‘OECTOR
ANALYSIS

M.L. KRASNOV
A.l. KISELEV
G.I. MAKARENKO

MR SR UBCLES H B RIS
MOSCOW

EIRE
NS




/cTBO
NN
d,“.a\w



M. /. KPACHOB
A. H. KUICENEB
r. H. MAKAPEHKO

BEKTOPHBIA AHAJIU3

M3JATEABCTBO «HAYKA»
MOCKBA



M.L.KRASNOV
A.l. KISELEV
G.l. MAKARENKO

‘OECTOR ANALYSIS

Translated from the Russian

by
GEORGE YANKOVSKY

MIR
PUBLISHERS
MoOscow



First published 1981
Second printing 1983

Ha aneaullcron asuxe

© Uspateancreo «Hayxar, 1978
@© English translation, Mir Publishers, 1881



Preface 7

CONTENTS

CHAPTER I. THE VBCTOH FUNCTION OF A SCALAR

LI 1

o

oo e e

The odognph ol a_vector functios

The limit and continuity of a vecwr function
of a scalar argument 1

The derivative of a vector function with re-
gpect to a scalar argumen

!nugndng a vector function of a scalar argu-
ment

The first and second derivatives of a vector with
respect to the arc length of a curve. The curva-
ture of a curve. The principal normal 27

. Osculating hne Binormal. Torsion. The Frenet

formulas

CHAPTER II. SCALAR FIELDS

Sec. 7. Examples of scalar fields. Level surfaces and
lovel lines 35

Sec. 8. Directional derivative 39
9. The gradient of a scalar field 44

Sec.

CHAPTER IIl. VECTOR FIELDS

=

Vector lines. Differential equations of vector

ines
. The flux of a vector field. Methods of calculating
ux
3 'l'lu flux of a vector thnn'ﬁo- closed surface.
Gauss-Os
.'fl“lu dlvlrgenu of a vecwr field. Solenoidal
. A line mugral in a vector field. The circulation

of a vector fiels
‘l'hakcurl (mhtion) ol a vector field 108
rem

The ind.pondenm of a line inugnl ol the path
of integration. Green’s formula



6 Contents

CHAPTER IV. POTENTIAL FIELDS
Sec. 18. Thad criterion for the potentiality of a vector

el
Sec. 19. Computing a line integral in a potential field 124

CHAPTER V. THE HAMILTONIAN OPERATOR
SECOND-ORDER DIFFERENTIAL OPER-
ATIONS. THE LAPLACE OPERATOR

Sec. 20. The Hamiltonian operator del 130

Sec. 21. Second-order differential operations. The Laplace
:lpenwr 135

Sec. 22. Vector potential 146

CHAPTER VI. CUBVILINBAR COORDINATES,
ASIC OPERATIONS OF VECTOR
ANALYSIS IN CURVILINEAR COOR-

Sec. 23. C\Irvilinen eoordimua 152
Sec. 24. Basic operations of vector analysis in curvilinear
coordinates 156
Sec. 25. The Laplace operator in orthogonal coordinates 174
ANSWERS 177
APPENDIX 1 184
APPENDIX II 188
BIBLIOGRAPHY 187
INDEX 188



PREFACE

A sound mathematical training for the modern engineer
is a sine qua non for attaining new heights in all aspects
of engineering practice. One of the areas of mathematics
that plays a big role in the mathematical education of
the engineer is vector analysis, which is now invariably
included in the curriculum of higher mathematics in
engineering colleges.

The present co]leouon of problems in vector ana]ysls

f probl d

the of an
for the course of vector analysis of engineering colleges.

Each section starts with a brief review of theory and
detailed solutions of a sufficient number of typical prob-
lems. The text contains 100 worked problems and there
are 314 problems left to the student. There are also a
certain number of problems of an applied nature that
have been chosen so that their analysis does not require
supplementary information in specialized fields. The
material of the sixth chapter is devoted to curvilinear
coordinates and the basic operations of vector analysis
in curvilinear coordinates. Its purpose is to give the reader
at least a few problems to develop the necessary skills.

The exposition in this text follows closely the lines
currently employed at the chair of higher mathematics
of the Moscow Power Institute.

The present text may be regarded as a short course in
vector analysis in which the basic facts are given without
proof but with illustrative examples of a practical nature.
Hence this problem book may be used in a recapitulation
of the essentials of vector analysis or as a text for readers
who wish merely to master the techniques of vector
analysis, while dispensing with the proofs of propositions
and theorems.

In compiling this problem book, the authors made
extensive use of material in published courses of vector
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b

leulus and coll bl Many p
we{'; made up by the Anthors themse]ves
o

d

f
day and evening dapanmenu at engmeenng colleges and
also for with a of
vector algebra and calculus as given in the first two years
of college study.

We would like to express our sincere gratitude to
Professor V. P. Gromov (the Moscow Krupskaya Pedagog-
jeal Institute), Professor A. V. Efimov and Associate
Professors 1. M. Petrov, B. I. Fridlender, and V. N. Zem-
skov (the Institute of Electronics) for their thorough
scrutiny of the manuscript of the book and for valuable
tuggestions and remarks that were made full use of in
she final editing.

G. I. Makarenko
Moscow-Dubna, 1977.



CHAPTER |

THE VECTOR FUNCTION
OF A SCALAR ARGUMENT

Sec. 1. The hodograph of a vector
function

Definition 1. A vector r is said to be the vector function
of a scalar argument t 1f each value of the scnlar taken
from the domain of values is iated with
a definite value of the vector r. This can be written as
follows:

r=r(t).
If the vector r is a function of the scalar argument ¢,
r=r(t),

then the coordinates z, y, z of the vector r are also func-
tions of t:

z=z(t), y=y®), z2=1z(t)

Conversely, if the coordinates of the vector r are func-
tions of ¢, then the vector r itself is also a function of ¢:

r=z)i+y@)i+z@)k

Thus, specifying a vector function r (¢) is the same as
specifying three scalar functions z (¢), y (¢), z (t).

Definition 2. The hodograph of the vector function
r (¢) of a scalar is the locus described by the
terminus of the vector r (t), as the scalar ¢ varies, when
the origin of the vector r (t) is fixed at a point O in space
(Fig. 1).

The hodograph of a radius vector r = r (t) of a moving
point is the trajectory L of that point. Some other line L,
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(Fig. 2) is the hodograph of the velocity v = v (t) of that
point. Thus, if a material point (particle) is in motion
around a circle with constant ve-
A locity, | v | = constant, then its
hodograph of velocities is like-
6@ wise a circle with centre at O,

< and with radius equal to | v |.
Example 1. Construct the ho-

0 s dograph of the vector r = ti+
tj + t%k.
Fig. 1 Solution. 1°. This construc-

tion may be carried out by using
points and setting up a table:

0 l 1 2 3 4

r’0| P4k | 2i-F2j44k | 343549k | 4i44j+16k

2°. Alternative solution. Denote by z, y, z the coordi-
nates of vector r; we have

z=1t y=t z=1t.

Eliminating the parameter ¢ from these equations, we
get equations of the surfacés y = z, z = 2%, the line L

Fig. 2

of intersection of which is what defines the hodograph of
the vector r (¢) (Fig. 3).
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11
1. Construct the hodographs of the following vectors:
(a) r=2i+t2j—1k.

(b) r=

o1 2 .
o e
(c) r=cost-i+sint¢-j+k.

e

/et
S
=

Fig. 3
(@ r=ti+oipiok

_ 2it24+(2—2)k
@ ="

Sec. 2. The limit and continuity
of a vector function of a scalar argument
Suppose a vector function r = r (¢) of a scalar argument
t is defined in some neighbourhood of the value t, of the
argument ¢, except perhaps for the value ¢, itself.
Definition 1. A constant vector A is said to be the
limit of the vector r (t), as t — t,, if for any & >0 there
is a 8§ >0 such that for all t 5= t, that satisfy the con-
dition | ¢ — ¢, | << § the following inequality holds true:

Irt)—AlI<e.
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As in the case of ordinary calculus, we write lim r (f) =
t=to

Geometrically (Fig. 4), this means that the vector
r () tends, as t — £,, to the vector A both in length and
in_direction.

Definition 2. A vector
@ (t) is said tobe infini-
tesimal, as t— t,, if
a(t) has alimit, as t —¢,,
and that limit is zero:

limea(t) =0,
=ty

or, what is the same
thing, if for any & >0
Fig. 4 there exists a § >0 such
that for all ¢ 7 t, that
satisfy the condition |t — ¢, |<C§, the inequality
|a(t) | <e holds true.
Example 1. Show that the vector @ (¢) = ti + sin ¢j is
infinitesimal when t— 0.
Solution. We have

le(8)] = [ti+ sin ¢ < |t] + |sin | <22,

From this it is evident that lf for every & >0 we take
8 =e/2,thenfor |t — 0 | < —e/2weluve|a(t)|<
<e. By the definition, this means that & (¢) is an infini-
tesimal vector when t—- 0.

2. Show that the limit of the modulus of a vector is
equal to the modulus of its limit (if the limit exists).
3. Demonstrate that for a vector function r (¢) to have
a limit A, as t — ¢,, it is necessary and sufficient that
r (1) be representable in the form

r)=A+a@),

where @ (¢) is an infinitesimal vector when ¢ — Z,.
4. Show that if the vector functions a () and b () have
limits as ¢t — ¢,

lima(t)=A, limb(t)=B
t=ty tty
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then their sum a (t) + b (¢) and their difference a (¢) —
— b (¢) also have limits as ¢t - ¢,, and

}il‘n @) £b())]=A<LB.
1o
5. Let
lima(t)=A, limb()=B,
=ty tty
Prove that
lim @(t),b(t))=(A,B),
where (a (), b (t)) ia a scalar product of the vector func-
tions a (¢) and b (z).
6. Lot
r@)=zWi+y®i+z0k A=ai+a+
+ agk.
Show that if }1::1 r(t)=A, then
~to
limz(t)=ay, limy(t)=g, limz(t)=a,.
t-ty -ty t=ty
Find the following limits:
7. lim (SRL g 2ty k).
t-0

. 1—}/1
8 lim (S g i 4K).

sint

9. lim (—I+mt j+‘+")

10. llm( sin¢ g Atoost i+cost ]+—-k).

1. hm (.";‘ |+——j+2k)

Dellnltlon 3. A vector function r = r (¢) defined in
some neighbourhood of the value t = ¢, is said to be
continuous when ¢ = ¢, i

limr () =r ().
tat
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In other words, r = r (t) is continuous for ¢ = ¢, if for
every & >0 there is a § >0 such that for all ¢ that
satisfy the condition |t — ¢, |<C8 the inequality
I v (t) — r (t) | < & holds true.
The hod h of a i vector f ion of a
scalar argument is a continuous curve.
12, Start with the familiar inequality |a— b | >
>|lal—|b]|] and d that the inui
of a vector function lmphes the continuity of its modulus.
Is the converse true?
13. Show that if a (¢) and b (¢) are continuous for ¢ = ¢,,
:hen the vector function a (t) 3= b (#) is also continuous
or ¢ = I,
14. A vector function a (f) + b (f) is continuous for
t = to. Does it follow from this that the vectors a (t)
and b (¢) are also continuous when ¢ = ¢,?
15. Prove that if a (t) and b (¢) are continuous vector
functions, then their scalar product (a (¢), b (¢)) and
vector product [a (¢), b (¢)] are also continuous.

