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Preface

This little book is especially concerned with those portions of
“advanced calculus” in which the subtlety of the concepts and
methods makes rigor difficult to attain at an elementary level.
The approach taken here uses elementary versions of modern
methods found in sophisticated mathematics. The formal
prerequisites include only a term of linear algebra, a nodding
acquaintance with the notation of set theory, and a respectable
first-year calculus course (one which at least mentions the
least upper bound (sup) and greatest lower bound (inf) of &
set of real numbers). Beyond this a certain (perhaps latent)
rapport with abstract mathematics will be found almost
essential.

The first half of the book covers that simple part of ad-
vanced calculus which generalizes elementary calculus to
higher dimensions. Chapter 1 contains preliminaries, and
Chapters 2 and 3 treat differentiation and integration.

The remainder of the book is devoted to the study of curves,
surfaces, and higher-dimensional analogues. Here the modern
and classical treatments pursue quite different routes; there are,
of course, many points of contact, and a significant encounter
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2 Preface

occurs in the last section. The very classical equation repro-
duced on the cover appears also as the last theorem of the
book. This theorem (Stokes’ Theorem) has had a curious
history and has undergone a striking metamorphosis.

The first statement of the Theorem appears as a postscript
to a letter, dated July 2, 1850, from Sir William Thomson
(Lord Kelvin) to Stokes. It appeared publicly as question 8
on the Smith’s Prize Examination for 1854. This competitive
examination, which was taken annually by the best mathe-
matics students at Cambridge University, was set from 1849 to
1882 by Professor Stokes; by the time of his death the result
was known universally as Stokes’ Theorem. At least three
proofs were given by his contemporaries: Thomson published

"one, another appeared in Thomson and Tait’s Treatise on
Natural Philosophy, and Maxwell provided another in Elec-
tricily and Magnelism [13]. Since this time the name of
Stokes has been applied to much more general results, which
have figured so prominently in the development of certain
parts of mathematics that Stokes’ Theoremi may be con-
sidered a case study in the value of generalization.

In this book there are three forms of Stokes’ Theorem.
The version known to Stokes appears in the last section, along
with its inseparable companions, Green’s Theorem and the
Divergence Theorem. These three theorems, the classical
theorems of the subtitle, are derived quite easily from a
modern Stokes’ Theorem which appears earlier in Chapter 5.
What the classical theorems state for curves and surfaces, this
theorem states for the higher-dimensional analogues (mani-
folds) which are studied thoroughly in the first part of Chapter
5. This study of manifolds, which could be justified solely on
the basis of their importance in modern mathematics, actually
involves no more effort than a careful study of curves and sur-
faces alone would require.

The reader probably suspects that the modern Stokes’
Theorem is at least as difficult as the classical theorems
derived from it. On the contrary, it is a very simple con-
sequence of yet another version of Stokes’ Theorem; this very
abstract version is the final and main result of Chapter 4.
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It is entirely reasonable to suppose that the difficulties so far
avoided must be hidden here. Yet the proof of this theorem
is, in the mathematician’s sense, an utter triviality——a straight-
forward computation. On the other hand, even the statement
of this triviality cannot be understood without a horde of
difficult definitions from Chapter 4. There are good reasons
why the theorems should all be easy and the definitions hard.
As the evolution of Stokes’ Theorem revealed, a single simple
principle, can masquerade as several difficult results; the proofs
of many theorems involve merely stripping away the disguise.
The definitions, on the other hand, serve a twofold purpose:
they are rigorous replacements for vague notions, and
machinery for elegant proofs. The first two sections of
Chapter 4 define precisely, and prove the rules for manipulat-
ing, what are classically described as “‘expressions of the form”
Pdz 4+ Qdy + Rdz,orPdrdy + Qdydz + Rdzdz. Chains,
defined in the third section, and partitions of unity (already
introduced in Chapter 3) free our proofs from the necessity of
chopping manifolds up into small pieces; they reduce questions
about manifolds, where everything seems hard, to questions
about Euclidean space, where everything is easy.

Concentrating the depth of a subject in the definitions is
undeniably economical, but it is bound to produce some
difficulties for the student. I hope the reader will beencour-
aged to learn Chapter 4 thoroughly by the assurance that the
results will justify the effort: the classical theorems of the last
section represent only a few, and by no means the most im-
portant, applications of Chapter 4; many others appear as
problems, and further developments will be found by exploring
the bibliography.

The problems and the bibliography both deserve a few
words. Problems appear after every section and are num-
bered (like the theorems) within chapters. I have starred
those problems whose results are used in the text, but this
precaution should be unnecessary—the problems are the most
important part of the book, and the reader should at least
attempt them all. It was necessary to make the bibliography
either very incomplete or unwieldy, since half the major



4 Preface

branches of mathematics could legitimately be recommended
a8 reasonable continuations of the material in the book. I
have tried to make it incomplete but tempting.

Many eriticisms and suggestions were offered during the
writing of this book. I am partioularly grateful to Richard
Palais, Hugo Rossi, Robert Seeley, and Charles Stenard for
their many helpful comments.

I have used this printing as an opportunity to correct many
misprints and minor errors pointed out to me by indulgent
readers. In addition, the material following Theorem 3-11
has been completely revised and corrected. Other important
changes, which could not be incorporated in the text without

excessive alteration, are listed in the Addenda at the end of the
book.

Michael Spivak

Walitham, Massachuseits
March 1968
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Calculus on Manifolds



Funetions on Euclidean Space

NORM AND INNER PRODUCT

Euclidean n-space R" is defined as the set of all n-tuples
(£', . . . ,z") of real numbers 2’ (a “I-tuple of numbers” is
just a number and R! = R, the set of all real numbers). An
element of R" is often called a point in R", and R!, R2, R3 are
often called the line, the plane, and space, respectively. If »
denotes an element of R", then z is an n-tuple of numbers, the

ith one of which is denoted z; thus we can write

z=(z' ... ,z".
A point in R" is frequently also called a vector in R",
because R”, with t+y=(z'+y', ... 2" + 4" and
ar = (az', . . . ,az"), as operations, 18 a vector space (over

the real numbers, of dimension n). In this vector space there
is the notion of the length of a vector z, usually calied the
norm |z| of z and defined by le| = V@) + - + @)
If n = 1, then |z is the usual absolute value of z. The rela-

tion between the norm and the vector space structure of R” is
very important.
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2 Calculus on Manifolds

1-1 Theorem. Ifz,y € R and a € R, then

1) |x| >0, and |:c| = 0if and only if z = 0.

2) IZ,?‘_lx"y"l < |« 'Iyl; equality holds if and only if z and y
are linearly dependent.

@) |z + 9l < =l + Jol.

@) laz| = |a| - |al.

Proof

(1) is left to the reader.
(2) If z and y are linearly dependent, equality clearly holds.
If not, then Ay — z = 0 for all A € R, so

"z ()‘yi - xi)i

im]l

0 < Ay — 2|

n n

)\’z W) — 2 z zy + 2":1 ().

i=] i=1

Therefore theright side is a quadratic equation in A with no
real solution, and its discriminant must be negative. Thus

4 ( 5: :c"yi)2 -4 i (x)?- i W) <O0.
im] i=1 i=1

@) le+yl* = 20,6 + )
= I, () + Za)? + 22,2
< laf* + Jy|t + 20l -yl by @)
= (Jz] + [y

4) laz| = VEL (@) = VaZL,@@)? = |a| - [e]. |

The quantity = ,z'y’ which appears in (2) is called the
inner product of z and y and denoted (z,y). The most
important properties of the inner product are the following.

1-2 Theorem. If z, z1, 2 and y, 1, Y3 are vectors in R®
and a € R, then

(1) () = 2 (symmetry).
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(2) (az,y) = (z,ay) = al{z,y) (bilinearity).
(z1 + 22, ) = (1Y) T+ (T2,Y)
(z, 1 + y2) = (z,y1) + (T,y2)
3) (z,2) 2 0, and (z,z) = 0 if and (postlive definiteness).
only if z —=__0_
@) |2l = Viaa). 2
© (o) = 223 ==

(polarization identity).

Proof

Q) {z,y) = 22’y = T s’ = (y,z).
(2) By (1) it suffices to prove

<azly) = a<zyy)v
(Z1 + 33, ¥} = (@1,Y) + (22,9)-

These follow from the equations

(az,y) = z": (az)y' = a z 2y’ = a(z,y),

i=1 jm]
(£1 + 29, 9) = Z @'+ = ) o'y + z Ty’
i=1 i=1 jm]

= (z1,y) + (z2,9).

(3) and (4) are left to the reader.

(5) |z + 4| ; |z — o|?
=iz+yz+—-@E-ypz-y) by @ ‘
= lz2) + 2z,y) + (y9) — (z,2) — 2,9 + (W)
=@y 1

We conclude this section with some important remarks
about notation. The vector (0, . . . ,0) will usually be
denoted simply 0. The usual basis of R" is el . . . e,
wheree, = (0, . . . ,1, . . . 0), with the 1 in the #th place.
If T: R* — R™ is a linear transformation, the matrix of T with
respect to the usual bases of R™ and R™ is the m X n matrix
A = (a;;), where T(e;) = Z7 ja;e; —the coefficients of T'(e,)
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appear in the ith column of the matrix. If S: R™ — R? has
the p X m matrix B, then So T has the p X n matrix B4
[here S o T(x) = S(T(z)); most books on linear algebra denote
So T simply ST|. To find T(x) one computes the m X 1
matrix

1 1

Y a1, - . . 4&1a x
ym am1, « « - 0mn x"
then T(z) = (y', ... ,/™). One notational convention

greatly simplifies many formulas: if z € R™ and y € R™, then
(x,y) denotes

(!, . .. 2w, . .. ™) € R

Problems. 1-1.* Prove that |z| < 22, |2

1-2. When does equality hold in Theorem 1-1(3)? Hint: Re-examine
the proof; the answer is not “when z and y are linearly depend-
ent.”

1-3, Prove that [z — y| < |z| + |y|. When does equality hold?

1-4. Prove that | |z] ~ |y| | < |z ~ ¥.

1-5. The quantity |y — 1:] is called the distance between z and y.
Prove and interpret geometrically the ‘‘triangle inequality’:
e —2l <le—yl + |y — 2l

1-6. Let f and ¢ be integrable on [a,b).

(@) Prove that |[if-g| < (Jidt  (Jigh*. Hint: Consider
separately the cases 0 = }ﬁ(f — xg)? for some A €ER and 0 <
J2%; = ag)2for all A € R.

(b) If equality holds, must f = Ag for some A € R? What if
f and ¢ are continuous?

(c) Show that Theorem 1-1(2) is a special case of (a).

1-7. A linear transformation 7: R™— R" is norm preserving if
|T(x)| = lzl, and Inner product preserving if (Tz,Ty) = (z,y).

(a) Prove that T is norm preserving if and only if T is inner-
product preserving.

(b) Prove that such a linear transformation T is 1-1 and T} is
of the same sort.

1-8. If z,y € R™ are non-zero, the angle between z and y, denoted
£(z,y), is defined as arccos ((x,y)/!zl . Iyl), which makes sense by
Theorem 1-1(2). The linear transformation T is angle preserv-
ing if T is 1-1, and for z,y = 0 we have Z(Tz,Ty) = Z(z,y).
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(a) Prove that if T is norm preserving, then T is angle pre-
serving.

(b) If thereisabasiszi, . . . ,zn of R"and numbers Ay, . . . ,An
such that Tz; = A\gz; prove that T is angle preserving if and
only if all |\ are equal.

(c) What are all angle preserving T: R* — R"?

cos 6, sin 0).

—gin 6, cos 8
Show that T is angle preserving and if z # 0, then £(z,Tz) = 6.

1-10.* If T: R™— R" is a linear transformation, show that there is a
number M such that |T(h)| < M|h|for h € R™ Hint: Estimate
|T ()] in terms of |h| and the entries in the matrix of T.

1-11, If 2,y € R"and 2,w € R™, show that ((z,2),(y,»)) = (1) + (2,w)
and |(z,2)] = V]z]? + |¢]2 Note that (z,2) and (y,w) denote
points in R"*™.

1-12.* Let (R™)* denote the dual space of the vector space R*. If
z € R*, define ¢; € (R®)* by ¢:(y) = (z,y). Define T: R*—
(R™* by T(z) = ¢,. Show that T is a 1-1 linear transformation
and conclude that every ¢ & (R™)* is ¢, for a unique z € R"™.

1-13.* If z,y € R®, then z and y are called perpendicular (or orthog-
onal) if (z,y) = 0. If z and y are perpendicular, prove that
lz + 4* = |=|* + Iyl

1-9. If 0 < 6 < 7, let T: R? — R? have the matrix

SUBSETS OF EUCLIDEAN SPACE

The closed interval [a,b] has a natural analogue in R%.  This is
the closed rectangle [a,b] X [c,d], defined as the collection of
all pairs (z,y) with z € [a,b] and y € [c,d]. More generally,
if ACR™and BC R", then 4 X BC R™"" is defined as
the set of all (z,y) € R™" with z € A andy € B. In par-
ticular, R®*" = R®" X R". If ACR™, BCR" and C C
R?, then (A X B) X C = A X (B X C), and both of these
are denoted simply 4 X B X ('; this convention is extended to
the product of any number of sets. The set [ay,b;] X -+ - X
[an,ba] C R" is called a closed rectangle in R”, while the set
(ay,b1) X + - -+ X (an,bn) C R* is called an open rectangle.
More generally a set U C R* is called open (Figure 1-1)
if for each z € U there is an open rectangle A such that
z€c ACU.

A subset C of R" is closed if R* — C is open. For exam-
ple, if C contains only finitely many points, then C is closed.
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FIGURE 1-1

The reader should supply the proof that a closed rectangle in
R" is indeed a closed set.

If A C R" and z € R", then one of three possibilities must
hold (Figure 1-2):

1. There is an open rectangle B such that z € B C 4.

2. There is an open rectangle Bsuch thatz € B C R® — A.

3. If B is any open rectangle with z € B, then B contains
points of both A and R — 4.

2e

FIGURE 1-2
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Those points satisfying (1) constitute the interior of A, those
satisfying (2) the exterior of A, and those satisfying (3) the
boundary of A. Problems 1-16 to 1-18 show that these terms
may sometimes have unexpected meanings.

It is not hard to see that the interior of any set A is open,
and the same is true for the exterior of 4, which is, in fact, the
interior of R® — A. Thus (Problem 1-14) their union is open,
and what remains, the boundary, must be closed.

A collection © of open sets is an open cover of 4 (or, briefly,
covers A) if every point z € A is in some open set in the
collection ©. For example, if © is the collection of all open
intervals (a, @ + 1) fora & R, then 0 is a cover of R. Clearly
no finite number of the open sets in © will cover R or, for that
matter, any unbounded subset of R. A similar situation can
also oceur for bounded sets. If © is the collection of all open
intervals (1/n, 1 — 1/n) for all integers n > 1, then © is an
open cover of (0,1), but again no finite collection of sets in
o will cover (0,1). Although this phenomenon may not appear
particularly scandalous, sets for which this state of affairs
cannot occur are of such importance that they have received a
special designation: a set A is called compact if every open
cover O contains a finite subcollection of open sets which
also covers A.

A set with only finitely many points is obviously compact
and so is the infinite set A which contains 0 and the numbers
1/n for all integers n (reason: if © is a cover, then 0 & U for
some open set U in ©; there.are only finitely many other points
of A not in U, each requiring at most one more open set).

Recognizing compact sets is greatly simplified by the follow-
ing results, of which only the first has any depth (i.e., uses any
facts about the real numbers).

1-3 Theorem (Heine-Borel). The closed interval [a,b] is
compact.
Proof. If ©is an open cover of [a,b], let

A = {z:a £ z < band {[a,z] is covered by some finite number
of open sets in 0}.
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FIGURE 1-3

Note that @ € A and that A is clearly bounded above (by b).
We would like to show that b € A. This is done by proving
two things about a = least upper bound of A; namely, (1)
aE Aand (2) b = a.

Since © is a cover, « € U for some U in 0. Then all
points in some interval to the left of a are also in U (see Figure
1-3). Since « is the least upper bound of A4, there is an z in
this interval such that z € A. Thus [a,z] is covered by some
finite number of open sets of 0, while [z,a] is covered by the
single set U. Hence [a,a] is covered by a finite number of open
sets of @, and « € A. This proves (1).

To prove that (2) is true, suppose instead that « < b.
Then there is a point 2’ between a and b such that [«,z'] C U.
Since o € A, the interval [a,a] is covered by finitely many
open sets of 0, while [a,2'] is covered by U. Hence z' € 4,
contradicting the fact that « is an upper bound of 4. |

If B C R™ is compact and x & R?, it is easy to see that
{x} X B C R**™ is compact. However, a much stronger
assertion can be made.

1-4 Theorem. If B is compact and © is an open cover of
[z} X B, then there is an open sel U C R™ containing x such
that U X B 18 covered by a finite number of sels in 0.

Proof. Since [z} X B is compact, we can assume at the
outset that © is finite, and we need only find the open set U
such that U X B is covered by 0.

For each y € B the point (z,y) is in some open set W in ©.
Since W is open, we have (z,y) € Uy X V, C W for some
open rectangle U, X V,,. The sets V, cover the compact set
B, so a finite number V,, ...,V also cover B. Let
U=U,N " NU, Thenif (z',y) € U X B, we have
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FIGURE 1-4

y €V, for some ¢ (Figure 1-4), and certainly z' € U,,.
Hence (z/,y') € U, X V,;, which is contained in some W
ino. |

1-5 Corollary. If A C R" and B C R™ are compact, then
A X B C R*™™ is compact.

Proof. If ©isan open coverof A X B, then 0 covers {z} X B
foreachz € A. By Theorem 1-4 there is an open set U, con-
taining = such that U, X B is covered by finitely many sets
in 0. Since A is compact, a finite number U, . . . ,U;, of
the U, cover A. Since finitely many sets in © cover each
U,; X B, finitely many cover allof A X B. |

1-6 Corollary. A, X + -+ X Ay 18 compact if each A; 1s.
In particular, a closed rectangle in R* is compact.
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1-7 Corollary. A closed bounded subset of R is compact.
(The converse is also true (Problem 1-20).)

Proof. If A C R" is closed and bounded, then 4 C B for
some closed rectangle B. If © is an open cover of A, then 0
together with R® — 4 is an open cover of B. Hence a finite
number Uy, . . . ,U, of sets in 9, together with R* — A per-
haps, cover B. Then Uy, . . . ,U, cover 4. |

Problems. 1-14.* Provethat the union of any (even infinite) number
of open sets is open. Prove that the intersection of two (and hence
of finitely many) open sets is open. Give a counterexample for
infinitely many open sets.

1-15. Prove that {z € R™: I:z - a| < r| is open (see also Problem 1-27).
1-16. Find the interior, exterior, and boundary of the sets

{z € R |z| <1
fx ER™ [z] = 1)
{z € R": each z¥is rational].

1-17. Construct a set A C [0,1] X [0,1] such that A contains at most
one point on each horizontal and each vertical line but boundary
A = [0,1] X [0,1]. Hint: It suffices to ensure that A contains
points in each quarter of the square [0,1] X [0,1] and also in each
sixteenth, ete.

1-18. If A C [0,1] is the union of open intervals (a;,b;) such that each
rational number in (0,1) is contained in some (a;b;), show that
boundary A = [0,1) — A.

1-19.* If A is a closed set that contains every rational number r € [0,1],
show that [0,1] C A.

1-20. Prove the converse of Corollary 1-7: A compact subset of R" is
closed and bounded (see also Problem 1-28).

1-21.* (a) If A is closed and z &€ A, prove that there is a number
d > 0 such that |y — z| > d for all y € A.

(b) If A is closed, B is compact, and A N\ B = (J, prove that
there is d > 0 such that 1y - z:| >dforall y€ A and z € B.
Hint: For each b € B find an open set U containing b such that
this relation holds for z € U N B.

(c) Give a counterexample in R? if A and B are closed but
neither is compact.

1-22.* If U is open and C C U is compact, show that there is a compact
set D such that € C interior Dand D C U.
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FUNCTIONS AND CONTINUITY

A funection from R™ to R™ (sometimes called a (vector-
valued) function of n variables) is a rule which associates to
each point in R™ some point in R™; the point a function f
associates to z is denoted f(z). We write f: R® — R™ (read ‘f
takes R" into R™’ or ¥, taking R" into R™,”’ depending on con-
text) to indicate that f(z) € R™ is defined for r & R". The
notation f: 4 — R™ indicates that f(x) is defined only for z in
the set A, which is called the domain of f. If B C A, we
define f(B) as the set of all f(z) forz € B, and if C C R™ we
define f~}(C) = {z € A: f(zx) € C}. The notation f: A - B
indicates that f(4) C B.

A convenient representation of a function f: R?— R may
be obtained by drawing a picture of its graph, the set of all
3-tuples of the form (z,y,f(z,y)), which is actually a figure in
3-space (see, e.g., Figures 2-1 and 2-2 of Chapter 2).

If f,g: R® > R, the functions f + ¢, f — ¢, [ g, and f/g are
defined precisely as in the one-variable case. If f: A - R™
and g: B— R? where B C R™, then the composition
geof is defined by gef(z) = ¢g(f(z)); the domain of gof is
ANFYB). If f: A— R™is 1-1, that is, if f(z) # f(y)
when = # y, we define f~1; f/(A) — R™ by the requirement that
JY(2) is the unique z € A with f(z) = 2.

A function f: 4 — R™ determines m component functions
oo A= R by f(z) = (@), . . . (). If con-
versely, m functions g5, . . . ,gm: 4 — R are given, there
is a unique function /: 4 — R™ such that f* = g;, namely
f(x) = (g1(x), . . . ,gm(x)). This function f will be denoted
(g1, . . . ,gm), s0 that we always have f= (f1, ... /™.
If #: R® — R™ is the identity function, »(z) = z, then »*(z) =
z*; the function =* is called the ith projection function.

The notation lim f(z) = b means, as in the one-variable case,

T=a
that we can get f(z) as close to b as desired, by choosing r suf-
ficiently close to, but not equal to, a. In mathematical terms
this means that for every number € > 0 there is & number
é > Osuch that |f(x) -~ bI < € for all z in the domain of f which
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satisfy 0 < |z — a| < 5. A functionf: A —» R™is called con-
tinuous at ¢ € A if lim f(z) = f(a), and f is simply called con-

tinuous if it is continuous at each a € A. One of the pleasant
surprises about the concept of continuity is that it can be
defined without using limits. It follows from the next theorem
that f: R® » R™ is continuous if and only if f~3(U) is open
whenever U C R™ is open; if the domain of f is not all of R?, a
slightly more complicated condition is needed.

1-8 Theorem. If A C R", a function f: A — R™ s conlin-
uous if and only if for every open set U C R™ there i3 some open
set V. .C R™ such that f~1(U) = VN A.

Proof. Suppose f is continuous. If a € f~1(U), then
f(a) € U. Since U is open, there is an open rectangle B with
fta) € BC U. Since f is continuous at a, we can ensure
that f(z) € B, provided we choose z in some sufficiently
small rectangle C containing a. Do this for each a € f~X(U)
and let V be the union of all such €. Clearly f~Y(U) =
VM A. The converse is similar and is left to the reader. |}

The following consequence of Theorem 1-8 is of great
importance.

1-9 Theorem. Iff: A — R™ is continuous, where A C R,
and A i3 compact, then f(A) C R™ i3 compact.

Proof. Let 0 be an open cover of f(A). For each open set
U in © there is an open set Vy such that f~'(U) = Vy M A.
The collection of all Vy is an open cover of A. Since 4 is
compact, a finite number Vy,, . .. ,Vy, cover A. Then
Ui, - . . U, cover f(4). |

If f: A > R is bounded, the extent to which f fails to be
continuous at a € A can be measured in a precise way. For
§> 0let

M(a,f,8) = sup{f(z):z € 4 and |z — a| < 8},
m(a,f,8) = inf{f(z):z € A and |z — a| < 5}.
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The oscillation o(f,@) of f at a is defined by o(f,a) =
lim{M(a,f,8) — m(a,f,8). This limit always exists, since
0

M(a,f,5) — m(a,f,8) decreases as & decreases. There are two
important facts about o(f,e)-

1-10 Theorem. The bounded function f s continuous at a if
and only if o(f,a) = 0.

Proof. Let f be continuous at a. For every number € > 0
we can choose a number 5 > 0 so that |f(z) — f(@)| < e for
all z € 4 with |z — a| < 8; thus M(a,f,8) — m(a.f,8) < 2€.
Since this is true for every &, we have o(f,a) = 0. The con-
verse is similar and is left to the reader. |

1-11 Theorem. Let A C R*beclosed. Iff: A — Risany
bounded function, and € > 0, then {z € A: o(fz) 2 €} 18
closed.

Proof. let B = {x € A: o(f,z) > ¢}]. We wish to show
that R* — B is open. If z € R® — B, then either =z ¢ 4
orelse z € A and o(f,z) < &. In the first case, since 4 is
closed, there is an open rectangle C' containing z such that
CCR"— ACR"— B. In the second case there is a
8 > 0 such that M(z,f,8) — m(z,f,8) < & Let C be an open
rectangle containing z such that |x - y‘ < é for all y € C.
Then if y € C there is a & such that |z — 2| < & for all 2
satisfying lz - yl < 8;. Thus M(y,f,8)) — m(y,f,6:) < &, and
consequently o(y,f) < & Therefore C CR* — B. |

Problems. 1-23. If f: A — R™ and a € 4, show that lim f(z) = b
if and only if lim f(z) = bifori =1, ... ,m. e

Ir—a

1-24. Prove that f: A — R™ is continuous at a if and only if each f is.
1-25. Prove that a linear transformation 7: R™— R™ is continuous.
Hint: Use Problem 1-10.
1-26. Let A = {(z,y) ER* z > 0and 0 <y < 1.
(a) Show that every straight line through (0,0) contains an
interval around (0,0) which is in R? — 4.
(b) Define f: R* » R by f(z) =0 if z & A and f(z) = 1 if
. 2 €A. For h € R? define gx: R— R by ga(t) = fth). Show
that each g is continuous at 0, but f is not continuous at (0,0).
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1-27. Prove that {z € R": ]z - a| < r} is open by considering the
function f: R* — R with f(z) = tz - al.

1-28. If A C R" is not closed, show that there is & continuous function
f: A-— R which is unbounded. Hint: If z € R* — A but
z & interior (R™ — A), let f(y) = 1/ly — z|.

129, If A is compact, prove that every continuous function f: 4 —» R
takes on a maximum and a minimum value.

