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PEEFACE

rflHIS book was described in the original preface as an attempt
-*- to teach those portions of the Calculus which are of primary

importance in the applications of the subject. The general

arrangement of the work was, at the time, somewhat unusual, but

appears to have been found convenient.

The present edition has been revised throughout, and a number

of changes have been made. Apart from minor alterations and

rearrangements, there are one or two points which call for remark.

A special chapter is devoted to the exponential and allied

functions, the exponential function being now defined as the

standard solution of the equation

It is to this property, entirely, that the function owes its im-

portance in Mathematics, and it seems therefore most natural

to take this as the starting-point. No theory of the exponential

series which has any pretensions to be rigorous can be said to be

altogether elementary, but it is claimed that the method here

followed is, from the standpoint of the Calculus, no more difficult

than any other, whilst there can be no question as to its being the

most appropriate.

Another considerable change is in the treatment of infinite

series, their differentiation and integration. In previous editions

these questions were discussed in a general manner, by the light

of the theory of uniform convergence. There was perhaps some

justification for including this theory, at a time when it was

hardly accessible in any English manual, but it was out of
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perspective with the rest of the book, and is now omitted. It is

replaced by a discussion restricted to power-series only, which are

the only type which the student is likely to be concerned with

until he reaches a more advanced stage.

Finally, some sections on mass-centres, quadratic moments,

and the like, have been condensed or omitted. They have in

the meantime been transferred, for the most part, to other books

by the author.

HORACE LAMB.

June 1919.
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CHAPTER I

CONTINUITY

1. Continuous Variation.

In every problem of the Infinitesimal Calculus we have to deal

with a number of magnitudes, or quantities, some of which may be

constant, whilst others are regarded as variable, and (moreover)
as admitting of continuous variation.

Thus in the applications to Geometry, the magnitudes in question
may be lengths, angles, areas, volumes, &c.; in Dynamics they may
be masses, times, velocities, forces, &c.

Algebraically, any such magnitude is represented by a letter,

such as a or x, denoting the ratio which it bears to some standard
or

' unit
'

magnitude of its own kind. This ratio may be integral,
or fractional, or it may be '

incommensurable/ i.e. it may not admit
of being exactly represented by any fraction whose numerator and
denominator are finite integers. Its symbol will in any case be

subject to the ordinary rules of Algebra.

A 'constant' magnitude, in any given process, is one which
does not change its value. A magnitude to which, in the course

of any given process, different values are assigned, is said to be
'

variable/ The earlier letters a, b, c, ... of the alphabet are generally
used to denote constant, and the later letters . . .u, v, w, x

y y, z to

denote variable magnitudes.

Some kinds of magnitude, as for instance lengths, masses, den-

sities, do not admit of variety of sign. Others, such as altitudes,

rotations, velocities, may be either positive or negative. When
we wish to designate the '

absolute
'

value of a magnitude of this

latter class, without reference to sign, we enclose the representa-
tive symbol between two short vertical lines, thus

\x\, |

sin x
|
, log |

a? .

It is important to notice that, if a and 6 have the same sign,

a-f 6|
=

a| + | 6|,

whilst, if they have opposite signs,

L. I. C.
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The Infinitesimal Calculus had its origin in problems of Geo-

metry, such as drawing tangents to curves, finding areas and lengths
of curves, volumes of solids, and so on. It is therefore natural, and
from the point of view of most applications even necessary, to adopb
as a basis the geometrical notion of magnitude, with the various

familiar assumptions, express or implied, which this involves.

A geometrical representation of any class of magnitudes is ob-

tained by taking an unlimited straight line X'X, and in it a fixed

origin 0, and by measuring lengths OM proportional on any con-

venient scale to the various magnitudes considered. In the case

of sign-less magnitudes (such as masses), these lengths are to be
measured on one side only of

;
in cases where there is a variety

of sign, OM must be drawn to the right or left of according as

the magnitude to be represented is positive or negative. To each

magnitude of the kind in question will then correspond a definite

point M in the line X'X.
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Suppose we have an endless ascending sequence of magnitudes
of the same kind

#i> #2, #, #n> > ..................(1)

i.e. each is greater than the preceding, so that the differences

are all positive. Suppose, further, that the magnitudes (1) are

known to be all less than some fixed finite quantity a. The sequence
will in this case have an '

upper limit,' i.e. there will exist a certain

quantity //,, greater than any one of the magnitudes (1), but such
that if we proceed far enough in the sequence its members will

ultimately exceed any assigned magnitude which is less than
yu,.

In other words, it is impossible to interpose a barrier between the

members of the sequence and the quantity p.

In the geometrical representation the magnitudes (1) are repre-
sented by a sequence of points

Mlt Mt, Ms , ..., ..................... (2)

each to the right of the preceding, but all lying to the left of some
fixed point A. Hence every point on the line X'X, without ex-

ception, belongs to one or other of two mutually exclusive categories.
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The above argument would evidently apply if, occasionally, two
or more successive members of the sequence were equal. In that

case the sequences are still usually styled 'ascending* or 'de-

scending/ respectively, although the terms ' non-decreasing
'

and

'non-increasing* would be more accurately descriptive*.

Ex. 1. The sequence

1 2 3 -_ <t)
2' 3' 4'

"' n+1'
' "W

is ascending, with the upper limit 1. For

=1-
n+l n+ 1

'

which can be made as nearly equal to 1 as we please by taking n great

enough.

Ex. 2. If a; be a positive quantity less than unity, the quantities

1, x, a8
, ..., a* ........................... (5)

form a descending sequence, with the lower limit 0. For since Ijx is

greater than unity we may write

l/a;=l +y,
where y is positive. Then

(l/a;)
ft =

(1 + y)
n = 1 + ny + ... + y

n
,

by the Binomial Theorem. Hence

l/a?
n > 1 + ny,

and can therefore be made as great as we please by taking n great

enough. It follows that xn can be made as small as we please.

Ex. 3. Consider the sequence defined by

1=1, n+l = N/(l +Xn)...................... (6)

Since x*n+l -x1? = xn - xn_lt ........................ (7)

xn+l will be greater than xn if xn is greater than xn_^. But ce2 is ob-

viously greater than xl . The sequence is therefore an ascending one.

Again
x 1 + x 1

(8)

Since xn+l > 1 it follows that xn+l < 2, for all values of n. The sequence
has therefore an upper limit. Denoting this by /u,

it appears from (6)
that p.

is the positive root of the equation

0^ = ^+1 ............................... (9)

* In recent times the term ' monotonio ' has been invented to include both

types of sequence.
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By actual calculation from (6) the first few members are found to

be, to four figures,

1, 1-414, 1-554, 1-598, 1-612, 1-618.

The number last written is the accurate

value of /A,
to the degree of approximation

aimed at.

The matter may be illustrated graphi-

cally by tracing the loci

y = x + I, y = x\ (10)

The figure shews how the successive values

of xn obtained from (6) converge towards

the value of x at the intersection. A por-

tion only of the graph is shewn.

Evidently, the same result is arrived at

if we start with any positive value of xl

instead of 1. Only, if xl is greater than the

positive root of (9) the sequence would be a

descending one.

This graphical method has a wide appli-

cation to the numerical solution of equations,

both algebraic and transcendental.

3. Application to Infinite Series,

terms.

The above has been called the fundamental theorem of the

Calculus. An important illustration is furnished by the theory of

infinite series whose terms are all of the same sign. In strictness,

there is no such thing as the ' sum '

of an infinite series of terms,

since the operations indicated could never be completed, but under

a certain condition the series may be taken as defining a particular

magnitude.

Consider a series

_l_ _l_ _1_ _1_ _!_ f~l \

whose terms are all positive, and let

_L J_ < -L _l_ II ^9\

These quantities are called the '

partial sums/ If the sequence

i, sa ,
sn , (3)

has an upper limit S, the series (1) is said to be 'convergent/ and

the quantity S is, by convention, called its
' sum/

Fig. 3.

Series with positive
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Again, if (1) be a series of positive terms which is known to be

convergent, and if

< +< +<+ ... +'+ (4)

be a series of positive terms which are respectively less than the

corresponding terms in (1), i.e. un
' < un for all values of n, then (4)

is also convergent. For if sn
'

be the sum of the first n terms in (4),
we have sn

' < sn ,
and since the magnitudes sn have by hypothesis

an upper limit, the magnitudes sn will have one & fortiori.

Ex. 1. The series

converges to the sum 2. For if in Fig. 2
(p. 3) we make OM^ = 1, OA =

2,

and bisect M1
A in MZ) MZA in J/3 ,

and so on, the points Mlt M%, M31 ...

will represent the magnitudes alt s2 ,
s3 ,

And since these points all

lie to the left of A, whilst Mn A =
1/2

7*' 1 and can therefore be made as

small as we please by taking n large enough, it appears that the sequence
has the upper limit OA, = 2.

The case of any geometric progression whose common ratio is positive
and less than unity may be illustrated in a similar manner.

Ex. 2. Consider the series

1 1 1
+ -^^ +

1.2 2.3 n

If we write this in the form

/

V

we see that sn = 1 - ?
,

which has the upper limit 1.

Ex. 3. Further illustrations are supplied by every arithmetical

process in which the digits of a non-terminating decimal are obtained

in succession. For example, the ordinary process of extracting the

square root of 2 gives the series

1-414213...

A J_ _i_ A _L Ah
TO

+W2
+

103
+

104
+

105
+

10*
+ ""

Since sn is always less than 1 -5, there is an upper limit.

Ex. 4. The terms of the series

1 1 1
1 _I_ 1 J _l_ . L J. LAi-l-i.-vi ~*>ii"i T.



3-4] CONTINUITY 7

are (after the first three) respectively less than those of the series

1 1 1

The latter series is convergent and has the sum 3. Hence the former
is also convergent, and its sum is less than 3.

4. Limiting Value in a Sequence.

Suppose that we have an endless series of magnitudes

a?!, #2, #3, , n, ........................(1)

arranged in a definite order. Suppose, further, that whatever

quantity e we choose to fix upon, however small, there will always
be a point in the sequence beyond which every member of it

differs from some fixed quantity p by a quantity less in absolute

value than e. The sequence is then said to be '

convergent/ and
to have the

*

limiting value
'

/j,. Statements of this kind occur so

frequently in the present subject that it is convenient to have a

condensed expression for them. We write

limn^ao a?n = /*......................... (2)

We have had particular cases of the above relation in the

upper and lower limits discussed in Art. 2, but in the present wider

definition it is not implied that the members of the sequence are

arranged in order of magnitude, or that they are all greater or all

less than the limiting value /*.

The hypothesis is that a value of n can be found such that the

members of the sequence which follow xn , viz.

all lie between the values /A and
/JL + e. The value of n which

is necessary to secure the fulfilment of this condition will be greater
the smaller the value of e, but it is implied that, however small e

be taken, such a value exists.

Ex. 1. The sequence1324 111
2' 2' 3' 3'

"' n 1 n' < '

has obviously the limiting value 1.

Ex. 2. In the sequence

sin 2x sin Sx sin nx
(4)

the numerator lies always between + 1, whilst the denominator increases

indefinitely. The sequence has therefore the limiting value 0.
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It is sometimes possible, as in the examples just given, to shew
that a given sequence has a certain known quantity as its limit,

and is therefore convergent. The question to be resolved is, how-

ever, in general less simple, and a criterion is required as to whether
a proposed sequence has or has not a definite limiting value. There
are in fact many important mathematical quantities which can only
be defined as limits, and it is therefore necessary in such a case to

satisfy ourselves that the limit exists.

It is obvious in the first place that if the sequence (1) has a

limit, a value of n can always be found such that the members of

the sequence which follow xny viz. xn+l ,
xn+2 , ..., xn+py ,

will all

differ from xn by quantities not exceeding e, where e may be any
assigned quantity, however small. Conversely, if this condition is

fulfilled, the sequence has a definite limit.

To shew this let us construct in the first place a descending sequence
of positive quantities x , a ,

e3 ,
... whose limit is 0. Such a sequence

may be formed, for instance, by making each member one-half of the

preceding one. By hypothesis, a number n^ can be found such that all

the members of the sequence which follow xn^ lie between the values

x
ni -ci and x

ni
+ elt

and will therefore have a lower limit (c^) and an upper limit (fa), such

that
ft -0^26!.

Similarly, a number w2 (> n-^)
can be found such that the members which

follow xn .2
have a lower limit (aa) and an upper limit (/?a),

such that

and so on. The quantities alf cuj, a3 , ... form an ascending sequence,

and, since they are all less than fa, they have an upper limit
/A, say.

Similarly, the quantities fa, fa, fa form a descending sequence, with a

lower limit v. Moreover, since

v-p</3p -ap < 2ep ,

which may be as small as we please, these limits /* and v cannot be
different. Under the condition stated, the sequence (1) has the com-

mon value of ^ and v as its limit.

Ex. 3. An illustration is furnished by any arithmetical process in

which successive approximations to a result are obtained, provided
these are adjusted in the usual manner, the last significant figure being
increased by unity whenever the next following digit is 5 or any greater
number. Thus the operation of finding the square root of 6 gives

2-6457513....

The successive approximations, adjusted as above, are

2, 2-6, 2-65, 2-646, 2-6458, 2-64575, 2-645751, ...,

forming a sequence of the kind now under discussion. The numbers
which follow the first differ from it by less than '5 ;

those which follow
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the second differ from it by less than -05
;
those which follow the third

differ from it by less than '005
;
and so on. The sequence has there-

fore a definite limit.

Ex. 4. Consider the sequence in which

1

.(5)

The members are all positive, and (after the first) less than unity. It

follows that all members after the second are greater than J. Again,
we have

1 1

1 +x,n+l 1 +

or
4i+l

''n+l
(6)

Each member of the sequence is therefore alternately greater and less

than the one preceding it. Moreover, since the above ratio is, for

n> 1, less than
,
the intervals between successive members diminish

indefinitely. It easily follows that the sequence must converge to a

definite limit, which is obviously the positive root of
o _ -I /(TV

XT + X 1 \i )

By actual calculation from (5) we find in succession

1, -5, -6667, -6, -625, -6154, -6190, -6176, -6182,

the latter number being the correct value of the root in question, to four

figures.

The character of the sequence may be illustrated graphically by
means of the loci

L / c\\

Fig. 4.

The figure shews the essential part of the graph.

In this Example, and in Art. 2, Ex. 3, we have simple illustrations

of a method of approximating to the intersection of two curves which
is often useful. The convergence is however slow if the curves have

nearly the same inclination (in the same or in opposite senses) to the

axis of a?.
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5. Application to Infinite Series.

If in the infinite series

! + Wa +... + Wn +..., .....................(1)

whose terms are no longer restricted to be all of the same sign, we
write

sl
= ul> $2=^ + ^2, ...... sn = ul + u9 +... + unt ...... (2)

and if the sequence

has a limiting value S, the series is said to be '

convergent/ and S
is called its

* sum.'

It follows from Art. 4 that the necessary and sufficient con-

dition for the convergence of (1) is that it should be possible to

find a number n such that the partial sums sn+l ,
sn+2 , ..., sn+p ,...

all differ from sn by less than e, where e may be any assigned
quantity, however small.

An important theorem in the present connection is that if the

series

Kl + |i| + + |wn| + , ...............(4)

formed by taking the absolute values of the several terms of (1),

be convergent, the series (1) will be convergent.

For if (4) be convergent, the positive terms of (1) must & fortiori
form a convergent series, and so also must the negative terms. Let the

sum of the positive terms be p and that of the negative terms be q.

Also, let sm+n ,
the sum of the first m + n terms of (1), consist of m

positive terms whose sum is pm ,
and n negative terms whose sum is qn .

We have, then,

(P
- q)-sm+n = (P -q) - (Pm-Vn}

= (p-pm)-(q-<in)................ (5)

If m -f n be sufficiently great, p pm and q qn will both be less than
,

where c is any assigned magnitude, however small
; and the difference

of these positive quantities will be d fortiori less than e in absolute

value. Hence sm+n has the limiting value p q.

When the series (4), composed of the absolute values of the

several terms of (1), is convergent, the series (1) is said to be
'

absolutely/ or
'

essentially/ or
'

unconditionally
'

convergent.

It is possible, however, for a series to be convergent, whilst the

series formed by taking the absolute values of the terms has no

upper limit. In this case, the convergence of the given series is

said to be *

accidental/ or
'

conditional/
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The following very useful theorem holds whether the series

considered be essentially or only accidentally convergent :

If the terms of a series are alternately positive and negative,
and continually diminish in absolute value, and moreover tend

ultimately to the limit zero, the series is convergent, and its sum
is intermediate between the sum of any finite odd number of terms
and that of any finite even number, counting in each case from
the beginning.

The proof will be familiar to the student, but as it is a good
example of the kind of argument employed in the preceding Art., it is

here repeated.

Let the series be
a

1
-az + a3 -a4 + ..., (6)

where, by hypothesis,
a

1
>a2 >a3 > ....

In the figure, let

OMl
= alt M^Mi = a3 ,

MZM9
=

03, M
S
M

4
= a4
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assume that the sum is unaltered by any rearrangement of the
terms. In the case of an essentially convergent series this assump-
tion can be justified, but an accidentally convergent series can be
made to converge to any limit we please by a suitable adjustment
of the order in which the terms succeed one another. For the

proofs of these theorems we must refer to books on Algebra ; they
are hardly required in the present treatise.

The following simple theorems will, however, occasionally be
referred to.

1. If ttl + M8 +...+tt + ..................... (7)

be a convergent series whose sum is S, the series

... +aun + ..., ..................(8)

obtained by multiplying the terms of (7) by a factor a, will con-

verge to the sum aS. This hardly needs proof.

2. If u, + uz +... + un + .....................(9)

and uS +ua'+... + un'+ .....................(10)

be two convergent series whose sums are S and S', respectively,
the series

(MI M/) + (M. W) + + ( O + , ...(11)

composed of the sums, or the differences, of corresponding terms
in (9) and (10), will converge to the sum 8 S'. This is easily

proved. If sn ,
sn

'

denote the sums of the first n terms of (9)
and (10) respectively, the sum of the first n terms of (11) will be

sn sn
f

. Now

(SS')-(sn sn') = (S-sn)(S'-sn').......(12)

By hypothesis, if e be any assigned magnitude, however small, we
can find a value of n such that for this and for all higher values

we shall have

|tf-*n|<K and |tf'-*n'|<H ......... (13)

and therefore \(8 8')-(8n 8n')\<e, ............... (14)

which is the condition that sn sn
'
should have the limiting value

8 8'.

3. On the same hypothesis the series

+ buS) + (auz + bu2') + . . . + (aun + bu^ 4- . . . (15)

will converge to the sum aS + bS'. This follows easily from the

two preceding theorems.
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6. General Definition of a Function.

One variable quantity is said to be a '
function

'

of another

when, other things remaining the same, if the value of the latter

be fixed that of the former becomes determinate.

The two quantities thus related are distinguished as the
'

dependent
'

and the '

independent
'

variable respectively.

The notion of a function of a variable quantity is one which pre-

sents itself in various branches of Mathematics. Thus, in Arithmetic,
the number of permutations of n objects is a function of n-

}
the number

of balls in a square or a triangular pile of shot is a function of the

number contained in each side of the base
;
the sum (sn) of the first n

terms of any given series is a function of the number n
; and so on.

In some of these cases there are definite mathematical formulae for the

functions in question, but it is to be noticed that the idea of function-

ality does not necessarily require this; for example, the sum of the

first n terms of the series

I 1 II
l
a
+

2a
+

3*
+
42+

'"

is a definite function of n, although no exact mathematical expression
exists for it. So, again, the number of primes not exceeding a given

integer n is a definite function of n, although it cannot be represented

by a formula.

In these examples, the independent variable, from its nature, can

only change by finite steps. The Infinitesimal Calculus, on the other

hand, deals specially with cases where the independent variable is

continuous, in the sense of Art. 1. For instance, in Geometry the area

of a circle, or the volume of a sphere, is a function of the radius
;
in

theoretical Physics the altitude, or the velocity, of a falling particle is

regarded as a function of the time
;
the period of oscillation of a given

pendulum as a function of the amplitude ;
the pressure of a given gas

at a given temperature as a function of the density ;
the pressure of

saturated steam as a function of the temperature ;
and so on. Here,

again, the existence or non-existence of a mathematical expression
for the function is not material

;
all that is necessary to establish a

functional relation between two variables is that, when other things
are unaltered, the value of one shall determine that of the other.

In general investigations it is usual to denote the independent
variable by x, and the dependent variable by y. The relation

between them is often expressed in such a form as

y = <(#), or y=f(x\ &c.,

the symbol </> (x), for instance, meaning
' some particular function

of#.'

When a quantity varies from one value to another, the amount

(positive or negative) by which the new value exceeds the former
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value is called the
' increment

'

of the quantity. This increment
is often denoted by prefixing $ or A (regarded as a symbol of

operation) to the symbol which represents the variable magnitude.
Thus we speak of the independent variable changing from x to

x + x, and of the dependent variable consequently changing from

ytoy + By.

Hence if y=<i>(\ (1)

we must have y + fy <f> (x 4- &)> (2)

and therefore By = $ (x + &e) </> (x) (3)

At present there is no implication that x or Sy is small
;
the

increments may have any values subject to the relation (2).

Ex. 1. If y = x3
J
then if x = 100, Sx = 1, we have

8y = (101)
8

-(100)= 30301.

Ex. 2. If y = sin x, then if x = 60, &e = 1, we have

fy = -87462 - -86603 = -00859,

within a certain degree of accuracy.

7. Geometrical Representation of Functions.

We construct a graphical representation of the relation be-

tween two variables x, y, one of which is a function of the other,

by taking rectangular coordinate axes OX, OY. If we measure
OM along OX, to represent any particular value of the independent
variable x, and ON along Y to represent the corresponding value

of the function yt and if we complete the rectangle OMPN, the

K -.

Fig. 6.

position of the point P will indicate the values of both the

associated variables.

Since, by hypothesis, M may occupy any position on OX,
between (it may be) certain fixed termini, we obtain in this way
an infinite assemblage of points P.
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A question arises as to the nature of this assemblage ; whether,
or in what sense, the points constituting it can be regarded as

lying on a curve. In many cases, of course, there is no hesitation

about the answer. For example, if, to represent the relation

between the area of a circle and its radius, we make OM pro-

portional to the radius, and PM proportional to the area, then

PM oc OM*, and the points P lie on a parabola. The same curve

will represent the relation between the space (s) described by a

falling body and the time (t) from rest, since s varies as t
z
.

The general question must, however, be answered in the

negative. The definition of a function given at the beginning of

Art. 6 stipulates that for each value of x there shall be a definite

value of y ;
but there is no necessary relation between the values

of y corresponding to different values of x, however close together
these may be.

Without some further qualification the definition referred to

is indeed far too wide for our present purposes, the functions

ordinarily contemplated in the Calculus being subject to certain

very important restrictions.

The first of these restrictions is that of 'continuity.' This

implies that, asM ranges over any finite portion AB of the line OX,
N ranges over a finite portion HK of the line OF, i.e. N occupies
once at least every position between H and K. Further, that if

the range AB be continually contracted, the range HK will also

contract, and can be made as small as we please by taking AB
small enough.

It will be seen presently (Art. 8) that the second of these

properties includes the former. The formal definition which we

proceed to give is slightly different, although, as will be seen,

equivalent.

8. Definition of a Continuous Function.

Let x, y be any two corresponding values of the independent
variable and the function. I d^, d%, ...,0^, ... being any arbitrary

sequence of admissible values of the independent variable, having
x for its limit, the sequence ylt ya , ...,yn ,

of corresponding
values of the function converges always to the limit y, the function

is said to be 'continuous' for the particular value x of the in-

dependent variable.

It follows that if Bx denote an increment of x, and By the corre-

sponding increment of y, we can always find a positive quantity e,

different from zero, such that, for all admissible* values of Bx

* The restriction to ' admissible ' values of Sx means that x + 6x must be within
the range of values of the independent variable for which the function is defined.
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which are less in absolute value than e, the value of &/ will be
less in absolute value than cr, where cr is any prescribed quantity,
however small. This is often taken as the formal definition. If

the condition which it involves were violated, that involved in

the former definition could not be fulfilled. Hence the two
definitions are really equivalent.

The second definition is sometimes summed up briefly, but

imperfectly, in the statement that an infinitely small change in

the independent variable produces an infinitely small change in the
function. This means that if

<j> (x) be the function, it must be

possible to find a quantity e such that

| <j> (x + h)
-

(f> (x) |

h < e. The value of efor all admissible values of h such that

will in general depend upon that of cr, but it is implied that the

condition can always be satisfied by some value of e, however small

<r may be.

9. Property of a Continuous Function.

If
<j) (x) be a function which is continuous from x a to x = b,

inclusively, and if < (a), < (b) have opposite signs, there must be

at least one value of x between a and b for which $ (x)
= 0.

In the annexed figure it is assumed for definiteness that
<f> (a) is

positive and < (b) negative. The points of the line X'X for which x = a,

x = b are denoted by A, B> respectively, and the corresponding values

of the function are represented by AH, BK. The proof consists in

shewing that a series of diminishing intervals of lengths

AB,

H

Fig. 7.
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can be found, each forming part of the preceding, and each containing

points at which
<f> (x) is positive and points at which it is negative.

Let AB be supposed bisected at M
l

. If < (x)
= at Mlt the theorem

is established for this particular case. We may therefore exclude this

and similar contingencies in the sequel. If < (a;) does not vanish at

J/u then in one at least of the intervals AAflt M^B the function will

have both positive and negative values. If the statement applies to

only one of the intervals, we select that one
;

if to both, the selection

may be made arbitrarily. The selected interval is next supposed bisected

in MI. Excluding the case where
<f> (x)

= at M^ one at least of the

halves into which the selected interval has been divided will contain

points at which < (x) is positive and points at which it is negative. The

process may be continued indefinitely, and since

it follows by Art. 4 that the sequence of dividing points

thus obtained has a definite limiting position, denoted, say, by G.

Moreover, the value of
<j> (x} at G must be zero. For if it were

positive there would, in virtue of the assumed continuity of
<f> (x), be a

finite range on each side of G throughout which < (x) would be positive.

This would be inconsistent with the result just proved. Similarly if

the value of
<f> (x) at C were negative.

We may express the above theorem shortly by saying that a

continuous function cannot change sign except by passing through
the value zero.

It follows that if
</> (x) be a function which is continuous from

x = a to x =s b inclusive, and if (a), </> (6) be unequal, there must
be some value of x between a and b, such that

</> (x)
=

/3, where /3

may be any quantity intermediate in value to
</> (a) and < (6).

For, let

/(*)-*(*)-;
since (3 is a constant, f(x) also will be continuous. By hypothesis,

<t>(a)-l3 and 0(6) -0
have opposite signs, and therefore f(a) and f(b) have opposite

signs. Hence, by the above theorem, there is some value of x
between a and b for which f(x) = 0, or

</> (x)
=

y8.

In other words, a continuous function cannot pass from one

value to another without assuming once (at least) every inter-

mediate value.

L. i. o.
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10. Graph of a Continuous Function.

It follows from what precedes that the assemblage of points
which represents, in the manner explained in Art. 7, any continuous

function is a ' connected' assemblage. By this it is meant that a

line cannot be drawn across the assemblage without passing

through some point of it. For, denoting the function by <f> (x),

and the ordinate of any line by /(#), then if </>(#) and f(x) are

both continuous the difference

will be continuous (Art. 12), and therefore cannot change sign
without passing through the value zero.

The question whether any connected assemblage of points is

to be regarded as lying on a curve is to some extent a verbal one,
the answer depending upon what properties are held to be con-

noted by the term 'curve.' It is, however, obvious that a good
representation of the general course or

' march' of any given
continuous function can be obtained by actually plotting on paper
the positions of a sufficient number of points belonging to the

assemblage, and drawing a line through them with a free hand.

A figure constructed in this way is called a 'graph' of the function.

The construction of graphs of functions of the types

and their use to elucidate the theory of simple and quadratic

equations, will be familiar to the reader.

The graphical method will be freely used in this book (as in other

elementary treatises) for purposes of illustration. It may be worth

while, however, to point out that, as applied to mathematical functions,
it has certain limitations. In the first place, it is obvious that no finite

number of isolated values can determine the function completely; and,

indeed, unless some judgment is exercised in the choice of the values of

x for which the function is calculated, the result may be seriously mis-

leading. Again, the streak of ink, or graphite, by which we represent
the course of the function, has (unlike the ideal mathematical line) a

certain breadth, and the same is true of the streak which represents the

axis of x
;
the distance between these streaks is therefore affected by a

certain amount of vagueness. For the same reason, we cannot reproduce
details of more than a certain degree of minuteness; the method is

therefore intrinsically inadequate in the case of functions (such as can

be proved to exist) in which new details reveal themselves ad infinitum
as the scale is magnified*. Functions of this latter class are, however,
seldom encountered in the ordinary applications of the Calculus.

* An instance is furnished by the function x sin (1/x) in the neighbourhood of

the origin.
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The method of graphical representation is often used in practice
when the mathematical form of the function is unknown

;
a certain

number of corresponding values of the dependent and independent
variables being found by observation. The vagueness due to the breadth
of the lines is then usually less serious than that due to the imper-
fections of our senses, errors of observation, and the like.

The reader may be reminded of the meteorological charts which
exhibit the height of the barometer or thermometer as a function of the
time.

The substratum of fact underlying a graph constructed in the above
manner is of course no more than is contained in a numerical table

giving a series of pairs of corresponding values of the variables, but the

graphical form appeals far more effectively to the mind, by helping us
to supply in imagination the intermediate values of the function.

11. Discontinuity.

Although the functions ordinarily met with in Mathematics are

on the whole definite and continuous over the range of the inde-

pendent variable considered, exceptions to this statement may occur
at isolated points.

Thus it may happen that the original definition of the function
fails to give a meaning for particular values of the independent
variable.

Take, for instance, the function

sin a?
"~ ~"

x

For any value of x, other than 0, the numerator and denominator have
certain values, and the quotient exists. But when x = 0, the fraction
assumes the indeterminate form 0/0. It is true that the value 1 is then

usually attributed to it, but this is a matter of convention, and is not

implied in the original definition. Many such instances will present
themselves in the sequel.

Again, a function < (as) may become 'infinite* for some particular
value #! of x. The meaning of this is that by taking x sufficiently
nearly equal to x^ the value of the function can be made to exceed

(in absolute value) any magnitude which we please to assign, how-
ever great. This is usually expressed by the formula

linWs, <f> (x) = oo .

The above is the only meaning which the word '

infinite
'

has in

Mathematics, and the only legitimate use of the symbol oo is in
condensed statements of the above kind.

22
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Examples are furnished by the function Ifx, which becomes infinite

for x --
0, and tan x, which becomes infinite for x -> J TT, &c. See Fig. 1 5,

p. 28.

Again, in Mechanics, the period of oscillation of a pendulum, re-

garded as a function of the amplitude (a), becomes infinite for a -*- TT.

Again, a function, though finite, may be discontinuous for a

particular value x^ of xy i.e. its values for x = xl e and x = x^ 4- e

may be unequal, however small e may be. In that case the original
definition may or may not assign a definite value for x = acl .

An illustration from Mechanics is furnished by the velocity of a

particle which at a given instant receives a sudden impulse in the

direction of motion. In this case the '

velocity
; at the precise instant of

the impulse is undefined, although it has a meaning immediately before

and immediately after.

Times

Fig. 8.

Other more general types of discontinuity are imaginable, but
are not met with in the ordinary applications of the subject.

12. Theorems relating to Continuous Functions.

We may now proceed to investigate the continuity, or other-

wise, of various functions which have an explicit mathematical

definition, and to examine the character of their graphical repre-
sentations.

For this purpose the following preliminary theorems are neces-

sary:

1. The sum of any finite number of continuous functions is

itself a continuous function.

First suppose we have two functions u, v of the independent variable

x. Then
8 (u + v)

- (u + Su + v + &v)
-
(u + v)

= $u + Bv.
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From the definition of continuity it follows that, whatever the value
of <r, we can find a quantity c such that for

|

c
|

< e we shall have

|

8u
|

< | a- and
1

8v
\

<
^ cr, and therefore

|

8n + Sv
|

< <r.

Hence the function u + v is continuous.

Next, if we have three continuous functions u, v, w, then u + v is

continuous, as we have
just seen, and consequently (u + v) + w is con-

tinuous. In this way the theorem may be extended, step by step, to

the case of any^mfe number of functions.

2. The product of any finite number of continuous functions

is itself a continuous function.

First, take the case of two functions u, v. We have

8 (uv)
=
(u + Su) (v + 8v) uv

By hypothesis we can, by taking |

Sx
\

small enough, make 1

8u
\

and
|

8v
\

less than any assigned quantity, however small. Hence, since u and v

are finite,
|

vSu
\

and
|

uBv
\

can be made less than any assigned quantity,
however small. The same is evidently true of

|

8u$v
|. Hence, also, the

value of

can be made less than any assigned quantity, however small. That is,

uv is a continuous function.

Next, suppose we have three continuous functions u, v, w. We have
seen that uv is continuous ; hence also (uv)w is continuous. And so

on for the product of any finite number of continuous functions.

3. The quotient of two continuous functions is a continuous

function, except for those values (ifany) of the independent variable

^or which the divisor vanishes.

iu\ u + Bu u
We have

v v + -w v

v(v + 8v)

'

By hypothesis v 4= ;
there is therefore a lower limit M

t
different from

zero, to the absolute magnitude of v (v + Sv). This makes

"us-IK v
s u *

-T7 OU -
-^ 6VM M

Since v/M and u/M are finite, we can, by taking 8a; small enough, make

\v/M.?>u\ and u/M.8v\ less than any assigned magnitude, however
small. The same will therefore be true of |8(w/v)|; i.e. the quotient

u/v is continuous.
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4. If y be a continuous function of u, where u is a continuous
function of x, then y is a continuous function of x.

For let Sx be any increment of a?, Bu the consequent increment of

u, and 8y the consequent increment of y. Since y is a continuous
function of u, we can find a quantity e' such that if

|

8u I <
e',

then
| Sy | r,

where cr may be any assigned quantity, however small. And since u is

a continuous function of x
t
we can find a quantity ,

such that if

|

Sx
|

< e, then
|

Sit
|

< e'.

Hence if
|

Sx
\

< t, we have
| 8y \ r,

which is the condition of continuity of y, considered as a function of x.

13. Algebraic Functions. Rational Integral Functions.

An '

algebraic
'

function is one which is obtained by performing
with the variable and known constants &nyfinite number of opera-
tions of addition, subtraction, multiplication, division, and extraction

of integral roots.

All other functions are classed as 'transcendental'; they in-

volve, in one form or another, the notion of a 'limiting value'

(Arts. 4, 19).

A '

rational
'

algebraic function is one which is formed in like

manner by operations of addition, subtraction, multiplication, and

division, only. Any such function can be reduced to the form

where the numerator and denominator are rational 'integral' func-

tions
;

i.e. each of them is of the type

Anx
n + An.lx

n-l +An_iX
nr*+...+A l a; + Aih ......(1)

where n is a positive integer, and the coefficients are constants.

Such an expression, when it consists of more than one term, is often

more briefly referred to as a '

polynomial,' the algebraic character

being understood.

A rational integral function is finite and continuous for all

finite values of the variable. For xm
, being the product of a finite

number (ra) of continuous functions (each equal to x), is finite and
continuous. Hence also Axm is finite and continuous ;

and the

sum of any finite number of such terms is finite and continuous

(Art. 12).
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A rational integral function becomes infinite for a -*-

Writing the function (1) in the form

23

A
n

" n l
,
-^n a

,

"I o r
^1

x

we see that by taking x great enough (in absolute value) we can
make the first factor (x

n
) as great as we please, whilst the second

factor can be made as nearly equal to An as we please. Hence
the product can be made as great as we please. Moreover, if x be

positive the sign of the product will be the same as that of A n ,

whilst if a? be negative the sign will be the same as that of An ,
or

the reverse, according as n is even or odd.

It follows that in the graphical representation of a rational

integral function y=f(x) the curve is everywhere at a finite dis-

tance from the axis of x, but recedes from it without limit as x is

continually increased, whether positively or negatively. In actually

constructing the curve, it is convenient if possible to solve the

equationf(x)
= 0, as this gives the intersections of the curve with

the axis of x.

Ex. To trace the curve

= x(x*-l).

This cuts the axis of x at the points x = 0, + 1. Since, when x --
0, x3

becomes infinitely small compared with x, the curve approximates near

the origin to the straight line y = x, which is in fact the tangent
there,

Since y changes sign with x, we need only calculate the ordinates

for positive values of x. We easily construct the following table, where

only two significant figures are retained.

X
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0-5

1-0

0-5

0-5

1-0

0-5 1-0 V5

Fig. 9.

14. Rational Fractions.

A function v F(x)
.(1)

which is rational but not integral, is finite and continuous for all

finite values of x except those which make /(#) = 0*. For the

rational integral functions F(x) and f(x) have been proved to be

finite and continuous ;
and it follows, by Art. 12, that the quotient

will be finite and continuous except when the denominator vanishes.

The curve represented by (1) will cut the axis of x in the points

(if any) for which F(x) 0. It will have asymptotes parallel to y
wherever f(x) 0, whilst, for all other finite values of a?, y will be
finite and continuous. The values of y for x -* + oo will depend on
the relative order of magnitude of I (x) and f(x). If F (x) be of

higher degree than f(x) the ordinates become infinite
;

if of lower

degree the ordinates diminish indefinitely, the axis of x being an

asymptote; if the degrees are the same, there is an asymptote
parallel to x.

In cases where the degree of the numerator is not less than
that of the denominator, it is convenient to perform the division

indicated until the remainder is of lower degree than the divisor,

and so express y as the sum of an integral function and a '

proper
'

fraction.

The following examples are chosen to illustrate some of the

more important points which may arise.

*
It is assumed that the fraction has been reduced to its lowest terms.
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Ex. 1.

CONTINUITY

_l_-_aj__l _!_

2ic 2
+
2x

25

This makes y = for x = 1, and y -* + oo for cc -*> 0. Also y is positive
for 1 >#> 0, and negative outside this interval. From the second form

of y it appears that for x -*- oo we have y = J. We further find, as

corresponding values of x and y :

o;=-oo, -3, -2, -1, --5, 0, -5, 1, 2, 3, +00,
= --5, --67, --75, -1, -1-5, +o>, -5, 0, -'25, --33, --5.

The figure shews the curve.

X*-

Ex. 2. y =
_x(l x) _

1 +07

Here y = for x = and x = 1, and y -*- + oo for a; -*- - 1. Also y changes

sign as x passes through each of these values. For numerically large
values of x, whether positive or negative, the curve approximates to the

straight line

y = - x + 2,

lying beneath this line for x
on p. 26 shews the curve.

+ oo
,
and above it for x -*- - oo . Fig. 1 1
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-t i -v t i 1

Fig. 11.

Ex. 3.

Here y vanishes for x = 0, and for x -*- oo
,
and becomes infinite for

x -*- 1. Again, y is positive for 1 > x > and negative for x > 1. Also,

y changes sign with x.

Y

Fig. 12.
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Ex. 4.

CONTINUITY

2a?

27

As in the preceding Ex., y vanishes for oj = and a?-*+<, and

changes sign with x. But the denominator does not vanish for any real

value of x
t
so that y is always finite.

15. The Circular Functions.

The general definitions of the '
circular

'

functions

sin a?, cos a?, tana;, &c.,

are given in books on Trigonometry.

The function sin x is continuous for all values of x. For

8 (sin x)
= sin (x -f Bx) sin x

= 2 sin J&c . cos(#+ %&x).

The last factor is always finite, and the product of the remaining
factors can be made as small as we please by taking Sx small

enough.

In the same way we may shew that cos x is continuous. This

result is., however, included in the former, since

Again, since

cos x = sin (x + TT).

sma;

cos a;

the continuity of sin a; and cos a? involves (Art. 12) that of tana;,

except for those values of x which make cos x = 0. These are given

by x = (n + J) TT, where n is integral.

In the same way we might treat the cases of sec x, cosec a?,

cot a;.
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The annexed figures shew the graphs of sin x and tan x. The
reader should observe how immediately such relations as

sin (- x)
= sin x, sin (TT x) = sin x

t

sin (x + TT)
= sin x

y
tan (a; + TT)

= tan a?

can be read off from the symmetries of the curves.

Y

-3

-4

Fig. 15.
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16. Inverse Functions.

If y be a continuous function of" x, then under certain conditions

x will be a continuous function of y. This will be the case when-

ever the range of x admits of being divided into portions (not

infinitely small) such that within each the function y steadily in-

creases, or steadily decreases, as x increases.

Let us suppose that as x increases from a to b the value of y

steadily increases from a to ft. Then corresponding to any given
value of y between a and there will be one and only one value of

x between a and 6. Hence if we restrict ourselves to values of a;

Fig. 16.

within this interval, x will be a single-valued function of y. It is

also easily seen to be a continuous function of y.

For, if we give any positive increment e to a?, within the above in-

terval, y will have a certain finite increment <r, and for all values of 8y
less than cr, we shall have Sx < e. A similar argument holds if the in-

crement of x be negative. Hence we can find a positive quantity o- such

that, being any assigned positive quantity, however small,
|

&x
\

< e for

all values of 8y such that
j fy \

r. But this is the condition for the

continuity of x regarded as a function of y (Art. 8).

The same conclusion obviously holds if y steadily diminishes in

the interval from x = a to x = b.

If we do not limit ourselves to a range of x within which the

function steadily increases, or steadily diminishes, then to any given
value of y there may correspond more than one value of x

; the

inverse function is then said to be '

many-valued/ Again, it may
(and in general will) happen that through some ranges of y there

are no corresponding values of x, i.e. the inverse function does not

exist.

if ". y-/() (i)

the inverse functional relation is sometimes expressed by

(2)



30 INFINITESIMAL CALCULUS [CH. I

We then have f{f^(y)} =/() =
y, (3)

i.e. the functional symbols / andf~l cancel one another. This is

the reason of the notation (2).

The graph of any inverse function is derived from that of the
direct function by mere transposition of x and y.

Ex. 1. Let y y?. This is a continuous function of cc, and, if x be

positive, continuously increases with x. Hence x, =
^/y, is a continuous

function of y. If x be unrestricted as to sign, we have two values of x
for every positive value of y ;

these are usually denoted by + >Jy. If

y be negative, the inverse function >Jy does not exist.

Ex. 2. The *

goniometric
'

or ' inverse circular
'

functions

sin"1
x, cos"1 x

t
tan"1

x, &c.
are many-valued.

The functions sin"1
x, cos" 1 x exist for values of x ranging from 1

to + 1, but not for values outside these limits.

The function tan"1
a; exists for all values of x. It is many-valued, the

values forming an arithmetical progression with the common difference IT.

The curves for sin" 1
a; and tan" 1

a; are shewn in Figs. 21, 22, pp. 60,
62.

17. Upper or Lower Limit of an Assemblage.

Before proceeding further with the theory of continuous
functions it is convenient to extend the definitions of the terms
'

upper
'

and ' lower
'

limit, and '

limiting value/ given in Arts. 2

and 4.

Consider, in the first place, any assemblage of magnitudes,
infinite in number, but all less than some finite magnitude 0.
The assemblage may be defined in any way ;

all that is necessary
is that there should be some criterion by which it can be deter-

mined whether a given magnitude belongs to the assemblage or

not. For instance, the assemblage may consist of the values

which a given function (continuous or not) assumes as the inde-

pendent variable ranges over any finite or infinite interval.

In such an assemblage there may or may not be contained a

'greatest' magnitude, i.e. one not exceeded by any of the rest;
but there will in any case be an '

upper limit
'

to the magnitudes
of the assemblage, i.e. there will exist a certain magnitude //,

such

that no magnitude in the assemblage exceeds
/JL,

whilst one (at

least) can be found exceeding any magnitude whatever which is

less than p. And if
//,
be not itself one of the magnitudes of the

assemblage, then an infinite cumber of these magnitudes can be
found exceeding any magnitude which is less than /*.
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The proof of these statements follows, as in Art. 2, by means
of the geometrical representation.

In the same way, if we have an infinite assemblage of magni-
tudes, all greater than some finite quantity o, there may or may
not be a 'least' magnitude in the assemblage; but there will in

any case be a 'lower limit' v such that no magnitude in the

assemblage falls below v, whilst one (at least) can be found below

any magnitude whatever which is greater than v. And if v be

not itself one of the magnitudes of the assemblage, an infinite

number of these magnitudes can be found less than any magnitude
which is greater than v.

An important example occurs in the definition of the '

perimeter
'

of a circle.

If we have any number of points on the circumference of a given
circle, then by joining them in order we obtain an inscribed polygon,
and by drawing tangents at the points we obtain a circumscribed

polygon. It is easily proved that the perimeter of any inscribed

polygon formed in this way is less than that of any circumscribed

polygon. Hence, considering the whole assemblage of possible inscribed

polygons, their perimeters will have a definite upper limit. Similarly
the perimeters of all possible circumscribed polygons will have a lower

limit.

Moreover, these two limits must be identical. For, let PQ be a

side of one of the inscribed polygons of the assemblage, PT and QT

Fig. 17.

the tangents at P and Q ;
let be the centre, and let PQ meet OT

in N. Then PT and QT will be portions of sides of a circumscribed

polygon, and if 2 be a sign of summation extending round the polygons
the ratio of the perimeters of the two polygons will be
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Hence, by a known theorem, the ratio in question will be intermediate

in value between the greatest and least of the ratios

qxr
PT OP'

which would occur in the complete figure. But when the angles POQ
are taken sufficiently small, the number of sides in the polygons being

correspondingly increased, each of the ratios ONJOP can be made as

nearly equal to unity as we please. Hence the upper and lower limits

above mentioned must be the same.

This definite limit to which the perimeter of an inscribed (or

circumscribed) polygon tends, as the angles which the sides subtend at

the centre are indefinitely diminished, is adopted by definition as the
'

perimeter
'

of the circle. The proof that the ratio
(TT)

which this limit

bears to the diameter of the circle is the same for all circles will be
found in most books on Trigonometry.

The length of any arc of a circle less than the whole perimeter

may be defined, and shewn to be unique, in a similar manner.

18. A Continuous Function has a Greatest and a Least
Value.

An important property of a continuous function is that in any
finite range of the independent variable the function has both a

greatest and a least value.

More precisely, if y be a function which is continuous from
x = a to x b, inclusively, and if p, be the upper limit of the

values which y assumes in this range, there will be some value

of as in the range for which y = fju. Similarly for the lower limit.

The theorem is self-evident in the case of a function which

steadily increases, or steadily decreases, throughout the range in

question, greatest and least values obviously occurring at the

extremities of the range. It is therefore true, further, when the

function is such that the range can be divided into a finite number
of intervals in each of which the function either steadily increases

or steadily decreases.

The functions ordinarily met with in the applications of the

subject are, as a matter of fact, found to be all of this character,
but the general tests by which in any given case we ascertain

this are established by reasoning which assumes the truth of the

theorem of the present Art. See Art. 48. It is therefore desirable

as a matter of logic to have a proof which shall assume nothing
concerning the function considered except that it is continuous,

according to the definition of Art. 8.
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The following is an outline of such a demonstration. In the

geometrical representation, let OA = a, OB = b. If at A the value of y
is not equal to the upper limit /A,

it will be less than /A ; let us denote it

by 2/0-
We can form, in an infinite number of ways, an ascending

sequence of magnitudes
2/0, y\>y*, -

whose upper limit is /n. For example, we may take yl equal to the

arithmetic mean of y$ and /A, y2 equal to the arithmetic mean of yt and

/A,
and so on. Since, within the range AB, the value of y varies from

2/
to any quantity short of /A, there will (Art. 9) be at least one value

of x for which y assumes the intermediate value ylt Let x
1 denote

this value, or (if there be more than one) the least of such values, of x.

K.

N
:

H

A M 2 M 3 M 4 M

Fig. 18.

B

Similarly, let x^ be the least value of x for which y
It is easily seen that the quantities

and so on.

(which are represented by the points Mlt J/2 ,
Jf8 ,

... in the figure*)
must form an ascending sequence ;

let M represent the upper limit of

this sequence. Since any range, however short, extending to the left

of M contains points at which y differs from /A by less than any assign-
able magnitude, it follows from the continuity of the function that the

value of y at the point M itself cannot be other than
/A.

* The diagram is intended to be merely illustrative, and is not essential to the

proof. It is of course evident that any function which can be adequately repre-
sented by a graph is necessarily of the special character above referred to, for which
the present demonstration is superfluous.

In the figure, OK=fj., OH=yQi ON\=y\, ON^=y^ t ... ; and, in the mode of

forming the sequence

?o> 2/1- 2/2,

bisects HK, NI bisectswhich is suggested (as a particular case) in the text,

N-L K, Nz bisects N% K, and so on.

L. i. c. 3
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To see that the above theorem is not generally true of discontinuous

functions, consider a function defined as follows. For values of x other

than let the value of the function be (sin x)/x, and for x = let the
function have the value 0. This function has the upper limit 1, to

which it can be made to approach as closely as we please by taking |

x
\

small enough ; but it never actually attains this limit.

19. Limiting Value of a Function.

Consider the whole assemblage of values which a function y
(continuous or not) assumes as the independent variable x ranges
over some interval extending on one side of a fixed value x. Let
us suppose that, as x approaches the value xlt y approaches a

certain fixed magnitude X in such a way that by taking x xl

sufficiently small we can ensure that for this and for all smaller

values of x xl
\

the value of y \
\

shall be less than <r, where
a- may be any assigned magnitude however small. Under these

conditions, X is said to be the '

limiting value
'

of y as x appoaches
the value a?x from the side in question.

The relation is often expressed thus :

but in strictness the side from which x approaches the value x^

should be specified.

If we compare with the above the definition of Art. 8 we see

that in the case of a continuous function we have

^ <f> (x)
=

<f> to), .....................(1)

or the '

limiting value
'

of the function coincides with the value

of the function itself, and that if xl lie within the range of the

independent variable this holds from whichever side x approaches
ah. If, on the other hand, x+ coincides with either terminus of the

range, x must be supposed to approach x^ from within the range.

Conversely, a function is not continuous unless the condition

(1) be satisfied.

Let us next take the case of a function the range of whose

independent variable is unlimited on the side of x positive. If as

x is continually increased, y tends to a fixed value X in such a way
that by taking x sufficiently great we can ensure that for this and
for all greater values of x we shall have

| y X
|

less than <r, where
a may be any assigned positive quantity, however small, then X is

called the limiting value of y for x - oo , and we write

There is a similar Definition of
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when it exists, in the case of an independent variable which is

unlimited on the side of x negative.

20. General Theorems relating to Limiting Values.

1. The limiting value of the sum of any finite number of

functions is equal to the sum of the limiting values of the several

functions, provided these limiting values be all finite.

2. The limiting value of the product of any finite number of

functions is equal to the product of the limiting values of the

several functions, provided these limiting values be all finite.

3. The limiting value of the quotient of two functions

is equal to the quotient of the limiting values of the separate
functions, provided these limiting values be finite, and that the

limiting value of the divisor is not zero.

The proof is by the same method as in Art. 12, the theorems of

which are in fact particular cases of the above.

Thus, let u, v be two functions of #, and let us suppose that as x

approaches the value xl ,
these tend to the limiting values ul9 vlt

respectively. If, then, we write

u = u-i + a, v = vl + ft,

a and ft will be functions of x whose limiting values are zero. Now

(u + v) (ul + v
l)
= a +

ft,

uv - u^ = avl + ftu^ + aft,

u u
\

v v

And, as in Art. 12, it appears that by making x sufficiently nearly
equal to a^ we can, under the conditions stated, make the right-hand
sides less in absolute value than any assigned magnitude however
small.

21. Illustrations.

We have seen in Art. 19 that the limiting value of a continuous
function for any value x^ of the independent variable x, for which
the function exists, is simply the value of the function itself for

x = Xi. It may, however, happen that for certain isolated or extreme
values of the variable the function does not exist, or is undefined,
whilst it is defined for values of x differing infinitely little from
these. It is in such cases that the conception of a '

limiting value
'

becomes of special importance.

Ex. 1. Take the function

32
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The algebraical operations here prescribed can all be performed for any
value of x between + 1, except the value 0, which gives to the fraction

the form 0/0. Now the definition of a quotient .a/b is that it is a

quantity which, multiplied by 6, gives the result a. Since any finite

quantity, when multiplied by 0, gives the result 0, it is evident that the

quotient 0/0 may have any value whatever. It is therefore said to be
1 indeterminate.'

We may, however, multiplying numerator and denominator of the

given fraction by 1 + */(!
- cc

2
), put the function in the equivalent form

and for all values of x between + 1, other than 0, this is equal to

1

1 + ^(1
- x3

)

'

Since this function is continuous, and exists for x = 0, its limiting value

for o;-*-0 is .

Ex. 2. Consider the function

As x is continually increased this tends to assume the indeterminate

form oo oo . But, writing the expression in the equivalent form

we see that its limiting value for x -*- oo is 0.

Ex. 3. The period of oscillation of a given pendulum, regarded as

a function of the amplitude a, has a definite value for all values of a

between and TT, but it does not exist, in any strict sense, for the ex-

treme values and TT. There is, however, a definite limiting value to

which the period tends as a approaches the value zero. This limiting

value is known in Dynamics as the ' time of oscillation in an infinitely

small arc.'

22. Some Special Limiting Values.

The following examples are of special importance in the Differ-

ential Calculus.

1. To prove that

..(1)x a

for all rational values of m.
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Ifm be a positive integer, we have

lim,,;-*./.
= lima-^a (x

m~l+ cw?
m~a+ . . . + am~tx + am~l

)xa
-

since, the number (m) of terms being finite, the limiting value of

the sum is equal to the sum of the limiting values of the several

terms (Art. 20).

If m be a rational fraction, =p/q, say, we put

=
yff,

a = 6,
and therefore

#m __ am ymq
_ frmq yp

_ ftp

x-a

This fraction is equal to

y-fr

y?
- b*

'

y-b
The limiting value of the numerator is pb?*

1
,
and that of the de-

nominator is qbv~
l
, by the preceding case. Hence the required

limit is

-\ =mam~l
,

? ?
as before.

If m be negative,
= n, say, we have

xm am x~n a~n 1 xn

x a x a xnan
'

x a

If n be rational, the limiting value of this is

,
= ma"1"1

,

by the preceding cases.

2. To prove that

sin 6 r ,
=1, hrn^o = 1.............(2), ^o

If we recall the definition of the '

length
'

of a circular arc

(Art. 17) these statements are seen to be little more than truisms.

If, in Fig. 17, p. 31, the angle POQ be 1/wth of four right angles,
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then n . PQ will be the perimeter of an inscribed regular polygon
of n sides, and n (TP + TQ) will be the perimeter of the corre-

sponding circumscribed polygon. Now, if

6 s= z PGA = TT>,
we shall have

chord PQ PN Sin0

arc PQ arc PA
~

6

and
TP + TQ PT tan 6

arc PQ arc PA d

Hence the fractions

sin 6 , tan 6
and

e

denote the ratios which the perimeters of the above-mentioned

polygons respectively bear to the perimeter of the circle. Hence,
as n is continually increased, each fraction tends to the limiting
value unity (Art. 17).

In the above argument, it is assumed that 6 is a submultiple
of TT. But, whatever the value of the angle POQ in the figure,
we have

chord PQ < arc PQ, and TP + ^Q > arc PQ ;

i.e. (sin Q)J6 < 1, and (tan 0)/0 > 1. Hence these fractions must
have respectively an upper and a lower limit

;
and it follows from

the preceding that neither of these limits can be other than unity.

The following numerical table illustrates the way in which the
above functions approach their common limiting value as # is con-

tinually diminished.

n
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23. Infinitesimals.

A variable quantity which in any process tends to the limiting
value zero is said ultimately to vanish, or to be '

infinitely small.'

Two infinitely small quantities are said to be ultimately equal
when the limiting value of the ratio of one to the other is unity.
Thus, when tends to the limit 0, sin 6 and 6 are ultimately

equal, by Art. 22 (2).

It is sometimes convenient to distinguish between different

orders of infinitely small quantities. Thus if u, v are two quantities
which tend simultaneously to the limit zero, and if the limit of

the ratio v/u be finite and not zero, then v is said to be an

infinitely small quantity of the same order as u. But, if the limit

of the ratio v/u be zero, then v is said to be an infinitely small

quantity of a higher order than u. More particularly, if the limit

of v/u
m be finite and not zero, v is said to be an infinitesimal of

the mth order, the standard being u.

Ex. 1. When, in Fig. 17, p. 31, the angle POQ is indefinitely

diminished, NA and A T are ultimately equal. For, by similar triangles,

qp__ or
ON~ OP J

OP - ON OT- OP
and therefore ^^ ~~OP J

NA _ON
AT~ OP'

and the limiting value of the ratio ON/OP is unity.

Again, NT is an infinitesimal of the second order, if the standard

be PN. For

NT 1 1
whence -- =

,
= in the limit.

Ex. 2. We have

l-cos0 = 2sinH0 = (^-H .J0. ..(1)* \ iH I * \ I

When 0-+-Q the limit of the first factor is unity. Hence 1 cos is

an infinitesimal of the second order, the standard being 0.

Again
n W* cos A0
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When 0-*-0, the first two fractions tend each to the limit 1. Hence
tan sin 6 is an infinitesimal of the third order. This is equivalent
to the statement that in the figure referred to PT - PN is ultimately
of the third order, the standard being PN.

The following principle enables us to abbreviate many argu-
ments, especially in the applications of the Calculus to Geometry
and Mechanics :

If a and ft be two infinitesimals of the same order, and if of

and ft' be other infinitesimals which are ultimately equal to a and

ft respectively, then

For --- -^ -
ft'~ a' ft" ft*

'

and the limits of the first two fractions on the right-hand are

unity, by hypothesis. The result follows by Art. 20*.

A quantity which in any process finally exceeds any assignable

magnitude is said to be 'infinitely great.' And if one such quantity
u be taken as a standard, any other v is said to be infinitely great
of the rath order when the limit of v/u

m
is finite and not zero.

EXAMPLES. I.

(Algebraic Functions.)

1. Draw on the same diagram the graphs of xn for the cases

n= 1, 2, 3, , -$,

for values of x ranging from to 1 '2 1.

2. Draw graphs of :

(1) (x-l)(x-2), x*-x + l.

(2) x(l-x)*, a?(l-x)\

(3) OJ + -. x .

x x

* A good example of the application of this principle will be found in Art. 63.

f The curves should be drawn carefully to scale
;
for this purpose paper ruled

into small squares is useful. The numerical tables of squares, square-roots, and

reciprocals, given in the Appendix (Tables A, B, C), will occasionally help to shorten

the arithmetical work.
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EXAMPLES. III.

(Sequences.)

1. Find the upper and lower limits of the magnitudes

where n= 1, 2, 3, ....

2. If, in the sequence

where m and c are positive, and m. < 1, the sequence has the limit

c/(l
- m) whatever the value of c^.

3. The quantities

where an+i = \/(2 + ),

form an ascending sequence whose limit is 2.

4. If a

where c^ and k are positive, the sequence is ascending or descending,

according as ax
is less or greater than the positive root of a;

2 = x + k,

and has in either case tins root as its limit.

5. Examine the character of the sequence where

k

k being positive. Prove that if Oj be positive it has as a limit the

positive root of x* + x = k.

6. Find a sequence of quantities approximating to the positive
root of the equation

7. Prove that the sequence formed according to the law

where a^ lies between 1 and 2, has for its limit the least positive root

of the equation tan x = x.

8. If an+ i, bn+l are respectively the arithmetic and harmonic

means between an and 6n ,
and Oj, 6j be positive, the sequences whose

nth terms are an and bn respectively have the common limit
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9. If a = a + b b

and a,, b^ are positive, the sequences whose wth terms are an ,
bn con-

verge to a common limit.

(This limit is called the *

arithmo-geometric mean' between a^
and 6X.)

EXAMPLES. IV.

(Limiting Values of Functions.)

1. Find the limiting values, for x --
0, of

sin ax tan ax

x x

2. Find the limiting values, for x -*- 0, of

sin"1 x
,
tan"1 x- and- .

x x

3. Trace the curves

sin x 1 cos x
y=^' y=^

4. Prove that

\imx+ n (sec x - tan x) = 0.

5. Prove that

as

6. Prove that

lim^ao {,J(x* + x + 1) -a;}
= .

7. Regular polygons are inscribed and circumscribed to a given
circle.- Prove that when n is large the difference between the areas of

the in- and circumscribed polygons of 2n sides is one-fourth the differ-

ence between the areas of the in- and circumscribed polygons of n
sides.

8. A straight line AB moves so that the sum of its intercepts
OA, OB on two fixed straight lines OX, OY is constant. If P be the
ultimate intersection of two consecutive positions of AB, and Q the

point where AB is met by the bisector of the angle XOY, then
AP = QB.

9. Through a point A on a circle a chord AP is drawn, and on
the tangent at A a point T is taken such that AT = AP. If TP
produced meet the diameter through A in Q, the limiting value of AQ
when P moves up to A is double the diameter of the circle.
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10. A straight line AS moves so as to include with two fixed

straight lines OX, OY a triangle AOB of constant area. Prove that
the limiting position of the intersection of two consecutive positions of

AB is the middle point of AB.

11. A straight line AB of constant length moves with its ex-

tremities on two fixed straight lines OX, OY which are at right angles
to one another. Prove that if P be the ultimate intersection of two
consecutive positions of AB, and N the foot of the perpendicular from

on AB, then AP = NB.

12. Tangents are drawn to a circular arc at its middle point and
at its extremities; prove that the area of the triangle contained by
the three tangents is ultimately one-half that of the triangle whose
vertices are the three points of contact.

13. If PGP' be any fixed diameter of an ellipse, and QV any
ordinate to this diameter

;
and if the tangent at Q meet CP produced

in T, the limiting value of the ratio TP : P V, when PV is infinitely

small, is unity.



CHAPTER II

DERIVED FUNCTIONS

24. Introduction. Geometrical Illustrations.

The Differential Calculus originated in the problem of finding
the direction of the tangent-line to a given curve at any given

point.

Let P and Q be adjacent points on a continuous curve

y-*(X (i)

and PM, QN their ordinates, and let PR be drawn parallel to

OX. Let the chord PQ meet the axis of x in S. If the point P

be fixed, whilst Q is made to approach P, this chord will, in the

case of any ordinary geometrical curve, tend to assume, except

possibly at one or more isolated points, a definite limiting position
PT, which is adopted as the definition of the '

tangent-line' at P.

The direction of the tangent-line is determined by the angle
which TP makes with OX, i.e. by the limiting value of the angle
PSX in the figure. If we put
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we have
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...(2)

The problem is therefore to find the limiting value of the ratio

By/fix as 8# tends to the limit zero. This limiting value is

denoted by

This is to be regarded as a single symbol, the fractional appear-
ance being preserved merely in order to remind us how the limit

is approached.

Analytically, the same thing is denoted by <' (x\ which is

called the
' derived function

*

of
</> (a?).

It is convenient to have a geometrical name to denote the

property of a curve which is indicated by the symbol (3). We
shall use the term '

gradient
'

in this sense. If from any point P
on the curve we draw the tangent-line to the right, the gradient is

the trigonometrical tangent of the angle which the direction of

this line makes with the positive direction of the axis of x. If

this angle is negative, the gradient is negative ;
if the tangent-

line is parallel to OX, the gradient vanishes. See Fig. 20.

In most cases with which we have to deal the gradient is

itself a continuous function of x
y except that it may occasionally

become infinite at isolated points, where the tangent is perpen-
dicular to OX. The figure includes the case of an isolated dis-

continuity of finite amount in the gradient.

Fig. 20.

25. General Definition of the Derived Function.

As the notion of the derived function is important in almost

all branches of Mathematics, we proceed to define it in a more
formal manner, without special reference to Geometry.
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Let y be a function which is continuous over a certain range
of the independent variable x

;
let Bx be any increment of x such

that x + Bx lies within the above range, and let By be the con-

sequent increment of y. Then, x being regarded as fixed, the

ratio

Bx

will be a function of Bx. If as Bx (and consequently also By)
assumes any series of values having zero as its limit, this ratio

tends to a definite and unique limiting value, the value thus
arrived at is called the 'derived function,' or the 'derivative,'

or the 'differential coefficient/ of y with respect to x, and is

denoted by the symbol

dx

More concisely, the derived function (when it exists) is the

limiting value of the ratio of the increment of the function to the
increment of the independent variable, when both increments are

indefinitely diminished.

It is to be carefully noticed that in the above definition we
speak of the limiting value of a certain ratio, and not of the ratio

of the limiting values of By, Bx. The latter ratio is indeter-

minate, being of the form 0/0.

When we say that the ratio By/Bx tends to a unique limiting
value, it is implied that (when x lies within the range of the

independent variable) this value is the same whether Bx approach
the value from the positive or from the negative side. It may
happen that there is one limiting value when Bx approaches
from the positive, and another when Bx approaches from the

negative side. In this case we may say that there is a '

right-

derivative,' and a '

left- derivative,' but no proper
c

derivative
'

in

the sense of the above definition. See Fig. 20.

The question whether the ratio By/Bx really has a determinate

limiting value depends on the nature of the original function y.
Functions for which the limit is determinate and unique (save
for isolated values of x) are said to be '

differentiate.' All other

functions are excluded ab initio from the scope of the Differential

Calculus.

A differentiate function is necessarily continuous, but the

converse statement is now known not to be correct. Functions

which are continuous without being differentiable are, however,,

of very rare occurrence in Mathematics.
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There are various other notations for the derived function,
in place of dyjdx. The derived function is often indicated by
attaching an accent to the symbol denoting the original function.

Thus if

y=4>(*\ ...........................(3)

the derived function may be denoted by y or, as already stated,

oince By fl(g
K >

ox ox

we have, writing h for &c,

<t> (x + h)
-

<j> (x) f x
(4)

This formula is often used in the sequel.

The operation of finding the differential coefficient of a given
function is called 'differentiating.' If x be the independent
variable, we may look upon d/dx as a symbol denoting this

operation. It is often convenient to replace this by the single
letter D

;
thus we may write, indifferently,

d d

for the differential coefficient of y with respect to x.

26. Physical Illustrations.

The importance of the derived function in the various appli-
cations of the subject rests on the fact that it gives us a measure
of the rate of increase of the original function, per unit increase

of the independent variable.

To illustrate this, we may consider, first, the rectilinear motion of

a point. The distance 8 of the point from some fixed origin in the

line of motion will be a function of the time t reckoned from some
fixed epoch. The relation between these variables is often exhibited

graphically by a 'curve of positions/ in which the abscissae are pro-

portional to t and the ordinates to s. If in the interval St the space
$s is described, the ratio 8s/82 is called the ' mean velocity

'

during the

interval 8tf; i.e. a point moving with a constant velocity equal to this

would accomplish the same space 8s in the same time 8t. In the limit,

when St (and consequently also 8s) is indefinitely diminished, the

limiting value to which this mean velocity tends is adopted, by de-

finition, as the measure of the 'velocity at the instant t.' In the

notation of the Calculus, therefore, this velocity v is given by the

formula
ds
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In the graphical representation aforesaid, v is the gradient of the

curve of positions.

Again, the velocity v is itself a function of t. The curve repre-

senting this relation is called the 'curve of velocities.' If 8v be the

increase of velocity in the interval S, then Sv/8t is called the * mean
rate of increase of velocity,' or the ' mean acceleration' in this interval.

The limiting value to which the mean acceleration tends when St is

indeBnitely diminished is called the 'acceleration at the instant t.'

If this acceleration be denoted by a, we have

In the graphical representation, a is the gradient of the curve of

velocities.

In the case of a rigid body revolving about a fixed axis, if be

the angle through which the body has revolved from some standard

position, the ' mean angular velocity
' in any interval Bt is denoted by

SQ/Bt, and the '

angular velocity at the instant t
'

by

Again, if co denote this angular velocity, the ' mean angular accele-

ration' in the interval 8t is denoted by Sco/Stf,
and the *

angular
acceleration

'

at the instant t by

Again, the length of a bar of given material is a function of the

temperature (0). If x be the length at temperature of a bar whose

length at some standard temperature (say 0) is unity, then 8x/&0

represents the mean coefficient of (linear) expansion from temperature
to temperature + SO, and dx/d6 represents the coefficient of ex-

pansion at temperature 6.

As another example, suppose we have a fluid which is free to

assume a series of states such that the pressure (p) is a definite

function of the volume (v) of unit mass. If the volume change from
v to v + Sv, the fraction - Sv/v measures the ratio of the diminution of

volume to the original volume, and gives therefore what is called the

'compression.' The ratio of the increment of pressure 8p required
to produce this compression, to the compression, is v&p/Sv. The

limiting value of this when 8v is infinitely small, viz. vdp/dv, is

defined to be the 'elasticity of volume' of the fluid under the given
conditions.

27. Differentiations ab initio.

Before investigating general rules for calculating the derivatives

of given analytical functions, we may discuss a few examples
independently from first principles.

L. LGL 4
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Ex. 1. If y = a?, we have 8y = 8x, and therefore

8y , dy
^-=1, whence -/-=!.
oa? dx

s. 2. Let y = x*

We have, writing h for &,

8y _ (x + h)*
- y? _

Proceeding to the limit (h -*
0), we find

dx

Ex. 3. Let t/=-

have Sy = r
x

and
Bx x (x + h)

'

rr dy 11
Hence j~ hnifc-^odx ^x(x + h)~ a?'

The negative sign is due to the fact that y diminishes as x increases.

we have 8y = J(x + h) Jx - ^ .

j V 1
and ;r =

ox ^(x + h) +

Proceeding to the limit (h
--+>

0), we find

dy 1

.(6)

28. Differentiation of Standard Functions.

1. If y= *m
, ..............................(1)

Sy (x +
- = ^H

,

we have .

oa?
(a; + oa?) x

It has been shewn in Art. 22, 1, that, for all rational values of m,
the limiting value of this fraction when 8x -* is mxm~\ Hence

1
. ...........................(2)^ '
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Ex. If m = 2, dy/dx = 2x-, if m =
, dy/dx = $x~ i Of. Art. 27.

2. If y = sina?, ........................... (3)

we have, writing h for Sx,

8y sin (x + A) sin a? sinM
/ = -,A - = -rf- . cos (a? + J/i).
oa; h %h,

If the angles be expressed in
'

circular measure/ we have

by Art. 22, 2; and the limiting value of the second factor is

cos x. Hence
dy
-^ = cosa?............................(4)dx

The student should refer to the graph of sin x on p. 28, and
notice how the gradient of the curve varies in accordance with
this formula.

3. If y = cos#, ...........................(5)

By cos (x -t- h) cos x
we have -/-

--*-J.-
ox h

sin 3th . , - ,.= --YT sin (x + |/fc);
\n>

the limiting value of which is, on the same understanding as

before,

4. If y = tanar, ...........................(7)

we have

Sy _ tan (x + h) tan x _ sin (x + A) cos x cos (x + h) sin a?

&E ^ h cos a; cos (a? + h)

_ sin A 1

A
"

cos x cos (x + ti)

Hence, in the limit,

dy 1
- = -
dx cos2

a;
(8)

This shews that the gradient of the curve y = tan x
t between

the points of discontinuity, is always positive ;
see Fig. 15, p. 28.

42
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29. Rules for differentiating combinations of simple
types. Differentiation of a Sum.

1. Let y = u +C} ...........................(1)

where u is a known function of #, and G is a constant. We have

y + By = u + Bu + Gt

and therefore By = Bu,

By _ Bu

Bx Bx'

. ,. ,. ., dy du
or, in the limit, ^ =^ ............................(2)

This fact, that an additive constant disappears on differ-

entiation, obvious as it is, is very important. The geometrical

meaning is that shifting a curve bodily parallel to the axis of y
does not alter the gradient.

2. Let y = u + v, ...........................(3)

where u, v are given functions of x. As in Art. 12, we find

By = Bu + Bv,

By Bu Bv
and therefore -^ = *- + ~ .

ox ox ox

Hence, since the limiting value of a sum is the sum of the limiting
values of the several terms,

dy^du^dv^
dx dx dx' '

Again, if y= u + v + w, ........................(5)

dwdy d , ^ dw
we have -/ = -r- (u + v) + -j-dx dx dx

dx dx dx' '

by a double application of the preceding result. In this way we
can prove, step by step, that the derived function of the sum
of wayfinite number of given functions is the sum of the derivatives

of the separate functions.

Ex. The derived function of

A xm + Aix
m~ l + ... +Am_l x + Am

is
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30. Differentiation of a Product.

1. If y=Cu, ..............................(1)

where G is a constant, and u a function of x, we have

y + % = G (u +

and therefore 8

T,. By 8u
Hence /- = l/ ~- ,

ox ox

and, proceeding to the limit,

dy _ ~du
dx dx' "^ '

Hence a constant factor remains attached after the differentiation.

The geometrical meaning of this result is that if all the

ordinates of a curve be altered in a given ratio, the gradient is

altered in the same ratio. Of. Fig. 27, p. 84.

2. Let y = uv, ..............................(3)

where u, v are both functions of x. As in Art. 12,

Sy = (u + Su) (v + &v) uv

u&v

By Bu / ~ x Bv
and therefore ~?- = v-^+(u+ ou) =- .

oa? da?
7
oa?

Hence, proceeding to the limit, and making use of the principle
that the limit of a product is the product of the limits, we have

dy _ du dv

dx dx dx'
"'

If we divide both sides of this equation by y,
= uv, we obtain

the form
I dy __

1 du 1 dv

y dx u dx v dx'

This result is easily extended
;
thus if y = uvw, we have, writing

y = zw, where z = uv,

1 dy __
1 dz 1 dw

y dx
~~

z dx w dx

^

u dx v dx w dx' ^ '
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by a double application of the preceding result. And so on for

any finite number of factors.

If we multiply both sides by y, =uvw..., the generalized form

of the last result becomes

dy du dv dw
-^-=VW...-T- + UW... -T- + UV...-T-+ ..., .........(6)ax ax ax ax

or, in words :

The derived function of a product is found by differentiating
with respect to x so far as it is involved in each factor separately,
the other factors being treated as constants, and adding the

results.

Ex. 1. If y = u.u.u ...... to m factors = um
,

............ (7)

, 1 dy 1 du 1 du m du
we have ---- j-+- -i- + ... to TO terms = --=- .

y ax u ax u ax u dx

, dy ft
. du

whence ~ = mum-1 -- ............................ (8)
ax dx

A general proof of this result, free from the restriction that m is

a positive integer, is given in Art. 32.

Ex.2. If y = sin x cos x, ...........................(9)

i dy d . . ^ d .

we nave
-^-

= cos x -=- (sm x) + sin x -=- (cos x)
ctx ax ax

= cos x . cos x sin x . sin x

= cos2 x sin2 x = cos Zx. ........................ (10)

Ex. 3. If y=x*Bmx, .............................. (11)

, dy , d . . ^ d . ,.we nave -^- = xr -=- (sm x) + sm x -=- (ar
2
)

dx dx^ dx^ '

(12)

31. Differentiation of a Quotient.

Let
. y-J. ..............................(1)

where ut v are given functions of x. As in Art. 12, we find

Bu Bv
n\ _ ^_ ni _

, By Bx Bx
whence -/-= ^ox v(v+ 00)
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Hence, in the limit,

du dv
j v j-- u j-
dy _ ax ax

In words : To find the derived function of a quotient, from the

product of the denominator into the derived function of the

numerator subtract the product of the numerator into the derived

function of the denominator, and divide the result by the square
of the denominator.

The particular case y=- ..............................(3)

is worthy of separate notice. We then have

v + Sv v

Bv_

By _ Sx

Bx v(v + Bv)
'

=--
dx v2 dx'

This might of course have been deduced by putting u = 1, dujdx =
in the general formula (2).

. if

du _ dv -. nwe have -=- = 1 -I- 2x, -j-
= 1 + 2#,ux doc

dy (1 + 2#) (1 x + x9
) + (1 2a?) (1 + x + ar")whence -=- = 7= ^dx (1 x + x*y

-
n
8(1-1 (6)

I 1 -r ?> l /y* \ \ *

^' 2 - K
: -i W

where m is a positive integer, we have

dy 1 , c?w , d?wy
j- ^ ?ww 1 = mu .

dx w2*' dx dx'
'

see Irt 32.
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The formula of this Art. may also be deduced from Art. 30 (4).

If y u/v, we have u = vy, and therefore

1 du _ 1 dv 1 dy ,

Q
.

u dec v dx y dx
'

1 dy I du 1 dv
whence -j = ~

j
---

j~5
y dx u dx v dx

this is equivalent to (2) above.

The following examples are important :

1. If y = tana;=
> .....................(11)cos a?

^ / \ ^ / \
, cos x -7- (sin x) sin x -=- (cos x)

we find
dx cos3 x

cos* x + sin8 x
(12)

cos a?

This agrees with Art. 28, 4.

Similarly, if y = cota?, ...........................(13)

we find -p
= cosec'a;.........................(14)

2. If y = seca? =
, ..(15)

cos a?

dy 1 d , x sin a?

we have -/-
=--

-j-(cosa?)
= ............. (16)dx cos2 x dx ^

cos2 x v '

Similarly, if y = cosec xt (17)

, dy cos a?

we find -*=- -
(18)dx sin2 x

If, as explained in Art. 25, we employ the symbol D to denote
the operation of differentiating with respect to x, the results of

Arts. 29 31 may be summed up as follows :

(19)

(20)

v '
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32. Differentiation of a Function of a Function.

If y = F(u), (1)

where u=f(x\ (2)

the symbols F,f denoting given functions, then

dy = dy ^ = p^/u\
f>,x

\

dx du dx

For, if &r, 8y, Su be simultaneous increments, we have

By By Bu

Bx~ Bu' Bx'

identically ;
and therefore, since the limit of a product is the product

of the limits,

dy _ dy du

dx du' dx*

A useful application of the formula (3) occurs in the theory of recti-

linear motion. Thus if, as in Art. 26, we denote by v and a the velocity
and the acceleration, respectively, of a moving point, we have

ds dv

Hence if v be regarded as a function of the space described (), we have

dv ds dv

Similarly, in the case of a rigid body rotating about an axis, the

angular acceleration, when the angular velocity is regarded as a function

of 0, will be given by
dio dO dot

The following deductions from (3) are important :

1. If y = F(x + a), ........................(7)

then, putting u x + a, du/dx = 1, the formula (3) gives

The geometrical meaning of this is that shifting a curve bodily

parallel to the axis of x does not alter the gradient.
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2. If y=F(ka>), ........................... (9)

we have, putting u = kx, duldx = k,

*g
= kF'(kx).........................(10)

3. If y = um, ...........................(11)

where m is any rational quantity, we have

F (u)
= um

, F'(u) = mum~\

and therefore j^ = wum
~1

j^ ......................(12)dx dx

In particular, in the cases w =
J, m = \ t

we find

d_, 1 du

dx 2*udx'

If we put u = x, v = jj(a*
- a;

2

),

x
we have Du =

1, and Dv =
lt

dx \/u 2a^ dx
'

>

respectively.

We add a few examples on the above rules.

Ex. 1. If y = sinm aj, (14)

that is, y = un
,
where u = sin x

t

du
we have Dy mum~l -=- =m sin"1"1 x cos x. (15)ax

Ex.2. If y= fj(a*-x*) (16)

we have Dy = D (a*-xrf = % (a* -x*)~* . D (a?-x*)

= - T73r3R <17>

by the preceding Ex. The rule for differentiating a fraction then gives

y V - ^ W W*-*- \S k/ 1 VV t^/ I

Jjy = ^ '

ir a or

'
09)
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33. Differentiation of Inverse Functions.

If y be a continuous function of x, then under a certain con-

dition (see Art. 16), which is fulfilled in the case of most ordinary
mathematical functions, x will be a continuous function of y.

If Bx, By be corresponding increments of x and y, we have

By Bx
__

Bx
'

By

identically. Hence, since the limit of the product is equal to the

product of the limits,

dy dx _ -

dx' dy

Hence, it being presupposed that y is a differentiate function of x,

it follows that x is in general a differentiate function of y, and that
the two derived functions are reciprocals.

The geometrical meaning of this is that the tangent to a curve
makes complementary angles with the axes of x and y.

The following cases are important :

1. If y=sm"1
#, (2)

dx
we have x sin y, -7- = cos y.y *

dy
y

Hence dy _
dx cosy

2. If j^cos"1^ (4)

i dx
we have y cos y, -7-

= - sin y,
ay

and therefore ~- = : = + -77- -
. , . .(5}dx sin y v(l a2

)

The ambiguity of sign in these results is to be accounted for

as follows. We have seen that if y = sin"1
x, then y is a many-

valued function of x
;

viz. for any assigned value of x (between
the limits 1) there is a series of values of y. For some of these

dy/dx is positive, for otheis negative; see Fig. 21 (p. 60). Similarly
for cos"1 x.

If, in accordance with a usual convention, we agree to under-
stand by sin"1

a? the angle between JTT and TT whose sine is x,
we must write

A 8^-* = +-^-^ (6)
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Pig. 21.
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Similarly if cos"1 x be restricted to lie between and TT, we have

-j-cos~
1
a; = 77=

-
-. ....... ..(7)dx - *

3. If y=ism-l
x, (8)

we have x tan y, -j-
= sec8 y,

and therefore -?" r- =^ ;. ..C9)
cte sec y L + or

There is here no ambiguity of sign. For each value of x there is an
infinite series of values of y, but the value of dy/dx is the same for all,

the tangent lines at the corresponding points of the curve y = tan"1 x
being parallel. See Fig. 22, p. 62.

*** y =8in
'1

7rrr^ (10)

or y = sin" 1 u. where u =

^ , dy dy du 1 duWe have -- - ^- -=- = -j- -j- .

dx du dx ^/(l uz
)
dx

We easily find

1 du I

a?Y

. dywhence -r- = -=

It is easily proved (putting x tan 6) that

sin
~1

V(rb)
=tan~la!>

so that the above result is in accordance with (9) above.

Ex.*. Let y=tan-
1

J

+a? +
^. ..(12)

1 a; -far

T .. 1+05 + aj
2

If we write u
-x + x

dy 1 du
we have =

^
-

5 -j-.dc 1 -i- w2
cia;
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We find

whence

8 =

INFINITESIMAL CALCULUS

2 (1 + 3ar + a?) du_ 2(1-
dx

dy
dx a*

[CH. II

.(13)

P-i

M

P-2

-Sir.

>

Fig. 22.

34. Functions of two or more independent variables.
Partial Derivatives.

Although in this treatise we are primarily concerned with
functions of a single independent variable, it will occasionally be
useful, even at an early stage, to have at our command ideas and
notations borrowed from the more general theory.
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One quantity u is said to be a function of two or more inde-

pendent variables x, y, . . .
,
when its value is determined by those

of the latter, which may be assigned arbitrarily, and independently,
within (in each case) a certain range. Thus if P be any point of

a given surface, and a perpendicular PN be drawn to any fixed

horizontal plane, the altitude PN is a function of the coordinates

(xt y) of the point N.

Fig. 23.

So again, in Physics, the pressure of a gas is a function of two

independent variables, viz. the volume (per unit mass) and the

temperature.

The functional relation is expressed by an equation of the form

y> ).........................(1)

In particular, in the aforesaid case of a surface, if we denote the
altitude PN by z, we have

(2)

The definition of continuity given in Art. 8 may be extended
to the present case as follows. A function <f>(x,y, ...) is said to be
continuous for a particular set x

t y, ... of values of the independent
variables if a quantity e, different from zero, can always be found
such that < (x + Bx, y + By, ...) shall differ in absolute value from

<t> (a, yy ...) by a quantity less than any prescribed magnitude <r,

however small, for all values of the increments Sx, By, ... which are
less in absolute value than e.
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Thus, in the case of two independent variables, illustrated by
the figure, it is implied that a rectangle can be drawn in the plane

xy, about N, such that the ordinates at all points within this rect-

angle shall differ from PN by less than <7, however small <r may be.

Let us now suppose, the function

y, ...) ........................(3)

being continuous, that all the independent variables save one (x)

are kept constant. Then u being assumed to be a differentiate

function of x, its derived function with respect to x is called the
1

partial differential coefficient
'

or
'

partial derivative
'

of u with

respect to x, and is denoted by du/dx. Thus

In like manner

8tt_ H 0(g,y + Sy,...)-ftfoy,...) /KN
a
~- m**-o- -^-

- .......(5)

In the case of the surface (2) it is plain that the partial deri-

vatives

dz "dz

dx* dy

are the gradients of the sections (HK, LM, in the figure) of the
surface by planes parallel to the planes ZOX, ZOY respectively.

Ex. 1. If z-xmyn, .............................. (6)

f)z fix

we have =majm~ 1

y
n
,

= nxmy
n~l

................... (7)

Ex. 2. Assuming that in a gas the pressure (p\ volume (v), and
temperature (6) are connected by the relation

RO

, dp RO Bp R
TO nave = _ =

(9)00 tr 90 . v v '

35. Implicit Functions.

An equation of the type

in general determines y as a function of x
;
for if we assign any

arbitrary value to x, the resulting equation in y has in general one
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or more definite roots. These roots may be real or imaginary, but
we shall only contemplate cases where, for all values of x within a

certain range, one value (at least) of y is real. The term '

implicit
'

is applied to functions determined in this manner, by way of con-

trast with cases where y is given
'

explicitly
'

in the form

............................(2)

If we regard z = <f>(x,y) .............................. (3)

as the equation of a surface, then (1) is the equation of the section of

this surface by the plane 2 = 0. If the plane xy be regarded as hori-

zontal, the sections z = C, where C may have different constant values,

are the ' contour-lines.'

