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Vlll CORRECTIONS.

Pagt line for read

119 (543) —— + — .

121 5 1 i
125 9 e2z^g-2, e2*_2^e-2*.
126 18 or F' T or F' T.
127 —1 P' p,
" 11 Add^ or are supplements of each other (fig. 2).

128 2 and 3 pi
p.

129 (574) e e".

134 (612) t V.

(618) ± d=^.
136 11 are is.

137 J 3 (635) (630).

138 (643) fl" and y'/ ^^ and i^^ .

" (648) f- fl
139 (649) If" if^.

" (652) f- jfl
140 (658) (618) (658).

" 9 fig. 5 fig. 6."19 X V-
143 (680) 2e 4 e.

" 13 and 15 F' F".

148 2 /;p /;.
149 2 tangent perpendicular.

m/«Qo\ <P sin. /9 cot. a
(^^^) I gVsin.^cot.a.

" (735) (p (p cot. a.

152 (738) & (739) (p ip cot. a.

154 (751) X'o Xq'.

155 24 time line.

164 (789) 1 + e2 COS. 2 a cot.^ «.

" (792) l + e^cos. 2 a cot.^ «.

170 3 angular annular.

274 (24 e) Dtrp=q + lDtX Dtp = Q-\-iDt x.



B O O K 1 1 1

.

CALCULUS OF IMAGINARY aUANTITIES.





BOOK III.

CALCULUS OF IMAGINARY QUANTITIES.

CHAPTER I.

MODULUS AND ARGUMENT.

1. The general form^ to which geometers attempt

to reduce all imaginary expressions, is that of a bino-

mial, in lohich one term is real and the other term' is

the product of a real factor by the imagiiiary factor

v-i.

a. Thus, if A denote the real term, and B the real factor of

the imaginary term, this binomial type of imaginary quanti-

ties is

A + BV-l- (1)

b. As this expression is imaginary, all operations, such as

addition, multiplication, &c., performed upon it or by it, are

wholly devoid of their usual meaning, and may admit of any

conventional interpretation. But, then, rules must be adopted

for performing the operations which shall be consistent with

this interpretation ; or, reciprocally, the rules for performing

the operations may be assumed at pleasure, provided that a



IMAGINARY QUANTITIES. [b. III. CH. I.

Values of modulus and arffument.

mode of interpreting the operations and the results is adopted,

which is consistent witli the rules. Now, if we take

m^ = — 1, that is, m ^i s/— 1

;

(2)

(1) becomes A -\- B ?n; (3)

and all algebraical operations may be performed according to

the usual rules upon (3), without any regard to the imaginary

value of m, provided that the results are interpreted consist-

ently with this imaginary value of w, and the real value of m^,

which is — 1.

2. The modulus of an imaginary expression of the

form (1) is the positive square root of the sum of the

squares of its real term^ and of the real factor of its

imaginary term-.

The argument of this imaginary expression is the

angle, whose tangent is equal to the quotient of the

real factor of its itnaginary term divided by the real

terin.

Thus, if R denotes the modulus of (1), and ^ its argument,

we have

R = S/{A2 + B^), (4)

B
~A'

tang. ^ = —

.

(5)

3. Corollary. If A -and B are represented by the sides of

a right triangle, R is the hypothenuse, and ^ is the angle op-

posite to B^ Hence, by trigonometry,

A=^ R cos. &, (6)

B=zR sin. ^
; (7)



«§> 6.] MODULUS AND ARGUMENT.

Argument of any real quantity.

and the value of (1) becomes

R (cos. 6 + sin. ^. v'— 1). (8)

4. Corollary. Since two angles, which differ by two right

angles, have the same tangent, there are two values of fl less

than four right angles, which satisfy (5) ; and of these two

values, that one is to be selected which agrees, in the signs

of its sine and cosine, with (6) and (7). Any angle, which

differs from the value of & thus found by four right angles, or

by any multiple of four right angles, may also be taken as a

value of <5. Thus, if q^ is this least positive value of 6, the

general value of 6 is

5 = ^0 ± 2 n.^, (9)

in which n is any integer, and re is the ratio of the circumfer-

ence to the diameter.

5. Corollary. When the imaginary part of (1) vanishes, we
have

.B := 0, sin. ^ = 0; (10)

so that ^Q =: 0, a=:d=2w7r, COS. ^ = 1
; (11)

or &o^n, 3 = zfc (2 W-(- 1) TT, COS. 5 =: — 1. (12)

and (11) corresponds to the case of a real positive

quantity
J (12) to that of a real negative quantity.

6. Corollary. When the real term of (1) vanishes,

we have

^ = 0, COS. 6 = 0, ^0 = J TT or = J TT, (13)

whence

fl = zhj^±2n^ = ±(2 7i±})^, sin,5 = ±1. (14)
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Equal imaginary quantities.

7. Theorem. When the quantity represented by (1)

vanishes, the real and the imaginary part, and the

moduhis, are each equal to zero, while the argument is

indeterminate.

Proof. For if

^4-jBV — 1 = 0, (15)

we have ^ = — JB \/ — 1
; (16)

that is, a real quantity equal to an imaginary one, which is

impossible, and (16) cannot be satisfied, unless we have

^ = 0, jB^O; (17)

whence, by (4), R — Q, (18)

and, by (5), & is indeterminate.

8. Theorem. When hvo imaginary quantities are

equals their real and imaginary parts are separately

equal, and they have the same moduhis and argument.

Proof. For the equation

A+B^— l = A' +BW— ^, (19)

gives, by transposition,

A — A' -[- {B — B') s^ — \ = ^. (20)

Hence, by the preceding theorem, «

A — A' = (), B — B'=:Oy

or, A=:A', B = B; (21)

whence, by (4 and 5),

R = R', & = &'. (22)
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Conjugate quantities. Imaginary product.

9. Two imaginary quantities are conjugate to each

other, when they have the same modulus, and when
their arguments only differ in being of contrary signs.

Thus the conjugate of (8) is

R [cos. (— 6) 4- sin. (— a) .^_ 1] ; (23)

or, by trigonometry,

i? (cos. ^ — sin. 5.v/— 1). (24)

10. Corollary. Two imaginary quantities, which are

conjugate to each other, differ only in the sign which
precedes the imaginary part.

Thus A 4- Bs^— 1 and A —Bs/— 1 are, by (8 and

24), conjugate to each other.

11. Theorem. The modulus of the product of sev-

eral imaginary quantities is equal to the product of the

moduli of the factors, and the argument of the product

is equal to the sum of the arguments of the factors.

Proof, a. When there are two factors

R (cos. & + sin. a.V— 1) and 7J'(cos. 6'4-sin.5'.\/— 1), (25)

the product is

R R' [cos. 6 cos. &'— sin. q sin. S']

+ (sin. & COS. 6' 4" ^^^- ^' COS. &) \/— 1, (26)

which, by (26 and 28 of Trig,), becomes

R R [cos. (^ + tv) -f sin. {d+ 6') . V— 1] ; (27)

so that its modulus is the product of the two moduli, and its

argument is the sum of the two arguments.
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Imaginary power.

h. A third factor miglit be multiplied by (27) in the same

way, that is, by multiplying its modulus by the new modulus,

and adding to its argument the new argument ; and this pro-

cess might be extended to any number of factors.

12. Corollary. If the factors are all equal, the pro-

duct becomes a power ; whence the modulus of a posi-

tive integral power of an imaginary quantity is the

same power of its modulus, and the argument of the

power is the product of its argument hy the exponent of

the power.

Thus

[/2(cos.6-|-sin.aV—l)]'^=-K"(cos.W5-fsin.w5.V—1)-(28)

13. Corollary. When jR = 1, (29)

(28) becomes

(cos. 6 + sin. a. s/— 1)" i:r (cos. n &-\- sin. n 6. y'— 1). (30)

Reversing the sign of ^

(cos.a— sin.a.V— l)'^= (cos. n a— sm.n^.^/— 1). (31)

14. Corollary, Half the sum of (30 and 31) is

cos.n a=J(cos.a-|-sin.aV—-1 )"+ J(cos. 5—sin.a. /y/— 1 )n. (32)

Half the difference of (30 and 31) is

sin. w a. y'— 1 = J (cos. a. -|- sin. ^. \f— 1)"

— J (cos. d —sin. 5. V — 1)" (33)
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Product of two conjugate factors. Imaginary quotient.

15. Corollary. By development, (32) becomes

nln— 1

)

_ . ^
cos.w<5 = COS." (3 :j

—

^
—- COS.™

—
~(5 sin. 2 d

,
7i(n— l)(w— 2)(w— 3) . . ^

_[_ _i_^

—

11 TT^-i cos."-4 & sin.* d — &c. (34)

By developing and dividing by \/ — 1, (33) becomes

sin. w ^ zz: 71 COS."—^ ^ sin. ^

n(7^_l) (n— 2)

1 . 2 . 3
cos."-3(3 sin.3(3 -}-&c. (35)

16. Corollary. The reverse of ^^^ 12 is, that the

modulus of a positive integral root of an imaginary

quantity is the same root of its modulus, and the argu-

ment of the root is the quotient of its argument divided

by the exponent of the root ; that is, since roots are

fractional powers, the rule of § 12 extends to the case of

positive fractional powers.

17. Corollary. The product of two conjugate factors

is equal to the square of the modulus.

For, in this case, (23 and 27) give

6 + ^' = ^ — a=zO, RR'=R2. (36)

18. Corollary. The reverse of ^ 11 is, that the mo-

dulus of a quotient is equal to the quotient of the Tnodu-

lus of the dividend divided by that of the divisor ^ and

the argument of the quotient is equal to the argument

of the dividend diminished by that of the divisor.
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Imaginary power.

Thus

R'{cosJ'-}-smJ'.\/—\)

RicosJ-{-s'in.6.\/—l)

= ^'[cos.(^'— ^)+ sin.(5'—^)V— 1]. (37)

19. Corollauj. When ^' = 0, and R' — \
\ (38)

(37) becomes

z=-i [cos.(-^)+ sin.(-a)V-l],
jR(cosJ+ sin.5V— 1 ^
or

[i2(cos.^+sin.^.V—l)]-^=-R"^[cos.(—^)+sm.(—5)V—1]

— i2-i(cos.5—sin.^V—1); (39)

and raising to the wth power, by means of (30),

[jR(cos.^4-sin.^V—l)]~"=^~"[cos.(-n^)+sin.(-w5)V—1]

= K-™(cos.w^—sin.w^^/—1); (40)

that is, the rule of <§> 12 may he extended to the case of

negative powers.

20. Corollary. The rule of§ 12 may, then, be ex-

tended, by § 1, to all powers, real or imaginary.

21. Problem. To find the modulus and argumerrt of

the sum or difference of several imaginary quantities.

Solution. Let the given sum or difference be

r(cos.^4-sin.^V—l)i:r'(cos.^'+sin.^'.\/—1)± &c., (41)

and let R be its modulus, and © its argument; we have by

(4 and 5) and by (9 and 29 of Trig.)
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Imaginary sura or difterence.

122= (r COS. ^±r'cos. a'i &c.)2-j- (r sin. ^± r' sin. 6'zh &c.)2

_ ^2 _|. r'2 + &,c. zb 2 rr' COS. (^— ^') ± &c., (42)

r sin. 6 rt r' sin. d' r±z ^c. . ^ ^
tan. =: —; T—-—J

—

(43)
r cos. 6 i r cos. 5' i &/C. '

22. Corollary. Since every cosine is less than unity, (42)

gives R^ < r2 -|- r'^ -|- &,c. -\-2rr'-\- &c.,

or i22 < (;. _|_ ,./ ^ &c.)2,

*or JR < r +r' + &,c.; (44)

that is, the modulus of the sum or difference of several

imaginary quantities is less than the sum of their

moduli.

23. Corollary. When there are only two terms in (41),

(42) becomes

2J2 -_ ^2 _j. y./2
_t- 2 r r' cos. (a — ^')

; (45)

and, therefore, R^ > r^ -{- r'^ —2r r',

or R >r — r'; (46)

that is, the modulus of the sum or difference of two
imaginary quantities is greater than the difference of

their moduli.



12 IMAGINARY QUANTITIES. [b. III. CH. II.

Imaginary infinitesimal.

CHAPTER II.

IMAGINARY INFINITESIMALS.

24. An imaginary infinitesimal is an imaginary quan-

tity, whose modulus is an infinitesimal.

The order of an im^aginary infinitesimal is the same

with that of its modulus.

25. Corollary. It follows from Chapter II. of the

Differential Calculus, and the preceding Chapter, that

all the propositions, lohich have hitherto been investi-

gated respecting real infinitesimals^ may he extended to

imaginary infinitesimals.
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Roots of a binomial equation.

(48)

CHAPTER III.

IMAGINARY ROOTS OF EQ,TTATIONS.

26. Problem. To solve a binomial equation, and re-

duce all its imaginarij roots to the form of% 1.

Solution. Let the equation be

Ax''— M, (47)

in which A and 31 are real or imaginary, and a a positive

integer. When (47) is divided by A by means of ^ 18, it is

reduced to the form

X'^ -ZZZ 777,

in which m is of the form of ^ 1. Let then

m z=z r (cos. 6 -\- sin. 6. \/— 1), (49)

or x« = r (cos. 6 + s'"- ^- V— !)• (50)

The ath root of (50) is, by § 16,

^
^ A

x=z/v/r. (cos. {-sin. — .\/— 1). (51)
a a ' ^ '

27. Scliolium. Since has, by (9), an infinity of values,

(51) would at first sight appear to have a like infinity of values.

But, by (9),

& fl„ 2 7Zrr— = — dt , (52)a a a ^ '
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Number of roots of a binomial equation.

whence the values of x are identical, when they correspond to

values of <^, for which the difference of the values of n is equal

to a, or is some multiple of a. Now, by subtracting from any

value of n the greatest multiple of a contained in it, a remain-

der is obtained, which is less than a. The number of differ-

ent values of x is, therefore, the same with the number of posi-

tive integers (zero included) which are less than a ; that is, the

number of values of x or the number of roots of equation (48)

is just equal to a.

28. Corollary. When m is real and positivCj (11)

gives

«, / 2n-n: . 2nTv \
X z= \/m i cos. zb sin. —— .V — 1 I > (5^)

in which the double sign renders it unnecessary to no-

tice those values of n which exceed the half of a.

29. Corollary. The value of n

n = 0, (54)

reduces (53) to its real positive root

a

X z=z s/ m, (55)

30. Corollary. When a is even in (53), the value of n

nr=.\a,
'

(56)

2w^ .

gives = ^> V^'y

a

X =. — \/m. (58)
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Every equation has a root.

31. Corollary. When in is real and negative, (12)

gives

«^ / 2/1+ 1 . 2n+ l , A ,^^^zi=V

—

wifcos. TTitsin. >T.\/—II, (o9)

in which the double sign renders it unnecessary to no-

tice those vaUies of n which exceed the half of a.

32. Corollary. When a is odd, the value of n

—1
n = %^. (60)

2n+ l '

,^,,
gives Tc ^::^ n^ (61

)

X z=: — \/

—

m. (62)

33. Theorem. Every equation has at least one real

root or one imaginary root of the form (1).

Proof. Let all the terms of the equation be transposed to

its first member, which reduces it to the form

/.x = 0. (63)

Let now x^ be any real or imaginary value of x, for which

the value of this first member neither vanishes, nor is infinite,

and let h be an infinitesimal ; let also dl.f.x^ be the first dif-

ferential coefficient o{ f.x^ which does not vanish ; and (533

of Vol. I.) gives

f{x^+h) =r/.x, + ^^ 3 ^^

d:.f.x^' (64)
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Equations whicli have finite roots.

Again, let i be «in assumed real infinitesimal, and let h be

determined to satisfy the assumed binomial equation

r^r

—

- '^"J.^o = - if^x^. (05)

This value of h, being substituted in (G4), gives

/.(/, +70 =/.x, - z/:r, = (l-O/.^o ; (66)

so that if r is the modulus of/.a-Q, that of/.(.TQ + /O ^^> ^7

§11, (1

—

i)r, and therefore less than that o^ f.x^. The least

possible modulus of y.a; is then less than r, unless r is zero
;

this least modulus must then be zero, and the corresponding

value of X is a root of the equation (63).

34. Scholiiun. The preceding argument does not

exclude infinity from being the root of the given equa-

tion, so that the following is a convenient statement of

the above theorem
;

Every equation has at least one finite root of the form

(1), wheiiy after it is reduced to the form (63), it does

not vanish for an infinite value of tlie variable.

35. Corollary. If the first member of (63) is a polynomial

of the form

xn -]_ a 2-"-i -\- h 3;"-2 + &c., (67)

and if x' is a root of the equation, this polynomial must be

divisible by x— x' ] and the quotient must be a polynomial of

the (/^— l)st degree, which must be divisible by a similar

factor X — x", and so on.
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Tlie conjugate of a real function.

Hence (67) must he the continued product of n dif-

ferent factors of the form {.V— x^); that is, the equa-

tion

xnj^a x«-i + h 2;"-2
-f &,c. = (68)

must have n roots of the form (1), whether a, b, Sf'c. be

real or imaginary,

36. A real function is one, which has real values for

all real values of ihc variable, and has not imaginary

values, unless the variable is imaginary.

37. Theorem. The conjugate of a real function is the

same function of the conjugate of the variable ; or,

algebraically, if

P + QV-1=/.(P + 2V-1), (C9)

where /. denotes a real function, then

P-Qs/-\^f.{p-qs^-\). (70)

Proof. The function, which is the second member of (69),

may be developed and arranged according to powers of \/— 1.

Let, then, the aggregate of all the terms which are independ-

ent of v'— 1) 'if'd of those which are multiplied by even

powers of \/— 1 be denoted by P ; while the aggregate of

all those terms which are multiplied by odd powers of \/— 1,

is denoted by Q'. The value of P is real, and remains un-

changed by changing v'— 1 ^^ — \/— 1, while that of Q'

is reversed ; that is, the value of the function is changed

from P + Q' to P — Q'. (71)

2*



18 IMAGINARY QUANTITIES. [b. III. CH. III.

Every real equation has at least two roots.

But the quotient of Q' divided by \/— 1, containing only

even powers of \/— 1, is a real quantity, which may be de-

noted by Q, that is,

Q'=zQx/— 1, (72)

P+Q' = P+QV— 1; (73)

so that by reversing the sign of \/— 1, (69) is changed to

(70).

38. Corollary, When Q = 0, (74)

(69 and 70) become

-P=/-(i' + 2V-i)=/.(i'-sV-i); (75)

that is, every real value of a real function corresponds

to two different values of the variable, which are con-

jugate to each other.

39. Corollary. When P = 0, (76)

(75) becomes

0=/. (p + 5\/-i)=/. (p-?Vi); (77)

that is, ivhen the function ^ which is the first meniher

of (63), is real^ tlie conjugate of every imaginary root

is also a root of the equation.

40. Corollary, If x' is a root of the equation (68), when
a, fc, &c. are real, and if x" is the conjugate of x' , x" is also

a root of this equation, and the first member is divisible by

the product

(z — X') (x— x") — x^— {x' + x'') X + x' x". (78)
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Number of real factors of a real polynomial.

If r is the modulus of z' and & its argument, (8, 24, and 36)

give

%' -\-x" — "ir COS. 6, x' x" = r2
; (79)

whence (78) becomes the real factor

x2 — 2rx cos. 6 + r2 ; (80)

so that «???/ real polynomial of the form (67) is the con-

tinued product of as many real factors of theform x— x'

as the equation (68) has real roots, multiplied by the co7i-

tinued product of half as many real quadratic factors

of the form (80) as (68) has imaginary roots.

41. Examples.

1. Decompose z'^ — h"^ into a continued product of real

factors of the tirst and second degree.

Solution. The equation

a;7 — 67 _ 0, or x^ = b^

,

gives in (48) m = b"^ , = 7;

whence (53) becomes

X z=z b (cos. f n TV :iz sin. f n re . a^— 1 ) j

which becomes, by putting saccessively for Ji all integers less

than half of 7,

X z=z b,

X =1 b (cos. f 7r i sin. f tt . \/— 1),

X z=z b (cos.
f-
^ rt sin. f ^ . \/— 1),

X z=: b (cos. f n zh sin. f ^ . \/— 1 )

;
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Decomposition of a function into real factors.

SO that, by (SO), the continued product is

X' —b' ={x-^b) {z2—2bx COS. f .T-f&2)

(x2_2 6 2;cos. f -f + 62) {x2—2bxcos.^^-\-b2).

2. Decompose x^
-f~

^* ^^^^ ^ product of real factors of the

first and second decree.

Solution. The equation

x^ -{- b^ =1 0, or a-4 = —. 6*,

gives in (48)

?« = — b^, — ?n =z b^, a =z ^;

whence (59) becomes

x = b (cos. i (2 w -]- 1 ) TT i sin. ^ (2 71+ 1 ) rr . V— 1 ) J

which becomes, by putting successively for 7i all integers less

than 2,

X= b{c0S.irt-^sm.lrc,^—l)= b(h\/2:hiV^'V—l)y

a:=6(cos.f ^±sin.f:T.\/— 1) = ^(—W-=FiV-V—1);

so that, by (80), the continued product is

3c4_|_54_(3;2_26a;cos.-i-7r-|-62)(x2_263;cos.j7r+ 62)

_ (3;2—^ 2 . 6 X + 62) (3;2 _|_ ^2 . fe X+ 62).

3. Decompose x^ — 6* into a continued product of real

factors of the first and second degree,

Ans. (x — 6) (x + 6) (x2 + 62).

4. Decompose x^ + 6^ into a continued product of real

factors of the first and second degree.

Ans. (x+6)(x2—26xcos.|7i:+62)(x2_26a;cos.f;T+ 62).
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Decomposition into real factors.

5. Decompose x^ — h^ into a continued product of real

factors of the first and second decree.

Arts, {x—b) {x+b) (x2_|_5a;_j_52) (^x^— bx + b^).

6. Decompose x^ -\- b^ into a continued product of real

factors of the first and second deorree.

Ans. (22-1-^3.6.2;+ 62) (a;2-)-62) {z2— ^S.bx-{-b2).
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Imaginary power.

CHAPTER IV.

IMAGINARY EXPONENTIAL AND LOGARITHMIC FUNCTIONS.

42. Problem, To reduce an imaginary power of a

real quantity to the form (1).

Solution. Let the exponent of the power be ^-[- B a^— 1,

and let R be the modulus and the argument of this power

of the real quantity a, that is, let

a-^+^v-i — jR(cos. + sin. 0.^—1). (81)

The infinitesimal power i of this equation is by (28)

«(^+5v-i) — Ri (cos. i + sin. io.^—l). (82)

Hence by (418 of Vol. I. and § 22 of Plane Trig.)

l-^i{A + B\/—l)\og.a—{l+ i\og.R){l+ i0^/—l)
— l+i{\og.R-{-0\/—l), (83)

Hence, by <5> 8, and using

e = the base of the Neperian logarithms, (84)

log. R — A log. a z= log. a-^, R — a-^
, (85)

B log. a z= = log. a^, aB[z= c©; (86)

which, substituted in (81), give

a^-^B^-i — a-A (cos. B log. a + sin. B log. a . \/—\). (87)
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Imaginary logarithm.

43. CuroUarj/. When ^ == 0,

(87) becomes

a^v/-i — COS. B log. a + sin. B log. a . \/— 1. (88)

44. Corollanj. When a =: e,

(87 and 88) become

e-^+B^-i — e-^[cos.B + ^m.B,s/—\), (89)

gB./-i _ eos. B + sin. B . V— 1. (90)

45. Corollary. Reversing the sign of B, (89 and 90) be-

come
^A-B^f-i — e.^(cos. B — sin. S . \/— 1), (91)

e-5v-i z= cos. jB. — sin. ^.V— 1- (92)

46. Problem. To reduce the logarithm of an imagi-

nary quantity to the form (1).

Solution. Let r be the modulus and <3 the argument of the

imaginary quantity, and (90) gives

r{Q.os.&-\-s\n.&./^—\) = re(^^-^] (93)

the logarithm of which is

log. [r (cos. (3 -|- sin. 6 . /y/—
1 )] =: log. r -\- log. c^

-^—"^

=:log. r+ 6V— 1. (94)

47. Corollary. By (4, 5, and 94)

log.(^+i?V—l)=logV(^2_[_2J2)_|_tan.[-i]^V—

1

= J log. (^2 _j_S2 )_ptan.[-i]^.V— 1 ; (95)
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Number of the logarithms of a number.

and as there is an infinity of values of

a =1 tan.[-i] —

,

A

every quantity^ real or hnaginary^ has an infinity of

logarithms
J of w Jlich there is never more than one real

logaritlim^ and that^ hy ^ 5, only ivhen the quantity is

real and positive.

48. Corollary, By § 5, when A is positive, and

B — Q,

(95) becomes

log. A = log. A^'Znn s/— 1, (96)

in which log. A of the second member is the real value of this

logarithm.

49. Corollary. By § 5, when A is negative and

5 = 0,

(95) becomes

log. A — log. (_- ,4) ± (2 n + 1) ^V— 1. (07)

50. Examples.

1. What is the logarithm of J\/2(l +\/— 1)?

2. What is the logarithm of \/3 + \/— 1 ?

Ans. log 2 + (^ zh 2 n) 71^— 1.
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Sine and cosine of imaginary angles.

CHAPTER V.

IMAGINARY CIRCULAR FUNCTIONS.

51. Problem. To reduce the sine and cosine of an
imaginary angle to the form ( I).

Solution, a. Let the angle be B /s/— 1, which being sub-

Btituted for B in (90 and 9^), gives

e-B — COS. B V— I + sin. B sf— 1 . V— 1, (98)

e^ = COS. 2J^/—
1 — sin .BV— 1 . V— 1- (99)

One half of the sum of (98 and 99) is

COS. Bs/—\ — l{c^-\- e-B), (100)

One half of the difference of (98 and 99), multiplied bj

iV— 1, is

sin. ^V— 1 = i{e^ — e-^)\/— 1. (101)

b. When the angle is A -{- B\/—}, (100 and 101) give

Bin,(^-f"^V'— l) = sin.^cos. B/v/— 1 -f-cos. A s\n.B\/—

1

= ^sin.4(e^-[-e-^) + icos..4(e«— e-^)>s/— I
; (102)

eos.( A-\-B\/— I )= cos. A cos. B\/— I— sin. ^4 sin. By/—

1

= icos.A(e^+ e-^)— is\iuA(e^—e-^)^^l. (103)

3
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The imaginary angle, whose sine exceeds unity.

52. Problem. To reduce the imaginary angle, the

absolute value of whose sine is greater than unity, to

the form (I).

Solution. Let the given sine of the angle be db (1 + «),

and let the required angle he A -{- B \/— 1 ; it is evident

from (102) that, when the sine of the angle is real,

cos.^(e^ — e-^') = 0; (104)

that is, either e^ = c-^, (105)

whence e^^ = 1, 2 B = 0, i5 = ; (106)

in which case the given angle is real, and the absolute value

of its sine cannot exceed unity
;

or cos. J = 0, A -=znn^ (107)

sin. yl = =b 1, (108)

whence, by (102 and 103), (109)

sin.(^+ /^V— l)= sin.(7i7r+SV— 1)

=:iM'^^+ ^-^) = i(l+«), (110)

COS.(^+ i^\/—l)=:C0S.(«7r4-i?V— 1)

^zp^(e^— e-^)x/—

1

_zp^(—.2a—«2)z==Fv/(2a+a2)V— 1. (HI)

The sum of (HO), and (111) multiplied by \/— I, is

c^ =: 1 + « ± V (2 « + a^), (112)

whence

JB = log. [I +fl±\/(2fl + fl2)]

= i log. [1 + a+ \/(2a + a^)l (113)

and the angle is

n^ d= log. [I + a+\/(2a + «2)].v'— 1. (114)
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Imaginary circular functions.

53. Examples.

1. Reduce tang. {A-\- B \/— 1) to the form (I).

2 sin. 2^ (e2^— 6-2^)./—

1

^'^^'
^5_|_e-25+2 COS. 2

^
"^ c2^+ e-2^+ 2 cos.24*

^^^^^

2. Reduce tang. S\/—1 to the form (1).

3. Reduce tang, f— ^] B a^/— 1 to the form (1).

Ans. When B is absolutely less than unity, it is

±w^+ J[log.(l+^)— log. (1— J5)].V— 1. (117)

When B is positive and greater than 1, it is

±(n+J).^+ Hlog.(S+l)-log.(^-l)].x/-l. (118)

When B is negative and less than — 1, it is

± {n+ih+i[\og.-{l+B)-\og.(l-B)W-l' (119)

When S := =i= I, it is

^drOD.V— 1. (120)

54. Equations (100 and 101) have suggested a new form of

notation of great practical value, and for which tables have

been constructed, similar to the common trigonometric tables.

It consists in representing — \/

—

I . sin. B \/— 1 and

COS. B \/— 1 by Sin,^ and Cos. ^, which only differ in

their initial capital letters from the common trigonometric no-
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Potential functions.

tatioii ; this notation may also be extended to the other trigo-

nometric functions. These new functions are called potential

functions. We have, then,

fi- -r, , , . ^ # , sin. Bx/—

1

= i{e^-e-^), (121)

Cos.B=icos,Bx/—l =i{eB + e-B)^ (122)

-„ „ Sin. 5 inner. Ba^—

1

55. Corollary. The differentiation of (121 - 123) gives

d,. Sin. 5 = J (e^ + e-B) — Cos. B, (124)

rf,. Cos. J5 := 4 (e^ — e-^) — Sin. ^, (125)

«//ran. jB z= ^7^—, = 7T-V^= Sec.2J5. (126)' C0S.2^V—

1

C0S.25 ^ '

56. Examples.

Demonstrate the following equations.

1. C0S.2 B — Sin.2 B = 1. (127)

Solution. By (121 and 122)

C0S.2 B = 1 (c25 + 2 + C-2^)

Sin.2 JB =: ^ (e25 __ 2 _|_ g-sB)

Hence Cos.2 ^ _ sin.2 ^ — 1.

2. Sin. {BdtiB') = S\n.B Cos.B'± Cos.B Sin. B' ( 128)

3. Cos.(JB± JB') = Cos. B Cos.^'i Sin.B Sin. 5' (129)

4. Sin.(B+ JB')+ Sin. {B—B')= 2 Sin.£ Cos.^' (130)
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Potential functions.

5. Sin.{B+ B')— Sm.{B—B') — 2Cos,BSm,B' (131)

6. Cos.{B-{-B')+ Cos.(B—B')= '2Cos.BCos.B' (132)

7. Cos.{B+ B')—Co^B—B')= 2 Sin.^ Sin.J3' (133)

Sin. ^ + Sin.^- _ Tang. Hg + ^0
f.^..

' Sin. ^ — ^m.B' ~ Tang. ^ (B — B) ^ '

Cos 7? Cos Tl'

^-
Co:.B+ Co:.B-

= Tan.i(iJ+B')Tan.J(B-B') (135)

10. Sin. 2B z=2 Sin. B Cos. 5 (136)

11. Cos. 2 5 = Cos.2 J5 + Sin.25 (137)

z= 1 + 2 Sin.2 B
= 2 Cos.2 B — 1

12. Sin. ^jB=: x/[|(Cos. 2 5 — 1)] (138)

13. Cos.^B = ^[^{Cos.2B + l)] (139)

t4 rn . ^ , / Cos. 2 5 — 1 \
14. Ta„g.JB = v(c„i:2^+l) (140)

15. Ta„g.(iJ±B')=. 5^^:^-^^^, (141)
1 zh 1 ang jB 1 ang. B' ^ '

16. Tang. 2B= ^
. (142)14- 1 ang. 25 ^ '

17. d^.SinS-^}z= {l + z^)-i = -^^±--. (143)

Solution. Let 2: == Sin. 5, or jB = Sin.[-i] z

Then by (124 and 127)

ef,.^.x = Cos.jB = -v/(l + Sin.2 5) = ^(i -j. ^2)

3*
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Potential functions.

and by (Vol. I. 566)

d,. Sin.[-i] X := 4, B =
dcB'^ \/(l+^2)

18. rf..C03.[-i]x= (.^-lH:zz ^^J_^
- (144)

19. J,.Tang.[-i]x=-j-^. (145)

20. Sin. X = X + ^^-^ + --^^^^ + &c. (146)

21. Cos. X = 1 + -- + :^^^-^-^ + &c. (147)
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Stern's method of solving numerical equations.

CHAPTER VI.

REAL ROOTS OF NUMERICAL EQUATIONS.

57. While the imaginary roots of equations are of

great subsidiary value in mathematical investigations,

and frequently admit of curious and interesting inter-

pretations in physical inquiries, real roots are the prima-

ry objects of attention, and methods of determining

their numerical values are exceedingly important in

practice. Ster7i^s method is the simplest which has yet

been published, and is of almost universal application.

58. If the values of a given function and of its suc-

cessive differential coefficients, as far as the ?ah, are

found for a given value a of the variable
; and if the

successive signs of these values are placed after each

other, the row of signs thus formed is, in this chapter,

called the nth row of signs (a), or simply the nth row
(a), or the row (a) ; any pair of successive signs in this

row is called a permanence^ when the signs are alike,

and a variation, when the signs are unlike.

59. Theorem. If a function and its differential co-

efficients inferior to the nVa all vanish, but the ?/th does

not vanish, for a value a of the variable, the nth. row
of signs (a + i)j * being an infinitesimal, consists
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Signs of vanishing functions.— 1 ^—

-

wholly of permanences, while the nih row (a— i) con-

sists wholly of variations.

Proof. It follows from (Vol. I. 533), that if/, x is the giv-

en function

/• («+ = Y^—;; ''- J"-"- ('^^)

the differential coefficients of which, taken relatively to i, are

t.f. ia+ = 1T2T3 r:Wl)- ''^- " = "-^^^'^'

^ f(„A.i^-
'•-'

.. . (n-\)f.(a+i)
dl.f. (« + - i.2.3...(„_2)- ''-f-"-

i
'

&c. &c. &c. (149)

that is, all the terms of the series

/.(« + /), d..f.{a + i), dl.f.{a + i),&.c. (150)

have the same sign.

But the reversing of the sign of i in these equations gives

nf. (a—i)
dc'f- {a—i) = i

ctl.f. {a— i) = —^ ^-^^ S&c. (151)

that is, the signs of any two successive terms in the series

/. (a— 0, d,.f.{a-~i), e/. («— 0, &c. (J52)

are unlike, and the terms are alternately positive and negative.

60. Corolla?^. If, in a series of the successive dif-

ferential coefficients of a function terminating with the
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Number of real roots between given limits.

nth, all vanish except the 7i\h for a vahie a of the vari-

able, the signs of this series will in the row of signs

(a -}- i) constitute a series of permanences, and in the

row (a — i), a series of variations.

61. Theorem, If the first member of the equation

f.x = (153)

is coiithmons between the values a and b of the variable,

a being greater than b. if tJte nnniber of permanences

in the nth row of signs (a) exceeds tJie number of per-

onaneuces in the ntJi row (6), and if the excess is denot-

ed by V, the number of real roots of (153), ivhich are

included between a and b, cannot exceed v.

Proof. For while the value of x varies from a to b, a

change of sign can occur in the row of signs, only when f z,

or one of its differential coefficients, or a series of them, pass-

es through zero. Now, the case of a single function being

included in that of a series, when a series of these functions

vanishes, a number of permanences must, by ^^ 59 and 60,

be lost, equal to the number of functions. If, then, this series

begins with f x, as it must when the variable is equal to a

root of the equation, one permanence, at least, nmst be lost;

that is, there is a loss of one or more permanences in the row

of signs, corresponding to every real root of the equation.

If the vanishing series does not begin witli f. r, and con-

sists of an even number of functions, the sign of its first func-

tion is, by (148-152), the same with that of the function

which follows the series, both before and after vanishing. The
relation of the first sign of the series to the sign which pre-
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Number of real roots of an equation.

cedes the series is, therefore, unchanged ; and the loss of per-

manmrcs is exactly equal to the even number of terms of the

vanishing series.

If the vanishintr series consists of an odd number of func-

tions, the sign of its first function is reversed when it vanishes.

If, therefore, it has, before it vanishes, the same sign with the

preceding function, another permanence is liere lost, which is

to be added to those before noticed. But if it has, before it

vanislies, the opposite sign to the preceding function, a new
permanence is introduced, when it vanishes, which is to be

subtracted from the number of the others. In one case, there-

fore, the ivhole number of lost permanences is one greater

than the odd number of terms in the vanishing series ; and,

in the other case, it is one less than this number.

In any case, the nuinber of lost permanences is, at least, as

great as the number of real roots of the equation.

62. Corollary. When the loss of permanences does

not arise from a real root of the equation, the number

of lost permanences is even
; so that if the number of

lost perrnanenres is odd, that is, ifv is odd^ the equation

must have at least one real root betioeen a and b.

63. Problem. To find all the real roots of an equa-

tion.

Solution . Reduce the equation to the form (153),

simplify it as much as possible; and determine, as

nearly as possible by inspection, those limits between

which the different real roots must be, if there are any.

Find the successive differential coefficients of the first
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member^ until one is obtained which docs not vanish be-

tween two limits a and b, between which there may be

real roots. Let this be the nth differoUial coefficient.

If^ then., a being greater than b, the nvmber of per-

manences in the nth roio of signs (a) is the same ivith

that in the row (b), there is no real root between a and
b. If the difference between the number of 'permanen-

ces is even, the question of a real root between a and b

is undecided ; and if this difference is odd, there must
be such a root.