Sec. 3. The derivative of a vector
function with respect to
a scalar argument

Suppose a vector function r = r (¢) is defined for all ¢
on the interval (t,, ;). Take some value ¢ € (¢, ¢;), then
give ¢t an increment At such that t 4 At € (¢, ¢,) and find
the corresponding increment Ar =r (¢ 4 At) —r (¢) in
the vector function r (£). Now consider the ratio Ar/At.

Definition. If, as At — 0, the ratio Ar/At has a limit,
then that limit is called the derivative of the vector
function r = r (¢) with respect to the scalar argument ¢
for a given value ¢ of the argument and is denoted as
dr (t)/dt or ¢’ () or r (). Thus,

ar(® _ . Ar rt+A)—r()
AL T e

In this case the vector function r = r (¢) is said to be
differentiable.
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16. Show that if the vector function r =r () has a
derivative for some value ¢ of the argument, then it is
continuous for that value ¢.

The derivative of a vector function r () of a scalar
argument ¢ is a vector directed along the tangent to the

dr
t

Fig. 5

hodograph of the original vector at the point under con-
sideration (Fig. 5). The vector dr/dt is in the direction
of the terminus of the vector r () as it moves along the
hodograph when the parameter ¢ increases.

Suppose r = r (t) is the radius vector of a moving
point. Then the vector v = dr/dt is the velocity vector
of that point.

Suppose

r=z@i+y®i+z@k

where the functions z (¢), y (¢), z (¢) are differentiable at
the point ¢. Then there exists dr/dt for that value of ¢ and

dr _dz . dy . ds
= itgitgk 1)

Example 1. Find dr/dt if r = ia cos ¢t + jbsin ¢ (the
point is moving in an ellipse).
Solution. From formula (1),
dr.

= iasint + jbcost.
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By analogy with the differential of a scalar function,
the differential of a vector function r = r (t) is a vector dr
defined by the equality

de=35.a1,
where dt = At is the increment in the scalar argument .
As in the case of scalar functions,
Ar = dr + a-At,
where @ = a (¢, At)—> 0 as At — 0.

Basic rules for differentiating a vector function

Assume that all f\mcuons being consndered (bo'.h scalar
and vector) are and diff

1° If ¢ is a constant vector, then de/dt = 0.

2°. The derivative of a sum of vector functions is equal
to the sum of the derivatives of the summands:

1604 _ o, b

3% S a ector‘ af(t) is Itiplied b.
a scalar function m (¢) of the same scalar argument. Then
d(ma)  da  dm
% —maTare

o 252 = (0. 3)+ (5 p)
5% Ld;bl r 'b]+[°' dl]

(In this formula, the order of the factors a and b in the
right-hand member must be the same as that in the left-
hand member.)

Let us prove formula 4°. We set @ (t) = (a (t), b (¢)).
Give ¢ an increment Af; then, by the distributive prop-
erty, we have for the scalar product

Ap=¢ (t + At) — @ (t) = (a + Aa, b + Ab) — (a, b)
= (Aa, b) + (a, Ab) + (Aa, Ab),
‘whence

%%=(%'b)+(" At)+(At' b). @
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It is given that the functions a () and b () have deriva-
tives for the value ¢ of the argument and, hence, are
continuous for that vnl\le of t. ’l‘herefore

da
A',‘_,,T=T' ll'mo At _T' and hm Ab=0.

Passing to the limit in (2) as At — 0, we ohum

LG= (3 )+ (0 F)-

17. Given r = r(t) Find the derivatives:
d d a d di
@50 O (ng). ©Ox[ng]
18. Prove that if the modulus | r | of the vector function
= r(t) remains constant for all values of ¢, then dr/dt_| r.
What is the geomemcal meaning of this fact?
49 Prove that if e is a unit vector in the direction of
the vector E, then -
(e, de]=—;—l“‘§| 1,
20. Suppose
u=u@yn0it Us @y n)ituky s t)k.
where u;, us, ug are ly diffi iable fi
of their arguments, and z, y, z are continuously differentia-
ble functions of ¢. S_Ilgw that _
du _ " o u ds
'dT—ot"'.u dt+ .u o5 dr
21, Find the trajectory of mouon for which the radius
vector r (¢) of a moving point satisfies the condition
dr/dt = [a, rl], where a is a constant vector.
The derivative dr/dt of the vector function r (£) of a
scalar is a vector fi of the same
If there exists a derivative of dr/dt, then it is called the
second derivative and is denoted d’r/d:*. Generally,
arr 4 dnir
= (@), n=1.2
22. Given the radius vector of a point moving in space:
r{asint, —acost, bt?}
(t is time, and a and b are Find the hod
of velocity and acceleration.

h

2-910
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23. Given: r = acos wt + b sin ¢, where ®, a, b are
constants. Prove that

@ [r 5 ]=t0a,b1,

3,

@) S+otr=0.
24, Show that if r = ae®! + be©!, where a and b are
constant vectors, then d’r/dt — w’r = 0,
25. Show that the modulus of the differential of the
radius vector of a point is equal to the differential of
the length of the arc described by the point.
26. Suppose a = a (u) is a vector function of a scalar u,
where u in turn is a certain scalar function of the basic
scalar t. Assuming a (x) and u = u (¢) to be differentiable
the necessary number of times, find an expression for the
derivatives of the composite function da/dt, d®a/ds®.

Sec. 4. Integrating a vector function
of a scalar argument

Definition 1. We will say that the vector function A (f)
is the primitive of the vector function a (¢) when ¢, << t <
<ty if A (t) is differentiable and

=a(t), t€(tot).

Defini 2. T e collection of all pri f
of a(f) is termed the indefinite integral of .the vector
function of a scalar argument a = a (). As in integral
calculus, the indefinite integral of a vector function is

denoted by the symbol 5, and we have
S a(t)dt=A(t)+C,

where A (t) is one of the primitive functions of a (¢), and
C is an arbitrary constant vector.

The following properties hold true for integrals of
vector functions:

1° jun (t)dl=a.j|(t)dt (@ is a numerical constant).
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2 [@o+beya= famarx foear.

27. Show that if ¢ is a constant vector, and a (¢) is a
variable vector, then

j @ a@mydt=e, ja(:)d:),
S [e.a ()] dt=[e, j.(t) .ﬂ].
It
at)=a, ()i +as(t)i+as(t)k,
then
ja(t)dt=i j a () dt+i S at)dt+k j a@d. (1)

That is, the integration of a vector function reduces to
three ordinary integrations.

Example 1. Find the indefinite mtogral for the vector
function a(f) =icost+ jet +k

Solution. According to formula (l),

Sa(t)dt=iSwstdt+i Se"dH—kS dt=
=isint—jet+kt+e,

where ¢ is an arbnrary consnnt vector.
Find the i of the g vector f

28. l(t)=le‘|+sm3t-]-—-—k‘-.
29, a(t)— +te"i+cost k.
30. n(t)_coste"“‘ di—toost?.j+ k.
31. a(t)=%t’i—tsint~i+2‘k.

Let a vector function a (f) be defined and continuous
over a certain interval [t,, 7], which is the range of the
argument .

Definition 3. We define the definite integral of a vector
function a (t) on the interval [t,, 7] as the limit of the

2
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vector integral sums
n-t
=Z et el bl
as tha length At of the largest of the subintervals (¢, t.“]
, n— 1) into which the interval [z, T’

is paruuoned ‘tends to zero:
T n-t
Sa(l) dt=lim 3 a(n) Aty
to h=0

The following formula holds true:

T
fawa=am—Acw, @
fo

where A ﬁt) is some primitive for the function a (t) on the
interval [¢,, T
1f

at)=a,O1+ae®i+a@k
then

T T T T
Sa(l)dt=lSa‘(t)dt+)Sa,(t)dt-l-kja,(t)dt. @)
to t t

to
"2
Example 2. Compute f a(t)dt, where a(t)micost—
0

— jsin2¢.
Solution. By virtue of formula (3),
2

n/2 n/2
§ A(t)dt:ls wstdt—j]l sinzedt
0 [

—isine[—j (45—

Compute the following integrals:
P

sin 2t "ll? £
- =l—7l

32, Sa(t)dt, where a=sin?t cos ¢-i+cos?¢sint-j+k.
0
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a(t)dt, where a=k;—‘—-+

33, 1 | ket

34. | a(t)dt, where a=3mcosnt- i—l+l + 2tk.

4 Ot—me Ot

35. Ea(t)dt, where a= (2t +m)i+2sint-j+ k.

Example 3. An electric current I flows upwards along
an infinite wire that coincides with the z-axis. Find the
vector H of the magnetic il g s
field intensity set up by 2k
this cu;;ezn at an) u-fbiu-ary »
point (z, y, z) of space
(Fig. 6). M(T,4,2)

Solution. We consider a
sufficiently small element
PP, = d{ of thez-axis. By Riat
the Biot-Savart law, the ¢
intensity dH of the mag- I
netic field set up at point
M by the current flowing
through element di of the 0 7
wire coincides in direction {
with the vector product
[dg, r,), where df = PP,,
1df |=df, r=PM (see
Fig. 6). By this same law, the
modulus of the vector dH is

|dH| ==-sin (de ry) dt,

Fig. 6

N
where (d, r,) is the angle formed by the vectors df and r,.
Since
. /N
|[d§, rq]| =rdLsin (dg, ),
We can write

dH= ;I‘-[d{, r. )
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In order to obtain the desired vector H at the point M
we have to sum all vectors dH pertaining to distinct
elements PP, of the wire, that is, we have to integrate
the expression (4) over the whole z-axis:

+o

H= | idr. (5)
We have -

r, = OM — OP.
But

OM =zi + yj + 2k, OP =k,
and therefore
n=z+yi+ -0k

so that

n=In=V2+P2+E@—2=Ve+ (10

where p = }/22 T 4 is the distance of point M from the
axis of the wire.

For the vector product [d, r,] we have
iik
00dt
Ty z—

146, ry| = = —iydl+jzdl,

and formula (5) takes the form [the point M (z, y, 2) is
fixed, I = constant]

e & .

H=I(—yi+3) | prrgps ©

To compute the integral on the right-hand member of (6),
make the substitution 8
v éh,ra;w Q-

pdt
{—z=ptant, d§=-°m.