1-30. Let f: [a,b) — R be an increasing function. If z, . .. ,z, €
[a,b] are distinct, show that Z_j0(f,2:) < f(b) — f(a).



Differentiation

BASIC DEFINITIONS

Recall that a function f: R — R is differentiable at a € R if
there is a number f’(a) such that

1) tim 1@ R = 1@

A—0 h

= f'(a).

This equation certainly makes no sense in the general case of a
function f: R® — R™, but can be reformulated in a way that
does. If \: R— R is the linear transformation defined by
A(h) = f'(a) - h, then equation (1) is equivalent to

@) lim fla + k) — fla) — AR) _

A0 h

0.

Equation (2) is often interpreted as saying that A 4+ f(a) is a
good approximation to f at a (see Problem 2-9). Henceforth
we focus our attention on the linear transiormation A and
reformulate the definition of differentiability as follows.

15
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A function f: R — R is differentiable at a € R if there is a
linear transformation A: R — R such that

A—0 h

In this form the definition has a simple generalization to
higher dimensions:

A function f: R* — R™ is differentiable at ¢ € R" if there
is a linear transformation A: R® — R™ such that

o M@+ B = f@) =B _
h—s0 |A|

Note that k is a point of R™ and f(a 4 k) — f(a) — A(R) &
point of R™, so the norm signs are essential. The linear trans-
formation A is denoted Df(a) and called the derivative of f at
a. The justification for the phrase “the linear transformation
AN is

2-1 Theorem. If f: R® — R™ is differentiable at a € R"
there 18 a unique linear transformation \: R* — R™ such that

i L@+ 1) = (@ = Aw)] o
A0 [A|

Proof. Suppose u: R* — R™ satisfies

i M@+ B) = f@) — sB| _ o
A0 A
If d(h) = f(a + k) — f(a), then

i O = w@)| _ AR — ) + d) — w(h)]

h—0 |A] A0 ||
) —dw)| . ldi) — wh)
< lim —————— Iim ————————
- hl—l.r:) |h| * AT; |h|
= 0.

If z € R™, then tx — 0 as t —» 0. Hence for z = 0 we have
0 = 1im M) = kD] _ NG = w)],
-0 |tz| |=|

Therefore A(z) = u(z). |
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We shall later discover a simple way of finding Df(a). For
the moment let us consider the function f: R* — R defined by
f(z,y) = sinz. Then Df(a,b) = X satisfies Az,y) = (cos a) - z.
To prove this, note that

_1fa+ kb + k) — feb) — AhE)]
Hm

(h, )0 |,k
. |sin(a + k) — sina — (cos a) - A|
= lim :

(k£)—0 [,

Since sin’(a) = cos a, we have

0.

. |sin(ea + h) — sin @ — (cos a) * h}
lim =
A—0 lhl

Since |(h,k)| > |h], it is also true that

lim ]sin(a + h) ~ sina — (cos a) -hl —0
A—0 I(hyk)‘ '

It is often convenient to consider the matrix of Df(a):
R" — R™ with respect to the usual bases of R® and R™.
This m X n matrix is called the Jacobian matrix of f at q,
and denoted f'(a). If f(z,y) = sin z, then f'(a,b) = (cos a, 0).
If f: R— R, then f'(a) is a 1 X 1 matrix whose single entry
is the number which is denoted f'(a) in elementary calculus.

The definition of Df(a) could be made if f were defined only
in some open set containing a. Considering only functions
defined on R™ streamlines the statement of theorems and
produces no real loss of generality. It is convenient to define
a function f: R* — R™ to be differentiable on A if f is differ-
entiable at a for eacha € A. 1If f: A — R™, then f is called
differentiable if f can be extended to a differentiable function
on some open 8et containing A.

Problems. 2-1.* Prove that if f: R*— R™ is differentiable at
a € R", then it is continuous at a. Hint: Use Problem 1-10.
2-2. A function f: R?— R is independent of the second variable if
for each z € R we have f(z,y1) = f(z,y2) for all y1,y2 € R. Show
that f is independent of the second variable if and only if there is a
function g: R — R such that f(z,y) = g(z). What is f’(a,b) in
terms of g'?
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2-3. Define when a function f: R? — R is independent of the first varia-
ble and find f'(a,b) for such f. Which functions are independent of
the first variable and also of the second variable?

2-4. Let ¢ be a continuous real-valued function on the unit circle
[z € R?: |z| = 1) such that g§(0,1) = ¢(1,0) = 0 and g(~z) =
—g(z). Define f: R®— R by

x
f(z) = ":I"(I?I) =0

z =0

(a) If z € R? and h: R— R is defined by A(t) = f(tz), show tbat
h is differentiable,
(b) Show that f is not differentiable at (0,0) unless g = 0.
Hint: First show that Df(0,0) would have to be 0 by considering
(h,k) with k¥ = 0 and then with 4 = 0,
2-5. Let f: R? > R be defined by

zly|
Jay) = § Vit + 42
0 (z,y) = 0.

(z,y) # 0,

Show that f is a function of the kind considered in Problem 2-4,
so that f is not differentiable at (0,0).

2-6. Let f: R? > R be defined by f(z,y) = V/[zy]. Show that f is not
differentiable at (0,0).

2-7. Let f: R®— R be a function such that |f(z}| < |2|%. Show that
f is differentiable at 0.

2-8. Let f: R — R% Prove that f is differentiable at a € R if and only
if f! and f% are, and that in this case

oy (f’)’(a))_
/@) ((f‘)'(a)

2-9. Two functions f,g: R — R are equal up to nth order at a if

i J@ W ~ 9@+ o
m =

0.
k0 h"

(a) Show that f is differentiable at a if and only if there is a
function ¢ of the form g(z) = ao + a1(z — a) such that f and g are
equal up to first order at a.

(b) If f'(a), . . . ,f™(a) exist, show that f and the function ¢
defined by

o g
o) = 3 L oy
i=0
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are equal up to nth order at a. Hint: The limit

n—1
19a) :
f@z) — — (z — a)*
.'Z'o :

t

lim
z—a (z —a)"

may be evaluated by L'Hospital’s ruie.

BASIC THEOREMS

2-2 Theorem (Chain Rule). Iff: R" — R™ is differenti-
able at a, and g: R™ — R? is differentiable at f(a), then the
composition g o f: R* — RP is differentiable at a, and
D(g = f)(a) = Dg(f(a)) ° Df(a).
Remark. This equation can be written
(gof)(a) = ¢'(f(@)  f'(a).

If m = n = p = 1, we obtain the old chain rule.

Proof. let b = f(a), let X\ = Df(a), and let p = Dg(f(a)).
If we define

1) o(z) = f(z) — fla) — Az — a),
() ¥(v) = g(») — g(b) — u(y — b),
(3) p(x) = gof(z) — gofla) — uo Az — a),
then
4) limM =0
e |z — a] ’
O
g

and we must show that

lim la(2)]

e IJJ - a'

0,

=0.
Now

p(z) = g(f(2)) — g(b) — u(\(z — a))

= g(f(x)) — g(b) — u(f(z) — fla) — ¢(@)) by (1)
lg(f(2)) — 9(b) — u(f(z) — fla))] + ule(z))
¥(f(z)) + wle(®)) by (2).
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Thus we must prove

e
©) h_l.': |z —a|] o

. |ule@)|
@ lim T2 < 0.

Equation (7) follows easily from (4) and Problem 1-10. If
e > 0 it follows from (5) that for some & > 0 we have

W(f@)| < elf@) —b| if |f(2) — b] <8,

which is true if |z — a| < &, for a suitable 5,. Then

W(f@)] < e|s@) - bl
= elo(z) + Mz — a)|
< elgp(:c)| + €M|a: - a|

for some M, by Problem 1-10. Equation (6) now follows
easily. |

2-3 Theorem )
(1) If f: R* > R™ 18 a conslant function (that is, if for some
y € R™ we have f(z) = y for all z € R™), then

Df(a) = 0.
(2) If f: R* —> R™ is a linear transformation, then
Df(a) = /.

(3) If f: R*— R™, then f is differentiable at a € R" i and
only +f each f* 13, and

Df(a) = (Df'(a), . . . ,Df™a)).

Thus f'(a) s the m X n matriz whose ith row is (f*)'(a).
(4) If s: R?2—> R is defined by s(z,y) = = + y, then

Ds(ab) = s.
(5) If p: R* — R is defined by p(x,y) = z - y, then
Dp(a,b)(z,y) = bz + ay.
Thus p'(a,b) = (b,a).
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Proof
fa+m —f@ -0 _ . ly=y=0_,

(1) fim 4] Tl
@) lim |f(a + k) — f(a) — fB)]|
A—0 |h|

_ i @ +5®) = f@ =SB _

A—0 h

(3) If each f* is differentiable at a and

» = (Df'(a), . . . ,Df™(@),
then

fla + k) — f(a) — Ah)
= (fYa + ) — f{(a) — DY @)A), . . .,
f™a + k) + (@) — Df™(a)(h)).

Therefore
iy 1@+ B) = f(@) = M(R)]
A—0 lhl

< lim
A—D

2 |fa + 1) = fXa) — DF@®)| _
_ |A| '
i=1
If, on the other hand, f is differentiable at a, then fi=
' o f is differentiable at a by (2) and Theorem 2-2.
(4) follows from (2).
(5) Let Mz,y) = bz + ay. Then

|pa + A, b+ k) — pla,b) — Mh,E)|

.
irso I II(h,k)l
ki
= lim ——L.
wmo |(RE)]
Now
B2 if k| < A
el < W,
s { s £
Hence |hk| < |h|? + [k|%. Therefore
2 2 —
lhk| h*+ & - \/hz + kz’

[(h,E)| = VRE + k2
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50

|k
li —— = 0,
o TR !

2-4 Corollary. 1If f.g: R" — R are differentiable at a, then

D(f + g)(a) = Df(a) + Dy(a),
D(f - g)(a) = g(a)Df(a) + f(a)Dg(a).

If, moreover, g(a) ¥ 0, then

g(a)Df(a) — f(a)Dg(a)

D(s/g)(a) = 0@’

Proof. We will prove the first equation and leave the others
to the reader. Since f 4+ g = so (f,g), we have

D(f + g)(a) = Ds(f(a),g(a)) ° D(f,9)(a)
8 o (Df(a),Dg(a))
Df(a) + Dg(a). |

fl

We are now assured of the differentiability of those functions
f: R*— R™, whose component functions are obtained by
addition, multiplication, division, and composition, from the
functions #* (which are linear transformations) and the func-
tions which we can already differentiate by elementary
calculus. Finding Df(z) or f’(z), however, may be a fairly
formidable task. For example, let f: R? — R be defined by
f(z,y) = sin(zy?). Since f = sino (x' - [x%]?), we have

f'(ab) = sin’(ab?) - [b*(r")(a,0) + a((x??)'(a,b)]
sin’(ab?) - [b3(r') (a,b) + 2ab(x?)'(a,b)]
(cos(ab?)) - [b*(1,0) + 2ab(0,1)]

= (0% cos(ab?), 2ab cos(ab?)).

Fortunately, we will soon discover a much simpler method of
computing f’.

Problems. 2-10. Use the theorems of this section to find f’ for the
following:
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(a) f(z,y,2) = 2.

() flz,y,2) = (%2).

(¢) f(z,y) = sin(zsin y).

@) f(z,y,2) = sin(z sin{y sin z)).

(e) flz,y,2) = z¥".

€) flz,y,2) = z¥+2.

@) flz,y,2) = (z + ¥)"

(h) f(z,y) = sin(zy).

(i) f(z,y) = [sin(zy)1®= 2.

() f(z,y) = (sin(zy), sin(z sin y), z¥).
2-11. Find f' for the following (where g: R — R is continuous):

@ fzy) = [

®) s = [’
sin(z sin(y sin z))g

(© fzy,2) = o
2-12. A function f: R® X R” — RP? is bilinear if for z,z1,z: € R",
v, y1,y2 € R™ and a € R we have

flaz,y) = af(z,y) = f(z,ay),
flzy + zo,y) = f(z1y) + f(=29),
Sy + yo) = flzy) + flz,y9)-

(a) Prove that if f is bilinear, then

i AR
-0 | (B

(b) Prove that Df(a,b)(z,y) = f(a,y) + f(z,b).
(c) Show that the formula for Dp(a,b) in Theorem 2-3 is a
special case of (b).
2.13. Define IP: R* X R®*— R hy IP(z,y) = (z,9).
(a) Find D(IP)(a,b) and (IP) (a,b).
(b) If f,9: R — R" are differentiable and h: R — R is defined by
h(t) = (f(8),g(8)), show that

k(@) = {f'(@),9(a)) + (f(a),g'(@)T).

(Note that f'(a) is an n X 1 matrix; its transpose fl@Tisal X n
matrix, which we consider as a member of R".)

(c) If f: R — R" is differentiable and |f(t)l = ] for all ¢, show
that (f'(OT,7(0) = 0.

(d) Exhibit a differentiable function f: R — R such that the
function |f] defined by |f](¢) = |f(t)] is not differentiable.

2.14, Let By, t = 1, . . . ,k be Euclidean spaces of various dimensions.
A function f: E1 X - - - X Ex— RP is called multilinear if
for each choice of z; € E;, j # i the function g: E; — R? defined by
g(z) = f(z1, . . . Lic1,Z,Tix1, - - . ,24) i a linear transformation.
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(a) If fis multilinear and ¢ » j, show thatforh = (A, . . . ),
with k; € E;, we have

Jim |f(a1, R ¥ 7 R ,ak)i -0
A0 |l
Hint: If glzy) =fl@y, . .- %, .. . ¥ - . .,ax), then g is
bilinear.
(b) Prove that
]
Dfay, . . . )21, . .. ,zH) = 2 Sflay, - . . @1, THGit 1y - - - ,8k)-
i=1

2-15. Regard an n X n matrix as a point in the n-fold product R™ X
- X R" by considering each row as a member of R™.

(a) Prove that det: R* X - - . X R"— R is differentiable and
-
" .
D(det){(ay, . . . ,6a)(Z1, - + « 4%n) = det { z;].
Z,--. j
LanJ

(b) If ai;: R— R are differentiable and f(¢) = det(a;;(¢)), show
that
rall(‘), . e )aln(‘)\

() = Zdet a;1’'(®), . .. ,am)].
o . .

kanl(t)y D yann(‘)J

(c) If det(a;;(t)) » O for all t and by, . . . ,by: R— R are dif-

ferentiable, let 51, . . . ,sn: R — R be the functions such that
21(f), . . . ,8a(t) are the solutions of the equations
"

aii(8)si() = b)) =1,...
=1

Show that s, is differentiable and find s’ (¢).
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2-16. Suppose f: R*— R" is differentiable and has a differentiable
inverse f~!: R"— R" Show that (f~Y)'(a) = [f/(f a)]™ L
Hint: fof Y z) = =

PARTIAL DERIVATIVES

We begin the attack on the problem of finding derivatives
‘“one variable at a time.” If f: R" —» R and a € R", the limit

!

limf(a‘, oL@tk e — f(a, ... e

h—0 h

if it exists, is denoted D;f(a), and called the i/th partial deriva-
tive of fat a. It is important to note that D.f(a) is the ordi-
nary derivative of a certain function; in fact, if g(z) =
fle!, . . .z, . .. ,a"), then Dif(a) = ¢'(a"). This means
that D;f(a) is the slope of the tangent line at (a,f(a)) to the
curve obtained by intersecting the graph of f with the plane
z’ = a’, j i (Figure 2-1). It also means that computation of
D;f(a) is a problem we can already solve. If f(z!, . .. z")is

(a,b)

FIGURE 2.1

z?
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given by some formula involving z!, . . . ,z", then we find
DJG&, . ..,z by differentiating the function whose value
at z¢ is given by the formula when all zf, for j = i, are
thought of as constants. For example, if f(z,y) = sin(zy?),
then Dyf(z,y) = y®cos(zy®) and Dof(z,y) = 2zy cos(zy?). If,
instead, f(z,y) = ¥, then Dif(z,y) = yr¥~! and Df(z,y) =
z¥log r.

With a little practice (e.g., the problems at the end of this
section) you should acquire as great a facility for computing
D.f as you already have for computing ordinary derivatives.

If Dif(z) exists for all z € R", we obtain a function D;f:
R” — R. The jth partial derivative of this function at z, that
is, Dj(D:f)(x), is often denoted D; ;f(z). Note that this nota-
tion reverses the order of i and j. As a matter of fact, the
order is usually irrelevant, since most functions (an exception is
given in the problems) satisfy D ;f = Dj.if. There are various
delicate theorems ensuring this equality ; the following theorem
is quite adequate. We state it here but postpone the proof
until later (Problem 3-28).

2.5 Theorem. If D;,f and Dj:f are continuous in an
open set containing a, then

D; jf(a) = Dj.if(a).

The function D, ;f is called a second-order (mixed)
partial derivative of f. Higher-order (mixed) partial
derivatives are defined in the obvious way. Clearly Theorem
2-5 can be used to prove the equality of higher-order mixed
partial derivatives under appropriate conditions. The order
of 71, ..., is completely immaterial in Da, . . . yxf
if f has continuous partial derivatives of all orders. A function
with this property is called a C* function. In later chapters
it will frequently be convenient to restrict our attention to C°
functions.

Partial derivatives will be used in the next section to find
derivatives. They also have another important use—finding
maxima and minima of functions.
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2-6 Theorem. Let A C R". If the mazimum (or mini-
mum) of f: A — R occurs at a point a in the interior of A and
D.f(a) exists, then D;f(a) = 0.

Proof. Let gi(z) =f(@' ... ,r,...,a"). Clearly g,
has a maximum (or minimum) at @, and g, is defined in an
open interval containing a®. Hence 0 = g/(a’) = D;f(a). |

The reader is reminded that the converse of Theorem 2-6
is false even if n = 1 (if f: R— R is defined by f(z) = z8,
then f’(0) = 0, but 0 is not even a local maximum or mini-
mum). If n > 1, the converse of Theorem 2-6 may fail
to be true in a rather spectacular way. Suppose, for exam-
ple, that f: RZ— R is defined by f(z,y) = z* — y? (Figure
2-2). Then D,f(0,0) = 0 because g; has a minimum at O,
while D,f(0,0) = 0 because g2 has a maximum at 0. Clearly
(0,0) is neither a relative maximum nor a relative minimum.

FIGURE 2-2
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If Theorem 2-6 is used to find the maximum or minimum of
fon A, the values of f at boundary points must be examined
separately—a formidable task, since the boundary of 4 may
be all of A! Problem 2-27 indicates one way of doing this,
and Problem 5-16 states a superior method which can often
be used.

Problems. 2-17. Find the partial derivatives of the following
functions:
(a) flz,y,2) = z*
(b) f(zy,2) = 2
(¢) f(z,y) = sin(z sin y).
(d) f(z,y,2) = sin(z sin(y sin 2)).
(e) flz,y,2) = z¥".
) fzy) = 2+
®) flzy2 = (z + "
(h) f(z,y) = sin(zy).
(i) f(z,y) = [sin (@)},
2-18. Find the partial derivatives of the following functions (where
g: R — R is continuous):

@) f@y = [
o) f@y = [0
©) fzy) = Ja'e

v
9
@ f@ = [ ff v,

2-19. If f(z,y) = =+ (log z)(arctan(arctan(arctan(sin(cos zy) —
log(z + ¥))))) find Daf(l,y). Hini: There is an easy way to
do this.

2-20. Find the partial derivatives of f in terms of the derivatives of g and
hif

(a) flz,v) = g()h(y).
(b) fz,y) = g(x)*™.
(e) flz,y) = glz).
(d) flz,y) = g(y).
(e) flz,y) = gz + V).
2-21.* Let g3,g2: R? — R be continuous. Define f: R*— R by

z

y
Sy = / (600t + [ geadt.

(a) Show that Daf(z,y) = g2(=,¥).

(b) How shonld f be defined so that Dif(z,y) = g1(z,)?

(¢) Find a function f: R?— R such that Dif(z,y) = 2 and
Daf(z,y} = y. Find onesuch that Dif(z,y) =y and Daf(z,y) = =.
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2-22.* 1 f: R?— R and Daf = 0, show that f is independent of the
second variable. If Dif = D2f = 0, show that f is constant.
2-23.* Let A = {(z,y) ER% 2z <0,0orz > 0and y # 0].
(a) If f: A— R and Dif = Daf = 0, show that f is constant.
Hint: Note that any two points in A can be connected by a
sequence of lines each parallel to one of the axes.
(b) Find a function f: A — R such that Dif = 0 but f is not
independent of the second variable.
2-24. Define f: R*—> R by

o1 — gyt
2, .2 ] 7 01
flzy) = lzy z? + yt s
0 (z,y) = 0.
(a) Show that Df(z,0) = z for all z and D1f(0,y) = —y for

all y.
(b) Show that Dy 3f(0,0) » Ds,17(0,0).
2-25.* Define f: R— R by

e z #0,
i@ = { 0 z = 0.
Show that f is a C* function, and f®(0) = 0 for all ¢ Hint:
A 1/h
The limit f(0) = lim = lm '_/T’ can be evaluated by
TN h—o €*

L’Hospital's rule. It is easy enough to find f'(z) for z # 0, and
J?(0) = lim f(h)/h can then be found by L’Hospital’s rule.
A—0

2-26. Let  f(z) = {e“"""-e““‘”" z € (-1,),

z & (—1,1).

(a) Show that f: R — R is a C*™ function which is positive on
(—1,1) and 0 elsewhere.

(b) Show that there is a C* function g: R — [0,1] such that
g(@) =0 for z <0and g(z) =1 forz >e Hint:If fisa C®
function which is positive on (0,€) and 0 elsewhere, let g(z) =
Jsw fis.

(c) If a € R™, define g: R® - R by

g(z) = f(z' —a'l/e) - . . . - f(iz* = a")fe).
Show that g is a C™ function which is positive on
@ —eal+e)X .- X(a" —¢a" + ¢
and zero elsewhere.
(d) If A CR"isopenand C C A is compact, show that there is
a non-negative C* function f: A — R such that f(z) > Oforz € €
and f = 0 outside of some closed set contained in A.
(e) Show that we can choose such an f so that f: 4 — [0,1] and

f(zy =1 for z €EC. Hint: If the function J of (d) satisfies
f@x) 2 € for z € C, consider g o f, where g is the function of (b).



30 Calculus on Manifolds
2-27. Define g, h: {z € R%: |z| <1} - R® by

9(2»1/) = (z,y, \/1 -zt~ yz)r

hizy) = @y — V1 — 2% — ¢

Show that the maximum of fon {z & R%: |z| = 1} is either the
maximum of f ¢ ¢ or the maximum of fohon {z € R |z < 1).

DERIVATIVES

The reader who has compared Problems 2-10 and 2-17 has
probably already guessed the following.

2.7 Theorem. If f: R* — R™ s differentiable at a, then
Difi(a) exists for 1 S i< m,1 <j< nandf(a)isthem Xn
matriz (D;f'(a)).

Proof. Suppose first that m = 1,so that f: R* — R. Define
h: R>R" by h(z) = (@, . . . =, ... ,a"), with z in the
jth place. Then D;f(a) = (fo h)’(a’). Hence, by Theorem
2-2,

(fo h)'(@)) = f'(a) - B(a")
0\

= f'(a) - |1| < jth place.

0)
Since (f o h)'(a’) has the single entry D;f(a), this shows that
D;f(a) exists and is the jth entry of the 1 X n matrix f'(a).

The theorem now follows for arbitrary m since, by Theorem
2-3, each f' is differentiable and the ith row of f'(a) is
(@) 1

There are several examples in the problems to show that the
converse of Theorem 2-7 is false. It is true, however, if one
hypothesis is added.
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2-8 Theorem. If f: R"— R™, then Df(a) exists if all
D,fi(x) exist in an open set containing a and if each funclion
D,f* is continuous at a.

(Such a function f is called cantinuously differentiable at a.)

Proof. As in the proof of Theorem 2-7, it suffices to consider
the case m = 1, so that f: R®" — R. Then

f(a + h) —f(a) =f(al + hly (12, e ,G”) —f(aly LR 10")
+ fla' + Y, a’ + A% a®, . .. a")
— f(a' + Rl a?, . .. a")
+ e .
+ fla' + AL, . .. 4"+ A7)
_f(al + hl, L ,an—l-+ h""l,a").
Recall that D,f is the derivative of the function g defined by
g(z) = f(z,a%, . . . ,a"). Applying the mean-value theorem
to g we obtain
fl@* + k' a? ... ™) —f@), ... e
= hl : le(bl’azy e ’an)

for some b, between a' and a' + A'. Similarly the i#th term
in the sum equals

hi' Dif(al + hl; e 1ai_l + hi_l:bl'; LI ’an) = hiDif(ci)r
for some ¢;. Then

fa + k) = f(a) ~ Z Dif(a) - |
i=1

I
hl—lor; [A]

|3 usted = Dustar |

. i=1
= lim

A0 A ]

R\ |n{]
<l Dif(e;) — Dy T
<tim ¥ D4t = D@ -y

<lim ) |Dif(e) ~ Dif(a)|
h_'oizl

since D.f is continuous at a.
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Although the chain rule was used in the proof of Theorem
2-7, it could easily have been eliminated. With Theorem 2-8to
provide differentiable functions, and Theorem 2-7 to provide
their derivatives, the chain rule may therefore seem almost
superfluous. However, it has an extremely important corol-
lary concerning partial derivatives.

2.9 Theorem. Let g1, . .. gm: R*— R be conlinuously
differentiable at a, and let f: R™— R be differentiable at
(91(8), . . . gm(a)). Define the funcion F: R*—> R by
F(z) = f(:(2), - . - gm(z)). Then

DF(@ = ) Dfgr@), - - - an(@) - Dgs(@)-
i=1

Proof. The function F is just the composition fog, where
g = (g1, - - - ,gm). Since g; is continuously differentiable at
a, it follows from Theorem 2-8 that g is differentiable at a.
Hence by Theorem 2-2,

F'(a) = f'(g9(a)) - ¢'(a) =
Dgi(a), * - - yDngi(a)

(Dif(g(a)), - - - \Dmf(g(a))) -
Dlgm(a)) L ;Dﬂgm(a)

But D,F(a) is the ith entry of the left side of this equation,
while Z7.,D;f(g1(a), . - - gm(@)) - Dig;(a) is the ith entry
of the right side. [

Theorem 2-9 is often called the chain rule, but is weaker
than Theorem 2-2 since g could be differentiable without g;
being continuously differentiable (see Problem 2-32). Most
computations requiring Theorem 2-9 are fairly straightforward.
A slight subtlety is required for the function F: R*—> R
defined by

F(z.y) = f(g(z),h(x),%(¥))
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where hk: R— R. In order to apply Theorem 2-9 define
hE: R?> R by

h(z,y) = h(z)  k(zy) = k@).
Then
Dik(z,y) = K (x) Dah(z,y) = 0,
Dyk(z,y) = 0 Dak(z,y) = K'(v),

and we can write
F(zyy) = f(g(l,y),’i(z,y):le(x,y))-
Letting a = (g(z,y),h(x),k(y)), we obtain

DiF(z,y) = D1f(a} - Dig(z,y) + Dof(a) - k'(z),
D:F(z,y) = D1f(a) - Dag(z,y) + Daf(a) - k'(y).

