taken
the most unfavourable case, viz. that in which all the coefficients
except the first are negative, and each equal to a ; whereas in
general the coefficients may be positive, negative, or zero.
Several theorems, having for their object the discovery of such
closer limits, will be given in a subsequent chapter.

5. We now proceed to inquire what is the most important
term in a polynomial when the value of z is indefinitely dimi-
nished ; and to determine a quantity such that the substitution
of this, or of any smaller quantity, for # will have the effect of
giving such term the preponderance.

Theorem.—If in the polynomial

Az + X"+ Lo+ Ay T+ e
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the value a,.l:-”a » or any smaller value, be substituted for x, where a;
/3

18 the greatest coefficient exclusive of an, the term a, will be nume-
rically greater than the sum of all the others. .

To prove this, let = =1; then by the theorem of Art. 4,
a; being now the greatest among the coefficients ao, ai, . . . an_y,
without regard to sign, the value Z—: + 1, or any greater value of

Y, will make
Q™ > Ap Y + Gua Y™+ ..+ Y + G,

. 1 1 1
that is, a,.>a,._,!—/+a,,_,!7+...a.,y—n;
kenoe the value —* , or any less value of z, will make
Gy + Gk

Ay > ApaZ + Qua @ + ... Q2"

This proposition is often stated in a different manner, as
follows :— Values so small may be assigned to z as to make the
polynomial

Ap1 & + Aua® + o « + Ao2®

less than any assigned quantity.

This statement of the theorem follows at once from the above
proof, since a, may be taken to be the assigned quantity.

There is also another useful statement of the theorem, as
follows : — When the variable « receives a very smdil value, the sign
of the polynomial ~
Ap 1% + Gua® + oo + Gp2®
18 the same as the sign of its first term an_,z.

This appears by writing the expression in the form

z(a”_] + Ap 3T + ... + (lox”‘l’;

for when a value sufficiently small is given to z, the numerical
value of the term: a,., exceeds the sum of the other terms of the
expression within the brackets, and the sign of that expression
will consequently depend on the sign of a,.,.
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6. Change of Form of a Polynomial corresponding
to an increase or diminution of the Variable. Derived
Functions.—We shall now examine the form assumed by the
polynomial when « + A is substituted for z. If, in what follows,
h be supposed essentially positive, the resulting form will corre-
spond to an increase of the variable ; and the form corresponding
to a diminution of # will be obtained from this by changing the
sign of A in the result.

‘When z is changed to z + 4, f (z) becomes f (z + 4), or

Gz+R) +m(z+ A" +a(z+ A+ ...+ apy (2 + B) + ay.

Let each term of this expression be expanded by the binomial
theorem, and the result arranged according to ascending powers
of . 'We then have

a2 + G2 + 42" + L 4 A 2P+ AT + G
+ hinag@™ + (n-1) a@** + (n-2) a2 +. ..+ 2p 2z +a,,}
2
+ 1L2{n (n-1) ae®?+ (n-1) (n=2) a,2">+...+ 2a,,}
+

hﬂ
+m{n.n—l...2. 1} a,.

It will be observed that the part of this expression indepen-
dent of % is f () (a result obvious @ priors), and that the succes-
sive coefficients of the different powers of % are functions of =z of
degrees diminishing by unity. It will be further observed that
the coefficient of 4 may be derived from f(z) in the following
manner :—Let each term in f(2) be multiplied by the exponent
of z in that term, and let the exponent of # in the term be
diminished by unity, the sign being retained ; the sum of all
the terms of f(z) treated in this way will constitute a polynomial
of dimensions one degree lower than those of (). This poly-
nomial is called the first derived function of f (x). It is usual to
represent this function by the notation f* (z). The coefficient
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of 1" 5 may be derived from /’(z) by a process the same as that

employed in deriving /* () from f (z), or by the operation twice
performed on f (z). This coefficient is represented by / (), and
is called the second derived function of f(z). In like manner the
succeeding coefficients may all be derived by successive opera-
tions of this character ; so that, employing the notation here
indicated, we may write the result as follows :—

L9 4, 2700
1.2. 3
It may be observed that, since the interchange of z and 4

does not alter f(z + &), the expansion may also be written in the
form

S+ h)=f(A)+[f(h)r +f(l)x*+{”2(b)dx’+ .+ @t

S@+h) =f(2) +/ (@) h+5

.+ ah®.

‘We shall in general employ the notation here explained ;
but on certain occasions when it is necessary to deal with derived
functions beyond the first two or three, it will be found more
convenient to use suffixes instead of the accents here employed.
The expansion will then be written as follows :—

h? hr
f(@+h)=f(z)+ £1(£)h + fo(2) 1 ‘ gt +fe(2) 1,23 .. .‘3 ot

ExAMPLE.

Find the result of substituting z + A for z in the polynomial 423 4 62% — 7z + 4.

Here
S(2) =42%+ 623 - Tz + 4,

S(z) =122+ 122 -1,
() =24z 4+ 12,
J'(x) =243

and the result is h"
43+ 622 - Tz +4 4+ (1222 + 122~ T) h + (2424 12) iz + 24

A

1.2.3

The student may verify this result by direct substitution.

7. Continuity of a Rational Integral Function of z.—
Ifin a rational and integral function f(z) the vaiue of z be
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made to vary, by indefinitely small increments, from one quan-
tity a to a greater quantity &, we proceed to prove that f(z) at
the same time varies also by indefinitely small increments; in
other words, that f(z) varies continuously with z.

Let z be increased fromatoa + 5. The corresponding incre-
ment of f(z) is

Sla+h)-fla);
and this is equal, by Art. 6, to

F@)h +f"(a) %+ ot a, B,

in which expression all the coefficients /* (a), f” (¢), &o., are finite
quantities. Now, by the theorem of Art. 5, this latter expres-
sion may, by taking 4 small enough, be made to assume a value
less than any assigned quantity ; so that the difference between
f(a + h) and f(4) may be made as small as we please, and will
ultimately vanish with . The sameis true during all stages of
the variation of z from a to 4; thus the continuity of the fune-
tion f'(z) is established.

It is to be observed that it is not here proved that f(z)
increases continuously from f(a) to £(8). It may either increase
or diminish, or at one time increase, and at another diminish ;
but the above proof shows that it cannot pass per saltum from
one value to another; and that, consequently, amongst the
values assumed by f(z) while = increases continuously from a to
b must be included all values between f(4) and £ (8). The sign
of f”(a) will determine whether f (z) is increasing or diminishing ;
for it appears by Art. 5 that when 4 is small enough the sign of
the total increment will depend on that of f'(a) 5. We thus
observe that when f'(a) is positive f() i increasing with z; and
when f’(a) 18 negative f (z) 13 diminishing as x increases.

8. Form of the Quotient and Remalnder when a
Polynomlial is divided by a Binomial.—Let the quotient,
when

Az + X"+ AT A A,
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is divided by 2 - 4, be
bt + ba™t + .. o + bpo® + Bpe

This we shall represent by @, and the remainder by B. We
have then the following equation :—

S(@) =(x-h Q+ R.

The meaning of this equation is, that when @ is multiplied
by z- A, and R added, the result must be identical, term for term,
with /' (z). In order to distinguish equations of the kind here
explained from equations which are not identities, it will often
be found convenient to use the symbol here employed in place
of the usual symbol of equality. The right-hand side of the
identity is

b2 + b, )2V + by )2+ ...+ by Jz+ R
- Izbo} - hb.} —hbus) = hbus.

Equating the coefficients of 2 on both sides, we get the fol-
lowing series of equations to determine by, b, by, ... bpy R :—

bo = Qo
bl = bok + a,,
bt = blh + a4

b, = b’h + aa,
b”..l = bn_zh + l’u—l,
R = b,...lh + Uy

These equations supply a ready method of caleulating in
succession the coefficients 3, d,, &c. of the quotient, and the
remainder R. For this purpose we write the series of operations
in the following manner :—

Go, Gy Gz, Asy + o Opy Qny
boh, bk, bihy . ... bush, bosh,

by by by ... by, L.

In the first line are written down the successive coefficients
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of f(z). The first term in the second line is obtained by multi-
plying a, (or b, which is equal to it) by A. The product b is
placed under a,, and then added to it in order to obtain the
term &, in the third line. This term, when obtained, is multi-
plied in its turn by A, and placed under a,. The product is
added to a, to obtain the second figure &, in the third line. The
repefition of this process furnishes in succession all the coef-
ficients of the quotient, the last figure thus obtained being the
remainder. A few examples will make this plain.

ExAMPLES,
1. Find the quotient and remainder when 3s* — 5a% + 102* + 11z — 61 is divided
by z - 3.
The calculation is arranged as follows :—
3 -6 10 11 -6l
9 12 66 231. .
4 22 77 170. None

Thus the quotient is 32° + 422 + 22z + 77, and the remainder 170.
2. Find the quotient and remainder when 23 + 522 + 3z + 2 is divided by £—1.
4ms. Q=+ 6r+9, R=1l
3. Find Q and R when 2% — 42* + 723 — 11z — 13 is divided by & — 5.
N.B.—When any term in a polynomial is absent, care must be taken to supply
the place of its coefficient by zero in writing down the coefficients of f(z). In this
example, therefore, the series in the first line will be
1 -4 7 0 —-11 -13.
Ans. Q=24+ 22+ 12224 602 +289; R=1432.
4. Find Q and R when 2° + 327 — 1523 + 2 is divided by z — 2.
Ans. Q=28+ 227 4 728+ 142°+ 2824 + 5623 + 11222 + 209z + 418; R=838.
5. Find Q and R when 2® + 52— 10z + 113 is divided by z + 4.
Ans. Q=2*—423+162*—63r+242; R=-855.

9. Tabulation of Functions.—The operation explained
in the preceding Article affords a convenient practical method
of calculating the numerical value of a polynomial whose coef-
ficients are given numbers when any number is substituted for z.

For, the equation
S(@)=(z-4) Q+R,

since its two members are identically equal, must be satisfied
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when any quantity whatever is substituted for 2. Let z =4,
then (k) = R, z - h being = 0, and @ remaining finite. Hence
the result of substituting 4 for # in f(2) is the remainder when
f (2) is divided by z - %, and can be calculated rapidly by the
process of the last Article. '

For example, the result of substituting 3 for « in the poly-
nomial of Ex. 1, Art. 8, viz.,

3z* - 52* + 102 + 11z - 61,

is 170, this being the remainder after division by z - 8. The
student can verify this by actual substitution.
Again, the result of substituting — 4 for z in

2+ 2 - 10z + 113

is — 855, as appears from Ex. 5, Art. 8. We saw in Art. 7 that
a8 z receives a continuous series of valuesincreasing from - o to
+ a0, f () will pass through a corresponding ocontinuous series.
If we substitute in succession for z, in a polynomial whose coef-
ficients are given numbers, a series of numbers such as

ve.—5,-4,-3,-2,-1, 0, 1, 2, 38, &4, 5,...

and caloulate the corresponding values of f(z), the process ma)
be called the tabulation of the function.

ExaMPLES.

1. Tabulate the trinomial 223 + z — 6, for the following values of £:—

-4, -3,-2,-1, 0, 1, 2, 3, 4.

Values of z, -4 1 -3 | -2 I—l | 0 1) 2| 3 .
w wfl2), | 221 9 ' 0!-5|-6|-31 4115 l 30
2. Tabulate the polynomial 102® —~ 1722 + z + 6 for the same values of z.

Values of z, ~4l =3 =2y =10 p 1 23 4
w  w fl), 1-910 |-420 ~144 ] 22} 6 l o | 20 |126 | 378

10. Graphic Representation of a Polynomial.—In
investigating the changes of a function /() consequent on any
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series of changes in the variable which it contains, it is plain
that great advantage will be derived from any mode of repre-
sentation which renders possible a rapid comparison with one
another of the different values which the function may assume.
In the case where the function in question is & polynomial with
numerical coefficients, to any assumed value of z will correspond
one definite value of f(z). We proceed to explain a mode of
graphic representation by which it is possible to exhibit to the
eye the several values of f(z) corresponding to the different
values of .

Let two right lines OX, OY !
(fig. 1) cut one another at right ;
angles, and be produced indefi- ‘
nitely in both directions. These
linesare called the axis of z and axis
of y, respectively. Lines, suchas X BC
0A, measured on the axis of z at
the right-hand side of O, are re-
garded as positive; and those, such
as 04, measured at the left-hand
side, a8 negative. Lines parallel Fig. 1.
to OY which are above XX’, such as AP or B'Q, are positive;
and those below it, such as AT or 4'P, are negative. These
conventions are already familiar to the student acquainted with
Trigonometry.

Any arbitrary length may now be taken on OX as unity,
and any number positive or negative will be represented by a
line measured on XX’; the series of numbers increasing from 0
to + oo in the direction OX, and diminishing from 0 to - c in the
direction OX’. Let any number m be represented by 04 ; cal-
culate f(m); from A draw AP parallelto OY to represent f(m)
in magnitude on the same scale as that on which OA4 represents
m, and to represent by its position above or below the line OX
the sign of /' (m). Corresponding to the different values of m
represented by 04, 0B, OC, &c., we shall have a series of points
P, @, R, &c., which, when we suppose the series of values of
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m indefinitely increased so as to include all numbers between
- o and + oo, will trace out a continuous curved line. This
ourve will, by the distances of its several points from the line
OX, exhibit to the eye the several values of the function f(z).

The process here explained is also called ¢racing the function
f(z). Thestudent acquainted with analytic geometry will observe
that it is equivalent to tracing the plane curve whose equation
is y = f(2).

In the practical application of this method it is well to begin
by laying down the points on the curve corresponding to certain
small integral values of z, positive and negative. It will then
in general be possible to draw through these points a curve
which will exhibit the progress of the function, and give a general
idea of its character. The accuracy of the representation will
of course increase with the number of points determined between
any two given values of the variable. 'When any portion of the
curve between two proposed limits has to be examined with care,
it will often be necessary to substitute values of the variable
separated by smaller intervals than unity. The following ex-
amples will illustrate these principles.

ExaMPLES,

1. Trace the trinomial 223 + z — 6.

The unit of length taken is one-sixth of
the line 0D in fig. 2. Y G

In Ex. 1, Art. 9, the values of f(z) are
given corresponding to the integral values A
of z from — 4 to + 4, inclusive.

By means of these valucs we obtain F
the positions of nine points on the curve;

seven of which, 4, B, C, D, E, F, G, are -
X 0
here represented, the other two correspond- BK ! M X
(o]

ing to values of f(r) which lie out of the E
limits of the figure.

The student will find it & useful exercise
to trace the curve more minutely between
the points ¢ and E in the figure, viz. by :
calculating the values of f(z) corresponding Fig. 2.
to all values of z between — 1 and 1 separated by small intervals, say of one-tenth.
as is done in the following example.
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2. Trace the polynomial
1023 - 1723+ 2+ 6.

This is already tabulated in Art. 9 for values of z between — 4 and 4.

It may be observed, as an exercise on Art. 4, that this function retains positive
values for all positive values of z greater than 2-7, and negative values for all
values of z nearer to — « than — 2-7. The ‘
curve will, then, if it cuts the axis of z at all, | ‘
cut it at a point (or points) corresponding to - g T
some value (or values) of  between — 27 and S Co -
+2:7; sothat if our object is to determine, or I
approximate to, the positions of the roots of the T
equation f(z) = 0, the tabulation may be con- N
fined to the interval between — 27 and 2-7. - :

This is a case in which the substitution of N
integral values only of z gives very littlehelp . =~ ' ' o
towards the tracing of the curve, and where, i ; X
consequently, smaller intervals have to be ex- ‘
amined. We give the tabulation of the func- ) ST T T
tion for intervals of one-tenth between the S
integers —1,0; 0,1; 1,2. From these values e I
the positions of the corresponding points on
the curve may be approximately ascertained, Fig. 3.
and the curve traced as in fig. 3.

Values of z -1' -9 | -8 -'7!—'8 ‘—'5—'4—'3|—'2 --1
' : H
w9 S(2) |~-22 -15°96|-10-8|-6-46,-2:88] 0]2-24 3'9!5'04 572
Values of z 0 -1 2 3 | 4 l 6|6 7| 8| -9
. » S(2) 6 | 594 | 56 |504/4321356](2:64 1'821'04 42
Values of z 1] 1-11] 1.2 | 13 \ l'4ll'5 16|1-7]18 : 19 2
|
3 J(2) 0! --16 0 | -54 |1:52] 3 {604|7-7|11-04156°12] 20

The curve traced in Ex. 1 cuts the axis of zin two points
(a number equal to the degree of the polynomial): in other
words, there are two values of  for which the value of the given
polynomial is zero ; these are the roots of the equation 2z* + =
-6 =0, viz. - 2, and 1'5. Similarly, the curve traced in Ex. 2
cuts the axis in three points, viz. the points corresponding to the
roots of the cubic equation 102* -~ 172 + x + 6 = 0. The curve
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representing a given polynomial may not cut the axis of # at
all, or may cut it in a number of points less than the degree of
the polynomial. Such cases correspond to the imaginary roots
of equations, as will appear more fully in the next chapter. For
example, the curve which represents the polynomial 22 + z + 2
will, when traced, lie entirely above the axis of z ; in fact, sinoe
this function differs from the function of Ex. 1 only by the ad-
dition of the constant quantity 8, each value of /(=) is obtained
by adding 8 to the previously calculated value, and the entire
ourve can be obtained by simply supposing the previously traced
curve to be moved up parallel to the axis of y through a distance
equal to 8 of the units. It is evident, by the solution of the
equation 22* + # + 2 = 0, that the two values of # which render
the polynomial zero are in this case imaginary. Whenever the
number of points in which the curve cuts the axis of z falls
short of the degree of the polynomial, it is customary to speak
of the curve as cutting the line in imaginary points.

11. Maximum and Minimum Values of Polynomials.
—1It is apparent from the considerations established in the pre-
ceding Articles, that as the variable z changes from — o to + w0,
the function f(z) may undergo many variations. It may go
on for a certain period increasing, and then, ceasing to increase,
may commence to diminish ; it may then cease to diminish and
commence again to increase; after which another period of
diminution may arrive, or the function may (as in the last
example of the preceding Art.) go on then continually in-
creasing. At a stage where the function ceases to increase
and commences to diminish, it is said to have attained a
mazimum value; and when it ceases to diminish and com-
mences to increase, it is said to have attained a minimum value.
A polynomial may have several such values; the number
depending in general on the degree of the function. Nothing
exhibits so well as a graphic representation the occurrence
of such a maximum or minimum value; as well as the
various fluctuations of which the values of a polynomial are

susceptible.
(o]
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A knowledge of the maximum and minimum values of a funo-
tion, giving the positions of the points where the curve bends
with reference to the axis, is often of great assistance in tracing
the curve corresponding to a given polynomial. It will be
shown in a subsequent chapter that the determination of theee
points depends on the solution of an equation one degree lower
than that of the given function.

It is easy to show that maxima and minima oocur alter-
nately ; for, as the variable increases from a value correspond-
ing to one maximum to the value corresponding to & second,
the function begins by diminishing and ends by increasing,
and therefore attains & minimum at some intermediate stage.
In like manner it appears that between two minima one maxi-
mum must exist.



CHAPTER IIL
GENERAL PROPERTIES OF EQUATIONS.

12. THE process of tracing the function f(2) explained in
Art. 10 may be employed for the purpose of ascertaining ap-
proximately the real roots of a given numerical equation ; for
when the corresponding curve is acourately traced, the real roots
of the equation f(z) = 0 can be obtained approximately by
measuring the distances from the origin of its points of inter-
section with the axis. With a view to the more accurale nume-
rical solution of this problem, as well as the general discussion of
equations both numerical and algebraical, we proceed to establish
in the present chapter the most important general properties of
equations having reference to the existence and number of the
roots, and the distinction between real and imaginary roots.

By the aid of the following theorem the existence of a real
root in an equation may often be established :—

Theorem.—If {wo real quantities a and b be substituted for
the unknowun quantity z in any polynomial f (), and if they furnish
results having different signs, one plus and the other minus; then
the equation f(z) = 0 must have at least one real root intermediate
tn value between a and b.

This theorem is an immediate consequence of the property
of the continuity of the function f () established in Art. 7 ; for
since f () changes continuously from f (@) to f (), and therefore
passes through all the intermediate values, while 2 changes from
@ to b; and since one of these quantities, /' (a) or f (b), is positive,
and the other negative, it follows that for some value of = inter-
mediate between a and b, f(z) must attain the value zero which
is intermediate between f'(a) and f (b).

c2
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The student will assist his conception of this theorem by
reference to the graphio method of representation. What is
here proved, and what will appear obvious from the figure, is,
that if there exist two points of the curved line representing the
polynomial on opposite sides of the axis OX, then the curve
joining these points must cut that axis at least once. It will
also be evident from the figure that several values may exist
between @ and b for which f(z) = 0, i.e. for which the curve
cuts the axis. For example, in fig. 3, Art. 10, z = — 2 gives a
negative value (- 144), and z = 2 gives a positive value (20),
and between these points of the curve there exist tAree points of
section of the axis of 2.

Corollary.—If there exist no real quantity which, substituted
Jor z, makes f(z) = 0, then f(x) must be positive for every real value
of 2. C Qp e Roq wdsolord B-by Bt

For it is evident (Art. 4) that # = o makes /() positive;
and no value of z, therefore, can make it negative ; for if there
were any such value, the equation would by the theorem of
this Article have a real root, which is contrary to our present
hypothesis. 'With reference to the graphic mode of representa~
tion this theorem may be expressed by saying that when the
equation f(z) = 0 has no real root, the curve representing the
polynomial f (#) must lie entirely above the axis of .

13. Theorem.—Every equation of an odd degree has at least
vne real root of a sign opposite to that of its last term.

This is an immediate consequence of the theorem in the last
Article. Substitute in succession - 0, 0, « for z in the poly-
nomial /(). The results are, n» being odd (see Art. 4),

for # = — o0, f(2) is negative ;
» & =0, sign of f(2) is the same as that of a,;
» &=+ %, f(z) is positive.

[f a, is positive, the equation must have a real root between
- and 0, i.e. a real negative root ; and if a, is negative, the
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equation must have a real root between 0 and o, i.c. a real
positive root. The theorem is therefore proved.

14. Theorem.—Evyery equation of an even degree, whose last
term 13 negative, has at least two real roots, one positive and the
other negative.

The results of substituting — w, 0, o are in this case

-, +
0’ )
+ o, +;

hence there is a real root between — o and 0, and another be-
tween 0 and + o ; i.e. there exist at least one real negative, and
one real positive root.

‘We have contented ourselves in both this and the preceding
Articles with proving the ezisfence of roots, and for this purpose
it is sufficient to substitute very large positive or negative values,
as we have done, for 2. It is of course possible to narrow the
limits within which the roots lie by the aid of the theorem of
Art. 4, and still more by the aid of the theorems respecfing
the limits of the roots to be given in a subsequent chapter.

15. Existence of a Root in the General Equation.
Imaginary Roots.—We have now proved the existence of a
real root in the case of every ‘
equation except one of an even
degree whose last term is positive. Y
Such an equation may have no
real root at all. It is necessary
then to examine whether, in the
absence of real values, there may
not be values involving the ima-
ginary expression o/~ 1, which,
when substituted for z, reduce the
polynomial to zero; or whether X' o
there may not be in certain cases
both real and imaginary values
of the variable which satisfy the equation. We take a simple

Fig. 4.
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example to illustrate the occurrence of such imaginary roots.
As already remarked (Art. 10), the curve corresponding to the
polynomial

f@)=2+2+2

lies entirely above the axis of 2, as in fig. 4. The equation
f(z) = 0 has no real roots; but it has the two imaginary roots '

1 /15/— 1 /15

i T -,

as is evident by the solution of the quadratic. We observe,
therefore, that in the absence of any real values there are in
this case two imaginary expressions which reduce the polynomial
to zero.

The corresponding general proposition is, that Every rational
inlegral equation has a root of the form

a+f4/-1,

a and [3 being real finite quantities. This statement includes
both real and imaginary roots, the former corresponding to the
value B =0. When a and 3 are numbers, such an expression
is called a complez number; and what is asserted is, that every
numerical equation has a numerical root either real or complex.

As the proof of this proposition involves principles which
could not conveniently have been introduced hitherto, and
which will present themselves more naturally for discussion
in subsequent parts of the work, we defer the demonstration
until these principles have been established. For the present,
therefore, we assume the proposition, and proceed to derive
certain consequences from it.

16. Theorem.—Every equation of n dimensions has n roots,
and no more.

We first observe that if any quantity 4 is a root of the equa-
tion f'(z) = 0, then f(z) is divisible by # — 4 without a remainder.
This is evident from Art. 9; for if f(k) = 0, i.e. if 4 is & root
of f(z) = 0, R must be = 0.
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Let, now, the given equation be
S(@) =2+ P + P2k o+ Pua @+ Py = 0.

This equation must have a root, real or imaginary (Art. 15),
which we shall denote by the symbol a,. Let the quotient,
when f(z) is divided by # — a),, be ¢:(2); we have then the
identical equation
: (@) = (2 - @) ¢:(2)-
Again, the equation ¢,(z) = 0, which is of n — 1 dimensions,
must have a root, which we represent by a,. Let the quotient
obtained by dividing ¢,(z) by # — a; be ¢,(2). Hence
$1(2) = (% - i) ¢4(2),
and o e f(x) = (z - ﬂ]) (x - ﬂg) ¢3(¢)’

where ¢,(z) is of n — 2 dimensions.

Prooeeding in this manner, we prove that f(z) consists of the
produot of n factors, each containing # in the first degree, and a

numerical factor ¢,(z). Comparing the coefficients of 2", it is
plain that ¢.(#) = 1. Thus we prove the identical equation

@) =@-a)z-a)(z-as)..... (2~ an1) (2 — an)-

It is evident that the substitution of any one of the quanti-
ties a,, ay, - . - as for 2 in the right-hand member of this equation
will reduce that member to zero, and will therefore reduce f(z)
to zero; that is to say, the equation f(z) = 0 has for roots the n’
quantities aj, az a5 . . . an1, ax. And it can have no other roots;
for if any quantity other than one of the quantities ai, a, ... a,
be substituted in the right-hand member of the above equation,
the factors will be all different from zero, and therefore the pro-
duot cannot vanish.

Corollary.—Two polynomials each of the n™® degree in z
cannot be equal to one another for more than n talues of = without
being completely identical.

For if their difference be equated to zero, we obtain an equa-
tion of the n** degree, which can be satisfied by n values only
of z, unless each coefficient be separately equal to zerv. .



24 General Properties of Equations.

The theorem of this Article, although of no assistance in the
solution of the equation f(z) = 0, enables us to solve completely
the converse problem, s.e. to find the equation whose roots are
any n given quantities. The required equation is obtained by
multiplying together the n simple factors formed by subtract-
ing from z each of the given roots. By the aid of the present
theorem also, when any (one or more) of the roots of a given
equation are known, the equation ocontaining the remaining
roots may be obtained. For this purpose it is only necessary
to divide the given equation by the product of the given bino-
mial factors. The quotient will be the required polynomial
composed of the remaining factors.

ExaupPLEs.

1. Find the equation whose roots are
-3 -1, 4, 6&.
Ans. z4 — 523 — 1323 + 63z + 60 = 0.
2. The equation
24 —-63+822-172+10 =0
has a root 5 ; find the equation containing the remaining roots.
TUse the method of division of Art. 8.

Ans. 2 —2* + 32-2=0.
3. Solve the equation

z* — 162° + 862% - 176z + 105 = 0,
two roots being 1 and 7.
Ans. The other two roots are 3, 6.
4. Form the equation whose roots are

3 1
b7
Ans. 142° - 232 — 60z + 9= 0,
6. Solve the cubic equation
22-1=0.
Here it is evident that z = 1 satisfies the equation. Divide by # — 1, and solve the
resulting quadratic. The two roots are found to be

1 1 _— 1 1 —_
-3tV h -3V

6. Form an equation with rational coefficients which shall have for a root the
irrational expression B _
Vr+/ e
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This expression has four different values according to the different combinations
of the radical signs, vis.

Vo+ve —-Vr-vVa V-V, -Vr+v e
The required equation is, therefore,
-vV2-VOE+vV+VDE-Vs+V e+ -/ =0,
or
(#-p-¢-2Vpg) (P -p~q+2Vpg) =0,

or, finally,
#-2(p+q)a*+(p~-g=0.

17. Equal Roots.—It must be observed that the n factors
of which a polynomial f(z) consists need not be all different
from one another. The factor z — a, for example, may ocour in
the second, or any higher power not superior to n. In this case
the equation f(z) = 0 is still said to have n roots, two or more
being now equal to one another ; and the root a is called & mul-
tiple root of the equation—double, triple, &c., according to the
number of times the factor is repeated.

A reference to the graphic construction in Art. 10 (fig. 3)
will help to explain the occurrence of multiple roots. We see
by an inspection of the figure that the two positive roots of the
equation 102* — 172* + 2 + 6 = 0 are nearly equal, and we may
conceive that a slight addition to the absolute term of this poly-
nomial, which is, as already explained, equivalent to a small
parallel movement upwards of the whole curve, would have the
effect of rendering equal the roots of the equation thus altered.
In that case the line OX would no longer cut the curve in two
distinct points, but would fouch it. Now, when a line touches a
curve it is properly said to meet the curve, not once, but in fwo
coincident points. The student acquainted with the theory of
plane curves will have no difficulty in illustrating in a similar
manner the occurrence of a triple or higher multiple root.

Equal roots form the connecting link between real and
imaginary roots. 'We have just seen that a small change in the
form of a polynomial may convert it from one having real roots
into another in which two of the real roots become equal. A
further small change may convert it into a form in which the
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two roots become imaginary. Let us suppose that the above
polynomial is further altered by another emall addition to the
absolute term. 'We shall then have a graphio representation in
which the axis OX cuts the curve in only one real point, vis.
that corresponding to the negative root, the two points of
section corresponding to the two positive roots having now dis-
appeared.

Consider, for example, the polynomial 10+* - 172* + z + 28,
which is obtained from that of Ex. 2, Art. 10, by the addition
of 22. The student can easily construct the figure ; the point
corresponding to A in fig. 3 will now lie much above the axis
of z. Divide by = + 1, and obtain the trinomial 102* - 272 + 28
which contains the remaining two roots. They are easily found

to be
,/39 /_ 27 /391

20 1 20 20/ 1.

‘We observe in this case, as well as in the example of Art. 15,
that when a change of form of the polynomial causes one real
root to disappear, asecond also disappears at the same time, and
the two are replaced by a pair of imaginary roots. The reason
of this will be apparent from the proposition of the following
Article.

18. Imaginary Roots enter Equations in Pairs.—
The proposition to be now proved may be stated as follows:—

If an equation f(z) = 0, whose cocfficients are all real quantities,
have for a root the imaginary expression a + [3 V=1, it must also
have for a root the conjugate imaginary expression a — [3 V-1

‘We have the following identity :—

(*-a-Bv/-1)(z-a+f3 /—-_l)u(z—a)’+ﬁ’.
Let the polynomial f(z) be divided by the second member of

this identity, and if possible let there be a remainder Rz + R'.
‘We have then the identical equation

J@)=((zx-a)*+3*} Q@+ Re+ R,
where @ is the quotient, of n — 2 dimensions in 2. Substitute in
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{hus identity a + B4/~ 1 for 2. This, by hypothesis, causes f(z)
to vanish. It also causes (z - a)® + [3* to vanish. Hence

Ra+B+v/-1)+R =0,
from which we obtain the two equations
Ra+ R = 0, Rﬁ = 03

since the real and imaginary parts cannot destroy one another ;
hence
R=0, FR-=0.

Thus the remainder Rz + R’ vanishes; and, therefore, f ()
18 divisible without remainder by the product of the two factors

2-a-Bv/-1, wo-a+B/~1

The equation’has, consequently, the root a — 84/~ 1 as well
as the root a + 3./~ 1.

Thus the total number of imaginary roots in an equation
with real coefficients is always even ; and every polynomial may
be regarded as composed of real factors, each pair of imaginary
roots producing a real quadratic factor, and each real root pro-
ducing a real simple factor. The actual resolution of the poly-
nomial into these factors constitutes the complete solution of the
equation,

‘We observed in Art. 17 that equal roots may be considered
a8 the connecting link between real and imaginary roots. This
statement may now be regarded from another point of view.
Suppose a polynomial has the quadratic factor (z - a)* + &, and
let its form be altered by means of slight alterations in the
value of £. When % is negative, the quadratic factor gives a
pair of real roots; when £ = 0, this factor has two equal roots, a;
when % is positive, the factor has two smaginary roots.

A proof exactly similar to that above given shows that surd
roots, of the form a t,/ ';, enter équata'om whose coefficients are
rational in pasrs.
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Exawrres.
1. Form a rational cubic equation which shall have for roots
1, 3+2v/-1.
Ans. 23 -T2+ 192 - 13 = 0.
2. Form a rational equation which shall have for two of its roots
146V-1, 6-v 1.

Ans. 58 — 125% 4 727 - 3122 + 676 = 0.

3. Solve the equation
425623+ 62+2=0,

which has a root
-24V3.

Ans. The roots are — 2 £ V3, 1:v=1
4. Solve the equation
3% —4s?+2+88=0,
one root being 24+4/-7.

Ans. The roots are 2 + V- 7. —;.

19. Descartes’ Rule of Signs—Positive Roots.—This
rule, which enables us, by the mere inspection of a given equa-
tion, to assign & superior limit to the number of its positive
roots, may be enunciated as follows :—No equation can have
more positive roots than st has changes of sign from + to —, m‘
from — to +, in the terms of ils first member.

; ‘We shall content ourselves for the present with the proof

which is usually given, and which is rather a verification than
a general demonstration of this celebrated theorem of Descartes.
It will be subsequently shown that the rule just enunciated, and
other similar rules which were discovered by early investigators
relative to the number of the positive, negative, and imaginary
roots of equations, are immediate deductions from the more
general theorems of Budan and Fourier.

Let the signs of a polynomial taken at random succeed each
other in the following order :—

i R S S R

In this there are in all seven changes of sign, including
changes from + to -, and from - to +. It is proposed to show
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that if this polynomial be multiplied by a binomial whose signs,
ocorresponding to a positive root, are + —, the resulting poly-
nomial will have at least one more change of sign than the
original. '
We write down only the signs which occur in the operation
as follows :—
t+—t———t -+

——t -ttt =t -+

+t-+-FF+xt-+-+

Here, in the third line, the ambiguous sign + is placed
wherever there are two terms with different signs to be added.
‘We observe in this case, and it will readily appear also for
every other arrangement, that the effect of the process is to
introduce the ambiguous sign wherever the sign + follows +, or
- follows —, in the original polynomial. The number of varia-
tions of sign is never diminished. There is, moreover, always
one variation added at the end. This is obvious in the above
instance, where the original polynomial terminates with a varia-
tion ; if it terminate with a continuation of sign, it will equally
appear that the corresponding ambiguity in the resulting poly-
nomial must furnish one additional variation either with the
preceding or with the superadded sign. Thus, in even the most
unfavourable case—that, namely, in which the continuations of
sign in the original remain continuations in the resulting poly-
nomisl, there is one variation added ; and we may conclude in
general that the effect of the multiplication of a polynomial by
a binomial factor # — a is to introduce at least one additional
change of sign.

Suppose now a polynomial formed of the product of the
factors corresponding to the negative and imaginary roots of an
equation ; the effect of multiplying this by each of the factors
z-a, z- [3, 2 -, &o., corresponding to the positive roots
a, B, v, &o., is to introduce at least one change of sign for
each ; so that when the complete product is formed containing .
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all the roots, we conclude that the resulting polynomial has at
least as many changes of sign as it has positive roots. This is
Descartes’ proposition.

20. Descartes’ Rule of Signs—Negative Roots.—In
order to give the most advantageous statement to Deecartes’ rule
in the case of negative roots, we first prove that if - z be substi-
tuted for # in the equation f(z) = 0, the resulting equation will
have the same roots as the original except that their signs will
be changed. This follows from the identical equation of Axt. 16

f@)=(-a)@-a) (@-a)....(o-a,

from which we derive

SEa)m(-1)*(z2+a)(@+a) (Z+as)-...(z+ aa)
From this it is evident that the roots of /(- z) = 0 are

= ay = A3y = QqQsy o s .« = Qgn.

Hence the negative roots of /() are positive roots of /(- 2), and
we may enunciate Descartes’ rule for negative roots as follows:—
No equation can have a greater number of negative roots than there
are changes of sign in the terms of the polynomial f(— 2).

2]1. Use of Descartes’ Rule in proving the existemee
of Imaginary Roots.—It is often possible to detect the
existence of imaginary roots in equations by the application of
Descartes’ rule; for if it should happen that the sum of the
greatest possible number of positive roots, added to the greatest
possible number of negative roots, is less than the degree of the
equation, we are sure of the existence of imaginary roots. Take,
for example, the equation

2+102+2-4=0.
This equation, having only one variation, cannot have more than
one positive root. Now, changing = into — z, we get
2-108-2-4-=0;

and since this has only one variation, the original equation can-
not have more than one negative root. Hence, in the proposed
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equation there cannot exist more than two real roots. It has,
therefore, at least six imaginary roots. This application of
Descartes’ rule is available only in the case of incomplete
equations; for it is easily seen that the sum of the number of
variations in f(z) and f(- #) is exactly equal to the degree of
the equation when it is complete.

22. Theorem.—If two numbers a and b, substituted for z in
the polynomial f(z), give results with contrary signs, an odd number
of real roots of the equation f(z) = 0 lies between them ; and if they
give results with the same sign, either no real root or an even num-
ber of real roots lies between them.

This proposition, of which the theorem in Art. 12 is a par-
ticular case, contains in the most general form the conclusions
which can be drawn as to the roots of an equation from the
signs furnished by its first member when two given numbers
are substituted for 2. We proceed to prove the first part of
the proposition ; the second part is proved in a precisely similar
manner.

Let the following m roots aj, ay, . .. . am, and no others, of
the equation f(z) = 0 lie between the quantities a and &, of
which, as usual, we take a to be the lesser.

Let ¢ (#) be the quotient when f(z) is divided by the product
of the m factors (¢ — a,) (* —a3) .... (£ —am). We have, then,
the identical equation '

S@)m(z-a)(®-a).... (- an)¢(2).

Putting in this successively # = a, 2 = b, we obtain
S@=@-a)@-a)....(a-an)¢(a),
JO)=0b-a)(d-as) ....(b—-am) ¢ (b).

Now ¢ (a) and ¢ (b) have the same sign; for if they had

different signs there would be, by Art. 12, one root at least of

the equation ¢(z) = 0 between them. By hypothesis, f(a) and
7 (b) have different signs ; hence the signs of the products

(@-a)(@-az)....(6~aw),
b-a))(b-as).... (b - am),
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are different ; but the sign of the second is positive, since all
its factors are positive ; hence the sign of the first is negative,
but all the factors of the first are negative; therefore their
number must be odd, which proves the proposition. .o

In this proposition it is to be understood that multiple roots
are counted a number of times equal to the degree of their
multiplicity.

It is instructive to apply the graphic method of treatment to
the theorem of the present Article. From this point of view it
appears almost intuitively true ; for it is evident that when any
two points are connected by a curve, the portion of the curve
between these points must cut the axis an odd number of times
when the points are on opposite sides of the axis; and an even
number of times, or not at all, when the points are on the same
side of the axis.

ExaMPLES.

1. If the signs of the terms of an equation be all positive, it cannot have a
positive root.

2. If the signs of the terms of any complete equation be alternately positive
and negative, it cannot have a negative root.

3. If an equation consist of a number of terms connected by + signs followed
by a number of terms connected by — signs, it has one positive root and no more.

Apply Art. 12, substituting 0 and o ; and Art. 19.

4. If an equation involve only even powers of z, and if all the coefficients have
positive signs, it cannot haveareal root, . ., - <., ..

Apply Arts. 19 and 20. ’ .

6. If an equation involve only odd powers of z, and if the coefficients have all
positive signs, it has the root zero and no other real root.

6. If an equation be complete, the number of continuations of sign in f(z) is
the same as the number of variations of sign in f(~ 2).

7. When an equation is complete ; if all its roots be real, the number of positive
roots is equal to the number of variations, and the number of negative roots is equal
to the number of continuations of sign.

8. An equation having an even number of variations of sign must have its last
sign positive, and one having an odd number of variations must have its last sign
negative.

Take the highest power of z with positive coefficient (see Art. 4).

9. Hence prove that if an equation have an even number of variations it must
have an equal or less even number of positive roots; and if it have an odd number of
variations it must have an equal or less odd number of positive roots; in other
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words, the number of positive roots when less than the number of variations must
differ from it by an even number.

Substitute 0 and o, and apply Art. 22.

10. Find an inferior limit to the number of imaginary roots of the equation

##-83-2+1=0.
Ans. At least two imaginary roots.
11. Find the nature of the roots of the equation
#+152+72-11=0.
Apply Arts. 14, 19, 20.
Ans. One positive, one negative, two imaginary.
12. Show that the equation
2% + gz +r= 0,
where g and r are essentially positive, has one negative and two i mmgmary roots.
13. Show that the equation
B-gz+r=0,
where ¢ and r are essentially positive, has one negative root; and that the other

two roots are either imaginary or both positive.
14. Show that the equation

A? B2 c? I? -z
Z-a z-b z-¢ s °T™
where 4, 3, ¢, . . . . Jare numbers all different from one another, cannot have an

imaginary root.
Substitute a + BV-—1anda—~BY—1in mmmon for z, and subtract. We

t an expression which can vanish only on the supposition 8 = 0.
,f’ 15. Show that the equation
m-1=0
has, when » is even, two real roots, 1 and ~ 1, and no other real root; and, when »
is odd, the real root 1, and no other real root.
This and the next example follow readily from Arts. 19 and 20.
16. Show that the equation
»+1=0
has, when » is even, no real root; and, when n is odd, the real root - 1, and no
" other real root.
17. Solve the equation
24+ 2922 + 8722 + 2 —rim 0.
This is equivalent to
P+ez+g)P=gt—ri=0,

1 3 —_—
Am.--z- 7+ -~zq’+\/q‘+r‘.

The different signs of the radicals give four combinations, and the expression
here written involves the four roots.

D
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18. Form the equation which has for roots the different values of the expressicn
2+0v/ T+ v 1140V3,
where 62 = 1.

1f no restriction had teen made by the introduction of ¢, this expression would

bave 8 values. The 4/ 7 must now be taken with the same sign where it occurs

under the second radical and free from it. There are, therefore, only four values

in all. Ans, ot — 823 - 1253 4 845 — 63 = 0,
19. Form the equation which has for roots the four values of

9404/ 137T+ 3/ 34 —20v137,

where 0 = 1. Ans. 24 + 365 — 400 — 31685 + TT44 = 0. [/
20. Form an equation with rational coeflicients which shall have for roots all the
values of the expression
6vVp1+ 867+ 0/,
where 02=1 6:32=1, 0*=1.

There are eight different values of this expression, vis.,
Vr-viei+vn -vVr-va-vr,
Vr-vVa-v'n, -Vr+vg+v'n

-vVr+ve-vn Vr-Vi+vr,
-vVr-Vg+v'r, Vr+v/a-vr

¢=01'/;+02\/;+0s\/;-

Assume

Squaring, we have
B=p+gtr+2(0:050/gr+6361 v/ 7P+ 6103/ pg).
Transposing, and squaring again,
(R =p—g—12=4(gr+rp+pg) +80:0:0, v/ pgr (0. /7 + 03/ 2 + 63 /7).

Transposing, substituting z for 6; 4/ p+6:4/ ; + 63 \/ r, and squaring, we
obtain the final equation free from radicals

{#-22%(p+ g+ 1)+ 22+ ¢+ 12— 2r - 2rp — 2pg}* = Bdpgra®.

This is an equation of the eighth degree, whose roots are the values above
written.  Since 8y, 62, 6; have disappeared, it is indifferent which of the eight roots
£t/ pty/ g £ +/7 is assumed equal to z in the first instance. The final equation
is that which would have been obtained if cach of the 8 roots had been subtracted
from z, and the continued product formed, as in Ex. 6, Art. 16,



CHAPTER IIL

RELATIONS BETWEEN THE ROOTS AND COEFFICIENTS OF EQUA-’
TIONS, WITH APPLICATIONS TO 8YMMETRIC FUNCTIONS OF THE
ROOTS.

23. Relations between the Roots and Coeflicients,.—
Taking for simplicity the coefficient of the highest power of = as
unity, and representing, as in Art. 16, the n roots of an equation
by a,, a3, a3, . . . . as, we have the following identity :—

Pt P2t L+ P Pa
m(z—a))(z-a)) (z—aj)....(z—ay). 1)

‘When the factors of the second member of this identity are
multiplied together, the highest power of # in the product is 2*;
the coefficient of z*! is the sum of the » quantities - ay, —ay, &o.,
viz. the roots with their signs changed ; the coefficient of 2**
is the sum of the products of these quantities taken two by
_ two; the ooefficient of 2" is the sum of their products taken
three by three; and so on, the last term being the product of
all the roots with their signs changed. Equating, therefore,
the ooefficients of z on each side of the identity (1), we have the
following series of equations :—

p1=—(a,+a,+a.+....+a,,),
D= (ala,+a,a,+a,a;+....+a,.,la,.),
P=-(maay + arasag +....+ ansan1an), (2
Pa=(-1)"aiasa....04.104

D2
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which enable us to state the relations between the roots and
coefficients as follows :—

Theorem.—In crvery algebraic equation, the coefficient of
whose highest term s unity, the coefficient p, of the second term with
its sign changed 18 equal to the sum of the roots.

The coefficient p, of the third term ¢s equal to the sum of the
products of the roots taken two by two.

The coefficient p, of the fourth term with its sign changed is
equal to the sum of the products of the roots taken three by three;
and 8o on, the signs of the coefficients being taken alternately negative
and positive, and the number of roots multiplied together in each
term of the corresponding function of the roots increasing by unity,
till finally that function ss reached which consists of the product of
the n roots.

When the coefficient @, of 2* is not unity (see Art. 1), we
must divide each term of the equation by it. The sum of the

roots is then equal to —%:; the sum of their products in pairs is
equalto;ﬁ; and so on.
0

Cor. 1.—Every root of an equation is a divisor of the abso-
lute term of the equation.

Cor. 2.—If the roots of an equation be all positive, the
coefficients (including that of the highest power of z) will be
alternately positive and negative; and if the roots be all
negative, the coefficients will be all positive. This is obvious
from the equations (2) [cf. Arts. 19 and 20].

24. Applications of the Theorem.—Since the equations
(2) of the preceding Article supply n distinet relations between
the n roots and the coefficients, it might perhaps be supposed
that some advantage is thereby gained in the general solution
of the equation. Such, however, is not the case; for suppose it
were attempted to determine by means of these equations a root,
a,, of the original equation, this could be effected only by the
elimination of the other roots by means of the given equations,
and the consequent determination of a final equation of which
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a, is one of the roots. Now, in whatever way this final equation
is obtained, it must have for solution not only a,, but each of
the other roots a,, as . - . as; for, since all the roots enter in the
same manner in the equations (2), if it had been proposed to
determine a; (or any other root) by the elimination of the rest,
our final equation could differ from that obtained for a;, only by
the substitution of a, (or that other root) for a,. The final
equation arrived at, therefore, by the process of elimination
must have the n quantities a;, az, . . . . . a, for roots ; and can-
not, consequently, be easier of solution than the given equation.
This final equation is, in fact, the original equation itself, with
the root we are seeking substituted for z. This we shall show
for the particular case of a cubic. The process here employed
is general, and may be applied to an equation of any degree.
Let a, 3, v be the roots of the equation

2+ pd* + px + py = 0.

‘We have, by Art. 23,

pr==(a+B+y)
D= aB+a‘y+ﬁ'y,
ps= - af3y.

Multiplying the first of these equations by a*, the second
by a, and adding the three, we find

D’ + pra +py = - a’,
or @+ pa® + pa+ py =0,
which is the given cubic with a in the place of 2.

The student can take as an exercise to prove the same result
in the case of an equation of the fourth degree. In the corre-
sponding treatment of the general case the successive equations
of Art. 23 are to be multiplied by a™*, a™?, a™*, &o., and added.

Although the equations (2) afford, as we have just seen, no
assistance in the general solution of the equation, they are often
of use in facilitating the solution of numerical equations when

any particular relations among the roots are known to exist.
They may also be employed to establish the relations which
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must obtain among the coefficients of algebraical equations cor-
responding to known relations among the roots.

Exaxrres.
1. Solve the equation
£~ 62~ 165 + 80 = 0,

the sum of two of its roots being equal to xero.
Let the roots be a, B, 7. We have then

a+B+y= &,
a8 + ay + By = ~ 16,
aBy = — 80.

Taking 8 + y = 0, we have, from the first of these, « = 5; and from either the
-ooondorthndwoobmn31=—16 Weﬁnd!orﬁand-ythovdnuimd 4.
Thus the three roots are 5, 4, - 4.

2. Solve the equation

#-33+4=0,
two of its roots being equal.
Let the three roots be a, a, 8. We have
2a+8=3,
a'+ 2a8 =0,

from which we find a = 2, and 8=—1. Therootsare2, 2, - L.
3. The equation

P +45-2:2-12:+9=m0
has two pairs of equal roots ; find them.
Let the roots be a, a, 8, B; we have, therefore,
2a+28=-4,
e+ B+ 4af=-2,

from which we obtain for a and 8 the values 1 and — 3.
4. Solve the equation

B -9+ 142+ 24 =0,
two of whose roots are in the ratio of 3 to 2.
Let the roots be a, 8, 7, with the relation 2a = 38. By elimination of a we
easily obtain
68 + 2y = 18,

38% + 68y = 28,
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from which we have the following quadratic for 8 :—
198 — 908 + 66 = 0.

The roots of this are 4, and-i—;;

—1. The three roots are 6, 4, —1. The student will here ask what is the signi-

the former gives for a and 7 the yalues 6 and

ficance of the value % of 8; and the same difficulty may have presented itself in

the previous examples. It will be observed that in examples of this nature we
never require all the relations between the roots and coefficients in order to deter-
mine the required unknown quantities. The reason of this is, that the given con-
dition establishes one or more relations amongst the roots. Whenever the equations
employed appear to furnish more than one system of values for the roots, the actual
roots are easily determined by the condition that they must satisfy the equation (or
equations) between the roots and coefficients which we have not made use of in
determining them. Thus, in the present example, the value 8 = 4 gives a system
satisfying the omitted equation
afy =—24;

while the value 8 = — gives a system not satiefying this equation, and is therefore

to be rejected.
6. Solve the equation

14
19

28— 922 4 232 - 16 =0,
whose roots are in arithmetical progression.
Lettherootsbe a—3, a a-+3; we have at once
8a=09,
8a? — 3% = 23,
from which we obtain the three roots 1, 3, 5.
6. Solve the equation
A+ 22% - 2123 - 222+ 40=0,

whose roots are in arithmetical progression.

Assume for the roots a—33, a—3, a+3, a+33.
Ans. -5, -2, 1, 4

7. Bolve the equation
2723 + 4293 — 282 — 8 = 0,

whose roots are in geometric progression.
Assume for the roots ap, a, s—. From the third of the equations (2), Art. 23, we

have a* = 2%, ora= ; Either of the remaining two equations gives a quadratic

2 -2

for p- Ans. —2, §, —9"
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8. Solve the equation
3s4 — 405° + 1302% — 1202 + 27 = 0,
whose roots are in geometric progression.
A..umzonhemou:—,, 5. @, ap. Employ the second and fourth of the

equations (2), Art. 23. A, %’ 130
9. Solve the equation
4+ 15623+ 7023 + 1202 + 64 = 0,
whose roots are in geometric progression. Ans. -1, -8, -4, 8.

10. Solve the equation
631122+ 6s-1=0,

whose roots are in harmonic progression.
Take the roots to be a, 8, 7. We have here the relation

1.1 2

;+;=§;
hence
By+va+aB=3va; &c. 11
. Ans. l, i, §.
11. Solve the equation
812 - 182 - 362+8=0,
whose roots are in harmonic progression.
ane b 22
ns. 6, 3, a-

12. If the roots of the equation
B -prtgzr—r=0
be in harmonic progression, show that the mean root is s?r"

13. The equation
#-2234+422+62-21=0

has two roots equal in magnitude and opposite in sign ; determine all the roots.
Take a+ B8=0, and employ the first and third of equations (2), Art. 23.

dns. 4/3, —4/3, 1t4/=6

324 — 2628 + 022 - 60z + 12 =0
has two roots whose product is 2; find all the roots.

14. The equation

Ans. 6, %, 1t/ -1,
15. One of the roots of the cubic
D-pri+gr—r=0
is double another; show that it may be found from a quadratic equation.
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16. Show that all the roots of the equation
AP 4Pz L 4 PuaZ H Pa=0

can be obtained when they are in arithmetical progression.
Let the roots be a, a+38, a+23,....a+(ms—1)3. The first of equations (2)
givee
-pr=na+{1+2+3+....+(n-1)}3

=na+ alr-1)

3 )

Again, since the sum of the squares of any number of quantities is equal to the
square of their sum minus twice the sum of their products in pairs, we have the
equation

2 -2pa=a*+ (a+ 33+ (a+23)%+...
=”¢:+,,(,._1)¢3+’&-1)6(¢9p, (2)

Subtracting the square of (1) from n times the equation (2), we find 3? in terms
of p1 and ps. We can then find « from equation (1). Thus all the roots can be
expressed in terms of the coefficients p1 and ps.

17. Find the condition which must be satisfied by the coefficients of the equa-
tion

B -paiigz—r=0,
when two of its roots a, 8 are connected by a relation a + 8 = 0.

Ans. pg—-r=0.
18. Find the condition that the cubic
B ~prltgz—r=l .

should have its roots in geometric progression. . Ans. pr—g*=0.

19. Find the condition that the same cubic should have its roots in harmonie
progression (see Ex. 12). Ans. 27r3 —9pgr + 2¢°=0.

20. Find the condition that the equation :

B pP+ gt +rz+a=0

should have two roots connected by the relation a + 8=0; and determine in that
case two quadratic equations which shall have for roots (1) «, 8; and (2) v, 3.

Ans. pgr—pts—13=0, (1) p2*+r=0, (2) 22+ pz +’r,—'=o.

21. Find the condition that the biquadratic of Ex. 20 should have its roots con-

nected by the relation 8+ y=a + 3. Ans. p* —4pg+8r=0,
22. Find the condition that the roots a, B, 7, 3 of
HAipt+gt+re+e=0
should be connected by the relation a8 =73. Ans. pPs—13=0.

28. Show that the condition obtained in Ex. 22 is satisfied when the roots of
the biquadratic are in geometric progression.
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25. Depression of an Eguation when a relation
exists between twe of its Reets.—The examples given
in the preceding Article illustrate the use of the equations con-
necting the roots and coefficients in determining the roots in
particular cases when known relations exist among them. We
shall now show in general, that if a relation of the form (3= ¢(a)
exist belueen two of the roots of an eguation f(z) = 0, the eguation
may be depressed two dimensions.

Let ¢(z) be substituted for  in the identity

S(@)maz”+a* ' +. . . +a,,
then fl¢p(z))mao(p(2))*+a, ($(2))* +.. ..+ 0 1$(2) +n.

‘We represent, for convenience, the second member of this
identity by F(z). Substituting a for z, we have

F(a)=f($(a)) =/(B)=0;

hence a satisfies the equation F(z) =0, and it also satisfies the
equation f(z) =0 ; hence the polynomials /() and F (z) have a
common measure z — a; thus a can be determined, and from it
¢(a) or B, and the given equation can be depressed two dimen-
sions.

ExaupLrs,
1. The equation
23-522—42z+20=0

has two roots whose difference = 8: find them.

Hero B-a=3, =3+ a; substitute z+ 3 for = in the given polynomial f(z);
it becomes z°+ 423 — 7z — 10 ; the common measure of this and f(z) is £ — 2; from
which a=2, B=5; the third root is ~ 2.

2. The equation

#-62+1122-132+6 =0
has two roots connected by the relation 28 + 3a = 7: find all the roots.

Ans. 1, 2, 1:4/=2.