Sec. 4] Integrating a_vector function 23

We then have
4o a2

at — dt
5 FE—0T" S/z oS T [+ W P
e -5

o s
== j costdt=5.
-2
Thus, the intensity vector H of the magnetic field is
in our case given by

i s
H=f,—.(-yi+z1)
or
H=2(Ln,

where I = I-k is the current vector, r is the radius vector
of point M (z, y, z) of the field, and p is the distance of
M to the axis of the wire.

Example 4. The motion of an electron in a homogeneous
magnetic field.

1°. Suppose a magnetic field H is set up in some region
of space; let it be constant in magnitude and direction
(a homogeneous field). Suppose at time ¢t = ¢,, an elec-
tron enters the field with an initial velocity v,. Determine
the path the electron will take.

Solution. First suppose the vector v, is perpendicular
to H and that the initial position of the electron is at
point M. Choose the origin O at an arbitrary point of the
plane P passing through M, at right angles to the vector H
(Fig. 7). Let the initial radius vector OM, be r,, let r be
theradius vector of the electron at the current instant of
time ¢, and let v be the instantaneous velocity at that
instant. The basic differential equation of motion is

m%=l".

It will be recalled that the force F acting at time ¢ on the
electron by the magnetic field is

= —e¢, [H, V],
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where e, is the absolute value of the electron charge.
Thus,

mSE = ey (v, H). @

At every instant ¢, the force F is perpendicular to the
direction of velocity and to the direction of the field H;

Fig. 7

at every instant, it will force the electron to deviate from
a rectilinear path and to describe a certain curvilinear
trajectory.

Let us rewrite (7) as

m%=e,,[j—:, H]

and integrate from ¢, to t with respect to ¢. This yields

mv — mv, = e, [r, H — ¢ylr,, HI
or
mv = e, [r, H + (mv, — ¢, [r,, HI). ®)

Now choose a coordinate origin O’ such that the term in
parentheses in the right-hand member of (8) vanishes, that

is, so that
€ [rg, Hl = mv,. 9)
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From (9) it follows that the initial vector r, must be

perpendicular to the vector v, and must lie on the straight

line M K, which is perpendicular to the plane of the

vectors v, and H. By virtue of (9), the modulus of the

vector ro must satisfy the relation
elrl-|H]=m|v,l,

‘whence

_ mlIvol
Irol =24t (10)

This determines the position of the new origin O’. Relative
to this origin, equation (8) is rewritten thus:

mv = e, [r, H] 1)
or

mS=colr. H]. 12
From equation (11) it follows that the trajectory of the
electron is a plane curve lying in the plane P because at
every instant the vector v is perpendicular to H. Now take
the scalar product of both sides of (12) by r:

m (v, 90) = e (e, Ir. HY). (13)
The mixed product in the right-hand member of (13)

is zero, so that
dr
(r-5) =0
d

%(r’):O or o (r8) =0, that is, r2=constant.

whence

This is the equation of a circle lying in the plane P with
centre at the chosen point O’. The radius of the circle is
found from formula (10) since the initial point M, must
also lie on that circle. Thus, we finally have
r=ro=2ll. (10)
Thus, if an electron enters a homogeneous magnetic
field H with an initial velocity v, at right angles to H,
then it will describe, in that field, a circular trajectory
lying in the plane P perpendicular to H and passing
through the initia] point. The radius of the circle is
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given by formula (10) and its centre O’ lies on the straight
line perpendicular to the plane of the vectors v, and H;
note that a rotation from v, to H must be seen from point
O’ as a counterclockwise rotation.

From (10) it is evident that the radius r, of the circle
is inversely proportional to | H |. Thus, the greater the
intensity of the magnetic field, the greater the curvature
of the trajectory.

From formula (11),

mv = e, [r, H],
it is clear that if r is constant in modulus and is all the
itme perpendicular to H, then also the velocity v of the

v

Fig. 8

point will be constant in magnitude,
|v]|=v,= constant,

so that the electron is in uniform motion in the orbit.
The period of revolution 7 is

27r m
T=2 _gp_m .
vo o eTHI

(14)

This formula does not involve the initial velocity v,.
Thus, irrespective of the initial velocity v, which is
perpendicular to H with which the electron enters the
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homogeneous magnetic field H, it will perform a single
orbital revolution and always in the same time T.

2°. Now suppose an electron enters a homogeneous
magnetic field H with some initial velocity V that is
not perpendicular to the vector H. This velocity may
then be resolved into two components: the vector v,
at right angles to the field, and a vector v, parallel to the
magnetic field.

From the formula

F=eclV, Hl = ¢y lv,, HI

it is evident that the “twisting” force F is given only by
the perpendicular component v, and that it imparts to
the electron a rotational motion about the circle (centred
at 0') discussed above. As for the other component v,,
the electron will retain it by inertia and, besides having
a uniform circular motion, it will have a rectilinear and
uniform motion in the dlrecuon of H with a velocny
vy = | V]cosa. The bi of these

ynelds a helical curve with axis parallel to the vector H
and passing through the point O’ (Fig. 8).

Sec. 5. The first and second derivafives
of a vector with respect fo the arc length
of a curve. The curvature of a curve.
The principal normal

Consider a curve L in space. On it, choose a point M,
as the origin and also choose a direction along L that will
be regarded as positive. For a parameter, take the arc
length s reckoned from M, of the curve (Fig. 9). Then
the radius vector of a point M of the curve is

r=r(s).
With that choice of parameter,
e _ o
="
where t° is a unit vector directed along the tangent to

the curve L in the direction of increasing values of the
parameter s.
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If the vector r is given by the coordinates
r=zi+yj+ 2k,
then
_dz dy dz
v=gritgit gk
and

v

Since | | =1, the vector dv%/ds is orthogonal to the
vector 0.
The modulus of the vector dv®/ds is

4] x.

W) @) (F) =

Here, K is the curvature of the curve L at the point M.
The straight line having the direction of the vector
dv®/ds and passing through the point M of the curve is

Fig. 9

termed the principal normal of the curve at the point M.
Denoting the unit vector of that direction by n°, we have
dw

22 =Ko, )
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The inverse of the curvature of a curve at a given point
is called the radius of curvature of the curve at that point
and is denoted by R:

R=— l( .

Thus, formula (1) may be rewritten as

@ _dv¥ _n°

W@ =d T R°
From this,

1 dr

K=4=|

or

Er @+ &)y o

=%=l/l(ds’ 2+

Using (2), we can compute the curvature of a curve at any
point if the curve is specified by parametric equations in
which the parameter is the arc length s.

In the particular case of a plane curve, a circle of

radius a,
z=awsi,}
s
P
y=asing,
we have
oz 1. 0s dy_ 1. s
TP T T8 g E TNy

and formula (2) yields
= ]/al,cos’%+;‘rsin37’; =

This means that the curvature of a circle of radius a is
consltant and is equal to the inverse of the radius of the
circle.
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If the curve L is given by the vector-parametric equa-
tion r = r (), where the parameter ¢ is arbitrary, then

dr  d%
1_ |[F' F]’ 3
TTapE @)
&l
Formula (3) permits computing the curvature of the
curve at any point provided we have an arbitrary para-

metric specification of that curve.
Example 1. Compute the curvature of the helical curve

r = acosti+ asint-j+ htk.
Solution. Since

K=

%= —asint-i+acost-j+ hk,
9
% —acost-i—asint-j,
the vector product
3 i k
[%_ %‘—:J= —asint  acost h
—acost —asint0
=ahsint-i—ahcost-j+ a%k.
Consequently,

(4 55| varrs, |g]-verem

By virtue of (3),

or
R= “—": Lo constant.
Thus, a helical curve has a constant radius of curvature.
Find the radius of curvature of each of the given curves:
36. r = Incost-i + Insin¢j + V2t-k.
37. r = 3 + 28,
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38.r=3%+ (3t — ) j + 2k for t =1.

3. r=a(ost+tsint)i+a(sint —tcost)j

for t = n/2.

40. r = a cosh t-i + asinh ¢-j + atk at any point t.

Sec. 6. Osculating plane. Binormal.
Torsion. The Frenet formulas

The plane passing throug[the tangent line and principal
normal to a given curve L at a point M is termed the
osculating plane at the point M.

For a plane curve, the osculating plane coincides with
the plane of the curve.

If the vector r =r () has a continuous deriyative
dr/dt in the neighbourhood of a point t, and, besides, a
Gecond derivative d’r (f,)/dt? such that

[EXCREICN TS

then at the point ¢t = ¢, there is an osculatmg plane ‘o
the curve r = r (¢) whose vector equation is

(P—l(to) [dr(’o) d’r(m)J) 0,

where p = p (t) is the radius vector of the current point
of the plane.

The normnl to the curve at the point M, which normal

to the ing plane of the curve at

that pomt, is callad the binormal of the curve at the given
point

Denote by b° the unit vector of the binormal oriented
so that the vectors t°, n° b form a right-handed trihedral
(Fig. 10). Then

bo* =1, b=z, n.
For the derivaﬁve db/ds we get
dn®
bkt
The vector db%ds is perpendncular both to the vector ¥°
and to the vector bY, that is, it is collinear with the vec-
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tor n® Set
|-+
ds | T°
We then have
b _ 1o
&=

The quantity 1/T is termed the torsion of the given
curve, and T is called the radius of torsion of the curve.

The torsion of a curve
is given by the formula
dr d¥r  dr
T=Rle @ )
where the symbol (a, b, ¢)
denotes a mixed product of
the vectors a, b, ¢, that is,
(a, b, ¢) = (a, [b, ¢l).

For the case where the
curve is given by the vec-

Fig. 10 tor-parametric equation r =
=r (t), we have
(&, &, 2
1 _\dt>ao> 1)
T ar dar |z’
% ]I

Example 1. Find the torsion of the helical curve
r=acost-i-+ asint-j+ htk.
Solution. We find the derivatives of the given vector:

:—:= —asint-i+acost-j+ hk,

—acost-i—asint.j,

:—:’;=asint~i—awst~i.
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The mixed product of these vectors is
—asint acost h
=|—acost —asint 0
asint —acost 0
In example 1, Sec. 5, we found that
|[% ‘fi—’l',-] ® = a2 (a2 h2).
Using (1), we ubuin‘ for the torsion

dr  dir d’r)

—_— = a?
FTAT T =ah.

Thus, the torsion of a helical curve is the same at all
its points.

Example 2. Write the equation of the dsculating plane
at the point ¢ = 0 of the helical curve

r=acost i+ asint-j+ htk.

Solution. We find the values of the derivatives of the
given vector and its derivatives dr/dt and d’r/dt* at the
point ¢ = 0:

r@=ai, L _gjpa, LO_ 4
Consequently (see example 1, Sec. 5),

dsr (0) N
[0 450 |- —arrox
The vector equation of the osculating plane is

(pmr, 40, 22) o

or
{p — ai, —ahj + a%k) = 0.

Since the radius vector of the current point of the osculat-
ing plane p = zi + yj + zk, it follows that by passing
to coordinate notation we obtam an equation of the
desired plane in the form hy — az = 0.