It should, of course, be unnecessary for you to actually write
down the functions £ and £.

Problems. 2-28. Find expressions for the partial derivatives of the
following functions:
() Fz,y) = flglz)k(y), g(=) + h(y)).
(b) Flz,p,2) = flglz + y), h(y + 2)).
(e) F(z,y2) = f(=%y",2%).
d) Flz,y) = flzg(a)hizy).
2-29, Let f: R* » R. For z € R", the limit

1 fla + tz) — fla)
m —-————3
t—0 t

if it exists, is denoted D.f(a), and called the directional deriva-
tive of f at g, in the direction z.
(a) Show that D, f(a) = Dif(a).
(b) Show that Di:f(a) = tD,f(a).
(c) If f is differentiable at a, show that D;f(a) = Df(a)(z) and
therefore D.y,f(a) = D:f(a) + D,f(a).
2-30, Let f be defined as in Problem 2-4. Show that D.f(0,0) exists for
all z, but if g # 0, then D;4,f(0,0) = D.f(0,0) 4+ D,f(0,0) is not
true for all z and y.
2-31. Let f: R? — R be defined as in Problem 1-26. Show that D;f(0,0)
exists for all z, although f is not even continuous at (0,0).
2-32. (a) Let f: R — R be defined by

1
z%sin —~ z #0,
z

0 z =0

f(z) =
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Show that f is differentiable at 0 but f’ is not continuous at 0.
(b) Let f: R2— R be defined by

! 4N
fay) = " +y7)sin Vit + 2
0 (I,U) =0

() #0,

Show that f is differentiable at (0,0) but D.f is not continuous
at (0,0).

2-33. Show that the continuity of D, f/ at a may be eliminated from the
hypothesis of Theorem 2-8.

2-34. A function f: R® — R is homogeneous of degree m if f(tz) =
t™f(z) for all . If fis also differentiable, show that

2 ' Dif (z) = mf(z).
1=1
Hint: If g(t) = f(tz), find g'(1).

2.35. If f: R* — R is differentiable and f(0) = 0, prove that there exist
gi: R* — R such that

@) = z 2igi(z).

i=1

Hint: If ho(t) = f(tz), then f(z) = [§h'()dL.

INVERSE FUNCTIONS

Suppose that f: R — R is continuousiy differentiable in an
open set containing a and f'(a) > 0. If f'(a) > 0, there is an
open interval V containing a such that f'(z) >0 forz € V,
and a similar statement holds if f'(a) < 0. Thus f is increas-
ing (or decreasing) on V, and is therefore 1-1 with an inverse
function f~! defined on some open interval W containing f(a).
Moreover it is not hard to show that f~! is differentiable, and
for y € W that
1
1y¢ — - .

(f— ) (y) - f’(F’(y))
An analogous discussion in higher dimensions is much more
involved, but the result (Theorem 2-11) is very important.
We begin with a simple lemma.
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2-10 Lemma. Let A C R" be a rectangle and let f: A — R"
be continuously differentiable. If there is a number M such that
ID;fi(z)] < M for all z in the interior of A, then

lf@) — f@)] < n*M|z — |
forallz,y € A.

Proof. We have

n

fw) = Ff@ = ) @, .yt "

=1
"f(yli e e Jy',—l)xjr L ,Z")].
Applying the mean-value theorem we obtain
fi(yll e Jyj) Ij+1! A )In) —fi(yll A lyj—llxj) M Ix”)

= (' — 2) - D;fi(zi5)
for some z;;. The expression on the right has absolute value
less than or equal to M - |y’ — 27|. Thus

fi@) - F@l < ) W -] M < nMly - 2|

j=1

since each |y’ — 27| < |y — z|. Finally

Fw) = 1@] < Y 15w - F@| < nPM -y — 2l 1
=1

2-11 Theorem (Inverse Function Theorem). Supposethat
f: R* > R" {5 continuously differentiable in an open set coniain-
ing a, and det f'(a) = 0. Then there is an open set V containing
a and an open set W containing f(a) such that f: V— W has a
continuous inverse =1 W — V which is differentiable and for
all y € W satisfies

'@ =G e
Proof. Let A be the linear transformation Df(a). Then

A is non-singular, since det f'(a) = 0. Now DA~ 'of)(a) =
DO N)(f(a)) o Df(a) = X"Yo Df(a) is the identity linear
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transformation. If the theorem is true for ™! e f, it is clearly
true for f. Therefore we may assume at the outset that A is the
identity. Thus whenever f(a 4+ k) = f(a), we have

e+ b — fl@) = M) _ |4l _ |
IR| | -

But
iy @+ B — f@) = AB| 0.
A0 ‘h‘

This means that we cannot have f(z) = f(a) for z arbitrarily
close to, but unequal to, a. Therefore there is a closed rec-
tangle U containing a in its interior such that

1. f(z) # f(a) if z € U and z # a.

Since f is continuously differentiable in an open set containing
a, we can also assume that

2. det f'(z) # 0 forz € U.

3. |Dif{(x) — Difi(a)| < 1/2n%for all 4, j,and z € U.
Note that (3) and Lemma 2-10 applied to g(z) = f(z) — «
imply for 1,22 € U that

If(z1) = 21 — (flzg) — z2)| < 321 — 2.
Since

21 — 2o — |f(z1) — f@a)] < /(1) — 21 — (f(z2) — 22|
<z — x4,
we obtain

4. |2y — 24| < 2{f(x1) — f(za)| for z1,2, € U.

Now f(boundary U) is a compact set which, by (1), does not
contain f(a) (Figure 2-3). Therefore there is a number d > 0
such that |f(a) - f(a:)| >d for x & boundary U. Let
W = {y:|ly — f(a)| < d/2}. If y € Wandz € boundary U,
then :

5. |y — f@)| < |y — f@)|.

We will show that for any y € W there is a unique z in
interior U such that f(z) = y. To prove this consider the
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function g: U — R defined by
0@@) = [y — 1@ = ) @ - fian*
i=1

This function is continuous and therefore has a minimum on
U. If z € boundary U, then, by (5), we have g(a) < g(z).
Therefore the minimum of g does not occur on the boundary
of U. By Theorem 2-6 there is a point r € interior U such
that D;g(x) = 0 for all j, that is

Y 24 — f(@) - Difiz) =0 forallj.

i
By (2) the matrix (D;f'(z)) has non-zero determinant. There-
fore we must have y* — fi(z) = 0 for all %, that is y = f(z).
This proves the existence of z. Uniqueness follows immedi-
ately from (4).

If V = (interior U) N f~Y (W), we have shown that the

function f: V— W has an inverse f~!: W— V. We can
rewrite (4) as

6. /7)) — )| < 2y ~ | foryry. EW.

This shows that f~! is continuous.

Only the proof that f~! is differentiable remains. Let
u = Df(z). We willshow that /= is differentiable at y = f(z)
with derivative p™'. As in the proof of Theorem 2-2, for

z1 € V, we have

f(zy) = f(z) + u(z1 — z) + o(z2 — ),
where
lim lo(z1 — z)| _

0.
TI—z T — II

Therefore
s (flz)) — f(@) = 21 — z + w N p(z1 — 7).

Since every y; € W is of the form f(z,) for some z; € V, this
can be written

X ) =17 + 67 — w) — o e ) — o)),
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and it therefore suffices to show that

NN P 70 Rl ) RO
im = U
iy ly: ~ vl

Therefore (Problem 1-10) it suffices to show that

e 20 0 =@l
n—y |y1 - y|

0.

Now

lo( " (wa) ~ W)l
Iy; - 1I|

_ et M) =7t onl 1w — )l
7w — 7)) v — l
Since f~1 is continuous, f~'(y1) — f}(y) as y1— y. There-

fore the first factor approaches 0. Since, by (6), the second
factor is less than 2, the product also approaches 0. |

It should be noted that an inverse function f~! may exist
even if det f'(a) = 0. For example, if f: R — R is defined by
f(x) = 2% then f’(0) =0 but f has the inverse function
fNz) = vz. One thing is certain however: if det f'(a) = 0,
then f~! cannot be differentiable at f(a). To prove this note
that fof~!(z) = z. If f~! were differentiable at f(a), the
chain rule would give f'(a) - (f~!)’(f(a)) = I, and consequently
det f'(a) - det(f~')'(f(a)) = 1, contradicting det f'(a) = 0.

Problems. 2-36.* Let A C R® be an open set and f: 4 — R”
a continuously differentiable 1-1 function such that det f'(z) = 0
forallz. Show that f(A) is an open set and f~}: f(4) —» A is differ-
entiable. Show also that f(B) is open for any open set B C A.
2-37. (a) Let f: R®—> R be a continuously differentiable function.
Show that f is not 1-1. Hint: If, for example, D1f(z,y) 0 for all
{z,y) in some open set A, consider g: A — R? defined by g(z,) =
(fz,yhy).
(b) Generalize this result to the case of a continuously differen-
tiable function f: R® - R™ with m < n.
2-38. (a) If f: R— R satisfies f'(a) » 0 for all a € R, show that f is
1-1 (on all of R).
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(b) Define f: R?*— R? by f(z,y) = (¢®cos y, e*sin y). Show
that det f'(z,y) # 0 for all (z,y) but fis not 1-1.
2-39. Use the function f: R — R defined by

z L1
f@) = §+z’sm; z #0,
0 z =0,
to show that continuity of the derivative cannot be eliminated from
the hypothesis of Theorem 2-11.

IMPLICIT FUNCTIONS

Consider the function f: R2— R defined by f(z,y) = z* +
y* — 1. If we choose (a,b) with f(a,b)) = 0 and a > 1, —1,
there are (Figure 2-4) open intervals A containing a and B
containing b with the following property: if z € A, there is
a unique y € B with f(z,y) = 0. We can therefore define

y

B graph of ¢

{(®w): f(zw) = 0}

B, b

graph of ¢,

FIGURE 2-4
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a function g: A — R by the condition g{z) € B and f(z,g(z))
=0 (if b > 0, as indicated in Figure 2-4, then g(z) =
V1 — z%). For the function f we are considering there is
another number b; such that f(a,b)) = 0. There will also be
an interval B; containing b; such that, when z € A, we
have f(z,g1(z)) = 0 for a unique g,(z) € B, (here gi(z) =
— V1 —2%). Both g and g, are differentiable. These
functions are said to be defined implicitly by the equation
f(z,y) = 0.

If we choose @ = 1 or —1 it is impossible to find any such
function g defined in an open interval containing a. We
would like a simple criterion for deciding when, in general,
such a function can be found. More generally we may ask
the following: If f: R®* X R— R and f(a', . . . ,a"b) = 0,
when can we find, for each (z!, . . . z") near (a!, . . . ,a%),
a unique y near b such that f(z!, ... a2*y) = 0? Even
more generally, we can ask about the possibility of solving
m equations, depending upon parameters z', . . . ,z", in m
unknowns: If

fii "X R*"> R i=1,....m
and
Jla'y . oL@, L ™ =0 i=1,... m,
when can we find, for each (z), . . . 2") near (@', . . . ,a") a
unique (y', . .. ,y™ near (b', ... b™) which satisfies
fiz', ... 2y, ... g™ =07 Theanswer is provided by

2-12 Theorem (Implicit Function Theorem). Suppose
f: R® X R™ — R™ s continuously differentiable in an open set
containing (a,b) and f(a,b) = 0. Let M be the m X m malriz

(Dnyifi(ab)) 1<4j<m

If det M > O, there is an open set A C R" containing a and an
open set B C R™ conlaining b, with the following property: for
each z & A there is a unique g(z) € B such that f(z,g(z)) = 0.
The function g is differentiable.
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Proof. Defne F: R*X R™—R"XR" by F(zy) =
(z.f(z,y)). Then det F'(a,b) = det M # 0. By Theorem 2-11
there is an open set W C R™ X R™ containing F(a,b) = (a,0)
and an open set in R* X R™ containing (a,b), which we may
take to be of the form A X B, such that F: A X B— W
has a differentiable inverse h: W — A4 X B. Clearly & is of
the form h(z,y) = (x,k(z,y)) for some differentiable function
k (since F is of this form). Lets: R* X R™— R™ be defined
by =(x,y) = y; then 7o F = f. Therefore

[ X(z,y)) = foh(zy) = (xoF)oh(zy)
=rxo (Foh)(z,y) = x(zy) = ¥.

Thus f(z,k(z,0)) = 0; in other words we can define g(z) =
k(z,0). |

Since the function g is known to be differentiable, it is easy
to find its derivative. In fact, since fi(z,g(z)) = 0, taking D;
of both sides gives

0 = Dif{zg(x)) + ), Datafzg(x)) - Dig(3)
a=1
L, y=1 ... m

Since det M = 0, these equations can be solved for D;g"(x).
The answer will depend on the various D;f'(z,9(z)), and there-
fore on g(z). This is unavoidable, since the function g is not
unique. Reconsidering the function f: R? - R defined by
f(z,y) = a* + y* — 1, we note that two possible functions
satisfying f(z,g(z)) = 0 are g(z) = V1 = z? and g¢(z) =
— V1 — z% Differentiating f(z,9(z)) = 0 gives

Dyf(z,9(z)) + Dof(z,9(z)) - ¢'(z) = 0,

or
2z + 2¢(2) - ¢'(2) = 0,
g'(z) = —=z/g(z),

which is indeed the case for either g(z) = V1 — z%or g(z) =

2 1
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A generalization of the argument for Theorem 2-12 can be
given, which will be important in Chapter 5.

2-13 Theorem. Let f: R"— R? be continuously differ-
entiable in an open set containing a, where p < n. If fla) = 0
and the p X n maitriz (D;f'(a)) has rank p, then there is an
open set A C R" containing a and a differentiable function h:
A — R" with differentiable inverse such that

foh(z!, ..., 2% = (P, . .. ,z").

Proof. We can consider f as a function f: R*® X R? — R?.
If det M » 0, then M is the p X p matrix (Dn_py;f*(a)),
1 <14,j < p, then we are precisely in the situation considered
in the proof of Theorem 2-12, and as we showed in that proof,
there is h such that foh(z!, . . . 2" = (z" 7%, . . . z".
In general, since (D;f*(a)) has rank p, there will be j; <

* <Jp such that the matrix (D;fi(a)) 1 <7< p, j=

Ji, - - . ,jp has non-zero determinant. If g: R* — R" per-
mutes the 27 so that g(z!, . . . 2") = (. .. 2%, ... %),
then feog is a function of the type already considered, so
((fog)ok)(z!, . . . ,z") = (z"PT! | . | 2") for some k.
Leth =gok |

Problems. 2-40. Use the implicit function theorem to re-do Prob-
lem 2-15(c).

2-41. Let f: R X R— R be differentiable. For each z € R define g,
R— R by g,(y) = f(z,p). Suppose that for each z there is a
unique y with g."(y) = 0; let c(z) be this Y.

(@) If Dy,2f(z,y) # O for all (z,y), show that ¢ is differentiable
and

Ds1f(z,c(z))

Dy, 2f(z,c(z))

Hint: g.'(y) = 0 can be written Dyf(z,y) = 0.
(b) Show that if ¢’(z) = 0, then for some y we have

Dﬂ,lf(zyy) =0,
Dy f(zyy) = 0.

(¢) Let f(z,y) = z(ylogy ~ y) — ylogz. Find

d(z) = —

max { min f(z,y)).
15252 1gy<1
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NOTATION

This section is a brief and not entirely unprejudiced discussion
of classical notation connected with partial derivatives.

The partial derivative D1f(2,y,2) is denoted, among devotees
of classical notation, by

3f(z,y,2) af af )

__aift,—— or 5—; or a (x;y:z) or "a—;f(xvyoz)
or any other convenient similar symbol. This notation forces
one to write

%‘f (ulv!w)

for D f(u,v,w), although the symbol

o w,) )

—— (u,»,w)
0T |y = unw) 9z ”

or something similar may be used (and must be used for an
expression like D,/(7,3,2)). Similar notation is used for D,f
and Dgf. Higher-order derivatives are denoted by symbols
like

aY(z.y.2)

Dlef(.'t,y,Z) = ay ax

When f: R — R, the symbol 3 automatically reverts to d; thus

dsin r dsinz
» not .

dr ox

The mere statement of Theorem 2-2 in classical notation
requires the introduction of irrelevant letters. The usual
evaluation for Di(f ¢ (g,h)) runs as follows:

If f(up) 8 a function and u = g(zy) and v = h(z,y),
then

3f(g(z,y), M) _ of(uy) du  of(up) dv,
dz ou odr g or

[The symbol du/dz means 8/9r g(z,y) and 9/0u f(u,v) means
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Daf(u,w) = Dyf(g(z,y), h(z,y)).] This equation is often written

simply
of _ofou  of &

dr Judxr ovox

Note that f means something different on the two sides of the
equation!

The notation df/dz, always a little too tempting, has inspired
many (usually meaningless) definitions of dx and df separately,
the sole purpose of which is to make the equation

daf
df = 1z dr

work out. If f: R?— R then df is defined, classically, as

of of
daf = m:dx + ayd’y
(whatever dz and dy mean).

Chapter 4 contains rigorous definitions which enable us to
prove the above equations as theorems. It is a touchy
question whether or not these modern definitions represent a
real improvement over classical formalism; this the reader
must decide for himself.



Integration

BASIC DEFINITIONS

The definition of the integral of a function f: A — R, where
A C R"is a closed rectangle, is so similar to that of the ordi-
nary integral that a rapid treatment will be given.

Recall that a partition P of a closed interval [a,b] is a
sequence f, . . . ,fx, where a =1 <4 < - <t =b
The partition P divides the interval [a,b] into k subintervals
[ti1,t]. A partition of a rectangle {ay,b1] X - =+ X [an,ba]
is a collection P = (P;, . . . ,P,), where each P; is a par-
tition of the interval [aibi. Suppose, for example, that
P, =t, . . .l is a partition of {a1,by] and Py = 89, - . . ,8
is a partition of [az,bs). Then the partition P = (Py,P») of
[ay,b1] X lag,bs) divides the closed rectangle [ay,b,] X [az,ba]
into k - | subrectangles, a typical one being [{;i_1,t] X [8;_1,8;].
In general, if P; divides [a;,bs] into N subintervals, then P =
(Py, . .. ,P,) divides la,bi} X - -+ X [@n,bs] into N =
Ny ... N, subrectangles. These subrectangles will be
called subrectangles of the partition P.

Suppose now that A is a rectangle, f: A - Ris a bounded

46
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function, and P is a partition of A. For each subrectangle S
of the partition let

ms(f) = inf{f(z): z € S},
Ms(f) = sup{f(z): z € S},

and let »(S) be the volume of S [the volume of a rectangle
[a1,01] X - - - X [aa,ba], and also of (a1,b1) X « -+ X (an,bn),
is defined as (b, —a;)- ... (b — a,)]. The lower and
upper sums of f for P are defined by

L(f,P) = ) ms() - o(S) and U(P) = Y Ms(f) - o(S).
8 S

Clearly L(f,P) < U(f,P), and an even stronger assertion (3-2)
is true.

3-1 Lemma. Suppose the partition P’ refines P (that 18,
each subrectangle of P' is conlained in a subrectangle of P).
Then

L(f,P) S L(f,P)  and  U(f,P') < U(f,P).

Proof. Each subrectangle S of P is divided into several sub-
reetangles S;, . . . .S, of P, so »(8) =u(S) + - - - +
¥(8a). Now mg(f) < ms.(f), since the values f@)forzES
include all values f(z) for r € 8; (and possibly smaller ones).
Thus

ms(f) - v(8) = ms(f) - v(81) + - - + ms(f) - 9(Sa)
S mSl(f) ' U(S]) + t + mSa(f) 'U(Sa)'

The sum, for all 8, of the terms on the left side is L(f,P),
while the sum of all the terms on the right side is L(f,P").

Hence L(f,P) < L(f,P'). The proof for upper sums is
similar. |

3-2 Corollary. If P and P’ are any two partitions, then
L(,Py < U(4,P).

Proof. let P” be a partition which refines both P and P’
(For example, let P = (PY, . .. PY), where P} is a par-
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tition of [a;,bs] which refines both P; and P;.) Then
L(,P) < L(f,P") < U(f,P") £ ui,p). |

It follows from Corollary 3-2 that the least upper bound of
all lower sums for f is less than or equal to the greatest lower
bound of all upper sums for f. A function f: A — R is called
integrable on the rectangle A if f is bounded and sup{L(f,P)}
= inf{U(f,P)}. This common number is then denoted [ 4,
and called the integral of f over A. Often, the notation
faf@, . .. aMdz! + - - dz"is used. If f: [a,b] — R, where
a <b, then [2f = {(a,p1f- A simple but useful criterion for
integrability is provided by

3-3 Theorem. A bounded function f: A — R is integrable
if and only if for every & > 0 there is a partition P of A such
that U(f,P) — L(f,P) < &.

Proof. If this condition holds, it is clear that sup{L(f,P)} =
inf{U(f,P)} and f is integrable. On the other hand, if f is
integrable, so that sup{L(f,P)} = inf{U(f,P)}, then for
any € > 0 there are partitions P and P’ with U(f,P) — L(f,P’)
<& If P refines both P and P, it follows from Lemma 3-1
that U(f,P") — L(f,P") S U(,P) = L(/,P") <& |

In the following sections we will characterize the integrable
functions and discover a method of computing integrals. For
the present we consider two functions, one integrable and one
not.

1. Let f: A — R be a constant function, f(z) = ¢. Then
for any partition P and subrectangle S we have mg(f) =
Ms(f) = ¢, so that L(f,P) = U(f,P) = Tsc-v(S) = ¢-v(A4).
Hence f4f=c-v(A). ‘

2. Let f: [0,1] X [0,1] — R be defined by

foy) = 0 if z is rational,
¥ 1 if z is irrational.

If P is a partition, then every subrectangle S will contain
points (z,y) with z rational, and also points (z,y) with z
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irrational. Hence ms(f) = 0 and Ms(f) = 1, so
LUP) = ) 0-u(S) = 0
3

and

(L) = ) 1-0(8) = o([0,1] X [0,1]) = L.

S

Therefore f is not integrable.

Problems. 3-1. Let f: {0,1] X {0,1] - R be defined by

0 fo<z <l
f(z'y)~{l fr<r<l.
Show that f is integrable and f(o,lx[o,n f=14
3-2. Let f: 4 — R be integrable and let ¢ = f except at finitely many
points. Show that g is integrable and fAf = ng.
3-3. Let f,g: A — R be integrable.
(a) For any partition P of A and subrectangle S, show that

ms(f) + ms(g) < mg(f + ¢) and Ms(f+¢)
< Ms(f) + Ms(g)

and therefore

L{f,P) + L(g,P) < L(f+g, P) and Uf+g P
< U(f,P) + U{g,P).

(b) Show that f + g is integrable and fAf +g= f,,f + j,,g.
(c) For any constant e, show that fAcf = cfAf.

3-4. Letf: A — R and let P be a partition of A. Show that fis integra-
ble if and only if for each subrectangle S the function f|8, which
consists of f restricted to 8, is integrable, and that in this case
Jas =Zs[sf18.

3-5. Let fg: A — R be integrable and suppose f < g. Show that
J-,qf < _r49~

3-6. If f: 4 — R is integrable, show that |f| is integrable and |f,4fl <

alfl.

3-7. Let f: [0,1] X [0,1] — R be defined by

0 z irrational,
fzy) =30 T rational, y irrational,
1/q T rational, y = p/q in lowest terms.

Show that f is integrable and j[oyllxio.ll f=0,
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MEASURE ZERO AND CONTENT ZERO

A subset 4 of R™ has (n-dimensional) measure 0 if for every
¢ > 0 there is a cover {U1,UsUs, . . .} of 4 by closed rec-
tangles such that Z;_;p(U:) < e It iz obvious (but never-
theless useful to remember) that if A has measure 0 and
B C A, then B has measure 0. The reader may verify that
open rectangles may be used instead of closed rectangles in
the definition of measure 0.

A set with only finitely many points clearly has measure 0.
If A has infinitely many points which can be arranged in a
sequence ay, as, as, . . . , then 4 also has measure 0, for if
€ > 0, we can choose U; to be a closed rectangle containing
a; with 9(U:) < €/2. Then 22 p(Us) < T7,8/2° = ¢

The set of all rational numbers between 0 and 1 is an impor-
tant and rather surprising example of an infinite set whose
members can be arranged in such a sequence. To see that
this is so, list the fractions in the following array in the order
indicated by the arrows (deleting repetitions and numbers
greater than 1):

S/
0/1 1/1 2/1 3/1 4/1
S S S S
0/2 1/2 2/2 3/2 4/2
s S S
0/3 1/3 2/3 3/3 4/3
S/
0/4
/

An important generalization of this idea can be given.

3-4 Theorem. If A = A U A, \J A3\J -+ - and each
A has measure O, then A has measure 0.

Proof. Let e > 0. Since A;has measure 0, there is a cover
(U, Ui, Us3y - - -} of Ai by closed rectangles such that
Zrw(Usy) < /2. Then the collection of all U;,; is a cover
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of A. By considering the array

S/
Upr Uiz Uiz - -
S S S
Uzy Uzz Uz
S S
Usqi Usz Uss
/
we see that this collection can be arranged in a sequence
Vi, Vo, Vs, . . .. Clearly V) < 2;__18/2‘ =¢e |

A subset A of R" has (n-dimensional) content 0 if for every
€ > 0 there is a finite cover {Uy, . . . ,U,} of 4 by closed
rectangles such that X7 »(U;) <& If 4 has content 0,
then A clearly has measure 0. Again, open rectangles could
be used instead of closed rectangles in the definition.

3-5 Theorem. I[fa < b, then [a,b] C R does not have con-
tent 0. In fact, if {U,, . . . U.} is a finile cover of [a,b] by
closed intervals, then T2 w(U;) > b — a.

Proof. Clearly we can assume that each U; C [a,b]. Let
a=1 <t <... <t = bbeallendpoints of all U;, Then
each v(U,) is the sum of certain ¢; — t;,_;. Moreover, each
[t;-1,¢]] lies in at least one U; (namely, any one which contains
an interior point of [¢;_1,t5]), so TP ,w(Uy) > Z%_,(t; — t;_y)
=b—a |

If a < b, it is also true that [a,b] does not have measure 0.
This follows from

3-6 Theorem. If A is compact and has measure 0, then A
has content 0.

