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PREFACE

This book is a systematic exposition of the part of general
topology which has proven useful in several branches of mathe-
matics. It is especially intended as background for modern
analysis, and I have, with difficulty, been prevented by my
friends from labeling it: What Every Young Analyst Should
Know.

The book, which is based on various lectures given at the
University of Chicago in 1946-47, the University of California
in 194849, and at Tulane University in 1950-51, is intended to
be both a reference and a text. These objectives are somewhat
inconsistent. In particular, as a reference work it offers a rea-
sonably complete coverage of the area, and this has resulted in a
more extended treatment than would normally be given in a
course. There are many details which are arranged primarily for
reference work; for example, I have taken some pains to include
all of the most commonly used terminology, and these terms are
listed in the index. On the other hand, because it is a text the
exposition in the earlier chapters proceeds at a rather pedestrian
pace. For the same reason there is a preliminary chapter, not a
part of the systematic exposition, which covers those topics req-
uisite to the main body of work that I have found to be new to
many students. The more serious results of this chapter are
theorems on set theory, of which a systematic exposition is given
in the appendix. This appendix is entirely independent of the
remainder of the book, but with this exception each part of the

book presupposes all earlier developments.
g v



vi PREFACE

There are a few novelties in the presentation. Occasionally
the title of a section is preceded by an asterisk; this indicates
that the section constitutes a digression. Other topics, many of
equal or greater interest, have been treated in the problems.
These problems are supposed to be an integral part of the dis-
cussion. A few of them are exercises which are intended simply
to aid in understanding the concepts employed. Others are
counter examples, marking out the boundaries of possible theo-
rems. Some are small theories which are of interest in them-
selves, and still others are introductions to applications of general
topology in various fields. These last always include references
so that the interested reader (that elusive creature) may continue
his reading. The bibliography includes most of the recent con-
tributions which are pertinent, a few outstanding earlier contri-
butions, and a few ““cross-field”’ references.

I employ two special conventions. In some cases where mathe-
matical content requires “if and only if” and euphony demands
something less I use Halmos® “iff.” The end of each proof is
signalized by |. This notation is also due to Halmos.

R g

Berkeley, California
February 1, 1955
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Chapter 0

- PRELIMINARIES

The only prerequisites for understanding this book are a knowl-
edge of a few of the properties of the real numbers and a reason-
able endowment of that invaluable quality, mathematical ma-
turity. All of the definitions and basic theorems which are as-
sumed later are collected in this first chapter. The treatment is
reasonably self-contained, but, especially in the discussion of the
number system, a good many details are omitted. The most
profound results of the chapter are theorems of set theory, of
which a systematic treatment is given in the appendix. Because
the chapter is intended primarily for reference it is suggested
that the reader review the first two sections and then turn to
chapter one, using the remainder of the chapter if need arises.
Many of the definitions are repeated when they first occur in
the course of the work.

SETS

We shall be concerned with sets and with members of sets.
“Set,” “class,” “family,” “collection,” and “aggregate’’ are syn-
onymous,* and the symbol e denotes membership. Thus x e 4
if and only if x is a member (an element, a point) of A. Two sets
are identical iff they have the same members, and equality is

*+ This statement is not strictly accurate. There are technical reasons, expounded in
the appendix, for distinguishing between two different sorts of aggregates. The term
“set” will be reserved for classes which are themselves members of classes. This distinc-

tion is of no great importance here; with a single non-trivial exception, each class which
occurs in the discussion (prior to the appendix) is also a set.
1



2 PRELIMINARIES

always used to mean identity. Consequently, 4 = B if and only
if, for each x, ¥ ¢ 4 when and only when x ¢ B.

Sets will be formed by means of braces, so that {x: - - - (propo-
sition about x) - - -} is the set of all points x such that the propo-
sition about x is correct. Schematically, y e {x: .. (proposition
about x) -- -} if and only if the corresponding proposition about
y is correct. For example, if A is a set, then y ¢ {x: x e 4} iff
yed. Because sets having the same members are identical,
4 = {x: x e A}, a pleasant if not astonishing fact. It is to be
understood that in this scheme for constructing sets “x” is a
dummy variable, in the sense that we may replace it by any
other variable that does not occur in the proposition. Thus
{x:xed} = {y:yed}, but {x: xe d} #* {A4: Ae A).

There is a very useful rule about the construction of sets in
this fashion. If sets are constructed from two different proposi-
tions by the use of the convention above, and if the two propo-
sitions are logically equivalent, then the constructed sets are
identical. The rule may be justified by showing that the con-
structed sets have the same members. For example, if 4 and
B are sets, then {x: xe 4 or xe B} = {xt xe B or x e A}, be-
cause y belongs to the first iff y e 4 or y € B, and this is the case
iff y &€ B or y e A, which is correct iff y is a member of the second
set. All of the theorems of the next section are proved in pre-
cisely this way.

SUBSETS AND COMPLEMENTS; UNION AND INTERSECTION

If 4 and B are sets (or families, or collections), then A is a
subset (subfamily, subcollection) of B if and only if each mem-
ber of A4 is a member of B. In this case we also say that A is
contained in B and that B contains 4, and we write the follow-
ing: 4 € Band B> A Thus 4 c B iff for each x it is true
that x ¢ B whenever x e 4. The set A is a proper subset of B
(4 is properly contained in B and B properly contains ) iff
A cC Band 4 B. If Ais a subset of B and B is a subset of
C, then clearly A is a subset of C. If 4 € B and B < 4, then
A4 = B, for in this case each member of 4 is a member of B
and conversely.



SUBSETS AND COMPLEMENTS 3

The union (sum, logical sum, join) of the sets 4 and B, writ-
ten 4 U B, is the set of all points which belong either to 4 or
to B; that is, 4 U B = {x: xe 4 or xe B}. It is understood
that “or” is used here (and always) in the non-exclusive sense,
and that points which belong to both 4 and B also belong to
A U B. The intersection (product, meet) of sets A4 and B, writ-
ten 4 N B, is the set of all points which belong to both 4 and
B; thatis, 4 N B = {x:xe A and x ¢ B}. The void set (empty
set) is denoted 0 and is defined to be {x: x ¥ x}. (Any proposi-
tion which is always false could be used here instead of x > x.)
The void set is a subset of every set 4 because each member of
0 (there are none) belongs to 4. The inclusions, 0 ¢ 4 N B
c A c A U B, are valid for every pair of sets 4 and B. Two
sets 4 and B are disjoint, or non-intersecting, iff 4 N B = 0;
that is, no member of 4 is also a member of B. The sets 4 and
B intersect iff there is a point which belongs to both, so that
A N B#0. Ifais afamily of sets (the members of @ are sets),
then @ is a disjoint family iff no two members of @ intersect.

The absolute complement of a set 4, written ~A4,is {x:x ¢ A}.
The relative complement of 4 with respect toaset Xis X N ~4,
or simply X ~ 4. This set is also called the difference of X
and 4. For each set A it is true that ~~4 = A; the corre-
sponding statement for relative complements is slightly more
complicated and is given as part of 0.2.

One must distinguish very carefully between “member” and
“subset.” The set whose only member is x is called singleton
and is denoted {x}. Observe that {0} is not void, since 0 & {0},
and hence 0 = {0}. In general, x ¢ £ if and only if {x} C 4.

The two following theorems, of which we prove only a part,
state some of the most commonly used relationships between the
various definitions given above. These are basic facts and will
frequently be used without explicit reference.

1 TucoreM Let A and B be subsets of a set X. Then A < B if
and only if any one of the following conditions holds:

ANB=4, B=AUB, X~BcX~dJd,
ANX~B=0, o X~A4 UB=2X.
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2 Tueorem Let A, B, C, and X be sets. Then:

@ X~X~A)=40NX.

(b) (Commutative laws) 4 U B = B andA NB=DBNA.

(c) (Associative laws) A U (B ) = (4 U B) U C and
ANBNo=ANB)N

(d) (Distributive laws) A N (B U ) =(ANB)ULALNOC
and AU (B NC)=(AUB)N(LUDOLQ).

(e) (De Morgan formulae) X ~ (4 U B) = (X ~ 4) N
X~Band X ~(ANB)=(X~4d) U (X~ B).

PROOF Proof of (a): A point x is a member of X ~ (X ~ A) iff
xeX and x¢ X ~ 4. Since x¢g X ~ A iff x¢X or xe d, it
follows that xe X ~ (X ~ 4) iff xe X and either x¢ X or
xe . The first of these alternatives is impossible, so that
xeX~(X~4A iff xeX and xe 4; that is, iff xe X N 4.
Hence X ~ (X ~ 4) = 4 N X. Proof of first part of (d): A
point x is a member of 4 N (B U C) iff x e 4 and either x e B
or x e C. This is the case iff either » belongs to both 4 and B
or x belongs to both 4 and C. Hence xe 4 N (B U C) iff
xe(4 N B) U (A4 N C), and equality is proved. |

If 4y, Ay, -+, A, are sets, then 4; U 4, U---U 4, is the
union of the sets and 4; N A4, N--- N A, is their intersection.
It does not matter how the terms are grouped in computing the
union or intersection because of the associative laws. We shall
also have to consider the union of the members of non-finite
families of sets and it is extremely convenient to have a notation
for this union. Consider the following situation: for each mem-
ber a of a set 4, which we call an index set, we suppose that a
set X, is given. Then the union of all the X,, denoted |J {X,:
ae A}, is defined to be the set of all points x such that x e X,
for some 2 in 4. In a similar way the intersection of all X, for a
in 4, denoted N {X,: @ € 4}, is defined to be {x: x e X, for cach
a in A}. A very important special case arises when the index
set is itself a family @ of sets and X, is the set A4 for each 4 in @a.
Then the foregoing definitions become: J{A: A e @} = {x:xe 4
for some A in @} and N {4: A e @} = {x: x e 4 for each 4 in @}.

There are many theorems of an algebraic character on the
union and intersection of the members of families of sets, but
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we shall need only the following, the proof of which is omitted.

3 TueorREM Let A be an index set, and for each a in A let X, be
a subset of a fixed set' Y. Then:

(@) If B is a subset of A, then \J{Xs: be B} c J{X,: aed}
and N{Xe:be B} D N{Xs:aed}.

(b) (De Morgan formulae) Y ~ |J{X4: ae 4} = N{Y ~ X,:
aed} and Y ~N{Xs:aed} = U{Y ~X,: ae d}.

The De Morgan formulae are usually stated in the abbreviated
form: the complement of the union is the intersection of the com-
plements, and the complement of an intersection is the union of
the complements.

It should be emphasized that a reasonable facility with this
sort of set theoretic computation is essential. The appendix con-
tains a long list of theorems which are recommended as exercises
for the beginning student. (See the section on elementary alge-
bra of classes.)

4 Notes In most of the early work on set theory the union of
two sets 4 and B was denoted by 4 + B and the intersection by
AB, in analogy with the usual operations on the real numbers.
Some of the same algebraic laws do hold; however, there is com-
pelling reason for not following this usage. Frequently set theo-
retic calculations are made in a group, a field, or a linear space.
If 4 and B are subsets of an (additively written) group, then
{c:c = a+ bfor some a in A and some b in B} is a natural candi-
date for thelabel “A4 + B,” and itis natural to denote {x: —x e £}
by —A4. Since the sets just described are used systematically in
calculations where union, intersection, and complement also ap-
pear, the choice of notation made here seems the most reasonable.

The notation used here for construction of sets is the one most
widely used today, but “E” for “the set of all ¥ such that” is

z
also used. The critical feature of a notation of this sort is the
following: one must be sure just which is the dummy variable.
An example will clarify this contention. The set of all squares
of positive numbers might be denoted quite naturally by {x*:
x > 0}, and, proceeding, {x% + 4?: x < 1 4 24} also has a natu-
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ral meaning. Unfortunately, the latter has three possible natural
meanings, namely: {z: for some x and some a, z = x* + a® and
x <1+ 2a}, {2: for some x, 2 = x> + a® and x < 1 + 2a}, and
{2: for some a, z = x* + a® and x <1 + 2a}. These sets are
quite different, for the first depends on neither x nor &, the sec-
ond is dependent on &, and the third depends on x. In slightly
more technical terms one says that “x” and “4” are both dum-
mies in the first, “x” is a dummy in the second, and “4” in the
third. To avoid ambiguity, in each use of the brace notation
the first space after the brace and preceding the colon is always
occupied by the dummy variable.

Finally, it is interesting to consider one other notational fea-
ture. In reading such expressions as “4 N (B U C)” the paren-
theses are essential. However, this could have been avoided by
a slightly different choice of notation. If we had used “U.4B”
instead of “4 U B,” and similarly for intersection, then all pa-
rentheses could be omitted. (This general method of avoiding
parentheses is well known in mathematical logic.) In the modi-
fied notation the first distributive law and the associative law
for unions would then be stated: N4 U BC = UNAB N AC
and U4 U BC = U UABC. The shorthand notation also reads
well; for example, U 4B is the union of 4 and B.

RELATIONS

The notion of set has been taken as basic in this treatment,
and we are therefore faced with the task of defining other neces-
sary concepts in terms of sets. In particular, the notions of or-
dering and function must be defined. It turns out that these
may be treated as relations, and that relations can be defined
rather naturally as sets having a certain special structure. This
section is therefore devoted to a brief statement of the definitions
and elementary theorems of the algebra of relations.

Suppose that we are given a relation (in the intuitive sense)
between certain pairs of objects. The basic idea is that the re-
lation may be represented as the set of all pairs of mutually re-
lated objects. For example, the set of all pairs consisting of a
number and its cube might be called the cubing relation. Of
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course, in order to use this method of realization it is necessar)
that we have available the notion of ordered pair. This notion
can be defined in terms of sets.* The basic facts which we need
here are: each ordered pair has a first coordinate and a second
coordinate, and two ordered pairs are equal (identical) if and
only if they have the same first coordinate and the same second
coordinate. The ordered pair with first coordinate ¥ and second
coordinate y is denoted (x,y). Thus (x,y) = (%,0) if and only if
x=uandy = v

It is convenient to extend the device for the formation of sets
so that {(x,y): ---} is the set of all pairs (x,y) such that ...
This convention is not strictly necessary, for the same set is ob-
tained by the specification: {z: for some x and some y, z = (x,y)
and +--}.

A relation is a set of ordered pairs; that is, a relation is a set,
each member of which is an ordered pair. If R is a relation we
write xRy and (¥,y) € R interchangeably, and we say that x is
R-related to y if and only if xRy. The domain of a relation R is
the set of all first coordinates of members of R, and its range is
the set of all second coordinates. Formally, domain R = {x: for
some y, (x,y) € R} and range R = {y: for some %, (x,y) € R}. One
of the simplest relations is the set of all pairs (x,y) such that x is
a member of some fixed set 4 and y is a member of some fixed
set B. This relation is the cartesian product of 4 and B and is
denoted by 4 X B. Thus 4 X B = {(x,y): xe 4 and y e B}.
If B is non-void the domain of 4 X B is 4. It is evident that
every relation is a subset of the cartesian product of its domain
and range.

The inverse of a relation R, denoted by R, is obtained by
reversing each of the pairs belonging to R. Thus R™! = {(x,y):
(y,%) e R} and xRy if and only if yR™'x. For example, (4 X B)™!
= B X A for all sets 4 and B. The domain of the inverse of a
relation R is always the range of R, and the range of R™! is the
domain of R. If R and § are relations their composition, R°§
(sometimes written RS), is defined to be the set of all pairs (x,2)

* An honest treatment of the problem is given in the appendix, where N. Wiener’s
definition of ordered pair is used. The ingenious notion of representing relations in this
fashion is due to C. S. Peirce. A very readable account of the elementary relation alge-
bra will be found in A. Tarski [1].
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such that for some y it is true that (x,y) € § and (,2) ¢ R. Com-
position is generally not commutative. For example, if R =
{(1,2)} and § = {(0,1)}, then R-§ = {(0,2)} and §- R is void.
The identity relation on a set X (the identity on X), denoted A
or A(X), is the set of all pairs of the form (x,x) for ¥ in X. The
name is derived from the fact that A R = R°A = R whenever
R is a relation whose range and domain are subsets of X. The
identity relation is also called the diagonal, a name suggestive
of its geometric position in X X X.

If R is a relation and A is a set, then R[A], the set of all R-
relatives of points of 4, is defined to be {y: ¥Ry for some x in A}.
If A is the domain of R, then R[A] is the range of R, and for arbi-
trary A the set R[A] is contained in the range of R. If Rand §
are relations and R < 8, then clearly R[A4] c §[4] for every A.

There is an extensive calculus of relations, of which the follow-
ing theorem is a fragment.

5 TueoreM Let R, S, and T be relations and let A and B be sets.
Then:

(a) (RT)™ = Rand (R-8§)™' = §71R71,
(b) Re(§T) = (R=8)=T and (R- §)[4] = RIS[4]].
(c) R[4 U B] = R[4] U R[B) and R[4 N B) c R[4] N R[B].

More generally, if there is given a set X, for each member a of a
non-void index set A then:

(d) RIU{X.:aeA}] = UIR[X.]:ae 4} and R (Xa:a e A}]
c N{R[X.]:aeA4}.

PROOF As an example we prove the equality: (R-8)™! =
§—1e R~ A pair (z,x) is a member of (R 8)~! iff (x,2) e RS,
and this is the case iff for some y it is true that (x,y) e S and (y,2)
e R. Consequently (z,x) e (R=8) "1 iff (z,y) e R™' and (y,2) e §!
for some y. This is precisely the condition that (z,x) belong to
§t-R7L |

There are several special sorts of relations which occur so fre-
quently in mathematics that they have acquired names. Aside
from orderings and functions, which will be considered in detail
in the following sections, the types listed below are probably the
most useful. Throughout the following it will be convenient to
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suppose that R is a relation and that X is the set of all points
which belong to either the domain or the range of R; that is,
X = (domain R) U (range R). The relation R is reflexive if and
only if each point of X is R-related to itself. This is entirely
equivalent to requiring that the identity A (or A(X)) be a subset
of R. The relation R is symmetric, provided that xRy whenever
yRx. Algebraically, this requirement may be phrased: R = R,
At the other extreme, the relation R is anti-symmetric iff it is
never the case that both xRy and yRx. In other words, R is
anti-symmetric iff R N R is void. The relation R is transi-
tive iff whenever ¥Ry and yRz then xRz. In terms of the com-
position of relations, the relation R is transitive if and only if
R+ R c R. It follows that, if R is transitive, then R+ R™! =
(R* R)™' © R, and hence the inverse of a transitive relation
is transitive. If R is both transitive and reflexive, then R- R D
R+ A and hence R° R = R; in the usual terminology, such a re-
lation is idempotent under composition.

An equivalence relation is a reflexive, symmetric, and transi-
tive relation. Equivalence relations have a very simple struc-
ture, which we now proceed to describe. Suppose that R is an
equivalence relation and that X is the domain of R. A subset 4
of X is an equivalence class (an R-equivalence class) if and only
if there is 2 member x of A such that A is identical with the set
of all y such that #Ry. In other words, 4 is an equivalence class
iff there is ¥ in A such that 4 = R[{x}]. The fundamental re-
sult on equivalence relations states that the family @ of all equiv-
alence classes is disjoint, and that a point x is R-related to a
point y if and only if both x and y belong to the same equivalence
class. The set of all pairs (¥,y) with x and y in a class 4 is simply
A X A, which leads to the following concise formulation of the
theorem.

6 TueoreEM A relation R is an equivalence relation if and only
if there is a disjoint family @ such that R = {4 X 4: 4 e a}.

proOF If R is an equivalence relation, then R is transitive: if
yRx and zRy, then 2Rx. In other words, if xRy, then R[{y}]
R[{x}]. But R is symmetric (xRy whenever yRx), from which
it follows that, if ¥Ry, then R[{x}] = R[{y}]. If z belongs to
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both R[{x}] and R[{y}], then R[{x}] = R[{z}] = R[{y}], and con-

sequently two equivalence classes either coincide or are disjoint.
If y and z belong to the equivalence class R[{x}], then, since
R[{y}] = R[{x}], it follows that yRz or, in other words, R[{x}]
X R[{x}] € R. Hence the union of 4 X A for all equivalence
classes A is a subset of R, and since R is reflexive, if ¥Ry, then
(%,y) e R[{x}] X R[{x}]. Hence R= {4 X 4: Aea}. The
straightforward proof of the converse 1s omitted. |

We are frequently interested in the behavior of a relation for
points belonging to a subset of its domain, and frequently the re-
lation possesses properties for these points which it fails to have
for all points. Given a set X and a relation R one may construct
a new relation R N (X X X) whose domain is a subset of X.
For convenience we will say that a relation R has a property on
X, or that R restricted to X has the property iff R N (X X X)
has the property. For example, R is transitive on X iff R N
(X X X) is a transitive relation. This amounts to asserting that
the defining property holds for points of X in this case, when-
ever x, y, and z are points of X such that ¥Ry and yRz, then
xRz,

FUNCTIONS

The notion of function must now be defined in terms of the
concepts already introduced. This offers no difficulty if we con-
sider the following facts. Whatever a function is, its graph has
an obvious definition as a set of ordered pairs. Moreover, there
is no information about the function which cannot be derived
from its graph. In brief, there is no reason why we should at-
tempt to distinguish between a function and its graph.

A function is a relation such that no two distinct members
have the same first coordinate. Thus f is a function iff the mem-
bers of f are ordered pairs, and whenever (x,y) and (x,2) are
members of f, then y = 2. We do not distinguish between a
function and its graph. The terms correspondence, transforma-
tion, map, operator, and function are synonymous. If fis a func-
tion and « is a point of its domain (the set of all first coordinates
of members of f), then f(x), or f. is the second coordinate of the
unique member of f whose first coordinate is x. The point f(x)
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is the value of f at x, or the image of x under £, and we say that
f assigns the value f(x) to , or carries x into f(x). A function
Fis on X iff X is its domain and it is onto Y'iff ¥'is its range (the
set of second coordinates of members of f, sometimes called the
set of values). If the range of f is a subset of Y, then fis to Y,
or into Y. In general a function is many to one, in the sense
that there are many pairs with the same second coordinate or,
equivalently, many points at which the function has the same
value. A function f is one to one iff distinct points have distinct
images; that is, if the inverse relation, /', is also a function.

A function is a set, and consequently two functions, f and g,
are identical iff they have the same members. It is clear that
this is the case iff the domain of f is identical with the domain of
g and f(x) = g(x) for each x in this domain. Consequently, we
may define a function by specifying its domain and the value of
the function at each member of the domain. If fis a function
on X to Y and A is a subset of X, then f N (4 X Y) is also a
function. It is called the restriction of f to 4, denoted f| 4, its
domain is 4, and (f|A)(x) = f(x) for x in 4. A function g is
the restriction of f to some subset iff the domain of g is a subset
of the domain of £, and g(x) = f(x) for x in the domain of g;
that is, iff g = f. The function f is called an extension of g iff
g C f. Thus f is an extension of g iff g is the restriction of f to
some subset of the domain of f.

If A is a set and £ is a function, then, following the definition
given for arbitrary relations, f[4] = {y: for some x in A, (%)
ef}; equivalently, f[4] is {y: for some x in A,y = f(x)}. The
set f[4] is called the image of 4 under f. If 4 and B are sets,
then, by theorem 0.5, f[4 U B} = f[4] U f[Bland f[4 N B] C
f14] N f[B], and similar formulae hold for arbitrary unions and
intersections. It is not true in general that f[4 N B] = f[4] N
fIB], for disjoint sets may have intersecting images. If fis a
function, then the set f*[4] is called the inverse (inverse image,
counter image) of £ under f. The inverse satisfies the following
algebraic rules.

7 Turorem If f is a function and A and B are sets then

(a) 74 ~ Bl = f7'[4) ~f7'B],
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(b) 74 U B] = f~'[4] U f~'[B], and
() f7'14 N B] = 4] 0 f7[B].

More generally, if there is given a set X, for each member ¢ of
a non-void index set C then

(d) fFU{Xe:ceCY]l = U7X c e CY, and
@ fMUN{Xe:ceCll = NI X): ceC).

PROOF Only part (e) will be proved. A point » is a member of
STUN{X.: ¢ e C}] if and only if f(x) belongs to this intersection,
which is the case iff f(x) e X, for each ¢ in C. But the latter con-
dition is equivalent to x ef~![X,] for each ¢ in C; that is, x ¢
N{f'[X]:ceC}. 1

The foregoing theorem is often summarized as: the inverse of
a function preserves relative complements, unions, and intersec-
tions. It should be noted that the validity of these formulae
does not depend upon the sets £ and B being subsets of the range
of the function. Of course, f~1[4] is identical with the inverse
image of the intersection of 4 with the range of . However, it
is convenient not to restrict the notation here (and the corre-
sponding notation for images under f) to subsets of the range
(respectively, the domain).

The composition of two functions is again a function by a
straightforward argument. If f is a function, then f~!<f is an
equivalence relation, for (x,v) e f~!°f if and only if f(x) = f( ).
The composition f<f~! is a function; it is the identity on the
range of f.

8 Notes There are other notations for the value of a function f
at a point x. Besides f(x) and fs, all of the following are in use:
(f%); (%,f), fx, %f, and +fx. The first two of these are extremely
convenient in dealing with certain dualities, where one is con-
sidering a family F of functions, each on a fixed domain X, and
it is desirable to treat F and X in a symmetric fashion. The no-
tations ‘fx” and “xf” are obvious abbreviations of the notation
we have adopted; whether the “f” is written to the left or to
the right of “4” is clearly a matter of taste. These two share a
disadvantage which is possessed by the ‘“/(x)”” notation. In cer-
tain rather complicated situations the notation is ambiguous, un-
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less parentheses are interlarded liberally. The last notation
(used by A. P. Morse) is free from this difficulty. It is unambig-
uous and does not require parentheses. (See the comments on
union and intersection in 0.4.)

There 1s a need for a bound variable notation for a function.
For example, the function whose domain is the set of all real
numbers and which has the value x? at the point x should have
a briefer description. A possible way out of this particular situ-
ation is to agree that x is the identity function on the set of real
numbers, in which case ¥2 might reasonably be the squaring func-
tion. The classical device is to use x% both for the function and
for its value at the number x. A less confusing approach is to
designate the squaring function by x — x2. This sort of nota-
tion is suggestive and is now coming into common use. It is
not universal and, for example, the statement (x — x%)(s) = #
would require explanation. Finally it should be remarked that,
although the arrow notation will undoubtedly be adopted as
standard, the A-convention of A. Church has technical advan-
tages. (The square function might be written as Ax: ¥2) No
parentheses are necessary to prevent ambiguity.

ORDERINGS

An ordering (partial ordering, quasi-ordering) is a transitive
relation. A relation < orders (partially orders) a set X iff it is
transitive on X. If < is an ordering and ¥ < y, then it is cus-
tomary to say that x precedes y or x is less than y (relative to
the order <) and that y follows x and y is greater than x. If 4
is contained in a set X which is ordered by <, then an element »
of X is an upper bound of A iff for each y in A either y < x or
y = x. Similarly an element x is a lower bound of A if x is
less than or equal to each member of 4. Of course, a set may
have many different upper bounds. An element x is a least
upper bound or supremum of A if and only if it is an upper bound
and is less than or equal to every other upper bound. (In other
words, a supremum is an upper bound which is a lower bound for
the set of all upper bounds.) In the same way, a greatest lower
bound or infimum is an element which is a lower bound and is
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greater than or equal to every other lower bound. A set X is
order-complete (relative to the ordering <) if and only if each
non-void subset of X which has an upper bound has a supremum.
It is a little surprising that this condition on upper bounds is
entirely equivalent to the corresponding statement for lower

bounds. That is:

9 THEOREM A set X is order-complete relative to an ordering if
and only if each non-void subset which has a lower bound has an
infimum.

PROOF Suppose that X is order-complete and that A is a non-
void subset which has a lower bound. Let B be the set of all
lower bounds for 4. Then B is non-void and surely every mem-
ber of the non-void set A is an upper bound for B. Hence B has
a least upper bound, say, 4. Then 4 is less than or equal to each
upper bound of B, and in particular 4 is less than or equal to
each member of 4, and hence 4 is a lower bound of 4. On the
other hand, 4 is itself an upper bound of Bj; that is, 4 is greater
than or equal to each lower bound of 4. Hence 4 is a greatest
lower bound of 4. The converse proposition may be proved by
the same sort of argument, or, directly, one may apply the re-
sult just proved to the relation inverse to <. |

It should be remarked that the definition of ordering is not
very restrictive. For example, X X X is an ordering of X, but
a rather uninteresting one. Relative to this ordering each mem-
ber of X is an upper bound, and in fact a supremum, of every
subset. The more interesting orderings satisfy the further con-
dition: if x is less than or equal to y and y is also less than or
equal to x, then y = x. In this case there is at most one supremum
for a set, and at most one infimum.

A linear ordering (total, complete, or simple ordering) is an
ordering such that:

(a) If x <yandy < x, then x = y, and
(b) x <y ory < x whenever x and y are distinct members of the
union of the domain and the range of <.

It should be noticed that a linear ordering is not necessarily re-
flexive. However, agreeing that ¥ = y iff x <y or x = y, the
relation < is always a reflexive linear ordering if < is a linear
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ordering. Following the usual convention, a relation is said to
linearly order a set X iff the relation restricted to X is a linear
ordering. A set with a relation which linearly orders it is called
a chain. Clearly suprema and infima are unique in chains. The
remaining theorems in this section will concern chains, although
it will be evident that many of the considerations apply to less
restricted orderings.

A function f on a set X to a set Y is order preserving (mono-
tone, isotone) relative to an order < for X and an order < for
Y iff f(u) < f(v) or f(u) = f(v) whenever « and v are points of X
such that # < v. If the ordering < of Yissimply Y X Y, or if the
ordering < of X is the void relation, then f is necessarily order
preserving. Consequently one cannot expect that the inverse of
a one-to-one order preserving function will always be order pre-
serving. However, if X and Y are chains and f is one to one
and isotone, then necessarily f~! is isotone, for if f(u) < f(v) and
f(u) # f(v), then it is impossible that v < u because of the order-
preserving property.

Order-complete chains have a very special property. Suppose
that X and Y are chains, that X, is a subset of X, and that f is
an order-preserving function on X, to Y. The problem is: Does
there exist an isotone extension of f whose domain is X? Unless
some restriction is made on f the answer is “no,” for, if X is the
set of all positive real numbers, X is the subset consisting of all
numbers which are less than one, Y = X, and f is the identity
map, then it is easy to see that there is no isotone extension.
(Assuming an extension f~, what is f~(1)?) But this example
also indicates the nature of the difficulty, for X, is a subset of X
which has an upper bound and f[X,] has no upper bound. If an
isotone extension f— exists, then the image under f~ of an upper
bound for a set A is surely an upper bound for f[4]. A similar
statement holds for lower bounds, and it follows that, if a sub-
set A of X, is order-bounded in X (that is, it has both an upper
and lower bound in X), then the image f[4] is order-bounded in
Y. The following theorem asserts that this condition is also suf-
ficient for the existence of an isotone extension.

10 TueoreM Let f be an isotone function on a subset Xo of a
chain X to an order-complete chain Y. Then f has an isotone ex-
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tension whose domain is X if and only if f carries order-bounded
sets into order-bounded sets. (More precisely stated, the condition
is that, if A is a subset of Xo which is order-bounded in X, then
fl4] is order-bounded in Y.)

PROOF It has already been observed that the condition is neces-
sary for the existence of an isotone extension, and it remains to
prove the sufficiency. We must construct an isotone extension
of a given function f. First we note that if 4 is a subset of X
which has a lower bound in X, then f[4] has a lower bound, for,
choosing a point x in 4, the set {y: ye 4 and y < x} is order-
bounded, hence its image under f is order-bounded, and a lower
bound for this image is also a lower bound for f[4]. A similar
statement applies to upper bounds. For each » in X let L, be
the set of all members of X, which are less than or equal to x;
that is, L, = {y:y < x and y e Xo}. If L, is void, then x is a
lower bound for X, hence f[X,] has an infimum v, and we de-
fine f~(x) to be v. If L, is not void, then, since x is an upper
bound for L., the set f[L,] has an upper bound and hence a
supremum, and we define f~(¥) = supf[L,]. The straightfor-
ward proof that £~ is an isotone extension of f is omitted. ||

In certain cases the isotone extension of a function is unique.
One such case will occur in treating the decimal expansion of a
real number. Without attempting to get the best result of the
sort, we give a simple sufficient condition for uniqueness which
will apply.

11 TueoreM Let f and g be isotone functions on a chain X to a
chain Y, let Xy be a subset of X on which f and g agree, and let Y,
be f[Xol. A sufficient condition that f = g is that Y intersect every
set of the form {y:u <y <v,usy andy #= v}, where u and v
are members of Y such that u < v.

PrROOF If f 5 g, then f(x) # g(x) for some x in X, and we may
suppose that f(x) < g(x). Each point of X, which is less than
or equal to ¥ maps under f into a point less than or equal to f(x),
because f is isotone, and each point which is greater than or
equal to ¥ maps under g into a point greater than or equal to
g(x), because g is isotone. It follows that no point of X, maps
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into the set {y: f(x) <y < g&), f(x) #y and y # g(x)}, and
the theorem is proved. |

12 Notes There is a natural way to embed a chain in an order-
complete chain which is an abstraction of Dedekind’s construc-
tion of the real numbers from the set of rational numbers. The
process can also be applied to less restricted orderings, as shown
by H. M. MacNeille (see Birkhoff [1; 58]). The pattern is very
suggestive of the compactification procedure for topological spaces
(chapter 5).

ALGEBRAIC CONCEPTS

In this section a few definitions from elementary algebra are
given. For the most part these notions are used in the problems.
The terminology is standard, and it seems worth while to sum-
marize the few notions which are required.

A group is a pair, (G,-) such that G is a non-void set and -,
called the group operation, is a function on G X G to G such
that: (a) the operation is associative, that is, x- (y-2) = (x-¥) -z for
all elements », y and z of G; (b) there is a neutral element, or
identity, e, such that ¢-x = x-¢ = x for each x in G; and (c) for
each x in G there is an inverse element ¥~ such that x-x™" =
xl.x = ¢. If the group operation is denoted -+, then the ele-
ment inverse to x is usually written —x. Following the usual
custom, the value of the function - at (x,y) is written x-y in-
stead of the usual functional notation - (x,y), and if no confusion
seems likely, the symbol - may be omitted entirely and the group
operation indicated by juxtaposition. We shall sometimes say
(imprecisely) that G is a group. If 4 and B are subsets of G,
then A-B, or simply 4B, is the set of all elements of the form
x-y for some x in A4 and some y in B. The set {#} -4 is also de-
noted by x- A or simply x4, and similarly for operation on the
right. The group is abelian, or commutative, iff x-y = y-x for
all members ¥ and y of G. A group H is a subgroup of G iff
H < G and the group operation of H is that of G, restricted to
H X H. A subgroup H is normal (distinguished, invariant) iff
x-H = H-x for each x in G. If H is a subgroup of G a left coset
of H is a subset which is of the form x-H for some x in G. The
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family of all left cosets is denoted by G/H. If H is normal and
A and B belong to G/H, then A-B is also a member, and, with
this definition of group operation, G/H is a group, called the
quotient or factor group. A function f on a group G to a group A
is a homomorphism, or representation, iff f(x-y) = f(x) f(y) for
all members x and y of G. The kernel of f is the set f~'[e]; it is
always an invariant subgroup. If H is an invariant subgroup of
G, then the function whose value at x is x-H is a homomorphism,
usually called the projection, or quotient map, of G onto G/H.

A ring is a triple (R,+,-) such that (R,+) is an abelian group
and - is a function on R X R to R such that: the operation is as-
sociative, and the distributivelaws #-(x + y) = #-x + #-y and
(u + v)-x = u-x + v-x hold for all members x, y, #, and v of R.
A subring is a subset which, under the ring operations restricted,
is a ring, and a ring homomorphism or representation is a func-
tion f on a ring to another ring such that f(x + y) = f(x) + f()
and f(x-y) = f(x)-f(y) for all members x and y of the domain.
An additive subgroup I of a ring R is a left ideal iff ¥/ < I for
each x in R, and is a two-sided ideal iff x/ < I and Ix < I for
each ¥ in R. If I is a two-sided ideal, R/I is, with the proper
addition and multiplication, a ring, and the projection of R onto
R/I is a ring homomorphism. A field is a ring (¥,+,-) such that
F has at least two members, and (F ~ {0},-), where O is the ele-
ment neutral with respect to 4, is a commutative group. The
operation + is the addition operation, - is the multiplication,
and the element neutral with respect to multiplication is the
unit, 1. It is customary, when no confusion results, to replace -
by juxtaposition, and, ignoring the operations, to say that “F is
a field.” A linear space, or vector space, over a field F (the
scalar field of the space) is a quadruple (X, ®,-,F), such that
(X, ®) is an abelian group and - is a function on F X X to X
such that for all members ¥ and y of X, and all members 2 and &
of F, a-(b-x) = (a-b)-x,(a+bx=ax®bx,a-(x®y) =
a-x ® a-y,and 1-x = x. A real linear space is a linear space
over the field of real numbers. The notion of linear space can
also be formulated in a slightly different fashion. The family of
all homomorphisms of an abelian group into itself becomes, with
addition defined pointwise and with composition of functions as
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multiplication, a ring, called the endomorphism ring of the group.
A linear space over a field ¥ is a quadruple (X, ®,-,F) such that
(X,®) is an abelian group and - is a ring homomorphism of 7
into the endomorphism ring of (X, ®) which carries the unit, 1,
into the identity homomorphism.

A linear space (Y,®,0,F) is a subspace of a linear space
(X,+,-,F) iff Y < X and the operations + and - agree with @
and O where the latter are defined. The family X/Y of cosets
of X modulo a subspace ¥ may be made into a linear space if
addition and scalar multiplication are defined in the obvious way.
The projection f of X onto X/Y then has the property that
fla-x+ &-y) = a-f(x) + &.f(y) for all members 2 and & of F and
all ¥ and y in X. Such a function is called a linear function. If
[ is a linear function the set f~}[0] is called the null space of f;
the null space of a linear function is a linear subspace of the do-
main (provided the operations of addition and scalar multipli-
cation are properly defined).

Suppose f is a linear function on X to Y and g is a linear map
of X onto Z such that the null space of f contains the null space
of g. Then there is a unique linear function % on Z to Y such
that £ = A-g (explicitly, A(z) is the unique member of f° g™[z]).
(The function % is said to be induced by f and g.) A particular
consequence of this fact is that each linear function may be writ-
ten as a projection into a quotient space followed by a one-to-one
linear function.

THE REAL NUMBERS

This section is devoted to the proof of a few of the most im-
portant results concerning the real numbers.

An ordered field is a field F and a subset P, called the set of
positive elements, such that

(a) if x and y are members of P, then x + y and xy are also
members; and

(b) if x is a member of F, then precisely one of the following
Statements is true: x e Py, —x e P,or x = 0.

One easily verifies that < is a linear ordering of F, where, by
definition, ¥ < y iff y — x e P. The usual simple propositions
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about adding and multiplying inequalities hold. The members x
of F such that —x e P are negative.

It will be assumed that the real numbers are an ordered field
which is order-complete, in the sense that every non-void subset
which has an upper bound has a least upper bound, or supremum.
By 0.9 this last requirement is entirely equivalent to the state-
ment that each non-void subset which has a lower bound has a
greatest lower bound, or infimum.

We first prove a few propositions about integers. An induc-
tive set is a set A of real numbers such that 0 € 4, and whenever
xed, then x +1e 4. A real number ¥ is a non-negative in-
teger iff x belongs to every inductive set. In other words, the
set w of non-negative integers is defined to be the intersection of
the members of the family of all inductive sets. Each member
of w is actually non-negative because the set of all non-negative
numbers is inductive. It is evident that w is itself an inductive
set and is a subset of every other inductive set. It follows that
(principle of mathematical induction) each inductive subset of w
is identical with w. A proof which relies on this principle is a
proof by induction. We prove the following little theorem as an
example: if p and ¢ are non-negative integers and p < g, then
¢ — pew. First observe that the set consisting of 0 and all
numbers of the form p + 1 with » in w is inductive, and hence
each non-zero member of w is of the form p + 1. Next, let 4 be
the set of all non-negative integers p such that ¢ — pew for
each larger member g of w. Surely 0 € 4, and let us suppose that
p is a member of A and that ¢ is an arbitrary member of w which
is larger than p + 1. Then p < ¢ — 1 and therefore g — 1 — »
ew, because ped and ¢ —1lew. Consequently p 4+ 1¢e4d,
hence A is an inductive set, and therefore 4 = w. It is equally
simple to show that the sum of two members of w is a member of
w, and it follows that the set {x¥: ¥ ew or —x e w} 1s a group. It
is the group of integers.

There is another form of the principle of mathematical induc-
tion which is frequently convenient, namely: eack non-void sub-
set A of w has a smallest member. To prove this proposition con-
sider the set B of all members of w which are lower bounds for
A; thatis, B = {p: pewand p < q for all g in A}. The set B
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is not inductive, for, if g e A4, then ¢ + 1 ¢ B. Since 0 ¢ B it fol-
lows that there is a member p» of B such that p +1¢B. If
p e, then clearly p is the smallest member of A4; otherwise
there is a member ¢ of A4 such that p < ¢ < p + 1. But then
¢ — p is a non-zero member of w and hence ¢ — » — 1 is a nega-
tive member of w, which is impossible.

It is possible to define a function by induction in the following
sense. For each non-negative integer p let w, = {g: gew and
g < p}. Suppose that we seek a function on w, that the func-
tional value 4 at 0 is given, and for each function g on a set w,
there is given F(g), the value of the desired function at p + 1.
Thus the value desired at p + 1 may depend on all of the values
for smaller integers. In these circumstances it is true that there
is a unique function f on w such that f(0) = 2 and f(p + 1) =
F(f| wp) for each p in w. (The function f| w, is the function f re-
stricted to the set w,.) This proposition is frequently considered
to be obvious, but the proof is not entirely trivial.

13 THEOREM Suppose a is given and F(g) is given whenever g is
a function whose domain is of the form w, for some p in w. Then
there is a unique function f such that f(0) = a and f(p + 1) =
F(f | wp) for eack p in w.

PrRoOF Let & be the family of all functions g such that the do-
main of g is a set w, for some p in w, g(0) = &, and for each mem-
ber ¢ of w such that g < p — 1, gl¢g + 1) = F(g| w,). (Intui-
tively, the members of & are initial segments of the desired func-
tion.) The family § has the very important property: if g and %
are members of F, then either g c 2 or 2 c g. To prove this it
is necessary to show that g(g) = A(g) for each g belonging to the
domain of both. Suppose this is false, and let ¢ be the smallest
integer such that g(g) # 4(g). Then g # 0, because g(0) = 4(0)
= @, and hence g(g) = F(g| wq~1) which, since g and % agree
for values smaller than g, is F(% | we—1) = 4(g), and this is a con-
tradiction. Now let f = J{g: ge5}. Then the members of f
are surely ordered pairs, and if (x,y) e g ¢ ¥ and (x,2) € 2 € F, then
(%,y) and (x,2) both belong to g or both to %, and hence y = z.
Consequently f is a function, and it must be shown that it is
the required function. First, because {(0,2)} e%, f(0) = a.
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Next, if ¢ 4+ 1 belongs to the domain of f, then for some g in &,
¢ + 1 is a member of the domain of g, and hence f(g + 1) =
glg+ 1) = Fg| wg) = F(f| wg). Finally, to show that the do-
main of f is w, suppose that ¢ is the first member of w which is
not in the domain of /. Then ¢ — 1 is the last member of the
domain of £, and f U {(¢,F(f))} is a member of §. Hence ¢ be-
longs to the domain of f, which is a contradiction. ||

The foregoing theorem can be used systematically in showing
the elementary properties of the real numbers. For example, if
b is a positive number and p an integer, #? is defined as follows.
In the foregoing theorem, let @ = 1 and for each function g with
domain w, let F(g) = ég(p). Then f(0) =1 and f(p + 1) =
4f(p) for each p in w, if f is the function whose existence is guar-
anteed by the theorem. Letting 42 = f(p), it follows that 4° = 1,
and 4**! = 44?, from which one can show by induction that
bP*e = pPp for all members p and g of w. If 577 is defined to be
1/6® for each non-negative integer p, then the usual elementary
proof shows that 4?1? = 442 for all integers p and q.

So far in this discussion of the real numbers we have not used
the fact that the field of real numbers is order-complete. We
now prove a simple, but noteworthy, consequence of order com-
pleteness. First, the set w of non-negative integers does not have
an upper bound, for, if ¥ were a least upper bound of w, then
x¥ — 1 would not be an upper bound, and hence x — 1 < p for
some p in w. But then ¥ < p + 1 and this contradicts the fact
that x was supposed to be an upper bound. Consequently, if »
is a positive real number and y is a real number, then px > y
for some positive integer p because there is a member p of w
which is larger than y/x. An ordered field for which this propo-
sition is true is said to have an Archimedean order.

We will need the fact that each non-negative real number has
a b-adic expansion, where 4 is an arbitrary integer greater than
one. Roughly speaking, we want to write a number x as the
sum of multiples of powers of 4, the multiples (digits) being non-
negative integers less than 4. Of course, the 4-adic expansion of
a number may fail to be unique—in the decimal expansion,
.9999. .. (all nines) and 1.000- - - (all zeros) are to be expansions
of the same real number. The expansion itself is a function
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which assigns to each integer an integer between 0 and 4 — 1,
such that (since we want only a finite number of non-zero inte-
gers before the decimal point) there is a first non-zero digit.
Formally, 4 is a 4-adic expansion iff 2 is a function on the inte-
gers to wy_y (= {g: gew and ¢ £ b — 1}), such that there is a
smallest integer p for which a, (= a(p)) is not zero. A b-adic
expansion  is rational iff there is a last non-zero digit (that is,
for some integer p, 4, = 0 whenever ¢ > p). For each rational
b-adic expansion & there is a simple way of assigning a corre-
sponding real number 7(4). Except for a finite number of inte-
gers p the number 4,677 is zero, and the sum of 4,67? for p in
this finite set is the real number 7(z). We write 7(a) = Z{a,b~":
p an integer}. A real number which is of this form is a é-adic
rational. These numbers are precisely those of the form, ¢67?,
for integers p and ¢. Let E be the set of all 4-adic expansions.
Then E is linearly ordered by dictionary order; in detail, a 4-adic
expansion @ precedes a é-adic expansion ¢ in dictionary order
(lexicographic order) iff for the smallest integer p such that
a, # ¢, it is true that g, < ¢,. It is very easy to see that, like
a dictionary, E is actually linearly ordered by <. The corre-
spondence r is order preserving, and this is the key to the fol-
lowing proposition.

14 TueoreEM Let E be the set of b-adic expansions, let R be the
set of rational expansions, and for a in R let r(a) = Z{ab™*:
p an integer}. Then there is a unique isotone extension F of r
whose domain is E, and ¥ maps E ~ R onto the positive real num-
bers in a one-to-one fashion.

prooF According to theorem 0.10 there will be an isotone exten-
sion 7 of » iff  carries each subset of R which is order-bounded
in E into an order-bounded subset of the real numbers. But for
each 2 in E there is evidently 4 in R such that & > 4, and it fol-
lows that, if a subset 4 of R has 4 for an upper bound, then (%)
is an upper bound for f[4]. A similar argument applies to lower
bounds, and we conclude that r carries order-bounded sets into
order-bounded sets and consequently has an isotone extension 7
whose domain is E.

To show the extension is unique it is sufficient, by 0.11, to
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prove that, for non-negative real numbers x and y, if ¥ <y,
then there is @ in R such that ¥ < r(a) < y. Because 4* > p
for each non-negative integer p (a fact which is easily proved by
induction), and because the set of non-negative integers is not
bounded, there is an integer p such that 2 > 1/(y — x). Then
47 < (y — x). Thereis an integer g such that ¢6~® = y because
the ordering is Archimedean, and since there is a smallest such
integer ¢, it may be supposed that (g — 1)6~? < y. It follows
that (¢ — 1)2™® > x because 477 is less than (y — x) and this
proves that there is a 4-adic rational, (¢ — 1)4~?, which is the
image of a member of R and lies between x and y. Consequently
the correspondence F is unique.

Next, we show that the correspondence 7 is one to one on
E ~ R. It is straightforward to see that 7 is one to one on R,
and this fact is assumed in the following. Suppose that ¢ ¢ E,
ceE ~R, and a < ¢. Then for the first value of p such that
a, and ¢, are different, 4, < ¢,. The expansion d, such that for
g < p,dy = ag, forqg > p,d, = 0,and d, = a, + 1, is a member
of R which is greater than 4, and since ¢ does not have a last
non-zero digit, 4 < d < ¢. Repeating, there is a member ¢ of
R such that 2 < d < ¢ < ¢. Then, since on R the function 7 is
one to one, #(a) < 7#(d) < 7(¢) < 7(c), and 7 is therefore one to
oneon £ ~ R.

Finally, it must be shown that the image of £ ~ R under 7
is the set of all positive numbers. First notice that for every
pair of members ¢ and 4 of R for which ¢ < d thereisgin E ~ R
such that ¢ < @ < 4, and consequently for positive real num-
bers ¥ and y with ¥ < y there is 2 in E ~ R such that ¥ < 7(a)
< y. If now & is a positive real number which is not the image
of a member of E ~R, let F = {a: ae E ~ R and 7(a) < x}.
If the set F has a supremum ¢ then, if 7(¢) < x no point of E ~ R
maps into the interval (F(c),x), and if 7(¢) > x, then (¥ is order
preserving) no point of £ ~ R maps into the interval (#,7(c)).
In either event a contradiction results, and the theorem will fol-
low if it is shown that each non-empty subset of E ~ R which
has an upper bound has a supremum: that is, £ ~ R is order-
complete. Suppose then that F is a non-void subset of £ ~ R
which has an upper bound. Then there is a smallest integer p
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such that @, 5 0 for some 2 in F. Define ¢, to be zero for ¢ < p,
let F, be the set of all members 2 of F with non-zero p-th digit
a,, and let ¢, = max {4,: @ ¢ F,}. Continue inductively, letting
F, ;1 be the set of all members 4 of F, such that 4, = ¢, for g = p,
and let ¢, 41 = max {p41: @ € Fp41}. No one of the sets F), can
be void and without difficulty one sees that the expansion ¢ ob-
tained by this construction is an upper bound of F, and in fact
a supremum, and thatce E ~ R. |

The foregoing theorem will be used for & equal to two, three,
and ten. The 4-adic expansions are then called dyadic, triadic,
and decimal, respectively.

COUNTABLE SETS

A set is finite iff it can be put into one-to-one correspondence
with a set of the form {p: p ew and p < ¢}, for some ginw. A
set A is countably infinite iff it can be put into one-to-one corre-
spondence with the set w of non-negative integers; that is, iff 4
is the range of some one-to-one function on w. A set is countable
iff it is either finite or countably infinite.

15 THEOREM A subset of a countable set is countable.

PROOF Suppose A is countable, f is one to one on w with range
A, and that B ¢ 4. Then f, restricted to f'[B], is a one-to-one
function on a subset of w with range B, and if it can be shown that
f~Y[B] is countable, then a one-to-one function onto B can be
constructed by composition. The proof therefore reduces to
showing that an arbitrary subset C of w is countable. Let g(0)
be the first member of C, and proceeding inductively, for p in
w, let g(p) be the first member of C different from g(0), g(1), - -,
g(p — 1). If this choice is impossible for some p then g is a
function on {g: g ew and ¢ < p} with range C, and C is finite.
Otherwise (using 0.13 on the construction of functions by induc-
tion) there is a function g on w such that, for each p in w, g(p)
is the first member of C different from g(0), g(1), ---, glp — 1).
Clearly g is one to one. It is easily verified by induction that
2(p) = p for all p, and hence it follows from the choice of g(p + 1)
that each member p of C is one of the numbers g(g) for ¢ < ».
Therefore the range of gis C. |}
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16 THEOREM If the domain of a function is countable, then the
range is also countable.

ProOF It is sufficient to show that, if 4 is a subset of w and f is
a function on A4 onto B, then B is countable. Let C be the set
of all members x of A such that, if y e 4 and y < w, then f(x) #
Sf(»); that is, C consists of the smallest member of each of the
sets f~![y] for y in B. Then f| C maps C onto B in a one-to-one
fashion, and since C is countable by 0.15,s01s B. |

17 THEOREM If @ is a countable family of countable sets, then
Ui{4: 4 e @} is countable.

PROOF Because @ is countable there is a function F whose do-
main is a subset of w and whose range is @. Since F(p) is count-
able for each p in w, it is possible to find a function G, on a sub-
set of {p} X w whose range is F(p). Consequently there is a
function (the union of the functions G,) on a subset of w X o
whose range is |J{A4: 4 e @}, and the problem reduces to show-
ing that w X w is countable. The key to this proof is the obser-
vation that, if we think of @ X w as lying in the upper right-hand
part of the plane, the diagonals which cross from upper left to lower
right contain only a finite number of members of w X w. Ex-
plicitly, for zin w,let B, = {(9,9): (p,g) ew X w andp + q = n}.
Then B, contains precisely #» + 1 points, and the union {J{B,:
new}isw X w. A function on w with range w X w may be con-
structed by choosing first the members of By, next those of Bj,
and so on. The explicit definition of such a function is left to
the reader. |

The characteristic function of a subset 4 of a set X is the
function f such that f(x) = 0 for x in X ~ A4 and f(x) = 1 for
xin 4. A function f on a set X which assumes no value other
than zero and one is called a characteristic function; it is clearly
the characteristic function of #~![1]. The function which is zero
everywhere is the characteristic function of the void set, and the
function which is identically one on X is the characteristic func-
tion of X. Two sets have the same characteristic functions iff
they are identical, and hence there is a one-to-one correspondence
between the family of all characteristic functions on a set X and
the family of all subsets of X.



CARDINAL NUMBERS 27

If w is the set of non-negative integers, the family of all char-
acteristic functions on w may be put into one-to-one correspond-
ence with the set F of all dyadic expansions a such that a, = 0
for p < 0. The family of all finite subsets of w corresponds in a
one-to-one way to the subfamily G of F consisting of rational
dyadic expansions. We now use the classical Cantor process to
prove that F is uncountable.

18 TurorEM The family of all finite subsets of a countably in-
finite set is countable, but the family of all subsets is not.

PROOF In view of the remarks preceding the statement of the
theorem it is sufficient to show that the set F of all dyadic ex-
pansions & with @, = 0 for p negative is uncountable, and that
the subset G of F consisting of rational expansions is countable.
Suppose that f is a one-to-one function on w with range F. Let
a be the member of F such that ¢, = 1 — f(p), for each non-
negative integer p. That is, the p-th digit of 4 is one minus the
p-th digit of f(p). Then a e F and clearly, for each p in w, a #
J(p) because 4 and f(p) differ in the p-th digit. It follows that
does not belong to the range of f, and this is a contradiction.
Hence F is uncountable.

It remains to be proved that G is countable. For p in o let
Gy, = {a: aeG and a; = 0 for ¢ > p}. Then G, contains just
two elements, and since there are precisely twice as many mem-
bers in G, as in G,, it follows that G, is always finite. Hence
G = U{Gp: p ew} is countable. |

The natural correspondence between F and a subset of the
real numbers is, according to 0.14, one to one on F ~ G. Since
G is countable, F ~ G must be uncountable. Hence

19 CoroLLARY The set of all real numbers is uncountable.

CARDINAL NUMBERS

Many of the theorems on countability are special cases of
more general theorems on cardinal numbers. The set w of non-
negative integers played a special role in the above and, in a
more general way, this role may be occupied by sets (of which
w is one) called cardinal numbers. Let us agree that two sets,
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A and B, are equipollent iff there is a one-to-one function on A4
with range B. It turns out that for every set A there is a unique
cardinal number C such that A4 and C are equipollent. If C and
D are distinct cardinal numbers, then C and D are not equipol-
lent but one of the cardinal numbers, say C, and a proper sub-
set of the other are equipollent. In this case C is said to be the
smaller cardinal number and we write C < D. With this defi-
nition of order the family of all cardinal numbers is linearly or-
dered, and even more, every non-void subfamily has a least
member. (These facts are proved in the appendix.)

Accepting the facts in the previous paragraph for the moment
it follows that, if 4 and B are sets, then there is a one-to-one
function on A to a subset of B, or the reverse, because there are
cardinal numbers C and D such that 4 and C, and B and D,
respectively, are equipollent. Suppose now that there is a one-
to-one function on A to a subset of B and also a one-to-one func-
tion on B to a subset of 4. Then C and a subset of D are equi-
pollent, and D and a subset of C are equipollent, from which it
follows, since the ordering of the cardinal numbers is linear, that
C = D. Hence 4 and B are equipollent. This is the classical
Schroeder-Bernstein theorem. We give a direct proof of this
theorem which is independent of the general theory of cardinal
numbers because the proof gives non-trivial additional informa-
tion.

20 THEOREM If there is a one-to-one function on a set A to a sub-
set of a set B and there is also a one-to-one function on B to a sub-
set of A, then A and B are equipollent.

PROOF Suppose that f is a one-to-one map of A into B and g is
one to one on B to 4. It may be supposed that .4 and B are dis-
joint. The proof of the theorem is accomplished by decompos-
ing A and B into classes which are most easily described in terms
of parthenogenesis. A point x (of either 4 or B) is an ancestor
of a point y iff y can be obtained from » by successive applica-
tion of f and g (or g and f). Now decompose A into three sets:
let Ag consist of all points of 4 which have an even number of
ancestors, let 4o consist of points which have an odd number of
ancestors, and let A4; consist of points with infinitely many an-
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cestors. Decompose B similarly and observe: f maps Az onto
Bo and 4; onto By, and g~! maps Ao onto Bg. Hence the func-
tion which agrees with f on 4z U 4; and agrees with g~ on
Ao is a one-to-one map of A4 onto B. ||

21 Notes Thé foregoing proof does not use the axiom of choice,
which is interesting but not very important. It is important to
notice that the function desired was constructed from the two
given functions by a countable process. Explicitly, if f is a one-
to-one function on A4 to B and g is one to one on B to 4, if Ep =
A ~g[Bl, Enpy = g°fIE,] for each n, and if E = U{Eq: 1 e 0},
then the function % which is equal to f on E and equal to g~ on
A ~ E is a one-to-one map of 4 onto B. (More precisely, 2 =
(f| E) U (g~'| 4 ~ E).) The importance of this result lies in
the fact that, if f and g have certain pleasant properties (such as
being Borel functions), then % retains these properties.

The intuitively elegant form of the proof of theorem 0.20 is
due to G. Birkhoff and S. MacLane.

ORDINAL NUMBERS

Except for examples, the ordinal numbers will not be needed
in the course of this work. However, several of the most inter-
esting counter examples are based on extremely elementary prop-
erties of the ordinals and it seems proper to state here the few
facts which are necessary for these. (The ordinal numbers are
constructed and these and other properties proved in the ap-
pendix.)

22 Summary There is an uncountable set @, which is linearly
ordered by a relation < in such a way that:

(a) Every non-void subset of ' has a smallest element.

(b) There is a greatest element Q of @',

(c) If x e and x % Q, then the set of all members of X' which
precede x is countable.

The set @ is the set of all ordinals which are less than or equal
to Q, the first uncountable ordinal. A linearly ordered set such
that every non-void subset has a least element is well ordered.
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In particular, each non-void subset of a well-ordered set has an
infimum. Since every subset of @’ has an upper bound, namely,
Q, it follows by 0.9 that every non-void subset of @' has a su-
premum. One of the curious facts about @’ is the following.

23 THEOREM If A4 is a countable subset of Q' and Q ¢ A, then the
supremum of A is less than Q.

PROOF Assume that 4 is a countable subset of @' and that
Q¢ 4. For each member a of A the set {x¥: x < 4} is countable
and hence the union of all such sets is countable. This union is
{x: ¥ £ a for some a in A} and the supremum & of the union is
therefore an upper bound for 4. The point & has only a count-
able number of predecessors relative to the ordering, and hence
b # Q. It follows that the supremum of A is less than Q. |
One member of Q' deserves special notice. The first member
of @’ which does not have a finite number of predecessors is the
first non-finite ordinal and is denoted w. The symbol w has al-
ready been used to denote the set of non-negative integers. In
the construction of the ordinal numbers it turns out that the
first non-finite ordinal is, in fact, the set w of non-negative integers!

CARTESIAN PRODUCTS

If 4 and B are sets the cartesian product 4 X B has been de-
fined as the set of all ordered pairs (x,y) such that xe 4 and
ye B. Itis useful to extend the definition of cartesian product
to families of sets, just as the notion of union and intersection
was extended to arbitrary families of sets. Suppose that for
each member 4 of an index set A there is given a set X,. The
Cartesian product of the sets X,, written X {X,: ae A4}, is de-
fined to be the set of all functions x on A such that x(s2) € X, for
each 4 in 4. It is customary to use subscript notation rather
than the usual functional notation, so that X{X,: ae 4} =
{x: x is a function on 4 and x, ¢ X, for a in 4}. The definition
is initially a little surprising but it is actually a precise statement
of the intuitive concept: a point x of the product consists of a
point (namely, x,) selected from each of the sets X,. The set
X, is the a-th coordinate set, and the point x, is the a-th coordi-
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nate of the point x of the product. The function P, which car-
ries each point ¥ of the product onto its a-th coordinate ¥, is
the projection into the a-th coordinate set. That is, Pa(x) = ¥a.
The map P, is also called the evaluation at a.

There is an important special case of a cartesian product.
Suppose that the coordinate set X, is a fixed set Y for each 4 in
the index set 4. Then the cartesian product X {X,: ae 4} =
X{Y: ae d} = {x: x is a function on 4 to Y}. Thus X{Y:
a e A} is precisely the set of all functions on 4 to Y, sometimes
written Y4. A familiar instance is real Euclidean n-space.
This is the set of all real-valued functions on a set consisting of
the integers 0, 1, -+, # — 1, and the i-th coordinate of a mem-
ber x is ¥i.

There is another interesting special case. Suppose the index
set is itself a family @ of sets, and that for each 4 in @ the A4-th
coordinate set is 4. In this case the cartesian product X{4:
A e @} is the family of all functions x on @ such that x4 € 4 for
each A4 in @. These functions, members of the cartesian product,
are sometimes called choice functions for @, since intuitively the
function x “chooses” a member x4 from each set 4. If the empty
set is 2 member of @, then there is clearly no choice function for
@; that is, the cartesian product is void. If the members of @
are not empty it is still not entirely obvious that the cartesian
product is non-void, and, in fact, the question of the existence of
a choice function for such a family turns out to be quite delicate.
The next section is devoted to several propositions, each equiv-
alent to a positive answer to the question. We shall assume as
an axiom the most convenient one of these propositions. (A
different choice is made in the appendix; together with the next
section, this shows the equivalence of the various statements.)
With unusual self-restraint we refrain from discussing the philo-
sophical implications.

HAUSDORFF MAXIMAL PRINCIPLE

If @ is a family of sets (or a collection of families of sets) a
member A is the largest member of @ if it contains every other
member; that is, if A is larger than every other member of @.
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Similarly, 4 is the smallest member of the family iff £ is con-
tained in each member. It is frequently of importance to know
that a family has a largest member or a smallest member. Clearly
the largest and smallest members are unique when they exist.
However, even in cases where the family @ has no largest mem-
ber, there may be a member such that no other member properly
contains , although there are members which neither contain
nor are contained in 4. Such a member is called a maximal
member of the family. Formally, 4 is a maximal member of @
iff no member of @ properly contains 4. Similarly A is a mini-
mal member of @ iff no member of @ is properly contained in A.
It is very easy to make examples of families which have no maxi-
mal member, or families in which each member is both maximal
and minimal (for example a disjoint family). In general, some
special hypothesis must be added to ensure the existence of maxi-
mal members.

A family 9t of sets is a nest (sometimes called a tower or a
chain) iff, whenever A4 and B are members of the family, then
either 4 € B or B < 4. This is precisely the same thing as
saying that the family % is linearly ordered by inclusion, or, in
our terminology, that % with the inclusion relation is a chain.
If % c @ and 9t is a nest, then 9 is a nest in @&. We know that
a family of sets may fail to have a maximal element. Let us
consider the collection of all nests in a fixed family @ and ask if
among these there is a maximal nest. That is, for each family @,
is there a nest 91 in @ which is properly contained in no nest in
@? We assume the following statement as an axiom.

24 HAUSDORFF MAXIMAL PRINCIPLE If G is a Samily of sets and
9 is a nest in @, then there is a maximal nest M in @ which con-
tains N.

The next theorem lists a number of important consequences of
the Hausdorff maximal principle. Before stating the results we
review some of the terminology which is commonly used in this
connection. A family @ of sets is of finite character iff each
finite subset of a member of @ is a member of @, and each set A,
every finite subset of which belongs to @, itself belongs to a.
If < is an ordering of a set 4, then a subset B which is linearly
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ordered by < is called a chain in 4. A maximal element of the
ordered set A is an element x such that x follows each comparable
element of A; that is, if y € 4, then either y precedes x or x does
not precede y. A relation < is a well ordering of a set 4 iff <
is a linear ordering of 4 such that each non-void subset has a
first member (a member which is less than or equal to every
other member). If there exists a well ordering of A4, then we
say that A4 can be well ordered.

25 THEOREM

(a) MaxiMAL PRINCIPLE There is a maximal member of a family
@ of sets, provided that for each mest in G there is a member of
Q which contains every member of the nest.

(b) MINIMAL PRINCIPLE There is a minimal member of a family
@, provided that for each nest in Q there is a member of @ which
is contained in every member of the nest.

(c) Tukey LEmMma There is a maximal member of each non-void
family of finite character.

(d) Kuratowsk1 LEMMA Each chain in a (partially) ordered set
is contained in a maximal chain.

(e) ZorN LEMMA If each chain in a partially ordered set has an
upper bound, then there is a maximal element of the sel.

(f) axiom or cHoicE If X, is a non-void set for each member a
of an index set A, then there is a function ¢ on A such that
c(a) e X, for each a in A.

(g) ZERMELO POSTULATE If @ is 4 disjoint family of mnon-void
sets, then there is a set C such that A N C consists of a single
point for every A in G.

(h) WELL-ORDERING PRINCIPLE Each set can be well ordered.

proOF We sketch the proof of each of these propositions, leav-
ing a good many of the details to the reader.

Proof of (a): Choose a maximal nest 91 in @ and let 4 be a
member of @ containing |J{M: Me o). Then A is a maximal
member of @, for if A is propetly contained in a member B of
@, then on U {B} is a nest in @ which properly contains 91,
which is a contradiction.

Proof of (b): A proof very much like the one above is clearly
possible. However, one may use (a) instead, by letting X =
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Uf4: 4 e a}, letting @ be the family of complements relative
to X of members of @, observing that because of the De Morgan
formulae € satisfies the hypothesis of (a), hence has a maximal
member M, and that X ~ M is surely a minimal member
of @.

Proof of (c): The proof is based on the maximal principle (a).
Let @ be a family which is of finite character, let 91 be a nest in @,
and let 4 = |J{N: Nexn}. Each finite subset F of A is neces-
sarily a subset of some member of 91, for we may choose a finite
subfamily of the nest % whose union contains F, and this finite
subfamily has a largest member which then contains F. Conse-
quently 4 e @. Then @ satisfies the hypothesis of (a) and there-
fore has a maximal member.

Proof of (d): Suppose B is a chain in the partially ordered set
4. Let @ be the family of all chains in 4 which contain B. If
9 is a nest in @, then it can be directly verified that |J {N: N e ot}
is again a member, so that @ satisfies the hypothesis of (a) and
consequently has a maximal member.

Proof of (e): Choose an upper bound for a maximal chain.

Proof of (f): Recall that a function is a set of ordered pairs
such that no two members have the same first coordinate. Let
§ be the family of all functions f such that the domain of f is a
subset of 4 and f(a) € X, for each @ in the domain of . (The
members of § are “fragments” of the function we seek.) The
following argument shows that & is a family of finite character.
If f is a member of &, then every subset of £, and in particular
every finite subset, is also a member of . On the other hand,
if f is a set, each finite subset of which belongs to &, then the
members of f are ordered pairs, no two different pairs have the
same first coordinate, and consequently f is a function. More-
over, if 2 is a member of the domain of f, then {(s,f(2))} e F and
hence f(a) e X,, and it follows that fe 5. Because & is a family
of finite character there is a maximal member ¢ of §, and it is
only necessary to show that the domain of ¢ is 4. If 2 is a mem-
ber of A4 which is not a member of the domain of ¢, then, since
X, is non-void, there is a member y of X, and ¢ U {(ay)} is it-
self a function and is a member of %, which contradicts the fact
that ¢ is maximal.
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Proof of (g): Apply the axiom of choice to the index set @
with X, = A for each 4 in a.

Proof of (h): Suppose that X is the (non-void) set which is to
be well ordered. Let @ be the family of all non-void subsets of
X, and let ¢ be a choice function for @; that is, ¢ is a function on
@ such that ¢(A) e A for each 4 in @. The idea of the proof is to
construct an ordering < such that for each “initial segment” A
the first point which follows A4 in the ordering is ¢(X ~ 4). Ex-
plicitly, define a set A4 to be a segment relative to an order < iff
each point which precedes a member of A is itself a member of
4. In particular the void set is a segment. Let € be the class
of all reflexive linear orderings < which satisfy the conditions:
the domain D of £ is a subset of X and for each segment 4
other than D the first point of D ~ A is ¢(X ~ A). It is almost
evident that each member of € is a well ordering, for if B is a
non-void subset of the domain of a2 member < and 4 = {y:
y S x and y # x for each x in B}, then ¢(X ~ A) is the first
member of B. Suppose that £ and < are members of €, that
D is the domain of <, and that E is the domain of <. Let 4
be the set of all points x such that the sets {y: y < x} and {y:
y < x} are identical and such that on these sets the two order-
ings agree. Then A is a segment relative to both < and <. If
A 1s not identical with either D or E, then ¢(X ~ A) is the first
point of each of these sets which does not belong to .4; but then
¢(X ~ A)ed in view of the definition of 4. It follows that
A =D or 4=E. Thus any two members of € are related as
follows: the domain of one member is a segment relative to the
other, and the two orderings agree on this segment. Using this
fact it is not hard to see that the union < of the members of €
is itself a member of €; it is the largest member of €. If F is
the domain of <, then F = X, for otherwise the point ¢(X ~ F)
may be adjoined at the end of the ordering (more precisely,
< U (F X {¢(X) ~F)} is a member of € which properly con-
tains <). The theorem follows. ||

26 Notes Each of the propositions listed above is actually
equivalent to the Hausdorff maximal principle, and any one of
these might reasonably be assumed as an axiom. In the ap-
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pendix the maximal principle is derived from the axiom of choice.

The derivation of the well ordering principle from the choice
axiom which is given above is essentially that of Zermelo [1].
A proof which uses 0.25(e) is also quite feasible. It may be noted
that the union of a nest of well orderings is generally not a well
ordering, so that a direct application of the maximal principle
to the family of well orderings is impossible.

It should be remarked that the labelling of the various propo-
sitions in 0.25 is somewhat arbitrary. The Hausdorff maximal
principle was used independently by C. Kuratowski, R. L. Moore,
and M. Zorn in forms approximating those above.

Finally it may be noted that, although the formulation of
Tukey’s lemma which is given is more or less standard, it does
not imply (directly) the most commonly cited applications (for
example, each group contains a maximal abelian subgroup).
There is a more general form which states (very roughly): if a
family @ of sets is defined by a (possibly infinite) number of con-
ditions such that each condition involves only finitely many
points, then @ has a maximal member.