Formulas expressing the denvanves of the vectors
70, b, n° are called Frenet formulas:

a0 _ 1 b _ 4 o dn® 1

1
=1go, =1 S TP J N X )
n’, 7% ) be.

& TR ds R T

3-910
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41. Write down the equation of the osculating plane at
the point ¢ = 2 of the curve

r=timtj+ 5 0k,
42. Write down the equation of the osculating plane at
the point ¢t =0 of the curve
r=ei+eti+ YV 2tk
43. Find the torsion at the point ¢ = 0 of ‘the curve
r=c¢ costi+esintj+ ek

44. Find the torsion at any point ¢ of the curve

r = acosh t-i + asinh t-j + atk.



CHAPTER I
SCALAR FIELDS

Sec. 7. Examples of scalar fields.
Level surfaces and level lines

Definition. If a value of a certain quantity is defined
at every point of space or a portion of space, then we say
that the field of the given quantity has been specified.v

The field is termed a scalar field if the quantity in
question is a scalar quantity, that is, if it is fully de-
scribed by its numerical value.-

Examples of scalar fields are: a temperature field, an
electrostatic field.

Specifying a scalar field is accomplished by specifying
the scalar function of a point M:

u = f(M).
If a Cartesian coordinate system zyz is introduced in
space, we have
u="f(zy 2.
Geometrically, a scalar field is characterized by a
level surface; this is a locus of points at which the scalar

function of the field assumes the same value. The level
surface of a given field is defined by the equation

f(z, y, 2) =C, where C = constant.

In the case of a temperature field set up in a homo-
geneous and isotropic medium by a point source of heat,
the level surfaces are spheres centred at the source (this
is a central-symmetric field).

3
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In the case of an infinite uniformly heated wire, the
level surfaces (isothermic surfaces) are circular cylinders
whose axes coincide with that of the wire.

Example 1. Construct the level surfaces of the scalar

field
u=2z+ 2y + 3z.
Solution. The level surfaces are given by the equation
z+ 2y + 3z =C, where C = constant.
This is a one-parameter family of parallel planes.
Example 2. Find the level surfaces of the scalar field
u=z+y* -2
Solution. The level surfaces are given by the equation
z* + y* — 2 = C, where C = constant.
For C = 0, we obtain a circular cone. For any C >0, we
obtain a hyperboloid of revolution of one sheet with the
axis coincident with the z-axis. For C << 0, we obtain

a hyperboloid of revolution of two sheets.
Example 3. Find the level surfaces of the scalar field

z
u=aresin YezT

Solution. The domain of definition of the given scalar
field is found from the inequality

z . 23
o S that s, 0< <t
whence 0 < 22 < 22 + 2. This double inequality shows
that the field is defined outside a circular cone 2% =
= 2% 4+ * and on it, with the exception of its vertex
0(0, 0, 0).

The level surfaces are found from the equation
aresin m =C, where _%scg%‘
That is, 2/} 2% + y* =sin C or z* = (22 + y?) sin® C.
This is a family of circular cones located outside the cone
22 = 2% 4+ 3* with a common axis of symmetry, Oz, and
a common vertex, O (0, 0, 0), at which the given field
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is not defined; note that the come itself, z> = 2% + y?,
is also included in the family.
Example 4. Find the level surfaces of the scalar field

u=enn,

where a is a constant vector and r is the radius vector
of a point.
Solution. Here,

r={z, y, z} =zt + yj + 3k
a = {ay, a,, a3} = a;i + a,§ + ask
Then the scalar product
(a, 1) = g,z + ay + agz.
The equation of the level surfaces is
een=_C, C>0,

and let

whence
(a, )=InC
or
@z + ay + ags = In C.

This is a family of parallel planes.
Find the level surfaces of the following scalar fields:

a2
45‘"'T+T+W'
46, u=224y2—z.

47. u="—'ry’4

48. u=2y?+9z2.

49, u=3*2W-7,

50. u= :;' 3 (a, b are constant vectors).
5. u=1In|r!

52. u = ee. ™ ™ (a, b are constant vectors).

A scalar field is said to be plane if there is a plane
such that in all planes parallel to the given plane the
scalar field is the same.
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If we take this plane as the zy-plane, then the scalar
field is given by the scalar function

u=f(zy)

which is to say it is not dependent on z.
An example of a plane scalar field is the temperature
field of an infinite, uniformly heated wire.

yo-x y vz
\\\ 1)
0 ()

T
/ <0

Fig. 11

Geometrically, plane scalar fields are characterized
by level lines; these are loci in which the scalar function
has one and the same value.

Example 5. Find the level lines of the scalar field

u=2z— )
Solution. The level lines are given by the equations
2 — y* = C, where C = constant.
When C = 0, we obtain a pair of straight lines:
y=z, y=-—z
For C 0, we obtain a family of hyperbolas (Fig. 11).
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Find the level lines of the following plane fields:
53. u=2z—y.

= y
54. u=In I/E .
55, u=42.

z

56. u=e='-v'.
57. Find the level lines of the scalar field u given im-
plicitly by the equation

u+zlnu+y=0.

Sec. 8. Directional derivative
Suppose we have a scalar field defined by a scalar
function
u = f(M).

In the field, take a point M, and choose a direction
indicated by the vector 1. Then in the field take another
point M so that the vector MM is parallel to 1. Denote
by Au the difference

Bu = f (M) — f (My)

and by Al the length of the vector MoM. The ratio Au/Al
defines the average rate of change of the scalar field per-
unit of length’in the given direction. Allow the point M
to move towards the point M, so that the vector MM
is always collinear with the vector 1. Then Al — 0.
Definition. If, as Al — 0, there is a limit to the ratio

Au/Al, then it is called the derivative of the function
u = f (M) at the given point M, in the direction of 1
and is denoted by the symbol du/d! so that, by definition,
we have

Wi B8 fM)—1 (Mo

ToImEsNn T e
This definition of a directional derivative is invariant,
that is, it is not connected with any choice of coordinate
system.

MM |j1.
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Suppose a Cartesian coordinate system has been intro-
duced in space and suppose the function f (M) =
= f (z, y, z) is differentiable at the point M, (zo, Yo, 2,).
Then

9u.

u u
FM,_Elu,Ws“'{’Ty cosﬂ+—IM cos ¥y, 1)

where cos @, cos B, cosy, the direction cosines of the

vector
1 = a;i + a,j + ask,
are found from the formulas

" cosﬁ——, cosy=—2,

cosa =
m

|
= Val+al+al

The symbols —— o IM.' ks 'M VT I, slgnify that the par-
tial derivatives are taken at the pomt Mu

For a plane field u = f (z, y), the directional derivative
1 at the point M, (xo. Yo) is

a .
gll‘ = 6: wsa+%lﬂl' st @
where @ is the angle formed by the vector 1 and the
z-axis.

Remark. The partial derivatives du/dz, duldy, duldoz
themselves are derivatives of the function u in the direc-
tion of the coordinate axes Oz, Oy, Oz respectively.

Formula (1)—used to compute the directional derivative
at a given point—holds true even when the point M
tends to M, along a curve for which the vector 1 is the
tangent line at the point M.

Example 1. Find the derivative of the scalar field

u=zyz
at the point M, (1, —1, 1) in the direction from M, to

144, 9,

Solution. We find the direction cosines of the vector
MM, ={1, 4, 0}, the length of which is |MM,| = }/17,
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and we have

cosasﬁ R cosﬂ=ﬁ, cosy=0.
The values of the partial derivatives of the function
u = zyz at the point M, (1, —1,

"_"l -

oz M, '

Using formula (1), we get
du 4

S S S YR I
@ =~y tyE 0= vE.
The fact that ';l—"'M >0 means that the scalar field at

M, increases in the given direction.
Example 2. Compute the derivative of the scalar field

u = arctan zy

at the point M, (1, 1), which belongs to the parabola
y =z, in the direction of the curve (in the direction of
increasing abscissas).

Solution. The direction of 1 of the parabola y = 22 at
the point M, (1, 1) is the direction of the tangent to the
parabola at that point (Fig. 12).

Suppose the tangent 1 to the curve at M, forms with
the z-axis an angle «. We then have

Yy =22 tama=y | =2

whence the direction cosines of the tangent line are
1 1 "
wsa-m——s' cosP=sina

_ tana __2

T Vituwe V5
The values of the partial derivatives of the given function
u (z, y) at the point M, (1, 1) are

1
M, TH 2% M,

du i

1
oz M, T+ =72




42 Scalar Fields [Ch. 11

Substituting them into (2), we obtain
L 12 3
2 Vs 2 Y5 2vs

Example 3. Find the derivative of the scalar field

Fig. 12
u = zz® + 2yz at the point M, (1, 0, 2) along the circle
z=1+cost,
y=sint—l.}

z=2.

Solution. The vector equation of the circle is of the
torm

r{t)=(1 +cost)i+ (sint—1)j+ 2k
We find the vector v tangent to it at any point M to be

r=%= —sint.i+cost-j.

The given point M, (1, 0, 2) is found in the zz-plane in
the first octant and is associated with the value of the
parameter ¢ = n/2. At this point we have

1|M_——s|n—~i+cos J=-1i
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From this we obtain that the direction cosines of the

tangent to the circle are equal to cosa = —1, cos p = 0,

cosy = 0. The values of the partial derivatives of the

given scalar field at the point M, (1, 0, 2) are:

-z | =4
M,

=2z =4,

b
?i_': IM. =Q@zz+2) |, = 4

_I ﬂl
0z |M, TR

Hence the desired derivative is

ou

du
2 M,=T|M.=4'(‘“+’"°+4'°=“"'

In the following problems, it is required to find, for
the given iuncuons. the derivative at the point
M, (zq, Yo, 2o) in the direction of the point M, (s ¥1» 1)

;e'. u=VEr P rE, My(1,1,1), M, (3,2 1).
';nf u=gty+222—2, My(1,1, —1), M,(2, —1,3).
—aeV 4 yer—z2, My(3,0,2), M(41,3).

61. u—7-— My(1,1), M(4,5).
62. Find the derivative of the scalar field
u=In(?+ y®

at the point M, (1, 2) of the parabola y* = 4z in the
direction of the curve.

63. Find the derivative of the scalar field u = arctan y/z
at the point M, (2, —2) of the circle 2> + y* — 4z =
along an arc of the circle.

64. Find the derivative of the scalar field u = 2® + y*
at the point M, (z,, y,) of the circle z¢ + y* = R? in the
direction of the circle.

65. Find the derivative of the scalar field u = 2zy + y*
at the point ()2, 1) of the ellipse z*/4 + y*/2 = 1 in the
direction of the outer normal to the ellipse al that point.
66. Find the derivative of the scaler field u = z* —
at the point (5, 4) of the hyperbola z> — y*> = 9 in the
direction of thé curve.
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67. Find the derivative of the scalar field u =
= In (zy + yz + zz) at the point M, (0,1,1) in the
direction of the circle z = cost, y =sint¢, z = 1.

