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PKEFACE

rMHE present volume consists substantially of a course of

-*- lectures which, by special invitation of the authorities,

I delivered in the University of Calcutta during parts of January
and February, 1913. The invitation was accompanied by a

stipulation that the lectures should be published.

As regards choice of subject for the course, I was allowed

complete freedom. It was intimated that the class would be

mainly or entirely of a post-graduate standing. What was

desired, above all, was an exposition of some subject that, later

on, might suggest openings to those who had the will and the

skill to pursue research.

Accordingly I selected a subject, which may be regarded as

being still in not very advanced stages of development, and into

the exposition of which I could incorporate some results of my
own which had been in my possession for some time. Owing
to the limitations of the period over which the course should

extend, it was not practicable to make the lectures a systematic

discussion of the whole subject; and I therefore had to choose

portions, in order to discuss a variety of topics and to indicate

some paths along which further progress might be possible. Thus,

instead of concentrating upon one particular issue, I preferred to

deal with several distinct lines of investigation, even though
their treatment had to be relatively brief.
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Wherever it was possible to refer to books or to memoirs,

I duly referred my students to the authorities. In particular,

I urged them to prepare themselves so that they could proceed

to the study of algebraic functions of two variables; because

happily, in that region, there is the treatise by Picard and

Simart, Fonctions algebriques de deux variables independantes,

which includes an account of the researches made by Picard

and others in the last thirty years. As this treatise is so full,

I made no attempt to give to my students what could only

have been a truncated account of the elements of that theory;

but, as will be seen, what I did was to restate some of its

problems from a different (and, as I think, a more general)

point of view.

At several stages in my lectures, I deviated from the almost

usual practice of dealing with only a single uniform function

of two complex variables. I thought it preferable to deal

with two dependent variables as functions of two independent

variables. Characteristic properties of the variation of uniform

analytic functions of two variables are brought into fuller

discussion, when two such functions are regarded simultaneously.

The combination of at least two such functions is necessary

when the general theory of quadruply-periodic functions is under

review. The same combination of two functions seems to me

desirable in the general discussion of the theory of algebraic

functions of two variables whether these occur, or do not occur,

in connection with quadruply-periodic functions; the considera-

tion of relations between independent variables and dependent

variables is thereby made more complete, and illustrations will

be found in the course of the book. Even in the simplest case

that has any significance,
• when these algebraic relations are

nothing more than the expression of the lineo-linear substitutions,

it is of course necessary to have two new variables expressible in

terms of the variables already adopted.
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The following is a summary outline of the whole course of

lectures.

The first Chapter deals with the various suggestions that have

been made for the geometrical representation of two complex

variables. The intuitive usefulness of the Argand representation,

when we are concerned with functions of a single independent

complex variable, is universally recognised; but there seems

to be a deficiency in the usefulness of each of the geometrical

representations when more than a single independent complex
variable occurs.

The second Chapter is devoted to the consideration of the

analytical properties of the lineo-linear substitution, defining two

variables in terms of two others, each uniquely by means of the

others. It is a generalisation of the homographic substitution

for a single variable; some of the properties of the latter are

extended to the case when there are two variables. In particular,

insistence is laid upon certain invariantive properties of such

substitutions.

The third Chapter is concerned with the expressibility of

uniform analytic functions in power-series. The limitation of

the range of convergence of such series leads to the notion of

the various kinds of singularity which, under the classification

made by Weierstrass, uniform analytic functions can possess.

The fourth Chapter is devoted to the consideration of the

form of a uniform analytic function in the immediate vicinity

of any assigned place in the field of variation. The central

theorem is due to Weierstrass, and was established by him for

functions of n variables
;
I have developed it in some detail when

there are only two variables
;
and it is applied to the description

of the behaviour of a function in the vicinity of any one of its

various classes of places, whether ordinary or singular.

The fifth Chapter is occupied with two constructive theorems,

both of them originally enunciated (without proof) by Weierstrass,
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as to the character of functions either entirely devoid or almost

devoid of essential singularities. A function, entirely devoid of

essential singularities, is expressible as a rational function of the

variables
; the proof given is a modification of the proof first

given by Hurwitz. A function, which has essential singularities

only in the infinite parts of the field of variation, is expressible

as the quotient of two functions which are regular in all finite

parts of the field ; the proof, which is given, follows Cousin's

investigations for the general case of n variables.

The next Chapter is devoted to integrals. The earlier

paragraphs are concerned with double integrals of quantities

which are uniform functions of two variables; after an exposition

of Poincare's extension of Cauchy's main integral theorem, these

paragraphs are mainly occupied with simple examples of a subject

which awaits further development. The later paragraphs are

concerned with integrals, whether single or double, of algebraic

functions, a theory to which Picard's investigations have made

substantial contributions. In restating the problems for the sake

of students, I took the line of introducing a couple of algebraic

functions, instead of only a single algebraic function, of two

variables, so that there may be complete liberty of selection of

two independent variables. The geometry of surfaces has led

to valuable results connected with integrals of algebraic functions

of two variables, just as the geometry of curves led to valuable

results connected with integrals of algebraic functions of one

variable. But my own view is that the development of the

theory, however much it has been helped by the geometry, must

(under present methods) ultimately be made to depend completely

upon analysis. This will be more complicated when two alge-

braic equations are propounded than when there is only a

single equation; but its character will be unaltered. And so

I have stated the problem for what seems to me the more

general case.
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In Chapter VII I have discussed the behaviour of two uniform

analytic functions considered simultaneously. In particular, when

the functions are independent and free (in the sense that they

have no common factor), it is shewn that their level places are

isolated; and the investigations in Chapter IV are used to obtain

an expression for the multiplicity of occurrence of such a level

place, when it is not simple.

The last Chapter is devoted to the foundations of the theory

of uniform periodic functions of two variables. In the early part

of the chapter, I have worked out the various kinds of cases that

can occur. The method may be deemed tedious ;
it certainly

could not be used for the functions of n variables with not more

than 2n sets of periods ;
but it brings into relief the discrimination

between the cases which, stated initially only from the point of

view of periodicity, are degenerate or resoluble or impossible or

actual. The theta-functions are then introduced on the basis of

a result in Chapter V ;
and the discrimination between functions

with three period-pairs and those with four period-pairs is indicated.

Later, some theorems enunciated (but not proved) by Weierstrass

are established for functions of two variables, together with some

extensions, all these being concerned with algebraic relations

between homoperiodic uniform functions devoid of essential sin-

gularities in the finite part of the field of variation. The Chapter

concludes with some simple examples belonging to the simplest

class of hyperelliptic functions. But I have not attempted, in

these lectures, to expound the details of the theory of quadruply-

periodic functions of two variables; it can be found in specific

treatises to which references are given in the text.

My whole purpose, in the Calcutta course, was to deal with

a selection of principles and of generalities that belong to the

initial stages of the theory of functions of two complex variables.
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Often before, I have had to thank the Staff of the Cambridge

University Press for their efficient help during the progress of

proof-sheets of my books. This volume has made special demands

upon their patience; throughout, as is their custom within my
experience, they have met my wishes with readiness and skill.

To all of them, once again, I tender my grateful thanks.

A. R FORSYTH.

Imperial College of Science

and Technology, London, S.W.

February, 1914.
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CHAPTER I

Geometrical Representation of the Variables

In regard to functions of a single complex variable, reference may generally be made,
for statements of results and for quoted theorems, to the author's Theory of Functions.

No reference is made to the ultimate foundations of the theory of functions of a single

real variable ;
a full discussion will be found in Hobson's Functions of a real variable.

For a large part of the contents of the first two chapters, reference may be made to

two papers by the author*; and particular references to memoirs will be made from

time to time as they are quoted.

But in addition, reference should be made to a paper t by Poincare, who discusses

groups, classes of invariants, and conformation of space, when the representation of the

two complex variables is made by means of four-dimensional space.

J
1. This course of lectures is devoted to the theory of functions of two

or more complex variables. It will be assumed that the substantial results

of the theory of functions of a single complex variable are known
;
so that

references to such results may be made briefly or even only indirectly, and

suggestions, especially in regard to the extensions of ideas furnished by
that theory, can be discussed in their wider aspect without any delay over

preliminary explanations.

My intention is to deal with some of the principles and the generalities

of the selected subject. Special illustrations and developments will be given
from time to time; but limitations forbid the possibility of attempting an

exposition of the whole range of knowledge already attained. Moreover,

my hope is to establish some new results, and suggest some problems ;

in order to make that hope a reality within this course, some developments
must be sacrificed. The sacrifice, however, need only be temporary, in one

sense
;
because references to the important authorities will be given, and

their work can be consulted and studied in amplification of these lectures.

* "Simultaneous complex variables and their geometrical representation," Messenger of

Math., vol. xl (1910), pp. 113—134
;

" Lineo-linear transformations of two complex variables,"

Quart. Journ. Math., vol. xliii (1912), pp. 178—207.

t " Les fonctions analytiques de deux variables et la representation conforme," Rend. Circ.

Mat. Palermo, t. xxiii (1907), pp. 185—220.

F. 1
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Usually, it will be assumed that the number of independent variables is

two. In making this restriction, a double purpose is proposed.

Not a few of the propositions for two variables, with appropriate changes,
can justly be enunciated for n variables

;
and sometimes they will be

enunciated explicitly. In such cases, they usually are true for functions

of a single variable also
;

and they become generalisations of the last-

mentioned and simplest form of the corresponding proposition. Results of

this type have their importance in the body of the theory. But it is

desirable to have other results also, which may be called characteristic of

the theory for more than a single variable, in the sense that they have no

corresponding counterpart in the theory for a single variable.

Again, it is desirable, wherever possible, to obtain results equally character-

istic of the theory in another direction, that is to say, results which are not

mere specialisations of results for the case of three or more variables. Such

a result is provided in the case of the quadruply-periodic functions of two

variables and their association with single integrals involving the quadratic
radical of a quintic or sextic polynomial. The case might be taken as the

appropriate specialisation of 2w-ply periodic functions of n variables and

their proper association with single integrals involving the quadratic radical

of a polynomial of order In + 1 or In + 2. These latter functions, however,

are notoriously not the most general multiply-periodic functions for values

of n from 3, inclusive and upwards. Consequently, it is sufficient to develop

the association with quadratic radicals of a quintic or sextic polynomial ;

the formal generalisations of the results so obtained are only limited and

restricted forms of the results belonging to the wider, but not most com-

pletely general, theory.

These combined considerations constitute my reason for dealing mainly
with the theory of functions of two independent complex variables.

The two variables will be denoted by z and z'.

2. One illustration of real generalisation from the theory of functions

of a single variable arises as follows. In that theory, when a variable w is

connected with a variable z by a relation f(w, z) = of any form, we frequently

consider that w is defined as a function of z by the relation. But frequently

also there is a necessity for regarding z as a function of w; and important

results, especially in connection with periodic functions, are obtained by using

this dual notion of inversion. A question naturally suggests itself:—what is

the general form of this notion of inversion when there are two independent

variables ?

A function w of z and z' can be regarded as given by a relation

f(w, z, z')
= 0, any precision as to the form of/being irrelevant to the immediat e

discussion. A limited use of the notion of inversion can be applied at once
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to the relation. Just as in the Cartesian equation of a surface in ordinary

space it is often a matter of indifference which of the three coordinates is to

be regarded as expressed by the equation in terms of the other two, so now
we may regard the relation f(w,z,z') = as defining any one of the three

variables w, z, z' in terms of the other two. Such an interpretation of the

relation does not imply the complete process of inversion in the simpler case,

whereby the quantity initially regarded as independent is expressed in terms

of the quantity initially regarded as dependent. In the present case, the

initially independent variables z and z' are not expressible in terms of the

single initially dependent variable w.

The limitation in the use of the notion, however, disappears when two

functionally distinct quantities w and w' occur. This occurrence might arise

through the existence of two functional relations

f{w, z, z) = 0, g O', z, z) = 0,

or of two apparently more general functional relations

F(w, w', z< z')
= 0, (w, w', z, z')

= 0.

We assume that the equations F=0, G = 0, do actually define distinct

functions w and w in the sense that they are independent equations ;
that

is, we assume that their Jacobian

\W, w

does not vanish identically. Moreover, for our purpose, w and w are not

merely to be distinct from one another; they are to be independent functions

of z and z, so that the Jacobian

T (w, w

does not vanish identically. Now

J

Z, Z J \w, w

F, G
,w J \z, z / \z, z J

always ;
hence neither of the Jacobians

\w, w'J
'

\z, z

can vanish identically. In other words, we can interpret the two relations

F = and G = in a new way ; they define z and z as two distinct and

independent functions of the two independent variables w and w'.

Ex. Thus the equations.

w2+ w'2+ z2 + z"1= a, vfi— w'S+zP— z'z^b,

satisfy both conditions
;
the quantities w and w' are independent functions of z and z'. And

conversely for z and z' as independent functions of w and w'.

1—2
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On the other hand, the equations

ww' -z— z' = 0, w2 — v/ - 1 = 0,

being independent equations, determine w and w' as distinct functions of the variables, for

——
-,

J
does not vanish identically. But these distinct functions are not independent

functions of z and z', for ./( -i-
,

j
vanishes identically. As a matter of fact, both w and

w' are functions solely of the combination z + z
1

of the variables, and therefore w and u/ are

expressible in terms of each other alone ; the actual relation of expression is the second of

the two equations.

Thus, by the introduction of a second and independent function w', we

are in a position to adopt completely the notion of inversion, as distinct from

any precise expression of inversion, for the case of two complex independent
variables*. The inversion will be equally possible from any two relations,

which are the exact and complete equivalent of F = and G = in

whatever form these relations may be given. In particular, if F and G
are algebraical in w and w', they have an exact equivalent in relations of

the type/= and g = Q, obtained by eliminating w' and w in turn between

i^= 0and £ = 0.

Finally, we could regard any two of the four variables z, z', w, w' as

independent and the remaining two as dependent. The necessary and

sufficient condition is that no Jacobian of F and G with regard to any two

of the variables shall vanish identically.

Accordingly, for many purposes, we shall find it desirable to consider

simultaneously two independent functions w and w' of the two independent

variables z and z'.

Geometrical Representation of the Variables.

3. Next, it proves both convenient and useful in the theory of functions

of one variable to associate a geometrical representation of the variables

with the analysis. It happens that this representation is simple and

complete while full of intuitive suggestions; and though f the notion of

geometrical interpretation has not been adopted by all investigators and has

occasionally been deliberately avoided by the sterner analytical schools, it

has acquired importance because of the character of the results to which it

has led. The representation, initiated by Argand, is obtained by the customary

association of a point upon a plane with one variable, and of a point upon
* When there are n independent variables aj, ..., zn ,

then n functions v>\, ..., wH are required

for the corresponding complete use of inversion.

t There is a wide diversity of practice, in regard to the extent of the adoption of geometrical

notions in the development of the analysis of the tbeory of functions. As an indication of this

variety, it is sufficient to note the different relations to the subject as borne in the work of

Cauchy, Hermite, Kronecker, Poincare\ Riemann, and Weierstrass.
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another plane with the other variable
; and the functional relation between

the two variables is exhibited as a conformal representation of either plane

upon the other.

An adequate geometrical representation of two independent complex
variables is a more difficult problem than the representation of a single

complex variable ; at any rate, there is as yet no unique solution of the

problem which has been found quite so satisfactory as the Argand solution

of the problem for a single variable.

In order to let the full variation appear, we resolve each of the complex
variables into its real and its imaginary parts ; so we write

z = x + iy, z' = x' + iy'.

Here x, y, x'
, y are real

;
when z and z' are independent in every respect,

each of these four real quantities admits of independent variation through
the range of reality between — oo and + oo . Thus a four-fold set of

variations is required for the purpose; and such a set cannot be secured

simply among the facilities offered by the ordinary space of experience.

4. Several methods have been proposed. No method has been adopted

universally. The respective measures of success are attained through some

greater or smaller amount of elaboration; but each increase of elaboration

causes a decrease of simplicity, and therefore also a decrease of intuitive

suggestiveness, in the geometrical representation.

Among the methods, there are three which require special mention. In

one of them, four-dimensional space is chosen as the field of variation. In

the second, a line (straight or curved) is taken as the geometrical entity

representing the two variables simultaneously. In the third, each of the

variables is represented by a point in a plane (the planes being the same

or different), so that two points are taken as the geometrical entity repre-

senting the two variables simultaneously.

5. Of these methods, the simplest (in a formal analytical bearing) is

based upon the use of four-dimensional space ;
and applications to the

theory of functions of two complex variables have been made by Poincar6*,

Picardf, and others. The four real variables x, y, x'
, y' are associated with

four axes of reference. Sometimes they are taken as the ultimate variables
;

sometimes they are made real functions of other ultimate real variables,

from one to three in number according to the dimensions of the continuum

* "Sur les fonctions de deux variables," Acta Math., t. ii (1883), pp. 97—113;
*' Sur les

residus des integrates doubles," Acta Math., t. ix (1887), pp. 321—380;
"
Analysis situs," Journ.

de VEcole Polyt., S6r. 2, t. i (1895), pp. 1—123; "Analysis situs," Rend. Circ. Mat. Palermo,

t. xiii (1899), pp. 285—345, t. xviii (1904), pp. 45—110, and elsewhere.

t Traite d'Analyse, t. ii, ch. ix
;

Theorie des fonctions algebriques de deux variables in-

dependantes, t. i, ch. ii, in the course of which other references are given.
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to be represented. Thus a single relation between x, y, x', y provides a

hypersurface (or an ordinary space) in the quadruple space ; and, along the

hypersurface, each of the four variables can be conceived as expressible in

terms of three variable parameters. Two such relations provide a surface

in the quadruple space; along the surface, each of the variables can be

conceived as expressible in terms of two variable parameters. Similarly,

three such relations provide a curve along which each of the variables can

be conceived as expressible in terms of a single variable parameter. Lastly,

four such relations provide a point or a number of points. The intersection

of a hypersurface and a surface is made up of a curve or a number of

curves. Two surfaces intersect in points; two hypersurfaces intersect in a

surface or surfaces. We consider only real surfaces, curves, and points, in

such intersections
;
because what is desired is a representation of the four

real variables, from which the complex variables are composed.

The representation, by itself, does not seem sufficiently definite and

restricted. There is no preferential combination in geometry among the

four coordinate axes, which compels a combination of x and y for one of the

complex variables, while x' and y' must be combined for the other. But

this original lack of restriction is supplied, so far as concerns functions of z

and z\ by retaining the partial differential equations of the first order, which

are satisfied by the real and the imaginary parts of any function w. Writing
w = u + iv =f(z, z'), where u and v. are real, we have

du dv du _ dv du _ dv du _ dv

dx
~

dy
'

dy dx
'

dx dy'
'

dy' dx
'

so that u satisfies (as does v also) the equations

d*u &u_ ()
d2u d*u d*u d*u_

da?
+
djf~

'

dxdx
+
dydy

~
'

dx'2
+
dy"

~
'

dxdy' dydx'

From a value of u, satisfying these equations, the value of v to be associated

with it in the value of w can be obtained by quadratures. Thus we have a

geometry, tempered implicitly by differential equations.

The comparative difficulty of dealing with the ideas of four-dimensional

geometry tends to prevent this mode of representation from being intuitively

useful, at least to those minds who regard the stated results to be analytical

relations merely disguised in a geometrical vocabulary. In particular, the

method fails to provide (as the other methods equally fail to provide) a

representation of quadruple periodicity which serves the same kind of purpose

as is served by the plane representation of double periodicity ;
and a

fortiori there is an even graver lack, when divisions of multiple space are

required in connection with functions of two variables that are automorphic
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under lineo-linear transformations. Still, it is the fact that certain results

have been obtained through the use of this method in the extension of one

of Cauchy's integral-theorems, in the formation of the residues of double

integrals, in the topology of multiple space, and in the conformation of

spaces.

6. The second of the indicated methods of representation of the four

variable elements in two complex variables is based upon the fact that four

independent coordinates are necessary and sufficient for the complete

specification of a straight line in ordinary space. Such a line would be

determined uniquely by the two points (and, reciprocally, would uniquely

determine the two points) at which it meets a couple of parallel planes ;
and

therefore, if one variable z is represented by a variable point in one plane

and the other variable z' is represented by a variable point in the other

plane, we might regard the line joining the points z and £ in the respective

planes as a geometrical representation of the two variables z and z' con-

jointly. (It can also be determined by a point, and a direction through the

point ; again, the determination requires four real variables in all.)

We must, however, bear in mind that the two points on the line are the

ultimate representation of the two variables. When the whole line* (with

the assistance of the two invariable parallel planes of reference) is taken to

represent the two variables, a question at once arises as to the geometrical

relations between a line z, z and a line w, w
,
which correspond to two

analytical relations between the variables. Does the whole line z, z, under

any transforming relation, become the whole line w, w' ?

7. It is only a specially restricted set of transforming relations, which

admit such a transformation of a whole line. The result can be established

as follows.

For simplicity, we assume that the planes for z and z' are at unit distance

apart, and likewise that the planes for w and w are at unit distance apart ;

and we write

w = u + iv, w' = u + iv'.

The Cartesian coordinates of any point on the z, z' line are

ax + (1
—

<r)x, ay + (1
—

a) y' ,
1 — a,

and those of any point on the w, w' line are

pu + (l— p)u, pv + (l—p)v, l-p,

where p and a are real quantities, each parametric along its line. Let two

relations

F(w, w'
, z, z')

= 0, G (w, w\ z, z')
= 0,

be such as to give a birational correspondence between w, w' and z, z. If,

* For the following investigation reference may be made to the first of the author's two

papers quoted on p. 1.
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then, in connection with these relations, the whole z, z' line is transformed

uniquely into the whole w, w' line, and vice-versa, some birational corre-

spondence between the current points upon the lines must exist
;
and so the

coordinates of the current point upon one line must be connected, by functional

relations, with the coordinates of the current point upon the other line.

Because of the independent equations F=0, G = 0, the quantities u, v,

u, v' are functions of x, y, x', y' alone
;
and these functions do not involve a.

Similarly x, y, x', y are functions of u, v, u', v' alone
;
and these functions do

not involve p. Hence p is a function of a only, such as to take the values

and 1 (in either order) when a has the values and 1
; and, for the

current points, we must have

pu + (1
-

p) u =/(£, v, 1 -
*•),

pv + (l- P)v'=g(^, rj,
I -a),

wheref and g are appropriate functions of their arguments, and

f = ax + (1
— a) x', 7)

= ay + (1
—

a) y'.

As p is some function of <r alone, the former relation gives

du .- . du df 8«
, ,, . du' ,_ . df

p
dj

+(1 - p) Ty
=
°i- ''a7

+(1 - p)
a7

=<1 " <r)4
and therefore

( du ., . du') { du ,^ . du'}

{
du du') I du du'\=

|^+a-/>) ¥ }{f> a
~,+(i-p)s,}.

The relation holds for all values of p, and the quantities u and u' do not

involve p; hence

du du _ du du

dx dy' dy dx'
'

du du' du' du _ du du' du' du

dx dy' dx dy' dy dx' dy dx'
'

du' du' _ du' du'

dx dy' dy dx"

Similarly, the second relation requires the conditions

dv dv _dv dv

dx dy' dy dx'
'

dv dv' dv' dv _ dv dv dv' I v

dx dy' dx dy' dy dx' dy dx'
'

dv' dv' _ dv dv'

dx dy' dy dx'
'
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Moreover, because both u + iv and u +iv' are functions of z and /, we have

the permanent relations

du dv

dx dy'
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where A/ is any real constant
;
and so

uf = u' + iv'

=
(7 + iS) z + (7 + iB') z' + X + iV.

The presence of the term X + iX' in w' merely means a change of origin in

the w/-plane ; neglecting this temporarily, as before for w, we have

w/ = (7 + iS) z + (7' + i&') z.

Now let

7 + iS = (7e"
f
, 7' + iV = CV,

where (7, C , v, v are real
;
then the condition 78'

—
y'8 = becomes

CC sin (1/
-

1/')
- 0,

so that either (7= 0, or C" = 0, or v = v , giving three possibilities.

The second of the three retained equations still has to be satisfied
;

it

involves derivatives of u and of u', and it is satisfied identically by the fore-

going values of u and u', provided

a&'-a'S^py'-py,
or (what is the equivalent condition) provided

AC sin (p
-

v')
m A'C sin (//

-
v).

9. Nine cases arise for consideration, because the three possibilities

from the first of the retained equations must be combined with the three

possibilities from the third of the retained equations. Each combination

is governed by the last condition
;
and the expressions obtained must satisfy

the conditions holding between p and a. Moreover, in the end, w and w'

are to be independent functions of the variables ; and, for the present

purpose of geometrical representation by a line, we manifestly may inter-

change z with z', and w with w'.

Of the nine combinations, two are impossible under these requirements,
viz. A =

0, (7=0; and A' = 0, C = 0. Four of them are equivalent to one

another under these requirements, viz. A=Q, v = v
\
A' = 0, v = v

; p = p,

(7=0; fi
=

fi ,
C =

;
and they lead to the expressions

w = (Az + A'z') e»\ w' = G'z'e^.

Two of them are equivalent to one another under these requirements, viz.

A = 0, C =
;
and A' = 0, (7=0; and they lead to the expressions

w = Aze'Li
,

w'=G'z'e^\

The remaining combination, viz. fi
=

//, v = v
,
under the requirements leads

to the expressions
w = (Az + A'z') e*\ w' = (Gz + G'z') «#.

All these expressions must still satisfy the terminal condition applying to p

and a, viz. that p must be or 1 when a is or 1. When these expressions
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are inserted for the functions / and g in the earliest equations in § 7, the

latter lead to the relations

pa + (l-p)y = pa' + (l-p)y
cr 1 — cr

p(3 + (l-p)8 _ pP' + (l-p)8'
^a 1 — cr

and therefore

pAe^ + (1
-

p) Gevi

_ pA'e^ + jl -p)G
/

ev
'

i

cr 1 — cr

For the first of the expressions, this becomes

PA = pA' + (l-p)C
cr 1 — cr

In order that p may be 1 when cr is 1, we must have A' = and the

necessity, that then p must be when a is 0, imposes no further condition
;

the expression becomes

w = Aze^, w = C'z'e^,

which is the same as the second.

For the second of the expressions, the relation is satisfied without any
further condition.

For the third of the expressions, the relation becomes

pA+(l-p)C <r

PA' + (l-p)C I -a'

In order that p may be 1 when cr is 1, we must have A' =
;
and in order

that p may be when a is 0, we must have G =
;
the expression becomes

w = Aze^, w = G'z'e^,

the same as before.

In obtaining this result, we neglected temporarily an arbitrary change
of origin in each of the planes ;

and we assumed that z can be interchanged

with z, and w with w'. Thus we have the result :
—

The only relations which give a birational transformation of the straight

line, joining z and z' in two parallel planes, into a straight line, joining w and

w' also in two parallel planes, either are

w = azeai + be? 1

,
w' = a'zeai + ceyl

,

where a, a', b, c, a, (3, y are real constants, or can be changed into this form by

interchanging z and z'
,
or w and w' , or both.

These relations, as equations in a general theory, are so trivial as to be

negligible; and so we can assert generally that two functional relations

F(w,w', z, z')
= and G (w, w', z, z

1

)
= 0, which transform the variables z
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and z
1
in their respective parallel planes into the variables w and w likewise

in their respective parallel planes, do not (save in the foregoing trivial cases)

admit a birational transformation of the whole straight line joining z and **

into the whole straight line joining w and w' .

10. Manifestly, therefore, we need not retain the suggested geometrical

representation of two variables by the whole straight line joining the two

points z and z
, because the only effective part of the representation is

provided by the two points in which the line cuts the planes.

Nor would any other method of selecting the four real variables for the

specification of the straight line be more effective. For example, the line

would be uniquely selected by assigning a point where it cuts a given plane

and assigning its direction relative to fixed axes in space ;
and then we

could take

z — x + iy, z' = e^ tan 6,

with the usual significance for x, y, 6, <f>.
It is easy to see that, when we

take a plane at unit distance from the given plane, and we write z" = z + z'
,

the former representation by the straight line arises for z and z" . As

before, the whole straight line is not an effective representation of the two

complex variables
;

the only effective part of the representation is the

point in the given plane and the direction relative to fixed axes.

11. Another method of constructing a straight line to represent two

complex variables z and z' has been propounded by Vivanti*, whereby it is

given as the intersection of the two planes

xX + yZ=l, x'Y+y'Z=l,

where X, Y, Z are current coordinates in space. The immediate vicinity of

a line z
,
z

'

is assumed to be the aggregate of all lines such that

(x
- xoy +(y- y f Z r\ (x

- x J + (y'
-
y J < r'\

where r and r' are arbitrary small quantities; and the boundary of the

vicinity is made up of the lines

(*
-
xtf + (y

-
yoy = r\ (x'

- x J + (y'
-
y ')*

= r'\

It is easy to see that, as before, the whole straight line as a single

geometrical entity is not an effective representation of the two complex
variables z and z

\
the only effective part of the representation depends

upon the coordinates of the two points in which the line cuts the planes of

reference F=0, X = (or any two of the coordinate planes).

* Rend. Circ. Mat. Palermo, t. ix (1895), pp. 108—124.
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12. The preceding investigation suggests cognate questions which will

only be propounded. Two functional relations, F (w, w'
, z, z')

— and

G (w, w', z, z) = 0, transform a pair of points z and z', in parallel planes,

into a pair (or into several pairs) of points w and w', also in parallel planes.

Let z and / be connected by any analytical curve
;

let a corresponding pair

of points w and w also be connected by any analytical curve
;
and suppose

that the two analytical curves have a birational correspondence with one

another. Then

(i) How are the equations of this correspondence connected, if at all,

with the original functional relations ? and what are these

(
equations when the two analytical curves are assigned ?

(ii) What functional relations are possible if, under them, the whole

z. z curve is to be transformed into the whole w, w curve ?

(iii) When functional relations are given and an analytical z, z curve

is assigned, what are the equations of the w, w' curve, if and

when the whole curves are transformed into one another ?

13. One warning must be given before we pass away from the con-

sideration of a line, straight or curved, as a geometrical representation of a

couple of complex variables. The preceding remarks refer to the possibility

of this geometrical representation ; they do not refer to functions of two

complex variables which are functions of a line. Functions of a real line

occur in mathematical physics ;
thus the energy of a closed wire, conveying

a current in a magnetic field, is a function of the shape of the wire. This

notion has been extended by Volterra* on the basis of Poincare's general-
isation of one of Cauchy's integral-theorems. In the case of the integral

of a uniform function of one complex variable, we know that the value is

zero round any contour, which does not enclose a singularity of the function,

and that the integral between two assigned points is (subject to the usual

proviso as to singularities) independent of the path between the points;

that is, the integral can be regarded as a function of the final point. So

also (as we shall see) the integral of a function of two complex variables over

a closed surface in four-dimensional space is zero if the surface encloses no

singularity of the function
;
and when the surface is not closed, the integral

(subject to a similar proviso as to singularities) depends upon the boundary
of the surface

;
that is, the integral can be regarded as a function of the

boundary-line.

This property has nothing in common with the line-representation of

two complex variables which has been discussed.

14. The third of the indicated methods of representation of two complex
variables is the effective relic of the discarded line-representation. It is the

simple, but not very suggestive, method of representing the two variables z

* Acta Math., t. xii (1889), pp. 233—286.
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and z' by two points, either in the same plane or in different planes, the two

points always being unrelated. It is the method usually adopted by Picard

and others. For quite simple purposes, it proves useful
;
thus it is employed

by Picard* in dealing with the residues of the double integrals of rational

functions, and it is important in his theory of the periods of double integrals

of algebraic functions.

Let me say at once that the point-representation of z and / is not

completely satisfactory, in the sense that it does not provide a representation

which gives a powerful geometrical equivalent for analytical needs. One

illustration will suffice for the moment. It is a known theorem f, due

originally to Jacobi in a simpler form, that a uniform function of two

variables cannot possess more than four pairs of periods. The point-

representation of two variables admits of an effective presentation of simple

periodicity for either variable or for both variables, of double periodicity for

either variable or for both variables separately, of triple periodicity for both

variables in combination
;
but (as will be seen later in these lectures) it

does not lend itself to a presentation of quadruple periodicity for both

variables in combination, a presentation which is much needed for functions

so fundamental as the quotients of the double theta-functions. An attempt
to circumvent the latter difficulty will be made later for one class of

quadruply-periodic functions. But the general difficulty remains. There

are other limitations also upon the effectiveness of the method of repre-

sentation by points ; they need not be emphasised at this stage.

New ideas, or some uniquely effective new idea, can alone supply our

needs. In the meanwhile, we possess only two fairly useful methods,

viz., the method of four-dimensional space, and the method of two-plane

representation.

Properties of the two-plane representation.

15. As the principal use of the representation of two variables in four-

dimensional space occurs in connection with double integrals, illustrations

can be deferred until that subject arises for discussion. We proceed now

to make a few simple inferences from the two-plane representation of two

variables^:. »

We shall use the word place to denote, collectively, the two points in

the ^-plane and the /-plane respectively which represent the values of z and

* See the reference to the second treatise by Picard, quoted on p. 5.

f The general theorem is that a uniform function of n independent variables cannot possess

more than In independent sets of periods. The simplest case, when n = l, was originally estab-

lished by Jacobi, Ges. Werke, t. ii, pp. 27—32. For the general theorem, see the author's Theory

of Functions, § 110, § 239, where some references are given.

X For much of the investigation that follows, reference may be made to the author's paper,

quoted on p. 7.
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of z' . Let w and w' be two independent functions of z and z', so that their

Jacobian J, where

J
-ATT)-

does not vanish identically ;
and let the places z, z' and w, w' be associated

by functional relations. Any small variation from the former place, repre-
sented by dz and dz', determines a small variation from the latter place,
which may be represented by dw and dw'

; the analytical relations between
these smalL variations are of the form

dw = Adz+Bdz', dw' = Cdz + Ddz,

where A, B, G, D are free from differential elements, and AD — BG = J.

Next, let dx z and dx z ,
d2z and d2 z' denote any two small variations from

the z, z' place; and let dxw and dxw',
d2w and d2w' denote the consequent

small variations from the w, w place. Then

= Adx z + Bdxz
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any one set of simultaneous small variations, while d2 z, d2z, d2w, d2w' are

any other set of simultaneous small variations, the quantity

dx w, dx
w'

daw, d2w

dx z, dx
z

is independent of differential elements and depends only upon the places

z, z' and w, w'.

16. The converse also is true, viz. :
—

Let z and z' be two complex variables, such that

z = x + iy, z' = x' 4- iy' ,

where x, y, x'
, y' are four real independent variables ; and let w and w' be

other two complex variables, such that

w = u + iv, w = u' + iv',

where u, v, u', v' are four real independent quantities, being functions of x, y,

x', y' ; then, if the magnitude

dxw, dx w'

d2w, d2w'

dx z, dx z'

d2 z, d2 z

for all infinitesimal' variations, is independent of these variations, w and w
are independent functions of z and z alone.

This property, which for two independent complex variables corresponds

to Riemann's definition-property* for functionality in the case of a single

complex variable, can be established as follows. Let

so that

dx
*'
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dY Z, d^z'

d2 z, d2 z'

17

d-L% + id1 y, dix' + id^y'

d2x + id2 y, d2x + id2 y'

(a/2 ™j ^2^ '

dice, dxy I
-

d2x, d2y |

diy, d^y

d2 y, d2y

diy, dx x' I 4- i

d2y, d2x' I

These two quantities are to stand to one another in a non-vanishing ratio,

which is independent of the arbitrarily chosen differential elements that

occur in them? Consequently, when we denote this ratio by J, we must
have

a/3'
- a'£ = 0,

ay —
a'7 = J,

a8' — a'8 —
ij,

£5' -.#$«-/,

76"
—

7'$ = ;

and these necessary conditions also suffice to secure the property.

The first of these conditions shews that a quantity m exists such that

/8
= ma, fi'

= ma'
;

and the sixth shews that a quantity n exists such that

8 = ny, 8' = ny.

The third condition then gives

iJ = a8' — a 8 = n (017'
— a^) = nJ

;

the fourth and the fifth conditions similarly give

iJ = mJ, — J — ynnJ;

and the second condition gives the value of J. Thus all the conditions are

satisfied if

m =
i, n = i, J = 0C7'

— dy.
But now

dw n . .dw dw ~ .dw

ay ox oy ox

and these are the only equations affecting w alone. The theory of partial

differential equations of the first order shews that their most general in-

tegral is any function of x + iy and of x + iy' alone, that is, w is a function

of z and z' alone. Similarly

dw' .dw dw' .dw'

dy dx' dy dx'
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and these are the only equations affecting w alone
; hence, as before, w'

also is a function of z and z alone. Moreover, we now have

dw _ dw _ dw _ dw
Tz

"
dx~

~
"'

a?
~

dx'
~ r

and therefore

dw' _ dw' _ , dw' _ dw' _ ,

dz da;
'

dz dx

T , , dw dw' dw dw'
J = ay — ay = — —— — —- -^- .' '

dz dz dz dz

Also J is a non-vanishing quantity. Hence w and w are independent
functions of z and z' alone—which is the result to be established.

17. The Riemann definition-property for a function of a single complex
variable leads to a relation

8w _ hz

Ww~Fz'

this relation, when interpreted geometrically, gives the conformal repre-

sentation of the w-plane and the 2-plane upon one another. The property

just established in connection with the quantity

dxz . d2 z'
— d2z . d^z'

has a corresponding geometrical interpretation.

For simplicity, let z and z
1
be represented in the same plane. At any

point in the plane, take OA, OB, OC, OD to represent d^z, d^sf, d3 z, dt zf .

Along the internal bisector of the angle between OA and OD, take OP
a mean proportional between the lengths OA and OD; and along the

internal bisector of the angle between OB and 00, take OQ a mean

proportional between the lengths OB and 00. Complete the parallelo-

gram of which OP and OQ are adjacent sides; let M denote the product
of the lengths of its diagonals, and let 6 denote the sum of the inclinations

of those diagonals to the positive direction of the axis of real quantities ;

then

dtz . d2z'
— d2 z .d x

z' = Me91
.

Constructing a similar parallelogram in connection with the variations of

w and w'
,
we should have

dxw . d2w' - d2w .dx w' = Nefi*.

Consequently
Ne*1 = JMe*.

Now let two sets of pairs of small variations of z and z be taken,

one of them leading to a quantity Me01
, the other of them leading to a

quantity M'eei
;
and let the corresponding quantities, arising out of the
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two sets of pairs of the consequent small variations of w and w', be Ne*{

and N'e^'1
. Then

Ne^ = JMeH, N'e^ = JM'#\
and therefore WW,
which is the extension, to two functions of two variables, of the conformation

property for a function of one variable. Moreover, the extension is deter-

minate; for /tEe^parallelogram, constructed to give the representation of

d
x
z . d»z' — d2z . d1 z', is unique in magnitude and orientation.

18. While a geometrical interpretation of functionality can thus be

provided at any place in the two planes of the independent variables,

a limitation upon the general utility of the method is found at once when
we proceed to the transformation of equations. It does not, in fact, provide

any natural extension of the transformation of loci and of areas which occurs

when there is only one complex variable.

Thus consider the periodic substitution

z \J1 = w 4- w', z \/2 =w —
w',

which gives

w \]1 = z + z', w'V2 = z — z'.

Corresponding to any z, z place, there exists a unique w, w' place. But
the combination, of a definite locus in the z plane unaffected by variations

of z' with a definite locus in the z' plane unaffected by variations of z, does

not lead to similar loci in the planes of w and of w . Thus suppose that z

and z describe the circles

z = aeei
,

z = aedi
,

in their respective planes ;
the corresponding ranges in the w and w' planes

are given by the equations

(u + u'f + (v + vj = 2a2
, (u

-
u'Y + (v- v'f = 2a'

2
,

neither of which gives a locus in the w plane alone or in the w' plane
alone. The z circle and the z' circle, which can be described by the

respective variables independently of each other, determine x 2

places in

the w and w' planes combined, but there is no locus either in the w plane
alone or in the w' plane alone corresponding to the two circles.

Again, the content of the field of variation represented by

\z\<a, \z'\^a',

can be described very simply ;
it consists of the oo 4

places given by com-

bining any point within or upon the z circle with any point within or

2—2
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upon the z' circle. When this field of variation is transformed by the

periodic substitution, the new field of variation is represented by

]

w + w
|

< a V2,
J

w — w'
|

< oV2 ;

it consists of oo 4
places in the w and w' planes, each corresponding uniquely

to the appropriate one of the oc 4

places in the z and z planes ;
but there

is no verbal description of the w, w field so simple as the verbal description

of the z, z' field which has been transformed.

Analytical expression of frontiers of two-plane regions.

19. One consequence emerges from even the foregoing simple illus-

tration, and it is confirmed by other considerations.

When we have a four-fold field of variation such that places in it are

represented by a couple of relations

<t> (#, y, dt y) < 0, ^r (x, y, x, y') < 0,

the three-fold boundary of the field consists of two portions, viz. the range

represented by

<f> (x, y, x, y')
= 0, y\r (x, y, x', y') < 0,

and the range represented by

<f> (x, y, x, y) < 0, yfr (x, y, x, y) = 0.

These two portions of the three-fold boundary themselves have a common
frontier represented by the equations

<t> 0*. y, «'. y')
= 0, yfr (x, y, x, y')

= 0,

which give a two-fold range of variation. This last range is a secondary or

subsidiary boundary for the original four-fold field; to distinguish it from

the proper boundary, we shall call it the frontier of the field.

Accordingly, we may regard the frontier of a field of the suggested kind

as given by two equations

(j> (x, y, x, y')
= 0, f (x, y, x, y')

= 0.

(The simpler case of unrelated loci in the planes of z and of z arises when

<f>
does not contain x or y ',

and
yfr

does not contain x or y; and, at least

when <£ and
yjr

are algebraic functions of their arguments, the foregoing

relations can be modified into relations of the type

0(^,0 = 0, 6(x,y,y') = 0,

or into relations of the type

x fo *> y) = o, x (y> *'> y) = °>

which are equivalent to them.) Now this form of the equations of the

frontier of the field possesses the analytical advantage that, when the

variables are changed from z and z to w and w by equations

F (w, w', z, z')
= 0, G (w, w', z, z')

= 0,
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the equations of the frontier of the w, w' field are of the same type as

before, being of the form

<£> (u, v, u', v') = 0, ^. (u, v, u', v')
= 0.

It is necessary to find some analytical expression of the doubly-infinite

content of these equations. In the special example arising out of the

periodicsjibstitution in § 18, we at once have the expressions

u \/2 = a cos + a cos &
'

,
u' \/2 = a cos 6 — a' cos 6',

v \/2
= a sin + a' sin 6', v *J2 — a sin 6 — a sin 6',

giving the doubly-infinite range of variation for u, v, u, v', when 6 and 6' vary

independently. But when the equations of the frontier do not lead, by
mere inspection, to the needed expressions, we can proceed as follows.

Let x, y, x', y'
= a, b, a, b' be an ordinary place on the frontier given

by the equations <£
= and

i/r
= 0, in the sense that no one of the first

derivatives of
<£
and of

yfr
vanishes there

;
and in its vicinity let

x = a + |, y = b + i), x' = a + £', y =b' + r}'.

Then we have

° = fs + "
3

af
+ r^ + v| + [^,r,vi + ...,

°=f|!^
5

at
+ r|* +v^ + [^,r,v]!+ ...,

there being only a finite number of terms when
<f>

and -^ are algebraic in

form. Introduce two new parameters s and t, and take

s = get + r)ft + %'y + V%>

where a, /3, 7, 8, a, /3', 7', S' are constants such that the determinant

da
'
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In order to indicate the two-fold variation in the content of the frontier,

it now is sufficient to consider regions of variation in the plane of the real

variables s and t Thus, corresponding to a region in that plane included

within a curve k (s, t)
= 0, there are frontier ranges of variation in the z

and the z planes, determined respectively by the equations

x — a = p(s, t)~\ x - a =p (s, t)"

y-b=q(s,t)\, y
- b' = q (s, t)

> k (s, t)j O^k (s, t)

that is, by the interiors of curves

f(x -a,y-b) =
0, g (x

- a, y
-

6')
=

0,

the current descriptions of these interiors being related.

Moreover, the equations F = and G = potentially express u, v, u, v in

terms of x, y, x , y' ;
and so the frontier range of variation in the w and w

planes would be given by substituting the obtained values of x, y, x', y
1

,

as regular functions of s and t, in the expressions for u, v, u\ v', that is, the

frontier range of variation is defined by equations of the form

u, v, u, v = functions of two real variables s and t.

But, in dealing with the geometrical content of the frontier, whether with

the variables z and z' or with the variables w and w', care must be exercised

as to what is justly included. We are not, for instance, to include every

point within the curve f(x — a,y
—

b)
=

conjointly with every point within

the curve g (x'
—

a', y'
—

b')
= 0, even if both curves are closed

;
we are to

include every point within either curve conjointly with the point within the

other curve that is appropriately associable with it through the values of s

and t

Ex. 1. The method just given for the expression of x, y, x
1

, y' is general in form
; but

there is no necessity to adopt it when simpler processes of expression can be adopted.
Thus in the case of the equations

x2+y2 +x'2=
l, x2—y2

=y',

a complete representation of the variables is given by

.r=sin*cos£, #= sinssin£, x'= coss, y'
<= sin2 s cos It.

A full range of variation in the plane of s and t is

When we select, as a portion of this range, the area of the triangle bounded by the lines

s-*= 0, s+t= $ir, t = 0,
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the limiting curves corresponding to /=0 and g=0 are a curvilinear figure made up
of a straight line and two quarter-circles in the z- plane, and another curvilinear figure

in the /-plane made up of a parabola and arcs of the two curves

y'
= (l-x'

2
)(2x'

2
-l), y'=-(l-x'2

)(2x'
2
-l).

Ex. 2. For the periodic substitution

y-—x w s/2= z+z', w' s/2=z — z
l

,

az,/ frontier defined by the equations

x2 +s'2
=i, y

2+y2
=i,

is transformed into a tv, w' frontier defined by the equations

u2+u'2
=l, v2+v'2= l;

that is, the frontier is conserved unchanged.

Ex. 3. To shew how a field of variation can be limited, consider the four-fold field

represented by the equations

x2+y2+x'2
<*\, 2x2+Sf+f2 ^l.

As regards the 2-plane, the first equation allows the whole of the interior of the circle

x2+y2= 1. The second equation allows the whole of the interior of the ellipse 2x2+ Zy
2= 1.

The region common to these areas is the interior of the ellipse ;
hence the content in the

2-plane is the interior of the ellipse 2x2+ Zy
2=

\, so that x2
ranges from to £, and y

2

ranges from to J.

As regards the 2'-plane, we have

3xf2
-y'

2= 2-x2
,

2x'2
-y'

2= l+y2
.

Because of the range of x2
,
the first of these equations gives the region between the two

hyperbolas
3x'2

-y'
2=

2, 3x'2 -y'
2=

%.

Because of the range of y
2
,
the second of these equations gives the region between the two

hyperbolas
2x"2 -y'

2=
$, 2x'2

-y'
2 =l.

The required content in the /-plane is the area common to these two regions ;
that is, it

is the interior of two crescent-shaped areas between the hyperbolas

2xJ2 -y'
2
=^\, 3.£'2 -y'

2= 2.

The whole field of four-fold variation of the variables z and z' is made by combining

any point within or upon the first ellipse with any point within or upon the contour of

each of the crescent-shaped areas.

Ex. 4. Discuss the four-fold field of variation represented by the equations

x2+y2+ 2a (xx' +yy') < k2
,

x'2 +y'
2+ 2c (xy'

-yx
1

) < I
2

.

20. The last two examples will give some hint as to the process of

estimating the field of variation when it is limited by a couple of frontier

equations in the form

6(x,y,x') = 0, ®(x,y,y') = 0,

or in the equivalent form

% 0», *', y) = 0, X (y, x, y) = 0.



24 FIELD OF VARIATION [CH. I

We draw the family of curves represented by = for parametric values

of x
;

for limited forms of 6, there will be a limited range of variation for

x and y, bounded by some curve or curves. Similarly, we draw the family

of curves represented by % = for parametric values of y ;
as for 6, so for ("),

there will be a limited range of variation for x and y, bounded by some other

curve or other curves. Further, the equations % = and X = may impose
restrictions upon the range of x and the range of y, which are parametric
for the preceding curves. In the net result for the .z-range, when subject to

the equations 6=0 and © = 0, we can take the internal region common to all

the interiors of these closed curves.

The same kind of consideration would be applied to the equations % =
and X = 0, so as to obtain the range in the /-plane as dominated by these

equations.

And the four-fold field of variation for z and z' is obtained by combining

every point in the admissible region of the 2-plane with every point in the

admissible region of the /-plane.

Note. In the preceding discussion, a special selection is made of the four-fold fields of

variation which are determined by a couple of relations 0^:0, ^ < 0.

It is of course possible to have a four-fold field of variation, determined by a single

relation 0^0. The boundary of such a field is given by the single equation 0=0 ; there

is no question of a frontier.

It is equally possible to have a four-fold field of variation, determined by more than

two relations, say by ^ 0, ^ <; 0, x ^ 0. The boundary then consists of three portions,

given by $= 0, \^<0, x <0 i <t>^.®, ^ =
°> X^°; < °> ty<% X=°- The frontier

consists of three portions, given by 0^0, ^= 0, x= ; 0=0, ^ ^ 0, x=0; =
0, \^

= 0,

X ^ 0. And there could arise the consideration of what may be called an edge, defined by
the three equations 0=0, *//

= 0, x = 0.

Sufficient illustration of what is desired, for ulterior purposes in these lectures, is

provided by the consideration of four-fold fields determined by two relations.



CHAPTER II

LlNEO-LINEAR TRANSFORMATIONS: INVARIANTS AND CoVARIANTS

Lineo-linear transformations.

21. Whatever measure of success may be attained, great or small, wi^h
the geometrical representation, the analytical work persists; the geometry
is desired only as ancillary to the analysis. So we shall leave the actual

geometrical interpretation at its present stage.

The fundamental importance of the lineo-linear transformations of the

type
az + b

w —
cz 4- d

in the theory of automorphic functions of a single variable is well-known.

We proceed to a brief, and completely analytical, consideration of lineo-

linear transformations of two complex variables*, shewing the type of

equations that play in the analytical theory the same kind of invariantive

part as does a circle or an arc of a circle in the geometry connected with

a single complex variable.

These lineo-linear transformations between two sets of non-homogeneous
variables have arisen as a subject of investigation in several regions of

research. Naturally, their most obvious analytical occurrence is in the

theory of groups. When the groups are finite, they have been discussed

for real variables by Valentinerf, GordanJ, and others; they are of special

importance for algebraic functions of two variables and for ordinary linear

equations of the third order which are algebraically integrable§. Again,
and with real variables, they arise in the plane geometry connected with

Lie's theory of continuous groups ||. They have been discussed, with complex

* For much of the following investigation, as far as the end of this chapter, reference may
be made to the second of the author's papers quoted on p. 1.

t Vidensk. Selsk. Skr., 6 Rajkke, naturvid. og math. Afd., v., 2 (1889).

% Math. Ann., t. lxi (1905), pp. 453—526.

§ See the author's Theory of Differential Equations, vol. iv, ch. v.

|| Lie-Scheffers, Vorl. U. cont. Gruppen, (1893), pp. 13—82.
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variables, by Picard* in connection with the possible extension, to two in-

dependent variables, of the theory of automorphic functions. And a memoir

by Poincare has already been mentioned f.

22. We take the general lineo-linear transformation (or substitution)

between two sets of complex variables in the form

w _ w' _ 1

az + bz' + c~ a'z + b'z' + c'~ a"z + b"z' + c"'

where all the quantities a, b, c, a', b\ c, a", b", c" are constants, real or

complex. The first step in the generalisation of the theory for a single

variable is the construction of the canonical form
;
and this can be achieved

simply by using known results]: in the linear transformations of homogeneous
variables. For our purpose, these are

y1
= axx + bx2 + cx3 ,

y2
= a'x

1 + b'x2 + c'x3 ,

y3
= a"x1 + b"x2 + c"x3 ,

so that we have
z _z 1 w w _ 1

Xi x2 x3 yx y2 yz

The quantities w and w' are independent functions of z and z
;
and there-

fore the determinant

a
,

b
,

c

a, b', c'

a", b", c"

denoted by A, is not zero. As a matter of fact,

<w, w'\ A
J

The equation

z,z' J (a"z + b"z' + c"y

a-0, b
,

a
, b'-6,

a , b $

=

is called the characteristic equation of the substitution. This characteristic

equation is invariantive when the two sets of variables are subjected to the

same transformation
;
that is to say, if we take

W = W 1

aw + fiw' + 7 ol'w + fi'w' + y
'

ol'w + fi"w + y"
'

Z Z' 1

az + 0J + y a'z + £V + y'

~
a"z + ff'z' + y"

'

* Acta Math., t. i (1882), pp. 297—320; ib., t. ii (1883), pp. 114—135.

t See the reference on p. 1.

X Jordan, Traiti des substitutions, Book ii, ch. ii, § v
; Burnside, Theory of groups, (2nd ed.,

1911), ch. xiii.
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and express W and W in terms of Z and Z', the characteristic equation of

the concluding substitution between W, W, Z, Z' is the same as the above

characteristic equation of our initial substitution between w, w', z, z.

There are three cases to be discussed, according as the characteristic

equation, which is of the form

3 - A^ + A 2
- A = 0,

has three simple roots, or a double root and a simple root, or a triple root.

Case I. Let all the roots of the characteristic equation be simple;
and denote them by 1} 2 , 3 . Then quantities ar : j3r : yr ,

determined as

to their ratios by the equations

aCLf + d'fir + a'Vr = ^r^r ,

bar + b'fir + b"yr = r /3r ,

car + c'fir + c"yr — ryr ,

are such that, if

Yr
= ary1 + @ry2 + yry3 ,

Xr
= arxx + /3r#2 + yrxz ,

we have

X r
= vr 2L r .

The canonical form of the homogeneous substitution is

Y1
= 0iX1} F2

=
2X2 ,

Y3
=

3X3 ;

and so the canonical form of the lineo-linear transformation is

a^w + fiitu)' + 7! _ aiZ + ^z + 7!

a3w + P%w' + y3

~
a3z + fi3z' + y3

a2w + fi2w' + y2 _ a 2 z + faz + y2

a3w + $3w' + y3

~ P
a3z + tS3 z' + y3j

where the quantities A. and
fi, called the multipliers of the transformation,

are

. _ 0i 2a— -k , P — a >

V3 #3

being the quotients of roots of the characteristic equation. The multipliers

are unequal to one another, and neither of them is equal to unity.

This canonical form can be expressed by the equations

W = \Z, W' = fiZ'.

Case II. Let one root of the characteristic equation be double and

the other simple; and denote the roots by 1} 1} 3 . The canonical form

of the homogeneous substitution is

¥, = 0^,, Y2 =kX1 + 1
X2 ,

Y3
=

3X3 ,

where the forms of the variables X and Y are the same as in the first case
;

and the constant k, in general, is not zero.
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The canonical form of the lineo-linear transformation is of the type

W m \Z, W = \Z' + aZ,
where

and the constant er, in general, is not zero. The repeated multiplier \ is

not equal to unity.

Case III. Let the characteristic equation have a triple root 6. The

canonical form of the homogeneous substitution is

Yt-eXu Y2
= aX l +6X2 , Y, = 0X t + yX2 + 0X3 ;

and the canonical form of the lineo-linear transformation is of the type

W = Z + p, W' = Z'+<tZ+t,

where the repeated multiplier is unity, and the constants p, cr, r, in general,

do not vanish.

23. Any power of the transformation can at once be derived from its

canonical form. Let the transformation be applied m times in succession,

and let the resulting variables be denoted by wm and wm
'

;
then

*iWm + Awm '

4- 7! = xm
a

1 z + &z
J + yl

«3wm + fowm
' + 7s a3z + $%z + 73

'

«2wm + fowm + 72 = m a2z + foz + 72

a3wm + ^3wm
' + y3

P
a3z + @3 z' + ry3

'

expressing wm and wm
'
in terms of z and /.

When Xm = 1 and fi
m =

1, the mth power of the transformation gives

an identical substitution. For then

«iWm + @iWm
' + 71 a2wm +. 82wm

' + 72 a3wm + /33wm
' + y3

a1 z + ^1
z' + y1 o^z + fi2 z' + 72 asz + ft3 z' + vs

When each of these three equal fractions is denoted by p, we have

<*i (w« - pz) + 0i K' -
pz) + 7, (1

-
p)
= 0,

fly (ivm - pz) + @2 {wj - pz') + y2 (1
-

p)
= 0,

a3 (wm - pz) + /33 (wm
' -

pz') + 73 (1
-

p)
= 0.

The determinant of the coefficients a, 0, y is not zero, because otherwise

the canonical form of the original transformation would contain only' one

independent equation; hence

wm - pz = 0, wm
' -

pz'
= 0, 1 - p = 0,

that is,

wm m z, wm
' =

z',

shewing that the mth power of the original transformation gives an identical

substitution, if Xm = 1 and p.
m = 1.
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Invariant centres.

24. Certain places are left unaltered by the lineo-linear transformation

between the *, z field and the w, w field. On the analogy with the

corresponding points in the nomographic transformation w {cz + d) = az + b,

these unaltered places may be called double places or (because repetitions

of the transformation still leave them unaltered) they will be called the

invariant centres of the transformation.

Returning to the initial form of the transformation, and denoting any
invariant centre by £ and £', we have

< + 6£ + c = 0£,

a'£ + b'? 4- c = $?,

a"$ + b"Z' + c"-6 ;

with our preceding assumptions, 6 manifestly is a root of the characteristic

equation. Hence when all the roots of this equation are simple, we generally

have three invariant centres, say £i and £/, £2 and £/, £3 and £,', associated

with #1, #2 > #3 respectively. It is easy to verify that

tfiK^ + Ak' + y.)

= (aa2 + a'/32 + a"y2) J, + (ba2 + &'/32 + b"y2 ) £,' -I- ca2 + c'/82 + c"y2

= e2 (cc^1 + 1̂'+y2 ),

so that, as 6X and #2 are unequal, we must have

«>& + &&' + 7.-0.
Similarly

«3 ti + &£' + Y3
=

0,

while

«!& + &&' + •» + <>•

Thus the invariant centres are given by the equations

*& + &&' + 7,-0]

«*& +&& + T,= }

<*s& + && + J3
= 0^

%&+&£.' + 71-QJ

«i& + &&' + 7i-0
,

|

*&+&&' + 7. «<>/'

a result which can be inferred also from the canonical form of the trans-

formation.

In deducing this result, certain tacit assumptions have been made as to the exclusion

of critical relations. It will easily be seen that the transformation

w s/2=z+z', w'y/2= z — z'
,

is not an example (for the present purpose) of the general transformation.
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Manifestly, we can take

[CH. II

w, w, 1

S2> b2 '
*

6, 6'. 1

w, w', 1

t3> S3 > *

6. &'l 1

w, w', 1 = \
J

.2, Z, 1

6. r/, i

S>2> & >
l

+ I W, W', 1
j

=
fM

6> 6', i !

6, 6', 1
!

6, 6'. i

£3 > b3 >
*

Z, Z
,

1

6. 6' 1

6. 6', 1

*, •, 1

6< 6', 1

6. 6'. i

2, ^', 1

6, 6' i

S2> S2 >
•

as a canonical form of the lineo-linear transformation.

This canonical form leads at once to an expression of the relations

between the two sets of variables in the immediate vicinity of the invariant

centres. Near £i and £i', we have

= 6 + Sj*, *' = (T/ + &i z'>
w = 6 + 8iW, w' = 6' + ^iw'.

where

Sxty' 1
j

hx z B1 z'

6 — 6 6'
— 6 ^

(.£2
~

£1 £2'
—

6'j
'

6-6 ff-6' H6-6 6' -61

Near £2 and 6'j we nave

* = 6 + S2^, * = 6" + 82 /, w = £2 + S2w, w' = &' + S,w',

where

&,«// A,

,-iJ
$«*'

£3
- 6 6'

-
6' p 16 - 6 6'

-
6'j

'

82W S2 W/' _1 j
S22 82 2' I

Near £3 and 6'» w© have

z = 6 + ^, ^ = 6' + ^', w = 6 + S3w, w' = 6' + 8sw\

iWs

~
6^6' _Ai

IsV^
-
6^6'J*

.'here

8.W S3w' f &f
./
= A

b2
_
6 *'

~" 6 16— £3 £2
—

S3

Moreover this new canonical form, involving explicitly the places of the

invariant centres in their expressions, shews that the assignment of three

invariant centres and two multipliers is generally sufficient for the con-

struction of a canonical form of a lineo-linear transformation of the first

type.
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Ex. 1 . Some very special assignments of invariant centres may lead to equations that

do not characterise lineo-linear transformations. The resulting equations, in that event,

belongjtojthe range of exceptions.

Thus, if we take

Ci
= l \ C2

= «
) C3

= a2 \

fl'--lJ' C2
= -a) £3'=-a*)

where a is neither zero nor unity, and if we assign arbitrary multipliers X and fi
different

from unity and different from one another, the canonical equations can be satisfied

only by
w+u/=0, z+ zf= 0,

which is not a lineo-linear transformation of the z, z' field into the w, w' field.

Other special examples of this exceptional class can easily be recognised. One

inclusive example is given by the relations

£2 —(3 _ £2 -£3 _ £2 £3'
—
£3(2

cA B

£3
—

£1 £3 £1
—

£1 £3

tu
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where X and p are different from one another and where (so far as present explanations

extend) neither X nor
/x

is equal to unity.

But it must be remembered, in taking these equations as the canonical form, that

definite (if special) identical modifications of the 2-plane and the w-plane have been made

simultaneously, and likewise for the z'-plane and the M^-plane. The result of these

modifications, in so far as they affect the original lineo-linear transformation, is left for

consideration as an exercise.

Invariantive Frontiers.

25. In the theory of automorphie functions of a single complex variable,

it proves important to have bounded regions of variation of the independent
variable which are changed by the homographic substitutions into regions that

are similarly bounded. Thus we have the customary period-parallelogram for

the doubly-periodic functions
; any parallelogram, under the transformations

w = z + &>!, w = z + &>2 ,

remains a parallelogram and—with an appropriate limitation that the real

part of <w2/g>i is not zero—the opposite sides of the parallelogram correspond
to one another. Similarly a circle or a straight line, under a transformation

or a set of transformations of the type

(cz + d) w = az + b,

remains a circle or sometimes becomes a straight line; and so we can

construct a curvilinear polygon, suited for the discussion of automorphie
functions. These boundary curves—straight lines and circles—are the

simplest which conserve their general character throughout the trans-

formations indicated
; they are the only algebraic curves of order not

higher than the second which have this property. They are not the only

algebraic curves, which have this property, when we proceed to orders higher
than the second

;
thus bicircular quartics are homographically transformed

into bicircular quartics.

For the appropriate division of the plane of the variable, when auto-

morphie functions of a single complex variable are under consideration so

as to secure an arrangement of polygons in each of which the complete
variation of the functions can take place, other limitations—such as relations

between constants so as to secure conterminous polygons
—are necessary.

They need not concern us for the moment. What is of importance is

the conservation of general character in the curve or, what is the same

thing, conservation of general character in the equation of the curve, under

the operation of a homographic transformation.

26. Corresponding questions arise in the theory of functions of two

complex variables. We have already seen that, when a z, z field is determined

by two relations, its frontier is represented by a couple of equations between

the real and the imaginary parts of both variables
;
and therefore what
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is desired, for our immediate illustration, is a determination of the general

character of a couple of equations which, giving the frontier of a z, z field,

are changed by the lineo-linear transformation into a couple of equations

which, giving the frontier of a corresponding w, w' field, are of the same general

character for the two fields. The invariance of form of such equations, at

any rate for the most simple cases, must therefore be investigated.

We shall limit ourselves to the determination of only the simplest of

those frontiers of a field of variation which are invariantive in character

under a lineo-linear translation. Also, we shall consider only quite general

transformations
; special and more obvious forms may occur for special trans-

formations, such as those contained in the simplest finite groups. Accordingly,

in the equations

w _ w _ 1

az + bz' + c
~

a'z + b'z' + c'

~
a"z + b"z' + c"

'

we resolve the variables into their real and imaginary parts, viz.

z = x + iy, z' = x + iy', w = u 4- iv, w =u' + iv'
\

and we require the simplest equations of the form

</> (x, y, x', y')
= 0, yjr (x, y, x', y') m 0,

which, under the foregoing transformation, become

3> (u, v, u', v')
= 0, "¥ (a, v, u', v')

= 0,

where 3> and ^ are of the same character, in degree and combinations of

the variables, as
</>

and
yfr. Moreover, the constants in the transformation

may be complex ;
so we write

a = a
t -\- ia2 ,

b = 6X + ib2 , c = ^ + ic2t

a = di + ia 2 ,
V = W + ib2 ,

c =
c,' + ic2 ,

a" = a/' + ia2", b" =W + ib2", c" = c" + ic2",

in order to have the real and imaginary parts. Lastly, let

iVj = a^x + b^x — a2y
— b2y[ + c1} Nt

« a2x + b2 x' + a^y + b^y' + c2 ,

AY = aix + b-[x
— a2'y

— b2 y' + c/, N2
= a2'x + b2'x + a/y + b/y' + c2 ,

N," = a
t
"x .+ hl'd - a2"y

- b2"y' + c,", N2

" = a2"x + 6/V + a/'y + W'y' + c2",

D = Nr+N2"*;

then the real equations of transformation are

Du = N,N," + N2N2",

Dv = N.W - JS\N2",

Pu^NjtNt'+NW,
Dv = N2'Nl

"-N1'N2".

f. 3
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Further, we have
D (u

2 + v2

)
= i^

2 + iV2
2
,

D (uu + vv) - NxNi + N2N2',

D (uv'
-

u'v) m N, n,; - N2N,',

D(u
2 + v'

2

)
= N;

2 + N;\

These equations express each of the quantities u, v, u', v'
,
u2 + v2

,
uu' + vv',

uv' — u'v, u'
% + v'

2

,
in the form of a rational fraction that has D for its de-

nominator. The denominator D and each of the numerators in the eight

fractions are linear combinations (with constant coefficients) of the quantities

1, x, y, x, y ',
x2 + y

2
,
xx' + yy', xy

—
x'y, of* + y'

2
.