Let, then, the mth differential coefficient be the hi^'h-

cst one, of which the sign is different in tlie row (a) and
in the roio {b). The equatiofi

f/,.- + i/. xz=0, (154)

can then have no real root between a and b, luJtile the

equation

d^rf.x-^, (155)

must have one, which can befound by the process gicen
in the sequel of this solution. If c is the rnnt of (155),

it may also be a root of (153), which can be discovei^ed

by trial.

However this may be, the preceding process is to be

repeated for the limits a and c -\- i, i being an. infinites-

imal, and also for the limits c-\-i, and b, usitig the

mth rov) of signs instead of the nth. A continuation

of the process '//nist finally lead to a division of the lim-

its from a to b, into sets of limits so norroiv, that, be-
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tween each set there con only be one real root of ( 153)

and no real root of the equation

chfx = 0. (156)

Lei a' and h' he a set of these limits, and if they are

far apart, substitute for x, in the first member of[ 153),

different numbers, the various integers for instance^

between a' and b' , until one is found which does not dif-

fer nincfi from the required root, and denote this first

approximalio/i to tlie root by x^. Tlien, if the exact

root is XQ-\-h, ive have by (Vol. I. 532)

/. (..„+/,) =/.r„ + h ch.f. {r„+« A) =0, (157)

whence, by neglecting &h, the approximate value of h

is obtained, which is

h =-j^ (158)

and from the new approximation to the root x^ + A,

which is thus found, a neio approximation, can be ob-

tained ; and so on, to any required degree of accuracy.

64. Corollary. The rate of approximation can be readily

determined ; for if two successive values of h are h and A'

corresponding to a^ and x^, so that

rro z:z To + /i (159)

the error of x^ differs from h by a quantity much smaller than

A ; and that of x^ is nearly equal to h' . Now suppose

A<(Tvr (160)
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and we have by (158) and by Taylor's theorem

f.x'^=f{x,+h):=f,x,+ d,.f,x^,h-\.ldi.f,x,\h^+ &c. (161)

c/,/.2:;=rt/,./.Xo+&c. (162)

but by (158)

f.x, + d,.f.x,.hz^O (163)

/.x; = J ./?./. 2:0. A2+&C. (164)

whence neglecting W^, &c.

If now we find

we have, neglecting the signs,

/*'<(tVP+* (167)

and therefore if one approximation is accurate to s places

of decimals, the next will be accurate ^0 2 s + A: places,

65. Corollary. Since the real root is exactly

^==^0 + ^1

we have ^0 = ^ — ^'» (168)

whence by (153 and Vol. I. 532)

/. x,= f(x— h) =/. X— h,d,,f {x^&h)

=z — hd,.f(x^6h), (169)

or neglecting & k

/. Xo= _ A d,.f. x={Xq^ x) d,.f. X. (170)

In the same way for another hypothesis x^, we have

/. z; r= _ h' d^.f X = (x; — X) d^.f X. (171)

nr



38 IMAGINARY QUANTITIES. [b. III. CH. T.

Rule of false or double position.

The difference of (170) and (171) is

/.7,-/..r; = (zo-r;)c/,./.x (172)

and the quotient of (171) by (172), is

f'" ^^'.^^I^ (173)

which is identical with the famous rule of false, or

rule of double positin??., iti arithmetic; and this admir-

able rule, the principle of which is obviously at the

foundation of all higher mathematics, and pervades all

practical science in some form or other, is sufficient for

obtaining, with ease and accuracy, the most important

numerical results.

66. Examples.

1. Solve the equation

xlog/ z— 100 —
in which log.' denotes the common tabular logarithms.

Solution. The theory of logarithms gives

log.' X z=z log.' e . log. X.

Hence if f.x=^x log.' x — 100

d,.f.x = log.'z + log.'c

The value of d^^'f- ^ is positive between the limits

X = 0, and x zn oo

and d^.f.x is negative between the limits

X = 0, and x =. c~~^
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at both which limits /'. x is negative, and the given equation

has therefore no real roots between these limits. But d^.f.z

is positive between the limits x=:c~' and x = 0, at which

limits f, X has opposite signs, and the given equation has,

therefore, only one real root, which is between these limits.

A very few trials show, then, that the root is not far from

60, for which value

f.x — 1, d\.f.x— 1-78+ 0-43:= 2-21

<^,./.xr= -0072, A: = 2

and the rest of the calculation may be arranged as in the fol-

lowing form, in the first column of which are placed the suc-

cessive values of y.x, in the second those of rf^'/^ ^» sind in

the third those of x.

7.

0084860
221
219017

60
57
569612

2. Solve the equation

X — cos. X =: 0.

Ans. 56-9612.

Ans. 0-7391.

3. Solve the equation

X — tang, X = 0.

Ans. There are an infinity of roots, one being contained

between each set of limits

n n and (^ + J) tt

in which any integer may be substituted for 7i, the value be-

tween ^ and J ^ is 4*4934.
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BOOK IV.

RESIDUAL CALCULUS.

CHAPTER I.

RESIDUATION. "S^^'

1. For every finite value of x, which satisfies the equation

/x = 00 , that is,~ = (/.x)-i = 0, (174)
/• ^

the first term of Taylor's theorem (Vol. I. 442) is infinite, and

the development of y. (x ~\- h) by that theorem is impossible.

In this case, if i is an infinitesimal, f. (x -\- i) is infinite ;

and if we suppose it to be of the ?wth order of infinity, the

expression

imf,(x + i) (175)

is of the order zero, and is usually finite, as in § 26 of the

Differential Calculus. The quantity

h^f.(x + h) (176)

may then be developed, by MacLaurin's Theorem (445, Vol. I.),

as a function of A, and the result will be of ihe orm

h'"f,(x-\-h) ==A -{- Bh-\-&.c.

_j« Qh^-^-{.Rhm-i 4- Sh^^ + r/i'^+i+ ifcc. (177)
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Residual. To residuate.

which, divided by 7i'", gives

+ Q A-2 4- 7? A-i 4- >S 4- Th + &c. (178)

that is, f.{x -\- h) can, evcti for a value of x which

satisfies (174), he developed in a series consisting of

two pa; ^5, one of luliich

S -\- Th ^ 6cc. (179)

is, like Taylor^s Theorem, arranged according to posi-

tive and ascending powers of h, and the other part

R h-^ + Q /i-^ + &c. + B A-(—i) -j- A A-'" (ISO)

is arranged according to negative and descending pow-

ers of h.

2. The coefficient of h~^, in the development of

f.(^x-\-h) by the preceding method, is called the re-

sidual of/, x^ and vanishes for all values of x^ except

those which satisfy (174).

To residuate is to find the residual.

3. Problem. 2 o residuate a given function.

Solution. Let f. denote the given function, and let x^ be

the value of x which satisfies (174). Since R, which is the

residual of ihi.- function by (180), is the coefficient of h™—^ in

(177) the development of ]i"^f.{xQ -\- h) by MacLaurin's The-

orem ; we have by (445 of Vol. I.), if we regard h as the vari-

able,
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Method of residuating.

provided that after the differentiation we put

hz= 0.

This vanishing of h may be effected in the general form, bj

substituting for h the infinitesimal f, which gives

^ = 1.2.3. ..(m-f)-
^^^^^

4. Examples.

1. To residuate the function (x— a)~^ (x— b)~'^.

Solution, This function becomes infinite of the first order,

when

x z=i a -\- i

;

and infinite of the second order, when

x = b -\- i.

The residual which corresponds to x =. a, is, then,

' i (i)-i («— 6 + i)-^ — {a— b)-^
;

and that which corresponds to x :== 6, is

— __(6_a)-2.

1

2. To residuate
(x—a){x—b) (z—c)3

Ans, The residual for xziz a, is {a—b)—^ (a—c)~^,

that for x=b, is (b—a)-'^ (b—c)-^,

that for x=c, IS ^7^-7—r~ -•
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Residuation.

3. To residuate cosec. 2.

Solution. We have

cosec. 2 = GO
,

whenever z=7i;r,

71 being an integer, and the residual of cosec. z is

t 1

t cosec. [n jt -\- 1)^=-

%$

sin. {m^ -\- i) cos.{nn^-j~i'j

1

COS. n n
= ±1.

4. To residuate tang. x.

Ans. ± 1.

5. To residuate Cosec. 2. Ans. 1,

6. To residuate (Cosec. 2)2. Ans. 0.

7. To residuate 2~^ cosec. 2. . ..

-4/15. When 2 = 0, it is ^

;

% when 2 z= n;rr, it is i {n 7t)~',

8. To residuate x~^ cosec. 2.

Ans. When 2 =: 0, it is 0;

when 2 = n TT, it is i (wti)"'.

9. To residuate —— for any value r^ of z which
2

—

z

satisfies the equation

/. z = 00 .
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Method of residuatins.

%^SoJution. Let f. {x^ -\- i) be infinite of the ?nth order, and

let f . z =r /. z. (z —
3-
J™, (183)

80 that f. (Xq -j- i) may be of the zero order, and the required

residual is, by (182),

d:-'.f.{x^+i).(x— x^ — i)-'

1.2.3.... (///.— I)

^ dT.T''r{^o+i) [
(x-x^)-'+{x-T^)-H-{.(x^x

^)-H2+&.c. ]1.2.3 .... (m — 1)

__ 1 /d:-' f-K + O
1 . 2 . 3 . . . . »i — I \ x( 3",

+^tSS^' +'E^?-'H— )(.»•)

But it is evident, from M icLaurin's Theorem, that

rf-\f. (r. + O./"
(185)

J .2.3... (m— I)

is the coefficient of i'"~' in the development of

f.(.r, +{).{" (186)

or, dividing by «", that (IvSo) is the coefficient of {"'-"-'^
in the

development of f . [x^ -\- i). Hence, by this ilieorem,

d^fSJ^^^+i)J^_ f/—-^
. f . (r^ + _ r/r"-^f.(xj

1.2.3...(m-l)"" 1:2.3.... (m—/i—l) 1.2.3...(77^-/^-l)^ ^

which, substituted in (184), gives, for the required residual,

1.2.3... (m-l)'x—XQ~ 1.2.3... (/«-2)*(x—2q)2~

"T" 1.2 '(x—Jo)"'-2 ' (Z—Xj"'-^ '"(X— Zq)- ^ ^
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Integral residual.

The value of f.x^ is found by the equation (183), which by

(521 of Vol. I.) gives

_ d-{z-x,r _ 1-2 3>- :^^ ,189^

10. To residuate the preceding example, when

z^ -\- ab
f.^ = {z—a) (z—l>)^'

a^J^ab 1

Ans. When z^^a. the residual is -—
. ;

(a

—

by' X—a

. . b2—2nb—a2 1 b^-^-nb 1
when z==b, it is — — . -\-

(^b—af 'x—b^ b—a ' {x— by'

11. To residuate example 9, when

f.z z=. cosec. z.

Ans. When 2 = w tt, the residual is ri=
X— n 7t

5. The ijiteg?^al residual o( 3. function between cer-

tain limits is the sum of all its residuals contained be-

tween those limits; and the total residual is the sum of

all its residuals.

To residuate from one value of a. variable to another

is to find the integral residual between these values of

the variable ; and to residuate totally is to find the total

residual.

a. The total residual is indicated by the sign ^, and the
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Notation.

integral residual is denoted by the same sign with letters an-

nexed to it, to show the limits of the residuation ; thus

t(/-^) (190)

is the total residual of /". x ; while

^^(/•^) (191)

is the integral residual ofjT. x from the limit

X = Xq to X = Xj.

b. The residuation is often limited to those values of the

variable, which render one of the terms or factors of the given

function infinite, as in Example 9 of the preceding section
;

and this is indicated by placing, in double parentheses, the

factor which is thus regarded exclusively of the other factors.

Thus £•((/• ^))-(/'-^) (192)

indicates the residual of (y. x) (/"'. x) with regard to those

values of x, which render f. x infinite. In this way

£-((/-^)) (193)

should be usgd instead of (190) to denote the total residual of

f. X. In the same way

denotes the simple residual of

/.x.(x-r„)^

X— Xq

for the value of x, x z=z x^.

5
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Notation.

6. The variable in (101) may be itself a function of other

variables, as y, z, &c. ; and the residuation may be sought

between the limiting values of y

y — Vo ^"^ y — yxy

and those of z

z = Zq and 2 = 2;^, &c.

and this may be expressed by the form

vy = y,. ^ = ^1,
f^-.((/.:r)), (195)

or more simply

it being conventional in what order the limits are placed.

7. Corollary. The preceding notation gives at once, if x' is

a value of x between x^ and x^,

ryl

l7-i(f-^)) = ei •{{/^)) + 17 ((/-))• (19-)

8. Scholium, If x' is a root of the equation

/.xzzroo;
*

(198)

the value of the corresponding residual should be equally di-

vided between the two terms of the second members of (197),

that is, when one of the limits of (191) is a root of (198), one

half of the corresponding residual should be included in the

expression (191).

9. Corollary. If, in (19G), there are only two variables y
and z, and if y is taken to denote the real term of x reduced
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Residual of differential.

to the form (1), and z ilie real factor of the imaginary term,

(196) will denote the integral residual for all values of 2",

whose real terms are included between y^ and ?/j, and the

real factors of whose imaginary terms are included between

Zq and z^.

10. Corollary. It is evident from (182) and <5» 5?

that the residual is a linear function ; and found, as it

is, by differentiation, it must by <§> 52 of B. II. be free

relatively to any other linear function^ such as differ-

ence, differential^ &c.

Thus, if the residuation is taken relatively to .r, we
have

L.{{d^-.f.{x,z))) = d^-.C{(f.(x,z))), (199)
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Development of a function, wJiicli has infinite values.

CHAPTER II.

DEV^ELOPMENT OF FUNCTIONS, WHICH HAVE INFINITE

VALUES.

11. Problem, To develop a funclion which has in-

finite values corresponding to finite values of its vari-

able^ in a fortn which may be tised for all values of its

variable.

Solution, het f.x be tlie given function, and let x^ be a

value for which it becomes infinite, so that, if i is an infini-

tesimal, f{xQ -\-i) is infinite of the mih order. Then if we

put f:.xz=fx.{x— x^)'^; (200)

we have f . Xq finite, and (200) can be developed according to

powers of x— x^. We have, by Taylor's Theorem,

d""-^ f X

whence, by (200),

f r // f r d"^-^ f X 1

•^ (x-a:J-^(x-xJ'«-i^ ^1.2.3...(wz-l) x—x^

d'^ f X d"'+^ f X

^1.2.3... 7»^1.2.3.. .. (m+1) ^ °''~ '^
^

Now the upper line of the second member of (202) consists of



<5> 11.] DEVELOPMENT OF FUNCTIONS. 53

Function, which is always finite, when the variable is so.

terms divided by different powers %— Xq, all of which are

finite, unless

%=x„ (203)

in which case they are infinite ; while the lower line is a func-

tion of X, which is finite in this case. We will denote the

upper line by X^ and the lower line by Y^^ \ and X^ is, by

(188), the residual of

-^-^^ (204)
X — z

when z = x^. (205)

If, then, we denote by Z^ all the other residuals of (204),

when jf.z is infinite; we have, for the total residual of (204),

iS^l^-^X^^Z,. (206)

But by (202) /. z = Xo + Fo J (207)

and therefore /. x — ^. ^^^^-^ = ^o— ^o- (^08)

Now Fq and Z^ are both such functions x)f x that they are

finite when

X = Xq
; (209)

that is, the first member of (208) is a function of a;, which is

finite for every finite value of t, such as (209), for which f»%
is infinite, and if we denote this function by w.x^ we have

f-—l^T^ --.-• (210)

Hence the second term of (210) is finite for all finite values of

X for which f. x is finite ; and, therefore, -cs x must be Jinite

for every Jinite value of x.

5*
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Development of a function, which has infinite values.

Hence in the equation

/..= £/i4^ + ..., (211)

the first term of the second member consists, as in (188), of a

combination of terms arranged according to the negative pow-

ers of X — Xq, X— a; J, &,c., while or . x is always finite, and

can usually be developed according to powers of x by Taylor's

Theorem, or by some other simple process.

12. CoroUari/. When the modulus of x is infinite, the first

term of the second member of (211) vanishes, and (211) be-

comes

f.co= cr.x. (212)

13. Corollary. When the first member of (212) is finite for

all values of the argument of z, cr. x is always finite. But it

has been shown, in ^ 81 of B. III., that the equation

-i-rrO, or tjr.x = 00, (213)
uf X

is always possible, unless cr.z is constant, that is, independent

of x; and, therefore, if we put

/. O) = P; (214)

we have

iiif x^F, (215)

and in this case

f.^^lSSl-llj^F. (216)
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Development of a rational fraction.

14. Corollary. When f.x is a rational fraction, zj.x is

also a similar rational fraction, because the second term of

(210) consists of the sum of such fractions. But cr. x cannot

have an entire polynoiniai for its denominator, because such a

denominator would vanish for finite values of x, and cj. x would

become infinite. Its denominator must then be constant; that

is, cr. X must be an integral polynomial.

15. Corollary. If, in the preceding corollary, the degree of

the numerator of/", x is greater than that of its denominator,

this function is infinite when its variable is infinite; but if the

degree of the numerator is equal to that of the denominator,

f,x is finite when its variable is infinite ; but if the degree of

the numerator is less than that of the denominator, f, x van-

ishes when its variable is infinite. For if the function is

^x"+/>x"-i 4- &c.
J - — a'x^'+ bx" -'4- 6lc.

^'•^ ' ^

we have /. x = -—

—

{-- = — (go )"-«' (218)

which is infinite, when n > »',

finite and = -y i= i^, when n z= n', (219)

zero, when n ^ n'.

The polynotTiial uj.x is, therefore, reduced to a constant in

the second case, and to zero in the third case.

16. Corollary. The easiest way of finding zu . x m the case

of § 14, is to reduce the given fraction by division to a mixed
expression, consisting of an integral polynomial, and a fraction

in which the degree of the numerator is less than that of the



56 RESIDUAL CALCULUS. [b. IV. CH. II.
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denominator. For this last fraction can, by the preceding

corollary, furnish no part of the polynomial et. x, ^vhich must,

therefore, be the same with the polynomial thus obtained by

division.

17. Examples.

1, Develop (sin. a)— ^ by the preceding principles.

Solution. The general expression for the root of the equa-

tion

(sin. x)-i = 00
, (220)

is x = ±/i-^, (221)

in which 7i is any integer at pleasure; and the corresponding

value of the residual of

(sin. z)

X — z

is, by Ex. 9, § 4, if we put

1
i.z =

—

1

d^ . sin. z cos. z

1 1

cos, lire x^nrc

SO that by (21G)

(222)

1 1 1 1,1,1
cosec. X= -, =

j r—_ H --
sin.'x X x-\-n X—n x-f-'z/v X—4 TV
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Development of secants.

2. Develop sec. x by the preceding principles.

Anz. sec. 2= 4 71
1—

—

-—^—
., . -7^+ ^^^"^

—

v^— &.c.
J

(224)

3. Develop {e + c-^)-i = J Sec. 2;.

Solution, Let a; z= ?/ + ~V— 1» (225)

and we have, by (89),

e^ z=z cv {co%. z -\- A^— l.sin. %), (226)

€—''=: e—y{cos. z — V— 1 . sin. z). (227)

Hence the equation e^-|~ ^~" ^= ^^ (228)

involves the two (e^ + e~y) cos. z z= 0, (229)

(ey__e-y) sin. ;:i =z 0. (230)

Hence, cos.^z=0, e'^— e-y, or e^^—l, y=:0;(231)

z =d^(n + i)n, (232)

and the root of (228) is

^{n + i)n^-l, (233)7:

If, now, we take

f-=^^e---^=^--^'' (~^'')

we have, by (90 and 92),

1

2x7—1

and the corresponding residual of

X — z

{.r, = ± ;r-7—i ' i~^^)

(236)
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Development of a rational fraction.11 1

^^ ^ o / 1
- -^/. ,

1-,
—/—1=^^

'2V—l^=P(^^+=^)-'V—

1

-^/V—i±(2w+l).T
(237)

we have, then,

-L- = (
' L__\

4. Develop (c"" — e—^)— ^ =z J Cosec. x.

3-5 4- 1
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whence, by (216),

^^ + ' -.3+3+ 2
{x— \)2 (x-^2) '

' 3{x— 1)
2

^ ^^ - ^^ m3^
"^9(x— 1) 9(x + 2)' ^ ^

/*. a;

6. Develop — ^—

—

^^
, in which x^., x,,

{x—Xo){x—x^){x— X2)....

&/C. are all unequal, and the values of x, which rentier f. x

infinite, are to be necrlected.

Solution. We have at once

Zlf — r /l^ 1_ (244)
(X-X,){X-X^)... C

(((^_3;^)(^_:,J...)) ^_^ V /

(^•O
—

^^l)('0
— ^2)--- ^—^

f.x 1

{x^—Xq){x^—X2)(x^—x.J... x — x^

7. Develop (x+l)(x_2)

^"'* 3C^l)"*"3(x— 2)'

a Develop ^-^---^^.

2 2

(a;_2)2 3(x— 2) ' 3(x+ 1)
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BOOK V.

INTEGRAL CALCULUS.

CHAPTER I.

INTEGRATION.

1. The iyitegral of a given differential is the func-

tion of which It is^th- diifereiitial ; and /Ac integral of a

given finite function is the function of which it is the

differential coefficient.

To integrate is to find the integral. The sign of integra-

tion is /. ; thus

f.d,x = x, f.d.fx — f.x]

f.d,.x = x, f,d,.f.x=fx; (245)

f'di.x = x, f:d:.fx=fx,&.c. (246)

2. Corollary. Since we have

d,i{x + a)=zd,.fx, (247)

for all values of a, it follows that

/.c/,./.xr=/.x + fl, (248)

that is, the integral of a function may have an arhitra-
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Increase or decrease of arbitrary constant.

ry constant added to it, and in this form the integral is

said to be complete,

3. Corollary. Any constant may then be added to, or sub-

tracted from the incomplete integral, and the form of the in-

tegral may often be changed by this process.

4. Corollary. If the integral contains a term of the form

log./ ^,

this term may be changed, by the addition of a constant, to the

form

log./. X + log. a = log. {af. x). (249)

5. Corollary. If the integral contains a term of the form

sin.t—^] X,

this term may be changed, by the addition of a constant, to the

form

sin.C-i] 2— J^rz:— (Jtt— sin.[-i] x)z=i— cos.[-i] x (250)

or it may be changed into

coseJ-^] -, or into cosj—i]/\/(l-x~) or into - s'mS~^^\/{l-x^),

In the same way, terms of the form

cos.t— ^] 2:, tan.[—^]x, cot.f—^] z, sect—^3 x, &,c.

may be changed into

— sin.[—^] x, cot.t—1] X, — tan.-— ^] z, — cosec.t—^3 2, &:c.

or into 1.1 1 1 '

sect— ^-' -, — tan.'-^^ -, tant—^1-, cos.t—^]-, &c.
Z XXX
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Number of arbitrary constants. Definite integral.

or into (251)

6. Corollary. Since every integration introduces an

arbitrary constant, the nunib(3r of arbitrary constants

in a complete integral must be equal to the number of

integrations.

7. Corollary. The difference between the two values

of an integral, which correspond to two values of its

variable, is called the definite integral from one value

to the other value of the variable.

Thus if Xq and Xj are the limiting values of the variable,

the integral of cl^.f. x from x^ to r^ is, by (248),

(/. ^1 + «) - (/. ^0 + «) =/• ^2 -/. ^0 ; (252)

and it is written

•X.

f Kd,.f.x=f.x^. (252)

The definite integral is, therefore, independent of the value of
the arbifrary constant ; but the places of the arbitrary con-

stant and the variable are supplied by regarding one of the

limits as arbitrary and the other as variable, thus

J ^(
,d,.f.x=f,x^f.x^, (254)

which gives, by (248),

a — —/. 3-Q, (255)
6*
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Integrals are linear functions.

8. Corollary. Since

/^o.rf../.x=/.x„-/.x., (256)

we have, obviously,

fi:=-fi:- (257)

9. Corollary. Equation (246) shows that integration may

be regarded as negative differentiation, that is,

^"^Z (258)

10. Corollary. It is evident, from B. II. '§^^ 51 and

62j that integrals are linear functions^ which are free

relatively to all other linear functions.

Thus we have f.af.x — aj.f x. (259)

11. Corollary. Differeritials, residuals ^ a7id integrals

are functions which are relatively free.

12. Corollajy. When a function can be separated

into parts connected by the signs + or — , the integral

of the ivhole function is the algebraic sum of the partial

integrals.

This method of integration might naturally be called inte-

gration by parts, but the following is a particular case of it, to

which this designation has been applied technically.

13. If u and v are functions of a variable, we have (Vol. I.

468)

d^.uv z=i udg.v -\- V df.u, (260)
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Integration by parts.

whence ud,,.v ^n d^.uv — vd^.u, (201)

and by integration

f,ud^.v z= uv — f.vd,.u; (262)

and when a given differential coefficient can be sepa-

rated into two factors, one of which, d^. v, has a known
integral, the integration can often be effected by the

aid of (262) ; and the application of this formula is

called integration hy parts.

14. Theorem, A definite integral, which is taken be-

tween limits differing by a quantity equal to the differ-

ential of the variable, is equal to the differential of the

integral.

Proof. For the equation (252) becomes, when

3-0 = 2;, a;
J
r= z + c? X, (263)

by (Vol. I. 421)

fl^'\d,.f.x=:f.{x-\.dx)^f.x^d.f.x. (264)

15. Theorem. \i x^^ x^^ x^^ , , , . x^ are successive

values of x, a definite integral from Xq to ^,„ is equal

to the algebraic sum of the corresponding definite inte-

grals from Xq to x^j from x^ to x^^ 6oc.

Proof. We evidently have

/.^n—/.2:o= (/.2;i
— /.Xq) +(/.Z2 —/.2;J
+ (/.^3-/.^2) + &'C. (265)

16. Corollary, Hence if Xq^ x^^ x^^ 6cc. differ by dx,
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Change of variable.

the definite integral from x^ to x„ is equal to the al-

gebraic sum of all the corresponding differentials from

Xq to x,i, taken at intervals equal to dx.

17. Scholuim. Propositions 14 and 16 require that the inte-

gral be a continuous function between the limits, and particu-

lar caution must be observed to exclude those cases, in which

the value of the integral varies from positive to negative, or

the reverse, by passing through infinity, so as suddenly to vary

from positive to negative infinity, or the reverse.

18. Theorem. If we have the equation

f.f.x^F.x (266)

and if we substitute for x any function at pleasure, as

<f
. X, we shall have

f.f.{cp.x).d,.cp.x = F.<p.x. (267)

Proof. For (266) gives by differentiation

d,.F.x=f.x, (268)

and putting x z=z ip. y (269)

we have, by (Vol. I. 566),

4, F.if.y =zf,{if.y).d,.ip.y, (270)

and by integration

F.cp.y=:f.f.{<p.y).d,.cp.y, (271)

which is the same with (267), changing y to i.

10. Corollary. When xz=z (f.y (272)

we have f'f-^^S'f-i'P-y)' d,.(p.y. (273)
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Integration of algebraic monomials.

CHAPTER II.

INTEGRATION OF RATIONAL FUNCTIONS.

20. Problem. To integrate an algebraic monomial.

Solution, First. If the algebraic monomial is

Gz", (274)

in which n differs from — 1 , the substitution in 2G2 of

w z= a X", u z= J, , (275)

d^.uzzzn a x"-\ d^v z=z \j (276)

gives f.ax'^zzia z^+i— /. nax''= a x"+i— nf. ax""
; (277)

whence, by transposition and division,

nf. ax^+Z. ax"= (7i + l)f.ax^ = ax«+i, (278)

that is, the integral of the monomial is found ^ by in-

creasing the exponent of the variable by unity, and

dividing by the exponent thus increased.

Secondly. An arbitrary constant should be added to (279)

for the complete integral, and we have as in (25-1)

A.„,.^il£l±f^ (280)J x^ n 4- 1
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Thirdly. When n z=z — \

(279) becomes infinite. But the infinite form may be avoided

by means of an infinite arbitrary constant, such as that of

(2S0). In this case, (2S0) assumes an indeterminate form,

the true vahie of whicli may be ascertained by means of B.

II. § 104. For tlie differentiation of the terms of (280) rela-

tively to n gives, by (Vol. I. 481),

/
,^

ar7,.„.(x-+i— :r"J-i)

Xq* (/,.„. (/i + l)

= a (x«+i log. X— x^-^^ log. Xq)

= a (log. X — log. xo), (281)

or omitting the arbitrary constant a log. x^

/
a = a log. X. (282)

21. Corollary. Every algebraic polynomial^ being

the sum of jiionomials of the form ('^74), may be inte-

grated by integrati7ig its terms separately ; and a?iy

function can also be integrated by this process ^ which

can be reduced to such a polynomial.

22. Examples.

13 1

1. Integrate 6x5+x-+5V^-2 ^ _{- 8 x-9.o i ' x^

Ans. x6 + f x^+ 3 x^+ J- x-4 — x-8.

2. Integrate SV^x + Jx-J. Ans. 2xi-\-\/x.
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8. Integrate a x^ -{- b x^ -\- - -{- h.

Ans. ^ax'^-{-^bx^-\-c log. x -[- hx.

4. Integrate x~^ {x^ -\- x -{- 1)2.

A71S. ^x3-|-x2-|-3z4-21og. 2 — ar-i.

5. Integrate 2;(x + x-i)2. v4?i5. :^ x^ + 2;2 -|- log. a;.

23. Corollary. The substitution of y. x for x in (279) and

(282), gives by § 18,

a (w x')"+^
/.«(c;.x)"^..<p.x^ IVi ^

^^^^^

/. fiiil^j^ ^ a log. 9 . X. (284)

24. Corollary. Let

<^.x nz 6 X -j- c, d^.cp.xzu^b, (285)

(283 and 284) become, by dividing by 6,

25. Pi^uhlem. To integrate a rational fraction.

Solution. Let the fraction be reduced, as in B. IV. § 16, to

a mixed quantity, of which one part is an integral polynomial,

and the other is a rational fraction, in which the degree of the
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numerator is less than that of the denominator. If this second

part is denoted by f. x, (*21G) and B. IV. '^ 15 give

The integral of (288), relatively to x, is by (287) and § 11

and (289), added to the integral of the polynomial, is the re-

quired integral.

26. Corollary. Since (288) is, by the process of B. IV.

^ 4, Ex. 9, reduced to the sum of several fractions of the

form

w=^r ^'''^

(289) is the sum of their integrals, or is itself by (286 and

287) the sum of several terms of the form

f'x

when n is greater than unity, and of the form

/.a:Jog. (:. — xj (292)

when n is unity.

27. Corollary. When the given rational fraction is a real

function, it follows from B. III. <5§ 37 -o9, that x'^, the con-

jugate of Xq, furnishes a fraction, corresponding to (290)

f. X '

T^—V J (293)

-*••
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such that if fJ Xq= A-]-B\/—l, (294)

then /.'xq' = A — Ba/~1; (295)

and if we put (z— Xq)""-^ — ^+ Y\^— 1, (29G)

in which X and Y are functions of z, we have

(x — x^y-^ = X— Y^/— 1. (297)

Hence the sum of (291) and the conjugate fraction is, sup-

posing

x^ = a + bA/—l, (298)

1 {A+Bs/-\)(X-Y^/-\)+ (A-Bx/-l){X+Y^/-l)
n—l

'

{x — Xq)^-^ (x — V)"""^

"

1 2AX+2B Y
(299)

n — i (x2—2ax+ a2-(-62)"-i'

which is a real function.

In the same way, since (95) gives

log. {x^x^)— log. (x— a— 6V— 1)

= iJog[(^—«)'+2'']-tan.[-i]—
.
V-1, (300)

the sum of (292) and its conjugate is

A log. [(x— a)2 + 62] + 2 i? tan.[-i] -^ (301)

which is real ; so that the required integral is thus entirely

freed from imaginary quantities.

%
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28. Examples.

1. Integrate

x7 _|_ 1 j6 4. 36 a:5 _|_ 67 a;4 _)_ 68 x 3 _|_ 29 2-2 __ 4 2; __ 7
~

(x2 + 2x-j-2;2 (x4- 1)3 (X— 1)

Solution. First. When, for this example,

^0 = 1,

we have w = 1, f.x^z=\,

and (292) becomes log. {x— 1).

Secondly. When ^0 = — ^>

we have for w = 3, f'.x^zzil^

so that (291) becomes — -——-—— :

2(z-{- 1)^

and we have for w z= 2, f.x^z^z 0,

for W =: 1, f. X(j =z 0.

TJdrdhj. When a;o=r — 1+V— 1,

we have for n =r 2, f.xQ = — ^ ;

so that by (294 and 295)

^ =— J, 5 = 0,

X—x-\-\, Fzn — 1,

and (299) becomes ^^^-^_hi__

We have also for n := 1, /,* x^ z= ^,

so that by (294 and 296)
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A=0, B^—l,
and (301) becomes— ;^ cot.[-i](x + 1).

The required integral is, therefore,

log.(x-l)_i(.+l)-+^^^5^jdy__jcot.[-.l(. + l).

X5 J- 1
2. Integrate

(x_l)-^(.T + 2)

_ _ X 1
3. Integrate

4. Integrate

(x+l)(x_2)-

^ns. f log. (X + 1) + ^ log. {x — 2).

(x+ 1) (x — 2)2

^n5. Jx2+-A__2iog.(x-2)+ |log.(x+ l).

^ _ n X -4- m
5. Integrate — —^-rn-

n
Ans. - log. (x2— 2 a X -(- «^ + &^)

+ !iii+ i:!tan.t-']?^. (302)

_ _ 71 X -4- m
6. Integrate ^^^^.

^„,. "log /x5+*\_-_;!L^tan.[-i]^^. (303)
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7. Integrate
a;2 + 1*

Ans. tan.Ml x z= cot.M] -. (304)
X

n X -\- m
8. Integrate

{n a-\-ni) X— n {n^ -\-^^^) — ^^ (^

Ans.
2^2(2:2— 2ax+a2^62)

^ na-{-m . n ^ /on-x- A -! tan.[-i] . (305)
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CHAPTER III.

INTEGRATION OF IRRATIONAL FUNCTIONS.

n

29. To integrate f.[x^j^{ax-{- 6)].

Solution, Let y = ^ {ax-\-h)y (306)

whence x = ^^
, 4y ^= -^^—

>

(307)

and by § 19

= ,.,,(£=5,,).-p. ,308,

30. Examples.

n

1. Integrate \/{ax-\-hY'.

Solution. Equation (308) becomes, in this case,

•^ ^ ' ' «/ a {in-\-n)a

n\/{nx -\- Z>)™+»]

(w -j- w) a

_ _ \/^ -f- 1
3. Intetrrate —-. .° S^x— 1

^7i5. X -(- 4\/x + 41og. (\/x — 1).

7*
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\/2;4- 1
3. Integrate -^ —

.

a/x — 1

6

Solution. Let y i=z \/ %

and (308) becomes

n

4. Integrate x s/ (x -\- a) -\- \/ [x -\- a).

5. Integrate ^^
^
, ,

^- T, ^ ^^ \/ {ax -\- b)

Ans. T—j——
.

a{?i -\- i)

31. Problem. To integrate f. [.v, ^(ax- -\- bx -\- c)].

5 52 4 rt c
Solution. Let x =^ y— --, m = —-—-— , (309)2a 4 «2 ^ '

1)2— A. a c

whence g x^4- 6 a; + c = « ?/2

— a{y^-^m) (310)

c/,.yx=l; (311)
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and by § 19,

f.f.[z, ^/{ax^+bxJrc)]=ff.^j-^^,^/[a{,f-m)]'] (312)

There are, then, several cases

:

First. When a is negative and m negative, the radical

s/[a{y2 — m)] (313)

is always imaginary, and the integral, being imaginary, admits

of no real solution, and may be solved as in either of the other

cases which, in this case, become imaginary.

Secondly. When a is positive and m negative, y^ must be

greater than m, when (313) is real, let, then,

z=.s/{y^ — m)—y, (314)

whence (y -\- zY ~y^ -\-^y z -\-z^= y^ —m (315)

y = -^-^z
. (316)2z

2z2
^-3/ = .7^ -J (317)

and (312) becomes

v^ Thirdly. When ni is positive, let

m
,2 ^ -JL-^, (320)
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\////.(22-|_rt)
whence y =: ^

—

Ky^*-)
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in which >- ^og- — "* ^^^^y be omitted, as in art. 3.

Again (324) becomes

which, when a is positive, is

_!_ ] cr

^+^^ — J_ io(T
V(y+V^)+V(y—^^^)

= _!_.,og.[V(.^-»)+.]-3-^ W
but when a is negative (327) is as in (803)

is/—

a

z \/—a ^ Ww*+3//

The form of this last solution may be changed in several ways,

which will often be useful ; thus, let

,..tan.[-]l(^^^^^\ (330)

\i s/m — y\
whence tan. ^ z=z \\ —, — I

-^Xs/m -\- yf
2 \/ m

sec.2 5 =. 1 + tan.2 6
—

COS.''^ A = \^m -f- y

A^m — y
sin. 2 5 z=z tan.2 a . cos.2 a =

2x/wt

m-7/2 4r/(r/x2-|_6x-|_c)
sin. 2 2^=4 sin. 2 a . cos.2 ^= =— —

m ^ac — 0^

y b 4-2 ax
COS. 2 d= 2 cos.2 6^1 — -^— —

Vwt"" V(^--4ac)
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and (329) gives

J' /s/(ax^+bx-\-c)~ \/—a ^ ^

= —, sin.t—^J — -—

!