If we require to differentiate an implicit function, we may seek,

first, to solve the equation (1) with respect to y, so as to bring it

into the form (2). It is useful, however, to have a rule to meet
cases where this process would be inconvenient or impracticable.
It will be sufficient, for the present, to consider the case where

(f> (x, y) is a rational integral function of x and y, i.e. it is the sum
of a finite series of terms of the type Am%n x

m
y
n

, where m, n may
have the values 0, 1, 2, 3, .... Since, by hypothesis, </>(#, y) is con-

stantly zero, its derived function with respect to x will be zero.

Now by Arts. 28, 30, 32, we have

(a*yn)
= mxntr-l

y
n + nxmy

nr~l

-^-
.

Hence, if
<f> (x, y)

= 2Am>nx
m
y
n

, .....................(4)

we have 2Amtnma^*yn + ZAmtnnx
m
y
n-1

-j
= ..........(5)

In the notation of Art. 34, this may be written

Q
"dx dy dx

. ............................(7)dx
9</>

dy

It will be shewn in Chapter iv that the results (6) and (7) are not
limited to the above special form of

<f> (x, y) ; but the present case

is sufficient for most geometrical applications.

L. I.C.
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EXAMPLES. V.

(Differentiations ab initio.)

L Find, from first principles, the derived functions of

* V 4 4*'
ar" Jx'

1 x + a 1
2. Also of

+ x-a

3. Also of

4. Also of cot x
t

sec a;, cosec a?.

5. Also of sin2 x, cos2
x, sin 2a;, cos 2x.

6. If, in the rectilinear motion of a point,

where u, a are constants, prove that the velocity at time t is u + at,

and that the acceleration is constant.

7. If the pressure and the volume of a gas kept at constant

temperature be connected by the relation

pv const.,

the cubical elasticity is equal to p.

8. If the radius of a circle be increasing at the rate of one foot

per second, find the rate of increase of the area, in square feet per
second, at the instant when the radius is 10 feet.

9. If the area of a circle increase at a uniform rate, the rate of

increase of the perimeter varies inversely as the radius.

10. A is a fixed point on the circumference of a circle whose
centre is and radius one foot. A point P, starting from A, describes

the circumference uniformly in one second. Find the rates of increase

(1) of the arc AP, (2) of the chord AP, (3) of the sectorial area A OP,
(4) of the triangular area A OP, at the instant when the angle AOP
is 60.

11. If the volume of a gramme of water varies as

1
(fl- 4

)
8

*
144000'

where 6 is the temperature centigrade, find the coefficients of cubical

expansion for = and 6 = 20.
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EXAMPLES. VI.

(Products and Quotients.)

Verify the following differentiations :
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EXAMPLES. VII.

(Functions of Functions.)

1. y = (x + a)
m
(x + b)*t Dy = (x + a)

m~l

(x + b)
n~l

{(m + w) x + mb + na\.

x* nxn
~ l

i) am Jill
*" #~/i . -An **& ~ /I , ,vAn-4-l"

8. y =

9. t/
=

10. v =

X
12. y =

13. v =

5. y = (1 + a

t/(5. y = (1 a

7. ,-
1

*"* 2/~ //I J\ i ~ Uy II a
. i\ A

14. y = sin 2
(a; a), Dy = 2 cos 2 (x a).

15. y = sin2 2a5, /ty = 2 sin 4ic.

16. y= A/(! +sina;), -^2/
=

2 sin a;

17. y = tan2
as, Dy = ^ .

cos8 a;

_. 2 sin x
18. y = sec8 x, Dy = -
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in r> 3 sin2 x
19. y = tana:, Dy= -

cos* a;

20. y = sin1 x + cos* x, Dy = 3 sin x cos x (sin a; - cos x).

21. y

22.

sin8 05 n 2 sin a; ,
Z<:J - y =

gg -kfy
= ~

~j (* cos a; - sin
a;).

24. y = sin mx sin na:, Dy = n sin mo; cos nx
+ m cos mx sin no;.

EXAMPLES. VIII.

(Inverse Functions.)

1. y = Bm-
l
(l-x), Dy = -

in2 a; + /? cos*
a;)

'

_ i ** * i

2. y = sin l
x,

3. y = cot"1
a?,

4. y = sec"1
a;,

5. y = cosec"1
a;,

6. y = sin"1
a;

f sin 1

>/(! #a
),

-
1)'

7. y = tan"1 x + tan" 1 -
,

x

8nt CJ1 Tl """^ / Vli* // I /Y** 1 v /)f/v oiii
i
^*/ ^ i x ~

<ju
i^| !/

*~

. 2a;
9. 3/

= tan 1

r-^,

10. y = cos- 1

r-r^, % =

11. y = tan" 1

1+ar"

tan a sin x tan a

1 + sec a cos a; sec a + cos a;
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12.

13. y sin"1

(cos x\ Dy = 1.

EXAMPLES. IX.

1. What is the geometrical meaning of the theorem

2. If y = tan-1 -
,

_. vDu uDv
prove that JJy = 5 ^w2 + v3

1 xn+l
8. Assuming that = = 1 + a: + re

1 + ... + a;
n
,

x ~~ x

deduce, by differentiation, the sum of the series

l + 2x + 3o2 + ... +nxn-\

and test the result by putting x\.
Hence shew that, if

|

x
\

< 1,

1 + 2x + 3x* + v? + ... to oo =
(1
-
x)~\

4. If, in the rectilinear motion of a point, va be a linear function

of s, the acceleration is constant.

^5. If v2 be a quadratic function of
,
the acceleration varies as

the distance from a fixed point in the line of motion.

6. If the time be a quadratic function of the space described, the

acceleration varies as the cube of the velocity.

7. If tf = A + -
8

,

the acceleration varies inversely as the square of the distance from a

fixed point in the line of motion.

8. If * be a quadratic function of t, the acceleration varies

as 1 /s
s
.

9. If the pressure and the volume of a gas be connected by the

relation

pvi = const.,

the cubical elasticity is yp.
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EXAMPLES. X.

(Partial Differentiation.)

1. Sketch the contour-lines of the surface

az = y? + y
2
,

and describe the general form of the surface.

2. Also of the surface az = xy.

3. If =/(* + y),

dz dz

prove that
g-^,

and give the geometrical interpretation of this result.

4. If r

., 8r
prove that r =

a?, r = y.ox oy

5. If



THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS

36. The Exponential Function.

The functions now to be considered may be denned in various

ways, but from the point of view of the Calculus, as well as of

most applications, their fundamental property is that they satisfy

equations of the type

where k is a (positive or negative) constant. That is, the rate of

increase bears always a constant ratio to the instantaneous value

of the function.

The generalized
'

exponential
'

function as thus defined*, may
be contrasted with the '

linear
'

function

(2)

so called because its graph is a straight line. It has in fact the

same relation to the linear function which the law of compound
bears to that of simple interest, provided we imagine the interest

to accrue continually instead of at fixed intervals.

The general linear function involves two constants, viz. the

gradient 6, and the initial value a. If the matter were not already

sufficiently simple, we might adopt as the standard linear function

the one whose gradient and initial value are each = 1, so that

y = i + *............................(3)

The general linear function may be derived from this by suitable

alterations of the scales of x and y.

The general exponential function involves in like manner two

constants, viz. the constant k in (1), and the initial value (7,

say. It will appear presently that these two constants completely
determine the function. We choose as our standard function of

this type the one for which k = 1, and whose initial value is unity.

* It will be seen later that it is necessarily of the form Cax if x is rational,
whence the name, since the variable x appears as an index or *

exponent.'
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In other words we define the exponential function par excellence

as being that solution ot the equation

which is equal to unity when x = 0.

37. The Exponential Series.

We have to shew in the first place that such a function exists,

and also to find if possible a means of calculating it, to any desired

degree of approximation, for any assigned value of x.

Let us assume, tentatively, that the equation

can be satisfied by the sum of a power-series, say

n + ..........(2)

where the first term has been fixed by the condition that y 1 for

x 0. On the hypothesis that this value of y can be differentiated

by the same rule which applies (Art. 29) to a finite series of terms,

we should have

nxn
-l + ..., ...(3)

and the equation (1) would therefore be satisfied, provided

AI = 1, 2-A a
= AI, D-O.J = A%i ..., fiAn = A.n_i. ..

This requires

AI = 1, A a
=

j^A l
= ^ )

A 9
= ^A,l

=
,
...

and, generally,

We are thus led to study the series

This is convergent, and has therefore a definite
'

sum/ for any
given value of x. For the ratio of the (n + l)th term to the nth,
viz. x/n, can be made as small as we please (in absolute value) by
taking n great enough. Hence a point in the series can always
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be found after which the successive terms will diminish more

rapidly than those of any geometrical progression whatever. The
series is therefore convergent, by Art. 5; it is moreover 'absolutely'

convergent. We denote its sum by E (x).

We proceed to shew that the function E(x) as thus defined is

continuous and differentiate, and that it does in fact satisfy (1).

We write

a* at

ff(*)-}{ 6*)- (<-

a? of

so that

E(x) = C(x) + S(x), E (- x) = C (as)
- S (x)....... (9)

We note that the terms of C (x) are all positive, whilst those of

8 (x) are of uniform sign, the same as that of x
;
this simplifies the

subsequent discussion.

If xl and x be two values of the variable, which we will suppose
to have the same sign, we have

a?, + x xf 4- xfx 4- a^aP + x*

Li</1
4-#1

2n-8# + ...4-*, i

(2)l T
the equalities resulting from the theorems 1 and 2 of Art. 5.

Let be a positive quantity equal to the absolute value of xl or x,

whichever is the greater. We have, then,

1
, ......(11)

and the series in
{ }

is therefore less in absolute value than

ts fcan i

+3-!+
+
(2n-l)I

+ - >

i.e. less than 8 (), which is finite. Hence

(12)
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The function C (x) is therefore continuous for all values of x. In

the same way we may shew that S (x) is continuous. The con-

tinuity of E (x) then follows from (9).

Again, from (10),

C(xl)-C(x) _xl + x xf + xfx +x^ + x*

X-x 2! 4!

,

...
, n^~W

The terms on the right-hand side are of uniform sign, whether

that of x and ^ be positive or negative. The numerator of the

term last written therefore lies between 2nxzn
~l and 2n#1

2n~1
,
and

the sum of the series accordingly lies between S (x) and Sfa).
Since S (x) is continuous, it follows that

(14)

or C'(x)=8(x).........................(15)

It may be shewn, in the same way, that

8'(x)=C(x).........................(16)

Hence, E' (x)
=^ {C(x) + 8 (x)}

= 0' (x) + 8' (x)

~S(x) + C(x) = E(x), .....................(17)

so that (1) is satisfied by y = E (x), for all values of x.

Finally, we can shew that the solution of (1) thus obtained is

unique, under the condition that y = 1 for x = 0. For if u, v denote

two such solutions, we have

du dv

and therefore v -,
u -j- ......................(19)dx dx

(-)-a ........................(20)dx \vj

The ratio v/u is therefore constant*, and if u= 1, v I for x= 0,

the constant must be unity, whence u = v.

* This assumes by anticipation an almost obvious theorem of winch a formal

proof is given in Art. 56.
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38. Addition Theorem. Graph of E (x).

The more general equation

may be written -

7/7 <
= V,

d(kx)
y

and its solution, under the condition that y - I for x = 0, is there-
fore

y = E(kx)............................(3)

Now let u = E(ox).E(bx)......................(4)

We have

du

fe
= aE' (ax) . E (bx) + bE f

(bx) . E (ax)

= (a + b)E(ax).E(bx) = (a + b)u............. (5)

Also the initial value of u is unity. Hence

u = E{(a + b)x} t ........................(6)

or E(a).E(b) = E(a+b), ..................(7)

for all values of a and 6. This constitutes the '

addition theorem
'

of the exponential function.

In particular we have

E(x).E(-x) = E(Q) = l, ..................(8)

We have seen that the function E (x) is continuous. Moreover,
when x is positive, every term of the series for E (x) continually
increases with x, and becomes infinite for x -* + oo . The same
holds d fortiori for the sum. Also, in virtue of (9), it appears that

if x be positive E ( x) is positive and continually diminishes in

absolute value as x increases, and vanishes for x -*- oo . Hence
as x increases from oo to -I- oo

, the function E (x) continually
increases from to + oo

,
and assumes once, and only once, every

intermediate value.

The accompanying figure shews the curve
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A column of numerical values of the function E (x) is given in

Table E at the end of the book.

Fig. 24.

39. The number e.

The result (7) of Art. 38 may be extended. Thus

E(a).E(b).E(c) = E(a + b).E(c) = E(a + b+c), (1)

and so on for any number of factors.

If we form the product of n factors, each equal to E (1), we
have

[E(l)}
n = E(l + 1 + ... to n terms) =E(n) (2)
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It is usual to denote the quantity E(l), or

by the symbol e. Its value to seven places of decimals is

6=2-7182818.

With this notation we have, if n be a positive integer,

= en............................(4)

Again, if m/n be an arithmetical fraction (in its lowest terms),
we have

\E (-}\

n
=E (- + - + ... to n terms)

= E(m) = e,
I \nj) \n n )

fvn\
and therefore E

[ }
en ............................(5)

Hence, if x be any positive rational quantity, integral or fractional,

we have
= e*. ...........................(6)

It follows, from Art. 38 (9), that

so that the formula (6) holds for all rational values of x, whether

positive or negative.

It is to be noticed that the symbol e?, when x is irrational, is

(so far) undefined. We may now define it as merely another symbol
for the sum of the series E(x). The advantage of this definition

is that the notation serves to remind us of the algebraical laws to

which the function is subject. Thus we have

& . ey = E(x) x E(y) = E(x + y)
= ex+v,

whether x and y be rational or irrational.

The actual calculation of e is very simple. The first 13 terms of

the series (3) are as follows :

1 + 1=2 = -166 666 667

= -041 666 667
41
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=^ = -008 333 333
!

JL = -001 388 889
b !

71
= -000 198 413

^ = -000 024 802
o !

1

9l

J_
10!

1

11!

1

12!

The sum of these numbers is 2*718281830.

neglecting the remaining terms is

1 1 1

000 002 756

000 000 276

000 000 025

000 000 002

The error involved in

13! H! T
15!

which is less than

1 / JL JL J_ \

13!\
h

13
+
132

+
138+ "7'

or
12.12!*

and therefore does not affect the ninth place of decimals. Hence,

allowing for the errors of the last figures in the above table, we may
say with confidence that the result just found represents the value of e

correctly to seven decimal places.

40. The Hyperbolic Functions.

There are certain combinations of exponential functions whose

properties have a close formal analogy with those of the ordinary

trigonometrical functions. They are called the hyberbolic sine,

cosine, tangent, &c.*, and are denned and denoted as follows :

sinh x =

cosha=

-
e~*)

= x + =- +
o ! Dl

coth x

sinh x

cosh x '

cosh x

sinh x '

sech x =

cosech x =

cosh x '

1

sinh x
'

J

.(2)

We notice that cosh x, like cos x, is an ' even
'

function of x
; i.e. it

is unaltered by writing x fora;, whilst sinh #, like sin a?, is an

*
They have in some respects the same relation to the rectangular hyperbola

that the circular functions have to the circle. See Art. 100, Ex. 2.

f These functions have already appeared, under a slightly different notation, in
Art. 37.
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' odd
'

function, i.e. the function is unaltered in absolute value but
reversed in sign by the same substitution of x for #.

Y'

Fig. 25.

The figure shews the curves

y = <?> y
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together with the curves

y = cosh x, y = sinh x,

which are derived from them by taking half the sum, and half the

difference, of the ordinates, respectively *.

Since sinh x and cosh x are continuous, whilst cosh x never

vanishes, it follows that tanh x is continuous for all values of x.

Fig. 26 shews the curve

y = tanh x.

This has the lines y = 1 as asymptotes f.

Y

.(5)

Since

cosh x 4- sinh x = e*, cosh x sinh x = e~x
, (3)

we have, by multiplication,

cosh8 x sinh8 x = 1 (4)

From this we derive, dividing by cosh2 x and sinh2
x, respectively,

sech2 x= 1 tanh2
a?,|

cosech2 x = coth2 x 1.

Again, we have

cosh (x + y)
= J (e* . 6* + e~x . e~y)

= ^ {(cosh x + sinh x) (cosh y + sinh y)

+ (cosh x sinh x) (cosh y sinh y}}

= cosh # cosh y + sinh x sinh y, (6)

* The curve y = cosh x is known in Statics as the '

catenary,' from its being the

form assumed by a chain of uniform density hanging freely under gravity.

f The numerical values (to three places) of the functions cosh x, sinh x, tanh x
y

for values of x ranging from to 2*5 at intervals of 0-1, are given in the Appendix,
Table E.

L.I.C. 6
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and similarly

sinh (x + y)
= sinh a; cosh y -f cosh x sinh y.......(7)

As particular cases

cosh 2# = cosh2 x 4- sinh2 xt sinh 2# = 2 sinh # cosh x____(8)

The formulae (4) and (5) correspond to the trigonometrical formulae

cos2 x + sin2 x = 1, ........................... (9)

sec* x - 1 + tan2 x
t

\

cosec* x = cot3 x + 1. j
"\ /

Similarly the formulae (8) are the analogues of

cos 2a? = cos2 x sin2 x
t

sin 2x = 2 sin x cos a;. ...... (11)

41. Differentiation of the Hyperbolic Functions.

1. If y = sinha?, ...........................(1)

we have = D

. "*)
= cosh a;.........................(2)

Similarly, if y = cosh#, ...........................(3)

di/
we find = sinha?. ...........................(4)

2. If y = tanhff, ...........................(5)

we have

n
dx cosh a? cosh2

a;

cosh2 x sinh* a?= -- -^r:
-- =sech2

a?, ........................(6)cosh2 x

by Art. 40 (4).

Similarly, if y coth a?, ...........................(7)

we find -T- cosech2
x. . .(8)

dx

3. If
2/
= secha?, ...........................(9)

we have, by Art. 31 (4),

dy_ n / 1 "\_
\cosh x)

sinh^
cosh2 *'

dx \cosh x cosh2 x

"̂v
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Similarly, if y=cosecha?, ........................(11)

dy cosh a?

we find -/- !-T-?- ...................... (12)ax sinha x

42. The Logarithmic Function.

The 'logarithmic' function is defined as the inverse of the

exponential function. Thus if

x = e,

we have y = \ogx...............................(1)

It was seen in Art. 38 that as y ranges from oo through to

+ oo
, ey steadily increases from through 1 to + oo . Hence for

every positive value of x there is one and only one value of log x ;

moreover this value will be positive or negative, according as x ^ 1.

Also for x = we have y = oo
, and for #= + oo,y = + oo. For

negative values of x the logarithmic function does not exist.

The ordinary properties of the logarithmic function follow from
the above definition in the usual manner.

The full line in Fig. 27 (p. 84) shews the graph of log x. It

is of course the same as that of e? (Fief. 24, p. 77) with x and vi-j* \ o > .r / y
interchanged .

We can now define the symbol a*, where a is positive, for the
case of x irrational. Since

a =

we have, if a? be rational, ax = exloga, ...........................(2)

and the latter form may be adopted as the definition of a* when a:

is irrational f.

Hence if y = a*, ..............................(3)

we have -~ = ax loga.........................(4)

The logarithm of x, as above defined, is sometimes denoted by
log,,

x to distinguish it from the common or '

Briggian
'

logarithm
Iog10 x. The latter may be regarded as defined by the statementthat

y = log10 #, if lQv = x, or &*v = x. .........(5)
* The function logs is tabulated in the Appendix, Table F.

f The more usual algebraic definition is that if *i, xz ,
x3 , ... be any sequence

of rational quantities having the irrational * as its limit, a* is the limit of the
sequence

a*1
, a*\ a**.....

A proof is then required that the limit is definite, and is moreover a continnou*
function of x.

62
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Hence

where
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(6)

= 43429 (7) .

y log,, 10 = log, xt or Iog10 x = /t loge <c,

1

log, 10

The mode of calculating /u,
will be indicated in Chapter xiv.

Hence the graph of the function Iog10 x is obtained from that of

\oge x by diminishing the ordinates in the constant ratio p,. See

the dotted line in the figure.

Fig. 27.

In this book we shall always use the symbol log x in the sense

Of loge X.

43. Some Limiting Values.

There are certain limiting values connected with the exponential
and logarithmic functions which are of importance.

1. To find lim^aoflfc-* ........................(1)

The function assumes the indeterminate form oo x 0. But since

we see that the limit in question is 0.
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In the same way we can prove that

lima^aD^e-aj = 0, .....................(2)

where m is any rational quantity. This shews that as x increases

indefinitely, e? becomes infinite in comparison with any power of

x, however high.

Again, if a be positive and < 1, we have

limn_^QO wan = .........................(3)

For if k = log (I/a), and is therefore positive, we have

nan = nen ~kn

2. If in (1) we put z = &t and therefore x = log zt we infer

that

(4)

Hence as x increases indefinitely, log a?, though ultimately
infinite, is infinitely small compared with x.

3. Again, if in (1) we put z = e~x
,
and therefore x = log z,

we have

lim^o * lg z = ......................(5)

4. We have

e*-l
,*_,~~ h ~ +

!

H

x X*

The series within brackets is convergent and therefore has a finite

sum. Hence

(6)

If we write kx for x, we have

**

&, .....................(7)x

or, putting fc = log a, where a is any positive quantity,

ax

=loga......................(8)x

Another form of this result is obtained by putting x = l/n.
Thus

i

ao n (a
n -

1) = log a...................(9)
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5. If in (6) we put x = log (1+ z), and therefore ex 1 + z, we
deduce

Z

6. K .

u=(i+y,
we have log u= n log 1 + -

]
.

\ /

Putting x = nz, we have

lim^oo log u = a; lim^ =x, .........(12)z

by (10). Hence

. ..................(13)

The limit on the left hand is sometimes adopted, in Algebra, as

the definition of the exponential function.

44. Differentiation of a Logarithm.

1. If y = log#, ...........................(i)

, dx
we have a = ev, -r- ey = x,

ay

and therefore ~^~~~(tX X

This diminishes as x increases, so that the representative curve

becomes less and less inclined to the axis of x. See Fig. 27, p. 84.

2. If y = loga*, ...........................(3)

x
we have a? = ayt -r- = ay . loge a = x . loge a,

ay

i d 1 1
whence -7 1

- -
cw? loge a ^

For instance, if y

we have -/ = -, .................................(6)
cw? a;

where /^
= '43429... as in Art. 42.

3. If y = logw, ......... . .................(7)

where u is a given function of xt we have, by Art. 32,

dy^ _ dy du _ 1 du

dx du dx u dx'
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Ex. 1. If y = logsina;, (9)

we have ---=-. . D sin x = cot x (10)
ax smx

Similarly, if y = log sec x = log cos *, (11)

we find T^=tano;. (12)

Ex. 2. If y=logtanja5, (13)

dy 1 j. j
1 211we have -f-

= : . D tan \x = r . sec8 \x . *
dx tan %x tan Ja;

=4- (14)
since

Similarly, if y = log tan (Jw + 05),
. (15)

we should find :r = ^

(16)
007 cos a;

1 + x
Ex. 3. Let y = * log ^

1 x

dii
Hence j=ni +o :

i =1 (18)
c&c 21+a; 2 1 x l-a?a

We have
-^-

=
JT-^

TT-. D {x + ,J(x* 1)}

i,
*

}//n& 1 \ I

(20)

45. Logarithmic Differentiation.

In the case of a function consisting of a number of factors it is

sometimes convenient to take the logarithm before differentiating.
Thus if

_U1U 2U8 ...

VjVs
'

we have

-. ......(2)
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and therefore, by Art. 44, 3,

1 dy __
1 dU-L 1 duz 1 du3

y dx H! dx UQ dx ua dx

Vi dx vz dx v3 dx

This is a generalization of the results of Arts. 30, 31.

The same method can be applied to the differentiation of

y = u\ (4)

We have \ogy = vlogu, (5)

1 dy dv , v du /cx
--^ = T-logw + --r-

(6)
y dx dx udx

Hence

dy dv . du
f^^

dx dx dx

That is, we differentiate as if each of the functions u, v, in turn,

were constant, and add the results.

/ ((a + x)(b + x)}
y~V \(a-x)(b-x)f'

Ex. 1. If

we have

logy = J log (
+

;)
+ Jlog(6+aj)-Jlog(a-aj)-Jlog(6-aj).

1 dy 1 ( 1 1 1 1
)Hence -

:r = o 1
- + i

- +- + i f
ycte 2(a + aj 6 + a; ax b x)

a b (a + b) (ab
-

x*)

~tf^ltf
+

^a?
~

(a
a -a;2

) (6
a -or5

)

'

(a + 6) (6 a?
2
)

*
(a
-
a)* (6

-
a;)t (a + a)i (6

^07.2. If y = x,

we find -/ = x
x
(1 + log a).ax

46. The Inverse Hyperbolic Functions.

The inverse hyperbolic functions

sinh"1
x, cosh"1 x

t tanh" 1

x, &c.
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are defined on the principle explained in Art. 16
;
thus the meaning

of y = sinh"1 x is that

x = sinh y, (1 )

and so on.

These functions can all be expressed in terms of the logarithmic
function. Thus if

x = sinh y = \ (e
y e~v ), ..(2)*/ A \ / 7 \ /

we have ^-2^-1=0......................(3)

Solving this quadratic in ey, we find

e* = x V(^ + l)......................(4)

If y is to be real, ey must be positive, and the upper sign must be

taken. Hence

sinh-1
as = log {x + V(^ + 1)}................(5)

In a similar manner we should find that, if x > 1,

cosh"1
a? = log (a? J(a?-l)}................(6)

Either sign is here admissible ;
the quantities x V(#

2
1) are

reciprocals, and their logarithms differ simply in sign. It appears
on sketching the graph of cosh"1 x that for every value of x which
is > 1 there are two values of y} equal in magnitude, but opposite
in sign.

gy gy
Again, if # = tanhy=--, ..................(7)

+ x
we have &* = =- - ............................(8)

_L ~" X

\-\-x
Hence tanh"1 x J log

- ...................(9)

This is real only if
|

x
\

< 1.

Similarly, we find

coth-'* = 41og^, ..................(10)
tlj

"~ X

which is real only if
|

x
\

> 1.

47. Differentiation of the Inverse Hyperbolic Functions.

1. If y = aiuh-l
a;, ........................(1)

we have x sinh y, -j-
= cosh y \l(x* + 1),

ay
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and therefore /- = -^-rr ......................(2)dx 2

There is no ambiguity of sign, for cosh y is essentially positive.

2. If y = cosh-1
a;, ...........................(3)

we have to = cosh yy ~j~ sulh y
~

VO^
3 ~~

1)>

whence g_ _l_
(4)

For any given value of x, greater than unity, there are two
values of y, and for these dyjdx has opposite signs. [Cf. Fig. 25,

p. 80, interchanging x and
y.~\

3. If y^tanhr
1
*?, (5)

we have x = tanh y, -7- = sech2
y = 1 or

1

.

dy

dii 1 /rtx
and therefore -~ = (6)

dx 1 ar

This agrees with Art. 44, Ex. 3. It is to be noticed that y is real

only when a" < 1. See Fig. 26, p. 81.

Similarly, if y = coth~1
a;, (7)

j dy 1
we nnu -^

= - -
,

a? being necessarily > 1, if y is real.

EXAMPLES. XI.

1. Prove by calculation from the series for e* that

l/
= -367879, cosh 1 = 1-5430806, sinh 1 = 1-1752012.

2. Prove that

Je = 1-6487213, Ifje = -6065307,

cosh J= 1-1276260, sinh J= -5210953.

3. Prove that if
|

a
\

<
\

b
\
the equation

a cosh x + b sinh x = 0,

has one, and only one, real root.
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4. Draw the graphs of

cosech x
y

coth x, coth x tanh x.

5. Shew that the function tanh (l/x) is discontinuous for a?=0.

Draw a graph of the function.

6. If a and 6 be positive, and a > b
t
the function

has the upper limit a and the lower limit b.

Prove the following formulae :

7. cosh 2a; = 2 cosh2 x 1 = 1 + 2 sinh8
x.

. , 2 tanh x 1 + tanh9
33

8. smh 2a; = ~
, cosh 2# = = - -

I
-r-

,
1 - tanh2 x 1 - tanh2 x

2 tanh a;

tanh 2a; =
1 r-r-j-1 + tanh2

a;

9. cosh2 a; cos* a; + sinh2 x sin2 a? = J (cosh 2x + cos
2a?),

cosh2 x sin2 a; + sinh8 x cos8
as = J (cosh 2a; - cos

2a;).

10. cosh2 x cos8 x sinh2 a; sin2 a? = (1 + cosh 2# cos 2#),

cosh2 x sin2
a; sinh2 x cos2

a? = (1
- cosh 2a? cos

2a;).

1 1. cosh2 u + sinh2 v = sinh2 u + cosh2 v = cosh (u + v) cosh (u v),

cosh2 w - cosh'o = sinh2 u sinh2 v = sinh (u + v) sinh (w v).

12. sinh w + sinh v = 2 sinh | (w + v) cosh | (w v),

sinh w sinh v = 2 cosh J (w + v) sinh J (w v),

cosh u + cosh t; = 2 cosh \ (u + v) cosh $ (u v).

cosh w - cosh v - 2 sinh J (w + v) sinh J (w
-

v).

sinh w cosh w 1
13. tanh J t* =

cosh it + 1 sinh u

//cosh w 1\

V \cosh u + l)'

sinh 3w = 4 sinh8 n + 3 sinh w,

cosh 3w = 4 cosh8 w 3 cosh w.

1 + 2 cosh u + 2 cosh 2w + 2 cosh 3n + . ,

_ sinh (n + J) u
sinh Ju
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EXAMPLES. XII.

Verify the following differentiations :

1. y = e
3
*, Dy =

2. y = ,

3.
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Verify

i- y

2. y

3. y

4. y

5- y

6. y

7. y

8. y

EXAMPLES. XIII.

the following differentiations :

= x log x,

= x log x,

= log sin x,

= log cos a?,

= log tan x,

log sinh x,

= log cosh x,

= log tanh
a;,

x
9. y =

10. y =

11 y =

12. y =

13. y =

14. y =

15. y = log (a;
-

1)
- T

, l + aj + a*
16. y =

17. y =

X

18. y =

19. y =

20. y =

21. v =

Dy = 1 + log a?.

Z>z/ = cot a;.

Dy = tan a;.

Dy = 2 cosec 2ax

Dy coth a;.

Z>y = tanh x.

Dy = 2 cosech 2oj.

1

+ 1

(*-!)

Dy =
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EXAMPLES. XIV.

1. Draw the graphs of Iog10 sina? and Iog10 tana; from =
to x = ir.

2. Prove that iff(x) be any rational integral function of x,

8. Prove that if a be positive

lim^co /a = 1.

4. Prove that

log (1+ a) -a;
lin^o- ^ r 1 ~

Prove the formulae :

x

5. sinh-1 x = cosh'1

J(x* + 1), cosh-1
a; = sinn" 1

J(x*
-

1)

, 1 + ^(1 -a2

)sech-1
a; = log
-^-^

,
cosech l x = logx

V? - 1
6. Prove that tanh" 1 - = log x.

ar+ 1

v/7. Prove that the equation

cosh"1 x + cosh" 1

y = vn

represents a hyperbola ;
and find its asymptotes.

[y
= xe

Verify the following differentiations :

8. ____.

0. y

10. y = sin" 1

(tanh a;), Dy = sech x.

11. y = tan" 1

(sinh x\ Dy = sech x.

12. y = tan'1

(tanh a?), jDy = sech &
13. y = tanh" 1

(tan |#), Dy = sec a;.

IA \^ i r
14. y = tanh-1

^
-

, Z>y = ^ -3.
1 +03?' *

1 -or1



CHAPTER IV

APPLICATIONS OF THE DERIVED FUNCTION

48. Inferences from the sign of the Derived Function.

If y <f> (x), and if Sx, Sy be simultaneous increments of x and

y, the limiting value of the ratio Sy/Sx when Bx is indefinitely
diminished is, by definition, <f>' (x). Hence, before the limit, we
may write

y j/ / \ .

X/ir r \ / \ /

where cr is an ultimately vanishing quantity.

A numerical example of the manner in which the ratio Sy/Sx approxi-
mates to its limiting value may be of interest. We take the case of

y = lgi x
i
f r tne neighbourhood of x = 1. The limiting value is here

$-*- -43429..
'

ax x

The numbers in the second column are taken from the printed tables.

Sx
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That is, by (1), Sy will have the same sign as &c for all admissible

values of Bx which are less in absolute value than a certain mag-
nitude e.

In the same way, if

f(*)<4
Sy will have the opposite sign to & for all admissible values of Sx
which are less in absolute value than a certain quantity e.

If the independent variable be represented geometrically as in

Fig. 1, Art. 1, and if x = OM, where M is a point within the range
considered, we may say that if <' (x) be positive there is a certain

interval to the right ofM for every point of which the value of the

function < (x) is greater than its value at M, and a certain interval

to the left of M at every point of which the value of the function

is less than its value at M. If
<j> (x) be negative, the words '

greater
'

and '

less
'

must be interchanged in this statement. When M is at

the beginning or end of the range of x, the intervals referred to lie

of course to the right or left of M, respectively.

It follows that if
</>' (x) be positive over any finite range, the

value of < (x) will steadily increase with x throughout the range ;

i.e. if Xi and #a be any two values of x belonging to the range, such
that #a > xlt then

For
<f> (x), being by hypothesis differentiate, and therefore con-

tinuous, must have (Art. 18) a greatest and a least value in the

interval from x to #a (inclusive). And the preceding argument
shews that the greatest value cannot occur at the beginning of the

interval, or in the interior; it must therefore occur at the end.

Similarly the least value of
</> (x) must occur at the beginning of

the interval.

In the same way it appears that if <' (x) be negative over any
finite range, then <f> (x) will steadily decrease as x increases, through-
out this range ; i.e. if xl and #2 be any two values of x belonging to

the range, such that #2 > xlt then

The geometrical meaning of these results is obvious. When
the gradient of a curve is positive the ordinates increase with x ;

when the gradient is negative the ordinates decrease as x increases.

The graphs of various functions given in Chapter I will serve as

illustrations.

The converse statements that if
<j> (x) steadily increases with x

throughout any range, </>' (x) cannot be negative for any value of x

belonging to this range, and that, if
<f> (x) steadily decreases as x
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increases, fi (x) cannot be positive, follow immediately from the

definition of
<ft (x).

Again, even if
<f> (x) vanish at a finite number of isolated points,

provided it be elsewhere uniformly positive, <f>(x) will steadily
increase. Suppose, for example, that

</>' (x^ = 0, and that with
this exception <f>' (x) is positive in the interval from x = x^ to x = xz ,

where x^>x1 . The least value of </>(%) cannot then occur within

this interval, or at the upper extremity (x = #a).
It must therefore

occur at the lower extremity (x = Xj). Hence

'

(x) is positive from a?The same conclusion is arrived at if

to x = #3, where it vanishes.

Fig. 28.

In the same way, if <' (x) vanish at a finite number of isolated

points, but is otherwise negative, <f> (x) will steadily decrease.

Ex. 1. If

we have

y = cos a (1 -|a/'
2

),

dy- -x- sm x.
ax

which is positive for positive values of a?. Since y is an even function,
and vanishes for x = 0, it follows that

1 > cos 05 > 1

Again if

we have dy

which has been seen to be positive. Hence, since y = for x = 0,

x > sin x > x - J a?
8
,

for positive values of x. If x is negative the order of magnitude is

reversed.

i. o.
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Ex. 2. If

we have

INFINITESIMAL CALCULUS

y = tan x x,

~ = sec2 x 1 = tan2 x.
ax

[CH. IV

Hence dyjdx is positive, except for x= 0, TT, 2?r, .... Hence y steadily
increases with x throughout any range which does not include one of

the points of discontinuity (X = ^TTI fir, ...).

It easily follows that the equation

tan x x =

has no root between and ^TT; one, and only one, root between \TC and

f ?r; and so on.

These results may be verified by a graphical construction. If we
draw the lines

their intersections will determine the values of x which make

tan x x.

49. The Derivative vanishes in the interval between two
equal values of the Function.

If <fr (x) vanish for x = a and x = b, and if <' (x) be finite for all

values of x between a and 6, then </>' (as) will vanish for some value

of a; between a and 6.

For, either < (x) is constantly zero throughout the interval

from a to b, or it will have (Art. 18) a greatest or a least value for

some value fa) of x within this interval. In the former case we
shall have <' (x)

= throughout the interval
;
in the latter case

<f>' (MI) cannot be either positive or negative (Art. 48) and must
therefore vanish, since it is by hypothesis finite.

The geometrical statement of this theorem is that if a curve

meets the axis of x at two points, and if the gradient is everywhere
finite, there must be at least one intervening point at which the

tangent is parallel to the axis of x. See, for example, the graph
of sin x on p.

28
;
also Fig. 9, p. 24.

It is to be carefully noticed that, in the above argument, the

conditions that
<f> (x) and

<j>' (x) should each have a definite (and
therefore finite) value throughout the interval from x a to x b

are essential. The annexed figures exhibit various cases where the
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conclusion does not hold, owing to the violation of one or other of

these conditions.

A slightly more general form of the theorem of this Art. is that

if
(f> (x) has the same value (/3) for x = a and x = 6, then under the

same conditions as to the continuity and finiteness of < (x) and

</>' (x), the derived function
</>' (x) will vanish for some intermediate

value of x. This follows by the same argument, applied now to the

function
<f> (x) ft.

Ex. 1. If
<f> (x)

= (x-a)(x- b),

we have <' (x)
= 2x (a + b).

Hence <' (x) vanishes for x = | (a + 6), which lies between a and b.

Ex. 2. If <)x\

, .
,

, xwe have
<j> (x)

=

x

x cos x - sin x- -
Ou

Here
<f> (x)

= for x = TT and x = 2ir
; hence <' (x) must vanish for some

intermediate value of x. This is in agreement with Art. 48, Ex. 2, where
it was shewn that the equation x = tan x has a root between TT and

|-ir.

50. Application to the Theory of Equations.

If < (x) be a rational integral function of x, then
</> (x) and its

derivative
<f>' (x) are both of them continuous (and finite) for all

finite values of x. Hence at least one real root of the equation

f() = ...........................(1)

will lie between any two real roots of

*(*) = ............................ (2)

This result, which is known as
'
Rolle's Theorem/ is important in

the Theory of Equations. It is an immediate consequence that at
most one real root of (2) lies between any two consecutive roots of

(1). That is, the roots of (1) separate those of (2).

Ex. 1. If
<f> (x)

= 40s - 210s + 18a? + 20,

we have <' (x)
= 12^ - 42 + 18 = 6 (2x -!)(- 3).

Hence the real roots of <
(a;)

= 0, if any, will lie in the intervals between
oo and

,
and 3, 3 and + oo

, respectively. Now, for

=-, , 3, +00,

the signs of <(a?) are
, +, , +,

respectively, so that
<f> (x) must in fact vanish once (by Art. 9) in each

of the above intervals. Hence there are three real roots. The figure
on the next page shews the graph of <

(as).

7-2
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If by continuous modification of the form of
</> (#), for example

by the addition or subtraction of a constant, two roots are made to

coalesce, the root of <' (x) = which lies between must coalesce with
them. Hence a double root of

<j> (x) is also a root of
<f>' (x)

= 0.

25

Fig. 30.

More generally, an r-fold root of < (x) = being regarded as

due to the coalescence of r distinct roots, the equation </>

x

(a?)
=

will have r 1 intervening roots which coalesce.

This suggests a method of ascertaining the multiple roots, if

any, of a proposed algebraic equation. If a be an r-fold root of

(f> (#), we have

<(*) = (# -)'%(*)> .....................(3)

where ^ (x) is a rational integral function. Hence

i.e. (x a)
r~l will be a common factor of

</> (x) and
</>' (x). And it

is easily seen that (x a)
7""1 will not be a common factor unless

</> (x) is divisible by (x a)
r

. Hence the multiple roots of
</> (x),

if any, are to be detected by finding the common factors of $ (as)

and
j)' (x) by the usual algebraical process.

Ex. 2.

we have

If
<j> (x)

= x4 - 9<e
2 + 4cc + 12,

<j> (x)
= 4ar* - 1 80; + 4.

The usual test leads to the conclusion that x 2 is a common factor

of < (x) and
<f>' (x) ;

whence we infer that (x 2)
2

is a factor of < (x).

The remaining factors are then easily ascertained ; thus we find
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Ex. 3. To find the condition that the cubic

r = .............................. (5)

should have a double root.

The double root, if it exists, must satisfy

3^ + = or =J(-te)................... (6)

Substituting in (5), we find

-W(-irt ** ................... (7)

which is the required condition.

51. Maxima and Minima.

A * maximum '

value of a continuous function is one which is

greater, and a ' minimum '

value is one which is less, than the values
in the immediate neighbourhood, on either side.

More precisely, the function
<f) (x) is a maximum for x xlt if

two positive quantities, e and e', can be found such that
</> fa) is

greater than the value which < (x) assumes for any other value of

x in the interval from x = xl e to x = xl + e. Similarly for a
minimum.

Since the comparison is made with values of the function in
the immediate neighbourhood only of xlt a maximum is not neces-

sarily the greatest, nor a minimum the least, of all the values of
the function. See Fig. 30.

We will limit ourselves for the present to the case, which
includes all the more important applications, where <(#) nas a

determinate and finite derivative at all points of the range con-

sidered. The argument of Art. 48 then shews that if
</> fa) be a

maximum or minimum, <' fa) cannot differ from zero. For if it

be either positive or negative, there will be points in the immediate

neighbourhood of xl for which
cf> (x) will be greater, and others for

which it will be less, than
</> fa). Hence, in the case supposed, a

first condition for a maximum or minimum value of
</> (&) is that

<' (x) should vanish.

This condition is necessary, but it is not sufficient. To in-

vestigate the matter further, we will suppose that on each side of

the point #, there is a certain interval throughout which
<j>' (x) is

altogether positive or altogether negative*. Now if
<f>' (x) be

positive for all values of x between xl e and xlt <f) (x) will (Art. 48)

steadily increase throughout the interval thus defined ;
and if

* That is, we exclude cases where 0' (x) changes sign an infinite nnraber of

times within any interval including Xj, however short. The point x= Q in the

function x2 sin 1/x is an instance.
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(' (x) be negative for all values of x between #a and #x 4- e', </> (x)
will steadily decrease throughout the corresponding interval. Hence
if both these conditions hold, <f>fa) is a maximum. And it is

evident that if the signs be otherwise, < fa) cannot be the greatest
value which the function assumes within the interval extending
from #! e to xl + e'.

We may express this shortly by saying that the necessary and
sufficient condition in order that

<f> fa) may be a maximum value

of
</> (x) is that

<j>' (x) should change sign from + to as x increases

through the value #j.

In the same way we find that the necessary and sufficient con-

dition in order that
(f> fa) may be a minimum value of < (x) is that

<p' (x) should change sign from to + as x increases through the

value a*.* V

In geometrical language, when the ordinate of a curve is a

maximum the gradient must change from positive to negative;
when the ordinate is a minimum the gradient must change from

negative to positive. This is abundantly illustrated in our diagrams;
see, for example, Figs. 9, 13, 14, 30.

Whenever the derived function
<f> (x) vanishes, the rate of

increase (Art. 26) of the original function <(#) is momentarily
zero, and the value of

(/> (x) is said to be '

stationary.' As already
stated, a stationary value is not necessarily a maximum or mini-

mum, for cases may of course occur in which <' (x) vanishes with-

out changing sign.

In most cases of interest, the derived function
<f> (x) is con-

tinuous as well as determinate (and finite). It can then only change
sign by passing through the value zero

;
and it is further evident

from Art. 9 that the changes (if there are more than one) will take

place from 4- to
,
and from to -}-, alternately. The maxima and

minima will therefore occur alternately. See Fig. 14, p. 28.

Ex. 1. The distance (s), from an arbitrary origin, of a point moving
in a straight line is a maximum when the velocity (dsjdt) changes from

positive to negative, and is a minimum when the velocity changes from

negative to positive.

Thus, in the case of a particle moving upwards under gravity, we
have

ds

Hence dsjdt changes from positive to negative as t increases through the

value u/g. The altitude (s) is therefore then a maximum.
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Ex. 2. To find the rectangle of greatest area having a given peri-

meter.

Denoting the perimeter by 2a, the lengths of two adjacent sides

may be taken to be x and a-x; hence we have to find the maximum
value of the function

x (a -x)............................... (1)

The derivative of this is a - 2#, which changes sign from + to as x

increases through the value Ja. The rectangle of greatest area is there-

fore a square.

Ex. 3. To find the maxima and minima of the function

<f>(x)
= 4*8 -21x2 + I8x + 20................... (2)

We have <j>'(x)
= l2 (x-^)(x-3)......................... (3)

This can only change sign when x passes through the values
-|
and 3.

Now when a; is a little less than ^, the signs of the second and third

factors are
, ;

whilst when a; is a little greater than they are -f,
.

Hence as x increases through the value
|-,

<' (x) changes sign from +
to . In a similar manner we find that as x increases through the value

3, <' (x) changes sign from - to +. Hence < (x) is a maximum when
x

If,
and a minimum when x = 3. If we substitute in (2) we find that

the maximum value is 24J, and the minimum value 7. See Fig. 30,

p. 100.

we find

This can only change sign for x = 1. As x increases (algebraically)

through the value -
1, 1 a;

2
changes sign from to +. As x increases

through + 1, 1 cc
2
changes sign from + to . Hence for x 1 we

have a minimum value 1 of
</> (x),

and for x = 1 a maximum value 1.

See Fig. 13, p. 27.

MX. 6. If

we have

Here <'
(a;)

is always positive, and the function < (x) has no finite maxima
or minima. See Fig. 11, p. 26.

Ex. 6. To find the right circular cylinder of least surface for a given
volume.

If x denote the radius and y the altitude, the surface is
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and if the given volume be 27ra8
,
we have

Hence, eliminating y, the expression to be made a minimum is

the derived function of which is

2U--J.

This changes sign as x increases through the value a, and the change is

from to +. Hence x = a makes the surface a minimum
; and since y

then = 2a, the height of the cylinder is equal to its diameter.

The reader may verify that with these proportions the surface is

1*1447... of that of a sphere of equal volume.

Ex. 7. To find the stationary values of the function

_Ax*+2Rx + B
ax*+2hx+b

......................... (8 '

We have (ax* + 2hx + b) u = Ax* + 2ffx + B................(9)

Differentiating, and putting du/dx = 0, we have

(ax + h)u = Ax + H. ........................ (10)

Multiplying this by x, and subtracting from (9),

(hx + b)u = ffx + B. ........................ (11)

Eliminating u between (10) and (11), the required values of x are given

by the roots of the quadratic

..........(12)

If, on the other hand, we eliminate a, the stationary values of u are

given by the quadratic

(ab
- A2

) u*-(aB + bA- 2hH) u + AB-H* = .......(13)

Ex. 8. The simplest instance of a stationary value which is not a
maximum or minimum is furnished by the function

<H) = ** ...........................(H)

This makes <' (x)
= 3a;

2
,
which vanishes, but does not change sign, as x

increases through the value 0. Hence < (x\ though
*

stationary,' is not
a maximum or minimum for x 0. Fig. 31 shews the graph of x*.

It may occasionally happen that <' (x), though generally con-

tinuous, becomes discontinuous for some isolated value of x\ and
if the discontinuity be accompanied by a change of sign as x



5l] APPLICATIONS OF THE DERIVED FUNCTION 105

increases through the value in question, we shall have a maximum
or minimum, by the same argument as before.

Y

O

V
Fig. 31.

Ex. 9.

we have

If .(15)

.(16)

As x increases through the value 0, this changes from
- GO to + GO . Hence

< (x) is a minimum for x = 0. See Fig. 32.

Y

Fig. 32.

Again, in Fig. 29 there occurs a point where <f> (x) is discontinuous,

passing abruptly from a finite positive to a finite negative value. The
ordinate is then a maximum.
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52. Algebraical Methods.

It is to be noticed that some important problems of maxima
and minima can be solved by elementary algebraical methods, with-

out recourse to the Calculus. This is especially the case with

questions involving quadratic expressions. These are all easily
treated by the method of '

completing the square/

Again, the solution can often be made to depend upon identities

such as

...............(1)

(2)

(3)
Thus:

The product (xy) of two positive magnitudes, whose sum (x + y)
is given, is greatest when they are equal ;

The sum of two positive magnitudes whose product is given is

least when they are equal ;

The sum of the squares of two magnitudes whose sum is given
is least when they are equal.

Ex. 1. Thus, in the problem of Ex. 2, Art. 51, we have

x (a
-

x)
=
la?

-
(x
-
%a)\

Since the last term cannot fall below zero, this expression has its greatest
value

(J
2

)
when x = \a.

Ex. 2. The expression 2^ - 3x + 2,

may be put in the form

2(a'-f* + l)
= 2(*-f)

2 + .

Hence the expression has the minimum value
, corresponding to oj = |.

Ex. 3. To find the greatest rectangle which can be inscribed in a

given circle.

/ If 2ic, 2y be the sides, we have to make xy a maximum subject to

the condition that x* + y*
=

a?, where a is the radius of the circle. Now

2xy = a? + y
z - (x y)

2 = a2 -
(x t/)

2
,

which is obviously greatest when x y. Hence the greatest inscribed

rectangle is a square.

Ex. 4. To find the minimum value of

a cot 6 + b tan 0,

for values of 6 between and \TT.
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The product of a cot 6 and b tan 6 is constant, hence their sum is

least when they are equal, i.e. when

tan =
(

The minimum value of the sum is therefore 2a? &'.

Ex. 5. To find the greatest cylinder which can be inscribed in a

frustum of a paraboloid of revolution cut off by a plane perpendicular
to the axis.

Supposing the paraboloid to be generated by the revolution of the

curve

2/
a
=4oo;, .............................. (4)

about the axis of x, then if h be the length of the axis, and x the abscissa

of the end of the cylinder nearest the origin, the volume of the cylinder
is

(5)

Now the sum of the quantities y* and 4ah - y* is constant
;
their product

is therefore greatest when they are equal, i.e. when

2/

2 = 2aA, or x = ^h......................... (6)

The height of the cylinder is therefore one-half that of the frustum.

53. Maxima andMinima ofFunctions of severalVariables.

We give a few indications concerning the extension of some
of the preceding results to functions of two or more independent
variables.

In the first place let us seek for the maxima and minima of a

function

u=<t>(x,y)............................(1)

A first condition is that we must have simultaneously

, *. ,

dx dy

where the differential coefficients are '

partial/ as in Art. 34. For if

u be greater (or less) than any other value of the function obtained

by varying x, y within certain limits, u will d, fortiori be a

maximum (or minimum) when y is kept constant and x alone is

varied. This requires in general (Art. 51) that d<f>/dx
= 0. Similarly,

u must be a maximum (or minimum) when x is kept constant and

y alone varies
;
this requires that d(f>/dy

= 0.

As before, these conditions, though necessary, are not sufficient.

The further examination of the question, in its general form, is
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postponed till Chapter xvi; but it often happens that the existence

of maxima and minima can be inferred, and the discrimination

between them effected, by independent considerations. The con-

ditions (2) then supply all that is analytically necessary.

Ex. To find the rectangular parallelepiped of least surface for a

given volume.

Let x, y, z be the edges, and a3 the given volume. Since

xyz = a?
t .............................. (3)

the function to be made a minimum is

a9 a9
...

u = xy + yz + zx=xy + h ................... (4:)
x y

The conditions du/dx
=

0, du/dy = give

x*y = a8
, xy* = a?,

the only real solution of which is x = y = a, whence, also, = a.

It appears from (4) that, x and y being essentially positive in this

problem, there is a lower limit to the surface of the parallelepiped.
And the above investigation shews that this limit is not attained

unless the figure be a cube.

As in Art. 52, the solutions of various problems can be deduced
from known algebraical identities, such as

a;
2 + ^ + z* = J {(x + y + *)* + (y-z)* + (*- #)

a + (- 2/)
2

}, ...(5)

yz + zx + xy = y? + y* + z* - J {(y
-

*)
2 + (z- x)* + (x

-
y)

2
}. ... (6)

Thus:

If a straight line be divided into three segments, the sum of the

squares on these is least when the segments are equal ;

The surface of a parallelepiped inscribed in a given sphere

(or
2 + y

2 + a2 = a2

)
is greatest when the figure is a cube,

54. Notation of Differentials.

We return to the equation

fj-* + r ........................... (1)

of Art. 48. This is equivalent to

fy = <'(a;)&e + o-&e. ..................... (2)

As S# approaches the value 0, the second term on the right hand
becomes more and more insignificant compared with the first,
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since the limiting value of <r is zero. Hence it becomes more and
more nearly true that

fy-4*(0)fi, (3)

not in the sense that both sides ultimately vanish, but in the

sense that the ratio of the two sides approaches the value unity.
In this artificial sense, the last equation is often written in the

form

dy = <' (x)dx. (4)

The vanishing quantities dx, dy are called
'

differentials/ *

The student need not take exception to the above mode of

expression, which is purely conventional. Its use is simply to

express the fact that in calculations involving the quantities Sac

and By, which are afterwards made to approach the limit zero, we

may at any stage replace By by <f> (x) Bx, whenever it is plain that

the omission of quantities of the second order will make no differ-

ence to the accuracy of the final result.

55. Calculation of Small Corrections.

The equation By = </>' (x)Bx (1)

may, moreover, be employed as an approximate formula to find

the effect on the value of a function of a small change in the

independent variable, since (as we have seen) the outstanding
error will be merely a small fraction of

<f>' (x) Bx provided Bx be

sufficiently small. An important practical application is to find

the error, or the uncertainty, in a numerical result deduced from

given data, owing to given errors or uncertainties in the data.

The above method is defective in one respect, in that there is

no indication of the magnitude of the error involved in the

approximation. This is supplied, however, by a theorem to be

proved in Art. 56. It is there shewn that

By = $(x+ OBx) Bx, (2)

where 6 is some quantity between and 1. Hence if A and B be
the greatest and least values which the derived function assumes
in the interval from x to x + Bx, the error committed in (1) cannot

be greater than
| (A B) Bx

|.

Ex. 1. To calculate the difference for one minute in a table of

log sines.

If y = logie sin a?,
we have dyjdx = /x cot x,

and $y = f* cot x 8x,

*
It is on account of the position which it occupies in the formula (4) that 0' (x)

received the name ' differential coefficient.'
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approximately, provided Bx be expressed in circular measure. Putting

Bx = circular measure of 1' = ^AA = -0002909,
lOoUl)

we find By = '0001263 x cot x.

The numerical factor agrees with the difference for 1', in the neighbour-
hood of 45, as given in the tables.

Ex. 2. Two sides a, b of a triangle and the included angle C are

measured ; to find the error in the computed length of the third side c

due to a small error in the angle.

We have c8 = a2 + 68- 2a6 cos 0, (3)

and therefore, supposing C and c alone to vary,

cBc = ab sin (78(7,

whence Sc = sin C8(7 = a sin BBC. ..(4)
c

This result may also be obtained geometrically; thus, if in the

figure L BCB' = BCy
and BN be drawn perpendicular to AJ3', we have,

ultimately,

Be = B'N= BE' cos BB'N= aBC . sin CB'A = aBC . sin B,

neglecting small quantities of the second order.

Bf

C b A

Fig. 33.

Again, to find the error in c due to a small error in the measured

length of a, we have, on the hypothesis that a and c alone vary,

cBc = (a b cos C) Ba = c cos JBBa,

or Bc = cosBa, (5)

a result which, like the former, admits of easy geometrical proof.
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56. Mean-Value Theorem. Consequences.

The following very important theorem is an extension of that

given in Art. 49.

If a function
<j> (x) be continuous, and have a determinate

derivative, throughout the interval from x = a to x = 6, then

where xl is some value of x between a and 6.

Consider the function

b a (x a). (2)

This is, under the conditions stated, continuous from # = a to

x 6, and it obviously vanishes for each of these values of x.

Hence its derived function

must vanish for some value (xly say) of x between a and 6. This

proves the statement (1).

The meaning of this result, and the nature of the proof, should be

studied. The geometrical interpretation is as follows. In the annexed

figure, we have
OA =a, OB = b,

and

The theorem therefore asserts that (under the restrictions stated) there

is some point between P and Q where the tangent to the curve y = $(x)
is parallel to the chord PQ.

Fig. 34.
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The equation of the chord PQ is

as is easily verified, and the expression (2) therefore measures the

difference between the ordinate of the curve and that of the chord.

This difference vanishes at P and Q, so that there must be one point
at least between P and Q at which it is a maximum or a minimum.

Ex. If
<f> (x)

= x\

,
- + (a)we have -2-^ ^4-* = 6 + a,

b a

which is equal to the value of
<j> (x) for x = J (a + b).

This is equivalent to the statement that any chord of a parabola is

parallel to the tangent at the extremity of that diameter which bisects

the chord.

The fraction *(&)-*()
..... .....(6)

o a

that is, the ratio of the increment of the function to that of the

independent variable, measures what may be called the 'mean
rate of increase

'

of the function in the interval b a. Hence the

theorem expresses that, under the conditions stated, the mean
rate of increase in any interval is equal to the actual rate ot

increase at some point within the interval.

For instance, the mean velocity of a moving point in any
interval of time is equal to the actual velocity at some instant

within the interval.

Some other modes of stating the result (1) are to be noticed.

The fact that xl lies between a and b may be expressed by putting

x1
= a + 6(b-a)) ........................(7)

where 6 stands for
' some quantity between and 1.' The precise

value of 6 will in general depend on the values of a and 6. If we
further write a + h for 6, we get the very useful form

(8)

or <t>(a+h) = <f>(a)+h<f>(a+ 0k) (9)

Again, if we write x for a, and Sx for h, we have

ty(a?)
= '(*+ 0^) &* (10)

A very important deduction from the preceding theorem is

that if

*'<)-0 (11)
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for all values of x within a certain range, then < (x) must be
constant throughout that range.

For if
<f> (x) vary, let a and b be two values of x for which it

has unequal values. The fraction

b a

will then be different from zero, and there will therefore be some
intermediate value of x for which

<f> (x) will differ from zero,

contrary to the hypothesis.

Moreover, if two functions
(j> (x) and ty (x) have equal derivatives

for all values of x within a certain range, they can only differ by a

constant. For, by hypothesis,

f(*)-^'(*0 = 0, .....................(13)

or {*<*)-*()} = <>...................(14)

Hence $ (x) ty (x) const., ..................(15)

by the preceding case.

If in place of (2) we consider the more general function

we infer that under analogous conditions its derived function

-
\f/ (o) \]/ (a)

T

will vanish for some value of x between a and b. The result may be
written

'

Henceif <Ha)
= ^(a) = 0, ..................... (19)

wehave lim^ = lim^ ............. (20)
\l/ (a + h) \j/ (a + h)

This is sometimes useful in evaluating the ' indeterminate form '

$ .

57. Total Variation of a Function of several Variables.

Let u = (f>(a;,y) ...........................(1)

be a continuous function of x and y, and further let us suppose
that the partial derivatives

du du

dx' dy
'"

are also continuous functions of x and y.

L.LO. 8
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Let Bu be the increment of u due to increments Bx and By of

the independent variables ;
i.e.

SM = (* + &, y + By)
-

< (x, y).............(3)

In the geometrical representation (Art. 34), 8u is the difference of

altitude of the two points of a surface which correspond to the two points

(x, y) and (x + S#, y + Sy) of the horizontal plane xy.

Now if x alone were varied, the corresponding increment of u

would, by Art. 56 (10), be of the form

P&, ..............................(4)

where P is a certain function of x, y, and Bx. And it appears from

the same Art., and from the meaning of a partial derivative, that

the limiting value of P when Bx is indefinitely diminished is

P -~ ......

Similarly, if y alone were varied, the increment of u would be

Qty...............................(6)

where the limiting value of Q, when By is indefinitely diminished, is

^ 9^

-* ...............................<7>

Let us now suppose that the actual variation from x, y to

x + Bx, y + By is made in two successive steps, in the first of which

x alone, and in the second of which y alone is varied. The total

increment of u will then be

Bu = PBx+Q'By, ........................(8)

where Q' differs from Q owing to the fact that the starting point
of the second variation is now (x + Bx, y) instead of (x, y).

To find the form which (8) assumes when Bx and By tend

simultaneously to the value 0, preserving any assigned ratio to one

another, we put
&B = oe, By = fie, .....................(9)

where a, /8 are constants, and e is infinitely small. We have, then,

Bu Pa +

In virtue of the assumed continuity of the derivatives (2), P
and Q' tend, when e-^0, to the limits P and Q , respectively.

Hence, the smaller Bx and By are taken, the more nearly does it

become true that
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in the sense that the ratio of the two sides is ultimately one of

equality. This result is often expressed in the form

du du

The symbols dx, dy, du are then called
'

differentials/ and du is

called the '
total differential

'

of u.

The above reasoning may be amplified by writing down explicit
values for the quantities which we have denoted by P and Q'. If we
write

-M%9)i
j
=

<t>v(
x>y\

we have

by Art. 56, where 6lt 3 are some quantities lying between and 1.

Hence
Su =

(<j>x + 6^xt y) Sx + < (x + Sx, y + O^y) By....... (16)

Since
<f>x , <f>v

are assumed to be continuous according to the definition

of Art. 34, the limiting form of this equation is

Su =
<j>x$x + <t>vSy, ........................ (17)

which is the same as (11).

The equation (11) shews that in the neighbourhood of a maximum or

minimum, the variation of u is of the second (or higher) order of small

quantities, since we then have

^ = 0, j

= 0, ........................ (18)
do? dy

by Art. 53. Thus, at a point of maximum or minimum altitude on
a surface the tangent plane is in general horizontal. As already
indicated, the converse is not necessarily true. See Art. 51.

The preceding theorem can be readily extended to the case of

any number of independent variables, x, y, z . . . . We have

rv du . du ~
. du * /! ftvmt = 5- &c + ~- oy+ Sz+ ..., ...............(19)ox oy tiz

ultimately.

58. Application to Small Corrections.

The theorem of the preceding Art. can be applied after the
manner of Art. 55 to the calculation of small corrections.

8 a
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Ex. 1. In the case of Art. 55, Ex. 2, the total error in c, due to

errors 8a, 86, 8(7 in the observed values of the two sides and the

included angle, is to be found from

which gives

cSc = (a b cos C) Ba + (b a cos C) b + ab sin (78(7,

or 8c = cos J58a + cos .486 + a sin ,68(7......................... (2)

Ex. 2. If A be the area of a triangle, as determined from a measure-

ment of two sides a, 6, and the included angle (7, we have

A = Ja&sin(7, ........................... (3)

whence log A =log J + loga + log 6 + log sin (7............. (4)

Hence, differentiating,

SA 8a 86-= + -r + cot (78(7...................... (5)A a b

This gives the '

proportional error,' i.e. the ratio of the error (8A) to

the whole quantity (A) whose value is sought. In all measurements it

is the proportional error, rather than the actual magnitude of the error,

which is of importance.

An important point brought out by the investigation of Art. 57

is that the small variations of a quantity due to independent
causes are superposed. This follows from the linearity of the

expression for $u in terms of &c, Sy, Sz.....

Thus, in determining the weight of a body by the balance, the

corrections for the buoyancy of the air, and for the inequality of the

arms of the balance, may be calculated separately, and the (algebraic)
sum of the results taken. The error involved in this process will be

of the second order.

59. Differentiation of a Function of Functions, and of

Implicit Functions.

Another important application of the formula (11) of Art. 57 is

to the differentiation of a function of functions, and of implicit
functions.

1. Thus if M=(0,y), ...........................(1)

where as, y are given functions of a variable t, we have, ultimately,

8tt_ctySa? etyfy
Bt dx St

"*"

dy &f
'

du _ d(f>
dx

d<f> dy~
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This may be applied to reproduce various results obtained in

Chapter n. To conform to previous notation we may write

y = <j>(u, v),

where u, v are given functions of x ; the formula (3) then takes the

shape
dy _ 3< du 90 dv . .

dx du dx dv dx
* "\ t

Thus, if 0(w, v)
= uv

t ......... . .................... (5)

we have d<j>/du
= v, d<j>/dv

= u,

d (uv) du dv
and therefore \ = v -=- + u -=-

,
........................ (6)ax dx ax

in agreement with Art. 30.

Again, if 0(w,t>)=< ............................. (7)

we have d<f>/du
= vuv

-\ d<f>/dv
= uv

. log u,

by Arts. 28, 42. Hence

d . ,du . dv /ox

^ (') = "'-'^ + '
log ^, .................. (8)

in agreement with Art. 45 (7).

2. Again, if y be an implicit function of x, defined by the

equation
*(*,y)=o, ..........................(9)

then differentiating this equation with respect to x> we have

30 dx 90 dy _ ft

dx dx dy dx

.

This is an extension of a result given in Art. 35.

60. Geometrical Applications of the Derived Functions.

Cartesian Coordinates.

We have seen (Art. 24) that if
i/r

denotes the angle which the

tangent, drawn to the right, at any point of the curve

makes with the positive direction of the axis of a?, then

^=tamjr...................(2)dx
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With the help of this formula, several magnitudes connected with

a curve may be expressed in terms of x, y, and dyjdx.

o

Fig. 35.

If the tangent and the normal at the point P meet the axis of

x in T and G, respectively, and if M be the foot of the ordinate,
then TM is called the

'

subtangent
'

and MG the ' subnormal.'

Hence we find

subtangent = TM=MP cot ^ = y^ ..................(3)

subnormal = MG = MP tan ^ y-^ t ..................(4)

tangent
= TP = MP cosec -^

f , fdy\*) i dy

"*l
l

.

+
f-*Z'HB

normal = PG = MP secf = y {l + f$0'}* ......(6)
^ \dx/ J

Again, the intercepts of the tangent on the coordinate axes are

OT=OM-TM= x-^r,
dy_

dx L ....... .....(7)

OU = TOta,uy!r = y-x
C

^-.dx )

Ex.\. In the parabola y
a =

4oa?, ................................. (8)

we have, differentiating both sides with respect to x, and dividing by 2,

y|= 2a
- ..............................w

which shews that the subnormal is constant and equal to '2a.
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Again, the subtangent is

119

and is therefore double the abscissa; in other words, the origin
bisects TM.

Ex. 2. In the hyperbola

we have -

dx .(12)

Hence the formulae (7) for the intercepts of the tangent on the co-

ordinate axes give 2x, 2y as the value of these intercepts, respectively.
Hence M bisects OT, and therefore P bisects TU; i.e. the portion of

the tangent included between the coordinate axes is bisected at the

point of contact.

N

M
Fig. 36.

Again, the product of these intercepts is equal to 4xy, or
Hence the area of the triangle OTU is constant and equal to

Ex. 3. More generally, in the curve

xmy
n = const., ....... . ................... (13)

we find, taking logarithms of both sides and then differentiating,

x y dx .(14)

This makes

Hence

= x-y l-r- = x + - x =
ax m m

n
m

x.

.(15)
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that is, the tangent UT is divided in a constant ratio at the point of

contact.

This includes the two preceding cases. In the parabola (Ex. 1) we
had m = 1, n=2 ; in the hyperbola (Ex. 2) m =

1, n 1.

An important physical example is that of the ' adiabatic
'

relation

between the pressure and the volume of a gas, viz.

jnff const............................ (16)

If a curve be constructed with v as abscissa and p as ordinate, the

tangent is divided at the point of contact in the ratio y : 1.

Ex. 4:. In the ellipse

a
we find, on differentiating,

+ y ^-o
a2 Vdx~

dy bz x
whence -j-= -,- ............................ (lo)ax ary

The intercept made by the tangent on the axis of x is

Idy a?y* a2 /. A 2

=x+-^ = x + -(1 --)=-,x b* x \ a2
/ x

whence OM.OT=a\ ........................... (19)

The intercept made by the normal is

............(20)

where e is the eccentricity.

61. Coordinates determined by a Single Variable.

A curve is sometimes defined by means of two equations of the

type

giving the coordinates in terms of a subsidiary variable t.

For example, in Dynamics, the coordinates of a moving particle

may be given as functions of the time.

If we take any convenient series of values of t, we can calcu-

late the corresponding values of x and y, and so plot out as many
points as we please on the curve.

If &, 8y, St be simultaneous increments of a?, y, t, we have

By _ By Sx~~~
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and therefore in the limit, when Bt is indefinitely diminished,

dy dy dx

Ex. 1. In the ellipse

,
..................... (3)

dy I dx b
we have tan \1/ = -

/ -j-.
= - - cot < ................... (4)

a<p I a<p Ct

Ex. 2. In the case of a projectile moving under gravity, we have

x = a + u t, y = b + v t - \g&, .................. (5)

dy /dx v-gt
whence tan \b = -j- / -=- =-* .

at I at u

62. Equations of the Tangent and Normal at any point
of a Curve.

1. If (x, y) and (x + Bx, y + By) be the coordinates of two

points P and Q on a curve

the coordinates (f, rj) of any other point on the line PQ satisfy the

relation

to By
'

or
. *-y-||tf-*);

.....................(3)

see Fig. 19, p. 45. In the limit, when Q approaches P indefinitely,

this takes the form

(4)

which is the equation of the tangent-line at P.

Since the gradient of the normal is the negative reciprocal of

the gradient of the tangent, the equation of the normal is

,-)+ <l-y)jjj-0
...................(5)

2. If the coordinates are expressed in the form

* = </>(')> y = %(<),

we have, from (2), at points on the secant PQ

_
Bx/Bt By/Bt'
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The equation of the tangent at P is therefore

Ll = 2LL2. ..(8)
dx dy
dt ~di

It easily follows that the equation of the normal is

tt > + <-jr>J-0...................0)

3. If the equation of the curve is given in the form

2/)
= 0, ........................(10)

we have, by Arts. 35, 59,

dx da; dy
'

The equation of the tangent is therefore

This follows also immediately from the fact that for an infinitesimal

displacement of P along the curve we have S(f>
=

0, or

Since, from (2),

&c:Sy = f-a?:77-y, ..................(14)

the form (12) results.

The equation of the normal is

das dy
Ex. 1. In the parabola

(16)

, dy 2a /17Xwe have -/** ............................... (17)dx y

The equation of the tangent is therefore

which reduces, by (16), to the usual form

x)............................(19)
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Ex. 2. If the coordinates be given in the forms

x = aP, y = 2at, ........................ (20)

the formula (8) for the tangent gives

^p = *-y. ........................... (21)

which reduces to

i7
=
f + a*............................... (22)
t

The equation of the normal is

tf-*)< + if-y=0, ........................ (23)

or t + rj
= at? + 2at......................... (24)

Since this is of the third degree in t, three real or imaginary normals
can be drawn from any arbitrary point (, rj).

Ex. 3. The equation of the tangent at any point of the central

conic

Ax* + 2ffxy + y*=I ..................... (25)

is, by (12),

9 ......... (26)

or (Ax + ffy) + (ffx + y)r}=l ................ (27)

63. Polar Coordinates.

Let P, P be two neighbouring points on a curve, and let r, 6
be the polar coordinates of P, and r + oV, 6 + Bd those of P'. If

we join PP
/

,
and draw PN perpendicular to OP', we have

PN = OP sin P0#= r sin 86,
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When BO is indefinitely diminished, the ratio of sin 80 to 86 tends
to the limiting value unity, and 1 cos 80, = 2 sin2

JS0, is a small

quantity of the second order. Hence we may write

PN
, 7~> TV f\ * ** ' '"'^

i /-i \
tan PP =

riT-Tr
= -* + <T, (1 )

i yv o7*

where o- is a quantity whose limiting value is zero. Hence ulti-

mately, when P' coincides with P, we have, if < denotes the angle
which the tangent to the curve at P, drawn on the side of

increasing, makes with the positive direction of the radius vector,

dv*

Here is regarded as a function of r. If r be regarded as a
function of 0, the formula is

Idr

Ex. 1. In the circle r = 2asin# (4)

we have log r = log 2a + log sin 0,

j xt, e I dr L Aand therefore -^
= cot 0,

whence cot< = cot0, or < =
(5)

* The argument, which is an application of a principle stated in Art. 23, may
be amplified as follows. We have, exactly,

9 50 sin 50 1

r80

and the limiting value of this is evidently rddjdr.
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Ex. 2. When the radius vector of a curve is a maximum or a

minimum, it is in general normal to the curve.

For if dr/dO = 0, we have cot < = 0, or
<f>
=

\ir.

Ex. 3. If the normals to a curve all pass through a fixed point,
the curve must be a circle.

For, by hypothesis, if the fixed point be taken as pole, we have

<f>
=

TT, and therefore dr/dO = 0, for all values of 0. Hence r = const.

EXAMPLES. XV.

1. Verify the theorem of Art. 49 in the following cases :

(1) <t>(x)
= (x-a)

m
(x-b)

n
,

(3)

2. Prove that the curves

y = x* - 6x* + 9^ + 4x - 1 2,

and y = x* a?- 3x* + 5x - 2,

touch the axis of x, and find where they cut it. Trace the curves.

3. Prove that when x increases through a root of
</> (x)

=
0, < (x)

and
</>' (a;)

will have opposite signs just before, and the same sign just
after, the passage. Does this hold in the case of a double root 1

gj
4. If, for a > x > 0, </> (x)

= --
a,

a
and, for x > a, ^> (a;)

= a -_
,

x>

whilst for x = a, <f> (x)
= 0,

prove that < (x) and
<f>' (x) are continuous from x = to x = oo . Trace

the curve y = <f> (x).

5. Examine whether the equation

16 =

has double roots. Draw the graph of the function on the left-hand
side.

6. Shew that the curve

y = Sx>-Ux* +
>78x-5

touches the axis of x
;
and find where it cuts it.
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Also find the points where the tangent is parallel to the straight
line

Sketch the curve.

7. Determine the coefficients A, JB, C, D so that the curve

may pass through the point (- 2, 8), touch the axis of x at the point

(2, 0), and have its tangent parallel to the axis of x at the point for

which oj = 1.

8. Prove that the expression

is positive for all positive values of x.

9. Prove that sin a? lies between

x-%x* and x - \x* +^^ of.

Also that cos x lies between

l-\a? and l-%x* + ^x*.

10. Prove that, if x2 < 1, log (1 + x) lies between

x-\y? and x-\xt + ^x*.

11. Prove that, if x9 < 1, tan"1
a? lies between

x-x9 and x - x9 + x*.

EXAMPLES. XVI.

(Maxima and Minima.)
1. Prove that in the rectilinear motion of a point, the velocity is

a maximum or a minimum when the acceleration changes sign.

Illustrate this from the simple-harmonic motion

s = a cos nt.

2. Find the maxima or minima of the function

x*-8x* + 22x*-2x + 12.

3. Prove that the function

2ar
J -3ars -36o;+10

is a maximum when x = 2, and a minimum when x = 3.

4. The function 4^ - 1 Sar2 + 27x - 1

has no maxima or minima.

5. Find the stationary points of the function

x6 - 5x* + Sa?
3 + 1,
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and examine for which of them the function is a maximum or

minimum.

6. Prove that the function

IQx9 - 12x* + 15^ - 20o* + 20

has a minimum value when x= 1, and no other maxima or minima.

7. Examine whether the equation

has a multiple root. Find the stationary points of the function on the

left-hand side, and sketch its graph.

8. Prove that the curve

y = x
4 -2x*-3x* + 4x + 4

touches the axis of x at two points ; and find its maximum ordinate.

Sketch the curve.

9. Prove that the function

x ,J(ax
-

a?)

is a maximum when x =
\a>.

10. Prove that the function

(x+l)*

has a maximum value ^-, and a minimum value 0.

11. Prove that the expression

1 +x + x9

1 x + x*

has a maximum value 3, and a minimum value J.

12. The function (* + !)

x* ar+ 1

has a maximum value 2, and a minimum value 2.

13. The function (^--l)
x*-x> + l

has two maxima, each =
|, and two minima, each = .

14. Find the stationary points of the function

x4 + 22ar* + 9

and draw its graph. [The stationary points are given by x* = 1, 3, 9]
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15. Find the stationary points of

and sketch the graph.

16. The function ^ -

(a + x) (b + x)

is a maximum when x = *J(ab), and a minimum when x = ,J(ab).

17. Prove that the function

m^ (x ajj)

2 + ma (a;
- se2)

a + . . . + mn (x xn)*
is a minimum when

/V>*) /> I AV> /V ,1 J ATI *>
//C'l i*/t T tlvfivUn i ^ //VftvUm*x= .

m^ + m% + . . . + mn

18. The velocity of waves of length X on deep water is pro-

portional to

where a is a certain linear magnitude; prove that the velocity is a

minimum when A = a.

19. If the power required to propel a steamer through the water

vary as the cube of the speed, the most economical rate of steaming
against a current will be at a speed equal to l^ times that of the

current.

20. A copper wire is required to carry a given current from
one electrical station to another. Prove that the most economical

diameter of the wire is that which makes the interest on the cost

equal to the value of the energy lost in heating the wire. (The rate

of loss of energy varies inversely as the cross-section.)

21. The daily expenses of a steamer consist of wages, interest on

capital, and coal. If the rate of coal-consumption vary as the cube of

the speed, shew that if a voyage be performed at the most economical

speed, the cost of coal will be half the amount of wages and interest.

22. Two ships are steaming, one directly towards, the other

directly from, the same port, on courses making an angle of 60 with
one another; and their speeds are as 2 : 1. Prove that at the instant

when they are nearest one another their distances from the port are as

4 :5.

23. The force exerted by a circular electric current of radius a on
a small magnet whose axis coincides with the axis of the circle,

varies as

x

where x is the distance of the magnet from the plane of the circle.

Hence prove that the force is a maximum when x = ^a.
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24. Prove that the expression

a cos + b sin

has the extreme values + ^/(a
2 + 6a

).

25. Prove that sin (6
-

a) cos (0
-

is a maximum or a minimum when

according as n is even or odd.

26. The inclination of a pendulum to the vertical, when the re-

sistance of the air is taken into account, is given by the formula

ae~u cos (nt + e) ;

prove that the greatest elongations occur at equal intervals irjn of

time, and that they form a series diminishing in geometrical pro-

gression.

27. Find the maximum ordinate of the curve

y = xe~x.

Trace the curve.

28. The curve y = x log x

has a minimum ordinate *3678....

Trace the curve.

29. Prove that the ratio of the logarithm of a number (x) to the

number itself is greatest when x = e.

30. Prove that if a > b the expression

a cosh x + b sinh x

has the minimum value ^/(a
3 62

),
but that if a < b it has neither a

maximum nor a minimum.

31. Prove that the function

cosh x + cos x

has a minimum value when x = 0, but no other maxima or minima.

32. Prove that the function

cosh x cos x

has a maximum value when x = 0, a minimum value when x =
-|TT

(nearly), and a series of alternate maxima and minima corresponding
to x = nTr + ^7T, approximately, where nl

t 2, 3 ____

33. Find the maxima and minima of the function

cosh x + cos x

1 + cosh x cos x
'

L. i. o. 9
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EXAMPLES. XVII.

(Geometrical Problems.)

1. The rectangle of least perimeter for a given area is a square.

2. The rectangle of given perimeter which has the shortest

diagonal is a square.

3. The greatest rectangle which can be inscribed in a given
triangle has one-half the area of the triangle.

4. A rectangle is inscribed in a right-angled triangle, so as to have
one angle coincident with the right angle; prove that its area is a
maximum when the opposite corner bisects the hypothenuse.

Shew also that under the same circumstances the perimeter of the

rectangle has neither a maximum nor a minimum value.

5. Find the rectangle of greatest or least perimeter which can be
inscribed in a given circle.

6. If through a given point A within a circle a chord PAQ be

drawn, the sum of the squares of the segments PA, AQ is least when
the chord is perpendicular to the diameter through A

t
and greatest

when the chord coincides with the diameter.

7. Given a fixed straight line, and two fixed points A, B outside

it, it is required to find a point P in the straight line such that
AP2 + PIP shall be a minimum.

8. Find the square of least area which can be inscribed in a given
square ;

and the square of greatest area which can be circumscribed to

a given square.

9. A quadrilateral APQB is inscribed in a segment of a circle,

AB being the base of the segment. Prove that when the area is a
maximum

10. A straight line drawn through a point (a, b) meets the (rect-

angular) coordinate axes in P and Q, respectively; prove that the
minimum value of OP + OQ is

11. A straight line is drawn through a fixed point (a, b) ; prove
that the minimum length intercepted bet-ween the coordinate axes

(supposed rectangular) is
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12. A rectangular sheet of metal has four equal square portions
removed at the corners, and the sides are then turned up so as to form
an open rectangular box. Shew that when the volume contained in

the box is a maximum, the depth will be

where a, b are the sides of the original rectangle.

13. At what distance from the wall of a house must a man whose

eye is 5 feet from the ground station himself in order that a window
5 feet high, whose sill is 20 feet from the ground, may subtend the

greatest vertical angle 1

14. It is required to cut from a cylindrical tree-trunk a beam of

rectangular section of maximum flexural rigidity; prove that the

breadth of the section must be ^ the diameter, and its depth '866 of the

diameter. (Assume that the flexural rigidity varies as the breadth and
as the cube of the depth.)

15. A straight road runs along the edge of a common, and a

person on the common at a distance of one mile from the nearest point

(A) of the road wishes to go to a distant place on the road in the least

time possible. If his rates of walking on the common and on the road

be 4 and 5 miles an hour, respectively, shew that he must strike the

road at a point distant 1J miles from A.

16. Find at what height on the wall of a room a source of light
must be placed in order to produce the greatest brightness at a point
on the floor at a given distance a from the wall. (Assume that the

brightness of a surface varies inversely as the square of the distance

from the source, and directly as the cosine of the angle which the rays
make with the normal to the surface.)

17. Two particles P, Q describe fixed straight lines intersecting in

0, with constant velocities u, v. Prove that if A, B be simultaneous

positions of the particles, and if OA= a, OB = bt LAOfi = <a,
the dis-

tance PQ will be least after a time

au + bv (av + bu) cos w

u* 2uv cos CD + v*

and that the least distance will be

(av t^j bu} sin o>

cos co +

18. Prove that the greatest rectangle which can be inscribed in a

segment of a parabola bounded by a chord perpendicular to the axis
has a length equal to that of the segment.

19. The greatest rectangle which can be inscribed in a given
ellipse has its diagonals along the equi-conjugate diameters.

92
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20. If the length of a tangent to an ellipse intercepted between
the axes be a minimum, the tangent is divided at the point of contact

into two portions equal to the semi-axes of the ellipse, respectively.

21. If a tangent to an ellipse includes with the principal axes

(produced) a triangle of minimum area, it is parallel to one of the equi-
conjugate diameters.

22. A circular sector has a given perimeter ; prove that the area

is a maximum when the angle of the sector is 2 radians, and that the

area is then equal to the square on the radius.

23. If a triangle have a given base, and if the sum of the other

two sides be given, the area is greatest when these two sides are equal.

24. A quadrilateral has its four sides of given lengths, in a given
order ; prove that its area is greatest when it can be inscribed in a

circle.

EXAMPLES. XVIII.

[The following results may be assumed :

(1) The curved surface of a right circular cylinder of height h

and radius a is

(2) The volume of the same cylinder is ira'h ;

(3) The curved surface of a right circular cone of height A,

base-radius a, and slant side I is iral ;

(4) The volume of the same cone is \-nd?h ;

(5) The surface of a sphere of radius a is 47ra8 ;

(6) The volume of the same sphere is ^Tra*.]

1. The cylinder of greatest volume which can be inscribed in a

given sphere has a volume equal to -5773 of that of the sphere.

2. The cylinder of greatest superficial area which can be inscribed

in a given sphere has a surface equal to '8090 of that of the sphere.

3. The cylinder of greatest volume for a given superficial area has

its height equal to the diameter of the base, and its volume is *8165 of

that of a sphere having the given superficial area.

4. Find the cylinder of least surface for a given volume; and

prove that the ratio of its surface to that of a sphere of equal volume
is 1-145.

5. Find the proportions of a thin open cylindrical vessel in order

that the amount of material required may be the least possible for a

given volume.

[The height must equal the radius of the base.]
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6. A cylinder is inscribed in a right circular cone
; prove that its

volume is a maximum when its altitude is that of the cone, and that

its volume is then that of the cone.

7. If a cylinder be inscribed in a right circular cone the curved

surface is a maximum when the altitude of the cylinder is ^ that of the

cone.

Shew also that the total surface of the cylinder cannot have a

maximum value if the semi-angle of the cone exceeds 26 34' [= tan-1
].

8. The cone of greatest volume which can be inscribed in a given

sphere has an altitude equal to f the diameter of the sphere.

Prove also, that the curved surface of the cone is a maximum for

the same value of the altitude.