The same form of result holds when we express x, y, x ', y in terms of

u, v, u, v
; any quantity, that is a linear combination of 1, x, y, x', y ',

x2 + y
2
,
xx' + yy', xy'

—
x'y, xn + y'

2

,
comes to be a rational fraction the

numerator of which is a linear combination of 1, u, v, u, v', u2 + v2
, uu'-\-vv',

uv' — u'v, un + v'
2

;
the denominator is a linear combination of the same

quantities, and is the same for all the fractions that represent the values

of x, y, x', y, x2 + y
2
,
xx' + yy', xy'

—
yx, x'

2
4- y'

2
. Consequently, any equation

A (x
2 +y2)+G (xx' + yy') + D (xy

-
yx') + B (x'

2 + y'
2

)

+ Ex + Fy+ Gx' +Hy' = K
is transformed into an equation

A' (u
2 + v2

) + C (uu + vv') + D' (uv
-

u'v) + B' (u'
2 + v'

2

)

+ E'u + F'v + G'u' + H'v' = K',

where all the quantities A, ..., K are constants, as also are A', ..., K',

each member of either set being expressible linearly and homogeneously
in terms of the members of the other set.

27. Thus the transformed equation is of the same general character,

concerning combinations and degree in the variables, as the original equation ;

and there is little difficulty in seeing that it is the equation of lowest degree

which has this general character of invariance. Further, two such simul-

taneous equations are transformed into two such simultaneous equations of

the same character.

This is the generalisation of the property that the equation of a circle

is transformed into the equation of another circle by a homographic sub-

stitution in a single complex variable.

Accordingly, when a z, z field having a frontier given by two equations

of the foregoing character is transformed by a lineo-linear transformation into

a w, w field, the frontier of the new field is given by two similar equations.

We define such a frontier as quadratic, when it is given by equations

of the second degree in the variables; and therefore we can sum up the
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whole investigation by declaring that a z, z field, which has a quadratic

frontievf^s transformed by a lineo-linear transformation into a w, w' field,

which also has a quadratic frontier.

28. One special inference can be made, which has its counterpart in

nomographic substitutions for a single variable, viz., when all the coefficients

in a lineo-linear transformation are real, the axes of real parts of the com-

plex variables in their respective planes are conserved. For when all the

constants are real, we have

vB = (a"b
-

ab") (xy'
-

x'y) + (ac"
-

a"c) y + (be"
-

b"c) y',

v'D = (a"b'
-
ab") {xy'

-
x'y) + (a'c"

-
a"c') y + (b'c"

-
b"c') y' ;

and therefore the configuration given by y = and y = becomes the

configuration given by v = and v = 0. The converse also holds, owing
to the lineo-linear character of the transformation.

These axes of real quantities in the planes of the complex variables

are, of course, an exceedingly special case of the general quadratic frontier,

which can be regarded as given by the two equations

A (x
2 + y

2
) + B, (x

2
4- y'

2

) + Gx (xx + yy) + A (xy
-

x'y)

+ Exx + Fxy + G,x + H,y = Ku
A 2 (x

2 + 2/

2

) + B2 O'
2 + y'

2

) + C2 (xx + yy') + D2 (xy'
-

x'y)

+ E2x + F2y + G2x + H2y = K2 .

Let z and z' be the conjugates of z and z respectively, so that

I = x — iy, z = x —
iy ;

then the general quadratic frontier can also be regarded as given by the

equations

A
x
zz + Bx

zz + d'zz + Diz'z + E^z + F^z + G^z + H^z = Klt

A 2zz + B2 z'z' + C2'zz' + D2 z'z + E2 z + F2 z + G2 z + H2 z =K2 ,

where A 1} B1} Kx ,
A 2 ,

B2 ,
K2 are real constants, while (7/ and D/, G2 and D./,

Ei and F
x ',
E2 and F2 , (2/ and JET/, G2 and H2> are pairs of conjugate

constants.

Manifestly any equation of this latest form is transformable by the

lineo-linear substitution into another equation of the same form.

29. Another mode of discussing the frontier of a z, z field, which

is represented by two equations that have an invariantive character under

a lineo-linear transformation, is provided by the generalisation of a special

mode of dealing with the same question for a single complex variable.

The general homographic substitution affecting a single complex variable

has the canonical form

w — a z — a
^ = & ^ »w -
/3 z- IS'

3—2
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where a and /3 are the double points of the substitution, and K is the

multiplier. Let

w = u + iv, z = x + iy, a = a + ia, /9 = b + ib', K = ice*
1

,

where u, v, x, y, a, a, b, b', k, k are real
;
then

u — a + i (v
- a) _ ^ x — a + i (y

— a)
u — b + i (v

—
b') x — b + i (y

—
b')

'

and therefore

_, (u -b)(v- a') -(u-a)(v- b')

{u-a){u-b) + (y-a'){v-b')

_ tan-l
(x -b)(y-a')-(x-a)(y-b') = ^
(x -a)(x-b) + (y- a) (y

-
b')

Hence the circle

(x -a)(x-b) + (y- a') (y -b') = m {(x -b)(y- a')
-

{x
-

a) (y
-

b')},

which passes through the double points (a, a')' and (b, b') of the substitution,

is transformed into the circle

(u - a)(u-b) + (v- a') (v
-

b')
= M {{u ~b)(v- a')

-
(u

-
a) (v

-
b')},

which also passes through those common points. The constants m and M
are connected by the relation

m — M =
(1 + mM) tan k.

At a common point, the two circles cut at an angle k, which depends only

upon the multiplier; thus when an arbitrary circle is taken through the

common points, it is transformed by the homographic substitution into

another circle through those points cutting it at an angle that depends only

upon the constants of the substitution.

This process admits of immediate generalisation to the case of two

complex variables. Let the lineo-linear transformation in two variables be

taken in its canonical form
;
and write

0t« + &** + 7l
=

If + i7i", ajw +&w + 7j
= LI + iLC,

a2 z + &2z + 72
= l2

' + il2", cc2w + fi2w' + y2
= L.2

' + iL2",

a3 z + fi3 z' + 73
= l3

' + ils", a3w + $3w' + y3
= L3 + iL3",

where £/, //', l2 ,
l2", l3 ,

l3

"
are real linear functions of x, y, x

, y' and Z/, L",

LI, L2", L3 ,
L3

"
are respectively the same real linear functions of u, v, u, v .

The three invariant centres are the places given by the equations

l2

' =
\

/3'=0

4" =

\

4'=o

// =

Z/'
=
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and they are also the same places given by what are effectively the same

equations
£/ -

j
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where g, h, 0, H are real constants while and H are positive, we have

P-p=(l+Pp)Ung,
Q~q=-(1 + Qq) tan h,

R-r = (l+Rr) tan (h
-

g).

It is easy to verify that, if either of the relations

P+Q + R = PQR, p + q + r=pqr,

is satisfied, the other also is satisfied in virtue of these last equations.

The quadratic frontier of the z, z field and the quadratic frontier of

the transformed w, w field both pass through the three invariant centres of

the lineo-linear transformation.

Ex. 1. In connection with the homographic substitution in a single variable

w —a_ . r z — a

(in the preceding notation), shew that the constant m in the equation of the circle

(x
-
a) (x

-
b) + (y

-
a') (y

- U) =wi {(x
-

b) (y
-

a!)
-
(x
-
a) (y

-
&')}

is the tangent of the angle at which the circle cuts the straight line joining the double

points of the substitution.

Prove also that, if 2d is the distance between the double points, r is the radius of the

foregoing circle, and R the radius of the circle into which it is transformed,

1 2 cos k 1 _ sin2 k

m 7k~ * f*
" ~W •

Ex. 2. Shew that the circle

(x-aY+ iy-by^ntiix-ay+iy-b')2
}

is transformed, by the homographic substitution, into the circle

(u
-
a)

2+ («
-

V)*
=N 2

{{u
-

a')
2+ (v

-
b')%

where
N=K7l.

Interpret the result geometrically.

Ex. 3. Construct a lineo-linear transformation which has 0, ; i, 1; t,
— i for its

invariant centres
;
and shew that there are quadratic frontiers of the 2, / field, which

pass through these invariant centres and are represented by any two of the three

equations
x2

+y'
i
+x">+ft-2(xx'+yy')-2(xy'-x'y)-2{y-y')

= a {x
2+y2 -

(x'
2
+y'

2
) + 2(x-x%

x2+y2+ x'2 +y'
2+ 2 (sxf +yy')

- 2 {xy'-xfy)
- 2 (x+x

1

)

=P{x*+f-(x'2
+y'

2)-2(y+y%

x*+y*- (x't+y'
2
)
= y(xy'- x'y),

provided the constants a, /3, y satisfy the relation

•y(a+ /3)
= 2a+ 2/3-y.
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Verify that the lineo-linear transformation changes these equations into equations in

w, v, u', v' of the same form but with different constants a, ff, y' satisfying the relation

y'(a'+p) = 2a' + 2p'-y'.

Shew that, at the invariant centre 0, 0, small variations dz and dz
1

cause small variations

dw and dw' such that

dw — dw' = -
(dz

—
dzf),A

dw+ dw'= i^ (dz+ dz') ;

A

and obtain the relations between the small variations at each of the other two invariant

centres.

Invariants and Covariants of quadratic frontiers.

30. Owing to the importance of the quadratic frontier, because it is

given by two equations of the second order that are invariantive in general
character under any lineo-linear transformation, we shall briefly consider

those combinations of the coefficients which are actually invariantive under all

such transformations. The proper discussion of the invariants and covariants,

which belong to two equations of any order that are invariantive in general
character under the transformations, requires an elaboration of analysis that

will take us far from the main purpose into what really is the full theory of

invariants and covariants. It will be sufficient to give the elements of that

theory as connected with the fundamental procedure. Moreover, we shall

take a general quadratic frontier and not merely the special class which

pass through the invariant centres of an assigned transformation; and we

require the quantities which are invariantive under all lineo-linear trans-

formations and not merely under one particular transformation. We further

shall only deal with such invariantive quantities as are algebraically

independent of one another.

31. There are several modes of procedure ;
in all of them, it is con-

venient to use homogeneous variables, as was done in establishing the

canonical form of the lineo-linear substitution. So we take

z z 1 w _ w' _ 1

x~x2 a?8

'

2/i 2/2 2/s'

Also, as the variables respectively conjugate to z, z, w, w have been intro-

duced, we shall require variables respectively conjugate to x1} x2 ,
x3> yly y2 , y3 ;

denoting these by x\, a^, xs , y1} y2 , y3 ,
we take

z £_1 w _w' _1
xx ~x2 ~x3 y!~ y2 y3

'
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For the present purpose, we take a z, z field determined by two relations

Q < 0, Q' < 0, where

Q = Ayxyx + Byxy2 + Gyx y3 + Dy2yx + Eytyt + Fy2y3

+ GysVi + Hy3y2 + Ky3y3 ,

Q' = A'yxyx + B'yt y2 + G'yxy3 + D'y2yx + E'y2y2 + F'y2y3

+ G'ViVx + H'y3y2 + K'y3ys ;

its quadratic frontier is given by the equations

Q = 0, Q' = 0,

which, on division by the non-vanishing quantity y3y3 , acquire the form of

our earlier equations. In Q the coefficients A, E, K are real, while B and D,

G and O, .Fand H, are conjugates in the stated pairs; and similarly for the

coefficients in Q'.

The method of procedure that we shall use is based upon an application

of Lie's theory of continuous groups to these quantities Q and Q ;
and the

application proves fairly simple in detail when we use umbral forms

simultaneously with the expressed forms. Accordingly, we introduce

umbral coefficients <rx ,
<r2 ,

<r3 , cr/, or2', cr3 ,
with their conjugates Wlt a2 ,

a3 ,

ax ,
a2 ,

a3 ;
we take

II = o-j y, + a2y2 + <r3y3
]

IT - ax yx + a2 y2 + <r3 y3

II - ffi^i+ t̂y$+ a3y3 J

'

n' = ox yx + a2 y2 + a3 y3

and we write

q - nn, Q' = irir.

We then both define and secure the umbral character of these new
coefficients by imposing the customary condition that the only combinations

of the umbral constants which have significance are those leading to the

expressed coefficients in the form

A = <rl 7r l ,
D = (T2al , G = <r3ax ,

B = a
x
a2 ,

E = a2a2 , H— a3a2 ,

G = (T
1
a3 ,

F = cr2a3> K = <r3 a3 ;

and likewise for the coefficients of Q'.

When the lineo-linear transformation, in the form

y-i
= axx + bx2 + cx3

y2
= a!xx + b'x2 + c'x3

y3
= a"#! + b"x2 + c"x3 1

and its conjugate, in the form

y 1
= ax1 +bx2 +cxs

y

y2
= a'x\ +b'x» + c'#3

 

y3
m a"x\ + b"x\ + c'%
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are applied to Q and Q', these become P and P' respectively, so that

we take

Q = P, Q' = P',

and then

P = A 1x1x\ + Bx
xxx2 + Gxxxx3 + Dxx2xx + Ex

x2x2 + Fx
x2x3

+ Gxx3xx + Hxx3x2 + Kxx3x3 ,

P' = A x xxxx + Bx
xxx2 + Cx'x x

x3 + Dx x2xx + Ex
x2x2 + Fl

'x2 x-i

+ Gx x3xx +Hx
x3x2 + Kx x3x3 .

We take

S = SXXX + S2X2 + SSX3 ,
S' = SX XX + s2 x2 + s3'x3 ,

S = sxxx + s2x\ + ssx3 ,
S' = sx

xx + s2'x2 + s3'x3 ,

where sx ,
s2 ,

s3 ,
sx ,

s2 ,
s3 are new umbral coefficients, while 5,, s2 ,

s3 ,
sx , s2 , s3

are their conjugates ;
and we write

P = SS, Q = 8'S\

regarding IT as transformed into S, IT into S, IT into S', and II' into S'.

Then the laws of relation between the umbral coefficients in II and S, and

in II and S, are

sx
= aa-L + a'a2 + a"a3 \

s2 = b<rx + b'<r2 + b"<r3 ,
, ,-«.,. .-, ,».,

j

s3
= cax + c'(r2 + c"(T3 J

s3 = cax + c'a2 + c"a3 J

and the same laws of relation hold between the umbral coefficients in II'

and S', and in II' and S'. Finally, in connection with our transformation,

we write

A =

Sj
= aax + a!a2 + a"a3 \

s2
=

60=! + b'~d2 + b"a3 \ ;

a ,
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transformation. Accordingly, for our immediate purpose, it is sufficient to

obtain an algebraically complete aggregate of integrals of the set of partial
differential equations which characterise the full tale of the infinitesimal

transformations in question. To obtain these, we take

a = 1 + €i, b = e2 ,

a' = e4 , V — 1 + e,

a" = e7 , b" = e„

a =l + e1} b —
e2 ,

a =e4 ,

a" = e7 , b"=e8 ,

c =e3

c' =€6

c" = l+ e9

c =e3

c' =e6

c"=l+e9

For the most general infinitesimal transformation, all the quantities e and e

are small, arbitrary, and independent of one another, subject to the condition

that en and en ,
for the nine values of n, are conjugate to one another.

The laws of relation among the umbral coefficients now are

Si
—

o"i
=

CjO-j + e4 cr2 + e7 cr3

s2
— o-2

=
eaO"! -f- e5a2 + esa3

s3
—

o"3
— €3a1 + e6 cr2 + e9 cr3

S1
— a

l
=

ejCTj + e4 o
:

2 + e7a3

s2
— a2

= e^ + e5a2 + e8a3

s3
— a3

=
e»5i + e6 a2 + e9a3

Consequently the infinitesimal variations of the coefficients in the equations
of the quadratic frontier are given by the equations

8A = A 1 -A = e1A + e4D + e7G + etA + e45 + e7 C )

SB =B1 -B =
€lB+ e4E+ e7H + e2A + e5B + e8G

8C = G1
- C = ejC + e4F + e7K + e3A + e6B + e9C

8D=D1 -D = e2A + e5D+€8G + e,D + e.E + e7F
8E = E

1 -E = e2B + e5E + e8H + e2D + e5E + e8F
SF=F1 -F = e2C + e5F+€8K + e3D + e6E + €9F

SG^G^G^e.A-h e6D + e9 G + e,G + e4H+€7K
8H=H,-H = e3B + e6E + e9H +e2G + e5H + e8K
8K = K1-K=e3C + e6F+e9K + e3 G + e6H+e9K

with a corresponding set of nine expressions for the infinitesimal variations

of the coefficients A', ..., K'.

The infinitesimal variations of the variables are given by the relations

Vx
— x\

= *\%\ + e2#2 + €3 oc3 \ y\
—

x>\
= ex«! + e2 ^2 + %k%

y2 x% = 6ix1 + c5x2 + €6x3 v
, y2

— x2
= €4xx + e5x2 -t- €6x3

J-
,

y%-x3
= e7xx + e8x2 + e9x3 j ys

— %s = h®i + e8«2 + e9x3
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and therefore, so far as small quantities up to the first order are concerned,

we have

*h
-

y,
- - e

1yl
- e2y2

- e3y3

j

x1 -y1
= - \yx

-
e./y2

- e3y3

x2
-

y%
= - e4yj

- €5y2
- e y3

j-

,
x2 -y2

= - eiy l
- esy2

- e6y3

%3
-
y3
= - e7y1

- eay2
- e9y3 J

x3
- y3

= - e7yx
- eBy2

- e9y,

And, lastly, we have

AA = 1 + ex + e5 + e9 + 2, 4- e5 + e9 .

34. Now any covariant or invariant satisfies the equation

<p \%i, X2 , X3 , £Cj , X2 ,
X3 ,

A. 1} ...
,
it lf ^lj ,

...
,
it

j )

= (^Ay (f>(y1 ,y2) y3,yl ,y2,ys ,A, ...,K,A', ...,K').

Substitute in this defining equation the values of Au ..., Klt A{, ...,-ffy,

yi, y*> y»> AA; write

dl
= AU +B

dB
+ G

dG
+A

'dA'
+R

dB'
+ C

'dC'

0-B--+E~ + F—+D'—+E'— +F'— )5 dD
+

dE dF
+

dD'
+

dE'
+

dF' r

^ = B
dB
+EM +HdH+B'M'

+ E
'dE'

+H
'dH'

~
d»= C

dC
+FW+KW+G

'dC'
+F

'dF'
+K

'dK'

e^ A w +B
d̂

G
fF

+ A,
W' + Rw +c '

d

d

r)

6>= A k+ Bm+ GrK+ A
m> + B'm>+ G'w^

03 = A dC
+DW +G

dK + A
'dC'

+ D
'dF'

+G
'dK'

e>
= D h+ EL + F

lc
+ D '

d

d

A>+
E'^ F'W

^ B L + E
in

+ H
!G

+ B'w + E'w + ff
'w>

y.
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D ^ + E
-dH
+FdK+D'dG>

+E
'dH'

+F'dK^
>,

$.-B w + E^ + H^ + B'W, + E'w+H'w,

J

e^ Gu + Hw +K dd+
G
'dA'

+ H'm + K
'dC'

l

07 = G
dA
+F

dD
+ K

dG
+C

dA'
+ F

dD'
+ K W

h

e»
= GW +HM + K

dF
+G

'dD'
+ H

'd¥>
+ K

'dF>
|

08 =
dB

+ F dE+KdB+G, dB'
+ F

'dE'
+K,

dH' J

and expand both sides of the equation in powers of the small quantities e

and e. Equating the coefficients of these small quantities on the two sides,

and denoting our covariantive function

</>(2/i, 9*>y*>¥i> V2,ys > A, ..., K, A', ..., K')

by <b, we have the partial differential equations

d<f> d<b
ei<f>-yi£ = p<i>>

e
*<p

~ y^T =
p<p

d(f> dcf>

Q^-y**- = P <P' ^0~2/2 rzr = /><£ V,
'dy

_ d<b
e»4>

-
y*

fy3

=
p$> 09<p-ys

j=r
=

p<p

d<t> d<b

^-^r 0,
>+-y>%r°

$W>-yj|-0

8* _
d</>^-2/3^ = 0, e6cb-y,^ =

dy

d<b deb

*-*£-* *#-*gj7*
30 _ 30

^-y»^= '

>+-y*d$r°
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as equations satisfied by the function
cf>. Moreover, by Lie's theory, any

function
<f>,

which satisfies all these equations, is a covariant (or invariant)

of the required type.

35. Having regard to the fact that ultimately we are dealing with

quadratic frontiers and with transformations between w, w' and z, z, we

shall consider only those integral functions
</>,

which are homogeneous (say

of order m) in y1} y2 , y3 and homogeneous (also then of order m) in ylt y2 , y3 .

We also shall consider only such functions
<p

as are homogeneous (say of

degree n) in the coefficients A, ..., K and homogeneous (say of degree n)
in the coefficients A', ..., K'. Then, from the first set of equations and by
means of Euler's theorem on homogeneous functions, we have

n + n' — m =
3/>.

It follows that every integral invariant of a quadratic frontier has its degree
in the coefficients of the boundary a multiple of 3.

When the index p is taken as equal to the foregoing value, and when we

note the equality between the indices of A and A in the relation which

defines the covariants, the first six equations can be replaced by the four

d^-y^
=
e^-y^

= e^- y^
U-v^ye^-y^ye^-y^

and we then retain the other twelve equations, so that we have a set of

sixteen partial equations of the first order.

It is easy to verify that the conditions of co-existence of these sixteen

equations are satisfied, either identically or in virtue of the equations in

the set. Hence the set of equations constitutes a complete Jacobian system
of partial equations of the first order. The possible arguments in any
solution

<f>
are twenty-four in number, viz., the nine coefficients A, ..., K,

the nine coefficients A', ..., K', and the six variables ylt y2 , ys , ylt yit ys ;

consequently, by the customary theory of such systems*, the number of

algebraically independent integrals is eight, the excess of the number of

possible arguments over the number of equations in the complete system.

36. After the limitations that have been imposed, every integral <f>
of

the system is homogeneous of degree m in yly yit y3 ,
and also homogeneous

of degree m in f„ ^, ^,. Let it be represented by

* See my Theory of Differential Equations, vol. v, chap. iii.
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then, in order that it may satisfy the equations, we must have the relations

(among others)

#4 • Vp,q,p',q' ~\P +1) Up,q,p'+l,q'
~

7  Up^^'rf
—

(q +1) UPiq+hp'

jq
> =

"7- Up,q,p,q'
~

\Q +" -U Up,q,p',q'+l
=

.

By the continued use of these equations, all the coefficients UPtqtP>

)q
- can be

obtained when once t/0,0,0,0 (say £7")
is known; and therefore, as usual in the

theory of homogeneous forms, the whole covariant can be regarded as known
when its leading term Uyf

n
yl

~m
is known.

Again, and just as in the ordinary theory, the leading coefficient U of the

covariant satisfies the equations

e2 u=o, e3u=o, e6 u=o, e8u=o,

0.2U=O, 3 U=O, 6 U=O, SU=O,

d5U-09U = O, SU-09U = O.

These ten equations also are a complete Jacobian system of partial diffe-

rential equations of the first order. Each integral can involve the eighteen

possible arguments, constituted by the constants in the two equations of the

quadratic frontier; and therefore the system of equations possesses eight

algebraically independent integrals which are the leading coefficients of the

eight covariants constituting the algebraically complete set of integrals of

the full system of equations. It follows that, in this method of proceeding,

we have to obtain eight algebraically independent integrals of the preceding

set of ten equations in the second complete Jacobian system.

37. The actual process of solving the equations is the customary process

that applies to complete Jacobian systems that are linear and homogeneous.
The algebra required in the manipulation is long and tedious for the present

set of equations ;
so the results will merely be stated, especially as they can

be obtained by another method (or combination of methods) applicable to

the equations of the quadratic frontier. The summary of the final integra-

tion of the ten equations, which are to possess eight algebraically independent

integrals, is as follows :
—

Every integral of the system is expressible algebraically in terms

of the eight independent integrals A, A', I, J, J', I', T, T, where / is

the invariant of Q, I' the similar invariant of Q' ,

J^AfA ,
J' =XA^„

(the summation being extended over all the coefficients of Q and Q'),
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B,
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is an invariant of Q; the same function for aQ + /3Q', where a and /3 are

arbitrary parameters, also is an invariant of the system. Let

aA+/3A', olB + 0ff ,
olC + /36

1 ' = a?I + a?/3J+ a^J' + 0*1' ;

olD + &D' ,
aE + 0E' , aF + 0F'

aG+/3G', aH + /3H', aK + /3K'

then /, J, J', I' are four invariants, independent of one another, and there-

fore suitable for the aggregate of the four algebraically independent invariants.

They manifestly agree with the four invariants in the earlier aggregate of

invariants and covariants.

Ex. Prove that the complete system for a single equation Q=0 is composed of Q and /.

39. The detailed consideration of the invariantive forms will not be con-

sidered further. What has actually been done should suffice to shew the

march of a general method of proceeding for the particular problem.

But one warning must be given if this general method is to be applied to

a wider problem, viz. the determination of all the covariantive concomitants

of all kinds whatever that are to be associated with any single form or with

any couple of forms that are integral and homogeneous in yu y2 , y3 ,
and also

integral and homogeneous of the same order in y1} y2 , y3 ,
where we still assume

the lineo-linear transformation for yl} y2 , y3 and its conjugate for ylt y2 , y3

as the transformations under which the concomitants are to be invariantive.

For this problem, it is necessary to introduce variables contragredient to the

variables x1> x2 ,
x3 and yly y2 , y3 , according to the customary law of variation in

the theory of forms
;
that is, if we denote these further variables by £, f2 , £3 ,

Vi> V2> Vs> and their conjugates, they are subject to the lineo-linear trans-

formations

£i
= avi + d*h + a"Vt 1 f i

= &h + &Va + &'%
)

f3
= bVl + b'y2 + b" 773 >

, |a« &fc + 1% + V% \ .

£3
=

O/i + c'r)2 + c"v3 * Is
=

cr}i + c'rj2 + c"rj3 J

It will be noticed (as is to be expected) that the umbral coefficients, used to

express a given homogeneous form symbolically, are themselves contragredient
to the variables. Manifestly we have

#i??i + 2/2*72 + y3v3
=

#i£i + «*& + ^3^3.

It need hardly be pointed out that, while the complex variables x1} x2) xs

correspond to the point-variables in the ordinary theory of ternary forms, the

complex variables £x , £2 , £3 correspond to the line-variables in that theory.

In order to obtain the most general concomitant of any kind, we should

apply the preceding method to a function of the type

<Msa> 3/2, y3 , y~i, yt , y3 > %, vi> Vs> Vi> v*> m, A, •••)>

P. 4:
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involving all the variables and the coefficients of any or all of the initial

given system of forms whose aggregate of concomitants is wanted. There is

plenty of room and opportunity for research
;
but the investigations would

take us into the wider pure algebra of the theory of homogeneous forms, and

they will not be pursued in these lectures.

Ex. 1 . Let U and V be any two covariants that belong to a form or to a system of

homogeneous forms
;
and let

r =— — -— — x

l

~dy2 dy3 dy3 dy2

r=— — - — 9-

r =— d -~~ —
1
—

3J/2 ap3 dy3 dy2

- dUdV^dUdV

=._dudr dUdr
3

~dy1 dy2 dy2 dyt
/

Prove that Yly Y2 ,
Y3 are cogredient with ylt y2 , y3 ,

and that Yx ,
Y2 ,

Y3 are cogredient
with yt , y2 , y3 ;

and shew that

U{YU y2 ,
r3 , Ti, 7„ T3) and r(r1} r2 ,

y3 ,
7lt 72 ,

y3)

are covariants of the system.

In particular, when U and V are the two initial quantities Q and Q' belonging to

a quadratic frontier, determine the two covariants which are thus constructed.

Ex. 2. Shew that when a quartic frontier, generally covariantive under a lineo-linear

transformation, is given by equations Q= and Q'= 0, where symbolically

§=n2n2 and £'=n'2 n' 2
,

the algebraically complete set of invariants and pure covariants belonging to the system

consists, in addition to Q and Q', of sixty functions.

40. One other matter is left for investigation outside the range of

these lectures. We have already dealt with the canonical form to which the

expression of a lineo-linear transformation can be reduced. Also we have seen

that there are quadratic frontiers, represented by the two equations of lowest

degree, which keep a general invariantive character under such a trans-

formation. It remains to consider what is the simplest canonical form to

which two simultaneous equations representing such a quadratic frontier

can be reduced, where there no longer is a question of invariance under a

single transformation only*. This more general problem has some analogy

with the problem of reducing to canonical forms the equations of two conies.

* The simplest examples of forms, invariant under a single given transformation, have

already been given ; they are the equations of the frontier which passes through the three

invariant centres of the transformation.
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In that solved problem, certain invariants of the system are necessarily

conserved ; in this propounded problem, the four invariants of the system of

two equations, which already have been obtained, must also be conserved.

One appropriate form is suggested almost at once by the known result in

the case of two conies referred to their common self-conjugate triangle. It is

natural to enquire whether two forms

P = Axjcx + Bx
x
x2 + Gxxx3 + Dx2xx + Ex2x2 + Fx2x3 + Gx3xx + Hx3x.2 + Kx3x3 ,

P'= A'xxxx +B'x1x2 + G'xxx3 +D'x2x1 +E'x2x2 +F'x2x3 -+- G'x3xx + H'x3x2 + K'x3x3 ,

can simultaneously, by homogeneous linear transformation of the variables,

be changed to forms
P = X

X
X X + X2X2 + X3X3 ,

P' - A"XXJ, + B"X2X2 + G"X3X 3 ,

'

where no two of the three quantities A", B"
,
G" are equal to one another,

and no one of them is equal to unity. With these last restrictions, we have

I + aJ + a2J" + a3/' - (1 + aA") (1 + aB") (1 + aC"),

for arbitrary values of a
; consequently, the three invariants J/1, J'/I, I'/I

(which are absolute invariants) are independent of one another, and no one

of them vanishes. Thus the general condition as regards conservation of

invariants is satisfied.

Now all the quantities A, E, K, A', E', K' are real
;
hence a requirement

that they shall respectively acquire the values 1, 1, 1, A", B"
,
G"

, where

A", B"
,
G" are real, imposes six conditions. Also B and D, B' and D'

,

G and G, C and G' ,
F and H, F' and H'

,
are (in each combination) conjugate

constants; hence a requirement that all these coefficients shall vanish

imposes twelve conditions. In order, therefore, that the suggested canonical

forms shall be possible, eighteen conditions of the specified kind must be

satisfied.

Suppose, then, that the variables- are transformed by the relations

#j= 6XX + <f>X2 + ^rX3 ,

x2
= &Xx + (/>'

X2 + -ty'X3 ,

x3
= 6"X 1 + cj>"X 2 + ^"X3 ,

where the complex constants are at our disposal. Let

V =

then

4—2

e
, </> ,
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80 that the values of A"
,
B"

,
C" are given by means of the quantities

Jjl, J'II, I'll, three real quantities. Also, as each of the nine arbitrary

constants 6, ..., y\r"
is complex, we have effectively eighteen constants at our

disposal, formally sufficient to satisfy the eighteen conditions which take the

form of linear equations.

It therefore may be inferred that a couple of general forms P and P' can

be transformed so that they acquire forms of the suggested type.

Periodic transformations.

41. These results, as regards lineo-linear transformations, are general.

Simple forms occur when the transformations are periodic, that is, are such

that after a finite number of repetitions in succession we return to the initial

variables; and these provide the generalisation of finite groups of homo-

graphic transformations in a single variable.

The requirement of periodicity will impose conditions upon the unequal

multipliers X and fi in the first type (§ 22).

The second type cannot be periodic unless cr vanishes. But if <r does

vanish, the type can be periodic when an appropriate condition is imposed

upon the repeated multiplier X.

The third type cannot be periodic unless all the constants p, a, t vanish.

But if all these constants vanish, we have merely the identical transformation

at once. There is no modification of the variables, and consequently there is

no question of periodicity.

When therefore we deal with periodic substitutions, we have to consider

only the first type of transformation which has unequal multipliers X and ft,

and a limited form of the second type which has a repeated multiplier X.

42. A multiplier is the quotient of two roots of the characteristic

equation; hence the equation, which is satisfied by a multiplier, is the

eliminant of

s -A, s + A26>-A = 0,

t
3 0*- A,t

2&2 + A2t0 - A = 0.

The eliminant is of degree nine in t; but there is a factor (t
—

l)
s
,
which is

irrelevant to the present issue and must therefore be rejected. One of the

simplest ways of obtaining the residual equation is to proceed by the method

of Bezout and Cayley for constructing the eliminant
;

it leads to the result

1+t + t*
, A,(l-M) ,

A„

A3*(l + 0, A(l + <+P)+ 4tA«t. A,A(l+0

A,*» , A,i(l+t) , A(l+«-M2

)

= 0,
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which, when the determinant is expanded, becomes

A 2

(^
6 +l) + (3A

2 -A 1A 2A)(^+0
+ (6A2 - 5A X

A2A +AM + A2
3

) (t
4 + t

2
)

+ (7A
2 - 6AjA2A - A X

2A 2
2 + 2A

3

3A + 2A 2
3
) t

3 = 0.

This is a reciprocal equation, as is to be expected from the mode of occurrence

of the multipliers in the canonical form of the transformation.

For the first type of transformation, the six roots of this multiplier

equation are

1 1 X /*.

A,
fJb fJU

A

and the solution of the equation effectively involves the two quantities

AiA a and A2A
-

s, which are homogeneous (of order zero) in the coefficients

of the original transformation.

For the second type, the six roots of the multiplier equation are

X, X,
-

,

—
, 1, 1

;

and we must have

27A2 - 18AAA - AX
2A2

2 + 4AX

3A + 4A2
3 = 0,

being the discriminant condition for the equality of two roots of the charac-

teristic equation.

When the lineo-linear transformation is periodic of order n, then

\n = 1, fx
n = 1

;

and n must be the lowest integer for which both the conditions are satisfied.

Thus, for the first type,

A. = e2>m-M
fj,

— einis/n}

where r and s are unequal positive integers, greater than zero, less than n,

and such that r, s, n have no common factor other than unity. Then

A x
=

3 (1 + e*
wir'n + e

2

™*'"),

^ = Q 2
fg2jnV/n

i

g2irisln
i

g2iri (r+«)/n|

A = 3
3 e2,r'<r

-
t
-s > /'1

;

and the conditions for periodicity of order n are

^ 2 f J i

g2wir/n _i_ g27rt8/»i)—
2 __ A

fg27rir/« _i_ g27m/n
i

g2ni(r+s)/n)
—1

A 3 (1 + e2lrirln + g
2,rl'*/»l—3 — £±q—2jrt(r+«)/»_

The conditions thus imposed upon r and a require that n should be greater than 2
;

and so lineo-linear transformations, of which the characteristic equation has three unequal

roots, cannot possess quadratic periodicity.
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As a matter of mere algebra, it is easy to verify that the original transformation

to v/ 1

az+ bz' + c a'z+b'z'+ c' a"z+b"z'+c"

is of quadratic periodicity in the two cases settled by the relations

V — 1 _ c' _ a'

b c a — \

a" = b" _c"-l l-cfi-a'b

a—\ b'

~
c c(a-l)

6'+ l _ c'_ a'

b
™

c
_
a + l

a" _ b" _ c" + 1 _ 1 - a2 — a'6 I

a+l~ fe
7

<T~ c(a+l) J

In each case four parametric constants, which may be taken to be a, b, c, a', are left

unrestricted by the limitation of quadratic periodicity.

For the second type of transformation, the characteristic equation of

which has a double root and a simple root, the discriminant condition has to

be satisfied by all forms. If the transformation is to be periodic, another

condition (the vanishing of the quantity <r) must also be satisfied whatever

the order
;
and then the order of periodicity is the lowest value of X such

that

\n = l,

so that we can take

X = e2wirln
,

where r is any integer between and n, which is prime to n.

Ex. 1. The simplest example of such a transformation is

w= Xz, v/=\z'.

The z plane can be divided into n triangular wedges, bounded by lines through the origin
inclined at successive angles 2ir/n to one another ; and similarly for the z' plane. The
whole z, zf configuration is then transformed into itself by a double rotation of each plane

through an angle 2irrjn about an axis through the origins perpendicular to the planes ;
and

the 2, / field, made up of two such wedges in the z and / planes, is transformed into

the w, w' field, made up of two similar wedges in the w and to' planes.

Ex. 2. When the original transformation is linear and has the form

w— az+bz'+ c, w'= a'z+b'z'+c'i

a factor 6—1 can be dropped from the characteristic equation which then becomes

62 -(a+ b')0+ab' -a'b=0.

Let the roots of this equation be v and v' ;
the canonical form of the substitution is

aw+ fiw'+ y =v (az + fiz'+ y),

a'w+/3W+ -y'= v' (az+fiz'+ y),
where

aa + a'P=va , ba +&'£ =p,8 ,
ca + c'/3

=
(i/

-
l)y ,

aa!+ a'ff = v'a', ba'+ b'ff- v'p, ca'+ c'ff
=

(
v - 1 ) y.
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Ex. 3. Find a canonical form of the periodic transformation

w*J2=z + z',
w' J2 = z-z'.

Ex. 4. Prove that all transformations of the linear type, which have quadratic

periodicity, belong either to the form

or to the form
w=— z + c, w'= - z' + (/,

,
I- a? , l+a

w= az+ bz +c, w =—i
— z-az =— c,
o o

where a, b, c, c' are arbitrary constants.

Ex. 5. Prove that all cubic linear transformations have either the form

w= 6z+ c, v/= ffz! + c';

or the form w=az + bz' + c, with either

v/= -±(a?+ a02 + 6) z- (a+ 82
)
z' -~(a- 6),

or

w'= - r(a
2+a+ \) z-(a+ l) z' + c',

where and & are imaginary cube-roots of unity, and a, b, c, c' are unrestricted constants.

Ex. 6. Shew that, if

w w

then
az+bz' + c a'z+ b'z' + c' a"z+ b"z' + dn

z i 1

Aw+ A'w'+ A" Bw+ B'w'+ B" Cw'+C'w'+ C,n

where A, A', A", ..., C, C, C" are the respective minors of a, a', a", ..., c, c', c" in the non-

vanishing determinant A, where

A=

and prove that

a
,

b
,

c

a'
,

b'
,

c'

a", b", c"

(<fM+w+<ryjfej)- t

Prove that the roots of the characteristic equation for this inverse transformation,

expressing z and «" in terms of w and w, viz.

A-cf>, A'
,

A" =0,

B
, B'-(f>, B"

C
,

C
, C"-cf)

are connected with the roots of the characteristic equation of the original transformation

by the relation

and verify that the invariant centres for the inverse transformation are the same as those

for the original transformation.

Ex. 7. Obtain for a lineo-linear transformation, between two sets of n variables,

results corresponding to those in the preceding example.
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Ex. 8. Prove that the invariant centre ft and ft' of the general lineo-linear trans-

formation is given by the equations

6 = Cx 1

A"+ c6
1 B"+d6x C"-{a + b')6 x + 6?'

the denominator in the third fraction being distinct from zero. Prove also that, for the

quantities <n : ft : ylt

,6+Afc +»-* {r _ (a+ y)tfi+v .

.fifc. 9. Shew that, when n is a prime number, all the periodic substitutions

w=az+bz'+c ~\

v/=-
a
-r±(a-esniln

)z-(a-l-e*
niln)S-

C

i
(a-<f"

i>n
)

J

for «= 2, ..., n—1, are powers of the same periodic substitution for *= 1.

Shew that all the substitutions

w=az+ c, w'= a'z'+ c\

where a and a are primitive ?ith roots of unity, are periodic.

Do the two preceding classes contain all the purely linear substitutions which are

periodic ?



CHAPTER III

Uniform Analytic Functions

43. We now proceed to the more immediate and direct consideration of

the properties and the characteristics of functions of two independent complex

variables, beginning with the simplest fundamental propositions. Not a few

of these can be considered as well known
; they are included for the sake of

completeness, and also for the sake of reference. Some among them are

expressed in forms that appear more comprehensive than the customary-

enunciations. Others of them appear to be new, such as those which deal

with the characteristic relations and the properties of two functions of a

couple of variables considered simultaneously ;
and these, as being more novel

than the others, are expounded at fuller length (Chaps, vii and vin).

Though the exposition is restricted to the case when there are only two

independent complex variables, it should be noted that many of the theorems

belong, mutatis mutandis, also to functions of n independent variables. For

others, however, further ideas are needed before a corresponding extension

can similarly be effected.

We begin with definitions and explanations of the more frequent terms

adopted, many of which are obvious extensions of the corresponding usages

for functions of one complex variable.

The whole range of the variables z and z is often called the field of

variation. The extent of the field sometimes depends upon the properties of

the functions concerned
; otherwise, it implies the four-fold range of variation

between — oo and + go .

A restricted portion of a field of variation is called a domain, the range of

a domain being usually indicated by analytical relations. Thus we may have

the domain of a place a, a', given by relations

j

z — a
|

^ r,
|

z' — a
j

^ r'
;

we may have a domain given by relations

<j>(x-a,y-/3,x -
a', y' -/3')^o, ^(x-a,y- /3, x - a, y'

-
/3') < c',

where a=a + i@, a' = a + ifi', the equations being such as to secure a finite
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range of values of z and a finite range of values of /. When r and r (or c

and c', in the alternative case) are small, the domain of a and a' is sometimes

called the vicinity, or the immediate vicinity, of the place a, a'.

In these definitions we substitute ,—, for \z
—

a\ when a is at infinity, and

7-7-7 for i z' — a! I when a' is at infinity.
I* I

44. A function of z and z'
', say w =f(z, z'), is said to be uniform, when

every assigned pair of values of z'amd z gives one (and only one) value

of w. Through familiarity with properties subsequently established, the

notion that z and / may attain their assigned values in any manner

whatever sometimes comes to be associated with the definition
;
but the

notion is not part of the definition.

The function w is said to be multiform, when every assigned pair of

values of z and z gives a finite number of values of w, the finite number

being the same for all z, z places where the function exists. Sometimes it

is convenient to specify the number in the definition
;
when there are m values,

and no more than m values, w is sometimes called w-valued.

A function w may have an infinite number of values for given values of

z and z . Among such functions, each class can be specified by its own

general property. Thus one simple class of this kind arises from integrals
of functions that have additive periods.

Just as with uniform functions, so with multiform and other functions,

familiarity with properties subsequently established leads to the notion that

a specification of the path or range by which z and z' attain their values

will lead to the acquisition of some definite one among the m values
; again,

the notion is not part of the definition.

Even in this matter of the description of the range of z and of z, care must be

exercised
;

it may become necessary to take account, not merely of the actual range of z

and of z
1

,
but also of the mode of description of those actual ranges. Consider, for

example* the function

w= (z
2
-z'+lfi.

Take z= and /= as the initial place; and consider the branch of w which has the

value +1 at that place.

We make z vary from to +1 by describing (in the direction indicated by the arrow)
a simple curve OAB which, when combined with the axis OB of real quantities, encloses

the point \i and does not enclose the point i.

* The example was suggested to me by Prof. W. Burnside. Another example, viz.

ic = (z-z' + l)2,

is given by Sauvage, Ann. de Marseille, t. xiv (1904), section 1, a particular path being specified.

Obviously any number of special examples of the same type can be constructed.
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We make d vary from to + 1 by describing the straight line 0'C in the direction

indicated by the arrow; the point £>' on that line is given by z"= \.

Consider two different descriptions of these paths.

In the first description, keep z
1

at 0', while z describes the whole path OAB ;
and then

keep z at B, while z' describes its whole path O'C. For this description, the final value

of w is manifestly + 1.

D' +1
C

In the second description, keep z at 0, while z' describes the part O'D' of its whole

path; then keep z' at D', thus making w= (z
2+ |)£ f°r that value of z', and now make

z describe its whole path OAB. When z arrives at B by this path, the value of w is

—
(f)£, that is, when z is at B and z' at D' by this description of paths, the value of

(z
2 — 2'+ 1)4 has become —(f)*. Now keep z at B, and let z' describe D'C, the remainder

of its path ;
the final value of w is manifestly

— 1.

It thus appears in the case of the special function that, even when the range for each

variable is perfectly precise, the final value can depend upon the mode of description of

the precise ranges. The matter belongs, in its simplest form, to the theory of algebraic

functions.

45. A function f(z, z') is said to be continuous if, when the real and

imaginary parts of z and of z' are substituted and the function is expressed in

its real and imaginary parts u + vi, both the functions u and v of w, y, x', y'

are continuous.

Let the function f(z, z) be uniform and continuous, everywhere within

a field of z, z variation. It is said to be analytic, when it possesses

derivatives of all orders with regard to both variables

df(z, z) df(z, z')

dz
'

dz'
' '

which are uniform and continuous everywhere within that field
;
or what is

equivalent, it is said to be analytic iff(z, z) is an analytic function of z when

any arbitrary fixed value is assigned to z and is also an analytic function of

z when any arbitrary fixed value is assigned to z. But it need hardly be

pointed out that, while f(z, z) is—under this definition—expressible as a

power-series of z alone having functions of the parametric z for
coefficients,

and also as a power-series of z' alone having functions of the parametric z

for coefficients, an expansion in powers of z and z simultaneously is a

matter of proof, to be considered later.
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It is a known proposition that an absolutely converging double series can

be rearranged in any manner and can be summed in any order, the sum

being the same in all arrangements and for all orders of summation.

Suppose, then, that the double power-series

%ZcmM (z-a)
m
(z'-a')

m
',

where m and m' are positive whole numbers (including zero), and where the

coefficients cm
,
m' are constants, converges absolutely at every place within some

domain of the place a, a'. The series, within the domain, defines a function ;

and the function is said to be regular, or to behave regularly, everywhere
in the domain of the place a, a'. The domain must not be infinitesimal in

extent
;
and the place a, a' is said to be an ordinary place for the function.

When it is desired to indicate specifically that the double series contains

only positive powers of z — a and z' — a' in accordance with the definition, we

call the series integral, or whole, or holomorphic ;
and sometimes the function

is called integral or holomorphic within the domain of the place a, a'.

When the power-series is finite in both sequences of indices, the function

is a polynomial in z and z. When it is infinite in either sequence or in both

sequences, the function represented is usually called transcendental, unless it

can be represented by algebraic forms.

When the function is transcendental, the question arises as to the

range of the domain over which the power-series converges. When the

domain is limited, a question arises as to whether the power-series,

representing the function within the domain, can be continued analytically

beyond the limits of the domain.

Perhaps the simplest example of a multiform function w of z and z' occurs,

when the three variables are connected by an algebraic equation

A (w, z, z')
= 0,

where A is a polynomial in each of its arguments. As already explained, it

sometimes proves desirable in this connection to consider two multiform

functions w and w'
,
defined by algebraic equations

C (w, w, z, z') =0, D (w, w', z, z')
= 0,

where C and D are polynomial in each of their arguments. In this event, the

ordinary processes of elimination enable us to substitute equations

A {w, z, z')
= 0, B {w, z, z) = 0,

for the equations G = 0, D =
;
but care must be exercised to secure that the

separate roots of A = and of B = must be grouped so as to give the

simultaneous roots of = 0, D=0.
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For example, we shall have (Chap, vi) to consider an expression

R (w, w\ z, z
1

)22

(C,
D\ '

where R (w, vf, z, z
1

)
denotes an integral polynomial in w and u/, and where the double

finite summation extends over the simultaneous roots of (7=0, D=0. In the method

adopted for its evaluation, we are led to introduce terms which arise from combinations

of the roots of A = 0, B = 0, that do not provide simultaneous roots of C=Q, D= 0.

In the first case, to the function w: and, in the second case, to the

functions w and w' : the epithet algebraic is assigned. Manifestly, among
the four variables w, w , z, z, any two can be described as algebraic functions

of the other two, unless (in limited cases) elimination should lead to a single

relation between two variables alone.

In this initial stage, it is not necessary to state the definitions of terms

pole, accidental (or non-essential) singularity, essential singularity. New and

modified definitions are required, because functions of two variables possess

properties which have no simple analogue in the properties of functions of

a single variable. These definitions will be given later (§§ 57, 58), when

the properties are under actual consideration. As will be seen, a dis-

crimination between functions of two variables and functions of more than

two variables can be made, so as to give a classification proper to functions

of two variables. We may, however, mention in passing that, in the vicinity

of any non-essential singularity a, a', a uniform analytic function is expressible

in a form

Q{z-a,z'-a')
P (z

—
a, z' — a')

'

where Q and P are functions, which are regular in a domain of a and a'.

Such a function is sometimes called meromorphic in the vicinity of the

place a, a.

The simplest example of a meromorphic function occurs when both Q and

P are polynomial functions of their arguments ;
in that case, the function is

called rational.

Some properties of regular functions.

46. Consider functions that are regular everywhere in some finite domain

of an assigned place a, a. By writing z — a = £ or -
, according as

|

a
|

is finite

or infinite, and by writing z - a — £ or
p, , according as \a'\ is finite or is

infinite, we can take the assigned place as 0, 0, without any loss of generality.
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We then have a theorem* connected with the definition of the analytic

property, as follows :
—

When a function f{z, z'),for values of\z\t.r and of\z
J

\^.r', is a regular

function of z everywhere within the assigned z-circle for every value of z within

its assigned circle, and also is a regular function of z everywhere within the

assigned z -circle for every value of z within its assigned circle, it is a regular

function of z and z' everywhere within the indicated field of z, z variation.

Let the function f(z, z) be represented by a series

f(z,z')= 2 <7m(*V,
TO=

as is possible under the first hypothesis. If M '

denote the greatest value of

|
f(z, z') |

for any assigned value z
'

of z within the ^'-circle, and for all the

values of z within its circle, our series gives

m =

and then by a well-known theoremf ,
we have

M'
\9mM\<~^.

Consequently, if M denote the greatest value of \f(z, z
1

) |

within the

whole z, z field considered, we have

m: < M,
and therefore

i / 'VI
M

\9m{Zo)\<
7
^,

for all values of in, for any value of z
'

such that
|

z
'

j

^ r. Consequently, for

all values of z in question, we have

Now f(z, z') is a regular function of z for every value of z for which

|

z
|
< r ; hence g (z'), being the value off(z, z') when z = 0, and

gm {z!)
=~-

ml

for all values of m, are regular functions of z . Accordingly, we can write

00

0m \Z )
== 2* C

in>nZ i

n=0

* The theorem is true under even less restricted conditions. See two papers by Osgood,
Math. Ann., t. Hi (1899), pp. 462—464, ib. t

t. liii (1900), pp. 461—464
;
and a paper by Hartogs,

ib., t. lxii (1906), pp. 1—88.

t Theory of Functions, § 22.
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where the series represents a regular function of z'
;
and as

| gm (z)
| throughout

the whole range of variation of z' is less than M/r
m

,
we have, again by the

theorem already quoted,

i i K l
I

cm,n\ < rm- r'n'

On these results, consider the double series

F(z,z') = I i cm>n zm z'
n

;

m=0 m=0

if it converges absolutely, we can take it in the form

i!

that is,

a
l= (.TO

=
m, n f

2 gm (z')z
m

,

»=0

and so we shall have

F(z,z')=f(z,z
f

)

for the field of variation within which F(z, z) converges absolutely. But

we have just proved that

M
Cm. n I

<
,

and therefore we have

\F{z,z')\
=

00 00

** —'

^-"m,n
* "

00 00

< 2 2 |cm>n j \z\
m

\z'
m=0 ra=0

00 00 M
2. r* \Z\ \Z**

y.rtir'n II II
w = » = ' '

M

1-W 1-ti
r 1 r

for all values of
j

2
|

< r and all values of
| z'\ < r .

This result establishes the absolute convergence of F (z, z); and so we

have

/(Z,Z')= % 2 Cmtn Z™z'
n

,

where the double series converges absolutely in a field
|

z
|

< k < r, \z \^k' <r ,

while k and k' are not infinitesimal.

Consequently the function f(z, z'), under the postulated conditions, is a

regular function of the variables z and z.
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47. Now let f(z, z) be a regular function of z and z everywhere in the

domain

[

z — a
|

< r,
|

/ — a'
|
< r',

and within this domain let M be the greatest value of \f(z, z) j. Then, if the

power-series for f(z, z') is

w = w =

we have

and also

shewing that

1
{
&«*/{*, *')\Cm

'
n

m\n\\ d*»dz*
\ z=a,t-a>'

M
Cm,n\ < rmr

>

\d
m+n

f(zt z')\ , ,
M

Another expression for cm,
n can be obtained by a simple extension of

Cauchy's well-known integral-theorems for a single variable. Denoting by

g{z) a function that is uniform, continuous, and analytic, within a range

|

z — a
|

^ r, we have

\d
n
g(z)\ n± [ g(z) ,

\ dzn \z=a 2Tri] (z-a)
n+i *'

for all values of n, the integrals being taken positively round any simple
closed curve which lies entirely within the region and encloses the point a.

The extension indicated can be established in exactly the same way as these

theorems just quoted; the analysis and the reasoning are so similar to those

for the simple case that they can be stated very briefly.

For our function f(z, z) which is uniform, continuous, and analytic, and

therefore regular, everywhere in the domain

|

z — a
j
< r, \z'

—
a'\^r',

we have

1 dzm ]z.a 2Tri](z-a)
m+iaZ '

the integrals being taken positively round any simple closed curve which lies

entirely within the region bounded by \z
—
a\ = r and encloses the point a,

and holding for every value of z' for which f{z, z) is defined. Again, /(a, z)
[d
m
f(z z'))

and \
—

Sj-gj
—

> , owing to the character of f(z, z') within the z, z' field

of variation, are regular functions of z' throughout the ^'-region bounded by
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|

/ _ a'
|

= r'
; hence, by a repeated application of Cauchy's integral-theorems,

we have
. ,. 1 ff(a, z') , ,

f(a, «) = -—. K-3 T dz
,

~dn „, , 1 n\ ( f(a,z) — (1Z

JfW 27riJ(z'-aT+
l

'

the integrals being taken positively round any simple closed curve which lies

entirely within the region bounded by \z —a'\ = r' and encloses the point a'.

The variations of z and z' are independent of one another, as also are the

integrations in the two planes of the variables
; combining the results, we

have

^ 7

{Zirifjj (z
-
a)(z

— a) •

.,...;.•.

- i a ^ z,) dzd--
^))(z-a){z'-a!y

ZaZ >

(d"+»f(z, Q ) _ _ mini ([ f(z,iT) , ,

'

1 dz™dz'n J^w
"

4tt2 JJlz-ar^iz'-a')^
'

the integrals being taken round simple closed curves in the .z-plane and the

/-plane, the ^-curve lying entirely within the region j

z — a
|

= r and enclosing
the point a, and the /-curve lying entirely within the region |

z' — a \.=*r' and

enclosing the point a'.
'

.

We thus have expressions, in the form of double contour integrals, for the

value off(z, z) and of every derivative off(z, z') at the place a, a.

Again, let M denote the greatest value of \f(z, z') |

for places within the

whole z, z' domain of variation represented by j

z — a
|

^ r,
|

z' — a'
\

^ r'
;
then

at every place on the double contour integral we have

\f{z,z')\<M.

Proceeding exactly as in the case of a single variable, we can shew that

A*, ')

and therefore

J/i
-r.dzdz' ^4<tt

2M,
(z-a)(z'-a')

\f(a,a')\<M,

which is merely a statement that the value of \f(z, z) |

at a particular place
in the field is not greater than its greatest value in the field

;
and we can

also shew that

and therefore
]}{z-aT+\z

r
-a'r^

aZaZ
4tt2

which is the former result.
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Another method of stating these results is as follows. Let z, z' be any

place within the field of variation where f(z, z) is regular ;
in the .z-plane,

take any simple closed curve lying within the field and enclosing the point z,

say a circle of centre z, and let t denote the complex variable of a current

point on this curve
;
and in the /-plane, take any simple closed curve lying

within the field and enclosing the point z', say a circle of centre z, and let t'

denote the complex variable of a current point on this curve. Then

&*+*/(*. *)_ mlnlff f(t, t')
dtdt

,

dz™dz' n 4tt2
JJ (t

-
z)
m+1

(f
-

z')
n+l

Ex. Prove that, for the foregoing function f(z, z') and with the foregoing curves of

integration, the value of each of the integrals

for all positive integer values (including zero) of m and n, is zero.

48. We shall come later (Chap, vi) to a fuller discussion of double

integrals involving complex variables
; meanwhile, it will be sufficient to state

that integrals of the foregoing type, in which the integrations with regard to

z and to z are completely independent of one another, belong to a very

special and limited class of double integrals. They may even be regarded as

merely iterated simple integrals ;
and many of their properties can be deduced

as mere extensions of corresponding properties for simple integrals.

Thus we know that the value of the integral

taken positively round the whole boundary of any region within which f(z)

is uniform, continuous, and analytic, is zero, even if the region is multiply

connected
;
and it follows, as a corollary, that the value of the integral taken

round any simple closed curve is unaltered if the curve is deformed without

crossing any point where f(z) ceases to have any one of the three specified

qualities. This result can at once be generalised, merely through a double

use of the result, into the following theorems :
—

I. Let F (z, z') denote a function which, over a limited region in the

,2-plane with a complete boundary unaffected by variations of z
',
and over a

limited region in the /-plane with a complete boundary unaffected by variations

of z, is uniform, continuous, and analytic. Then* zero is the value of the

integral

-'L\\ F{z>
z

'

)dzdz'>

* The conHtant -
1/4*-

2 is inserted here merely for the purpose of formal expression.
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taken positively round all parts of the complete boundary* of the ^-region,

and positively over all parts of the complete boundary of the /-region, when
these boundaries are entirely unrelated to each other.

II. For the same type of function, and with the same type of range of

integration, the value of an integral

is unaltered when the ^-boundary and the /-boundary are deformed separately

or together in any continuous manner which, while leaving them unrelated,

does not cross a place where the function F (z, z) does not possess each of

the three specified qualities.

It is to be noted that the theorems are exclusive and not inclusive.

The function F (z, z) might cease to possess the property of being continuous

(thus it might be z~-z'~2 in a region round 0, 0), without causing the integral

-^jjF (z>z')dzd*'

to be different from zero as in the first theorem, and without preventing the

deformation contemplated in the second theorem. For the moment, we are

concerned with the theorems as enunciated.

49. As an illustration of the use of all the preceding theorems, we shall

establish the following proposition :
—

Let f(z, z') denote a function which is regular everywhere in a z, z' field

represented by the relations

|
s

j
< r, \z'\^r'\

and let t and t' be current variables in that field. Then the magnitude

1 [[ f(t, t') \Z
m+1 Z n+1 Zrn+iz'n+

i^

when the double integral is taken positively round a simple closed curve

enclosing the z-origin and the point z in the z-plane, and positively round

a simple closed curve enclosing the z''-origin a.nd the point z in the z -plane, is

a polynomial P (z, z) of order m in z and of order n in z, such that

{<r+°P{z,z') \ = [d*+°f(z, z) \

\ dzrdz'* j,=0) /=o 1 dzW Jz=0l2'=o

for the values r = 0, ..., m and s = 0, ..., n in all simultaneous combinations,

the descriptions of the two curves being unrelated.

* That is, with the customary convention as to the positive direction of any portion of the

boundary when the included area is multiply connected ;
see my Theory of Functions, § 2.

5—2
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The result can also be stated in the form

and can easily be established from this form by inserting the values of

1
1 — ( -

J f
"*"

(
* *~

* J
and "U

~
( ^ ) f m * — ? )

anc* U8mg the preceding

theorems as they stand.

The derivation of the result from the first form requires a different use of

the theorems : it is set out as an exercise in integrals, as follows.

As our function f(z, z') is everywhere regular within the specified field,

the only places where the subject of integration ceases to be regular within

the selected domain are

(i) at t = z, t' = z
; (ii) at t = z, t' =

;

(iii) at t - 0, t »• j
and (iv) at t = 0, t' = 0.

After the preceding theorems, it is sufficient to take the double integral

positively along small curves round these places.

For a double integral, taken positively round small circles, one in the

2-plane round the point z and one in the /-plane round the point z
,
so that

we should have
t-z = pe

0i
,

t' -z' = p'e
6

'

1

,

where p and p are small, while 6 and 6' vary independently each from to

27r, the value of the integral

4tt2
JJ
J ( ' }

\ t
m+1 +

t'
n+l

t
M+1

t'
n+1

J (t-z)(t'-z')

is the value of

pn+i
"*"

ffn+i

~
pn+iffn+i j

when t = z, t' = /; that is, the value of the integral for the double small

contour round z and / is/ (2, z).

For a double integral, taken positively round small circles, one in the

.z-plane round the point z, and one in the /-plane round the origin, we have

t — z = pe
ei

, t' = p'e^'\

where p and p are small. We then expand (t'
—

z')~
l in ascending powers

of t'lz
1

,
and obtain the subject of integration in the form

fit, t') \z
m+* z'n+1 zm+1 z'n+1

\ v t'"

t-z \p+l
+

f"+l

~
t
m+1

t'
n+1

) s=q z
7*1

'

Let integration be effected first along the path in the ^-plane ;
on the

completion of the path, the • value of the integral is
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that is,

This integral is to be taken along a small closed path in the /-plane round

£' = 0, and/(V, t') is regular; hence the value of the integral is zero. Thus

the double integral, taken round the place t = z, if = 0, contributes zero to

the value of the general double integral.

Similarly the double integral, taken round the place t = 0, t' = z
,
contributes

zero to the value of the general double integral.

For a double integral, taken positively round small circles, one in the

.z-plane round the ^-origin and one in the /-plane round the /-origin, we

have
t = pe*\ if =

p'e*'*,

where p and p are small. We then expand {(t
—

z) (t'
—

/)}
_1 in ascending

powers of t/z and t'jz, the expansion being

2 2 t*t'
vz-i>- 1z-v- 1

;

and so the subject of integration becomes

/(*,
{

The value of the part

taken round the contour as indicated, is zero (Ex., § 47), because there are no

negative powers of t'. Similarly the value of the part

is zero. Again, the value of the integral

dtdt'

&///<' ° tr+1 t'
8+l

is

(
1 d*+°f(t,t')\

\r\s\ dPdif' )t-,r-'

for all integers r = 0, 1, ..., and all integers 5 = 0, 1, When either of the

integers r and s is negative, and when both of the integers are negative, the

value of the integral is zero. Hence, taken positively along the small contour

that encloses the ^-origin in the ^-plane and the /-origin in the /-plane, we
have

1

i(
—

iir'lJU-
/(M0 *-V~.

4?r2 J J (t-z) (if
- z) t,n+1 t'

n+1

zrz'° \d
r+

*f(t, t')
m n__ £ ^

r=o *=o Lr ! s ! I WW Jt-o.f-0.
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We thus have the full value of the integral

JL [[ /(*> O
f-

gW+1
. ^ _ zm+1 z'n+1

] ,

4tt2 JJ (t
-

z) {?
-

z') \t
m+l +

t'
n+l p*+if»H ]

dtdt
'

taken positively round our contour in the 2-plane enclosing the ^-origin and
the point z, and our contour in the /-plane enclosing the /-origin and the

point z'; it is

f (e z>\- I i \^l\d^lIMl\ 1

Consequently our magnitude

yV ' '
4,ir\U (t-z)(t'-z')\t

m+1
't

t'
n+> t^H'^}

is equal to the polynomial

and when this polynomial is denoted by P (z, z), we manifestly have

The proposition is thus established.

The result, in either form, shews that it is possible to construct an ex-

pression the value of which shall be a polynomial approximation to the value

of a function /(.?, z') in a field where it is a regular function of its arguments.

Ex. Evaluate the integral

***})*

f(t,t') <» + i^+i
dtdt.

with the same suppositions as to the function / (z, z') and the range of integration.

50. In connection with the function f(z, z), which is regular within

the field
|

z — a
|

^ r and
|

/ — a
|

< r', and for which \f(z, z) |

is never greater
than M for places in the field, consider a function <p (z, z') defined by the

relation

6(Z, Z) = 1 r

Evidently <p (z, z') can be expanded in a double power-series in z — a and

z' — a', which converges absolutely for values of z and z' such that

|

z — a
j

^ p < r, \z — a \t.p <r ;

and it has the form



50] FUNCTIONS 71

Hence

dm+n <f>(z,z') _m\n\ s ^ (p + m) ! (g + n) i (*
- dy

>

(z
-

a')* ,

ds^dJ"
~

rm r'
n

p=0q=o ml p\ n\ q\ rP ¥* '

and therefore

(y»+"^(2:, /) ) _ mini

{ dzm dz'
n

\ z=a>e
-=a,Z r^ '

for all values of m and w. It therefore follows that

!/(a, a')| < $ (a, a'),

\
dm+nf(z, z') ) ^ (dm+n

<f> (z, z'))

J dz™dz'n \z=a,z'=a'
^

j te™8/» }*=«,*-«'"

The function
<£ (^, /), related in this manner to a function f(z, z) from

some characteristics of which it is constructed, is called a dominant function.

Manifestly the result can be extended to any number of independent complex
variables by a precisely similar process.

These dominant functions prove to be of great importance in various

regions of analysis ; thus, for example, they are of general use in the present

methods of establishing many theorems concerning the actual existence of

integrals of whole classes of differential equations, particularly in connection

with certain broad external assigned conditions under which those integrals

exist.

A dominant function
(f> (z, z') is not necessarily unique. In the same

circumstances as before, consider a function
ijr (z, z') defined by the relation

yfr (z, z') = -, >TV z — a z —a
j.
— —

-,

r r

which also is expressible as a double power-series in z — a and z'—a', con-

verging absolutely for the region
- ' +- ,—-<&<1. Proceeding as

for
(f> (z, z), we find, for all integer values of m and n,

\
dm+n y\r{z,z')\ m (m + n) \

\ dzm dz,n \ s=a,z'=a' rm r'
n

Now (ra + n) ! > m ! n !
;
hence

dm+n
y]r (z, z'j)

[d
m+n

<f> (z, z')

dzm dz'
n L-a^w* \dzm dz'

n
z — a, z =a

\
dm+n f(z,z')}

so that
-v/r (z, z') also is a dominant function *.

Poincare uses the term majorante.
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51. During the foregoing investigations, particular series in suitable

circumstances have been declared to converge; and it will be noted that, in

such series as have occurred, the convergence has been absolute. We do not

propose to consider, in detail, the general theory of convergence of double

series. When convergence is absolute, no other kind of convergence need be

considered specially ;
and such series, as will be discussed in these lectures,

will be discussed with a view to absolute convergence. What is wanted here

is a knowledge of some non-infinitesimal region of variation of the variables

in which the respective series converge absolutely*.

In this regard, one warning must be given. Both in what precedes and
in what will follow, a region of variation, in which a double series converges

absolutely, is usually defined by a couple of relations of the form
|

z
\ ^ p < r,

! z'\ ^. p < r', where p, p, r, r' are positive constants, while r and r' are not

infinitesimal. It must not therefore be assumed—and it is not the case in

fact—that the whole region, within which a double series converges absolutely,
must be determined by two (and only two) relations of the preceding, form ;

thus the whole region of absolute convergence of the double series, that

represents the dominant function yjr (z, z') of § 50, is determined by the

single relation

\z
—

a\ \z'
—

a'\ ,

as there stated f.

To repeat the substance of what has just been said, what is mainly
wanted at the initial stage is a knowledge of some non-infinitesimal region
of absolute convergence of the series, not necessarily a knowledge (however

desirable) of the whole region of convergence.

52. Three simple propositions relating to uniform analytic functions can

be established at once.