~—•'

V

—

a v(o — 4^6;)

1 h+ 2ax
=. cos.L—'J

1 . r n ::pb^2ax

2. Integrate - -. Ans. sin.[-i] z. (332)

3. Integrate
^^/_^^,^

. (333)

Ans. log. [x + V ( 1+ a;^)]-

4. Integrate ^^J_^y .

(334)

^ns. log. [x +V (^^ — 5 )]•

5. Integrate
;;7(X^,^.

Ans. — (^x2+ 1)^(1 _x2).

. _1_ 1 V(^+6 2:2)—

z

^6—^q

- 1 1^,, V(«+^^")-V«
2/s/«

"^ V(« + ^^^)+V«

_ 1 sin.[-]ij-^.
a/— a X ^" V
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^ T 1
7. Integrate

Ans. log.

8. Integrate ——- r-.

Ans. log.

^{l + z^)-
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34. Examples.

,. Integrate jl^.

Ans. V(l-^)V{l+^)--Iog.[V(l-^)+V{l+^)]

-

1

V 3 ta„.[->] 3
V^.Vd-^

_

2V{i+^)-V(i-»:)

1 3 1 y.

2. Integrate ——;—— . I- .

3 /I— a:\*

T^- ^j(iT-D

35. Problem. To integrate

^™"V- [/>/(« + ^^")> ^^ ^j"], (344)

when m is exactly divisible by n.

Solution. Let « + 6 x" r= y'

;

(345)

whence a:"= ^:—-—

,

(346)

.» = (?l^)==". (347)

The differential coefficient of the logarithm of (346), gives

~^^^—=.y—, (348)

whence

X—irf z - ^y^"' ^y'-«\ n /349X



<5> 37.] IRRATIONAL FUNCTIONS. 85

Integration of irrational functions,

and, by § 19, the integral of (344) becomes

m m

36. Corollary. When q z=z 2 and 2 m is divisible by

71, (350) is integrable by ^ 31.

37. Examples.

5

1. Integrate x^ ^{a -\- b z^).

Solution. In this case

m =i 4, 7i z= 4, q z=z 5 ;

5

whence ?/ z=: ^(« -|-6 x*)

5V(«+ ^2:^)6

24 6

5

2. Integrate a:^ ^^^j _|_ j 3-2).

3. Integrate

8
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a;2
4. Integrate —— —

.

Ans. — J X V(l — x2) + J sin.M] x,

38. Problem. To integrate

x'n-i {a-\-h x'^)! f. (z") (351)

when \--2san nte^er.
n ^ q

°

Solution. Let ax-^ -^ b z=z y% (352)

whence x" = — -, (353)

771

The differential coefficient of the logarithm of (353) gives

X
"

y'i— 6'

whence

(356)

'=-y

\2f — b/ n(y'i— bY ^ '

and, by § 19, the integral of (351) becomes

m p
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1. Integrate

39. Examples.

1

Ans. -(-1 _3^WVM-_if!)!\

5

2. Integrate ^ ~ L.,

8ax8

40. Problem. To integrate

z'" (a + 6 x")^ (359)

WjAe?i m and n are positive integers^ and p is a posi-

tive fraction.

Solution. First. Let v z=z x\ (360)

whence d,,.v z^ sx^—'^, (361)

in which s is to be taken of such a value as may be found

most useful \ let, then,

ud,.v = x^ {a-\-h x^)P
; (362)

whence u =^ - 2"i-s+i
(^^ _[_ j

^r^y^
(363)

d,.U==r
m-s-\-l

{a+h X") P+^^ x^-'+^{a+h x")?-!
; (3G4)
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or, since {a-{-bx''y=z {a + bx") (a-{-bx")P-\ (365)

(7}i-s-\-l)a-\-(7n-s-\-l-\-n p)hx"
, , , „, . ,con\

and, by (262), the integral of (359) is

-z^'+Wa 4- bx'')P
s

and, if s is taken such that

m— s + l+wp — 0, that is, s z:^ m -\- \ -\- n p, (368)

(367) becomes

a;'"+i(rt + 6x")^+ awp/. x'" (a + 6 x" )p-_i)

wt -J- 1 -|- w p

The value of the required integral is thus made to de-

pend upon that of an integral, in which the exponent of

the binomial (a + 5.^"') is diminished b^ unity; the

value of this new integral may, by the same formula

(369), be made to depend upon that of an integral, in

which the exponent of the binomial is still farther di-

minished ; and so on until the exponent of the binomial

is reduced to a fraction less than unity.

Secondly. Instead of (360) let, now,

v — {a + b x^^y ; (370)

in which s is to be taken of any value, which may be found

useful ; whence

d,.v=znbs x"-i {a + b x^-^, (371

)
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and if u is taken so as to satisfy (3G2),

u = -4- .
x"»-«+i (a 4-1) z")P-'+^ (372)

71 b S
V

1
/

±,u=z-11^ x^^-n(a+h xy-'+^ -i-Pz!+l x'^ia+ b x^)p-'
nb s \ I / ' s

(a(m-n-\-l)
,
j)i-{-l-[-7ip-ns \, , , , ,r».^r»v

71 b s s '

and if s is taken such that

77Z -|- 1 + 77J5
— n s z= 0, that is, s z=. + P (^^'^)

fv

(373) becomes

«f%Mzr -i———-^—
^ x^-^ (« + 5 x'')P-^ (3/d)

6(7?f-|-l-|-72 2j)

and, by (262), the integral of (359) is

2"'-"+i(«+5 x")p+i— a{m— n-{- 1 )/. x™-"(a+ & x")^

6(m + 1 +wp) ' ^' '

ill which the exponent of the factor x"^ of the binomial

is diminished by that of x^ in the binomial, and tliis

exponent tnaij by a repeated application of (376) be still

farther diminished until it is less than 7i.

Tliirdly. By the successive use of (369 and 376),

the required integral may be made to depend upon one

of a similar form^ in which the exponent of the binomi-

al {a -\- b x"") is less than unity ^ and that of its factor

is less titan n.

8*
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Fourthly. The development of (a-\- h x"Y may be effect-

ed by the binomial theorem, either according to ascending or

descending powers of 2 ; it being better to use the ascending

powers when

X" < |, (377)

and the descending powers when

^ >
I-

(378)

In one case the integral of (359) is

qp 2;7n+i paP-^ b z"H-"+i p{p-l )aP-^ b^ x™+2»+i

— m-\-i^ m + 71 4n~" + l.2.(m-\-2n-\-l) "^ ^*

[1 p bx"

/^f-j-l ?;i-|-7i-f-i a

^1.2.(m + 2w+ l) \ a / ^ J ^ ^

and in the other case •

_ r
^

a-^_^L^ ! I- &c. (380)

= fe? x'lP+'W+l i I
. -; h &C. I
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41. Examples.

1. Reduce the integral of x* {a-{-bx^)^ to depend upon

one, in which the exponent of a -\- b z^ is less than unity, and

the exponent of its factor is less than 3.

Solution. By putting in (369)

m =4, 717=3, i?
= J,

it gives

and by putting in (376)

m = i, 7i=z3, p = i,

it gives

SO that, by substitution,

f.xHa+ bx'r={^^^x^-\--°-.—ya + bx^f

2. Develop the integral of x (a-|" ^ •'^")" according to pow-

ers of X.

Solution. By putting in (379 and 380)

m = 1, 71 =1 3, p = i,
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=V(6x^)[f+^3-Tv(-^)^-&c.]

4

3. Reduce the integral of X* (a2— 3-2^3 ^q depend upon

one, in which the exponent of a~ — x^ is less than unity, and

that of its factor is less than 2.

Ans. {^\ x5 — ^2^\ a2 x^ —f^ a^ x) (a^ — x^)~^

1

4. Develop the integral of («2

—

x^)^ according to powers

of X.

2 / a;2 2;* \
Ans. a'2\\-^l. —— -^\. — +&L0.^

2.

5. Develop the integral of x(l -^x^Y according to powers

of X.

Ans. z2 (^_|-_2_2.3.__i^a^6_|_&c.)

or x> (^+ 2a;-3 4-_i_.x-6+&c.)

42. Problem. To integrate (359) for all real values

of 771, n, and p.

Solution. First. When m is a negative integer and n a

positive integer, the substituting of 7n-\-n for m in (376),
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freeing from fractions, dividing by a (m + 1), and transposing,

give for the required integral

X "»+^ (a+b X") P+^—b (m+ l+Jip+?i)
f.
x^+^ {a+b xy .^^..

a(m+l)
^ '(^^^

)

which formulaj since ni is negative, serves to increase

the exponent of the factor of the binomial under the

sign of integration, until it becomes positive but less

than n.

Secondly. When p is negative, the substitution of p -|~ 1

for p in (369), gives by reduction for the value of the requir-

ed integral

which formula serves to increase the exponent of the

binomial under the sign of integration, until it becomes

positive hut less than unity.

Thirdly. When m and n are fractions and n positive, let

the common denominator of m and n be /, and let

x= y' (383)

whence d,yX=zly^-^ (384)

and, by § 19, the intregal of (359) becomes

/ l7f'^+^-^a + b y^^^Y (385)

in which the exponents of?/ are integers, so that it may-

be integrated by ^ 40, or the preceding part of this sec-

tion.
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Fourthly. When n is negative, a simple algebraic reduction

gives

x^ [a + h x")^= z'»+"P(6+ az-")^ (386)

the integration of which may be efTected by «§) 40 or

the preceding part of this section.

43. Examples.

i_

1. Reduce the integral of z— 2 (i_|_ a;
3
)-;i to depend upon

one, in which the exponent of the binomial is positive and less

than unity, and that of its factor is positive and less than 3.

Solution. The substitution of

771 =— 2, ?l=r:3, 2?=:— ^, a=:\, 6=1,

in (3S1), gives

/2-2 (1 4.2;3)-^=—2-1 (l+a:3)^-|-y:2(l + x3)-^,

the substitution of

77^ zz: 1 , w z= 3, jP
= — 4-, a=i 1, b = l,

in (382), gives

/ X (1 + 23)--^=— ia;2 (1 -j-a;3)f _|_oy:2; (i -f x^)?"-

Hence

/ 2-2 (1 -|- z3)-^___ (a;-l_|_ ^ a; 2) (1 _|_ a^3)f_[_2y:a; (l_j.2;3)l

_2
2. Reduce the integral of 2-2(1 -^x^) ^ to depend upon

one, in which the exponent of the binomial is positive and less

than unity, and that of its factor is positive and less than 3.

Ans. I (2— 2-2) (l+xs)^—/ (l + 23)i
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L2
3. Reduce the integral of {l-\-x^) ^ to depend upon

one, in which the exponent of the binomial is positive and less

than unity.

-^ - I
Ans. J X (I +x^) ^ (3 + a;5_2;io) + ty: {I + x^)'

2 4

4. Reduce the integral of x-^ {a -{-bx'^y to depend upon

one of the same form, but in which the exponents are integral,

except that of the binomial.

Solution. In (383) we have, for this case,

so that (385) gives

/ ^ {a-\-hx^Y — 15/ ?/24 (^a + h y^^y.

4 2
5. Reduce the integral of x^ (a -\- h x^Y ^^ depend upon

one of the same form, but in which the exponents are integral,

except that of the biomial.

Ans. I5f. y26 (^a + b i/^^y^

,3. 3
6. Reduce the integral of x'^ (a -\- b 2; ~2)^ to depend up-

on one in which the exponent of x in the binomial is positive.

3

A71S. J. {b -{- a x^)^.

44. Problem. To find the value of the definite inte-

gral

fl x^ {a + b xy (387)

in which
c = ^--^ (388)

and nij n^ and p are positive.
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Value of binomial definite integral.

Soliti.n. Tiie substitution of

a = —
- 6 c" (389)

reduces (387) to

^''/o
^"^ (^''— c"Y = {— by f^ x"^ (t"— z")?. (390)

First. The term of (3G9)

a;»«+i {a-\-h x^'Y — JjP i"^+i (x'*— c^'Y (391

)

is zerOj^wheii z = 0, and when x z=z c. (392)

Hence (369) gives for the value of (387)

""''P
-.Sl,x-{a-\-bxy-\ (393)

m-\-\-\-np

and, in the same way, by changing p top— 1,|9— 2, &c.,

(309) gives

&c.

The substitution of each successive value, in the preceding

one, gives for the value of (387), if pQ is the greatest integer

in p,

{^ 7l)P0p{p—\) (p—2) . . . . (p—po + 1
)

(m-{-l+np)[m-}-l+ n{p—l)]....[m+i-{-n{p—pQ-\-\)]

X /o x'" (a + 6 x")2'-'o (396)
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Value of binomial definite integral.

Secondly. In the same way, (376) gives

/„% z'-ia+ bx-y^- 4^":p^]/o- ^•"-" (°+6^")' (397)

and for the final value of (387), if h is the greatest integral

number of times, which n is contained in tw,

Thirdly. The series (379) gives for the value of (387)

45. Corollary. In the particular case, in which

m=:0, 71 = 2, p=: — J, (401)

we have

n. — — h r.^ . r — a/ —
b

and by (331)

a = — 6 c2, c = V — X' (^^^)

/V(^^^= ~V=6^''-^"'V(^ ('^')

whence

,7 v(«+ox2) ^—

5

' y' J

1 TT

(404)

9
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Value of binomial definite integral.

46. Corollary. It follows from (404), that if

b = —g2, cz=^ (405)
s

which c = .

g

47. Examples.

oV(«—^2a;2)'
—77 -^r-K7, in

Solution. The substitution of

77« zzr 4, W =: 2, p z=z — J, A =r 2

in (399) gives, by (406),

y'c %^ a2 S.l /*c 1 _3a2 TT

V(«—^' ^•') ~^ * T:^JoV(a-g' x2) - 8^ •
2"-

V(«^ a;2)

1.3.5 TrflS

^"^- 274-6-2-

. ., ^
-•

V(« —^ )

Solution. Equation (399) gives

^« a;3 2a2 r»a a:

JoV(«^—^^"~~3-./oV(a2— x^*
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Value of binomial definite integral.

But by (324)

whence / . .. ^ :rr = a»

and f ,—r, rr == f a^-
p. 2;3

2.4
^W5. ——- a^.

o . 5

5. Find the value of the definite integral J^. \/ {a -\- h x^)

where c =. s/— -.
o

Solution. The substitution of

m = 0, n — 2, p = iy

in (393) gives by (404)

/iC fj /*C 1 TT /7

Q
vv -r ; 2*^ \/{a+bx2) ^A^—b ^ '

6. Find the value of the definite integral /*. \/(a2 — x^),

Ans. —-—

.

7. Find the value of the definite integral f^. i^s^iofi — x2).

Ans, I .

-J-.

8. Find the value of the definite integral J^. %V («^— a^^)-

Ans. ^a^.
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Value of binomial definite integral.

9. Find the value of the definite integral f^. x^\/[a^— x^).

Ans. I . ^ a^.

5

10. Find the value of the definite integral f^. (a^— x^)^.

Ans. -^^ n a^.

11. Find the value of the definite integral f^.x^^a^— x^)^.

Ans. g-.fV^^^'

12. Find the value of the definite integral f^,x^{a^—x^y.

Ans. f .
-i a"^.

13. Find the value of the definite integral /*. x(a^— x^)'^.

A?is.
-f

a^.
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Integration of logarithmic functions.

CHAPTER IV.

INTEGRATION OF LOGARITHMIC FUNCTIONS.

48. Problem. To integrate

f. X. (log. F. xf (408)

Solution. First. When n is positive, the substitution of

u = (log. F. xY, d,, v—f.x, (409)

in (262) gives for the integral of (408)

(log. F. .ff.f.
._„/(i^.^lfr_L^^iW:/_^(4io)

by which formula the exponent of the logarithm is di-

minished by unity, and may be still farther reduced by

the repeated application of the same formula.

Secondly. When n is negative and differs from — 1, the

substitution of

.= (Iog.F.x)..+S«=^^J^, (411)

in (262) gives for the integral of (408)

by which the exponent of the logarithm is increased by

unity.

9*
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Integration of logarithmic functions.

Thirdly. When n — — l (413)

the only useful reduction occurs in the case of

/. X =^^ ^ rf, log. F. X (414)

in this case, since d^. log.^ F. x =^ ——-—
, (415)

the required integral is f.
——-,—^=^— — \og.^' F. x. (416)^ ^ J F, X log. F. X

Fourthly. The particular case of (414), gives also a dif-

ferent solution of the general problem; for in this case the

integral of (408) is

f.
(log. F. xy.d\ log. F.x— ^

^'^^ _^ . (417)

In other cases, the integration can only be advanced

in the form of a series.

49. Examples.

1. Integrate x"^ (log. x)2.

Solution. First. When m differs from — 1, in which case

(410) gives

/x'^+Hlo^. a;) 2 2 /* „ ,

x- (log. X. 2 = 5l^—i —_ /. x^ log. X

X'" (log. X) = p-^ p-r / . X'^

x^'+i log. X x^'+i

~ »i+ 1 (m+l)2
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Integration of logarithmic functions.

SO that the required integral is

m

771+1 p 2 2 ~|

-r-r I ('og. x)2 ;
—- lo2. x-\-- I.

Secondly. When ?w = — 1

(417) gives for the required integral

^(log, x)3.

2. Integrate x'" (log. x)^.

Ans. When m differs from — 1, it is

a;m+l
Lrno. .. 3(log.x)^ 3. 2. log. X 3.2.1 -1

1 L^ ^' ^ ^«+3 ^(^/i+l)2 (m+l)3JW -f-

and when m z=. — 1

it is I (log. x)*.

3. Integrate f. x. log. x.

-471S. When jT. x differs from x~i, it is

and when f.x^n-^
X

it is J (log. x)2.

4. Integrate -^—s

—

'- when w differs frOm —

An.. (}^^^.
w -|- 1

(418)
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Logarithmic definite integrals.

5. Integrate —

—

-——-.
" (1— 2;)2

X lOff. z

6. Integrate —

^

. Ans. \os.^ x.^
X log. X ^

50. Problem. To find the value of the definite in-

tegral

n.(-\og.x)i (419)

in which n is an integer greater than — 2.

Solution. First. In this case, (408-410) give

/. x=I, F.x^^x, f.f.xz=x', (420)

/. (- log. x.Y = X (- log. xf + ^f. (- log. x)^-' (421)

in which when x =1 0, or = ]

,

(422)

the first term of the second member vanishes as in example 2

of B. II. § 109, so that the required integral becomes

In-i-^og-^-'- (423)

By this process, then, the exponent of (— log. x) is dimin-

ished by unity ; and a continued repetition of it gives for the

value of (419)

i(i-')(i-"") (l-''+^)f:-i-^o,..Mm

n
in which h is an integer not greater than -

-f- 1.
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Logarithmic definite integrals.

Secondly. When n is even, let

h — ^n (425)

and (424) gives

/i.(-Iog.2;)'^=1.2.3 h. (426)

Thirdly. When n is odd, and positive, let

h = ln + i, (427)

and (424) gives

/.(-log.^)'-*= (A_J)(A_|)...|.J/..(_Iog..)-i. (428)

Fourthly. When n = — 1

let -^= /^(-log.2:)-i (429)

The substitution of

xz=zay\ (430)

in which a is supposed less than unity, so that (-— log. a) is

positive, gives ^

— log.a:=:— y^log.a^ d^yXz^^ya^^.hg. a; (431)

and when x = 0, y ziz cc ,

xzzzl, 7/ = 0; (432)

K — — 2 /'^ a^\— log.a)*, (433)

and K{—\og.a)~iz=i—2f\a^\ (434)

But, by taking the integrals relatively to a, we have

r\{-]og.a)-i=K, (435)
•/
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Logarithmic definite integrals.

r\a^^= -^-a^^-^'=-JL_, (436)
Jo J/^+1 3/^ + 1

and, therefore, the integral of (434) with reference to a, is

by (304)

X2__2 Z**'.—1— =— 2(tan.[-i]0—tan.[-i]oo)

= —2{0 — irr) = ^. (437)

or K=n.(^\og.x)-i=f\-^-= ^/rr. (438)

51. Corollary, The substitution of (438) in (428) gives

/M>og.ir*=i^2:^'±Dv.. (439)

52. Corollary. The substitution of

X = 3/"*+^ or log. X z=z (w -f- 1) log. y, (440)

whence d,y. 2; r= (m + 1) 3/"* (441)

in (426 and 439) gives ; by dividing, in one case, by (w+1 )^+^

;

and, in the other, by {m -\- 1)^2^

sir (log. ^Y= -̂ 'I'iyXr (442)

/.,.(,og..)-J=Li:^(^V^. (443)

2^(m+ l)*+^

53. Problem. To integrate

F.{ef'-).{f.xYd,.f.x, (444)
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Exponential integrals.

Solution. Let 1/ z=. e/-% (445)

whence d^y. x m (e-^-^ d^.f. x)-^= (y d^.f. x)-^ (446)

Jog. y —f-'^^ (447)

and the integral of (444) is, by § 19,

f-i'^oS-vY-^, (448)

which may be found by § 48.

54. Corollary, When

w = (449)

(448) gives

f.F.(ef-).d,.f.z^f.^. (450)

55. Examples.

1. Integrate e'^^\/(l— e^'^'').

In this case if

f.x~ ax, dj. xz=La

F.y=: ^y^[\^y2)
(450) gives

/. e«W(l — «^"") = i/V(l — ^2)

= i^e«*\/(l—e'''^)+ Jsin.[-i]e''^

2. Integrate e«^. Ans. ie''\ (451)

3. Integrate xe'^^ Ans. (
^ j e *» *.
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Potential integrals.

4. Integrate a*. Ans.
log. a

6. Integrate Sin. {kx-\-a). Ans. ^ Cos. {kz-\-a). (452)

6. Integrate Cos. (kx-\- a). Ans. lSin.{kx-\-a). (453)

56. Problem. To integrate

f. (Sin. k X, Cos. k x). (454)

Solution. Let

y := Sin. A; a;, or kx =z Sin.[-i]y
; (455)

and by (127 and 143)

Co3.kx=V(l+y2), kd,,,.x = ^-^^^^', (456)

whence the integral of (454) is, by § 19,

/.J/.[y, V(l+ y=)].(l+ y^ri (457)

which can be found by § 31.

57. Examples.

1. Integrate Sin.'" kx . Cos. kx.

Solution. In this case, (457) becomes

r y^ — ^— =z —-

.

(458)

^ T ^7^-7 >.
Cos.'^+iZrz

2. Integrate Cos.'^Arx. Sin. A; a;. ^ns. -—
, ,, , .^ (7^4- 1) A:

3. Integrate Tang, k x. Ans. ^ log. Cos. k x. (459)
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4. Integrate Cotan.kx, Ans. -\ log. Sin. yt z. (4G0)

5. Integrate Sec.kx. Ans. ^ tan.M] Sin. A: a;. (461)

6. Integrate Cosec k x. Ans. .^ lo2. i ~ ^ZT I^ '* ^ \Cos.kx+l)'

or, by (140), ^ log. Tan. ^kx. (462)

7. Integrate e'^^Sin. ^z. (463)

Solution. Since by (121 and 122)

Sin. ^•2;= J (e^* — e-^'^),

Cos. ^z := J (e^x-j-e— Ax) .

we have e '^ ^ Sin. ^ a: = J (e('^+^)^— e^'^-^')^),

f.e'^^Sin,kxz=^ —
^ 2{a+k) 2{a—k)

\ ^{a2—k2) }

^^ /a Sin. kx— k Cos. k x\= ' ( ,i^^p )• (464)

8. Integrate e"* Cos. Arz.

An^ .aJa^os.kx—kSm.kx\
Ans. e

y a2-k2 ^ )• (46o)

9. Integrate c"* Sin. a a;. Ans, i^e'^"^— J z. (466)

10. Integrate e
''

"^ Cos. a z. Ans. ^e'^'"' -\-^x. (467)

11. Integrate e^-^'^^-^'^Cos.kx. Ans. ^€«sin. Az^
(468)

12. Integrate c«^o^-*^ Sin. ^ x. ^ns. ^. e "^ Cos. A:
a;^ (469)

10
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Potential integrals.

68. Corollary. The differential coefficients of (451, 452,

453, 458, 4C4, 465) with respect to a, A-, or m, give

/x^e'^' =rf^.,.ie'^*; (472)

/ xCos. {kx+ a) z=z d,,,. i Cos. (kx+ a) (473)

X 1

z:^jS'm.(kx-\-a)—— Cos. (A; x+ «)

f.x^Sin.(kx+ a)=idl,.lCos.(kx-{-a) (474)

= ('^+ i)^os.(kx+a)^^^Sin.{kx+ a),

/ x2«+iCos.(A;x + a) = dl",+\ i Cos. (k x+ a), (475)

/. x^" Sin. (A:x + a) z= d^J. i Cos. (A:x + a), (476)

/ x2«+i Sin.(Z: X+ a) = 4.- ^L"+^ i Cos. (A;x + a)

z=c/?;,+i.i Sin.(A;x + «), (477)

/.x^^Cos. (A;x+a) = c?.M Sin. (kx + a), (478)

Sin.™+1 A:x

f.
Sin.*" A; x . Cos. k x . log. Sin. kx=: c?,.^.

, (479)(1 \ Sin.^'+i k X
log. Sin. kx j—- I 7—{VT y
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f.Cos.-H.Sin.kx.log.Cos.kx = d„„.^''^ (480)

= I loff. Cos. Jcx— I
Cos."'+^ k X

— Ix— ^"^ \.- aSm.kx-kCos.kx
. c-Sin.Arz ,,^^^

/x;e-Sin.^.==^.,.(e^^^^^i!^=|^^
(483)

59. Corollary. Equations (121 and 123) give

x" e-^* Sin. « a; = J z" e^ax^. j
^n^

^^g^^

2" c'^^Cos. a a; =z J a;" c'-^^+ ^z''

;

(435)

so that by (472)

(486)/ x" c- Sin. a a: r= ^ c/^.^. i- c^-- _L^ a;«+i
2a 2(?i-f-l)

2n+i —2^^ 2(w+l)^ '

/x"e-Cos.ax=ic/,.2..l62-+ ^^-l_
(487)

2n+i«c.«.2^« +2(n+l)'^ •
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Exponential definite integrals.

60. Corollary. When

n— 1

(486 and 4S7) become

/ 2 c«^ Sin. a z = J J,., .
ji e2 '^^— ^ x2 (488)

/ X e«» Cos. a I= ^ rf,. . i; c2"+ J
12 (489)

— A »>
1 /.'-ia*

4

61. Problem. To find the value of the definite inte-

gral

J».3.ng_ax2^ (490)

in which a is positive and n is zero or a positive in-

teger.

Solution. Let

6-^^ = 2/, c"'=:^, (491)

x2 — _ log. 3/ = log. i

,

(492)

2xd,,,.x = -i, d^^^.x =-^; (493)

so that when x r= 0, ?/ = 1, (494)

X = OD, y = 0. (495)

The value of (490) is, by § 19,

4/^0og.^)^r-'. (496)
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Hence, by (442 and 443), when n is odd,

.
^ -a^^ 1.2.3 (^n-i)_

and when n is even

TC/.^ „ —az^ 1.3.5 in-X-V) ...
I Ac\Q\

/; . x"

e

= j^^—^

—

'-V—

.

(498)

2 (2 a)*"
"^

62. Corollary, When

w =: 0, a := 1,

(498) gives

/«.e-"'=iV-. (499)

63. Corollary. By reversing the sign of x (497 - 499) give,

when w is odd,

ax2_ 1.2.^...(^w — ^)

2a^

when » is even

y_o..,.e = —^^ ^, (500)

2(2a)^"
"

/_o„.e-^ = ^V-. (502)

64. Corollary. The sums of (497 and 500), of (498 and

501), of (499 and 502), give, when n is odd,

/_"«.x"e-^^'=0, (503)

10*
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Exponential definite integrals.

when n is even,

J-co-^ e = — V—

,

(504)
(2«)^" "

/-"oo.c-^ =-s/n, (505)

G5. Corollary. The substitution of

. + ^„ (506)

for X in (504) gives by § 18, when n :rz 0,

/f„. e-("'+*^+ 4-a)^ ^iL
; (507)

which, multiplied by e 4a
^
gives

/_"a,.e-(^^' + *^ + ^)=e47 ' ^IL, (508)

66. Corollary. The differential coefficients of (50S), with

reference to a and 6, are

67. Examples.

1. Find the value of the definite integral

/_"„ . a: e- Ca ^2 + c) gin. A; x.

MS. ^^e
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2. Find the value of the definite integral

/_"oo . X c- («^^ + '=) Cos. k X. Ans. 0.

3. Find the value of the definite integral

/-"oo • {m »2 + n) e- (« ^'^ + ^) Sin. k x, Ans. 0.

4. Find the value of the definite integral

/_*«, . (m x2 4- n) e- ^^ *^ + <=) Cos. k x.

Ans. (^ + -^+Ae^«~Vf
V 4a2~2a ' / «

5. Find the value of the definite integral

r a> p— a X
J 0**^ i

in which a is positive. Ans. ^. (511)

6. Find the value of the definite integral

in which a is positivet

- 1 . 2 . . . . 7t

^''''
an + i -' (512)
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Trigonometric integrals.

CHAPTER V.

INTEGRATION OF CIRCULAR FUNCTIONS.

68. Problem. To integrate

f. (sin. k X, COS. k x). (513)

Solution, The substitution of

xzzryV— ^ <^c.y.a: = \/— 1, (514)

gives by (121 and 122)

^v[i.kxz=z\/— l.Sin. A;y, (515)

COS. kx z=. Cos. k y ; (516)

and the integral of (513) is

y:^_-l./.(v'— 1. Sin.Ajy, Qos.ky), (517)

which may be found by § ^Q.

69. Examples.

1. Integrate sin."* kx. cos. kx.

Solution. In this case (517) becomes

(_ 1
)? ('"+^^ ^'m.^ky. Cos. k y ;

whence by (458, 121, 122, and 514)
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Trigonometric integrals.

^
^ ^ {m+l)k

sin.'" + i kx
(m+ l)k'

2. Integrate cos.'" k x . sin. k x.

(518)

COS."* + 1 A: 2:

^"^- 7 r-T-T-- (519)
(wi -f 1) A; ^ '

3. Integrate sin. (kx -\- a).

Ans. — i COS. (A; I + a). (520)

4. Integrate cos. (k x -\- a).

Ans. ^ sin. (kx -{- a). (521)

5. Integrate tang. A: 2. Ans. —
-^ log. cos. A: a;. (522)

6. Integrate cot. A- z. Ans. -^ log. sin. A: 2 . (523)

7. Integrate sec. k x. Ans, ^ log. .

'

-. (524)
1.
—— Sill* /l 3/

8. Integrate cosec. k x. Ans. ^ log. tang. J k x. (525)

9. Integrate e°*sin. kx. ^526)

Solution. The substitution of (514) in (526), gives by (464),

/ e'^^sin. A:x=— /6«J/^^-i Sin. ky

as/— 1 Sin. k y—k Cos. k y—
_(a2_j_y^-2)

_ ^^ , flsin. A:x~A:cos.A:x

^2 _|_ ^2
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Trigonometric definite integrals

10. Integrate e*** cos. kx.

a COS. k X -\- k ^'\n, h X ,rc\a\
Ans. e- ^^ . (528)

11. Integrate c«s'"-'^^ COS. /ex. ^?is. J* c**"'"-*^. (529)

12. Integrate e<'^^^-^^ sm.kx. Ans. —^,e<'^^^-^\ (530)

70. Corollary. The differential coefficients of (518-521,

627, 528), with reference to m, k, and a, give

f.
sin.'" k X . cos. k x . log. sin. k x

/i • 7 1 \sin.»»+iA;x
= i log. sin. A; X ttIt TTTZ' (^'^^/

f,
COS.'" kx, sin. k x. log. cos. k x

= I r-T— log- COS. kx\ r-zrr-r (532)
\7?i+ l ^ /(m + l)A:' ^ '

f.xcos. {kx-]-a)z=i— dc.k'^ COS. {kx -\- a) (533)

1 a^= — COS. (^ 2^+ «) + T sin. (A; X+ a),

(__l)»y:x2'»sin. (ytx + a)=-~ </,'.?. i cos. (A;x+ «), (534)

(__!)"/ x2«+icos.(A:3;+ a)-—<^.^+i.i COS. (A;x+ o), (535)

(—l)"/z2" COS. {kx + a) = dll. i sin. (kx+ a), (536)

(__l)"y:x2«+isin.(/i;x+«) =— dl",+Klsm.{kx-^a); (537)

a sin. A; X— A; cos. A: x
f,xe'sm.kx=: d,,,. c''^ ^Fipp

(2a \asin.A:x-A;cos.A:x ,
e'*'sin. A:x .^no\

^-^qrp) «2 + fc2
—+^?+i^' (538)
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. , 7 a sin. A; X

—

k cos. lex ,^^r^^
/2;"e°^sin. kx=i dl,. e^ -

^ , ^^ , (539)

a COS. ^ z + A: sin. ^ X ,^.r^^
/ x" e-^ COS.k%— c?«,

.
e

^

^F4rp • (^^^)

71. Problem. Find the value of the definite integral

/f„. (mx2 + w)e-'^^^ + '' COS. A:x. (541)

Solution. The substitution of k\^— 1 for k in example 4

of § 67} gives for the value of (541)

(mk^ , m . \
"" 1 T^ +wl e

4a ' 2a /

47-'. ^iL. (542)
a

72. Examples.

1. Find the value of the definite integral

/.*, xe-Ca^'^+ c) sin. k z.

_ k2

Ans, ~le ^ V-^. (543)
2a ^

2. Find the values of the definite integrals

/.=°„. xe-(«^'^+'') COS. kx,

and /."„. (m x2 -|-w) e-(ax2+c) gju^ ;^2.^

Ans. 0. (544)

3. Find the value of the definite integral

/S". e-«^sin. A;x, (545)

in which a is positive.
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Solution. Equation (527) gives, for the value of this integral,

4. Find the value of the definite integral

/^. c-°^ COS. A:z. Ans. . (547)

73. Prohlejn. Find the value of the definite integral

in which w, w, and ^ are positive integers.

Solution. The substitution in (548) of

sin. x=z y, z = sin.[-i]
3/

;

(549)

whence cos. 2;=: (I

—

1/^)^ , d^,.. x =z {I— y^) ^
; (550)

and when x =z 0, y = 0, (^^1)

x = {2n + i)rr, y=l; (552)

gives for the value of (548)

fi.y(l-y^)i(j'-l), (553)

which may be found by § 44.

74. Examples.

1. Find the value of the definite integrals

'(2 71+ ^) TT

. sin."" Xf
/•(2n+ i)7r

and / . cos.'"2

when m is an integer.
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. „^, . ,, . . 2.4 (m— 1) ,^^^,
Alls. When m is odd, it is — ^ (554)

3.5 m ^ '

1 1. o (wi—'ij ._ ,-v <>.».,v
when m is even, it is (2 w+ J) n, (555)

2. Find the value of the definite integral

/(2n+ i|)7r . ,.^-.
. sm. % . cos. X. (556)

Ans. 1.

3. Find the value of (548), when m and p are both even.

1.3.5 (m-l)X1.3.5...(p-l)
'• 2.4.6 (ro+ i))

(2«+J)=^-(557)

4. Find the value of (548), when m is even and p odd.

1.3.5...(« -l)X2.4.6....(j>-l)
'•

17375 ('«+^ '

2.4.6. ..(j) — 1)
°' (»»+l)(»,+ 3)....(»t+^)- (^^^)

5. Find the value of (548) when m is odd, and p even.

2.4 6....(m-l)Xl.3.5....(p-l)

1.3.5 (»»+?) '

2.4.6.....(m — 1)
"^

(P + l)(i' + 3)..('«+i'r ^ '

6, Find the value of (548), when m andp are both odd.

An.
i^-4-6^-(»-l)X2.4.6. (y 1)

2.4.6 (m +P)
or the same with the second answers in (558 and 559),

11
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75. Problefu. To find the value of the definite inte-

gral

. sin.'" a: cos/ x,

in which m, n, and p are positive integers.

Solution. The reduction may be made in this case, precise-

ly as in ^ 73, it being observed that when

x=zO, or =2 Tin, y = 0. (561)

By this means, the integral, when either m or p is odd, is

zero
i

but, when m and p are both even, it is

135 (,»-!) X1.35...^,,l) ^^^
2.4.0 {"^-j-p)

76. Examples.

1. Find the values of the definite integrals

«/

2 71 TV

, sm.'" X

/. cos/" X

when m is even.

1.3.5....(m— 1) ^ ,.^„,
^^^S' ^ , ^ — 2nTv. (563)

2 . 4 . 6 . . . . wi
'

4. Find the value of the definite integral

.9

. sm. n X . cos. k a:,

when h and Jc are integers. A7is. 0. (564)
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3. Find the values of the definite integrals

/ . COS. h X . COS. k Xy

/2w7r . , . ,

. Sin. h X, sm. A;x,

v.'hen h and k are integers.

Ans. It is zero, unless h 3= k,

in which case, it is n ^r, (565)
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CHAPTER VI.

RECTIFICATION OF CURVES.

77. Problem. To find the length of an arc of a

given curve.

Solution. If s denotes the required arc, its length is readily

found by ascertaining the value of its differential coefficient,

and integrating it.