9. If a right circular cone be circumscribed to a given sphere, its

volume will be a minimum when the altitude is double the diameter of

the sphere. Shew also that the semi-vertical angle will be 19 28'

10. The right circular cone of greatest surface for a given volume

has an altitude equal to ^/2 times the diameter of the base.

11. From a given circular sheet of metal it is required to cut out

a sector so that the remainder can be formed into a conical vessel of

maximum capacity ; prove that the angle of the sector removed must
be about 66.

12. An open rectangular tank is to contain a given volume of

water, find what must be its proportions in order that the cost of

lining it with lead may be a minimum.

[The length and breadth must each be double the depth.]

13. Given the sum of three concurrent edges of a rectangular

parallelepiped, find its form in order that the surface may be a

maximum.

14. Prove that the parallelepiped of greatest volume which can be

inscribed in a given sphere is a cube.

15. Prove that the rectangular parallelepiped of greatest volume
for a given surface is a cube.

16. If a triangle of maximum area be inscribed in any closed oval

curve the tangents at the vertices are respectively parallel to the

opposite sides.

17. If a triangle of minimum area be circumscribed to a closed

oval curve, the sides are bisected at the points of contact.

18. The triangle of maximum area inscribed in a given circle is

equilateral ;
and the triangle of minimum area circumscribed to the

circle is also equilateral.



134 INFINITESIMAL CALCULUS [CH. IV

19. A polygon of maximum area, and of a given number (n) of

sides, inscribed in a given circle is regular; and a polygon of minimum
area, of n sides, circumscribed to the circle is also regular.

20. Assuming that the rectangle of greatest area for a given
perimeter is a square, explain how it follows immediately that the

rectangle of least perimeter for a given area is a square.

What inferences can be drawn in like manner from the results of

Examples 13 and 15, above ?

21. The polygon of n sides, which has maximum area for a given

perimeter, or minimum perimeter for a given area, is regular. (Assume
the result of Example 24, p. 132.)

Hence shew that the figure of maximum area for a given perimeter,
or of minimum perimeter for a given area, is a circle.

22. By the regulations of the parcel post, a parcel must not
exceed six feet in length and girth combined ; prove that the most
voluminous parcel which can be sent is a cylinder 2 feet long and
4 feet in girth, and that its volume is 2*546 cubic feet.

EXAMPLES. XIX.

(Small Variations.)

1. Prove that in a table of logarithmic tangents to base 10 the
difference for one minute in the neighbourhood of 60 will be -00029,

approximately.

2. The height h of a tower is deduced from an observation of the

angular elevation (a) at a distance a from the foot; prove that the
error due to an error Sa in the observed elevation is

8h = a sec2 aSa.

If a = 100 feet, a = 30, and the error in the angle be 1', prove that

SA=-47inch.

3. Find the cube root of 101, having given that the cube root of

100 is 4-6416. [4-6570.]

4. Having given loge 10 = 2-3026 find an approximate value of

log, 101. [4-6151.]

5. In a table of anti-logarithms (y=Wx
)
the entry opposite *4 is

2-511886
;
find the anti-logarithm of -40005 (//.= -434294).

[2-512176.]

6. An angle is to be found from its log-tangent. Find in seconds

of arc the error in the angle due to an error of '0001 in the calculated

log tangent, the angle being in the neighbourhood of 30. [20-6".]
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7. Prove that in a table of log-secants to base 10 the difference for

one minute in the neighbourhood of 30 is '00007, nearly.

8. Having given cosh 5 = 74-2099, calculate the value of cosh 5-001.

[74-2841.]

9. Having given tanh -5 = -46212, find tanh -501. [-46291.]

10. Prove that if < (x) be continuous and differentiate, except
for x = xlt when it becomes infinite, then

<f>' (a^) is also infinite.

11. In a tangent galvanometer the tangent of the deflexion of

the needle is proportional to the current
; prove that the proportional

error in the inferred value of the current, due to a given error of

reading, is least when the deflexion is 45.

12. The distances (#, x') of a point on the axis of a lens, and of

its image, from the lens, are connected by the relation

1
JL _1

x
+
x'~f>

prove that the longitudinal magnification of a small object is
(oj'/a;)*.

13. A crank OP revolves about with angular velocity o>, and a

connecting rod PQ is hinged to it at P, whilst Q is constrained to

move in a fixed groove OX. Prove that the velocity of Q is <o . OJK,
where R is the point in which the line QP (produced if necessary)
meets a perpendicular to OX drawn through 0.

14. If the density (s) of a body be inferred from its weights
( W, W) in air and in water respectively, the proportional error due to

errors 8W
t
&W in these weighings is

&r W 8W_
7

= "

W- W ' W
"
W-W"

15. The radius r of a sphere is found by weighing it in air and in
water. Prove that the proportional error, due to small errors in these

weighings, is

r 1

where Wlt JF2 are the weights in air and water, respectively.

16. The error in the area (S) of an ellipse due to small errors in
the lengths of the semi-axes a, b is given by

$S
=

Sa Bb

S
~

a
H "

"6

'

17. If the three sides a, 6, c of a triangle are measured, the erroi

in the angle A, due to given small errors in the sides, is

sin 4 fo 86 Sc
oA = - =

-. ^ --- cot C -r- cot .

Bin B sm C a b o
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18. If the area (A) of a triangle be computed from measurements
of one side (a) and the adjacent angles (, 0), shew that the pro-

portional error in the area, due to small errors in the measurements, is

given by
8A Sa c SB b SC
~7~ *> T . r~r 75A a a sin B a sin G

Also, verify this result geometrically.

19. The area A of a triangle is calculated from the lengths of the
sides a, 6, c. If a be diminished, and b increased, by the same small
amount a, prove that the consequent change in the area is given by

20. The altitude of a triangle is computed from measurements of

the base a and the base-angles B, C. If small errors &/?, 80 be made
in the angles, the consequent proportional error in the altitude ia

sinC sinS

sin A sin B sin A sin C

21. If a triangle ^4.6(7 be slightly varied, but so as to remain
inscribed in the same circle, prove that

Sa 86 8c
A "^" T> ~^~ TV *'

cos .4 cos B cos 6

22. If ABCD be a deformable plane quadrilateral of jointed rods,
and if x, y be the lengths of the diagonals AC, BD, the infinitesimal

variations of these lengths are connected by the relation

sin A sin C . x&x + sin B sin D . y Sy = 0.

EXAMPLES. XX.

(Geometrical Applications.)

1. Prove that the condition that the tangent to a curve should

pass through the origin is

y = % e

x dx'

2. Prove that the straight line y = 2x 1 is a tangent to the
curve

ysBfl^a + l.

3. Prove that the straight line y = 2x 1 touches the curve

2/-a
4

at two distinct points.
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4. Prove that the curve

y = x4 - 6ar + 1 3a;
3 - 1 la + 4

touches the straight line y = x twice
;
and find the abscissa* of the

points of contact of the remaining tangents from the origin.

5. Find the points on the curve

5

where the tangent is parallel to y = 2x ;
and prove that two of these

points have the same tangent.

6. Find the equations of the tangents which can be drawn from

the origin to the curve

Also find where the tangent is parallel to the axis of x. Give a

figure.

V/7. Prove that the perpendicular drawn from the foot of the

ordinate to the tangent of a curve is

Hence shew that in the catenary y = c cosh x/c this perpendicular is

constant.

/8. Prove that the perpendicular from the origin on the tangent is

Verify that in the circle

y = + ,/('-*')

this perpendicular is constant, and that in the rectangular hyperbola

xy = &2

i.
it is equal to

9. In the exponential curve (Fig. 24, p. 77)

the subtangent is constant, and the subnormal is y^ja.

10. In the catenary y = c cosh x/c,

the subtangent is c coth x/c, the subnormal is \c sinh 2/c, and the

normal is y^jc.

11. The subtangent of the curve

y
n - an

~l x
is nx.
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12. Prove that the curve

\jB

touches the straight line

a b

at the point (a, 6), whatever the value of n.

13. In the curve of sines

y = b sin - ,
CL

the subtangent is a tan x/a, the subnormal is \b
z
ja . sin 2x/a, and the

normal is

, . x //. 62
2
a?\

o sin - . / (
I +

,
cosj -

) .

a v \ a a/

14. Prove that the curves

y =e -ax sin pXt y-. e-*t

touch at the points for which fix
= 2mr + ^TT, where n is integral.

Sketch the curves.

15. Prove that a pair of straight lines can be drawn through the

origin, each of which touches all the curves obtained by giving c

different values in the equation

i
x

y = c cosh - .

c

16. If a curve be constructed with the velocity (v) of a moving
point as ordinate, and the space described (s) as abscissa, the accele-

ration will be represented by the subnormal.

17. If a curve be constructed with the kinetic energy (-g-mv*) of a

particle as ordinate, and the space s as abscissa, the force will be

represented by the gradient of the curve.

18. Prove that the equations of the tangents to the curves

y = 2 a-'*, J+=l
'

;

may be put in the forms

respectively.

19. Tangents are drawn to a conic
<j> (a;, y) = parallel to y =mx + c

;

prove that the equation of the line joining their points of contact is

8< 9<

5
r + m = (X
ox oy
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20. Chords of a closed oval curve of finite curvature are drawn

parallel to a fixed direction ; prove that there is at least one chord of

the system such that the tangents at its extremities are parallel.

21. Prove that in the ellipse

x = a cos (0 + a), y = b cos (6 + ft)

the tangent at the point Ol will be parallel to the radius drawn to the

point 0, if 0j
-

2
=

JTT.

22. Find the values of corresponding to the principal axes

of the ellipse
x = a cos 6 + a sin 0, y = b cos + b' sin 0.

r 2(aa' + bb') -1

tan 2^ =
a M 5-^T*'a3 + o3 - a 2 6 *

23. Prove that the condition that the normal to the curve

<
(*, y} = o

should pass through the origin is

a< a<i

"|-"is-
a

Deduce the equation of the principal axes of the conic

24. Prove that if b > 2a three real normals can be drawn from the

origin to the parabola
or

1 = 4a (y + b).

25. Find the intercepts made on the coordinate axes by the

normal at any point of the rectangular hyperbola

jc
2 -ya = aa

;

and prove that the difference of their squares is constant.

26. Prove that the equation of the tangent to the hyperbola

x = kt, y = k/t

is

27. If a?
4 + y

4 = a4
, prove that a? + y* is a maximum when x = + y.

Trace the curve ;
and prove that its greatest radial deviation from the

circle or
1 + y*= a? is *189a.

28. Prove that in the parabola
a

r =

the focus being pole, </>
= TT ^0,

and hence shew that the tangent makes equal angles with the focal

distance and the axis.
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29. Two adjacent points /*, P on a curve being taken, straight
lines PR, P'R are drawn at right angles to the radii

; prove that the

limiting value of PR, when P coincides with P, is drfdO.

30. If
<f>

be the angle which the tangent to a curve makes with
the radius vector drawn from the origin, prove that

dy
dx

tan = .

31. Prove that in the rectangular hyperbola

r5 cos 20 = a2

the lines bisecting the angles between the radius and the tangent are

constant in direction.

32. Prove that the equation of the tangent to a curve

at the point B = a is

-
=/(o) COS (0

-
a) +f (a) sin (0

-
a).

Hence prove that the equation of the tangent to the conio

I- = 1 + e cos 6
r

is - = e cos 6 + cos (6 a).
r



CHAPTER V

DERIVATIVES OF HIGHER ORDERS

64. Definition, and Notations.

If y be a function of a?, the derived function dyjdx will in general
be itself a differentiable function of x. The result of differentiating

dy/dx is called the ' second differential coefficient/ or * second
derivative/ If this, again, admits of differentiation, the result 19

called the ' third differential coefficient/ or
'

third derivative
'

;
and

so on.

If we look upon d/das as a symbol of operation, the first, second,

third, ..., nth derivatives may be denoted by

d (d\* fd\
3

(d\
n

respectively. The more usual forms are

dy d*y d*y dny~ ~

' '"' dxn
'

which may be regarded as contractions of the preceding, although

(historically) they arose in a different manner.

Again, writing D for d/dx, as in Art. 25, we have the forms

Dy, D*y, D*y, ..., D*y.

If y = $ (a?),

the successive derivatives are also denoted by

$'(*), 4>"(x), $"(x)9 ... 9 j>(x).

Occasionally it is convenient to adopt the briefer notation

y', y", y"', .... y.
There are a few cases in which a general expression for the nth

derivative of a function can be found. The more important of

these are given in the following examples.
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Ex. 1. If

y = A9 + AtX + A 3x
t + A 3x* + ... +Amx

m
, (1)

we have

t7 12 Wl>

D*y= 2.1A, +3.24 3 + ... +m (m- 1) Amx
m
~*, I

(2)

and therefore Dm+l
y = Q, Dm+ 2

y = Q,&c (3)

Hence the mth derivative of a rational integral function of the ;/ith

degree is a constant, and all the higher derivatives vanish.

Ex.2. If y = e
to

, (4)

we have Dy =
&<?**, D2

y = A^e*35

,
. . .

,

and, generally, Dn
y = kn eJtx

(5)

Hence, putting k log a, we have

Dna* = (log a)
n
a*.

(6)

Ex. 3. If y = sinfix, (7)

we have Dy= fi cos fix, D*y = fi? sin fix,)

j^y = _
fi* Cos fix, D*y =

)8
4 sin fix,)

*

.

and so on.

Otherwise, we have

and therefore D*y = fi* sin (/to + IT + \ TT),

and, generally, Dn
y = fi

n
sin(fix + ^nTr) (9)

Ex. 4. If y = cosfix, (10)

we have Dy =
fi sin /to, D2

y = -fi
2 cos /to,)

V (11)D y = fi sin pa?, D y = fi* cos /to, j

and so on.

Or, Zty = /8 cos (fix + ^TT),

whence D2
2/
=

fi* cos (/to + \ IT + ^ir),

and, generally, Dn
y =

fi
n cos (fix + \nir) (12)

Ex. 5. If y = eax cosfix, (13)

we find Dy = e"* (a cos fix
-

fi sin fix), ]>..... ......(14)D2
y = e * {(a

2 -
^S

2
)
cos fix

-
2afi sin

fix}. J
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Similarly, if y = e sin /&c, ........................... (15)

we have Dy = e?* (a sin fa + ft cos fix), |

D*y = &* {(a
2 -

(?) sin fix + 2aft cos fix}. }

General formulae may be obtained, in these cases, by putting

a = rcos0, /3=rsin0

This makes D . e** cos fix
= eaa (a cos fix- fi sin fix)

= re * cos (fix + 0),

and by repeated application of this result we find

Dn
. e* cos fix

= rnea*cos(fix + nO)................ (18)

Similarly Dn
. e** sin fix = r* e?* sin (fix + nO)................ (19)

Ex. 6. If 2/
=

logo>, .............................. (20)

we have Dy = x~\ Dz
y = -x~

2
t
Dz

y = -l.-Z.x-\... t

and, generally, Dn
y = - I .

- 2 .
- 3 ... - (n

-
1) o

*

65. Successive Derivatives of a Product. Leibnitz'

Theorem.

If u, v be functions of #, we have by Art. 31 (20),

D(uv) = Du.v + u.Dv...................(1)

If we differentiate this again, we have

D2
(uv)

= D(Du.v) + D(u. Dv).

Now, by the rule referred to, we have

whence ]>(uv) = D*u. v + Wu.Dv + u.D*v. .........(2)

The general formula for the nth derivative of a product is

Dn
(uv)

= Dnu . v + nDn~lu . Dv + ^L^zD p-*u . D*v +...
J. . &

+ nDu.Dn-*v + u.I)n v, ......(3)

the coefficients being the same as in the Binomial Theorem. This

formula is due to Leibnitz.
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To see the truth of (3), consider the process of formation of the first

few derivatives of uv. Using the accent notation, we have

D (uv)
= u'v + uv' (4)

Differentiating this again,

+ u'v' + uv'

= u"v + 2u'v' + uv" (5)

The next differentiation gives

D3

(uv)
= u'"v + 2u"v' + u'v"

+ u"v' + 2u'v" + uv'", (6)

where in the first line we have differentiated the first variable factor in

each term of (5), and in the second line the second variable factor. The
result is

D9
(uv)

= u'"v + 3u"v
f + 3u'v" + uv'" (7)

It appears that the numerical coefficient of the rth term in (7) is the

sum of the coefficients of the rth and (r l)th terms in (5) ;
and it is

evident from the nature of the successive steps that this law will obtain

for all the subsequent derivatives. Now this is precisely the law of

formation of the coefficients in the expansions of the successive powers
of a + b

;
and since the coefficients of D (uv) are the same as those of the

first power of a + b, it follows that the coefficients in the expanded form

of Dn
(uv) will be the same as those of (a + 6)*.

Ex. 1. If y = xu, (8)

we have Dn
y = xD

nu + nDx . Dn~*u

= xDnu + nDn~lu
t (9)

since J)zx = Q.

Thus if y = xsmfix, (10)

we have D*y = xD* sin fix + 2Z) sin fix

=
fi*x sin fix + 2fi cos fix. , (11)

Again, if y = xlogx, (12)

we have Dn
y = xD

n
log x + nD

n~l

log x

(
v-t (*-!)!./ y.-.*(n-2)l~\ )

yji-l
r V / xn-l

by Art. 64 (21). Hence
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Ex. 2. If y =eX .............................. (14)

we have
~

' *** nDn
y = e* . Dnu + n . De* . Dn~ lu +

. i

lu+
r^^ a.

zl)n^u+...).......... (15)

Thus, if y = e*sin/fo, ........................... (16)

we have IPy = eaa (D* sin fix + 2aZ> sin fix + a9 sin j3x)

= e *{(a
2

-/3
2

)sina;+2acos/3a;}, ...............(17)

in agreement with Art. 64 (16).

66. Dynamical Illustrations.

The second derivative is especially predominant in the dynamical

applications of the Calculus.

Thus, in the case of rectilinear motion, if s be the distance from a

fixed origin, we have seen (Art. 26) that the velocity (v) and the accele-

ration (a) are given by the formulae

ds dv

Hence, in the present notation, we have

d /ds^

i.e. the second derivative of a (with respect to the time) measures the

acceleration.

So also the angular acceleration of a body about a fixed axis is given,

in the notation of Art. 26, by

dot _ d?0 /\
~dt

=:

d^'
"()

Ex. 1. If s be a quadratic function of t, say

(4)

ds
we have -^ = lAt + B,

at

i.e. the acceleration is constant.

L.LO. 10
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Ex. 2. In '

simple-harmonic
' motion we have

8 = acos(nt + e), .................................(6)

whence -7 = na sin (nt + e),

*

(nt+ e)
= -wa

s, .................. (7)

i.e. the acceleration is directed always towards a fixed point (the origin
of s) and varies as the distance from that point.

Ex. 3. If s = A cosh nt + B sinh nt, ........................ (8)

ds
we have -=- = nA sinh nt + nB cosh nt,

ctt

-T = n*A cosh nt + n*B sinh nt - n*s, ............... (9)d&

i.e. the acceleration isfrom a fixed point, and varies as the distanca

67. Concavity and Convexity. Points of Inflexion.

Just as $ (&) measures (Art. 26) the rate of increase of
</> (x),

so
<f>" (x) measures the rate of increase of

<ft (x). Hence if
<f>" (x)

be positive the gradient of the curve

y-*() ...........................(i)

increases with x ;
whilst if <" (x) be negative the gradient decreases

as x increases.

If <" (x) = 0, the rate of change of the gradient is momentarily
zero, and we have a '

stationary tangent.' The simplest case of this

is at a *

point of inflexion/ i.e. a point at which the curve crosses

its tangent ;
see Fig. 40.

A curve is said to be concave upwards at a point P when in

the immediate neighbourhood of P it lies wholly above the tangent
at P. Similarly, it is said to be convex upwards when in the

immediate neighbourhood of P it lies wholly below the tangent
at P.

If the curve, to the right of P, lie above the tangent at P, as in

Fig. 39, it is easily seen from Art. 56 that within any range (how-
ever short) extending to the right of P there will be points at

which
</>' (x) is greater than at P. Hence, by Art. 48, the value

of
<f>" (x) at P cannot be negative. The same conclusion holds if

the curve, to the left of P, lie above the tangent at P.

Similarly, if the curve, either to the right or left of P, lie below

the tangent at P, the value of <" (x) at P cannot be positive.

It follows that the curve is concave upwards when
<j>" (x) is

positive, and convex upwards when <" (x) is negative.
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It appears, moreover, that at a point of inflexion, where the curve

crosses its tangent, <j>" (x) cannot be either positive or negative, and

Fig. 39.

therefore (since it is assumed to be finite) must vanish. This con-

dition, though essential, is not sufficient. It is further necessary
that <" (x) should change sign as x increases through the value in

question. Suppose, for instance, that to the left of P the curve

lies below the tangent at P, and that to the right of P it lies above
it. It appears then from Art. 56 that there will be points of the

curve both to the right and to the left, in the immediate neigh-
bourhood of P, at which the gradient is greater than at P, i.e. the

gradient is a minimum at P, and
<j)"

'

(x) must therefore change
(Art. 51) from negative to positive.

Fig. 40

If the crossing is in the opposite direction, the gradient is a

maximum at P, and
</>"

'

(x) changes from positive to negative.
102



148 INFINITESIMAL CALCULUS [CH. V

Ex. 1. If y = &, ................................. (2)

we have y" = Qx.

This changes from to -f as x increases through 0. Hence we have a

point of inflexion; see Fig. 31, p. 105.

This makes y" =

Hence there are three points of inflexion, viz. when x = and when
x = V3. See Fig. 13, p. 27.

. 3. In the curve of sines

u

, . x ywe have y = = sin - = -
.

aa a a2

Hence y" changes sign, and there is a point of inflexion, whenever the

curve crosses the axis of x. See Fig. 14, p. 28.

Ex. 4. In the curve y = x*, (5)

we have y" = 1 2x*.

This vanishes, but does not change sign, when x = 0. Hence we have
a stationary tangent, but not a point of inflexion in the strict sense. It

is in fact obvious, since x4 is essentially positive, that the curve lies

wholly on one side of the tangent at the origin.

68. Application to Maxima and Minima.

The criterion of Art. 51 for distinguishing maxima and minima
values of a function < (x) can also be expressed in general in terms
of the second derivative <" (x).

Since
c/>" (x) is the derivative of <' (x), it appears that if, as x

increases through a root of $' (x)
= 0, </>''(#) is positive, </>'(%) must

be increasing, and therefore changing sign from to +. Hence

<f> (x) is a minimum.

Similarly, if </>" (x) is negative when <f>' (x) 0, <f> (x) must be

decreasing, and therefore changing sign from + to . Hence < (x)

is a maximum.

The connection of these results with the criterion of concavity
and convexity is obvious.

Ex. 1. In rectilinear motion, the distance (a) from the origin, is a

maximum or minimum when the velocity (dsjdt) vanishes, according as

the acceleration (d^s/dP) is then negative or positive.



67-70] DERIVATIVES OF HIGHER ORDERS 149

2x
Ex. 2. Let < (x)

=
j

-
.

We have seen, Art. 51, Ex. 4, that <' (x) vanishes for x = 1 and x = 1.

Also from the value of <" (x) given in Art. 67, Ex. 2, it appears that

t" (!)
= -!, *"(-!)-!.

Hence the former value of x gives a maximum, and the latter a minimum,
value of

<f>(x).
See Fig. 13, p. 27.

It may happen, however, that a value of x which makes <' (x)

also makes <" (x)
= 0. It is easily shewn that in this case

</> (x) is

in general neither a maximum nor a minimum (cf. Fig. 31, p. 105),
but it is hardly worth while to continue the discussion here. The

complete rule will be given later (Chap, xv) as a deduction from

Taylor's Theorem.

69. Successive Derivatives in the Theory of Equations.

The successive derived functions play a great part in the Theory
of Equations.

We have seen (Art. 50) that, if </>(#) be a rational integral
function, at least one root of <' (x)

= will occur between any two
roots of $ (x)

= 0. Similarly, at least one root of
</>" (x)

= will

occur between any two roots of <' (x)
= 0, and so on.

Moreover, since an r-fold root of (x) is an (r l)-fold root

of
</>'(#)

= 0, it will be an (r-2)-fold root of </>"(#)
= 0, ..., and

finally
a simple root of

</>

(r
~1>

(a;)
= 0. Hence the necessary and

sufficient conditions for an r-fold root of
</> (x) are that the

functions

<t>(x), V(x), f (*), ..., <"-(*) ............(1)

should simultaneously vanish.

Ex. If
<t>(x)

= 2x* + 5x4 + 4x>+2x* + 2x + l,

we have <' (x)
= lOa;4 + 20ar* + 1 2a* + 4a + 2,

<" (x)
= 4 (IQx* + 15s2 + Qx + 1).

These all vanish for x = 1, which is therefore a triple root of < (x)
= 0.

We find, in fact, that

70. Geometrical Interpretations of the Second Derivative.

In Art. 56 an important property of the first derived function
was obtained by a process which consisted virtually in a comparison
of the curve

?=<#>(*) ...........................(1)

with a straight line y A-\-Ex, ................. .......(2)
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the constants A, B being determined so as to make (1) and (2)
intersect for two given values of x.

We proceed, in a somewhat similar manner, to compare the
curve (1) with a parabola

y=A + BX + CX*, .....................(3)

where the constants A,B,C are determined so as to make (1) and

(2) intersect for three given values of x.

1. We will first suppose these values of x to be equidistant ;

let them be a h, a, a + n. The equations to determine the con-

stants are then

A + Ba +Ca?

A+B(
Let us now write

Cx*), ...............(5)

i.e. F (x) denotes the difference of the ordinates of the curves (1)

and (3). By hypothesis, F (x) vanishes for x = a h, and for x = a;

hence, by Art. 49, the derived function F' (x) will vanish for some

intermediate value of x, that is

F(a-6^) = 0, ...... . .................(6)

where l>0j>0. Again, since F(x) vanishes for x = a, and for

x a + h, we shall have

F'(a + th) = t
........................(7)

where 1 > 0* > 0.

By a further application of the same argument, since the func-

tion F' (x) vanishes for x = a - 6^ and for x = a -t- OJi, its derived

function F" (x) will vanish for some intermediate value of a?; we
have therefore

F"(a + 0/i)
= 0, ........................(8)

where 6 is some quantity lying between l and #a ,
and & fortiori

between 1. Since, by (5),

F"(x) = <f>" (*)-20, .....................(9)

it follows that, for some value of between 1,

.....................(10)

Now from (4) we find

(a) + < (a
-

h)
= 2Cfc, .........(11)



70] DERIVATIVES OF HIGHER ORDERS

and therefore

Hence

151

=f (a). ...(13)

In the same way we could prove that

If the difference
<[> (a + h) <f> (a) be denoted by 8y, the expression

{< (a + 2A)
-

</> (a + h)}
-

{<f> (a + h)
-

< (a)},

which is the difference of the differences, or the 'second difference/

for equal increments h of the independent variable, may be denoted

by $ (By) or S3

y. Hence the formula (14) is equivalent to

This is the origin of the notation dz

y/da?, this being the limiting
form of the second difference.

To interpret the theorem (13) geometrically, let, in Fig. 41,

OA=a,
and let AQ, HP, H'P be the corresponding ordinates of the
curve (1). Join PP', and let AQ meet PP' in V. Then
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and therefore

Hence the theorem (13) asserts that

VQ = ^HA'.4>"(a)......................(16)

ultimately.

It appears that the chord is above or below the arc according
as

</>" (a) is positive or negative.

2. We will next suppose that two of the three points at

which the curves (1) and (3) intersect are coincident. More pre-

cisely, we suppose that for x = a the curves not only intersect but

touch, and that they intersect again for x = a 4- h. The conditions

that, for x = a, y and dyjdx should have the same values in the

two curves, are

a = <a,
while the third condition gives

+ /i)..........(18)

With the same definition of F (x) as before, we have

* = 0, F(a + h) = 0, ............... (19)

and therefore F'(a + 0^) = 0, ..................... (20)

where 1 >^>0. Again, since F' (x) vanishes for a? = a, and for

x = a + 0Ji, we have
2P" (a + 0/0 = 0, .....................(21)

where 6l > 6 > 0.

Now from (17) and (18) we find

<l>(a + h)-<t>(a)-h<l>'(a)=Ch?.............(22)

Hence, by (9) and (21),

< (a + h)
=

<f> (a) + k$ (a) 4-W (a + 0h).......(23)

This very important result will be recognized, later, as a par-
ticular case of Lagrange's form of Taylor's Theorem (see Chap. xv).
It includes as much of this theorem as is ordinarily required in

the dynamical and physical applications of the subject.

From (23) we deduce
f

. .= i <#> (a).......(24)
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In Fig. 42, let OA =a, AH =
h, and let AP, HQ be the corre-

sponding ordinates of the curve (1). If QH meet the tangent at

P in F, we have

H

Fig. 42.

Hence (24) asserts that

(25)

ultimately.

Hence the deviation of a curve from a tangent, in the neigh-
bourhood of the point of contact, is in general a small quantity
of the second order.

If <" (a) 4= 0, QV does not change sign with h, and the curve
in the immediate neighbourhood of P lies altogether above, or

altogether below, the tangent-line, according as $" (a) is positive
or negative. Cf. Art. 67.

The formulae (16) and (25) have an interesting application in

the theory of Curvature. See Chap. x.

71. Theory of Proportional Parts.

Let us make the, curves

y -*<*),

and y = A +Bx + Cx*,

intersect for

where 1 > z > 0.

We find

(i)

(2)
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and consequently, by the method of the preceding Art.,

(l-z)$(a)+z<l>(a + h)-<l>(a + zh)=%z(l-z)te<l>'\a + eh)) (4)

where 1 > 6 > 0.

This result, which includes the theorems of Art. 70 as par-
ticular cases, is here introduced for the sake of its bearing on the

theory of
'

proportional parts/ Suppose that $ (#) is a function

which has been tabulated for a series of values of # at equal inter-

vals h. Let a be one of these values, and suppose that < (#) is

required for some value of # between this and the next tabular

value a -f h ; say for a + zh
t
where 1 > z > 0. In the method of

'

proportional parts/ the interpolation is made as if the function

increased uniformly from # = ato# = a + &, i.e. we assume

_
"!'

or (a+M)-(l -*)$(*)+*$(<*+&).............(6)

The formula (4) gives the error involved in this process, which is

equivalent to assuming that the arc of the curve (1) between x = a
and x = a + h may be replaced without sensible error by its chord.

The maximum value of z (1 z) is J, by Art. 51, Ex. 2. Hence
if R denote the greatest value which

<j>" (x) assumes in the interval

from x = atoa; = a, + h, the formula (4) shews that the error

>lh*R......................... ...(7)

Ex. 1. In a seven-figure logarithmic table, the logarithms of all

numbers from 10000 to 100000 are given at intervals of unity. Now if

0(oj)
= log10 , ........................... (8)

we have 4>"(*)
= -;3 ............. .............. (9)

x>

Hence, putting h = 1 in (7), we find that in the interpolation between

Iog10 n and Iog10 (n + 1) the error involved in the method of proportional

parts is not greater than
05429* n ............................ (10)

*
Thus for n = 10000, where it is greatest, the error does not exceed

000000000543,

and is therefore quite insensible from the standpoint of a seven-figure
table.

It appears from (4) that the method may be expected to fail

whenever
<j>" (x) is large. The differences are then said to be

*

irregular/
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Ex. 2.

we have

If <
(re)

= Iog10 sin x, ........................ (11)
"
(x)

= -
JJL

cosec* x. ..................... (12)

Hence, putting h = = -000291,

we find JA
2 <"

(a;)
= - -00000000460 cosec* x............. (13)

Since cosec3 18 = 10'47, it appears that in a table of log-sines at inter-

vals of 1' the error of interpolation may amount to half a unit in the

seventh place when the angle falls below 18.

EXAMPLES. XXI.

Verify the following differentiations :

2. y =

3. =

7.
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20. The first five derivatives of tan x are

2tl + t*),
2 (1 +

where t = tan #.

21. =

22. 2,
= a* log a,

23. y = xv,'

24. =

25. By applying Leibnitz' Theorem to the differentiation of the

identity

prove that

r r(r-l) r(r-l)(r-2)mr+ y
mr_! Tit +

^ ^
mr_a na + - v

1 ^
v

g
'mr_9 ns + ...+nr =

where mr
=m (m 1) (m-2) ... (m-r+ 1).

26. By forming in different ways the nth derivative of or
27

*, prove
that

I
"

P.22
l
a .22 .3a

27. Prove that

,1-0?

n!
f n

w2 na
(n-l)a

, )Dnyn =- J I J-- y + ._ ._>____/_ V2
4. I

(l-ar)
ra

I l
2 ^ P.22 y

"J

28. If

ft *J ft St

29. The equation -^-2
+ ^

-^-
+ n25 =

Q5t (*t

is satisfied by s = Ae ~ kt cos
(cr^ + e),

for all values of A and
, provided

VL 9 /X*?

30. The equation + 2n -=- + n2 =
or ai

is satisfied by s = (-4 +
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31. If y={x + J(l + x*)}
m

,

prove that (
1 + a;

2

) -y^
+ x

-^
- nty = 0.

32. if 0= <*(')> y=x( t\

dx d*y dy

d*y dt dtz dt
prove that .

=
?

r-
dtf /dx\*

'.)

EXAMPLES. XXII.

1. Prove that, in a table of natural sines at intervals of 1', the

error of proportional parts never exceeds

0000000106.

2. Shew that in a table of natural tangents the method of pro-

portional parts fails for angles near 90.

Also prove that the limit of error for angles near 45, when the

tangents are given at intervals of 1', is

0000000423.

3. Shew that in a table of log tangents the method of proportional

parts fails both for angles near and for angles near 90.

Shew also that the maximum error involved in the method is

least for angles near 45.

4. Prove that the curve

is everywhere convex upwards.

5. Prove that the curve

y = x log x

is everywhere concave upwards. Trace the curve.

6. Find the maximum ordinate, and the point of inflexion, of the
curve

Trace the curve.
y = xe~*.

[The maximum ordinate corresponds to x = 1 ; the in-

flexion to x =
2.]

7. Shew that the curve y = e~x*

has inflexions at the points for which x = j^ ;
and trace it.
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8. Find the maximum and minimum ordinates, and the inflexions,

of the curve

y = xe~x*.
Trace the curve.

[The maximum and minimum ordinates are given by
x = ,J\ ;

the inflexions by x = 0, + ^/-f .]

9. A certain function < (x) is constant and

= !(&'-<')
a9

forO<sc<a;it -4&
2

x

for a < x < b
;
and = J

-
x

for x > b. Prove that
<f> (x) and

</>' (a;)
are continuous, but that <" (x)

is discontinuous.

Trace the curve y = </> (x).

10. Shew that y = x9 (3 - x)

has an inflexion at the point (1, 2). Trace the curve.

11. Shew that y = x* (1 -or1

)

has inflexions at the points (
+ ^ , -^ ) . Trace the curve.

\ ^b 36/

12. Find the points of inflexion of the curve

13. Shew that
(x-af

has a point of inflexion at ( 2a, a). Trace the curve.

14. Find the points of inflexion of the curve

Xs

and trace the curve. [x
=

0, + a ^/3.]

15. Shew that the curve

1-a;
y = Y^>

has three points of inflexion, and that they lie in a straight line.

Trace the curve.

16. Prove that the equation

^-10^ + 15^-6 =
has a triple root.
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17. Prove that the equation

of - 5x* + 5aj* + 9o - 1 x* - 4# -f 8 =

has a triple root
;
and find all the roots.

18. Find the maximum and minimum ordinates, and the points of

inflexion on the curve

Trace the curve.

19. Find the points of inflexion on the curve

y = 2x4 -3x*-3x* + lx-,

and trace the curve.

20. Find the maximum and minimum ordinates, and the point
of inflexion, on the curve

y = 40s + 90J
2

Trace the curve.

21. Shew that the curves

* x

touch, and cross one another at the point of contact.

Trace the curves.

22. Determine the constants A, S, C so that the curve

y = Ax*+x* + Cx

may have a point of inflexion for x =
,
be parallel to the axis of x

for x 1, and pass through the point (1, 13).

23. Prove that the curve

x* -x + l

has three real points of inflexion.

24. Find the turning points, and the points of inflexion, on the
curve

y = 4 sin x sin 2x.

Trace the curve.

25. If PN, PN' be two neighbouring ordinates of a curve

y = < (x), and if QH, any intermediate ordinate, meet the chord PP
in V

t prove that

ultimately, where c is the abscissa of some point between N and N'.
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26. Shew that in the formula

<f> (a + h)
= < (a) + h$ (a + Oh)

of Art. 56, the limiting value of 0, when h is infinitely small, is in

general .

What is the geometrical meaning of this result ?

27. Shew that the variation in the value of a function, in the

neighbourhood of a maximum or minimum, is in general of the second

order of small quantities.

28. Explain why the rate of a compensated chronometer, at any
particular temperature, differs from the rate at the temperature of

exact compensation by an amount proportional to the square of the

difference of temperature.

29. Shew that, in a mathematical table calculated for equal
intervals of the variable, the maximum error of interpolation by pro-

portional parts, in any part of the table, is one-eighth of the ' second

difference' (i.e.
of the difference of the differences of successive entries).

30. The coordinates of three points P, Q, R on a curve are

(3250, -8526), (-3500, -8910), (-3750, -9239),

respectively; find, approximately, the values of dyjdx and d2

y/dx*
at Q.

31. Apply the formula (23) of Art. 70 to calculate Iog10 cos 1* to

six places of decimals.
[T-999934.1



CHAPTER VI

INTEGRATION

72. Nature of the Problem.

In the preceding chapters we have been occupied with the rate

of variation of functions given d priori. The Integral Calculus, to

which we now turn, is concerned with the inverse problem ;
viz.

the rate of variation of a function being given, and the value of

the function for some particular value of the independent variable

being assigned, it is required to find the value of the function for

any other assigned value of the independent variable. In symbols,
it is required to solve the equation

where
<f> (#) is a given function of x

y subject to the condition that

for some specified value (a, say) of x, y shall have a given value (b).

For example, the law of velocity of a moving point being given,
and the position of the point at the time tQ , it may be required to

find its position at any other time t. This is equivalent to solving
the equation

where
<f> (t) is a given function of t, subject to the condition that

s = s6 (say) for t = .

If we can discover a continuous function ^r (x) such that

*'(*)*(*),
the equation (1) becomes

Hence if, as is the case in most practical applications of the subject,

y be restricted to be continuous, we have, by Art. 56,

y = ^(x) + Ct ........................ (4)

where G is a constant. The precise value of is indeterminate,
so far as the equation (1) is concerned; G is therefore called an

'arbitrary constant.' Its use is that it enables us to satisfy the

remaining condition of the problem as above stated.

L. I. 0. 11
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Thus if y = b for x a, we must have

whence y b = ty (x) ty (a)...................... (5)

If, as in Art. 25, we use the symbol D for the operator d/dx,
the equation (1) may be written

Dy = <t>(x), ...........................(6)

and its solution may, consistently with the principles of algebraic
notation, be written

y = D-^(x), ........................(7)

the definition of the ' inverse
'

operator D~l

being that

DID-** (*)}-$(*)......................(8)

The function D~1
4>(^\ .................... : .........(9)

when it exists, is called the '

indefinite integral
'

of < (x) with

respect to x. It is more usually denoted by

f(f>(x)dx...................... . .....(10)

The origin of this notation will be explained in the next chapter ;

in the meantime (10) is to be regarded as merely another way of

writing (9).

The distinction between 'direct' and 'inverse* operations is one
that occurs in many branches of Mathematics. A direct operation
is one which can always be performed on any given function,

according to definite rules, with an unambiguous result. An in-

verse operation is of the nature of a question: what function,

operated on in a certain way, will produce an assigned result ? To
this question there may or may not be an answer, or there may be
more than one answer (cf. Art. 16). In the case of the operator
D"1 we have seen that if there is one answer, there are an infinite

number, owing to the indeterminateness of the additive constant G.

Whether there is, in every case, an answer is a matter yet to be

investigated ;
but we may state, although this is rather more than

we shall have occasion formally to prove, that every continuous

function has an indefinite integral. In the rest of this chapter we
shall be occupied with the problem ofactually discovering indefinite

integrals of various classes of mathematical functions.

Ex. Given that the velocity of a moving point is u + gt, we have

, .....................(ID

whence s = ut + %gt* + C............................ (12)

Determining C so that s = s for t = t
,
we have

*)................... (13)
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73. Standard .Forms.

There are no infallible rules by which we can ascertain the
indefinite integral

~

D~l (>x or

of any given continuous function < (x). As above stated, integra-
tion is an inverse process, in which we can only be guided by our

recollections of the results of previous direct processes.

The integral, moreover, although in a certain sense it always
exists, may not admit of being expressed (in a finite form) in terms
of the functions, whether algebraic or transcendental, which are

ordinarily employed in mathematics. The following are instances :

f

and the list might easily be extended indefinitely.

The first step towards making a more or less systematic record

of integrations is to write down a list of differentiations of various

simple functions
;
each of these will, on inversion, furnish us with

a result in indefinite integration. The arbitrary additive constant

which always attaches to an indefinite integral need not be explicitly

introduced, but its existence will occasionally be forced on the
attention of the student by the fact of integrals of the same ex-

pression, arrived at in different ways, differing by a constant.

The student should make himself thoroughly familiar with the

following results, which are fundamental :

[
] n + 1

[except for n = 1],

d , 1 dx

(A)

4r. *-** l&dv^lj", (0)

d f
-T- sin x = cos x, cos xdx = sin x, (D)

T
r

-r- . cos x = sin a?, I sin xdx = - cos x, (E)

j ,.

-y- . tan x = sec2
x, I sec3 xdx = tan a, (F)

112
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. cot x cosec3 a?, cosec2 xdx cot a?,dx

d

-7- .

dx

a

t dx . , a? .

Jv(a3
-a*)

=Sm
a'

1

a a? + x*

,= - tan ~
a a

c x
-j- . cosh 1 - =
dx a

a

x= cosh"1

i a

^- .

dx a
f_^C_ =

1

J a^-xz
~
a

a

tanh"1 -
a

2a log
x

a?

coth-1 --
-j . LOlil
aa? a ,aa [^- = _I Coth-i-

J a? a2 a

JL^

~2a
1 ,

^

a

a

(1}

--
. sinh a? = cosh a?, cosh xdx = sinh a;, (/)

A

T- . cosh x = sinh a?, I sinh xdx = cosh #,
ax J

-j- . tanh a? = sech2
a;, I sech3 xdx = tanh a?.

/Y'T*IIU, J

-,
-

. coth x cosech2
a?, I cosech* xdx = coth a?,

CM? J

d . , ,
x

T~ . sinh"1 - =
CiX Qi

(0)

(Q)

A little care is necessary in the employment of some of these
formulae. In the first place, the sign of a in (H), (I), (N), (0),

(P), (Q) is most conveniently taken to be positive ;
this is evidently

always legitimate, since the square of a alone appears in the

expression to be integrated.
* As to the question of sign, see Art. 33.

t As to the sign, see Art. 47.
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Again, the formula (5) requires amendment when x is negative,
since there is no logarithm of a negative quantity. Putting in

this case #= #', and

we have

dx dx'~ x' x'

Hence

The cases of x positive and x negative are both included in the

formula

x

Again, the forms in (0) assume x to be positive. In (P) it is

implied that
|

x
\

< a, and in (Q) that
|

x
\

> a.

74. Simple Extensions.

To extend the above results, we first notice that the addition

of a constant to x makes no essential difference in the form of the

result (cf. Art. 32, 1).

Thus, obviously,

(1)

a (2)

dx dx__ . __x
x-a

=
a-a?-a a

and so on. Some further illustrations occur in Arts. 75, 76.

Again, if x be multiplied by a factor k, the integral has the
same form as before, except that it is divided by this factor (see
Art. 32, 2).

Thus

_ax + o a
and so on.

I sin Jcxdx r cos kx, (4)

dx 1 . ,= -log(a* + 6), (5)
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Again, we have the theorems

fCudx=Cfudx, ........................ (6)

...
; ...(7)

since, if we perform the operation d/dx on both sides we get in

each case an identity, by Arts. 29, 30. It is assumed in (7) that

the number of terms is finite.

Thus the indefinite integral of a rational integral function

^ a;
m + Atffn~1 +... + A-itf + ^m, ............ (8)

is
i

A x+*+ A lx+...+%Am_1x* + Amx. ...(9)

Again, suppose we have a rational fraction of the form

(10)

By division this can be reduced to the sum of a rational integral
function and a fraction

. ..(11)
oc + a

The former part can be integrated as above, and the integral of

(11) is

A log(# + a)......................... (12)

Ex.1. *-!* <fo =-a;-

Ex. 3. /sin
2xdx =

^f(l cos 2x) dx = ^x sin 2

Ex. 4. Jtan
2 xdx = J(sec

a x 1
)
dx = tan x x.

= fr* +^ + ^x + TV log (2*
-

1).

75. Rational Fractions with a Quadratic Denominator.

We next shew how to integrate any expression of the form

a? + px + q
'

where F (x) is rational and integral. If necessary, we first divide

the numerator by the denominator until the remainder is of the
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form ax + b. We thus get the function (1) expressed as the sum
of a rational integral function and a fraction

(2)
a? + px + q

The former part can be integrated as in Art. 74
;

it remains only
to consider the form (2).

We take first the case

(3)
x*+px + q'

The form of the result will depend on whether p* g 4g.

If p* > 4<q, the quadratic expression can be resolved into real

and distinct factors
;
thus

= (x-o)(x-$)................(4)

With a proper choice of the constants A, B we may then put

1 A B
(x a) (x 13) x a x j3'

For this will be an identity provided

i.e. provided A + B = Q, A/3 + = 1, (7)

Hence

dx__ J._ (f dx
I
dx

\

(x-a)(x-j3)~z~^{i\J^~a~J^~P)

1 x a

When we have once learned that the two sides of (5) can be
made identical, the values ot A and B are most easily found as

follows. We first multiply both sides by x a, and afterwards
make x = a

;
this gives A. Again, multiplying both sides by x $,

and then putting # = $, we find B. Hence the rule: To find A,
omit the corresponding factor in the denominator of the expression
which is to be resolved into partial tractions, and substitute o for x
in the expression as thus modified. Similarly for B.
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Ifp*
=

4>q,
we have

a? -\- px 4- q (x

and
(x +

Ifp
9 < 4g, we have

where a, /3 are real, and '/3 may be taken to be positive. Now
dx 1

. ,xa , x
5- C11 )

by an obvious extension of Art. 73 (/).

The result when p*->q can be put in a form analogous to (11).
We may write

where a', ft are real, and
ft' may be assumed positive. If

|

x a
\

<
/3',

the formula is

dx 1

by Art. 73 (P). If we put a' + /3'
= a, a'-/?' = /?, this is seen to be

equivalent to (9); by Art. 46. If
|

x a
\ >/?', the form is

dx 1 ,,_,- of_____ = _ coth i-jz- (14)

Proceeding to the more general case (2), we observe that, by a

proper choice of the constants X, /*, we can make

viz. we must have
X = ^a, fji b^pa (16)

Hence

f ax -f b , f 2# + p ,
/* da?

dx = \ -r- ^dx + ij, (17)
jx* + px + q Jxz + px + q j x*+ nx + q

Of the two integrals on the right hand, the former is obviously

equal to

log (x* -f px + q), - (18)

and the latter has been dealt with above.

When the denominator can be resolved into real and distinct

factors the integral on the left-hand side of (17) can be treated

more simply by the method of '

partial fractions/ Thus, we have

ax + b A B
{x o) (x /3) x a x fi'
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provided ax 4- b = A (x @) -f- B (x a),

i.e. provided A -\-B = a, Afi + Boi^-b, ...............(20)

act -f 6 ~ aB + b
or A = -

r ,
=- -

(21)
ft > p cc

It is unnecessary, however, to go through this work in every case,
as the values of A, B can be found more simply by the artifice

explained on p. 167.

The integration of (17) then gives

Ex.l. To find

Assuming

('

dx
..

7 2-oj-rc8

we find, by the method just referred to,

^=j,

/rfrc2T^r^
= i

Otherwise

, _.2o?+ 1

|tanh
x-

.

9

p.
dx 2 -i * - Ttan --

J 1 x +X2
J 1 a?4

x

I _,2-l
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Ex. 5. To integrate -.
-

^r-.
--

=^ .

(a;
-

2) (x + 1)

A 7?

Assuming that this --~ ---=
,

OC ~~ a X T J.

we find A = *, =.
The required integral is therefore

ax + 6
76 - Porm

A somewhat similar treatment can be applied to functions of

this type.

1. If A be positive, the form is equivalent to

V(#
2 + px 4- q)

'

Consider, in the first place, the form

1

ax .

(2)

By completing the square, the expression under the root-sign may
be put in one or other of the shapes

Now, by Art. 73, (N), (0),

, . x a.

and

These functions have the alternative forms,

, a; - a + VC^
2
4- pa? + q)

or log
--

3^g-
-^; ..................(5)

cf. Art. 46.

In the more general case (1), we assume

..................(6)
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which is satisfied by
X=a, /j,= b-$pa...................... (7)

Hence

[
<M? + ft * _ . /* fr + jp ,

f
J V(a

3 + pa? + q) J VOB
3 + P + 5) ^J V0

dx

+ pa? + q) J VOB
3 + P + 5) V0

2 + j?w? + <?)

'

.........(8)

The former of these two integrals is obviously equal to

and the latter has been dealt with above.

2. We will next suppose that, in the form placed at the head
of this Art., the coefficient A is negative. Without loss of

generality we may put it = 1.

Consider, first, the function

1
.(9)

Unless the quadratic expression be essentially negative, in which
case the function would be imaginary for all real values of a?, it

can be put in the shape

XTNow

In the more general case of the function

ax + b

we assume ax+ b =\(%p #) + fi, (12)

or X= a, p = b -\- jfpa (13)

Hence

f a# 4 5 f p 7 T <&B
I . ///>* ^ A I -,, i

' ///* L u I - _
v tl/w ^* A* I _v \JU\JU ^^ fJlf

I v

J */(q+px or) J VvS' + px F) J \\q + jtw? a?)

(14)

The former of these two integrals is equal to

and the latter has been treated above.
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Ex. 1.

l+X &- f
(

+ *) + *
-*-*2

) ~J va-*-
dx

" x ~ + sm

. 2.

, i^

a? + 1) + | sinh"1 T-

= sin"1 x + ,y(l
- or

8

).

77. Change of Variable.

There are two artifices of special use in integration; viz. the
choice of a new independent variable, and the method of integra-
tion

'

by parts/

To change the variable in the integral

u = f& (x) dx (1)V I \ * \ J

from x to t, where a? is a given function of t, we have, by Art. 32,

du du dx , dx

and therefore, by the definition of the inverse symbol /,

dx ,.



70-77] INTEGRATION 173

Hence [0 (x)da =
Jc/>

(a?) ^dt.
..................(3)*

Conversely, whenever a proposed integral is recognized to be
of the form

<**. ........................(4)

we may replace it by
(5)

which is often easier to find.

The following are important cases :

1. S4>(x + a)dx = f<l>(u)du, ..................(6)

where u = x+ a.

2.
S<t>(kx)dx=^$<j>(u)du,

... ...............(7)

where u lcx.

These results have already been employed in Art. 74.

3. !<!>(&) xdx=M<l>(u)du, ..................(8)

where u = x*.

The following are examples of (8).

i
* xdx/_!_ .

Jx(l+x)
-

i f
du

i [f 1 l

i / /i . v " T 1 1
" -

^
-

*Ju(l+u)
*
J\u l+u

1 1
U 3?= i lOg -=
- = i 102 ^

-
i3

1 + u * 3
1 + a,-

2

X= log

>-l

^i log u + 1

*
tf + 1

'

Hence the rule : After the sign / replace dx by -/ dt.
dt
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[ xdx , f du
Ex. 3. - =4 1= b

= itan~1 w
J I + x* ^

JI +u*

= J tan"1
a*.

du , . _x
*

The student will, after a little practice, find it easy to make such

simple substitutions as the above mentally.

4. Occasionally the integration of an algebraical function is

facilitated by the substitution

* = !/*, cfc/efc =-!/?.*
Thus

f dx f dt I dt

J a;V(a
a + ic

2
)

"

J *V(a
2 + ^"3)

= "
a

= -- sinhr1 at
a

1 u-i a= -- smh"1 -
a x

-i i
dx

Similarly-

More generally, the integral

is reduced by the substitution

x + a =

to one or other of the forms discussed in Art. 76.

* The substitution is equivalent to writing

dt . dx- for .
t x

, f dx I . a /11Xand I 77-^
--rr = ~-sm 1 - ...................(11)

J a; v(^ a ) a a
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Again, the substitution x l/t gives

f dx
f

dt
f

tdt

J
(a? + x*)*

J
P(a? + ra

)*

"
J
(1 + a3

*
3
)
1

1 1

= 1- JL- ..(13)o // o * o\ ^

Similarly J- ^
=- -, (14)

and J_^_ =-!___ (15)

f
- -

-. ..................... (16)
i *

The form

(Aa? + Bx +

can, by
'

completing the square/ be brought under one or other of

the preceding cases.

78. Integration of Trigonometrical Functions.

t . j fsinx ,

1. tan x dx \
- dx

j j cos a;

d(cosx)
X

coax

= log sec x. ..............................(1)

Similarly J cot x dx = log sin x......................(2)

Again, by the same artifice,

d(cosa?)/"sin x , fd(cosa- dx \
-

J cos3 x j cos3 x

COS X

In a similar manner

= seca? (3)

Tcos x , ..
x

. _ dx= cosecic (4)
J sin3

a?

C Art. 31, 2.



INFINITESIMAL CALCULUS [CH. VI

T dx f dx

J sin x J 2 sin \x cos \x

,
fsec8 \xdx _ fd (tan J<r)

J tan \x J tan Ja;

=
log tan Ja; (5)

From this we deduce

/"/ T1 /rT*
U/tX/ W/iX> j x- -v / Sl\= -

7^ r = log tan (ITT + *#) (6)
cos a; Jsm(j7r + #)

The formulae (1) to (6) rank as standard results, and should be

remembered.

30
f dx = F dx

J a -f 6 cos a? J (a + b) cos
2
\x + (a 6) sin2

\x
QAn^ 1 /y /T />*OCv/ 2 ^ vt/iA/

"J (a + 6) + (a
-

6) tan
2
\x

'

If we put tan \x = u, this takes the shape

2

and so comes under one or other of the standard forms (/), (P),

(Q) of Art. 73.

Similarly, with the same substitution,

f
dx

__ o
/"

du

] a + bsinx J a + 2bu + au*
'

[_dx_ T sec*xdx

J a* cos8 x + 62 sin3 x
~

J a2 + 62 tan2 a?
.......... ( '

If we put tan x = u,

du 1C d(bu) 1 ^bu=

The analogous results involving hyperbolic functions may be noted.

We easily find

/tanh ijddx = log cosh a?, /coth a; c?o? = log sinh a;, ............ (12)

/" sinh x , f cosh x f .-_- dx = seen a, / aa? = cosecn xt ......... (13)
J cosh

2 x J sinh2
a? ./
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........................(H)

/Jto
J cosh x J e* + 1

Similarly the forms

/dx
t dx

% + b cosh x '

ja + b sinh a:

can be integrated by the substitution tanh \x = u.

79. Trigonometrical Substitutions.

The integration of an algebraic function involving the square
root of a quadratic expression is often facilitated by the substitu-

tion of a trigonometrical or a hyperbolic function for the indepen-
dent variable.

Thus : the occurrence of V(
a a3

) suggests the substitution

x = a sin 0, or x = a tanh u
;

that of *J(a? a2
) suggests

x = a sec 0, or x = a cosh u ;

that of V(tf* + cf) suggests

x a tan 6, or x a sinh M.

Ex. 1. To find ^(tf-x^dx. (1)

Putting x = a sin 0, dx = a cos c?0,

we find / *J(fP
~~

y^} fcc = <^
s

J cos
2

c?0

+ cos20)cf0

+ ^ sin 20)

I _ ~2\ /0\
<v/I^Ja

Tofind
jvv~ ^')^ (3)

Putting a? = a sinh w, dx= a cosh w c?t*,

we obtain the form /coth
2 u du,

which =
/(I + cosech2

w) c?w = u - coth te

= sinh-1 -- L-^.
(4)a a;

L. i. a 12
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F flv
Ex. 3. To find

If we put x = cos 0, dx = - sin

the integral becomes

f dO f dO-
\ i Z = - I -^-T3 = cot

-8<
J 1 - cos 2

J sm2

^0 f.

80. Integration by Parts.

The second method referred to in Art. 77, viz. that of 'integra
tion by parts/ consists in an inversion of the formula

d , dv du

given in Art 30. Integrating both sides, we find

f dv ^ [ du 7
uv = \u -r- dx + v -T-'dx,

j dx j dx

whence lu-r dx = uv Iv^-dx. ..................(2)*
J dx j dx

This gives the following rule :

If the expression to be integrated consists of two factors, one
of which (dv/dx) is by itself immediately integrable, we may in-

tegrate as if the remaining factor (u) were constant, provided we
subtract the integral of the product of the integrated factor (v)

into the derivative (du/dx) of the other factor.

A very useful particular case is obtained by putting v x, in

(2). Thus

\udx = xu
\x-j-dx......................(3)

The following are important applications of the method.

1.
(log

xdx = x log x \x .
- dx

= x log a; a;. ........................(4)

* If we write v for dvfdx t
and therefore D~l v for v, this takes the form

D~l

(uv) = uD-iv - D-1
(Du . D~l

v).
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2. To find

Putting u = V(&
2

But
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in (3) we have

.......(5)

, I" <& f #*c&c
1

JV(a
2 -tf2

) JVla
2 --^

.a? f #2
cfo?

ea'sm"1 --
\-JT-

--- .......... T ..

a> J v(a af)

Adding to the former result, and dividing by 2, we find

f x
V(a

a -
a?) (to J*y(o^ - a?

3
) + Jo^ain"

1 -
;

......(7)
J a

cf. Art. 79, Ex. 1.

In exactly the same way we should find

fV(a
3 + #2

) dx = Ja? V(
a + ^) + i* sinh'1

-, ......(8)
J

fv(^-a
3)^ = iV( 3-aa)-i

J

3. To find the integrals

P^je^cosfada;, Q = je
x
sm/3a;dx. .........(10)

Putting u = cos /3#, v = - e?*

in (2), we find

x- \-e**.(-p8mpx)dx

x + QQ...............................(11)

a

1 - .......(9)a

Similarly

Q = - e * sin fix
-

\
- e** . j3 cos j3xdx

..(12)

122
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Hence

and therefore

INFINITESIMAL CALCULUS

aP - @Q = eax cos 8x, }

[CH. VI

(13)

!

/

sn cos

*
sin 8x 8 cos px

......(14)

81. Integration by Successive Reduction.

Sometimes, by an integration
'

by parts/ or otherwise, one in-

tegral can be made to depend on another of simpler form.

1. Let un = Sx
n eaxdx. .. ......................(1)

We have un - e** . xn - e
ax

. nxn
~ldx

a J a

If n be a positive integer, we can by successive applications of this

formula obtain un in terms of

HI, = \ (3)

Ex.\. Thus, if un = }x
n
e~*dx,

we have un = x*e~m + nun_l

For example,

t^ = - x*e~* + 3wa
= - tfe-* + 3 (-

= - x*e-* - 3x*e-* + 6 (- xe~
x + MO),

or jy?e~
xdx = - (a? + 3^ + 6x + 6) e~*.

2. Let Un = fx
n cos ftxdx, }

\
vn = fat" sin (Bxdx. }

We find wn = -5 sin fix . xn (3 sin fix . nxn
~ldx

P JP
1 n

= sin 3x.xn --

(4)

(5)

(o)

(7)

and vn = -^ cos j3x.x
n

(
cos fix } . nxn~*dx

P J\ P /

n
(8)
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If n is a positive integer, these formulae enable us to express un
and vn in terms of either u or v

,
which are known.

Ex. 2. Thus, if /?
=

1, we have

un = x
n sinx nvn_ly vn = x* cosx + nun_l .......... (9)

For example,

Wj = x9 sin x - 3v2
= x3 sin a; 3

(
x* cos x + 2w

x)

= a?
8 sin x + Sx2 cos x Q(x sin a; v

),

or /a* cos xdx = (x* Qx) sin aj + (Sec
9

6) cos x.

3. If un = fta,n
n 0d0 .................. ...........(10)

= / tan*-" (serf 0-l)d0
= / tan

n~a dd (tan 6)
- J tan

n~2
0d0,

we have un =-7 tann-1 6 wn_2................(11)n 1

Hence if n be a positive integer, wn can be made to depend
either on

, =logsec0, ...............(12)

oron -MO, =d0, =, ..............................(13)

according as n is odd or even.

Similarly, if vn= fcot
n
0d0, .....................(14)

wefind vn =--7 cot*1"1 d - vn_2 ................(15)w 1

82. Reduction Formulae, continued.

1. Let un = Scos
n 0d6.........................(1)

We have

un = f cos1*"1 Od (sin 9)

= sin 6 cos"-1 6 - / sin . (n
-

1) cosw
-

. (- sin 0) d9

= sin cos"-1 d + (n
-

1) / (1
- cos2

0) cosn
~2 ddB

= sin cos71"1 6 + (n
-

1) (wn_a
- wn).

Transposing, and dividing by n, we find

1 n 1
wn = - sin 6 cos71"1 + - - Mn-a.............(2)

fi n
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By successive applications of this formula we reduce the index

by 2 at each step; and finally, if n be a positive integer, the

integral un is made to depend either on

MI, = fcos0d0, =sin#, (3)

or on u9 ,
=

J d0, =0, (4)

according as n is odd or even.

2. By a similar process, if

(5)

1 n 1
wefind vn = --cos0sinn-1 + vn_, (6)

In this way vn , when n is a positive integer, is made to depend
either on

Vi, =/sin#c0, = cos 0, (7)

or on v , =fd0, =0 (8)

3. The same method can be applied to the more general form

We have

n = / sin cos**-1 0d (sin 0)

1
_ ainW*"!"! H f*f\o.n * HOAAA v wV/O V

? fsin
m+1

. (n - 1) cos71"9
. (- sin 0) dO

VHt + I J

sinm+1 cos71"1

m + 1

n-1-
fsinm cosn

~2
(9 (1

- cos2
0) d0

1 n 1
Smm+1 COS*"1 + -^ (Um> n_2

- Wm> n).m + 1 m +

Clearing of fractions, transposing, and dividing by m + n, we
obtain

In a similar manner we should find
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By successive applications of (10) and (11) we can reduce
either index by 2 at each step, so that finally, if m, n are positive

integers, the integral umt is made to depend on one or other of

the following forms :

, ............(12)

.............................. (13)

=sin#, .....................(14)

= cos 6................... (15)

The investigations of this section are chiefly important as

leading to some simple and practically very useful results in

definite integrals. See Art. 97.

83. Integration of Rational Fractions.

We return to the integration of algebraic functions. There
are certain classes of such functions which can be treated by
general methods.

We begin with the case of rational functions. A rational

fraction

in which the numerator is of lower dimensions than the denomi-

nator, is called a 'proper* fraction. Any rational fraction in

which this condition is not fulfilled can by division be reduced to

the sum of an integral function and a proper fraction
;

it will

therefore be sufficient for us to consider the integration of proper
fractions. Accordingly, if/(#) be a polynomial of degree nt say

/(a?)
= Xn +pl O)

n-1

+ps(C
n~* + ... +pn-lX + pny ...(2)

we shall suppose that F (x) is at most of degree n 1.

To facilitate the integration, we resolve (1) into the sum of a
series of 'partial fractions.' The possibility of this resolution

depends on certain general theorems of Algebra, for the proof of

which reference may be made to the special treatises on that

subject*.

The student will find, however, that for such comparatively

simple cases as are usually met with in practice, a mastery of

the algebraical theory is not essential ;
since the results obtained

by the rules to be given may be easily verified a posteriori.

* For the complete theory see Chrystal, Algebra, o. viii.
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We will first suppose that the roots of the equation

(3)

are all real and distinct, say they are a1} Oa, ...... c^. The poly-
nomial f(x) then resolves into n distinct factors of the first

degree, thus

(4)

There is no difficulty in shewing that in this case the fraction

(1) can be resolved into the sum of n partial fractions whose
denominators are the several factors of f(x) ;

thus

F(x) A, A 2 A n
~~r ... ~r

(X Cll)(x OL3)...(x Cln) X CCi X 0% X

where A l} A^... t An are certain constants. If we clear (5) of

fractions, and then equate coefficients of a;
1*"1

, xn~'\ . . . , a?
1
,
a? on the

two sides we get exactly n conditions to determine the n constants ;

but it is not evident that the conditions in question are consistent

and independent, and that the determination of A ly Az> ..., An so

as to satisfy (5) is therefore possible and unique. The two
rational integral functions to be identified will, however, become

equal for x = cti, x = o^, . .. ,
x = ,, respectively, provided

A l fa - a,) fa - 03) ... (i -
n)

A, (as
-

(a,
-

a,) ... (a,
- an)

=

An (ctn
-

!>(
-

a-j)
. . . (an

A

Now two rational functions of degree n 1 cannot be equal for

more than n 1 distinct values of x unless they are identical.

Hence, with these values of the constants, (5) is an identity.

We then have

(8)

Ex. 1. To find f-r-^r-7 ..(9)
I rvA O^> 4- 4-

We write

or* 5cs -4o; ^ BCD
. =-3 7 = a + -7 R-O 7 = X+ ^ + =-+

p. + r....(10)
x* oar +4 x* oar + 4 x 1 ic+1 #2 x + 2 v *

* This is an extension of Art. 75 (8).
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Jf we clear of fractions and then equate coefficients, we get four linear

equations to determine A,J3,Ct
D. It is simpler, however, to use the

method just explained. If we multiply the assumed identity by a; 1,

and afterwards put x 1, we obtain the value of A
;
and similarly for

the other coefficients. We thus find

of 111181 8 1
,

> V
11

/v
/y 1 / 1 O Ooa;- 1 6a: + 1 3x-2

a result which is easily verified. Hence the required integral is

d&*
Ex. 2. To find

Treating I/a? (1 + x*) as a function of a?, we have

1 1 1

or
1

)
or

1 1+cc2 '

1
whence

84. Case of Equal Roots.

If the roots of the equation f(x) are real but not all

distinct, then, corresponding to an r-fold root ft we have a factor

(x fi)
r in f(x). It is shewn, in the algebraic theory referred to,

that the corresponding series of partial fractions, in the expansion
of Art. 83 (1), is now

BI ,

B9 Br

where Bl) BZ) ...Br are r constants, to be determined by the

method of equating coefficients, or otherwise.

The indefinite integral of the expression (1) is

r> i / o\ By 1 B9 1 Br /c% .B* l

8(*-ft-^-2$^#y-''-- r -l(a.-l3ri- -(2>

Ex.1. To find I
dx

J ix2
(l-x)

w I A BWe assume -
v
= - + -

x*(l-x) x x* l-x

If we multiply both sides by 1 -cc, and then put x= 1, we get (7 = 1.

Again, multiplying by ar
8

,
and then putting x = 0, we findJ5 = l. The

constant A remains to be found in some other way. If we multiply
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both sides of (4) by a, and then make x-*-co
,
we find A - G = 0, whence

A = 1. An equivalent method is to clear of fractions and equate the

coefficients of a?. Again, we might assign some other special value to

x ; for example, putting x = 1, we find

-A+B + 'lOmi,

which, combined with the previous results, gives A = 1.

f dx f/l 1 1 \
.

Hence
/

-
r/

- - =
/(- +

- +
)
dx

Ja
2

(l-sc) J\x x3 l-xj

= log- -_log(l-a;) (5)x

* Tofind

2a;+l A B C
(x+2) (x-3)*~x + 2

+ ^3 +
(^T3?-

The short method of determining coefficients gives

-4 + 1 3 x,_6 + l_7A ~
/ 0_Q\a~*~ 0^ qj.9~K %

^J
^~

t/ ) All/ V T V

Also, multiplying by x
t
and then making as -*- oo

,
we find

The integral is therefore

<8>

Ke.*. To find ...............................(9)

We recall Art. 77, 3 . Regarding a^/(x
2 + I)

2 as a function of cc
2
, we

find (by inspection)

a?
^(3?

+ !)-! 1 1

(ar'
+ l)

2
"

(a? + iy

x* dx x dx f x dxC x dx
f
x dx f x d

)(^T?
=
J^TT

~
J (^T

85. Case of Quadratic Factors.

The preceding methods are always applicable, but if some of

the roots of f(x) are imaginary, the integral is obtained in

the first instance in an imaginary form. If we wish to avoid

the consideration of imaginary expressions, we may proceed as

follows.
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It is known from the Theory of Equations that a polynomial

f(x) whose coefficients are all real can be resolved into real factors

of the first and second degrees. Then, in the resolution of the

function

W)
into partial fractions, it may be shewn that we have

(a) for each simple factor x a which does not recur, a fraction

of the form

..- .......................(2)x a'

(6) for a simple factor x ft which occurs r times, a series of

r fractions, of the form

Bl
Bz Br

(c) for each quadratic factor x* + px + q which does not recur,

a fraction of the form

(d) for a quadratic factor oP+px + q which occurs r times,
a series of partial fractions, of the form

A 0,<p +A Crx + Dr
(

.

a *" * '

a? +px + q (a? +px + )
a

(a*+ JMJ + g)

It is easily seen that in this way we have altogether just
sufficient constants at our disposal to effect the identification of

the function (1) with the complete system of partial fractions, by
the method of equating coefficients.

*It only remains to shew how the indefinite integral of the partial
fraction

C.X + D. v

can be found. The case s = 1 has been treated in Art. 74, and the general
case can be reduced to this by a formula of reduction.

In the first place, we can find A, //,
so that

Csx + D,

(x*+px + q)' (x* + px + q)
8

(a?
3 + px + q)'

'

* The investigation which follows is given for the sake of completeness, but it

is seldom required in practice. The student will lose little by postponing it.

Another method of integrating expressions of the type (10) is indicated in Ex. 2,

below.
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viz. we have ^- = \Ctt ^ ^ \P^ (8)

The integral of the first term on the right hand of (7) is

1 ^ (9)8-

and it remains only to find

dx
f dt

" (
'

"

where t = x + ^p, c = q ^p
2
...................... (11)

Now, by differentiation, we find

d t
=_1

.__/g, ox **

dtfi + c-1
tf' + c*-1 ^ '*+*

^

Hence, integrating,

dt 1 t 2g~3 1 dt

Returning to our previous notation, we have

dx 1 x + \p

(x
9
+px + q)'

~
2 (*

-

2s - 3
*"

2 (s 1) (q
-

^jy
2

) J (x
1 + px + q}'~

1 '*

which is the formula of reduction required. By successive applications
of this result, the integral (10) is made to depend ultimately on

f dx
I (IK\
Jx* +px + q

"*"* '

which is a known form (Art. 75).

Ex.1. To find

The denominator has here two quadratic factors, x*+x+ 1 and x9 x+I
t

which are not further resolvable. We therefore assume, in conformity
with the above rule,

1 Ax + B Cx + Z>
+ *- ...............

( ''

or 1 = (Ax + B) (x
2 - x + 1

)
+

(
Cx + D) (x* + x + 1

).
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Equating coefficients of the several powers of x, we have

Hence A=-C=$, B = D = % ...................... (18)

The integration can now be effected by the method of Art. 75.

We have

dx x + l , x-l ,

= i log (x
9 + x + 1

)
-
J log (x*

- x + 1
)

dx

-a;+l

+ x + 1 1

1 /, .2a?+l"~ tan - ~ + tan
~

.- (19)

r flf*

2. To find

This comes under (14), but may be treated more simply as follows.

If we put
x = tan 0,

we get

cos 20) (20

sin20

-hJ^ ...................(21)

86. Integration of Irrational Functions.

The following are the leading results in this connection.

1. In the case of an algebraic function involving no irration-

alities except fractional powers of the variable, we may put

x = t
m

, dx/dt^mt'-
1
, .....................(1)

where m is the least common multiple of the denominators of the

various fractional indices. The problem is thus reduced to the

integration of a rational function of t.
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2. Any rational function of x and X, where

X = J(a + bx\ ...........................(2)

can be integrated by the substitution

a + bx = t\ dx/dt = 2t/b...................(3)

Thus
JF(x

) X)dx^JF(^^f tJ.-^ > ............ (4)

and the function of t which follows the integral-sign is now rational.

Ex. 1. To find f-^T -

J *Jx + l

If we put x = tf
2
,
this becomes

= fa*
- x + 2a*- 2 log (x^ + 1).

/dxTo
-

r-771
-

\t
(2 + a) ^(1+a;)'

put 1 + a = P, dx/dt =

2tdt dtWe obtain

= 2 tan-1
* = 2 tan'1

v/(l + x).

3. If -? stand for the square root of a quadratic expression,

say

the problem of finding
........................... (5)

where F(x, X) is a rational function of a? and X, can also be reduced

to the integration of a rational function.

If a be positive, we may write

X= Ja. J(x*+px + q\ ..................... (6)

where p = b/a, q = c/a. Now assume

w

an

hence , .................. (7)2
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It is evident that by these substitutions the problem is reduced to the

integration of a rational function of t.

If the factors of or
2 + px + q are real, say

y? + px + q = (x a) (x /3), .................. (9)

we may also make use of the substitution

x-p = (x-a)t\ ........................... (10)

/8
- a dx

whence a;=a+__
2 ,

_ ____

and J(tf+px + q)
= (x-a)t =(^^

t

............. (12)

If a be negative, we may write

X= J(-a). J(g+px-&), .................. (13)

where p = b/a, q = c/a. If the radical is to be real, the factors of

q + px x1 must be real, for otherwise this expression would have the

same sign for all values of a?, and since it is obviously negative for

sufficiently large values of x, it would always be negative. We have, then,

q + px-xt = (x-a) (p-x), ..................... (14)

where a, /3 are real. If we assume

-=(- a) ............................ (15)

- a dx 2(8- a) t

we find

and

These substitutions evidently render

a rational function of t.

The above investigations are of some importance, as shewing
that functions of the given forms can be integrated, and that the

results will be of certain mathematical types; but the actual

integration, in particular cases, can often be effected much more

easily in other ways*. We have had instances of this fact in the

course of the Chapter ;
and we add one or two further illustrations.

Ex. 3. By rationalizing the denominator, we have

=1(1 +)*-!**.
* See especially the methods of Arts. 76, 77, 79.
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'

1) + cosh-1
x.

Otherwise, putting x = cosh u, the integral takes the form

sinh udu e
5 . , = J e~"smn u au

cosh u + sinh u J

which may be easily shewn to differ from the former result only by an
additive constant.

EXAMPLES. XXin.

Find the indefinite integrals of the following expressions*:11 11
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2. If a point start from rest at time t = and move with a

constant acceleration, and if t^ be the velocity after any interval and
v the mean velocity in this interval, then

v = Jtv

3. If, with the same notation, the acceleration vary as t
n

t then

v=-jrivw + 2

4. A particle moves according to the law

ds

prove that the space described from time t = Q until it first comes
to rest is vjn.

5. If the velocity of a particle moving in a resisting medium
be given by

ds

prove that the particle never attains a distance ve/k from its position
when t = 0.

6. A particle moves according to the law

. = v
<p~

prove that the space described from time t = until it first comes to

rest is

7. If the angular velocity of a body rotating about a fixed axis

be given by
dO
-T = 2n sech nt.
dt

prove that
= 4 tan'1

e"* - w,

supposing that vanishes for t - 0.

EXAMPLES. XXV.

(Quadratic Denominators.)

x = tan"1 x + log ,/(! + a?).
J A T </

r ~a

2.

L.LC. 13
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3.

dx _.
g

7'

af -l-1 2 ,2a;-l8- &' =!B+los(a? - a! + 1) + tan ---
2

9-

xdx

I /v I I

1) log (*,- ve -

l

EXAMPLES. XXVI.

dx 1

3 -

/6?iC
- -- = cosh- 1

(2a? + 1).
V{*(l+)}

5. f-^^ = cosh-1
(2

- 1 ).
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dx 1
6

7
*" - _L Sin-i"~

f dx f x\
'

/ "TTo
-

si
= cos

I
* ~ ~

J J(2ax - x*) \ aj

f /ia

JV (

~ x j n i \ oj a,= " " +

11.
. <** = N/(^

~
1) +

EXAMPLES. XXVII.

(Change of Variable.)

x*dx . . 1

fas
2
c?a; 1 + cc

3
/ cc

2 dx .
.

*
1 1
-

K
= i lg i
-

; > l^i
--

r
= 1 tan- 1

ar.

;l-a;6 ''l-cc3 '

Jl+x*

"lo 05

3-

4. /sin a; cos xdx = % sin2

_
"1

5 -

/" cos a;

6. I ^
-

: dx = log (1 + sin oj),

J 1 + sm x

f sin x IT/ v
=-- dx = - r log (a + 6 cos an,

J a + b cos a; b

7. /sin a: cos3 x dx = ^ cos4 a;.

/
sin a; cos x 1 . x

8. I
---

. rfa; = ^TTT
--

log (a cos3 a? -f t> sm2
a;).

J a cos2 x + o sin2 a; 2 (6 a)

9. /tan
8
as cfo = J tan2 a; + log cos x.

n /"
0.

J

"sn x

cos a?

11. /sec
4
a: rfa; = tan an- ^ tan8

ax

132
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12. / (sec x + tan
a;)

dx= log = : ,
i ~~ sin x

/(sec x tan x) dx = log (1 + sin
a;).

IQ f <fa f dx
13.

/

- = cosec a? cot a^ /-
- = - cot a? - cosec as.

./
1 + cos a? y 1 cos x

IA f dx r dx
14.

/ i
:

= tan x sec a;, I
-

: = tan x + sec x.
J 1 + sin x Jl-smx

15. / -T . = tan x cot a;.

J sin2
a; cos2 a;

/dx = = sec x + log tan ia;.
sin x cos2 a:

17. f,/
IT

sin a; cos8 x

dx

.
= sec

f dx ,

18. / = --- = vX + i log (cos a; + sin an.
71+ tan x

f dx 1 . / 1 \
19. I --5

=
-72; tan"

1
{ -7^ tan a;

)
.

./
1 + cos2 x J2 \N/2 /

20. Jx ^/(a
2 + a?) dx = J (a

2 + a;
2

)*.

r dx 1 a;
n

* n
~ g *

22. Evaluate f*J(x* + a*)dx and f ,,J(x* a?) dx by hyperbolic
substitutions.

23.
/

24.

25-

lyFrJ-w-*******

EXAMPLES. XXVIII.

(Integration by Parts.)

1. fxexfa dx = a (x a) exla.

2. fx log xdx = \y? (log x ).

/^m+l
/

J
v

3. fa;
m
log xdx = =-

( loe x } .m+I \ m + 1/

4. fx sin x dx = x cos x + sin a;.

5. fx cos a; cfcc = x sin aj + cos a;.
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6. Jx sin x cos xdx = \x cos 2x +
-|
sin 2x.

n c i " *** "*w *"-"* *u 74 cos mx sin 712;
7. Jcosma;cosTia;aa; = -

7/j
J _ 7^2

or- . n sin ma; cos na; m cos mx sin na?
o. J sin ma; sin nxdx

ft c . . m cos ma; cos nx + n sin ma; sin nx
9. Jsmma;cos7za;aa; = ~ ,

wr n*

10. /sin"
1
a; eta = a? sin- 1

a; + ^/(l
-

a^).

11. /tan"
1
a; c?a; = a; tan" 1

a; - log J( I + a;
2

).

12. /sec"
1
a; c^a; = x sec"1

a? cosh"1
x.

13. /a; tan-
1
a;dx =

(
1 + a*) tan~

J
a; - \x*

14. /a; sec
2 xdx = x tan a; + log cos x.

sin a;.
fa;

+
10. I ^

j 1 +

, f

I

cos x

xsin~l x

ax = x tan ix.

a; + x.

17. /cosh a; cos xdx~\ (sinh a; cos a; + cosh x sin #).

18. /sinh a; sin a; dx = (cosh a; sin x sinh a; cos
a;).

19. /cosh a; sin x dx = J (sinh x sin a; - cosh x cos
as).

20. /sinh a; cos cfo = % (cosh a; cos x + sinh a; sin
a;).

21. /* sin a; cos xdx = -^ (sin 2a; - 2 cos 2o?) e*.

22. ja*e-
x dx = -\x> + 5x*+ 20^ + GOar1 + 120a; + 120) -.

23. /a?
4 sin a; flte =.-

(a;
4 - 1 23T1 + 24) cos x + (x* - 24a;) sin at

24. If wn ='/a;
71 cosh x dx, vn = fx

n sinh x dx,

prove that wn = xn sinh a; nvn_lt vn = a;
n cosh x nun_lt

Deduce the values of u4 and v4 .

[w4
=
(x

4 + 12x* + 24) sinh x- (4a^ + 24a;) cosh x,

v4 = (x
4 + 12x* + 24) cosh x - (4a^ + 24a;) sinh a;.]

25. If u be a rational integral function of a;, prove that

e** / D D*

where D = d/dx.

26. Determine the coefficients A, B so that

dx A sin x _ /" da;

(a + 6 cos
a;)

3 a + 6 cos a; a + 6cosa?*
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EXAMPLES. XXIX.

(Rational Fractions.)

dx . x_
L

f 2a+3 (*-!)*
2.

/
-.
--r-.-^ dx = log

--'-
.

Jx(x-l)(x + 2) %*a,+ 2*
_

dx
-l)(2z-

x dx a? 2

dx 1 . . x- 1

f x*dx a2

1 7
-w-iT7

-
\
=

"7

-Tw-\
J (xa) (x b) (x

-
c) (a- b) (a c)

b* cf

+ 71
-wl-- \

lo (*) + 7
-

T7
-

TV log (x- c).
(b -c)(b- a) (c -a)(c-b)

'

f dX l f l
4. 1

X l
1
X\

8. 1 7-5
-

2T-7-2 7^=7^
-

2 (-tan-
1 -- r tan-1

r ).
J (ar + a2

) (or + o
2

)
bz a? \a a b b/

f
xdx _1_ x* + a*

)(x* + a2

) (aj" + 62

)

~
2(6

2-a2

)

g^TTa
*

T y?dx 1 / a; a;\
10-

In-2V7I5 7l\
=
"^ T2 (

a tan -- & tan-1

r ) .

J (a? + a2

) (or
5 + b2

)
a? - o2 \ a 6/

/x*dx
1

(^T^FTF)
=
2^^) {aM g (

^
-
+ - *2 log

2
2
~~ + g

13. /;
-^^ ^_ =-^ + log (a; + 1).

J(x+ l)(a; + 2)
2 x + 2

i dx _ ,. x+ I 1 1

)a*-a*-x+l
=s

'* g^T~2^1
dx I x . . a? + 1
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x

xzdx 1 a; . a; + 1

18
dx

x

I dx 11.......
k-^T)

=-^ + ^- los(x+l) + l sx-

/J2LL
J x(x +

19
a

3a? + 2 a?

dx . ,
03 I 3 x 1 03

21. /,- ^-. = T8B-log r+^~;^5 1
' O 2 1 A / 2

1 + 03 , 03

-?)
22. / -= ^ rf = log -77^ - + tan-1

x.

Jx(l +

<
^ - 1 1~~ * + rc

. H-r,-l

, a:
2
c?a: ,, 1+a;

ft*

(1 + a;)
2

1 . 2* - 1
t"1

26.
'

'

1 1^ ~ ' ~
_1 ^_ for,-!

/KU(TT^TT^)
= *27. I K rr^ s-v =i log (1 + x)

-
J log (1 + a;

2

)
+ \ tan l x.

28.

y^i+a;; (^i +ar;

,
~ %^v, , , a/ "" i A./ . i x

zy.

g2
. a^-l . ,. x'-aj+l

!. f
*

,/ v T

nn C dx 11
33. I -T7= -^ - tal1 X + Q~^

Ja;
4
(l+ar) 03 oa;'

f a?<fa 1 + 2*3

1/1 2\^l
~""

>| /I Q\2 *
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35 '

/^0-T^)2
= ~

2x (i + *
2
)

~ * tan
~ 1 *

dx

EXAMPLES. XXX.

(Irrational Functions.)

. [-
-^r-.-r =

2
{(a + a)*

-
(a; + 6)*}.

J J(x + a) + J(x + b) 3(a b)"

/dr-^_
= 2>+21og(l-.

/
(fa

y(i-

5.

(fa 1 +

6. . _ V2 Unh-

l // i\.= log {
* + ^(z

-
1)}

8.

9

10 __
a;

x*dx x .11
12. r = - -^ sr + smh-1 x.

/

_, x

72

14.



CHAPTER VII

DEFINITE INTEGRALS

87. Introduction. Problem of Areas.

The problem of integration, in the sense now to be explained,
is one of the oldest in Mathematics, but it was not till the time
of Newton and Leibnitz that a general method of solution was
evolved. We proceed in this Art. and the next to explain this

method briefly, without special attention to logical details, taking
the '

problem of areas
'

as a sufficiently typical case. In this way
the essential principle will be easily apprehended. Afterwards, in

Arts. 89-94, the question will be taken up de novo and discussed

in a more general and more rigorous manner.