Chapter 1

TOPOLOGICAL SPACES

TOPOLOGIES AND NEIGHBORHOODS

A topology is a family 3 of sets which satisfies the two condi-
tions: the intersection of any two members of 3 is a member of
3, and the union of the members of each subfamily of 3is a mem-
ber of 3. The set X = |J{U: Ue 3} is necessarily a member of
3 because 3 is a subfamily of itself, and every member of 3is a
subset of X. The set X is called the space of the topology 3 and
3 is a topology for X. The pair (X,5) is a topological space. When
no confusion seems possible we may forget to mention the to-
pology and write “X is a topological space.” We shall be ex-
plicit in cases where precision is necessary (for example if we are
considering two different topologies for the same set X).

The members of the topology 3 are called open relative to 3,
or 3-open, or if only one topology is under consideration, simply
open sets. The space X of the topology is always open, and the
void set is always open because it is the union of the members
of the void family. These may be the only open sets, for the
family whose only members are X and the void set is a topology
for X. This is not a very interesting topology, but it occurs fre-
quently enough to deserve a name; it is called the indiscrete (or
trivial) topology for X, and (X,3) is then an indiscrete topologi-
cal space. At the other extreme is the family of all subsets of X,
which is the discrete topology for X (then (X,3) is a discrete
topological space). If 3 is the discrete topology, then every sub-
set of the space is open.

The discrete and the indiscrete topology for a set X are re-
37
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spectively the largest and the smallest topology for X. That is,
every topology for X is contained in the discrete topology and
contains the indiscrete topology. If3and wu are topologies for X,
then, following the convention for arbitrary families of sets, 3 is
smaller than u and 4 is larger than 3 iff 3 € . In other words,
3 is smaller than a iff each 3-open set is U-open. In this case it
is also said that 3 is coarser than u and  is finer than 3. (Un-
fortunately, this situation is described in the literature by both
of the statements: 3 is stronger than 4 and 3 is weaker than a.)
If 3 and « are arbitrary topologies for X it may happen that 3 is
neither larger nor smaller than a; in this case, following the
usage for partial orderings, it is said that 3 and U are not com-
parable.

The set of real numbers, with an appropriate topology, is a
very interesting topological space. This is scarcely surprising
since the notion of a topological space is an abstraction of some
interesting properties of the real numbers. The usual topology
for the real numbers is the family of all those sets which contain
an open interval about each of their points. That is, a subset
A of the set of real numbers is open iff for each member x of 4
there are numbers 4 and 4 such that @ < x < 4 and the open
interval {y: 2 < y < 4} is a subset of 4. Of course, we must
verify that this family of sets is indeed a topology, but this offers
no difficulty. It is worth noticing that, conveniently, an open
interval is an open set.

A set U in a topological space (X,3) is a neighborhood (3-
neighborhood) of a point » iff U contains an open set to which
x belongs. A neighborhood of a point need not be an open set,
but every open set is a neighborhood of each of its points. Each
neighborhood of a point contains an open neighborhood of the
point. If 3 is the indiscrete topology the only neighborhood of a
point x is the space X itself. If 3 is the discrete topology, then
every set to which a point belongs is a neighborhood of it. If X
is the set of real numbers and 3 is the usual topology, then a
neighborhood of a point is a set containing an open interval to
which the point belongs.

1 THEOREM A set is open if and only if it contains a neighborhood
of each of its points.
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PROOF The union U of all open subsets of a set A is surely an
open subset of 4. If A contains a neighborhood of each of its
points, then each member » of A4 belongs to some open subset
of 4 and hence x e U. In this case 4 = U and therefore A is
open. On the other hand, if A4 is open it contains a neighbor-
hood (namely, 4) of each of its points. |

The foregoing theorem evidently implies that a set is open iff
it is a neighborhood of each of its points.

The neighborhood system of a point is the family of all neigh-
borhoods of the point.

2 TurorEM If U is the neighborhood system of a point, then
Jinite intersections of members of W belong to ., and each set which
contains a member of U belongs to L.

PROOF If U and 7 are neighborhoods of a point x, there are
open neighborhoods U, and ¥ contained in U and 7 respectively.
Then U N 7 contains the open neighborhood U, N 7, and is
hence a neighborhood of x. Thus the intersection of two (and
hence of any finite number of) members of U is a member. If
a set U contains a neighborhood of a point « it contains an open
neighborhood of # and is consequently itself a neighborhood. 1

3 Notes Fréchet [1] first considered abstract spaces. The con-
cept of a topological space developed during the following years,
accompanied by a good deal of experimentation with definitions
and fundamental processes. Much of the development of the
theory may be found in Hausdorff’s classic work [1] and, a little
later, in the early volumes of Fundamenta Mathematicae. There
are actually two fundamental concepts which have grown out of
these researches: that of a topological space and that of a uni-
form space (chapter 7). The latter notion, which has been for-
malized relatively recently (A. Weil [1]), owes much to the study
of topological groups.
Standard references on general topology include:

Alexandroff and Hopf [1] (the first two chapters), Bourbaki
[1], Fréchet [2], Kuratowski [1], Lefschetz [1] (the first chap-
ter), R. L. Moore [1], Newman [1], Sierpinski [1], Tukey [1],
Vaidyanathaswamy [1], and G. T. Whyburn [1].
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CLOSED SETS

A subset 4 of a topological space (X,3) is closed iff its relative
complement X ~ A is open. The complement of the comple-
ment of the set A is again A, and hence a set is open iff its com-
plement is closed. If 3 is the indiscrete topology the complement
of X and the complement of the void set are the only closed sets;
that is, only the void set and X are closed. It is always true that
the space and the void set are closed as well as open, and it may
happen, as we have just seen, that these are the only closed sets.
If 5 is the discrete topology, then every subset is closed and open.
If X is the set of real numbers and 3 the usual topology, then the
situation is quite different. A closed interval (that is, a set of
the form {x: 4 £ x < 4}) is fortunately closed. An open inter-
val is not closed and a half-open interval (that is, a set of the
form {x: 4 < x £ b} or {x: a £ x < b} where a < &) is neither
open nor closed. Indeed—(problem 1.J)—the only sets which
are both open and closed are the space and the void set.

According to the De Morgan formulae, 0.3, the union (inter-
section) of the complements of the members of a family of sets
is the complement of the intersection (respectively union). Con-
sequently, the union of a finite number of closed sets is neces-
sarily closed and the intersection of the members of an arbitrary
family of closed sets is closed. These properties characterize the
family of closed sets, as the following theorem indicates. The
simple proof is omitted.

4 THEOREM Let § be a family of sets such that the union of a
finite subfamily is a member, the intersection of an arbitrary non-
void subfamily is a member, and X = \J{F: F e} is a member.
Then § is precisely the family of closed sets in X relative to the to-
pology consisting of all complements of members of 3.

ACCUMULATION POINTS

The topology of a topological space can be described in terms
of neighborhoods of points and consequently it must be possible
to formulate a description of closed sets in terms of neighbor-
hoods. This formulation leads to a new classification of points
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in the following way. A set A is closed iff X ~ A is open, and
hence iff each point of X ~ A has a neighborhood which is con-
tained in X ~ 4, or equivalently, is disjoint from 4. Conse-
quently, A is closed iff for each x, if every neighborhood of x
intersects 4, then x e 4. This suggests the following definition.

A point ¥ is an accumulation point (sometimes called cluster
point or limit point) of a subset 4 of a topological space (X,3)
iff every neighborhood of ¥ contains points of 4 other than .
Then it is true that each neighborhood of a point x intersects A4
if and only if x is either a point of A4 or an accumulation point
of 4. The following theorem is then clear.

5 THEOREM A subset of a topological space is closed if and only
if it contains the set of its accumulation points.

If x is an accumulation point of 4 it is sometimes said, in a
pleasantly suggestive phrase, that there are points of 4 arbi-
trarily near ». If we pursue this imagery it appears that an in-
discrete topological space is really quite crowded, for each point
x is an accumulation point of every set other than the void set
and the set {¥}. On the other hand, in a discrete topological
space, no point is an accumulation point of a set. If X is the
set of real numbers with the usual topology a variety of situations
can arise. If A is the open interval (0,1), then every point of the
closed interval [0,1] is an accumulation point of 4. If A is the
set of all non-negative rationals with squares less than 2, then
the closed interval [0,4/2] is the set of accumulation points. If
A is the set of all reciprocals of integers, then 0 is the only accu-
mulation point of 4, and the set of integers has no accumulation
points.

6 THEOREM The union of a set and the set of its accumulation
points is closed.

PROOF If & is neither a point nor accumulation point of A4, then
there is an open neighborhood U of x which does not intersect A.
Since U is a neighborhood of each of its points, no one of these
is an accumulation point of 4. Hence the union of the set 4
and the set of its accumulation points is the complement of an
open set. | ‘
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The set of all accumulation points of a set A4 is sometimes
called the derived set of A.

CLOSURE

The closure (3-closure) of a subset A4 of a topological space
(X,3) is the intersection of the members of the family of all closed
sets containing 4. The closure of A is denoted by 4~, or by
A. The set 4~ is always closed because it is the intersection of
closed sets, and evidently A~ is contained in each closed set
which contains 4. Consequently 4~ is the smallest closed set
containing 4 and it follows that A is closed if and only if 4 =
A~. The next theorem describes the closure of a set in terms of
its accumulation points.

7 TueoreMm The closure of any set is the union of the set and the
set of its accumulation points.

PROOF Every accumulation point of a set A is an accumulation
point of each set containing 4, and is therefore a member of
each closed set containing 4. Hence 4~ contains 4 and all
accumulation points of 4. On the other hand, according to the
preceding theorem, the set consisting of 4 and its accumulation
points is closed and it therefore contains 4~. |

The function which assigns to each subset 4 of a topological
space the value 4~ might be called the closure function, or clo-
sure operator, relative to the topology. This operator determines
the topology completely, for a set A is closed iff 4/ = 4~. In
other words, the closed sets are simply the sets which are fixed
under the closure operator. It is instructive to enquire: Under
what circumstances is an operator which is defined for all sub-
sets of a fixed set X the closure operator relative to some to-
pology for X? It turns out that four very simple properties serve
to describe closure. First, because the void set is closed, the
closure of the void set is void; and, second, each set is contained
in its closure. Next, because the closure of each set is closed,
the closure of the closure of a set is identical with the closure of
the set (in the usual algebraic terminology, the closure operator
is idempotent). Finally, the closure of the union of two sets is
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the union of the closures, for (4 U B)~ is always a closed set
containing 4 and B, and therefore contains 4/~ and B~ and
hence 4= U B~; on the other hand, /= U B~ is a closed set
containing 4 U B and hence also (4 U B) ™.

A closure operator on X is an operator which assigns to each
subset A of X a subset 4° of X such that the following four state-
ments, the Kuratowski closure axioms, are true.

(a) If O is the void set, 0° = 0.

(b) For each A, 4 c A°.

(c) For each A, A°° = A°.

(d) For each A and B, (4 U B)° = 4° U B-.

The following theorem of Kuratowski shows that these four state-
ments are actually characteristic of closure. The topology de-
fined below is the topology associated with a closure operator.

8 THEOREM Let ¢ be a closure operator on X, let & be the family
of all subsets A of X for which A° = A, and let 3 be the family of
complements of members of §. Then 3 is a topology for X, and A°
is the 3-closure of A for each subset A of X.

PROOF Axiom (a) shows that the void set belongs to &, and (d)
shows that the union of two members of § is a member of &.
Consequently the union of any finite subfamily (void or not) of
§ is a member of §. Because of (b), X c X* so that X = X°,
and the union of the members of & is then X. In view of theorem
1.4, it will follow that 5 is a topology for X if it is shown that
the intersection of the members of any non-void subfamily of &
is a member of 5. To this end, first observe that, if B C 4,
then B° c A4°, because 4° = [(4 ~ B) U B]* = (4 ~ B)° U B*.
Now suppose that @ is a non-void subfamily of & and that B =
N{4:Aea}. The set B is contained in each member of @, and
therefore B° ¢ {4 Aea} = {4: 4e @} = B. Since
B c B¢, it follows that B = B° and Be$. This shows that 3 is
a topology, and it remains to show that 4°is 47, the 3-closure
of A. By definition, 4~ is the intersection of all the 3-closed
sets, that is, the members of &, which contain 4. By axiom (c),
A°e %, and hence 4~ < A°; since 4~ eF and 4~ D 4 it fol-
lows that 4~ D A4° and hence 4~ = 4°. §
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INTERIOR AND BOUNDARY

There is another operator defined on the family of all subsets
of a topological space, which is very intimately related to the
closure operator. A point x of a subset 4 of a topological space
is an interior point of 4 iff 4 is a neighborhood of x, and the set
of all interior points of A is the interior of 4, denoted 4°. (In
the usual terminology, the relation “is an interior point of” is
the inverse of the relation “is a neighborhood of.”) It is con-
venient to exhibit the connection between this notion and the
earlier concepts before considering examples.

9 THEOREM Let A be a subset of a topological space X. Then the
interior A° of A is open and is the largest open subset of A. A set
A is open if and only if A = A°. The set of all points of A which
are not points of accumulation of X ~ A is precisely A°. The clo-
sure of X ~ A4 is X ~ A°.

prooF If a point x belongs to the interior of a set A, then « is
a member of some open subset U of 4. Every member of U
is also a member of 4° and consequently 4° contains a neigh-
borhood of each of its points and is therefore open. If 7 is an
open subset of 4 and y e 7, then A is a neighborhood of y and
so y e 4°. Hence A° contains each open subset of 4 and it is
therefore the largest open subset of 4. If A is open, then A is
surely identical with the largest open subset of 4; hence A is
open iff 4 = A4° If x is a point of 4 which is not an accumula-
tion point of X ~ A, then there is a neighborhood U of x which
does not intersect X ~ A and is therefore a subset of 4. Then
A is a neighborhood of ¥ and x e #°. On the other hand, 4°is a
neighborhood of each of its points and 4° does not intersect
X ~ A, so that no point of 4° is an accumulation point of
X ~ A. Finally, since 4° consists of the points of 4 which are
not accumulation points of X ~ A, the complement, X ~ A9, is
precisely the set of all points which are either points of X ~ 4
or accumulation points of X ~ A; that is, the complement is
the closure (X ~ A4)~. |}

The last statement of the foregoing theorem deserves a little
further consideration. For convenience, let us denote the rela-
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tive complement X ~ A4 by 4’. Then 4", the complement of
the complement of 4, is again 4 (we sometimes say ’ is an oper-
ator of period two). The preceding result can then be stated as
AY = A4'~, and, it follows, taking complements, that 4° = 4~
Thus the interior of A is the complement of the closure of the
complement of 4. If A is replaced by its complement it follows
that 4= = A4'Y, so that the closure of a set is the complement
of the interior of the complement.*

If X is an indiscrete space the interior of every set except X
itself is void. If X is a discrete space, then each set is open and
closed and consequently identical with its interior and with its
closure. If X is the set of real numbers with the usual topology,
then the interior of the set of all integers is void; the interior of
a closed interval is the open interval with the same endpoints.
The interior of the set of rational numbers is void, and the clo-
sure of the interior of this set is consequently void. The closure
of the set of rational numbers is the set X of all numbers, and
the interior of this set is X again. Thus the interior of the clo-
sure of a set may be quite different from the closure of the in-
terior; that is, the interior operator and the closure operator do
not generally commute.

There is one other operator which occurs frequently enough to
justify its definition. The boundary of a subset 4 of a topo-
logical space X is the set of all points ¥ which are interior to
neither 4 nor X ~ 4. Equivalently,  is a point of the boundary
iff each neighborhood of » intersects both £ and X ~ 4. It is
clear that the boundary of A is identical with the boundary of
X ~ 4. If X is indiscrete and A is neither X nor void, then
the boundary of A4 is X, while if X is discrete the boundary of
every subset is void. The boundary of an interval of real num-
bers, in the usual topology for the reals, is the set whose only
members are the endpoints of the interval, regardless of whether
the interval is open, closed, or half-open. The boundary of the

* An amusing and instructive problem suggests itself. From a given subset A of a
topological space, how many different sets can be constructed by successive applications,
in any order, of closure, complementation and interior? From the remarks in the above
paragraph and the fact that 4=~ = £, this reduces to: how many distinct sets may be

formed from a single set A4, by alternate applications of complementation and the closure
operator? The surprising answer is given in problem 1.E.



46 TOPOLOGICAL SPACES

set of rationals, or the set of irrationals, is the set of all real
numbers.

It is not difficult to discover the relations between boundary,
closure, and interior. The following theorem, whose proof we
omit, summarizes the facts.

10 THEOREM Let A be a subset of a topological space X and let
b(A) be the boundary of A. Then 6(d) = A~ N (X ~A)~ =
A=~ A X ~b(d) =AU (X ~A)° A== A4 U b(A) and
A° = A4 ~ b(A).

A set is closed if and only if it contains its boundary and is open
if and only if it is disjoint from its boundary.

BASES AND SUBBASES

In defining the usual topology for the set of real numbers we
began with the family ® of open intervals, and from this family
constructed the topology 3. The same method is useful in other
situations and we now examine the construction in detail. A
family ® of sets is a base for a topology 3 iff ® is a subfamily of
3 and for each point x of the space, and each neighborhood U of
x, there is a member 7 of ® such that xe 7 < U. Thus the
family of open intervals is a base for the usual topology of the
real numbers, in view of the definition of the usual topology and
the fact that open intervals are open relative to this topology.

There is a simple characterization of bases which is frequently
used as a definition: A subfamily ® of a topology 3 is a base for 3
iff each member of 3 is the union of members of ® To prove
this fact, suppose that ® is a base for the topology 3 and that
Ue3. Let 7 be the union of all members of & which are sub-
sets of U and suppose that x e U. Then there is # in ® such
that x e #/ < U, and consequently x e . Hence U c 7 and
since ¥ is surely a subset of U, ¥ = U. To show the converse,
suppose & C 3 and each member of 3 is the union of members
of ® If Ue3, then U is the union of the members of a sub-
family of ®, and for each x in U there is 7 in ® such that x e 7/
c U. Consequently & is a base for 3.

Although this is a very convenient method for the construc-
tion of topologies, a little caution is necessary because not every
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family of sets is the base for a topology. For example, let X
consist of the integers 0, 1, and 2, let A consist of 0 and 1, and
let B consist of 1 and 2. If 8 is the family whose members are
X, 4, B and the void set, then § cannot be the base for a topology
because: by direct computation, the union of members of § is
always a member, so that if 8§ were the base of a topology that
topology would have to be § itself, but 8 is not a topology be-
cause 4 N B ¢8. The reason for this situation is made clear by
the following theorem.

11 THEOREM A family ® of sets is a base for some topology for
the se¢t X = |J{B: B e®} if and only if for every two members U
and V of ® and each point x in U N V there is W in ® such that
xeWand W cUNV.

PROOF If ® is a base for some topology, U and 7 are members
of ® and x e U N ¥ then, since U N ¥ is open, there is a mem-
ber of & to which x belongs and which is a subset of U N 7. To
show the converse, let ® be a family with the specified property
and let 3 be the family of all unions of members of ® A union
of members of 3 is itself a union of members of ® and is therefore
a member of 3, and it is only necessary to show that the inter-
section of two members U and 7 of 3 is a member of 3. If x e
U N 7, then we may choose U’ and »” in @ such thatx e U’ c U
and xe 7’ < V, and then a member # of & such that x e /7
cU NV cUNPV. Consequently U N ¥ is the union of
members of ®, and 3 is a topology. ||

We have just seen that an arbitrary family § of sets may fail
to be the base for any topology. With admirable persistence we
vary the question and enquire whether there is a unique topology
which is, in some sense, generated by 8. Such a topology should
be a topology for the set X which is the union of the members
of 8, and each member of 8 should be open relative to the to-
pology; that is, § should be a subfamily of the topology. This
raises the question: Is there a smallest topology for X which con-
tains 82 The following simple result will enable us to exhibit
this smallest topology.

12 TueoreEM If 8 is any non-void family of sets the family of all
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finite intersections of members of $ is the base for a topology for the
sae X = J{S: S es}.

PrOOF If § is a family of sets let ® be the family of finite inter-
sections of members of 8. Then the intersection of two members
of ® is again a member of ® and, applying the preceding theorem,
® is the base for a topology. |

A family 8 of sets is a subbase for a topology 3 iff the family
of finite intersections of members of $ is a base for 3 (equivalently,
iff each member of 3 is the union of finite intersections of mem-
bers of 8). In view of the preceding theorem every non-empty
family 8 is the subbase for some topology, and this topology is,
of course, uniquely determined by 8. It is the smallest topology
containing 8 (that is, it is a topology containing 8 and is a sub-
family of every topology containing §).

There will generally be many different bases and subbases for
a topology and the most appropriate choice may depend on the
problem under consideration. One rather natural subbase for
the usual topology for the real numbers is the family of half-
infinite open intervals; that is, the family of sets of the form
{x:x > a} or {x: ¥ < a}. Each open interval is the intersection
of two such sets, and this family is consequently a subbase. The
family of all sets of the same form with 4 rational is a less obvious
and more interesting subbase. (See problem 1.J.)

A space whose topology has a countable base has many pleas-
ant properties. Such spaces are said to satisfy the second axiom
of countability. (The terms separable and perfectly separable
are also used in this connection, but we shall use neither.)

13 TuroreM If A is an uncountable subset of a space whose to-
pology has a countable base, then some point of A is an accumula-
tion point of 4.

PROOF Suppose that no point of 4 is an accumulation point and
that ® is a countable base. For each x in A there is an open set
containing no point of 4 other than x, and since @ is a base we
may choose B, in ® such that B, N 4 = {x}. There is then a
one-to-one correspondence between the points of 4 and the mem-
bers of a subfamily of ®, and A is therefore countable. |
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A sharper form of this theorem is stated in problem 1.H.

A set A is dense in a topological space X iff the closure of 4
is X. A topological space X is separable iff there is a countable
subset which is dense in X. A separable space may fail to satisfy
the second axiom of countability. For example, let X be an un-
countable set with the topology consisting of the void set and the
complements of finite sets. Then every non-finite set is dense be-
cause it intersects every non-void open set. On the other hand,
suppose that there is a countable base ® and let x be a fixed point
of X. The intersection of the family of all open sets to which x
belongs must be {x}, because the complement of every other
point is open. It follows that the intersection of those members
of the base ® to which x belongs is {x¥}. But the complement of
this countable intersection is the union of a countable number
of finite sets, hence countable, and this is a contradiction. (Less
trivial examples occur later.) There is no difficulty in showing
that a space with a countable base is separable.

14 THEOREM A space whose topology has a countable base is
separable.

PrROOF Choose a point out of each member of the base, thus
obtaining a countable set 4. The complement of the closure of
A is an open set which, being disjoint from A, contains no non-
void member of the base and is hence void. |

A family @ is a cover of a set B iff B is a subset of the union
U{4: 4ea}; that is, iff each member of B belongs to some
member of @ The family is an open cover of B iff each member
of @ is an open set. A subcover of @ is a subfamily which is
also a cover.

15 Tueorem (LINDELOF) There is a countable subcover of each
open cover of a subset of a space whose topology has a countable
base.

PROOF Suppose A is a set, @ is an open cover of 4, and ® is a
countable base for the topology. Because each member of @ is
the union of members of ® there is a subfamily € of ® which
also covers A, such that each member of € is a subset of some
member of @. For each member of @€ we may select a contain-
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ing member of @ and so obtain a countable subfamily D of a.
Then D is also a cover of A4 because € covers 4. Hence @ has a
countable subcover. |

A topological space is a Lindeltf space iff each open cover of
the space has a countable subcover.

Since the second axiom of countability has been mentioned, it
seems only proper that the first be stated. This axiom concerns
a localized form of the notion of a base. A base for the neigh-
borhood system of a point x, or a local base at x, is a family of
neighborhoods of x such that every neighborhood of x contains a
member of the family. For example, the family of open neigh-
borhoods of a point is always a base for the neighborhood sys-
tem. A topological space satisfies the first axiom of countability
if the neighborhood system of every point has a countable base.
It is clear that each topological space which satisfies the second
axiom of countability also satisfies the first; on the other hand,
any uncountable discrete topological space satisfies the first
axiom (there is a base for the neighborhood system of each point
x which consists of the single neighborhood {x}) but not the
second (the cover whose members are {x} for all ¥ in X has no
countable subcover). The second axiom of countability is there-
fore definitely more restrictive than the first.

It is worth noticing that, if Uy, Us, -+, U,, - - - is a countable
local base at x, then a new local base V', ¥y, -+, Vy, ++- can
be found such that #», D ¥, for each #n. The construction is
simple: let 7, = N {Us: k £ n}.

A subbase for the neighborhood system of a point x, or a
local subbase at #, is a family of sets such that the family of all
finite intersections of members is a local base. If U,, Us, ---,
U,, --- is a countable local subbase, then »y, Vs, -+, Vpy -+,
where 7, = ({Ux: k < n} is a countable local base. Hence the
existence of a countable local subbase at each point implies the
first axiom of countability.

RELATIVIZATION; SEPARATION

If (X,3) is a topological space and Y is a subset of X we may
construct a topology U for Y which is called the relative to-
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pology, or the relativization of 3 to Y. The relative topology U
is defined to be the family of all intersections of members of 3
with Y that is, U belongs to the relative topology a iff U =
7 N Y for some 3-open set #. It is not difficult to see that
is actually a topology. Each member U of the relative to-
pology 4 is said to be open in Y, and its relative complement
Y ~ U is closed in Y. The -closure of a subset of Y is its
closure in Y. Each subset Y of X is both open and closed in
itself, although ¥ may be neither open nor closed in X. The to-
pological space (Y,u) is called a subspace of the space (X,3).
More formally, an arbitrary topological space (Y,a) is a sub-
space of another space (X,3) iff Y < X and « is the relativiza-
tion of 3.

It is worth noticing that, if (Y1) is a subspace of (X,3) and
(Z,0) is a subspace of (Y,u), then (Z,0) is a subspace of (X,3).
This transitivity relation will often be used without explicit
mention.

Suppose that (Y,u) is a subspace of (X,3) and that 4 is a sub-
set of Y. Then 4 may be either 5-closed or u-closed, a point y
may be either a U or a 3-accumulation point of 4, and 4 has
both a 3 and a u-closure. The relations between these various
notions are important.

16 TueorEM Let (X,3) be a topological space, let (Y be a sub-
space, and let A be a subset of Y. Then:

(a) The set A is -closed if and only if it is the intersection of Y
and a 3-closed set.

(b) 4 point 'y of Y is a W-accumulation point of A if and only
if it is a 3-accumulation point.

(c) The U-closure of A is the intersection of Y and the 3-closure
of 4.

ProoF The set A is closed in Y iff its relative complement
Y ~ A4 is of the form 7 N Y for some 3-open set ¥, but this is
true iff / = (X ~7) NY for some ¥ in 3. This proves (a),
and (b) follows directly from the definition of the relative to-
pology and the definition of accumulation point. The u-closure
of A is the union of 4 and the set of its A-accumulation points,
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and hence by (b) it is the intersection of Y and the 3-closure of
4. 1

If (Yu) is a subspace of (X,3) and Y is open in X, then each
set open in Y is also open in X because it is the intersection of
an open set and Y. A similar statement, with “closed” replacing
“open” everywhere, is also true. However, knowing that a set
is open or closed in a subspace generally tells very little about
the situation of the set in X. If X is the union of two sets Y
and Z and if A4 is a subset of X such that / N Yis openin ¥
and 4 N Z is open in Z, then one might hope that A4 is open in
X. But this is not always true, for if Y is an arbitrary subset of
Xand Z=X~Y,thenY NYand Y N Z are open in Y and
Z respectively. There is one important case, in which this re-
sult does hold. Two subsets 4 and B are separated in a topo-
logical space X iff 4~ N B and 4 N B~ are both void. This
definition of separation involves the closure operation in X.
However, the apparent dependence on the space X is illusory,
for 4 and B are separated in X if and only if neither 4 nor B
contains a point or an accumulation point of the other. This
condition may be restated in terms of the relative topology for
A U B, in view of part (b) of the foregoing theorem, as: both 4
and B are closed in 4 U B (or equivalently A (or B) is both open
and closed in 4 U B) and A and B are disjoint. As an example,
notice that the open intervals (0,1) and (1,2) are separated sub-
sets of the real numbers with the usual topology and that there
is a point, 1, belonging to the closure of both. However, (0,1) is
not separated from the closed interval [1,2] because 1, which is a
member of [1,2], is an accumulation point of (0,1).

Three theorems on separation will be needed in the sequel.

17 TucoreM If Y and Z are subsets of a topological space X
and both Y and Z are closed or both are open, then Y ~ Z is sepa-
rated from Z ~'Y.

PrOOF Suppose that ¥ and Z are closed subsets of X. Then Y
and Z areclosedin Y U Z and therefore Y ~Z = (Y U Z) ~ 2)
and Z ~Y areopenin Y U Z. It follows that both ¥ ~ Z and
Z ~Yareopenin (Y ~Z) U (Z ~Y), and since they are com-
plements relative to this set both are closed in (Y ~2Z) U
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(Z~Y). Consequently Y ~Z and Z ~ Y are separated. A
dual argument applies to the case where both Y and Z are open

inX. |

18 THEOREM Let X be a topological space which is the union of
subsets Y and Z such that Y ~ Z and Z ~ 'Y are separated. Then
the closure of a subset A of X is the union of the closure in Y of
A N'Y and the closure in Z of A N Z.

PROOF The closure of a union of two sets is the union of the
closures and hence 4~/ = (A NY)" U (AL NZ~Y)". Conse-
quently A~ NY=[4ANY)"NY]JU[(ANZ~Y)"NY]
The set (Z ~ Y) ™ is disjoint from Y ~ Z, hence (Z ~Y)~ C Z,
and it follows that (/ N Z ~Y) " isasubsetof (4 N Z)~ N Z.
Similarly 4= N Z is the union of (4 N Z)~ N Z and a subset
of ANY)~NY. Consequently 4~ =4~ NY)U (A~ N2Z)
=[(4NY)"NY]J]U[(4NZ)~NZ], and the theorem is
proved. |

19 CoroLLArRY Let X be a topological space which is the union
of subsets Y and Z such that Y ~Z and Z ~Y are separated.
Then a subset A of X is closed (open) if A N'Y is closed (open) in
Y and 4 N Z is closed (open) in Z.

PROOF If 4/ N Y and 4 N Z are closed in Y and Z respectively,
then, by the preceding theorem, 4 is necessarily identical with
its closure and is therefore closed. If # N Y and 4 N Z are
open in Y and Z respectively,thenY N X ~AandZ N X ~ 4
are closed in Y and in Z and hence X ~ 4 is closed and 4 is
open. |

CONNECTED SETS

A topological space (X,3) is connected iff X is not the union
of two non-void separated subsets. A subset Y of X is connected
iff the topological space Y with the relative topology is connected.
Equivalently, Y is connected iff Y is not the union of two non-
void separated subsets. Another equivalence follows from the
discussion of separation: A set Y is connected iff the only sub-
sets of Y which are both open and closed in Y are Y and the void
set. From this form it follows at once that any indiscrete space
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is connected. A discrete space containing more than one point
is not connected. The real numbers, with the usual topology,
are connected (problem 1.J), but the rationals, with the usual
topology of the reals relativized, are not connected. (For any
irrational @ the sets {x: ¥ < a} and {x: x > a} are separated.)

20 THEOREM The closure of a connected set is connected.

PROOF Suppose that Y is a connected subset of a topological
space and that Y~ = 4 U B, where 4 and B are both open and
closed in Y—. Then each of # N Y and B NY is open and
closed in Y, and since Y is connected, one of these two sets must
be void. Suppose that B N Y is void. Then Y is a subset of 4
and consequently Y~ is a subset of £ because 4 is closed in Y.
Hence B is void, and it follows that Y~ is connected. |l

There is another version of this theorem which is apparently
stronger, which states that, if Y is a connected subset of X and
if Z is a set such that Y ¢ Z ¢ Y, then Z is connected. How-
ever, the stronger form is an immediate consequence of applying
the foregoing theorem to Z with the relative topology.

21 TuroreM Let G be a family of connected subsets of a topologi-
cal space. If no two members of @ are separated, then \J{A4: 4 e a}
is connected.

prOOF Let C be the union of the members of @ and suppose
that D is both open and closed in C. Then for each member 4
of @ 4 N D is open and closed in 4, and since A is connected
either £ ¢ D or A € C ~ D. Now if 4 and B are members of
@ it is impossible that 4 € D and B c C ~ D, for in this case
A and B, being respectively subsets of the separated sets D and
C ~ D, would be separated. Consequently either every mem-
ber of @ is a subset of C ~ D and D is void, or every member of
@ is a subset of D and C ~ D is void. |

A component of a topological space is a maximal connected
subset; that is, a connected subset which is properly contained
in no other connected subset. A component of a subset 4 is a
component of A4 with the relative topology; that is, a maximal
connected subset of 4. If a space is connected, then it is its
only component. If a space is discrete, then each component
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consists of a single point. Of course, there are many spaces
which are not discrete which have components consisting of a
single point—for example, the space of rational numbers, with
the (relativized) usual topology.

22 TurorREM Each connected subset of a topological space is con-
tained in a component, and each component is closed. If 4 and B
are distinct components of a space, then 4 and B are separated.

PROOF Let 4 be a non-void connected subset of a topological
space and let C be the union of all connected sets containing A.
In view of the preceding theorem, C is surely connected, and if
D is a connected set and contains C, then, since D c C, it
follows that C = D. Hence C is a component. (If 4 is void,
and the space is not, a set consisting of a single point is contained
in a component, and hence so is 4.) Each component C is con-
nected and hence, by 1.20, the closure C~ is connected. There-
fore C is identical with C~ and C is closed. If A and B are dis-
tinct components and are not separated, then their union is con-
nected, by 1.21, which is a contradiction. |

It is well to end our remarks on components with a word of
caution. If two points, x and y, belong to the same component
of a topological space, then they always lie in the same half of a
separation of the space. That is, if the space is the union of
separated sets 4 and B, then both x and y belong to A or both
x and y belong to B. The converse of this proposition is false.
It may happen that two points always lie in the same half of a
separation but nevertheless lie in different components. (See
problem 1.P.)

PROBLEMS

A LARGEST AND SMALLEST TOPOLOGIES

(a) The intersection of any collection of topologies for X is a topology
for X. :

(b) The union of two topologies for X may not be a topology for X
(unless X consists of at most two points).

(c) For any collection of topologies for X there is a unique largest
topology which is smaller than each member of the collection, and a
unique smallest topology which is larger than each member of the
collection.
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B TOPOLOGIES FROM NEIGHBORHOOD SYSTEMS

(a) Let (X,3) be a topological space and for each x in X let U, be the
family of all neighborhoods of #. Then:

(i) If Ueu,, then xe U.
(ii) If U and 7 are members of U, then U N P eu,.
(iii) If Ueu, and U C 7, then Veq,.
@iv) If UeAl,, then there is a member » of A, such that ¥ ¢ U and
Ve, for each y in 7 (that is, 7 is a neighborhood of each of
its points).

(b) If«uis a function which assigns to each x in X a non-void family U,
satisfying (i), (ii), and (iii), then the family 3 of all sets U, such that
U e U, whenever x € U, is a topology for X. If (iv) is also satisfied, then
U, is precisely the neighborhood system of & relative to the topology 3.

Note Various methods of describing a topological space have been
investigated intensively. Kuratowski’s three closure axioms may be
replaced by a single condition, as shown by Monteiro [1] and by
Iseki [1]. It is also possible to use the notion of separation as a primi-
tive (Wallace [1], Krishna Murti [1] and Szymanski [1]); the notion of
derived set may also be used as primitive (for information and refer-
ences see Monteiro [2] and Ribeiro [3]). The relation between various
operations has been studied by Stopher [1].

C TOPOLOGIES FROM INTERIOR OPERATORS

If ¥ is an operator which carries subsets of X into subsets of X, and
3 is the family of all subsets such that 4° = A, under what conditions
will 3 be a topology for X and * the interior operator relative to this

topology?

D ACCUMULATION POINTS IN TI—SPACBS

A topological space is a T;-space iff each set which consists of a single
point is closed. (We sometimes say, inaccurately, that “points are
closed.”)

(a) For any set X there is a unique smallest topology 3 such that
(X,3) is a Ty-space.

(b) If X is infinite and 3 is the smallest topology such that (X)3) is
a Ti-space, then (X,3) is connected.

(c) If (X,3) is a T;-space, then the set of accumulation points of each
subset is closed. A sharper result (C. T. Yang): A necessary and suffi-
cient condition that the set of accumulation points of each subset be
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closed is that the set of accumulation points of {¥} be closed for each
xin X,

Note There is a sequence of successively stronger requirements
which may be put upon the topology of a space. A topological space
is a Ty-space iff for each pair x and y of distinct points, there is a neigh-
borhood of one point to which the other does not belong. In slightly
different terminology, the space is a To-space iff for distinct points x
and y either x¢ {y}~ or y¢ {x}~. We will define T, and Tj-spaces
later. The terminology is due to Alexandroff and Hopf [1].

E KURATOWSKI CLOSURE AND COMPLEMENT PROBLEM

If 4 is a subset of a topological space, then at most 14 sets can be
constructed from 4 by complementation and closure. There is a subset
of the real numbers (with the usual topology) from which 14 different
sets can be so constructed. (First notice that if 4 is the closure of an
open set, then A is the closure of the interior of A; that is, for such sets
A = A"~ where ’ denotes complementation.)

F EXERCISE ON SPACES WITH A COUNTABLE BASE

If the topology of a space has a countable base, then each base con-
tains a countable subfamily which is also a base.

G EXERCISE ON DENSE SETS
If 4 is dense in a topological space and Uisopen,then Uc (4 N U)™.

H ACCUMULATION POINTS

Let X be a space, each subspace of which is Lindeléf, let 4 be an
uncountable subset, and let B be the subset consisting of all points
% of A4 such that each neighborhood of ¥ contains uncountably many
points of 4. Then 4 ~ B is countable, and consequently each neigh-
borhood of a point of B contains uncountably many points of B.

Note The accumulation points of a set 4 may be classified accord-
ing to the least cardinal number of the intersection of 4 and a neighbor-
hood of the point. If there is also a cardinal number restriction on a
base for the topology then several inequalities result. Theorems 1.13,
1.14, and 1.15 all have generalizations applying to spaces with a base
of a given cardinal.

I THE ORDER TOPOLOGY

Let X be a set, linearly ordered by a relation < which is anti-sym-
metric (it is false that ¥ < x). The order topology (the < order topol-
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ogy) has a subbase consisting of all sets of the form: {x: x < a} or
{x: @ < x} for some 4 in X.

(a) The order topology for X is the smallest topology in which order
is continuous, in the following sense: if 2 and 4 are members of X and
a < &, then there are neighborhoods U of @ and » of 4 such that, when-
ever xe Uand ye V, then ¥ < y.

(b) Let Y be a subset of a set X which is linearly ordered by <.
Then Y is linearly ordered by <, but the < order topology for ¥ may
not be the relativized < order topology for X.

(c) If X, with the order topology, is connected, then X is order-
complete (that is, each non-void set with an upper bound has a su-
premum).

(d) If there are points @ and & in X such that ¢ < & and there is no
point ¢ such that 4 < ¢ < 4, then X is not connected. Such an order-
ing is said to have a gap. Show that X is connected relative to the
order topology iff X is order-complete and there are no gaps.

J PROPERTIES OF THE REAL NUMBERS

Let R be the set of real numbers with the usual topology.

(a) An additive subgroup of the reals which contains more than one
member is either dense in R or has a smallest positive element. In
particular, the set of rational numbers is dense in R.

(b) The usual topology for the reals is identical with the order to-
pology. The usual topology has a countable base.

(c) A closed subgroup of R is either countable or identical with R.
A connected subgroup is either {0} or R and an open subgroup is neces-
sarily identical with R.

(d) (A. P. Morse) A proper interval is a half-open, open, or closed
interval which contains more than one point. If @ is an arbitrary
family of proper intervals, then there is a countable subfamily ® of @
such that |J{B: Be®} = U{4: 4e@}. (Observe that a disjoint
family of proper intervals is countable, and show that all but a count-
able number of points of {J{4: 4 € @} are interior points of members
of @.)

(e) The family 8 of all proper intervals is a subbase for the discrete
topology 3 for R. The space (R,3) is not a Lindelof space, although
every cover by members of § has a countable subcover. (Contrast
with the Alexander theorem 5.6.)

Note Further properties of the real numbers are stated in the next
problem.
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K HALF-OPEN INTERVAL SPACE

Let X be the set of real numbers and let 3 be the topology for X
which has for a base the family ®& of all half-open intervals [4,6) =
{xt 4 < x < b} where a and 4 are real numbers. A 3-accumulation
point of a set is called an accumulation point from the right, and accamu-
lation points from the left are similarly defined.

(a) Members of the base ® are both open and closed. The space
(X,3) is not connected.

(b) The space (X,3) is separable but 3 has no countable base. (For
every x in X each base must contain a set whose infimum is x.)

(c) Each subspace of (X,J) is a Lindelof space. (See 1.J(d).)

(d) If 4 is a set of real numbers then the set of all points of 4 which
are not accumulation points from the right is countable. More gen-
erally, the set of points of 4 which are not accumulation points from
both the right and the left is countable. (See 1.H.)

(e) Every subspace of (X,3) is separable.

I HALF-OPEN RECTANGLE SPACE

Let Y be X X X, where X is the space of the preceding problem,
and let U be the topology which has as a base the family of all 4 X B,
where 4 and B are members of the topology 3 of the preceding example.

(a) The space (Y, U) is separable.

(b) The space (Y,U) contains a subspace which is not separable.
(For example, {(x,y): x + y = 1}.)

(c) The space (Y,U) is not a Lindelof space. (If each open cover
of Y has a countable subcover, then every closed subspace has the
same property. Consider {(x,y): ¥ + y = 1}.)

Note The spaces described in 1.K and 1.L are among the stock
counter-examples of general topology. We enumerate other patholog-
ical features in 4I. P. R. Halmos first observed that the product (in
a sense to be made specific in chapter 3) of Lindelof spaces may fail
to be a Lindeldf space.

M EXAMPLE (THE ORDINALS) ON 1ST AND 2ND COUNTABILITY

Let Q' be the set of all ordinals less than or equal to the first uncount-
able ordinal Q, let X be @' ~ {Q}, and let w be the set of all non-negative
integers, each with the order topology.

‘(a) wis discrete and satisfies the 2nd axiom of countability.

(b) X satisfies the first but not the second axiom of countability. -
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(c) @ satisfies neither axiom of countability; if U is a separable sub-
space of &', then U is itself countable.

N COUNTABLE CHAIN CONDITION

A topological space satisfies the countable chain condition iff each
disjoint family of open sets is countable. A separable space satisfies
the countable chain condition, but not conversely. (Consider an un-
countable set with the topology consisting of the void set and the
complements of countable sets.) There are more complicated exam-
ples (see the Helly space of 5.M) which satisfy the first countability
axiom and are separable, but fail to satisfy the second axiom of counta-
bility.

O THE EUCLIDEAN PLANE

The Euclidean plane is the set of all pairs of real numbers and the
usual topology for the plane has a base which consists of all cartesian
products 4 X B where A4 and B are open intervals with rational end-
points. This base is countable and the plane is consequently separable.

(a) The usual topology of the plane has a base which consists of all
open discs, {(%y): (* — @) 4+ (y — 8)% <}, where a4, 4, and r are
rational numbers.

(b) Let X be the set of all points in the plane with at least one irra-
tional coordinate, and let X have the relative topology. Then X is
connected.

P EXAMPLE ON COMPONENTS

Let X be the following subset of the Euclidean plane, with the usual
topology relativized. For each positive integer n let A, = {1/r}
X [0,1], where [0,1] is the closed interval, and let X be the union of
the sets A,, with (0,0) and (0,1) adjoined. Then {(0,0)} and {(0,1)}
are components of X, but each open and closed subset of X contains
neither or both of the points.

Q THEOREM ON SEPARATED SETS

If X is a connected topological space, Y is a connected subset and
X~Y =AU B, where 4 and B are separated, then 4 U Y is con-
nected.

R FINITE CHAIN THEOREM FOR CONNECTED SETS

Let @ be a family of connected subsets of a topological space satis-
fying the condition: if 4 and B belong to @, then there is a finite se-
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quence Ao, Ay, +++ An, of members of @ such that 4y = 4, 4n = B,
and, for each 4, the sets 4; and A;y1 are not separated. Then
U{4: 4 e @} is connected. From this fact deduce 1.21.

S LOCALLY CONNECTED SPACES

A topological space is locally connected iff for each point x and each
neighborhood U of x the component of U to which » belongs is a neigh-
borhood of x.

(a) Each component of an open subset of a locally connected space
is open.

(b) A topological space is locally connected iff the family of open
connected subsets is a base for the topology.

(c) If points x and y of a locally connected space X belong to differ-
ent components, then there are separated subsets 4 and B of X such
that xe 4, yeB,and X = 4 U B.

Note For many other properties of locally connected spaces and
for generalizations, see G. T. Whyburn [1] and R. L. Wilder [1].

T THE BROUWER REDUCTION THEOREM

The usual statement of the theorem is as follows. Let X be a to-
pological space satisfying the second axiom of countability. A property
P of subsets of X is called inductive iff whenever each member of a
countable nest of closed sets has P, then the intersection has P. A set
A is irreducible with respect to P iff no proper closed subset of 4 has P.
Then: If a closed subset 4 of X possesses an inductive property P, there
is an irreducible closed subset of A4 which possesses P.

The theorem can be stated more formally in terms of a family of sets
(the family of all sets possessing P).

(a) State and prove the theorem in this form. Assume that the
topological space is such that every subspace is a Lindeldf space.

(b) If (X,3) is an arbitrary topological space can any result of this
general sort be affirmed? (See 0.25.)



Chapter 2

MOORE-SMITH CONVERGENCE

INTRODUCTION

This chapter is devoted to the study of Moore-Smith conver-
gence. It will turn out that the topology of a space can be de-
scribed completely in terms of convergence, and the major part
of the chapter is devoted to this description. We shall also char-
acterize those notions of convergence which can be described as
convergence relative to some topology. This project is similar
in purpose to the theory of Kuratowski closure operators; it
yields a useful and intuitively natural way of specifying certain
topologies. However, the importance of convergence theory ex-
tends beyond this particular application, for the fundamental
constructions of analysis are limit processes. We are interested
in developing a theory which will apply to convergence of se-
quences, of double sequences, to summation of sequences, to dif-
ferentiation and integration. The theory which we develop here
is by no means the only possible theory, but it is unquestionably
the most natural.

Sequential convergence furnishes the pattern on which the
theory is developed, and we therefore list a few definitions and
theorems on sequences to indicate this pattern. These will be
particular cases of the theorems proved later.

A sequence is a function on the set w of non-negative integers.
A sequence of real numbers is a sequence whose range is a sub-
set of the set of real numbers. The value of a sequence § at »

is denoted, interchangeably, by §, or §(#). A sequence § is in a
62 :
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set A iff S, e A for each non-negative integer n, and § is eventu-
ally in A iff there is an integer m such that S, e 4 whenever
n = m. A sequence of real numbers converges to a number s
relative to the usual topology iff it is eventually in each neigh-
borhood of 5. Using these definitions it turns out that, if 4 is a
set of real numbers, then a point s belongs to the closure of 4
iff there is a sequence in 4 which converges to s, and s is an ac-
cumulation point of A iff there is a sequence in A4 ~ {s} which
converges to .

We shall want to construct subsequences of a sequence. A
sequence § may converge to no point and yet, by a proper con-
struction, a sequence may be obtained from it which converges.
We wish to select an integer N;, for each i in w, such that S,
converges. Restated, we want to find a sequence N of integers
so that the composition §+ N(i) = Sy, = S(N(i)) converges. If
no other requirement is made this is easy enough; if N; = 0 for
each i, then §+ N converges to S, since S N(i) = § for each i.
Of course, an additional condition must be imposed so that the
behavior of a subsequence is related to the behavior of the se-
quence for large integers. The usual condition is that N be
strictly monotonically increasing; that is, if # > j, then N; > N;.
This condition is unnecessarily stringent, and we impose instead
the requirement that, as i becomes large, N; also becomes large.
Formally, then, T is a subsequence of a sequence S iff there is a
sequence N of non-negative integers such that T = §+ N (equiv-
alently, T; = Sy, for each i) and for each integer m there is an
integer # such that N; = m whenever ¢ = n.

The set of points to which the subsequences of a given se-
quence converge satisfy a condition obtained by weakening the
requirement of convergence. A sequence § is frequently in a set
A iff for each non-negative integer m there is an integer # such
that # = m and S, € 4. This is precisely the same thing as say-
ing that § is not eventually in the complement of 4; intuitively,
a sequence is frequently in A if it keeps returning to 4. A point s-
is a cluster point of a sequence § iff § is frequently in each neigh-
borhood of 5. Then, if a sequence of real numbers is eventually
in a set so is every subsequence, and consequently if a sequence
converges to a point so does every subsequence. Each cluster
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point of a sequence is a limit point of a subsequence, and con-
versely.

The definitions and statements above are phrased so as to be
applicable to any topological space, but unfortunately the theo-
rems, in this generality, are false. (See the problems at the end
of this chapter.) This unhappy situation is remedied by notic-
ing that very few of the properties of the integers are used in
proving theorems on sequences of real numbers. It is almost
evident (although we have not given the proofs) that we need
only certain properties of the ordering. Strictly speaking, con-
vergence of sequences involves not only the function § on the
non-negative integers w, but also the ordering, =, of w. For con-
venience, in the work on convergence, we modify slightly the
definition of sequence and agree that a sequence is an ordered
pair (§,2) where § is a function on the integers, and we discuss
convergence of the pair (§,2). (It will turn out that conver-
gence of the pair (§,<) is also meaningful, but quite different.)
Mention of the order will be omitted if no confusion is likely,
and convergence of a sequence § will always mean convergence
of the pair (§,2).

It is also convenient to have a bound variable (dummy varia-
ble) notation for sequences, and accordingly, if § is a function
on the non-negative integers w, {S,, 7 ew, =} is defined to be
the pair (§,2). If 4 is a subset of w, then convergence of {S,,
ned,2} will also be meaningful and will be related to the con-
vergence of (§,2).

After this lengthy introduction the notion of convergence is
almost self-evident, lacking a single fact. Which properties of
the order = are used? These properties are listed below, and
by using them the usual arguments of sequential convergence,
with small modifications, are valid.

1 Notes E. H. Moore’s study of unordered summability of se-
quences [1] led to the theory of convergence (Moore and Smith
[1]). The generalization of the notion of subsequence which we
will use is also due to Moore [2]. Garrett Birkhoff [3] applied
Moore-Smith convergence to general topology; the form in which
we give the theory is approximately that of J. W. Tukey [1].
See McShane [1] for an extremely readable expository account.
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The problems at the end of the chapter contain a brief discus-
sion of another theory of convergence and appropriate references.

DIRECTED SETS AND NETS
A binary relation = directs a set D if D is non-void and

(a) if m, n and p are members of D such that m = » and
n 2 p, then m = p;

(b) if m e D, then m = m; and

(c) if m and # are members of D, then there is p in D such that
p=mandp = n.

We say that m follows # in the order = and that # precedes
m iff m = n. In the usual language of relations (see chapter 0)
the condition (a) states that = is transitive on D, or partially
orders D, and (b) states that = is reflexive on D. The condi-
tion (c) is special in character.

There are several natural examples of sets directed by rela-
tions. The real numbers as well as the set » of non-negative in-
tegers are directed by =. Observe that 0 is a member of & which
follows every other member in the order <. It is also note-
worthy that the family of all neighborhoods of a point in a to-
pological space is directed by C (the intersection of two neigh-
borhoods is a neighborhood which follows both in the ordering
c). The family of all finite subsets of a set is, on the other
hand, directed by D. Any set is directed by agreeing that x = y
for all members # and y, so that each element follows both itself
and every other element.

A directed set is a pair (D,2) such that = directs D. (This
is sometimes called a directed system.) A net is a pair (§,2)
such that § is a function and = directs the domain of §. (A
net is sometimes called a directed set.) If §is a function whose
domain contains D and D is directed by =, then {S,, ne D,2}
is the net (§|D,=) where S§|D is § restricted to D. A net
{Sq, e D,=} isin a set 4 iff S, e A4 for all #; it is eventually in
A iff there is an element m of D such that, if ne D and » = m,
then S, e 4. The net is frequently in A4 iff for each m in D
there is # in D such that # 2 m and S, e 4. If {S,, ne D, 2}
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is frequently in A, then the set E of all members » of D such
that §, e A4 has the property: for each m e D there is p ¢ E such
that » = m. Such subsets of D are called cofinal. Each cofinal
subset £ of D is also directed by = because for elements 7 and
n of E there is p in D such that p 2 m and p = n, and there is
then an element ¢ of E which follows p. We have the following
obvious equivalence: a net {§,, n e D,=} is frequently in a
set 4 iff a cofinal subset of D maps into the set 4, and this is
the case iff the net is not eventually in the complement of 4.

A net (§,2) in a topological space (X,J) converges to s rela-
tive to 3 iff it is eventually in each 3-neighborhood of 5. The no-
tion of convergence depends on the function S, the topology 3,
and the ordering =. However, in cases where no confusion is
likely to result we may omit all mention of 3 or of = or of both
and simply say “‘the net § (or the net {S,, » e D}) converges to
s” If X is a discrete space (every subset is open), then a net §
converges to a point s iff § is eventually in {s}: that is, from
some point on § is constantly equal to s. On the other hand, if
X 1s indiscrete (the only open sets are X and the void set), then
every net in X converges to every point of X. Consequently a
net may converge to several different points.

It is easy to describe the accumulation points of a set, the
closure of a set, and in fact the topology of a space in terms of
convergence. The arguments are slight variants of those usually
given for sequences of real numbers.

2 TueoreMm Let X be a topological space. Then:

(a) 4 point s is an accumulation point of a subset A of X if and
only if there is a net in A ~ {s} which converges to s.

(b) A point s belongs to the closure of a subset A of X if and
only if there is a net in A converging to s.

(c) A subset A of X is closed if and only if no net in A converges
to a point of X ~ A.

PrOOF If 5 is an accumulation point of A4, then for each neigh-
borhood U of s there is a point Sy of 4 which belongs to U ~ {s}.
The family a of all neighborhoods of s is directed by <, and if
U and 7 are neighborhoods of s such that 7 < U, then Sy e ¥/
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c U. The net {Sy, U eu,C}, therefore converges to s. On the
other hand, if a net in 4 ~ {5} converges to s, then this net has
values in every neighborhood of s and 4 ~ {s} surely intersects
each neighborhood of 5. This establishes the statement (a). To
prove (b), recall that the closure of a set A4 consists of 4 together
with all the accumulation points of 4. For each accumulation
point s of A there is, by the preceding, a net in A4 converging to
s; for each point s of 4 any net whose value at every element of
its domain is s converges to s. Therefore each point of the clo-
sure of A has a net in A converging to it. Conversely, if there is a
net in A converging to s, then every neighborhood of s intersects
A and s belongs to the closure of 4. Proposition (c) is now ob-
vious. | ’

We have noticed that, in general, a net in a topological space
may converge to several different points. There are spaces in
which convergence is unique in the sense that, if a net § con-
verges to a point s and also to a point £, then s = £ A topological
space is a Hausdorff space (7-space, or separated space) iff
whenever x and y are distinct points of the space there exists
disjoint neighborhoods of » and y.

3 THEOREM A topological space is a Hausdorff space if and only
if each net in the space converges to at most one point.

PrROOF If X is a Hausdorff space and s and ¢ are distinct points
of X, then there are disjoint neighborhoods U and ¥ of s and ¢
respectively. Since a net cannot be eventually in each of two
disjoint sets it is clear that no net in X converges to both s and ¢.
To establish the converse assume that X is not a Hausdorff space
and that s and ¢ are distinct points such that every neighborhood
of s intersects every neighborhood of 2. Let a, be the family of
neighborhoods of s and i, the family of neighborhoods of #; then
both U, and 4, are directed by . We order the cartesian prod-
uct U, X U; by agreeing that (T,U) =z (VW) iff T <V and
U c . Clearly the cartesian product is directed by =. For
each (T,U) in a, X U, the intersection T N U is non-void, and
hence we may select a point S¢r,pyy from T N U. If W) =
(T,U), then Swwye ¥ N W < T N U and consequently the net
{Ser,iy, (T,U) euy X Ui, =} converges to both s and 2. ||
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If (X,3) is a Hausdorff space and a net {S,, neD,2} in X
converges to § we write 3-lim {S,, # ¢ D,=Z} = 5. When no con-
fusion seems possible this will be abbreviated: lim {S,: #» e D} =
sorlimS, = s. The use of “limit” should be restricted to nets

n
in a Hausdorff space so that the usual rule concerning substitu-
tion of equals for equals may remain valid. Iflim {S,: #e D} =
sand lim {S,:7 e D} = ¢, then s = ¢, since we always use equality
in the sense of identity. As a matter of fact we shall occasionally
use the notation lim §, = s to mean § converges to s in cases
n

where the space is not Hausdorff.

The device used in the preceding proof is often useful. If
(D,2) and (E,>) are directed sets, then the cartesian product
D X E is directed by >, where (d,e) >(f,g) iff d = fand ¢ > g.
The directed set (D X E,>) is the product directed set. We
also want to define the product of a family of directed sets. Sup-
pose for each 4 in a set 4 we are given a directed set (D,,>,).
The cartesian product X {D,: @ e 4} is the set of all functions 4
on A such that 4, (= d(a)) is a member of D, for each & in 4.
The product directed set is (X{Da: @ € 4},Z) where, if d and ¢
are members of the product d = ¢ iff do>.e, for each @ in A.
The product order is =. Of course, it must be verified that the
product directed set is, in fact, directed. If 4 and ¢ are mem-
bers of the cartesian product X {D,: @ € 4}, then for each 4 there
is a member f, of D, which follows both 4, and ¢, in the order
>,, and consequently the function f whose value at 2 is f, fol-
lows both 4 and ¢ in the order . An important special case of
the product directed set is that in which all coordinate sets D,
are identical and all relations >, are identical. In this case
X{D: ae 4} is simply the set D4 of all functions on A to D,
which is directed by the convention that d follows e iff d(a) fol-
lows e(a) for each member @ of 4. This is, for example, precisely
the usual ordering of the set of all real valued functions on the
set of real numbers.

The next result on limits is related to the closure axiom: 4~
= A~. Itis important because it replaces an iterated limit by a
single limit. The situation is as follows: Consider the class of
all functions § such that S(m,n) is defined whenever m belongs
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to a directed set D and » belongs to a directed set E,,. We want
to find a net R with values in this domain such that §+ R con-
verges to 11m 11m S(myn) whenever § is a function to a topological

space and thls iterated limit exists. It is interesting to notice
that the solution of this problem requires Moore-Smith conver-
gence, for, considering double sequences, no sequence whose
range is a subset of w X w can have this property. The con-
struction which yields a solution to the problem is a variant of
the diagonal process. Let F be the product directed set D X
X{E.: neD}, and for each point (m,f) of F let R(m,f) =
(m,f(m)). Then R is the required net.

4 THEOREM ON ITERATED LIMITS Let D be a directed set, let E,,.
be a directed set for each m in D, let F be the product D X X{E.

m e D}, and for (m,f) in F let R(m,f) = (m,f(m)) IfS(m n) is
a member of a topological space for each m in D and each n in E,,
then S° R converges to hm hm S(myn) whenever this iterated limit
exists.

PROOF Suppose 11m hm S(mm) =5 and that U is an open

neighborhood * of s We must find a member (m,f) of F such
that, if (p,2) = (m,f), then §° R(p,g) e U. Choose m in D so
that lim §(p,#) e U for each p following m and then, for each

such p, choose a member f(p) of E, such that S(p,n) e U for all
n following f(p) in E,. If p is a member of D which does not
follow m let f(p) be an arbitrary member of E,. If (p,2) = (m,f),
then p = m, hence lim §(p,n) e U, and (since g(p) = f(p))

SR (p,5) = S(0g@) e U. 1

SUBNETS AND CLUSTER POINTS

Following the pattern discussed in the introduction to the
chapter we now define the generalization of subsequence and
prove the hoped-for theorems.

* The existence of an open neighborhood of s is essential to the proof. The iterated
[imit theorem, the fact that the family of open neighborhoods of a point is a local base,

and the closure axiom “4~— = 4~ are intimately related. Convergence has been
studied in spaces with a structure less restrictive than a topology. See Ribeiro [1).
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A net {T,,, m ¢ E} is a subnet of a net {S,, # e D} iff there is
a function N on E with values in D such that

(a) T = §° N, or equivalently, T; = Sy, for each i in E; and
(b) for each m in D there is # in E with the property that, if
~p = n, then N, =2 m.

Since there seems to be no possibility of confusion we omit spe-
cific mention of the orderings involved. The second condition
states, intuitively, “as p becomes large so does N,.” From this
condition it is immediately clear that, if § is eventually in a set
A, then the subnet §° N of § is also eventually in 4. This is a
very important fact and the definition of subnet is designed to
obtain precisely this result. Notice that each cofinal subset E
of D is directed by the same ordering, and that {S,, n e E} is a
subnet of §. (Let N be the identity function on E, and the sec-
ond condition of the definition becomes the requirement that E
be cofinal.) This is a standard way of constructing subnets, and
it is unfortunate that this simple variety of subnet is not ade-
quate for all purposes. (2.E.)

There is a special sort of subnet which is adequate for almost
all purposes. Suppose NN is a function on the directed set E to
the directed set D such that N is isotone (N; = N; if i = j) and
the range of N is cofinal in D. Then clearly §° N is a subnet of
S for each net §. The subnet constructed in the proof of the fol-
lowing lemma is of this sort (as remarked by K. T. Smith).

5 LEMMA Let § be a net and @ a family of sets such that S is
frequently in each member of @, and such that the intersection of
two members of @ contains a member of Q. Then there is g subnet
of § which is eventually in each member of G.

prooF The intersection of any two members of @ contains a
member of @ and therefore @ is directed by <. Let {§,, 7 € D}
be a net which is frequently in each member of @ and let E be
the set of all pairs (m,4) such that me D, 4 ¢ @, and S, e 4.
Then E is directed by the product ordering for D X @, for if
(m,4) and (n,B) are members of E there is C in @ such that
C— A4 N B and p in D such that p follows both 7 and » and
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Sp € C; then (p,C) ¢ E and (p,C) follows both (m,A) and (n,B).
For (m,A) in E let N(m,4) = m. Then N is clearly isotone, and
the range of N is cofinal in D ({S,, # e D} is frequently in each
member of @). Consequently S+ /N is a subnet of §. Finally,
if 4 is a member of @, if m is an arbitrary member of D such
that §,, € 4, and if (n,B) is a member of E which follows (m,4),
then 8§+ N(n,B) = S, e B c A4; it follows that §+ N is eventu-
allyin 4. |}

We now apply this lemma to convergence in a topological
space. A point s of the space is a cluster point of a net § iff §
is frequently in every neighborhood of 5. A net may have one,
many, or no cluster points. For example, if w is the set of non-
negative integers, then {n, n e w} is a net which has no cluster
point relative to the usual topology for the real numbers. The
other sort of extreme occurs if § is a sequence whose range is
the set of all rational numbers (such a sequence exists because
the set of rationals is countable). It is easy to see that this se-
quence is frequently in each open interval, and consequently
every real number is a cluster point. If a net converges to a
point, then this point is surely a cluster point, but it is possible
that a net may have a single cluster point and fail to converge
to this point. For example, consider the sequence —1, 1, —1,
2, —1, 3, —1 .-, constructed by alternating —1 and the se-
quence of positive integers. Then —1 is the unique cluster point
of the sequence, but the sequence fails to converge to —1.

6 TureorEM A point s in a topological space is a cluster point of
a net § if and only if some subnet of S converges to s.

PrROOF Let s be a cluster point of § and let u be the family of
all neighborhoods of 5. Then the intersection of two members
of U is again a member of ., and § is frequently in each member
of u. Consequently the preceding lemma applies and there is a
subnet of § which is eventually in each member of a, that is,
converges to 5. If s is not a cluster point of §, then there is a
neighborhood U of s such that § is not frequently in U, and
therefore § is eventually in the complement of U.  Then each
subnet of § is eventually in the complement of U and hence can-
not converge to 5. |
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The following is a characterization of cluster points in terms
of closure.

7 THEOREM Let {Sn, n e D} be a net in a topological space and
for each n in D let A, be the set of all points Sy, for m > n. Then s
is a cluster point of {Sy, n € D} if and only if s belongs to the closure
of A, for each n in D.

prROOF If 5 is a cluster point of {S,, #» e D}, then for each #,
A, intersects each neighborhood of s because {S,, #» e D} is fre-
quently in each neighborhood. Therefore s is in the closure of
each 4,. If s is not a cluster point of {§,, # e D} there is a
neighborhood U of s such that {§,, # e D} is not frequently in
U. Hence for some n in D, if m = »n, then S, ¢ U, so that U
and A4, are disjoint. Consequently s is not in the closure of
A 1

SEQUENCES AND SUBSEQUENCES

It is of some interest to know when a topology can be de-
scribed in terms of sequences alone, not only because it is a con-
venience to have a fixed domain for all nets, but also because
there are properties of sequences which fail to generalize. The
most important class of topological spaces for which sequential
convergence is adequate are those satisfying the first counta-
bility axiom: the neighborhood system of each point has a count-
able base. That is, for each point x of the space X there is a
countable family of neighborhoods of x such that every neigh-
borhood of x contains some member of the family. In this case
we may replace “net” by “sequence” in almost all of the pre-
ceding theorems.

It should be noticed that a sequence may have subnets which
are not subsequences.

8 TuEOREM Let X be a topological space satisfying the first axiom
of countability. Then:

(a) A4 point s is an accumulation point of a set A if and only if
there is a sequence in A4 ~ {s} which converges to s.

(b) A4 set A is open if and only if each sequence which converges
20 a point of A is eventually in A.



*CONVERGENCE CLASSES 73

(c) If s is a cluster point of a sequence S there is a subsequence
of § converging to s.

PROOF Suppose that s is an accumulation point of a subset A4
of X, and that Uy, Uy, --- U, --- is a sequence which is a base
for the neighborhood system of 5. Let 7, = N{Ui:i=0, 1,

-+, n}. Then the sequence Vo, ¥y, -+, ¥, -+ is also a base
for the neighborhood system of s and, moreover, ¥, ,; < ¥, for
each #n. For each # select a point §, from V, N (4 ~ {s}),
thus obtaining a sequence {S,, 7 e w} which evidently converges
to 5. This establishes half of (a), and the converse is obvious.
If A is a subset of X which is not open, then there is a sequence
in X ~ A which converges to a point of 4. Such a sequence
surely fails to be eventually in 4, and part (b) of the theorem
follows. Finally, suppose that s is a cluster point of a sequence §
and that 7y, 7 --- is a sequence which is a base for the neigh-
borhood system of s such that ¥,,,; © ¥, for each #n. For every
non-negative integer i, choose N; such that N; = i and Sy, be-
longs to 7;. Then surely {Sy,, i € w} is a subsequence of § which
converges to 5. |

*CONVERGENCE CLASSES

It is sometimes convenient to define a topology by specifying
what nets converge to which points. For example, if § is a family
of functions each on a fixed set X to a topological space Y it is
natural to specify that a net {f,, » e D} converges to a function
g iff {fu(x), n e D} converges to g(x) for each x in X. (This
sort of convergence is discussed in some detail in chapter 3.)
Having made such a specification the question naturally arises:
Is there a topology for & such that this convergence is conver-
gence relative to the topology? An affirmative answer would en-
able us to use the machinery developed for topological spaces to
investigate the structure of .

The problem may be formally phrased as follows. If € is a
class consisting of pairs (S,s), where § is a net in X and s a point,
when is there a topology 3 for X such that (S,s) € @ iff § con-
verges to s relative to the topology 3?7 From the preceding dis-
cussion of convergence we know several properties which @ must
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possess if such a topology exists. We shall say that € is a con-
vergence class for X iff it satisfies the conditions listed below.*
For convenience, we say that § converges (€) to s or that hm Sa
= s5 (@) iff (§,5) e €.

(a) If S is a net such that S, = s for each n, then § converges
(e) to 5.

(b) If S converges (@) to s, then so does each subnet of S.

(c) If S does not converge (€) to s, then there is a subnet of S,
no subnet of which converges (€) to 5.

(d) (Theorem 2.4 on iterated limits) Let D be a directed set,
let E,, be a directed set for each m in D, let F be the product
D X X{En: meD} and for (m,f) in F let R(m,f) =
(m,f(m)). If limlim S(m,n) = s (€), then §° R converges
(e) o s. mor

It has previously been shown that convergence in a topological
space satisfies (a), (b), and (d). Statement (c) is easily estab-
lished, in this case, by the argument: If a net {S,, # € D} fails
to converge to a point s, then it is frequently in the complement
of a neighborhood of s, and hence for a cofinal subset E of D,
{Sn, n e E} is in the complement. But clearly {§,, neE} is a
subnet, no subnet of which converges to s.

We now show that every convergence class is actually derived
from a topology.

9 THEOREM Let @ be a convergence class for a set X, and for each
subset A of X let A° be the set of all points s such that, for some net
S in A, S convergences (€) to s. Then ° is a closure operator, and
(S,5) € € if and only if S converges to s relative to the topology asso-
ciated with °.

PROOF It is first shown that ¢ is a closure operator. (See 1.8.)
Since a net is a function on a directed set, and the set is non-void
by definition, (0)° is void. In view of condition (a) on constant
nets, for each member s of a set A4 there is a net § which con-
verges (@) to 5, and hence 4 < 4° 1If 5se.A4° then because of
the definition of the operator ¢ se (A4 U B)® and consequently

* The first three of these, with “net” replaced by “sequence,” are Kuratowski’s modifi-
cation of the Fréchet axioms for limit space. See Kuratowski [1].
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A° < (A U B)° for each set B. Therefore 4° U B° < (4 U B)°.
To show the opposite inclusion suppose that {§,, 7 € D} is a net
in 4 U B, and suppose that {S,, n e D} converges (€) to s. If
Dy=1{n:neD and S,e A}, and Dg = {n: neD and S, e B},
then Dy U D = D. Hence either D4 or Dp is cofinal in D,
and consequently either {S,, 7 e D4} or {S,, 7 € Dg} is a subnet
of {8, n e D} which also converges (€) to s by virtue of condi-
tion (b). Hence s e #° U B° and we have shown that 4° U B°
= (4 U B)°. It must now be shown that 4 = A4, and condi-
tion (d) is precisely what is needed. If {7, m e D} i1s a net in
A° which converges (@) to ¢, then for each m in D there are a
directed set E,, and a net {S(m,n), n e E,} which converge (€)
to Th. Condition (d) then exhibits a net which converges (€)
to ¢ and consequently # e 4°. Hence 4 = A°.

The more delicate part of the proof, that of showing that con-
vergence (@) is identical with convergence relative to the to-
pology 3 associated with the operator ¢, remains. First, suppose
{S», n e D} converges (@) to s and § does not converge to s rela-
tive to 3. Then there is an open neighborhood U of s such that
{Sn, n e D} is not eventually in U. Hence there is a cofinal sub-
set E of D such that §,e X ~ U for n in E. Since {§,, n ¢ E}
is a subnet of {S§,, # e D} this subnet in X ~ U converges (@)
to s by condition (b). Hence X ~ U # (X ~ U)¢, and U is
not open relative to 3, which is a contradiction.