68. Find the derivative of the scalar field u = 22 + y* +
+ 2% at the point M, that corresponds to the value of
the parameter ¢ = /2 in the direction of the helical
curve z = Rcost, y = Rsint, z = at.

Sec. 9. The gradient of a scalar field

Suppose we have a scalar field defined by a scalar
function
u=1f(@y 2
where the function f is assumed to be differentiable.
Definition. The gradient of a scalar field u at a given
point M is a vector denoted by the symbol grad u and
defined by the equation

grad u——l+—j+ (})
Using formula (1) of Sec. 8 for the du'ecuonal derivative,
we have
= (grad u, I), @)
where 1° is & unit vector in the direction of 1, that is,
1o —W=iwsa+jws B+kcosy.

Properties of a gradient

- 1. The gradient is in the direction of the normal to the
%evi;l) surface (or to the level line if the field is a plane
eld).

2. The gradient is in the direction of increasing values
of the function of the field.

3. The modulus of the gradient is equal to the largest
directional derivative at a given point of the field:

max —.Igl'*"‘l ul= VW

"% The maximum is taken over all directions of | at the given
point of the fie

*
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These properties yield an invariant characteristic of
the gradient. They state that the vector grad u indicates
the direction and magnitude of maximum change of
a scalar field at a given point.

Example 1. Find the gradient of the scalar field

u=2z—2y+ 3z

Solution. By (1) we have

grad u = 1i — 2j + 3k.

The level surfaces of the given scalar field are the planes
z — 2y + 3z = C; the vector grad u = {1, —2, 3} is the
normal vector of the planes of this family.
Example 2. Find the greatest steepness (rate) of rise
of the surface u = 2V at the point'ﬂ%?._f 4).
Solution. We have
grad u = yz¥~Yi + zVlnzj, gradu |y =4i + 41In2j,
(‘;—';)m“ =|gradu| =4V T+ (In 2)2.
Example 3. Find the unit vector of the normal to the
level surface of the scalar field
u=2z++y + 2
Solution. The level surfaces of the given scalar field
are the spheres
24+yP+2=C (C>0).
The gradient is directed along the normal to the level
surface so that grad u = 2z-1 + 2y-j + 2z-k defines the
vector of the normal to the level surface at the point
M (z, y, z). For the unit vector of the normal, we obtain
the expression

Example 4. Find the gradient of the field u = (a, b, r),
where a and b are constant vectors and r is the radius
vector of the point.

Solution. Let

a = {a), a5, a3}, b={by, by, bg}, r={z, y, 2}.
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Then
ay @z a3
u=|by by bs|.
z Yy z
By the rule for differentiating a determinant® we have
ay az as ay a; ag ay a, a3
=|b, by b5, a——b‘bzb., =|b &, by |
100 0 0 001
Hence
ay a3 ay ay 4 8|
grad u= by b i— by b i+ b, bz
ij ok
=|ay a, a5|=|a, b].
by by by

* Given a deurmnmm D (t) whose elements a;; are differenti-
able functions of

an(®) au() ... an(®
Dy=| MmO e ... am(®

«+ @nn ()
‘Then thz derivative of the determinant, D’ (¢), is found from the
formula
e () a6 (1) ... 61a())
)= W anl) ... am ()

an1 () ans()) ... ann(t)
8 () a(t) ... @ (t)
+ an () ai(t) ... 6 (0)

an () ana(8) o-. Gan (D)
G () au() ...
i m® wme .

ain (1)
aan (1)

any (8 ape (1) --. ﬂm (‘)
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Example 5. Find the gradient of the distance
where P (z, y, z) is the point of the field being studied

and P, (2o, Yo, 2o) is some fixed point.
Solution. We have

a . or ar
gradr=$|+ﬂi+gk
(@—z) itw—yo)) it+z—2)k _ o

T Vet ta—t

which is the unit vector of the direction P,P.

r 0
r
1
i
h k
Fig. 13

Example 6. Let us consider the scalar function
u=r+r,

where ry, r, are the distances of some point P (z, y) of the
plane from two fixed points, F, and F,, of the plane.

Solution. The level lines of this function are ellipses.
We have (see example 5)

grad (r; + rp) =) + 5.

This shows that the gradient is equal to the diagonal of a
rhombus constructed on the unit vectors of the radius
vectors drawn to point P from the foci F, and F, (Fig. 13).
Consequently, the normal to the ellipse at some point
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bisects the angle between the radius vectors drawn to that
point.

Physical interpretation: a light ray commg from one
focus enters the other focus.

Example 7. Find the angle 6 between the gradients of
the functions

u=V 2+ and v=z+y+2V 7Y

at the point M, (1, 1).
Solution. We find the gradlents of the given functions
at the point M, (1,1

__zityi _itj
greduln = m "V

grad v |w,=[ (1 + 1/;) i+ (14 l/%) ]|, = 2i+2.

The angle 6 between grad u and grad v at the point M,
is found from

2
cos BT B, v{a 7

| grad u T, | grad v |M.

From this we have
8=0.

Example 8. Find the directional derivative of the
radius vector r for the function u = sin r, where r = |r|.

Solution. By (2), the directional derivative of the
given function of the radius vector r is

du .
3 = (gradsinr, ). A3)
We find the gradient of the function:

gradsinr = 6(;2") i+ 3(:inr) i+ a(ainr) k

_ d(sinr) ﬂi-l- d(slnrj 3r L L) d(slnr) ar ary

= ui+3"i+ k)oosr—r"cosr (4)
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Suhstit\n.ing (4) into (3), we get
——(x"cosr. %) = (r°, r% cosr =cosr.

Example 9. Find the derivative of the scalar field
u = f (z, ¥, 2) at the point M, (z4, Yo, 2,) of the curve I
specified by the system of equations

{4 2)=a,
9 (3, y) ) =0
in the direction of the curve.

Solution. The direction of the curve ! is given by the
direction of its tangent vector ¥, which, by definition,
is a vector that is tangent to the surface f (z, ¥, z) = a.
The surface f (z, y, 2) = a is a level surface of the given
scalar field u = f (z, y, z). Since

a = constant,

%s (grad u, 1% = (grad u, 1°)

and the vector grad u is perpendicular to the level surface
f (z, ¥, 3) = a, it follows that grad u is perpendicular to
the unit vector t°, and therefore

5 |, = (Erad e, 59 =0,

Example 10. At the point M, (1, 1, 1), find the direc-
tion of the greatest change in the scalar field u = zy +
+ yz + 2z and the magnitude of that change.

Solution. The direction of the greatest change of the
{i;ld is indicated by the vector grad u (M). We find it

us:

gadu (M) = (+2)i+E+9i+@+ak
and hence grad u (My) =2 (i + j + k). This vector
determines the direction of the greatest increase in the
given field at the point M, (1, 1, 1). The magnitude of
maximum change of the field at this point is

max— = |gradu(My)|=2V3.
69. Find the gradient of the scalar field u = In (z* +
+y® + 2) at the point M, (1, 1, —

70. Find the gradlent of the scalar field u = zes+vt+:? gt
the point O (0, 0

4-910
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71. Find the angle ¢ between the gradients of the func-
tion u = arctan z/y at the points M, (1, 1) and
My (—1, —1).
72. Find the angle ¢ between the gradients of the func-
tion u = (z + y) e~V at the points M, (0, 0) and
M, d, 1)
73. Fmd the angle @ between the gradients of the func-
tions u—V::'+y’+z‘ and v =In (z* + 3* + 7% at
the point M, (0,
74. Find the pomm at whlch the gradient of the scalar
field u = sin (z + y) is equal to i + j.
75. Find the points at which the modulus of the gradient
of the scalgrfieldu = In V/ 2® + y* + 2% is equal to unity.
76. Let'u = u (z, y, z) and v = v (z, y, z) be functions
differentiable at the point M (z, y, z). Show that

(a) grad (Aw) = A grad u, A = constant;

(b) grad (u &= v) = grad u =+ grad v;

(c) grad (uv) = v grad u + u grad v;

@ md(%);ﬂzm;___"m, V0.
77. Show that
gradu(p) = grad ?,

where ¢ = ¢ (z, ¥, 2) is a dtfferenuahla function and
u = u (¢) has a derivative with respect to ¢.
Find the gradients of the following scnlu- “tields if

r=zityj+2k, r=|r|=VELE+2,
and a and b are constant vectors.
8. u=lInr.
79. u = (a, r).
80. u = (a, r)- (b r).
81, u=|l[a, rl 2
82, Show that
(grad u (r), r) = u' (r)-r.
83. Show that
[grad u (r), rl = 0.

84. Letw = f (u,v), where u = u (z,y,2),v = v (z, y, 2).
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Prove that
gradw= %’;grad u+%’grad v

if f, u, v are differentiable functions.

85. Suppose G is a convex region in space (that is, a
region such that if two points M and N belong to G,
then the whole line segment MN lies in G). Let there be
given in G a scalar held u (M) wlnch at all points has a

dient that is and b n G:

lgrad u (M) | < A, M €G, A = constant.
Prove that for any points M and N of G we have the

inequality
lu(V) —u(M)|< A|MN|

86. Find the derivative of the function u = z%a® 4
+ y*/b* + z%/c* at an arbitrary point M (z, y, z) in the
direction of the radius vector r of that point.

87. Find the derivative of the function u = 1/r, where
r=|r| in the direction of the vector 1 = cos a-i +
+ cos B-j + cos y-k. Under what condition is the
derivative equal to zero?

88. Find the derivative of the function u = 1/r, where
r=|r|, in the direction of its gradient.

89. Find the derivative of the function u = yze* at the
point M, (0, 0, 1) in the direction of its gradient.

90. Find the derivative of the scalar field

u=ulz,y, 2
in the direction of the gradient of the scalar field
v=uv(z, y, 2).
Under what condition is it equal to zero?
91. For the following scalar fields, find the direction and
magnitude of greatest change at the given points M,:
(a) u (M) =2y + y"1+z‘x. Mo , 0, 0).
(b) u (M) = zyz; M, (2, 1, —1).




CHAPTER Il
VECTOR FIELDS

Sec. 10. Vector lines. Differential equations
of vector lines

Definition 1. We say that a vector field is given if a
vector quantity a = a (M) is specified at each point M
of space or of a portion of spnoo.

If a Cartesian di ystem is introduced in the
space, then specifying the vector field a = a (M) is equiv-
alent to specifying three scalar functions of the point
P (M), Q (M), R (M) so that

aM)=P@y2i+tQ@y)i+ Ry )k

Definition 2. A vector line of a vector field a is a
curve at each point M of which the vector a is directed
along the tangent to the curve.

Let a vector field be defined by the vector

a = Pl + Qj + Rk,
where

P=P@y1 @=Q@ v 2, R=R(@y 2
are continuous functions of z, y, z that have bounded par-
tial derivatives of the first order.