Suppose that it is required to find the area* included between
a continuous curve

...........................(i)

the axis of #, and two ordinates so = a, x b. For definiteness we
will suppose that y is positive over the range of x considered, and

Fig. 43.

* The term 'area '
is used, in this Art. and the next, in the ordinary intuitive

sense. From the modern point of view the area of a curve needs definition ; see

Art. 99.
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that b > a. We may divide this range 6 a into a series of sub-

divisions, hlt hz , ..., hn ,
and erect on these as bases a series of

rectangles whose altitudes ylt yz , ..., yn are ordinates of the curve

at arbitrarily chosen points within the respective bases. The sum
of the areas of the rectangles thus constructed may be regarded as

an approximation to the area required. The result may, indeed,

happen to be exact, but it is evident that the approximation will

as a rule be better, the smaller the subdivisions, hly h2 , ..., hn are

taken, their number being of course correspondingly increased.

The limit to which the sum of the rectangles tends, when the sub-

divisions are infinitely small, is the area required.

Before the invention of the Calculus this procedure, or some-

thing equivalent to it, had to be carried out if possible for each

curve separately, the methods employed being often highly in-

genious. The following examples may serve as illustrations.

Ex. 1. To find the area included between the parabola y x\ the
axis of Xj and the ordinates x = a, x = 6.

Putting

Of A B X

Fig. 44.

we have to consider the sum

= na?h + 2 {1 + 2 + . .. + (n
-

1)} ah* + {P + 2 2 + ... + (n
-

I)
2

}
h3

The limiting value of this for n -* oo is

az

(b-a) + a(b-a)*+ (6-a)
3
,

or ^(b
3 -a3

)....... (3)
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Ex. 2. The general case of the curve

y= x"< (*)

where m may have any integral or fractional value, positive or negative,
except 1, may be treated as follows.

The abscissae of the dividing points of the range b a are taken in

geometric instead of (as is more usual) arithmetic progression, viz. they
are

a, jj.a, /J?a, ..., //." a,

where /n
n =

b/a. The subdivisions are therefore

The ordinates at the initial points of these are

am
, fjL

mam
, p^a, ..., ^n~

and the sum to be considered is therefore

m+1
(

...- a

(m+l) _

The subdivisions are made infinitely small by making /A tend to the
limit 1, n becoming infinite. Since

by Art. 22, the result is

m+l -
=m + 1, .................... .(6)

(7)

If we put m = 2, we get the case of Ex. 1, above.

The above ingenious procedure is due to Wallis (1656). It needs
modification when m = 1. In place of (5) we then have

1

-l} (8)

the limit of which when n -*- oo is, by Art. 43 (9),

Ex. 3. Let the curve be

y = sin x, (10)

the range extending from x = a to x = ft. Taking equal subdivisions

h = ((3-a)/n, (11)

we consider the limit of the sum

2, = {sin (a + JA) + sin (a + %h) + . .. + sin ((3- h)+ sin (/?
-
$h)}h, (12)
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where the values of sin x at the middles of the respective intervals have
been taken. Now

-=y . 2 = 2 sin \h sin (a + \h) + 2 sin \K sin (a + fh) + ...

2"
+ 2 sin JA, sin

(/?
-
fA) + 2 sin %h sin

(/?
-
\K)

= cos a cos (a + h}

+ cos (a + h) cos (a + 2h)

f cos (/? 2h) cos (/? h)

+ cos (ft h) cos /3

= cosa cos/3............................... ..(13)

Hence, proceeding to the limit (h -*-
0), the required area is

cos a cos y8............................ (14)

88. Connection with Inverse Differentiation.

Calculations ofthe above kind are now superseded by the rule of

the Integral Calculus, to which we proceed.

If, keeping a fixed, we regard 6 as variable, the area considered

in Art. 87 will be a function of 6, which vanishes when b = a. When

B B'

Fig. 45.

b receives an infinitesimal increment Sb, the increment of the area

will ultimately be equal to a rectangle of breadth Bb, and height
</> (6) ;

see Fig. 45. Thus, if A be the area in question,

b, (1)
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or

Hence if ty (x) be a function such that ty' (x) = <f> (x), i.e. if ty (x) be
the '

indefinite integral
'

of
(f> (x), we have

It follows from Art. 56 that

A=^(b)+C, (4)

where C is some constant
;
and since A must vanish for b = a, we

must have G =
-fy (a). Hence

A- + (b)- + (a) (5)

The problem of finding the area is thus reduced to that of indefinite

integration, which formed the subject of the preceding Chapter.

Ex. 1. If < (x)
= xm

,
we have

\j/ (x)
= xm+l/(m +1), and

Am+l _ nm+\
A = -

"
(6)m+ 1

except when m = 1.

If <
(as)

= l/xt
we have $ (x)

= log a?, and

.. ^=log^ (7)

Ex. 2. If (x)
= sin x, we have

\j/ (x)
= cos x, and

A = cos/3 (
cos a)

= cos a cos/? (8)

The above results agree with those obtained, by much greater labour,
in Art. 87.

89. General Definition of an Integral. Notation.

As the process of finding the limiting value of the sum of a

series of infinitesimal quantities is one which has numerous appli-
cations in Geometry and Mechanics, we proceed to treat it in a

more formal manner, attending at the same time to various points
of theoretical importance which have hitherto been passed over.

Let y,
=

<f> (x), be a function of a; which is regarded as given (and
therefore finite) for all values of x ranging from a to 6, inclusively.
Let the range b a be subdivided into a number of intervals

"i. >
' ^2 1 > "*n i . \i J

all of the same sign, so that

b-a. (2)
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Let
2/j

be one of the values which y assumes in the interval ^,
2/2

one of the values which it assumes in the interval hz , and so on
;

and let

The value of this sum will in general vary with the mode of sub-

division of the range b a, and with the choice of the values ylt

2/2> -> 3/n within the respective intervals (1). But if we introduce

the condition that none of these intervals is to exceed some assigned

magnitude k, then in certain cases, which include all the types of

function ordinarily met with in the applications of the Calculus

(and more), the value of 2 will tend, as k is diminished, to some
definite limiting value S, in the sense that by taking k small enough
we can ensure that shall differ from S by less than any assigned

magnitude, however small.

The sum which we have denoted by 2 is more fully expressed

by
2Jy&c or 2J$(*)8a?, .....................(4)

&p standing for the increments h^, h9 , ......
,
hn of x. The limiting

value (when it exists) to which this sum converges, as the incre-

ments Sx are all indefinitely diminished, and their number in

consequence indefinitely increased, is called the '

definite integral
'

of the function
<j> (x) between the limits a, and b*, and is denoted by

rb rb

I ydx or I <j>(x)dxy (5)
J a J a

the object of this notation being to recall the steps by which the

limiting value was approached f.

Problems in which we require the limiting value of a sum of the

type (3) occur in almost every branch of Mathematics. The area of a

curve has already been referred to ; other simple instances are : the

length of a curved arc, regarded as the limit of an inscribed (or circum-

scribed) polygon, the volume of a solid of revolution, and so on. These
will be considered more particularly in Chap. vm.

Again, in Dynamics, the *

impulse
'

of a variable force, in any interval

of time, is defined as the *

time-integral
'

of the force over that interval
;

viz. if F be the force, considered as a function of the time t, the impulse
in the interval ^ 1 is the limiting value of the sum

^T.+ .-.+^T,, ..................... (6)

*
It is a little unfortunate that the word 'limit' has to be used in several

different senses. The word ' terminus ' would perhaps be more appropriate in the

present case.

t The symbol J is a specialized form of S, the sign of summation employed by
the earlier analysts. The mode of indicating the range of integration was intro-

duced by Fourier.
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where TX ,
T2 , ..., rn are subdivisions of the interval ^ -

,
such that

T1 + Ta -f-...-fTn = 1 -< , (7)

whilst F19 Fz , ..., Fn denote values of the force in these respective
intervals. Hence, in our present notation, the impulse is

Fdt. (8)
Jto

Newton's Second Law of Motion asserts that the change of momentum
of any mass (m) is equal to the impulse which it receives, or

mvl -mv = I Fdt, ........................ (9)
Jto

where v
,
vt are the initial and final velocities.

Again, the work done by a variable force is defined as the space-

integral of the force. If F denote the force, regarded now as a function

of the position (s) of the body, the work done as s changes from s to Sj is

/'Js
(10)

/S

For example, the work done by unit mass of a gas as it expands
from volume v to volume vl is

/;
, (ii)

'V

if p be the pressure when the volume is v. This is seen by supposing
the gas to be enclosed, by a piston, in a cylinder of sectional area unity.

The graphical representation of the integral (10) or (11) is frequently

employed in practice. Thus, in the case of (10), if a curve be constructed
with s as abscissa and F as ordinate, the work is represented by the
area included between the curve, the axis of s, and the ordinates corre-

sponding to 8 and sl . This is the principle of Watt's indicator-

diagram*.

90. Proof of Convergence.
Whenever the sum 2 has a definite limiting value, in the manner

above explained, the function <
(a?) is said to be '

integrable/ It

may be shewn that every continuous function is integrable in this

sense f, but as regards the formal proof we shall confine ourselves

to the particular case where the range of the independent variable

can be divided into a finite number of intervals within each of which
the function either steadily increases or steadily decreases. This
will be sufficient for all practical purposes.

Before, however, introducing any restriction (beyond that of

finiteness) we may note that two fixed limits can be assigned
* See Maxwell, Theory of Heat, c. v.; Kankine, The Steam-Engine, Art. 43.

t It is not implied that a mathematical formula for the integral can be found.
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between which S must necessarily lie. For if X and
//,
be the lower

and upper limits (Art. 17) of the values which the function
<f> (x)

can assume in the interval b a, it is evident that 2 will lie

between
X (hi + hz + . . . 4- hn\ = X (b a),

and
IJL (h + h* + . .. + hn), =fj,(b a).

We will now suppose, for definiteness, that b > a, and that < (x)

steadily increases as x increases from a to 6. Consider any par-
ticular mode of subdivision

A!, li*, ...,AW , ...........................(1)

of the range b a, and let

2 =yA + ytkt + ...+ynhn , ...............(2)

where, as in Art. 89, yr denotes some value which the function

assumes in the interval hr .

Now if in (2) we replace ylt y2 ,
... yn by the values which the

function has at the beginnings of the respective intervals, none of

the terms will be increased ;
and if the resulting sum be denoted

by 2', we shall have

(3)

Again, if we replace ylt yt , ... yn by the values which the function

has at the ends of the respective intervals, none of the terms will

be diminished ;
hence if the resulting sum be 2", we shall have

(4)

V
6 Q

M N B X

Fig. 46.
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In Fig. 46 the quantity 2' is represented by the sum of a series

of rectangles such as PN, and 2" by the sum of a series of rect-

angles such as SN. Hence the difference 2" 2' is represented

by the sum of a series of rectangles such as SR. The sum of the

altitudes of these latter rectangles is KB HA, or <f>(b) <f> (a),

and if k be the greatest of the bases, i.e. the greatest of the inter-

vals (1), we shall have

2"-2' **{(&)-*()}................(5)

Now, considering all possible modes of subdivision of the range
b a, the sums 2', being always less than p(b a), will have an

upper limit, which we will denote by S', and the sums 2", being

always greater than \(b a), will have a lower limit, which we will

denote by S", and it is further evident that S 1 '

^ S'. It follows,

from (5), that the difference S" S' must lie between and
k

{< (b) (j) (a)} ;
and since, in this statement, k may be as small

as we please, it appears that S' and S" cannot but be equal. We
will denote their common value by S.

Finally, it is evident that

(6)

2 $ shallhence by taking k small enough we can ensure that

be less than any assigned quantity, however small*.

A similar proof obviously applies if the function $ (x) steadily
decreases throughout the range b a.

It follows that the final result also holds when the range admits

of being broken up into a finite number of smaller intervals within

each of which the function either steadily increases or steadily
decreases. See Fig. 47.

Fig. 47.

* The proof is a development of that given by Newton, Principia, lib. i.,

sect, i., lemma iii. (1687). It would be easy to eliminate all geometrical conside-

rations and present the argument in a purely quantitative form.

L. I. 0. 14
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It has been supposed that b > a. If 6 < a, the intervals ^ ,

h2 , ..., hn will be negative, but the argument is substantially
unaltered.

rb

91. Properties of <$>(x)dx.

1. If we compare the integrals
rb ra

I <f>(x)dx and I <j>(x)dx,
J a J b

we see that they may be regarded as limits of the same summation,
with this difference, that in one case the increments h1} h2 , ...,hn
of x, which make up the interval b a (or a b) have the opposite

sign to that which they have in the

other. Hence
b

P(x)dx. ...(1)

Y
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where 6 is some quantity between and 1. On this understanding,

+ 6b^a) (3)
a

4. More generally, if u, v, y be three functions such that for

values of x ranging from a to 6,

u>y>v, (4)

fb
then the integral ydx (5)

J a

will be intermediate in value to

rb rb

I udx and vdx (6)
J a J a

Suppose, first, that b > a. We have

r6 rb rb

udx ydx = I (u y) dx.
J a J a J a

In virtue of (4), every term of the sum, of which the latter integral
is the limit, will be positive. Hence

rb rb

I ydx<\ udx (7)
J a J a

rb rb

Similarly I ydx > I vdx (8)
J a J a

Ifb<a, the inequalities in (7) and (8) must be reversed.

92. Differentiation of a Definite Integral with respect
to either Limit.

rb

Let /= (j)(x)dx (1)
J a

Evidently, J is a function of the *

limits of integration
'

a, 6, and
will in general vary when either of these varies. Regarding a as

fixed, let us form the derived function of J with respect to the

upper limit b. We have

6+66

<[> (x) dx
a

b /-&+S6
ft\ ( /Y* 1 /Y nf* f ty \
\L/ I iO / IX/i/'j * ft ! M J

a J b

by Art. 91, 2. Hence
6+66

(3)

142

f
j

-
J i

r

-
J
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by Art. 91, 3. This shews that SI vanishes with 86, so that / is

a continuous function of b. Also, since

(4)

we have, on proceeding to the limit (Sb
-*-

0),

In the same way, if we regard the upper limit b as fixed, and
the lower limit a as variable, we find that / is a continuous function

of a, and that

93. Existence of an Indefinite Integral.

We can now shew that any function
^> (#), having the character

postulated in Art. 90, has an indefinite integral, i.e. there exists a

definable (but not necessarily calculable) function ^r (x) such that
' "V (*)

=
*(*). ...........................W

or ^(x) = D~^(x).........................(2)

For if we write

(3)

the expression on the right hand is, by Art. 90, a determinate
function of f, and the investigation just given shews that it satisfies

the condition

*' (f)
= *(f).........................(4)

The lower limit of integration in (3) is, from the present point
of view, arbitrary, and the function ^ (f) is therefore indeterminate

to the extent of an additive constant. For, by Art. 91, 2, the

substitution of a' for a, as the lower limit in (3), is equivalent to

the addition of

<j> (x) dx

to the right-hand side. Cf. Art. 72.

94. Rule for calculating a Definite Integral.

Whenever the analytical form of a function ty (x), which has a

given function
</> (x) as its derivative, is known, the value of the

definite integral
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can be written down at once. For, if we regard a as fixed, we have,

by Art. 92,

=
f'(&), ...........................(2)

by hypothesis. It follows by Art. 56 that / and ^r (b) can only
differ by a '

constant/ i.e. a quantity independent of b
;
thus

(3)
*

a

To find the value of G we may, since it does not vary with 6,

put b = a, whence
a

I / ~,\ fjn\ __ C\ (A\
\js \^ j

. y /

a

Hence G
"^r (a), and

...................(5)
a

This is the fundamental proposition of the Integral Calculus.

It reduces the problem of finding the definite integral of a given
function

</> (x) to the discovery of the inverse function ^ (x), or

D~l

<f> (x\ The reason why this inverse function is usually denoted by

f(f>(x)dx ..............................(6)

is now apparent. The form (6) is simply an abbreviation for

a

where a is arbitrary. We have seen that a change in a is equivalent
to the addition of a constant.

f I 6

The notation ^(6) ...........................(8)
L J*

is often used as an abbreviation for
-v/r (b)

- ^ (a).

/

Ex.l. To find ^dx. .............................. (9)
j a

Here <(#) = ekx
> $(x)= elK*>

whence e**dx = (e*
6 -

<*")...................... (10)
a
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Ex. 2. To find
f

*

saPxdx (11)
J o

Here
<j> (x)

= sin2 x, if/ (x)
= \x \ sin 2x.

/I*
sin2 x dx = J TT (12)

o

95. Cases where the function
<f> (x\ or the limits of in-

tegration, become infinite.

Before proceeding to further examples, it will be convenient to

extend somewhat the definition of an integral given in Art. 89.

It was there assumed that the limits of integration a, b were finite,

and also that the function < (x) was finite throughout the range
b a. We proceed to explain how, under certain conditions, these

conditions may be relaxed.

1. Suppose < (x) to be finite and continuous for all finite

values of x, and consider the integral

a

where a) > a. If, as &> is increased indefinitely, the integral tends
to a definite limiting value, this value is denoted by

a
(2)

The integral (1) is then said to be 'convergent' for o> -*-oo . As

might be anticipated from the theory of infinite series (Art. 5) it

is not a sufficient condition for convergence that

linis^o <(#) = 0; (3)

this condition is moreover not essential, for there may even be

convergence when
<j> (x) has no definite limiting value for a?--oo.

A similar definition of

b

<j>(x)dx (4)
CO

can obviously be framed.

2. Let <(#) become infinite at or between the limits of

integration.

It will be sufficient to consider the case where there is only
one value of x for which < (x)

- oo . The general case can be
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reduced to this by breaking up the range b a into smaller

intervals*

If
(f> (x) become infinite at the upper limit (only), we consider

in the first place the integral

i:
<t>(x)dx, ...........................(5)

a

where e is positive. If, as e is diminished indefinitely, this integral
tends to a definite limiting value, this value is adopted as the

definition of
6

<f> (x) dx.
s:

A similar definition applies to the case where $ (x) becomes
infinite at the lower limit a.

If $ (x) becomes infinite between the limits a, b, say for x = c,

we consider the sum

rc-t rb

I <j>(x)dx + </>(x)dx (6)
J a J c + '

If, with diminishing e (and e') each of these integrals tends to a
finite limiting value, the sum of these values is adopted as the

definition of

<f>(x)dx. (7)f

The cases where
<)E> (x) becomes infinite, or is discontinuous, at

a finite number of isolated points, are dealt with by dividing the

range into shorter intervals bounded by the points of discon-

tinuity.

Ex. 1. re-*dx=[ -*T = _HfI^. ..(8)
Jo L a J a

As w increases this tends to the limit I/a. Hence we say that

e~axdx = - (9)
a

*
It being assumed that (x) becomes infinite only at a finite number of isolated

points.
t Cases may arise in which each of the integrals

/c-e

[b
(x) dx and I (x) dx

a J c+'

is ultimately infinite, whilst if some special relation be imposed on the ultimately

vanishing quantities c, e', the infinite elements of the two integrals cancel in such a

way that the sum remains finite. If the relation in question be e'= e, the result,

when it exists, is called by Cauchy the '

principal value' of the integral (7).
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f(O fir* F~
~"|ft>

Ex.*. --log* = log co...................... (10)
Jl X \_ Ji

This increases without limit with o>. Hence there is no limiting value

for o> -fco
, although

^ - = ............................ (11)

Ex. 3. -- ............................ (12)

The function !/*/(!
-

x) becomes infinite for x 1, but

and as is indefinitely diminished this tends to the limit 2. Hence

/i
4. / logCC?C............................ (15)

We have

/ logxdx= celogoj-o; ................... (16)

By Art. 43 (5) we have

.o l o = 0.

Hence

f

l

\ogxdx = -l (17)
Jo

96. Applications of the Rule of Art. 94.

We give a few more typical examples of the evaluation of

definite integrals.

Ex. 1. I sinxdx= cos x\ =1; (1)
; o L -Jo

rjir r -UTT

/ cosxdx = sin x\ =1; (2)

-.!_ , -| 1_
r 2"^

I
i71

^

/ sina;cos ajc?ic= Jsin
2
ie =J (3)

:. 2. By Art. 80 we have

fa sin Bx + B cos (3x ~|
:

! : Q
~ *X

L a* + /3* J

^8 a sin /?a> + /? cos y8w
:

^TyS2
~

a2 + y8
2
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If a be positive the last term tends, as w is increased indefinitely, to

the limiting value 0. Hence

/

Similarly / e-"* cos (3xdx = -^ (5)
Jo a. + p

Ex. 3. We have

r- = tan" 1 x = tan"1
<o - tan"1

0.

Jo l+x2
L Jo

The function tan" 1
a; is many-valued (Art. 16), but it is immaterial

which value we take, provided we suppose it to change continuously as

x varies through the range of integration. Hence if we take tan" 1 = 0,

we must understand by tan" 1
o> that value which increases continuously

from with to. .. As o> increases indefinitely, this value tends to the

limit TT, so that

f
00 dx

I T- - = ** ............................ (6)
Jo l+x2 "

Ex. 4. By Art 78, 4 we have

/"**
d& F l if / a aYl**

.

8/1 n
-o =

// ox tan"1

( / - . tan .

JQ a sm2 6 + ft cos
2

l_v(a/2) \\f ft /JO

Now, as 6 increases from to |TT, *J(a/ft) . tan 6 increases from to oo
,

and we may therefore suppose that tan~ 1

{ >/(a//8).tan 0} increases from
to TT. Hence

(
Joo a sin2 + J3 cos

2 6

The student may have remarked in the course of the preceding
Chapter that when an '

indefinite
'

integration is effected by a

change of variable (Arts. 77, 79) the most troublesome part of the

process consists often in the translation back to the original
variable. This part is, however, unnecessary when the object is

merely to find the definite integral between given limits. It is

then sufficient to substitute the altered limits in the indefinite

integral as first obtained.

^.5. To find f J(a*-x*)dx. ........................... (8)

We found (Art. 79), putting x = a sin 0, that

(<*

2

-x*)dx = a? /cos
a 6dO = Ja

2
(0 + $ sin 20).

Now, if 6 increase from to
JTT, x will increase from to a. Hence

r ^(a
2

-^) dx = \a? \0 + J sin 20T'* = fra?.......... (9)
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97. Formulae of Reduction.

The methods of Arts. 81, 82, when applied to the reduction of

definite integrals, sometimes lead to specially simple results, owing
to the vanishing of the integrated terms at both limits.

1. If t= r cosn 0d0, (1)
Jo

we have, by Art. 82 (2),

fl "I
*"" n 1

un - \- sin cos""1 + - un_2 (2)
[n J n

If n > 1, the first part vanishes, since

sin = 0, cos ^?r
= 0.

Hence (

*

cosn0d0 =
'"

( "cos"-2 0d0. ..(3)
Jo n J

Similarly, from Art. 82 (6),

I sinn Odd =
r^~

I sinn
~2 0d0. . .(4)

Jo n Jo

If n be a positive integer, we can, by successive applications
of (3), express

/
cosn 0d0

Jo

in terms of either

[fr r^i

cos 0^0, = 1, or cZ0,= j7r (5)
Jo Jo

according as n is odd or even. In the same way

I

"

sinn 6d6
Jo

can be made to depend either on

ri"" rjir

sin 0d0, = 1, or on
/ d0, = JTT C6)

Jo Jo

/"in- [fr
Ex. 1. I cos 6d9 = i

Jo
F

Jo

n4 2 /

T *

Joo
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After working out one or two examples in this way, the student will

be able to supply the successive steps mentally, and write down at once
the factors of the result ;

thus

The general values of the preceding integrals can be written

down without difficulty. Thus, if n be odd, we have

fees- 6d6 =
f
"am- 6d8 = (^H!^%2Jo Jo w(7i-2)...3o o

whilst, if n be even,

[*" *cosn

Jo

- ^OJQ (n- l)(n-3)...l TT /ox= smn 6de = ^-- /v '

.
-

. (8)
o n(n-2)...2 2

Integrals of this type are of frequent occurrence in the physical

applications of the Calculus.

rl*
2. If ttm,n= sm6cosn

0d0, ..................(9)
Jo

we have, by Art. 82 (10),

If n > 1, the expression in [ ] vanishes at both limits, and we have

*

sin 6 cosn Odd =^ f

*

sinm 6 cosn
~2 Odd. ...(11)

o m ' " '

In the same way from Art. 82 (11) we obtain, if m > 1,

1/ i _
/ 5"

sin V cos" UdV = I sinm-a cosn 0d0. . . .(12)

By means of these formulas, either index can be reduced by 2,

and by repetitions of this process we can, if m, n be positive

integers, make the integral (9) depend on one in which each index

is 1 or 0. The result therefore finally involves one or other of the

following forms :

/** ri"
^

sin cos 6 d&, = 4
; d&, = JTT ;

Jo Jo

rjn- rjfl-

sin0d0, = l; cos0d0, = l
JQ JO

.(13)
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Ex. 2. We have

I

^

sin5 cos8 6dO = f [

"

sin3 cos3 OdO = i . f f sin cos3
0d0,

yo ./o Jo

by (12). Again, by (11),

/jir /"i""

/ sin cos8 0c?0 =
|-

. I sin 0cos 0c?0 = |-. |.

/**
Hence / sin8 0cos8 0c?0 = |-.f.f. ^-

=
^i'

Jo

After a little practice, the result can be written down immediately.
Thus

J,

in cosW0 = f .

The formulae (11) and (12), as well as (3) and (4), are often

required in practice, and should be remembered.

Again, the algebraic integral

f xm (l-x)
n
dx, (14)

J o

is reduced by the substitution x = sin2 to the form

rj*
2 sinam+1 6 cos"1*1

0d0, (15)
Jo

and can therefore be evaluated by means of the formulae given
above, whenever 2m + 1 and 2n + 1 are positive integers or null.

Similarly, if we put x = sin 6, the integral

f
1

mx (1 x ) dtC (16)
Jo

takes the form

ri*

(17)

Ex. 3. f xz

(1
-

a;)

1
cfo = 2 f

^
sin5 cos4 0^0

70 70

_O 4 2 3 1 1_1B

ri a /**
^a;. 4. / x*(l-x

iy= sin
7o Jo

cos4
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98. Related Integrals.

There are various theorems concerning definite integrals which

follow almost intuitively from the definition of Art. 89.

For example,
fa

ra

I <f>(x)dx
=

\ </>(a x)dx. ...............(1)
Jo Jo

This is proved by writing

x = a x', dx = dx',

the new limits of integration being x' = a, x = 0, corresponding to

x= 0, x = a, respectively. Thus

ra rO
[a

I
</> (x) dx = I 6 (a x) dx =

I
<f> (a x) dx,

Jo J a Jo

the accent being dropped in the end, as no longer necessary.

This process is equivalent to transferring the origin to the

point x a, and reversing the direction of the axis of x. The
areas represented by the integrals in (1) are thus seen to be

identical.

An important case of (1) is

(*

ir

f(sm0)d
Jo

(2)

/I I

Ex. 1. Thus I sin2 6d6=\ cos2 Ode.
Jo Jo

Hence each of these integrals

=
| /"

i7r

(sm
2 0+cos2 0W0 = i /**'<# = .

Jo Jo

Again, if
</> (x) be an ' even

'

function of x, that is

(3)
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we have
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(

a

<j>(x)dx
= 2 r

J -a Jo
(4)

the area represented by the former integral being obviously
bisected by the axis of y.

On the other hand, if < (x) be an ' odd
'

function of x, so that

, (5)

we have (

a

J
(6)

X'

Fig. 51.

since in the sum, of which the definite integral is the limit

(Art. 89), the element < (x) Bx is cancelled by the oppositely-

signed element
(/> ( x) Sx.

Ex. 2. We have

f sin2 0cos3 0d0 = 2 ( sin2 0cos8 0d0=2..f .1
J-l* Jo

whilst f
*

sin3 6 cos2
OdO=Q,

J """"gTT

since sin
3
6 changes sign with 0.

For similar reasons, if

* (a -*) = (*),

ra ra
(j>(x)dx=2 6(x)dx; (8)

./o Jo

t (9)

we have

whilst if

we have 4(*)di*~b
J

(10)

As a particular case of (8), we have

*

(11)

since sin (TT 6) sin 6.
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Ex. 3.

r sin3 cos3 dO = 2 ( sin3 cos' 0d0 = 2 . . i . 1 = T
*

7o yo

whilst (* sin2 <9 cos8 OdO = 0.

7o

EXAMPLES. XXXI.

1. Prove by the method of Art. 87, Ex. 1 that

2. Prove from first principles that

(*
I cos xdx = sin /? sin a.
J a.

3. Also that

Shew by graphical considerations that

6 rbrb r

I k<f> (x) dx = k I
(J> (x) dx,

Ja Ja

rb rl> a

I
(f) (x) dx = I

(f> (x + a) dx,
Ja Jo

rb I rtb

I
(f> (kx) dx = j-

I
<f> (x) dx.

Ja * Jka

5. Prove that
rbr r
I <f>(x)dx= <f> (a + b x) dx.
Ja Ja

6. Prove that if n and p are positive integers

lim /I 1 1 1 \ i

( I- H + . . . -\ )
= log p.

nn^oo \n n+l n + 2 pnj

EXAMPLES. XXXII.

2. f

1

-j ='7T, T

_ r
00 dx TT

O. -j ,
2~o

=
o~ I

./
a3 + 6Jar zoo
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' xdx _ /" xdx
2

7. r d* ,
J & X + 1 3^3"

8.
( T-2 dx = \TT- 1.

Jo 1 + ^
/* /7T

9. I , ^ =
.

|/y2 I /Tf-\ / /y2 i A2\ V/Tf/l //T ' A 1

^0 \ / \ /
^uCwt/ Vw r" C/ I

10.
/

X
2

X
z r = -

.

/Q ( X> T C* ) ( w "r" C/ y
*J ( CL "T" O )

/* *> /w*y /T

11. f ^_ _ = __L_
2 iog-.

/* doc

ry+* I 1 ^ /yt\
'I \ /

dke

M- f=^r>-*- f ,v(^T)
=lo

r
1

(fie ^ // a: \
15. I

T^
:
-r: = TT, / ( ,

--
}dx =A */{*(!-)} / v U-y

17 _"

/

b
//b-x\ f

18. /(-- }dx=
Ja V \*-a/ J

19.
*"

sec2 0<20 = 1,

20. sin 20 <20 = 1,
7o

/*" cos0 /"i""
sin

21. ^
--^5 (Z0 = ,

--r
1 + sm2

J 1 + cos2

22.

"

sec4 40 = J, tan4 d0 = Jir
- f
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de

+ecos0-
/v/(l-e

2

)

24 {^
d6

B /**_??_ = i
J 1 + cos yo 1 + sin 6

25.

" *

J

"
26

27

ft" MT
/ tan0cZ0 = 0, / sec0d0 = log{3 + 2 72).

ft*.
I (sec

- tan 0) dv = log 2.
Jo

f
w dO IT

'0

28.

/I /!

29. / sin~ 1
a;c?a; = JTT-!, I tan" 1 x dx = JTT

- *
log 2.

/ Jo

30. I 0sm0e20=l, [^00080^0 = ^-1.
Jo Jo

31. I
a
sin0fl?0 = 7r 2, I

s cos d0 = ^rr
2

2.
Jo Jo

32. r0(7r-0)sin0rf<9 = 4, {" 6(ir- 0)cos0d0 = 0.
Jo Jo

r1 4
33. / (1

- a2
)
cos /to <fo = ^8 (sin fi-ficoa ft).

34
/ -y- -jr-- dx = ^TT.
J (1+jc

2
)
2

/i

//i a2
)^ '
dx = ir{a J(az

1)}, provided a > 1.
_a a x

36.
[

Ir

0sec2 0d0 = j7r-|.log2.
Jo

37. [
6~* cos (a + JTT) rfa; = 0.

Jo

OO* -~ - ,m. ^r

"* do ct

f
"

<*
'

J M
r

.
-

J a

i ,b
40. -r-r -- ~. = 5 tan-1 -

.

j ab a

L. i. a 15
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a dx COS"1 a cosh" 1 a., C adx COS^a cosh" 1 a ,. . .

41. -= =rTo- = -7T-.
2

,
,
or -n-= =-

x , according as a3 $ 1.

J a2 + smh2
o; ^/(1-a

2

)' ^/(a
2
-!)'

fa d6 TT ft* cos*OdO ire-*

J cosh2 a cos2
~

sinh 2a
'

J cosh2 a cos2 2 sinh a
"

EXAMPLES. XXXIII.

(Formulae of Reduction, &c.)

1. Write down the values of the following integrals :

(1) lmn*$d$t {"co&OdO, {

"

siu7 6d9.
Jo Jo Jo

(2) ( sin2 6 cos Od6, I sin3 6 cos3
Od0, t ''sin6 6cosOdO.

/ Jo Jo

(3) j

*
sin5 6 dO, \ cos5 (9 dO, f sin3 cos4

dO.
Jo Jo Jo

[frr /-JTT f\v

(4) I sin4 ^^, I sin*6dO, I cQ&OdO,
Jifir J-ITT J *JT

2. Prove from first principles that

am (l -x)
n dx=

f
xn (l -x)

n
dx.

o Jo'0

Prove that the common value is

mini

(m + n+ 1)1'

3. Prove that

=2
f <t>(x*)dx, r
Jo J-

4. Prove that

ra
c
a

<f> (x) dx= I
{<f> (x) + </>(- x)} dx,

-a Jo

/a-a



5. If un = t tann 0c?0,
Jo

prove that n n
= r-

- wn-a.
74 ~~ X

*
/'./O
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*

f
1

1 ,. v4 ,Q />1i / I _ /> i a n'v <irO.
|

Ju I A / 1 Ctt/ i X g /I

Jo

/ XT (JLX *v l*vr

9 '

-/CT-^^Jo vv 1 wrl Jo

sin2 cos 0d0 = - *.

10.

11. (*
d sin CQ&OdO = Jir, |

si

Jo Jo

/^ sin 3(9 ,- , ft" sin 40
3 /i

sin 50
12. I . . dO = |w, . ^ d& = l, -r^

J sm0 Jo sm0 J sm0

13.
/* (a sin + 6 cos 0)

B
rf0 = || a5 + f a

863 + 2a64
.

_. f*
1' cos x -sin a; A

14. dx = 0.

7 1 + sin x cos a;

15. Prove that

Cv* COS du tr

J a2 cos2 0-f-62 sin2
=
2a (a + b)

'

fa sin2 0^0 TT

J a2 cos2 + 62 sin2
=

26 (a + b)

'

16. Prove that

( (1 + x)
m

(1
-
x)

n dx = 2m+n+2 f sin^1 cos2m+1
0rf0.

J-i Jo

17. Prove that

dx

[Put a? = tan 0.]

18. Prove that if n be a positive integer

f

00

_
dx

= 2.4.6 ...(2n-2)
Jo (175^+1 1.3. 5,..(2n-l)'

152
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19. Prove that, if n > 1,

i dx n

[Put x = sinh
u.~\

20. Prove that

du n 2 / dur - n
~

i

JQ cosh" u nlj, coshn
~ 2 u

'

[Put cosh u = sec
0.]

21. If un = (

V
Ocosn OdO,

Jo

^ 1 n-1
prove that un = -

9 + ^-o.n n

Prove that W3=-2694....

ft*

22. If wn =

. ,

prove that Mn = 71+2

Find, geometrically or otherwise, the value of w
,
and deduce the

values of ult
ut .

EXAMPLES. XXXIV.

1. By considering the value of

f (l-a?)
n
dx,

Jo

prove that if n be a positive integer

n n(n-l) n(n-I)(n-2) 2.4.6...2n
* J

i o "
-t c\ c i ^\

~"

"0
~

hr
"~

**

1.3 1.2.5 1.2.3.7 3.5.7...(2ri+l)*

2. If (1 + x)
n =

prove that

3. Prove that when a is large the sum to infinity of the series

1 1 1

a2
+
a2 + I

2
+
a2 + 22

+

is ^r/a, approximately.

4. Prove that

fv x sin a; T

/ ^
-

j- aa; = 7?.

J9 1 + cosj
a;
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5. Prove from first principles that

[

W

smn+1 OdO < I" sin" OdO.
Jo Jo

Hence shew that TT lies between

2.2.4.4.6.6 ...

1.3.3.5.5.7 ... (2-l)(2w+l)
and the fraction obtained by omitting the last factors in the nume-
rator and denominator. (Wallis.)

8. Prove from first principles that

(*" tann+1 OdO < (" tann OdO.
Jo Jo

Hence, using the result of Ex. XXXIII, 5, shew that

fJo ta,nOdO
o

lies between =-! =r\ an(i

2(n + l)

7. Shew that
/"GO /-CO

I sin OdO and I cos OdO
Jo Jo

are indeterminate.

8. Shew from graphical considerations that

rsinO
/\

Jo V

is finite and determinate.

9. Prove that if <(#) be finite and continuous for values of x

ranging from to a, except for x = 0, when it becomes infinite, the

integral

f
a

I
<j) (x) dx

Jo

will be finite, provided a positive quantity m can be found, less than

unity, and such that

is finite. [Put x = t
n
.]

10. If <f>(x) be finite and continuous for all values of xt the

r< (x) dx

will be finite, provided a quantity m can be found, greater than unity,
and such that

lim^-^a, xm
<f> (x)

is finite. [Put x = t~n
.]

integral
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11. Prove that
y-OO fGO

I cosaPdx and I si

Jo Jo

sin ar
2 dx

10

are finite and determinate.

12. Prove that

c r
ST > I

*^
JO J ->

13. Prove that the integral

r i
I xnt

Jo

(where n > 1) is finite and determinate.

14. Prove that, if n> 1,

>-oo /-eo

7o Jo

Hence shew that, if n be a positive integer,

r
Jo

*

15. If un = f
Jo

prove that un = - wn_lt
a

n being positive.

Hence shew that, if n be integral,

n\

Jo an+i"

16. Tables of the elliptic integral

dO

,

have been constructed for values of < at intervals of one minute of

angle. 'Find a formula for the difference of successive entries in a

given part of the table.

For example, if k =
, <f>

= 60, prove that the difference will be

000323, approximately.

17. Iff(x) and <f>(x) be finite and continuous, and if <f>(x) retain

the same sign, throughout the interval from x = a to x = b, then

/"* fb

I f(x) $ (x) dx =f[a + 6(b-a)] <f> (x) dx,
Ja Ja

where 1 > 6 > 0.



EXAMPLES 231

18. Shew how it follows from the equality

f
dx

= log xx

that the sum of n terms of the harmonic series

i.*l+*+{-
lies between log (n + 1) and 1 + log n.

Shew that the sum of a million terms of this series lies between
13-8 and 14-8.

19. Shew from graphical considerations that if f(x) steadily

diminishes, as x increases from to GO
,
the series

is convergent, and that its sum lies between /and / +y*(l), provided
the integral

be finite.

Apply this to the series

1 1 J_
(n+I)*

+
(n + 2)*

+
(n + 3~f

+ ~"

EXAMPLES. XXXV.

1. Prove that if the pressure (p) and volume (v) of a gas be

connected by the relation

pv = const.,

the work done in expanding from volume VQ to volume v is

p v log ^ .

2. Prove also that if the relation be

pv* = const.,

the work done is

3. If the tension of an elastic string vary as the increase over the

natural length, prove that the work done in stretching the string from
one length to another is the same as if the tension had been constant
and equal to half the sum of the initial and final tensions.

4. Prove that the work done by gravity on a pound of matter, as

it is brought from an infinite distance to the surface of the Earth,
is n foot-lbs., where n is the number of feet in the Earth's radius.

[Assume that the force varies inversely as the square of the distance

from the Earth's centre.]



CHAPTER VIII

GEOMETRICAL APPLICATIONS

99. Definition of an Area.

In Euclid's Elements a system of propositions is developed by
means of which we are able to give a precise meaning to the term
4

area/ as applied to any figure bounded wholly by straight lines.

In particular it is shewn that a rectangle can be constructed equal
to the given figure, and having any given base, say the (arbitrarily

chosen) unit of length. The 'area' of the figure in question is

then measured by the ratio of this rectangle to the square on the

unit length.

This process obviously does not apply to a figure bounded, in

whole or in part, by curved lines, and we require therefore a defini-

tion of what is to be understood by the 'area' in such a case. To

supply this, we imagine two rectilinear figures to be constructed,
one including, and the other included by, the given curved figure.
There is an upper limit to the area of the inscribed figure, and a

lower limit to that of the circumscribed figure, and these limits

can be proved to be identical. The common limiting value is

adopted, by definition, as the measure of the 'area* of the given
curvilinear figure.

Thus, in the case of a circle, if, in Fig. 17, p. 31, PQ be the side

ofan inscribed polygon, the area of the polygon will be %%(ON,PQ).
Now ON is less than the radius, and 2 (PQ) is less than the peri-

meter, of the circle. Hence the upper limit to the area of an
inscribed polygon cannot exceed \a x ZTTO,, or Tra2, where a is the

radius. Similarly we may shew that the lower limit to the area

of a circumscribed polygon cannot be less than Tra2
. Moreover,

the difference between the area of an inscribed polygon, and that

of the corresponding circumscribed polygon, is represented by
2 (PN.NT), and is therefore less than 2 (PN) . e, where e is the

greatest value of NT. Since this can be made as small as we

please, the upper and lower limits aforesaid must be equal, and
each is therefore equal to ira?.

In the same way we may prove that the area of any sector of

a circle of radius a is \<&Qt where 6 is the angle of the sector.
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100. Formula for an Area, in Cartesian Coordinates.

If the equation of a curve in rectangular coordinates be

the area included between the curve, the axis of a?, and the ordinates

x a, x = 6, is
rb rb

I <f>(x)dx or I ydxy (2)
J a Jo,

it being assumed that
</> (x) is a function of the type contemplated

in Art. 90.

This follows at once from the definition of the preceding Art.

and the investigation of Art. 90.

If the axes of coordinates be oblique, making (say) an angle w
with one another, the elementary rectangles ySx which occur in

the sum, of which the area is the limit, are replaced by elementary

parallelograms y$x sin G>; the area included between the curve, the

axis of x, and two bounding ordinates is therefore given by

sin w\ydx (3)

taken between the proper limits.

Fig, 52.

Ex. 1. The area of a quadrant of the ellipse

OL 7/
J>

r* I ft
is given by I y dx -

I J(a? as
2

)
dx.

J o a J o

The value of the definite integral was found in Art. 96 to be

Hence the whole area of the ellipse is nab.

Ex. 2. In the rectangular hyperbola
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we may put, for the positive branch,

x=coshu, y = sinhu, .....................(6)

since these satisfy (5), and give the required range of values of x and y.

The area included between the curve, the axis of x, and the ordinate

defined by the variable u, is therefore

ru

y dx = I si

Jo

= sinh2 udu = \ (cosh 2u 1) du
Jo

= sinh 2u \u. (7)

o N A XAN X O

Fig. 53.

This saves the area PAN in the left-hand figure. Hence the area
<~y O

of the hyperbolic sector AOP is

We have here an analogy between the 'amplitude' (u) of the hyper-
bolic functions cosh u, sinh u, &c., and the amplitude (0) of the circular

functions cos 0, sin 0, &c. ; viz. the independent variable in each case

represents twice the sectorial area AOP corresponding to the point P
whose coordinates are (cosh u, sinh u), or (cos 6, sin 0), respectively.

In the case of the general hyperbola

c
.(9)

the coordinates of any point on the positive branch may be represented

by
,

.................. (10)

and the sectorial area is \ab u.

Ex. 3. The equation of a parabola, referred to any diameter and
the tangent at its extremity, is

(11)
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The area of the segment cut off by the chord x = a is therefore

/a
fa.

ydx = 4a'i sin w I a dx = | a'*a5 sin <o

o Jo

= fa/8 sin a>, .............................. (12)

if 2/J be the length of the chord.

Hence the area of any segment of a parabola is two-thirds the rect-

angle contained by the intercept (a) of the chord on its diameter and
the projection (2(3 sin

o>)
of the chord on the directrix.

101. On the Sign to be attributed to an Area.

It was tacitly implied in Art. 100 that b > a, and that the

ordinate
</> (x) is positive throughout the range of integration.

we drop these restrictions, it is easily seen that the integral

If

/J a
(1)

is equal to + S, where S is the area included between the curve,
the axis of x, and the extreme ordinates

;
the sign being -f or

according as the area in question lies to the right or left of the

curve, supposed described in the direction from P to Q, where

Fig. 54.

PA, QB are the ordinates corresponding to x=a, x=b, respectively*.
If the curve cuts the axis of x between A and B, the integral

gives the excess (positive or negative) of the area which lies to the

right over that which lies to the left.

Even with these generalizations, the formula

<f>(x)dx
= S (2)

.

still applies in strictness only when there is a unique value of y,
or

<f) (x), for each value of x within the range b a. If however

*
It is assumed here that the axes of x and y have the relative directions shewn

in the figures. In the opposite case, the words 'right' and 'left* must be inter-

changed.
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we replace x
y
as independent variable, by a quantity t such that,

as t increases, the corresponding point P moves in a continuous
manner along the curve*, the formula

will give in a generalized sense the area included between the

Y

Fig. 55.

curve, the axis of x, and the ordinates of the points P , P! for which
t =

,
t = tly respectively, viz. it will give the excess of those portions

of the area swept over by the ordinate y as it moves to the right
over those swept over as it moves to the left, or vice versd, according
as y is positive or negative.

If, for a certain value of t, P return to its former position,

having described a closed curve, the integral

& j* /A\
-3i<b> (4)

taken between proper limits of t, will give the area included by
the curve, with the sign + or

, according as the area lies to the

right or left of P, when this point describes the curve in accordance

with the variation of f. If the curve cut itself, the formula (4)

gives the excess of those portions of the included area which lie to

the right over those which lie to the left. (See Fig. 55.)

It is sometimes convenient, in finding the area of a curve, to

use y as independent variable, instead of x. The area included

between the curve, the axis of y, and the lines y = h, y = k, is evi-

dently given, with the same kind of qualification as before, by
r

.(5)

* For instance, we may take as the new variable the arc s of the curve, measured
from some fixed point on it.

f Thus, in the indicator-diagrams referred to on p. 207, the area enclosed by
the curve gives the excess of the work done by the steam on the piston during the

forward stroke over the work done by the piston in expelling the steam during the

back stroke, and so represents the net energy communicated to the piston in a

complete stroke.
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The more general formula, analogous to (3), is

h dy j
x-jidty

t.
dt

but it will be found on examination that the rule of signs must be

reversed.

Allowing for this, we have the expression

dy dx^

for the area of a closed curve, the limits of t being such that the

point (x, y) returns to its initial position. The rule of signs is

now that the expression (7) is positive when the area lies to the

left of a point describing the curve in the direction in which t

ncreases.

102. Areas referred to Polar Coordinates.

If the equation of a curve in polar coordinates be

(1)

the area included between the curve and any two radii vectores

= a
,
6 = ft is given by the formula

For we can construct, in the manner
indicated by the figure, an including area

S, and an included area $', each built up
of sectors of circles. The area of any one
of these sectors is equal to $r*SO, where r

is its radius, and $6 its angle, and the

sum of either series of sectors is therefore

given by a series of the type

Se........ . ......(3) Fig. 56.

Hence either series has the unique limit denoted by (2).

It is here assumed that ft > a and that each radius vector

through the origin intersects the arc considered in one point only.
If however we introduce a new independent variable t, such that,

as t increases, the corresponding point P moves in a continuous

manner along the curve, the expression

.(4)
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will give the net area swept over by the radius vector as t varies

from t to tlt i.e. the (positive or negative) excess of those parts
which are swept over in the direction of 6 increasing over those

swept over in the contrary direction. Moreover if, as t increases,
P at length returns to its original position, having described a

closed curve, the expression

i [ 9
d0 ,.

i r*-ndt, (5)
j at

taken between suitable limits of t, gives in a generalized sense the

area enclosed by the curve ; viz., it represents the excess of that

part of the area which lies to the left of P (as it describes the

curve in accordance with the variation of t) over that part which
lies to the right. Of. Art. 101.

It may be noted that the formula (5) is equivalent to (7) of

Art. 101. If the coordinates of two adjacent points P, Q be (#, y)
and (#+ &r, y+%), respectively, the area of the elementary triangle

OPQ is, subject to a convention as to sign,

by a formula of Analytical Geometry. The same thing is de-

noted in our present notation by

Ex. 1. The area of the circle

r = 2asin0
(6)

(see Fig. 38, p. 124) is given by

F F
^
jo**

{ =2a
;

8 = 7m*

(7)

This is of course merely a verification, or rather a new evaluation of

the trigonometrical integral.

Ex. 2. The area of a sector of the parabola

2a

1 + cos 6

included between two focal radii is

.(8)

+ tan2

0) sec2 \Q dO

], ..................
(9)

taken between proper limits. If the limits be TT and TT, we get the
area of the segment cut off by the latus rectum, viz. a2

.
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Ex. 3. The equation of an ellipse in polar coordinates, the centre

being pole, is

1 cos*0 sina

o ' o
r2 a3 6'

Hence the area is

> /*-

7o a2 sin2 + 6
2 cos3

*

The value of the latter integral has been found in Art. 96 to be ^/(ab).
Hence the required area is irab.

103. Area swept over by a Moving Line.

The area swept over by a moving line, of constant or variable

length, may be calculated as follows.

Let PQ, PQ! be two consecutive positions of the line, and let

their directions meet in (7. Let R, R' be the middle points of

PQ, P'Q', and let RS be an arc of a circle with centre (7. Then if

the angle PGP' be denoted by 80, we have, ultimately,

area PQQ'P' = A QCQ' -

Fig. 57.

Hence, if we denote the length PQ by u, and the elementary dis-

placement of R, estimated in the direction perpendicular to the

moving line, by So-, the area swept over may be represented by

judo- (1)

It will be noticed that the formulae of Arts. 100, 102 are par-
ticular cases of this result. Thus in the case of Art. 100 (3) we
have u=y, 8<r = Sa;. sin o>.

It is tacitly assumed, in the foregoing proof, that the areas are

swept over always in the same direction. It is easy to see, how-

ever, that the formula (1) will apply without any such restriction,

provided areas be reckoned positive or negative according as they
are swept over towards the side of the line PQ on which Bo- is

reckoned positive, or the reverse. For example, the area swept
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over by a straight line whose middle point is fixed is on this

reckoning zero.

We will suppose, for definiteness, that So- is positive when the
motion of R is to the left of PQ as regards a spectator looking
along the straight line in the direction from P to Q. If PQ return

finally to its original position, its extremities P, Q having described

closed curves, the integral (1) will, on the above convention, re-

present the excess of the area enclosed by the path of Q over that

enclosed by the path of P, provided the signs attributed to these

areas be in accordance with the rule of Art. 102.

Fig. 58.

104. Theory of Amsler's Planimeter.

A 'planimeter' is an instrument by which the area of any
figure drawn on paper is measured mechanically.

Many such instruments have been devised*, but the simplest and
most popular is the one invented by Amsler, of Schaffhausen, in 1854.

This consists of two bars OP, PQ, freely jointed at P, the former of

which can rotate about a fixed point at 0. If a tracing point attached

Fig. 59.

See Henrici, '.Report on Planimeters,' Brit. Ass. Rep., 1894, p. 496.
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to the bar PQ at Q be carried round any closed curve, -P will oscillate

to and fro along an arc of a circle, describing (as it were) a contour of

zero area. Hence by the theorem stated at the end of Art. 103, the

area of the curve described by Q will be equal to

/*, (1)

where I is the length PQ, and fd<r represents the integral motion of R,
the middle point of PQ, estimated always in the direction perpendicular
to PQ*.

Now if, as is generally the case in the actual use of the instrument,
PQ return to its original position without making a complete revolu-

tion, the integral motion of R at right angles to PQ is the same as

that of any other point R' in the line PQ. For if SV, oV be corre-

sponding elements of the paths of R, R', estimated as aforesaid, we
have

So- -oV = R'R.W,

where BO is the angle between the consecutive positions of R' R.
Hence

fd<r = fd<r' + R'fi fdO
=

!<!*', (2)

since, under the circumstances supposed, we have

Fig. 60.

In the instrument, as actually constructed, the integral motion
normal to the bar of a point R' in QP produced backwards, is recorded

by means of a small wheel having its axis in the direction PQ. As Q
describes any curve, the wheel partly rolls and partly slides over the

plane of the paper on which the curve is drawn, and the rotation of
the wheel is in exact proportion to the displacement of R' perpendicu-
lar to its axis. The wheel is graduated, and has a fixed index for the
record of partial revolutions ; the whole revolutions are recorded by a
dial and counter.

There is also an arrangement for varying the length PQ ;
this

merely alters the scale of the record.

A more compact proof can be given analytically. Taking rect-

angular axes through 0, let 6 and
<f>

be the angles which OP and PQ
make with the positive direction of the axis of x. Putting

h This is of course not in general the same thing as the length of the path of R.

L. I. C. 16
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the coordinates of Q are

(3)

Hence

x By y Bx = (a cos 6 + I cos <) (a cos 6 6 -f I cos < S<)

+ (a sin 9 + I sin <) (a sin 6 W + 1 sin

= a2 80 + P 8< + al cos
(<
-

0) (SO +

= 8 {a
2 + J

2
< + al sin

(<
-

0)}

(4)

An infinitesimal displacement So- of any point R in PQ, estimated

at right angles to PQ, may be regarded as made up of the displacement
relative to P, and the resolved displacement of P. Hence, if PR =

6,

-0)80................... (5)
Hence

+ lS<r.................................. (6)

It follows that, if Q describes a complete circuit such that and <

return to their initial values,

*f(xdy-ydx) = fld<r..... ................. (7)

The expression on the left hand is then equal to the area included

within the circuit, by Art. 101 (7).

105. Volumes of Solids.

It is impossible to give a general definition of the '

volume/
even of a solid bounded wholly by plane faces, without introducing,
in one form or another, the notion of a '

limiting value/

It may, indeed, be proved by Euclidean methods that two

rectangular parallelepipeds are to one another in the ratio com-

pounded of the ratios, each to each, of three concurrent edges of

the one to three concurrent edges of the other; and, more

generally, that two prisms are to one another in the ratio com-

pounded of the ratio of their altitudes and the ratio of their

bases. In this way we may define the ratio of any prism to that

of the unit cube.

But it is not in general possible to dissect a given polyhedron
into a finite number of prisms. The simplest general mode of

dissection is into pyramids having a common vertex at some
internal point 0, and the faces of the polyhedron as their bases.

And the volume of a pyramid cannot be compared with that of a

prism without having recourse to the notion of a limiting value.

A triangular prism may, indeed, be dissected into three pyramids
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of equal altitude standing on equal bases (Euc. xn. 7) ;
but we

cannot prove these pyramids equal to one another except by a

process which involves the consideration of infinitesimal elements

(Euc. XII. 5).

A general definition of the volume of a solid bounded by any
surfaces, plane or curved, may be framed similar to that of the
area of a plane figure (Art. 99). It is always possible to construct

two figures, built up of prisms, such that one figure includes, and
the other is included by, the given solid, and that the difference

between their volumes admits of being made as small as we please.
The limiting value to which the volume of either of these figures
tends, as the difference between them is indefinitely diminished,
is adopted as the definition of the *volume* of the given solid.

We may easily satisfy ourselves, as before, that this limiting value
is unique.

The volume of any cylinder (right or oblique), with plane
parallel ends, is equal to the product of the area of either end into

the perpendicular distance between the two ends. For we may
construct an including, and also an included, prismatic figure,
whose bases are polygons respectively including, and included by,
the base of the cylinder. The above statement is true of each of

these figures, and therefore in the limit it is true of the cylinder.
Thus the volume of a circular cylinder is nra2hy where a is the
radius of the base, and h is the altitude.

Having found the volume of a cylinder with parallel plane
ends, we are at liberty, if we find it convenient, to use such

cylinders, in place of prisms, to build up the accessory figures

employed in the general definition given above. The limit finally
obtained in either way must evidently be the same.

106. General expression for the Volume of any Solid.

The axis of x being drawn in any convenient direction, let the
area of the section of the solid by a plane perpendicular to this

axis, at a distance x from the origin, be f(x). If we draw a

system of planes perpendicular to x, at intervals Bx, it is evident
that the required volume will be the limit of the sum

(1)

since each element of this sum represents the volume of a cylinder
of height Bx and base f(x). Hence the volume will be given by

<** ...........................(2)

taken between suitable limits of x.

16-2
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Ex. 1. Thus, in the case of a cone (or a pyramid), right or oblique,
on any base, we take the origin at the vertex, and the axis of x per-
pendicular to the base. If A be the area of the base, and h the alti-

tude, the area of a section at a distance x from will be

(/>A

2

1)
-A

' .(3)

since similar areas are proportional to the squares on corresponding
lines. Hence the volume, being equal to

1 f

j-^A
I x*dx

t
or

is one-third the altitude into the area of the base.

Ex. 2. The volume of a tetrahedron is

sino,

where a, a' are any pair of opposite edges, h their shortest distance,
and a the angle between their directions.

Fig. 61.

Divide the tetrahedron into laminae by planes parallel to the edges
a, a', and therefore perpendicular to the shortest distance h. It is

evident, on reference to Fig. 61, that the section made by a plane of

the system at a distance x from the edge a is a parallelogram whose
sides are

x
,

, h-x
T . a and -

a,
n> ii
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and whose area is therefore

aa
/z. \

-j- x(h x) sin a.

t
pji

Hence the volume =
-^8

sin a I x (h
-
x) dx,

" Jo

which reduces to the value given above.

107. Solids of Revolution.

Let the equation of the generating curve be

?-*(), ...........................a)

the axis of # being that of symmetry, and let the solid be bounded

by plane ends perpendicular to x. In this case, the area /(#),

TT

being that of a circle of radius y, is iry\ Hence the required
volume is

Iirfdx, ..............................(2)

taken between proper limits. Each element of the sum, of which

this integral is the limit, represents, in fact, the volume of a

circular plate of thickness Sx and area Try
2

.

Ex. 1. The equation of a circle, referred to a point on its circum-

ference as origin, is

y* = x(2a-x)............................ (3)

Hence the volume of a segment of a sphere, of height A, is

rh r -ifc

I x (2a -x)dx = ir ay? Jcc
3

= *K(a-\h\ .................. (4)

a being the radius of the sphere. For the complete sphere, we have
h = 2a, and the volume is ^Tra

3
,
or two-thirds the volume (rra

2 x 2a) of

the circumscribed circular cylinder.

Ex. 2. The volume of a segment, of height A, of the paraboloid

generated by the revolution of the curve

y
a = 4aa; .................................(5)

about the axis of x, is

K I y*dx = lira f|a;
2

"|
= 2irah\ ............... (6)

Jn L Jo

If b be the radius of the base, we have 62 = ah. Hence the volume is

|7r6
2
.A, or one-half that of the cylinder of the same height on the same

base.
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Ex. 3. To find the volume of the '

anchor-ring,' or 'tore,' generated

by the revolution of the circle

a* + (y-a)> = b*, ........................... (7)

where a> b, about the axis of x. See Fig. 66, p. 256.

For each value of x between + b we have two values of y, say ylt y%'>

viz.

y1
= a + N/(6

2 -^2

), y2
= a-s/(&

2 -aa
)......... ....(8)

The area of a section of the ring by a plane perpendicular to a? is

therefore

iry?-Try? = >J(V-x*) ..................... (9)

and the required volume is

J
(10)

-6

by Art. 96, Ex. 5.

This is the same as the volume of a cylinder whose section (irlP) is

equal to that of the ring, and whose length (2ira) is equal to the circum-

ference of the circle described by the centre of the generating circle.

108. Some related Cases.

We give some further examples of the general formula (2) of

Art. 106.

Ex. 1. The section of the elliptic paraboloid

1/
2

Z*
2x = Z.+ - .............................. (1)P 9

by a plane x = const, is an ellipse of semi-axes v/(2/>x) and ^/(2qx), and
therefore of area 27r N/(^g) x. Hence the volume of the segment cut off

by the plane x = h is

(2)[
J

This is one-half the volume of a cylinder of the same height h on the

same elliptic base.

Ex. 2. In the ellipsoid

858 2/*
&

i /o\

j+5*?- 1- ...........................<3>

the section by a plane x = const, is an ellipse of semi-axes

(C
2\

1 --
2)
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The volume included between any two planes perpendicular to x
therefore

(6)

taken between the proper limits of x. For the whole volume the limits

of x are + a, and the result is ^irabc.

109. Simpson's Rule.

Most of the preceding results are virtually included in a

general formula applicable to all cases where the area of the
section by a plane perpendicular to # is a quadratic function of x.

The volume included between two parallel planes can then be

simply expressed in terms of the areas of the sections made by
these planes, of the section half-way between them, and of the
interval (2h) between the two extreme planes.

Since the form of a quadratic function is not altered by the

addition of a constant to as, we may conveniently take the origin
in the middle section. Putting

.....................(1)

we have
[ f (x) dx = <2Ah + $Ch*................... (2)
J h

Denoting the areas of the sections x h, x = 0, x = h by 8if

,, respectively, we have

* = S3) ...(3)

whence
n

f f(x) dx = ^($ + 4$ + 83\ ...............(4)
J n

which gives the rule referred to. We may interpret this as

expressing that the ' mean '

section is

(5)

It is easily seen that the addition of a term Da? in (1) would
make no difference to the form of (4). The result is thus extended
to the case where f(x) is of the third degree.

The formula (1) is obviously applicable to the case of a cone,

pyramid, or sphere, and also to the case of a paraboloid, ellipsoid, or

hyperboloid, provided the bounding sections be perpendicular to a

principal axis. The student who is familiar with the theory of surfaces

of the second degree will easily convince himself, moreover, that the

latter condition is not essential.



248 INFINITESIMAL CALCULUS [CH. VIII

Another case coming under the present rule is that of a solid

bounded by two parallel plane poly-

gonal faces and by plane lateral

faces which are triangles or trape-
ziums. We may even include the
case where some or all of the lateral

faces are curved surfaces (hyper-
bolic paraboloids) generated by
straight lines moving parallel to

the planes of the polygons, and
each intersecting two straight lines

each of which joins a vertex of one

polygon to a vertex of the other Fig. 62.

(see Fig. 63).

Fig. 63.

And since the number of sides in each polygonal face may be in-

creased indefinitely, the rule will also apply to a solid bounded by any
two plane parallel faces and by a curved surface generated by a straight
line which meets always the perimeters of those faces.

Ex. 1. To find the volume of a frustum of a right circular cone.

If a, b be the radii of the two plane ends, that of the middle
section will be (a + b). Hence

The volume is therefore

if h be the heiht of the frustum.

62
), (6)

Ex. 2. A cylindrical hole of radius b is bored centrally through a

solid sphere of radius
;
to find the volume which remains.
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Here ^ = 0, S9
= TT (a

a - 62
),

S8 =0.

The mean section is therefore ?r (a
2 62

).
The length of the hole is

2 N/(a
2 62

).
The required volume is therefore

M'-*')*............................ (7)

110. Rectification of Curved Lines.

The perimeter of a rectilinear figure is the length obtained by
placing end to end in succession, in a straight line, lengths equal
to the respective sides of the figure.

But since a curved line, however short, cannot be superposed
on any portion of a straight line, we require some definition of

what is to be understood by the 'length' of a curve. The definition

usually adopted is that it is the limit to which the perimeter of

an inscribed polygon tends as the lengths of the sides are indefi-

nitely diminished. It is assumed that the gradient of the curve

is continuous, except possibly at isolated points; i.e. that the

mutual inclination of the tangents at two adjacent points P, Q
can be made as small as we please by taking Q sufficiently near

to P. It will appear that, under proper conditions, the above
limit is unique ; and it can also be shewn that it coincides with
the corresponding limit for a circumscribed polygon.

If (#, y) and (x + &c, y + By) be the rectangular coordinates of

two adjacent points P, Q on a curve, the length of the chord

is

*

It has been shewn, in Art. 56, that if y and dyjdx be finite and

continuous, the ratio &y/8x is equal to the value of the derived

function dyjdx for some point of the curve between P and Q.
Hence with a properly chosen value of dyjdx, we have

The limiting value of the perimeter of the inscribed polygon is

thftrfifnrfi

taken between proper limits of x. The fact that this limiting
value is unique has been established in Art. 90.

If x be regarded as a function of y, the corresponding formula is
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If we denote by s the arc of the curve measured from some

arbitrary point (# ), and if as in Art. 60, we put dyjdx = tan
-fy,

the

formula (1) becomes

s \ sec-^rdx (3)

There is of course a similar transformation of the formula (2).

Ex. 1. In the catenary
flS

, y = c cosh-, (4)c

r / ( /dy\*\ ^

we havcj /
-j
1 + [ )

v dx =
/ ^J [ \dxj )

= I cosh - dx = c sinh .

J c c

Since this vanishes with x
t
the arc

(s) measured from the lowest point
is given by

= csinh- (5)
c

Ex. 2. In the parabola

y
s = 4oo;, (6)

we have

This may be integrated by the method of Art. 76, first rationalizing the

numerator, or we may put
x = a sinh* w,

and obtain 2a / cosh2 udu = a / (1 + cosh 2w) du

= a (u + $ sinh 2w) (8)

Since u vanishes with x, this gives the length of the arc measured from
the vertex.

For example, at the end of the latus-rectum we have

sinhw = l, coshw=^/2, u = log (1 + ^2),

whence we find that the length of the arc up to this point is

a {log (1 + ,/2) + ^/2}
= 2-296o.

111. Generalized Formulae.

It is a consequence of the definition above given that any
infinitely small arc PQ of a curve is ultimately in a ratio of

equality to the chord PQ.
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For a formal proof of this theorem, which is a generalization of that

of Art. 22, 2, let PPi, P\P^ ,
Pn-iQ ^e the sides of an open polygon

inscribed in the arc, and let elt 3, ..., ^ be the angles (positive or

negative) which they respectively make with the chord PQ. It is

obvious that

PQ<PPl +Pl
P9+ ...+Pn.lQ................... (1)

On the other hand

PQ =PPl COS j + P1
Pa COS f2 + . . . + Pn-iQ COS n

> (PPl +PlPt +... + Pn.,Q) cos e, .................. (2)

where is the greatest in absolute value of the angles clt e2 ,
... en . The

ratio

PQ

therefore lies between 1 and cose. Since the chords PPlt Pl Pz ,... t

Pn-iQt as weU as ^$ are parallel to tangents to the arcs at points
between their respective extremities, it follows from the continuity
of the gradient that

|

e
|

can be made as small as we please by taking
Q sufficiently near to P. The limiting value of the ratio (3) is therefore

unity.

This may be verified immediately by differentiating the formula (3)
of the preceding Art. with respect to the upper limit (x) of the integral
We thus find

8s
=

Since, when Q is taken infinitely near to P, sec
i/r

is the limiting value
of the ratio of the chord PQ to &, we have, ultimately,

The above principle leads to several important formulae. In the

first place, if the coordinates a, y of any point P on the curve
be regarded as functions of the arc s, we have, in Fig. 19, p. 45,

PR Sx 8s

and therefore cos ilr = -y- , sin ^ = -^ . . .(6)
as as

It follows that
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Again, if x, y be functions of any other variable tt we have

and therefore lim -^ = A / -I (^ } + (^

or

Hence

This may be regarded as a generalization of Art. 110 (1). The
formula referred to was obtained on the supposition that there is

only one value of y for each value of #, within the arc considered.

The result (9) is free from this restriction
;

all that is essential is

that as t increases, the point P should describe the curve con-

tinuously.

In the same way, the formulae (6) may be taken to apply to

any rectifiable curve, provided we understand by >|r
the angle

which the tangent, drawn in the direction of s increasing, makes
with the positive direction of the axis of x.

The formulae (8) and (9) have an obvious interpretation in Dynamics.
If x

y y be the rectangular coordinates of a moving point, regarded as

functions of the time t, then dxjdt and dyjdt are the component velocities

parallel to the coordinate axes, and if v be the actual velocity, we have

The formulae (8), (9) are thus equivalent to

ds [ ,

-r = Vj 8= I vat.
\MV J

Ex. In the ellipse

we have

x = a sin <, y= b cos
</>

z *

.(10)

.(11)

.(12)

where e is the eccentricity. Hence the arc 8, measured from the

extremity of the minor axis, is

(13)
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This cannot be expressed (in a finite form) in terms of the ordinary
functions of Mathematics. The integral is called an *

elliptic integral
of the second kind,' and is denoted by E (e, <). It may be regarded as

a known function, having been tabulated by Legendre*. The whole

perimeter of the ellipse is expressed by

4a (l-e'sin'^cfy................... (14)
o

The integral in this expression is denoted by E (e, ^TT), or more shortly

by EI (e). It is called a '

complete
'

elliptic integral of the second kindf.

The quantity e is called the 'modulus' of the integral.

For the calculation of the integral (14) by means of a series see

Art. 180.

112. Arcs referred to Polar Coordinates.

Let OP, OP' be two consecutive radii of the curve, and let

PN be drawn perpendicular to OP'. If we write

OP = r, OP^r + Sr, Z POP' = S<9,

then, as in Art. 63, PN will differ from r&0, and NP from oY, by
quantities which are infinitely small in comparison with PN,NP
respectively. Hence PFt

or *J(PN* + NP' 2
), is ultimately in a

ratio of equality to

It follows that, if 6 be the independent variable,

and therefore

provided the integral be taken between the appropriate limits of 6.

If r and Q be given as functions of an independent variable t,

we have

ds PP I (fdr*

5 8t "V \\dt

* Traitg des Fonctions Elliptiques (1826).
t The elliptic integral of the '

first kind '

is

and is denoted by F(e, 0). The corresponding 'complete
'

integral (with ^v as the

upper limit) is denoted by Fl (e).
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and therefore

/d0 2

;drdtJ
'

\dt

which includes (2) as a particular case.

[CH. VIII

..(4)

Fig. 64.

Again, if r, 6 be regarded as functions of the arc s, and if
<f>

denote the angle which the tangent-line, drawn in the direction of

s increasing, makes with the positive direction of the radius vector,

we have

cos NP'P =
NF
pp

PN
PP"

and therefore, in the limit,

dr .
. de

sm o> = r -=- .

ds .(5)

These results, again, have a dynamical illustration. If v denote the

velocity of a moving point, the component velocities along the trans-

verse to the radius are

and

dr ds dr
v cos <p

= -T- -j-
=

-j- ,

ds dt dt

rdO ds rdO
v sin < = -j- -T- = j- ,

ds dt dt

.(6)

respectively ; and the formula (4) is equivalent to

as before.

= lvdt
(7)

113. Areas of Surfaces of Revolution.

To frame a general definition of the area of a curved surface,
and to prove that the area so defined has a determinate value, is

a matter of some nicety. We shall here only consider the case of
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a surface of revolution limited (if at all) by planes perpendicular
to the axis.

We begin with the circular cylinder. The curved surface may
be denned as the limiting value of the sum of the areas of the

lateral faces of an inscribed prism. These faces have all the same

length, and their sum is equal to this common length multiplied

by the perimeter of the cross-section of the prism. In the limit

this perimeter becomes the perimeter of the cylinder. Hence the

curved surface of a right cylinder of radius a and height h is 27rah.

Take next the surface of a right cone included between two

planes perpendicular to the axis. We can inscribe in this a frus-

tum of a pyramid, whose bases are similar and similarly situated

regular polygons, inscribed in the two bounding circles. The curved
surface in question may be denned
as the limit of the lateral area of

this frustum. This area is made

up of a number of trapeziums having
a common altitude, viz. the perpen-

diculardistancebetweentheirparallel
sides, and is therefore equal to this

common altitude multiplied by the

arithmetic mean of the perimeters
of the two polygons. In the limit,

these perimeters become the circum-

ferences of the bounding circles, and
the common altitude becomes the

length of a generating line of the

cone included between these circles.

In other words, the curved surface

generated by the revolution of a

straight line PQ about any axis in

the same plane with it is equal to PQ multiplied by the arithmetic

mean of the circumferences of the circles described by P and Q.

This is the same as the product of PQ into the circumference of

the circle described by its middle point.

Next consider the surface generated by the revolution of any
arc of a curve

...........................(i)

Fig. 65.

about the axis of x. Taking any number of points in this arc, and

joining them by straight lines, we obtain an open polygon ;
the

curved surface is then denned as the limiting value to which the

sum of the areas described by the sides of the polygon tends, when
the lengths of the, sides are indefinitely diminished. Hence if

PQ be the chord of any element 8s of the generating curve, and
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y the ordinate of the middle point of PQ, the curved surface is

the limiting value of the sum z, (2?n/ . PQ). Ultimately, PQ is in

a ratio of equality to 8s, and y may be taken to be the ordinate of

the curve
;
the surface is then equal to the limiting value of

2-77-2 (y . 8s), that is, to

tor/yds, .............................. (2)

taken over the proper range of s.

Ex. 1. In the case of the sphere the coordinates of any point of

the generating curve may be written

x=acos0, y = asin0, ....... .............. (3)

whence ds/dO = a............................... (4)

Hence the surface of a zone bounded by planes perpendicular to x is

re,

sin dO = 27ra2 (cos Ol
- cos <92)

= 2-n-a (xl x2) ........................ (5)

where the suffixes refer to the bounding circles. Hence the zone is

equal in area to the corresponding zone of a circumscribing cylinder

having its axis perpendicular to the planes of the bounding circles.

In particular, the whole surface of the sphere is 2?ra . 2a, or 47raa.

Ex. 2. To find the surface of the ring generated by the revolution

of a circle of radius b about a line in its plane at a distance a from its

centre, we may put

r

/

t ds/dO = b, (6)

and obtain 2?r I yds = 2-n-b I(a bcos6)d0................... (7)

The limits of being and 2-n-, the result is 2-rrb x 27ra, which is equal
to the curved surface of a right cylinder of radius b and length (2?ra)
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equal to the circumference described by the centre of the generating
circle.

Ex. 3. To find the surface generated by the revolution of the

ellipse

aj = asin</>, y = 6cos< (8)

about the major axis, we have

Zirfyds = Inly
-jj-d<l>

e'sm*<f>)d(8in<t>), (9)

by Art. 111. If we put e sin
</>
= sin 0, (10)

this

= 2^
f

*0d0 =^[0 + Sm0cos0] (11)

To find the whole surface we take this between the limits $ = + i^r,

or = + sin"1
e. The result is

.m-^ + e^l-e2
)},

sin" 1 &
or 27r&8 +27ra& (12)

By a similar process we find, for the surface generated by the revo-
lution of the ellipse about its minor axis, the value

?
ĉ

where e' = ,J(a*
- 62)/6, or

27ra+27ra6
8iDh

,"

V
. ..(13)

e

This may also be put into the form

27raa + 7T&
2

.-logii-
e

. ..(14)
e

'
1 -e

114. Approximate Integration.

Various methods have been devised for finding an approximate
value of a definite integral, when the indefinite integral of the

function involved cannot be obtained. For brevity of statement,
we will consider the problem in its geometrical form

;
viz. it is

required to find an approximate value of the area included between
a given curve, the axis of #, and two given ordinates.

L. i. o. 17
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The methods referred to all consist in substituting for the

actual curve another which shall follow the same course more or

less closely, whilst it is represented by a function of an easily

integrable character.

The simplest, and roughest, mode is to draw n equidistant
ordinates of the curve, and to join their extremities by straight
lines. The required area is thus replaced by the sum of a series

of trapeziums. If h be the distance between consecutive ordinates,

and ylt yz , ..., yn the lengths of the ordinates, the sum of the

trapeziums is

i2/n)A; ...(l)

that is, we add to the arithmetic mean of the first and last ordinates

the sum of the intervening ordinates, and multiply the result by
the common interval h.

The value thus obtained will obviously be in excess if the curve

is convex to the axis of xt
and in defect in the opposite case.

Fig. 67.

Another method, originally given by Newton and Cotes*, is to

assume for y a rational integral expression of degree n 1, thus

y = A + A^x + A^x* + ... + An^x11

(2)

* See the latter's tract De Methodo Differentiali, printed as a supplement to the

Harmonia Mensurarum, Cambridge, 1722.
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and to determine the coefficientsA ltA9t...An-l so that, for then equi-
distant values of x, y shall have the prescribed values ylt y3 , ..., yn .

The area is then given by

... +-A n_ l
xn

, ...(3)

r

\ydx,
= A x

J

taken between proper limits of x.

Thus, in the case of three equidistant ordinates, taking the

origin at the foot of the middle ordinate, we assume

(4)m \"-/

with the conditions that

L /Q\
for x = h, 0, h, )

'

respectively. These give

so that

rh
Hence I ydx = 2 (A 9 + ^A z) h

J -h

= i(yi + 4ya + 2/8)
h (8)

Of. Art. 109.

The method here employed is equivalent to replacing the

actual curve by an arc of a parabola having its axis vertical
;
and

the result represents the difference between the trapezium

\

and the parabolic segment

see Art. 100, Ex. 3.

In the case of four equidistant ordinates a similar process
leads to the formula

t (2/1 + ^2Aj + 87/3 + 2/4) h, (9)

whilst for five ordinates we get

(10)

17 a
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With an increasing number of ordinates the coefficients in

this method become more and more unwieldy*. A simple, but

generally less accurate, rule was devised by Simpsonf. Taking
an odd number of ordinates, the areas between alternate ordinates,

beginning with the first, are calculated from the *

parabolic
'

formula (8), and the results added. We thus obtain

i (2/1 + 4y + 2/3

+ %4 + 2/5

+ 2/5 + 4y6 + y1

+ ...............

h

... + .y2n_1 )

.........(H)

That is, we take the sum of the first and last ordinates, twice the
sum of the intervening odd ordinates, and four times the sum of

the even ordinates, and multiply one-third the aggregate thus
obtained by the common interval h.

Ex* To calculate the value of TT from the formula

dx

Dividing the range into 10 equal intervals, so that h= -1, we find

2/i
=

l, 2/2 ='9900990, y3
= -9615385,

2/4
= -917431 2, t/8

= -8620690,

2/6
= -8000000, y7

= -7352941,

2/8
= '6711409, y,= -6097561.

J/ii
=

*5, yw= '5524862,

Hence
2/i + 2/n

= 1 '5,

3/ + y6 + 2/7 + ^9 =3-1686577,

ya + 2/4 + 2/6 + 2/8
+

2/io
= 3-9311573.

The formula (11) then gives

J,r
=^ (1-5 + 6-3373154 + 15-7246292)

= 78539815,

* The coefficients for the cases n=3, 4, 5, ... 11, were calculated by Cotes; see
also Bertrand, Calcul Integral, Art. 363.

t Mathematical Dissertations (1743).
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whence, retaining only seven figures,

TT = 3-141593.

This is correct to the last figure.

The formula (1) would have given

r= -78498150, IT = 3-139926,

which is too small by about one part in 2000.

115. Mean Values.

Let ylt ya , yn be the values of a function
<j> (x) corre-

sponding to n equidistant values of x distributed over the range
b a, say to the values of x which mark the middle points of the

n equal intervals (h) into which this range may be subdivided.

The limiting value to which the arithmetic mean

-
(Vi + Vi+ + Vn) (1)

n\t/
* t/ m i/ "' \ J

tends, as n is indefinitely increased, is called the 'mean value* of

the function over the range b a.

Since h = (b a)/n, the expression (1) may be written

Wi h + i/ h + + t1n.h/ A '
tj & '

fj '*

6-0
and the limiting value of this for n - oo

,
h -* 0, is

6

<f> (x) dx

'-,- (2)
o a

In the geometrical representation the mean value is the alti-

tude of the rectangle on base b a whose area is equal to that

included between the curve y = <f> (x), the extreme ordinates, and
the axis of a?. See Fig. 49, p. 210.

The theorem of Art. 91, 3 may now be stated as follows:

The mean value of a continuous function, over any range of the

independent variable, is equal to the value of the function for

some value of the independent variable within the range.

The various formulae of Art. 114 may be interpreted as giving

approximate expressions for the mean value of a function, over

a given range, in terms of a series of values of the function taken
at equidistant intervals covering the range. For example, in

terms of three and of four such values, the mean values, as given

by Cotes' method, are

i (2/i -H 4y2 + yz) and

respectively.
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In applying the conception of a mean value it is essential to have

a clear understanding as to what is the independent variable to which

(in the first instance) equal increments are given. Thus, in the case

of a particle descending with a constant acceleration gt
the mean value

of the velocity in any interval of time ^ from rest is

-
I vdt = -

I gtdt
h Jo h Jo

i.e. it is one-half the final velocity. But if we seek the mean velocity
for equal infinitesimal increments of the space (s), we have, since

i.e. it is two-thirds the final velocity.

Ex. 1. The mean value of sin 6 for equidistant intervals of

ranging from to TT is

"^- = -6366. ..(3)

Hence the mean value of the ordinates of a semicircle of radius a,

drawn through equidistant points of the arc, is '636 60.

If the ordinates had been drawn through equidistant points on the

diameter, the mean value would have been

= $a f cos?6dO = J^a, ......... (4)
J-kir

or -7854a. It is easily seen d priori why this latter mean should be
the greater.

Ex. 2. A disk has the form of a very flat ellipsoid of revolution.

To find the ratio of its mean thickness to the thickness at the centre.

If a be the radius, the ratio of the thickness at a distance r from
the centre to that at the centre is

i-aJ v<5)

The required ratio is therefore

Ex. 3. If the density p of a sphere be a function of the distance r
from the centre, taking as the element of volume
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the mean density is

p = 4?r
I pv*dr -r ^ira*

=
-, I pr*dr, ............... (7)

Jo a Jo

if a be the external radius.

Thus, if p oc r*, the mean density is 3/(n + 3) of the density at the

surface.

Again, assuming that in the Earth

.(8)

we find (9)

where ^ is the density at the surface (r
=

a). If the above law of

density be applicable to the case of the Earth, then since p = 2plt roughly,

we infer that p =
Jft, or the density at the centre is 3J times the density

at the surface.

116. Mean Centres of Geometrical Figures.

The ' mean centre
*

(6r, say) of a system of geometrical points

may be defined as the point whose coordinates are

1, 2() }

n n
(2)

Since these relations are linear, and since transformations of

Cartesian coordinates are effected by linear formulae, it easily
follows that the distance of G from any line is equal to the

arithmetic mean of the distances of the given points from the

line, these distances being taken of course with the proper signs

according as they lie on one side of the line or the other.

There is, in like manner, a mean centre of a plane curve, or of

a plane area, whose distance from any line in the plane is the

mean (in the sense of Art. 115) of the distances of the infinitesimal

elements of the curve, or of the area, from the line.

Thus, for a curve we have

.(3)
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and for an area

[CH. VIII

where $A is an element of area. In the limit the summations
take the form of integrals.

Ex. 1. In the case of a circular arc, if the origin be taken at the

centre, and the axis of x along the medial line, we have y = 0, by
symmetry. Writing x = a cos 0, 8s =

x
1 [*=

7: I a
2aaJ_ a

.,/) sn a
cosvaV =- .a.

a
,

.

(5)

if 2a denote the angle which the whole arc subtends at the centre.

As a increases from an infinitely small value to IT, x decreases from
a to 0. For the semicircle, we have a = TT, and

2

7T

Ex. 2. For the area of a segment of the parabola

y*
= kax (6)

bounded by the double ordinate x h
t
we have

I xydx I x*da
Jo Jo

x

/ ydx \

Jo Jo
x*dx

**

The notion of the mean centre can obviously be extended to

three-dimensional figures, distances from a line being now replaced

by distances from a plane. Thus in the case of a surface, we have

where BS denotes an element of the surface. Similarly, for a

volume,

where SF is an element of volume.

In the case of a surface, or a solid, of revolution the mean centre

is evidently on the axis of symmetry, and if we take this as axis of

#, we have only to calculate the value of x. If y be the ordinate

of the generating curve, we put, in (8), BS = ZTrySs, this being
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(Art. 113) the area of an annular element of surface, whose points
are all at the same distance from the plane x 0. Hence

_ = ^

yds fyds

Similarly, in (9) we put SV= 7ry*Sx, and obtain

jx.iry*dx _fxy*dx f
.

fry'dx
~

Sy*dx
*

Ex. 3. For a zone of a spherical surface, putting

............... (12)

(cos
sin 6dO

f\f\0* rm //%>
. , , COS' a COS

we have x = a
cos a- cos

sin

(13)

if a, /? be the limits of 0, and a^, x^ the abscissae of the bounding circles.

Hence the mean centre of the zone is on the axis, half-way between
the planes of the bounding circles.

For example, the mean centre of a hemispherical surface bisects

the axial radius.

These results might also have been inferred immediately from the

equality of area of corresponding zones on the sphere and on an en-

veloping cylinder (Art. 113, Ex. 1).

Ex. 4. In the case of a solid circular cone, the origin being at the

vertex, the section varies as a?
2
,
so that

/.
-=|A, (14)X =

Jo

if h be the altitude.

Ex. 5. For the segment of an elliptic paraboloid

2aj = ^-+- (15)p $

cut off by a plane x = h, since the section varies as x
t
as in Art. 108,

Ex. 1, we have

x*dx

i =**. (16)

J
xdx

o
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Ex. 6. For a hemisphere of radius a, putting y
z = a2 - xz

,
we have

ra

I x(a* or
2

)
dx

Jo

(a?-x*)dx

(17)

The same formula gives the position of the mean centre of the half

of the ellipsoid

which lies on the positive side of the plane yz, sincef(x) in this case

also varies as a8
x*. See Art. 108, Ex. 2.