Proof. Let € > 0. Since A has measure 0, there is a cover
{U1,Usg, . . .} of 4 by open rectangles such that 27_ »(U,)
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< €. Since A is compact, a finite number Uy, . . . ,Upn of
the U; also cover A and surely 2% ,0(U;) <& |

The conclusion of Theorem 3-6 is false if A is not compact.
For example, let A be the set of rational numbers between 0
and 1; then A has measure 0. Suppose, however, that

{la1,b1), - . - Jlan,ba}} covers A. Then A is contained in
the closed set [ay,bi} \J * + + \U [an,bal, and therefore {0,1] C
[a,bi]l U -+ + \J[anbal. It follows from Theorem 3-5 that

T ,(b; — @;) 2 1 for any such cover, and consequently A
does not have content 0.

Problems. 3-8. Prove that [a;,b1] X - - + X [Gx,ba] does not have
content 0 if a; < b; for each 1.

3-9, (a) Show that an unbounded set cannot have content 0.
(b) Give an example of a closed set of measure 0 which does not
have content 0.
3-10. (@) If Cis a set of content 0, show that the boundary of C has
content 0.
(b) Give an example of a bounded set C of measure 0 such that
the boundary of C does not have measure 0.
3-11. Let A be the set of Problem 1-18. If T2 ,(b; — a:) < 1, show
that the boundary of A does not bave measure 0.
3-12. Let f: [a,5] = R be an increasing function. Show that (z: f is
discontinuous at z} has measure 0. Hinl: Use Problem 1-30 to
show that {z: o(f,z) > 1/n]} is finite, for each integer n.
3-13.* (a) Show that the collection of all rectangles [a1,b4] X - - - X
[n,ba] with all a; and b; rational can be arranged in a sequence.
(b) If A C R"is any set and O is an open cover of 4, show that
there is a sequence Uy, Us, Us, . . . of members of © which also
cover A. Hint: For each £ € A thereis arectangle B = [a,b1] X
- X [Brybs] with all a; and b; rational such that z € B C U
for some U € ©.

INTEGRABLE FUNCTIONS

Recall that o(f,z) denotes the oscillation of f at z.

3-7 Lemma. Letl A be a closed rectangle and let f: A — R be
a bounded function such that o(f,z) < & for allz € A. Then
there is a partition P of A with U(f,P) — L(f,P) < ¢- v(A).
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Proof. For each t € A there is a closed rectangle U,
containing z in its interior, such that My (f) — my.(f) < &
Since A is compact, a finite number U,, . .. ,U,, of the
sets U, cover A. Let P be a partition for A such that each
subrectangle S of P is contained in some U,,. Then Mg(f) —
ms(f) < € for each subrectangle S of P, so that U(f,P) —
L(f,P) = Zs[Ms(f) — ms(f)] - (S) < e-v(4). |

3-8 Theorem. Let A be a closed rectangle and f: A — R a
bounded function. Let B = {z:f s not continuous at z}.
Then f s integrable if and only if B is a sel of measure 0.

Proof. Suppose first that B has measure 0. Let € > 0 and
let Be = {z: o(fz) > €}. Then B, C B, so that B, has
measure 0. Since (Theorem 1-11) B, is compact, B, has con-
tent 0. Thus there is a finite collection Uy, . .. ,U, of
closed rectangles, whose interiors cover By, such that Z2_,0(U;)
< e. Let P be a partition of A such that every subrectangle
S of P is in one of two groups (see Figure 3-1):

FIGURE 3-1. The shaded rectangles are in S1.
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(1) 81, which consists of subrectangles S, such that S C U;

for some 1.
(2) §2, which consists of subrectangles S with SM B,

= .
Let |f(z)| < M for z € A. Then Ms(f) — ms(f) < 2M
for every 8. Therefore
[Ms() — ms() - o(S) < 2M ), o(U3) < 2Me
SEesh =1

Now, if S €8s, then o(f,z) <€ for € S. Lemma 3-7
implies that there is a refinement P’ of P such that

[Ms(f) — mg(f)] - 0(8") < & v(S)
s

for § € §. Then

UGP) = LEP) = ) [Ms() = ms(N] - o(S)

8§ CSES
+ ) [Me(f) — me(N)] (S
S CSES:
< 2Me + z g - v(S)
SE§e

< 2Me + € - v(4).

Since M and v(A) are fixed, this shows that we can find a
partition P’ with U(f,P") — L(f,P’) as small as desired. Thus
f is integrable.

Suppose, conversely, that f is integrable. Since B =
B,\UB,UB,\U - - -, it suffices (Theorem 3-4) to prove
that each Bj;, has measure 0. In fact we will show that
each By, has content 0 (since B, is compact, this is actually
equivalent).

If € >0, let P be a partition of A such that U{f,P) —
L(f,P) < ¢/n. Let $ be the collection of subrectangles S
of P which intersect By, Then § is a cover of By;,. Now if
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S € g, then Ms(f) — ms(f) 2 1/n. Thus

1, z oS) < 2 (Ms(f) — ms(f)] - o(S)

S8 s€é

< ) [Ms(h— ms(H]-0(8)
2

€
< -
n

and consequently Zseg0(S) < & |}

We have thus far dealt only with the integrals of functions
over rectangles. Integrals over other sets are easily reduced
to this type. If C C R", the characteristic function xc¢
of C is defined by

0 =&C,

xc(a«‘)={1 zCC

If C C A for some closed rectangle 4 and f: 4 »> R is
bounded, then [¢f is defined as [4f ' xc, provided f- xc is
integrable. This certainly occurs (Problem 3-14) if f and
xc are integrable.

3-9 Theorem. The function xc: A — R is integrable if and
only if the boundary of C has measure 0 (and hence content 0).

Proof. If z is in the interior of C, then there is an open
rectangle U withz € U CC. Thus x¢c =1lon U and xc¢ is
clearly continuous at z. Similarly, if z is in the exterior of C,
there is an open rectangle U with z € U C R* — C. Hence
xc =0 on U and xc¢ is continuous at z. Finally, if z is in
the boundary of C, then for every open rectangle U containing
z, there is y; € UNC, so that xc(y1) = 1 and there is
ya € UN (R* — (), so that xc(ys) = 0. Hence xc¢ is not
continuous at z. Thus {z: xc is not continuous at z} =
boundary €, and the result follows from Theorem 3-8. |
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A bounded set C whose boundary has measure 0 is called
Jordan-measurable. The integral [¢l is called the
(n-dimensional) content of C, or the (n-dimensional) volume
of C. Naturally one-dimensional volume is often called
length, and two-dimensional volume, area.

Problem 3-11 shows that even an open set ¢ may not be
Jordan-measurable, so that [¢f is not necessarily defined even
if C is open and f is continuous. This unhappy state of affairs
will be rectified soon.

Problems. 3-14. Show that if fg: A —» R are integrable, so is
YR

3-15. Show that if C has content 0, then C C A for some closed rectangle
A and C is Jordan-measurable and f,q xc = 0.

3-16. Give an example of a bounded set C of measure 0 such that f,a_ xc
does not exist.

3-17. If C is a bounded set of measure 0 and fA x¢ exists, show that
_r,q xc = 0. Hint: Show that L(f,P) = 0 for all partitions P.
Use Problem 3-8.

3-18. If f: A — R is non-negative and f,qj = 0, show that {z: f(z) » 0}
has measure 0. Hint: Prove that |z: f(z) > 1/n} has content 0.

3-19. Let U be the open set of Problem 3-11. Show that if f = xp
except on a set of measure 0, then f is not integrable on [0,1].

3-20. Show that an increasing function f: [a,b] - R is integrable on
[a,b].

3-21. If A is a closed rectangle, show that C C A is Jordan-measurable
if and only if for every e > O there is a partition P of A such that
E,seslv(S) - zse&v(S) < g, where §) consists of all subrectan-
gles intersecting C and §; all subrectangles contained in C.

3-22.* If A is a Jordan-measurable set and ¢ > 0, show that there is a
compact Jordan-measurable set C C A such that fA—c 1<e

FUBINI’S THEOREM

The problem of calculating integrals is solved, in some sense,
by Theorem 3-10, which reduces the computation of integrals
over a closed rectangle in R®, n > 1, to the computation of
integrals over closed intervals in R. Of sufficient importance
to deserve a special designation, this theorem is usually
referred to as Fubini’s theorem, although it is more or less a
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special case of a theorem proved by Fubini long after Theorem

3-10 was known.
The idea behind the theorem is best illustrated (Figure 3-2)

for a positive continuous function f: [a,b] X [¢,d] = R. Let
to, . . . ,ln be a partition of [a,b] and divide [a,b] X [c,d]
into n strips by means of the line segments {t;} X [c,d].
If g is defined by g.(y) = f(z,y), then the area of the region
under the graph of f and above {z} X [¢,d] is

d d
f g: = f f(z,y)dy.

The volume of the region under the graph of f and
above [t;_y,ti X [c,d] is therefore approximately equal to
(t; — tizy) - fff(x,y)dy, for any = € [¢t;_1,t;]. Thus

n

[=L
[a,b] X [c,d] i=1 [tiort:] Xle,d]

is approximately E:‘=l(t,-—t,-_l)-'fff(z;,y)dy, with z; in

graph of f

FIGURE 3-2
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[ti—1,t). On the other hand, sums similar to these appear in
the definition of [%([¢f(z,y)dy)dz. Thus, if & is defined by
h(z) = [%, = [*f(z,y)dy, it is reasonable to hope that h is
integrable on [a,b] and that

/bh = [b(/df(:c,y)dy) dz.

This will indeed turn out to be true when f is continuous, but
in the general case difficulties arise. Suppose, for example,
that the set of discontinuities of f is {zo] X [c,d] for some
2o € [a,b]. Then f is integrable on [a,b] X [c,d] but h(zo) =
f 4f(zo,y)dy may not even be defined. The statement of
Fubini’s theorem therefore looks a little strange, and will be
followed by remarks about various special cases where simpler
statements are possible.

We will need one bit of terminology. If f: A—> R is a
bounded function on a closed rectangle, then, whether or not
f is integrable, the least upper bound of all lower sums, and
the greatest lower bound of all upper sums, both exist. They
are called the lower and upper integrals of f on 4, and
denoted

f

[a,b] X {c.d}

| and U/,
/ /
respectively.

3-10 Theorem (Fubini’s Theorem). Let A C R" and
B C R™ be closed rectangles, and let f: A X B — R be integrable.
For z € A let g.- B — R be defined by g-(y) = f(z,y) and let
() = L j g: = L J fa )y,
Uz) =U [ g. = U [ fyay.
B
Then & and U are tnlegrable on A and
[1=[2=[ (L] iwniy)dz,
AXB a a B
[i=[u=[(v ! Sz y)dy) dz.
AXB A A
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(The integrals on the right side are called iterated integrals
for f.)

Proof. Let P4 be a partition of 4 and Pp a partition of B.
Together they give a partition P of A X B for which any
subrectangle § is of the form S4 X Sp, where S84 is a sub-

rectangle of the partition P4, and Sp is a subrectangle of the
partition Pg. Thus

LU,P) = Y ms(f) - (S) = ) msixss(f) v(S4 X Sp)
S

SASs

= Y (3, muxsslf) - 9(S8)) v(Sa).

S4 8=

Now, if £ € S4, then clearly mg,vs55(f) < mgs(g:). Conse-
quently, for z € 84 we have

Y msaxsal) - S5) < ) meulgs) - vSp) < L [ g2 = £(2).
Ss Ss B
Therefore

z (Z Mmsaxss(f) v(SB)) “9(S4) < L(L,P,).

Sa  S»
We thus obtain
L(f,P) S L(&,Py) < U(L,P,y) < U(W,P,) < U({,P),

where the proof of the last inequality is entirely analogous
to the proof of the first. Since f is integrable, sup{L(f,P)} =
inf{U(f,P)} = [axpf Hence

sup{L(£,P4)} = inflU(L,P1)} = [axa /.

In other words, £ is integrable on A and foBf = JAB. The
assertion for U follows similarly from the inequalities

L(f,P) < L(&,P4) S L(WP,) S U(W,Pa) S UP). |

Remarks. 1. A similar proof shows that

L= ([ sevi)a = [ (0 ] reas)
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These integrals are called iterated integrals for f in the reverse
order from those of the theorem. As several problems show,
the possibility of interchanging the orders of iterated integrals
has many consequences.

2. In practice it is often the case that each g, is integrable,
so that foBf = fA(fo(z,y)dy)dx. This certainly occurs
if f is continuous.

3. The worst irregularity commonly encountered is that g,
is not integrable for a finite number of £ € A. In this case
L(x) = fo(x,y)dy for all but these finitely many z. Since
f a2 remains unchanged if £ is redefined at a finite number of
points, we can still write fogf = fA(fo(x,y)dy)dx, pro-
vided that f sf(z,y)dy is defined arbitrarily, say as 0, when it
does not exist.

4. There are cases when this will not work and Theorem 3-10
must be used as stated. Let f: [0,1] X [0,1] = R be defined
by

1 if z is irrational,
1 if x is rational and y is irrational,
flzy) = o . .
1 -1/q if z = p/q in lowest terms and y is
rational,

Then f isintegrable and [ (0,10, f = 1. Now [if(z,y)dy =1
if z is irrational, and does not exist if z is rational. There-
fore h is not integrable if h(z) = [if(z,y)dy is set equal to 0
when the integral does not exist.

5 I A =la,bi] X - - X [ax,bs] and f;: 4 — R is suf-
ficiently nice, we can apply Fubini’s theorem repeatedly to
obtain

.[Af= /:'( G ( :lf(zl, L ,x")dxl) .. ) dz™.

6. If C C A X B, Fubini’s theorem can be used to evaluate
[cf, since this is by definition faxs xcf. Suppose, for exam-
ple, that

C=[-LIX[-1,1] = {@y: |y <1).

/cf = /_1, (f_llf(%y) 'Xc(x,y)dy) dz.

Then
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Now

- '1 ify>V1—zory<—V1-z,
xc(TY) = | g otherwise.

Therefore
—T=z 1
[ ) xewwdy = [ s@way + [ s@wdy.

In general, if C C A X B, the main difficulty in deriving
expressions for fef will be determining C M ({z] X B)
forz € A. If CN (A X {y}) for y € B is easier to deter-
mine, one should use the iterated integral

fcf = fB (/Af(x,y) 'xc(x,y)dav) dy.

Problems. 3-23. Let C C A X B be a set of content 0. Let
A’ C A be the set of all z € A such that [y € B: (z,9) € C} is
not of content 0. Show that A’ is aset of measure0. Hint: xcis
integrable and [axs xc = fau = fa2, s0 fau —g =0

3-24. Let C C [0,1] X [0,1] be the union of all {p/g} X [0, 1/g], where
p/q is a rational number in [0,1] written in lowest terms. Use C
to show that the word ‘“measure’” in Problem 3-23 cannot be
replaced by ‘‘content.’’

3-25. Use induction on n to show that [a;,bh] X + - - X [@s,bs] is not a
set of measure O (or content 0) if a; < b; for each 1.

3-26. Let f: [a,b] = R be integrable and non-negative and let Ay =
[(z,y):a <z <band 0 <y < f(z)]. Show that A, is Jordan-
measurable and has area [2f.

3-27. If f: [a,b] X [a,b] — R is continuous, show that

fab /ayf(x,y)d;z: dy =/ab f: Sz, y)dy dz.

Hint: Compute [¢f in two different ways for a suitable set
C C [a,b] X [a,b).

3.928.* Use Fubini’s theorem to give an easy proof that Djsf = Daf
if these are continuous. Hint: If Dy af(a) — Deaf(a) > 0,
there is a rectangle A containing a such that Dy of — Do 1f >
Oon 4.

3-29. Use Fubini's theorem to derive an expression for the volume of
a set of R? obtained by revolving a Jordan-measurable set in the
yz-plane about the z-axis.
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3-30. Let C be the set in Problem 1-17. Show that

fm’” (ﬂo,u xo(z.y)dz) dy = AO.” (/(0.” xc(y,z)dy) dz = 0

but that [(e,11x(0.1] xc does not exist.
3-31. If A ={ayb)) X - - - X [anbal and f: A — R is continuous,
define F: A — R by

Fl) = /{m.:‘lx <o Xlan,z?) /.

What is D;F(z), for z in the interior of A?
8-32.* Let f: [a,b] X {¢,d] —» R be continuous and suppose D,f is con-
tinuous. Define F(y) = [bf(z,y)dz. Prove Leibnitz's rule: F'(y)
= [ADaf(z,y)dz. Hinl: F(y) = [3f(z,y)dz = [3([YDaf(z,y)dy +
f(z,e))dz. (The proof will show that continuity of Dyf may be
replaced by considerably weaker hypotheses.)
8-33. If f: [a,b] X [c,d] = R is continuous and D,f is continuous, define
F(z,y) = J3f(t,y)dt.
(a) Find D\F and D,F.
(b) 1f G(z) = [4@4(t,2)dt, find G'(z).
3-34.* Let g¢y,92: R?— R be continuously differentiable and suppose
Dyga = D2g1. As in Problem 2-21, let

Jiz,y) = /0, q1(,0)adt + /0,, galz,t)dt.

Show that Dyf(z,y) = q1(z,y).
3-35.* (a) Let g: R* — R" be a linear transformation of one of the fol-
lowing types:

{ gle) = e T
gle;) = aej

{ gled) =e;  E#j
glej) = ¢ + e

9e) = ¢

g(ei) = e
If U is a rectangle, show that the volume of g(U) is |det g| -o(U).
(b) Prove that |det gl - v(U) is the volume of g(U) for any linear
transformation ¢: R®"— R". Hint: If detg # 0, then ¢ is the
composition of linear transformations of the type considered in (a).
3-36. (Cavalieri’s principle). Let A and B be Jordan-measurable sub-
sets of R%. Let A, = {(z,y): (z,y,c) & A} and define B_ similarly.
Suppose each A, and B, are Jordan-measurable and have the same

area. Show that 4 and B have the same volume.

{g(ek) =& k#®ij
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PARTITIONS OF UNITY

In this section we introduce a tool of extreme importance in
the theory of integration.

3-11 Theorem. Let A C R™ and let © be an open cover of A.
Then there is a collection ® of C* functions o defined tn an open
set containing A, with the following properties:

(1) For each x € A we have 0 < o(z) < 1.

(2) For each x € A there is an open set V conlaining = such that
all but finitely many ¢ € ® are 0 on V.

(3) For each ¢ € A we have Z coplx) = 1 (by (2) for each z
this sum is finite in some open set containing ).

(4) For each ¢ © & there is an open set U in 0 such thal ¢ = 0
outside of some closed set contained in U.

(A collection & satisfying (1) to (3) is called a C” partition of
unity for 4. If & also satisfies (4), it is said to be sub-
ordinate to the cover 0. In this chapter we will only use
continuity of the functions ¢.)

Proof. Case 1. A is compact.

Then a finite number Uy, . . . ,U, of open sets in © cover A.
It clearly suffices to construct a partition of unity subordinate
to the cover {Uy, ... ,U,}. We will first find compact
sets D; C U; whose interiors cover A. The sets D;are con-
structed inductively as follows. Suppose that Dy, . . . ,Di
have been chosen so that {interlor D;, . . ., interior Dy,
U1, . . . ,Un} covers A. Let

Ces1i=A —(int D1V -+ - Uint Dy J Uy VJ - - - J U,

Then Ciy1r C Usyr is compact. Hence (Problem 1-22) we can
find a compact set D;,, such that

Ciyq C interior Dyyy and  Diy1 C Uy,

Having constructed the sets Dy, . . . ,Dy, let ¢; be a non-
negative C* function which is positive on D; and 0 outside of
some closed set contained in U; (Problem 2-26). Since
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{Di1, ... ,D,}covers A, wehaveyi(z) + - - - + ¥a(z) >0
for all z in some open set U containing A. On U we can define
¥i(z)
ei(z) =

W@+ - @)
If f: U — [0,1] is a C™ function which is 1 on A and 0 outside

of some closed set in U, then ® = {f:¢1, . . . ,f " ¢a} is the
desired partition of unity,
Case 2. A = A,\J A, \J A3;\J - - - | where each A, is

compact and A; C interior A1

For each ¢ let 0; consist of all U M (interior A, — A;_y)
for U in 0. Then ©; is an open cover of the compact set
B: = A; — interior A; ;. By casel thereisa partition of unity
®; for B;, subordinate to ;. For each z € A the sum

o) = ) e
eEanalli

is a finite sum in some open set containing z, since if z € A; we
have ¢(x) = 0 for ¢ € &; with j > ¢+ 2. For each ¢ in
each &;, define ¢'(z) = ¢(z)/0(z). The collection of all ¢’ is
the desired partition of unity.

Case 3. A 13 open.

Let A; =

{x € A: |z| < 7 and distance from z to boundary 4 > 1/1},

and apply case 2.

Case 4. A s arbitrary.

Let B be the union of all U in ©. By case 3 there is a par-
tition of unity for B; this is also a partition of unity for A. |

An important consequence of condition (2) of the theorem
should be noted. Let C C A4 be compact. For each 2 & C
there is an open set V, containing z such that only finitely
many ¢ & & are not 0 on V,. Since C is compact, finitely
many such V, cover C. Thus only finitely many ¢ € & are
not 0 on C.

One important application of partitions of unity will illus-
trate their main role—piecing together results obtained locally.
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An open cover O of an open set A C R" is admissible if
each U € 0 is contained in A. If & is subordinate to 0,
f: A — R is bounded in some open set around each point of 4,
and {z: f is discontinuous at z} has measure 0, then each
f4¢-|f|exists. Wedefinef to be integrable (in the extended
sense) if Z,cof 4 ¢ - |f| converges (the proof of Theorem 3-11
shows that the ¢’s may be arranged in a sequence). This
implies convergence of Z,cs|[ 4 ¢ - f|, and hence absolute con-
vergence of Z,cof 4 ¢+ f, which we define to be faf. These
definitions do not depend on 0 or & (but see Problem 3-38).

3-12 Theorem.

(1) If ¥ 18 another partition of unity, subordinate to an admzs-
sible cover © of A, then Z,eof 4 ¥ - |f| also converges, and

2 [e1=2 [vs

vEP A yEY A

(2) If A and f are bounded, then f is inlegrable in the extended
sense.

(3) If A is Jordan-measurable and f is bounded, then this defini-
tion of [ f agrees with the old one.

Proof

(1) Since ¢ -f = 0 except on some compact set C, and there
are only finitely many y which are non-zero on C, we ean

write
’;‘”“/'P.f=rg¢[+gﬁw'¢'f=og¢+ezvjw.¢.ﬁ

This result, applied to ] f|, shows the convergence of Z, ¢,
Zyevfa ¥ v-|f], and hence of Z,coZycelfa v e fl.
This absolute convergence justifies interchanging the order
of summation in the above equation; the resulting double
sum clearly equals Z,cqf4 v f. Finally, this result
applied to |f] proves convergenee of Zoeefa vl
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(2) If A is contained in the closed rectangle B and | f@| € M
forz € A, and F C & is finite, then

,U[”|”< M [o= [ ) o< M)

since Z,er ¢ < 1 on A.

(3) If € > O there is (Problem 3-22) a compact Jordan-meas-
urable € C 4 such that [4_¢l <e. There are only
finitely many ¢ € & which are non-zeroon C. If F C @
is any finite collection which includes these, and [4f has
its old meaning, then

- 351 3o
exf(- 3
=M/wEZ F¢5MALISME. i

Problems. 3-37. (a) Suppose that f: (0,1) = R is a non-negative
continuous function. Show that [0,/ exists if and only if
lim [1%f exists.
£—0

(b) Let A, = [1 —1/2% 1 — 1/2°+!]. Suppose that f: (0,1) = R
satisfies [4.f =(—1)"/n and f(z) = Oforz & any A.. Show that
J0.1f does not exist, but hm Jen—e 1 = log 2.

3-38. Let A, be a closed set contamed in (n, n + 1). Suppose that
f: R— R satisfies [4.f = (—1)"/n and f = 0 for z & any Au.
Find two partitions of unity ® and ¥ such that Z,¢ o fRe-fand
Zy,cvfR v - f converge absolutely to different values.

CHANGE OF VARIABLE

If ¢: [a,b] = R is continuously differentiable and f: R— R
is continuous, then, as is well known,

9(b) b

[1=[Go0-g.

g(e) [
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The proof is very simple: if F/ = f, then (Fog) = (fog) - ¢;
thus the left side is F(g(d)) — F(g(a)), while the right side is
Fog(b) — Fog(a) = F(g)) — F(g(a)).

We leave it to the reader to show that if ¢ is 1-1, then the
above formula can be written

s= [ foq-lgl

9((a,b)) (a,b)

(Consider separately the cases where g is increasing and where
g is decreasing.) The generalization of this formula to higher
dimensions is by no means so trivial.

3-13 Theorem. Let A C R"™ be an open set and g: A —» R"
a 1-1, continuously differentiable function such that det g'(z)
#“0forallz € A. If f: g(A) — R is integrable, then

[ 1= [ Genldet g,
A

g(4)

Proof. We begin with some important reductions.

1. Suppose there is an admissible cover ©® for A such that
for each U € 0 and any integrable f we have

[ 1= / (f < 9)|det ¢'|.

g(U)

Then the theorem is true for all of A. (Since g is auto-
matically 1-1 in an open set around each point, it is not sur-
prising that this is the only part of the proof using the fact
that g is 1-1 on all of A4.)

Proof of (1). The collection of all g(U) is an open cover of
g(4). Let @ be a partition of unity subordinate to this cover.
If ¢ = O outside of g(U), then, since g is 1-1, we have (¢ “Neyg
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= 0 outside of U. Therefore the equation

/ o f = [ [(e - ) o glldet ¢'|.
o(U)
can be written

oo f = !w ) © glldet ¢').
Q(A)
Hence

9(1) d =¢g® yl)w = wea[ e-ne glldet g I
z f (02 9)(fe g)|det ¢'|

PE0 A

[ (o ldet g1
A

Remark. The theorem also follows from the assumption
that

[1= [ Gealdetsl

for V in some admissible cover of g(4). This follows from (1)
applied to g1

2. It suffices to prove the theorem for the function f = 1.

Proof of (2). If the theorem holds for f = 1, it holds for
constant functions. Let V be a rectangle in g(4) and P a par-
tition of V. For each subrectangle S of P let fs be the con-
stant function ms(f). Then

LUP) = Y ms()-v® = [ fs

int S
= (fseg)ldet g’ < (fog)|det ¢’
Zrlﬁ!;s) s o g)|det ¢ szmis) g)|det ¢'|
< [ (opldetyl.
9~ uV)

Since [vf is the least upper bound of all L(f,P), this proves
that fvf < [p-v)(fo g)|det ¢'|. A similar argument, letting
fs = Ms(f), shows that [vf > [o1v)(fo g)ldet ¢'|. The
result now follows from the above Remark.
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3. If the theorem is true for g: 4 — R" and for h: B — R",
where g(4) C B, then it is true for ko g: A — R™.