I. A uniform analytic function must acquire infinite values somewhere
in the whole z, z' field, unless it reduces to a mere constant.

Suppose that a uniform analytic function f{z, z) does not acquire infinite

values anywhere in the z, z' field. In that event, there must be some

greatest value for \f(z, z) |

in the field, say M, where M is finite
;
and no

matter how the field is extended, this value of M for \f{z, z') |

cannot be

exceeded.

Accordingly, we take a domain in the field, determined by the relations

\z\<R, \z'\<R';

* For the theory of absolute convergence of double series, readers may consult Bromwich,
An introduction to the theory of infinite series.

t Other examples of the same type are given by Bromwich, p. 504 of his treatise just quoted.
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and, under the hypothesis, we can make R and R' as large as we please. We
still shall have, over this domain, M as the greatest value of \f(z, z')\.

In the domain thus chosen, let f(z, z') be represented by a double power-

series, as in 1 47 ;
and let the series be

V V n pin Jn~- —i Vm
t
n * a .

nt=0 n=0

By our preceding results, we have

Cm. n < Rm R'n
'

for all values of m and of n, independently of one another. We can increase

the domain of the field to any extent; so that, by increasing R and R'

sufficiently, we can make
\r 1 =
| WTO, TO

|

— v >

for all values of m and n except simultaneous zero values. Hence, under

the hypothesis that f{z, z') does not acquire infinite values, every term

in the series vanishes except the first, which is a constant
;
the proposition

therefore is established.

Note. It is obvious that the place, where a function acquires an infinite

value, does not lie within the domain over which the function is regular nor

(to anticipate the explanations connected with the continuation of series

representing regular functions) does such a place lie within the region of

continuity of the function. Every such place lies on the boundary of the

region of continuity of the function.

Thus consider the function

z + z

For all places other than z = 0, z = 0, which lie in the field and are given by
z = z

,
the function is infinite

;
such places do not lie within the region of

continuity of the function. At the place z = 0, z' = 0, the value of the

function is indeterminate
;
near z = 0, z = 0, say such that

z — reei
,

z = r'e
ffx

,

where r and r are small, we have

z + z'\ (r* + r
2 + 2rr cos (6

-
6')}

$

(r
2 + r'

2 - 2rr cos (6
-

&))

which as r and / tend to zero independently of one another can be made to

acquire any value. Thus at z = 0, / = 0, the function is not regular ;
the

place does not lie within the region of continuity of the function.

II. If two functions, both of them regular within one and the same

domain, acquire the same value at every place within any region of that

domain, they acquire the same value at every place within the whole

domain, the region (like the domain) being one of four-fold variation.
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Firstly, suppose that the origin of the domain lies within the region
considered

;
and round that origin, take a smaller domain given by |

z
\

< k < p
and

|

z'
|

^ k' < p, lying entirely within the region.

Let the two regular functions bef(z, z') and g(z, z'); and suppose that

the double power-series representing them in the whole domain are

f{z,z')= 2 2 cm<n z™z\
m=0 »=0

g{z, z')= 2 2 km
,
n zm z'

n
,

m-0 »=0

both series converging absolutely within that domain. Then the difference

of the functions f(z, z')
—
g (z, zf) is represented by the absolutely converging

double series
•^ V ( n _ h \ „m Jn
** ** \Wn,n "'wi, n) & * •

OT = w =

Now this function is everywhere zero within the smaller domain, so that its

(greatest) modulus M never differs from zero
; accordingly we have

Wn, n i^rn, n \

<• m in

P P
= 0,

so that

^«i, n
=

Km, n >

for all values of m and n. Consequently, the coefficients in the power-series

representing the functions are the same
;
and so the two functions are the

same within the whole domain.

Secondly, when the origin of the domain does not lie within the region

considered, we take an origin within that region ;
and proceed as before.

The coefficients in the power-series, representing the two functions in the

smaller domain round the new origin, are the same. There, these coefficients

determine the functions uniquely ;
and so, when the process of analytical

continuation (§ 56) is adopted in exactly the same way for the two functions

so as to cover the whole of the original domain in which they are regular, the

two functions remain everywhere the same within the whole of that domain.

III. If f(z, z') is a regular function of z and / for all finite values of

the variables, and if there exists a finite positive quantity M such that, no

matter how
|

z
|

and
|

z
\

are increased, there exist integers m and n for which

I
zm z'n

then f(z, z') is a polynomial in z and z, of degree m in z and of degree n

in /, when m and n are the smallest integers satisfying the condition.

Let/(£, z') be expressed as a double power-series

f(z,z')= 2 2
cp, ,***'»;

p=0q=0

<M,
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i i [d*+*f(z,j)

-p\q!\
^p,q

4tt2 jj

dz*> dz'i
•

/(*, o
JJP+1 J/0+1

z = 0, z' =

where the double integral is taken round any simple closed contour (say
a circle) enclosing the origin in the .z-plane, and any simple closed contour

(also say a circle) enclosing the origin in the /-plane. Let the former circle

be of radius R and the latter of radius R', so that we can take

t = Reei
, t'^R'e6

'
1

;

then

/(*,

tPt'v

Now no matter how
j

t
|

and
1

1'
|
increase, we have

fit,

dd dO'.

and therefore

Consequently

fit, 1)

tvt'Q

t
m

t'
r'

M

<M,

M
K

ip-m tfq-n

1 M
Jp,q i

4tt 2 Rp-

M
R

Rp-m ft'q-n

7^n\\dddd'

Rp-m R'v-n
'

By hypothesis, we can increase R and R' without limit
; hence, for all values

of p that are greater than m, or for all values of q that are greater than n,

and for both sets of values simultaneously, we have

i

cp, q !

= 0>

and therefore

^p,q
= 0,

for those values. Accordingly, when we remove from the series those terms

which have vanishing coefficients, the modified expression for/ (z, z') becomes

m n

2 2 Cp y qZPz'l,
p=0q=0

shewing that/(^, z') is a polynomial in z and /, of degree m in z alone and

of degree n in / alone.

53. It follows, from the first investigation in §52, that a uniform analytic

function must acquire infinite values. In particular, a general polynomial in

z and z
1

acquires infinite values, when
|

z
|

is infinite while \z' \

is not zero,

or when \z'\ is infinite while
|

z
I
is not zero, or when both

|

z
|

and
|

z
|

are

infinite, though in the last event conditions may have to be satisfied*.

* For example, the function 1 + z + z' does not become infinite when z
\

is infinite and
|

z'
|

is

infinite unless ].z + .z'| also is infinite.
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The questions then arise :
—Must a uniform analytic function of z and z

acquire a zero value within the whole field of variation ? And, what is a

subsidiary question governed by the answer to this preceding question, must
a uniform analytic function of z and z' acquire any assigned value within the

whole field of variation ? Naturally, in considering the questions, we assume

that we are dealing with functions that do not reduce to a mere constant.

First, a brief proof will justify the answer that a uniform analytic function

of z and / must acquire a zero value somewhere within the whole field of

variation. Let f(z, z') be a function of z and z', which is uniform; con-

sequently, if

the function
cf> (z, z) is uniform. Further, <f> (z, zf) is continuous, unless f(z, z)

has zero values. Let f{z, z') be analytic ;
then

</> (z, z) also is analytic.

Thus, assuming that f(z, z) is a regular function, that has no zero within

the whole field of variation, its reciprocal <f> (z, z) is uniform, continuous, and

analytic throughout the domain where f{z, z') is regular. Consequently,

<f> (z, z') is a function that is regular throughout the whole field.

Now we have seen that a uniform analytic function must acquire an infinite

value or infinite values somewhere in the field of variation of the variables ;

hence our function
<f) (z, z') must acquire an infinite value somewhere, that

is, the regular function f(z, z') must acquire a zero value somewhere and

therefore the hypothesis, that / {z, z') has no zero, is untenable. But as was

the case with the place where the function acquires an infinite value, so that

the function is not regular there and the place does not belong to the region

of continuity of the function, so it may happen that a place where a function

acquires a zero value does not belong to the region of continuity of the function.

Thus the function e? + * is regular over a domain given by finite values of
|

z
|

and finite

values of
|

z
\

;
it is not regular for infinite values of

|

z
|

alone and of I z
1

|
alone, because it

cannot be expanded in powers of - and -
. When z is real, infinite, and negative, while

z z

|«'| is finite, the function e*
+ *'= Q; and so for other places. No one of these places

belongs to the region of continuity of the regular function e*
+

*'.

The corresponding question, as to the acquisition of an assigned value o,

would similarly be answered in the affirmative after a consideration of the

function f(z, z) — a which, under the foregoing argument, would have to

acquire a zero value
;
so f{z, z) would have to acquire an assigned value.

The difficulty, that the zero of the function perhaps will not occur in the

domain of regularity, may be illustrated by returning to the corresponding

question in the theory of functions of a single complex variable
; indeed, it

would be raised directly, for example, by taking z = 0, in the case of a

regular function.
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54. It is a result, in Weierstrass's theory of uniform functions of a

single variable*, that, in the vicinity z of an essential singularity of a uni-

form function f{z), there always is at least one point within a circle

z — zQ |

=
e, where e is any assigned small quantity, such that

j/0)-a|<e,
where a is any assigned quantity. But the specified point does not need

to be distinct from the point z .

Picardj- discriminates between essential singularities according as the

value a is, or is not, actually acquired at a point inside the circle
|

z — z
|

= e

which is not its centre, the centre being the essential singularity. As

examples, illustrating the discrimination, he adduces the two functions

i j—
r

 *
sin-

z

considering both of them in the vicinity of their essential singularity at

the ^-origin.

The function} 1 /sin f
—

J
has any number of poles in the immediate

vicinity of the origin; they are given by z= j— , where k is any integer

sufficiently large to keep z within the suggested vicinity. The function

does not vanish for any value of z (other than z = 0) within that vicinity %.

But consider a range of z near z = along the positive part of the axis

of y, so that we can write

z — ir,

where the small positive quantity r is at our disposal ;
we have

1 2»

. i
"

71 I
'

sin e
r_ e

r
 z

The denominator can be made as large as we please by making r as small

as we please ; my own view is that, when r is made zero, so that z

approaches the origin along the axis of y and falls into the origin, the

function in question does actually acquire the value zero at the origin.

But the value is acquired only at the essential singularity z = 0, and at

no point in the vicinity of z = 0, other than the centre itself.

Similarly for the other function.

*
Weierstrass, Ges. Werke, t. ii, p. 124

; see my Theory of Functions, § 33.

+ His valuable, and far-reaching, ideas were expounded in some memoirs to which reference

is given in his Traite d'Analyse, t. ii, ch. v. See also, for further investigations, Borel, Lecons

sur les fonctions entieres, (1900), ch. i; ib., ch. v; ib., Note i.

$ Picard, I. c, p. 126, p. 128; in the second sentence, I have added the words "other than

2 = 0."
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The difference between Picard's statement and my own is obvious.

Picard considers the vicinity of z = 0, and does not include the actual

point z = 0, not regarding it as a point where the value or a value of

the function can be stated. I do include the actual point z = and do

regard it as a point where, if the function nowhere else acquires some

assigned value, it must there acquire that assigned value; and that assigned
value can then be stated as a value that can be acquired there. But the

point z = is actually merged in the essential singularity.

And, it need hardly be added, all the valuable investigations* of Picard,

Hadamard, Borel, and others, are unaffected by these considerations. The
discrimination is between functions, that acquire an assigned value in the

vicinity of the essential singularity at a point which does not coincide with

the singularity, and functions that acquire the assigned value only at the

essential singularity.

The whole discussion thus suggests, even for functions of a single variable,

the idea of places where our function, regular within a domain, ceases

(at the boundary of the domain, or elsewhere) to maintain its character

of regularity. To the consideration of these possibilities we now proceed.

55. First, however, in connection with the earlier remarks, a reference

to a theorem by Picard must be made.

It may happen that an integral function f{z) cannot acquire a finite

value a for a finite value of z, so that the equation f{z) = a then has no

finite root
;

thus e* = has no finite root. Picard shews that an integral

function f{z), which for finite values of z cannot acquire a finite value a and

cannot acquire another distinct finite value b, reduces to a constantf.

The similar question would then arise for an integral function G (z, z') of

two variables. Suppose that there are no values of z and z
',
which are

simultaneously finite, such that G (z, z) can acquire a special finite value a
;

and similarly suppose that there are no values, also restricted to be simul-

taneously finite, such that G(z, z) can acquire another special finite value b,

where b is different from a. To z assign a finite value c
;

as G (z, z) is

an integral function of z and z, being regular for finite values of z and z,

then G (z, c) is an integral function of z. By the suggested postulate about

G (z, z'), the integral function G (z, c') cannot acquire for finite values of z

either the finite value a or the different finite value b
; accordingly, by

Picard's theorem, G (z, c) can only be a constant, which must necessarily

be a finite constant because \G(z, z')\ is finite for finite values of z. As
this holds for any assigned value c of *', it follows that G (z, z) is constant

* See the lectures by Borel, already cited.

f Picard's proof depends upon the theory of modular functions (Traiti d'Analyse, t. ii, 2nded.,

pp. 251—254). Borel, {Legons sur les j'onctions entibres, Note i, pp. 103— 106) gives a direct

proof of this theorem without the intervention of any theory of special functions.
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for each assigned finite value of /
;
but the constant values of G (z, z)

are not necessarily one and the same. Now G (z, z') is an integral function

of /, because it is an integral function of z and z
;
hence all the requirements

will so far be met by taking

G(z,z')=g(z'),

an integral function of / alone.

Again, by the suggested postulate about G (z, z), there is no finite value

of *'—simultaneously with a finite value of z—for which G (z, z) can acquire
the finite value a or the different finite value b

;
and therefore there is no

finite value of z' for which the integral function g(z') can acquire the finite

value a or the different finite value b. By a repeated application of Picard's

theorem, it follows that g (z) can only be a constant, and therefore G (z, z)
can only be a constant.

It therefore follows that, if an integral function G (z, z') cannot, for any

finite value of z and any finite value of z taken simultaneously, acquire
a finite value a ; and also cannot, for any finite value of z and any finite

value of z' taken simultaneously, acquire a finite value b different from a ;

then G(z, z) is a constant.

The result is manifestly the merest generalisation of Picard's theorem.

It is specially important to note that the limitation about the non-acquisition
of the finite values a and 6 is confined to finite values of z and of/. A variable

function may be unable to acquire a finite value a for finite values of z and

z, but could acquire that value for infinite values of z and finite values of z
,

or for finite values of z and infinite values of z
',
or for infinite values of z and

of z'
;
such is the case, for the value zero, of the variable integral function

eP(z, *')

where P (z, z) is a polynomial in z and z.

Analytical Continuation.

56. Now let us consider a function f(z, z')f
which is regular everywhere

in a domain round a place a, a determined by

\z
—

a\^.r, \z —a'\^r ;

it can be represented by a double series of powers of z — a and z —
a', the

series converging absolutely for values of z and z' such that

|

z — a
|

^ p < r, \z
— a' \^p <r'.

Denoting the series by P (z
—

a, z — a), we have

f(z,z') = P(z-a, z'-a')

for values of z and z thus defined. The values of the constant coefficients

in the double series are determined by the values, at the place a, a
,
of the

derivatives of the function f(z, z) of the appropriate orders.
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Such a series* may be capable of the process called analytical continuation

outside a given domain within which the series represents a regular function.

Let z = b and z' = b' be any place within the domain
;
at this place b, b', the

values of the function f(z, z') and of its derivatives are unique and finite,

and they can depend upon the origin a, a' of the domain.

Because the place b, V lies within the domain of a, a, where f(z, z') is

regular, there is a definite domain, actually lying within the domain of a, a',

appertaining to the place b, b', and providing a region over which f(z, z')

is regular ;
this domain is given by the relations

\z-b\^r-\b-a\, \z' -b'\^r -V -a'\.

Let the double power-series be constructed to represent f(z, z') within this

definite domain. The coefficients in this new double series are determined

by the values, at the place b, b', of the function f(z, z) and of its derivatives
;

and these may depend for their expression upon the initial double series

P (z
—

a, z' — a'). Denote this new double series by

Q (z
—

b, z — b'
; a, a').

Within the specified domain round b, b', which belongs also to the domain

round a, a
,
we have two power-series representing one and the same

regular function f(z, z) ; accordingly, (II, § 52) for all places z, z within that

specified limited domain, the new series Q provides no expression for the

function f(z, z') which, in significance, is additional to the expression for the

function f(z, z) provided by the old series P.

But now consider the range of absolute convergence of the double series

Q, which will be the general domain of the place b, b'. It certainly

includes the preceding specified domain, which lies within the general

domain of the place a, a in connection with the absolute convergence of

the series P. It may extend beyond the boundary of that preceding

specified domain
;

if it does, then it includes places z, z' not included

within the domain of a, a. For all such places, the series Q converges

absolutely and therefore has a unique significance whereas, for them, the

series P has no significance.

Accordingly, when some of the general domain of b, b' as connected

with the absolute convergence of the series Q lies outside the general domain

of a, a' as connected with the absolute convergence of the series P, our new

series Q provides an expression for a regular function of z and z which is not

provided by the old series P, while over the region common to the two general

domains the series Q represents the regular function which is represented by

* For many of the investigations which are given at this stage, reference can be made to the

memoir by Weierstrass,
"
Einige auf die Theorie der analytischen Functiouen rnehrerer Verau-

derlichen sich beziehende Satze," Ges. Werke, t. ii, pp. 135— 188. A doctor's thesis by Dautheville,

"Etude sur les series entieres par rapport a plusieurs variables imaginaires independantes,
''

(lauthier-Villars (1885), may also be consulted.



56] REGULAR FUNCTION 81

the series P over the domain of a, a. Using the term adopted for the

corresponding result in the similar event for functions of a single variable,

we say that (in the supposed circumstance of the more extensive character

of the general domain of b, b') the series Q is a continuation, sometimes an

analytical continuation, of the series P
;
and we call each of the two series

an element of the regular function which they help to represent.

The process may be repeated by selecting a new place c, c, lying
within the general domain of b, b' and not within the general domain of

a, a'. When a definite domain of c, c' is constructed lying within the

domain of b, b', and when we form a new double series for the function

represented by Q (z
—

b, z' — b'
; a, a') by taking the value of the function

and of its derivatives at c, c' as determining the coefficients for this new

series, we can denote this series by

R(z — c, z — c'
\ a, a'

; b, b').

Within the specified domain round c, c, the new series R represents the

same regular function as is represented by Q within that domain.

Again, now consider the range of convergence of the double series R,
which range will be the general domain of c, c. It certainly includes the

specified domain round c, c'. It may extend beyond the boundary of that

specified domain
;
and then it includes places z, z' not included in the general

domain of 6, b' and, when c, c' is properly chosen, not included in the general

domain of a, a. For all such places z, z\ within the general domain of c, d
and outside the general domains of b, b' and of a, a', the series R provides

a regular representation of the function which is not provided either by the

series Q or by the series P, while over the part of the domain of c, c' that

belongs to the domain of b, b' it represents the same function as is repre-

sented by the series Q. In this event, the series R provides a continuation

of the series Q and it is another element of the function, now represented

by the series P, Q, R.

And so on, from domain to domain. The ultimate aggregate of all the

series, each providing a new element, is the combined analytical expression

of a function. The ultimate aggregate of the z, z' field, provided by all the

domains, is called the region of continuity of that function.

It is clear, after earlier explanations, that one of the simplest instances

is provided by an integral function, that is, a double series converging for all

finite values of z and z
;
and its region of continuity consists of the part of

the z, z field given by finite values of z and /.

Ex. Consider the double series

F.

/= 2 2 zr z'*

r=o 8=0
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which converges for values of \z\^k<l and \z' \^.if <\. At the place z= —
,

SB

—
=•, we have

Ao=77iyRT (i)

When we form a series in powers of z+ - and z' + ^t so that - - and -- is the new origina z 2 2

for a new domain, the series converges for values of z and z
1

such that

The series is

*+
2 \<

l<
2< K +

2 <'<§•

that is, it is

i) (*+i) (
/+

2J
'

For values of
|

z
|

< k < 1 and
j

2'
|
< £'< 1, the series gives no representation of / which is

not given by the first series. For values of
|

z
| > 1 such that U+ 5

I z
1

1 > 1 such that "i

3
^ ^ < ,

and values of
SB

< ^'<s> tne second series does give a representation of/ which

is not given by the first series.

The first series is the expansion, within a domain round 0, 0, of the function

1

(i-*Hi- 2y
When we sum the second series, we have, as the sum,

'2\ 2

(!)

that is,

(i-*)(i-*V

verifying the property that the two series, within their respective domains, are elements

of one and the same function.

Singularities of uniform functions.

57. Any region of continuity of a function that is uniform, continuous,

and analytic has for its boundary a place or an aggregate of places (whether
these are given by values of the variables that are continuous in succession

or are given by discrete sets of variables) where the function ceases to be

regular. Such a place is called singular by Weierstrass*.

Let k, k' be a singular place for a uniform function f(z, z') ;
then in the

immediate vicinity of k, k', the function cannot be expanded as a converging
* See the memoir cited (§ 56) above, p. 156.
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series of powers of z — k and z — k' . Two alternative possibilities present

themselves as to the behaviour of functions in the vicinity of such a place.

Under the first of these alternatives, it can happen that a power-series

P (z
—

k, z' — k'), representing some function regular at k, k' and vanishing

there, exists such that the product

P (z-k,z'-k')f(z,z)

is regular in the immediate vicinity of k and k'. Denote this product by
F(z, z'\ Then F(z, z'), being a regular function of z and z' in the immediate

vicinity of k and k', can be expanded in a double series of powers of z — k and

z' — k' which converges absolutely within non-infinitesimal regions round k

and k'. Denote this new series by Pj (z
— k,z' — k') ;

then we have

f, , _ Px {z- k, z -
k')

/{Z ' Z) -p (z-k,z'-k')'

Following Weierstrass*, we call such a place an unessential singularity of

the function.

Under the second of the alternatives indicated, it can happen that no

power-series P (z
—

k, z — k'), representing some function of z and z regular

in the immediate vicinity of k, k', exists such that the product

P (z-k,z'-k')f(z,z')

is regular in the immediate vicinity of k, k'. Following Weierstrass*, we

call such a place k, k' an essential singularity of the function f(z, z').

It is to be noted, in passing, that, for the occurrence of an unessential

singularity, it is sufficient to have a single power-series P„ such that the

product P / is regular in the immediate vicinity of the place. But there is

no assumption (and it is not universally the fact) that only a single power-
series exists having this property or that all such power-series, as exist

having this property, are expressible in terms of P alone. When two

different expressions for the uniform function f(z, z') are obtained in the

vicinity of the place k, k', they must be equivalent ; and we should then

have a relation

Q, (z- k, 2f - k') _ P1 (z- k, z' - k')

Q (z-k, zf-k') ~P (z- k, 1 -
k')'

We shall assume that, while Px (0, 0) and P (0, 0) vanish, the power-series
Px and P possess *f*

no common factor vanishing at k, k' , whether it takes

the form of a regular power-series or a mere polynomial which is a special

case of a regular power-series. Similarly, we shall assume that Qx
and Q

possess no common factor vanishing at k, k'. Now

ft(«-*,*'-io-%g:^:yj &(*-*;*'-yx
*

l. c, p. 156.

t This matter will be considered later, so as to obtain the conditions necessary and sufficient

to justify the assumption.

6-2
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Here Qt
is regular in the immediate vicinity of k, k\ while Pj and P have

no common factor vanishing at k, k'
;
hence Q must contain P as a factor.

Let F denote the quotient of Q by P„, so that F is regular at k, k'
;
then

Qo = PoF, Ql
^P

l F.

Again,

pl(^^)=^:;^:*:>p,(, -*./-*-).

Here Px is regular in the immediate vicinity of k, k', while Qj and Q have

no common factor vanishing at k, k'
;
hence P must contain Q as a factor.

But

and therefore 1/F is regular at A;, k'. Consequently both F and 1/F are

regular at A;, kf
;
and therefore P does not vanish at k, k '. It is not difficult

to see that we then may choose a domain round k, k', which may be small

but is not infinitesimal, such that F does not vanish in that domain
;
and

then the behaviour of Q in the immediate vicinity of the place k, k' is

effectively the same as the behaviour of P in that immediate vicinity.

Likewise for Px and Qx if they vanish at k, k'. When either does not

vanish, the other will not vanish
; they are different from zero at k, k'

together.

It follows that, in discussing the behaviour of / (z, z') in the immediate

vicinity of k, k'
, any representation of f(z, z) by a quotient Pi/P can be

used, if Px and P„ have no common factor*.

58. In the case of functions of a single variable, it is known that there

are different types of essential singularities, whether these occur at isolated

points, or along lines, or over continuous areas. Special kinds of essential

singularities are considered in that theory, and they furnish partial charac-

teristics of some classes of functions
;
for example, not a few definite results

have been achieved when the essential singularities in question can be

approached as the limits of groups of particular points of a function
;
but

the theory is far from easy or complete. A fortiori, it is to be expected that

even greater difficulties will arise in the consideration of the types of

essential singularities of uniform functions of a couple of variables.

But when we deal with unessential singularities of uniform functions,

there is a real divergence between the theory of functions of a single

variable, and the theory of functions of two variables or more than two

variables. In the case of functions of one variable, there is only one type
of unessential singularities, the only variation in the type being the variety

of the order
;
such a point a is said to be an unessential singularity (or a

* The relation between two such functions as P and Q will be considered fully in Chapter iv :

in particular, see § 64.
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pole) of a function f(z), and of order n for the function, when there is a

positive integer n such that

(z-ayf(z)

is finite and not zero at the point.

In the case of uniform functions of two variables, we arrange the un-

essential singularities in two distinct types or classes. After the explanatory-

definition we know that, in the immediate vicinity of k, k\ the function

f(z, z') can be expressed in the form

f{Z ' 2) ~P (z-k,z'-k')'

where P and Pj are converging double series in powers of z — k and z —
k',

of which P„ vanishes at k, k'.

Two different cases then can occur as alternatives, discriminated according

to the value acquired by Pj at k, k'.

In the one case, leading to one of the two types of unessential singular-

ities, it is the fact that Px does not vanish at k, k'. It then follows that,

no matter how z tends to the value k and z' to the value k', the quantity

\f{z,z')\ can, for sufficiently small values of \z
—

k\ and \z —k'\, be made

larger than any assigned magnitude, however large : that is to say, this large

magnitude is assigned at will, and the appropriate small values of
|

z — k
\

and \z -k'\ are determined subsequently to the assignment. We therefore

can take infinity as the limit for the assignment ;
and the place k, k' then

gives a definite and unique value tof(z, z'), this value being infinite.

This type of unessential singularity is one of the two kinds of un-

essential singularity considered by Weierstrass. It is convenient to use

for functions of two variables, the same name as is used, for functions of on

variable, when the place gives a definite and unique infinity of the function.

Accordingly we shall call this type of unessential singularity the polar type ;

and a place k, k', being an unessential singularity of the polar type for the

uniform function, will be called a 'pole of the functionf(z, z).

In the other case, leading to the other of the two types of unessential

singularities, it is the fact that Px does vanish at k, k'. The place k, k' then

does not give a definite and unique infinite value for the function f{z, z).

Subsequent explanations may so far be anticipated here as to declare that

particular modes of approach of z to k and of z to k' can be selected, so as

to make f(z, z) tend towards any assigned value near k, k' and acquire that

assigned value at k, k'
;
thus the function f(z, z') does not acquire a definite

unique value at the place.

This type of unessential singularity is the other of the two kinds

of unessential singularity considered by Weierstrass. We have given a

definite name to the other type of unessential singularity that can belong
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to uniform functions of two variables ;
to the type just indicated, we shall

give simply the general name unessential singularity and, so far as concerns

functions of two variables, there need be no confusion in taking this un-

restricted name*.

Thus, for the function
z+ z'

z-z"

the place z= l, /= 1 is a pole ;
the place 2=0, 2'=0 is an unessential singularity.

For the function

the place 2= 1, z
1'= - 1 is a zero

;
the place 2= 1, 2^= 1 is a pole ;

the place 2=0, z'= Q is an

essential singularity.

For a function

P&z')

where P (z, z') and Q (z, z') are polynomials in z and z' having no common factor, all places

satisfying the equation
#(2,2') =

are poles unless they also satisfy the equation

P(2,2') = 0;

and all places satisfying the two equations

§(2,2')=0, P(2,2') = 0,

are unessential singularities.

As a summary conclusion, we see that there are four kinds of places

for a uniform  

analytic function of two variables, viz. ordinary places, poles,

unessential singularities, essential singularities. The first set of these

constitute the region of continuity of the function
;
the remainder constitute

the boundary of the region of continuity of the function.

Extension of Laurent's Theorem.

59. As a last theorem for the present, we proceed to an extension of

Laurent's theorem on functions of a single variable
;
in order to make the

establishment simpler, we shall restate Cauchy's theorem concerning the

*
Corresponding considerations arise for functions of n variables. Weierstrass arranges their

unessential singularities in two kinds. One kind includes places that, as in the text, may be

called poles ; at such a place, the function definitely and uniquely acquires an infinite value.

The other kind includes all unessential singularities which are not poles. Now it is conceivable

that an unessential singularity of this second kind for a uniform function of n variables might
be ranged in one or other of n-1 classes, according as there are 7», oo *, oo 2

, ..., oo" -2 ways

(where m is finite) in which z\, z2 , ... ,
zn could be made to approach the unessential singularity

Oi, a%, ..., an so as to make the function

Pl (z 1 -a l ,
Z2 -a 2 , ••-. *n- aJ

Po(zi~ai, Zi-ait ..., zn-aj
acquire an assigned value at the place.

The question manifestly does not arise when there are only two independent variables ;
hence

the adoption of the names pole and unessential tingularitp in the text.
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expansion of a function in a double series of positive powers. Consider a

function f(z, z') within a region where it is continuous, uniform, and

analytic. Within that region (assumed to include 0, 0) consider the domain

defined by
\z\^p<r, \z'\^p'< r'.

Then we have the result

tbf\±ttlU$iZ#**>
(2m)

2
JJ(t-z)(t'-z')

when the double integral is taken round circles in the domain such that

|

z
|

<
1

t
1

< p < r,
|

z'
j

<
j

t'
|

< p < r.

Moreover, taking

1 1 z z*= t + r„ + tt +t-z t t
2

t
3

_1 1^1
t'-z' t'

+
t'
2+

t''

Ave obtain an expression for f(z, z') in the form

f(z,z')= 2 2 cPiq zJ>zX

The forms for the coefficients cp>q have already been given; the upper values

of the limits of \cPtq \

for all positive integer values of p and q have already

been given also, when the function f(z, z') has the assigned properties ;
the

series can be continued to infinity for both sets of indices, and it converges

absolutely within the z, z' domain*.

Now consider a corresponding extension of Laurent's theorem, which

may be enunciated as follows:—
.

Let f(z, z') denote a function, which is uniform, continuous, and analytic,

within a region in the field of variation defined by relations

R >R^\z-a\>r>r ,
R ' >R >

|

z' - d
\

> r' > r '.

Denote by t and by s current variables (or points) on the circumferences of

the outer circle of radius R and the inner circle of radius r in the z-plane ;

and similarly for t' and for s' on the circumferences of the outer circle of

radius R '

and the inner circle of radius r
'

in the z -plane. Then the function

f(z, z') can be expressed as a series of integral powers of z — a and z' — a' ;

the indices of those powers can range from — x to + <x> for each of the

* The analytical work, needed to establish the result, is so similar to the corresponding

analysis for functions of a single variable (see my Theory of Functions, § 28) that it need not be

set out in detail.
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variables ; and the double series converges absolutely for values of z and z

given by
R>\z-a\>r, R^\z'-a'\>r'.

By the generalisation of the first part of Cauchy's theorem, we have

nZ,Z)
(27riy]](t-z)(t

/ dtdt'
(2TriyJJ(t-z)(t'-z')

_ I l\H^) dsdt
, _ i a , /«, o ^

(2iri)- J J (s
—

z)(t
— z) {Zvif J J (t

—
z) (s

— z )

i rr f(s,j')„ dsds
,

+
{27Tiy]j(s-z)(s'-z')

dSdS -

Now, for our values of a, a', z, z', t, t', we have

t-a , z-a (z-a\
m t-a fz-a\m+1= 1 + ___+...+ + - __ -

t — z t —a \t —a) t — z \t
— aJ

t'-a'

t

and so the integral

' _ a
'

_ z'~ a
'

( fl£?Y , t ZfL (
2'- a

'\

n+1

?-z'
t" 1

*f-a'+
'" +

V-u') t'-z'Kt'-a'J
'

f^ xdu
(27Tl')

2
Jj(<-^) (t'~z)

is expressible as a double series of terms

X2cP!q (z-ay(z'-ay
for p = 0, 1, ..., m and q

= 0, 1, ..., n, where

c ».'
X
.: ff '•ffi:° - dttf-C™ ~

(2my]j (t
- af" (?

-
a')*

+1 '

together with a single series of terms

Z
q (2Triyj] t-z \t-a) [t-a')

MM
'

for q = 0, 1, ...
,
n

;
and a single series of terms

v 1 f[f(t, t') (z'
- a\ w+1

(z
- ay ,, ,,,

for p = 0, 1, . . .
,
m

;
and a term

i rr mt') jz-ay^fz'j-afv^dtdt'
(2irif}){t

-
z) (f

-
z') \t - a) \t'

- a')
atat '

To consider the coefficients in the double series, let M denote the

greatest value of \f(z, z) |

within the whole region considered ; then, as

before,
M

though nothing can be declared as to a relation between cp<q and the

derivative — ^ - J \
—- at a, a, for our function is not defined within the

dzPdz*

domain \z
— a\<r , \z —a'\<r '.
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As regards the second series of terms, say 8, we have

l/J'li I \f(t,t') \(R\
m+1

(K\
q+1 RR >

|S|<
f?,^gW Wi RoR°

» MR R '

{R\
m+1

(R'y+\
2 =o R — R \RqJ \RoJ

as R< R ,
indefinite increase of m makes each term in the series on the

right-hand side as small as we please ;
and R' < R '

: that is, by taking m
indefinitely large, we can make #=0.

Next, as regards the third series of terms, say S', we have

s"+WRV+ * m*

71 ) -H'0-O'O

p =o R
' — R' \RoJ

2 M (R'y+wRy+
l

p=o Jx — It \Ii ) \Jtl /

as R' < R ', indefinite increase of n makes each term in the series on the

right-hand side as small as we please ;
and R< R

;
that is, by taking n

indefinitely large, we can make S' = 0.

Lastly, as regards the modulus of the single term, it is

<
(R -R)(R '-R')\RJ [r 'J

'

which, with the assumptions made concerning m and n, can be made less

than any assigned quantity, however small ;
that is, we can make the term

zero.

In these circumstances, the expression for the first of the four integrals

becomes
m n

2 ZcPtq (z-ay>(z'-ay.
p=0q=0

M
As

[

z — a
|

< R < R , \z'
—

a'\t. R' < Ro, and as
j

cp>q |

< -d^h^q »
*kis double

Xt(T Xl

series converges absolutely when m and n increase indefinitely and inde-

pendently of one another. Thus the first integral is expressible as an

absolutely converging series of positive powers of z — a and z' — a'.

To obtain an expression for the second integral, which is

steii
/(tP «.**,

•m)
2
J J {s-z){t'-z){tori)

we note that \z
— a\^r>r >\s — a\, while

j

t' — z
\

<
j

t'
— a'

|
;
so we take

z—a , s- a fs
— aY z — a (s

— aY+1
- - - = 1 + + ... + +

s — z z—a \z—aj z — s \z — aj

t'-a' , z'-d fz'-a'Y t' -d fz' -d\n+1

z>
=1 +17- , + •••+ b—->] +r-/ T

r-o'
T ",T v -dj

'

a -z'\a -d.
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We proceed as in the last case. It is possible to increase /j. without limit

and n without limit
;
and we obtain, as the expression for the integral,

2 2cM ,
n (*-a)-*(*'-a

/

)
n

,

p=0q=0
where

Also

\cPtq \<Mrf>R '-i;

and the double series converges absolutely for the retained range of values

for z and z.

Similarly, as the expression for the third of our double integrals,

which is

(27nyJJ{t-z)(s'-z)
we obtain

2 2cp , q (z-ay(z-a')-<i,

where

Also

\cP!Q \^MR -Pr ''i;

and this double series converges absolutely for the retained range of values

for z and z'.

Lastly, as the expression for the fourth of our double integrals, which is

Kffl
!/u? * *•*<•

TnfJJ{s — z){s—z)

2 2cPiq (z-a)-P(z'-a')-*,

Cp ' q== (2^/M*
s

'

} (s
"

a)
"_1

(s
' ~ a

'

)q
~l dsds'-

Also

and this double series converges absolutely for the retained range of values

for z and z'.

Gathering these results together, we see that, in the circumstances as

stated in the extended Laurent's theorem, the function f(z, z) is expressible
in the form

/(*, z')=l 2 cm
,
n (z

- a)™ (z'
-

a'Y,
-oo - oo

the summation being for all integer values of m and of n between oo and
— oo

;
also

we obtain

p=0q=0
where
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|

cmt n [

< MR ~mR '~n
,
when m is positive and n is positive,

I

cmtn |

< MR ~mr 'n
, positive negative,

I

cm>n |

< Mr mR '~n
, negative positive,

I <*»»,» |< Mr
mr

'n
, negative negative;

and the double series converges absolutely for values of z and z' given by

R > R ^
|

z - a
|

^ r > r
,

i2
' > i2' ^

|

s' - a'
j

^ r' > #v'.

It follows as an immediate corollary that when a function <f>(z, z) is

uniform, continuous, and analytic for all the z, z region of variation repre-

sented by the relations

\z—a\^r>rQ , \z'
— a' |>r' >r ',

it is expressible as a double series of negative powers in the form

<f> (z, /) = XS cmt n (z
-

a)~
m (V - a')~

n
,

o o

where \cm,n\< Mr
mr

'n
,

M being the greatest value of \<j>(z, z')\ within the foregoing region; and the

series converges absolutely for the specified range of values for z and z '.

The result is at once derivable from the extension of Laurent's theorem

by making RQ and R '

increase without limit
;
and it can of course be

established independently in the same manner as the general theorem.

Ex. 1. The function

e \ z z)^

where P[z,
-

, z',
-

)
is a polynomial in z, -, z',

-
,
can be expanded in a series

X 00

— 00 —00

for finite values of
j

z
|

and
|

z
1

\

such that

\z\^r>t, \z'\^r'>t',

where e and «' are positive non-zero quantities.

Ex. 2. Shew that the coefficient of zm z'
n
(where m and n are positive) in the Laurent

expansion of

iK«-K<('-a
e »

1 £ 1

and
| tj | being finite and independent of z and of z', is

Jm (£) Jn (n),

where Jm and Jn are Bessel's functions of order m and n; and obtain the coefficient of

2m/n jn the satQe expansion (i) when either m or n is negative, (ii) when both m and n are

negative.



CHAPTER IV

Uniform Functions in Restricted Domains

A theorem due to Weierstrass.

60. After these preliminary results relating to expansions of a uniform

function, which converge absolutely and ape valid over the appropriate

domains, it is important to take account of the detailed behaviour of the

function in the immediate vicinity of each of its several kinds of places.

Accordingly, let a, a' be an ordinary place for a uniform, continuous,

analytic function f(z, z) ;
the preceding investigations shew that f(z, z'),

regular in some domain of that place, can be represented within the domain

by a double series of positive powers of z — a and z' — a' which there con-

verges absolutely. No generality, for our present purpose, is lost by assuming
that a — and a' = 0, for the assumption can be secured by taking z — a — Z,

z' — a' = Z'. Hence we write

F (Z, Z') =f(z, Z') -/(0, 0) = lZcm,nZ
m
z'n

,

where the summation is for positive integer values of m and of n save only

simultaneous zero values. Also, |/(0, 0) |

is finite and may be zero.

The detailed behaviour of the function F (z, z) in the immediate vicinity

of the place 0, is governed by an important theorem, originally due to

Weierstrass. After the analysis has been given, the principal results will be

enunciated in a form that differs from Weierstrass s, because the limitation

to two variables renders greater detail possible* than when n is the number
of variables.

* The theorem is proved by Weierstrass for functions of n variables, Ges. Werke, t. ii,

pp. 135—142. Another proof, due to Simart, is given by Picard, Traite d' Analyse, t. ii,

pp. 243—245.

The theorem is discussed here for the special case when there are only two variables. For
this case, a proof (which follows Weierstrass's proof for the general case) is given in my Theory

of Functions, § 297 ; it is modified in the proof given in the text, because the theorem is not

regarded from the point of view of establishing the existence of implicit functions of a single

variable.



61] A THEOREM OF WEIERSTRASS 93

Our function F(z, z'), which is regular in a domain round 0, 0, can be

expressed in a form

F(z, z')
=

(f> (z) + jty, (*) + z'
2
<f>2 (z)+ ....

Two cases arise according as F(z, 0) does not vanish, or does vanish, identically
for all values of z within the domain.

61. First, suppose that F(z, 0) does not vanish for all values of z.

Denoting F(z, 0) by F (z), which is equal to
<p (z), and introducing a new

function F1 (z, z) defined by the equation

F(z,z') = F (z)-F1 (z,z'),

we have a function Ft (z, z') which, when z = 0, vanishes for all values of z.

Now F (z) is independent of z' and does not vanish for all values of z
; hence

we can choose places z, z in the vicinity of 0, 0, which lie within the region

of convergence of F (z, z') and are such that

|/.]>i'iriT.

It is to be remembered that F vanishes when z =
;
and so there may be

some lower limit for
j

z
j

below which this inequality is not satisfied. As
|

z
\

increases, a zero of F may be attained, and then the inequality would not be

satisfied. Also as \z'\ increases, the value of
j

F (z, z) \ may increase
;
and so

there may be some upper limit for \z'\ above which the inequality is not

satisfied. Accordingly, we suppose that, for places satisfying the relations

Po <\z\<p, \z'\< Pl ,

the inequality \1> \>\F1
\

holds. For all such places we have, on taking

logarithmic derivatives of the equation

the relation

1-j?

Fdz~'F dz dz Va=i \ F K

Now F (z) is a regular function of z in a domain round z = 0, and it vanishes

when z = 0; hence the lowest exponent in its expansion must be a positive

integer greater than zero, say m. Thus

F (z)
=

z>»h(z),

where h(z) is a regular function of z in the selected domain and has a

constant term; consequently

ldF = m h'{z)

F dz
~

z
+

h {z)

-7 + 0(*),

where O (z) is a converging series of positive powers of z in the selected

domain. Similarly
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where GK
, h {z'), the coefficients of the powers of ^,are converging series ofpositive

integral powers of z'
;
and because Fx {z, z) vanishes when 2! = for all values

of z, each of these coefficients G\ ttl (z) vanishes when / = 0. Take each power
of z, and collect all the terms which involve that power of z in the expansion

• 1FJ

then we have

2 £Pi- 2 Gn (z')z\
K=l A J »= -oo

while each of the coefficients Gn(z'), being a linear combination of the

coefficients G\ tll (z'), vanishes when z = 0. Thus

and the only term on the right-hand side, which involves the power z~ l

,
is

the term — .

z

Now let £*!, ..., f„ denote the zeros of F(z, £"), regarded as a function of ^,

when we consider a range of values of z such that \z\ < p, and when we assign

to z' a parametric value £" such that
| £'| < /v Repeated zeros of F(z, f)

are given by repetition in the quantities f, so that s denotes the tale of zeros

of F (z, £') within the range. Then, as F(z, £") is regular for all such values

of z, the function

ldF(z,n_ 1
1

F dz p=l z- %p

is finite for those values
;

it can therefore be expanded as a converging series

of positive powers of z, say P (z), so that

F dz »-i*rft

Choose values of z, such that \z\ is still less than p and is now greater than

the greatest of the quantities | & |, . .. , | f, |. The fractions on the right-hand
side of the equation can. for such values of z, be expanded in descending

powers of z
;
and the equation, after such expansions, becomes

idF(z,n_ P(c)]
s |'s^

where

As this result is valid for all values of f
'

within the selected z'-range, £' being

independent of z, we have

z

^ + P(z)+ 2 STz-'-\
Z T=l
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identically for all values of z
;
and therefore, among other results, we have

for all values of t.

The first result shews that, for any given value of z' such that \z \

< p1}

the function F(z, z') has m zeros in the range \z\< p, where the number m
is the index of the lowest exponent in F (z, 0) when expressed as a regular

series of positive powers of z.

The second result then shews that, for all the positive values of t, the

quantity
&+... +U

is expressible as a regular function of £' which vanishes when £' is zero.

Hence all integral symmetric functions of £i, . . . , £,„ are regular functions of

£' which vanish with £" ;
and as £" is a parametric value of **, we may (within

our range) substitute z for £ '. It therefore follows that, if

g {z, z')
=

(z -&)... {z
-

%m)

= z™ + g1 z«>-i + ...+grn ,

the coefficients gly . . .
, gm are regular functions of z within the selected range,

each of them vanishing when / = 0.

Further, from the same equation, we have

P(z) = G(z)- 2 (n + l)z"Gn+1 (z'),
»=o

where all the functions are regular. Thus, if

r (z, z') ={
z

g (z) dz-% *r» Gn+1 o'),
J o w=0

where T (z, z') manifestly is a regular function of z and z', and vanishes when
z = and z = 0, we have

P{z) = ^{Y{z,z%
Thus

1 dF D , x ,
m "

„ T .
.

and therefore

F=Ug(z,z')eF{z >
z\

where U is independent of z.

As U is the same for all values of z, and as F and g (z, z) and Y (z, z') are

regular functions of z and z' for the range considered, it follows that U (if

variable) is a regular function of z'. When zf = 0, let the first term in the

expansion of the regular function F ,
which is all of F(z, z) that then survives,
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be Czm
;
then g (z, z') becomes zm

;
and T (z, z) is then a regular function of

z alone. Thus, when z' = 0, we have U = C
;
and U, at the utmost, is a

regular function of z'
;
hence

U = C (1 + positive powers of z')

= Ceu,

where u is a regular function of z' which vanishes when z = 0. Let

R{z,z') = u+Y{zy z'),

where again R (z, z) is a regular function of z and z which vanishes when

z = and z' =
;
and we then have

F(z, z')=Cg(z, z')e
R^ z

'\

with the defined significance of g (z, z), R (z, z), and C.

The new expression is valid within the assigned range of z, z in the

immediate vicinity of 0, 0. But it must not be assumed—and usually it is

not the case in fact—that the new expression is valid over the whole domain

wheref (z, /) is initially taken as regular.

We thus have the result :
—

I. When a function f(z, z) is regular in some domain of 0, 0, and is

such that f(z, 0)
—
f(0, 0) does not vanish for all values of z in that domain,

we have

f(z,z')=f(0,0)+Cg(z,z')eZ^>,
where

g{z,z') = z™ + gl z™-* + ...+gm ,

the quantities glt ..., gm being functions of z, each of which is regular in the

immediate vicinity of z' = and, vanishes when z = ; where Czm is the lowest

power in the expansion off{z, 0) —f(0, 0) in positive poiuers of z ; and where

R(z, z) is a function of z and z', which is regular in the immediate vicinity

of 0, and vanishes when z = and z = 0.

62. One important corollary can be at once derived from the preceding
result.

Suppose that 0, is a non-zero place for the function f(z, z'), so that

/(0, 0) is not zero
;
then we have

/(0,0)
i+

f(o,o)
g^ z)e •

Now R (z, z') is a regular function of z and z, vanishing when z = and

z = 0, so that
|

eR{z' z)
\

is finite throughout some definite domain round 0, 0.

Also
| C//(0, 0) |

is finite
;
and g (z, z'), while polynomial in z and regular in

z in the immediate vicinity of z = 0, vanishes at the place 0, 0. It therefore

is possible, owing to the regularity of g {z, z') and R (z, z'), to choose a non-

infinitesimal domain given by

|

z
| < r, \z\< r,
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such that, for all the included values of z and z
',

\y^)
\\g(z,z')\\e*^\<M<\,

where if is a real positive quantity. For all such values of z and z'
,
we have

1 + f(̂ -Q)
9(z >

z ) e R{z ' z,) r eE{z '
z\

where R (z, z") is a regular function of z and z
', given by the expansion

g (z, z') **<**> - \ .,^'v g* (*, z) «•***> -...,
/(0,0)*^"'

w V 2

(0,0)'

that is, R (z, z
1

) is a regular function in a domain of z and z' and vanishes

when z = and z = 0. This domain does not include any place that is a zero

of f(z, z), because at a zero-place z, z' of/ (2, z) we should have

g(z,z')e
B^ z,) = -l,

/(0, 0)
and therefore

C
\g{z,z')\\e

R^\ = \,

/(0, 0)

a possibility which is excluded. Hence we must have

f(Z>
Z ) _ oR(z,z')

f(0,0)~
e '

and therefore

/(*,*') =/(0,0)^>.
Our corollary can therefore be stated as follows :

—
Whenf(z, z) is regular within a finite domain round 0, 0, and /(0, 0) does

not vanish, then there is a domain round 0,
—

usually more limited than the

former domain within which f(z, z) is regular
—such that f(z, z') can be

expressed in the form
f(z,z')=f(0,0)e^\

where R (z, z) is a function of z and z
, which vanishes when z = and z =

and is regular within the second domain.

In particular, this expression is valid in the immediate vicinity of 0, 0, on

the supposition adopted.

63. In precisely the same manner and with exactly similar analysis, we

can establish the following result which therefore needs only to be stated :
—

II. When a function f(z, z) is regular in some domain of 0, 0, and is

such that f(0, z') —f(0, 0) does not vanish for all values of z in that domain,

we have

f(z,z')=f(0,0) + Kh(z,z')e^>*\
where

h (z, z) = z'
n + h.z'n-

1 + ...+hn ,

the quantities hlt ..., hn being functions of z, each of which is regular in the

immediate vicinity of z = and vanishes when z = ; where Kz'n is the lowest
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power in the expansion off(0, z
1

)
—
/(0, 0) in positive powers of z ; and where

S (z, z) is a function of z and z
, which is regular in the immediate vicinity of

0, and vanishes when z = and z = 0.

The postulated circumstances are not the same in these two theorems.

If it should be the case that/(^, 0)—/(0, 0) does not vanish for all values of

z within the range, and also the case that /(0, z')—f(0, 0) does not vanish

for all values of z within the range, then both theorems hold. In that event,

we have two different expressions for/(2, z)
—
/(0, 0) which must be equivalent

to one another. This equivalence will be illustrated by an example, that will

be given after we have discussed the alternative to the initial hypothesis.

64. Secondly, suppose that the function F(z, 0), where

*(*, •)=/(*, *')-/(0,0),

vanishes identically for all values of z. Now F (z, z') is a regular function of

z and /, within the range considered
;

as before, it can be expressed, by
summation of the uniformly converging series which represents it, in the form

F(z, z) = (f> (z) + z'(f> 1 (z) + z'*4>2 (z) + ...,

which itself is a converging series within the range. (As already stated,

<f) (z) is the F (z) of the preceding investigation). If then F(z, 0) vanishes

identically for all values of z, then
<j> (z) vanishes identically. It may

happen that other coefficients
<f>x (z), <£2 (z), . . . ,

vanish identically ;
let

<f>t (z)

be the first that does not thus vanish, t being a finite integer because F(z, z)

is presumably not a constant zero. Consequently

F.(z, z) = z'<
{</>, (*) + /<fr+1 (*) + . . .},

and the series

<f> t (z)+ z'(f>t+1 (z)+...

is a regular function of z and z'
;
that is, in the suggested circumstance when

the function F (z, 0) vanishes identically for all values of z, our function

F (z, z') has some power of z as a factor. Let this factor be /'
;
then t is a

positive integer greater than zero, and it is assumed to be the largest positive

integer which allows F (z, z)z'~
l to be a regular function of z and z' in the

vicinity of the place 0, 0.

The first of the two preceding theorems does not hold as an expression

for/(2, z'\ But if the function ^(0, z) does not vanish identically for all

values of z, the second of the preceding theorems does hold as an expression
{or f{z, z). There are, however, limitations upon the forms of the quantities

hn ,
hn-i, ...

;
in particular,

hn = 0, An_! = 0, ..., An_t+i=--0.

But the momentarily important result is that

f(z,z')-f(0,0) = z'<G(z,z'),

where 0(z, z') is regular in the vicinity of 0, 0, and G (z, 0) does not vanish

identically for all values of z.
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Next, suppose that the function F(0, z) where (as before)

F(z,z')=f(z,z')-f(0,0\

vanishes identically for all values of z\ Then an argument precisely similar

to the preceding argument shews that the function F (z, z') has some power
of z as a factor. Let this factor be z8

;
then s is a positive integer greater

than zero, and it is assumed to be the largest positive integer which allows

F (z, z) z~s to be a regular function of z and z in the vicinity of 0, 0.

The second of the two preceding theorems does not now hold as an

expression for f(z, z). But if the function F (z, 0) does not vanish identically

for all values of z, the first of the preceding theorems does hold as an

expression for f(z, z). As before, there are limitations upon the forms of

the quantities gm , gm-x , ... ;
in particular,

9m = ", 9m-\ tB v, . . .
, gm—s+i

= 0.

But the momentarily important result is that

f{z,z')-f(0,0) = z»H{z,z),

where H (z, z') is regular in the vicinity of 0, 0, and H (0. z) does not vanish

identically for all values of z.

Next, again taking

F(z,z')=f(z, 0-/(0,0),

suppose that the function F (z, 0) vanishes identically for all 'values of z and

that the function F(0, z) vanishes identically for all values of z . As in the

preceding cases, F(z, z') has a factor which is now of the form zsz/(
,
where s

and t are positive integers each greater than zero
;
and it is assumed that

each of them, independently of one another, is the largest positive integer

which allows F(z, z') z^z'
-1 to be a regular function of z and / in the vicinity

of 0, 0.

Neither of the two theorems already proved now holds as an expression
for f(z, z'). The momentarily important result is that

f(z,z)-f(0,()) = z°z'tl(z,z'),

where / (z, z') is regular in the vicinity of 0, 0, while i" (z, 0) does not vanish

identically for all values of z and i" (0, z) does not vanish identically for all

values of z.

Thus in each of the cases contemplated, we have

f(z)
z

r

)-f(0,0)=z
8
z'

t

U(z,z') >

where s and t are positive integers that are not simultaneous zeros, and

U{z, z') is regular in the vicinity of 0, 0, while neither U(z, 0) nor U(0, z)
vanishes identically for all values of z or of z' respectively. The alternatives

are as follows.

7—2
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(«) When U (0, 0) is not zero, then, within the sufficiently small domain

round 0, 0, we have

U(z,z') = U(0,0)eTw,
where T(z, z') is a regular function of z and z', vanishing at 0, 0.

Then we have

f(z, z) =/(0, 0) + CWeT
<*'*\

where the constant C is the non-zero value of U(0, 0).

(/8) When U(0, 0) is zero, the conditions attaching to U(z, z) require

that U(z, 0) does not vanish identically for all values of z and that U (0, z
1

)

does not vanish identically for all values of **.

As U(z, 0) does not vanish identically for all values of z and as U (z, z')

is a regular function, the first of our two earlier theorems applies to U (z, z
1

) ;

we have an expression of the form

U{z, z) = Ag(z, z')e
R^ z\

where A is a constant
; g (z, z') is a polynomial in z having, as its coefficients,

regular functions of z' which vanish with /
;
and where R (z, z') is a regular

function of z and z which vanishes when z = and z' = 0. Then

f(z, z') =/(0, 0) + Az'z'tg (z, z')e
R «> z\

Also U (0, z') does not vanish identically for all values of z', and U{z, z')

is a regular function
;
hence the second of our two earlier theorems applies

to U (z, z'). We have an expression of the form

U(z, z')
= Bh{z,z')e

s«< z\

where B is a constant
;
h (z, z') is a polynomial in z' having, as its coefficients,

regular functions of z which vanish with z; and where S(z,z') is a regular
function of z and z' which vanishes when z = and z' = 0. Then

f(z, z') =/(0, 0) + Bz'^h (zy z') es^ z\

Summarising these results, we have the theorem :
—

III. When a function f(z, z) is regular in some domain of 0, 0, and

is such that either (i) f{z, 0) —f(0, 0) vanishes identically for all values

of z while f(0, z')
—
/(0, 0) does not vanish identically for all values of z',

or (ii) /(0, z')
—
/(0, 0) vanishes identically for all values of z

1

while

f(z, 0)
—
/(0, 0) does not vanish identically fur all values of z, or (iii)

f(z, 0)—/(0, 0) vanishes identically for all values of z and f(0,z')—f(0,0)
vanishes identically for all values of z', then expressions for f(z, z') in the

immediate vicinity of the place 0, are

f(z, z') =/(0, 0) + Az*z'*g (z, z') e«^,

f(z, z') =/(0, 0) + B*S*h (z, z') •»**>,
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where s and t are positive integers such that s= 0, t > for the first hypothesis;

s > 0, t = for the second hypothesis ; and s > 0, t > for the third hypothesis.

The quantities A and B are constants ; the functions R (z, z') and 8 (z, z) are

functions of z and z'
,
each of which is regular in the immediate vicinity of 0,

and vanishes when z=0 and z =
;

the function g (z, z) is a polynomial in z

of the form
zm + g1 z

m-l + ...+gm ,

where the coefficients gl} ..., gm are functions of z which are regular in the

immediate vicinity of z — and vanish with z' ; and the function h (z, z') is a

polynomial in z of the form
z'
n + h

1
z n-1 + ...+hn ,

where the coefficients hlf ..., hn are functions of z which are regular in the

immediate vicinity of z and vanish with z. There is a limiting case when both

m and n are zero; the expression forf'(z, z') in the immediate vicinity of 0,0 is

f(z, z) =/(0, 0) + Cz'z'HT^,

where C is a constant, while T(z, z) is a function of z and z which is regular

in the immediate vicinity ofO, and vanishes when z = and z' = 0*.

Note. We saw before that, in certain circumstances, both Theorem I and

Theorem II are valid, thus providing for the regular function f(z, z) two

expressions, which are formally distinct from one another, and must be

equivalent to one another.

In Theorem III it follows that, in certain circumstances, the regular

function /(£, /) can have two expressions, which are formally distinct from

one another and must be equivalent to one another.

In the former case, the two expressions for/0, z')-f(®> °) are

Cg (z, z) eR^ z\ Kh (z, z') eS{z -
z\

where g (z, z) is polynomial in z with coefficients that are regular functions

of z vanishing with z, while h(z, z) is polynomial in 2'.with coefficients that

are regular functions of z vanishing with z. Thus

g{Z, Z) _ ^ S(z,z')-R(z,z') — jjP v^,a

h&7j~C
e ~ Le '

where I is a constant and V (z, z') is a regular function of z and z which

vanishes when z = and z =
;
hence

g{z,z')
= Lev^h{z,z'),

h(z,z') = je-
v
^g(z,z').

Similar relations hold in the latter case.

* This theorem is quite distinct from Weierstrass's second preliminary theorem (p. 141 of his

memoir already quoted) for the case n = 2
;
the latter will come hereafter (§ 65).
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It follows that, for a regular function f(z, z'), when it is not expressed as

a power-series valid over a domain round 0, 0, but is expressed for con-

sideration in the immediate vicinity of 0, 0, we usually can obtain two

different expressions according as z or z is taken as the variable for simplifying

the representation. Each of the expressions is unique in its form
;
the two

expressions are equivalent to one another.

Ex. Consider an ordinary place of a regular function f(z, /), and let it be 0, ; and

take the general power-series for /, in that domain, in the form

/•(2,/)-/(0,0)

= (a10z+a01 z')+(a2O z
i+an zz'+ 002^)

+ (a^z
3+ #21«V+ «i2^'

2+ a<nJ
3
) + ....

First, assume that neither a10 nor a i vanishes. It is not difficult to establish the

following results* :
—

/(*, z')-f(0, 0)^=(awz+ b01 z' +1^+6^+ ...)e
k^ z + koiz' +k^+ kn zz' + k02z'2+

...^

where

601
= #01>

602= —^ («02«10
2 -

«11 «10«01 + «20«01
2
),

#10 •

603= ;—3 (#03«10
3 "

#12«10
2
#01 + #21 #10#01

2 T «30#01
3
)

"10

~ Z-4 («02«10
2-

#11#10#01 + #20«01
2
) (2«20#01

~
#ll«lo),

tt10

/. _ a20

#10

^01 = T-Tj (#11 #10
—

#20#0l)>
#10

_O30 1
«20f

^11 =—2 (#21#10~ #30#0l)
-—

3(all«10
—

«20«0l)>
#10 #10

*02- —-3 («12#10
2-

#21 «10#01 + #30 O01
2
)

#10

~ —
4(#02#10

2
-#liai0#01+#20#01

2
)-H r-4(#ll#10-#20#0l)

2
,

»io z a10
'

which is the expression for f(z, z') under Theorem I.

Similarly, as the expression for f\z, z') under Theorem II, we have

/(*, 0-/(0, 0)= (aol z'+ cwz+c^+ e^+...)el^z +^ z
' + l^ z

'
2 + lnzz' + h^+..^

* The expressions suggest that the theory of invariantive forms can be applied to the

expansions, in all the cases stated.
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We also find

f(z,z')-f (0,0)

= {a02^+ z'(an z+ cn z'
i+ ...)+^(aV)+ c30z+ ...)}e

l^ z +^ z
' + -

t

where

C21- —"2 {«21 a02
2 -

«12«11 «02+ «03 Oil
2 "

«02«2(>)},a02

c30= ~~
5 {a30a022_a i2 Cf02a20+ao3an a2o}>

«02

^10
=

-7-2 (
a12a02

— a03«ll)>
«02

7 _ a03
401
——

>

«02

The first expression is effective when a^ does not vanish
;
but it is ineffective when 020

does vanish. The second expression is effective when a^ does not vanish ; but it is

ineffective when a02 does vanish. .

When both «2o and «02 vanish and when an then does not vanish, another expression

must be obtained. In that case, we have

/(*> 0-/(°> 0)= an zz
J+ a30z

3+a2iZ
2J+ a12 zz'

2 + a03 z'
3+ ...,

and then we find that

/(*, *')-/(0,0)

= {a3o^+22(62l2
'+ 622^+ ...) + (611/+ 6 12/2+ ->o +^ 2'3+ 5M/4+ „.} efcio^

+ feoi^ + .-.

)

where

z. _^!«

*01 = ~3 (
a31 a30

_
«21a40a30 -all a30a50+all a40

2
)>a30

^20=— o (
a30a6O

_
i a4O

2
),

«30

^30=—3 («30
2
«60

~
«30 «40 aoO+i «40

3
) ,a30

^11 - ^lO^Ol +— {<*«
-

«31^10
-

«40^01
-

«21 (*20
~
^lt)

2
)
~

«11 (^30
- *»*10+ ^103

)K
«30

5n «=au ,

^2i = «21 -an ^10 ,

6l2=«12-«11^01»

O()3
=

«03>

O22= «22
_

«12^10"- a21^01 — aU (^11
-

^"l0^0l)>

There is a corresponding expression for f(z, z') -/(0, 0), in which z' is made the dominating
variable

;
it has the form

f^^-f (0,0)

'{aoa^+z'^caiz+c2iz
2+ ...)+z'(cllz+cu zi+...)+c^+ci0 z*+ ...}e

l^i +^ z'+--
}
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where

lw= —j (a13 ffl 3
2 — #12#04 #03

~
#11 #03 #06+ #11 #04

2
)>

#03

; #04

#03

^>2
=
r~2 (#03 #05

—
i #04

2
)>

#03

^03=— 3 (a03
2
«06-«O3#04#05+ i«04

3
),

#03

hi = 'lOH)l +— {#14
~

#13 'oi
~

#04 '10
_ #12 (m)2

—
J^Ol )

—
#11 (^03

-
'o2H)l + J'oi )/>

^11
=

#11,

c30
=

#30>

c21 = #21
_

#11^10,

c12= #12
—

#11^01)

C22
= #22

—
#21 A)l

—
#12^01

—
#11 (^11

—
^10^0l)>

The first of these is effective when 030 does not vanish. The second is effective when a03

does not vanish.

The general form of expression for f(z, z')-f(0, 0), when both /(0, ^)-/(0, 0) and

f(z, 0)—/(0, 0) vanish identically, has been indicated. It then is possible to isolate a

factor z8 z'\ where

/(*, 0-/(0, o)-*»*v& *0.

such that both f{z, 0) and /(0, 2') do not vanish identically; and expressions, similar to

those which precede, can be obtained for/ (z, z').

65. When the function F(z,0), =f{z, 0) -/(0, 0), vanishes for all

values of z, another method of proceeding was given by Weierstrass*. It

was devised for functions of n variables (when n > 2) and some method is

needed for them other than the method for functions of two variables, because

with n variables it is not generally possible to extract an aggregate factor

such as zszn from the function corresponding to f(z, z) —/(0, 0). Applied
to functions of two variables, the Weierstrass method is as follows.

In the double-series expansion of f(z, z)
—
/(0, 0), valid in a domain

round 0, 0, let the terms be gathered together into groups, each group con-

taining all the terms of the same order in z and z combined
;
and suppose

that the group of lowest order is of order /x, so that we have

f(z, z') -/(0, 0)
=

(*, s% + (z, z\+1 +....

Change the variables from z and z to u and v! by relations of the form

z = au + fiu', z' = <yu + 8u,

where a, /9, 7, 8 are constants such that a.8 — @y is not zero, so that u and u

are new independent variables. Then f(z, z') -/(0, 0) becomes a regular

* See p. 140 of his memoir already quoted.
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function of u and u', say G(u, u'), the lowest terms in which are of order //,;

and
G (u, 0) = (o, 7>M U* + (a, 7)M+1 W+ 1 + . . .

,

so that, choosing (a, y)^ to be different from zero, G (u, 0) does not vanish

for all values of u.

The first of the preceding theorems can therefore be applied to G(u, u')\

the result is of the form

(u, u')
=

(a, 7)M \u» + *"-» g, (u') + . . . +#, (u')} e
1h u

'>,

where (a, y),,
is the non-vanishing coefficient, gr„ ..., g^ are regular functions

of w' which vanish with u', and /(w, w') is a regular function of u and u

which vanishes when u = and u' =
; moreover, as the lowest terms in

G(u, u') are of dimensions /x, the regular series for gr (u') begins with a term

in u'r
, for r = l, ..., /x.

When retransformation to the original variables z and 2' is effected,

we have

/(*, *')-/(0,0)
= G (u, u')

=
[{z,z'} tl +{z,z%+i + ...]e

J
(
z
>*\

where J(z, z) is a regular function of z and z which vanishes when z =

and z' =
;
and by expanding e

J ^' 2
' so as to have the complete series for

the new expression, we have

[z,z'}»
=

(z, z\,

so that, as is to be expected, the first term in g (z, z), where

f(z,z')-f(0,0) = g(z,z')e
J

(
z

>
z
l

is the aggregate (z, z')^ in the original double series iorf(z, z')-f(0, 0).