It may be observed here, that when two polynomials f{z)
and F(z) have common factors, these factors may be obtained
by the ordinary process of finding the common measure. Thus,
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if we know that two given equations have common roots, we
can obtain these roots by equating to zero the greatest common
measure of the given polynomials.

ExauprLEs.

1. The equations
2794 623~ 6z~ 9=0,

323+ T22-112-16=0

have two common roots: find them. Ans, -1, =3,
2. The equations
2+ prd+ gz +r=m0,
B+ gz+r=0

have two common roots: find the quadratic whose roots are these two, and find also
the third root of each.
Ans. z,+q—__q_ ,"-_—:=0, -r(p-p) -'(P—P').

P r—v ' r—¢

26. The Cube Roots of Unity. — Equations of the

forms
”-1=0, 2»+1=0,

oconsisting of the highest and absolute terms only, are called
binomial equations. 'The roots of the former are called the n n*
roots of unity. A general discussion of these forms will be given
in a subsequent chapter. We confine ourselves at present to
the simple case of the binomial cubic, for which certain useful
properties of the roots can be easily established. It has been
already shown (see Ex. 5, Art. 16), that the roots of the cubic

@-1=0
1.1 11
are L -5+5v-3 -5-5v5

If either of the imaginary roots be represented by w, the
other is easily seen to be «?, by actually squaring; or we may
see the same thing as follows :—If w be a root of the cubic, w?
must also be a root; for, since w® =1, we get, by squaring,
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w®* =1, or (v)* =1, thus showing that * satisfies the cubio
2 -1=0. We have then the identity
P-1n(z-1)(z-w)(z-o).
Changing z into -z, we get the following identity also :—
2+l=(z+l)(z+w)(+o)
which furnishes the roots of
) 2#+1=0.

‘Whenever in any product of quantities involving the imagi-
nary cube roots of unity any power higher than the second
presents itself, it can be replaced by w, or w*, or by unity ; for
example,

o=l w=w o'=0lo’=0, o= o'=1, &

The first or second of equations (2), Art. 23, gives the fol-
lowing property of the imaginary cube roots :—

l+tw+e*=0.

By the aid of this equation any expression involving real
quantities and the imaginary cube roots can be written in any
of the forms P+ w@, P+ '@, wP + «*Q.

ExaMpLEs.
1. Show that the product

(o + oo®n) (0?m + om)
is rational. Ans. m* - mn 4 nd

2. Prove the following identities :—
m3+ 0’ & (m + n)(wm+ o?n)(w?m + wn),
m® — 03 = (m — n)(wm — o’n)(w?m — wn).
3. Show that the product

' ¥
is rational. (e +ub+ eh)(atetp+m)

2 Ans. a*+ B+~ By —ya- af.
4. Prove the identity

(a+B+7)(at 0B+ oy)(a+ @8+ &) = a®+ B3+ o — 3aBy.
K. Prove the identity

(a+ @B + ™) + (a+ 6B + wy)b= (2a— B—7)(26~ 7 —a) 2y —a - B).
Apply Ex. 2.
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6. Prove the identity
(a+wB+wiyP— (a+w?B+ wyPm—84/=3 (B~ ) (y - a) (a-B).
Apply Ex. 2, and substitute for @ — «? its value Vv =a.

7. Prove the identity

a?+ B3+ 9%~ 8a'8'y’ w (a® + B° + 1* - 3aBy)?,

a'ma’t20y, B=p"+2ve ¥ =1‘+2GB
8. Form the equation whose roots are -

mtn, omitoln o'm+on
Ans. 23— 3mnz — (m? +n?) = 0.

where

9. Form the equation whose roots are
T4mtn, Jtem+an, I+ otn+ on.
Ans, 22~ 3la3+ 3 (P—mn)z— (P+m*+n*—3lmn)=0.

It is important to observe that, corresponding to the n n
roots of unity, there are n n™ roots of any quantity. The roots
of the equation

>®-a=0

are the n n® roots of a.

The three cube roots, for example, of a are
Ve, wva, o'V,

where+/a represents the real cube root according to the ordinary
arithmetical interpretation. KEach of these values satisfies the
cubic equation 2° — 4 = 0. It is to be observed that the three
cube roots may be obtained by multiplying any one of the three
above written by 1, w, o

In addition, therefore, to the real cube root there are two
imaginary cube roots obtained by multiplying the real cube
root by the imaginary cube roots of unity. Thus, besides the

ordinary cube root 3,‘the number 27 has the two imaginary
cube roots

-3+3v75, -3 2¢
as the student can easily verify by actual cubing.
10. Form a rational equation which shall have

3 e —_—
~/0+V@+F+~'170—VQ°+P'
for a root ; where &® = 1.
Compare Ex. 8. Ans. 23+ 3P ~2Q=0.
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11. Form an equation with rational coefficients which shall have
6v/F+64/Q
for a root, where 6,=1, and 62 = 1.
Cubing both sides of the equation

=0/ P+ 0t/
and substituting = for its value on the right-hand side, we get
2~ P— Q=13016,3/PQ.z.

Cubing again, we have
(a8~ P— Q)*=27PQs.

Since 6; and 6; may each have any one of the values 1, w, «* the nine roots of
this equation are
VF+ VO  w/FraV/q &V FraV/G
oVE+VE  #VPr VG o /Pr VR
@/ F+av/Q VFP+a/Q  YFre V@

‘We see also that, since 0, and 8; have disappeared from the final equation, it is
indifferent which of these nine roots is assumed equal to z in the first instance.
The resulting equation is that which would have been obtained by multiplying

together the nine factors of the form z —V P —V Q obtained from the nine roots
above written. ’

12. Form separately the three cubic equations whose roots are the groups in
three (written in vertical columns in Ex. 11) of the roots of the equation of the
preceding example.

We can write these down from Ex. 8, taking first m and » equal to{/f,' 76;

—_— —_— —_ 3
then equal to aux/P, u:/Q; and finally equal to o’:/l’, w?/ Q.
Ans. 28— 3v/PQz—P-Q=0,
2 —3uwiy/PQz-P-Q=0,
2 - 8w o/ PGz-P-Q=0.

27. Symmetric Functions of the Roots.—Symmetric
functions of the roots of an equation are those functions in
which all the roots are alike involved, so that the expression is
unaltered in value when any two of the roots are interchanged.
For example, the functions of the roots (the sum, the sum of the
products in pairs, &o.) with which we were concerned in Art. 23
are of this nature; for, as the student will readily perceive, if
in any of these expressions the root a,, let us say, be written in
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every place where a, occurs, and a, in every place where a,
ocours, the value of the expression will be unchanged.

The functions discussed in Art. 23 are the simplest sym-
metric functions of the roots, each root entering in the first
degree only in any term of any one of them.

‘We can, without knowing the values of the roots separately
in terms of the coefficients, obtain by means of the equations (2)
of Art. 23 the values in terms of the coefficients of an infinite
variety of symmetric functions of the roots. It will be shown
in a subsequent chapter, when the discussion of this subject is
resumed, that any rational symmetric function whatever of the
roots can be so expressed. The examples appended to this
Artiole, most of which have reference to the simple cases of the
cubio and biquadratic, are sufficient for the present to illustrate
the usual elementary methods of obtaining such expressions in
terms of the coefficients.

It is usual to represent a symmetric function by the Greek
letter S attached to one term of it, from which the entire ex-
pression may be written down. Thus, if a, 3, y be the roots of
a cubic, =a’(3* represents the symmetric function

02‘32 + a278 + ﬁi,yl,
where all possible products in pairs are taken, and all the

terms added after each is separately squared. Again, in the
same case, Sa’(3 represents the sum

@B +a'y+ By +fatyaryB,
where all possible permutations of the roots two by two are
taken, and the first root in each term then squared.

As an illustration in the case of a biquadratic we take Sa*(3?,
whose expanded form is as follows :—

a3+ aly + @S+ By + 318 + O
By the aid of the various symmetric functions which ocour
among the following examples the student will acquire a facility

in writing out in all similar cases the entire expression when
the typical term is given.
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ExaupPLEs.
1. Find the value of 2a*8 of the roots of the cubie equation
B +pP4gz+r=0.
Multiplying together the equations
a+B+y=-p,
By+yataB= g,
we obtain Xa’B + 3aBy =-pg;
hence 2a’8 = 3r — pq.
2. Find for the same cubic the value of
e+ B8+ % Ans. 3o = pg® ~ 2¢.
8. Find for the same cubic the value of
a®+ 83+ 90

Multiplying the values of 2a and Xa?, we obtain
@+ 8+ +2aB=—p?+ 2pg;
Za® =~ p% + 8pg - 3r.
4. Find for the same cubic the value of

hence, by Ex. 1,

By + v'a* + o',
We ea.aﬂy obtain
B+ yad 4+ a8 + 2a87(a + B +7) = ¢Y,
from which 2a%f" = g = 2pr-

5. Find for the same cubic the value of
. . (B+7)(r+a)(ath)
This is equal to
2a8y + Za*B. Ans. r — pq.
6. Find the value of the symmetric function
a?By + a?B8 + a*y3 + Play + B’ad + Bly3
+ 7%aB + ¥*a3 + 7?83 + ¥aB + Bay + 3By
of the roots of the biquadratic equation
ApP+gP+rz+8=0.

Multiplying together
atB+y+3=-p,
aBy+aBd +ayd+Byd=-r,
we obtain Za’By + 4apyd = pr;

hence Za?By = pr — 4s
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7. Pind for the same biquadratic the value of the symmetric function
A+, +yY+ B
Bquaring Xa, we easily obtain
Jat=p - 20,
8. Find for the same biquadratic the value of the symmetric function
a8t 4+ @ + o' + BIN + B8 + P

8quaring the equation
. ZaB=g,
we obtain 26 + 238y + Safiyl = g8
+ + =¢%;
henoe, by Ex. 6, *

2a?P = ¢ - 2pr + 2.

9. Find for the same biquadratic the value of 2a%8.

To form this symmetric function we take the two permutations a8 and Ba of
the letters a, 8 ; these give two terms o”8 and S%a of 2. We have similarly two
terms from every other pair of the lettexs a, B8, 7, 3; 80 that the symmetrie func-
tion consists of 12 terms in all.

Multiply together the two equations
:lB:q: 2B’=ﬁ’— H
and obeerve that u
2a® JaB = Za’8 + Ia’Py.

[1t is convenient to remark here, that results of the kind expressed by this last
equation can be verified by the consideration that the number of terms in both
members of the equation must be the same. Thus, in the present instance, since
Xa® contains 4 terms, and Xaf 6 terms, their product must contain 24 ; and these
are in fact the 12 terms which form 248, together with the 12 which form a?8y.]

Using the reeults of previous examples, we have, therefore,

a8 = pig — 29° — pr + 4o,

10. Find for the same biquadratic the value of

at+ Bt + o 4 30,
8quaring 2a? and employing results already obtained,
Zab=pt — 4p%0 + 20 + 4pr — 4o

11. Find the value, in terms of the coefficients, of the sum of the squares of the

roots of the equation
P L P i .+ Pu=0.
Squaring Xa), we easily find

7% = Za?+23a1a3;
henoe

3a)? = p)3 ~ 2ps.

12, Find the value, in terms of the coeflicients, of the sum of the reciprocals of
the roots of the equation in the preceding example.
E
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From the second last, and last of the equations of Art. 23, we have
383« - <G+ Q13 Buntoeo. +a1I. . o0 an1=(—1)"pu,,
a1a3a3 . . .« Gn 2= (—1)"pa ;
dividing the former by the latter, we have
1 -
1,01 +....+l e dox

« a o P
or

1 _-ftm,
ay Pn

2

In a similar manner the sum of the products in pairs, in threes, &c., of the
reciprocals of the roots can be found by dividing the 3rd last, or 4th last, &c., co-
efficient by the last.

13. Find for the cubic equation

602® + 84153 4 Basr + 43 =0

the value, in terms of t.ha coefficients, of the following symmetric function of the
roots a, 8, y:i—
(B= 0+ (v — o)+ (a— B

N.B.—It will often be found convenient to write, as in the present example, an
equation with dinomial coefficients, that is, numerical coefficients the same as those
which occur in the expansion by the binomial theorem, in addition to the literal
coefficients ao, a1, &c. Here the equation being of the third degree, the successive
numerical coefficients are those which occur in the expansion to the third power,
viz. 1, 3, 3, 1.

We easily obtain

a6t {(8 = )" + by = o)1+ (= B)1} = 18 (ar? — aums).

14. Express in terms of the coefficients of the cubic in the preceding example

the successive coefficients of the quadratic
(z—a)? (B-7)*+ (- B)* (v - a)* + (- 7)* (a — B)*=0,

where a, B, 7 are the roots of the cubic.
Here, in addition to the symmetric functwn of the preceding example, we have
to calculate also the two following :—

a(B-7)+B8 (v-a)+7(@- B,
a*(B— )+ B (v~ a)* +7*(a—B)"
Ans. (doaz — 61%) 2° + (aoa3 — 6102) 2+ (ma3— a7") = 0.
16. Find for the cubic of Example 13 the value in terms of the coeflicients of
(2a-8-7)(28~7—a)(27—a-8).
3ay
Sinoe 2a-B-7=3¢—(¢+B+'y)=3a+;:,
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the required value is easily obtained by substituting — ;; for z in the identity
a2+ 3a122+ 3022+ @3 = ap (7 —a) (2= B) (z—7)-
Ans. a® (2a - B—1) (28— 7—a) (27 — a— B) =~ 27 (ac*as — 8404142 + 241%).

16. Find, in terms of the coefficients of the biquadratic equation

8ozt + 46123+ 66227 + 4asz + 4= 0,
the value of the following symmetric function of the roots :—
(B-7P(a=8*+(y —a)* (B-3)*+ (a — B)* (y—3).

Here the equation is written with numerical coeflicients corresponding to the
cxpansion of the binomial to the 4th power. The symmetric function in queetion
is easily seen to be identical with

23028 — 23a? By + 122873,
Employing the results of examples 6 and 8, we find
a*{(B—7)* (a—3)* + (7~ a)*(B—3)*+(a—B)* (v —3)*} =24 (aoay — 4a1 0 + 3a2?).

17. Taking the six products in pairs of the four roots of the equation of Ex. 16,
and adding each product, e.g. aB, to that which contains the remaining two roots,
<3, we have the three sums in pairs

By+ad, ya+ B3 aB+v3;
it is required to find the values in terms of the coeflicients of the two following
symmetric functions of the roots :—
(ya+ B3) (aB + 73) + (aB +v3) (By + aB) + (B + a3) (ya + B3),
(By +aB) (ya + B3) (aB + 73).

The former of these is the sum of the products in pairs, and the latter the con-
tinued product, of the three expressions above given. As these three functions of
the roots are important in the theory of the biquadratic, we shall represent them
uniformly by the letters A, u, ». We have, therefore, to find expressions in terms
of the coefficients for uy + vA + An, and Aur.

The former is Za?B, and is easily expressed as follows (cf. Ex. 6) :—

ao'zw =4 (441 as — God‘).
The latter is, when multiplied out, equal to
, . 1 1 1 1
aByd (a*+ B+ 7' + 87) + a? B39 8? (;2» tgt 7 + ;;),
and we obtain after easy calculations the following :—

P Aur = 8 (200 a3® — 3ag 204 + 2213 44).
E 2
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18. Find, in terms of the coeflicients of the biquadratic of Ex. 16, the value of
the following symmetric function of the roots :—

{(r-a)(8-8)~(a=B)(v~8)} {(a-B)(y—3)-(B-7)(a-B)}
{B-N(a-3-(r-a)(B-3)}.

This is also an important symmetric function in the theory of the biquadratic.
To prevent any ambiguity in writing this, or corresponding functions in which the
differences of the roots of the biquadratic enter, we explain the notation which will
be uniformly employed in this work.

Taking in circular order the three roots a, 8, 7, we have the three differences
B—-7 7—a a-—B; and subtracting 3 from each root in turn, we have the three
other differences a — 3, B—3, y—3. We combine these in pairs as follows : —

B-7@-3), (y-a)(B-32), (a=B)(7-3)

The symmetric function in question is the product of the differences of these
three taken as usual in circular order.
Employing the values of A, u, », in the preceding example, we have
-ptr=(B-7)(a-3), —-rtr=(y-a)(B8-3), -At+tum@@-B)(¥y-3).
We have, therefore, to find the value of
(2A-p—2) 2u—r-2)(2r—-A~p),
(32 — 2aB) (34 ~ 2aB) (3» — 2aB),
in terms of the coeflicients of the biquadratic.

Multiplying this out, substituting the value of Xa8, and attending to the results
of Ex. 17, we obtain the reqilred expreesion as follows : —

or

63(2A —pu—») (2u—r—A) (2» —A=R)=— 432{a0a1a4 +2410103— agas’ -y —as} .

The function of the coefficients here arrived at, as well as those before obtained
in Examples 13, 15, and 16, will be found to be of great importance in the theory
of the cubic and biquadratic equations.

19. Find, in terms of the coefficients of the biquadratic of Ex. 16, the value of
the symmetric funetion

(@ BV +(a= )+ (a = 8+ (B-7)+ (8- 3+ (v~ .
This may be represented briefly by 3 (« — 8)%.
Ans. a*Z (a — B)3= 48 (a1? — apaa).

20. Prove the following relation between the roots and coefficients of the biqua
dratic of Ex. 16 :—

a®(B+y—a—238)(y+a—B~3) (a+B—y—3) =232 (sg?as — 3a0a ag 5 23,3).
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28. Theorems relating to Symmetric Functions.—
The following two theorems, with which we close for the present
the discussion of this subject, will be found useful in many in-
stances in verifying the results of the calculation of the values
‘of symmetric functions in terms of the coefficients.

(1). The sum of the exponents of all the roots in any term of anyhfam‘o—q w
symmetric function of the roots is equal to the sum of the suffizes in ’
each term of the corresponding value in terms of the cocefficients.

The sum of the exponents is of course the same for every
term of the symmetric function, and may be called the degree in
all the roots of that function. The truth of the theorem will be
observed in the particular cases of the Examples 13, 15, 16, 17,
&o. of the last Article; and that it must be true in general ap-
pears from the equations (2) of Art. 23, for the suffix of each
ooefficient in those equations is equal to the degree in the roots
of the corresponding function of the roots ; hence in any product
of any powers of the coefficients the sum of the suffixes must be
equal to the degree in all the roots of the corresponding funo-
tion of the roots.

(2). When an equation i3 written with binomial coefficients, the
ezpression in terms of the coefficients for any symmetric function of
the roots, which 13 a function of their differences only, 18 such that
the algebraic sum of the numerical factors of all the terms in it €3
equal to gero. i

The truth of this proposition appears by supposing all the
coefficients ao, a,, a5, &o. to become equal to unity in the general
equation written with binomial coefficients, viz.,

d 1”._21) @ 4. .. +ay=0;

for the equation then becomes (z + 1)* =0, i.e. all the roots become
equal ; hence any function of the differences of the roots must
in that case vanish, and therefore also the function of the coeffi-
cients which is equal to it ; but this consists of the algebraioc sum
of the numerical factors when in it all the coefficients aq, ), as,
&o. are made equal to unity. In Exs. 13,15, 16, 18, 20 of Art.
27 we have instances of this theorem.

az” + na, ' +
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ExawrLes.

1. Find in terms of p, g, r the value of the symmetric function

m+¢+¢+a+e+p
By 7a a8’

whama.ﬁ,'ymthomoh&theubioaqmﬁm

PHp+gr+r=0.
‘ an. 23
2. Find for the same equation the value of
B+r—aP+(y+a=BP+(@+B—7)
Ans. Ur —p3.

8. Calculate the value of 2a?5® of the roots of the same equation.

Here XaS8Xa?B:= 2a’8’+ aBy3a‘’BS; hence, &o.
Ans. ¢*—3pgr + 8%

4. Find for the same equation the value of the symmetric function
(8= 7 + (= ' + (- B
Za® is easily obtained by squaring 2a® (see Ex. 3, Art. 27)
Ans. 2p° - 12p8g + 12p%r + 18p2 g2 — 18pgr — 6¢3.
5. Find for the same equation the value of

F+f+f+é a+ g
B+y v+e at8’

Ane, B9 -4r 20
. r—pg
6. Find for the same equation the value of

>

a@+By  B+vya 7'+aB
+ + .
B+y 7+a a+8
s — 3yt
P kil hd il o
r—pq

7. Find for the same equation the value of

28y—a® 2va~-§* 2aB-—7
B+y—a 7Y+a—B a+B—7v

p4-2p%q+14pr - 8¢*

Ans. TP -pP -8
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—B\?
8. Find the value of the symmetric function X (‘Il +:) for the same cubic
a
equation.
293 —4g - -
Ans. 3p%g? — 4pdr — 4¢® - 2pgr Qr"

(r-p)?
9. Calculatein terms of p, g, r, s the value of z;,-f for the equation

A +p+ et re+8=0.

1 a aB 1
Hoo  2a82,=33+32%; and 23 =4+

B

Ans. qrd — 2g% - pn+4a’.

8
10. Find the value of X Si’ of the roots of the equation

S 032" oL P+ pa=0.
Pw
11. Find for the biquadratic of Ex. 9 the value of
(By ~ a8) (ya - B3) (aB — 73).
Compare Ex. 22, Art. 24. Ans. * - pts.
12. Find the value of X (a0a + a1)? (B — 7)? in terms of the coeficients of the

cubic equation
@o7® + 3412 + 343z + a3 = 0.

18
Ans. e (a0as — &)

a? + as?

13. Find the value of the symmetric function 2 of the roots of the

equation

aias
P+ P12 + porr it oL+ a2+ pa=0.
The given function may be written in the form

1 1 1
m{—+—+....+—}-—l
al as an
1 1 1
+m{—+—+....+—}—l
al a Gn
Foeeiivene

1 1 1
+a.{—+—-+....+— -1,

a a3 an
A”..p_‘_M_

or 2a3 -l-—n; hence, &c. ».
a

14. Clear of radicals the equation
Vi@ +/i-F+/icy =0,
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and express the coefficients of the resulting equation in ¢ in terms of the coefficients
of the cubic of Ex. 1.

Ans. 302 (5~ 2) ¢~ pA + 4p’g —Bpr= 0.
15. If a, B, 7, 3 be the roots of the biquadratic of Ex. 9, prove
(a®+1)(B2+1)(? +1)(3*+ 1) = (1 —g+s)2 4+ (p—r)
Substitute in turn each of the roots of the equation 23+ 1 = 0 in the ideatity of
Art. 16, and multiply.

16. Prove the following relation between the roots and ocoefficients of the
general equation of the n** degree :—
@+ D(@t+1).c.. (@l + )=l -pr+pa~... 0+ (1—-pa+...)%
17. Find the numerical value of
( +2)(8 + 20 + @ +
where a, B, 7, 3 are the roots of the equation
28 — T2% + 822 - 5z + 10 = 0.

Substitute in turn for z each root of the equation z* + 2 =0, and multiply.

Amns. 166.
18. If a, B, 7, 3 be the roots of the equation

Gozt + 4412 + 6a32® + dax + 44 = 0,
prove

ag* (B + 7)(y + a)(a + B)(a + 3)(B + 3)(y + 3) = 16 {6a1a2a5 — aoas® — a3ay}

The symmetric function in question is equal to (u + »)(» + A)(A + ), or ZIAZur
—~ Apy, where A, u, » have the values of Ex. 17, Art. 27.
19. Calculate the value of the symmetric function %(a — B)* of the roots of the
biquadratic equation of Ex. 9.
Ans. 3pt — 16p%g + 204 + 4pr — 16s.
20. Show that when the biquadratic is written with binomial coefficients, as in

Ex. 18, the value of the symmetric function of the preceding example may be
expressed in the following form :—

a¢'% (a — B)t = 16 {48 (aoas ~ a1%)? — ac? (304 — 4mas + 3a3%)}.

21. The distances on a right line of two pairs of points from a fixed origin on
the line are the roots (a, 8) and (a’, 8°) of the two quadratic equations

ar?+ 2z +¢=0, 224+ 28z +¢ =0;

prove that when one pair of the points are the harmonic conjugates of the other
pair, the following relation exists :—

ad + a'e ~ 250 = 0.

22. The distances of three points 4, B, C on a right line from a fixed origin O
on the line are the roots of the equation

6’ + 8023+ Bz + d =03
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find the condition that one of the points 4, B, € should bisect the distance between
the other two.

Compare Ex. 15, Art. 27. Ans. a*d—3abe+ 283=0.

23. Retaining the notation of the preceding question, find the condition that the
four points 0, 4, B, C should form a harmonic division.
Ans. ad*— 3bed + 2¢2=0.

This can be derived from the result of Ex. 22 by changing the roots into their
reciprocals, or it can be easily calculated independently.

24. If the roots (a, B, 7, 3) of the equation
azt + 4523 + 6ex? + 4dz + e=0

be 80 related that a —3, B8 — 3, y— 3 are in harmonic progression, prove the relation
among the coefficients
ace+ 2bed ~ad~ e~ A= 0.

Compare Ex. 18, Art. 27.

26. Form the equation whose roots are

_Brtwyate’aB  Byt+elyatwaB
a+wf+aty ’ atoB+wy

where o* = 1, and g, 8, 7y are the roots of the cubio
az’ 4 8bs®+ Bezx +d4=0.

Ana. (ac— %) 2+ (ad —be) 2 + (8d - %) =0.
Compare Exs. 13 and 14, Art. 27.

26. Express
(287 ~ ya— aB) (2ya— aB—By) (2a8 — By — 7a)
as the sum of two cubes. y . . .
. + +o?aBpP+(By+ + waB)d.
Compare Ex. 5, Art. 26, me. (By+ayatotaSf +(By+o'ya
27. Express

(z+y+ )+ (24 0y + s + (8 + &'y + ws)?
in terms of 2* 4 y3+ 22 and zyz, where w®= 1.
28. If
(2 + 2 + 85— 32yz) (23 + 92+ £3~-32'y'#) = X3+ Y3+ 23 - 3X Y2,

find X, ¥, Zin terms of 2, ¢, 8; 2, ¢, 8%
Apply Example 4, Art. 26.

Ans. 3(2+y3+2) + 182ys.

Ans. X=zz'+yy' +2d, Y=zy'+ys'+er’, Z=25 +yz' +1sy.
29. Reeolve
(a+B+7)aBy—(By+vya+a8)
into three factors, each of the second degree in «, 8, 7.

Ans. (a* - Bv) (B*- —aB
Compare Ex. 18, Art. 24. ns. (a® = By) (B ya) (y*~ aB)
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80. Resolve into simple factors each of the following expressions : —
(1) (B=9)*(B+7-2a) + (y—a)* (y+a=2B) + («—B)* (a + B~29).
(2). (B=7(B+7~2aP + (y—a)(y+a—2B+ (a—B)(a+B-27)"
Ans. (1) (2a—B8-7)(2B—7—a)(2y—a—B)-
‘ (2)- -9 (B-7)(v—a)(a=B).
31. Find the condition that the cubie equation
P-psd+gs—r=0

should have a pair of roots of the form & + 4 ¥—1; and show how to determine
the roots in that case.

If the real root is 5, we easily find, by forming the sum of the squares of the
roots, p3 — 2¢ = 33. The required condition is

(- 29)(g* - 2pr) - =0,

32. Solve the equation
B—T8+20z-2%=0,

whose roots are of the form indicated in Ex. 31.
Ans. Roots 3,and 2 + 2V 1.

33. Find the conditions that the biquadratic equation
H—pPtgz?—rz+8=0

should have roots of the form a + ¢V —1, & + 5V —1. Here there must be two
conditions among the coefficients, as there are only two independent quantities

involved in the roots.
Ans. p3—2¢=0; r*—2¢s=0.
34. Solve the biquadratic

74 + 42° + 82% — 120z + 900 = 0,
whose roots are of the fon;x in Ex. 33.
Ans. 3+ 8V=1, -6F6V—1.
35. If a+ BY =1 be a root of the equation
P+ez+r=0,
prove that 2a will be a root of the equation
B +gr-r=0.
36. Find the condition that the cubic equation
Brptter+r=0
should have two roots «, 8 connected by the relation a8 + 1 = 0. )
Ans. 1+g+pr+r3=0.
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37. Find the condition that the biquadratic
BtpB e irr+e=0

should have two roots connected by the relation a8 + 1 = 0.
The condition arranged according to powers of s is

1+4g+pr+834+(pPP+pr—2¢9—1)s+(g—-1)32+ =0,
88. Find the value of X (a1 — a3)?asay .. . . as Of the roots of the equation
o4 pzrt+psrnd4 ...+ pa=0.

This is readily reducible to Ex. 13.
Ans. (1) {mipna—n'pa}.

39. If the roots of the equation
nin—1)

T2 Q2"+ ...+ an=0

@g2™ + nay 2™ +

_ be in arithmetical progression, show that they can be obtained from the expression

@ r 3_(a|‘— aya3)

e ;; n+1l
by giving to » all the values 1, 3,5, .... n—1, when % is even; and all the values
0,2,4,6....n—1, when n is odd.
4). Representing the differences of three quantities a, 8, ¥ by ai, 81, 71, &
follows :—
amB—7, Bimy—a TI1®ma—B;
prove the relations
a®+ B+ vi*=3a1Bim,
at+ B+t =4 {a? + B2+ M)},
a®+ 8%+ 1’ =4 {a1? + B2+ M3} a1 Bim.
These results can be derived by taking aj, 81, 71 to be roots of the equation
B +gz—ral

(where the second term is absent since the sum of the roots = 0), and calculating
the symmetrio functions Za;%, Za)¥, Za)® in terms of g and . The process can be
- extended to form Za$, Za;", &c. The sums of the successive powers are, therefore,
all capable of being expressed in terms of the product ai 8171 and the sum of squares
ai?+ 813+ n?; the former being equal to r, and the latterto —2 (Bi71 + y1a1 + a1 8y),
or —2¢. These sums can be calculated readily as follows :—By means of 23=r — gz,
and the equations derived from this by squaring, cubing, &o., and multiplying by
x or 23, any power of z, say z?, can be brought by successive reductions to the form
A+ Bz+ C2? where 4, B, C are functions of ¢ and . Substituting ai, 81, 7, and
adding, we find Za;» =34 —2¢C. The student can take as an exercise to prove in
this way 26,7 = 7¢%r, Za)''=11gr (¢*-13).



CHAPTER 1IV.

TRANSFORMATION OF EQUATIONS.

29. Transformation of Equations.—We can in many
instances, without knowing the values of the roots of an equa-
tion in terms of the ooefficients, transform it by elementary
substitutions, or by the aid of the symmetrio functions of the
roots, into another equation whose roots shall have certain
assigned relations to the roots of the proposed. A. transforma-
tion of this nature often facilitates the discussion of the equation.
We proceed to explain the most important elementary transfor-
mations of equations.

30. Roots with Signs ehanged.—To transform an equa-
tion into another whose roots shall be equal to the roots of the
given equation with contrary signs, let ai, as, as, . . . as be the
roots of the equation

PHPT P L P+ pa=0.
We have then the identity
SAp AP . A PaaZt Pam(T—a) (Z—ar) . .. (Z—an;
changing z into — y, we have, whether n be even or odd,
P -py oy - 2Py Fpam(yta) (Y ar) . . (Y +aa)

The polynomial in y equated to zero is, therefore, an equation
whose roots are —a;, —as, . . . —as; and to effect the required
transformation we have only to change the signs of every allernate
term of the given equation beginning with the second.

ExaurrEs.
1. Find the equation whose roots are the roots of
2B+728 +722~-822+2+1=0
with their signs changed. Ans. 22 —T2A+ 7234823 +2-1=0.
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2. Change the signs of the roots of the equation
21+325+23-2+72+2=0.
[Supply the missing terms with sero coefficients.]
Ans. ¥ +325 4304+ 24+ 75-2=0.

31. To Multiply the Roots by a Given Quantity.—
To transform an equation whose roots are a,, as, ... as into an-
other whose roots are ma,, mas, . . . ma,, we change 2 into %‘ in
the identity of the preceding Article. Multiplying by m", we
have

P HmpY T MY+ M Dy + M,
= (y - may)(y — may). . . . (y— ma,).
Henoe, to multiply the roots of an equation by a given quan-
tity m, we have only to multiply the successive coefficients, beginning
wilh the second, by m, m*, m®, . . . m™.

The present transformation is useful for the purpose of re-
moving the eoefficient of the first term of an equation when it
it is not unity ; and generally for removing fractional eoefficients
from an equation. If there be a coefficient a4, of the first term,
we form the equation whose roots are a,ai, @oas, . . . Gay; the
transformed equation will be divisible by a4, and after such
division the ooefficient of #* will be unity.

‘When there are fractional coefficients, we can get rid of them
by multiplying the roots by a quantity m which is the least
common multiple of all the denominators of the fractions. In
many cases multiplication by a quantity less than the least
ocommon multiple will be sufficient for this purpose, as will
appear in the following examples : —

ExaurLes.
1. Change the equation

3 -4 +42°-2241=0
into another the coeflicient of whose highest term will be unity.
‘We multiply the roots by 3. Ans. z'-4.3+1222- 182+ 27=0.
2. Remove the fractional coefficients from the equation
8- %:’+§:—I=O.
Multiply the roots by 6. Ans. 23— 374 242 -216=0.
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3. Remove the fractional coeflicients from the equation

] 7 1
#o3f-mttm
By noting the factors which occur in the denominators of thess fractions, we
obeerve that a number much smaller than the least common multiple will suffice to
remove the fractions. If the required multiplier be m, we write the transformed
equation thus:—

=
8.8
it is evident that if s be taken = 6, each coefficient will become integral ; hence we
have only to multiply the roots by 6.

3 7
l‘-n;c‘—.‘v—;z‘k

Ans. $3-15s-142+2=0.
4. Remove the fractional ecoefficients from the equation
8 77

The student must be careful in examples of this kind to supply the missing
terms with zero coefficients. The required multiplier is 10.
_ | dAws. 244302+ 6205+ 770 =0.
5. Remove the fractional coefficients from the equation

[] 5 13
L LS TRt T A

Ans. gt — 262° + 8752° — 11700 = 0.
32. Reciprocal Roots and Reciprocal Equations.—
To transform an equation into one whose roots are the reciprocals
of the roots of the proposed equation, we change z into 1 in the

identity of Art. 30. This substitution gives, after certain easy
reductions,

R e

or

e

hence, if in the given equation we replace = by !1/, and multiply

by y", the resulting polynomial in y equated to zero will have
for roots the reciprocals of ay, aj, . . . . au.
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There is a certain class of equations which remain unaltered
when « is changed into its reciprocal. These are called reciprocal
equations. The conditions which must obtain among the coef-
ficients of an equation in order that it should be one of this class
are, by what has been just proved, plainly the following :—

P Dn-s

—— =Dy —— =Py &e-’ &' Dn1y — = Da-

y 2 Pn Pn DPn
The 1ast of these conditions gives p,*=1, or p,=+1. Redi-
procal equations are divided into two classes, according as p, is
equal to + 1, or to - 1.
(1). In the first case we have the relations

Pr1=D1y Pua=Pry oo « P1=Pn1;

which give rise to the first class of reciprocal equations, in which
the coefficients of the corresponding terms taken from the beginning
and end are equal tn magnitude and have the same signs.

(2). In the second case, when p, =~ 1, we have

Par=—Pi Paa=—Ps &0y . ... P1=~Ppp;

giving rise to the sccond class of reciprocal equations, in which cor-
responding terms counting from the beginning and end are equal in
magnitude but different in sign. It is to be observed that in this
case when the degree of the equation is even, say i = 2m, one of
the conditions becomes pm =~ pm, Or pm =0 ; so that in reciprocal
equations of the second class, whose degree is even, the middle
term is absent.

If a be a root of a reciprocal equation,-‘l; must also be a root,

- for it is & root of the transformed equation, and the transformed
equation is identical with the proposed; hence the roots of a

reciprocal equation occur in pairs, a, :—; B, %; &o. When the

degree is odd there must be a root which is its own reciprocal ;
and it is in fact obvious from the form of the equation that -1,
or + 1 is then a root, according as the equation is of the first or
second of the above classes. In either case we can divide off by
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the known factor (z+ 1 or z— 1), and what is left is a reciprocal
equation of even degree and of the first class. In equations of
the second class of even degree 2* — 1 is a factor, since the equa-
tion may be written in the form
-1+pzx(@@*-1)+...=0.

By dividing by 2* - 1, this also is reducible to a reciprocal
equation of the first class of even degree. Henoe all reciprocal
equations may be reduced to tAose of the first class whose degree is
even, and this may consequently be regarded as the standard form
of reciprocal equations.

Exaxrrzs.
1. Find the equation whose roots are the reciprocals of the roots of
A3+ +6s-2m=0.
A, 2 -5P T Iy —1=0.
2. Reduce to a reciprocal equation of even degree and of first class

b 22 22 b
‘.+El‘—?2‘+72’—68—1-0.
[ 19 [ ]
Ana. ¢‘+-6-=’—?=’+3¢+l-0.

33. To Increase or Diminish the Roots by a Given
Quantity.—To effect this transformation we change the vari-
able in the polynomial f (z) by the substitution 2 =y + A; the
resulting equation in y will have roots each less or greater by 4
than the given equation in 2, according as 4 is positive or nega-
tive. The resulting equation is (see Art. 6)

A Il ()
SW+f By+ 75 ¥ +75 g8+ =0
There is a mode of formation of this equation which for
practical purposes is much more convenient than the direet cal-
culation of the derived functions, and the substitution in them
of the given quantity 5. This we proceed to explain. Let the

proposed equation be
Az + a2 +ax™* +... v+, z+a,=0;
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and suppose the transformed polynomial in y to be
Ayt + Ay + Ayt +. .+ Ay + Ao
gince y = 2 — A, this is equivalent to
As(@z-h)+ A, (z=h)"+...+ Ay, (2-K) + 4,,
which must be identical with the given polynomial. We conclude
that if the given polynomial be divided by « - 4, the remainder
is 4., and the quotient
Ag(ﬁ—k)”—l"’A‘(z—h)H"'. .o +A,._,(z—h) +A.|,_1;

if this again be divided by « ~ A, the remainder is 4,.,, and the
quotient

do(z-h)"+ A, (z=-h)"+. ..+ A,

Prooeeding in this way, we are able by a repetition of arith-
metical operations, of the kind explained in Art. 8, to calculate
in sucoession the several coefficients 4,, 4, ,, &o., of the trans-
formed equation ; the last, 4,, being equal to . It will appear
in a subsequent chapter that the best practical method of solv-

ing numerical equations is only an extension of the process
employed in the following examples.

ExaumpLEs,

1. Find the equation whose roots are the roots of

A—bS+722 17z 4 11 =0, Ao
sach diminished by 4.
The calculation is best exhibited as follows :—
A 1 -6 7 - 17 11
4 -4 12 - 20
-1 3 -6 | -9
4 12 60
(]
3 16 66
4 28
7 43
4
1
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Here the first division of the given polynomial by £ — 4 gives the remainder
— 9 (= Ay), and the quotient 23 — 22 + 3z — 5 (cf. Art. 8). Dividing this again by
£ — 4, we get the remainder 66 (= 43), and the quotient s* + 32 + 16. Dividing
again, we get the remainder 43 (= 43), and quotient £+ 7; and dividing this we get
A,=11, and 4o =1; hence the required transformed equation is

¥+ 11y + 43y* 4+ 66y - 9= 0.
2. Find the equation whose roots are the roots of
S4+423 -84 11=0,

each diminished by 8.
1 0 4 -1 0 n
3 9 39 114 42
3 18 38 114 3.3
3 18 93 393
6 31 131 ' 507
3 27 17e |
9 58 | 308
3 36 |
12 o4
3
16

The transformed equation is, therefore,
yo + 16y* + 9443 + 305y + 507y + 853 = 0.
3. Find the equation whose roots are the roots of

43‘—25’-}-15—3::0.
each increased by 2.

The multiplier in this operation is, of course, — 2.
Ans. 4y® — 40y* + 168y° — 308y + 303y — 129 = 0.
4. Increase by 7 the roots of the equation
8t 4+ 128~ 1622+ z~-2=0.
Ans. 3y —TTy> + 720y* — 2876y + 4068 = 0.
6. Diminish by 23 the roots of the equation
62— 1322 - 1224+ 7=0.

The operation may be conveniently performed by first diminishing the roots by
20, and then diminishing the roots of the transformed equation again by 3. The
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calculation may be exhibited in two stages, as follows, the broken lines marking
the conclusion of each stage :—

] - 13 - 12 7
100 1740 34560
87 1728 34567
100 3740 19122
187 5468 53689
100 906
287 6374
16 961
802 7326
16
317
16
333

Ans. 5y*+ 332y 4 7325y + 63689 =0.

34. Removal of Terms.—One of the chief uses of the
transformation of the preceding article is to remove a certain
specified term from an equation. Such a step often facilitates
its solution. Writing the transformed equation in descending
powens of y, we have
n(n-1)

1.2
If % be such as to satisfy the equation nash + a, =0, the trans-

formed equation will want the second term. If 4 be either of
the values which satisfy the equation

ay” + (nah + a,) y** + { ali*+ (n-1)ah + a,; y*2+...=0.

nin -

1.2

the transformed equation will want the third term ; the removal
of the fourth term will require the solution of a cubic for 4 ; and
soon. To remove the last term we must solve the equation
f (k) = 0, which is the original equation itself.

F2

I)M'+(n—l)a.h +a, =0,
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ExanpLes.
1. Transform the equation
-6+ 42-T=0
into one which shall want the second term.
naoh + a1 =0 gives A= 2,
Diminish the roots by 2. Ans. y*~8y —16=0.

2. Transform the equation
2448234+ 2-56=0

into one which shall want the second term.

Increase the roots by 2. Ans. gt - 24y + 66y - 65 =0.
3. Transform the equation
74— 42— 182 - 82+ 2=0

into one which shall want the third term.
The quadratic for A is
6h?—12A-18 = 0, giving A=3, A=—1.,

Thus there are two ways of effecting the transformation.
Diminishing the roots by 3, we obtain

(1) '+ 8y3—111y—196=0.
Increasing the roots by 1, we obtain

(2) 9*-8+17y—8=0.

35. Binomial Coeflicients.—In many algebraical pro-
cesses it is found convenient to write the polynomial f(z) in the
following form :—
n(n-1)

1.2
in which each term is affected, in addition to the literal coef-
ficient, with the numerical coefficient of the corresponding term
in the expansion of (z + 1)* by the binomial theorem. The
student will find examples of equations written in this way on
referring to Article 27, Examples 13 and 16. The form is one
to which any given polynomial can be at once reduced.

‘We now adopt the following notation :—

n(n-1)
1.2
thus using U with the suffix n to represent the polynomial of

the n** degree written with binomial coefficients

a,t""+...+”(r—21)a,_,z‘+na,..,z+ dy,

a” + na ! +

Up= a2 + na ™ + L A [ Y R
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‘We have, therefore, changing n into n - 1, &o.,
Upr=a2*' + (n l)a,x""+. eot (B =1)ansZ + agy,

U, -aw’+3a,z"+3a,'c+a,,
U, =max®+2aa+as,
U, =az+a,

- U, =a.

One advantage of the binomial form is, that the derived
functions can be immediately written down. The first derived
function of U, is, plainly,

n {aoz"" +(n-1)az** + Wm‘*ﬂ . +a..1} ;
or nU,.,; so that the first derived function of a polynomial re-
presented in this way can be formed by applying to the suffix
of U the rule given in Art. 6 with respect to the exponent of the
variable. Thus, for example, the first derived of U, is formed
by multiplying the function by 4, and diminishing the suffix by
unity ; it is, therefore, 4U,, as the student can easily verify.

‘We proceed now to prove that the substitution of y + % for
z transforms the polynomial U,, or

n(n-1)

1
az® + na 2™ + 1.2

A"+ oo + N 1T + Gy,
into

Ay +nAdy + ( )A,y"" A ndey+Ads,

where
Aoy A,y Ay ... Apyy Ay

are the functions which result by substituting 4 for # in
Uy Uy Usy . . . Uy, Uy
ie. Ay=an, Ai=ah+a, Ay=ah®+2a,h+a, &o.
Representing the derived functions of f(4) by suffixes, as
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explained in Art. 6, we may write the result of the transfor-
mation, viz. f(y + A), in the following form :—

13 u—lh nh -
f(")“f‘(")”*jl.@”'*"'*1.;.?»)-1”*’*1./;.(..).””"‘

7(h) is the result of substituting 4 for z in U, ; it is, therefore,
A, ; its first derived fi(4) is, by the above rule, n4,_,; the first
derived of this again is n(n — 1) 4,,; and so on. Making these
substitutions, we have the result above stated, which enables us
to write down without any calculation the transformed equation.

Exaxrrzes.

1. Find the result of substituting y + 4 for # in the polynomial
a0z + 3412% + 80az + as.
Ans. aoy® + 3 (aoh + 1) y? + 3 (aoh? + 2617 + 63) y + aoh® + 3a1A% + 3ash + as.

The student will find it a useful exercise to verify this result by the method of
calculation explained in Art. 33, which may often be employed with advantage ix
the case of algebraical as well as numerical examples,

2. Remove the second term from the equation

ao2% + 3a12% + 3a22 + a3 = 0.
‘We must diminish the roots by a quantity 4 obtained from the equation

. - a
¢°b+a,=0, ie. k= .CTl.

Substituting this value of A in A,, and Aj, the resulting equation in y is

P+ 3 (aoa: - a?) v+ adlay — 3“061:3 +2a8 _
0 ag

0.

3. Find the condition that the second and third terms of the equation U, = 0
should be capable of being removed by the same substitution.

Here A4, and 43 must vanish for the same value of A; and eliminating A
between them we find the required condition.

Ans. aong—ay’= 0.
4. Solve the equation
2346224 122-19=0

by removing its second term.

The third term is removed by the same substitution, which gives

yr-27=0.
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The required roots are obtained by subtracting 2 from each root of the latter
equation.

6. Find the condition that the second and fourth terms of the equation U, =0
should be capable of being removed by the same transformation.

Here the coeficients .4; and .43 must vanish for the same value of 4 ; eliminat-
ing A between the equations :

Goh+a1=0, ah®+3aA%+3ah+ay=0,
we obtain the required condition
ao’as — 3003103 + 2a41* = 0.

N.B.—When this condition holds among the coefficients of & biquadratic equa-
tion its solution is reducible to that of a quadratic; for when the second term is
removed the resulting equation is a quadratic for y?; and from the values of y
thoee of 2 can be obtained.

6. Solve the equation

244+ 1624 71222 + 642~ 129=0
by removing its second term.
The equation in y is
-2 —-1=0.
7. Bolve in the same manner the equation
74+ 202° + 14322 + 430z + 462 = 0.
Ans. The roots aro ~7, —3, —6 £ V3.

8. Find the condition that the same transformation should remove the second
and fifth terms of the equation U, = 0.

Ans. ag®aq— 4ap*a1as + 6aoa®as — 3ay4 = 0.

36. The Cublic.—On account of their peculiar interest, we
shall consider in this and the next following Articles the equa~
tions of the third and fourth degrees, in connexion with the
transformation of the preceding article. When y + 4 is sub-
stituted for z in the equation

a® + 3a,2* + 3aw + 4y = 0, (¢))
ay*+34.° + 34,y + 4,=0,

where 4,, 4,, A, have the values of Art. 35.
If in the transformed equation the second term be absent,

we obtain

A4,=0, or lz-—-ﬂ-
ay
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Substituting this value for 4 in 4, and 4,, we find, as in Ex. 2,
Art. 35,

Gods = aty — 6y  @"A; = a’ay — 3am:as + 2a.*;
henoe the transformed cubic, wanting the second term, is

1
v+ %(ana,-a,')y+ pr (@0'as — 3a,a:a5 + 2a,%) = 0.

The functions of the coefficients here involved are of such
importance in the theory of algebraic equations, that it is custo-
mary to represent them by single letters. We accordingly adopt
the notation

aa,—-a’'= H, ala,— 3mma,+2a=G;
and write the transformed equation in the form
3H @

y‘ + E y+ a—; = 0. (2)
0
If the roots of this equation be multiplied by 4, it becomes
£+3Hs+G=0: 3)

a form which will be found convenient in the subsequent dis-
cussion of the cubic. The variable, s, which ocours in the first -
member of this equation, is equal to awy or a,z + a, ; the original
cubic multiplied by a;* being in fact identical with

(az + @) + 3H (acz+ a1) + G,

as the student can easily verify.
If the roots of the original equation be a, (3, v, those of the
transformed equation (2) will be

& a, a,
a+ — 4 — 4 —
. ] B s Y a.s
or, since
3a.
a+ﬁ+'y=——,

they may be written as follows :—

1@a-B-7), $@B-7-4a) IRy-a-P).
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We can write down immediately by the aid of the trans-
formed equation the values of the symmetric functions

2 (2a-B-7)2B-7-a), (2a-L-7)(2B-y-a)2y-a-p)
of the roots of the original cubic. The latter will be found to
agree with the value already found in Ex. 15, Art. 27.

‘We may here make with regard to the general equation an
important observation : that any symmetric function of the roots
a, 3, v, 8, &o., which is a function of their differences only, can
be expressed by the functions of the coefficients which ocour in
the transformed equation wanting the second term. This is
obvious, sinoe the difference of any two roots o, 3’ of the
transformed equation is equal to the difference of the two corre-
sponding roots’a, 3 of the original equation; and any symmetrie
~ function of the roots o', 3, v', &', &o., can be expressed in terms

of the coefficients of the transformed equation. For example, in

the case of the cubic, all symmetric functions of the roots which
contain the differences only can be expressed as functions of
an, H, and G. Illustrations of this principle will be found
" among the examples of Art. 27.
37. The Biquadratic.—The transformed equation, want-
- ing the second term, is in this case

ay' + 64,y° + 44y + A,=0,
where A4, and 4, have the same values as in the preceding
article ; and where 4, is given by the equation
a’A, = ala, - 4a’a, a; + 6aa,’s; — 3a,'s
The transformed equation is, therefore,

6
v+ P Hy* + a_t‘ Gy+ al‘(ao’m - 4asa,ay + 6aya’a; - 3a,*) = 0.
0

‘We might if we pleased represent the absolute term of this
equation by a symbol like H and G, and have thus three
functions of the coefficients, in terms of which all symmetric
functions of the differences of the roots of the biquadratic could
be expressed. It is more convenient, however, to regard this
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term as composed of H and another function of the coefficients
determined in the following manner :—We have plainly the
identity
a’a,— 4a.'a,a, + 6a.1,%a; — 38, maci(aa, - 44,65 + 3a,*) - 3 (a0 ~ a,*)*.
. This involves a,, H, and another function of the coefficients,
viz.
o, — 40,0, + 35",

which is of great importance in the theory of the biquadratic.
This function is represented by the letter Z, giving

ala, - 4aa,a; + 6aa’as — 3a,t =l - S H?.

The transformed equation may now be written

6H , 4G a’I-3H
VSV Sy =0. ¢))
‘We can multiply the roots of this equation, as in the case of

the cubio of Art. 36, by @, ; and obtain
s+ 6Hz*+4Gs + a’l -3H*=0. (2

This form will be found convenient in the treatment of the
algebraical solution of the biquadratic. The variable is the
same a8 in the case of the cubie, viz. aw + a,; the original
quartic multiplied by a,® being in fact identical with

(asr + @)+ 6 H (axx + a,)* + 4G (acx + @) + a* T~ SH*.

Any symmetric function of the roots of the original biqua-
dratio equation which contains their differences only can there-
fore be expressed by a,, H, G, and 1.

If the roots of the original equation be a, 3, v, 3, those of
the transformed (1) will be, as is easily seen,

$(Ba-B-v-3), 1 (3B-7-3-a), 1 (3y-3-a-P), {(38-a-B-7).

The sum of these = 0; the sum of their products in pairs

=67-I,{; the sum of their produets in threes = _43(; ; and for their

o Qo
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continued product we have the equation
a'Ba-B-y-90)(3B-7-8-a)(3y-8-a-P) (38-a-P~7)
= 256 (a,' I - 3H?).

There is another function of the coefficients to which we
wish now to call attention, as it will be found to be of great im-
portance in the subsequent discussion of the biquadratic. It is
the function arrived at in Ex. 18, Art. 27, viz.

Aoty + 200,05 — a0’ - @,’a, — a’.

This is denoted by the letter J. The example referred to
shows that it is a function of the differences of the roots. It
must, therefore, be capable of being expressed in terms of a,,
H, G,and 1. We have, in fact, the identity

a’d = a HI - G* - 413,
which the student can easily verify.

Or this relation can be derived as follows :—Whenever a
function of the coefficients a,, a;, a,, &ec., is the expression of a
function of the differences of the roots, it must be unaltered by
the transformation which removes the second term of the equa-
tion ; hence its value is unaltered when we change a4, into zero,
a, into A4,, a, into 4;, &. Thus

Ay + 20,005 — A’ — a,%a, ~ @} = @Ay 4 - a4t - A
substituting for 4,, 4,, A, their values in terms of H, G, I, we
easily obtain the above identity, which will usually be written
in the form

G + 4 = a (HI - a,J).

38. Momographic Transformation.—The transforma-
tion of a polynomial considered in Art. 33 is a particular case
of the following, in which « is connected with the new variable

y by the equation
_ Az + u
Y=Yz + s
IfA=1,u=-AX=0,u =1, we have y =z — &, as in Art. 33.
Bolving for « in terms of y, we have
p—uy
ANy-X

X =
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This value can be substituted for z in the given equation,
and the resulting equation of the n** degree in y obtained.

Let a, 3, v, &, &c., be the roots of the original equation,
and o, 3, ¥, &, &c., the corresponding roots of the transformed
equation. From the equations

. la + p XB + p
¢ =Naru” g- » &o,
we easily derive the relation

' _ @ (k“ X \ (“ - p)

C B W) OB )
with corresponding relations for the differences of any other
pair of roots. If we take any four roots, and the four corre-
sponding roots, we obtain the equation

@-BIO'-8) _(a-B)ly-9
(@-7)B-8) (a-7)B-9

Thus, if the roots of the proposed equation represent the
distances of a number of points on a right line from a fixed origin
on the line, the roots of the transformed equation will represent
the distances of a corresponding system of points, so related to
the former that the anharmonic ratio of any four of one system
is the same as that of their four conjugates in the other system.
It is in consequence of this property that the transformation is
called homographic.

It is important to observe that the transformation here con-
sidered, in which the variables z and y are connected by a relation
of the form

Azy+ Bz + Cy + D =0,

is the most general transformation in which to one value of either
variable corresponds one, and only one, value of the other.

39. Transformation by Symmetric Funetions.—Sup-
pose it is required to transform an equation into another whose
roots shall be given rational functions of the roots of the pro-
posed. Let the given function be ¢ (a,3, ¥ . - .), where ¢ may
involve all the roots, or any number of them. We form all pos-
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sible combinations ¢ (af3y), ¢ (a[33), &o., of the roots of this type,
and write down the transformed equation as follows :—

{y—¢(aBy.. )Nly-9¢(@ps..)}...=0.
‘When this product is expanded, the sucocessive coefficients of
y will be symmetrio functions of the roots a, 3, v, &o., of the
given equation ; and may therefore be expressed in terms of the
ooefficients of that equation.

ExauMpLes.

1. The roots of
BrpPter+r=0

are a, 8, 7; find the equation whose roots are a3, 8%, 7.
Suppose the transformed equation to be

v+ P2+ Q+R=0;
~P=dd+ B+ 9% Q=3a’p% - R=a3fl?; )
and we have to form the symmetric functions Za?, Za?8?, a?B%y?, of the given equa-
tion. We easily obtain
Zal=p* - 29, Za'Bi=¢ - 2pr, a*flyi=r1;
the transformed equation is, therefore,
- (-2 +(¢* - 2pr)y - =0.
2. Find in the same case the equation whose roots are a®, 8%, 3.
Ans. P+ (p®—8pg +3r)y* + (¢ — 3pgr + 3r¥)y + P =0.
3. If q, B, v, 3 be the roots of
2 +p+gdtrz+a=0,

find the equation whose roots are a?, 83, 72, 3%
Let the transformed equation be

¥+ PP+ QP+Ry+8=0,
- P=3a), Q=3 —R=3a8Y, §=alfhW%
Compare Exs. 8, 17, Art. 27.
Ans. yr - (P*—29) 3+ (¢ — 207 + 28) y3 — (r* — 2¢s) y + 82 =0.
4. If a, B, 7, 3 be the roots of :
aoz* + 44123 + 6a32% 4 dayz + ag = 0;

then

then

find the equation whose roots are A, u, »; viz.,

By+ad, ya+B3, aB+73.
See Ex. 17, Art. 27.