Proof of (3).

f= [ 1= [ gonldetn|

hog(4) h(g(4)) g(4)

- ] [(fo k) og]-[|det &'| o g] - |det ¢/
= Jfo (h o g)|det (b g)'|-

4. The theorem is true if g is a linear transformation.
Proof of (4). By (1) and (2) it suffices to show for any open

rectangle U that
/ 1=J|det 7).
9(U)

This is Problem 3-35.

Observations (3) and (4) together show that we may assume
for any particular @ € A that ¢’(e) is the identity matrix: in
fact, if T is the linear transformation Dg(a), then (7o g)’(a)
= I, since the theorem is true for T, if it is true for 7% g it
will be true for g.

We are now prepared to give the proof, which preceeds by
induction on n. The remarks before the statement of the
theorem, together with (1) and (2), prove the case n = 1.
Assuming the theorem in dimension n — 1, we prove it in
dimension n. For each a € A we need only find an open set
U with a € U C 4 for which the theorem is true. Moreover
we may assume that g'(a) = I.

Define h: A — R* by k(z) = (4'(z), . . . ,¢" Xz)z").
Then h'(a) = I. Hence in some open U’ witha € U’ C 4,
the function A is 1-1 and deth’(z) # 0. We can thus
define k: A(U’) > R™ by k(z) = (z, . . . 2" Lg"(h~1(2)))
and g = koh. We have thus expressed g as the composition
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of two maps, each of which changes fewer than n coordinates
(Figure 3-3).

We must attend to a few details to ensure that k isa function
of the proper sort. Since

@" < k) (h(a)) = @) (@) - @] = (g")'(a),

we have D,(g" o h™")(k(a)) = Dag"(a) =1, s0 that k'(h{a))
= 7. Thus in some open set V with h(g) € V C h(U"), the
function k is 1-1 and det k'(z) # 0. Letting U = YY)
we now have g = koh, where h: U— R" and k: V—-R"
and A(U) C V. By (3) it suffices to prove the theorem for h
and k. We give the proof for k; the proof for k is similar
and easier.

Let W C U be a rectangle of the form D X [an,ba], where
D is a rectangle in R*™!. By Fubini’s theorem

[1= 1dg' - - - dg"") de",
hw) lanbn] ADX{z"])

Let h,y: D— R*! be defined by h(z!, ... 27" =
(¢'@', ... 2%, ... g Nz ... "). Then each h
is clearly 1-1 and

det (h,")'(2!, . . . 2 = deth'(z', . .. ") = 0.
Moreover
ldz! - - - da™ ' = f 1de! - - - de™ L
MD X (z*]) k(D)

Applying the theorem in the case n — 1 therefore gives

Jr=[( [1a - da)d

kW) lanbal  he(D)
L (v s
@n,bn D
= /‘deth']. i
w

The condition det g’(z) » 0 may be eliminated from the



72 Calculus on Manifolds

hypotheses of Theorem 3-13 by using the following theorem,
which often plays an unexpected role.

3-14. Theorem (Sard’s Theorem). Let g: A — R" be con-
tinuously differentiable, where A C R™ is open, and let B =
{z € A: det g'(z) = 0}. Then g(B) has measure 0.

Proof. Let U C A be a closed rectangle such that all sides
of U have length , say. Let & > 0. If N is sufficiently large
and U is divided into N™ rectangles, with sides of length /N,
then for each of these rectangles 8, if £ © S we have

[Dg(z)(y — z) — (g(v) — 9(z))| < €|z — 3| < eV/n (I/N)

for all y € 8. 1If 8 intersects B we ean choose z € S N B;
since det ¢’(z) = 0, the set {Dg(z)(y — x): y € S} lies in an
(n — 1)-dimensional subspace V of R™. Therefore the set
{g(y) — ¢(z): y € S} lies within € Vn (I/N) of V, so that
lg(y): y € 8} lies within e Vn (I/N) of the (n — 1)-plane
V 4+ g(z). On the other hand, by Lemma 2-10 there is a
number M such that

o) — 9w)| < Mz = 4| < M V' (UN).

Thus, if S intersects B, the set {g(y): y € S} is contained in
a cylinder whose height is <2¢ Vn (I/N) and whose base is an
(n — 1)-dimensional sphere of radius <M V'n (i/N). This
cylinder has volume <C{(!/N)"e for some constant C. There
are at most N™ such rectangles S, so g(U M B) lies in a set of
volume <C(l/N)*-g-N" = Cl*-e. Since this is true for
all € > O, the set g(U M B) has measure 0. Since (Problem
3-13) we can cover all of A with a sequence of such rectangles
U, the desired result follows from Theorem 3-4. ||

Theorem 3-14 is actually only the easy part of Sard’s
Theorem. The statement and proof of the deeper result will
be found in [17], page 47.

Problems. 3-39. Use Theorem 3-14 to prove Theorem 3-13 without
the assumption det ¢’(z) = 0.
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3-40. If g: R*— R" and det ¢'(z) » 0, prove that in some open set

3-41.

containing z we can write g = Tegao + - - o g1, Where g; is of
the form giz) = (z%, . . . Jiz), . . ., 2" and T is a linear
transformation. Show that we can write g = gno - - - o g1 if

and only if ¢'(z) is a diagonal matrix.
Define f: {r: r > 0} X (0,2x) = R? by f(r,8) = (r cos 6, 7 sin 9).
(a) Show that f is 1-1, compute f(r,8), and show that
det f%(r,8) # O for all (r,6). Show that f({r: r > 0} X (0,2x)) is
the set A of Problem 2-23.
(b) If P = f~ show that P(z,y) = (r(z,¥),8(2,y)), where

z,y) = Vzi + 4

arctan y/z z>0,y>0,
= + arctan y/z z <0,

#z,y) = { 2x + arctan y/z >0,y <0,
/2 z=0y>0
3x/2 z=0,y<0.

(Here arctan denotes the inverse of the function tan: (—=/2,r/2)
- R.) Find P'(z,y). The function P is called the polar coor-
dinate system on A.

(c) Let C C A be the region between the circles of radii r; and
rq and the half-lines through 0 which make angles of 8; and 8; with
the z-axis. If A: C— R is integrable and h(z,¥) = g(r(z,¥),8(z,y)),

show that
f h
(3

If B, = {(z,): z* + y? < r?}, show that

*r 2
[ [ rg(r,6)do dr.
B: 0 0

(d) If C, = [—7,7] X [—r,7], show that

rz 82
[ rg(r,0)de dr.

n 6

>
n

[ e—(z2+y?) drdy = (1 — e—rﬁ)

B.
and
14
fe—(zﬂﬁﬂ) dxdy = ([ e dz)z.
Cr —-r

(e) Prove that

lim ! e @) dydy = lim | e @) dr gy
b d ]
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and conclude that

f e dr = '\/;

“A mathematician is one to whom that is as obvious as that twice
two makes four is to you. Liouville was a mathematician.”

—Lorp KeLvVIN



Integration on Chains

ALGEBRAIC PRELIMINARIES

If V is a vector space (over R), we will denote the k-fold
product V. X - - - XV by V*. A function T: V*—> R is
called multilinear if for each 7 with 1 < { < k we have

Ty, . . .opi+vd, . ) =Ty, - .o iy .0 o)
. + T, . .. 0, . .. o),
Ty, . .. ,avg . .. ) =aT(r, . .. v . .. k).

A multilinear function T: V¥ — R is called a k-tensor on V
and the set of all k-tensors, denoted 3%*(V), becomes a vector
space (over R) if for §,7 € 3*(V) and a € R we define

(‘S + T)(U], Coee )vk) = ‘S(le L] ,Uk) + T(vly e ,Uk),
(@S)(wy, . . . ) =a- Sy, . .. ).
There is also an operation connecting the various spaces 3%(V).

If S & 3%V) and T € 34V), we define the tensor product
S ® T E V) by

S® Ty, . .. /79179 PR ,vk+1)

=Sy, ... ) T(vk+1, S A B
75
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Note that the order of the factors S and 7 is crucial here since
S® T and T ® 8 are far from equal. The following prop-
erties of ® are left as easy exercises for the reader.

S1+8)@T=85T+8:9T,

S®@(T1+T:)=8@T)+88T,,
@$S)®T=8S® @l =aS®T),

SeNeU=8Se(Te ).

Both (S® T) ® U and § ® (T ® U) are usually denoted
simply S ® T ® U; higher-order products T ® * - - ® T,
are defined similarly.

The reader has probably already noticed that 3'(V) is just
the dual space V*. The operation ® allows us to express the
other vector spaces 3*(V) in terms of 31(V).

4-1 Theorem. Lel vy, ... v, be a basis for V, and lel
©1, - . . ,on be the dual basis, i(v;) = 8:;. Then the sel of all
k-fold tensor products

¢i|®"'®¢ik lsih"'yiksn

is a basis for 3*(V), which therefore has dimension n*.

Proof. Note that

ei ® 0 0 ® eilviy, - - - P5)
= 6il|jl S e e et sihjk
={1 ifjr =1, ... k=1
0 otherwise.

If wy, . . . ,w are &k vectors with w; = Z7_,8,v; and T isin
5%(V), then
n
Ty, ... gm) = 9 Grg e 0T e 90
Flyeens Jr=1
= z T, o . - W5 0a ® * * - ® eilwy, . . . Wk
000y ikl
Thus 7 =2}, ..., ik-lT(v;,, e W) en® @ e

Consequently the ¢;, ® * -+ ® ¢;, span 3¥(V).
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Suppose now that there are numbers a,.....; such that

n

a. . ... G e ® o @i =0.
[TAR L) |
Applying both sides of this equation to (v;,, . . . ,v;) yields
@,...5v=0. Thus the ¢;® -+ ® ¢; are linearly

independent. J

One important construction, familiar for the case of dual
spaces, can also be made for tensors. If f: V — W is a linear
transformation, a linear transformation f*: F(W) — 3*¥V)
is defined by

Ty ... o) = T(f(va), . - - f(or)
for TES(W) and vy, . .. ;e € V. It is easy to verify
that *(S® T) = f*S @ f*T.

The reader is already familiar with certain tensors, aside
from members of V* The first example is the inner product
() € 3*(R™. On the grounds that any good mathematical
commodity is worth generalizing, we define an inner product
on V to be a 2-tensor T such that T is symmetric, that is
T(vw) = T(wyw) for vw € V and such that T is positive-
definite, that is, T(vp) > 0 if v > 0. We distinguish (,) as
the usual inner product on R*. The following theorem
shows that our generalization is not too general.

4-2 Theorem. If T is an inner product on V, there is a
basis vy, . . . wa for V such that T(vip;) = 8;;. (Such a
basis i3 called orthonormal with respect to T.) Consequenily
there is an isomorphism f: R™ — V such that' T(f(z),f(y)) =
(z,y) for z,y € R™.  In other words f*T = (,).

Proof. Let w), . .. ,w, be any basis for V. Define
wi' = wy,
T(W)' ‘IDz)
wy = wy — —————"
FT T M) Y
Tw'ws) , T(wwg)

’
Wg = w3 — w; — Wa
T(wl’;wl’) T(w2’1w2’) ’
ete.
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It is easy to check that T(w/,w;) = 0if ¢ »* j and w; » 0 so
that T(wi,ws) > 0. Now definey; = w,/ V4 T(w; ,w). The
isomorphism f may be defined by f(e:) = vi. |

Despite its importance, the inner product plays a far lesser
role than another familiar, seemingly ubiquitous function,
the tensor det &€ 3"(R™). In attempting to generalize this
function, we recall that interchanging two rows of a matrix
changes the sign of its determinant. This suggests the fol-
lowing definition. A k-tensor w € 3*(V) is called alternating
if
(01, - o o Wiy o gy e e e D)

= = w1, . - . gy e e e By e e e 3UR)
foralle,, ... »p, € V.

(In this equation v; and v; are interchanged and all other »’s
are left fixed.) The set of all alternating k-tensors is clearly
a subspace A¥(V) of 3*(V). Since it requires considerable
work to produce the determinant, it is not surprising that
alternating k-tensors are difficult to write down. There is,
however, a uniform way of expressing all of them. Recall
that the sign of a permutation ¢, denoted sgno, is +1 if ¢ is
even and —1 if ¢ is odd. If T € 3%(V), we define Alt(T) by

1
Al(T)(vy, - - - ) = 7 2 sgno - T(®, ), « « « Wormd)
e € S«

where S, is the set of all permutations of the numbers 1 to k.

4-3 Theorem
(1) If T € 3¥(V), then AI(T) € A¥(V).

(2) If w € A¥(V), then Alt(w) = w.
(3) If T € 3%(V), then AU(AW(T)) = Al(T).

Proof

(1) Let (4,7) be the permutation that interchanges 7 and j and
leaves all other numbers fixed. If ¢ € S, let o =
o - (4,7). Then
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AT (o1, « « v Wiy o o o Wiy v« o k)

= k_‘ sgno - T(U,(]), oo o Wa(i)y ooe e WWaliyy e e lvﬂ(k))
‘GESk

=7 sgn o * T(Ver(1y, « + « Wariiys + + » War(ids « + » oPa (k)
) c € Sy
1

T —sgno' - Teqy, - - - Yerk)
‘U'ESE

= —Alt(T)(Ul, ... ,Uk).

(2) If w € A¥(V), and o = (1,7), then w(v.(1y, - . . Wery) =
sgno - w(v, . . . ). Since every o is a product of per-
mutations of the form (4,5), this equation holds of all 6.
Therefore

1
Alt(w)(l)l, e e . ,Uk) = ic“‘ z sgna-w(v,(l,, e . ,U,(k))
‘ e € Sa
1
= sgno-sgno - w(vy, ... V)
-aESk
= w(vl, e . ,v;,).

(3) follows immediately from (1) and (2). |

To determine the dimensions of A*(V), we would like a
theorem analogous to Theorem 4-1. Of course, if w & A¥(V)
and 5 € AY(V), then o ® 7 is usually not in A¥*/(V). We
will therefore define a new product, the wedge product
w A n € AT by

k+ D!

AT Alt(w ® 7).

wAn=

(The reason for the strange coefficient will appear later.) The
following properties of A are left as an exercise for the reader:

(it w) Ag=wiAn+w Am,
o A(m+m)=wAn+oAn,
aw Ag=wAay=alwAm),
wAn=(~1)" A g
T*o A ) = f*w) A f*(n).
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The equation (w A7) A8 =wA A 8) is true but
requires more work.
4-4 Theorem
(1) If S € 3¥(V) and T € 3(V) and Al(S) = 0, then
AUS ® T) = AT ® 8) = 0.

(2) Alt(All(w ® 1) ® 6) = All(w @ 7 ® 6)
= Altl(w ® Alt(n ® 8)).
(3) If w € A¥(V), n € AV), and 8 € A™(V), then

(wWADABI=0A@ASb

_(k+1+m)!
= ———klllml Altlo ® 1 @ 0).
Proof
M)
(k+ DVAKES & T) (v, - + - Wagd)
= E sgn o * SWac1y, - - - Wa(iy) * TWatka1)s + + + Welktd)-
d‘GS}ut

If @ C Sk4: consists of all ¢ which leave Kk + 1, . . .,
k <+ 1 fixed, then

z sgno - Sy, - - - Wetr) " TWekanyy + + + WetetD)
ceEG

= [ z sgna' 'S(I},l(l), « e yvv'(k))] . T(Uk+1, e ,vk+,)

o € Sk

= 0.
Suppose now that oo € G. Let G o9 = {o-09: 0 €EG)
and let vooq1y, - - - WYootkad) = W1, + - o Whil- Then

2 Sgﬂa”S(U,(l), e . ,U,(k)) . T(U,(k+1), P ,Ua(k+l))
c & Gae

= [sgn agp* z sgn cr"S(w,'(l), e . ,w..:(k))]

FEG
cT(Wig1y - - o Wtd)
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Notice that GNG 0o = &. In fact, if e S TN G0,
then ¢ = ¢’ -0g for some ¢’ € G andog =0 (¢)" 1 EQG,
a contradiction. We can then continue in this way,
breaking Si4: up into disjoint subsets; the sum over each
subset is 0, 80 that the sum over Si;; is 0. The relation
AI(T ® S) = 0 is proved similarly.

(2) We have

Alt(Alt(n ® ) — n ® 6) = Alt(n ® 8) — Alt(n ® §) = 0.
Hence by (1) we have
0=Alt{o @ [A(n ® 0) — n» @ 6))
= Alt(w @ Alt(n ® 8)) — Alt(e ® 1 S 9).
The other equality is proved similarly.

(k4 14 m)!
@ @AW A0= T

(k- 1+m Gk + D!
T k4 DIm! kI

Alt((w A7) ® 6)

Alt{o ® n ® 9).

The other equality is proved similarly. ||

Naturally @ A (9 A 6) and (w A ) A @ are both denoted
simply w A 7 A 8, and higher-order products w;, A - * - A wr
are defined similarly. If »,, . . . ,v, is & basis for V and
@1, - . . ,pn is the dual basis, a basis for A¥(V) can now be
constructed quite easily.

4-5 Theorem. The set of all
e A 0 A ey ISix<i2<"'<ik5n

15 @ basts for A¥(V), which therefore has dimension

(n) _ n!
k)~ kn — k)l

Proof. If w € A¥(V) C 3¥(V), then we can write

w = 2 Q. .., i Pi ® - - Pix-
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Thus

w=Alw) = Y . sAle ® 1 ® ).
Tl o a e Bk
Since each Alt(ps, ® * * * ® ¢4) is a constant times one of the
@i A * ** A ¢, these elements span A*(V). Linear inde-

pendence is proved as in Theorem 4-1 (cf. Problem 4-1). 1

If V has dimension =, it follows from Theorem 4-5 that
A™(V) has dimension 1. Thus all alternating n-tensors on V
are multiples of any non-zero one. Since the determinant is
an example of such a member of A®(R"), it is not surprising
to find it in the following theorem.

4-6 Theorem. Let vy, . .. v, be a basis for V, and let
w € AMV). If w; = Z7_aiv; are n vectors in V, then

w(wl, “ ,w,,) = det(a,-j) 'w(vl, e ,v,,).
Proof. Define 1 € 3"(R™) by

a((@i1, - - - ,81)y - - - (@1« - - 48na))
= w(Zal,-v,-, .. ,Ea,u-v,-).

Clearly n € A*(R") so q = A - det for some A € R and A =
nler, - . . ,en) =0, . . . Wn). '

Theorem 4-6 shows that a non-zero w € A™(V) splits the
bases of V into two disjoint groups, those with w(vy, . . . ,va)
> 0 and those for which w(vy, . . . ,on) < O0; if vy, . . . ,¥n
and wy, . . . ywn are two bases and 4 = (a;)) is defined by
w; = Zagvj, then vy, . . . o and wy, . . . ,wy are in the
same group if and only if det A > 0. This criterion is inde-
pendent of w and can always be used to divide the bases of V
into two disjoint groups. Either of these two groups is
called an orientation for V. The orientation to which a
basis vy, . . . ,ba belongs is denoted [vi, . . . ,a] and the
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other orientation is denoted —{vy, . . . ,w,). In R" we define
the usual orientation as [e], . . . ,en].

The fact that dim A®(R") = 1 is probably not new to you,
since det is often defined as the unique element «» & A™(R")
such that w(e), . . . ,en) = 1. For a general vector space V
there is no extra criterion of this sort to distinguish a particular
w € A"(V). Suppose, however, that an inner product T for
Vis given. If vy, ... ,vp and wy, . . . ,w, are two bases
which are orthonormal with respect to T, and the matrix
A = (ay;) is defined by w; = Z7_ a;;, then

n

5;; = T(wyw;) = z aik @1 T (vi,v;)
kl=1

E Qi@ j k.

k=1

it

In other words, if AT denotes the transpose of the matrix A,
then we have A - AT = I, so det A = +1. It follows from
Theorem 4-6 that if w &€ A™(V) satisfiesw(vy, . . . ,v,) = +1,
then w(wy, . . . ,w,) = +1. If an orientation u for V has
also been given, it follows that there is a unique w € A™(V)
such that w(v;, . .. »,) =1 whenever v;,. .. p, is an
orthonormal basis such that [v1, . . . ,v,] = . This unique
w is called the volume element of V, determined by the
inner product T and orientation u. Note that det is the
volume element of R” determined by the usual inner product
and usual orientation, and that |det(v,, . . . V)| is the vol-
ume of the parallelipiped spanned by the line segments from
0 to eachof vy, . . . ,v,.

We conclude this section with a construction which we will
restrict to R*. Ifv;, . . . wva_; € R" and ¢ is defined by

3

ew)=det| = P

Va1
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then ¢ € A}R™); therefore there is a unique z € R” such that

131
(wyz) = p(w) = det
Un—1
w
This z is denoted v; X - * + X v,_; and called the cross
product of vy, .. . va—1. The following properties are
immediate from the definition:
Vo) X * * * X Osn—t)y =8gno -1 X * * - X Un_y
X s Xay X o Xtvemr=a (@1 X 0 X o),
X © o X (Wit v) X - X
= X oo Xy X 0 Xt
+op X - Xod X oo s Xvpa

It is uncommon in mathematics to have a ‘“product” that
depends on more than two factors. In the case of two vectors
v,w € R®, we obtain a more conventional looking product,
» X w & R%. For this reason it is sometimes maintained
that the cross product can be defined only in R%

Problems. 4-1.* Let ¢1, . . . ,ea be the usual basis of R" and let
@l - . - »en be the dual basis.
(a) Show that i, A - - Ay (e . .. i) = 1. What

would the right side be if the factor (k + 1)1/&!] did not appear in
the definition of A?

(b) Show that @i, A -+ + A @i (s, . . . &) is the determinant
v
of the k X k minor of . obtained by selecting columns
Uk
By . ik

4-2. If f: V- V is a linear transformation and dim V = n, then
f*: A™(V)— A™MV) must be multiplication by some constant c.
Show that ¢ = det f.
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4-3. If w € A™(V) is the volume element determined by T and u, and

wy, . . .,y € V, show that
Jwlwy, . . . wa)l = A/ det (g;)
where gi; = T(wiw;). Hint: If vy, . . . v, is an orthonormal

basis and w; = I, aiv;, show that gi; = Tf_, auas;.
4-4. If w is the volume element of V determined by T and u, and
f: R"— V is an isomorphism such that f*T = (,) and such that

[f(er), . . . ,f(en)] = , show that f*w = det.
4-5. If ¢: [0,1] = (R™)" is continuous and each (c'(), . . . ,c"()) is
a basis for R*, show that [¢!(0), . . . ,c"(0)] = [c'(1), . . . ,c™(1)].

Hint: Consider det o c.
4-6. (a) If v € R?, whatisv X?

) If vy, ... ,0a1 & R" are linearly independent, show
that [v1, . . . a1, 1 X + ¢+ « X 9,_1] is the usual orientation of
R".

4-7. Show that every non-zero w € A™(V) is the volume element
determined by some inner product T and orientation u for V.
4-8. If w € A™(V) is a volume element, define a ‘“cross product”

vy X + ¢+ + X v,_yin terms of w.
4-9.* Deduce the following properties of the cross product in R3:
@) ey Xey =0 es X ey = —ey ez X ey = eg
e1 X e2 = e3 e2 X e =0 ey X eg = —¢y
e1 X ey = —es e X e = ¢) ea X eg = Q.

(b) v X w = (W*w? = Pwhe
+ (Pw! — v'wey
+ ('w? — v?w')e;.
() |v X w| = |o] - 1] - [sin 6], where 8 = £{s,1).
@Xwe)={Xww =0
(d) (, w X 2) = (w,zX0v) =(20vXw
v X (wX2) = @z2)w — (vw)z
@ Xw) X2z=(@zw — (w2
@) I X w| = 4/ (o) (w,w) — (v,0)
4-10. If wy, . . . ,w,_; € R", show that

[wy X -« X waq] = V/det (g:),

where gi; = (w;w;). Hint: Apply Problem 4-3 to a certain
(n — 1)-dimensional subspace of R".

4-11. If T is an inner product on V, a linear transformation f: V— V
is called self-adjoint (with respect to ") if T(z,f(y)) = T(f(z),y)
forz,y € V. Ifvy, ... ,vaisan orthonormal basis and A = (a;j)
is the matrix of f with respect to this basis, show that a;; = aj;.

4-12. If f1, . . . \Jac1: R®—> R", define fi X + - + X fa—1: R®— R"
by fi X - -+ Xfac2(p) = f1i(p) X - + - X fema(p). Use Prob-
lem 2-14 to derive a formula for D(f1 X - - - X fa_1) when fy,

.+ yfn—1 are differentiable.
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FIELDS AND FORMS

If p € R", the set of all pairs (p,), for v € R", is denoted
R*,, and called the tangent space of R” at p. This set is
made into a vector space in the most obvious way, by defining

(pv) + (pw) = (p, v + w),
a: (p‘yv) = (pﬁav)'

A vector v € R™ is often pictured as an arrow from 0 to »; the
vector (p,v) € R", may be pictured (Figure 4-1) as an arrow
with the same direction and length, but with initial point p.
This arrow goes from p to the point p + v, and we therefore

p+y

FIGURE 4-1
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define p + v to be the end point of (p,v). We will usually
write (p,v) as vy (read: the vector » at p). '

The vector space R", is so closely allied to R™ that many
of the structures on R™ have analogues on R",. In particular
the usual inner product (,); for R", is defined by (vp,w;)p =
(v,w), and the usual orientation for R", is [(€1)p, . . . J(€a)p].

Any operation which is possible in a vector space may be
performed in each R",, and most of this section is merely an
elaboration of this theme. About the simplest operation in a
vector space is the selection of a vector from it. If such a
selection is made in each R",, we obtain a vector field (Figure
4-2). To be precise, a vector field is a function F such that
F(p) € R*, for each p € R*. For each p there are numbers
F'(p), . . . ,F*(p) such that

Fp) =F'(p) - (er)p + - - + F(p) " (en)p

We thus obtain n component functions F': R* —+ R. The
vector field F is called continuous, differentiable, etc., if the
functions F*are. Similar definitions can be made for a vector
field defined only on an open subset of R". Operations on
vectors yield operations on vector fields when applied at each
point separately. For example, if F and G are vector fields

/_\\1// NN ////,1\\

SN~
/ y ‘/\‘&’%/\\ \\ //11\
j \,/,\\\ ] ] \—*“::C/“*—u_
/ / > \1// —

l‘/ /-

FIGURE ¢-2
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and f is a function, we define

(F +G)(p) = F(p) + G(p),
(F.G)(p) = (F(p)G(P),
(7 F)(p) = f(p)F(p).