Thus if we adopt the notation recently introduced by some

of the most eminent mathematicians, and denote the differen-

tial coefficient by the capital letter D, and denote by a small

letter annexed to D or /, the corresponding independent vari-

able, we have by (570-582 of vol. 1),

s =fDs =/.V [I + (^.3/^) =f:c ' sec. T = /, . cosec. r

=frV [r' + [D,, rf] =fW[^ + r' (A^
=zf^ . sec. £ =zf'(p.i- cosec. s. (566)

76. Corollary. The arbitrary constant, which is to be

added to complete each of these integrals, corresponds to the

indeterminateness of the point at which the measured arc

may commence. The condition, by which this point may be

determined, will be sufficient to determine the value of the

arbitrary constant; or to eliminate it and reduce the result to

the form of a definite integral. Thus, if the length of the
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arc is required, which extends from the value of Xq to that of

X
J,

it is evidently represented by the definite integral

5 =/^^ D s. (567)

78. Examples.

1. Find the length of the arc of the curve of which the

equation is

Solution. In this case, we have

D s = J (g^ + e-^)

s = J (e^ — e-^),

in which the length of the curve vanishes with x = 0.

2. Find the length of the arc of the parabola whose equa-

tion is 1/^ z=2 p Xi

counted from the vertex. (568)

3. Find the length of the cycloid from equations (130, 13J,

of vol. 1), the arc being supposed to commence with x.

Ans. 4 i? (1 — cos. i&)=S R sin.^ J &, (569)

and the whole length of a branch is 8 R, corresponding to

^ = 2 ^. (570)
11*
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Ans. r sec. «

=

4. Find the length of the liyperbolic spiral, the arc being

supposed to commence with (p r= (Pq. (5^1)

.„.«[v(..L)-v(.+,y+%(rf;^3)]-

5. Find the length of the logarithmic spiral, the arc being

supposed to commence with r.

The elliptic and hyperbolic arcs possess some peculiar prop-

erties, which deserve particular investigation.

79. Theorem. The two tangents^ which are drawn

from a given point to a given ellipse or hyperbola, make
equal angles with the two lines which are drawn from
the same point to the tivo foci.

Thus the two tangenti> P T and P T' (figs. 1,2,3), make

equal angles with the lines Pi^ and P F' drawn to the foci;

that is, the angles FP T and F' P T' are equal.

Proof. Each of the two tangents P T and P T' is, by ex-

amples 2 and 3 of § 131 of vol. 1, equally inclined to the

lines drawn from the foci F T and F'T.oxF'T and F T',

so that the angles

F Tt = F' TP , and F T' P — F' T' t'.

If then the triangles FTP and F' T ' P ^xe turned over,

around the sides TP and T' P, which remain stationary, so

as to fall into the positions TP S and T' P S\ the points

S and >S'' will be in the lines T F' and T' F produced if neces-

sary. The triangles P SF' and PS'F are, then, equal;

for the sides P S — P F,

P F' — PS' ;
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and the side i^' >S^ ^ i^>S^', because each of these two lines

is equal to the transverse axis, since in (fig. 1) each is the sum

of the two lines F T and F' T, or of the two F T' and F'T';

while in (figs. 2 and 3) each is the difference of the same two

lines. The angles SP F' and FP S' are consequently equal.

If the angle FP F' is subtracted from each of these angles

(fig. 1), or added to each of them (fig. 2), or diminished by

each of them (fig. 3) ; the resulting angles SP F and S' P F'
(figs. 1 and 3), or the excess of 360° over ,SrPF and S' P F'
(fig. 2) are equal. Hence F P T and F' P T', which ar^

the halves of SP F and >S" P F', are equal.

80, Corollary. If an ellipse (fig. 1) or an hyperbola (figs.

2, and 3) be drawn with the points F and F' for foci, and

passing through the point P, the tangent to this new curve at

the point P will be equally inclined to the two lines PF and

PF'; and, therefore, it will also be equally inclined to the

two tangents TP and T P.

81. Theorem. If froin any 'point of the ellipse PP'
(fig. 1), or of the hyperbola P P' (fig. 2), ivhich has

the points F P' for its foci^ tangents are drawn to the

ellipse T T' or hyperbola T T' lohich has the same foci,

the sum of the tangents P T and P T' exceeds the in-

cluded arc T T' by a constant quantity ; that is, by a

quantity which is the same, from whatever point of the

first ellipse or hyperbola the tangents be drawn.

Proof. Let tangents p t"
, p t' be drawn from a second

point p infinitely near P. The tangent yt" exceeds P T hj

the projection of Pp upon P T diminished by the arc Tt",

or

pt" = P T-\- P P' cos. TP S— Ti",
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In the same way,

2)i'=:PT'—P P' COS. T'PS'+T' t',

z= P T'—P P' COS. TPS-}- T' t'-,

whence
jpt"+2't' = PT-\-P T' + (T' t' — Tt").

But t"t' = T T' -{-{T'f — Tt");

and, therefore,

(j)t" + p t') — t" t' = {P T + P T') — T T'.

The excess of the sum of the tangents over the included

arc does not, then, increase by moving the point P a small

distance upon the curve, in which it is situated ; and conse-

quently this excess must be a constant quantity.

82. Corollary. Had an hyperbola P Q, (fig. 1), or an

ellipse P Q (fig. 2), been drawn, with the foci jP and P', it

might easily have been shown in the same way, that the excess

of the difference of the tangents P T and P T' over the dif-

ference of the arcs Q T and Q T' was constant. But as the

point P, in moving along the curve P Q, approaches Q, the

tangents and arcs decrease, and finally vanish when P coin-

cides with Q. At the point Q, therefore, the excess of the

difference of the tangents over the difference of the arcs is

nothing, and therefore this excess is nothing for every point of

the curve P Q.

Hence, if from any 'point P of the hyperbola P Q
(fig. l)j or of the ellipse P Q (fig. 2), which has the

points F a7id F' for its foci , tangents are drawn to

the ellipse T T' (fig. 1), or to the hyperbola T T'

(fig. 2)j which has the same foci^ the difference of the

tangents P T and P T' is equal to the difference of the

arcs q T afid q T'.
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83. Corollary. If the excess of the sum of the tangents

P r and P y over the arc TT' is denoted by 2 E, the two

preceding theorems give

PT+PT=QT-\-QT' + 2E
F T' — P T = Q T— Q T;

whence PT' = QT' + E
PT= QT-\- E. (573)

84. Corollary. Upon the transverse axis A A' (fig. 4) of the

ellipse, describe the semicircumference ^li Z.'^', dravy^ the

ordinates L T 31 and L' T' M', and join O L, O L', O being

the common centre of the ellipse and circle. Let, if O 5 is

the semiconjugate axis,

if z:^ LOB, tp' z= L' OB,
A=OA , B=OB,
x = OM

,

!/ = MT ,

z = ML
,

sz=:B T

%' = OM',

y> = M' T\
%' — M' L',

s' =zB T',

> (574)

1 ^'

we have, by section 163 of vol. 1, and by the triangles LOB,
LOB,

x-=zA sin. <p. %' = A sin. y', (575)

7? 7?
y^n — . z = - , A cos. <pz=: B COS. <p, y'=B cos. (p'

; (576)
JL -A.
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and, by differentiation, letting ^ be the independent variable,

D X :=: A COS. T, D 1/ = B sin. y. (^^^)

Ds^ = A^ C0S.2 <p
-f- J32 sin.2 cp

= A^ -\- (B^— A^) sin.2y

= ^2 (1 __e2sin.2T), (578)

Ds=A^{i—e' sin.2 g.)

;

(.579)

s=fA^{l—e'^ sin.2 ^ ), (530)

This integral is one of a class which are called elliptic inte-

grals. There are three integrals in this class, and the present

one is said to be of the second order. The following notation

has been universally adopted.

J [e^)z=z a/(1 — c2sin.2 9',) (581)

or the ^ may be used without the e (p, when there is no danger

of confusion,

E . ^ ^fl J, (582)

^^ E .{e cp)

—f'^ ^ {e 9). (583)

Hence s = A E . ^p. (584)

85. Corollary. Let the two tangents L R and L' R, drawn

to the circle at the points L and L', meet at R. By reducing

all the ordinates of the circle in the ratio of jB to A, the circle

is changed into the ellipse. By the same system of reduction,

the lines R L and R IJ will be changed into other straight

lines P T and P T', and these will be tangent to the ellipse,

because the points T and T' are the only ones whose ordinates

vi^ill be as small as the corresponding ordinates of the ellipse.

By joining O R, the right triangles O R L, O R L', and

ORN give
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^^==

—

T^ =—i^

—

Tr> (-585)
COS. LOR COS. h {'P— f/

)

ON= ORcos.RON='^''"-}y +#, (586)
COS. ^ {'p <f'')

RN=OR sin. RON= Aco^ii'r + 'f')

COS. h {V — y )

PN=?.RN=^^^Ul±p. (587)^ COS. ^ {(p (^')

The condition that the point P is upon an ellipse or an

hyperbola, as in fig. 1, of which the semiaxes are A' and B,

gives, by putting

where the upper sign corresponds to the ellipse and the lower

to the hyperbola, the equation

a sin.^ i (y + ./) 6 cos.^ H^/^ + ^0^ , ,.oo.

C0S.2 ^ ((f_ 9)
"f"

COS.^ i (y — V')
'

^ ^
or

a sin.2 i (ff + cp')-|-6 cos.2 J (^+9')=cos.2 j (9)--^/), (590

)

and

a— fl COS. ((p-\-(p')-\-b-\-b COS. {(p-\-(p')=:l-\-cos. {(p— <p')f (591)

a-\-b— l = {a— h) cos. {'p -\- q') -\- cos. (t— (p')

=:(a-b-{-l) COS. (p COS. f/''-|-(5-a-[-l) sin. 9 sin. 9^^'. (592)

If the point P were taken so that T" coincided with B,

(f'
would be zero, and if the corresponding value of y is de-

noted by (pQ , (59"2) gives

a+b — \ = {a — b + \) COS. cp^
; (593)
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which, substituted in (592), divided by a— h -\-\, gives

, ,
h— a -\- \ .

COS.
</'o
= COS. y COS. <f' -J

sin. v.sin. </>'. (594)
a,— -j- 1

But the condition that the given ellipse has the same foci

with the curve in which P is situated, gives

A^—B^ =zA'^^B'^=z——^, (595)
a

Hl-'hHl-')'
(596)

,.^1 ^^-, Ml-«) _ a-h
A^~ a (1—6) "~«(1—

6)

But, by (593),
/«+6—1\2 4 a (1—6) ,^^^,

sin.

2
4 (a — J)

, _ {b-a+lY ^ _ .
b-a+l

. ,503.
^^0 - (a_6+l)2 ' ^^0 -± ^ZZj+r- (^^^)

which, substituted in (594), gives

COS. ({q = COS. q; COS. (p' i sin. y) sin. ^' ^ . g)^. (599)

Arid this equation of condition is the same^ with the con-

dition that the poiiit P of fig. 1 is upon an ellipse or

hyperbola having the same foci with the given ellipse^

the upper sign of (599) corresponding to the ellipse^

and the lower to the hyperbola.

86. Corollary, If a spherical triangle (fig. 5) be drawn, of

which the sides are 9, H>' and </>q , and the opposite angles

^» ^'i ^0 » ^^® ^^^^ ^y (3^1) °^ Spherical Trigonometry,
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COS. (fin COS. (p COS. m'
COS. flo

= '-^—. .-^-- '—
;

sin. (p sin. (p'
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t — — A tan. X{(p — if') .

*^

(611)
COS. V^

"^ ^ ^ COS. T//

'

M' N ^ , , ,, COS. <Y)' ,n^cx^
t = = A tan. ^ (t— 'P') .

^
rr

. (612)
COS. ^Z "^ ^ ' COS. V^'

'

But the construction of TP gives

» JB
tan. V^= -i

tan. (/), tan. y r= — tan. H>'
; (613)

whence

_l^=V(l+tan.= V')=V(l+5-ta,i.= .)

irr\/(l+tan.2 (f—g2 tan.2 (/))=\/(sec.2y—gS tan. 2 ^

=::sec. 9' V (1—e^ sin.2 T) z= sec. 9 ^ . <^, (614)

z= ^ sec. (p cos. a.

In the same way,

1 J tp' cos. &'

(615)
COS. '^j' cos. y' cos. 9'

which, substituted in (611 and 612), give

t =A tan. J (f— 9') ^ g' — =F ^ tan. J (^—9)') cos. q (616)

<'=:^ tan. I (<r— 9^') ^ <?'= -4 tan. ^ (9—9') cos. fi'. (617)

88. Corollary. When (/ is zero, (616 and 617) become

^0 = i tan. ^ -Po COS. ^0 (618)

fj = A tan. ^ ^o- (619)

89. Corollary. If the semicircle A R A' with its tangents

R L or R L' were turned round ^ A' as an axis, so as to be

brought above the plane of the ellipse, until the angle which

the two planes made with each other were one, whose cosine
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was equal to the quotient of B divided by A, the ellipse and

its tangents would evidently be the projections of the circle

and its tangents. The angles which t and t' made with the

tangents to the circle of which they were the projections,

would evidently from (616 and 617) be ^ and &'. A consid-

eration of the spherical right triangles formed at the points of

meeting S and S' of the tangents, would lead anew to the

same equations which we have already obtained.

90. Corollary. The equations (616 and 617) give, by using

the signs as in (607),

t' :±: tz=A tan. ^ (9—9') (cos. &' — cos. 6)

=2 A tan. J- (9—g)') sin. ^ (^'-f 5) sin. ^ (&—6'). (620)

But by (350) of Trigonometry, and fig. 5,

sin. ^ (&'+&) : sin. ^ {&—6')=ian. | 9o : tan. ^ (9—(Jp'), (621)

or sin. ^ {&'+&) tan. ^ {(p--(p')=s\n, ^ (6—6') tan. ^ (p^ ; (622)

which, substituted in (620), gives

t' ^t =z2 A tan. } (o^ sin.2 ^ (&—&')

= A tan.
2^ ^0 [1—cos. (6—6')]. (623)

In the same way,

to it #0 = ^ tan. \cfo{^ + COS. ^o)- (624)

Hence

ti-t'^ (to—t) = A tan. i
(To [cos. (6-3') + cos. 6 J. (625)

But by (319) of Trigonometry,

cos. &Q =: — cos. (6—6') -\- 2 sin. 6 sin. 6' cos.^ J (jp^ , (626)
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which, substituted in (625), gives by means of (604),

t^—/'± (^0— = 2-4 tan. h (f^ cos.2 1 cp^ sin. 6 sin. e'

z= A sin. cpQ sin. & sin. ^'

=. A e^ sin. cp^ sin. q) sin. (p'. (627)

91. Corollary. If Tq (fig. 1) is the point for which (p be-

comes qpQ, we have

A E(p = TB=:s, ']

A E w' — T'B— s' I^-^-
V (628)

AEcp^z=z QB — s^. J

When the point P at which the tangents meet are situated

upon the secondary ellipse, we have

TT' zzzs — s'
\ (629)

and because the excess of the sum of the tangents over the

included arc is constant,

or s,-s + s'.=.t,+t;,-{t+ t'y (630)

Hence, by (627 and 628),

E(pQ-\- E cp'— Eqi = e^ sin. (p^ sin. cp' sin. (f, (631)

m which g)^, cp' and cp are subject to the condition (599),

identical with one of the following conditions, easily deduced

from the spherical triangle of fig. 5, by means of (605) and

(606) ;

cos. (p r= COS. cpQ cos. <jd' — sin. <Pq sin. cp' j gr, (632)

cos. cp' = COS. q)Q COS. cp -[- sin. cp^ sin. cp j cp', (633)

Bill if the point P is situated upon the hyperbola, we have

Q T=zs—s,
, Q T'=s,-^s', Q T^=s^-^s, ; (634)
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and because the excess of the difference of the tangents over

the difference of the arcs counted from Q is constant,

t'— t-{-S'—2s^-\-s'=t'o— to + So^2s^,

s+s'— s^z=to— t,— t' + t. (635)

Hence, by (627 and 628),

E (p -\- E cp' — E Vo = e^ sin. (p sin. (p' sin. % , (636)

in which (p, </ and ^o are subject to the condition (599), which

is identical with (633), or with the following condition ;

COS. (p = COS. To cos. (p' -\- sin. (p' ^ 9. (637)

92. Corollary. The proposition contained in (636) is, evi-

dently, the same with that of (631). It follows, therefore, that

the point of meeting of the tangents drawn at the extremities

of the arc s^— s of (635) is upon an ellipse, which passes

through the point of meeting of the tangents drawn to the

extremities of the arc s', and which has the same foci with the

given ellipse ; the same may be inferred with regard to the

tangents drawn through the extremities of the arcs Sq— s' and

5 of (635). It follows, in the same way, that the point of

meeting of the tangents drawn at the extremities of the arc

5o
— s' of (630), is upon the hyperbola which passes through

the point of meeting of the tangents drawn at the extremities

of the arc s, and which has the same foci with the given

ellipse.

93. Corollary. When the points T and T' coincide at the

point Q, (636) gives

2 jE y
J
:= c2 sin.9 ,;,j sin. To + £ To

.

(638)

94. Corollary. The supplements of the angles n—5, it—^',

n— ^0 of the triangle of fig. 5, may be the sides of a spherical

12*
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triangle, of which, re— (/), it— 9)', n— (f^ are the opposite

angles. In this case, since

sin. (n — fl) = sin. ^ and cos. (^r—^)=— cos. fi, &C. (639)

and

1_ sin, y _ sin, (p' _ sin, yp

e sin. & sin. ^' sin. ^0 '

we have, by putting

^'J=zJ,(^^ . A=^^l_-1 sin.sA, (641)

E'.^ =J*l ^'.^; (642)

E'.& 4- E'.&' — E'.Bo^-^ sin. & sin. 6' sin. fl"
'

e

= e sin. H> sin. g'' sin. y. (643)

But since the differentiation of

e sin. If =: sin. &

gives ^ ^^ £Cos^ ^ ecos^
^

COS. 5 J . (p ^ '

we have i^, ^ f^ ai a — T^ ^^eE'. 6 =/ ^'. Q =. t . COS. f/)

We have also, by (581),

COS.2 q) r= 1 — sin.2 y = 1 ^ +^ (^ '/')2, (647)

which, substituted in (646), gives

i — e- /*(? 1 .1 Z*^

1 __e2 /»,^ 1 1
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Similar equations may be found for E' 6' and E' 6^, all of

which, substituted in ((543), give

1—e^r pp J^ ,

/»r J ,
/•To J_"j

e Ly ^'^ */ ^'f J ^'^J

-\— {E. (p-\-E . (f'
—E . yj^ic sin. 9 sin. 9^' sin. </>"

; (649)

whence, by (636),

/"^ J_ + /"" _L _ /•"» J_ = 0. (650)

95. Corollary. The integral

is the elliptic integral of the first kind, and is denoted

by P . (p, that is,

Hence, by (650),

F . ./> + P. ,/ — F,n = 0, (653)

where 9, V' and 9'o are subjected to the same conditions as

in (636).

96. Corollary. In the same way in which y is connected

with (f' by means of the construction of fig. 1, in which P is

upon the ellipse, giving by {Qo^ and 631) the equation

F. T =. F. <p' + JP. yo

,

(654)

other points, v", ^'", &lc. might be found, such that

Fcp' - F. <p" + F. (po

F cp" z=z F. q>"' + F.(po, &c ; (655)
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whence F.<p =^ F cf" -\-^ F. cp^

z=Fcf"'-\-SF.(ro

= F.cp, + n F. cp,
; (656)

or F.cf— Fcp.zzzniF.cp-^Fcp'). (657)

97. Corollary. If in equation (656) (p^ vanishes, (656) be-

comes F. (p = 71 . F (pQ f (618)

and it is obviously easy to obtain a geometrical construction of

the corresponding condition between cp and ^^ , by taking

several successive tangents, BTP, PT'P', &,c. as in (fig. 5),

and the points P, P', P", &c., correspond to q), cp', cp", &,c.

The tangents might also be drawn to the circle, from the suc-

cessive points P, R', R", &c., of the ellipse, of which the

semiaxes are A' and . A similar construction, in which
B

the series of tangents does not commence with JB, would sat-

isfy the conditions of (656 and 657.)

98. Corollary. The value of cp for the arc B T (fig. 4) is

equal to the angle which the corresponding tangent L S to

the circle makes with the transverse axis A A'. Denote

by X the angle which the tangent S T io the ellipse makes

with the conjugate axis, so that

^ = J
TT _ v'. (659)

When the plane of the circle is elevated above that of the

ellipse, the spherical right triangle formed about S for the

centre of the sphere, has cp for its hypothenuse, and & and r for

its legs. It is represented by (fig. 6), and if « is the angle

opposite to 6f and r the angle opposite to r, we have
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COS. a rz: — = ^(1 e~) = COS. Q Sin. V z= COt. (p cot. V' (660)

sin. « — e, . (661)

COS. xp rz: sin. <p sin. v, (662)

COS. fz=z sin. a sin. yj = e sin. yj. (663)

These equations give by the differentiation of (660), by

representing by jPj the value of JT corresponding to a right

angle, and observing that when <p is zero, r is also zero, and

V a right angle ; but that when 9 is a right angle, t is also a

right angle, and V is zero,

J {e .(p) = COS. 6 = ^"
, , (664)

COS. « sin.2 op

Jjyj .(p=— , (665)^
C0S.2 v^ ' ^ '

2
2>i/; . <35 sin. V sin.2 go sin. go 1

^(e.gp) COS." ^ cos. V^ sin.

1 1 1

(666)
^(1—cos.^r) \/(l-e"sin."^i/;) ^(e.V)

J o^i^'f) J ^ ^(e.g')

V^ -^(e-V') t/ j{c.yj) J j{e.yj)

= F,—F{e.y^); (667)

SO that Fcp and -Fv^ are two functions whose sum is

the function Fi which is called the complete integral^

and the two functions are called complementary with

regard to each other, as well as the angles w andV', upon

which they depend.
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99. Corollary. The three angles V^, v^' and ^q^ which

correspond to <r, w' and (p^ , satisfy the equation, equiva-

lent to (653),

F. ,p + F.y.'— F. v^o ^ 0, (668)

when they are subject to the condition, equivalent to (599),

COS. V'o =^cos.V' cos. yp'— sin. V' sin. V^' ^ V^o • (669)

100. Corollary. Denote by 2 ;ir the angle, which FT
(fig. 1) makes with the transverse axis. The angle, which

F T makes with the tangent, is

jTT + t/^ — 2z=:J^ — (2;^— V^). (670)

The projection oi F T upon the tangent is, therefore,

i^TXsin. (2;.-v), (671)

while that of F' T upon the same tangent is

F' T X sin. (2;^— V); (672)

the sum of which is

{FT + F' T) sin. [2x — ^) = 2 « sin. (2;^— V'). (673)

But this is the projection of FF' =z 2 ae upon the same tan-

gent, which is 2«esin. V^; (674)

and therefore, we have the equation

sin. (2 j^— V^) = e sin. V^

;

(675)

whence, by (663),

2x — ->p = ^7v-.v, (676)

The equation (675) gives by putting

'" = TT^' (677)

^." cp=^ {e", cp), (678)'

F':<p=F{e",cp); (679)
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~
(680)

tan. V= ^'"-^^
, _L = A{e+iy-^es\n.''x)Je+\ y.x

e-(~^os- ^ X ' COS. If e-\- cos. 2 x c-|-co3. 2 x
'

/^ X 14-ccos. 2 XJ yj= cos. (2 X — V') = -^ . cos. i//, (681)
e -\- cos. 2 X '

_, 2 cos. (2 y — v^)
Z>;^.^= ^^- ^—

, (682)'^
cos. (2 X—V) -|- e COS. V^

'
^ '

i>;f.V_ 2 2{e+\)j".x
^ ip COS. (2 yir—V^)-f-c COS. v^ l-J-e'^-(-2e cos. 2 x

"
(e + ir(y'.>rr ~(e+l)/'.;^' (683)

J J^ J
X Dx '^P __

J ^J

// 2 2 p"

( . M^// -^-Jr. ^"-
"^ = 4- ^"- ^- (6B4)

(e+l) ^"./ c4- 1 a/ «

101. Corollary. If ;r, z', -^'q correspond to V^, V', % , we
have the equation

i^."z + i^.";?'— J^.";ro = 0, , (685)

with the condition that

COS. xq = cos. X COS. X'— sin. x sin. / ^" ;ko . (686)

102. Corollary. In the same way in which F' x is ob-

tained from F^^ another function F"x^ might be obtained

from F' Xf and so on, until a series was obtained in which the

values of e, e", e"', &,c. form a series of eccentricities, in which

each differs less and less from unity. It may be shown that

e" differs from unity less than e does, for (677) gives

(689)

1-^ ~(i+v^)'^(i+^)~(i+v^)-^(iW '^'
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in which the factor of 1

—

e is evidently less than unity,

and decreases rapidly with the decrease of 1

—

e. The value

of F. (p may therefore be made to depend upon a value of

F= {e„. cp„), in which c„ differs from unity by as small a

quantity as we please, and we have

(690)

103. Corollary. In the same way F (ecp), by reversing the

above process, may be made to depend upon the value of

F (cn (fn)) ^^ which e„ is as small as we please. In this case

e" may be found from e by reversing the accents in (677) and

solving the equation with regard to c", which gives

104. Corollary. If we put in (677)

e — tan.2 ^ ?, (692)

we have e"= sin. /5. (693)

105. Corollary. We have by (681, 680, 683),

COS. 2 X = (694)
J -^— e COS.
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/V^ ( J yp-\-e COS. v^)2_ /» ^' 2(^T/;)^4-^ e cos. ^p J yj-( l-e^)

/^ /I -^ /•V 1—

e

Z*'/^ « COS. 1//

T+c ""^ 2"^ "^^ 14-e

= ^-ni-e)F^+'-f^, (696)

which may serve to deduce the value o^ E {e . (f) from those

of E.(e„cp„), in which c„ is very small, or differs but little

from unity.

106. Corollary. Potential functions may be applied to the

hyperbola very nearly in the same way in which circular func-

tions have been applied to the ellipse. Thus if we put

A Cos. (p = X, B Sin. (p = y, (697)

X and y are the coordinates of the hyperbola, of which the

equation is

(i)-(fy->- («^«)

The length of the hyperbolic arc is, by putting

^ = v(l+2), (699)

s=Bfs/ (l + c^ Sin.s^)).

If we let

^ (c (t) = \/ (1 + e^ Sin.'-J q) (700)

ar {ecf)= /'^^(eT), (701)
»/

we have s ^= B ;j {c(f). ("62)

107. Corollary. The condition that the point of contact in

(fig. 2) is upon another hyperbola which has the same foci with

13
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the given hyperbola, is expressed algebraically by the equa-

tion

Cos. </)q := Cos.
(f>

Cos. cp'— Sin. cp Sin. (f'^ r ^o t (703)

and corresponds to the equation

3" (f'+ 3" <?' — a- <JPo == c~ Sin. (jDq Sin. cp Sin. cp', (704)

in which cp', qi^
, cp, correspond respectively to the last and first

points of the hyperbolic arch included by the two tangents, and

to the last point of the arc of which the first point is the ver-

tex.

108. Corollary. In the same way, if we put

we have, with the condition (703), the equation

^ V' +dr V —d n = 0. (706)

109. Corollary. When e was changed into its reciprocal

in §94, it became greater than unity, and ceased, therefore,

to correspond to an ellipse. It may easily be shown that, in

this case, however, the transverse axis and the angle cp become

imaginary of the form A \/— 1 and cp s/— 1 ; so that the ellipse

changes into the hyperbola, of which B is the transverse axis,

and A the conjugate axis ; and the circular change into po-

tential functions. This case is, therefore, the same as the one

just investigated, and it may be remarked, that the equilateral

hyperbola takes the place of the circle.

110. Corollary. If ^ is determined by the condition that

cos. a = Tan. cp, (707)
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we have sin. ^ =: , cot. ^ =z Sin. <jp; (708)
Cos. (jp

whence Dq.(p = — cosec. ^

e jj(\ —pr- sin.2 5)

F.^^^s/ (1+^2 cot.^O- ^
3i„; a

(^^^)

= e cosec. 5 ^. (e'". 5), (710)

if ,-^v'-^^. (711)

Hence
•9? 1 ph.^ D&^

j: '(p =
6 r (po' r (p J

111. Corollary. Let w be so taken that

Sin. <p = - tan. w

;

(713)
e

and we have, by putting

e' = V(l-^,), (714)

_. /v/ (1— e'2 sin. 2 w) ^ (e' w)
Cos. (f

=: —
cos.
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Hence the length of the arc of the hyperbola is

S=B 3;.(p:=Br^^ Dai <P . F .
(f

B /»« 1

C -# COS. 2 (a J' vi)

_B /*w 1 B /^o, sin. 2
t,j

~
C J J' oi e J ^ C0S.2 OJ ^' w

(718)

:r: _ P' w

—

B e E' o)-\-B eg { / w-j- ^ -/
)

,

e •/ \ ^ *"
/

But, we have,

,

(l-e'2)tan.2cj ^' c. ,rl-c'2 -i

.</' w e'2 sin.2 w

C0S.2 CO -i' CO

==2>.(tan. CO ^'(v); (719)

which, substituted in (718), gives

s = - F'. oi — B e E'o^-\-Be tan. w j' «

= V(^^+ ^^)r^^^ — ^'''^ + tan. CO ./'wl. (720)
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Arc of curve of double curvature.

112. Examples.*

1. Prove that the tangent let fall from the centre of the

hyperbola upon the tangent is-in the notation of § 111.

Be tan. to ^'w — ^(^2_|_^2) tan. « ^'<« (721)

2. Prove that if e" and x are so taken that

sin. {^x— f") = e' sin. % (723)

the length of the arc of the hyperbola is

5=rV(^'+^')[JS''"-2(l+e')^">^+2e'sin./+tan.c. /J. (724)

113. Definition. A curve of double curvature is a

curve all the parts of which do not lie in the same

plane.

114. Problem. To find the length of an arc of a

curve of double curvature.

Solution. Since the length of an infinitesimal arc of the

curve is equal to the distance apart of the two infinitely near

points x,y,z and x-\-dx, y-\-dy, z-\-dz\ or, algebrai-

cally,

d s —s/ {dx^ -\-dy^ -\- dz^) ', (725)

the length of an arc is

s =f^(Dx2-{-Dy2+Dz2), (726)

*The examples will not hereafter be strictly confined to the subject

of the chapter, but will extend to any exercises suggested by the in-

vestigations in the chapter.

13*
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Helix.

115. Examples.

1. To find the lencrth of an arc of the helix.

Solution. The helix is a curve formed by a string wrapped

round a cylinder in such a way as to make a constant angle

with the side of the cylinder. Hence, if the plane of xt/ is

that of the base of the cylinder, if the centre of the base is

the oricrin of coordinates, and if

Q z= radius of the base of the cylinder "^
^

(p =: the angle which the projection of radius vec-
|

tor^on the plane of a?y makes with the ! fjcy^x

axis of X,

a :=. the angle which the string makes with the

side of the cylinder,

the equations of the helix are

x^=:q cos. 9', y = ? sin. qp, 2 = ^ <r cot. o. (728)

Hence

Q ^

sm. «
(729)

2. To find the length of the arc of the curve formed by

winding a string round a solid of revolution, in such a way as

to make a constant angle with the meridional arc of the sur-

face. The meridional arc of a surface of revolution is the

intersection of the surface with a plane passing through the

axis of revolution.
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Ans. With the notation of the preceding example, the

length of the arc is

s=z sec «/, . V [l+(^. 0^] = s'sec. «; (730)

where s' = the arc of the meridional section, corresponding

to the required arc s.

The angle ^ may be substituted for z in (730) by means of

the equation

/Z>. s'—-— • .("3i)

3. To find the length of the arc in Example 2, when the

solid is a right cone.

Ans. If (? =1 the angle which the side of the cone makes

with the axis,

Zq = the value of z at the beginning of the arc

s =: (z— Zq) sec. « sec. ^

if sin. ^ cot. a

= sec. a sec. ^ . e. ("^32)

4. To find the length of the arc in Example 2, when the

solid is a sphere j that is, to find the length of an arc of a

rhumb line.

Ans. If J? = the radius of the sphere "^

6 = the inclination of the radius vector I

to the axis of z, r C'^S)

6q = ink value of ^ at the beginning of the i

arc,

the length of the arc is

s = R{&— &,)sec. a (734)

and (f may be substituted for ^ by means of the equation

(p = log. tan. J ^ — log. tan. J 6^ . (735)
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5. To find the length of the arc in Example 2, when the

solid is an ellipsoid of revolution.
^

Ans. I^ A = the semi-transverse axis, ^

e = the excentricity, \ (736)

6 corresponds to <p in (574), )

the length of the arc is

5 == A sec. a{E& — E ^o), (737)

and (p may be substituted for ^ by means of the equation

, = log.
(y-c°s.^)sin.^o ^ '"'";+ ^^

, (738)

in the case of the oblate ellipsoid. But in case of the prolate

ellipsoid, the equation is

J & -L. ^ n —. e^) sin. &
, , COS. ^o

<p = log- T . /M—riVT^r-:- + ^^g-
^^o + /v/(l — e^) sin. ^0 cos. ^

+ ^ tang.-^^
^in. ^ - sin. M

^^(l_e2) S l-sin.fi-sin.^o+2sin. asin.ao
^

116. Problem. To find the shortest line, which can

be drawn, subject to giveii conditions.

Solution. The variation in the length of the curve arising

from any very small change in its equati(|j;i, which may be

made, consistently with its conditions, is in general propor-

tional to the magnitude in the change of the equation ; it

must, therefore, change its sign with the change of sign in the

variation of the equation. Thus if ^ z denote the variation of

the equation, we shall have for the variation in the length of

the curve,
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ds= D,s .Sx + ^D^^s.Sx^ + Slc, (740)

the second member of wliich is reduced to its first term when
5 a; is an infinitesimal. But, in the case of a maximum or

minimum, S s should not change its sign with <^x, and therefore

this first term should be wanting, that is, the variation of 5

should be zero, while the second variation of s should not van-

ish ; or if the second variation should chance to vanish with

the first, the third variation must also vanish. The principles

of finding this class of maxima or minima are the same with

those of B. II. Chap. VIII. But the process of finding a

maximum or minimum of a definite integral, such as

dependent upon a variable function, is quite different from that for

the ordinary maximum or minimum ; and such problems are

often considered by themselves, under the title of the Mdhod
of Variations.

The function (741) can vary in two ways, either by the

variation of the functions upon which s depends, or by the

variation of the limits of the integration. The condition that

it is a maximum, is, therefore, expressed by the equation

(Jpi Ds=zss,—Ss^-\- r^^ SDs-0. (742)

The value of Z> s usually depends upon many variables,

t, X, 1/, &LC., and their differential coefficients, in such a way

that, if t is taken for the independent variable, any change in

the functions by which a-, y, &,c. depend upon t, gives the

equations

ds,=Ds,.dt,, Ss^z=:D So . ^t^, (743)

d Dsz=X3x+YSi/+&Lc. -\-X'S Dx-\~Y'3Dij-{-&.c.

+X" i 2>2 a;_|_ Y" $ Z>2 3,-|-&,c. ; (744)
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which, substituted in (742), give

-\- X" 8 D"^ xJ^&LC. +F,Jy+&c.)=0. (745)

But, by (262),

/. X' d D x=f. X' D 5 x=X' d x—fDX' . $x (746)

/. X" d D^xz=f. X" Z/2 8xz=iX" D 8 X—fDX". D $ x

—X' D d x-D X". d x+f i>2 X". S X, &LC. (747)

The terms in the last members of (746 and 747), which are

not under the sign of integration, must, in passing to the defi-

nite integrals, be referred to the limits of integration But it

must be observed, that the variations in (746 and 747) are

taken upon the supposition that the independent variable t

does not itself vary, and that only the functions vary, by which

Xj 7/, fcc. are connected with it ; whereas the limits of inte*

gration may themselves necessarily vary with a change of this

function, and therefore t^ and t^ are supposed to vary. If,

then, 8' Xq , ^'^Q, iS^c. denote the variations arising from

the change of the functions, the values of the complete varia-

tions are

3x=zd'x^-\- Dx^.St^, 6lc. (748)

whence 8' x^z=z ^ x^ — D x^ J t^, &c. (749)

Hence (746 and 747) give

f^^^ XdD x—X[ 3'x^—X'o -5'

^o—fl^ DX.dx (750)

^^X'5D^xz=X[ Dd'x^—DX'; d'x^—X'^DS'x^f
—DX; 6'x^+J^^^^ D^X". <5 X, &,c. (751)

in which S' is given by (749).
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These equations, substituted in (745), give

+(X;- &c.) D S'. x^—iX'^-SLc)D ^' z^-f&,c.

(752)

The terms of (752), which are under the sign of integration,

express a variation which belongs to each point of the curve

independently of all the other points, and which must, there-

fore, be equal to zero for each point ; which gives the general

equation

{X—D X'-\-D^X"—&LQ,) S X+&C. = 0. (753)

The variables, t, x, y, &c. may be bound together by some

conditions, represented by the equations

i = 0, M=:0, (754)

in which L, M, may be functions of t, x, y, &,c. The varia-

tions of these equations will then give linear equations between

^Xj ^y, &:,c. from which the values of some of the variations

iXj <5y, &c. can be determined in terms of the others. These

values, substituted in (753), will reduce the number of varia-

tions in (753) to the smallest possible number, and those which

remain will be wholly independent of each other, and there-

fore their coefficients must vanish. The equations, thus ob-

tained from making these coefficients equal to zero, will be

the required equations of the shortest time.