6 4 8
Ans. y3 — f v+ e (4a185 — agaq) y_a_o‘(%a" ~ 3asazaq +2a%a;) = 0.
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5. Show that the transformed equation, when the roots of the resulting cubic of
Ex. 4 are multiplied by a0, and the second term of the equation then removed, is

8=Iz+2/=0.

40. Formation of the Equation whose Roots are any
Powers of the Roots of the Proposed.—The method of
effecting this transformation by symmetric functions, as ex-
plained in the preceding article, is often laborious. A much
simpler process, involving multiplication only, can be employed.
1t depends on a knowledge of the solution of the binomial equa-
tion 2* = 1 = 0. This form of equation will be discussed in the
next chapter. The general process will be sufficiently obvious
to the student from the application to the equations of the
2nd and 3rd degrees which will be found among the following
examples :—

ExaMpLES.
1. Form the equation whose roots are the squares of the roots of
P PT Pt L 4 Pu1T 4 pa=0.
To effect this transformation, we have the identity

mipa 'ttt ottt (F—a)(z—a) ... (2 —an);
changing # into — #, we derive, as in Art. 30,

P2 b Pt -t P TP (Tt a) (2t ag) ... (B an);
multiplying, we have
(Z*+ P22+ puami+. . ) — (e paad 4L L )Be (2 - an?) (B2 —a2?) .. . (22 - @ud);
it is evident that the first member of this identity contains, when expanded, only
even powers of z; we may then replace 22 by y, and obtain finally

Y+ 2o-p )y (2221 ps 20y L L m (Y — @) (Y- @) . . (Y —aa?)-

The first member of this equated to zero is the required transformed equation.
N.B.—This transformation will often enable us to determine a limit to the num-
ber of real roots of the proposed equation. For, the square of a real root must be

positive; and therefore the original equation cannot have more real roots than the
transformed has positive roots.

2. Find the equation whose roots are the squares of the roots of
£-7+8-6=0.
Ans. ¢ + 16y* + 62y — 36=0.

Tho latter equation, by Descartes’ rule of signs, cannot have more than one
positive root ; hence the former must have a pair of imsginary roots.
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3. Find the equation whoso roots are the squares of tho roots of
£+2+22+2:+3=0.
Ans. y5+ 28 + by + 33~ 2y - 9=0.
It follows from Descartes’ rule of signs that the original equation must have
four imaginary roots.
4. Verify by the method of Ex. 1 tho Examples 1 and 3 of Art. 39.
8. Form the equation whose roots are the cubes of the roots of

P+ Pl 4 Pt L+ Pua® + Pa=0.

It will be observed that in Ex. 1 the process consists in multiplying together
f{z), the given polynomial, and f(—#) : the variables involved in these being those
which are obtained by multiplying # by the two roots of the equation 23— 1 =0.
In the present case we must multiply together f(z), f(wz), f(w?z): the variables
involved being obtained by multiplying z by the roots of the equation 23—~ 1 = 0.
The transformation may be conveniently represented as follows :—

‘Write the polynomial f(z) in the form

(Patpast®+...)+2(Pa1 +Pa-a2®+ .. .) 4+ 83 (Pa3+ Pu-s2?+...),
which wo represent, for brevity, by

P+2Q+ 2R,
where P, Q, and R are all functions of «°.
‘We have then
P+2Q+2Ra(z—ai)(z-as) . ... (2 — an). (1Y)
Changing, in this identity, # into wz and w3z successively, we obtain
P+ wzQ + 0®2'R = (wz - a1)(wz — a3) . . . (0% — aa), (2)
P+ o*2Q + w2?R = (07— a1) (0?2 —a3) . . . (92 — au), (3)

since P, Q, and R, being functions of 23, are unaltered.
Multiplying together both members of (1), (2), (3), and attending to the results
of Art. 26, we obtain
P+ 2@+ 2R - 32°PQR = (2* - a3 (2 — a3%) . . . (2° — aul).

The first member of this identity contains z in powers which are multiples of 3
only. We can, therefore, substitute y for 2® and obtain the required transformed
equation.

6. Find the equation whose roots are the cubes of the roots of

-5 4+208%+32+1=0.
Ans. ¢4+ 1493+ 60+ 6y + 1 = 0,

7. Verify by the method of Ex. 6§ the result of Ex. 2 of Art. 30.

8. Form the equation whose roots are the cubes of the roots of

ax’4 3522+ 3ex +d=0.
Ans. a’y® + 3(a'd + 95 — 9abe)y? + 8(ad? + 9¢® — 9bed)y + d3 = 0.
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4]1. Transformation in General.—In the general prob-
lem of transformation we have to form a new equation in g,
whose roots are connected by a given relation ¢ (z, y) = 0 with
the roots of the proposed equation f(z) = 0. The transformed
equation will then be obtained by substituting in the given
equation the value of zin terms of y derived from the given
relation ¢ (2, y) = 0; or, in other words, by eliminating z
between the two equations f(z) =0, and ¢ (2, y) =0. For
example, suppose it were required to form the equation whose
roots are the sums of every two of the roots (a, 3, y) of the

cubic
B -pr+qr-r=0.
‘We have here
y=ﬁ+1=a+ﬁ+y-a=p—a.

The equation ¢ (z, ¥) =0 is in this case y = p — z; for when «
takes the value a, y takes one of the proposed values; and when
z takes the values (3 and vy, y takes the other proposed values.
The transformed equation is therefore obtained by substituting
p —y for z in the given equation.

ExampLes.

1. If a, B, 7 be the roots of the cubic
B-pr2+gz-r=0,
form the equation whose roots are

1 1 1
~v: Brty, vetp 13+_;'

Here
afy+l 1l+r
a a ’

y= B'rfi =
and the given relation is zy = 1 + r; the transformed equation is then obtained by
substituting };—’ for zin f(z) =0.
Ans. rp - (1 + )2 +p(1+ 91— (1 +7)3=0.
3. Form, for the same cubic, the equation whose roots are
aB+ay, aB+By, By+ay.

Substitute —— for z. Ans. P—2983+ (pr+qNy+13-per=0
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'« Form, for the same cubic, the equation whose roots are
a B Y .
B+y-d v+a-p a+8-7

Substitate ~2— for z.
1+2y

Ans. (p3—4pg + 8r)y’ + (P2~ 4pg + 12r)y* + (6r —pg)y +r=0.
4. If a, B, 7 be the roots of the cubic
azd 4+ 3522+ 3ez + d =0,
prove that the equation in ¥ whose roots are

By-ad ya— B a8 -
B+y-2 y+a-28 a+B-2y

is obtained by the homographic transformation
azy + b(z +y) +¢=0.

42. Equation of Squared Differences of a Cuble.—
We shall now apply the transformation explained in the preced-
ing article to an important problem, viz. the formation of the
equation whose roots are the squares of the differences of every
two of the roots of a given cubic. We shall do this in the first
instance for the cubie

2+qz+r=0, 1)

in which the second term is absent, and to which the general
equation is readily reducible. Let the roots be a, 3, y. We
have to form the equation in y whose roots are

B-7% (y=a) (a-B)"
We may here observe that the method of Art. 39 can be
applied to the solution of the general problem, viz. the for-
mation of the equation whose roots are the squares of the

differences of every two of the roots of a given equation; for
when the product

- (@m-a)}{y - (m-a)}{y-(m-a)'}....{y-(e:-a)}...

is formed, the coefficients of the successive powers of y will be

symmetric functions of ai, a, as, a,, &c., and may, therefore, be

expressed in terms of the coefficients of the given equation. In
G
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the present instance, however, the method of Art. 41 leads more
readily to the required transformed equation. This equation
may be called for brevity the *equation of squared differences”
of the proposed equation. Assuming y equal to any one of the
roots of the transformed equation, e.g. (3 — y)? we have

y-(ﬁ-'r)’=a’+ﬁ’+1’-a"-2"f7;

also
@+ B+y'==-2¢, efly=-r
The equation ¢ (z, y) = 0 of Art. 41 becomes, therefore,

2r
y=-2-2"+—,

or
2?4+ (y+29)z-2r=0;

subtracting from this the proposed equation, we get
3r
(y+¢q)z-3r=0, or x=m,
hence the transformed equation in y is '
¥+ 6gy2+ 99y + 49> + 27 = 0. {?)

If it be proposed to form the equation whose roots are the
squares of the differences of the roots (a, (3, y) of the cubic

a2 + 3a,7* + 3ax + a5 = 0, 3)
we first remove the second term ; the resulting equation is

SH @
v+ aoz.’/"'a?:o;

and the required equation is the same as the equation of squared
differences of this latter, since the difference of any two roots
is unaltered by removing the second term. We can therefore
write down the required equation by putting

SH G

q a',: ’ ao’
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in the above. The result is

PRI B PR
ay Qo )

which has for roots
B-77 (v—a?) (@a-p)"

The equation (4) can be written in a form free from fractions
by multiplying the roots by a,". It becomes then

2+ 18Ha* + 81H% + 27(G* + 4H?®) = 0, ()
whose roots are
a'(B-7)% a'(y-a), a'(a-P)
We can write down from this an important function of the

roots of the oubioe (3), viz. the product of the squares of the diffe-
rences, in terms of the coefficients :—

af(B-v) (y—a)(a-P)'=-27 (G +4H*).  (6)

It is evident from the identity of Art. 37 that G* + 4H?
contains a,® as a factor. We have in fact

G? + 411" = a{aa;® — 6am,asa; + 4a.a,® + 4ay%ay — 3a,a?).

The expression in brackets is called the discriminant of the
cubic, and is represented by A; giving the identities

G +4H*= a’A, HI - ayJ=A.

ExauMpLEs.

1. Form the equation of squared differences of the cubic
2-T72+6=0.
Ans. 23— 4223 + 441z — 400 = 0.
2. Form the equation of squared differences of
P +622+72+2=0.

First remove the second term.
Ans. 28—~ 302 + 225z — 68 = 0.

8. Form the equation of squared differences of

2 +6224+92+4=0.
Ans. 23— 1822 + 812 = 0.

4. What conclusion with respect to the roots of the given cubic can be drawn
from the form of the resulting equation in the last example ?

G2
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43. Criterion ofthe Nature ofthe Roots of a Cublc.—
We can from the form of the equation of differences obtained
in Art. 42 derive criteria, in terms of the coefficients, of the
nature of the roots of the algebraical cubic. For, when the
equation (5) of Art. 42 has a negative root, the cubic (3) must
have a pair of imaginary roots, in order that the square of their
difference should be negative; and when (5) has no negative
root, the cubic (3) has all its roots real, since a pair of imagi-
nary roots of (3) would give rise to a negative root of (5).

In what follows it is assumed that the coefficients of the
equation are real quantities. Four cases may be distinguished :—

(1). When GF + 4H?® 18 negative, the roots of the cubic are all
real.—For, to make this negative H must be negative (and
4H?® > GF); the signs of the equation (5) are then alternately
positive and negative, and, therefore. (Art. 20), (5) has no nega-
tive root ; and consequently the given cubic has all its roots real.

(2). When GP + 4H? s positive, the cubic has two imaginary
roots.—For the equation (5) must then have a negative root.

(3). When G* + 4H® =0, the cubic has two equal roots.—For
the equation (5) has then one root equal to zero. In this case
A = 0, it being assumed that 4, does not vanish. 'We may say,
therefore, that the vanishing of the discriminant (Art. 42) ezpresses
the condition for equal roots.

(4). When G =0, and H=0, the cubic has its three roots equal.
—TFor the roots of (5) are then all equal to zero. These equa-
tions may also be expressed, as can be easily seen, in the form

a, - a; - ;a’
which relations among the coefficients are therefore the condi-
tions that the cubic should be a perfect cube.

44. Equation of Differences in General.—The general
problem of the formation, by the aid of symmetric functions, of
the equation whose roots are the differences, or the squares of the
differences, of the roots of & given equation, may be treated as
follows:—Let the proposed equation be

S =@-a)@-u)(z-a)....(z—a) =0.
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Substituting z + a, for 2, and giving r the values 1, 2, 3,
. . . #, in suocession, we have the equations

SE+a)=z(z+ta-a)(z+a—a).... (2+a1-a,),

S(@ta)mz(z+tas—a)(z+ar—ay) ... (T+as—ax), M

S(@+a)=z(z+as~a)(@+an—as). ... (Z+as—as).

Also, employing the expansion of Art. 6, and observing that
7 (a;) = 0, we find the equation

ot a) = (@) + 1S o)+ g S (@) e

Denoting the second side of this equation by ¢ (z, /), and
multiplying both sides of the identities (1), we obtain

’(x’ 01) ¢(¢, ﬂg) ceee ¢(:t, a,‘) - {z’- (a;—a,)’) {f—(d,—a,)’} .
e {-’b“—(a,..l—a,.)'}.

To form the equation of differences, therefore, we can mul-
tiply together the n factors ¢ (z, a.), ¢ (2, as), &o., and substitute
for the symmetric functions of the roots which occur in the pro-
duot their values in terms of the coefficients. Or we may, as
already explained in Art. 42, form directly the product of the
#n (n - 1) factors on the right-hand side of the above identity,
and express the symmetric functions involved in terms of the
coefficients. The roots of the resulting equation of the n(n — 1)®
degree in 2 are equal in pairs with opposite signs. Since in
this equation z ocours in even powers only, we may substitute
y for 2%, and thus obtain the equation of the §n (n — 1)** degree
whose roots are the squared differences.

For equations beyond the third degree the formation of the
equation of differences becomes laborious. We shall give the
result in the case of the general algebraic equation of the fourth
degree in a subsequent chapter.
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ExaAMPLEs.
1. The roots of the equation
23-62+112-6=0
are a, B, 7; form the equation whose roots are
A+, Y+a, a+8.
Ans. y3— 28y? + 246y — 660 = 0.

2. The roots of the cubio
2424+ 32+1=0

are a, B, v; form the equation whose roots are
1,11 1.1 1 1,1 1
P P & P ad B 3 B P
Ans. y3 + 1247 — 172y — 2072 = 0.
8. The roots of the cubic
B+grt+r=0
are a, 8, v; form the equation whose roots are

B+By+7, Y+ya+ad, a*+aB+B

Ans. (y +¢)*=0.
4. The roots of the cubic
B+pr+ert+r=0

being a, B, v; form the equation whose roots are
Bi+y-a, r+a-8, d+8-7

dns. y° - (9%~ 29)y* ~ (p* — 4p*q + 8pr)y + p° —6p'g + 8p°r
+ 8p%? - 16pgr + 872 =0.
6. If a, B, v be the roots of the cubic

P-3(1+a+a)x+1+3a+38a"+2s=0;
prove that (8 — 9)(y — a)(a — B) is a rational function of a. -
Ans. £9(1 + a + a?).
6. Find the relation between & and H of the cubic
aoz® + 34122 + 3aszr +as =0

when its roots are 8o related that (8 — 7)3, (y — a)?, (a — B)? are in arithmetical
progression.

Ans. R+ 2H? = 0.

7. If a, B, 7, 8 be the roots of
Azt — 232 +22-1=0,
find the value of
(8% =y (a? = B2 + (o ~ a2 (8% - B2+ (a2 — B2 (07 - B
Ans. 0.
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8. Prove that, if
By+ya+aB+ad+ B8+ 93=0,

{(B= 7 (a—28)+ (v —a)*(B - 3)* + (a - B)*(y - 3)*}*
=18 {(82— ) (a* — &)* + (v* - a*)? (B - 32 + (a* - BV)3(7* - 87)2).
9. Solve the equation
PB—oh 4 82m 9z —16=0,
which has one root of the form 1 + aV— 1.

Diminish the roots by 1; substitute aV—1 for z; we find that « must satisfy
at—3a3-4=0, and a*- 6a®+ 8 =0; hence a=+ 2. Hence the factor 23—2z + 5.
The other factors are (z + 1) and (2*— 3), as is evident.

10. The roots of the cubic

a2+ 322 +3mzr+a3=0
are a, B, y; form the equation whose roots are
B+, v+a a+8B.

This question has boen already solved in Art. 41. We give here another solu-
tion which, although in this particular instance it is not the simplest, will be
found convenient in many examples. Let the roots of the given equation be dimi-
nished by A. The transformed equation is (Art. 35)

aoy®+ 3A41y* + 342y + A3 =0,
whose roots are a — 4, B — A, 7y —A. We express the condition that this equation
should have two roots equal with opposite signs. This condition is (see Ex. 17,

Art. 24)
9414z — agdy = 0.

This equation is a cubic in A whose roots are
16+ 0+, da+h)
for the above condition is
B-H+(y-H=0,
2h=B+7,
where B8, y represent indifferently any two of the roots. From the equation in A
the required cubic can be formed by multiplying the roots by 2.
11. The roots of the biquadratic
Gzt + 40123 + 6azx + dasr + @y =0
are a, B, 7, 8; form the sextic whose roots are
B+v v+a at+B, a+l B+3 v+
Employing the method of Ex. 10, the required equation can be obtained from
the condition of Ex. 20, Art. 24.
The condition is in this case
6A1A|Aa - ‘41’4‘— doAg’ =0.
This is a sextic in A whose roots are § (8 + ), &c., from which the required
equation can be obtained as in the last example.

or
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12. Form, for the cubic of Ex. 10, the equation whose roots are

By - a? ya— B aB ~o? .
B+y-2" 7y+a-28 a+B-2y

Diminish the roots by A, and express the condition that the resulting cubic
should have its roots in geometric progression (see Ex. 18, Art. 24). The con-
dition is

APAs — agd® = 0.
This will be found to reduce to a cubic in 4 ; whose roots are the values above
written, since
By -a?
—A)?= (8- - =1 ..
(a- Ay =(B-My-h), o b= LT
13. Form for the same cubic the equation whose roots are

28y—aB—ay 2ya—By—Ba 2aB—vya-7B
B+y—2a' y+a-28"' a+B-2y

Diminish the roots by A, and express the condition that the transformed cubic
should have its roots in harmonic progression (see Ex. 19, Art. 24). We have

2 1 .1
a—h B—-h - N
28y—aB — ay
or A B+y—2a
The equation in A is
6043’~3A|.42Aa+2413=0,
which will be found to reduce to a cubic.
14. The roots of the biquadratic

Goxt + 4a412° + 6492 + 4asz + a4 =0
are a, B, 7, 3; find the cubic whose roots are

By—ad va - B3 aB—o%
B+y—-a—-¥ vy+a—-B-8 a+B—7-3

Diminish the roots by A, and employ the condition of Ex. 22, Art. 24. The

condition is in this case
A2 Ay — ag4s? = 0, _

which reduces to a cubic in A whose roots are the values above written.

15. Find the equation whose roots are the ratios of the roots of the cubic

B+gxt+r=0.

The general problem can be solved by elimination. Let f(z) =0 be the given

equation, and p= - the ratio of two roots; then since f(8) =0, we have
a .

f(pa) = 0, also f (a) = 0; and the required equation in p is obtained by eliminating
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a between these two latter equations. For the cubic in tho present example the
result is
Pt p+ 1)+ PR+ 10 =0.
16. It a, B, 7 be the roots of
i B4p24gz+r=0,
form the equation whose roots are
B*+9% Y+ah, a'+pL
Ans. 23— 2(p*—2g)2* +(pt - 4p° g + 5> — 2p7) 2 - (92 *— 20 r + dpgr — 2¢° - 1*)=0.
17. Form for the same cubic the equation whose roots are
a
£+%, %+s §+€.
Ans. r323— (pgr — 3r2)23 + (P — bpgr + 312 + @)z
(8 ¢~ 2Pr + 4pgr — 2°— 11)=0.
18. If a, B, « be the roots of the cubic
2B+gz+r=0,
form the equation whose roots are
la+mBy, IB+mya, ly+maB.
Ans. y¥—mgy® + (Pg+ 3lmr)y + Pr—0Pm g — 2lm* gr —m3 3 = 0.
19. If a, B, 7 be the roots of the cubio
aox® + 3a12% + 323z + a3 =0,
form the equation whose roots are

(a—8) (a=7), (B=9)(B-a) (y—a)(ry-8).

9H , 27(G+4KD)
Anas. y3+a7 v - T e =0.

20. Form, for the cubic of Ex. 19, the equation whose roots are
(B-72a-B8-77 (y—a)l(28-y—a)% (a—B)(2y-a-B)
The required equation can be obtained by forming the equation of squared
differences of the cubio (4) of Art. 42, since
(r-af-(a—B)*=(B-17) (2a—B-7).
21. Form, for the cubic of Ex. 16, the equation whose roots are
a(8-7)?% B(y—a), v(a- B
Let the transformed equation be 23+ Pr?+ Qz+ R=0.
Ans. P=pg—~9r, Q=g%—9pgr+27rt+pr,
R=-r(4¢°+27r3+ 4pr—p? ¢* — 18pgr).
22. Form, for the same cubic, the equation whose roots are
a®+ 28y, B?*+27a, ¥ +2aB.
Ans. P=-p% Q=g(2p-3q), —R=4pr —18pgr+24°+ 27



CHAPTER V.

SOLUTION OF RECIPROCAL AND BINOMIAL EQUATIONS.

45. Reciprocal Equations.—It has been shown in Art. 32
that all reciprocal equations can be reduced to a standard form,
in which the degree is even, and the coefficients counting from
the beginning and end equal with the same sign. 'We now
proceed to prove that a reciprocal equation of the standard form
can aliays be depressed to another of half the dimensions.

Consider the equation

AX™ + 2™ 4 A O™ ...+ T+a,=0.

Dividing by 2™, and uniting terms equally distant from the
extremes, we have ‘

1 1 1
a‘,(x"+;_;)+a.(x""+F)+ e oot Qma (x+;>+ am=0.

Assume z +i— =3, and let 2® + ;}; be denoted for brevity by

V,. We have plainly the relation
Veir=Vps = Vp_1.

Giving p in suocession the values 1, 2, 3, &o., we have
Vai=Vis-Vo=58" -2
Vi=Vis-V,=5 - 3s,
Vi=Vis-Vy=5'-4s+ 2,

Vi=Vis~ V=35 —5s+ bs;
and so on. Substituting these values in the above equation, we

get an equation of the m* degree in s; and from the values of
s those of z can be obtained by solving a quadratio.
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Exampres.
1. Find the roots of the equation .
S+t 1342342410,
Dividing by £+ 1 (see Art. 32), we have
423 41=0.
This equation may be depressed to the form
$#—1=0, givings=%1;
whence z+£=l, :+l=—l,
= =

and the roots of these equations are
1:/73 —1:4/7§,
2 2

2. Find the roots of the equation
2103264 52° — 524 + 353 —1=0.
Dividing by 22 — 1, which may be done briefly as follows (see Art. 8),
1 -3 5 -5 3 -1
1 -2 3 -2 1
-2 3 -2 1 0,

we have the reciprocal equation

28— 2264+ 324 - 212 +1=0, 1
or #eg) -2 (224 5) 30

( ) ( +‘;2 +o=0.

Substituting for 7y, *— 422+ 2; and for 73, 22— 2, we have the eqnntio.n
$#-6:2+9=0, or (£2-3)*=0,

whence £2=38, and :=t/§,
giving z+£=/§, z+£=-/§;
and the roots of these equations are

Vity/T1 -3/
2 2

Theee roots are double roots of the equation (1).
8. Solve the equation
z#-1=0.
Dividing by z—1 we have
A4234224+24+1=0;
from which we obtain
242-1=0.
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Solving this equation, we have the quadratics
22+ 3(1+4//B)z+1=0,

2+31-4/Bz+1=0,
from which we obtain

z=3-14+0/5 (1042045} /1),
where 62 =1,

This expression gives the four values of z.
4. Find the quadratic factors of

#+1=0.
Transforming this, we have
#—3=0,
whence $5=0, and s= tﬂ.

The quadratic factors of the given equation are, therefore,
2+1=0, 2*2ay/3+1=0.
5. Solve the equations
(1). Q+208=a(l4+2), 2. (1+2)8=a(l +2%).
6. Reduce to an equation of the fourth degree in s

(1+2)° (-2 _
1+2° 1-2°

Ans. (1 —a)z + (7 + 3a)z — (4 + a)= 0.

46. Binomial Equations. General Properties.—
In this and the following articles will be proved the leading
general properties of binomial equations.

Proe. I.—If a be an imaginary root of 2 — 1 = 0, then a™
also will be a root, m being any integer.

Since a is & root,

a" = 1, and therefore (a™)™ =1, or (a™)*=1;
that is, ‘ a™isarootof 2" -1=0.
The same is true of the equation 2* + 1 = 0, except that in
this case m must be an odd integer.

47. Pror. IL.—If m and n be prime to each other, the

equations a™ -1=0, 2 —1=0 have no common root except
unity.
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To prove this we make use of the following property of
numbers :—1If m and n be integers prime to each other, integers a
and b can be found such that mb — na = + 1. For, in fact, when

%'is turned into & continued fraction, g is the approximation

preceding the final restoration of %'

Now, if possible, let a be any common root of the given
equations ; then
a®=1,and a"=1;

therefore a™®=1, and a™=1;
whence am-m) -] orat=1,0ra=1;

that is, 1 is the only root common to the given equations.

48. Proe. III.—If k be the greatest common measure of two
integers m and n, the roots common to the equations 2™ — 1 = 0, and
z* ~ 1 = 0, are roots of the equation ¢ -1 =0.

To prove this, let

m=km', n="kn'

Now, since m” and #” are prime to each other, integers 4 and a

may be found such that m’6 — n’a=+1; henoce

mb—na=1+k.
If, therefore, a be a common root ofz® -1=0, and 2" -1=0,
a™-") =1 ora*=1;

which proves that a is a root of the equation #* -1 =0.

49. Pror. IV.—When n is a prime number, and a any
imaginary root of z* — 1 = 0, all the roots are included in the series

1, a, @, ... a™
For, by Prop. I., these quantities are all roots of the equa-
tion. And they are all different; for, if possible, let any two

of them be equal, o’ = a9,
whence alP9) =13

but, by Prop. II., this equation is impossible, since n is neces-
sarily prime to (p - ¢), which is a number less than #.
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50. Pror. V.— When n is a composite number jformed of the
Jactors p, g, r, &o., the roots of the equations 22 —1=10, 22 -1=0,
2" -1 =0, &o., all satisfy the equation 2* - 1 = 0.

For, consider a root a of the equation 2#~1=0; then a?=1;
from which we derive

(e®)?"..=1; or a"-1=0;
which proves the proposition.

51. Pror. VI.—When n s a composite number formed of the
prime factors p, q, ry &o., the roots of the equation 2* — 1 = 0 are
the n terms of the product

(I+a+a*+...+a®)(1+B+...+B A +y+...+y™) ...,
where a 18 @ root of *~1=0, BofA-1=0, yof 2 -1 =0, &e.

‘We prove this for the case of three factorsp, ¢, . A similar
proof applies in general. Any term, e.g. a®3%y°, of the product
is evidently a root of the equation2* ~ 1 =0, since a** =1, 3 =1,
v = 1, and, therefore, (a®3’y?)*=1. And no two terms of the
product can be equal; for, if possible let a®(3y® be equal to
.another term «”3¥y’; then a®* = [3*¥y**. The first member
of this equation is a root of «*» — 1 = 0, and the second member
is & root of 22" —1=0. Now these two equations cannot have a
common root since p and ¢r are prime to each other (Prop. IL.);
hence a®(3%y® cannot be equal to a*3¥y”.

52. Prop. VII.—The roots of the equation 2® — 1 = 0, where
n = p°g*r*, and p, q, r are the prime factors of n, are the n products
of the form a3y, where a is a root of 2" =1, 8 aroot Q/‘aﬂb =1,
and y of & = 1.

This is an extension of Prop. V1. to the case where the prime
factors occur more than once in#. The proof is exactly similar.
Any such product a3y must be a root, since a®=1,3"= 1, y" =1,
n being a multiple of p°, ¢%, r*; and a proof similar to that of
Art. 51 shows that no two such products can be equal, since
7% ¢b, r° are prime to one another. We have, for convenience,
stated this proposition for three factors only of n. A similar
proof can be applied to the general case.

From this and the preceding propositions we are now able
to derive the following general conclusion :—
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The determination of the n® roots of unity is reduced to the case
where n i8 @ prime number, or a power of a prime number.

53. The Special Roots of the Equation 2" - 1 = 0.—
Every equation #* - 1 = 0 has certain roots which do not belong
to any equation of similar form and lower degree. Such roots
wo call special roots* of that equation, or special n®* roots of unity.
If n be a prime number, all the imaginary roots are roots of this
kind. If n =p® where p is a prime number, any n‘* root of a
lower degree than n must belong to the equation 2#*" -1 = 0,
since every divisor of p®is a divisor of p*! (except n itself) ;

hence there are p° ( 1 —;) roots which belong to no lower degree.
If, again, n = p°¢®, where p and ¢ are prime to each other, there
arep“(l ——;—), and q"(l —él-) special roots of 2#° - 1 = 0, and

2 — 1 = 0, respectively. Now, if a and 3 be any two special
roots of these equations, af3 is a special root of z* — 1 = 0; for if
not, suppose (af3)™ = 1, where m is less than n; we have then
a"' =(3"; but a™ is a root of 2#° —~ 1 =0, and 3™ is a root of
#°-1=0, and these equations cannot have a common root
other than 1, as their degrees are prime to each other; conse-
quently m cannot be less than n, and af3 is a special root of
2*-1=0. Also, as there are

E e )

such products, there are the same number of special 5™ roots.
L'his proof may be extended without difficulty to any form of n.

Al the roots of 2 — 1 = 0 are given by the series 1, a,a®,. . a™*;
where a is any special n** root. For it is plain that a, e, &e., are
all roots. And no two are equal ; for, if a®? = a?, ™9 =1; and
therefore a is not a special n root, since p — ¢ is less than n.

When one special n** root a €8 given, we may obtain all the other
special n*® roots of unity.

* The term ‘¢special root’" is here used in preference to the usual term *¢ pri-
witive root,”’ since the latter has a different signification in the theory of numbers.
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Since a is a special root, all the roots 1, a, a?, . . . a™! are
different #** roots, as we have just proved; and if we select a
root a® of this series, where p is prime to n, the roots

a?ya’?, .. .a*P, " (=1)
are all different, since the exponents of a when divided by » give
different remainders in every case ; that is, the series of numbers
0,1,2,3,...n-1 in some order; whence this series of roots is
the same as the former, except that the terms occur in a different
order. To each number p, prime to n and less than it (1 in-
cluded), corresponds a special n* root of unity; for a™ cannot
be equal to 1 when m is less than n, for if it were we should
have two roots in the series equal to 1, and the series could not
give all the roots in that case ; therefore a? is not a root of any
binomial equation of a degree inferior to # ; that is, «? is a special
u® root of unity. 'What is here proved agrees with the result

above established, since the number of integers less than n and

prime to it is, by a known property of numbers, n (1 —}))(1 - %)

when % = p°¢®, which is also, as above proved, the number of
special roots of 2*-1=0.

ExamprLEs.

1. To determine the special roots of 2% — 1 =0.

Here, 6 = 2 x 3. Consequently the roots of the equations 2? — 1 =10, and
23— 1=0 are roots of 22— 1 =0. Now, dividing 2°® — 1 by 23 — 1 we have 28 +1;

and dividing ° + 1 by f—:—:. orz+1, we have ? — z 4 1 = 0, which determines
the special roots of 26— 1= 0.
Solving this quadratic, the roots are

= 2 y @ 2 »
also since aa; =1 = ab,
a1 = ab,
which may be easily verified.
The special roots are, therefore,

1
e, a®; or ai®, a1; Or a. -+
a



Ezamples. 97

2. To discuss the special roots of z'2~1=0.

Since 2 and 3 are the prime factors of 12, and%aa(i, l—-: = 4, the roots of
£8—~1=0, and z* - 1 =0, are roots of z'2 —1=0; now, dividing z2—-1 by 241,
and 2% - 1, and equating the quotients to zero, we have the two equations
#8+244+1=0,and 28 + 1 = 0, both of which must be satisfied by the special
roots of z'3 — 1 = 0; therefore, taking the greatest common measure of 2% + 24+ 1,
and 2% + 1, and equating it to zero, the special roots are the roots of the equation
#-22+1=0.

The same result would plainly have been arrived at by dividing #!2 — 1 by the
least common multiple of 24 - 1 and 2z — 1. Now, solving the reciprocal equatios

2 —2*+1=0, we have z+£=t v3; whenee, if a and a be two special roots

(o 1) BT (o2) 2B

ay
are the four special roots of z!12—1=0.
‘We proceed now to express the four special roots in terms of any one of them a.

. 1 1
Since ¢+—+¢1+l=0, or(¢+a1)(l+——-)=0,
a a1 aa)

we take aa) = —1 (as consistent with the values we have assigned to « and a1) ; and

1
since ¢ and a; are roots of 254+ 1 =0, a®=—1, and a® = - S=a The roots

1 . .
@ a1, i may therefore be expressed by the series a, a5 a7, a!!, since a'? = 1.

Further, replacing a by a? a7, a', we have, including the series just determined,
the four following series, by omitting multiples of 12 in the exponents of a :—

@ a5, o, a'l,

a®, ay al, dl,

o'y, all, a a5,

all, a’, o, %y

where the same roots are reproduced in every row and column, their order only
being changed. We have therefore proved that this property is not peculiar to any
one root of the four special roots: and it will be noticed, in accordance with what
is above proved in general, that 1, 5, 7, and 11 are all the numbers prime to 12,
and less than it. 'We may obtain all the roots of £'? — 1 = 0 by the powers of any
one of the four special roots a, a® a’, a!l, as follows :—

a, a@, o o), o o, a, o @ al?, all,

11

1
o’ al% o @, a o) aly a), o o, a, 1
a, a, a, a), a' @, a a6 @, al o 1

1

all, a o a a', &, @) af) o aif g
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3. Prove that the special roots of £'® — 1 = 0 are roots of the equation
B-2"+2 -+ -2+ 1=0.

4. Show that the eight roots of the equation in the preceding example may be
obtained by multiplying the two roots of 22 + z + 1 = 0 by the four roots of

423 +at+z+1=0.

6. Form the equation of the 12th degree whose roots are the special roots of
23! — 1 = 0, and reduce it to one of half the dimensions. ‘

Ans. 28 —2°—624 4623+ 822-8s+1=0.

54. Solution of Binomial Equations by Circular
Functions.—We take the most general binomial equation

#=a+b,.J-1,

where a and b are real quantities.

Let a=Roosa, b=Rsina;
then @ = R(cosa +.J-1sina);
now, if r(cos 8 +,/~1 sin 6)

be a root of this equation, we have, by De Moivre’s Theorem,

1 (cos n0 +,/~1 sinn6) = R (cosa + [-1sina);
and, therefore,
7 008 n0 = R 008 a,

7 sin 10 = R sin a.
Squaring these two equalities, and adding,
r* = R, giving " =R;
where we take R and r both positive, since in expressions of the
kind here considered the factor containing the angle may always

be taken to involve the sign.
‘We have then

cosnf) = cosa, 6innd =sgina;
and, consequently,
n0 = a + 2k,

k being any imteger; whence the assumed n™ root is of the
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general type

','in(c ¢+2 1r+J— a+2k1r)

Giving to k in this expression any n consecutive values in the
series of numbers between — o0 and + 0, we get all the #**roots ;
and no more than », since the # values recur in periods.

We may write the expression for the n root under the
form

{2 con +.[ T in ) (eo o0 2T, s n%')

1f we now suppose R =1, and a = 0, the equation #* =a + b [~ 1
becomes #* =1+ 0 |-1; the general type, therefore, of an n*
root of 1 + 0, /-1, or unity, is

2k . 2kn
cos ;’ +J—_1 s1n —;— .
If we give & any definite value, for instance zero,
LY Ty a - . a
) (cos'—l +,J-1sin ;)

is one n root of @+ b J-1.

The preceding formula shows, therefore, that all the n** roots
of any imaginary quantity may be obtained by multiplying any one
of them by the n™® roots of unity.

Taking in conjunction the binomial equations

a:"=a+bJ-_l, andx“-a-bJ-_l,
we see that the factors of the trinomial

-2R cosa.2”+ R?
.'.JE{ oosa_+”2/tr :I:J——j. sin ® +”2Inr}’

where % has the values 0,1,2,3...n-1.
H?2

are
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Exaurires,

1. Solve the equation 27—1 = 0.
Dividing by z — 1, this is reduced to the standard form of reciprocal equation.
Assuming s =z + é, we obtain the cubic

P+3-20-1=0,

from whose solution that of the required equation is obtained.
2. Resolve (z 4+ 1)7 — 27 — 1 into factors.
Adns. Tz(z+ 1)(23 + z + 1)2.

3. Find the quintic on whose solution that of the binomial equation 2'' - 1 =0
depends.
Ans. 5+ 24 - 425322+ 32+ 1=0.

4. When a binomial equation is reduced to the standard form of reciprocal
equation (by division by z -1, z + 1, or 22 — 1), show that t}xe reduced equation
has all its roots imaginary. (Cf. Examples 15, 16, p. 33.)

5. When this reduced reciprocal equation is transformed by the substitution
s=z +£ ; show that the equation in s has all its roots real, and situated between
—2and 2.

For the roots of the equation in z are of the form cosa + V—1 sin a (see
Art. 54); hence z + é is of the form 2 cosa, and the value of this is real and
between —2 and 2.

6. Show that the following equation is reciprocal, and solve it :—
4(B-z+1P - 272 (z— 1)1 =0.
Ans. Roots: 2, 2, &, 4, -1, =1.
7. Exhibit all the roots of the equation 2° — 1=0.
The solution of this is reduced to the solution of the three cubics
$-1=0, P-w=0, 23-a?=0;

where o, o? are the imaginary cube roots of unity. The nine roots may be repre-
sented as follows :— .
1, o}, "gy o, o}, o}, o?, of, wf.
Excluding 1, w, w?; the other six roots are special roots of the given equation ;
and are the roots of the sextic
B#+224+1=0.

8. Reducing the equation of the 8¢ degree in Ex. 3, Art. 53, by the substi’

1 .
ﬁons=z+;, we obtain

=i+ 424+ 1m0,
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prove that the roots of this equation are

2% in 8 l4wr
2mf5’ 2cosﬁ, 200;1—5, 2eosﬁ-

9. Reduce the equation
42% — 852° + 3672 - 340z + 64 =0

to a reciprocal equation, and solve it.
Assume t-;+ ;- Ans. Boots: }, 1, 4, 16.
10. Solve the equation

24 + mpz® + mqx? + mipz + mt = 0.
Dividing the roots by m, this reduces to a reciprocal equation.

11. If a be an imaginary root of the equation 2# — 1 = 0, where n is a prime
number ; prove the relation

(1-a)(l=a®)(l-a") .(l1—a*!)=n

12, Show that a cubic equation can be reduced immediately to the reciprocal
form when the relation of Ex. 18, Art. 24, exists amongst its coefficients.

13. Show that a biquadratic can be reduced immediately to the reciprocal form
when the relation of Ex. 22, Art. 24, exists amongst its coefficients.

14. Form the cubic whose roots are
a+a’ a*+aty at+a,

where a is an imaginary root of 27 - 1 =0. Ans. 22+ 23~ 22-1=0.

When the roots of this cubic are known, the solution of the equation 27— 1 =0
may be completed by means of quadratics. For, suppose the three roots to be
21, 23, 23; then a and a® are the roots of 22— 212+ 1=0; a®and at of 23— 222+ 1=0,
and a* and a®of 22— 23z + 1 = 0. It is easy to see that the roots of the cubic
are all real, and they may be readily found approximately by the methods of
Chap. X.

15. Form the cubic whose roots are
ata+a’+ab, @+a+a’+al% at+at+a®+al,
where a is an imaginary root of 213 — 1 = 0. Ans. 22 +23 -4z +1=0,

As in the preceding example, when the roots of the cubic (which are all real)
are known, the solution of the binomial equation z!*— 1 = 0 may be completed by
solving quadratics. Let zj, 2, 23 be the roots of the cubic. It is easily seen that
e+ a'? and a® + a® are the roots of 2? —~212 + 23 =0; a®+ a'! and a® + a!® of
Z*— 2324+ 21 =0, and at + o and a® + a' of 23 — 23 + 23 = 0. When these
quadratics are solved, each pair of roots a, a'?; a8, af, &c., may be found by the
solution of another quadratic, as in the preceding example.
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16. Reduce to quadratics the solution of z!7 ~ 1 =0,
Calling a one of the imaginary roots, we form the quadratic whose roots are

ai=a+a* +a%+al®+a®+al+at +al
as=a'+ a'%+ a® + a'' + ol + @’ + a'? + @b,

‘We easily find aiaz =4 (a1 + a2) =—4; hence a; and a3 are the roots of 22+ z-4=0,
and may be found by solving this quadratic. Assuming, again,

Bima +a'*+ a4 af, } 7=a +a® +alt+al? }
By=a¥+ a'® + o +a?, r=a®tall+a’ +af,

it is seen that B, B; are the roots of £* —a1z—1=0, and +;, 93 of 2? —az—1=0.
Separating again each of these into two parts, and forming the quadratic whose
roots are, for example, a + a'® and a'*+ a, the sums of the roots in pairs are
obtained ; and finally the roots themselves, by the solution of quadratics, as in the
preceding examples.

This and the preceding two are examples of Gauss’s method of solving alge-
braically the binomial equation 2#—1=0 when n is a prime number. The solution
of such an equation can be made to depend on the solution of equations of degree
not higher than the greatest prime number which is a factorin #—1. When n=13,
e. g. the solution depends on that of a cubic, » — 1 being = 3-23 in that case; and
when # = 17, the solution is reducible to quadratics, # — 1 being then = 2¢. For
the application of Gausa’s method it is necessary to arrange the s — 1 imaginary
roots in a suitable order in each case according to the powers of any one of them.
A ¢ primitive root” of a prime number n possesses the property that when raised
to successive powers from 0 to » — 2 inclusive, and divided in each case by n,
the # — 1 remainders are all different. (See Serret’s Cours d’ Algébre Supéricure,
vol. m. sect. 3.) There are several such primitive roots of any prime number:
e.g. 2,6,7, and 11 of 13, and 3, 5, 6, 7, 10, 11, 12, 14 of 17. Gauss arranges
the imaginary roots so that the successive indices of any one of them, a, are the
successive powers from 0 to n» — 2 of any primitive root of n. Taking, for example,
the lowest primitive root of 13, and dividing the successive powers of 2 by 13, we
get the following series of remainders—

1 2 4 8 3 6 12 1 9 5 10 7;
and these, therefore, are the successive powers of a in order when the indices
which exceed 13 are reduced by the equation a'®=1. If the lowest primitive
root of 17 be treated in the same way, we get the following series of remainders :—

1 39 10 13 6 16 11 16 14 8 7 4 12 2 6.

On comparing these series with the assumptions above made, it will be observed
that in the former case, viz. n = 13, the twelve roots were divided into three sums
of four each, and in the latter case into two sums of eight each. The method of
partition in any case depends on the nature of the factors of » — 1; and it is not
difficult to show in general that the product of any two such groups is equal to the
sum of two or more, as the student will have observed in the particular applications
given above.
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The lowest primitive root in any particular case is the only one necessary to be
known for the application of Gauss’s method ; and this can usually be found with-
out difficulty by trial. It may be observed that one or other of the three simplest
prime numbers 2, 3, 5, is a primitive root in the case of every prime number less
than 100, with the exception of 41 and 71, whose lowest primitive roots are
6 and 7 respectively. Methods of finding all the primitive roots are given in
the section of Serret’s work above referred to.

17. Find by trial the lowest primitive root of 19, and hence show how to solve
the equation % — 1 =0.

It is readily found that 2 is a primitive root, and the remainders after division
by 19 are given in the process of trial. Since 18 = 33.2, the solution will be
effected by cubics and quadratics. The first cubic is found by forming the
equation whose roots are

a +a® +a +a'®+all+aly
a?+ @'+ alt+ a'? + o + af,
a'+ald+a? +al® +a* +alf

18. Show that of binomial equations whose degree is & prime number the
lowest after z!7— 1 = 0 whose solution depends on quadratics is 2357 - 1 = 0.

The next prime number after 257 which satisfles the condition that n — 1 is a
power of 2 is 65537. We have therefore the series 3, 5, 17, 2567, 65537, &c.;
and Gauss remarks (Disquisitiones Arithmetice, Art. 365) that the division of a
circle into n equal parts, or the description of a regular polygon of n sides, can be
effected by geometrical constructions when » has any of these values.

19. If a), a3z, a3 . . . an be the roots of the equation
ol paan it .. 4 Pa1Z + P =0,
form the equation whose roots are

1 1 1
art—, azt—,...ant—"
a1 a3 Qn

We have here the identity
PPl bt L ppattpam(Z—a))(E @) ... (T-as);
and changing 2 into i (see Art. 32),
1 1
Pa 4+ Pzl 4 L 4Dt piz+ 1 mp, (,_l) (z— —) . (s-—) .
a a @a
Multiplying together these identities, and dividing by 2=, the factors on the
right-hand side take the form x+;-:— (a+ ; ; and assuming £ + §=s, the left-
hand side can be expressed as a polynomial of the n*» degree in s by means of the
relations of Art. 45.
20. Find the value of the symmetric function 2a?g*(y — 8)? of the roots of the
equation
aozt + 4a12° + 8asz® + 4a5% + a4 = 0.
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This can be derived from the result of Ex. 19, p. 52, by changing the roots into
3
their reciprocals, forming 3 (i - %) of the transformed equation, and multiplying
3
by a?88?, which is equal to :‘? .
Ans ag*3a® B (y — 8)2 = 48 (a5 — azay).

From the values of the symmetric functions given in Chapter III. several others
can be obtained by the process here indicated.

21. Find the value of the symmetric function X (a1 — a3)?as®a¢® . . . au? of the
roots of the equation

nin—1)

13 G4, .+ NGy 1T+ Gy =0,

@oz* + nay2! +
‘We easily obtain 4¢°3 (a1 — as)? = #3 (s — 1)(4;® —6oa3) ; and changing the roots
into their reciprocals we have
40*% (a1 ~ @) as’ad® . . . an? = #7(% — 1)(dn-1* — Gn-26n).
22. Show that the five roots of the equation
25— b6pz®+ 6piz + 29=0

are Ve +y/5, 0v/a+0/8 @/ a+e/3,
0y/a+03/3, @ V/a+e/3,

whem:/ab=p, 6 + b =— 2¢, and ¢ is an imaginary fifth root of unity.
N.B.—A quintic reducible to this form can consequently be immediately solved.

23. Write down trigonometrical expressions for the roots in the preceding
example ; and, p being supposed essentially positive, prove—
(1) when p* < ¢% the roots are one real and four imaginary ;
(2) when p® > g%, the roots are all real;
(3) when p® = ¢?, there is a square quadratic factor.
24. Find the following product, where 0 is an imaginary fifth root of unity :—

(a+B+7)(a+08+0%) (at 028+ 6%) (a +6°8 + 6%) (a+ 648 + 6y).
Ans. a® + B+ y° ~ baBy (a® - By).
26. Form the biquadratic equation whose roots are
a+ 2ab, o+ 2a% o+ 2% at+2aq
where a is an imaginary root of 28 =1 =0. »
Ans. 22 + 3283 -22~32+11=0.



CHAPTER VI

ALGEBRAIC SOLUTION OF THE CUBIC AND BIQUADRATIC.

55. On the Algebralc Solution of Equations.—Before
proceeding to the solution of cubic and biquadratio equations
we make some introductory remarks, with a view of putting
clearly before the student the general principles on which the
algebraio solution of these equations depends. With this object
we give in the present Article three methods of solution of the
quadratio, and state as we proceed how these methods may be
extended to cubic and biquadratic equations, leaving to sub-
sequent Articles the complete development of the principles
involved.

(1). First method of solution—by assuming for a root a general
forfh incolying radicals.

Since the expression p +JE has two, and only two, values
when the square root involved is taken with the double sign,
this is a natural form to take for the root of a quadratic.
Assuming, therefore, z = p +,fg, and rationalizing, we have

2-2pr+p*-¢g=0.
Now, if this be identical with a given quadratic equation
2+Pr+Q=0,
we have 2p=-P, p’-¢=@,

. . -P+ /P-4

which is the solution of the quadratic.
In the case of the cubic equation we shall find that

u;uyi., and 22z (tJp + 27)
p
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are both proper forms to represent a root, these expressions
having each three, and only three, values when the cube roots
involved are taken in all generality.

In the case of the biquadratic equation we shall find that

Jowdg+ 2= b e el dp di
Jpda
are forms which may represent a root, these expressions each
giving four, and only four, values of # when the square roots
receive their double signs. ‘
(2). Second method of solution—Dby resolving into factors.

Let it be required to resolve the quadratic 2* + Pz + Q into
its simple factors. For this purpose we put it under the form
2+Pr+Q+0-0,

and determine 6 so that

2+Pz+Q+0
may be a perfect square, i.e. we make
P P-4
o+@-2, o022,

whence, putting for 0 its value, we have
3 ’ z _
2+ Pz + Q-(z +—€-) - (03; + %ﬂ)a

Thus we have reduced the quadratio to the form «*-¢*; and
its simple factors are 4 +v, and u —v.
Subsequently we shall reduce the cubic to the form

(B+m)— (z+m’)}, or w-+¢,
and obtain its solution from the simple equations
4-v=0, v-wr=0, u-wv=0.

It will be shown also that the biquadratic may be reduced
to either of the forms

(I + mz + n)* - (P2 + m'z + n)?,

@ +px + )@+ pz+q),.
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by solving a cubio equation ; and, consequently, the solution of
the biquadratio completed by solving two quadratics, viz. in the
first case, &' + mz +n=1+ ({2’ + m’z+n’) ; and in the second case,
P+pr+q=0, and 2+ pz+¢ =0.

(3). Third method of solution—Dby symmetric functions of the
roots.

Consider the quadratic equation 2* + Pz + Q = 0, of which
the roots are a, 3. 'We have the relations

a+f3=-P,
af= Q.

If we attempt to determine a and 3 by these equations, we
fall back on the original equation (see Art. 24); but if we
could obtain a second equation between the roots and coefficients,
of the form /a + m@3 = f (P, Q), we could easily find a and 3 by
means of this equation and the equation a+ (3=~ P.

Now in the case of the quadratic there is no difficulty in
finding the required equation; for, obviously,

(a - B)*= P*-4Q; and, therefore, a -3 =,|P*-4Q.

In the case of the cubic equation 2*+ P’ + Qz + B = 0, we
require ¢wo simple equations of the form

la+mfB3+ny=rf(P, Q R),

in addition to the equation a + 3 + y = — P, to determine the
roots a, 3,y. It will subsequently be proved that the functions

(a+wf +w'y)y (a+’B+wy)
may be expressed in terms of the coefficients by solving a quad-
ratic equation; and when their values are known the roots of

the cubic may be easily found.
In the case of the biquadratic equation

2+ P+ Q*+ Rz+ 8=0
we require Zhree simple equations of the form

la+mB+ny+rd=f(P, QR,S),
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in addition to the equation
a+B+y+8=-P,

to determine the roots a, 3, vy, 8. It will be proved in Art. 66,
that the three funotions

B+y-a-8)% (y+a-B-38)', (a+B-vy-9)

may be expressed 1n terms of the coefficients by solving a cubic
equation ; and when their values are known the roots of the
biquadratioc equation may be immediately obtained.

56. The Algebraic Solution of the Cubic Equation.—
Let the general cubic equation

az* + 3ba* + 3ez +d=0

be put under the form
£+3Hs+ G=0,
where

s=ar+d, He=ac-3, G=ad'd- 3abc+2b (Art. 36).

To solve this equation, assume®*

s=2p+ g
hence, cubing,
#=p+q+3p JaClp+Ya);

£-3.plg.s-(p+q) =0.
Now, comparing coefficients, we have

Jpli=-H, p+q=--6;
from which equations we obtain

therefore

p=3(-G+[F+ElD), ¢=4(- G-]F+4H);

¢ This solution is usually called Cardan’s solution of the cubic. See Note A at
the end of the volume.
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and, substituting forJg its value i:;—_z, we have
p

.-J;+J_

as the algebraic solution of the equation
£+3Hz+ G=0.

It should be noted that if p be replaced by ¢ this value of =
is unchanged, as the terms are then simply interchanged ; also,
since [p has the three values [p, w?|p, w*2[p, obtained by
multiplying any one of its values by the three cube roots of
unity, we obtain three, and only three, values for s, namely,

-H
J;;+ —, wJ;J+«n-—_-, 0 2p +w—=;
dp NP p
the order of these values only changing aoodrding to the cube

root of p selected.
Now, if s be replaced by its value az + b, we have, finally,

3
az+b=2lp+ = fJ
(where p has the value previously determined in terms of the
coefficients) as the complete algebraic solution of the cubic equation

az® + 3b*+ 3ex + d = 0,

the square root and cube root involved being taken in their
entire generality.

57. Application to Numerical Equations.—The solu-
tion of the cubic which has been obtained, unlike the solution
of the quadratio, is of little practical value when the coefficients
of the equation are given numbers; although as an algebraio
solution it is complete.

For, when the roots of the cubic are all real, G* + 411°= - K?,
an essentially negative number (see Art. 43) ; and, substituting
for p and ¢ their values

i-6+x 1)
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in the formula 3[p + }[g, we have the following expression for
a root of the cubio :—

(oo ) cocp Ly

Now there is no general arithmetical process for extracting
the cube root of such complex numbers, and consequently this
formula is useless for purposes of arithmetical caloulation.

But when the cubio has a pair of imaginary roots, a nume-
rical value may be obtained from the formula

(- G+JG-+4H=)i (- G-JG‘+4H’\*
+ ’
2 2 /
gince G* + 4H® is positive in this case. As a practical method,
however, of obtaining the real root of a numerical cubie, this
process is of little value.
In the first case, namely, where the roots are all real, we

can make use of Trigonometry to obtain the numerical values
of the roots in the following manner :—

Assuming 2Roos¢ =— G, and 2Rsin ¢ = K,
we have p=Re"/__l, qua""/'—l;
also tan¢=—§, and B =3} (@ + B (-}

2%
and finally, since w = cos %” /-1 ein%’r —etT VT,

the three roots of the cubic equation

s*+3Hs+ G =0,
viz. p+ie, wip+ ot ip+olfy
become

Tte
3

from which formulas we obtain the numerical values of the roots

2 (—H)ioosg, -2 (-H)kcos
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of the cubic by aid of a table of sines and cosines. This process
is not convenient in practice; and in general, for purposes of
arithmetical calculation of real roots, the methods of solution of
numerioal equations to be hereafter explained (Chap. X.) should
be employed.

58. Expression of the Cubic as the Difference of two
Cubes. —Let the given cubio

az® + 3bs* + 3cz + d = ¢ (2)

be put under the form

2+ 3Hz + G,
where s =az + .
Now, assuming
£+3H: +G = {u(z+v)—v(s+p)?, (1)

u=v
where u and v are quantities to be determined, the second side
of this identity becomes, when reduced,
8 - 3uvs — uv (u+v).
Comparing coefficients,

w=-H, wpu+v)=-@G;
therefore

where a’A= G*+ 4H?, asin Art. 42;

also (= +p.)(8+v)-2’+%8—ﬂ. 2

Whence, putting for s its value, az + b, we have from (1)

o) =<G_+£_A_}>(az+ 5a G—aAi)‘_(G‘—aAi)(MH_ - G+aM>j
2a% 2H 24t 2H

which is the required expression for ¢ (#) as the difference of

two oubes.
By the aid of the identity just proved the cubic can be
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resolved into its simple factors, and the solution of the equation
completed. We proceed to obtain expressions for the roots of
the equation ¢ (#) = 0 in terms of u and v. Solving as a bino-
mial cubio the equation

(u-v)ap(z) =u(z+ v)*-v(s+u)=0,
we find the three following values for z = az + b:—

Yol Clu +3),
ulv (wifu+ w23,
Ynilv (@ dfu+ )

If now *[u and *[v be replaced by any pair of cube roots
selected one from each of the two series

P
il:'-a "’il_"; “’2:/;’

it will be seen that we shall get the same three values of =, the
order only of these values changing according to the cube roots
selected. It follows that the expression

v Clu+2])
has three, and only three, values when the cube roots therein are
taken in all generality. This form therefore is, in addition to
that obtained in the last Article, a form proper to represent a
root of a cubic equation (see (1), Art. 55).