117. Theorems of Pappus.

1. If an arc of a
plane curve revolve about an axis in its

plane, not intersecting it, the surface generated is equal to the

length of the arc multiplied by the length of the path of its mean
centre.

Let the axis of x coincide with the axis of rotation, and let y
be the ordinate of the generating curve. The surface generated
in a complete revolution is, by Art. 113, equal to

the integration extending over the arc. But if y refer to the mean
centre of the arc, we have

~
Jds'

by Art. 116. Hence

27rjyds = ^7ry x fds, .....................(1)

which is the theorem.

2. If a plane area revolve about an axis in its plane, not

intersecting it, the volume generated is equal to the area multiplied

by the length of the path of its mean centre.

If BA be an element of the area, the volume generated in a

complete revolution is

But if y refer to the centre of mass of the area, we have
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by Art. 116. Hence

Hm2(27ry.SA) = 27ryx\im2(SA), ............(2)

which is the theorem *.

The revolutions have been taken to be complete, but the

restriction is obviously unessential.

The theorems may be used, conversely, to find the mean centre

of a plane arc, or of a plane area, when the surface, or the volume,

generated by its revolution is known independently. See Ex. 3,

below.

Ex. 1. The ring generated by the revolution of a circle of radius b

about a line in its own plane at a distance a from its centre.

The surface is 2irb x 2ira, = ^ab ;

and the volume is irb* x 27ra, = 27r
2a6a.

Cf. Art. 107, Ex. 3, and Art. 113, Ex. 2.

Ex. 2. A segment of the parabola y
2 = 4aa?, bounded by the double

ordinate x = h, revolves about this ordinate.

If 2k be the length of the double ordinate, the area of the segment
is hk, by Art. 100

;
and the distance of its mean centre from the ordi-

nate is %h, by Art. 116, Ex. 2. Hence the volume generated is

Ex. 3. For a semicircular arc revolving about the diameter joining
its extremities, we have

ira x 2iry
= 47raa,

2
whence y = a.

TT

Again, for a semicircular area revolving about its bounding diameter,

Tfira?
x 2iry

= ?ra
8
,

4
whence y = ^=a.

O7T

A similar calculation leads to a simple formula for the volume
of a prism or a cylinder (of any form of cross-section) bounded by
plane ends.

In the first place we will suppose that one of the ends, which
we will call the base, is perpendicular to the length. Let P be

any point of the base, and let z be the length of the ordinate PP'

* These theorems are contained in a treatise on Mechanics by Pappus, who
flourished at Alexandria about A.D. 300. They were given as new by Guldinus,
de centra gravitatis (1635 1642). (Ball, History of Mathematics.)
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drawn parallel to the length, to meet the opposite end in P', and
let z be the ordinate of the centre of the oblique end. If &A,
be corresponding elements of area at P and P', we have

.SA')

since 8A, being the orthogonal projection of 8A', is in a constant
ratio to it. Hence the volume of the solid

(3)

that is, it is equal to the area of the base multiplied by the ordinate

of the mean centre of the opposite face. It is easily seen that this

is the same as the ordinate drawn through the mean centre of the

base.

A prism or a cylinder with both ends oblique may be regarded
as the sum or as the difference of two prisms or cylinders each

having one end perpendicular to the length. We infer that in all

cases the volume is equal to the area of the cross-section multiplied
by the distance between the mean centres of the two ends.

Ex. 4. The volume of the wedge-shaped solid cut off from a right
circular cylinder by a plane through the centre of the base, making an

angle a with the plane of the base, is

\itaP x a tan a = a8 tan a ;

cf. Art. 118, Ex. 1.

The theorems of Pappus may be generalized in various ways ;

but it may be sufficient here to state the following extension of the

second theorem.

If a plane area, constant or continuously variable, move about
in any manner in space, but so that consecutive positions of the

plane do not intersect within the area, the volume generated is

equal to

..............................(4)

where 5 is the area, and da- is the projection of an element of the

locus of the mean centre of the area on the normal to the plane. If

ds denote an element of this locus, and 6 the angle between ds and
the normal to the plane, the formula may also be written

fScosdds............................(5)

This theorem is the three-dimensional analogue of the pro-

position of Art. 103, relating to the area swept over by a moving
line. It is a simple corollary from the theorem above proved.
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118. Multiple Integrals.

This book deals mainly with functions of a single variable, and

therefore, as regards the Integral Calculus, with problems which

depend, or can be made to depend, upon a single integration.

Multiple integrals occur however so frequently, as a matter of

notation, in the physical applications of the subject, that it may
be useful to give here a few explanations concerning them. We
shall pass very lightly over theoretical points ; what is wanting in

this respect may be supplied by a proper adaptation of the method
of Art. 90.

Let z be a continuous and single-valued function of the inde-

pendent variables xt y ; say
z = $(x,y) (1)

This may be interpreted, geometrically, as the equation of a surface

(Art. 34). Take any finite region 8 in the plane xy, and let a

cylindrical surface be generated by a straight line which meets

always the perimeter of S, and is parallel to the axis of z. We
consider the volume ( V) included between this cylinder, the plane
xy, and the surface (1). See Fig. 68.

Fig. 68.

If the region S be divided into elements* of area SA lt SA t ,

,, ..., and if glt z2 ,
zs , ... be ordinates of the surface (1) at

arbitrarily chosen points within these elements, then, the coordinate
axes being supposed rectangular, the sum

<- (2)
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will give us the total volume of a system of prisms, of altitudes

z\> ^a> 2s> , standing on the bases SA l} SA 2> &A 3 , .... And if the

function
<f> (a?, y) be subject to certain generally satisfied con-

ditions*, the above sum will, when the dimensions of BA lt SA Z ,

SA 3 , ... are taken infinitely small, tend to a unique limiting value,
viz. the aforesaid volume V.

If the subdivision of the region $ be made by lines drawn

parallel to the axes of a? and y, the elements BA lf 8A 9 ,
8AS , ... are

rectangular areas of the type So; By, and the sum (2) may be denoted

by
22*8a% ........................... (3)

where the sign 2 is duplicated because the summation is in two
dimensions. The limiting value of this sum is denoted by

\\zdxdy, ...........................(4)
and we have the formula

(5)

The expression on the right hand is called a '

double integral
'

;
it

is of course not determinate unless the range of the variables

x, y, as limited by the boundary of S, be specified.

The volume V may, however, be obtained in another way. If

f(x) denote the area of a section by a plane parallel to yz, whose
abscissa is x, we have, by Art. 106,

where a, b are the extreme values of x belonging to the area S.

But, by Art. 100,

(7)

where a, /3 are the extreme values of y in the section f(x), and are

therefore in general functions of x. Hence we have

or, as it is more usually written,

(9)f

* The already stipulated condition of continuity is sufficient, but the proof is

simplified if we introduce the additional condition that (x, y) shall have only
a finite number of maxima and minima within any finite area of the plane xij.

Cf. Art. 90.

f The first
j
refers to the dx, and the second to the dy. There is not absolute

uniformity of usage, however, on this point.
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If the limits of both integrations be constants, i.e. if the region
S take the form of a rectangle having its sides parallel to x and y,

the volume V is expressed also by

t y)dx\dy, (10)
a (Ja )

and we may assert that

rb rp rp rb

<f>(x,y)dxdy
= (f>(x,y)dydx (11)

J a J * J a J a

This is illustrated by Fig. 23, p. 63. In other cases the limits

of the respective integrations require to be adjusted when we invert

the order.

The above explanations have been clothed in a geometrical
form, but this is not of the essence of the matter. The same

principles are involved, for example, in the calculation of the mass
of a plane lamina, having given the density at any point (x, y) of

it, and in many other physical problems.

Another mode of decomposition of the area S is often useful.

Taking polar coordinates r, 6 in the plane xy, we may divide the

area into quasi-rectangular elements by means of concentric circles

and radii. The area of any one of these elements may be denoted

by r$0 . 8r, if r be the arithmetic mean of the radii of the two
curved sides. The formula (8) is then replaced by

V=ffzrd0dr (12)

where z is supposed given as a function of r and 6.

After what precedes, the meaning of a '

triple-integral,'

will not require much development. If a finite region R be divided

into rectangular elements SxSySz by planes parallel to the coordi-

nate axes, and if we multiply the volume of each of these elements

by the value of the function
<f> (x, y, z) at some arbitrarily chosen

point of it, the expression (13) is used to denote the limiting value

to which (under certain conditions) the sum of the products tends
when the dimensions of the elements are infinitely small. The same

limiting value may be obtained by a succession of three simple
integrations, thus

NjT (14)

where the integration is with respect to z between the limits a and

b, which are in general functions of x and y, then with respect to
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y between the limits a and /3, which are in general functions of x,
and finally with respect to so between the limits a and 6. If the
limits of integration be all constants, they are unchanged when the
order of integration is varied.

As an example, consider the determination of the mass of a

solid, whose density is a function of #, yy
z.

Ex. 1. To find the volume of the wedge included between the plane
z = 0, the cylinder

tf + y* = a?, (15)

and the part of the plane z = tan a for which z is positive.

ft ra /VCa8-^)
We have I \zdxdy = tan a / I xdxdy (16)

JJ h y-N/crf-*8
)

The integration with respect to y gives

We then have

~W(<*a -

y
L J-V(o"

The required volume is therefore

fa
8 tana. ........................... (17)

Ex. 2. To find the volume included within the sphere

aa + y
2 + 8 = a2

,
........................ (18)

by the cylinder x* + y*
= ax............................(19)

(The cylinder has a radius half that of the sphere, and its axis bisects

at right angles a radius of the sphere.)

If we introduce polar coordinates in the plane xyt
the equation (19)

takes the form
r = acos0, ........................... (20)

and (18) gives 2 = V(
a -r2

)............................(21)

The required volume is therefore given by

rbir racosO r^ir racostf

2( m&dr-il I >J(a*-r*)rdOdr. ...(22)
J-brJO JO JO

Now
acosO r nacosfl

=$a*(I
-

sin'0),

r

I
Joo L JO

and (^(l-sm'^^TT-f.

The final result is f 7ra
3-a3

............................... (23)
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EXAMPLES*. XXXVI.

(Areas.)

1. If a curve be such that

y
m

oc xn
,

the rectangle enclosed between the coordinate axes and lines drawn

parallel to them through any point on the curve is divided by the

curve into two portions whose areas are as m : n.

2. The area included between the axis of x and one semi-undulation
of the curve

y = b sin x/a
is 2a6.

3. The area included between the catenary

y = c cosh x/c,
\.

the axis of x, and the lines x = 0, x = xlt is

c
2 sinh xjc.

4. The curve a?y = x*(x + a)

includes, with the axis of x, an area T\a
2

.

5. The areas included between the axis of x and successive semi-
undulations of the curve

y = 6-* sin fix

form a descending geometric series, the common ratio being e~n^.

6. The area included between the axis of x and the parabola

cy = (x- a) (x 6)

7. Find the area included between the two curves

2y*-3y=x-I, y*-2y = x-3.
[*.]

8. Find the area included between the two parabolas

9. Find the area of the segment of the parabola

y = xz -7x + 9

cut off by the straight line

y=3-2*. [JJ

10. The area included between the two parabolas

2/
2 = 4a (x + a), y

2 = 46 (b x)

is | (a + b) J(ab).

* Some further Examples for practice will be found at the end of the Chapter (rr)
on '

Special Curves.'

L. I. c. 18
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11. Prove that the whole area (when finite) included between the

axis of x and the curve

is independent of the value of a.

12. The area included between the positive branch of the curve

y = b tanh x/a,

its asymptote, and the axis of y, is ab log 2. (See Fig. 26, p. 81.)

13. The area common to the two ellipses

is 4ab tan" 1
b/a.

14. The area included between the coordinate axes and the

parabola

is \db sin w, where w is the inclination of the axes.

[Put x = a sin4
0, y=b cos4

0.]

15. The area between the parabola

2cy = x
9 + a*

and the two tangents drawn to it from the origin is ^a
3
/c,

16. The area common to the two parabolas

is a

17. Prove by integration that the area of an ellipse is

?ra/? sin CD,

where a, /? are the lengths of any pair of conjugate semi-diameters, and
<o is the angle between these.

18. The formula (Art. 80 (2)) for integration by parts may be

written

fudv = uv fvdu y

interpret this geometrically in terms of areas.

19. A curve AB is traced on a lamina which turns in its own plane
about a fixed point through an angle 6. Prove that the area swept
over by the curve is

20. Trace the curve

r = 3 + 2 cos 0,

and find its area.
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21. Find the area of that portion of the curve

r=2a(l +cos0)

which lies outside the parabola

,. -.
1 + cos

22. Prove by transformation to polar coordinates that the area of

the ellipse

is ir/J(AB
-

IP).

23. A weightless string of length /, attached to a fixed point 0,

passes through a small ring which can slide along a horizontal rod AB
in the same vertical plane with 0, and the lower portion hang8 ver-

tically, carrying a small weight P. Find the locus of P, and prove
that the area between this locus and AB is

where h is the depth of AB below 0.

24. Prove directly from geometrical considerations that the area

included between two focal radii of a parabola and the curve is half

that included between the curve, the corresponding perpendiculars on
the directrix, and the directrix.

25. What is indicated by the record of the wheel in Amsler's

Planimeter when the bar PQ (Fig. 59) makes a complete revolution

whilst the point Q traces out the closed curve ?

26. In a certain form of planimeter the arm carrying the tracing

point is pivoted at the other end on a vertical axis carried by a small

waggon which can roll (without slipping) backwards and forwards over

the paper, and has a recording wheel attached to it, to measure the

rolling. Prove that when the tracing point describes a closed curve,
the record gives the area, on a certain scale.

27. If SA , SB ,
S be the areas of the closed curves described by

three points A, B, G on a bar which moves in one plane, and returns to

its original position without performing a complete revolution, prove
that

fin Q A. n A <a _L A /? <? nJj\j , iJA T L/xi. . >JB + -/!> . O0 = U,

where the lines BC, OA
y
AB have signs attributed to them according to

their directions, and the signs of SAt SB1 S are determined by the rule

of Art. 101.

28. If P be a point on a bar A B which moves in one plane, and
returns to its original position after accomplishing one revolution,

prove that

aSB + bS
Sf = r-e a + b

182
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where a = AP, b =PB t
and the meanings of SA ,

SB ,
SP are as in the

preceding question.

Hence shew that if the extremities A
t
B of the bar move on a

closed oval curve

SA-SP = Trab. (Holditch.)

29. If a straight line AB of constant length move with its

extremities on two fixed intersecting straight lines, any point P on it

describes an ellipse of area TT . AP PB.

EXAMPLES*. XXXVII.

(Volumes.)

1. The volume generated by the revolution of one semi-undulation

of the curve

y = b sin x/a

about the axis of x is one-half that of the circumscribing cylinder.

2. The volume of a frustum of any cone, with parallel ends, is

where A 19 A9 are the areas of the two ends, and h is the perpendicular
distance between them.

3. In the solid generated by the revolution of the rectangular

hyperbola
a? - y* = a*

about the axis of #, the volume of a segment of height a, measured from
the vertex, is equal to that of a sphere of radius a.

4. The volume of a segment of a sphere bounded by two parallel

planes at a distance h apart exceeds that of a cylinder of height h and
sectional area equal to the arithmetic mean of the areas of the plane
ends, by the volume of a sphere of diameter h.

5. A plane is drawn parallel to the base of a hemisphere of radius

a at a distance 2a sin 10 from the base. Prove that it bisects the

volume of the hemisphere.

6. The portion of a solid sphere of radius a which is included

within a spherical surface of radius b (< 2a), having its centre on the

surface of the sphere, is removed. Prove that the volume of the cavity
is less than that of a hemisphere of radius b by ^7rb*/a.

7. The volume generated by the revolution about the axis of x of

the area included between that axis and the parabola

cy = (x a) (x b)

is ^ (a -&)/<*
-

-

* See the footnote on p. 273.
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8. If a segment of a parabola revolve about the ordinate, the

volume generated is ^ of that of the circumscribing cylinder.

9. The volume of the solid generated by the revolution of a para-
bola about the tangent at the vertex is that of the circumscribing

cylinder.

10. The segment of the parabola ?/* = 4ax which is cut off by the

latus-rectum revolves about the directrix. Prove that the volume of

the annular solid generated is l^-7ra*.

11. The sement cut off from the curve

by the chord x = h revolves about the axis of x. Prove that the volume

generated is one-fourth that of a cylinder of height h on the same base.

12. The volume of a frustum of a triangular prism cut off by any
two planes is

where hlt h3 ,
h3 are the lengths of the three parallel edges, and A is the

area of the section perpendicular to these edges.

13. If b be the radius of the middle section of a cask, and a the

radius of either end, prove that the volume of the cask is

where h is the length, it being assumed that the generating curve is an
arc of a parabola.

14. An arc of a circle revolves about its chord ; prove that the

volume of the solid generated is

^Tra
3 sin a + ira

3 sin a cos2 a 2ira3 a cos a,

where a is the radius, and 2a is the angular measure of the arc.

15. The figure bounded by a quadrant of a circle of radius a, and
the tangents at its extremities, revolves about one of these tangents;

prove that the volume of the solid thus generated is

/5 ir\ ,

(3-2)'
16. The volume enclosed by two right circular cylinders of equal

radius a, whose axes intersect at right angles, is - 3
.

If the axes intersect at an angle a, the volume is -a3 cosec a.

17. If the hyperbola

-0 75
= 1

a* cr

revolve about the axis of x, the volume included between the surface

thus generated, the cone generated by the asymptotes, and two planes

perpendicular to a;, at a distance h apart, is equal to that of a circular

cylinder of height h and radius b.
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18. A right circular cone of semi-angle a has its vertex on the

surface of a sphere of radius a, and its axis passes through the centre.

Prove that the volume of the portion of the sphere which is exterior to

the cone is ^TTO? cos4
a.

19. If in Simpson's method (Art. 109) of estimating the volume
included between two parallel sections Sit S8 the intermediate section S2

is at unequal distances h, k from S19 #8 , respectively, the formula is

EXAMPLES*. XXXVIII.

(Curved Lines and Surfaces.)

1. The length of a complete undulation of the curve of sines

y = b sin x/a

is equal to the perimeter of an ellipse whose semi-axes are ^/(a* + 6a

)

and a.

2. Prove the following formula for the length of the perpendicular

(p) from the origin on any tangent to a curve :

dy dx
p = x d.- y Ts-

Also prove that the orthogonal projection of the radius vector on

the tangent is

dx dy dr

da * ds ds'

3. The surface generated by the revolution about the directrix of

an arc of the catenary

y c cosh x/c,

commencing at the vertex, is

TT (ex + ys\ -

where x, y, 8 refer to the extremity of the arc.

4. The curved surface cut off from a paraboloid of revolution by a

plane perpendicular to the axis is

where h is the length of the axis, and b the radius of the bounding
circle.

5. The curved surface generated by the revolution about the axis

of x of the portion of the parabola y
3 = 4ox included between the origin

and the ordinate x = 3a is -^-Tra
2
.

* See the footnote on p. 273.
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6. The segment of a parabola included between the vertex and the

latus-rectum revolves about the axis
; prove that the curved surface of

the figure generated is 1-219 times the area of its base.

7. A circular arc revolves about its chord
; prove that the surface

generated is

47ra2 (sin a a cos a),

where a is the radius, and 2a the angular measure of the arc.

8. A quadrant of a circle of radius a revolves about the tangent at

one extremity ; prove that the area of the curved surface generated is

7r(ir-2)a
a
.

9. A variable sphere of radius r is described with its centre on the

surface of a fixed sphere of radius a
; prove that the area of its surface

intercepted by the fixed sphere is a maximum when r = ^ a.

10. A tangent cone is drawn to a sphere, and with the vertex of

the cone as centre two spherical surfaces are described cutting both the

sphere and the cone. Prove that the areas of the zones intercepted on
the sphere and on the cone are equal.

EXAMPLES. XXXIX.

(Approximate Quadrature. Mean Values.)

1. Apply Simpson's rule to calculate loge 2 from the formula

dx

[The correct value is loge 2 = -693147....]

2. Calculate the value of TT from the formula

dx

3. If in Simpson's method with three ordinates (Art. 114) the

middle ordinate j/2
is a^ unequal distances h, k from y1? ys , respectively,

the formula is

(h + A) (yx + 4ya + yt)
+ J (A

1-*

4. The mean of the squares on the diameters of an ellipse, drawn
at equal angular intervals, is equal to the rectangle contained by the

major and minor axes.

5. A point is taken at random on a straight line of length a ; prove
that the mean area of the rectangle contained by the two segments is

J a
2
,
and that the mean value of the sum of the squares on the two seg-

ments is {-a*.
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6. If a point move with constant acceleration, the mean square of

the velocities at equal infinitely small intervals of time is equal to

where v
,
vl are the initial and final velocities.

7. Prove that in simple-harmonic motion the mean kinetic energy
is one-half the maximum kinetic energy.

8. The mean horizontal range of a particle projected with given

velocity, but arbitrary elevation, is *6366 of the maximum range.

9. The mean of the focal radii of an ellipse, drawn at equal

angular intervals, is equal to the semi-minor axis.

10. The mean distance of points on the curved surface of a hemi-

sphere from the plane of the base is one-half the radius.

11. The mean distance of points of a hemispherical surface of

radius a from the pole of the hemisphere is -9429a.

12. Find the mean values of the reciprocals of the distances of the

points of a circular area of radius a from the centre, and from a point
of the circumference. [2/a, 4/wa.]

13. A rod has the form of a very elongate prolate ellipsoid of

revolution, prove that its mean sectional area is two-thirds that at the
centre.

14. The surface-density on an electrified circular disk of radius a

varies as (a
2

**)"* where r denotes distance from the centre. Find
the ratio of the average density to the density at the centre.

15. If the orbits of comets were uniformly distributed through
space, their mean inclination to the ecliptic would be equal to the

radian (57-296).

16. The mean distance of the points of a spherical surface of radius

a from a point P at a distance c from the centre is

- or

according as P is external or internal.

17. The mean distance of points on the circumference of a circle of

radius a from a fixed point on the circumference is l*273a.

18. The mean distance of points within a circular area of radius a
from a fixed point on the circumference is 1*1 3'2a.

19. The mean distance of points within a sphere from a given

point on the surface is %a.
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20. If the density at a distance r from the centre of the Earth be

given by the formula
sin kr

* =*-&-'
where A; is a constant, prove that the mean density is

sin ka ka cos ka
po

~ ~

a denoting the Earth's radius.

21. If, in a spherical mass whose density p is a function of the

distance (r) from the centre, D denote the mean density of the matter

included within a concentric sphere of radius r, then

dD

EXAMPLES. XL.

(Mean Centres.)

1. Prove by integration that the mean centre of a trapezium
divides the line joining the middle points of the parallel sides in the

ratio 2a + b : a + 26, where a, b are the lengths of the parallel sides.

2. The mean centre of the area included between one semi-

undulation of the curve

y = b sin x/a

and the axis of x is at a distance ^Trb from this axis.

3. The mean centre of the area included between the curve

a8

and the axis of x is at the point (0, ^a).

4. Prove that the mean centre of the area of the circular spandril
formed by a quadrant of a circle and the tangents at its extremities is

at a distance '2234a from either tangent, a being the radius.

5. The mean centre of the area included between the coordinate

axes and the parabola

'*(!)'-'
is at the point (a, ^b). [Put x = a sin4 0, y = b cos4

6.]

6. The distances from the centre of a sphere of radius a of the

mean centres of the two segments into which it is divided by a plane at

a distance c from the centre of figure are

3 (a c)
a

4 2a + c
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7. The figure formed by a quadrant of a circle of radius a and the

tangents at its extremities revolves about one of these tangents ; prove
that the distance of the mean centre of the solid thus generated from
the vertex is *869#.

8. A solid ogival shot has the form produced by rotating a portion
APN of a parabolic area, where A is the vertex, and PN an ordinate,
about PN ; prove that the mean centre divides the axis in the ratio

5:11.

9. AP is an arc of a parabola beginning at the vertex, and PN is

a perpendicular on the tangent at the vertex; prove that the mean
centre of the solid generated by the revolution of the figure APN about
A N is at a distance from A equal to

|-
AN.

10. The mean centre of the volume included between two equal
circular cylinders, whose axes meet at right angles, and the plane of

these axes, is at a distance from this plane equal to of the common
radius.

11. A quadrant of a circle revolves about the tangent at one

extremity ; prove that the distance of the mean centre of the curved
surface generated, from the vertex, is *876a.

12. The mean centre of either half of the surface of an anchor-

ring cut off by the equatorial plane is at a distance 26/Tr from this

plane, where b is the radius of the generating circle.

13. The mean centre of either half of the volume of an anchor-

ring cut off by the equatorial plane is at a distance 46/3?r from the

plane, where b is the radius of the generating circle.

v? Vs

14. If the ellipse -, + ^ = 1
a o

revolve about the axis of x, the mean centre of the curved surface

generated by either of the two halves into which the curve is divided

by the axis of y is at a distance

2 a2 + ab + 6* a

3 a + b
'

b + a (sin-
1

e)/e

from the centre, where e is the eccentricity, it being supposed that

b <a.

Obtain the corresponding result when b > a.

15. Apply the theorems of Pappus to
F

find the volume and the

curved surface of a right circular cone, and of a frustum of such a cone.

16. A groove of semicircular section, of radius b, is cut round a

cylinder of radius a
; prove that the volume removed is

w*o& -*&.
Also that the surface of the roove is
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17. A screw-thread of rectangular section is cut on a cylinder of

radius R. Prove that the volume of one turn of the thread is

%irdbR + nab*, where a, b are the sides of the rectangle, a being that side

which is at right angles to the surface of the cylinder.

18. If a straight line be drawn through the mean centre of the

perimeter of a closed curve, the surfaces generated by the revolution

about this line of the two portions into which the perimeter is divided

will be equal.

19. If an area A, revolving about the axes of x and y, generates
volumes U and F, respectively, find the area generated when it revolves

about the line

x cos a + y sin a=p9

assuming that this line does not cut the area.

EXAMPLES. XLI.

(Multiple Integrals.)

1. Find the values of the integrals

II
'iff + /) dxdy, lU(l

-
J
-

fl)
<*<&,

taken over the area of the ellipse

>v2 a/8

2.+ 8..1.
a9 6a

2. Prove that the volume enclosed by the cylinders

y? + y
2 = 2ax, z* - 2ax

: 128 8~~

3. A sphere of radius 2a is described with its centre on the

surface of a cylinder of radius a
; prove that the area of that portion of

the surface of the cylinder which is within the sphere is 16a8
.

4. The volume included between the elliptic paraboloid

P <1

the cylinder y? + y
2 = a2

,
and the plane z = 0, is

Spq



CHAPTER IX

SPECIAL CURVES

119. Algebraic Curves with an Axis of Symmetry.

The method of tracing algebraic curves of the type

y -/(), (i)

where f(x) is a rational function, including the determination of

asymptotes, maximum and minimum ordinates, and points of in-

flexion, has been illustrated in various parts of this book; see

Arts. 13, 14, 51, 67.

The study of algebraic curves in general is beyond our limits,

but a little space may be devoted to the discussion of curves of the

type

y
a=/W (2)

Two points of novelty here present themselves. Since the equation

gives two equal, but oppositely-signed, values of y for every value

of x, the curve will be symmetrical with respect to the axis of x\
also since y* must be positive, there can be no real part of the curve

within those ranges of as (if any) for which /(#) is negative.

Thus if/(#) contain a simple factor x xly so that the equation
is of the form

(3)

the right-hand member will change sign as x passes through the

value #!. Hence on one side of the point (xlt 0) the ordinate is

imaginary.

Also, we have, at this point,

%Y _(%V f = ft (*)

\8xJ (x ajj)
2 x #!

and therefore, dyjdx = oo . The tangent is therefore perpendicular
to Ox.

If, on the other hand, f(x) contain a double factor, say

, (4)
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the right-hand side does not change sign as x passes through the

value a?j. Hence the ordinate is real on both sides of the point

(a?!, 0), or imaginary on both sides. In the former case we have

two branches of the curve intersecting at an
angle

and forming
what is called a 'node'; in the latter case (xl} 0) is an isolated or
'

conjugate
'

point on the locus. The directions of the tangent-
lines at the node are given by

contain a triple factor, say

the right-hand side changes sign at the point (xlf 0); the curve is

therefore imaginary on one side of this point. Also since dyfdx
here = 0, the curve touches the axis of x.

We proceed to some examples, beginning with cases where

f(x) is integral as well as rational.

Ex. 1. In the cases where f(x) is of the first or second degree, say

y*
= Ax + B, y*

= Ax* + x+C, .................. (6)

the curve is a conic having the axis of # as a principal axis.

Ex. 2. The cubic curves

y
z = Ax* + x* + Cx + D ..................... (7)

include some interesting varieties.

(a) If the linear factors of the right-hand side be real and distinct,

we may write

ay* = (x-a)(x-p)(x-y), ..................... (8)

and there is no loss of generality in supposing that a is positive and
a < J3 < y.

The ordinates are then imaginary for x < a, and for ft<x<y.
Between (a, 0) and

(/?, 0) there is a maximum value of y*. The curve

consists therefore of a closed oval, and of an infinite branch. For large
values of x we have

a a \ x\ x\ x

so that the curve tends to become more and more nearly perpendicular
to the axis of x.

(b) If the expression on the right-hand of (7) has only one real

factor, we may write

ay* = (x a)(x*+px + q)t ..................... (9)

where p* < q. The curve then only meets the axis of x once.
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(c) The transition from the form (8) to the form (9) may be imagined
to take place in two ways. In the first way, the intermediate critical

case is marked by the coalescence of the two greater of the quantities

a, /?, y, so that

ay*=(x-a)(x-py (10)

Here y is imaginary for x < a, and real for x > a, but vanishes for x = /?.

The point (/?, 0) is here a node ; it may be regarded as due to the union

of the oval in the former case with the infinite branch.

(d) If, however, the two smaller of the quantities a, /?, y coalesce,

so that

ay* = (x-a?(x-y\ (11)

y will be imaginary for x < y, except for x = a, when it vanishes. The

point (a, 0) is therefore an isolated point ;
it may be regarded as due to

the evanescence of the oval in the first case.

Y1

Fig. 69.

All these cases are illustrated in Fig. 69. Beginning on the right
we have a curve of the type (9), consisting of a single infinite branch.



119] 287

Next to it comes the case of an infinite branch associated with an isolated

point (at 0), the equation being of the type (11). Next in order comes
an infinite branch, and with it an oval surrounding the point ;

the

equation is now of the type (8). In the next stage, the oval and the

infinite branch have united to form a node with a loop, the correspond-

ing type of equation being (10). Finally, we have a single branch

passing outside the loop in the last case
;
the equation is again of the

type (9)*.

(e) In the very special case where all three quantities a, /3, y, in (8),

coincide, so that

ay*=(x-ay, (12)

the curve is known as the 'semi-cubical parabola.' It has a 'cusp' at

(a, 0) ;
this may be regarded as an extreme form of a node, due to the

evanescence of the loop. See Fig. 70, where a = 0.

Fig. 70.

If, in the equation (2), f(x) be rational but not integral, the

real roots (if any) of the denominator will give asymptotes parallel
to y, provided that, for values of x differing infinitely little from
these roots, ?/

a be positive.

* The curves in the figure have been traced from the equation

where C= -2, 0, 2, 4, 6. The relation between them is most easily conceived by
regarding them as successive contour-lines of a surface (Art. 34), as in the neighbour-
hood of a pinnacle on a mountain side.
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Ex. 3.
a-

x- a

x .(13)

The axis of y is an asymptote. Also, for large values of x we have

y = + a, nearly. There is no real part of the curve between x = Q and
x = a. See Fig. 71.

Fig. 71. Fig. 72.

a2 x .(14)

Here y is imaginary for x negative, and for x > a. See Pig. 72. The
curve is known as the ' witch '

of Agnesi.

Ex. 5.
t
a + x

b x' .(15)

There is a node at the origin, and the curve cuts the axis of x again at

( a, 0). For x> b, and x < a, y is imaginary. The line x = b is an

asymptote. See Fig. 73.

Ex.6. v2 =
-r H6)
b x ^ '

This is obtained by putting a = in (15). The loop now shrinks into a

cusp ; see Fig. 74. The curve is known as the 'cissoid/
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Fig. 73.

Fig. 75.

Fig. 74.

i. c. 19



290 INFINITESIMAL CALCULUS [CH. IX

x
Ex. 7. y^^. (17)

Since y is imaginary for a > x > a, except for x = 0, the origin is an
isolated point. To find the oblique asymptotes we have

Hence the lines y = (x + a) ...........................(19)

are asymptotes. See Fig. 75.

120. Transcendental Curves; Catenary, Tractrix.

We proceed to the discussion of some important curves, mainly
transcendental, which are most conveniently denned by equations
of the type already referred to in Art. 61, viz.

-$(0, y-x(0, .....................(1)

where t is a variable parameter.

The '

catenary
'

is the curve in which a uniform chain hangs
freely under gravity. It appears from elementary statical prin-

ciples that if s be the arc of the curve measured from the lowest

point (A) up to any point P, and >|r
the inclination to the horizontal

of the tangent at P, then

r, ........................... (2)

where a is a constant. Hence if xt y be horizontal and vertical

coordinates, we have

dx dx ds
j-r

= j- -T-J-
= cos -ur . a sec' w = a sec -ur.

dty ds d-fr
I ......(3)

dy dy ds

ry
=
-f -T-T = sin y . a sec2y = a tan

-\Jr
sec

tj

Integrating, we find

..........(4)

The omission of the additive constants merely amounts to a special
choice of the origin, which was so far undetermined. Since the
formulae (4) make x = 0, y = a for ^ = 0, it appears that the origin
is at a distance a vertically beneath A.
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From (4) the Cartesian equation can be deduced without diffi-

culty. We have

x- = log tan (J TT + i^) = log (sec^ + tan

whence sec ty + tan ijr
=

and therefore sec
ijr

tan

Hence, by addition and subtraction,

= *, \

= e~xla. f

x
y = a sec ilr = a cosh -

a

8 = a tan -vjr
= a sinh -

.

a

O T N

Fig. 76.

.(5)

.(6)

Some further properties follow easily from a figure. If PN be
the ordinate, PT the tangent,PG the normal, NZ the perpendicular
from the foot of the ordinate on the tangent, we have

NZ = y cos
i/r
= a, P^= a tan ^r s.

Since P^ is equal to the arc of the catenary, it is easily seen that
the consecutive position of Z is in ZN"; in other words, ZN\& a tangent

192
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to the locus of Z. Hence this locus possesses the property that its

tangent ZN\s> of constant length. The curve thus characterized is called

the 'tractrix,' from the fact that it is the path of a heavy particle

dragged along a rough horizontal plane by a string, the other end
of which is made to describe a straight line (03C).

X' ON
Fig. 77.

The curve has a cusp at A, and the axis of x is an asymptote.

Many properties of the tractrix follow immediately from the constancy

(in length) of the tangent. For example, since two consecutive tangents
make an angle fy with one another, the area swept over by the tangent
is given by

taken between the proper limits. The whole area between the curve
and its asymptote is thus found to be ^Tra

2
.

121. Lissajous' Carves.

These curves, which are of importance in Acoustics, result from
the composition of two simple-harmonic motions in perpendicular
directions. They may therefore be represented by

x a cos (nt 4- e), y = 6 cos (n't + e
f

), (1)

and it is further obvious that we may give any convenient value
to one of the quantities e, e', since this amounts merely to a special
choice of the origin of t.

When the periods 27r/w, 2-Tr/n' are commensurable, we can by
elimination of t obtain^the relation between x and y in an algebraic
form.

Ex. 1. In the case ri = n, we may write

x a cos (nt + e), y = bcosnt, (2)

whence j- cos = sin nt sin
, f sin e = cos nt sin c.

a o o

Squaring, and adding, we find

ab
cos e + r= = sin8 e. .(3)
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This represents an ellipse. In the special case of c = or e =
IT, the

ellipse degenerates into a straight line

-
a b <*)

If the equality of periods be not quite exact, the figure described

may be regarded as an ellipse which gradually changes its form owing
to a continuous variation of the relative phase (e) of the two component
motions.

Fig. 78.

When the ellipse (3) is referred to its principal axes, the coordinates
of the moving point take the forms

x = a cos (nt + e), y = bsm(nt + ) (5)

We identify nt + with the * eccentric angle'; and since this increases

uniformly with the time it appears that the point (x, y) moves like the

orthogonal projection of a point describing a circle of radius a with a
constant velocity na. Since in the transition from the circle to the

ellipse any infinitely small chord is altered in the same ratio as the radius

parallel to it, we see that in the elliptic motion the velocity at any point
P will be n . CD, where CD is the semi-diameter conjugate to CP

t
C being

the centre.

The type of motion here considered is called '

elliptic harmonic.'

Ex. 2. If n' = 2n, we may write

x = acosnt, y = b cos (2,nt + e) (6)

Here y goes through its period twice as fast as x, and the point (0,
- b cos e)

is passed through twice as nt increases by 2w. The curve therefore con-
sists in general of two loops.
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For e = + JTT, the curve is symmetrical with respect to both axes, the

algebraic equation being
2 m'

When e = 0, or IT, the curve degenerates into an arc of a parabola, viz.

When the relation of the periods is not quite exact the curve oscillates

between these two parabolic arcs as extreme forms*.

122. The Cycloid.
The 'cycloid' is the curve traced by a point on the circumference

of a circle which rolls in contact with a fixed straight line. It

evidently consists of an endless succession of exactly congruent
portions, each of which represents a complete revolution of the

circle. The points (such as A in the figure) where the curve is

furthest from the fixed straight line or 'base' (BD) are called

'vertices'; the points (D) half-way between successive vertices,

where the curve meets the base, are the '

cusps.' A line (AB)
through a vertex and perpendicular to the base is called an '

axis
'

of the curve. It is evidently a line of symmetry.

y

Fig. 79.

* A method of constructing Lissajous' curves is indicated in Fig. 78,' where the

vertical and horizontal lines, being drawn through equidistant points on the respec-
tive auxiliary circles, mark out equal intervals of time.

There are numerous optical and mechanical contrivances for producing the

curves. For a description of these, and for specimens of the curves described, we
must refer to books on experimental Acoustics.
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It is convenient to employ the circle described on an axis AB
as diameter as a circle of reference. Let IPT be any other position
of the rolling circle, / the point of contact with the base, the

centre, T the opposite extremity of the diameter through /, and
let P be the position of the tracing-point. Draw PMN parallel
to the base, meeting TI and AB in M and N respectively, and the

circle of reference in Q. If AT, AB be taken as axes of x and y,

the coordinates of P will be

x = NP = BI + MP, y = AN=CT-CM.
Let a be the radius of the rolling circle, and the angle (PCT)
through which it turns as the tracing point travels from A to P.

We have, then, BI ad, PM a sin 0, CM = a cos 0, and therefore

x = a (0 + sin 0),

y a (1 cos 0).

From these equations all the properties of the curve can be
deduced. Thus if ^ denote the inclination of the tangent to AT,
or of the normal to BA, we have

dy du Idx sin
, n

tan -f
= -/ = -j|/ -^ = = tan i 0,dx du/ du 1 + cos

whence ^"
=

(2)

Since the angle TIP is one-half of TCP, it follows that IP is the

normal, and PT the tangent, to the curve at P. Cf. Art. 146, below.

Again, to find the arc (s) of the curve, we have

= a? [(1 + cos 0)
8 + sin2

0}
= 4a2 cos* \ 0,

whence, by Art. Ill,

s = 2ajcos J ddd = 4a sin 0,

or, in terms of
-\Jr,

s = 4asin
i/r, (3)

no additive constant being required, if the origin of s be at A.
This relation is important in Dynamics.

Since TP = TI sin ty, we have

In particular, the length of the arc from one cusp to the next is So.

If we put y'
= IM=a(I +cos0), (5)

the area included between the curve and the base is given by

Jy'dx = aa

/(l + cos 0)
2d0 = 4a2

Jcos
4 Bdd = 8a2

/cos
4
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Taking this between the limits + ^TT, we find that the area included
between the base and one arch of the curve is three times the area
of the generating circle.

\

The cur 7e traced by any point fixed relatively to a circle which rolls

on a fixed straight line is called a * trochoid.'

If, in Fig. 79, the tracing point be in the radius CP, at a distance

k from the centre, its coordinates will be

x = ad + k sin 0, y = a k cos 0. .(6)
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When k>a we have loops, which in the particular case (k = a) of the

cycloid degenerate into cusps. When k < a, the curve does not meet the

base. Fig. 80 shews the cases k = ^at
k = a, k ^a.

It is readily proved from (6) that the normal at any point of the

trochoid passes through the corresponding position of the point of contact

of the rolling circle. Cf. Art. 146.

123. Epicycloids and Hypocycloids.

The path traced out by a point on the circumference of a circle

which rolls in contact with a fixed circle is called an '

epicycloid
'

or a
'

hypocycloid
'

according as the rolling circle is outside or inside

the fixed circle*. Those epicycloids in which the rolling circle

surrounds the fixed circle may be referred to, when a distinction is

desired, as
'

pericycloids.'

Let be the centre of the fixed circle, G that of the rolling
circle in any position, / the point of contact, P the tracing point ;

and suppose that, initially, the other extremity P
f

of the diameter

PGP' was in contact with A. We take as our standard case that

in which each circle is external to the other. Let

OA=a

Fig. 81.

The inclination of CP to A will be 6 -f-
<f>.

Hence if we take

as origin of rectangular coordinates, and OA as axis of x
t we find,

by orthogonal projections, that the coordinates ofP are

x (a + b) cos + b cos (6 + <f>),

sin (0 4-
(I)

* This is the definition as improved by Proctor in his Treatise on the Cycloid, etc.

(1878).
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a0 = arc .4/ = arc P '! = &(,

n ,

cc (a + 6) cos Q + 6 cos

[CH. IX

..(2)

a 4- b * \

j
u,

|

.(8)

y = (a -f b) sin 6 + b sin , 6. \

The epicycloid traced out by P' is found by changing the sign of 6

in the coefficient of the second terms ; viz. we have

x = (a + b) cos - b cos T 0,
b

(*)
, . a + b

1 6 sin =

6

This has a cusp at A.

In the above standard case the circles lie on opposite sides of

the tangent at /. If they lie on the same side, as in the '

peri-

cycloids
' and '

hypocycloids,' we have merely to reverse the sign of

i throughout, the formulae corresponding to (3) being then

a b
x = (a b) cos 6 b cos

j
0, 1

y = (a 6) sin + b sin
j

6. I

.(5)

The verification is left to the reader
; see Fig. 82. In the hypo-

cycloids we have a > 6, in the pericycloids a < b.

Fig. 82.



123] SPECIAL CURVES 299

Similarly, for the locus of P' we obtain

=x = (a
-

b) cos + b cos = 0,

_ (6)

y = (a - b) sin - b sin
j

0.

To find the tangent at any point of an epicycloid, we have from

(1), since d<p/d0
=

a/6,

dy cos + cos (6 + <f>)
T2 = : ^

-
-. 77^ -T( = cot(0 + 4cf>)....... (7)dx sm 6 + sin (0 + $)

On reference to Fig. 81, we see that 0+ J< is the inclination of

IP to OA. Hence IP is normal to the epicycloid at P. A similar

result can be deduced, of course, for the pericycloids and hypo-
cycloids, from the equations (5). Cf. Art. 146.

Again, from (1),

dx\*d\*
'a

=co ...................
a

rr 4 (a + .

Hence = ^-'Bm^fa ..................(9)
Cb

no additive constant being necessary, if s = for $ 0.

If we denote by i|r
the inclination of the normal IP to OA, we

have

j , , - 4 (a + 6) 6 . a
and therefore s = ^-'sin ^r^................(11)

a a + 26 Y

The formula (9) has a simple interpretation. It appears from

Fig. 81 that TP = 26 sin <, whence

x chord TP.

In particular, the length of the curve from one cusp to the next is

8(a+6)6/a.

The corresponding results for the pericycloids and hypocycloids
are easily inferred by changing the sign of 6.

*
Newton, Principia, lib. i., prop. xlix.
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The curve traced out by a point of the rolling circle which is not on
the circumference is called an '

epitrochoid,' or a *

hypotrochoid,' as the

case may be. If k denote the distance of the tracing point from the

centre of the rolling circle, the expressions for the coordinates x, y in

the various cases are obtained by writing k for 6 in the coefficients

(only) of the second terms.

124. Special Cases.

1. If the radius of the fixed circle be infinitely great we fall

back on the case of the cycloid. The corresponding equations are

easily deduced from Art. 123 (1), writing x + a for x
y aO = b<f>,

and

(finally) (9 = 0.

2. Again, making the radius of the rolling circle infinite, we

get the path described by a point of a straight line which rolls

on a fixed circle. The curve thus defined is called the '
involute

of the circle
'

;
see Art. 144. The equations may be- obtained as

limiting forms of Art. 123 (4), or they may be written down at

once from a figure. We find

x a cos 6 4- ad sin 0,
'

Q

Fig. 83.

The corresponding trochoidsfl curve is

x = (a + h) cos & + aO sin 0,1 .-.

y = (a + h) sin + aO cos 0, J

where h = PQ in the figure, Q being the tracing point. The particular
case of h = a gives the '

spiral of Archimedes,' see Art. 126.

3. If the radii a, 6 be commensurable, then after some exact

number of revolutions the tracing point will have returned to its

original position, and its subsequent course will be a repetition of

the previous path. In such cases the curve is algebraic, since the

trigonometrical functions can be eliminated between the expres-
sions for x and y. Sometimes the equation is more conveniently

expressed in polar coordinates.
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Figs. 84, 85, 86 shew the epi- and hypo-cycloids in which the

ratio of the radius of the rolling circle to that of the fixed circle

has the values 1, J, J, respectively.

Fig. 84. Fig. 85.

Fig. 86.

We proceed to notice in detail one or two of the cases which
have specially important propertiea

Ex. 1. The cardioid.'

If in Art. 123 (3) we put b = a, we get

x = 2a cos + a cos 20, y=*2a sin B + a sin 20,

whence x + a = 2a(l + cos0)cos0, y = 2a (1 + cos 0) sin 6 (3)

This shews that the radius vector drawn from the point ( a, 0) as pole
is given by

r = 2a(l+cos0) (4)

This is otherwise evident from Fig. 87, p. 302, where

A'P = 2A f

fl = 2 (01 + A'M).

The corresponding trochoids are given by

x - 2a cos 6 + k cos 20, y = 2a sin B + k sin 20.
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Referred to the point ( k, 0) as pole these formulse are equivalent to

r = 2(a + &cos<9), (5)

which is the polar equation of the 'limagon
'

(Art. 127). This equation,

again, is easily obtained geometrically.

Fig. 87.

Ex. 2. A circle rolls inside another of twice its radius.

If in Art. 123 (6) we put b = \a, we get

, y = 0; ........................(6)

i.e. the tracing point on the circumference of the rolling circle traces

out a diameter of the fixed circle.

Again, the corresponding trochoidal curve is given by

x = (b + k) cos O
t y = (b-k)sm&, ............... (7)

and is therefore an ellipse of semi-axes b k. Moreover if the rolling
circle have a constant angular velocity, the motion of the tracing point
is elliptic-harmonic.

These results also follow easily from geometrical considerations.

The rolling circle passes always through the centre of the fixed circle
;

also, if P be the point of the rolling circle which initially coincides with

A, the arc IP is equal to the arc IA. Hence, since the radii are as

1 : 2, the angle which the arc IP subtends at the circumference of its

circle must be equal to the angle which the arc IA subtends at the

centre of its circle
;
that is, OP and OA coincide in direction, and P

describes the fixed diameter OA. Again, since the angle POP" is a

right angle, the other extremity of the diameter PP of the rolling
circle describes the diameter of the fixed circle which is perpendicular
to OA. Hence PP' is a line of constant length whose extremities move
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on two fixed straight lines at right angles to one another. It is known
that under these circumstances any other point on PP describes an

ellipse. Of. Art. 145, Ex. 1.

Fig. 88.

Ex. 3. A circle rolls on the outside of a fixed circle of one-half the

radius, which it encloses.

The formulae (5) of Art. 123 give, for b = 2a,

x = a cos - 2a cos |0, y = - a sin 2a sin J0,

or a?-a = -2a(l+cos0)cos0, y = - 2a (1 +cos0) sin J0....(8)

If we put &
' = J0 +

TT,

it appears that the pericycloid, referred to the point (a, 0) as pole, has

the equation
r = 2a(l-cos0'), ........................ (9)

and is therefore a cardioid.

The connection between this result and that of Ex. 1, above, will

appear in Art. 150.

Ex. 4. The '

four-cusped hypocycloid.'

If in Art. 123 (6) we put b = Ja, we get

x = fa cos 6 + \a cos 30 = a cos8
0, )

. -.

y - |a sin 6 - \a sin 30 = a sin3 0, f

from which the curve is easily traced. The Cartesian form is

a* ............................ (11)

This curve is sometimes called the 'astroid.' It possesses the

property that the length of the tangent intercepted between the co-

ordinate axes is constant. If, in Fig. 89, P be the tracing point, TP is,
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the tangent, and it is easily seen that the angle GTP is double the angle
AOG. Hence HK= WT=a. See also Fig. 125, Art. 145.

Fig. 89.

125. Superposition of Circular Motions. Epicyclics.

The cycloidal and trochoidal curves discussed in Arts. 122 124

present themselves in another manner, as the paths of points
whose motion is compounded of two uniform circular motions.

If an arm OQ revolve about a fixed point with constant

angular velocity n, its projections on rectangular axes through
may be taken to be

..................(1)

where c = OQ, provided the origin of t be suitably chosen. If

another arm OQ' revolve about with constant angular velocity

starting simultaneously with OQ from coincidence with the

(2)

axis of Xy the projections of OQ' will be

x = c' cos n ty y c' sin n't,

where c' OQ. If we complete the parallelogram OQPQ', the

vector OP will represent the geometric sum of OQ and OQ', and
the coordinates of P will be

K = c cos nt + c cos nt, y=c sin nt + c sin n't (3)*

Since QP is always equal and parallel to OQ', the path of P is

that of a point describing uniformly a circular orbit relatively to

a point Q which itself has a uniform circular motion about 0.

Curves described in this manner are called 'epicyclics.' If the

angular velocities n, n' have the same sign, the epicyclic is

* If the parallelogram OQPQ' consist of four jointed rods, and if OQ, OQ' be

made to revolve at the proper rates about 0, the distance of P from any fixed line

through O will represent the sum of two simple-harmonic motions of periods

27r/n, 27T/7i', This is the principle of Lord Kelvin's 'tidal clock,' which performs
mechanically the superposition of the solar and lunar tides.
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said to be 'direct'; if they have opposite signs it is said to be
'

retrograde.'

Fig. 90.

Figs. 91 94 shew some specimens of direct and retrograde
epicyclics*.

Fig. 91. Fig. 92.

Fig. 93. Fig. 94.

* The variety of such figures is of course endless. Epicyclics are easily described

mechanically with a lathe
;
a number of very interesting diagrams obtained in this

manner are reproduced in Proctor's treatise cited on p. 297 ante.

L. I. C. 20
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Since the path of P may be equally well defined as that of a

point moving in a circular orbit relatively to a point Q which
itself is in uniform circular motion about 0, we see that every

epicyclic can be generated in two distinct ways.
It is evident that every epi- or hypo-cycloid, and (more

generally) every epi- and hypo-trochoid, is an epicyclic, since if

the rolling circle has a constant angular velocity its centre G will

describe a circle uniformly about 0, the centre of the fixed circle,

whilst the radius GP which contains the tracing point P has a

uniform rotation about C. See Figs. 81, 82.

Conversely, it may be proved that every epicyclic is either an

epi- or a hypo-trochoid : more particularly that every direct epi-

cyclic is an epitrochoid, and every retrograde epicyclic is a hypo-
trochoid. This may be shewn by a comparison of (3), above, with

the results of Art. 123. A simple geometrical proof will be given
later (Art. 150), in connection with the theory of the 'instantane-

ous centre/

The connection of the direct and retrograde epicyclics in Figs. 91 94

with the four-cusped epi- and hypo-cycloids will be apparent.

Epicyclics played a great part in ancient Astronomy. If we ignore
the eccentricities and inclinations of the planetary orbits, the Sun may
be regarded as describing a circle round the Earth, and any other planet
describes a circle in the same plane about the Sun. The path of the

planet relatively to the Earth is therefore an epicyclic. This was the

accepted view of the matter from the time of Ptolemy down to the

sixteenth century, when it was gradually superseded by the simpler
mode of describing the phenomena discovered by Copernicus.

The relative orbits of the planets have loops, as in Fig. 91. This

accounts for the '

stationary points
' and *

retrograde motions,' which

were in fact the occasion of Ptolemy's invention of epicyclics.

The orbit of the moon relatively to the sun, on the other hand,

though an epicyclic, has no loops ;
it is, moreover, everywhere concave

inwards.

Ex. 1. If the angular velocities of the component circular motions

are equal and opposite (n
f

n), we have

x (c + c')cos nt
t y (cc') sin nt, (4)

so that the resultant motion is elliptic-harmonic. In the particular
case of c = c, the ellipse degenerates into a straight line.

This example is of importance in Physical Optics.

Ex. 2. The special form assumed by an epicyclic when c' = c may
be noticed.

The equations (3) then become

x= 2c cos
|^ (n + n') t . cos \ (n n')

y=2c sin (n + n') t . cos (n n')
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or

where
*r 7X

r=2ccos- ,0n + n

307

(6)

(7)

The polar equation of the curve is therefore of the form

r = acos ra0, ................. . ............ (8)

where m <
1, according as the epicyclic is direct or retrograde.

Figs. 92, 94 on p. 305 correspond to the cases w =
,
w =

2, re-

spectively.

126. Curves referred to Polar Coordinates. The Spirals.

There are several curves of interest whose equations are most

conveniently expressed in polar coordinates. We begin with the
'

spirals/

1. The '

equiangular spiral
'

is defined by the property that

the curve makes a constant angle with the radius vector.

Denoting this angle by a, we have, by Art. 63,

dv

the solution of which is (Art. 38)

(2)

Fig. 95.

As 6 ranges from oo to + oo
, r ranges from to oo . See

Fig. 95.

202
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Since by Art. 112, we have drjds
= cos a, it appears that the length

of the curve, between the radii rlt ra ,
is

[
r* ds j i \

-=- dr = (r2 r,) sec a.

Jr,
dr .(3)

2. The 'spiral of Archimedes' is the curve described by a

point which travels along a straight line with constant velocity,
whilst the line rotates with constant angular velocity about a fixed

point in it.

In symbols, r = ut, 6 = nt,

whence r = a#, (4)

if a= u/n.

Fig. 96.

Fig. 96 shews the curve. The dotted branch corresponds to nega-
tive values of 0. Another mode of generation of this curve has been

explained in Art. 124.

3. The '

reciprocal spiral
'

is defined by the equation

r = a/0............................ (5)

If y be the ordinate drawn to the initial line, we have

sin. *= r sin = a . .

u

As 6 approaches the value zero, r becomes infinite, but y approaches the

finite limit a. Hence the line y = a is an asymptote.
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The dotted part of the curve in Fig. 97 corresponds to negative
values of 6.

Y

X'

Fig. 97.

127. The Limagon, and Cardioid.

If a point on the circumference of a fixed circle of radius $a
be taken as pole, and the diameter through as initial line, the
Tadius vector of any point Q on the circumference is given by

(1)

Fig. 98.
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If on this radius we take two points P, P' at equal constant

distances c from Q, the locus of these points is called a '

limayon.'
Its equation is evidently

r = a cos 6 + c (2)

This includes the paths both of P and of P', if 6 range from to 2-77-.

If c < a, the curve passes through when

= cos~ 1

( c/a),

and forms a loop. See the curve traced by the points P2 ,
P2

'

in

Fig. 98. If c> a, r cannot vanish
; see the curve traced by Ps ,

P8

'

in the figure.

In the critical case of c a, the loop shrinks into a cusp. The
locus is now called a 'cardioid' or heart-shaped curve. Its

equation is

r = a(l +cos0) (3)

See the curve traced byPlt P/ in the figure. Also Fig. 84, p. 301.

128. The Curves rn = an cos nO.

A number of important curves are included in the type

rn = an cosn0 (1)

The curves corresponding to equal, but oppositely-signed values
of n, are

'

inverse
'

to one another
;
see Art. 130.

Thus if n = 1, we have the circle

r = acos 6 (2)
and the straight line

rcoa6 = a (3)

If n 2 we have the '

lemniscate of Bernoulli
'

r^ a8 cos 20, (4)

and the rectangular hyperbola

r3 cos 20 = a8
(5)

The equation (4) makes r real for values of 6 between +
\TT, imagi-

nary for values between ?r and |TT, and so on. Also r2
is a maximum

for 0, =
TT, etc. It follows that the lemniscate consists of two

loops, with a node at the origin. See Fig. 106, p. 321.

If n = i, we have the cardioid

r* = a*cos0, or r = Ja (1 + cos 0), (6)

and the parabola

* = . or r = -
(7)
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If we differentiate (1) logarithmically, we find, if < denote the angle
between the tangent and the radius vector,

1 dr
cotd> = - -^ = -tann0, ...................... (8)

r dv

or
<f>
=

^7r + nO............................... (9)
The student should examine the meaning of this result in the various

special cases mentioned abova

129. The Tangential-Polar Equation.
If p be the perpendicular from the origin on any tangent, and

r the radius vector of the point of contact, p will in general be a
function of r. The equation expressing this relation is called the
'

tangential-polar
'

equation of the curve.

If the ordinary polar equation be given, the tangential-polar

equation is to be found by eliminating 6 and
<j>

between the
formulae

1 dr . ^ , f

(1)

(for which see Art. 63) and the given equation.

From (1) we obtain

It is occasionally convenient to employ the reciprocal of the
radius vector instead of the radius itself. If we write

1 , du 1 dr ,u=-, we have
gg ?ag ................(3)

and the formula (2) takes the shape

1 (du\*= 11* 4- I 1 f A> i

*
h '

It is important, with a view to some
applications

in Dynamics,
to notice that if the tangential-polar equation be given, say

, ..................... ......(5)

the curve is determinate save as to orientation. For we have

dd p
r -y-

= tan 6 = -TT-~ rr-, ............... (6)dr

whence

A variation of the additive constant a has merely the effect of

turning the curve bodily through an angle about 0.

-a=l f
r

...................(7)
J r */(r

2

p*)
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Ex. 1. In the equiangular spiral, we have

p-rsin a................................ (8)

Ex. 2. In the circle r = 2asin0 .............................. (9)

we have, as in Art. 63, < = 6, and therefore p/r = r/'2a, or

p = i*/2a.............................. (10)

Ex. 3. In the parabola
r=asecj

i0, ........................... (11)

where the focus is the pole, we find
<f>
= TT 0, p = r cos 0, whence

p* = ar........... . ................... (12)

This is a well-known property of the curve.

This example, like the preceding, is included in a general result

embracing all curves of the type

............................ (13)

By Art. 128 (9) we have

p =r sin
<f>
= r cos n0, ........................ (14)

whence, eliminating 0,

Thus in the case of the cardioid (n = J), we have

p* = v*/a............................... (16)

Ex. 4. The tangential-polar equations of the central conies may
be given here, as they are sometimes employed in Dynamics, although
the proofs do not require the use of the Calculus.

First let the origin be at the centre. The Cartesian equation of

the conic being

we have, if /? be the conjugate semi-diameter,

p/3=ab, and pt r2 = b*a-, .'....(18)

by known properties of central conies. Hence

2
-- j.- T-. (19)

In the particular case of the rectangular hyperbola we have

pr = a?, (20)

since fi
= r. This is also obtained by making n = 2 in (15) above.

Ex. 5. Again, taking a focus as pole, let us denote the perpendicular
and radius vector corresponding to the other focus by p' and r'. Since
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the tangent makes equal angles with the two focal radii, we have

pjr=p'/r't
and therefore

f tsPf[ t

r* rr''

Now pp' = 6a
, and, in the ellipse, r + r

f = 2a. Hence, for this curve,

or, if I denote the semi-latus-rectum

-
2
=---

(21)
p

2 r a

In the hyperbola, we find

1
- f

2
-.

1 m\
^~ r

+
a'

the upper sign relating to the branch nearest to the origin, the lower
to the further branch.

Ex. 6. To find the curve in which

p = i*/a? (23)

Substituting in (6), and integrating, we find

rdra f rdr i ,^- a =
/ TJ
-T = i sin" 1 -=

,

J J(a* -r
4
)

2 a9 '

or r2 =a2

sin2(^-a), ........................ (24)

a lemniscate.

130. Related Curves. Inversion.

There are various geometrical theories in which one curve is

associated with another connected with it by a definite relation.

. A simple instance is that of
'

inversion/

If from a fixed origin we draw a radius vector OP to any
given curve, and in OP take a point P' such that

k', ........................(1)

where & is a given constant, the locus of P' is said to be the
' inverse

'

of that of P. The point is called the
'

centre/ and
k2

is called the
'

constant/ of inversion.

Fig. 99.
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A curve and its inverse make supplementary angles with the

radius vector. For if P, Q be the consecutive points of a curve,

and P', Q' the corresponding points on the inverse curve, we have

OP . OP' = OQ . OQ', and therefore

OP:OQ = OQ' : OP' (2)

Hence the triangles POQ, Q'OP' are similar, and the angles OPQ,
OP'Q' are supplementary. In the limit, when Q is infinitely close

to P, these are the angles which the respective tangents make
with the radius vector.

It follows that if two curves intersect, the respective inverse

curves will intersect at the same angle. In particular, orthogonal
curves invert into orthogonal curves.

It is proved in books on elementary Geometry that the inverse

of a circle is a circle, except in the particular case where the

centre of inversion is on the circumference, when the inverse locus

becomes a straight line.

There are various devices by which the inverse of a given curve

can be traced mechanically.

1. Peaucelliers Linkage.

This consists of a rhombus PAQB formed of four rods freely

jointed at their extremities, and of two equal bars connecting
two opposite corners A, B to a fixed pivot at 0.

It is evident that, whatever shape and position the linkage
assumes, the points P, Q will always be in a straight line with 0.

IfN be the intersection of the diagonals of the rhombus, we have

OP. OQ = ON2 ~ PN*=OA* ~ AP* = const (1)

Hence if P (or Q) be made to describe any curve, Q (or P) will

describe the inverse curve with respect to 0.

In particular if, by a link, P be pivoted to a fixed point S,
such that SO = SP, the locus of P is a circle through 0, and

consequently the locus of Q will be a straight line perpendicular
to OS. This gives an exact solution of the important mechanical
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problem of converting circular into rectilinear motion by means
of link-work.

2. Hart's Linkage.

This consists of a 'crossed parallelogram* ABCD formed of

K

""

Fig. 101.

four rods jointed at their extremities, the alternate sides being
equal. A point in one side AB is made a fixed pivot, and P, Q
are points in AD and BG such that

AP : PD = CQ : QB = AO : OB, = m : n, say.

Evidently 0, P, Q will lie in a straight line parallel to AC and
BD. If H, K be the orthogonal projections of A, C on BD, and
JV be the middle point of BD, we have

Now

and

Hence

OP:BD=AO:AB =

OP.OQ = mn
/

(m +
(AD* -AB*) = const (2)

Hence P and Q describe inverse curves with respect to 0.

As before, by connecting P to a fixed pivot $ by a link PS
equal to SO, we can convert circular into rectilinear motion.

131. Pedal Curves. Reciprocal Polars.

If a perpendicular OZ be drawn from a fixed point to the

tangent to a curve, the locus of the foot Z of this perpendicular
is called the 'pedal' of the original curve with respect to the

origin 0.
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Thus : the pedal of a parabola with respect to the focus is the tan-

gent at the vertex. The pedal of an ellipse or hyperbola with respect
to either focus is the '

auxiliary circle.'

If OZ p, and if ty be the angle which OZ makes with any
fixed straight line, then p, ty may be taken to be the polar coordi-

nates of Z with respect to as pole. Hence if the relation be-

tween p and ty can be found, the polar equation of the pedal can

be at once written down.

The angle which the tangent makes with the radius vector

at corresponding points is the same for a curve

and its pedal. For let OZ, OZ' be the perpen-
diculars from on two consecutive tangents
PZ, PZ', and let OU be drawn perpendicular
to ZZ' produced. The points Z, Z' lie on the

circle described on OP as diameter. Hence
the exterior angle OZU of the quadrilateral
OZZ'P is equal to the interior and opposite
OPZ'. In the limit these are the angles which

OZ and OP make with the tangent to the pedal,
and with the tangent to the original curve, re-

spectively.

Also, by similar triangles, we have

OU :OZ=OZ' : OP.

Fig. 102.

.(i)

Hence if r be the radius vector of the original curve, p the

perpendicular from on the tangent, and p' the perpendicular
from on the tangent to the pedal, we have, ultimately,

p'/p=plr, or p'
= pt

/r. (2)

Again, if OZ' meet PZ in N, we may write

OZ=*p, OZ'=p+Sp, ZQZ' = ZPZ' = ty.

Neglecting small quantities of the second order, we have

Hence, proceeding to the limit, when PZ' coincides with PZ, we
obtain an expression for the projection of the radius vector on the

tangent to a curve, viz.

P7-fA .(3)

This result enables us easily to solve the problem of 'negative

pedals/ viz. to find the curve having a given pedal. Taking as



13l] SPECIAL CURVES 317

origin, and the initial line of ty as axis of x, the coordinates of the

point of contact P are given by

<r = OZ cos ^ ZP sin
ifr, y = OZ sin ty + ZP cos

i|r,

.............(4)

dp .
i

*

or w = p cos -v/r
r-- sin y
d^jr

)

c. 1. If the origin be at the centre of the conic

and
i/r

be the angle which p makes with Ox, it is shewn in books on
Conic Sections that

b*sm*$. ..................... (6)

Hence the polar equation of the pedal is

r8 = acos2^62 sin2 ^......................... (7)

In the case of the rectangular hyperbola

tf-y'-rf ........ ...................... (8)

the pedal is the lemniscate

ra = a2 cos20............................ (9)

Ex. 2. In the case of a circle of radius a, the pole being at a
distance c from the centre C, and the line OC being the origin of ^, we
have at once from a figure

p= a + ccosj/f......................... (10)

Hence the pedal is the limagon

r = a + ccos0............................(11)

If be on the circumference, we have c = o, and the pedal is the
cardioid

r = a(l+cos0).........................(12)

Ex. 3. To find the curve whose pedal is the cardioid

r = a(l +cos0)...................... ...(13)

Writing p = a (1 +COSI/T), ........................(14)

the formulae (4) make

x = a cos
if/
+ a, ya> sin

\f/t

whence
(a;
-
a)

2 + y
2 = a2

, ........................ (15)

a circle through the origin.
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The locus of the pole of the tangent to a curve $, with respect
to a fixed conic 2, is called the 'reciprocal polar' of S. It is proved
in books on Conies that if S' be the locus of the poles of the tan-

gents to S then S is the locus of the poles of the tangents to S'.

This explains the use of the word 'reciprocal.'

We shall here only notice the case where the fixed conic 2 is

a circle. If be the centre of this circle, and k denote its radius,

the pole P' of any tangent to the curve S is found by drawing OZ

Fig. 103.

perpendicular to this tangent, and by taking in OZ a point P'
such that

OZ .OP' = te. (16)

Hence the reciprocal polar is in this case the inverse of the pedal
of the given curve, with respect to the point 0.

By the reciprocal property above cited, the original curve must
be the inverse of the pedal of the locus of P'. This is easily
verified ; for if P be the point of contact of the tangent to the

original curve, and if OP meet the tangent to the locus of Pf
in

Z', the angles OPZ' and OPZ will be equal. Hence OZ'P is

a right angle, and Z' traces out the pedal of P'. And, since

PZP'Z' is a cyclic quadrilateral, we have

OP. OZ'=OZ.OP'=k* (17)

Hence P describes the inverse of the locus of Z'.

Ex. 4. The reciprocal polar of a circle with respect to any origin
is a conic having the origin as focus.

As in Ex. 2, the formula for the pedal of the circle is

p = a + ccos
i/r (18)

Writing for
\j/t

and k*/r for p, we get the equation of the reciprocal

polar in the form
*

(19)
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which represents a conic, having its focus at the origin, of eccentricity

c/a. Hence the conic is an ellipse, parabola, or hyperbola, according
as the origin is inside, on, or outside the circle.

Ex. 5. The pedal of the conic

rr
2

<y
2

-1 (20)

with respect to the centre, is given by

Hence the reciprocal polar is

^2
~~

\ /

or oV #y = Jfc
4
, (23)

a concentric conic.

132. Bipolar Coordinates.

A curve may be defined by a relation between the distances

(r, r') of any point P on it from two fixed points, or foci, S, $'; thus

f ff v'\ n (~\\
J v ' / * V /

If we denote the angles PSS', PS'S by 0, 6', respectively, and
the angles which the radii r, r' make with the tangent by <, <', we
have, as in Art. 112,

dr d^ .,

'

-7- = COS <p. -7- = COS rf> ,* *
(2)

r =sini / -
in<f>'

ds ds j

We have, in addition, the relations

r sin 9 = r' sin ^, r cos + r' cos 0' = 2c, (3)

where o =

o
Fig. 104.
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Ex. 1. In the ellipse we have

=2a, ..............................(4)

and therefore -^- + -j- = 0.
as as

that is, cos < + cos $' = 0, or <' = TT-< ................ (5)

The focal distances therefore make supplementary angles with the

curve.

Similarly, in the hyperbola

r ro/=2a, .............................. (6)

we find cos
<f>
= cos <', ........................... (7)

or, the focal distances make equal angles with the curve on opposite
sides.

Ex. 2. To find the form which a reflecting or refracting surface

must have in order that incident rays whose directions pass through
a fixed point S may be reflected or refracted in directions passing

through a fixed point S'.

The case of reflection is merely the converse of Ex. 1. The surface

must have the form generated by the revolution of an ellipse or hyper-
bola about the line joining the foci (S, S').

In the case of refraction, we have, if /x and // be the refractive

indices of the two media,

/xsin x = Xsmx
/

, ........................ (8)

where X = (**-*) tf
= (*-*')................ (9)

Hence /A cos <j> /A' cos <' = 0, .....................(10)

or
. (,-,iy) = .........................(11)

Integrating, we have

fi.r pr' const.........................(12)

These curves, in which the sum (or difference) of given multiples of

the two radii is constant, are called * Cartesian ovals,' after Descartes,

by whom the optical problem was first discussed.

When the lower sign in (12) is taken, the family includes the circle

rfr'
=^f

............................ (13)

See Fig. 105.

Ex. 3. The 'ovals of Cassini' are defined by

rr' = #, .............................. (U)

k being a given constant. Since for a point P in SS' the greatest
value of rr' is c*, it follows that the curve will consist of two detached
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ovals surrounding S, *S", respectively, or of a single oval embracing both

points, according as k ^ c.

Fig. 105.

In the critical case of k = c the curve is known as the * lemniscate

of Bernoulli
'

; this presents itself in various mathematical problems.
If 0, the middle point of S'S, be taken as pole, and OS as initial line,

of a system of coordinates rlt Olt we have

cosv* = r? + cl - 2cr1 co801 ,
r'

3 = rl
z + Gt +

the equation of the lemniscate is therefore

(7*i

2 + c2
)
2

4:c
z
r^ cos2 QI = c

4
,

which reduces to

Of. Art. 128.

(15)

Fig. 106.

L. i. o. 21
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Ex. 4. The magnetic curves.

If S, S
r

be the N. and S. poles of a magnet, the forces at any point
P may be represented by //./r

2
along SP, and

//,/r'

2

along PS'. A ' line

of force
'

is a line drawn from point to point always in the direction of

the resultant force. Expressing that the total force at right angles to

the line is zero, we have

1 dO 1 dff nor -y + --J- = ......................... (16)r ds r ds

Hence, since r sin 6 = r' sin 0', we have

. dO a dff nsm 6 -r- + sm = 0.
as ds

or cos + cos 0' = const. ..... ... ............. (17)

An *

equipotential line' is a line such that no work is done on a

magnetic pole describing it. Expressing that the total force in the

direction of the line is zero, we find

1 dr 1 dr' Aor = 0, (18)r2 ds r 2 ds

whence -> = const (19)

The equipotential lines will necessarily cut the lines of force at right

angles.

EXAMPLES. XLII.

(Algebraic Curves.)

1. Trace the curves

2. Trace the curve

ay* = x* (a #),

and shew that it forms a loop of area T
8
Ta

2
.

Find where the breadth of the loop is greatest. [a;
=

3. Trace the curve

and shew that it forms two loops, each of area -|a
a
.
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4. Trace the curves

y* = x(x*-\), y* = x3

(l-x).

5. Trace the curve

and shew that it encloses an area \ircP.

6. Trace the curve '

ay=* (*-*)!
and shew that it encloses an area aa

.

7. The length of an arc of the curve

ay
a = Xs

(Fig. 70), from the vertex to the point whose abscissa is x, is

8. The mean centre of the area included between the curve

ay
1 = x3 and the line x = h is at the point (A, 0).

9. If the curve a?/
3 = x3 revolve about the axis of x, the volume

included between the surface generated, and any plane perpendicular
to the axis, is one-fourth that of a cylinder of the same length on the
same circular base.

10. Trace the curves

~x' y ~
x(l -

x)
'

11. The area included between the curve

v* a x

a x

(Fig. 72) and its asymptote is ira
2
.

If the same curve revolve about its asymptote, the volume of the
solid generated is J7r

2a8
.

12. Trace the curves

2

13. Trace the curves

14. Trace the curves

_ x
2 _ x

Determine the maximum and minimum ordinates (if any), and the

points of inflexion.

212
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15. The area included between the curve

. a-x

(Fig. 74) and its asymptote is fTi-a
2
.

If the same curve revolve about its asymptote the volume of the

solid generated is far^a*.

16. Trace the curve

and shew that the area included between its two branches and either

asymptote is 2a2.

17. Shew that the area included between the curve

a-x

(Fig. 73) and its asymptote is
(TT + 4) a

2
.

18. Trace the curve

x*

and shew that the area included between the curve and either

asymptote is \ircP.

19. Trace the curve

*-****a' + ar
5 '

and shew that it forms a loop of area \ (TT
-

2) a
8
.

20. Trace the curve

Xs

y* = -,(2<*-x)(x-a)
Hi

and shew that it encloses an area fTra
8
.

21. Trace the curve

y = ?(a._6)a + c>.
ct

22. Trace the curve

x = t-t*, y=l-#,
for real values of t

;
and prove that it forms a loop of area ^J.
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EXAMPLES. XLIII.

(Catenary, Cycloid, etc.)

1. Prove that, in the catenary y c cosh x/ct

s
2 = y* ca.

2. Prove that the catenary is the only curve in which the perpen-
dicular from the foot of the ordinate on the tangent is of constant

length.

3. Of all the catenaries which pass through two given points at

the same level, and have their axes vertical, shew that there is one
in which the depth of the directrix below the given points is a

minimum.

Also prove that in this catenary the tangents at the given points
meet on the directrix.

If 26 be the distance between the given points, the depth of the

directrix is b sinh u, the arc of the curve is b (sinh u)/u, and the

inclination to the horizontal at the given points is cos" 1

(sech it),
where

u is the positive root of u tanh u = I.

4. The coordinates of any point on the tractrix may be expressed
in the forms

x = a (u tanh u), y = a sech ut

where u is a variable parameter.

5. Prove that, in the tractrix,

y = ae~*lat

the arc s being measured from the cusp.

6. The volume of the solid generated by the revolution of the

tractrix about its asymptote is fira
3
.

The surface of the same solid is 47raa.

7. If the coordinates of a moving point be

x = a cosh ntj y = b sinh nt,

where t is the time, the path is a hyperbola, and the velocity varies as

the length of the semi-conjugate diameter measured up to its inter-

section with the conjugate hyperbola.

Also shew that the area swept over by the radius vector increases

uniformly with the time.

8. The area of either loop of the Lissajous' curve

x= a sin 2 (nt e), y = b cos nt

is ab cos 2.
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9. Prove that the Lissajous' curve

x = a cos ntj y = b cos 3nt

consists of part of the curve

o a

Trace this curve.

10. If, in the cycloid, the rolling circle has a constant angular
velocity, the velocity of the tracing point P is proportional to the
normal IP (see Fig. 79).

11. The volume generated by the revolution of a cycloid about its

base is SvrV, if a be the radius of the generating circle.

The surface of the same solid is 2-ira\

12. The portion of a cycloid between two consecutive cusps re-

volves about the tangent at the vertex; prove that the area of the
surface generated is ^7ra

a
.

Also prove that the volume included by the above surface and the

planes of the circles described by the cusps is 7r
2a8

.

13. The volume generated by the revolution of a cycloid about its

axis is (9^-16) Tra
3
.

14. The surface of the same solid is f (STT 4) 7ra
a
.

15. The mean centre of the arc of a cycloid, from cusp to cusp, is

at a distance ^a from the base.

16. The mean centre of the area included between a cycloid and
its base is at a distance a from the base.

17. Prove that, in the curve

a 2
y = a

the intercepts made by the tangent at any point on the coordinate
_2_ 1 21

axes are a* a;*, a* y*, respectively.

Hence verify that the length of the tangent intercepted by the

axes is constant.

18. Prove, from the equations

x = a cos3
0, y = a sin8

0,

that, in the astroid,

ds
-=7;
= Sflfsin cos 0,

au

and thence that the whole lenth of the curve is 6a.

19. Prove that the area of the astroid is 8
7
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20. The volume generated by the revolution of the astroid about
the line joining two opposite cusps is

21. The length of a quadrant of the curve

x = a cos8 0, y = b sin 3
0,

is (a*+ab + b*)/(a + b).

The area enclosed by the same curve is ^irab.

22. The whole perimeter of an 9vcusped epi- or hypo-cycloid is

n

where a is the radius of the fixed circle.

23. Sketch the curve obtained by compounding two uniform
circular motions when the radii of the circles are equal, but the

periods slightly different, (i) when the rotations are in the same

direction, and
(ii)

when they are in opposite directions.

24. Prove that in an epicyclic the tangent line cannot pass through
the centre unless no < n'c'

t
where c is the greater of the two quantities

c, c'. (Art. 125.)

25. Prove that the length of a complete undulation of the

trochoid

x = aO + k sin 6, y = a k cos

is equal to the perimeter of an ellipse whose semi-axes are a + k
t
a k.

EXAMPLES. XLIV.

(Polar Coordinates.)

1. Prove that all equiangular spirals of the same angle are identi-

cally equal.

2. Prove that in an equiangular spiral of angle a the area swept
over by the radius vector (?) is

i (r2
2
-TV

8

) tana,

where rlt r2 are the extreme values of r.

3. Prove that in the spiral of Archimedes the angle (<) between
the tangent and the radius vector is given by

i
a

cos
</>
= -rz ^ .

^(a
2 + r3

)

4. Prove that in the reciprocal spiral the area swept over by the

radius increases proportionally to the radius.
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5. Shew that all chords drawn through the pole of a cardioid are

of the same length.

Does the same hold of the limagon ?

6. The area of the cardioid

r = a (1 + cos 0)
is fTra

2
.

7. Trace the curve

r = a + 2a cos 0,

and prove that the area of the inner loop is *5435a9
.

8. Prove that, in the cardioid,

da

and thence that the whole perimeter is 8a.

9. The volume generated by the revolution of the cardioid about
its axis is fTra

3
.

10. Prove that, in the cardioid, the maximum breadth (perpen-
dicular to the axis) is \ ^/Sa, and that the double tangent cuts the axis

at a distance \a from the pole.

11. Find the maximum ordinate, and the minimum abscissa, in

the limagon
r = a cos + c.

12. The area of the limagon

r = a cos + c,

when c> a, is IF (c
8 + |a

2
).

13. Prove geometrically that if two straight lines, touching two
fixed circles, make a constant angle with one another, their inter-

section traces out a limagon.

14. The whole area of the lemniscate

r2 = a2 cos 20
is a2

.

15. The perimeter of either loop of the same curve is

ffr dB

7(1 - 2 sin' 0)'

Prove that, in the notation of elliptic integrals (Art. Ill), this is

equal to
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16. The mean centre of the area of either loop of the lemniscate

is at a distance ^N/2?ra from the pole.

17. Shew that the area included by one loop of the epicyclic

r = a sin mQ
is 7ra*/4m.

18. Trace the curve r2 = a* cos 0.

19. Prove the following properties of the 'solid of greatest
attraction' (viz. the figure generated by the revolution of the curve

r3 = a2 cos about the initial line) :

(1) The volume is T
4
77ra* ;

(2) The greatest breadth is 1-24080, at a distance -4389a

from the pole ;

(3) The mean centre of the volume is at a distance Jf a from

the pole.

20. If the 'polar subtangent' of a curve be defined to be the

length intercepted by the tangent on a perpendicular drawn to the

radius vector from the pole, prove that it is equal to r*dO/dr.

Prove that in the reciprocal spiral the polar subtangent is constant.

21. The tangential-polar equation of the involute of a circle of

radius a is

p* = r*-a\
the centre being pole.

22. Shew that in the spiral of Archimedes (Fig. Ill)

23. Shew that in the reciprocal spiral (Fig. 97)

III
fi

~~

r2
+
aa

'

24. Shew that in the curve

a
r =

cos mO '

I

p
9 r2 a2

'

25. Shew that in the curves

a
r =

cosh mO '

sinh m& '

1 1 + m2 _ m?

respectively.
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26. Prove that, in the epicycloid (Art. 123),

4 (a + b) b= a H --'_2

What is the corresponding formula for the hypocycloid 1

27. Find the Cartesian equation of the curve such that-24
p = a sin

j/r
cos

fy. \x* + y* = a*.

28. Find the polar equation of the curve in which

29. Prove the formula

rdr=

for the arc of a curve whose tangential-polar equation is given.

30. Prove the formula

p ds = r*dO
t

and give its geometrical interpretation.

Hence shew that if the area swept over by the radius vector of a

moving point increase uniformly with the time, the velocity will vary
inversely as the perpendicular from the origin on the tangent to the

path.

EXAMPLES. XLV.

(Related Curves. Bipolar Coordinates.)

1. The inverse of an equiangular spiral with respect to the pole is

an equal spiral.

2. The inverse of a hyperbola with respect to the centre has a

node at the centre.

3. The inverse of a rectangular hyperbola with respect to the

centre is a lemniscate of Bernoulli.

4. Prove by means of the polar equations that the inverse of

a straight line is a circle through the pole of inversion, and conversely.

5. Prove by means of the polar equation that the inverse of a

circle is a circle.

6. The inverse of a parabola with respect to the focus is a
cardioid.

The inverse of any conic with respect to a focus is a limagon.

7. Prove that the inverse of the ellipse
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with respect to the centre is the curve

Also shew that the curve, where it cuts the axis of y, will be

concave or convex to the origin according as 6
2
^ 2a2

.

8. From the fact that the cardioid is the inverse of a parabola
with respect to the focus, or otherwise, prove that the normals at the

extremities of any chord through the cusp are at right angles, and

that the line joining their intersection to the cusp is perpendicular to

the chord.

9. Prove by inversion, or otherwise, that the cardioids

r = a(l+cos0), r = 6(1 -cos 0)

cut one another at right angles.

10. If ds
t
ds' be corresponding elements of a curve and its inverse,

d8:d8' = r*:& = &:r'*,

where r, r' are the radii.

11. The pedal of a parabola with respect to its vertex is the

cissoid(Art. 119 (16)).

12. If two tangents to a curve make a constant angle with one

another, the locus of their intersection (P) touches the circle through
P and the two points of contact.

13. Prove that the area of a pedal curve is given by the formula

14. Prove that the arc of a pedal curve is expressed by

fnfy.

15. The area of the pedal of an ellipse, the centre being pole, is

fcr(a
f
+?),

where a, b are the semi-axes.

16. The pedal of the hyperbola

a-
2 iP

__ _ ?L - 1

a2 bz
~

with respect to the centre consists of two loops, each of area

17. If p , pr be perpendiculars on the tangent to a curve from
the origin of (rectangular) coordinates, and from the point (a^, y^)

respectively, prove that

Pi = Po~ K! cos
\l/
- yx

sin
i/r,

where ty is the inclination of the perpendiculars to the axis of x.
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18. If A
OJ
A l be the areas of the pedals of a closed oval curve

with respect to the origin and with respect to the point (xlt yj,
both these points being within the curve, prove that

r

= A -xl

Jo
p9 cos -yl sn (oc*

19. Prove that the locus of a point such that the pedal of a given
closed oval curve with respect to it as pole has a given constant area

is a circle; and that the circles corresponding to different values of

the constant are concentric.

Also that, if be the common centre, the area of the pedal with

respect to any other point P exceeds the area of the pedal with

respect to by the area of the circle whose radius is OP.

20. The negative pedal of the parabola

with respect to the vertex is the curve

21. In what case is

p = a cos
\l/

1

22. Prove that the curve for which

p = a sin ^ cos

is the astroid

+ =

23. State what property follows by differentiation with respect to

the arc () from the equation
r* + r'* = k\

and verify the result geometrically.