Then the differential equations of the vector lines are
of the form

b _w_d o

Integrating this system of two differential equations
(1) yields a system of two finite equations:

Q@Y )=C, ¢y 2)=0C
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which, taken together, define a two-parameter family of

vector lines:
(2, y,2)=C,, }
2
02, v, ) =Cy. @
If the conditions of the theorem of existence and
uniqueness of a solution are fulfilled in a certain region
G for system (1), then a unique vector line
P4(2, ¥» 2) =91 (20, Yor %)y }
P2 (2, ¥, 2) =2 (%0s Yor %)
passes through every point M, (z,, Yo, 2o) € G.
Example 1. Find the vector lines of the vector field
a=le,rl,
where ¢ is a constant vector.
Solution. We have
e=oci+cf+ek, r=a+yj+ 2k
so that
ijk
€4 €2 €
Ty z]
= (er—e) i + (csz—c2) | + (e —r) k.
The differential equations of the vector lines are
T = e = T @
32— Cs! X 19— ¢4
Multiply the numerator and denominator of the first
fraction by z, the second by y, the third by z and add
termwise. Using a property of proportions, we have
dz dy dz zds+ydy+zdz
0

a=[e, r]=

zdr+ydy+2dz=0
and this means that
2 + y* + 22 = A4,, A, = constant >0.
Now, multiplying the numerator and denominator of the
first fraction of (3) by ¢,, the second by ¢,, the third by ¢,
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and adding termwise, we obtain
dz dy d:  _eydetegdytegde
- = =
a2 —Cyy CyT— 33 ey —Cyz 0 M
whence

¢ dz+ cody + cydz =0
and, consequently,
&z + ¢y + cgz = A,, A, = constant.
The desired equations of the vector lines are:
2yt =4, }
B T+ Coy + csz=A,.

These equations show that the vector lines are obtained
via the intersection of spheres (having a common centre ut
the origin of coordinates)
with planes  perpen-
dicular to the vectore =
=cii + ¢of + csk. From
this it follows that the
vector lines are circles
whose centres lie on a
straight line passing
through the coordinate
origin in the direction of
the vector ¢. The planes
of the circles are per-
pendicular to the indicat-
eoz straight line (Fig.
1

).
Fig. 14 Example 2. Find the
vector line of the field
a = —yi+ zj + bk,

which line passes through the point (1, 0, 0).
Solution. The differential equations of the vector
lines are

whence we find
2+yt=0C, €, >0
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or, introducing the parameter ¢,
2=V C,cost, y=VC,sint.
In this case, the equation
dy _ dz
s
takes the form
VCicostdt _ ds
V' Cicost 3
whence we obtain

or dz=badt,

z= bt + C,.
Thus, the parametric equations of the vector lines are
z2=)/C,cost,
=/C,sint, 4)
2=bt4C,.

If we require that the vector line pass through the point
(1, 0, 0), we will have
1=V TCicost, 0=} Cysint, 0=>bt+C,
The first two equations of this system are satisfied for
t = 2kn, k=0, 1, . ..and for C, = 1. Taking k = 0,
we get ¢t = 0 and the last equation of the system yields
Cy = 0. The desired vector line passing through the

pomt (1,0, 0) is
T=cost,
y=sint, }

z="0t,

This is a helical curve.

Find the vector lines of the following vector fields:
92. r =g+ yj + k.
93. a = a;i + a,j + ask, where a,, a,, a; are constants.
Y. a=c—yi+@z—2ji+{FH—2k
95. Find the vector line of the field

a = 2% — ¥ + 2%,

which line passes through the point (Y/,, —,, 1).
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A vector field is said to be plane if all the vectors of a
are located in parallel planes and the field is the same
in each of the planes.

If a Cartesian coordinate system zQy is introduced in
one of the planes, the vectors of the field will not contain
any components along the z-axis and the coordinates of
a vector will be independent of z, that is,

a=P(, pi+0Q vi

The differential equations of the vector lines of a
plane field are of the form

dz dy dz
Pan 0@n 0
or
— 9@y
TPy
z = constant. }

From this it is evident that the vector lines of a plane
field are plane curves lying in planes parallel to the
zy-plane.

Example 3. Find the vector lines of a magnetic field
of an infinite current conductor.

Solution. We will assume the conductor is in the direc-
tion of the z-axis and that the current / flows in that
direction. The intensity vector H of the magnetic field
set up by the current is

=%, ®

where I = Ik is the current vector, r is the radius vector
of the point M (z, y, z), and p is the distance from the
axis of the wire to the point M. Expanding the vector
product (5), we obtain

21 1/ le

=iy ey

The differential equatinns of the vector lines are
dz dy dz

-V z - 0’
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whence
22+ y2=Re, }
z=C.
That is, the vector lines are circles with centres on the
z-axis (Fig. 15).
Find the vector lines of the following plane vector
fields: 2

p__ M=yz)

The differential i f
the vector lines

may be written as

dz _ dy _ 8z _
b -0 %=R

a at

or, in vector form, as
g _am). ©) Fig. 15

This form of the equations of vector lines turns out to be
convenient in the solution of a number of problems.
Example 4. Find the vector lines of the field a = [e, r],
where ¢ is a constant vector.
Solution. Applying (6), we get

dr o
a=lex. m

Forming the scalar product of both sides of (7) by ¢ and
using the properties of a mixed product, we find

(e &)=2-(e.n=0. ®)
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Similarly, forming the scalar product of both sides of (7)
by r, we obtain
d d
(r. &) =3 =0 ©)
From equation (8) it follows that
(¢, r) = constant
and from equation (9) it follows that
(r, r) = constant.
The vector lines are lines of intersection of the planes
(e, ¥) = constant with the spheres r? = constant.
Find the vector lines of the following vector fields:
102. JAGES
103. a = (a,, r) by, where a,, b, are constant vectors.

Sec. 11. The flux of a vector field.
Methods of calculating flux

1. The flux of a vector field. Suppose we have a vector

field

a(M)=P(z, y2i+Q( 9 2i+ Rz y 2k,
where the coordinates P (z, y, z), Q (z, y, 3), R (z, ¥, 2)
of the vector a (M) are continuous [the field a (M) is
continuous] in some region G. Let S be a smooth or piece-
wise smooth two-sided surface in which a definite side
has been chosen (an oriented surface).

Definition. The flux IT of a vector field a (M) through
an oriented surface S is defined as the surface integral
of the first kind, over the surface S, of the projection
of the vector a (M) by the normal n (M) to that surface:

= SSS prpadS = LS (a, n%dSs,

where n° is the unit vector of the normal n to the chosen
side of the surface S; dS is the area element of the sur-
face - S.

In the case of a closed surface, we will always choose
the outer normal n that is directed outwards from the
region bounded by the surface S.
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If @, B, y are the angles that the normal n forms with
the coordinate axes Oz, Oy, Oz to the surface S, then
the flux may be expressed in terms of a surface integral
of the second kind:

= 555 (a,n%)dS = SSS {P(z,y,2)cosa

+Q (2, y, 2)cosp+ R (z, y, 2) cos y} dS
or

M=\ (a,ndS=\\P(z,y, z)dydz
ff s ]
+Q(z,y, 2)dzdz+ R(z, y, 2) dz dy,
where
cos @ dS = dy dz, cos p dS = dz dz, cos y dS = dz dy.

Basic properties of the fluz of a vector field

(a) The flux reverses sign when the orientation of the
surface is changed (that is, when the orientation of the
normal n to the surface S is changed):

Ssj (a, n%)dS = — Ssj (a, n%)dS,

where S+ is the side of .the surface S on which the normal
n is chosen, and S~ is the side of S on which the normal
—n is taken (see [7]).

(b) Linearity:

U (Aa~pb, p%)dS =1 U (8, 0% dS +p jsg (b, n%)dS,

where A and p are constant numbers.

(c) Additivity: if the surface S consists of several
smooth parts S,, S,, . . ., Sm, then the flux of the vector
field a (M) through § is equal to the sum of the fluxes
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of the vector a (M) through the surfaces S,, S,, . . ., Spm:
m
n=73 5 5 (a, n%dS.
hu=i S.

This property permits extending the notion of flux
to piecewise smooth surfaces.

Fig. 16

Example 1. Find the flux of the vector a = i through
an area perpendicular to the z-axis and having the shape
of a rectangle with sides 7 and 2 (Fig. 16) in the positive
direction of the z-axis.

Solution. According to the definition of the flux of
a vector through a surface S, we have

= (a, n%dS.
J

In our case, a =i, n® =i so that (a, n% = (i, i) = 1.
Taking into account that the area of the rectangle is
equal to 2, we obtain

n=§sj1dsmz.

Remark. 1f we had chosen the unit vector of the normal
to the area S so that n® = —i, we would have got IT = —2.
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Example 2. Compute the flux of the vector field
a = r, where r is the radius vector, through a right cir-
cular cylinder of altitude %, base
radius R and the z-axis.

Solution. The surface S consists
of a lateral surface o,, an upper
base 0, and a lower base 05 of the
cylinder. By the additivity proper-
ty, the desired flux II is equal to
1 =1, + I, + I, where I1,, II,,
I1, are the fluxes of the given field
through @), 0,, 05 respectively.

On the lateral surface g, of the cyl-
inder the outer normal n° is paral-
lel to the zy-plane and therefore

>

(a, n%) = (r, 0°) = prar = R

Fig. 17

Fig. 17). Hence
n,= 5 fanmas=r | S dS = R-2nRh=2nR%h.
CH

oy
On the upper base o, the normal n° is parallel to the
z-axis and therefore we can put n® =k (see Fig. 17).
Then
(a, ) = (r, k) =pro,r =k
and so

11,=H @ n“)dS=hSSdS=h~aRz=nth.

On the lower base o, the vector a = r is perpendicular
to the normal n® = —k. Therefore (a, n% = (r, —k) = 0
and

0=\ (a,n%dS=0.
i

The desired flux is then

= @ (8, n% dS =3 R%.
s
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Example 3. Find the flux of the vector field

r
=T
through a sphere of radius R with centre at the origin
of coordinates.
Solution. Since the normal n to the sphere is collinear
with the radius vector r, we can take n® =r® =r/|r |.
Therefore

()=t UL L
@)= (5 ) TR O D= =
But on the sphere S we have | r | = R, and so (a, n°) =

= 1/R%.

The desired flux IT is
n- @(a n0)dS =5 §ds--/m

since the area of the whole sphere S is equal to @ds =
s

= 4nR*.

104. Compute the flux of the vector a = 3j through an
area having the shape of a triangle with vertices at the
points M, (1, 2, 0), M, (0, 2, 0), My (0, 2, 2) in the direc-
tion of the coordinate origin.