The function (2) given above, when transformed and reduced,
becomes, as may be easily seen,

;—;g(ac-b*)m (ad - bo)z + (bd - &)}

This quadratic, therefore, contains as factors the two binomials
az + b+ u, az + b + v, which ocour in the above expression of ¢ (=)
as the difference of two cubes.
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59. Solution of the Cnbic by Symmetric Functions
of the Roots.—8ince the three values of the expression

{a+B+y+0(a+wf+wy)+ 0 (a+ 0B +wy)l,
when 0 takes the values 1, w, w? are a, [3, v, it is plain that if
the functions
0(a+ wf+oy), la+oB+wy)

were expressed in terms of the coefficients of the cubic, we could,
by substituting their values in the formula given above, arrive
at an algebraical solution of the cubic equation. Now this
cannot be done directly by solving a quadratic equation; for,
although the product of the two functions above written is a
rational symmetric function of a, (3, v, their sum is not so. It
will be found, however, that the sum of the cubes of the two
functions in question is a symmetrioc function of the roots, and
can, therefore, be expressed by the coefficients, as we proceed to
show. For convenience we adopt the notation

L=a+uwf+0'y, H=a+o'B+wy.
We have then
(0L)*=4 + Bu+ Co?, (*M)*=A + Bw*+ Cu,

where
A=a’+3*+y*+ 6aBy, B=3(a'B+P'y+v%), C=3(af*+[By*+va?);
from which we obtain

L+ M° = 22a* - 32a’3 + 12067-—27%-
(Cf. Ex. 5, p. 44; Ex. 15, p. 50.)

Again,
H
(OL)(PM)= LM = o+ [3*+ y* =By —ya - aB=—9;’- ;
whenoe (a+ wB+ ), (a+oB+wy)
are the roots of the quadratic equation

HS

G, .
F+8 21— =0,

Denoting the roots of this equation, viz.

3‘ .
—f - 3
26,( GiJG‘+4H)

1
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by #, and 4, the original formula expressed in terms of the
ooefficients of the cubic gives for the three roots

6 1/,—
a=—;+§(Jl,+’t,>,

b 1/
ﬁ-‘a*‘g w,ll;+w",/tg,

b (o 4 s
1=—;+3(¢n t1+w t’).

It will be seen that the values of a, 3, v here arrived at are
of the same form as those already obtained in Art. 56.
It is important to observe that the functions

(a+ of + )}, (a+ o3+ wy)?

are remarkable as being the simplest functions of three quanti-
ties which have but fwo values when these quantities are inter-
changed in every way. It is owing to this property that the
solution of a cubic equation can be reduced to that of a quad-
ratic. Several functions of a, 3, v of this nature exist; and
it will be proved in a subsequent chapter that any two such
functions are connected by a rational linear relation in terms of
the coefficients.

Having now completed the discussion of the different modes
of algebraical solution of the cubie, we give some examples
involving the principles contained in the preceding Articles.

ExaumpLEs.

1. Resolve into simple factors the expression
(B-7lz-a)+(y—a)l(z—BP +(a—B)P (z - 7"
Let U=(B-7)(z—a), V=(y—a){z~B), W=(a—8)(z~1)
Ans. YU +wV + W) (U+w?V+alF).
2. Prove that the several equations of the system
(B-7P(z=aP=(y-a)’(z-B)=(a-BP(s—9)

have two factors common.
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Making use of the notation in the'last Example, we have

U3=V3= W3
whence
DP-P=(T-F) T+ TV + )=} (U-P)(T?+ 7+ P,
since U+ V7V+Wmo;
therefore B=7PE-aP+(y—a?(@-8+(a-B) (z-7)"

is the common quadratic factor required.
3. Resolve into factors the expressions
1. B=7E-a+(r-a?(z-B8)3+(a-BP(z—-7p
(2) B-7*E@-a)P+(y—af(z-B8)+(a=BP(z-17)
(3. B=M(-a)+(y—a'(z—B8) + (a—B)(z— 7).
These factors can be written down at once from the results established in Ex. 40,
p- 69. Utsing the notation of Ex. 1, and replacing ai, 81, 71, in the example referred
to, by U, ¥, W, we obtain the following : —
Ans. (1) 3UVW; (2) §(U+ V2+ WHUVW; (3) $(U2+ V*+ WUV W.
4. Express
(z-a)(z-B)z-7)
as the difference of two cubes.
Assume
(z-a)z-B)(z—79)= 13- F3;
whence
Ui—Vi=aA(z—a),
ol —w*V1=pu(z - B),
U -wVi=v(z-9)
Adding, we have :
At+pu+r=0, Aa+uB+ry=0;
and, therefore,
A=p(B-7) n=ply-a), r=p(a-8);
but Aur =1; whence
1
= =(8-7)(y-a)(a-B).
?
Substituting these values of A, u, »; and using the notation of Ex. 1,
Ui1-Vi=pU, oUi—-*V1=pV, o?Ui-wV1=pW;

whence
S1=p(U+ eV +aW),

-3V =p(U+ 0V +*W);
and U, and ¥, are completely determined.
5. Prove that L and M are functions of the differences of the roots.
We have L=ctwB+e’y=a-A+w(B—h)+e*(y-A)

for all values of 2, since 1 + @ + @® = 0; and giving to A the values a, B, v, in sue-
cession, we obtain three forms for L in terms of the differences 8 -, ¥ - a, a — 8.
Similarly for M.

12
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6. To express the product of the squares of the differences of the roots in terms
of the coefficients.

We have ~ N
‘L+M=2¢-B—'y, Lt®M=(28—y—a)w, L+wM=(2y—a-pB)ot;
and, again, o s

L ===l oL-wM=(y-a)w—oY), oLk =(a- B)w-al,
from which we obtain, as in Art. 26,
I+ M3=(2a—B—7)(2B-7-a)(2y—a—B),
D -M=-34/"3(B-7)rv~a)(a=B);
(L3 - M3 = (I3 + M -4 P M3,
we have, substituting the values of L3+ M3 and LM obtained in Art. 59,
as (B = 7)t (y — a)* (a ~ B)*=— 27 (6% + 4 H3).

and since

(Cf. Art. 42.)
7. Prove the following identities :—
- P+ =}{(2a-B-7]+(28-7-a)+ (27 -a-B)},
- DM my-3{(B~ 9+ (r—aP+(a- B}
These are easily obtained by cubing and adding the values of

. L+ M, &c.; L - M, &c.,
in the preceding example.

8. To obtain expressions for L2, M?, &c., in terms of the differences of «, 8, 7.
The following forms for Z* and M2 are obtained by subtracting

(@ + B*+7%)(1 + @ + w?) = 0 from (a+ wB + w?y)?, and (a+ &8 +wy)*:—
=L = (B )+ oy -a)+w(a-BP,
— M= (B )+ 0y~ + w¥a - B
In a similar manner, we find from these expressions
~I'=(B-7)(2a-B~7)"+w(y—a)?(28-7—a) +a*a—B)’ (2y—a-B)},
— Mi= (B-7)?(2a-B~7) + «Xy—a) (28— 7—a)'+w (a—B)* (27— a—8)"
Also, without difficulty, we have the following forms for LY and L*M?:—
2L = (B— 7'+ (v —a + (a-B)?,
L*M?=(a— B)*(a—7)*+ (B—7) (B—af + (v — a)*(y— B)*.
9. There are six functions of the type of Z or X, viz.,
atof +edy, watw?B+y o’atB+oy,
at+0’f+wy, watB+ely, olatwB8+ty,

to form the equation whose roots are these six quantities.
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These functions may be expressed as follows :—
L, L, WL,
M, oM, oM;
hence they are the roots of the equation
(¢ — L) — wL)(¢p — o’ L)(¢ — M)(¢ - 0H)(¢ - 'H) =0,
or ¢ — (L3 + M3 ¢® + IIM3=0.
Substituting for Z and M from the equations

9
Ll[=—i,{, L’+H’=—27qs,
a® a

we have this equation expressed in terms of the coefficients as follows :—

G H?
$+B g3 =0,

10. To form, in terms of L and M, the equation whose roots are the squares of
the differences of the roots of the general cutic equation.
Let
¢=(a=BP;
hence, by former results,
V=3¢ = oL — &N,
Rationalizing this, we obtain
(2 — 2
- 24—
olo-IHP+ =
which is the required equation.
In a similar manner, by the aid of the results of Ex. 8, the equation of
squared differences of this equation, or the equation whose roots are

o,

(B-7)(2a-B-7)% (y—a)(28~7-q), (a—B)}(2y—a—8)
is obtained by substituting — Z? and — M 2 for M and L, respectively, in the last
equation; and this process may be repeated any number of times. Finally, all
these equations may be easily expressed in terms of the coefficients of the cubic by
means of the relations

Ii=—9Z, ad pear--28.
a® e}

For instance, the first equation is

G +4H?
a®

0.

H\3
¢ (¢ +9 .‘T) + 27
(Cf. Art. 42.)
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11. I @, B, v and a’, B°, ¥ be the roots of the cubic equations
az®+ 352 + 3ex + d =0,
@224 3’23+ 36’24+ d' = 0;
to form the equation which has for roots the six values of the function
¢mad + B8 + Y.

The easiest mode of procedure is first to form the corresponding equation for
the cubics deprived of their second terms, viz.,

2+8Hs+G=0, *+3H's+ GF =0,

and thence deduce the equation in the general case; for in the case of the cubics so
transformed the corresponding function

o= (aa + b)(a’a’ + &)+ (aB + B)(a'B’ +¥') + (ay + b)(a"y' + ¥')
= aa’g — 3b%'.

Substituting for the roots of the transformed equations their values expressed
by radicals, we have

9o=0/2+ VWP +v/7) + (/7 + e/ (/7 + w2/
HorV P+ 0V (V7 +0 V7).,

which reduces to
g0=30/5¢" +v/79).
Cubing this, we find
90 = 213/p27a’ ¢ — 21 (pg'+ p'g) = O.
Now, substituting for p and ¢, p’ and ¢’, their values given by the equations
84+ Gz-H*=0, 224+ Gz—-H*=0,
we have the six values of ¢ given by the two cubic equations
¢’ — 2THH’ ¢o — 327- (GG t a4/ 84" = 0,

where
a’A=G*+4H3, and a&%A'=G?+4HS.

Finally, substituting for ¢y its value aa’¢ — 3b4°, and multiplying these cubics
together, we have the required equation. It may be noticed that if one of the
cubics be 23 — 1 =0, ¢ = a + wB + w?y, &c., which case has been already con-
sidered in Ex. 9. Mr. M. Roberts, Dublin Ezam. Papers, 1855.
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12. Form the equation whose roots are the several values of p, where
a—8

= Y
a—=7
and a, B, 7 are the roots of the equation az3 + 3523 + 8ex +d = 0.
Since p involves only the differences, and the ratios of a, B, 7, the result
will be the same if a, 8, 7 be replaced by the roots s, 2, £3 of the equation
24+ 3Hz+ G =0. We have, therefore,

@Rp-Da==(p+1)2z

20~ 1)(p—~2
(P(P-f)Sz )'1"

P

G=s1n(n1+m)=
__(pP=ptl) .
B=="Gv1 o
whence, eliminating z), the required equation is
H{p+1)p-2)(2p-1}*+ G (p*—p+1P=0.
13. Find the relation between the coefficients of the cubics

and similarly

ar’ + 3b2® 43¢z +d =0,
a'z3+ 322+ 3¢'s’ + ' =0,
when the roots are connected by the equation
a(-7)+B(Y-a)+y(@—-F)=0.
Multiplying by @ — w?, this equation becomes
IM =L'M.
Cubing, and introducing the coefficients, we find
the required relation. GHT= G .

14. Determine the condition in terms of the roots and coefficients that the
cubics of Ex. 13 should become identical by the linear transformation

¥ =pr+q.
In this case
ad=patg, B=pB+g ¥Y=pr+g.
Eliminating p and ¢, we have
BY - By+yd—~ya+af —a'B=0,

which is the function of the roots considered in the last example. This relation,
moreover, is unchanged if for a, 8, v; «', 8', 7', we substitute

la +m, IB+m, Iy +m,

la'+m', B +o, I'y'+m';
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whence we may consider the cubics in the last example under the simple forms
$8+3H:+ G0, £+ 3HZ + G =0,
obtained by the linear transformations z = az+ &, ¢ = 4’2’ + &’ ; for if the condition

holds for the roots of the former equations, it must hold for the roots of the latter.
Now putting s’ = &z, these equations become identical if

H'mBH, G =ukG;
GH® = G*H®

is the required condition, the same as that obtained in Ex. 13. It may be observed
that the reducing quadratics of the cubics neceasarily become identical by the same
transformation, viz.,

whence, eliminating %,

'-g—,' (az"+ &) = g(u + b).

60. Homographic Relation between two Roots of a
Cubie.—Before proceeding to the discussion of the biquadratio
we prove the following important proposition relative to the
oubic :—

The roots of the cubic are connected tn pairs by a homographic
relation in terms of the coefficients.

Referring to Exs. 13, 14, Art. 27, we have the relations

a’{ (B-7)+ (v-a)'+ (a-B))=18(a’-awm),
alfa (B=7)'+B (y-a)+y (a-B)*) = 9(ams~aa),
a’{a’ (B-7)"+ By - a)* +v*(a - B)*} =18 (s’ - a.3s).
Using the notation
G- a'=H, aw-aa,=2H, aas—a=H,;

multiplying the above equations by af3, —(a + 3), 1, respectively,
and adding; since

a-a(a+P)+aB=0, B*-B(a+P)+aB=0,

we have
a’(B-7)(y—-a)(a-3)*=18 {HaB + H,(a + 3) + H,};

a'(B-7)(v-a)(a-P)*=-274=108 (HH, - H,)
(see Art. 42); whence

u

ijlé(“ ;3)=HaB+H,(a +B) + H,
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and, therefors,
1A 1 [ A
Haf3 +<E + §J—§>a+(Hx—§ J—§>B+Hz= 0,

which is the required homographio relation. It is to be ob-
served that the coefficients in this equation involve one irra-
tional quantity, the second sign of which will give the relation
between a different pair of the roots.

61. First Solution by Radicals of the Biguadratic.
Euler’s Assumption.—Let the biquadratio equation

ac' + 4b2® + 6c® + 4dr +e = 0
Ye put under the form (Art. 37)

'+ 6Hs + 4Gz + a*I - 3H* = 0,
where g =ar + b,

H=ac-b, I=ae-4bd+ 3¢, G =a’d - 3abe + 20

To solve this equation (a biquadratic wanting the second
term) Euler assumes as the general expression for a root

I
Squaring,
#-p-g-r=2Jqg Jr+ ] Jp+Ip.Jo)
Squaring again, and reducing, we obtain the equation

z‘-—2(p+q+r)s’—88J;J§J;+(p+q+r)’—4(qr+rp+pq)=0.

Comparing this equation with the former, we have

J -
prq+r==3I, qgr+rp+pq= 3H’—%—I, Jp Jg Jr=- g;
and consequently p, ¢, r are the roots of the equation
3
p+3me+ (30 -C0) - o, (1)
4 4
or, since
-@wdH*-a’HI + a*J, (Art. 37),
where

J = ace + 2bed — ad® — eb® - &,
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this equation may be written in the form

4(t+Hp-aI(t+H)+aJ=0;
and finally, putting ¢+ H = 4%, we obtain the equation

46 ~ Ia0 + J = 0. ()

This is called the reducing cubic of the biquadratio equation ; and
will in what follows be referred to by that name. When it is
necessary to make a distinotion between equations (1) and (2),
we shall refer to the former as Euler’s cubic.

Also, since ¢=b® — ac + a0 ; if 0,, 0,, 0, be the roots of the
reducing cubio, we have

p=b-ac+a®0, g=b-ac+a', r=b-ac+al;;

and, therefore,

g =0 —ac+a*0, + [b'—ac+a*d, + b'—ac + a*0,.

If this formula be taken to represent a root of the biquadra-
tic in s, it must be observed that the radicals involved have not
complete generality ; for if they had, eight values of s in place
of four would be given by the formula. The proper limitation
is imposed by the relation

Ip Jg Jr=-2,

which (lost sight of in squaring to obtain the value of pgr)
requires such signs to be attached to each of the quantities

Ip, g, Jr, that their product may maintain the sign deter-
mined by the above equation; thus—

JpJa Jr=dp(-Jo)(-J7) = (-dp)Ja (-7

= (-Jp) (-Jo]r
are all the possible combinations of Jp, Jq, Jr fulfilling
this condition, provided that Jp J_g{, Ir retain the same signs

throughout, whatever those signs may be. 'We may, however,
remove all ambiguity as regards sign, and express in a single
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algebraic formula the four values of s, by eliminating one of the
quantities ,[p, [g, Jr from the assumed value of ¢ by means
of the relation given above, and leaving the other two quanti-
ties unrestrioted in sign. The expression for s becomes therefore

G
- + -
s=dr+ o~ N

a formula free from all ambiguity, since it gives four, and only
four, values of z when ,[p and ,[q receive their double signs:
the sign given to each of these in the two first terms deter-
mining that which must be attached to it in the denominator of
the third term. And finally, restoring to» ¢, and s their values
given before, we have

az + b = [b* - ac + a%0, +Jb’—ac+a’0,
- -»G
2, /b - ac+ a0, . [b'—ac+a%0.

as the complete algebraic solution of the biquadratic equation;
0, and 0, being roots of the equation

" 40°0° ~ Ia0 + J = 0.

To assist the student in justifying Euler’s apparently arbi-
trary assumption as to the form of solution of the biquadratic,
we remark that, the second term of the equation in z being
absent, the sum of the four roots is zero, or 8, + 5, + 25+ 2, =0;
and consequently the functions (2, + £,)?, &o., of which there are
in general siz (the combinations of four quantities two and two),
are in this case reduced to Ziree; so that we may assume

(52 + %)% = (8, + 8,)2 = 4p,
(8 + 2)" = (33 + 2,)* = 4g,
(31 + 53)" = (35 + 2,)° = 4r;

from which we have g, s,, %, %;, included in the formula -

dp +g+]r.
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‘We now proceed to express the roots of Euler’s cubic (1),
and also those of the reducing cubic (2), in terms of the roots
a, 3, v, & of the given biquadratic in 2. Attending to the
remarks above made with reference to the signs of the radicals,
we may write the four values of 2 = az + b as follows : —

aa + b= J;—J?—JT-,
aB+b=-fp+le-Jr,
oy +bmlp-lT oI5
ad +b= [p+[q+d7;

from which may be immediately derived the following expres-
sions for p, ¢, r the roots of Euler’s cubioc:—

=-;—6(ﬁ+7—a—8)’,

()

- ra-B-dy, )
r=f—; (a+B-y=-29)

Subtracting in pairs the equations (§§L,”and making use of
the relations above written between p, ¢, » and 0, 0., 0,, we
easily establish the following useful relations connecting the
"differences of the roots of the cubics (1) and (2) with the diffe-
rences of the roots of the biquadratio: —

4(g-r)=4a(0,-0) =-a"(B-7)(a-3),
4(r-p)=4a(0,-0)=-2a'(y-a)(3-9), (5)
4(p-q)=4a'(0,-0,) =-a'(a -B)(y - 3).
Finally, from these equations, by aid of the relation
0, + 6.+ 0,=0, we derive the values of 0, 0,, 6; in terms of
a, 3, v, 8, viz.,
120, = (y-a)(B-9) ~ (a - PB)(y - 9),
120, = (a -B) (v - ) - (B-7)(a~ 9), (6)
120, = (B-7)(a-8) - (y - a)(B-9).
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ExaMPpLES.

1. When the biquadratic has two equal roots, the reducing cubic has two equal
roots, and conversely.

2. When the biquadratic has three roots equal, all the roots of the reducing
cubic vanish, and consequently I =0, J=0.

3. When the biquadratic has two distinct pairs of equal roots, two of the roots
of Euler’s cubic vanish, and consequently G =0, 4*J - 12H?=0.

4. Prove the following relations between the biquadratic and Euler’s cubic with
respect to the nature of the roots :—

(1). When the roots of the biquadratic are all real, tho roota of Euler’s cubic
are all real and positive.

(2). When theroots of the biquadratic are all imaginary, the roots of Euler’s
cubic are all real, two being negative and one positive.

(3). When the biquadratic has two real and two imaginary rvots, Euler’s
cubic has two imaginary roots and one real positive root.

These results follow readily from equations (4) when the proper forms are sub-
stituted for a, B, 7, 3 in the valuesof p, ¢, r. It is to be observed that all possible
cases are here comprised, the biquadratic being supposed not to have equal roots.
It follows that the converse of each of these propositions is true. Hence, when
Euler’s cubic has all its roots real and positive, we may conclude that all the roots
of the biquadratic are real; when Euler’s cubic has negative roots, we conclude
that all the roots of the biquadratic are imaginary; and when Euler's cubic has
imaginary roots, we conclude that the biquadratic has two real and two imaginary
roots.

5. Prove that the roots of the biquadratic and the roots of the reducing cubic
are connected by the following relations : —

(1). When the roots of the biquadratic are either all real, or all imaginary,
the roots of the reducing cubic are all real; and, conversely, when the roots of
the reducing cubic are all real, the roots of the biquadratic are either all real or all
imaginary.

(2). When the biquadratic has two real, and two imaginary roots, the reduc-
ing cubic has two imaginary roots; and, conversely, when the reducing cubic has
two imaginary roots, the biquadratic has two real and two imaginary roots.

These results follow readily from the preceding example, since the roots of the
two cubics (1) and (2) are connected by a real linear relation.

6. When H is positive, the biquadratic has imaginary roots.
For in that case the roots of Euler's cubic cannot be all positive.

7. When I is negative, the biquadratic has two real and two imaginary roots.
For the reducing cubic has in that case two imaginary roots (Ex. 12, p. 33).
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8. When H and J are both positive, all the roots of the biquadratic are
imaginary.

For, since J is positive, the reducing cubic has a real negative root; there-
fore also Euler's cubic has a real negative root, since ¢ = a*9 — H, and H is posi-
tive; and this is case (2) of Ex. 4. It is implied in this proof that the leading
coefficient 4 is positive ; if 4/ be substituted for Jin the statement of the proposi-
tion no restriction as to the sign of a is necessary.

9. Show that the two biquadratic equations
Aozd + 64322 + 4dsx + A =0
have the same reducing cubic.
10. Find the reducing cubic of the two biquadratic equations
- 6l + 824/ P+ m +#° — Bmn + 3 (4mn — B) = 0.
Ans. 63— 3mnd — (m® + n%) = 0.
11. Prove that the eight roots of the equation
{28 — 61z + 3 (4mn - B)}2 = 64 (P + m® + n® — 3lmn) 23
are gi;ren by the formula

Vitmint/i+em+wnt/1+e'm+ an.
(Compare Ex. 20, p. 34.)
12. If the expression

Vismin+/ Tromtaon+ /1 +am+un
be a root of the equation
s+ 6H? 4+ 4G + a* ] - 3H2 =0,
determine H, I, J in terms of /, m, =.
Ans. H=~1, a?l=12mn, a’J=-4(m+ nd).

13. Write down the formulas which express the root of a biquadratic in the par-
ticular cases when I'= 0, and J = 0.

14. Express, by the aid of the reducing cubic, I and J in terms of the differences
of the roots a, 8, 7, 3. (See Exs. 16, 18, Art. 27.)

15. Express the product of the squares of the differences of the roots a, 8, v, §
in terms of 7 and J.

By means of the equations (5) above given, and the equation (2), p. 82, we ob-
tain the result as follows :—

a* (B-7)* (y—a)* (a—B)* (a — 3)* (B —8)* (v 8)* = 256 (I° - 21J7).

16. What is the quantity under the final square root (viz., that which occurs
under the cube root in the solution of the reducing cubic) in the formula expressing
aroot? Ans. 21J% — I3,

17. Prove that the coefficients of the equation of squared differences of the
biquadratic equation @yz* 4+ 4a12° + 6432 4+ 4asz + a4 = 0 may be expressed in
terms ag, H, I, and J.
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Removing the second term from the equation, we obtain

6H , 4G a?l-3H'

and changing the signs of the roots, we have

6H 4G ap*l — SH‘-

v+ a—ogy’—;o—,y+ P 0.

These transformations leave the functions (a — B)?, &c., unaltered ; but G
becomes — G, the other coefficients of the latter equation remaining unchanged;
therefore @ can enter the coefficients of the equation of squared differences in even
powers only. And by aid of the identity of Art. 37, G may be eliminated, intro-
ducing ap, H, I, J. In a similar manner we may prove that every even function
of the differences of the roots «, B, v, 3 may be expressed in terms of ao, H, 1, J,
the function G of odd degree not entering.

62. Second Solution by Radicals of the Biqua-
dratic.—Let the biquadratic equation
ar'+ 4bx* + 6es’ + 4dzr + e =0
be put, as before, under the form
2+ 6Hs* +4Gs +a*I - 3H* =0,

where s = az + 4.
‘We now assume as the general expression for a root of this

equation
s=Jo Jr+ Jrdp+dp da,
a formula involving three independent radicals, Jp, Jg, Jr-
Squaring twice, and reducing, we have

(-gr—rp—-pg)t=4pgr(Rs+p +q+7r),
or
t—2(qr+rp+pg) st ~8pgrzs+ (qgr+rp+pg) -4 (p+g+7r)per=0.
Comparing this equation with the former equation in s, we
easily find

I-12H
grempepg=-3H, pore-3, prorr= 2T

2G¢ ’
whence, p, ¢, r are the roots of the equation

26t + (12H*- 1) £ - 6HGt + @ = 0.
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This equation may be readily transformed into Euler’s cubie,

or making directly the substitution

(..
t- " 2l G t= 3@ _
K H- a0’
and putting for G* its value in terms of H, I, and J, we may
reduce it to the standard form of the reducing oubio, viz.,

46°6° - Ia0 + J = 0.

It is important to observe that in the present method of
solution we meet with no ambiguity correspondine to that of
Art. 61 ; for the expression here assumed as the value of z has, in
virtue of the double signs of the radicals contained in it, only
Jour values, while the form assumed for s in the preceding Article
has eight values. This appears from the identical equation

2(Jgdr+drdp+ o do)=Cp+ Ja+Jry-p-g-r,

which shows that the number of distinet values of the radical
expression of the present Article is the same as the number of

values of (Jp + Jg + Jr)? namely four.
In order to express p, ¢, r in terms of the roots a, (3,7, & of

the biquadratie, we have, giving to # the four valuer a, 3, v, 3,

simaa +b= Jo Jr=Jr Jp-Jp Ja.
sm=aB+b==Jg fr+ Jr fp-Jp o
smay +b=—Jqg Jr-Jr Jp+Jp Ja
sc=ad +b=Jog Jr+ Jr Ip+ dp Jo

The student may easily satisfy himself that no combination
of the signs of the radicals can lead to any value different from
these four.

From the values of s, + 25 — 2, — 2, and 2,3, — 5,3, we obtain

aB+y-a-8=-4Jg I,
@ (By-ad)+ab(B+y-a~3) =4p . Jg.Jr

’
e
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From these and similar equations we have, employing the rela-
tion G = — 2pgr, the following modes of expressing p, ¢, r in
terms of the roots a, 3, y, 8:—

_ By - ad _ 8@
-p—aB+'y—a—3+b_a’(ﬁ+y—a—8)”
s va — 38 _ 8@

7 a7+a—ﬁ—3+b a(y+a-[3-298)?7
rea af3 - & 8@

a+[3—1—8+ b =a’(a+l$—'y— )

63. Resolution of the Quartic into its Quadratic
Factors.—Let the quartic
az + 402> + 6cx® + ddz + e

be supposed to be expressed as the difference of two squares® in
the form
(az* + 202 + ¢ + 2a0)* ~ (2Mz + N)2.

Multiplying the given quartic by @, and comparing it with
this expression, we have the following equations to determine
A, N, and 0:—

M =b-ac+a, MN=bc-ad+2ab0, N*=(c+2af)’-ae.

Eliminating M and NN from these equations, we find

4a*6° - (ae — 4bd + 3¢*) al + ace + 2bed — ad® — b — ¢ = 0,

which is the reducing cubic before obtained.

From this equation we have three values of 0 (6, 0,, 0,),
with three corresponding values of M*, MN, N*; and thus all
the coefficients of the assumed form for the quartic are deter-

® The reduction of the quartic to the difference of two squares was the method
first employed for the solution of the equation of the fourth degree. This mode of
solution is due to Ferrari, although by some writers ascribed to Simpson (see note A).
The method explained in the following Article, in which the quartio is equated
directly to the product of two quadratic factors, is due to Descartes.
K
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mined in three distinct ways; moreover, it should be noticed
that to each value of M corresponds a single value of N, since

MN = be - ad + 2ab0.
. The quartie
(a2* + 2bz + ¢ + 2a0)* - (2Mz + N)*
may plainly be resolved into the two quadratic factors
a*+2(b-M)z+c+ 2a0-N,
a+2(b+ M)z+c+2a0+N.

When 0 receives the three values 0,, 0,, 0, we obtain the three
pairs of quadratic factors of the original quartie, and the problem
is completely solved.

In order to make clear the connexion between the present
solution and the solution by radicals, let us suppose that the
roots of the quadratic factors in the order above written are
3, y and a, 8; and that the roots of the remaining pairs of
quadratio factors are similarly v, a and f3, 3; a, 3 and v, 3.
‘We have, therefore,

Bty=-2(b-H), y+a=-2(b-15), a+P=-2 (1),

a+8=—§(b+ﬂ;), B+8=—ga(b+ll[,), 7+8=—§(b+1|[.),
where
= [?-ac+a0, M, = [ —ac+a0, M, = |b"—ac+a,
Subtracting the last equations in pairs, we find

R T e T

and sinoe ¢+B+'y+3=-4:—,

we obtain Ga +b=—M + M + M,
aB+b= M, - M, + M,
ay +b= M + M, - M,
ad+b=-My-M,-M,
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It appears, therefore, that the roots of the biquadratic are here
expressed separately by formulas analogous to those of Art. 61.
The values of A, viz. M,? M., M, are in fact identical with
the roots of Euler’s cubic in the preceding Article. There
exists also with regard to the signs of the radicals involved in
M,, M, M, a restriction similar to that of Art. 61; sinece, in
virtue of the assumptions above made with respect to the roots
of the quadratic factors, we have the equation

@B+y-a-8)(y+a-LB-8)(a+B-y-20)=64M, M, X,,
which implies the following relation (see Ex. 20, p. 52) :—
M 1 Mg Ma = %G;
and by means of this relation the signs of Al,, M, M, are re-
strioted in the manner explained in the previous Article.
By aid of the equation last written we can eliminate M,

from the expressions for the roots, and thus obtain, asin Art. 61,
all the roots of the biquadratic in a single formula, viz.,

_G
23,

in which the radicals M, = .| = ac+a°0,, and M= J—ac+a'th
are taken in complete generality.

ar + b=M, + M, -

ExaMpLEs.

1. Form the equation whose roots are A, u, », viz.,
By + a8, ya+ B3, aB+93.
Adding the last coefficients of the quadratio factors of the quartic, we have

ﬂ7+l8=401+2§,
o+ 8= 46427,

aB + yd= 40+ 2:.—‘,

where ), 83, 0; are the roots of the reducing cubic; hence the required equation.

Ans. (az — 20)3 — 41 (ax — 2¢) + 16J = 0.
(Cf. Exs. 4, 5, Art. 39.)

K2
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2. Express, by means of the equations of the preceding example, the roots of
" the reducing cubic in terms of the roots of the biquadratic.

Subaﬁtnﬁngtori-fitsnlneintemoia,ﬁ, 7, 8, wo find immediately

120=2A—p—rm(y-a)(B-23)-(a—B)(y-3),

120, =2u—v ~Am(a—B)(y —8) - (B—7)(a-3),

120=2r —A—pm(B-7) (@ -3~ (y—a) (B-13).
(Cf. (6), Art. 61.)

3. Verify, by means of the expressions for 61, 6, 0 in Ex. 1, the conclusions of
Ex. 5, Art. 61, with respect to the manner in which the roots of the biquadratic
and reducing cubic are related.

4. Form the equation whose roots are the functions

t(Bry-ad)(B+y-a=28), }(ya-BB)(y+a-B-3), }(aB-73)(a+B-7-3)-
From the quadratic factors of the quartic we find

4 M, 2N,
= =htr-e-t -=gy-ab;
also
H;N,=bc—ad+2a“.=-—a’¢.,

the roots of the required cubic being represented by ¢, ¢z, ¢s.
‘We obtain, therefore, the required equation by a linear transformation of the

reducing cubic.
Ans. (6%¢ + be — ad)® — BI(a%¢ + be — ad) — 2057 = 0.

6. Form the equation whose roots are

By —ad va - B3 a8 -8
B+y—-a-~8 y+a-B-8 a+B-y-§

If ¢ denote any one of these functions inditferently, and 6 the corresponding root.
of the reducing cubic, we have, employing former results,

and thus we obtain the required equation by a homographic transformation of the
reducing cubic. This formula may be put under the more convenient form

1
W +b=

by means of which we obtain the required cubic in the following form :—
2G(ag + b + (61 — 12H?) (a¢p + b)* — 6HG (ap + ) ~ G* =0,
which, expanded and divided by a3, becomes
2G ¢ + (a%e + 65% — 9ac® + 2add) ¢ + 2 (abe + 2b°d — 3acd) ¢ + b% — ad? = 0.
(Cf. Ex. 14, p. 88.)
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6. Form the equation whose roots are
a? a? a®
ry (By - ad)?, ry (ya— BB), 1 (aB - y3)%

These are the three values of N2 in the foregoing Article. Representing, as
before, one of these values by ¢, we find that the required equation may be obtained
from the reducing cubic by meauns of the homographic transformation

_ 2bcd — ad® - eb? + 4aldd
- ¢—af :

1. Form the equation whose roots are

By-al ya - B3 aB -3
(B+7)ad—(a+8)BY (y+a)Bs~(B+8)ya" (a+B)ys—(y+3)aB’

The required equation is obtained from the reducing cubic by the homographic

transformation
_ed~ be + 2ado

Ayt
This result may be derived from Ex. § by changing the roots into their recipro-
cals, and making the corresponding changes in the coefficients.

64. The Resolution of the Quartic into ll,na(lrltlé
Factors. Second Method—Let the quartic

az* + 4b2* + 6ca® + 4dz + e
be supposed to be resolved into the quadratic factors
a (2 +2px + q) (2 + 20’z + ¢).
‘We have, by comparing these two forms, the equations

[
a

, b ’ 7’ ¢ ’ 4 d ’
p+e'=2-, g+g+4pp’=6-, pe+p'g=2-, 97 - (1)

If now we had any fifth equation of the form

F(p, '8 P’9 q’) =9,

we could eliminate p, p’, ¢, ¢; and thus find an equation giving
the several values of ¢.

The fifth equation might be assumed to be pp'=¢, or ¢ + ¢’=¢;
and in each case ¢ would be determined by a cubic equation,
since each of these functions, when expressed in terms of the
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roots of the biquadratic, has three values only. It is more con-
venient, however, to assume

2¢

¢ , 1
¢=;—I’P=;\9+9'-;)

the two functions of p, p’, ¢, ¢ here involved being equal by the
second of equations (1). We easily find, by the aid of those
equations,

4abe - 2a*d . 8b¢ .

PP =-—0g 2

and eliminating p, o/, ¢, ¢/, by means of the identical relation
(7' +77)(¢*+ &) = (24 - P'9)" + (pg + F'7)’,
there results the equation
4a’¢? - Iap + J = 0,

which is the reducing cubic obtained by the previous methods
of solution.

Having thus found pp, or ¢ + ¢/, we may complete the
resolution of the quartic by means of the equations (1).

The reason for the assumption above made with regard to
the form of the fifth equation is obvious. From a comparison
of the assumed values of ¢ with the equations of Ex. 1, Art. 63,
it appears that ¢ is the same as 0 in the preceding Article ; and
therefore we foresee that the elimination of p, p’, ¢, ¢’, must lead
to an equation in ¢ identical with the reducing cubic before
obtained. In general, if ¢ represent any function of the differ-
ences of A, u, v, and consequently an even function of the differ-
ences of a, 3, v, & (see Ex. 18, Art. 27), the equation whose
roots are the different values of ¢ cannot involve any functions
of the coefficients except @, H, I, and J.

If ¢ be assumed equal to any of the expressions in the second
of the following examples, the equation in ¢ whose roots are the
different values of this expression is formed as in the above
instance by the elimination of p, p, ¢, ¢
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ExaurLes.
1. Resolve into quadratic factors
o+ 6z + 4G + a3 - SH3,
Comparing this form with the product
(2 + 2z + g)(s* — 2ps + ),
we find the following equation for p :—

4p8+ 12 Hph + 12 (m—%) P=@=0; (cf. (1), Art. 61)

and putting
e¢=p'+ Hm}(g+q —2H),
this equation, when divided by a*, becomes
463’ — Jap + J = 0.
2. If a quartic be resolved into the two quadratic factors
B+pz+q, 2+pz+4¢,
prove that ¢ is determined by a cubic equation when it has all possible values
corresponding to each of the following types:—
9-9¢ ' —2'q pd -9
p-p" p-9’ q-¢
(p-20 (p-2)e—90) (@—0) (pd' - 2'0);
and by an equation of the sixth degree when it has all values corresponding to
Pe P9, 9-¢) P —0'q or P-4

Expressing these functions in terms of the roots, the number of possible values of
each function becomes apparent.

g+¢

65. Transformation of the Biguadratic into the
Reeiprocal Form.—To effect this transformation we make
the linear substitution z = ky + p in the equation

azt + 4b2® + 6ex* + 4dz + 6 = 0,
which then assumes the form
alryt + 4U L + 6UR Y + 4T ky + U, = 0,

where
Ui=ap+b, Uymap*+2p +e¢, Us=ap®+ 3bp* + 3cp +d, &o.
(See Art.35.) If this equation be reciprocal, we have two
equations to determine % and p, viz.,
akt = U, BU, =kU,;;
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eliminating k, we have the following equation for p :—

all - U0, =0;
and sinoe
_z, ap® + 3bp* + 3ep + d

3
k Ux ap+b ’

there are two values of %, equal with opposite signs, correspond-
ing to each value of p.
The equation
alUs- U0, =0,

when reduced by the substitutions (Arts. 36, 37)
aU;= U2 +3HU, + G,

@U=U'+6HU+4QU, +a'1-3H*,
becomes

2QU}+ (@’I-12H*) U*-6GHU,- G*=0, 1)
which is a cubic equation determining U,=ap + 4 ; and if we put

_3¢_
a0 - o’
0 is determined by the standard reducing cubic

4a°0* - Iaf + J = 0.

ap+b=

This transformation* may be employed to solve the biqua-
dratic; and it is important to observe that the cubio (1) which
here presents itself differs from the cubic of Art. 62 only in
having roots with contrary signs.

We proceed now to express & and p in terms of a, 3, v, 8,
the roots of the biquadratic equation. Since the equation in y,
obtained by putting z = ky + p, is reciprocal, its roots are of the

form y,, ¥, —, —; henoce we may write
Ya Y%

1 1
a=ky+p, B=kp+tp, y=k—+p, 3=k —+p;
Y2 A

* This method of solving the biquadratic by transforming it to the reciprocal
form was given by Mr. 8. 8. Greatheed in the Camb. Math. Journ., vol. i.
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and, therefore,
(@=p) (8-p) = (B-p)(y-p) =4,

from which we find

__By-ad

p= I3 +y-a- >
o mB-9@-By -
B+y-a-3

An important geometrical interpretation may be given to
the quantities & and p which enter into this transformation.
Let the distances 04, 0B, OC, OD, of four points 4, B, C, D,
on a right line from a fixed origin O on the line be determined
by the roots a, 3, v, 3, of the equation

art + 4b2® + 6cx® + 4dz + e = 0

also let 0,, 0,, O;be the centres; and F,, F'; F,, Fy; F,, F/,
the fooi of the three systems of involution determined by the
three following pairs of quadratics:—

(@-PB)z-7)=0, (z-a)(z-8=0;
#-7(@-a=0, (2-B)(z-8=0;
(@-a)(z-P)=0, @-7)(=-9)=0.
‘We have then the equations
0,B.0,C=0,4.0,D = O,F?, &,
which, transformed and compared with the equations

(B-p)(y—p)=(a=p)(8-p)=F, &ec.,

prove that the three values of p are 00,, 00, 00, the distances
of the three centres of involution from the fixed origin O. Also
since O,F = &, k has six values represented geometrically by
the distances '

Ox-Fn, OlFl'; O:Fz, Oze’; OaF:, OzE',

where O,F, + O,F = 0, &c., as the distances are measured in
opposite directions.

and
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‘We can from geometrical considerations alone find the posi-
tions of the centres and foci of involution in terms of a, 3, v, ¢,
and thus confirm the results just established, as follows :—

Since the systems {F,BF\’C'} and {F,AF/D)} are harmonio,

2 1,1 1. 1.
FF FB FC FA FD’
and if 2 represent the distance of F, or FY’ from the fixed origin
0, we have
1 1 1 1

x—B+m—1=z-a+z—3'

Solving this equation, we find
By-ad . |~G=a)B-9G-B)z=0

z=ﬁ+y—a—8 ﬁ+1—a—8 ’
or z=pxk,
F, + OF, F, - ’
whence p=2%, k=i0——'—2ﬂl=i0,lf’l.
ExaMpLE.
Transform the cubio
azd+ 3023+ 3ex + d

to the reciprocal form.
The assumption z = ky + p leads to the equation

~GU3 + 3H3U® + H3 =0, where Uy = ap + .
The values of p are easily seen to be

By-a* ya—B? ag-
B+vy—2d 7+a—-28" a+B8-2y

The geometrical interpretation in this case is, that if three points 4', B', C* be
taken on the axis such that 4’ is the harmonic conjugate of 4 with respect to
Band C, B’ of B with respect to Cand 4, and ¢’ of C with respect to 4 and B;
then we have the following values of p and % :—

_04+o04 k_OA—OA'
P= ) ) = 2

For the values of 04°, 0B’, 0C", in terms of «, B, v, see Ex. 13, p. 88.
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66. Solution of the Bigquadratic by Symmetric Func-
tions of the Roots.—The possibility of reducing the solution
of the biquadratic to that of a cubic by the present method
depends on the possibility of forming functions of the four
roots a, 3, vy, 8, which admit of only three values when these
roots are interchanged in every way. It will be seen on refer-
ring to Ex. 2, Art. 64, that several functions of this nature
exist. These, like the analogous functions of Art. 59, possess
an important property to be proved hereafter, viz., any two
such sets of three are so related that any one function of either
set is connected with some one function of the other set by a
rational homographio relation in terms of the coefficients.

For the purposes of the present solution we employ the
functions already referred to in Art. §5, since they lead in the
most direct manner to the expressions for the roots of the bi-
quadratio in terms of the coefficients. 'We proceed accordingly
to form the equation whose roots are the three values of

¢ -(a+ 03 + 6’7+0’3>‘
4 ’

when the roots are interchanged in every way, and 6 = - 1.
These values are

Bry-asdy , (rra=Body . (arB-y-dy
(=) e ) )
and since

B+y-a-38)'==a*+2X-2u-2v,
2(a—B)’E32a’—2X-2ﬂ—2v=—48§,
we find the following values of ¢, &, #:—

2/\—p—v_H 2u—v X_H w-A-pn g

12 a*’ 12 a*’ 12 a’

whence t,+t,+t,-_3‘g.
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Again, since

2(2;4—1:—)«)(21:—)-#)=—3(A'+p’+v’—pv—vl—kn}=—g = (u-v),

and S(u-v)= 245,,
we have
mH 1 3H* I
tils + Gty + 6t = 3';‘ - '9—6 z(ﬂ—v),- —a‘— - 4_—8’;
also . tltgt;"

1
Hence the equation whose roots are ¢, £, ¢, becomes
3
(@'t + 3H (a*t)* + (315!1 - “T (%) - % =0;
or, substituting for G® its value from Art. 37,
4 (a*t+ H*-a'I(a*+ H) +a*J =0,

which is transformed into the standard reducing cubic by the
substitution a*¢ + H = a'0.

To determine a, (3, v, & we have the following equations : —
—a+B+y-3=4t, a-B+y-8=4[0, a+f-y-3=4]4
along with a+ﬁ+1+3=—4£;
from which we find

N Y A

S I PN
N A

S A [ 5
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Wo have also from the above values of ,[#, /&, J% the
equation

@
JTIJTSJZ'= 2_11’.’

by means of which one radical can be expressed in terms of the
other two, and the general formula for a root shown to be the
same as those previously given.

It is convenient, in connexion with the subject of this Article,
to give some account of two functions of the roots of the biqua-
dratic which possess properties analogous to those established
in Art. 59 for corresponding functions of the roots of a cubio.
Adopting a notation similar to that of the Article referred to,
we may write these functions in terms of A, u, v in the follow-
ing form :—

L = (By +ad) +w (ya+B3) + w'(afB +v3),
M = (By + ad) + w¥(ya + 33) + w (af3 + ¥9).

By means of the equations of Ex. 1, Art. 63, these functions
can be expressed in terms of the roots of the reducing cubic in
the form

-}L=0;+w9;+w’0,, -}M=0.+w’0, +w9;.

They may also be expressed, by aid of the equation of the
present Article connecting ¢ and 0, in terms of the values of
ty &y 4, as follows :—

-}L=t1+wt,+w’tg, {-M=t1+w’t,+wt,.

The functions L and M are as important in the theory of
the biquadratio as the functions of Art. 59 in the theory of the
cubic. The cubes of these expressions are the simplest functions
of four quantities which have but fwo values when these quanti-
ties are interchanged in every way; they are the roots of the
reducing quadratio of the reducing cubic above written, and
underlie every solution of the biquadratic which has been given.
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ExavpLEs.

1. Show that Z and 3f are functions of the differences of «, 8, ¥, 3.
Increasing a, B, ¥, 3 by A, L and M remain unaltered, since 1 + w + o? = 0.

2. To find in terms of the coefficients the product of the squares of the differ-
ences of the roots a, B, v, 3.
From the values of Z and M in terms of 6,, 6,, 85, we find easily

120= L+ X, L- M=(B-7)(a—3) («*~w),
120 = 'L+ oM, L- oM=(y-a)(B-23)(a®— ),
120; = wlL + oM, oL —w*M = (a — B) (7— 3) (w?— ).
Again, from these equations, multiplying the terms on both sides together, and
remembering that 6;, @3, 63 are the roots of

40’ - Ia0+J =0,
we find

l’+1{’=—432{3,
@

L3 - M*=3V-3(B-1)(y-a)(a—B)(a-8) (B-3)(v-3);
also, adding the squares of the same terms, we have

2LM = 24 L= (B ) (a8 4 (y— ) (B= B+ (a— B)" (- 355
and, since

(L3 - AP = (I’ + M) — 4 LMD,

substituting for these quantities their values derived from former equations, we
have finally

a® (B~ (y—a) (a—B)* (a—3)2(B — 8)* (v — 8)* = 256 (I° - 27J7).

3. Show by a comparison of the equations of Art. 69 with those of the present
Article that the results of the former may be extended to the biquadratic by changing
B~7, y—a, a~B into ~(B—7v)(a—38), —(y—a) (B-3), ~(a—B)(y~-3),
. 4 .
respectively ; and, at the same time, H into -3 I, and & into 16/,

67. Equation of Squared Differences of a Bigua-
dratic.—In a previous chapter (Art. 44) an account was given
of the general problem of the formation of the equation of dif-
ferences. It was proposed by Lagrange to employ this equa-
tion in practice for the purpose of separating the roots of a
given numerical equation ; and with a view to such application
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he calculated the general forms of the equation of squared dif-
ferences in the cases of equations of the fourth and fifth degrees
wanting the second term (see T'raité de la Résolution des Equa-
tions Numériques, 3rd ed., ch. v., and note 11.). Although for
practical purposes the methods of separation of the roots to be
hereafter explained are to be preferred; yet, in connexion with
the subjects of the present chapter, the equation of squared
differences of the biquadratic is of sufficient interest to be given
here. We proceed accordingly to calculate this equation for a
biquadratio written in the most general form. It will appear,
in accordance with what was proved in Ex. 17, Art. 61, that
the coefficients of the resulting equation can all be expressed in
terms of a, H, I, and J.

The problem is equivalent to expressing the following product in terms of the
coefficients of the biquadratic

{o— (8- Ho-(v-a)?'} {¢—(a-BP}{#—(a— 8} {o - (B- 3} {¢-(r-8)%}.
The most convenient mode of procedure is to group these six factors in pairs,
and to express the three products (which we denote by ITy, Iz, IT;) separately in terms

of the roots of the reducing cubic, and finally to express the product IT; I3 ITy in
terms of a, H, I, J.

M=¢*- {(B~7)+(@-3)} ¢+ (B-9) (a-3);

and, by aid of the results of Art. 61 we easily derive the following expressions for
8-, (@~ 3)*—

3 — " T H\*
(»\,01- 2 J’a——)y 4(J92—§+J03—§);
hence, without difficulty,
m=¢*+ (89;+16 ) ¢+4£—48039;

Introducing now for brevity the notation
16H = aP, 4I=a?Q, 16J=a%R, ¢*+ Pp+Q=v,
I; becomes ¥ + 80,9 — 480:03.
Reducing the product I; IT; I by the result of Example 18, page 89, we obtain
¥+ 3Q¥? - (4Q¢* + 18R) ¥ — (8R9* + 12Q%p2 + 36QRp + 27R?) = 0.

Finally, restoring the value of ¥, we have the equation of squared differences ex-
pressed in terms of P, Q, R, as follows :—

%+ 3PpP + (3P2 + 2Q) ¢+ (P + BPQ— 26R) ¢
+(6P°Q - 7Q* — 18PR) ¢*+ 9Q(PQ — 6R) ¢ + 4Q°— 2TR: = 0.
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The following is the final equation in terms of @, H, I, J* :—
%98 + 4808 Hob + 8a? (96H? + a*I) ¢ + 32 (128H3 + 1662 1T — 13277 ) ¢?
+16 (384 H?T — Ta* I~ 288aHJ) ¢ + 1152 (2HI- 3aJ) Ip + 256 (I3 — 27J%) = C.

It should be observed that the value above obtained for IT; can be expressed as a
quadratic function of 6; by aid of the equation 8363 = 6,2 — 4—Ia—,, and the subsequent
calculation might have been conducted by eliminating 0, between this quadratic and
the reducing cubic.

68. Criterion of the Nature of the Roots of the
Biquadratic.—Before proceeding with this investigation it is
necessary to repeat what was before stated (Art. 43), that when
any condition with respect to the nature of the roots of an
algebraic equation is expressed by the sign of a function of the
coefficients, these coefficients are supposed to represent real
numerical quantities. It is assumed also, as in the Article re-
ferred to, that the leading coefficient does not vanish.

Using as before A to represent that function of the coef-
ficients (called the discriminant) which is, when multiplied by a
positive numerical factor, equal to the product of the squares of
the differences of the roots, we have, from the results established
in preceding Articles, the equation

a*(B-v) (y-a)*(a-B) (a-8)*(B- ) (y-3)*=2564,
where A=1I-27J%

It will be found convenient in what follows to arrange the
discussion of the nature of the roots under three heads, accord-
ing as—(1) A vanishes, or (2) 8 negative, or (3) 18 positize.

(1) When A vanishes,theequation hasequalroots. Thisisevident
from the value of A above written. Four distinct cases may be
noticed—(a) when two roots only are equal, in which case J and J
do not vanish separately ; ([3) when three roots are equal, in which
case I = 0, and J = 0, separately (see Ex. 2, Art. 61); (y) when

¢ The equation of squared differences was first given in this form by Mr. M.
Roberts in the Nouvelles Annales de Mathématiques, vol. xvi.
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two distinct pairs of roots are equal, in which case we have the
conditions @ = 0, @’ - 12H*= 0 (Ex. 3, Art. 61). It can be
readily proved by means of the identity of Art. 37 that these
conditions imply the equation A = 0; hence these two equations,
along with the equation A = 0, are equivalent to two indepen-
dent conditions only. Finally, we may have—(38) all the roots
equal; in which case may be derived from Art. 61 the three
independent conditions H =0, I'=0, and J = 0. These may
be written in a form analogous to the corresponding conditions
in case (4) of Art. 43.

(2) When A is negative, the equation has two real and two ima-
ginary roots.—This follows from the value of A in terms of the
roots: for when all the roots are real A is plainly positive ; and
when the proper imaginary forms, viz., s + &k, [-1, ¥ + ¥ |- 1,
are substituted for a, (3, v, 3, it readily appears that A is positive
also when all the roots are imaginary.

(3) When A 18 positive, the roots of the equation are either all
real or all imaginary.—This follows also from the value of A, for
we can show by substituting for a, 3 the forms 4 + £ /—1 that
A is negative when two roots are real and two imaginary.
In the case, therefore, when A is positive, this function of the
coefficients is not by itself sufficient to determine completely the
nature of the roots, for it remains still doubtful whether the
roots are all real or all imaginary. The further conditions
necessary to discriminate between these two cases may, however,
be obtained from Euler’s cubic (Art. 61) as follows :—In order
that the roots of this cubic should be all real and positive, it is
necessary that the signs should be alternately positive and
negative ; and when the signs are of this nature the cubic cannot
have a real negative root. We can, therefore, derive, by the
aid of Ex. 4, Art. 61, the following general conclusion appli-
cable to this case :— When A s positive the roots of the biquadratic
are all imaginary in every case except when the following conditions
are fulfilled, vis., H negative, and a*I — 12 H® negative ; tn which
case the roots are all real,
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ExaupLes.

1. Show that if H be positive, or if H= 0 (and & not = 0), the cubic will have
a pair of imaginary roots.

2. Show that if H be negative, the cubic will have its roots—(1) all real and
unequal, (2) two equal, or (3) two imaginary, according as G? is—(1) less than,
(2) equal to, or (3) greater than — 4 H3,

3. If the cubic equation

@z® + 841283 + Basr + a3 = 0

have two roots equal to a; prove

e B
H "
where agas — 61 m H, aeas — 6103 m 2H,, ajay—ay*m H,.
4. If ar’+ 8623 + Bez+d+ k(z-r)?

be a perfect cube, prove
(ac — 83) 93 + (ad — be)r + (84 — ¥) = 0.
6. Find the condition that the cubic
ar®+ 3023+ 3cx + d
may be capable of being written under the form
Hz—a)+m(z— B +n(r—m),
where ay, 81, 71 are the roots of the cubic
a1 2® + 30123 + 3oz + d) = 0.
Comparing the forms we have
e=l+m+n,
= b=la1+ mB) + 0y,
¢ = la;® + mB1? + nys?,
=d=la®+ mB® + nyd.
Also a1a® + 3 ar® + 3era1 + dy = 0, &o.

‘Whence, multiplying these equations by di, 3¢, 321, 41, respectively, and adding,
we find the required condition

(ad; -— a;d) -3 (501 - blc) =0,
6. If m, B, 7 be the roots of the cubic equation

a0z® + 3a12% + 3azx + a3=03
rationalize the equation
{/z—a+w—ﬂ+:/z—1=0;
and express the result in terms of the coefficients 4, a1, a3, as.
Ans. 126U* + 360HU,* + 128G T, - 48H? = 0.
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7. If a1, B1, and a3, B2 be the roots of the quadratic equations
@+ 20z +e1=0, a4+ 20246 =0;

find the equation whose roots are the four values of aiaa.

Let Himaey—5% Hzmascs—Dbst.

Ans. (816293~ 251 529 + c163)2 — 4 Hy Hap? = 0.