Finally, suppose that a net P converges to a point 7 relative to
the topology 3 and fails to converge (€). Then by (c) there is a
subnet {T.,,, m e D}, no subnet of which converges (@) to r, and
a contradiction results if we construct such a subnet. For each m
in Dlet B,, = {n:n e Dsuch that » = m} and let 4,, be the set of
all T, for » in B,,. Because {T,, m ¢ D} converges relative to 3
to r, » must lie in the closure of each 4,,. Consequently, for each
m in D there are a directed set E,, and a net {U(m,n), n ¢ E,,}
in A, such that the composition { T * U(m,n), n ¢ E,.} converges
(e) to r. Condition (d) on convergence classes now applies. If
R(m,f) = (m,f(m)) for each (m,f) in D X X{En, m e D}, then
TeU-R converges (€) to r. Moreover, if p = m, then U R
@,f) = U(p,f(p)) € Bn; thatis, U R(p,f) = m. It follows that
T-U-R is a subnet of 7T, and the theorem follows. |
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The preceding theorem sets up a one-to-one correspondence
between the topologies for a set X and the convergence classes
on it. This correspondence is order inverting in the following
sense. If €; and €, are convergence classes and 3, and 3; are
the associated topologies, then €; c €, if and only if 33 € 3;.
(This fact is immediately evident from the definition of con-
vergence.) We also notice that the intersection €; N €; is a
convergence class in view of the four characteristic properties of
such classes. It is easy to see that the topology associated with
@; N @, is the smallest topology which is larger than each of
3, and 3, and dually, the convergence class of 3; N 3, is the
smallest convergence class which is larger than each of €; and
Cs.

PROBLEMS

A EXERCISE ON SEQUENCES

Let X be a countable set with a topology consisting of the void set
together with all sets whose complements are finite. What sequences
converge to what points?

B EXAMPLE: SEQUENCES ARE INADEQUATE

Let @' be the set of ordinal numbers which are less than or equal to
the first uncountable ordinal @, and let the topology be the order topol-
ogy. Then Q is an accumulation point of @' ~ {Q}, but no sequence
in @' ~ {Q} converges to Q.

C EXERCISE ON HAUSDORFF SPACES: DOOR SPACES

A topological space is a door space iff every subset is either open or
closed. A Hausdorff door space has at most one accumulation point,
and if x is a point which is not an accumulation point, then {x} is open.
(If U is an arbitrary neighborhood of an accumulation point y, then
U ~ {y} is open.)

D EXERCISE ON SUBSEQUENCES

Let N be a sequence of non-negative integers such that no integer
occurs more than a finite number of times; that is, for each m, the set
{i: N; = m} is finite. Then if {§,, #» e w} is any sequence, {Sy,, i € w}
is a subsequence. If {§,, #» ew} is a sequence in a topological space,
and N is an arbitrary sequence of non-negative integers, then {Sy,, / & w}
is either a subsequence of {§,, # € w} or else has a cluster point.
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E EXAMPLE: COFINAL SUBSETS ARE INADEQUATE

Let X be the set of all pairs of non-negative integers with the topol-
ogy described as follows: For each point (m,#) other than (0,0) the set
{(m,n)} is open. A set U is a neighborhood of (0,0) iff for all except a
finite number of integers m the set {#n: (m,n) ¢ U} is finite. (Visualiz-
ing X in the Euclidean plane, a neighborhood of (0,0) contains all but
a finite number of the members of all but a finite number of columns.)

(a) The space X is a Hausdorff space.

(b) Each point of X is the intersection of a countable family of
closed neighborhoods.

(c) The space is a Lindeldf space; that is, each open cover has a
countable subcover.

(d) No sequence in X ~ {(0,0)} converges to (0,0). (If a sequence
S in X ~ {(0,0)} converges to (0,0), then it is eventually in the comple-
ment of each column, and the sequence has only a finite number of
values in each column.)

(e) There is a sequence § in X ~ {(0,0)} with (0,0) as a cluster
point, and § restricted to any cofinal subset of the integers fails to con-
verge.

Note This example is due to Arens [1].

F MONOTONE NETS

Let X be an order-complete chain; that is, X is linearly ordered by a
relation >, such that each non-void subset of X which has an upper
bound has a supremum. Let X have the order topology (1.I). A net
(8,>) in X is monotone increasing (decreasing) iff whenever m > n,
then Sy = Sp(Sn 2= Sm)-

(a) Each monotone increasing net in X whose range is bounded
(there is x in X such that x = S, for all #») converges to the supremum
of its range.

(b) If X is the set of all real numbers with the usual order or if X
is the set of all ordinal numbers less than the first uncountable ordinal,
then each monotone increasing (decreasing) net whose range has an
upper (lower) bound converges to the supremum (infimum) of its
range.

G INTEGRATION THEORY, JUNIOR GRADE

Let f be a real-valued function whose domain includes a set A4, let
@ be the family of all finite subsets of 4, and for each F in @
let Sp = 3 {f(a): ae F}. Then @ is directed by D and {Sr, Fe@,D}
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is a net. If this net converges f is summable over A and the number
to which the net converges is the unordered sum of f over A, denoted
2 {f(a): ae A} or simply >4 f.

(a) If f is non-negative (non-positive), then f is summable iff there
is an upper bound (lower bound) for the sums over finite subsets of 4.
(Use the preceding problem on monotone nets.)

(b) Let 44 = {a: f(&) 2 0} and 4_ = {a: f(a) < O0}. Then f is
summable over A4 iff it is summable over both 4 and 4_. If fis
summable over A, then 3 4f = X4, f+ 2 a_f.

(c) A function f is summable over A iff | f| is summable over 4,
where | £](a) = | f(a) |.

(d) If fis summable on a set 4, then £ is zero outside some countable
subset of 4. (If f is different from zero at every point of some uncount-
able subset, then, for some positive integer #, {a: f(a) = 1/5} is un-
countable.)

(e) If f and g are summable over 4 and r and s are real numbers,
then 7f + sg is summable over 4 and 2 4(rf 4+ sg) =7 2 af + 5 2ag.

(f) If f is summable over 4, and B and C are disjoint subsets of A4,
then f is summable over each of B and C and Y pycf = > pf+ Xcf-

(g) If x is a sequence of real numbers, then the ordered sum (“sum
of the series”) is the limit of the sequence S, where S, = X {x;:7 = 0, 1,
«++y n}. In other words, the ordered sum is the limit {Sp, F e ®},
where ® is the family of all sets which are of the form {m: m < n} for
some #. This is a subnet of the net defining the unordered sum. The
sequence x is absolutely summable iff the sequence |x|, where
| % |n = | #a|, has an ordered sum. The unordered sum of x over the
integers exists iff the sequence is absolutely summable, and in this case,
the unordered and ordered sums are equal.

(h) (Fubinito) Let f be a real-valued function on a cartesian product
A X B. Then:

(1) Iffissummableover 4 X B, then > axnf = 2 {3 {f(a,6):6e B}:
ae d}. (The latter is one of the two #ferated sums.)

(i) If, for each member z of 4, f(a,5) is either non-negative for all 4
or non-positive for all &, if F(a) = X {f(a,8): be B}, and if F
is summable over A4, then f is summable over 4 X B.

(iif) In general, both iterated sums may exist and f may fail to be
summable. In fact, if both 4 and B are countably infinite and
F and G are arbitrary real functions on A4 and on B respectively,
then there is f on 4 X B such that X {f(a,6): ae A} = G(b)
and X {f(a,b): be B} = F(a) for all in B and all 2 in 4.
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Notes The results stated in this problem are those which are needed
to develop measure theory using unordered summation instead of abso-
lutely convergent series. All the results except (d), (g) and (h,ii) can
be established in a much more general situation; in chapter 7 the prob-
lem will be reexamined using the notion of completeness. The order-
theoretic treatment above gives some insight into more complicated
examples of integration. ‘

Historically, unordered summation was the forerunner of Moore-
Smith convergence. (Moore [1].)

H INTEGRATION THEORY, UTILITY GRADE

Let £ be a bounded real-valued function on the closed interval of real
numbers [2,6]. A subdivision S of [a,b] is a finite family of closed inter-
vals, covering [4,4], such that any two intervals have at most one point
in common. The length of an interval I is denoted | I |, and for a sub-
division § the mesh, || § ||, is the maximum of | I | for I in §. We direct
the family of subdivisions in two different ways:

(i) S= & iff §is a refinement of §', in the sense that each member

of S is a subset of a member of §’; and
@) $>» §iff|| s|| = || 5|

Let M;(I) be the supremum of f on I, and let m;(I) be the infimum.
The upper and lower Darboux sums corresponding to the subdivision §
are defined to be D;(S) = X {| I|My(I): I &S} and dy = X{| I |my(2):
Ie S} respectively. The Riemann sums are more complicated. A
choice function for a subdivision § is a function ¢ on § such that ¢(7) e I
for each I in 8. The set of all pairs (S,¢), such that § is a subdivision
and ¢ is a choice function for §, is ordered in two ways: (S,¢) > (8,¢')
iff $ = 8 and (Sy¢) > > (§,¢’) iff $> 8. For a pair (§,c) the Rie-
mann sum is Ry(Sy¢) = A I|f(e(D)): Te S}.

The basic computation is made in terms of the ordering by refinement.

(a) The nets (Ds,=) and (d;,Z) are monotonically decreasing and
increasing respectively, and hence converge.

(b) 4s(S) = Rs(S,c) = Dy(S) for all subdivisions § and all choice
functions c.

(c) For each positive number ¢ there is a >-cofinal subset of the set
of pairs (S,¢) such that Ry(S,c) + ¢ = Dy(S). (There is also a dual
proposition.)

(d) The net (Ry,>) converges iff lim (Dy,=) = lim (d;,=). If
(Ry,>) converges, then lim (Ry,>) = lim (Dy,Z) = lim (dy,2).
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(e) The net (Ry,>) is a subnet of (Ry,> >).

(f) The net (Ry,>>) converges iff lim (Dy,2) = lim (dp,2). If
(Ryy> >) converges lim (Ry,> >) = lim (Ry,>).

Notes The Riemann integral of f is usually defined to be the limit
of (Rs,> >). The advantage of considering refinement as well as mesh
is, here, essentially a matter of technique. If instead of considering
finite subdivisions and length of intervals we consider countable sub-
divisions and let | 7| be the Lebesgue measure of I, the net (R;,>)
converges to the usual Lebesgue integral of £, while (R;,> >) may not.
Further, a definition of the refinement type may be used to integrate
certain functions whose values lie in a vector space. (See Hille [1],
chapter 3.) An integral of the Darboux type requires that the range
of the function to be integrated be partially ordered. The Daniell
integral and various generalizations (Bourbaki [2], McShane [2] and
[3], and M. H. Stone [1]) are essentially of this sort. There is another
standard way of introducing an integral, via a completion process with
respect to a metric, which has many advantages (Halmos [1]).

I MAXIMAL IDEALS IN LATTICES

A lattice is a non-void set X with a reflexive partial ordering = such
that for every pair x and y of members of X there is a (unique) smallest
element x V y which is greater than each of x and y and a (unique)
largest element ¥ A y which is smaller than each. The elements ¥ V y
and ¥ A y are respectively the join and the meet of x and y. The lattice
is distributive iff « AV 2 =KADYV (xA2)andxV (y A2) =
*V y) AV 2) forall ¥, 3, and 2in X, A subset 4 of X is an ideal
(a dual ideal) iff whenever y = ¥ and y e 4, then xe 4, and if y and 2
belong to A4 so does y V z (respectively, whenever x 2 y and ye 4,
then xe 4, and if ye 4 and ze 4, then y A ze A).

Let A4 and B be disjoint subsets of a distributive lattice X such that
A is an ideal and B is a dual ideal. Then there are disjoint sets 4’ and
B’ such that A4’ is an ideal containing 4, B’ is a dual ideal containing
B,and 4’ U B’ = X.

The proof of this proposition is broken down into a sequence of
lemmas.

(a) The family of all ideals which contain 4 and are disjoint from B
contains a maximal member 4’. (See 0.25.) Similarly there is a dual
ideal B’ which contains B, is disjoint from A4, and is maximal with
respect to these properties.

(b) The smallest ideal which contains 4’ and a member ¢ of X is
{¥* X< corx<cV yfor someyin A'}. Since A is maximal, if ¢
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does not belong to either 4’ or B, then ¢V x & B for some x in 4. (If
22 xeB, thenzeB)

(c) If ¢ belongs to neither 4’ nor B’, then there is x in A4’ and
y in B’ such that ¢V xeB’ and ¢ AyeAd'. Then (¢V x) Ay =
(¢ A»)V (x A y) belongs to both 4’ and B’.

Notes This theorem is due to M. H. Stone [2]; it is the best form of
one of the basic facts about ordered sets. It is used in the next two
problems and it is the fact underlying the most important results on
compactness (chapter 5). An application of some form of the maximal
principle seems to be essential to its proof. It has been stated in the
literature that this theorem (or, more precisely, a corollary to the theo-
rem which occurs in problem 2. K) implies the axiom of choice, but
I do not know whether this is the case. Finally, the definition of
distributivity which is given above is unduly restrictive. Either of the
two equalities implies the other (Birkhoff [1]).

J UNIVERSAL NETS

A net in a set X is said to be universal iff for each subset 4 of X the
net is eventually in A or eventually in X ~ A4.

(a) If a universal net is frequently in a set it is eventually in the set.
Hence a universal net in a topological space converges to each of its
cluster points.

(b) If a net is universal, then each subnet is also universal. If § is
a universal net in X and f is a function on X to Y, then f° § is a uni-
versal net in Y.

(c) Lemma 1f S is a net in X, then there is a family € of subsets of
X such that: § is frequently in each member of @, the intersection of
two members of @ belongs to @, and for each subset 4 of X either 4
or X ~ A belongs to @. (Either show that there is a family @ maximal
with respect to the first two listed properties and demonstrate that it
possesses the third, or apply 2.1, letting @ be the family of all sets 4
such that § is eventually in X ~ 4, ® the family of all B such that §
is eventually in B, and let the ordering be C.)

(d) There is a universal subnet of each net in X. (Use the preceding
result and 2.5.)

K BOOLEAN RINGS: THERE ARE ENOUGH HOMOMORPHISMS

A Boolean ring is a ring (R,+,-) such that r-r = rand r + » = 0 for
each rin R. The field of integers modulo 2 is denoted I,.

(a) A Boolean ring is commutative. (Observe that (» + $)-(r + s)
=r43.)
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(b) If (R,+,-) is a Boolean ring, then multiplication of members of
R by members of I, can be defined so that R is an algebra over /5.

(c) The symmetric difference AAB of two sets A and B is defined
to be (4 U B) ~ (4 N B). If @& is the family of all subsets of a set X,
then (®,A,N) is a Boolean ring with unit.

(d) Let X be a set and let I,* be the family of all functions on X
to I;. Define addition and multiplication of functions pointwise (that
is, (f+2)x) =f(x)+gk) and (fg)x) =f(x)-g(x)). Then
(Z3%*,+,-) is a Boolean ring with unit and is isomorphic to (@,4,N)
where @ is the family of all subsets of X.

(e) The natural ordering of a Boolean ring is defined by agreeing that
r = s iff r-s = s. The relation = partially orders R in such a way
that the least element which follows bothrand sis»V s =r 4+ s + r-s
and the greatest element which precedes both » and s is r A s = r-s.
Each of V and A are associative operations and the following distri-
butive laws hold: r AGV O = ANV A and rV (s A =
rV sy ANV .

(f) Recall that § is an ideal in a Boolean ring (R,+,-) iff § is an
additive subgroup and r-5s e § whenever & R and s € §; the ideal § is
maximal iff R # § and no ideal other than R properly contains §.
There is a one-to-one correspondence between maximal ideals in R and
homomorphisms into I3 which are not identically zero. (The kernel
of such a homomorphism is a maximal ideal.)

() A necessary and sufficient condition that § be an ideal in a Boolean
ring is that » V s € § whenever r and s are members of § and #&§
whenever ¢ precedes a member of § in the natural order (that is,
t < some member of §). A subset T of R is called a dual ideal
iff » A s e T whenever » and s are members of T and ¢ & T whenever ¢
follows a member of T. If reR, then {s: r = s} is an ideal and
{s: 5 = 7} is a dual ideal. If § is an ideal, T is a disjoint dual ideal,
and S U T = R, then the function which is zero on § and one on T is
a homomorphism of R into Z. (In a Boolean ring of sets an ideal is
frequently called an N-ideal and a dual ideal a U-ideal.)

(h) Theorem If S is an ideal in a Boolean ring and T is a dual ideal
which is disjoint from S, then there is 2 homomorphism of the ring into
I, which is zero on § and one on T. In particular, if  is a non-zero
member of the ring there is a homomorphism % of the ring such that
k(r) = 1. (In other words, there are enough homomorphisms to dis-
tinguish members of the ring. A proof of this theorem may be based
on 2.I.)

(i) If X is a topological space and ® is the family of all subsets of
X which are both open and closed, then (®,A,N) is a Boolean algebra.
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() Not all Boolean algebras are isomorphic to an algebra of all sub-
sets of a set. (Show by example that there are countable Boolean
algebras.)

Note This investigation is completed in 5.S.

L FILTERS

A theory of convergence has been built on the concept of filter. A
JSilter F in a set X is a family of non-void subsets of X such that

(i) the intersection of two members of F always belongs to &; and
(i) f AeFand 4 € B C X, then Be¥.

In the terminology of the previous problem a filter is a proper dual
ideal in the Boolean ring of all subsets of X. A filter § converges to a
point x in a topological space X iff each neighborhood of x is 2 member
of & (that is, the neighborhood system of # is a subfamily of &).

(a) A subset U is open iff U belongs to every filter which converges
to a point of U.

(b) A point x is an accumulation point of a set 4 iff 4 ~ {x} belongs
to some filter which converges to «.

(c) Let ¢, be the collection of all filters which converge to a point .
Then ) {F: F e ¢,} is the neighborhood system of x.

(d) If & is a filter converging to x and G is a filter which contains &,
then G converges to x.

(e) A filter in X is an ultrafilter iff it is properly contained in no filter
in X. If § is an ultrafilter in X and the union of two sets is a member
of &, then one of the two sets belongs to §. In particular, if £ is a sub-
set of X, then either 4 or X ~ A belongs to . (Problem 2.I again.)

(f) One might suspect that filters and nets lead to essentially equiva-
lent theories. Grounds for this suspicion may be found in the following
facts:

(i) If {xn, n e D} is a net in X, then the family & of all sets 4 such
that {x,, » € D} is eventually in A is a filter in X.

(ii) Let & be a filter in X and let D be the set of all pairs (x,F) such
that xe F and Fed. Direct D by agreeing that (5,G) = (x,F)
iff G C F, and let f(%,F) = x. Then  is precisely the family of
all sets A such that the net {f(x,F), (x,F)e D} is eventually
in 4.

Notes The definition of filter is due to H. Cartan; his treatment
of convergence is given in full in Bourbaki [1]. Proposition (c) is a
remark of W. H. Gottschalk; (f) is part of the folklore of the subject.



Chapter 3

PRODUCT AND QUOTIENT SPACES

It is the purpose of this chapter to investigate two methods of
constructing new topological spaces from old. One of these in-
volves assigning a standard sort of topology to the cartesian
product of spaces, thus building a new space from those origi-
nally given. For example, the Euclidean plane is the product
space of the real numbers (with the usual topology) with itself,
and Euclidean #-space is the product of the real numbers »
times. In chapter 4 arbitrary cartesian products of the real
numbers will serve as standard spaces with which one may com-
pare other topological spaces.

The second method of constructing a new space from a given
one depends on dividing the given space X into equivalence
classes, each of which is a point of the newly constructed space.
Roughly speaking, we “identify” the points of certain subsets of
X, so obtaining a new set of points, which is then assigned the
“quotient” topology. For example, the equivalence classes of
real numbers modulo the integers are assigned a topology so that
the resulting space is a “copy” of the unit circle in the plane.

Both of these methods of constructing spaces are motivated
by making certain functions continuous. We therefore begin by
defining continuity and proving a few simple propositions about
it.

CONTINUOUS FUNCTIONS

For convenience we review some of the terminology and a few

elementary propositions about functions (chapter 0). The words
84
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“function,” “map,” “mapping,” “correspondence,” “operator,”
and “transformation” are synonymous. A function f is said to be
on X iff its domain is X. Itis to Y, or into Y, iff its range is a
subset of Y and it is onto Y if its range is Y. The value of f at
a point x is f(x) and f(x) is also called the image under f of x.
If B is a subset of Y, then the inverse under f of B, f~[B], is
{x:f(x) e B}. The inverse under f of the intersection (union) of
the members of a family of subsets of Y is the intersection (union)
of the inverses of the members; that is, if Z, is a subset of ¥
for each member ¢ of a set C, then =[N {Z,:c e C}] = N{FZ:
¢ € C}, and similarly for unions. If y e Y, then f~[{y}], the in-
verse of the set whose only member is y, is abbreviated f~[y].
The image f[4] of a subset A4 of X is the set of all points y such
that y = f(x) for some » in 4. The image of the union of a
family of subsets of X is the union of the images, but, in general,
the image of the intersection is not the intersection of the images.
A function f is one to one iff no two distinct points have the same
image, and in this case f ! is the function inverse to f. (Notice
that the notation is arranged so that, roughly speaking, square
brackets occur in the designations of subsets of the range and
domain of a function, and parentheses in the designation of mem-
bers. For example, if f is one to one onto Y and y e Y, then
S7'(») is the unique point x of X such that f(x) =y, and
Sl = {x}.)

A map f of a topological space (X,3) into a topological space
(Y,u) is continuous iff the inverse of each open set is open.
More precisely, f is continuous with respect to 3 and , or 3-u
continuous, iff /7 [U] e 3 for each U in 4. The concept depends
on the topology of both the range and the domain space, but
we follow the usual practice of suppressing all mention of the
topologies when confusion is unlikely. There are one or two
propositions about continuity which are quite important, al-
though almost self-evident. First, if f is a continuous function
on X to Y and g is a continuous function on Y to Z, then the
composition g e fis a continuous function on X to Z, for (g f) [ /]
= f g [¥]] for each subset ¥ of Z, and using first the con-
tinuity of g, then that of f, it follows that if 7 is open so is
(g°/)7'[¥]. Iffis a continuous function on X to Y, and A4 is

” << ¢
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a subset of X, then the restriction of f to 4, f|4, is also con-
tinuous with respect to the relative topology for A, for if U is
open in Y, then (f|A)7[U] = 4 N f'[U], which is open in A4.
A function f such that f| A is continuous is continuous on .
It may happen that f is continuous on A but fails to be continu-
ous on X.

The following is a list of conditions, each equivalent to con-
tinuity; it is useful because it is frequently necessary to prove
functions continuous.

1 TueoreM If X and Y are topological space and f is a function
on X to Y, then the following statements are equivalent.

(a) The function f is continuous.

(b) The inverse of each closed set is closed.

(c) The inverse of each member of a subbase for the topology for
Y is open.

(d) For each x in X the inverse of every meighborhood of f(x) is
a neighborhood of x.

(e) For eack x in X and each neighborhood U of f(x) there is a
neighborhood V of x such that f[V] < U.

(f) For each net § (or {Sn, n e D}) in X which converges to a
point s, the composition fo 8 ({f(Ss), neD}) converges to
S(5).

(g) For each subset A of X the image of the closure is a subset of
the closure of the image; that is, f[A7] < fl4]™.

(h) For each subsct B of Y, f~[B]~ cf~[B"].

ProOF (a) © (b): This is a simple consequence of the fact that
the inverse of a function preserves relative complements; that
is, f~[Y ~ B] = X ~ f71[B] for every subset B of Y.

(a) < (c): If f is continuous then the inverse of a member of
a subbase is open because each subbase member is open. Con-
versely, since each open set 7" in Y is the union of finite inter-
sections of subbase members, f~}[#] is the union of finite inter-
sections of the inverses of subbase members; if these are open,
then the inverse of each open set is open.

(a) — (d): If f is continuous, x € X, and 7 is a neighborhood
of f(x), then 7 contains an open neighborhood # of f(x) and
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f—1[#] is an open neighborhood of x which is a subset of /~'{[/];
consequently f~[¥] is a neighborhood of x.

(d) — (e): Assuming (d), if U is a neighborhood of f(x), then
f~YU] is a neighborhood of » such that f[f~'[U]] c U.

(e) — (f): Assuming (), let § be a net in X which converges
to a point s. Then if U is a neighborhood of /(s) there is a neigh-
borhood 7 of s such that f[¥] < U, and since § is eventually in
V,f-S§ is eventually in U.

(f) — (g): Assuming (f), let A4 be a subset of X and s a point
of the closure 4. Then there is a net § in 4 which converges to
s, and f+§ converges to f(s), which is therefore a member of
Sfl4]~. Hence f[47] c f[4]™.

(g) — (h): Assuming (g), if 4 = f7*[B], then f[47] c f4]™
c B~ and hence 4~ cf![B7]. Thatis, f7YB]- cf~'[B7].

(h) — (b): Assuming (h), if B is a closed subset of Y, then
fYB]~ € f7YB~] = f7[B] and f~[B] is therefore closed. |

There is also a localized form of continuity which is useful.*
A function f on a topological space X to a topological space Y is
continuous at a point x iff the inverse under f of each neighbor-
hood of f(x) is a neighborhood of x. It is easy to give character-
izations of the form of 3.1(e) and 3.1(f) for continuity at a point.
Evidently f is continuous iff it is continuous at each point of its
domain.

A homeomorphism, or topological transformation, is a continu-
ous one-to-one map of a topological space X onto a topological
space Y such that f~! is also continuous. If there exists a homeo-
morphism of one space onto another, the two spaces are said to
be homeomorphic and each is a homeomorph of the other. The
identity map of a topological space onto itself is always a homeo-
morphism, and the inverse of a homeomorphism is again a homeo-
morphism. It is also evident that the composition of two homeo-
morphisms is a homeomorphism. Consequently the collection of
topological spaces can be divided into equivalence classes such
that each topological space is homeomorphic to every member
of its equivalence class and to these spaces only. Two topologi-
cal spaces are topologically equivalent iff they are homeomorphic.

*If f is defined on a subset £ of a topological space, then continuity at points of the
closure 4~ may also be defined (see 3.D); several useful propositions result.
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Two discrete spaces, X and Y, are homeomorphic iff there is a
one-to-one function on X onto Y, that is, iff X and Y have the
same cardinal number. This is true because every function on a
discrete space is continuous, regardless of the topology of the
range space. It is also true that two indiscrete spaces (the only
open sets are the space and the void set) are homeomorphic iff
there is a one-to-one map of one onto the other, because each
function into an indiscrete space is continuous regardless of the
topology of the domain space. In general, it may be quite diffi-
cult to discover whether two topological spaces are homeomor-
phic. The set of all real numbers, with the usual topology, is
homeomorphic to the open interval (0,1), with the relative to-
pology, for the function whose value at a member x of (0,1) is
(2x — 1)/x(x — 1) is easily proved to be a homeomorphism.
However, the interval (0,1) is not homeomorphic to (0,1) U (1,2),
for if f were a homeomorphism (or, in fact, just a continuous
function) on (0,1) with range (0,1) U (1,2), then f~1[(0,1)] would
be a proper open and closed subset of (0,1), and (0,1) is connected.
This little demonstration was achieved by noticing that one of
the spaces is connected, the other is not, and the homeomorph
of a connected space is again connected. A property which
when possessed by a topological space is also possessed by each
homeomorph is a topological invariant. The proof that two
spaces are not homeomorphic usually depends on exhibiting a to-
pological invariant which is possessed by one but not by the
other. A property which is defined in terms of the members of
the space and the topology turns out, automatically, to be a
topological invariant. Besides connectedness, the property of
having a countable base for the topology, having a countable
base for the neighborhood system of each point, being a Ty space
or being a Hausdorff space, are all topological invariants. For-
mally, topology is the study of topological invariants.*

PRODUCT SPACES

There is a standard way of topologizing the cartesian product
of a collection of topological spaces. The construction is ex-

* A topologist is a man who doesn’t know the difference between a doughnut and 2
coffee cup.
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tremely important and consequently we examine minutely the
properties of the topology introduced. Let X and Y be topo-
logical spaces and let ® be the family of all cartesian products
U X V where U is an open subset of X and 7 is an open subset
of Y. The intersection of two members of ® is a member of ®,
because (UX ) N (RX §) = (U N R) X (¥ N S), and con-
sequently ® is the base for a topology for X X Y by theorem
1.11. This topology is called the product topology for X X Y.
A subset # of X X Y is open relative to the product topology
if and only if for each member (x,y) of # there are open neigh-
borhoods U of x and 7 of y such that U X ¥V < #. The
spaces X and Y are coordinate spaces, and the functions P,
and P, which carry a point (x,y) of X X Y into x and into y
respectively are the projections into the coordinate spaces. These
projections are continuous functions, for if U is open in X,
P, Y[U]is U X Y, which is open. Continuity of the projections
actually serves to characterize the product topology in the fol-
lowing sense. Suppose 3 is a topology for X X Y such that each
of the projections is continuous. Then if U is open in X and V
is open in Y the set U X ¥ is open relative to 3, for U X V' =
P, Y[U] N Py~ '[¥] and this set is open relative to 3 because the
projections are continuous. Consequently 3 is larger than the
product topology and the product topology is therefore the small-
est topology for which the projections into coordinate spaces are
continuous.

There is no difficulty in extending this definition of product
topology to cartesian product of any finite number of coordinate
spaces. If each of Xy, X3, + -+ X,_1 is a topological space, then
a base for the product topology for Xy X X; X:++X Xn_; is
the family of all products Up X Uy X:-+ U,_; where each U;
is open in X;. In particular, if each X; is the set of real numbers
with the usual topology, then the product space is Euclidean
n-space E,. The members of E, are real-valued functions on
the set 0, 1, - -- # — 1, the value of the function x at the integer
i being x; (= x(7)).

The product topology for the cartesian product of an arbitrary
family of topological spaces will now be defined. Suppose we
are given a set X, for each member 4 of an index set 4. The car-



90 PRODUCT AND QUOTIENT SPACES

tesian product X {X,: a e 4} is defined to be the set of all func-
tions ¥ on A such that x, ¢ X, for each 2 in 4. The set X, is
the 4-th coordinate set and the projection P, of the product
into the 4-th coordinate set is defined by P,(x) = x,. Suppose
that a topology 3, is given for each coordinate set. The construc-
tion * of the product topology is motivated by the requirement
that each projection P, is to be continuous. In order to attain
continuity of the projections it is necessary and sufficient that
each set of the form P,7'[U] be open, where U is an open sub-
set of X,. The family of all sets of this form is a subbase for a
topology; it is clearly the smallest topology such that projections
are continuous. The product topology is this topology. The
members of the defining subbase are of the form {x: x, e U}
where U is open in X,; they are, intuitively, cylinders over open
sets in the coordinate spaces. It is sometimes said that elements
of the subbase consist of sets obtained by “restricting the 4-th
coordinate to lie in an open subset of the a-th coordinate space.”
A base for the product topology is the family of all finite inter-
sections of subbase elements. A member U of this base is of the
form N{ P, [U,l: a e F} = {x: x, € U, for each a in F} where F
is a finite subset of A4 and U, is open in X, for each ain F. Itis
to be emphasized that these are fimite intersections. It is not
true that X{U,: ae 4} is always open relative to the product
topology if U, is open in X, for each 4. The product space is
the cartesian product with the product topology.

The projections of a product space into the coordinate spaces
have another very useful property. A function f on a topological
space X to another space Y is open (interior) iff the image of
each open set is open; that is, if U is open in X, then f[U] is open
inY.

2 TuroreMm The projection of a product space into each of its co-

ordinate spaces is open.

PROOF Let P, be the projection of X{X,: ae A4} into X,. In
order to show that P, is open it is sufficient to show that the
image of a neighborhood of a point ¥ in the product is a neigh-
borhood of P.(x), and it may be assumed that the neighborhood

* This description of the product topology is due to N. Bourbaki.
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in the product space is a member of the defining base for the
product topology. Suppose that x e ¥ = {y: y, e U, for a in F},
where F is a finite subset of 4 and U, is open in X, for each a
in F. We construct a copy of X, which contains the point x.
For z¢e X, let f(z). = 2, and for a # ¢ let f(2)s = %5 Then
P.f(z) = z. If c ¢ F, then clearly f[X.] € V and P [V] = X,
which is open. If ¢ ¢ F, then f(2) e V' iff ze U, and P[V] = U.,.
The theorem follows. (As a matter of fact, the function f de-
fined in this proof is a homeomorphism, a fact that is occasionally
useful.) |

It might be conjectured that the projection of a closed set in
a product space is closed. This, however, is easily seen to be
false, for in the Euclidean plane the set {(x,y): xy = 1} has a
non-closed projection on each coordinate space.

There is an extremely useful characterization of continuity of
a function whose range is a subset of a product space.

3 TueorREM A function f on a topological space to a product
X{Xa: a e A} is continuous if and only if the composition P, f is
continuous for each projection P,

proOF If f is continuaus, then P, f is always continuous be-
cause P, is continuous. If P,-f is continuous for each 4, then
for each open subset U of X, the set (P, f) ~[U] = f~P, U]
is open. It follows that the inverse under f of each member of
the defining subbase for the product topology is open, and hence
(3.1¢) f 1s continuous. |}

Convergence in a product space can be described very simply
in terms of the projections.

4 THEOREM A net § in a product space converges to a point s if
and only if its profection in each coordinate space converges to the
projection of s.

PROOF Since the projection into each coordinate space is con-
tinuous, if {§,, # e D} is a net in the cartesian product X {X,:
a € A} which converges to a point s, then the net {P,(S,), 7 € D}
surely converges to P,(s). To show the converse, let {S,, # € D}
be a net such that {P,(S,), » ¢ D} converges to s, for each a in
A. Then for each open neighborhood U, of s4, {Ps(Sn), 7 € D}
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is eventually in U,, consequently {S.,7¢& D} is eventually in
P,7[U,], and hence {S§.,#&D} must eventually be in each
finite intersection of sets of the form P,~![U,]. Since the family
of such finite intersections is a base for the neighborhood system
of s in the product topology, {S., 7 & D} converges tos. |}

Convergence in the product topology is called coordinatewise
convergence, or pointwise convergence. The latter term is used
most frequently in the case in which all coordinate spaces are
identical. In this important special case the cartesian product
X{X:as& A4} is simply the set of all functions on A to X, usually
denoted X4. A net {F,,n¢& D} in X4 converges to f in the to-
pology of pointwise convergence iff the net {F,(a), #» ¢ D} con-
verges to f(a) for each @ in 4. This fact makes the terminology,
“pointwise convergence,” seem reasonable. The product to-
pology is also called the simple topology in this case.

It is natural to ask whether the product of topological spaces
inherits properties which are possessed by the coordinate spaces.
For example, we might ask, in case each coordinate space is a
Hausdorff space or satisfies the first or second axiom of counta-
bility, whether the product space also has these properties. The
following theorems answer these questions.

5 TueorREM The product of Hausdorff spaces is a Hausdorff
space.

PROOF If x and y are distinct members of the product X{Xa,:
a s A}, then x, # y, for some @ in 4. If each coordinate space
is Hausdorff, then there are disjoint open neighborhoods U and
V of x, and y, respectively and P,~'[U] and P,~[¥] are dis-
joint neighborhoods of x and y in the product. |

Recall that an indiscrete topological space is one in which the
only open sets are the void set and the space.

6 THEOREM Let X, be a topological space satisfying the first axiom
of countability for each member a of an index set A. Then the
product X{X.:as A} satisfies the first axiom of countability if
and only if all but a countable number of the spaces X, are indis-
crete.
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PROOF Suppose that B is a countable subset of 4, that X, is in-
discrete for a in 4 ~ B, and that x is a point in the product
space. For each 2 in A choose a countable base U, for the neigh-
borhood system of x, in X,. Then 4, = {X,} ifaisin 4 ~ B.
Consider the family of all finite intersections of sets of the form
P, U] for ain 4 and U in U,. This is a countable family be-
cause P, U] = X{Xy:bed}ifaed ~ B. But the family of
these finite intersections is a base for the neighborhood system
of » and consequently the product space satisfies the first axiom
of countability.

To prove the converse suppose that B is an uncountable sub-
set of 4 such that for each 2 in B there is a neighborhood of %,
in X, which is a proper subset of X,, and suppose that there is a
countable base 4 for the neighborhood system of x. Each mem-
ber U of U contains a member of the defining base for the prod-
uct topology, and consequently, except for a finite number of
members @ of 4, P,JU] = X,. Since B is uncountable, there is a
member @ of B such that P,[U] = X, for every U in «4. But
there is an open neighborhood 7 of %, which is a proper subset
of X,, and clearly no member of U is a subset of P,~[/] since
each member of U projects onto X,. This is a contradiction. |

It is also true that the coordinate spaces inherit certain prop-
erties of a product space. If a product space is Hausdorff, so is
each coordinate space, and if the product space has a countable
local base at each point, then so does each coordinate space.
These propositions are easy to establish, and the proofs are
omitted.

7 Notes Tychonoff defined the product topology and proved
the most important properties in two classic papers (Tychonoff
[1] and [2]). His results are now among the standard tools of
general topology. (See also chapter 5.) Prior to Tychonoff’s
work a great deal of investigation had been done on the con-
vergence of sequences of functions relative to the topology of
pointwise convergence. Many difficulties occur in this work be-
cause the topology cannot be completely described by sequential

convergence, at least in the most interesting cases. (See prob-
lem 3.W.)



94 PRODUCT AND QUOTIENT SPACES

QUOTIENT SPACES

We begin by reviewing briefly the considerations which led to
the definition of the product topology. If fis a function on a
set X with values in a topological space Y, then it is always pos-
sible to assign a topology to X such that f is a continuous func-
tion. One obvious and uninteresting topology which has this
property is the discrete topology; a more interesting topology is
the family 3 of all sets of the form f~2[U] for U open in Y. This
family is evidently a topology because the inverse of a function
preserves unions. Each topology, relative to which f is continu-
ous, contains 3 and consequently 3 is the smallest topology for
which f is continuous. If we are given a family of functions, a
function f, for each member 2 of an index set A, then the to-
pology, a subbase for which is the family of all sets of the form
fa MU] for a in 4 and U open in the range of f,, has precisely
the same properties. This is the method by which the product
topology was defined.

It is the purpose of this section to investigate the reciprocal
situation. If fis a function on a topological space X with range
Y, how may Y be topologized so that f is continuous? If a sub-
set U of Y is open in a topology relative to which f is continuous,
then f~1[U] is open in X. On the other hand, the family « of all
subsets U such that f~*[U] is open in X is a topology for Y be-
cause the inverse of an intersection (or union) of members of the
family is the intersection (union) of the inverses. The topology
q is therefore the largest topology for Y such that the function
f is continuous; it is called the quotient topology for Y (the quo-
tient topology relative to f and the topology of X). A subset B
of Y is closed relative to the quotient topology iff f~}[Y ~ B] =
X ~ f7Y[B] isopen in X. Hence B is closed iff f~'[B] is closed.

Without some severe limitation on f very little can be said
about the quotient topology. Consequently we consider only
functions belonging to one of two dual categories. Recall that
/, a function on a topological space with values in another space,
is open iff the image of each open set is open. A function f is
said to be closed iff the image of each closed set is closed. It has
already been observed that projection of the Euclidean plane
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onto its first coordinate space is an open map which is not closed,
and subspaces of the plane give examples of maps which are
closed but not open, and maps which are neither open nor closed.
The subspace X = {(x,y): x = 0 or y = 0}, consisting of the two
axes, is mapped onto the reals by the projection P(x,y) = x.
The image of a small neighborhood of (0,1) is mapped into the
single point 0. Consequently P is not an open map on X, but
it is easy to verify that it is closed. If (0,0) is removed, leaving
X ~ {(0,0)}, then P on this subspace is neither open nor closed
(the image of the closed set {(x,y): ¥y =0 and x = 0} is not
closed).

It is apparent from the definition that the notion of an open
or a closed map depends on the topology of the range space.
However, if a map f is continuous and either open or closed, then
the topology of the range is entirely determined by the map f
and the topology of the domain.

8 THEOREM If f is a continuous map of the topological space
(X,3) onto the space (Y, U) such that f is either open or closed,
then U is the quotient topology.

PROOF If f is an open map and U is a subset of Y such that
S U] is open, then U = f[f~}[U]] is open relative to u. Con-
sequently, if f is open, each set open relative to the quotient to-
pology is open relative to U, and the quotient topology is smaller
than . Iffis continuous as well as open, then since the quotient
topology is the largest for which f is continuous, 4 is the quotient
topology. To prove the theorem for a closed function f it is only
necessary to replace “open” by “closed” in each of the preceding
statements. |

If f i1s a function on a topological space to a product space,
then f is continuous iff the composition of f with each projection
is continuous. There is an analogue of this proposition for quo-
tient spaces.

9 THEOREM Let f be a continuous map of a space X onto a space
Y and let Y have the quotient topology. Then a function g on'Y to
a topological space Z is continuous if and only if the composition
g°f is continuous.



96 PRODUCT AND QUOTIENT SPACES

PprooF If Uis open in Z and g~ fis continuous, then (g f) ~'[U]
= f~Yg[U]], which is open in X, and g~*[U] is therefore open
in Y by the definition of the quotient topology. The converse
is clear. |

It is almost evident that the quotient topology and the prop-
erties of open or closed maps have little to do with the range
space. In fact, if f is a continuous map of a topological space X
onto a space Y with the quotient topology, then a topological
copy of Y may be reconstructed from X, its topology, and the
family of all sets of the form f~[y] for y in Y. The construction
goes as follows. Let D be the family of all subsets of X of the
form f~![y] for y in Y, and let P be the function on X to D whose
value at x is f7![f(x)]. For each member y of Y let g(y) =
Sy, so that g is a one-to-one map of Y onto ®. Then g« f =
P,and f = g='- P. If Dis assigned the quotient topology (rela-
tive to P) the preceding theorem 3.9 shows the continuity of g
(since gof = P) and the continuity of g~ (since g=1- P = f).
Consequently g is a homeomorphism.

The preceding remarks show that the range space is essentially
extraneous to the discussion, and the remaining theorems of the
section will be formulated so as to display this fact. As a pre-
liminary we consider briefly the families of subsets of a fixed set
X. A decomposition (partition) of X is a disjoint family © of
subsets of X whose union is X. The projection (quotient map)
of X onto the decomposition D is the function P whose value at
% is the unique member of D to which x belongs. There is an
equivalent way of describing a decomposition. Given D, define
a relation R on X by agreeing that a point x is R related to a
point y iff x and y belong to the same member of the decomposi-
tion. Formally, the relation R of the decomposition ® is the
subset of X X X consisting of all pairs (x,y) such that x and y
belong to the same member of D, or, briefly, R = J{D X D:
De®D}. If P is the projection of X onto D, then R = {(x,y):
P(x) = P(y)}. The relation R is an equivalence relation: that
is, it is reflexive, symmetric, and transitive (see chapter 0). Re-
ciprocally, each equivalence relation on X defines a family of
subsets (the equivalence classes) which is a decomposition of X.
If R is an equivalence relation on X, then X/R is defined to be
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the family of equivalence classes. If 4 is a subset of X, then
R[A] is the set of all points which are R relatives of points of A
that is, R[4] = {y: (x,y) e R for some x in A}. Equivalently,
RlA4] = U{D: De X/Rand D N A is non-void}. If xisa point
of X, then we abbreviate R[{x}] as R[x]. The set R[x] is the
equivalence class to which x belongs, and if P is the projection
of X onto the decomposition, then P(x) = R[x].

We assume for the rest of the section that X is a fixed topo-
logical space, R is an equivalence relation on X, and that P is
the projection of X onto the family X/R of equivalence classes.
The quotient space is the family X/R with the quotient topology
(relative to P). If @ < X/R, then P7}a] = U{4: 4ea} and
hence @ is open (closed) relative to the quotient topology iff
U{4: 4ea} is open (respectively closed) in X.

10 TueoREM Let P be the projection of the topological space X onto
the quotient space X/R. Then the following stalements are equiva-
lent.

(a) P is an open mapping.

(b) If A is an open subset of X, then R[A] is open.

(c) If 4 is a closed subset of X, then the union of all members of
X/R which are subsets of A is closed.

If “open” and “‘closed” are interchanged in (a), (b), and (c)
the resulting statements are equivalent.

PROOF It is first shown that (a) is equivalent to (b). For each
subset A4 of X, the set R[4] = P~'[P[4]]. If P is open and A is
open, then, since P is continuous, P "}[P[A]] is open. If P~ [P[A]]
is open for each open set A4, then, since by the definition of the
quotient topology P[A] is open, P is an open mapping. To prove
(b) equivalent to (c) notice that the union of all members of
X/R which are subsets of 4 is X ~ R[X ~ A], and this set is
closed for each closed A iff R[X ~ A] is open whenever X ~ 4
is open. A proof of the dual proposition is obtained by inter-
changing “open” and “closed” throughout. ||

If X is a Hausdorff space or satisfies one of the axioms of
countability it is natural to ask whether the quotient space X/R
necessarily inherits these properties. Without some drastic re-
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striction the answer is “no.” For example, if X is the set of real
numbers with the usual topology and R is the set of pairs (x,y)
such that » — y is rational, then the quotient space X/R is in-
discrete, and the projection P of X onto X/R is open. Conse-
quently an open map may carry a Hausdorff space into a non-
Hausdorff space. An example of a closed map which carries a
Hausdorff space onto a non-Hausdorff space or carries a space
satisfying the first axiom of countability onto a space which fails
to satisfy the axiom, is slightly more complex but not difficult.
(3.R, 4.G.) There is an additional hypothesis which is sometimes
useful. It is sometimes assumed that R, which is a set of ordered
pairs, is closed in the product space X X X. This condition
may be restated: if x and y are members of X which are not R
related, then there is a neighborhood # of (x,y) in the product
space X X X which is disjoint from R. Such a neighborhood #
contains a neighborhood of the form U X #, where U and ¥ are
neighborhoods of x and y respectively, and U X 7 is disjoint
from R iff there is no point of U which is R related to a point of
V. That is, R is closed in X X X iff, whenever x and y are
points of X which are not R related, then there are neighborhoods
U and 7 of x and y respectively such that no point of U is R re-
lated to a point of 7. Equivalently, no member of X/R inter-
sects both U and 7.

11 THEOREM If the quotient space X/R is Hausdorff, then R is
closed in the product space X X X.

If the projection P of a space X onto the quotient space X/R is
open, and R is closed in X X X, then X/R is a Hausdorff space.

prooF If X/R is a Hausdorff space and (x,y) ¢ R, then P(x) £
P(y) and there are disjoint open neighborhoods U of P(x) and
V of P(y). The sets P~![U] and P~![¥] are open, and since
their images under P are disjoint, no point of P~![U] is R re-
lated to a point of P~[/]. Therefore P7[U] X P~ [V] is a
neighborhood of (x,y) which is disjoint from R, and R is closed.
The first statement of the theorem is proved. Suppose now that
P is open, R is closed in X X X, and P(x) and P(y) are distinct
members of X/R. Then x is not R related to y and, since R is
closed, there are open neighborhoods U and 7 of » and y re-
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spectively such that no point of U is R related to a point of 7.
Hence the images of U and /7 are disjoint, and since P is open
they are open neighborhoods of P(x) and P(y) respectively. |

Closed maps have been studied rather extensively under a dif-
ferent name. A decomposition D of a topological space X is
upper semi-continuous iff for each D in ® and each open set U
containing D there is an open set # such that D ¢ 7/ < U and
V is the union of members of D. (See problem 3.F for the origin
of the term “upper semi-continuous.”)

12 TueEOREM A decomposition D of a topological space X is upper
semi-continuous if and only if the profection P of X onto ® is
closed.

PrROOF According to theorem 3.10, P is a closed map iff for each
open subset U of X it is true that the union 7 of all members of
© which are subsets of U is an open set. If P is closed, De®
and D c U, then 7 is the required open set and hence D is upper
semi-continuous. To prove the converse suppose that D is upper
semi-continuous and that U is an open subset of X. Let 7 be
the union of all members of ® which are subsets of U. If x e 7,
then x e D c U for some D in ®. Hence by upper semi-conti-
nuity there is an open set /7, the union of members of D, such
that D c W < U. Then W is a subset of 7 and consequently
V is a neighborhood of x. The set 7 is open because it is a neigh-
borhood of each of its points, and it follows from 3.10 that P is
a closed map. |1

If 4 and B are disjoint closed subsets of X one may define the
decomposition D of X whose members are A4, B, and all sets {x}
for ¥ in X ~ (4 U B). The quotient space of this decomposi-
tion is sometimes called “the space obtained by identifying all
points of A4 and identifying all points of B.” It is very easy to
verify that © is upper semi-continuous, and if X is Hausdorff
the relation R = J{D X D: D e D} is closed in X X X. One
might suppose that with this simple construction the quotient
space might inherit pleasant properties of the space X. Unfor-
tunately, even in this case X may be Hausdorff or satisfy the
first or second countability axiom and the corresponding propo-
sition for the quotient space be false.
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13 Note The notion of upper semi-continuous collection was in-
troduced by R. L. Moore in the late twenties; open mappings
were first studied intensively by Aronszajn a little later (Aron-
szajn [2]). Many of the results of the preceding section will be
found in Whyburn [2].

PROBLEMS

A CONNECTED SPACES
The image under a continuous map of a connected space is con-
nected.

B THEOREM ON CONTINUITY

Let 4 and B be subsets of a topological space X such that X = 4 U B,
and 4 ~ B and B ~ A are separated. If fis a function on X which
is continuous on A and continuous on B, then f is continuous on X.
(See 1.19.)

C EXERCISE ON CONTINUOUS FUNCTIONS

If  and g are continuous functions on a topological space X with
values in a Hausdorff space Y, then the set of all points ¥ in X such
that f(x) = g(x) is closed. Consequently, if f and g agree on a dense
subset of X (f(x¥) = g(x) for x belonging to a dense subset of X), then
f=zs
D CONTINUITY AT A POINT; CONTINUOUS EXTENSION

Let f be defined on a subset Xj of a topological space X with values
in a Hausdorff space Y; then f is continuous at x iff x belongs to the
closure of Xy and for some member y of the range the inverse of each
neighborhood of y is the intersection of X and a neighborhood of «.

(a) A function fis continuous at x iff x & Xo and whenever § and T are
nets in X, converging to x then f ° § and f ° T converge to the same point
of Y.

(b) Let C be the set of points at which f is continuous and let f* be
the function on C whose value at a point x is the member y of the range
space which is given by the definition of continuity at a point (more
precisely, the graph of £/ is the intersection of C X Y with the closure
of the graph of f). The function f’ has the property: If U is open in
X, then f'[U] € f[U]". The function f’ is continuous, provided Y
has the property: The family of closed neighborhoods of each point of
Y is a base for the neighborhood system of the point. (Such topological
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spaces are called regular. The requirement that Y be regular is essen-
tial here, as shown by Bourbaki and Dieudonné [1}.)

E EXERCISE ON REAL-VALUED CONTINUOUS FUNCTIONS

Let f and g be real-valued functions on a topological space, let f and
£ be continuous with respect to the usual topology for the real numbers,
and let 4 be a fixed real number.

(a) The function 4 f, whose value at x is 2 f(x), is continuous. (Show
that the function which carries the real number r into 47 is continuous,
and use the fact that the composition of continuous functions is con-
tinuous.)

(b) The function | f|, whose value at x is | f(x) |, is continuous.

(c) If F(x) = (f(x), g(x)), then F is continuous relative to the usual
topology for the Euclidean plane. (Verify that F followed by projec-
tion into a coordinate space is continuous.)

(d) The functions f + g, f — g, and f-g are continuous, and if g is
never zero, then f/g is continuous. (First show that 4, —, and - are
continuous functions on the Euclidean plane to the space of real num-
bers. (See also 3.8.))

(e) The functions max [f,g] = [(f + &) +|f — £]1/2 and min [f,g]
= [(f+ g — |f — g]|1/2 are continuous.

F UPPER SEMI-CONTINUOUS FUNCTIONS

A real-valued function f on a topological space X is upper semi-
continuous iff the set {x: f(x) = 4} is closed for each real number 4.
The upper topology U for the set R of real numbers consists of the
void set, R, and all sets of the form {#: # < @} forain R. If {S,, n € D}
is a net of real numbers, then lim sup {§,: # € D} is defined to be lim
{sup {Sm: m € D and m = n}: n € D} where this limit is taken rela-
tive to the usual topology for the real numbers.

(a) A net {8y, #7 &€ D} of real numbers converges to s relative to U iff
limsup {S,: 7 e D} = s.

(b) If f is a real-valued function on X, then f is upper semi-contin-
uous iff f is continuous relative to the upper topology U, and this is
the case iff lim sup {f(x,): # € D} < f(x) whenever {x,, » € D} is a
net in X converging to a point x.

(c) If f and g are upper semi-continuous and # is a non-negative real
number, then f + g and #f are upper semi-continuous.

(d) If F is a family of upper semi-continuous functions such that
i(x) = inf { f(x):f € F} exists for each # in X, then 7 is upper semi-
continuous. (Observe that {x:i(x) = &} = N{{x:f(x) = a}:f e F}.)
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(e) Iffis a bounded real-valued function on X, then there is a smallest
upper semi-continuous function f~ such that f~ = f. If U is the
family of neighborhoods of a point x and Sy = sup {f(y): y € 7}, then
S (x) = lim {Sy, Vev,C}.

(f) A real-valued function g is called lower semi-continuous iff —g is
upper semi-continuous. If f is a bounded real-valued function, let
f— = —(—=f)" and let the oscillation of f, O, be defined by Qs(x) =
ST (%) — f_(x) for x in X. Then @y is upper semi-continuous, and f is
continuous iff Qy(x¥) = O for all ¥ in X.

(g) Let f be a non-negative real valued function on X, let R have
the usual topology, and let G = {(x,): 0 < ¢ < f(x)} have the rela-
tivized product topology of X X R. Let D be the decomposition of
G into “vertical slices”; that is, sets of the form ({x} X R) N G. If
the decomposition D is upper semi-continuous, then f is upper semi-
continuous. (The converse is also true but the simplest proof requires
theorem 5.12.)

G EXERCISE ON TOPOLOGICAL EQUIVALENCE

(a) Any two open intervals of real numbers, with the relativized
usual topology for the reals, are homeomorphic.

(b) Any two closed intervals are homeomorphic, and any two half-
open intervals are homeomorphic.

(c) No open interval is homeomorphic to a closed or half-open inter-
val, and no closed interval is homeomorphic to a half-open interval.

(d) The subspace {(%,y): ¥2 4+ »% = 1} of the Euclidean plane is not
homeomorphic to a subspace of the space of real numbers.

(Certain of the foregoing spaces have one or more points x such
that the complement of {x} is connected.)

H HOMEOMORPHISMS AND ONE-TO-ONE CONTINUOUS MAPS

Given two topological spaces X and Y, a one-to-one continuous map
of Y onto X and a one-to-one continuous map of X onto Y: then X and
Y are not necessarily homeomorphic. (Let the space X consist of a
countable number of disjoint half-open intervals and a countable num-
ber of isolated points (points x such that {x} is open). Let Y consist
of a countable number of open intervals and a countable number of
isolated points. Observe that a countable number of half-open inter-
vals can be mapped in a one-to-one continuous way onto an open
interval. I believe this example is due to R. H. Fox.)

I CONTINUITY IN EACH OF TWO VARIABLES

Let X and Y be topological spaces, X X Y the product space, and
let f be a function on X X Y to another topological space. Then f(x,y)
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is continuous in x iff for each y the function f( ,y) whose value at x is
f(%,y), is continuous. Similarly, f(x,y) is continuous in y iff for each
x € X, the function f(x, ) such that f(x, )(y) = f(x,y), is continuous.
If f is continuous on the product space, then f(x,y) is continuous in
x and in y, but the converse is false. (The classical example is the real-
valued function f on the Euclidean plane such that f(x,y) = xy/(x*> + y?)
and £(0,0) = 0.)

J EXERCISE ON EUCLIDEAN #7-SPACE

A subset 4 of Euclidean n-space E, is convex iff for every pair x and
y of points of 4 and every real number # such that 0 <7 < 1, the
point #x + (1 — )y is a member of 4. (We define (tx + (1 — £)y); =
tx; + (1 — £)y;.) Then any two non-void open convex subsets of E,, are
homeomorphic. What of closed convex subsets?

K EXERCISE ON CLOSURE, INTERIOR AND BOUNDARY IN PRODUCTS

Let X and Y be topological spaces and let X X Y be the product
space. For each set C let C® be the boundary of C. Then, if 4 and B
are subsets of X and Y respectively,

@) AXB)~"=4"XB",

(b) (4 X B)® = 4° X B, and

() (AXBP=(4dXB)~~(4XB)°®= (AU A X (B°U B%)
~(4° X B = (4 X B®) U (4°* X B° U (A° X B®) = (4> X B")
U (4~ X B.

L EXERCISE ON PRODUCT SPACES

Suppose that, for each member 4 of an index set 4, X, is a topolog-
ical space. Let B and C be disjoint subsets of 4 such that 4 = B U C.
Then the product space X {Xs: 4 € B} X X{X.: ¢ e C} is homeomorphic
to the product space X {X,:2 & 4}. For each fixed topological space
X the product X4 is homeomorphic to X? X X€ and (X®)€ is homeo-
morphic to XBXC all spaces being given the product topology.

M PRODUCT OF SPACES WITH COUNTABLE BASES

The product topology has a countable base iff the topology of each
coordinate space has a countable base and all but a countable number
of the coordinate spaces are indiscrete.

N EXAMPLE ON PRODUCTS AND SEPARABILITY

Let Q be the closed unit interval and let X be the product space Q9.
Let A be the subset of X consisting of characteristic functions of points;
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more precisely, x & 4 iff for some ¢ in Q, x(g) = 1 and & is zero on
0~ {q}. ‘

(a) The space X is separable. (The set of all ¥ in X with finite range
(sometimes called step functions) are dense in X. There is also a count-
able subset of this set which is dense in X.)

(b) The set A, with the relative topology, is discrete and not separa-
ble.

(c) There is a single accumulation point ¥ of 4 in X, and if U'is a
neighborhood of ¥, then 4 ~ U is finite.

O PRODUCT OF CONNECTED SPACES

The product of an arbitrary family of connected topological spaces
is connected. (Fix a point «x in the product, and let 4 be the set of all
points y such that there is a connected subset to which both x and y
belong. Show that A is dense.)

P Exercise oN T)-SPACES

The product of Ty-spaces is a Ty-space. If D is a decomposition of a
topological space, then the quotient space is T; iff the members of ®
are closed.

Q EXERCISE ON QUOTIENT SPACES

The projection of a topological space X into the quotient space X/R
is a closed map iff, for each subset 4 of X, R[4]~ < R[47). The pro-
jection is open iff R[4°] © R[A]° for each subset 4. (~ and © are the
closure and interior respectively.)

R EXAMPLE ON QUOTIENT SPACES AND DIAGONAL SEQUENCES

Let X be the Euclidean plane with the usual topology, let 4 be the
set of all points (¥,y5) with y = 0, and let the decomposition D consist
of 4 and all sets {(x,y)} with (x,y) # 4. Then D, with the quotient
topology, has the following properties.

(a) The projection of X onto the quotient space is closed.

(b) There is a countable number of neighborhoods of 4 whose inter-
section is {A]}.

(c) For each non-negative integer m the sequence {(m,1/(n 4 1)),
n e w} converges, in the quotient space, to 4. If {N,, n € w} is a sub-
sequence of the sequence of non-negative integers, then the sequence
{(n,1/(Ny + 1)), new} does not converge to 4. (The latter might
be called a diagonal of the original family of sequences.)
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(d) The quotient space does not satisfy the first axiom of counta-
bility.
Note This example is due to R. S. Novosad.

S TOPOLOGICAL GROUPS

A triple (G,-,3) is a topological group iff (G,-) is a group, (G,J) is a
topological space, and the function whose value at a member (x,y) of
G X G is x-y™! is continuous relative to the product topology for
G X G. When confusion is unlikely all mention of the group opera-
tion - and the topology 3 is suppressed, and we say “G is a topological
group.” If X and Y are subsets of G, then X-Y is the set of all points z
of G such that z = x-y for some ¥ in X and some y in Y. If x is a point
of G we abbreviate {x¥}-Y and Y-{x} to #-Y and Y-« respectively,
and Y~ is defined to be {x: "1 e Y}.

(a) If X, Y, and Z are subsets of G, then (X-Y)-Z = X-(Y-Z) and
(X)) '=Y1.X

(b) Let (G,-) be a group and J a topology for G. Then (G, ,3) is a
topological group iff for each x and y in G and each neighborhood # of
x+y~ there are neighborhoods U of # and ¥ of y such that U- ¥~ c #.
Equivalently, (G,-,3) is a topological group iff £ and m are continuous,
where i(x) = ™! and m(x,y) = x-y.

(c) If G is a topological group, then #, where i(x) = »™2, is a homeo-
morphism of G onto G. For each 4 in G both L; and R, (called the
left and right transiations by a) are homeomorphisms, where Ly(x) =
a-% and Ry(x) = x+a.

It is very important to notice that the topology of a topological
group is determined by the neighborhood system of a member of the
group. This fact (precisely stated below) permits the “localization”
of many notions.

(d) If G is a topological group and U is the neighborhood system of
the identity, then a subset 4 of G is open iff x™*- 4 e for each x in
A4 or equivalently if £-x~! e for each ¥ in 4. The closure of the
subset Ais [ {U-4: Ueu} =N {4 -U: Ueu}. (Notice thatxe U-A4
iff (U™1.x) N A is not void.)

(¢) The family U of neighborhoods of the identity ¢ of a topological
group has the properties:

(i) if U and 7 belong to U, then U N P eu;

Gi) if Uew and U C 7, then Veu;
(iii) if Uea, then for some Ve, ¥-¥V! C U; and
(iv) for each Uin 4 and each xin G, #-U-x"' eL.
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On the other hand, given a group G and a non-void family U of non-
void subsets satisfying these four propositions there is a unique topology
3 for G such that (G,-,3) is a topological group and U is the neighborhood
system of the identity element.

(f) Every group, with the discrete topology or with the indiscrete
topology, is a topological group If G is the set of real numbers, then
(G,+,3), where 3 is the usual topology, is a topological group and
(G ~ {0},-,3) is also a topological group. If G is the set of all integers,
p is a prime and U is the family of all subsets U of G such that for some
positive integer k every integral multiple of p* belongs to U, then U is
the neighborhood system of O relative to a topology 3 such that (G,+,3)
is a topological group.

(g) A topological group is a Hausdorff space whenever it is To-space.
(That is, if ¥ and y are distinct elements there is either a neighborhood
of x to which y does not belong or the reverse. Observe thatif x ¢ U-y,
then x-y~ 1 ¢ U, and if V1.7V c U, then V-x N V-y is void.)

(h) If Uis open and X is an arbitrary subset of a topological group,
then U-X and XU are open. However, both X and Y may be closed
subsets and XY may fail to be closed. (Consider the Euclidean plane
with the usual addition with X = Y = {(x,y): y = 1/+%}.)

(i) A cartesian product X{G,: ae 4} of groups is a group under
the operation: (¥-¥)s = %,-¥s for each @ in 4. The product, with the
product topology, is a topological group and the projection into each
coordinate space is a continuous open homomorphism.*

Note Bourbaki [1], Pontrjagin [1], and Weil [2] are standard ref-
erences on topological groups; see also Chevalley [1].

T SUBGROUPS OF A TOPOLOGICAL GROUP

(a) A subgroup of a topological group is, with the relative topology,
a topological group.

(b) The closure of a subgroup is a subgroup and the closure of an
invariant subgroup is invariant (invariant = normal = distinguished).

(c) Every subgroup with non-void interior is open and closed. A
subgroup H is either closed or H~ ~ H is dense in H .

(d) The smallest subgroup which contains a fixed open subset of a
topological group is both open and closed.

(e) The component of the identity in a topological group is an in-
variant subgroup.

* Some authors use the term “representation” to mean continuous homomorphism,

and the term “homomorphism” to mean a continuous homomorphism which is an open
map onto its range.
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(f) A discrete (with the relative topology) normal subgroup of a
connected topological group is a subset of the center. (For a fixed
member 4 of the subgroup H consider the map of G into H which carries
xinto x - h-x.)

U FACTOR GROUPS AND HOMOMORPHISMS

Let G be a topological group, H a subgroup, G/H the family of left
cosets (sets of the form x-H for some x in G). Then G/H with the
quotient topology is a homogeneous space. 1f H is an invariant sub-
group, then G/H is a group, called the factor group or quotient group.

(a) The projection of a topological group G onto the homogeneous
quotient space G/H is open and continuous. (Show that the union of
all left cosets which intersect an open set U is U H and apply 3.10.)

(b) If H is an invariant subgroup, then G/H, with the quotient
topology, is a topological group and the projection is a continuous, open
homomorphism.

(c) The map of the homogeneous space which carries an element A4
into - A, where 4 is a fixed member of G, is a homeomorphism.

(d) If f is a homomorphism of a topological group G into another
group H, then f is continuous iff the inverse of a neighborhood of the
identity element of H is a neighborhood of the identity of G.

(e) If f is a continuous homomorphism of the topological group G
into a topological group J, then the map of G onto f[G], where f[G] has
the quotient topology, is a continuous open homomorphism, and the
identity map of f[G], with the quotient topology, into J is continuous.
Hence each continuous homomorphism may be “factored” into a con-
tinuous open homomorphism followed by a continuous one-to-one
homomorphism. If f is a continuous open homomorphism of G onto
J, then J is topologically isomorphic to G/K where K is the kernel of

(H If Jc HcC G and J and H are invariant subgroups of G, then
H/] is a subgroup of G/J, the quotient topology for H/] is the relative
quotient topology for G/J, and the map of G/ into G/H which carries
A into A-H is continuous and open, and hence (G/J)/(H/]) is topo-
logically isomorphic to G/H.

V BOX SPACES

A base for the sox topology for the cartesian product X {X,: a & 4}
is the family of all sets X {U,: @ € 4} where U, is open in X, for each
a in 4. Hence the cartesian product of open sets is open relative to
the box topology.
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(a) Projection into each coordinate space is, relative to the box
topology, continuous and open.

(b) Let Y be the cartesian product of the real numbers an infinite
number of times; that is, Y = R4, where R is the set of real numbers
and A is an infinite set. With the box topology Y does not satisfy the
first countability axiom, and the component of ¥ to which a point y
belongs is the set of all points & such that {a: x, # y,} is finite. (Let
% and y be points of Y whose coordinates differ for an infinite set
@gy @1y * 5 dp - -+ of members of 4. Let Z be the set of all zin Y such
that for some &, | 2(a,) — x(ap) |/| #(ap) — ¥(ap) | < k for all p. Then
Z is open and closed, xe Z and y ¢ Z.)

(c) Prove the results of (b) for the product of an infinite number of
connected, Hausdorff topological groups, each of which contains at
least two points. Show first that the product of topological groups is,
with the box topology, a topological group.

W FUNCTIONALS ON REAL LINEAR SPACES

Let (X,+,-) be a real linear space. A real-valued linear function on
X is called a /inear functional. The set Z of all linear functionals on X
is, with the natural definition of addition and scalar multiplica-
tion, a real linear space. It is clear that Z is a subset of the product
RX = X{R: xe X}, where R is the set of real numbers. The rela-
tivized product topology for Z is called the weak* or w*-topology (the
simple topology). (The space Z is a subgroup of RX, which is a topo-
logical group according to 3.S(i); however, the following results do not
require the propositions on topological groups.)

The following propositions characterize w*-dense subspaces of Z and
w*-continuous linear functionals.

(a) If £, g1, - -, gn are members of Z and f(x) = O whenever gi(x) = 0
for each 7, then there are real numbers a4y, - - -, @, such that f = > {a;g::
i =1, ---,n}. (Consider the map G of X into E" defined by (G(x)); =
2i(¥). Show that there is an induced map F (see chapter 0) such that
f=F-G)

(b) Density lemma Let Y be a linear subspace of Z such that for
each non-zero member x of X there is g in Y such that g(¥) ¢ 0. Then
Y is w*-dense in Z. (To show that fe Y™ it is necessary to prove that
for each finite subset ¥, - -, ¥, of X there is a member of ¥ which
approximates f at each of x1, - --, ¥,. Show there is g in ¥ such that
g(x) = f(x;) foreach i, i =1, -+, n.)

(c) Evaluation theorem A linear functional F on Z is w*-continuous
iff it is an evaluation; that is, iff for some x in X it is true that
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F(g) = g(») for all gin Z. (If F is w*-continuous, then for some ¥y,
--+, %, in X and some positive real numbers 7y, - -+, 7, it is true that
| F(g) | < 1 whenever | gx;) I < r; for each i. Show that, if g(x;) =0
for each #, then F(g) = 0.)

Notes The concept of the product topology grew out of the study
of sequential convergence relative to the w*-topology. The latter has
been studied extensively (see, for example, Banach [1]). There were
several awkward situations which arose in this study, which have been
somewhat clarified by further topological developments. One might
define the sequential closure of a set to be the union of the set and all
limit points of sequences in the set, and agree that a set is sequentially
closed iff it is identical with its sequential closure. Then it is not hard
to see that a set may be sequentially closed relative to the w*-topology
but may fail to be w*-closed. This is not a serious criticism if sequential
convergence is the object under study. However, the really damaging
fact is that the sequential closure of a set may fail to be sequentially
closed; that is, sequential closure is not a Kuratowski closure operator.
Because of this the machinery of general topology does not apply to
the sequential closure operator, and ad koc arguments are necessary for
each conclusion. See Banach [1; 208 ff] for further discussion and
examples.

X REAL LINEAR TOPOLOGICAL SPACES

A real linear topological space (r.l.t.s) is a quadruple (X,+,-,3) such
that (X,+,-) is a real linear space, (X,+,3) is a topological group, and
the scalar multiplication, -, is a continuous function on X X (resa/
numbers) to X. Recall that a subset K of a real linear space is convex
iff, whenever 0 £ #=<1 and x and y are members of K, then
tx+(1-85-yek.

(a) The function which, for a fixed real number 4, a 0, carries
each member & of a real linear topological space into 4-x is a homeo-
morphism.

(b) The cartesian product of real linear topological spaces is, with
addition and scalar multiplication defined coordinate-wise, and with
the product topology, a r.l.t.s.

(c) If Y is a linear subspace of the r.l.t.s. X, then Y, with the rela-
tive topology, is a r.l.t.s., and X/Y, with the quotient topology, is a
r.l.ts.

(d) Let K be a convex subset of a r.l.t.s. X and f a linear functional
on X. Then f is continuous on K iff, for each real number ¢, the set
S7UA N Kis closed in K. (If {x,, 7 e D} is a net in K, converging to
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a member x of K such that {f(x,), » e D} fails to converge to f(x),
choose for 7 in a cofinal subset of D a point y, on the segment from
%, to x such that f(y,) is a constant different from f(x).)

(e) If f is a real-valued linear function (that is, a linear functional)
on a r.l.t.s. X, then f is continuous iff {¥: f(x¥) = 0} is closed.

Notes The concept of a linear topological space is relatively recent
(Kolmogoroff [1] and v. Neumann [1]); it is a notion which grew out of
the study of the weak and weak* topologies for a Banach space and its
adjoint. Much of the elementary theory of linear topological spaces
is a direct application of the theory of topological groups; the results
which distinguish the theory from that of topological groups all depend
on convexity arguments. (This is a perfectly normal state of affairs;
the chief use of the scalar multiplication, which is the only distinguish-
ing feature, is in convexity arguments.) The few results on r.l.t. spaces
which occur in the problems of this book do not constitute an adequate
introduction to the theory because we do not list the propositions on
convexity which are essential to a serious study. The following are
suggested as reading references: Bourbaki [3], Nachbin [1], and Nakano
[1]. The first of these contains a study of linear topological spaces over
a topologized (not necessarily commutative) field.