If Fy, . . . ,Fu_) are vector fields on R", then we can simi-
larly define

FrX - - XFp1)(®) = Fi(p) X * + + X Fo_s(p).

Certain other definitions are standard and useful. We define
the divergence, divF of F, as Z* ,D;F". If we introduce
the formal symbolism

V= D i° €4

iZI
we can write, symbolically, divF = (V,F). If n =3 we
write, in conformity with this symbolism,

(V X F)(p) = (DoF* — DsF¥(e1),
+ (D3F! — DiF3)(es),
+ (D1F?* — DyFY)(es)p.

The vector field V X F is called curl F. The names “diverg-
ence” and “curl” are derived from physical considerations
which are explained at the end of this book.

Many similar considerations may be applied to a function
w with w(p) € A*¥(R",); such a function is called a k-form on

R", or simply a differential form. If ¢i(p), . . . ,¢n(D)
is the dual basis to (e1)p, . . . ,(€s)p, then
o) = Y en..a®) lea® A A ealp)]
0n< - <da

for certain functions w;,, ..., 4; the form w is called continuous,
differentiable, etec., if these functions are. We shall usually
assume tacitly that forms and vector fields are differentiable,
and “differentiable” will henceforth mean “C™”’; this is a
simplifying assumption that eliminates the need for counting
how many times a function is differentiated in a proof. The
sum w + 7, product f * w, and wedge product w A 1 are defined
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in the obvious way. A function f is considered to be a 0-form
and J - w is also written f A w.

If f: R* — R is differentiable, then Df(p) € A}YR™). Bya
minor modification we therefore obtain a 1-form df, defined by

df(p)(vp) = Df(p)(v).

Let us consider in particular the 1-forms dx'. It is customary
to let z* denote the funciion x'. (On R® we often denote
2!, 22, and z° by z, y, and z.) This standard notation has
obvious disadvantages but it allows many classical results
to be expressed by formulas of equally classical appearance.
Since dzi(p)(v,) = dr'(p)(vy) = Dr'(p)(v) = v', we see that
dz\(p), . . . dz"(p) is just the dual basis to (e1)p, - - - ,(en)p.
Thus every k-form w can be written

w= z Wy, ..., " dxil VAR A dIil.
The expression for df is of particular interest.

4-7 Theorem. If f: R*— R is differentiable, then
df = Dyf-dz' + - - - + Dnf dz".
In classical notation,

9 4
df=é;fldx‘+---+$dz".

Proof. df(p)(vy) = Df(p)(v) = Z.v* - Dif(p)
= 21, dz(p)(wp) - Dif(p). 1

If we consider now a differentiable function f: R® — R™ we
have a linear transformation Df(p): R™-— R™. Another
minor modification therefore produces a linear transformation
Ja: Rn, hd Rm/(p) defined by

fe(vp) = (Df®}9))s(m1-

This linear transformation induces a linear transformation
*: A¥R™, () — A¥R",). If w is a k-form on R™ we can
therefore define a k-form f*w on R™ by (f*w)(p) = f*{«(f(p))).
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Recall this means that if »,, . . . ;v € R",, then we have
fra@(vy, . . o)) = (f(P))(fa(v)), . . . Selor)). As an
antidote to the abstractness of these definitions we present
a theorem, summarizing the important properties of f* which
allows explicit calculations of f*w.

4-8 Theorem. If f: R* — R™ is differentiable, then

(1) f*(dz) = Z3.,D,f -da’ = 27 I i,

=1 gz
(2) f*(@1 + wa) = f*(w1) + f*(w2).
@) Mg-w) =(gof)  fHw.
(4) fMw A m) = f*o A f*.

Proof

(1) £*(dz")(®)(vs) = dz*(f(p))(fv) '
= dz'(f(p))Zjov’  Dif' (), . . ., 230 D)) rem)
= 210 Dif'(p)

= Z7_1D;f'(p) - dz’(p) (vp).

The proofs of (2), (3), and (4) are left to the reader. ]

By repeatedly applying Theorem 4-8 we have, for example,

SH(Pdz! A dz? + Qdz? A dzb) = (Pof)[f*(dz)) A f*(dz?)]
+ (Q o NIf*(dz?) A f*(dz®)].

The expression obtained by expanding out each f*(dz?) is quite
complicated. (It is helpful to remember, however, that we
have dr* A dr* = (—1)dz' A dz* = 0.) In one special case it
will be worth our while to make an explicit evaluation.

4-9 Theorem. If f: R" — R" is differentiable, then

Srhdz' A - - - Ada™) = (hof)(detf)dzt A - - - A dz.

Proof. Since

SrhdZI A o Adet) = (hof)f*de' A - - - A da™),
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it suffices to show that
' A 00 Adz") = (detf)dz' A - - Ada™

Let p € R" and let A = (ai;) be the matrix of f'(p). Here,
and whenever convenient and not confusing, we shall omit

“p" indz' A - - - A dz"(p), etc. Then
frdxt A - - - Adz™)(e, . . . €n)
=dz' A - Adz"(faer, . . . Jsen)
=d' A - A aie;, - . ., Ainl;
(.'Zl .'Zl )
= dct(a,-,-) - dr! AN A dili"(el, [P ,e,,),

by Theorem 4-6. ||

An important construction associated with forms is a gen-
eralization of the operator d which changes O-forms into
i-forms. If

w = E Wiy, ..., T dl_il A ot /\ dxik,

dw

.....

i
!
2
k3

W) s dx= A dxiv A - - 0 A dxih

I
>
R
2
£

.....

4-10 Theorem

(1) d(w + 1) = dw + dn.
(2) If w 18 a k-form and n is an [-form, then

dlwAn) =do An+ (—1)% A dn.

(3) d(dw) = 0. Briefly, d* = 0.
(4) If w 13 a k-form on R™ and f: R" — R™ is differentiable,
then f*(dw) = d(f*w).
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Proof

(1) Left to the reader.

(2) The formula is true if w=dz%t A -+ - A dz™ and
n=dz/t A -+ Adz, since all terms vanish. The

formula is easily checked when w is a 0-form. The gen-
eral formula may be derived from (1) and these two
observations.

(3) Since

do = z z Da(wil ..... ii)dzu A dx"l AN A dzi*,

< < a=1

we have

dde) = ) ) ) Daslwn,... adds? A dat

< <fra=1f=1 .
Adzv A - - Adz™

In this sum the terms

Daglwsy, .. a)dz® Adz® Adz A - - - A dz™
and

Dy a(wiy, ..., wdz® A dz? Adzh A - - - A dz™

cancel in pairs.

(4) This is clear if w is a 0-form. Suppose, inductively, that
(4) is true when w 18 a k-form. 1t suffices to prove (4) for
a (k + 1)-form of the type w A dz’. We have

FHd(w A dz)) = f*(do A dz + (— 1)k A d(dz))
= f*(de A dz?) = f*(dw) A f*(dz)
= d(f*« A f*(dz%)) by (2) and (3)
= d(f*( A dz9). 1

A form w is called closed if dw = 0 and exact if @ = d», for
some 5. Theorem 4-10 shows that every exact form is closed,
and it is natural to ask whether, conversely, every closed form
is exact. If wis the 1-form P dz 4+ Q dy on R?, then

do = (D\P dz + DyP dy) A dz + (D1Qdz + D2Qdy) A dy
= (D,Q — D,P)dz A dy.
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Thus, if dw = 0, then D@ = DsP. Problems 2-21 and 3-34
show that there is a 0-form f such that o = df = D1fdz +
Dafdy. If wis defined only on a subset of R?, however, such
a function may not exist. The classical example is the form

x
+ ¢

defined on R? — 0. This form is usually denoted d¢ (where
6 is defined in Problem 3-41), since (Problem 4-21) it equals df
on the set {(z,y): £ <0, or 2 > 0 and y = 0}, where @ is
defined. Note, however, that 8 cannot be defined continuously
on all of R? — 0. Ifw = df for some function f: R? — 0 — R,
then D,f = D18 and Dyf = D14, so f = 8 + constant, show-
ing that such an f cannot exist.

Suppose that w = Z?_,w; dz*is a 1-fermon R" and » happens
to equal df = Z2,D.f -dr’. We can clearly assume that

=]

f(0) = 0. Asin Problem 2-35, we have

5 dr -+ o dy

w = —Y
4y

fz) = f(tz) dt

> &la

D;f(tx) - 2* dt
1

D= i

w(tz) - =t dt.

]
— L O, O

0 t=1

This suggests that in order to find f, given w, we consider the
function Jw, defined by

1 n
To(z) = [ Y wilte) - o d.
0 i=1
Note that the definition of Jw makes sense if w is defined only
on an open set A C R" with the property that whenever
z € A, the line segment from O to r is contained in A4 ; such
an open set is called star-shaped with respect to 0 (Figure
4-3). A somewhat involved calculation shows that (on a
star-shaped open set) we have w = d(Jw) provided that w satis-
fies the necessary condition dw = 0. The calculation, as well
as the definition of Jw, may be generalized considerably:
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FIGURE 4-3

4-11 Theorem (Poincare Lemma). If A C R"isan open
set star-shaped with respect to 0, then every closed form on A
s exacl,

Proof. We will define a function I from [-forms to (I — 1)-
forms (for each 1), such that 7(0) = 0 and w = I(dw) + d({w)
for any form w. It follows that w = d({w) if dw = 0. Let

w= 2 Wiy, ..., adzv A - o Adzh

Since A is star-shaped we can define
t 1

la@ = ) Y (=07 (f 6 al@t) 2
{ 0

H<  <ira=1
dzv A ¢+ - - Adzle A - - Adzh

(The symbol ~ over dz'e indicates that it is omitted.) The
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proof that w = I(dw) + d(Jw) is an elaborate computation:
We have, using Problem 3-32,

are) =1- Y f sy, a(t)dt)

dzht A - - - A dxt

+ Z Z Z(-w"‘ (/tl)(w,. ..... s.)(tx)dt)x’

< <nea=1jy=1 P

def Adz A - - - ANdztt A - - Adzi

(Explain why we have the factor !, instead of '™1.) We also
have

do= ) Y Diwn,...a) dzi Adgt A - A dat
Bwe e i j=1
Applying I to the (I + 1)-form dw, we obtain

n 1

1) = Y ) ([ 6D, . Witmdt) 2

< <uny=1 0

dzh A - - Adzh
1
- z z Z (=1 ([ £Dstwn.... (tx)dt) e
<ij=1l a=1 h
dlj/\dxilj\---/\(al'\a,/\.../\dzi,.

Adding, the triple sums cancel, and we obtain

d(lw) + I(dw) = 2 | 1 (f d -l .,(tz)dt)
’ d;‘: A A d:C“
+ 2 Z (f #29D (i, .. o) (tm)dt)

cLij=1
dzh A -t /\drii

1
T Z (f ;(i[t’wu ..... a(to)ldt)

dz:ilA I /\dli'
© Y e adsn e A
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Problems. 4-13. () If f: R* —» R™ and ¢: R™— R?, show that

4-14.

4-15.

4-16.

4-17.

4-18.

4-19.

4-20.

@of)e = gaofoand (gef)* = foog"

(b) If f,g: R — R, show that d(f-¢) = f-dg + ¢ - df.
Let ¢ be a differentiable curve in R®, that is, a differentiable func-
tion ¢: [0,1]] = R® Define the tangent vector v of ¢ at ¢ as
colled)s) = ()W), . . . ()Y O))ey- If /1 R*— R™, show that
the tangent vector to foc at tis fo (v).
Let f: R— R and define c: R— R? by ¢(f) = (¢,f(t)). Show
that the end point of the tangent vector of ¢ at ¢ lies on the
tangent line to the graph of fat (¢,£(¢)).
Let c: [0,1] — R*be a curve such that|e(t)|= 1 foralls. Show that
e(t)e(y and the tangent vector to c at ¢ are perpendicular.
If f: R* — R", define a vector field f by f(p) = f(p), € R",.

(a) Show that every vector field F on R" is of the form f for
some f.

(b) Show that div f = trace f'.
If f: R* — R, define a vector field grad f by

(grad /) (p) = D1f(p) - (e3)p + - - + + Daf(p) - (en)p.
For obvious reasons we also write grad f = Vf. If Vf(p) = 1wy,
prove that D,f(p) = (v,w) and conclude that Vf(p) is the direction
in which f is changing fastest at p.
If F is a vector field on R?, define the forms
whp = Fldz + F'dy + Fl dz,
wh = Fldy A dz + F'dz A dz + Fldz A dy.

(a) Prove that

af = "“:ndﬂ
d(wli) = "’Zutl F1
d(w}) = (div F) dz A dy A dz.

(b) Use (a) to prove that

curl grad f = 0,
div curl F = 0.

{¢) If F is a vector field on a star-shaped open set A and

curl F = 0, show that F = grad f for some function f: A — R.
Similarly, if div F = 0, show that F = curl G for some vector
field G on A.
Let f: U > R™ be a differentiable funetion with a differentiable
inverse f1: f(U) — R™ If every closed form on U is exact, show
that the same is true for f(U). Hint: If dw = 0 and f*w = dn,
consider (f~1)*.
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4-21.* Prove that on the set where 8 is defined we have

= dz dy.
d = g sdet oy

GEOMETRIC PRELIMINARIES

A singular n-cube in A C R™ is a continuous function c:
[0,1]* = A (here [0,1]" denotes the n-fold produet [0,1] X - - -
% [0,1]). We let R° and [0,1]° both denote {0}. A singular
0-cube in A4 is then a function f: {0} — A or, what amounts to
the same thing, a point in A. A singular 1-cube is often
called a curve. A particularly simple, but particularly
important example of a singular n-cube in R" is the standard
n-cube I": [0,1]* — R" defined by I"(z) = z for z € [0,1]".

We shall need to consider formal sums of singular n-cubes in
A multiplied by integers, that is, expressions like

2¢1 + 3ecg — 4e,,

where ¢, ¢3, c3 are singular n-cubes in A. Such a finite sum
of singular n-cubes with integer coefficients is called an
n-chain in A. In particular a singular n-cube ¢ is also con-
sidered as an n-chain 1-:¢. It is clear how n-chains can be
added, and multiplied by integers. For example

2(c1 + 3cy) + (—2)(e1 + €3 + ¢2) = —2¢3 — 2¢5 + 6¢y.

(A rigorous exposition of this formalism is presented in Prob-
lem 4-22,)

For each singular n-chain ¢ in A we shall define an (n — 1)-
chain in A called the boundary of ¢ and denoted dc. The
boundary of I?, for example, might be defined as the sum of
four singular 1-cubes arranged counterclockwise around the
boundary of [0,1}% as indicated in Figure 4-4(a). It is
actually much more convenient to define 31* as the sum, with
the indicated coefficients, of the four singular 1-cubes shown
in Figure 4-4(b). The precise definition of 3I™ requires some
preliminary notions. For each i with 1 < ¢ < n we define
two singular (n — 1)-cubes If;q and I;,, as follows. If
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A

-1 +1
Y +1
» -
(a) (b)
FIGURE 4-4
z € [0,1]"7}, then
It o(z) = I, . .. ‘,x"'l,O',:c", N D
=(z} ..., 2700, ... 7Y,
I () = I, .. 27012, L Y
=(z', ... 2741, ... 2"

We call If;q the (3,0)-face of I" and If;,, the (z,1)-face
(Figure 4-5). We then define

oI = Z Y (=D

t=1a=0,1

For a general singular n-cube c: [0,1]* — A we first define the
(1,a)-face,

o) = €° (i)
and then define

dc = (—' 1)i+aC(i'a).
izl n=20,l
Finally we define the boundary of an n-chain Zac; by
(Zaic;) = ZTa;0{c)).

Although these few definitions suffice for all applications in
this book, we include here the one standard property of 4.
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I?i,l)

]

Ihe T

Y

I}Lﬁ) I:I.l) I?I.O)

(a) (b)
FIGURE 4-5

4-12 Theorem. If ¢ is an n-chain in A, then 3(dc) = 0.
Briefly, 82 = 0.

Proof. Let i < j and consider (I a)¢e. 1f 2 €10,1]"72
then, remembering the definition of the (j,8)-face of a singular
n-cube, we have

(Ifa)G.e(@) = I a(IT55(2))

1 f— ] -2
= I?i,a)(x y - e e ,I] l,ﬁ,I], PR ,Iﬂ )
] -1 i i~ o i -
=I'(z', . .. g7 eat ... T8 L, Y.
Similarly
Iy = T30 (I155 (@)
- -1 i ~2
= I, a(@!, .. . .zt ,a,x_', . 25
=I"z!, ... 2T heat, L. 2T 8e, L 2,

Thus (If;0)6.8 = (IPip1m) G0 for © 5. (It may help to
verify this in Figure 4-5.) It follows easily for any singular
n-cube ¢ that (C(.',.,))(j,p) = (C(j+|,p))(,',¢) when 1 S ] Now

1(3 3 0en)

i=1 a= Ol

Z E E Z (=D ) G-

i=1 a=0,1 =1 8=0,1

a(ac)
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In this sum (ciia) i 80d (cGa1.8) . Occur with opposite
signs. Therefore all terms cancel out in pairs and a(dc) = 0.
Since the theorem is true for any singular n-cube, it is also
true for singular n-chains. J

It is natural to ask whether Theorem 4-12 has a converse: If
dc = 0, is there a chain d in A such that ¢ = ad? The answer
depends on A and is generally “no.” For example, define
¢: {0,1] = R? — 0 by c(f) = (sin 2wnt, cos 2xnt), where n is
a non-zero integer. Then ¢(1) = ¢c(0), 80 dc = 0. But
(Problem 4-26) there is no 2-chain ¢’ in R* — 0, with d¢’ = ¢.

Problems. 4-22. Let § be the set of all singular n-cubes, and Z the
integers. An n-chain is a function f: §— Z such that f(c) = 0
for all but finitely many ¢. Define f + ¢ and nf by (f + ¢)(¢c) =
fle) + g(¢) and nf(c) = n-f(c). Show that f+ g and nf are
n-chains if f and g are. If ¢ € §, let ¢ also denote the function f
such that f(c) = 1 and f(¢) = 0 for ¢’ » c. Show that every
n-chain f can be written aicy + - - - + axcx for some integers
aj, . . . ,ax and singular n-cubes c1, . . . ,Ce.

4-23. For R > 0and n an integer, define the singular 1-cube ¢z a: [0,1] —
R? — 0 by cg.n(t) = (R cos 2xnt, B sin 2vnt). Show that there
is a singular 2-cube c: [0,1)2 — R? — Osuch that eg,,» — ¢&,,n = dc.

4-24. If cis a singular 1-cube in R? — 0 with ¢(0) = ¢(1), show that there
is an integer n such that ¢ — ¢;,» = ac? for some 2-chain 2
Hint: First partition [0,1] so that each c({ti—3,4]) is contained on
one side of some line through 0.

THE FUNDAMENTAL THEOREM OF CALCULUS

The fact that d®> = 0 and 4% = 0, not to mention the typo-
graphical similarity of d and 4, suggests some connection
between chains and forms. This connection is established by
integrating forms over chains. Henceforth only differentiable
singular n-cubes will be considered.

If w is a k-form on {0,1)*, then w = fdz' A -+ + A dz* for
a unique function f. We define

[0.1)- [0,1}k
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We could also write this as

fdz* A - - - Adzt = [ fiz*, . .. 2bdg - - - dz¥
[0, 1)k [0.1)

one of the reasons for introducing the functions z*.
If w is a k-form on A and ¢ is a singular k-cube in A, we define

Note, in particular, that

(IM*(fde’ A - -+ Adzh)
{0,1}%
[ fz, ... ZMdg - - - dat,

(0,1}*

[1az A - A a2
Fe

A special definition must be made for k = 0. A O-form o is
a function; if ¢: {0} — A is a singular 0-cube in A we define

[ 0 = w(e(0)).

¢

The integral of w over a k-chain ¢ = Zae; is defined by
[ w = z as / .

The integral of a 1-form over a 1-chain is often called a line
integral. If Pdr 4+ Qdyisa l-form on RZandec:[0,1] » R?
is a singular 1-cube (a curve), then one can (but we will not)
prove that

[ Pds+Qdy=tim Y [c(t) — elte)] - Plele))
c i=l
+ [2() — eX(t)] - Qe(t)

where to, . . . ,t, is a partition of [0,1], the choice of ¢ in
[t:—1,t] is arbitrary, and the limit is taken over all partitions
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as the maximum of |t; — t;_1| goes to 0. The right side is
often taken as a definition of ch dz + Qdy. Thisisanatural
definition to make, since these sums are very much like the
sums appearing in the definition of ordinary integrals. How-
ever such an expression is almost impossible to work with and
is quickly equated with an integral equivalent to fo.1ye*(P dz
+ Q@dy). Analogous definitions for surface integrals, that
is, integrals of 2-forms over singular 2-cubes, are even more
complicated and difficult to use. This is one reason why we
have avoided such an approach. The other reason is that the
definition given here is the one that makes sense in the more
general situations considered in Chapter 5.

The relationship between forms, chains, d, and 9 is summed
up in the neatest possible way by Stokes’ theorem, sometimes
called the fundamental theorem of calculus in higher dimen-
sions (if k = 1 and ¢ = I, it really is the fundamental theorem
of calculus).

4-13 Theorem (Stokes’ Theorem). If w is a (k — 1)-
form on an open set A C R™ and c is a k-chain in A, then

c/dw=/w.

ac

Proof. Suppose first that ¢ = I* and w is a (k — 1)-form on
[0,1]*. Then w is the sum of (k — 1)-forms of the type

o~

fdzl A - - - AdP A - - AdaF,

and it suffices to prove the theorem for each of these. This
simply involves a computation:

Note that
Dozt A - - AdE A e Ade®)
[0' ]’C'l
0 if 5 4,
= [f(x‘,...,a,...,x")dx1~--dx" ifj =14
[0.1}x
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Therefore
ffdz‘/\---/\fx‘/\c--/\dx"
ark

- Z z (=17t f Y o*(fdct A - - Adat

ij=1a=01 {0,1]k1

A A dz*)
el [ Ca TR N, L
(0,1}
+ (=1)* /f(x', RN | T xFyde' - dz*.
101
On the other hand,
fd(fd.z:’/\ /\J;i/\ N
fk
= DifdiiAdz‘A---/\dx"/\.../\dzk
(0,1}
= (- [ Du.
o)k

By Fubini’s theorem and the fundamental theorem of calculus
(in one dimension) we have

k

/d(fdz’/\---/\j;i,\...,\dxk)

- (—1)"“[l _y (f Difa', . . . AMdsi)dz' - - -
0

0

d/z\i .. d:ck
1 1
o e
0 0
T T 0 ¥ R N
=07t [, gt -
[0,1)k
+ (=1 f f&, ... 0, ... zFdz' - - - dat

{01}k
Thus

,kf do = [ w.

alk
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If ¢ is an arbitrary singular k-cube, working through the
definitions will show that

fom [o

8¢ aIk

Therefore

[dw - n( *(dw) =I[ d(c*w) = ai{ oo = [ o

de

Finally, if ¢ is a k-chain Za;c;, we have
fdw=za;fdw=2a,-fw=fw.l
¢ [ de¢i dc

Stokes’ theorem shares three important attributes with
many fully evolved major theorems:

1. It is trivial,

2. It is trivial because the terms appearing in it have been
properly defined.

3. It has significant consequences.

Since this entire chapter was little more than a series of
definitions which made the statement and proof of Stokes’
theorem possible, the reader should be willing to grant the
first two of these attributes to Stokes’ theorem. The rest of
the hook is devoted to justifying the third.

Problems. 4-25, (Independence of paramelerization). Let ¢ be a
singular k-cube and p: [0,1]* — [0,1]* a 1-1 function such that
p((0,1]%) = (0,1 and detp'(z) 20 for z € [0,1]}. If w is a

k-form, show that
[om [
c cop

4-26. Show that [, , d8 = 2xn, and use Stokes’ theorem to conclude
that cg . » dc for any 2-chain ¢ in R? — 0 (recall the definition of
cR,n in Problem 4-23).

4-27. Show that the integer n of Problem 4-24 is u'nique. This integer
is called the winding number of ¢ around 0.

4-28. Recall that the set of cormplex numbers C is simply R? with
@b) =a+bi If a,...,8a EC let f: C— C be fz) =
2 +az" '+ - - - + an. Define the singular l-cube cgs:
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4-29.

4-30.

4-31.

4-32.

4-33.

[0,1] > € — 0 by cg,s = fecr,1, and the singular 2-cube ¢ by
cls,l) =t-crnls) + (1 — Der s(s).

(a) Show that dc = crs — cra, and that ¢([0,1] X {0,1]) C
C — 0if R is large enough.

(6) Using Problem 4-26, prove the Fundamental Theorem of
Algebra: Every polynomial 2" + g1 ' + - -« + eswithai €EC
has a root in C.

If w is a 1-form fdz on [0,1] with f(0) = f(1), show that there is
a unique number X such that w — A dz = dg for some function ¢
with g(0) = g(1). Hint: Integrate w — Adx = dg on [0,1] to
find .

If wis a 1-form on R? — 0 such that dw = 0, prove that

w=\do + dg
for some A € R and ¢g: R? — 0> R. Hent: If
cr1*(w) = Mg dz + d(gg),

show that all numbers Ag have the same value A.

If w 0, show that there is a chain csuch that [.w 0. Use this
fact, Stokes’ theorem and 8% = 0 to prove d? = 0.

(a) Let c3, ca be singular 1-cubes in R? with ¢i(0) = ¢2(0) aud ¢y(1)
= ¢2(1). Show that there is a singular 2-cube ¢ such that ac =
€1 — ¢3 + c3 — ¢4, where ¢3 and c4 are degenerale, that is, ¢3([0,1])
and ¢4([0,1]) are points. Conclude that [, = [, if w i exact.
Give a counterexample on R? — 0 if « is merely closed.

(b) If w is a 1-form ou a subset of R? and [, = [, for all ¢y,
ce with ¢1(0) = ¢2(0) and ¢1(1) = c2(1), show that « is exact.
Hint: Consider Problems 2-21 and 3-34.