Note 1. It may be pointed out that the preceding method is effective,

even if f(z, 0)
—
/(0, 0) does not vanish. Thus for a function it might

happen that, in the regular function /(.z, 0)—/(0, 0) when it does not vanish

for all values of z identically, the term of lowest order is Azn
, while, in

f(z, z) —/(0, 0), the terms of lowest order are of dimensions less than n.

(As a matter of fact, each of these terms of lowest order will then contain

some positive power of z' as a factor). The application of the method will

then lead to an expression of the preceding form.

Note 2. In the method, the limitations upon a, /3, 7, 8 are merely ex-

clusive; they are

«S-07*O, (a, 7),*0.

Thus a certain amount of arbitrary element will appear in the result; by

varying these constants a, $, 7, 8, different expressions will be obtained which

are equivalent to one another.
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Ex. 1. Consider the function*

f=Zz' + %(z
3+ z'

3
) +JT (z*+ z'*) + ...,

the unexpressed terms being of order higher than 4. We take

z= u, z'= u+ to',

so that

f= u2+ uu' + £ (2u
3+ 3u2 u' + 3uu'2+ u'3)

+£s (2u
i+ 4u3 u'+ 6u2 u'2+ <kuu'3+ u'i) + ....

This must be equal to

(u
2+g1 u+ff2)e

a i u + b* u
' + a2u2 + b2UU

' + C2U
'2+

-,
where

ffi
= ki v! + k2 u'

2 + k3 u'
3+ . . .,

g2
= l2u'

2+ l3 u'
3 + liU'*+ ....

Expanding, and equating coefficients, we find

«a = l> *2= J> *"3— — Tfg» •••»

«2=i1

8, &2=o, c2=yV;

and thus the expression for our function becomes g (u, «') e
'M

'
u

', where

g(u, u') = u2+ u(u'+ lu'
2-^u'3

+...) + ^u'
3+ ^u'i+ ...,

and

I(u, u')
=lu+ \u' + -fe(4tu

2+hu'2
) + ....

When we retransform to the variables z and 2' by the relations

u—z, u'— z' — z,

the terms of the lowest order in g (u, v!) become zz', as is to be expected.

But the completely retransformed new expression for / is less effective than the

original expression ;
and the discussion of / in the vicinity of 0, is more effectively

made in connection with the expression in terms of z and z'.

Ex. 2. Obtain an expression for the function in the preceding example, when the

transformed variables are given by the relations

z= u+ au', z'= u+ l$u',

where the constants a and /3 are unequal ; and prove that, when retransformation takes

place, the terms of the first order in I(u, u') become z+ z'.

This last method of Weierstrass has been outlined, because of its

importance when the number of variables is greater than two. When the

number of variables is equal to two, the general case for which it was devised

falls more simply under the comprehensive results of Theorem III.

We may therefore summarise the results of the whole investigation

briefly as follows. Whatever be the detailed form of any function f{z, z),

regular in a domain round 0, 0, its general characteristic expression in the

immediate vicinity of 0, is

f(z, z) -/(0, 0) = z^z't P (z, z) e
1^ z

'\

* The expansions under Theorem I and Theorem II arise as special cases of the result given

above, p. 104.
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where I (z, z') is a function of z and z which is regular in the immediate

vicinity of 0, and vanishes when z = and z' = 0. The quantities s and t

are positive integers, which may be zero separately or together. When
either of these integers is zero, or when both of them are zero, P(0, 0) can

be different from zero for special functions
;

for all other functions, P (z, z)

is polynomial in one of its variables, the coefficients of the powers of which

are regular functions of the other variable within a limited domain, each such

coefficient vanishing when that other variable vanishes.

Level values of a regular function.

66. One immediate deduction of substantial importance can be made

from the expression for f{z, z) which has just been obtained, viz.

F(z, z') »/(*, z') -/(0, 0) = z'z't A (z, z') e
B {z '

z
'\

as to the places where f(z, z') acquires the same value as at 0, 0. When

/(0, 0) vanishes, we shall call the place a zero for f(z, z'). When /(0, 0)

does not vanish, we shall call the value /(0, 0) a level value for all the

places z, z' such that f(z, z') =/(0, 0) ;
all these places are therefore zeros

of F(z, z').

As B (z, z') is a regular function of z, z' within a limited domain of 0, 0, the

quantity e ^' z
> cannot vanish at any place in the domain. Consequently

the zero-places of F(z, z) within the domain are given by three possible sets.

When the positive integer s does not vanish, zero-places of F(z, z') arise

when
z — 0, z' m any value within the domain.

When the positive integer t does not vanish, zero-places of F(z, z) arise

when
z = any value within the domain, ** = 0.

When A (z, z') is not merely the constant A (0, 0), all the places in the

domain such that

A(z,z') =
are zero-places for F(z, z).

As regards the first set, we obtain an unlimited number of zero-places
of F(z,z) within the domain of 0, 0; they constitute a continuous two-

dimensional aggregate, the continuity being associated with the plane of z

alone.

As regards the second set, we obtain also an unlimited number of zero-

places of F(z, zf) within the domain of 0, ; they too constitute a continuous

two-dimensional aggregate, the continuity now being associated with the

plane of z alone.

For the third set, there is no additional zero-place for F(z, z'\ if A (0, 0)

is a non-vanishing constant
;
in that event, either s, or t, or both s and t,

must be different from zero. When A (0, 0) does vanish, the function
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A (z, z') either is polynomial in z and (usually) transcendental in ft, or is

polynomial in z and (usually) transcendental in z
;
and these alternatives

are not mutually exclusive. In the former case, for any assumed value of z

within the domain, there is a limited number (equal to the polynomial

degree of .4) of values of z, which vanish with z and usually are trans-

cendental functions of z
; hence, taking a succession of continuous values of z'

in the domain, we have, with each value of* /, a limited number of associated

values of z. All these places taken together constitute a continuous two-

dimensional aggregate; the continuity now is associated with both planes,

each value of / having a definite value of z or a limited number of definite

values of z associated with it, all within the assigned domain of 0, 0.

Similarly, in the latter case, as regards A (z, z') ;
the same result holds when

the appropriate interchange of z and z is made in the statement
;
and the

two-dimensional aggregate is unaltered.

Ex. 1. Among the simplest examples that occur, are those when A (z, z') can be

expressed in a form

az+P(z'\

where a is a constant and P (z') is a regular function of z' given by

P(z') = bz'+ cz'
2
+...,

b not being zero. Then A (z, z'), with an appropriate change in B (z, z') which is the

function in the exponential, can also be expressed in the form

bz'+ R(z),

where the regular function R (z) is given by

R(z)=az+Cz2
+...,

with suitable values of the constants C, The zero- values are given by the two-

dimensional aggregate
~az= P{z'\ -bz'= R(z).

The result is the generalisation of the known property whereby, in the vicinity of

a real non-singular point £, q on an analytical curve f(r, y)=0, we have

the linear term in P {y
-

77)
combined with x -

g, and the linear term in R(x — |) combined

with y - t), give the tangent to the curve at the real ordinary point |, r)
on the curve.

Ex. 2. In both cases that arise out of the alternative forms of A, the actual determi-

nation of the set of values of z in terms of / (or of the set of values of z' in terms of z) can

be made as in Puiseux's theory of the algebraical equation f(w, z)—0, the governing terms

being selected by the use of Newton's parallelogram. For example, in the case of the

zeros of the function

f(z, z')-f(0, 0)= an zz'+ a30z
z+ a2iz

2
z'+ a12 zz'

:i+ a
()3 z'

3+ ...

within a small domain round 0, 0, we find three values for z in terms of z', viz.

au\h ,1 1 . ,W Y Z +o^-2(a40«ll-«21«30)2+.
"30/ ^a30

(~S^ /i+ 2^ («40«n-« 21 a3o) /+
...[;

Z= ~? Z
'2 + TTi (a12«03 - «11 «04) ^  
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and there are three corresponding values for z' in terms of z, viz.

z
'= ~\~

<

7r) z^+ ^~2(aoiO'n-al2am)z+ ..

\ «03/ SWfli

Z>= -? 22+ I-^(a21«03-«ll«40)2
3 +.--

uu an

If «3o is zero, the first two series in the earlier pair are not valid
;

if a03 is zero, the first

two series in the later pair are not valid. If all the coefficients a^ vanish so that

f(z, 0)—/(0, 0) vanishes for all values of z, only the third expression in the earlier pair

survives. If the first coefficient a^, which does not vanish, is a^, there is a set of

r - 1 expansions in a cycle corresponding to the above two which exist when a^ does

not vanish. And so on, for the respective cases.

Ex. 3. Quite generally, it may be stated that the detailed determination of the

behaviour of F{z, z
1

)
in the vicinity of 0, 0, so as to obtain the nature of its zeros as

well as the actual positions of its zero-places, has a close resemblance to the method

of proceeding in the consideration of an equation f(w, z)=0, which is algebraical both

in w and in z, and in the determination of the associated Riemann surface*.

67. All the results relating to the zeros of F(z, z) can apply, in

descriptive range, to a determinate finite level value (say a) of a uniform

function f(z, z) in a domain where it is regular. Let a, a' be a place

where / acquires the value a
;
so that

f(a, a')
= a.

For places a + Z, a' + Z' near a, a' within the domain of a, a', we have

f{z,z')=f(a + Z,a' + Z')

=f(a,a') + SZcmnZmZ\
that is,

f{z,z')-a=^cmnZ™Z'\

Thus the places within the domain of a, a' where/ acquires the level value a

are given by the zeros of the double series which itself vanishes when Z=0,
Z' = ().

Hence the level places which give a determinate finite value a to a

function f{z, z') form a continuous aggregate within the domain of any one

such level place.

Manifestly, as we are dealing with properties of a uniform function of /
which is regular within the domain of an ordinary place, the values of/ must
be finite (for poles do not occur within such a domain) and they must be

determinate (for singularities, whether unessential or essential, do not occur

within such a domain). The behaviour of a function in the vicinity of a pole
and in the vicinity of an unessential singularity will be discussed separately.

* For this subject, see Chapter vm of my Theory of Functions for the discussion of the

algebraical equation and Chapter xv for the construction of the associated Riemann surface.

Reference should also be made to the early chapters of Baker's Abelian Functions.
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68. Not because of any immediate importance for a single function of

two variables but mainly because of the need of estimating the multiplicity
of a common zero-place or a common level-place of two functions of two

variables, it is worth while assigning integers that shall represent the orders,

in z and z' respectively, of the zero of f(z, z') —f(a, a') at the place (a, a).

By the preceding proposition, for a place z = a + u, z' = a +u in the im-

mediate vicinity of a, a', we have

f(z, z) —f(a, a) = u8 urt

G{u, u'),

where G is regular in the domain, and the integers s and t can be chosen so

that G (u, 0) does not vanish for all values of u and G (0, u') does not

vanish for all values of u' . The positive integers s and t can be zero, either

separately or together.

As G (u, 0) does not vanish for all values of u, there exists a series

Q (u, u')
= u™ + um->

q, {it') + ... + qm (V),

where q^u), ..., qm {u') are regular functions of u' vanishing with u, such

that

G(u, u')
= KQ{u, u')e

Q (
u

'
u
'\

where if is a constant and Q (u, u') is a regular function of u and u vanishing
with u and u'. Thus for any small value of u', there are m small values of u,

making G (k, u') zero.

As G (0, u) does not vanish for all values of u, there exists a series

R (u, u) = u'n + u'11-1 rx (a) + ... +rn (u),

where r^a). ...,rn (u) are regular functions of u vanishing with u, such

that

•

G{u> u')
= LR(ii,u')e

R{v> l{

\

where L is a constant and R (u, u') is a regular function of u and u vanishing
with u and u'. Thus for any small value of u, there are n small values of u,

making G(u, it) zero.

In both of these cases, G (u, u) vanishes when u = 0, u' =
;
and then

neither of the integers m and n is zero. There remains a third case, when
G (0, 0) is not zero

;
then

G(u,u') = G (0,0) /("'"'),

where / (u, u') is a regular function of u and u' vanishing when u = and
u' = 0. Thus no small values of u and ii make G (u, u') vanish

;
and then

both of the integers m and n are zero.

With these explanations, we define the orders of the zero of the function

f{z,z')-f{a,a')

at a, a as s + m for the variable z and as t + n for the variable z . But it

must be pointed out that the zero of the function at a, a' is not an isolated
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zero, for it is only a place in a continuous aggregate of zeros
; still, a

settlement of an order in each variable at a place a, a' is convenient as a

preliminary to the settlement of the multiple order (Chap, vn) of such a place

when it is a simultaneous and isolated zero of two functions considered

together.

Relative divisibility of two regular functions near a common zero.

69. Before proceeding to obtain the expression of any uniform analytic

function in the vicinity of a singularity, it is important to consider the

behaviour of two uniform functions f(z, z) and g(z, z) simultaneously, both

being regular within a common domain which will be taken round 0, 0.

First, suppose that g (0, 0) is not zero
;
then we have seen that a uniform

function S (z, z) exists, which vanishes when z = and z' — and is regular
in a domain in the immediate vicinity of 0, 0, and is such that

g(z,z') = g(0,0)e^
z > z

">

for that domain. Also, we know that we can take

f(z, z) =/(0, 0) + A<f>(z, *V*'^<*> f>\

where s and t are non-negative integers, <f>(z, z
1

) is polynomial in z and

regular in z
,
and R (z, z) is a uniform function of z and z' which vanishes

when z = and z' = and is regular in a domain in the immediate vicinity
of 0, 0. Consequently

£££!
=
droj f/<0' 0) + A * (z' z,) w,<jE "•

*) e
' s<" *

The right-hand side, whether /(0, 0) vanishes or not, can be expressed as

a regular double series U(z, z); that is,

When a uniform function f(z, z') is expressed a9 a double series P (z, z'\ and
another uniform function g(z, z) is expressed also as a double series Q(z, z'),

and when a third uniform function U(z, z') exists such that

Q(z,z)

all the functions being regular in a domain round 0, 0, we say, following
Weierstrass*, that the series P(z, z') is divisible by the series Q{z, z').

* Ges. Werke, t. ii, p. 142.
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It therefore follows that, when g (0, 0) is not zero, the regular function

f(z, z) is divisible by the regular function g (z, z), the regularity of both

functions extending over a domain round 0, 0; and the result is true whether

/(0, 0) is zero or is not zero.

70. Next, suppose that g (0, 0) is zero
;

then we know that we can

take

g(z,z')
= Bz*z"eT (

z > z
"> X (z,z'),

where B is a constant; a and r are non-negative integers; T(z,z') is a

function of z and z', regular in the immediate vicinity of 0, and vanishing
when z = and z' =

;
and x {z>

z') is a function which is a polynomial in z

having functions of z' for its coefficients, these coefficients being regular in the

immediate vicinity of z'= and vanishing when z' = 0. The form off(z, z)
is the same as before. It at once follows that, when /(0, 0) is not zero, we

cannot express
f(z,z')

9(z >
z )

in the form of a regular function
;
in that case, the function f(z, z) is not

divisible by g (z, z').

But when/(0, 0) is zero, as also is g (0, 0) under the present hypothesis,
then we have

/(*, z) _ Az^'^jz^^e
11 <«*')

g (z, z) Bz°z'T
x (z,

z ) e
1 <2 ' z)

= A ***''<£(*>*')
e
R (z, z) - T (z, z) .

B z^z'* x iz,
z')

Now R (z, z) — T(z, z) is regular in the immediate vicinity of 0, and

vanishes when z = and z' =
;
hence the exponential factor in the last

expression admits the divisibility off(z, z') by g (z, z'). Also this divisibility

is admitted, so far as powers of z are concerned, if s > a and, so far as powers
of z' are concerned, if t > t. There remains therefore the divisibility of

(f>(z,z') by x(z >
z
')>

where (for the present purpose) we shall assume that

both
<$> (z, z) and x iz>

z
') are polynomials in z the coefficients in which are

regular functions of z' in the immediate vicinity of z — and vanish when

z
1 = 0. Manifestly the degree of

<f> (z, z) in z cannot be less than that of

Y (z, z'), if divisibility is to be possible ; accordingly, we suppose that

0, z')
= zm + zm~l

gi + ... + gm ,

x {z,z')
= zn -t-z"-^ +...+K,

where m^n, and all the coefficients gi,-..,gmi h
1 ,...,hn are regular

functions of z in the immediate vicinity of z — and vanish when z = 0.

When
(f> {z, z') is divisible by x (*» z')> the quotient is manifestly of the

form
~m—n i «.m—n—l b. i i i.£ -T 6

rt-j -f- . . . T A-m_M ,
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where the coefficients k1} ..., km-n are functions of z
1

. Also

g1
= h 1 + klt

g2
= h 2 + h1k1 + k2 ,

^m—n'

gr
= hr + hr^ki + hr^2k2 +

Cfm
= ",n":

ti

From the first, it follows that the function k
x

is regular and vanishes when

z =
;
from the second, that the function k2 is regular and vanishes when

z =
;
and so on, in succession from the first m — n of these relations.

Also all the relations are to be satisfied, by appropriate values of klf ...,

km-n ,
for all values of z in the immediate vicinity of z = 0. The conditions,

necessary and sufficient to satisfy the last requirement, are that, when we form

the n independent determinants each ofm — n rows and columns from the array

9\
—

hi> 9% ^2> ffa "s> •••> 9n "ti> 9n+i) •••> 9m-i> 9**

l
, K , K , •-., o

,
o

, ..., o
,

o

,
1

, K , ..., , , ..., ,

, , , ..., , ..., hn ,
An_,

o ,
o

,
o

, ..., ,..., o
, K

each of these n determinants must vanish identically for all such values of z '.

Thus there are n conditions. The form of the conditions should, however,

be noted. As all the functions g and h are regular functions of z in the

immediate vicinity of z' = and vanish when z — 0, each of the n deter-

minants is also a regular function of z' in the immediate vicinity of z =

and vanishes when / = 0. Each determinant is to vanish identically for

all values of Z* in the range round z' =
;
and therefore every coefficient, in

the power-series which is the expression of the determinant, must vanish.

Thus in practice, when the power-series are infinite, the number of relations

among the constants would be infinite for each of the conditions; the

arithmetic process could not be carried out in general*. But the n

analytical conditions among the functions would still remain, in the form of

determinants that are to vanish identically.

Thus, in particular, the conditions, that the function

should be divisible by the function
z'
i+ z/i

l + h.z ,

arc that the two independent determinants from the array

1
,

h
y ,

A2

* In particular cases, it might be feasible, e.g. when there are known scales of relation

governing all the coefficients.
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shall vanish identically. When the two conditions are satisfied, the quotient is

ho

The general argument shews that the function g3 /h2 is to be regular and to vanish with d;
a limit upon the orders of the lowest powers of z' in h2 and g3 is thereby imposed.

Relative reducibility of functions.

71. Further, it is important to discover whether, even in the case

when a function
tf> (z, z') is not actually divisible by a function ^ (z, z'),

both being of the foregoing type, each of them is actually divisible by a

function ty(z, z') also of the same type: that is to say, if yfr(z, z) exists,

it is to be a polynomial in z the coefficients of which are regular functions

of z' in the immediate vicinity of z' = and vanish when z
1 = 0.

A method of determining the fact is as follows. Both
<f>(z, z) and ^{z, z')

must vanish for all the places where ^ (z, z) vanishes, if
yfr

exists. We
therefore regard

<f>(z,z')
= 0, x (z,z') = 0,

as two simultaneous algebraical equations in z. We eliminate z between

these two equations, adopting Sylvester's dialytic process. The resultant is

a determinant of m+n rows and columns, every constituent in the deter-

minant (other than the zero constituents) being divisible by z'
;
and therefore

this resultant is of the form

*> e o'),

where fi is a positive integer not less than the smaller of the two integers

m and n, and where © (/) is a regular function of z in the immediate

vicinity of / = 0, when it is not an evanescent function.

When © (z') does not become -evanescent, the values of z' different from

z' = which make the resultant vanish are given by the equation

% (z) = ;

and these values of z form a discrete and not a continuous succession. In

that event, for each such value of z and for the specially associated values

of z, both <j>
and % vanish. But their simultaneous zero values are limited

to these isolated places ;
there is no function

yjr (z, z) possessing a continuous

aggregate of zero-places in the vicinity of 0, 0.

When ®{z) is evanescent, the functions <$>{z,z) and %(z, z) become

zero together, not merely at the place 0, 0, but at all the continuous

aggregate of places where some function yjr (z, z), as yet unknown, vanishes
;

for there is no equation © (z) — limiting the values of z' and requiring
associated values of z.
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In the latter case, (/> (z, z') and % (z, z
1

) possess a common factor yfr (z, z),

which necessarily will be a polynomial in z of degree less than n
;
and the

polynomial will have functions of z' for its coefficients, all of which are

regular in the immediate vicinity of z' = and vanish when z = 0. Let

yfr(z, z')
= zP + zP- 1

kj. + ... + kp \

as | is a factor of
(f> by hypothesis, and also a factor of % by hypothesis,

our earlier analysis shews that (as already stated) klt ..., kp are regular

functions of z' in the immediate vicinity of z' = and vanish when z' = 0.

Accordingly, let

P^-
Z

-l = zm~P + z™-?-1

Gj+ . .. + Om-p,
<f{z,z)

V?' 1 = zn~P + zn-P~* H
, + ...+ Hn-.p ,

yjr(z,z)

where all the coefficients Glt ..., Gm-P> Hlt ..., Hn_p are regular functions

of / in the immediate vicinity of z' = and vanish when z' = 0. Consequently

the relation

(z
m + z™-1

g1 + ...+ gm)'(z
n-p + zn~p~lH1 + ...+Hn_p )

=
(Z
n + Zn

~
l h1 +...+hn) (z

m~P + Zm-P-' &»+... + Om-p)

must be satisfied identically for all values of z and z within the im-

mediate vicinity of 0, 0, the common value of the equal expressions being

(f> (z, z) x (z, z') + x/r (z, z'). Equating the coefficients of the same powers of z

in the expressions, we have m + n—p relations, linear in the (n
—
p) + (m —p)

unknown functions HY , ..., Hn-P , lf ..., Gm-P . When these are eliminated

determinantally, we have m + n — p — (n
—
p)

— (m — p), that is, we have p,

equations in / which, being satisfied for all values of z
,
must become

evanescent. The conditions for this evanescence, which are thence derived

as existing between the coefficients of
</>

and %, are the conditions necessary

and sufficient for the existence of
yfr (z, z').

When these conditions are satisfied, the actual expression of
i/r (z, z) can

be obtained by constructing the algebraical greatest common measure of

(f){z } z') and %(z, z'), regarded as polynomials in z.

We thus have analytical tests determining whether two functions $ (z, z)

and x (
z

>
z
')>

eacn polynomial in z and having for the coefficients of powers

of z regular functions of *' which vanish when z' — 0, are or are not divisible

by a common factor of the same type as themselves. To these tests, the

same remark applies as in § 70 ;
each condition usually would, in practice with

infinite power-series, require an infinite number of arithmetical relations

among the constants. Still, the analytical tests remain in the form indicated.

When the tests are satisfied, the two functions are said to be relatively

reducible ;
each of them is said to be reducible by itself.
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Note 1. The processes connected with finding the conditions are those

connected with constructing eliminants in algebra. Thus, in order that the

functions

z4 + gx z
3 + g2z

2 + g3z + #4 ,
z2 + h x z

2 + h2

should have a common factor linear in z, all the coefficients of powers of z'

in the final expansion of the determinant

gi-K,
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and so on
;
and the second function is expressed in the similar form

{a 'z*+ z(a1'z'+ ai'^+ ...)+ a2'z'2+{j3
'

2>z+...}e*<>
z + Xi z

' +
---,

where

V= -^/> V= -Tjj («o'V
-

«i'V)> •••,

1 a '

"2 = —• «b2
' -

«s'V) -
ra («o'V -

«i'6o')i
«0 "0

#3'=&3
' -^ («o'&i'

-
«i'V),

and so on. We then must have the condition or conditions that

a z2+ z(a1 z'+ a2 z'
2+ ...)+ a2z'2+p3 z'

3
+...

and
a 'z

2
+z(a1'z'+ a2V2+ ...) +a^2+ftV3+ . . .

should possess a common factor of the type

z+ R(z
/

),

say
z+ y1

z
, + y2 z'

2 +....

Let these two expressions, which are quadratic in z, he denoted by

«o*
2
+*£i + £2> ao'z^+ z^+rfi.

They both will vanish, if they possess a common factor linear in z and if that factor

vanishes. When they vanish, we have

aoZ
2
+z£i + £2 =0, aQ'z

2
-{-zri l+ Tf2 =0,

simultaneously ;
and therefore the relations

will be satisfied for the value of z, in terms of /, which makes the common factor vanish.

Thus we must have

(li Vi
-

£2m ) Oh «o
-

$i «o')
=

(I2 «o'
-

"72 «o)
2
>

satisfied identically for all values of z'
;
and the value of 2, which would make the common

factor vanish, is given by
„ ^2«o'-»72«0
2=

j. , .

>7i«o-Ci«o
Now

£ 1 V2
-

&>7i=^3
{(«i <h'

-
«i'«2)+ («i&' -

«i'/33+ 02*2'
~ a2'a2) z' + ...},

^2«o'
-

»?2«o=^2
{(«o'«2

-
«2'«o) + («o'/3s

-
00)83') / +.. .},

>h«o
-

^iOo'= 2' {ao«i'
-

«i«o' +(«o«2'
- a 'a2) /+ ...} ;

and therefore, disregarding the factor z'\ the expression

{a 'a2
- a2'oo+ (ao'&j

-
Ooftj') 2' + • • • }

2

-
{(«i "2'

-
«i'a2) + («i&' - «i'/33+ a2«2'

~
<*2<h) ^+ • • •} {(«o«i'

-
«i «o')+ («o<»2'

-
a„'a2) *'+...;

must vanish identically, for all values of z\ Let the expression be denoted by

Cn+ Cx z'+...\

then we must have
C =0, 0,-0, ...,

as the arithmetical relations between the constants.
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Also the value of z, which makes the common factor vanish, is

,
« 'a2

~
flo'Oo+ (ao'#3 - «0 S3') z' -\- ...= z

a ai
— a

x Oq + (a a2
' - a 'a2) z'+ ...'

Consequently, when all the relations between the constants are satisfied, the common

factor is

where

and so on.

z+ yiZ
,

+y2 z'
2+ ...,

«2
-

«0«2'

72
~

(ao'ax-ao^i')
2

(a '«2
-

«2'«o) («0«2'
-

«o'a2)
~

(«0«l'
- «W) («0#3 ~ «0#3')

It is clear that, in the absence of general laws giving relations between the coefficients

in each of the two functions, we cannot set out the aggregate of relations (7=0 and the

aggregate of constants y.

Expressions of functions near a pole or an accidental singularity.

72. • The non-ordinary places of a uniform function have been sorted into

three classes, the poles (or accidental singularities of the first kind), the

unessential singularities (or accidental singularities of the second kind),

and the essential singularities.

The simplest of these, in their analytical character and in their effect

upon the function, are the poles. Let p, p' be a pole of a uniform function

f{z,z
,

)\ then, after the definition, some series of positive powers of z — p,

z —p exists, say F(z — p, z —p'), which is regular in the immediate vicinity

of p, p' and vanishes when z=p and d =p', and is such that the product

f{z,z')F(z-p,z'-p')

is regular in the vicinity of p, p and does not vanish when z = p, z
1

=p'.

Thus the function f(z,z') acquires a unique infinite value at a pole;

that is, the infinite value is acquired no matter by what laws of variation

the variables z and z tend towards, and ultimately reach, the place p, p.

Further, the pole-annulling factor F (z
—

p, z —p') is not unique ;
a factor

F{z-p,z'-p')e
R,

<
z -^ z

''P'\

where R(z—p,z'—p') is any regular function of z -p and z' —p\ would have

the same effect. All such factors we shall (for the present purpose) regard

as equivalent to one another
; they can be represented by F (z

—
p, z —

p).

Moreover, there cannot be more than one such representative factor for

f(z, z') at a pole ;
if there were two, say F{z -p, z' - p') and G (z -p, z' -p'),

we should have

f(z, z')F(z—p, z'-p')= regular function, not vanishing when z=p and z'=p\

f{z,J)G{z-p,z'-p)= ,
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and therefore p, p' would be an ordinary non-zero place for the quotient

F(z-p,z -pi)

which is impossible unless F is divisible by 0, and it would be an ordinary
non-zero place for the reciprocal of this function, which is impossible unless

G is divisible by F.

Hence, denoting the representative factor by F, we have

f{z, z')F(z-p, z' -p') = kw> + kw (z-p) + kn(2> -p') + ....

the series on the right-hand side being a regular function in a domain of

p, p' ;
and therefore

1 = F{z-p,£-p)
f(z, z')

~
koo + kw (z -p) + k01 0' - p') + ...

= a regular function (§ 69) of z and z in a domain of p, p',

vanishing when z=>p, z'=p.

It therefore follows that a pole of f(z, z) is a zero of -^ r- , so that the
f(z, z )

place p, p' is an ordinary place for the function
-j-.

-p.. Hence, in the

vicinity of a pole of f(z, z'), it is convenient to consider the reciprocal

function, say

and then the behaviour of f(z, z) in the vicinity of the pole p, p' can be

described by the behaviour of
<f> (z, zf) which is regular in the vicinity of

its zero there. Moreover, any zero of f(z, z') in a domain of p, p is a

pole of
(f) (z, z'); hence the domain of p, p', within which

<f>(z, z') is regular,
does not extend so far as to include any zero off(z, z').

As
<f> (z, z') is regular in this domain of p, p', and as it vanishes at p, p\

it has an unlimited number of zero-values in the immediate vicinity of

p, p', and these occur at places forming a continuous two-dimensional

aggregate tnat includes p, p. Hence in the immediate vicinity of any pole

of a uniform analytic function, there is an unlimited number ofpoles forming
a continuous two-dimensional aggregate that includes the given pole.

Further, we have definite integers as the orders of the zero of
<f> (z, z')

in the two variables at p, p', the integer being derived from the equivalent

expressions of
<f>(z, z') in the immediate vicinity of p, p ;

these integers will

be taken as the orders of the pole off(z, z') in the two variables at p, p.

Cor. Manifestly, a pole of f(z, z') of any order is a pole of f(z, z') — a

of the same order, where I a I is finite.
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73. An unessential singularity (an accidental singularity of the second

kind, to use Weierstrass's fuller phrase) of a uniform function f(z, z) at a

place s, s' is defined by the property that there exists a power-series

F(z — s,z' — s
/

),
which is a regular function of z and z in the immediate

vicinity of s, s' and vanishes at s, s', and is such that the product

f(z,z')F(z-s,z'~s)

is a regular function in the immediate vicinity of s, s, and vanishes at

s, s. Let this latter regular function be denoted by H(z —
s, z —

s').
No

generality is lost by assuming that the functions F and H have no common
factor vanishing when z = s, z = s'. We then have a fractional expression
for /, viz.

. ,x _ H(z-s,z - s)
/{*,*)- F (z-s,z'-s')'

As in the case of a pole of f(z, z) at p, p, the function F(z—p,z'—p)
was representative and unique, so here each of the functions H (z

—
s, z' — s')

and F (z
—

s, z' — s') is representative and unique, when H and F have no

common factor vanishing when z = s, z' = s'. The functions H and F can

of course have any number of exponential factors, each exponent being a

regular function of z — s, z' — s
;
but no factor of that type affects the

characteristic variations of / in the immediate vicinity of that place. Thus,
in our expression for f(z, z), we can regard the representative functions H
and F as unique.

To consider the behaviour of f at, and near, the accidental singularity,

write

z — s = cr, z' — s' = cr'
;

then we have expressions of the form

H(z-s,z' - s')
= Eam <r'

m '

[a
1 + cr'"

1
lh {*') + ... + h^a')) e

S^ ff

'\

F (z-s,z'- s')
= Dan a'n

'

{<r
k + o**fx (a')+ ... +fk (a')} £ f*

a
'\

where E and D are constants : m, m!
, n, n are positive integers, each zero

in the simplest cases : I and k axe positive integers, each greater than zero

in the simplest cases; hl} ..., hi,f1} ...,fk are regular functions of cr' in the

immediate vicinity of a = and vanish with a
;
and H, F are regular

functions of or and a in the immediate vicinity of a = 0, a = and vanish

with cr and a', so that neither H nor F can acquire a zero value or an infinite

value from the factors e
H and e

F
. Moreover, H and F are devoid of any

common factor : so that either m or n (or both) must be zero, and m' or n

(or both) must be zero. Also

a1 + a** ^ (o
.'

} + ... +^| (o-'),
ak + cr^f, (cr') +...+/* (cr')
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have no common zero in the immediate vicinity (defined as a region round

a of radius less than the modulus of the smallest root of the resultant of

these two polynomials) of a = 0, a = save actually at 0, ;
for their

eliminant is a function a* % (</) which does not vanish for small values of a'

other than a = 0.

Manifestly, the value of f(z, z') at s, s' is not definite ;
it can be made to

acquire any value by assigning appropriate laws for the approach of z to *

and of z' to s' . In the immediate vicinity of s, s', f(z, z') possesses

(i) an unlimited number of zeros, given by zero-values, other than at

0, 0, of a1 + a 1
'

1

h, (*') + ...+h{ (</) ;

(ii) an unlimited number of poles, given by zero- values, other than at 0, 0,

(iii) an unlimited number of places at which it assumes a level value of

finite modulus;

but a- = and a = is the only place in the immediate vicinity of 0, 0,

where the value of f(z, z') is not unique and definite. Hence we have the

result :
—

The unessential singularities of a uniform function f(z, z') are isolated

places in the domain of existence of f{z, z
1

) ; the value off at an unessential

singularity is not definite ; and, in the immediate vicinity of any unessential

singularity, there is an unlimited number of places where f can assume any

assigned definite value, zero, finite, or infinite.

Further, let the unessential singularities (each of them being an isolated

place) of a uniform analytic function be represented by am , a'm ,
where

ra = l, 2, They may be finite in number or infinite in number. When

they are infinite in number, the places am ,
a'm must have one or more limit-

places ;
let such a limit-place be b, b'. As regards the function in a small

domain round b, b', it cannot be represented by any of the different foregoing

expressions, suitable to the respective vicinities of an ordinary place, a pole,

and an isolated unessential singularity. The limit-place must therefore be

an essential singularity of the function.

Expression near an essential singularity.

74. The definition of an essential singularity of a uniform function, that

has been adopted after Weierstrass, is mainly of an uninforming character—
to the effect that, in the immediate vicinity of such a place, no power series

U(z, z) representing a regular function and vanishing at the place can be

obtained such that the product

f{z,z')U{z,z')
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is a regular function of z and z. But, as is known to be the fact with

uniform functions of a single variable, essential singularities cannot effectively

be sorted together in one class : there can be points, or lines, or spaces, of

essential singularity for a uniform function of a single variable. The con-

ception of added complications, when we deal with uniform analytic functions

of more than one variable, needs no argument for postulation, though it

gives no substantial assistance towards analytical formulation.

It may however be added that one large question dealing with the

essential singularities of a uniform analytical function has occupied a

number of memoirs published in recent years.

We have seen that the zeros of an analytical function of two variables

constitute a two-dimensional aggregate, and likewise that its poles con-

stitute a two-dimensional aggregate. We have also seen that its unessential

singularities are isolated places.

The question just mentioned relates to the aggregate constituted by
the essential singularities of a uniform analytical function

;
for its dis-

cussion, as well as for other matters, we shall refer to the memoirs indicated*.

* The chief memoirs are those by Hartogs, viz. Math. Ann., t. lxii (1906), pp. 1—88 ; Munch.

Sitzungsb., t. xxxvi (1906), pp. 223—242; Jahresb. d. Deutscher Math. Vereinigung, t. xvi (1907),

pp. 223—240; Acta Math., t. xxxii (1909), pp. 57—79; Math. Ann., t. lxx (1911), pp. 207—222.

See also a memoir by E. E. Levi, Annali di Mat., Ser. iii, t. xvii (1910), pp. 61—87.



CHAPTER V

Two Theorems on the Expression of a Function without Essential

Singularities in the Finite Part of the Field

75. We now come to the consideration of a couple of theorems relating
to the expression of a uniform analytic function of two variables. In the

first of them, we have to deal with a function that has no essential

singularities within the whole range of the field of variation of z and /
;
the

function then has the form of a rational function of the variables. In the

second of them, we have to deal with a function that has no essential

singularities within the range of the field of variation of z and z' such

that \z\^R, \z'\t.R', where R and R' can be taken as large as we please ;

the function then has the form of the quotient of two functions, each of which

is a regular function of z and z' for the values of z considered *.

76. First of all, consider a polynomial in z and z'
, say

p(z,z')
= ^zn +^z^+... + ^n ,

where £ , £,, ..., £n are themselves polynomials in z. Then we at once have

the results :
—

(i) every finite place is ordinary for p (z, z) ;

(ii) with every finite value z'
,
that is not a zero of f ,

can be associated

n finite values of z, such that each of the n places thus constituted

is a zero for p (z, z'), repetition of values of z causing multiplicity

of zero-places for p (z, z') ;

(iii) with every finite value z, that is a zero of £„ and is such that

£r (r > 0) is the first coefficient of powers of z in p (z, z) which

does not vanish, can be associated n — r finite values of z, such

that each of the n — r places thus constituted is a zero for p (z, z') ;

(iv) the poles of p (z, z') are given by infinite values of
|

z
|
and finite

values of z' other than the roots of f , and by infinite values

of
|

z' I and finite values of z other than the roots of the coefficient

* Both theorems were enunciated by Weierstrass for n variables, but without proof ; references

will be given later.
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of the highest power of z' in p (z, z) arranged in powers of z, and

by infinite values of
j

z
|

and of
j

/
| ;

(v) the unessential singularities of p (z, z'), if any, are given by infinite

values of
|

z
|

and by the roots of £„> but each such place is an

unessential singularity only if other conditions are satisfied
;
and

similarly for infinite values of \z'
\

and by the finite values of z

excepted in (iv), but each such place is an unessential singularity

only if other conditions are satisfied : so that, in general, p (z, z')

has no unessential singularities ;
and

(vi) there are no essential singularities of p (z, z).

77. In the next place, consider an irreducible rational function of z

and z', say

R {z> z')=P^,q{z,z)

where p (z, z) and q {z, z) are polynomials in z and z
,

p(z,z')
= £ zn +&"-! + ...+£„,

q 0, Z')
= VoZ

m + 7)x
Zm-^ + ...+%„,

while £ , ..., £n , t] , ..., rjm are polynomials in z alone. Then it is easy to

infer the following results :
—

(i) every finite place, that is not a zero of q(z, z'), is ordinary for

R{z,z');

(ii) every zero of p (z, z'), that is not a zero of q (z, z), is a zero of

(iii) every zero of q (z, z'), that is not a zero of p (z, z), is a pole of

R(z,z');

(iv) every place, that is a simultaneous zero of p (z, z') and of q (z, z)
which have no common factor because our rational function is

irreducible, is an unessential singularity of R (z, z) ;

(v) the behaviour of R (z, z) for infinite values of \z\ or of \z'\ or of

both
|

z
|

and \z
f

\, depends upon the degrees ofp (z, z') and q (z, z)
in z and in z', while every such place is either a zero, or ordinary,
or a pole, or an unessential singularity ;

and

(vi) the rational function R (z, z') has no essential singularities.

Functions entirely devoid of essential singularities.

78. Now we know that not a few of the important properties of uniform

analytic functions of a single variable are deduced from those expressions of

the function which arise when special regard is paid to its singularities ;
and

occasionally some classification of functions can be secured according to the
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number and nature of these points*. In particular, we know that a uniform

function, devoid of essential singularities throughout the whole field of

variation of the variable $, is a rational function of z. Of this result, there is

the generalisation, given by the theorem f :
—

A uniform analytic function of two complex variables z and z
, having no

essential singularity in the whole field of their variation, is a rational function

of z and z' .

To establish this theorem, we proceed as follows.

Let / {z, z') be a uniform function of z and z, entirely devoid of essential

singularities;
and let any ordinary place (say 0, 0) be chosen which is a

non-zero place of the function. In the vicinity of 0, 0, let the expansion of

f(z, z') be

f(z,z) = £ £ cm>n z
m

z'
n

;

w=0 n-Q

and suppose that this series converges absolutely within a domain
|

z
j

< r,

z'\< r. Manifestly, after the supposition as to /(0, 0), the quantity c00 is

not zero.

Within the domain, we have

f(z,z')= I (£ cm ,
n z'Azm,

m=0 \n=0 /

because the double series converges absolutely; so, writing

Qm \Z )
= £ Cm> nZ ,

M=

we have

f(z,z')=lz™gm {z').

Consequently, for all values 0, 1, ... of m, and for all values of z within the

domain, we have

Now / (z, z') is everywhere a uniform analytic function without essential

singularities ; consequently every derivative of f{z, z'), at every place in the

* Of course, there are other classifications, such as those connected with the kinds of aggregate

of the zeros of a uniform analytic function of a single variable, leadiug to the class (genre)

question that has been the subject of many investigations in recent years, initiated by Laguerre,

Poincare, Hadamard, Borel, and others.

t It is the first of the two theorems which, as already stated, were enunciated by Weierstrass

without proof. His enunciation, given for n variables instead of two only, is to be found Ges.

Werke, t. ii, p. 129.

A proof is given by Hurwitz, Crelle, t. xcv (1883), pp. 201—206, for n variables; and this

proof is followed by Dautheville, Etude sur les series entieres par rapport a plusieurs variables

imaginaires inde'pendantes (These, Paris, 1885). Hurwitz's proof, modified for the case of two

variables, and amplified, is substantially adopted in my text.
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field, also is a uniform analytic function without essential singularities. At
the places 0, z' within the domain, the converging series denoted by gm (z')

represents a derivative of f(z, z); it is therefore an element of a function of

a single variable z', which is uniform, analytic, and devoid of essential

singularities. But we know* that such a function of a single variable is a

rational function of the variable
;
and therefore gm (z') is an element of a

rational function of z . Denoting this rational function by Am {z'), or by Am ,

for all values of ra, we have

gm (z')
= Am (z'),

for all values of / within the domain
;
and so, within that domain, we have

f(z,z')=A + A 1z + A 2z
2 + ...,

where now A
,
A l} A 2 ,

... are rational functions of z which have no pole

anywhere within our domain.

Moreover, when z = 0, z' = 0, the quantity c00 is not zero, so that A (0) is

different from zero. Hence we can choose a more restricted domain given

by !

z
|
^ 8 and

|

z'
|
^ 8', where 8 and 8' are not infinitesimal, such that the

uniform analytic function f(z, z') is everywhere regular and different from

zero.

Assign an arbitrary value a to z in this restricted domain, that is, such

that \a\^8'. Then f(z, a) is a function of a single variable only; it is

uniform
;
and it possesses no essential singularity ;

it is therefore a rational

function of z, so that we may write

£(. ^_B<s + B1z + ...+Brz
r

/{z' a) -c + c\zir^mr'
As a rational function of z has a limited number of zeros and of poles, the

highest index of z in the numerator and the denominator combined is finite :

that is, r is a finite integer. No generality is lost by assuming that Br and

Cr are not zero together. If B were zero, then z = and z = a would be

a zero of / (z, z), contrary to the supposition that / does not vanish within

the selected domain
;

if C were zero, then z = and z' = a! would be a pole
of f(z, z'), contrary to the supposition that / is regular within the selected

domain
;
hence neither B nor G is zero.

Let K
,
Klf K2) ... respectively denote the values of the rational functions

A
,
A 1} A 2 ,

... when z' = a'. Then a converging series for/(s, a') is given by

/0, a) = K + K1 z +K2z
2 + . . .

,

so that, from the two expressions off(z, a), we have

(iir + Kx
z +K2z*+ ...)(C + C,z+ ... + Crzr

)
= B + B,z + ... + Brz

r
,

holding for all values of z such that
|

z
\

^ 8. The two coefficients of each

power of z on the two sides must be equal to one another
;
and therefore, as

* See my Theory of Functions, § 48.
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zr+n (for n ^ 1) does not occur on the right-hand side, we have the coefficient

of zr+n on the left-hand side equal to zero. Thus all the determinants

K\ > -^2 >
K3 ,

K2 ,
K3 ,

Kt ,

K-r+i) l*-r+2> -fi-r+3)

must vanish.

With each value of a', some finite integer r must be associated because

f(z, a') is rational in z. But with at least one value (and, it may be, with

more than one value) of r, an infinite number of values of a' must be

associated; for otherwise, if with each value of r only a finite number of

values of a' could be associated and as every admissible integer r is finite,

there would in all be only a finite number of values of a', contrary to the

fact that a' is any place in the domain
|

z
|
^ &'.

Consequently, taking r to be the greatest integer for any value of a' in

the domain determined by 8', all the preceding determinants vanish for the

infinite number of values of a' in the domain. Hence there must exist

functions of / (to be denoted by F
,
F1} ..., Fr), such that the equations

FrA, + Fr_,A 2 + ... + F A r+1
= 0,

FrA 2 + Fr^A 3 + ...+F A r+2
= 0,

are satisfied for an infinite number of values of /; and not all the functions

F can vanish. Moreover, the functions A are rational and, at most, only
some of them (limited in number) are evanescent

; hence, as the functions

F
,
Flt ...,Fr can be taken as equal to determinants the constituents of which

are rational functions of z
, they are themselves rational functions of z .

Consider the function

(F0 + ZF. + ...+ zrFr)f{z, z) -(Go + zG^ ... + zrGr),

where

G = A F
, G^A.Fo + A.F,,..., Gr

= A Fr + A.F^^ ... + A rFc :

and denote it by <I> (z, z'), which may or may not vanish identically. The

quantities G , ..., Gr , being lineo-linear in the rational functions A and F, are

themselves rational functions of **
;
and not all the functions G can vanish.

Then the function 4> (z, z') is a regular function of z and / within the

domain
|

z
j

< 8 and
|

/
1
< B', because all its components are regular within

that domain. The foregoing analysis shews that, for all values of z in the

range |

z
\

^ 8, there is an infinite number of values of z' in the range |

z'
j
^ 8'

for which <t> (z, z') vanishes. If <J> (z, z') does not vanish identically, we take

any special value of z within the range \z\^8, say z = c; then <l> (c, z') i-
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a regular function of z! within the range |

z
|

^ 8', and (after what precedes)

there is an infinite number of values of z* within that range where <t> (c, zf)

vanishes. It is a known property* of regular functions of one variable

that the number of its zeros, within any finite region where the function is

regular, is necessarily finite; and the preceding result, based immediately

upon the hypothesis that <I> (z, z) does not vanish identically, does not

accord with this requirement. Accordingly, the hypothesis must be

abandoned
;

the function 4> {z, /) vanishes identically ;
and therefore, for

all values of z and z' within the selected domain, we have

(F1t + zFl + ... + zrFr)f(z, z')
= G + zG1 + ...+ zrGr ,

where F
,
Fu ..., Fr , G ,

G1} ..., Gr are rational functions of z.

The function F and the function G do not vanish under our initial

hypothesis that the ordinary place 0, is not a zero of f(z, z') ;
some (but

not all) of the other functions F1} ..., Fr ,
G1} ..., Gr may vanish.

We thus have
l
t

,, _ Gp + zG^ ... + zrGr

J^* ) ~li

l+zF, + ... + zrFV

that is, f(z, z') is a rational function of z and z . The proposition is thus

established.

79. One provisional remark will be made at this stage. Let f(z, z') be

a uniform function which, within some limited region of its existence, has no

essential singularities and, within that region, does possess zeros, and poles,

and unessential singularities.

Suppose that a uniform function exists, which has those zeros, those poles,

and those unessential singularities, all in precisely the same fashion as f(z, z),

and which possesses no others within the region ;
and suppose that this

function has no essential singularity anywhere in the whole field of variation

of z and z . The preceding proposition shews that it must be a rational

function of z and z'. (Examples can easily be constructed, in the case of

definite simple assignments of such places). We shall, for the moment,
assume the possible existence of such a rational function; and then, denoting
it by r (z, z), we write

g{z>2f)
rizJY

Within the region, the function g (z, z') has no zeros and it has no

singularities of any kind; hence, within the domain of every place in that

region, the two functions gx and g2 ,
where

_ldi _ \dg_
9l
~gdz'

9
*~gdz"

can be expressed as absolutely converging power-series, which are elements

* See my Theory of Functions, § 37.
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of two regular functions. Moreover, as regards these two power-series for gx

and g2 ,
we obviously must have

dz' dz

identically; so we denote the common value of these two quantities by

d*P(z, z')

dzdzf
'

where P (z, z) is itself a double series converging absolutely in the domain,

and is an element of a single regular function, which may be denoted by

Q(z,/). Then
1 dg = dP(z,z') 1 dg ^dPjz.z')
g dz dz

'

g dz' dz'
'

and therefore

g = eP(z,*)
>

within the domain. Now g (z, /) is regular throughout the region ; and, for

each domain within the region, P (z, z') is the element of the regular function

Q (z, z'). Consequently, on the assumption that the rational function r (z, z)

exists, we have
r (z, z) <?«<*>

*'>

as a representation of f(z, z) within the region, Q (z, z) denoting a function

that is regular within the region.

The definite existence of the function, denoted by r (*, z'), has not been

established in general. The assumption that has been made raises the

question as to whether rational functions exist, defined by the possession

solely of assigned zeros, assigned poles, and assigned unessential singularities.

Also, that question raises the further question as to what are the limitations

(if any) upon the arbitrary assignment of zeros, poles, and unessential singu-

larities, in order that it may lead to the existence of a rational function.

These questions initiate a subject of separate enquiry which will not be

pursued here.

Functions having essential singularities only in the infinite part

of the field.

80. The other of the theorems already mentioned relates to the expression

of a uniform analytic function, of which all the essential singularities arise

for infinite values of one or other or both of the variables. It was adumbrated

by Weierstrass*; the following proof is based upon a memoir by Cousin f.

We have to establish the theorem :
—

A uniform analytic function of two variables, all the essential singu-

larities of which arise for infinite values of either of the variables or of
* Gea. Werke, t. ii, p. 163.

+ Acta Math., t. xix (1895), pp. 1—62; it applies to n variables.

It may be added that a proof is given by Poincare, Acta Math., t. ii (1883), pp. 97—113 ;
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both of the variables, can be expressed as the quotient of two functions
which are everywhere regular for finite values of the variables.

For this purpose, Cousin uses the Cauchy method of contour integrals.

81. Consider an integral, the variable of integration Z' being taken in

the plane of z', as given by

B

Fig.1.
M C/E

* g^- Fig. 2.

1 f
B dZ'

6^ =
^i Z'-z"

where the integration extends along an arc AB from A as the lower limit to

B as the upper limit. When we take a closed contour of which AB is a,

portion, AB is the positive direction of description in figure 1 and is the

negative direction of description in figure 2.

Now in figure 1, we have

ATTIJ AMB /i — Z

for all points z* within the contour AEBMA, and

1
[

dZ'
if{Z) -2ni] AMB Z

r
^-z

for all points z without the same contour. For all points within the contour,

and for all points without the contour, 6 {z') is a regular function of z'.

Consequently the line ABB is a section* for the function; the continuation

6 (D), taken from the inside point G to the outside point D across the section

AB when the latter is described positively for the area, is — 1 + 6 {(J).

In the same way for figure 2, the continuation 6 (D), taken from the inside

point G to the outside point D across the section AB when the latter is

described negatively for the area, is 1 + (C).

it is based upon the properties of potential functions. The following memoirs may also be

consulted:—
Poincare, Acta Math., t. xxii (1899), pp. 89—178 ; ib., t. xxvi (1902), pp. 43—98.

Baker, Camb. Phil. Trans., vol. xviii (1899), p. 431 ; Proc. Lond. Math. Soc, 2nd Ser., vol. i

(1903), pp. 14—36.

Hartogs, Jahresb. d. deutschen Mathematikervereinigung, t. xvi (1907), pp. 223—240
;
and the

memoir by Dautheville already (p. 126) quoted.
* See my Theory of Functions, § 103

;
the notion is due to Hermite, who called such a line a

coupure.

9—2
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The general value, of course, is

where a and b' are the variables of A and B. Clearly the quantity

is regular in the immediate vicinity of B, and the quantity

0(<> + 2^1og(a'-*')

is regular in the immediate vicinity of A.

Next, let g (z, z) denote a function of z and z', which is regular for ranges

of z and z that have finite values
;
and consider an integral

taken precisely as for the preceding integral 6 (z'). Then % (z, z!) is a regular

function of z and z'
, except when z' lies upon the line AEB; and AEB is a

section for the function x (z>
z'\ Now let

g(z,Z')-g{z,z').
G{z,z',Z')=' Z' -z'

as g(z, z') is a regular function of z and z'
,
it is easy to see* that G(z, z'

, Z')

is a regular function of z, z', Z'. Hence

where #(z, /) is a regular function of z and *' for all the values of z and z'

included, and 6 (z') is the preceding integral already considered. Consequently

X (fi z) is a regular function of z and z' for all points z' that do not lie upon
the section AEB; and the change in the analytical continuation of x (z>

z )

*
If we take

9(z,Z>)=g {z) + Z'g y (z) + Z">g2 (z) + ...,

then

G(z, z', Z')=g1 (z) + (Z' + z') gs(z) + ....

so that

| G(z, z', 2T) |
«

| £, (*) |
+2r'

| 2 (*) |
+3r'2

| 33(2) |
+ ....

for values of z' and Z' such that

I

z'
I

< r', I

Z'
I

< r' < R'.

With the properties of a regular function such as g{z, z'), which have been established earlier,

the series on the right-hand side converges absolutely; hence G (z, z\ Z') is regular.
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across the section AEB is — g (z, z') or + g (z, z) according as AEB, when

crossed, is being described negatively or positively. Moreover, the function

X (z>
z') "2m 9 (*' ^ l0g ^'

~ ^
is regular in the immediate vicinity of b', and the function

X 0> z ) + 2tH9 {*> z')
log ia

' ~ z')

is regular in the immediate vicinity of a.

Next, take in order a finite number of lines A X B, A 2B, ... in the plane of

z, such that they have a common extremity B,

do not meet except at B, and all lie within

the z, z' domain considered. Associated with

each of the lines A rB, we take a regular

function gr (z, z'), occurring precisely as g (z, z')

occurred in the preceding discussion of the

function % (z, zf) over its section
;
and write

1
[*gr (,,Z')

the integral being taken from A r to B. The character of % (z, z') is known

from the earlier investigation.

Let a new function <J> (z, z) be defined by the equation

T= \

For all places not lying upon any one of the lines, the function Q> (z, z') is

regular. In the immediate vicinity of the place B common to all the lines,

the function

^^'^-^l^giV
~ Z

')}
r\9r(

z
,
z
')

is regular ; hence, if 4> (z, z') is regular in the immediate vicinity of B, it is

necessary and sufficient that

2 gr {z, z')
r=l

should vanish at B. Moreover, if

2 gr (z, z')
= 2&7rt

at B, where h is a constant, then

4> (z, z')
- k log (&'

-
z')

is regular at B.

82. We are to deal with a uniform analytic function f{z, z'), which has

no essential singularity in the finite part of the z, z' field. In this field, take

any finite domain. Within the selected domain, / (z, z') deviates from regu-

larity at or in the immediate vicinity of poles, and at or in the immediate

vicinity of unessential singularities. At a pole and in its vicinity, there is
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one definite type of representation of/ (z, z') which is valid for some region

round the pole. At an unessential singularity and in its vicinity, there is

another definite type of representation of f(z,z') which likewise is valid for

some region round the unessential singularity. At an ordinary place and

within some limited region of the place, f(z, z) is regular; within that region,

there is another definite type of representation of / (z, z') which likewise is

valid for the limited region.

When any two of these respective regions have any area in common, the

respective representations of our uniform function / {z, /) are equivalent to

one another over that area. Moreover, we have selected a finite domain in the

z, / field
;
so that the total number of these regions in this domain is finite.

Now let the whole selected domain in the z, z' field be divided up in

different fashion. Let the whole region in one of the two planes (say the

/-plane) belonging to this domain in the field be divided into n regions,

where n is finite. Each of these regions is to be bounded by a simple

contour. With each of these n regions in the /-plane, we combine the

whole of the 2-plane that belongs to the selected domain
;
so that we now

have n domains within the single selected finite domain in the z, z field. At

every place in each of these n domains, our function f(z,z') is defined. Let

fi(z, z') denote the whole representation of f(z, z') in one domain,/2 (.z, /) the

whole representation in another domain
;
and so on for the n domains, up to

fn (z,z). With each region in the /-plane, we associate the function fm (z, z')

giving the representation of / (z, z) for the domain which includes that

particular /-region.

It may happen that two such regions have a common area, so that the

respective functions belonging to the regions coexist over that area; we

shall assume that, if deviations from regularity occur within the area, such

deviations are the same for the two functions, say fk (z, z') and ft (z, /),

so that

/*<#,y) -/!(#,•)

is a regular function over the area.

When two functions are such that their difference over an area is a regular

function, they are said* to be equivalent over the area; if their difference is a

regular function in the immediate vicinity of a point, they are said to be

equivalent at the point.

Denote the regions in the /-plane by Rlt R2 ,
• •-, Rn with whichfx (z, z),

fz(z, /), ...,fn (z,z') are respectively associated. Further, denote by ll% the

boundary between Rt and R2 , such that when / passes from 22, to R? by

crossing lu ,
this line is described positively for the boundary of i?2 ; and

similarly for the boundary between any two contiguous regions. Lastly,

there will be points where three or more boundary lines are concurrent.

*
Cousin, I. c, p. 10.
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When a point P' lies within the region Rk , then fk (z, z") is the function

associated with P'. When a point Q' lies on the boundary between two

contiguous regions Rk and Rt ,
then either of the functionsfk (z, z') and/j (z, z')

is the function associated with Q'. When a point S' is a point of concurrence

of more than two boundary lines of regions Rj, Rk , Rt , ..., then any one of

the functions fj (z, z),fk (z, z'), ft (z, z'), ..., is the function associated with 8'.

83. Consider the integral

i rfm (z,Z')-fk (z,Z')
Jkm = M, J T^J' dZ

taken along the line 4m between two contiguous regions, the order of the

suffixes in Ikm being the same as their order in lkm . Manifestly
T — T

-1 km — •* mk •

As the functionfm {z, Z')—fk {z, Z') is regular everywhere along the path of

integration, the integral is of the same character as the integral previously

denoted by Xr(z, z')\ the line ^ is a section for the function Ikm .

Now take all these integrals Ikm which arise for contiguous regions, and

write

<S>(z,z')
= tIkm ,

where the summation is for all pairs of suffixes that correspond to contiguous

regions. The function <E> (#, z) has each line lkm as a section; at every

place that does not lie upon a section, <E> (z, z') is regular.

Next, we take a set of functions
<\>x {z, z), <£2 (z, z'), ..., <f>n (z, z), associated

with the respective regions Ry ,
R2 , ..., Rn ;

and we define
<f>p (z,z') as the

value of <& (z, z') within the region Rp . A point P' in the /-plane may lie

within a region ;
it may lie upon the boundary of two contiguous regions ;

and it may be a point of concurrence of several such boundaries.

When the point P' lies within the region Rp ,
the function

<f>p (z, z') as

defined is regular, because the sections of <E> (z, z') are only the boundaries of

regions.

When the point P' lies on a boundary of the region Rp , say on the line

Ipq so that Rq
is the contiguous region, and when P' does not lie at either

extremity of lpq ,
the analytical continuation of

<f>p (z, z') through the point

P' remains regular. For, writing

9pq (Z, Z) =fq (Z, Z) -fp (Z, Z'),

so that gn (z, z') is regular for all the values of z and z' considered, the earlier

investigation shews that, in crossing the section lpq ,
the change in the

analytical continuation of Ipq is — gpq (z, z') when lpq ,
as it is crossed, is being

described positively. For this position of P', every element in the sum of the

functions Ikm is regular except Ipq ;
and therefore the change in the analytical

continuation of <£> (z, z') is — gpq (z, z'). But the new function $q (z, z) is the

value of <J> (z, z') in the region Rq ;
hence

<f)q (z, zf)
=

<f>p (z, z')
- gpq (z, z'),
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and therefore

4>q (*, *0 +fg 0> «0 = <f>P (*. -O +fP (*, z'),

where Rp and Rq
are contiguous regions.

When the point P' is a point of concurrence of several boundaries, the

regions may be taken as in the figure. Our

function <&(z, z') can be rearranged in its sum-

mation. We group together all the integrals Ikm

which have no section passing through P'
;
and

we call this group ^(z, z'). We group together
all the remaining integrals, the section of each of

which passes through P'
;
and we call this group

®a (z,J). Thus

<D (z,
z')
=

<$«, {z,
z') + <p2 (Z, z').

The sum <£>x (z, z) is regular at P', because every element / in the sum

is regular.

As regards the sum <J>2 (z, z'), our earlier investigation shews that ther

function

<S>>(z,z')- c^Vog (P'-z')}2g(z,z')

is regular at P'. But the functions g (z, z'), for the various elements / in

<£>2 (z, z') taken as in the figure, are

Mz,z')-fa {z,z'),

fy (z,z')-fp (z,z'),

fs (z,z')-fy (z} z'),

/e {*, Z) ~fs (Z, Z'),

fa (z, z')-fe (z,z'),

that is, the quantity 1g (z, z') is identically zero. Hence the sum <I>2 (z, z') is

regular at P'.

Consequently, the function <E> (z, z) is regular at P'
,
in this third case;

and therefore all the functions <\>{z, z), equivalent to one another at P', are

regular at that point.

We thus have a set of functions
<f> (z, z'). Each of them is regular within

its own region. Each of them is regular at any point of concurrence of the

boundaries of several regions. The change in the analytical continuation,

from the function
<f>p (z, z) belonging to a region Rp ,

to the function
<f>q (z, z)

belonging to a contiguous region Rq , is known
;
we have

<k? (*• z)
-

4>p (z, z) =/p (*, z') -fq (z, z).

The last relation gives

4>p (z, z') +fp (z, z') - <j>q (z, z') +fq (z, z')



84] REGIONS 137

as a relation holding between two contiguous regions Rp and R
q

. Let Rr be

a region contiguous to R
q
and distinct from Rp ;

then

<f>q (*> Z') +fq (Z >
Z')
=

4>r (*> Z') +fr (*> Z
')>

And so on, for each region in succession, until the whole domain considered

is covered.

Accordingly, we define a new function F(z, z'), by the relation

F(z,z')=cj>r (z,z')+fr (z,z^

for every region Rr . But all these different expressions for F{z, z) are the

same, because the relation

<j>i (z, z') +ft 0, z')
m

</>m (z, z) +fm (z, z
1

)

holds for any two contiguous regions within the domain. This final function

F(z, z'), at every place within the domain, is equivalent to the assigned
function fm (z, z') belonging to the region which, within that domain, in-

cludes the place ;
and the expression for this function F (z, z') is

F(z, z') =fm (z, z') + (f>m (z, z'),

where
<f)m (z, z) is regular in the domain of the place. The expression for

F (z, z) is valid over the domain considered
;
and the argument establishes

the existence of the function F(z, z'\ possessing the property that it is

equivalent to each of the functions fly ...,fn in their respective domains.

84. The result can be extended. We can substitute a single function

F (z, z') for the aggregate of functions fm (z, z) within the aggregate of

regions Rlt ..., Rn . When this aggregate of regions is denoted by S,

we infer that a function F (z, z) exists which, within this aggregate

region 8, possesses all the characteristics of the functions fm (z, z) ;
it is

subject to an additive function <j>(z, z') which is regular throughout the

region S.

Now take a number of these corporate regions S. It is not difficult to see

that all the conditions for the individual functions fm (z, z') can be transferred,

in each such region 8, to the function F(z, z) for these regions. The functions

F(z, z) for the different regions 8 are then taken as the elements for the

composition of a new function which may be denoted by $ (z, z'); and this

new function Jp (z, z) is equivalent, over the whole aggregate of these cor-

porate regions, to the functions fm {z, z) which exist in any part of it. Thus

we infer the existence of a function Jp (z, z) which is such that, in the vicinity

of any place in the finite part of the field of variation where a uniform analytic

functionfm (z, z') is not regular, the quantity

§ 0> z ) ~/m 0, Z)

is a regular function of the variables. But it must be remembered that only
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a finite part of the field is considered and that the whole number of

functions fm (z, z') is finite.

85. In the establishment of the preceding result, which is of the nature

of a summation theorem, all the functions fr (z, z') were assumed to be

uniform and analytic. There is a corresponding result, which is of greater

importance for our investigation ;
it is of the nature of a product theorem,

and the associated functions are logarithms of regular functions.

The /-plane is divided into regions R1} ..., Rn as before
;
with each region

Rk we associate a regular function uk (z, z'), and we take

fk(z, z')
= \oguk (z, z),

so that the value of fk (z, z) is subject to additive integer multiples of 2iri,

and otherwise is a regular function of z and z except at places which are

zero-places of uk (z, z').

As regards the functions v^ (z, z'), ..., un (z, z), we assume that, over any
area common to two contiguous regions Rk and Rm or, if no area is common,

along the part of their boundary which is common to them, the function

uk (z, z')

«m {Z, Z)

is regular and different from zero. Consequently the function

fk (z, z') -fm (z, z')

is regular for the same range of the variables, subject to a possible additive

integer multiple of 2iri.

We now proceed as before. We again form the integrals

J_ [fm (z,Z')-fk (z,Z')
*m
~27nJ Z'-z'

(lZ''

taken along the line Ikm which is the boundary common to two contiguous

regions ;
the order of the suffixes in Ikvl is the same as their order in Itm, and

clearly
T — T± km — *mk-

The function fm (z, Z')—fk {z, Z') is regular along the line /*„,, and there is

nothing to cause a change in the additive multiple of Itri when once this

multiple has been assigned; thus the integral is of the same character as

the integral previously denoted by x (z> z')>
and the line l^ is a section for

the integral 1^.

Again, as before, we take

<*>(*, *') = £/*,„,

where the summation is for all pairs of suffixes that correspond to contiguous
regions. The function <£ (z, z) has each line £*,„ as a section.
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At any point P' lying within a region, the function <E> (z, z') is regular.

At any point P', which lies on a boundary of the region Rp (say on the

line lpq so that Rq is the contiguous region) and does not lie at either

extremity of lpq ,
the analytical continuation of <£>(z, z') from Rp to R

q through
z' is regular, the function in R

q being

<&{z,z')-{fq (z,z)-fp {z,z%

where the additive multiple of 2-rri is the same as in the integral Ipq .