Chapter ¢

EMBEDDING AND METRIZATION

The development of general topology has followed an evolu-
tionary pattern which occurs frequently in mathematics. One
begins by observing similarities and recurring arguments in sev-
eral situations which superficially seem to bear little resemblance
to each other. We then attempt to isolate the concepts and
methods which are common to the various examples, and if the
analysis has been sufficiently penetrating we may find a theory
containing many or all of our examples, which in itself seems
worthy of study. It is in precisely this way, after much experi-
mentation, that the notion of a topological space was developed.
It is a natural product of a continuing consolidation, abstraction,
and extension process. Each such abstraction, if it is to contain
the examples from which it was derived in more than a formal
way, must be tested to find whether we have really found the
central ideas involved. This testing is usually done by compar-
ing the abstractly constructed object with the objects from which
it derived. In this case we want to find whether a topological
space, at least under some reasonable restrictions, must neces-
sarily be one of the particular concrete spaces from which the
notion is derived. The “standard” examples with which we
compare spaces are cartesian products of unit intervals and metric
spaces. In this chapter the elementary properties of metric and
pseudo-metric spaces are developed, and necessary and sufficient
conditions are given under which a space is a copy of a metric

space or of a subspace of the cartesian product of intervals.
111
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A word of caution: the notion of a topological space by no
means includes all of the properties which metric spaces possess.
In chapter 6 a different and more penetrating abstraction of the
concept of a metric space is made.

EXISTENCE OF CONTINUOUS FUNCTIONS

In this section we prove four lemmas, all part of a program to
construct real-valued continuous functions on topological spaces.
For the moment we are concerned with a rather special sort of
topological space. A space is normal * iff for each disjoint pair
of closed sets, 4 and B, there are disjoint open sets U and ¥V
such that 4 ¢ U and B c 7. A Ts-space is a normal space
which is T ({x} is closed for each x). If it is agreed that a set
U is a neighborhood of a set 4 iff 4 is a subset of the interior
U° of U, then the definition of normality can be stated: a space
is normal iff disjoint closed sets have disjoint neighborhoods.
There is another restatement of the condition which is also sug-
gestive. A family of neighborhoods of a set is a base for the
neighborhood system of the set iff every neighborhood of the
set contains a member of the family. If 77 is a neighborhood of a
closed subset 4 of a normal space X, then there are disjoint open
sets U and 7 such that 4 c U and X ~ #° c 7, and hence
the arbitrary neighborhood #” of A contains the closed neigh-
borhood U~. Consequently the family of closed neighborhoods
of a closed set A is a base for the neighborhood system of A if
the space is normal. The converse is also true, for if 4 and B
are disjoint closed sets and # is a closed neighborhood of 4
which is contained in X ~ B, then #° and X ~ W are disjoint
open neighborhoods of 4 and B respectively.

Every discrete space and every indiscrete space is normal and
consequently a normal space need not be Hausdorff and may fail
to satisfy the first or second axiom of countability. However, a
Tsspace (T and normal) is surely a Hausdorff space. A closed

* This nomenclature is an excellent example of the time-honored custom of referring
to a problem we cannot handle as abnormal, irregular, improper, degenerate, inadmissible,

and otherwise undesirable. A brief discussion of the abnormalities of the class of normal
spaces occurs in the problems at the end of the chapter.
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subset of a normal space is, with the relative topology, normal.
However, subspaces, products, and quotient spaces of normal
spaces may not be normal. (See 4.E, 4.F.)

There is a condition which for T;-spaces is intermediate to
Hausdorff and normal, and under certain circumstances implies
normality. A topological space is regular iff for each point x
and each neighborhood U of x there is a closed neighborhood /
of x such that 7 c U, that is, the family of closed neighborhoods
of each point is a base for the neighborhood system of the point.
An equivalent statement: for each point x and each closed set 4,
if x ¢ A, then there are disjoint open sets U and » such that
xeU and 4 c V. A regular space which is also T is called a
Ts-space. Recall that a Lindel6f space is a topological space
such that each open cover has a countable subcover.

1 Lemma (TycuoNorr) Each regular Lindeldf space is normal.

PROOF Suppose 4 and B are closed disjoint subsets of X. Be-
cause X is regular, for each point of 4 there is a neighborhood
whose closure fails to intersect B and consequently the family
a of all open sets whose closures do not intersect B is a cover of
4. Similarly, the family U of all open sets whose closures do
not intersect 4 is a cover of B, and u Uv U {X ~ (4 U B)}
is a cover of X. There is then a sequence {U,, # € w} of members
of u which covers 4, and a sequence {¥,, n e w} of members of
© which covers B. Let U,’ = U, ~U{¥/,™: p < n} and let
V), =V, ~U{U,™: p =n}. Since U, N7V, is void for
m = n, it follows that U,’ N 7, is void for m < n. Applying
the same argument with the roles of U and ¥ interchanged,
U, N7V, is void for all m and » and consequently |J{U.’:
new} is disjoint from U{/,’: new}. Finally, ¥, N 4 and
U,~ N B are void for all p and hence the open disjoint sets
U{U.: 7 ew} and U {¥.': » e w} contain A and B respectively. |

In particular, a regular topological space satisfying the second
axiom of countability is always normal.

We now begin the construction of continuous real-valued func-
tions. If 4 and B are disjoint closed sets, we want to construct
a continuous real-valued function which is zero on 4 and one
on B, with all values in the closed interval [0,1]. Instead of con-
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structing the function f directly we construct sets which corre-
spond (approximately) to sets of the form {x: f(x) < ¢}. The
two following lemmas show the relation between a family of sub-
sets and a real-valued function.

2 LemMa  Suppose that for each member t of a dense subset D of
the positive reals F, is a subset of a set X such that

(a) if t < s, then Fy C F,; and
(b) U{Fe:teD} = X.

For x in X let f(x) =inf {#: x e Fy}. Then {x: f(x) < s} =
U{F:: teD and t < s} and {x: f(x) £ s} = {Fe: teD and

t > 5} for each real number s.

PROOF The calculation is direct. The set {x: f(¥) < s} =
{x: inf {#: x € F;} < s}, and since the infimum is less than s iff
some member of {#: x ¢ Fy} is less than s, the set {x: f(x) < s} is
the set of all » such that for some #,¢ < s and x € F,; that is,
U{F.;:teDandt < s}. This establishes the first equality. To
prove the second notice that inf {#:x e F,} = s if for each
greater than s there is # < # such that x ¢ F;. Conversely, if for
each #in D such that # > sitis true that x € F,, then inf {#: x € F'}
< s5 because D is dense in the set of positive numbers. Conse-
quently the set of all ¥ such that f(x) = inf {#:xeF\} = s 1s
{x:ifteDandt > s thenx e F,} = N{F:teDandt > s}. |

3 Lemma Suppose that for each member t of a dense subset D of
the positive reals F, is an open subset of a topological space X such
that

(a) if t < s, then the closure of F is a subset of Fy; and
(b) U{F:te D} = X.

Then the function f such that f(x) = inf {¢: x € F;} is continuous.

PROOF According to 3.1 a function is continuous if the inverse
of each member of some subbase for the topology of the range
space is open, and the family of all sets of the form {#: # < s} or
{#:¢ > s}, for real numbers s, is a subbase for the usual topology
for the set of real numbers. Consequently, to show f continuous
it is sufficient to show that {x:f(x¥) < s} is open and {x:f(x) = s}
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is closed for each real 5. In view of the previous lemma the first
of these, {x: f(x) < s}, is the union of open sets F; and is there-
fore open. With reference again to the previous lemma, {x:
f(x) £ s} = N\{F::teD and t > s}, and the proof will be com-
plete if we show this set is identical with (Y {F;~:¢e D and t > s}.
Since F, < F,~ for each ¢, surely ({F: teD and ¢t > s} C
N{F,~:teD and t > s}. On the other hand, for each # in D
with ¢ > s there is 7 in D such that s < < ¢, and hence such
that F,— < F;. The reverse inclusion follows. |
The principal result of the section is now easily proved.

4 Lemma (UrvsonN) If A and B are disjoint closed subsets of a
normal space X, then there is a continuous function f on X to the
interval [0,1] such that f is zero on A and one on B.

proOF Let D be the set of positive dyadic rational numbers
(that is, the set of all numbers of the form »2~9, where p and ¢
are positive integers). For #in D and ¢t > 1 let F(f) = X, let
F(1) = X ~ B and let F(0) be an open set containing A such
that F(0)~ is disjoint from B. For #in D and 0 < ¢ < 1 write
t in the form # = (2m + 1)2~" and choose, inductively on 7,
F(#) to be an open set containing F(2m2~™)~ and such that
F@)— < F((2m 4+ 2)27"). This choice is possible because X is
normal. Let f(x) = inf {#: x ¢ F(¢)}. The previous lemma shows
that fis continuous. The function f is zero on A because 4 < F(¢)
for each # in D, and f is one on B because F(!) c X ~ B for
t<land F() = X fort > 1. |

EMBEDDING IN CUBES

The cartesian product of closed unit intervals, with the prod-
uct topology, is called a cube. A cube is then the set Q4 of all
functions on a set A4 to the closed unit interval @, with the to-
pology of pointwise, or coordinate-wise, convergence. The cube
is used as a standard sort of space, and we want to describe those
topological spaces which are homeomorphic to subspaces of
cubes. The device used to accomplish this description is simple
but noteworthy; it will be used again in other connections.

Suppose that Fis a family of functions such that each member
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S of Fis on a topological space X to a space Y; (the range may
be different for different members of the family). There is then
a natural mapping of X into the product X {Yy: f ¢ F} which is
defined by mapping a point # of X into the member of the prod-
uct whose f-th coordinate is f(x). Formally, the evaluation map
e is defined by: e(x); = f(x). It turns out that ¢ is continuous
if the members of F are continuous and ¢ is a homeomorphism
if, in addition, F contains “enough functions.” A family F of
functions on X distinguishes points iff for each pair of distinct
points x and y there is f in F such that f(x) = f(y). The family
distinguishes points and closed sets iff for each closed subset 4
of X and each member x of X ~ A there is f in F such that f(x)
does not belong to the closure of f[4].

5 EMBEDDING LEMMA Let F be a family of continuous functions,
each member f being on a topological space X to a topological space
Yf. Then:

(a) The evaluation map e is a continuous function on X to the
product space X{Y;: feF}.

(b) Thefunction e is an open map of X onto e[ X] if F distinguishes
points and closed sets.

(c) The function e is one to one if and only if F distinguishes
points.

prRoOOF The map ¢ followed by projection P, into the f-th co-
ordinate space is continuous because Pyee(x) = f(x). Conse-
quently, by theorem 3.3, ¢ is continuous. To prove statement
(b) it is sufficient to show that the image under ¢ of an open
neighborhood U of a point x contains the intersection of e[X]
and a neighborhood of e(x) in the product. Choose a member
f of F such that f(x) does not belong to the closure of f/[X ~ U].
The set of all y in the product such that y, ¢ f[X ~ U]~ is open,
and evidently its intersection with ¢[X] is a subset of e{U]. Hence
e is an open map of X onto ¢[X]. Statement (c) is clear. ||
The preceding lemma reduces the problem of embedding a
space topologically in a cube to the problem of finding a “rich”
set of continuous real-valued functions on the space. There are
topological spaces on which each continuous real-valued func-
tion is constant. For example, any indiscrete space has this
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property. There are less trivial examples; there are regular
Hausdorff spaces on which every real continuous function is con-
stant.* A topological space X is called completely regular iff
for each member ¥ of X and each neighborhood U of « there is a
continuous function f on X to the closed unit interval such that
f(x) = 0 and f is identically one on X ~ U. It is clear that the
family of all continuous functions on a completely regular space
to the unit interval [0,1] distinguishes points and closed sets, in
the sense of the preceding lemma. (The converse statement is
also true, but will not be needed here.) If a completely regular
space is Ty ({»} is closed for each ), then the family of continu-
ous functions on the space to [0,1] also distinguishes points. A
completely regular Tj-space is called a Tychonoff space. If X
is a Tychonoff space and F is the family of all continuous func-
tions on X to [0,1], then the embedding lemma 4.5 shows that
the evaluation map of X into the cube Q¥ is a homeomorphism.
Thus each Tychonoff space is homeomorphic to a subspace of a
cube. This fact is actually characteristic of Tychonoff spaces,
as will presently be demonstrated.

Each normal Ti-space is a Tychonoff space in view of Ury-
sohn’s lemma 4.4. Each completely regular space is regular, for
if U is a neighborhood of x and f is a continuous function which
is zero at x and one on X ~ U, then V" = {y: f(y) < ¥4} is an
open set whose closure is contained in {y: f(y) < ¥4}, which is
a subset of U. For T-spaces there is a hierarchy of so-called sepa-
ration axioms: Hausdorff, regular, completely regular, and nor-
mal. Except for normality, these properties are hereditary, in
the sense that each subspace of a space X enjoys the property
if X does. The product of spaces of each of these types is again
of the same type, excepting, again, normality. The proofs of
these facts are left as problems (4.H) except for the following,
which is needed now.

6 TueoreM The product of Tychonoff spaces is a Tychonoff space.

proOF For convenience, let us agree that a continuous function
f on a topological space X to the closed unit interval is for a

* See Hewitt [1] and Novak [1]. For other facts on separation axioms see van Est and
Freudenthal [1].
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pair (x,U) iff x is a point, U is a neighborhood of #, f(x) = 0,
and f is identically one on X ~ U. If f;, ---, f, are functions
for (x,Uy), ---, (x,U,), where n is a positive integer, and if
g2(x) = sup {fi(x):i =1, ---, n}, then gis a function for (x, {U;:
i =1, ..-,n}). Consequently the space is completely regular if
for each x and each neighborhood U of x belonging to some sub-
base for the topology there is a function for (x,U). If X is the
product X {X,: ae A} of Tychonoff spaces and x ¢ X let U, be
a neighborhood of x, in X,. If fis a function for (x,,U,), then
f° P, where P, is the projection into the 4-th coordinate space,
is a function for (x,P, ![U,]). The family of sets of the form
P,7[U,] is a subbase for the product topology and hence the
product space is completely regular. Since the product of T;-
spaces is a Tj-space the theorem follows. |

7 EMBEDDING THEOREM In order that a topological space be a
Tychonoff space it is necessary and sufficient that it be homeomorphic
to a subspace of a cube.

PROOF The closed unit interval is a Tychonoff space, and hence
a cube, being a product of unit intervals, is a Tychonoff space by
4.6. Each subspace of a cube is therefore a Tychonoff space. It
has already been observed that if X is a Tychonoff space and F
the set of all continuous functions on X to the closed unit inter-
val Q, then (by the embedding lemma 4.5) the evaluation map
is a homeomorphism of X into the cube Q¥. |

METRIC AND PSEUDO-METRIC SPACES

There are many topological spaces in which the topology is
derived from a notion of distance. A metric for a set X is a
function 4 on the cartesian product X X X to the non-negative
reals such that for all points x, y, and 2 of X,

(a) d(x)v) = d()')x))

(b) (triangle inequality) d(x,y) + d(y,2) = d(x,2),
(c) d(xy) =0if x = y, and

(d) if d(x,y) = 0, then x = y.
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The last of these conditions is inessential for many purposes.
A function 4 which satisfies only (a) and (b) and (c) is called a
pseudo-metric (sometimes an é&cart, although “écart” is also
used in a slightly different sense). All of the definitions of this
section will be made for pseudo-metrics, it being understood that
the same definitions are to hold with “pseudo-metric” replaced
by “metric.”

A pseudo-metric space is a pair (X,d) such that 4 is a pseudo-
metric for X. For members ¥ and y of X the number d(x,y) is
the distance (if confusion seems possible the d-distance) from x to
y. If ris a positive number the set {y: d(x,y) < r} is the open
sphere of d-radius  about x, or briefly the open r-sphere about
x, and {y: d(x,y) < r} is the closed r-sphere about ». The inter-
section of two open spheres may not be a sphere. However, if
d(x,y) < r and d(x,2) < s, then each point w such that d(w,x) <
min [r — d(x,y), s — d(x,2)] is 2 member of both the open r-sphere
about y and the open s-sphere about z because of the triangle in-
equality. Consequently the intersection of two open spheres
contains an open sphere about each of its points, and hence the
family of all open spheres is the base for a topology for X (see
1.11). This topology is the pseudo-metric topology for X. Ob-
serve that each closed sphere is closed relative to the pseudo-
metric topology.

Let X be a set and define d(x,y) to be zero if ¥ = y and one
otherwise. Then 4 is a metric for X and the open 1-sphere about
each point x is {x}; hence {x} is open relative to the metric to-
pology and the space is discrete. The closed 1-sphere about each
point is X and it follows that the closure of an open r-sphere may
be different from the closed r-sphere. If 4 is defined to be zero
for all pairs (v,y) in X X X, then 4 is not a metric, but is a
pseudo-metric. Then the open r-sphere about each point is the
entire space, and the pseudo-metric topology for X is the indis-
crete topology. If X is the set of all real numbers and d(x,y) =
[x — y| then 4 is a metric for X it is called the usual metric
for the real numbers. The usual metric topology is fortunately
the usual topology for the reals.

The distance from a point x to a non-void subset 4 of a pseudo-
metric space is defined to be D(4,x) = inf {d(x,y):y e 4}.
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8 TurorEM If A is a fixed subset of a pseudo-metric space, then
the distance from a point x to A is a continuous function of x rela-
tive to the pseudo-metric topology.

PROOF Since d(x,2) < d(x,v) + d(y,2) it follows, taking lower
bounds for z in 4, that D(4,x) < d(x,y) + D(A4,y). The same
inequality holds with x and y interchanged and hence | D(4,%) —
D(4,y)| = d(x,y). Consequently, if y is in the open r-sphere
about «x, then |D(4x) — D(4,y)| <r and continuity fol-
lows. |

9 TuEOREM The closure of a set A in a pseudo-metric space is
the set of all points which are zero distance from A.

PROOF  Since D(A,x) is continuous in » the set {x: D(A4,x) = 0}
is closed and contains A and hence contains the closure 4~ of A.
If y ¢ A~, then there is a neighborhood of y, which may be taken
to be an open r-sphere, which does not intersect 4. Conse-
quently D(4,y) Z r and hence {x: D(4,x) = 0} © 4—. There-
fore 4= = {x: D(4,x) = 0}. |

10 TuEOREM Each pseudo-metric space is normal,

PROOF Let 4 and B be disjoint closed subsets of a pseudo-
metric space X, and let D(4,x) and D(B,x) be the distance from
% to 4 and B respectively. Let U = {x: D(4,x) — D(B,x) < 0}
and let V' = {x: D(4,x) — D(B,x) > 0}. The function D(4,x)
— D(B,x) is continuous in x and therefore U and ¥ are open.
Clearly U is disjoint from 7, and using 4.9 it follows that 4 ¢ U
and Bc /. |

11 TueoreM Every pseudo-metric space satisfies the Sirst axiom
of countability. The second is satisfied if and only if the space is
separable.

PROOF A set is open relative to the pseudo-metric topology iff
it contains an open sphere about each of its points. Therefore
the family of open spheres about a point « is a base for the neigh-
borhood system of x. Since each open sphere about » contains
a sphere with rational radius there is a countable base for the
neighborhood system and the space satisfies the first axiom of
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countability. Each space which satisfies the second axiom of
countability is separable, so it remains to prove that a separable
pseudo-metric space has a countable base for its topology. Let
Y be a countable dense subset and let u be the family of all open
spheres with rational radii about members of Y. Surely «u is
countable. If Uis a neighborhood of a point x there is, for some
positive 7, an open r-sphere about x which is contained in U.
Let s be a positive rational number less than 7, let y be a point
of Y such that d(x,y) < s/3, and let ¥ be the open 2s5/3 sphere
about y. Then xe#” < U and hence U is a base for the to-

pology. |

12 TurorEM A net {Sa, n e D} in a pseudo-metric space (X,d)
converges to a point s if and only if {d(Ss,s), n e D} converges to
2ero.

PROOF A net {S,, 7 € D} converges to s iff the net is eventually
in each open r-sphere about s, but this is true iff {d(S,,s), # e D}
is eventually in each open r-sphere about 0 in the space of real
numbers with the usual metric. |

The diameter of a subset 4 of a pseudo-metric space (X,d) is
sup {d(x,y): xe 4 and y e 4}. If this supremum does not exist
the diameter is said to be infinite. It is interesting to notice
that the property of having a finite diameter is not a topological
invariant.

13 Tueorem Let (X,d) be a pseudo-metric space, and let e(x,y)
= min [1,d(x,y)]. Then (X,e) is a pseudo-metric space whose to-
pology is identical with that of (X,d).

Consequently each pseudo-metric space is homeomorphic to a
pseudo-metric space of diameter at mosi one.

proor To prove that ¢ is a pseudo-metric it is sufficient to show
that if 4, 4, and ¢ are non-negative numbers such thatz + 4 2 ¢,
then min [1,4] + min [1,5] = min [L,c], for the latter inequality
becomes the triangle inequality for e if we set @ = d(x,y), & =
d(y,2) and ¢ = d(x,z). If either min [1, 4] or min [1,4] is one the
inequality is surely correct since min [1,]] < 1. If neither of
these is one the inequality @ + # = ¢ = min [1,¢] completes the
proof. Consequently ¢ is a pseudo-metric for X. The family of
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all open rspheres, for r less than one, is a base for the pseudo-
metric topology. Since this family is the same whether 4 or ¢
is used as pseudo-metric, the two pseudo-metric topologies are
identical. Clearly the ¢-diameter of X is at most one. |

The product of uncountably many topological spaces does not
generally satisfy the first axiom of countability (see 3.6) and con-
sequently one cannot expect to find a pseudo-metric for the
product of arbitrarily many pseudo-metric spaces such that the
pseudo-metric topology is the product topology. For countable
products the situation is pleasant. Because of the previous theo-
rem we restrict our attention to spaces of diameter at most one.

14 THEOREM Let {(X,,dn), n e w} be a sequence of pseudo-metric
spaces, each of diameter at most one, and define d by: d(x,y) =
24270 (Xnyyn): new}. Then d is a pseudo-metric for the car-
tesian product, and the pseudo-metric topology is the product to-
pology.
PROOF The simple proof that 4 is a pseudo-metric is omitted.
(Problem 2.G on summability contains the necessary machinery.)
To show the two topologies identical, first observe that, if 7 is
a 27?-sphere about a point x of the product and U = {y:d,(xn,y»)
<272 for n < p+ 2}, then Uc V, for if ye U, then
dxy) < ZR2?%in=0, -, p+2} +Z27n=p+3
cer} <2777t 4 27271 =22 But U is a neighborhood of x
in the product topology and it follows that each set which is open
relative to the pseudo-metric topology is open relative to the
product topology. To show the converse consider a member U
of the defining subbase of the product topology. Then U is of
the form {x: x, e #} where # is open in X,. For x in U there
1s an open r-sphere about x, which is a subset of /7, and since
d(x,y) Z 27d.(xnyy.) the open r2 "_sphere about x is a subset
of U. Therefore each member of the defining subbase, and con-
sequently each member of the product topology, is open relative
to the pseudo-metric topology. |

If (X,d) and (Y,¢) are pseudo-metric spaces and f is a map of
X onto Y, then f is an isometry (a d-e isometry) iff d(x,y) =
e(f(x), f(y)) for all points x and y of X. Every isometry is a con-
tinuous open map (relative to the two pseudo-metric topologies)
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because the image of each open r-sphere about x is an open 7-
sphere about f(x). The composition of two isometrics is again
an isometry and if an isometry is one to one the inverse is also
an isometry. On a metric space an isometry is necessarily one
to one and an isometry of a metric space onto a metric space is
a homeomorphism. The collection of all metric spaces is divided
into equivalence classes of mutually isometric spaces. Each
property which, when possessed by a metric space, is also pos-
sessed by each isometric metric space, is a metric invariant. A
metric invariant is not necessarily a topological invariant (for ex-
ample, consider the property of being of infinite diameter).
Each pseudo-metric space differs but little, in one sense, from
a metric space. In making this statement precise it is convenient
to agree that the distance between two subsets, 4 and B, of a
pseudo-metric space is D(A4,B) = dist (4,B) = inf {d(x,y):xe 4
and y e B}. It is generally not true that D is a pseudo-metric,
for the space X is zero distance from every non-void subset and
the triangle inequality fails. However, D is actually a metric
for the members of the decomposition which we want to consider.
For a pseudo-metric space (X,d) let D be the family of all sets
of the form {x}~. Because of 4.9, {x} ™ is precisely the set of all
points y such that d(x,y) = 0, and the decomposition D is the
quotient X/R where R is the relation {(x,y): d(x,y) = 0}.

15 TueoreM Let (X,d) be a pseudo-meiric space, let D be the
family of all sets {x}~ for x in X, and for members A and B of D
let D(A4,B) = dist (4,B). Then (D,D) is a metric space whose to-
pology is the quotient topology for ®, and the projection of X onto
D 15 an isometry.

PROOF A point  is a member of {x}~ iff d(#,x) = 0, and this
is true iff xe {#}~. If ue{x}™ and ve {y}~, then d(uyp) =
d(u,x) + d(x,y) + d(y,) = d(x,y). Consequently, since in this
case it is also true that x e {#}~ and y e {0}, d(u,w) = d(x,y).
It follows that for members 4 and B of ®, D(4,B) is identical
with d(x,y) for every x in A4 and every y in B. Therefore (2,D)
is a metric space and the projection of X onto D is an isometry.
If U is an open set in X and x e U, then, for some » > 0, U con-
tains an open r-sphere about x, and hence contains {x}~. The
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projection of X onto ® is therefore an open map relative to the
quotient topology for ®, by 3.10. The projection is also open
relative to the metric topology derived from D and hence, by
3.8, these two topologies are identical. |

METRIZATION

Given a topological space (X,3), it is natural to ask whether
there is a metric for X such that 3 is the metric topology. Such
a metric metrizes the topological space and the space is said to
be metrizable. Similarly, a topological space is pseudo-metriza-
ble iff there is a pseudo-metric such that the topology is the
pseudo-metric topology. A pseudo-metric is a metric if and only
if the topology is T (that is, iff {x} is closed for each point x)
and it follows that a space is metrizable if and only if it is T
and pseudo-metrizable. The theorems of this section are stated
for metrizable spaces; the corresponding theorems for pseudo-
metrizable spaces will be self-evident.

The two principal theorems of the section give necessary and
sufficient conditions that a topological space be, respectively,
metrizable and separable, and metrizable. The first of these is
the classical metrization theorem of Urysohn; all of the pieces
of its proof are already available and it is simply a matter of
fitting the facts together. The second theorem has been proved
only recently (its history is given in the notes at the end of the
section). It turns out that a mild variant of Urysohn’s procedure
proves the sufficiency of the conditions imposed, but the neces-
sity requires a new sort of construction. A further study of the
concepts introduced here is made in the last section of chapter 5.
Finally, the entire problem of metrization is approached from a
different point of view in chapter 7; however, the results obtained
there do not include the theorems of this section.

The pattern for a proof of metrizability is very simple. Ac-
cording to 4.14 the product of countably many pseudo-metric
spaces is pseudo-metrizable. According to the embedding lemma
4.5, if F is a family of continuous functions on a Tj-space X,
where a member f of F maps X into a space Y}, then the evalua-
tion map of X into X {Y;: fe F} is a homeomorphism whenever
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F distinguishes points and closed sets (that is, if 4 is a closed
subset of X and x is a member of X ~ 4, then f(x) ¢ f[4]~ for
some member f of F). The problem of metrizing a Tj-space X
then reduces to that of finding a countable family of continuous
functions, each on X to some pseudo-metrizable space, such that
F distinguishes points and closed sets. (A pseudo-metrizable
T,-space is necessarily metrizable.)

For convenience, let Q* denote the product of the closed unit
interval with itself countably many times; that is @ is the set
of all functions on the non-negative integers to the closed unit
interval Q, with the product topology.

16 MEeTrizaTiON THEOREM (URYSOHN) A regular Ty-space whose
topology has a countable base is homeomorphic to a subspace of the
cube Q° and is hence metrizable.

prooF In view of the remarks preceding the theorem it is suffi-
cient to show that there is a countable family of continuous
functions on X to Q which distinguishes points and closed sets.
Let ® be a countable base for the topology of X and let @ be the
set of all pairs (U,?) such that U and 7 belong to ® and U~ < 7.
Surely @ is countable. For each pair (U,?) in @& choose a con-
tinuous function f on X to Q such that f is zero on U and one on
X ~ ¥ (such a function exists because of the Tychonoff lemma
4.1 and the Urysohn lemma 4.4) and let F be the family of func-
tions so obtained. Then F is countable and it remains to be
proved that F distinguishes points and closed sets. If B is closed
and ¥ ¢ X ~ B choose a member 7 of ® such thatx eV c X ~ B
and choose U in ® such that x e U~ < 7. Then (U,/) ¢ @, and
if f is the corresponding member of F, then f(x) = 0 ¢ {1} =
S8~ 1

It is easy to describe the class of topological spaces to which
the foregoing metrization theorem applies.

17 TueoreM If X is a Ty-space, then the following are equivalent:

(a) X is regular and there is a countable base for its topology.
(b) X is homeomorphic to a subspace of the cube Q°.
(c) X is metrizable and separable.
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PROOF The previous theorem shows that (a) — (b). The cube
0¥ 1s metrizable, by 4.14, and satisfies the second axiom of count-
ability (3.M). Hence each subspace is metrizable and satisfies
the second axiom of countability and is therefore separable.
Hence (b) — (c). (Caution: it is not true that a subspace of a
separable space is necessarily separable.) Finally (c) — (a), for
if X is metrizable and separable, then it is surely regular and by
4.11 it satisfies the second axiom of countability. |

The metrization theorem for spaces which are not necessarily
separable depends heavily on the ideas which we have already
exploited. A brief discussion of methodology will indicate where
the procedure used so far can be improved. The construction of
a metric for X is accomplished by finding a family of mappings
of X into pseudo-metrizable spaces. But observe: so far the only
space which has been used as the range space is the unit interval
Q. Stated in slightly different form, if f is a function on X to Q,
then one may construct a pseudo-metric for X by letting d(x,y)
= | f(x) —f(») |- The Urysohn metrization is accomplished by
using a countable number of pseudo-metrics of this sort, and the
problem is to generalize this construction. If F is a family of
functions on X to Q, then a possible candidate for a pseudo-metric
is the sum: 3 {| f(x) — f(») |:fe F}. This sum must be continu-
ous in x and y in order that the identity map of X into the pseudo-
metric space (X,d) be continuous, and a condition much weaker
than finiteness of the family F will ensure continuity. It is suffi-
cient, to obtain continuity, that for each point x of X there be a
neighborhood U of x such that all but a finite number of the
members of F vanish on Uj; in other words, a sort of local finite-
ness suffices. This notion of local finiteness is the key to the
problem.

A family @ of subsets of a topological space is locally finite iff
each point of the space has a neighborhood which intersects only
finitely many members of @. It follows immediately from the
definition that a point is an accumulation point of the union
U{4: 4 ea} iff it is an accumulation point of some member of
@, and hence the closure of the union is the union of the closures;
that is, [U{A4: Aea}]” = U{4™: Aea}. It is also evident
that the family of all closures of members of @ is locally finite.
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A family @ is discrete if each point of the space has a neighbor-
hood which intersects at most one member of @ A discrete
family is locally finite, and if @ is discrete, then the family of
closures of members of @ is also discrete. Finally, a family @ is
o-locally finite (o-discrete) if and only if it is the union of a
countable number of locally finite (respectively, discrete) sub-
families.

The following metrization theorem can now be stated. Its
proof is contained in the sequence of lemmas which follows the
statement.

18 METRIZATION THEOREM The following three conditions on a
topological space are equivalent.

(a) The space is metrizable.

(b) The space is Ty and regular, and the topology has a o-locally
finite base.

(c) The space is Ty and regular, and the topology has a o-dis-
crete base.

It is clear that condition (c) implies (b) and it will be proved
that (b) implies (a), and finally that (a) implies (c). The first
step in the proof is a variant of Tychonoff’s lemma, 4.1.

19 Lemma A regular space whose topology has a o-locally finite
base is normal.

prooF If 4 and B are disjoint closed subsets of the space X,
then there are open covers U and U of 4 and B respectively such
that the closure of each member of U is disjoint from B, the clo-
sure of each member of U is disjoint from 4, and both u and
are subfamilies of a o-locally finite base ®. It follows that a =
Ut,: 7ew} and © = U {V,: 7 € w} where U, and U, are locally
finite families. Let U, = U {#: W eu,} and let ¥, = U {#"
Wev,}. Then U,~ = U{#~: We,}, and hence U, ™ is dis-
joint from B and similarly #,~ is disjoint from 4. This is pre-
cisely the situation which occurs in the proof of 4.1, and as there,
the proof is completed by letting U,’ = U, ~U {7372 k < 7},
V, =V, ~U{Ux": k < #n}. The union of the sets U, and
the union of the sets 7, are the required disjoint neighborhoods
of A and B respectively. |
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The following lemma now completes the proof that the condi-
tions listed in 4.18 are sufficient for metrizability.

20 Lemma A regular Ty-space whose topology has a a-locally finite
base is metrizable.

PrROOF It will be shown that there is a countable family D of
pseudo-metrics on the space X such that each member of D is
continuous on X X X and such that for each closed subset 4 of
X and each point x of X ~ A there is a member 4 of D such that
the d-distance from x to A is positive. This will prove metriza-
bility, for the map of X into each of the pseudo-metric spaces
(X,d) will then be continuous, and 4.5 and 4.14 will apply just as
for the Urysohn theorem. The problem is then to construct the
family D. Let ® be a o-locally finite base for the topology of X,
and suppose that & = U {®,: 7 ew} where each ®, is locally
finite. For every ordered pair of integers 7 and # and for each mem-
ber U of ®,, let U’ be the union of all members of ®, whose
closures are contained in U. Because ®, is locally finite the clo-
sure of U’ is a subset of U, and there is a continuous function fy
on X to the unit interval which is one on U’ and zero on X ~ U
by 4.19 and 4.4. Let d(xy) = Z{| fu(®) = fu(®) |: Ue®n}.
The continuity of 4 on X X X is a straightforward consequence
of the local finiteness of ®,. Finally, let D be the family of
pseudo-metrics so obtained; since one pseudo-metric was con-
structed for each ordered pair of integers, D is countable. If A4
is a closed subset of X and x ¢ X ~ 4, then for some 7 and some
Uin ®, it is true that x e U < X ~ A, and for some # and some
Vin ®, it is true that x e # and ¥~ < U. For the pseudo-metric
d constructed for this pair it is clear that the d-distance from x
to A is at least one. |

The most interesting part of the proof of the metrization theo-
rem remains. It must be proved that each metric space has a
o-discrete base. A stronger result than this is true and, since
the more potent theorem will be needed later, we introduce a
new concept. A cover @ of a set X is a refinement of a cover @
iff each member of @ is a subset of a member of @. For example,
in a metric space, the family of all open spheres of radius one
half is a refinement of the family of all open spheres of radius
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one. The following theorem states that any open cover of a
pseudo-metric space has an open refinement which is o-discrete.
This will imply that each pseudo-metric topology has a o-discrete
base, for one may select a o-discrete refinement ®, of the cover
consisting of all open spheres of radius 1/7, and the union of the
families ®, is then a o-discrete base. This fact completes the
proof of the metrization theorem 4.18.

21 Tueorem Each open cover of a pseudo-metrizable space has an
open a-discrete refinement.

PROOF Let 4 be an open cover of the pseudo-metric space
(X,d). The first step in the proof is the decomposition of each
member U of u into “concentric disks.” For each positive inte-
ger n# and each member U of 4 let U, be the set of all members
x of U such that dist [x,X ~ U] = 2. Because of the triangle
inequality it is clear that dist [Un,X ~ Upqq] 2 27" — 27771 =
2=n=1 Choose a relation < which well orders the family u (see
0.25h) and for each positive integer # and each member U of U
let Up* = Uy ~U{(Vnj1: Vewand V < U}. For each U and
V in U and each positive integer # it is true that U,* € X ~
Vot or V. * € X ~ Uy, depending on whether U follows or
precedes 7 in the ordering. In either case dist [U.*/.*] 2
2-=1, Tt follows that if U,” is defined to be the set of all points
x such that the distance from x to U,* is less than 2773, then
dist [U,~,7,~] = 2~2 and hence for each fixed » the family of
all sets of the form U,~ is discrete. Let U be the family of U,™
for all # and all U in 4. Then U is an open cover of X, for if U
is the first member of u to which x belongs, then surely x e U,™
for some #. Evidently U,~ < U, and consequently 0 is a o-dis-
crete open refinement of u. J

22 Notes There are really two metrization problems. The to-
pological problem has just been treated and the problem of uni-
form metrization will be considered in chapter 7 (statement and
history are given there). Curiously enough a satisfactory solu-
tion of the latter was found much earlier than a solution of the
former. Urysohn’s theorem, although treating only a special
case, was certainly the most satisfactory theorem of the topo-
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logical sort until very recently. The key to the present reason-
ably satisfactory situation was furnished by two papers. Dieu-
donné [1] initiated a study of spaces with the property that each
open cover has an open locally finite refinement (paracompact
spaces; see chapter 5). A. H. Stone [1] showed that each metriz-
able space is paracompact (a special case of this theorem was
earlier demonstrated by C. H. Dowker [1]). The o-locally finite
characterization was then discovered independently, by Nagata
[1] and by Smirnov [1]. The o-discrete characterization is due
to Bing [1]. The proof of necessity (4.21) of the metrizability
conditions is actually an initial fragment of Stone’s proof of
paracompactness. " ‘

Smirnov [2] has also showed that paracompactness together
with local metrizability implies metrizability.

Finally a brief statement of the role of pseudo-metrizable spaces
might be made. Most of the spaces which occur naturally in
analysis are pseudo-metric rather than metric, and even in the
metrization problem a construction via pseudo-metrics was con-
venient. Of course, one may always replace a pseudo-metric
space by a related metric space (theorem 4.15), but the process
of taking quotient spaces becomes a bit tedious and for most
purposes the requirement d(x,y) = 0 iff x = y is completely ir-
relevant. One is tempted to work exclusively with pseudo-
metrics, but this has disadvantages, for example, when one seeks
to construct a topological map. A possible way out is to rede-
fine “topological map” to mean a relation which induces a one-
to-one intersection and union-preserving map on the topologies.

PROBLEMS

A REGULAR SPACES

(a) Let X be a regular space and let D be the family of all subsets
of the form {x}™ for ¥ in X. Then D is a decomposition of X, the pro-
jection of X onto the quotient space D is both open and closed, and the
quotient space is regular Hausdorff. (If A is a subset of X which is
either open or closed, then {x}™ C A whenever x e 4.)

(b) The product of regular spaces is again regular.
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B CONTINUITY OF FUNCTIONS ON A METRIC SPACE

A function f on a pseudo-metric space (X,d) to a pseudo-metric space
(Y,e) is continuous iff for each x in X and each ¢ > 0 there is § > 0
such that e(f(x), f()) < eif d(x,y) < 6.

C PROBLEM ON METRICS

Let f be a continuous real-valued function defined on the set of all
non-negative real numbers, such that f(x) =0 iff ¥ =0, f is non-
decreasing, and f(x + y) < f(x) + f(») for all non-negative numbers
% and y. (A function satisfying this last condition is called subaddi-
tive.) If (X,d) is a metric space and e(x,y) = f(d(x,7)), then (X,e)
is a metric space, and the metric topology of the space (X,e) is identical
with that of (X,d). (A particular case of this result which occurs fre-
quently in the literature: f(x) = x/(1 + x).)

D HAUSDORFF METRIC FOR SUBSETS

Let (X,d) be a metric space of finite diameter, and let @ be
the family of all closed subsets. For » > 0 and 4 in @ let V,(A4) =
{x: dist (x,4) < r}, and define, for members A and B of @, d'(A4,B) =
inf {r: A C V,(B) and B C V,(4)}. d’is the Hausdorff metric; it is
not the same as the distance between sets used in the text.

(a) (@,d) is a metric space, and the map which carries ¥ in X into
{x} in @ is an isometry of X onto a subspace of Q.

(b) The topology of the Hausdorff metric for @ is not determined
by the metric topology for X. For example, let X be the set of all posi-
tive real numbers, let d(x,5) = |*/(1 + x) —y/(1 + )|, and let
e(x,y) = min [I,| ¥ — y]]. Then the metric topologies of (X,d) and
(X,e) are identical, but those of (®@,d") and (@,¢’) are different. (In
(@,d") the set of all positive integers is an accumulation point of the
family of all its finite subsets.)

Note For information and references on this topic see Michael [2].

E ExAMPLE (THE ORDINALS) ON THE PRODUCT OF NORMAL SPACES

The product of normal spaces is not generally normal.* Let Qp be
the set of all ordinal numbers less than the first uncountable ordinal
and let @' be @y U {Q}, each with the order topology.

(a) Interlacing lemma Let {x,, new} and {ya, #n€w} be two se-

* It is possible to do part of this problem a little more efficiently using methods from

the following chapter. However, the facts given here will be useful later. I believe the
example is due to J. Dieudonné and A. P. Morde, independently.
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quences in @y such that x, < y, < %.41 for each #n. Then both
sequences converge, and to the same point of Q.

(b) If 4 and B are closed disjoint subsets of ©q, then Q@ is not an
accumulation point of both A4 and B.

(c) Both Q and Q@ are normal. (If 4 and B are closed disjoint sub-
sets and the first point of 4 U B belongs to 4, find a finite sequence
ao, bo, @1, * + + an (or by) such that a; € 4, b; € B, no point of A is between
a; and &;, and no point of B is between &; and a;4, for each 7. The
intervals (4;,4;] are both open and closed.)

(d) If fis a function on Qg to @ such that f(x) = x for each x, then
for some « in Qy, the point (¥,x) is an accumulation point of the graph
of f. (Define a sequence, inductively, such that x, 41 = f(x»), observe
that x, < f(%¥n) = %ny1, and use the interlacing lemma.)

(e) The product Qo X Q' is not normal. (Let A4 be the set of all
points (x,x), and let B = Qy X {@}. If U is a neighborhood of A let
f(x) be the smallest ordinal larger than x such that (x,f(x)) ¢ U.
Then (d) applies.)

F ExAMPLE (THE TYCHONOFF PLANK) ON SUBSPACES OF NORMAL
SPACES

A subspace of a normal space may fail to be normal. Let @' be the
set of ordinal numbers not greater than the first uncountable ordinal
Q, and let o’ be the set of ordinals not greater than the first infinite
ordinal, w, each with the order topology. The product @' X o’ is called
the Tychonoff plank. It is not difficult to prove directly that the plank
is normal; however, this fact is an immediate consequence of a theorem
of the next chapter. Let X be (@ X ') ~ {(@uw)}, so that X is the
plank with a corner point removed. Let A be the set of all points of
X with first coordinate @ and let B be the set of all points with second
coordinate w. Then there are no disjoint neighborhoods of 4 and B.
(If U is a neighborhood of A4, then for x in w let (%) be the first ordinal
such that if y > f(x), then (y,%) e U. The supremum of the values
of f is less than Q.)

G EXAMPLE: PRODUCTS OF QUOTIENTS AND NON-REGULAR HAUSDORFF
SPACES
Let X be a regular Hausdorff space which is not normal, and let 4
and B be disjoint closed sets such that each neighborhood of 4 inter-
sects each neighborhood of B. Let A be the set of all (¥,x) for ¥ in X
(A is the identity relation on X).
(a) Let R=AU (4 X A4). Then R is closed in X X X and the



PROBLEMS 133

quotient space X/R is a Hausdorff space which is not regular. (The
members of the quotient space are A4, and {x} for ¥ in X ~ 4.)

b) Let S =AU (4 X 4 U (B X B). Then Sisclosed in X X X,
but X/§ is not a Hausdorff space. (The members of X/§ are 4, B,
and {x} foreachxin X~ (4 U B).)

(c) There is a natural map of X X X onto (X/S) X (X/§) which
carries (v,y) into (S[x],S[y]). It is natural to ask whether this map is
open, provided X/§ is given the quotient topology and (X/§) X (X/S)
and X X X are given the product topologies. (This is equivalent to
asking whether the product of quotients is topologically equivalent to
the quotient of the product.) If § is the relation defined in (b), then
the map is not open. (Consider the neighborhood X X X ~
(X AU BXBUA)of 4XB.)

H HEREDITARY, PRODUCTIVE, AND DIVISIBLE PROPERTIES

A property P of a space is hereditary iff each subspace of a space with
P also has P; it is productive iff the product of spaces enjoying P has
P; and it is divisible iff the quotient space of each space with P has P.
Consider the properties: Ty, H = Hausdorff, R = regular, CR = com-
pletely regular, T = Tychonoff, N = normal, C = connected, § = sepa-
rable, Ci = first axiom of countability, Ci = second countability
axiom, M = metrizable, and L = Lindelof. The following table is
filled out 4+ or —, depending on whether the property at the head of
the column is or is not of the sort listed on the left. Show by example
(most of the necessary examples have already been mentioned in the
problems) or proof that the listing is correct.

T, H R CR' T N C § G Cu M L
Hereditary + + + + + - = = + 4+ + -
Productive + + 4+ + + - 4+ - = = = -
Divisible - - - - - - 4+ 4+ = - - 4+

Quite different results are obtained if one varies the problem by con-
sidering only closed subspaces, or only open maps.

I HALF-OPEN INTERVAL SPACE

Let X be the set of all real numbers with the half-open interval
topology (a base is the family of all half-open intervals [2,4); see 1.K
and 1.L). Then:

(a) X is regular.
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(b) X is normal. (Recall that every open cover of X has a countable
subcover.)

(c) The product space X X X is not normal. (Let Y = {(x,3):
% + y = 1}, let 4 be the set of all members of Y with first coordinate
irrational, and let B =Y ~ 4. Assume that U and 7 are disjoint
neighborhoods of 4 and B, and for x in A4 let f(x) = sup {e: [x,¢) X
[l — %) © U}. Then f is a function on the set of all irrational
numbers and f is never zero. The contradiction depends on the fact
that for some positive integer 7 there is a rational number which is an
accumulation point of {x: f(x) = 1/#}. This fact is an immediate
consequence of the theorem that the space of real numbers (with the
usual topology) is of the second category (see chapter 7), but a direct
proof seems awkward.)

Note This example is due to Sorgenfrey [1].

J THE SET OF ZEROS OF A REAL CONTINUOUS FUNCTION

A subset of a topological space is called a G;j iff it is the intersection
of the members of a countable family of open sets.

(a) If f is a continuous real valued function on X, then f~1[0] is a
Gs. (The set {0} is a G; in the space of all real numbers.)

(b) If 4 is a closed G; in a normal topological space X, then there
exists a continuous real-valued function f such that 4 = f~1[0].

K PERFECTLY NORMAL SPACES

A topological space is called perfectly normal iff it is normal and each
closed subset is a G;.

(a) Each pseudo-metrizable space is perfectly normal.

(b) The product of an uncountable number of unit intervals is not
perfectly normal. (A Gj in such a space cannot consist of a single
point.)

L CHARACTERIZATION OF COMPLETELY REGULAR SPACES

A topological space is completely regular iff it is homeomorphic to a
subspace of a product of pseudo-metric spaces.

M UPPER SEMI-CONTINUOUS DECOMPOSITION OF A NORMAL SPACE

The image of a normal topological space under a closed continuous
map is a normal space.



Chapter 5

COMPACT SPACES

The notion of a compact topological space is (like every con-
cept studied in this book) an abstraction of certain important
properties of the set of real numbers. The classic theorem of
Heine-Borel-Lebesgue asserts that every open cover of a closed
and bounded subset of the space of real numbers has a finite
subcover. This theorem has extraordinarily profound conse-
quences, and, like most good theorems, its conclusion has become
a definition. A topological space is compact (bicompact) if and
only if each open cover has a finite subcover.* A subset A of a
topological space is compact iff it is, with the relative topology,
compact; equivalently 4 is compact iff every cover of 4 by sets
which are open in X has a finite subcover.

EQUIVALENCES

This section is devoted to characterizations of compactness in
terms of closed sets, convergence, bases, and subbases.

A family @ of sets has the finite intersection property iff the
intersection of the members of each finite subfamily of @ is non-
void. The De Morgan formulae (0.2) on complements furnish
the connection between this notion and the concept of compact-
ness.

* The term “compact” has also been used to denote “sequentially compact” and
“countably compact” (in the terminology of the problems at the end of this chapter).
N. Bourbaki and his colleagues reserve the term “compact” for compact Hausdorff spaces.

135



136 COMPACT SPACES

1 TueorEM A topological space is compact if and only if each
family of closed sets which has the finite intersection property has
a non-void intersection.

PrOOF If @ is a family of subsets of a topological space X, then,
according to the De Morgan formulae, X ~U{4: Lea} =
N{X ~ 4: 4 ¢} and hence @ is a cover of X iff the intersection
of the complements of the members of @ is void. The space X
is compact iff each family of open sets, such that no finite sub-
family covers X, fails to be a cover, and this is true iff each family
of closed sets which possesses the finite intersection property has
a non-void intersection. ||

2 TueoreM A topological space X is compact if and only if each
net in X has a cluster point.

Consequently, X is compact if and only if each net in X has a
subnet which converges to some point of X.

pROOF Let {S,, 7 e D} be a net in the compact topological space
X and for each 7 in D let 4, be the set of all points ., for m = n.
Then the family of all sets 4, has the finite intersection prop-
erty because D is directed by =, and consequently the family
of all closures A4, also has the finite intersection property.
Since X is compact there is a point s which belongs to each 4,7,
and according to theorem 2.7 such a point s is a cluster point of
the net {S,, #eD}. To prove the converse proposition let X
be a topological space in which every net has a cluster point and
let @ be a family of closed subsets of X such that @ has the finite
intersection property. Define & to be the family of all finite in-
tersections of members of @; then ® has the finite intersection
property and since @ C ®, it is sufficient to show N{B: Be®}
non-void. The intersection of two members of & is a member of
® and therefore ® is directed by <. If we choose a member S5
from each B in ®, then {Sg, B € ®} is a net in X and consequently
has a cluster point s. If B and C are members of ® such that
C C B, then S¢ e C C B; therefore the net {§p, Be®} is even-
tually in the closed set B and hence the cluster point s belongs to
B. Therefore s belongs to each member of ® and the intersec-
tion of the members of ® is non-void. Finally, the second state-
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ment of the theorem follows from the fact (2.6) that a point is a
cluster point of a net iff some subnet converges to it. ||

Under certain circumstances compactness can be characterized
in terms of the existence of accumulation points of subsets. The
following sequence of lemmas and the subsequent theorem indi-
cate the situation. The problems at the end of the chapter show
that the limitations imposed are necessary. It is convenient to
use a variant of the notion of accumulation point in stating the
results. A point x is an w-accumulation point of a set A4 iff each
neighborhood of x contains infinitely many points of 4. Each
w-accumulation point of a set is also an accumulation point, and
if the space is T the converse holds.

3 Lemma  Every sequence in a topological space has a cluster point
if and only if every infinite set has an w-accumulation point.

PROOF Suppose that every sequence has a cluster point and that
A is an infinite subset. Then there is a sequence of distinct
points (a one-to-one sequence) in A, and each cluster point of
such a sequence is clearly an w-accumulation point of 4. Con-
versely, if every infinite subset of a topological space has an ac-
cumulation point and {§,, 7 e w} is a sequence in the space, then
one of two situations must occur. Either the range of the se-
quence is infinite, in which case each w-accumulation point of
this infinite set is a cluster point of the sequence, or else the range
of the sequence is finite. In the latter case, for some point x of
the space, §, = # for infinitely many non-negative integers 7,
and x is a cluster point of the sequence. |

4 Lemma If X is a Lindelif space and every sequence in X has a
cluster point, then X is compact.

PROOF It must be shown that each open cover of X has a finite
subcover. Because of the hypothesis it may be assumed that
the open cover consists of sets Ay, Ay, -y Ay -, for n in w.
Proceeding inductively, let Bo = A4, and for each p in w let B,
be the first of the sequence of A4’s which is not covered by B,U
B, U-.-- UB,_,. Ifthischoiceisimpossible at any stage, then the
sets already selected are the required finite subcover. Otherwise
it is possible to select a point 4, in B, for each p in w such that
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by ¢ B; for i < p. Let x be a cluster point of this sequence.
Then x e B, for some p, and since # is a cluster point, 4, e B, for
some ¢ > p. But this is a contradiction. |

The following theorem summarizes information on sequences
and subsequences, accumulation points and compactness.

5 TueoreM If X is a topological space, then the conditions below
are related as follows. For all spaces (a) is equivalent to (b) and
(d) implies (a). If X satisfies the first axiom of countability, then
(), (b), and (c) are equivalent. If X satisfies the second axiom of
countability, then all four conditions are equivalent. If X is pseudo-
metric, then each of the four conditions implies that X satisfies the
second countability axiom and all four are equivalent.

(a) Every infinite subset of X has an w-accumulation point.

(b) Every sequence in X has a cluster point.

(c) For each sequence in X there is a subsequence converging to
a point of X.

(d) The space X is compact.

prooF Lemma 5.3 states that (a) is equivalent to (b) and since
a sequence is a net, 5.2 shows that (d) always implies (b). If X
satisfies the first axiom of countability then (b) and (c) are equiv-
alent by 2.8. If X satisfies the second axiom of countability,
then every open cover has a countable subcover, lemma 5.4 ap-
plies, and hence all four statements are equivalent. If X is
pseudo-metric, then X satisfies the first axiom of countability,
the first three conditions are equivalent, each is implied by com-
pactness, and the theorem will be proved if it is shown that a
pseudo-metric space such that each infinite subset has an accu-
mulation point is separable and hence satisfies the second axiom
of countability. Suppose that X is such a pseudo-metric space.
For r positive consider the family of all sets £ such that the dis-
tance between any two distinct points of A is at least . It is
easily seen that this family has a maximal member 4, by 0.25.
The set 4, must be finite, for the r/2 sphere about each point of
X contains at most one member of 4, and therefore 4, has no
accumulation point. Moreover, the 7-sphere about each point x
of X must intersect 4, because A, is maximal and otherwise x
could be adjoined to A,. Finally the union A of sets A,, for r
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the reciprocal of a positive integer, is surely countable and A is
clearly dense in X. |

If ® is a base for the topology of a compact space X and @ is
a cover of X by members of ®, then there is a finite subcover of
@. Conversely, suppose that ® is a base for the topology and
that every cover by members of ® has a finite subcover. If e
is an arbitrary open cover of X define @ to be the family of all
members of ® which are subsets of some member of €. Because
® is a base, the family @ is a cover of X, and consequently there
is a finite subcover @’ of @ For each member of @’ we may se-
lect a member of € which contains it, and the result is a finite
subcover of €. This shows that, if “a base for a topology is
compact,” then the space is compact. This is a useful but not
a very profound result. The corresponding theorem on sub-
bases is both profound and useful.

6 TuEOREM (ALEXANDER) If 8 is a subbase for the topology of
a space X such that every cover of X by members of § has a finite
subcover, then X is compact.

proOF For brevity let us agree that a family of subsets of X is
inadequate iff it fails to cover X, and is finitely inadequate iff
no finite subfamily covers X. Then the definition of compact-
ness of X can be stated: each finitely inadequate family of open
sets is inadequate. Observe that the class of finitely inadequate
families of open sets is of finite character and therefore each
finitely inadequate family is contained in a maximal family by
Tukey’s lemma 0.25(c). Such a maximal finitely inadequate
family @ has a special property which is established as follows.*
If C ¢ @ and C is open, then by maximality there is a finite sub-
family 4,, - -+ Anof @ such that C U 4, U--- A4, = X. Hence
no open set containing C belongs to @. If D is another open set
and D ¢ @, then there is By, ---, B, in @ such that D U B,
Uu---UB,=Xand (CND)U A U---U4,UB, U---U
B, = X by a simple set theoretic calculation. It follows that
C N D¢ a. Consequently, if no member of a finite family of
open sets belongs to @, then no open set containing the intersec-
tion belongs to @; restated, if a member of @ contains a finite
intersection C; N C; --- N C, of open sets, then some C; ¢ G.

* Problem 2.1 is precisely the result needed here.
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The proof of the theorem is now straightforward. Suppose
that 8 is a subbase such that each open cover by subbase elements
has a finite subcover (that is, each finitely inadequate subfamily
is inadequate) and suppose that ® is a finitely inadequate family
of open subsets of X. Then there is a maximal family @ of this
sort containing ® and it is sufficient to show that @ is inadequate.
The family 8 N @ of all members of @ which belong to § is finitely
inadequate and hence 8 N @ does not cover X. Consequently
the theorem will be proved if it is shown that each point in
U{4: Aea} belongs to U{A4: £e8 N @}. Because § is a sub-
base each point x of a member A4 of @ belongs to some finite in-
tersection of members of § which is contained in 4. The para-
graph above shows that some one of this finite family belongs to
@, hence U{4: Aea} = U{4: 428 N @}, and the theorem
is proved. |

COMPACTNESS AND SEPARATION PROPERTIES

In this section the consequences of compactness in conjunction
with the so-called separation axioms will be examined. In each
case the theorem proved is the assumed separation axiom (Haus-
dorff, regular, completely regular) with the word “point” re-
placed by “compact set.” A simple but important corollary on
continuous mappings of compact spaces into Hausdorff spaces is
derived, and finally we prove a separation theorem of A. D. Wal-
lace which includes most of the earlier theorems.

It is always true that a closed subset 4 of a compact space X
is compact, for each net in 4 has a subnet which converges to a
point which belongs to 4 because A is closed. (A proof based
directly on the definition of compactness is almost as simple.)
The converse theorem is false, for if 4 is a proper non-void sub-
set of an indiscrete space X (only X and the void set are open),
then A is surely compact but not closed. This cannot happen
if X is a Hausdorff space.

7 TueoreEM If A is a compact subset of a Hausdorff space X and
x is a point of X ~ A, then there are disjoint neighborhoods of x
and of A.
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Consequently each compact subset of a Hausdorff space is closed.

prooF Since X is Hausdorff there is a neighborhood U of each
point y of A such that x does not belong to the closure U~. Be-
cause A is compact there is a finite family Uy, Uy, - -+, U, of
open sets covering A such that x ¢ U;” for i =0, 1, -+, n. If
V=U{U:i=0,1, ---,n},then 4 c V and x ¢ /~. Conse-
quently X ~ 7V~ and V7 are disjoint neighborhoods of % and
4. 1

8 THEOREM Let f be a continuous function carrying the compact
topological space X onto the topological space Y. Then Y is com-
pact, and if Y is Hausdorff and f is one to one then f is a homeo-
morphism.

PrOOF If @ is an open cover of Y, then the family of all sets of
the form f~[4], for 4 in @, is an open cover of X which has a
finite subcover. The family of images of members of the sub-
cover is a finite subfamily of @ which covers Y and consequently
Y is compact. Suppose that Y is Hausdorff and f is one to one.
If 4 is a closed subset of X, then 4 is compact and hence its
image f[A] is compact and therefore closed. Then (f~*)~'[4]
is closed for each closed set 4 and f~! is continuous. |

9 TueoreM If A and B are disjoint compact subsets of a Haus-
dorff space X, then there are disfoint neighborhoods of A and B.
Consequently each compact Hausdorff space is normal.

PROOF For each x in A there is by 5.7 a neighborhood of  and
a neighborhood of B which are disjoint. Consequently there is a
neighborhood U of x whose closure is disjoint from B, and since
A is compact there is a finite family U,, Uy, -, U, such that
U;~ is disjoint from B for i = 0,1, ---,nand 4 c V' = U{U::
i=0,1, ---,n}. Then 7 is a neighborhood of 4 and X ~ V'~
is a neighborhood of B which is disjoint from 7. ||

10 TueoreM If X is a regular topological space, 4 a compact
subset, and U a neighborhood of A, then there is a closed neighbor-
hood V of A such that V c U.

Consequently each compact regular space is normal.
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PROOF Because X is regular, for each x in A there is an open
neighborhood # of x such that #/— c U, and by compactness
there is a finite open cover ¥y, W1, -+, W, of A such that
W, c U for each i. Then V =U{W;7:i=0,1, ---, n} is
the required neighborhood of 4. |}

11 TueoreEM If X is a completely regular space, A is a compact
subset and U is a neighborhood of A, then there is a continuous
function f on X to the closed interval [0,1] such that f is one on A
and zero on X ~ U.

prOOF For each x in A there is a continuous function g which is
one at x and zeroon X ~ U. Theset {y:g(y) > 5} isopenin X
and hence if 4 is defined by 4(y) = min [2g(»),1], then 4 is con-
tinuous, has values in [0,1], is zero on X ~ U, and is one on a
neighborhood of x. Because A is compact there is a finite family
ko, B, - - - By of continuous functions on X to [0,1] such that 4 C
Uia1]:1=0,1, ---, #} and each 4; is zero on X ~ U. The
function f whose value at x is max {A;(x): i =0, 1, .-+, n} is
the required function. ||

Each of the last two theorems has a formulation which is
superficially different; the statement “4 is compact and U a
neighborhood of 4"’ can be replaced by “if 4 is compact and B
is a disjoint closed set,” and the conclusion changed in the ob-
vious way.

Most of the results of this section are easy consequences of the
following theorem.

12 TueoreM (WaLrrace) If X and Y are topological spaces, A
and B are compact subsets of X and Y respectively, and W is a
neighborhood of A X B in the product space X X Y, then there are
neighborhoods U of A and V of B such that U X V C W.

PROOF For each member (x,y) of 4 X B there are open neigh-
borhoods R of ¥ and § of y such that R X § ¢ #. Since B is
compact, for a fixed » in A there are neighborhoods R; of x and
corresponding open sets S, for i = 0, 1, - -+ #, such that B c Q
=U{Sii=0,1, -+, n}. fP=N{R:i=0,1, --- n},
then P is a neighborhood of x¥ and @ is a neighborhood of B such
that P X Q ¢ #. Since A is compact there are open sets P;
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inXand Q;inY, fori = 0,1, - - - m, such that each Q; is a neigh-
borhood of B, P; X Q; c W,and 4 c U{Pi:i=0,1, --- m]}
=U. Then Uand ¥ = N{Q::i =0, 1, ---, m} are neighbor-
hoods of A4 and B respectively, U X 7 is a subset of /7, and the,
theorem follows. |

PRODUCTS OF COMPACT SPACES

The classical theorem of Tychonoff on the product of compact
spaces is unquestionably the most useful theorem on compact-
ness. It is probably the most important single theorem of gen-
eral topology. This section is devoted to the Tychonoff theorem
and a few of its consequences.

13 TueoreMm (TycuoNoFF) The cartesian product of a collec-
tion of compact topological spaces is compact relative to the product

topology.

ProoF Let Q = X{X,: ae A} where each X, is a compact
topological space and Q has the product topology. Let § be the
subbase for the product topology consisting of all sets of the form
P, '[U] where P, is the projection into the a-th coordinate space
and U is open in X,. In view of theorem 5.6 the space Q will be
compact if each subfamily @ of 8, such that no finite subfamily
of @ covers Q, fails to cover Q. For each index 2 let &, be the
family of all open sets U in X, such that P,7[U]e @ Then
no finite subfamily of ®, covers X, and hence by compactness
there is a point x, such that ¥, e X, ~ U for each U in ®&,. The
point x¥ whose a-th coordinate is x, then belongs to no member
of @ and consequently @ is not a cover. |

We give an alternate proof of Tychonoff’s theorem which does
not depend on the Alexander theorem 5.6.

ALTERNATE PROOF (BourBaki) It will be proved that if ® is a
family of subsets of the product and ® has the finite intersection
property, then [1{B~: B e ®} is not void. The class of all fami-
lies which possess the finite intersection property is of finite char-
acter and consequently we may assume that ® is maximal with
respect to this property by Tukey’s lemma 0.25(c). Because ®
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is maximal each set which contains a member of ® belongs to ®
and the intersection of two members of ® belongs to & More-
over, if C intersects each member of ®, then C ¢ ® by maximality.*
Finally, the family of projections of members of ® into a coordi-
nate space X, has the finite intersection property and it is there-
fore possible to choose a point x, in [1{P,[B]™: Be®}. The
point x¥ whose a-th coordinate is %, then has the property: each
neighborhood U of x, intersects P,[B] for every B in ®, or equiv-
alently P,~'[U] e ®, for each neighborhood U of ¥, in X,. There-
fore finite intersections of sets of this form belong to ®&. Then
each neighborhood of x which belongs to the defining base for
the product topology belongs to ® and hence intersects each
member of ® Therefore x belongs to B~ for each B in ®, and
the theorem is proved. |

Several important applications of Tychonoff’s theorem occur
in the chapter on function spaces; for the moment we consider
a very simple consequence. A subset of a pseudo-metric space
is bounded iff it is of finite diameter. Thus a subset of the space
of real numbers is bounded iff it has both an upper and lower
bound. The following is the classical theorem of Heine-Borel-
Lebesgue.

14 TureoreM A subset of Euclidean n-space is compact if and
only if it is closed and bounded.

prooF Let A4 be a compact subset of E,. Then A is closed be-
cause E, is a Hausdorff space. Because of compactness 4 can
be covered by a finite family of open spheres of radius one, and
because each of these is bounded A is bounded. To prove the
converse suppose that A is a closed and bounded subset of E.,.
Let B; be the image of A4 under the projection into the i-th co-
ordinate space, and notice that each B; is bounded because the
projection decreases distances. Then 4 ¢ X{Bs:i=10,1, .-,
n — 1}, and this set is a subset of a product of closed bounded
intervals of real numbers. Since A is a closed subset of the prod-
uct, and the product of compact spaces is compact, the proof
reduces to showing that a closed interval [4,4] is compact rela-
tive to the usual topology. Let € be an open cover of [4,6] and

* We are evidently reproving part of proposition 2.1
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let ¢ be the supremum of all members x of [4,5] such that some
finite subfamily of € covers [4,x]. (The set is not void because
a is a member.) Choose U in @ such that ¢ e U, and choose a
member 4 of the open interval (a,c) such that [dyc] € U. There
is a finite subfamily of € which covers [4,d], and this family with
U adjoined covers [4,c]. Unless ¢ = & the same finite subfamily
covers an interval to the right of ¢, which contradicts the choice
of c. The theorem follows. ]

The closed unit interval is compact and consequently each
cube (the product of closed unit intervals) is compact. The
following characterization of Tychonoff spaces (completely regu-
lar T;-spaces) is then almost self-evident.

15 THEOREM A topological space is a Tychonoff space if and
only if it is homeomorphic to a subspace of a compact Hausdorff
space.

PROOF By 4.6, each Tychonoff space is homeomorphic to a sub-
set of a cube, which is a compact Hausdorff space. Conversely,
each compact Hausdorff space is normal and consequently (Ury-
sohn’s lemma 4.4) is a Tychonoff space, and each subspace is
therefore a Tychonoff space. |

The product of more than a finite number of non-compact
spaces fails to be compact in a rather spectacular way. A set in
a topological space is nowhere-dense in the space iff its closure
has a void interior.

16 THEOREM If an infinite number of the coordinate spaces are
non-compact, then each compact subset of the product is nowhere
dense.

PROOF Suppose that X{X,: e 4} has a compact subset B
with an interior point x. Then B contains a neighborhood U of
x which is a member of the defining base and is therefore of the
form N {P,~Y[V.): a e F}, where F is a finite subset of 4 and
V,is open in X,. If 4 is a member of 4 ~ F, then Py[B] = X,
and X, is therefore compact because it is the continuous image
of a compact space. Hence all but a finite number of the co-
ordinate spaces are compact. |
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LOCALLY COMPACT SPACES

A topological space is locally compact iff each point has at
least one compact neighborhood. A compact space is automati-
cally locally compact, every discrete space is locally compact,
and each closed subspace of a locally compact space is itself lo-
cally compact (the intersection of a closed set and a compact
set is a closed subset of the latter, and hence compact). Many of
the pleasant properties of compact spaces are shared by locally
compact spaces. The following proposition is a convenient tool
for the study of such spaces.

17 TuroreMm If X is a locally compact topological space which is
either Hausdorff or regular, then the family of closed compact neigh-
borhoods of each point is a base for its neighborhood system.

PROOF Let x be a point of X, C a compact neighborhood of #,
and U an arbitrary neighborhood of x. If X is regular, then there
is a closed neighborhood 7 of x which 1s a subset of the intersec-
tion of U and the interior of C, and evidently 7 is closed and
compact. If X is Hausdorft and /# is the interior of U N C,
then, since #~ is a compact Hausdorff space, /# contains a closed
compact set ¥ which is a neighborhood of x in #/~ by 5.9; but
is also a neighborhood of x in /# (that is, with respect to the
relativized topology for #) and is therefore a neighborhood of
inX. 1|

In particular it follows that every locally compact Hausdorff
space is regular; actually a stronger statement is true.

18 TuroreM If U is a neighborhood of a closed compact subset
A of a regular locally compact topological space X, then there is a
closed compact neighborhood V of A such that 4 c V < U.

Moreover, there is a continuous function f on X to the closed unit
interval such that f is zero on A and one on X ~ V.

prooF For each point x of A4 there is a neighborhood # which
is a closed compact subset of U. Since A is compact it may be
covered by a finite family of such neighborhoods and their union
is a closed compact neighborhood 7 of 4. Then ¥ with the rela-
tive topology is a regular compact space which is therefore nor-
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mal (5.10). Hence there is a continuous function g on 7 to the
closed unit interval such that g is zero on 4 and one on V" ~ P°
(7 is the interior of 7). Let f equal g on 7" and one on X ~ 7.
Then f is continuous because #° and X ~ 7 are separated and
f is continuous on #» and X ~ #»°. (Problem 3.B.) |

It follows that each locally compact, regular, topological space
is completely regular and each locally compact Hausdorff space
is a Tychonoff space.

It is not true that the continuous image of a locally compact
space is locally compact, for every discrete space is locally com-
pact and each topological space is the continuous one-to-one im-
age of a discrete space (using the same set, the discrete topology,
and the identity function). If a function is both open and con-
tinuous, then the image of a compact neighborhood of a point
is a compact neighborhood of the image point, and consequently
the image of a locally compact space is locally compact. This
simple fact and an earlier result give a precise description of
those product spaces which are locally compact.

19 TueoreEM If a product is locally compact, then each coordinate
space is locally compact and all except a finite number of coordinate
Spaces are compact.

PprooF If a product is locally compact, then each coordinate
space is locally compact because projection into a coordinate
space is open. If infinitely many coordinate spaces are non-
compact, then each compact subset of the product is nowhere
dense, according to 5.16, and no point has a compact neighbor-

hood. |
QUOTIENT SPACES

In this section the investigation of quotient spaces which was
begun in chapter 3 is continued. We are interested in the con-
sequences of compactness and the single theorem of the section
summarizes some of the pleasant properties which result from
the additional assumption. It has already been observed that
the continuous image of a compact space is compact, but with-
out additional hypotheses the image space may still be quite
unattractive. For example, if X is the closed unit interval with
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the usual topology and © is the decomposition consisting of all
subsets of the form {x: ¥ — 4 is rational}, then the quotient space
is compact and the projection onto the quotient space is open,
but the quotient topology is indiscrete (only the space and the
void set open). It turns out that, if the members of D are com-
pact and the decomposition is upper semi-continuous, then the
quotient space inherits many of the properties of X.

20 TueoreM Let X be a topological space, let D be an upper
semi-continuous decomposition of X whose members are compact,
and let D have the quotient topology. Then D is, respectively, Haus-
dorff, regular, locally compact, or satisfies the second axiom of
countability, provided X has the corresponding property.