(A first course in complez variables.) If f: C— C, define f to bs
differentiable at 29 € C if the limit

en) = lim 1) = 1€
11—y z2—29

exists. (This quotient involves two complex numbers and this
definition is completely different from the one in Chapter 2.)
If f is differentiable at every point z in an open set A4 and f' is
continuous on A, then f is called analytic on A.

(a) Show that f(z) = z is analytic and f(z) = z is not (where
z +1y =z — 1iy). Show that the sum, product, and quotient
of analytic functions are analytic.

(b) If f = u + 4 is analytic on A, show that u and v satisfy
the Cauchy-Riemann equations:

du ov du —ov
— = - and — = ——
az dy ay ox
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Hint: Use the fact that lim [f(z) — f(z0)]/(z¢ — 20) must be the

L and ]
same for z =20+ (x+¢-0) and z =129+ (0 +7-y) with
1,y — 0. (The converse is also true, if u and v are continuously
differentiable; this is more difficult to prove.)
(¢) Let T: C — C be a linear transformation (where C is con-
sidered as a vector space over R). If the matrix of T with respect

to the basis (1,7) is @b show that T is multiplication by a com-
c,d

lex number if and only if a = dand b = —¢. Part (b) shows that
an analytic function f: C — C, considered as a function f: R? —
R?, has a derivative Df(z¢) which is multiplication by a complex
number. What complex number is this?

(d) Define

dlw + 19) = dw + 1 dy,
/w-}-in"[w-{-i/q,
¢ ¢ ¢

WHMA@+FN =wAb ~ g ANFIGAG + w AN,

and
dz = dz + i dy.

Show that d(f-dz) = 0 if and only if f satisfies the Cauchy-
Riemann equations.

(e) Prove the Cauchy Integral Theorem: If f is analytic on A,
then f of dz = 0 for every closed curve ¢ (singular l-cube with
¢(0) = ¢(1)) such that ¢ = ¢’ for some 2-chain ¢’ in A.

(f) Show that if g(z) = 1/z, then g - dz [or (1/2)dz in classical
notation] equals ¢ dé + dh for some function h: C— 0— R.
Conclude that j',,'_(l /2)dz = 2xin.

() If f is analytic on {z: [z| < 1}, use the fact that g(z) =
f(@)/z is analytic in {2: 0 < |z| < 1} to show that

[124 . [L0,
2 z
cryn CRyn
it 0 <Ry, Ry<1. Use () to evaluate lim [, f(2)/zdz and
R—0

conclude:

Cauchy Integral Formula: If f is analytic on |(z: |z| < 1} and
¢ is & closed curve in {z: 0 < |z} < 1} with winding number n
around 0, then

1
n - f(0) =;‘_'I"{(—:—2dz.
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(a)

(b)

VN

(c)

FIGURE 4-6
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4-34. If F: [0, 1]*> R? and s € [0,1) define F;: {0,1] - R® by F.(§) =

F(s,t). IfeachF,isa closed curve, F is called a homotopy between
the closed curve Fo and the closed curve F;. Suppose F and G are
homotopies of closed curves; if for each s the closed curves F; and
@, do not intersect, the pair (F,G) is called a homotopy between the
nonintersecting closed curves Fy, Go and Fy, Gh. It is intuitively
obvious that there is no such homotopy with Fg, Gg the pair of
curves shown in Figure 4-6 (a), and F), @) the pair of (b) or (c).
The present problem, and Problem 5-33 prove this for (b) but the
proof for (¢} requires different techniques.

(a) If £, g: [0,1] > R? are nonintersecting olosed curves define
¢r.0: [0,1]2— R® — 0 by

er.0(up) = f(u) — g(v).

If (F,G) is a homotopy of nonintersecting closed curves define
Crg:[01]*— R® — 0 by

Cra(s,up) = cr.a,(up) = Fls,u) — Gsp).
Show that
aCrg = CPy.Gy — CP\, Gy
(b) If wis a closed 2-form on R? — 0 show that

[on [

€Fy.0y 5,6,
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MANIFOLDS

If U and V are open sets in R", a differentiable function
h: U-»V with a differentiable inverse 2~!: V — U will be
called a diffeomorphism. (‘“Differentiable” henceforth
means “‘C*".)

A subset M of R is called a k-dimensional manifold (in
R") if for every point x € M the following condition is
satisfied:

(M) There is an open set U containing z, an open set V C R*,
and a diffeomorphism h: U — V such that

h(UN M) =V N (R X {0})
=[WEV:yt = ... =y =0},

In other words, U M M is, “up to diffeomorphism,” simply
R* X {0} (see Figure 5-1). The two extreme cases of our
definition should be noted: a point in R" is a 0-dimensional
manifold, and an open subset of R™ is an n-dimensional
manifold.
One common example of an n-dimensional manifold is the
109
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FIGURE 5-1. A one-dimensional manifold in R? and a two-dimen-
stonal manifold in R3.
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n-sphere S*, defined as {x € R**": [z] = 1}. We leave it
as an exercise for the reader to prove that condition (M) is
satisfied. If you are unwilling to trouble yourself with the
details, you may instead use the following theorem, which
provides many examples of manifolds (note that S" = g™'(0),
where g: R**1 — R is defined by g(z) = |z|* = 1).

5-1 Theorem. Let A C R" be open and let g: A — RP
be a differentiable function such that ¢'(x) has rank p whenever
g(x) = 0. Then g~'(0) is an (n — p)-dimensional manifold in
R™.

Proof. This follows immediately from Theorem 2-13. §

There is an alternative characterization of manifolds which
is very important.

5-2 Theorem. A subset M of R" is a k-dimensional mani-
fold if and only if for each point x & M the following ‘““coordinate
condition’’ is satisfied:

(C) There is an open sel U conlaining x, an open set W C R¥,
and a 1-1 differentiable function f: W — R”™ such that

M fW)y=MNU,

(2) f'(y) has rank k for each y © W,

(3) f~Y: f(W) — W 45 continuous.
[Such a function f is called a coordinate system around z
(see Figure 5-2).]

Proof. If M is a k-dimensional manifold in R", choose
h: U — V satisfying (M). Let W = {a € R*:(a,0) € h(M)}
and define f: W — R™ by f(a) = h™Ya,0). Clearly f(W) =
MNU and f~! is continuous. If H: U— R* is H(z) =
(h'(@), . . ., k*(2)), then H(f(y)) = y for all y & W; there-
fore H'(f(y)) - f'(¥) = I and f'(y) must have rank k.
Suppose, conversely, that f: W — R" satisfies condition (C).
Let z = f(y). Assume that the matrix (D;fi(y)),1 < 4,7 <k
has a non-zero determinant. Define g: W X R** — R" by
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FIGURE 5-2

g(ab) = f(@) + (0,b). Then det ¢'(a,b) = det (D;f(a)), so
det ¢'(y,0) # 0. By Theorem 2-11 there is an open set V'’
containing (,0) and an open set V4’ containing ¢(3,0) = z such
that g: V' — V4’ has a differentiable inverse h: Vo —= V.
Since f~! is continuous, {f(a): (a,0) € Vy'} = U N f(W) for
some open set U. Let Vo= VN U and Vy = g~ (V).
Then V3 N\ M is exactly {f(a): (a,0) € V1} = {g(a,0): (a,0)
e Vl}’ SO

h(VaN\ M) = g7 (VaN\ M) = g7 '({g(a,0): (a,0) € V1))
=ViN R X {0). |

One consequence of the proof of Theorem 5-2 should be
noted. If f1: Wy — R" and fy: Wy — R" are two coordinate
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systems, then
f7teo f1: fTH(f2(W2)) — R*

is differentiable with non-singular Jacobian. If fact, f3'(y)
consists of the first £ components of A(y).

The half-space H* C R* is defined as {z € R*: z* > 0}.
A subset M of R™ is a k-dimensional manifold-with-
boundary (Figure 5-3) if for every point £ € M either condi-
tion (M) or the following condition is satisfied:

(M') There is an open set U containing z, an open set
V C R*, and a diffeomorphism k: U - V such that

RUNM) =V N H* X {0})
={yEV:¢* 20andy**' = - . - =y =0}
and h(z) has kth component = 0,

It is important to note that conditions (M) and (M')
cannot both hold for the same z. 1In fact, if hy: U; — V, and
he: Uzs— V, satisfied (M) and (M'), respectively, then
hs o hy~! would be a differentiable map that takes an open set
in R¥, containing h(z), into a subset of H* which is not open in
RE. Since det (koo k;™1)’ 0, this contradicts Problem
2-36. The set of all points z € M for which condition M’ is
satisfied is called the boundary of M and denoted M. This

[
dy

FIGCURE 5-3. A one-dimensional and a two-dimensional manifold-
with-boundary in R3.
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must not be confused with the boundary of a set, as defined in
Chapter 1 (see Problems 5-3 and 5-8).

Problems. 5-1. If M is a k-dimensional manifold-with-boundary,

5-2.

5-3.

5-5.

prove that oM is a (k — 1)-dimensional manifold and M — oM is
a k-dimensional manifold.
Find a counterexample to Theorem 5-2 if condition (3) is omitted.
Hint: Wrap an open interval into a figure six.
(a) Let A C R™be an open set such that boundary Aisan (n — 1)-
dimensional manifold. Show that N = A \Uboundary 4 is an
n-dimensional manifold-with-boundary. (It is well to bear in mind
the following example: if A = |z ER™ |z| <1 or 1 < |zg] <2}
then N = A \Uboundary A is a manifold-with-boundary, but
oN # boundary 4.)

(b) Prove a similar assertion for an open subset of an n-dimen-
sional manifold.

. Prove a partial converse of Theorem 5-1: If M C R"is a k-dimen-

sional manifold and z € M, then there is an open set A C R™ con-
taining z and a differentiable function g: 4 — R™*suchthat A "M
= ¢~1(0) and ¢'(y) has rank n — k when g(y} = 0.

Prove that a k-dimensional (vector) subspace of R" is a k-dimen-
sional manifold.

FIGURE 5-4
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5-6. If f: R"— R™, the graph of fis {(z,y): ¥ = f(r)}. Show that
the graph of f is an n-dimensional manifold if and only if f is
differentiable.

5e7. Let K» = s ER™ z! =0and 2% ... 2"7' >0}, IfMCK"
is a k-dimensional manifold and N is obtained by revolving M
around the axis ! = + - - = 2""1 = 0, show that N is a (k + 1)-

dimensional manifold. Example: the torus (Figure 5-4).
5-8. (a) If M is a k-dimensional manifold in R® and k& < n, show that

M has measure 0.
(b) If M is a closed n-dimensional manifold-with-boundary in
R", show that the boundary of M is 9M. Give a counterexample if

M 15 not closed.
(¢) f M is a compact n-dimensional manifold-with-boundary
in R", show that M is Jordan-measurable.

FIELDS AND FORMS ON MANIFOLDS

Let M be a k-dimensional manifold in R* and let f: W — R
be a coordinate system around z = f(a). Since f'{a) has rank
k, the linear transformation fa: R%, — R", is 1-1, and f«(R*,)
is a k-dimensional subspace of R*,. If g: V — R" is another
coordinate system, with z = g(b), then

g+ (RE) = fu(f7" 0 g)a(RY) = fu(RE,).

Thus the k-dimensional subspace f«(R*,) does not depend on
the coordinate system f. This subspace is denoted M, and
is called the tangent space of M at z (see Figure 5-5). In
latdr sections we will use the fact that there is a natural inner
product T, on M., induced by that on R";: if v,w & M, define
T:(vw) = {v,w);.

Suppose that A is an open set containing M, and F is a differ-
entiable vector field on A such that F(z) € M, for each
r& M. If f: W—- R" is a coordinate system, there is a
unique (differentiable) vector field G on Wsuch that f+(G(a)) =
F(f{a)) for each a & W. We can also consider a function #
which merely assigns a vector F(z) € M, for each 2 & M;
such a function is called a vector field on M. There is still
a unique vector field G on W such that f«(G(e)) = F(f{(a)) for
a & W; we define F to be differentiable if G is differentiable.
Note that our definition does not depend on the coordinate
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FIGURE 5-5

system chosen: if g: V— R™ and g4 (H (b)) = F(g(b)) for all
b € V, then the component functions of H(b) must equal the
component functions of G(f~'(g(d))), so H is differentiable
if G is.

Precisely the same considerations hold for forms: A func-
tion w which assigns w(z) € A?(M,) for each 2 € M is called
a p-form on M. If f: W — R"is a coordinate system, then
f*w is a p-form on W; we define w to be differentiable if f*w is.
A p-form w on M can be written as

W= 2 Wiy, ooty BB A 00t AdE'n

RS <

Here the functions w,,, ..., ;, are defined only on M. The
definition of dw given previously would make no sense here,
since Dj(ws,...,,) has no meaning. Nevertheless, there is a
reasonable way of defining dw.
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5-3 Theorem. There i3 a unique (p + 1)-form dw on M
such that for every coordinate system f: W — R™ we have

S*(dw) = d(f*w).

Proof. If f: W — R" is a coordinate system with z = f(a)

and vy, . . . W41 € M., there are unique wy, . . . ,wpy1in
R*, such that fa(w:) = vi. Define dw(z)(vy, . . . Wpyp1) =
d(f*w)(@a)(wy, . . . ,wpy1). One can check that this definition

of dw(z) does not depend on the coordinate system f, so that
dw is well-defined. Moreover, it is clear that dw has to be
defined this way, so dw is unique. |}

It is often necessary to choose an orientation u. for each
tangent space M, of a manifold M. Such choices are called
consistent (Figure 5-6) provided that for every coordinate

(a)

(b)

FIGURE 5-6. (a) Consistent and (b) inconsistent choices of orien-
lations.
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system f: W — R" and a,b € W the relation

[fa((er)a), - - - Sa((er)a)] = r1a)
holds if and only if

[fe((en)s), . - - JSx((ex))] = mrp)-

Suppose orientations u, have been chosen consistently. If
f: W — R" is a coordinate system such that

[fe((en)a), . « ., fx((er)a)] = my@

for one, and hence for every a €& W, then f is called orien-
tation-preserving. If f is not orientation-preserving and
T: R¥ — R* is a linear transformation with det T = —1, then
fo T is orientation-preserving. Therefore there is an orienta-
tion-preserving coordinate system around each point. If fand
g are orientation-preserving and z = f(a) = g(b), then the
relation

[fe((en)a), - - . Sfa((er)a)] = nz = [gx((ex)s), . . . ,gx((ex)s)]

FIGURE 5-7. The Mbobius sirip, a non-orientable manifold. A
basis begins at P, moves to the right and around, and comes back to P with
the wrong orientation.
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implies that
(g o Nxllen)a), - - - (g™ o Nxllen)a)] = [le)s, - - - sexdsl,

so that det (g”!of)’ > 0, an important fact to remember.

A manifold for which orientations u, can be chosen con-
sistently is called orientable, and a particular choice of the
uz is called an orientation u of M. A manifold together with
an orientation g is called an oriented manifold. The classical
example of a non-orientable manifold is the Mébius strip.
A model can be made by gluing together the ends of a strip of
paper which has been given a half twist (Figure 5-7).

Our definitions of vector ficlds, forms, and orientations can
be made for manifolds-with-boundary also. If M isa k-dimen-
sional manifold-with-boundary and z &€ M, then (M), is
a (k — 1)-dimensional subspace of the k-dimensional vector
space M, Thus there are exactly two unit vectors in M,
which are perpendicular to (8M),; they can be distinguished
as follows (Figure 5-8). If f: W — R" is a coordinate system
with W C H* and f(0) = z, then only one of these unit vectors
is fx (vg) for some vp with v* < 0. This unit vector is called the
outward unit normal n(z); it is not hard to check that this
definition does not depend on the coordinate system f.

Suppose that u is an orientation of a k-dimensional manifold-
with-boundary M. Ifz & M, choosevy, . . . vr_1 € (6 M),
so that [n(x), vy, . . . ,vk_1] = us If it is also true that
[n(x), wy, ... we_1] = gz, then both [vy, . . . ,wx_1] and
{wy, . . . owr_,] are the same orientation for (dM),. This
orientation is denoted (du),. It is easy to see that the orienta-
tions (du)., for x € aM, are consistent on éM. Thusif M is
orientable, M is also orientable, and an orientation u for M
determines an orientation du for dM, called the induced
orientation. If wec apply these definitions to H* with the
usual orientation, we find that the induced orientation on
R*"! = {7 € H*: * = 0} is (—1)* times the usual orienta-
tion. The reason for such a choice will become clear in the
next section.

If M is an oriented (n — 1)-dimensional manifold in R*, a
substitute for outward unit normal vectors can be defined,
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8. M =n(y

(2)

(W]

(¢

FIGURE 5-8. Some outward unil normal vectors of manifolds-with-
boundary in RS,

even though M is not necessarily the boundary of an n-dimen-
sional manifold. If [vy, . . . ws_1] = pg, we choose n(z) in
R", so that n(z) is a unit vector perpendicular to M, and
[n(z), v1, . . . ,pn_1] is the usual orientation of R",. We still
call n(z) the outward unit normal to M (determined by u).
The vectors n(z) vary continuously on M, in an obvious sense.
Conversely, if a continuous family of unit normal vectors n(z)
is defined on all of M, then we can determine an orientation of
M. This shows that such a continuous choice of normal
vectors is impossible on the Mébius strip. In the paper model
of the Mébius strip the two sides of the paper (which has
thickness) may be thought of as the end points of the unit
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normal vectors in both directions. The impossibility of
choosing normal vectors continuously is reflected by the
famous property of the paper model. The paper model is
one-sided (if you start to paint it on one side you end up
painting it all over); in other words, choosing n(x) arbitrarily
at one point, and then by the continuity requirement at other
points, eventually forces the opposite choice for n(z) at the
initial point.

Problems. 5-9. Show that M, consists of the tangent vectors at ¢
of curves ¢ in M with c¢(§) = =z.

5-10. Suppose € is a collection of coordinate syatems for M auch that
(1) For each z € M there is f € € which is a coordinate system
around z; (2) if f,¢ € €, then det (f~'og)’ > 0. Show that there
is a unique orientation of M such that f is orientation-preserving
ffe e

5-11. If M is an n-dimensional manifold-with-boundary in R", define
u: as the usual orientation of M, = R™, (the orientation u so
defined is the usual orientation of M). If z € aM, show that
the two definitions of n(z) given above agree.

5-12. (a) If F is a differentiable vector field on M C R", show that
there is an open set A D M and a differentiable vector field F
on A with F(z) = F(z) for 1 € M. Hint: Do this locally and
use partitions of unity.

(b) If M is closed, show that we can choose 4 = R™.

5-13, Let g: A — R” be as in Theorem 5-1.

(a) Itz € M = g~1{0), let h: U — R~ be the essentially unique

diffeomorphism such that goh(y) = (y»**+, . .. 4™ and
h(0) = z. Define f: R"?— R" by f(a) = k(0,a). Show that f,
is 1-1 so that the n — p vectors fu((e1)0), . . . JJa((en_p)e) are

linearly independent.
(h) Show that orientationg u, can be defined consistently, so
that M is orientable.
{¢) If p = 1, show that the components of the outward normal
at z are some multiple of Dig(z), . . . ,Dag(z). .
5-14. If M C R" is an orientable (n — 1)-dimensional manifold, show
that there is an open set A C R and a differentiable g: 4 — R!s0
that M = ¢~ 1(0) and ¢’(x) has rank 1 for z € M. Hint: Prob-
lem 5-4 does this locally. Use the orientation to choose consistent
local solutions and use partitions of unity.
5-15. Let M be an (n — 1)-dimensional manifold in R™ Let M () be
the set of end points of normal vectors (in both directions) of
length e and suppose ¢ is small enough so that M(e) is also an
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5-16.

5-17.

Calculus on Manifolds

(n — 1)-dimensional manifold. Show that M(e) is orientable
(even if M is not). What is M (e) if M is the Mébius strip?

Let g: A — R? be as in Theorem 5-1. If f: R*— Ris differentiable
and the maximum (or minimum) of f on g—!(0) occurs at a, show
that there are Ay, . . . ,A» € R, such that

1) Difle) = ¥, aDig@)  i=1,...n

i=1

Hint: This equation can be written df{a) = Z? hidgi(a) and is
obvious if g(z) = " P, . .. z").

The maximum of f on g—1(0) is sometimes called the maximum
of f subject to the constraints g = 0. One can attempt to
find @ by solving the system of equations (1). In particular, if
g: A— R, we must solve n + 1 equations

Djf(a) = ADjg(a),
gla) = 0,

in n +1 unknowns a!, . . . ,a%\, which is often very simple

if we leave the equation g(a) = 0 for last. This is Lagrange’s
method, and the useful but irrelevant \ is called a Lagrangian
multiplier. The following problem gives a nice theoretical use
for Lagrangian multipliers.
(a) Let T: R*— R" be self-adjoint with matrix A = (a;;), so
that a; = aji. 1f f@) = (Tz,x) = Zaijz'e’, show that Dif(z) =
22,’-‘_101,,-:5"'. By considering the maximum of (T'z,z) on Snl
shaw that there is £ € 8"~ ! and A € R with Tz = Az

(b) If V= ly ER™ (z,) = 0}, show that T(V) CV and
T:V — V is self-adjoint.

(c) Show that T has a basis of eigenvectors.

STOKES® THEOREM ON MANIFOLDS

If w is & p-form on a k-dimensional manifold-with-boundary
M and c is a singular p-cube in M, we define

on [ o

¢ [0,1]»

precisely as before; integrals over p-chains are also defined as
before. In the case p = k it may happen that there is an
open set W O [0,11* and a coordinate system f: W — R™ such
that ¢(z) = f(z) for z € [0,1}*; a k-cube in M will always be
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understood to be of this type. If M is oriented, the singular
k-cube c is called orientation-preserving if f is.

5-4 Theorem. If ci,c2: [0,1}F — M are two orientation-
preserving singular k-cubes in the oriented k-dimensional mani-
fold M and w is a k-form on M such that w = 0 outside of
c1([0,1]%) M ¢3([0,1]%), then

fo=]u
24} c:

Proaof. We have

(Here ¢3! oc; is defined only on a subset of [0,1j* and the

second equality depends on the faet that w = 0 outside of
¢1([0,1]%) M ¢2([0,1]%).) It therefore suffices to show that

_[(02—1"01)*02*(0!) = fcz*(w) = fw.

0,1 (0,1 &
If ca*(w) = fdz' A - - - A dz*and ¢, o ¢; is denoted by g,
then by Theorem 4-9 we have
(caleci)*ea*(w) = g*(fda' A - - - A dz¥)
= (fog)-detg -dx' A -+« A dz*
= (fog)-|detg'| -dz' A - - - A dzt,

sinee det g’ = det(c; ' o¢))’ > 0. The result now follows
from Theorem 3-13. | '

The last equation in this proof should help explain why we
have had to be so eareful about orientations.

Let w be a k-form on an oriented k-dimensional manifold M.
If there is an orientation-preserving singular k-eube ¢ in M such
that w = 0 outside of ¢([0,1}¥), we define

‘Jw:fw.

Theorem 5-4 shows [  does not depend on the choice of c.
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Suppose now that w is an arbitrary k-form on M. There is an
open cover © of M such that for each U € 0 there isan orienta-
tion-preserving singular k-cube ¢ with U C ¢([0,1]¥). Let ®be
a partition of unity for M subordinate to this cover. We

define
w = P w
J pgiﬁ J

provided the sum converges as described in the discussion pre
ceding Theorem 3-12 (this is certainly true if M is compact).
An argument similar to that in Theorem 3-12 shows that [ w
does not depend on the cover © or on .

All our definitions could have been given for a k-dimensional
manifold-with-boundary M with orientation u. Let dM have
the induced orientation du. Let ¢ be an orientation-preserv-
ing k-cube in M such that ¢,y lies in 8 and is the only face
which has any interior points in dM. As the remarks after
the definition of du show, c(.q) is orientation-preserving if k is
even, but not if k is odd. Thus, if w is a (k — 1)-form on M
which is 0 outside of ¢([0,1]*), we have

cW/’)m= (—1)'=a£ .

On the other hand, ¢,o) appears with coefficient (—1)* in dc.

Therefore
/w= [ w=(—1)"fw=/w.

éc (= Leerx.0 e(x.0) aM

Our choice of du was made to eliminate any minus signs in this
equation, and in the following theorem.

5-5 Theorem (Stokes’ Theorem). If M 1is a compact
oriented k-dimensional manifold-with-boundary and w 1is @
{k — 1)-form on M, then

[do= [

M oM
(Here dM is given the induced orientation.)

Proof. Suppose first that there is an orientation-preserving
singular k-cube in M — @M such that w = 0 outside of
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¢((0,1). By Theorem 4-13 and the definition of dw we have

! do = [ c*(dw) = [ dtere) = [ et =ac[ o

0.1)% (0,1)% arx

/dw=[dw=[w=0,
M ¢

de

Then

since w = 0 on dc. On the other hand, faM w = 0Osincew = 0
on M.

Suppose next that there is an orientation-preserving singular
k-cube in M such that cy, ¢y is the only face in M, andw = 0
outside of ¢([0,1])*. Then

fdw=/dw=/w=/w.
M c dc oM

Now consider the general case. There is an open cover 0

of M and a partition of unity ¢ for M subordinate to © such

that for each ¢ & & the form ¢ - w is of one of the two sorts
already considered. We have

0=dn) =d() ¢)= Y do

rEP vC?

so that

; de A w =0,

eEC®
Since M is compact, this is a finite sum and we have

f doe A w=0.
e M

Therefore

Mfdw

I
np~~4

Problems. 5-18. If M is an n-dimensional manifold (or manifold-
with-boundary) in R™, with the usual orientation, show that



126 Calculus on Manifolds

fo dz' A « - - A dz*, as defined in this section, is the same as
fo, as defined in Chapter 3.

5-19. (a) Show that Theorem 5-5 is false if M is not compact. Hint: If
M is a manifold-with-boundary for which 5-5 holds, then M — oM
is also a manifold-with-boundary (with empty boundary).

(b) Show that Theorem 5-5 holds for noncompact M provided
that w vanishes outside of a compact subset of M.

5.20. If w is a (k — 1)-form on a compact k-dimensional manifold M,
prove that J-M dw = 0. Give a counterexample if M is not
compact.

5-21. An absolute k=tensor on V is a function n: V¥ — R of the form
|w| for w € A¥(V). An absolute k-form on M is a function 7
such that n(z) is an absolute k-tensor on M. Show that f M7
can be defined, even if M is not orientable.

§5-22. If M, C R™ is an n-dimensional manifold-with-boundary and
M, C M, — 8M; is an n-dimensional manifold-with-boundary,
and M, M, are compact, prove that

w = w,
oM, oM
where w is an (n — 1)-form on M}, and 3M, and M 2 have the ori-
entations induced by the usual orientations of M1 and M.. Hint:
Find a manifold-with-boundary M such that aM = oM \J oM ;and
such that the induced orientation on M agrees with that for
3M, on M, and is the negative of that for dMq on oM.