24. Prove the following construction for the normal at any point
P of a Cassini's oval : In PS, PS' take points Q, Q', respectively, such
that PQ = PS', and PQ' = PS; the line joining P to the middle point
of QQ' is the required normal.

25. A system of parallel rays is to be reflected so as to pass

through a fixed point; prove that the reflecting curve must be a

parabola.

26. A system of parallel rays is to be refracted so that their

directions pass through a fixed point ; prove that the refracting curve

must be a conic, and that the eccentricity of the conic will be equal to

the ratio of the refractive indices.

27. Prove that the equation of a Cartesian oval, referred to either

focus as pole, is of the form

r*- 2 (a + b cos 0) r + # = 0.

28. Prove that a Cartesian oval is necessarily closed, if we except
the case where the curve is a branch of a hyperbola.
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CURVATURE

133. Measure of Curvature.

As regards the applications of the Calculus to the theory of

plane curves we have so far been concerned chiefly with the

direction of the tangent at various points. We have not con-

sidered specially the manner in which this direction varies from

point to point.

The subject of curvature, to which we now proceed, can be

treated from several independent stand-points, and although all

the methods lead to identically the same formulae, it is important
for the student to observe that they are in their foundations

logically distinct.

In the first of these methods*, we begin by defining the 'total'

or
'

integral
'

curvature of an arc of a curve as the angle (Stjr)

through which the tangent turns as the point of contact travels

from one end of the arc to the other.

The ' mean curvature
'

of the arc is defined as the ratio of the

total curvature to the length (&s) of the arc; it is therefore equal to

The 'curvature at a point
' P of a curve is defined as the mean

curvature of an infinitely small arc terminated by that point. In

conformity with the previous notation it is denoted by

ds'

In a circle of radius R we have Bs = RSty, and therefore

ds ~~R'

i.e. the curvature of a circle is measured by the reciprocal of its

radius. Hence, if p be the radius of the circle which has the

same curvature as the given curve at the point P, we have

* Other methods are explained in Arts. 136, 137.
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A .circle of this radius, having the same tangent at P, and its

concavity turned the same way, as in the given curve, is called

the '

circle of curvature,' its radius is called the ' radius of curva-

ture/ and its centre the '

centre of curvature.'

The length intercepted by this circle on a straight line drawn

through P in any specified direction is called the ' chord of

curvature' in that direction. If 6 be the angle which the direction

makes with the normal, the length (q) of the chord is given by

q 2p cos@............................(3)

If f, 77 be the rectangular coordinates of the centre of curvature,
we have by orthogonal projections

f= as p sini|r, TJ
= y + p cos

-v/r,
............ (4)

provided the zero of
i|r

be when the tangent is parallel to the

axis of x.

The centre of curvature is the intersection of two consecutive

normals to the given curve. For if P(7, P'G be the normals at

two consecutive points, including an angle S^, and if Bs be the

arc PP', then drawing the chord PP' we have (see Fig. 107)

CP
PP'

sn

or = sm

When P' is taken infinitely near to P, the limiting value of

each factor on the right hand, except
the last, is unity. Hence, ultimately,

In modern geometry a curve is re-

garded as generated in a two-fold way,
first as the locus of a point, and secondly
as the envelope of a straight line (see
Art. 141). Considering any continuous

succession of these associated elements,
the straight line is at any instant rota-

ting about the point, and the point is

travelling along the straight line; and
the curvature d\]//ds expresses the relation between these two motions.

If at any point the curvature is zero, the rotation of the tangent
is momentarily arrested, and we have what is called a '

stationary

tangent.' The simplest instance of this is at a point of inflexion

(Art. 67), where the direction of the rotation of the tangent is reversed

after the stoppage.

Fig. 107.
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If at any point the radius of curvature (ds/dif/) vanishes, the motion

of the point along the line is momentarily arrested, and we have a

'stationary point.' The simplest instance of this is at a 'cusp' such

as we have met with in Figs. 70, 74, 79, 83, etc. The direction of

motion of the point is in such cases reversed after the stoppage. In

the examples of Art. 119 a cusp was regarded as due to the evanescence

of a loop : this shews in another way why the radius of curvature

should vanish there.

The consideration of curvature is of importance in numerous

dynamical and physical problems. For example, in Dynamics, if the

force acting on a moving particle be resolved into two components,

along the tangent and normal to the path, respectively, the former

component affects the velocity, and the latter the direction of motion.

If from a fixed origin we draw a vector V to represent the velocity
at any instant, the polar coordinates of V may be taken to be t>, if/,

where v = ds/dt. Hence the radial and transverse velocities of V will

(see Art. 112 (6)) be

dv

respectively. These are the rates of change of the velocity estimated

in the direction of the tangent and normal to the path of the particle.

Since

d\b d\l/ ds tf ,-.

s-'ara-p'
........................<>

the latter component is equal to the product of the curvature into the

square of the velocity.

134. Intrinsic Equation of a Curve.

The formula
ds

is of course most immediately applicable when the relation between
s and

t/r
for the curve in question is given in the form

-/* ...........................(2)

This is called the '
intrinsic

'

equation of the curve, for the reason

that its form does not depend materially on space-elements extra-

neous to the curve. The only arbitrary elements are the origin
of s and the origin of ^, and a change in either of these merely
adds a constant to the corresponding variable.

If the intrinsic equation be not known, we may employ one or

other of the formulse of Art. 135
;
or we may, in particular cases,

have recourse to special artifices. See Exs. 4, 5, below.
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Ex. 1. In the catenary we have

whence p = a sec2 ^ = y sec
if/, (4)

the notation being as in Art. 120. On reference to the figure there

given it appears that the radius of curvature is equal to the normal PGf.

Ex. 2. In the cycloid (Art. 122) we have

8 = 4asin
\f/, (5)

and therefore
/j
=

4acosi/r. (6)

Hence in Fig. 79, p. 294, we have p = 2PI, or the radius of curvature
is double the normal.

Ex. 3. Again, in the epicycloid we have (Art 123 (11))

4 (a + 6) 6 . a
8 = J sm oTA, ....

a a + 2o

and therefore

_4(a + 5)6 a ,_4(a + 6)6
p ~'

a + 26 ^^Tb*'- a + 26

Hence, on reference to Eig. 81, p. 297, it appears that

where PI is the length of the normal between the tracing point and
the fixed circle.

Ex. 4. In the parabola y
a = 4oa; we have

y = 2acot^, ........................(10)

dy 2a
whence

or -T
sin8

\j/

the negative sign indicating that
\{/

diminishes as 8 increases.

Ex. 5. If the ellipse

oj=acos<, y = 6sin< ..................... (12)

be supposed derived by orthogonal projection from the circle

2 = acos<^, y = asin<, ..................... (13)

we have =
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where (3 is the conjugate semi-diameter. For the element of arc is

altered from aS<t> to &<, and the parallel radius from a to /?. Also since

and a2
3< represent corresponding elements of area, we have

d* =

ds ds d<f> {P . .

Hence p -77
=

-77 -77
=

f ...................... (lo)
d\l/ d<f> d(f/ ab

If p be the perpendicular from the centre on the tangent-line, we
have pft = ab, so that our result may also be written

P <*b*

/i -TV

p = ,
or p = o- ......................(17)

P P

Since JD*
= a8 cos3

if/
+ b

2 sin8
\f/
= a? (1

- e3 sin2
1/>),

the last form is equivalent to
a

1 .............. . ....... (18)

This formula leads to an important result in Geodesy. The figure
of the Earth being taken to be an ellipsoid of revolution, the expression
for the radius of curvature in terms of the latitude

\J/ is, if we neglect e
4
,

*/<?

^ = a(l-e
a + fe

2 sin2
irt
= a(l-*-f6 cos2<A), ...... (19)

where e = (a b)/a
=

^e
2

; that is, e denotes the '

ellipticity
'

of the
meridian. Integrating (19) we find, for the length of an arc of the

meridian, from the equator to latitude ^,

s = a(l-^)^-|aesin2i/r. .................. (20)

Ex. 6. In the equiangular spiral (Art. 126), we have

t=0 + a, ..............................(21)

whence d^/ds = dO/ds = (sin a)/rt

or p=--. . ............................(22)
Bin a

Hence the radius of curvature subtends a right angle at the origin.

135. Formula for the Radius of Curvature.

The expression d^/ds for the curvature is easily translated

into a variety of other forms.

1. In rectangular Cartesian coordinates, we have

L. I. 0.
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and therefore

sec2

[CH. X

dty d (dy\ _ d?y dx _ d?y

~ds
=
dsdx-d^Ts- COS "

lr^ i

whence
da;2

14-1-3.^ {

dx

(2)

This form shews, again, that the curvature vanishes at a point
of inflexion, where d?y\da?

=
(Art. 67).

When dy/dx is a small quantity the formula (2) gives, approxi-

mately,

the proportional error being of the second order. This formula is

an obvious transcript of dty/ds, since when ty is small we may
write dyjdx (= tan

\/r)
for ty, and djdx for d/ds. It has important

practical applications, e.g. in the theory of flexure of bars.

2. It was proved in Art. 131 that the projection (t) of the

radius on the tangent is given by

dp
,(4)

If U, Uf
be the perpendiculars from the origin on two conse-

cutive normals PC, PC, and if OU' meet PC in N9 we have,

ultimately,

OU' -OU= U'N= CNS&, or Bt =

Fig. 108.
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The limiting value of GU or GN is therefore dt/d^, whence

(5)

3. With the notation of Art. 112 we have

t dr x^v- = cos = -T- (o)
r ds

__^ f ^'*
drdp'

dr
this gives pssr

dp'

a form which is very convenient of application when the tangential-

polar equation (Art. 129) is given.

Ex. 1. In the catenary

y = acosh (x/a) ........................... (8)
we have

dy , x cPy 1 , x
., fdy\* , x

-? = smh - , -r^ = - cosh -
,

1 +
( -j- }

= cosh2 -
,

ax a <kxr a a \ax/ o>

whence p = acosh2

(x/a)=y*/a......................... (9)

Since y = a sec
i/r,

this agrees with Art. 134, Ex. 1.

Ex. 2. In the parabola
r = p*/a .............................. (10)

dr 2p*we have p = r j-=-^-= T ........................(11)
dp a2

ai

Ex. 3. In the central conies we have (Art. 129, Ex. 4)

........................ (12)

and therefore p =j- ............................... (13)
p*

Cf. Art. 134, Ex. 5.

136. Newton's Method.

In another method of treating curvature, employed by Newton*,
a circle is described touching the given curve at P, and passing
through a neighbouring point Q on it, and we investigate the

limiting value of the radius of this circle when Q is taken infinitely
near to P.

*
Principia, lib. i. , prop. vi. , cor. 3.

222
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We can easily shew that in the limit the circle becomes identical

with the '

circle of curvature
'

at P, as

defined in Art. 133. For if G be the

centre, then, since GP = GQ, there will

be some point (P') on the curve, be-

tween P and Q, such that its distance

from G is a maximum or minimum,
and therefore* such that CP' is normal ' c +

to the curve. In the limit P' approaches
P indefinitely, and G, being the inter-

section of consecutive normals, will

coincide with the 'centre of curvature/

Newton's method leads to a very

simple formula for the radius of curva-

ture. Let Q'QT be drawn perpendi-
cular to the tangent at P, meeting the circle again in Q', and the

tangent in T. Since

we have 2p = lim TQ' = lim
TP*

(1)

If Q'QT be drawn at a definite inclination to the normal at P,
instead of parallel to this normal, the limiting value of the same
fraction gives the chord of curvature in the corresponding direc-

tion. It occasionally happens that the chord of curvature in some

particular direction can be found with special facility ;
the radius

of curvature can then be inferred by the formula (3) of Art. 133.

For instance, we can deduce the formula for the radius of

curvature in Cartesian coordinates. Thus, referring to Fig. 42,

p. 153, and denoting by q the chord of curvature parallel to the

axis of y, we have

- = lim cos

where $ is the inclination of the tangent at P to the axis of x.

Since

5 = 2/3 cos ifr,
tan ty

=
<j>' (a),

it follows that

.(3)

*
i // / \ 01 V- d> (a) cos3

-ur = -

P [l + { r

This is identical, except as to notation, with the formula (2) of

Art. 135.
* See Art. 63, Ex. 2.
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Ex. 1. In the parabola, let QR be a chord drawn parallel to the

tangent at P, to meet the diameter through
P in F; see Fig. 110. We have, then,

from the geometry of the curve,

where S is the focus. Hence, for the

chord of curvature (q) parallel to the axis,

= lim = 45P. ...... (4)

If be the angle which the normal

at P makes with the axis, we have

where SZ is the perpendicular from the

focus on the tangent at P. Hence Fig. 110.

.(5)

since SZ* = SA . SP, A being the vertex.

Ex. 2. In the ellipse (or hyperbola), if QR, drawn parallel to the

tangent at either extremity of the diameter POP', meet this diameter

in F, we have

P'

Fig. 111.

where CD is the semi-diameter conjugate to CP. Hence, for the

chord of curvature (q) through the centre,

(6)

If CZ be the perpendicular from the centre on the tangent at

P
t
and the angle which CP makes with the normal, we have

cos 6 = CZjCPy and therefore

CD2

........................... (7)

in agreement with Art. 134 (17).
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Again, if 6' be the inclination of either focal distance to the normal
at P, it is known that cos 6' = CZ/CA, where A is an extremity of the

major axis. The chord of curvature
(q') through either focus is there-

fore given by
*

(8)

Ex. 3. To find the radius of curvature
(/o )

at the vertex of the

cycloid

x=a(0 + BmO), y = a(\ cos0)................ (9)
"We have

338 /a /j\2 , i /,- = a(0 + sm 0)*-4sm40=

or
2

whence p = lim^o 5- = 4a. ........................ (10)
zy

137. Osculating Circle.

A slightly different way of treating the matter is based on
the notion of the 'osculating circle/ If Q and R be two neigh-

bouring points of the curve, one on each side of P*, we consider

the limiting value of the radius of the circle"PQR, when Q and R
are taken infinitely close to P.

We can shew that if the curvature of the given curve be
continuous at P, this circle coincides in the limit with the '

circle

of curvature/ For if G be the centre of the circle PQR, there will

be a point P', between P and Q, such that CP is normal to the

given curve, and a point P", between P and R, such that CP" is

normal to the curve. Let P'C and P"C meet the normal at P in

the points C' and C", respectively. Under the condition stated,
G' and G" will ultimately coincide with the centre of curvature at

Fig. 112.

* This condition is not essential, but it simplifies the proof, and meets all

ordinary requirements.
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P, and, since CO' < C'C", C will d fortiori ultimately coincide with

the same point.

Since, before the limit, the circle PQR crosses the given

curve three times in the neighbourhood of P, it appears that the

osculating circle will in general cross the curve at the point of

contact. See Fig. 116, p. 350.

If in Fig. 41, p. 151, QV meet the circle through P, Q, P'

again in W, we have

and therefore, for the chord of curvature of the curve y = < (x\

parallel to the axis of y,

W (0 cos2

q rv* A.H'

as in Art. 136 (2).

Ex. If in Fig. 110, p. 341, the circle PQR meet PV in W, we have

QV.VR = PV.VW, and therefore 7W=SP.
Hence the chord of curvature parallel to the axis of the parabola
is 4*S7>. t-

A similar argument may be used to find the chord of curvature

through the centre, in the case of the ellipse (Fig. Ill, p. 341).

138. Envelopes.

Suppose that we have a singly-infinite system, or family, of

curves differing from one another only in the value assigned to

some constant which enters into their specification. Two distinct

curves of the system will in general intersect ;
and we consider

here, more particularly, the limiting positions of the intersections

when the change in the constant (or
'

parameter,' of the system,
as it is sometimes called), as we pass from one curve to the other,

is infinitely small. On each curve we have then, in, general, one

or more points of 'ultimate intersection' with the consecutive

curve of the system. The locus of these points of ultimate inter-

section is called the '

envelope
'

of the system.

Ex. 1. A system of circles of given radius, having their centres

on a given straight line. The parameter
here is the coordinate of the centre.

If C, C' be the centres of two circles

of the system, the line joining their in-

tersections bisects GC' at right angles.

Hence the points of ultimate intersection

of any circle with the consecutive circle

are the extremities of the diameter which

is perpendicular to the line of centres. jfig. 113
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The envelope therefore consists of two straight lines parallel to the

line of centres, at a distance equal to the given radius.

Ex. 2. A straight line including, with the coordinate axes, a

triangle of constant area

If AB, A'B' be two positions of the line, intersecting in P, the

triangles APA', BPB' will be equal, whence

PA.PA' = PB.PB'.

Hence, ultimately, when AA 1

is infinitely small, P will be the middle

point of AB. If
a;, y be the coordinates of P, and to the inclination of

the axes, we have, then, OA =
2o;, OB = 2y, and therefore

sn CD = y.

The envelope is therefore a hyperbola having the coordinate axes as

asymptotes. Fig. 114 illustrates the case of o> = --7r.

Y

A' A X

Fig. 114.

139. General Method of finding Envelopes.
The equation of any curve of the system being

<f> (*, y, a)
= 0, ................... .....(1)

where a is the parameter, then at the intersection with another
curve

4>(x,y, a
/

)
= 0, ........................ (2)

we have, evidently,

ft (a?, y, cQ-ftfo y, a)

o a
=0

When the variation a' a of the parameter is infinitely small, this

last equation takes the form

.(4)
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where d/da is the symbol of partial differentiation with respect
to a. See Art. 34.

The coordinates of the point, or points, of ultimate intersection

are determined by (1) and (4) as simultaneous equations, and the

locus of the ultimate intersections is to be found by elimination

of a between these equations.

Ex. 1. The circles considered in Art 138, Ex. 1 may be repre-
sented by

(x-a)* + y* = a*. ........................... (5)

Differentiating with respect to a, we find

a-a = ............................... (6)

Eliminating a between (5) and (6) we get

y = a, ................................. (7)
the envelope required.

Ex. 2. If a particle be projected from the origin at an elevation 0,

with the velocity 'due to' a height h, the equation of the parabolic

path is

8ec*0, ..................... (8)

where the axes of x, y are respectively horizontal and vertical. Writing
a for tan 0, we get

(9)

To find the envelope of the paths for different elevations, and
therefore for different values of a, we differentiate (9) with respect to a,

and find

This is satisfied either by x = 0, or by ax = 2h. The former makes
y = 0, and shews that the origin is part of the locus, as is otherwise
obvious. The alternative result leads, on elimination of a, to

a parabola having its axis vertical, its focus at the origin, and its

vertex at an altitude h*.

140. Algebraical Method.

If in the equation <f> (x, y, a) = 0, (1)

<j)
be a rational integral function of a, the rule of the preceding

Art. may be investigated otherwise as follows.

* This problem is interesting historically as being the first instance in which
the envelope of a family of curved lines was obtained (Bernoulli). The general
method of finding envelopes appears to be due to Leibnitz.
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If we assign any particular values to x, y, the equation deter-

mines a, that is, it determines what curves of the system pass

through the given point (x, y). If the equation be of the nth

degree in a, the number of these curves (real or imaginary) will

be n, and these n curves will in general be distinct. But if the

point in question be at the intersection of two consecutive curves,

two of the values of a will be coincident. Now it was shewn in

Art. 50 that the condition for a double root of the equation in a is

(2)

The ultimate intersections are therefore determined as before by
(1) and (2) as simultaneous equations, and the envelope by elimi-

nation of a between them.

If the equation (1) be of the first degree in a, only one curve

of the system passes through any assigned point, and there is of

course no envelope. Examples of this are furnished by the parallel
lines

lot + my = a, ...........................(3)

and by the concentric circles

o? + y*
= a............................(4)

If (1) be a quadratic in , say

Paa + 2Qa + J? = 0, .................... .(5)

where P, Q, R are given functions of x and y, the condition for

equal roots is

PR =
(f. ...........................(6)

This is therefore the equation of the envelope.

Ex. 1. If the straight line

include with the coordinate axes a triangle of constant area &a
,
we have

a/3sin<D = 2&2
,

........................... (8)

where a> is the inclination of the axes. Hence, eliminating ft, the

equation of the variable line is found to be

aV sin a>-2a&2 + 2&2# = ...................... (9)

Expressing that this quadratic in a has equal roots, we find for the

envelope
2aysina> = #

!

, ........................... (10)

as in Art. 138, Ex. 2.
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Ex. 2. One leg of a right angle passes through a fixed point, and

the vertex describes a fixed straight line; to find the envelope of the

other leg.

If the fixed straight line be the axis of y, and the fixed point be at

(a, 0), the equation of the second leg is easily seen to be

where m is the tangent of the inclination to the axis of x. Writing
the equation in the form

m*x-my + a = Q, ........................ (12)

we see that the envelope is the parabola

y* = 4ax. ..............................(13)

141. Contact-Property of Envelopes.

The examples already given will have prepared the student

for the following theorem :

The envelope of a system of curves touches (in general) at

each of its points the corresponding curve of the system.

The equations <f> (x, y, a)
= 0, ........................(1)

o

and $ (* ? )
=* 0,

determine x, y as functions of a, say

x = F(a), y=/(a), .....................(3)

and the latter pair of equations define the envelope. If we
substitute from (3) on the left-hand side of (1) we obtain a function

of a which must vanish identically, and the result of differentiating
this function with respect to a must also be zero. Hence, by the

rule of Art. 59, 1, we must have

dx da. dy da da da

which reduces, in virtue of (2), to

dx
, d<j>dy rt

^- + ^-f = 0, .....................(5)da dy da

dy <ty

da dx
or -_ = _. ............................(6)dx

d<f>

da <ty

Now, by Art. 61, the left-hand side of this equality is the value of

dy/dx for the envelope ;
and the right-hand side is, by Art. 59 (10),
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the value of dyjdx for the curve (1). Hence at the point of

ultimate intersection the curve (1) and the envelope have a
common tangent line.

The geometrical basis of the theorem may be indicated as follows :

Let the figure represent portions of two curves of the system,

corresponding to values a
,
ax of the parameter a, and intersecting

Fig. 115.

in P. Let P and P-^ be the corresponding points on the envelope;
viz. PQ is the limiting position of P when, a being fixed, ax is taken

infinitely nearly equal to a ; and Pl is the limiting position of P when,
a

a being fixed, a is taken infinitely nearly equal to a1 . Since these

variations of a are in opposite senses, and since the coordinates of P
are as a rule symmetric functions of a

,
a1} the corresponding displace-

ments of P, viz. PP and PPlt will in general, when
1 04 -a,, |

is very
small, be in nearly opposite directions, and P PPl

will be a very obtuse-

angled triangle. Hence, ultimately, when
1
04 a

1

is infinitely small,
the chords P^P^ and P P will coincide in direction ; i.e. the tangent to

the envelope is identical with the tangent to the variable curve.

The foregoing investigations break down in certain cases. As
regards the analytical proof, it is plain that no inference can be drawn
from (5) whenever at the point in question we have

simultaneously; i.e. when the value of dyjdx for the curve (1) is not

uniquely determinate. This peculiarity occurs at a 'singular point,'
whether it be of the nature of a node, a cusp, or an isolated point (see
Art. 119). It appears that the locus of the singular points of the

given family, when such a locus exists, is included in the result of

eliminating a between (1) and (2), but this locus does not in general
* touch

'

the given curves, iin any proper sense of the word. The full

investigation of this matter is beyond our limits*, but a simple example

may be given. Consider the family

+ b)......................... (8)

* It is given in books on Differential Equations, under the head of '

Singular
Solutions.'
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It appears from Art. 119 that there is a node, a cusp, or an isolated

point at (0, a), according as b is positive, zero, or negative. The

process for finding the envelope gives y a = and therefore

(9)

The line x = gives the locus of the singular points, and does not touch

the original curves ;
the line x = b on the other hand does so (unless

6 = 0).

In the geometrical view of the matter it was assumed that there is

no other intersection of the curves a
, 04 in the immediate neighbour-

hood of P. In the case of a node we have usually two adjacent inter-

sections, whose ic-coordinates (for instance) are of the forms /(a , aj)

and/(a1 ,
a

), respectively ; but/(a ,
a

x)
is not a symmetric function of

a
, op The argument does not therefore apply to the node-locus.

Again, in the case of a cusp the displacement of the point P in

Fig. 115, due to an infinitesimal variation of a or a,, is found not to

be of the first order; and the points P ,
P

l are as a rule on the same
side of P. In the neighbourhood of an isolated point there is no real

intersection of consecutive curves.

142. Evolutes.

The ' evolute
'

of a curve is the locus of its centre of curvature.

Since the centre of curvature is (Art. 133) the intersection of two
consecutive normals, the evolute is also the envelope of the normals
to the given curve. Hence the normals to the original curve are

tangents to the evolute*.

Ex. 1. In the parabola

S^ 4^' (1)

we have a/ = c&cot2 ^, y = 2acot>\l/
t (2)\ /

and (by Art. 134, Ex. 4)

p = 2a/sin
8

if/ (3)

The coordinates of the centre of curvature are therefore

= x - p sin
\(/
= 3x + 2a, ) W

Hence if = //1 6a
4 = 4a/a = -^ (

-
2a)*/a.

The evolute is therefore the semi-cubical parabola

........................... (5)

Otherwise : it is shewn in books on Conies that the equation of the
normal is of the form

y = m(x 2a)-am*......................... (6)

*
It being evident that the exceptional cases noted at the end of Art. 141 cannot

present themselves in the envelope of a straight line.
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To find the envelope of this we differentiate partially with respect to m
t

and obtain

The elimination of m leads again to the result (5).

The curve is shewn in Fig. 116.

Fig. 116.

Ex. 2. The normal at any point of the ellipse

M*
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and the evolute is
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(13)

This curve, which may be obtained by orthogonal projection from the

astroid, is shewn in Fig. 117.

The centres of curvature at the points A, , A', B' are Et F, E', F'
t

respectively.

Fig. 117.

Ex. 3. To find the evolute of a cycloid.

At any point P on the cycloid APD (Fig. 118), we have, by Art 134,

Ex.2,
p=2P7. (14)

Let the axis AS be produced to D', so that BD' = AJ3
;
and produce

TI to meet a parallel to 1, drawn through D\ in /'. If a circle be
described on //' as diameter, and PI be produced to meet its circum-

ference in P', we have P'l PI, so that P' is the centre of curvature
of the cycloid at P. And since the arc P'l' is equal to the arc TP

y
and

therefore to BI or DT, the locus of P' is evidently the cycloid generated

by the circle IP'I', supposed to roll on the under side of Z>'/', the tracing

point starting from D'. That is, the evolute is a cycloid equal to the

original cycloid, and having a cusp at D'.

It appears, further, from Art. 122 (4), that the cycloidal arc P'D is

equal to 2/P', or P'P. Hence

arc D'P' + P'P = const (15)

The lower cycloid in Fig. 118 is therefore an 'involute' (Art. 144) of

the upper one*.

* This example is interesting historically in connection with the theory of the

cycloidal pendulum. The results are due to Huyghens.(1673).
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Whenever a curve is defined by a relation between p and ty,

say

the evolute is given by P^f'ty), (17)

provided that in (17) the origin of
-\Jr

be supposed moved forwards

through a right angle. This is seen at once on reference to Fig. 108,

p. 338, since U, the perpendicular from the origin on the tangent
to the evolute, is equal to PZt

or dp/d-^r, when the symbols refer

to the original curve.

Ex. 4. To find the evolute of an epi- or hypo-cycloid.

If in Fig. 81, p. 297, a perpendicular p be drawn from to TP, the

tangent to the epicycloid at P, we have

p = OTcos PIC =
(a + 2b) cos <,

or 00. .(18)

If the origin of $ correspond to a cusp instead of to a vertex, the cosine

of the angle must be replaced by the sine.

Hence, for the evolute, we have

= a sin
a

.(19)
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which can be brought to the same form as (18) by an adjustment of the

origin of
{{/.

The evolute is therefore a similar epicycloid in which the

dimensions are reduced in the ratio a/(a + 26).

For a hypocycloid we have merely to change the sign of b*.

143. Arc of an Evolute.

The difference of the radii of curvature at any two points of a

curve is equal to the arc between the corresponding points of the

evolute.

To prove this, let the normals at two neighbouring points P ,

Pl of the curve meet in (7; and let C
, Cl be the corresponding

centres of curvature. By Art. 141, C^G^ is in general an obtuse-

angled triangle ;
and when P

,
Pl are taken infinitely close to one

another, QC+ CC is ultimately in a ratio of equality to (7j(7 .

Also since the distance from G of a variable point on the curve

is stationary atP
,
the difference between GPV and CP is ultimately

of the second order of small quantities, and may therefore be neg-
lected. Hence

CiA - <7 P = C,G + CC = C, C .

Fig. 119.

It follows that if p be the radius of curvature of the original curve,
and <7 the arc of the evolute, we have Bp = 8<r, ultimately, or

-P- - 1 m
do--

Hence, integrating, PO-+C, ...........................(2)

where G is an arbitrary constant depending on the origin of

measurement of <r.

Otherwise : by differentiation of the equations

(3)

* It appears on examination that the equation

p= c cos m\j/, or p= c sin m\[t,

represents an epi- or a hypo-cycloid according as m ^ 1, provided we include the

pericycloids among the epicycloids, in accordance with the definition of Art. 123.
The pedal of an epi- or a hypo-cycloid with respect to its centre is therefore an

epicyclic of the special type referred to in Art. 125, Ex. 2. Thus Fig. 92 represents the

pedal of a four-cusped epicycloid, and Fig. 94 that of a four-cusped hypocycloid.

L. I. C. 23
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of Art. 133, we find, since

dx/ds = cos
\j/t dyjds = sin

\f/, d\j//ds
=

1/p,

d dp . dri dp
T~ = 7- sin ur. -r-i = - cos \1/. ... (4)
as as as ds

Hence
~7t

= ~ cot 'A> (5)

which shews that the tangent to the evolute is normal to the original

curve, and

d<r_ /f/#\V AfyY) dp

which gives on integration the result (2).

For the case of the cycloid, this property has been already obtained
in Art. 142 (15).

A curious consequence of the above theorem is that the circles

of curvature of adjacent points on a curve do not in general inter-

sect. For the distance between the centres is a chord of the evolute,
and is therefore in general less than the corresponding arc, i.e. less

than the difference of the radii.

Again, if the intrinsic equation of a curve be

we have a- = p + =/' (^) + C. .................. (8)

If we alter the origin of ^r by a right angle, this is the intrinsic

equation of the evolute. The additive constant may be omitted if

wo adjust the origin of a.

Ex. 1. The radii of curvature of an ellipse of semi-axes a, b, at the
extremities of these axes, are b*/a and aP/b, respectively. Hence the

length of any one of the four portions into which the evolute is divided

(see Fig. 117) by its cusps is

a?/b-b*/a or (a*-b*)/ab.

Ex. 2. The intrinsic equation of the cycloid being
8 = k sin

if/,
.............................. (9)

that of the evolute is <r = &cosi/>............................ (10)

The evolute is therefore an equal cycloid, as already proved.

144. Involutes, and Parallel Curves.

If a curve A be the evolute of a curve B, then B is said to be
an ' involute

'

of A.

We say an involute because any given curve has an infinity of

involutes. To obtain an involute we take any fixed point on the

curve, and along the tangent at a variable point P measure off a

length PQ in the direction from 0, so that

arc OP + PQ = const...................... (1)
<
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It is easily shewn, by an inversion of the argument of Art. 143,

that the tangents to the given curve are normals to the locus of Q,

so that this locus fulfils the above definition of an involute. And,

by varying the '

constant,' we obtain a series of involutes of the

same curve.

As a concrete example we may imagine a string to be wound on a

material arc of the given shape, being attached to a fixed point on it.

The curve traced out by any point on the free portion of the string will

be an involute. This is in fact the origin of the term.

Ex. 1. The tractrix is an involute of the catenary ; see Art. 120.

Ex. 2. In an involute of a circle of radius a we have, evidently,

ds

if the origin of
\j/
be properly chosen. Hence, integrating,

(2)

(3)

no additive constant being required, if s be measured from the cusp

(*-!<>).

In this particular case (of the circle) it is evident that all the invo-

lutes are identically equal. It is therefore customary to speak of the

involute of a circle. The curve is shewn in Fig. 120

Fig. 120.

If a constant length be measured along the normal to a given
curve, from the curve, the locus of the point thus determined is

called a *

parallel
'

to the given curve.

23-2
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If CP, GP' be two consecutive normals to the given curve, and

C P Q

Fig. 121.

Q, Q' the corresponding points of a parallel curve, we have

Since the difference between GP and CP' is of the second order of

small quantities, it follows that the same holds of the difference

between CQ and CQ', and thence that the angles at Q and Q' in

the triangle CQQ' are ultimately right angles. Hence CQ, CQ' are

normals to the parallel curve.

Hence two parallel curves have the same normals, and there-

fore the same evolute
;
in other words, parallel curves are involutes

of the same curve.

Conversely, it is evident that the various involutes of any curve

are a system of parallel curves.

145. Instantaneous Centre of a Moving Figure.

The theory of the displacements, in its own plane, of a figure
of invariable form, though belonging properly to Kinematics, has
some interesting geometrical applications.

The first proposition of the theory is that any such displacement
'is equivalent to a rotation about some finite or infinitely distant

point.

The following is a proof. If A, B be any two points of the figure
in its first position, and A', B' the

same points in the second position,
the new position P' of any third

point originally at P is found by
constructing the triangle A'P'B'

congruent with APB. Hence the

positions of two points are sufficient

to determine the position of the

moveable figure.

Now, considering any point what-

ever of the figure, let P be its initial

and Q its final position; and let R
be the final position of that point of

the figure which was originally at Q.
Fig. 122.

Since PQ and QR are two positions of the same line, they are equal.
Hence if / be the centre of the circle PQR, the triangles FIR, Q1R are

congruent; that is, / represents the same point in the two positions.
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The displacement is therefore equivalent to a rotation about /. This

point is called the ' centre of rotation.
3

It may happen that PQ, QR are in a straight line. The displace-
ment is then equivalent to a translation of the figure, without rotation

;

or, we may say, the centre of rotation is at infinity.

Next, considering any continuous motion of a plane figure in

its own plane, let us fix our attention on two consecutive positions.
The figure may be brought from the first of these to the second by
a rotation about the proper centre. The limiting position of this

point, when the two positions are taken infinitely close to one

another, is called the ' instantaneous centre/

If P, P f

be consecutive positions of any the same point of the

figure, and the corresponding angle of rotation, the centre of

rotation (/) is on the line bisecting PP' at right angles, and the

angle PIP' is equal to 80. Hence, ultimately, the infinitesimal

displacement of any point P at a finite distance from / is at right

angles to IP and equal to IP . SO.

If we introduce the consideration of time, and denote by &t the

interval that elapses between the two positions, the limiting value

of BO/Bt, viz. dO/dt, is called the '

angular velocity
'

of the figure.
The velocity of that point of the figure which coincides with the

instantaneous centre / is zero, that of any other point P is at right

angles to /P, and equal to IP . dO/dt.

The fact that in any motion of a plane figure (of invariable

form) the normals to the paths of the various points all pass through
the instantaneous centre is often useful in geometrical questions.
If we know the directions of displacement of two points of the

figure, the instantaneous centre is determined as the intersec-

tion of the normals at these points to the respective directions.

We can thence assign the directions, and relative magnitudes,
of the displacements of all other points.

Again, considering any line (straight or curved) in the moving
figure, it is evident that the point or points of ultimate intersection

of this line with a consecutive position are the feet of the normals
drawn to it from the instantaneous centre. For any other point
of the line is moving in a direction making a finite angle with it.

Ex. 1. The extremities of a straight line AB of constant length
describe two straight lines OX, OY at right angles to one another.

It is known that any point P of the line describes an ellipse whose

principal axes are along OX, OY. The above theorem now gives us

a construction for the normal to this ellipse at P ;
viz. if we draw

AI, .#/ perpendicular to OX, OY, respectively, /is the instantaneous

centre, and IP the required normal. See Fig. 123.
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Ex. 2. In the preceding Example, the point of ultimate inter-

section of the moving line AB with a consecutive position is at the

Y

'o

A

Fig. 123. Fig. 124.

foot Z (Fig. 124) of the perpendicular from the instantaneous centre

/. Now if

(i)

(2)

the coordinates of Z are given by

x =BZ cos
<f>
= BI cos3 < = k cos*

<f>,

and the envelope of AB is therefore the astroid
n a A

x * + y* = k*.

Cf. Art. 124, Ex. 4.

Y

Fig. 125.
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Ex. 3. An arm OQ revolves about one extremity with angular
velocity <u ; a bar is hinged to it at Q and is constrained to pass always
through a fixed point C ; it is required to find the velocity of this bar

Fig. 126.

in the direction of its length. (The arrangement is that of the crank
and piston-rod of a steam-engine with oscillating cylinder, the point
C being on the pivot-line of the cylinder.)

The instantaneous centre is at the intersection of OQ produced with
the perpendicular to the piston rod at C. Hence, if ON be the per-

pendicular from on CQ, produced if necessary, the velocity of the

point of the rod which coincides with C is

CAZV

(3)

146. Application to Rolling Curves.

Suppose that we have two plane figures, each of invariable

form, and that a curve fixed in one rolls, without sliding, on a curve

fixed in the other. Any point of either figure will then describe

a curve relatively to the other; a curve so described is called a
'

roulette.'

The cases where the rolling curves are circles have been con-

sidered in Arts. 122 124.

The general theory of roulettes is of some importance in Geo-

metry and in Kinematics, owing to the fact that any continuous

motion whatever of a figure in its own plane may be regarded as

consisting in the rolling of a certain curve fixed relatively to the

figure on a certain curve fixed in the plane. See Art. 149.

When one plane curve rolls upon another, which is regarded as

fixed, the instantaneous centre is at the point of contact.
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We will suppose, in the figure, that it is the lower curve

which is fixed. Let A be the point of contact,
and let equal infinitely small arcs AP, AP'
(= Ss, say) be measured offalong the two curves.

Let the normals at P and P' meet the common
normal at A in the points and 0'. Then

ultimately we have

where jR, JR' are the radii of curvature of the

two curves at A. After an infinitely small

displacement, P'O' will come into the same

straight line with OP, the two curves being
then in contact at P. Hence the angle (&0)

through which the rolling curve will turn,

being equal to the acute angle between OP
and P'O', is equal to the sum of the angles at

and 0', so that

.(1)

Fie 127
ultimately. Again, the chords AP, AP' are

ultimately equal, and they include an infinitely small angle at A.

Hence the distance PP' is ultimately of the second order in $s. It

follows that when Ss is indefinitely diminished the limiting position
of the centre of rotation (/) coincides with A, for if it were at a

finite distance from this point, the displacement of P', being equal
to IP' . &0, by Art. 145, would be of the first order in 8s.

It follows that when a curve rolls upon a fixed curve, the normals

to the paths of all points connected with the moving curve pass

through the point of contact. We have already had instances of

this result in the cycloidal and trochoidal curves discussed in

Arts. 1 22, 1 23. Again ifa straight
line roll on a curve, it is normal
to the path traced out by any of

its points (Art. 144).

Further, if we consider any
line (straight or curved) which is

carried with the rolling curve, the

points of ultimate intersection

of the carried curve with its con-

secutive position are the feet of

the normals drawn to it from the

point of contact. And the en-

velope of the carried line is the locus of these feet.
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Ex. 1. If a circle roll on a fixed straight line, any diameter

envelopes a cycloid.

Let C be the centre of the rolling circle, / the point of contact, IZ the

perpendicular on the diameter PQ. Since Z is on the circle whose

diameter is C7, it is easily seen that if this circle be supposed to roll always
with twice the angular velocity of the large circle, it will always have

the same point of contact with the fixed line, and the point Z will

move as if it were carried by the small circle. Its locus is therefore a

cycloid.

Ex. 2. Similarly if a circle (A) roll on a fixed circle (B\ the envelope
of any diameter of A is an epi- or hypo-cycloid which would be generated

by the rolling of a circle of half the size of A on the circumference of B.

147. Curvature of a Point-Roulette.

To investigate the curvature of the path of any point P fixed

relatively to the rolling curve, let I be the point of contact, and

let I' be a consecutive point of contact, P' the corresponding

position of P. Since the displacement of the point of the rolling

curve which comes to /' is of the second order of small quantities,

angle through which the figure has turned is

(1)

altimately. Let the normals to the path of P, viz. PI and P'/', be

produced to meet in G. If Sty be the inclination of these normals,

we have

(2)

Fig. 129.
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if
<f>

be the angle which IP makes with the normal at /. Also,
from the figure

'"*'- Z/P/'

B0-
cos

by Art. 146 (1), if R and R' be the radii of curvature of the fixed

and rolling curves. Equating (2) and (3), we find

This gives the limiting position of (7, i.e. the centre of curvature of

the path of P. The radius of curvature (p) is then found from

/fp /^ r _i_ rP (x\\n = \jJT = \j JL T" J. -L \O)

The result contained in (4) and (5) may be put in a simple

geometrical form as follows. On the normal
at / mark off a length IH such that

1
4+4-' w /

and describe a circle on IH as diameter.

Let IP meet this circle in Q. We have
then

1 _/l l_\ ,~
' S

and the relation (4) takes the form

. j = _L cj\ Fig. 130.

CI
+ IP IQ'

This shews that if P coincide with Q, 01 is infinite
;

i.e. any point
of the moving figure which lies on the circle just defined is at a

point of inflexion of its path. For this reason, the circle in question
is called the '

circle of inflexions/

From (7) and (5) we find

/P./Q _/P
~QP~' p -QP (*

The latter result shews that p changes sign with QP ; that is, the

paths of the various points of the moving figure are concave or

convex to /, according to the side of the circle of inflexions on which

they lie. In the standard case represented in the figures, the paths
are concave or convex according as P is outside or inside the circle.
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An example is furnished by the trochoidal curves figured on

p. 296. The circle of inflexions has in this case half the size of the

rolling circle.

We have taken as our standard case that in which the two
curves are convex to one another, as in Figs. 127, 129. Any other

case may be included by giving proper signs to R and R'.

The preceding theory has an application to the problem of '

rocking
Stones' in Statics. When one rough body rests on another, with a

single point of contact, its centre of gravity must be vertically above
this point. And for stability of equilibrium it is necessary that the path
of the centre of gravity, in any possible rolling displacement, should be

concave upwards.

Ex. 1. In the cycloid, if a be the radius of the generating circle,

we have

Substituting in (4), we find

and therefore p = 2/P. (11)

Ex. 2. In the epicycloid (Art. 123) we have

, (12)

whence
~ TCI =

a + 26
COS <f> =

a

a + 2b
IP, .(13)

.(14)

We note that if b = \a, we have p = oo
;

cf. Art. 124, Ex. 2.

148. Curvature of a Line-Roulette.

The curvature of a line-roulette,
i.e. of the envelope of a straight line

carried by the rolling curve, can be
found still more simply. The perpen-
diculars IZ, I'Z' let fall on two con-

secutive positions of the line, from the

corresponding positions (in space) of the

instantaneous centre, are normals to the

envelope, and the angle which they make
with one another at their intersection

(C) is equal to the angle of rotation 80.

Hence if < be the angle which IZ makes
with the normal to the rolling curve at

/, and //' = Ss, we have ultimately

8s cos < = 01 . S0 (1)
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Hence, substituting the value of from Art. 146 (1), we have

cos
<t> _ 1 1

The radius of curvature of the envelope is then given by

........................(3)

If, along the normal to the rolling curve at J, but in the direction

opposite to that chosen in the preceding Art., we measure off a

length IK such that 111
and describe a circle on this line as diameter, it appears from (2)
that C lies on this circle

;
in other words, the locus of the centres

ofcurvature of all line-roulettes, in any given position of the rolling

curve, is a circle. Also, when the carried line passes through K,
Z coincides with (7, and G is a '

stationary point
'

(Art. 133) on the

envelope. The aforesaid circle is therefore called the 'circle of

cusps/

Ex. 1. Regarding a cycloid as the envelope of the diameter of a
circle which rolls on a fixed straight line (Art. 146, Ex. 1), we infer that

the radius of curvature is double the normal.

Ex. 2. If an epicycloid be generated as the envelope of the diameter
of a circle rolling on a fixed circle, then, to conform with the notation

of Art. 123, we must write R = a
t
R' = 26, and therefore, from (2),

nr a TVCI--^ COS
</>
=-

jry . IZ,
a, + 26 a + 26

in agreement with Art. 147, Ex. 2.

149. Continuous Motion of a Figure in its own Plane.

Consider any continuous series of positions of a plane figure
moveable in its own plane. The instantaneous centre will have a

certain locus in space, and also a certain locus in the figure. The
curves so defined are called

' centrodes '; the former is distinguished
as the '

space-centrode/ and the latter as the *

body-centrode.' The
theorem referred to in Art. 146 is that the given motion of the

figure can be represented as due to the rolling of the body-centrode,
without slipping, on the space-centrode.

Considering any given position of the figure, let / be the

instantaneous centre, and let /', /' be adjacent corresponding

points on the body-centrode and space-centrode, respectively. Let
80 be the angle through which the body turns as the instantaneous



148-150] CURVATURE 365

We have then, ultimately, bycentre is transferred from J to J'.

Art. 145,
//' = //', and I'J' = Il'.Se.

The angle TIT therefore ultimately vanishes. The tangent lines

to the two loci at /therefore coincide, and corresponding elementary
arcs of the two curves are in a ratio of equality.

Ex. A straight line AB of constant length moves with its extremities

on two fixed straight lines OX, OY.

Fig. 132.

The instantaneous centre / is at the intersection of perpendiculars
to OX, OY at the points A, B respectively. The points A, lie on the
circle described on 01 as diameter ; and since in this circle the chord

AB, of given length, subtends a constant angle .40-5 at the circumference,
the diameter is determinate. Hence the space-locus of / is a circle with
centre 0. Again, since the angle A1B is constant, the locus of / relative

to AB is a circle whose diameter is equal to the constant value of 01.
Hence the motion is equivalent to the rolling of a circle on the inside

of a fixed circle of twice its size. This kind of motion has been con-

sidered in Art. 124, Ex. 2, and it has been shewn that any point P fixed

relatively to AB will describe an ellipse, which in certain cases, viz. when
P is on the circumference of the rolling circle, degenerates into a straight
line.

150. Double Generation of Epicyelics as Roulettes.

As a further example we return to the mechanical method of

compounding uniform circular motions, by means of a jointed

parallelogram OQPQ', referred to in Art. 125.

We will suppose for definiteness that the angular velocities n,

ri
y
of the bars OQ, OQ', have the same sign.

The instantaneous centre (7) of the bar QP will be a point in

QO such that

n'.QI = n.OQ (1)
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For the velocity of any point rigidly attached to QP will be made
up of a translation n . OQ at right angles to OQ, and a rotation with

angular velocity n' relatively to Q. Hence under the above con-
dition the velocity of the point attached to QP which at the instant

under consideration is at / will be zero. The two centrodes for the
motion of the bar QP are therefore the circles described, with
and Q as centres, to pass through /.

Fig. 133.

For a similar reason, the instantaneous centre (/') of the bar

Q'P will be a point in Q'O, such that

n.QT^n'.OQ'......................(2)*

Hence, for the motion of the bar Q'P, the two centrodes are the

circles described, with and Q' as centres, to pass through /'.

Since P is a point on each of the bars QP, Q'P, we see that any
direct epicyclic can be described in two ways as an epitrochoid.

In the particular case where QP = QI, it follows from (1) and

(2) that

whence Q'P

The path of P is in this case an epicycloid, and we learn that any

epicycloid can be generated in two ways, viz. by the rolling of

either of two determinate circles on the outside of the same fixed

circlef. See Fig. 134.

* The figure corresponds to the case of n' > n. If n'<, I will lie in QO produced,
and I' between Q' and 0.

t This proposition is due to Euler (1781).
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As an instance, we have the double generation of the cardioid

explained in Art. 124, Exs. 1, 3.

Fig. 134.

The case where the angular velocities n, n' have opposite signs

may be left to the reader to examine. It will appear that any
retrograde epicyclic can be generated in two distinct ways as a

hypotrochoid. And, in particular, any hypocycloid can be generated
in two ways by the rolling of either of two determinate circles on
the inside of the same fixed circle.

EXAMPLES. XLVI,

(Curvature.)

1. Prove that the circle is the only curve whose curvature is

constant.

2. Prove that the coordinates of the centre of curvature at any
point (xt y) of a curve can be expressed in the forms

dy dx~

3. Prove that the intrinsic equation of an equiangular spiral is of

the form
s = ae$ cot a

.

4. Prove that the intrinsic equation of the tractrix may be written

s = a log cosec
ij/.

Prove that the curvature varies as the normal.
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5. By differentiation of the formulae

dx dy= cos fa
- = sin fa

ds ds

I _ d?x Idy _ d?y jdx
p~ "d^/~d'8~d^/d~s

4.

ds*J

6. If a curve be defined by the equations

x = F(t} t y =

,, 1 x'y"-y'x"
prove that - = --^ -

P

where the accents denote differentiations with respect to &

7. Apply the preceding formula to the cases of the ellipse

x = a cos <, y = b sin
</>,

and the hyperbola
x = a cosh t*, y = b sinh w.

8. Shew how to express the coordinates x, y of a point on a curve,
whose Cartesian equation is given, in terms of the inclination

(i/^)
of

the tangent, and prove that

9. Prove that the curve whose intrinsic equation is

s = k sin
i//

is a cycloid. (Use the method of Art. 120 (3).)

10. Given that in the '

catenary of equal strength
'

p k sec
\j/t

where ^ is the inclination to the horizontal, prove that if the origin be

at the lowest point
x = ty, y = k log sec fa

the axes of x and y being horizontal and vertical.

11. Given that the intrinsic equation of a curve is

. s = k sin
2

fa

deduce the Cartesian equation

* + y
f =

(!*)*
~

-

12. If p
=

a?/y, prove that

y
2 = C 2a2 cos

\j/.
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13. Find the curve whose intrinsic equation is

* = a sec*
if/. [ay*

=
05*.]

14. If the coordinates x, i/of a point on a curve be given functions
of

t, prove that

d?s 1 ds

1 ds*d?s .

and give the kinematical interpretation of these results.

Hence shew that

3f

15. Prove that, in the astroid

x = a cos3 0, y = a sin3 0,

^=7T-0,
and thence shew that

p = 3a sin cos 0.

16. If x = at\ y = 1at,

the coordinates of the centre of curvature are

a (2 + 3t2
),

- 2at3
.

17. Prove from the Cartesian formula of Art. 135 (2) that in the

rectangular hyperbola xy = Ar
1

18. Also that, in the ellipse

- + = 1
,2 W A

19. Also that, in the hyperbola

a^_y
8

aa b

20. Also that, in the parabola y
2 =

2 (a + x)*
p=

a?

L.LC. 24
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21. Also that, in the semi-cubical parabola ay
2 =

or,

22. Also that, in the cubical parabola a?y = x
3
,

x.2

23. Also that, in the astroid

p = - 3 (axyfi.

24. Shew by differentiating the expression

("-+ (y-i)

for the square of the distance of a variable point (a?, y) of a curve
from a fixed point (, r;)

that when this distance is stationary the point

(a;, y) must be at the foot of a normal from (, 17)
to the curve.

Also that the distance is then a minimum or maximum according
as the point (, rj)

is nearer to or further from the curve than the

centre of curvature.

25. If a curve be transformed by the substitution

x1 = ax, y'
=

J3y,

the curvature at any point is altered in the ratio

a/?

(a* cos
2

\l/
+ (P sin2 ^)*

'

where $ is the inclination of the original curve to the axis of x.

26. Prove that

dp

where p = dy/dx, q d?y/dx*, r =

27. The curvature at any point of an ellipse is

a cos <

rr'
'

where r, r' are the focal distances, and < is the angle between them.

28. In the rectangular hyperbola r2 cos 20 - a2
,

p = rs/a
2

. -
./

29. In the lemniscate r2 = a2 cos 20,
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30. In the curve r* = am cos ra0,

31. Apply the formula p = rdr/dp to find the radius of curvature

at any point of an epicycloid. (See Ex. 26, p. 330.)

Examine the case of the involute of a circle.

32. If the equation of a curve be given in the form r=f(p\ the

chord of curvature through the pole is

dr
%p~r*r

dp

Prove that the chord of curvature through the pole of a cardioid is

1J times the radius vector.

33. Prove that the chord of curvature, through the pole, at any
point of the curve rm = am cos mO is 2r/(ra +1).

34. Prove that the curvature of the pedal of a curve r =f(p) with

respect to the origin is

?_ P.

r
~

r*
p'

where r, p, p refer to the original curve.

35. Prove that the curvature at any point of the pedal of an

ellipse of semi-axes a, b with respect to the centre is equal to

3 a8 + 6a

r
~

r
'

where r is the radius vector of the corresponding point of the ellipse.

36. Prove the formula

1(1 1
(dr\* _ (Pr\ f

1 _ (<fa\*\
*

p" \r~r \ds)
"

d**!'~\
L

\dsjj

and apply it to deduce the conclusions of Ex. 24.

37. Prove that in polar coordinates the condition for a stationary

tangent is

where u = \jr.

38. From the formula

1 dr
-^r do

242
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deduce the formula for curvature in polar coordinates :

- = Jr* r f-

p [ dOz

where u = l/r.

39. With the same notation, prove that the chord of curvature

through the origin is

f- /I du\*} d?u \
-U + l- - H -M-j + M).

\M c?^/ J V^ /

EXAMPLES. XLVII.

(Newton's Method.)

1. The radius of curvature of the curve

ay
3 = (x a) (x

-
/3)

a

at the point (a, 0) is (a /3)
2
/2a.

2. Prove by Newton's method that the radius of curvature at

the vertex of the catenary

y = a cosh x/a
is equal to a.

3. The radius of curvature of the curve

y
1 = a? (a + x)/x

at the point ( a, 0) is Ja.

4. The radius of curvature of the ' witch '

y
8 = a8 (a x)/x

at its vertex is -|a.

5. Find the radius of curvature of the curve

ay = a? (a-x)
at the point (a, 0).

6. Find the radius of curvature of the parabola

(x-yY-2a(x + y) + a? = Q

at the points where it touches the coordinate axes.

7. Find the radius of curvature of the curve

y = 4 sin x sin 2x

at the point oj = ir.
[2-795....]
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8. The length of the chord of curvature, parallel to the axis of y,

at the origin, in the parabola

= mx H
a

is (1 + m2
) a, and the equation of the circle of curvature is

o^ 4- y
a =

(1 4- m2

) a(y mx).

9. Find the curvature of the curve

y = mx + n (x of (x 6)
a

at the points (a, 0), (6, 0).

. I

10. Find the equation of the circle of curvature, at the origin, of

the conic

and prove that it meets the curve again on the line

11. If the polar equation of a curve be r = <

(0), where
<j> (0) is an

even function of 0, the curvature at the point = is

-"
(0)

12. Prove that in the meridian-curve (r
2 = a* cos 0) of the * solid of

greatest attraction' (see Ex. 19, p. 329) the radii of curvature at the

extremities of the axis are oo and
-|a, respectively.

13. Prove that the radius of curvature at either vertex of the
lemniscate r2 = a2 cos 20 is ^a.

14. The radii of curvature of the trochoid

x = aO + k sin 0, y = a k cos 6

at the points where it is nearest to and furthest from the base are

(a + kfjk.

15. Apply Newton's method to shew that the radii of curvature
of the epicyclic

x = Oj cos nj 4- aa cos nj, y=a^ sin nj 4- a,, sin nzt,

at the points nearest to and furthest from the centre, are

wa a

Infer the condition that an epicyclic, at the points of nearest

approach to the centre, should be concave to the centre (as in the case
of the orbit of the Moon relative to the Sun).
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16. Find the radius of curvature at the point t = on the Lissajous
curve

x a cos nt
t y b sin 2nt.

Sketch the curve. [46
2

/a.]

17. If a curve be referred to polar coordinates r, 0, and if the

pole be on the curve, and the initial line be the tangent at the pole,

prove that the diameter of curvature at the pole = lim r/6.

Find the radius of curvature at the pole of the curve

r = a cos md.

18. If P be a point of a curve where the curvature, but not the

direction of the tangent, is discontinuous, and if Q, R be neighbouring

points on opposite sides of P, prove that the curvature of the circle

PQR is ultimately equal to

m^ + mj

Pi Pa'

where p1} pa are the radii of curvature of the given curve on the two
sides of P, and ml) w2 are the limiting values of the ratios PQfQR
and PRjQRt respectively.

19. The acute angle which a chord PQ of a curve makes with the

tangent at /*, when Q is taken infinitely close to P, is ultimately equal
to Ss/p, where 8 is the arc PQ and p is the radius of curvature at P.

20. Prove that if the tangents at the extremities of an infinitely

small arc PQ meet in T, then TP and TQ are ultimately in a ratio of

equality.

Why does it not follow that the line joining T to the middle point
of PQ will be ultimately perpendicular to PQ ?

21. Assuming that the radius of the circumcircle of a triangle
ABC is equal to -|a/sin A, shew that it follows from Ex. 19 that the

osculating circle coincides with the circle of curvature.

22. Prove that when the resultant force on a particle is in the

direction of motion the tangent to the path is
'

stationary.'

EXAMPLES. XLVIII.

(Envelopes. Evolutes.)

1. The envelope of the parabolas

y
8 = 4a (x

-
a),

where a is the parameter, is a pair of straight lines.

2. From any point P on the parabola y
2 = 4ao? perpendiculars

PM, PN are drawn to the coordinate axes. Find the envelope of the

line JOT. =
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3. Find the envelope of the line

x cos a + y sin a = a sec a
;

and give the geometrical interpretation of the result.

4. The envelope of the parabolas

ay
8 = as (x

-
a),

where a is the parameter, is the curve

5. Circles are described on the radii vectores of a curve as

diameters ; prove geometrically that their envelope is the pedal of the

given curve with respect to the origin.

6. Find the envelope of the circles described on the focal radii of

a conic as diameters.

7. Chords of a circle are drawn through a fixed point on the

circumference; prove that the envelope of the circles described on
these chords as diameters is a cardioid.

8. The envelope of the circles described on the central radii of a

rectangular hyperbola as diameters is a lemniscate of Bernoulli.

9. Prove that the envelope of the curves

P cos a + Q sin a = J?,

where P, Q, R are given functions of x, y, and a is a variable para-

meter, is

10. Find the envelope of the circles

cc
2 + y

a 2ax cos a 2ay sin a = c3,

and interpret the result.

11. Find the relation between p and a in order that the straight
line

x cos a + y sin a =p
may cut the circles

(a?-a)
2 + y

2 = &a
, (x + of + y

2 = ca

in chords of equal length. Prove that the envelope of the line, under
this condition, is a parabola.

12. A system of ellipses of constant area have the same centre

and their axes coincident in direction
; prove that the envelope consists

of two conjugate rectangular hyperbolas.

13. A straight line moves so that the product of the perpen-
diculars on it from the fixed points (+c, 0) is constant (=6

2

); prove
that the envelope is the ellipse

x* y*
,_ i " 1

'
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or the hyperbola

y*

c2 - 62 b

according as the two perpendiculars are on the same or on opposite
sides of the variable line.

14. Circles are described on the double ordinates of the parabola

2/
8 = 4a# as diameters

j prove that the envelope is the parabola

y
2 = 4a (x + a).

15. Circles are described on the double ordinates of the ellipse

a? V*
I- = 1

a2 6
2

as diameters : prove that the envelope is the ellipse

16. A straight line moves so that the sum of the squares of the

perpendiculars on it from the fixed points (+ c, 0) is constant (= 2k?) ;

prove that the envelope is the conic

and examine the various cases.

17. A straight line moves so that the difference of the squares of

the perpendiculars on it from two fixed points is constant
; prove that

the envelope is a parabola.

18. Find the envelope of the ellipses

x = a sin (0 a), y = b cos 0,

where a is the parameter.

19. The envelope of the catenaries

y = c cosh (#/c),

where c is the variable parameter, consists of two straight lines.

20. The envelope of the ellipses

or
8 va

j- = 1
aa+ ^

where a + ft
= k,

is the 'astroid
'

21. The envelope of the straight line which makes on the coordinate

axes intercepts whose sum is k is the parabola
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22. Two points move along the coordinate axes with different

constant velocities; prove that the line joining them envelopes a

parabola.

23. From any point on the ellipse

a

perpendiculars are drawn to the coordinate axes; prove that the

envelope of the straight line joining the feet of these perpendiculars is

the curve

24. Find the locus of ultimate intersections of the curves

ay
8 = x (x + a)

8
,

where a is the parameter ; and examine the result.

25. If a circle of constant radius has its centre on a given curve,
the envelope of the circle consists of two parallel curves.

26. If a circle of given radius touch a given curve, its envelope
consists of two parallel curves.

27. If the equation of a curve be given in the form

* =/(?),

that of any parallel curve is of the form

r8 -f(p - c) + 2cp c\

28. Prove that the problem of negative pedals (Art. 131) is

equivalent to finding the envelope of the straight line

x cos
\l/
+ y sin $=p,

where p is a given function of the parameter \j/.

Verify that this leads to the formulae (4) of Art. 131.

29. Shew that the negative pedal of the parabola

with respect to the vertex is the curve

30. Prove by the method of envelopes that the negative pedal of

a circle is an ellipse or hyperbola according as the pole is inside or

outside the circle.

31. Prove geometrically that the radius of curvature at any point
of an equiangular spiral subtends a right angle at the pole.
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32. The evolute of an equiangular spiral is an equiangular spiral
of the same angle.

33. The area enclosed by the evolute of the ellipse

a? b*
~

is 37r(a
2 -62

)/8a6.

34. The coordinates of the centre of curvature at any point of the

curve

,are t--f-| 1
7
=

2/ +
U> JU

Shew that near the origin the evolute has the form of the parabola

35. Shew that if a curve has a point of inflexion the evolute has
an asymptote.

Shew that the part of the evolute of the curve

which corresponds to the part of the curve near the origin may be

represented approximately by the hyperbola

xy = T^a
a
.

36. The evolute of the hyperbola

x = a cosh u, y = b sinh u

is

37. If rays emanating from a point be reflected at any given
curve, the reflected rays are all normal to a curve which is similar

to the pedal of the given curve with respect to 0, but of double the

dimensions.

38. Hence shew that the caustic by reflection at a circle will be
the evolute of a limagon; and that in the particular case where the
luminous point is on the circumference of the given circle the caustic

is a cardioid.

39. Prove that the caustic by reflection at any curve is the
evolute of the envelope of a system of circles described with the various

points of the curve as centres, and all passing through the luminous

point.

What is the corresponding theorem for the case of refraction 1
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EXAMPLES. XLIX.

(Roulettes, &c.)

1. A lamina moves in any manner in its own plane; prove that

parallel straight lines in the lamina envelope parallel curves.

2. A straight line moves so as always to pass through a fixed

point 0, whilst a point Q on it describes a circle passing through 0.

Prove that the instantaneous centre is at the other extremity of the

diameter through Q, and determine the two centrodes.

Deduce a construction for the normal to a Iima9on ;
and infer that

in a cardioid the normals at the extremity of any chord through the

cusp meet at right angles on the perpendicular to the chord at this

point.

3. A plane figure moves so that two straight lines in it touch two
fixed circles ; determine the two centrodes.

4. If a circle roll on a fixed circle of half the size, which it

surrounds, every straight line carried by the rolling circle will envelope
a circle.

5. Prove that if a plane figure move so that a straight line in it

rolls on a fixed circle, the envelope of any other straight line in the

figure is an involute of a circle.

6. The radius of curvature of the envelope of the straight line

ax + fy = I,

where a, ft are given functions of a parameter t
t
is

(a/3'
-

a'/?)'

the accents denoting differentiations with respect to t.

7. If the curve whose tangential-polar equation is r=f(p) roll on
a fixed straight line, the curvature of the path of the pole is

.

dp\r'
where r is the radius vector to the point of contact.

8. Prove that if a parabola roll on a fixed straight line the path
of the focus is a catenary.

9. Prove that if a conic roll on a fixed straight line the path of

either focus is a curve such that

1 1 = 1

p n c*

where p is the radius of curvature, n is the normal, and c is a constant.
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10. If an equiangular spiral roll on a fixed straight line, the path
of the pole is a straight line.

11. If the reciprocal spiral r = a/0 roll on a straight line, the path
of the pole is a tractrix.

12. If any one of the Cotes' spirals

1 A n-5= -sT/f
p* ir

rolls on a straight line, the pole traces out a curve such that the

curvature varies as the normal.

13. A curve rolls on a fixed straight line
; prove that the arc of

the roulette traced by any carried point is equal to the corresponding
arc of the pedal of the given curve with respect to 0. (Steiner.)

14. A closed oval curve rolls on a fixed straight line
; prove that

in a complete revolution the area swept over by the variable line

which joins the point of contact to any internal carried point is

double the area of the pedal of the given curve with respect to 0.

(Steiner,)

15. Prove from the theory of the instantaneous centre that when
the area enclosed by a plane quadrilateral of jointed rods is stationary
the quadrilateral is cyclic.



CHAPTER XI

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

151. Formation of Differential Equations.

Any relation between an independent variable x, a dependent
variable y, and one or more of the derived functions

dy dty d?y

da
9

dx*' da?"

is called a 'differential equation*/

The 'order' of the equation is fixed by that of the highest
differential coefficient which occurs in it. Thus a differential

equation of the
'

first order
'

is a relation between x, y t
and dy/dx.

Before proceeding to methods of solution, it is instructive to

consider one manner in which differential equations may arise.

If we are given a relation between the variables x, y, and an

arbitrary constant G, then by differentiation we obtain an equation

involving x, y, dy/dx, and G. By elimination of G between this

and the original equation we obtain a differential equation of the

first order.

More generally, given a relation between the variables x, y, and

n arbitrary constants Clt (7a , ... C7n , then if we differentiate n times

in succession with respect to x, we have altogether n + 1 equations
between which the n arbitrary constants can be eliminated. The
result is a differential equation of the nth order.

From this point of view the original equation is called the
'

primitive.'

Ex. 1. If the primitive be

y = mx+.G, .............................. (1)

where C is arbitrary, the differential equation is

* More particularly, it is called an 'ordinary' as distinguished from a 'partial'

differential equation, i.e. one which involves partial derivatives of a function of two
or more independent variables.
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Ex. 2. From the primitive

C .............................. (3)

we deduce y~=2a. ..(4}
ax

Ex. 3. If the primitive be

SB cos a + y sin a = a, ........................ (5)

where a is arbitrary, we deduce

dy ,

cos a + -~ sin a = 0.
aa

These give

dy

whence, squaring and adding,

Ex. 4. If the primitive be

y = Ax + JB, .............................. (7)

where both constants A, B are to be eliminated, we find

'

'

=' ..............................()

Ex. 5. From the primitive

(-a)+(y-) = a
f ........................ (9)

where a, fi are to be eliminated, we obtain

The details of the work are given in Art. 189.

The above processes admit of a geometrical interpretation.
The equations obtained by varying the arbitrary constants in the

primitive represent a certain system or family of curves
; the

differential equation (in which these constants do not appear)
expresses some property common to all these curves.

Thus in Ex. 2, above, the primitive represents a system of equal

parabolas having their axes coincident with the axis of jc, but their

vertices at different points of it. The differential equation (4) expresses
a property common to all these curves, viz. that the subnormal has a

given constant value 2a.o
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Again in Ex. 5, if we vary a, ft in the primitive we get a doubly-
infinite system of circles of given radius a, having their centres any-
where in the plane xy. The differential equation expresses that the

radius of curvature has everywhere the constant value a. See Art. 135.

Other illustrations may be taken from Dynamics.

Ex. 6. If, in the primitive

At +
,
........................... (11)

we vary A and
, we get a certain group or class of rectilinear motions.

The differential equation

expresses a property common to the group, viz. that the acceleration

has the constant value g.

Ex. 7. Again, if the primitive be

x = A cos nt + B sin nt, ..................... (13)

d?x
we find -j-2=-ri

tx............................ (14)
c*c

This asserts that in the whole group of motions represented by the

primitive the acceleration is towards the origin of a?, and varies (in a

given ratio n2
)
as the distance from this origin.

The preceding examples will suffice to illustrate the derivation

of a differential equation from a primitive relation between a? and y
involving one or more arbitrary constants. In practice we are

more usually confronted with the inverse problem, viz. to ascertain

the most general form of relation between the variables which
satisfies a given differential equation. Thus in Geometry, or in

Dynamics, some general property may be propounded, whose

expression takes the form of a differential equation, and it is

required to determine the whole system of curves, or group of

motions, which possess the property.

The process of passing from a given differential equation to the

general relation between the variables which it implies is called
'

solving/ or
'

integrating
'

the equation ;
and the result is called

the 'general solution/ or the '

complete primitive/ although the

latter name is hardly appropriate from this point of view. A
'

particular solution
'

is any relation between the variables which

happens to satisfy it.
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152. Equations of the First Order and First Degree.

The general type of a differential equation of the first order

may be written

.........................a)

The equation implies that y is to be a differentiate function of x,

and that dyjdx is to be continuous.

The mode of derivation of a differential equation of the first

order from a primitive involving an arbitrary constant, explained
in Art. 151, may suggest that the general solution of (1) will in

all cases consist of a relation between x and y involving an arbitrary
constant. With some qualification, due to the occurrence of

'singular* solutions (Art. 161), this is in fact the case. The

rigorous proof, however, is difficult, and may be passed over here

without inconvenience, since in almost all cases for which practical
methods of integration have been discovered the process itself con-

tains the demonstration that the solution is of the kind indicated.

In such problems as ordinarily arise, either the left-hand side

of (1) is a rational integral algebraic function of dy/dx, or the

equation can be transformed so that this shall be the case. The
'

degree
'

of the equation is then fixed by that of the highest power
of dyjdx which occurs in it.

The general equation of the first degree may be written

=
0, ........................(2)

or Mdx + Ndy = 0, ........................(3)

where M, N are given functions of x and y. The form (2) is also

equivalent to

tf......................(4)

If
<f> (x, y} be real and single-valued for all values of x and y,

then corresponding to any point in the plane xy we have a definite

direction, assigned by the equation (4). If we imagine a point,

starting from any position in the plane, to move always in the

direction thus indicated, it will trace out a curve, which constitutes

a particular solution, or primitive, of the proposed equation. And
the whole assemblage of such curves will form a singly-infinite

system, each curve being determined by the point where it crosses

an arbitrary line. It appears, moreover, that in the present case

no two curves of the system will intersect.
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We have thus a sort of intuitive proof that the complete solu-

tion of (4) will involve a single arbitrary constant*.

We proceed to give an account of the methods which have been
devised for the solution of the equation (4) in various cases.

153. Methods of Solution. One Variable absent.

1. The form

=/<*>

where y does not appear explicitly, requires merely an ordinary

integration. Thus

y-//()<fc+0, ........................(2)

where G is an arbitrary constant.

2. The equation

in which so does not appear explicitly, may be written

whence lr = a? + <7. ........................(4)

Ex. To find the curves whose subtangent has a given constant

value a. We have (Art. 60)

dy

= ...............................(5)
y a

Cfj

Hence log y = - + (7,
Of

or y = bex/a
, .............................. (6)

where b,
= e, is arbitrary.

154. Variables Separable.

A more general form is

= o, .....................(i)

or F(x)dx + f(y)dy = Q...................(2)

* A rigorous proof of this was given by Cauchy.

L. I. 0. 25
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If an equation can be brought to this form the variables are said

to be *

separable/ The solution obviously is

; JF(x)dx+ff(y)dy = C. ..................(3)

Ex. I. To find the curves such that the normals all pass through
one point.

If we adopt rectangular axes through this point as origin, the con-

dition gives

<fy = _a|
dx y*

or xdx + ydy = 0, ................ ........... (4)

whence x* + y* = C............................... (5)

The required curves are therefore circles described with the origin as

centre.

Ex. 2. To find a curve such that the tangents drawn to it from

any point are equal.

If we take a fixed tangent as initial line, and its point of contact as

origin, then if the two tangents drawn from any point on the initial

line be equal, we must have, in the notation of Art. 63,

7/3

and therefore r-j- = tan0..................................(6)

dt*

Henco =cot0^0, ..............................(7)

and log r = log sin + C,

or r = asin0, ................................. (8)

where a is arbitrary. The circle is therefore the only curve possessing
the stated property.

Ex. 3. The equation of rectilinear motion of a particle under an
attractive force varying inversely as the square of the distance from a

fixed point is

Integrating with respect to x,

+ <7............................(10)

If v vanish for x = oo
,
we have (7 = 0. In this case the velocity with

which the particle arrives at a distance a from the centre of force is

,
or Jtfga), if g = p/a*.
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This gives the velocity with which an unresisted particle, falling
from rest at a great distance, would reach the Earth, provided a denote
the Earth's radius, and g the value of gravity at the surface.

Ex. 4. In a suspension bridge with uniform horizontal load the
form of the chain is determined by the condition that any two tangents
to the curve intersect on the vertical bisecting the chord of contact.

If the lowest point be taken as origin of rectangular coordinates,
and the corresponding tangent as axis of x, the subtangent of any other

point must be equal to one-half the abscissa. Hence

-

the integral of which is log y = 2 log x + const.,

or
2/
=^M ...........................(12)

where a is arbitrary. That is, the curve formed by the chain must be
a parabola with its axis vertical.

155. Exact Equations.
The case of the preceding Art. comes under the head of '

exact

equations/ An equation
Mdx + Ndy=Q ........................ (1)

is said to be ' exact
' when M and N are of the forms du/dx and

du/dy respectively. The form

is equivalent to du0, ..............................(3)

and its integral is w==(7, ..............................(4)

where C is the arbitrary constant *.

It may be shewn that every equation of the type (1) is either

exact, or can be rendered exact by a suitable
*

integrating factor/

The number of such factors is unlimited; for if we suppose the

equation (1) to have been brought to the form (3), it will still be
exact when multiplied by/'(w)> where /(w) may be any function

of u. The integral of

f'(u)du = Q ...........................(5)

is /(t*H0, ...........................(6)

which is obviously equivalent to (4).

* The rule for ascertaining whether a proposed equation of the first degree is

exact is given in Art. 193.

262
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Ex. 1. (ax + hy + g)dx + (hx+by+f)dy = ............. (7)

This is equivalent to

d(ax* + 2hxy + by* + 2gx+2fy) = Q, ............... (8)

whence ax* + 2hxy + by* + 2gx + 2fy = ................ (9)

Ex.2. xdx + ydy = k (xdy ydx)................... (10)

This may be written

d\&+fftm&ofd(\, ..................... (11)

and so becomes exact on division by x* + y*, thus

1 +-,
SB*

Hence, integrating,

.................. (13)x

The equation (10) may also be solved as follows. Its form suggests
the substitutions

a? = rcos0, y rsinO, ..................... (14)

which give xdx + ydy = rdr, xdyydx = r3dO............. (15)

The equation therefore reduces to

.............................. (16)

whence logr = kQ + C............................ (17)

This is obviously equivalent to (13).

Ex. 3. To find the form of a solid of revolution such that the mean
centre of the volume cut oft* by any right section shall be at a distance

from this section equal to I/nth of the length of the axis.

If the axis of x be that of symmetry, and y be the ordinate of the

generating curve, we must have, by Art. 116 (11),

xy*dx

(
I

Jo
y

o

or [*xjAto = %-it (*y*dx, ...(18)
Jo n Jo
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where is the abscissa of the bounding section. Hence, if
r; denote

the radius of this section, we find, on differentiating with respect to

according to the rule of Art. 92,

n 1 . n 1

n n

or 7*
= (n 1) I y*dx. (19)

A second differentiation gives

i(tf) -(n-l)V, . .-(20)

whence = (n _l) .........................(21)

Integrating, we find rp = A*-1
.

The generating curve must therefore be of the type

. ............................. (22)

Since we have differentiated twice with respect to
,
the differential

equation actually solved is somewhat more general than the original

problem. In fact the same differential equation would have been

obtained if, instead of zero, we had had other (and distinct) constants

as the lower limits of the two definite integrals in (18). It is therefore

necessary to examine ft, posteriori whether the solution finally obtained

satisfies the original equation with the actual lower limits. This is easily
verified to be the case if n > 2.

We note that if n = 3, the solid is a paraboloid of revolution, and
that if n = 4 it is a cone.

156. Homogeneous Equation.

Let us suppose that, in the equation

M, N are homogeneous functions of x and y, of the same degree.

In this case the fraction MjN is a function of y/x only, and we

may write

fiii //\

a)dx J \x

If we put y = xv this becomes
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The variables x, v are now separable, viz. we have

dx dv
.(3)

whence log#= I . . > _ + C (4)

After the integration has been effected we must write v = y\x.

Ex. (a?-y
2
) j|-2^=0 (5)

Here =-X (6)

cfo 2t> cfo v (1 + v2)
whence x -y- + v = ^

-
, ,

or a; 3- = -^
-^ .

dx 1 v2
do? 1 tr

1

da: 1-v1

/I 2t> \
Hence -=-71-a" ""I -- T

-
&) dv................ (7)x v (1 + ir) \v 1 + tr/

Integrating, we have

log a; = log v log (1 + v3
)
+ const.,

which is equivalent to x (1 + v2

)
=

(7v,

or x* + y
2 =Cy............................... (8)

In the geometrical interpretation, the general solution of a

homogeneous differential equation must represent a system of

similar and similarly situated curves, the origin being a centre of

similitude. For the equation (1) shews that where the curves

cross any arbitrary straight line (yjx
= m) through the origin,

dyjdx has the same value for each, that is, the tangents are

parallel.

Thus, in the above Ex. the solution represents a system of circles

touching the axis of x at the origin.

If in (4) we put C = log c,

v\x or v is determined as a function of xjc. In other words, the

primitive is homogeneous in respect to x, y, and c, and is therefore

of the type

This is in accordance with the geometrical property above stated,

since if x, y, and c be altered in any the same ratio, the equation

(9) is unaltered. In other words, a change in the value of c merely
alters the scale of the curve.
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157. Linear Equation of the First Order, with Constant
Coefficients.

A 'linear* equation is one which involves y and its derivatives

only in the first degree. Thus the linear equation of the first order

is of the type

where P, Q are given functions of x.

We take first the case where P is a constant, the equation

being

as this will be of special use to us later.

If Q = 0, the solution is

y-Cfc"", ...........................(3)

by Art. 38.

It appears that the factor e~ax renders the left-hand side of

(2) an exact differential coefficient. This gives the key to the solu-

tion in the general case where Q 4= 0. Thus (2) is equivalent to

(4)

whence e~axy =f Qe~
axdx + (7,

or y = ea*jQe-
axdx + Ceax....................(5)

In accordance with a general usage (see Art. 166), the first term
on the right-hand of (5) may be called the

'

particular integral/
and the second the '

complementary function.'

The following cases are important :

1. If Q = He^ ...........................(6)

TT

we have I Oe~axdx = Hf e (K
~a)xdx =- e <\-a>*

\ a
TT

and y=-^ - &* + Ceax......................(7)
A. ft

That the first term on the right-hand is a particular integral
of the proposed equation is verified at once by inspection.

2. The result (7) needs correction when \ = a, or

...........................(8)



392 INFINITESIMAL CALCULUS [CH. XI

In this case we have

/ Qe-dx = Hfdx = Hx,
and y=Hxeax + Ceax. .....................(9)

3. If Q = Hxneax, ........................(10)

we have f Qe~axdx = H\ xndx =
J

71

and y = - f+C**....................(11)n + 1

Ex. 1. If a particle be subject to a resistance varying as the

velocity, and to some other force which is a given function of the time,
its equation of motion is of the type

^ , , j w (12)

The integral of this is

v = Ce + e~ /6 y*(^) dt. (1^)

For example, if f(t) =g,

a constant, we have v Ce~u + ^ , (14)

This might have been obtained more simply by writing the differential

equation in the form

whence v- = Ce~te
............................ (16)

As t increases, v tends asymptotically to the ' terminal
'

value gjk.

Ex. 2. If an electric current of strength x be flowing in a circuit

of self-induction L and resistance R, and if E be the extraneous electro-

motive force in the circuit, we have the equation

E. ..................... (17)at

If E be a constant, the solution of this is

E R
t

= e

where C is arbitrary. The current therefore tends to the constant

value EjR.

If, for example, we suppose that the circuit is completed at time
t 0, we have to determine C so that x = for t =

;
this gives

The second term represents the * extra current at make.'
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Again, if E = E* cos (pt + c), (20)

we have :- (xe^ )
= -fe

L cos (pt + e),

whence, integrating, and dividing by el
,
we find

see Art. 80 (14). Hence as t increases, the current settles down into

the steady oscillation

E"

>+-,), (22)

where l
= tan~ 1 ~- .........................(23)

The effect of the self-induction (L) is therefore to diminish the ampli-
tude of the current in the ratio

and to retard its phase by c^

158. General Linear Equation of the First Order.

We return to the general linear equation of the first order,

+*- ........................co

If Q = 0, we have

-? + P-0.........................(2)
y dx

whence log y + fPdx = A,

or ye!
pd*=C. ........................... (3)

This shews that e?pda: is an integrating factor of (1), since

Hence (1) may be written

^-(ye
Jpd

*)
= QeS

pd
*. ..................... (4)

Integrating, we find

C. .................. (5)

The integrating factor will often suggest itself on inspection
of the equation, without recourse to the above rule.
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Ex. 1. -^ + y cot x = 2 cos x. (6)
ao;

Here P = cot #, jPdx = log sin #, e/-*^ = sin aj.

Hence, multiplying by sin x,

ri

-j- (y sin se)= 2 sin a; cos x, ....................(7)
"JLx

y sin x = sin2 x + Ct

C /ov
2/
= sma5 + -^ ......................... (8)ana

***. (1-^)^-^
= 1......................... (9)

Dividing by 1 - a?
2
,
we have

Here P=_
T
_

2 , /Pcfo =
1
log (1

- a2
),

Multiplying (10) by the integrating factor, we get

2
. dy x _ 1

Hence, integrating,

sin" 1 x G
or y =

ftf 3 - 4- *?
- 0! ^13^JlsJUt Ot T ll> ** ....V-''*'/

G?C a?

The integrating factor here is obvious. The steps are

dy
xn -^- + nxn~ l

y =

y^
+ (7,m + n+l

Cx- ......................(H)m+n+
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159. Orthogonal Trajectories.

Suppose that we have a singly-infinite family of curves

*(*,y,C) = 0, ........................(1)

where G is a variable parameter, and that it is required to deter-

mine the curves which cut these everywhere at right angles.

We first form the differential equation of the family, by differ-

entiation of (1) with respect to x, and elimination of G. See
Art. 151.

If two curves cut at right angles, and if ty, ty' be the angles
which the tangents at the intersection make with the axis of x, we
have ^r ty'

= + J?r, and therefore

tan
i|r
= cot ty'.

Hence the differential equation of one family is obtained from
that of the other by writing

-l/^ for *9.
/ dx dx'

Otherwise : if dx, dy be the projections of an element of one
of the curves (1) we have

. .....................(2)dx dy

Hence, if dx, dy be the projections of an element of the orthogonal
curve through the point (x, y), we have

dx dy (
.

The differential equation of the trajectories is then obtained by
elimination of C between (1) and (3).

If the equation of the given family of curves be in polar co-

ordinates, thus

/(r,0,C)-0, ........................(4)

and if
</>,

<' denote the angles which the tangents to the original
curve and to the trajectory make with the radius vector, we have
in like manner

tan
<f>
= cot <'.

Hence the differential equation of one system is obtained from

that of the other by writing

Idr rdd

rdd dr
*
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Or, differentiating (4), we have

d

/dr + rdd = 0, .....................(5)dr rW
and therefore, for the trajectory,

fr0......................(6)or rou

The elimination of G between (4) and (6) leads to the differential

equation of the required system.

Ex. 1. To find the orthogonal trajectories of the rectangular

hyperbolas

xy = C.................................. (7)

Differentiating, we find xdy + ydx = Q, ........................... (8)

and therefore, for the trajectories,

xdx ydy=Q, ........................... (9)

whence x*-y* = C'............................ (10)

This represents a system of rectangular hyperbolas whose axes coincide

in direction with the asymptotes of the former system.

Ex. 2. To find the curves orthogonal to the circles

a?+y*+ 2/A?/-&
2 = ...................... (11)

where ft is the variable parameter.

Differentiating, we have

xdx + (y + /A) dy = 0,

and therefore, for the trajectory,

xdy (y + fji)dx
= 0.

Eliminating /x between this and (11), we find

(12)

or y ><-i _ */* a? + A2 H *3\\j i j(s
- ^~ "^ c/

^^
*/ i^ /V *! JLdl

fj'f ^ ^

This is linear, with y
s as the independent variable. The integrating

factor, as found by the rule of Art. 158, or by inspection, is I/or
3
. Intro

ducing this we have

dx \oj,

V* 1&
whence - = x + 2X,X X

or x* + y
z -2\x + k* = Q, (14)

X being arbitrary.
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The original equation represents a system of coaxial circles, cutting

the axis of x in the points (+ k, 0). The trajectories (14) consist of a

second system of coaxial circles having these as 'limiting points'; viz. if

we put A. = + k we get the point-circles

(x + )'

2 + 2/

2 = 0; (15)

see Fig. 135.