PrROOF For convenience let us agree that a subset of X is admis-
sible iff it is the union of members of ®. In view of the definition
of upper semi-continuity each neighborhood in X of a member
A of D contains an admissible neighborhood, and hence the im-
age under projection of a neighborhood of A in X is a neighbor-
hood of 4 in . Moreover, projection carries closed sets into
closed sets (3.12). Suppose that X is a Hausdorff space and
that 4 and B are distinct members of ®. Then by 5.9 there are
disjoint neighborhoods (in X) of A4 and B, these contain disjoint
admissible neighborhoods, and the projections of the latter are
the required disjoint neighborhoods of 4 and B in . If X is
regular, 4 & D, and U is a neighborhood of 4 in ®, then the union
U of the members of U is a neighborhood of £ in X. In view
of 5.10 there is a closed neighborhood of A4 contained in U, and
the image under projection of this neighborhood is the required
neighborhood of 4 in . If X is locally compact, then evidently
there is a compact neighborhood of each member of ®, and the
image under projection is a compact neighborhood in ®.
Finally, suppose there is a countable base & for the topology
of X. The family 4 of unions of finite subfamilies of ® is counta-
ble. For each member U of u let U’ be the union of all members
of ® which are subsets of U, and let 3 be the family of all sets U’
for U in a. Then the images of the members of 3 are open and
it will be shown that the collection of images is a base for the
quotient topology. This will follow if for each 4 in ® and each
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neighborhood 7 of A there is U in 3 such that / c U c 7.
But 4 may be covered by a finite number of the members of ®
such that the union # of these members, which is a member of
qu, is contained in V. If U= /", then Uedand 4 c U C /,
and the theorem follows. ||

There is an interesting corollary to this theorem. If X is sep-
arable metric and the members of an upper semi-continuous de-
composition are compact, then the quotient space is Hausdorff,
normal, and satisfies the second axiom of countability, and is
consequently metrizable.

COMPACTIFICATION

In studying a non-compact topological space X it is often con-
venient to construct a space which contains X as a subspace and
is itself compact. For example, it is frequently useful to adjoin
two points, 4 and —oo, to the space of real numbers. The re-
sulting space is sometimes called the extended real numbers; it is
linearly ordered by agreeing that +o is the largest member and
—o is the smallest. With this ordering (an extension of the
usual ordering) it turns out that every non-void subset of the
extended real numbers has both an infimum and a supremum and
the space is compact relative to its order topology (5.C). The ex-
tended reals are a compactification of the space of real numbers,
in a sense which will presently be made precise. Of course, this
device is primarily a convenience. It does not add to our knowl-
edge of the real numbers. However, it does permit the use of
the standard compactness arguments and it simplifies many
proofs materially.

The simplest sort of compactification of a topological space is
made by adjoining a single point. This procedure is familiar in
analysis, for in function theory the complex sphere is constructed
by adjoining a single point, «, to the Euclidean plane and speci-
fying that the neighborhoods of = are the complements of bounded
subsets of the plane. This construction can be duplicated for an
arbitrary topological space; the clue to the topology to be intro-
duced in the enlarged space is the fact that the complement of
an open neighborhood of « in the complex sphere is compact.
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The one point compactification * of a topological space X is the
set X* = X U {»} with the topology whose members are the
open subsets of X and all subsets U of X* such that X* ~ U is
a closed compact subset of X. Of course, it must be verified
that this specification gives a topology for X*. This verification
is made in the proof of the following proposition.

21 THEOREM (ALEXANDROFF) The one point compactification X*
of a topological space X is compact and X is a subspace. The space
X* is Hausdorff if and only if X is locally compact and Hausdorf.

PROOF A set U is open in X* iff (a) U N X is open in X and
(b) whenever e U, then X ~ U is compact. Consequently
finite intersections and arbitrary unions of sets open in X* inter-
sect X in open sets. If ® is a member of the intersection of two
open subsets of X*, then the complement of the intersection is
the union of two closed compact subsets of X and is therefore
closed and compact. If o belongs to the union of the members
of a family of open subsets of X*, then  belongs to some mem-
ber U of the family, and the complement of the union is a closed
subset of the compact set X ~ U and is therefore closed and
compact. Consequently X* is a topological space and X is a
subspace. If u is an open cover of X*, then » is a member of
some U in 4 and X ~ U is compact, and hence there is a finite
subcover of &. Therefore X* is compact. If X* is a Hausdorff
space, then its open subspace X is a locally compact Hausdorff
space. Finally it must be shown that X* is a Hausdorff space
if X is a locally compact Hausdorff space. It is only necessary
to show that, if x e X, then there are disjoint neighborhoods of
x and . But since X is locally compact and Hausdorff there is
a closed compact neighborhood U of x in X and X* ~ U is the
required neighborhood of . |

If X is a compact topological space, then « is an isolated point
of the one point compactification (that is, {®} is both open and
closed). Conversely, if » is an isolated point of X*, then X is
closed in X* and is therefore compact.

The one point compactification is of a very special sort, and

* This definition is actually incomplete until  is defined. Any element which is not
a member of X, for example X, will do.
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we wish to consider other methods of embedding a topological
space in a compact space. It is convenient to allow a topological
embedding rather than insist that the original be actually a sub-
space of the constructed compact space. With this in mind, a
compactification of a topological space X is defined to be a pair
(f,Y), where Y is a compact topological space and f is a homeo-
morphism of X onto a dense subspace of Y. (To be consistent,
the one point compactification of X should be the pair (i,X%),
where i is the identity function.) A compactification (f,Y) is
called Hausdorff iff Y is a Hausdorff space. A relation is defined
on the collection of all compactifications of a space X by agree-
ing that (f,Y) = (g,2) iff there is a continuous map 4 of Y onto
Z such that £ f = g. Equivalently (£,Y) 2 (g,2) iff the func-
tion g+ f~* on f[X] to Z has a continuous extension 4 which car-
ries Y onto Z. If the function 4 can be taken to be a homeo-
morphism, then (f,Y) and (g,Z) are said to be topologically
equivalent. In this case both of the relations (£,Y) = (£2)
and (g,2) = (£,Y) hold, for 27! is a continuous map of Z onto
Y such that f = 27t g.

22 TueoreM The collection of all compactifications of a topologi-
cal space is partially ordered by =. If (f,Y) and (g,Z) are Haus-

dorff compactifications of a space and (f,Y) 2 (g,2) 2 (f,Y), then
(£,Y) and (g,2) are topologically equivalent.

prooF If (£,Y) = (g,2) = (h,U), where these are compactifica-
tions of a space X, then there are continuous functions j on Y
to Z and k on Z to U such that g = jef and 2 = k° g and hence
h=rFkejof and (f,Y) = (hU). Consequently Z partially or-
ders the collection of all compactifications of X. If (f,Y) and
(g,Z) are Hausdorff compactifications each of which follows the
other relative to the ordering =, then both feg~! and gef~!
have continuous extensions j and & to all of Z and Y respectively.
Since k- is the identity map on the dense subset g[X] of Z and
Z is Hausdorff, k- j is the identity map of Z onto itself and simi-
larly j° k is the identity map of ¥ onto Y. Consequently (£,Y)
and (g,Z) are topologically equivalent. |

The smallest compactification of a compact Hausdorff space X
is X itself (more precisely (5,X) where i is the identity map on
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X). One would expect that the one point compactification of a
non-compact space would be the smallest relative to the ordering
=. If we restrict our attention to Hausdorff compactifications
this is actually the case (a corollary to 5.G), although it is easy
to see that there is generally no compactification which is smaller
than every other. On the other hand, if X is a space which has
a Hausdorff compactification (by 5.15 such a space is a Tycho-
noff space), then there is a largest compactification which we
now construct.

For each topological space X let F(X) be the family of all
continuous functions on X to the closed unit interval Q. The
cube QF @ (the product of the unit interval Q taken F(X) times)
is compact by the Tychonoff theorem. The evaluation map ¢
carries a member x of X into the member e(x) of QF® whose
f-th coordinate is f(x) for each f in F(X). Evaluation is a con-
tinuous map of X into the cube QF®)| and if X is a Tychonoff
space, then e is 2 homeomorphism of X onto a subspace of QF X,
(The embedding lemma 4.5 states these facts explicitly.) The
Stone-Cech compactlﬁcatlon is the pair (e, 8(X)) where 8(X) is
the closure of ¢[X] in the cube QF®. We take time out for a
lemma before showing the crucial property of this compactifi-
cation.

23 Lemma If f is a function on a set A to a set B and f* is the
map of QF into Q4 defined by f*(y) = y<f for all y in QP, then f*

is continuous.

PROOF A map into a product space is continuous iff the map
followed by each projection is continuous (3.3). If 2 is a member
of A4, then P, f*(y) = Py(y-f) = y(f(a)). But y(f(a)) is sim-
ply the projection of y into the f(s)-coordinate space of QF and
this is a continuous map. ||

The construction outlined in this lemma is worthy of notice,
for it is used systematically in dealing with function spaces.
Observe that the function f* induced by f goes in the direction
opposite to that of £, in the sense that f carries 4 into B while
J* carries QF into Q4.

With the aid of this lemma the pr1nc1pal theorem on the Stone-
Cech compactification becomes a routine though mildly intricate
calculation.
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24 Tureorem (Stone-Cecn) If X is a Tychonoff space and f is
a continuous function on X to a compact Hausdorff space Y, then
there is a continuous extension of f which carries the compactifica-
tion B(X) into Y. (More precisely, if (e,8(X)) is the Stone-Cech
compactification, then fo e~ can be extended to a continuous func-
tion on B(X) to Y.)

proOF Given f define f* on F(Y) to F(X) by letting f*(a) =
a-f for each 4 in F(Y). Continuing, define f** on QFX to
OF ¥ by letting f**(q) = g°f* for each g in QF®). Let ¢ be the
evaluation map of X into Q¥ ®) and let g be the evaluation map
of Y into QF®, The following diagram shows the situation.

BX) c FX f** > OF 5 B(Y)
T T
¢ 4
I |
X f > Y

The map e is a homeomorphism, and the map g is a homeomor-
phism of Y onto B(Y) because Y is compact Hausdorff. The map
f** is continuous by lemma 5.23 and, if it is shown that f**-¢
= gof, then it will follow that g—! < f** is the required continu-
ous extension of fee~!, If x is a member of X and 4 a member
of F(Y), then (f**<e)(x)(h) = (e(x)f*)(h) = e(x)(hf) =
ke f(x) = g(f(x))(B) = (g°f)(x)(#) because of the definitions of
f** f* ¢, and g respectively. The theorem follows. |

The extension property of the foregoing theorem shows that
the Stone-Cech compactification (¢,8(X)) follows every other
Hausdorff compactification in the ordering = and is therefore
the largest such compactification. If (f,Y) has this extension
property, then (£,Y) = (6,8(X)) and consequently is topologi-
cally equivalent to (¢,8(X)) by 5.22. Hence the compactifica-
tion (e,8(X)) is characterized (to a topological equivalence) by
the extension property of theorem 5.24.

25 Note The results above (M. H. Stone [6] and Cech, [1]) fur-
nish a maximal compactification. Many other smaller compacti-
fications have been constructed for various purposes. There is
a very large literature on the subject and it is only possible to
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cite a few sample contributions. For a recent contribution to
one of the oldest compactification theories (Carathéodory’s prime
end theory) see Ursell and Young [1]. Freudenthal [1] examines
a compactification which is maximal in a class much more re-
stricted than that majorized by B(X). A general discussion of
compactification is given by Myskis ([1], [2], and [3]). He dis-
tinguishes between “external” descriptions of a compactification
(such as that of 8(X), and the almost periodic compactification
of a group as sketched in 7.T) and “internal” descriptions (for
example the Alexandroff one point compactification and the Wall-
man (5.R)). The relation between internal and external descrip-
tion of a compactification is frequently the key to the usefulness
of the notion. Certain parts of the internal structure of S(X )
have been discussed (see Nagata [2], Smirnov [3], and Wallace
[2]). The compactification B(X) is also related to the notion of
absolute closure; see, for example, M. H. Stone [6], A. D. Alex-
androff [1], Katétov [1], and Ramanathan [1].

LEBESGUE’'S COVERING LEMMA

There is an extremely useful lemma of Lebesgue which states
that, if U is an open cover of a closed interval of real numbers,
then there is a positive number 7 such that, if | x — y | < 7, then
both x and y belong to some member of the cover. In a certain
sense each open cover covers the points of the interval “uni-
formly.” In this section we prove this lemma and a topological
variant which will apply to arbitrary compact spaces. The lat-
ter result may be considered to be an introduction to the ideas
of the next section on paracompactness.

26 TueOREM If U is an open cover of a compact subset A of a
pseudo-metric space (X,d), then there is a positive number r such
that the open r-sphere about each point of A is contained in some
member of .

proor Let Uy, -+, U, be a finite subcover of the open cover 1
of 4, let fi(x) = dist [x,X ~ U)], and let f(x) = max [fi(x):
i =1, -+, n]. Then each f; is continuous and consequently f is
continuous. Each point of 4 belongs to some U; and hence
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f(x) = fi(x) > 0 for each x in 4. The set f[A4] is a compact sub-
set of the positive real numbers and consequently there is a posi-
tive real number 7 such that f(x) > r for all ¥ in 4. Hence for
each » in A there is 7 such that f;(x) > r and it follows that the
open r-sphere about x is contained in U;. ||

There is a useful corollary of the foregoing theorem. If A is
a compact subset of a pseudo-metric space and U is a neighbor-
hood of A, then there is a positive number 7 such that U contains
the open r-sphere about every point of 4; that is, the distance
from A to X ~ U is positive.

Theorem 5.26 may be rephrased in a suggestive way. If V'is
the set of all pairs of points of X such that d(x,y) < r, then
Vix] = {y: (x,y) e ¥V} is simply the open r-sphere about x. The
set 7 is an open subset of X X X and contains the diagonal A
(the set of all pairs (x,x) for ¥ in X). The foregoing theorem
then implies the following topological result: If u is an open cover
of a compact pseudo-metric space, then there is a neighborhood
V of the diagonal in X X X such that for each point x the set
Vix] is contained in some member of u. This variant of the
Lebesgue lemma turns out to be correct for arbitrary compact
regular spaces.

A cover U of a topological space is called an even cover iff
there is a neighborhood 7 of the diagonal in X X X such that
for each x the set »[x] is contained in some member of 4. In
other words, the family of all sets of the form »[x] refines .
Recall that a cover @ is a refinement of U iff each member of @
is a subset of some member of A, and that a family ® of sets is
locally finite iff there is a neighborhood of each point of the space
which intersects only finitely many members of ®. A family of
sets is closed iff each member is closed.

27 Turorem If an open cover of a space has a closed locally
finite refinement then it is an even cover.
Consequently each open cover of a compact regular space is even.

PROOF Let U be an open cover of a topological space X and let
@ be a closed locally finite refinement. For each A in @ choose
a member U, of U such that 4 < Uy, and let V4 = (Us X Uy)
U (X ~A) X (X ~d). Evidently ¥4 is an open neighbor-
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hood of the diagonal in X X X, and, if x ¢ 4, then P, [x] = U,.
Letting 7 = (1 {¥4: 4 e @}, it follows that for each point » the
set V[x] © V4lx] = U, and consequently the family of sets of
the form 7x] is a refinement of 4. It remains to be proved that
V is a neighborhood of the diagonal. For each point (x,x) of
the diagonal choose a neighborhood # of x such that 7 intersects
only finitely many members of @ If #7 N A is void, then # c
X~dand WX W c Vs It follows that ¥ contains the in-
tersection of 7 X W with a finite number of the sets 4 and is
therefore a neighborhood of (x,x).

Finally, if X is compact and regular, then each open cover
has a closed finite refinement (cover X by open subsets whose
closures refine u) and hence each open cover is even. ||

* PARACOMPACTNESS

A topological space is paracompact iff it is regular * and each
open cover has an open locally finite refinement. The purpose
of this section is to prove the equivalence of paracompactness
and a number of other conditions. The methods used are closely
related to those of chapter 6. :

Recall that a family @ of subsets of a topological space is dis-
crete iff there is a neighborhood of each point of the space which
intersects at most one member of the family. The family @ is
o-discrete (o-locally finite) iff it is the union of countably many
discrete (respectively locally finite) subfamilies. The principal
theorem of the section can now be stated; its proof is given in
the sequence of lemmas which follows the statement.

28 TueoreM If X is a regular topological space, then the follow-
ing statements are equivalent.

(a) The space X is paracompact.

(b) Each open cover of X has a locally finite refinement.

(c) Each open cover of X has a closed locally finite refinement.
(d) Each open cover of X is even.

(e) Each open cover of X has an open o-discrete refinement.

(f) Each open cover of X has an open a-locally finite refinement.

* The usual definition of paracompact specifies “Hausdorff” instead of “regular.” It
is not hard to show that a Hausdorff space is regular if each open cover has an open locally
finite refinement.
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The pattern of proof is (a) = (b) = (c) = (d) — (e) —
(f) = (b) — (a). The first of these implications is clear, and
the following lemma demonstrates the second.

29 Lemma If X is regular and each open cover has a locally
finite refinement, then each open cover has a closed locally finite re-
finement.

PROOF If U is an open cover of X, then there is an open cover
U such that the family of closures of members of U refines 4,
because X is regular. (For each x, if x e U there is an open
neighborhood 7 of x such that /— c U.) Let @ be a locally
finite refinement of V. Then the family & of all closures of mem-
bers of @ is locally finite, and each member of ® is a subset of
V- for some 7 in V. Hence ® is the required closed locally
finite refinement of w. ||

For any topological space an open cover which has a closed
locally finite refinement is even, according to 5.27. Hence state-
ment (c) of the theorem implies (d). Before proving the next
implication we prove two lemmas which are of some interest in
themselves. For convenience we review some of the facts which
will be needed (see the section on relations in chapter 0). If U
is a subset of X X X and x e X, then Ulx] is the set of all points
y such that (x,y) e U. If 4 is a subset of X, then U[4] = {y:
(%,3) € U for some x in A}; clearly U[4] is the union of the sets
Ulx] for x in 4. The set {(x,y): (y,x) e U} is denoted by U™,
and U is called symmetric if U = U™, Theset UN U™ is
always symmetric. If U and 7 are subsets of X X X, then
U~V is the set of all pairs (x,2) such that for some y in X it is
true that (x,5) e 7 and (»,2) e U. In other words (x,2) e UV
iff (%,2) € V[y] X Uly] for some y, and consequently U- ¥ is
the union of the sets ¥~ ![y] X Ul[y] for y in X. In particular
if 7 is symmetric, then 7 7V = U {¥[y] X V[yl: y e X}. Fi-
nally, for each subset 4 of X itis true that (U* V)[4] = U[V[4]].

30 Lemma Let X be a topological space such that each open cover
is even. If U is a neighborhood of the diagonal in X X X then
there is a symmetric neighborhood V of the diagonal such that
VeV c U o
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ProoF For each point x of X there is a neighborhood #(x)
such that #(x) X #(x) < U, because U is a neighborhood of
the diagonal. The family W of all sets of the form #(x) is an
open cover of X and there is therefore a neighborhood R of the
diagonal such that the family of all sets R[x] refines 4, and hence
R[x] X R[x] c U for each ». Finally,let ¥ = R N R~!, Then
V is a symmetric neighborhood of the diagonal and V[x] X ¥[x]
< U for all x. Since 7+ V is the union of the sets P[x] X P[x]
it follows that V- 7 c U. |

The preceding lemma has the following intuitive content. Let
us say two points ¥ and y are at most U-distance apart if (x,y)
e U. Then there is / such that, if ¥ and y, and y and z, are at
most »-distance apart, then x and z are at most U-distance apart.

The following lemma shows that paracompact spaces satisfy
a very strong normality condition.

31 Lemma  Let X be a topological space such that each open cover
is even and let @ be a locally finite (or a discrete) family of subsets
of X. Then there is a neighborhood V of the diagonal in X X X
such that the family of all sets V[A] for A in @ is locally finite
(respectively discrete).

PrOOF If @ is a locally finite family of subsets there is an open
cover U of X such that each member of u intersects only finitely
many of the members of the family @. Let U be a neighborhood
of the diagonal such that the sets U[x] refine 4. By the preced-
ing lemma there is a neighborhood 7 of the diagonal such that
VeV c U, and it may be supposed that ¥ = V=Y, If Ve V]x]
N A is void, then P[x] must be disjoint from »[A4] because: if
yeVlx]l N V[A], then (y,x) e V' =V, (2,) e ¥ for some z in
A, and hence (z,x) e = 7. Then 2 e 7 ° V[x] and this is a con-
tradiction. Consequently if 7[x] intersects V[4], then ¥ - V[x]
intersects 4, and it follows that the family of all sets »]4] for
A4 in @ is locally finite. If “finitely many” is replaced by “at
most one,” then a proof of the corresponding proposition for dis-
crete families is obtained. |

If 7 is an open subset of X X X, then V[x] is open for every
point x of X, because V[x] is the inverse image of » under the
continuous map which carries each point y of X into (x,y). If
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A is a subset of X, then P[A] is open because it is the union of
the sets P[x] for x in 4. Consequently the preceding lemma per-
mits us to enlarge each member of a locally finite or discrete
family to an open set and still preserve the character of the fam-
ily. In particular, if each open cover U of a regular space has a
locally finite refinement @, then the lemma applies (we have
shown that (b) — (¢) — (d) in 5.28) and there is an open
neighborhood 7 of the diagonal such that the family of all sets
V(] for A in @ is locally finite. The latter family may fail to
be a refinement of 4, but this is easily remedied by choosing Ux
in « such that 4 c Uy and then letting W, = Uy N V0A].
The family which is constructed in this fashion is clearly an open
locally finite refinement of 4 and it follows that the space is
paracompact; that is, (b) — (a) in 5.28.

There is an obvious corollary to 5.31. A family consisting of
two closed disjoint subsets is evidently discrete and hence:

32 CoroLLARY A paracompact space is normal.

The proof of 5.28 will be complete if we establish two facts:
If X is regular and each open cover is even, then each open cover
has an open o-discrete refinement, and if each open cover of X
has an open o-locally finite refinement, then each open cover
has a locally finite refinement. . (Evidently (e) — (f) in 5.28.)

33 LemMa If X is a space such that each open cover is even, then
every open cover of X has an open o-discrete refinement.

proor The proof, like that of 4.21, is an application of
A. H. Stone’s trick. (This lemma can be deduced from 4.21 and
the results of chapter 6.) Because of lemma 5.31 it is sufficient
to find a o-discrete refinement of an open cover U, since such a
o-discrete refinement can then be “expanded” to an open o-dis-
crete refinement. Let 7 be an open neighborhood of the diagonal
such that the family of all sets 7[x] for x in X refines u. Let 7
= 7 and select, inductively, 7, to be an open symmetric neigh-
borhood of the diagonal such that 7, ¥, c ¥,_, for each posi-
tive integer #. Let U, = ¥, and, inductively, let U4 =
Vair° Un It is easy to see that U, € ¥, for each », and it
follows that for each # the family of all U[#] for x in X refines
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. Choose a relation < which well-orders X (see 0.25) and for
each # and each x let U,*(x) = U,[x] ~U{U, uly]: ¥ < #}.
For each fixed # the family U, of all sets U,*(x) is discrete, as
may be demonstrated as follows. Clearly U,*(x) is disjoint from
VasilUn*(9)] if x # y because of the construction. If for some
z in X the neighborhood #,,,[2] intersects U,*(y), then ze
VailUn*(y)] and 7V, 11[U.*(3)] is a neighborhood of z which
intersects no set U,*(x) for x # y. It follows that the family
U, is discrete and it remains to be proved that each point of X
belongs to some member of some u,. For x in X choose y to be
the first point of X such that x belongs to U,[y] for some .
Then surely x e U,*(y) for some n. |

34 Lemma  If each open cover of a space has an open o-locally
finite refinement, then each open cover has a locally finite refinement.

PROOF Let U be an open cover and let © be an open o-locally
finite refinement. Suppose that U = U {V,: 7 e w} where each
U, is an open locally finite family. For each 7 and each member
Vof U, let 77* = V ~U{U: Uey for some k < n}, and let
W be the family of all sets of the form »*. Then W is a cover
of X and a refinement of u. Finally, for x in X let # be the first
integer such that x belongs to some member 7 of ©V,. Then ¥
is a neighborhood of » which is disjoint from every member of
W save those which were constructed from the families v, for
k = n. It follows that W is locally finite. |

Theorem 4.21 states that each open cover of a pseudo-metrizable
space has an open o-discrete refinement. This fact and theorem
5.28 of this section then give the corollary:

35 CoroLLARY Each pseudo-metrizable space is paracompact.

In conclusion it should be remarked that subspaces, quotients,
and products of paracompact spaces are usually not paracom-
pact. Moreover, a space may be locally metrizable, locally com-
pact, Hausdorff, normal, and satisfy the first axiom of counta-
bility and still fail to be paracompact. The requisite examples
are given in the problems at the end of this chapter.

36 Notes There is another characterization of paracompactness
which might be added to the list given in 5.28. A regular space
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is paracompact iff it is fully normal (see problem 5.0). This
characterization is due to A. H. Stone [1]. The equivalences
(b), (c), (), and (f) of theorem 5.28 are due to E. Michael [1].
As far as I know, equivalence (d) was first noticed by J. S. Griffin
and myself.

The o-discrete characterization of paracompactness might well
be taken as a definition of countable dimension (see Hurewicz
and Wallman [1; 32] and Eilenberg [1]). There is an F,-theorem
(Michael Joc. cit.) which is also suggestive of dimension theory.

PROBLEMS

A EXERCISE ON REAL FUNCTIONS ON A COMPACT SPACE

(a) If 4 is a non-void compact subset of the space of real numbers,
then both the supremum and the infimum of A belong to 4.

(b) Each continuous real valued function f on a compact space X as-
sumes a maximum and a minimum value. That is, there are points
and y of the space such that f(x) and f(y) are respectively the supremum
and infimum of f on X.

(c) Let f be a continuous real valued function f on a compact space X.
If f is always positive, then f is bounded away from zero, in the sense
that there is ¢ > 0 such that f(x) > ¢ for x in X.

B COMPACT SUBSETS

(a) The intersection of two compact subsets of a topological space
may fail to be compact. The intersection of the members of an arbi-
trary family of closed and compact subsets is closed and compact.
(Clearly two compact subsets with non-compact intersection must be
subsets of a space which is not Hausdorff. Let X be the product of
the space of real numbers and an indiscrete space which has two mem-
bers.)

(b) The closure of a compact subset of a topological space may fail
to be compact. However, the closure of a compact subset of a regular
space is compact.

(&) If 4 and B are disjoint closed subsets of a pseudo-metric space
and 4 is compact, then there is a member x of A such that dist (4,B) =
dist (x,B) > 0. (The function dist (x,B) is continuous in x and is posi-
tive for x in 4.)
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(d) If 4 and B are disjoint closed and compact subsets of a pseudo-
metric space, then there are members x of 4 and y of B such

that d(x,y) = dist (4,B).

C COMPACTNESS RELATIVE TO THE ORDER TOPOLOGY

Let X be a set which is linearly ordered by a relation < and let X
have the order topology (see 1.I). Then every closed, order-bounded
subset of X is compact iff X is order-complete relative to <. (The
family of all subsets of X of the form {x: @ < #} or {x: ¥ < a} is a sub-
base for the order topology for X and Alexander’s subbase theorem 5.6
applies. A proof which is independent of 5.6 can be made via the argu-
ment which was used in 5.14.)

D 1SOMETRIES OF COMPACT METRIC SPACES

Let X and Y be metric spaces, let X be compact, let f be an isometry
of X onto a subspace of Y, and let g be an xsometry of Y onto a sub-
space of X. Then f maps X onto Y. (If % is an isometry of X onto a
proper subset of itself and x € X ~ A[X] let @ = dist (,4[X]). Define
a sequence inductively by letting xy = x and Fny1 = h(x,) and prove
that, if m # n, then d(xp,,x,) = a.)

E COUNTABLY COMPACT AND SEQUENTIALLY COMPACT SPACES

A topological space is countably compact iff every countable open
cover has a finite subcover. A space is sequentially compact iff every
sequence has a convergent subsequence.

(a) A space is countably compact iff each sequence has a cluster
point.

(b) A Ty-space is countably compact iff every infinite set has an
accumulation point. (See 5.3.)

(c) A Ty-space is countably compact iff every infinite open cover has
a proper subcover. (If 4 is an infinite set with no accumulation point,
then each subset of A is closed. One may construct an open cover U
by choosing an open neighborhood of each point of 4 which contains
no other point of ./ and then adjoining, if necessary, X ~ 4. Then 4
has no proper subcover. On the other hand, if U is an open cover with
no proper subcover then each member 7 of U contains a point belonging
to no other member of V.)

(d) A space satisfying the first countability axiom is countably com-
pact iff it is sequentially compact (5.5).
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(e) With the order topology, the set @ of all ordinal numbers less
than the first uncountable ordinal Q@ is locally compact, Hausdorff,
satisfies the first axiom of countability, and is sequentially compact,
but is not compact.

Note Proposition (c) is due to Arens and Dugundji [1].

F COMPACTNESS; THE INTERSECTION OF COMPACT CONNECTED SETS

(a) Let @ be a family of closed compact sets such that N{4: 4ea)
is a subset of an open set U. Then there is a finite subfamily & of @
such that (1 {4: 4es} c U.

(b) If @ is a family of compact subsets of a Hausdorff space X such
that finite intersections of members of @ are connected, then
N {4: 4 & @} is connected.

G PROBLEM ON LOCAL COMPACTNESS

If X is a Hausdorff space and Y is a dense locally compact subspace,
then Y is open.

H NEST CHARACTERIZATION OF COMPACTNESS

A topological space X is compact iff each nest of closed non-void sets
has a non-void intersection. (Recall that a nest is a family of sets
which is linearly ordered by inclusion. If each nest of closed non-void
sets has a non-void intersection and @ is a family of closed sets with the
finite intersection property, let ® be a maximal family of closed sets
which contains @ and has the finite intersection property, and let 9T
be a maximal nest in 8. Examination of the properties of @ and of 9T
leads to a proof. An entirely different proof can be based on well or-
dering, using part of the procedure outlined in the next problem.)

I COMPLETE ACCUMULATION POINTS

A point x is a complete accumulation point of a subset 4 of a topolog-
ical space iff for each neighborhood U of x the sets 4 and 4 NN U have
the same cardinal number. A topological space is compact iff each
infinite subset has a complete accumulation point. (If X is not com-
pact choose an open cover @ with no finite subcover such that the car-
dinal number ¢ of @ is as small as possible. Let C be a well-ordered set
of cardinal ¢ such that the set of predecessors of each member has a
cardinal less than ¢. (It is shown in the appendix that ¢ is such a set.)
Let £ be a one-to-one map of C onto @ Then for each member 4 of C
the union U {f(4): 4 < &} does not cover X and, in fact, the comple-
ment of this union must have cardinal number at least as great as ¢
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It is therefore possible to choose ¥, from the complement such that
X, # xp for a < b. Consider the set of all x3.)

J EXAMPLE: UNIT SQUARE WITH DICTIONARY ORDER

Let X be the cartesian product of the closed unit interval Q with
itself ordered by dictionary (lexicographic) order. (Thatis, (4,6) < (¢,d)
iffa <cora=cand b <d) With the order topology X is compact,
connected, and Hausdorff. It satisfies the first countablhty axiom but
is not separable and is hence not metrizable.

K EXAMPLE (THE ORDINALS) ON NORMALITY AND PRODUCTS

The product of a locally compact, normal Hausdorff space and a
compact Hausdorff space may fail to be normal. (The difficult part
has already been established in 4.E and it is only necessary to show
that @' and Q@ are compact and locally compact Hausdorff respectively.
@' is the space of ordinals less than or equal to @ and Qp is the set of
ordinals less than @, each with the order topology.)

L THE TRANSFINITE LINE

Let A be a well-ordered set, let the half-open interval [0,1) have the
usual order, let 4 X [0,1) have the dictionary (lexicographic) order,
and let 4 X [0,1) have the order topology. Discuss the properties of
this space.

M EXAMPLE: THE HELLY SPACE

The Helly space is the family H of all non-decreasing functions on the
closed unit interval Q with values in §. It is a subset of the product
space Q9 and its topology is the relative product topology. The space
H has the following properties:

(a) H is compact Hausdorff. (It is a closed subspace of Q9.)

(b) H satisfies the first axiom of countability and is hence sequentially
compact. (The set of points of discontinuity of each member of H is
countable. This fact, and the fact that Q is separable, must be used
in constructing a countable base for the neighborhood system of a point
hof H)

(c) H is separable. (A countable dense set can be constructed using
the rationals.)

(d) H is not metric. (For ¢in Q let fi(x) be O for x < #, 1 for x > ¢,
and let £;(¢) = 24. The family A of all functions of the form f; is un-
countable and no member of A4 is an accumulation point of 4. But
each subspace of a compact metric space is separable.)
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N EXAMPLES ON CLOSED MAPS AND LOCAL TOMPACTNESS

(a) Let X be the space of real numbers with the usual topology, let
T be the set of integers, and let D be the decomposition whose members
are I and all sets {x} for x in X ~ I. Then the projection of X onto
the quotient space is closed and continuous, but the quotient space is
not locally compact nor does it satisfy the first axiom of countability.

(b) Let ©Q be the set of all ordinal numbers less than Q, with the
order topology, let 4 be a closed uncountable set whose complement
is also uncountable, and let ® be the decomposition whose members
are A4 and all sets {x} for » in Qo ~ 4. Then the projection of @ onto
the quotient space is continuous and closed and the quotient space is
compact, but it fails to satisfy the first axiom of countability. (Use the
interlacing lemma 4.E.)

O CANTOR SPACES

The Cantor discontinuum (middle third set) is the set of all members
of the closed unit interval which have a triadic expansion in which the
digit one does not occur. (It will be convenient throughout this prob-
lem to use only irrational triadic expansions, that is, expansions which
are not identically zero from some point on. Each real number has a
unique irrational expansion, as noted in 0.14.) The discontinuum is
called the middle third set because: The (open) middle third of the
interval [0,1] is precisely the set of numbers whose triadic expansions
have ones in the first place after the ‘““decimal” point. The middle
third of each of the remaining intervals consists of points whose expan-
sions have ones in the second but not the first place. Continuing, it is
clear that the discontinuum can be obtained by successive deletion of
middle thirds.

A product space 24 (that is, all functions on a set A to the discrete
space whose only members are 0 and 1, with the product topology) is
called a Cantor space.

(a) The Cantor discontinuum is homeomorphlc to 2°. For x in 2° let
f(x) be the member of [0,1] whose triadic expansion has the digit
2¢(p) in the p-th place.)

(b) Each point of the discontinuum is an accumulation point and
the complement of the discontinuum is an open dense subset of the
real numbers.

(c) If 4 is a closed non-void subset of 2%, then there is a continuous
function 7 on 2° to A such that r(x) = x for x in 4. (It is a little easier
to see the proof if one looks at the Cantor discontinuum, which is the
homeomorphic image of 2¢.)
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(d) Each compact Hausdorff space is the continuous image of a
closed subset of some Cantor space. (Let F be the family of all func-
tions f on 2 such that £(0) and f(1) are closed subsets of the compact
Hausdorff space X and £(0) U f(1) = X. If x is a member of 2F and
feF, then f(x;) is a closed subset of X. The intersection [} {f(xs):
feF} is void or consists of a single point, and in the latter case this
point is defined to be ¢(x). One can prove that the domain of ¢ is a
closed subset of 2F; if U is a subset of X, then ¢ [U] = {x: x is a mem-
ber of domain ¢ and Y {f(x): fe F} < U}.)

(e) Each compact metric space X is the continuous image of 2°.
(Instead of the family F of the previous proof one may construct a
smaller family which will play the same role. If Uy, -+, Uy, ++- is a
base for the topology of X let £,(0) = U,™ and f,.,(1) = X ~ U,.)

(f) Each Cantor space 24 satisfies the countable chain condition;
that is, each disjoint family of open sets is countable. (If U is a dis-
joint family of open subsets of 24, then one may suppose that the mem-
bers of U belong to the defining base for the product topology; each
member is, in a natural sense, the intersection of a finite number of
half-spaces. For some integer # there is then an infinite (in fact, un-
countable) disjoint family, each member of which is the intersection
of precisely » half-spaces. A simple argument on disjointness com-
pletes the proof.

There is a shorter, more sophisticated proof. A Cantor space with
coordinatewise addition, modulo 2, is 2 compact topological group and
hence there is a Haar measure (see Halmos {1; 254]). Since this meas-
ure is finite and is positive for open sets the countable chain condition
is clear.)

(g) Not every compact Hausdorff space is the continuous image of
the Cantor set. (The one point compactification of an uncountable
discrete space does not satisfy the countable chain condition.)

Notes Proposition (b) is due to Cantor, (¢) to P. Alexandroff and
Urysohn, and (f) and (g) to J. W. Tukey. Proposition (g) is also a
corollary of some results of Szpilrajn [1].

P CHARACTERIZATION OF THE STONE-CECH COMPACTIFICATION

Let (f,Y) be a Hausdorff compactification of the topological space
X such that for each bounded continuous real-valued function g on X
the function g°f~ has a continuous extension. Then (£,Y) is topolog-
ically equivalent to the Stone-Cech compactification (£,8(X)). (Con-
sider the definition of 8(X).)
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Q EXAMPLE (THE ORDINALS) ON COMPACTIFICATION

Let @ be the set of all ordinal numbers less than or equal to @, and
let @y = @ ~ {Q@}. Assign each the order topology. Then the Stone-
Cech compactification 8(Q) is homeomorphic to . (This will follow
from the preceding problem if it is shown that every bounded real-
valued continuous function f on Qp is eventually constant,* in the sense
that for some » in Q, if y > x, then f(y) = f(»). If fis a bounded
continuous real-valued function and » and s are real numbers such that
r > s, then the interlacing lemma 4.E shows that one of the sets
{#: f(x) = r} and {x: f(x) = s} is countable. Using this fact it is not
hard to see that f is eventually constant. The hypothesis that f be
bounded is actually not essential.)

Note This result is due to Tong [1].

R THE WALLMAN COMPACTIFICATION

Let X be a Tj-space, let & be the family of all closed subsets of X,
and let w(X) be the collection of all subfamilies @ of ¥ which possess
the finite intersection property and are maximal in & relative to this
property.

(a) If @ e w(X), then the intersection of two members of @ is a mem-
ber of @; dually, if 4 and B are members of § ~ @, then 4 U B is a
member of F ~ @. (See 2.1.)

(b) For each point x of X let ¢(x) = {4: AeF and xe A}. Then
¢ is a one-to-one map of X into w(X).

(c) For each open subset Uof X let U* = {@: Qe w(X)and A C U
Jor some 4 in @}. Then w(X) ~U*={@: X~ Ue@}. If U and
V are open subsets of X, then (U N P)* = U*NV* and (UUV)* =
U*U 7*,

(d) Let w(X) have the topology with a base the family of all sets
of the form U* for U open in X. Then w(X) is compact, the map ¢
is continuous, and ¢(X) is dense in w(X). (Show compactness via the
finite intersection property argument for complements of members of
the base.)

(e) If X is normal, then w(X) is Hausdorff.

(f) If f is a bounded continuous real-valued function on X, then
f° ¢~ may be extended continuously to all of w(X). (If a continuous
extension is impossible, then by a little argument it can be shown that
there are closed disjoint subsets R and § of the reals such that f~[R]

* This curious property of Qo has been used by E. Hewitt [1] in constructing a regular
Hausdorff space X such that every continuous real-valued function on X is constant.
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and f71[S] are disjoint but the closures of the images under ¢ of these
sets intersect. But if 4 and B are closed disjoint subsets of X, then
{@: 4e@} and {@: B e @} are disjoint and closed in w(X).)

(8 If w(X) is Hausdorff, then the Wallman compactification is topo-
logically equivalent to the Stone-Cech compactification. (See 5.P.)

Notes. The principal virtue of the Wallman compactification (Wall-
man [1]) lies in the fact that the correspondence carrying U into U*
preserves finite intersections and unions. Moreover, the topology for
X is carried onto a base for the topology for w(X) by the correspondence,
and from this fact it follows that the dimension of X (in the covering
sense) and the dimension of w(X) are identical, and X and w(X) have
isomorphic Cech homology groups. See Samuel [1] for a related con-
struction.

S BOOLEAN RINGS: STONE REPRESENTATION THEOREM

Let (R,+,-) be a Boolean ring (see 2.K), let & be the set of all ring
homomorphisms of R into I; (= the integers mod 2), and let § = §' ~
{0}, where O is the homomorphism which is identically zero. Then
8§’ is a subset of the product I,¥. The Stone space of the ring R is §
with the relative product topology (7 is assigned the discrete topology).

A Boolean space is a Hausdorff space such that the family of all sets
which are both compact and open is a base for the topology. A Boolean
space is automatically locally compact. The characteristic ring of a
Boolean space is the ring of all continuous functions f into I, such
that £71[1] is compact (that is, all functions to J, which vanish outside
a compact set; sometimes called functions with a compact support).

(a) The Stone space of a Boolean ring R is a Boolean space and is
compact whenever R has a unit. (In this case § = {h: ke S’ and
A1) = 1})

(b) Stone-Weierstrass mod 2 Let § be the characteristic ring of a
Boolean space X and let G be a subring of & which has the two point
property (that is, for distinct points # and y of X and for 4 and 5 in
I, there is g in G such that g(x) = @ and g(y) = 4). ThenF = g.

(If X is compact, then G has the two point property whenever 1e g
and G distinguishes points, in the sense that for distinct points x and y
of X there is g in G such that g(x) > g(y). A routine but instructive
compactness argument serves to establish (b). One might begin by
showing that for a compact subset ¥ of X and a point ¥ of X ~ Y
there is g in G such that g(x) = 0 and g on Y is one.)

(c) Representation theorem Each Boolean ring is isomorphic (under
the evaluation map) to the characteristic ring of its Stone space. (For
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r in R the evaluation at 7, e(r), is the function on § whose value at a
member s of § is 5(r). This theorem depends on the existence of enough
homomorphisms 2.K and the foregoing proposition (b).)

(d) If X is a Boolean space,  its characteristic ring, and 5 a maximal
proper ideal in &, then 3 = {f: f(x) = O} for some x in X. (Show
first that unless there is a point at which all members of 3 vanish, then

= §.)

() Dual representation theorem If X is a Boolean space, then X is
homeomorphic (under the evaluation map) to the Stone space of its
characteristic ring. (A maximal ideal is the set of zeros of a unique
homomorphism into I, and every such set of zeros is a maximal ideal.
The preceding proposition (d) shows essentially that the evaluation
map carries X onto the Stone space.)

Notes  The results above are due to M. H. Stone [3].

There is an interesting variation of the process of representing a
Boolean space. If X is a Boolean space let & be the ring of all con-
tinuous functions on X to I,. (The requirement that J7H1] be com-
pact is omitted.) The evaluation map of X into the Stone space § of
§ turns out to be a homeomorphism again, but § is compact and it is,
in fact, homeomorphic to the Stone-Cech compactification 8(X ). We
omit the proof of this fact as well as the characterizations of ideals and
subrings of a Boolean ring in terms of the Stone space.

Finally, this problem is so arranged that the pattern can be trans-
ferred to the algebra of all continuous real-valued functions fona
locally compact Hausdorff space X such that, for e > 0, {x: | f(x)] = e}
is compact. The most difficult step in reproducing the pattern is the
Stone-Weierstrass theorem, 7.R, of which (b) above is a miniature. It
also turns out that, if X is a Tychonoff space, then the space of all real
homomorphisms of the algebra of bounded continuous functions on X
is homeomorphic to 8(X), very much like the situation sketched in the
previous paragraph.

T COMPACT CONNECTED SPACES (THE CHAIN ARGUMENT)

Let (X,d) be a compact pseudo-metric space. For each positive
number ¢, define an e-chain from a point x of X to a point y to be a
finite sequence of points, the first of which is %, the last y, such that
the distance between successive points is less than ¢. For each subset
4 of X, C.(A4) is defined to be the set of all points which can be joined
to points of A by an e-chain and C(«) is defined to be ) {Ce(A): ¢ > 0}.
An equivalent definition: Let Vo(4) = 4, Vi(4) = {x: dist (x,4) < ¢}
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and inductively V,i1(4) = Vi(Fu(4)). Set C(A) = U{Va(A):
newl.

(a) For each ¢ > 0 and each set 4 the set C.(A) is open and closed.

(b) If 4 is a connected subset of X, then C(A) is connected. Hence
C({x}) is the component C, of X about x for each point x. (If C(4)
is the union of disjoint closed sets B and D let f = [dist (B,D)]/3 and
show by 5.G that C.(A) C {x: dist (x,B U D) < f} for some posi-
tive e.)

(c) If Ais a subset of X, then C(4) = U {Co:xe 47}, Ifx¢ CA),
then x ¢ C,(A) for some positive ¢.)

(d) The decomposition of X into components is upper semi-con-
tinuous.

(e) If X is connected and U is an open neighborhood of a point x,
then the closure of some component of U intersects X ~ U. (If not,
there is a compact neighborhood » of the closure of the component
which is contained in U. The component about x of » is contained in
the interior ¥° of ¥ and using (c) one can show that there are open
and closed subsets of » containing ¥ ~ P® and « respectively.)

(f) No closed connected subset of X which contains more than one
point is the union of a countable disjoint family of closed subsets.
(Proposition (e) plays a critical role in this proof. If the set U {4,:
new} is closed and connected and the sets A4, are closed and disjoint
it is possible to find a closed connected set which is disjoint from A
and intersects more than one of the sets A,.)

(g) Let X be the subset {(x,y): ¥2y® = 1} of the Euclidean plane
with the usual metric. Then X is locally compact and any two points
can be joined by an e-chain for each ¢ > 0, but X is not connected.

Notes The results of this problem generalize very naturally to com-
pact Hausdorff (or compact regular) spaces. The even covering theo-
rem 5.27 gives the necessary mechanism.

Lest proposition (e) make one over-optimistic on the properties of
connected sets, the classic example of Knaster and Kuratowski [1]
should be mentioned. There is a connected subspace X of the Euclidean
plane and a point x of X such that X ~ {x} contains no connected set.

U FULLY NORMAL SPACES

If U is a family of subsets of a set X and x is a point of X, then the
star at x of U is the union of the members of U to which x belongs. A
cover U is a star-refinement of U iff the family of stars of U at points of
X is a refinement of U. A topological space is fully normal iff each open
cover has an open star-refinement. Then: A regular topological space
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is fully normal iff it is paracompact. (If X is paracompact the even
covering property together with 5.30 yields an easy proof of full nor-
mality. On the other hand, if X is fully normal, U is an open cover
and U is an open star-refinement of U, then U{¥ X 7: 7 eV} is a
neighborhood of the diagonal.)

Note The definition of full normality is due to J. W. Tukey [1],
who proved many useful properties. The equivalence with paracom-
pactness was proved by A. H. Stone [1].

V POINT FINITE COVERS AND METACOMPACT SPACES

A family of subsets of X is point finite iff no point of X belongs to
more than a finite number of members of the family. A topological
space is metacompact iff each open cover has a point finite refinement.

(a) Let U be a point finite open cover of a normal space X. Then it
is possible to select an open set G(U) for each U in U in such a way
that G(U)™ € U and the family of all sets G(U) is a cover of X. (Choose
a maximal member of the class of all functions F satisfying the condi-
tions: the domain of F is a subfamily of U, F(U) is an open set whose
closure is contained in U for each U in the domain of F and |J {F(U):
Uedomain F} U J {¥: VeUu and Vg¢domain F} = X. Point
finiteness of U implies the existence of a maximal F.)

(b) A point finite cover of a set has a minimal subcover (that is, a
subcover no proper subfamily of which is a cover).

(c) A metacompact Tj-space is countably compact (see 5.E) iff it
is compact.

Note Propositions (b) and (c) are taken directly from Arens and
Dugundji [1].

W PARTITION OF UNITY

A partition of unity on a topological space X is a family F of con-
tinuous functions on X to the set of non-negative real numbers such
that Y {f(x): fe F} = 1 for each # in X, and all but a finite number
of members of F vanish on some neighborhood of each point of X.
A partition F of unity is subordinate to a cover U of X iff each member
of F vanishes outside some member of 4. Then: For each locally finite
open cover U of a normal space there is a partition of unity which is
subordinate to U. A slightly stronger result may be proved: If U is a
locally finite open cover of a normal space, then it is possible to select
a non-negative continuous function fy for each U in U such that fy is
0 outside U and is everywhere less than or equal to one, and
Z{ Sfu(x): Ueu} = 1 for all x. (See 5.V(a) above.)
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Note As far as I know, this result (approximately) is due independ-
ently to Hurewicz, Bochner, and Dieudonné.

X THE BETWEEN THEOREM FOR SEMI-CONTINUOUS FUNCTIONS

Let g and % be, respectively, lower and upper semi-continuous real-
valued functions on a paracompact space X, and suppose that
h(x) < g(x) for all x in X. Then there is a continuous real-valued
function p on X such that A(x) < p(x) < g(x) for each x. (Let U be
the family of all open subsets U of X such that the supremum of %
on U is less than the infimum of g on U, and let F be a partition of
unity which is subordinate to U. For each f in F choose ks such that,
if f(x) # 0, then A(x) < ks < g(x), and let p(x) = X {ksf(x): fe F}.
The value of p at a point & is then an average of numbers, all of which
lie between A(x) and g(x).)

Notes The result above can be improved by first finding a countable
refinement for the family . The proposition then holds for countably
paracompact spaces (that is, spaces such that each countable open
cover has a locally finite refinement). The converse of the sharpened
form of the theorem is true. Dowker [2] has proved the equivalence
of: (1) X is countably paracompact and normal, (2) the product of X
and the closed unit interval is normal, and (3) the proposition above.
Dowker also shows that a perfectly normal space (normal and each
closed subset is a Gj) is countably paracompact. It is not known
whether a normal Hausdorff space must be countably paracompact.

Y PARACOMPACT SPACES

(a) Each regular Lindeldf space is paracompact.

(b) A topological space is defined to be o-compact iff it is the union
of a countable family of compact subsets. Each o-compact space is a
Lindelsf space.

(c) If a regular space is the union of the members of an open discrete
family of Lindeldf subspaces, then it is paracompact. Consequently
each locally compact group is paracompact. (Consider the family of
cosets modulo the smallest subgroup containing a fixed compact neigh-
borhood of the identity.)

(d) The half-open interval space of problems 1K and 4.I is regular
and Lindeldf and hence paracompact. The cartesian product of this
space with itself is not normal and is therefore not paracompact.

(e) With the order topology the set of all ordinals which are less
than the first uncountable ordinal is not paracompact. (Consider the
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cover consisting of all sets of the form {x: ¥ < a}. The supremum of
each member of an arbitrary refinement of this cover is less than ©.)

Notes Proposition (a) above is due to Morita [1]. For further
information on paracompactness (an F,-theorem, products, etc.) see
Michael [1]. Bing [1] has studied a normality condition which is inter-
mediate to normality and paracompactness. In this connection it
might be emphasized that lemma 5.31 states a noteworthy normality
property of paracompact spaces.



Chapter 6

UNIFORM SPACES

There are several properties of metric spaces which are not to-
pological but are closely connected with topological properties.
We give examples of the sort of connections contemplated, post-
poning the definitions and proofs. The property of being a
Cauchy sequence is not a topological invariant, for the map f
such that f(x) = 1/x is a homeomorphism of the space of posi-
tive real numbers onto itself which carries the Cauchy sequence
{1/(n 4 1): » e w} into the non-Cauchy sequence {#n + 1, 7 e w}.
However, it is possible to derive topological results from state-
ments about Cauchy sequences; for example, a subset A4 of the
space of all real numbers is closed if and only if each Cauchy se-
quence in A converges to some point of 4. The reverse sort of
implication may also occur; thus, each continuous function on a
compact metric space is uniformly continuous. In this case we
deduce from a topological premise (that the space is compact) a
non-topological conclusion (that a function is uniformly continu-
ous). This chapter is devoted to a study of quasi-topological re-
sults of this sort.

The mathematical construct employed in studying uniformity
properties is called a uniform space. A brief discussion will in-
dicate how this notion, which is due to A. Weil [1], applies.

A sequence {x,, # € w} In a pseudo-metric space (X,d) is called
a Cauchy sequence iff d(xn,x,) converges to zero as m and #n be-
come large. This notion is not meaningful in an arbitrary topo-

logical space; in order to define a Cauchy sequence it is necessary
174
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to know, in some sense, for what pairs the distance d(x,y) is
small. This statement may be made precise in the following
way. If V4, = {(x9): d(x,y) < r}, then {x,, » e w} is a Cauchy
sequence iff for each positive r it is true that (xm,%,) is a member
of V4, for m and n large. The notion of uniform continuity can
also be formulated in terms of the family of all sets of the form
V4. This suggests consideration of a set X and a special family
of subsets of X X X.

If X is a topological group, then a sequence {x,, 7 € w} may
be called a Cauchy sequence iff x,,x, ! is near the identity e of
the group when 7 and # are large. Again, the information needed
to make this definition is information about pairs of points. We
need to know which pairs of points (x,y) are such that xy™' is
near the identity e. For each neighborhood U of ¢ let /'y =
{(#,y): xy" e U}. Then clearly the family of all sets of the
form 7y determines which sequences are Cauchy.

A uniform space is defined to be a set X together with a family
of subsets of X X X which satisfies certain natural conditions.
This follows the pattern suggested by both of the preceding ex-
amples. However, it should be emphasized that this is by no
means the only framework in which uniformity can be studied.
It is possible to study a set X together with a distinguished family
of pseudo-metrics for X, or to distinguish a collection of covers
of X which are to be uniform covers (roughly in the sense of the
Lebesgue covering lemma 5.26). One may also consider “met-
rics” with values in a structure less restricted than that of the
real numbers. All of these notions are essentially equivalent, as
indicated in the problems at the end of the chapter.

Finally, it must be said that there are uniformity properties
of metric spaces which apparently do not generalize to less re-
stricted situations. The last section is devoted to a study of
some of these.

UNIFORMITIES AND THE UNIFORM TOPOLOGY

We will be concerned with subsets of a cartesian product
X X X of a set with itself. These subsets are relations in the
sense of chapter 0, and for convenience we review some of the
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earlier definitions and results about them. A relation is a set of
ordered pairs, and if U is a relation the inverse relation U™ is
the set of all pairs (¥,y) such that (y,x) e U. The operation of
taking inverses is involutory in the sense that (U~1)~! is always
U. If U= U™, then U is called symmetric. If U and 7 are
relations, then the composition U+ ¥ is the set of all pairs (x,2)
such that for some y it is true that (x,y) e 7 and (y,2) e U.
Composition is associative, that is, U (VW) = (U V)W,
and it is always true that (U- ?)~! = V== U~!, The set of
all pairs (x,x) for x in X is called the identity relation, or the
diagonal, and is denoted by A(X) or simply A. For each subset
A of X the set U[A] is defined to be {y: (x,y) e U for some x in
A}, and if x is a point of X, then Ulx] is U[{x}]. For each U
and 7 and each A it is true that (U° 7)[4] = U[V[A4]]. Finally
a simple lemma will be needed.

1 Lemma  If V is symmetric, then VU~V = U {(V[x] X V[yl:
(%.y) e U}.

PROOF By definition 7« U+ 7 is the set of all pairs (#,0) such
that (%) e 7V, (x,y) e U and (y,v) ¢ 7 for some x and some y.
Since » is symmetric this is the set of all (#,v) such that # & V[x]
and ve V[y] for some (x,y) in U. But ue V[x] and ve V[y]
iff (u,0) e V[x] X V[y], and hence Ve U+ V = {(u,0): (u,0) e V]x]
X V1yl for some (x,y) in U} = U {(F[x] X V[y]: (x,y) e U}. 1|

A uniformity for a set X is a non-void family U of subsets of
X X X such that

(a) each member of 4 contains the diagonal A;

(b) if Ue, then U™t ea;

(c) if Ueu, then ¥ 7V < U for some ¥ in u;

(d) if U and 7 are members of U, then U N 7 e; and
() f Uenand Uc 7V c X X X, then 7V e.

The pair (X,u) is a uniform space.

The metric antecedents of the conditions above are not hard
to discern. The first is derived from the condition that d(x,x)
= 0 and the second derives from the symmetry condition d(x,y)
= d(y,x). The third is a vestigal form of the triangle inequality
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—it says roughly that for r-spheres there are (r/2)-spheres. The
fourth and fifth resemble axioms for the neighborhood system of
a point and they will be used to derive the corresponding prop-
erties for a neighborhood system relative to a topology which
will presently be defined.

There may be many different uniformities for a set X. The
largest of these is the family of all those subsets of X X X which
contain A and the smallest is the family whose only member is
X X X. If X is the set of real numbers the usual uniformity for
X is the family u of all subsets U of X X X such that {(x,):
¥ —y| <r} € U for some positive number . Each member
of 4 is a neighborhood of the diagonal A (the line with equation
Y = ), but it is to be emphasized that not every neighborhood
of the diagonal is a member of 4. For example, the set {(x,y):
| ¥ —y| <1/(1 +|y|)} is a neighborhood of A but not a mem-
ber of . .

It is not generally true that the union or the intersection of
two uniformities for X is a uniformity. However, the union of
a collection of uniformities generates a uniformity in a rather
natural sense. A subfamily ® of a uniformity 4 is a base for u
iff each member of U contains a member of 8. If ® is a base for
U, then ® determines U entirely, for a subset U of X X X belongs
to 4 iff U contains a member of ®. A subfamily 8 is a subbase
for  iff the family of finite intersections of members of § is a base
for . These definitions are entirely analogous to the definitions
of base and subbase for a topology.

2 TueoreM A non-void family ® of subsets of X X X is a base
Sfor some uniformity for X if and only if

(a) each member of & contains the diagonal A;

(b) if Ue®, then U™ contains a member of ®;

(©) f Ue®, then V-V < U for some V in ®; and

(d) the intersection of two members of ® contains a member.

The straightforward proof of this proposition is omitted.

The property of being a subbase for some uniformity is less
easy to characterize. However, the following simple result is
adequate for our needs.



178 UNIFORM SPACES

3 THEOREM A family § of subsets of X X X is a subbase for
some uniformity for X if

(2) each member of S contains the diagonal A,
(b) for each U in s the set U™ contains a member of 8, and
(c) for each U in § there is V in 8 such that V-V < U.

In particular, the union of any collection of uniformities for X
is the subbase for a uniformity for X.

PROOF It must be shown that the family ® of finite intersections
of members of § satisfies the conditions of 6.2. This follows
easily from the observation: If U, -+ U, and V4, -+, V, are
subsets of X X X,if U= N{Us:i=1,---,n}and ¥V = N{Vs:
i=1, -+, n}, then ¥ c U™ (or V- ¥V < U) whenever V; C
U;™! (respectively, V- V; c U;) for each i. |

If (X,) is a uniform space the topology 3 of the uniformity «u,
or the uniform topology, is the family of all subsets T of X such
that for each x in T there is U in U such that Ulx] ¢ T. (This
is precisely the generalization of the metric topology, which is
the family of all sets which contain a sphere about each point.)
It must be verified that 3 is indeed a topology, but this offers no
difficulty: In view of the definition, the union of members of 3
is surely a member of 3. If T and § are members of 3 and x e T
N S, then there are U and 7 in 4 such that Ulx] < T and V[x]
c S, and hence (U N P)[x] € T N §; consequently T N Se3
and 3 is a topology.

The relation between a uniformity and the uniform topology
will now be examined.

4 TuporeM The interior of a subset A of X relative to the uni-
form topology is the set of all points x such that Ulx] A for some
U in .

proOoF It must be shown that the set B = {x: Ulx] € 4 for
some U in a} is open relative to the uniform topology, for B
surely contains every open subset of 4 and, if B is open, then it
must necessarily be the interior of 4. If x ¢ B, then there is a
member U of U such that Ulx] € A and there is 7 in 4 such that
VeV cU. If yeVlx], then V[y] c V- V]x]  Ulx] c 4, and
hence y ¢ B. Hence 7[x] € B and B is open. |}
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It follows immediately that Ulx] is a neighborhood of % for
each U in the uniformity 4, and consequently the family of all
sets Ulx] for U in 4 is a base for the neighborhood system of x
(the family is actually identical with the neighborhood system
but this is of no great importance). The following proposition
is then clear.

5 THEOREM If ® is a base (or subbase) for the uniformity A,
then for each x the family of sets Ulx) for U in ® is a base (subbase
respectively) for the neighborhood system of x.

The uniform topology for X may be used to construct a prod-
uct topology for X X X. As might be expected, members of the
uniformity have a special structure relative to this topology.

6 TueoreEm If U is a member of the uniformity U, then the in-
terior of U is also a member; consequently the family of all open
symmetric members of W is a base for .

prRoOF The interior of a subset M of X X X is the set of all
(%,y) such that, for some U and some ¥ in a1, Ulx] X V[y] € M.
Since U N ¥ e the interior of M is {(x,y): V[x] X V[yl c M
for some V in au}. If Ueq there is a symmetric member 7 of U
such that ¥+ V<V < U and, according to lemma 6.1, Ve VeV
= U {ZIx] X P[yl: (x,5) e V}. Hence every point of V is an
interior point of U and, since the interior of U contains V) it is
a member of a. ||

In view of the foregoing theorem every member of a uniformity
is a neighborhood of the diagonal. It is to be emphasized that
the converse of this proposition is false. There may be many
very different uniformities for X, all having the same topology
and hence the same family of neighborhoods of the diagonal.

7 TuroreM The closure, relative to the uniform topology, of a sub-
set 4 of X is N{U[AL]: Uew). The closure of a subset M of
XXXisN{UM-U: Ueau}.

PROOF A point x belongs to the closure of a subset 4 of X iff
Ulx] intersects A4 for each U in 4. But Ulx] intersects A iff
x &€ U™4], and since each member of A contains a symmetric
member, x e A7 iff x e U[A] for each Uin«u. The first statement



180 UNIFORM SPACES

is then proved. Similarly, if U is a symmetric member of a,
then Ulx] X Uly] intersects a subset M of X X X iff (x,y) ¢
Ulu] X Ult] for some (u,0) in M, that is, iff (x,5) e U {Ulx] X
Ulv]: (#,0) e M}. Since by lemma 6.1 this last set is Us M- U
it follows that (x,y) e M~ iff (x,5) e N{U-M-U: Ueau}. |

8 TuEoREM The family of closed symmetric members of a uni-
formity U is a base for .

ProOF If U e and 7 is a member of U such that 7« V'« V' < U,
then 7 V= I contains the closure of 7 in view of the preceding
theorem; hence U contains a closed member # of 4 and # N
W=1is a closed symmetric member. ||

It will be shown presently that a uniform space (more precisely
a space with a uniform topology) is always completely regular.
At the moment it is easy to see that such a space is regular, for
each neighborhood of a point ¥ contains a neighborhood #7[x]
such that 7 is a closed member of 1, and »[x] is consequently
closed. Therefore a space with a uniform topology is a Haus-
dorff space iff each set consisting of a single point is closed. Since
the closure of the set {x} is [1{Ul[x]: U e}, the space is Haus-
dorff iff N {U: Uew} is the diagonal A. In this case (Xu) is
said to be Hausdorff or separated.

UNIFORM CONTINUITY; PRODUCT UNIFORMITIES

If f is a function on a uniform space (X,u) with values in a
uniform space (Y,0), then f is uniformly continuous relative to
a4 and U iff for each 7 in U the set {(x,3): (f(*), /() eV} is a
member of 4. This condition may be rephrased in several ways.
For each function fon X to Y let f; be the induced function on X X
XtoY X Y which is defined by f5(x,y) = (f(x),f/(»)). Then fis
uniformly continuous iff for each 7 in U there is U in a such
that f2[U] c 7. We also have: if § is a subbase for 0, then f is
uniformly continuous iff fo"[/"] e for each 7 in 8, because
J27! preserves unions and intersections. If Y is the set of real
numbers and U is the usual uniformity, then it follows that f is
uniformly continuous iff for each positive number r there is U
in u such that | f(x) — f(y) | < r whenever (x,5) e U. If X is
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also the space of real numbers with the usual uniformity, then
f is uniformly continuous iff for each positive number 7 there is
a positive number s such that |f(x) — f(3) | < r whenever
| —y| <s.

It is evident that, if fis on X to Y and g is a function on Y,
then (g°f)2 = g2°fs, and from this it follows that the composi-
tion of two uniformly continuous functions is again uniformly
continuous. If f is one-to-one map of X onto Y and both f and
f~! are uniformly continuous, then f is a uniform isomorphism,
and the spaces X and Y (more precisely (X,u) and (Y,0)) are
said to be uniformly equivalent. The composition of two uni-
form isomorphisms, the inverse of a uniform isomorphism, and
the identity map of a space onto itself are all uniform isomor-
phisms, and consequently the collection of all uniform spaces is
divided into equivalence classes, consisting of uniformly equiva-
lent spaces. A property which when possessed by one uniform
space is also possessed by every uniformly isomorphic space is a
uniform invariant. With a few exceptions the properties studied
in this chapter are uniform invariants.

As might be expected, uniform continuity implies continuity
relative to the uniform topology.

9 TueoREM Each uniformly continuous function is continuous
relative to the uniform topology, and hence each uniform isomor-
phism is a homeomorphism.

PrROOF Let f be a uniformly continuous function on (X,u) to
(Y,0) and let U be a neighborhood of f(x). Then there is 7 in
U such that 7 [f(x)] € U, and f'[F[f(®]] = {y:/() e V[f(%)]}
= {y: (f(»), f(3)) e ¥} = f,7[¥][x], and this is a neighborhood
of x. Hence f~![U] is a neighborhood of ¥ and continuity is
proved. | ;

If f is a function on a set X to a uniform space (¥,0), then it
is not generally true that the family of all sets f,7'[¥] for 7 in
V is a uniformity for X. The difficulty is that there may be a
subset of X X X which contains some set f;~![/], but is not the
inverse of any subset of Y X Y. However, this difficulty is not
profound; the family of all f;~)[#] is the base for a uniformity
for X, as we now verify. Itis clear thatf;™" preserves inclusions,
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intersections, and inverses (that is, £, [V~ = [f, 7 [V]]7Y), and
consequently it is only necessary to show that for each member U
of U there is 7 in U such that o7 [V]- £, 7 [V] < fo " U]. Butif
VeV c U and (x,y) and (y,2) belong to f;~'[/], then both
(f(%),/(»)) and (f(9),f(z)) belong to 7, and hence (f(x),f(z)) e
Ve V. It follows that the family of inverses of members of U is
indeed a base for a uniformity u for X. It is clear that f is uni-
formly continuous relative to U4 and U, and in fact U is smaller
than every other uniformity for which f is uniformly continuous.

If (X,a) is a uniform space and Y is a subset of X, then in
view of the preceding discussion there is a smallest uniformity
U such that the identity map of Y into X is uniformly continuous.
It is clear that the members of U are simply the intersections of
the members of U with ¥ X Y (sometimes called the trace of
U on Y X Y). The uniformity U is called the relativization of
U to Y, or the relative uniformity for Y, and (Y, V) is called a
uniform subspace of the space (X,u). We omit the simple veri-
fication of the fact that the topology of the relative umformlty
U is the relativized topology of «u.

We have seen that there is always a unique smallest uniformity
which makes a map of a set X into a uniform space uniformly
continuous. This proposition may be extended to a family F of
functions such that each member f of F maps X into a uniform
space (Y;y). The family of all sets of the form f,~Y[U] =
{(x,3): (f(*),f(»)) e U}, for fin F and U in a, is a subbase for
a uniformity U for X, and 4 is the smallest uniformity such that
each map f is uniformly continuous. (Theorem 6.3 shows that
the family of sets of the form f,~![U] is a subbase for a uniform-
ity, and evidently U4 makes each f uniformly continuous and is
smaller than every other uniformity with this property.) It is
in precisely this way that the product uniformity is defined. If
(XaUs) is 2 uniform space for each member @ of an index set 4,
then the product uniformity for X{X,: ae 4} is the smallest
uniformity such that projection into each coordinate space is
uniformly continuous. The family of all sets of the form {(x,y):
(%a,Ya) € U}, for @ in A4 and U in U, is a subbase for the product
uniformity. If x is a member of the product, then a subbase for
the neighborhood system of x (relative to the uniform topology)
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may be constructed from the subbase for the product uniformity.
Hence the family of all sets of the form {y: (¥a,y4) € U} is a sub-
base for the neighborhood system of x. It follows that a base
for the neighborhood system of x relative to the topology of the
product uniformity is the family of finite intersections of sets of
the form {y: ys € Ulx,]} for 2 in 4 and U in U,. But the same
family is also a base for the neighborhood system of x relative
to the product topology, and consequently the product topology
is the topology of the product uniformity. This statement is the
first half of the following theorem.

10 Turorem The topology of the product uniformity is the prod-
uct topology.

A function f on a uniform space 10 a product of uniform spaces
is uniformly continuous if and only if the composition of f with
each profection into a coordinate space is uniformly continuous.

proOF If f is uniformly continuous with values in the product
X {X,: a & A}, then each projection P, is uniformly continuous
and the composition P,ef is uniformly continuous. If Pa°f is
uniformly continuous for each z in 4 and U is a member of the
uniformity of X,, then {(#,0): (Pa°f(%),Pa<f(v)) e U} is a mem-
ber of the uniformity U of the domain of f. But this set can be
written in the form £~ [{(%,%): (¥sya) € U}]. Hence the inverse
under f5 of each member of a subbase for the product uniformity
belongs to U and f is therefore uniformly continuous. 1

The next proposition begins the development of the relation
between uniformities and pseudo-metrics for X.

11 Turorem Let (X, 1) be a uniform space and let d be a pseudo-
metric for X. Then d is uniformly continuous on X X X relative
to the product uniformity if and only if the set {(x,y): d(x,y) < r}
is @ member of U for each positive number r.

prooF Let Vi, = {(%,9): d(x,5) < r}. It must be shown that
Va4, e for each positive r iff 4 is uniformly continuous with re-
spect to the product uniformity for X X X. If Uis a member of
a, then the sets {((%,9),(#,0)): (x,4) e U} and {((x,3),(%,0)):
(y,v) & U} belong to the product uniformity, and it is easy to see
that the family of all sets of the form {((x,%),(#,v)): (x,#) e U and
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(y,v) € U} is a base for the product uniformity. Hence if 4is uni-
formly continuous, then for each positive » there is U in 4 such
that, if (¥,4) and (y,v) belong to U, then | d(x,y) — d(up) | < r.
In particular, letting (#,0) = (3,y), it follows that, if (x,y) e U,
then d(x,y) < r. Then U c ¥, , and consequently 7, eu. To
prove the converse observe that, if both (x,%) and (y,0) belong
to Va,r, then | d(x,y) — d(u,p) | < 2r because d(x,y) < d(x,u) +
d(up) + d(y,v) and d(u,w) = d(x,u) + d(x,y) + d(y,w). It fol-
lows that, if 7;,eu for each positive 7, then 4 is uniformly
continuous. |

METRIZATION

The purpose of this section is to compare uniform spaces and
pseudo-metrizable spaces. The comparison is an example of the
standard procedure for testing the effectiveness of a generaliza-
tion. The generalization is compared with the mathematical ob-
ject which it purports to generalize in order to discover the ex-
tent to which the basic concepts have been isolated. In this
case (as in many other instances) the comparison yields a repre-
sentation of the generalized object in terms of its progenitor.
A uniformity will be assigned to each family of pseudo-metrics
for a set X, and the principal result of the section states that
every uniformity is derived in this fashion from the family of
its uniformly continuous pseudo-metrics. It will also be shown
that a uniformity can be derived from a single pseudo-metric if
and only if the uniformity has a countable base.

Each pseudo-metric d for a set X generates a uniformity in the
following way. For each positive number r let 7,, = {(x,y):
d(x,y) < r}. Clearly (P4,)"! = Vg, Var N V4, = V4, where
¢t = min [r,s], and Vg4, V4, C Vaar It follows that the family
of all sets of the form ¥, is a base for a uniformity for X. This
uniformity is called the pseudo-metric uniformity, or the uni-
formity generated by d. A uniform space (Xu) is said to be
pseudo-metrizable (or metrizable) if and only if there is a pseudo-
metric (metric, respectively) 4 such that 4 is the uniformity gen-
erated by 4. The uniformity generated by a pseudo-metric 4
can be described in another way. According to 6.11 a pseudo-
metric 4 is uniformly continuous relative to a uniformity U (more
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precisely, relative to the product uniformity constructed from
) if and only if 74, e for each positive 7. The uniformity U
derived from 4 can then be characterized as the smallest uni-
formity which makes 4 uniformly continuous on X X X. It
should be noticed that the pseudo-metric topology is identical
with the uniform topology of 4, because 4 .[x] is the open -
sphere about x and the family of sets of this form is a base for
the neighborhood system of x relative to both topologies.