If, in addition to the equations (754), the limits of the curve

are subject to peculiar conditions ; these conditions, with those

of (754), referred to the limits of the curve, may be combined

with the terms of (752), which are not under the sign of in-

tegration, and the equations for determining the extreme points
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of the curve may be found by the same method by which the

equations of the curve itself are found.

117. Corollary. The preceding process for finding

the minimum of (741), may be apphed to finding the

maximum or minimum of any definite integral, such

as

'• V, (756)

by changing in the various formulae D s into F.

118. Corollary. The number of the variations ^x, Sy, &lc.

determined by (754), is plainly equal to the number of the

equations of (754). The number of the variations left unde-

termined, therefore, in (753), and consequently the number

of equations obtained from (753), is equal to the number of

the variations not determined by (754). The whole number

of equations then of the required curve, is equal to the whole

number of the variables 3", y, z, &<c., among which the inde-

pendent variable is not included; that is, there are just as

many equations as are required to determine the curve.

In the same way, it may be shown that there are just

enough equations to determine the extreme points of the

curve.

119. Corollary. The following method of eliminating the

variations from (753), which are determined by (T54), is

more symmetrical than the usual one, which is proposed in

§ 116. Multiply the variation of each of the equations (754)

by some quantity, such as ^., u, &bc. and add the sum of all

the products to (753). The values of /, u, &lc. may be de-

termined by putting equal to zero, the coefficients of just as
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many of the variations ^ x, si/, &,c. Tiie substitution of these

values of x, n, &:,c. in the other coefficients, will reduce (753)

to an equation, from which as many of the variations have dis-

appeared as there are equations (754). The remaining co-

efficients, being those of independent variations, must therefore

be equal to zero ; that is, each of the coefficients in the sum

formed by the addition of the products of (754) by x, ii, &lc>.

to (753), may be put equal to zero, and x, ,«, Sfc. may be elim-

inated from the result by the usual process.

120. Corollary. If all the variables had been, in the outset,

eliminated from Ds (741) or F (75G), which could have been

eliminated by means of the equations (754), the remaining

ones would have been independent of each other, and would

have given, at once, from (753),

X—D X -\- Z>2 X" — &LC. = 0,

Y— DY' + 2>-^ Y" — &,c. = 0, &.C. } (757)

If, moreover, certain of the variables, and among them the

independent variable, had been taken so as to be the very

functions of the variables which were constant under the ad-

ditional conditions at one of the limits, as that of ^q ; we
should have for those variables

8t^={), &.C. (758)

and there would have been no additional conditions between

^ ^0 » ^Voi ^^-y which in this case would not differ from

•5' Xq
,

5' yQ , fee. ; so that (752) would give

X',—D X;'4-&c.=0, Y',—D F'J-f&c.=0, &,c. (759)

Xq—&c. = l"o—^G- — 0, <S6C. (7G0)

of which (759) are the same with (757) referred to this ex-

14
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tremity. The equations (758), however, involve the hypothe-

sis that there is no condition, by which both extremities are

bound toiiether.

121. Corollary. If the curve is referred to rectangular co-

ordinates X, y, 2, of which X is the independent variable, we
have

Ds=^ {\+D y^+D ^2), (761)

^Ds^p^^Dy+^^Dz; (762)

whence y—^ Z —^— )~ Ds ' ~ Ds '

V (763)

Y—0, Y"-0,&LC. J

These equations, substituted in (753 and 752), give

'Ds,ix-Ds,Sx, + ^i-y^ +
Dz

§f°''^o-^^'% = 0. (765)

122. Corollary. Any condition between the rectangular

coordinates of the preceding article must be expressed by an

algebraical equation, which may be regarded as the equation

of a surface iqjon which the shortest possible line is to he

drawn.

If the positions of the axes of coordinates are so taken that

one of the axes, that of z for instance, is perpendicular to the
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surface at one of the points x, y, 2, through which the curve

passes, we should have, at this point,

Sz=zO, (766)

and, therefore, by (761),

n(p^)=0. (767)

But the plane of the axes of x and 1/ is, at this point, parallel

to the tangent plane, and

Ds
is the cosine of the inclination of the curve to the axis of r/ ;

so that by (767) this inclination is constant.

Hence the direction of the shortest line drawji vpon

a surface^ has at each point no curvature in the direction

of the tangent plane ; it has, then, less curvature at

each point than any other curve drawn upon the same

surface through that point, and having the same tan-

gent with it ; that is, it has the tnaximinn radius of

curvature of all lines which have a cominon tangent^

and are drawn upon the same surface ; it coincides, then,

with the direction of a riband which is woujid round

the surface in such a way as to bend only towards the

surface, without bending in the tangent plane either to

the right or left.

123. Corollary. Upon any surface whatever, such

as a cylinder or cone, formed by the bending of a plane,

and which is designated as a developable surface^ the

shortest line becomes a straiglit line icJien the surface

is bent back into a plane ; and it may be remarked, that
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any surface formed by the motion of a straight line,

which remains in two successive positions in the same

plane, is developable.

124. Corollary. It is obvious, from (353 of vol. 1),

that the hyperboloid of equation (350 of vol. 1) is not de-

velopable, and that therefore the preceding corollary is

not applicable to it, although it may be generated by

the motion of a straight line.

125. Corollary. The shortest curve upon the sphere

is an arc of a great circle.

126. Corollary. The curve drawn upon the surface

of the earth, u])on the principles of *§^ 122, is called the

geodetical curve^ and, therefore, this is the shortest curve

which can be drawn upon the earth^s surface.

127. Corollary. If the position of the axes is taken as in

^ 122, but with the condition that the axis of x shall be the

normal to the surface, we have for the point a^o ' i^'o » ^o »

^^0=0; (768)
whence, by (765),

Dy,5y, + Dz,5z,^(i, (769)

Since the point a;^^
, y^ , z^ , is upon the given surface, any

additional condition for this point would be equivalent to re-

quiring it to be upon some other surface, so that it would have

to be at the common intersection of the two surfaces. The

first member of (770) expresses, then, the tangent of the

ancrle which this intersection makes with the axis of z, while

the second member expresses the negative of the cotangent of

the angle which the required curve makes with the same axis.
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The shortest curve which can be drawn upon a given

surface from one curve upon that surface to another

curve, or to a point upon the surface, is perpendicular

at either extremity to the limiting curve at that ex-

tremity.

128. Corollary. If ihe required line is subject to no con-

dition except at its extremities, the variations in (764) are

entirely independent, which gives tiie equations

that is, since the direction of the axes is wholly arbitrary, the

required line has no curvature in any direction, and is^ conse-

quently, a straight line.

If the extremity x^ , ?/q , Zq , is subject to a condition, that

it must be upon a given surface ; the norma! to that surface

at the extremity of the line may be taken for the axis of Xq
,

which gives

sx^:^.{), (772)

and leaves ^y^ and ^z^ arbitrary ; whence, by (765),

^= 0, ^-^ = ; (773)D So IJ Sq

that is, the cosine of the angle which the required line makes

with the surface in each direction is zero ; or, in other words,

the required line is perpendicular to the surface.

If the extremity z„
, y^ , Zq > is subject to two conditions,

that is, if it is at the intersection of two given surfaces ; let

this line be the axis of Zq , and we have

^Xoz=0, ^yo = 0, (774)

14*
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whence (765) gives

fe = 0, (775)

or the required line is perpendicular to the given line. Hence

The shortest line which can be drawn between two

given surfaces, or two given lines, or a line and a sur-

face, or a point and a surface, or a point and a line, is

the straight line which is perpendicular to the surface

or line at the corresponding extremity.

129. Corollary. If the shortest line is required to be drawn

upon a surface of revolution, let the axis of z be the axis of

revolution, let u be the projection of the radius vector upon the

plane of x y, and let (p be the angle which u makes with the

axis of oc ; and we have, by taking z for the independent varia-

ble,

Ds = ^ {u^ D (/'2 ^ Bu^+l), (776)

But by the equation of the surface, w is a given function of

2, and, therefore, not subject to variation. Hence

3Ds= .^
^

. (777)

The equation gives, then,

D --^ = 0, (778)U s

the integral of which is

-jf^ = C; (779)
JJ s

in which C is an arbitrary constant, and the independent va-

riable may be any variable whatever, because it is only the

ratio of two differential coefficients which enters into (779).
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130. Examples.

1. To find the shortest line which can be drawn upon the

oblate ellipsoid of revolution.

Solution. Let A be ihe greater, and B the smaller semi-

axis of the generating ellipse, and c the eccentricity ; we have

for the equations of the ellipse, as in (575 and 576),

X ^1 A sin. ^, y =B cos. &
; (780)

and X in this equation is the same with u in (779), and y is

the same with z. Hence (776 and 779) give, by taking ^ for

the independent variable, and using the notation of elliptic in-

tegrals,

D s^=A^ sin. 2 & D f^+A^ cos.2 &-\.B2 sin.2 &

z=iA2 (sin.2 6 D <r2+^a2)_.41^^ D <f2, (781)

'^~
sin. aV (^^ sin.2 ^_C2)

* ('^^)

Let «, T^, and e be taken, so that

C^r^sin. a, (783)

cos. V^ =! COS. 5 sec. «, (784)

,
e COS. «

^ -V(l-«^sin.^' ^^^^^

and we have, by taking t^ for the independent variable,

sin. ^ Z>,^ ^ z=i COS. « sin. V', (786)

^^2—-i_g2 (l_cos.2 a COS. 2 v^)zz=l—e2(sin.2 a-j-cos.2 a sin.2 1//)

=(1—c2 sin.2 u) (l_e'2 sin.2 ^j

— (I_e2 sin.2 a) ^' V'2^ (737)
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V (^- sin. 2 <3—C2) = yl V (sin.2 ^—sin.2 «)

z=zA \/ (cos.2 Li— COS. 2 &) ^^ A COS. « sin. V', (788)

^ _ C^ ^ 2)./.^ sin. «V (l-<^^ sin.2 g) . ^^ y/

'^ '^~sin. fi\/(^'sin.2 6-C2j— sm.2 d

__ v/(l—e^ sin.2 «) ^> _ V(I-c- sin.2 a) y ,/;2

sin.«(l+col.2asin.2 t/^) sin. " (l-j-cot.2 « g^,^ 2 ^^j ^/ 1/;

(789)

sin. « r~ 1-f-e^cos. 2 a €^cos.^«~l

"~cos.2 « yy/( J -e^ sin.'-^ u) L (i+ cot.''' « sTii^'' V')
^' -^ ^' V' J'

Hence, if we adopt the notation

n(n.erp) =1 f^ ,
}^ , (790)J (1+/1 sin.2 v^) ^^ ' '^

/

and put n = cot. 2 «, (^91)

(789) gives ^-^^ ^
(p z=

COS.2a^(l fi2 sin.2 a^ (792)

[(l+c2 cos.2") (JT(we'V^i)-iz(?ie>o))-e^cos.'«(P' Vi-F'>o)],

which is the required equation of the curve.

The length of the curve becomes, by substitution in (781),

8= A a/ (1—e2 sin.2 «) {E'H^^—E'^^). (793)

The integral (790) is called the elliptic integral of

the third order ^ and admits of theorems similar to those

of the first and second orders.

2. To find the shortest line upon the prolate ellipsoid.
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Ans. Let the axes of the ellipsoid be represented by the

same letters, as in the preceding example ; and let the equa-

tions of the ellipsoid be

uzziB COS. &y z:=A sin. &, •\

Cz^B COS. a, sin. ^i=:sin. « sin. V, > C^^^)

e'=e sin. "^ nz=.—sin. 2 cc^ J

the equation of the required curve is ('95)

e^ cos «
y=cos.«\/(l-c2)[^(ne>i)-72(nc>o)]+ -^-j—^(Fv^i-i^V^o),

and the length of the curve is

5 = A {E'y^i— E'%). (796)

3. Prove that if (pg, (p and 9' satisfy the lovi^er equation

(599), and if

N=A^[n{n+l){n + e'')] (797)

the elliptic integrals of the third order will satisfy the equa-

tion

n {n e (f') -{- n (^n e (p) — n {n e (fo)

^ r-n / Ns\n. cp' sm. <p sin. % \=z ir^tan.^ ^J I -r—. — r— I. ((98)N \ i -\-n (i — cos. (f' cos. tp cos. Vo) /
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CHAPTER VTI.

QUADRATURE OF SURFACES.

131. Problem. To find the quadrature of a surface.

Solution. Let M L M' L' (fig. 7) be the portion of the sur-

face, whose area is to be found, and which may be either plane

or curved. Let the conditions of the bounding line be ex-

pressed by an equation between two variables, I and m. Sup-

pose two lines, L L\ ll\ drawn infinitely near each other, and

in such a way that I is constant throughout the extent of these

lines ; and let the lines MM', m m\ be so drawn that m is

constant throughout their extent. If then <^ is taken to denote

the required surface, we have

the area Z- Z.'
n' L ,>^r^r^s^'"^

IT ^UT ('^')

and

1)2 o __ ^ n L _ the area ah c d .^^^.
'•" ~ dl ^ dl.dm '

^ '

But, if a z=i the angle h a c, ^
5' = an arc of Z Z', > (801)

s" = an arc of 3Im

;

j

we have the arc a b z= d s', the arc a c =: ds", (802)

the area ab c dz=i sin. a d s' . d s'

and, since m is the only variable in s', and / the only variable

m s'

D],^o — sin. aD^s' . D^ s", (803)
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and the accents may be omitted in (802) without any ambi-

guity. Hence
c =ifj,, sin. aD^.s, Di.s; (804)

in which D^s and DiS may be taken directly from the gen-

eral expression for D s, and a is the inclination of two lines

drawn through a point, in such a way, that for the one / is

constant, and for the other m is constant.

132. Corollary. ^ When the surface is plane, (570) of vol. 1

gives for rectangular coordinates,

l>,s=l, />, s=l, (805)

and it is obvious that a is a ri^ht angle ; whence

«=/,/,.!=/,. a: =/..y, (806)

or supplying the place of arbitrary constants by the form of

definite integrals,

" =fi fi: ' =/:: ^^^-y^) =f'i:
(^.-^»)' (^«')

in which the values of a-^ Xy 7/0^1, ^^^ determined by the

bounding curve.

133. Corollary. When the surface is plane, (574) of vol. 1

gives

DcfS=r, DrS=\, (808)

and « is a right angle ; whence

o =.f^f^ ^r^f^,r^P=^ if^p . r^• (809)
or

134. Corollary. When the surface is curved, let Y denote

the inclination of the tangent plane to the plane of x y, and,
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since the projection of a surface is equal to the product of the

surface by the cosine of its inclination to its projection, (806)

gives

o=fJ^.sec.Y. (811)

Hence, by (600) of vol. 1, where

V—0 (812)

is the equation of the surface, *

= fjy V (D. z^ + ^,==' + !)• (813)

135. Corollary. When the surface is developable, it may

be supposed to be developed into a plane, and its area found as

that of a plane surface; or it must give the same result to

refer the surface to axes, drawn upon it in such a way, that

they would be straight lines when the surface was developed,

and the rectangular coordinates would then be the length of

the shortest lines, which would be drawn upon the surface to

two of these axes, which would be perpendicular to each

other.

136. Corollary. When the surface is one of revolution, the

notation of § 129 gives, by § 134,

a^f,^f^.u^{D^z'^+\); (814)

and if 5 denotes the arc of the generating curve,

"" =hfu 'U DuS =fcpf, ,uD,.s =fcff, . u. (815)

137. Corollary. When the surface of revolution is included

between four curves, of which two are the intersections with

the surface of two planes which are perpendicular to the axis
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of revolution, and the other two are the intersections with the

surface of the planes, which may be called meridian planes,

because they include the axis of revolution, and which are in-

clined to each other by an angle Vg j (^1^) gives

138. Corollary. If another surface of revolution were gen-

erated by the revolution of the arc in the preceding section,

about an axis at the distance h from the former axis, and

farther from the arc, so that for this new axis we have

u' = u + h, (817)

(816) gives the value of the corresponding surface

o' =
^^fl^^

{u D^^ s + b D,, s)

— a^bcp^ (Si—So). (818)

139. Corollary. Had the second axis been upon the oppo-

site side of the arc, we should have had

u" z= b— u (819)

o" = b^,{s,-s,)-o. (820)

140. Corollary. A curve AB A' B' (fig. 8) is said

to have a centre when there is such a point that any
chord, such as A A\ B B', &c. which passes through

it, is bisected by it ; and such a chord is called a diam-

15
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eter. The surface generated by the revolution of such a

curve about an axis C C' which does not intersect the

curve, is called mi angular surface^ or, simply, a ring.

The notation

S =z the perimeter of the generating curve

ABD AD' A,

o =: the surface which would be generated by

the revolution o( D B A D' about the di- ^ (821)

ameter D D' parallel to -CC",

h z=. the distance of the axis C C' from the cen-

tre,

gives by (818 and 820) for the whole surface of the ring,

=:2b^ S. (822)

141. Problem. To transform the differential coefficient of

a surface from one system of variables to another.

Solution. Let / and m be the given variables, and let the

second member of (803) be denoted by //, that is,

Dl^.o^zH (823)

If, then, only one of the variables m is to be changed, and

t is to be introduced instead of it by means of the equation

M = m, (824)

in which M is a given function of I and t ; we have

D].,.o — D,D,.o^D^D,.o.D,.m
— Dl^.G . D,3I=z H D,.M. (825)
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If the Other variable / is also to be changed, and u to be in-

troduced instead of it, by means of the equation

/ = L, (826)

in which Z« is a given function of t and u ; we have

D] ,o^HD,.M.D^L, (827)

142. Corollary. If J/, in equation (824), instead of be-

ing a given function of t and /, were a given function of t and

u, u might be eliminated by means of (826). It is more con-

venient, however, to eliminate its differential coefficient only

from Di . 31, after having determined this differential coef-

ficient by means of (826). Thus the differential of (826)

relative to t is, by regarding w as a function of t,

= D,L + D,L . D,u, (828)

whence
^^ , ^ _ g^ , (829)

and (824) gives

= —j^^ . (830)

But 771 is obviously to be substituted for 31 in (827), whence

we have by (827 and 830),

Dl^ azzzH (D,3I.D^,L—D,,3I.D,L). (831)

143. Corollary, The two preceding articles may be

applied to the transformation of any second differential

coefficient of two successive variables.

144. Examples.

1. To find the area of the segment of an ellipse included

between two parallel lines.
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Solutio7i. Let the ellipse be referred to conjugate axes, as

in (74) of vol. 1, in which the axis of ?/ is drawn parallel to

the given lines ; and (804 and 807) give, since in this case

y„ = -y, (832)

is the ordinate y of the ellipse, if « is the angle of the axes

= 2 f""^ . 7/ sin. «. (833)

If, now, we take 5 so that

X ^^ A cos. 5, (834)

we have y z=. B sin. ^, (835)

D^,x = — A sin. ^, (836)

a=2sin. « r ^ A B sm.^ &z=zA J5 sin. « /" (i — cos. 2 &)J &i */ ^1

=^jB sin. a [6^—6^—^{s\n. 2 ^q—sin. 2 ^ J] (837)

= J sin. « (corresponding areaof asegmentof a circle whose

radius is yl).

2. To find the area of a sector of an ellipse, when the ver-

tex of the sector is at the centre of the ellipse.

Solution. In this case (834 and 835) give, when A and B
are the semiaxes,

r COS. (p =z A cos. Q,

B
tan. (p zzz — tan. &,A
t^Dq. pzzzA B

;

whence, by (810), putting zero for r^
,

c = iAB(\-i,). (841)

r sin. (f z= B sin. 6,
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Corollary. The whole area of the ellipse \s, n A B. (842)

3. To find the area of a sector of an ellipse, when the ver-

tex of the sector is at a focus.

Solution. If the origin of coordinates is at the focus, (834

and 835) give

r cos. (f=iX7^A cos. ^

—

A e=A (cos. &—e) (843)

r sin. (fz:zi/^zzB sin. & (844)

B sin. & ,r.4^.

D6,^?. (lz:i££!_!L-^^ (S46)A (cos. <3

—

e)2 ^
^

'

r^ D6cp = AB . (1— e cos. &), (847)

whence, by (810),

<^=zA B . [6^—6^—e (sin. ^^—sin. dj]. (848)

4. To find the area of the hyperbolic segment included be-

tween two parallel lines.

A?is. If the hyperbola is referred to conjugate axes as in

(90) of vol. ], in which the axis of ?/ is parallel to the given

lines, if y is the angle of the axes, and if ^ is taken so that

xz= A Cos. ^ y = B Sin. ^, (849)

the area is

a= J ^JBsin.y (Sin. 2^j—Sin. 2 ^0+2 ^1—2 5
J. (850)

5. To find the area of the hyperbolic sector, the vertex of

which is at the centre of the hyperbola.

15*
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Ans. With the notation of the preceding example, the area

"^^B ("-«„) (851)

in which A and B are the semi-axes,

6. To find the area of the Ijiyperbolic sector, the vertex of

which is at one of the' foci.

Ans. With the notation of the preceding example, the area

is

oz=AB [(^—^o) — ^ (Si»- ^— Sin. dJ]. (852)

7. To find the hyperbolic segment included between an

asymptote, the curve, and two straight lines drawn parallel to

the other asymptote.

Solution. It is convenient, in this case, to take the two

asymptotes for the oblique axes, for which « and ^ in (86) of

vol. I. must have the values

tan. a z= - , tan. ^ =— -
; (853)

whence (86) gives for the equation of the hyperbola, referred

to its asymptotes,

xy:=:zl{A^+B^). (854)

The area of the required segment is, then, by (807, 853 and

854), if the axis of y is the asymptote parallel to the given

lines,

. ^ px. 2AB px.

^ «/ 3 ^

JAi3 1og. ^. (855)



<5> 144.] Q,UARDATURE OF SURFACES. 175

Area of parabolic and cycloidal segments.

8. To find the area of the parabolic segment included be-

tween two parallel lines.

Ans. If the parabola is referred to oblique axes as in (100)

of vol. I, of which the axis of 3/ is parallel to the given lines,

and if « is the angle of the two axes, the area is

""^l (i/i 2:1—yo 2:0). (856)

9. To find the area of the parabolic sector, of which the

vertex is at the focus.

Ans. If P is the distance from the vertex to the focus, if

the origin is at the focus and the angle y counted from the

vertex, the area is

— 2P (tan. J ^1—tan. J </'o). (857)

10. To find the area of the segment included between the

curve, the axis of x, and two lines drawn parallel to the axis

of y, of the curve known as the parabola of the order a, which

has for its equation

2/ = Ax\ (858)

Ans. o=^J^rZhlo_, (859)

11. To find the are of the segment of a cycloid given by

equations (130 and 131) of vol, 1, included between the curve,

the axis of x, and two lines drawn parallel to the axis of y.

Ans. ^=722[|.(^,-5o)-2(sin.^-sin.^o)+l-(sin.2^i-sin.2 6o)]. (860)

Corollary. The whole area included between a branch of

the cycloid and the axis of z, is

C = ^7VR^^ (861)

= three times the area of the generating circle.
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12. To find the area of the segment of a cycloid, which is

included between the curve and a line drawn parallel to the

axis of y.

Ans. o—R^[(^n—&) (1+2 cos. (3)_2sin. a—Jsin. 2^].

13. To find the area of a sector of the spiral of equation

(133) of vol. 1, when the vertex of the sector is at the origin.

14. To find the area of a sector of the hyperbolic spiral, the

equation of which is (135) of vol. I, when the vertex of the

sector is at the origin.

Ans. o — 2n'^R^ /_i___iy (864)

15. To find the area of a sector of the logarithmic spiral, of

which the equation is

r = a e , (865)

when the vertex of the sector is at the origin.

Ans. o^^a'^ie ^'— e °). (866)

16. Given the area <^ of a surface included between any

lines whatever, the combination of which considered as one

line which in general is discontinuous, is represented by the

equation

F.{T,y)=0, (867)

to find the area a of the surface bounded by the line or system

of lines

Ans. a'— aha. (869)
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Corollary. If a and h are equal, the surfaces are similar,

and (869) gives

o'=a^a- (870)

that is, the areas of shnilar surfaces areproportional to

the squares of their dimensions.

17. To find the area of the zone of an oblate ellipsoid of

revolution which is included between two planes drawn per-

pendicular to the axis of revolution.

Solution. Let the notation be that of Example 1, of § 130,

and (816) gives, for the area,

7 ^^^^^

Let the angle w be so taken that

B Sin. ^== Ac COS. 6
; (872)

and we shall have

— Ae sin. 6 Doj.^^B Cos. oj; (873)

whence

2 -ft jB2

/:
'°

. COS.2
e ., 1

= - / ° . (1+CoS. 2 a,)

=^^ [(%--i) +4 (Sin. 2c.^-Sin.2 .J]. (874)

18. To find the area of the zone of a prolate ellipsoid of

revolution which is included between two planes drawn per-

pendicular to the axis of revolution.
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Area of a zone of a hyperboloid.

A/is. With the notation of Example I, of § 130, and put-

ting

COS. oj ^= e cos. &, (875)
the area is

" = "^^ [(- --'o) + i (sin- V -s'»- 2 %)]• (876)

19. To find the area of the zone of the hyperboloid of revo-

lution formed by the revolution of an arc of an hyperbola

about the transverse axis,

Ans. If the equations of the generating hyperbola are

xz=z A Cos. ^ !/ = B Sin. &, (877)

and if w is taken so that

e Cos. & z=z sec. «», (878)
the area is

_nABrsm.'^^ sin.o'o
, ,_ tang. (45°+^ co )-|

^-^- L^^r^^'o+^'t^^ii:(45^+i^)J-^

20. To find the area of the zone of the paraboloid of revo-

lution, included between two planes, which are perpendicular

to the axis of revolution.

Ans. If P is the distance from the vertex to the focus, and

if & is so taken that

y = 2P tan. 5, (880)

the area is

a = f T P2 (sec.s^i—sec.^dj. (881)

21. To find the area of the zone generated by the revolution

of an arc of a parabola about the axis of ?/ of the preceding

example.
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Area of a zone generated by the arc of a cycloid.

Ans. If ^ is taken so that

X -{- P = P sec. 6, (882)

and if o' is the value of o in (879),

the area is P2 e

A B (883)

22. To find the area of the zone generated by the revolu-

tion of an arc of a cycloid about the axis of x in (130) of

vol. 1. The arc is supposed to commence with ^.

A?is. With the notation of equations (130 and [31) of

vol. 1, the area is

G=l6 7tR2 {2_2 COS. i 5 — ^ sin.2 J 6
. cos. J 5). (884)

23. To find the area of the zone generated by the revolu-

tion of an arc of a cycloid about the axis of y in (131) of

vol. 1. The arc is supposed to commence with 6.

Ans. With the notation of the preceding example, the area

is

a = 16 nR2 (sin. J ^—J & COS. J ^ — ^ sin:3 J 6). (885)

145. Problem. To find the area of the zone gen-

erated by the revolution of a given arc of a plajie curve

about an axis in the same plane with the arc^ when the

areas of the two zones are known which are generated

by the revolution of the arc about two axes in the plane,

which are perpendicular to each other.

Solution. Let the two perpendicular axes be those of x

and y, and let the given areas be, by (816),
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o'=r 2 TT

o"—2 r^'.x. (887)

Let the new axis be inclined to the axis of a; by an angle «, and

pass at a distance a from the origin, and the required area is

0=1:^2^ f
^ ' {y eos. « — X sin. «— a)

— _j_ 2 TT [a' cos. «— o" sin. a— a {s^—s^)], (888)

in which that sign is to be adopted which renders the second

member positive.

146. Problem. To draw the curve line subject to

given cojiditionSj which includes a maximum or mini-

mum surface.

Solution. This problem, like that of § 116, involves the

maximum or minimum of a definite integral, and is therefore

solved in a similar way, by the method of variations. There

is, in this case, however, a double integral, and the first inte-

gral refers evidently not to disconnected points, but to the

bounding lines of the surface, so that the determination of

these lines may involve the method of variations, even when

the general form of the surface is given. The determination

of the form of the surface will admit of more lucid dis-

cussion in a chapter upon the curvature of surfaces, and

the present chapter will be confined to the consideration of the

bounding line.

The equation of the surface being given, the form of its

second differential coefficient is known, and is independent of
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the limiting lines, so that an integration can be directly per-

formed, and the required integral be reduced to the form (756),

and the process of finding the maximum or minimum becomes

identical with that of § 1 IG.

147. Corollary. A kind of equntion of condition is often

connected with this problem, wholly different from those refer-

red to in § 116. Each of the equations (754) is an equation

which is satisfied by the coordinates of each point of the re-

quired curve, and is thus equivalent to an infinite number of

equations. But an equation, of the class here alluded to, is a

single equation, involving the coordinates of every point of the

curve. An instance of such an equation is the one which

expresses that the bounding curve must be of a given length,

or that the definite integral (741) must have a given value.

All equations of this kind would appear to depend, neces-

sarily, upon definite integrals, and they may be introduced into

the equation of maximum or minimum for the purpose of elim-

ination by the method of § 119. It must be observed, how-

ever, that the multipliers ;., //, &c , of these equations arc

always constant. For each of these equations does not deter-

mine any relation between $r, $y, &c. which is applicable to

each point of the curve, but only a particular relation by which

one of the variations, as ^x, may be determined for one of the

points in terms of the values of the variations for all the points.

The corresponding multiplier '', therefore, must have that par-

ticular value which shall cause this single value of ^x to disap-

pear from the equation ; that is, ;. must be constant.

148. Examples.

1. To find the plane curve which, having a given length,

encloses the maximum area.

16
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Solution. The function to be a maximum is, by (806),

'^ y, (889)

and the function (566) is to be constant. Hence if A is the

constant multiplier introduced for the purpose of elimination,

the equation is, by the reduction of § 121,

1 - ^ D. (g^ )
= 0, (890)

or by the notation of § 148 of B. II., and by (577 and 609

of vol. 1,

= 1+^1), .COS. „ (891)

= DrX -\- A Dr COS. v

— sin. r Dys— A sin. ^ (892)

Az:z DrS — Q; (893)

that is, the curvature is constant, which is the property of no

Other curve than the circle ; the required curve is, therefore, a

circle ; which has, already, been proved in the Elements of

Geometry.

2. To find the plane curve which, being drawn from one

given point to another given point, and having a given length,

encloses the maximum area between the curve itself, its two

extreme radii of curvature and its evolute.

Solution. By adopting the notation of the preceding article,

the required area may be expressed in the form

1
. e~ ; - (894)

that of the arc will be

s =y ;: . c. (895)
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Equations (576, 577 and 009) of vol. 1, give

Di X z= sin. r Di 5 = o sin. ,, (S9G)

Dy 7/ Z=Z COS. V Di S = n COS. i

.

(897)

The given differences of the coordinates of the extreme points

of the curve are, then,

X, — 2, = fl' . Q sin. r, (89S)
ft/ '

!/i—!/o——t
'

' • ^ COS. ,. (899)

If, therefore, A, B, C are the constant multipliers of (895,

898 and 899), introduced for the purpose of elimination, the

equation of the maximum or minimum is

o o _|- ^ -|_ J5 sin. r — C COS. r = 0. (900)

LetH and « be taken so that

B z=zH COS. cc^ C=Hsm.ai (901)

and (900) becomes

2q + A +Hsm. (»'— a) = 0; (902)

and by putting

r'= v— «, (903)

2Q + A + Hsin.r' = 0; (904)

which shows that (900) may be reduced to the form (904),

from which the term containing cos. ^ disappears, by merely

changing the direction of the axis of x. It does not, then,

diminish the generality of the solution to put

0=0; (905)

by which (900) becomes

2 § + ^ + J5 sin. V = 0. (906)
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Tiie curve is easily expressed in rectangular coordinates by

the equations

2 = ^ A COS. r -\-l B sin. 2 ' + ^ r, (937)

ij — ^A sin. '— ^ B COS. 2 »•. (908)

Corollanj. When the extreme points are not fixed, tlie

equation (900) becomes

'2 c + ^ = ; (909)

that is, the curve is a circle.

Corollary. When the length of the curve is not given, the

equation (906) becomes

"Zq + B sin. 1=0; (910)

which is, evidently, from example 3 of § 151 of B. II., a

cycloid.
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Curvature of a surface in any direction.

CHAPTER VIII.

THE CURVATURE OF SURFACES.

149. Problem. To find the curvature of a given

surface at any point in any direction.

Solution. Let the tangent plane to the surface at any one

of its points be taken for the plane of the coordinates x and y,

so that the normal may be the axis of z. We have, then, at

this point,

D,z=0, D,^z = 0; -(911)

and if q^ and c^ are the radii of curvature at the point of the

intersections of the planes ofocz and 1/ z with the surface,

equation (610) of vol. 1 gives

-^^Dlz, ^-=I>lz. (912)

The radius of curvature (? of a section made in any intermedi-

ate direction by a normal plane, which is inclined to the axis of x

by the angle «, is derived from the equation

— = Bl z, (913)

if u denotes the distance of a point of the curve of intersec-

tion from the axis of z. But the coordinates of one of these

points are

xz=iu cos. «, y =^u sin. «
; (914)

16*
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whence, in general,

D^ z = COS. » D^z -j-sin. ^ DyZ, (915)

-=zDlz r= COS.- a Biz 4-2 sin. « cos. « B'l_yZ -\- sin.^a Dl z

C0S.2 a , sin.~ « , ^ . ^o= 1 1- 2 sin. "COS. oc Dl,y z. (916)

150. Corollary. The radius of curvature (/, in a direction

perpendicular to that of ^, is given by the equation

1 sin."«
,

cos.2« ^ . _.
—=: 2 sin. « COS. a D'i y z. (91 /

)

151. Corollary. The sum of (916 and 917) is

-+T = -+-; (91S)

that is, the sums of the reciprocals of the two radii of

curvature of any two perpendicular sections at a given

point of a surface is a constant quantity.

152. Corollary. If Q were the maximum radius of curva-

ture at the point, o' would obviously be the minimum radius of

curvature ; whence

The directions of greatest and least curvature of a

surface at any point are perpendicular to each other.

153. Corollary. The difference between (916 and 917) is

— — i=:cos.2« f - — -^— 2sin.2«Z>|.. ^, (919)
Q'

Q \Qy Qz /

and in the hypothesis of the preceding corollary, the first mem-
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ber of (919) is a maximum. The differential coefficient of

the second member, taken with reference to «, must be equal

to zero, that is, ,

= sin. 2 '^(- —
,7 ) + 2 cos. 2 a D\.yZ. (920)

The sum of (919) multiplied by cos. 2 «, and of (920) Uy

sin. 2 a, is

cos.2«(^--^=:---. (921)
\ '' 'I / " Or

Hence, from (918),

cos.2 « sin.'2 «

from which the curvature of the surface can be found

in a direction inclined by the angle « to the direction of

maximum curvature.

154. Corollary. One half of the difference between (919)

multiplied by sin. 2 «, and (920) by cos. 2 «, is

D-j,.y z z= — 1 sin. 2 « Q-D- '-'

155. Corollary. For the direction of the maximum or min-

imum, « is zero or a right ajigle, and, therefore, for either of

these directions,

D%.yz = 0- (924)

that is, with a small motion of the point of contact in

the direction of the greatest or least curvature, the tan-

gent plane rotates about a line perpendicular to the

direction of the motion of the point.
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156. Corollary. When « is half a right angle, (921 and

922) give

Qy = Qx, (925)

l=l=Wi+M. (926)

157. Corollary. When the values of Q and (?' have opposite

signs, neither of the corresponding curvatures is strictly a min-

imum, but the two curvatures are the greatest curvatures in

opposite directions. There are, in this case, two intermediate

directions of no curvature, corresponding by (922) to the

values of «,

tang. «r=±\/(— ^yV (927)

The sections of the surface, made in these directionSj

have a contact of the second order with the tangent

plane, and correspond, in general, to points of contrary

flexure.

158. Corollary. In the case of a point of contact for which

the greatest and least curvatures are in opposite directions and

equal, we have

Q^-Q'; (928)

whence, by (918),

Cz = — (?,; (929)

that is, the curvatures iu any two directions, which are

perpendicular to each other, are equal and opposite.

We have also in this case, by (927),

« — zb 45° (930)

for the angles, which the directions of no curvature make with

the direction of greatest curvature.
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159. Corollary. If the curvature were required of a sec-

tion, the plane of which did not include the normal, it might

be found by referring the surface to an oblique system of co-

ordinates, of which the tangent plane was the plane of xy,

the cutting plane that of xz\ the axis of x being the intersec-

tion of these two planes, and the axes of y and z' being per-

pendicular to that of X. This system might be obtained from

the rectangular one, which has the same axes of 2: and y, but

in whicli the axis of z is the normal, by putting

& = the inclination of the axis of z to that of z'

,

(931

)

= the complement of the inclination of the given plane to

the tangent plane,

which gives 2; =r 2' cos. ^, (9i.5'2)

D: z = Dlz' cos. <5
;

(9:3:i)

or, by putting Q^ =z the radius of curvature of the inclined

section

-=i cos. 5, (934)

(1^= COS. &. (935)

IGO. Corollary. If the axes, in the preceding corollary,

were rectangular, that of y being perpendicular to the given

plane, and those of x and z situated in any way whatever in

that plane, equation (610) of vol. 1 gives

L — - —-' -

—

^^ . . (936)

If we put

the anufle of C'^ and z

y =z the angle of o and z, ^ v '

)

and observe that the plane of i' and 'jj is perpendicular to that
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of ;:; and z, so that if a sphere were described with the point

of contact for the centre, the arcs &, t, y would form upon the

surface a right triangle, of which y was the hypothenuse, we

have

cos. y =: cot. r COS. &. (938)

But the comparison of (81 1 and 813) gives

sec.y= ^[\+(D,zy- + {D,zf],
.