105. Find the flux of the vector

a = ai + Bj + vk,

where a, B, y are constants, through an area perpendicular
to the z-axis and having the shape of a circle of radius R,
in the positive direction of the z-axis.
106. Find the flux of the vector a = r through the outer
side of a circular cone whose vertex lies at the origin of
coordinates; the base radius is equal to R and the altitude
is k (the axis of the cone is along the z-axis).
107. Find the flux of the vector a = f (| r [) r through
a sphere of radius R with centre at the coordinate origin.
11. Methods of computing the flux of a vector.
1°. The method of projection onto one of the coordinate
planes. Let an open surface S be projected one-to-one
onto the zy-plane into a region D.,. In this case, the
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surface S may be given by the equation z = f (z, y) and
since the area element dS of the surface is

dzdy

dS=—|ms“ R

it follows that computing the flux II through the chosen
side of the surface S reduces to computing a double integral
via the formula

n=55(a.n°)d5=ijﬂ_ dzdy. (1)
) xy

1cosy | fe=rx. 0y

Here the unit vector n° of the normal to the chosen side
of the surface S is found from the formula

g gndli=( e D) —wly

Tgrad [z~ f (&, VI T V( )+( ) )

and cos y is equal to the coefficient of the unit vector k
in formula (2):

wsv=i——— 3)

V G HE) +

If the angle y between the z-axis and the normal n° is
acute, then in (2) and (3) the plus sign is taken, and if
the angle y is obtuse, the minus sign is taken. The symbol

(@, 0%
lcosy | |z=fix, 3

signifies that f (z, y) must be substituted for z in the
integrand.

If it appears to be convenient to project the surface S
onto the yz- and zz-planes, use is made of the following
formulas to compute the flux IT:

— (a, %)
n= l Tcosa |
e

dydz (4)

==, )
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or

= @n)

u ié TeasB T lymus, 1 92 9% ©

Formula (4) is used when the surface S is projected

one-to-one into the region D, of the yz-plane, which means

that it may be given by the equation z = ¢ (y, 2); cos @

is flound as the coefficient of the unit vector 1 in the for-
mula

j__

r— n-:{x—wv, z;} -
lgrad[z—o @, 2} |
‘/‘+ av +( )
That is,

cosa =z —2
VoG

The plus sign is taken if the angle a between the z-axis
and the normal n° is acute, and the minus sign if the
angle a is obtuse.

Formula (5) is used in the case of a one-to-one projec-
tion of the surface S onto the zz-plane; in this case,
S may be specified by the equation y =1 (z, z) and
then

grad [y— ¥ (2, 3) — gtk
Terad =9z DI T l/‘ (ﬂ +( )

cos P is equal to the coefficient of the unit vector j in
this formula, that is,

1
cosp=t — .
ap\2 2
Vi (3)+(3)
If the angle P between the y-axis and the normal n° is
acute, we take the plus sign, and if the angle § is obtuse,
we take the minus sign.

Remark. When the surface § is specified implicitly by
the equation ® (z, y, z) = 0, the unit vector of the

n’=+
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normal
n®=icosa + jcosP + kcosy

is found from the formula

0— grad © (z, y, 2)
M=% Tend oG v, 91

ey ARy 602—‘4:—’ '

V(R +HE )+ (3
where the sign on the right is determined by the choice
of the normal to the surface S.

To compute the flux IT of a vector field a through a
surface S, it is necessary to project the surface one-to-one
onto one of the zy-, zz-, yz-planes; this is possible if the
equation @ (z, y, z) = 0 is uniquely solvable with respect
to 2(=1(z ) yy=%@ 2) or z(z=9(y 2)
zeape&uv?ly Then take advantage of one of the formulas

1), (4), ()

énmple 4. Find the flux of the vector field

a=(@—2)i+@+3y+2ji+ Gz+pk

through the upper side of the triangle ABC with vertices
at the points 4 (1, 0, 0), , 1, 0), C (0, 0, 1).

Solution. The equation of the plane in which the triangle
ABC lies is of the form z + y +z =1, whence z =
=1 — z — y. The triangle ABC is pro;ecud one-to-one
onto the zy- plano into the region D, which is the triangle
0AB (Fig. 18).

It is given that the normal n° to the plane in which the
triangle ABC lies forms an acute angle y with the z-axis
and so we take the plus sign in (2) and oblam

o_ _grad(z+yt+a—1) _

R = ;/5 itys ;/a ik ®

We find the scalar product

(a, n°%) = (z—22) %+(z+3y+1) %+(5¢+y) %

_Tetby—:
V3

5-910
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From formula (6) we find that cosy = 1/} 3 >0 and,
hence,
__dzdy _
dS—m—ngzdy.
Using formula (1), we compute the desired flux:

n= jsj (8, n%)dS = ig (24 by—1) st -amy dz dy

1 4=
= j j (8 + 5y—1) dzdy = S dz S Bz+5y—t)dy=13.
Doy ° °

Example 5. Find the flux of the vector a = y* + zk
through the portion of the surface z = z® + y* cut off by

Fig. 18

the plane z = 2. The outer normal is taken with respect
to the region bounded by the paraboloid.

Solution. The given surface (a paraboloid of revolution)
is projected one-to-one onto the zy-plane into the circle
D, (Fig. 19). We find the unit vector of the normal n®
to the surface S:

grad a—z?—y%) _ | —2zi—2yj+k

0 — s = —_——
M=% Tord == | Vi Tt
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It is given that the normal n° forms an obtuse angle y
with the z-axis and therefore the minus sign is taken in
front of the fraction. Thus,

o 2t ui—k
Viatai+1’
whence

cosy= 0

1
TVErw

Fig. 19

and so

__4xdy T
—“n—m—Vézz+4y2+1d:dy.

We find the scalar product

22—z
Vit
The desired flux is, by (1), equal to

= U (a,n%)dS= ij (@ —2) lomersin dzdy

(a, n% =

= j § er—yi—aydzay.
Dxy
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The domain of integration D, is a circle of radius R =
= )/ 2 with centre at the coordinate origin. Introducing
polar coordinates z = p cos @, y = p sin ¢, we have

= { | 2p*sin*o—p?) pdpdo
Dy
2n

Vi
=§ de S (2p*sinsp—p¥) dp= —21!-‘;ﬁ :/f=—2n.
o

Example 6. Find the flux of the vector field a =
= i — j + zyzk through the circle S obtained by cutting
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Fig. 20

the sphere z* + 3* + z* < R? with a plane y = z. Take
the side of the circle facing the positive portion of the
z-axis.

Solution. Since the plane y = z is perpendicular to the
zy-plane, the circle S lying in that plane is projected onto
the zy-plane into the line segment 4,4, and so the one-
to-oneness of the projection is disrupted. The circle S
is projected one-to-one onto the other coordinate planes.
Projecting the circle onto the zz-plane, we obtain a region
D, bounded by an ellipse (Fig. 20). The equation of the
ellipse can be found by eliminating y from the system
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of equations
z24yt+s2=Re, }

y=z,

whence
222 422=R? or ;—',+:'—:=1.
T
It is given that the normal to the circle S forms au
obtuse angle B with the y-axis (see Fig. 20) and so we
take
n= —grad (y —z) =i—ij,

1
vt
From the latter equation we have cos p = —1//2<0.
The area element dS of the circle is equal to

dz dz 5

a5 =gy =V 2dsda.

We find the scalar product: (a, n%) = }/2.
The desired flux is, using formula (5),

n=£§ 2drdz=2 ’U drdz=2- —_VQRzu

since the area Q of the region D, bounded by an ellipse
with semi-axes ¢ = R/)/2 and b = R is equal to

0= ij drdz=nab= v§'

Example 7. Compute the flux of the vector a =
= zi + yj + zk through the outer side of the lateral
surface of the circular cylinder z* + y* = R® bounded
by the planes z = 0 and z = H (H > 0).

Solution. The given cylinder is projected onto the
zy-plane into a line, namely, into the circle (Fig. 21)

22 y2=R?,
z2=0. }
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We will therefore project the cylinder onto the other
coordinate planes, for instance, the yz-plane. Since the
cylinder does not project one-to-one onto the yz-plane, we
take advantage of the additivity property of the flux of
the vector and represent the de-
sired flux II as a sum of
fluxes: IT=II, +I1,, where II, is
the flux of the field through the
portion 8, of the cylinder located
in the region where y > 0, and
I, is the flux of that field
through the portion S, of the
cylinder located in the region
where y << 0. On S; we have

2z

n‘e#' @n)=24_p

and so

n‘=js.§ nas=pj&j dS = RS,

Fig. 21 where S is the area of the por-
tion S, of the cylinder. Since
S = nRH, it follows that I, = nRH.
On §, we again have
o= "‘};“ (a, n°)=‘_';'_”’=ﬂ

and so

0= (| Ras= RS =noH.
Sy

The desired flux is II = 2nR*H.

Remark. The solution is made simpler if we introduce
curvilinear coordinates z = Rcos @, y = Rsing, z =z
on the cylinder (see item 3° below).

To find the flux of the vector field a = P (z, y, 2) i +
+ Q(z, y, 2)§+ R (z, y, 2)k through the surface S
specified by the equation z = f (z, y) by the method of
projection onto a coordinate plane, it is not necessary to
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find the unit vector of the normal n° and we can take
the vector

n=tgrad[z—f(z, Y)] =% (—% —%i-{—k).
Formula (1) for finding the flux IT becomes

N= .U (a, n%)dS = ,;,5 (a, n) L_ P2 )

In similar fashion we obtain formulas for computing
the fluxes through surfaces given by the equation z =

=9 2)ory=9y(, 2.

Formula (7) is written thus in coordinate form:
M=z [ [ {=Plz v 1 @ 1L —0la, v, 1 (e, M4

Dxy
+RIzy, 1(z, y)}dzdy.
Example 8. Compute the flux of the vector field
a=zi+yi+V @+ —1k
through the outer side of the hyperboloid of one sheet
z = V2 & y*—1 bounded by the planes z = 0,z = V3.

Solution. The given surface is projected one-to-one onto
the zy-plane into the region D, bounded by the circles

224 yt=1, } z’+y’=4.}
=0, § ™ 2=0.
We find the outer normal n:

T 1) — —zi—ypj
n=+grad(z—VZFpyr—1)==% ( ool +k).
Since n forms an obtuse angle y with the z-axis (Fig. 22),

we take the minus sign and, hence,

Aty
Vatryi—1
We find the scalar product

2y oy SR SR
R e
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Using formula (7), we obtain
dz dy
n= (a, n%dS = —m——.
.U I.L Voaty—1

Passing to the polar coordinates £ = p cos @ and y =
= p sin ¢, we have

IR Rl
=2V P —1[;=2V3n.