The crucial step in the metrization theorem for uniform spaces
is provided by the following lemma.

12 MEeTR1ZATION LEMMA Let {U,, new} be a sequence of sub-
sets of X X X such that Uy = X X X, each U, contains the diag-
onaly, and Uy y1° Upy1° Unyr © U, for each n. Then there is a
non-negative real-valued function d on X X X such that

(a) d(x,y) + d(y,2) = d(x,2) for all x, y, and z; and
(b) U, < {(%,y): d(x,y) < 27} © Un—1 for each positive in-
teger n.

If each U, is symmetric, then there is a pseudo-metric d satisfying
condition (b).

PROOF Define a real-valued function f on X X X by letting
feoy) =277 iff (%,y) e Up—y ~ U, and flxy) = 0 iff (%) be-
longs to each U,. The desired function 4 is constructed from its
“first approximation” f by a chaining argument. For each x
and each y in X let d(»,y) be the infimum of 3> { f(xi¥:i41): 4 = 0,
..., n} over all finite sequences Xo, #1, ***, ¥a41 such that x =
xo and ¥ = ¥,y It is evident that d satisfies the triangle in-
equality and since d(x,y) < f(x,y) it follows that U, c {(x,5):
d(x,y) < 27}. If each U, is symmetric, then f(x,y) = f(y,%)
for each pair (x,y) and consequently 4 is a pseudo-metric in this
case. The proof is completed by showing that f(xo,%n41) =
23 { f(¥ipxiq1): i = 0, -+ -, n}, from which it will follow that, if
d(x,y) < 27", then f(x,y) <2~ "%, hence (x,y)e Un_;, and
{(%,9): d(%,y) <27} € Un_1. The proof is by induction on #,
and the inequality is clearly valid for » = 0. For convenience,
call the number 3 {f(xi¥iy1): i =7, -+, s} the length of the
chain from 7 to s + 1, and let @ be the length of the chain from
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0 ton + 1. Let & be the largest integer such that the chain from
0 to k is of length at most /2, and notice that the chain from
k41 to n + 1 has length at most g/2. By the induction hy-
pothesis, each of f(xo,xx) and f(xk 1% 41) is at most 2(a/2) = a,
and surely f(xi,%r41) is at most a. If m is the smallest integer
such that 27™ < 4, then (xo,4%), (k%% +1) and (xxy1,%n41) all be-
long to U,, and therefore (#o,%x+1) € Un—1. Hence f(xo,xn41) <
2-m+1 < 24 and the lemma is proved. |

If a uniformity 4 for X has a countable base 7,, ¥4, ---,
V, ---, then it is possible to construct by induction a family
Uy, Uy, ¢+, U, -+ such that each U, is symmetric, U, U, U,
C Un_1 and U, c 7, for each positive integer #n. The family
of sets U, is then a base for U, and upon applying the metriza-
tion lemma it follows that the uniform space (X,u) is pseudo-
metrizable. Hence:

13 METRIZATION THEOREM A uniform space is pseudo-metrizable
if and only if its uniformity has a countable base.

This theorem clearly implies that a uniform space is metrizable
iff it is Hausdorff and its uniformity has a countable base.

14 Notes To the best of my knowledge this theorem first ap-
pears in Alexandroff and Urysohn [2]. These authors were seek-
ing a solution to the topological metrization problem (see 4.18),
and the result they state is (approximately): a topological Haus-
dorff space (X,3) is metrizable iff there is a uniformity with a
countable base such that 3 is the uniform topology. This is a
rather unsatisfactory solution to the topological metrization
problem but (with a slightly strengthened conclusion) is pre-
cisely the metrization theorem for uniform spaces. Chittenden
[1] first proved a “uniform” form of 6.13 and his proof was later
drastically simplified by A. H. Frink [1] and by Aronszajn [1].
The preceding proof is Bourbaki’s arrangement of Frink’s. The
first appearance of 6.13 in the form just given occurs in André
Weil’s classic monograph [1] in which he introduces the notion
of uniform space. ||

A uniformity for a set X may be derived from a family P of
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pseudo-metrics in the following fashion. Letting 7y, = {(x,y):
p(x,9) < 7}, the family of all sets of the form 7, for p in P
and r positive is the subbase for a uniformity u for X. This
uniformity 4 is defined to be the uniformity generated by P.
The uniformity may be described in several instructive ways.
According to 6.11 a pseudo-metric p is uniformly continuous on
X X X relative to the product uniformity derived from v iff
V,.eU for each positive r. Consequently the uniformity gen-
erated by P is the smallest uniformity which makes each member
p of P uniformly continuous on X X X. Another description:
For a fixed member p of P the family of all sets 7., for 7 posi-
tive is a base for the uniformity of the pseudo-metric space
(X,p). If U is a uniformity for X, then the identity map of
(X,0) into (X,p) is uniformly continuous iff 7}, for each
positive 7. It follows that the uniformity  is the smallest such
that for each p in P the identity map of X into (X,p) is uniformly
continuous. This fact yields yet another description. Let Z be
the product X {X: p e P} (that is, the product of X with itself
as many times as there are members of P) and let f be the map
of X into Z defined by f(x), = x for each x in X and each p in
P. Let the p-th coordinate space of this product be assigned the
uniformity of the pseudo-metric p, and let Z have the product
uniformity. The projection of Z into the p-th coordinate space
is the identity map of X onto the pseudo-metric space (X,p),
and it therefore follows from 6.10 that the uniformity generated
by P is the smallest having the property that the map of X into
Z is uniformly continuous. But f is one to one and is conse-
quently a uniform isomorphism of X onto a subspace of the prod-
uct of pseudo-metric spaces.

It is clearly of some importance to know which uniformities
are generated by families of pseudo-metrics—this might be called
the generalized metrization problem for uniform spaces. The so-
lution to the problem is a direct application of the preceding re-
sults. Let (X,u) be a uniform space and let P be the family of
all pseudo-metrics for X which are uniformly continuous on
X X X. The uniformity generated by P is smaller than u in
view of 6.11. But the metrization lemma 6.12 shows that for
each member U of u there is a member p of P such that {(x,y):



188 UNIFORM SPACES

p(%,y) < ¥4} is contained in U, and hence U is smaller than the
uniformity generated by P. Thus:

15 THEOREM Each uniformity for X is generated by the family of
all pseudo-metrics which are uniformly continuous on X X X.

There is an interesting corollary to the foregoing theorem. It
has already been observed that, if a uniformity a for X is gen-
erated by a family P of pseudo-metrics, then the space is uni-
formly isomorphic to a subspace of a product of pseudo-metric
spaces, and it is possible to sharpen this result if (X,u) is Haus-
dorff. The uniformity u is the smallest which makes the iden-
tity map of X into the pseudo-metric space (X,p) uniformly
continuous for each p in P. The space (X,p) is isometric under
a map A, to a metric space (X,,p*), by theorem 4.15, and it fol-
lows that 4 is the smallest uniformity making each of the maps
hp uniformly continuous. If a map 4 of X into X {X,: pe P} is
defined by letting A(x), = A,(x), then by 6.10 the uniformity u
is the smallest such that 4 is uniformly continuous. If (X;u) is
Hausdorff, then %2 must be one to one, and in this case 4 is a uni-
form isomorphism. The preceding theorem then implies the fol-
lowing result (Weil [1]).

16 THEOREM Each uniform space is uniformly isomorphic to a
subspace of the product of pseudo-metric spaces and each uniform
Hausdorff space is uniformly isomorphic to a subspace of the prod-
uct of metric spaces.

The preceding theorem yields a characterization of those to-
pologies which can be the uniform topology for some uniformity,
for a topological space is completely regular if and only if it is
homeomorphic to a subspace of a product of pseudo-metrizable
spaces (4.L).

17 CoroLLarRY A topology 3 for a set X is the uniform topology
for some uniformity for X if and only if the topological space (X,3)
is completely regular.

The remainder of this section is devoted to a clarification of
the relationship between uniformities and pseudo-metrics. A
family P of pseudo-metrics for a set X is said to be a gage iff
there is a uniformity U for X such that P is the family of all
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pseudo-metrics which are uniformly continuous on X X X rela-
tive to the product uniformity derived from . The family P
is called the gage of the uniformity « and @ is the uniformity of
P (u is generated by P according to 6.15). Every family of
pseudo-metrics generates a uniformity; it will also be said to gen-
erate the gage of this uniformity. A direct description of the
gage generated by a family P of pseudo-metrics is possible. The
family of all sets of the form 7, for p in P and r positive is a
subbase for the uniformity of the gage, and hence a pseudo-
metric ¢ is uniformly continuous on the product iff for each posi-
tive number s the set 7, contains some finite intersection of
sets ¥, for p in P. This remark establishes the following
proposition.

18 TuHEOREM Let P be a family of pseudo-metrics for a set X and

let Q be the gage generated by P. Then a p:eudo—metric q belongs to

Q if and only if for each positive number s there is a posztwe number

r and a finite subfamily Py, + -+, pn of P such that (N (Vp,ei i = 1,
coyn} C Ve

~ Each concept which is based on the notion of a uniformity
can be described in terms of a gage because each uniformity is
completely determined by its gage. The following theorem is
a dictionary of such descriptions. Recall that p-dist (x,4) =
inf{p(x,y): y e A} is the p-distance from a point ¥ to a set 4.

19 THEOREM Let (X, W) be a uniform space and let P be the gage
of W. Then:

(a) The family of all sets Vp,, for p in P and r positive is a
base for the uniformity .

(b) The closure relative to the uniform topology of a subset A of
X is the set of all x such that p-dist (x,4) = O for each p in
P.

(c) The interior of a set A is the set of all points such that for
some p in P and some positive number r the sphere V, [x]
c 4.

(d) Suppose P’ is a subfamily of P which generates P. A net
{Sny 7 € D} in X converges to a pomt 5 zf and only zf {2(8ns9),
‘n & D} converges to zero for each p in P'.
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(e) A function f on X to a uniform space (Y, V) is uniformly
continuous if and only if for each member q of the gage ) of
U it is true that q°fa € P. (Recall f2(x,y) = (f(x),f(¥)).)

Equivalently, f is uniformly continuous if and only if for
each q in Q and each positive number s there is p in P and r
positive such that, if p(x,y) <r, then q(f(x),f(¥)) < s.

(f) If (XaWa) is a uniform space for each member a of an index
set 4 and P, is the gage of WU, then the gage of the product
uniformity for X{Xa: aed} is generated by all pseudo-
metrics of the form q(x,y) = pa(%a,ya) for a in A and p,
in P, : :

The proof is omitted. It is a straightforward application of
earlier results.

COMPLETENESS

This section is devoted to a number of elementary theorems
based on the concept of a Cauchy net. A uniform space will be
called complete iff each Cauchy net in the space converges to
some point. The two most useful results of the section state
that the product of complete spaces is complete, and that a uni-
formly continuous function f to a complete Hausdorff space has a
uniformly continuous extension whose domain is the closure of
the domain of f.

It will be supposed throughout that X is a set, U is a uniformity
for X, and P is the gage of u (that is, P is the family of all pseudo-
metrics for X which are uniformly continuous on X X X). The
definitions will be given in terms of both 4 and P, and the proofs
use the formulation which is most convenient for the problem
under consideration. The set {(x,y): p(x,y) < r} will be denoted
by Vp.r

A net {Sa, n € D} in the uniform space (X,a) is a Cauchy net
iff for each member U of u there is NV in D such that (§,,5,) e U
whenever both m and # follow N in the ordering of D. This
definition may be rephrased in terms of a net in X X X. In
this form it is stated: the net {§,, » e D} is a Cauchy net iff the
net {(SmyS»), (mm) e D X D} is eventually in each member of
a. (It is understood that D X D is given the product ordering.)
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The family of all sets of the form 7, for p in the gage P and r
positive is a base for the uniformity a, and it follows that {S,,
n e D} is a Cauchy net iff {(§,,5.), (m,n) e D X D} is eventually
in each set of the form 7, In other words, {S,, neD} is a
Cauchy net if and only if {p(Sm,Sn), (m,n) € D X D} converges
to zero for each pseudo-metric p belonging to the gage P.

There is a simple lemma about Cauchy nets which is used often
enough to deserve a formal statement.

20 Lemma A net {S,, ne D} in a uniform space (XA) is a
Cauchy net if and only if either of the following statements is true.

(@) The net {(SmySa), (mn) e D X D} is eventually in each
member of some subbase for the uniformity .

(b) The net {p(SmySn), (mmn) e D X D} converges to zero for
each p in some family of pseudo-metrics which generates the
gage P.

ProOOF If a family Q of pseudo-metrics generates P, then the
family of all 7, for p in @ and r positive is a subbase for the
uniformity, so that the proof of (b) reduces to that of (a). To
prove (a) notice that, if a net (for example {(Sn,S»), (m,n) €
D X D}) is eventually in each of a finite number of sets, it is
then eventually in their intersection. |

The following proposition relates Cauchy nets to convergence
relative to the uniform topology.

21 THEOREM Each net which converges to a point relative to the
uniform topology is a Cauchy net. A Cauchy net converges to each
of its cluster points.

prooF If {§,, meD} converges to a point s, then {d(§,,s),
n e D} converges to zero for each member 4 of the gage P. Since
A(SmySa) S d(Smys) + d(Sa,s), it follows that {d(Sn,S.), (mn) e
D X D} converges to zero and the net is therefore a Cauchy net.
Suppose that {S,, 7 £ D} is a Cauchy net and s is a cluster point.
Then for 4 in P and r positive there is N in D such that,if m =2 N
and n = N, then d(Sn,5.) < 7/2. Since s is a cluster point,
there is p in D such that 4(S,,5) < r/2 and p = N. Then d(§,,s)
< d(8,,S,) + d(S,,5) < rif n 2 N, and it follows that the net
converges to 5. |
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A uniform space is complete iff every Cauchy net in the space
converges to a point of the space. Evidently each closed sub-
space of a complete space (X,u) is complete. If (X,u) is Haus-
dorff and (Y,0) is a complete subspace, then Y is closed in X,
for a net in Y which converges to a point x of X is necessarily a
Cauchy net, and «» is the unique limit point. This obvious re-
sult is one of the most useful facts about completeness.

22 THEOREM A closed subspace of a cothlete space is complete,
and a complete subspace of a Hausdorff uniform space is closed.

Before proceeding it may be worth while to mention several
examples of complete spaces. If the uniformity « is the largest
possible uniformity for X (that is, consists of all subsets of X X X
which contain the diagonal), then (X,u) is complete. The small-
est uniformity for X also yields a complete space. If a uniform
space (X,u) is compact relative to the uniform topology, then
it is complete, for every net has a cluster point and consequently
by theorem 6.21 each Cauchy net converges to some point. The
space of real numbers is complete relative to the usual uniform-
ity. This may be seen by verifying that each Cauchy net is
eventually in some bounded subset A4 of the space of real num-
bers and is therefore eventually in the compact set 4.

There is a characterization of completeness which is suggestive
of compactness. Recall that a family of sets has the finite inter-
section property iff no finite intersection of members of the family
is void, and a topological space is compact iff the intersection of
the members of each family of closed sets with the finite inter-
section property is non-void. To describe completeness another
qualification is put on the family. A family @ of subsets of a
uniform space (X,u) contains small sets iff for each U in u there
is a member 4 of @ such that A4 is a subset of U[x] for some
point x. Another formulation is: for each U in « there is A4 in
@ such that 4 X 4 < U. In terms of the gage P of the uniform
space, a family @ contains small sets iff for each positive r and
each 4 in P there is 4 in @ such that the d-diameter of A is less
than ». We omit the proof that these three statements are
equivalent.
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23 THEOREM * A uniform space is complete if and only if each
family of closed sets which has the finite intersection property and
contains small sets has a non-void intersection.

PrOOF Let (X,u) be a complete uniform space and @ a family
of closed sets which has the finite intersection property and con-
tains small sets. If ¥ is the family of all finite intersections of
members of @, then F is directed by c, and for each F in & we
may choose a point ¢ in F. The net {xr, F e} 1s a Cauchy
net because, if 4 and B follow a member F of & in the ordering
Cc (that is, 4 ¢ F and B c F), then x4 and xp belong to F,
and § contains small sets. Consequently, {xr: F e&} converges
to a point and since the net is eventually in each member of &
the point must belong to every member of 5. Hence the inter-
section [1{A4: Ae @} is non-void. To prove the converse let
{xn, » € D} be a Cauchy net, and for each # in D let 4, be the
set of all points x,, for m 2 n. Then the family @ of all sets of the
form A, has the finite intersection property, and since the net
is Cauchy the family @ contains small sets. There is hence a
point y which belongs to the intersections of the closures, [} {4,":
n & D}, and, according to 2.7, the point y is a cluster point of the
net {x., 7 ¢ D}. Since {x,, » e D} is a Cauchy net it converges
toy. |

One might suspect that a uniform space satisfying the first
axiom of countability would be complete if every Cauchy se-
quence in the space converged to a point of the space. Unfor-
tunately this suspicion is unfounded, but the following feeble re-
sult is correct.

24 THEOREM A pseudo-metrizable uniform space is complete if
and only if every Cauchy sequence in the space converges to a point.

PROOF If a uniform space is complete, then each Cauchy net in
X, and in particular each Cauchy sequence in X, converges to
a point. On the other hand, suppose that (X,d) is a pseudo-
metric space such that every Cauchy sequence converges to a
point, and that @ is a family of closed subsets of X which has
the finite intersection property and contains small sets. For

* A filter is a Cauchy filter if it contains small sets. Then the theorem can be stated:
a space is complete iff each Cauchy filter converges to some point.
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each non-negative integer 7 select a member A4, of @ which is of
diameter less than 27" and select a point x, belonging to A,.
If m and » are large, then d(x¥m,x,) is small because x, and x,
belong to A,, and A, respectively, these two sets intersect, and
each has small diameter. Hence {x,, # € w} is a Cauchy sequence
and therefore converges to a point y of X. If B is an arbitrary
member of @, then dist (x,,B) < 2™™ because B intersects A,
and it follows that y belongs to the closure of B. Since @ is a
family of closed sets y belongs to every member of @. |

The usual method of proving completeness consists in showing
the space in question is uniformly isomorphic to a closed sub-
space of a product of complete spaces and then appealing to the
following theorem. The proof of this theorem requires the fact
that the image of a Cauchy net under a uniformly continuous
map is a Cauchy net—a fact which is evident from the definition.

25 TureoreM The product of uniform spaces is complete if and
only if each coordinate space is complete.

A net in the product is a Cauchy net if and only if its projection
into each coordinate space is a Cauchy net.

prOOF Suppose that (Y,l,) is a complete uniform space for
each member a of an index set 4. For each 4 the projection of a
Cauchy net into Y, is a Cauchy net and hence converges to a
point, say, ys. Then the net in the product converges to the
point y with a-th coordinate y, and consequently the product is
complete. The simple proof of the converse is omitted.

If {x., neD} is a net in the product which projects into a
Cauchy net in each coordinate space, then for each member U
of Ug the net {(xp,x,), (mm) e (D X D)} is eventually in the in-
verse under projection of U. That is, {(¥m,%x), (mn) € (D X D)}
is eventually in {(%,2): (¥4,2,) € U}. Since the family of sets of
this form is a subbase for the product uniformity it follows (6.20)
that {x,, 7 e D} is a Cauchy net. |

A function f is uniformly continuous on a subset A4 of a uni-
form space (X,u) iff its restriction to 4, f| A4, is uniformly con-
tinuous with respect to the relativized uniformity. If the range
space is complete and Hausdorff * and f is uniformly continuous

* This requirement is not necessary for the existence of an extension, but is necessary
for the uniqueness,
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on its domain A, then there is a unique uniformly continuous
extension whose domain is the closure of 4.

26 THEOREM Let f be a function whose domain is a subset 4 of a
uniform space (X L) and whose values lie in a complete Hausdorff
uniform space (Y,0). If f is uniformly continuous on A, then
there is a unique uniformly continuous extension f~ of f whose do-
main is the closure of A.

prooF The function f is a subset of X X Y (we do not distin-
guish between a function and its graph) and the desired exten-
sion is the closure f~ of fin X X Y. (A pair (x,y) belongs to
f~ iff there is a net in A4 converging to x such that the image
net converges to y.) The domain of f~ is evidently the closure
of 4. We will show that, if # is a member of U, then there is
U in « such that, if (x,y) and (x,0) are members of f~ and x ¢
Ulu], then y e #[v]. Since Y is Hausdorff this will show that f~
is a function and that f~ is uniformly continuous. Choose a
member 7 of U which is closed and symmetric and such that
VeV < W and choose a member U of 4 which is open and sym-
metric and such that f[U[x]] € V[f(x)] for each x in A; suppose
(%,5) and (u,0) belong to f~ and x € U[«]. Then the intersection
of Ulx] and Ulx] is open and there is consequently z in 4 such
that both x and « belong to U[z]. Both y and v belong to the
closure of f[U[z]], by the definition of f~, and hence both y and
v belong to 7[f(2)]. Hence (yv) e V-V c W and y e #[v]. |

COMPLETION

It is the purpose of this section to show that each uniform
space is uniformly isomorphic to a dense subspace of a complete
uniform space. It is therefore possible to adjoin “ideal elements”
to a uniform space in such a way as to obtain a complete uniform
space. The procedure is suggestive of the compactification proc-
ess of chapter 5, but there is one significant difference: the com-
pletion of a uniform space is (essentially) unique.

For a metric space X it is possible to find a complete metric
space X* such that X is isometric to a dense subspace of X*
(not just uniformly isomorphic). We base the general construc-
tion of a completion on this preliminary result,



196 UNIFORM SPACES

27 THEOREM Each metric (or pseudo-metric) space can be mapped
by a one-to-one isometry onto a dense subset of a complete metric
(respectively pseudo-metric) space.

PROOF It is only necessary to prove the theorem for a pseudo-
metric space (X,d), since the corresponding result for metric
spaces then follows from 4.15. Let X* be the class of all Cauchy
sequences in X, and for members § and T of X* let 4*(S,T) be
the limit of d(Sm,Twm) as m becomes large (formally, the limit of
{d(SmyTm), mew}). It is easy to verify that 4* is a pseudo-
metric for X*. Let F be the map which carries each point x of
X into the sequence which is constantly equal to x; that is,
F(x), = x for all n. Evidently F is a one-to-one isometry and it
remains to prove that F[X] is dense in X* and X* is complete.
The first of these statements is almost self-evident; if §e X*
and 7 is large, then F(S,) is near §. To show X* complete, first
observe that it is sufficient to show that each Cauchy sequence
in F[X] converges to a point of X* because F[X] is dense in X*.
Finally, each Cauchy sequence in F[X] is of the form Fo§ =
{F(S,.), new}, where § is a Cauchy sequence in X, and F-S§
converges in X* to the member § of X*. ||

Each uniform space is uniformly isomorphic to a subspace of
a product of pseudo-metric spaces, and each Hausdorff uniform
space is uniformly isomorphic to a product of metric spaces, by
6.16. The preceding theorem implies that a metric or pseudo-
metric space is uniformly isomorphic to a subspace of a complete
space of the same sort. It follows without difficulty that:

28 THEOREM Eack uniform space is uniformly isomorphic to a
dense subspace of a complete uniform space. Each Hausdorff uni-
Sform space is uniformly isomorphic to a dense subspace of a com-
plete Hausdorff uniform space.

A completion of a uniform space (X,u) is a pair, (f,(X*u*))
where (X*u*) is a complete uniform space and f is a uniform
isomorphism of X into a dense subspace of X*. The completion
is Hausdorff iff (X*a*) is a Hausdorff uniform space. The fore-
going theorem can then be stated: Each (Hausdorff) uniform
space has a (Hausdorff) completion,
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There is a uniqueness property for Hausdorff completions. If
f and g are uniform isomorphisms of X onto dense subspaces of
complete Hausdorff uniform spaces X* and X**, then both
g°f~! and f- g~ have uniformly continuous extensions to all of
X* and X** respectively, by 6.26. It follows that the extension
of gof™! is a uniform isomorphism of X* onto X**. Stated
roughly: the Hausdorff completion of a Hausdorff uniform space is
unique to a uniform isomorphism.

COMPACT SPACES

Each completely regular topology 3 for a set X is the uniform
topology for some uniformity U, but the uniformity is usually
not unique. If (X,3) is compact and regular, then it turns out
that there is precisely one uniformity whose topology is 3. In
this case the topology determines the uniformity, topological in-
variants are uniform invariants, and the theory takes a particu-
larly simple form. This section is devoted to a proof of the
uniqueness theorem just quoted and to two other propositions.
As before, we use either the uniformity of a space or the corre-
sponding gage of uniformly continuous pseudo-metrics as con-
venience dictates.

29 TueoreEM If (XA) is a compact uniform space, then every
neighborhood of the diagonal A in X X X is a member of u and
every pseudo-metric which is continuous on X X X is @ member of
the gage of .

PROOF Let @ be the family of closed members of 4 and let 7
be an arbitrary open neighborhood of A. If (x,5) e N {U: U e ®},
then, since ® is a base for 4, y belongs to every neighborhood of
x and hence (x,y) belongs to every neighborhood of A. It fol-
lows that [} {U: Ue®} is a subset of ». Since each member
U of ® is compact and 7 is open the intersection of some finite
subfamily of ® is also a subset of 7 and hence 7 e«.

If a pseudo-metric 4 for X is continuous on X X X, then for
each positive 7 the set {(x,y): d(x,y) < r} is a neighborhood of
the diagonal. Hence 4 is uniformly continuous and therefore
belongs to the gage of u. |}
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Each compact regular topological space is completely regular
and its topology is therefore the uniform topology for some uni-
formity. This uniformity has just been identified.

30 CoroLLarYy If (X,3) is a compact regular topological space,
then the family of all neighborhoods of the diagonal A is a uniformity
Jor X and 3 is the uniform topology.

There is another corollary.

31 TueoreM Each continuous function on a compact uniform
space to a uniform space is uniformly continuous.

proOF If fis a continuous function on X to Y, then f,, where
Sa(x,y) = (f(x),f(x)), is a continuous function on X X X to
Y X Y. Consequently if 4 belongs to the gage of Y the compo-
sition d+f; is continuous on X X X. It follows from theorem
6.29 that d - f, belongs to the gage of X, and hence the function f
is uniformly continuous. |

Each compact uniform space (X,u) can be written as the
union of a finite number of small sets, in the sense that for each
pseudo-metric 4 belonging to the gage of 4 and each positive r
there is a finite cover of X by sets of d-diameter less than 7.
This is a direct consequence of compactness, since X can be
covered by a finite number of 7/3 spheres about points and each
of these is of diameter less than . A uniform space (X)) is
totally bounded (or precompact) iff X is the union of a finite
number of sets of d-diameter less than 7 for each pseudo-metric 4
of the gage of u and each positive . In terms of u this can be
stated: for each U in «u the set X is the union of a finite number
of sets B such that B X B c U, or, equivalently, for each U in
a there is a finite subset 7' of X such that U[F] = X. A subset
Y of a uniform space is called totally bounded iff Y, with the
relativized uniformity, is totally bounded.

There is a simple but very useful relation between compactness
and total boundedness.

32 TuroreM A uniform space (X, W) is totally bounded if and
only if each net in X has a Cauchy subnet.

Consequently a uniform space is compact if and only if it is
totally bounded and complete.
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PROOF Suppose § is a net in a totally bounded uniform space
(X,a). The existence of a Cauchy subnet is an obvious conse-
quence of problem 2.J, but we sketch the proof without using
the earlier result. Let @ be the family of all subsets 4 of X
such that § is frequently in 4. Then {X} < @ and by the maxi-
mal principle 0.25 there is a maximal subfamily & of @ which
contains {X} and has the finite intersection property. Because
of maximality it is true that, if a finite union By U --- U B, of
members of @ belongs to ®, then B; e & for some 7 (see 2.I for
details). Since X is totally bounded it may be covered by a
finite number of small sets, and it follows that ® contains small
sets. Finally, it follows from 2.5 that there is a subnet of §
which is eventually in each member of ®, and evidently this sub-
net is Cauchy.

If (X,u) is not totally bounded, then for some U in a4 and for
every finite subset F of X it is true that U[F] = X. It follows
that one may find by induction a sequence {x,, # € w} such that
xn ¢ Ulxp] if p < n.  Clearly the sequence {x., » ew} has no
Cauchy subnet.

Finally, if (X;u) is complete and totally bounded, then each
net has a subnet which converges to a point of X and hence the
space is compact. It has already been observed that a compact
space is complete. |

There is one other very useful lemma concerning compact
spaces. The proposition is an extension of the Lebesgue cover-
ing lemma 5.26. A cover of a subset A of a uniform space (X,u)
is a uniform cover iff there is a member U of « such that the set
Ulx] is a subset of some member of the cover for every x in A4
(that is, the family of U[x] for x in A refines the cover). In terms
of the gage of the uniformity U, a cover of A is uniform iff there
is 2 member 4 of the gage and a positive number 7 such that the
open sphere of d-radius r about each point of A is contained in
some member of the cover.

33 TueorREM Each open cover of a compact subset of a uniform
space is a uniform cover.

In particular, each neighborkood of a compact subset A contains
a neighborhood of the form U[A) where U is a member of the uni-
formity.
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PROOF Let @ be an open cover of the compact subset 4 of the
uniform space (X,u). Then for each x in A there is U in U such
that Ulx] is a subset of some member of @, and hence there is 7
in U such that 7 - 7[x] is a subset of some member of @ Choose
a finite number of members %y, + -+, ¥, of 4 and Py, -+, ¥V, of
a such that the sets 7fx;] cover 4 and for each i it is true that
Vie Vix.] is a subset of some member of @ Finally, let # =
N{V:i=1, ---, n}. Then for each point y of A4 for some i
the point y belongs to Vx;] and hence W[yl c W-Vix] c
Vie Vix;. Consequently #[y] is a subset of some member of
a 1

FOR METRIC SPACES ONLY

This section is devoted to two propositions concerning com-
plete metric spaces. The results are among the most useful con-
sequences of completeness, and it is unfortunate that no generali-
zation to complete uniform spaces seems possible. The first
proposition is the classic theorem of Baire on category; this theo-
rem and one or two related results occupy most of the section.
The last theorem of the section states that the image under a
continuous uniformly open map of a complete metric space is
again complete, provided the range space is Hausdorff. The
proof relies on a lemma which we state in considerably more
general form than is necessary for this proposition. The lemma
(essentially a formalization of an argument of Banach) also
yields directly the closed graph and open mapping theorems of
normed linear space theory. (See problem 6.R.)

34 TueoreMm (BAIRE) Let X be either a complete pseudo-metric
space or a locally compact regular space. Then the intersection of
a countable family of open dense subsets of X is itself dense in X.

prOOF We prove the theorem for locally compact regular spaces,
adding in parentheses the modifications necessary to establish it
for a complete pseudo-metric space. Suppose that {G,, # e w}
is a sequence of dense open subsets of X and that U is an arbi-
trary open non-void subset of X. It must be shown that U N
N {G,: new} is non-void. To this end choose inductively an
open set ¥ such that 7~ is a compact subset of U N G, (such
that 73~ is a subset of U N G, and has diameter less than one),
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and then for each positive integer # choose ¥, such that #,~ is
a subset of 7,,_; N G, (and the diameter of 7, is less than 1/x).
This choice is possible because G, is dense and open. The family
of all sets »,~ for non-negative integers # has the finite inter-
section property, consists of closed sets and ;™ is compact (the
family contains small sets). Hence [{#,™: # € w} is non-void,
and since V,,~ € U N G, it follows that U N N{G,: n ¢ w} is
non-void. |

It should be remarked that the Baire theorem is a hybrid in
that a topological conclusion (the intersection of a countable
number of dense open sets is dense) is deduced from a non-topo-
logical premise (that the space is complete pseudo-metric).
There is a purely topological statement which is equivalent. If
(X,3) is a topological space such that for some pseudo-metric
for X the space (X,d) is complete and 3 is the pseudo-metric to-
pology, then the same conclusion holds. (Topological spaces for
which there exists such a complete metric have been character-
ized in a different way, as noted in 6.K.)

A terminology has been devised which is very convenient in
discussing questions related to the Baire theorem. A subset 4
of a topological space is nowhere dense in X iff the interior of
the closure of A is void; otherwise stated, /4 is nowhere dense in
X iff the open set X ~ 4~ is dense in X. It is evident that
the finite union of nowhere dense sets is nowhere dense. A sub-
set A4 of X is meager in X or of the first category in X iff 4 is
the union of a countable family of nowhere dense sets. The
Baire theorem can then be stated: the complement of a meager
subset of a complete metric space is dense. (The complement of
a meager set is sometimes called co-meager or residual in X.)

A set A is non-meager or of the second category in X iff it is
not meager in X. The following result is a sort of a localization
theorem. From the fact that a set 4 is non-meager we deduce
the existence of points x such that 4 intersects each neighborhood
of x in a non-meager set. It is sometimes said that 4 is of the
second category at such points.

35 THEOREM Let A be a subset of a topological space X and let
M(A) be the union of all open sets V such that V N A is meager
in X. Then 4 N M(A)~ is meager in X.
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PROOF Let U be a disjoint family of open sets which is maximal
with respect to the property: if Ueu, then U N A is meager.
Such a family U exists because of the maximal principle 0.25.
Let # = U{U: Uea}. The proof reduces to showing that
W N A is meager, for if this is known then 4 N #~ is meager
because '~ ~ W is nowhere dense, and from the maximality of
q it follows that 7~ contains every open set » such that ¥ N 4
is meager. To show that # N A is meager, for each U in 4
write U N A in the form U {U.: # e w} where U, is nowhere
dense. Then, because the family 4 is disjoint, the set U {U,:
U e} is nowhere dense for each non-negative integer 7. Hence
W N A4 is meager. |

An important consequence of the preceding theorem is that if
a subset A4 of a topological space is non-meager then there is a
non-void open set ¥ such that the intersection of 4 with every
neighborhood of each point of 7~ is non-meager.

The concluding theorem of this chapter shows that complete-
ness is preserved by certain mappings. A map of a uniform
space (X,u) into a uniform space (Y,0) is uniformly open iff for
each U in 4 there is 7 in U such that f[U[x]] D 7[f(x)] for each
x in X. It is not true that uniformly open maps preserve com-
pleteness for arbitrary uniform spaces; Kothe [1] has given an
example of a complete linear topological space and a closed sub-
space such that the quotient space is not complete. The theo-
rem, like the Baire theorem, is peculiar to pseudo-metric
spaces.

The proof of the theorem which is given here depends on a
lemma which has other profound consequences (see 6.R). The
lemma concerns a relation R between points of a pseudo-metric
space (X,d) and a uniform space (Y,V); that is, R is a subset of
X XY. Let U, = {(%,5): d(x,y) <}, so that U,[x] i1s simply
the r-sphere about x. ‘

36 LeEMMa Lef R be a closed subset of the product of a complete
pseudo-metric space (X,d) with the uniform space (Y,0) and sup-
pose that for each positive r there is V in O such that R[U,[x]]~
contains Vy] for each (x,y) in R. Then for each r and each posi-
tive e it is true that R[U, . .[x]] D R[U,[x]]” D> V]y].
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PrROOF The critical fact needed for the proof is: if 4 is a subset
of X and ve R[4]™, then there is a set B of arbitrarily small
diameter such that v e R[B]~ and 4 N B is not void. This is
true because: if 7 is arbitrary, if " is a symmetric member of ¥
such that R[U,[x]]” D V[y] for each member (x,y) of R, if v’ is
a point of R[A] such that v’ e [v], and if # is a point of A such
that (4,0") e R, then ve V[v'] < R{U,[4]]~, and the diameter of
U,[u] is at most 2r.

The lemma is now established as follows. Suppose that
ve R[U,[x]]7. It will be shown that v e R[U,.[x]], which will
complete the proof. Let 4, = U,[x], and select inductively, for
each positive integer #, a subset 4, of X such that ve R[4,],
A, N A,_; is not void, and the diameter of A4, is less than 2™,
Since X is complete there is evidently a point # such that each
neighborhood # of u# contains some A, (hence ve R[#]7).
Clearly d(x,u) <r + e. For each neighborhood # of # and
each neighborhood Z of v it is true that R[#] intersects Z, and
hence there is (#’,v") in R with #’ in # and ¢/ in Z; that is, R N
(W X Z) is non-void. Since R is closed (#,0) e R and the proof
is complete. |

Suppose now that f is uniformly open and continuous, that X
is complete and pseudo-metrizable, that Y is Hausdorff, and that
Y* is a Hausdorff completion of Y. Then (the graph of) fis a
subset of X X Y* which is closed because f is continuous, and
satisfies the condition of the preceding lemma because the map
of X into Y is uniformly open. Then the lemma implies that f is
a uniformly open map of X into Y*. Finally, since f[X] contains
V{fIX]] for some 7 in U, it must be true that f[X] is closed (and
open) in Y*; hence f[X] is complete.

37 CoroLLARY Let f be a continuous uniformly open map of a
complete pseudo-metrizable space into a Hausdorff uniform space.
Then the range of the map f is complete.

PROBLEMS

A EXERCISE ON CLOSED RELATIONS

Let X and Y be topological spaces and let R be a closed subset of
X XY. If 4isa compact subset of X, then R[A] is a closed subset of
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Y. (If y¢R[A4], then A4 X {y} is contained in the open set
(X X Y) ~ R, and theorem 5.12 may be applied.)

B EXERCISE ON THE PRODUCT OF TWO UNIFORM SPACES

Let (Xau) and (Y,0) be uniform spaces and for each U in 4 and
each 7 in 0 let W(UV) = {((%,5),(u,0)): (x,u) € U and (y,0) e V}.

(a) The family of sets of the form #(U,¥) is a base for the product
uniformity for X X Y.

(b) If R is a subset of X X Y, then W (U,/)[Rl = V°R-U™! =
U {Ulx] X 7151: (x,5) e R}.

(c) The closure of a subset R of X X Yis [Y{¥/*R-U™: Ue and
Vevl.

C A DISCRETE NON-METRIZABLE UNIFORM SPACE

It should be observed that a uniform space (X;U) may fail to be
metrizable even though the topology of U is metrizable. Let @ be the
set of all ordinals which are less than the first uncountable ordinal €,
and for each member 2 of Qy let U, = {(xy): x =y or x = a and
y = a}. Then the family of all sets of the form Us is a base for a uni-
formity U for Qo (observe that U, = Uz U, = U,™"). The topology
of this uniformity is the discrete topology and hence metrizable, but
the uniform space (Q,L) is not metrizable.

D EXERCISE: UNIFORM SPACES WITH A NESTED BASE

Let (X;u) be a Hausdorff uniform space and suppose that a base &
for U is linearly ordered by inclusion. Then either (X,u) is metrizable
or the intersection of every countable family of open subsets of X is
open.

E EXAMPLE: A VERY INCOMPLETE SPACE (THE ORDINALS)

Let Qo be the set of all ordinals less than the first uncountable ordinal
0, and let 3 be the order topology for Q. Then there is a unique uni-
formity for @y whose topology is 3 and @y is not complete relative to
this uniformity. (Using the methods of problem 4.E show that, if U
is an open subset of @ X @ which contains the diagonal, then for
some ¥ it is true that (y,2) € U whenever y > x and 2 > x. Then show
that a uniformity whose topology is 3 must be identical with the rela-
tivized uniformity of the compact space @' = {x: x < Q}.)

Note This property of Qo was observed by Dieudonné [5]. Doss (1]
has characterized topological spaces which, like 2, have a unique uni-
formity.
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F THE SUBBASE THEOREM FOR TOTAL BOUNDEDNESS

The uniform space analogue of Alexander’s theorem 5.6 on compact
subbases is: Let (X;U) be a uniform space such that for each member
U of some subbase for U there is a finite cover Ay, - -+, A of X such
that 4; X 4; C U for each i. Then the space (XU) is totally bounded.

Consequently the product of uniform spaces is totally bounded if and
only if each coordinate space is totally bounded.

The Tychonoff product theorem 5.13 for completely regular spaces
may be derived from the preceding proposition and 6.32.

G SOME EXTREMAL UNIFORMITIES

(a) If (X,3) is a Tychonoff space, then the uniformity of the Stone-
Cech compactification of X, relativized to X, is the smallest uniformity
such that each bounded real-valued continuous function is uniformly
continuous.

(b) If (X,3) is a completely regular space, then there is a largest uni-
formity U for X whose topology is 3. This uniformity may be described
alternately as the smallest which makes uniformly continuous each con-
tinuous map into a metric space, or each continuous map into a uniform
space. Explicitly, 7 is a member of U iff 7 is a neighborhood of the
diagonal in X X X and there is a sequence {¥,, 7 € w} of symmetric
neighborhoods of the diagonal such that 7y C Vand Phy1° Vot €V
for each 7 in w.

Note These two constructions are examples of a method which has
been used before. If F is an arbitrary family of functions on X each
member f mapping X into a uniform space Yy, then there is a smallest
uniformity which makes each f uniformly continuous (or equivalently,
makes the natural map into X {Y;: fe F} uniformly continuous).

For further information on some extremal uniformities see Shirota

[1].

H uNirorM NEIGHBORHOOD SYSTEMS

A uniform neighborhood system for a set X is a correspondence ¥ and
an ordering = such that the following conditions are satisfied:

(1) Va(x) is a subset of X to which x belongs, for each member 4
of an index set 4 and each point x of X
(ii) the relation = directs the index set A4;
(iii) if @ = &, then 7,(x) C Vy(x) for all x;
(iv) for each member @ of A there is & in A such that y e 7;(x) when-
ever x & Vy(y); and
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(v) for each member @ of A there is 4 in A such that z € P4(x) when-
ever y e V(%) and z € V3(y).

(a) If (7,=) is a uniform neighborhood system for X, then the family
of all sets of the form {(x,y): y € ¥,(x)}, for & an arbitrary member of
A is the base of a uniformity U for X. This uniformity is called the
uniformity of the system. This uniformity has the property that: for
each 2 in A, for some Uin U, Ulx] C V,(x) for all », and for each U in
U for some @ in A4, V,(x) € Ulx] for all x.

(b) Let U be a uniformity for X, and let #y(x) = Ulx] for each
member U of U and each member x of X. Then U is directed by C
and (¥,C) is a uniform neighborhood system for X whose uniformity
is U.

(c) Let P be the gage of a uniformity U for X| let A be the cartesian
product of P and the set of positive real numbers, and direct 4 by
agreeing that (p,7) 2 (g,¢) iff » £ 5 and p(x,y) = ¢(x,») for all ¥ and
yin X. If 7, (x) = {y: p(x,y) < r}, then (/,Z) is a uniform neigh-
borhood system for X whose uniformity is U.

Note It is evident from the foregoing that “‘indexed” neighborhoods
may be used to discuss uniformity and that the theory so obtained is
identical with that of uniform spaces. These facts are due to Weil [1].

I ECARTS AND METRICS

An écart for a set X is a non-negative real-valued functioneon X X X
such that

(i) e(x,y) =0iff x = y and
(i) for each positive number s there is a positive number r such that
e(x,2) < s whenever ¢(x,y) and e(y,2) are both less than 7.

If e is an écart for X then there is 2 non-negative functionpon X X X
such that

(@) p(xy) = 0iff x = y;
(i) p(x,y) + p(3,2) = p(x,2) for all x, y, and z in Xj; and
(iii) for each positive s there is a positive number r such that
p(x,y) < s whenever e(x,y) < r and, similarly, e(x,y) < s when-
ever p(x,y) <r.

If e(x,y) = e(y,x) for all x and y then p may be taken to be a metric.

Note This is essentially Chittenden’s metrization theorem (see 6.14).
The “metrization” of a topological space by a function 4 satisfying all
of the requirements for a metric except “d(x,y) = d(y,%)” has been
investigated by Ribeiro [2] and by Balanzat [1].
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The term “écart” has been used by some authors to mean a distance
function taking values in a structure less restricted than that of the
real numbers (for example, a partially ordered set). For treatments of
uniformity based on ideas of this sort see Appert [1], Colmez [1], Cohen
and Goffman [1], Gomes [1], Kalisch [1}, and Lasalle [1].

J UNIFORM COVERING SYSTEMS
Let ® be a collection of covers of a set X such that:

(i) if @ and ® are members of ®, then there is a member of & which
is a refinement of both @ and ®;
(i) if @ e ®, then there is a member of ® which is a star refinement
of @; and
(iti) if @ is a cover of X and some refinement of @ belongs to ®, then
@ belongs to ®.

Let u be the uniformity for X such that the family of all sets of the
form U {4 X 4: A€ @} for @ in & is a base for U. Then ® is precisely
the family of all covers of X which are uniform relative to U.

Note Description of a uniformity by means of covers has been used
very effectively by J. W. Tukey [1]; a very early use of this general sort
was made by Alexandroff and Uryschn [2].

K TOPOLOGICALLY COMPLETE SPACES: METRIZABLE SPACES

A topological space (X,3) is called metrically topologically complete ift
there is a metric 4 for X such that (X,d) is complete and 3 is the metric
topology. A topological space (X,3) is an absolute G iff it is metrizable
and is a G; (a countable intersection of open sets) in every metric space
in which it is topologically embedded. Then: A topological space is
metrically topologically complete if and only if it is an absolute G;.
The proof depends on a sequence of lemmas.

‘(a) Let (X,d) be a complete metric space, let U be an open subset
of X, for x in U let f(x) = 1/dist (x,X ~ U), and let d*(x,y) = d(x,y)
+ | f(*) = f(3)|. Then d* is a metric, U is a complete relative to ¥,
and the 4 and 4* topologies for U are identical.

(b) A G; in a complete metric space is homeomorphic to a complete
metric space. (If U = [1{U,: 7 ew} consider the map of U into the
product of the complete metric spaces (Un,dn*), wheré 4,* is con-
structed from 4 and U, as in (a).)

(¢) If there is a homeomorphism of a dense subset Y of a Hausdorff
space X onto a complete metric space Z, then Yis a G; in X. (For
each integer 7 let U, be the set of all points ¥ of X such that the image
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of some neighborhood of % is of diameter less than 1/#. Then the
homeomorphism f can be extended continuously to a continuous map f~
of N {Uy,: new) into Z and f~* » f/~ must be the identity.)

Note These are classical results; (b) is due to Alexandroff [1] and to
Hausdorff [2] and (c) is due to Sierpinski [2].

L TOPOLOGICALLY COMPLETE SPACES: UNIFORMIZABLE SPACES

A topological space (X,3) is said to be sopologically complete iff there
is a uniformity U for X such that (X,u) is complete and 3 is the uniform
topology.

(a) If 4 and U are uniformities for X such that U C U, if (X) is
complete, and if the topology of U is identical with that of U, then
(X,0) is complete. Hence a completely regular space is topologically
complete iff it is complete relative to the largest uniformity whose topol-
ogy is 3.

(b) Let (X,A) be a complete uniform space, let F be an F, (a count-
able union of closed sets) and let xe X ~ F. Then there is a con-
tinuous real-valued function on X which is positive on F and 0 at «.
Consequently there is an open set 7 and a uniformity U for 7 such that
V contains F, x ¢ V, (¥,0) is complete, and the topology of U is iden-
tical with the relativized topology of U. (Recall the device used in
6XK(a).)

(c) If (X;u) is a complete uniform space and Y is a subset of X
which is the intersection of the members of a family of F,’s, then Y,
with the relativized uniform topology, is topologically complete. (See
6.K.)

(d) Each paracompact space X is topologically complete. (Consider
the uniformity consisting of all neighborhoods of the diagonal. A
Cauchy net which converges to no point of X must, for each point x,
be eventually in the complement of some neighborhood of ¥, and the
application of the even covering property of paracompact spaces leads
to a contradiction.)

Note The problem of topological completeness has been studied by
Dieudonné [6]; in particular he has shown that each metrizable space
is topologically complete (this is a consequence of either (c) or (d)
above). Shirota [2] has proved several interesting and profound theo-
rems on topological completeness, in a direction connected with work
of Hewitt [2]. See also Umegaki[l].

I conjecture that a completely regular space X is paracompact iff
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(i) the family of all neighborhoods of the diagonal is a uniformity,
and
(i) X is topologically complete.

Neither (i) or (ii) is in itself sufficient to imply paracompactness. A
non-paracompact space satisfying (i) is exhibited in 6.E. The condi-
tion (i) implies normality (if 4 and B are disjoint closed sets choose a
symmetric U such that UcUcC (X~ 4) X (X~ A4) U (X~ B) X
(X ~ B) and consider U[4] and U[B]; a stronger normality condition
may be obtained by a similar argument, as shown by H. J. Cohen [1]).
However, the product of uncountably many copies of the space of real
numbers is complete and not normal (A. H. Stone [1]).

The F, condition encountered in (c) above is suggestive of the work
of Smirnov [3] on normality.

M THE DISCRETE SUBSPACE ARGUMENT; COUNTABLE COMPACTNESS

(a) If a subset 4 of a uniform space (X;U) is not totally bounded,
then there is a member U of U and an infinite subset B of A such that
Ul#] is disjoint from U[y] for every pair of distinct points of B; equiva-
lently, there is a pseudo-metric 4 in the gage of U such that d(x,y) = 1
for distinct points x and y of B. (A set such as B might be called uni-
formly discrete.)

(b) A subset A of a topological space (X,3) is called relatively count-
ably compact iff each sequence in 4 has a cluster point in X. Each
relatively countably compact subset of a completely regular space
(X,3) is totally bounded relative to the largest uniformity whose topol-
ogy is 3. If (X,3) is topologically complete a subset is relatively count-
ably compact iff its closure is compact, and a closed subset is compact
iff it is countably compact.

N INVARIANT METRICS

A pseudo-metric p for a set X is said to be invariant under the mem-
bers of a family F of one-to-one maps of X onto itself, or simply
F-invariant, iff p(x,y) = p(f(x),f(y)) for all x and y in X and all fin F.

A member U of a uniformity U for X is called F-invariant, provided
(%) e Uiff (f(%),/(3)) e Uforall fin F. Then: The family of F-invar-
iant pseudo-metrics which are uniformly continuous on X X X gen-
erates the uniformity U if and only if the family of F-invariant members
of U is a base. (See 6.12.)

Note This is a straightforward generalization of the metrization
theorem for topological groups which is stated in the next problem.
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O TOPOLOGICAL GROUPS: UNIFORMITIES AND METRIZATION

Let (G,3) be a topological group, and for each neighborhood U of
the identity let Uy = {(%,):x 'y e U} and let Ug = {(x,y):xy" e U}.
Consider the following uniformities for G: the /left uniformity £ having
as a base the family of all sets Uz, with U a neighborhood of the identity,
the right uniformity ® with all Uy, as a base, and the two-sided uniformity
1 having £ U ® as a subbase.

(a) The topology 3 is the topology of each of £, ®, and U.

(b) The uniformity £ (respectively ®) is generated by the family of
all left-invariant (right-invariant) pseudo-metrics which are continuous
on G X G. (See 6.N.)

(c) Let I be the family of all neighborhoods of the identity ¢ which
are invariant under inner automorphisms. Then I is a base for the
neighborhood system of e iff the family of all pseudo-metrics which
are both left and right invariant and are continuous on G X G gen-
erates a uniformity whose topology is 3. (If U is an invariant
neighborhood of ¢, then Uy, = U, and this set is invariant under both
left and right translation. If p is left and right invariant, then
p(e,9) = pla~tex,xlyx).)

(d) Let G be the set of all real-valued functions of the form g(x)
= ax + & where 2 % 0. Then G is a group under composition and
may be topologized by agreeing that g is near the identity iff 4 is
near 1 and | 4| is near zero. For this group & > ®& and there is no two-
sided invariant metric. (The fact that £ # ® follows directly from
inspection of the defining bases. To see that no invariant metric exists
show that, for each g, if @ # 1, then there is f in G such that the con-
stant coefficient of f~° go f is arbitrarily large.)

Note The existence of left-, right- or two-sided invariant metrics
for G follows from the foregoing under the additional hypothesis that
there is a countable base for the neighborhood system of e. The exist-
ence of left-invariant metrics is due to Birkhoff [2] and to Kakutani
[1]. The two-sided invariant theorem is due to Klee [1].

It should be remarked that the requirement that a topological group
be metrizable with a two-sided invariant metric is very stringent. In
particular, a locally compact group of this sort has a Haar measure
which is invariant under both right and left translation.

P ALMOST OPEN SUBSETS OF A TOPOLOGICAL GROUP

A subset A4 of a topological space X is almost open in X, or satisfies
the condition of Baire, iff there is a meager set B such that the sym-
metric difference (4 ~ B) U (B ~ A) is open.
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(a) A subset A is almost open in X iff there are meager sets B and
C such that (4 ~ B) U Cis open. Countable unions and complements
of almost open sets are almost open. Every Borel set is almost open.
(The family of Borel sets is the smallest family ® such that & contains
all open sets, and countable unions and complements of members of ®
belong to ®.)

(b) Banach-Kuratowski-Pettis Theorem If A contains a non-meager
almost open subset of a topological group X, then A4~ is a neighbor-
hood of the identity element. (If A is non-meager so is X, and because
X is a topological group each non-void open subset is also non-meager.
For each almost open subset B of X let B* be the union of all open
sets U such that U N (X ~ B) is meager. Then (xB)* = xB* and
(BNC)*=B*NC* if Cis also almost open. Hence xA4* N A*
= (x4 N A)* and if x4* N A* is non-void, then ¥4 N A is non-void.
Then A*(A*)™! = {x: xA* N A* is non-void} C {x: xA N A is non-
void} = AA71)

(c) An almost open subgroup of a non-meager topological group X
is either meager in X or open and closed in X.

(d) The requirement “almost open” cannot be omitted from theorem
(c). There is a subgroup Y of the group X of real numbers such that
the quotient X/Y is countably infinite, and since for each member Z of
X/Y there is a homeomorphism of X onto itself carrying Y onto Z it
follows that Y is not meager in X. (Let B be a Hamel base for X rela-
tive to the rational numbers, let C be a countably infinite subset of B,
and let Y be the set of all finite linear rational combinations of members
of B~ C)

Note For history and references on theorem (b) see Pettis [1]. The
construction in (d) is not peculiar to the real numbers; a related phe-
nomenon occurs in the much more general situation. The basic idea
is due to Hausdorff; the sharpest known results in this direction are
found in Pettis [2], where history and further references are also given.

Q COMPLETION OF TOPOLOGICAL GROUPS

Let (G,-,3) be a topological group, let £ be its left uniformity, ® its
right uniformity, and U its two-sided uniformity (U is the smallest uni-
formity which is larger than each of £ and ®). It has been noted that
3 is the topology of each of £, ®, and .

(a) (G,£) is complete iff (G,®) is complete. A net is Cauchy relative
to U iff it is Cauchy relative to each of £ and ®. If (G,£) is complete
so is (Gau). The uniform space (G,£) is complete, provided (GA) is
complete, and the group has the property: if {xn, 7e D} is a Cauchy
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net relative to £, then {(x.)™), 7 € D} is also a Cauchy net relative to
£. (Equivalently, £ and & have the same Cauchy nets.) Left transla-
tion by a fixed member of the group is £-uniformly continuous, right
translation is ®-uniformly continuous, and inversion (x into ¥™%) is
q-uniformly continuous. Multiplication ((%,y) into xy) is usually not
uniformly continuous.

(b) Theorem Let (G,-,3) be a Hausdorff topological group, let (H,0)
be a Hausdorff completion of the uniform space (G,U), and let 8 be the
topology of V. Then the group operation - can be extended in a unique
way such that (H,-,8) becomes a topological group and U becomes its
two-sided uniformity.

(c) The preceding theorem yields a topological group completion
relative to the right uniformity, provided £ and ® have the same Cauchy
nets. But in view of (a) this condition is necessary for the existence of
“right completion.” The condition is not always satisfied. For exam-
ple, let G be the group of all homeomorphisms of the closed unit interval
[0,1] onto itself with composition for group operation and with the
topology of the (right invariant) metric: d(f,g) = sup {| f(x) — g() |:
xe[0,1]}. There is a sequence {fn, # €w} in G which converges uni-
formly to a function which is not one to one, and the sequence
{(fa)™', 7 ew} is therefore not Cauchy relative to the left uniformity.
The group G is already complete relative to the two-sided uniformity
a, for U is the uniformity of the metric: d(x,y) + d(x~%,y™").

(d) Theorem Let (G,-,3) be a metrizable topological group, let 4 be
a right invariant metric metrizing G, and let d*(%y) = d(%y) +
d(x~1,y™1). Then the two-sided uniformity U is the uniformity of the
metric 4*. The uniform space (GAL) is complete iff G is complete rela-
tive to some metric whose topology is 3. (Equivalently, iff G is a G;
in each metrizable space in which it is topologically embedded.) If
& and ® have the same Cauchy sequences and G is complete relative to
some metric whose topology is J, then G is complete relative to every
right invariant metric whose topology is 3. (See 6.K and 6.P.)

Note There are two important special cases in which “right-handed
completion” may be accomplished. If there is a totally bounded neigh-
borhood of the identity of the group, or if inversion (the map carrying
x into ¥™Y) is uniformly continuous on some neighborhood of the iden-
tity, then each right Cauchy net is also a left Cauchy net and the two-
sided completion yields also a right completion. These results may be
proved directly without great difficulty; they are given in Bourbaki
[1] and Weil [2]. The example of (c) is due to Dieudonné 3], and the
result (d) is due to Klee [1].
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The result of part (d)—the deduction of completeness from metric
topological completeness—cannot be extended to non-metrizable
groups. (See 7.M.)

R CONTINUITY AND OPENNESS OF HOMOMORPHISMS: THE CLOSED
GRAPH THEOREM

Throughout this problem G and H will be Hausdorff topological
groups, U will be the family of all neighborhoods of the identity in G,
and U will be the corresponding family in H.

(&) Closed graph theorem Let G be a topological group, let H be a
metrizable topological group which is complete relative to its right
uniformity, and let f be a homomorphism of G into H such that

(i) the graph of f is a closed subset of G X H, and
(ii) the closure of f~1[#] belongs to U whenever ¥ e .

Then f is continuous.
Dually, a homomorphism g of H into G is open if

(i)* the graph of g is a closed subset of H X G, and
(i))* the closure of g[#] belongs to U whenever 7 e 0.

(The proof is made by applying lemma 6.36 to the relations £ and g
respectively. Use a right invariant metric for H. H is complete rela-
tive to each right invariant metric which metrizes H.)

(b) If in the preceding theorem it is assumed that H is a Lindelsf
space (each open cover has a countable subcover) and G is non-meager,
then condition (ii) is automatically satisfied; if further g[H] = G, then
(ii)* is also automatically satisfied. If G and H are linear topological
space, f and g are linear functions, g[H] = G, and G is non-meager,
then (ii) and (ii)* are automatically satisfied. (If »e?, then
JIGI™ € Vf[G]), and if H is Lindeléf, then f[G] is covered by a countable
number of translates of 7 by members of f[G]. The closures of inverses
under f of these translates are mutually homeomorphic and must have
non-void interiors if G is not meager. Hence f~}[/]™ contains an open
set and (fTPTPDT D (FTUPTNSTIVNT D LTVTNSTITT
= (P U7T). It follows that f~[#]~ e for each ¥ in
U and a similar argument applies to g. In the linear topological space
case it is possible to use scalar multiples instead of translates of mem-
bers of V.)

(c) If H is a locally compact topological group, then the closed graph
theorem is valid; that is, (i) and (ii) of (a) imply continuity, and dually.
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(This is a simpler result than that above. It depends on the lemma
6.A.) :
Note The closed graph theorem for complete normed linear spaces
is due to Banach [1;41]. Every known form of the theorem requires
drastic countability or compactness assumptions on H. A counter
example to a number of attractive conjectures may be constructed as
follows. Let G be an arbitrary infinite dimensional complete normed
linear space, and let H be G with the topology such that a base for the
neighborhoods of 0 is the family of all convex sets which contain a line
segment in every direction. The identity map g of H onto G is con-
tinuous and satisfies (i)* and (ii)* above (see 6.Ua). The space H has
many pleasant properties: for example, it is complete, and the uniform
boundedness theorem (6.Ub) holds for it. Nevertheless g is evidently
not open.

S SUMMABILITY

Let f be a function whose domain includes a set 4 and whose values
line in a complete abelian Hausdorff topological group G. Let @ be
the family of finite subsets of 4, and for F in @ let S be the sum of f(4)
for a in F. The family @ is directed by D, and {Sr, Fe @,D} is a net
in G. If this net converges to a member s of G, then f is said to be sum-
mable over A, s is defined to be the sum of f over 4, and we
write s = > {f(@):ae d} = X af.

(a) Cauchy criterion for summability The function f is summable
over A iff for each neighborhood U of 0 in G there is a finite subset B
of A such that for every finite subset C of 4 ~ B it s true that > ¢ fe U.
Hence a function summable over A is summable over each subset of 4.

(b) If f and g are summable over 4, then f + g (where (f + g)(x) =
f(x) + g(x)) is summable over £ and 4(f + &) = Zaf+ 2ag.

(c) If fis defined and summable over 4 and ® is a disjoint family of
subsets of 4 which cover 4, then > af = > {3°{f(8): be B}: Be ®}.
However, from the existence of the iterated sum it is not possible to
deduce summability over 4. (See 2.G for a special case in which the
existence of the iterated sum implies summability over 4.)

T UNIFORMLY LOCALLY COMPACT SPACES

A uniform space (X) is uniformly locally compact iff there is a mem.
ber U of U such that Ulx] is compact for each x in X. In particular,
each locally compact topological group is uniformly locally compact
relative to its left and its right uniformity.

(a) Let (X,u) be a uniform space, let U be a member of U, let
Up=U and U, = U° U,_; for each positive integer n. Then for
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each subset 4 of X the set U{U,[4): new} is both open and
closed.

(b) If Uis a closed neighborhood of the diagonal in X X X, £ is a
compact subset of X, and Ue Ulx] is compact for each x in 4, then
Ul4] is compact. (U[4] is closed by 6.A.)

(c) A connected uniformly locally compact space (X,) is o-compact
(that is, X is the union of a countable family of compact subsets).

(d) Each uniformly locally compact space is the union of a disjoint
open family of ¢-compact subspaces. Hence each such space is para-
compact.

(e) Let (X,3) be a topological space. Then there is a uniformity U
whose topology is 3 such that (Xu) is uniformly locally compact iff
(X,3) is locally compact and paracompact. (See 5.28.)

Note Part (a) is essentially the chain argument of 5.T. It may be
noted that the propositions on components and connected sets of 5.T
cannot be extended to uniformly locally compact spaces.

U THE UNIFORM BOUNDEDNESS THEOREM

(a) Let X be a real linear topological space which is not meager in
itself and let K be a closed convex subset of X such that K = —K and
K contains a line segment in each direction (that is, for each x in X
there is a positive real number # such that sxe K if 0 <5 £ 4. Then
K is a neighborhood of 0. (Show that K is not meager in X. Then
by 6.P, K — K is a neighborhood of 0 and convexity implies that 2K
is a neighborhood of 0.)

(b) Theorem Let F be a family of continuous linear functions on a
non-meager linear topological space X to a normed linear space Y and
suppose that sup {|| f(*) ||: f e F} is finite for each point x of X. Then
for some neighborhood U of 0 in X it is true that sup {|| f(x) ||: xe U
and fe F} is finite. (Use the foregoing proposition to show that, if §
is the unit sphere about 0 in Y, then [} f1[S]: f € F} is a neighborhood
of 0in X.)

Note Part (b) is the classic Banach-Steinhaus theorem. (Banach
[1;80].) The formulation is clearly capable of some generalization; the
basic idea of such generalization is that of proposition (a). In the ter-
minology of the next chapter the conclusion of (b) can be stated: F is
equicontinuous at 0.

V BOOLEAN ¢-RINGS

A Boolean ring (B,+,-) is a o-ring iff each countable subset has a
least upper bound relative to the natural ordering of B (see 2.K). Nat-
ural examples of Boolean ¢-rings are:
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(i) The ring (£,A,N) where £ is the family of all Lebesgue meas-
urable subsets of [0,1], or the ring £ modulo the family of 9% of
all sets of measure zero is a o-ring. (Here A is symmetric differ-
ence. The family 9 is actually a g-ideal, in the obvious sense.)

(i)) The ring (@/9M,A,N), where @ is the family of all Borel subsets
of [0,1] and 9 is the subfamily consisting of meager Borel sets.

It is the purpose of this problem to exhibit a representation theorem
of the type (ii) for an arbitrary Boolean ¢-ring. Throughout ® will be
the family of all compact open subsets of a locally compact Boolean
space X. There is no loss in generality in restricting attention to rings
of the type (®,A4,1). (See the Stone representation theorem, 5.8.)

(a) If (®,A,N) is a Boolean o-ring, then the closure of the union of
a countable subfamily of ® is 2 member of ® (that is, the closure of the
union of a countable family of compact open subsets of X is compact
and open).

(b) Let @ be the smallest family of subsets of X such that ® c @
and countable unions and symmetric differences of members of @ belong
to @. Let 9 be the family of all meager subsets of X. Then for each
member A of @ there is a unique member B of ® such that /AB e IN.
(See 6.P(a).)

(c) Theorem The o-ring @ is (additively) the direct sum of ® and the
o-ideal @ N M. Hence ® is isomorphic to the Boolean o-ring @ modulo
the g-ideal @ N 9N,

Note The results of this problem are due to Loomis [1]. A space
which has the property that the closure of an open set is open (such as
the Stone space of a Boolean o-ring which satisfies a countable chain
condition) is sometimes called extremally disconnected. The space of
real-valued bounded Borel functions on a compact space of this sort
decomposes, in a way analogous to proposition (c), into continuous
functions and functions vanishing outside a meager set. For this and
other results see M. H. Stone [4] and also Dixmier [1].



Chapter 7

FUNCTION SPACES

This chapter is devoted to function spaces. That is, the ele-
ments of the spaces are functions on a fixed set X to a fixed topo-
logical or uniform space Y. Almost all of the development con-
cerns spaces of functions which are continuous relative to a to-
pology for X. Briefly, the purpose of the study is to define to-
pologies and uniformities for sets of continuous functions, and to
prove compactness, completeness, and continuity properties for
the resulting spaces.

Most of the results of the chapter have their origins in the
early theory of real variables. However, the theorems on joint
continuity and the compact open topology are relatively recent;
they are due primarily to Fox [1]. Further information on func-
tion spaces may be found in Arens [2], Bourbaki [1], Myers [2],
and Tukey [1].

POINTWISE CONVERGENCE

One topology for a function space has already been investi-
gated rather extensively. If Fis a family of functions, each on a
set X to a topological space Y, then F is contained in the prod-
uct YX¥ = X{Y:wweX}. The topology @ of pointwise conver-
gence (coordinatewise convergence, simple convergence) or simply
the pointwise topology for F is the relativized product topology.
A net {f., n e D} converges to g iff {f.(x), 7 e D} converges to
g(x) for each x in X (see 3.4). A subbase for @ is the family of
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all subsets of the form {f: f(x) e U}, where # is a point of X and
U is open in Y. For each point x of X there is a function e, on
F, which is called the evaluation at » (or the projection into the
x-th coordinate space) which is defined by e,(f) = f(x) for all
S in F. Evaluation at x is continuous and open relative to ®
(theorem 3.2), and @ is the smallest topology for F such that
each evaluation is continuous. A function g on a topological
space to F is continuous relative to @ iff ¢, g is continuous for
each point x of X (theorem 3.3). It is clear that the pointwise
topology depends only on the family of functions and the to-
pology of Y. A topology for X, if such is given, does not enter
into the definitions or the theorems. If Y is Hausdorff or regu-
lar, then the space F inherits the same property (3.5 and 4.A),
but in general Y may be locally compact or satisfy the first or
second axiom of countability and F may fail to have these prop-
erties (3.6 and 5.19).

A characterization of those function spaces which are compact
relative to the topology is an immediate consequence of the
Tychonoff theorem, 5.13, on the product of compact spaces. Be-
fore stating the result let us agree, for convenience, that a family
F of functions on a set X to a topological space Y is pointwise
closed iff F'is a closed subset of the product space YX. If A is
a subset of X, then F[A] is defined to be the set of all points
f(x) for x in 4 and fin F. If x e X, then F[{x}] is abbreviated
to Flx]. If e, is the evaluation at w, then clearly ¢,[F] = Flx].

1 THEOREM In order that a family F of functions on a set X to a
topological space Y be compact relative to the topology of pointwise
convergence it is sufficient that

(a) F be pointwise closed in YX, and
(b) for eack point x of X the set Flx}| has a compact closure.

If Y is a Hausdorff space the conditions (a) and (b) are also
necessary.

PrOOF The family F is not only a subfamily of Y* but is also
contained in X {F[x]~: x e X}. If condition (b) is satisfied, then
this product is a compact subset of Y* by the Tychonoff product
theorem, and if F is pointwise closed, then F is compact. The
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sufficiency of (a) and (b) is then proved. If Y is a Hausdorff
space and F is compact relative to the pointwise topology, then
F is closed by 5.7. The set F|x] is compact and closed because
the evaluation at each point x is a continuous map of F into the
Hausdorff space Y. |

The preceding theorem is more important than casual con-
sideration of the topology of pointwise convergence might indi-
cate. The pointwise topology is in many ways unnatural. For
example, let X be a set and for each finite subset 4 of X let Cy
be the characteristic function of 4 (that is, C4(x) = 1 if xe 4
and Ca(x) = 0 if x ¢ ). The family @ of all finite subsets of X
is directed by D, and consequently {C4, 4 e @} is a net of func-
tions on X to the closed unit interval. This net converges to
the function ¢ which is identically one, because {x} ¢ @ for each
point x, and if 4 D {x}, then C4(¥) = 1. Now a topology such
that the characteristic function of a finite set is “near” the unit
function is obviously unsuitable for many purposes. The more
interesting topologies are those for which convergence is more
restricted, that is, the larger topologies. But observe: if (F,3) is
compact and 3 is larger than the topology @ of pointwise conver-
gence, then the identity map 7 of (¥,3) onto (F,®) is continuous,
and if (F,®) is a Hausdorff space, then i must be a homeomor-
phism. Consequently if (F,3) is compact, (F,®) is Hausdorff, and
3 is larger than the pointwise topology, then 3 is identical with
the topology of pointwise convergence. This simple remark in-
dicates the standard method of proving a function space F com-
pact relative to a topology 3. One first shows that F is compact
relative to the topology of pointwise convergence and then proves
that ®-convergence of a net in F implies 3-convergence. If Y is
Hausdorff there can be no loss in restricting attention to these
two propositions, for if either fails F is not compact relative
to 3.

It is sometimes convenient to consider pointwise convergence
for points in a subset of the domain space. Suppose F is a family
of functions, each on a set X to a topological space Y, and sup-
pose that .4 is a subset of X. There is a natural map R of F
into the product space ¥4, obtained by mapping each member
J of F into its restriction to 4: that is, R(f) = f| A for each f in
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F. The smallest topology ®4 for F such that R is continuous
evidently consists of the inverses under R of the open subsets
Y4, This topology is that of pointwise convergence on 4. A
subbase for @4 is the family of sets of the form {f: f(x) e U} for
xin 4 and U open in Y, and a net { f,, n e D} in F converges to
g relative to @4 iff { f,(x), n e D} converges to g(x) for each
x1n 4. The map R will be one to one iff, whenever f and g are
distinct members of F, then for some point x of 4 it is true that
S(x) ## g(x). A subset 4 of X for which this is the case is said
to distinguish members of the family F.

2 TueoreM Let F be a family of functions, each on a set X to a
Hausdorff space Y, and let A be a subset of X. The family F with
the topology ®4 of pointwise convergence on A is a Hausdorff space
if and only if A distinguishes members of F. If F is compact rela-
tive to the topology of pointwise convergence on X and if A dis-
tinguishes members of F, then ® and ®4 are identical.