When the point P' is at b', a point of concurrence of several boundaries

which may be taken as before, it is again necessary to rearrange the sum-

mation of <&{z, z'). We group together all the integrals having no section

passing through b' ,
and call the sum of this group <J>j (z, z). We then group

together all the remaining integrals, the section of each of which passes

through b'
;
and we call the sum of this group <J>2 (z, z). Thus

Each element / in the first sum <&1 (z, z') is regular at b'
;
and therefore

<I>i (z, z') itself is regular at b'.

As regards <I>2 (z, z'), our earlier investigation shews that the function

<t>A*^)-±-.{\og{b' -z')}2g(z, z')

is regular at b', the summation being over all the lines I which meet at b'.

Now these functions g (z, z), for the various elements / in <1>2 (z, z) taken as

in the former figure (§ 83), are

fa 0, /) -fa {Z, Z'),

fy{Z,z')-f,{z, Z
'),

ft (Z, Z') ~fy (Z, Z'\

f (z, z')
-fs (z, z'),

fa {z,z')-fe (z,z\

respectively, subject
—for each of the functions g (z, z)—to an additive integer

multiple of 2iri. Accordingly, the quantity Ig (z, z') is some integer multiple

of liri
;
let it be denoted by k . 2-rri. It follows that the function

<t>2 (z,z')-k\og(b'-z')

is regular at the place b' .

We have seen that <!>! (z, z') is regular at b'
;
hence

<t>(z,z')-k\og(b'-z')

is regular at the place h
'

.
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At any point of concurrence of boundaries b", other than b', the function

log (&'
— /) is regular, subject to an added multiple of 2iri. Consequently,

the function

<&{z,z')-t[k\og(b'-z%

where the summation is taken over all the points of concurrence of the

boundaries of regions, is regular for all places z in the range considered ;
its

expression being always subject to an additive integer multiple of liri. Let

this function be denoted by yfr (z, z') ;
then

f (z, z')
= <t> (z, z') -2{k log (&'

- z%

Subject to the added multiple of 27rt, the function yfr (z, z) is regular for the

/-region considered : and its sections are the lines lpq .

Having constructed this function
yfr (z, z'), we now take functions

yfrx (z, z),

i/r 2 (z, z'), ..., yfrn (z, z'), associating them with the regions Rlt R^, ..., Rn

respectively, and defining them by the condition that the relation

-tym (*, z')
= f (z, z)

is satisfied within and on the boundary of Rm ,
for all the values of m. When

we pass across the boundary of Rm into a contiguous region Rp ,
we change

to another function yfrp (z, z). But, as we have seen, the analytical change
in

yfr (z, z') in passing over a line lmp is

-{fp (z,z')-fm (z,z%
and so the analytical continuation of

yfrm (z, z) is

fm (Z, Z')
- {fp (Z, Z) -fm (z, z')}.

As this is the function
yfrp (z, z'), we have

tyP (z, z')
=

yfrm (z, z')
- {fp (z, z') -fm (z, z'%

there always being an additive multiple of liri on the right-hand side.

Hence, subject to this additive multiple, we have

fm (Z, Z') +fm (Z, Z) = i/rp (z, z) +fp (z, z'),

for contiguous regions Rm and Rp .

Now pass from Rp to another contiguous region Rq ,
distinct from Rm ;

then, again subject to an additive multiple of 2iri, we have

yfrp (Z, Z) +fp (Z, Z')
=

>|r,; (z, z') +fq (z, z).

And so on, for the full succession of contiguous regions, until the whole

z -range is covered. It follows then that, for any two regions Rm and R^, we
have the relation

f« (#, z') +fm (z, z')
m

yfrM (z, z') +/M (z, z'\

always subject to an additive integer multiple of 2-rri; and each of the

functions
yjr

is regular within its own region.
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Accordingly, we define a new function G (z, z) by the equation

G (z, z) = yfrm (z, z') +fm (z, z),

for every region Rm . But all these different expressions for G (z, z) are the

same as one another (save for an additive multiple of 2-rri which may change

from region to region), because the relation

^m (Z, Z) +fm (Z, Z')
m

yjr^ (z, z) +/„ (z, z')

is satisfied for all values of m and /x.

Finally, take a new function U(z, z) defined by the equation

U(z, z')
= eG^^.

The added integer multiple of 2iri in G (z, z) does not affect the character of

U (z, z') ;
and so we have

U(z,z) = e «> z,)

a- e<lim(z,z')+fm(z,z')

= Um (z, z') e'bmiZ '
Z

'

)

within the region Rm . We thus have established the result :
—

A function U (z, z) exists, regular throughout the whole finite region con-

sidered, such that the quotient

U(z,j')
Um (Z, Z)

is a regular function of z and z within the region Rm and is different from
zero, um (z, z) being itself a regular function within that region ; and this holds

for all the n values of m.

Again it must be remembered that n, the number of functions um (z, z'),

is finite.

The general theorem.

86. After these two propositions, which are general in character and the

second of which is immediately useful for our purpose, we can proceed to the

establishment of the general theorem, stated by Weierstrass, as to the

expression of a function of two variables, of which the essential singularities

occur only for infinite values of either or of both the variables.

It has been proved that, in the immediate vicinity of a zero-place of a

uniform analytic function f(z, z'), we have

/(*, z) = Pe«,

where P is a polynomial in z having, as coefficients of powers of z, regular
functions of /, or conversely as between z and z

,
and where R is a regular

function of z and z which vanishes when z = and *' = 0.

We have defined a pole of a uniform analytic function F (z, z) as a place,

where a function f(z, z') of the preceding form exists such that

F{z,z')f{z,z)
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is a regular function of z and z
,
which does not vanish at the supposed pole

or in its immediate vicinity.

We have defined an unessential singularity of a uniform analytic function

F(z, /) as a place, where two functions f(z, z) and g (z, z) of the preceding

type, and irreducible relatively to one another, are such that

* {Z ' Z)
f{z,z)

is a regular function of z and z' which does not vanish at the supposed

singularity.

Suppose, then, that a function P(z, z) is defined as being uniform and

analytic over the whole field of variation : that it has poles and unessential

singularities of defined type within that field : that it has no essential singu-

larities except within the infinite parts of the field of variation of the two

complex variables : and that, except for the poles, and for the unessential

singularities, the function otherwise is regular for finite values of the variables

z and z'.

For the expression of the function, we need take account only of functions

f(z, z') which give rise to poles, and of functions f{z, z) and g (z, z) which

give rise to unessential singularities. We range these functions in two

classes. In one class, we include all the denominator functions f{z,z); in

the other class, we include all the numerator functions g (z, z).

Let f(z, z') be typical of all the denominators, which occur in the

expression of the function at a pole and its immediate vicinity; and let

f(z, z) be typical of all the denominators, which occur in the expression of

the function at an unessential singularity. We proceed to construct a

function G (z, z) such that, in the immediate vicinity of any of these places,

the quotient
G (z, z') G (z, z')v * or ^ '-

f(z, z') f(z, z')

is regular and different from zero
;
the function G(z, z') exists, and is regular,

in the whole finite part of the field of variation.

Again, let g (z, z') be typical of all the numerators which occur in the

expression of the function at an unessential singularity. Analysis, precisely

similar to that used for the establishment of the function G (z, z'), enables us

to establish the existence of a function G (z, z') such that, in the immediate

vicinity of any such place, the quotient

9 {?>*')

is regular and different from zero
;
the function G (z, z') exists, and is regular,

in the whole finite part of the field of variation.
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Accordingly, we consider the possibility of the existence of the functions

G(z,z'),G{z,z').

87. Imagine a succession of regions in the field of variation, each region

enclosing the one before it in the succession. We shall take, as the boundaries

of the regions, concentric circles in the respective planes ;
and these may be

denoted by (C1} CV), (G2 , Gq), •••> which may be unlimited in number, as we

proceed to cover the whole field of variation. We also take the common
centres of the circles at the respective origins.

For the first region, there is only a limited number of functionsfm (z, z') t

each of which is regular at, and in the immediate vicinity of, its place of

definition. Hence, by §85, there is a function, say Uu which is regular

throughout the region and is such that the quotient

fm {Z, Z')

is a regular function of z and / within the region and is different from zero
;

and this holds for each of the functions fm (z, z') defined within the region.

For the second region, there are all the functions fm (z,z'), which are

defined for places in the first region ;
and there are the additional functions,

which lie in the belt between the two regions (including the boundary of the

first region). Then, again by § 85, there is a function U2 which is regular

throughout the second region and is such that, (i) the quotient
~

*s a

regular function throughout the region and is different from zero, and

(ii) the quotient

fn{z,z'Y

where /„ (z, z') is any one of the newly included additional functions, is a

regular function of z and z within the region and is different from zero
;
and

this holds for each of these functions /„(£, z').

And so on, from each region to the region next in succession
;
we obtain

a gradual succession of functions Ult U2 , ..., Ur , ..., each regular in its

region, and having the properties, (i) that -j~ is a regular function through-
ly,.

out the region (Cr ,
Gr') and is different from zero, and (ii) that, for each of

the functions fs (z, z') defined for the region (Gr+1 ,
G'r+l ) but not for the

region (Gr ,
Gr'), the quotient

fs (Z, Z)

is regular for the region (Gr+1 ,
C'r+ X ) and is different from zero.
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88. Take a converging series of positive quantities aly a2 ,
. .., ar , ...,

associating them in order with the successive regions, so that ar is associated

with the region (Cr ,
Gr'). Also, let

Ur±1 _
ur

~
Pr >

then the regular functions U1} U2 ,
... can be chosen so as to give

\Pr\< e
a
',

for each value of r.

Suppose that Ui, ..., U, have been chosen so as to satisfy this relation

forr = l, ...,s
— 1. The function Us+1JUg is regular throughout the region

(Os ,
Cg')

and is different from zero there
;
and therefore

log Us+1
-

log U,

is (save as to an additive integer multiple of 2iri) a regular function of

z and z throughout the region. This regular function, save as to the

additive multiple of 1-ni, can be expressed as a double power-series in z and

z! converging absolutely within the region. Let this series be denoted by

2* z, cw> n z z
\

let M be the (finite) greatest value of its modulus within the region ;
and let

R and R! be the radii of the circles CS) Gs'. Choose values, /*, of m, and vg

of n, sufficiently large to secure that

M { I
z

I )
*»•

.
M (|sh»

M [\jt

KJr'H
-JzT)\r\ IF <K '

R'

the third of the inequalities being satisfied when the first two are satisfied.

Then, writing
n M? "*

Lg == 2* _ CWi n Z Z
,

m=0 n=0

so that Ps is a polynomial in z and z
;
and also

(00

00 00 00 00 00 »

2 2+ 2 2 - 2 2 W.iF/r;
so that

I
Qs I

< i«« + i«« + i«t < a* ;

WG n£tVG

log *7,+1
-

log tf = P. + Q„
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save as to an additive integer multiple of 27ri. Consequently

U8

e '

where now the multiple of 27ri no longer affects the functions concerned. Let

U's+1 =Us+1 e-r>,

so that

U'8+1 = eQ«.

The function U's+1 ,
within the region (Cg ,

Cs'), possesses all the properties of

Ug+1 , because e~p» within that region is a regular function of z and z which

vanishes nowhere in the finite part of the field; thus U'g+i/ Ug is everywhere

regular in that region and nowhere vanishes there, and the quotient

t\{z, z'y

for each of the functions fk (z, z') defined for the region between (Cg+1 ,
C'g+1)

and (Cg ,
Cg'), is everywhere regular for the region (Cg+1 ,

C'g+1) and vanishes

nowhere in the region. Accordingly, we substitute U'g+1 for Ug+1 ;
we write

so that

I ps I

< e
a
*

;

and we now have
U'g+1

with the condition
| pg

\

< e
a* satisfied.

89. For any region (Cq ,
C

q'),
we define a function G

q (z, z') by the form

Gq (z,z')=Uq'flpq+t .

The function U
q

is regular everywhere within the region. The product

n

is regular there ; for its modulus

Pq+t
t+i

= n\p»*\

which is a finite quantity because of the convergence of the series of positive

quantities a1} a2 , ...; and, within the region, no one of the quantities pq+1 ,

pq+i} ... vanishes, while each of them is regular there. Thus within the

region, the function

G
q (z^)
h fc *')

is everywhere regular, and nowhere zero, within the region (Cq ,
C

q ),
for each

of the functionsft (z, z
1

) defined within the region.

p. 10
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Next, take a function Gq+P (z, z
/

), defined for the region (Cq+P . C'q+P).

We have
CO

Gq+p (z, z')
=

U'q+p n pq+p+f

Also
oo

Gq (z, z')
= U

q
II pq+v

p oo

= Uq IT pq+t > 17 pp+q+t
t'=\ t=\

u q+ i u q+p

V
'

= Gq+P (z, sf).

Uq U q+p-i t = l

Thus all the functions G
q
are one and the same

;
let this function, the same

for all the regions, be denoted by G (z, z'). Then the function G (z, z) exists
;

it is regular everywhere over the field of variation considered, that is, for all

finite values of the variables z and z
;
and it is such that at, and in the

immediate vicinity of, any place where a typical function / (z, z') is defined,

the quotient
G (z, z')

~f{z,z)

is regular and different from zero.

We thus have established the existence of the function denoted by

G (z, z).

In precisely the same way, we can establish the existence of the function

denoted by G (z, z'\

90. Now take the quotient

This function ®(z, z) has unessential singularities at all the places where

and G vanish simultaneously, that is, at all the places where associated

functions g (z, z') and f(z, z) vanish simultaneously ;
in other words, ® (z, z')

possesses, in exact and precise form for each of them, all the unessential

singularities possessed by the function P {z, z') of § 86. Again @ (z, z) has

poles at all the places where G (z, z) is zero while G (z, z) is different from

zero, that is, at all the places, where the functions f(z, z) vanish while the

functions g (z, z') do not vanish : in other words, <"> (z, z) possesses, in exact

and precise form, all the poles possessed by the function P (z, z'). Neither

8 (z, z') nor, by hypothesis, P (z, z') has any essential singularity for finite

values of z and z
;
and at all places, other than isolated unessential singu-

larities and other than the continuous aggregates of poles, both ® (z, z') and

P (z, z) are regular functions. Hence
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is a function that is regular everywhere in the domain constituted by all

finite values of z and z
; denoting this regular function by R (z, z'), we have

P{z,z')=<d(z,z')R{z,z')

(z, z) R (z, z)

G(z,z)
'

Now G(z, z) is a function that is regular for all finite values of z and z
;

consequently the product (z, z) R (z, z) is a function that is regular for all

finite values of z and z . Denoting this product by H(z, z'), we have

p{z>z
,

)
= H(^)y,}

G(z, z')

as the final expression of our function
; and, in this expression, the functions

H{z, z) and G (z, z) are regular for all finite values of z and z. We thus

have the theorem :
—

When a uniform analytic function of two variables possesses only un-

essential singularities for finite values of the variables, it can be expressed

as the quotient of two functions, each of which is regular for all finite values

of the variables ; and the quotient is irreducible.

The last statement in the theorem follows from the construction of the

functions G (z, z') and G (z, /). A quotient g (z, z) +f(z, z') is irreducible

at an unessential singularity ;
there is no question of the reducibility of a

function {f(z, s')}
-1 in the vicinity of any pole ;

and R (z, z') is regular for all

finite values of z and z' .

Note. In the particular case where the uniform analytic function has no

essential singularity within the whole field of variation of z and z
',
both the

functions H (z, z) and 6 (^, /) are devoid of essential singularities within

that whole field; that is, they must be polynomials in z and z . We thus

again have the earlier theorem already (§ 78) established.

For further developments from the results now proved, reference should

be made to Cousin's memoir.

Appell's Examples.

91. Such is the general existence-theorem, obtained in the product-

form. There is a corresponding theorem, in a sum-form. Simpler expressions

may be obtainable in particular cases, when the functionsfm (z, z') or uk (z, z')

are known.

As an example of the sum-theorem, for a particular class of functions,

Appell* proceeds as follows, in a generalisation of Weierstrass's proof of

Mittag-Leffler's theorem on functions of a single variable f. The set of

* Acta Math., t. ii (1883), pp. 11—80.

f For references, see my Theory of Functions, ch. vii.

10—2
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uniform analytic functions /,(*,*'), f2 {z,z),... is supposed to have the

property that for all integers n, greater than some definite integer N, we

can assign a magnitude rn such that fn (z, z) is holomorphic for all values

of z and z given by \z\<rn , \z \< rn ,
and such also that rn increases

indefinitely with n.

Let €1} e2 , ..., en ,
... be a converging series of positive quantities, and let

e denote a positive quantity less than unity. Take first the sum of the

functions fY {z, z'),f2 {z, z), ... ,fx(z, J); and write

F,(z,z') = X fm {z,z).
m= \

Next, consider the functions /„ (z, z) such that n> N\ as each of them is

regular for values of z and z such that

|s| < ern , |/|<er»,

we can express /„ (z, z') in a form

fn (z,z')= 2 2 cp>qWzPz\
p=0 q=0

where the double series converges absolutely. As in § 88, we can assign a

positive integer /*n , taking /xn to be the greater of the two integers fit and v,

there assigned, such that

SS + 2S-2 2
\Cp, q

w z'S* <en ,

for all the values of z and z considered. Hence, denoting by <£»(*, e) the

polynomial

<M*,*')= t X cp>q
<n>zPz%

p=0 9=0

and constructing a function

F2 (z,z')= 5 {fn (z, z')-<f>n {z,z')\,

we have, on the right-hand side, a series which converges absolutely for the

values of z and z considered.

Now consider the sum

F(z,z')=F1 (z,z') + F2 (z,z').
The function

F{z,z')-fm {z,z')

is regular at all the singularities of fm (z, z); and so the function F{z, z') is

regular at all places in the field of variation which are not singularities of

any of the functions /, (z, z'),f2 (z, z'), ...; and F(z, z'), at places which are

singularities of a function /(>, *'), is non-regular in the same way as/(*, z).
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92. As a special instance of this sum-theorem, Appell adduces the case

when

fmn (*,
*J
=
^z + m)2 + ^ + ny + u^

g ,

where s is a positive integer, a is a constant, and the different functions

fmn (z> z') arise by assigning to m and to n, independently of one another, all

integer values from — ao to + x .

We have

j (z + mf + (z' + nf + a2
\

>
\ (z + mf + (z' + nf \

-
|

a
|

2
.

Also

(z + mf + (z + nf = (z + us +m + in) (z
— iz +m —

in).

But

and

Hence, if

we have

and therefore

\z + %z + m + m
|

>
I

m + in
\

—
|

z + iz
\

> (m
2 + w2

)* -\z\-\z'\

z — iz + m — in
\

> (m
2 + n2

)^ —\z\ — \z'

\z\<\ {(m
2 + n2

)^
-

|

a
\

-
c),

\

z'\<\ {(w2 + n2)^
-

I

a
I

- c
)>

| (z + mf + 0' + nf |

>
{ |

a
\

+ c]
2

;

| (z + mf + (z + nf + a2
1

>
{ |

a
|

+ c}
2 -

|

a
|

2

> 2c
|

a
|
+ c2.

Consequently, for all values of z and z' within a range that increases in-

definitely with m and n, as given by the foregoing limits, |/mn (z, z) \

remains

smaller than an assigned quantity ;
and so for those values, fmn (z, z) is a

regular function. Thus the set of conditions for the function fmn (z, z') is

satisfied.

When the integer s is greater than unity, the series

m=oo »=r0O "I

2 2
Tl— 00 - 00 {(z + mf + {z + nf +

converges absolutely. We therefore take

F(z,z)= X 2
\{z -I- mf + {z + nf + a2

}*

'

The function F(z, z) has poles at all the places

z = — m + ia cos 0, z — —n + ia sin 6,

for the continuous succession of values of 6 and for all values of m and of n.

Elsewhere, at all places in the field of variation, the function F(z, z') is

regular. In this case, there is no need to take polynomials corresponding to

the functions
<f>n (z, z) in the general investigation.
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When the integer s is equal to unity, the expression of the function is not

so simple, because the series, of which the general term is

1

(z + m)
2 + (z + n)

2 + a?
'

does not converge absolutely. We then take all the values of m and n, which

are finite in number and are such that

(m
2 + n2

)* < j

a
|

+ c
;

selecting all the functions fmn (z, z) given by these values of m and n, we

denote their sum by Fi (z, z').

Next, take the values of m and n which are such that

(m
2 + w2

)* > |

a
|
+ c,

and expandfmn (z, z
/

),
for any such pair of values, in powers of z and z, valid

in a range

\z\<± {(m
2 + n2

)*
-

|

a
\

-
c), \*'\<\ {(m

2 + w2

)* -\a\-c}.

Thus

. , ,.
1 2mz + Inz

m2 + n2 + a2
[mr + n + a2

)
2

For our purpose, it is sufficient to take the desired polynomial <f>mn (z, z) as

equal merely to the constant term in the expansion ;
for the series

F2 (z, z')
= tl {, r—L r 1

,v '

\(z + my + (z + n) + a2 m2 + n 2 + a?)
'

for all such values of z and z', and for the doubly infinite set of values of m
and n, converges absolutely. Our required function is

F(z,z') = F1 (z> z') + Fi (z,z').

It has poles at all the places

z = —m + ia cos 6, z = — n + ia sin 6,

for the continuous succession of values of 6, and for all integer values of m
and n. At all other places in the finite part of the field of variation, the

function F (z, z) is regular.

93. As an example of the product-theorem, let u^{z, z), w,(s, z), ...

denote a set of regular functions of z and z, and let them have the property
that for all integers n, greater than some definite integer N, we can assign a

magnitude rn so that un (z, z) is distinct from zero for values of z and z

such that
|

z
\
< rn , \z \<rn and such also that rn increases indefinitely with n.

Then denoting by ku &a , ... a succession of positive integers, we can form
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a regular function G{z,z), vanishing for all the values of z and z which

make gm (z, z') vanish, and vanishing in such a way as to make the quotient

[gm (*, z')\
km

finite and different from zero for those values.

This function G (z, z) is of the form

G1 (z, z) G2 (z, z),

where

<?» (*,/>- S [gm {z, *')}*»,

G2 (z,z')= fi \gn {z,z')\
k-e^z

'
z
\

N+l

while
yjrn (z, z) is an appropriate polynomial in z and z'.

Ex. 1. Shew that, when

where m and n vary independently of one another through all integer values from — oo to

+ oo
,
a function G (z, z'), regular everywhere in the finite part of the field and vanishing

like gmn (z, z'), can be constructed as follows. Take all the values of m and n, finite in

number, such that

(m
2+w2

)^<|a| + c,

where a is any assumed finite quantity ;
and write

Gi (*, z')
= im{(z+ m)

2+ (z!+ny+ a*},

where the product extends over all these values of m and n.

Take all the values of to and n, doubly infinite in number, such that

(m
2+ /i

2
)2 > |a|+c,

and write

G2 (z, z')
=nn

\

v-r-^--
2
—V 2

e *mn ( ' '

f >

where the product extends over all these values of to and n, and where

2mz + 2nz'+zi+ z"2 1 /2mz+ 2nz' + zi +z'2\ 2

T^lw.O- ««+»*+*> 2\ TO^+^+a* /*

The required function is given by

.£#. 2. Verify that, when a is zero, the function G (z, z') can be expressed by means of

two Weierstrass's ^-functions.



CHAPTER VI

Integrals; in particular, Double Integrals

As regards the matter of this chapter and, above all, as regards integrals of algebraic

functions of two variables, the student should pay special attention to various sections in

the treatise (which usually is quoted here in Picard's name) Picard et Simart, Theorie des

fonctions alge'briques de deux variables independantes, t. i (1897), t. ii (1906). Other

references will be found in the course of this chapter.

It may be noted initially, as regards algebraic functions of two variables, that I have

chosen, for reasons already stated, to take two fundamental equations defining two

independent algebraic functions of the variables, instead of only a single equation

defining only a single algebraic function. If three (or more) equations were taken

defining the same number of algebraic functions, these would not be independent ;
so

it is sufficient to take not more than two fundamental equations.

94. In the theory of functions of a single variable, many important
results are derived through the use of Cauchy's theorems concerning contour

integrals. It is natural to attempt some extension of theorems so as similarly

to derive results in the theory of functions of more than one variable.

Here we shall restrict the discussion to the case of a couple of complex
variables.

The integral of a function of two independent complex variables may be

single or may be double. The definition of a single integral is the same as

in the customary theory of functions of one complex variable
;
but there is

the added complication through the occurrence of two complex variables.

Either there is variation, within the range of the integral, of only one of the

two variables
;

or within that range, there is a definitely connected and

simultaneous variation of both variables.

Of double integrals, there are two classes. In one class, the integration
with regard to each variable is entirely independent of the integration with

regard to the other, so that the integrations can be performed in either order.

In each integration, only one variable is subject to variation. Thus the

double integral is effectively only a double operation of single integration.

We have already had some examples, at an earlier stage, of this class of

double integrals.
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Ex. A function fty, 6) is periodic in
>//,

with period 2n, and is also periodic in 6,

with period 2tt ;
and it is regular for all values of the variables within the ranges of two

complete respective periods. Let u (r, r', cf>, $') denote the integral

1 ft* f2rr (l-r2
)(l -r'2

)
,

4^ jo Jo
-^ ^

{1
- 2r cos (^- 0) + r2} {1 -2/ cos (d-<f>')+r^}

^ *"

Prove that, when r < 1 and / < 1, the function u (r, r', d>, (j>')
is regular ; and that, in the

limit when r= \ and r'= l, the function u(r, r', (f>, <f)')
is equal to f(<p, <f>).

Shew also that, if

z=re*
,

z =re
,

u (r, r', <p, ((>')
is expressible as the real part of a regular function of the complex variables

z and z'.

Note. This result will be noted as the extension of the simplest result, relating to

potential functions of two real variables, in Schwarz's establishment of the existence of

a function of one complex variable satisfying conditions of specified assigned types*.

95. In the other class of double integrals, the variations are not inde-

pendent of one another
;

if either can be performed alone, usually the range
of variation for the variable is affected by the other variable

; and, in the

general case, such integration cannot be performed for one variable alone.

It then becomes imperative to define precisely what is the meaning assigned

to the double integral. For this purpose, we adopt the procedure initiated

by Poincare f, using space of four dimensions in real variables.

As usual, we take

z = x + iy, z' = x + iy',

where x, y, x', y are real and are the coordinates of a point in this space.

Without further limitation, the variables x, y, x, y' are independent of one

another.

For our immediate purpose, we now make two successive suppositions

consistent with one another, so as to secure a working definition of a double

integral.

First, let X, Y, Z be real variables of a point in ordinary space ;
and

suppose that x, y, x
', y' are limited in variation so as to be expressible in

forms

x = F
l (X,Y,Z), y = F2 (X,Y,Z), x' = F3 (X, Y, Z), y'

= F,{X,Y, Z),

where (for purposes of description) we assume that Flt F2 ,
F3 ,

Ft are rational

functions of X, Y, Z not becoming infinite for real values of these variables.

Eliminating X, Y, Z, we shall have an (algebraical) relation

<D (x, y, x', y')
= 0,

* See my Theory of Functions, chap. xvii.

t Acta Math., t. ix (1887), pp. 321—380. It is followed, in part, by Picard who has made

great extensions, as also by other methods, of the properties of double integrals specially

connected with algebraic functions ; see his Traite a"Analyse, t. ii, ch. ix, and his Theorie des

fonctions alge~briques de deux variables independantes, already quoted.
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which represents a three-dimensional continuum in the four-dimensional

space.

Next, let X, Y, Z describe a surface S, or a portion of a surface S, in

ordinary space. Again for purposes of illustration, we shall assume S, or the

selected portion of S, to be devoid of singularities. We can take X, Y, Z as

functions of two real parameters p and q, valid over the surface S or the

portion of it
;
and we then have equations

* =
ffi (p> q)> y = 9* (/>» ?)» x' =

ff> (p> q)> v = 9* Cp> ?)•

These relations imply two equations, say

U (x, y, x, y')
= 0, V(x, x

, y, y) = 0,

which represent a two-dimensional continuum (the surface S, as in § 5) in

our four-dimensional space. We take a simple closed area in the plane of

the variables p and q, represented by an equation

F(p,q) = 0;

and for the double integral, we allow all values of p and q within this area,

representing them by the relation

F(p : q)*zO.

Then the limit of the range of integration on the surface S is given by

F(p,q) = 0; and this limit will lead to three equations of the form

Ps (x,y ! x',y')
= 0, (5=1,2,3),

representing a curve in the four-dimensional space.

Now let f(z, z) be the function, to be "doubly integrated" in the sense

that a meaning has to be assigned to the double integral

-///<*.
*) dzdz.

As f(z, z) is a complex function, we resolve it into its real and imaginary

parts ;
let

f(z,z')
= P + iQ,

where P and Q are real functions of x, y, x', y'. Then

I =
jj(P

+ iQ) (dx + idy) (dx' + idy')

=
fj{(P

+ iQ) dxdx' + {iP - Q) dxdy + (iP
- Q) dydx' -(P + iQ) dyd;i .

Manifestly /, whatever its value, can be a complex variable
;
so writing

/ = I, + il3 ,
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where /, and 72 are real, we have

ii = [Up {dxdx'
-

dydy')}
-

ff{Q (dxdy'+ dydx')},

/i =
jflQ (dxdx'

-
dydy')} + ff{P (dxdy' + dydx')}.

And now, 1\ and 72 are ordinary double integrals involving only real

variables, for the real quantities x, y, x, y' are functions of only the real

variables p and q; and these double integrals are taken over the limited area

F (p, q) < in the plane of the variables p and q.

Both integrals are of the form

\(A dxdx' + Bdxdy + Cdydx' + Ddydy'),
//<

where all the quantities concerned are real—there being, of course, limitations

upon the forms of A, B, C, D and also of their differential relations to one

another. When we give explicit expression to the functionality of x, y, x', y'

in terms ofp and q, the integral becomes

//wrd) +^(^) +c/
(^)

+^K)}^ ;

but for our purposes it will suffice to take the first form.

Our object is the generalisation, if generalisation be possible, of the

fundamental theorem of Cauchy which asserts that, under appropriate con-

ditions as to f{z), the integral J f(z)dz taken round a closed contour is zero :

it is a consequence that the integral \f(z)dz, between two points in the

plane, has a value independent (subject to restrictions) of the 2-path between

the points. Suppose that, instead of the former values of x, y, x', y', we take

x = hx (p, q), y = h2 (p, q), x' = h3 (p, q), y'
= h4 (p, q),

so that we could have a new surface T different from S
;
and suppose that,

corresponding to the former equation F (p, q)
= limiting the range of

integration, the range of integration in T is still limited by F (p, q)
= 0, and

that the limiting curve connected with T in our four-dimensional space is

given by the same equations

Ps (x, y, x', y')
= 0, (*~ 1, 2, 3),

as the limiting curve connected with S. We thus should have two different

surfaces passing through the same contour. Then the generalisation would

be that the integral 1 1 f (z, z) dzdz should remain invariable if only the

surface over which the integration extends is made to pass through an
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assigned fixed contour; or, if we take a completely closed surface through

the fixed contour, the integral 11 f(z, z) dzdz taken over the whole of this

surface vanishes.

96. Accordingly, we consider an integral

I I "mn™/Xm U.Xn ,

where the summation is taken over all pairs of values ra, n = 1, 2, 3, 4, and

where xly x2 ,
x3 ,

xt take the place of x, y, x', y'. We define the integral for

the four-dimensional space as above
; consequently, because

JjA mn
dxmdxn =\\ArmiJ\J^r)

dxndxm

with the foregoing interpretation, we have

jjA
mndxmdxn

=
-jjAmndxndxm ,

and

that is, taking account of the whole integral and of the combinations of m
and n instead of the permutations, we shall assume that

A — _ A

so that we need only consider the combination / \Amndxmdxn . Moreover, this

process of regarding the integral obviously involves the additional assumptions

"mm = "»

for all the values of ra.

Next, we take* xlt x2y x3 ,
x4 as expressed in terms of the three variables

X, Y, Z, so that our double integral becomes

that is,

where

Amn
JJ(^) dYdZ + J

(!^) dZdX + J(^) dXdY\

j[(ZdYdZ
+ vdZdX + £dXdY),

xm> xn
f — Z2,A mnJ [

-y—-y\ ,

Here Picard's proof (Traite a"Analyse, t. ii, p. 270) is followed exactly.
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The integral is to extend over the surface in the X, Y, Z ordinary

space.

We therefore require the condition necessary and sufficient that such an

integral
r

\{%dYdZ + vdZdX + ZdXdY)*

over any surface which passes through an assigned contour in the p, q plane,

shall depend solely upon the contour. This condition is well known : we
must have*

BX + dY +
dZ

'

Accordingly, the condition is

J TV A Tl xm> x
n\\ .

9
J VV ,4

t (
xm, %n

>{

dX^AmnJ
V Y, Z )\

+
dYC2tAmnJ

IXX/'j

In this expression, the coefficient of Amn is

d
\ r (xm,xn\\ d

\ T (xm,xn\\ d { T (xm ,xn\\
dl r KY^))

+
d7\

J
\X~x)\

+
dz\

J
VxTTJj

-

which vanishes identically.

As regards the derivatives of Amn ,
we have

dAmn ,* dAmn dxi

dX i= i dxi dX '

and so for the others. Hence, in the foregoing expression, the coefficient of

"^, and the coefficient of -~-^ ,
both vanish identically; and the non-

vxm oxn

vanishing coefficients are the sum of terms of the form

fdAmn dA^ - dA im\ /xi} xm ,
xn

V dxi dxm dxn J \X, Y, Z ,

Consequently, the condition becomes

i=1 m=i n =\ (\ dxi dxm dxn J \X,Y,Zj)

* When the condition is satisfied, we can take

87 _ 9(3 _ da dy >_^ ^a

*~dY~dZ' v~dZ~dX' *~dX~dY'
and then the integral can be expressed in the form

(a,dx + (3dy + ydz),

taken round the contour in the p, q plane. The result was first enunciated as a problem by
Stokes, in the old examination for the Smith's Prizes at Cambridge in the year 1854; see Stokes,
Math, and Phys. Papers, vol. v, p. 320, with a note by Prof. Sir J. Larmor.
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a condition which must be satisfied identically, whatever be the surface

over which the integration extends, subject to its passing through the

contour.

The quantities x
{ ,
xm ,

xn ,
xp are functions of X, Y, Z such that, away

from the contour, any three of them are independent of one another; and

therefore the quantities

X, Y,ZJ'

except along the contour and individually at special places in space, are

different from zero. It follows that we must have

dA mn dAni dAim_
dxt dxm dxn

'

for all the combinations I, m, n = 1, 2, 3, 4. Moreover, it is easy to see that

this set of four conditions is sufficient, as well as necessary, to secure that the

value of the integral

depends only upon the contour.

97. Now let us apply all the conditions to the integrals 1^ and I2 . We
have

J, = fj(Pdxdx'
- Qdxdy' - Qdydx' - Pdydy'),

and we take

x
> y> %

> y — &i > &2 > #*3 > &4 >

respectively. We have

4„ = 0, A 1S
= P, A u = -Q, A 23 =-Q, A M = -P, AM=0

Consider the conditions

oA rnn oA ni oAim _
dxt

dxm dxn

for the combinations l,m,n — \, 2, 3, 4. They require the relation

dx By

for I, m, n = 1, 2, 3
; the relation

dy'^dx'
U

'

for I, m, n = 2, 3, 4
;
the relation
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for I, m, n = 3, 4, 1
;
and the relation

dx dy
'

for I, m, n = 4>, 1, 2.

Similarly, we have

I* = I \{Qdxdx + Pdxdy' + Pdydx' - Qdydy'),

so that we can take

^12 = 0, A 13 =Q, AU = P, A 23
= P, A 2i

= —
Q, A 3i

= 0.

The general conditions require the relation

for the combination I, m, n = 1, 2, 3
;
the relation

3^
+

dx'
'

for the combination I, m, n = 2, 3, 4
;
the relation

ai?'
+
ay

'

for the combination I, m, n = 3, 4, 1
;
and the relation

-^- 8? =

for the combination I, m, n = 4, 1, 2.

Thus all the conditions are satisfied if only

dP^dQ dP__dQ dP_dQ ZP___dQ
dx dy

'

dy dx' dx dy'
'

dy' dx'
'

But, by definition, we have

P 4- iQ =f(z,.z) =f(x + iy, x. + iy'),

where P, Q, x, y, x, y are real
;
and so these four relations are satisfied.

It follows, then, that II and 72 depend solely upon the contour
;
and

therefore I, = 'I
i + iI2 , also depends solely upon the contour. And we have,

throughout, assumed that the quantities P and Q,
—that is, also the function

f(z, z')
—are free from singularities. Hence we have Poincare's extension of

Cauchy's theorem :
—

If within the closed surface 8, which is taken in the space of three

dimensions X, Y, Z, and points on which are given by equations of the form

X =fi(p,q)< Y =fa (p,q), Z=f3 (p,q),

so that, along the surface,

x = F1 (X,Y,Z)=g1 (p,q), y = F2 (X, Y, Z) = g2 (p, q),

x' = F3 (X, Y, Z) = g3 (p, q), y'
= F4 (X, Y, Z) - g4 (p, q),
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there is no place X, Y, Z, where the function f(z, z
1

) ceases to be regular,

the value of the integral \jf(z> z')dzdz' taken over the whole of the closed

surface is zero.

Again, for such a function and over such a space, the value of the integral

I \f(z, z') dzdz' taken over any portion of any such surface S bounded by a

contour, the surface and the contour lying within the domain, depends only

upon the contour.

Further, it follows that the value of the integral jjf(z, z')dzdz
f

, taken

over any such closed surface, remains unaltered during deformations of the

surface provided they occur in the domain of X, Y, Z, and cross no place

giving rise to no singularity off(z, z').

98. Now consider the singularities, or other deviations from regularity,

of a function f(z, z). We take the preceding surface S existing, as in § 95,

in an ordinary space of three dimensions, the representation of the variables

being

x = F,(X, Y, Z), y = F2 (X, Y, Z), x' = F,(X, Y, Z), y'
= Ft (X, Y, Z).

The singularities off(z, z) may be given by a set of single equations, typified

for each of them by
d(z,z') = 0,

or by sets of two independent equations, typified for each set by

(g, z) = 0, tf> (z, z')
= 0.

The former will lead to two equations, say

S-i 0, y, x', y')
= 0, S-2 (x, y, x', y')

=
i);

so, in our X, Y, Z space, they will be given by equations

%,{X, Y,Z) = 0, ©2 (X, Y,Z) = 0.

These two equations represent a curve G in that space ;
at every point on

the curve there is a singularity of/ (z, z).

The latter will lead to four equations, which may be regarded as defining

an isolated place or an aggregate of isolated places determined by the values

of x, y, x, y'. Such places may or may not exist in our X, Y, Z space.

Take a closed surface 8 in the space, containing no place or places

X, Y, Z, giving rise to an isolated singularity of/ (z, z), to any curve C, or

to any part of such a curve. The integral 1 1 f(z, z')dzdz' taken over S is zero.

Take two closed surfaces S and S' in the space X, Y, Z, such that

S can be continuously deformed into S', without passing over any place

giving rise to an isolated singularity of / (z, z'), or over any curve G, or any

part of such a curve C. The value of the integral taken over the surface

»S' is equal to its value taken over the surface S'.
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Take two closed surfaces S and S' in the space X, Y, Z, such that they

enclose places giving rise to exactly the same isolated singularities off(z, z'),

to exactly the same curves C and to exactly the same portions of curves G.

The value of the integral taken over the surface S is equal to its value taken

over the surface S'.

Thus the value of the double integral \\ f (z, z) dzdz, taken over the

closed surface S, is zero when the surface encloses no place X, Y, Z, where

/ (z, z) ceases to be regular. When the surface does enclose places X, Y, Z,

where / (z, z) ceases to be regular, the value of the integral depends upon
these enclosed places ;

we cannot assert that its value is zero.

99. The theorem can be enunciated in similar terms when a two-plane

representation of z and z is adopted. Thus, very specially, within a circular

ring in the 2-plane and within a circular ring in the /-plane, let a function

f(z, z') be everywhere regular ;
then the value of 1 1 f(z, z') dzdz is the same,

whether the integral be taken positively round the outer circles in the two

planes, or be taken positively round the inner circles in the two planes. But
such a case is exceedingly special ; and, as was indicated earlier in the lectures

(§ 19), the frontier of a domain of variation for z and z' is of a more com-

plicated character than in the result just enunciated.

100. We proceed to consider some of the simplest cases when the subject

of integration in a double integral 1 1 f(z, z) dzdz possesses either isolated

singularities or any continuous aggregate of singularities within an assigned
domain. In passing to these examples, it may be remarked that the whole

subject of double integrals of uniform analytic functions, possessing singu-
larities of the known types, offers a field of research, in which many of the

results already obtained are of a tentatively exploratory character.

In the examples that will be considered, we shall use the two-plane

representation of z and z'
,
and we shall deal only with a finite part of the

whole field of variation of z and z
;
that is, for all the variations,

|

z
|

and
|

z'
\

will be kept finite. To these examples*, all of which involve only rational

functions of z and z'
,
we now proceed in order.

Example I. Let F(z, z) denote a function that is regular everywhere
within an assigned finite domain

;
let a, a' denote any place within that

domain. Then we consider the integral

JJ(z
—
a)(z —a)

* In this connection, reference should be made to Picard, Fonctions algebriques de deux

variables, t. i, ch. iii.

F. 11
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taken over the closed frontier given by the equations z — a
\

= R,

\rf
— a!

'

\

= R', so that it encloses the place a, a'.

The singularities of the subject of integration are given by

(i) z = a, z
1— any enclosed value of /

;

(ii) z = any enclosed value of z, / = a'.

By our general theorem, we can deform the closed frontier without changing

the value of the double integral, provided the deformation causes no transition

through any of these places. Accordingly, let the closed frontier be deformed

until it encloses only the small domain, composed of the interior of the circles

z — a = re01
,

z' —a? = r'e6i
,

where r and r' are small real positive constant quantities. Then

(fr
F{
ft'f

>
/i
dzdz

' = ~
(fF (a + re&i

>
a' + r

'

ee>i) ded& >

JJ(z
—
a)(z —a) J J

the integration extending over a 0-range from to 2ir and over a #'-range

from to 27r. Now F (z, z) is regular throughout the domain
;
hence

F(a + re", a + r'e")
= 2 £ —f-= - *^'

} ^r'^e^6^^.v '
m=o w=o m ! n ! dam da'n

But for positive integer values of m and n, such that either m or n is greater

than zero, we have

and

ild&dffm***.

Hence
C

\F(a + reei
,
a' + r'e

6
'
1

) dddff = 4tt2 F (a, a') ;

//
J

and therefore, with our hypothesis as to the regular character of F (z, z')

within the domain, we have

taken over the closed frontier of integration |

z — a
|

= R,
\

z — a'
\

— R'.

Corollary. With the preceding assumptions concerning the regular

function F(z, z'\ we have

1 "^W-o,
47T2

JJ z — a

-£jJ%P-~-»
taken over the closed frontier of integration \

z — a
\

= R,
\

z' — a'
\

= R'.

Note. When the integrals are taken over a closed frontier of integration

which does not enclose the place a, a', all the three integrals have a zero value.
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Example II. As before, let F(z,z') be regular everywhere within an

assigned finite domain
;
and let a, a be any place within that domain. We

consider the integral

F(z, z')

//(
dzdz',

1

(z
-

a)
m+1

(z'
-

a')
n+1

taken over the same closed frontier in that domain, the frontier enclosing the

place a, a', and the quantities m and n denoting positive integers, zero included.

We proceed exactly as in the preceding example. Because

//
e{
-m+li) ei+(-n+V)e'i ftQdff = 0,

for the range to 2tt for 8 and for 6', except only when m =
fi and n = v, we

find

_ J_ [[ F(*,*) , w = _1_ [
d™+"F (z, z')\

4<Tr*JJ(z-a)
m+1

(z'-a')
n+1 m\n\\ dzmdz'n

j z=a ,
2w'

for all integer values of m and n that are not negative.

Example III. Let a, /3, y, S denote four constants such that a8 — $7 is

not zero
;
and consider the double integral

dzdz'

\zz + /32')(ryz + 8z')'

taken over a frontier that encloses the place 0, 0.

For a given value of z', the quantity az + (3z' vanishes if z = z1} and the

quantity yz + hz vanishes if z = z2 ,
where

' •
8

*>
Z-, — z . z% — z .

a 7

The values of zx and £2 are unequal except only when z = 0.

First, let integration with regard to z be effected before integration with

regard to z' . Take in the ^-plane a small simple curve enclosing zx and

excluding z2 , say a circle centre z
x and of radius < \zl

— z2 \;
and effect the

integration round this circle in the 2-plane while z is supposed invariable.

Then, as

1 1

(az + fiz') (yz + hz') a7 (z
— zx) (z

— z2)

1 / 1 1 \1 / 1 1 \

(a8
—

fiy) z \z — zx z—zj

we have (when the indicated integration is effected)

dz 2iri

/(
'

{az + @z') (yz + 8z') (aS
- 0y) z'

because

J z — Zi JZ — Zz

11—2
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taken round the ^-circle. Now let the integration with respect to z be

effected round a small circle, the circumference of which passes through z

and the centre of which is at z =
; then, as

/
dz .—r= 2tti
z

for this integration, we have

dzdz'

4tt2J|

Writing

(az + jSz ) (72 + hz) ah - @y
'

£=az+/3z', Z'=yz + 8z',

we have

1 ft dzdz' _ 1

when integration is effected, first with regard to z round a small simple 2-curve

enclosing a root of £ for a given value of z' but not a root of £"',
and then with

regard to z round a simple /-curve through that value of z enclosing the

origin z = 0.

Similarly, we have

'dzdz 1

--(I
47T2

JJ rr J{?,&'

when integration is effected, first with regard to z round a small simple ^-curve

enclosing a root of £" for a given value of z but not a root of f, and then with

regard to z' round a simple /-curve, passing through that value of z' and

enclosing the origin z' = 0.

Similarly, we have
1 [[ dzdz

'

_^

when integration is effected first with regard to z round a 2-curve enclosing
both a root of £ and a root of £' f°r a given value of z\ and then with regard
to z' round a /-curve passing through that value of z and enclosing the origin
z = 0. For we then have

dz ^ . f dz

so that

iZ — Zy JZ-Z3

f dz = 1 r/ dz dz \

J(az + £/) (yz + Bz')

~
(afi

- £7) z'J [z -z\ 9 - gj

0.
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Next, let integration with regard to z be effected before integration with

regard to z. Indicating this order in the same way as before, we consider

dz'dz

Ik' {OLZ + ftz) (yZ + hz)

and then, from the definition of the significance of a double integral, we have

dzdz' ff dz'dz= (!
*

JJ(az + /3z') (yz + hz) Jj(az + /3z) (yz + 8z')

_ ff
dz'dzm

il.1T'

Take in the /-plane a small simple /-curve enclosing a root zt

'

of £ but not a

root *,' of £", for a given value of z, where

/_ «
* _ 7

z\ o z
>

z*
— ~~

5;

z
>

effect the integration with regard to z' round this curve
;
and then effect the

integration with regard to z round a simple curve through the given value of

z enclosing the ^-origin ;
then

1 ffdz'dz 1

and so

1 ff dzdz' 1

4tt2
J J {az + 0J) (yz + Bz') «/"(£ O '

in this case also.

Similarly, when integration with regard to / is effected first, round a

small simple /-curve enclosing a root of £ but not a root of £ for a given

value of z, and then integration is effected with regard to z round a simple

curve through the value of z enclosing the 2-origin, we find

1
f[

dzdz' _ 1~
^JJ(az + j3z')(yz + 8z)

~
j(£, £)

'

Lastly, when integration with regard to *' is effected first, round a small

simple /-curve enclosing both a root of £ and a root of £' for a given value of

z, and afterwards integration is effected with regard to z round a simple

curve, passing through the value of z and enclosing the ^-origin, we find

1 ff dzdz _~
4kr2 J J (az + $z) {yz + S/)

~
'

Summing up, we can say that the value of the double integral

dzdz

br2
JJ(4>Tr\U(az + /3z')(yz + 8z')

is independent of the order of integration ; that it is
j ., .,,. ,

where
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when integration is effected round a curve enclosing a root of £, where £=az + fiz,

but not a root of £", where £'
= yz + oV ; that it is

j. , >
=
~j(y y>\>

wfien

integration is effected round a curve enclosing a root of £' but not a root of £;

and that it is zero when integration is effected round a curve enclosing both a

root of £ and a root of £".

And, of course, the value is zero when the integration is effected round a

region that does not enclose any zero of £ or of f '.

Example IV. The preceding result cannot be applied when the initial

assumption, viz. that a8 — /S7 is different from zero, is not satisfied. In that

case, we have to deal with
dzdz

^(az + WzJ-

When the integral is taken round the place 0, 0, in either of the ways
indicated in the construction of the last result, the value of the double

integral is zero.

Example V. From III and IV, we infer the following results relating to

the double integral

dzdz'

4tt2
JJ >Xz2 + 2pzz' + pz

2
'

There are two cases, according as p? is not, or is, equal to \p.

(i) Suppose that p
2 —

\p is not zero. When integration is effected in either

plane, round a small simple curve enclosing the root of \z+ {p+ (ps- \p)^\ z' =

but not the root of Xz + [p
—

(p?
—

\.p)^} z' = 0, and then round a small simple
curve enclosing the origin in the other plane, the value of the double integral is

When integration is effected in either plane, round a small simple curve

enclosing the root of \z + [p.
—

(/*
2 —

ty)^} z = but not the root of

~kz + [p + (p
2 —

Ap)2J z =
0, and then round a small simple curve enclosing

the origin in the other plane, the value of the double integral is

And when integration is effected in either plane, round a small simple curve

enclosing both roots of \^a + 2p,zz + pz'
2 = 0, and then round a small simple

curve enclosing the origin in the other plane, the value of the double integral

is zero.

(ii) Suppose that p?
— \p= 0. When the integral is taken round the

place 0, in any of the ways indicated for the preceding case, the value of the

double integral is zero.
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Example VI. Let

P = *'
m

(7o + Vi*' + ...)> Q = z'
n
(8 + 8,/ + ...),

where y and S are different from zero and (for the immediate purpose) m and

n are positive real quantities, not necessarily integers. We require the

value of

where u = az + P, v = ftz + Q, when the integration is effected, first, with

regard to z round a small simple closed z-curve enclosing a root of u (but not

a root of v) for a value of z
', and, then, with regard to z' round a small simple

closed curve, passing through that value of z and enclosing the /-origin.

We also assume that olQ
— y3P does not vanish identically. Now

J= az'n
~ l

{n8 + (n + 1) B.z' + . .
.}
-

fiz'™-
1

{my + (m + 1) yY
z + ...}.

Thus, if m < n, the lowest power in J is — m^y^z'
m~^

;
if m > n, the lowest

power is nah z'
n~1

;
if m = n, = I say, the value of J is

lz'^ (aS
- £7o) + (I + 1)V« (««!

-
/37l ) + . . . .

For any small value of z
,
such that \z'\ is less than the modulus of the

smallest root of P or Q other than z = 0, let

ctz1 + P = 0, /3z2 -tQ = 0.

Then the double integral

1 f[ dzdz
1

T
47T2

JJ a/3(z
— zY ) (z

— £2)

2iri f f J , ,

az .

4m* .' J aQ - /3P

When m < n, the value of the right-hand side is n.

When m >n, the value of the right-hand side is m.

When m = n, = I, the value of the right-hand side is I + k, where a8k — fty*

is the first of the coefficients a8 —
fty ,

a8
t
—

fiyy, ... which does not vanish.

In each of the three alternatives, the value of the integral is the degree of
the lowest power of z in the eliminant of az + P and @z + Q, when z is

eliminated. Moreover, when m and n are integers, the value of the integral is

then the multiplicity of 0, 0, as the sole isolated simultaneous zero of the uniform

functions
az + P, J3z + Q,

enclosed by the frontier of integration.

Example VII. Next, let

u = zm + gmr-lfi (/) +...+fm (z'),

v = zn + zn-* gi (z') + ... +$r„(A
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where the functions u and v are independent and have no common factor of

their own form, and all the coefficients/!, ..., fm , glt ..., gn are functions

of / which are regular in the vicinity of z = and vanish with z . We

require the value of the double integral

_ i nJj±A dzdz
,

}

4tt2
J J uv

taken (as have been the preceding integrals) round a frontier, which encloses

the place 0, 0, and encloses no other simultaneous zero of u and v. Let

u = (z
-

*,) (z
- z2) (z

- zm), v = (z
- &) (z

- &) (z
- fn ),

where each of the quantities z1} ..., zm , £i, ..., £n is a regular function of

positive powers of /**; where
/j,

is a positive rational fraction; and where

each of these quantities vanishes with z'. The eliminant of u and v is

m n

n n (zr -Q;

if, when zr
—

£, is arranged in ascending (fractional or integral) powers of z
,

the lowest power of/ has an index
fj,r>s ,

and if

m n

r=l *=1

the eliminant of u and v is

where <f>iP) is not zero. The magnitude M is an integer, manifestly finite :

it is the measure of the multiplicity of 0, 0, as an isolated zero common to u

and v.

For the range of integration, first take a value z' of modulus smaller than

the root of
</> (/) which has the smallest modulus. In the .z-plane mark all

the quantities z
x , ..., zm , £,, ..., £n ,

which are functions of this value of z'\ and

draw a simple closed 2-curve, enclosing all the places tlt ..., zm and none of

the places £i, ..., £„. We take the integral round this £-curve
;
when this

first integration has been effected, we integrate with regard to / along a

small simple closed /-curve, through the place for the assigned value of z'

and enclosing the /-origin.

We have

£ - 2 2 -&' + *'
UV r=l S=l(z-Zr)(z-^)'

where §J = -v-4 and L' = ~ : hence
dz dz

47H J J UV 47T2
r= 1 ,= 1 ./ Zr — f.

But the lowest power of / in zr
-

f, is /**". Hence

UV r=ls=l

that is, the value of the double integral, taken over the range indicated, is the

47T*jJ
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measure of the multiplicity of 0, 0, as an isolated simultaneous zero of the

functions u and v, which are supposed to be independent and to be devoid of

any common factor of their own form.

Corollary. Two or more of the quantities zx , ...,zm may be equal, or they

may be equal in groups ; and, similarly, two or more of the quantities £i , . . . , £n

may be equal, or they may be equal in groups ; while, after the hypothesis

as to the functions u and v, no one of the quantities £ is equal to any of the

quantities z1} ...,zm . The value of the double integral over the indicated range

Mill is M.

Note 1. If the range of integration, enclosing 0, and no other simul-

taneous zero of u and v, is chosen so that the 2-curve (for a value of z')

encloses all the places £i, ..., %n and no one of the places zly ..., zm ,
and the

/-curve is drawn as before, the value of the double integral becomes — M.

Note 2. We have

_ i ffj(^ d2d/=
i ttdsdvto

4-7T
2
J J UV 4-7T

2
J J UV

When integration is effected first with regard to z', round a curve enclosing

all the roots of u = and no root of v = for an assigned value of z, and then

round a ^-curve through this value and enclosing the ^-origin, we still have

_lffJJ^v) dzdz
, = M

4<7r
2
JJ uv

In other words, the value of the double integral is independent of the order

of integration.

Example VIII. Let a and /3 be non-variable quantities, of finite moduli;

let c, c' be a level place for two regxdar functions,f and g, such that

f(c,c')- a = 0, g(c,c')-/3 = 0;

and let f(z, z) — a, g (z, z')
—

/3, be independent, and have no common factor

'which vanishes.at c, c. Then the place c, c' is isolated; its multiplicity is the

value of the double integral

1
(I - J(f' 9) dzdz'~

47T* ]] [f(z, 7)
-

«} {g (z, z')
-

0}
aZ<lZ

'

taken first round a small simple closed curve in the z-plane which, for an

assigned small value of z, encloses all the roots of f(z, z')= a and none of the

roots of g(z, z')
=

fi, and then round a small simple closed curve, through that

value of z' and enclosing the z -origin.

The result follows from the last example by writing

u-f(*,/)-*, v=g(z, z)-/3;

the multiplicity of c, c' as a level place for/and g is its multiplicity as a zero

for u and v*.

* In connection with double integrals of the preceding types and taken over such ranges of

integration, the reader should consult Picard's treatise, t. i, ch. hi, quoted p. 161.
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Algebraic functions in general.

101. Hitherto, all the subjects of integration in the double integrals that

have been considered, have been uniform functions. Bearing in mind the

extraordinary importance of Riemann's investigations connected with the

simple integrals of algebraic functions, we should naturally seek the general-

isation of that work for algebraic functions of two variables.

Into that theory I do not propose to enter in detail. In one sense, it is

enough for me to refer to the long series of valuable researches by Picard *.

All that will be done here is to submit one or two simple propositions, win n

there is a single dependent variable, partly from the standpoint of the general

theory of functions and without regard to the theory of the singularities of

surfaces, partly also to state the corresponding propositions when we have

to deal with the case when the fundamental algebraic equations provide
two dependent variables and not one alone, the number of independent
variables always being two.

Suppose then that we have, in the first place, a single irreducible algebraic

equation

expressing w as an algebraic function of z and z'\ and assume that the equation
is of order m in w, so that w is m-valued. Any rational function in the field

of variation is of the form R (iv, z, z'), where R is the quotient of two poly-
nomials in all the variables w, z, z'. To this rational function R (w, z, z') a

canonical and recognisable form can be given ;
the proposition, stating its

form, can be established in the same kind of way as for the corresponding

proposition when there is only a single independent variable.

Let the m roots of the fundamental equation f(w, z, z) = be denoted

by w1} w2 , ..., wm . Then, for any positive integer n, the quantity

wl

nR{w 1 , z, z')+Wv
nR(w2 , z, z') + ... +wmnR(wm , z, z')

is a symmetric function of the roots wu ..., wm of the fundamental equation,

having rational functions of z and z' for the various symmetric combinations

of the roots; it is therefore a rational function of z and z. Denoting this

rational function by Pn (z, z), we have

2 wr
nR (wr> z, z) = Pn (z, z').

r=l

This result holds for all integers n ; hence, taking it for n = 0, 1, ... , m —
1, we

have m equations, each linear in the m quantities R (wlt z, z), ...,R(w,„,z, ;>.

*
They are expounded fully in his treatise already quoted (pp. 161, 169) ; and in that treatise

full references will be found to the work of Ncether, Enriques, Castelnuovo, Severi, Humbert,
Berry, and others, in especial connection with the analytical developments associated with

surfaces in ordinary real space.
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Solving these m linear equations for the m functions R (wr , z, z), we have

1
,

1 ,..., 1

wx ,
w2 , ..., wm

wx
m
~\ w2

m
~\ ..., wmm

R(w1 ,z,z') = P (z,/) ,
1 ,..., 1

Px (z, z') , w2 , ..., wn

Pm^(z,z'), W2
m
~\ ..., Wmn

The determinant on the left-hand side is the product of the differences of all

the roots of the fundamental equation /(w, z, z')
= regarded as an equation

in w, and is usually denoted by

f(Wj, w2 , ..., wm),

so that, from this definition of £, we have

±£(wlt wa , ..., wm )
= (wl

- w2) (Wi -iv3) (wx
- wm) £(w2 ,

. . .
,
wm).

On the right-hand side, each of the quantities Pr (z, z) has, as its coefficient.

a determinant of the roots w2 , ..., wm ;
and in each case, this determinant can

be expressed as a product of £(w2 , ..., wm) and a symmetric function of

w2 , ..., wm . Thus the coefficient of P (z, z') is w2w3 ...wm %(w2 ,
— wm)',

I
m 1 \

the coefficient of P
l (z, z') is — w2w3 ...wm [

2 —
) £(w2 , ..., wm); and so on.

Hence dividing out by £(w2 , ..., wm),
we have

(wx
- w2) (wt -w3) ... (wx

- wm) R (w1} z, z')

where s
,
slt ..., sm_j are the symmetric functions of w2 , ..., wm .

Now by the algebraic equation /(w, z, z) = 0, each symmetric function of

w2 , ..., wm can be expressed as a polynomial in w1 , having rational functions

of z for its coefficients. Also

A (w,
- w2) (w1 -ws) ... (wj.

- wm)
=

(jLj

where A is the coefficient of w™ in f(w, z, z). Hence

U^j
R (wu z, z) = S(w1} z, z),

where © is a polynomial in w1} which can always be made of degree ^ m — 1

by use of the equation f(w, z, z')
— 0; and the coefficients in this polynomial

are rational functions of z and z .

A corresponding expression holds for each of the functions R(w2 , z, z'),

..., R (wm , z, z), all the polynomials © (w, z, z) having the same coefficients in

the form of rational functions of z and /. Consequently, when we denote any
root of our algebraic equation

f(w, z, z')
=

simply by w, any rational function R (w, z, z) of all the variables can be

expressed in the form
© (w, z, z')

R(w,z, z) = —J ,

dw
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where © (w, z, z) is a polynomial in w of degree <wi — 1, the degree of

f(w, z, z')= in w being m, and where the polynomial has rational functions

of z and z' for the coefficients of the powers of w.

This is the generalisation of the well-known theorem of Riemann on the

expression of functions that are uniform functions of position on a Riemann
surface*.

Ex. 1. Let the fundamental equation be

w2+ z2+ z'
2= l;

and let

„ Az+ A'z' + Cw
az+az + cw

There are two values of R, viz. the expressed value, and R', where

_, Az+ A'z'-Cw
it = —

.

az+az, — cw

Hence, following the general argument, we have

R+R'=2^z+fz

'^Zt
a^7C

^=^,
(az+az;)' -ciwi

where P is a rational function of z and z'
; and

d w a i c(Az+ A'z')-C(az+ a'z') a ~
wR-wR'=-2w2 -i—, ; \ '= 2Q,

(az + az)2 — c2ur

where Q is a rational functionvof z and z'. Hence

w '

which establishes the proposition.

Ex. 2. When the fundamental equation is

n^ + z3+ z'
3
=l,

obtain canonical expressions for

... Az+Bz' + Gw
 

(i)

(")

az+ bz' +cw '

az2 +bzw+cw2

a'z'2 + b'z'w+ c'w2
'

Note. There are of course particular methods better adapted to particular cases than
is the general method which applies to all cases.

Thus the function

Rfw .s
Az+AV+ Civ

^ '
Z
'

az+ bz' + cw '

when vr+^+ z'
3 **} is the governing algebraic equation, gives

R ( ) = {Az+A'z' + Cu>) {(az+ bz')
2 -

(az+bz') cw+ c2w2
\W Z)~

(az+ bz'f+ <~W
''

and so

., D , „
L+Mw+Nv?w2

R{w, z)
=
(az+bzff+ ctil-z3 -/*)'

where L, M, iVare polynomials in z and z' of degrees five, four, three respectively.

102. When we have to deal with the case, in which there are a couple
of algebraic functions w and w given by two algebraic equations

f(w, w, z, z) = 0, g (w, w, z, z')
= 0,

* See my Theory of Functions, § 399.
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it is desirable to have a canonical form of the most general rational

function; we shall prove that this canonical form is

© (w, w', z, z')

\W, W I

where © is a polynomial in w and w', having rational functions of z and z for

its coefficients.

Let/ be of degree m in w and w combined, and g of degree n in w and w'

combined : that is to say, ifw and w' were Cartesian plane real coordinates, and

if/= and g = were loci in that w, w' plane,/= and g = would be plane
curves of degrees m and n respectively. Construct the w-eliminant of f and

g by eliminating w' between/= and g = 0, and denote it by W ; then from

the ordinary processes of algebra, we know that

W=Af+Bg,
where A is a polynomial in w of degree mn — m, and in w' of degree n — 1

;
.Bis

a polynomial in w of degree mn — n, and in w' of degree m — 1
;
and W, not

containing w', is of degree mn in w. Similarly, the w'-eliminant of / and g,

obtained by eliminating w between/= and g = 0, can be put into the form

W = Cf+Dg,

where W is of degree mn in w alone, and does not involve w.

There are mn roots of W = 0, expressing each w as one of mn functions of

z and z
;
and there are likewise mn roots of W = 0. The mn combinations

of one root of W = with one root of W = 0, which make

/=0, </
= ()

simultaneously, are called the congruous pairs : the combinations are deter-

mined by the ordinary processes of algebra. The remaining mn (mn — 1)

combinations of roots of F = and W — are called the non-congruous

pairs ; they all satisfy A = 0, where

&=AD-BC.
Now take a congruous pair of roots, say wx and w-[ ; they satisfy/= 0,

#=(), W=0. We have
W - Af+ Bg

identically ;
hence differentiating with respect to w and w', and inserting the

pair of congruous roots after differentiation, we have

dW 3/ dg „ _ . df „ dg
dw1 dwx dwx

'

dwi dwx

'

Similarly we have

0-cf + DJ*-.
d^ = C^, + D^,.ow1 dw1 dw1 dWi dWi
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Hence, for the congruous pair of roots, we have

A

[CH. VI

that is,

dX'

dw,

dwx owl dWj owx

dwT dwx

'

dw/ dw/
''

dWi dw-i \w1} wx )

say, where Aj is the value of A for the congruous pair of roots w
y
and «//,

and likewise for Jx .

Similarly for each congruous pair.

Let our rational function of w, w'
, z, z, which is to be expressed in a

canonical form as stated, be denoted initially by R (w, w', z, z') ; and let its

value, for a congruous pair of roots wM and wM', be denoted by R^. Then,

taking all the congruous pairs of roots, we have

mn
2 w/R/,, = a rational function of z and z

= P„ (*,/),

say ;
the value of P„ (z, z) is obtainable by the usual processes of algebra ;

and

the result holds for all integer values of r. Hence, taking r = 0, 1, . . .
,
mn — 1

in succession, we have

Ri + R? + + Rirm — P
,

W
X
R

X + W2R2 + + 'WmnRmn = Pi,

<"-'Ri + W^-'R* + + IVmn'^Rmn = i\mi-,.

These equations can be solved for the mn — 1 quantities i^, R2> ... which

occur linearly. Proceeding as before in § 101, we find

<l> («>,, z, z')

dwx

where 4> is a polynomial in wlt having rational functions of z and

coefficients. Multiplying the denominator and the numerator by

have

z for its

dW
dwr

we

Ri = dWdW
dWi dw/

S (wx , it//, z, z)
dWdW '

dwx dwx

'
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where $ is a polynomial in w
1
and w/, having rational functions of z and / for

its coefficients. But

dWdW__

and therefore

„ Siw,, wx ', z, z) 1*" Z -5'
Now

is a symmetric function of wx and Wi,w2 and w2', . .., the pairs of congruous

roots
;
and it is therefore expressible as a rational function of z and z', say

A1
A 2 ...Amn =T(z,z').

Similarly
Za2 ... &mn

is a symmetric function of all the congruous pairs of roots other than the pair

wx and Wi ;
hence it is expressible as a polynomial function of w1} w/, having

rational functions of z and / for its coefficients, say

A2 . . . Amn =Q(w1} w^, z, z').