(939)

and we have, obviously,

sec. Tz=V[l+(/>x2)2]; (940)
whence

1 1 sec. r Dl . z

Q Q^ sec. Y l+(Z>x zf

Dl.z 1

. cos. y

1 + {D. zf • V [1 + {Dy ^f+ {D. ^f]
(941)

161. Corollary. The curvature of a section of the surface

made by a plane which includes the axis of z, and is inclined

to the plane of 2; x by the angle £, may be found by the formula

in which w = the distance of any point of the section from

the axis of z,

whence

a;=M cos. c, y ^=-u sin. s

;

(943)

i>„a;=:cos. «, X>„yz=sin. «; (944)

D^ 2=cos. t .D^z-\- sin. « Dy z, (945)

Dl z=cos.2 a . Dlz+'^ sin. « cos. £ DJ .,2+sin.2 a . I>2 ^
j (946)

1_ _ {Dlz + 2 tan, e
. Dl,yZ-\-i^n.^ s . Dl z) cos, y

Q "~l+Z>^22_|.2tan.eZ>,2;i>y2;+(l+i>,%2)tan.2e' ^ ^
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and since the coordinates x, y, z do not themselves occur in

this value of the reciprocal of the radius of curvature, but

only their differentials, (947) is applicable to any point of the

surface, and to any direction of the curvature, it being ob-

served that s is the angle, which the plane, dravi^n through the

axis of z and parallel to this direction, makes with the plane

of xy.

162. Corollary. When the plane which is parallel to the

required direction of curvature is also parallel to the radius of

curvature, (601, 598 and 599) of vol. 1 give

cos. fi Dy Z /rv40x
tan. £ = = —^

; (948)
COS. « IJ^ z

whence the product of the denominator of (947), by Dx z^,

becomes

D^z^ ^ Dxz^ + 2D. %2 DyZ^ + DyZ^ + D^z^

= {D, z^ + Dyz') (1 +Dzz2 + Dy z2)

= {D^z^ -{- Dyz2)sec.2Y; (949)

and (947) becomes

1 Drz^ Dlz+2 D, z DyzDl^y^z-^Dyz'Dlz

Dx z^+Dy z'
cos.3y.(950)

163. Corollary. When the direction of curvature is per-

pendicular to that of the preceding article, the plane which is

parallel to it is also perpendicular to that of the preceding

article ; whence, in this case,

Dxz
tan. i' -Z cot. « = =::^— ,U z

and (917) becomes
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1C4. Corollary. The sum of (950 and 951) is

11^^ [\+DyZ')Dlz-^D.z D^ zDl,,^z^{ \+D^z^)Dlz

' ^ '
""'^'

(952)

which is, by (918), the sum of the reciprocals of the

greatest and least radii of curvature at the point x^ y, z ;

or it is the sum of any two perpendicular radii of cur-

vature.

165. Problem. To find the greatest or least surface

which can he drawn under given conditions.

Solution. This form of statement embraces that portion of

the problem of § 146 which was reserved for this chapter.

Since a single equation between the coordinates of each point

is sufficient to determine the surface, no such equation can be

given ; but there may be particular conditions invohing defi-

nite integrals, like those referred to in § J 46.

166. Corollary. When there is no condition what-

ever, the required surface is absolutely the least surface

of all lohich have the same boundary.

In this case, the integral to be a minimum is (Sli or 813),

the variation of vrliich gives

ff^. COS.., {D,zDJz+DyzD^dz)=i^. (953)

But, by integration,

fz fy . COS. y Dxz D-^sz =fyfz . cos. y Dj,Z D^Sz

=/y . Dz z cos. y 8 z—frfy . D:c (cos. Y Dj^z) s z, (954)

(955)

ffj . cos.y Dy zDy ^ z—fj. .By z COS./' (J z-fxfy . By (cos. yBy zy z
;
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whence, by regarding only the terms under the double sign of

integration,

0=zDj: (cos. y D^ z) + Dy (cos. •/ D,j z)

=zcos.y{D%z+D'yz)+Dx z Dz . cos. y-VDy z Dy cos. /. (956)

But

Dz. COS. y=zDz. {DzZ^+ DyZ'^+X)"^

=— C0S.3 y {DzzDlz+ DyzDl.y z), (957)

Dy. cos. Y -^ — COS? Y{DzzDl,yZ+DyzDlz) ; (958)

which, substituted in (956), give by (952),

^^ (1+D, %^) Dlz—2 DzzDyz Dl.yZ+ jX+D^z-^) Dlz
sec.3 y

or 5' = — (?; (960)

so that this surface is one in which every point is a case

of <§) 158 ; that is, i?i which the curvatures, in directions

'perpendicular to each other, are equal and opposite.

The plane is the most simple instance of such a sur-

face, but there are other examples to an milimited ex-

tent.

167. Corollary. The complete determination of these sur-

faces must be reserved for a chapter upon the integration of

partial differential equations ; but the following ingenious con-

struction, proposed by Monge, notwithstanding its obvious want

of practical utility, which was acknowledged by its author, is

17
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sufficient to exhibit the possibility of such a surface, and give

some idea of its nature.

Let any curve line, of single or double curvature, be drawn

at pleasure in space. Produce all its radii of curvature

towards the opposite side of the curve from the centres of cur-

vature, and to a distance from the curve exactly equal to the

corresponding radii of curvature. The given curve line may,

then, be assumed as a line of curvature of the required sur-

face ; that is, as a line which lies upon the surface and has at

each point, the same curvature with the surface in the direction

of this line. The produced radii of curvature, will be the radii

of curvature of the surface in directions perpendicular to the

given curve ; and if the extremities of those produced radii,

which are the corresponding centres of curvature, are fixed,

and if all the points of the given curve are rotated with the

radii about these centres, moving in planes perpendicular to

the given line, each element of the given line will describe an

element of the required surface. The given line in its new
position will acquire a new form and become a new line of cur-

vature, from which another elementary zone of the surface may
be described by a repetition of the above process.

The small arc, through which each point of the curve must

move, is not arbitrary, but is limited by the condition that two

successive radii must be in the same plane, so as to meet at

the centre of curvature.

168. Corollary. If the given curve of the preceding con-

struction were a circle, the resulting surface would be a sur-

face of revolution about an axis perpendicular to the plane of

the circle and passing through its centre. The particular form



<5> 168.] CURVATURE OF SURFACES. 195

Minimum surface of revolution.

of this surface may be investigated by taking the axis of z for

that of revolution, so that if

,, =:^2 + y2^ (961)

z will be a function of u^ and will contain no other function of

X and 7j. Hence

D^zz=zD^z.D^u — ^xD,z, ']

^ ^ '

K (962)

which, substituted in (958), give, by dividing by 4 cos.3 y,

2>„ 2 + 2 ^^ B^z"^ ^uDlz= 0. (963)

By putting i; = a/ w, (964)

we have ^ 1 r^D^z — —- D,z,
Z V

B^ z— B ^-1-—~B^z'
(965)

which, substituted in (963), give

B z A- B z^—
[^

+D;z= 0. (966)

Hence 1 Biz _
^ = v+B^z+B^z^-^

\ . Biz B^zBlz

the integral of which is, by introducing A as an arbitrary con-

stant,

log. ^=log. I'+log. B, z—log.V (1+A ^2), (968)
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or A D,. z

V V{i+D,z2)' (969)

Hence _ A

and if q is taken so that

t;=^Cos. y, (971)

(970) gives

Dip . z=: D^z . Dip V =1 A Sin. cp D^z

= ^Sin. ^ . -r^^— = A, (972)

z= Acp; (973)

and the equation of the surface is

iAieUe-^)- (^'^)
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CHAPTER IX.

THE CUBATURE OF SOLIDS.

169. Problem, To find the measure of the volume

of a given solid.

Solution. Let the conditions of the bounding line be ex-

pressed by an equation between three variables, /, m, and n.

Suppose two surfaces drawn infinitely near each other, in such

a way that n is constant throughout their extent. If, then, V
denotes the required volume, we have

€?„ F= the lamina included between these two surfaces.

If two other surfaces are drawn infinitely near each other, in

such a way that m is constant through their extent, we have

djn dn V=z the small solid rod included between these four

surfaces.

If tw^o more surfaces are drawn infinitely near each other, in

such a way that / is constant throughout their extent, we have

di djn dn V =: the infinitely small parallelopiped included be-

tween these six surfaces. (9T5)

If s' denotes an arc of the intersection of two surfaces for

which 7n and ?i are constant, s" an arc of the intersection of

two surfaces for which / and n are constant, s'" an arc of the

intersection of two surfaces for which / and /« are constant;

17*
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and if a! is the inclination of s" to s'" at the point of meeting,

a!' that of s' to s'" ^ and a!" that of s' to s" ; and if h is the in-

clination of s'" to the surface which includes s' and 5"
; the

sides of the small parallelopiped will be c?s', ds" y ds'"
;

the face which includes d s' and d s"^= sin a'" d s' d s"

the distance of this from the opposite face = sin. h ds'"
\

whence

di d^ d, F= sin. a'" sin. h ds' d s" ds'". (976)

But I is the only variable in 5', m the only one in 5", and n the

only one in s'" , whence the accents may be neglected, by di-

viding by dl . dm . dn
f
and (976) gives

(977)

Dl^,r^ V=D,,D^ . Z>„ V- sin. a'" sin. b D, s . D,,s . D,,s ;

in which DiS, D„^ s, and D„ s may be deduced from the gen-

eral expression for the differential of an arc in space, by put-

ting successively each pair of the quantities /, m and w, equal to

zero. The value of V is, then, the third integral of (977).

170. Corollary. If one of the vertices of the parallelopiped

is taken for the centre of a sphere, a\ a", a'" will form, by the

intersection of the sides of the parallelopiped with the surface

of the sphere, a spherical triangle ; in which h will be the dis-

tance of a'" from the opposite vertex.

Hence, if A' is the angle opposite a', and if M is the ratio

of the sines of the sides to the sines of the opposite angles, so

that

sin. A
31=-. p, 978)

sm. a' ^ '

we have

sin. h =r sin. a' sin. ^'= iHf sin. a! sin. o!'
; (979)
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and (977) becomes

Z>f.„.„.F=^-^sm.a'sin. «"sin. d^.D.s.D^s . D^s. (980)

171. Corollary. If I, m, n are the rectangular coordinates

z, y, z, we have by (725),

ds^- = cl x^+ chf-+ dz^ (981)

a' = a" = a'" = ^^, 31 z= i
; (982)

and (980) gives

Dl.,.^.V=l, (983)

V=f.fJ. 1 =U, z -/./. y =fyf. ^. (984)

172. Corollary. If /, m, n are the polar coordinates of

§ 73 of B. I., the equations (31, 32, 33) of vol. 1 give, by put-

ting

u :=. r sin. ip
'\

y z=i u cos. 6 > (985)

z z=z u sin. <5j )

dy'^-\-dz^—d ifi+ w2 ^^2 (9S6)

= f/r2+r2 rf52_|_^2sin.2^,rf^'2, (987)

D^ ^ ^F=r2 sin. c/^, (988)

V=fl^^r^^^^n.,=-fl
^

^.2eos,,=/^^r3sin.,.(9S9)

173. Corollary. If the coordinates are 2:, ?<, 5 of the pre-

ceding corollary, (987) gives

Dl.u.^V=u (990)
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174. Corollary. If the given solid is one of revolution about

the axis z, of which a segment is required formed by two planes

perpendicular to the axis of revolution, z may be substituted

for X in (991), and the integrals relative to 6 taken from to

2 -^. Hence

V—'XnJ^^ ^.u'=nf^.u'^ = 2nr.zu. (992)

175. Examples.

1. To find the volume of the segment of a sphere.

Solution. If Jt is the radius of the sphere, and if the axis

of z is perpendicular to the bases of the segment, (992) gives

= ^RHz,-z,)— in(^zl^zl). (993)

Corollary. The solidity of the sphere is fyr/ja^ (994)

2. Given the volume Fof a solid included within any sur-

faces whatever, the combination of which, considered as one

surface which in general is discontinuous, is represented by

the equation

i^. (a: . 3/ . z) = 0, (995)

to find the volume V of a solid included within the system of

surfaces

^.(|>.l)= 0. (996)

Ans. V'=ahc V. (997)

3. To find the volume of the segment of an ellipsoid in-

cluded between two planes drawn perpendicular to either of

the axes of the ellipsoid.
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Ans. U A, By C are the axes of the ellipsoid, if the planes

are drawn perpendicular to the axis of C, and if V is the

solidity of the segment of a sphere whose radius is unity, the

segment being included between two planes drawn at the dis-

tances -^ and -^ from the centre, the required volume is

F'= ABCV. (998)

4. To find the volume of the segment of an hyperboloid in-

cluded between two planes drawn perpendicular to that axis,

for which the sections made by the planes are elliptical.

Ans. If Cis the axis perpendicular to the planes, and if^
and B are the other two axes, the required volume is

V=i^^ {zl-zl) ^nAB {z-z,), (999)

in which the upper sign corresponds to the hyperboloid of one

branch, and the lower sign to the hyperboloid of two branches.

5. To find the volume of the segment of the paraboloid, in-

cluded between two planes drawn perpendicular to the axis of

z, the equation of the paraboloid being

(-.)+ (!)'= <^- <>

Ans. ^n ABC{z\— zl). (2 a)

6. To find the volume of the segment of a solid of revolu-

tion included between two planes, drawn perpendicular to the

axis of revolution, when the revolving arc is that of a cycloid

about the axis of x in (130) of vol. 1.

Ans, Vz=i I jR2 jt (sin. 2 fl,—sin. 2 ^^o)—2 R- ^ (sin. ^,—sin. ^o)

+ 3i22-(^-^o). (3a)



202 INTEGRAL CALCULUS. [b. V. CH. IX.

Solid of least surface.

7. To find the volume of the segment of the solid of revo-

lution of § 174, when

u = B Cos.
J. (4 a)

Aus, V=iAB'-n(Sm!^-^'-Shi^-^\-\-iB^7v{z^-z,). (5a)

176. Prohlein. To find the inaximuin or ininimiini

volume which can he included by a surface drawn under

given conditions.

Solution. Since the general expression for the volume is

reduced to the form of a double integral, this problem is pre-

cisely similar in its solution to that of § 165.

177. Examples.

1. To find the maximum or minimum volume^ which

can be included within a surface of a given area.

Solution. Since the double integral (984) is to be a maxi-

mum, while that of (811) is to be constant. We have, by

§ 166, if ^ is a constant multiplier,

or 1 I 1
^

+ '- = -i; (7 a)

that is, the surface is one for which the sum of the recip-

rocals of the greatest and least radii ofcurvature at each
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point is constant. The general equation of this sur-

face has never been obtained, but the sphere and the

cylinder are evidently cases of it.

2. To find the solids of revolution which are solutions of the

preceding problem.

Solution. Let the axis of z be that of revolution, and by

putting

u = ^(x^+y^), (8 a)

(7 a) becomes, by means of (952),

Let V be taken so that

uD,
V (10 a)

whence

log. V = log. u + log. D,,z — i log. (I + Z), z2) ; ( 11 a)

the differential of which is

D^v I . Dlz D^z Dl z— =--rTrV ~~ u ' D,z l+D^z^

1.
,

mz
u

'^ Dl{\+D,,z')
= ^+7^o4rV7r^; (12a)

which, multiplied by (10 a), gives by (9 a),

(13 a)

The integral of this equation is

u-'
v = -^-^+ B, (14a)
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in which JB is an arbitrary constant. But if r is taken so that

D„ z := cot. T, (15 a

(10 a and 14 a) give

V =: u COS. T, (16 a

COS.r=: — -^ + -
, (Ha

2 A u

V(-^ + cos.3^)=-+-, (18a

u =Acos.r-/y{2AB+A''cos.\), (19 a

^1 ^^sin. tCOs. T

^
' /s/(2AB+A^cos.Ty ^

-A ^ cos ^ "^

^ ' //(2^S+^^cos.^t) ^

If e is taken so that

'= ^{A2+ 2ABY'
(^^^

(21 a) gives, by the notation of elliptic integrals,

\/(2 A B+A^ cos, 2 r)— a/(^2_j_2 AB) ,^r, (23 a

,
A^—2AB

,
2^^

i>^.=.-^ COS. ^+;7^^V, ^^^, , x+V(Z^^-^)^^-
('''

z=— ^ sin. T -|- (yl_2 B)eF'^+ 2eBEr ; (25 a

and z may be found in in terms of u, by substituting (19 a) in

(25 a).

The preceding solution applies strictly to that case only in

which A and B have the same sign ; for, when they have op-

posite signs, e becomes greater than unity, and when B is also

greater than A, e is imaginary ; but these cases are solved

without difficulty.
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3. To find the greatest solid of all those for which

/./.sec.2y, (26 a)

has a given value, 7 being the inclination of the tangent plane

of the bounding surface to the given plane of 2?/.

Solution. If ^ is the constant multiplier of (26 a), the equa-

tion of the maximum is

l — A-'Dlz— A-'D;z=0, (27 a)

which is easily derived from the equation

sec.2 v = l + D, z"^ + /), z\ (28 a)

Let V be taken so that

z=:lA{x + yYJ^v, (29a)

which gives

Dlz^^A+Dlv, (30 a)

Dl% = iA + Dlv- (31a)

which, substituted in (27 a), give

Dlv+Dlvz=:0. (32 a)

Let now

mz^ x-\- y \/— 1 , w — X— y s/— 1
; (33 a)

and w^e have

DyV ziz {D„,v — D,v)\/\, W34a)
Dlv = Dlv\-<^ Dl,„v + Dlv,

/>> = — Z>> + 2 J9L. V — Dl V ; J

which, substituted in (32 a), give

r —Dm.D, V. (35 a)>2
m . n

18
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Hence D„ i? is a function, whose difTerential coefficient taken

relatively to m is constant, and may, therefore, be any function

whatever of n, represented by N ; that is,

Dr. V = N, (36 a)

Hence v =f, N —f.71 + F. nij (37 a)

in whichy and JP are any arbitrary functions ; f . n is the

function whose differential coefficient is N, and F.ni is the

arbitrary quantity which is constant relatively to n ; that is,

which does not vary with n, but may be any function whatever

of the other variable m, and which is added to complete the

integral. By the substitution of (33 a), (37 a) gives

v=f.{x + ys/-\)+F[x-y^^\). (38 a)

If we put F—f'^^—i,Fi _ (39 a)

F^f'-- ^—l,F\ (40 a)

in which f and F' are real functions, the value of y becomes

(41 a)

»=/.(x+V-l)+/.(a:-^-l)+v'-l[-F'(^+'«/-l)--F'(^v-I)],

from which the imaginary quantities will wholly disappear.
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CHAPTER X.

INTEGRATION OF LINEAR DIFFERENTIAL EQUATIONS.

178. A differential equation is said to be of the same

oi'de?' with that of the highest differential coefficient

which it involves.

The degree of a differential equation is determined

in the same way as that of an ordinary equation, except

that the independent variables are neglected, and each

differential coefficient is counted as a variable.

Thus the equation

A Dlv + B D"-^ V + &z.c.-\- A'Dlv -\- B' D-' v + &c.

-\-E Dl-"". D';; V 4- &c. +ez; -{-n=0. (42a)

is of the n order ; but it is only of the first degree, or linear,

if the coefficients A, B, &,c. involve the independent variables

X, y, &:,c., but do not involve v, &/C.

179. Any equation, which is of a less order than a

given differential equation, and satisfies it by the aid

of differentiation without the assistance of any other

equation, is said to be an integral of the given equation.

The integral is said to be complete when it contains the

greatest possible number of arbitrary quantities.

180. Problem. To integrate several given equations^

between the variables x, y, z, i^'c, and their differential

coefficients taken with respect to the independent varia-
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hie tj xolien the given equations are linear^ and contain

no term independent of x, y, z, t^'c, and wJien all the

coefficients are constant, and the number of equations

the same with that of x, y, z, ^*c.

Solution. If the following expressions are assumed for the

variables

x = A c'\ y — Be'' &c., (43 a)

in which 5, A, B, &/C., are constant, their differentials give

DtX=i As e'\ Dty— Bs e'', &lc. )

D]x=As^e"-, D\y — Bs^e'\^(i. C (44a)

&c. &c. 3

If these values are substituted in the given equations, these

equations will evidently become divisible bye*'; and the di-

vision by this factor will free the equations wholly from

variables, and reduce them to equations between s, A^B, &c,,

in which A and B will have a linear form. If all of the con-

stants A^ B, &LC. but one, as A, are eliminated, the result will

be a single equation involving A and s, in which A, however,

will be a factor of the whole equation ; so that the division of

this equation by A, will lead to a final equation, involving no

other unknown quantity but s, and which will serve to deter-

mine s. Let the equation for determining 5 be denoted by

^ = 0, (45 a)

and each root of it will give corresponding values of A, B,
&/C., or rather of their ratios, and thence values of x, y, &>c.,

which will be integrals of the given equations.

181. Corollary. The number of integrals found by the

preceding process, will be the same as that of the different

roots of the equation (45 a) ; but all these integrals can be
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united into one expression. For it is evident that, if x^
, y^ ,

&c. denote any one of these systems of integrals,

x^z Lx,-\-L' x,,-\-^z.y y=^Ly^-[- L' Us' -{• ^C" (46 a)

will also be a system of integrals, in which L, i', 6lq,. will

be arbitrary ; for the linear form of the given equations will

cause the multipliers of L, L\ &,c. to become th esame func-

tions of x^
, y^ , &,c., which the whole equations are of x, y,

&,c. ; and therefore x,,
, y^ , &/C, will satisfy the equations in

the same way as they do when they are by themselves ; that is,

the aggregate of the terms dependent upon them will be zero.

182. Corollary. If the first member of the equation (45 a)

is reduced to the form

s" + « s"-^ + &c., (47 a)

the expressions

will, by the notation of the residual calculus, include all the

terms of (46 a), provided that the residuation is performed

relatively to s, and that Aj B, C, &lc. assume a new system of

values for each root of <S^. The forms (48 a) might, indeed, be

directly applied to the integration of the equation, by perform-

ing the differentiation under the sign of residuation.

183. Corollary. It may be remarked, that A, B, &lc. are

integral polynomials in terms of s ; and if, indeed, they were

not so, the multiplication of each of them by their common
denominator would reduce them to such polynomials. Neither

of them is a polynomial of a higher degree than the («— l)st
;

for if either of them were of a higher degree, the division by iS^

would reduce such a term to the form

QS+R, (49 a)
18*
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in which R, the remainder of the division, must be of a less

degree than S ; and (49 a) is by (45 a) reduced to R.

184. Corollanj. If the values of A, B, &c., in (48 a),

change their values for different roots of S, only so far as they

should to conform to the sign of residuation, the values (48 a)

will involve only one arbitrary constant, which is a factor of

each of the quantities A, B, &/C. But if this arbitrary con-

stant is reduced to unity ; and if^, B, &lc. are then multiplied

by the polynomial
«5«-i_j_^^^."-2_j_&,c., (50 a)

iji which «, (^, &:.c. are arbitrary constants, the requisite num-

ber of arbitrary constants is again introduced into (48 a). The

values of (48 a) may, by the process of § 183, be reduced to

the form
(51a)

_ f {L, a+M, ?+&c.)e" _ ^ {L,a+M,J-\-&i.c.y

((«))
C

((«))
y=L , &c.

in which L^ , Ly, 31^ , 3Iy , &c. are integral polynomial

functions of s, neither of which exceeds the (n— l)st degree.

185. Corollary. The dilferentials of (51 a) become, by the

same method of reduction,

(Lx « + Mx? -\- &c.) se''D,x-
{{S))

- C
((^))

D]x = l
{L:a-{-M:?+&LZ.)e'

({S))

j^tv — c ^i^s))

&c.

> (-52 a)
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186. Corollary. If x^ , ij ^ , (fcc. ; Jo, ?/o , &lc. ; z'J , &/C.,

represent the values of cT, y, &/C. ; D^ x, D^ y, &/C. ; D]x^ &/C.

when ^ vanishes; and if

/

(53 a)

equations (51a and 52 a) give

If the number of the equations (54 a) is taken equal to that of

the constant «, ,'?, &c., the values of «, (5, &,c., may, by the

usual process of elimination, be found in terms of Xq , i/^ , &:,c.

The expressions of «, ^, &;c. in terms of x^ , i/^ , &;c. will

clearly be linear functions of «, (^, &c. ; so that if these values

are substituted in (51 a and 52 a), the expressions of t, y, &/C.

will contain x^
, y^ , &c., in the same linear form in which

they now contain «, ,^, &/C. The values of «, i^, &lc., in (51 a

and 52 a), might, then, have been assumed at once as identical

with Xq , ?/q , &c., and the corresponding values of x, ?/, &c.

would be

J.
Zz a;^ + Z; x'o + &c. + iJ/x 1/q + &c.

X =z
l^

" —
. , ^. X

—

^

e'

&LC,.
;

(55 a)

s£

2' - C ((Sj)

in which, it may be observed, that the values of Z/j, Mx, &/C.

are entirely distinct from those in (51a and 52 a).
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187. Lemma. If JP denotes the value which xf.x
acquires when x becomes infinite, we have

F=l{(f.x)), (56 a)

whenever /. x denotes a rational fraction, of which the

degree of the numerator is less than that of the de-

nominator.

Proof. It follows from (216 and 219), that, in the present

case.

the product of which by x is

.f.. =lp^\ , (58 a)

But when x is infinite, (58 a) becomes

F=l{{f.z))=t{{f.^)). (59 a)

188. Corollary. When the excess of the degree of the de-

nominator of /. x above the numerator is greater than unity,

(59 a) becomes

0=t((/-^)). (60 a)

189. Corollary. When the excess of the degree of the de-

nominator of y. X above the numerator is exactly unity, and

when f,x is of the value (217), (59 a) becomes

a

'a!
-,^L{U'A)' (61a)

190. Corollary. Since, when t becomes zero, the values of

X, y, &/C. (55 a) are reduced to x^
, y^ , &,c. ; the polyno-
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mials L^ , 31^ , Ly , L'y , &c. must be of a less degree than

the (n— l)th; while Lx , My , &c. must be of the form

5"-i 4- J s"-2+ &c. (G2a)

The form of 5 L^ is, therefore,

s" + b s"-' -{- &LC.
; (63 a)

so that, by (47 a), s i^ — S (64 a)

is of a less degree than S. We have, then, by denoting (64 a)

But when t vanishes, Dt x is reduced to Jq > and therefore

s Lt'x must be of the form (62 a), while L,^, , s Mz , &lc. must

be of a smaller degree. We have then, again, by the differen-

tiation of (65 a),

and a similar train of argument may be continued to the higher

differential coefficients.

191. Corollary. If, in the given equations, there are

substituted for x, D^ x, D] x, &,c., the quantities contained

under the sign of residuation in (55 a, Go a, 6G a, &lc.), those

equations must be satisfied. The reverse process, therefore,

of substituting for DtX, D^y, &:-c., not 5 z, sy, &,c., but

sx— 2;q>S^.— , sy—.yo^-^, <Scc., and for D'^x, &:,c.,

s^ X— {x'o-\-sxA S — , &LC., must give again the parts of
o

X, y, &/C. in (55 a), which are under the sign of residuation.
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192. Corollary. If ^ be taken to denote the expression for

S when D^ is substituted for 5, and if Jt, ^H, &c., denote the

expressions whi6h L, 3J,&lc. assume by the same substitution,

and if ® be taken so that

,
•

- = im)' ^'''^

we shall have «Z/e*' .^^ ^^pypSO, (68 a)

and the values of x, y, &.c. (55 a) will become

y=(2L,:r,+iL>-; + &c.+ JH,yo+&'C.)6), 5
^'^'^

in which |iz &.C. are not proper factors, but express functional

operations to be performed.

The value of r would be obtained by eliminating x, 1/, &,c.

directly from the given equation, in which process D^^D],
&c. are to be treated as though they were factors. The values

of X, y, &/C. (70 a), will then be obtained by the same process

of elimination, from the equations, which are obtained from

the given equations, by substituting

DtX— a^o ^ ® for DiX, ^

Ay — yo^® forAy, ifcc. > (^la)

Djx— (xj + x^ D) re, )

&.C.

This is Cauchy's method of integration, and the function ® is

called the principal function.
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193. Corollary. When the equation (45 a) has several

equal roots, the corresponding systems of values in (46 a)

would seem to coalesce into one. This loss of terms, and

therefore of arbitrary constants, is, however, unnecessary ; for

if the roots 5, s', s", &c., instead of being equal, differed infi-

nitely little from each other, so that

s'=s + A, s"=s'+h'z=is+li+h', &c., (72a)

in which h, h\ &c. are infinitely small, we shall have, by

(416) of vol. 1, upon putting

Bz^A'h, B'z=A"h\ C= B'h, &c., (73 a)

>-(74a)

A"e'"'=A"e'''+B't e'''=A"e''+{A"h-\-B')t e''-hC t^ e'')

&c.

The new terms, multiplied by t, t'^, &lc., which are thus in-

troduced, are just sufficient to replace those which are lost by

addition. These very terms are also introduced by the process

of residuation, for this process requires, by (182), one or more

diflferentiations, whenever the roots are equal, and each dif-

ferentiation will have to be applied to e'^ in (55 a). But by

(481) of vol. 1,

DT e'^zzzt"^ e\ (75 a)

whence the differentiation will, evidently, introduce the re-

quired terms.

194. Problem. To integrate several linear differen-

tial equations between the variables x^ y, 4*^., and their

differential coefficients taken relatively to the independent

variable t, lohen all the coefficients are constant^ the

tei^ms lohich are independent of x, y, cj'c. are given

functions of t, and the number of the equations is the

same with that of the variables.
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Solution. When llie functions of t are reduced to zero,

this problem coincides with tlie preceding one ; and if ^, v,

&LC. denote the corresponding vahies (70 a) of x, y, &c.

obtained by the preceding process ; while X, Y, &c. are par-

ticular values of x, ?/, &,c., which satisfy the present problem,

the values

x = t-\- X, y = r,+ Y, &,c. (76 a)

are complete values of x, y, &,c. for £, t], &/C., involve the re-

quired number of arbitrary constants.

The problem is reduced, then, to obtaining these particular

values of x, ?/, &/C. For this purpose, let the subsidiary

quantity t be introduced, and let

%=^-'^e=t^l, (77 a)

so that is the value which assumes when t is changed into

t— T. If, then, X, IT, ^-c. are the values, which i, v, &lc.

assume, when © is changed to , and when for a-^ , x'q, yo,

&c. are substituted ^^ , ^^ , ^^ , &,c., which are functions

of Tj and if the integrations in the following formulas are per-

formed relatively to t, we may put

X= fl,X, Y=fi Y, &c. (78 a)

The differentiation of (78 a) relatively to t, involves not only

the differentiation of X, Y, &c., under the sign of integration,

but also the changes arising from the change in the limits of

integration. If then X^, '^t, ^c., are the values which

v\, "ST, fcc., assume when t is changed to t, the differentiation

of (78 a) gives

D,X=X,+f,D,x, •.

D,Y=, ¥, +fi D, ¥, &c. 5
(^^^^
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If, again, we put

X'z=D,x, ^' = D,Y, (80 a)

another differentiation of (79 a) gives

D',JC=zD, X, + X] +f'o D] X, &c. (81 a)

By the substitution of X, F, &/C. for x, y, &c., in the given

equations, the terms under the sign of integration must dis-

appear, for the terms under this sign in the values of JT, D^ F,

&,c. differ from the values of t, v, &c. in nothing but the com-

mon factor e~^^, and the writing of the particular forms ^j,
STi , &c. for the arbitrary constants a;^ , Xq, &;c.

The substitution of t for t reduces t^^^—'^) to unity, and if

^z ? T'x y are the same functions of t, which JTx and ^T^ are of t,

we have, by § 190,

___ » x^ r. + l: t:+ &C.+M, 7;+&c. _

_ ^. Zx' r. +s xj r;+&c.+5irf, 7;+&c._^, p ^^

^-L
((^))

^- -I

T, = 7;, &c. ^

Hence, by the omission of the parts of (78 a, 79 a and 81 a),

which are under the signs of integration, they become

jr=0, D, X=n , D] X— %-\-D, . Tx , &c.
^

and the substitution of these values in the given equations,

reduces them to linear differential equations in which T^c , T^
,

Ty are the variables, and the order of the equations is less by

one than that of the given equations. Thus the number of

these variables being greater than that of the equations,

19
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enables us to take certain of them at pleasure. Thus of the

quantities Tx , T^ , &c., all but one may be supposed to be

zero ; of Ty, T^ , all but one may be zero ; and in the same

way with the others.

The selection of the quantities T^ , &c., which are to re-

main of a finite value, is immediately fixed, by the considera-

tion that the resulting equation should be of as low an order

as possible. It is generally possible to select those quantities

which correspond, respectively, to the highest order of diffe-

rential coefficients of a;, i/, &c. ; and with this selection the

resulting equations are wholly free from difTerentials, and are

solved by simple elimination. In any case, however, it seems

possible to make a selection which will avoid the necessity of

integration.

195. Corollary. When s is nothing, the values of X, Y
must vanish, as well as all their diflferential coefficients of an

order inferior to those which correspond to the quantities in the

series T^^ Ty, &c., which are retained as finite. Hence the

corresponding values of x,7/, D^x^ &c. will be reduced to

^^o > yo> ^0, &c.

196. Examples.

1. To integrate the diflferential equation

D'^x + a D"r' X + &c. = C/; (84 a)

in which U is a. function of t.

Solution. In this case, the value of r becomes at once

F =zD'l + a Dr'+ &^o. z=f.Dr, (85 a)
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Hence S =z s"" + a s""^ + &c. =/. s, (86 a)

by taking/", to denote the integral function, which constitutes

the second members of (85 a and 86 a). We have also

and the equation for determining ^ is, by (71 a),

(2>r + aDr' + &c.)^

-[xo(i>r'+a^r'+&c.)+x; (z>^^+az>r'+&c.)+<^c.]/7 0=0

or (88 a)

r ^-[a:o(Z)r'+a^r'+&c.)+2;;(J9r2+aZ)r'+&c.)+&c.]f 0=0 ;

whence (89 a)

If, in the development of the expression

the exponents n, n—1, &c. of x^ , are regarded as expressing

the number of accents, and if the term which does not contain

Xq is multiplied by x^ the value (89 a) may be expressed in a

more simple form ; for we shall have

J^t — ^o

To obtain the value of X, let Wi be the value which U
assumes when t is changed to t, and by omitting the accent of

Tx as unnecessary, we have by § 194, if we suppose all the

quantities in the series Tx , &;c. to vanish but the (n— l)st,

T,=U, K. = m; (92 a)
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whence, by (78a, 76a and Ola),

X=fl,m0^ (93 a)

_/-^^-/^o0_j_y..2g0 (94a)a; = —
O.-^o

2. To integrate the differential equation

Solution. In this case, we have

f.D,= D]—{a+ b)D', + abD, = D,{D,— a) {D, — b)

S= s (s— a)(s— 6)

i^^^ =x^[D]-^(a+b) A+a b]+x', [l>,-(a+6)]+x,'

^_f'Dt-f'^o y x^[s2-(a-^b)s+a b]-{-x'o [s-{a+b)]+x'^
'- A-^o ^^ ({s(s-a){s-b)))

__ ct+ b ,
,

1 „— •*'o
"""

I *'0 t I.
^0

^'' + rr—ix ^ >

a (a

—

b) b («—6)

T>

^-y T-C((5(5_^)(5_^,) ))— C52 ((5(s—«) (S—6) ))

_ ct^ c e""'— cjat + 1) ce''— c(bt + l)

~ 2Vb~^ ^(a—b) 63 (^a—b)

and z =: I -f-
JT.

3. To integrate the differential equation

D', X — S a D]x+ S a^ D.x-- a^ X = b c^
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Solution. In this case, we have

S= (s— a)3

'^'^''^'''' =x^(D-a)^+{x',-ax^){D,-a)+{x'--2axl+a^x,)

!> Xq (s—aY+{xo—a Xp) (s—a)+{x'^--2 a x'^+a^ x^)

4. To integrate the diflferential equation

D\x -\- a^ DtX =.}) sin. m t.

Solution. In this case, we have

/. A = {D\ + a2 D,) = D, [D]+ a^)

^-6 ((s(s2+a^)))

=a:^+ — sin. at -\-~, (1— cos. a t)

2:; . ,,2 2;;'.
— sin. a^-j
a a^

19*

=XQ-f- — Sin. at-\ 2^ sin.2 ^ at
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«/c' b sin. m r. e^
^^~'^^ «- s 6 sin. m t—m h (cos. m f+c"')

b mb / COS. m t cos. at\

ma- m^—a- \ ni^ a^ /

*

Corollary. When m is equal to a, the value of JiT becomes

,, 6 , ^ btsm.at 26 .... - . , .

X=: -;(l-cos. at)—-—^r- = -^sin.*a^(sin.ia t-hat cos.Aan.
a^^ ' 2a2 a^

^ "^ ^ '

5. To integrate the differential equation

2>2 3._(^_j_5) j)^ 3._|_^ 6 X= A ^2_^A: e'^'+Z sin. w ^.

a— b a^ b^

2 A (a+6)^ h t^ 2Ae^' 2Ae*'

«2 62 ' a6 ' a'^{a—b) b^ (a—b)

(m—a) (m—6) (m-a) (a-b) (m-b) (a-b)

l(ab— w^) sin. nt-[-nl (a-\-b) cos. nt
"^

(a2_^w-2)(62+ w2)

"^
(a2_|.yj2)(a_6J

"~
(62-(-;i2) (^_5)

•

When ?»=:«, the terms multiplied by k become

k t e''' k (e°'— e^^)
^

^Z:^" (a— 5)2 '

when m'=.by the terms multiplied by k become

a—b (a—6)
2
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6. To integrate the differential equation

D] X— 2 a D, X -{- a2 X= h t^ -\- k e'"' -{- I sin. n t.