Ex. 3. In the circles

Fig. 135.

r = c cos 0, .(16)

which pass through the origin, and have their centres on the initial

line, we have

= -tan0rf6>, (17)
T

and therefore, for the trajectory,

dr
rdO-ia,n6dr. or = cot6dO.

r .(18)

Integrating, we find log r = log sin + const,

or r = c'sin0, (19)

which represents another system of circles, passing through the origin,

and touching the initial line.
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1 60. Equations of Degree higher than the First.

The general type of an equation of the first order and nth

degree is

j> + Ptf
M + Ptf

M +...+Pn_1j> + Pn ==0, ......(1)

where =
> ........................... 2

and Pj, P2 , ..., Pn are given functions of x and y. It is usually

implied that these functions are algebraic, and rational.

The equation (1), being of the nth degree in p, indicates that n
branches of the primitive curves go through any assigned point in the

plane xy. Some of these branches may of course be imaginary, and
for some ranges of x and y all may be imaginary. There may also be a

real locus of points at which two of the values of p coincide ;
this locus

is of special importance in the higher development of the subject.

For example, in the equation of the second degree,

Q = 0, ........................... (3)

the values of p will be real and distinct, coincident, or imaginary, ac-

cording as P2 = 4$. And the locus of points at which the two values

of p coincide is the curve P3 = 4$.

If the left-hand side of (1), considered as a function of p, can

be resolved into linear factors, thus

where pit p^, ... pn are known functions of x and y, the complete
solution will consist of the aggregate of the solutions of the several

equations

Ex. xyp*-(x*-y*)p-xy = Q...................... (6)

This is equivalent to

(xp + y)(yp-x) = 0', ........................ (7)

and the solutions of

xp + y=0t yp-x = Q,

are, respectively, xy = C, a? y* C. ........................ (8)

The product of the two values of p given by (6) is 1. This
shews d, priori that the two branches of the primitive curves which

pass through any point (x, y) will be at right angles to one another.

Of. Art. 159, Ex. 1.
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161. Clairaut's form.

When the equation (1) of Art. 160 cannot be conveniently
resolved into its linear factors, we may in certain cases have

recourse to other methods. These are for the most part of some-

what limited utility, and are accordingly passed over here; but

an exception may be made in favour of Clairaut's form, which is

very simple in theory, and moreover often presents itself in ques-
tions where a curve is defined by some property of the tangent.

If we write p for dy/dx, the form in question is

y = xp+f(p).........................(1)

It was proved in Art. 60 that the intercepts (a, y&) made by
the tangent to a curve on the axes of x and y are given by

a = (xp-y)/p, P = y-xp, ...............(2)

respectively. Hence any equation of the form (1) expresses a

relation between either intercept and the direction of the tan-

gent, or (again) between the two intercepts*. Now it is evident

that this relation is satisfied by any straight line whose intercepts
have the given relation. Along any such straight line we have

P-O. ..............................(3)

and we thus get the solution

y=Cte+/(C)......... ................(4)

involving an arbitrary constant G.

But the equation will also be satisfied by the curve which has

the family (4) of straight lines as its tangents ;
in other words, by

the envelope of this family. This envelope is found by expressing
that (4), considered as an equation in (7, has a pair of equal roots,

i.e. by eliminating G between (4) and

+/'(0)-0; ........................(5)

see Art. 139.

The more usual method of deducing the above solutions is to

differentiate (1) with respect to x ; thus

whence ^(l*) ~ ......................(6)

* The equation is equivalent to

=(-3a), or 0a, 3 = 0.
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This requires, either that

or that a+f'(p) = Q.........................(8)

The former result makes p G
t and

- y = 0+/(C).........................(9)

The alternative result (8), combined with (1), leads, on elimi-

nation of p, to a particular relation between # and y. Since the

result of eliminating p between (1) and (8) must be the same as

that of eliminating G between (4) and (5), we identify this second

solution with the envelope aforesaid.

The solution (9), involving an arbitrary constant (7, is called

the 'complete primitive.' The second, or envelope-solution, is not

included in the complete primitive, i.e. it cannot be derived from

it by giving a particular value to G. It is therefore called a '

sin-

gular solution*/

Ex. To find the curve whose pedal with respect to the point (a, 0)
as pole is the straight line x = 0.

The expression of this property is

=
/?/?,

where (3 is the intercept on the axis of y, whence

y=p+^
............................ (10)

This is satisfied by any one of the family of straight lines

and also by their envelope y*= 4occ; ..............................(12)

see Art. 140, Ex. 2.

EXAMPLES. L.

(Formation of Differential Equations.)

1. If

dv
prove that x ~

d
=

* The general theory of singular solutions of equations of degree higher than
the first must be sought for in books specially devoted to the subject of Differential

Equations. It is closely related to, but not altogether co-extensive with, the theory
of envelopes.



2. If

prove that

3. If

prove that

4. If

prove that

5. If

prove that

6. If

prove that

7. If

prove that

8. If

prove that

9. If

prove that

10. If

prove that

11. If

prove that

12. If

prove that

L. 1.0.

EXAMPLES

y = Aa? + Bx,

401

da? x dx a?

y =

y =

y = (A + Bx) (F
,

dx

= e~lkt (A cos nt + B sin nt\

A
r

+ -^=0.
dr2

'

r dr

d*V ^IdV_
dr2 r dr

drz r dr

A cos kr + B sin kr

~

.^+#^=0.

y (
A + Bx) cos kx+ (C + Dx) sin kx,

= J. cosh kx + B sinh kx+ C cos kx + D sin

26
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13. If

y = ( A cosh
j^

+ B sinh
-^ J

cos ^

(/-/y
C cosh + D sinh

v

prove that -5-^ 4- Aty = 0.

14. If y = A sin-1 x + By

prove that (1

15. If

prove that

16. If

prove that

17. If y

prove that

18. Shew that the primitive

[CH. XI

y = (sin"
1

xf + A sin"1 x + J5,

= A cos (log x) + B sin (log x)t

dx2 dx

a
y = mx + ,m

where m is arbitrary, leads to

19. If

where c is arbitrary, prove that

20. The differential equation of all parabolas having their axes

parallel to the axis of y is

&y *
f/'Y

21. The differential equation of all parabolas having their axis of

symmetry coincident with the axis of x is
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22. The differential equation of all conies having their principal

axes coincident with the coordinate axes is

23. Prove that the differential equation of all circles touching
the axis of x at the origin is

dy = 2xy
doc 3? y

2
'

24 Prove that the differential equation of all conies touching the

axis of y at the origin, and having their centres on the axis of x, ia

provethat -

26. Prove that the differential equation of all hyperbolas which

pass through the origin, and have their asymptotes parallel to the

coordinate axes, is

27. Prove that the equation

is satisfied by

y = - sin nt lf(t) cos ntdt -- cos nt \f(t) sin nt dt
t

and that this is the complete solution.

EXAMPLES. LI.

(Equations of the First Order.)

1. Integrate ^ = ^. \y = Cx.]dx x

2. Interate =-
3. Integrate

- - = cot x cot y. [sin oj cos y = C.]

4. Integrate aj + y-1. [y
= l

CKB

262
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5. Solve

6. Solve

7. Solve

8. Solve

9. Solve

10. Solve

INFINITESIMAL CALCULUS

m(y + b) dx + n (x + a)dy= 0.

dy = I + y
9

dx 1 + x3
'

[CH. XI

dx

\x + y = tan (x + a).]

11. Find the curves in which the angle between the tangent and
the radius is one-half the vectorial angle (6).

[The cardioids r = a (1 cos
0).]

12. Find the curves in which the perpendicular from the origin
on the tangent is equal to the abscissa of the point of contact.

[The circles r = 2a cos 0.]

13. Find the curves such that the portion of the tangent included

between the coordinate axes is bisected at the point of contact.

[The hyperbolas xy = (?.]

14. Find the curves in which the subtangent varies as the

abscissa. [y=Cx
m

.~\

15. Prove that if the subnormal bears a constant ratio to the

abscissa the curve is a conic.

16. Find the curves in which the perpendicular from the foot of

the ordinate to the tangent has a constant length a.

[The catenaries y = a cosh (x a)/a.]

17. Find the curve in which the polar subtangent is constant

(=a). [>
=

/(0-a).]

18. Find the curve in which the polar subnormal is constant

(=a). [r
= a(0- a

).-}

19. Find the curves such that the area included between any two
ordinates is proportional to the intercepted arc.

[The catenaries y = a cosh (x a)/a.]

20. Find the curves such that the area included between any
ordinate, the axis of x, and the curve is I/nth of the rectangle
contained by the ordinate and the corresponding abscissa.
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21. Find the form of a solid of revolution in order that the
volume cut off by any right section may be 1/nth of the product of

the area of this section into the length of the axis.

[The equation of the generating curve must be y* = Axn
-1

.']

22. In a suspension-rod of uniform strength the area of the cross-

section (S) varies as the total stress across it; prove that if x be
measured vertically downwards the relation between S and x must be
of the form

S = A-B Sdx.

Hence shew that the form of the rod must be that generated by
the revolution of a curve of the type

y = be~ xla

about the axis of x.

23. Find the form of a curve, symmetrical with respect to the

axis of x, such that the mean centre of the area cut off by any double
ordinate shall be at a distance from this ordinate equal to I/nth of the

length of the axis. [y
= Cxn~*.]

21 Solve

25. Solve

(y? + + (y* + 3x*y)dy = 0.

^xdy ydx

28. Solve

27. Solve

dy x
x~--y = -
ax a

fa? + f = 2a2 tan-1 2 + (7.1

o\ . . X a ~]2

). \y = x smh- .

Give the geometrical interpretations of the differential equation
and of its primitive.

dx dy
28. Solve

29. Solve

30. Solve

31. Solve

32. Solve

a2
2xy y

8
2xy

'

dy
^
dy

dy = y (x + y)
dx x(y x)'

(x* Sy
2

) xdx = (y
2 - 3aj

2
) ydy.

[xy
=
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33. Shew that the equation

dy _ ax+by +
dx a'x + b'y + c'

is rendered homogeneous by the substitutions

ax + by + c =
, a'x + b'y + c' =

17.

34. Shew that an equation of the type

may be solved by the substitution

= z.

[CH. XI

35. Shew how to solve any equation of the type

by + cdy = /ax + by + c \

dx \a'x + b'y + c)
"

1. Solve

2. Solve

3. Solve

4. Solve

5. Solve

6. Solve

7. Solve

8. Solve

9. Solve

EXAMPLES. LII.

(Linear Equation.)

dy
-j-

+ y tan x = sec x. [y
= sin x 4- C cos

a;.]

-

dy
-^dx

dx

dy Ix*

du

= 1.

a -^ + au tan 6 = tan 0.
dv

dy
-r-dx

= tan x 2 sin ax

[y
= x + to-*2

.]

[au = 1 + C cos
0.]

[y
= cos x + G sec #.]
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10. Shew that the equation

is made linear by the substitution

407

(Bernoulli's equation.)

11. Solve

12. Solve

*'-"

cos a;

- = 1 + log x + Cx.
\jy -J

-^ - y sin x + y
9 = 0. - = sin x + C cos a.

dx \_y J

13. If the two plates of a condenser of capacity C are connected

by a wire of resistance R (and zero self-induction), the equation con-

necting the charge (q) with the electromotive force (E") is

Integrate this in the cases E = 0, E =
const., E = EQ

cos (pt + e).

EXAMPLES. LIII.

(Orthogonal Trajectories.)

1. Find the orthogonal trajectories of the straight lines

y = Cx. [The circles ar
1 + y* (7.]

2. Find the orthogonal trajectories of the curves

an-i y
_^ [The conies sc

2
-V- ny* = <7.]

3. Find the orthogonal trajectories of the circles

a? + y* = 2cy. [The circles x* + y* = 2c'a?.]

4. Find the curves for which

dy y*

dx x3 + 3xy*
'

and determine their orthogonal trajectories.

[(ar
8 - y

2

)
2 - Cxy ;

x4 + 6V + y*
=

C.]

5. Prove that the differential equation of the confocal parabolas

y
z =4:0, (x + a),

is yp*+2xp-y = Q,

where p = dy/dx.

Shew that this coincides with the differential equation of the

orthogonal curves ;
and interpret the result.
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6. Prove that the differential equation of the confocal conies

s

Shew that this coincides with the differential equation of the

orthogonal curves, and interpret the result.

7. A system of rectangular hyperbolas pass through the fixed

points (+ a, 0) and have the origin as centre
; prove that their ortho-

gonal trajectories are the Cassini's ovals

8. Prove that the differential equation of the involutes of the

parabola y
2 = 4oa; is

..
dy ,

9. Prove that the differential equation of the involutes of the

circle a;
2 + 2 = a2

is

10. Find the orthogonal trajectories of the cardioids

r a (1 cos 6).

[The cardioids r = b (1 + cos 0).]

11. Prove that the orthogonal trajectories of the curves

rm = am cos mO

are the curves rm = bm sin mO.

Interpret the cases of m= 1, 1, 2, 2, J, J, respectively.

12. Prove that the orthogonal trajectories of the curves

r2 = A cos 6

are the curves

r = B sin2
0.

13. If in bipolar coordinates (Art. 132) the equation of a family
of curves be

f(r,r') = C,

the differential equation of the orthogonal trajectories is

Hence shew that the orthogonal trajectories of the circles

r/r'
= C,

are the circles 6 + 0' = (7.
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14. Also that the orthogonal trajectories of the Cassini's ovals

are the rectangular hyperbolas

15. Also that the orthogonal trajectories of the equipotential
curves

r r

are the magnetic curves

cos + cos 6' = C.

1. Solve

9. Solve

10. Solve

EXAMPLES. LIV.

(Equations of Higher Degree.)

dx) dx

2.



410 INFINITESIMAL CALCULUS [CH. XI

11. Find the curve such that the product of the intercepts made
by the tangent on the coordinate axes is constant (= A;

2
).

[The hyperbola xy = A;
2

.]

12. Find the curve such that the perpendicular from the origin on

any tangent is equal to a. [The circle ic
2 + y

2 = a2

.]

13. Solve y=xp
3? 1/

2
~l

Singular solution : -= + ^ = 1.
a2 62

J

14. Find the curve such that the product of the perpendiculars
from the points ( c, 0) on any tangent is equal to 62

.

[
The conic*

15. Find the curve such that the tangent intercepts on the

perpendiculars to the axis of x at the points (a, 0) lengths whose

product is b\

[The conies ^h*l.
L a2 - 6a

J

16. -Solve y = xp + ap (1 p).

[Singular solution : (x + a)
2 =

17. Solve (x a)p
9 + (x y)p 2/

= 0.

[Singular sol ution : (x + y)
a =

18. Find the curve such that the sum of the intercepts made by
the tangent on the coordinate axes is equal to a.

[The parabola (x
-
y)

2 - 2a (x + y) + a? = 0.]

19. Shew that any differential equation of the type

dy dy

represents a system of parallel curves.

20. Shew that any differential equation of the type

represents two systems of orthogonal curves.



CHAPTER XII

DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

1 62. Equations of the Type d?y/dx* =f(x).

This chapter is devoted principally to differential equations of

the second order, and especially to such types as are of most frequent
occurrence in the geometrical and physical applications of the

Calculus. Occasionally, the methods will admit of extension to

equations of higher order.

We begin by the consideration of a few special types, and after-

wards proceed to the study of the linear equation. The linear

equation with constant coefficients is treated in the next chapter.

We take, first, the type

da? (I)

This requires merely two ordinary integrations with respect to x ;

thus

y = [
{//(a?) dx} dx + Ax + Bt

where the constants A, .B are arbitrary.

Ex. 1. The dynamical equation

(2)

.(3)

which determines the motion of a particle in a straight line under a
force which is a given function of the time, is of the above type, with

merely a difference of notation.

In the case of a particle subject to a constant acceleration g we
have



412 INFINITESIMAL CALCULUS [CH. XII

/JfY*

whence
-j-

= gt + A,

x = $g? + At + R ........................ (5)

d?x
Again, if

-^=/sinra,
................................. (6)

the force varying as a simple-harmonic function of the time, we have

dx /= - cos nt + A,
at n

f
At + B...................... (7)

The constants A, B which occur in these problems may be adjusted
so that at any chosen instant the particle shall be in a given position
and have a given velocity.

Ex. 2. To solve the equation

subject to the conditions that y=0 and dy/dx = for a? = 0. This is

the problem of determining the flexure of a bar which is clamped in a

horizontal position at one end
(a;
=

0) and supports a given weight ( W)
at the other end (x

=
I).

Two successive integrations of (8) give

............... ...(9)

where A, B are arbitrary. The terminal conditions require that -4 = 0,

B 0, whence

163. Equations of the Type dz

y/do? =/(y).
If the equation be of the type

a first integral may be obtained in two ways.

In one of these we multiply both sides by dyjdxt
and then

integrate with respect to x
;
thus
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The second method is to introduce a special symbol (p) for

dyjdx. Since this makes

tfy_dp_dpdy_ dp
dtf~dx dyd*

p
dy'

we have, in place of (1),

which may be regarded as an equation of the first order, with p as

dependent, and y as independent, variable. Integrating (3) with

respect to y, we have

W = ff(y)dy + A (5)

which is equivalent to (2).

To complete the solution, we write (2) in the form

</VJf(y)

y

dy+2A}
=dx-

The variables are here separated (Art. 154) ; but on account mainly
of the occurrence of the radical the further integration is often

impracticable, even with comparatively simple forms of the
function f(y).

A very important case is where f(y) is a linear function of y,
so that the equation takes the shape

S +^=

By a change of dependent variable, writing yl -f b/a for y, and
afterwards omitting the suffix, this is reduced to the somewhat

simpler form

The first integral of this is

-

.

If a be positive, we may write

m=\/a, <7 = m2aa
, (10)

it being evident that, ifwe are concerned solely with real quantities,
C must be positive. Thus
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V
whence cos" 1 - = + (mx + e),

a

or y = a cos (mx + e)......................(12)

This is the complete solution of (8), and involves the two

arbitrary constants a, e. If we put

^L=acose, B = asine, ...............(13)

we obtain the equivalent form

y = A cos mx + B sin mx...................(14)

These results are exceedingly important, and should be remem-
bered.

The case where a is negative,
= mz

, say, can be treated in a
similar manner, and we should find, as the complete solution

y A cosh mx + B siuhmx, ......... ...... (15)

where m =
*J(-a). A simpler method of treating this case will

however be given later.

The type (1) is of very great importance in Dynamics. Thus, the

equation of rectilinear motion of a particle subject to a force which is

a given function of its position only is of the form

-/H .............................. (16)

which is identical with (1), if regard be had to the difference of notation.

The first method of integration consists in multiplying both sides

by dxjdt, thus

dx d*x _.. .dx

~dt d^
=^ (X) dt

9

and integrating both sides with respect to t. In this way we obtain

which is the 'equation of energy.'

The second method consists in writing v for dx\dty
and therefore

vdvjdx for d*x/dt
2
;

cf. Art. 32. Thus

dv
v^ =fw-

.

Hence, integrating with respect to x, we have

& = J/(x)dx+C, ........................ (18)

in agreement with (17).
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Ex. 1. If a particle be attracted to the origin with a force varying
as the distance, the equation of motion is

.(19)

This is of the special type (8), and the solution is

x = a cos (fj^t + e) .(20)

This represents a '

simple-harmonic
'

motion. The values of x and dx/dt
both recur whenever ^/fit increases by 2?r

; the period of oscillation is

therefore 27r/N//x. The arbitrary constants a and e are in this problem
known as the 'amplitude' and the 'epoch/ respectively.

The equation of motion of any 'conservative' dynamical system
having one degree of freedom, when slightly disturbed from a position
of stable equilibrium, is also of the type (19). For example, the accurate

equation of motion of a pendulum is

gsmO, ........................ (21)

where g is the acceleration of gravity, and I is a certain length depending
on the structure of the pendulum. In the case of a '

simple
'

pendulum
I is the length of the string. If the extreme angular deviation from
the equilibrium position be small, we may write for sin 0, thus

--?* ...........................(->

The solution of this equation is

-"(v/?-'*') ................... (
23

>

and the period is therefore 2-jr *J(l/g).

The accurate equation (21) can be integrated once by the method
above explained ;

we thus find

'

= ?oos0 + C, .....................(24)

but the second integration cannot be effected (except in the particular
case of C = g) without the introduction of elliptic functions.

Ex. 2. If a particle move in a straight line under an attraction

varying as the inverse square of the distance from the origin, we have

- ...........................
<
25

>

whence, as in Art. 154, Ex. 3,

-+"*'-
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If the particle start from rest at the distance <z, we have G =
/x,/a,

and

S~*-P?5* ^
the minus sign being taken since the velocity is towards the origin.
The second integration is facilitated by the substitution

. ...........................(28)

Separating the variables, we find

(1 + cos 20) e$ = A dt, .................. (29)

+ sin20= (-) * + (30)\a /

As a? diminishes from a to 0, increases from to TT. Hence the

time fa) of falling from rest at the distance a into the centre of force

is given by
- * "f

(3D

164. Equations involving only the First and Second
Derivatives.

If the equation be of the type

i.e. the variables x, y do not appear (explicitly), then, writing p for

dyjdx, we have

*(! *)-<>
<2 >

which is an equation of the first order with p as dependent variable.

The equation (1) may also be reduced to an equation of the first

order, with y as independent variable, by writing as in Art. 163,

c rr for rl^.P
dy

]

da?'

thus
<f> ( p -/-

t p } = (3)

Ex. 1. To find the curves whose radius of curvature is constant

(= a, say).

By Art. 135 we have d*y

I
= + -, (4)

Qi
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dp dx /EX
or

Integrating this we have (Art. 77 (13))

where a is an arbitrary constant. This gives

dy _ x a
' fy.

whence y - /3
= J{a

9 -
(x
-

a)
2
},

..................... (8)

if ft be the arbitrary constant introduced by this last integration. The
result may be written

(x-a)*+(y-j3)* = a?, ........................ (9)

and so represents a family of circles of radius a.

This investigation is given merely as an example of the general

method; the problem itself can be solved more easily in other ways.

Ex. 2. To determine the rectilinear motion of a particle subject to

a force which is a given function of the velocity.

The equation of motion is of the form

which evidently comes under the type (1). Writing v for dxjdt, we
have

dv . . dv C dv ,, 1X
/w> ' ............

( }

For example, if the particle be subject solely to a resistance varying
as the velocity, we have

dv
7 /10X=- kv. (12)

/if

whence -
T-=v = Ae~ 1et

. x = - T Ae~u + B. . ..(13)
at k

Hence, whatever the circumstances of projection, x will approach asymp-
totically, as t increases, to a limiting value B.

Again, if the resistance vary as the square of the velocity, we have

dv

v

dx 1 1
Hence _ = v =^__, and a=

^ log (kt + A) + B (15)

We see that, although v tends asymptotically to zero, there is now no
limit to the space described.

L. T. c. 27
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If we follow the alternative method, the equation (10) is replaced by

Thus, in the case of resistance varying as the velocity, we get

-*, v = -kx + C...................... (17)dx

Hence ^ + ^=(7, ........................... (18)

and therefore, by Art. 157,

x^+De-", ........................... (19)K

where C, D are arbitrary constants. This agrees with (13).

Again, if the resistance vary as the square of the velocity, we have

^ = -/b, v=Ce-**. .....................(20)

fjv 1

Hence e
fec^ = Cf

, ^<**
= Ct + D .................. (21)at K

or kx = \og(kCt + kD\ ........................ (22)

a form not really distinct from (15), as may be verified by putting

A = kD/C, kB=logC.

165. Equations with one Variable absent.

1. If the dependent variable do not appear explicitly, the

equation being of the type

then, writing p for dyjdx, we have an equation of the first order
in p, viz.

*($),- w
If the solution of this be put in the form

p=f(*,A), - (3)

where A is the arbitrary constant, a second integration gives

y = $f(x,A)dx + B (4)

That one of the arbitrary constants would occur as an addition
to y might have been anticipated a priori, since the equation (1)
is unaltered when we write y + C for y.
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2. If the independent variable do not appear explicitly, the

type being

* I- 0- <5>

we write as in Art. 163 (3)

dy d*y dp
-^- = n. -=2--=. rn--

and obtain
^^dy' p'

an equation of the first order between p and y.

If the solution of this can be put in the form

j>=/(y>4), ...........................(8)

the next integration gives

Here, again, it might have been anticipated from the form of
the given equation (5) that one of the arbitrary constants would
consist in an addition to x.

Jfal. (l-^-a..o...................... (10)

Writing this in the form
1 dp _ x

pdx~ 1-re2 '

we find logp = -
J log (1

-
a?) + const.,

dy A-

Hence y = A sin-1
a? + .5......................... (12)

Ex. 2. In the theory of Attractions we meet with the equation

2
(13)-=

r dr

Regarding dV/dr as the dependent variable, we have

(H)

dV
whence log -5- + 2 log r = const.,

or

272
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dV A
or

dr

Integrating again, we find

~?
(16)r

Ex. 3. To find the curves in which the radius of curvature is equal
to the normal, but lies on the opposite side of the curve.

Referring to Arts. 60, 135, we see that the expression of the above
condition is

dx*

Simplifying, and making the substitutions (6), we find

p dp 1

(18)
y

Hence Jlog (1 +^) = logy 4- const., l+pa =
,

......... (19)
c

where c
2
is written for the arbitrary constant, which must evidently be

positive. This gives

<>

Separating the variables, we have

<? c
(21)

where a is the second arbitrary constant. Hence, finally,

y = ccosh^^, ........................ (22)
c

a family of catenaries. Cf. Art. 134, Ex. 1.

166. Linear Equation of the Second Order.

A linear equation of the nih order is one which involves the

dependent variable and its first n derivatives in the first degree

only, without products. Thus, the general linear equation of the

second order may be written

where P, Q, V are given functions of x.

There are several important properties common to all linear

equations. We give the proofs for the equation of the second

order, but the generalization will be evident.
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1. The complete solution of (1) may be written

y = u + w, (2)

where w is any function whatever which satisfies (1) as it stands

and u is the general solution of the equation

dx* dx

which differs from (1) by the absence of the right-hand member.

For, assuming that y = u -f w, where w satisfies (1), and u is to

be determined, we find, on substitution in (1),

d?u _. du ~ d2w n dw

dw

by hypothesis, +p + Q^O; .....................(5)

i.e. the function u must satisfy (3).

The two parts which make up the general solution of (1), viz.

w and u, are called the 'particular integral/ and the 'complementary
function,' respectively. It is to be observed that the particular

integral may be any solution whatever of the original equation ;

the simpler it is, the better. The complementary function must
be the most general solution of (3), and will involve two arbitrary
constants.

2. If M!, u^ be any two solutions of (3), the equation will also

be satisfied by
C,M,, ........................(6)

where C,, Cz are arbitrary constants. This is easily verified by
substitution.

Hence if the functions MJ, uz are 'independent/ i.e. one is not

merely a constant multiple of the other, the formula (6) gives a

solution of (3) involving two arbitrary constants.

3. If a particular integral (v) of the equation (3) be known,
the complete solution of (1) is reduced by the substitution

y = ->, ..............................(7)

to the integration of an equation of the first order in dzjdx. For

(1) becomes

dv
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which reduces, in virtue of the hypothesis, to

[CH. XII

This is linear, of the first order, with dzjdx as the dependent
variable.

In particular, if V= 0, we have

'

.
i +?* + P = 0, .....................(9)dz v dx

~dx

dz
whence log -=- + 2 log v +fPdx = const.,

ax

or ^ = 4*-'* ................... (10)dx tf

fp-fPdx
Hence g = A l^-dx + B...................(11)

J V

The complete solution of (3) is therefore

fPdx

^- da+Bv...................(12)

We add a few examples of the integration of linear equations,

by various artifices. The method of integration by series will be
noticed in Chapter xiv.

Ex. 1. In the theory of Sound, and in other branches of Mathe-
matical Physics, we meet with the equation

<P0 2tW
5^

+
?<fr

+^ =

If we multiply by r, this is seen to be equivalent to

-W) = ...................... (H)

Hence, by Art. 163, r<f>
= A cos kr + B sin kr,

A cos kr + B sin kr
or * =--- ................... (15)

+^o................... (16)

(17)

A particular solution is obviously y = x. We therefore put
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which leads to x(l -*)^+ (2-^)^ = Q................ (
18

>

Separating the variables, we have

whence

i .)

dz x I or

dx

dz A

=0, .-(19)v
> \ /

.(20)

s = .(21)
X

The complete solution of (16) has therefore the form

-x*} + Bx (22)

(23)

This happens to be an 'exact equation,' i.e. the left-hand side is the

ct differential coefficient of a function of x, y, and dy/dx, for it mayexact

be written

The interal (1 +aj2
)

+ ^ = A

This is linear, of the first order, and the integrating factor is seen to be

a?. We thus find

(25)

EXAMPLES. LV.

3.
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4. The differential equation for the deflection of a horizontal beam
subject only to its weight and to the pressures of its supports is

where w is the weight per unit length. Integrate this, on the supposition
that w is constant, and determine the constants so that y 0, d^yjdx^ =
both for x = and for x = I. (This is the case of a uniform beam of

length I supported at its ends.) [$Qy
~ -^wx (I x) (I

2 + lx x2
).]

5. Solve the same equation subject to the conditions that y = 0,

dy/dx = for x = and x L (This is the case of a beam clamped at

both ends.
) [% =^^ (I

-
xf.]

6. Solve the equation of Ex. 4, subject to the conditions that y = 0,

dy/dx = for x = 0, and d^yjda? = 0, d^y/dx
3 = for x = I. (This is the

case of a beam clamped at one end and free at the other.)

7. Solve the equation

and interpret the result. [x =f/p + a cos (J^t + e).]

8. Shew that the solution of the equation of motion of a particle

moving in a straight line under a force of repulsion varying as the dis-

tance, viz.

d?x_
d?-***'

is of one or other of the types :

x = a cosh
(Jpt + e),

x = a sinh (*Jpt + e), x = ae*^**
' *

;

and interpret these results.

9. A particle moves from rest at a distance a towards a centre of

force whose accelerative effect is /,
x (dist.)~

8
. Prove that the time of

falling to the centre is a2

/^/^.

10. Obtain a first integral of the general differential equation of

central orbits, viz.

P
u =

t
2 '

where P is a given function of u. \( -j^ } + u* = 2
/ 7^5 du + C.

\\ddj Jh*u* J
d?T u,

11. Solve the equation =
,

dt2 r3

and shew that the solution is equivalent to

where A, t
C are connected by the relation
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13.

16.

17l7'

23.

25.

27.

28.

2*13=1.

log 008 (->]
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29. (1
_

aj)^ - x^ = 2. [y
=

(sin'
1

a;)
2 + A sin-1 a + A]

30. .

31. _ l _ + 2u = 0. f = * + B 1 - x tanh- 1

32. Find the curves in which the radius of curvature is equal to

the normal, on the same side of the curve.

[The circles (x
-

a)
2 + y* = /3

2

.]

33. Find the curves in which the radius of curvature is double the

normal, on the opposite side of the curve.

[The parabolas (a;
-

a)
2 =

4/3 (y
-

/?).]

34. Find the curves in which the projection of the radius of cur-

vature on the axis of y has a given constant value (a).

[
y =

35. Find the curves in which the radius of curvature varies as the
cube of the normal.

[Conies having the axis of x as an axis of symmetry.]

.
o^S-dM-

ft x a

a-->3-J***-a
[y
= .4

38-

qq39-

'
~\

-J

42. Solve the equation

one solution of which is y = x. [y= Ax + B(x+ I)
2

.]
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43. Solve the equation

one solution of which is y = e~*. [y
= Ar* + Be~*fx<fdx.]

44. Change the independent variable in the equation

dx

to z, where z = cosh"1^ ;
and solve the equation

45.

46.

47.

48.

49.

50.

[y
= A cos z + B sin z.]

^+2ncotna^+(m'-n
2
)2/

= 0.

cos mx + B sin mx
sin rio;

ul sin"1 x + B
]



CHAPTER XIII

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

167. Equation of the Second Order. Complementary
Function.

Linear equations with constant coefficients occur so frequently
in Mathematical Physics as to call for a somewhat detailed treat-

ment. This is much facilitated by the use of a few simple properties
of the operator D, or d/dx, where x is the independent variable.

It has been shewn in Art. 29 that the operation indicated by
D is

'

distributive/ viz. u, v being any functions of x, we have

D(u + v)=Du + Dv......................(1)

Again, if a be a constant, we have

,-r, , du du , ~^
(D + a) u = -7- + au = au 4- ^- = (a + D) u, ...... (2)

and D (au) = a -r- = aDu
;

.................. (3)

so that the operator D, in conjunction with constant multipliers,

obeys the ' commutative
'

laws.

Further, the symbol D is subject to the '

index-law/ viz.

DmDnu = Dm+nu......................(4)
Hence the operator D, both by itself, and in conjunction with

constant multipliers, is subject to the fundamental laws of ordinary

Algebra. We can therefore assume at once, so far as they have a

meaning in the present application, all the results which in Algebra
follow from these laws.

For example, if X1} Xa be any constants, we have

d (du \ fdu^U~H~ Xi (^~
X

d*u , . da
+x-x^

5 + X,X,) ................ (5)
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We proceed to the equation of the second order, which occurs

very frequently in dynamical problems. To find the complementary
function, we have to solve an equation of the form

or CD
2 +a + 6)y = ......................(7)

If Ja
2 > 6, this is equivalent to

(D-XO(D-X,)y = 0, ..................(8)

where Xj, Xg are the roots of

Xa + aX + 6 = 0, ........................(9)

vz.

If we write (D\^)y z, ........................(11)

the equation (8) becomes

(D-XO* = 0, ........................ (12)

a linear equation of the first order. The solution of this is, by
Art. 157,

s = A&*............................(13)

Substituting in (11), we have

(D-\Dy = A&', .....................(14)

whence, by Art. 157, 1,

y = deM + 0,6**, .....................(15)

if Cl =A/(\l \t). Since A is arbitrary, the constants Clt C2 are

both arbitrary ;
and the process shews that (15) is the most general

solution of the proposed equation (6).

If Ja
a =

b, the roots of the equation (9) in X are coincident, and
the equation (14) takes the form

(D - \) y = Aexx......................(16)

The general solution of this, as found in Art. 157, 2, is

y = (Ax + B) e
xx...................... (17)

If Ja
2 < b, the values of X1} X, which satisfy (9) are imaginary,

but we can still obtain, by the foregoing process, a symbolical
solution of (6) involving V( 1). Into the question as to what

meaning can be attributed to such a result it is not necessary to

enter here, as the difficulty can be evaded in the following manner.
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If we write y = e*z, .............. . ............(18)

where m is as yet undetermined, we have

Dy = e *(D +m)z, Dzy^emz
(D

z -\-^mD + mz
)zi ...(19)

so that the equation becomes

\D* + (2m+a)D+m*+am + b}z=0.......... (20)

If we now put m %a this reduces to the form of Art. 163 (8),

thus

iW)f-0...................(21)

The solution of this, when b > a2
, has been shewn in Art. 163 to be

z = A cos $x + B sin /3x, ..................(22)

where /3
= V(&-ia

2
)......................... (23)

Hence the solution of (6), in the present case, is

y = e-*ax (A cos fa + B sin fix)............. (24)

This is also equivalent to

y = Ce-*ax cos (fix+ e), ..................(25)

where the constants (7, e are arbitrary.

To summarize our results :

(a) If a2 > 6, the solution of (6) is

y = C^ + C^e^,

where \lt X2 are the roots of

\2 + a\ + b = ;

(b) If Ja
3 =

b, the solution is

y = (A(K + B}e-*
1
*\

(c) If Ja
2 < b, the solution is

y = e-i aa; (A cos fix + B sin /),
if 92 = 6 - a*.

The equation in X is

X2 + X - 6 = 0, whence X = 2, or 3.

Hence y = Ae2x + B&-**......................... (27)

The equation in X, viz. (X + 2)
2 = 0,

has the double root 2. Hence

y = (Ax + )e-**. ........................ (28)
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Ex. 3. The free oscillations of a pendulum in a medium whose

resistance varies as the velocity are determined by an equation of the

form
dx A /onv

......................... (29)

where & is a coefficient of friction. The same equation also serves to

represent the motion of a galvanometer-needle as affected by the vis-

cosity of the air, and by the electro-magnetic action of the currents

induced by its motion in neighbouring masses of metal.

When regard is had to the difference of notation, the solution of

(29), when the friction falls below a certain limit, is

x=Ce-Wcos(nlt + ),
..................... (30)

where *i = >/(/*- i*
s

)
......................... (31)

The motion represented by (30) may be described as a simple-harmonic
vibration of period 2ir/nlt whose amplitude diminishes asymptotically
to zero according to the law e~kkt.

The solution (30) assumes that k? < 4/t. When k* > 4/*, the proper
form is

x = AeM + eW, ........................ (32)

where \lt X2 are the roots of

\* + k\ + f*
= Q............................ (33)

By hypothesis, these roots are real. Sines their product (p) is positive

they have the same sign ;
and since their sum

( k) is negative, the sign
is minus. Hence the displacement x sinks asymptotically to zero after

passing once (at most) through this value. This case is realized in a
' dead-beat

'

galvanometer, or in a pendulum swinging in a very viscous

fluid.

In the critical case of A2 =
4/u.,

we have

x = (A+St)*-W......................... (34)

The first factor increases (in absolute value) indefinitely with t, whilst

the second diminishes. The decrease of the second factor prevails how-

ever over the increase of the first, and the limiting value of the product,
for t -+ oo

,
is zero. Of. Art. 43 (2).

168. Determination of Particular Integrals.

We have next to consider the problem of finding a particular

integral of the linear equation of the second order with constant

coefficients, when this equation has a right-hand member, thus :

l>)y
= Vt .....................(1)

where V is a given function of sc. As already remarked, any par-
ticular integral, however obtained, will serve the purpose. Thus,
we may omit from the particular integral any terms which occur
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in the complementary function, since these will contribute nothing
to the left-hand side of (1). Conversely, if for any purpose it is

convenient to do so, we may add to the particular integral any

groups of terms taken from the complementary function.

Again, if V be composed of a series of terms, the problem con-

sists in finding values of y which, when substituted on the left-hand

side of (1), will reproduce the several terms, and adding the results.

It will be sufficient here to notice the most useful cases.

1. If V contains a term

He**, ..............................(2)

the corresponding term of the particular integral is

y =-f *** -(3)
a2 + aa + b

For if we perform the operation Z)2 + aD + b on the right-hand
side of this, we reproduce (2).

This rule fails if a2 + aa + b = 0, i.e. if e
aic be one of the terms

which occur in the complementary function. Using the notation

of the preceding Art., we will suppose that a=X1} so that the

equation to be solved is

(D-\)(D-*,)y=He^................... (4)

If we write, for a moment,

(D-XOy-*, ........................ (5)

this takes the form (D-\)z=He^x......................(6)

It was found in Art. 157, 2, that a particular solution of (6) is

z=Hx&*. ........................... (7)

It remains only to solve

(D-\dy = Hxe**...................... (8)

The integrating factor is e~^\ thus

-^ x
. .................. (9)

Integrating the right-hand member by parts, and omitting a term

already included in the complementary function, we find

TT

A-2

a** 1*
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A further modification is necessary if a be a double root of the

equation Z)a + aD + 6 = 0. The equation to be solved has now the

form

(D-\)z
y = He**......................(11)

The first step is as before, but in place of (8) we have

(D-\)y = Hxe> ......................(12)

We found in Art. 157, 3, that a particular integral of this is

2/=pfaV* .........................(13)

The forms of these results being once established, the student

will probably find it the easiest and safest course to assume

y = Ceax, y = Cxeax,
or y = Ca?eax

,
......... (14)

as the case may be, and to determine the value of G by actual

substitution in the equation

(D* + aD + b)y = He*...................(15)

The work is facilitated by formulae to be given in Art. 169.

2. If V contains terms of the form

J^cos ace -fK sin ax, .....................(16)

we may assume y A cos ax -{- B sin ax................... (17)

Substituting in (1), we obtain, on the left-hand side,

(- a?A + aaB -f bA) cos ax + (- a*B - aaA + bB) sin cue.

Hence the terms (16) are reproduced, provided

(-tf + b)A + aaB = H, -aaA +(-a? + b)B = K. ...(18)

Except in the particular case where a = 0, aa = 6, which will be
considered presently, these equations determine A and B

; thus

D = _.
The foregoing results simplify when the coefficient a in the

differential equation is zero
;
a particular integral of

d?y

-j-^
+ by = Hcosax +K sin ax ............(20)

being obviously
If K

*............. (21)

A singularity arises, however, when aa = 6. To find the proper
form in this case we may assume

y = u cos ax + v sin ax. ..................(22)
L. i. c. 28
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This makes

+ Dz
u) cos OLX + (- ZctDu + D*v) sin ax. (23)

Hence (20) will be satisfied in this case, provided

Kx Hx
u=-- v=

A particular integral is, therefore,

ti. .

x sin OLX
2a la

ti. . 1\. //-v~\

y = x sin OLX x cos OLX................(25)

As in Art. 167, Ex. 1, the complementary function is

If we assume y = CeP", we find on substitution that the first term on the

right-hand side of (26) is reproduced provided C = . The second term
comes under one of the exceptional cases above discussed, since - 3 is

a root of X2 + X 6 = 0. If we assume y = Cxe'3
*, we nnd that the term

in question is reproduced, provided G =
-J-

.

The complete solution of (26) is therefore

y = Ae + e-** + Je
3z - -^r

3*
................ (27)

Ex. 2. -r + 4 + 4y = e* + e~^. ..(28)ax2 ax

The complementary function has been found in Art. 167, Ex. 2,
to be

y = (Ax + ) er^.

To reproduce the first term on the right hand, we assume y = Ce2

*, and
find (7 = ^. The second term corresponds to a double root in the

equation for X; assuming, therefore, y = Cx*e-2as

t we find G = J.

Hence the complete solution of (28) is

y= (Ax + 3)6-** + ^6* + ^e-**. .............. (29)

Ex. 3. To find a particular integral of

)
................ (30)

This is the equation of motion of a pendulum subject to a resistance

varying as the velocity, and acted on by a force which is a simple-
harmonic function of the time.
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We assume x= A cos (pt + )
+ B sin (pt + e), (31)

and find, on substitution,

p*A + kpB + pA =f ,

JjJ^f) (32)

whence -^ =
7 j^ TT~tff ^ =

7 2\a JJ~zf- (**3)/VIA \ I //*->-^* *^ / <a /Vl* \ i i**'Kl* % r

If we put ^=^0086!, ^ = 7^sinc1 ,

the solution (31) takes the form

x Rcos (pt + e ej, (35)

I n ?J

where ^ =
-777 4\i f?-?i , e,

= tan" 1
*-

(36)
N/{(/*-^)

2 + ^y} /*-!>*

We have thus determined the ' forced oscillations
' due to the given

periodic force. The * free oscillations,' which are in general superposed
on these, are given by the complementary function (Art. 167, Ex. 3).
Unless k they gradually die out as t increases.

Ex. 4. For the forced oscillations of an unresisted pendulum we
have

)......................(37)

A particular integral is

)...................... (
38>

This fails when p = n. Assuming that in this case

x - Gt sin (nt + e), ........................ (39)

we find on substitution that (37) is satisfied provided

2n(7=/, or C=//2n...................... (40)

The interpretation of (39) is that, if an unresisted pendulum be acted
on by a periodic force whose period coincides with that natural to the

pendulum, the amplitude of the forced oscillations will at first* increase

proportionally to the time.

169. Properties of the Operator D.

The methods of Arts. 167, 168 admit of extension to the general
linear equation with constant coefficients

dny dn~ly dn~zy dy^ + ^ 1d^1
+ ^ a5^2

+ '-' 4'"4w-1 +

*
Usually, in the physical applications, the equation (37) is approximate only,

being obtained by the neglect of powers of x higher than the first. Hence when
the amplitude increases beyond a certain limit, the equation ceases to apply, even
approximately, to the subsequent motion.

282
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or, as we may write it for shortness,

-r. ...........................(2)

/(D) denoting a rational integral function of D. We shall however
content ourselves with indicating how a solution of (1), involving
n distinct arbitrary constants, can be obtained when V= 0, and
how a particular integral can be found for certain forms of V. The

proof that the solution thus arrived at is the most general which
the equation admits of is omitted

;
but from the point of view of

practical applications it is sufficient to have at our disposal the

proper number of arbitrary constants required to satisfy the re-

maining conditions of the problem.

The following properties of the operator D will be useful.

1. If ty (D) be any rational integral function of D, say

^ (D) = AJ)n + A.D^ + A,Dn~* + . . . + A n_,D + Any . . .(3)

then ^r(D)e* = ^r(X)e* ......................(4)

For

and thus the several terms of ty (D) give rise to the several terms
of ^r (X) as factors of &*.

2. With the same meaning of ty (D), if u be any function of

x
t
then

^(D).e**u = e*x .'^(D + \)u. ...............(5)

For we find in succession

D .ex*u

X) (D + X) u

and so on
;
the general result being

Hence the several terms of the operator -^ (D) give rise to the

corresponding terms of the result given in (5).

3. If ^ (D) contain only even powers of D, it may be denoted

by (j> (D
2
).

It appears from Art. 64 that if

u = A cos ax + B sin cue, ..................(6)

then D*u oPu,

and therefore
<f> (D

2

) u= </> (- a>)u......................(7)
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170. General Linear Equation with Constant Coefficients.

Complementary Function.

To obtain solutions of the equation

/()y = o, (i)

we remark that iff(D) be resolved into any two rational integral

factors, thus

f(D)~i(P).+ (D) (2)

the equation (1) is obviously satisfied by any solution of

*(D)y = (3)

And since the factors are commutative (Art. 167), it is also satisfied

by any solution of

<t>(D)y = (4)

Hence (1) is satisfied by the sum of any solutions of (3) and (4).

Continuing the resolution we see that if

/(J5) a $,(D).fc(D). *,(/>), (5)

the equation (1) will be satisfied by the sum of the several solutions

of

<k(D)y = 0, <kC0)y = 0, <,() 2/
= 0, (6)

By a theorem of Algebra, already referred to in Art. 85, the

function /(D) can be resolved (if its coefficients be real) into real

factors of the first and second degrees, the sum of the degrees of

the several factors being equal to the degree (n, say) of the function.

Moreover the factors of the first degree are of the forms

D-Xj, D-Xa, D-X3 ,
...

where \lt Xj, X,, ... are the real roots 'of

/(V>=0 (7)

If \ be a simple root of (7), one of the equations (6) is of the

form

OD-X)7/ = 0, (8)

the integral of which is known to be

y = Ce** (9)

And if the roots of (7) be all real, say they are Xa ,
X2 , ... Xn , a

solution of (1) involving n arbitrary constants is

y = C^* +G^ + ... + Cne^; (10)

cf. Art. 167 (15).

If the equation (7) has a multiple root, two or more of the terms

on the right hand of (10) coalesce, and the number of distinct
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solutions thus obtained is less than n. To supply the deficiency,
we remark that, if \ be an ?*-fold root of (7),/(D) contains a factor

(D - \)
r

. To solve

tD-\Xy=0, ........................ (11)

we assume y =e
xx

z, ...........................(12)

which makes

(D -\)r
y = (D- \)

r .exx z = e^ Dr
z,

by Art. 169, 2, and the solution of Drz is obviously

z = B + B& + E^ + . . . + Br^xr
~\

whence y = (B + B^ + 2tf
2 + . . . + 5r_1o;

r-1

) e**.......... (13)

We have here r arbitrary constants, corresponding to the r-fold

factor of/(D). Cf. Art. 167 (17).

If f(D) contains, once only, an irreducible quadratic factor

D2
4- aD -f 6, where Ja

2 < 6, then part of the solution of (1) consists

of the solution of

(D* + aD + b)y = Q...................(14)

If we put y = e-*ax z, /^ = b-^a\ ............... (15)

we have, by Art. 169 (5),

(D
2 + aD + b) y = {(D + a

And the solution of (D
2 + /3

2
) z =

is z = E cos jSx + F sin px.

We thus find y = e~*ax (E cosffx + Fsmfa), ............ (16)

as in Art. 167 (24). Hence for every distinct quadratic factor of

f(D) we obtain a solution involving two arbitrary constants.

Finally, if f(D) contains an irreducible quadratic factor which
occurs r times, we have to solve

(D* + aD + bYy = Q, .................. (17)

or, making the substitutions (15), as before,

(D
2 + /8

2

)''
(s = ...................... (18)

To solve this, we assume

z = u cos ffx + v sin fix. .................. (19)

Now, by actual differentiation, we find

(D
2 + 2

) . u COB /3a;
=

2/3. Du.cos(/3x + TT) + ...,

/9
2

)
2

. u GOS/&? = (2/3)
2

.
2w. cos (00 + IT) + ...,
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and, generally,

(
3 +py . u cos fa = (2/3)

r
. Dru . cos (fa + i?-7r) + ...,.. .(20)

where only the terms of lowest order in the derivatives of u are

expressed. Similarly

(D* + (3*)
r .vsm/3x = (2/3)

r .Dr
v.sm(fa + 1sr7r) + .......(21)

Hence the equation (18) is satisfied, provided

0, Dr v = 0, .....................(22)

. .....

... + Fr^xr~\ J

The complete solution of (17) is therefore

y = (E + E,x + #20
2 + . . . + Er^af-1

) e~*
a* cos fa

+ (F + Flx+Fga?+... + Fr^x'-i) e-* sin fa, . . .(24)

involving 2r arbitrary constants.

-S-3 ............................ <25>

This may be written Z>2 (D - I
) y = 0,

and the complete solution is accordingly made up of the solutions of

Z>
2

y = 0, (-l)y = 0, thus

(26)

.. (27)

This may be written

Adding together the solutions of

(D-m)y = Q, (Z> +

weobtain y = Ae1 + Be-* + E cos mx + F sin mx. ......... (28)

This is equivalent to

(

Hence

2,

...... (30)
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Ex. 4. +2m* + mV = ...................... (31)dor ax*

Writing this in the form

(
2 + m2

)
2
y = 0,

we find y = (EQ + E&) cos mx + (F + F^x) sin mx. ......... (32)

171. Particular Integrals.

We proceed to the determination of a particular integral of

the equation
f(0)y = V, ...........................(1)

in the two most important cases.

1. If V contain a term

He**, .............................. (2)

the corresponding term in the particular integral is

for this makes f(D) y = jf(D) e** = He**,

by Art. 169 (4).

The rule fails when a is a root of

. /<D)-0............................ (4)

If it be a simple root, we may write

f(D)s4>(D)(D-a), .....................(5)

where
</> (D) does not contain the factor D a. The equation

<t>(D)(D-a)y = He** .................. (6)

is satisfied, provided

and we have seen, in Art. 157, 2, that a particular integral of
this is

If a be an r-fold root of (4), we may write

.f(D) = 4>(D)(l)-aY, .................. (8)

where
</> (D) does not contain D a as a factor. The equation

.................. (9)
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is satisfied, provided

Now if we put y = eaxz,

we have, by Art. 169 (5),

whence Drz =

This is evidently satisfied by
H

r"*
A particular integral of (9) is therefore

2. Let V contain terms of the type

H cos ax +K sin ax. ..................(11)

Since the operation f(D), performed on

y = A cos ax +B sin ax, .................. (12)

must result in an expression of the same form with altered coef-

ficients, a particular integral can in general be found by substi-

tuting this value of y in the equation

f(D)y =H cos ax-}- K sinew;, ............(13)

and determining A and B by equating coefficients of cos ax and
sin ax.

In one very frequent case, the values of A and B can be written

down at once, viz. when the equation is of the type

<f> (D
3

) y =H cos ax -f K sin ax, ............(14)

i.e. f (D) contains only even powers of D. We have, then, by
Art. 169, 3,

This result fails if
</> (- a2

)
= 0, i.e. if

<j> (D
2
) contain D2 + a2 as

a factor, in which case terms of the type (11) occur in the comple-

mentary function. If the factor D2 + a2 occur once only, we write

a)...................(16)
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Now the equation

% (D
2
) (D

2 + a2
) y =H cos ax +K sin ax ...... (17)

will be satisfied if

....... (18)

The problem is thus reduced to one already solved under Art.

168, 2, viz. we have the particular integral

H K /if\\
.a? sm ooj =---.xcosax....... (19).

2%(-o2
)

If the factor J92
-f- a2 occur r times in

</> (D
2

), we write

(20)

and the problem is reduced to finding a particular integral of

*. ......(21)

If we assume

y u cos (ax ^TTT) + v sin (ax (22)*
we find

by Art. 170 (20), (21). Hence (21) is satisfied provided

JU U ^ T^.
~

~/

~
i -L/ V ^ /^ ~

~/ rr > . . .(^o)

or u
Hxr

r!(2aX % (-a
2
)' r I (2a)' x (- aa

)

'

A particular integral is therefore

C S ~

In the general case, where f (D) contains both odd and even

powers of D, the assumption (12) fails in like manner if, and only
if,f(D) contains the factor Dz + a2

. Writing

/(.D) = X (D)(' + a7-, ..................(26)

where % (D) does not contain the factor Z)a + a2
, we first obtain a

particular integral of the equation

x(D)y= H cos ax + K sin ax, ............(27)

in the form y =Hl
cos ax + K sin ax. ............ (28)

* The assumption y=ucosax + VBmax would serve equally well, but the form
in the text enables us to write the final result in a more compact manner.
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It then remains only to solve

#..... ........(29)

This has been treated above.

3. Another case where a particular integral can be obtained

is that of

/(D)y = -2T, ........................(30)

where X is a rational integral function, of (say) degree r. We put

y = xmv, where m is the lowest index of D which occurs in f(D\
and v is a rational integral function of x, of degree r. The coef-

ficients in v are then determined by substitution.

172. Homogeneous Linear Equation.

An equation of the type

(1)

is sometimes called a 'homogeneous* linear equation. ,The com-

plementary function in this case consists in general of a series of

terms of the form Cxm
,
where C is arbitrary, and the values of m

are to be found by substitution on the left-hand side. Moreover,
if V contains a term Hxp

,
the corresponding term in the particular

integral will in general be Bxp, provided B be properly deter-

mined.

To see the truth of these statements we may take the homo-

geneous linear equation of the second order. To solve

we assume yGxm............................ (3)
This will satisfy the equation provided

{m(m-I) + am + b}Cx
m = Q................ (4)

Equating to zero the expression in
{ },

we have a quadratic in m.
If mlf w2 be the roots of this, the solution is

y^dx1** +C2 xm*......................(5)

Again, a particular integral of the equation

will be y Bxp
, ........................... (7)

provided [p(P~ l) + p + b\ B =H. .................. (&)
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Complications arise when the equation in m has imaginary
roots, or when it has coincident roots; there are, further, diffi-

culties in connection with the
particular integral when V contains

terms of the type xp
,
where p is a root of the equation in m. To

avoid special investigation, we shew how the equation (1) can

always, by a change of independent variable, be transformed into

a linear equation with constant coefficients.

If we put x = e, ..............................(9)

then, u being any function whatever of x, we have

du _ du dx _ _$
du

dx
=
d0^dS

=
~d9*

du du
or x ^- -Ta ......................(10)dx dv

We will denote the operator djd6, which is seen to be equivalent
to xd/dx, by S-. Then, D standing as usual for d/dx, we have

xD (x
mDm u) = xm+l Dm+l u + mxm I^u,

or

ajrn+1 fym+i u = (XJ) _ m) (x
m, J)m M) = (^ _ m) ^m J)m^ . . .(H)

Putting ra= 0, 1, 2, ... in this formula we can express

xDu, x*D*u, x*D*u
y ...

in succession in terms of ^u, &u, *&ii, .... Thus, since the operator
S-,
=

djdO, is commutative,

xDu =

and so on, the general formula being

^D^ = ^(^-l)(^-2)...(^-r + l)w.......(12)

If we substitute for the several terms of (1) their values as

given by (12), we get a linear equation with constant coefficients,

of the form

. ............(is)

<>.........................(H)r dr

If we multiply by r3 this comes under the form (1); thus
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Assuming F = CVm
,

we find ra (m
-

1) + 2m =
0, or m (m + 1)

= 0.

The admissible values of m are and 1
;
and the solution is therefore

B

Of. Art. 165, Ex. 2.

fix. 2. (c
2 + 2a;-22/ = a;

2
. ..(17)

cte
2

flfe

To find the complementary function, we assume y = Cx
m

,
and obtain

m (m - 1
)
+ 2m -2 =

0, or (m -
1) (m + 2)

=
0,

whence m = 1 or - 2. Again, a particular integral is y = Cx*, provided

2(7 = l or (7 = .

D
Hence 2/

= Jaj + -^ + Ja;
2
. ........................ (18)

#*. 3. & x + y^x. ..(19)oar CKC

This becomes {3- ($
-

1)
- 3- + 1

} y = e*,

or

Allowing for the difference of notation, the solution of this is, by
Art. 167,

or, in terms of re,

............... (20)

This gives (^+l) 2/

y = A cos + B sin +

= A cos (logos) + .Z?sin (log a;) + -^x
9
............. (22)

173. Simultaneous Differential Equations.

In dynamical and other problems we often meet with systems
of simultaneous differential equations, involving two or more func-

tions of a single independent variable, and their derivatives, the

number of equations being always equal to that of the dependent
variables. We denote the dependent variables by the letters

a?, y, . . .
,
and the independent variable by t.

Without entering into questions of general theory, it will be

sufficient here to give a few examples exhibiting the methods
which are most generally useful.
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In the first place, it may happen that each of the given equa-
tions involves only one of the dependent variables, and so can be
treated separately.

Ex. 1. In the case of a projectile under gravity, if the axes of x
and y be horizontal and vertical, we have

Hence x = A+A't, y=B + B't-%gP................ (2)

The arbitrary constants A, A'
t B, B' enable us to satisfy the four

initial conditions as to position and velocity.

Ex. 2. In the case of a particle attracted to a fixed centre (the

origin) with a force varying as the distance, we have

d~x

whence

x = A l cos y//.
+ A% sin iji^tt y = jff, cos ^//xtf

+ -52 sin

If we eliminate t, we find

which shews that the path is an ellipse.

If the given equations, which we will suppose to be n in

number, are not of this simple type, then by differentiations, and

algebraical manipulation, we may eliminate all the dependent
variables x, y, z, . . . ,

save one (say x). If, after integration of the

resulting equation, we substitute the general value of x in the

original system, we shall find that this now reduces to n 1 equa-
tions involving the n 1 dependent variables y, z

t .... The process
can be repeated until each dependent variable in turn has been
determined as a function of t and of arbitrary constants.

In particular cases a more symmetrical procedure is possible.
We content ourselves with a few illustrations taken from physical

problems.

Ex. 3. If x, y be the coordinates of any point in a rigid plane
which is rotating with angular velocity n about the origin, we have
the equations

dx dy
Tt

= -ny, Tt
=. (5)

Eliminating y, we have
/i /Y* fjftt^ < _ _ ay 2

dt2 dt

whence x = a cos (nt + e), (6)
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the constants a and c being arbitrary. Substituting in the first of the

equations (5), we find

y a sin (nt + e) (7)

The results (6) and (7) shew that each point describes a circle about

the origin with angular velocity n.

Ex. 4. In the theory of electro-magnetic induction we meet with

the equations
dx dy
*****

Here x and y denote the currents in two circuits subject to mutual

influence; R and S are the resistances of the circuits, L and N the

coefficients of self-induction, M that of mutual induction, and E, F are

the extraneous electro-motive forces.

Let us first suppose that E = Q
t
F = Q. The equations are then

satisfied by
........................ (9)

provided (L\ + )A + MXB = 0,

Eliminating the ratio A : 7?, we have

(ZA + B) (NX + S)~MW = 0,

or (LN-M*)\* + (LS +N)\ + S = .............(11)

Since (LS + WE)* - 4RS (LN- M*)

a positive quantity, it appears that the roots of the quadratic (11) are

always real. Again, for physical reasons, LN is necessarily greater
than J/ 2

. Hence (11) shews that the two values of X must have the
same sign (since their product is positive), and further that this sign
must be negative (since the sum is negative). Hence, denoting the
roots by Xx ,

X2 ,
we have the solutions

<v p \x A-p i,
-

,

and x = A^e-^ y =
'

where the relation between A^ and lt or A z and 2 ,
is given by either

of equations (10) with Xj or X^ written for X. The arbitrary con-

stants therefore virtually reduce to two. On account of their linear

character, the equations (8), with E = F 0, are satisfied by the sums
of the above values of x and y, respectively. The result represents the

decay of free currents initially present in the circuits.
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If E and F are not zero, but given constants, a particular integral
of (8) is evidently

x = E_

R'
F

and the complete solution is

- +

.(13)

-W + Btf-

and and between .4 2 and JS2 are as

E
X = R +

F
y=s +

where the relations between
above indicated.

The first terms in these values of x and y represent the steady
currents due to the given electro-motive forces; the remaining terms

represent the effects of induction. Since we have, virtually, two ar-

bitrary constants, these can be determined so as to make the actual

currents have any given initial values.

Another important case is where E is a simple-harmonic function

of the time, and F is zero. Putting, then,

a particular integral of the equations (8) may be found by assuming

x = A cos pt + A' sin ptt

y = B cos pt + 1? sin pt.
(15)

On substitution we find, equating separately the coefficients of cospt
and sin.pt,

.(16)

These formulae give A, A', B, B', and so determine the electrical oscil-

lations in the two circuits due to the given periodic electro-motive

force. The free currents are given by terms of the same form as

in (12). Their values depend on the initial circumstances, and in any
case they die out as t increases.

Ex. 5. As a final example, we take the equations

.d*x r,d*"

dt*

.(17)
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which determine the motion of any
' conservative

'

dynamical system,
having two degrees of freedom, in the neighbourhood of a position of

equilibrium.

To find the free motion, we put X = 0, T = 0, and assume

x = Fe^*, y = Gext (18)

We thus get (^X
2 + a) F + (#X

2 + h) G = 0,

(tfX
2 + h) F + (BW + b)

= 0.

Eliminating the ratio F : G, we have

or (AB-H*)X'+(Ab+Ba-2Hh)\* + (ab-tf)=Q (21)

This is a quadratic in Xa
.

The expressions

and J (oar
5 + 2&ey + fy

2

),
........................ (23)

represent the kinetic and potential energies of the system, respectively.
The former is essentially positive; hence A, B are positive and AE > H*.
It follows that the left-hand side of (20) or (21) will be positive both for

X2
=? + oo and for X2 = oo

,
whilst for X2 = the sign is that of ab A2

.

Also, from (20), it appears that the left-hand member is negative for

X2 = -
a/A and for X2 = -

b/B.

Hence if the expression (23) be essentially negative, so that a, b are

negative, whilst ab h* is positive, the equation (21) is satisfied by two

positive values of X2
,
one of which is greater, and the other less, than

either of the quantities a/A,
- b/. Denoting these roots by X^, X^,

we have the solutions

x = i + e- + j + a e- t

} ............ (24)
y = l6

V + <?/-*!* + 2eV + #2'e-V. j

Of the eight coefficients, only four are arbitrary. The ratio F^ : G^
which is the same as F{ : G\', is determined by (19), with X

a
2 written

for Xa
. Similarly, the ratio Fz : Gz or F9

'

: G% is determined by the
same equations, with X2

2 written for X2
. The four arbitrary constants

which remain may be utilized to give any prescribed initial values to

x
} y, dx/dt, dyjdt. It appears that x and y will increase indefinitely

with t, unless the initial circumstances be specially adjusted to make
Fl and Fa vanish. Hence if the potential energy in the equilibrium

position be greater than in any neighbouring position, an arbitrarily
started disturbance will in general increase indefinitely; so that the

equilibrium position is unstable.

If, on the other hand, the expression (23) be essentially positive, so

that a, b, ab A2 are positive, the roots of the quadratic in X2 will both
be negative, viz. one will lie between and the numerically smaller of

the two quantities -a/A t b/fit
and the other will lie between the

L. i. c, 29
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numerically greater of these quantities and oo . This indicates that
in place of (18) the proper assumption now is

x =F cos pt + F' sin pt, y = G cospt + G'ainpt....... (25)

This leads to equations of the forms (19) and (21), with -p2 written
for X2

. It follows that the two roots of the quadratic in p* will be
real and positive. Denoting them by p? and

jt?2
2
,
we get the solutions

x - FI cosPJ + FI sin pj + FZ cos p2t + Fa
'
sin p2t,

y = G! cos pjt + GI sin p + G* cos p2t + Gu

f

cos pj,

where the ratios FJG^ F^'/Gi, FJGtt Ft'/G9
'
are determined in the

same manner as before. Suva*. FffGfmPjQlt and Fs'/Ga
' = F9/G9t the

results may also be written

x = Fl cos (pjt + l) + Ft cos (pj + e,), I

y = Gl cos (p^ + cj) + Gt cos (p2t + c2), }

where FlfGl and FJGa are determinate. It appears that when the

potential energy in the equilibrium position is less than in any neigh-
bouring position, a slight disturbance will merely cause the system to

oscillate about the equilibrium position, which is therefore stable.

The two roots of the quadratic in A.
8
(or in />

2
)
have been assumed

to be distinct. It may be proved that they cannot be equal unless

a/A = bjB = h/H; and that if these conditions be fulfilled the solution
is of one or other of the two types :

x = Fe>* + F'e-**
t y=Ge^+G'e~^y ............ (28)

x = Fcospt + F'siupt, y - G cos pt + G' sin pt, ......(29)

where the four constants are in each case independent.

Finally, we have the case where the expression (23) for the potential

energy may be sometimes positive and sometimes negative. In this case

ab - h? is negative, and one root of the quadratic in Xa
is positive, the

other negative. The complete solution is now of the type

x=FeM + F'e-** + F"cospt + F'"ampt, )
V ........ .(.")(_) )

y = G** + G'e-** + G" cos pt + G"' sin pt. )

It is clear that an arbitrary disturbance will in general increase indefi-

nitely, so that the equilibrium position must be reckoned as unstable.

A slightly different method of treating the question is to assume

y=M .............................. (31)

The equations to be solved now take the form

(A + /x//)
- + (a + fjJk)

x = 0,

.(32)
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These are both satisfied by
..............................(33)

A + pH II + 1*8 1

provided
-*-=- = -v-r=~r5 ................... V^4)a + fJi h + fjib

A.
2

Hence /x is determined by the quadratic

(Hb-Bh}iJ+(Ab-Ba)n + (Ah-Ha) = Q.......... (35)

If
//-!, fjL2 be the roots of this, the corresponding values of A.

2
are given

by (34). In this way we obtain two solutions, which, on account of

the linearity of the differential equations, we may superpose.

If we eliminate /n from (34), we get the same quadratic to deter-

mine A.
2 as before. Hence the condition for the reality of the roots

of (35) must be the same as in the case of the quadratic (21). This is

easily verified.

If A2 be negative, the solutions are of the types

x = Fl cos (Plt + l ), y = 1̂
F1 cos (pj + l),

tvDJ
x = F9 cos (p2t + a), y = HzF9 cos (pj + a),

where Fit F^, e1} e3 are arbitrary. Either of these by itself represents
what is called a * normal mode '

of vibration of the system.

To find the forced oscillations when the extraneous forces X, T are

of the type X = a cos (nt + e),
Y= ft sin (nt + e), ............ (37)

we may assume
x =F cos (nt + e), y = G sin (nt + c), ............(38)

and determine the coefficients F, G by substitution in (17). A case of

failure may arise, when the expression (23) is essentially positive, owing
to ra

2
coinciding with one of the roots of the quadratic in p\

EXAMPLES. LVI.

(Constant Coefficients.)

3.

.

dx

39
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6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.
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^ = mty. [y
= Aemx+e-ma: + C cos mx + Z> sin mx.]

dy A r
d3
y

= e* (A cosnx + sin nx).]

2 + 5y = 0. [y
= -(^ cos 2a;+ Bsin 2).

, ma; D . mx\ mx
cosh -7^ + B sinh ^ ) cos ^

( , , ma; . ma;\ ma;
+ (^ cosh -^ + ^' sinh---) sin- ---.

= 0.

[y
= .4 cos (ma; + a) + ^ cos (na: + y8).

18. Shew that the solution of the equation

d*x , dx
-J^ + K-j--fJ^K = ()

dt? at

is of the form x = Ae~at + Be^
t

where a, /3 are both positive (if k and
/u are positive) and a >

ft.
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c?
2
?/ dy

19. i-^-
- 2m -j + WV = sin

[(ra
a w2

) sin nx + 2mn cos raa?

y =-K?
- + &c'

20 -

21.

22. -r-^ m*y = cos A;aj + cosh kx.
ax

y TJ
--

4 (cos kx + cosh Aaj) + &c.

23. (Z>
4 - m4

) y = cosh wa? + cos mx.

y = j 3 (s^11^ * sin #) + &c.

25. (Z>
2 + m2

)
2
y = cosh mx + cos mx.

y = -. . cosh mx ^5 a;
2 cos mx.4m4 8m2

J

26. Find the values of x and dx/dt from the equation

Cl Hf* fl *Y

dtf* dt

subject to the conditions x = 0, dx/dt = for t = 0.

/,
\

x ~
IP

da; f sin ,= J -
{cos (jrt

-
2c)

-
(n<

- cos 2e) e~n<
},

where 22 = J(p
z +

ri*)t c = tan

EXAMPLES. LVII.

(Homogeneous Equations.)

a?

n
2. Solve -5-=- + - - =

rfr'
J r ar

as a homogeneous linear equation. \V= A log r +
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3. *2?|-2^ = 0.
dor ax

4.

, A B logo;
5-

-

*

7. ar'-3x+ % = ;'. |>
= (4 + B log z) ar

1 + it
8
.]

.4 + Slo a:.4 + Slog a: "I

y
v 'J

10. Prove that

11. Prove that

ff \/ f \

f (x
-

d
-

J
a log a; = xm {/(m) log a; +/' (m)}.

EXAMPLES. LVIII.

(Simultaneous Equations.)

+ B) sin t + (A-B) cos

y = (A cos < + J? sin
i)

e"6

*.]

dy
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dx dy ,
TC. ooive = 2> T xy* y -r xy.

l+B \-B

3z-4y + 3 = 0, + x-y + 5 = 0.

[x
= (A + Bt) cos t + (A' + B't) sin t- 17,

6. Shew that the integrals of

dx , dy

are x = + , y =^^ +

where p.l9 ^ are the roots of

and X1

7. Solve

mt , . ^ mt

+ Be ^ cos
[

= 4e^^ cosg +
a)

mt

ing +
a)
-A~^ sin

(^
+
/).]

o o i
d*x d*y

8. Solve
-^5-

= a- ' l"

9. Solve ^f + m2*-

[x + y = Acos ,J(m
z - n2

)
t + A' sin ,J(m* n2

) ,

x y = B cos ^/(w
2 + 7i

2
)

t + J? sin ^/(m
2 + n2

) /.]

10. Determine the constants in the solution of the simultaneous

equations

so that, for t = 0,

[a;
= a cosh

^//ztf, y = F/^/ft . sinh
^//A^.]
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11. The equations of motion of electricity in a circuit of self-

induction L, and resistance R, which is interrupted by a condenser of

capacity (7, are
_ dx _ q do
L

~di
+

~C' di
= x

'

where x is the current, and q the charge of the condenser. Find the

condition that the discharge should be oscillatory. \L > ^R?G.~\

12. Solve -r? = 0, -rf = -^>
(Jit (it y

and shew that the solution represents a conic symmetrical with respect
to the axis of x.

13. Solve fif'Ll
dt* dtz

and prove that the curves represented by the solution include a family
of hyperbolas.

oOiVe , -ii> j- -rj ,
-in - .

cLt dt dt clt

\x = a + a cos (nt + e), y = ft + - t + a sin (nt -f e).

15. Solve

fifp

+ 2n
-j-

+ m*y = 0.
dt

[x= A cos (pt + e) + A' cos (p't + '),

y = - A sin (pt + t) + A' sin (p'$ + e'),

where P\ = J(m* + n
2
) n.]

C?
2
C (7 (7

16. Solve -jz +(/A+l)2-a3-/i|at a o

oif'a; c?V ^

(The equations of motion of a double pendulum, the lengths of the upper
and lower strings being a and 6, and ft being the ratio of the mass of

the lower to that of the upper particle.)

Prove that the periods of the normal vibrations are %TT/PI, 2ir/p<i,
if

Pi
a
P* k the roots of

Shew that the roots of this quadratic in p
2 are real, positive, and

distinct.



CHAPTER XIV

DIFFERENTIATION AND INTEGRATION OF
POWER-SERIES

174. Statement of the Question.

The main object of this Chapter is to justify, under proper
conditions, the application of the processes of differentiation and

integration to functions expressed by
'

power-series/ i.e. by series

of the type

where the coefficients are constants. Thus, if S(x) denote the

sum of this series, assumed to be convergent for all values of x

extending over a certain range, we have to examine under what
conditions it can be asserted that 8(x) is a continuous and differ-

entiable function of x, and that, moreover,

S' (x) =A! + 2A& + 3A&* + ... + nAnx
n~l + ..., ...(2)

and

J
...(3)n+ L

respectively.

If the number of terms in (1) were finite, the statements in

question would need no proof, beyond what has already been indi-

cated in the course of this work (see Arts. 29, 74), but it must be

remembered that the word ' sum '

as applied to an infinite series

bears an artificial sense, and that we are not entitled to assume
without examination that statements which are true when the word
has one meaning remain true when it is used in another.

It is convenient to have a notation for the sum of the first n
terms of the series (1). We write

Sn (x)
= A + A lx + A ax*+...+An_lx

n-1
, ......... (4)

a rational integral function of degree n 1. This is called a '

partial

sum/ and its graphical representation is called an '

approximation
curve.' An example of such curves is given in Fig. 136, p. 485. If,

further, we put
S(x) = Sn (x)+Rn (x), ..................... (5)
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the quantity Rn (x) is called the ' remainder after n terms.' It is

of course the sum of the series

.........................(6)

By hypothesis, the sequence

&(*), &(*), $(*),..., ..................(7)

has, for any value of a? for which the series is convergent, the limiting
value S (x). It follows that the sequence

R,(x)t R*(x), R>(x\ .....................(8)

has the limiting value zero.

It is to be noted that in each of the questions above propounded
we have to deal with what is known as a ' double limit/ Thus, to

establish the continuity of S(x) for x = a we have to shew that

\imn^ ao limx^ a Sn (x)=^limx^ a limn^ cx> Sn (x).......(9)

Again, the formulae (2) and (3) may be written

00 /Sfn (a;), .........(10)

/ rx

and I {limn ... $ (x)} dx = limn_ Sn (x)dx, ... (1 1)
Jo Jo

respectively. Since a derived function is the limit of a quotient,
and a definite

integral
is the limit of a sum, these forms also come

under the description of a double limit. It is not to be assumed,
and it is not necessarily^ true, that the result is independent of the

order in which the two operations of proceeding to a limit are

performed*.

175. Derivation of the Logarithmic Series.

There are one or two cases where the questions above raised

can be answered without difficulty, the form of Rn (x) being known ;

and the results are of great importance.

By actual division we have, as in the theory of the Geometric

Progression,

-^ =!-<+-... +(_)-' t^+(-r~, ...a)

provided t= 1. We will suppose that x is positive. We have,

then, from (1),
* dt a?tf

.......(2)n j o i +
* For an example see Art. 193.
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The value of the integral in the last term is increased if we replace
the denominator in the integrand by its least value, viz. unity.
The integral is therefore less than

X
/pTl-f-1

t
n
dt, or

o w

If x be less than unity, or even equal to unity, this tends with

increasing n to the limit 0.

Hence if x be positive and
:)>

1 we have

loga-f^^aj-lV^-.-. + C-)"-
1

^..., (3)

the series extending to infinity.

In particular, putting x 1,

(4)

This result, though exact, is not suited for numerical calculation, on

account of the slow convergence of the series. It may be shewn that

about 10n terms would be required to obtain a result accurate to n

places of decimals. A more practical formula is given by (12) below.

Again, we have

1 = 1 + * + *' + . ..-t-^+r-:, (5)
JL I

provided tl. Hence if a; be positive and less than unity,

* dt

The integral on the right-hand side is increased if we replace the

denominator by the least value which it has within the range of

integration, i.e. by 1 x. Hence

(7)
r* t

ndt i r*
d

a?
n+l

Since x is by hypothesis less than unity, this tends with increasing
n to the limit 0. Moreover, since

/** dt r i*
I n i lg (I

"
log(l a?), ....

Jo l t Jo
we have

log (1
-

x) = - x --o-^o -. -^-- i

t o n
to infinity.
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The results (3) and (9) are combined in the statement that

for values of ac ranging from 1 exclusively to + 1 inclusively.
The series on the right is known as the '

logarithmic series *.'

If x be positive and less than unity, we have from (3) and (10), by
subtraction,

1+05

If in this formula we put x l/(2m + 1), we obtain

log (m + 1)
-
logm = log

-

cS f
-

1
i

l
I

*
f 1

I2m+l 3(2m+l)^5(2m + l)
8 "/'

This series is very convergent, even for m = 1. Putting m = 1, 2, 3, ...,

we obtain the values of

log 2, log 3 - log 2, log 4 - log 3, ...

in succession, and thence the values of the logarithms (to base )
of the

natural numbers 2, 3, When log 10 has been found, its reciprocal

gives the modulus /x by which logarithms to base e must be multiplied
in order to convert them into logarithms to base 10f.

Ex. 1. If n> 1, we have

. n + l / 1\ 1 1 1
log = log ( 1 + -

)
= K i + TT , (13)n 3

V nj n 2n* 3n3

Since the terms are alternately positive and negative, and tend to the

limit 0, the sum is less than I/n, by Art. 5.

Again,

i
n

i /i 1\ l l l nA\
log =- = Jog (1 )

= -+ -z*+ s ;+ ! (14)n I \ n/ n 2n* on3

which is obviously greater than l/n.

T-r 1,71+11 /ie\Hence ->log > ? (15)n n n+l
*

It was apparently first given by N. Mercator in 1668.

f The most rapid way of determining p is by means of the identity

The two logarithms on the right hand are found by putting m= l, TO = 4, in (12).
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Ex. 2. Let us write 111

n being now of course a positive integer. We have

0, ............... (17)

by (15). Again,

- =^l
-

log~>o................ (18)

also by (15). Moreover

"*-* = log -,

which lies between and 1/n. Hence the quantities

Ui, ", w,, ..., wn , ........................ (20)

form a descending sequence, and

Vi, v*, v9t ..., vnt ..................... '(21)

an ascending sequence. Since each member of (20) is, by (19), greater
than the corresponding member of (21), the sequence (20) has a lower

limit (Art. 2), and the sequence (21) an upper limit. And since

\imn+ ao (un -vn)
= Qt .....................(22)

these limits must be the same. Hence

+ 2+3 + ... +
--logn)= r,

.........(23)

where y is a certain constant (known as * Euler's constant
').

Since

v
l
= I log 2, which is > 0, y is positive. Its value has been ascertained

to be -57721566...*

176. Gregory's Series.

Since

1-M3
"

' 1+tf"

we have

l'X fjf n& n& *Sm\ fX /2
/ Xii^t / \*i I _7^

(2)
* The method of calculation is beyond our scope.
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If x is positive and ^ 1, the latter integral is less than

t^dt, or (3)

and therefore tends with increasing n to the limit 0. Hence

a? Xs

fc-*--^+ --., (-)
n-

..., ...(4)27i-l

that value of tan"1x being understood which starts from zero with

x. This is known as
'

Gregory's series *.' Since both sides of (4)

change sign with x, the equality holds for values of x ranging from
1 to + 1, inclusively.

Putting x = 1, we have

fcr=l-J+t-t + ......................... (5)

This series converges very slowly, and has been superseded for the

calculation of IT by others. Euler used the identity

i7r
= tan-1

| + tan- 1

|, ........................ (6)
which gives

_ _
2 3.2

+
5.2 5 3.33 5.35

Machin had previously employed the formula

..................... (8)

which, like (6), is proved in most elementary books on Trigonometry.
This leads to

/!_!__!_ \ /J_ 1 1 \

*"
\5 3.53+ 5.55

'") V239 3 . 239s
+

5 . 2398
'")'

........ -(9)

On account of the importance of the matter, it is worth while to

give the details of the calculation of TT from Machin's formula. To
calculate tan" 1

^, we first draw up the following table :

n
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The sum of the positive terms in the last column is

+ -200 064 057 0,

and that of the negative terms is

- -002 668 497 2.

Hence tan'1 = -197 395 559 8.

Again to calculate tan" 1

^^- we have the table :

463
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terminal points a, b are excluded from the statement, the range is

said to be '

open
'

at both ends, and is denoted by [a, &]. If the

first or second terminal point alone is excluded, this is indicated by
the notation [a, b) or (a, 6], as the case may be*. For example, the

logarithmic series has been shewn to be convergent over the range
[ 1, 1), whilst Gregory's series is convergent over the range ( 1, 1).

The most generally useful test of convergence, in the case of a

power-series
A* + AiX + Ai& + ... +Anxn + (1)

is the '

ratio-test.' It is obvious that if, after some finite number
of terms, the ratio of each term to the preceding is less in absolute

value than some quantity k which is itself less than unity, the

series is essentially convergent. For the successive terms then
diminish more rapidly than those of a geometric progression whose
common ratio is k.

In particular, the series (1) will be essentially convergent if

Km, n+i

An
X

For if this condition be fulfilled, and the limit in question be k',

we can by taking n sufficiently great ensure that for this and for

all greater values of n the ratio

An+i

An

shall be less than any assigned quantity k which lies between k'

and 1.

If the condition (2) is satisfied, it follows that the series

+ ...+nAnxn
-l + ..., (3)

c
8

,
Anxn^

and
n (4)

the terms of which are derived from those of (1) by differentiation

and integration, respectively, will also be essentially convergent.
For in the case of (3) we have

nAn
x = lim.

n

x lim, x A/ >

The case of (4) is still more obvious.

* These notations are due to Prof. F. S. Carey,

f This form of test is known as d'Alembert's.
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Again, leaving aside any particular test, let us suppose merely
that the series (1) is known to be convergent for a particular value

a of x. Since the terms must diminish indefinitely, we must have

.(6)

It follows that the series will be essentially convergent for all

values of x such that
|

x
\

<
\

a
\

. For, writing the series in the form

.......(7)

and denoting by M the greatest value of
|

Ana
n

\,
we see that the

several terms of(7) are in absolute value less than the corresponding
terms of the convergent geometrical series

...............(8)

where t= x/a\.

The series (7) is therefore itself essentially convergent.

Hence if the series (1) be convergent for any one value (a) of x,

other than 0, it will be convergent over the range [ a, a), and

essentially convergent over the range [ a, a].

It follows also from (6) that the series (3) and (4) will be

essentially convergent over the range [ a, a]. For if /? be any
quantity less in absolute value than a, we have in the case of (3)

x mn+ (9)

The former of the two limits on the right-hand side vanishes by
hypothesis, and the second in virtue of Art. 43 (3).

In the case of (4) we have

d fortiori.

Ex. 1. The series

n + I
= !a|limn .

A na.
n

n
= 0, (10)

1.3
2

1.3.5

274*
+
2.4.6

is convergent for =
1, by Art. 5. It is therefore essentially con-

vergent if
|

x < 1. It may be shewn to be divergent for x=\. It is

therefore convergent over the range ( 1, 1],
but essentially convergent

only over the range [ 1, 1].

L.I.C. 30
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Ex. 2. The series

a? a? #*
(

.

172
+
273

+
371

4

is convergent, in virtue of the test (2), for |oj|<l. It is also easily
seen to be convergent for x = 1, and is therefore convergent over the

range (- 1, 1).

But the argument above given only entitles us to assert that the
series

which is derived from (12) by differentiation, is convergent over the

range [-1, 1].
It is, however, obviously convergent for aj = -l, by

Art. 5. For x= 1 it is divergent (Art. 175).

178. Continuity of a Power-Series.

We will now assume that the series

S(x) = A 9+A lx + A9x*+...+A nxn + ............(1)

is known to be essentially convergent over a range [ a, a]. If

x and x' be any two points of this range we have, by Art. 5, 1, 3,

en ~/\
S(af)

-
O

xn-* + xn-*x'+...+x'n
-1

n "
~^~ -+

If a; and x' have the same sign, the fraction

n

lies between xn~l and a;'""1. The several terms in
{ }

are therefore

intermediate in absolute value to the corresponding terms in the
two series

A! + 2^+ 3A 3x* + ... + nAnxn
-l + ..., ......(3)

and A l+2A&' + 3A 3 x'*+...+nA nx'
n-l + ..........(4)

It has been shewn that on the above hypothesis these series are

essentially convergent. It follows that the expression in
{ }

in (2)
is finite. Hence

i.e. S (x) is continuous for all values of x belonging to the range
[-,]*

We can infer also that the power-series (3) and (4) are con-
tinuous over the range [ a, a].

*
It may happen that the series (1) and (3) are known to be essentially conver-

gent when a; is a terminal point of the range of convergence of (1). In that case
we can assert the continuity of S (x) up to this value of x inclusively.



177-179] POWER-SERIES 467

179. Differentiation of a Power-Series.

With the same notation as in the preceding Art., and on the

same assumption, we have

. ~~

-f .......(1)
71

Since a/ is to be made ultimately equal to x, we may suppose that

it has the same sign.