N.B.—This and the two following Examples may be solved by expressing ¢ by
radicals involving the coefficients. i

8. Employing the notation of Ex. 7, form the equation whose roots are the

a t a3
four values of ———«

Let 2Ki3=aic3 + azey + 25,5,
Ans. (2a1a:93+2(a183 + a3d)) ¢ + Ki3)? — Hy Hy = 0.
In this Example the resulting biquadratic is such that @ = 0.
9. In the same case, if ¢ = § (a1 — a2)?, form the equation whose roots are the
several values of ¢.
Let M=aybs~ash, 2Hiy=a1e3 + azer — 251 55,
Ans. {(a1a:¢ + Hua)* - 21¢ + Hy Hy }* = 4 Hy Hz (a162¢ + Hya)3.

10. Show that when the biquadratic has a double root, the cubic whose roots
are the values of p (Art. 65) has the same double root; and find what this cubie
becomes when the biquadratic has three roots equal.

11. If H and J be both positive, prove directly (without the aid of Euler's
cubic) that the roots of the biquadratic are all imaginary.

It appears from the expression for H in terms of the roots (Ex. 19, p. 62) that
when H is positive there must be at least one pair of imaginary roots 4 + s vV~ 1,
Now diminishing all the roots by 4, and dividing them by % (which transformations
will not alter the character of the other pair of roots v, 3, nor thesigns of 2/ and J )
the biquadratic may be put under the form

(#* + 4pz + g) (8* + 1),
or 28 4 4p2° + 6e2? + 4pz + ¢, where 66 =g +1;
whence H=c¢~p% I=g-4p*+33,

J=go+20%-ptgt1) - =c(g—4p*-¢),
and therefore

J J
- 2 11 - 212
g-dpt=t+ T=(H+ V4 7

or -(72;‘_8)’= (H+p’),+i¢:—‘)—,,

proving that o and 3 are imaginary when H and J are positive (cf. Ex. 8, Art. 61).
L2
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12. If the biquadratic has two distinct pairs of equal roots, prove directly the
relations

6l = 12H3, aJ=SHO.

In this case the biquadratic divided by 4 assumes the form

e (-8 - ()T - (5

where s=aor + a1, and £=5‘_ﬂ;
do 3
whence, comparing the forms
= 25383 1 k¢
and st + 6Ha® + 4Gz + ap*T — 3H?,
we find SH==-8, G=0, a’[-3H =M,

from which the above relations immediately follow. The student will easily estab-
lish the identity of these relations with those of Ex. 3, Art. 61. Also it should be
noticed that in this case only one square root is involved in the solution of the
biquadratic (coming from the solution of the quadratic (z - a) (z — 8) ).
13. Find the condition that the biquadratic may be capable of being put under
the form
1@+ 202+ ¢)2 +m (3% + 2pz + g) + .

In this case the second and fourth coeficients are removed by the same trans-
formation, and the general solution involves only two square roots.
Ans. G =0.
14. Prove that J vanishes for the biquadratio

m(z —n)b—n(z—m),

15. If the roots of a biquadratic, a, B, 7, 8 represent the distances of four
points from an origin on a right line; prove that when these points form a har-
monic division on the line the roots of Euler’s cubic are in arithmetic progression,
and the roots of the cubic of Art. 62 in harmonic progression.

16. Form the equation whose roots are the six anharmonic functions of four
points in a right line determined by the equation

@ozt 4 4a2° + 6a32? + 4ayr + a4 = 0.

The six anharmonic ratios are

1 LI
¢1 ¢l, ()] ¢’9 3, “'
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(a—B)(y=3) A—p_61—0s

where M B A= B8
proaBoNE=8 pr 66

T @G-8 m-A a-6
-_(1—a)(ﬂ—8)='—A-’a—0|.

BT (B—a-8) r=p -6’

also the equation whose roots are
B=7)(a=13), (y—a)(B-3), (a—B)(r-?)
is one of the cubics

a*t® — 12a0It £ 16 /13 — 277 m 0.

The equation whose roots are the ratios, with sign changed, of the roots of sither
of these cubics is
4A (p*—9 + 1)3 = 211%%(¢p—-1)2=0 (see Ex. 15, p. 88),

where Awm]I-27)%,

The roots of the equation in ¢ are the six anharmonic ratios. This equation
can be written in a more expressive form, as will appear from the following propo-
~itions :—

(). The six anharmonic ratios may be expressed in terms of any one of them,
as follows :—

1 RN Juk S 2N
9)? 1-¢, i—¢ ? 'o-1
From the identical equation

B-—Na-8+@¥—a)(B=8)+(@-B)(y—3)=0
we have the relations

1 1 1
¢1+;=1' ¢’+¢—1=1’ ¢s+;=l’

which determine all the anharmonic ratios in terms of any one of them.

(). If two of the anharmonic ratios become equal, the six values of ¢ are
—w and — o?, each occurring three times; and in this case = 0.

For suppose ¢ = ¢3; we have then from the second of the above relations

- +1=0,
whence $1=—o, or —o?;
and substituting either of these values for ¢ in (), we find all the anharmonic ratios.
Also, since

A- -
A_‘:+’;T”=0, or 3(#-')’-0,

we have
Imagay — 4a103 + 8a32 = 0.
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(). When one of the ratios is harmonic, the six values of ¢ are —1, 2, %, each
ocourring twice : and in this case J = 0; for if
A -
=-1, —F=—l. or2A—pu—py=0,
A—v»

one of the factors of J (see Ex. 18, p. 52).
(d). These results, as well as the converse propositions, may be proved by
writing the sextic in ¢ under the following form (see Ex. 12, p. 119):—
Plle+1)(9-2)(¢ - D} = 2172 { (¢ + w)(0 + o) 2.
17. Show that the equation
(x’+ 142 + l)s z(z-1)
Pt 14p°+1] PP 1)
is satisfied by the solutions which follow :

1 (1+0vp\
-3 - here 6¢ = 1.
"’P’ (1-02)"'

18. Express X(a— B8)*(y — 3)? as a rational function of 6,, 63, 6 ; and ultimately
in terms of the coefficients of the quartic.

Ans. —128 3 (03 = 63)? (o. +2§) = 9-5(4HI+ 3aJ).

19. Express
(8= 7 (a® ~ B+ (77— (B — 81 + (a® - B (" - B

as a rational function of 6y, 03, 6s.
This symmetric function is equivalent to

e\?
(3 = #3)8 + (57 = AT+ (A? - )" = 2663 (0 - 6)? (o, - ;).

20. Form the equation whose roots are the several products in pairs of the
roots of a biquadratic.
The required equation is the product of three factors of the type

(P=BN(@-ad) =P 20+ =9 ~2204+° - 490,

Ans. (ap®—2c¢ + )3 — 419 (ap? —2cp + ¢) + 1693 = 0.

a+ B

21, Form the equation whose roots are the several values of , where

a B, 7, 5 are the roots of a biquadratio.
The required equation is the product of three factors of the type

_ﬁ+‘y _¢+8 .3 b ntr f ¢
(¢=237) (- 230) w4204t = preag0s -0

Ans. 4 (ap?+25p+ e ~T(ap?+2bp+c)+J = 0.
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22. Prove

1 91 (3a] - 2HI) .
@ =B8)? ?( I3227J%

From the expressions for a, B, 7, 3 in terms of 6, 63, 65, we have

z 1 _l_ {a?e, +2H a2+ 2# 4?03+2H}
(a—B  2a3|{02— 0 = (6s—01)% (61 — 623 §°

which may be expressed in terms of @, H, I, J, as above.

gy
23. Prove =0,

oo™
if T =0, and m of the form 3p or 3p + 1, p being a positive integer.

24. Prove that
U = ax? + cy? + e2® + 2dys + 2ezz + 2bzy

can be resolved into the sum or difference of two squares if
J = ace + 2bcd — ad? — ¢b? —~ 3= 0.
Here al e (az + by + cz)3 + (ac — 8%)y? + 2 (ad — be)ys + (a8 ~ %82,
and (ae — 82)y® + 2(ad — be)ys + (ae — 6*) 8*
is a perfect square if
(a0 — &%) (a0 — ) = (ad — bo)?,
or J=0.
25. If a, B, 7, 3 be the roots of the equation
a7t + 46133 + 6422 + dasx + a4 = 0,

solve, in terms of the coefficients a,, a), &c., the equation

Vi-a+Vz-B+Vz—9+Vz-8=0.
When Va+VB+Vy+VE=0
is rationalized, and the coefficients substituted for a, 8, 7, 8, we have
(3a0az — 2a,3)? = ac®aq.

Now, substituting Uy, U1, Uz, Us, U for ao, ay, a3, as, a, and redueang, we find

1 ao'I
M"'GXE—G (3E’— T)O
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26. To express the solution of the biquadratic in terms of a single root of the
reducing cubic.
Substituting 2’ + p for x in the equation

art 4 4523 + 6cz3 + 4dr 4+ 6= 0,
we have
6z’ + 40123+ 86Uz  + 4 Usz’ + Uy =0,

As there are here two independent variables at our disposal, it is allowable to
make the assumptions

azd + 6Ua? + Uy =0, Ui+ Up=0.
Eliminating 2%, and reducing as in Art. 65, we have
40 - IU3+J=0;

whence Us = a8, where @ is a root of the reducing cubic, and therefore

. Ui=ap+ bd=mvVa'e - H.
Again,
Us 1

¢
= —— 3 — 1
Fe-g= ‘,(U. +m+vl),

whence, finally, since 2 =2’ + p, or az + b = U; + az’, we have

G
a0 - H— ——
a4 b=V H a2~ =L
an expression which has only four values.

This expression might of course be obtained from the resulting formula of
Art. 61, or from that of Art. 63. The method of arriving at it in the present
Example is a distinct method of solving the biquadratic.

27. Prove that every rational algebraic function of a root ¢ of a given cubic
equation can in general be reduced to the form

* Co + 10
Do+ D\

Let the given function be :T-(g, where ¢ (6) and  (6) are rational integral func-
tions of 8 of any order. By successive substitutions from the given cubic each of
these may be reduced to a quadratic. Hence the given function is reducible to the
form

0 + 010 + caf®
) do+d\0 + d0*
Equating this to the form written above, and reducing by the given cubic, we
obtain an identical equation, viz.

Lo+ L0 + L6* = 0, /
where Lo, Ly, Ls are linear functions of Co, Ci, Do, D1, We have, therefore, ¢&i6

three equations Ly = 0, L; = 0, L3 = 0, to determine the ratios of Co, O,y.bof D,.

s
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28. Prove that the solution of the biquadratic does not involve the extraction
of a cube root when any relation among the roots a, 8, 7, 3 exists which can be
expressed by the vanishing of a rational function of a root 8 of the reducing cubic.

Any rational function of @ can always be depressed to the second degree, as in
the preceding example. Hence the determination of  will not involve the extrac-
tion of a cube root ; and the formula of Ex. 26 shows that the expression for the
root of the biquadratic will not then involve any cube root.

29. Find in each case the relation which connects the roots of the biquadratic
when the equation
4p-Ip+J=0

is satisfied by any of the following values of p :—

H

a y

(1)

@ e @0 &) =3 © :/ oo «/r‘; mY @z

A4ns. (1) B+y-a—8=0 (2) B+y=0, (3) (y—a)(B-38)-(a—B)(r-3)=0,
(4), (8) By—ab=0, (6) (y—a)(B—3)—w(a—B)(y—8)=0, (6), (7) B—7=0.

30. Prove the identity
ag® (I3 - 27J%) = (ag* T~ 3H?) (a* T —12H®)? + 276G (@R + 2a"7).

This may be proved as follows :—Putting a; = 0 in the values of 7 and J, and
expanding, it readily appears that the part of A independent of &, may be thrown
into the form

a0ay (Goas — 9a2%)? + 27agas* (26002 84 — Goas® — 2a5%).

Now, replacing as, as, ay by 43, A3, Ay, and substituting for the latter quanti-
ties the values of Art. 37, we obtain the result.—Mr. M. RoBerTs.

31. When a biquadratic has two equal roots, prove that Euler’s cubic has two
equal roots whose common value is

3aJ — 2HI
21 ’

and hence show that the remaining two roots of the biquadratic in this case are
real, equal, or imaginary, according as 2HTI — 3aJ is negative, zero, or positive.

32. Prove that when a biquadratic has—(1) two distinct pairs of equal roots the
last two terms of the equation of squared differences (Art. 67) vanish, giving the
conditions A=0, 2HI - 3aJ = 0; and when it has—(2) three roots equal, the last
three terms of this equation vanish, giving the conditions /=0, J=0; and show
the equivalence of the conditions in the former case with those already obtained in
Ex. 3, Art. 61, and Ex. 12, p. 148. Prove also that the equation of squared dif-
ferences reduces in the former case to ¢? (a3 + 12H)$, and in the latter case ta
¢ (@°¢ + 16H)".



CHAPTER VIIL

PROPERTIES OF THE DERIVED FUNCTIONS.

69. Graphic Representation of the Derived Func-

tion.—Let APB be the A B
curve representing the po- Y /
lynomial f(z), and P the \ Q/
point on it corresponding PL s

to any value of the varia-
ble z = OM. We proceed to
determine the mode of re- T ofR M N X
presenting the value of f'(z) /
at the point P. Take a
second point @ on the curve,
corresponding to a value of Fig. 5.

z which exceeds OM by a small quantity 4. Thus

OM=2, MN=h, ON=2z+h;
also PM -f(z), QN =f(z+h).
The expansion of Art. 6 gives
rerm =r@er @h+ LD we

w - f @)+ -’:(Z)h oo )

or

fle+h) -f(z) QS QS -
But __—I;—__—ll—ﬁ—\r:l’b‘_tan QPS8 = tan PRN.

Now, when 4 is indefinitely diminished, the point Q approaches,
and ultimately coincides with, P; the chord PQ becomes the
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tangent PT to the curve at P ; the angle PRN becomes PTM.
Also all terms of the right-hand member of equation (1) except
the first diminish indefinitely, and ultimately vanish when 4=0.
The equation (1) becomes therefore

tan PTA =1 (2);

from which we conclude that the value assumed by the derived
Junction [’ (z) on the substitution of any value of z is represented by
the tangent of the angle made with the azis OX by the tangent at
the corresponding point to the curce representing the function f (z).

70. Maximum and Minimum Values of a Polyno-
mial. Theorem.—Any talue of z which renders f(z) a maxi-
mum or minimum 18 @& root of the derived equation f' (z) = 0.

Let a be a value of # which renders f(2) a minimum. We
proceed to prove that f* (r) =0. Let 4 represent a small incre-
ment or decrement of 2. 'We have, since f(a) is & minimum,

S (a) <f(a + h), also f(a) <f(a - A);

hence f(a + A) — f(a), and f(a — &) - f(a) are both positive, i.e.
the following two expressions are positive :—

/"’(a)

S (a)h+ B+, ’

-f (a )h+f' (a)h .......

Now, when 4 is very small, we know (Art. 5) that the signs
of these expressions are the same as the signs of their first
terms; hence, in order that both should be positive, f* (a) must
vanish ; and, moreover, f” (a) must de positive. An exactly
similar proof shows that when f(a) is & mazimum f’(a)=0,
and f” (a) is negative. 'Thus, in order to find the maximum and
minimum values of a polynomial f(z), we must solve the equa-
tion f’ (z) = 0, and substitute the roots in f(z). Each root will
furnish a maximum or minimum, the criterion to decide between
these being the sign of /” (¢) when the root is substituted in °
it—when f” (x) is negative, the talue is a mazimum ; and when
I () 48 positive, the value is a minimum.
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The thecrem of this Ar- Y
ticle follows at once from
the construction of Art. 69 ;
for it is plain that when the
value of f(#) is a maximum, A
as at P, P (fig. 6), or a M
minimum, a8 at p, p, the
tangent to the ocurve will
be parallel to the axis OX,
and, consequently, : Fig. 6.

tan P7M =1’ (z) = 0.

Fig. 6 represents a polynomis! of the 5th degree. Correspond-
ing to the four roots of /" () = 0 (supposed all real in this case),
vis. OM, Om, OM’, Om’, there are two maxima, P, M'P’; and
two minima, mp, m'y’.

Exaurres,
1. Find the max. or min. value of
J(s)m 23+ g6,
S (@)mds+1, f(s)m4.
c:--—-:- maku,f(z)-'-—-?,sminimnm.
(See fig. 2, p. 15.)
2. Find the max. and min. values of
J (2) = 223 — 3s* — 362 + 14,
S(s)=6(s*—2c—6), f"(r)=6(2c—1).
& = — 2 makes f(¢) = 68, a maximum.
£w= 3 makes f(z) = — 67, & minimum.
3. Find the max. and min. values of
S(z) m 828 —163% 4+ 653482 + 7.
Here f’ (x) = 0 has only one real root, # = 4; and it gives a minimum value,

S(z) =—345.
4. Find the max. and min. values of

S(5) =108 — 175 + 6 + 6.

The roots of f’(z) are, approximately, 0802, 1:1031. The former gives a
maximum value, the latter a minimum. (See fig. 8, p. 16.)
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71. Rolle’s Theorem.—Between two consecutive real roots
a and b of the equation f(z) = O there lies at least one real root of
the equation f’ (z) = 0.

For as z increases from a to b, f(z), varying continuously
from f(a) to f(b), must begin by increasing and then diminish,
or must begin by diminishing and then increase. It must,
therefore, pass through at least one maximum or minimum
value during the passage from f(a) to f(4). This value (f(a),
suppose) corresponds to some value a of z between a and &,
which by the theorem of Art. 70 is a root of the equation
S (z) =0.

The figure in the preceding Article illustrates this theorem.
We observe that between the two points of section 4 and B
there are three maximum or minimum values, and between the
two points B and C there is one such value. It appears also
from the figure that the number of such values between two
oconsecutive points of section of the axis is always odd.

Corollary.— T'wo consecutive roots of the derived equation may
not comprise between them any root of the original equation, and
never can comprise more than one.

The first part of this proposition merely asserts that between
two adjacent zero values of a polynomial there may be several
maxima and minima; and the second part follows at once
from the above theorem ; for if two consecutive roots of /*(z) = 0
comprised between them more than one root of f(z) = 0, we
should then have two consecutive roots of this latter equation
comprising between them no root of f* (z) = 0, which is contra-
dictory to the theorem.

72. Constitution of the Derived Functions.—ILet the
roots of the equation f(z) = 0 be ay a3, as, ... a,. We have

S(@)=(z-a)(z-a)(@=-a)...(2-an)
In this identical equation substitute y + z for z;
Sy+a)=(y+z-a)(y+z-a)... (y+2-a,)
=Y QYT QY+ Gy + g,
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where
@i =Z-a,+Z-a3+Z-as+...+2-ap
o =@-a)(T-w)+t(@Z-a)@-a) +...+ (2~ an) (- an),
1= (Z—ar))(—ay) ... (Z—ap)+ (Z-a))(@—as) ... (x —an) + ...
+(E-a)(Z-a)... (% — ani),
g =EZ-a)(z-a)(z-a) ... (2-an).
‘We have, again,

Syva) =f@ e @+ I e

Equating the two expressions for f (¥ + z), we obtain
f@=@E@-a)@Z-a) ... (- a),

S @) =(@-a)(z~-a)...(x-as) + ...., a8 above written,

f"()

= the similar value of ¢,_, in terms of z and the roots,

The value of /* () may be conveniently written as follows : —

(=) = f(a:) f(_x)+““+____f(x) .

-a; &~ a 2 - ay

73. Multiple Roots. Theorem.—A multiple root of the
order m of the equation f(z) =0 s a multiple root of the order
m~1 of the first derived equation f’ (z) =

This follows immediately from the expression given for f* (2)
in the preceding Article; for if the factor (z — a;)™ occurs in
f(z), t.e.ifay=a;=...=am; We have

W, Se), L

x—ﬂnm Z - ay

S (@) =

Each term in this will still have (z — a,)™ as a factor, except
the first, which will have (- a,)™" as a factor; hence (z - a,)™
is a factor in f” ().
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Cor. 1.—Any root which occurs m times in the equation
S(z) = 0 occurs tn degrees of multiplicity diminishing by unity in
the first m — 1 derived equations.

Since /' (z) is derived from f’ (z) in the same manner as f* (z)
is from f(z), it is evident by the theorem just proved that f” (z)
will contain (z — a;)™* as a factor. The next derived function,
S (x), will contain (z — a,)™*; and so on.

Cor. 2.—If f () and its first m— 1 derived functions all vanish
Jor a value a of z, then (z — a)™ 18 a factor in f(z).

This, which is the converse of the preceding corollary, is
most readily established directly as follows :—Representing the
derived functions by f, (z), /2 (2), . . . « fma (¢) (see Art. 6), and
substituting a + # - a for z, we find that f () may be expanded
in the form

S(a) +fi(a) (z-a) + f’ (a) z-a)’+...+ io oo éff':‘.(:z_l (z=a)™!

fn(a) (z )

fm (")

*1.2...m

(x a™+...
from which the proposition is manifest.

74. Determination of Multiple Roots.—It is easily
inferred from the preceding Article that if f(z) and f’(z) have
a common factor (z — a)™, (z — a)™ will be a factor in f(2) ; for,
by Cor. 1, the m — 2 next succeeding derived functions vanish
as well as f(z) and f’ (2) when 2z = a; hence, by Cor. 2, a is &
root of f(z) of multiplicity m. In the same way it appears that
if f(«) and f’(z) have other common factors

(x - ﬁ)p—l, (z - 7)9.1! (z - 3);‘-1’ &0-,

the equation f(z) = 0 will have p roots equal to (3, ¢ roots equal
to v, r roots equal to &, &o.

In order, therefore, to find whether any proposed equation
has equal roots, and to determine such roots when they exist,
we must find the greatest common measure of f(z) and /' ().
Let this be ¢ (z). The determination of the equal roots will
depend on the solution of the equation ¢ (2) = 0.
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Examrres,
1. Find the multiple roots of the equation
2 +22-1624+20=0.
The G. C. M. of f(z) and f’ () is easily found to be £ —2; hence (z—2)2isu
factor in f(z). The other factor is z + 6.
‘Whenever, after determining the multiple factors of f (z), we wish to obtain the
remaining factors, it will be found convenient to apply by repeated operations the

method of division of Art. 8. Here, for example, we divide twice by z - 2, the
calculation being represented as follows : —

1 1 -16 20
2 6 -20
1 3 -10 0
10
1 b 0

Thus 1 and 6 being the two coefficients left, the third factor is # + 5. This
operation verifies the previous result, the remainders after each division vanishing
as they ought.

2. Find the multiple roots, and the remaining factor, of the equation

25— 102* + 16z — 6 = 0.
The G. C. M. of f(z) and f* () is found to be 22—2z + 1. Hence (z — 1)* is
a factor in f(z). Dividing three times in succession by z — 1, we obtain
f(@) = (- 1)(a* + 3z + 6).
3. Find the multiple roots of the equation
| 2 -20%-112+ 122 4+ 36 = 0.
The G. C. M. of f(z) and f* (z) is 2* ~2 —6. The factors of this are z + 2 and

z - 3. Hence
Slz)m (2 +2) (z - 3)%

4. Find all the factors of the polynomial
S () = a8 — 52° + bzt + 92° — 142° — 4z + 8.
Ans. f(r)=(z~1)(z + 1) (z - 2)%

The ordinary process of finding the greatest common mea-
sure of a polynomial and its first derived function may become
very laborious as the degree of the function increases. It is
wrong, therefore, to speak, as is customary in works on the
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Theory of Equations, of the determination in this way of the
multiple roots of numerical equations as a simple process, and
one preliminary to further investigations relative to the roots.
It is chiefly in connexion with Sturm’s theorem that the opera-
tion is of any practical value. The further consideration of
multiple roots is deferred to Chap. X., where this theorem
will be discussed. It will be shown also in Chap. XI. that the
multiple roots of equations of degrees inferior to the sixth can,
in any particular instance, be determined from simple conside-
rations not involving the process of finding the greatest common
measure.

75. This and the succeeding Article will be occupied with
theorems which will be found of great importance in the sub-
sequent discussion of methods of separating the roots of equa-
tions.

Theorem.—In passing continuously from a value a — h of 2
a little less than a real root a of the equation f (r) = 0 to a value
a + h a little greater, the polynomials f(z) and f’'(x) have unlike
signs immediately before the passage through the root, and like signs
immediately after.

Substituting a — 4 in f(z) and s’ (z), and expanding, we
have

, S (a) .4
Sla-B)=f@)-f @bo+T2 8- ...

S (a-h)= S@=-Sf"ah+......

Now, since f(a) = 0, the signs of these expressions, depending
on those of their first terms, are unlike. When the sign of % is
changed, the signs of the expressions become the same. The
theorem is therefore proved.

Corollary.—The theorem remains true when a is a multiple
root of any order of the equation f{z) = 0.

Let the root be repeated r times. The following funections
(using suffixes in place of accents) all vanish :—

f(a)’fl(“))fi(a): coe -f;-l(ﬂ).
Ct M
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In the series for £ (a — %) and f* (a — %) the first terms which
do not vanish are, respectively,
j;- (a) , f r (a)
2.0 13
These olea.rly have unlike signs ; but when the sign of 4 is
changed the signs of the terms will become the same. Hence
the proposition is established.
76. Extending the reasoning of the last Article to every
consecutive pair of the series

f(z),.fl (x),fi(x)’ e oo Sra (x)9

we may state the proposition generally as follows :—

Theorem,— When any equation f(z) = 0 has an r-multiple
root a, a talue a little inferior to a gives to this series of r functions
signs alternately positive and negative, or negative and positive ;
and a talue a little superior to st gives to all these functions the
same stgn ; and this sign s, moreover, the same as the sign of f,(a),
the first derived function which does not vanish when a ts substi-
tuted for z.

In order to give a precise idea of the use of this theorem,
let us suppose that f; (a) is the first function which does not
vanish when a is substituted, and let its sign be negative;
the conclusion which may be drawn from the theorem is, that
for a value a — 4 of  the signs of the series of functions £, £, f,,

s JoJs aT0

-1,
l(h

+—+—+-3
and for a value a + % of 2 they are

for before the passage through the root the sign of f, must be
different from that of f5; the sign of /3 must be different from
that of /i, and so on; and after the passage the signs of all
the functions must be the same. It is of course assumed here
that 4 is so small that no root of f; (#) = 0 isincluded within the
interval through which 2 travels.
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ExampPLEs,
1. Find the multiple roots of the equation
S(z) m oA+ 1225 4 8223 — 2z + 4 =0,
Ans. f(z) m (23 + 62 - 2)3.
2. Show that the binomial equation

™ —-ar=0
cannot have equal roots.

3. Show that the equation
m-ngz+(n—-1)r=0
will have a pair of equal roots if g» = r*-1,
4. Prove that the equation
284+ 6p2’ + bplz + ¢=0
has a pair of equal roots when ¢? + 4p% = 0; and that if it have one pair of equal
roots it must have a second pair. )

5. Apply the method of Art. 74 to determine the condition that the cubic
£ +3H:+G=0

should have a pair of equal roots.
The last remainder in the process of finding the greatest common measure must
vanish. Ans. G + 4H3 = 0.

6. Apply the same method to show that both G and H vanish when the cubic
has three equal roots.

7. If a, B, v, 3 be the roota of the biquadratic f(z) = 0, prove that
L@+ B+ N+ (@)
can be expressed as a product of three factors.
Ans. (a+ B—y—8)(at+y—B=3)(at - B-1).

8. If a, B, v, 3, &c., be the roots of f () = 0, and o', B, ¥, &ec., of f* (z) = 0,
prove

S @ BN @) eeemmf@) BV ().,

and that each is equal to the absolute term in the equation whose roots are the
squares of the differences.

9. If the equation
PP Pt i Pu18+ Pam 0

have a double root a, prove that a is a root of the equation
P12 + 20323 + 323 4. ..+ g =0,
M2
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10. Show that the max. and min. values of the cubis
a3 + 302 + 3es + 4
are the roots of the equation
&P —26Gp+Aa=0,

where A is the discriminant.

If the curve representing the polynomial f(x) be moved pearallel to the axis of g
(see Art. 10) through a distance equal to a max. or min. value p, the axis of z will
become a tangent to it, i.e. the equation f () — p = 0 will have equal roots. Hence
the max. and min. values are obtained by forming the diseriminant of f(z) — p, ox
by puttingd—p fordin G+ 4H?=0.

11. Prove similarly that the max. and min. values of
azt 4+ 4523 + 6ex® + 4dz 4
are the roots of the equation
@’ -~ 3(a* - 9H?) p* + 8 (al? - 18HT)p- A =0,
where A is the discriminant of the quartic.

12 Apply the theorem of Art. 76 to the function

f(@)mat =725 + 1622 — 132 4 4.
Si(z) = 42% — 212 4+ 30z - 13,
JSa(z) =2 (622 — 21z + 1b),

Ja(z) = 2 (122 - 21),

Sulz) = 24.

Here f3 () is the first function which does not vanish when z =1; and fs (1) is
negative. What the theorem proves is, that for a value a little less than 1 the signs
of £, fi, 2, fs are + — + —, and for a value a little greater than 1 they are all
negative. We are able from this series of signs to trace the functions £, fi, &ec., in
the neighbourhood of the point z=1. Thus the curve representing f(z) is above
the axis before reaching the multiple point z = 1, and is below the axis immediately
after reaching the point, and the axis must be regarded as cutting the curve in three
coincident points, since (z — 1)3 is a factor in f (). Again, the curve corresponding
to f1 () is below the axis both before and after the passage through the point # = 1.

It touches the axis at that point. The curve representing f2(z) is above the axis
before, and below the axis after, the passage, and cuts the axis at the point.

‘We have



CHAPTER VIIL

SYMMETRIC FUNCTIONS OF THE ROOTS.

77. Newton’s Theorem on the Sums of the Powers
of the Roots.—We now resume the discussion of symmetric
functions of the roots of an equation, of which a short account
has been previously given (see Art. 27); and proceed to prove
certain general propositions relating to these functions :—

Prop. I.—The sums of the similar powers of the roots of an
equation can be expressed rationally in terms of the coefficients.

Let the equation be

S(@) =+ pa™ + Pt + ...+ P4
m(z-a)(-a)(z—as) ... (z~an) =0.
‘We proceed to caloulate 2a?, =a’, . .. Za™; or, adopting
the usual notation, s, 8, . . . 8, in terms of the coefficients

Dry Pay o o « Dae
Wo have, by Art. 72,

f'(x)=-{(_il-+-f—(ﬂ+. .+--‘—f—(ﬂ

1 & - ay : £ — Qs
=02+ (- 1)pie™2+ (0 —2)p2™ > + o o« + 2Pu o + P
and we find, dividing by the method of Art. 8,

fﬁ—@;=z"“+a '+a |2 +a® [+ +a™!
+p; + pia +pd + pra™?
+ps + psa + p.a™?

+ s +...
+ ppsa

+ Ppa.
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If, in this equation, we replace a by each of the quantities
ay, a3, . . . a,insuccession, and put 8, = ZaP =a,P +af + .. . + a.?,

we have, by adding all these results, the following value for
S(z):—
S(@)=n"'+8 |2"*+8 |a™+48 P2l TR S S

+np, + 08 + 018, + Pi18n-2
+ np; + P8y + PiSu-s
+ np,
+ Pn-381
+ NPg1 sy

whenoe, comparing this value of f'(z) with the former, we
obtain the following relations :—

& +p = 0,
8 +p181 + 2p’ = 0,
8 + p18g + p;&; + 3p3 = 0,

8‘ +p|8’ + p383 + Nx + 4}7‘ = 0,

. . . . . - .

SpatPiSna+ Pipstoene + Puati+ (B—1)p,. =0.

The first equation determines s, in terms of py, ps, . . . P, ;
the second s,; the third s,; and so on, until s, is determined.
‘We find in this way

s==p, HB=p"-2p 8&=-p"+3pp, - 3p,,
&= pt—4p’n: +4p.ps + 2p,* - 4py,
8 == p* + 5p’pa = 6pps = 6 ('~ p) 1 + 8 (maps - 1s) 5 &

Having shown how s, &, 8, . . . 8,.. ocan be calculated in
terms of the coefficients, we proceed now to extend our results
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to the sums of all positive powers of the roots, viz. 8ay 8ss1s - « « 8m.
For this purpose we have

20 f(z) = 2™ + pa™ + p™? 4+ .o+ PE™™

Replacing, in this identity, « by the roots ai, a, . . . aa, in sucoes-
sion, and adding, we have

8w + P1S;m1 + PSmat o o o+ PnSmn = 0.

Now, giving m the values n, n + 1, n + 2, &o., successively,
and observing that s, = n, we obtain from the last equation

8n +PD8p1+Pi8ast...+np, =0,
S+ Di8n PSSt .o+ Puty=0,
Spat P18 + Da8n + ...+ Pats = 0, &o.

Hence the sums of all positive powers of the roots may be
expressed by integral functions of the coefficients. And by
transforming the equation into one whose roots are the reci-
procals of ay, a; a, . . . as, and applying the above formulas,
we may express similarly all negative powers of the roots.

78. Prop. II.—Every rational symmetric function of the
roots of an algebraic equation can be expressed rationally in terms
of the coefficients.

It is sufficient to prove this theorem for integral functions
only, since fractional symmetric functions can be reduced to a
single fraction whose numerator and denominator are both
integral symmetric functions. Every integral function of a,,
a ai, ... an is the sum of a number of terms of the form
Na? afas". . ., where N is a numerical constant; and if this
function be symmetrical we can write it under the form
NZafalas ..., all the terms being of the same type. There-
fore, if we prove that this quantity can be expressed rationally
in terms of the coefficients, the theorem will be demonstrated.
We shall first establish the following value of the symmetrio
function Za,” a,?:—

Za,f a? = 8p8; — 8pyg. (1)
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To prove this, we multiply together s, and s,, where
=af +af +af +...a

8,=a1’+a,’+a;q+. . a,’;
whence

88 = aP? + aP' + ... + as” + afaf + afa + &o.,
or 8,87 = 8pyg + Saf ayf,

which expresses the double function =a.fa,f in terms of the
single functions s,, 8, 8p.g, in the form above written.

'We proceed now to prove a similar expression for the triple
function, viz.,

Salaa;" = 8p8¢8; — SqurSp — 8rupdq — Spegr + 28pigir  (2)
Multiplying together =a,’a,? and s,, where
Za’af = afa? + afaf + afa? +. ..,
r=a+a  +a+...+a,,

we obtain an expression consisting of three different parts, viz.
terms of the form Za,"a)!, Za,?"a?, and ZaLala;.
Hence

8 Zafa? = Ja,!*"a? + S, af + Jafaslay,
a formula connecting double and triple symmetric functions.
But, by (1),
Sa,Par? = 854r8¢ — 8pigery
2,2 af = 8448y — 8pigery
Zaa! = 88, - 8pug.
Substituting these values, we find the triple function
Za,Pa,%," expressed as above in terms of single functions in

the series s,, &, 8, &c.
In the same manner the quadruple function Za,’a.?asas
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can be made to depend on the triple function Za,fa.?a,”, and
ultimately on s,, 8, 8, &o.; and so on. Whence, finally, every
rational symmetric function of the roots may be expressed
in terms of the ooefficients, since, by Prop. L., s, 8, &, &o.,
can be so expressed.

The formulas (1) and (2) require to be modified when any
of the expounents become equal.

Thus, if p = ¢, a,a,? = a,’a)?, and the terms in (1) become
equal two and two; therefore Za,?a,? = 22a,Pa,?; whence

Eaxpa{’ = %(8}’ - 83p).
Similarly, if p =¢ = r in Sa,%a,%;", the six terms obtained
by interchanging the roots in aa;%a;" become all equal ; hence
2afalaf = ﬁ (8p® — 38p83p + 283).

And, in general, if ¢ exponents become equal, each term is
repeated 1.2.3 ... ¢ times,

ExaAMPLES.
1. Prove

ZaiPastas’as® = 3p898r8s — Ziplgtra + 2Zsptgurss + Zopigires — Bopigeree.
2. Prove

243a1"aMas™ ™ = Imt — Gsm2s2m + Sombym + 3922 — Baymn.

79. Prop. III.—The value of s,, expressed in terms of
D1y Pay « - - Py 18 the coefficient of y” in the expansion, by ascending

powers of y, of — r log y*f e)
Since
3’”+P1®’"‘+P;¢”"+n-+p,.-(z—a;)(z—a;)...(z—a,‘),

putting ?17 for  in this identical equation, we find

l+py+pP+py* +...+pa* = (l-aiy)(1 —azy) ... (1 - any).
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Now, taking the Napierian logarithms of both sides,
pytps +ps | PP+pe |+ |yt &e. 4+ Pyt &e.
_ % pi| —pp| -mm| -pps
+op?

+0°ps
3
TP —pip

1. 3 l 2
+§PI "'2’72

- i nt| —p’p;

1
+5p1..
1, 1 1
ﬂ—ys,—gy’s,—-g y‘s,—...—;y’s,—&e.

Therefore, equating coefficients of ” in both expansions,
8 = —rP,,

where P, is the coefficient of ¥ in log y*f (}/)

From the above identical equation it may be seen that
8, (r less than ) involves the coefficients pi, ps, ps, . . . pr only;
and, therefore, p,.1, priss - - . po may be made to vanish without
affecting the form of the expression of s, in terms of the coef-

ficients.

80. To express the coefficients in terms of the sums of the
powers of the roots.

Since
lipy+pP+..o+pay=(l-ay)(l-azp) ... (1 - auy),
we have
1 1
log(L+py + oou +poy™) = — ys1 — 72"/’8’-' .. —;y’s,— e (D)
and, therefore,

L4 g+ paf+ oo ot poy® = eV s iv’sy-e e



Newton’s Theorem. 171
becomes by expansion
1 1 1 Yr—-u..
-5 % y'-3s ¥ =g v
——1 ? + 8 + 13
t1.e® 1.25% gas
1
"o | —ive
I |
NPT
1
tg g

Now, comparing the coefficients of the different powers of y,
‘e obtain values for p,, p, ps, + - . Pa, in terms of s,, 8, . . . 8s;
nd we see that p, involves no sum of powers beyond s,.

If the identity (1) be differentiated with regard to y, the
quations of Art. 77 connecting the coefficients and sums of
owers may be derived immediately from the resulting identity.

It is important to observe that the problem to express any
ymmetrio function of the roots in terms of the coefficients, or
my ooeflicient in terms of the sums of the powers of the roots, is
serfectly definite, there being only one solution in each case.

General expressions, due to Waring, for s, in terms of the
wefficients, and for pn, in terms of the sums of the powers of
‘e roots, will be given in a subsequent chapter.

ExaMpLEs.
1. Determine the value of

¢ (@) + P(as) + ...+ ¢ (an),
where a), as, as. .. as are the roots of f(z) =0, and ¢ (z) 18 any rational and

ntegral function of z.
We have o
z 1 1 1
@ rmatiat ot
wd

rEe@ _ o) , o),

Sf(2) Z—a1 Z—az T o

[
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Performing the division, and retaining only the remainders on both sides of this
equation, we have

Rorn '+ Riz™3 4+ .o+ Bux P(a1) | ¢ (@) ¢ (an)
= + L I H
S(=) Z—a1 Z-—as Z—an

whence
Rz '+ Ria" 3+ oot Bua=3p(a1)(z—as) (z—as) . . . (z — aw);

and, comparing the cocflicients of £7-1 on both sides of this equation,
Ro = %¢ (a1).

2. Prove that s, is the eoeﬁicxent of?_l in the quotient of the division of f'(z)

by f(«) arranged ‘according to negative powers of z.

3. Prove that s.pis the coefficient (with sign changed) of 2*! in the same quo-
tient arranged according to positive powers of z.

4. If the degree of ¢ (z) does not exceed n — 2, prove

S ¢ (ar)
2 Fe ="

ren
where 3, denotes the sum obtained by giving  all values from 1 to  inclusive.
rl1
We have, by partial fractions,
¢ (2) - Ay As An

fz) #—a1 z— a2 +'“+z-—¢,.;

and, multiplying across by f(z), and putting £ = aj, a3, . . . in succession,

¢() ¢(m) 1 ¢la) 1 ¢(an) 1

@& F@e—a  faz—m "t Faz—a

20 (2) o é(ar) Lot
7@ ,?,f(»)(* s*”"‘)'

When ¢ (2) is of the degree » — 2; expressing the first side of the equation as a

whence

1 .
function of %, it readily appears that there is no term without L multiplier.

‘We have, therefore, comparing coefficients,

#(ar) _
2 e 0.

As ¢ may be any rational and integral function of degree not higher than n — 2,
we have the following particular cases which are worthy of special notice :—

1
f() 0, X ——=0.

=% f’() =0 Apget 3
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5. Given the following n — 2 equations between n variables z), 2, . . . Zn:—

Ex,=0, ,fa,x,=o, . .gw’zao,
rel ral =l
express the # variables in terms of two new variables X;, Xs.
Xi+ar Xz
Sla) -

81. Order and Weight of Symmetric Functions.—
The degree in al’ the roots of any term of a symmetric function
of the roots [see Art. 28] is called the weight of the function.
The highest degree in which each root enters the function is
called its order. The weight, for example, of Saf3’y® is six, and
its order three. It has been proved (Art. 28) that in the value
in terms of the coefficients of any symmetric function of the
roots the sum of the suffixes in each term is equal to the weight
of the function. We now prove another proposition relating
to symmetrio functions, viz.—The degree in ferms of the coef-
Jicients py, p,, . .. p, of the value of any symmetric function s equal
to the order of the symmetric function.

This can be readily inferred from the equations of Art. 23,
since the value of each coefficient in terms of the roots contains
any root in the first power only, and therefore the highest -
degree in the coefficients will be the same as the degree of the
corresponding symmetric funotion in any individual root. The
value of 2a*3?, for example, is p,* — 2p,ps + 2p.. The degree
of this function of the coefficients is two, which is also the order
of the symmetric function.

As the proposition just stated is of importance, we add
another proof, in which the symmetric function multiplied by »
suitable power of a, is expressed as a homogeneous and integral
function of the coefficients aq, a,, a., . . . a,, the form in which
the result will usually appear in subsequent applications.

Replace the coefficients

Ans. 2, =

a a. a,
PP+ oo P by a—:, ;:,...a—:.
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Now, if ¢ (a), a3, . . . a,) denote any rational and integral
symmetrio function of the roots, we have

are(ai, asy ... ap) = F(ao, ayy as, . .. a),

where A is the degree, in the coefficients, of F(ay, @i, ay, . .. @),
a homogeneous and integral function of the coefficients, not
divisible by a,.

We require now to show that % is the order of ¢. For this
purpose change the roots into their reciprocals, and, therefore,
doy @)y « - . Ay iDtO Gy, @pory . .« @ 'Whence

a,,"q;(l, l . l) = F(any Gp1y Quzy -+« )3 (1)

XU az’ dag
also

.,,(1 1 1>=¢<.,.,a,, as .. . an)

a’a’ " a, (masas . .. an)? ’

where p is the order of ¢, and ¢ an integral function not divi-
sible by the product of all the roots; (a:a:as . . . a,)? being the
lowest common denominator of all the terms. Substituting in
(1), we have

a.flﬁ (a,, [/ LY ﬂ“) =% (I”p-. F(ﬂ,‘, Apuly o o o ao)-

From this equation it follows that p is equal to %; for if p
were greater than 4, ¢ (a), as ... a,) would be divisible by the
product a,as . . . an, and if it were less, the function of the coef-
ficients F'(aay @n-i, - - - a,) would be divisible by a,, both of which
suppositions are contrary to hypothesis.

82. Calculation of Symmetric Functions of the
Roots.—Any rational symmetric function can be calculated
by aid of the proposition of Art. 78. In practice, however,
other methods are usually more convenient, as will appear from
the examples which follow the present Article. We shall show
also, when this subject is resumed in the second volume of this
work, that use may be made of methods founded on the prin-
ciples there explained to facilitate in many instances the
calculation of symmetric funotions.
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The number of terms in any symmetric function of the roots
is easily determined. For example, the number of terms in
Sa,® a,® a, of the equation of the n*» degree is n (n— 1) (n» — 2), this
being the number of permutations of n things taken three
together. If the exponents of the roots in any term be not all
different, the number of terms will be reduced. Thus Sa* 3y
for a biquadratio consists of twelve terms ouly (see Ex. 6, p. 48),
and not of twenty-four, since the two permutations af3y, ayf3
give only one distinct term, viz., a*3y, in Za*3y. The student
acquainted with the theory of permutations will have no diffi-
culty in effecting these reductions in any particular case.
When two exponents of roots are equal, the number obtained
on the supposition that they are all unequal is to be divided by
1.2; when three become equal this number is to be divided
by 1.2.3; and so on. In general, the number of terms in
Sa’ a;? as” . . . of the equation of the n** degree, each term con-
taining m roots, and v of the indices being equal, is

nin-1)n-2)...(n-m+1)
1.2.3...v )

‘When the highest power in which any one root enters into
the symmetrio function of the roots is small, i.e. when the order
of the function (see Art. 81) is low, the methods already
illustrated in Art. 27 may be employed with advantage for the
calculation of the symmetrie function.

It isimportant to observe that when any symmetrio function,
whose degree in all the roots (i.e. its weight) is %, is calculated
in terms of the coefficients p,, p,, . . . p, for the equation of the
n** degree, its value for an equation of any higher degree (the
numerical coefficients being all equal to unity) is precisely the
same; for it is olear that no coefficient beyond p, can ent r into
this value, and the equations of Art. 77, by means of which
the calculation can be supposed to be made, have precisely the
same form for an equation of the n** degree as for equations of
all higher degrees. It is also evident that the value of the same
symmetric function for an equation of a degree m (lower than n)
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is obtained by putting pum,i, Pmss, - . - Pa 8ll equal to zero in the
calculated value for an equation of the n** degree, since the
equation of lower degree can be derived from that of the u** by
putting the coefficients beyond p. equal to zero ; and the corre-
sponding symmetric function reduces similarly by putting the
YOO8 Ams1y Gmssy - - - an €80h equal to zero.

ExampLEs.
1. Calculate Zai*azas of the roots of the equation
P Aot paantt L+ Pa1T + Pa =0,

Multiply together the equations
Za1 =—p1,

Zaiazas =~ ps.

In the product the term a,? a; as occurs only once ; the term a; a3 as a; occurs four
times, arising from the product of a1 by az as ai, of az by masay, of as by ai1aza,
and of a4 by aiazas. Hence

Zai*azas + 4Za1azas a4 = p193;

therefore
Za1? az a3 = P19 — 404, (Compare Ex. 6, Art. 27.,)

If the calculation were conducted by the method of Art. 78, we should have
Za1azas = $83012 — 0183 - $62 + 5,

which leads, on substituting the values of Art. 77, to the same result; but it is
clear that in this case the former process is much more simple, since the values of
81, &, &c., introduce a number of terms which destroy one another.

2. Calculate 2aj*as® for the general equation.
Squaring
Zay a3 = P2,

we have
Za1? as® + 23a1? a3 as + 631 a2 a3 ay = pot.

In squaring it is evident that the term ai a2 a3 ay will arise from the product of
araz by azay, or of a1as by azay, or of ai1aq by azas; hence the coefficient of
@1 az a3 ay in the result is 6, since each of these occurs twice in the square. The
result differs from the similar equation of Ex. 8, Art. 27, only in having X before
the term ajazasay. Hence, finally,

Za1?a? =2t — 2p10s + 200
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8. Calculate Zai%as for the general equation.
‘We have, as in Ex. 9, Art. 27,

Za1? Zaiaz = Zardas + Zx? az as.
Hence, employing previous results,

Zai’a: = ;132 — 295 - p1 98 + 414,

4. Calculate Za)2az’as for the general equation.

The result will be the same as if the calculation were made for the equation of
the fifth degree.

To obtain the symmetric function we multiply together Zaia; and Zaiazas ; and
consider what types of terms, involving the five roots ai, as, as, a4, as, can result.
The term a)2az%as will occur only once in the product, since it cau only arise by
multiplying aiaz by aiazas. Terms of the type ai’agasaq will occur, each three
times ; since a1?azasey Wwill arise from the product of aias by aiasas, of aias by
aiazaq, or of aiay by ajazas; and it cannot arise in any other way. The term
ajazasagas Will occur ten times in the product, since it will arise from the product
of any pair by the other three roots, and there are ten combinations in pairs of the
five roots. We have, then, for the general equation,

Zajaz ez = Zar’az’as + 3Za;® + 10Za; a

[We can verify this equation when n =5, just as in Ex. 9, Art. 27; for the
product of two factors, each consisting of 10 terms, will contain 100 terms. These
are made up of the 30 terms contained in Za?as?as along with the 20 terms con-
tained in Xai’azasay, each taken three times, and the term ajaasajas taken 10
times.]

Thus the calculation of the required symmetric function involves that of
Za)’azasaq ; for which we easily find

Za; 3 = Za? + 63a
& Hence, finally, we obtain
)
- Zar%as’ay = — 2l + 3p1 po — 5ps.

The process of Art. 78 would involve the calculation of s5; and many terms
would be introduced through the values of #), 83, &c., which disappear in the
result. :

5. Find the value of Ja;%a3?asay for the general equation.

We multiply together Zaias and Zaiazasas, and consider what types of terms
can arise involving the six roots ai, a2, a3, a, as, as. The term a,%a;%asa can occur
only once. Terms of the type ai’amasaias will each occur four times, this term
arising from the product of aiaz by aiasasas, or of aias by aiazadls, or of wiay by

N

v - L]



178 Symmetric Functions of the Roots.

aiazasas, or of aias by aiazazas. The term ajazasaiasas will occur fifteen times,
this being the number of combinations in pairs of the six roots. Hence

Zaiaz Taiaasas = Zai’ardazas + 43aaa; + 153

We have again, for the calculation of Zx)*azasasas,

Za1 Za1 = 3as® as + 62 asa
Hence, finally, )

Zar’ar’asay = papu — 4p1ps + 9ps
6. Find the value of Zai®as’as? in terms of the coefficients ot the general
equation.
Squaring Zaiasas, Wwe have
Zaiaza3 Zaiamy = Zar’mdas? L 23mi%atasay + 62’ + 202
from which we find
Zai’az’as® = ps? — 2p: p4 + 271 p5 — 2ps.

83. Homogeneous Products.—There are, in general,
several symmetrio functions of » quantities ai, as, . .. an Which
have the same weight, and amongst these may be included two
or more which have the same order as well as weight. Of any
n letters there are, for example, the following symmetric
funotions whose weight is four :—

2
Eal‘, Eﬂlsﬂj, zalzaz', Ea; A2A3y 201020304.

The sum of all such symmetric functions of weight r is called
the “ sum of the homogeneous products of  dimensions” of the
n letters. This sum we denote by II,. It is easy to see that
I1, is the coefficient of 2~ in the following product of n factors :—

(ltaz+tatz+.. )1 +az+aP+...) ... (L+az+a’d+...).

The examples which follow include the most fundamental
propositions connecting the sums of the homogeneous products
with the coefficients of the equation whoseroots are a, a, . . . a,.

. ExanmpLEs.

1. Prove '

an+r

-2 75
We have
oAl 1 where =-1-
@ 0T —aw) - 1 —amy)’ =z
=(l+ay+adyi+..)(1+ ay+ay®+...) ... (1+ag+anly®+...)

sl+My+ My*+...+0y +...
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p—l an-1 1
Also m = szg) . ;——q’
Fad a1 1 anirl
whence mazm.l_wgzmy,

from which the result follows by comparing coefficients of yr.
2. Express the sums of the homogeneous products of the roots in terms of the
coefficients of an equation, and vics versd.
Since
(1~ay)(l—azy)ee. (I —auy)=1+py+ P +... + puy”
we have immediately, from the preceding example,

Q+py+py+. ...+ (1 + Thy + May® +.. ) = 1,
whence
n+Mm=0, p2+TMat+ph =0, p3+Ms+pmllz+psh =0, &e.

These equations (in which p1, 2, &c. and II, I3, &c. are interchangeable)
determine p1, p2, - . - Pa in terms of My, I, . . . Iy, and cice versd.

By means of this and the preceding example the values of the following symme-
tric functions may be found in terms of the coefficients :—

a*! a® antl
T T, X &
JS@ “f@ “fae)
3. Express I1, by the sums of the powers of the roots.
1 . .
Representing by a the product (1 — a1y)(1 — azy) . .. (1 —a.y), and differentiat-

ing, we find a
1du a _ 2 .
;dy—zl—ay nt&ayt+ay*t...;
also u=1l+My+Myd+...

We have, therefore,
(l+My+My?+. . ) (1 +ay+ayt+...) =+ 20y + 3y’ + ...

Now, comparing the several coefficients of the different powers of y, we have a
number of equations by means of which the sums of the homogeneous products
M, M3, I, . . . may be expressed in terms of 8, 83, &, &o.

4. Prove the following formula for calculating the sums of the homogeneous
products in terms of the coefficients :—

dary s
-E- - (" + i) IL.
Differentiate both sides of equation (1) in Art. 80, and introduce m;, ils, &c., by
the equation of Ex. 2.

2
©



CHAPTER IX.

LIMITS OF THE ROOT8 OF EQUATIONS.

84. Definition of Limits.—In attempting to discover the
real roots of numerical equations, it is in the first place advan-
tageous to narrow the region within which they must be sought.
‘We here take up the inquiry referred to in the observation at
the end of Art. 4, and proceed to prove certain propositions
relative to the limits of the real roots of equations.

A superior limit of the positive roots is any greater positive
number than the greatest of these roots ; an inferior limst of the
positive roots is any smaller positive number than the smallest
of them. A superior limit of the negative roots is any greater
negative number than the greatest of them ; an inferior limit
of the negative roots is any smaller negative number than the
smallest : the greatest negative number meaning here the
number nearest to — .

‘When we have found limits within which all the real roots
of an equation lie, the next step towards the solution of the
equation is to discover the intervals in which the separate roots
are situated. The principal methods in use for this latter pur-
pose will form the subject of the next chapter.

The following Propositions all relate to the superior limits
of the positive roots ; to which, as will be subsequently proved,
the determination of inferior limits and limits of the negative
roots can be immediately reduced.

85. Proposition I.—1In any equation
P+ P1a™ N + P2 4 4 Pea® + Pa =0,

if the first negative term be — p.a™™, and if the greatest negative
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coefficient be — py, then "ps + 1 is a superior limit of the positive
roots.

Any value of # which makes
]

o>y (@ +a . rz2+ ) > py

will, @ fortior:, make f(z) positive.
Now, taking # greater than unity, thisinequality is satisfied
by the following :— ‘

r-"#l
> Dk m, ,
or " - 2" > p T,
or 2 (2~ 1) > pa,

which inequality again is satisfied by the following :—
(e~ 1) (@ 1) = or > i,
since plainly &> (2 - 1)
‘We have, therefore, finally
(@-1)=or>p,
or z=or>1+ "o

86. Proposition XX.—If in any equation each negative coef-
Jictent be taken positively, and divided by the sum of all the positire
coefficients which precede it, the greatest quotient thus formed in-
creased by unity is a superior limit of the positive rools.

Let the equation be

ax" +a 2" +ad" a2 P . ii =02+ ...+ dy =0,

in which, in order to fix our ideas, we regard the fourth coef-
ficient as negative, and we consider also a negative coefficient in
general, viz. - a,.

Let each positive term in this equation be transformed by
means of the formula

" = am (- 1)@+ 2™+ ...+ 2+ 1) + G,
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which is derived at once from

-1
i a2V 42+ 1

x —
the negative terms remaining unchanged.

The polynomial f(z) becomes then, the horizontal lines of
the following corresponding to the successive terms of f(z) :—
a(@-1)2* +a,(2-1) 2™ +a, (2-1) 2 3+... +a, (x-1)2* " +.. .+ &,

+a,(z-1)2"%+a, (2-1)2"*+... ray (2-1)2" " +...+a,,
+ay(@-1)a"+...+as(z-1)2" " +...+ Gy
- a.x"",

+ Uy

We now regard the vertical columns of this expression as
successive terms in the polynomial ; the successive coefficients
of 2, 27, &o., being

a(z-1), (@g+a)(z-1), (a+a +a)(z-1)-as &o.

Any value of z greater than unity is sufficient to make
positive every term in which no negative coefficient as, ar, &ec.
occurs. To make the latter terms positive, we must have

(@0 + 61 + @) (z — 1) > ay,

(@+a+a+...+6.) (-1 >a, &o.
Hence
as ay

>—+L....2>
G+ 4+, AGy+a,+as+ag+ ...+ ap,;

+ 1, &e.