THE VOLUME ELEMENT

Let M be a k-dimensional manifold (or manifold-with-bound-
ary) in R", with an orientation . Ilfz € M, then u, and the
inner product T, we defined previously determine a volume
element w(z) € A¥F(M,). We therefore obtain a nowhere-zero
k-form w on M, which is called the volume element on M
(determined by u) and denoted dV, even though it is not gen-
erally the differential of a (k — 1)-form. The volume of M
is defined as [y dV, provided this integral exists, which is
certainly the case if M is compact. “Volume” is usually
called length or surface area for one- and two-dimensional
manifolds, and dV is denoted ds (the ‘‘element of length’’) or
dA [or dS] (the “element of [surface] area”).

A concrete case of interest to us is the volume element of an
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oriented surface (two-dimensional manifold) M in R% Let
n(z) be the unit outward normal at z € M. Ifw € A* (M)

is defined by
v
w(v,w) = det (w ),
n(z)

then w(v,w) = 1if » and w are an orthonormal basis of M, with
[v,w] = u,. Thus dA = w. On the other hand, w(v,w) =
{v X w, n(z)) by definition of » X w. Thus we have

dA(,w) = (v X w, n(z)).

Since v X w is a multiple of n(z) for v,w € M,, we conclude
that
dA(ww) = |v X vl

if [v,w] = p,. Ef we wish to compute the area of M, we must
evaluate [(o1)? c* (dA) for orientation-preserving singular
2-cubes ¢. Define

E(a) = [Dic(a)]* + [Dic*(@)]* + [D1c¥(@)],

F(a) = Dic'(a) - Dycl(a)
+ Dic*(a) - Dyc*(a)
+ Dic*(a) - Dac*(a),

G(a) = [Daxc'(a)]® + [Dac(a)})® + [Dac(a)]®
Then

c* (dA)((e1)q,(e2)a) = dA(ex((e1)a),cx((€2)a))
= |(Dic!(a), D1c(a),D16%(a)) X (Dac'(a),Dsc(a),Doc’(a))]
= V' E(a)G(a) — F(a)?

by Problem 4-9. Thus

[ @ay= [ Ve —F
[0.1]2 [0,1)3
Calculating surface area is elearly a foolhardy enterprise;
fortunately one seldom needs to know the area of a surface.

Moreover, there is a simple expression for d A which suffices for
theoretical considerations.
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5.6 Theorem. Let M be an oriented lwo-dimensional man-
{fold (or manifold-with-boundary) in R® and let n be the unit
oulward normal. Then

) dA = nldy Adz+ ntdz A dz + n¥dz A dy.

Moreover, on M we have

2 nldA = dy A da
3) n*dA = dz A dz.
4) nddA = dz A dy.
Proof.

Equation (1) is equivalent to the equation

v
dA(p,w) = det (w )
n(z)

This is seen by expanding the determinant by minors along
the bottom row. To prove the other equations, let 2 € R?,.
Since v X w = an(z) for some « € R, we have

(z,n(z)) - (v X w, n(2)) = (2,n(z))a = (z,en(z)) = (2,0 X w).
Choosing z = e), ez, and e3 we obtain (2), (3), and (4). |

A word of caution: if w € A*R?,) is defined by

w = n'(a) - dy{a) A dz(a)
+ n¥(a) - d2(a) A dz(a)
+ n¥(a) - dz(a) A dy(a),

it is not true, for example, that
nl(a) - w = dy(a) A dz(a).

The two sides give the same result only when applied to
vw € M,.

A few remarks should be made to justify the definition of
length and surface area we have given. If ¢: [0,1] — R" is
differentiable and ¢([0,1}) is a one-dimensional manifold-with-
boundary, it can be shown, but the proof is messy, that the
length of ¢({0,1]) is indeed the least upper bound of the lengths
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FIGCURE 5-9.
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A surface containing 20 triangles inscribed in a por-

1f the number of triangles is tncreased suficiently, by

making the bases of triangles 3, 4, 7, B, eic., sufficiently small, the total area
of the inscribed surface can be made as large as desired.
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of inscribed broken lines. If ¢: [0,1}* — R", one naturally
hopes that the area of ¢([0,11?) will be the least upper bound of
the areas of surfaces made up of triangles whose vertices lie in
¢([0,1]?). Amazingly enough, such a least upper bound is
usually nonexistent—one can find inscribed polygonal surfaces
arbitrarily close to ¢([0,1]%) with arbitrarily large area! This
is indicated for a cylinder in Figure 5-9. Many definitions
of surface area have been proposed, disagreeing with each
other, but all agreeing with our definition for differentiable
surfaces. For a discussion of these difficult questions the
reader is referred to References [3] or [15].

Problems. 5-23. 1f M is an oriented one-dimensional manifold in
R” and ¢: [0,1] = M is orientation-preserving, show that

/ c*(ds) = / VIEYR + - - T
10.11 (0.1]

5-24. 1f M is an n-dimensional manifold in R®, with the usual orienta-
tion, show that dV = dz! A - - - A dz", s0 that the volume of
M, as defined in this section, is the volume as defined in Chapter 3.
(Note that this depends on the numerical factor in the definition of
w A

5-25. Generalize Theorem 5-6 to the case of an oriented (n — 1)-dimen-
sional manifold in R™,

5-26. (a) If f: [a,b] » R is non-negative and the graph of f in the
zy-plane is revolved around the z-axis in R3 to yield a surface M,
show that the area of M is

b
[ vTF O™

(b) Compute the area of 8%

5-27. If T: R* — R™ is a norm preserving linear transformation and M
is a k-dimensional manifold in R*®, show that M has the same
volume as T(M).

5-28. (a) If M is a k-dimensional manifold, show that an absolute
k-tensor |dV| can be defined, even if M is not orientable, so that
the volume of M can be defined as IMMV‘-

() Ife:[0,2¢) X (—~1,1) — R? is defined by ¢c(uv) =

(2 cos u + vsin(u/2)cos u, 2sinu + v sin(u/2) sin u, v cos u/2),

show that ¢({0,2x] X (—1,1)) is a M&bius strip and find its area.
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5-29.

5-30.

5-31.

If there is a nowhere-zero k-form on a k-dimensional mauifold M,
show that M is orientable.
(8) If f: [0,1] — R is differentiable and ¢: {0,1] — R?is defined by
elz) = (z,f(z)), show that ¢([0,1]) has length ﬂ, V1 4+ ()2

(b) Show that this length is the least upper bound of lengths of
ingeribed broken lines. Hint: f 0 =t <1 < -+ Sty =1,
then

le(t) — cttic)| = V(6 — ti_D)? + (J(t) ~ f(ti-1))?
=N (i — tii)? + ' (8) 2t — tizy)?

for some 8; € {ti_1,L].
Consider the 2-form w defined on R? — 0 by

zdy Adz + yde Adz + 2dz Ady
@+t +

(a) Show that w is closed.
(b) Show that

vt Xw,p)
w(p)(vp.wp) = ——m,—'

Forr > 0let 8%(r) = {z € R%: |z| = r]. Show that w restricted
to the tangent space of 8%(r) is 1/r? times the volume element,
and that fs'(,) w = 4r. Conclude that wis not exact. Neverthe-
less we denote w hy dO since, as we shall see, d© is the analogue of
the 1-form dé on R2 — 0.

(c) If v, is a tangent vector such that vy = Ap for some A & R
show that de(p)(v,,w,;) = 0 for all w,. If a two-dimensional
manifold M in R? is part of a generalized cone, that is, M
ig the union of segments of rays through the origin, show that
fM do = 0.

(d) Let M C R® — 0 be a compact two-dimensional manifold-
with-boundary such that every ray through 0 intersects M at most
once (Figure 5-10). The union of those rays through 0 which
intersect M, isasolid cone C(M). The solid anglesubtended by M
is defined as the area of C(M) M 82, or equivalently as 1/r? times
the area of C(M) N 8%(r) for r > 0. Prove that the solid angle
subtended by M is UM d9|. Hint: Choose r small enough so
that there is a three-dimensional manifold-with-boundary N (as in
Figure 5-10) such that 8N is the union of M and C(M) N 8%(r),
and a part of a generalized cone. (Actually, N will be a manifold-
with-corners; see the remarks at the end of the next section.)
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C(M)

FIGURE 5-10

5-32. Let f, g: [0,1]] = R® be nonintersecting closed curves. Define
the linking number l(f,g) of f and g by (¢f. Problem 4-34)

-1
l(f:g) = : fde-

cfe

(a) Show that if (F,G) is a homotopy of nonintersecting closed
curves, then [(Fo,Go) = [(F1,Gh).
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5-33.

(b) If #(up) = |f@) — g(v)| show that

1 1
—_l//—l-—-A(uv)dudv
’(""’"Tno J w4

where
') (w) (2" (u) (8 (u)
Afuy) = det( @")'(v) 0%’ (v) @ )
SHw) —g'v) i) — ) ) - ')

(c) Show that I(f,g) = 0 if / and g both lie in the zy-plane.
The curves of Figure 4-5 (b) are given by f(u) = (cos u, sin u, 0)
and g(v) = (1 +cosv, 0, sinv). You may easily convince
yourself that calculating !(f,g) by the above integral is hopeless in
this case. The following problem shows how to find L(f,g) without
explicit caleulations.

(a) If (a,b,c) € R? define

(z-a)dy Adz + (y — b)dz Adz + (2 —c)d.z/\dy_
@~a)!+(y —b)+ (z — )2

de(a.b,c) =

If M is a compact two-dimensional manifold-with-boundary in
R?*and (a,b,c) & M define

Qa,b,c) = ]dB(a_b,c).
M

Let (a,b,c) be a point on the same side of M as the outward normal
and (a',b',¢') a point on the opposite side. Show that by choosing
(a,b,¢) sufficiently close to (@'b',¢') we can make Q(ab,c) —
Q(a’,b',c') as close to —4r as desired. Hini- First show that if
M = 3N then Q(ab,c) = —4x for (a,b,c) E N — M and Q(a,b,c) =
0 for (a,b,c) & N.

(b) Suppose f([0,1]) = aM for some compact oriented two-
dimensional manifold-with-boundary M. (If f does not intersect
itself such an M always exists, even if fis knotted, see 6], page 138.)
Suppose that whenever g intersects M at z the tangent vector v of
gis not in M,. Let n* be the number of intersections where v
points in the same direction as the outward normal and a— the
number of other intersections. If n = n* — n— show that

-1
= — dQ.
" 4 /
g



134 Calculus on Manifolds

(¢) Prove that

D10a,b,c) = / (y — bdz — (z — e)dy
1

rs

(z—cdz — (x — a)dz

DoQ(a,b,c) = 3

(z —a)dy — (y — b)d:u'

Dia,be) = R

r

where r(z,5,2) = |(z,,2)].

(d) Show that the integer n of (b) equals the integral of Prob-
lem 5-32(b), and use this result to show that i(f,g) = 1if fand g
are the curves of Figure 4-6 (b), while I(f,g) = 0 if f and ¢ are the
curves of Figure 4-6 (¢). (These results were known to Gauss
[7). The proofs outlined here are from [4] pp. 409-411; see also
[13], Volume 2, pp. 41-43.)

THE CLASSICAL THEOREMS

We have now prepared all the machinery necessary to state and
prove the classical ‘“‘Stokes’ type” of theorems. We will
indulge in a little bit of self-explanatory classical notation.

5-7 Theorem (Green’s Theorem). Let M C R?be a com-

pact two-dimensional manifold-with-boundaery. Suppose that
a,8: M — R are differentiable. Then

,[adx+ﬁdy= /(Dlﬁ—Dga)da:/\dy
L]

it

a8 da
// <:97= - 6y> dz dy.
M

(Here M is given the usual orientation, and M the induced
orientation, also known as the counterclockwise orientation.)

Proof. This is a very special case of Theorem 5-5, since

d{adz + Bdy) = (D18 — Dae)dz A dy. |
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5-8 Theorem (Divergence Theorem). Let M C R3 be a
compact three-dimensional manifold-with-boundary and n the
unil outward normal on M. Let F be a differentiable vector field
on M. Then

M[divpdv = “[ (Fn)dA.

Thts equalion is also wrillen in lerms of three differentiable func-
tions a,B,y: M — R:

[ E+2 42 ar - [[ et s +wmas
ox oy 0z
M aM

Proof. Define won M by w = Fldy Adz+ F*dz A dz +
F¥dx A dy. Then dw = divF dV. According to Theorem
5-6, on M we have

nldA =dy A dz,
n*dA = dz A dz,
nddA = dr A dy.

Therefore on 9M we have

(FnydAd = F'n'dA + F*n?dA + Find dA
Fldy Adz + F¥dz A de + FPdz A dy

= w.

Thus, by Theorem 5-5 we have

M[dideV=M/dw= fw=M[<F,n>dA. 1

oM

5-9 Theorem (Stokes’ Theorem). Let M C R3 be a com-
pact oriented two-dimensional manifold-with-boundary and n the
unit outward normal on M delermined by the orientation of M.
Let M have the induced orientation. Let T be the vector field on
OM with ds(T) = 1 and let F be a differentiable veclor field in
an open set containing M. Then

M/ (X ) mydd = }[ (F,T ds.
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This equation i8 sometimes writlen

[ad:c+ﬁdy+-ydz=

aM

‘ (8 _ 98 z(a_“_a_‘f a(ié_a_“]
f/[n (ay 6z)+n 9z O T 9z Iy as.
M

Proof. Define w on M by w=F'dz+ F?dy + F*de.
Since V X F has components D,F* — D3F?, D, F! — D\F?,
D\F?* — D,F}, it follows, as in the proof of Theorem 5-8, that
on M we have
(VX F),n)dA = (DoF?® — D3F¥dy A dz
+ (D3F' — D\F¥dz A dx
+ (D\F? — DoFl)dx A dy

= dw.

On the other hand, since ds(T") = 1, on M we have

T!ds = dz,
T? ds = dy,
T3ds = dz.

(These equations may be checked by applying both sides to
T., for £ € M, since T, is a basis for (3M)..)

Therefore on M we have

(F,Tyds = F'T ds + F*T*ds + F*T* ds
= Fldz + Fldy + F3dz

= w.

Thus, by Theorem 5-5, we have

J<(V><F),n)dA= [do= [w= [(FDras |
M M

M

Theorems 5-8 and 5-9 are the basis for the names div F and
curl F. If F(z) is the velocity vector of a fiuid at = (at some
time) then [am (F,n)d4 is the amount of fiuid “diverging”’
from M. Consequently the condition divF = 0 expresses
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the fact that the fiuid is incompressible. If M is a disc, then
f“{ (F,T) ds measures the amount that the fiuid curls around
the center of the disc. If this is zero for all discs, then Vv X F
= 0, and the fiuid is called irrotational.

These interpretations of div F and curl F are due to Maxwell
[13). Maxwell actually worked with the negative of div F,
which he accordingly called the convergence. For V X F
Maxwell proposed ‘“‘with great diffidence” the terminology
rolation of F; this unfortunate term suggested the a.bbrewa.t:on
rot F' which one occasionally still sees.

The classical theorems of this section are usually stated in
somewhat greater generality than they are here. For exam-
ple, Green's Theorem is true for a square, and the Divergence
Theorem is true for a cube. These two particular facts can
be proved by approximating the square or cube by manifolds-
with-boundary. A thorough generalization of the theorems of
this section requires the concept of manifolds-with-corners;
these are subsets of R™ which are, up to diffeomorphism,
locally a portion of R* which is bounded by pieces of (k — 1)-
planes. The ambitious reader will find it a challenging exer-
cise to define manifolds-with-corners rigorously and to
investigate how the results of this entire chapter may be
generalized.

Problems. 534, Generalize the divergence theorem to the case of
an n-manifold with boundary in R™.
5-35. Applying the generalized divergence theorem to the set M =
{tE€ R iz] £a) and F(z) = z,, find the volume of S*! =
{z € R": [z| = 1} in terms of the n-dimensional volume of B, =
{z € R™: |z| < 1}. (This volume is »%/(n/2)! if n is even and
20D/ (=Di2/1 . 3. 5. . .pifnisodd.)
5-36. Define F on R® by F(z) = (0,0,cz*), and let M be a compact
three-dimensional manifold-with-boundary with M C [z: z° <
0}. The vector field F may be thought of as the downward pres-
sure of a fiuid of density ¢ in (z: 2% < 0}. Since a fiuid exerts
equal pressures in all directions, we define the buoyant force on M,
due to the fiuid, as -faM (Fyn)dA. Prove the following theorem.
Theorem (Archimedes). The buoyant foree on M is equal to the
weight of the fiuid displaced by M.
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Absolute differential form, 126
Absolute tensor, 126
Absolute value, 1

Algehra, Fundamental Theorem of|,

105

Alternating tensor, 78
Analytic function, 105
Angle, 4

preserving, 4

solid, 131
Approximation, 15
Archimedes, 137
Area, 56

element of, 126

surface, 126, 127

Basis, usual for R”, 3
Bilinear function, 3, 23
Boundary
of a chain, 97, 98
of a manifold-with-boundary,
113

Boundary, of a set, 7
Buoyant force, 137

Cauchy Integral Formula, 106

Cauchy Integral Theorem, 106

Cauchy-Riemann equations,
105

Cavalieri’s principle, 62

Chain, 97, 100

Chain rule, 19, 32

Change of variable, 67-72

Characteristic function, 55

Closed curve, 106

Closed differential form, 92

Closed rectangle, 5

Closed set, 5

Compact, 7

Complex numbers, 104

Complex variables, 105

Component function, 11, 87

Composition, 11

Cone, generalized, 131
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Consistent choices of orientation,
117

Constant function, 20
Constraints, 122
Content, 56
Content zero, 51
Continuous differential form, 88
Continuous function, 12
Continuous vector field, 87
Continuously differentiable, 31
Convergence, 137
Coordinate condition, 111
Coordinate system, 111

polar, 73
Counterclockwise orientation, 134
Cover, 7
Cross product, 84
Cube

singular, 97

standard n-cube, 97
Curl, 88, 137
Curve, 97

closed, 106

differentiable, 96
c”, 26

Degenerate singular cube, 105
Derivative, 16
directional, 33
partial, 25
higher-order (mixed), 26
second-order (mixed), 26
Diffeomorphism, 109
Differentiable function, 15, 16,
105
continuously, 31
Differentiable curve, 96

Differcntiable differential form, 88

on a manifold, 117
Differentiable vector field, 87
on a manifold, 115
Differentiable = C*, 88
Differential, 91
Differential form, 88
absolute, 126
closed, 92
continuous, 88
differentiable, 88
exact, 92

Index

Differential form, on a manifold,
117
differentiable, 117
Dimension
of a manifold, 109
of a manifold-with-boundary,
113
Directional derivative, 33
Distance, 4
Divergence of a field, 88, 137
Divergence Theorem, 135
Domain, 11
Dual space, 5

Element of area, 126

Element of length, 126

Element of volume, see Volume
element

End point, 87

Equal up to nth order, 18

Euclidean space, 1

Exact differential form, 92

Exterior of a set, 7

Faces of a singular cube, 98
Field, see Vector field
Form, see Differential form
Fubini's Theorem, 58
Function, 11
analytic, 105
characteristic, 55
component, 11, 87
composition of, 11
constant, 20
continuous, 12
continuously differentiable, 31
C”, 26
differentiable, 15, 16, 105
homogeneous, 34
identity, 11
implicitly defined, 41
see also Implicit Function
Theorem
integrable, 48
inverse, 11, 34-39
see also Inverse Function
Theorem
projection, 11
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Fundamental Theorem of Algebra,
105

Fundamental Theorem of Calcu-
lus, 100-104

Gauss, 134
Gencralized cone, 131
Grad f, 96

Graph, 11, 115
Green’s Theorem, 134

Half-space, 113
Heine-Borel Theorem, 7
Homogeneous function, 34
Homotopy, 108

Identity function, 11
Implicit Function Theorem, 41
Implicitly defined function, 41
Incompressihle fluid, 137
Independence of parameteriza-
tion, 104

Induced orientation, 119
Inequality, see Triangle inequality
Inner produet, 2, 77

preserving, 4

usual, 77, 87
Integrable function, 48
Integral, 48

iterated, 59, 60

line, 101

lower, 58

of a form on a manifold,

123-124

of a form over a chain, 101

ovcer a set, 55

over an open set, 65

surface, 102

upper, 58
Integral Formula, Cauchy, 106
Integral Theorem, Cauchy, 106
Interior of a set, 7
Inverse function, 11, 34-39
Inverse Function Theorem, 35
Irrotational fluid, 137
lterated integral, 59, 60

Jacobian matrix, 17
Jordan-measurable, 56
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Kelvin, 74

Lac locus, 106
Lagrange's method, 122
Lagrangian multiplier, 122
Leibnitz's Rule, 62
Length, 56, 126
element of, 126
Length = norm, 1
Limit, 11
Line, 1
Line integral, 101
Linking number, 132
Liouville, 74
Lower intcgral, 58
Lower sum, 47

Manifold, 109
Manifold-with-boundary, 113
Manifold-with-corners, 131, 137
Mathematician {old style), 74
Matrix, 1

Jacohian, 17

transpose of, 23, 83
Maxima, 26-27
Measure zero, 50
Minima, 26~27
Moébius strip, 119, 120, 130
Multilinear function, 23, 75
Multiplier, see Lagrangian multi-

plier

Norm, 1

Norm preserving, 4

Normal, see Qutward unit normal
Notation, 3, 44, 89

One-one (1-1) function, 11

One-sided surface, 121

Open cover, 7

Open rectangle, 5

Open set, 5

Orientable manifold, 119

Orientation, 82, 119
consistent choices of, 117
counterclockwise, 134
induced, 119
usual, 83, 87, 121
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Orientation-preserving, 118, 123
Oriented manifold, 119
Orthogonal vectors, §
Orthonormal basis, 77
Oscillation, 13

Outward unit normal, 119, 120

Parameterization, independence of,
104
Partial derivative, 25
higher-order (mixed), 26
secand-order (mixed), 26
Partition
of a closed interval, 46
of a closed rectangle, 46
of unity, 63
Perpendicular, 5
Plane, 1
Paincare Lemma, 94
Point, 1
Polar coordinate system, 73
Polarization identity, 5
Pasitive definiteness, 3, 77
Product, see Cross product, Inner
product, Tensor preduct,
Wedge product
Projection function, 11

Rectangle (closed or open), 5
Refine a partition, 47
Rotation of F, 137

Sard’s Theorem, 72

Self-adjoint, 85

Sign of a permutation, 78

Singular n-cube, 97

Solid angle, 131

Space, 1

see also Dual space, Euclidean

space, Half-space, Tangent
space

Sphere, 111

Standard n-cube, 97

Star-shaped, 93

Indez

Stokes’ Theorem, 102, 124, 135
Subordinate, 63

Subrectangles of a partition, 46
Surface, 127

Surface area, 126, 127

Surface integral, 102
Symmetrie, 2, 77

Tangent space, 86, 115
Tangent vector, 96
Tensor, 75
absolute, 126
alternating, 78
Tensor product, 75
Torus, 115
Transpose of a matrix, 23, 83
Triangle inequality, 4

Unit outward normal, 119, 120

Upper integral, 58

Upper sum, 47

Usual, see Basis, Inner product,
Orientation

Variable
change of, 67-72
complex, see Complex variables
function of n, 11 |
independent of the first, 18
independent of the second, 17
Vector, 1
tangent, 96
Vector field, 87
continuous, 87
differentiable, 87
on a manifold, 115
continuous, 87
differentiable, 115
Vector-valued funetion, 11
Volume, 47, 56, 126
Volume elemeut, 83, 126

Wedge product, 79
Winding number, 104



Addenda

1. It should be remarked after Theorem 2-11 (the Inverse
Function Theorem) that the formula for ™! allows us to con-
clude that f~1is actually continuously differentiable (and that
itis C7 if f is). Indeed, it suffices to note that the entries of
the inverse of a matrix A are C* functions of the entries
of A. This follows from “Cramer’s Rule’: (47, =
(det A¥)/(det A), where A" is the matrix obtained from A
by deleting row ¢ and column j.

2. The proof of the first part of Theorem 3-8 ¢an be simpli-
fied considerably, rendering Lemma 3-7 unnecessary. It
suffices to cover B by the interiors of closed rectangles U; with
Z2v(U;) < e, and to choose for each z € 4 — B a closed
rectangle V:, containing r in its interior, with My (f) —
my (f) <& If every subrectangle of a partition P is con-
tained in one of some finite collection of U;’s and V,’s which
cover A, and |f(z)] < M forall zin 4, then U(f, P) — L(J, P)
< ev(A) + 2Me.

The proof of the converse part contains an error, since
M (f) — m(f) 2 1/n is guaranteed only if the interior of 8
intersects B1;,. To compensate for this it suffices to cover the
boundaries of all subrectangles of P with a finite collection of
rectangles with total volume < €. These, together with g,
cover B);,, and have total volume < 2e.

145
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3. The argument in the first part of Theorem 3-14 (Sard’s
Theorem) requires a little amplification. If U C 4 is a closed
rectangle with sides of length I, then, because U is compact,
there is an integer N with the following property: if U is
divided into N" rectangles, with sides of length I/N, then
|Dig*(w) — Dyg*(z)] < e/n? whenever w and z are both in one
such rectangle S. Given z & 8, let f(2) = Dg(z)(z) — g¢(2).
Then, if z € §,

|Difi(2)| = |Dig*(2) — Dsg'(a)| < e/m.
So by Lemma 2-10, if z,y &€ §, then

IDg(2)(y — 2) — 9(v) + 9(@)| = |1G) — f(z)| < ez — |
< eV (I/N).

4. Finally, the notation A*(V) appearing in this book is
incorrect, since it conflicts with the standard definition of
A¥(V) (as a certain quotient of the tensor algebra of V). For
the vector space in question (which is naturally isomorphic to
A¥(V*) for finite dimensional vector spaces V) the notation
Q¥(V) is probably on the way to becoming standard. This
substitution should be made on pages 78-85, 88-89, 116, and
126-128.



147 Addenda

2-13 Theorem (corrected). Let [ : R" — R¥ be continuously differentiable
in an open set conlaining a, where p < n. If f(a) = 0 and the p x n matriz
(D;fi(a)) has rank p, then there is an open set A C R™ containing a and a
continuously differentiable function h : A — R" with continuously differentiable

inverse such that hia) =0 and

fO h—l(]‘_l~ . ‘\,“,n) _ (.13717P+1, o ..1»’").