Let us first suppose that all the coefficients An are positive,
and that x is also positive. The series on the right-hand side of

(1) is then intermediate in value between the series (3) and (4) of

the preceding Art., and since the sum of (3) is a continuous function

of xt
it follows that

Q/ , , S(a!)-S(x)S (x)
=

x x

= A! + 2A&+3A 3^ + ...+nAnx
n- l + .......(2)

This holds for all points of the range [ a, a].

The same result would obviously follow if the coefficients An

were all negative.

Let us next suppose that x is negative, the coefficients An being
still assumed to be positive. The preceding argument will then

apply separately to the two series formed by taking alternate terms
in S (x), viz.

Ao + A&* + AtX*+...+A<m.a*n +..., ............... (3)

and A l x +Atpc? + A Bx*+...+Azn+iX*n+l + ..., .........(4)

since the terms of (3) are all positive, and those of (4) all negative.
Their derived functions are therefore equal to the sums of the series

obtained by differentiating them respectively term by term. The
result (2) then follows by addition, since the series are essentially

convergent.

Finally, if the coefficients An are not all of the same sign, we
can resolve $ (x) into the sum of two series, the coefficients in one
of which are all positive, and in the other all negative. The fore-

going argument applies to each of these, and therefore to the

combination.

It will be observed that the assumption that the series with
which we are concerned are all essentially convergent is vital to

the whole argument.

302
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Ex. It is known that if
|

x
\

< I

. = 1 + + * + ... +xn + ...................... (5)
L ~ X

Differentiating both sides, we obtain

7=
-r5=

(1 xy

A second differentiation gives

(6)

-

8
= i {1.2 + 2. 3x+...+ 3.40*+...+ (n

(1 a?)

...... (7)

180. Integration of a Power-Series.

Using the same notation as in Arts. 1*77-179, let

(1)

On the present assumption that S (a) is essentially convergent
over the range [ a, a], this will also be essentially convergent over

the same range. Hence, by Art. 179 we have

...+Anx
n
+...=S(x). ...(2)

Hence (" S(x)<fa = \I (*)]

*
= / (x). . .(3)

Jo L Jo

Ex. 1. If
|

x
|

< 1, we have by the Binomial Theorem (Art. 182)

_1_ , 1 1.3 1.3.5

J(l-*)~
+
2
X +

'271
X + 2~TQ

X

Hence, integrating term by term between the limits and a?,

sm-* =

This series is due to Newton.

1

2
If we put x = - we get

7T =

from which IT can be calculated without much trouble.

JSa.2. If !*|<1,

loS (l + x)
=x-^ + ?- (7)
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Integrating this between the limits and x,

It follows from a remark made in Art. 178 (footnote) that the function
on the right-hand is continuous up to the limit x = 1. We infer that

181. Integration of Differential Equations by Series.

Given a linear differential equation, with coefficients which are

rational integral functions of the independent variable (x), it is

often possible to obtain a solution in the form of an ascending
power-series, thus

... + Anx
n + .............(1)

If we assume, provisionally, that this series is convergent for a
certain range of x, it can be differentiated once, twice, ... with

respect to x> by the theorem of Art. 179. Substituting in the
differential equation, we find that this can be satisfied if certain

relations between the coefficients A
, A lt A a , ... are fulfilled. In

this way we obtain a series involving one or more arbitrary con-

stants
;
and if this series proves to be in fact essentially convergent,

we have obtained a solution of the proposed differential equation.
Whether it is the complete solution, or how far it may require to

be supplemented, are of course distinct questions, which remain
to be discussed independently.

The following is an important example.

Let the equation be

Assuming the form (1), and substituting, we find

...

...=0, ...(3)

which is satisfied identically, provided

1
4

. 1

1.2 " 8
~

2.3

34
A ~
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(2n- W
"
2n (2n +1)

We thus obtain the solution

The series in brackets are easily seen to be essentially convergent,
and their sums therefore continuous, for all values of x.

It has been shewn in Art. 163 that the complete solution of

(2) is

y A cos x + B sin #. .....................(6)

Hence, given A and A lt it must be possible to determine A and
B so that the expressions (5) and (6) shall be identical.

For example, putting A = 1, A^ 0, we must have

n& nA

1 ~- + j- ... = -4 cos # 4- .5 sin #,
JL \ 4 !

and, changing the sign of x,

x* x*
1 -sr. + -:-. ... = A cos x B sin a?.

2! 4!

Hence we must have B = 0, and putting x = 0, we find -4 = 1. We
thus obtain the formula

(7)

In the same way, if we put A = 0, A^ = 1, we find A 0, B = 1,

and therefore

a? of

sm^ff-g-j
+

g-j-
......................(8)

The foregoing method is, for various reasons, not always prac-
ticable. It may also lead to a solution which is incomplete \

thus
in the case of the linear equation of the second order, the method

may yield only one series, with one arbitrary constant. This occurs

not infrequently in the physical applications of the subject. The
solution may, in this case, be completed, at least symbolically, by
the method of Art. 166, 3.
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182. Expansions by means of Differential Equations.

The method of the preceding Art. may sometimes be utilized

to obtain the expansion of a given function in a power-series, pro-
vided we can form a linear differential equation, with rational

integral coefficients, which the function satisfies*.

For example, let y = (l+x)
m

, (1)

where m may be integral or fractional, positive or negative. Taking
logarithms of both sides, and then differentiating, we have

1 dy _ m
y dx 1 -I- x

'

or ( 1 -j- x) -^- tfiy
== (2 )

u/x

Assuming
y = At+A la;+A aa?+... +Anxn + ..., (3)

and substituting, we have

(1+ x) (A l + 2A& + ... +nAnx
n~l + ...)

or (A l mAt) + {2J.a
- (m 1) AJ x + {34 8 (m 2) A 2 ]

x* + ...

+ {nAn
- (m n + 1) An_j} x

n~ l + ... = 0, (4)

which is satisfied identically provided

At = s "! = T o *'

_m-2 _ m (m - 1) (m -
2)

~3" 1.2.3

and, generally,

m n+1. m(m 1) ... (m n

n

We thus obtain

as a solution of (2) ; and it is easily verified that the series is con-

vergent so long as \as\< 1.

* This method was first employed by Newton, to whom the series for cosx and
sin x are also due. The manner of obtaining these series was, however, different.
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Now if we retrace the steps by which the differential equation

(2) was formed, we see that its complete solution is

y=C(l+x)m, (7)

where G is arbitrary. Hence (6) must be equivalent to (7), and

putting x = in both, we see that C = A 9 . Hence

\m_i m m (m ~~
") ~a

, m(m-l)... (ra-n + 1) n
T

J
& + , (o)

nl

for all values of x such that
|

x
\

< 1. This is the well-known
' Binomial Expansion *.'

Ex. As a further example, we take the function

y =-*f^ (9)// I ^ u I

Multiplying up by ^/(l a?), and then differentiating, we find

x 1_

or
(l-^)^-rcy

= l (10)

Assuming y = A9 + A 1x + A,pt?+ ... + Anx
n + ..., (11)

we find (1 x^)(A l + 2A^x + 3A&P+ ... +nAnx
n~l + ...)

-a;(^ + AiX + AzX*-*- ... 4-^nrc
n

4-
...)

= 1, ...(12)

+ {nAn (n-1) ^n.jjic*"
1
^- ... =0, ...(13)

which is satisfied identically, provided

A - 1 A -
l A x

-dj-1, ^.- 2^'2O Q 1 Q
j O JLOj

_4 2.4 _5 1.3.5
~

5
~
375' 8

~
6

4
~
27476

*

We thus obtain the solution

2 2 - 4
rr6

2.4.6
7

y=a; +
3 375 3T5T7*

f "

/, 1 1.3 1.3.5^ N
+ A

'(
l + 2* +^ + 27tr^ +

'~)-
- (15>

* Newton (1676). The cases of x= 1 would require special investigation.
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Now if we retrace the steps by which the linear equation (10) was

formed, we see that its general solution is

, .................. (16)*

sin" 1 x

and, by the nature of the case, (15) must be included in this form. If

we put x = in (15) and (17), we see that A = A
9 . The identity of the

two expressions for y then requires that

sin-1 x 22.4
7

= x +- x* +
5
x*+..., (18)

and

These series are both of them convergent for
|

x
\

< 1.

The result (19) is a mere reproduction of the binomial expansion of

(i-^)-i.

If we put x = sin 6, the former series may be written

+ ^sin
a

^+-^- sin4 + ...) .......(20)
. D

Again, if we put tan 6 = z, we obtain the form

2

This series has been made the basis of several ingenious methods of

calculating TT. It may be shewn, for example, that

JTT
= 5 tan"1 + 2 tan-1

whence

28 f, 2/2
+ I

"J10 1 3 viooy 3.5 vioo/

30336 ( 2/ 144 \ 2.4/ 144 \
\f

100000 13 V100000/
+
3.5 VlOOOOO^

*
/

~'(~

These series are rapidly convergent, and are otherwise very convenient

for computation, owing to the powers of 10 in the denominators f.

Another remarkable series follows by integration from (18), viz.

* See also Art. 158, Ex. 2.

t For the history of these series, see Glaisher, Mess, of Math., t. ii, p. 119

(1873).
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EXAMPLES. LIX.

(Logarithmic Series.)

1. If m, n be positive quantities such that 2n > ra > w, prove
that log (m/n) lies between (m n)/m and (m n)/n.

2. Obtain the following results by calculation from the series

of Art. 175:

log 2 = -693 147 181

log 3 = 1-098 612 289

log 4 = 1-386 294 361

log 5 = 1-609 437 912

log 6 = 1-791 759 469

3. Prove that log 2 = 7a - 26 + 3c,

-
5c,

h 7c,

and thence

where a -^ +

log 7 = 1-945 910 149

log 8 = 2-079 441 542

log 9 = 2-197 224 577

log 10 = 2-302 585 093

u= -434 294 482.

log 3 = lla-

log 5 =

b =
4 4

100

J_
80

2 . 1008

1

3 . 1008

1

. = -1053605157,

+ ... = -0408219945,

Apply this to find log 10.

4. Prove that log 2= 7P+ 5(> + 37?,

log 3 = 11P+ SQ +

log 5 = 16P+12Q +

log 10 = 23P + 17Q + 107?,

(Adams.)

and thence

where P = 2
31

+
3.

Vi +
1

5.31' ...)
= -0645385211,

Q - 2
(i

+ si* + 5^' +
)
= -04082199^

7? = 2
1

,161 3.161 3 5.161'

Apply this to find log 10.

+
...)

= -0124225200.

(Glaisher.)
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5. If
|

x
|

< 1, prove that

tanh" 1 x = x + \y? + }x* + ....

6. Prove that

7. If p, q are positive integers, prove that

...

_,, \pn + 1 pn + 2

8. Prove that if x be large, and positive,

log cosh x = x log 2 + c

approximately.

9. Also that log tanh x = - 2<r2
*,

approximately.

EXAMPLES. LX.

(Differentiation and Integration of Series.)

1. Prove by repeated differentiation of the identity

=- = 1+x + a? + a?+ ....
1 -x

where
|

x
|

< 1, that, if m be a positive integer

m(m +
(l-x)-

m =l+mx+ *

2

2. If
|

x
|
< 1, prove that

Hence shew that

l-J-J +

3. Prove that if
|

x
\

< 1

4. Prove that the sum of the series

1 1 1

K fj f\ ' fr /\ i -i r
1.3.5 5.7.9 7.9.11

is -071349..,
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5. Prove that

H273
+ 3^75 +

F^T7 + - = *193147-'

-... = 153426..
1.2.3 3.4.5 5.6.7

6. Prove that

t
1 ^

Jo 1 +

~ l ,11 1 1
dx = + +

xn m m + n m + 2n m + 3n

7. Prove that

f
a sin x - x9 Xs

'x sinh x , x3 x6

V*M/ ** T o n~. + = ^ ,
+ ....

x 3. 3 1 5.5!

8. Prove that

** -i I i Li? 1 1.3.5 2_
2'5

+
2.4'9

+
2.4.6*13

9. Prove that

" 6

10. Prove that

EXAMPLES. LXI.

(Integration of Differential Equations by Series.)

1. Assuming the series for sin a?, prove Huyghens' rule for cal-

culating approximately the length of a circular arc, viz. : From eight
times the chord of half the arc subtract the chord of the whole arc,
and divide the result by three.

Prove that in an arc of 45 the proportional error is less than
1 in 20000.

2. Obtain a particular solution of the equation

in the form
mx

p ^ 22
""

l
2

. /- mx=
\ "Ta~
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3. Obtain a particular solution of the equation

1 d<f>+ ~
-T- + k 4 =

r dr

f k*r* &V* \
in the form $^1 -_+__...J.

4. Integrate (1
- sc

2
)

- a - = 0,
Cfcl/ Q/X

by series, and deduce the expansion of sin" 1 x (Art. 180 (5)).

5. Prove that y = sinbr 1 x

satisfies the differential equation

Hence shew that, for x
j
< 1,

6. Obtain a solution of the equation

in the form y = Cu, where

xx* x*
U = 1 H-- + --.

--=-r -f ;
-Z-T :
-

jrr -f ... .

a a(a+l) a(a+l)(a + 2)

Prove that the equation

is satisfied by y Ce~x u.

7. Obtain a solution of the equation

d_

4
in the form

/ n(n + l) (-2)n(n + I)(n+8) . \

\ ~2l ~4l~
~

"/

- ("- 1 )(" + 2)
;a

. + (-3)(n-l)(
+ 2)(n + 4) ^ _ \
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8. Obtain a solution, by a series, of

[CH. XIV

and give the symbolical expression of the complete solution.

9. Obtain a solution of the equation

in the form

y .2.

1.2.3.7(7+1x7+2)

10. Obtain a solution of the equation

N

;

dr*. r dr

m the form

. /-~ 7

V
"

11. Obtain the solution of

in the form

*-4(l-jJ?^

12. If

2 (1
-

2n) 2 . 4 (1
-

2w) (3
-

2n)

y = sin (m sin"1

a;),

tf m2 -! . (m
2

-l)(m
2-32

) . ...= 1 ^ sm2 5 + v 1- ' sm4 6 - ... ,sm 3 ! 5 !

m2
. m2

(m
2 -22

) .

/VkC vnH I cin*J. ' ' OITI* r _Wo IIW 1 _ olll I/ T - bill I/ "
. . .
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13. If log y = a sin"1
oj, prove that

and expand y in a series of ascending powers of x.

aV a + ! a'ia'

14. If =

prove that (1 + xf -^
+ (1 + x) y = L

Hence shew that

Shew that the series is convergent if
|

x
\

< 1.

15. Prove that if
|

x
\

< 1,



TAYLOR'S THEOREM

183. Form of the Expansion.

Let/(#) be any function of x which admits of expansion in a

convergent power-series for all values of x within certain limits

+ a. It has been proved, in Art. 179, that the derived function

f (x) will be given by a similar series, obtained by differentiating
the original series term by term, for all values of x between + a.

By a second application of the theorem cited, the value off" (x)
will be obtained, for values of x between the above limits, by
differentiating the series for f(x) term by term. And so on.

Hence, writing

/(#) =A +A lx + A&? + ... + Anx
n
+..., (!)

we have

(2)

Putting x = in these equations, we find

*L\ 11 :

where the symbols /(O), /' (O),/" (0), ... are used to express that x

is put = after the differentiations have been performed.

The original expansion may now be written

This investigation was given by Maclaurin*.

* Treatise on Fluxions (1742). The theorem had been previously noticed by

Stirling.
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It will be noticed that the proof depends entirely on the initial

assumption that the function f(x) admits of being expanded in a

convergent power-series. The question as to when, and under
what limitations, such an expansion is possible will be discussed

presently (Arts. 185187).
If we write

<f> (a + x) =/(#), ........................(5)

we can deduce the form of the expansion of <f>(a + x) in a power-
series, when such expansion is possible. For if we write, for a

moment,
u = a + x,

we have

and so on (Art. 32, 1). Hence, putting x = 0, u = a, we find

/(O) = * (a), /' (0) = $ (a), f" (0) =f (a), ...,/< (0)
= * (a) ;

............(6)
so that (4) takes the form

</>(a) + ^Xa) + f/

(a) + ...+<#) (n) W+.... (7)

This is known as Taylor's Theorem*. We have deduced it from

Maclaurin's Theorem, but the two theorems are only slightly
different expressions of the same result. Thus assuming (7), we
deduce Maclaurin's expansion if we put a = Of.

184. Particular Cases.

Before proceeding to a more fundamental treatment of the

problem suggested in the preceding Art., the student will do well

to make himself familiar with the mode of formation of the series.

In the following examples the possibility of the expansion is

assumed to begin with
;
and the results obtained are therefore not

to be considered as established, at all events by this method.

1. If <t>(a)
= am

,
...........................(1)

we have

<p (a)
= mam-l

) <j>" (a)
=m (m- 1) a"1"2

, ...,

</)W(a)
= m(m-l)...(m-7i+l)arn-n

, ....... (2)

* Given (under a slightly different form) as a corollary from a theorem in Finite

Differences, Methodus Incrementorum (1716).
+ The virtual identity of (4) with Taylor's Theorem was clearly recognized by

Maclaurin.

L. I. C. 31
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Taylor's formula then gives

m~2
(a + #)

m = a/
/m

T
j. .

which is the well-known Binomial Expansion.

That Taylor's Theorem cannot hold in all cases, without quali-
fication, is shewn by the fact that the series on the right-hand is

divergent if x\> a\. For|# < a the series is convergent, but
it is not legitimate to affirm on the basis of the investigation of

Art. 183 that its sum is then equal to (a + os)
m

*. A valid proof of

the equality has been given in Art. 182.

2. The exponential function E (as) was defined in Art. 36 as

that solution of the equation

/'(*)=/(*) ...........................(4)

which is equal to unity for x = 0. From this we have at once

/w (*)=/(*)...........................(5)

Hence /(0) = 1, /<(0)1......................(6)

Maclaurin's expansion is therefore

^
1.2 1.2.3 n!

3. Let /(a;)
= cos a?............................ (8)

It was shewn in Art. 64 that this makes

/ w (x) = cos (x + 4n?r),

so that /(0)=1, / (n)
(0)=cosin7r................(9)

Hence f (n}
(0) vanishes when n is odd, and is equal to 1 when n

is even, according as ^n is even or odd. Substituting in Maclaurin's

formula, we get

-

4 Tph f(r\ sin r (\\\*yl . Ijcu / \*'/
~~~ OiLl u/, ....................... .^lAy

This makes / (n)

(x)
= sin (x +

so that

-l)7r4-i7r}. ...(12)

* There are in fact cases where Taylor's expansion is convergent, whilst the

sum is not equal to (a +x).
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Hencef(n}
(0) vanishes when n is even, and is equal to 1 when n

is odd, according as ^ (n 1) is even or odd. Maclauriu's formula

then gives

X* 9?
8in * =*- + - + -

The results (10) and (13) have been established rigorously in

Art. 181.

5. Let /(*) = log (!

This makes

Hence /(O) = 0, /' (0)
=

1, and, for n > 1,

/n)
(0) = (-)"-' (Ti-1)! .....................(15)

Substituting in Maclaurin's formula, we get

log(l +*) = -* + J-. .. + (-) + .......(16)

Cf. Art. 175.

When a general formula for the nth derivative of the given
function is not known, the only plan is to calculate the derivatives

in succession as far as may be considered necessary. The later

stages of the work may sometimes be contracted by omitting
terms which will contribute nothing to the final result, so far as it

is proposed to carry it.

Ex. To expand tan x as far as x 1
.

Putting f(x) = tan x,

we find in succession

f (x)
= sec2 x = 1 + tan* a;,

f" (x)
= 2 tan x sec2 x = 2 tan x + 2 tan3

ar,

/"' (a)
=

(2 + 6 tan2
x) see3 x = 2 + 8 tan2 x + 6 tan4

a?,

/IT

(a;)
=

(1 6 tan x + 24 tan8

x) see8 x

= 16 tan x + 40 tan8 x + 24 tan6
a?,

/T

(a;)
=

(1 6 + 1 20 tan3 x + 1 20 tan4

x) sec3 x

= 16+136 tan2
aj + 240 tan4 x + 120 tan6

jc,

(x)
= 272 tan x sec3 x + &c.,

31-2
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where, in the last two lines, terms have been omitted which will con-

tribute nothing to the value off (0). Hence

/*(0) = 0, /*(<)) =272,

and the expansion is

=

That odd powers, only, of x would appear in this expansion might
have been anticipated from the fact that tan x changes sign with x.

185. Proof of Maelamin's and Taylor's Theorems. Re-
mainder after n Terms.

Let f(x) be a function of x which, together with its first n 1

derivatives, is continuous for values of x ranging from to ht

inclusively ;
and let us write

f(x) = 3>n (x) + Rn (x), .....................(1)
where

*. <) =/ (0) + *f' (0) + ,/" (0) + . . . +
(ly-,/'"-

11

(0); . . -(2)

i.e. <I>n (x) is the sum of the first n terms of Maclaurin's expansion,
and Rn (x) is at present merely a symbol for the difference, what-
ever it is, between /(a?) and <!>(#). The object aimed at, in any
rigorous investigation of Maclaurin's Theorem, is to find (if possible)
limits to the value of Rn (x) ;

in other words, to find limits to the

error committed when f(x) is replaced by the sum of the first n
terms of Maclaurin's formula. If we can, in any given case, shew

that, by taking n great enough, a point can always be reached after

which the values of Rn (x} will all be less than any assigned

magnitude, however small, then Maclaurin's series is necessarily

convergent, and its sum to infinity is /(#). It is evident that the

argument cannot be pushed to this conclusion iff(x) or any of its

derivatives be discontinuous for any value of x belonging to the

range considered.

The notion of representing a function f(x) approximately by a

rational integral function of assigned degree, say

A + AjX + A^a?+ ... + ^n_ 1a;
n-1

,
.................. (3)

has already been utilized in Art. 114. The plan there adopted was to

determine the n coefficients A
,
A lt A^, ... An^ so that the function (3)
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should be equal to f(x) for n assigned values of x, which were dis-

tributed at equal intervals over a certain range. In the present case,

the n values of x are taken to be ultimately coincident with 0; in

other words, the coefficients are chosen so as to make the function (3)
and its first n- 1 derivatives coincide respectively with f(x) and its

first n 1 derivatives for the particular value x = 0. The result of this

determination is, by Art. 183, the function <$n (x).

In the graphical representation, the parabolic curve y = <J>n (x) is

determined so as to have contact of the (n l)th order (see Art. 189)
with a given curve y =f(x) at the point x = ;

and the problem is, to

find limits to the possible deviation of one curve from the other, as

measured by the difference of the ordinates, for values of x lying within

a certain range. This is illustrated by Fig. 136, which shews the curve

Fig. 138.
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and (by thinner lines) the 'approximation curves'

y = x, y = x-%x\ y = x-%y? + x\ ..., ............ (5)

obtained by taking 1, 2, 3, ...terms of the 'logarithmic series' (Art.
184 (16)). The dotted lines correspond to x = + 1, and so mark out the

range of convergence of the latter series.

It appears, from the conditions which <I>n (x) has been made
to satisfy, that Rn (x) and its first n 1 derivatives will be con-

tinuous from x tox = h, and will all vanish for x = 0. Now we
can shew that any function which satisfies these conditions, and
has a finite nth derivative, must lie between

Xn
A

,
and B -,

n\ n\

where A and B are the lower and upper limits to the values which
the nth derivative assumes in the interval from to h.

For, let F (x) be such a function. By hypothesis, we have

JF(0) = 0, F'(Q) = Q, ^T ' /

(0)
= 0, ..., F (n

~
J)

(0) = 0, ...(6)

and A<FW(x)<B, (7)

the latter condition holding from x = to x = h. It foliows from

(7), by Art. 91, 4, that

rx rx rx

\ Adx<\ F (n] (x)dx< I Bdx* t

Jo Jo Jo

or, since F (n~v
(0) = 0,

Ax < F <>|
-1

(x) < Bx (8)

By a second application of the theorem referred to, we have

rx rx rx

I Axdx< I F (n~l

>(x)dx< I Bxdx,
Jo Jo Jo

or, since F (n~*>
(0)

= 0,

c) I V / o
j

* *
\ /

A similar argument applies to shew that

A ^ < F^-v (x) < B !~f
, (10)

and so on, until we arrive at the result

n n
. (11)

* Provided x be positive. If * be negative the inequalities must be reversed,
but the n'nal conclusion is unaffected.
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Hence we may write

F(*) = C^ .........................(12)

where C is some quantity between A and B.

In the present application, since 4>n (x) is a rational integral
function of degree n 1, its nth derivative is zero (Art. 64) ;

and
the nth derivative of Rn (x) is therefore, by (1), equal to f(n)

(x), if

this latter derivative exists. We infer, then, that

rn-0. .........................(13)

where C is some quantity intermediate to the greatest and least

values which f (n)
(x) assumes in the interval from to h. And if,

as we will suppose, this latter derivative is continuous from x =
to x=h, there will be some value of x, between and h, for which

f (n)
(x) is equal to C. Denoting this value by 6h, we have

where all we know as to the value of 6 is that it lies between
and 1.

The formula (14) holds from x = to x h
t inclusively

Putting x h, and substituting in (1), we obtain

f(h) =/(0) + hf (0) + ,/" (0) + ... + (nyr/
1"-"

(0)

(15)

In this form Maclaurin's Theorem is exact, subject to the

hypothesis that f(x) and its derivatives up to the order n, inclu-

sively, are continuous over the range from to h. The conditions,

however, that f(n)
(x) is to exist, and to be continuous over the

above range, include the rest.

If we write

/(*) = $ (a + *), ..................... (16)

we deduce

* (a + *)
- * (a) + h# (a) +

-,

</>" (a) + . . . +^^j <"-'> (a)

+
jj?4**(a

+ fcX .........(17)

where as before, 1 > 6 > 0,
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This is an accurate form of Taylor's Theorem. It holds on the

assumption that <
(n)

(a?) exists and is continuous from x=a to

x = a + h, inclusively.

The last terms in (15) and (17) are known as Lagrange's forms

of the ' remainder
'

in the respective theorems.

The formula (17) is a generalization of some results obtained in

the course of this treatise. For example, putting n= 1, we get

<f>(a + h) = <J>(d) + h<j>' (a + 6h); .... ...........(18)

and, putting n = 2,

< (a + h} = <f>(a)+h^(a) + JAV (a + 6h).......... (19)

These agree with Art. 56 (9) and Art. 70 (23), respectively.

186. Another Proof.

The proof of Taylor's (or Maclaurin's) theorem which is most

frequently given follows the lines of Art. 70, 2.

Considering any given curve

y-/()............................ (i)

we compare with it the curve

y = A + A lx + A zx> + ... + An_lx
n-l + Anxn, ......(2)

in which the n + 1 coefficients are assumed to be determined so as

to make the two curves intersect at x = and x h, and, further,

so as to make the values of

dy d*y dn~ l

y
das' ~dx*'

'"
dxn~l

respectively the same in the two curves at the point x = 0. These
conditions give

A, ./(OX A =/' (0), A, = I/" (0).....
'

.

as before, and

f(h) = A + AJt + Ash* + ... + A^h"-1 + A nh
n

, ...(4)

this latter equation determining An .

Denoting by F'(x) the difference of the ordinates of the two

curves, it appears that

F (0) = 0, F' (0)
=

0, F" (0) = 0, ... F(~V (0) = 0, . . .(5)

and F(h) = Q............................(6)
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Since F(x) vanishes for x = and x = h, it follows, under the

usual conditions, that F' (x) vanishes for some value of x between
and h, say for x = dji, where 1 >

;

> 0. Again, since F' (x)

vanishes for x = and x = OJi, F" (x) will vanish for some value of

x between and OJi, say for x Oz h, where 6l > 2 > 0. Proceeding
in this way we find that F (n~1)

(x) vanishes for x and x = #n_A
where 1 > #_, > 0, and hence that

FW(0h) = 0, ........................ (7)

where 1 > 6 > 0. Now, on reference to (1) and (2), we see that

FW(x)=fM(x)-n\An...................(8)

It follows from (7) that

(9)

Hence, substituting from (3) and (9) in (4) we obtain

/(A) =/(0) + hf (0) + /" (0) + . . . + />->' (0)

(10)

as before. The conditions of validity are as stated in Art. 185,
after equation (15)*.

187. Cauchy's Form of Remainder.

Another form for the remainder after n terms may be obtained

as follows.

If F (x) be subject to the conditions

.F(0) = 0, 2?'(0)
= 0, JT(0) = 0, ..., F("-V (())

=
(), ...(1)

we have, by integration by parts,
hrh / ^r

(1-f
Jo \ /*

n~a

...... -.(2)

since the integrated term vanishes at both limits. Performing this

process n - 1 times, we obtain
*

(n I

or

* The foregoing proof is substantially that given by Homersham Cox, Camb.
and Dub. Math. Journ. , 1851.
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Since the function under the / sign is continuous, we infer, by
Art. 91, 3, that

where 1 > 6 > 0.

It appears, then, that the last term in Art. 185 (15) may be

replaced by

(5)

and the last term in (17) by

-(1 -<?)-' <p-> (a + 0A). ............... (6)

These forms of remainder are due to Cauchy.

188. Derivation of Certain Expansions.
We proceed to consider the value of the remainder for various

forms of f(x), or
<f> (x) ; and in particular to examine under what

circumstances it tends, with increasing n, to the limit 0. In this

way we are enabled to demonstrate several very important ex-

pansions ;
but it is right to warn the student that the method has

a somewhat restricted application, since the general form of the
nth derivative of a given function can be ascertained in only a few
cases. Moreover, even when the method is successful, it is often

far from being the most instructive way of arriving at the final

result.

1. If /(#) = cosa?, ...........................(1)

we have f (6x)
= cos (6x + fair)................(2)

VI Til

The limiting value of the fraction xn/n \ is zero, and the cosine lies

always between + 1. Hence the expansion (10) of Art. 184 holds
for all values of x.

The same reasoning applies in the case of sin x.

2. If' /(*) = (! + #)-, ........................ (3)

we find

x -l--*+l x"

n\ 1.2. ..

This may be regarded as the product of (1 + Ox)
m into n factors of

the type
m r + I x

f
m + I\ x

~r~'i^e~x
or

\
+
'~^r~)iTdx
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If 1 > x > 0, the fraction x/(l -f Ox) lies between and x
y
and since

the first factor in (5) tends with increasing r to the limiting value

1, it appears that by taking n great enough the value of the

expression (4) can be made less than any assignable magnitude.
Hence, for 1 > x > 0, we may write

(6)
.

ad infinitum.

We cannot make the same inference when x is negative, even
if

|

a? < 1. For if we put x = xly the fraction a?,/(l
- Ox^ is less

than 1 only if < (1 x^jx^ And if x >
, we have no warrant for

assuming that lies below this value.

Cauchy's form of remainder (Art. 187 (5)) is now of service.

We have, in place of (4),

m(m-l) ... (m-tt + 1) (1 -6)n~l xn

1.2...(n-l) (1 + Ox)
n~m ..........

(

This is equal to mx (1 + Ox)-* multiplied into n 1 factors of

the type

If x be positive this expression tends to a limit between and x.

Hence if x< 1, the remainder tends to the limit 0, as before.

If x= xlt where 1 > xl > 0, the expression (8) becomes

1-0

which tends to a limit between and xl . We conclude that the
remainder (7) tends to the limit for all values of x between 1

and 1.

3. If /(*) = log(l+#), ..................... (10)

frn ( 1 Y* * / T \ n

wefind /(.)_fciG - ............. (11)

The limiting value of the first factor is 0, and, if x be positive
and ^ 1, x/(l + Ox) ^ 1. Hence the limiting value of (11), for

n -+ oo
,
is zero, and the expansion (16) of Art. 184 is valid from

x = to x = 1, inclusively. Of. Fig. 136.

The above form of remainder does not enable us to determine
the case of x negative, even when

|

x
\

< 1. In Cauchy's form, we
have, in place of (11)

*
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If x = xlt where 1 > xl > 0, this becomes

Since (^ 0#i)/(l Ox^ < a^, this tends with increasing n to the

limit 0.

189. Applications of Taylor's Theorem. Order of Contact
of Curves.

If two curves intersect in two points, and if, by continuous
modification of one curve, these two points be made to coalesce

into a single point P, then the two curves are said ultimately to

have contact
'

of the first order
'

at P. An instance is the contact
of a curve with its tangent line. And whenever two curves have
contact of the first order, they have a common tangent line.

Again, if two curves intersect in three points, and if by con-

tinuous modification of one curve these three points are made to

coalesce into a single point P, then the two curves are said ultimately
to have contact * of the second order

'

at P. An instance is the con-

tact of a curve with its osculating circle (Art. 137).

Let us suppose that the two curves

y = *(*). y = ^W- ....................(i)

intersect at the points for which x = x
,
xl} x2) respectively. The

function

), (2)

which represents the difference of the ordinates of the two curves,
will vanish for x = x

, a^, xt . Hence, on the usual assumptions as

to the continuity of F(x) and F' (x), the derived function F' (x)
will, by the theorem of Art. 49, vanish for some value of x between
x and #!, say for x = XQ', and again for some value of x between a^
and xz , say for x = #/. Hence, by another application of the theorem
referred to, if F" (x) be continuous in the interval from x

'

to #/, it

will vanish for some value of x between x ' and #/, say for x = #".
Hence if, by continuous modification of one of the curves (1), the
three points x x0j xlt x3 be made to coalesce into the one point
XXQ, the values of F'(#<>)> F' (# ),

F" (x ) will all be zero; i.e. we
shall have

simultaneously, for X=*XQ.

In other words, if two curves have contact of the second order

at any point, the values of

dy d*y
"'

dx' dx*

will at that point be respectively identical for the two curves.
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Ex. To determine the circle having contact of the second order
with the curve

? = *() .............................. (4)
at a given point.

The equation of a circle with centre (, rj)
and radius p is

(x-tf + (y-nf = f>*......................... (5)

If we differentiate this twice with respect to x, we find

(6)

In these results, y is regarded as a function of x determined by the

equation (5). But if the circle have contact of the second order with
the curve (4) at the point (x, y}, the values of y, dy/dxt

and d2

y/dx
2 will

be the same for the circle as for the curve. We may therefore suppose
that in (5), (6), (7) the values of a?, y, dyjdx, d 2

y/dx* refer to the curve

(4). These equations then determine the circle uniquely, viz. we find that

the coordinates of the centre are

(i

/^Yi dy
1 A^Y

\dx) j dx \dx)= x
, rj

= y + (o)

dx* ~dx*

( fdy\*}3
\

* *
\ ) i

and that the radius is p- -^ ; (9)

dtf

cf. Art. 135.

The above considerations may be extended, and we may say
that if two curves intersect in n + 1 consecutive points, or have

contact 'of the nth order/ the values of

,

y '

dx' do?' dxn

must be respectively identical for the two curves at the point in

question.

The investigations of Arts. 185, 186 give a measure of the

degree of closeness of two curves in the neighbourhood of a contact

of the nth order. By hypothesis we have at the point x = a (say)

and therefore, with F(x) defined by (2),

a0. ...(11)
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It follows that, under the usual conditions,

(12)

where 1 > > 0. Hence, if h be infinitely small, the difference of

the ordinates is in general a small quantity of the order n + 1.

Moreover, it will or will not change sign with h, according as n is

even or odd.

For example, the deviation of a curve from a tangent line, in the

neighbourhood of the point of contact, is in general a small quantity of

the second order, and the curve does not in general cross the tangent
at the point. Again, the deviation of a curve from the osculating circle

is a small quantity of the third order, and the curve in general crosses

the circle. See Fig. 116, p. 350. But if the contact with the circle be

of the fourth order, as at the vertex of a conic, the curve does not cross

the circle. The same thing is further illustrated in Fig. 136, p. 485,
where the curves numbered 1, 3, 5 do not cross the curve ?/

= log (1 +x)
at the origin, whilst the curves numbered 2, 4, 6 do cross it.

190. Maxima and Minima.

If </>(#)
be a function of x which with its first and second

derivatives is finite and continuous for all values of the variable

considered, we have

^(a + ty-tW^ht'W + ^t'^a + eh), ...... (1)

where 1 > > 0. By taking h sufficiently small, the second term

on the right-hand can in general be made smaller in absolute value

than the first, and <j> (a + h) </> (a) will then have the same sign
as h$ (a), and will therefore change sign with A.

Now if < (a) is a maximum or a minimum value of < (#), the

difference

<f> (a + h) < (a)

must have the same sign for sufficiently small values of h, whether
h be positive or negative. Hence we cannot, under the present
conditions, have a maximum or a minimum unless <' (a)

= 0.

Let us now suppose that
</>' (a)

= 0, so that (1) reduces to

(2)

When h is sufficiently small, the sign of the right-hand will be that

of <" (a). Hence if this be positive we shall have
<f> (a + h) > $ (a),

whether h be positive or negative ;
i.e. <f>(a)is& minimum. Similarly,

if <" (a) be negative we have a maximum.
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If <" (a) vanish simultaneously with <' (a), it is necessary to

continue the expansion in (1) further. To take at once the general
case, if we have

# (a)
= 0, <"(a) = 0, ..., 0*-(a) = 0, .........(3)

simultaneously, but <
(n)

(a)=fO, ...........................(4)

then <f>(a + h)-4>(a)=-4> (n)
(a + ^h).............(5)

If h be small enough, the sign is that of hn
<j>

(n}
(a). If n be odd,

this changes sign with h, and we have neither a maximum nor a
minimum. But if n be even, we have a maximum or minimum,
according as <

<n)
(a) is negative or positive.

In words, <f> (a?) is either a maximum or a minimum for a given
value of x if the first derivative which does not vanish for this value

of x be of even order, but not otherwise. And the function is a

maximum or a minimum according as this derivative is negative
or positive.

Ex. 1. < (x)
= cosh x + cos x................ ......... (6)

This makes

$' (a;)
= sinh x sin x, <f>" (x)

= cosh x - cos x,
*

<'" (x)
= sinh x + sin x, <

lT
(x)

= cosh x + cos x.

The first derivative which does not vanish for x = is <
|T

(x). And
since $iv

(0) is positive, we infer that
</> (0) is a minimum value of

<f> (x).

This is also obvious from the expansion

Ex. 2. Let F=6cos0-ccos20 (8)

This makes

-ja
= - b sin + 2c sin 20 = sin (4c cos -

b),dv

= 6 cos & + 4c cos 20 = cos (4c cos 6) 4c sin2 0,

= 6 sin - 8c sin 20,

= b cos - 16c cos 20.

For brevity, consider only angles in the first quadrant. If b > 4c,

the only stationary value of V is when -
0, and since this makes

dz
V/d6* < 0, V is then a maximum.
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If b < 4c, V is a minimum when = 0, and there is a maximum for

= cos- 1

(6/4c).

If b = 4c, d V/dO, d*
VJdO\

d* V/dO* all vanish for = 0, whilst d* V\dB^
is negative. Hence V is then a maximum.

This example occurs in the discussion of the possible positions of

equilibrium of a square plate resting in a vertical plane between two
smooth pegs at the same level. If b be the length of the diagonal of the

square, c the distance between the pegs, Fis proportional to the potential

energy when the diagonal which crosses the line of the pegs makes an

angle with the vertical. For equilibrium V must be stationary, and
for stability it must be a minimum.

191. Infinitesimal Geometry of Plane Curves.

Let the tangent and normal at any point of a plane curve

be taken as axes of coordinates
;
it is required to express the coordi-

nates of a neighbouring point P of the curve in terms of the arc

OP, =
s, say.

If, for brevity, we use accents to denote differentiations with

respect to s, we have, as in Art. Ill,

x' = costfr, y'
= smty, ..................(1)

and thence

x" sin i/r .
i/r',

x"' = COS
ifr

. ^r'
1 Sin

i/r . i/r",
. . .

= - sin .ip + cos
->|r.

<' '

and so on.

Now, by Maclaurin's Theorem,

;

where the suffix is used to mark the values which the respective

quantities assume for s 0. But, putting ^r in (1) and (2), we
have

'_i "_n '"- l
x. =

1, x, --v, x9
-

.(4)

where !//> has been written for dtyjds. Hence

s3 s* s* dp

where
/>
and rf/o/^5 refer to the origin.

These formulae are useful in various questions of '

infinitesimal

geometry.'
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Ex. 1. Thus the second formula in (5) shews that the deviation of

the curve from the osculating circle at is ultimately

since dp/ds = for the circle.

And, generally, for all purposes where #* can be neglected, the curve

may be replaced by its osculating circle.

Ex. 2. Again, the normal at P meets the normal at in a point
whose distance from is y + xcot\J/. If we neglect terms of the second
order in s

t
this

8 / . s dp\=-*r = P[ 1 + J-jH'
s _i 8

dp_ \ P ds/

~p~^~f?~ds

Hence the distance of the intersection from the centre of curvature at

s is ultimately

When p is a maximum or minimum we have (in general) dp/ds = 0, and
the distance is of a higher order, the evolute having then a cusp at the

point corresponding to 0.

EXAMPLES. LXII.

(Expansions.)

2V 2V
1. COSh X COS X = 1 --TT+~o~i--4 ! o !

2V
X Bin X = X* - --~ +

2. cosh x sin x = x +--

^-~ -^-pr-r
o I 10!

2V
=-;o ! !

smh x cos x = x --=-- =-7- .

o ! o !

2ar 2V 2V 2V
37- TT "TT TT
20s 2V 2V 2V

_ a? 5x* 6lx*
+ ~ + H ~

5.

6. log cosh x = Jos
2-

y^cc
4 + ^^o;

8 - ....

L. i. a
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7. ta,nh x = x -

8. COS2 a= 1 -Or + -JY --Try + ...

n . n (3ra
-

2)
9. cos" x = 1 -

r-|
or

1 + v
a?

4 -
.

w n (5n 2)

a;

11. = l + o-, + -5-7- + >sm a 3 ! 6 !

a? _ _ a? 14CC
4

'l
== * 7T"i "1 / i

sinh a; 31 6 !

10 x _i i
12. ~ 1 ~ a;

13.

14. log tan
( JTT + x)

= 2a; + ^ar
5

4-^ +

15. log (1 + sin a)
= x - Jas

8 + Jo
8 -

^as* + ^
16. log (1+6*) = log 2+

3 sin ic

J. f .

18.

j;
- c ~

., o/-. . .

2 + cos x 180

1 sin2 6 1.3 sin4 1.3.5 sin

22 24 2. 4 . 6 6
'"'

19. If Z> = d/e^c, prove that

Z)nexco* a cos ^ sin a
)
= g* cos a cog ^ sjn a + Wa^

Hence shew that

or
2

ar
5

6a?cosa cos ^ 8jn a)
= 1 + 05 COS a + =-, COS 2a + 5- COS 3a + ....

2t \ o 1

20. Draw graphs of the functions

v* a? a*
X

' ~3l' "3~!
+

5l

respectively, and compare them with the graph of sin x.

21. Draw graphs of the functions

l_f? 1-^4-^
2 !

'
2 ! 4 !

'

respectively, and compare them with the graph of cos as.

22. Prove that, in the formula (17) of Art. 185, the limiting
value of 0, when h is indefinitely diminished, is in general l/(n+ I).



EXAMPLES 499

23. Prove that when h is sufficiently small the error in Simpson's
formula (Art. 114 (8)) of approximate integration is

dx"
nearly.

?4. Prove that the mean value of a function
<f> (x) over the range

extending from a; = a h to x = a + h is

* (a) + J!*+*L*J () + ....

Shew that this falls short of the arithmetic mean of the values at

the extremities of the range by

25. Shew that if, from a given curve, another curve be constructed

whose ordinate, for any value a of a?, is the mean of the ordinates of

the first curve over the range bounded by x = a h, where A. is a given
small constant, the ordinate of the second curve exceeds that of the

first by one-third the sagitta of the arc whose extremities are x = a h.

EXAMPLES. LXIII.

(Geometrical Applications.)

L Prove that if the expansions (4) of Art. 191 be carried to the

order s
4
,
the results are

,8
s

,
s
4
dp

2. If the values of a;, y, referred to the tangent and normal at a

point of a curve, be developed in terms of
\f/,

the inclination of the

tangent to the axis of x, the results are

3. Prove that, with the same axes, the coordinates of the centre

of curvature are

322
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4. If 0, P be two adjacent points on a curve, and PQ be drawn

perpendicular to the chord OP, to meet the normal at in Q, then

ultimately OQ = 2p.

5. If equal small lengths Ol\ OT be measured along the arc of a

curve, and along the tangent at the point 0, and if R be the limiting

position of the intersection of PT produced with the normal at 0, then

OR =
3/3.

8. If P, Q be adjacent points on a curve, and a point T be taken

on the tangent at P such that PT is equal to the chord PQ, and if R
be the intersection of TQ with the normal at P, prove that the limiting
value of PR is 4/o.

7. The perpendicular to a chord OP at its middle point meets the

normal at at a distance from the centre of curvature ultimately equal
to \sdplds, where 8 - OP.

8. The tangents at two adjacent points P, Q of a curve meet in 2\
and V is the middle point of the chord PQ. Prove that TV makes
with the normal to the curve an angle tan" 1

9. Prove that if PQ be a small arc (s) of a curve, the arc exceeds

the chord by TJ^/P*, and the sum of the tangents at P and Q exceeds

the arc by T

10. Prove that the form of a curve near a cusp is given by

approximately, where a =

11. Prove that the form of a curve near a point of inflexion is

given by

, dc
y = *~ds^'CM

approximately, where c is the curvature.

12. If P be any point on a curve, the form of the evolute of the

part near P, referred to the centre of curvature at P as origin, is in

general given by
ay = oa

,

where a = 2dpjd\j/.

13. Prove that if P be a point of maximum or minimum curvature,
the form of the evolute is

ay
2 =

approximately, where a =



CHAPTER XVI

FUNCTIONS OF SEVERAL INDEPENDENT VARIABLES

192. Partial Derivatives of Various Orders.

If u be a function of two or more independent variables x, y, . . . ,

the partial derivatives

du du . .

fa' d~y"

will themselves in general be functions of x, y, ...
, and be sus-

ceptible of differentiation with respect to these several variables.

Thus, if u = <t>(x,y\ ...........................(2)

we can form the second derivatives

dx \dxj
'

dy \dxj
'

dx \dyj
'

dy \dyj
'

or, as they are usually written,

dydx' dxdy' dy
9

'

It will be noticed that there is (primarily) a distinction of meaning
between the second and third of these symbols, the operations indi-

cated being performed in inverse orders in the two cases. It will

be shewn, however, in Art. 193 that under certain conditions, which
are generally satisfied in practice, the results are identical.

The first derivatives of
</> (x, y) are sometimes denoted by

and the second derivatives (3) by

<$>xx(xi y}> <f>yx( c
> y)> fyxytyyy)* tfrvvfa' y) (5)

These are often abbreviated into

<f>X) <f>y , (6)

and $xxy $y*i $xy> ^yy> (7)

respectively.
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Ex.l. If u = Axmyn, (8)
A O

we have = mAxm~ l

y
n

,
=nAxmyn-\ (9)

(Pu , dzu
2
= m (m - I

)
Axm~*y

n
, 2

= w (n
- 1

)
Axmy

n
~\

oX' tfy

= mnAxm~ l

y
n~ l = -z^- --(10)

dydx dxdy

Ex. 2. If = atan~ a
-, (11)
x*

fa ay fa ax
we find =

g ., = -r 5, (12)
8a; x + y dy

^-^ ai*

_
^"(a^ + y

2

)
8

' *

193. Proof of the Commutative Property.

Let u = $(x,y\ ........................... (1)

and let us suppose that the functions

du du
'

9a?' dy'
'

are continuous (Art. 34) over a finite range of the variables, in-

cluding the values considered. We proceed to shew that, under
these conditions,

To this end, we consider the fraction

/
v = ^(g + A

> y + A?)-^(flg + A
> y)

^^ ' ^~ hk '

...... (4)

in which x, y are regarded as fixed, whilst h, k will (finally) be made

infinitely small.

Let us write, for a moment,

By the mean-value theorem of Art. 56 (9), we have

F(x^h)-F(x) = hF'(a: + 1h)) ............ (6)

or, in full,

-$(x, y)}
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where 1 > Bl > 0, the value of y not being varied in this process.
Hence

/j, M
X(n, )==

-

If we now write

*,( + 0A y)......................(9)

we have, by a second application of the theorem referred to,

f(y + k)-f(y) = kf(y + 6,k), ............(10)
or

<f)x (x + 0Ji, y + k)-<j>x (x + dji, y)
= k$yx (x + dji, y + 0Jc).

......(11)

Hence x(h> k) = <t>yx (o; + lh, y + 0Je), ............ (12)

where lt 9 lie between and 1.

By a similar process we could shew that

X (h, AO-**(* + 0i'^ y + OJk), ............(13)

where #/, 9
'
also lie between and 1.

These results are exact, provided x + h, y + k lie within the

range of the variables for which the conditions above postulated
hold. If we now diminish h and k indefinitely, it follows from the

comparison of (12) and (13), and from the continuity of the de-

rivatives, that

as was to be proved*.

It follows from the above theorem that in the case of a function

of any number of independent variables x, y, z, ... the operations

111
dx' dy' dz""

or, as we may denote them for shortness,

A,, Dy , A,-
are in general commutative, i.e. the result of any number of them
is independent of the order in which they are performed.

For example,

,u = Dx (Dy
Dzu) = Dx (DzDy) u =2aDM (Dyu} = D,DxDy

u = etc.

* This proof appears to be due to Ossian Bonnet. An alternative proof is

indicated in Art. 194.
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It appears from (4) that

I-L 7\ IT <h(x + h
t y + &)

o X ft *H J lim^o
13-i

-j

k

Hence Hm
fc^ lim^oxft fy

=
<l>v*(

x
> y).......

Similarly, we find

lim/^olinifc^oxft *)
= <&(*> V}

If, then, we could assume that the limiting value of the fraction (4),
when h and k are indefinitely diminished, is unique, and independent
of the order in which these quantities are made to vanish, the theorem

(3) would follow at once. A simple example shews, however, that the

assumption is not legitimate without further examination. If

A2
yfc
2

we have

lim fc _^ o lim/^^ i,
= -

, ^^ m* ^
Ex. A necessary condition that

Mdx + Ndy ........................... (18)

should be an exact differential (Art. 155) is

_

dy ~dx

For if the expression (18) be equal to du, we have

... du , du

and therefore each of the partial derivatives in (19) is equal to

or d*u/dxdy.

Conversely, we can shew that, if the condition (19) hold, (18) will

be an exact differential. Let v denote the function fMdx, obtained by
integrating as if y were constant. We have, then,

and therefore
dx dy dxdy'
4

or
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This shews (Art. 56) that the function N dv/dy is constant so far as

x is concerned and is therefore a function of y only. Denoting its

value byf (y), we have

)......................... <23>

Hence, if we write M = *+/(y) ........................... (24)

we have, by (21) and (23),

-* -* ........................
<
25

>

and therefore Mdx + Ndy = du......................... (26)

194. Extension of Taylor's Theorem.

Let
<f> (x, y} be a function of x and y which, with its derivatives

up to a certain order, is continuous for all values of the variables

considered. It may be required to find the expansion of

^(a + h, b + k) ........................(1)

in ascending powers of h and k. We shall in the first place give
a direct investigation of the expansion as far as the terms of the

second degree in h and k.

First expanding in powers of h, we have, by Taylor's Theorem,

</> (a + h, b + k) = tf> (a, b + k) 4-
h<f>z (a, b + k)

+ JA
1
&*(a,& + fc) + ..........(2)

Again, by the same theorem,

<j> (a, b + k) = <f> (a, b) + kfa (a, b) +p2

</>yy (a, 6) + ... ^

<* (a, & + &) = <*( &) + &&. (<*>> &) + > --(3)

#*(, & + &)
= &*(> 6) + .... J

Substituting in (2), we find

$ (a + h, b + &) = </> (a, 6) + {ft^ (a, 6) + &< y (a, 6)}

(a, 6) + 2^y* (a, 6) + Aty^ (a, 6)} + ..........(4)

If we regard the forms of the several
* remainders' (Art. 185)

in the preliminary expansions, it appears that the remainder in (4)

will be of the form

(5)

where R, S, T, U are functions of a, b, h, k which remain finite

when h, k are indefinitely diminished. The remainder is therefore

of the third order in h, k.



506 INFINITESIMAL CALCULUS [CH. XVI

The conditions for the validity of the foregoing result are that

(ft (x, y) and its derivatives up to the third order should be con-

tinuous for all values of the variable considered.

With a slight change of notation we may write (4) in the form

where, on the right hand, <f>
stands for

(f> (x, y). A still more

compact form is

+ h, y + k) = < (x, y) + (fifa + kfo)

+ iW + Zhkfa + k^yy) + .......(7)

Again, if u be any function of the independent variables x, y,
and if, as in Art. 57, &u denote the increment of u due to given
increments Sx, By of these variables, the formula is equivalent to

du (9
2
it

/SJ
. a 3% * * ,

9*^ /* x,l
( )+ y + (y) "

- '
-

' ; ...... (8)*

It may be remarked that in the proof of (4) it was not neces-

sary to assume that

<f>yx (a, b)
=

<t>xy (a, b)...................... (9)

If we had begun by expanding (1) in powers of k (instead of h) we
should have arrived at a result similar to (4), but with ^^ (a, b) in

place of
<j)yx (a, b). From a comparison of the two forms we can

obtain an independent proof of the theorem of Art. 193.

195. General Term of the Expansion.

An independent investigation, giving the general term of the

expansion (7), is as follows. We write h = at, k = fit, and

(i)

Regarded as a function of
,
this can be expanded by Maclaurin's

theorem, and the general term is

(2)

* The extension of the investigations of this Art. to cases where there are three
or more independent variables will be obvious.
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Now if we put for a moment x + at = u, y + /3t
=

v, we have

..
9a?

"~

du dx
~~

du
'

dy dv dy dv
'

where < is written for < (w, v). Hence

The result is evidently a function of u and v, hence, by a repe-
tition of the argument,

and, generally,

where the operator admits of expansion by the Binomial Theorem,
in virtue of the commutative property of the operators d/dx and

d/dy. Since t only occurs in the combinations as + at, y 4- fit, it is

evidently immaterial in (6) whether we put = before or after

the differentiations indicated on the right-hand side. The general
term of our expansion is therefore

n

,
w ! n ! V ox dyj nl\ dx dy

d
n

<l> jn-n.
dn

<ft n(n-l) , n_2
, 1

a
4 fc4 ~~ "

where
</>

is now written for
<f> (x, y).

Ex. To prove that if < (#, y) be a homogeneous function of x, y,

of degree ra, we have

x<j>x + y(j>y
=

in<l>J
........................... (8)

xs
<f>xx + 2xy(f>av + y*<l>yv

= m(m-l)<j>................ (9)

The general definition of a homogeneous function of degree m is

that if x and y be altered in any ratio
/x,

the function is altered in the

ratio /x
m

,
or
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In this equality, let us put /x,
= 1 + 1. Since

by (8), and

by the Binomial Theorem, the results (9) and (10) will follow, on equating
coefficients of t and tf

2
. More generally, equating coefficients of t

n
t and

making use of (7), we find

ro(n-l)S

....... (11)

This is
{ Euler's Theorem of Homogeneous Functions,' for the case

of two independent variables. The extension to three or more inde-

pendent variables will be obvious.

196. Maxima and Minima of a Function of Two Vari-
ables. Geometrical Interpretation.

We may utilize the generalized form of Taylor's Theorem to

carry a step further the discussion (see Art. 53) of the maxima and
minima of a function (u) of two independent variables (x, y).

It appears from Art. 194 (8) that when Sx, 8y are continually
diminished in absolute value, preserving any given ratio to one

another, the sign of Su is ultimately that of

du du .

Unless du/dx and du/dy both vanish, the sign of (1) is reversed by
reversing the signs of Sx and By. Hence for some variations Su
will be positive, and for others negative. In other words, u cannot
be a maximum or minimum unless we have

^=0 -=0 (2}*
dx

U
'

dy

simultaneously.

Let us now suppose the conditions (2) to be fulfilled. We
have, then,

*
It is assumed in the investigation of Art. 194 that these derivatives are con-

tinuous and therefore finite. That is, we exclude ab initio the two-dimensional

analogues of the cases considered in Art. 51.
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When Bx and By are sufficiently small, the sign of Bu will be that

of the terms written. Now it is known from Algebra that the

sign of a homogeneous quadratic function

Ap+2Hfr + Bif .....................(4)

is invariable, if (and only if)

AB>H\ ........................... (5)

and that the sign is then that of A (or B). We infer that when
the conditions (2) are satisfied Bu will have the same sign for all

values of
|

&B
|

and
| By \

not exceeding certain limits, provided

dy* dxdy
'

and that the sign will then be that of fra/dx* and 32

u/9y
3
. And u

will be a maximum or minimum according as this sign is negative
or positive.

dy* \dxdy
'

then for some values of the ratio By/Bx the increment of u will be

positive, for others negative, and the value of u, though 'sta-

tionary' (cf. Art. 51) is neither a maximum nor a minimum.

the terms which appear on the right-hand side of (3) are equal
to the square of a linear function of Bx and By, and therefore

vanish for a particular value of the ratio By/Bx. Since Bu is then

of the third order it appears that there is in general neither a

maximum nor a minimum, but the question cannot be absolutely
decided without continuing the expansion further. The same
remark applies when the second derivatives d*u/da?, dz

u/dxdy,
dz

u/dy
z all vanish.

The preceding investigation has an interesting geometrical interpre-
tation. If, as in Art. 34, z be the vertical ordinate of a surface, and

x, y rectangular coordinates in a horizontal plane, the first condition

for a point of maximum or minimum altitude is that

(9)

simultaneously. Since these equations ensure that Sz shall be of the

second order in 8x, By, it follows that at the point (P, say,) in question
the tangent line to every vertical section through P will be horizontal

;

in other words, we have a horizontal tangent plane.

We have next to examine whether the surface cuts the tangent

plane at P. Along the line of intersection (if any), we shall have
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8z - 0, and therefore from (3), if we put 8y = mSx, and finally make Sx

vanish, the directions of the tangent lines at P to the curve of inter-

section are determined by

- m =
dor dxdy

This quadratic in m will have imaginary roots if

the surface then, in the immediate neighbourhood of P, will lie wholly
on one side of the tangent plane, and the contour-line at P reduces to

a point. Hence P will be a point of maximum or minimum altitude

according as d*z/dx* and d2z/dy* are negative or positive, i.e. (Art. 67)

according as the vertical sections parallel to the planes zx and zy are

convex or concave upwards. If we imagine the axes of x, y to be rotated

in their own plane, we can infer that every vertical section through P
is in this case convex upwards, or concave upwards, respectively.

&z &z f &z \
2

Butif <( ), ........................ (12)dx2 oy* \dxdyJ

the roots of (10) are real and distinct. The contour-line has a node
at P, the two branches separating the parts of the surface which lie

above the tangent plane from those which lie below.

If **-(*}' (13)'
'

the roots of (10) are real and coincident. The contour-line has in

general a cusp at P
t
and the question as to whether the altitude at P

is a maximum or minimum cannot be determined without further

investigation.

Ex. 1. Let = aj
8 -3oaa

-4ay
a +(7 (14)

a o-,

This makes = 3x (x - 2a), =-8ay. (15)
dx dy

dx9 dxdy dy
z

The conditions (9) are satisfied by x = 0, y = 0, and also by x = 2a, y = 0.

The former solution satisfies the inequality (11), and since d*z/dy
z

is

negative, z is a maximum. The latter solution comes under (12); z is

then neither a maximum nor a minimum. The contour-lines for this

case are shewn in Fig. 69, p. 286.

Ex. 2. Let z = (ar'+2/
2
)

2 -2a2
(ar

2

+2/
2

)
+ C'. (

17>

We find = 4*(ar+2/
2 -a2

),
= y (a? + y* + a2

), (18)
ox oy

y>->), J5L-&* 5 = 4(^+3^). (19)
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The real solutions of (9) are, in this case, x = 0, y = 0, and x = a,

2/
= 0. The former values fulfil the relation (12), so that z is neither

a maximum nor a minimum. The solutions x = a, y = satisfy (11),

and, since they make (Pzjdx? positive, * is then a minimum. The con-

tour-lines of the surface (17) are shewn in Fig. 106, p. 321. The
surface has two symmetrical hollows with the 'bar' between them.

If we reverse the sign of the right-hand side of (17), we get two peaks,
with the 'pass' between them.

197. Conditional Maxima and Minima.

The problem is to find the maxima and minima, or rather the

stationary, values of a given function of n variables which are not

all independent, but are connected by m given relations (n > m).
The question whether these correspond to maxima or minima, as

well as the discrimination, is usually decided on grounds inde-

pendent of the present investigation.

Theoretically, we might eliminate m of the variables by means
of the given relations, and so express the given function in terms of

n m really independent variables. This procedure would how-
ever often prove cumbrous, if not impracticable. To meet this

difficulty, the method of (in the first instance)
' undetermined

'

multipliers was devised by Lagrange. In cases where the given
function, and the given relations, possess a more or less symmetrical
character, this method is especially convenient.

The following cases will sufficiently elucidate the method.

1. Suppose that we have a function

u = <j>(x,y,z), ........................(1)

where x
t y, z are subject to the relation

/(*,y,*) = .........................(2)

Expressing that Su = 0, we have

The infinitesimal variations 8x, By, Sz are not independent, but
are connected by the relation

since Bf= 0. From these we might eliminate 82
;
and since Stc, 8y

may then be regarded as independent, we might, in the result,

equate their coefficients separately to zero. A more symmetrical
procedure is to form from (3) and (4) the equation
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So far, \ may have any value, but we now suppose it to be deter-

mined so as to make the coefficient of one of the variations, say Bz,

vanish. Since there is no necessary relation between Bx and

By, their coefficients must also vanish. We are thus led to the

equations

.

a# dx
'

dy dy' dz dz'

These, together with (2), constitute a system of four equations

determining the four unknowns x, y, z, X.

2. Let the function be

u = cf>(x,y,z), ........................ (7)

where the variables are subject to the two relations

F(x,y,z)=0, f(x,y,z) = ................(8)

Proceeding as before, we form the equation

<ty_X
3-- .\Sx + (

d-^-\~ - u,\$
dx dx ^dx) \dy dy dy/

where X, //.
are at present undetermined multipliers. We may

suppose these chosen so as to make the coefficients of By and Bz to

vanish. The coefficient of Bx must then also vanish. We thus
obtain the equations

a/ d<f> ^dF^ a/ a<_,a^ a/
te~ tedx' &j~- ty

+ f

*d~y' d~z

=
^te

+ fJ
'd~z'

These, together with (8), determine the five unknowns x, y, z, X,

Ex. 1. To find the stationary values of

(11)
subject to the condition

Aa? + 2ffxy + y*=l...... . ............... (12)

This is the problem of finding the principal axes of a conic whose centre
is at the origin.

The method gives

x = \(Ax+Hy\ y = \(Hx + 3y).............(13)

Multiplying these by x, y, respectively, and adding, we have

w = X .................................(U)

Hence (Au -
1) x + Huy= 0, Hux + (Bu- l)y = .......(15)
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Eliminating the ratio x : y, we have

(AB-H*)u*-(A+)u+I=0................ (16)

Again, eliminating u,

H(x*-y*)=(A-B)xy. ..................... (17)

Ex. 2. To find the stationary values of

u = x* + y* + z*, ...... . .................... (18)
under the conditions

Ax* + ip + Cz* = l t lx + my + nz = ............. (19)

The problem is that of finding the principal axes of a central section of

a quadric surface.

We find

x = \Ax + pl, y=XJ5y + /nm, z \Cz + ^.n.......... (20)

Multiplying by x, y, z
t respectively, and adding, we find

u = X .................................(21)
Hence

If we multiply these by I, m> n, respectively, and add, we find

*m
................ (23)A

- ~Au - 1 Bu 1 Cu - 1

which is, virtually, a quadratic in u. If u be either root of this, the

corresponding values of the ratios x : y : z are given by (22) ;
thus

I m n
x-.y:z = ---i

:
- --= : ^--^ ............. (24)Au 1 Bu 1 Cul

198. Envelopes.

A similar treatment applies to the finding of the envelope of a

curve whose equation involves n parameters connected by n 1

relations.

For instance, suppose that it is required to find the envelope of

(a?, y, a, )
= 0, ........................(1)

where the parameters a, ft are connected by the relation

/(,/8) = ............................(2)

At the intersection of (1) with a consecutive curve we have

</> (x, y, a + Sa, + S/3)- </> (*, y, a, 0) = 0, ......(3)

Sa + S/3 = 0, .....................(4)

L. La
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ultimately. The variations 8, Sft are connected by the relation

;r Ott + ^7; OyS = (5)

Hence (f*_ X |[) fe+ ff-XJ\S/8-0 (6)
\da oaj \dp o&)

If we^determine X so that the coefficient of S/3 shall vanish, that of

a must also vanish. We have then

v(p of ~ 9<p of f.

The locus of ultimate intersections is found by eliminating a, fit X,
between (1), (2), and (7).

Ex. 1. To find the envelope of the line

where a, /S are subject to the condition

a? +p = a\ ...... ........................ (9)
The method gives

Hence X(o' +^ = -
+|=1,tt ^5

or X=l/
a
............................... (11)

Hence as = a2
a;,

8 = &V......................... (12)

and, substituting in (9), we find

x* + y* = a*.

Art 145, Ex. 2.

Z&c. 2. To find the envelope of

ax + fy = l ........................... (13)

under the condition a.p + Aa + Bf$ + (7 = ...................... (14)

We have to eliminate o, /?,
X between these and

x = \(p + A), y = \(a + B)................... (15)

Eliminating A, we have
005- fy =

which, combined with (13), gives

ax = l(Ay-x + l), Py = 1s(Bx-Ay+l).......(16)

Substituting in (14), we find

(Bx-Ay)* + Cxy+2(Ay + x) + 1=0, ......... (17)

which is the equation of the required envelope.
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199. Applications of Partial Differentiation.

Numerous problems of partial differentiation present themselves
in geometrical and physical questions. As a rule, they are best
dealt with as they arise

;
but we give one or two simple cases which

may serve to elucidate the chief points to be attended to.

1. Let t* = <(v), ...........................(1)

where v is a function of the independent variables x
t y ; and let it

be required to form the successive partial derivatives of u with

respect to these variables.

By Art. 32 we have

du ,,, N
9v du ,,/ .dv

&-* (v) 5,' fc-*
w$

Again,

* -a ^- o * 5-5-
dxdy dy

r ox '

dxdy 'dxoy
'

dxdy
............(4)

9*w 9 ,
dv 9"w

and so on.

2. Let u = <f>(x, y\ ...........................(6)

where a?, / are given functions of the independent variable t ; and
let it be required to calculate the derivatives of u with respect to

t. We have, by Art. 59, 1,

du _ d</> dx 90 dy
~di~fa'di~

{

'dydi
...................... (/

Differentiating again, we find

^ + ' " >( '
^

dt*
~
dx dt* 8y dP dt dx dt dt \dy dt

dt \dx/ dx \dx) dt dy \dx) dt
'

-

dt \dy dx \dy dt dy \dy dt
'

33-2
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Substituting in (8), and recalling the commutative property
established in Art. 193, we have

tfu^tydte d(f> d
z

y da
<ft /(toy d*<f>

dx dy dty fdyV
dt*

"
8a? d& dy dt* da? \dt)

'

dxdy dt dt dy* (dt)
'

.........(9)

The process might be continued, but it is seldom necessary to

proceed beyond this stage.

This process is sometimes required when we transform the

coordinates in a dynamical problem. Thus, to change from rect-

angular to polar coordinates in two dimensions, we have

co= r cos 0, y T sin 0,

and the above method enables us to express d2

x/dt* and d*y/dt* in

terms of the differential coefficients of r and 6 with respect to t.

Ex. Let z = <j>(x-ct) + x(x + ct),
..................... (10)

where the variables x and t are independent.

Putting x ct = u
t

for shortness, we find

..........(12)

-'

200. Differentiation of Implicit Functions.

Let y be a function of a?, denned
'

implicitly
'

by the equation

*(*y)-0; ...........................(1)

it is required to calculate the successive derivatives of y with

respect to x.

We have, as in Art. 59,

(2)

If we differentiate this with respect to x, we find

d_fi\ l/^\^ + ^^y =0
dx\dx) dx\dyjdx dy
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Now, by Art. 59,

d_ /d4>\ A (<ty\ _9 (<W\ <fy

dx\dx) dx \dx) dy \dx) dx
'

dx* dxdy dx dy
9 \dx dy dx*

If we substitute the value of dy/dx from (2), we find

dx*
<f>

3 .(5)
y

Again, by differentiation of (4), and substitution, we could find

d^y/dx
3 and so on.

The formula (5) leads to an expression for the curvature of a
curve whose equation in rectangular coordinates is given by (1), viz.

ft\ fn ^^ sitr\ fr\ (T\ 1 1 /T\ ff\ *

*'p to
The condition for a point of inflexion is obtained by equating the

numerator to zero.

It may be noticed that (4) is included in Art. 199 (9) by putting
t= x, u = 0.

201. Change of Variable.

1. Let it be required to interchange the dependent and inde-

pendent variables in the case of a function of a single variable.

We have (Art. 33)

= t

'dx\~l

dx

dx* dx \dy) dy \dy)
'

dx

dy*'
and so on.

2. Let =(?, 17), (3)

where f, ?? are given functions of the independent variables x and

y, and let it be required to calculate the second partial derivatives

of u with respect to x and y.
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We have
du du 3? du drj du du d

,
du dn

_ == *
_l '. = -J i (4 i

dx ddx drjdx* dy dgdy drjdy'

efc*_9*"
a?

2 dx
'

dgdrj dx dx dif \dx

. .

In like manner we should find

= , _ ,

2

ay ay aa;/ a??
2
aa; ay

a^
a^ a#3y

'

9
aawa3 a

L

afa^ ay ay a

Ex. 1. In the case of a particle moving under a resistance pro-

portional to the cube of the velocity, we have

It follows at once from (2), with a mere difference in the notation, that

!*=&...... ..(9)ds& v '

Hence = J/^ + ^a; + 5......................... (10)

Ex. 2. To change from rectangular to polar coordinates in the

expression

dx* dy*
'

Putting x = r cos 0, y = r sin 0,

du dudx du dy , ou ,.du
x

we find ^ = r- +^r ^ = cos + sin ,

or ox or dy or ox dy
(13)

du
. dudx du dy / ~du du^



201
]

FUNCTIONS OF INDEPENDENT VARIABLES 519

whence
du du . . 3u du . du -du= cos0 -sm0 -^, = sm0 -f costf-^. (14)ox or rW dy dr rdd

Hence

f O d . . 3 \ / a du . -dux
=

f cos 6 - sm -,.
}

cos 6 - sin -^ )
.

dx* . \ dr rW) \ dr rdO/
'

...... ^
'

It is not necessary to perform all the operations indicated, as several of

the terms will cancel when we form the sum (11). The remaining
terms give

EXAMPLES. LXIV.
i

(Partial Differentiation ; Exact Differentials.)

1. If -

* ^u i A-
u

verify the relations x + y %- = u,
dx *

oy

2. If 8? =^ tan- 1 ^-2^ tan-1
-,x y

1

*

Provethat

3. If z = F(x)+f(y),

&z
prove that

Conversely shew that, if d*z/dxdy
= Q, z must have the above form.

4. Prove that the equation

dr* r dr r8

7?/ 7? \

is satisfied by </>
= Urn +-

J
cos n (6

-
a).
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5. Prove that any differential equation of the type

F(x* + y
z
) (xdx + ydy} +f(2) (xdy - ydx) =

\x/

becomes exact on division by x* + y*.

-r, xi sinht/dx- smxdy
6. Prove that --.-?

cosh y cos x

is an exact differential of a function u
; and find u.

7. If

82,'

prove that a function
\j/

exists such that

dx dy
'

dy dx*

18* 1
* ** ST3

~
"T

,,
_

8r2 r dr ir 9

prove that a function ^ exists such that

and that ^ satisfies the same partial differential equation as
<j>.

9. If ^ + ^+i^ = o,
dx* ty* y dy

prove that a function ^ exists such that

*y y

i a^ Aand that +- --
5T =:0-

y dy

EXAMPLES. LXV.

(Maxima and Minima.)

1. Prove that in the surface

az = x* y*,

the ordinate (z) is stationary, but not a maximum or minimum, when
x = 0, y = 0. Sketch the contour-lines of the surface.

2. Prove by means of the rule of Art. 196 that the parallelepiped
of least surface for a given volume is a cube.
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3. If A, B, C be the vertices of a triangle, and P a variable point,
the sum

is a minimum when P coincides with the mean centre of A, Bt C.

4. With the same notation, the sum

m
l

. PA* + m^Ptf + m3 . PC*

is a minimum when P coincides with the mass-centre of three particles

ra^ raa , mj situate at A, B, (7.

5. Find for what values of x, y the ordinate of the surface

* = a? + y* 3axy
is stationary.

[The values are a, a, and 0, 0. The latter do not make z a maximum
or minimum.]

6. Prove that the ordinate of the surface

<?z ay* a?

is stationary, but not a maximum or minimum, when x = 0, y 0.

Sketch the contour-lines.

7. Find for what values of
a?, y the function

is stationary.

[There is a stationary value when x = 0, y = 0, and two minima
when x = ^/2, y = +

8. Prove that the function

has a minimum value when x = 0, y=Q, and a stationary value which is

neither a maximum nor a minimum when x= 0, y = l.

9. Prove that the ordinate of the surface

is in general stationary when x 0, y = 0, and examine whether it is a

maximum or minimum. Sketch the contour-lines in the several cases.

10. Find the stationary points of the function

(a?
- a2

)
2 + (a

3 - a2
) (y

2 - 62

) + (y*
- 6

2

)
2
,

and examine their nature.

Sketch the contour-lines of the function.
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11. If Xu o?2 >
xn be n positive quantities subject to the relation

xl + C2 + " + xn = const.,

their product is greatest when they are all equal.

Hence shew that the arithmetic mean of n positive quantities
exceeds their geometric mean unless they are all equal.

12. Prove that the rectangular parallelepiped of greatest volume
for a given surface is a cube.

13. Prove that the greatest rectangular parallelepiped which can
be inscribed in a given sphere is a cube.

EXAMPLES. LXVI.

(Change of Variable, &c.)

1. If x = sin 0, the equation

transforms into -^ + cty = 0.

2. If x1 =
4t, the equation

xdx

dy
transforms into t -s~ + -f- + y = 0.

at at

3. If oat? + 2hxy + 6y
2 + 2gx + 2fy + c = 0,

3a2
(ab-h*)y + af-gh

prove that p SL = \
'*

g- -\- ,

r (ab
- A2

)
x + bg

- hf

where p = dyjdx, q = cffy/cfce
2
,

r = d?y/dx*.

4. If
=/(|)

(

, du du A
prove that x + y ^ = 0,

das 8

5. If

prove that

+ = 4 (rf +f^r (* + y
2
)
+V
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6. If u=/(r),

where r = *J(x* + y
2

), prove that

S+S-^.
'

7. If Vj
2 stand for the operator 92

/9a;
2 + 82

/9y
2
, prove that

where r =J{(x
-

a)
2 + (y

-
/3)

2

}.

8. If w=/(
2 + 2/

2 + 22
),

prove that

9. H =/,
where r =

^/(ic
2 + y* + 2s

), prove that

&u d*u cPu
,,

. 2 ,, , x

^a + n + ^5 =/ M + -/ (
r
)-

9ar 9y
a oar r

10. If V2 stand for the operator 32/aar
J + 82/32/

2 + 32/3
9

, prove that

VV = ?, V2 - = 0,r r

where r =
./{(a;

-
a)

2 + (y
-

($f + (z- r)
2

}.

11. With the same meaning of V2
, prove that if

= 0, V*v = 0, V 2
w; = 0,

, du dv dw .
and + + = 0,

ox cy dz

then V 2

(xu + yv + zw) = 0.

12. If u, v be two functions of x, y, z satisfying the equations
= 0, V2

? = 0, and if v be a function of u, then v must be of the form
Au + B.

13. If x = r cos 0, y = r sin 0,

where r, are functions of t, prove that

.

-^ cos 6 + ~ sm = -^ - r
dP dt* dt*

de
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u = ~

du d2u

du /d*u 22 du\

r drj
'

dx
^ y

dy
~

d*u 3%

524

14. If

prove that

15. If

prove that

16. If

prove that

17.

verify that

18. If

prove that

19. If

prove that

20. If

prove that

21. Prove that if at a point on the curve

<j> (x, y)
= Q

we have
<f>x = 0, <f>y

= 0,

simultaneously, then two (real or imaginary) branches of the curve pass

through that point, whose directions are given by the quadratic

y nz =f (x mz),

dz dz

/ \
<

/ m ;2;

(a?
-

a) + (y - 8) =z y.' dx vy ^'
dy

c cosh cos
17, y = c sinh sin

17,

d'u &

Hence shew that the point is a node, a cusp, or an isolated point,

according as
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NUMERICAL TABLES

A. Squares of Numbers from 10 to 100.
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B 2. Square-Roots of Numbers from 10 to 100,
at Intervals of 1.
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E. Exponential and Hyperbolic Functions of Numbers
from to 2 '5, at Intervals of !.

X



INDEX
[The numerals refer to the pages.]

Accidental convergence, 10

Algebraic functions, continuity of, 22, 24
Amsler's planimeter, 240

Anchor-ring, 246, 256

Approximate integration, 257
Arc of a curve, formula for, 249, 250,

253

Archimedes, spiral of, 300, 308

Area, 201, 232

sign of, 235

swept over by a moving line, 239
Areas of plane curves, formulas for, 232,

237
mechanical measurement of, 240

Astroid, 303, 359

Bernoulli, lemniscate of, 310, 313
Binomial theorem, 471, 490

Bipolar coordinates, 319

Calculation of e, 78
of IT, 260, 462

Cardioid, 301, 367
Cartesian ovals, 320

Cassini, ovals of, 320

Catenary, 250, 290, 336, 339

parabolic, 387

Centrodes, 864

Change of variable, 517
in integration, 172, 217

Circle, perimeter of, 31

involute of, 300, 355
Circular Functions, 27, 28, 51, 56, 175
Clairaut's differential equation, 399

Complementary function, 391, 421, 429,
437

Concavity and convexity, 146

Cone, right circular, 248, 255, 265

Conjugate point, 285
Contact of curves, order of, 492
Continuous functions defined, 15

properties of, 16, 32
Continuous variation, 1

Contour lines, 65, 510

Convergence of infinite series, 5, 6, 463
essential and accidental, 10

Convergence of a definite integral, 207

Corrections, calculation of small, 109,
115

Cotes' method of approximate integra-

tion, 258
Crossed parallelogram, 315
Cubic curves, 285

Curvature, 333, 339, 342, 493, 517

Cusp-locus, 349

Cusps, circle of, 364

Cycloid, 294, 336, 351, 354, 361, 363,
364

Definite integral, see '

Integrals
'

Degree of a differential equation, 384
Derived Function, definition of, 46

geometrical meaning, 45

properties, 95, 98, 99, 101

Differential coefficients, 45, 64, 141

Differential Equations, 381

exact, 387

homogeneous, 389

integration by series, 469

linear, 391, 393
of first order and first degree, 384
of first order and higher degree, 398

of second order, 410, 429

simultaneous, 445

Differentials, 108, 115

Differentiation, 48, 50, 52, 53, 54, 57,

59,65
of a definite integral, 211

of power-series, 467

partial, see ' Partial differentiation
'

successive, 141

Discontinuity, 19

Displacement of a plane figure, 356, 364

Elimination of arbitrary constants, 381

Ellipse, 233, 239, 252, 312, 313, 336,

339, 341, 350, 354, 358, 365

Ellipsoid, 246, 266
of revolution, surface of, 257

Elliptic integrals, 253

Envelopes, 343, 347, 399, 513

Epicyclics, 304, 365

Epicycloid, 297, 336, 352, 361, 363, 364,
366

Epitrochoid, 300

Equations, theory of, 99, 149

Equiangular spiral, 307, 337
Even and odd functions, 79
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Evolute, 349, 353
Exact differential, condition for, 504
Exact differential equations, 387

Expansions by differential equations, 471

by Maclaurin's theorem, 481, 4 CJO

Exponential function, 72, 77

Function, definition of, 13

graphical representation of, 14

Functions, algebraic and transcendental,
22

implicit, 64

inverse, 29, 59

Geometrical representation of magni-
tudes, 2

Goniometric functions, 30, 59, 60, 61, 62
Gradient of a curve, 46

Graph of a function, 18

Gregory's series, 461

Guldin, eee 'Pappus*

Hart's linkage, 315

Homogeneous differential equations,
389, 443

Homogeneous functions, Euler's theo-

rem, 508

Hyperbola, 233, 312, 313

Hyperbolic functions, 79, 80, 81, 82

inverse, 88, 89

Hypocycloid, 298

Hypotrochoid, 300

Implicit functions, 64, 65, 116, 516
Infinite series, 5, 10
Infinitesimal geometry, 496

Infinitesimals, 39

Inflexion, points of, 146, 517
Instantaneous centre, 356, 360

Integrals, definite, 205, 207, 210, 212,
221

approximate calculation of, 257

Integrals, multiple, 269

Integration, 161

by parts, 178

by substitution, 172, 175, 177
of irrational functions, 170, 189
of power-series, 468
of rational fractions, 166, 183, 185,

186
of trigonometrical functions, 175, 218

Interpolation by proportional parts, 153
Intrinsic equation of a curve, 335
Inverse functions, 29, 59

Inversion, 313, 314

Involutes, 354

Leibnitz' theorem, 143
Lemniscate of Bernoulli, 310, 321

, 302, 309, 383

Limit, upper and lower, of an assem-

blage, 2, 30

Limiting values, 7, 34, 36, 84
Linear differential equations of first

order, 391, 393
of second order, 420
with constant coefficients, 428

Line-roulette, 363

Lissaj ous' curves, 292

Logarithmic differentiation, 87

Logarithmic Function, 83, 84, 88

Logarithmic series, 458, 491

Maclaurin's Theorem, 480, 484, 488
mean centre, 263

Magnetic curves, 322
Maxima and minima, 101, 106, 107, 148,

494, 508, 511
Mean values, 261
Mean-value theorems, 111, 210
Modulus (in logarithms), 84

Multiple integrals, 269

Multiple roots of equations, 149

Newton's treatment of curvature, 339

Node, 285

Node-locus, 349

Normal, equation of, 121

Order of a differential equation, 381

Orthogonal trajectories, 395

Osculating circle, 342

Pappus, theorems of, 266

Parabola, 202, 234, 250, 264, 312, 336,

339, 341, 343, 349

Paraboloid, 245, 246, 265
Parallel curves, 354
Partial derivatives, 64, 501
Partial differentiation, commutative pro-

perty of, 502, 506
Partial Fractions, 167, 183, 185, 186
Particular integral of a linear differential

equation, 383, 391, 421, 431, 440
Peauoellier's linkage, 314
Pedal curves, 315

Pericycloid, 297
Perimeter of a circle, 31

Planimeter, 240

Point-roulette, 359, 361, 440

Polars, reciprocal, 315

Power-series, continuity of, 466
differentiation of, 467

integration of, 468
Primitive of a differential equation,

383

Prismoid, volume of, 248

Proportional parts, 153

Quadrature, approximate, 257
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Eational fractions, graphs of, 24

integration of, 166, 183
Eational integral functions, 22

Eeciprocal polars, 315

Eeciprocal spiral, 308
Eectification of curves, 249, 250, 253

of evolutes, 353

Seduction, formulas of, 180, 181, 218
Eemainder in Taylor's and Maclaurin's

Theorems, 484, 489
Eolle's theorem, 99
Boots of algebraic equations, separation

of, 99

Eoulettes, 359, 361, 363

Second derivative, 141

geometrical meaning of, 149
Semi-cubical parabola, 287

Separation of roots of an algebraic

equation, 99
of variables in a differential equation,
385

Sign of an area, 235

Simpson's rules, 249, 260
Simultaneous differential equations, 445
Sin x, expansion of, 470
Sin"1

x, expansion of, 468

Singular solutions, 400

Sphere, surface of, 256
volume of, 245

Spherical segment, volume of, 245

Spiral, equiangular, 307, 337
of Archimedes, 300, 308

reciprocal, 308

Stationary point, 335

Stationary tangent, 146, 335

Stationary values of functions, 102, 508
511

Subnormal, 118

Subtangent, 118
Successive differentiation, 141, 501
Surface of revolution, area of, 254

mean centre of, 264

Tangent to a curve, 45, 121

Tangential polar equation, 311

Taylor's Theorem, 152, 480
extension of, 505

Tetrahedron, volume of a, 244

Theory of equations, 99, 149
Total variation of a function, 113, 506
Tractrix, 292

Trajectories, orthogonal, 395
Transcendental functions, 22

Trochoid, 296

Variable, change of, in integration, 172,
177

Variable, dependent and independent,
13

Variation, continuous, 1, 2

Volumes of solids, 242, 243, 245, 270
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