Consequently

Hence

R,=

1 Q(wlt Wi,z, z')

A, T{z,z')
'

S(w1} Wi, z, z) Q (wx , Wi, z, z')

® (Wlt Wi, z, z)

J,

on multiplying the polynomials S and Q, and absorbing the rational function

T (z, z') into the coefficients of the product.

The same conclusion holds for every congruous pair of roots. We there-

fore infer that every function, rational in the algebraic field of w, w', z, z,

where w and w' are given by algebraic equations

f{w, w, z, z')
= 0, g (w, w', z, z) = 0,

can be expressed in the form

© (w, w', z, z)

J Ti
\W, w

where @ is polynomial in w and w, having rational functions of z and z for

its coefficients.

Modifications in the degree of © in w and of its degree in w' may some-

times be effected by the use of the equations /= and g = 0. These

modifications, when they are possible, do not affect the denominator J, and

only give equivalent expressions for the polynomial ©
;

it is for this reason

that the form is called canonical, even though the expression for © may
happen to be not unique.
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Note. In establishing the preceding form for the rational function, two theorems

concerning symmetric functions have been quoted. In actual practice, we can proceed

M follows.

Take
t = \w+ \'w' ;

eliminate w from /and g, so that they become

F (t, w', z, z")
=

0, O {t, u/, z, z")
= 0,

of the same degrees in t and v/ combined as are / and g respectively. Eliminate w'

between F=0 and O= 0, so as to give an equation

T=0,

of degree run in t, having rational functions (frequently polynomial functions) of z and z'

for its coefficients.

In the product A1 A2 ...Amn ,
we have symmetric functions of the congruous pairs of

roots
;
let such an one be

2<'w1

' ft'w2
B,! w2

' ns
...,

where the summation is over all the like terms obtained by permuting the congruous

pairs in all possible ways. We then form the symmetric function of the roots of the

equation T=0 represented by

In its expression we select the coefficient of

\m
l+mi+... >.'»,+m2+...

and remove the multinomial numerical factor

(mi+nj ! (m2+ n2) !

nil ! n,i !

'

wi2 ! «2 !

"" '

the result is the symmetric function required.

Again, in the product A2 ...Amn ,
we have symmetric functions of all the congruous

pairs of roots except only the pair wx and w{. Let

T={t-ty)T\

so that *2 j •••> tmn are *ne roots of ^^O. The coefficients in T' are linear in the

coefficients of T and are polynomials in t
1 ; thus, if

T= O t
mn+ 6y t

mn~ l + <92 t
mn~-+ . . .

,

T'=e t
mn -

i

+<f>l t
mn~ 2

+(f> 2 t
mn-i

+...,
we have

and therefore

<t>i
= 0i + tid{),

<t>2=62+ ti ei d + t
1

'

i
6o\

and so on.

As was the case with A!A2 ...Amn ,
which is a sum of coefficients in a polynomial

function of the coefficients of T divided by a power of 6
,
so also the symmetric product

A2 ... Amn is a sum of coefficients of powers of X and X' in a polynomial function of the

coefficients of T' divided by a power of 6Q ;
that is, A2 ... Amn is a polynomial function of

the coefficients of 7", itself also polynomial in tx (that is, in w
x
and

?£>,') divided by a i>ower
of 6 .

These are the two theorems used.



102] RATIONAL FUNCTION 177

Ex. For particular equations, a given rational function is most easily discussed in an

initial form, not in a canonical form
;

it is for the general theory that a canonical form

is required, as it includes all rational functions. We may however take an example, to

shew the outline of the reduction to a canonical form
;
but the process is only an

exercise in algebra.

Let the two fundamental equations be

f=vP-uf3 -A=0, g=wi+ w'2 -B=0,
where A and B are given functions of z and z' only. Their Jacobian «/, on the omission of a

factor 6, is

J=ww' (w+ w').

We take the simple rational function

R= 7i%
w+Z'

where Z is any rational function of z and z' ; and we proceed to express it in a canonical

form
P (w, w', z, z')

J

where P is a polynomial in w and w', having rational functions of z and z' for its

coefficients.

The JP-eliminant of / and g is

W= 2vfi - 2Aw3+A2- ZBvfi+ ZBhi? - B3= 0.

Let

w+Z=t;
then the six values of t are given by the equation

2 (t-ZfSB (t- Z)*-2A (t- Zf+ZB* (t
- Z)

2+A 2 - B3= 0.

Let
e= 2Z<>-SBZi+2AZ3+ 3B2Z2+A 2 -B3

,

being the term independent of t in the last equation ;
then

t w+Z w+Z w+Z w +Z

= 2vf>- 2Zvfl+ (2Z
2 - ZB) ic3+ (3BZ- 2A - 2Z3

)
w2

+ (SB - 3BZ+2AZ+ 2Z*) w+3BZ3 - ZBZ- 2AZ2- 2Z5

= *, say.

Consequently

- r-7-* ™\ («'x + Wi)= (Wi
2+ Wj. Wl') $! .

W\ + Ij

All terms in the right-hand side, which are of degree six and higher, can be removed by

using the equation Wt
— 0. These terms are

2w1
r+ (2w1'-2Z)w1

'i
.

The term 2w^ is to be replaced by

SBwj 5+ 2Aw1
i - ZB2

wi
3 -(A 2 - B3

) Wj ,

and the terms (2wi
— 2Z) w-f by

« - Z) {3Bwi*+ 2Awt
3 - ZB2wx

2 - A 2+B3
}.

When these changes are made, let the expression for *x be

*i = Po Wi
6+ piWx

*+ p2wx
3+ p3 Wx

2+ piwx + p5 ,

F. 12
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where the coefficients p are polynomial in 11/, and are rational in z and /. Then finally,

1

9absorbing the rational function of z and / represented by - - into the coefficients of <f>!

we have

**~7(f-+g"
,

+t-+i"
,

+f-+f).w+Z
which is of the required type.

Equivalent forms are obtained for the numerator by using the equations /=0, g= 0.

Integrals of algebraic functions.

103. The development of the theory of integrals, whether single or double,

of algebraic functions when there are two independent complex variables,

owes its main foundations to Picard*. Here I shall only restate one or two

of the simplest results for the case when there are two initial fundamental

algebraic equations

/(«/, w', z, z) = 0, g {w, w', z, z) = 0,

defining two dependent variables w and w as algebraic functions of z and z',

the quantities / and g being polynomial in all their arguments.

Writing

J(w w')J-t^--^
d
-9-=j(£9-\' dw dw' dw' dw \w, w'J

'

we have seen that any rational function of all the variables can be expressed
in the form

® (w, w', z, z
1

)

J(w, w)
'

where % (w, w', z, z) is a polynomial in w and w' having rational functions of

z and ** for its coefficients.

Accordingly, following Picard, we take our most general single integral

of algebraic functions in the form

'Zdz'-Z'dz

I: J(w, w')

where Z and Z' possess the same general form as the preceding function @.

Integrals of this form are said to be of the first kind when, on the analogy
of Abelian integrals, they have no infinities anywhere in the whole field of

variation. Picard provesf that no integral of the first kind exists in

connection with a single equation F(w, z, /) = 0, when this single equation
is quite general ;

and he shews J that, when such an integral does exist in

connection with a less general single equation F (w, z, z')
= 0, the form of

* A full and consecutive account of his researches is contained in his treatise already quoted.
t His treatise, vol. i, p. 113. +

lb., p. 118.
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the subject of integration must satisfy special preliminary relations, even

though these necessary relations are not of themselves sufficient to secure the

existence of the integral. Here I shall proceed only so far as to obtain the

corresponding necessary preliminary relations affecting the form of the

subject of integration in the foregoing single integral, if it is to exist in

connection with the two equations /= 0, g = 0.

The quantities Z and Z' are polynomial in w and w'
;
we proceed to shew

that, if the integral is everywhere finite, they must be polynomial also in

z and z', of limited order. The coefficients of the various combinations of

powers of w and w' are certainly rational functions of z and z
;
let any such

coefficient be

S(z,z')

where R and S denote polynomials in z and /, and consider the integral

Zdz

/ J
'

Assigning any parametric value to z, let z' = c be a zero of R (z, z') for that

value of z. (If there is no such zero, i.e., if R is a function of z only, the

zeros of R would make the integral infinite : so that, for our purpose, R would

then have to be constant). For that parametric value of z, let the subject of

integration be expanded in powers of z —c'
; then, whether z' = c' does or

does not give a zero value to J, the subject of integration is—for every set

of values of w and w'—of the formAAA
+ j-,
—8

~L_X
+ . . . 4-

——x

—, + regular function of z —
c',

(z'-c'y (z-c'y-
1

' T

z'-c'

in the immediate vicinity of z'=c', the positive integer s being >1. The

integral would be infinite at / = c', unless all the quantities Au ..., A s vanish.

These quantities involve the parametric value of z
; they can only vanish for

all parametric values by vanishing identically, that is, by having no powers
of z — c with negative indices. Hence the polynomial R {z, z'), for any

parametric value of z, can have no zero for a value of /. It thus cannot

involve z'
;
we have seen that it cannot be a function of z alone

;
hence

R (z, z) is a constant. The coefficient in question is a polynomial in

z and z' .

Similarly for every coefficient in either Z or Z' in the integrals

[
Zdz

[
Z'dz

J J '

J J
"

Consequently the quantities Z and Z' are polynomial in all four arguments

w, w', z, z. And we know that J is polynomial in those four arguments.

Next, as regards the limitations upon the orders of these polynomials

Z and Z', we shall assume that / (w, w', z, z) is a quite general polynomial

12—2
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of order w in the four arguments combined, and that g(w, w, z, z) is a

similar polynomial of order n. Then J" is a polynomial of order m + n — 2.

It is easy to see, by an argument similar to the preceding argument, that

integrals cannot be finite for infinite values of z and of z
1

, if the order of the

polynomials Z and Z' in all the four arguments combined is greater than

m + n — 4.

We therefore infer, as a first condition, that if the integral is to be finite

at all places in the whole field of variation, Z and Z' must be polynomial in

all the four variables of order ^ m + n — 4, when / is the most general poly-

nomial of order m and g is the most general polynomial of order n.

104. The independent variables for the integrals have been taken to be z

and z
;
but any two of the variables may thus be chosen, and the integral must

still remain finite. We proceed to give the corresponding and equivalent

expressions. We have

dw ow oz oz

^dw + ^,dw'+
d

/dz + ^,dz'=0,dw ow oz oz

so that, on the elimination of dw', dw, dz, dz in turn,

J (w, w') dw + J (z, w')dz + J (z\ w) dz = 0,

J {w, w) dw'+ J(z, w )dz + J (z ,
w ) dz' = 0,

J(w, z)dw + J(w', z)dw' + J(z', z )dz' = Q,

J (w, z')dw + J (w, z) dw' + J(z , z' )dz = 0.

Using the first of these relations to substitute dw for dz' in the differential

element, we have

Zdz'-Z'dz Z'dz Z . _.
,. , r/ . .

'

—77 7T- = -
77 k - -77 '\ r/ /

—
rx {J (w,w)dw + J (z, w ) dz\J (w, w) J (w, w) J (w, w)J (z ,

w )
l

- Zdw Z'J (z', w') + ZJ(z, w') ,

dz.
J(z',w') J{w,w')J(z',w')

The differential element now is to be

Wdz- Zdw

where W is a polynomial in all the four variables
;
we therefore take

ZJ(z, w) + Z'J(z', w') + WJ(w, w') - 0.

Similarly, when we make z and w' the independent variables the differential

element of the integral of the first kind is

Zdw'- W'dz

J(z', w)
'
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where W is a polynomial in all the four variables, and

ZJ{z, w) + Z'J (z', w) + W'J(w', w) = 0.

In the same way, we can take any pair out of the four as the independent

variables, and thus obtain six expressions in all for the subject of integration.

The six expressions are

Zdz' - Z'dz Wdz - Zdw Z'dw - Wdz'

J (w, w') J(z ', w)
' J (z, w)

'

Zdw' -Wdz W'dw-Wdw' Wdz -Z'dw

J(z',w)
'

J{z, z)
'

J(z,w)
'

and the relations connecting the polynomials are

ZJ(z, w') + Z'J(z, w') + WJ (w, w')
= 0,

ZJ (z, w) + Z'J{z, w) + WJ(w', w) = 0, .

Z'J{z, z) + WJ(w, z) + WJ(w', z)
= 0,

ZJ (z, z') + WJ (w, z) + WJ(w', z')
= 0,

which are always subject to the two fundamental equations

/=0, g = 0,

and are equivalent to only two independent equations. Writing

M = Z d

/ + Z'^+W^ + W^-f)
oz oz ow ow

oz oz ow ow

we can express the first of the four, equations in the form

OW J OW \ OW J ow

0W OW

that is,

The others similarly give

OW OW

oz oz

M
dz' oz'



182 FORMAL [CH. VI

The fundamental equations /= and g = are independent of one another
;

hence we must have

M=0, N=0,

that is, the polynomials Z, Z', W, W are such that

W^ + W'^+Z^+Z'^ =
dw dw' dz dz'

'

W^ + W'^-/ + Z^ + Z'
d

f,
= 0.

dw dw dz dz

But these equations are not satisfied necessarily as identities
; they need only

be satisfied in virtue of the permanent equations

/=0, g = 0.

These relations impose limitations upon the forms of the polynomials

Z, Z', W, W, which occur in the differential element of an integral of the

first kind.

105. Limitations arise from two other causes. The first of these causes lies

in the requirement that the condition of exact integrability shall be satisfied.

As regards this condition, we shall take it for one of the forms of the integral,

and shall reduce it to an expression symmetrical in all the variables.

The condition, that

Zdz'-Z'dz

J (w, w')

shall be a perfect differential, is

dz\j)
+
dz'\j)

Now since

we have

dz dw dz dw' dz

dg dg dw ,9/7 dw' _ _

dz dw dz dw' dz

T , lx dw , , .. n T , ,
. dw' T . .

J(w, w) r- + J(z, w') = 0, J(w , w)-^-+J(z, w) = 0;

and similarly

"^
a?
^ w y" ' w '~ v> M vw ' w)

dz
J (w, w)~ + J(z', w') = 0, J(w', w)

d^ + J (z', w) - 0.
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The condition of integrability is therefore

T . , x (dZ\ dZ'\ (dZ T .
,,

dZ' . , J
J{w>

w
Arz

+
w)-\dw

J^ w) +
d^

J (z >
w
^

(dZ T , . dZ' T , , J+
\ho'

J(z > w) +W J(z > w)
\

„ (dJ(w, w') J (z, w) dj(w, w') J (z, w) dJ (w, w')

\ dz J(w,w') dw J(w,w') dw'

z,(dJ(w,w') _ J(z', w') dJ(w, w') J(z',w) dJ(w, w') }

\ dz' J(iv,w') dw J{w,iv') dw' j

and it suffices that this condition should be satisfied in virtue of the governing

equations/= and g = 0.

Now, for appropriate polynomials A and B, we have

ZJ(z, w) + Z'J(z, w') + WJ (w, w')=Af+ Bg,

identically ;
and so for our purpose, where the governing equations persist,

we can take

dW_ dZ J(z, w') dZ' J {z, w') Z dJ(z, w ) Z[ dJ{z',w')

dw dwJ(w,w') dwj{w,w) J (w, w') dw J(w,w') dw

ZJ(z,w') + Z'J(z',w') dJ(w,w') A 3/ B dg
J2

(w, w') dw J(w, w') dw J(w, w) dw '

the omitted terms vanishing in virtue of/= and g = 0.

Similarly, for appropriate polynomials C and D, we have

ZJ (z, w) + Z'J {z, w) - W'J(w, w')
= Cf+ Dg ;

and we similarly infer the corresponding relation

dW = dZ_ J(z,iv) <W J(z, w) Z dJ(z, w) +
Z' dJ(z\ w)

dw'
~

dtv' J(w,w) dw dw J(w,w'j dw' J(w,w') dw'

ZJ(z, w) + Z'Jjz', w) dJ (w, w) C ty__ D dg
J 2

(w,w') dw' J(w,w')dw' J(w,w')dw'
"

the omitted terms vanishing for the same reason as before.

Also we have

dJ (w, w') dJ(w', z) dJ(z,w) _
dz dw dw

identically, together with three similar relations by omitting z, w, w' in turn

from the set of four variables. Moreover

J(z, w) J (z, w) + J(z, w) J(w', z) + J(w, w) J(z, z) = 0,
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also identically. Using the foregoing relations, we have

z \dJ(w,w')
|

dJ(z,w)
|

dJ(v/,z) )

\ dz
'

dw' dw j

(dJ(w, w') dJ(z',w) dJ(w', z'))~ Z
\—dz^~

+-W~ +
~hv-\

=
°'

that is, the relation

dZ
|

dZ'
{

dW dW' = 1 f
1 df B dg c df_dg]

dz dz' dw dw' J(w,w')\ dw dw dw' dw')

is satisfied in connection with the governing equations

/=0, g=0.

Now we know that, in virtue of the governing equations, the quantities

2Z
d

/, ZZ
d
Sdz dz

vanish
;
hence polynomials F, E, H, G (any one or more of which may be

zero) exist such that the equations

are satisfied identically. These equations give

satisfied identically. But the left-hand side is identically equal to

hence, subject to the governing equations, we must have

Similarly, subject to the governing equations, we have

C-F$L-hX D=E d9--G df
dw dw

'

dw div

Consequently

always subject to the governing equations/= 0, g = 0.
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Thus the equations become

Z
dl + Z'¥+wl£+W'¥=:Ff+Eg\dz dz dw dw J *

Z^ +Z'^+W^ + W'^^Hf+GgA<7 A*y Ann Ann * <s
"dz dz dw dw'

dz dzr dw zw =F
dz dz' dw dw'

•

The first two of these equations are satisfied identically; the third only

needs to be satisfied in connection with f=Q, g = 0.

They are the extension of Picard's equations* which are given for the

ease when there is only a single equation

f(w,z,z') = Q.

Picard's equations are derived from the foregoing set, by taking

g = w =

as the second of our fundamental equations, together with

W' = 0, E = 0, H=0, G = 0;

and then, owing to the order of F, the third of the equations is satisfied

identically.

It thus appears that, when there are two equations /= and g = 0, the

exact differential can be presented in six forms
;

that four quantities

Z, Z', W, W ,
each polynomial in all the four variables, occur in these forms

;

and that there are other four polynomials E, F, G, H, such that the foregoing

three equations exist, the first two being satisfied identically, while the third

only needs to be satisfied concurrently with the governing equations /=
and g = 0.

106. It can easily be seen that, when /= is a quite general equation
of order m and g = is a quite general equation of order n, the conditions

required cannot be satisfied.

Let i\
r
(p) denote the number of terms in the most general polynomial,

which is of order p in w, w', z, z', so that

N{p) = A (p + 1) (p + 2) (p+ 3) 0> + 4).

We have seen (§ 102) that the polynomial Z, which (§ 103) can be of order

m + n — 4, is subject to modification by use of the equations/= and g = :

*
l. c, t. i, ch. v, § 4.
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that is, it is subject to an additive quantity Af+ Bg, where A and B are quite

general polynomials of orders n - 4 and m — 4 respectively. Hence the number

of disposable constants in Z effectively is

N (m + n - 4)
- N (m -4)-iV(ra-4).

Similarly as regards Z'
', W, W.

Again, E, F, G,H are polynomials of order ^ 2m — 5, m -f n — 5, m + n — 5,

2n — 5 respectively. The expression Ff+ Eg is unaltered by changing F
into F+Jg and E into E —

Jf, where J" is a quite general polynomial of

order m — 5
;
hence the number of disposable constants in F and E together is

N(m + n-5) + N(2m-5)- N(m-5).

Similarly the number of disposable constants in and H together is

N{m + n - 5) + JV(2w
- 5)

- N(n - 5).

The modifications in F and do not affect the third condition, which

has to be satisfied only concurrently with /= and g — 0. Thus the total

number of disposable constants is

4{JV(m + w-4)- N(m-4) - N(n-4>)}

+ N{m + n - 5) + N (2m - 5)
- JV(m - 5)

+ N(m+n-5) + N(2n-h) - N(n-5).

The number of conditions to be satisfied in connection with the first

identity is N(2m + n — 5), and the number in connection with the second

identity is N(m+ 2n— 5). The third relation, which affects the polynomials
F and G, only needs to be satisfied subject to the equations /= and g = ;

that is, subject to an additive quantity Of+Dg on the right-hand side, where

C and D are quite general polynomials of order n — 5 and m — 5 respectively ;

consequently, the third relation requires

N(m + n-5) - N(n -
5)
- N (m - 5)

conditions. Thus the total number of conditions is

N(2m + n-5)+ N(m + 2n- 5) + N(m + n - 5)
- N(n-5) - N(m-o).

The excess of the number of conditions to be satisfied, above the number
of disposable constants, is

N (2m + n - 5) + N(m + 2n - 5) + N (m + n - 5)
- N (n

-
5)
- N(m -

5)

- 4 [N(m + n - 4)
- N{m -

4) - N(n - 4)}

- {N(m + n- 5) + N (2m - o)
- N(m-5)}

- {N(m + ft - 5) + N(2n - 5)
- N(n - 5)}.



108 J
DOUBLE INTEGRALS .

187

When the values of the different numbers X are inserted, this excess is easily

found to be

£ mn {20 (m - 1) (m - 2) + 18 (m - 1) (n
-

1) + 20 (n
-

1) (n
-

2) + 24}
-

1,

which manifestly is positive when m > 1 and n > 1. Accordingly, in general,

the relations cannot be satisfied by the disposable constants, and so we infer

the result:—
When /= and g — are quite general equations, no single integral of the

first kind connected with them exists : a result which obviously corresponds

to the theorem of Picard already (§ 103) mentioned.

It follows that, if an integral of the first kind is to exist in connection

with two equations /= and g = 0, these equations must have special

forms.

Ex. Shew that all the preceding conditions for the existence of an integral of the first

kind, in connection with the equations

/= az+ bw+ cz^z
1 + dwzz'+ ew'z1 +fw2

z' +gww'z+ hvfiw' — 0,

g= a'z'+ b'w' + c'zz'
2+ d'w'zz' + e'wz"1 +f'w"

l
z+g'wv/z' + h'wio'2= 0,

where the coefficients a, ..., h, a', ..., h' are constants, are satisfied when

Z=z, Z'=-z', W=w, W--Vf.

107. The second class of conditions, mentioned at the beginning of

§ 105 as required to be satisfied in order that the single integral may be

everywhere finite, depends upon the places where we have

\w, w J

which is not an identity, simultaneously with

/=0, g = 0.

As already indicated (§ 103), I do not propose here to enter upon any
discussion of these conditions. The discussion will be difficult, but it is of

supreme importance as regards even the existence of these integrals of the

first order, as well as for all other single integrals. It can be initiated

analytically on the lines of Picard's investigations in his treatise already

quoted. It will involve the algebraical singularities of w and w as algebraic

functions defined by the two fundamental equations.

Double Integrals.

108. The discussion of double integrals follows a different trend. There

is no limitation corresponding to the condition that must be fulfilled if the

element of the integral is to be a complete differential element, as in

§105.
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We have seen (§ 102) that, when two algebraic functions of z and z are

simultaneously given by two algebraic equations

f=f{w, w, z, z')
= 0, g=g (w, w, z, z) = 0,

the most general rational function of the variables can be expressed in the

form

(w, w', z, z)

J TMS
\w, w'J

where ® is a polynomial in w and w', the coefficients in this polynomial

being rational functions of z and z. Thus the typical double integral, con-

nected with the algebraical equations/=0 and g = 0, is of the form

\w, w J

the integration extends over a two-fold continuum. To express the integral
more definitely, we take z and z' as functions of two real variables p and q,

as in § 95
;
and then the expression of the integral becomes

© (w, w\ z, z) T (z, z'\ , ,

\w, w'J

where the integration can be regarded as extending over an area in the

p, q plane, limited initially by a fixed curve (or curves) in that plane and

finally by a variable curve (or curves) in that plane. The simplest case

arises, when we have a single simple closed curve as the fixed initial limit and

a single simple closed curve as the variable final limit.

The first form of the preceding definition takes z and z as the independent
variables for integration. As we have already suggested that it may be

convenient to take any two of the four variables as the independent variables

for integration, we proceed to give the equivalent forms.

For this purpose we assume that, in order to express the quantities
w, w', z, z' in terms of real variables p and q, we take two algebraic equations

F=F(w, w', z, z\ p,q) = 0, G = G (w, w', $, z\ p, q)
= 0,

forms which will prove useful in attempting an extension of Abel's theorem
for the sum of any number of algebraic integrals of a single variable. The
simultaneous roots of the four equations

/=0, g = 0, F=0, = 0,
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are functions of p and q ;
so we have

_dFdw dFdw' dFfa dFM dF
dw dp dw' dp dz dp dz' dp dp

'

Q _dGdw dGdv/ dGdz_ dGdz_ dG
dw dp dw' dp dz dp dz' dp dp

'

and therefore

Similarly

0= tyd™ + d£M + tfdz_ + dfdl
dw dp dw' dp dz dp dz' dp

'

a _dg dw dg dw' dg dz dg dz

dw dp dw' dp dz dp dz' dp
'

\z,z ,w,w J dp \p,z ,w,w )

\z,z ,w,w / dp \ p, z, w,w /

,z ,w,w / oq \q,z ,w,w J

\z, z ,w,w J dq \q, z,w,w J

/F
\z

Now, by the properties of determinants, we have

j (
F,G>f>9\ j (F,G,f,g \ = j(F,G,f>9

\p, z', w, w'J \q, z,w, w'J \z, z, w, w

j (Wil\ j (4*\ = _ j {LMS j (h
\z,z ,w,w J \p, qJ \w,w J V p-.

jtmj(F> G
av,w/ \p,q

hence

C

\z,z',w,w'J \p,q) \w,w'J \p,
and therefore

./ f>9\ W/ j(F,Q,f,g
\ \p,qJ

\z, z',w, WJw, w

The right-hand side is symmetrical, save as to signs, for the four variables

z, z
', w, w ;

hence it is equal to each of the six expressions

j(*4)+j(M), -j(ii^)+j(££), jr-i^\^j(fii\,
\p,q/ \w,w j \p>qJ \w,zj \p,qs \z, z J

\p, qJ \z,wj \p, ql \z,wJ \P>qs \z,w/

Accordingly, when the variables of integration in the double integral are

taken to be p and q, there are six equivalent expressions of the integral ;

one of them is the form first taken, and the other five are similarly constructed
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from a comparison of the six foregoing quantities; and each of the six

expressions so obtained is (save as to sign) equal to the double integral*

<P) (w, w', z, z) T (F, G

\z, z , w, w 1

I
p>q J dpdq.

Double integrals of algebraic functions may be divided into various

classes, following the analogy of the division of simple integrals of algebraic

functions of a single variable
;
but the analogy is little more than a sug-

gestion, because (as has been seen in Chap, iv) a definite infinity of a function

of two variables can be a one-fold continuum in the immediate vicinity of

any one definite place of infinite value, and because unessential singularities

(when the term is used in the sense defined in § 58) have no limited analogue
even in the case of uniform functions of only a single variable. One class, how-

ever, survives naturally in spite of the deficiencies in the analogy; it is

composed of those integrals of algebraic functions which never acquire an

infinite value, no matter how the two-fold continuum of integration is

deformed. Such integrals are formally styled double integrals of the first

kind.

109. The conditions, which must be satisfied by the double integral of

an algebraic function connected with two given algebraic functions if it is to

be of the first kind, are of four categories, according to the character of a

place z, z' in relation to the subject of integration; and the four categories

can be grouped in two pairs.

It is manifest that a finite place z, z
', which is ordinary for the equations

/= and g = 0, and is also ordinary for the subject of integration, cannot give

rise to an infinity of the integral. For near such a place w = a, w' = a,

z = a, z = a', we have

w = a + W, w = a + W, z= a + Z, z = a + Z'
;

This integral can also be expressed in the form

(m;, w\ z, z')

\z, z , w, w J

which is the natural extension of the single integral

dFdG,

W)\z, w )

The latter integral is fundamental in one of the proofs of Abel's theorem for the sum of a

number of integrals
C R (w, z) ,

Mr*-
J dw

when the upper limits of the integrals are given by the simultaneous roots of a permanent

algebraic equation f (w, z)
= and a parametric algebraic equation <f>(w, z)

= 0.
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the equations/= 0, g = 0, then give relations of the form

W=(Z,Z'\ + (Z,Z'\+...,

W' = (Z,Z') 1 + (Z,Z%+...,

and no one of the quantities

V
dw' dw" dz' dz'

dw
'

div"

*9
dz' dz

vanishes at a, a', a, a'.

form of

As the place is ordinary also for © (w, w , z, z'), the

© (w, w, z, z)

j(H)\w,w J

in the vicinity of the place becomes

% + ®1 (Z,Z')+®,(Z,Z
f

) + ...

J + J1 (Z,Z') + Jt {Z,Z
,

) + ...
'

and so the integral, in the vicinity of the place, becomes equal to

[{ ®o + ®1 (Z,Z
/

) + ®,(Z,Z') + ...

J] J + J1 (Z,Z') + J2 (Z,Z') + ...
ZaZ'>

which is finite at the place and in its immediate vicinity*.

In the first category, there are the conditions to be satisfied at a place

z, z', which is ordinary for the equations/= 0, g = 0, but is not ordinary for

the subject of integration. In the second category occur the conditions that

must be satisfied for infinite values of z and *', when these constitute ordinary

places for the equations /= and g = 0. These two categories form one

group, containing all the conditions which arise in connection with all the

ordinary places of the two fundamental equations.

In the third category occur the conditions that must be satisfied at a

non-ordinary finite place of the two fundamental equations ;
all such non-

ordinary places are such as to satisfy some one or more than one of the six

Jacobian equations

\\w,w ,z, zjj

concurrently with the fundamental equations themselves. In the fourth

category occur the conditions that must be satisfied for infinite values

of z and z when these constitute non-ordinary places for the equations

f= and g = 0. These two categories form one group, containing all the

* The symbols (Z, Z') lf 9i (Z, Z'), J
x (Z, Z') denote the aggregate of terms of the first order

;

the symbols (Z, Z') 2 , Q%(Z, Z'), J2 (Z, Z') denote the aggregate of terms of the second order ;

and so on.
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conditions which arise in connection with all the non-ordinary places of

the two fundamental equations.

110. As regards the first of these categories of places which, while

ordinary finite places for the equations /=0 and g = 0, provide an infinite

value for the subject of integration, this infinite value can arise only through

the coefficients of the powers of w and w in the polynomial ©. These

coefficients are rational functions of z and z . If then the double integral

is not to have an infinity, the existence of these rational functions of z and z'

must not compel such an infinity. Accordingly, the rational functions of z

and z must be integral functions : that is, they must be polynomials in

z and z . Thus © (w, w', z, z') becomes a polynomial in all its four arguments ;

consequently, as a first condition that our double integral may be everywhere

finite, it follows that the quantity © (w, w', z, z') must be a polynomial in the

four variables w, w, z, z.

The similar consideration of the second category of places, constituted of

infinite places (supposed ordinary) for /= and g = 0, leads to a limitation

upon the order of the polynomial © (w, w', z,z) if the double integral is to be

not infinite for such places. For simplicity, suppose that / and g are quite

general polynomials of aggregate orders m and n respectively, so that we

may take

/= (xfrw, w, z, z, V)
m

, g= (*$w, w', z, z', l)
n

.

Then

J (£-L\ = (*#w, w', z, z', \Y
\w,w J

v *~

in the quite general case. In order that the double integral may be not

infinite for infinite values of z and z\ the order of

© (w, w', z, z')

J (M)\w, w J\w, w
must be equal to, or be less than, — 3

;
and therefore the aggregate order of

the polynomial © (w, w', z, z) must be not greater than m + n — 5. Thus in

order that the double integral may remain finite for infinite values of z and

z', when these are ordinary places of/= and g = 0, the aggregate order of
the polynomial © (w, w', z, z) must be < m + n — 5, where m and n denote the

respective aggregate orders off and g.

As regards the second group of conditions indicated above, they are

concerned with the places where the equations

/=0, <7
= 0, j(M-\ =

tJ *
\w, w J

are simultaneously satisfied. Their discussion will involve the consideration

of the singularities of w and w' as algebraic functions of the variables. As
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before for single integrals (§ 107), so here for double integrals, the whole

subject is left for investigation ;
a beginning can be made on the lines of

Picard's discussion of the matter when there is only a single equation /=
defining a single algebraic function*.

111. It is possible to obtain an extension of Abel's theorem for the sum
of a number of integrals of algebraic functions of a single variable, by con-

structing an expression for the sum of a number of double integrals of the

type
® (w, w', z, z')

J, Iff
\W, W I

dzdzf,

where f and g are polynomials of aggregate orders m and n respectively.

We shall assume that the aggregate order of the polynomial © is not

greater than m + n — 5.

As before (§ 108), we define w, w, z, z' as functions of two real variables

p and q by means of the permanent equations

f(w, w, z, z')
= 0, g (w, w', z, z) = 0,

and associated parametric equations

F (w, w, z, z, p, q)
= Q, G (w, w, z, z

, p,q) = 0;

and we shall assume that F and G are quite general polynomials in w, w , z, z,

of aggregate orders k and I respectively. As these are four algebraical

equations in w, w', z, z
,
of orders m, n, k, I respectively, they determine klmn

(= ft) sets of roots, each root in each set of roots being a function of p and q.

Denoting any such set by wr , wr

'

,
zr ,

zr', the double integral can as before

be transformed to
' © (Wr ,

Wr', Zr , Zr') T (Fr ,
Gr

jl
Fr,Gr,fr,gr\ \ p, f )

P 9>

\zri zr\ wr ,
wr'J

or, if we write

(F
C1 \

~
*'

"
)
= 3* (Wr , Wr . Zr , Z^),

p, q I

jr
= j(Fr >

°rf-9*\
>

\Zr ,
Zr ,

Wr ,
Wr J

so that 4> is a polynomial of aggregate order ^.k+l+m + n — 5, the integral

(for this set of roots) becomes

// T dpdq.J r

We assume the integral taken over any finite simple closed region in the

p, q plane.
*

I.e., t. i, ch. vii.

F. , 13
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Let W denote the result of eliminating w', z, z' between /= 0, g = 0,

F=0, G = 0; the quantities wlt ..., wM are the roots of TT=0. The theory

of elimination shews that we have a relation of the form

W=Kf+Lg+MF + NG.

Similarly, eliminating w, z, z', and denoting the eliminant by W, we have a

relation of the form

W = K'f+ L'g 4- M'F+ N'G,

and the quantities Wi, . . .
, w^ are the roots of W = 0. Likewise eliminating

w, w ', z', and w, w ',
z in turn, and denoting the respective eliminants by Z and

Z
',
we have relations of the form

Z = Pf+Qg + RF + SG,

Z' = P'f+Q'g + R'F + S'G;

the quantities zly ..., z^ are the roots of Z = 0, and the quantities zi, ..., z^
are the roots of Z' = 0. And the quantities K, L, M, N, K', L\ M', N',

P, Q, R, S, P', Q', R', S' are polynomials of the respective appropriate
orders. In particular, if we write

A= K, L, M, N
K', L', M', N'

P, Q, R, S

P', Q', R', S'

A is a polynomial of aggregate order

(mnpq — m) + (mnpq — n) + (mnpq —k) + (mnpq — /),

=
4/a

— w — n — k — I.

The simultaneous combinations wr ,
wr', zr> z,.' (for r = 1, ..., fi) are the simul-

taneous roots of

/=0, g = 0, F=0, G = 0;

these we call the congruous roots. All other combinations of the roots of

W = 0, W = 0, Z = 0, Z' = 0, are called non-congruous roots
; they are not

simultaneous roots of/= 0, g = 0, F = 0, G =
; but, for each such combina-

tion, we have

A = 0.

For the sake of simplicity, we shall assume that each of the roots of

W = 0, TT' = 0, Z = 0, Z'=0, is simple.

Now consider the quantity

4> (w;, w\ z, z) A
WW'ZZ'
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It can be expressed in a partial-fraction series of the form

2222 .

A
,

r,Js8
'

(W — Wr) (w — W
r>) (z

— Zs) (z
—

z'g>)

'

the summation being for r, r, s, s, = 1, ..., //,, independently of one another;

and

<$> (wr , w's, zs , Zg>) A)Ys8
'

"-riJ
s*'
—

dW dW' dZ dZ'

dwr dw's dzs dz'S'

When r = r = s = s', we can denote the coefficient A by A r ;
then

<S>rAr

dWTW'dZ dZ''

dwr dwr
'

dzr dzr
'

Unless all the equalities r = r'= s = s are satisfied, we have

so that all the coefficients A other than A r ,
for r = l, ..., fi,

vanish. Thus

we have the identity

<I> O, w, z, z') A _ & A r

W W'ZZ' r=1 (w — wr) (w — w'y) (z
— zr) {z

—
z'r>)

'

Let both sides be expanded in ascending powers of 1/w, lfw', 1/z, l/z'. On
the left-hand side, the index of the term of highest order in w, w', z, z in the

numerator is

^.k + l + m + n — 5 + (4/i
— m — n—k —

l)

< V - 5
;

the index of the term of highest order in w, w', z, z in the denominator is

4>/jb ;
hence the index of the first term in the expansion ^ 5. On the right-

hand side, the index of the first term in the expansion is —
4, and its

coefficient is

v A r .

r=l

No such term can occur in the left-hand side under the assigned conditions
;

hence

that is,

£ A r
= 0,

rti dW d_VT_
dZ

d_Z[

dwr dwr dzr dzr
'

13—2
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From the expression for W, we have

dW -K V + L dg + M ^+N™_-— = J\ r r— +- Lir o • m r ^ r -i» r ^ ,

dwr owr dwr dwr owr

<-*•&**&**>&+*&>

dzr dzr ozr ozr

and similarly from the expressions for W, if, £'. Thus

[CH. VI

dW
dwr

'
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This is a restricted extension of a part of Abel's general theorem on the

sum of integrals. The result is true, even if the integral

/J

3>

-j dpdq

is not everywhere finite, that is, if the integral is not of the first kind*. The

conditions, which have been imposed upon the integral, are that it is to be

finite for all places which are ordinary for the equations /= 0, g = 0, all

infinite places being supposed included among these ordinary places.

*
It should be added that, by a different method, Picard (I. c, t. i, p. 190) obtains this

extension for double integrals of the first kind (that is, integrals which are everywhere finite)

when there is a single fundamental equation f(w, z, z')
= 0.



CHAPTER VII

Level Places of Two Uniform Functions

112. Hitherto, save for rare exceptions, only individual functions of two

variables have been considered at any one time
;
and we have seen that there

exist continuous aggregates of places where a function has an assigned level

value or a zero value. This property precludes us from establishing definite

relations of inversion between a single function of more than one variable

and the variables of that function. Such relations are highly important in

various branches of the theory of functions of a single variable
; they are no

less important when functions involve several independent variables. To
establish them, it is necessary to have as many functions, independent of one

another, as there are variables; and therefore, for the present purpose, we
shall consider two independent functions of z and z' . Moreover, quite apart
from reasons that make inversion a possible necessity, we have seen that it is

desirable to consider simultaneously two independent functions of z and /.

We still shall limit ourselves throughout to uniform analytic functions ;

and we shall begin with the discussion of the relations between two functions

that are regular everywhere in the finite part of the field of variation. As
we know, every such function can be expressed as a series of positive integral

powers of z and /, which (if an infinite series) converges absolutely for finite

values of
|

z
|

and
|

z
j

,
and has all its essential singularities outside the finite

part of the field of variation. We know (§ 53) that such a function must

possess zeros somewhere in the field of variation
;
but it may happen that the

zeros do not occur in the finite part of the field*, and then they occur at the

essential singularities.

We proceed to establish the following theorem :
—

Two independent functions, regular throughout the finite part of the

field of variation, vanish simultaneously at some place or places within the

whole field.

* For example, the function e*+*' cannot vanish for finite values of z and of z'
; all its zeros,

a continuous aggregate, occur for those values of z and z' which make the real part of z + z'

negative and infinite.
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113. Let the two functions, everywhere regular, be denoted by f(z, z)
and g (z, z) ;

and let a, a be any place in the finite part of the whole field of

variation for z and z . In view of the proposition to be established, it is

reasonable to assume that neither /(£, /) nor g (z, z) vanishes at a, a
;

if

both should vanish at a, a, the proposition needs no proof; if one of them
should vanish at a, a, but not the other, the following proof will be found

to cover the case.

We consider the immediate vicinity of a, a, and take

z = a + u, z' = a + u'.

Because f(z, z) and g (z, z') are regular everywhere in the finite part of the

field of variation, we have expressions for them in the form

f{z, z')=f(a, a) +f(u, u')m +f(u, u')m+l + ...,

g (z, z) = g (a, a') + g(u, u') n + Ju, u')n+l + ...,

where f(u, u')m represents the aggregate of terms of combined dimension in

in u and u as contained in the power-series for/; and similarly for the other

homogeneous sets of terms in/, and for the homogeneous sets of terms in g.

In the simplest cases, the integer m is unity and the integer n is unity ;
in

all cases, both the positive integers m and n are finite.

When m = 1 and n = 1, the quantities

f(U, U% g(U, U%
are usually independent linear combinations of u and u

;
their determinant is

the value, at a, a, of

\z,z J

which does not vanish everywhere, because the functions / and g are inde-

pendent. If it should happen that J vanishes at a, a, so that there

da
'

da da'
'

da

then we have

f(a + u,a' + u') —f{a, a) =/(u, u'\ + . . .
,

f(a + u, a' + u') —f(a, a')
— k [g (a + u,a + u')

— g (a, a')}
=

g{u, u'\ + . . . ,

where the first set of terms g(u, u'\ is of order higher than the first set

f{u, u')i and usually is not the square of y(u, v!\. If, however,

\
{g(u, u')2]

=
{f(u, u'W

2
,

where X is a constant, then we should take a new combination

f(a + u,a' + u) -f(a, a')
- k {g (a + u. a +u)-g (a, a')}

- X {/(a + u, a + u') -/(a, a')}*.
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Similarly for other cases.

We proceed until, at some stage, we obtain two series in u and u,

such that the lowest set of terms in one series cannot be expressed solely by

means of the lowest set of terms in the other series ;
and this stage is

attained after steps that are finite in number, because

does not vanish identically.

Similarly, if m is greater than unity and n = 1
;
and if m — 1, while n is

greater than unity ;
and if both m and n are greater than unity. In each

case, we obtain a couple of series, the aggregate of terms of lowest dimensions

in the two series not being expressible solely in terms of one another. And

then, because of this independence, the equations

A =
f(u, u%, B =

g (u, u')n ,

where A and B are assigned quantities independent of u and u, determine a

limited number of values of u and u. In particular, let I be the greatest

common measure of m and n, and write

m =
fil, n = vl;

and let E be the eliminant of j(u, u')m and
g {u, u')n , so that

Then the equation giving values of u is

(a™o
B
Con
m + • • •) u

mn + • • • + {(- Acmy - (- Bamoy)
1 = 0,

and therefore, if

A = kP™ = tcP»l

,
B = \Fh*= \Pvl

,

each value of u is of the type
u = kP;

or, for sufficiently small values of
|

u
\, \A\, \u'\, \B\, and so of

|

P
|,
we have

u = kP, v! = k'P,

where
|

k
\

and
|

k'
\

are finite, while some of the quantities k and k' can be

zero. Manifestly,

* = f\k, k )m ,
X =

^(A;,
k )n ;

and, in general, we shall have

u = kP + klPl + ..

u' = k'P+kl'P*+..
from the relations

A =
f(u, u')m + f(u, u')m+i + • • •

B =
g{u, U')n + g (u, M')n+1 + • • •
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After these explanations and inferences, we proceed to shew that it is

possible to choose quantities u and u' of small moduli, so that the place

a -f- u, a' + v! is in a small domain of a, a', and so also that

\/{a + u, a' + u')\<\f(a,a')\,

| g (a + u, a' + u)
\

<
\ g (a, of) I ,

simultaneously. Let

f(a, a')=Q + iR, g (a, a') = S + iT,

where Q, R, 8, T are real quantities, and neither
|
Q + iR

|

nor \S + iT\

vanishes. Now choose M a small positive quantity, in every case less than

|
Q + iR

I
, unless \Q + iR\ happens to be zero and then we take M zero

;
and

choose an argument yfr
such that Q and M cos -^ have opposite signs and, at

the same time, R and Msmty have opposite signs. (If R be zero, we can

take
i/r equal to either or it and should choose the value giving opposite

signs to Q and J/ cos
yfr. Similarly, if Q be zero, with a choice of \tt or f 7r

for *}/). Again, choose N a small positive quantity, in every case less than

\S-\-iT\, unless \8 + iT\ happens to be zero and then we take A7

"

zero; and

choose an argument ^ such that S and N cos % have opposite signs and, at

the same time, T and N sin % have opposite signs. (Arrangements as to

choice of x can De made similar to those for
yjr,

if either S or T should vanish).

Then evidently

|/(o, a') + Me*i

\<\f{a, a')\,

\ g (a, a') + Ne* \<\g(a, a')\.

Now we have seen that, for sufficiently small values of M and of N, the

relations

Me** =
f{u, u')m + f(u, u')m+1 + . . .

,

Ne^ =
g{u, u')n + (u, u')n+1 + ...,

give a limited number of sets of values of the form

where
|

P
\

is a small magnitude such that

Me*i = KPn,
Ne^ = \Pm

;

thus
|
u

|

and
|

u'
\

are small, of the same magnitude as
|

P
|,
while

| A^P
2 +

|
&/P2 + ...

|,
are small compared with \P\. For such values, we have

\f(a+u, a! + u')\< \f(a,a!)\,

\g(a + u,a +u')\<\g (a, a?) \,

which was to be proved.
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Accordingly, we infer that it is possible to pass from a place a, a' to a

place z, z
1

,
which may be called a place adjacent to a, a', and which is such as

to give the relations

\f(z,z?)\<\f(a,a')\,

\g(z,z')\<\g(a,a')\,

simultaneously.

Within the finite part of the field of variation, the functions f(z, z') and

g (z, zf) are everywhere regular, so that no singularities are encountered in

transitions from a place to an adjacent place. We therefore can pass from

place to place within the finite part of the field of variation, always choosing

the passage so as to give successively decreasing values of \f(z, z') \

and

If at any place c, c', one of the two functions (but not both of them)
should vanish—say/(c, c')

= —then we choose the next place c + u, c' + u',

so that M is zero, that is, so that k is zero, and such that

f(c + u, tf + u')
= 0, | g (c + u, c' + u') |

<
| g (c, c')\.

The choice is always possible for finite values of z and /, because the functions

f{z, zf) and g (z, zf) are regular for those finite values and consequently can

be expressed as regular power-series.

114. It thus follows that, by an appropriately determinate choice of

successive places at every stage, each place being adjacent to its predecessor,

the moduli of f{z, zf) and g(z, zf) can be continually decreased so long as

they differ, either or both, from zero. Thus they tend to zero in value, as the

successive places are chosen
;
and continued decrease can be effected, so long

as they are not zero.

Moreover, we know that every regular function possesses a zero value or

zero values somewhere within the whole field of variation. If the zero value

does not occur at some ordinary place, then (§ 53) it occurs at the essential

singularity or singularities, as e.g. for the function eP{z>
z

'

}

,
where P (z, z) is a

polynomial in z and z'
,
when the places for the zero values belong to the

non-finite part of the field.

Hence ultimately, either for finite values of z and /, or for infinite values

of either of them or of both of them, a place will be attained at which both

the moduli \f(z, z') |

and \g(z, z) |

are zero. Such a place is a common mo
of f(z, zf) and g(z,z

/

); and therefore our theorem—that two functions

f(z,z') and g(z, zf), regular everywhere in the finite part of the field of

variation, vanish simultaneously somewhere in the whole field—is established.

Ex. Consider the functions

f(x, z')
= e*

+
'', g(z, *)= *-(* +

<),

both of which are regular for all finite values of z and z".

Let z +/= log (r
n enx6i ),

zsare9
*,
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where r, 0, m, n are real constants ; then

f(z, tf)
= rn em*\

g(z,z
J

)
= r^- n

)e(l
'm

) 6i.

When < n < 1, we manifestly have

/(*,V)-0, g(z,S)=0,

when r is zero : that is, the two suggested functions acquire zero values for some specified
values of / (even when 2=0) which do not lie in the finite part of the field uf variation of

the two variables.

115. Next, consider the case of two uniform analytic functions, each of

them devoid of essential singularities in the finite part of the field of variation,

and each of them possessing continuous aggregates of poles and isolated

unessential singularities. We know, from an earlier proposition (§ 90), that

the functions can be expressed in the forms

J^Z>
Z >-

Q{z,fy
9V>*>-

S{z,zf)'

where P (z, zf), Q(z, z), R(z, z'), S(z, z') are functions of z and z'
,
which are

regular everywhere in the finite part of the field of variation.

The zero-places oif{z, zf) are those of P (z, z') ;
it may happen that a zero-

place of P (z, zf) is also a zero-place of Q (z, zf), and then the place is an

unessential singularity oif{z, zf) which, among its unlimited set of values there,

can acquire the value zero : that is, the zeros off(z, zf) are given by the zeros

of P (z, z'). Similarly for g {z, z') and R (z, z). Hence f(z, zf) and g (z, z)
will vanish simultaneously somewhere in the field of variation, if the functions

P (z, z') and R (z, z'), everywhere regular in the finite part of the field, vanish

simultaneously somewhere in the whole field. But we have proved that these

regular functions P (z, z) and R (z, zf) must vanish simultaneously at some

place or at some places in the whole field. Hence we infer the following
theorem :

—
Two independent functions f{z, zf) and g (z, z'), which are uniform and

analytic, and all the essential singularities of which occur only in the non-finite

part of the field of variation, must vanish together at some place or some places
in the whole field of variation.

We infer also, as an immediate corollary, the following further theorem :
—

Two independent functions f(z, z') and g (z, z'), which are uniform and

analytic, and all the essential singularities of which occur only in the non-finite

part of the field of variation, must acquire assigned level values at some place
or some places in the whole field of variation.

For if the assigned level values be a for f(z, z) and /3 for g (z, z'), the

functions f{z, z')
— a and g (z, z

/

)
—

/3 satisfy all the conditions imposed upon
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the functions f(z, z') and g {z, zf) in the earlier theorem
;
the application of

that earlier theorem leads to the result just stated.

A corresponding result holds as regards simultaneous poles for f(z, z)
and g (z, z').

In general, a corresponding result does not hold as regards the occurrence

of simultaneous unessential singularities o£f(z, zf) and g (z, z').

116. When two functions f(z, z) and g(z, z') have a common zero-place,

we need to consider their relations to one another in its immediate vicinity ;

we need also, if possible, to assign an integer which shall represent its multi-

plicity as a common zero-place. Let a, a' be such a place, so that

/(a, a')
= 0, g (a, a')

=
;

for places in its immediate vicinity, represented by a + u, a' + u, we have

/(*, z')
= Ku'u'1 P O, u') e

p^
^

g (z, z) = K'uWR (u, u) eR{u- u,)

= L'us
'u'

t

'S(u, u')e^
u > u'>

Here K, L, K', L' are constants
; s, t, s'

,
1f are positive integers which can

be zero separately or together ;
P (u, u'), Q (u, u'), R (u, u'), S (u, u) are regular

functions of u and v!
,
which vanish with u and u'. The functions P (u, u')

and R (u, u') are polynomials in u, having as their coefficients regular functions

of v! which vanish with u'
;
the functions Q (u, u') and S (u, v!) are polynomials

in u', having as their coefficients regular functions of u which vanish with u.

When u~s u'- t

f(z, /) does not vanish with u and u, we substitute unity for

each of the functions P and Q; and similarly when u^u'-1

g (z, zf) does not

vanish with u and vf, we substitute unity for each of the functions R and S.

The order of a zero-place for a single function in each variable has already
been denned. For the function /(z, z), it is

s + m in z, t + n in z*,

where m and n are the positive integers, which are the degrees of P and Q
regarded respectively as polynomials in u and in v!

;
and m and n are zero, only

when u-"u'-t

f{z, /) does not vanish with u and u'. For the function g (z, /),
it is similarly

s' + m' in z, t' + n' in /,

where m' and n' are the positive integers, which are the degrees of R and S
regarded respectively as polynomials in u and in u'

; and m' and ri are zero,

only when vr*u'-v g(z, z') does not vanish with u and u'.

Beyond the factors wV and u'u'*, the relations of f(z, z') and g(z, zf) in

the vicinity of a, a' depend upon the relations of the functions P or Q (as
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representative of /) and the functions R or S (as representative of g) to one

another. Consider, in particular, the functions

P (u, v!)
= um 4- um~l

p, (v!) + ... +pm (vf),

where p1} ..., pm are regular functions of u', vanishing with u', and

R (u, v!)
= um

'

+ U*-* n («') + . . . + rm -

(u),

where *y, ..., rm> are regular functions of u, vanishing with u'. To determine

whether there are common sets of values of u and u, in the vicinity of u =
and u = 0, where P and R vanish together, we take

P = 0, R = 0,

as simultaneous equations, algebraical in u. Eliminating u between them, we
have (save in one case) a resultant which is a function of v! only ; also, as each

of the quantities plf ..., pm ,
r1} ..., rm> is a regular function of v! vanishing

with u', this resultant is of the form

u'M 4>{n'),

where M is a positive integer, chosen so that
cf> (u'), a regular function of u\

does not vanish when w' = 0. To the exact determination of M we shall

return later.

The excepted case arises when the resultant vanishes identically. When
the resultant does not vanish identically, the necessary values of vf, making P
and R vanish together, are given by

u'M <f>(u')=0,

where
<f> (0) is not zero and (f>(u') is a regular function. We at once have

u = 0, as a possibility ;
the associated value of u is u = 0. The alternative

possibilities would arise through zeros of the regular function (u') : but as

(f> (0) is not zero, it is possible to assign a finite positive quantity e, less than

the smallest among the moduli of the zeros of
<f> (u'). In that case, there is

no value of u within the range |

u'
j
^ e such that

<f> (vf) vanishes
;
and then

the resultant vanishes for no value of v! other than u = : that is to say,

there is no zero-place for/ and g in the immediate vicinity of a, a, other than

a, a itself.

117. When the resultant of the two equations P = and R = 0, which

are algebraical in u, vanishes identically, the inference is that these two

equations in u have common roots, one or more. Let the number of these

common roots be I, and let them be the roots of an equation

U = ul + u l
~l k1 (u')+...+kl (u,')

= 0,

where klf ..., kt manifestly are regular functions of u' vanishing with v!.

Then U is a factor of P save as to possible multiplication by a factor ea(u
'',

where a («') is a regular function of v! that vanishes with u'
;
and similarly U
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is a factor of R, save as to a similar possible limitation. Let the quotient of

P by U be
um~l + u™-1-^ (u') + . . . +fm-i (u') ;

and let the quotient of R by U be

Um'-l + yp'-tr-l gx (u) + ...+ gM_t (lO,

where all the quantities /,, ...,/m_;, gx , ..., gm'-i are regular functions of u',

vanishing with u'. The conditions, necessary and sufficient to secure this

result, are those which render the relation

(u™-
1 + u™-1-1^ + ... +fm-i) (u

m'

+ um'-1

£, + ...+ qm.)

= (u
m'- 1 + um'- l

~l

gx + ...+ gm'-i) (u
m + um~i

p1 +... +pm ),

an identity : viz. we must have the I independent determinants, each of

m + m' — 21 — 1 rows and m + m - 21 — 1 columns (we assume m^mf for

purposes of statement), which can be formed out of the array

Pi-n, p2-r2> ps -r3> ..., pm'-rm>, pm'+i, , pm , , 0,...,

1
,

rx ,
r2 ,..., rm'_x ,

rTO<

, , 0, 0,0,
,

1
, 7"j ,

. . .
, I'm'—2 > Tm'—i > ^m' >•••> ^> "

> ">

0,0,0 , , qm-

1
, Pi , P-2 , •••, Pm-i , Pm' , ,Pm-i, Pm , ,...,

,
1

, p x , ,Pm-2,Pm-i,Pm, •••>

, 0,0, , pm

vanishing identically for all values of u'.

In actual practice with two given functions, we should in general experi-

ence the same arithmetical difficulty as before (§§ 70, 71). Here we are

concerned with the effect of the relative reducibility of the functions
;
the

foregoing are the I analytical conditions for this reducibility.

When all the conditions for the identical evanescence of these I deter-

minants are satisfied, P and R have a common factor U : and then all the

zeros of U within the domain are also zeros of P and R. Now these zeros of

U form a continuous aggregate, since U is a regular function
;
for I values of

u can be associated with any value of u in the domain so as to make U
vanish.

118. It thus appears on the one hand that, when the resultant of P and

R, regarded as polynomials in u, does not vanish identically, the zero-place

a, a' is isolated : that is to say, simultaneous zero-values of P and R cannot

be found, except at a, a', in a region given by

I z - a I < e,
|

z' - a' I ^ e',
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where e and e are assigned positive quantities made as small as we please.

And it appears on the other hand that, when the resultant of P and R,

regarded as polynomials in u, does vanish identically, the zero-place a, a is

not isolated.

Moreover, in the case when P and R have a common factor U, we can

write

P = Up (u, u'), R=Uq (u, u),

where all the functions P, R, U, p, q are regular functions of u and u
;
each

of them vanishes when u = and u =
;
and each of them is a polynomial in

u, having unity as the coefficient of the highest power of u and, as coefficients

of the succeeding powers of u, regular functions of u which vanish when

u' = 0. From the construction of U, we may assume that p and q have no

common factor
;

so that the zero-place of p and q at u = and u = is

isolated. Now

j il*\ _ bjM + pj (£*) +mm) .

\u, u J \u, u } \u, u J \u,u j

Hence the Jacobian of P and R vanishes for all the aggregate of places

making U vanish, because all these places make P and R vanish. But this

Jacobian does not vanish (except at a, a) for places in the domain of a, a
,

which make P and R vanish but leave U different from zero. Also, as

/O, z')
= Ku'u'P (v, u') ePiu >

u
')

g (z, z) m LuB'u vR (u, u') e«<M >
M'>

it follows that the Jacobian of the independent regular functions f and g
vanishes for all the aggregate of places making U vanish, while it does not

vanish (except at a, a') for places in the domain of a, a' that makef and g
vanish but leave U different from zero.

These results have followed upon the selection of P (u, u') as the sig-

nificant factor of/ in the immediate domain of a, a', and of R(u, u') as the

significant factor of g in the same domain. The same results follow upon a

selection of Q (u, u') and R (u, u) as the significant factors of f and g ;
like-

wise upon a selection of P (u, vf) and S (u, u') as these factors, and upon a

selection of Q (u, u') and S (u, u) as these factors.

Gathering together all the results, we can summarise them as follows :
—

(i) Any two independent functions, uniform, analytic, and devoid of
essential singularities in the finite part of the field of variation of the two

variables z and, z', possess common zero-places somewhere within the field

of variation :—
(ii) In general, each common zero-place of two independent functions,

which are uniform, analytic, and devoid of essential singularities in the

finite part of the field of variation of z and /, is an isolated place, so far
as concerns the vanishing of the two functions :

—
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(iii) Less generally, when two such independent functions possess a

common factor, which is necessarily of the same character throughout the

finite part of the field of variation and which itself vanishes at the common

zero-place of the two functions, then the common zero-place of the two

functions is not isolated ; in its immediate vicinity, the two functions

possess a continuous aggregate of zero-places which belong to the common

factor :
—

(iv) The Jacobian J, of two independent functions f and g, does not

vanish identically. It may vanish at a zero-place common to the two

functions. When the common zero-place is isolated, then f g, and J do

not simultaneously vanish at any other place in the immediate vicinity of

that place. When the common zero-place is not isolated, thenf g, and J
vanish simultaneously at a continuous aggregate ofplaces in the immediate

vicinity of the common zero-place.

119. In the preceding consideration of two functions f(z, z') and g(z, z')

discussed simultaneously, there has been the fundamental assumption that

the two functions are analytically independent of one another in the sense

that neither of them can be expressed, either implicitly or explicitly, by any
functional relation which, save for the occurrence of/ and g, is otherwise free

from variable quantities. Were the assumption not justified, the Jacobian of

the two functions would vanish identically; we then should not possess

sufficient material for the consideration of the common characteristic pro-

perties of/ and g as simultaneous functions of two variables.

But, after the preceding explanations, two limitations can be introduced

as regards a couple of functions. One of these affects them simultaneously :

the other affects them individually : yet neither of them imposes limitations

upon generality, for the purposes of this investigation.

Our discussions will deal with any pair of regular functions, which are not

merely independent in the general sense, but which possess the further

quality that they have no common factor, itself a regular function and

vanishing at places within the domain considered. For any such pair of

regular functions, each simultaneous zero-place is isolated. The zero-place

may be simple or it may be multiple ;
when it is multiple, the multiplicity is

represented by a definite positive integer.

It will be convenient to use some epithet to imply that two independent

regular functions, existing together in the domain of a place where they

vanish, do not possess a common factor, which is itself a regular function in

that domain and vanishes at the centre of the domain. When a common
factor of that type is not possessed by a couple of such functions, they will be

called free. If on the contrary they do possess a common factor of that type,

they will be called tied. Accordingly, when we deal with a couple of regular

functions simultaneously, they will be assumed to be both independent and free.
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The other limitation aims at the exclusion of unessential complications,

and is suggested by the most general form of a function f(z, z) in the

immediate vicinity of a zero a, a', viz.

f(z, z')
= K(z- a)

8
(z

f - aj P{z-a,z' - a') #**-+*-*.

Thus (z
—

a)
s
is a factor off(z, z'~) : at another zero c, c', it could have another

factor (z
—

c)
a

;
that is, it would have a factor (z — of (z

—
c)". And so on, for

other zeros. We shall assume that, iff(z, z') initially possesses a factor which

is a function of z alone, then/ (z, z') is modified by the removal of that factor

in z alone. Similarly, of course, if it initially possesses a factor which is a

function of z* alone, then we shall assume it to be modified by the removal of

that factor also. Any such factor of either variable alone can only contribute

properties characteristic of a function of a single variable. Thus, for instance,

we should not consider $ (z) g> (z'), where the periods of
fp (z) are unaffected

by the periods of $ (V), as a proper quadruply-periodic function
;
we should

not consider p (z) sin / as a proper triply-periodic function
;
we should not

consider sin z sin z' as a proper doubly-periodic function.

It seems unnecessary to introduce an epithet to indicate the non-composite
character of a function f(z, z')\ in what follows, we shall assume that we are

dealing with functions which are of this non-composite character.

Accordingly we can enunciate the theorem :
—

The common zero-places of two functions of z and z', which are uniform,

analytic, and devoid of essential singularities in the finite part of the field of

variation, and ivhich are independent and free, are isolated places in the field

of variation.

120. An indication has been given of the determination of the integer
which shall represent the multiplicity of an isolated simultaneous zero-place

of two regular functions. In the vicinity of such a place a, a', we take

z — a + u, z'
' — a'

'

+ u'
'

;

and then, after the preceding explanations, we can assume that the integers

s and t are zero for f(z, z'), and that the integers s' and t' are zero for g (z, z').

Thus

f(z, z')
= KP {u, v!) eP{u >

u\ g (z, z')
= LR (u, u') eR^ u\

in the immediate vicinity of u = 0, u' —
;
and

P (u, u')
= um + um~1

p 1 (uf) + ...+pm {u'),

R (u, u')
= um

'

+ m™'"1 n {u') +'. . , +VW.

{u'),

where all the coefficients pu . .., pm ,
r1} ..., rm- are regular functions of u' and

vanish when uf = 0. When the eliminant of P (u, u') and R (u, a), regarded

as polynomials in u, is formed, it is a regular function of u' which vanishes

when u' =
;
and so it can be expressed in a form

u'M <f>(n'),

r. 14
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where
<f> (0) does not vanish, and where M is a positive integer. This integer

M measures the multiplicity of a, a, as a simultaneous zero of/ and g.

The detailed determination of M can be effected as follows. Let

P (u, v')
= (u

-
Pl ) (u

-
Pa) . . . (u

-
pm),

R (u, u')
= (u

- <r
x ) (u

- <rs ) ... (u
- <rm>),

where plf ..., pm ,
<rlt ..., am> are functions of u' (regular functions of fractional

or integer powers of u') all vanishing when u' = 0. Their governing terms—
that is, the lowest power of u' in each of them, with its appropriate coefficient

—can be determined as in Puiseux's treatment of algebraic functions. Now,

except as to a constant factor that is of no importance here, the eliminant of

P and R is
m m'

n n (Pr -as).
r=l «=1

When pr
— <ts is expressed in terms of u', every occurring power having a

positive index, let firg be the index of the lowest power it contains
;
then we

see that
m m'

M= 2 2 fir8 ,

r=l 8=1

which thus gives an expression for the multiplicity M. It is easily established

that the quantity M, thus obtained, is an integer.

The simplest case occurs when, in the expansions

f(z, z')
= a10 (z-a)+ a01 (/

- a) + .

g 0, /) = c10 (z-a)+ c0l (z'-a')+ ...

no one of the quantities a, ,
a01 , c10 , c i, a10 c01

— c10 aQl vanishes: the value of

M, for the zero a, a', is unity in this case.

Note. If, instead of the functions P and R, we take Q and S, as repre-

sentative of / and g, and construct the eliminant of Q and S regarded as

polynomials in u, the eliminant is

uM yfr(u),

where
yjr

is a regular function of u such that
yfr (0) is not zero, and M is the

same integer as before. The proof is a simple matter of pure algebra.

121. All the preceding remarks apply to the simultaneous zero-places of

two regular functions/^,/) and g{z,z). It applies equally to the level

values of two regular functions f(z, z) and g (z, z'), say o and (3 respectively,

where |a| and |#| are finite. The functions f(z, z') and g(z, z) are inde-

pendent, as before. The functions f(z, z')
— a and g (z, z) — f3 will be supposed

free, that is, we shall extend the significance of the epithet
'

free,' as applied

to f(z, z') and g(z,z'), so that it applies to this case also. The functions

f(z,z')
— a and g (z, z')

—
ft will also be supposed non-composite as regards



122] LEVEL PLACES 211

factors which are functions of z alone or functions of z alone, as was the case

with f(z, z') and g (z, z'). And, now, we can enunciate the theorem :
—

The common level places of two regular functions, which exist together in a

domain of the variables, and which are independent and free, are isolated ; and

the midtiplicity of any level place, giving values a and /3 to f(z, /) and g (z, z')

respectively, is the multiplicity of the place, as a simultaneous zero of the

functions f(z, z')
—

a, g (z, z')
—

j3.