And to ensure every term being made positive, we must take
the value of the greatest of the quantities found in this way.
Such a value of z, therefore, is a superior limit of the positive
roots.
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87. Practical Applications.—The propositions in the
two preceding Articles furnish the most convenient general
methods of finding in practice tolerably close limits of the
roots. Sometimes one of the propositions will give the closer
limit; sometimes the other. It is well, therefore, to apply
both methods, and take the smaller limit. Prop. I. will usually
be found the more advantageous when the first negative coef-
ficient is preceded by several positive coefficients, so that r is
large ; and Prop. II. when large positive coefficients occur
before the first large negative coefficient. In general, Prop. II.
will give the closer limit. 'We speak of the integer next above
the numerical value given by either proposition as the limit.

ExaMprEs.
1. Find a superior limit of the positive roots of the equation
zt ~ 52% + 4022 — 82 + 23 =0.
Prop. I. gives 8 +1, or 9, aslimit.
Prop. 1I. gives g +1, or 6. Hence 6 is a superior limit.

2. Find a superior limit of the positive roots of the equation
254 324 + 23 — 823 ~ 61z + 18 = 0.

Prop. I. gives /51 + 1; and 6 is, therefore, a limit,

i +531_—+—1— + 1, and 12 is a limit.
In this case Prop. I. gives the closer limit.
3. Find a superior limit of the positive roots of
27 + 42% — 32° + 624 — 923 ~ 1122 + 62 — 8=0.
Of the fractions
__3_ 9 11 8
1+4 1+4+6 1+4+85 1+4+6+6
the third is the greatest, and Prop. II. gives the limit 3. Prop. I. gives 5.

Prop. II. gives

4. Find a superior limit of the positive roots of
2%+ 2027 4 428 — 1125 — 120z + 132 - 25 = 0.
ns. Both methods give the limit 6.
6. Find a superior limit of the positive roots of
425 — 824 4 2223 4 9823 - 7324 6 =0,
Ans. Prop. 1. gives 20. Prop. II. gives 3.
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It is usually possible to determine by inspection a limit
closer than that given by either of the preceding propositions.
This method consists in arranging the terms of an equation in
groups having a positive term first, and then observing what is
the lowest integer value of z which will have the effect of
rendering each group positive. The form of the equation will
suggest the arrangement in any particular case.

6. The equation of Ex. 2 can be arranged as follows :—
22 (£2—8)+2(325-561)+ 28 +18=0.
z =3, or any greater number, renders each group positive ; hence 3 is a superior
limit.
7. The equation of Ex. 4 may be arranged thus : —
28 (2% — 11) + 2024 (2 - 6) + 428 + 132~ 26 = 0.
z = 3, or any greater number, renders each group positive ; hence 3 is a limit.
8. Find a superior limit of the roots of the equation
74~ 42° + 3322 — 22 + 18 = 0.
This can be arranged in the form
22 (2 — 4z + 6) + 28z (z — &) + 18 = 0.
Now the trinomial z® — 4z + 5, having imaginary roots, is positive for all values
of z(Art. 12). Hence z = 1 is a superior limit.
The introduction in this way of a quadratic whose roots are imaginary, or of one
with equal roots, will often be found useful.

9. Find a superior limit of the roots of the equation
525 — Txt — 1023 — 2322 - 90z — 317 = 0.

In examples of this kind it is convenient to distribute the highest power of =
among the negative terms. Here the equation may be written

24 (2~ T7)+2° (22~ 10) + 22 (23 — 23) + = (24 — 90) + 2% - 317 =0,
so that 7 is evidently a superior limit of the roots. Inm this case the general
methods give a very high limit.
10. Find a superior limit of the roots of the equation
A2 -2 —4z-24=0.
When there are several negative terms, and the coefficient of the highest term
unity, it is convenient to multiply the whole equation by such a number as will

enable us to distribute the highest term among the negative terms. Here, multi-
plying by 4, we can write the cquation as follows : —

B(z—4)+ 22 (2 —8)+ 2 (*—16)+ 2 - 96 =0,
and 4 is a superior limit. The general methods give 25.
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8S. Proposition XXX.— Any number which renders positive
the polynomial f(z) and all its derived functions f\(z), f3(2), ... fu(2)
18 a superior limit of the positive rools of the equation f(z) = 0.

This method of finding limits is due to Newton. It is much
more laborious in its application than either of the preceding
methods ; but it has the advantage of giving always very close
limits; and in the case of an equation all whose roots are real
the limit found in this way is, as will be subsequently proved,
the next integer above the greatest positive root.

To prove the proposition, let the roots of the equation
S () =0 be diminished by 4; then 2 - 4 =y, and

2 (A (A

If now 4 be such as to make all the coefficients
SB)s fi(B); Sfu(h), - .. full)

positive, the equation in y cannot have a positive root ; that is
to say, the equation in z has no root greater than /4 ; hence 4 is
a superior limit of the positive roots.

ExaMpLE.

(@)= 28— 223 — 323 — 152 - 3.

In applying Newton's method of finding limits to any example the general mode
of procedure is as follows :—Take the smallest integer number which renders
fn_1(2) positive ; and proceeding upwards in order to fi (z), try the effect of substi-
tuting this number for z in the other functions of the series. When any function
is reached which becomes negative for the integer in question, increase the integer
successively by units, till it makes that function positive; and then proceed with
the new integer as before, increasing it again if another function in the series
should become negative ; and 8o on, till an integer is reached which renders all the
functions in the series positive. 1In the present example the series of functions is

S(z) = 28 — 223 - 32— 152 - 3,
fi(z) = 423 — 62% — 62~ 15,
dfi(z) = 622 — 6z — 3.
}fa(z) = 422,
Fifilz) = 1.
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Here 2 =1 makes f3(z) positive. We try then the effect of the substitution z =1
in fa(z). It makes f3(z) negative. Increase by 1; and z =2 makes f,(x) positive.
Try the effect of # =2 in f) (2); it gives a negative result. Increase by 1; and
z =3 makes fi(z) positive. Proceeding upwards, the substitution £ = 3 makes
f(2) negative; and increasing again by unity, we find that z = 4 makes f(z) posi-
tive. Hence 4 is the superior limit required.

It is assumed in this mode of applying Newton’s rule, that when any number
makes all the derived functions up to a certain stage positive, any higher number
will also make them positive ; so that there is no occasion to try the effect of the
higher number on the functions lower down in the series. This is evident from the
equation

o(a+B) = ()4 @h+97(a) [y + 2o

(taking ¢ () to represent any function in the series, and using the common notation
for derived functions), which shows that if ¢ (a), ¢’(a), ¢"'(a), . . . are all positive,
and A also positive, ¢ (s + A) must be positive.

It may be observed that one advantage of Newton’s method is that often, as in
the present instance, it gives us a knowledge of the two successive integers between
which the highest root lies. Thus in the present example, since f(z) is negative
for z = 3, and positive for z = 4, we know that the greatest root of the equation
lies between 3 and 4.

89. Inferior Limits, and Limits of the Negative
Roots.—To find an inferior limit of the positive roots, the

equation must be first transformed by the substitution z = 117
Find then a superior limit 4 of the positive roots of the equatic;n
in y. The reciprocal of this, viz. 71:’ will be the required inferior

limit; for since

<n, 151 e 25
y<h y>h’ ie. 2> 5.

To find limits of the negative roots, we have only to trans-
form the equation by the substitution # = - y. This transfor-
mation changes the negative into positive roots. Let the
superior and inferior limits of the positive roots of the equation
in y be 2 and 4. Then -4 and - A’ are the limits of the nega-
tive roots of the proposed equation.



Limiting Equations. 187

90. Limiting Equations.—If all the real rools of the
equation f*(z) = 0 could be found, st would be possible to determine
the number of real roots of the equation f(z) = 0.

To prove this, let the real roots of f*(z) = 0 be, in ascending
order of magnitude, o, 3,7, ...A"; and let the following
series of values be substituted for z in f (z) :—

—w, d, B Nyt 0.

‘When any successive two of these quantities give results
with different signs there is a root of f («) = 0 between them
and by the Cor., Art. 71, there is only one; and when they
give results with the same sign, there is, by the same Cor., no
root between them. Thus each change of sign in the results of
the successive substitutions proves the existence of one real root
of the proposed equation.

If all the roots of f(z) = 0 are real, it is evident, by the
theorem of Art. 71, that all the roots of f'(z) = 0 are also real,
and that they lie one by one between each adjacent pair of the
roots of f(z) = 0. In the same case, and by the same theorem,
it follows that the roots of /" (2) = 0, and of all the successive
derived functions, are real also; and the roots of any function
lie severally between each adjacent pair of the roots of the
function from which it is immediately derived.

Equations of this kind, which are one degree below the
degree of any proposed equation, and whose roots lie severally
between each adjacent pair of the roots of the proposed, are
called lmiting equations.

It is evident that in the application of Newton’s method
of finding limits of the roots, when the roots of f(¢) = 0 are
all real, in proceeding according to the method explained in
Art. 88, the function f(z) is itself the last which will be ren-
dered positive, and therefore the superior limit arrived at is the
integer next above the greatest root.
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ExauMpLES.

1. Prove that any derived equation fu (z) = 0 cannot have more imaginary roots,
but may have more real roots, than the equation f(z) = 0 from which it is derived.

From this it follows that, if any of the derived functions be found to have
imaginary roots, the same number at least of imaginary roots must enter the
original equation.

2. Apply the method of Art. 90 to determine the conditions that the equation

B—gz+r=0
should have all its roots real.
8. Determine by the same method the nature of the roots of the equation

»—ngz+(n—-1)r=0.

Ans. When » is even, the equation has two real roots or none, according as
g"> or < 1,

‘When n is odd, the equation has three real roots or one, according as
g*> or <l

4. The equation 2* (z — 1)» = 0 has all its roots real ; hence show, by forming
the nt» derived function, that the following equation has all its roots real and
unequal, and situated between 0 and 1:—
l,—1+”(”"l) nin—1)

nn—) AN ) w3 e =0,
2n T2 m@-p> %

™—n
6. Show similarly by forming the nt* derived of (z® — 1)» that the following
equation has all its roots real and unequal, and situated between — 1 and 1:—

nin-1) n(n—1)(n-2)(n-23)
1.2 2n(2n-1)(2n—2)(2n —3)

n(n—1)

- n-4 — &e. = 0.
”2n(2u—1) * =0

ol

zll~,+

6. If any two of the quantities 7, m, n in the following equation be put equal
to zero, show that the quadratic to which the equation then reduces is a limiting
equation ; and hence prove that the roots of the proposed are all real : —

(z—a)(z-8) (x—c)—P(x—a)—m?*(z—8) ~ ¥ (z—c) —2mn = 0.
7. Discuss the nature of the roots of the equation
A +4r3~222- 1224+ p=0,

according to the different values of p.

Apply Art. 90. When p is less than — 7, two roots are real and two imaginary ;
when p lies between — 7 and 9, all the roots are real ; and when p is greater than 9,
the roots are all imaginary. The equation has two equal roots when p = — 7, und
two pairs of equal roots when p = 9.



CHAPTER X.

SEPARATION OF THE ROOTS OF EQUATIONS,

91. By the methods of the preceding chapter we are enabled
to find limits between which all the real roots of any numerieal
equation lie. Before proceeding to the actual approximation
to any particular root, it is necessary to separate the interval in
which it is situated from the intervals which contain the remain-
ing roots. The present chapter will be ocoupied with ocertain
theorems whose object is to determine the number of real roots
between any two arbitrarily assumed values of the variable. It
is plain that if this object can be effected, it will then be possible
to tell not only the total number of real roots, but also the limits
within which the roots separately lie.

The theorems given for this purpose by Fourier and Budan,
although different in statement, are identical in principle. For
purposes of exposition Fourier’s statement is the more conve-
nient, while with a view to practical application the statement
of Budan will be found superior. The theorem of Sturm, although
more laborious in practice, has the advantage over the preceding
that it is unfailing in its application, giving always the exact
number of real roots situated between any two proposed quan-
tities; whereas the theorem of Fourier and Budan gives only a
certain limit which the number of real roots in the proposed
interval cannot exceed.

92. Theorem of Fourler and Budan.— Let two numbers
a and b, of which a 18 the less, be substituted in the series formed by
S (z) and its successive derived functions, viz.,

f(.’t), fl(‘”)’ .fz(‘”)’ . ~f;(-'l') H
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the number of real roots which lie between a and b cannot be greater
than the excess of the number of changes of sign in the series when
a is substituted for z, over the number of changes when b 1s sub-
stituted for z; and when the number of real roots in the inlerval
Jalls short of that difference, it will be by an even number.
This is the form in which Fourier states the theorem.
It is to be understood here, as elsewhere, that, when we
speak of two numbers a and b, of which a is the less, one or
both of them may be negative, and what is meant is that « is
nearer than b to — .
‘We proceed to examine the changes which may occur among
the signs of the functions in the above series, the value of =
being supposed to increase continuously from a to 4. The
following different cases can arise :—
(1). The value of z may pass through a single root of the
equation f(z) = 0.

(2). It may pass through a root ocourring » times in f{z) = 0.

(8). It may pass through a root of one of the auxiliary
functions fm(z) = 0, this root not occurring in either
Jna(z) = 0 or fau(z) = 0.

(4). It may pass through a root occurring r times in fu(z) = 0,
and not occurring in fi, () = 0.

In what follows the symbol z is omitted after f for con-

venience.
(1). In the first case it is evident, from Art. 75, that in

passing through a root of the equation f(z) = 0, one change
of sign is lost ; for f and f, have unlike signs immediately
before, and like signs immediately after, the passage through
the root.

(2). In the second case, in passing through an r-multiple
root of f(z) = 0, it is evident that » changes of sign are lost;
for, by Art. 76, immediately before the passage the series of

functions

Lot oo Srnn fr
have signs alternately + and —, or - and +, and immediately
after the passage have all the same sign as f,,.
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(3). In the third case, the root of f(z) = 0 must give to fu.
and f. either like signs or unlike signs. Suppose it to give like
signs ; then in passing through the root two changes of sign are
lost, for before the passage the sign of /. is different from these
like signs, and after the passage it is the same (Art. 76). Sup-
~ pose it to give unlike signs ; then no change of sign is lost, for
before the passage the signs of fm., fm, fma must be either
+ + -, or — - +, and after the passage these become
+ - — and - + +. On the whole, therefore, we con-
clude that no variation of sign can be gained, but two varia-
tions may be lost, on the passage through a root of fu/z) = 0.

(4). In the fourth case z passes through a value (let ussay a)
which causes not only f, but also fus, fmess - « o5 Simsr1 to vanish.
It is evident from the theorem of Art.76 that during the passage
a number of changes of sign will always be lost. The definite
number may be collected by considering the series of functions

.fm-h fm, fm»h cee -:fm-r-l, fm+r~
The following results are easily established :—
(a). When fn-i(a) and fui-(a) have like signs:

If r be even, » changes ure lost.
If r be odd, r + 1 changes are lost.

(6). When fn (a) and fu.r(a) have unlike signs:

If r be even, r changes are lost.
If » be odd, » — 1 changes are lost.

‘We conclude, therefore, on the whole, that an even number
of changes is lost during the passage through an »-multiple root
of fm(2).

It will be observed that (1) is a particular case of (2), and
(3) of (4), i.e. when » = 1. Since, however, the cases (1) and (3)
are those of ordinary ocourrence, it is well to give them a sepa-
rate classification.

Reviewing the above proof, we conclude that as z increases
from @ to b no change of sign can be gained; that for each
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passage through a single root of f(z) = 0 one change is lost; and
that under no circumstances except a passage through a root of
f(z) = 0 can an odd number of changes be lost. Hence the
number of changes lost during the whole variation of z from
a to b must be either equal to the number of real roots of
JS(z) = 0 in the interval, or must exceed it by an even number.
The theorem is therefore proved.

93. Application of the Theorem.—The form in which
the theorem has been stated by Budan is, as has been already
observed, more convenient for practical purposes than that just
given. It is as follows:—Let the roots of an equation f(x) = 0
be diminished, first by a and then by b, where a and b are any two
numbers of which a is the less; then the number of real roots
between a and b cannot be greater than the excess of the number of
changes of sign in the first transformed equation over the number in
the second. '

This is evidently included in Fourier’s statement, for the
two transformed equations are (see Art. 33)—

Ja(a)

o S@) +n(a)y +%y, teeet o V= 0,
J(6) Sal®)

y=0;

2
SO SOy 4 T

from which, assuming the results of the last Article, the above
proposition is manifest.

The reason why the theorem in this form is convenient
in practice is, that we can apply the expeditious method of
diminishing the roots given in Art. 33.

ExaMpres.
1. Find the situations of the roots of the equation
28 — 304 — 242° + 9523 — 46z — 101 = 0.
‘We shall examine this function for values of + between the intervals
-10, -1, 0, 1, 10;
these numbers being assumed on account of the facility of calculation. Diminution
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of the roots by 1 gives the following series of coeficients of the transformed
equation :—
1, 2, —26, 15, 66, —78.

In diminishing the roots by 10, it is apparent at the very outset of the calcu-
lation that the signs of the coeflicients of the transformed equation will be all
positive; so that there is no occasion to complete the calculation in this case.

In diminishing the roots by — 10 and — 1, it is convenient to change the alter-
nate signs of the equation, and diminish the roots by + 10 and + 1; and then in
the result change the alternate signs again. The coefficients of the transformed
equation when the roots are diminished by — 1 are

1, -8, -2, 139, - 291, 60.

In diminishing by —10 we observe in the course of the operation, as before,
that the signs will be all positive in the result, i.¢. when the alternate signs ar
changed they will be alternately positive and negative.

Hence we have the following scheme : —

=100  + - + - + -,

1) 4 — - 4+ — 4,
() + — — + — -, the oquation itself,
) + 4+ -+ + -
(10) +F o+ o+ 4 4

These signs are the signs taken by f(z) and the several derived functions f,, /2,
J3, f4, fs on the substitution of the proposed numbers ; but it is to be observed that
they are here written, not in the order of Art. 92, but in the reverse order, viz.

hf‘tfhfi;fl;f-

From these we draw the following conclusions:—All the real roots must lie
between — 10 and + 10; one real root lies between — 10 and — 1, since one chauge
of sign is lost ; one real root lies between — 1 and 0, since one change of sign islost ;
no real root lies between 0 and 1 ; and between 1 and 10, since three changes of sign
are lost, there is at least one real root; but we are left in doubt as to the nature of
the other two roots : whether they are imaginary, or whether there are three real
roots between 1 and 10.

We might proceed to examine, by further transformations, the interval between
1 and 10 more closely, in order to determine the nature of the two doubtful roots;
but it is evident that the calculations for this purpose might, if the roots were nearly
equal, become very laborious. This is the weak side of the theorem of Fourier and
Budan. Both writers have attempted to supply this defect, and have given methods
of determining the nature of the roots in doubtful intervals; but as these methods
are complicated, we do not stop to explain them ; the more especially as the theorem
of Sturm effects fully the purposes for which the supplementary methods of Fourier
and Budan were invented.

o



194 Separation of the Roots of Equations.

2. Analyse the equation of Ex. 1, p. 100, viz.,
B+22-2r-1=0.
The roots of thisare all real, and lic between —2 and 2 (see Ex. 5, p. 100). When-
ever the roots of an equation are all real, the signs of Fourier's functions determine

the exact number of real roots between any two proposed integers. We obtain the
following result :—The roots lie in the intervals

=2 -1); (-1,0; (1,2).
3. Analyse the equation of Ex. 3, p. 100, vis.,
P+at—422-322 +32+1=0.

Ans. Two roots in the interval (— 2, — 1), and one root in each
of the intervals (— 1, 0); (0, 1); (1, 2).
4. Analyse the equation
24 — 8048 + 199822 — 14937z + 5000 = 0.
The equation can have no negative roots. Diminish the roots by 10 several times

in succession till the signs of the coeflicients become all positive. We obtain the
following result : —

0) + - 4+ - 4+,
(10) + - + + =,
(20) + 0 - + 4,
30) + + + - +,
(40) + + + + +.

Thus, there is one root between 0 and 10, and one between 10 and 20; no root
between 20 and 30. Between 30 and 40 either there are two real roots, or there is
an indication of a pair of imaginary roots. That the former is the case will appear
by diminishing the roots of the third transformed equation by units. This process
will separate the roots, which will be found to lie between (2, 3) and (4, 5) ; so that
the proposed equation has a third real root in the interval (32, 33), and a fourth in
“ae interval (34, 35).

94. Application of the Theorem to Imaginary
Roots.—Since there exist only » changes of sign to be lost in
the passage of # from — « to + o, if we have any reason for
knowing that a pair of changes is lost during the passage of =
through an interval which includes no real root of the equation,
we may be assured of the existence of a pair of imaginary roots.
Circumstances of this nature will arise in the application of
Fourier’s theorem when any of the transformed equations con-
tain vanishing coefficients. For we can assign by the principle
of Art. 76 the proper sign to this coefficient, corresponding to
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values of » immediately before and immediately after that value
which causes the coefficient to vanish ; the whole interval being
so small that it may be supposed not to include any root of the

equation f(z) = 0.

Exampres,
1. Analyse the equation

S(z) =zt — 423 - 32+ 23=0.
We shall examine this function between the intervals 0, 1, 10. The trans-

formed equations are
P fi(0) 2t + 3/3(0)2® + 1 /2(0) 2% + 1 (0) 2+ (0) =0,

Hfi)+ A0S+ 1)+ 1(1)z+f(1) =0,
WS (10) 24 + 3 £3(10) 22 + § f2 (10) 22 + £1 (10) = + £ (10) = 0,

the first of these being the proposed equation itself.
Making the calculations by the method of the preceding Article, we find that
the coefficient f3 (1) = 0, and we have the following scheme :—

(0) + -0 - +,
5] + 0 — - 4,
(10) + 4+ + + +

We may now replace each of the rows containing a zero coefficient by two, the
first corresponding to a value a little less, and the second to a value a little greater,
than that which gives the zero coefficients, the signs being determined by the
principle established in Art. 76. It must be remembered that in the above scheme
the signs representing the derived functions are written in the reverse order to that
of the Article referred to. The scheme will then stand as follows, A being used to

rcpresent a very small positive quantity :—

-5 + - + - 4,
(0)

+A + - - - +

1-3 + - = - +,
(l){

1+4 + 4+ = - +,
(10) + + + + 4,

where the signs corresponding to — A and + A are determined by the condition that
the sign of the coefficient which is zero when z = 0 must, when z = — A, be dif-
ferent from that next to it on the left-hand side; and when z =+ A these signs
must be the same. The signs corresponding to 1 — A and 1 + A are determined in

a similar manner
o2
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Now since a pair of changes is lost in the interval (- A, + 4), and since the
equation has no real root between — 4 and + A, we have proved the existence of a
pair of imaginary roots. Two changes of sign are lost between 1 + 4 and 10, so
that this interval either includes a pair of real roots, or presents an indication of a
pair of imaginary roots. Which of these is the case remains still doubtful.

2. If several coefficients vanish, we may be able to establish the existence of
several pairs of imaginary roots. This will appear from the following example :—

2#-1=0.
The signs corresponding to — A and + A are, by the theorem of Art. 76,
- + -+ -+ = =,
#h + + + ++ + -

Hence, since no root exists between — A and + A, and since 4 changes of sign
are lost in passing from a value very little less thun 0 to one very little greater, we-
are assured of the existence of two pairs of imaginary roots. The other two roots
are in this case plainly real (see Art. 14).

The number of imaginary roots in any binomial equation can be determined in
this way.

3. Find the character of the roots of the equation

284+ 103 4+2-4=0.

In passing from a small negative to a small positive value of z we obtain the

following series of signs :—

(-4 + -+ - + + - + -
(0) 400 00 + 0 + —,
+ A + + 4+ o+ o+ o+ -

Since six changes of sign are here lost, there are six imaginary rovts. The
remaining two roots are, by Art. 14, real: ome positive, and the other negative.
The negative root lies between — 2 and — 1, and the positive between 0 and 1.

4. Analyse completely the equation

25 —-323~2+1=0.

There are two imaginary roots. Whenever, as in the present instance, the roots
are comprised within small limits, it is convenient to diminish by successive units.
In this way we find here a root between 0 and 1, and another between 1 and 2.
Proceeding to negative roots, we find on diminishing by — 1 that — 1is itself a root,
and writing down the signs corresponding to a value a little greater than — 1, we
observe an indication of a second negative root between — 1 and 0.

5. Analyse the equation

25+ 2b 422 —-252-36=0.

There are two imaginary roots; one real positive root between 2 and 3 ; and
two real negative roots in the intervals (- 3, —2), (- 2, ~ 1).
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95. Corollaries from the Theorem of Fourier and
Budan.—The method of detecting the existence of imaginary
roots explained in the preceding Article is called The Rule of
the Double Sign. A similar rule, due to De Gua, was in
use before the discovery of Fourier’s theorem. This rule and
Descartes’ Rule of Signs are immediate corollaries from the
theorem, as we proceed to show.

Cor. 1.—De Gua’s Rule for finding Imaginary Roots.

The rule may be stated generally as follows :— When 2m suc-
cessive terms of an equation are absent, the equation has 2m tmaginary
roots ; and when 2m + 1 successive terms are absent, the equation
has 2m + 2, or 2m imaginary roots, according as the two terms be-
tween which the deficiency occurs have like or unlike signs. This
follows, as in case (4), Art. 92, by examining the number of
changes of sign lost during the passage of 2 from a small nega-
tive value - 4 to a small positive value A.

Cor. 2.—Descartes’ Rule of Signs.

When 0 is substituted for z in the series of funotions
Jn (@), faa (@), . . . f2(2), /1(2), f (), the signs are the same as the
signs of the coefficients aq, ay, gy, . .. Gn1, aa, of the proposed
equation ; and when + o is substituted the signs are all positive.
Fourier’s theorem asserts that the number of roots between
these limits, viz. the number of positive roots, cannot exceed the
number of variations lost during the passage from 0 to + oo,
that is the number of changes of sign in the series a,, a,, 4 ... Gq.
This is Descartes’ rule for positive roots; and the similar rule
for negative roots follows in the usual way by changing the
negative into positive roots.

Cor. 3.—Newton’s Method of finding Limits.

When a number 4 has been found which renders positive
each of the functions f,(2), fau(2), . . . fa(2), fi(2), S(z) ; since
+ oo also renders each of them positive, it follows from Fourier’s
theorem that there can be no root between %4 and + oo, that is to
say, % is & superior limit of the positive roots ; and this is
Newton’s proposition (Art. 88).
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96. Sturm’s Theorem.—We have already shown (Art. 74)
that it is possible by performing the common algebraical opera-
tion of finding the greatest common measure of & polynomial
JS(2) and its first derived polynomial to find the equal roots of
the equation f(z) = 0. Sturm has employed the same operation
for the formation of the auxiliary functions which enter into
his method of separating the roots of an equation.

Let the process of finding the greatest common measure of
S (z) and its first derived be performed. The successive re-
mainders will go on diminishing in degree till we reach finally
either one which divides that immediately preceding without
remainder, or one which does not contain the variable at all,
i.e. which is numerical. The former is, as we have already
seen, the case of equal roots. The latter is the case where no
equal roots exist. It is convenient to divide the discussion of
Sturm’s theorem into these two cases. We shall in the present
Article consider the case where no equal roots exist; and pro-
ceed in the next Article to the case of equal roots. The per-
formance of the operation itself will of course disclose the class
to which any particular example is to be referred.

The auxiliary functions employed by Sturm are not the
remainders as they present themselves in the calculation, but
the remainders with their signs changed. In finding the greatest
common measure of two expressions it is indifferent whether the
signs of the remainders are changed or not: in the formation
of Sturm’s auxiliary functions the change is essential. We
shall suppose therefore in what follows that the sign of each
remainder is changed before it becomes the next divisor.

Confining our attention for the present to the case where no
equal roots exist, Sturm’s theorem may be stated as follows :—

Theorem.— Let any two real quantities a and b be substituted
Jor z in the series of n + 1 functions

S (@), /@), f2(2); f3(2)s - - o Saa (@), Sal2),
consisting of the given polynomial f(x), tts first derived f\(z), and
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the successive remainders (with their signs changed) in the process
of finding the greatest common measure of f(z) and f(z) ; then the
difference between the number of changes of sign in the series when
a s substituted for z and the number when b i substituted for z
expresses exactly the number of real roots of the equation f(z) =0
between a and b.

The mode of formation of Sturm’s functions supplies the
following series of equations, in which ¢y, ¢, . . . ga-1 Tepresent
the successive quotients in the operation :—

S@) =A@ -Lf@),
fn(w) = ¢:/3(2) - £ (2),

Sra(@) = ¢ fr(2) = fra(2),

Sns(®) = gnr fua(2) - ful2).

These equations involve the theory of the method of finding
the greatest common measure ; for it follows from the first equa-
tion that if f(2) and fi(z) have a common factor, this must be
a factor in f(¢) ; and from the second equation it follows, by
like reasoning, that the same factor must oceur in f(z); and so
on, till we come finally to the last remainder, which, when f ()
and f; (#) have common factors, will be a polynomial consisting
of these factors. In the present Article, where we suppose the
given polynomial and its first derived to have no common
factor, the last remainder f,(#) is numerical. It is essential for
the proof of the theorem to observe also, that in the case now
under consideration no two cornsecutive functions in the series
can have a common factor ; for if they had we could, by reason-
ing similar to the above, show from the equations that this fac-
tor must exist also in f(z) and fi(¢) ; and such, according to our
hypothesis, is not here the case. In examining, therefore, what
changes of sign can take place in the series during the passage
of » from @ to b, we may exclude the case of two consecutive
functions vanishing for the same value of the variable; and the
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different cases in which any change of sign can take place are
the following :—

(1). when 2 passes through a root of the proposed equation
S (z) =0,

(2). when 2 passes through a value which causes one of the
auxiliary functions f}, /i, - .. fau to vanish,

(3). when z passes through a value which causes two or more
of the series f, fi,. . . faa to vanish together, no two of
the vanishing functions, however, being consecutive.

(1). When z passes through a root of f(z) = 0, it follows from

Axt. 75 that one change of sign is lost, since immediately before
the passage f () and f,(z) have unlike signs, and immediately
after the passage they have like signs.

(2). Suppose = to take a value a which satisfies the equation

f+(z) =0. From the equation

Jra (@) = 4o fe (@) - frn(2),

we have Srala) = - frula), A
which proves that this value of z gives to fi.(2) and fu(2) the
same numerical value with different signs. In passing from a
value a little less than a to one a little greater, we can suppose
the interval so small that it contains no root of f,..(2) or fru(2);
henoce, throughout the interval under consideration, these two
functions retain their signs. If the sign of f, (z) does not change
(as will happen in the exceptional case when the root a is re-
peated an even number of times) there is no alteration in the
series of signs. In general the sign of f, (z) changes, but no
variation of sign is either lost or gained thereby in the group of
three; because, on account of the difference of signs of the two
extremes f,..(#) and f. (%), there will exist both before and after
the passage one variation and one permanency of sign, whatever
be the sign of the middle function. If, for example, before the
passage the signs were + — —; after the passage they become
+ + —, i.e. & variation and a permanency are changed into a
permanency and a variation ; but no variation of sign is lost or
gained on the whole.
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(3). Since the reasoning in the preceding cases is founded
on the relations of the function to those adjacent to it ouly;
and since these relations remain unaltered in the present case,
because no two adjacent functions vanish together, we conclude
that if f (z) is one of the vanishing functions, one change of sign
is lost, and if not, no change is either lost or gained.

‘We have proved, therefore, that when « passes through a
root of f(¢) = 0 one change of sign is lost, and under no other
circumstances is a change of sign either lost or gained. Hence
the number of changes of sign lost during the variation of «
from a to b is equal to the number of roots of the equation
between @ and 5.*

Before proceeding to the case of equal roots, we add a few
simple examples to illustrate the application of Sturm’s theorem.
It is convenient in practice to substitute first — @, 0, + o in
Sturm’s functions, so as to obtain the whole number of negative
and of positive roots. To separate the negative roots, the inte-
gers — 1, - 2, - 3, &e., are to be substituted in succession till we
reach the same series of signs as results from the substitution
of - ; and to separate the positive roots we substitute 1, 2, 3,
&c., till the signs furnished by + o are reached.

Exaurres.
1. Find the number and situation of the real roots of the equation
f(@)=2-22-56=0
We find filr)=82=2, fils)=4z+16, fi(z)=— 643.
Corresponding to the values — w0, 0, +  of z, we have

=) -+ - o
(0) - =+ 5
(+ =) + + + =

Hence there is only one real root, and it is positive.

* The student often finds a difficulty in perceiving in what way a record is pre-
served in Sturm’s series of the number of changes of sign lost, since the only loss takes
place between the first two functions, f(z) aud fi(z). It may tend to remove this
difficulty to observe, that as z increases from one root a of f(z) = 0 to a second 8,
although no alteration takes place in the number of changes of sign, the distribution
of the signs among f1(z) and the following functions alters in such a way that the
signs of f(z) and fi(z), which were the same immediately after the passage of =z
through «, become again different before the passage through 8. '
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Again, corresponding to values 1, 2, 3 of z, we have

(1) -+ + -
(@) -+ + o
(3) + o+ 4+ -

The real root, therefore, lies between 2 and 3.
2. Find the number and situation of the real roots of the equation

B-Tz+7=0.
We easily obtain
Si(z) =321,
Sa(@)=22-3,
whence 5)
(—») - + = 4
(0) + - = 4

(+) + + + +.

Hence all the roots are real : one negative, and two positive.
‘We have, further, the following results :—

(-4) -+ - +
(- 3) + + - 4
(-2 + + - +
(-1 + - -+
) + - -4
(2) + + + +.

Here — 4 and + 2 give the same series of signs as — « and + «; hence we stop at
these. The negative root lies between — 4 and — 3; and the two positive roots
between 1 and 2.
This example illustrates the superiority of Sturm’s method over that of Fourier.
The substitution of 1 and 2 in Fourier’s functions gives, as can be immediately
verified, the following series of signs :—

) + -+ 4
) + 4+ + +

From Fourier’s theorem we are authorised to conclude only that there cannot be
more than two roots between 1 and 2. From Sturm’s we conclude that there gre
two roots between 1 and 2. If we have occasion to separate these two roots, we
must, of course, make further substitutions in f(z)

3. Find the nnmber and situation of the real rots of the equation
b — 223 — 328 + 10z -4 =0.



Sturm’s Theorem. Equal Roots. 203

‘Wo obtain, removing the factor 2 from the derived,
Ni(z)=282-32- 32+ 5,
Sa(z) =923 - 27z + 11,
fri(z)=-82z-3,
filz) = ~ 1433,

[N.B.—In forming Sturm's functions it is allowable, as is evident from the
equatiohs (1), to introduce or suppress numerical factors just as in the process of
finding the a. ¢. u. ; taking care, however, that these are positive, 50 that the signs
of the remainders are not thereby altered.]

We have the following scries of signs :—

(o) + - + + -

(0) -+ + - 5

(+ o) + + + - -
Hence there are two real roots, one positive, and one negative, and two imaginary
roots. To find the positions of the real roots, it is sufficient to substitute positive
and negative integers successively in f(z) aloze, since there is only one positive and

one negative root. We easily find in this way that the negative root lies between
— 2 and — 3, and the positive root between 0 and 1.

97. Sturm’s Theorem. Equal Roots.—Let the opera-
tion for finding the greatest common measure of f(z) and f*(z;
be performed, the signs of the successive remainders being
changed as before. The last of Sturm’s functions will not now
be numerical, for since f(+) and f*(z) are here supposed to con-
tain a common measure involving z, this will now be the last
function arrived at by the process. ILet the series of functions

be :—
L), fi(@), £i(2)s - on ey frl2).

During the passage of z through any value except a multiple root
of f(z) = 0, the conclusions of the last Article are still true with
respect to the present series, since no value except such a root
can cause any consecutive pair of the series to vanish. When «
passes through a multiple root of /() = 0, there s, by the Cor.,
Art. 75, one change of sign lost between f and f,; and we pro-
ceed to prove that no change of sign is lost or gained in the rest
of the series, viz. f1, f3, . ... fr. Suppose there exists an m-mul-
tipleroot a of f{#). Itis evident from the equations (1) of Art. 96,
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that (z — a)™' is a factor in each of the functions /), fay ... . /5.
Let the remaining factors in these functions be, respectively,
¢ ¢ - ... ¢ By dividing each of the equations (1) by
(x - @)™, we get a series of equations which establish, by the
reasoning of the last Article, that, owing to a passage through a,
no change of sign is lost or gained in the series ¢, ¢sy - . . - @,
Neither, therefore, is any change lost or gained in the series
SisSes o - - Jfr; forthe effect of the factor (# — a)™* in the passage
of z from a value a — 4 to a value a + A is either to change the
signs of all (when m — 1 is odd) or of none (when m — 1 is even)
of the functions ¢,, ¢s, . . . . ¢,; and changing the signs of all
these functions cannot increase or diminish the number of
 variations.

We have therefore proved that when z passes through a
multiple root of f(2) =0 one change of sign is lost between f and
J1, and none either lost or gained in any other part of the series.
It remains true, of course, that when « passes through a single
root of f(#) = 0 a change of sign is lost as before. We may thus
state the theorem as follows for the case of equal roots :—

The difference betwceen the number of changes of sign when a and b
are substituted in the series

LS So oooiSr

the last of these being the greatest common measure of f and f,, ts
equal to the number of real roots between a and b, each multiple root
counting only once.

Exaurres,

1. Find the nature of the roots of the equation
H—-56224+922-T72+2=0.
We easily obtain
Si(z) =42 - 162+ 18z - 1,
Salz)=22-22+1;
JS2(z) divides f1(z) without remainder ; hence in this case Sturm’s serics stops at
JSa(), thus establishing the existence of equal roots.
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To find the number of real roots of the equation, we substitute —wand + ®
for z in the series of functions f, fi, f> The resultis

(-) + - 4
t®) + + +

Hence the equation has only two real distinct roots; but one of these is a triple
root, as is evident from the form of f3(z), which is equal to (z — 1)2.
2. Find the nature of the roots of the equation

28 —623+ 1323 - 1224+ 4= 0.
Here
Si(z) = 423 — 1827 + 26z — 12,
Salz) =22 =382+ 2;
Jf3(z) is the last Sturmian function ; so that the equation has equal roots.
(— q)) + - +
(+®o) + + +.

There are only two real distinct roots. In fact, since f2(z) = (z ~ 1) (z — 2), each of
the roots 1, 2 is a double root.

3. Find the nature of the roots of the equation
P+ +23-21-22-1=0.
Hero S1=06zt 4+ 82% + 323 - 22 -2,
fi=224+12 + 122+ 1,
fo=—2t—62-6.
fi=—z-1,
Sfs=0.

Since f5=0, z+ 1 is a common measure of f and f1, and f(z) has u double root — 1.
We have also
=) -+ --4

(+o) + 4+ + - -

Hence there are two real distinct roots. The equation has, therefore, beside the
double root, one other real root, and two imaginary roots.

4. Find the nature of the roots of the equation
28 -T2°+ 1624 — 402 + 482 - 16 = 0.
Here /i(2) = 625 — 3624 + 60z° — 80 + 48,
S2(z) = 1328 — 8423 4 19227 — 1762 + 48,
Ss(z) = 23 - 622+ 122— 8 = (z-2)%,
Ans. There are three real distinct roots, one of them being quadruple.
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98. Application of Sturm’s Theorem.—In the case of
equations of high degrees the caloulation of Sturm’s auxiliary
functions becomes often very laborious. It is important there-
fore to pay attention to certain observations which tend some-
what to diminish this labour.

(1). In calculating the final remainder when it is numerieal,
since its sign is all we are concerned with, the labour of the last
operation of division can be avoided by the consideration that
the value of # which causes f., to vanish must give opposite
signs to fu.and f,.. It is in general possible to tell without any
calculation what would be the sign of the result if the root of
JSai1(2) =0 were substitutedin fus(z). Thusin Ex. 3, Art. 96, if

the value — g which is the root of fi(z) = 0, be substituted for

z in 92* — 27z + 11, the result is evidently positive; hence the
sign of £, (#) is —, and there is no occasion to calculate the value
- 1433 given for f, (z) in the example referred to.

(2). When it is possible in any way to recugnize that all the
roots of any one of Sturm’s functions are imaginary, we need
not proceed to the caloulation of any function beyond that one;
for since such a function retains constantly the same sign for all
values of the variable (Cor. Art. 12), no alteration in the number
of changes of sign presented by it and the following functions
can ever take place, so that the difference in the number of
changes when two quantities a and b are substituted is indepen-
dent of whatever variations of sign may exist in that part of
the series which consists of the function in question and those
following it. 'With a view to the application of this observation
it is always well, when we arrive at the quadratic function
{az® + bz + ¢, suppose), to examine, in case the term containing
#* and the absolute term have the same sign (otherwise the roots
could not be imaginary), whether the condition 4ac > * is ful-
filled ; if so, we know that the roots are imaginary, and the
calculation need not proceed farther.

Similar observations apply to the case where one of the
functions is a perfeot square, since such a function cannot
change its sign for real values of z.
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ExampLEs.
1 Analyse the equation

24+ 3234+ 723+ 102+ 1 =0,
We find

Sa(z) = — 292 — T8z + 14,
Ss(z) =~ 1086z — 481,
Sz = =
Here we see immediately that the value of z given by the equation fs(z) = 0,
which differs little from — }, makes f3(z) positive; hence f((z) is negative.
There are two real, and two imaginary roots. The real roots lie in the intervals
{-2, -1}, {-1, 0}.
2. Analyse the equation
24 - 428 - 32+ 23 = 0.

We find
S2(z) = 122 + 9z - 89,
fa(z) = — 491z + 1371,
Sa@) = =
. 1371 1371 5 5
Here Ss(z)=0 5‘""“4‘9T>_5W>2“> 2 and z=§make:

Ja(x) positive ; hence the root of f3(z) makes it positive also.
There are two real and two imaginary roots.
The real roots lie in the intervals {2, 3}, {3, 4}.
3. Analyse the equation

224 — 1322+ 10z-19=0.
Here

fi(2) = 42% — 13z + 5,
Sa(z) = 1323 — 16z + 38.

Since 4 x 13 x 38 > 152, the roots of f2(z) are imaginary, and we proceed no
further with the calculation of Sturm's remainders.
Substituting — o, 0, + o, we obtain

(— ®) + - +
(0) - + *»
(+ o) + + o+

There are two real roots, one positive, the other negative.
4. Analyse the equation
f@)mat4 200+ 25— 42232 -5=0.
Here Si(z) =524 + 82% + 327 - 8z — 3,
Sa(z) = 623 + 6622 + 44x + 119,
fo(@) = - 1162 — 57z — 223.
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Since 4 x 116 x 223 > 57%, we may stop the calculation here, We find, on
substituting -, 0, + o,
=) - + - o
© - = o+ o
+=) + + + -
There are four imaginary roots, and ono: real positive root.
6. Find the number and situation of the real roots of the equation

ot — 223~ 728+ 10z + 10=0.

Ans. The roots are all real, and are situated in the intervals

{-3, -2}, {-1, 0}, and two between {2, 3}.
6. Analyse the equation

25+ 320+ 228 - 322~ 22-2=0.

It will be found that the calculation may cease with the quadratic remainder.
Ans. There is only one real root ; in the interval {1, 2}.

7. Analyse the equation
2+ 1123 — 102z + 181 = 0.

Woe find f(2) = 864z — 2751,
Si(z) = 441.

In some exampies, of which the present is an instance, it is not easy to tell
immodiately what sign the root of the penultimate function gives to the preceding
function. We have here calculated f3(z), and it turns out to be a much smaller
number than might have been expected from the magnitude of the coeflicients in f3(z).
In fact when the root of f3(z) is substituted in f; (z) the positive part is nearly equal
to the negative part. This is always an indication that #wo roots of the proposed
equation are nearly egual. There are in the present instance two positive roots be-
tween 3 and 4. Subdividing the intervals, we find the two roots still to lie between
3-2 and 3'3; so that they are very close together. We have here another illustra-
tion of the continuity which exists between real and imaginary roots (cf. Arts. 17,
18). If f3(z) were zero, the two roots would be equal; and if it were a amall
negative number, they would be imaginary.

8. Analyse the equation

P+A+23-2834+22-1=0.

The quadratic function is found to have imaginary roots.
Ans. One real root between {0, 1}; four imaginary routa.
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9. Analyse the equation
25 —62% - 3052+ 122 - 9 = 0.
JSa(z) =624 + 2022+ 7;
and as this has clearly all imaginary roots, the calculation may stop here.
Ans. Two real roots; in the intervals {2, —1},
10. Analyse the equation
228 — 182% + 6024 — 1202% — 302* + 18z -5 = 0.
Sa(2) = 624 + 22023 + 1;

and the calculation may stop.
Ans. Two real roots ; in the intervals {— 1, 0},

We find

We find

11. Examine how the roots of the equation
27% 4 1622 — 84z - 190 =0

209

{6, 7j.

{5, 6}.

are situated in the several intervals between the numbers — @, — 7,6, + .

Here Si(z) =23+ bz - 14,
Sa(z) =27z + 40,
Ss(z) = +.
The substitution of the above quantities gives
(~o@) = + = 4
- + 0 - 4
® + + + +
(+o) + + + +

Whenever, as in this example, any quantity makes one of the auxiliary functions
vanish (here — 7 eatisfies f1(z) = 0), the zero may be disregarded in counting the
number of changes of sign in the corresponding row ; for, since the signs on each
side of it are different, no alteration in the number of changes of sign in the row
could take place, whatever sign be supposed attached to the vanishing quantity.

The roots are all real. There is one root between — « and — 7; and two be-

tween — 7 and 6.
12. Analyse the equation
324 - 623 -8z -3=0.
Si(z) =823 -32-12,
Sa@) =(z+1)%
As f3(z) is a perfect square the calculation may cease.
Ans. Two real roots; in the intervals {-1, 0},
P

We find

{1, 2}.
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99. Conditions for the Reality of the Roots of am
Equation.—The number of Sturm’s functions, including
7(z), f'(z) and the n — 1 remainders, will in general be n + 1.
In certain cases, owing to the absence of terms in the proposed
function, some of the remainders will be wanting. This can
ocour only when the proposed equation has imaginary roots; for
it is clear that, in order to insure a loss of n changes of sign in
the series of functions during the passage of z from — 0 to + @
(namely, in order that the equation should have all its roots
real), all the functions must be present. And, moreover, they
must all take the same sign when z = + 0 ; and alternating
signs when z = — . 8ince the leading term of an equation is
always taken with a positive sign, we may state the condition
for the reality of all the roots of any equation (supposed not to
have equal roots) as follows :—1In order that ail the roots of an
equation of the n'™ degree should be real, the leading coefficients of
all Sturm’s remainders, in number n — 1, must be posttive.

ExaMPLEs.

1. Find the condition that the roots of the equation
az® + 20z +c=0
should be real and unequal. Ans. 5 — ac> 0.
2. Find the conditions that the roots of the cubic

£+30z+G=0
should be all real and unequal.

When this cubic has its roots all real, it is evident that the general cubic from
which it is derived (Art. 36) has also its roots all real ; so that in investigating the
conditions for the reality of the roots of a cubic in general, it is sufficient to discuss
the form here written.

‘We find NHie)=#+ H,

Sa(z) =- 2Hz - G,
fils) = (@ + ¢4H),
[In calculating these, before dividing fi () by f2(z), multiply the former by the
positive factor 2H2.]
Hence the required conditions are, H negative and G* + 4H3 negative.
These can be expressed as ome condition, viz., G® + 4H?3 negative, since this
implies the former (cf. Art. 43).
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3. Calculate Sturm’s remainders for the biquadratic
st+6HA+ 4Gs + a1 - 3H? = 0.
We find fils) = — SHe — 3Gs — (I ~ 3HY),
Sa(s) =— (2HI - 3aJ)s - G1,
fils) =P =212,

These are obtained without much difficulty by aid of the identity of Art. 37.
Before dividing /i by f2, multiply by the positive factor 3H?; and when the re-
mainder is found, remove the positive factor a3. Before dividing f; by f3, multiply
by the positive factor (2HI - 3aJ)?; and when the remainder is found, remove the
positive factor a*H*.

100. Conditions for the Reality of the Roots of a
Biguadratie.—In order to arrive at criteria of the nature of
the roots of the general algebraic equation of the fourth degree
by Sturm’s method, it is sufficient to consider the equation of
Ex. 3 of the preceding Article. By aid of the forms of the
leading coefficients of Sturm’s remainders there calculated, we
can write down the conditions that all the roots of a biquadratic
should be real and unequal in the form

H negaiive, 2HI - 3aJ negative, I* — 27J* positive.

It will be observed that the second of these conditions is
different in form from the corresponding condition of Art. 68.
To show the equivalence of the two forms it is necessary to
prove that when H is negative and A positive, the further con-
dition 2HI - 3aJ negative implies the condition 4°1 - 12H*
negative, and conversely. From the identity of Art. 37,
written in the form - H (¢’ — 12H?) = a* (2HI - 3aJ) - 3G?,
it readily appears that when H and 2HI - 3aJ are negative
a*I - 12 H* is necessarily negative. And to prove the converse
we observe that when aJ is positive 2HI — 3aJ is negative,
since 1 is positive on account of the condition A positive; and
when aJ is negative 2HI — 3aJ is still negative, since the
negative part 2HI exceeds the positive part — 3aJ, as may be
readily shown by the aid of the inequalities 12H* > a1 and
I > 27J°.

The student will have no difficulty in verifying, by means
of Sturm’s functions, the remaining conclusions arrived at in
the different cases of Art. 68.

P2
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ExaAMPLES.

1. Apply Budan’s method to separate the roots of the equation
a4 — 162 + 6922 — 70z — 42 =0.
Ans. Roots in intervals {—1, 0}, {2, 3}, {4, 5}, {9, 10}.
2. Apply Sturm’s theorem to the analysis of the equation
#4284+ T2 —62-4=0.
In analysing a biquadratic of this nature which has clearly two real roots, when
a Sturmian remainder is reached whose leading coefficient is negative, the calculation

may cease, since the other pair of roots must then be imaginary, and the positions
of the real roots may be readily found by substitution in the given equation.

Ans. Two roots imaginary ; real roots in intervals {—1, 0}, {2, 3}.
3. Analyse in a similar manner the equation
24~ 62°+ 102° - 62 — 21 = 0.
Ans. Two roots imaginary ; real roots in intervals {-1, 0}, {3, 4}.
4. Apply Sturm’s theorem to the analysis of the equation
$4+33~-28-32+11=0.
Ans. Roots all imaginary.

6. Find, by Sturm’s method, the number and positions of the real roots of the
equation
25—102*+ 62z +1=0.
Ans. Roots all real ; one in the interval {~4, —3}; twoin the interval
{—1, 0}; and positive roots in the intervals {0, 1}, {3, 4}.

6. Calculate Sturm’s functions for the following equation, and show that all the
roots are real :—

28 — b2* + 62% + 622 — 6z — 1 = 0.

7. Calculate Sturm’s functions for the following equation, and show that four
roots are imaginary :—

82+ 622+ 2=0.

This and the preceding example are instances in which, as the student will
easily see, there is a factor common to two ef Sturm’s remainders which are not
consecutive.

8. Calculate Sturm’s functions for the following equation, and verify the con-
clusions of Ex. 23, p. 104, with regard to the character of the roots :—

75 — bpxd + bpPr + 29 = 0.
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9. Prove that, if ¢ has any value except unity, the equation
Rh—2323+22-1=0

has a pair of imaginary roots.

10. Prove that the roots of the equation

28—~ (a 4 B+ ot) 2 — 2abe =0

are all real, and solve it when two of the quantities a4, 4, ¢ become equal.

11. Prove that when the biquadratic

S (z) mazt + 4523 + Bes3 + 4dz+ 0
has a triple factor, it may be expressed in the form
f(z)={ax + b+ V— H}? {ax + b- 8V_H}.

12. Verify, by means of Sturm’s remainders, the conditions which mustbe ful-
filled when the biquadratic of the preceding example is a perfect square, and prove
in that case

& (z) = {(az + )2+ 3H}2

13. Prove that, when all Sturm’s functions are present, the number of changes of
sign among the coefficients of the leading terms is equal to the number of pairs of
imaginary roots of the equation.

14. If the signs of the leading coefficients of the first two of Sturm’s remainders
for a quintic be — +, prove that the number of real roots is determined.

Ans. One real root only.

15. If H and J are both positive, prove that all the roots of the biquadratic are
imaginary ; and that under the same conditions the quintic written with binomial
coefficients has only one real root. (Mz. M. RoserTs, Dublin Ezam. Papers, 1862.)

16. In the application of Sturm’s theorem, if any function be reached whose
gigns are all positive or all negative, the number and situations of the positive
roots of the original equation can be examined without the aid of the lower
Sturmians ; and if a function be reached whose sigus are alternately positive and
negative, the negative roots of the original equation may be discussed in a similar
manner.

17. 1f all the roots of any equation f(z} = 0 are real, prove that all the roots of
every one of Sturm’s auxiliary functions are also real.

This can be established by reasoning similar to that of Art. 96. Consider the
k¢ remainder R, and let its degree be m. This and the m functions which follow
constitute a series of which no adjacent two can vanish together. When z=-wo,
their signs are alternately positive and negative, and when z =+ o, they are all
positive. There are, therefore, m changes of sign to be lost as z passes from —
to + «; and no change of sign can be lost except on the passage through a root of
R; = 0, which equation must consequently have m real roots.

Since a value of z which causes any of the functions to vanish gives opposite
signs to the two adjacent functions, it is easily inferred that any equation of the
series is a limiting equation with regard to the function which precedes it.
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18. If the real roots of any one, fm(z), of the Sturmian auriliary functions be
known, prove that the number and positions of the roots of the original equation
may be determined without the aid of the functions below fi ().

Let the real roots, in order of magnitude, of fu(z) =0 bea, B,... 19, 8; the
remaining roots being imaginary. As z varies from — o to a value a little lesa
than 6, the function fm(z) cannot change its sign; and therefore in examining
the roots of f(z) = 0 which lie between these limits, the Sturmians which follow
Jfm (%) may be disregarded. The same holds true as z passes from a value a little
greater than 6 to one a little less than 5 ; and similarly for the remaining intervals.
If therefore we examine separately the intervals {— =, 0}, {6, n},- .. {B,a},
{a, + ®© }, the number of roots of the original equation which lie in each of these
regions can be determined without the aid of the lower Sturmian functions.

19. If any one of Sturm’s auxiliary functions has imaginary roots, the original
equation has at least an equal number of imaginary roots. (Mr. F. Punszr.)

This can be inferred from the preceding example by examining the greateet
possible number of changes which can be lost in the series terminating with fu (),
during the passage of z from — o t0 + @ ; remembering that, so far as the limited
series is conoerned, a change of sign may be gained on the passage through each
real root of fu(z) = 0.

20. Apply the method of Ex. 18 to the equation of Ex. 1, Art. 98.

Disregarding the two lowest Sturmian remainders, we have

f(@) =zt 4323+ 722 + 10z + 1,
S(z) = 42° + 92% + 14z + 10,
Ry = — 292% - 782 + 14.

The roots of the equation R; =0 are easily seen to lie in the intervals (-8, —2)
and (0, 1). The equation f(z) = 0 has two imaginary roots, since the coefficient
of z* in R, is negative. The real roots, if any, must be negative. The three
functions above written are sufficient to determine the existence and situations of
roots in the intervals (- o, —3) and (~2, 0). It is at once seen that two real
roots of the original equation are situated in the latter interval.

It will be found possible in many examples to avoid in this way the calculation
of the last two Sturmian remainders ; and it will be observed that it is not neces-
sary to know the actual roots of the quadratic function, but only the intervals in
which they are situated.



CHAPTER XI.

SOLUTION OF NUMERICAL KQUATIONS.