Ans. X = Xq e"^ -\- {xq—axQ)te'''

+ "4 [6 + 4ai+a2 t^ + 2 (a t— S) e'^']

k

+ 7-:;——7,r(«2-n2)sin.nM«2+w2)w^c«*+2aw(cos.w^-c«01.
When m-=.ay the terms multiplied by A: become

i kt^ e««.

7. To integrate the differential equation

D"^, X -\- a^ X =:li t^ + k e"^'+ I sin. n t.

X h
Ans. x-=. ~ sin. a t-\-XQ cos. a t-\- — («2 ^2— 4 siii.2 J « ^)

A:(ac'"'-a cos. a^-m sin. «^) l{n^m.at— as,\n.nt)

When w = a, the term multiplied by I becomes

——- (sm. at— at cos. a t).
^Z a^ '

8. To integrate the differential equation

D\ a: = x. (95 a)

Ans, xz=l{x,^xi) (e'+e-*
) +^ (^;+x;")(6'-e-0

+ \ (^0— ^0) COS. #+ i (2;;— x;") sin. t

= i (^0+ ^0 ) Cos. ^+ J (2:0 + aj'o') Sin. t

+ J (a^o— ^0) COS. #+ J (a:^— x'^') sin. t. (96 a)
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9. To integrate the differential equation

n\x + x=iO. (97 a)

Ans. x = uxo-\- Dl u.Xo + B\ u,x"^^BtU. x'^', (98 a)

in which w = Cos. (/\/ J. ^) cos. (\/ J.^). (99 a)

10. To integrate the differential equation

Dlx = x, (lb)

Ans. x= uxo-\- D^-' w . 2-0+ D^^ u , x^'+ (Si-c, (2 b)

in which, when n is an odd number,

w= -lc*+ 2.^.c ^ COS. (^ sin. I I, (3 b)

where ^ denotes the sum of all the terms which are obtained

by substituting for m all the integers from 1 to J (w— 1) in-

clusive. But when n is an even number, which is not divisible

by 4,

(4 b)

u=-| Cos. i-j-2 j^ .Cos. I f COS. l.cos, l^sm. I I,

where 2 denotes the sum of all the terms which are obtained

by substituting for m all the integers from 1 to J (Jw—1) in-

clusive. When n is divisible by 4,

(5 b)

2r^ rt^ / 2m^\ / . 2m7t\-i
w=- Cos. ^+cos.^+2.2^.Cos.(<cos. j.cos.f^sm. ) ,

where 2 denotes the sum of all the terms which are obtained

by substituting for m all the integers from 1 to ^ n—1 inclu-

sive.
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11. To integrate the differential equation

Dlx-\-x = 0. (G b)

Ans. x=zuxo + D1-' u.x', + D^-'^u .< + &c., (7 b)

in which, when n is an odd number,

(8 b)

where 2 is used as in (3 b). When n is an even number,

which is not divisible by 4,

(9 b)

w=-rcos. ^-|-2^.Cos. Ucos. (2»i-l)-)cos. /^sin. (2»i-l)~)J

where 2 . is used as in (4 b). When n is divisible by 4,

M=-r^ .Cos. (t cos.(2 m-\ y^ COS. (t sin. (2 ?»—1)~ ) 1(10^)

where 2 . denotes the sum of all the terms which are obtained

by substituting for m all the integers from 1 to ^ n inclusive.

(lib)

12. To integrate the differential equations

D\x + ax + hy = X
Dly+ a'x+h'y=. F,

in which X and Y are functions of t.

Ans. In this case we have

rz=.{D\.+ a){Dl + h')-a'h (12 b)

S= (s2 -f a) (52 + h') —a'b (13 b)

1= [{D\+h')x'o+{Dl-{-^'D,)x,-byi-hy,D,] © (14 b)

ri=^[{D'l+a)y',-\-{D]-^aD,)y,—a'x',^a'x,D,] 0; (lob)
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and if

m = 5 (« + b'), n^ = i («— h'Y + a' b,

{b'-jn-\-n)x'o-b yl, . (h'-m-n)x!r-by^ . ^ , .

{b'-m-\-n

V =

+

^o-b !/o
COS. t\/{m-n)—

(b'-7n-n)xo-b i/o

a—m4-7i) y'o
—a' x' . ,

,

^^' -^^
sin. t \^{m—n)

COS. t/^{m+n)

(16b)

2 71 s/ (m

—

n)

a—771—n) yo— a! x'o

2 W /y/ (77l-{-7l)

a—7n-\-7i) y Q — a' a:^

2 71

a—7n—w) y^— a' x^

2»

sin. t s/ {ni-\-7i)

COS. t s/ (m

—

7%)

COS. t \/ {m-\-n). (17 b)

If, also, Xj it are the values of X, Y when ^ is changed

to Tj and if the integrals in the following expression are taken

relatively to t,

., (6' 771 7Z) X &Y . , X -, . X /,o,v-^- 2„V (.«+») ^°- ('-V('"+") (18 b)

-•^-
3,. V (»>+»)

^'°•('-^)^^ ("»+»)' (19")

we have a; = ^ -j- ^', y = »; -j- j?'. (20 b)
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TIT, / V • sin.\/(m

—

7i) t . ., .When im—n) is negative, —r^ — and cqs.aJ {m-n]t
s/ \m—n) '

. , . S'\n.\/(?i—m)t , ^ ,, , ,

are to be changed to j—^ r^ and Cos. Aj{n-m)t. (21 b)

When 7w+nis negative, tt—t-—- ^nd cos. a/ (m +/i) ^

s/ym-f-n)

are to be changed to— '

,
,

- and Cos.\/-(m+w)^. (^^ b)V

—

\m-\-n) \ 1 / \ /

1XTU J 1
si"- V (^i

—

n) t . ,/ XWhen 771 and n are equal, '— and cos.vfm—70<V (?«—w)

are to be changed to t and unity. (23 b)

rxTu I
• sin. \/(m-|-7^)f , „ , xWhen 77^^-7^ is zero, —;——- and cos.v (tw+ti)^ are to

be changed to t and unity. (24 b)

The changes, which correspond to the case when n is zero,

are easily made.

197. Definition. A fluctuating function ^\^ one, which.

constantly changes its value by a finite quantity for an

infinitely small change in the variable, alternately in-

creasing and decreasing without ever being infinite.

This singular function is of great use in the integra-

tion of equations which involve several independent

variables ; there is no name in general use, but the one

here adopted was given by Hamilton, and is highly ap-

propriate.

The expression sin. a x, is an instance of such a function,

when a is infinite ; and, in this instance, it is noticeable that

the mean value of the function is zero.
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198. Theorem. Iff denotes a function of a, which

is continuous and finite within the limits a and b, and

if N is a fluctuating function of which the mean
value corresponding to each fluctuation is zero^ and if

the integrations are performed relatively to «, we have

fi-N^f^^O. (25 b)

Proof. Let the interval between the limits of the integra-

tion be divided into portions, each of which is the infinitely

small extent necessary for a single fluctuation ; and let the

limits of any portion be ? and ? -[~ i' For this portion we may

put

« = i^ + S (26 b)

and the corresponding integral, taken relatively to £, is

But by (533) of vol. 1,

M,=U + i,/...„ D'f^, (28 b)

and, by definition,

/5iV^+ , = 0. (29 b)

Hence (27 b) becomes

=-^^ A N^+. '"• (30 b)

But, by integrating by parts, we find

f>.N,^^,j:^i3±^fA^ij^ilm., (31b)

and the second member of (31 b) is, evidently, an infinitesimal
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of the (w-f l)st order, and (27 b) is, therefore, an infinitesimal

of the same order. The number of all the portions of (25 b)

is equal to ^ , and therefore the sum of all the portions (27 b)
i

is an infinitesimal of the wth order ; that is, this sum is infinitely

small, and may be neglected, which gives at once the equa-

tion (25 b).

199. Corollary. If we take

/,= /« (32b)

and if f is continuous and finite throucrhout its whole extent,

(25 b) gives

/« • ^a /c = 0- (33 b)

200. Theorem, If the notation of % 198 is adopted,

and if x is included between a and 6, loe shall have

/l> N^,-^fa = f^f- ILl
. . (34 b)

Proof. In the identical equation

in which i is an infinitesimal, the first and third terms of the

second member vanish by § 198, when this equation is substi-

tuted in the first member of (34 b). Hence if

a = «_2, (36b)

we have

/. h J^u-zfa^ ra+i iV,-z fu ^ f-\-i N,f+.
J a a — X J «

—

i «— X *I — i £ ' ^ '

in the third member of which, the integrations are performed

20
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relatively to «. But f^-^^ differs infinitely little from f^, and,

therefore, (37 b) gives

r\ I^=il± ^ ff+i. E^
. (38 b)

In the same way, when/^ is unity, and x is zero,

' r ^ = r+\ ^
.

(39b)
J a a. J —I «

which, substituted in (38 b), gives (34 b).

201. Corollary. Since we have

/,QO (a-2:)v-l p— cc(a-a;)v-l

f' g>((x-a)v-l —
-^^

~"
(«_x)V—

I

2 sin. CO («

—

x)

a— X
(40 b)

the first member of (40 b) may be substituted for —^ in

(34 b), which gives

^ ^ /»' sin. 00 a / . , , \

Si f\ eA(-«)v-i /„ = 2 /. J^
—^ .(41b)

202. Problem. To find the value of

/J!!!^. (42 b)

Solution. If we put

/5«z=«, (43 b)

we have

/•' sin. /5 a /•' sin. a p' sin. a
^

... ,.

a « J a a t/aa'
that is, the first member of (44 b) is independent of the value
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of 1^, as long as i^ is positive ; so that if yl is the required value

of (42 b), we have

D^A=zO. (45 b)

We have also

/•' sin. /? a _ p'
(
1 +a^) sin. (J g

a a J a « (I -|- o.^)

/•' sin. ^ a /•' «sin. ^a ,.^, .

Hence, by putting

£=/'^i;i-^, (47b)

''"''"" D,B=f' ""'/: (48 b)
P J a l-|-a2

^ '

/*i « sin. /? a

whence, by (46 b),

A = B — DIB. (50 b)

This equation may be regarded as a linear differential equa-

tion in which ^ is the independent variable, and its integral is

B=A + A'e^+ A" e-'^ (51 b)

in which A' and A" are arbitrary constants. The values of

these arbitrary constants may be determined from the extreme

values of Ds B. When (^ is infinite, the value of (48 b) van-

ishes by (25 b) ; but (51 b) gives

D^ B = A' e^—A" e-^
,

(52 b)

which will not vanish, when ,^ is infinite, unless

A' — 0; (53 b)

whence Ds B = — A" e'? . (54 b)
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Again when ^ is zero the value of (48 b) is ^ ; and although

(i may never be supposed quite so small as zero, yet when it

is an infinitesimal, (48 b) must differ infinitely little fiom tt^

and therefore, by (54 b),

71 = — A", (55 b)

whence D^ B =z rv c~^, (56 b)

Finally, the comparison of (47 b and 48 b) gives, by {^Q b),

B^fiD^B = ^{\-c-l'). (57 b)

Hence, by (51 b),

A^.-= f ^l^ = r' ?i^^i^. (58b)

203. Corollary. The substitution of (58 b) in (41 b) gives

f. = i-„f^-f'>. e^^-'^'-V". (59 b)

provided the integral between the limits a and h is performed

relatively to «.

204. Corollary. \'i fa is the same as in (33 b), (59 b) gives

f.:^iKSLS\ e'-^-"''-V<^ -=hfa',, ^«^-"'^-'/»- (CO b)

205. Corollary. In the same way, we should have

L.f= i-LA- e«^-'')^-^ A . ^

,

(61 b)

f..v = ~2n f? r, •
e""-'-*^'-' /.. ,,

'

(62 b)

whence, by substitution,
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206. Corollary. In the same way,

={h')%:? .y.i.,., eP(-«)+."(i'-«+.(-.)]v-i/^
. ^ . .^.(64 b)

207. Corollary. The successive differentiation of (60 b)

gives

mfl = i-nJL ^ (- 1 ) 1 / e^(-°)^-l
/„ ; (65 b)

and, in the same way, by the successive differentiation of

(64 b), the factor ;. s/-\ is introduced under the signs of inte-

gration for each differentiation relatively to x, the factor u\/-l

for each differentiation relatively to y, &c.

208. Problem, To find several functions JCt , Yi

,

(Sfc. of the independent variables t, a:, y, S^c. which sat-

isfy given linear differential equations with constant

coefficients between various differential coefficients cor^

responding to the different independent variables^ and
lohich become given functions X^ , Yq , Sfc. of the va-

riable X, y, <^*c., when t becomes zero.

Solution. Let Xt , IT^ &c., Xo , ITo , &c. represent the

values of JT^, F^ , &c., JTo, Fq, &c. when x, y, &c. are

changed into «, ^, &c. ; so that by (64 b) if n denotes the

number of the variables x, ?/, &,c.,

^'=(i^)V« .'ft
&c. A .,„, &c. e['(-«)+"(y-«+&<=-]y-l X, (G6 b)

&c.

If now R = L (67 b)

represents one of the given equations, in which 72 is a linear

function of the differential coefficients with constant multipli-

20*
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ers, and Z. is a given function of t, x, y, &c. ; and if 3L de-

notes the value of L when x, y, &,c. are changed to «, i^, &c.
;

and Iv tlie value of R when Xi ^ Y^, &c. are changed to

Xm ITr , ^-c., and Z)^ ,
Z>j^, &c. are changed to ^\/-l, ^</y^-l,

&c. ; the equation (G7 b) is changed by the substitution of

(06 b) into

(68 b)

(i^-7.)"/«.>>c...„&c.
.[^-(-«)+"(i/-^;+&-]v-i

(3tl-2L)=0,

which is satisfied by putting

^^IL, (69 b)

and this equation involves no other differential coefficients than

those taken relatively to t.

By this substitution, therefore, all the given equations are

similarly transformed, and the problem is reduced to the inte-

gration of several linear differential equations with constant

coefficients, in which there is only one independent variable;

and this integration is performed by the method of § 1 79 to

"^ 195, The functions to be determined are, in this new form,

Xt , "^t ) &c., of which the initial values are ^o > ^o j ^c.

209. Corollary. It may be observed that for a complete

solution, the initial values JTq , Yq &lc. of some of the dif-

ferential coefficients D^ X^ , D^ Fj , &,c. should also be given

functions of x, y, &c.

210. Examples.

1. Integrate the equation

Dl X, + D] X, = 0. (70 b)

Solution. In this case, the substitution {QQ b) gives
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whence

+ fr^
[e^^^-^-^ (l+V-3)e-Kv-l-3)^-^

* - i (i-V-3) ei(-^-i+3)
, t\X';^ . .

If the values of Xq j X o and X o are written as follows,

Xo=/,, X ; = />«/«, X'o = Dlf'S; (71b)

we have, by (60 b and Q5 b),

/i/I^^o e'(--«v-i e*-(^-l±3).u =/;;+j(^^_3), ;

whence we have

^t — ^ {fz-t +/. x+i(l-V-3j£ +/• x-|:i(l+v/-3)t)

-i(/:-^ - i ( 1-V-3)/. ;+.kl-V-3). - i( 1+^-3)/;+i (1+^-3)0

+^(/:'-^i(i+v-3)/.;'+i(i-v-3).-Hi-v-3)/.',+i(i+v-3)e).
(72 b)

2.. Integrate the equation

a b Dl X, + («+ 6) i>; ., X, + D]X,^ 0. (73 b)
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Ajis. With the notation of (71 b),

JC,= —laf.-yt - 6/x-at +f'.-U -f'.-at). (74b)
a—

6

3. Integrate the equation

a'DlX, -f 2aDl ,X, + D',X,=:0. (75b)

t
Ans. With the notation of (71 b),

X, =/_. + ^/U. + at D,./,_a.. (76b)

4. Integrate the equation

aD,X,+ D, X, = 6"^^+"^ (77 b)

Solution. The value of X^ in this case is

pmt-{-nC( p
—a tX-J — l+ 7i«

m -\- a X /s/ — 1

whence, by the notation of (71 b),

The value of the definite integral in (79 b) is found from

the equation

.1- y;2^ e;i(x-«)v-i ew« — g^a;
^

(80 b)

which, multiplied by -^ e™'^ and integrated relatively to x gives

i r'^ ' ^-i_ — i _
; (81b)

^n J a.X a m'-\-a i s/— 1 « m'-\-a n

and this equation divided by e'"'"' is, by substituting m for a m',
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The results, successively obtained from (82 b) by multiply-

ing by e'"' , and again by substituting x—a t for x, reduce the

value of the definite integral of (79 b) to

f,mt-\-nx pn{z—at)

J-
, (83 b)

m -\- an

and the value of X^ is obtained by substituting (83 b) for the

definite integral ; so that

X,z=/_, +(83b). (84 b)

Corollary. When m =— a 7i, (85 b)

(83 b) is reduced to t c'^(,^-«". (86 b)

5. Integrate the equation

aD,X, + D,X,=:z tx. (87b)

Ans. X,-=if,^a«+^—2— J a;2 ^+ J « .T #2 _ ^
«o

^3. (88 b)
/4 a

6. Integrate the equation

Dl X, + D\ X, = (x2+ ^2) ,xt, (S9 b)

(90 b)
7. Integrate the equation

aD.vX^-^b D,X,-\-D,X^=lc'^^'+^y-^^t, (91 b)

7 ph .V-\-k y r,,7n t „—(h a+k b)n

ah -f-o k -j- m '

which, when m = — ah-\-hk (93 b)

is reduced to

X,=/,._,,, y_j,+/^e''-^+ Ay-(A« + i6;«. (94b)
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211. The integration of linear differential equations,

in which the coeflicients are not constant, can only be

performed in some particular cases, some of which will

be found in some of the following chapters.
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Equations of the first order.

CHAPTER XI.

INTEGRATION OF DIFFERENTIAL EQ,UATIONS OF THE
FIRST ORDER.

212. To integrate a given differential equation of

the first order, between two variables x and t.

Solution. Let t be the independent variable, and let the

value of Z>jX be found from the given equation in the form

MD,x=--. {95 b)

The integral of this equation must involve an arbitrary con-

stant a, from which the value of a can be found in terms of

t and X in the form

a=A,, (96 b)

in which A^ is a function of t and x. The differential of

(96 b) gives

^-DxA,.D,x + D,A,, (97 b)

DA
JJ^XZZZ

Hence, by (95 b),

^'^=-i^- (^^'')

D^_ll_±M. (90M

in which x is wholly arbitrary, and may, therefore, be taken of

such a value that

^N-DxA,, (Ic)

which gives ^ M— D^ A^; (2c)
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whence, by the elimination of -4,,

Dl,A,^D.(>-N)^D,(xM). (3 c)

There is no general process of finding a value of ^ which

will satisfy (3 c), and this problem must be solved in each case

by the exercise of the ingenuity. When the value of ^ is

found, (1 c and 2 c) give

a^A,=f,{^M)^f, [7.N), (4c)

in which a is the arbitrary constant.

213. Corollary. An arbitrary function of x will be added to

the third member of (4 c) to complete the integral, and an

arbitrary function of t to the fourth member of (4 c). But

these arbitrary functions are at once determined by the con-

ditions that the third and fourth members are equal.

214. Corollary. The value of a is usually determined by

the condition that x is to have a certain value x^ , when t be-

comes T. Ifj then, A^ denotes the value of At when t and x

are changed to ^ and x^
, (4 c) gives

A,-A^ = 0. (5c)

215. Corollary. It is often the case that the given equation

is such that it cannot be reduced to the form (95 b), and in

this case the whole process must be Jeft to the skill of the

geometer.

216. Corollary. If iW and N are such functions of x and t,

that

M=3Ia:3l, iV=iY^-iV, (6 c)

in which 31x and Nx are functions of x alone, and M^ and

Nt are functions of t alone, the value of ^ may be assumed
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For this assumption reduces the two last members of (3 c) to

zero. The equations (4 c and 5 c) give

217. Corollary. When M and TV are homogenous functions

of the same degree m, the vahie of ^ is

^=i{Nx+ Mt)-'. (9 c)

Hence 7r^ = Nx-{- 31

1

(10 c)

2>.r ^ = — A2 (iv+ X D.vN+t Dv M) (U c)

A ^- =— ^-^ {M -\-x D, N+ t D, 31) (12 c)

Dx {^- 31) =— -^^ (31 N -\- 31 X Ds N'-N X D,v31 )
(13c)

D,(^-N) —— 7.'i(3IN—3ItD^N+NtD,31). (14c)

_, , . X
But, by puttmg y = —

31, r r .

the expression — becomes a function of i/ alone, which may

be denoted by 31', whence

D.r M'=D, M. D,y= \ D,M'=^ (15c)

X
D, 31' = I),^ 31'

. D, ij =z — — D^ 31'

D, 31 m 31
(16c)

and, therefore,

X D:cM= — tD,31+m3I; (17 c)

and, in the same way,

X D:,Nz=z — tD,N+mN, (18c)

21
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which, substituted in (13 c), give by (14 c)

Dx{} M)=—).\MN-Mt D,N+Nt D,M)=DlxN). (19c)

' Hence (3 c) is satisfied, and (4 c) gives

_ p M _ ^ N
""-J tNx-YMt-J:cNx+Mt' ^^^^^

218. Corollary. If h is any function whatever of a, and if

Bt is the same function of ^^ , (96 b) gives

b = B,. (21 c)

It may be shown, precisely as in §212, that if ," is such

that

uN=^D^.Br, (22 c)

u will be a value of ^ capable of satisfying the equation (3 c).

If, however, b' is the differential coefficient of b taken rela-

tively to a, and if ^^ is the same function of A^ which b' is of

a, we have

Da;B:= B[D^A,, (23 c)

whence (22 c and 1 c) give

^cN—^-B'tN or u — 7.Bl\ (24c)

that is, the product of any value of ^ by any function what-

ever of A^ is itself another value of i.

219. Corollary. Whenever M and N can be separated

into such portions M , 31', 31'", &.C., and N', N", N'", &c.,

that the equation (95 b) can be integrated when for M
and N are substituted 31 and iV', or M" or iV", &c., the inte-

gral of the equation itself is often readily obtained. For this

purpose, let ;.' and A[ represent the values of/ and A ^ which cor-

respond to M' and N', '" and A'\ those which correspond to
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M" and N", &c. it is necessary to find functions ^',
(f" &c.

o^ A't, A'l &;c., which will satisfy the equation

^' cp'. {A',) = ;." /. (A;) =z x'" y"; (^V') = &c. (25 c)

For if the value of each member of (25 c) is denoted by ij we

shall have

A J/=: /' /. {A\) 31' -f k" ^p" {A';) M" + &c. (26 c)

^ iV= a' <f'. {A\) N' + ^" 9" [A]') N" + &c. (27 c)

But, by the preceding corollary,

D, [>.' ^p'. {A[) N'] = Dj; [^.' cp' {A',) J/], &c. . (28 c)

and therefore ;. satisfies (3 c).

220. Examples.

1. Integrate the equation

{tX'+T)D,xJ^X+xT' = 0, (29 c)

in which JC is a given function of x, and JC' its differential

coefficient; and T is a given function of t, and T' its diffe-

rential coefficient.

Solution. In this case,

M = X+xT'
N= T+tX'

D,N= T' + X' = Z>,. 31,

and, therefore, (3 c) is satisfied by

;. = 1.

Hence the required integral is

— Xt + xT; (30 c)
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or if X and ^ are the values of X and T when t and x

are changed to ^ and x^
,

Kt-^x^K — Xt^xT. (31c)

2. Integrate the equation

{t cos. X -|-sin. €) D,,x -\- sin. x -f- x cos. ^ r= 0. (32 c)

Ans. Tsin. x^-j-.x sin. t ^r: i sin. x-j-x sin. ^. (33 c)

3. Integrate the equation

x« £' D^x-{- k x'^' ^^'rz: 0. (34 c)

Corollary. When «— «' -}- 1 = 0,

the answer is

when J/_ 5
_f_

1 — 0,

it is ^a-a'+l_ ^a^a'+l f____x__+,,og._ = 0; (37 c)

and when both these conditions are satisfied, it is

X T^ + ^ x^, = 0. (38 c)

4. Integrate the equation

t D,x=:x + \/ (x2 + f2). (39 c)

Solution. This is a homogeneous equation, and (9 c) gives

^-'=Mt+NX—tX—t X+t \/(x2+i2) — t ^(:t2+^2) .

hence, by (20 c), the integral is

= \og.W(x^+ fi)-%l (40 c)
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or V(xa + ^2)__3.— ^(3,2_|_r2)_^^^ (4lc)

or t^zzz a^-{-2ax, (42 c)

in which a is the arbitrary constant.

5. Integrate the equation

6. Integrate the equation

D.x^j—— log.-. (45 c)

Ans.
{;-iY={;^Y.

t46c)

7. Integrate the equation

(l+^log. ^)A^=:^-(l + /^Iog. j^ (47c)

^"^- (r) =(f) •
(''^'^)

8. Integrate the equation

(A r x"+i + A' r' x"'+i)

-|-(A: ^"»+i
a;'*+ k' r'+^ z") Z>, X =r 0. (49 c)

Solution. This is a case of § 219, and by putting

M'=hr x''+\ M" — h' r' x"'+i

,

? / \

M' = k «'«+! X", M" z= A;'
^''+1 x"'

j ^ ^ *^^

we have

' '

( f5l c'i

Al - log. ^'^ x^ A'/ = log. <'''
x^', s

21*
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and if « and a are taken to satisfy the equation

which gives

ah -\- ?n = a' h' -\- in', « ^ -f w — «' A;'+ n' (53 c)

_ {m— m') k'— {n — n') li'

h< k— h Id

I

(m

—

m') k— {n — n') h

(54 c)

(55 c)
h' k — lik'

we may put
l-\ __ ^aA+m+l 2:«^+n+l ^ (56 c)

and the integral of (49 c) becomes

9. Integrate the equation

{^ ax t + 2h e-) D^x + ^ ax^ -\-^ h xt = 0.

Ans. a x3 t^-\-h fi x^=a x^ r'^+b x| t^.

10. Integrate the equation

(3 a x3 ^3_|_2 6 1) D, x+2 a x^ t^+S b xznO.

Ans. a (x3 i2_2;3 t2)-[_6 log. -lA — o.

11. Integrate the equation

(^hx + kt-\-a) D,x+ h'x-\^k' t+ a' =z 0. (58c)

Solution. Put, in this equation,

x= x'-f-/?, t=:t' + »^
' (59 c)

and we have DtXz=. D^x' =z D^, x', (60 c)

whence (58 c) gives (61 c)

(hx'+kt'+h(i+kcc-{.a) D,.x'-{-h'x'-\-k't'+h' ?+k'a+a'=0;
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and if « and ^ are taken such that

h^-^ka+a — 0, h'(i+ k'a+ a'=:0, (62c)

(61 c) becomes

(h x'-^k t) D,,%'-\- h' X' + k' t — 0, (63 c)

which may be integrated like any other homogeneous equation.

12. Integrate the equation

n,x-\- Txz=z T', (64 c)

in which T and T' are functions of t.

Solution. Let i'= ft T, (65 c)

whence D,t' —T (66 c)

D,x = D,.xD, t'— T D,.x; (67 c)

T'
and if T" denotes the vakie of — when t' is substituted for

t, (64 c) gives

D,.x-{-x=:z T", (68 c)

which may be integrated by the processes of the preceding

chapter, since it is linear, with constant coefficients. The inte-

gral is, if t' is the value of t' when t becomes t,

x = x^ c-f '-" + e-'' /V-
2'" t"

' = x^ e-'f'^ ^+ e-^7; T' e-f ^. (69 c)

13. Integrate the equation

kx a{t+h'fD,x + t-^h~' (f-{- hy

^^^- ^-^r^Tw+ {k'+i)(t+hr
•

14. Integrate the equation

D,x-{- hx^ = k r, (70 c)

which is called Riccati's equation.
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Solution. Let x' and t' be so taken that

- + -ht ~ x't

and we have

t'

^=TT-+T77F' t' = tm+^l (71c)

D,x=:Dr X'. D, <'=(;«+3)r+2 D,,x'—{m+'^)-D,.x' (72c)

1 2 D,x'
D,x-

h t^ X' f X'2 ^2

———^ -^ — (?/i+ 3)—-V (73 c)

1

^^ ^'= Ti, + 17^3+::;^ (74 c)

A— m+3^ ^'A a;' Ax'2f^

Hence

h li 1 li
?^+4

D„x^'+h' x'^=k't"^\ (79c)

which is of the same form with the given equation. Hence if

Riccati's equation can be integrated for any value m' of m, it

can also be integrated for the value m determined by (78 c)

;

and if it can be integrated for the value m, it can also be inte-

grated for the value m'.

Let i be determined, so that,

4z
m z=

2f-i-l '
(80 c)
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and (78 c) gives

'^^---27T3=--2lktT)Tl^
(^^^)

so that m' is obtained from m by increasing i by unity. Hence

if the equation can be integrated for any value of /, it can

also be integrated for the values of i, which are greater or less

by unity, and therefore for any value which differs from i by

any integer whatever.

But when 2 = 0, (82 c)

we have m = 0, (83 c)

and Riccati's equation becomes

Dtx + h%^ = k, (84 c)

the integral of which is

t-r-r ^ - J- W Wf'+Wll)s/{h-h X^
) ^

so that Riccati's equation may be integrated whenever i is an

integer either positive or negative.

When i z=z ± x, (86 c)

we have w =:— 2, (87 c)

and therefore this case would only be obtained from the pre-

ceding, by an infinite succession of substitutions. This case,

however, admits of direct integration, for, by the substitution

^=1^ + 7- (^^'^>

Riccati's equation becomes in this case

^•2 2>^ X'+ x'2 = yt <2, (89 c)

which is homogeneous, and its integral is

[2a:+^-V(l+4A')][2z^+r+V(l+4X0] _ /r w(i4-4ft)

[2x+/+^V(l+4 /c)][2a;^+T-r>/(l+4 k)] " \t ) (90 c)
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15. Integrate the equation

P = 0, (91 c)

in which P is a given function of D^ x.

Solution. By solving the equation (91 c) relatively to D^ x,

each of its values will be found to be a constant, one of which

we may denote by 7n.

Hence DtX = m, (92 c)

Avhence x—x^ = 7n (t— t) (93 c)

and X—X
m = j--f=D,x, (94 c)

and the second member of (94 c) may therefore be substituted

for Dc X in (91 c) ; and if Q represents the value of P arising

from this substitution, the integral of (91 c) is

Q = 0. (95 c)

16. Integrate the equation

D^ x^ = a9.

Ans. {x—x^Y=^a^{t—t)2.

17. Integrate the equation

\^{\+D,x^)z=za+hD,x.

Ans. ^[{x-x^Y+it-^Y]=<t-~^)+K^-x^)-

18. Integrate the equation

2>, X" z= T, (96 c)

in which T is a function of t.

Ans. x,^x^= /;V T, (97 c)

or the equation which is obtained by freeing (97 c) from radi-

cals.
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19. Integrate the equation ^

D^ x^ = t.

4. 3

Ans. {x—x^-\-r'') = U < •

20. Integrate the equation

P = t, (98 c)

in which P is a given function of 2)^ x.

Solution. By putting p z=z D^x^ (99 c)

(262) gives

x—f,D,x—f,p—f,ipB,t — pt—f, tD,p

=pt-f,tD,p=pt-f,.P, (Id)

and the integral is obtained by eliminating p between (Id) and

the equation obtained from (98 c) by changing DiX io p.

21. Integrate the equation

D X

Ans. It is the equation obtained by eliminating p and ^
between the equations

t =i?4" e^ -{-sin p
Tr=p^-f-c^T-f-sin. p^

X X^^^p t p T
J (p2 p2^ gP_j_gP^_|_COS.^— COS.p^.

22. Integrate the equation

t-\- a D.xzzzb s/ {\ + D, x^),

Ans. It is the equation obtained by eliminating p and p^ be-

tween the equations

t + ap — 6\/(l+p2)

r+ap^=h^{l+p^~)
x-x^ = pt-p^r-^ia{p^-p^^)-ip^/(l+p^)
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23. Integrate the differential equation of the first degree,

which is homogeneous in reference to the variables x and t.

Solution, Let y^z-y DtX=p^ (2d)

which gives x =z 1/

1

{^ ^)

Dy% = y Dyt + t^D,xDyt=pDyt (4 d)

Dyt _ 1

t p—y
(5d)

^'S-t=f -^ , (6d)
•7 y p y

But the substitution of (2d) in the given equation reduces

to an equaticm containing only p and y ; hence the integral

(6 d) is readily obtained, and the required integral is obtaine'd

by eliminating p and y from (3 d, 6 d) and the given equation

in the form to which it is reduced by the substitution of (2 d).

24. Integrate the equation

Ans. The equation resulting from the elimination ofp and

p between the equations

X z=z p t ~\-n t ^/ {\ -j- p^)

ix//i+z!\ _ ( Pr + ^i^+p? ) Y-

25. Integrate the equation

xz=zPt+Q, (7d)

in which P and Q are functions of D. x.
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Solution. Let p= D^x, (8 d)

and the differential of (7d) gives

DpX=2D^x.Dpt=p Dpt

= P Dpt + tDpP+ DpQ, (9d)

or (p^P) Dpt — tDpP^DpQ, (10 d)

which is a linear equation of the first order, by taking ^^ as the

independent variable. The integral of (10 d) is an equation

between t and p from which p can be eliminated by means of

the given equation.

26. Integrate the equation

^ * 711''
'

Ans. The integral is found by eliminating p and p be-

tween the equations

x~{p—i)t-\-e'^^

, ^ nip Jn(p—pj)t—m{p—p^)e ^ =Te ^ ^^'

.

27. Integrate the equation

x = tD,x + P, (lid)

in which P is a function of Z), x.

X—x_

Ans. If P denotes the value which P obtains when

"^ is substituted for D^x^ the required integral is

tx^-xr={^t--r)P^, (12d)
22
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28. Integrate the equation

x=t DtX + n\/(l + D, x2).

or {tx^—x^Yz=in^{t—'tY-\-n^{x^x^Y.

29. Integrate the equation

D,xz=i (Af'+Bx')^"^. (13d)

a

Solution. Let uz=zxt a
,

a

or X^=iUt~b
;

1 _ 1 ffl^

z=i{A+B uy « « S
and
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Solution. Let r and (p be taken so that

t :=: r COS. (p, x z=. r sin. g), (17 d)

whence ^2^^2 + ^2, tan. <^ = ? (18 d)

(19d)

(20 d)

Dt x=z sin. cp DtV -{- r cos. <jp Z)^ <3p

1 z=z COS. (p Dt r— r sin. (p Dt (p

t D^x— X =z r^ Dt <f>

D,x^ + 1 = 2>, r2 + r2 Z>, 92,

and (16 d) becomes

or f.idin. (p.Dt(p =r-^ V^r .F.r^, (22 d)

and its integral is

/;/.tan.,=/;^^: (23d)

in which 2: „ „ , „ /r... iv
tan. 9)^ = -?, r|=.a:|+T2. (24 d)

31. Integrate the equation

Ans. By the notation of the preceding example,

r, rV[r2-(/.r^n-

32. Integrate the equation

t Dt X — X X
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Ans. By the notation of example 30,

r*cp V [1 — (/-tan. cp)2] _
J

21

.

J (p^ f. tan. (f

~~
* r^

'

33. Integrate the equation

tPt ^ — ^ _r-/ M_Y_.-\-h
^{t^—x^)s/{V—D,x^~)~L\F{t^-x^)} A -y I

Ans, By putting

X
r^ z= t^ — x^. Tan. OP =

—

X
y.2 __ t2 — 372 Tan. CO ^r -^
T T '1:

j- (26 d)

J

the integral is

/;./.Tan..=/;.^^ (2rd)

34. Integrate the equation

\^{x^-t2)s/{D,x^-l) L\F.{x'^^t2)/ ^J '^'^^
^

Arts. By putting

j,2 zz: x^ -\- t^ f p z=z X tf

r| = a?| + '^^» Pr^ ^t '^ '

the integral is

£rF.r^=fP f.p. (30 d)

221. Problem. To integrate several differential equa-

tions between several variables and their differential cO'

efficients taken with respect to one of them regarded as

the independent variable.

(29 d)
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Solution. By taking the successive differentials of these

equations with respect to the independent variable, as many

new equations may be obtained as may be necessary to elim-

inate from them, combined with the given equations, all the

variables but two, of which one is the independent variable,

together with their differential coefficients. The resulting

equation will be an equation between these two variables, and

the successive differential coefficients of one variable taken

with respect to the other, which is the independent variable.

In most cases, however, the integration can only be obtained

by some ingenious device. Examples of this problem will

occur under the subsequent problem.

222. Problem. To find a function v of several inde-

pendent variables t, x, t/, Sf'c, which satisfies a given

differential equation of the first order^ and becomes a

given function of the variables x^ y, (J'c, for a given

value T of the variable t.