122. Further, consider two functions f(z, z') and g (z, z'), independent of

one another, not tied, and existing in a common domain
;
and suppose that

f(z, z') has a pole at a place p, p', which is an ordinary place for g (z, z'), say
a level place for g (z, z), (zero being a possible level value there). Then the

place is a common level place for the functions
<f> (z, z') and g (z, z') ;

and

we know that, if
<j> (z, z') and g (z, z') are free, that is, if

<f> (z, z) and

g (z, z)
— g (p, p) possess no common factor which is a regular function of

z, zf vanishing at p, p', then the common level place at p, p' for
(f> (z, z') and

g (z, z
/

) is isolated, and its multiplicity is the index of the lowest power of /
in the /-eliminant of

<j> (z, z) and g (z, z) — g (p, p').

It is convenient to extend the significance of the terms tied and free as

applied to a couple of independent uniform functions / and g. We shall say
that they are tied if, for any constant quantities a and /S, either /— a and

g-(3; or /-a and (g-0)-
1

',

or (/-a)-
1 and g-$\ or (/-a)

-1 and

(g
—

/5)
-1

(being really two alternatives) possess a common factor which is a

regular function of z and z' having a zero (and so an infinitude of zeros) in

the domain
;
and we shall say that the two independent functions/ and g are

free, when no common factor of that type exists for any one of the combina-

tions. Moreover, we shall also assume that neither/— a nor (/— a)
-1 nor g

—
(3

nor (g
—

/3)
-1 contains any factor, which is a regular function of z alone or of

z alone and vanishes for one (or for more than one) finite value of the

variable.

On the basis of earlier results, we can now enunciate the following

theorems :
—

(i) Let f(z, z') and g (z, z') be two functions, which are uniform, analytic,

and devoid of essential singidarities in the finite part of the field of variation of
z and z', and which are independent and free. The places where one of the

functions acquires a level value and where the other has a pole, are isolated;

and the multiplicity of the place for the two functions conjointly is the multi-

plicity of the place as a level-and-zero place for one of the functions and the

reciprocal of the other.

(ii) The common poles of two uniform functions, which exist together in a

domain of the variables, and which are independent and free, are isolated ;

and the multiplicity of the common pole for the two functions conjointly is the

14—2
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multiplicity of the place as a common zero for the reciprocals of the two

functions jointly.

The theorems follow at once from an earlier theorem by considering the

behaviour of the reciprocal of a function in the immediate vicinity of any pole

of the function.

When we extend the term level value of a uniform function to include

(i) a zero value of the function, this being a unique zero, independent

of the way in which the variables reach the place giving the zero

value :

(ii) a level value a of the function, where
|

a
j

is finite, this being a

similarly unique level value of the function :

(iii) an infinite value of the function, this being a unique infinity of

the function arising at a pole :

then all the theorems, already enunciated concerning two functions, can be

summarised in the one theorem :
—

The common level places of two uniform functions, which are uniform,

analytic, and devoid of essential singularities in the finite part of the field of
variation of z and z'

,
and which are independent and free, are isolated ; and

the multiplicity of the level place for the two functions conjointly is the index of
the lowest term in the eliminant of the two functions or of their reciprocals or

of either with the reciprocal of the other, expressed in the vicinity of the place.

Combining this result with the investigation, which settled the order of

multiplicity of the place a, a' as a level place of the functions/ and g and

therefore as a zero of the functions

f(z,z')-a, g{z,z')-$,

we have the following corollary :
—

Let a, a' be an isolated common zero of multiplicity M of the functions

f(z,z')-a, g(z,z')-/3:

then, for values of \a'\ and
| $' \ sufficiently small, there are common zeros,

simple or multiple, of aggregate multiplicity M, of the functions

jffoip-i-tf, g(z,z')-fi-^,

which coalesce into the single common zero of multiplicity M of

f{z,z')-a, g{z,S)-/3,

when a' and #' vanish.



CHAPTER VIII

Uniform Periodic Functions

123. We now proceed to consider the property, of such functions as

possess the property, which customarily is called periodicity. Limitation

will be made at this stage to periodicity of the type that is linear and

additive, though the type is only a very particular form of the general

automorphic property, mentioned in Chapter n.

In conformity with general usage, we say that two constant quantities <w

and a>' are periods, or a period-pair, or a period, of a function f(z, z') of two

complex variables, when the relation

f(z + co,z' + a>')=f(z,z')

is satisfied for all values of z and of z'. In such an event, the relation

f(z + sco, z' + sco') =f(z, z)

is satisfied for all integer values, positive and negative, of s. Moreover, it is

assumed implicitly that o> and w constitute a proper period-pair ;
that is to

say, a relation

f(z + kco, z' + lew) =f(z, z')

is not satisfied for all values of z and z except when k = k', both k and k'

being integers, and that the same relation is not satisfied, even if k = ¥, when

the common value of k and k' is the reciprocal of an integer.

In dealing with periodic functions of a single complex variable, infinitesimal

periods are excluded. Speaking generally, we could say* that, if a uniform

function of a single variable possessed an infinitesimal period, then within

any finite region, however small, round any point, however arbitrary, the

function would acquire the same value an unlimited number of times. The

possibility of the existence of such functions may not be denied
;
but they

cannot belong to the class of analytic functions. In the case of analytic

functions which are not mere constants, the result of the possession of

infinitesimal periods would be to make practically any point and every point

an essential singularity. Accordingly, so far as concerns functions of a single

variable, the possibility of infinitesimal periods is excluded.

124. We likewise exclude the possibility of infinitesimal periods for

functions of two variables
;
but the exclusion can be based on different

* See my Theory of Functions, § 105.
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grounds also. For the present purpose, we shall limit ourselves to uniform

analytic functions* of two variables; and we then have a theoremf, due to

Weierstrass, as follows :
—

A uniform analytic function of two independent complex variables z and z'

possesses infinitesimal periods only if it can be expressed as a function of
az + a'z, where a and a are any constants.

First, suppose that our function /(.z, z') can be expressed in a form

f(z,z') = F(az + a'z').

Then if we take any two quantities P and P' such that

aP + a'P' --= 0,

we have

f(z + P,z' + P') = F(az + a'z' + aP + a'P')

= F(az + a'z)

=/(*,*');

and therefore when P and P' are constants, we may regard P and P' as a

period-pair for f(z, z'), supposed expressible in the given form. The only
relation between P and P' is aP + a'P'=0; hence either of them can be

taken infinitesimally small, and the other then is infinitesimally small also.

It follows that, when a function of z and z can be expressed in the form of a

function of az + a'z' alone, where a and a' are any constants, then it possesses

infinitesimal periods.

Further, writing az + a'z' = v, we have

and therefore

df dF df ,dF
dz dv

'

dz' dv
'

>V df A
dz dz

Hence when the function is of the form f(az + a'z'), so that it possesses
infinitesimal periods, the foregoing relation is satisfied. Conversely, by the

theory of equations of this form, the most general integral equation equivalent
to this differential equation is

f(z, z')=F(az+a'z'),

where F is any function whatever of its single argument ;
and therefore, when

a function f(z, z') satisfies the relation

a f- -a^7 =
dz dz

in general (and not merely for an arithmetical pair, or for sets of arithmetical

pairs, of values for z and z'), it possesses infinitesimal periods.
* The result holds for multiform functions and, under conditions not yet established, possibly

even for functions that have an unlimited number of values for any assigned values of the

variables ; see Weierstrass, Ges. Werke, t. ii, p. 69, p. 70.

f It is established for the case of n variables, Weierstrass, Ges. Werke, t. ii, pp. 62—64.
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Next, suppose that our uniform analytic function is not expressible in a

form F(az + a'z') for any constants a and a' whatever; and consider a region

in the field of variation where the function f(z, z) is regular. No relation

oz dz

for non-vanishing values of a and a, is satisfied over the whole of this region ;

hence we can take places zx and */, z2 and z2 within the region, such that

I Jia |
,
where

"12 —
9/Qi, -Q d/Pi, V)

a*!
'

a*/

a/p2 , V) a/p2 , «/)

t/io

dz2 dz2

is finite and not zero. Also when we take places z1 + ux and z/ 4- «/, z* + u^

and */ + u2 ,
zx + v^ and z( + vx', z2 + v2 and ^2

' + v2 ,
where all the quantities

I Mi 1 1 I ^/ I
» I ^2 1, I V I , I

v1 1, | v/ 1, |

v2 1, |

v2
'

|

are infinitesimally small, the quantity

j

Jl2 ,
|

where

dfjZt + Ui, Zi + <) 9/p! + t>t> s/ + Vi)

dZi dzi

df(z2
4- u2 ,

z2 + m2') 9/p2 + p2 ,
z2'+v2 )

dz2 dz2

differs from
j

J12
j only infinitesimally, and therefore its modulus is finite and

not zero.

Consider the possibility of the existence of two periods h and hf. What-

ever these quantities may be, we have generally

f(z + h, z' + h') -f(z, z')
=fl

+*'Z+h
'

(!<*£
+
|£ <) .

because the subject of integration is a perfect differential. Take a combined

f-path from z to z + h and a ^'-path from z' to z' + h', and let

£ = z + ht, £'
= z + h't,

so that the range of integration is represented by variations of t from to 1
;

and then generally

f(z + h,z' + h') -f(z, z')
=
hj^

-^
fz >-dt

+ h
, f

1 9/0 + ht>
z

'

+ A'0

/,

(It.

o W
Suppose now that h and h! are infinitesimal, so that the derivatives of

f(z, z') differ only infinitesimally in the Grange from to 1 from their values

at t =
;
then we have a relation of the form

/(, + K < + h-) -/(,, o = hv(*+*<+o + v yft*y+*> ,
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where \u\, I u'\, \ v\, |

v
|

are infinitesimal of the same order as \h\ and h* .

and may depend upon z and z. Accordingly, returning in particular to our

two places z
x
and zx ,

z2 and «/, we have

/(tl + h
, 4 + A')

_
/(2l , o = A3/^+^^

+ <) + t
, yfa +

y'+Q
/(* + A, zi + A') -/<*, tf = hyfr + 'j-.

fLl.V) + A
< 3/(3 ± V^'ft? ,

and so on for any number of places ;
two will suffice for our purpose.

When h and h' are periods (whether infinitesimal or not), the left-hand

sides vanish. As the equations are valid, when the periods are infinitesimal,

the right-hand sides also vanish
;
so that we have

hJ12

' = 0, h'J12
' = 0.

Now Ju
'

is not zero; hence both h and h! are zero. In other words, our

uniform analytic function of two variables cannot have infinitesimal periods,
unless it is expressible as a function of a single argument az + a'z', where a
and a' are two constants.

125. Next, let ^ and a>/, &>2 and &j2', &>3 and &>/, ... be period-pairs for a

uniform analytic function f(z, z'); then we have

/(* + ri&t + r2&>2 + r3 a>3 + ..., z' + r, wi + r2 eu2

' + r3 co 3 + ...) =f(z, z'),

where ru r2 ,
r3 , ... are any integers, positive or negative, and independent of

one another.

In the case of a uniform analytic function of one variable, it is known
that there are not more than two independent periods and that the ratio of

these periods for a doubly periodic function cannot be real*
;
the last property

can be expressed by saying that if the periods are to,
= a + i/3, and &/, = a' + i(3',

the determinant

«, /3 I

«', P I

is not zero.

The corresponding theoremf in the case of uniform analytic functions of
two variables is as follows :

—
A uniform analytic function of two variables z and z' cannot possess more

than four independent period-pairs w1 and &>/, «2 and a>2 ', <o3 and &>,', &>4 and
to/ ; and if

»,  or, + i/3, , a>/ = a/ + %/9,',

* When the ratio is real and commensurable, both periods are integer multiples of one and
the same period ; when the ratio is real and incommensurable, there are infinitesimal periods,

t It is partly due to Jacobi, Oes. Werke, t. ii, pp. 25—50.
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for all four values of s (the parts a, /?, a', ft being real), the determinant

a
i » «2 >

33) «4

ft, ft, ft, ft

ft', ft', ft', ft'
|

raws£ not vanish.

126. As a preliminary lemma, we require the following proposition : if

relations

<w4
= &&>i + la>2 + mo)z

cot
= ka>i + la>2 + ma)3

'

J

are satisfied among four period-pairs, where k, I, m are real quantities, then

either there are not more than three linearly independent period-pairs or

there are infinitesimal periods.

First, suppose that k, I, m are commensurable, and that then each of

them is expressed in its lowest terms. Let d denote the highest common
factor of their numerators, and let M denote the least common multiple of

their denominators
;
and write

K- M fc,

, d , d ,

M M '

where k', V, m' are integers; then we have

M
d

M
d

ft)4
=

k'eOi + I'coo 4- m'(os ,

&>/ = k'coi + l'a)2
' + m'a>3 '.

Now Mjd is a fraction in its lowest terms, being an integer only if d is unity ;

change Mjd into a continued fraction and let p/q be the last convergent
before the final value

;
then

so that

M_p_ 1

d q
~
dq'

M 1

Z-d-P
= ±

d-

Now -r a>4 and -j
co4

'

manifestly are a period-pair, and therefore also q^- a>4

and q -j g>4 ', consequently

9-J-p) *< and
\9-^-p) *S
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also are a period-pair, that is, cojd and to^'/d are a period-pair. Let*

^* - n ®t _ n ' •

,
— ia4 , ,

— ±&4 ,

then

J/n4
= &'&>! -MV. + raV,, il/H/ = &'&>/ + l'a>2

' + m'(os',

where the integers M, k', I', m' have no factor common to all.

Moreover, we can assume that any two of the four quantities have no

common factor. For if two of them, say k' and V had a common factor /*, the

quantities
iC L A ,

'

—
G>i + - 0>2 ,

— (0 1 + - <U2

fM fJ, fl fl

are period-pairs, integral in &)j and &>/, &>2 and cy2
'

;
hence

M m' Mm',
1*4 °>3> 1*4 °>3 )

fl fl fA fil

are a period-pair, say co5 and a>5
'

;
then as

M _ m' M ~, m' ,— 124 <y3
= w 5 ,

— 12 4 6)s
= o)5 ,

fl fM ft fl

where J/, m', //,
are integers and fl4 ,

&>3 ,
&>8 , fl/, &>3', o) s

'

are constituents of

pairs. But we knowf- that, in such an event there are two integral com-

binations of o)3 , o>5 ,
fl4 , and the same two integral combinations of &>3', <u8', H 4 ',

because the coefficients — and — are the same in the two relations, such
ft fi

that o)3 , o)6 , 4 are expressible as integral combinations of the first and

a>3', to/, H/ are integral combinations of the second
;
that is, we have

k' V—
ft)j 4-

-
ft>2
= linear function of two periods Hj and H2 ,

ft ft

k' V—
o»i' H
— o>2

' = same fl/ and H2',

A:' r
and now, in our equations, the integral coefficients — and - have no common

fit fX,

factor.

Similarly for the other cases
;
we can assume, in our relations

MVtA
=

&'&>! + r&)2 + m'a>3 ,
MSl4

' = £'&>/ + l'(o2
' + m'a>s',

that no two of the integers M, k', I', m! have a common factor.

Accordingly, we have k'jl' a fraction in its lowest terms. Expressing it

as a continued fraction, and denoting by r/s the last convergent before the

final value, we have

I' s  si'
'

*
Obviously, if d= l, the period-pair w4 and w4

'

is unchanged.

+ See my Theory of Functions, § 107.
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Then

+ &>!
= Wj (sk'

—
rl')= sMVLi — I' (ra^ + sco2 )

— sm'a)3 ,

± »/ = sMQ,/ — I' (reo/ + sco2 )
— sm'co3 ,

± o)2
= ft)2 (sk'

—
rl')

= — rMD,4 + k' (roax + sco2 ) + rm'a>3 ,

±a2
= - rMH/ + &' (ro)/ + s&>/) + rm'(o3 ;

and so the four period-pairs are expressible in terms of three period-pairs

D,4 , fl/ ;
co3 ,

<o 3 ;
rw 1 + s<c2 , rw-[ + sa>2 .

Thus there are not more than three linearly independent period-pairs.

Next, suppose that one of the three quantities k, I, m, say k, is incom-

mensurable, while the other two are commensurable. When I, m are expressed
in their lowest terms, let the integer D be the least common multiple of their

denominators, so that we can write

, V fn'

Then

Dco4
—

I'w^
— m'a)3

= kDoOi ,

D&)/ — I 'a>2
— m'a>3

' = kDa>i.

Now kD, like k, is incommensurable
; hence, expressing it as an infinite

continued fraction, and denoting two consecutive convergents by p/q and

p'jq', we have

q qq

where the real quantity is such that 1 > 6 > — 1. Thus

(^ +— ]
ft>i and (^ +

—
)
o)/

\q qq) \q qq J

are a period-pair, and therefore also

q (

- H -, ) &>i
-

pa>lt q(--\-
—

i
)
«/ ri**r**

V? ??7
* *\qqqJ

that is,

, ,
-; a), and -> oj,

are a period-pair. We may take q' as large as we please, for the continued

fraction is infinite; and the circumstances thus give rise to infinitesimal

periods.

Next, suppose that two of the three quantities k, I, m are incommensurable,

say k and I, and that m is commensurable, equal to \/p, where X and n are

integers. Then our relations can be taken in the form

flCOi
— \C03

=
&/*G)i + lfJ,0)2 , /jLQ)i

— \(03
=

kfMOJj + lflQ).2
.
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But, writing
<w5
=

/ao)4
— A<u3 ,

a>6
' =

fico^
— \o)3 ',

and denoting k/j, and 1/j, by A;' and V respectively, we have

<w5 = k'(o x + r&)2 ,
(o5

' =
k'(Oi + I'tOz,

where &' and Z' are incommensurable, while ms and a>5
'

are a period-pair.

Again it is known* that, by successive linear combinations of the period so

always as to give a period, we can change g>2 into fi 2 (and &)2

'

into H2

'

by the

same algebraic relations) so that

|o)2 |
< ||X22 |, l«a'l<il<*VI>

and at the same time have relations

co5
= k"cox + ra2 ,

a>s
' = &"#/ + rry,

where both k" and I" are incommensurable. The process can be continued

to any extent, by successive combinations of the period-pairs ;
so ultimately,

we can construct an infinitesimal period-pair.

Lastly, we have the case when all the quantities k, I, m are incom-

mensurable
;
and we assume that the ratios k:l:m also are incommensurable f.

Then we express A; as a continued fraction, which of course will be infinite
;

taking any convergent r/s, we have

7 r a;

k = - + -
2 >

s s2

where always r and s are integers, and a; is a real quantity such that

1 >x> — \. Also let t
x
be the integer nearest to the incommensurable

quantity si, and £2 be the integer nearest to the incommensurable quantity
sm

;
then we have

si — t
l
= A2 ,

sm — £2
= A 3 ,

where A2 and A3 are incommensurable quantities, each in numerical value

being less than £. Thus.

• 00

stOi
—

ratx
—

^o>2
— t2 (o3

= —
<»! + A 2 g>2 + A3 &>3 ,

s

oc

Sft>4
—

ra)i
—

#!&)/
— t2 a>3

' = -
coi 4- A<,a>/ + A3 &)3'.

s

Again, as A2 is an incommensurable quantity, let it be expressed as a con-

tinued fraction
; taking any convergent pja, where always p and a are

integers, we have

o- a-

* See my Theory of Functions, § 108.

t The alternative suppositions, for the last case, and for the present case, are left as an
exercise.



126] PAIRS OF PERIODS 221

where y is a real quantity such that 1 > y > — 1. Also let t3 be the integer

nearest to the value of crA 3 ,
and write

o-A 3
= t3 + V,

where V is an incommensurable real quantity less than \. We then have

OC 11

a (so)4
—

rcoj
— ^o)2

— t2 ft>3 )
— P&>2 — t3w3

= a - Wj + — &>2 + ^<»3 .

S <T

CG 11

a (s&)/
—

r&)/
— ^co/ ~~

^2 w/) T P^z
~ t3w 3

= a -
to/ + — a> 2

'
4- Vcd/ ;

S (T

the quantities on the left-hand side are a period-pair, which can be denoted

by fl3 and 11/.

Now take an advanced convergent for A x ;
we have a very large, and so

the values of yw2\<r and yco^/cr are infinitesimal. Take a much more advanced

convergent for k, so that s is very large compared with er; the values of

a-xro^/s and axa>ijs are infinitesimal. We thus have a new period-pair I23

and H/, such that

cc u
i H3

|

= 0- - &>! + —
ft)2 + Vft)3 < £ |

ft)3
|
,

S O"

3
= <r -

tux + -
ft>2 + Voj3 \< k\co3 \.

s <r

Our relations now have the form

ft)4
=

&'<«! + £'ft)2 + W'li3 , ft)/
=

A/ft*! + Vcoo + m' fl3 ,

where the quantities k', I', m' fall under one or other of the cases already

considered. Either we have not more than three period-pairs ;
or we have

infinitesimal periods ;
or all the quantities k', V

,
mf are incommensurable,

while

|
^8

|

< i |
»8

|
. I &»'

I

< £ I
®s'

|

•

In the last event, the same kind of transformation can be adopted ; and by

appropriate choice, we can form a new period-pair H 3 , O/i such that

|n,|<£|fi,|, |n/|-<£|n/|.

And so on, in succession. By taking a sufficient number n of transformations,

each of the preceding type, we ultimately can construct a period-pair <l>3 and

<!>/, such that

—
|ft)3 |, |<&s'!<2^

3>J<^|ft>3 |, I <&»' i
< s= I w»'

that is, by taking n sufficiently large, we should have an infinitesimal

period.

It therefore follows that, if we have two relations

Aa x + 5«o2 + Oft>3 + D&>4 = 0,

4ft>/ + 5ft)/ + Co/ + Dft)/ m 0,
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between four period-pairs, where the coefficients A, B,C, D are real quantities,

either there are not more than three period-pairs, or there are infinitesimal

periods for the variables.

Accordingly, when we have to deal with uniform analytic functions of

two variables, there is nothing in the preceding analysis to exclude the

possession of even four period-pairs, when these pairs are linearly independent
in respect of combinations between their respective members.

127. For the remainder of the proposition in § 125, it is necessary to

consider the possibility of the existence of five period-pairs : .if this be ex-

cluded, then a fortiori we need not consider the existence of more than four

period-pairs.

For this purpose, let there be four period-pairs of the kind postulated in

the theorem such that, if

(o8
= as + i/3tf <o/ = «/ + i/3a

'

t

(for s — 1, 2, 3, 4), the determinant

«n cc2 ,
a3 ,

a4

fr, &, ft, ft

ai, a2, «ri a/

ft', ft', ft', ft'

does not vanish. When this last condition is satisfied, we cannot have

relations

mj Gti + ra2 a2 + m3 a3 + w4 a4
= 0,

whft + msft + m3ft + m4& = 0,

Wi a/ + ra2 a/
'

+ m3 a3 -+ m4 a4

' = 0,

whft' + nH&* + m3$3 + nitfo' = 0,

for any set of real quantities m1} m2) m3 ,
m4 other than simultaneous zeros.

The exclusion of the first pair of these relations excludes a relation

wijft), -(- w2 a>2 + m3 o)3 + m4 6>4
=

0,

and conversely ;
and the exclusion of the second pair excludes a relation

r/ijO)/ -f ?%m,' + m3 a>3'+ m4a>/ = 0,

and conversely. Hence, after the preceding lemma, we infer that our uniform

analytic functions may possess four periods, or fewer than four periods ; and

they do not possess, as they cannot be allowed to possess, infinitesimal

periods.

Now suppose that a uniform analytic function f{z, z') possesses, in addition
to four given linearly independent period-pairs eu,, a>/ ;

a>2 , w2'; &>s , a>/; a)4 , a>/ ;

also a fifth period-pair, say <us , a>6'. Let

<w8 = a8 + ?'& , »„' = a,' + i/3t'.
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Then, with the preceding hypothesis of the non-evanescence of the determi-

nant (a1} /3.2 , <x 3 , /S/) in the customary notation, the equations

a5 =n1 a1 + n2 a2 + n3 a3 + n4 a4 ,

@o » fh0i + n2@2 + n3/33 + n4 /34 ,

a/ = Wl a/ + n2 a2

' + n3 a3 + n 4 or/,

ft = »»&' + «,&' + na&' + v 4 /34',

determine uniquely four real finite quantities n1} n2 ,
n 3 , n4 ;

and they are such

as to secure and to require the equations

a>s
= WjWj + n 2 (o2 + n3 co3 + n4w4

&>,,'
= Hi&i' + n2 a>2 + n3 (o3 + 7i4w4 \

It therefore is necessary to consider the conditions, under which these

equations are possible.

The analytical consideration of the conditions follows a general march

similar to that followed in the establishment of the preceding lemma. The

results therefore will only be stated, without further proof. They will relate

only to the most general case when no one of the six ratios % : n2 : ns : n4 ,
as

determined by the elements of the four period-pairs is an integer; the

alternative is to provide only less general cases. We find

(i) when all the real quantities n 1 ,
n2 ,

n3 ,
n4 are commensurable,

the formally five period-pairs can be expressed in terms of not more

than four period-pairs :
—

(ii) when one (and only one) of these quantities is incommensurable,

then an infinitesimal period-pair exists :
—

(iii) when two of these quantities are incommensurable, then cer-

tainly one infinitesimal period-pair exists, and possibly two such pairs

exist :
—

(iv) when three of these quantities are incommensurable, then one

infinitesimal period-pair certainly exists, and three such pairs may
exist :

—

(v) when four of these quantities are incommensurable, then one

infinitesimal period-pair certainly exists, and four such pairs may
exist.

It therefore follows that for any uniform analytic function, which is really a

function of two (and only two) independent complex variables so that it

cannot possess infinitesimal periods, there may be four period-pairs, and

there cannot be more than four linearly independent period-pairs*.

*
It is a tacit assumption, throughout the preceding investigation, that an infinitesimal

period-pair w and Z>' for z and z' means a period-pair for which both
| w| and

| w'| are infinitesimal.
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128. Now that we have established the result that a uniform analytic

function of two complex variables cannot possess more than four linearly

independent pairs of periods, so that we should have

f(z + m^i + ra2 et>2 + w3 <u3 + ra4 G)4 ,
z

1 + m^/ + ra2 G)./ + m3 (o3
' + w4 &)4') =f(z, /),

for all integer values of Wj, m2 ,
m 3 ,

w4 , positive or negative, we proceed to

consider the various possible cases that can arise, under the significance of

the result and within the alternatives admitted by the analysis leading to

the result.

For the present purpose, the case when there are no periods needs only

to be mentioned. We then have the customary theory of the uniform

analytic functions of two variables, which has been previously discussed in

some detail.

The remaining cases will be considered in succession.

One pair of periods.

129. Let the variables z and z have the periods a and a, and no other

periods. Take new variables u and u', where

z = olu, az' — a!z = aa'u',

which is an effective transformation of variables unless (i) both a and a'

vanish—a possibility that can be excluded—or (ii) either a or a vanishes.

If a' vanishes, we take u and z' as new variables. If a vanishes, we take

z and v as the variables, where z' = a.'v. In all the cases, denoting the

variables by u and u', we can now take 1, as the pair of periods. Hence

the field of variation of the variables is composed of a strip in the u-plane of

breadth unity, measured parallel to the axis of real variables, and the whole

of the w'-plane ;
and the uniform function in question can be expressed as a

uniform function of e
niu and u\

Two pairs of periods.

130. Let the periods be

for z
,
m a 1 =

/3 1

respectively, in bracketted pairs ; manifestly it may be assumed that a and a'

do not simultaneously vanish, and likewise that y9 and /£' do not simultaneously
vanish.

Choose quantities k, I, m, n, such that

ka + la' = 1, jfc/3 + IP m 0,

via + na = 0, m/3 + lift
= 1.
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When one of the two quantities a. and a' vanishes, say a, and neither of the

two quantities ft and ft' vanishes, we take m =
;
and when one of the two

quantities ft and ft' vanishes, say ft', and neither of the two quantities a and

a' vanishes, we take k = 0. As will be seen, all the other possible special

cases are included in the one special case that is to be considered.

The values of k, I, m, n are given by

k (aft'
- a'ft) m ft', m {aft'

- a'ft)
= -

a',

l(aft'-a'ft)=-ft, n(aft'-(Sft)= a;

and these values are determinate and finite unless

aft' -a ft
= 0. .

First, suppose that aft'
— a'ft is not zero—which, of course, is the more

general case. Introduce new variables u and u', such that

u = kz + lz, u' = mz + nz
;

and then the period-pairs of these new variables are

for u, =1) =0]

u', =0j
' =1

respectively, in bracketted pairs. The field of variation of the variables is

composed of a strip of unit breadth in the w-plane and of a strip of unit

breadth in the w'-plane, the breadth of each of the strips being measured

parallel to the axes of real quantities in the planes. The uniform function in

question can be expressed as a uniform function of eniu and e
niu

\

Next, suppose that aft'
— a'ft is zero—which, of course, is a special case.

As a and a' may not be zero simultaneously, let a be different from zero
;
and

as ft and ft' may not be zero simultaneously, let ft be different from zero.

Then there are two alternatives

(i) when both a' and ft' vanish :

(ii) when neither a' nor ft' vanishes, and then we have

a' _ft'
a~ ft'

~
C>

say, where c is not zero nor infinite.

As regards (i), the variable z has periods a and ft, while the variable z
1
is

devoid of periods : and in order that a and ft may be effective distinct periods

for z, we must as usual have the real part of ialft distinct from zero. The

field of variation of the variables is composed of the customary a-ft parallel-

ogram in the ^-plane, and of the whole of the /-plane ;
and the uniform

function in question can be expressed as a uniform function of $ (z), p' (z),

and z', where ^ (z) is the customary Weierstrassian doubly-periodic function

with periods a. and ft.

f. 15
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As regards (ii), we keep the original variable z; and we introduce a

variable v such that

v = z
1 — cz.

When z and z' have the periods a and a', then v has zero for its period ;
and

when z and z' have the periods /3 and /?', then again v has zero for its period.

Accordingly, when we take z and v for variables, the periods of z are a and /3,

while the variable v is devoid of periods. The uniform function in question

can be expressed as a uniform function of
fc> (z), g)' (z), and v, with the same

significance as before for p (z) and the same requirement as to the real part

ofia/0.

Should the requirement as to the real part of ia//3 not be satisfied, either

there is an infinitesimal period, or the two pairs are equivalent to one pair

only. In the former case, there is no proper uniform function with the

periods ;
in the latter, the periods are not effectively two pairs of periods.

Three pairs of periods.

131. Taking the variables to be z and z' as before, let the periods be

for z , =a\ =
/^l

=r
y)

z\ =a'j mff) = 7
'

where manifestly no pair of quantities in a column can vanish simultaneously.
Thus a can vanish, and a! can vanish

;
as they may not vanish together, there

are three possibilities for the a, a! pair. Similarly for each of the other two

pairs ;
so that there are twenty-seven possibilities in all. They can be set out

as follows.

A. When all the quantities a, j3', y vanish, the period-tableau is

«, ffi 7\

0, 0, 61, (A);

no one of the quantities a, yQ, y can vanish : there is one case.

B. Let two of the three quantities a', £', y vanish, but not the third of

them
;
there are three possibilities. When y is the one which

does not vanish, then neither a nor ft can vanish
;
and we can have

two alternatives, viz. y vanishing, or y not vanishing. The period-
tableaux are

a, /3, 0\ /«, A 7\
o, o, y'J, (A); Vo, o, y'J, (5,);

each is typical of three cases.
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C. Let one of the three quantities a', ft', y vanish, but not the other

two
;
there are three possibilities. When a.' vanishes, then a cannot

vanish : and as ft' and y do not vanish in that event, we can have

four alternatives, viz., ft and 7, either vanishing or not vanishing,

independently of one another. The period-tableaux are

(% P> y\
\0,ft', 7V, (CO;
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It is convenient to consider next the case (A). Let four quantities

k, I, m, n be chosen so that

ka + Wml, kft + lft'
=

0]

ma + na' = 0, mft + nft'

their values are given by

k (aft' -a'ft)
=

ft', m(aft'
-

a'ft)
= -a'

l(aft'-a'ft) = -ft, n (aft' -a'ft)
= a

When aft'
— a'ft does not vanish, the values of k, I, m, n are determinate and

finite
;
when it does vanish, the selection cannot be made.

Accordingly, in the first place, suppose that aft'
—

aft does not vanish.

No generality is then lost by assuming that yft'
—

yft does not vanish and

also that ay'
— ay does not vanish

;
for the alternative hypothesis as to each

of these magnitudes leads, by the permissible interchange of period-pairs, to

the case when aft'
— aft vanishes—a case yet to be considered. Now write

u = kz + lz', u = mz + nz,

P=ky + ly'= (yft'
-

y'ft) * (aft'
- a'ft),

/u,'
= my + ny' = (017'

—
07) -4- (aft'

—
aft),

where the new variables u and u' are independent of one another because

kn — Im, = (aft'
— a'ft)

-1
,
is not zero. Thus the uniform function in question

becomes a uniform function of u and u', with the tableau of periods

% 0, -fi<

\0, 1, /ti'y

In the second place, suppose that aft'
— a'ft does vanish. Then

«_'_£'_
a
"

ft

~
C>

say. Introduce two new variables u and u, defined by the relations

y'z -yz' ,
u m !—,

'—
,

u = z —
cz,

7 -cy
which are definite and provide independent variables when y —

cy does not

vanish. The period-tableau for u and u is

% ft,

^0, 0, y'-cyj

and so the case is inclusible in (B^), provided y'
—

cy does not vanish. If

however y —cy does vanish, so that

« ft 7
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we retain the variable z and take a new independent variable v, where

v = u' — cu
;
the period-tableau for z and v is

f
a, ft, I

s
"

(«> ft> y\

[o, o, oJ

and so the case is inclusible in (A). Thus no new kind of function, other

than those already retained, arises out of (Dx) when aft'
— at!ft

= 0.

Now consider the cases under (0). The case (Ct ) is included in (D1)

unless fty
—

ft'y vanishes. When this quantity does vanish, we have

w </ r

say ;
we take a new variable u, where u = z — kz, and then the period-tableau

for u and z' is

fa, 0, 0\

Vo, ft', i) ,

that is, the case is inclusible in (By). Thus no new kind of function, other

than those already retained, arises out of (C^).

The case (G2) is inclusible in (Dj).

The case (G3 ), by interchange of period-pairs, becomes (C2) and so is

inclusible in (A)-

The case (G4), by interchange of variables together with the proper inter-

change of periods, becomes (B^.

Similarly for the cases under (D). The case (D2), by interchange of

variables together with the proper interchange of periods, becomes (Ca ) and

so provides no new kind of function. In the same way, the case (Ds) becomes

(B2),
which is inclusible in (B^) ;

it therefore provides no new kind of function.

And, in the same way also, the case (D4) becomes (A).

Hence the surviving independent cases are (A); (A); and the case which

has emerged from (A)« These will be considered now in succession.

133. We can dismiss the case (A) very briefly. There are no periods

for z . There are three periods for z : so that, in effect, the uniform function

is periodic in a single variable only. But, in such an event, there cannot be

more than two periods at the utmost*; hence the case either is impossible,

or is degenerate by falling into a class of doubly periodic functions of two

variables already considered.

The case (Bj) can also be dismissed briefly. In all the functions which it

provides, the double periodicity in z alone and the single periodicity in z'

alone are independent of one another. Even when the double periodicity

*
Theory of Functions, § 108.
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does not degenerate, the function in question is a uniform function of

g> (z, a, 0)—with p' (z, a, /3)
—and erriz

'

l
'

r
'

;
its triple periodicity in the two

variables combined is not a proper triple periodicity, for it is resoluble into

the double periodicity in one variable alone and the independent single

periodicity in the other variable alone.

It remains to consider the case which has emerged from (A)- This case

provides uniform triply periodic functions, for which the triple periodicity is

proper and not resoluble as it is in the case (B^. We have seen that, without

any loss of substantial generality, the tableau of periods for the variables z

and z can be taken in the form

% 0, fx

A 1, //.

where neither ji nor fi vanishes.

Further, both yu.
and /jf

cannot be purely real. If, for instance, ^ were

real and commensurable (equal to pjq, say, where p and q are integers), then

a set of periods is

/l, 0, qv-p\
\0, 1, qy! )

'

that is,

(1.
0, N

V0, 1, qu!)
'

qji

which is an instance of (B^. Similarly, if /u/ were real and commensurable.

If fi and /jf were real and, after the foregoing cases, were incommensurable,

then the function would have infinitesimal periods. Thus let the supposed
incommensurable quantity /* be expressed as a continued fraction and take

an advanced convergent to its value, say pjq ;
then

where <
|

e
|

< 1, so that

Thus a set of periods is

P €

w-v =
\

1,0, -

)\0, 1, qp'

As /j/ is incommensurable, so also is q/jf ;
let it be expressed as a continued

fraction and take a convergent r/s to its value, so that

where <
j
t)

\

< 1
;
thus

/ V
sqfi

- r = -
.
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Accordingly, a set of periods is

When we take s very large and q/s also very large, the quantities

e -
, and ri -

,

q s

are infinitesimal: that is, we should have an infinitesimal period-pair
—a

possibility that is excluded. Thus /* and pf cannot be simultaneously real.

The most general case arises when neither p. nor p! is real : and we shall

assume that, henceforward, we are dealing with this case. It is to be remem-

bered that, in effecting the linear transformation upon the variables so that

1, ;
and 0, 1

;
are two period-pairs, we have used the constants of relation.

Moreover, as the periods in the tableau can be linearly combined in

simultaneous pairs, we have

p+p.l + q.O, p'+p- + q. 1,

that is,

p + p, p + q,

as a period-pair, p and q being any independent integers ;
and this period-

pair can replace p, and p in the tableau, for any values of p and q. Let

these integers be chosen so that the real parts of p+p and p + q, say

R(fi + p) and R (p + q), satisfy the conditions

0<R(p+p)<l, 0zR(n' + q)<l.

Assuming this done it follows that, without any loss of generality in the period-

tableau

A 0, p\
vo, 1, W'

we can assume that

0<R(p)<l, 0<R(p')<l,

while neither of the quantities jjl
and \t is purely real; moreover, this is

effectively the general tableau for the proper triple periodicity of uniform

functions of two variables.

134. The field of variation of the two independent variables occurring in

uniform triply periodic functions can be assigned in two ways, which can be

used in complementary fashion and will leave open an element of arbitrary

choice. Let c and c denote simultaneous values of the variables z and z'
;
for

purposes of convenience we shall assume that they are a pair of ordinary non-

zero places of two uniform triply periodic functions with which we may have
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to deal. Moreover, we shall assume at once that the functions in question

possess no essential singularities for finite values of the variables
;
and we

shall take

ft, 0, f*\

\0, 1, y!)

as the tableau of the periods, with the due restrictions on fi and fi.

Owing to the period-pair 1, 0, we can reduce any point in the z-plane to

a point in, or upon the boundary of, a strip enclosing c, without thereby

affecting the position of z
1
in its plane. Similarly owing to the period-pair

0, 1, we can reduce any point in the /-plane to a point in, or upon the

boundary of, a strip enclosing c', without thereby affecting the position of z

in its plane. Accordingly construct in the ^-plane a parallelogram having

c, c + 1, c + fi, c + 1 + fi as its angular points ;
and produce, to infinity in both

directions, the side joining c to c 4- y and the side joining c + 1 to c + 1 + fi.

Similarly construct in the /-plane a parallelogram having c', c + 1, c + /*',

c 4- 1 4- // as its angular points : and produce, to infinity in both directions,

the side joining c' to c' + fi and the side joining c + 1 to c' + 1 + /x'.

Then, for our triply periodic functions, we can choose a complete field of

variation in two ways. By the first choice, we allow z to vary over the

parallelogram constructed in its plane, while we allow z' to vary over the

strip between the two infinite lines drawn in its plane. By the second choice,

we allow / to vary over the parallelogram constructed in its plane, while we
allow z to vary over the strip between the two infinite lines drawn in its

plane. For special purposes, it may prove convenient to contemplate both

the fields simultaneously, even though each field by itself is complete for the

triply periodic functions.

But we do not obtain a complete field if we limit the simultaneous

variations of z and z
1

to the two parallelograms drawn in the two planes.

For, in effect, such a field would give

(I, /*, 0, \

V0, 0, 1, ft.')

as the period-tableau ;
and then there would emerge a repeated double

periodicity, one in z alone, the other in z' alone
;
that is, we should have a

degenerate quadruply periodic function, instead of a triply periodic function.

Four pairs of periods.

135. Again denoting the variables by z and /, let the periods be

for z, =a\ =/3^
= 7 | =S|

*', =«'/' =£'J' = 7'J' =8'p
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where manifestly no pair of quantities in a column can vanish simultaneously.

Thus there are three possibilities for each pair of periods ; and each possi-

bility for a pair is unaffected by the possibilities for any other pair. Hence

there are eighty-one possibilities in all
; they can be set out in a scheme, as

follows.

A. When all the quantities a', ft, y, 8' vanish, the period-tableau is

(•,
0, y, 8\

VO, 0, 0, 0), (A);

no one of the quantities a, 0, y, 8 can vanish
;
there is one case.

B. Let three of the quantities a, ft, y , 8' vanish, but not the fourth
;

there are four possibilities. When 8' is the one which does not

vanish, then neither a nor nor y can vanish
;
while 8 may or

may not vanish. Thus the period-tableaux are

o, 0, y, ON m 0, y, 8\

0, 0, 0, 87, (A); V0, 0, 0, 87, (A);

each is typical of four cases.

C. Let two of the quantities a', ft, y, 8' vanish, but not the other two.

The period-tableaux are

'«, 0, y,

0, 0, y',
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E. Let no one of the quantities a, /3', y, 8' vanish. The period-tableaux

are

(a, 0, y, S\ (0,
0, 7 > «\ (0, 0, 7 , 8\

W, 0T, y, 8'), (E,); W, ?, y', 8'J, (E2); W, ff, y>, 8'J, (E3 );

(0,
0, 0, 8\ /0, 0, 0, 0\

W, & y\ 8'),(E4); V, /3', y', 8'),{E6);

of these, {E^ and (Es) are each one case; (.fi^) and (iG'4) are each

typical of four cases
;
and (E3) is typical of six cases.

136. As regards the kinds of functions considered, the same assumptions,
as to the interchangeability of period-pairs and as to the linear transformations

of the variables without detriment to the generality of the functions, will be

made as were made (§ 132) in the discussion of the triple periodicity.

Consequently all the cases, of which each tableau is typical, become

merged into a single case.

The cases (-4) and (Es) are impossible, or else the periods degenerate;
there cannot be uniform functions, periodic in a single variable and having
four distinct periods for that variable.

The cases (Bt ), (i?2), (B6 ), (E^ are impossible, or else the periods degene-

rate; there cannot be uniform functions, periodic in a single variable and

having three distinct periods in that variable.

By taking a variable u instead of z, where

7
u = z—-, z',

7

the tableau of periods in ((7,) is changed to a tableau of periods for u and z'

represented by (C3 ) or (G4). Also by interchange of period-pairs, (C3) becomes

(C2); hence (C2) and (C4) are the only cases under (C) that require con-

sideration.

By interchange of variables and the proper interchange of periods, (Z)5),

(Z)6 ), (D7 ) become (C2 ), and so require no separate discussion
;
and similarly

(E3) becomes (C^), and can therefore be omitted.

By interchange of period-pairs, (Da) and (/)„) become (D4) and so they

require no separate discussion.

By interchange of variables and the proper interchange of periods, (E2)

becomes (Dj) and can therefore be omitted.

Consequently, the cases that survive for further consideration are (£.,),

(C4), (A), (A), (#,)•

As regards (D4 ), change the variables to u and u' by the relations

z = aw, z' = /3V,
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and write ft = oX, 8 =
ol/j,, y = ftX' ,

8' = ft'/jf ;
the period-tableau for the

variables u and u is

(I,
0, X, fi\

\0, 1, V, fi'J

'

which temporarily will be called (F).

As regards (C2), a similar change of variables, viz.,

z = au, z = 8'u,

leads to a special form of the period-tableau (F) in which V is zero.

Assuming this included in (F), we have no new case out of (C2).

As regards (C4 ), we have a function, which is doubly periodic in z alone

with periods a and ft, and is also doubly periodic in z alone with periods y
and 8'. The functions thus provided are undoubtedly quadruply periodic,

but the periodicity has an isolated distribution; they will therefore be

omitted, as not belonging to the class of functions having proper quadruple

periodicity.

As regards (Dj) and (E^), we effect linear transformations of the variables

of the type
u = kz + lz', u' = mz + nz

',

where the quantities k, I, m, n are determined by relations

ky + ly'
= 1, my + ny = 0,

k8+l8'=0, m8 + n.8' = l.

Different cases arise as under (Dj) in the discussion of triple periodicity : and

we find either

(i) a period-tableau, with new variables, represented by (F) ;
or

(ii) cases already decided
;
or

(iii) cases that are impossible or degenerate.

Consequently it follows that properly quadruply periodic functions, which

are uniform and involve only two variables, can be modified as to their

variables so that they have

/I, 0, \, fi\

Vo, 1, v, f/J
for their period-tableau.

137. Now it is a property of quadruply periodic uniform functions, on

the Riemann theory, that (for this tableau) the relation

\' = n

(or else X. = //) holds. Further, Appell* has proved, by analysis and reasoning

quite different from those adopted for the discussion of functions on a Riemann

*
Liouville, 4me Mr., t. vii (1891), pp. 157 sqq.
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surface, that this relation holds in general for a properly quadruply periodic

uniform function, that is, by change of the variables and by the association of

appropriate factors, the function can be made to depend upon others which

possess this property. But under both theories, the property emerges from

the discussion of the functions themselves, whereas the preceding investigation

deals only (or mainly) with the mere transformation of the periods ;
the

property apparently cannot be deduced at this stage solely from the preceding

considerations.

Just as was the case with the triple periodicity when the period-tableau
had been rendered canonical, so here also we can infer (without any reference

to a property \' = p or X = p) that all the quantities \, X', fi, fi cannot be

wholly real
;
and in the most general case they will be complex and such that

neither of the quantities X'/fi, \/fi, is real. The course of the argument for

the inference and its details are so similar to those in the earlier discussion

that no formal exposition will be made. Moreover, the quantity \/fi is not

real, nor is the quantity X'ffi ;
both statements can be established by shewing

that the contrary event would lead to a zero-period for commensurable reality

and to an infinitesimal period for incommensurable reality.

138. One difficulty, however, now arises; it is connected with the

geometrical representation of two independent complex variables, which

has already been discussed' Putting aside for the moment the method of

representation in four-dimensional space, partly because of the difficulty of

framing mental pictures in such a region, and partly because the representation
does not by itself seem to retain sufficiently the individuality of the variables,

we have the representation by means of the combined points in the s-plane
and the /-plane.

But we cannot construct a region in the z-plane and a region in the

/-plane that shall suffice for the field of variation of z and z within their

periods. Take any origins in those planes ;
in the ^-plane, let the points

a, b, c represent the values 1, A,, fi; and in the /-plane, let the points a', b'
,
c

represent the values 1
, X', // ;

and complete the parallelograms as in the

figures, so that the points a, /?, y, 8 respectively represent the values X + /*,

1 + ji,l +\,l+\ + H, and similarly in the /-plane. No one parallelogram
such as OaftcO is sufficient for the representation of z

;
for there is a portion
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of the parallelogram ObacO not included, and there is a portion of the paral-

lelogram OaybO not included. The double parallelogram OaybacO is not

sufficient, because there is a portion of the parallelogram OaftcO not included
;

moreover, the whole plane could not be covered once and once only by

repetitions of the double parallelogram keeping unchanged the orientations

of the sides. In the figure, the parallelogram OaftcO is partly excessive and

partly deficient
;
for the interior of the small parallelogram between ah, by,

aft, /3c is reducible to another part of OaficO. The triple parallelogram

OaySacO is excessive
;

for much of its area (the part outside the parallelogram

OaficO) is
" reducible

"
to the area within that parallelogram, and also the

whole plane could not be covered, once and once only, by repetitions of the

triple parallelogram keeping unchanged the orientations of its sides.

The same remarks apply to the /-plane, in connection with the figure as

drawn.

Thus, neither by means of parallelograms, nor by means of strips in

the two planes of reference, is it possible to obtain definite unique and

complete limited fields of variation for z and z
,
that shall discharge for

quadruply periodic functions of two variables the same duty as is discharged
for doubly periodic functions of a single variable by the customary period-

parallelogram.

But by taking an associated two-plane variation of the real variables

x, y, x', y', the deficiency can be supplied for one purpose. This representation

is as follows*. For a quadruply periodic function, with the period-tableau

(I,
0, X, fi\

VO, l, v, /*7
'

we resolve \, /jl, \', fi into their real and imaginary parts, say

X = a + ib, fi
= c + id, X' = a + ib', yJ

= c' + id' ;

then every place, differing from z, z only by multiples of the periods, can be

represented by
x + iy + p + r(a + ib ) + s (c + id),

x' + iy' + q + r (a + ib') + s (c + id').

Take two planes, one of them to represent the variations of y and y with

reference to O'y and O'y' as rectangular axes, the other of them to represent

the variations of x and x with reference to Ox and Ox' as rectangular axes.

In the y, y plane, let B be the point b, b' and D the point d, d'
;
and com-

plete the parallelogram DO'BF. In the x, x plane, let OA = 1 and OC = 1
;

and complete the square GOAE.

Then the integers r and s can be chosen, say equal to r' and s', so that

the point

y + rb + s'd, y' + r'b' + s'd',

* For this suggestion I am indebted to Professor W. Burnside, who communicated it to me
in a letter dated 14 January 1914.
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lies within or on the boundary of the parallelogram O'BFD; let this point

be Q. Then every point, which is equivalent to y, y', in the sense that its

coordinates are y + rb + sd, y' + rb' + sd', is equivalent to Q and lies outside

the selected parallelogram.

C
|E

•P

0~ A

Again the integers p and q can be chosen, say equal to p' and q, so that

the point
x + p' + r'a + s'c, y + q' + r'a + s'c

lies within or on the boundary of the square OAEC; let this point be P.

Then every point, which is equivalent to x + r'a + s'c, y + r'a' + s'c, in the

sense that its coordinates are x+p + r'a + s'c, y + q + r'a' + s'c', is equivalent

to P, and lies outside the selected square.

It follows that, in connection with a place z, z
,
and with all places

equivalent to it in the form

z+p + rk + s/u,,
z' + q + r\' + Sfi,

we can select a unique point Q within the y, y' parallelogram, and then

associate with it another unique point P within the x, x square. We take

the point-pair QP as representative of the whole set of places that, in

the foregoing sense, are equivalent to z, z; it is given by the specially

selected place

z + p + r'\ + s'fi,
z +q' + r'X' + s'/uf.

Uniform triply periodic functions in general.

139. It is known (Chap, v) that a uniform function f(z, z), which can

have poles and unessential singularities but which has no essential singularity

lying within the finite part of the field of variation, can be expressed in the

form

f{z ^-teo/{Z' Z)
ylr(z,z')'

where (f>(z, z') and i|r (z, z) are everywhere regular within the finite part of

the field of variation.
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We shall therefore proceed from this result, specially for the purpose of

deducing* some initial properties of triply periodic functions that are uniform.

We denote the period-pairs by the tableau

/l, 0, fi\

Vo, l, f//!
Now because

f(z + l,z')=f(z,z),

and because the functions
</> (z, z') and yfr (z, z') are regular, each of the equal

fractions

<f> (z + 1, z') _^r{z4-\, z)

cf> (z, z) ^ (z, z)

derived from the equation expressing the 1, periodicity of/, is devoid of

zeros and of poles and of unessential singularities for finite values of the

variables : hence, as in § 79, the common value of the fractions is of the form

eg(z,z')

where g (z, z') is a regular function of the variables. Consequently

0(^ + 1, z')
=

<p(z,z')e^
z

> zr

^(z + l,z')
=

y}r(z,z')e^
z

>
z'>

Similarly, through the 0, 1 periodicity of/, we have the relations

</> (z, z + 1)
=

4> (z, z) e h(z > z,)

f (z, z + 1) = yjr (z, z) eMz ' z>)

where also h (z, z) is a regular function of the variables.

In order that the two sets of relations may coexist, we must have

4>(z+\,z' + l)
= $ (z, z) ey {z >

z
'

+i,+h(Z' z
'

)

,

,

(f)(z + l,z' + l)
=

(f>(z, Z
') e9(z,z',+h {z+h z-

})

and similarly for
yjr (z, z) ;

therefore

g (z, z' + 1)
— g (z, z')

=
k(z.+ 1, /) — h (z, z'), (mod. 27r*').

Let

g (z, z + 1)
— g (z, z')

— 2km = h (z + 1, z')
— h (z, $')

— IWi,

where k — I is an integer : manifestly, either k or I could be taken equal to

zero without loss of generality. Now suppose a function X (z, z) determined

such that

\(z+l, z')-\ (z, z) = g (z, z')
— 'Ik-n-iz'

X (z, z + 1)
— X (z, z) = h (z, z

1

)
- 21-jriz

which two equations are consistent because of the foregoing relation between

g and h. If then

<k (z, z) = <f)-(z, z) e~K^ z
'\ -f ! (z, z')

=
-f (z, z') «&**,

* This particular investigation follows the earlier sections of Appell's memoir already quoted,

§ 137.
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we have

where the functions fa and
\f/ l satisfy the relations

fa (z + 1, z) = fa (z, z) 6*** \
yj,, (z + 1, z) = yjr , (*, *') e*"*

0! (jr, * + 1)- fa (z, z) e2Mz J

'

^ (z, z + 1) - ^ (*, z') e d™
The function /(^, z) under consideration has fx and /*' for a third pair of

periods. Proceeding as with the other pairs 1, and 0, 1, we have

fa(z + fi,z' + fi') = ^{z+^z'+fi') = em{lt)
fa (z, z') -f, (z, z')

where m (z, z) is a regular function throughout the domain. By the earlier

relations which are satisfied by fa and <f x ,
and from the relation

fa (z + l + ^z' + S)
'

/}

we find

m(z+l, z')
=

rn(z, z')-\- 2iri (a + kfi) ;

and similarly
m (z, z' + 1) = m (z, z') + 1-rri (/? + Ifi) ;

where a and /3 are integers. Let

m (z, z')
=M (z, z') + 2-n-i (a + kfi) z + 2-iri (/S + Ifi) *\

so that

M(z + 1, z) = M(z, z), M (z, z' + 1)
= M (z, z) ;

then both fa and fa satisfy the relations

*s{z+l,z') = ^(z,z')e
M '

^ (z, **+ 1)-* (z, z') e2Mz

^ (z + ft, z' + ji)
= ^ (z, z') eini ''

a-+k^z+2ni^+^ z
'

+M{Z^
where M(z, z') is periodic with 1, and 0, 1 for period-pairs, and a, ft, k — l

are integers.

The triple theta-functions.

140. The formally simplest cases arise when we take

k=0, r-0, o = -2, £ = -2, M(z,z')=-2Tri(n + fi'),

and when we require that the functions shall be only triply periodic and

must not be quadruply periodic. Then

*
f (z+l,z') = *

f (z,z'),

*(z,z' + l)=*r(z,z'),

*(z + fi,z' + fi)
= ^ O, z') g'M» l*> »*»Htt,

which (as will appear presently) are equations characteristic of functions that

are triply periodic actually (or save as to a factor).
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Without enquiring into the comprehensiveness of this set of functions

^ (z, z'), we see that a large class of functions, which are strictly periodic in

three pairs of periods, can be expressed as quotients of these pseudo-periodic
functions. Even at the risk of a little confusion (because the title

"
triple

theta-function
"

has hitherto been assigned to uniform functions of three

variables which are similarly pseudo-periodic in six period-pairs), it will be

convenient to call certain functions, satisfying relations similar to those

satisfied by ^ (z, z'), triple theta-functions.

We now proceed to a more detailed consideration of their simplest

properties, obtaining the above characteristic equations in a different manner.

141. We denote by 1, 0; 0, 1
; //., p!\ the period-pairs in the variables

z, z'. Owing specially to the first two period-pairs, we are led to consider

functions expressible in extended Fourier-series in the form

6(Z,Z')= 5 I amne (2m+<r)™+ (2n+<r')
Triz',

-00—00

Here a and a are constants, taken to be integers ;
m and n are integers,

ranging from — oo to + oo independently of one another
;
and the constant

coefficients amn are supposed to be such as to secure the absolute convergence
of the double series.

We cannot at once declare, from the indices, that cr and cr' are or 1,

each of them. Thus, if cr were 2, we could substitute zero for it by changing
m into m —

1, so far as the variable part of the term is concerned
;
but the

change could not necessarily be made in the coefficient, for there is no know-

ledge of the way (if any) in which amn contains a or a. But we have

d{z+l,z') = (-iyd{z,z'),

6(z,z'+l) = {-iye{z,z');

and so we can infer that, so far as cr and cr' are concerned, all the possibilities

are covered by taking a, a' = 0, 1 in any combination : that is, four cases

arise through this source alone.

142. Our function 6 (z, z') is to have
~fi

and fi as periods or pseudo-

periods ;
so we form 6 (z + /j,,

z + //), which is

00 00

2 — O g(2OT+o-)7rtft+(2n+(/)7rift'+(2m.+o-)7rlZ+(2n+o-')7rt"z'
— 00 — 00

Adopting the usual process for dealing with the periodicity (actual, or save

as to a factor) of a uniform function, we compare the coefficients of terms in

6 (z, z') and 6 (z + /u,,
z + /*') ; and different possibilities occur, according to

the different methods of grouping the terms. We definitely choose (for

reasons that will appear very soon) to group the term in (z + p, z' + /*'),

which involves amn , with the term in 6 (z, z), which involves am+1>ri+1 . As

6 (Z, Z) = Xtam+hn+1 e<2»»+o-)«e+(2n+</)«z'+^i(z+z')
j

p. 16
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we have

(z + ix,
z + fi)

= Be~2lriiz+^
(z, z),

if

mnV —
 uum+i,n+i>

where B is taken to be a constant, independent of m and it. Let

q
= £«**, q

= e^'
;

and take new quantities cmn ,
connected with the quantities amn by the

relation

Until
— Wnn H H t

then

Cmn
~ &Q

9. Cm+i,n+i

= Acm+iin+i,

say. The pseudo-periodicity of (z, z) is now exhibited in the property

6(z+fi,z'+ fx,')
= Ae-™^-*1^^

(z, z).

Further, let

A = e~"iK = (- 1)
_A

;

the difference-equation for the quantities cmn becomes

mn — e °m+i,n+i»

Having regard to the form of this relation, we take

q __ gd+iri (pm+p'n) +a3 (m—n) 2+a» (m—n)
3+ ...

= e™ (pm+p'n) Q (m _ n}
.

the difference-equation then is satisfied if

p + p
= X,

and there is no restriction, beyond the requirements that secure the con-

vergence of (z, z'), upon the function
<p. Accordingly, the form of

(z, z') is

Q (z z'\ _ £]£ /_ 1\mp+np (v(2m+ff)S ^'(2»+<r')
a

J> (m _ ^\ e(2m+<r)iriz+{m+o')iriz'^

Also, p and
/a' always will be made integers

—either or 1
;
hence

A = (- 1)~
A = (- 1)-(p+p')

= (- iy+p' ;

and so the characteristic equations, connected with period-increments of the

variables, are

6(z+i,z') = (-iye(z,z')

6(z,z'+l)=:(-iyd(z,z)

0(Z + (JL,
z' + fl)

= (- IY+P' 0-^+20 -"«M+M'>
(jgt

z'))

These results, and all results connected with period-increments of the variables,

are included in the formula

0(z + an + (3, z' + apf + y)
— (_ l\|!ir+T»'+«IPVl g-*!rta(2+z')-jrtaV+<»') Q < z g>\

where a, /?, y are independent integers.
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Manifestly, the integers p and p can be restricted to the values and 1

independently of one another. When it is necessary to put p, p, a, a in

evidence as magnitudes occurring in 6 (z, z), we shall denote the function by

e C- <"': ') .

\<t, a
,
z /

143. Before proceeding with any development of the properties of these

functions 6, it is convenient to indicate the reason for the selected grouping
of the terms in the comparison of 6 (z + /x,

z + //) and 6 (z, z'). As already

stated, some grouping of terms has to be made under the method adopted ;

and the simplest grouping would compare the term in 0(z + /x, z' + p,'), which

involves amn ,
with either one or other of the terms in (z, z), which involve

^»t+i,?i Or drn,n+\'

Suppose that a difference-equation is established between amn and

&m+i,n : all the following argument, mutatis mutandis, holds for the alternative

supposition of a difference-equation between amn and am
,
n+i- Let it be

Tin /> (2«i+<r) irvt+ («i+o
/

) »rt/t' — n

When there is no other difference-equation between the coefficients, (in

particular, when there is no relation between amn and am>n+1), we take

n n /,i(2m+<r)'
2
7rtu+m(2?l+<r')7r!/u.' .

"-win
— ^mn e

>

and then

m+i,n
= cmnBe-^^ = Gcr,

so that

cmn =Gm
yfr(n).

The function becomes

V5' ( 1 \mp+np ylf /ff\ Qm g£ (2m+cr)* rip+m(M+(r') nil*.'+ (2m+<r'}niz+ (2n+o-') viz"

The aggregate of all the terms in the double series for one and the same

value of n is (with the restrictions as to integer values of p and cr) a single

theta-function of z alone : and so it becomes

e (z)/ {/) + ex (*)/, (*') + e2 (Z)f2 {z') + o3 (z)/3 (z),

wheref (2), ^(z'),f2 (z'),f3 (z') are functions of /alone. It thus becomes the

sum of four resoluble products, each of two factors : and each factor involves

only one variable. The case is limited in generality.

A similar result ensues when we assume a grouping which compares amn

with am+rtn and excludes at the same time a grouping which compares amn

with am>n+g ,
where r and s are any integers.

Further, we cannot have two distinct sets of periods for the case when

there is only a single grouping of terms. For otherwise, we should have

Tin p {2m+<r)7ryt.+ (2n-\-a-')ni^ _ n

Ti'r, <J (2m+ir)7riA+(-jn+o-')7riA'

16—2
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for all values of m and n : hence

\ =
fju (mod. 1), V =

fi (mod. 1),

so that, when account is taken of 1, and 0, 1 as period-pairs, \ and V are

effectively the same as /* and /*'.

On the other hand, when there is a double grouping of terms, so that amn

is compared with am+hn in one of the groupings and with am>n+1 in the other,

we have one period-pair for the first and another period-pair for the second :

this is the case with the double theta-functions, which are quadruply periodic

(actually so, or save as to a period). Let the difference-equations be

f!n />(2»t+<r)irjX+(2n+o
/
)irtA' _ n\jtXmn V "-m,n+i>

for all values of m and n. Then

n — Ttn r,(l!Tn+<r)JrtM+ (271+2+0-') Trtfi'

"m+i.n+i
— -*JU,m,w+i e

_ ]$Qa Q (2m+<r) ni (/*+*) + (2«+o-') jrl (jii'+X') +27ri>'

and
n Ca r>(27n+2+<r)7rtA+(2n+<r')irt\'
""Tn+i.Ti+i

—
^"-m+i.n e

_ B(Ja g(2?ft+<r)7ri(A+/*)
+ (2n+<r')7rt(A.'+^') + 2irtX

for all values of m and n
;
hence

27rtX- = 27rifi' (mod. 27n),

or, having regard to the existence of the period-pairs 1, and 0, 1, we infer

the relation

X =./*',

the well-known condition in the Riemann theory.

Any other double grouping of terms gives rise to quadruply periodic

functions. Consequently when there is a question of dealing only with triply

periodic functions, there can be only a single grouping. When the grouping
is such as to affect only one of the suffixes in amn , we have seen that the

resulting function is composite and can be resolved into a finite number of

sums of products of simpler functions. Accordingly the grouping must be

such as to affect both the suffixes in amn . The simplest difference-equation

of this kind connects am+liW+ i with a,„)M : and so this is the grouping which

has been chosen.

144. We have taken our triply periodic function in the form

6 (Z, Z')
= 22 (— 1)™P+V ^(2r»+(r)^'(2n+<r')« ^ (m _ n) g(2w+<r)iru+(2n+<r')irw'

.

and we know that, save as to a simple factor, at the utmost, 6{z, z') has

1,0; 0, 1
; fi, fi' ;

for its period-pairs, whatever be the form of the coefficient

<f> (m — n). The preceding discussion has indicated the reason for the choice

that ultimately leads to the construction of the coefficient : but some special
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cases have to be noted and rejected from the class of triply (and only triply)

periodic functions.

I. Let <j>(m-n) = l. Then

Q(z z'\ —
J£ (— \\mf> q&m+<r)

i
e (2m+<r)jrizj j£ /_ JW g

/ (m+</) 2

e (2n+<r')iriz'\

that is, (z, z') is the product of two single theta-functions ;
and the period-

pairs are

for g, 1, fi, 0, 0|
z\ 0, 0, 1, fi'j

'

that is, 6{z, z) becomes a resoluble, but quadruply periodic, function.

II. Let
<f> (m -n) = e

ni* im-n)
. Then

(z z') = (X (— l)
OT (P+a )

Q(wn+<r)
2

e (2m+<r)TTiz\ f^ /_ ]\w(p'-a)0'(2n+(r')
2

e (m+(r')niz"l .

we have the same conclusion as in the preceding case. The function 6 (z, z)

is not a proper triply periodic function.

III. Let

<f> (m - n) = ffim—'ifr' y*)*,

where * is independent of m and n. Then it is easy to prove that, save as

to a factor, (z, z') has four period-pairs, viz.

for z
, 1, 0, fi + k, —i

z', 0, 1,
— K

, fl + k\

the addition of the third and the fourth of the pairs giving the period-pair

fi, /jf. In that case, (z, z') is a proper quadruply periodic function, being a

non-degenerate, double theta-function
;

it is not a function which is triply

(but only triply) periodic.

Accordingly, <f>(m
—

n) may not have any one of the three preceding

forms, nor any combination such as

g7rio {m—n) +£icTri (2m+cr—an—<r')
2

in order that the function may be only triply periodic. But any other form

of
<f> (m — ri) is admissible provided, of course, that it is such as to secure the

absolute convergence of (z, z').

If, in particular, for any one of these admissible forms, <f>
involves a and cr'

so that

(f> (m — n) = a function of 2m + a — (2n + <r'),

then it is easy to prove that

\a + 2, o-
,
z J

v '
\cr, a-

,
z J

0[P' P' '
Z
\=(-lY0(P> P> z

)U
\<t, a' + 2, z'J

{ r U <y\ M
thus furnishing an additional reason for restricting the values of cr and cr' to

and 1, independently of each other.
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145. One remark may be made at this stage as to the so-called addition-

theorem for the theta-functions. Thus it is possible to express the product

of four double theta-functions in terms of sums of products of four double

theta-functions of other arguments : and it is possible to express the product

of a double theta-function of z
x + z2 , *»' + z2 and a double theta-function of

zl
— z2 , Zi

— z2 ,
in terms of double theta-functions of zlf z( and of z2 , *>. In

the purely arithmetical establishment of this theorem, relations

Mr = £ (fh. + ^2 + A*3 + M*)
—

Mr
(r- 1, 2, 3, 4),

Vr = £ ("1 + ^2 + vz + Vi)
— Vr

for arguments, parameters, and integer-indices of terms, are adopted (requiring

that, for parameters, <rl + a2 + a3 + cr4 is an even integer, and so on) : and

then

X/jl
= Xfi, Xv' = Xvy

X/J,'
2 —

X/j.
2

, Xfx'v'
=

Xfxv, Xv'2 = Xv2
.