101. Algebraical and Numerical Equations. — There
is an essential distinotion between the solutions of algebraical
and numerical equations. In the former the result is a general
formula of a purely symbolical character, which, being the general
expression for a root, must represent all the roots indifferently.
It must be such that, when for the functions of the coefficients
involved in it the corresponding symmetric functions of the
roots are substituted, the operations represented by the radical
signs |, ?| become practicable; and when the square and cube
roots of these symmetric functions are extracted, the whole
expression in terms of the roots will reduce down to one root :
the different roots resulting from the different combinations
t | of square roots, and |, w?|, w'?| of cube roots. For a
simple illustration of what is here stated, we refer to the case
of the quadratio in Art. 55. In Articles 59 and 66 we have
similar illustrations for the cubioc and biquadratic. It is to be
observed also that the formula which represents the root of an
algebraio equation holds good even when the coefficients are
imaginary quantities.

In the case of numerical equations the roots are determined
separately by the methods we are about to explain; and, before
attempting the approximation to any individual root, it is in
general necessary that it should be situated in & known interval
which contains no other real root.

The real roots of numerical equations may be either com-
mensurable or incommensurable ; the former class including
integers, fractions, and terminating or repeating decimals, which
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are reducible to fractions; the latter consisting of interminable
decimals. The roots of the former class can be found exactly,
and those of the latter approximated to with any degree of
acouracy, by the methods we are about to explain.

‘We shall commence by establishing a theorem which reduces
the determination of the former class of roots to that of integer
roots alone.

102. Theorem.—An equation in which the coefficient of the
first term 13 unity, and the coefficients of the other terms whole

numbers, cannot have a commensurable root which 8 not a whole
number.

For, if possible, let g, a fraction in its lowest terms, be
a root of the equation

P AP P . DT + Pa=0;
we have then

a\" a)"" a) 0:
'b- +pl 5' +-'--+p!l-! ‘b‘ +p”= )

from which, multiplying by 4!, we obtain
- %ﬂ =0108™ + P3a"0 + . s o 4 P @b+ P b

Now a" is not divisible by 4, and each term on the right-hand
side of the equation is an integer. 'We have, therefore, a frac-
tion in its lowest terms equal to an integer, which is impossible.

Hence g cannot be a root of the equation. The real roots of

the equation, therefore, are either integers or incommensurable
quantities. .

Every equation whose coefficients are finite numbers, frac-
tional or not, can be reduced to the form in which the coefficient
of the first term is unity and those of the other terms whole
numbers (Art. 31) ; so that in this way, by the aid of a simple
transformation, the determination of the commensurable roots
in general can be reduced to that of integer roots.
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‘We proceed to explain Newton’s process, called the Method
of Divisors, of obtaining the integer roots of an equation whose
coefficients are all integers.

103. Newton’s Method of Divisors.—Suppose 4 to be an
integer root of the equation

A"+ BT+ oo+ Qa2+ Gy = 0. (1)
Let the quotient, when the polynomial is divided by z — A, be
boz™®? + b2+ ...+ bpa + by

in which b, by, &o., are clearly all integers.
Proceeding asin Art. 8, we obtain the following equations :—

a°=bo, a1=b1—hbo, ag‘:bz—]lbl,....
Opo=bpa~ hbm, Opy=bpy—hbpyy, Gn=- hbp.

The last of these equations proves that a, is divisible by A,
the quotient being - b, ,. The second last, which is the same as

an

Qp + A hbgs,

proves that the sum of the quotient thus obtained and the se-
cond last coefficient is again divisible by A, the quotient being
— b,3; and so on.

Continuing the process, the last quotient obtained in this
way will be — b,, which is equal to —a,.

If we perform the process here indicated with all the divi-
sors of a, which lie within the limits of the roots, those which
satisfy the above conditions, giving integer quotients at each
step, and a final quotient equal to — a,, are roots of the proposed
equation. Those which at any stage of the process give a frac-
tional quotient are to be rejected.

‘When the coefficient a, = 1, we know by the theorem of the
last Article that the integer roots determined in this way are
all the commensurable roots of the proposed equation. If a, be
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not = 1, the prooess will still give the integer roots of the equa-
tion as it stands; but to be sure of determining in this way all
the commensurable roots, we must first transform the equation
to one which shall have the coefficient of the highest term equal
to unity.

104. Application of the Method of Divisors.—With a
view to the most convenient mode of applying the Method of

Divisors, we write the series of operations as follows, in & manner
analogous to Art. 8 :—

Ay An A3 «s 0+ Gg [/ Gy

-b»-l "b.-a "ba ~b “bo

- hb»_g - hbﬂ - hb] - hbo 0

The first figure in the second line (- Ja.,) is obtained by
dividing a, by 4. This is to be added to a,., to obtain the first
figure in the third line (- Ab,s). This is to be divided by 4 to
obtain the second figure in the second line (- b,.) ; this to be
added to a, ,; and so on. If A be a root, the last figure in the
second line thus obtained will be - a,.

‘When we succeed in proving in this manner that any integer
A is a root, the next operation with any divisor may be performed,
not on the original coefficients ay, a,, . .. ., but on those of the
second line with their signs changed, for these are the coefficients
of the quotient when the original polynomial is divided by z — A.
‘When any divisor gives at any stage a fractional result it is to
be rejected at once, and the operation so far as it is concerned
stopped.

The numbers 1 and — 1, which are always of course integer
divisors of a,, need not be included in the number of trial divisors.
It is more convenient before applying the Method of Divisors to
determine by direct substitution whether either of these numbers
is a root.
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ExaupLes. M
1. Find the integer roots of the equation
54— 248 — 1327+ 385 — 24 = 0,

By grouping the terms (see Art. 87) we observe without difficulty that all the
roots lie between ~ 5 and + 8. The following divisors are possible roots :—

-4 -3 -2, 3 3 ¢
We commence with 4 ;:—
—-24 338 -~13 -3 1

32 ~b

The operation stops here, forgince — 6 is not divisible by 4, 4 cannot be a root.
We proceed then with the number 3:

-2 38 -13 -2 1
-8 10 -1 -1
%0 -3 -3 o

hence 3 is a root; and in prooeeding with the next integer, 2, we make use, as
above explained, of the coefficients of the second line with signs changed :

8 -10 1 1
4 -3 -1
-6 -2 0;

hence 2 also is a root ; and we proceed with — 2:
-4 3 1
2

6;
hence — 2 is not a root, for it does not divide 5. — 3 is plainly not a root, for it
does not divide — 4.
[We might at once have struck out — 3 as not being a divisor of the absolute
term 8 of the reduced polynomial. This remark will often be of use in diminishing
the number of divisors.]
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‘We proceed now to the last divisor, — 4.

-4 3 1
1 -1
4 0

Thus ~ 4 is a root.

The equation has, therefore, the integer roots 3, 2, — 4; and the last stage of
the operation shows that when the original polynomial is divided by the binomials,
z-3,2—2, z+4, the result is z—1; so that 1 is also a root. Hence the original
polynomial is equivalent to

(z-1)(z - 2)(z - 8)(z + 4).

2. Find the integer roots of

324 — 232 + 362% + 312~ 30 = 0.

The roots lie between — 2 and 8; hence we have only to test the divisors
2,3, 6, 6.

We find immediately that 6 is not a root. *

For 6 we have
-30 31 36 -23 3
- 6 5 8 -3
26 40 -16 0;
hence 5 is a root. For 3 we have

6 -6 -8 3

2 -1 -3

-3 -9 0;

hence 3 is a root ; and we easily find that 2 is not a root.
The quotient, when the original polynomial is divided by (z — 5) (z— 3), is, from
the last operation,
2 +z-2;

of this 1 is not a root, and ~ 1 isa root. Hence all the integer roots of the pro-
nosed equation are — 1, 3, 5.
The other root of the equation is g It is a commensurable root ; but, not being
an integer, is not given in the above operation.
3. Find all the roots of the equation
423 -2+ 42-24=0.

Limits of the roots are — 4, 3.
Ans. Roots —8,2, £ 2V —1.
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4. Find all the roots of the equation
2 — 22% — 192% 4 682 — 60 = 0,

The roots lie between — 6 and 6.
We find that 2, 8, — 5 are roots, and that the factor left after the final division
is £ — 2; hence 2 is a double root. The polynomial is therefore equivalent to

(z-23(x-3)(z+6).

In Art. 106 the case of multiple roots will be further considered.

105. Method of Limiting the Number of Divisors.—
It is possible of course to determine by direct substitution
whether any of the divisors of a, are roots of the proposed equa-
tion; but Newton’s method has the advantage, as the above
examples show, that some of the divisors are rejected after very
little labour. It has a further advantage which will now be
explained. 'When the number of divisors of a, within the limits
of the roots is large, it is important to be able, before proceeding
with the application of the method in detail, to diminish the
number of these divisors which need be tested. This can be
done as follows :—

If A is an integer root of f(z) = 0, f(z) is divisible by z - 4,
and the coefficients of the quotient are integers, as was above
explained. If therefore we assign to # any integer value, the
quotient of the corresponding value of f(z) by the correspond-
ing value of z - A must be an integer. 'We take, for convenience,
the simplest integers 1 and — 1 ; and, before testing any divisor 4,
we subject it to the condition that /(1) must be divisible by
1 - A (or, changing the sign, by A -~ 1) ; and that /(- 1) must
be divisible by -1 - A (or, changing the sign, by 1 + A).

In applying this observation it will be found convenient to
calculate f(1) and f(- 1) in the first instance : if either of these
vanishes, the corresponding integer is a root, and we proceed
with the operation on the reduced polynomial whose coefficients
have been ascertained in the process of finding the result of
substituting the integer in question.
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ExAMPLES.

1. &5 — 2324 + 1602% — 2812* — 2672 — 440 = 0.

The roots lie between — 1 and 24.
‘We have the following divisors :—
2, 4 65 8 10, 11, 20, 23
We easily find
f(1)=—1840, and f(—1)=—648.

We therefore exclude all the above divisors, which, when diminished by 1, do
not divide 840 ; and which, when increased by 1, do not divide 648. The first
condition excludes 10 and 20, and the second 4 and 22. Applying the Method of
Divisors to the remaining integers 2, 5, 8, 11, we find that 5, 8, and 11 are roots,
and that the resulting quotient is 22 + z+ 1. Hence the given polynomial is equi-

valent to
(z-5)(z—8)(z—11) (22 + z + 1).

2. 25 — 2924 —- 312% + 312% — 32z + 60 =0.

The roots lie between - 3 and 32.

Divisors: -2, 2,3, 4,5, 6, 10, 12, 15, 20, 30,

f(1)=0; 801 is a root.

f(=1)=124; and the above condition excludes all the divisors except — 2, 3, 30.

We easily find that — 2 and 30 are roots, and that the final quotient is 33 + 1.
The given polynomial is equivalent to (z — 1) (z—30) (z + 2) (+3+1).

106. Determination of Multiple Roots.—The Method
of Divisors determines multiple roots when they are commen-
surable. In applying the method, when any divisor of a, which
is found to be a root is a divisor of the absolute term of the re-
duced polynomial, we must proceed to try whether it is also a
root of the latter, in which case it will be a double root of the
proposed equation. If it be found to be a root of the next
reduced polynomial, it will be a triple root of the proposed ; and
so on. 'Wheneverin an equation of any degree there exists only
one multiple root, r times repeated, it can be found in this way ;
for the common measure of f(z) and f'(z) will then be of the
form (2 — a)™?, and the coefficients of this could not be com-
mensurable if a were incommensurable.
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Multiple roots of equations of the third, fourth, and fifth
degrees can be completely determined without the use of the
process of finding the greatest common measure, as will appear
from the following observations :—

(1). The Cubic.—In this case multiple roots must be com-
mensurable, since the degree is not high enough to allow of two
distinct roots being repeated.

(2). The Biguadratic.—In this case either the multiple roots
are commensurable or the function is a perfect square. For the
only form of biquadratic which admits of two distinet roots
being repeated is

(@ - a)* (= - B),

viz. the square of a quadratic. The roots of the quadratic may
be incommensurable. If we find, therefore, that a biquadratic
has no commensurable roots, we must try whether it is a per-
fect square in order to determine further whether it has equal
incommensurable roots.

(3). The Quintic.—In this case, either the multiple roots are
commensurable, or the function consists of a linear commen-
surable factor multiplied by the square of a quadratic factor.
For, in order that two distinet roots may be repeated, the
function must take one or other of the forms

(z-a3(@-Br-y), (@-a)(z-P)

In the latter case the roots cannot be incommensurable ; but the
former may correspond to the case of a commensurable factor
multiplied by the square of a quadratic whose roots are incom-
mensurable. If then a quintic be found to have no commen-
surable roots, it can have no multiple roots. If it be found to
have one commensurable root only, we must examine whether
the remaining factor is & perfect square. If it have more than
one commensurable root, the multiple roots will be found among
the commensurable roots.
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ExaMpLES.
1. Find all the commensurable roots of
22% — 3125 + 1122 + 64 = 0.

The roots lie between the limits — 1, 16. The divisors are 2, 4, 8.

64 112 =31 2

8 16 -2

120 - 16 0;

8 is therefore a root. Proceed now with the reduced equation :
-8 -16 2
-1 -2
-16 0

8 is a root a.gai.n, and the remaining factor is 2z + 1.
Ans. f(z)=(22+ 1) (s — 8)%
2. Find the commensur&ble and multiple roots of
24 — 23 — 302% — 762 — 56 = 0.
The roots lie between the limits, — 6, 12. (Apply method of Ex. 10, Art. 87.)
Ans. f(z)=(z+2)3(=—-17).
3. Find the commensurable and multiple roots of
924 — 1228 — 712 — 40z + 16 = 0.
The roots lie between the limits — 2, 6.
The equation as it stands is found to have no integer root; but it may still

have a commensurable root. To test this we multiply the roots by 8 in order to
get rid of the coeflicient of 4. We find then

b — 423 — 712 — 120z + 144 = 0.

Limits: — 6, 15.
We find —4 to be a double root of this, and the function to be equivalent

to (z* — 12z + 9) (# + 4)%. The original equation is therefore identical with the

following . —
(x*—4z+1)(3z +4)2=0.

4. Find the commensurable and multiple roots of
oA+ 1228 + 3222 — 247 + 4=0.
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The roots lie between — 12 and 1. The only divisors to be tested are, therefore,
—4,-2,—1. We find that the equation has no commensurable root. We pro-
coed to try whether the given function is a perfect square. This can be done by
extracting the square root, or by applying the cunditions of Ex. 3, p. 125. We find
that it is the square of 23 + 6z — 2 (cf. Ex. 1, p. 163). Hence the given equation
bas two pairs of equal roots, both incommensurable.

5. Find the commensurable and multiple roots of

Sf(z) mz® -2 — 127 + 823 + 282 + 12 =0.

The limits of the roots are — 4, 4.

We find that —8 is a root, and that the reduced equation is

- 428+ 82+ 4=0,
and that there is no other commensurable root.

The only case of possible occurrence of multiple roots is, therefore, when this
latter function is a perfect square. It is found to be a perfect square, and we have

S (2) = (22— 2z — 2)3(z + 3).
6. Find the commensurable and multiple roots of
f(z) m &% — 824 4 2223 — 2627 + 212 — 18 = 0.
Ans. f(z)= (2*+1)(z—2) (z - 3)%
7. The following equation has only two different roots : find them :—
25 — 1324 4 6723 — 1712° + 216z ~ 108 = 0.

In general it is obvious that if an integer root 4 occurs twice, the last coefficient
must contain A3 as a factor, and the second last 4 ; if the root occurs three times,
A° must be a factor of the last, 42 of the second last, and A of the third last coef-
ficient. The last coefficient here = 22, 3%. Hence, if neither — 1 nor 1 is a root,
the required roots must be 2 and 3. That these are the roots is easily verified.

8. The equation
80024 — 10222 -2+ 3=0

has equal roots ; find all the roots.

In this example it is convenient to change the roots into their reciprocals before

lying the Method of Divisors.
\'pp ying e R e, S(z) = (102 - 3) (62— 1) (4z + 1)

107. Newton’'s Method of Approximation.—Having
shown how the commensurable roots of equations may be ob-
tained, we proceed to give an account of certain methods of
obtaining approximate values of the incommensurable roots.
The method of approximation, commonly aseribed to Newton,*
which forms the subject of the present Article, is valuable as

® See Note B at the end of the volume.
Q
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being applicable to numerical equations involving transcendental
functions, as well as those which involve algebraical functions
only. Although when applied to the latter class of functions
Newton’s method is, for practical purposes, inferior in form to
Horner’s, which will be explained in the following Articles, yet
in principle both methods are to a great extent identical.

In all methods of approximation the root we are seeking is
supposed to be separated from the other roots, and to be situated
in a known interval between close limits.

Let f(z) = 0 be a given equation, and suppose & value a to
be known, differing by a small quantity 4 from a root of the
equation. Wp have then,’since a + A is a root of the equation,
f(a+h)=0; or

Sla) +f(a)h +f'—(a)h’+ =0
) ) cee.=0,

Neglecting now, since 4 is small, all powers of 4 higher than

the first, we have
f(a) +7 (@) h =0,

giving, as a first approximation to the root, the value
f(a)

a ~Fla)
Representing this value by 4, and applying the same process
second time, we find as a closer approximation
p 1)
S @)

By repeating this process the approximation can be carried
to any degree of accuracy required.

ExaumpLE.

Find an approximate value of the positive root of the equation

22 -22-5=0. .
The root lies between 2 and 8 (Ex. 1, Art. 96). Narrowing the limits, the root is
found to lie between 2 and 2:2. Wetake 2°1 as the quantity represented bys. It
cannot differ from the true value @ + 4 of the root by more than 0-1. We find
sty 7@ _f@1 o6l

a 1 N

F@ = raEn " ivas ™ 70
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A first approximation is. therefore,
2+1 — 0-00543 = 2-0946.

Taking this as 4, and caloulating the ﬁuﬁon%%

10 _
[ 2 }.Tb) 2-09466148°

for a second approximation; and so on.

, We obtain

The approximation in Newton's method is, in general, rapid.
When, however, the root we are seeking is accompanied by

another nearly equal to it, the fraction 1) )

small, since the value of either of the nearly equal roots reduces
J'(z) to a small quantity. A case of this kind requires special
precautions. We do not enter into any further discussion of
the method, since for practical purposes it may be regarded as
entirely superseded by Horner’s method, which will now be
-explained.

108. Horner’s Method of Solving Numerical Equa-
tions.—By this method both the commensurable and incom-
mensurable roots can be obtained. The root is evolved figure
by figure : first the integer part (if any), and then the decimal
part, till the root terminates if it be commensurable, or to any
number of places required if it be incommensurable. The pro-
cess is similar to the known processes of extraction of the square
and oube root, which are, indeed, only particular cases of the
general solution by the present method of quadratio and ocubio
equations,

The main principle involvedlin Horner’s method is the suc-
oessive diminution of the roots of the given equation by known
quantities, in the manner explained in Art. 33. The great
advantage of the method is, that the successive transformations
are exhibited in a compaot arithmetical form, and the root
obtained by one continuous process correct to any number of
places of decimals required.

This principle of the diminution of the roots will be
illustrated in the present Artiole by simple examples. In the

Q2

is not necessarily
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Articles which follow, some additional principles which tend
to facilitate the practical application of the method will be
explained.

ExanrLzrs,
1. Find the positive root of the equation
22% — 8523 — 852 — 87 = 0.

The first step, when any numerical equation is proposed for solution, is to find the
Sirat figure of the root. This can usually be done by a few trials ; although in cer-
tain cases the methods of separation of the roots explained in Chap. X. may have
to be employed. In the present example there can be only one positive root; and
it is found by trial to lie between 40 and 60. Thus the first figure of the root is 4.
We now diminish the roots by 40. The transformed equation will have one root
between 0 and 10. Itis found by trial to lie between 3 and 4. We now diminish
the roots of the transformed equation by 3 ; so that the roots of the proposed equa-
tion will be diminished by 43. The second transformed equation will have one root
between 0 and 1.  On diminishing the roots of this latter equation by -5, we find
that its absolute term is reduced to zero, i. e. the diminaution of the roots of the pro-
posed equation by 43-5 reduces its absolute term to zero. We conclude that 43-6
is a root of the given equation. The series of arithmetical operations is represented
as follows :—

3 —85 -85 ~87 (436
80 ~200 —11400
-5 — 285 11487
80 3000 9504
75 2715 —1893
80 483 1893
156 3198 [}

6 501
161 3699
6 87
167 3786
6
178
1
174

The broken lines mark the conclusion of each transformation, and the figures in
dark type are the coefficients of the successive transformed equations (see Art. 33).

Thus

23 + 16522 + 27162 — 11487 =0
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is the equation whose roots are each leas by 40 than the roots of the given equation,
and whose positive root is found to lie between 3 and4. If the second transformed
oquation had not an exact root *5 ; but one, we shall suppose, between *5and -6, the
first three figures of the root of the proposed equation would be 43-5; and to find
the next figure we should proceed to a further transformation, diminishing the roota
by -6 ; and so on.
2. Find the positive root of the equation
42 — 1323 - 81z - 276 = 0.

We first write down the arithmetical work, and proceed to make certain observations
on it :—

4 -13 -31 —-276 (626
24 66 210
1 35 -85
24 210 51-392
36 245 —13-608
24 11-96 13608
09 256-96 0
8 1212
59-8 269-08
8 3-08
606 272:16
-8
61-4
-2
616

‘We find by trial that the proposed equation has its positive root between 6 and 7.
“The first figure of the root is therefore 6. Diminish the roots by 6. The equation

23 + 5923 + 2462 — 66 = 0

has therofore a root between 0 and 1. It is found by trial to lie between 2 and -3.
The first two figures of the root of the proposed equation are therefore 6-2.
Diminish the roots again by 2. The transformed equation is found to have the
root ‘06. Hence 6-25 is a root of the proposed equation.

It is convenient in practice to avoid the use of the decimal points. This can
easily be effocted as follows :—When the decimal part of the root (suppose -ade .. .)
is about to appear, multiply the roots of the corresponding transformed equation by
10, i.e. annex one zero to the right of the figure in the first column, two to the right
of the figure in the second column, three to the right of that in the third ; and so on,
if there be more columns (as there will of course be in equations of & degree higher
than the third). The root of the transformed equation is then, not ‘abe. .., but
@'be... Diminish the roots by a. The transformed equation hasa root *do...
Multiply the roots of this equation again by 10. The root becomes ¥¢..., and
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the process is continued as before. To illustrate this we repeat the above operation,
omitting the decimal points. In all subsequent examples this simplification will be
adopted : —

4 -13 -31 - 276 (6-26
24 66 210
11 86 — 85000 'y,
2 210 51392 A }
‘35 24500 —~ 13608000 3
24 1196 13608000 .
590° 25696 0
8 1212
598 2690800
8 30800
sog 2721600
6140
20
6160
3. Find the positive root of the equation b

2023 - 12123 — 121z — 141 = 0.

The root is easily found to lie between 7 and 8. It is, therefore, of the form
7.ab... When the roots are diminished by 7, and multiplied by 10, the resulting
equation is

20z® + 299023 + 112500z — 67000 = 0.

The positiveroot of thisis a. 4 .. . ; and as the root clearly lies between 0 and 1,
we have a = 0. We therefore place zero as the first figure in the decimal part of
the root, and multiply the roots again by 10, before proceeding to the second trans-
formation. 5 is easily seen to be a root of the equation thus transformeds

Ans. 7-06.

In the examples here considered the root terminates at an
early stage. When the calculation is of greater length, if it
were necessary to find the suocessive figures by substitution, the
labour of the process would be very great. This, however, is
not necessary, as will appear in the next Article; and one of
the most valuable practical advantages of Horner’s method is,
that after the second, or third (sometimes even after the first)
figure of the root is found, the ¢ransformed equation itself suggests
by mere inspection the next figure of the root. The principle of
this simplification will now be explained.
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109. Principle of the Trial-divisor.—Woe have seen in
Art.107 that when an equation is transformed by the substitution
of a + h for z, a being a number differing from the true root by
a quantity A small in proportion to 4, an approximate numeri-
cal value of 4 is obtained by dividing f(a) by f"(a). Now the
successive transformed equabions in Horner’s process are the
results of transformations of thiskind, the last coefficient being
f(a), and the second last f'(a) (sea Art. 33). Hence, after two
or three steps have been completed, so thdt the part of the root
remaining bears a small ratio to the part already evolved, we
may expect to be furnished with two or three more figures of the
root correctly by mere division of the last by the second last
ooefficient of the final transformed equation. 'We might there-
fore, if we pleased, at any stage of Horner’s operations, apply
Newton’s method to get a further approximation to the root.
In Horner’s method this principle is employed to suggest the
next following figure of the root after the figures already
obtained. The second last coefficient of each transformed equa-
tion is called the frial-divisor. Thus, in the second example of
the last Article, the number 5 is correotly suggested by the
trial-divisor 2690800. In this example, indeed, the second
figure of the root is correctly suggested by the trial-divisor
of the first transformed equation ; although, in general, such
is not the case. In practice the student will have to estimate
the probable effect of the leading coefficients of the transformed
equation; he will find, however, that the influence of these
terms becomes less and less as the evolution of the root
Pprooeeds.

Exampres.
1. Find the positive root of the equation
P+2242-100=0

correct to four decimal places.
It is easily seen that the root lies between 4 and 5. We write down the work,
and proeced to make observations on it :—
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11 1 ~100 (4-2644
¢ 20 st
5 21 — 16000
" 36 11928
9 5700 — 4072000
" 264 3788376
180 5964 — 283634000
2 268 256071744
132 i 623200 - 87553356
2 8196
134 631396
2 8232
1360 63962800
p 55136
64017936
1366 66162
1372 64073088
6
18780
4
13784
4
13788
4
18702

First diminish the roots by 4. As the decimal part is now about to appear,
attach ciphers to the coefficients of the transformed equation as explained in Ex. 2,
Art. 108, Since the coeflicient 130 is small in proportion to 5700, we may expeot
that the trial-divisor will give a good indication of the next figure. The figure to
be adopted in every case as part of the root is that highest number which in the pro~
cess of transformation will not change the sign of the abaolute term. Here 2 is the
proper figure. In diminishing by 2 the roots of the transformed-equation

% 4+ 1302% 4+ 6700z — 16000 = 0,
the absolute term retains its sign (— 4072). If we had adopted the figure 3, the
absolute term would have become positive, the change of sign showing that we had
gone beyond the root. We must take care that, after the first transformation (the
reason of this restriction will appear in the next example), the absolute term pre-
serves its sign throughout the operation. If we were to take by mistake 8 number
too small, the error would show itself, just as in ordinary division or evolution, by
the next suggested number being greater than 9. Such a mistake, however, will
rarely be made. The error which is most common is to take the number too large,
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and this will show itself in the work by the change of sign in the absolute term.
In the above work it is evident, without performing the fifth transformation, that
the corresponding figure of the root is 4, so that the correct root to four decimal
Places is 4-2644.

2. Theequation ot + 45— 423112 +4=0

bas one root between 1 and 2; find its value correct to four decimal places.

4 -4 -11 4 (1-6369
1 [ 1 -10
5 1 -10 — 60000
1 6 7 50976
6 7 —~ 8000 — 90240000
1 1 11496 72690661
7 1400 8496 — 175494390000
1 516 14808 152131062016
80 1916 23304000 — 23863337984
6 552 926187
36 2468 24230187
6 588 935601
92 305600 ' 25165788000
6 3129 189387336
98 308729 25355175336
6 3138 189766488
1040 311867 25544941824
3 3147
1043 81501400
3 63166
1046 81564566
3 63192
1049 81627748
3 63228
105620 31890876
6
10526
6
10532
6 -
10538
6

10544
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'We see without completing the fifth transformation that 9 is the next figure of
the root. The root is therefore 1-6369 correct to four decimal places.

The trial-divisor becomes effective after the second transformation, suggesting
correctly the number 2, and all subsequent numbers. The first transformed equation
has its last two terms negative. We may expeoct, therefore, that the influence of
the preceding coefficients is greater than that of the trial-divisor, as in fact is here
the case. The number 6, the second figure of the root, must be found by substita-
tion. We have to determine what is the situation between 0 and 10 of the root of
the equation

£ + 8023 + 140023 — 3000z — 60000 = 0.

A few trials show that 6 gives a negative, and 7 a positive result. Hence the
root lies between 6 and 7 ; and 6 is the number of which we are in search. In the
subsequent trials we take those greatest numbers 3, 6, 9, in succession, which allow
the absolute term to retain its negative sign. In the first transformation, diminishing
the roots by 1, there is a change of sign in the absolute term. The meaning of this
is, that we have passed over a root lying between 0 and 1, for 0 gives a positive
result, 4; and 1 gives a negative result, — 6. In all subsequent transformations,
80 long as we keep below the root, the sign of the absolute term must be the same
as the sign resulting from the substitution of 1. This supposes of course that no
root lies between 1 and that of which we are in search. This supposition we have
already made in the statement of the question. In fact the proposed equation can
have only two positive roots; one of them lies between 0 and 1, and therefore only
one between 1 and 2.

When two roots exist between the limits employed in Horner’s method, i.e. when
the equation has a pair of roots nearly equal, certain precautions must be observed
which will form the subject of a subsequent Article.

8. Find the root of the preceding equation between 0 and 1 to four decimal
places. Commence by multiplying by 10. The coeflicients are then

1, 40, —400, —11000, 40000;

the trial-divisor becomes effective at once in consequence of the comparative small-
ness of the leading coefficients. The positive sign of the absolute term must be
preserved throughout. Ans. -3373.
4. Find to three places of decimals the root situated between 9 and 10 of the
equation
74 — 322 4 76z — 10000 = 0.

[Supply the zero coefficient of 23.] Ans. 9-886.

In the examples hitherto considered the root has been found
to a few decimal places only. We proceed now to explain a
method by which, after three or four places of decimals have
been evolved as above, several more may be correctly obtained
with great facility by a contracted process.
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110. Contraction of Horner’s Process.—In the ordi-
nary proocess of contracted Division, when the given figures are
exhausted, in place of appending ciphers to the successive divi-
dends, we out off figures successively from the right of the
divisor, so that the divisor itself becomes exhausted after a
number of steps depending on the number of figures it con-
tains. The resulting quotient will differ from the true quotient
in the last figure only, or at most in the last two figures. In
Horner’s contracted method the principle is the same. We
retain those figures only which are effective in contributing to
the result to the degree of approximation desired. 'When the
ocontracted process commenoes, in place of appending ciphers to
the successive coefficients of the transformed equation in the
way before explained, we cut off one figure from the right
of the last coefficient but one, two from the right of the last
ooefficient but two, three from the right of the last coefficient
but three; and so on. The effect of this is to retain in their
proper places the important figures in the work, and to banish
altogether those which are of little importance.

The student will do well to compare the first transformation
by the contracted process in the first of the following examples
with the corresponding step in the second example of the last
Article, where the transformation is exhibited in full. He will
then observe how the leading figures (those which are most
important in contributing to the result) coincide in both cases,
and retain their relative places; while the figures of little
importance are entirely dispensed with.

In addition to the contraction now explained, other abbre-
viations of Horner’s process are sometimes recommended ; but
a8 the advantage to be derived from them is small, and as they
increase the chances of error, we do not think it necessary to
give any account of them. The contraction here explained is
of so much importance in the practical application of Horner’s
method of approximation that no account of this method is
complete without it.
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Exaurrrs,

1. Find the root between 1 and 2 of the equation in Ex. 2 of the last Article
correct to seven or eight decimal places.

Assuming the result of the Example referred to, we shall commence the com-
tracted process after the third transformation has been completed. The subsequent
work stands as follows :—

1882  31501% 25165788 — 17549439 (1-636913575

6 18936 156213090 .
3166 2535516 — 2336349
6 18972 2301697
3162 255448Y — 347562
6 285 256601
3188 255733 - 9161
285 7680
3 256018  Zum
1280

-191,

179
12

Here the effect of the first cutting off of figures, namely, 8 from the second
last coefficient, 14 from the third last, and 052 from the fourth last, is to banish
altogether the first coefficient of the biquadratic. We proceed to diminish the roots
by 6 as if the coefficients 1, 3150, 2516678, — 17549439 which are left were those
of a cubic equation. In multiplying by the corresponding figure of the root the
figures cut off should be multiplied mentally, and account taken of the number to
be carried, just as in contracted division.

After the diminution by 6 has been completed, we cut off again in the transformed
cubic 7 from the last coefficient but one, 68 from the last but two, and the first
coefficient disappears altogether. The work then proceeds as if we were dealing
with the coeflicients 31, 255448, — 2336349 of a quadratic. The effect of the next
process of cutting off is to banish altogether the leading coefficient 81. The sub-
sequent work coincides with that of contracted division. When the operation ter-
minates, the number of decimals in the quotient may be depended on up to the last
two or three figures. The extent tv which the evolution of the root must be
carried before the contracted process is commenced depends on the number of decimal
places required ; for after the contraction commences we shall be furnished, in
addition to the figures already evolved, with a8 many more as there are figures in
the trial-divisor, less one.

2. Find to seven or eight decimal places the root of the equation

#-1224+7=0
which lies between 2 and 3.
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This equation can have only two positive roots- one lies between 0 and 1, and
theother between 2and 3. For the evolution of the latter we have the following : —

0 0 12 7 (2:0472755671
3 4 8 -8
3 4 —4 ) —~ 100000000
2 8 24 83891456
4 12 20000000 — 16108544
2 12 972864 15493401
6 240000 20972864 — 615143
2 3216 985792 - 446262
800 243216 21958658 — 168881
4 3232 17478 156226
804 246448 2213343 - 12685
N 3248 17478 11169
808 249698 223082Y, — 149
. 2498 49 1338
812 223131 158
n 19 156
G m 223188 2

On this we remark, that after diminishing the roots by 2, and multiplying the roots
of the transformed equation by 10, we find that the trial-divisor 20000 will not
“go into”’ the absolute term 10000 ; we put, therefore, zero in the quotient, and
multiply again by 10, and then proceed as before.

8. Find the root of the same equation which lies between 0 and 1.
Ans. 6593685829,
4. Find the positive root of the equation

28+ 24°842%—~ 67613z - 3761-2768 = 0.

‘When the coefficients of the proposed equation contain decimal points, it will
be found that they soon disappear in the work in consequence of the successive
multiplications by 10 after the decimal part of the root begins to appear.

Ans, 11°1973222.

6. Find the negative root of the equation
2-1223412:-83=0

to seven places of decimals.
‘When a negative root has to be found, it is convenient to change the sign of
and find the corresponding positive root of the transformed equation.
Ans. — 3-9073785.
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111. Application of Horner’s Method (o Cases where
Roots are nearly Equal.—We have seen in Art. 107 that
the method of approximation there explained fails when the
proposed equation has two roots nearly equal. Examples of
this nature are those which present most difficulties, both in
their analysis (see Ex. 7, Art. 98) and in their solution. By
Horner’s method it is possible, with very little more labour
than is necessary in other cases, to effect the solution of such
equations. So long as the leading figures of the two roots are
the same, certain precautions must be observed, which will be
illustrated by the following examples. After the two roots
have been separated, the subsequent caloulation proceeds for
each root separately, just as in the examples of the previous
Articles. It is evident, from the explanation of the trial-
divisor given in Art. 109, that for the same reason as that
which explains the failure of Newton’s method in the case
under consideration (see Art. 107), it will not become effective
till the first or second stage after the roots have been separated.

ExAMpLEs.

2-T2+7=0
has two roots between 1 and 2 (see Ex. 2, Art. 96); find each of them to eight
decimal places.
Diminishing the roots by 1, we find that the transformed equation (after its
roots are multiplied by 10), viz.
23 + 302 — 400z + 1000 = 0,

must have two roots between 0 and 10. We find that these roots lie, one between
3 and 4, and the other between 6 and 7. The roots are now separated, and we
proceed with each separately in the manner already explained. If the roots were
not separated at this stage, we should find the leading figure common to the two,
and, having diminished the roots by it, find in what intervals the roots of the
resulting equation were situated ; and so on.

1. The equation

Ans. 1-35689584, 1°69202147.
2. Find the two roots of the equation

23 — 492% + 6582 — 1379 = 0
which lie between 20 and 30.
‘We shall exhibit the complete work of approximation to the smaller of the two
roots to seven places ; and then make some observations which will be a guide to
the student in all cases of the kind.
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1 -4 658 — 1379 (232131277
20 - 580 1660
—29 78 181
20 ~ 180 - 180
9 ~103 1000
20 42 - 992
1 ~ 60 8000
3 51 - 6739
14 ' — 800 [ 1261000
3 404 —1217403
17 — 496 43597
3 408 — 34183
200 — 8800 9414
a 2061 - 6786
202 — 6739 2628
2 2062 —2872
204 — 467700 266
2 61899 - 236
2060 —~ 405801 20
1 61908
2061 — 34389%
1 206
2062 — 34183
1 206
20630 28— 3397Y i
3 "
20633 - 3393
3 "
20636 % - 3389
3
20684

The diminution of the roots by 20 changes the sign of the absolute term. This
is an indication that a root exists between 0 and 20, with which we are not at pre-
sent concerned. The roots of the first transformed equation

2% + 1123 - 102z + 181 = 0

are not yet separated, lying both between 3 and 4. The substitution of each of
these numbers gives a positive result, so that we have not here the same criterion
to guide us in our search for the proper figure as in former cases, viz. a change of
sign in the absolute term. We have, however, a different eriterion which enables
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us to find by mere substitution the interval within which the two roots lie. If we
diminish the roots of 2° + 11s* — 102z + 181 = 0 by 4, the resulting equation is
73 4 2323+ 342+ 13 = 0, which has no change of sign. Hence the two roots must
lie between 0 and 4. If we diminish its roots by 3, the resulting equation (as in
the above work) has the same number of changes of sign as the equation itself.
Hence the two roots lie between 3 and 4. They are, therefore, not yet separated ;
and we proceed to diminish by 3. The next transformed equation

23 4 20023 — 900z + 1000 =0

is found in the same way to have both its roots between 2 and 3: the diminution by
2 leaving two changes of sign in the coefficients of the transformed equation (as in
the above work), and the diminution by 3 giving all positive signs. 8o far, then,
the two roots agree in their first three figures, viz. 23-2. We diminish again by 2.
The resulting equation #® 4- 206022 — 8800z + 1261000 = 0 has one root only between
1and 2; 1 giving a positive, and 2 a negative result : its other root lies between 2
and 3; 3 giving a positive result. The roots are now separated. We proceed, as
in the above work, to approximate to the lesser root, by diminishing the roots of this
equation by 1; the trial divisor becoming effective at the next step. To approxi-
wate to the greater root, we must diminish by 2 the roots of the same equation,
taking care that in the subsequent operations the negative sign, to which the pre-
viously positive sign of the absolute term now changes, is preserved. The second
root will be found to be 23-2295212.

8o long as the two roots remain together, a guide to the proper figure of the root
may be obtained by dividing twice the last coefficient by the second last, or the
second last by twice the third last. The reason of this is, that the proposed equation
approximates now to the quadratic formed by the last three terms in each transformed
equation ; just as in previous cases, and in Newton’s method, it approximated to the
simple equation formed by the last two terms, this quadratic having the two nearly
equal roots for its roots ; and when the two roots of the equation az?+ bz +¢=0

are nearly equal, either of them is given approximately by _T% or;‘-—'. Thus, in the

above example, the number 3 is suggested by 2;(le81 ,and the number 2 by 2—;::—00.

In this way we can generally, at the first attempt, find the two integers between
which the pair of roots lies. 'We shall have also an indication of the separation of
the roots by observing when the numbers suggested in this way by the last three

9
coefficients become different, i.e. when :bf suggests a different number from %
3. Calculate to three decimal places each of the roots lying between 4 and 6 of

the equation
2 + 823 — 702 — 1442 + 936 = 0.

Ans. 4°242; 4-246.
4. Find the two roots between 2 and 3 of the equation
642° — 59223 + 16492 - 14456 = 0.

Ans. The roots are b‘(:th =2-125.
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Here we find that the two roots are not separated at the third decimal place.
When we diminish by & the absolute term vanishes, showing that 2:126 is a
root ; and proceeding with this diminution the second last coefficient also vanishes.
Hence 2-125 is a double root.

‘When an equation contains more than two nearly equal
roots, they can all be found by Horner’s process in a manner
similar to that now explained. Such cases are, however, of
rare ocourrence in practice. The principles already laid down
will be a sufficient guide to the student in all cases of the kind.

112. Lagrange’s Methodof Approximation.—Lagrange
has given a method of expressing the root of a numerical equa-
tion in the form of a continued fraction. As this method is, for
practical purposes, much inferior to that of Horner, we shall
content ourselves with a brief account of it.

Let the equation f(z) = 0 have one root, and only one root,
between the two consecutive integers @ and @ + 1. Substitute

a+ 5 for z in the proposed equation. The transformed equation
in y has one positive root. Let this be determined by trial to
lie between the integers 4 and 4 + 1. Transform the equation
in y by the substitution y =5 + %. The positive root of the

equation in s is found by trial to lie between ¢ and ¢+ 1. Con-
tinuing this process, an approximation to the root is obtained
in the form of a continued fraction, as follows :—

1

a+
b+

[

+1...

S

ExamprEs.

1. Find in the form of a continued fraction the positive root of the equation

2-22-6=0.

The root lies between 2 and 3. .

To make the transformation z=2 + ” we first employ the process of Art. 33,
diminishing the roots by 2. We then find the equation whose roots are the reci-
procals of the roots of the transformed.

R
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The oquation in y is in this way found to be
- 1042 —6y—1=0.
This has a root between 10 and 11.
Make now the substitution y =10+ zl
The equation in s is
61s% — 9423 — 20— 1 = 0.
This has a root between 1 and 2. Takez=1 +£.
The equation in « is
6540 + 254 — 89% — 61 = 0,

which has a root between 1 and 2 ; and so on.
We have, therefore, the following expression for the root : —

’=2+1_1
104+ ——
0+ 1

1+13...

2. Find in the formn of a continued fraction the positive root of
3-6x-13=0.

Ans. 3+1—l

6+ —
1
iw
113. Numerical Solution of the Bigquadratie.—It is
proper, before closing the subject of the solution of numerical
equations, to illustrate the practical uses which may be made of
the methods of solution of Chap. VI. Although, as before
observed, the numerical solution of equations is in general best
effected by the methods of the present chapter, there are cer-
tain cases in which it is convenient to employ the methods
of Chap. VI. for the resolution of the biquadratic. When a
biquadratio equation leads to a reducing cubic which has a
commensurable root, this root can be readily found, and the
solution of the biquadratic completed. We proceed to solve a
fow examples of this kind, using Descartes’ method (Art. 64),
which will usually be found the most convenient in practice.
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ExAMPLES.

1. Resolve the quartic
o — 62+ 322+ 222 -6
into quadratic factors.
Making the assumption of Art. 64, we easily obtain

p+9'==8, g+g+4pp' =3, pg'+p'¢=11, g¢'=—~6.
1 L1 s
Also $p=g - =y(g+q-1),

and, calculating I and J, the equation for ¢ is

111 226
4¢3—-i— ¢—.—8- =0.

Multiplying the roots by 4, we have, if 4¢ = ¢,
$—111¢ — 450 = 0.
By the .Method of Divisors this is easily found to have a root — 6 ; hence
¢=-§, giving p;./=2, 7g+¢=-06.
From these, combined with the preceding equations, we get
p=-2 p'=-1 ¢g=1, ¢=-6.

When the values of ¢ and ¢’ are found, the equation giving the value of pg’ + p'¢
determines which value of ¢ goes with p, and which with ¢/, in the quadratic
factors. The quartic is resolved, therefore, into the factors

(2 — 4z + 1) (s* — 22 - 6).

By means of the other two values of ¢ we can resolve the quartic into quadratic
factors in two other ways; or we can do the same thing by solving the two
quadratics already obtained.
2. Resolve into factors the quartic
S(2) =24 — 8235 — 122* + 60z + 63,

The equation for ¢ is
4¢%— 1969 — 475 =0,
which is found to have a root = — 5.
Ans. f(z) = (2* — 2z — 3)(2? — 6z — 21).
R 2
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3. Resolve into factors
S(z) =2t — 172° - 202 - 6.

The reducing cubic is found to be

217 3186

s_— —
-1t o

0;

or, multiplying the roots by 6,
46 — 661¢ + 3185 = 0,

This has a root = 7; hence¢=%.

Ans, f(2) = (22 + 42 + 2)(2® — 4z - 3).
4. Resolve into factors

S(2) =24 — 628 — 922 + 662 - 22.

The reducing cubic is
336 897
“ - e-g =0
hence P=- ;

Ans. f(7) = (22~ 11)(2® - 6z + 2).
5. Resolve into factors

S(2) = 24 — 823 4 2123 — 26z + 14.

Ans. f(z) = (22~ 22+ 2)(z* - 62 + 7).
6. Resolve into factors
4+ 122+ 3.

Ans. (22— 2V6 + 3+ VE)[2¥+2V6 + 3 - v6).
7. Find the quadratic factors of
24 — 823 — 1253 + 84z — 63 = 0,
and solve the equation completely (see Ex. 18, p. 34).
Ans. {23 —25(2+V7) + 3VT}{2* - 22 (2 - VT) - 3VT}.
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MisceLLANEOUs ExaMPLEs.

1. Find the positive root of
2°—-6z-13=0.
Ans. 3-176814393.
2. Find the positive root of
2-22-56=0
<orrect to eight or nine places. Ans. 2-094561483.
3. The equation
223 — 650-82% + 5z — 1627 =0
has a root between 300 and 400: find it.
Ans. Commensurable root, 325-4.
4. Find the root between 20 and 30 of the equation

42° — 18022 + 1896z — 467 = 0,
Ans. 28:62127738.
5. Find to six places the root between 2 and 3 of the equation
2° — 4923 4 6682 — 1379 = 0.
Ans. 2-6567361.
6. Find to six places the root between 2 and 3 of the equation

24 - 1223+ 122 -3=0.

Ans. 2-868083.
7. Find the positive root of the equation
234+ 222-232z-70=0
-correct to about ten decimal places. Ans. 5°13457872628.
8. Find the cube root of 673373097126. Ans. 8766.
9. Find the fifth root of 537824. Ana. 14.
10. Find all the roots of the cubic equation
$-3z+1=0,

The equation 2%+ 23+ 1 =0, of Ex. 7, p. 100, reduces to this,
Ans. — 1-87938, 0-34729, 1-63209.

The smaller positive root gives the solution of the problem—To divide a hemi-
sphere whose radius is unity into two equal parts by a plane parallel to the base.
11. Find all the roots of the cubic

P+22-22-1=0.
(8ee Ex. 1, p. 100.) Ans. —1°80194, —0-44504, 1-24698,
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12. Find to five decimal places the negative root between — 1 and 0 (see Ex. 3,
P. 100) of the equation

P42 -452=322432+1=0.
Ans. —0°28463.
13. Solve the equation

2% — 3162 — 196842 + 2977260 = 0.

‘We find that there is a root here between 70 and 80. By Horner’s process it is
found to be 78. The depressed equation furnishes two roots, which, increased by
78, are the remaining roots of the cubic.

Ans. 78, 347, -110.
14. Find the two real roots of the equation
z4 — 11727z + 40385 = 0.
Ans. 3-45692, 21-43067.
This equation is given by Mr. G. H. Darwin in a Paper On the Precession of @
Viscous Spheroid, and on the Remote History of the Earth. Phil. Trans., Part ii.,

1879, p. 508. The roots are ¢‘ the two values of the cube root of the earth’s rota-
tion for which the earth and moon move round as a rigid body.”’

16. Find all the roots of the cubic equation

2023 - 242 + 3=0.
Ans. —0°31469, 0°44603, 1-06865.

This equation occurs in the solution by Professor Ball of a problem of Professor
Townsend’s in the Educational Times of Dec., 1878, to determine the deflection of a
beam uniformly loaded and supported at its two ends and points of trisection.

16. Find the positive root of the equation
142°% + 1227 - 92 - 10 = 0.
Ans. 0-856906.

The equations of this and the following example occur in the investigation of
questions relative to beams supported by props.

17. Find the positive root of the equation
Tzt + 202° + 322~ 162 - 8 = 0.

Ans. 0-91336.
18. Find to ten decimal places the positive root of the equation

25 + 1224 + 5922 + 156023 + 201z — 207 = 0.
Ans. 0-6386068033.
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19. Find all the commensurable roots of
S (z) = 28 + 224 — 362° — 14923 — 232z — 336 = 0,

and solve the equation completely.
Ans. f(z)= (23 4+ 2+ 8)(z +4)3(2-1T7).
20. Solve similarly the equation

S (7) = 28 - 3224 + 1162 — 11622 + 1162 — 84 = 0.
Ans. f(z) = (22 + 1)(z — 1)(z - 3)(z — 28).

21. Find the condition that the quadratic Sturmian remainder of Ex. 3, Art. 99,
should have its roots imaginary.
Ans. HI + 3aJ positive.
This condition is fulfilled when H and J are both positive (since then J must
be positive, by the identity of Art. 37). It is therefore easily inferred that the
biquadratic has no real roots when H and J are both positive (cf. Ex. 15, p. 213).

22. When the biquadratic has two roots equal to a, prove

-GI

e+ b= T %ar

23. If the equation f(z) = 0 has all its roots real, prove that the equation
f(z) f*(2) - [f'(2)]* = 0 has all its roots imaginary.

24. If an equation of any degree, arranged according to powers of z, have three
consecutive terms in geometric progression, prove that its roots cannot be all real.

These three terms must be of the form kz* + kazr-! + ka®2m3. Let the equation
be multiplied by z — a. The resulting equation will have two consecutive terms
absent, and must therefore have at least two imaginary roots; but all the roots of
this equation except a are roots of the given equation.

26. If an equation have four consecutive coefficients in arithmetic progression,
prove that its roots cannot be all real.

This can be reduced to the preceding example. Writing down four terms of the
proper form, and multiplying by z — 1, it readily appears that the resulting equation
has three consecutive terms in geometric progression.

26. Calculate the first two of Sturm’s remainders for a quintic wanting the
second term, viz.

f@)mab+ad + b3 + ez +d=0.
Ans. Ry = — 2a2% — 352 — 4oz - 64,
Ry=Az*+ Bz + C,
where
A =40ac—124a% - 450°, B=050ad — 8a%b — 60b¢, C=— 4ac—T765d.

Retaining this notation, it is easy to calculate the coefficients D, E of the third
remainder Ry = Dz + E in terms of a, 3, ¢, d, 4, B, C; and, finally, R, in terms
ot 4, B, C, D, E.
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27. Remove the second term from the gemeral quintic written with binomial
coefficients, and prove that the leading coefficients of the first two of Sturm’s
remainders for the resulting equation are

—H, —5HI+ 9apJ.
28. Calculate the leading coefficients of the first two Sturmian remainders for
an equation of the n** degree wanting the second term, viz.

z» + az®? 4 bawd + et + &c. = 0.

No coefficients beyond those here given will enter into the required values ; we
readily find
Ry = — 2az%3 — 3b2™3 — 4ozt — &e.
By=— {4(n — 2)a®— 8nac + b} 2 + &o.
29. Remove the second term from the general equation of the n** degree written

with binomial coefficients, and prove that the leading coefficients of the first two
Sturmian remainders of the resulting equation are

—H, —~nHI+3(n—2)aol.

These expressions are easily derived from the ‘preceding example by aid of the
transformation of Art. 35; the values of 42, 43, A, being given by the equations

aody=H, a?ds=G, addy=ag’l-3H?

@ being replaced by its value from the identity of Art. 37, and positive multipliers
omitted.

30. Calculate Sturm’s functions for Euler’s cubic (see Art. 61).

We find, after some reductions, and omitting positive factors,

Sf(z) =2+ 3H2® + 3 (H? — Yya3l) 2z — $G3,
f(z) = 2 + 2Hz + H* — Pya?l,

By = 2Iz + 2HI - 3aJ,

Ry = I3 - 27J3,

All the conditions of Art. 68, with respect to the nature of the roots of the
biquadratic, may be derived from these results, by the aid of Ex. 4, p. 125. And
it will be observed that the conditions for reality of all the roots as given in
Art. 100, as well as in the Article already referred to, are both obtained here
together; for, in order that Euler’s cubic should have all its roots real and positive,
the substitution of 0 for # must give three changes of sign, and this requires that
a*I — 12H? and 2HI — 34J should be both negative.



CHAPTER XII
COMPLEX NUMBERS AND THE COMPLEX VARIABLE.

114. Complex Numbers—&raphic Representation.
—In the foregoing chapters many examples have been met with
of the occurrence among the solutions of numerical equations of
quantities of the form a + b J-1, involving the extraction of
the square root of a negative number. Such an expression,
consisting of @ positive or negative real units, and b positive or
negative imaginary units, is called a complez number (see Art.
15). The imaginary unit [—1 is denoted for brevity by i.
Real and purely imaginary numbers are both included in the
expression 4 + ib, the former being obtained when b= 0, and the
latter when a = 0. Complex numbers may be submitted to all
the ordinary rules of arithmetical calculation ; and in the result
of any such calculation integral powers of ¢ beyond the first can
always be reduced by the relation i* = - 1.

‘We proceed to explain a mode of representing complex
numbers geometrically, which will be found very convenient in
the treatment of functions involving quantities of this kind.

The expression @ + i may be written in the form

u (cos a + ¢ sin a),
where

_— a .
p=Ja* +b, c0sa=_, sina=-.

The quantity u is called the modu/us, and the angle a the
amplitude, of the complex number a +i. The modulusis always
taken positively, the negative sign of the radical corresponding
to an increase of the amplitude by =.
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Let rectangular axes OX, OY (fig. 7) be taken, and a
point 4 such that
X0A=a,and OA=p.
‘We have then OM
=pcosa=a,and AH
= usina = b. The
expression a + tb may
therefore be repre-
sented graphically by
the right line drawn
from O to a point in
a plane whose coordinates referred to the fixed axes are a, b;
the distance 04 of this point from the origin being equal to
the modulus, and the angle X0OA equal to the amplitude of
the complex number.

The magnitude of a complex quantity is estimated by the
magnitude of its modulus. When the complex quantity
vanishes (that is, when @ and b separately vanish), its modulus
vanishes ; and, conversely, when the modulus vanishes, since
then a* + $* = 0, a and b must separately vanish, and therefore
the complex quantity itself. Two such quantities, 4 + ¢b and
@’ + ib’, are equal when @ = @’ and b = ¥, i.e. when the moduli
are equal and when the amplitudes either are equal or differ by
& multiple of 2a.

In what follows we shall, for brevity, represent the modulus
and amplitude of @ + ib by the notation

Fig. 7.

mod. (a + ib), amp. (@ + ib).

115. Complex Numbers.—Addition and Subtraction.

—Let a second complex number @’ + ib” be represented by the
right line 04’, so that

04’ = mod. (&’ +1it'), XO0A’=amp. (@ +1b’).
‘We proceed to determine the mode of representing the sum

a+h+d+1b.
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‘Writing this sum in the form a + o’ + ¢ (b + "), we observe,
in accordance with the convention of Art. 114, that it will be
represented by the line drawn from the origin to the point
whose co-ordinates are a + o/, b + . To find this point, draw
AB parallel and equal to OA4’; since AP, BP are equal to
a’, ¥, B is the required point, and we have

OB=mod. {a+a’+i(b+b)), XOB=amp.{a+d +i(b+¥)}.

To add two complex numbers, therefore, we draw 04 to
represent one of them ; and, at its extremity, 4B to represent
the second (that is, so that its length is equal to the modulus,
and the angle it makes with OX equal to the amplitude, of
the second) ; then OB represents the sum of the two complex
numbers.

Since OB is not greater than 04 + AB, it follows that the
modulus of the sum of two complex numbers is less than (or at most
equal to) the sum of their moduli.

This mode of representation may be extended to the addition
of any number of such quantities. Thus, toadd a third a” + %",
represeuted by 04", we draw BC parallel and equal to 04",
and join OC. Then OC represents the sum of the three, 04,
04’, 04”. 1t is evident also that we may conclude in general
that the modulus of the sum of any number of complex quantities
18 less than (or at most equal to) the sum of their moduli.

Subtraction can be represented in a similar way. Since OB
represents the sum of 04 and 0A4’, 04 will represent the dif-
ference of OB and 0A’. To subtract two complex numbers,
therefore, we draw at the extremity of the line representing the
first a line parallel and equal to the second, but in an opposite
direction (i. e. a direction which makes with OX an angle greater
by = than the amplitude of the second). We join O to the
extremity of this line to find the right line which represents the
difference of the two given complex numbers.