PROOF The product space Y4 is a Hausdorff space and, in view
of the definition of @4, F with this topology will be Hausdorff iff
the restriction map R is one to one. This is the case iff £ dis-
tinguishes members of F. The identity map i of (F,®) onto
(F,®4) is always continuous since ¢4 < @. If (¥,6) is compact
and (F,04) is Hausdorff, then 7 is 2 homeomorphism and ® =
TP |

If the range space is a uniform space, then the topology of
pointwise convergence is the topology of a uniformity.

If Fis a family of functions on a set X to a uniform space
(Y,0), then F is a subset of the product X{Y: ¥ e X} and the
relativized product uniformity is called the uniformity of point-
wise convergence (or of simple convergence). This is sometimes
abbreviated as the ¢ uniformity. Its properties have already
been studied (for example, 6.25).

If A is a subset of X, then the uniformity of pointwise con-
vergence on A, or simply the ®4 uniformity, is defined to be the
smallest uniformity which makes the restriction map R of F into
the family of all functions on A to Y uniformly continuous. The
following simple facts about this uniformity are listed without
proof.
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3 TueoreM Let F be a family of functions on a set X to a uni-
Sform space (Y,0) and let A be a subset of X. Then the uniformity
of pointwise convergence on A has the properties:

(a) The family of all sets of the form {(f,g): (f(x),g(x)) e V}
for V in 0 and x in A is a subbase for the ®4 uniformity.
(b) The topology of the ®a uniformity is the topology of point-
wise convergence on A.

(c) 4 net {fa, neD} is a Cauchy net if and only if {fa(x),
n e D} is a Cauchy net for each x in A.

(d) If (Y,V) is complete and R[F] is closed in Y4 relative to
pointwise convergence on A, then F is complete relative to the
®a uniformity.

COMPACT OPEN TOPOLOGY AND JOINT CONTINUITY

Given a topology for a family F of functions on a topological
space X to a topological space Y one might reasonably ask
whether f(x) is continuous simultaneously in f and in x. Stated
somewhat more formally, the question is: for which topologies
for Fis the map F X X which carries (f,x) onto f(x) continuous,
if F X X is given the product topology? This section is devoted
to a brief examination of this question. It turns out that there
is a particular function space topology which is related to this
problem, and we begin by defining this topology and establish-
ing some elementary properties. The section is devoted entirely
to topological questions; connections with a uniformity for func-
tion spaces will be established later. Throughout the section F
will be a family of functions, each on a topological space X to a
topological space Y.

For convenience, for each subset K of X and each subset U
of Y, define #(K,U) to be the set of all members of F which
carry K into Uj; that is, #(K,U) = {f: f[K] ¢ U}. The family
of all sets of the form #(K,U), for K a compact subset of X and U
open in Y, is a subbase for the compact open topology for F.
The family of finite intersections of sets of the form #(K,U) is
then a base for the compact open topology; each member of this
base is the form N {#W(K,Us):i =0, 1, ---, n}, where each K;
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is a compact subset of X and each U; is an open subset of Y.
The fact that each set consisting of a single point is compact
makes comparison with the pointwise topology simple.

4 THEOREM The compact open topology © contains the topology
® of pointwise convergence. The space (F,e) is a Hausdorff space
if the range space Y is Hausdorff, and is regular if Y is regular and
the members of F are continuous.

PROOF For each ¥ in X and each open subset U of Y the set
W({x},U) = {f: f(x) e U} belongs to € because {x} is compact.
Hence ® c e, for the family of all sets of this form is a subbase
for the pointwise topology ®. If Y is a Hausdorff space, then
(F,®) is also a Hausdorff space, by 3.5, and if U and 7 are dis-
joint @-neighborhoods of members of F they are also e-neighbor-
hoods. Therefore (F,e) is Hausdorff.

Finally, assume that Y is regular; it must be shown that each
neighborhood of each member f of F contains a closed neighbor-
hood. It is sufficient to prove that each neighborhood of f which
‘belongs to a subbase for € contains a closed neighborhood, for
each neighborhood of f contains a finite intersection of neighbor-
hoods belonging to the subbase. Suppose that f e #7(K,U) where
K is compact and U is an open subset of Y. Then f[K] is com-
pact, and since Y is regular there is by 5.10 a closed neighbor-
hood 7 of f[K] such that 7 < U. Surely fe W(K,V) c W(K,U)
and evidently #(K,V) is a neighborhood of f. It remains to
show that #(K,?) is closed. But #(K,V) is the intersection of
the sets /7 ({x},V) for x in K, and each of the sets #({x},?) is
®-closed and hence e-closed. ||

There is no hope of showing that, if Y is normal or satisfies
the first or second axiom of countability, then (F,e) has these
properties, for if X is discrete the only compact sets are finite
and hence € is identical with the topology of pointwise conver-
gence. The product of normal spaces or spaces satisfying one of
the countability axioms may fail to have the corresponding prop-
erty and hence F with the topology € also may fail to have the
property.

Let P be the map of F X X into Y which carries (f,x) into
S(x). Each topology for F gives rise to a product topology for
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F X X, and one may ask whether P is continuous relative to
this product topology. A topology for F is said to be jointly
continuous iff the map P of F X X into Y is continuous. It is
very easy to see that the topology of pointwise convergence is
usually not jointly continuous. The discrete topology is jointly
continuous, for if U is an open subset of Y, then P [U] = {( fox):
fx) e U} = U{{f} XS [U):f e F}, which is the union of open
sets (assuming that F is a family of continuous functions). If a
topology for F is jointly continuous, then each larger topology
is also jointly continuous. Consequently the natural problem is
to find the smallest jointly continuous topology, if such exists.
It turns out that there is generally no such smallest topology;
however, a slight relaxation of the conditions for joint continuity
yields a precise description of the compact open topology. A to-
pology for a family F of functions is jointly continuous on a set
A iff the map P is continuous on F X A, where P(fx) = f(x).
(Caution: This does not mean that P is continuous at the points
of F X A; the condition is that the restriction P | (F X 4) be
continuous.) A topology for F is jointly continuous on compacta
iff it is jointly continuous on each compact subset of the domain
space. Each member f of such a family is necessarily continuous
on each compact set K (that is, f | K is continuous).

5 THEOREM Each topology which is jointly continuous on com-
pacta is larger than the compact open topology €. If X is regular
or Hausdorff and each member of F is continuous on every compact
subset of X, then € is jointly continuous on compacta.

PROOF Suppose a topology 3 for F is jointly continuous on com-
pacta, U is an open subset of Y, K is a compact subset of X, and
P is the map such that P(f,x) = f(x). It must be shown that
W(K,U) is 3-open, where #W(K,U) = {f: f[K] € U}. The set
V = (FX K) N P~Y[U] is open in F X K because 3 is jointly
continuous on compacta. If fe #(K,U), then {f} X KV,
and since {f} X K is compact there is a 3-neighborhood N of
fsuch that N X K < P7[U] by theorem 5.12. In other words,
each member of the 3-neighborhood N of f is a member of the
compact open neighborhood #(K,U). It follows that #(K,U)
is 3-open and the first statement of the theorem is proved. To
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prove the second assertion, suppose K is a compact subset of X,
xe K, Uis open in Y, and (f,x) e P~ [U]. Then, since f is con-
tinuous on K, there is a compact set M which is a neighborhood
of ¥ in K such that f[M] < U (recall that X is either Hausdorff
or regular). Then #(M,U) X M is a neighborhood of (f,x) in
F X K and is contained in P~ [U]. Joint continuity on K fol-
lows. |

It may be noticed that, if X is locally compact, then a topology
is jointly continuous on compacta iff it is jointly continuous.
Hence, if X is a locally compact regular space, then the compact
open topology for a family of continuous functions is the smallest
jointly continuous topology.

If a topology 3 for a family F is jointly continuous on compacta,
then 3 D @ D ®, where € is the compact open topology and @
is the pointwise. If (F,3) is compact and the range space is
Hausdorff, then (F,®) is Hausdorff and consequently 3 = € = @.
This fact shows the necessity of one of the conditions given for
e-compactness in the next theorem. The result is given in a
rather curious form in order to be directly applicable to the later
problem.

6 THEOREM Let X be a topological space which is either regular
or Hausdorff, let Y be a Hausdorff space, let C be the family of all
unctions on X to Y which are continuous on each compact subset
of X, and let @ and ® be respectively the compact open and the point-
wise topologies. Then a subfamily F of C is ©-compact if and

only if

(a) Fis e-closed in C,

(b) Flx] has a compact closure for each member x of X, and

(c) the topology @ for the ®@-closure of F in YX is jointly continu-
ous on compacta.

PROOF Suppose F' is @-compact. The space (C,e) is Hausdorff
because Y is Hausdorff and hence F is €-closed in C. Evaluation
at a point ¥ is ®-continuous, hence e-continuous, and the image
Flx] of F is therefore compact. The topologies € and ® for F
coincide because F is €-compact and ®-Hausdorff, hence F is
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®-closed in Y%, and by 7.5 the topology € (and hence @) for F
is jointly continuous on compacta. This completes the proof
that conditions (a), (b), and (c) are necessary.

Assuming conditions (a), (b), and (c), let F~ be the ®-closure
of Fin YX. Condition (b) states that F[x]~ is compact for each
x, and since F~ is a closed subset of the ®-compact set X {F[x]™:
x e X} it follows that F~ is ®-compact. By (c) the topology @
for F~ is jointly continuous on compacta. Consequently each
member of F~ is continuous on each compactum and F~ c C.
Theorem 5.5 implies that the topology @ for F'~ is larger than e,
and hence these two topologies for F~ coincide. By (a) the
family F is e-closed in C and is hence € (and @) closed in the
subset F~ of C; in fact, F~ = F, and F is €¢-compact. [

7 Notes The family C of all functions which are continuous on
every compact subset coincides with the family of all continuous
functions if the space is either locally compact or satisfies the
first axiom of countability (see theorem 7.13 and the discus-
sion preceding it). It is usually the family of all continuous
functions which is of interest; however, the mathematical struc-
ture (and not my whim) is responsible for the appearance of the
class C. The class also shows up a little later in a discussion of
completeness.

The relation between the compact open topology and joint
continuity was first studied by Fox [1], who showed that the
compact open topology for a family of continuous functions is
smaller than each jointly continuous topology and is itself jointly
continuous if the domain space is locally compact. For proof of
the fact that there is generally no smallest jointly continuous
topology see Arens [2].

UNIFORM CONVERGENCE

This section is devoted to the study of a uniformity for a
family F of functions on a set X to a uniform space (Y,0). The
uniformity is independent of any topology which may be as-
signed to the set X, but one of the principal results is that the
family of functions continuous relative to a topology for X is
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closed in the space of all functions on X to Y. That is, the uni-
form limit of continuous functions is continuous.

The uniformity of uniform convergence is the largest which
will be considered and the uniformity of pointwise convergence is
the smallest. Both of these may be considered as special in-
stances of uniform convergence on the members of a family @
of sets. This concept is investigated briefly; a uniformity is con-
structed for each family @ of subsets of X, and the elementary
properties are derived.

Let F be a family of functions on a set X to a uniform space
(Y,0). For each member 7 of U let (V) be the set * of all
pairs (f,g) such that (f(x),g(x)) e ¥ for each ¥ in X. Then
W(P)[f] is the set of all g such that g(x) e P[f(x)] for every x in
X. It is easy to see that (V) = (W), WU NV) =
wWU) N W), and W(U-¥) 2 W(U) > W) for all members
U and 7 of 0. Consequently the family of all sets #(¥) for ¥
in U is a base for a uniformity a for F by theorem 6.2. The family
U is the uniformity of uniform convergence, or simply the u.c.
uniformity. The topology of « is the topology of uniform con-
vergence, or the u.c. topology.

It is clear that @ is larger than the uniformity of pointwise
convergence, for if y is an arbitrary member of X and 7 ew,
then {(£,8): (f(x),8(x)) e ¥ for all x in X} < {(£,): (f(»),(»))
e 7}, and hence each member of the defining base for 4 is a sub-
set of a member of the defining subbase for the pointwise uni-
formity. It follows that the u.c. topology is larger than the
pointwise. It is also easy to see directly that uniform conver-
gence implies pointwise convergence, for a net {f,, 7e D} in F
converges to g relative to the u.c. topology iff the net is eventu-
ally in #(7)[g] for each ¥ in v, and this is true iff there is some
m in D such that, when # = m, then £,(x) ¢ ¥[g(x)] for all x in
X. The following theorem lists other elementary properties of
the uniformity .

8 TurorEM Let F be the family of all functions on a set X to a
uniform space (Y,0) and let W be the uniformity of uniform con-

* The set #(V) may be described very simply in terms of the usual notation for rela-
tions: W (V) = {(f,g): g°f L  V}. This statement is cledr since g°f 7 is precisely the
set of all pairs (f(x),g(x)) with x in X. It is also clear that W) ={(fg):gC Vf}
and W(P)f] = {g: g © Vo f} = {g: g(x) € V()] for each x in X].
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vergence. Then:

(a) The uniformity W is generated by the family of all pseudo-
metrics of the form d*(f,g) = sup {d(f(x),g(x)): x e X},
where d is a bounded member of the gage of (Y,0).

(b) 4 net {fn, n e D} in F converges uniformly to g if and only
if it is a Cauchy net relative to W and { f.(x), n e D} con-
verges to g(x) for each x in X.

(c) If (Y, 0) is complete so is the uniform space (Fau).

PROOF To prove part (a) observe that the family of all sets of
the form {(y,2): d(3,2) < r}, for r positive and for 4 a bounded
member of the gage of U, is a base for V. This is true because
for each pseudo-metric ¢ the pseudo-metric 4 = min [1,¢] is
bounded and has the same uniformity. But {(f,£): d*(f,g) < r}
= {(/,£): d(f(x),g(x)) S 1 for each x in X} = W({(y2): d(y,2)
< r}), where /# is the correspondence used above in defining the
u.¢. uniformity. It follows that 4* belongs to the gage of 4 and
that pseudo-metrics of this form generate the gage.

One half of the proposition (b) is obvious, and it is only neces-
sary to show that, if a Cauchy net {f,, #» e D} converges point-
wise to g, then it converges uniformly to g. Let 7 be an arbitrary
closed symmetric member of v, and choose m in D such that, if
n = m and p = m, then f,(x) e V[fa(¥)] for each ¥ in X. Such
a choice is possible because the net is assumed to be Cauchy
relative to U. Since P[f.(x)] is closed and f,(x) converges to
£(x) 1t follows that g(x) e ¥[f.(x)] and hence f.(x) e #[g(x)] for
each » = m and every x in X, and (b) is established. Proposition
(c) is an immediate consequence of (b) and of the fact that the
product of complete spaces is complete. ||

The following theorem states the principal properties of a for
a family of continuous functions.

9 THEOREM Let F be the family of all continuous functions on a
topological space X to a uniform space (Y,0), and let u be the uni-
formity of uniform convergence. Then:

(a) The family F is closed in the space of all functions on X to
Y, and consequently (FA) is complete if (Y,0) is complete.
(b) The topology of uniform convergence is jointly continuous.
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PROOF Proposition (a) is proved by showing that the set of non-
continuous functions is an open subset of the space G of all func-
tions on X to Y. If fis not continuous at a point ¥ of X there
is a member 7 of U such that f7[7[f(x)]] is not a neighborhood
of x. Choose a symmetric member 7 of 0 such that W W - W
c V. Itwill be proved that if g is a function such that (g(¥),/(y))
e W for each y, then g~ [}#[g(x)]] is not a neighborhood of x and
hence g is not continuous. It will follow that G ~ F is open
relative to the topology of uniform convergence. If (g(¥),f(»))
e foreachy, then gcWefand gt cf e W1 =f1 )
and hence g7YeWegcf el W - Wef cf'eVef. There-
fore g~ [W[g(x)]] is a subset of f~[7[f(x)]] and is not a neigh-
borhood of x.

The proof of (b) remains. To show continuity of the map of
F X X into Y at a point (f,x) it is only necessary to verify that
for 7 in v, if y ef 7V [f(x)]] and g(2) e V[f(2)] for all 2, then
g0 e VM c V- VIfx)]. 1

A number of useful uniformities are constructed by considering
uniform convergence on each of a family @ of subsets of the do-
main space. Explicitly, if F is a family of functions on a set X
to a uniform space (Y,0) and @ is a family of subsets of X, then
the uniformity of uniform convergence on members of @, ab-
breviated 4 | @, has for a subbase the family of all sets of the
form {(f,£): (f(x),g(x)) € ¥ for all x in A}, for ¥ in 0 and 4 in
@. This uniformity may be described in another way. For each
A in @& let R4 be the map which carries f into the restriction of
fto A4; that is, R4(f) = f| 4. Then R, carries F into a family
of functions on A to Y, this family may be assigned the uniformity
of uniform convergence, and the uniformity u| @ may be de-
scribed as the smallest which makes each R, uniformly con-
tinuous.

The preceding propositions on uniform convergence imply cor-
responding results about the U | @ uniformity. The simple proofs
are omitted.

10 TueoreM Let X be a topological space, let (Y,0) be a uniform

space, let @ be a family of subsets of X which covers X, let G be the
family of all functions on X to Y, and let F be the family of all
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functions which are continuous on each member of . Then:

(a) The uniformity | @ of uniform convergence on members of
Q is larger than the uniformity of pointwise convergence and
smaller than that of uniform convergence on X.

(b) A net {fa, neD} converges to g relative to the topology of
W| @ if and only if it is a Cauchy net (relative to | @) and
converges to g potntwise.

(c) If (Y,0) is complete, then G is complete relative to | Q.

(d) The family F is closed in G relative to the topology of U | @,
and hence if (Y,0) is complete so is (FAL| @).

(€) The topology of | G for F is jointly continuous on each
member of Q.

It should be emphasized that the family of continuous func-
tions may fail to be complete relative tou | @. If @ is the family
of all sets {x} for x in X, then | @ is simply the uniformity of
pointwise convergence, and the family of continuous functions is
generally not complete relative to this uniformity. If @ is such
that continuity on each member of @ implies continuity on X,
then proposition (d) above shows 4| @ completeness of the
family of continuous functions on X to a complete space. In
particular, this is the case if there is a neighborhood of each point
of X which belongs to @.

UNIFORM CONVERGENCE ON COMPACTA

In this section two distinct lines of investigation will be com-
bined. Suppose that F is a family of continuous functions on a
topological space X to a uniform space (Y,0). The uniformity
of uniform convergence on compacta is the uniformity | e,
where € is the family of all compact subsets of X. The topology
of | @ is sometimes called the topology of compact convergence.
It will be proved that this topology is identical with the compact
open topology which is constructed from the topology of X and
the topology of the uniformity v. Thus the uniformity | e
depends on the uniformity ¥ for Y, but the topology of u| e
depends only on the topology of v. The uniformity | € is par-
ticularly useful in case the space X has a “rich” supply of com-
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pact sets, and the section concludes with a brief examination of
spaces satisfying a “richness” condition.

11 TurcoreM Let F be a family of continuous functions on a
topological space X to a uniform space (Y,0). Then the topology
of uniform convergence on compacia is the compact open topology.

proor Let K be a compact subset of X, U an open subset of
Y, let f ¢ F, and suppose that /[K] < U. Then f[K] is compact
and by 6.33 there is # in U such that V[f[K]] € U. Itis then
clear that, if g is a function such that g(x) e 7’[f(x)] for each x in
K, then g[K] < U also. Consequently each set of the form
{ f: f/IK] < U} is open relative to the topology of 4 | e, and the
compact open topology is therefore smaller than that of u | e.

To prove the converse it must be shown that for each compact
subset K of X, each 7 in v, and each continuous f there are
compact subsets Ky, - -+ K, of X and open subsets Uy, -+ Un
of Y such that f[K;] € U, and if g[Ki] < U; tor each i then
g(x) & V[ f(x)] for each x in K. Choose a closed symmetric mem-
ber # of U such that W W W < V, choose %1, +++ %, in K
such that the sets [ f(x:)] cover f[K],let K; = K N f7 [ f(x)]],
and let U; be the interior of &« W[f(x:)]. If glK{] < U; for
each 7, then: for each x in K there is 7 such that x € K;, hence
g(x) e Weo W[ f(x)], and since f(x) e #[f(x;)] it follows that
() fC) eW -W-w V. |

If the uniform space (Y,0) is complete and @ is a family of
subsets of the topological space X then the family of all functions
on X to Y which are continuous on each member of @ is u | @-
complete, according to 7.10. In order that the family of all con-
tinuous functions be complete it is then sufficient that @ satisfy
the condition: a function is continuous whenever it is continuous
on each member of @. If fis a function on X to Y and B is a
subset of Y, then this condition would be implied by: if 4 N
F~YB] is closed for each member A of @, then f~'[B] is closed.
In particular, the space of all continuous functions on X to Y
is complete relative to uniform convergence on compacta if X
satisfies the condition: if a subset 4 of X intersects each closed
compact set in a closed set, then 4 is closed. Such a topological
space is called a k-space. It is clear that the family € of closed
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compact sets determines the topology of a k-space entirely, for 4
is closed iff 4 N Ce € for each C in €. By complementation it
follows that a subset U of a k-space is open iff U N C is open in
C for each closed compact set C.

The following is evident in view of the definition of k-space
and the remarks preceding.

12 TeeOREM The family of all continuous functions on a k-space
to a complete uniform space is complete relative to uniform conver-
gence on compacta.

The two most important examples of k-spaces are given in
the following.

13 THEOREM If X is a Hausdorff space whick is either locally
compact or satisfies the first axiom of countability, then X is a k-
space.

PROOF In each case the proof proceeds by assuming that B is
a non-closed subset of X and showing that for some closed com-
pact set C the intersection B N C is not closed. Suppose x is an
accumulation point of B which does not belong to B. If X is
locally compact there is a compact neighborhood U of x and the
intersection B N U is not closed because x is an accumulation
point but not a member. If X satisfies the first axiom of counta-
bility, then there is a sequence {y., # ew} in B ~ {x} which
converges to x, and the set which is the union of {x} and the
set of all points y, is clearly compact, but its intersection with
B is not closed. |

COMPACTNESS AND EQUICONTINUITY

This is the first of two sections devoted to the problem ot
finding conditions for compactness of a family of functions rela-
tive to the compact open topology. The conclusion desired is
topological, and the sharpest results are obtained from purely
topological premises. However, the arguments are simpler for
uniformities and the discussion of this section concerns maps in-
to a uniform space. The. last section of the chapter treats the
purely topological problem.
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Let F be a family of maps of a topological space X into a uni-
form space (Y,v). The family F is equicontinuous at a point x
if and only if for each member 7 of U there is a neighborhood U
of x such that f[U] < V[f(x)] for every member f of F. Equiva-
lently, F is equicontinuous at x iff () {f~[F[f(x)]]: fe F} is a
neighborhood of « for each 7 in v. Roughly speaking, F is equi-
continuous at x iff there is a neighborhood of ¥ whose image
under every member of F is small.

14 THEOREM If F is equicontinuous at x, then the closure of F
relative to the topology ® of pointwise convergence is also equicon-
tinuous at x.

PROOF If 7 is a closed member of the uniformity of Y, then the
class of all functions f which satisfy the condition f[U] < [ f(x)]
is evidently closed relative to the topology @ of pointwise con-
vergence because it is identical with N {{f: (f(¥),f(x)) e V}:
y e U}. It follows that the pointwise closure of F is equicon-
tinuous. |

A family F of functions is equicontinuous iff it is equicontinu-
ous at every point. In view of the preceding theorem the closure
of an equicontinuous family relative to the topology of pointwise
convergence is also equicontinuous; in particular the members of
the closure are continuous functions. The topology of pointwise
convergence has other noteworthy properties for equicontinuous
families.

15 TueoreM If F is an equicontinuous family, then the topology
of pointwise convergence is jointly continuous and hence coincides
with the topology of uniform convergence on compacta.

PROOF To prove that the map of F X X into Y is continuous
at (f,x) let 7 be a member of the uniformity of Y and let U be a
neighborhood of x such that g[U] c V[g(x)] for all g in F. If
g is a member of the ®-neighborhood {4: A(x) € V[ f(x)]} of f and
ye U, then g(») e V[g(x)] and g(x) e V[f(x)]. Consequently
g(y) e Ve V[f(x)], and joint continuity follows. Each jointly
continuous topology is larger than the compact open by 7.5, and
the compact open topology coincides with that of uniform con-
vergence on compacta by 7.11. |
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The preceding theorem implies that an equicontinuous family
of functions is compact relative to the topology of uniform conver-
gence on compacta if it is compact relative to the pointwise to-
pology @, and the Tychonoff product theorem gives sufficient
conditions for ®-compactness. In this way equicontinuity to-
gether with certain other conditions implies compactness of a
family of functions. An implication in the reverse direction,
from compactness to equicontinuity, is shown in the following
theorem.

16 TueoreM If a family F of functions on a topological space X
to a uniform space (Y,0) is compact relative to a joinily continuous
topology, then F is equicontinuous.

PROOF Suppose that x is a fixed point of X and ¥ is a symmetric
member of V. The theorem will follow if it is shown that there
is a neighborhood U of x such that g[U] < 7« P[g(x)] for each
gin F. Because the topology for F is jointly continuous there is
for each member f of F a neighborhood G of f and a neighborhood
W of x such that G X W maps into V[f(x)]. If geG and we 7,
then g(x) and g(w) both belong to #[f(x)] and hence g(w) e
VeVig(x)]. That is, gl#] c V- V[g(x)] for each g in G. Be-
cause /' is compact there is a finite family Gy, ---, G, covering
F and corresponding neighborhoods #74, - - -, W, of % such that
Wi < Ve V[g(x)] for each g in G;. If we let U be the inter-
section of the neighborhoods #; of x, it is clear that g[U] c
Ve Vig(x)] for every gin F. |

The Ascoli theorem for locally compact spaces is an immediate
consequence of the preceding results. It is obtained from 7.6 by
replacing the condition “the pointwise topology @ for the ®-clo-
sure of F is jointly continuous on compacta” by “the family F
is equicontinuous.” The latter condition implies the former
(7.14 and 7.15) and compactness implies equicontinuity by 7.16.
(A proof which does not depend on 7.6 is also simple to con-
struct.)

17 Ascoir THEOREM Let C be the family of all continuous func-
tions on a regular locally compact topological space to a Hausdorff
uniform space, and let C have the topology of uniform convergence
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on éompacta. Then a subfamily F of C is compact if and only if

(a) F is closed in C,
(b) Flx] has a compact closure for each member x of X, and
(¢) the family F is equicontinuous.

A form of the Ascoli theorem is true for families of functions
on a k-space (a space such that a set is closed whenever its inter-
section with every closed compact set is closed). A variant of
the notion of equicontinuity is required. A family F of func-
tions is equicontinuous on a set 4 iff the family of all restrictions
of members of F to A is an equicontinuous family. A family
which is equicontinuous at every point of 4 is equicontinuous on
A, but the converse proposition is false. However, a family
which is equicontinuous on A is equicontinuous at each point of
the interior of A.

The proof of the following theorem is omitted. It is a straight-
forward application of 7.6, the results of this section and the
fact that a function on a k-space is continuous if it is continuous
on each compact set.*

18 AscoLl THEOREM Let C be the family of all continuous func-
tions on a k-space X which is either Hausdorff or regular to a Haus-
dorff uniform space Y, and let C have the topology of uniform con-
vergence on compacta. Then a subfamily F of C is compact if
and only if

(a) F is closed in C,
(b) the closure of Flx] is compact for each x in X, and
(c) F is equicontinuous on every compact subset of X.

* EVEN CONTINUITY

This section is devoted to the proof of an Ascoli theorem for
topological spaces. The pattern of attack is much the same as
the foregoing except that a topological concept replaces the (uni-

* It is evident that the condition “X is a k-space” may be omitted from the hypothesis
of the theorem if the family C of continuous functions is replaced by the family of all
functions which are continuous on each compact set. However, the same result may be
obtained by applying the given theorem to X with the topology 3 such that a set 4 is
3-closed iff 4 N B is closed for every closed compact set B.
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form) concept of equicontinuity. The connections between the
two concepts are discussed briefly at the end of the section.

Let F be a family of functions, each on a topological space X
to a topological space Y. The concept of even continuity can be
described intuitively by the statement: for each ¥ in X, y in Y,
and f in F, if f(x) is near y, then f maps points near x into points
near y. Explicitly, the family F is evenly continuous iff for each
x in X, each y in Y, and each neighborhood U of y there is a
neighborhood 7 of x and a neighborhood #” of y such that f[/]
c U whenever f(x) ¢ #/. The close connection between this defi-
nition and joint continuity may be emphasized by the restate-
ment: F is evenly continuous iff for each x in X and y in Y and
for each neighborhood U of y there are neighborhoods 7 of x
and 7 of y such that {f: fe F and f(x) e W'} X V is carried into
U by the natural map. The crucial property of evenly continu-
ous families is easily demonstrated.

19 TuroreEM Let F be an evenly continuous family of functions
on a topological space X to a regular space Y and let ® be the
topology of pointwise convergence. Then the ®-closure F~ of F
is evenly continuous and ® is jointly continuous on F~.

proOF The latter statement of the theorem is evident from the
second formulation of the definition of even continuity, since
{f:feF and f(x) e W} is ®-open whenever /# is openin Y. To
show that the ®-closure of F is evenly continuous suppose x & X,
yeYand Uis a neighborhood of y. Because Y is regular it may
be supposed that U is closed. Let 7 be a neighborhood of » and
W an open neighborhood of y such that, if fe F and f(x) e 7,
then f[¥] < U, and suppose that {g,, 7 ¢ D} is a net in F which
converges pointwise to g and g(x) e #. Then {g.(x), ne D} 1s
eventually in 7; hence for each z in / it is true that {g.(2),
ne D} is eventually in U and therefore g(z) e U. This shows
that g[V1 c U. |

Sufficient conditions for compactness of an evenly continuous
family of functions are more or less self-evident in view of the
preceding result and 7.6. The following proposition shows the
necessity of the conditions given in the Ascoli theorem.



236 FUNCTION SPACES

20 Tueorem If a family F of continuous functions on a topo-
logical space X to a regular Hausdorff space Y is compact relative
to a jointly continuous topology, then F is evenly continuous.

PrOOF The identity map of the compact space F into F with
the topology of pointwise convergence is continuous, and since
the latter topology is Hausdorff, the two topologies coincide.
The pointwise topology for F is therefore jointly continuous.
Suppose that x ¢ X, y ¢ Y, and U is an open neighborhood of y.
Let 77 be a closed neighborhood of y such that # < U, and ob-
serve that the set K of all members f of F such that f(x) e # is
pointwise closed and hence compact. If P is the function such
that P(f,x) = f(x), then the compact set K X {x} is contained
in P7[U], and since P is continuous there is a neighborhood #»
of x such that K X 7 < P~ [U] by 5.12. That is, if ve ¥ and
S(x) e W, then f(v) e U. |

21 Ascoul THEOREM Let C be the family of all continuous func-
tions on a regular locally compact space X to a regular Hausdorff
space Y, and let C have the compact open topology. Then a subset
F of C is compact if and only if

(a) F is closed in C,
(b) the closure of Flx] is compact for each x in X, and
(c) F is evenly continuous.

prooF If F is compact relative to the compact open topology
conditions (a), (b), and (c) follow from 7.6 and 7.20. If F satis-
fies (a), (b), and (c), then the pointwise closure of F'is an evenly
continuous family on which the pointwise topology is jointly
continuous, by 7.19. Compactness follows from 7.6. |

The foregoing theorem can be extended to k-spaces in the
same fashion that 7.17 was extended. A family F of functions is
evenly continuous on a set 4 iff the family of all restrictions of
members of F to A is evenly continuous. With this definition
the Ascoli theorem (21) can be proved for k-spaces X if condition
(c) is replaced by “F is evenly continuous on each compact sub-
set of X.” The straightforward proof of this fact is omitted.

The section is concluded with two propositions which clarify
the relation between even continuity and equicontinuity.
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22 THEOREM An equicontinuous family of functions on a topo-
logical space to a uniform space is evenly continuous.

PROOF Suppose that F is an equicontinuous family of functions
on X to Y, that xe X and y e Y, and that U is a neighborhood
of y. Then one may assume that U is the sphere of d-radius r
about y, where 4 is a pseudo-metric belonging to the gage of
Y and » > 0. Since F is equicontinuous at ¥ there is a neighbor-
hood 7 of x such that, if ze 7, then d(f(x),f(z)) < r/2 for all
fin F. Consequently, if 2 ¢ 7 and f(x) belongs to the sphere of
d-radius r/2 about y, then f2) e U. |

In a certain sense equicontinuity is the result of ‘“‘uniform-
izing” even continuity with respect to the range space, and, as
might be expected, equicontinuity may be deduced from even
continuity in the presence of a suitable compactness condition.

23 TureoreM * [f F is an evenly continuous family of functions
on a topological space X to a uniform space Y, and x is a point of
X such that Flx] has a compact closure, then F is equicontinuous at
x.

PROOF Suppose 4 is a member of the gage of ¥ and » > 0.
For each y in F[x]™ there are neighborhoods 7 of y and 7 of «
such that, if f(x) e #, then f[V] is contained in the sphere of 4-
radius r/2 about y. Because F[x]~ is compact, there is a finite
number of neighborhoods #; of points y; of F[x]~ and corre-
sponding neighborhoods 7; of #, for i = 1, -, n, such that the
family of all #; covers F[x]~, and such that, if f(x) e /#;, then
fI74] is a subset of the sphere of d-radius r/2 about y;. Conse-
quently, if T= N {Vi:i=0,1, -+, #} and fe F, then f(x)
belongs to #; for some i, and since f[T] is a subset of some sphere
of d-radius r/2, d(f(x),f(y)) < r for each y in T. Hence F is
equicontinuous. |

Notes The results of this section are due to A. P. Morse and
myself. Another form of the Ascoli theorem for topological
spaces has been obtained by Gale [1].

* This theorem is false if the condition “Fix] has a compact closure” is replaced by
“F[«] is totally bounded ”.
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PROBLEMS

A EXERCISE ON THE TOPOLOGY OF POINTWISE CONVERGENCE

The set of all continuous real-valued functions on a Tychonoff space
X is dense, relative to the topology of pointwise convergence, in the
set of all real-valued functions on X.

B EXERCISE ON CONVERGENCE OF FUNCTIONS
Let f be a continuous real-valued function on the closed unit interval

[0,1] such that f(0) = f(1) =0 and f is not identically zero. Let
Za(x) = f(x™) for each non-negative integer #n. Then {g,, 7 e w} con-
verges pointwise (but not uniformly) to the function 4 which is iden-
tically zero. The union of {#} and the set of all g, is compact relative
to the pointwise topology but is not compact relative to the topology
of uniform convergence.

C POINTWISE CONVERGENCE ON A DENSE SUBSET

Let F be an equicontinuous family of functions on a topological space
X to a uniform space and let 4 be a dense subset of X. Then the uni-
formity of pointwise convergence on X is identical with the uniformity
of pointwise convergence on 4.

D THE DIAGONAL PROCESS AND SEQUENTIAL COMPACTNESS

Prior to the proof of the Tychonoff product theorem the diagonal
process, as outlined below, was the standard method of proving com-
pactness of a family of functions. Recall that a topological space is
called sequentially compact if each sequence in the space has a subse-
quence which converges to a point of the space.

(a) The product of a countable number of sequentially compact
topological spaces is sequentially compact. (Suppose {Y, mew} is a
sequence of sequentially compact spaces and {f,, # € w} is a sequence
in the product X{Y,: m e w}. Choose an infinite subset 4, of » such
that {f.(0), ne 4y} converges to a point of Yy, and continue induc-
tively, choosing an infinite subset A4yyy of Ay such that {f.(k + 1),
n e Axy1} converges to a point of Yiqy. If Ni is the k-th member of
Ay, then { fn,, k € w} is the required subsequence.)

(b) Let Y be a sequentially compact uniform space, let X be a sepa-
rable topological space, and let F be an equicontinuous family of func-
tions on X to ¥ which is closed in Y relative to the topology of point-
wise convergence, Then F is sequentially compact relative to the
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pointwise topology (or the compact open topology). (Use 7.C and
observe that each Cauchy sequence in Y has a limit point.)

Note Some very beautiful results on countable compactness of func-
tion spaces have been obtained recently by Grothendieck [1]. His
results apply directly to some interesting linear topological space prob-
lems.

E DINI'S THEOREM

If a monotonically increasing net {f., #& D} of continuous real-
valued functions on a topological space X converges pointwise to a
continuous function f, then the net converges to f uniformly on com-
pacta. (This is a straightforward compactness argument. If C is a
compact subset of X let £, = {(x,7): x € C and fo(x) £ y < f(¥)} and
observe that the intersection of the sets 4, for # in D is simply the
graph of f| C.)

F CONTINUITY OF AN INDUCED MAP

Let X and Y be sets, let @ and & be families of subsets of X and of
Y respectively, let F be the family of all functions on X to a uniform
space (Z,A1), and let G be the family of all functions on Y to (Zu). If
T is a map of X into Y the induced map T* of G into F is defined by
T*(g) = g° T for gin G. If for each member 4 of @ the set T[A] is
contained in some member of ®, then T* is uniformly continuous rela-
tive to the uniformities U | @ for F and 4 | ® for G (uniform convergence
on members of @ and of ® respectively). In particular T* is always
uniformly continuous relative to the uniformity of uniform convergence
and is continuous relative to that of pointwise convergence if @ covers
Y. If X and Y are topological spaces and T is continuous, then T* is
uniformly continuous relative to uniform convergence on compacta.

Note The continuity of certain other naturally induced maps has
been studied by Arens and Dugundji [2].

G UNIFORM EQUICONTINUITY

A family F of functions on a uniform space (XU) to a uniform space
(Y,0) is uniformly equicontinuous iff for each member 7 of U there is
U in  such that (f(x),f(y)) € ¥ whenever fe F and (x,7) e U.

(a) A family F is uniformly equicontinuous iff it is uniformly jointly
continuous, in the sense that the natural map of F X X into Y is uni-
formly continuous when the uniformity of F is that of uniform con-
vergence and F X X has the product uniformity,
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(b) The pointwise closure of a uniformly equicontinuous family is
uniformly equicontinuous.

(c) If X is compact and F is equicontinuous, then F is uniformly
equicontinuous.

Note The proofs of the foregoing propositions require no new
methods. A more detailed treatment of the subject is given in Arens
{2] and in Bourbaki [1].

H EXERCISE ON THE UNIFORMITY U|@Q

Let X be a set, let @ be a cover of X which is directed by D (that is,
for 4 and B in @ there is C in @ such that C D> 4 U B), let (Y,0) be a
uniform space, and let F be the family of functions on X to Y with
the uniformity U | @ of uniform convergence on members of @. Finally,
suppose that § is a net in F and that for each member 4 of @ there is
given a subnet {Se T4(m), m e E4} of § which converges to a member
s of F uniformly on 4. Give an explicit formula for a subnet of § which
converges to s relative to the topology of U | @.

I CONTINUITY OF EVALUATION

If F is a family of functions on a set X to a set Y, then X is mapped
by evaluation into a family G of functions on F to Y; explicitly, the
evaluation E(x) at a point ¥ of X is defined by E(x)(f) = f(x) for all
fin F. Let (X;u) and (Y,V) be uniform spaces and let G have the
uniformity of uniform convergence on members of a family @ of sub-
sets of F. Then the evaluation map E of X into G is continuous if
each member of @ is equicontinuous, and evaluation is uniformly con-
tinuous if each member of @ is uniformly equicontinuous.

J SUBSPACES, PRODUCTS, AND QUOTIENTS OF R-SPACES

(a) There are Tychonoff spaces which are not k-spaces, and since
every Tychonoff space can be embedded in a compact Hausdorff space
it follows that not every subspace of a k-space is a k-space. (See the
example 2.E.)

(b) The product of uncountably many copies of the real line is not
a k-space. (Let A be the subset of the product consisting of all members
% such that for some non-negative integer 7 each coordinate of ¥ is
equal to 7 except for a set of at most # indices, and on this set x is zero.
Then A is not closed, but Z N C is compact for each compact set C.)

(c) Let X be a k-space, let R be an equivalence relation on X, and
let X/R have the quotient topology. If X/R is a Hausdorff space,
then it is a k-space.
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K THE k-EXTENSION OF A TOPOLOGY

Let (X,3) be a Hausdorff space. The k-extension of 3 is defined to be
the family 3; of all subsets U of X such that U N C is open in C for
every compact set C (equivalently, A is 3;-closed iff 4 N C is 3-compact
for every 3-compact set C).

(a) If C is a 3-compact subset of X, then the relativization of J to
C is identical with that of 3;. Consequently a set is 3-compact iff it is
Ji-compact.

(b) The space (X,3x) is a k-space.

(c) A function on X is J-continuous iff it is 3-continuous on every
compact subset of X.

(d) The topology 3; is the largest topology which agrees with 3 on
compact sets (in the sense that the relativization to a compact set is
identical with the relativization of 3).

L CHARACTERIZATION OF EVEN CONTINUITY

A family F of functions on a topological space X to a topological
space Y is evenly continuous if and only if for each net {(fay¥n), 7 € D}
in F X X such that {x,, 7 € D} converges to x and {f,(x), # € D} con-
verges to y it is true that { f4(¥s), 7 € D} converges to y.

M CONTINUOUS CONVERGENCE

Let F be a family of continuous functions, each on a space X to a
space Y. A net {f», 7€ D} converges continuously to a member f of
F iff it is true that {f.(x.), 7eD} converges to f(x¥) whenever
{#a, 7n & D} is a net in X converging to a point x.

(a) A topology 3 for F is jointly continuous iff a net in F converges
continuously to a member f whenever it 3-converges to f.

(b) If a sequence in F converges to f relative to the compact open
topology, then it converges to f continuously.

(c) Suppose that X satisfies the first axiom of countability and that
F, with the compact open topology @, also satisfies this axiom. Then
€ is jointly continuous and a sequence in F C-converges to a member
S iff it converges continuously to f.

N THE ADJOINT OF A NORMED LINEAR SPACE

Let X be a real normed linear space and let X*, its adjoint, be the
space of all continuous real-valued linear functions on X. The norm
topology for X* is defined by: || || = sup {|f(*)|: || #|| = 1}. The
topology of pointwise convergence for X* is called the w*-topology.
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A subset F of X* is called w*-bounded iff for each member x of X the
set of all f(x) with fin F is bounded.

{a) The space X* is not complete relative to the w*-topology unless
every linear function on X is continuous. (See 3.W. Assume that
there are enough continuous linear functionals on X to distinguish
points—this fact is a consequence of the Hahn-Banach theorem, Banach
[1;271)

(b) Theorem (Alaoglu) The unit sphere in X* is compact relative
to the w*-topology. Hence each norm bounded w*-closed subset of
X* is w*-compact. (The unit sphere is a closed subset of the product
X{=[ %1l [ ]l1: x e X3.)

(c) The space X* with the w*-topology is paracompact and hence
topologically complete. (See 5.Y and 6.L.)

(d) If a subset F of X* is equicontinuous, then its w*-closure is equi-
continuous. If F is equicontinuous, then the w*-closure of F is w*-com-
pact. If the w*-closure of F is w*-compact, then F is w*-bounded.
(Observe that F is equicontinuous iff it is norm bounded.)

(e) If X is non-meager, and in particular if X is complete, then each
w*-bounded subset F of X* is equicontinuous. (Apply 6.U(b), or apply
6.U(a) to the set {x: | f(x) | < 1 for each f in F}.)

(f) The hypothesis “X is non-meager” cannot be omitted from (e).
(Consider the space X of all real sequences which are zero save on a
finite set, with the norm || » H = >{| % I: new}. If fo(x) = nx,, then
the sequence { f», 7 € w} converges to zero relative to the w*-topology.)

Note The principal results of this problem are more or less classical
and certain of them may clearly be extended to less restricted situations.
However, the equivalences resulting from (d) and (e) do not hold for
an arbitrary complete linear topological space. In connection with (f)
it is interesting to note that a w*-compact convex subset of the adjoint
of a normed linear space X is always equicontinuous; the proof of this
fact is not entirely trivial.

O TIETZE EXTENSION THEOREM *

(a) Let X be a normal topological space, let 4 be a closed subset,
and let f be a continuous function on A to the closed interval [—1,1].
Then f has a continuous extension g which carries X into [—1,1]. (Let
C = {x: f(x) £ —24} and let D = {x: f(x) = ¥4}. By Urysohn’s
lemma there is f; on X to [—14,14] such that f; is —14 on C and 14 on

* This theorem occurs here because the proof requires the fact that the uniform limit

of continuous functions is continuous. In all honesty I should admit that there are three
problems in earlier chapters where the same fact is used. o
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D. Evidently | f(x) — fi(*)| = % for all x in 4. The same sort of
argument may be applied to the function f — f1.)

Note Dugundji [1}, Dowker [3], and Hanner [1] have proved inter-
esting extensions of Tietze’s theorem.

P DENSITY LEMMA FOR LINEAR SUBSPACES OF C(X)

Let X be a topological space, let C(X) be the space of all
bounded continuous real-valued functions on X, and let C(X) have
the topology of uniform convergence (equivalently, norm C(X) by
Il£]] = sup {|£(x) |: e X}). A subset L of C(X) is said to have the
two-set property iff for closed disjoint subsets 4 and B of X and for
each closed interval [4,5] there is a member f of L such that f maps X
into [4,8], f is @ on A, and f is & on B. Each linear subspace of C(X)
which has the two-set property is dense in C(X). (If g is an arbitrary
member of C(X) and dist (g,L) > O choose 4 in L such that dist (g,L)
is approximately H g—h | If k = g — &, then dist (k,L) = dist (g,L)
which is approximately || k||. Show that there is a member f of L
such that lfk —fll = 2| £]|/3

Q THE SQUARE ROOT LEMMA FOR BANACH ALGEBRAS *

A real (or complex) Banach algebra is an algebra A over the real
(complex) numbers together with a norm such that A is a complete
normed linear space and multiplication satisfies the condition:
2y || = |l#]llly]l- (In terms of the usual operator norm the alge-
bra A4 can be described as a Banach space with an associative multi-
plication such that multiplication on the left by a fixed element x is a
linear operator of norm at most || #||.) Throughout the following, 4
is a fixed (real or complex) Banach algebra.

A function f on D to a normed linear space is absolutely summable
iff S{|| £(») ||: 7 e D} exists.

(a) Each function in A4 which is absolutely summable is summable.
If

{%n, n € w} and {ym, m € w} are absolutely summable, then

{%n¥m; (myn) e w X w} is absolutely summable, and

S{aninew}Y {ym: mew} = 3 {xpym: (mn) ew X w}.
(The usefulness of this result lies in the fact that the last sum may be
computed by grouping the summands in a more or less arbitrary fashion.
See 6.S.)

* This proposition is given here essentially as a preliminary to the Stone-Weierstrass
theorem. However, the lemma is of some importance in a more general situation and is
consequently stated for an arbitrary Banach algebra.
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(b) Let a, be the #-th binomial coefficient in the expansion of (1 — #)*
about # = 0. Then gy = 1, 4, is negative for # positive, 3" {a,: 7 € w}
=0,and 3 {a,4,_n:newandn < p}isl, —1andOforp = 0,p = 1,
and p > 1, respectively. (Alternatively, one may define the coeffi-
cients @, recursively so that the last stated relation is satisfied. After
verifying that 4, <O for # positive observe that the partial sums
2-{axt": n < p} are monotonically decreasing in # and bounded below
by (1 — #* for 0 < ¢ < 1—hence also for # = 1.)

(c) If the algebra has a unit # and if | ¥ — # || < 1, then there is an
element y in the algebra such that x = y2. Explicitly, y may be taken
to be 3 {a.(x — x)": n € w}, where a, is defined as in (b). (Here it is
assumed that % = ». The element y may also be written in the form:
y =2 {anl(x — %)* — u): » 2 1}. In this form it is clear that y is
the limit of polynomials in ¥ and that these polynomials may be taken
to be without constant coefficients.)

Note It is evident that a great deal more information can be ob-
tained by means of the methods sketched above (for example, if
|| #]] <1, then T{x": new} is the multiplicative inverse of # — x).
For a systematic treatment of Banach algebras see Loomis [2] and
Hille [1].

R THE STONE-WEIERSTRASS THEOREM

(a) Let X be a compact topological space, let C(X) be the algebra
of all continuous real-valued functions on X, and let C(X) have the
norm: || £|| = sup {| £(x) |: & X}. Then a subalgebra R of C(X) is
dense in C(X) if it has the fwo-point property: for distinct points x and
y of X and for each pair 4 and 4 of real numbers there is f in R such
that f(x) = @ and f(y) = &.

In particular R is dense if the constant functions belong to R and
R distinguishes points (in the sense that, if x 3 y, then f(x) # f(y) for
some f in R).

The proof is accomplished by a sequence of lemmas.

(i) Iffe R, then | f| belongs to the closure R~ of R, where | £l() =
| f(x)]. (Take the square root of /2 using 7.P.)

(i) If f and g belong to a subalgebra, then max [f,g] and min [f,g]
belong to its closure. (Here max [f,g](x) = max [f(x),g(x)].
Observe that max [4,8] = [(a + &) + I @ — 5|]/2 and min [a,5]
=[@+2—[a-2]/2)

(iii) If the subalgebra R has the two-point property, fe C(X), x € X,
and ¢ > 0, then there is g in R™ such that g(x) = f(x) and
£200) <f(») + eforall yin X. (Using compactness of X, take
the minimum of a suitably chosen finite family of functions.)



PROBLEMS 245

The theorem now follows from (iii) by taking the maximum of a
properly chosen finite family of functions.

(b) If X is a topological space and the family C(X) of all continuous
real-valued functions on X is given the topology of uniform convergence
on compacta, then each subalgebra of C(X) which has the two-point
property is dense in C(X).

Note This is unquestionably the most useful known result on C(X).
The corresponding theorem for complex-valued functions is false (con-
sider, for example, the functions which are continuous on the unit disk
in the plane and are analytic in its interior). See M. H. Stone [5] for
a more detailed discussion.

S srtructure or C(X)

Throughout this problem X, Y, and Z will be compact Hausdorff
spaces and C(X), C(Y), and C(Z) will be the algebras of all continuous
real-valued functions on X, Y, and Z, respectively. A real homomor-
phism of an elgebra is a homomorphism into the real numbers.

(a) For each continuous function F on X to Y let F* be the induced
map of C(Y) into C(X) defined by F*(k) = k°F for all 2 in C(Y).
Then

(i) F* is a homomorphism of C(Y) into C(X);
(i) F maps X onto Y iff F* is an isomorphism of C(Y) onto a sub-
algebra of C(X) which contains the unit;
(iti) F is one to one iff F* maps C(Y) onto C(X);
(iv) if G is a continuous map of Y into Z, then (G° F)* = F*o G*;
and
(v) if Fis a topological map of X onto Y, then (F™1)* = (F*)~,

(b) The topology of C(X) is entirely determined by the algebraic
operations. In detail: f = g iff f — g is the square of an element of
C(X), and || f|| = inf {k: —ku < f < ku} where u is the function
which is identically one. If ¢ is a real homomorphism of C(X), then
| 8(A) | = ||£]| and, unless ¢ is identically zero, () = 1.

(c) Let S be the set of all real homomorphisms ¢ of C(X) such that
¢(u) = 1, let S have the topology of pointwise convergence, and let E
be the evaluation map of X into § (that is, E(x)(f) = f(x)). Then E
is a topological map of X onto §. (Show that § is compact, use the
Stone-Weierstrass theorem to show that the evaluation map D of C(X)
into C(8) is an isomorphism of C(X) onto C(S), verify that E* = D™,
and use (a).)

(d) The space X is metrizable if and only if C(X) is separable. (This
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result is not needed for the rest of the problem; it is given simply as an
exercise in the use of (c).)

(e) If H is a homomorphism of C(Y) into C(X) which carries the
unit of C(Y) into the unit of C(X), then there is a unique continuous
map F of X into Y such that H = F*. (The homomorphism H in-
duces a map of the real homomorphisms on C(X) into real homomor-
phisms on C(Y).)

(f) Let R be a closed subalgebra of C(X) such that ueR, let F be
the map of X into X{f[X]: fe R} which is defined by F(x); = f(x),
and let Y be the range of F. Then R is the range of the induced iso-
morphism F* of C(Y) into C(X).

(g) Let I be a closed ideal in C(X) and let Z = {x: f(x) = O for all
[ in Il. Then I is the set of all members of C(X) which vanish iden-
tically on Z. (If Z is empty, then there is a member of J which vanishes
at no point and therefore has an inverse. Consider the subalgebra
C + I, where C is the set of constant functions. Because Z is non-
void the set C 4 I is closed, and (f) may be applied.)

Notes Quite a bit is known about the structure of C(X). Further
information and references are given in a review of the subject by
S. B. Myers [1]. See also Hewitt [2].

The line of attack outlined in the preceding problem is not the only
one possible—the fundamental facts (the Stone-Weierstrass theorem,
the Tychonoff product theorem, and the Tietze theorem) may be used
in various ways to yield the desired results. However, the pattern
used above is, in part, an example of a general method. To each mem-
ber of a certain collection of objects (in this case compact Hausdorff
spaces X) there is associated another object (in this case the Banach
algebras C(X)). Moreover, to each of a specified class of maps of the
original objects (continuous maps in the case at hand) there is assigned
an induced  map satisfying certain conditions (for example (iv) and (v)
of (a)). In this case the induced maps *“go in the direction opposite”
that of the inducing maps—such a correspondence is called contra-
variant. The assignment of the Stone-Cech compactification of a
Tychonoff space, together with the obvious induced maps, furnishes
an example where the induced map is in the same direction as the
original—a covariant correspondence.

This general method of investigation has been used most successfully
by Eilenberg and Steenrod in their axiomatic treatment of homology
theory [1]. The method itself was first studied by Eilenberg and Mac-
Lane. The study of objects and maps might be called the galactic
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theory, continuing the analogy whereby the study of a topological space
is called global.

T COMPACTIFICATION OF GROUPS; ALMOST PERIODIC FUNCTIONS

It is natural to attempt to map a topological group into a dense sub-
group of a compact topological group in somewhat the same way that
a Tychonoff space is embedded in its Stone-Cech compactification. A
topological embedding is usually impossible—a complete group is
closed in each Hausdorff group in which it is topologically and isomor-
phically embedded. However, a number of interesting results can be
obtained; the propositions that follow are intended to be an introduc-
tion to these. The development is motivated by the observation: If ¢
is a continuous homomorphism of a topological group G into a compact
group H and if g is a continuous real-valued function on H, then g*¢
has the property that the set of all left translates is totally bounded
(relative to the uniformity of uniform convergence).

Throughout it is assumed that G is a fixed topological group. For
each bounded real-valued function f on the group G and each x in G
the left translate of f by x, L.(f), is defined by: L(f)(y) = f(x7").
The space of bounded real functions is metrized by d4(f,g) =
sup {| f(*) — g() |: xe X} and the left ordit X; of a function f is de-
fined to be the closure, relative to the metric topology, of the set of all
left translates of f. A function f is called /ft almost periodic iff X is
compact.

Let A be the set of all continuous left almost perlodxc functions on
G. Then for each x in G the left translation L, maps A4 into 4. Topolo-
gize the space of all maps of 4 into 4 by pointwise convergence, and
let oG] be the closure relative to this topology of the set of left trans-
lations. .

(a) Lemma Let (X,d) be a compact metric space and let K be the
group (under composition) of all isometries of K into itself. Then the
topology (for K) of uniform convergence on X is the topology of the
metric: 4*(R,S) = sup {d(R(x),S(x)): x ¢ X} and this is identical with
the topology of pointwise convergence on X. The group K with this
topology is a compact topological group.

(b) ofG] is compact. (Observe that o[G] ¢ X{X;: f ed}.)

(c) Each member of a[G] is an isometry which carries each left orbit
X; onto itself. The natural map of «[G] into the product space
X{K;:fe A}, where K, is the group of isometries of Xy, is a topological
isomorphism. Hence o[G] is a topological group.
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(d) If A4 is given the topology of pointwise convergence on G and
a[G] (a subset of 44) has the resulting product topology, then the two
topologies for a[G] coincide. Hence R, — R in o[G] iff R,(f)(x) —
R(f)(x) for all fin A and all x in G.

(e) The map L of G into o[G] which carries a member x of G into L,
is a continuous homomorphism. The smallest topology for G which
makes L continuous is identical with the smallest topology which makes
each member f of A4 continuous. (afG] may also be described as the
completion, relative to the smallest uniformity which makes each f in
A uniformly continuous, of G modulo the subgroup of members of G
which are not distinguished from the identity by members of 4.)

(f) If g is a continuous real function on a[G], then g°Le 4. If
fe 4 and g is the function on oG] defined by g(R) = R~ (f)(¢), then
J =g°L and g is continuous. The family of continuous real functions
on a[G] is isometric (and isomorphic) to 4.

(g) If ¢ is a continuous homomorphism of G into a compact
topological group H, then there is a continuous homomorphism 6 of
a[G] into H such that ¢ = 0° L. (More generally, for H arbitrary ¢
induces a natural homomorphism ¢ of «[G] into o[H] such that 8 L =
L ¢. See the definition of a.)

There are several obvious corollaries to the preceding development;
for example, a function is left periodic iff it is right periodic, and the
class 4 is a Banach algebra which is isomorphic to the algebra of all
continuous functions on the compact group a[G].

(h) The term “almost periodic” is derived from an alternate descrip-
tion of the class 4. A member x of G is called a /lft e-period of a real
function £ iff | f(x™'y) — f(3)| < e for all y in G. Let 4, be the set
of all left e-periods of a continuous function f. Then the following are
equivalent:

(i) There is a homomorphism ¢ of G into a compact group H and a
continuous real-valued function 4 on H such that g = 4° ¢.
(ii) The set of left translates of f is totally bounded relative to the
uniformity of uniform convergence.
(iii) For each positive number e there is a finite subset B of G such
that G = BA,.

(The connection between (ii) and (iii) is clarified by observing that
| Lo(f)(2) — Ly(f)@) | < e for all z iff y ™ x is a left e-period.)

Notes The results above are due primarily to Weil [2]. The equiva-
lence of parts (ii) and (iii) of (h) is a classical theorem of Bochner.
Loomis [2] investigates almost periodic functions by showing first that
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the set of all left almost periodic functions on a group satisfies the con-
ditions which characterize a Banach algebra of functions, and then de-
fining a[G] to be the set of real homomorphisms of this Banach algebra.

Proposition (a) suggests the general problem of topologizing a homeo-
morphism group in such a fashion as to obtain a topological group.
For results in this direction and for references see Arens [3] and Dieu-
donné [4].
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ELEMENTARY SET THEORY

This appendix is devoted to elementary set theory. The ordi-
nal and cardinal numbers are constructed and the most com-
monly used theorems are proved. The non-negative integers are
defined and Peano’s postulates are proved as theorems.

A working knowledge of elementary logic is assumed, but ac-
quaintance with formal logic is not essential. However, an un-
derstanding of the nature of a mathematical system (in the tech-
nical sense) helps to clarify and motivate some of the discussion.
Tarski’s excellent exposition [1] describes such systems very lu-
cidly and is particularly recommended for general background.

This presentation of set theory is arranged so that it may be
translated without difficulty into a completely formal language.*
In order to facilitate either formal or informal treatment the in-
troductory material is split into two sections, the second of which
is essentially a precise restatement of part of the first. It may
be omitted without loss of continuity.

The system of axioms adopted is a variant of systems of Sko-
lem and of A. P. Morse and owes much to the Hilbert-Bernays-
von Neumann system as formulated by Gédel. The formulation
used here is designed to give quickly and naturally a foundation
for mathematics which is free from the more obvious paradoxes.

* That is, it is possible to write the theorems in terms of logical constants, logical vari-
ables, and the constants of the system, and the proofs may be derived from the axioms
by means of rules of inference. Of course, a foundation in formal logic is necessary for
this sort of development. 1 have used (essentially) Quine’s meta-axioms for logic [1] in

making this kind of presentation for a course.
250
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For this reason a finite axiom system is abandoned and the de-
velopment is based on eight axioms and one axiom scheme *
(that is, all statements of a certain prescribed form are accepted
as axioms).

It has been convenient to state as theorems many propositions
which are essentially preliminary to the desired results. This
clutters up the list of theorems, but it permits omission of many
proofs and abbreviation of others. Most of the devices used are
more or less evident from the statements of the definitions and
theorems.

THE CLASSIFICATION AXIOM SCHEME

Equality is always used in the sense of logical identity; ‘1 + 1
= 2’ is to mean that ‘1 + 1’ and ‘2’ are names of the same ob-
ject. Besides the usual axioms for equality an unrestricted sub-
stitution rule is assumed: in particular the result of changing a
theorem by replacing an object by its equal is again a theorem.

There are two primitive (undefined) constants besides ‘=" and
the other logical constants. The first of those is ‘e,” which is
read ‘is a member of” or ‘belongs to.” The second constant is de-
noted, rather strangely, ‘{--: ---}" and is read ‘the class of all
-+ such that ---.” It is the classifier. A remark on the use of
the term ‘class’ may clarify matters. The term does not appear
in any axiom, definition, or theorem, but the primary interpreta-
tion T of these statements is as assertions about classes (aggre-
gates, collections). Consequently the term ‘class’ is used in the
discussion to suggest this interpretation.

Lower case Latin letters are (logical) variables. The difference
between a constant and variable lies entirely in the substitution
rules. For example, the result of replacing a variable in a theo-
rem by another variable which does not occur in the theorem is

* Actually, an axiom scheme for definition is also assumed without explicit statement.
That is, statements of a certain form, which in particular involve one new constant and
are cither an equivalence or an identity, are accepted as definitions and are treated in
precisely the same fashion as theorems. The axiom scheme of definition is in the fortu-
nate position of being justifiable in the sense that, if the definitions conform with the
prescribed rules, then no new contradictions and no real enrichment of the theory results.

These results are due to S. Lésniewski.
t Presumably other interpretations are also possible.
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again a theorem, but there is no such substitution rule for con-
stants.

I Axiom of extent * For each x and each y it is true that x = y
if and only if for each 2, z € x when and only when z e y.

Thus two classes are identical iff every member of each is a
member of the other. We shall frequently omit ‘for each ¥’ or
‘for each ¥’ in the statement of a theorem or definition. If a
variable, for example ‘x,’ occurs and is not preceded by ‘for
each &” or ‘for some %’ it is understood that ‘for each x’ is to be
prefixed to the theorem or definition in question.

The first definition assigns a special name to those classes
which are themselves members of classes. The reason for this
dichotomy among classes is discussed a little later.

1 DEFINITION x is a set iff for some y, x € y.

The next task is to describe the use of the classifier. The first
blank in the classifier constant is to be occupied by a variable
and the second by a formula, for example {¥: x e y}. We accept
as an axiom the statement: # ¢ {x: x ey} iff # is a set and u e y.
More generally, each statement of the following form is supposed
to be an axiom: e {x: -+ x ---} iff uisasetand --- u ---.
Here ¢+ x -+’ is supposed to be a formula and -+« # ---” is
supposed to be the formula which is obtained from it by replac-
ing every occurrence of ‘¢’ by ‘u.” Thus ue {x: x ey and z e x}
iffuisasetand uey and zeu.

This axiom scheme is precisely the usual intuitive construc-
tion of classes except for the requirement ‘% is a set.” This re-
quirement is very evidently unnatural and is intuitively quite
undesirable. However, without it a contradiction may be con-
structed simply on the basis of the axiom of extent. (See theo-
rem 39 and the discussion preceding it.) This complication,
which necessitates a good bit of technical work on the existence
of sets, is simply the price paid to avoid obvious inconsistencies.
Less obvious inconsistencies may very possibly remain.

*One is tempted to make this the definition of equality, thus dispensing with one
axiom and with all logical presuppositions about equality. This is perfectly feasible.
However, there would be no unlimited substitution rule for equality and one would have
to assume as an axiom: If rezand y = », then yez
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THE CLASSIFICATION AXIOM SCHEME (Continued)

A precise statement of the classification axiom scheme requires
a description of formulae. It is agreed that: *

(a) The result of replacing ‘e’ and ‘8’ by variables is, for each
of the following, a formula.

a=p atef

(b) The result of replacing ‘e’ and ‘B’ by variables and ‘4’
and ‘B’ by formulae is, for each of the following, a formula

if 4, then B A iff B it is false that 4
A4 and B Aor B
for every @, 4  for some a, A4

Bela: A} {a:d}eB {a:A}e{B: B}

Formulae are constructed recursively, beginning with the
primitive formulae of (a) and proceeding via the construc-
tions permitted by (b).

II Classification axiom-scheme An axiom results if in the fol-

lowing ‘o’ and ‘B are replaced by variables, ‘A’ by a formula &

and ‘B’ by the formula obtained from @ by replacing each occurrence

of the variable which replaced o by the variable which replaced B:
For each B, Be {a: A} if and only if B is a set and B.

ELEMENTARY ALGEBRA OF CLASSES

The axioms already stated permit the deduction of a number
of theorems directly from logical results. The deduction is
straightforward and only an occasional proof is given.

2 DeriNiTION ¥ Uy = {2:2exo0rzey}.

3 DerINITION % Ny = {2:2ex and zey}.

* This circuitous sort of language is unfortunately necessary. Using the convention o
quotation marks for names, for example ‘Boston’ is the name of Boston, if @ is a formula
and ® is a formula, then ‘@ — ®’ is not a formula. For example, if @ is ‘* = »’ and
®is‘y = 2’, then‘‘x = y° — ‘y = 2"’ is not a formula. Formulae (for example ‘x = y’)
contain no quotation marks. Instead of ‘@ — ®’ we want to discuss the result of re-
placing ‘@’ by @ and ‘8’ by ® in ‘@ — B.” This sort of circumlocution can be avoided
by using Quine’s corner convention
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The class ¥ U y is the union of x and y, and x N y is the inter-
section of x and y.

4 THEOREM zex Uy ifandonly ifzexorzey,andzex Ny
if and only if ze x and 2z € y.

PrRoOF From the classification axiom zex U y iff zex or zey
and z is a set. But in view of the definition 1 of set,zex or z ey
and z is a set iff zex or zey. A similar argument proves the
corresponding result for intersection. ||

5 THEOREM x Ux = xandx N x = x.
6 THEOREM x Uy =y Uxandx Ny =y N x.

7 TueoreM* (x Uy) Uz=xU( Uz and (x Ny) Nz =
x N (y N2).

These theorems state that union and intersection are, in the
usual sense, commutative and associative operations. The dis-
tributive laws follow.

8 TueorEM x N(y U2)=(w Ny) U(x N2)andx U (y N2)
=(x Uy) N (x Ux2).

9 DEFINITION & ¢y if and only if it is false that x e y.
10 DeFINITION ~x = {y:y ¢ x}.

The class ~x is the complement of x.
11 THEOREM ~(~x) = x.

12 TueoreM (DeE MorGaN) ~(x U y) = (~x) N (~y) and
~(x Ny) = (~x) U (~y).

PROOF Only the first of the two statements will be proved. For
each z, z2e ~(x U y) iff 2 is a set and it is false that zex U y,
because of the classification axiom and the definition 10 of com-
plement. Using theorem 4, zex U y iff zex or zey. Conse-
quently, 2e ~(x U y) iff z is a set and z¢ » and z ¢ y; that is,
iff ze ~x and 2 e ~y. Using 4 again, ze ~(x U y) iff z & (~x)

* There would be no necessity for parentheses if the constant ‘ U’ occurred first in the

definition; that is, ‘ Uxy’ instead of ‘x U y.’ In this case the first part of the theorem
would read: U Uxyz = Ux Uyz.
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N (~y). Hence ~(x Uy) = (~«) N (~y) because of the ax-
iom of extent. |

13 DeFINITION x ~y = x N (~y).

The class ¥ ~ y is the difference of x and y, or the complement
of y relative to x.

14 TueorREM x N (y ~2) =(x Ny) ~=z

The proposition ‘¢ U (y ~2) = (x U y) ~ 2’ is unlikely, al-
though at this stage it is impossible to exhibit a counter example.
To be a little more precise, the negation of the proposition can-
not be proved on the basis of the axioms so far assumed; it is
possible to make a model for this initial part of the system such
that » ¢ y.for each x and each y (there are no sets). The negation
of the proposition can be proved on the basis of axioms which
will presently be assumed.

15 DEerFINITION 0 = {x: x # x}.
The class 0 is the void class, or zero.
16 THEOREM «x ¢0.
17 THEOREM O U x =xand0 N x = 0.
18 DEFINITION U = {x:x = x}.
The class U is the universe.
19 THEOREM «x e if and only if x is a set.
20 THEOREM x Uu =Uandx N U = x.
21 THEOREM ~0 = U gnd ~u = 0.
22 DerFiNiTION * (% = {2: for each y, if y e x, then ze y}.
23 DeriniTioN [Jx = {2: for some y, 2ey and y e x}.

The class [« is the intersection of the members of x. Note
that the members of [x are members of members of x and may
or may not belong to x. The class Ux is the #nion of the mem-

* A bound variable notation for the intersection of the members of a family is not

needed in this appendix, and consequently a notation is adopted which is simpler than
that used in the rest of the book.
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bers of x. Observe that a set 2 belongs to {)x (or to Ux) iff 2
belongs to every (respectively, to some) member of x.

24 THeoreM ()0 = U and |JO = 0.

PrRoOOF ze [0 iff z is a set and 2z belongs to each member of 0.
Since (theorem 16) there is no member of 0, z e (0 iff z is a set,
and by 19 and the axiom of extent [0 = 4. The second asser-
tion is also easy to prove. ||

25 DEFINITION & C y iff for each z, if e x, then 2 ¢ y.

A class x is a subclass of y, or is contained in y, or y contains x
iff ¥ ©y. It is absolutely essential that ‘c’ not be confused
with ‘e.” For example, 0 < O but it is false that 0 € 0.

26 THEOREM 0 C ¥ and x C U.

27 THEOREM x =y iffx Cyandy C x.

28 THEOREM Ifx Cyandy C 2, then x C z.

29 THEOREM x Cy iffx Uy = y.

30 THEOREM x Cyiffx Ny = x.

31 TueoreM If x C y, then Ux < Uy and Ny < Nx.
32 TucoreM Ifxey, then x < Uy and Ny < «.

The preceding definitions and theorems are used very fre-
quently—often without explicit reference.

EXISTENCE OF SETS

This section is concerned with the existence of sets and with
the initial steps in the construction of functions and other rela-
tions from the primitives of set theory.

III Axiom of subsets If x is a set there is a set y such that for
each 2, if 3 C %, then z e y.

33 TueorReEM If x is a set and z C x, then % is a set.

PROOF According to the axiom of subsets, if x is a set there is y
such that, if 2 C #, then 2 e y, and hence by the definition 1, z is
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a set. (Observe that this proof does not use the full strength of
the axiom of subsets since the argument does not require that
ybeaset) |

34 THEorREM 0 = NUuandu = Ju.

prOOF If x e [, then x is a set and since 0  « it follows from
33 that O is a set. Then 0 eu and each member of f)u belongs
to 0. It follows that [u has no members. Clearly (that is,
theorem 26) Ju < . If x e, then x is a set and by the axiom
of subsets there is a set y such that, if 2 © x, then z2ey. In par-
ticular x ey, and since y e it follows that xe |Ju. Conse-
quently 4 © {Ju and equality follows. |

35 THEOREM If x # 0, then (\x is a set.

PrOOF If x 7 0, then for some y, y e x. But y is a set and since
Nx < y by 32 it follows from 33 that (N« is a set. |1

36 DerFINITION 2° = {y:y C x}.
37 Tueorem «u = 2%,

ProoF Every member of 2V is a set and consequently belongs
toU. Each member of U is a set and is contained in U (theorem
26) and hence belongs to 2%, |

38 THEOREM If x is a set, then 2% is a set, and for each y,y C x
ifye2s.

It is interesting to notice that the existence of sets is not prov-
able on the basis of the axioms so far enunciated, but it is possi-
ble to prove that there is a class which is not a set. Letting R be
{x: x ¢ x}, by the classifier axiom Re R iff R¢ R and R is a set.
It follows that R is not a set. Observe that, if the classifier axiom
did not contain the “is a set’” qualification, then an outright con-
tradiction, Re R iff R ¢ R, would result. This is the Russell
paradox. A consequence of this argument is that U is not a set,
because R — «u and 33 applies. (The regularity axiom will im-
ply that R = ai; this axiom also yields a different proof that
is not a set.)