Solution. If D' denotes the differential coefficient with

reference to the given function of the variables a-, ?/, (S:c., and

if s, p, q, &c. denote the differential coefficients D^ U', D . V,

2>y V, &,c., we have '

D' H' =p D'x-\-q D' 1/ + &i.c. (31 d)

If, moreover, x, i/, &c. instead of being independent of ^, were

assumed to be certain functions of t, we should have

D,^ = s+p D,z + q D,ij + &,c., (32 d)

the differential coefficient of which, relatively to D' is

D D,^=p D' D,x + q D' D,7j-\- &LC.

+ D's-\-D,x.D'p + D,y.D'q + &LZ. (33d)
22*
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But the differential coefficient of (31 d) relatively to t is, by

this assumption,

+ D,p.D'x + D,q.D'i/-\-&Lc.; (34 d)

and the difference between (33 d and 34 d) is

= D' s + D, X , D' p + D,7/ . D' q + 6zc.

— D,p.D'x-^D,q.D'y-{-&DC. (35 d)

If the given differential equation becomes by the substitution

of 5, p, q, &,c. for the differential coefficients of v^,

22 = 0, (36 d)

its differential coefficient is

0=:Z>^ R . D' ^+D, R . D's+Dp R . D'p+D^ R . D'q+&.c.

+/>^. R . D'x^Dy R . D'i/+&LC., (37 d)

which becomes, by the substitution of (31 d),

0=D,R.D's+Dj,R.D p-{-D^R.D'q+&LC.

+(p D^ R+D^^R)D'x+{q D^ R-\-D,R)D'y+&LC. (38 d)

But (36 d) is the only given equation between the quantities

t, X, y, &/C., s, p, q, &c., and cannot, therefore, determine

more than one of the differential coefficients D' s, &c. in terms

of the others ; so that the value of this differential coefficient,

determined from (38 d), must be the same with that given by

(35 d) ; and, consequently, the product of (35 d) by D^ R
must coincide with (38 d). Hence

I D,x D, y
D,R~ D,R - D^R = &c.

jjD^R^D^R- qD^R+D;R-^'''^^^^''^
^j

-•' I ^x -*'
\l

-^
yj
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and (32 d) gives, by the theory of proportions, each of these

fractions, equal to

s D, R-\-p Up R-\-q A, Ii-{-&^c. ' ^ '

The equations (36 d, 39 d, and 40 d) may then be regarded

as several equations of the first order, with one independent

variable, and the values of r, y, &c., />, q^ &c., -^ may be de-

termined in terms of t and of their values x^, ?/f &c., jt?^,

q &LC.J V corresponding to the value t of t.

Since for the value t of ^, v^ becomes a given function of

X, y, &c., it is evident that -ip, must be the same function of

a; , ?/ , &c. ; and also that p^, q^, &;c. must be the differen-

tial coefficients of V^^ with reference to x^
, y^, (Sec.

If from the integrals of (39 d and 40 d) the quantities

Xr , yr ^-c. are all eliminated, and the value of i// obtained, this

value is evidently such a function of ^, a;, y, &:,c. that if ^, x, y,

&c. are changed to ^, '^^, y^-, ^-c., ^> will become t/; ; but by

the simple change of ^ to ^, V^ must become the same function

of X-, y, &.C. which V is of x
, y^ , &lc. ; that is, the value of

ip obtained by this process of elimination satisfies the problem.

223. Examples.

1. Integrate the linear differential equation of the

first order
J
involving any nnmher of independent va-

riables.

Solution. This equation may be written in the form

r 2>, v^+ XD, V^ + Fl>y V + &c.= M, (41 d)

in which T, JT, Y, &bc., M, are functions of t^ x, y, &/C. and V^.



260 INTEGRAL CALCULUS. [b. V. CH. XI.

Equations of the first order.

In this case (36 d) becomes

R—Ts-\-Xp+Yg-\-&LC.— 3I=0, (42d)
whence

D,R=T, DpR — X, &c. (43 d)

s D,R+p D^R + &LC.= Ts+Xp -\- &LC. = 31, (44 d)

and (39 d and 40 d) become

1 D,x Dty „ D^-w

The fractions in the first line of (45 d) do not involve p, q,

&c., and therefore the integrals of the equations in this line

give the required value of V^, without resorting at all to the

second line of (45 d).

Corollary. Whenever, by the combination of the equations

in the first line of (45 d), a number of equations is found equal

to that of the variables v^, x, y, &c., and admitting of direct

integration, such as

D, Z7=0, A F=r 0, &,c.,
^ (46 d)

the required integrals are

C/z= ?7^, F=F^,&c. (47 d)

But Z7 , F ,
&/C. are functions of v^ , x^, y^, &lq,., from

which, by the elimination of a;
, y^ , &C., the value of V^ may

be obtained in terms of C/. , F ,
&c. ; and the required yalue

of V' is, consequently, the same function of U, F, &c.

2. Integrate (41 d) when the quantities T, X, Y, &c. are

functions respectively of t, x, y, &,c., each function involving

but one variable.
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Solution. In this case, (45 d) gives

whence the values of x, y, &c. are determined in terms of t

and constants. The substitution of these values in M re-

duces it to a function of t^ which may be denoted by iV, , and

we have finally

V
H N,-r-/:^. («d)

and the required value of ^P is obtained by substituting in

(49 d) the values of x , y &-c., obtained from (48 d).

The values of a:
, y , &c. may easily be derived from the

values of x, i/, &i,c. by chauging ^, t, x
, y , &.C. into t, t", a:,

y, &c. ; for the values of x, y, &c. belong to one end of the

interval t—r, in the same way in which z
, y , &c. belong to

the other end of the same interval, so that t^ may be considered

as the variable, while t is constant.

3. Integrate the equation

t D,rp— x D,V^ = 0. (50 d)

Ans. .p =f. V(.r^—<-+t2), (51 d)

in which y. denotes the function which V^ is of x when t be-

comes T.

4. Integrate the equation

X D.V' + t D,x = 0.

Ans. V'=/(yj,

wherey. has the same signification as in (51 d).
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6. Integrate the equation'

.„. ,= (4)V.(v'>
wherey. has the same signification as in (51 d).

6. Integrate tlie equation

atD,-^'-\-bxD:,^ — n^. (52 d)

^7zs.^= (^y-/[^(7)""]. (53d)

wherey. has the same signification as in (51 d).

7. Integrate the equation

at"" D,y^ + b x'' DxV' = n v>^ (54 d)

r 1 , n{m-\)/ 1 1 \-i-("«-i)

where y. - f V± -^JtD (
^^ L_\"|wnere v^^_/.

|^^,._^ ^ (A-1) V''-^ r'^-' )j
andy. has the same signification as in (51 d).

(55 d)

-(fc-i)

8. Integrate the equation

t DtV^ -}-y^ D^y^ -{- X z=z 0.

where x^ =: x cos. log. yj sin. log. —
,

and f. has the same signification as in (51 d).

9. Integrate the equation

t (b+D, '^)—x{a+Dt V^)-\-rp(b D^^p—a Z?, V^)=0. (56 d)
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Solution. In this case (39(1 and 40 d) give

1 _ D,x _ D,v^

b V

—

X t—a ^ a x— b t

Hence • i>, i/' + 6 Z), z -[- a =
and -qjD.^-^-xDiX-^-tzz^O,

the integrals of which are

^ — ^^ + b {x—x^) + a (t—r) =
V/2_^2 J^x^— X^-\- t^ — r^ — 0.

Hence _ ^2 _ ^2 _[_ ^,2 _ ^.2

and the required integral is obtained by the elimination of

X between the equations

[2 V^+b{x-x^)+a{t-r)][h{x-Xr)+a{t-r)]z=x^-x2-\-t^-T^, (57d)

V^-/- ^r+b {x-x^)+a{t-r)=0, (58 d)

where/*, has the same signification as in (51 d).

Corollary. The integral of this equation is, by the corollary

to the first example,

^ + bx-]-at =v.(^'^+ x^ + t% (59 d)

in which 9 . is an arbitrary function to be determined by the

condition that

f.x+ hxJrar^^.lif.xf + x'^+ ^l (60 d)

or it may be that V+ 6x-|-«^ is a given function y of

V/2 _|_ x2 J^ t:2.

10. Integrate the equation

at Dt^ -{-b xb^ -\-c y Dyyp+ &C. =z n 1/^. (61 d)
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AtlS. V =

in which y. is the function which V^ is of x^ y, &c. when t be-

comes r.

Corollary. When

a = 6 = c =r &c. = 1, (63 d)

(62 d) becomes

so that -ip is, in this case, a homogeneous function of the nth

degree, of ^, x, y, &c. , and (61 d) becomes, by the substitution

of (63 d), a proposition applicable to such functions.

11. Integrate the equation

in which Z^ is a given function of ^, iT a given function of t^,

and L a given function of lt-\-h-{-^y-\- ^-c.

Solution. Let M=l,+ lx+ ly+ &LC., (66 d)

and (39 d and 40 d) give, in this case,

L-^al,~ L-^al, L+a l^
~

' n ' ^ '

Hence, by the theory of proportions, and since

D,M=D, h+D, h . D, x+Dy ly . B, 3/+&C. (68 d)

D,M _ B,.{l,-h) _ DM-ly) B,^'
^gj

nL^aM — a{l,—h) ^ a{lc-ly) ' ^ ' ^ ^

where n is the number of the^ variables t^ x, y^ &c.
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Whence, since L is a function of iff,

(70d)

J ]\lnL+am ^ l—L "^
I -I, J yj n*

where ^^ =/. (z^ , ?/^ , &c.), (71 d)

f having the same signification as in (52 d) ; and the required

integral is obtained by the elimination q{ x^, y , &/C. between

the equations (70 d and 71 d).

12. Integrate the equation (65 d) when

L = m M, and n — h ^j. (72 d)

Ans. The equation obtained by eliminating Jf. between

6 a a

fM \ m. n-\-a ^ ,M \mn-\-a (M

"
a (73 d)

V/--J,/- = ( J/ ) • (74 d)

wherey is the function which ^p becomes of/,, Zy, &c., when
^ becomes t.

When mn -\- a = 0,

the integral becomes

(nl-M Y-^r, , I M(l,-h\ , ,
3/(/,-/ )

13. Integrate the equation (65 d), when L is any given

function of the variables ^, z, y, &,c., and V^.

Solution. In this case, the first member of (69 d) must be

omitted, but the other member€ give the values of all the va-

23
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riables expressed in terms of any two of them, and, therefore,

the value of L expressed in terms of these two, which two

may, for instance, be '^ and t, and the equation

will be a differential equation of the first order between two

variables, and may admit of easy integration.

Corollary. This method may be applied in any case,

in which all the integrals hut one of a system of diffe-

rential equations of the first order have been obtained^

and the final integral will,depend only upon the integra-

tion of a differential equation of the first order between

two variables.

14. Integrate the equation (65 d), when Z* is a given func-

tion oi l^+lx + ly + &c. + l^ ,
and

L-\-alu—
^^K

^ . (77 d)

Ans. The equation obtained by eliminating a:^, y^, 6lc.

between the equations

aJV 7_7 7_7 7 7

T .r T V I- xp
T -^T T

where V^ has the same signification as in (71 d), and

iVrr= r^^ ^-

^, (79 d)
J 31 nL+a31 ^ ^

J[f=?, + Z^ + /, + &c. + 7^, (80d)

and n is the number of the viriables t, z, y, &c., and V.
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15. Integrate the preceding example when

l = mt, M—L. (81 d)

Ans. The equation, obtained by eliminating L^ between

( — )nm^a = ^ = —
, (82 d

where i// is the same as in (71 d).

When

the integral is

m » -)- ^ = ^>
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Hence, by (85 d),

rz= J\. (89 d)

These equations give s, p, q, &c. in terms respectively of

t, X, y, &/C., which substiluled in (66 d) give, by integration,

These equations give r, ?/, &c. in terms of t, which, substi-

tuted in (SG d) give

where V is the same as in (71 d). The integral of the given

equation is, finally, the equation obtained by eliminating x^,

y , &c. between (9J d and 91 d). In making this elimina-

tion, it is to be observed that

Pt = -0. "^r- <l^= ^y •V'^.&c. (92d)

17. Integrate (85 d), when T is a function of D^ ^, Xof

Solution. In this case (86 d
)
gives

P=Pr' g' = g^,&c. (93 d)

y-y,== J^;J(<-^)>&'C., (94 d)

V; _,^^ i^.i±PA^^^^±^ (,_.). (95 d)
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Hence, if V'^ is used as in (71 d), and if

T

T

the required integral is obtained by eliminating s, p, q, &;c.

between the given equation and the equations

^ sV.T+ , I>,^X^j^Y^^_^^^
(97 d)

18. Integrate the equation

Ans. The equation obtained by eliminating p between the

equations

V' =/. [X + 2 « p (^ — T)] _ « p5 (^ _ T)

and P^f-'Vx + 'Hap [t — r)l

where / and/' are used as in (71 d and 95 d).

19. Integrate the equation

{DrPf = b{Dj:^y~. (99 d)

Ans. ^=f.[x + {t-^)^b], (le)

where /is used as in (51 d).

23*
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20. Integrate the equation

/e = 0, (2e)

where 7? is a function of T, X, F, &c., which have the same
signification as in (85 d).

Solution. It may easily be shown that the equations (87 d,

88 d and 89 d) are applicable to this case. Hence the values

of s, p, q, &c. may be found in terms respectively of t, x, y,

&c., and these values, substituted in (32 d), reduce the suc-

cessive terms to functions respectively of f, x, y, &c. The
integral of (32 d) gives, therefore,

^.,^=j\s+f^y+f^^^,+ 6.o.. (3e)

and the value of V', obtained by eliminating^
, q , &lc. be-

tween (2 e, 3 e, and 92 d), satisfies (2e). The values of x ,

7/ , &c. are finally eliminated by means of the integrals of the

upper line of (39 d), which is freed from s,p, q, &c. by means

of (88 d and 89 d).*

The functions D^R, Dx -K, ^c,, are functions of T, X^

&c., and therefore by (88 d and 89 d) they are constant, so

that the integrals of the upper line of (39 d) become

(4e)

and the required integral is therefore the result of the elimina-

tion of a; , y , &/C. between the equations obtained from (3 e

* Note. This last process, which is necessary in order that
\fj
may

become a given function of x, y, &c. when t becomes t, is neglected

in the ordinary solution of this question given in (Lacroix, Calc. DifF.

et Int., 2d ed., Vol. I, p. 572).
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and 4 e) by the substitution of (92 d) and of the value of s

obtained from (2 e) by changing T, A", Y, &c. to T ^ X ^

F , &c.

21. Integrate the preceding example when T*, X, Y, &;c.

are the same as in example 17.

Ans. The integral in the equation obtained by the elimina-

tion of X , 1/ , ^c. and 5^ , between the equations obtained

from

V/ = V^^+ ^ (^—^) + P. (•^—^r) + Q't ilZ—^r) +^^' (5 e)

T T T

and ^r — ^> (^®)

by the substitution of (92 d).

22. Integrate example 20, when

T=.T'D,^, X=X' D,V^,&LC. (8e)

where T', X\ Y', &c. are functions, respectively, of t, x, y,

&c.

Ans. The integral is the equation obtained by the elimina-

tion of 5
i '^r i y^i &c. between the equations obtained from

r 't

(9e)

and -R^ == 0, (lie)

by the substitution of (92 d).
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23. Integrate example 20, when

T= T' {D,rp)\ Xz= X'(l>,t/.)'"&c., (12 e)

where T', JC', &c. are the same as in the preceding example.

Ans. The integral is the equation obtained by the elimina-

tion of 5 , X , v/ , &c. between the equations obtained from

us-wt;^-'^ v^'

71—1 _ IJ ^

= \ r^ —^-— — &LZ. (14 e)

«/ Xm p;-^ X; -^ D. R^ ^ ^ s/X'

and (He) by the substitution of (92 d).

24. To integrate the equation

jR = 0, (15e)

when i? is a function of t, x, y, &-c., X?, , V^ , Z>^ V , &c. and (p

where
g)=z^I>,t/^ + a?X>, V^ + «Sz>c. — V^. (16 e)

Solution. If s, ^, q, &c. have the same signification as in

§222, (16 e) gives

g) z= ^ 5 + ojp -}- &c. — V', (I'^e)

and if the differentials are taken, as if 5,^, q, ^-c. were the

independent variables of which t, x, &c. are functions, we

have

D,cp = t-^s D, t-\-pA X+&C.—D, V^ A t—D,^ J9;a;—&c.

==<, (18 e)
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and, in the same way,

Dp(p = x, X>, (jp = y, &.C.
; (19 e)

that is, t, r, ?/, 6lc. are the difFerential coefficients of q) rela-

tively to 5, }), q,&LQ>., and, therefore, the integral of {\o e) may

he obtained as if cp were the unknown function, s, p, q, Sfc.

the independent variables, and t, x, y, <^'c. the respective diffe-

rential coefficients.

224. When the required function -^ is dependent

upon several variables, there may be several given equa-

tions between its differential coefficients, and the solu-

tion is possible, provided the number of equations does

not exceed the number of variables. In this case of

several simultaneous equations^ as many differential co-

efficients maybe eliminated as the number of equations

exceed unity
;
and the resulting equation may be inte-

grated by the preceding methods. It is to be observed

that, in the integration of this equation, those variables

ma}'' be regarded as constant, of which the correspond-

ing differential coefficients have been eliminated. The

relation of the required function to the variables, which

have been thus regarded as constant, is determined by

substitution in the given equations of the result of the

integration. The limits of this volume do not, how-

ever, permit any examples of this process.
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CHAPTER XII.

INTEGRATION OF DIFFERENTIAL EQ,UAT10NS OF THE

SECOND ORDER.

225. Problem. To find a function ^ of two varia-

bles, X arid t, which satisfies a given differential equation

of the second order ^ and which becomes a given function

of X for a given function r of t, and its first differential

coefficient D^ V
, taken relatively to t, becomes another

give?i function of x for the same value of t.

Solution. Let

and let the given equation, by the substitution of these values,

become
R — 0. (21 e)

If D' denotes the differential coefficient of a function taken

relatively to either of the given functions of x, we have

D'-^^pD'x, Dp = iDx, D's = Q.D'x. (22e)

Although X is independent of t, it may be assumed to be an

arbitrary function of t, and in this hypothesis V^, p, 5, &c. will

become functions of t, and will give

DtV' = s -{-p D,x, (23 e)

D,y^ = Q + ^^D,x
(24 e)
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The differential coefficients of (24 e) are

D'D.s =z D'o-^ D'Q.D,x + o D' D,x, ^

and those of (22 e) give

S (26 e)
D' DtP = D^ I D' x-\. i D' D,x

D' D,s = D,Q D' X -\-Q D' D,x;

which, substituted in (25 e), give

D'q = D.c.D' X — Df^ X, D',-
,

(27e)

D^ = D,Q . D, X — D, X . D' Q

= {D^Q — D/i.D.x) D'x-\-{D,xfD' ^. (28e)

If the values of D' M>, D'p, D' s, D'q and D' a (22 e, 27 e,

28 e) are substituted in

D' R=0, (29 e)

the resulting equation contains the two arbitrary and indepen-

dent elements D' x and D' '^

, the coefficients of which, being

put equal to zero, give the two equations

D^R{D,x)^— DR.D,x-]-D,R = 0, (30 e)

D^R{D,Q—Dic.D,x) -{-D^RD,c + QD,R + iD^R

+pD^R + D^R = 0. (31 e)

Whenever, from a judicious combination of the equations

(21 e, 23 e, 24 e, 30 e and 31 e), three equations can be found

capable of integration, the elimination of ? , o^ and ; between

the three integrals of these equations and the equation (21 e)

will give two equations between p, s, V, x, \ » ^^ , 5^ , p^ , o^

and z . In the two equations thus obtained, D, V and Dx i//

may be substituted for s and p, Dz^ xp^ for p^ , Dl '^P^ for t^

,
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Di- s for e , and two functions of x for -^p and >• corres-

ponding to the given functions of a-, which ^P and .s become

when t becomes r. Between tlie two equations thus obtained,

X may be eliminated, and tlie resulting equation is a differen-

tial equation of tlie first order, and its integral, obtained by

the methods of the preceding chapter, is the required inte-

gral. ^

This process is precisely similar to that of § 222, and is

derived from the same principles.

226. Corollary. The two given functions of x are wholly

arbitrary, and may be altogether independent of each other.

They involve, therefore, in the general value of V^, two inde-

pendent and arbitrary functions of V, x and t, and which may

be independent, not merely in reference to the nature of the

functional operations themselves, but in regard to the variables,

that is, to the cotnbinations of V', x and t, upon which they

depend. This variable or combination is represented by x^ in

the preceding section. There must, therefore, in general, be

two different values of x ,
each of which will give a different

equation of the first order, the integral of either of which leads

to the required value of ¥'. But instead of integrating the two

equations of this first order independently of each other, it will

be found much easier to integrate either of the equations ob-

tained from them by the elimination of D^V^ or DtV^.

227. Scholium. There are many cases in which it is ex-

pedient to transform the given equation, before applying this

process of integration ; and some of them will be considered

among the examples.

Whenever the three required integrals cannot be obtained,

the preceding process is inapplicable, although the given equa-

tion may sometimes admit of integration in these cases, by

means of analytical artifices.
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228. Examples.

1. Integrate the equation

2>; V^-|_ (a+6) Dl,rp + abDl^p = P, (32 e)

in which P is a given function of x and t.

Solution. In this case the equation (21 e) is

a _(- (a _j- 6) ? + a 6 a = P, (33e)

and (29 e) is

D'o^ (a+ b) D' Q + ab D'^^ = D^ P. D' x. (34 e)

Hence, by the substitution of (27 e and 28 e), the coefficient

of D' i placed equal to zero, is

{D,x)^-'(a+ b) D,x-{-abz=0; (35 e)

whence
DtX =z a or =:b, (36 e)

x — x^=z a {t—r) 0Y = b {t— r). (37 e)

The first of these two values reduces (23 e and 24 e) to

> (38 e)

D,s + b D,p = P, (39 e)

in which P may by (37 e) be reduced to a function of t^ and
denoted by P^•, hence

5 - ^r + ^ {P-Vr) =fi ^r. (40 e)

In the same way, if s'^
, p^ and Pi denote the corresponding

values when the second equations in (36 e and 37 e) are em-
ployed, we find

5-< + a(p-p;)=/;P;. (41 e)

24
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These two equations become, by the substitution o( f.x for the

values of v^ and D^ V^ when t is r,

D:rp+b D,rp-/o(x-at+aT)-bD^f{x-at+ar)=Q, (42e)

Dt tp+a Z>, V-/o (x-b t+b r)-a D,f{x-b t+h '^)=Q', (43 e)

in which Q and Q' are the values which the second members

of (40 e and 41 e) acquire by the substitution for x of its

value given by (37 e). The combination of these two equa-

tions gives

{a—b)D, ^—afo (x—at-\-a '^)-\-bfo {x—b t-\-b r)

-abD^f.(x-at+ar)+abD,f{x-bt+br)=aQ-b Q', (44 e)

(a—b) D^ V'-L/o (x—« t+a r)—f, (x—b t+b r)

+6 D,f {x—a t+ar)—af(x—b t+b r)=Q'—Q^ (45 e)

the integral of which is

(a-b) y^+f.fo {x-a t+a r) -f^f, (x-b t+b r)

+bf{x-at+ar)-af.(x-at+a'^)=f^(a Q-b Q'). (46e)

2. Integrate the preceding example when

P = tx.

Ans. The equation (46 e) when its second member be-

comes

i (a-6) {t-rf [i X (<+2 T) -T-V (a+h) {t+3 t) (<-t)].

3. Integrate the equation

t^- DlV^ + 2tx Dl,-^ + x^ Dlrp = P,

in which P is a given function of x and t.
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Am. v=/.—+ (/«• y- + 7 D.f.—
)
(<-,)+ Q,

t X
in which P^ is the value ofP when x is changed to—-, Q is

the value of

J X J r t^
'

X T^
.

when is substituted for x .

t ^

4. Integrate the equation

n Mj
(^^^)

in which P is a function of ^±^

Solution. In this case (30 e) becomes by (20 e),

p^ {D, 2;)2 + 2 p 5 i>, a: + s2 = 0,

5
whence DtX^z , (48 e)

n '

and by (23 e, 24 e and 27 e),

A V^ = 0, (49 e)

Dtp = Q -, (50 e)

p

D,s=o--= --'^+Pp=-D,p + Pp. (51 e)
P p p- * P

Hence

D,.~~P and ll>,.-=l; (52e)
p F p ^ '
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S
and since P is a function of—, the integral of (52 e) may be

directly obtained, and gives — in terms of t, and this value

substituted in (48 e) gives

'' — \ = -fr J*
(^^^)

whence, by (49 e),

^ = ^r=/-^5 (54 e)

and the required integral is obtained by the elimination of x

between (53 e and 54 e).

5. Integrate (47 e) when the second member is zero.

Ans. x = F.rp—\, ^ (t— r), (55 e)

in which JFis the inverse function of f, and f is the differen-

tial coefficient of P taken with respect to its variable.

6. Integrate the equation

D^y^.Dlv^ — (Dl^ ^f = 0. (56 e)

Solution. In this case (21 e) is

. a?_^2_o,
, (37 e)

and (30 e) is

s^ {D,xf + 2QD,x + a = 0,

whence q'^ {D, xf + 2 Q o D^ x + o^ =
o

and (23 e and 24 e) give

Z)j 5 = 0, S =z Sr

Ap=0, j)= p^

Dt^P = s^+p^D^x
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and (31 e) gives

whence

T T

and the required integral is the result of the elimination of

x^ between the two equations

^-^^=f^{t-r),. (58e)

^ -/. x^ =fo .x^{t- r) +/: x^ {X- x^)
, (59 e)

in which the accents denote the successive differential coef-

ficients of the functions.

7. Integrate the equation

when the value of V^ becomesf x . f^ x when t becomes r, and

the value of Dt H' becomes

f x.f^x—fx.flx,

in which f andy^ are the differential coefficients of/* andyo.

Ans, ^ =/ (z+ ^— t)
. /j, (a; —. ^+ T)

.

8. Integrate the equation

D]^-'DI^ — -D:V^ = 0. (60e)

Solution. In this case, the general form of solution is in-

applicable without previous transformation. For this purpose,

by putting

V^' = D^ V, (61 e)

24*
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the differential coefficient of (60 e) relatively to t is

D'ln^' — DlH^'—'^^D.^' + '^^^rp'^O. (62e)

The integral of (62 e) may be found by the general process,

which gives

Axzrril, 2;— x^=±(<— t), (63 e)

^ 2 5 2 VAs = <^±e = rh Ap + -f-—^, (64 e)

D.pzzzQ:^^, (65 e)

Z>, V^' = 5 rh i?, (66 e)

and the remainder, after subtracting (66 e), divided by t'^ from

(64 e) divided by ty is

— it

the integral of which is

The sum of the equations involved in (68 e) is

2D^ f,(x-t+r)-^f,{x-\-t-r) ^ f;{x+t-r)-f;{x-t+r)

^ T T

_^y_/, (.-,+.)+/.(.+,_.)
^ (69e)

in which /j x, and f^ x denote the values of V^' and i^^V^' when

t is T, and /q x is the differential coefficient ofy, 2 relatively

^0 X.
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The integral of (69 e) is

2 TV''

-FA^ + t-r)-F,i.-t +
.)^ (69 e')

in which F^x and F^x are the integrals o{f^x and y^ x

relatively to x. But it follows from (60 e, 61 e and 63 e) that

fo^=fi^ (70 e)

f,x=f:x + jf,x, (71c)

whence (69 e') becomes

2 T 2>, v^

+ /o(^ +<—)+/o(^-« + -)

and V' is obtained from the integral of (72 e).
^

9. Integrate the equation

PDf ^-\-S Dl^^ -f rDjV'rzrO, (73e)

in which P, S, and T are functions of D^ r// , and D yj.

Solution. Let

<P z=: s t -\-p X — ^, (74 e)

in which s and p have the same signification as in (20 e).

And if the differentials are taken as if s andp are the inde-

pendent variables, of which t and x are functions, we have, as

in (18 e and 19 e),

D,(p=t, Dpcp=zx. (75 e)
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The differentials of (75 e), taken as if t and x are the inde-

pendent variables, while the first members are expressed in

terras of p and s, are

{i=zD,D,cp=D].,cpD,s + DlcfD,p ) ^ ^^

and (76 e) and (77 e) give

Dl^V^ = D,p= D^s=z^MDl,(p \ (78 e)

in which

^={Dl,<pf-D]<p.Dl<p, (79 e)

and the substitution of (78 e) in (74 e) gives

PDl(p—SDl,cp+TD',cp = 0, • (80e)

which may be integrated as if p and s were the independent

variables.

10. Integrate the equation of the surface of mini-

mum extent.

Solution. By changing, in (959), x, i/ and z to t, x and V,

to correspond to the notation of this section, that equation be-

comes

(l+(^.V^)')i^?V>-2A^.-D.V'D^,V+(l+(AV)2)D^Vr=0.

(81 e)

By the substitution of the preceding example this equation be-

comes

(l+p2) Dlcp + 2 p s Dl. (p + (I + s^) D', 9=0, (82 e)
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which cannot be integrated by the direct application of the

general process. If^ however, we put

cp' = D,cp, (83 e)

the differential coefficient of (82 e), relatively to s, is

(1 +p^) Dl (p' + 2 ps Dl^ip' + (1 + s2) Dl <p'

+ 2pD^,cp'-{-2s D,cp' z=zO. (84e)

The general process applied to this case gives, by putting

o =Dlcp', Q = Dl,cp', i = Dlco', ]

(1 +s2) {D,pf— 2p s D,p + (1 +i>^) - 0, (86 e)

the integral of which, found by the process of Ex. 27 of

§220, is

.-S;--^C--(f^')'].'->
in which 5^ and p should be accented when the lower sign is

used.

Instead of proceeding with the direct process, we may put

,n=P^^^, n=P^, (88e)
5 5^ S S^

T T

and (87 e) gives

^ = ws + V (—1— w^) = 7is— V(—1—«^), (89 e)

(l+s2)m2— 2psm + (l+p2) =
|

(l+s2)n2 — 2psw+(l+/?2)=0, )
(^^®)

Dr,p =zm D^s, D^p = n D^s, (92e)
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D,, cp' = {m Dp cp' + D, <p') D„ s, (93 e)

ni.n^p' =[mn Dlcp'+ (m+ n) Dl.cp'+ Dlcp'] D^^s.D^s

+ Dpcp' D^s + (nD, <p' + D, cp') Z>L. s

= — [(I +p^)Dlcp' -\.2ps Dip <?>' + (1 + s2) Dl cp']

l±f (2pDpCp'-{-2s D,cp'){l +5^)
4V (-l-w^) V (-1-71^) 4V (— 1 — wi"2} V ( — 1 — ^2)

= 0. (94 e)

Hence we find by integration,

cp' =z F.m — F.m -^

-\-f. n, (95 e)

in which f. n is the function which <p' becomes when m be-

comes m^, and Dj^f-'ni is the function which D^ cp' becomes

for all values of n. The equations (75 e and 83 e) give the

values of yj , t and x in terms of 7?i and n. But it may be ob-

served that t is the same as cp'.
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CHAPTER XIII.

PARTICULAR SOLUTIONS OF DIFFERENTIAL EQ,UATIONS.

229. In addition to the integral of a differential

equation, there are particular solutions^ which are not

included in the general forms of the integral.

230. Problem. To find a particular solution of a

differential equation of the first order between two va-

riables.

Solution. Let x and t be the variables, and let

R = (96 e)

be the equation, and let

X=0 (97 e)

be the required solution which is supposed not to be included

in the general form of the integral represented by

V=0. (98 e)

If, however, (97 e) were a case of (98 e) corresponding to

the value x ' of the arbitrary constant x involved in (98 e),

and if we put

h = x^ — x^, (99e)

the difference between the values of x derived from (97 e and

98 e) must vanish with h, so that where h is an infinitesimal,

if x' denotes the value of x derived from (98 e), and x its value

from (99 e), we may put

x' — a; = JT' A", (If)
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in which X' is a function of x and t different from zero. If

^ is the value of Dt x given by (97 e), and p' its value given

by (98 e), we shall also h^ \e, when x'— x is an infinitesimal,

j9'— ;; = P'(r'_ 2:)"'=^ P';r""/*'"", (2 f)

in which P' is a function of x and t different from zero.

But the differential of (If) gives

P'-P = n,X',h\ (3f)

Whence we must have, if (97 e) is a case of (98 e),

P X' "^ h'^ " z= i>, X. h\ (4 f

)

But if ?7i is less than unity, A"*" will be infinitely greater than

A", and the equation (4 f ) becomes

P' X"^=- 0, (5f)

which is impossible, so that in this case (4 f ) cannot be satis-

fied, and (97 e) is not a case of (98 e), and is consequently a

particular solution.

If »» had been unity, (4 f ) would have been reduced to

P' X' = D, X', (6 f

)

which is easily satisfied.

If m were greater than unity, (4 f ) becomes

D, X' = 0, X' = constant, (7 f

)

so that a particular solution is only indicated by the condition

that m is less than unity.

The differential of (2 f
)
gives

X>,, p' =.mP' {x'— xY-\ (8 f
)

which, when x' differs infinitely little from x and m is less than

unity, gives

D.p^-'^i; (9f)

that is, DxP is a fraction whose denominator is zero.



<5. 232.] PARTICULAR SOLUTIONS. 289

Particular solutions.

The diflferentialion of (96 e) relatively to x gives, by substi-

tuting
J)

for D^ X,

D^ R . D^p + i>, 72 =: 0, (10 f

)

''^ = -d;r- (i»o

Whence by (9 f ),

i>^R=0, (12 f)

provided the numerator cannot become infinity, which will

be the case when (96 e) is free from radicals and fractions.

This equation (12 f) corresponds to the particular solution,

and leads to the particular solution by the elimination of p be-

tween it and the given equation (96 e).

231. Corollary. A similar method of finding particular so-

lutions may be extended to other differential equations.

232. Examples.

1. Find the particular solution of the equation

t + xD^x — d,x ^ {x^-\-t^ — a^). (13 f

)

Solution. This equation, freed from radicals, becomes

whence (12 f) becomes

X {t + xp) =ip (x^ + i^ — «-)•

The elimination of /; gives for equation

(x^— a^) (x2 4-^2_a2) = 0,

of which the factor

x2 _!_ ^2 _ ^2 — (14 f)

is the particular solution.

25
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2. Find the particular solution of the equation

x — tD,x-\-P, (15 f)

in which P is a given function of Z>, x.

Ans. It is the equation obtained by the elimination of 2?

between the equation

^^
< (I6f)

and t -\- DpP' — 0, ^ ^ '

in which P' is the value of P obtained by the substitution of

p for jD^ X.

THE END.
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text-book in the University at Cambridge ; and contains

An Elementary Treatise on Sound.
' Our limits do not allow us to give a minute review of this excellent work,

which is distinguished no less by the exactness and method of its science

than the simplicity and perspicuity of its language. Those, who can com-
prehend any scientific investigation of this kind, cannot fail to tmderstand
the views I'lere given of a subject which is certainly embarrassed with
many difficulties, and, in certain particulars, (to use the language applied

by Prof. Peirce to one portion of the science,) " altogether intractable."
' At the beginning of the work is a very comprehensive list of writers

upon Soimd in general, as well as musical and other soxmds, from the age
of Aristotle to the present day, which has been prepared with vast labor

and industry, and is, we believe, the most complete catalogue of the kind
extant in any language. This labor alone is of incalculable value to those
persons who are desirous of pursuing the subject, to whom we take great

pleasvire in recommendmg a work so simple and inteUigiblCj and, at the
same time, so thoroughly scientific'

—

Scientific and Literary Jounud.
' It is seldom that a book comes from the press which is designed to

meet a more urgent want of the community than this second volume of a
Course of Natural Philosophy. At a time when so mnny books, good and
bad, are wi-itten, on eveiy variety of subjects, and with particular adapta-
tion to the widely different classes of readers— and especially when the
overflowing supply of manuals used seems to leave nothing to be wanted
in the work of instniction— it is a little singular that there is occasion for

the remark that this volume fills a gap which no one before appears to

have noticed, or, at any rate, to have endeavoi-ed to close. In elementary
ti-eatises prepared exclusively for the use of common schools, acoustics

have been considered, in a simple manner, among the other branches of
Natural Philosophy. But no work Avhatever has appeared designed for

the hisjher places of insti-uction, and presenting a full and accurate analy-
sis of the principles of sound. There is some occasion, then, for congi-atu-

lation that we have a i*eally new book, and one which cannot be laid aside

;

and since it is probably destined to be introduced into all our colleges, as

it has already been into one, we are glad to know that it has been executed
in such a manner as Avill leave little demand for another.

* Professor Peirce lays no claim to originality in this work. He tells us
tliat he made Sir John Herschell's Treatise on Sound, -vAi-itten for the Ency
clopaedia Metropolitana, the basis of his o^\ti book. Li remodelling that

work, he has consulted all the works on Sound of any consequence, as well

as embodied the very important discoveries recently made by Faraday

;

in a word, he has wrought a pleasing and symmetrical whole out of all the

loose and scattered materials which relate to the subject. The labor of

such a task is immense, and it is no small praise to say that it has been
done accurately, and leaves nothing more to be desired.

' There is one subject connected with acoustics which is extremely diffi-

cult, and in which Ave think Professor Peirce has been remarkably suc-

cessful ; tlie organs of the human voice. There have been very contradic-

tory theories in regard to the peculiar service of each part of this complex
structure. In Mr. Peirce's book it is shown how they might be reconciled.

^—Nortli American Review.
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