116. Muiltiplication and BDivision.—To multiply the
two complex numbers a + b, 4’ + i’, we write them in the form

a+ib=py(cosa+isina), a’ +b’ =y (cosa’+1sina’).
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We have then, by De Moivre’s theorem,
(a+14b)(a’+ i) = uu’ {08 (a + a’) + ¢ 8in (a +d)},

which proves that the product of two complex, numbers is a com-
plex number, whose modulus is the product of the two moduli, and
whose amplitude i the sum of the two amplitudes.

In the same way it appears that the product of any number
of such factors is a complex quantity, whose modulus is the
product of all the moduli, and whose amplitude is the sum of
all the amplitudes.

To divide a + b by a’ + ib’, we have similarly

it

a+ib M ’ . . \
T {cos (a — a’) + ¢ 8in (a—a')},
which proves that the quotient of two complex numbers is a com-
plex number, whose modulus i the quotient of the two moduli, and
whose amplitude 18 the difference of the two amplitudes.

It was assumed in the proof of the theorem of Art. 16 that
when a product of any number of factors (real or imaginary)
vanishes, one of the factors must vanish. This is evident when
the factors are all real. From what is above proved the same
conclusion holds when the factors are complex ; for, in order
that the modulus of the product may vanish, one of its factors
must vanish, and therefore the complex quantity of which that
factor is the modulus.

117. ©Other Operations on Complex Numbers.—From
the foregoing propositions it follows that any integral power of
a complex number, e.g. (@ + #b)™, can be expressed in the form
A +iB, where A4 and B are real. And, more generally, if in
any rational integral function

A" + OBV + 48" 4 L+ A 8+ ayy

whose coefficients are complex (including real) numbers, a
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complex quantity a + ib be substituted for s, the result can be
expressed in the standard form 4 + ¢B.

It is not proposed in the present chapter to dmouss any
functions of complex numbers beyond the rational integral
function of the kind hitherto treated in this work. It is easy,
however, to show, by the aid of De Moivre’s theorem, that
the remaining proocesses of numerical calculation—powers with
fractional or complex exponents, logarithms, and powers whose
base and exponent are both complex—reproduce in every case a
complex number as result. This is expressed by saying that
complex numbers form a system or group complete in them-
selves.

118. The Complex Variable.—In the earlier chapters of
the present work the variation of a polynomial was studied cor-
responding to the passage of the variable through real values
from — o to + oo ; and the mode of representing by a figure
the form of the polynomial was explained. Such a mode of
treatment is only a particular case of a more general inquiry.
Given a polynomial, rational and integral in s, whose coeffi-
cients are numbers real or complex, viz.

S(8) =02 + ;3™ + @™ + .. . + ApaS + 4Gy,

we may study its variations corresponding to the different values
of s, where s has the complex form = + iy, and where z and y
both take all possible real values. Thisform z + ¢y is called the
complez variable. All possible real values of the variable are of
course included in the values of 2+ iy, being those values which
arise by varying z and putting y = 0. In accordance with the
principles of Art. 114 we may represent the complex variable
z + iy by the line OP (fig. 8) drawn from a fixed origin O to
the point whose coordinates are x, y. Or we may say, x + iy is
represented by the point P. Thus all possible values of z + iy
will be represented by all the points in a plane. Since, for any
particular value of s, f(s) takes the form A4 + ¢B (Art. 117), the
values of /(s) may be represented in & similar manner by points
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in a plane. 'We confine ourselves in the present Article to the
representation of the variable
z + iy itself. 'We conceive the /
variation of z + iy to take place V
in & continuous manner ; for Y|
example, by the motion of the

point z, y, along a curve. If OP A
and OP’ represent two conseou-
tive values of the variable, we o X
write the corresponding values
z+1y, &+, asfollows:— Fig. 8.

s=z+iy=r(cos O+4sinf), =2 +4iy =+"(cos0 +isin ).

Since OF represents the sum of OP and PP’ (Art. 115), it
follows that PP’ represents the increment of £; andif 8’=s + 4,
4 may be written in the form

h = p (cos ¢ + i sin ¢),

where p = PP, and ¢ is the angle PP’ makes with OX.

The variation of the modulus of 2 is OP' — OP or #" —r; the
variation of the amplitude of s is P’OP or & - 0 ; the variation
of s itself is 4 or p (cos ¢ + ¢ sin ¢), as just explained.

Let the point be supposed to describe a closed curve. When
it returns to its original position P, the modulus takes again its
original value ; and the amplitude takes its original value if the
point O is exterior to the curve, or is increased by 2= if O is
interior to the ourve.

If the complex variable describes the same line in two oppo-
site directions, the variations of its amplitude are equal and of
opposite signs, 1. e. the total variation is nothing. From this we
can derive a property of the variation of the amplitude of the
complex variable, which will be found of importance in our
succeeding investigations.

Let a plane area be divided into any number of parts by lines
BD, AF, EC, &o. (fig. 9); then the variation of the amplitude
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relatively to the perimeter of the whole area is equal to the sum
of its variations velatively to

the perimeters of the partial . ﬁ .
areas : all the areas being D dﬁ
supposed to be described by a2

the variable moving in the
samesense. Thisisevident;
for when the point is made
to describe all the partial
areas in the same sense Fig. 9.
each of the internal dividing lines will be described twice, the
two descriptions being in opposite directions; and the exter-
nal perimeter will be described once ; hence the total variation
of the amplitude relatively to the dividing lines vanishes, and
the variation relatively to the external perimeter alone remains.
Take, for example, the areas A BF, AFD in the figure. When
the point describes these areas in the sense indicated by the
arrows, the total variation relatively to the line 4 F vanishes.
119. Continuity of a Function of the Complex
Variable.—S8uppose the complex variable s, starting from a
fixed value s, to receive a small increment 4 =p (cos ¢ + i8in ¢);
we have then, if /(s) be the given function, replacing # by 2 in
the expansion of Art. 6,

768) = Fles ) =7 @)+ ) b+ L8 o 1 g,
and the increment of f(s), being equal to / (z., +h) - f(a), is

f" ("u 2 S (5)
S(50) b+ B +3 o+ &o..

In this expression the coefficients of the powers of 4 are all
complex expressions of the usual form; and if their moduli be
a, b, ¢, &o., the moduli of the successive terms are ap, 6p?, cp®, &o.;
and since, by Art. 115, the modulus of a sum is less than the
sum of the moduli, it follows that the modulus of the inecrement

of f(s) is less than 4
ap + bp* + cp® + &e.
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Now a value may be assigned to p (Art. 5) such that for it
or any smaller value the value of this expression will be less
than any assigned quantity. It follows that to an infinitely
small variation of the complex variable (viz. one whose modulus
is infinitely small) corresponds an infinitely small variation of
the function; in other words, the function varies continuously at
the same time as the complex variable itself.

120. Variation of the Amplitude of /(z) correspond-
ing to the description of a small Closed Curve by the
Complex Variable.—Corresponding to a continuous series of
values of s we have a continuous series of values of f(s), which
can be represented, like the values of s itself, by points in a
plane. We represent these series of points by two figures (fig. 10)

P

»s
>

Fig. 10.

side by side, which, to avoid confusion, may be supposed to be
drawn on different planes. To each point P, representing
 + iy, corresponds one determinate point P’ representing f(s).
When P describes a continuous curve, P’ describes also a ocon-
tinuous curve; and when P returns to its original position
after describing a closed curve, P’ returns also to its original
position.

Our present object is to discuss the variation of the amplitude
of f(s) corresponding to the description of a small closed curve
by P. Let A4 be any determinate point whose coordinates are
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Zoy Yo, 1.0. B = o + tyo. We divide the discussion into two
cases :—

(1). When 2, + 1y, is not a root of f(s) = 0, 4. e. when f{(s,)
is different from zero.

(2). When a, + #y, is a root of f(s) = 0, or f(s,) = 0.

(1). In the first case, to the point 4 corresponds a point 4’
representing the value of f(s,), and 0’4’ is different from zero.
Lets=s,+ A, where 4 =p (cos ¢ + ¢ sin ¢) ; and suppose P, which
represents 3, to describe a small closed curve round 4. Let P’
represent /' (s) ; then 4"P represents the increment of f(s) cor-
responding to the increment AP of s. By the previous Article
it appears that values so small may be assigned to p, that the
modulus of the increment of f(s), namely 4P, may be always
less than the assigned quantity 0’A4’; hence P may be supposed
to describe round A4 a closed curve so small that the correspond-
ing closed curve described by P’ will be exterior to 0. It
follows, by Art. 118, that corresponding to the description by P of
a small closed curve, which does not contain a point satisfying the
equation f(s) = 0, the total variation of the amplitude of f(3) ts
nothing.

(2). In the second case, suppose z, + iy, is a root of the
equation f{s) = 0 repeated m times, and let

S(8) = (5 - 50 4 (5)
/() = B (5) = p™ (008 mg + § sin mg) (s).

In this case 0’4’ = 0; and when P describes a closed curve
round 4, P’ returns to its original position, and the amplitude
of f(z) will be increased by a multiple of 2w, which may be
determined as follows :—From the above equation we have

then

amp. f(s) = m¢ + amp. { (3) ;

and the increment of amp. f(s) will be obtained by adding the
increment of m¢ to the increment of amp. ¢ (s). Now the latter
s
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increment is nothing by (1), since the curve described by P may
be supposed to contain no root of () =0; and since the incre-
ment of ¢ is 2x in one revolution of P, the increment of m¢
is 2mmw. It follows that when P describes a small closed curre
containing a root of the equation f(s) = 0, repeated m times, the
amplitude of f(2) is increased by 2mw.

121. Cauchy’s Theorem.— When = describes the same
line in a plane in two opposite directions, f(s) describes the cor-
responding line in its plane in two opposite directions, and the
amp. f(z) undergoes equal aud opposite variations. It follows
that, if any plane area be divided into parts, as in Art. 118, the
variation of the amp. f(s) corresponding to the description in
the same sense by = of all the partial areas, is equal to the varia-
tion of amp. f(s) corresponding to the description by s of the
external perimeter only. Now let any closed perimeter in the
plane XY be described ; and suppose, in the first place, that it
contains no point which satisfies the equation f(s) = 0. It can
be broken up into a number of small areas, with respect to each
of which the conclusions of (1), Art. 120, hold ; and by what has
been just proved it follows that the

variation of amp. f(s) corresponding v C . NS
to the description by = of the closed B
perimeter is nothing. Suppose, in D 3
thesecond place, that the closed peri- = A
metercontains a point whichis aroot o X
of the equation f(3) = 0 repeated m
times. Let a small closed ocurve
PQRS be described round this Fig. 11.

point. The variation of amp. f(s) corresponding to the descrip-
tion by s of the whole perimeter, is equal to the sum of its
variations corresponding to the description of the areas
ABCPSR, CDARQP, PQRS. The two former variations
vanish by what is above proved; and the latter is, by (2),
Art. 120, equal to 2ma. The total variation, therefore, of f(s)
is 2mm. Similarly, if the area includes additional points
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which correspond to roots repeated m’, m”, &ec., times, the
total variation = 2 (m + m”+ m” + &c.) . Hence we derive the
following theorem due to Cauchy :—

The number of roots of any polynomial, comprised within a given
plane area, 8 obtained by dividing by 2w the total variation of the
amplitude of this polynomial corresponding to the complete descrip-
tion by the complex variable of the perimeter of the area.

122. Number of Roots of the General Equation.—
‘We are enabled by means of the principles established in the
preceding Articles to prove the theorem contained in Arts. 16
and 16; namely, Every rational and integral equation of the n**
degree has n rools real or tmaginary.

Let

S(8) =a,s® + a,;2" + @y + L.+ Qa5+ Ay

be a rational and integral function of z. Without making any
supposition as to the existence of roots of f(s) = 0 further than
that f(s) cannot vanish for any infinite values of the variable,
we can suppose s to deseribe in its plane a circle so large that
no root exists outside of it. If, then,

S(5) = 8" {a,+ @ + @z + ...+ anz™)
= g"¢ (), where &’ = -},

z’, whose modulus is the reciprocal of the modulus of =, will
describe a small circle containing & portion of the plane cor-
responding to the part outside of the circle described by s ; and
no root of ¢(s") = 0 will be included within this small circle.
Hence, corresponding to the description of the whole circle by z,
the variation of amp. ¢(s’) = 0, and therefore

variation of amp. f(s) = variation of amp. =*;
and if  z=r(cos @+isinf), or 5" =" (cos nf + ¢ sin n0),

0 is increased by 2, and therefore amp. s* is increased by 2nmr.

It follows from Cauchy’s theorem, Art. 121, that the number

of roots comprised within the circle described by s, i. e. the total
82
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number of roots of the equation s (s) = 0, is n; and the theorem
is proved.

The proposition whose proof was deferred in Art. 15 is thus
shown to be an immediate consequence of Cauchy’s theorem,
which may therefore be regarded as the fundamental proposi-
tion of the theory of equations. It is proper to observe, how-
ever, that the theorem of Art. 15, viz., that every numerical
equation has a numerical root, can be proved directly, and
independently of Cauchy’s theorem, by aid of the principles
contained in Art. 119 and the preceding Articles, as we proceed
now to show.

123. Second Proof of Fundamental Theorem.—If
possible let there be no value of z which makes f(z) vanish; and
let the value g, represented by A4, fig. 10, correspond to the
nearest possible position, A4’, of P’ to the origin 0’. It is
proposed to show that such a direction may be given to the
inerement 4 as to bring P’ into a position nearer to the origin
than 4’. 'We have the following expansion (Art. 119):—

S (8 + h) =f(z,) +.f (%) h+j;l',(—";2‘l)- B+...+ahn

By hypothesis /' (z,) does not vanish ; but one or more of the
derived functions, f*(s,), &c., may do so. Let the first of these
which does not vanish be f,,(s,), and let us suppose

S (%)

T 2.8 m_ M (co8 am + ¢ 8in a),

with corresponding expressions for the coefficients which follow.
Collecting all the terms which contain powers of 4 beyond A=
into one complex expression, we may write
S (2 + h) = f(%,) + ump™ {COB (M + am) + ¢ 5IN (M + ay)}
+p(cos & + ¢ sin &),
where, by the proposition of Art. 115,

M < 1 P F pmia ™ 4 L+ 0"
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It is easily inferred from the theorem of Art. 5 that such a
value may be given to p as to make u < u. p™. Now the direc-
tion of the increment 4 can be so selected, viz. from the equation
me +am = X0’ A"+ = (fig. 10), as to bring P, in virtue of the
second expression in the value of f(s, + 4), through a distance
um p™ nearer to the origin in the direction 4°0’. Let S be the
point on the line 0’4’ to which P’ is brought in this way. The
effect of the last expression in the value of f(g, + 4) is to move
P’ from S to a point T at a distance ST'=u; and whatever the
direction of this movement, i.e. whatever the amplitude &, O'T
is < O 4’, since ST<8SA4’. We have proved, therefore, that 4’
is not the nearest possible position of P’ with reference to the
origin ; and in the same manner it may be shown that no
other value different from zero can be the least possible value
of the modulus of f(s).

In the proof here given it is only shown that the equation
must have a root, and the precise number of roots is not deter-
mined, as it is in the proof derived from Cauchy’s theorem ;
but when it is proved that one root at least must exist, the
proof can be easily completed by the method of Art. 16.

It is important to observe that when f'(z,) does not vanish,
for any particular point z, the limiting value of the ratio of the
increment of f{z,) to 4 is the constant f*(z,) = ui(cos a, + 7 sin a,).
It is easily inferred that the two increments are inclined at a
constant angle, and their moduli are in a constant ratio. This
is usually expressed by saying that the figures described by P
and P’ are similar in their infinitely small parts.

The student is referred to Note C at the end of the volume
for some further observations on the subject of this Article.

124. Determination of Complex Numerical Roots.—
Solution of the Cubic.—Little attention has been given by
writers on the Theory of Equations to the actual determination
of the complex numerical roots of equations; nor is it easy to
give any account suitable to an elementary text-book of general
methods in existence for this purpose. Theoretically the problem
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presents no difficulty ; for if the real and imaginary parts of
f (z + iy) be equated separately to zero, and from the two re-
sulting equations one of the variables eliminated, an equation
is obtained from which a real value of the remaining one can
be caloulated by Horner’s process. It will be found, however,
that this method is of little practical value.®

‘We confine ourselves in this and the following Articles to
cubic and biquadratic equations with real numerical coefficients,
and exhibit the calculation in these instances in what appears to
be the simplest form for practical purposes. Let the equation

S@=+pr+qz+r=0

be proposed for solution. The roots may be assumed to be
a, h+k, h-Fk of which a is real. The character of the
remaining roots will appear in the process of calculation;
k being determined from its square, which may turn out to be
either positive or negative. No preliminary analysis of the
equation is necessary. If A + & be substituted for z, and the
sums of the even and odd powers of % equated separately to
zero, as in Ex. 26, p. 152, we find immediately the equation

-k =f'(h) = 3k + 2ph + q.
‘We get also, by the elimination of %, a cubie equation for
the determination of % ; but there will be no occasion to
form this equation, since % is best got from the relation

a+2h = - p, a having been caloulated in the first instance in
the usual way by Horner’s method.

* The student desirous of information as to the attempts of mathematicians in
the direction of the calculation of imaginary roots of numerical equations may
refer to the following works :—Lagrange’s Traité de la Résolution des Equations
numériques ; Murphy’s Theory of Algebraical Equations; Allgemeine Auflosung
der Zahlen-Gleichungen, by Simon Spitzer (Wien, 1851) ; Die Auflosung der Aoheren
numerischen Gleichungen, by P. C. Jelinek (Leipzig, 1865); 4 Method for caleu-
lating simultaneously all the Roots of an Equation, by Emory M‘Clintock ( American
Journal of Mathematics, vol. xvii., Nos. 1 and 2); and Méthode pratique pour i
Résolution numérique compléte des Equations algébriques ou transcendantes, by M. E.
Carvallo (Paris, 1896).
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It will be necessary finally to calculate %, and with it the
remaining two roots whether real or imaginary. For this
purpose the following mode of procedure will be found con-
venient :—The value of 3f'(a) in terms of the coefficients is
P’ - 39: Viz-9

S(@) +f (h+k)+f(h-k)=p -3q;
also S h+E)+f(h—k) =2F (h) + 6k

whence immediately,
f(a) + 4k = p* - 3g,

from which A* can be determined with very little labour, since
the numerical value of f'(a) can be twritten down from the second
last coefficient in the final transformation in the work of Horner's
process already completed. The character of the remaining two
roots will depend on the sign of the number so found, and the
roots themselves will be determined by taking the positive and
negative square roots of this number.

ExaMpLEs.

1. Solve the equation
23+ 223 -232-70=0.

First calculate the real positive root, completing four transformations by
Horner’s method, and obtaining for the final transformed equation the following
coefficients :—

1, 17402, 76609868, —44341896.

Remembering that the roots have been three times multiplied by 10, we find
the values of f(a) and f‘(a) by cutting off nine figures from the right in the former
case, and six in the latter, and supplying the decimal point. It is well to carry
the approximation a couple of steps further by the contracted method, and thus get
a more accurate value of f'(a). We find, in this way,

S (a) = 766286,
Subtracting this number from p? - 3¢, which is equal to 73, we find
443 = — 3-6286.

Since this is negative, we have proved that the remaining roots’are imaginary.
From the ascertained value of a, viz. 5:13457, the value of 4 is found immediately
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to be — 3:6672, and dividing 3-6286 by 4, and taking its square root, we have
finally the two complex roots of the equation as follows :—
— 35672 £ 0-9524 /— 1.
2. Bolve completely Newton’s cubic (see Art. 107), vis.,
#-2x-56=0.

Completing four transformations by Horner, and proceeding as in the former
example, we find a = 2:09455, and

f'(a) = 11-16078 ;

k* = — 1-290196,
and the remaining two roots (thus proved imaginary) are found to be
~1-04727 £ 1-13594 4/ — 1.

hence

3. Find the remaining two roots of the example of Art. 109, p. 231, vis.,
2+ 22+ 2-100=0.
We find /' (a) = 64°0841, =—1652102, and the required roots are
~2-6322 + 40646 4/ = 1.

4. Solve the equation
202° - 2422+ 3 = 0.

Dividing by 20, and applying Horner’s process to find the root of the equa-
tion 23~ 1-22% + 15 = 0 lying between 0 and 1, we find a = 04460366, and
S (a) =~ 0'47364. We have therefore

452=p>—3g —f'(a) = 1-44 + 047364 ;
hence %2 =-47841, and the remaining two roots are real. We find A = 37698 ;

and adding and subtracting %, the other roots are found to be 1:068656 and
— 0°31469 (cf. Ex. 15, p. 246).

6. Solve completely Lagrange's cubie
P-Te4+7=0.
Change the signs of all the roots, and calculate the positive root a between
3 and 4 of the transformed equation f(z) = 0, thus obtaining a = 3-0489173, and
S’ (a) = 20-88737 ; hence A% = *0281575, and k = -1678. Also A = — 1-524458;

whence the values of A+ % and A — %; and changing the signs of all the roots
thus found, the roots of the given equation are

- 3-0489,  1-3566,  1-6922. (Ct. Ex. 1, Art. 111.)

The examples given are sufficient to show in what way this
process may be used to solve a given numerical cubic, without
any previous examination of the character of its roots. The
amount of work required to decide in this way whether the two
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remaining roots are real or imaginary is usually very little
greater than is required in the application of Sturm’s theorem ;
and the additional labour necessary for the actual determination
of the roots is extremely small. 'We proceed now to biquad-
ratic equations.

125. Solution of the Bigquadratic.—When a biquad-
ratic equation has real roots (two or four) it can be solved in a
manner analogous to that employed in the preceding Article.
In some examples the existence of, a real root can be at once
recognized, and when such is the case the following process for
the complete solution of the equation can be used with advan-
tage. Let the proposed equation be

f@)=at+pr+ ¢ +rz+s8=0,

and its real roots a, (3; the remaining two roots may be repre-
sented by % + & and A — k, no assumption being made as to the
character of the latter pair. Let a and 3 be both calculated
by Horner’s process, and the numerical values of /'(a) and
JS’(B) determined at the same time, as in the preceding Article.
Now if 4 + k be substituted for zin f(z), and the method of
solution of Ex. 26, p. 152, employed, we find, without difficulty,

= 67" (%) _ 4k + 3ph* + 29k + r
S (R) 4h +p
Again, we have, as is easily proved,

S (@) + S (B) + S (h+k) +f (h - k) = - p* + 4pq - 8r,
S (h+k)+f (b= k) =27 (k) +S7 (h) B,

whence immediately

— 4k (4h + p) = f'(a) + '(B) + p* — 4pq + 8r-.

This formula can be used for the calculation of 4%, the value
of A having been previously ascertained from the equation
a+ [3 + 2h = - p by means of the calculated values of a and £3.
The second pair of roots will be real or imaginary according as
the resulting value of 4* is positive or negative.

an
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ExaMPLES.

1. Solve completely the equation
24 -3+ 722 -10z+ 1 =0.
It is at once apparent that a real root exists between 0 and 1. There must
therefore be a second, which is found to lie between 1 and 2. By Horner’s process

we find
a = 0107767, B = 1923262,

S'(a) = - 8-59078, f'(B) = 12:09133;
whence we have
S(a) + £(B) + p* — 4pg + 8r = — 19-49945.

Also, from the values of a, B, and p, h = 0:484485, and 4A + p = — 106206 ;

therefore
19:49945

1-06206°
It is now proved that the remaining two roots are imaginary, and their values
can be ascertained by calculating # from this formula. Logarithmic Tables will
assist in the calculation. The roots are found to be

0-4845 + 2:1424 4/~ 1.
2. Solve completely the equation of Ex. 2, Art. 110, viz.,
#A-1224+7=0.

-4k =

We find
a= 059368, B= 204727,

Sf'(a) =—11-1635,  f(8) = 22:3180;
whence the pair of imaginary roots
—1:32048 + 2:0039 4/~ 1.
3. Bolve the equation
224~ 1322+ 10z - 19 =0.
There must be two real roots: one (a) positive, and the other (B) negative.
Divide by 2, and write the equation as follows:—
f(z) =2t — 6622 + b2 —- 95 =0.

When B is calculated in the usual way by first changing the signs of the roots
of f(2) =0, it is to be observed that, in order to get the value of £’ (8), we must
change the sign of the second last coefficient supplied by the final transformation
in Horner's process. We find

a= 2-45733. B=— 303065,
S’ (a) = 32:409 S (B) = — 66936 ;
whence
65473
- 2
1k 1-1464’

and the imaginary roots
02866 + 10924 /1.
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4. Solve the equation
x4 — 802% + 19982% — 14937z + 6000 = 0.

There is clearly a real root between 0 and 1, and a second is easily seen to
lie between 12 and 13 (see Ex. 4, Art. 93). We find

a = 0-35098, B = 12-75644,
S'(a) =—13564,  f'(B)=5286T;
whence

4133
-8
The remaining two roots therefore are real, and are easily found to be 320602 and
34-8322.

All the roots of this equation have been calculated by Horner's method by
Young (Analysis and Solution of Cubic and Biquadratic Equations, pp. 216-221).
Our last two roots agree, to the number of places here given, with the values
arrived at by him.

452

126. Solution of Biquadratic continued.—When the
roots of a biquadratic equation are all imaginary, the mode of
solution of the preceding Article of course fails. In this case,
and in general, whatever be the nature of the roots, the follow-
ing method may be used :—Let the equation, first deprived of
its second term, be written in the form

S@) =2+ g +re+8=0.

The roots of this may be assumed to be 4 + &, -4 + ¥, no
assumption being made as to their character, which will depend
on the signs of %4* and #* when calculated. Substituting 4 + &
for 2, and proceeding as before, we find

_6f'(h) _ 4R +2qh+r

-k k) 4h ’

whence
— 4K = 41 + 2 + ;,
. from which % can be found when 4 is known. When £ is

eliminated between the two equations of Ex. 26, p. 152, the
sextio in 4 reduces to the cubic

Y+ 2y + (¢t -48)y -1”=0,
of which 44* is a root. This cubic must have one positive
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root : the remaining two may be both positive, both negative,
or both imaginary, according to the nature of the roots of the
given biquadratic. The equation is, in fact, Euler’s reducing
cubic (with roots multiplied by 4) for the biquadratic under
consideration (sce Ex. 4, p. 125). Let the positive root of the
cubic be calculated by Horner’s process (if the three are positive,
any one of them will do). Thus 44’ is determined, and from
it A; and the full solution of the proposed biquadratic equation
is given by the two formulee

Ll r Jl 1,0, "
Il‘_*:J 4(41; +2q+;l), -h+ —Z<4h+2q—z)-

ExaMpPLEs.

1. Give the complete solution of the equation
z+24+10=0.

This equation is used by Murphy (ZTheory of Equations, p. 125) to illustrate his
proposed method of determining the imaginary roots of equations by means of
recurring series. We find readily the reducing cubic

P-40y—-1=0,

and, by Horner’s process, the positive root 6-3370184 : hence the value of A2, and
from it A = + 1-2586. We find then,{: + 0-7945, according as the positive or
negative sign of 4 is used. In either case the quantity under the square root is
negative, and the roots therefore all imaginary. They are easily found to be
12586 + 13352 4/ 21,  —1:2586 £ 1-1771 /= 1.
2. Solve the equation
24+ 922 —62+6=0.

This example is treated by Spitzer (Allgemeine Auflosung der Zahlen-Gleick-

ungen, p. 16). The reducing cubic is
43+ 18y? + 61y — 36 = 0,

whose positive root is found to be 0:51094249 ; hence A = * 0-35740. The
numerical value of r divided by A is found to be 16:7878 ; and whether A be taken
with positive or negative sign, the quantity under the square root is negative, and
therefore all the roots imaginary. The four roots are—

0-3574 + 06563 4/ =1,  —0-35674 & 29706 4/ = 1.
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3. Solve the equation
#-282-712+10r+10=0.

To remove the second term, multiply the roots by 2, and then diminish roots
by 1. The reducing cubic of the transformed equation is easily found to be

¥*— 68y° + 320y — 256 = 0.

Divide the roots of this by 10, and find immediately that the transformed
equation has a root between 6 and 7, which is found by Horner’s process to be
6-29838. Hence 442 = 62-9838, and A = + 3-968. Whether 4 is taken positively
or negatively, it is found that the quantity under the square root is a positive
number, and therefore all the roots are real in this case. We find 442 = 9-04840,
4k’ = 0-98400 ; hence £ = ¢ 1-504, & =1 0-496; whence, taking account of the
two transformations which were made in removing the second term, we have the
four roots as follows : —

2-732, 2-236, - 0-732, - 2-226.

The results, in this instance, can be readily verified, for it is easily seen that
the given function is the product of the factors 22 — 5 and »* — 2z — 2 (compare also
Ex. 5, p. 208).

4. Solve the equation

H-T3+722-7z+7=0.

This example is discussed by Jelinek (Die Auffosung der hiheren numerischen
Gleichungen, p. 29). To remove the second term, multiply the roots by 4, and
then diminish by 7. We find in this way

z* — 1822% — 1624z — 3059 = 0,
‘whose reducing cubic is

§° — 364y® + 45360y — 2637376 = 0.

To find the situation of the positive root, it is well to divide the roots by 100,
when it readily appears that the transformed equation has a root between 2 and 3.
By Horner's process it is found to be 2:0591 ; whence 442 =205'91,and A= 1 7°17.
When A is taken positively, the quantity under the square root is found to be
poeitive ; hence two real roots; and when it is taken negatively, the quantity
under the square root is negative, and gives a pair of imaginary roots. Taking
account of the two transformations employed to remove the second term, we find
the four roots of the proposed equation as follows :—

5993, 1-091, — 0042 £ 1:033 /1.
5. Solve the equation
24 — 8023 + 199823 — 14937z + 5000 = 0.

This is Young’s equation, already solved in the preceding Article. We.repeat
its solution here by the method of the present Article, in order that the student
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may have an opportunity of comparing the amount of labour required in the two
methods. When the second term is easily removed (as is the case in the present
instance), or when the second term is already absent in an equation, it will usually
be found that the method of the present Article is the more expeditious of the two.
Diminishing the roots by 20, we find
74 — 4022% + 9837 + 26460 = 0,
whose reducing cubic is
¥® — 804y? + 59764y — 966289 = 0.

Wo get, by Horner’s process, 4A* = 723:21038, and therefore A = £ 13:4462.
The quantity under the square root is found to be positive whichever sign of A is
taken, and for the four roots we have the two formuls

—ht+4/3847390, A14/1-92080;

hence, adding 20 to each root, we have the four roots of the proposed equation as

follows : —
12-7565, 0-3511, 34-8321, 32:0608.

6. Solve completely the equation of Ex. 4, p. 234, vis. :

z* — 322 + 76z — 10000 = 0,
The roots are

9:8860,  —10-2609,  0-18748 t 9-927 4/ = 1.
7. Solve completely the equation of Ex. 2, p. 207, vis. :
24— 43— 32+ 23=0.
The roots are
37853,  2:0626, —0-9189 + 145464/~ 1.
8. Solve the equation of Ex. 4, p. 212, vis.:
#4383 -2*-3z4+11=0.

Multiply the roots by 4, and remove the second term. When Horner's method
is applied to the reducing cubic, it is found that the latter equation has a commen-
surable root = 180 ; hence 4 = 34/5. The solution is easily completed, and the
four imaginary roots expressed as follows :—

—§+%w/5't%\]m —%—gﬁi%J—10+2\’—.
9. Find the imaginary roots of the equation of Ex. 14, p. 246, vis. :
z¢ — 11727z + 40386 = 0.
Ans. — 12:4433 £ 19°7696 V- 1.



NOTHES.

NOTE A.
ALGEBRAIC SOLUTION OF EQUATIONS.

Tae solution of the quadratic equation was known to the Arabians,
and is found in the works of Mohammed Ben Musa and other writers
published in the ninth century. In a treatise on Algebra by Omar
Alkhayyami, which belongs probably to the middle of the eleventh
century, is found a classification of cubic equations, with methods of
geometrical construction ; but no attempt at a general solution. The
study of Algebra was introduced into Italy from the Arabian writers
by Leonardo of Pisa early in the thirteenth century; and for a long
period the Italians were the chief cultivators of the science. A work,
styled I’ Arts Maggiore, by Lucas Paciolus (known as Lucas de Burgo),
was published in 1494. This writer adopts the Arabic classification
of cubic equations, and pronounces their solution to be as impossible in
the existing state of the science as the quadrature of the circle. At
the same time he signalizes this solution as the problem to which the
attention of mathematicians should be next directed in the develop-
ment of the science. The solution of the equation 2* + mz = n was
effected by Scipio Ferreo; but nothing more is known of his discovery
than that he imparted it to his pupil Florido in the year 1505. The
attention of Tartaglia was directed to the problem in the year 1530, in
consequence of a question proposed to him by Colla, whose solution
depended on that of a cubic of the form 2* + p2* = ¢. Florido, learning
that Tartaglia had obtained a solution of this equation, proclaimed his
own knowledge of the solution of the form 2* + mz = n. Tartaglia,
doubting the truth of his statement, challenged him to a disputation
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in the year 1535; and in the meantime himself discovered the solu-
tion of Ferreo’s form 2 + mz = n. This solution depends on assuming
for 2 an expression ,’JZ - er; consisting of the difference of two radi-
cals; and, in fact, constitutes the solution usually known as Cardan’s.
Tartaglia continued his labours, and discovered rules for the solution
of the various forms of cubics included under the classification of the
Arabic writers. Cardan, anxious to obtain a knowledge of these rules,
applied to Tartaglia in the year 1539 ; but without success. After
many solicitations Tartaglia imparted to him a knowledge of these
rules ; receiving from him, however, the most solemn and sacred pro-
mises of secrecy. Regardless of his promises, Cardan published in
1545 Tartaglia’s rules in his great work styled 4rs Magna. It had
been the intention of Tartaglia to publish his rules in a work of his
own. He commenced the publication of this work in 1556 ; but died
in 1559, before he had reached the consideration of cubic equations.
As his work, therefore, contained no mention of his own rules, these
rules came in process of time to be regarded as the discovery of Cardan,
and to be called by his name.

The solution of equations of the fourth degree was the next
problem to engage the attention of algebraists; and here, as well as in
the case of the cubic, the impulse was given by Colla, who proposed
to the learned the solution of the equation 2*+ 62* + 36 = 60z. Cardan
appears to have made attempts to obtain a formula for equations of
this kind ; but the discovery was reserved for his pupil Ferrari. The
method employed by Ferrari was a transformation of such a nature as
to make both sides of the equation perfect squares; a new unknown
quantity being introduced which is itself determined by an equation
of the third degree. It is, in fact, virtually the method of Art, 63.
This solution is sometimes ascribed to Bombelli, who published it in

1 his treatise on Algebra in 1579. The solution known as Simpson’s,
which was published much later (about 1740), is in no respect essen-
tially different from that of Ferrari. In the year 1637 appeared
Descartes’ treatise containing many improvements in algebraical
science, the chief of which are his recognition of the negative and
imaginary roots of equations, and his ‘‘Rule of Signs.”” His ex-
pression of the biquadratic as the product of two quadratic factors,
although deducible immediately from Ferrari's form, was an important
contribution to the study of this quantic. Euler’s Algebra was
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published in 1770. His solution of the biquadratic (see Art. 61) is
important, inasmuch as it brings the treatment of this form into
harmony with that of the cubic by means of the assumed irrational
form of the root. The methods of Descartes and Euler were the
result of attempts made to obtain a general algebraic solution of
equations. Throughout the eighteenth century many mathematicians
occupied themselves with this problem ; but their labours were unsuc-
cessful in the case of equations of a degree higher than the fourth.

In the solutions of the cubic and biquadratic obtained by the older
analysts we observe two distinct methods in operation : the first, illus-
trated by the assumptions of Tartaglia and Euler, proceeding from an
assumed explicit irrational form of the root ; the other, seeking by the
aid of a transformation of the given function, to change its factorial
character, so as to reduce it to a form readily resolvable. In Art. 55
these two methods are illustrated ; together with a third, the concep-
tion of which is to be traced to Vandermonde and Lagrange, who
published their researches about the same time, in the years 1770 and
1771. The former of these writers was the first to indicate clearly
the necessary character of an algebraical solution of any equation,
viz. that it must, by the combination of radical signs involved in it,
represent any root indifferently when the symmetric functions of the
roots are substituted for the functions of the coefficients involved in
the formula (see Art. 101). His attempts to construct formulas of this
character were successful in the cases of the cubic and biquadratic;
but failed in the case of the quintic. Lagrange undertook a review of
the labours of his predecessors in the direction of the general solution
of equations, and traced all their results to one uniform principle. This
principle consists in reducing the solution of the given equation to
that of an equation of lower degree, whose roots are Iinear functions
of the roots of the given equation and of the roots of unity. He shows
also that the reduction of a quintic cannot be effected in this way, the
equation on which its solution depends being of the sixth degree.

All attempts at the solution of equations of the fifth degree
having failed, it was natural that mathematicians should inquire
whether any such solution was possible at all. Demonstrations have
been given by Abel and Wantzel (sce Serret’s Cours & Algébre supé-
rieure, Art. 516) of the impossibility of resolving algebraically equa-
tions unrestricted in form, of a degree higher than the fourth. A

T
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transcendental solution, however, of the quintic has been given by
M. Hermite, in & form involving elliptic integrals. Among other
contributions to the discussion of the quintic since the researches of
Lagrange, one of leading importance is its expression in a trinomial
form by means of the Tschirnhausen transformation. Tschirnhausen
himself had succeeded in the year 1683, by means of the assumption
y =P+ @z + 2% in the reduction of the cubic and quartic, and had
imagined that a similar process might be applied to the general equa-
tion. The reduction of the quintic to the trinomial form was published
by Mr. Jerrard in his Mathematical Researches, 1832-1835; and has
been pronounced by M. Hermite to be the most important advance in
the discussion of this quantic since Abel’s demonstration of the im-
possibility of its solution by radicals. In a Paper published by the
Rev. Robert Harley in the Quarterly Journal of Mathematics, vol. vi.,
p- 38, it is shown that this reduction had been previously effected, in
1786, by a Swedish mathematician named Bring. Of equal importance
with Bring’s reduction is Dr. Sylvester’s transformation, by means of
which the quintic is expressed as the sum of three fifth powers, a
form which gives great facility to the treatment of this quantic.
Other contributions which have been made in recent years towards the
discussion of quantics of the fifth and higher degrees have reference
chiefly to the invariants and covariants of these forms. For an account
of these researches, additional to what will be found in the second
volume of this work, the student is referred to Clebsch’s Z%eorss der

bindren algebraischen Formen, and to Salmon’s Lessons Introductory to
the Modern Higher Algebyra.
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NOTE B.
SOLUTION OF NUMERICAL EQUATIONS.

Tae first attempt at a general solution by approximation of nume-
rical equations was published in the year 1600, by Vieta. Cardan
had previously applied the rule of ‘false position” (called by him
‘““regula aurea’) to the cubic; but the results obtained by this
method were of little value. It occurred to Vieta that a particular
numerical root of a given equation might be obtained by a process
analogous to the ordinary processes of extraction of square and cube
roots ; and he inquired in what way thesec known processes should be
modified in order to afford a root of an equation whose coefficients are
given numbers. Taking the equation f(z) = Q, where @ is a given
number, and f(z) a polynomial containing different powers of z, with
numerical coefficients, Vieta showed that, by substituting in f(z) a
known approximate value of the root, amother figure of the root
(expressed as a decimal) might be obtained by division. When this
value was obtained, a repetition of the process furnished the next
figure of the root; and so on. It will be observed that the principle
of this method is identical with the main principle involved in the
methods of approximation of Newton and Horner (Arts. 107, 108).
All that has been added since Vieta’s time to this mode of solution of
numerical equations is the arrangement of the calculation so as to
afford facility and security in the process of evolution of the root.
How great has been the improvement in this respect may be judged
of by an observation in Montucla’s Histoire des Mathématigques, vol. i.,
p. 603, where, speaking of Vieta’s mode of approximation, the author
regards the calculation (performed by Wallis) of the root of a biqua-
dratic to eleven decimal places as a work of the most extravagant
labour. The same calculation can now be conducted with great ease
by anyone who has mastered Horner’s process explained in the text.

Newton's method of approximation was published in 1669; but
before this period the method of Vieta had been employed and sim-
plified by Harriot, Oughtred, Pell, and others. After the period of
Newton, Simpson and the Bernoullis occupied themselves with the

T2
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same problem. Daniel Bernoulli expressed a root of an equation in
the form of a recurring series, and a similar expression was given by
Euler; but both these methods of solution have been shown by
Lagrange to be in no respect essentially different from Newton’s
solution (Z¥rasté de la Résolution des Equations numériques). TUp to
the period of Lagrange, therefore, there was in existence only one
distinct method of approximation to the root of a numerical equation ;
and this method, as finally perfected by Horner, in 1819, remains at
the present time the best practical method yet discovered for this
purpose.

Lagrange, in the work above referred to, pointed out the defects
in the methods of Vieta and Newton. With reference to the former
he observed that it required too many trials ; and that it could not be
depended on, except when all the terms on the left-hand side of the
equation f(z) = @ were positive. As defects in Newton’s method he
signalized—first, its failure to give a commensurable root in finite
terms ; secondly, the insecurity of the process which leaves doubtful
the exactness of each fresh correction; and lastly, the failure of the
method in the case of an equation with roots nearly equal. The
problem Lagrange proposed to himself was the following :—¢¢ Etant
donnée une équation numérique sans aucune notion préalable de la
grandeur ni de 1’espéce de ses racines, trouver la valeur numérique
exacte, 8'il est possible, ou aussi approchée qu’on voudra de chacune
de ses racines.”

Before giving an account of his attempted solution of this problem,
it is necessary to review what had been already done in this direction,
in addition to the methods of approximation above described. Harriot
discovered in 1631 the composition of an equation as a product of
factors, and the relations between the roots and coefficients. Vieta
had already observed this relation in the case of a cubic; but he
failed to draw the conclusion in its generality, as Harriot did. This
discovery was important, for it led to the observation that any integer
root must be a factor of the absolute term of an equation, and New-
ton’s Method of Divisors for the determination of such roots was
a natural result. Attention was next directed towards finding limits
of the roots, in order to diminish the labour necessary in applying the
method of divisors as well as the methods of approximation previously
in existence. Descartes, as already remarked, was the first to recog-
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nise the negative and imaginary roots of equations; and the inquiry
commenced by him as to the determination of the number of real and
of imaginary roots of any given equation was continued by Newton,
Stirling, De Gua, and others.

Lagrange observed that, in order to arrive at a solution of the
problem above stated, it was first necessary to determine the number
of the real roots of the given equation, and to separate them one from
another. For this purpose he proposed to employ the equation whose
roots are the squares of the differences of the roots of the given equa-
tion. Waring had previously, in 1762, indicated this method of
separating the roots; but Lagrange observes (Eguations numérigques,
Note iii.) that he was not aware of Waring’s researches when he
composed his own memoir on this subject. It is evident that when
the equation of differences is formed, it is possible, by finding an
inferior limit to its positive roots, to obtain a number less than the
least difference of the real roots of the given equation. By substi-
tuting in succession numbers differing by this quantity, the real roots
of the given equation will be separated. When the roots are sepa-
rated in this way Lagrange proposed to determine each of them by
the methed of continued fractions, explained in the text (Art. 112).
This mode of obtaining the roots escapes the objections above stated
to Newton’s method, inasmuch as the amount of error in each sue-
cessive approximation is known ; and when the root is commensurable
the process ceases of itself, and the root is given in a finite form.
Lagrange gave methods also of obtaining the imaginary roots of
equations, and observed that if the equation had equal roots they
could be obtained in the first instance by methods already in
existence.

Theoretically, therefore, Lagrange’s solution of the problem which
he proposed to himself is perfect. As a practical method, however, it
is almost useless. The formation of the equation of differences for
equations of even the fourth degree is very laborious, and for equa-
tions of higher degrees becomes well-nigh impracticable. Even if
the more convenient modes of separating the roots discovered since
Lagrange’s time be taken in conjunction with the rest of his process,
still this process is open to the objection that it gives the root in
the form of a continued fraction, and that the labour of obtaining
it in this form is greater than the corresponding labour of obtaining it
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by Horner’s process in the form of a decimal. It will be observed
also that the latter process, in the perfected form to which Horner
has brought it, is free from all the objections to Newton’s method
above stated.

Since the period of Lagrange, the most important contributions to
the analysis of numerical equations, in addition to Horner’s improve-
ment of the method of approximation of Vieta and Newton, are those
of Fourier, Budan, and Sturm. The researches of Budan were pub-
lished in 1807 ; and those of Fourier in 1831, after his death. There
is no doubt, however, that Fourier had discovered before the publica-
tion of Budan’s work the theorem which is ascribed to them conjointly
in the text. The researches of Sturm were published in 1835. The
methods of separation of the roots proposed by these writers are fully
explained in Chapter X. By a combination of these methods with
that of Horner, we have now a solution of Lagrange’s problem far
simpler than that proposed by Lagrange himself. And it appears
impossible to reach much greater simplicity in this direction. In
extracting a root of an equation, just as in extracting an ordinary
square or cube root, labour cannot be avoided; and Horner’s process
appears to reduce this labour to a minimum. The separation of the
roots also, especially when two or more are nearly equal, must remain
a work of more or less labour. This labour may admit of some reduc-
tion by the consideration of the functions of the coeflicients which
play so important a part in the theory of the different quantics. If,
for example, the functions H, I, and J, are calculated for a given
quartic, it will be possible at once to tell the character of the roots
(see Art. 68). Mathematicians may also invent in process of time
some mode of calculation applicable to numerical equations analogous
to the logarithmic calculation of simple roots. But at the present
time the most perfect solution of Lagrange’s problem is to be sought
in a combination of the methods of Sturm and Horner.

All that has been said applies only to the real roots of numerical
equations. We have referred, in a foot-note on p. 262, to the chief
works in which attempts have been made to give general methods of
calculation of the imaginary or complex roots; and in Arts. 124,
125, we have shown how these roots may be calculated most expe-
ditiously in the case of equations of the third and fourth degrees with
real numerical coefficients.
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NOTE C.

THE PROPOSITION THAT EVERY EQUATION HAS A ROOT.

Ir is important to have a clear conception of what is proved, and
what it is possible to prove, in connexion with the proposition dis-
cussed in Arts. 122, 123. If in the equation

az* +a 2™ +...a,=0

the coefficients a,, 4, ..., are used as mere algebraical symbols
without any restriction—that is to say, if they are not restricted to
denote numbers either real, or complex numbers of the form treated
in Chapter XII.—then, with reference to such an equation it is not
proved, and there exists no proof, that every equation has a root.
The proposition which is capable of proof is that, in the case of any
rational integral equation of the »® degree, whose coefficients are all
complex (including real) numbers, there exist » complex numbers
which satisfy this equation ; so that, using the terms number and
numerical in the wide sense of Chapter XII., the proposition under
consideration might be more accurately stated in the form—ZFEvery
numerical equation of the n® degree has n numerscal roots.

As regards this proposition, there appears little doubt that the
most direct and scientific proof is one founded on the treatment of
imaginary expressions or complex numbers of the kind considered in
Chapter XII. The first idea of the representation of complex numbers
by points in a plane is due to Argand, who in 1806 published anony-
mously in Paris a work entitled Essas sur une maniére de représenter
les quantités smaginaires dans les constructions géométrigues. ‘This
writer some years later gave an account of his researches in Gergonne’s
Annales. Notwithstanding the publicity thus given by Argand to his
new methods, they attracted but little notice, and appear to have been
discovered independently several years later by Warren in England
and Mourey in France. These ideas were developed by Gauss in his
works publisked in 1831; and by Cauchy, who applied them to the
proof of the important theorem of Art. 121. With reference to the
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proposition now under discussion, the proof which we have given in
Art. 123 is a modification of a proof found in Argand’s original
memoir, and reproduced by Cauchy in his Ezercices & Analyse. A
proof in many respects similar was given by Mourey.

Before the discovery of the geometrical treatment of complex
numbers, several mathematicians occupied themselves with the pro-
blem of the nature of the roots of equations.- An account of their
researches is given by Lagrange in Note IX. of his Eguations numé-
riqgues. The inquiries of these investigators, among whom we may
mention D’Alembert, Descartes, Euler, Foncenex, and Laplace, re-
ferred only to equations with rational coefficients; and the object in
view was, assuming the existence of factors of the form z — a, 2z - 8,
&c., to show that the roots a, B, &c., were all either real, or imagi-
nary quantities of the type a + bJ_—_l; in other words, that the
solution of an equation with real numerical coefficients cannot give rise
to an imaginary root of any form except the known form a + 3 J—_l,
in which a and & are real quantities. For the proof of this proposition
the method employed in general was to show that, in casc of an
equation whose degree contained 2 in any power &, the possibility of
its having a real quadratic factor might be made to depend on the
solution of an equation whose degree contained 2 in the power £ — 1
only ; and by this process to reduce the problem finally to depend on
the known principle that every equation of odd degree with real coef-
ficients has a real root. Lagrange’s own investigations on this subject,
given in Note X. of the work above referred to, related, like those
of his predecessors, to equations with rational coefficients, and are
founded ultimately on the same principle of the existence of a real
root in an equation of odd degree with real coefficients.

As resting on the same basis, viz. the existence of a real root in
an equation of odd degree, may be noticed two recently published
methods of considering this problem—one by the late Professor
Clifford (see his Mathematical Papers, p. 20, and Cambridge Philo-
sophical Society’s Proceedings, 11., 1876), and the other by Mr. Malet
(Transactions of the Royal Irish Academy, vol. xxvi., p. 453, 1878).
Starting with an equation of the 2m™ degree, both writers employ
Sylvester’s dialytic method of elimination to obtain an equation of the
degree m(2m — 1) on whose solution the existence of a root of the
proposed equation is shown to depend ; and since the number m(2m ~ 1)
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contains the factor 2 once less often than the number 2, the problem
is reduced ultimately to depend, as in the methuds above mentioned,
on the existence of a root in an equation of odd degree. The two
equations between which the elimination is supposed to be effected are
of the degrees m and m — 1 ; and the only difference between the two
modes of proof consists in the manner of arriving at these equations.
In Mr. Malet’s method they are found by means of a simple transfor-
mation of the proposed equation, while Professor Clifford obtains them
by equating to zero the coefficients of the remainder when the given
polynomial is divided by a real quadratic factor. The general forms
of these coeficients will be found among the Miscellaneous Examples
appended to the chapter on Determinants in the second volume of this
work ; and it will be readily observed that the elimination of 8 from
the equations so obtained will furnish an equation in a of the degree
m(2m - 1). (See Ex. 38, p. 63, Vol. 11.)
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Continuity of rational integral function,
9.

Cube roots of unity, 43.

Cubie, 71.
equation of differences, 81.
criterion of nature of roots, 84.
Cardan’s solution of, 108.
as difference of two cubes, 111.
solved by symmetric functions, 113.
homographic relation of roots, 120.

Darwin, G. II., example solved, 246.
De Gua, rule for imaginary roots, 197.
Derived functions, 8.
graphic representation of, 154.
in terms of the roots, 1567.
Descartes, rule of signs, 28, 30, 197.
solution of biquadratic, 133.
improvements in Algebra, 272.
Divisors, Newton’s method of, 217.

Equal roots, 25.
condition for, in cubic, 84,
in biquadratic, 144.
determination of, 159.
by method of divisors, 207.
Equation of squared differences :
of cubic, 81.
of general equation, 84.
of biquadratic, 142.
Equation whose roots are powers of
roots of given equation, 78.
Euler : solution of biquadratic, 121.
his reducing cubie, 122.
Sturm’s functions for his cubic, 248.
publication of his Algebra, 272.

Ferrari: solution of biquadratic, 129.
Florido : 271.

Indez.

Fourier : his theorem, 189, 278.
applied to imaginary roots, 194.
corollaries from, 197.

Fundamenta) theorem, 259.
derived from Cauchy’s, 260.
second proof of, 260.
historical note on, 279.

Gauss, binomial equations, 102.
Graphic representation :

of polynomial, 13.

of derived functions, 154.

of complex numbers, 249.
Greatheed : on the biquadratic, 136.

Harley, 274.
Hermite, 274.
Homogeneous products, 178.
Homographic transformation, 75.
relation of roots of cubic, 120.
Horner: his method of solving nume-
rical equations, 227.
contraction of the process, 235.
his process applied to cases where
roots are nearly equal, 238.
his improvements in the solution of
numerical equations, 277.

Imsginary roots, 21.
enter in pairs, 26.
determined for a cubic, 262.
and for a biquadratic, 265, 267.

Lagrange : on equation of differences,
142.
his approximation to roots by con-
tinued fractions, 241.
on solution of equations, 273,
his treatise on Numerical Equations
referred to, 143, 276, 277, 280.
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Leonardo, 271.

Limits of roots : definitions, 180.
propositions on, 180, 181, 185.
Newton's method, 185.
inferior limits, and limits of nega-

tive roots, 186.

Limiting equations, 187.

Lucas de Burgo, 271.

Malet, on the proposition that every
equation has a root, 280.

Maxima and minima, 17, 165.

Method of Divisors, Newton’s, 217.

Modulus, of complex numbers, 249.

Multiple roots, 25, 168, 159.
determination of by method of

divisors, 222.

Newton : his theorem on sums of powers
of roots, 166.

finding of limits, 185, 197.
method of divisors, 217.
mode of approximation, 225.
Numbe¢rs, complex, 22, 249.
Numerical equations, 2, 215.
commensurable roots of, 216€.
multiple roots of, 159, 222.

methods of approximation to roots,
225, 227, 241.

note on solution of, 275.

note on the fundamental proposition
as to roots, 279.

Order, of symmetric functions, 173.

Polynomials : general properties, 5, 6.
change of form of, 8.
continuity of, 9.
graphic representation of, 13.
maxima and minima, 17.

Purser, on Sturm’s functions, 214.
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Quartic, see ¢ Biquadratic.”
Quintic : special form solved, 104.
Sturm’s remainders calculated for

one wanting second term, 247,
248.

impossibility of its solution, 273.
Quotient and remainder : when poly-
nomial is divided by binomial, 10.

Reality of roots : of cubio, 84.
of biquadratic, 144, 211.
in general, 210.
Reciprocal roots, and reciprocal equa-
tions, 62.
solution of reciprocal equations, 90.

transformation of biquadratic to
reciprocal form, 135.

Reducing cubic, 122.
Removal of terms, 67.

Roberts : on an equation derived from
two cubics, 118.

on equation of squared differences
of biquadratic, 144.

identical relation, 153.
example on quartic and quintic, 213.
Rolle’s theorem, 157.
Roots : theorems relating to, 19.
imaginary, 21.
number of, 22.
equal, 25.
Descartes’ rule for positive, 28.
for negative and imaginary, 80.
relation of to coefficients, 35.
cube roots of unity, 43.
symmetric functions of, 46, 165.
multiple, 158, 222.
limits of, 180.
separation of, 189.
commensurable, 216.
approximation to, 225, 227, 241.
Cauchy’s theorem on, 259.
complex roots determined, 261. .
every equation has a root, 260, 279.
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Rule: Descartes’, of signs, 28, 197.
De Gua’s, 197.
of the double sign, 197.

Salmon, 274.
Scipio Ferreo, 271.
Separation of roots, 189.
Serret, 273, 274.
Simpson, 272.
8Special roots of binomial equations, 95.
Sturm : his theorem, 198.
for equal roots, 203.
application of theorem, 206.
exercises on theorem, 213, 214,
248,
Sums of powers of roots :
Newton’s theorem on, 165.
in terms of coefficients, 169.
coeficients expressed by, 170.
Symmetric functions :
definitions, 46.
theorems relating to, 53.
transformation by, 76.

Indez.

Symmetric funetions :
expressed by coefficients, 167.
order and weight of, 63, 173.
calculation of, 48, 174.

Tabulation of functions, 12.
Tartaglia, 271.
Transformation : of equations, 60.
of cubie, 71.
of biquadratic, 73.
homographie, 75.
by symmetric functions, 76.
in general, 80.

Vandermonde, 273.
Variable, change of form of polynomial
with change of variable, 8.
complex, 253.
Vieta, 275.

Wantzel, 273.
Weight of symmetric functions, §3,173.
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