39 THEOREM AU is not a sel.
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40 DeriniTION {x} = {2:if ¥ e, then 2 = x}.

Singleton x is {x}.

This definition is an example of a technical device which is
very convenient. If x is a set, then {x} is a class whose only
member is x. However, if x is not a set, then {x} = U (these
statements are theorems 41 and 43). Actually, the primary in-
terest is in the case where x is a set, and for this case the same
result is given by the more natural definition {2: 2z = x}. How-
ever, it simplifies statements of results greatly if computations
are arranged so that U is the result of applying the computation
outside its pertinent domain.

41 THEOREM If x is a set, then, for each y, y € {x} iff y = «.
42 TueoreM If x is a set, then {x} is a set.

prooF If xis aset {¥x} € 2”and 2is a set. |

43 THEOREM {x} = U if and only if x is not a set.

PROOF If x is a set, then {x} is a set and consequently is not '
equal to u. If x is not a set, then x ¢u and {x} = U by the
definition. |

44 TueorEM If x is a set, then [Y{x} = x and {x} = »; if x
is not a set, then {x} = 0 and J{x} = .

prooF Use 34 and 41. |}
IV Axiom of union If x is @ set and y is a set s0 s x U y.
45 DeriniTioN  {xy} = {x} U {y}.

The class {xy} is an unordered pair.

46 THEOREM If x is a set and y is a set, then {xy} is a set and
ze {xy} iff z=x or 2 =y; {xy} = U if and only if x is not a
set or y is not a sel.

47 Tueorem If x and y are sets, then N{xy} =x Ny and
Ulxy} = » U y; if either x or y is not a set, then ({xy} = 0 and

Ulxy} = .
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ORDERED PAIRS: RELATIONS

This section is devoted to the properties of ordered pairs and
relations. The crucial property for ordered pairs is theorem 55:
if ¥ and y are sets, then (v,y) = (#,0) iff x =y and y = v.

48 DEeFINITION (%,y) = {{x}{xy}}.
The class (x,y) is an ordered pair.

49 THEOREM (x,y) is a set if and only if x is a set and y is a set;
if (x,y) is not a set, then (x,y) = U.

50 Turorem If x and y are sets, then J(x,y) = {xy}, N (%)
= {x}{ Un(x,}’) =4 nn(x,.?) =x, UUxy) =x Uy and
NU@y) =« N y.

If either x or y is not a set, then JN(%,y) = 0, NN (x,y) =,
UU(x’y) = U, and nU(x,}’) = 0.

51 DeriNITION 1% coord z = [)[)z.
52 DerinttioN 2™ coord z = (NU2) U ((UU2) ~ UN2).

These definitions will be used, with one exception, only in the
case where 2 is an orderéd pair. The first coordinate of z is 1%
coord z and the second coordinate of z is 2 coord z.

53 THEOREM 2™ coord U = .

54 THEOREM If x and y are sets 1** coord (x,y) = x and 2™
coord (%,y) = y. If either of x and y is not a set, then 1** coord
(%,5) = U and 2™ coord (x,y) = .

PROOF If x and y are sets, then the equality for 1* coord is im-
mediate from 50 and 51. The equality for 2° coord reduces to
showing that y = (x N y) U ((x U y) ~«), by 50 and 52. It
is straightforward to see that (x U y) ~x = y ~ x and by the
distributivelaw (y Nx) U(y N ~x)isy N (x U ~x) =y N
= y. If either x or y is not a set, then, using 50 it is easy to
compute 1** coord (x,y) and 2™ coord (x,y). |

55 THeoREM If x and y are sets and (x,y) = (), then x = u
andy = v,
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56 DEFINITION 7 is a relation if and only if for each member z of
r there is x and y such that z = (x,y).

A relation is a class whose members are ordered pairs.

57 DEFINITION 7°s = {u: for some x, some y and some 2, # =
(%,2), (%) €5 and (3,2) er}.

The class 7+ s is the composition of r and s.

To avoid excessive notation we agree that {(x,2): ---} is to be
identical with {«: for some x, some 2, u = (x,2) and ---}. Thus
res = {(x,2): for some y, (x,y) e s and (y,2) er}.

58 THEOREM (res)et =re(sed).

50 THEOREM re(s UH) = (res) U(redandr-(s N1 < (res)
N (re2).

60 DeriNiTION 77! = {(x,7): (y,%) er}.
If r is a relation ! is the relation inverse to r.
61 TueorREM ()l =r.
62 THEOREM (res)™! = s7lep™1,
FUNCTIONS

Intuitively, a function is to be identical with the class of or-
dered pairs which is its graph. All functions are single-valued,
and consequently two distinct ordered pairs belonging to a func-
tion must have different first coordinates.

63 DEFINITION f is a function if and only if f is a relation and
for each x, each y, each z, if (x,y) ef and (x,2) ef, theny = 2.

64 TueoreM If fis a function and g is a function so is fo g.
65 DEeriNITION domain f = {«: for some y, (x,y) ef}.

66 DEeriNITION range f = {y: for some x, (x,y) ef}.

67 THEOREM domain U = U and range U = U.

prooF If xea, then (x,0) and (0,x) belong to 4 and hence x
belongs to domain W and range u. |
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68 DeriNITION f(x) = {y: (x,y) ef}.

Hence z e f(x) if z belongs to the second coordinate of each
member of f whose first coordinate is x.

The class f(x) is the value of f at x or the image of x under f.
It is to be noticed that if x is a subset of domain f, then f(x) is
not {y: for some 2, ze x and y = f(2)}.

69 TueoreM If x ¢ domain £, then f(x) = U; if x e domain f, then
S(x) et
PROOF If x ¢ domain f, then {y: (x,y) ef} = 0, and f(x) =u
(theorem 24). If x e domain f, then {y: (x,y) ef} # 0 and (theo-
rem 35) f(x) is a set. |}

The foregoing theorem does not require that f be a function.
70 TueorEM If f is a function, then f = {(x,y): y = f(x)}.
71 TueorEM * If f and g are functions, then f = g if and only if
Sf(x) = g(x) for each x.

The two following axioms t further delineate the class of all
sets.

V Axiom of substitution If f is a function and domain f is a
set, then range f is a set.

VI Axiom of amalgamation If x is a set so is [Jx.

72 DerFInNITION % X y = {(#,0): uex and vey}.

The class ¥ X y is the cartesian product of x and y.
73 THEOREM If u and y are sets so is {u} X y.

ProOF Clearly one can construct a function (namely, {(w,z):
wey and 2 = (u,w)}) whose domain is y and whose range is
{u} X y. Then apply the axiom of substitution. ||

* This theorem would not be true if /(x) had been defined to be the union of the second
coordinates of the members of f with first coordinate x. For then, if y €U and y¢ domain
fythen f(y) = 0,and,ifg = f U {(»,0)}, then g(x) = f(x) for each x and fis not equal to z.

1 These two axioms may be replaced by the single axiom: i: f is a function and domain
[ is a set, then U range is a set. (In the bound variable notation used earlier in the
book this can be stated very naturally: if 4 is a set and x(4) is a set for each 4 in d, then
U {x(2): aed} is a set.) To obtain V and VI from the above one may proceed roughly
as follows: For V, given f make a new function whose members are of the form (x,{ f(x)}).
For VI, given x consider the function whose members are of the form (#,4) with % in x.
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74 Turorem If x and y are sets s0 is % X y.

PrROOF Let f be the function such that domain f = x and f(u) =
{u} X y for u in x. (There is a unique function of this sort;
namely, f = {(#,2): uex and z = {u} X y}.) Because of the
axiom of substitution, range f is a set. By a direct computation
range f = {z: for some u,u e x andz = {u} X y}. Consequently
U range f, which by the axiom of amalgamation is a set, is
x Xy 1

75 THEOREM If f is a function and domain f is a set, then f is a
set.

prooF For f < (domain f) X (range f). 1

76 DEFINITION y* = {f:fis afunction, domain f = x and range
fcot
77 TueorEM If x and y are sets so is y*.

prooF If fey®, then f C x Xy, which is a set, and hence
fe2°> (theorem 38) and 27 is a set. Since y* < 2 it fol-
lows from the axiom of subsets that y* is a set. ||

For convenience, three more definitions are made.

78 DEFINITION f is on x if and only if f is a function and x =
domain f.

79 DeFINITION f is to y if and only zf f is a function and range
fcy.
80 DEFINITION fis ontoy if and only if f is a function and range
f=3

WELL ORDERING

Many of the results of this section are not needed in the de-
velopment of the integers, ‘ordinals, and cardinals which follows.
They are included here because they are interesting in them-
selves and because the methods are simplified forms of the con-
structions used later. S

Since the basic constructive results have now been proved we’
are able to assume a somewhat less pedestrian pace.
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81 DEerINITION X7y if and only if (x,y) er.
If x r y, then x is r-related to y or x r-precedes y.

82 DEFINITION r connects x if and only if when u and v belong
to x either urvorvruorv = u.

83 DEFINITION r is transitive in x if and only if, when u, v, and
w are members of x and urv and vrw, then urw.

If r is transitive in x, then r orders x. The terminology ‘u r-
precedes ¢’ is especially suggestive if # and v belong to » and
r orders x.

84 DEFINITION 7 is asymmetric in x if and only if, when u and v
are members of x and u r v, then it is not true that vr u.

Restated, if « e x and v e x and « r-precedes v, then v does not
r-precede «.

85 DEFINITION x %y :if and only if it is false that x = y.

86 DEFINITION 2 is an r-first member of x if and only if zex
and if y € x, then it is false that y r 2.

87 DEFINITION 7 well-orders x if and only if r connects x and if
y Cxandy #= 0, then there is an r-first member of y.

88 THEOREM If r well-orders x, then r is transitive in x and r is
asymmetric in x.

proOF If uex,vex, urv, and vr u, then {uv}  x and conse-
quently there is an r-first member z of {«v}. Either 2 =« or
z = v, and hence it is either false that v7 # or that #rv. This
contradiction shows that r is asymmetric in ». If r fails to be
transitive in x, then for some members %, v, and w of x it is true
that #rv, vr w, and wr u, since r connects x. But then {#} U
{v} U {w} fails to have an r-first member. ||

89 DEFINITION y is an r-section of x if and only if y Cx, r
well-orders x, and for each u and v such that uex,vey, and urv
it is true that u e y.

That is, a subset y of x is an r-section of x iff » well-orders
and no member of ¥ ~ y r-precedes a member of y.



264 APPENDIX

90 TureoreEM If n # 0 and each member of n is an r-section of
x, then Un and \n are r-sections of .

91 TuroreEM If y is an r-section of x and y 7% %, then y =
{u: u e x and u r v} for some v in x.

proor If y is an r-section of x and y 5 «, then there is an r-
first member v of x ~y. If # ex and ur v, then, since v is the

- r-first member of x ~y, #u ¢ x ~y and hence # ey. Therefore
{u: uex and urv) cy. On the other hand, if # ey, then since
v¢y and y is an r-section, it is false that vr % and hence it is
true that #rv. The required equality follows. ||

92 TuroreMm If x and y are r-sections of z, then x Cy ory C x.

03 DEFINITION * f is r-s order preserving if and only if f is a
function, r well-orders domain f, s well-orders range f, and f(u) s f(v)
whenever u and v are members of domain f such that urv.

94 TurorEM If x is an r-section of y and f is an r-r order-pre-
serving function on x to y, then for each u in x it is false that f(u) r u.

PROOF It must be shown that {u: u € x and f(u) r u} is void. If
not there is an r-first member v of this class. Then f(v) r v, and if
urv, then urf(u) or u = f(u). Since f(v) r v, then f(o) rf(f(v))
or f(v) = f(f(v)), but since f is r— order preserving f(f(v)) r f(0)
and this is a contradiction.

Thus an r—r order-preserving function on an r-section cannot
map a member of its domain into an r-predecessor.

A proof such as that of theorem 94 which depends on consider-
ing the r-first element for which the theorem fails is a proof 4y
induction.

95 DerINITION f is a 1-1 function if and only if both f and f~1
are functions.

This is the equivalent to the statement that f is a function and
if x and y are distinct members of domain f, then f(x) # fO).

06 TureorEM If f is r-s order preserving, then f is a 1-1 function
and f! is s-r order preserving.

* In this appendix there is no need to consider order-preserving functions (as in chap-
ter 0) whose domain and range are not well-ordered. For the sake of simplicity the earlier
terminology is modified.
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prooF If f(u) = f(v), then it is impossible that #rv or vru,
for in this case f(«) s f(v) or f(v) sf(u). Hence u = v and f is
1-1. If f(«) s f(v), then u 5 v, and if v r u, then f(v) 5 f(«), which

is a contradiction. Therefore f~! is s-r order preserving. |

97 TueoREM If f and g are r-s order preserving, domain f and
domain g are r-sections of x and range f and range g are s-sections

of y, then f C gor g C f.

PROOF By theorem 92 either domain f C domain g or domain
g © domain f, and the theorem will follow if it is proved that
f(u) = g(u) for all u belonging to the domain of both f and g.
If the class {z: ze (domain f) N (domain g) and g(3) # f(2)} 1s
not empty there is an r-first member ». Then f(«) # g(«) and
it may be supposed that f(«) s g(#). Since range g is an s-section,
g(v) = f(u) for some v in x and vr u because g™ is order pre-
serving. But « is the r-first point at which the functions differ,
and therefore f(v) = g(v) = f(x) which is a contradiction. ||

98 DEFINITION f is r-s order preserving in x and y if and only if
r well-orders x, s well-orders y, f is r-s order preserving, domain f
is an r-section of x, and range f is an s-section of y.

According to theorem 97, if f and g are both r-s order preserv-
inginx and y, thenf Cgorg C f.

99 THEOREM If r well-orders x and s well-orders y, then there is
a function f which is r-s order preserving in x and y such that either
domain f = x or range f = y.

PROOF Let f = {(u,0): u € x, and for some function g which is r-s
order preserving in x and y, u € domain g and (u,0) e g}. Because
of the preceding theorem, f is a function, and it is easy to see
that its domain is an r-section of x and its range is an s-section
of y. Hence f is r-s order preserving in x¥ and y and it remains
to show that either domain f = x or range f = y. If not, there
is an r-first member # of x ~ (domain f) and an s-first member
v of y ~ (range f), and the function f U {(«,0)} is easily seen to
be r-s order preserving in ¥ and y. Then (#,v) ef by definition
of f and hence « e domain f. This is a contradiction. |

In one case it is possible to state which of the alternatives in
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the conclusion of the preceding theorem occurs, for if x is a set
and y is not, then it is impossible that range f = y because of the
axiom of substitution.

100 TureoreM If r well-orders x, s well-orders y, x is a set, and
y is not a set, then there is a unique r-s order-preserving function in
x and y whose domain is x.

ORDINALS

In this section the ordinal numbers are defined and the funda-
mental properties established. Another axiom is assumed be-
fore beginning the discussion of ordinals.

It is a priori possible that there are classes ¥ and y such that
x is the only member of y and y is the only member of x. More
generally, it is possible that there is a class z whose members
exist by taking in each other’s laundry, in the sense that every
member of z consists of members of z. The following axiom ex-
plicitly denies this possibility by requiring that each non-void
class z have at least one member whose elements do not belong
to 2.

VII Axiom of regularity If x = O there is a member y of x such
that x Ny = 0.

101 THEOREM x ¢ x.

PROOF If x £ %, then x is a non-void set and is the only member
of {x}. By the axiom of regularity there is y in {x} such that
y N {x} =0, and necessarily y = x. But then yey N {x},
which is a contradiction. |

102 TuEOREM It is false that x ey and y € x.

PrRoOF If xey and y ex, then both ¥ and y are sets and are
the only members of {2:2 = x or z = y}. Applying the axiom of
regularity to the latter class leads to a contradiction, just as in
the proof of the preceding theorem. |

Of course, this theorem may be generalized to more than two
sets. The axiom of regularity actually implies another strong
result, intuitively stated as follows: it is impossible that there be
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a sequence such that xa1 €%, for each n. A precise statement
of the result must be deferred.

103 DeriniTiIoN E = {(x,7): x ey}.

The class E is the e-relation. Notice that if x e y and y is not
a set, then (x,y) = U, by theorem 49, and (x,y) ¢ E.

104 TueoreM E is not a sel.

prooF If Eea, then {E} e and (E, {E}) e E. Recall that
(x,y) = {{*x}{xy}} and, if (x,y) is a set, z & (x,y) iff z = {x} or
z = {xy}. Consequently Ee {E} e {{E}{E{E}}} e E. But if
aebecea, then, upon application of the axiom of regularity to
{¥:% = a or x = b or x = ¢}, a contradiction results. [

An informal discussion of the structure of the first few ordinals
may be conceptually enlightening.* The first ordinal will be 0,
the next 1 = 0 U {0}, the next 2 = 1 U {1}, and the next 3 =
2 U {2}. Observe 0 is the only member of 1, that 0 and 1 are
the only members of 2, and 0, 1, and 2 are the only members of
3. Each ordinal preceding 3 is not only a member but also a
subset of 3. Ordinals are defined so that this very special sort
of structure results.

105 DEFINITION T & is full iff each member of % is a subset of x.

In other words, » is full iff each member of a member of x is
a member of x.
The following definition is due to R. M. Robinson.

106 DEFINITION « is an ordinal if and only if E connects x and

x is full.

That is, given two members of x, one is a member of the other,
and each member of a member of x belongs to x.

107 TueoreMm If x is an ordinal E well-orders x.

* The discussion is not precisely accurate, in that it has not been proved that 0 is a set;
in fact, with the axioms at our disposal this is not provable. The existence of sets (and
hence the fact that 0 is a set) results from the axiom of infinity, which is stated at the
beginning of the next section.

$ The term ‘complete’ is usually used instead of ‘full,’ but ‘complete’ has been used.
earlier in a different sense.
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PROOF If # and v are members of » and # E o, then (theorem
102) it is false that v E # and hence E is asymmetnc inx., Ify
is a non-void subset of x, then by the axiom of regularity there
is # in y such that # N y = 0. Then no member of y belongs to
# and « is the E-first member of y. |

108 THEOREM If x is an ordinal, y C x, y # %, and y is full,
then y e x.

PrOOF If # Ev and v E y, then # E y because y is full. Hence
¥ is an E-section of x. Consequently there is a member v of x
such that y = {u: u e x and u E v} by theorem 91. Since every
member of v is a member of ¥,y = {u:uev} andy = 0. |

109 TueorREM If x is an ordinal and y is an ordinal, then x C y
ory C x.

PROOF The class x N y is full and by the preceding theorem
either x Ny =xorx Nyex. Inthefirstcasex cy. Ifx N
yex,thenx N y¢ysinceinthiscasex Ny ¢ ¥ Ny. Sincex N
y ¢y the preceding theorem implies that ¥ N y = y and therefore
yCx |

110 TueorEM If x is an ordinal and y is an ordinal, then x ey
oryexorx=y.

111 TueoreM If x is an ordinal and y € x, then y is an ordinal.

PrROOF It is clear that £ connects y because « is full and E con-
nects x. The relation E is transitive on y because E well-orders
x and y C . Consequently if # Ev and v E y, then « Ey and
hence y is full. |}

112 DerFiNiTION R = {x: x is an ordinal}.
113 THEOREM * R is an ordinal and R is not a set.

PROOF The last two theorems show that E connects R and that
R is full; hence R is an ordinal. If R were a set, then R ¢ R and
this is impossible. |

In view of theorem 110, R is the only ordinal which is not a set.

* This theorem is essentially the statement of the Burali-Forti paradox—nhistorically
the first of the paradoxes of intuitive set theory.
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114 THEOREM Each E-section of R is an ordinal.

prooF If an E-section x of R is not equal to R, then by 91 there
is a member v of R such that ¥ = {«: ue R and uev}. Since
each member of v is an ordinal, x = {#: zev} =v. ||

115 DEFINITION X is an ordinal number if and only if x e R.
116 DerintTiON X < y #f and only if x e y.

117 DeFINITION x S y if and only if x ey or x = y.

118 THEOREM If x and y are ordinals, then x < y if and only if
x Cy.

119 THEOREM If x is an ordinal, then x = {y:y e Rand y < x}.
120 TueoreM If x C R, then Ux is an ordinal.

prooF That E connects [Jx follows from theorems 110 and 111,
and that U« is full follows from the fact that members of x are
full. 1

It is not hard to see that if x is a subset of R, then the ordinal
U is the first ordinal which is greater than or equal to each
member of x, and that Jx is a set iff » is a set. These results
will not be needed, however.

121 TueEoREM If x € R and x # 0, then [\ e x.
Indeed, in this case ()« is the E-first member of x.
122 DerintTioN &+ 1 = x U {x}.

123 TueorEM If xeR, then x + 1 is the E-first member of
{y:yeR and x < y}.

PROOF It is easy to verify that E connects ¥ + 1 and thatx + 1
is full and is hence an ordinal. If there is # such that x < # and
u < x + 1, then since x is a set and # ex U {x} either x e x and
xeuor u=x and ¥ e u. Both of these conclusions are impos-

sible (theorems 101 and 102) and the desired conclusion is es-
tablished. |

124 TueoreM IfxeR, then U(x + 1) = x.
125 DErFINITION f| X% = f N (x X ).
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This definition will be used only in case f is a relation. In this
case f| x is a relation and is called the restriction of f to x.

126 TuEOREM If f is a function, f | x is a function whose domain
is x N (domain f) and (f|x)(y) = f(y) for each y in domain
flx.

The final theorem on ordinals asserts that (intuitively) it is
possible to define a function on an ordinal so that its value at
any member of its domain is given by applying a predetermined
rule to the earlier values of the function. A little more precisely,
given g it is possible to find a unique function f on an ordinal
such that f(x) = g(f| ») for each ordinal number ». The value
Sf(x) is then completely determined by g and the values of f at
ordinal numbers preceding ¥. Application of this theorem is de-
Sining a function by transfinite induction. The proof is similar to
that of theorem 99 and the same sort of preliminary lemma is
needed.

127 THEOREM Let f be a function such that domain f is an ordinal
and f(u) = g(f| u) for u in domain f. If k is also a function such
that domain 4 is an ordinal and h(u) = g(h| u) for u in domain 4,
then h C for f C h.

PROOF Since both domain f and domain h are ordinals it may be
assumed that domain f C domain % (either this or the reverse
inclusion follows from 109) and it remains to be proved that
f(u) = h(u) for u in domain f. Assuming the contrary, let # be
the E-first member of domain f such that f(u) # A(u). Then
Sf(v) = A(v) for each ordinal v preceding # and hence f | # = 4| u.
Then f(u) = g(f| 4) = A(x) and this is a contradiction. ||

128 Tueorem For each g there is a unique function [ such that
domain f is an ordinal and f(x) = g(f| x) for each ordinal number
x.

PROOF Let f = {(#,0): u e R and there is a function h such that
domain % is an ordinal, h(z) = g(h|z) for 2z in domain % and
(u,0) e 2}. From the preceding theorem it follows that f is a
function, and it is evident that the domain of f is an E-section
of R and is hence an ordinal. Moreover, if 4 is a function on an
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ordinal such that A(z) = g(k|2) for z in domain k, then A C f,
and if z e domain k, then f(z) = g(f|2). ‘
Finally, suppose ¥ € R ~ (domain f). Then f(x) = u by theo-
rem 69 and since domain f is a set f is a set (theorem 75). If
g(f| %) = g(f) =<, then the equality f(») = g(f | x) follows.
Otherwise g(f) is a set (theorem 69 again). In this case if y1s
the E-first member of R ~ (domain f) and & = f U {(3,g(/)},
then the domain of 4 is an ordinal and A(z) = g(%]|2) for 2 in
domain h. Hence & C f and y € domain f which is a contradic-
tion. Consequently, g(f) = U and the theorem is proved. |
The mechanics of this theorem deserves a little comment. If
domain f is not R, then g(f) = U and f(x) = U for each ordinal
number x such that domain f < x. 1If g(0) =, then f = 0.

INTEGERS*

In this section the integers are defined and Peano’s postulates
are derived as theorems. The real numbers may be constructed
from the integers (see Landau [1]) by use of these postulates and
the two facts: the class of integers is a set (theorem 138), and it
is possible to define a function on the integers by induction (theo-
rem 0.13; this fact may also be derived as a corollary to 128).
Another axiom is needed.

VIII Axiom of infinity For some y, y is a set, 0ey and x U {x}
ey whenever x €Y.

In particular O is a set because 0 is contained in a set.

120 DEFINITION x is an integer if and only if x is an ordinal and
E~! well-orders x.

130 DEFINITION & is an E-last member of y if and only if x is
an E7_first member of y.

131 DEFINITION « = {x: x is an integer}.
132 TuEOREM A member of an integer is an integer.

prOOF A member of an integer x is an ordinal and is a subset of
x and « is well-ordered by E7%. |

* Non-negative integers.
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133 TueorEM If ye R and x is an E-last member of y, then
y=x+41

PrRoOF By theorem 123, x + 1 is the E-first member of {z:
2eR and x < z}. Then x +1 = y because y e R and x < y.
Since « is the E-last member of y and ¥ < x + 1, it is false that
x+1<y |

134 THEOREM If xew, then x + 1 e w.
135 THEOREM Oew and if x ew, then 0 % x + 1.
That is, 0 is the successor of no integer.

136 TuroreM If x and y are members of wand x +1 = y + 1,
then x = y.

PROOF By theorem 124, if x e R, then J(x + 1) = ». |
The following theorem is the principle of mathematical induc-
tion.

137 THEOREM If ¥ Cw, Oex and u + 1 ex whenever uex,
then x = w.

PROOF If x # wlet y be the E-first member of w ~ , and notice
that y % 0. Sincey cy 4+ 1 and y + 1 is an integer there is an
E-last member # of y, and clearly uex. Then y = # 41 by
theorem 133 and hence y e ». This is a contradiction. ||

Theorems 134, 135, 136, and 137 are Peano’s axioms for inte-
gers. The next theorem implies that w is a set.

138 THEOREM w ¢ R.

PrROOF By the axiom of infinity there is a set y such that Oey
and, if ¥ ey, then x + 1 ey. By mathematical induction (that
is, the previous theorem) w N y = w, and hence w is a set because
w Cy. Since w consists of ordinal numbers, E connects w and
w is full because each member of an integer is an integer. |

THE CHOICE AXIOM

We now state the last axiom and derive two powerful conse-
quences.
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139 DEFINITION ¢ is a choice function if and only if ¢ is a func-
tion and c(x) € x for each member x of domain c.

Intuitively, a choice function is a simultaneous selection of a
member from each set belonging to domain .

The following is a strong form of Zermelo’s postulate or the
axiom of choice.

IX Axiom of choice There is a choice function ¢ whose domain is
a ~ {0}.

The function ¢ selects a member from every non-void set.

140 THEOREM If x is a set there is a 1-1 function whose range is
x and whose domain is an ordinal number.

prooF The plan of proof is to construct, by transfinite induc-
tion, a function satisfying the requirements of the theorem. Let
g be the function such that g(#) = c(x ~ range %) for each set
h, where ¢ is a choice function satisfying the axiom of choice.
Applying theorem 128 there is a function f such that domain f is
an ordinal and f(x) = g(f| #) for each ordinal number ». Then
F(#) = c(x ~ range (f| #)), and if u e domain f, then f(u) e x ~
range (f|u). Now f-is 1-1, for f(v) = f(u) and u <, then
f(v) erange (f|v), which contradicts the fact that f(v) ex ~
range (f|v). Since f is 1-1 it is impossible that domain f = R,
for in this case f~! is a function whose domain is a subclass of x
and is hence a set, then range f~! is a set because of the axiom
of substitution and R is not a set. Consequently domain f € R.
Because domain f ¢ domain f, f (domain f) ="q and therefore
¢ (x ~range f) = u. Since the domain of ¢ is U ~ {0}, » ~
range f = 0. It follows immediately that f is a function satisfy-
ing the requirements of the theorem. |

141 DEFINITION # is a nest if and only if, whenever x and y are
members of n, then x Cy or y C x.

The next result is a lemma which is needed for the proof of
theorem 143.

142 TueoREM If n is a nest and each member of n is a nest, then
Un is a nest.
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ProOF If xem, men, yep, and p en, then either m c p or
p C m because 7 is a nest. Suppose m < p. Then xep and
yepandsincepisanest,x Cyory C x. |

The following theorem is the Hausdorff maximal principle. It
asserts the existence of a maximal nest in any set. The proof is
closely related to that of 140.

143 THEOREM If x is a set there is a nest n such that n C x and
if misamnest,m Cx,and n C m, then m = n.

PROOF The proof is by transfinite induction; intuitively we se-
lect a nest and then a larger nest, and “keep going,” knowing
that, because R is not a set, the set of all nests which are con-
tained in x will be exhausted before the class R of ordinals. For
each 4 let g(h) = c({m: m is a nest, m C x and for p in range A,
P Cm and p # m}), where ¢ is a choice function satisfying the
axiom of choice. (Intuitively select g(4) to be a nest in x con-
taining properly each previously selected nest.) By theorem 128
there is a function f such that domain f is an ordinal and f(x) =
g(f| u) for each ordinal number ». From the definition of g it
follows that, if u e domain f, then f(u) < x and f(x) is a nest,
and if # and v are members of domain f and u < v, then f(u) <
f(v) and f(u) # f(v). Consequently f is 1-1, /= is a function
and, since x is a set, domain fe R. Since f(domain f) = a,
£(f) = u; consequently there is no nest » which is contained in
x» and properly contains each member of ramge f. Finally,
U(range f) is a nest which contains every member of range f,
and consequently there is no nest m which is contained in x and

properly contains |J(range f). |

CARDINAL NUMBERS

In this section cardinal numbers are defined and the most
commonly used properties are proved. The proofs lean heavily
on the earlier results.

144 DEFINITION & =y if and only if there is a 1-1 function f
with domain f = x and range f = y.

If x =~ y, then « is equivalent to y, or x and y are equipollent.
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145 THEOREM x = Xx.
146 TueorEM If x =~ y, theny = x.
147 THEOREM Ifx =~y andy = 3, then x = 2.

148 DEFINITION & is a cardinal number if and only if x is an
ordinal number and, if y € R and y < x, then it is false that x = y.

That is, a cardinal number is an ordinal number which is not
equivalent to any smaller ordinal.

149 DeriNiTION C = {x: x is a cardinal number}.
150 TueoreEM E well-orders C.
151 DerINITION P = {(%,9): ¥ =y and y e C}.

The class P consists of all pairs (x,y) such that x is a set and
y is a cardinal number equivalent to x. For each set x the cardi-
nal number P(x) is the power of x or the cardinal of x.

The basic facts needed for the following sequence of results
have already been demonstrated.

152 THEOREM P is a function, domain P = U and range P = C.
ProOoF Theorem 140 is the essential step. |
153 THEOREM If x is a set, then P(x) = x.

154 TuEOREM If x and y are sets, then x =~y if and only if
P(x) = P(y).

155 TueorEM P(P(x)) = P(x).

prooF If x is not a set, then P(x) = u by theorem 69 and
P)=a |

156 THEOREM x & C if and only if x is a set and P(x) = x.

157 THEOREM IfyeR and x C y, then P(x) < y.

prooF By theorem 99 there is a 1-1 function f which is E-E order
preserving in x and R, such that domain f = x or range f = R.
Since x is a set and R is not, domain f = x. By theorem 94,
fl#) = u for u in x and consequently x is equivalent to an ordi-
nal less than or equal to y. | ' S
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158 THEOREM If y is a set and x C y, then P(x) < P(y).

The following is the Schroeder-Bernstein theorem. It can be
proved directly without the axiom of choice (theorem 0.20).

159 THEOREM If x and y are sets, u Cx, vCy, ¥ =~ v, and
y = u,thenx =~ y.

prooF Using 158, P(x) = P(v) £ P(y) = P(u) S P(x). ]

160 TueorEM If f is a function and f is a set, then P(range f)
< P(domain f).

prooF If fis on x onto y and ¢ is a choice function satisfying
the choice axiom there is a function g such that domain g = y
and g(v) = c({u:v = f(u)}) forviny. Consequently y is equiva-
lent to a subset of x. |

The following classic theorem is due to Cantor.

161 THEOREM If x is a set, then P(x) < P(2°).

PrROOF The function, whose domain is ¥ and whose value at a
member # of x is {u}, is 1-1 and hence x is equivalent to a sub-
set of 2% and P(x) < P(2%). If P(x) = P(2%) there is a 1-1 func-
tion f whose domain is x and range is 2°. Then there is a mem-
ber « of x such that f(u) = {v: vex and v ¢ f(v)}. But thenue
S(u) iff u ¢ f(u), which is a contradiction. |

The foregoing is structurally similar to that of the Russell
paradox.

162 Tueorem C is not a set.

PROOF If C is a set, then {JC is a set, P(2Y¢) e C and hence
PQ2Y%) ¢ UC. Therefore P(2Y%) = P(UUC), which is a contra-
diction. |

After some preliminaries we divide the cardinals into two
classes, the finite cardinals and the infinite cardinals, and prove
a few special properties for each class.

163 THEOREM Ifxew,yewandx + 1 =y + 1, then x ~ y.

PROOF If fis a 1-1 function on ¥ + 1 onto y + 1 there is a 1-1
function gon x + 1 onto y + 1 such that g(x) = y; for example,
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let g be (f ~ {(%/()} U {(TO0D UAGT0):/60} U

{(%,5)}. Then g|« is a 1-1 function on x onto y. 1|

164 TueoreEM w c C.

prooF The proof is by induction. Apply the preceding theorem
to the first integer which is equivalent to a smaller integer to
obtain a contradiction, thus proving that each integer is a cardi-
nal number. |

165 THEOREM we C.

PrROOF If w ~x and ¥ew, then x C ¥ + 1 C w, and hence
P(x + 1) = P(x). This contradicts the preceding theorem,
which states that each integer is a cardinal number. |

166 DEFINITION x is finite if and only if P(x) € w.

167 THEOREM «x is finite if and only if there is r such that r well-
orders x and r~' well-orders x.

proOF If P(x) ew, then E and E~! well-order P(x), and since
x =~ P(x) there is no difficulty finding r such that both r and
r~! well-order x. Conversely, if » and ~! well-order x, then by
99 there is a 1-1 function f which is »-E order preserving in x and
R such that either domain f = x or range f = R. If w C range
£, then 7~ does not well-order x because w has no E last element.
Consequently range f e w, domain f = %, and the theorem fol-
lows. |

Each of the following sequence of theorems on finite sets can
be proved by induction on the power of a set or by constructing
a well ordering and applying 167. Examples of both sorts of
proof will be given.

168 TueorEM If x and y are finite so is x U y.

proOF If both r and r~! well-order ¥ and both s and s~ well-
order y, then, using r for points of x, s for points of y ~ x, and
letting each member of y ~ x follow every point of x, one can
construct an ordering of the required type for ¥ U y. 1

169 TurorEM If x is finite and each member of x is finite, then

Ux is finite.
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PROOF One may proceed by induction on P(x). Explicitly, con-
sider the set s of all integers # such that, if P(x) = « and each
member of « is finite, then |Jx is finite. Clearly 0 belongs to the
set 5. If ues, P(x) = u + 1, and each member of x is finite,
then one may split x into two subsets, one of which has power «
and one of which is a singleton. The induction hypothesis and
the preceding theorem then show that {Jx is finite. Hence
s=w |}

170 THEOREM If x and y are finite so is x X y.

ProOF The class x X y is the union of the members of a finite
class, the members being of the form {v} X y for v in x. |

171 THEOREM If x is finite so is 2°.

ProOF If y is an integer, then the subsets of y + 1 can be di-
vided into two classes: those which are subsets of y, and those
which are the union of a subset of y and {y}. This gives the
necessary basis for an inductive proof of the theorem. |

172 THEOREM If x is finite,y C x and P(y) = P(x), then x = y.

PrROOF It is sufficient to consider the case where x is an integer.
Suppose y € x, y # x, P(y) = %, and xew. Then x £ 0 .and
hence x = # + 1 for some integer u. Because y # x there is a
subset of # which is equivalent to y and hence P(y) < #. But
P(y) = x = u + 1, and this contradicts the fact that each in-
teger is a cardinal number. |

The property of theorem 172, that a finite set is equivalent
to no proper subset, actually characterizes finite sets.

173 THEOREM If & is a set and x is not finite, then there is a sub-
sety of x such that y % x and x =~ y.

PROOF Since x is a set and is not finite, w < P(x). There is a
function f on P(x) such that f(#) = #« + 1 for # in w, and for
f(@) = u for u in P(x) ~w. The function f is 1-1 and range f
= P(x) ~ {0}. Since P(x) =~ x the theorem follows. |

174 THEOREM If x e R ~ w, then P(x 4+ 1) = P(x).

prooF Clearly P(x) < P(x + 1). Since x is not finite there is
a subset # of x such that # # x and # ~ x. Consequently there
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is a 1-1 function f on x + 1 such that f(y) e« for y in x and
f(x) ex ~u. Hence P(x + 1) £ P(x). |

The principal remaining theorem depends on an order which
will be assigned to the cartesian product R X R. An intuitive
description of this order may be instructive. It is to be a well
ordering, and on w X w it is to have the property that the class
of all predecessors of a member (x,y) of w X w is finite (a generali-
zation of this fact is the key to the usefulness of the order).
Picture w X w as a subset of the Euclidean plane and divide
w X w into classes, putting in the same class pairs (x,y) and («,1)
such that the maximum of x and y is identical with the maximum
of # and v. Each class then consists of two sides of a square, and
the ordering is arranged so that points on smaller squares pre-
cede points on large squares. For points on the sides of the
same square the ordering proceeds along the upper edge and to
the right, up to but not including the corner point, and then
along the right-hand edge upward, ending with the corner point.

If x and y are ordinals, the larger of them is ¥ U y. This mo-
tivates the following-definition.

175 DEFINITION max [x,5] = x U y.

176 DEFINITION & = {z: for some (up) in R X R and some
(%,y) in R X R, z = ((#,0),(x,)), and max [#,0] < max [x,y], or
max [#,0] = max [x,y] and u < x, or max [u,v] = max [x,y] and
u=xandv <yl
177 TueorEM <K well-orders R X R.

The proof is a straightforward but tedious application of the
definition and the fact that < well-orders R.
178 TuroreM If (u,0) K (%,y), then (u,v) e (max [x,y] + 1) X
(max [x,y] + 1).
prooF Surely max [#,0] £ max [x,y], and hence max [,

max [x,y]. Since the ordinals # and v are subsets of max [x,y]
they are members of max [x,y] + 1. |

179 TueorEM If x e C ~ w, then P (x X X) = X.

prooF We proceed by induction, supposing ¥ to be the first
member of C ~ w for which the theorem fails. There is by 99 a
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function f which is «-E order preserving in x X x and R, such
that either domain f = x X x or range f = R. Since ¥ X ¥ is a
set and R is not, domain f = x X x. We show that, if (#,0) e
x X x, then f((#,0)) < x, and the theorem follows. By the pre-
ceding theorem the class of all predecessors of (x,v) is a subset of
(max [u,0] + 1) X (max [#,0] + 1). If ¥ = w, then both # and
v are finite because max [#,0] < x; by 170, (max [#,9] + 1) X
(max [#,0] 4+ 1) is finite, hence f((#,0)) has only a finite number
of predecessors and f((#,0)) < x. If ¥ # w, and max [«,1] is not
finite, then by 174, P(max [#,0]] + 1) = P(max [#,0]) < ¥ and
hence P(f((u,0))) < x and f((#,0)) < x. |

180 THEOREM If x and y are members of C, one of which fails to
belong to w, then P(x X y) = max [P(x),P(y)].

The members of C ~ w are called infinite, or transfinite, cardi-
nal numbers.

There are many important and useful theorems on cardinal
numbers which have not been given in the preceding list; see,
for example, Fraenkel [1] for further information and references.
This discussion will be concluded with a brief statement on one
of the classic unsolved problems of set theory.

181 THEOREM There is a unique <-< order-preserving function
with domain R and range C ~ w.

proOF There is, by 99, a unique <-< order-preserving function
fin R and C ~ w such that either domain f = R or range f =
C ~w. Since every E-section of R and of C ~ w is a set and
neither R nor C ~ w is a set, it is impossible that domain f # R
orrangef # C ~w. |

The unique <-< order-preserving function whose existence is
guaranteed by the previous theorem is usually denoted by .
Thus 8(0) (or 8o) is @. The next cardinal &, is also denoted
by Q; it is the first uncountable ordinal. Since P(2%) > ¥, it
follows that P(2%) = §;. The equality of these two cardinals
is an extremely attractive conjecture. It is called the Aypothesis
of the continuum. The generalized hypothesis of the continuum is
the statement: if ¥ is an ordinal number, then P(2%) = N, ;.
Neither hypothesis has been proved or disproved. However,
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Godel [1] has proved the beautiful metamathematical theorem:
If, on the basis of the hypothesis of the continuum, a contradic-
tion is constructed, then a contradiction may be found without
assuming the hypothesis of the continuum. The same situation
prevails with respect to the generalized hypothesis of the con-
tinuum and the axiom of choice.



Bibliography

A. D. ALEXANDROFF

[1) On the extension of a Hausdorff space to an H-closed space,
C. R. (Doklady) Acad. Sci. U.R.S.S., N.S. 37 (1942) 118-121

P. ALEXANDROFF :

(1] Sur les ensembles de la premiére classe et les ensembles abstraits,
C. R. Acad. Sci. Paris 178 (1924) 185-187

P. ALexanprorr and H. Hopr
[1] Topologie I, Berlin (1935)

P. ALexanDprorF and P. UrvysonnN
(1] Mémoire sur les espaces topologiques compactes, Verh. Akad.

Wetensch. Amsterdam 14 (1929) 1-96
[2] Une condition necessaire et suffisante pour qu'une class (£) soit
une class (®), C. R. Acad. Sci. Paris 177 (1923) 1274-1277

A. APPERT

[1] Ecart partielement ordonné et uniformité, C. R. Acad. Sci. Paris
224 (1947) 442444

A. ArperT and Ky Fan

[1] Espaces topologiques intermédiares. Probléme de la distanciation
Actualités Sci. Ind. 1121 Paris (1951)

R. Arens (
[11 Note on convergence in topology, Math. Mag. 23 (1950) 229-234
[2] 4 topology for spaces of transformations, Ann. of Math. (2) 47

(1946) 480-495
[3] Topologies for homeomorphism groups, Amer. J. Math. 68 (1946)
593-610
R. Arexs and J. Ducunpj1
[1] Remark on the concept of compactness, Portugaliae Math. 9 (1950)
141-143
[2] Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31
282



BIBLIOGRAPHY 283

N. ARONSZAJN
[1] Quelques remarques sur les relations entre les notions décart régulier
¢t de distance, Bull. Amer. Math. Soc. 44 (1938) 653-657
[21 Uber ein Urbildproblem, Fund. Math. 17 (1931) 92-121
M. BaLaNzaT
[1] On the metrization of quasi-meiric spaces, Gaz. Mat., Lisboa 12,
no. 50 (1951) 91-94

S. BanacH
[1] Théorie des opérations linfaires, Warsaw (1932)
E. G. BEGLE

[1] A note on S-spaces, Bull. Amer. Math. Soc. 55 (1949) 577-579
R. H. Bing
[1] Metrization of topological spaces, Canadian J. Math. 3 (1951)
175-186
G. BIRKHOFF
[1] Lattice Theory (Revised Ed.), A.M.S. Colloquium Publ. XXV,
New York (1948)
[2] 4 note on topological groups, Compositio Math. 3 (1936) 427-430
(3] Moore-Smith convergence in gemeral topology, Ann. of Math. (2)
38 (1937) 39-56
N. BourBak1
[1] Topologie générale, Actualités Sci. Ind. 858 (1940), 916 (1942),
1029 (1947), 1045 (1948), 1084 (1949), Paris
[2] Intégration, Actualités Sci. Ind. 1175, Paris (1952)
[3] Espace vectoriels topologique, Actualités Sci. Ind. 1189 Paris
(1953)
N. Boursakr and J. DIEUDONNE
(1] Note de tératopologie II, Revue Scientifique 77 (1939) 180-181
E. Cecu
[1] On bicompact spaces, Ann. of Math. (2) 38 (1937) 823-844
C. CHEVALLEY
[1] Tkeory of Lie Groups I, Princeton (1946)
E. W. CHITTENDEN
[1] On the metrization problem and related problems in the theory of
abstract sets, Bull. Amer. Math. Soc. 33 (1927) 13-34
H. J. CorEN
(1] Sur un probléme de M. Dieudonné, C. R. Acad. Sci. Paris 234
(1952) 290-292
L. W. CoHEN
[1] On topological completeness, Bull. Amer. Math. Soc. 46 (1940)
706-710



284 BIBLIOGRAPHY

L. W. Couen and C. GorrmaN
[1] On the metrization of uniform space, Proc. Amer. Math. Soc. 1
(1950) 750-753
J. CoLmEZ
[1] Espaces & écart généralisé régulier, C. R. Acad. Sci. Paris 224 (1947)
372-373
M. M. Day
[1] Convergence, closure and neighborkoods, Duke Math. J. 11 (1944)
181-199
J. DieuponNE
[1]1 Une généralization des espaces compacts, J. Math, Pures Appl. 23
(1944) 65-76
[2] Sur un espace localement compact non metrisable, Anais da Acad.
Bras. Ci. 19 (1947) 67-69
[8] Sur la complétion des groupes topologiques, C. R. Acad. Sci. Paris
218 (1944) 774-776
[4] On topological groups of homeomorphisms, Amer. J. Math. 70
(1948) 659-680
[5] Un exemple d’espace normal non susceptible d’une structure uni-
forme despace complet, C. R. Acad. Sci. Paris 200 (1939) 145-147
(6] Sur les espaces uniformes complets, Ann. Sci. Ecole Norm. Sup. 56
(1939) 227-291
J. Dixmier
[1} Sur certains espaces considérés par M. H. Stone, Summa Brasil.,
Math. 2 (1951) 151-182
R. Doss
(1] On uniform spaces with a unique structure, Amer. J. Math. 71
(1949) 19-23
C. H. DowkEer
(11 An embedding theorem for paracompact metric spaces, Duke Math.
J. 14 (1947) 639-645
[2] On countably paracompact spaces, Canadian J. Math. 3 (1951)
219-244
[38] On a theorem of Hanner, Ark. Mat. 2 (1952) 307-313
J. Ducunpj1
[1] 47 extension of Tietze’s theorem, Pacific J. Math. 1 (1951) 353-367
S. EILENBERG
(1] Sur le théoréme de décomposition de la théorie de la dimension, Fund.
Math. 26 (1936) 146-149
S. E1LENBERG and N. STEENROD
[1) Foundations of algebraic topology, Princeton (1952)




BIBLIOGRAPHY 285

W. T. van Est and H. FREUDENTHAL
(1] Trmmmg durch stetige functionen in lopologischen Raumm, Indaga-
tiones Math. 13 (1951) 359-368
M. K. Forr, Jr.
[1] 4 note on pointwise convergence, Proc. Amer. Math. Soc. 2 (1951)
34-35
R. H. Fox
[1] On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945)
429432
A. FRAENKEL
[1] Einleitung in die Mengenlehre (Amer. Ed.) New York (1946)
M. FRrECHET
(1] Sur quelques points du Calcul Fonctionne! (These) Rendiconti di
Palermo 22 (1906) 1-74
[2] Les espaces abstractes, Paris (1926)
H. FREUDENTHAL
[1] Neuaufbau der Endentheorie, Ann. of Math. (2) 43 (1942) 261-
279
A. H. Frink
[1] Distance functions and the metrization problem, Bull. Amer. Math.
Soc. 43 (1937) 133-142
D. GaLe
(1] Compact sets of functions and function rings, Proc. Amer. Math.
Soc. 1 (1950) 303-308
K. GOpEL
[1] The consistency of the continuum hypothesis, Ann. of Math. Studies
3 (1940)
A. P. GoMmEs
[1] Topologie induite par un pseudo-diamétre, C. R. Acad. Sci. Paris
227 (1948) 107-109
L. M. Graves
(1] The theory of functions of real variables, New York (1946)
A. GROTHENDIECK
[1] Critéres de compacité dans les espaces fonctionnels généraux, Amer.
J. Math. 74 (1952) 168-186
W. GusTIN
[1] Countable connected spaces, Bull. Amer. Math. Soc. 52 (1946) 101-
106
P. R. HaLmos
[1]1 Measure theory, New York (1950)



286 BIBLIOGRAPHY
0. HANNER

[1] Retraction and extension of mappings of metric and non-metric
spaces, Ark. Math. 2 (1952) 315-360
E. Hewirr
[1] On two problems of Urysohn, Ann. of Math. (2) 47 (1946) 503-
509
[2] Rings of real-valued continuous functions I, Trans. Amer. Math.
Soc. 64 (1948) 45-99
F. HAusDORFF
(1] Grundziige der Mengenlehre, Leipzig (1914)
[2] Die Mengen Gy in vollstindigen Riumen, Fund. Math. 6 (1924)
146-148
E. HiLLe
[1] Functional analysis and semi-groups, AM.S. Colloquium Publ.
XXI, New York (1948)
S.T.Hu
[1) Archimedean uniform spaces and their natural boundedness, Portu-
galiae Math. 6 (1947) 49-56
W. Hurewicz and H. WaLLMaN
[1] Dimension theory, Princeton (1941)
K. Iseki1
[1) On definitions of topological space, J. Osaka Inst. Sci. Tech. 1
(1949) 97-98
S. Kakuran:
[1] Uber die Metrization der topologischen Gruppen, Proc. Imp. Acad.
Japan 12 (1936) 82-84
G. K. KaLiscu
[1] On uniform spaces and topological algebra, Bull. Amer. Math. Soc.
52 (1946) 936-939
M. KaTtETov
[1] On H-closed extensions of topological spaces, Casopis Pést. Mat.
Fys. 72 (1947) 17-32
J. L. KeLLEY ;
[1] Convergence in topology, Duke Math. J. 17 (1950) 277-283
[2] The Tyckonoff product theorem implies the axiom of choice, Fund.
Math. 37 (1950) 75-76
V. L. KLEg
(1] Invariant metrics in groups (solution of a problem of Banach), Proc.
Amer. Math. Soc. 3 (1953) 484487
B. KnastER and C. KuraTowski
[1] Sur les ensembles connexes, Fund. Math. 2 (1921) 206-255




BIBLIOGRAPHY 287

A. KoLMOGOROFF
[1] Zur Normierbarkeit eines allgemeinen topologischen linearen Riumes,
Studia Math. 5 (1934) 29-33
G. KOTtHE
[1) Die Quotientenriume eines linearen vollkommenen Riumes, Math.
Z. 51 (1947) 17-35
S. B. Krisuna MurTl
[1] A set of axioms for topological algebra, J. Indian Math. Soc. (N.S.)
4 (1940) 116-119
C. KuraTowski
[1] Topologie I (2nd Ed.) Warsaw (1948)
[2] Topologie II, Warsaw (1950)
[3] Une méthode délimination des nombres transfinis des raissonne-
ments mathématiques, Fund. Math. 3 (1922) 76-108
E. Lanpav
(1] Grundlagen der Analysis, (Amer. Ed.) New York (1946)
J. P. LasaLLE
[1] Topology based upon the concept of pseudo-norm, Proc. Nat. Acad.
Sci. U.S.A. 27 (1941) 448-451
S. LEFSCHETZ
[1] Algebraic topology, A.M.S. Colloquium Publ. XXVII, New York
(1942)
L. H. Loomis
[1] On the representation of c-complete Boolean algebras, Bull. Amer.
Math. Soc. 53 (1947) 757-760
[2] Abstract harmonic analysis, New York (1953)
E. J. McSHANE
(1] Partial orderings and Moore-Smith limits, Amer. Math. Monthly
59 (1952) 1-11
[2] Integration, Princeton (1944)
[3] Order-preserving maps and integration processes, Ann. of Math.
Studies 31, Princeton (1953)
E. MicHAEL
[1] 4 note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953)
831-838
[2] Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951)
151-182
A. MoNTEIRO
(1] Caractérisation de Popération de fermeture par une seul axsome,
Portugaliac Math. 4 (1945) 158-160



288 BIBLIOGRAPHY

[2] Caractérisation des espaces de Hausdorff au moyen de opération
de dérivation, Portugaliae Math. 1 (1940) 333-339
E. H. Moore
[1] Definition of limit in general integral analysis, Proc. Nat. Acad.
Sci. U.S.A. 1 (1915) 628
[2] General analysis I, Pt. I1, Philadelphia (1939)
E. H. Moore and H. L. Smrta
[1]1 A4 general theory of limits, Amer. J. Math. 44 (1922) 102-121
R. L. Moore
[1] Foundations of point set theory, AM.S. Colloquium Publ. XIII,
New York (1932)
K. Morrra
(1] Star-finite coverings and the star-finite property, Math. Japonicae
1 (1948) 6068
S. B. MYERs
[1] Normed linear spaces of continuous functions, Bull. Amer. Math.
Soc. 56 (1950) 233-241
(21 Equicontinuous sets of mappings, Ann. of Math. (2) 47 (1946)
496-502
[3] Functional uniformities, Proc. Amer. Math. Soc. 2 (1951) 153~
158
A. D. Mvskis
[1] On the concept of boundary, Mat. Sbornik N.S. 25 (1949) 387414
[2) The definition of boundary by means of continuous mappings, Mat.
Sbornik N.S. 26 (1950) 225-227
[3] On the equivalence of certain methods of definition of boundary, Mat.
Sbornik N.S. 26 (1950) 228-236
L. NacuBIN
[1] Topological vector spaces, Rio de Janeiro (1948)
J. Nacarta
[1] On a necessary and sufficient condition of metrizability, J. Inst.
Polytech. Osaka City Univ. 1 (1950) 93-100
[2] On the uniform topology of bicompactifications, J. Inst. Polytech.
Osaka City Univ. 1 (1950) 28-39
H. Nakano
[1] Topology and linear topological spaces, Tokyo (1951)
J. von NEUMANN
[1] On complete topological spaces, Trans. Amer. Math. Soc. 37 (1935)
1-20
M. H. A. NEwmaN
[1] Elements of the topology of plane sets of points, Cambridge (1939)



BIBLIOGRAPHY 289

J. Novak
[1) Regular space on which every comtinuous function is constant,
Casopis P&st. Mat. Fys. 73 (1948) 58-68
B. J. PeTTI1s
(1] On continuity and openness of homomorphisms in topological groups,
Ann. of Math. (2) 51 (1950) 293-308
[2] 4 note on everywhere dense subgroups, Proc. Amer. Math. Soc. 3
(1952) 322-326
L. PoNTRJAGIN
{11 Topological groups, Princeton (1939)
W. V. O. Quine
[1] Mathematical logic, Cambridge (U.S.A.) (1947)
A. RAMANATHAN
[1] Maximal Hausdorff spaces, Proc. Indian Acad. Sci. Sect. A, 26
(1947) 3142
H. RiBEIirO
[1] Une extension de la notion de comvergence, Portugaliae Math. 2
(1941) 153-161
[2] Sur les espace & méirique faible, Portugaliae Math. 4 (1943) 2140,
also 65-68
[3] Caractérisations des espaces réguliers normaux et complétement
normaux au moyen de I'opération de dérivation, Portugaliae Math.
2 (1940) 1-7
P. SaMUEL
11} Ultrafilters and compactification of uniform spaces, Trans. Amer.
Math. Soc. 64 (1948) 100-132
T. SuiroTA
[11 On systems of structures of a completely regular space, Osaka Math.
J. 2 (1950) 131-143
[2] 4 class of topological spaces, Osaka Math. J. 4 (1952) 2340
W. S1ERPINSKI
[11 General topology (2nd Ed.) Toronto (1952)
[2] Sur les ensembles complets d'un espace (D), Fund. Math. 11 (1928)
203-205
Yu. M. Smirnov
[1] 4 necessary and sufficient condition for metrizability of a topological
space, Doklady Akad. Nauk S.S.S.R. N.S. 77 (1951) 197-200
[2] On metrization of topological spaces, Uspehi Matem. Nauk 6 (1951)
100-111 ;
[8] On normally disposed sets of normal spaces, Mat. Sbornik N.S. 29
(1951) 173-176



290 , N BIBLIOGRAPHY

R. H. SoRGENFREY
[1] On the topological product of paracompact spaces, Bull. Amer.
Math. Soc. 53 (1947) 631-632
A. H. StoxEe
(1] Paracompactness and product spaces, Bull. Amer. Math. Soc. 54
(1948) 977-982
M. H. Stone
[1] Notes on integration I, I1, III, IV, Proc. Nat. Acad. Sci. U.S.A.
34 (1948) 336-342, 447-455, 483—490; 35 (1949) 50-58
[2] Topological representations of distributive lattices and Brouwerian
logics, Casopis Pést. Mat. Fys. 67 (1937) 1-27
[3] The theory of representations for Boolean algebras, Trans. Amer.
Math. Soc. 40 (1936) 37-111
[4] Boundedness properties in function lattices, Canadian J. Math. 1
(1946) 176-186
(5] The generalized Weierstrass approximation theorem, Math. Mag.
21 (1948) 167-184
(6] Applications of the theory of Boolean rings to general topology, Trans.
Amer. Math. Soc. 41 (1937) 375481
E. C. StoPHER, Jr. :
" [1] Point set operators and their interrelations, Bull. Amer. Math. Soc.
45 (1939) 758-762
E. SzpriLrAJN
(1] Remarque sur les produits cartésiens d'espaces topologiques,
'C. R. (Doklady) Acad. Sci. U.R.S.S. N.S. 31 (1941) 525-527
P. Szymanski
[11 La notion des ensembles separé comme terme primitif de la topologie,
Mathematica Timisoara 17 (1941) 65-84
A. Tarsk1
{11 Introduction to modern logic (2nd Amer. Ed.), New York (1946)
H. Tone
[1]1 On some problems of Cech, Ann. of Math. (2) 50 (1949) 154-

157
J. W. Tukey
[11 Convergence and uniformity in topology, Ann. of Math. Studies 2
(1940)

A. TYCI-IONOFF
[1] Uber einen Funktionenrium, Math. Ann. 111 (1935) 762-766

[2] Uber die topologische Erweiterung von Riumen, Math. Ann. 102
(1929) 544-561



BIBLIOGRAPHY 291

H. UMEGAKI
[1] On the uniform space, Tohoku Math. J. (2) 2 (1950) 57-63
H. D. UrseLL and L. C. Youwnc
[1] Remarks on the theory of prime ends, Memoirs Amer. Math. Soc.
3 (1951)
P. Urysoun
[1] Uber die Machtigkeit der zusammenhingen Mengen, Math. Ann,
04 (1925) 262-295
R. VaipDyaNATHASWAMY
[1] Treatise on set topology I, Madras (1947)
A. D. WaLLACE
(1] Separation spaces, Ann. of Math. (2) 42 (1941) 687-697
[2) Extensional invariance, Trans. Amer. Math. Soc. 70 (1951) 97—
102
H. WaLLmaN
[1]1 Lattices and topological spaces, Ann. of Math. (2) 42 (1941) 687-
697
A. WEeLL
(11 Sur les espaces a structure uniforme et sur la topologie générale,
Actualités Sci. Ind. 551, Paris (1937)
[2] L’integration dans les groupes topologiques et ses applications, Actu-
alités Sci. Ind. 869, Paris (1940)
G. T. WuyBURN
[11 Analytic topology, AM.S. Colloquium Publ. XXVIII, New York
(1942)
[2] Open and closed mappings, Duke Math. J. 17 (1950) 69-74
R. L. WiLpERr
[1] Topology of manifolds, AM.S. Colloquium Publ. XXXII, New
York (1949)
E. ZerMELO
(1] Neuer Beweis fiir die Wohlordnung, Math. Ann. 65 (1908) 107-128



INDEX

Absolute G;, 207
accumulation point, 41

from the right, 59

@ -y 137
adjoint of a normed linear space, 241
Alexander subbase theorem, 139
almost periodic function, 247
amalgamation axiom, 261
anti-symmetric relation, 9
Ascoli theorems, 233, 236
asymmetric relation, 263

Baire, category theorem, 200
condition of - .- (= almost open),
210
Banach algebra, 243
base, for the neighborhood system of a
point, 50
for the neighborhood system of a
set, 112
for a topology, 46
for a uniformity, 177
bicompact (= compact), 135
Boolean, ring, 81, 168
o-ring, 215
boundary of a set, 45
bounded set, 144
Brouwer reduction theorem, 61

Cantor discontinuum (= middle third
set), 165
cardinal numbers, 27, 274 ff
cartesian product, of two sets, 7, 261
of a family of sets, 30

category, 201
(first category = meager)
(second category = non-meager)
Cauchy, filter, 193
net, 190
chain, 15, 32
characteristic function, 26
choice, axiom, 33, 273
function, 31
class, 1, 251
classification axiom scheme, 253
classifier, 251
closed, family, 155
graph theorem, 213
interval, 40
map, 94
set, 40
sphere, 119
closure, and complement problem, 57
axioms, 43
of a set, 42
operator, 43
cluster point, of a net, 71
of a set, 41
coarser (= smaller) topology, 38
cofinal, 66, 77
compact, 135
countably, 162
locally, 146
sequentially, 162, 238
-+ - open topology, 221
compactification, 149 ff
one-point, 150
Stone-Cech, 152
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INDEX

compactification (Cont.)
Wallman, 167
- - - of groups, 247
complement, 3, 254
complete, accumulation point, 163
(= full) class, 267
uniform space, 192
topologically - - -, 207, 208
completely regular, 117
completion, 196
of topological groups, 211
component, 54
composition of relations, 7, 260
connected, 53
locally, 61
connects, 263
contains, 2, 256
continuous, at a point, 87, 100
convergence, 241
evenly, 235, 241
evenly on a set, 237
function, 85
in one of two variables, 103
jointly, 223
continuum hypothesis, 280
contravariant correspondence, 246
convex, 103
coordinate set, 31
convergence, classes, 73
continuous, 241

Moore-Smith, 62 ff
pointwise (= coordinatewise = sim-
ple), 92

sequential, 62
correspondence (= function), 10
countability, first axiom, 50

second axiom, 48
countable, 25

chain condition, 60
countably compact, 162
counter-image (= inverse image}, 11
covariant correspondence, 246
cover, 49

even, 155

open, 49

point finite, 171

uniform, 199
cube, 114

decimal expansion, 25
decomposition, 96
upper semi-continuous, 98
DeMorgan formulae, 3, 254
dense, 49
nowhere, 145
denumerable (= countably infinite),
25
derived set, 42
diagonal, 7
process, 238
diameter, 121
dictionary (= lexicographic) order, 23
difference of sets, 3, 255
Dini’s theorem, 239
directed set, 65
directs, 65
discrete, topological space, 37
family, 127
a-discrete family, 127
disjoint, 3
distance, 119
between sets, 123
Hausdorff, 131
distinguishes, functions, 220
points, 116
points and closed sets, 116
divisible properties, 133
domain, 7, 260
door space, 76
dyadic, expansion, 25
rational, 23

écart, 119, 206
embedding, in cubes, 114 ft
theorems, 118, 188
equicontinuous, 232
on a set, 234
uniformly, 239
equipollent, 28
equivalence, class, 9
relation, 9
Euclidean, plane, 60
n-space, 31, 89
evaluation, 31, 116, 218
continuity of ---, 240
even, continuity, 235, 241
continuity on a set, 237
cover, 155
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eventually, 65

extension, of a function, 11
Tietze theorem, 242

extent axiom, 252

extremally disconnected, 216

field, 18
ordered, 19
filter, 83
finer (= larger) topology, 38
finite, 277
character, 32
intersection property, 135
frequently, 65
full, 267
function, 10, 260

gage of a uniformity, 189
group, 17
abelian (= commutative), 17
normal (= distinguished = invar-
iant), 18
quotient (= factor), 18
topological, 105 ff, 210

half-open, interval, 40

interval space, 59, 133

rectangle space, 59, 133
Hausdorff, maximal principle, 31, 274

metric, 131

topological space, 67

uniform space, 180
hereditary properties, 133
homeomorphism, 87
homogeneous space, 107
homomorphism, 18, 107
hypothesis of the continuum, 280

ideal, 18
dual, 80
lattice, 80

identity relation, 7

image, 11, 261

indiscrete (= trivial) topological space,

37

induced function, 19, 239 -

induction, definition by, 21
mathematical, 20, 272
proof by, 20, 264

induction (Cont.)
transfinite, 270
inductive, property (= satisfying
premise of 0.25 a), 33
set of integers, 20
infimum, 13
infinite cardinals, 280
infinity axiom, 271
integers, 20, 271
integration, 77 ff
interior, of a set, 44
map, 90
intersection, 3, 254
inverse, of a relation, 7
image, 11
irreducible property, 61
isolated point x (= {x} is open), 102
isometry, 122
of compact metric space, 162
isotone function, 15
iterated, limit, 69
sum, 77

join, of sets (= union), 3
of members of a lattice, 80
joint continuity, 221

k-extension of a topology, 241

k-space, 230, 240

Kuratowski, closure axioms, 43
closure and complement problem, 57
lemma, 33

largest, 31
lattice, 80
lexicographic (= dictionary) order, 23
limit, iterated, 69
of a net, 68
point of a set, 41
Lindelof, theorem, 49
space, 50, 59
linear, function, 18
order (= simple order), 14
space, 18, 241 '
topological space, 109
locally, compact, 146
connected, 61
finite, 126
lower bound, 13
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INDEX

map (= function), 10
maximal, member of a family, 32
principle, 33, 274
meager (= first category), 201
meet, of sets, 3
of members of a lattice, 80
metacompact, 171
metric, 118
invariant, 123
topology, 119
uniformity, 184
Hausdorff - -, 131
invariant - -+, 209, 210
metrization, of topological spaces,
124 ff
of uniform spaces, 184 ff
minimal member of a family, 32
principle, 33
monotone function, 15
Moore-Smith convergence, 62 ff

neighborhood, 38
system of a point, 39
system of a set, 112
topologies from - - - systems, 56
nest, 32
net, 65
universal, 81
normal, topological space, 112
perfectly, 134
fully, 170
nowhere dense, 145
normed linear space, 241
null space of a linear function, 19
numbers, cardinal, 27, 274
ordinal, 29, 266
real, 19

one-to-one function, 11
open, interval, 38

map, 90

set, 37

sphere, 119
almost - -+, 210

operator (= function}, 10
order, Archimedean, 22
bounded, 15
complete, 14
dictionary (= lexicographic), 23

order (Cont.)
linear (= simple = total), 14
preserving, 15, 264
product, 68
topology, 57, 162
ordered pair, 259
ordering, partial, 13
quasi (= partial), 13
well, 29, 262
ordinal numbers, 29, 266

paracompact, 156, 172
partition, of a set, 96
of unity, 171
perfectly normal, 134
point finite cover, 171
pointwise convergence, 92
on a set, 220
on a dense set, 238
uniformity of - - -, 220
power of a set, 275
precompact (= totally bounded), 198
product, cartesian, 7, 30
directed set, 68
logical, 3
of compact spaces, 143
of connected spaces, 104
of pseudo-metric spaces, 122
of spaces with countable bases, 103
order, 68
topology, 90
uniformity, 182
productive properties, 133
projection, onto a coordinate set, 31
onto a quotient space, 96
pseudo-metric, 119
topology, 119
uniformity, 184
pseudo-metrizable, topological space,
124
uniform space, 184

quotient, group, 18
map, 96
topology, 94
space, 97, 147

range, 7, 260
real numbers, 19
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real numbers (Cont.)
topological properties, 58, 59
refinement, 128
regular topological space, 113
regularity axiom, 266
reflexive relation, 9
related (R-related), 7, 263
relation, 6, 259
relative, topology, 51
uniformity, 182
relativization, 50
residual (= co-meager), 201
restriction of a relation, 10, 11
ring, 18
Boolean, 81, 168, 215

scalar field, 18
Schroeder-Bernstein theorem, 28, 276
section, 263
semi-metric (= pseudo-metric), 119
separable, 48, 49
perfectly, 48
separated, sets, 52
topological space (= Hausdorff), 67
uniform space (= Hausdorff), 180
separation properties, with compact-
ness, 140 ff
sequence, 62, 72
sequentially compact, 162, 238
set, 1, 252
theory, 250 ff
simple topology (= topology of point-
wise convergence), 90, 92, 217
singleton, 3, 258
small sets, 192
smallest member of a family, 32
space, completely regular, 117
Hausdorff, 67
Lindelaf, 50
linear, 18
k-space, 230
linear topological, 109
metric, 119
normal, 112
regular, 113
Te-space, 56
Ty-space, 56
Ts-space (= Hausdorff), 67
Ts-space (= regular + T3), 113

space (Cont.)
Ty-space (= normal 4+ Ty), 112
topological, 37
Tychonoff (= completely regular +
Ty, 117
uniform, 176
Stone-Weierstrass theorem, 244
stronger topology, 38
subadditive function, 131
subbase, for a topology, 48
for a uniformity, 177
for the neighborhood system of a
point, 50
local, 50
subclass, 256
subcover, 49
subsequence, 63
subset, 2
proper, 2
axiom, 256
subnet, 70
subspace, 51
substitution axiom, 261
sum, logical, 3
summability, 78, 214
supremum, 13
symmetric relation, 9
g-compact, 172
o-discrete, 127
o-locally finite, 127
o-ring, 215

_-space: see space
Tietze extension theorem, 242
topological groups, 105

closed graph theorem, 213

completion, 211

uniformities and metrization, 210
topological, invariant, 88

map, 87

space (see also space), 37
topologically equivalent, 87
topology, 37

coarser (= smaller), 38

discrete, 37

indiscrete (= trivial), 37

finer (= larger), 38

from interior operators, 56

from neighborhood systems, 56
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topology (Cont.)
metric or ‘pseudo-metric, 119
of compact convergence (= uniform
convergence on compacta), 229
order, 57
pointwise (= product), 90
quotient, 94
relative, 50
stronger, 38
uniform, 178
u.c. = of uniform convergence, 226
usual, for the real numbers, 37
w* (= weak®), 108, 241
weaker, 38
totally bounded, 198
tower (= nest), 32
transitive relation, 9
transfinite induction, 270
transformation (= function), 10
triadic expansion, 25
triangle inequality, 119
trivial (= indiscrete) topology, 37
two point property, 244
two set property, 243
Tukey’s lemma, 33
Tychonoff, plank, 132
product theorem, 143
space, 117

ultrafilter, 83

uniform, boundedness, 215
continuity, 180
continuity on a set, 194
convergence, 226
convergence on compacta, 229
cover, 199
covering system, 207
equicontinuity, 229
equivalence, 181
invariant, 181
isomorphism, 181
neighborhood system, 205

uniform (Cont.)
space, 174 ff
topology, 178
uniformity, generated by pseudo-
metrics, 184, 187
of pointwise convergence, 220
of uniform convergence, 226
product, 182
relative, 182
u.c. (= of uniform convergence),
226
usual, for real numbers, 177
aU/@ (= of uniform convergence on
members of @), 228
uniformly, locally compact, 214
open map, 202
union, 3, 254
axiom of ---, 258
universal net, 81
universe, 255
unordered pair, 258
upper bound, 13
upper semi-continuous, decomposition,

function, 101

Urysohn lemma, 115
metrization theorem, 125

usual, metric for real numbers, 119
topology for real numbers, 37
uniformity for real numbers, 177

value of a function, 261
vector (= linear) space, 18

void, 255

w* (= weak*) topology, 108
well ordering, 29, 262 ff
principle, 32

Zermelo postulate, 33
zero, 255
Zorn’s lemma, 33
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