The last equations allow the transformation of a product of four coefficients

such as

gic
(m—n+c) 2

into the product of other four like coefficients : and so renders the addition-

theorem possible. But except for coefficients that have this quadratic index,

the transformation cannot be effected : for instance, it could not be effected

for coefficients such as

q< (m—n+c)
4

Consequently, we are not to expect an addition-theorem for our triply periodic
function similar to that possessed by the double theta-functions.

The sixteen triple theta-functions.

146. Coming now more specially to the detailed properties of the

functions denoted by

e (" % ') ,

\cr, a, zl

we have seen that, when p and p are restricted to be integers, it is sufficient

to take for each of them either or 1. Further, the actual values of a and
a in the coefficients of the variable parts of the exponential terms would not

be of importance as, owing to their linear occurrence, they would (if changed)
affect only a factor common to the whole series; but they occur in the

coefficient in each term and the occurrence is not linear. We have seen that

a large class of these functions 6 is selected from the whole body, by assigning
to er and a the values or 1 independently of one another

;
but it must be

noted that such an assignment of value is a distinct limitation upon the full

generality of the functions.
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Suppose then that the values indicated are assigned to p, p, a-, a' ;
as

there are two possibilities for each of the four parameters, there are sixteen

functions in all. It is convenient to shorten the symbols of the functions :

and so we write*

e

e

•G

<
•G

ee

'0

g

A = 6
X
= S$arq (2m+1)2 q

,W
e(2m + l)mz + 2n7riz'

,}
m 6t = 22ar g

4m2
g'(

2n +W e
2miriz + (

2n + ^ wiz
'

\ =
3 =XXar q

{2m + 1]2
g'(

2n + 1
)

2

e(2m
+ 1) iriz + (2n + l) iriz'

, =04 =:S£

/
)
= ^5 =SS

;,j=^=ss

,)«*,«
22

,)«
0,-22

J-0u-22

/

J
= ^13 = 22

,)-0
M = 22

,1-4,-22

i \m
/>^

m2
//4w

2

p2miriz + 2mriz'

l)
m a </

2m + ^2

o'
4n2

g(
2m + *) ** + 2n7"2

'

— 1Y1 a o^m2 a'(
2n+ ^ Z

e
%miriz + (2« + 1) iriz'

l)
m a o(2wi + V2

</
(2n + V2

e^m + 1} "* + (
2n + V wiz

'

-l)
n ar q

im2
q'

in2 £***+***&

— lVa o(
2m + 1

)
2

a'*™
2

e(^
m + l )'n

'iz + ^n7riz '

— 1 Y1 a n^m2 a'(
2n + "^

2

p^
mir ^z + (

2n + 1) 7™2
'

— l)"o q(2m
+ l)2 '(2n+ l)* e{2m

+ l)iriz + (2n+l)mz'

i\m + n Am? 'An? 2miriz + 2niriz'

— 1Y™ + n a a(2m +^ n'in
2 J2m + 1) iriz + 2niriz'

_ i \m + n a Am? '{2n + 1)
2 2miriz + (2n + 1) wiz'

_]\m + « a Q (2m
+ lf >(2n + 1)* e(2m

+ l) iriz + (2n + l)Triz'

* The symbols adopted agree with the symbols used for the double theta-functions in a

memoir by the author, Phil. Trans. (1882), pp. 783—862
;
the reason is that, as indicated above,

the functions actually become double theta-functions when the proper value is assigned to the

coefficients ar .
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where, throughout, r denotes m —
n, and the coefficient ar is an abbreviation

for <f>(m—n, a, a) in the respective cases.

The law that m and n, when they occur in the coefficients, must occur in

the combination m —
n, secures the periodicity (actual, or save as to a factor)

of the functions : thus it is essential. As will be seen later, another limitation

will be imposed so as to secure the oddness or the evenness of each of the

sixteen functions
;
but the limitation is conventional, not essential. In the

meanwhile, we note that a and a are the same for the set O , 4 , S , 12 ;

likewise for the set X , S , 9 , U ;
for the set 2 , 6) 1O , U ;

and for the set

0s , 07, 0n> 015- Let

<f>(m
— n, 0, 0) =/ (m — n) =/ (r)

]

<f>(m-n, 1, 0) = g(m-n) = g(r)

<f>(m
—

n, 0, l) — h(m — n)
= h (r)

<f>(m
—

n, 1, 1) = k (m — n) = k (r) ,

then the typical coefficient ar is

f(r),foT0o,04,09 ,0v

g(r), ...01> 5,09 ,01

h(r), ...02,0e,0lo> t

k(r), ... 3 , 7) n , t

Even functions : Odd functions.

147. It is important to know the conditions that will allow any (and, if

so, which) of these functions to be either odd or even in their arguments.
We have

0(— z,
— z) = 2£ (— l)^+^'or ff|M

'f'|, i)'|M+''
|!e

",w+'lA"ta4*'1'*)

where
ar = <£ (m — n, <r, a').

Let new integers m' and n be chosen so that

m + m + a = 0, n + n' + a =
;

then

(_ z _ £\ _ /
-^yxr+p'ar"^^

/
-^\m'p+n'p'a (2m'+(r)

2

^
/

(2n'+<r')Sg(2tn'+flr)7nz+(2n'+<r')m> >

But

(z, z')
= SS (— l)

mV+«>'cro<2m
'

+(r)8 o' (!m
'+'r

'

), e(2m
'

+<r, 'riz+(*n
'

+(r
'

) 'riz
',

where

c,
=

(p (m'
—

n', <r, a).

In order to compare (- z,
-
z) with (z, z'), we take

<f> (m!
- n'

, <r, a') = <f>(m
—

n, a, a) ;
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and then

6 (- z,
- z) = (- ly+^d (z, z'\

that is, (z, z') then is even when pa + pa' is even, and (z, z') then is odd

when pa + pa is odd.

Thus the imposition of the condition upon <f>
secures the evenness or the

oddness of the functions. As regards the expression of the condition, let

m! — vu = —
r,

so that

m — n=r — a + a'; .

the condition is

<f> {— r, a, a')
= cf>(r— a + a

, a, a).

To modify the expression of the condition, let

<£ (t, a, a') = yfr (2t + a— a', a, a'),

where
yfr

is a new form of coefficient
;
then the condition is

yfr (— 2r + a - a
, a, a) = yfr (2r

- a + a', a, a)

shewing that
yfr is an even function of the first of its three arguments. This

is the necessary and sufficient condition, that each of the functions (z, z)
should be either odd or even.

One very important class of functions is provided by limiting the co-

efficients
yfr

still further. Let it be assumed that the function | is a

function of its first argument only, so that the typical coefficient, which

was
<f> (m — n, a, a'), is

\fr (2m -2n + a- a'),

where
yjr is now an even function of its only argument 2m — 2n + a — a : the

parameters a and a' enter into the coefficient solely through their occurrence

in this argument. If then by any change in the function (z, z
1

),
such as an

increment of the arguments, the parameters a and a' are increased or are

decreased by the same integer, the coefficient yfr is unaltered.

It may be noted that the double theta-functions arise from one particular
case of this last law, viz.

yK _ 2j(2»i—
2n+<r—

tr")^

Other simple laws can be constructed, subject always to the requirement of

convergence; for our immediate purpose, we have also the requirement of

merely triple periodicity.

148. Before the final postulation of the aggregate of conditions and

limitations upon the coefficients, consider any function (z, z'), which is triply

periodic but not otherwise limited, so that it is mixed as to a quality of

oddness or evenness. Let

E (z, z')
= 6 (z, z') + 0(-z,- z'), {z, z) = (z, z') -0(-z,- z'\
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so that E (z, z') is certainly an even function, and (z, z) is certainly an odd

function ; and let the series-expressions for E and be

E (z, z) = SS (— iy
nP+nP km n o'2w*+°-»

2

g'Vtn+o')
2

e Vtm+<r)niz+{2n+o
/
)iriz'\

(z, Z) = £2 (— lVnp+V lm q(*m+<r)* g'
im+J)* e (2m+<r)jnz+(2n+o')iriz (

Then substituting for 6 in the definition of the function E, and denoting by

«w»,n (as at first) the customary part of the coefficient of the typical term in 0,

we find

f^m—c, n—a'
— Mm—a, n—& T V

-" A jr
p

&—m, —n >

fo—rriy—n
s= ^—m,—n > \ 1/ /̂m—n,n—a' j

K—m, —n = \ J- / Km—a, n—a' •

Consequently

and therefore

Similarly, we have

v—m,—n = V -'/ ^w—<r,n—a'»

Moreover, by analysis that is similar to the analysis used in establishing
the earlier condition that a function should be odd or even (and not mixed),
we have

E{-z,-z')
== / JV<r+pV ^£ /_ ]\m'p+n'j>' fe t • > Q (2m'+°')

s

Q'&ri+v')'
1

g(2m'+<r)wiz+ (-m'+o-'jniz'

— £V ( \\m'p+ri>' fc , , qVnn'+a)
2

q'
(2n'+o-')

2

g(2m'+<r)iriz+{2n'+<r')niz?

= E(z,z').

Similarly, we have

0(-z, -z') = -0(z,z').

Consequently, even when the initial function 6 (z, z) is mixed as regards its

quality of oddness or evenness, we can deduce (by appropriate combinations)

triply periodic functions which definitely are odd or definitely are even. We
therefore have said that the limitations imposed upon the coefficients in 8, to

secure the oddness or the evenness of the function, are conventional and are

not essential.

Effect of half-period increments of variables.

149. The law of reproduction of the general function 6 (z, z'), when the

arguments are increased by any combination of integer multiples of the

periods, has already been given. We proceed to consider the laws of changes

among the functions 6 (z, z'), when the arguments are increased by linear

combinations of half-periods : and these have two forms according as the

typical coefficients in the series are taken to be
<f> (m — n, a, cr') in general or

ty (2m + a — 2n —
<r') less generally, excepting from the latter the single case

when the expression for
yfr gives quadruply periodic functions.
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I. Let the coefficient in 6 be
<f> (m — n, cr, a'). We have

e(p>

251

el* p

\<t, a

P> P

cr, a

z ) \ a
,
a

,
z J

z +y \a, <y'
, z'J

'

z + £ p + 1, p + 1, z

,
z J

With these half-period increments, the members of the set

00, #4> #8, #12

are interchanged among one another, as also are the members of each of

the sets

0i, 5 > 09, 0\i',

0o, 6 , #io , 0u',

03, 07, #11, #15 5

the law of interchange being the same as that given in the first four columns

of the table on p. 254.

Further, let ^ (

p ' p
; *) denote the value of d( p> p

,'

Z
,) when, in the

\cr, cr, z ) \<r, a
,
z J

latter, we take <f>(m
—

n, a — 1, a —
1) as the typical coefficient in place of

<p(m
—

n, a, cr'). Also, let

N = iri (z + z') + \ iri (p. + fi).

Then we have

er p

Vo-, a

e(
p > p

w, &

p> p

Z.+ ifl

z' fW

z + £/*
) =ic

*W+1, <r' + l, z'J

p + l, P ,

e~N *s
<t + 1, a +1, z

p p' + l z

,0" + 1, cr' + 1, Z

fp, p' z+^+^\ ^p
+ 1 p' + l ,N

\<r, cr', z' + ^fi' + y \a+l, a'+l, z'J)

It therefore follows that, with the general coefficients adopted, there is no

interchange of the functions (z, z) among one another; they change into

other triply periodic functions ^ (z, z') with different general coefficients.

There are corresponding laws of change for the functions ^ (z, z'), when

the arguments are increased by linear combinations of half-periods, into the

functions (z, z') : this reciprocal property being, of course, due to the

periodicity of (z, z) and of ^ (z, z').
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It is to be noted that, in all these changes, the quantity cr — cr' is

unchanged : so that, when the coefficient <f> (m — n, cr, cr') is specialised into

yfr (2m + cr — 2?i —
cr'),

the functions *&(z, z') are the same as the functions

6 (z, z'). The functions 6 (z, z') would then interchange for all these half-

period combinations; these laws of interchange will be given in the table

(p. 254).

Again, we have

e
fp> P, z + hp
a, a,

0(» "': , \ )\a, cr, z +haj

z

P> P .
z

cr, cr' 4- 1, z
1

\<t + 2, a
,
z

e (P>
P

°\a, <r'+2, z'

Y

= e-«iz-in* 0+ (
P >

P;
z \

\<t + 1, cr
, z)

= e-niz-%iryi.'0-

=
(
_ 1y<d-(P> P;

z
\

\<t, <r
,
z J

=
{
- iy®+

(P> P;
z
\

\cr, cr
,
z )

e( p ' p '
z
)=(-iy+p'd(p ' p} z

)"W + 2, a' + 2, z'J
{ ±r "V, a, z'J

where 0+ (* p
)
Z
) ,

0- (
p ' p

) *\
,
©- (* p

;
z
\

,
0+ (*

p
)
Z
) are derived

\cr,cr ,zj \cr, a ,
z J \cr, cr ,z'J' \cr, a, zj

from 6 1
P'

, ,
J by changing its typical coefficient <f>(m

—
n, cr, cr') into

(f> (m — n, cr — 1, cr'), cp (m — n, cr, cr'— 1), <f> (m — n— 1, cr, cr'), <\> (m — n + 1, cr, cr'),

respectively, all these functions +
, 6~, ©+ ,

%~ being triply periodic. Also

0(
p > p

; ,

z
\^-lY<r-"-+'*+(p

' PJ V\
\cr, cr

,
Z + fl J \cr, cr

,
Z J

f

II. Let the coefficient in 6 be
yjr (2m + cr — 2n —

cr'), where -ty
is any even

function of its argument except a constant or

^j (2m+<r- 2»i— cr')
2

JP '

always provided that the series converges. Then the sixteen functions

6 (z, z') range themselves into two sets, the members of each set interchanging
with one another for half-period increases of arguments, as in the first eight
columns of the table (p. 254).

III. Let the coefficient in 6 be a special case of the last, so chosen that

yjr (2m + cr- 2» - cr') =^<»*+°-2«-<rV
_

g^Kiri {mt+o—zn—ir')*

where there are limitations upon the real parts of fi + tc, jjl' + k, fifi' + k(/jl + fi)

necessary to secure the convergence of the functions 6.
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The sixteen functions are now quadruply periodic (being the double

theta-functions) : when we write

au = n 4- k, a 12
= — k, a^2 = /m' + k,

the four pairs of periods and pseudo-periods are

for z, 1, 0, On, av

Z
3 V/j -Lj ^*12 ? ^*2

The three pairs of periods for the triple theta-functions are

for z
, 1, 0, (a„ 4- ai2 =) fi

z, 0, 1, (a12 + a22 =) /jl'

As already stated, the first four columns in the table give the laws of

interchange for half-period increments when the coefficients in the triple

theta-functions are quite general ;
the first eight columns give the laws of

interchange for half-period increments when these general coefficients are

limited so as to secure that the triple theta-functions are, each of them, either

an odd function or an even function of its arguments ;
and now we add the

result that the sixteen columns give the laws of interchange for half-period

increments when the coefficients are further specialised so as to give rise to

double theta-functions.

150. With the definitions just given for an ,
a 12 , a*, we write

L = iriz + I iri
(fj, + tc)

= iriz + \ irian

M = iriz' + £ iri (// + k)
= iriz' + I iria^

N = wi (z + z') + %7ri (ft + /m') =7ri(z + z') + \nri (a,, + 2a12 + a^
and then the table is as on the next page.

151. Of the sixteen functions, whether they are the general properly

triply periodic functions or the more special quadruply periodic functions, six

are odd, viz. T) n ,
6S , 1O , 13 ,

6U ;
and the remaining ten are even.

The table enables us to deduce a number of irreducible zero-places for

the functions, whether triply periodic or quadruply periodic, from the fact

that the odd functions vanish at 0, 0. These zero-places are given, say for

any function d , by noting that

d (z + %fl + £, z +^fi') = 7 O, z'),

so that z — \i*> + \, z' = \p is a zero of O {z, z), and so for the others in turn.

The whole set thus deducible is given in the succeeding table (p. 255) : the

first eight lines give the zeros when the functions are triply periodic and not

quadruply periodic ;
the last eight lines give the further zeros when the

functions are further specialised so as to become quadruply periodic.
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But it must be remembered that each such picked zero is, for a single

function, only a place in a continuous aggregate of zero-places : for any pair

of functions, any simultaneous picked zero (such as 0, for 65 and 7) is an

isolated simultaneous zero.

The table* of picked zeros is as follows :
—

z, z' =
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1,0
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Later (§ 161), we shall return to the " double
"
theta-functions which arise

as a particular set of these "
triple

"
theta-functions.

A property of uniform quadruply periodic functions in combination.

153. We proceed to consider the level places of two uniform quadruply

periodic* functions f (z, z) and g (z, z), having four pairs of periods in

the form

(1, 0,\,fi\
\o, i, v, /*V

Let a and ft be two level values for/and g, so that

f(z,z')
= a

) g(z,z') = ft.

If z = aly z = a/ be a place where f and g acquire the values a and ft

respectively, they will acquire these respective values at the whole set

of places

ax + p + r\ + s/jl, di +q + rk' + sp!,

for all integer values of p, q, r, s.

We have seen, in § 138, that, by taking an associated two-plane repre-
sentation for the real variables x, y, x , y\ we can choose a unique point-pair

QiPlt where Qx lies in a parallelogram in the y, y' plane and Px in a square
in the x, x plane, such that the point-pair QlP1 may represent the whole

foregoing set of values equivalent to ax , a/. We shall say that the whole

set of values is expressible by the point-pair Q^P^.

Let z — a2 ,
z

1 — a2 be another place, not belonging to the set expressible

by the point-pair QXPX , where/ and g acquire the respective values a and ft;

and let the whole set of places, equivalent to Og, a2

'

by the addition of

periods, be expressible by the point-pair Q2P2 -

And so on in succession, for places and sets of places equivalent to them,

each new set containing no place belonging to any of the preceding sets.

Each new set will be expressible by a point-pair, in the associated two-plane

representation of the real variables x, y, x', y. We thus obtain a succession of

different point-pairs QiPu Q^P2 , •••, expressing the succession of distinct sets

of places where the functions / and g acquire the respective level values

a and ft. Each such set can be denoted by any one of the members of the

set
;
and from the construction of the sets, each set contains finite places in

the field of variation. Let these finite places be denoted by alt a/; a2 , a,'; ...,

in succession, corresponding to the point-pairs QiP1} Q2 P<2, We shall say

that such a finite place zm ,
zm

'

is the irreducible level place for its set.

* An attempt to establish the property for triply periodic functions, similar to that which

follows for quadruply periodic functions, did not meet with success.

F. 17
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If the number of point-pairs QiPlt Q<tP2 ,
...

, which thus arise, is finite,

then the number of irreducible level places z, z', giving level values a and /3

to the functions/ and g, is finite.

If the number of point-pairs Q1P1 , Q^Pi, • •-, which thus arise, is infinite,

then within the finite y, y parallelogram and the finite x, x square, there

must be at least one (and there may be more than one) limiting point-pair

QP such that its immediate vicinity contains an infinite number of such

point-pairs. We then, for all such point-pairs in that immediate vicinity,

have an infinite number of finite places a, a, at which the functions f and g

acquire the level values a and /3 respectively.

Now suppose that, for finite places in the field of variation, our functions

/ and g possess no essential singularities. On this hypothesis, we know

(§ 121) that the level places are isolated, so that there cannot be an infinite

number of those level places in the immediate vicinity of any one of them.

The second alternative must therefore be rejected; and so we infer the

theorem :
—

The number of irreducible level places, giving level values a and /S to two

independent free uniform, quadruply periodic functions, is finite.

154. It has been established for a couple of independent uniform

functions in general, and therefore for a couple of independent uniform

quadruply periodic functions in particular, that the level places are isolated

pair-places. Any such pair-place may be simple or multiple. Whether

simple or multiple, it is isolated, provided the two functions are independent
and free.

Further, if a, a is a simple level place for two independent and free

functions f(z, z') and g (z, z'), such that

f(z,z')
=

«, g(z,z')
=

/3,

so that it is an isolated level place of those functions for those values o and /9,

then there is one (and there is only one) simple level place in the immediate

vicinity of a, a—say at a 4- b, a' + b', where
|

6
|

and
|

b'
|

are small—such that

f(z,z')
= cc + a, g(z,z') = /3 + /3',

where
|

a
j

and
|
/3'

|

are sufficiently small, and

\a + a'\<\a\, |£ + £'| < |£|.

For, by the theorems in Chapter IV and Chapter vii, if z = a + b, z = a' + b',

then we can write

/ (*, /) - o =/ (a + b, a' + b')-a

= a10 6 + a i&' + •••»

g (z, z')-fi = g (a + b,a' + b')
- $

= c10 b + c0l b' + ...
;
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and therefore, as the level place a, a is simple, the equations

a106+ a0l b' + ... =
a']

c10b+ c0lV + ... =£')

for sufficiently small values of |a'| and |/S'|, provide a single pair-value for

b, b', where
|

b
|

and
|

b'
|

are small.

Similarly, from the theorems in §§ 113, 120—122, we infer that, when

a, a' is a multiple level place of multiplicity M for two independent and

free functions f(z, z') and g (z, z), such that

f(z, z) = i, g (z, z) = 0,

so that it is an isolated level place of those functions of multiplicity M for

those values, there are level pair-places (some perhaps simple, some perhaps

multiple), in the immediate vicinity of a, a'—say at a + b, a + V where
j

b
\

and
|

V
|

are small,—of the same multiplicity M in additive aggregate for

f(z,z') = a + cc
f

, g(z,z')
=

/3 + /3',

where
\

a'
j

and
j
/3'

j

are sufficiently small, and

|a + a'j<|a|, |/8+£'|<|£|.

155. Now consider the total finite number of irreducible level places such

that the uniform quadruply periodic functions / and g acquire the values a

and /3. The propositions just quoted shew that we can proceed from these

values of the two functions to other values having smaller moduli : to any

aggregate of level places at or near any one place a, a' for the values a. and /3,

there corresponds another aggregate of level places for the values a + a' and

/3 + /3', the corporate multiplicity of one aggregate being the same as the

corporate multiplicity of the other. We can thus proceed from one pair of

level values to another pair of level values for/and g—in the argument, we

have chosen a succession with decreasing moduli—without, at any step,

affecting the corporate multiplicity of the level places. Moreover, in this

succession, it is necessary to have only a finite range for z, and only a finite

range for z\ because the ranges in the y, y plane and in the x, x plane in

the two-plane representation described in § 138, giving the finite irreducible

places z, z, of § 153, are finite. Hence we infer the theorem :
—

The number of irreducible level places, at which two independent and

free uniform quadruply periodic functions f and g, having no essential

singularity for finite values of the variables, acquire finite values a and /3,

so that

f(z, z')
=

a, g (z, z) = /3,

regard being paid to possible multiplicity of each such level place, is inde-

pendent of the actual level values acquired by the functions. In particular,

the number of level places is the same as the number of simultaneous zero

places of two such functions, regard always being paid to possible multi-

plicity of occurrence at a level place or a zero place.

17—2
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The property also holds when the level value for either of the functions

or for both of the functions is a unique infinity so that the level place is a

pole (an unessential singularity of the first kind) for either of the functions or

for both of the functions, as the case may be
;

it follows at once by con-

sidering the reciprocal of the function or of the functions having the place

for a pole. But care must always be exercised to make certain that the

functions are free as well as independent: thus the theorem would not

apply to the poles of functions, such as O -r- i2 and 0,-f- 6n of § 152, because

the poles, so far from being isolated, are the continuous aggregates of zeros

of the function #]2 .

But the unessential singularities (the unessential singularities of the

second kind) of a single function are isolated
;
and when two functions are

considered simultaneously, their unessential singularities are not necessarily

(and are not usually) the same places. Hence the theorem does not apply

to unessential singularities.

And the theorem does not apply to essential singularities.

If, then, we adopt a more comprehensive definition of level places and level

values, the first including ordinary places and poles, and the second including

zeros, finite values, and unique infinite values, we can say that the number of

irreducible level places of two independent and free uniform quadruply periodic

functions, having no essential singularity for finite values of the variables, is

independent of the actual level values, regard being paid to possible multiplicity.

This integer, being the number of irreducible level places of the two

functions when regard is paid to possible multiplicity, will, after Weierstrass*,

be called the grade of the pair of functions.

Algebraic relations between functions.

156. Now consider two uniform quadruply periodic functions f(z, z')

and g (z, z')
—

say /and g—which are independent and free
;
and let them be

of grade n, so that there are n irreducible places giving level values o and /9

to/ and g.

Let h (z, z) be another uniform function, homoperiodic with /and g. At

each of the n irreducible level places of/ and g, the uniform function h has a

single definite value
;
and therefore, at the aggregate of those places, there

are n values of h in all. Hence there are n values of h corresponding to

assigned values of/ and g; and these n values arise solely from the values of

/ and g, without any intervention of the variables z and z' beyond their

occurrence in / and g. Consequently, there is a relation between / g, h,

*
Crelle, t. lxxxix (1880), p. 7; Oes. Werke, t. ii, p. 132.
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which is of degree n in h
;
the coefficients in this relation are functions of

/ and g alone.

Next, suppose that f and h, being uniform quadruply periodic functions

of z and z', are independent and free
;
and let them be of grade m. Also

suppose that g and h are independent and free
;
and let them be of grade I.

Then an argument, similar to the argument just expounded, leads to the con-

clusion that the relation between f g, h, already known to be of degree n in

A, is of degree I in/and of degree m in g : it is an algebraic relation.

Of the n values of h, corresponding to assigned values of f and g, it can

happen that several may coincide for some not completely general assignment
of values. But if this coincidence occurs for completely general values of

f and g, the values of h coincide in groups of equal numbers
;
and the

number of values of h, corresponding to assigned values of / and g, is a

factor of n. Hence we have the theorem *
:
—

I. Between any three uniform, functions, which are homoperiodic in

the same four period-pairs and which taken in pairs are independent
and free, there subsists an algebraic equation : the degree of this equation
in each of the functions either is equal to the grade of the other two

functions or is equal to some integral factor of that grade.

It is assumed explicitly that the functions, in pairs, are independent and

free; and the only level places that have been used for the functions are

such as give finite level values to the functions. But it may happen that

two functions, independent of one another, and free for all finite values

(including zero), are tied as regards infinite values. Thus the quadruply

periodic functions, which arise as the quotients by Q\i of the quadruple
theta functions other than 612 ,

cannot be estimated for grade by their

infinities
;

their infinities are given by the zeros of #12 , and (except for the

irreducible isolated unessential singularities, limited in number) they are

the same for all the quadruply periodic functions so framed. These functions

therefore, while they are independent, are tied as regards their infinities.

The foregoing theorem is still true for these uniform functions : there is

nothing to traverse the argument at any of its stages. But the effect of the

tie, in connection with the infinities, is to simplify the form of the algebraic

equation. We can suppose that the latter has been made rational and

integral. The three functions /, g, h are infinite together and only together ;

and therefore the terms of the highest aggregate order in all the functions

combined will, by themselves, give relations among the parts of /, g, h that

govern their infinities.

* This theorem, and several of the theorems that follow, were enunciated by Weierstrass for

2«-ply periodic uniform functions of n variables. The enunciations, in most instances, are not

accompanied by proofs; they are to be found in his memoirs, Berl. Monatsb. (1869), pp. 853—857,

ib. (1876), pp. 680—693, and Crelle, t. lxxxix (1880), pp. 1—8 ;
see also his Ges. Werke, t. ii,

pp. 45—48, 55—69, 125—133. See also Baker, Multiply periodic functions, ch. vii.
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157. Among the functions related to any given uniform quadruply

periodic function of two variables are its two first derivatives, which mani-

festly are homoperiodic with the function. Moreover, all the infinities of the

original function are infinities (as to place, but in increased order) of the

derivatives; and they provide all the infinities of these derivatives.

The foregoing theorem, when applied to a single function, leads to the

result, practically a corollary :
—

II. Any uniform quadruply periodic function f{z, z') and its first

derivatives ~- and
^-,

are connected by an algebraical equation. When

the equation is made rational and integral, the aggregate of the terms

of highest order gives relations among the constants of the infinities of

f and its derivatives.

Thus a quadruply periodic uniform function of two variables satisfies a partial

differential equation of the first order, just as a doubly periodic uniform

function of one variable satisfies an ordinary differential equation of the

first order.

158. We return to homoperiodic functions. For purposes of reference

among them, we select three uniform functions /, g, h, of the character

prescribed in theorem I.

Now let k (z, z')
—

say k—be another uniform function, homoperiodic with

/, g, h
;
and let it be untied with any of them. Then between /. g, k there

subsists an algebraical equation, the degree of which in k is either n or is a

factor of n : taking the degree as n, we can denote the equation by

A(fig,k) = 0.

Also, between /, h, k there subsists an algebraical equation, the degree of

which in k is either m or is a factor of m : taking the degree as m, we can

denote the equation by

B(fh,k) = 0.

Similarly, there is an algebraical equation

C(g,h,k) = 0,

which is of degree I in k
;
and there is the original algebraical equation

D(fig,h) = 0,

which is of degree I in /, of degree m in g, and of degree n in h. These

equations are necessarily consistent with one another
;
thus the &-eliminants

of A = and B = 0, of B = and C = 0, of G - and 4=0, all vanish in

virtue of D = 0.
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These &-eliminants can be formed by Sylvester's dialytic process, because

all the equations are algebraic ;
and an added use of the process leads to

another important result. The equations

krA (/, g, k) = 0, for r = 0, 1, .... m - 2

lt*B (/, h,k) = 0, „ s = 0, 1, ..., n - 2

are a set of m + n — 2 equations, linear and not homogeneous in the m + n — 2

quantities k, k'
2
, ..., k

m+n~2
. When these are resolved for the m + n — 2 quan-

tities, we have expressions for the various powers of k (in particular, for k

itself) rational in the quantities/, g, h and reducible, by means of D = 0, so

as to contain either /to no degree higher than I - 1, or g to no degree higher
than m —

1, or h to no degree higher than n— 1. Paying no special regard
to these degrees, but noting the assumption made as to the degree of the

equation .4=0, we have the theorem :
—

III. Whenf and g are uniform functions, quadruply periodic in the

same periods, and are of grade n, and when h is another uniform function,
which is homoperiodic with f and g, and which takes n distinct values at

the reduced point-pairs determined by given values of f and g ; then any
other uniform function, which is homoperiodic with f and g, can be expressed

rationally in terms off, g, and h, provided every two of the four functions
are independent and free, and provided also no one of the functions has

an essential singularity for finite values of the variables.

And, as before, we have a corollary to the theorem, as follows :
—

IV. When two uniform quadruply periodic functions f
'

(z, z') and

g (z, z') are independent and free, and when neither of them has an essential

singularity for finite values of the variables, then g(z, z) can be expressed

rationally in terms off,
~-

, .^-,; andfiz, z') can be expressed rationally

. . , dg dg
in terms of a,

~
, ^-. .J *

dz dz

Note. But just as there was possible degeneration of degree in the

equation D (f g, h) m 0, so it might conceivably happen that, owing to the

equation D (f g, h) — 0, the actual expression for k might not be deter-

minate. But this indeterminateness would not occur for every power of k
;
and

so we should then only be able to infer that some power of k is rationally

expressible in terms of /, g, h. Such cases occur when the fundamental

periods of the functions considered are only commensurable with one another

and are not exactly the same for all the functions. The exceptions may be

wider than the exceptions of the same kind in the case of doubly periodic

functions of one variable, though they will cover the generalisation of such
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apparent (but only' apparent) exceptions to Liouville's well-known theorem

which might imply that en z and dn z are expressible
* in the form

where P and Q are rational functions of sn z.

159. Next, consider two uniform functions f(z, z') and g (z, z), homo-

periodic in the same four pairs of periods ; and, as usual, assume that they
are independent and free, their grade being n, and that they have no

essential singularities for finite values of the variables. Their Jacobian J,

with respect to the independent variables, is

dz dz dz dz'

J(f>9)

It is a uniform function, homoperiodic with /and g; consequently it satisfies

an algebraical equation, which has rational functions of/ and g for its co-

efficients, and the degree of which in J is either n or a factor of n. Moreover,

as /and g are uniform, infinities of J can arise only through infinities of /or
of g or of both

;
and no infinity of J can arise from finite values of/ or of

g, or from any integral relation between / and g satisfied by finite values of

/ and g. Hence, when the algebraic relation between J,/ g is completely
freed from fractions, the coefficient of the highest power of J" is a constant ;

and the degrees in / and g of the succeeding powers of J are limited. To
indicate the limits, take the simplest forms of two extreme cases :

(i) when/ and g are completely free as to infinities :

(ii) when they are completely tied as to infinities—in such a way as are

e.g. the periodic functions indicated in § 152.

In the former case, consider the vicinity of a simple simultaneous pole
of / and g ;

then we can take, in that vicinity,

U _R
J-y> 9 s >

where V and S have a simple simultaneous zero at the place. Then

T— T

where T is a uniform function, regular, and usually not vanishing at the place.
The place thus is an infinity of J, as is to be expected : manifestly it is of

order 4. Hence in this case, the algebraic equation (taken to be of order n in

J) must be such as to provide infinities of order 4 for J; hence the coefficient

The explanation, of course, is that snz, en:, dn z do not possess the same fundamental

periods.
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of J*-*' is a polynomial in / and g of order not greater than 4w', while for

some value or values of n, among 1, 2, ..., n, it must be of order 4<n.

In the latter case, we can take

x U R

where the infinities of the functions (now tied) are given by V =
;
then

where W is a uniform function, regular, and usually not vanishing with V.

The place thus is an infinity of J, as again is to be expected ; manifestly it is

of thrice the order for / and g. As in the preceding case, the coefficient of

Jn~n '

is a polynomial in /and g of order not greater than Snf, while for some

value or values of n', among 1, 2, ..., n, it must be of order Sn'.

Other orders of infinities belonging to /and g will lead to other degrees
for the polynomial coefficients in the equation. In all instances, we have the

theorem :
—
V. The Jacobian J of two uniform quadruply periodic functions

f and g, which are independent and free, and which have no essential sin-

gularities for finite values of the variables, satisfies an algebraic equation ;

when this equation is of degree n, the coefficient of Jn is unity and the

coefficient of Jn~n'

is a polynomial in f and g, of degree not greater

than 4>n', for n=l,2,...,n. Also, n is either equal to the grade of

f and g, or is a factor of that grade.

160. Combining this result with the earlier theorems I and III, we have

the further theorem :
—

VI. When f and g are uniform functions, quadruply periodic in the

same periods and of grade n, and when the algebraic equation satisfied by

their Jacobian J is of degree n, any uniform function, which is homo-

periodic with them, can be expressed rationally in terms off g, and J,

provided no two of the functions are tied as to level values, and provided

neither of the functions has an essential singularity for finite values of
the variables.

In particular, for such functions / and g, we have the relations

¥ = Fi(fg,J),
d

£ = O l (fg,J),

fz,
= F,{fg,J), ^ = G2 (fg,J),

where F1} F2 , Glt G2 are rational functions of the arguments. The algebraic

relation

J = Fr G2
—

F<i Gi

must be satisfied in virtue of the algebraic equation between/ g, and J.
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The quadruply periodic functions which arise out of the double

theta-functions.

161. It is desirable to have some special illustrations of the foregoing

general propositions relating to periodic functions of two variables.

Accordingly, we assume that the coefficients
<f> (m

—
n, <r, a) of the triple

theta-functions are so specialised as to yield the double theta-functions,

periodic or pseudo-periodic in four pairs of periods, always limited so as to

secure the convergence of the double series. Moreover, we shall assume that

our functions have no essential singularity for finite values of the variables—
an assumption which requires the theta-functions to be finite (as usual) over

the whole field of variation given by these finite values. We thus have ten

even functions, viz., O , U 2 , 3 , it O , 6 , 9 , l2> 15 ;
and six odd functions,

viz., 5 , 7 , 1Q , n , #13, U : all these being functions of z and z .

When z = and z' = 0, the six odd functions vanish. The ten even

functions then acquire finite constant values which are denoted by c , c3 ,
c2 ,

c3 ,
c4 , ce ,

c8 ,
c9 , c12 ,

c15 respectively.

The effects upon any function (
"'

,
.1 of a period-increment in the

various cases are given by the relations

\<T,<T,Z J \<T, (7
,
Z )

0(p>p';
z

,
\ =(-iy0(P'P;

z
,)

(P> p':

z
,

+ aA = (- ly e-^-^n (P> P;
\<r, or

,
z + a-nJ \<t, a ,

(
p >

P;
' + a

") = (- iyr**-**» (p> p)
\a,a,z + awJ \cr, a ,

4
z'J

z
'

and by derivatives from these relations. The effects upon the sixteen

functions, by way of interchanges consequent upon half-period increments of

the arguments, are given in the full table on p. 254

Among the even theta-functions, the simplest relations* are as follows :

Co
2
0„

2 - cj 12
2 =

c,
2
0i> + c6

2
6
2 = c2

2
2
2 + c9

2
9*\

Co
2
0<?

- c3
2

3
2 = c6

2
e
* + c8

2
S
* = c4

2
0f + c9

2
<99

2

c«
2

O
2 - c15

2
]B

2 = c2
2
0? + c8

2
<98

2 =
Cl

2
0f + c4

2
<94

2
.

* These are taken from my memoir, Phil. Trans. (1882), pp. 783—862 ; they occur in many
of the memoirs there quoted, and in others, relating to the subject, as well as in treatises such as

those of Prym and Krause. Much algebraical discussion of the properties of the functions will

be found in Brioschi's memoir, Ann. di Mat., W* Ser., t. xiv (1887), pp. 241—344, and Opere

Matematiche, t. ii, pp. 345—454. Reference also may be made to Baker, Abelian Functions,
ch. xi, and Multiply Periodic Functions, ch. ii, and notes, p. 327.
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and others derived from these by linear combinations. The simplest relations

among the constant values of the even functions when the arguments are

made zero are the sets :

Cq Cj2
=

C\ T Cg
= C2 "T C9

Co C3 = C6 -+- Cg
= C4 + C9

Co cJ5
= C2 + C8 = Cj + C4 ^

and others derived from them : as well as the sets of simple biquadratic

relations,

r. 2 ,, 2
OO ^12
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Lastly, for the present purpose, it is sufficient to give the three relations

Co
2 ^ 2 = ci d*--cf n

2 + c3
2

14
2

,

Co
2 ev? = - c15

2
ej + c' ej + c4

2 ej

connecting the squares of odd functions alone. They can be derived from the

relations connecting the squares of the even functions alone, by using the

same table of interchanges for half-period increments of the variables.

As regards the odd functions, we write

Op = K^ Z t Ky_ Z -p • • •
>

where the expressed terms are the terms of the first order, and /x has the

values 5, 7, 10, 11, 13, 14
;
and we have

Gt}C9 C^IC5
= C3 C6 C15 /C10 -f- CiCjCg lc13 \

C2 C<j C12tC7
= CiCi Ci5K10 + C3 C6 CS fC13 i

CoC2 C9 ton
= CiC3 C$ A?io -f- CiCgCuj/Cy,

C C2 C12 ft^i4
— CiC$C% A/'io C\C3 C\$ICi

with exactly the same relations when k' is substituted for k.

162. All the relations thus far given, connecting the theta-functions, and

connecting the quotients of the theta-functions, are quadratic in form. In

each relation, there are three such quotients. Every function involves two

independent variables z and z
;
and therefore it is to be expected that each

of the functions is expressible algebraically in terms of two new independent
variables. This expectation is justified by the detailed results and properties

of the double theta-functions which give rise to the hyperelliptic functions of

order two, being quadruply periodic functions
;
and the actual forms can be

expressed as follows.

We take five constants alt Oa, a3 ,
ait a5 , unequal to one another; and we

write

«m — «n = mn,

for all the five values of m and of n, avoiding equal values, avoiding also some

other similar limitations that obviously are to be avoided. Two variables

£ and f are introduced
;
and we write

t = {«-a,)^-a,)^-a3)^- ai)^-a6)}\

r = a?- ao <r- o,)(f- «*)<r-o «r- «.)}*,

P = {(p- aJip-aJip-asXp-aJip- a5)}*.
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Two other variables u and u' are introduced, being denned by the equations

u=\ <p- a,,

r
£ n —

dp + ± ?2±
pa2
x

dp\

The variables f and £" are, in general, uniform quadruply periodic functions

of u and v!'; for sufficiently small values of w- and »', we have

13.14.15
a, =r 12

23 . 24 .5

21

tt* +

-U'* +

where the unexpressed terms are of even orders (beginning with the order 4)

in u and u' combined.

The fifteen quadruply periodic functions of z and z
, arising from the

quotients of the double theta-functions, are algebraically expressible as

follows :
—

On + 0U -(12. 13. 14. 15)"^
0io + 0™ = (21 • 23 . 24 . 25)

"
*#,

0, -*-
V2
= (- 31 . 32 . 34 . 35)

"

*p3

2 + $n = (- 41 . 42 . 43 . 45)-^4

B -j-012
= (51.52.53.54)-*pe

^ii * 0i2 - (13 . 14 . 15 . 23 . 24 . 25) "^12

8 + 12
= (12 . 14 . 15 . 32 . 34 . 35)

"
Kpn

3 + $12
= (12 . 13 . 15 . 42 . 43 . 45)

~

*p14

1 -^ = (-12.13.14.52.53.54)-^,

15 + l2
= (21 . 24, 25 . 31 . 34 . 35)-*/?*

4 + 0„ = (21 . 23 . 25 . 41 . 43 . 45)
"
±p2i

6 * $n = (_ 21 . 23 . 24 . 51 . 53 . 54)
-
*
jo2

T -<912
= (31. 32. 35. 41. 42. £5)~*ffc

5 -0]2
= (31.32.34.51.52.54)-*/>35

a4 4- 12
= (41 . 42 . 43 . 51 . 52 . 53) "*p«

where

^ = (ar -0(«r-r).

for r = 1, 2, 3, 4, 5
;
and

PrP* ((K
~

Or) (f
-

«*) (F ~ ar) (£'
~

««)j f
' ~

£'

for all the ten combinations of r and s from the set 1, 2, 3, 4, 5.



270 INITIAL TERMS IN THE [CH. VIII

The constant values of the even theta-functions for zero values of the
variables are related as follows :

'51 . 52\*
c . c12 —

Co . Cio —

C» • Cio —

53.54

41.42\*

43 . 457

31 . 32\*

Cj -T- c12 — I

_ 31 • S2
\

34 . S5J

52.13.14\£

Cio

12 . 53 . 54

42.13.15\±

+ cw = (

12 . 43 . 45,

41. 23. 25 \*

c,« = -

Cio

21 . 43 . 45,

51 . 23 . 24\*

21 . 53 . 54

32 . 14 . 16\*

12.34.35

- ^31.24.25^C" ' ° 12
"
I2l.34.35j

The lowest terms in the odd theta-functions are as follows :

\

13 . 15 . 23 . 25\* f 14 ,24\
43.45 'J ri2- M

i2J
+

13.14.23.24\*/ 15

6,

ea \ 53 . 54

1O /32.42.52\i
,

rl"i2—J
M

— = (13.14.15.23.24.25)^
#12

'

fl18 _/31.41.51\*
^12 [ 21

0,->

,25
"12- M

I2

U +

w +

u—u
12

+ r

15. 14.25. 24\*/ 13 ,23
34.35— j

M
I2-

M
12
H

The relations between the two variables u and u', and the two variables
z and z

', are

fe|+feV« /32 . 42 . 52\*
_ , ^

Cm c]2

*
V 12 J

K "_ .
ku'.

, /31 . 41 . 51\**2» fc» r /31 . 41 . 51 \*

C« cm
"

\ 21 /
M

i



164] THETA-QUOTIENTS 271

The quadruply periodic functions of z and z are quadruply periodic functions

of u and v! : and conversely.

Finally, derivatives of any function, of the first order with regard to u and

ii
,
are linear combinations (with constant coefficients) of its derivatives of the

first order with regard to z and z' .

Examples of the theorems in §§ 156—160.

163. Adequate' illustrations of the first theorem, in § 156, are provided

through the homogeneous relations among the theta-functions which have

just been stated. Each of them, when divided throughout by the appropriate

power of 912 , gives a relation among strictly periodic functions. Many other

such relations are given in the memoir by Brioschi already quoted (p. 266,

note) ;
and many can be deduced from the algebraical expressions for the

functions p in terms of the variables t and £'. Among them, we select the

following, as being of particular use in the succeeding investigation:
—

Vr + J>1_ + Pl_ = 1
rs .rt sr . st tr . ts

where rs — ar
— ag ,

and so on, and r, s, t are any three of the integers

1, 2, 3, 4, 5; also

Pr
2 +

jt (Pn
~ Pn) = rl . rm,

(st)prpri + (tr) pgpsi + (rs) p tpu m 0,

where r, s, t, I, m are the integers 1, 2, 3, 4, 5, in any order. These examples
will suffice for the present requirement.

164. We now proceed to give an example of theorem II, in § 157, by

forming the partial differential equation of the first order which is satisfied

by the uniform quadruply periodic function px .

From the values of u and u, expressed in terms of £ and £" by means of

definite integrals, we have the values of ^ , ^- , —-, ,

~
. Using the ex-

pression for pi in terms of % and £"',
we find

px du £— ttj 3w £'
—

«! du

=
2TT^r {f^Si

(r " ai)
"V^ (r

" a4 '

2 dPl 1 f 2r „ ,
2r'

{
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and therefore

£— <h. pi du Vi '

p1 du

- lb
-

«2>
—

3-7 + (£
-

«l)
—

577;f— Ctj px du Vb 2/

p 1 du

Now, for the values r = 3, 4, 5 in particular, we have

^ =~i
PaPr r -

r Kr- %) it-o or- «i)^ -
«,•>]

 

so that

£->1,
= -(2r)I^-(lr)i^,

Pi Pi du pidu

on substituting the foregoing values of t and t'. Thus, if we write

du~ qi '

du'~ qi '

we have
a = -p3p13

= (2S) qi + (13) qi'\

/3
= -p4pu = (24>) qi + (U) qi

'

,

7 " -i>6Pi5
= (25) qi + (15) 9/ )

where a, /3, 7 are temporarily used to denote the combinations of 9, and qi'.

Again, from the values of the functions in terms of £ and £", we have

J0i
2 +

3

1

4 (^ 3
2 -Pu2

)
= 12.15,

and therefore

Also

so that

£-f!
2 =34(12.15-K) = Csay,

Pa P*

p6 p*

p* + p** + p*
2

= 1

say ;
and similarly

13 . 14
'

31 . 34 41 . 43

34 31
p3

2 = 31.34 +
I^^ +

5I p4
2

31
,= c + 41^

51
,-a +H j*
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say. Thus

*' * = o,

"+ «*•

-*U
51

,
»

4
a

a +41^
These two quadratic equations satisfied by pf can be written

Gp4
* -

(L - p -
Gc') p? + ptf = 0,

Apt
* -(N-ff—A a!)pl+ pa' = ;

where

41
,

41 r 41 „ ,41a
-°51'

C=C
31'

X = a_
3l'

^ = T
5l'

Eliminating jt>4
2 between the two equations, we find

{{L
-& -

Gc') a' -(N - & -
Aa')c'} {{N

-& - Aa')G -(L - & -
Cc') A)

= ^ (Ac -GaJ,

which is a form of the partial differential equation of the first order satisfied

byp».

It is desirable that the equation should be simplified ;
the various re-

ductions are mere exercises in algebra. We find

4-0=53(12. 14-^),
so that

24 4.^ kq
(A - G)a'c' = -

{£{* (12 .14 -fl»)(18 . 14 - jfl (14, 15-#);

also

, 14 . 35
r/ — c = (13. 15 -/>,-),13,15

so that

14 34 45 *>3

<"'
-

*') ilC =
13; 15

^
(12. 13 ~p>) (12 . 15 - pfl (13 . 1 5 - #»).

And

Gd -Ac' = 84
;

t
-
45 - 58

(12 . 13 .14.15- yV).

As regards the parts involving derivatives, we have

{L-p)a'-{N-p)c'

= -
i2~y5 {54 (14 . 15 - p<) a? + 35 (13 . 15 - p*) & + 43 (13 . 14 -#*) rf]

14.34.45.53 f10o s

13 15 <
2 ~

qi
~ ~

p{
~

fa + qi $'

r. 18
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on substitution for a, ft, 7; and, similarly,

-iLi? (12. lS^jtf)*+~p?
(12.M-^)/8'+^'(12. 15-p.Oy

= - J 2 . 14 . 34 . 45 . 53
j(fc

+ g/jP
-

, g
J
4 j 5 Pity}

•

Hence the differential equation forp, takes the form

,2^1^14^15(Q
1 +

1^2)(Q2+12 ^ ]5)

= (24.^ + 14.?/)^,
where the various symbols in the equation (which manifestly is of the first

order, and of the fourth degree, in the derivatives of fa) have the values

12 ("'

J, - (12 . 14 -jtf) (13 . 14-^ (14 . 15
-yV))

A', = (12 . 13 -pr)(12 . 15 -p?) (13 . 15 -pA .

Ar

;! =12.13.14.15-;V J

The infinity of fa at any place being of order k, that of qt at the place and

that of qx

'

at the place are k + 1
;
from the terms of highest order in the

infinities, as they occur in the differential equation, we have (as these orders)

8/c + 4, 10* + 2, 12k, 10* + 2,

which are the same when k = 1 : that is, any infinity of fa is simple. The

result is to be expected because px
is a constant multiple of 6VA 6]<r

x

: so that

an infinity of fa is a zero of 12 ,
that is, it is simple. The terms of highest

order also provide relations among the constants connected with any such

infinity : but these are not our present concern.

165. The partial differential equation of the first on lei- for any other of

the functions p can be constructed in the same mariner; in particular, the

equation satisfied byp» can be derived from the equation satisfied bypu through

interchanging fa and
fa, qx and q2', q/ and

q.,,
a

x
and it... where

n - dP* n '- dP*

Note. Another proof can be framed, by noting the relations

c,,c-,6 x O + c*co w 6n = CocAfl,

r
t
rO lx^r^e^-c^e^-cr0^y
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among the theta-functions, by using the expressions for the constants c and

the quotients of the theta-functions, and by observing that 6i0o Ou
~'

is a con-

stant multiple of the quantity denoted by 7 and that Oo0s612

~2
is a constant

multiple of the quantity denoted by /?.

A third proof can be framed by noting the fact that

P . x 1 dpx . v 1 dpx

is satisfied by p = f and p = £", so that the quartic equation

(j
_

«*)
_

a,) (*
- a4) (m

-
<h) -{z- oO

|
(i
-

a,)
i
|g

+ (*
-

a,)
i
gj'

=

has £ and £' for its routs. The analytical conditions for this property of the

quartic equation ultimately lead to the partial differential equation of the first

older satisfied by px
.

166. The analysis in the preceding investigation leads to a simple

illustration of theorems III and IV, in § 158. It must, however, be borne in

mind that those theorems refer to functions that are homoperiodic.

Now the functions p4 and px
are not homoperiodic : their periods are only

commensurable. But the functions pi
2 and pi

2 are homoperiodic : and there-

fore by the theorem IV, we must have p4
2

expressible rationally in terms of

pi* and its first derivatives, that is, expressible rationally in terms of

Pi, qu qi-

The two quadratics that occur in the investigation give

pf _ Ac — A'c"
/3

J
~
(N-03 -

Act*) C-(L-(3>- Ccf) A
'

or, with the preceding notation,

_, „ (24<y, + lV).y,

12 - I3 - 145
(*=

+ i27Rh;5)'
I he required expression.

Also

-PiPu=24>qi + 14ft
/

,

so that we can deduce at once a rational expression for plt

"

in terms of

lh, </i, (//• Expressions for p„ p5 , pn , p l5 can be derived by interchange of the

constants a s ,
« 4 ,

a-
;

and expressions for the remaining functions can be

derived by simultaneous interchanges of the variables it and u' and of the

constants a
x
and a.2 .

As an illustration of theorem V in § 159, consider the Jacobian of any two

functions p,., ps : and let

/•, 8, I, in, n = 1, 2, 3, 4, 5,
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in any order. We have

H"> u ') i
/>» w\, x

and therefore

J(^'^)_
9$,*')

Consequently

wherc

=
2j Pip'"!'"-

{J<J>r, P,)}
a -

Qj )
P?Pn?Pn*

iv p,
s

\ /'-. /v p,
s W, yvP„. I

_ *£_ --££_ 1 _ _^ £•_ 1 _
rl.fa sl.srj \ rm.rs sm.sr/\ rn.rs sn.tr

so that the square of the Jacobian oi' pr and pH is an even polynomial in r and

s of joint degree six.

Similarly, we find

[J(Pr, p„)}
a =

Y2"2 PrCPrm-pm
2

~^>> \Pi-e" +iV • <*£
— rm . r/« .

6'^] {jW+J*r • S1U ~ rn • rt  SIIL
I

1 2-

x [p„
a + pf . m — rt . rm .

and so for other instances of Jacobians. So long as the Jacobians are formed

from any two of the fifteen functions, the algebraical equation between two

functions and their Jacobian is of even degree in the Jacobian. It is easy to

verify that

{J(Prm, Prn)}'

is an even polynomial in p ni ,
and pm of degree six; and from general con-

siderations (but without having constructed the respeetive equations) 1 infer

that

J(pr,P*t), J(pnn,pst)

each of them satisfy an equation, quart ic in its own Jacobian and of the

degree twelve in the term free from the Jacobian.

As a last illustration, consider a special case of theorem VI in ^ 160,

The derivative of
jj,

with respect to u, already denoted (§ 164) by qu isquadruply

periodic. It is homoperiodic with pl \
but it is not homoperiodic with

j>_.
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their periods being only commensurable. But q^, pf, p£ are homoperiodic :

and therefore, by the theorem, q^ is rationally expressible in terms of p^, p2
2

,

and the Jacobian of pi
2 and pi; that is, q{* is rationally expressible in terms of

plt p.2 ,
and J (pi, p^). The actual expression can be obtained in a variety of

ways, requiring mere algebra for the purpose. Proceeding from the relation

l » - 2nr- nir-
T

«,
<r _ a

' }
-
c -

«.
<?
"

lh)

already obtained for q1} we find ultimately the following result. Let 12, lr, ...

denote a-^
— a.2 ,

ax
— ar , ... as usual; write

A = (pf-pfY - 2 . 122

<jV + p2
2

) + 12^
;

*r =pf - pi
2 + 12 (lr + 2r), for r = 1, 2, 3, 4, 5

;

and, for any quantity £, let

(£ + **)(£ + *«)(£t *«)(£ + *•)

«f+S1P+&f+$£+ &.

Then a rational expression for g^
2
is

64 . ^2 12 7
. A + 128 . lVtfpuTfa, Jk)

= (St + &A + A2
) (3KlA +O -

($, + ^ A) (3/^A + A2

).

Other examples can easily be indicated: these will suffice for the present

purpose.

18—3
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Abel's theorem partially extended to double

integrals involving a couple of algebraic

functions of two independent variables,

193-197.

Accidental singularity, 61 ; (see unessential

singularity).

Algebraic functions in general, 61, 170 et seq. ;

rational functions, involving one algebraic

variable, 171, and two algebraic variables,

173 ; integrals of, 178 et seq.

Algebraic relations between homoperiodic

functions, 261 et seq. ; illustrations of, from

hyperelliptic functions, 265 et seq.

Analytic function, 59.

Analytical continuation, 60, 80.

Appell, 147, 235, 239.

Baker, H. F., 110, 131, 261, 266.

Berry, 170.

Borel, 77, 78, 126.

Boundaries of a region for certain fields of

variation, and their frontier, 20, 24.

Brioschi, 266.

Bromwich, 72.

Burnside, W., 26, 58, 237.

Campbell, 42.

Canonical form of lineo-linear transformations,

26; leads to powers of the transformation,

28;

of equations for quadratic frontier, 51
;

of rational functions which involve

algebraic variables, 171, 173.

Castelnuovo, 170.

Cauchy, 4.

Cauchy's theorem as to the integral of a

function of a single complex variable ex-

tended by Poincare. to functions of two

complex variables, 13, 159.

Conformal representation with one variable

extended to two variables, 18.

Continuation of regular functions, analytical,

80.

Continuity of a function, region of, 81, 82, 86.

Continuous function, 59.

Continuous groups, Lie's theory of, applied to

determine invariants and covariants of

quadratic frontiers, 40, 42.

Contour integrals, as used by Cousin, 131 et

seq.

Cousin, 130, 147.

Dautheville, 80, 126.

Dependent variables, number of, 2
; used for

a kind of inversion, 4.

Divisibility (relative) of two regular functions,

112.

Domain, 57.

Dominant function, 71.

Double-integral expressions connected with

coefficients in the expansion of regular

functions, 64.

Double integral for real variables, application

of theorem by Stokes on, 157.

Double integrals, defined for two complex

variables, 154 ; Poincarel's extension of

Cauchy's theorem for functions of a single

variable, 159 ; residues of, with examples,

160 et seq.

Double integrals of rational functions in-

volving two algebraic variables, 187 ;

equivalent forms of, 189 ; conditions that

they should be of the first kind, 190 ;

Abel's theorem partially extended to,

193.

Double theta-functions, 249, 253 et seq.

Enriques, 170.

Equivalent functions, 134, 141.

Essential singularity, 61, 83, 119, 123; be-

haviour of a function at and near an, 77,

83
;
functions devoid of, 125.
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Field of variation, in general, 57 ;
for periodic

functions, with one pair of periods, 224 ;

with two pairs of periods, 225 ;
with three

pairs of periods, 231
;
with four pairs of

periods, 236, together with a modified two-

plane representation of the variables, 237.

First kind of double integrals, conditions for,

190 ; extension of Abel's theorem to,

193.

First kind of single integrals of algebraic func-

tions of two variables, 178 ; initial condition

as to form of subject of integration, 180 ;

equivalent forms of, 180, with the necessary

relations, 185 ; do not exist for general

equations, 187.

Four-dimensional space, used to represent two

variables, 5 ; used by Poincare' in connection

with double integrals, 153.

Free functions, 208 ; properties of two, 209-

212.

Frontier of a region in certain fields of

variation, 20, 24 ; its analytical expression,

21
; invariantive, for lineo-linear transforma-

tions, 32 ; quadratic, 34.

Functions devoid of essential singularities,

everywhere, 125 ; in the finite part of the

field, 130 et seq.

Geometrical representation of two variables,

Chapter I
;
in four-dimensional space, 5 ; by

means of a line in ordinary space, 7 ; by
means of two planes, one for each of the

variables, 13.

Gordan, 25.

Grade of two uniform quadruply periodic

functions, 260.

Hadamard, 126.

Hartogs, 62, 123, 131.

Hermite, 4, 131.

Hobson, 1.

Homoperiodic functions, algebraic relations

between, 261 et seq.

Humbert, 170.

Hurwitz, 126.

Hyperelliptic functions of order two used to

illustrate algebraic relations between homo-

periodic functions, 265 et seq.

Invariant centres of lineo-linear transforma-

tions, 29.

Invariantive frontiers for lineo-linear trans-

formations, 32 ; simplest forms of, 34, 37.

Invariants and covariants of quadratic frontiers,

39 ; invariants alone, 48.

Inversion, a kind of, 4.

Irreducible places of quadruply periodic func-

tions, 257 ; any set expressible by a single

place in an associated two-plane representa-

tion, 257 ;
their number for level values of

two functions is finite, 258, and is indepen-

dent of those level values, 259.

Jacobi, 14, 26.

Jacobian of two homoperiodic functions, 264 ;

used, in connection with the two functions,

for the rational expression of other homo-

periodic functions, 265 ; equation satisfied

by, when they are hyperelliptic, 275.

Jordan, 26.

Konigsberger, 255.

Krause, 266.

Kronecker, 4.

Laguerre, 126.

Larmor, 157.

Laurent's theorem extended to functions of

two variables, 87-91.

Level places of two uniform functions

(Chapter VII) ; must exist for assigned

values of the functions, 203.

Level values of a regular function, 108 ; order

of, 111.

Levi, E. E., 123.

Lie, 25, 40, 42.

Line in space used to represent two complex
variables simultaneously, 7 ; limitations

upon use of whole line, 11 ; by means of

the points where it cuts two parallel

planes, 12.

Lineo-linear transformations, Chapter II ;

canonical form of, 26
; powers of, 28 ;

in-

variant centres for, 29 ; invariantive frontiers

for, 32
; property of, when coefficients are

real, 35 ; periodic, 52.

Lines, Volterra's functions of, 13.

Independent functions, 208.

Infinitesimal periods excluded,- 213-216.

Integral function, 60.

Integrals, of functions of two variables

(Chapter VI) ; of algebraic functions, 178

et seq.

Meromorphic function, 61.

Multiform function, 58.

Multiplicity, of a simultaneous zero of two

uniform functions, 168 ; expressed as a

double integral, 169 ; of a level value of

two functions, as a double integral, 169.
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Ncether, 170.

Non-essential singularity, 61 ; (see unessential

singularity).

Order of multiplicity, of a common zero of

two uniform analytic functions, 205, 209 ;

of level values of two uniform analytic

functions, 212.

Order, of zero of a regular function, 111; of

pole of uniform function, 119.

Ordinary place, 60.

Osgood, 62.

Pairs of periods for uniform functions of two

variables (see period-pairs).

Periodic functions in two variables (Chapter

VIII).

Periodic lineo-linear transformations, 19, 28,

52.

Period-pairs, if infinitesimal, are excluded,

213 ; may not be more than four for

uniform function of two variables, 216-223 ;

one, 224
; two, 224, with the different cases ;

three, 226, with the different cases, and the

general result, 231 ; four, 232, with the

different cases, 235.

Picard, Preface, 5, 14, 26, 77, 78, 92, 152,

153, 156, 161, 169, 170, 178, 193, 197.

Picard's theorem, on functions that cannot

acquire assigned values, extended to func-

tions of two variables, 78.

Picard's theorem concerning single integrals

of rational functions involving one algebraic

variable extended to integrals of rational

functions involving two algebraic variables,

180-187.

Poincare\ Preface, 1, 4, 5, 13, 26, 71, 126,

131, 153.

Poincar^'s extension of Cauchy's theorem to

double integrals, 159 ; with inferences, 160
;

extension to the residues of double integrals,

160, 161, with examples, 161 et seq.

Pole, 61, 85 (see unessential singularity) ; ex-

pression for uniform function in the vicinity

of, 119 ; sequence and order of, 120.

Polynomial, when a regular function is a,

74 ; properties of, as regards singularities,

124.

Prym, 266.

Quadratic frontiers, 34 ; invariants and co-

variants of, 39 ; suggested canonical form

for, 51.

Quadruply periodic functions, 253 et seq. ;

level places of two, 257 ; satisfy an algebraic

partial differential equation of the fiist

order, 262, with example, 273.

Rational, any uniform function entirely devoid

of essential singularities must be, 126.

Eational function connected with algebraic

equations in two independent variables,

most general form of : (i)
when there is

one equation, 171 ; (ii) when there are two

equations in two algebraic variables, 173 ;

integrals of, 178 et seq.

Rational function, singularities of, 125.

Reducibility (relative) of two regular functions.

115.

Region of continuity of a function, 81 ;
its

boundary, 82, 86.

Regular functions, any uniform function having

essential singularities only in the infinite

part of the field is expressible as the

quotient of two, 147.

Regular functions, 60; fundamental theorem

relating to, 62
;

double integral expression

for the coefficients in the expansion of, 64 ;

one property of, 73 ;
condition that it is a

polynomial, 74 ; analytical continuation of,

80 ; level values of, 108
;
relative divisibility

of, 112.

Relative, divisibility of two regular functions,

112
; reducibility of functions, 115.

Riemann, 4, 16.

Riemann's definition of a function extended

to two functions, 16.

Sauvage, 58.

Severi, 170.

Simart, Preface, 92, 152.

Simultaneous poles of two uniform analytic

functions exist, 204 ; usually is an isolated

place, 211.

Simultaneous unessential singularities of two

uniform functions do not exist in general, 204.

Simultaneous zero, of two regular functions,

must exist, 202 ; likewise for two uniform

analytic functions, 203
; usually is an

isolated place, 207, 209, but there may be

exceptions, 208.

Single integral, 152.

Single integrals of algebraic functions in-

volving two algebraic variables, 178 ;

equivalent forms of, 180, with necessary

relations, 185 ; first kind do not exist for

general equations, 187.

Singularities, 61, 82, 119; of a rational

function, 125.

Stokes, 157.
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Theta-functions, triple, 240 et seq. ; even

functions and odd functions, 218; double,

249, 25a et seq.

Tied functions, 208.

Transcendental function, 60.

Triple theta-functions, 240
; effect on, caused

by increments of periods, 242, by half-period

increments, 250; two sets of, 251 et seq.

Triply periodic functions, 238.

Two functions, everywhere regular in the

linite part of the field, must vanish at some
common place, 202

; likewise, when they are

uniform and analytic, 203.

Two-plane representation of the real parts of

the variables used for quadruply periodic

functions, 237, 257.

Two-plane representation of two variables, 13 ;

some properties of, 14 ; limitations of, 19.

Umbral symbols introduced for coeilicients in

homogeneous forms, 41.

Unessential singularity, 61, 83, 119 ;
ex-

pression of uniform function in the vicinity

of, 121 ; is an isolated place, 122.

Uniform analytic function must acquire an

infinite value, 72, and a zero value, 76,

and an assigned finite value, 76.

Uniform function, 58.

Uniform periodic functions (Chapter VIII).

Valentiner, 25.

Vicinity of a place, 58.

Vivanti, 12.

Volterra, 13.

Weierstrass, Preface, 4, 77, 80, 82-86, 92,

101, 105, 112, 122, 124, 141, 214, 260,

261.

Weierstrass's theorem on the behaviour of a

uniform continuous analytic function in the

vicinity of an ordinary place, 92 ; various

cases of, 96, 97, 100; example of, 102;

alternative method of proceeding in one

case, 105.

Weierstrass's theorem on functions entirely

devoid of essential singularities, 126 ; proof

of, 126-129 ; on functions having essential

singularities only in the infinite part of

the field, 130, with Cousin's proof, 130

et seq.

Weierstrass's theorem on infinitesimal periods,

214.

Weierstrass's theorems on algebraic relations

between homoperiodic functions, 261 et seq. ;

illustrated by hyperelliptic functions, 265

et seq.

Zeros (selected) of the theta-functions of two

variables, 255.
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