Example 9. Compute the flux of the vector field

a=yi+z4+ak
through a closed surface bounded by the cylinder 2% + 4*
= R? and the planes z =1z, z =10 (z > 0).
z

Fig. 22

Solution. The surface S is piecewise smooth and so we
take advantage of the additivity property of a flux re-
presenting the desired flux IT as a sum of fluxes I1,, I1,, Iy
through the smooth portions S, (semicirele z* + y* <
0<z< R, z=0),S, (part of the plane z = z), and
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Ss (part of the cyllnderz’ +y=R):ND=1I,+1, +
ince S is closed, we take the outer normal to it
(Fig. 23)
(1) On 8,, where z = 0, we have n® = —k and so
(a, 0% = —z.,
This means that the flux

n=— SS zdS = —55 zdzdy.
A S

Passing to the polar coordinates z = p cos ¢ and y =

= p sin @, we find

0,= —H pcos @p dpdp
Sy

2 R
=— j coswdepzdp=—%R’.
J

-n2
(2) On S,, where z =z, we have

n = tgrad (2 — 2) = + (—i + k)
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and since the normal n to §, forms an acute angle with
the z-axis, we take the plus sign in the right-hand member.
Thus, n = —i + k and, hence, (a, n) =z — y.
Projecting S, onto the zy-plane, we get the semicircle
Dy 0<<z<CY R2—y2
Then by (6) we have

n,= S S (a, n) L_,dtdy'
and again passmg to polar coordmates we find

T,= S (cos ¢— sin ) do ! p*dp=73 2 pe,
-2
(3) On Sy, where z* + y* = R?, that is, on the lateral
surface of the cylinder, we have

grad (z3-+47— RY) sty _, 2ty
SETmd@ - Lt Yagga TR

In this case, the normal n forms a right angle with the
z-axis and therefore cos y = 0 and so the choice of sign
in the right-hand member is arbitrary. Take the plus
sign and then

A+yi
7

n’= (a, n0y= &1V ';’) v

and so
M= H(:+z)yds

It is impossible to pro]ect the surface Sy (right cylinder)

onto the zy-plane since it projects into a line, a semicircle
7(the one-to-one nature of the projection will be upset).

The same occurs when projecting onto the zz-plane. We

therefore project the surface Sy onto the yz-plane. onto

which it is projected one-to-one into the region D,

bounded by the line

224 y2= R?, }
Z2=2z.-
Eliminating z from this system, we obtain the equation
for the projection of this line onto the zy-plane: 2 + y* =
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= R? is a circle. Since

O o T _=
leosa|={cos (@, 0) [ = |3, D1=|F|=%F >0,
we will have

1 (zt2)y
= { [ {553
Dy

Teosa | x=xdydz= j 5 (-ﬁ;i)ll:ﬂdydz
: Dyz

=Hz_:”-dydz=2jjydyaz.
e

’H

Using the polar coordinates y = p cos ¢ and z = p sin @,
we get

ﬂ,=2$5 pcoswpdpdq;=2§coswd(y?pﬁdp:O.
Dye [ °
Thus,

=—2amylarro=o.

108. Compute the flux of the vector field a = yi + zj +
-!i zk through the upper side of a triangle bounded by the
planes

z+y+z=4a, z2=0, y=0, z=0.

109. Compute the flux of the vector field a = zzi through
the outer side of the paraboloid z = 1 — z* — y? bounded
by the plane z =10 (z > 0).

110. Compute the flux of the vector field a = zi + zk
through the lateral surface of the circular cylinder y =
= V'RT = z* bounded by the planesz = 0, z = k (k > 0)
111, Compute the flux of the vector field a = zi + yj +
+ zk through the upper side of a circle cut out of the
plane z = k (k> 0) by the cone z = V2® + 2.

112. Compute the flux of the vector field a = 3zi — yj —
— zk through the outer side of the paraboloid z* + y* =
=9 — z located in the first octant.

113. Compute the flux of the vector field

a=@+Pi+ @+ +E+ Dk
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through the portion of the plane z = 0 bounded by the
circle 22 4+ y*> = 1 in the direction of the unit vector k.
114. Compute the flux of the vector field a = yzf — zj —
— yk through the total surface of the cone z* + y = z'
bounded by the plane z =1 (0 < z << 1).

115. Compute the flux of the vector Tield a = 2zi +
+ (1 — 2y) j + 2zk through the closed surface bounded
by the paraholond 22 +22=1—2y (y > 0) and the
plane z =0 (z > 0).

116. Compute the flux of the vector field a = 2% +
+ y* + 2%k through the total surface of a pyramid
hounded by the planes z+y+z2=1, 2=0, y =0,

117. Compute the flux of the vector ﬁeld a=uzl+y +
+ zk through the sphere z* + y* + z* = R*.

2°. The method of profection onto three caardlnate planes.
Suppose a surface S is projected one-to-one onto all three
coordinate planes. Denote by D,,, D.,, D,, the projec-
tions of S onto the zy-, zz-, yz-planes respectively.

In that case the equation F (z, y, z) = 0 of the surface
§ is uniquely solvable for each of the arguments z, y, z
so that

z=z(@2), y=y@2 z=2z(@y).
Then the flux of the vector
a=P@ y2)i+Q@ y i+ Ry 9k
through the surface S, the unit vector of the normal of
which is
n° = cos a-i + cos B-j + cos y'k,

can be written thus:

= , n% ds
SSS (@, n9)
=SS|P(.¢. y, z)cosa+Q (z, ¥, z)cosp
s

+ R(z,y, )cosy]dS. (8)
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We know that
dS cos & = +dy dz,
dS cos B = dz dz, )
dS cos y = +dz dy,

the sign in each of the formulas of (9) being chosen to

coincide with the sign of cos @, cos f, and cos y on the
surface S. Substituting (9) into (8), we get

M= [Pz 2y, AAdydz | [ 02,y @, 2), 21 doaz
Dy: Dxz

£ ([ Rz v 2z mideay. (10)
Dry
Example 10. Find the flux of the vector
a = zyi + yzj + 27k
through the portion of the external side of the sphere
2% 4+ y* + 22 = 1 located in the first octant.
Solution. We have

BT e e
whence, taking into accqunt that the surface S lies in
the first octant, we obtain

cosa=z>0, cosp=y>0, cosy=2z>0.
We therefore take the plus sign in (10) in front of the
integrals, and putting

P=zy, Q=yz, R=az
we obtain

n= j S 1ydydz+§5 yzdzdz+bH zzdzdy. (1)
Dyz 52 xy
From the equation of the sphere z* + y* + 22 = 1 we get
z=z2(z, y) =VI—D—y y=y(z 2)=VI—2—2,
z=2(y, 9=V 1—p2—2.

Suhb

these for z, y, z rtespectively
into the unrd second , and first integrals on the right of
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(11), we get
M= s j zV1 —x’—y'dzdy+§ S 2y 1—22—z2dzds
Dey <z

+ ” yVI—F—fdyds. (12)
Dyz
Let us compute the first integral on the right and pass to
the polar coordinates z=pcose and y =psiny,
where 0 < @ << #/2, 0 << p << 1. This yields

I,='§‘§ z Vi—zz—yzdzdy=l§‘§ p2V T—pcos pdodp

a2 1 1
= Swswdtvf o2V T—pidp= S PV I—pidp.
0 0 0

Setting p = sint, dp = cos ¢ dt in the last integral, we
have
/2 1 n/2
I,= § sinzt(msztdt=? S sin22ldt=;'—s.
0

The second and third integrals in (12) are computed in
similar fashion and we obtain

lz:[! 5 z Vi—:’—z‘d:dz:%_
s

T
I= Syl/i—yz—zﬁdydz=%.

The desired flux is
O=I+L+1,=3.

118. Use the method of projecting onto all three coordinate
planes to compute the flux of the vector field through a
surface S.
(a) a = zi — zj + yk;
S is the upper side of a bounded portion of the plane
3z 4 6y — 2z = 6 cut out by the coordinate planes.
b)a=@E@+y+)i+@@+y+z—1i—2k
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S is the upper side of part of the planez + y +z —1 =0
lying in the first octant.

© a=(z—Vy—=2)i+i+(Vy—z2—2)k;

S is the outer side of the paraboloid of revolution y =
= 2% + 2% bounded by the plane y = 4 and lying in the
first octant.

3°. The method of introducing curvilinear coordinates
on a surface. In certain cases, when calculating the flux
of a vector field through a given surface § it is possible
to choose a simple coordinate system on the surface
itself to compute the flux instead of projecting onto
coordinate planes.

Let us consider some special cases.

Case (1). Suppose a surface S is part of the circular
cylinder z* + y* = R® bounded by the surfaces z =
=f1(z, y) and z = f, (z, y), and we have f, (z, y) <
< fa ).

Setting

z=Rcosg, y=Rsing, z=z,

we have for the given surface
0< @< 2n, fi(Reose, Rsing) <z
< f3 (R cos @, R sin 9),
and for the element of area dS we obtain the following
expression (Fig. 24):
dS = R do dz.
Then the flux of the vector field a through the outer
side of the surface S is computed from the formula
2% f,(Rcos®, Rsin ®)
N=R S do (a, n%dsz, (3)

fy(Rcos @, Rsin@)

where
no— _Erad @+ —RY _ zity)
T Ted@FP—RY[ R -

Example 11. Find the flux of the vector
r=zi+ yi+zk
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through the outer side of the lateral surface of the cir-
cular cylinder z* + y* = R® bounded by the planes
z2=0and z=H (H>0).
Solution. Here we have
0< @< 2n; fy(Rcosp, Rsing) =0
fa (Rcos @, Rsing) = H.

z
dp
(L]
S-pdpdz
-Rdyp
dz
Y
A 3
Fig. 2%
Introducing curvilinear di on the cylind

we get
z=Rcosg, y=Rsing, 2=z
Then the desired flux of the vector r is

@  H
N=R\dp\ (r,n%dz.
I}
But since
r=zi+ yj+ 2k = Rcos¢:i + Rsin ¢-j + zk
and the normal n° on the cylinder is

no=iﬂ_’.__"_m5ﬂ‘ll_ww i+sing-j

it follows that the scalar product on the cylinder will be
(r, 0°) = Rcos* ¢ + Rsin® ¢ = R.
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Finally, we obtain
m H

=R j do | dz—2nReH.
0 0

Example 12. Compute the flux of the radius vector
r=azi+yj+ sk

through the lateral surface of the circular cylinder
2z + y* = 1 bounded from below by the plane z + y +
+z =1 and from above by
the plane z +y + z = 2.

Solution. Here (Fig. 25)
we have
R=1,flz,y) =1 —z—
—phEeypy=2—zc—y
Passing to coordinates on
the cylinder

z=2cosQ, y=sing,

z =3z,

we get
h(z, y) =1—cosp—sin g,
fa @& y)=2—cos ¢ —
— sin@.
According to (13), the flux
of the vector r is

2 2-cos g-sin 0
n=\de (r, n% dz.

o 1-cos g-sin@
But since on the cylinder 2* + y?> = 1 we have
n® = zi 4+ yj = cos ¢-i + sin @-j,
it follows that
o) =22+ PP=cos’p+sin?ep=1

6-910
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and, hence,
2n 2-cos 9-sin @ 2n
I'l=jd(p dz=Idcp=2u.
o 1-cos @=sin @ 0

119. Find the flux of the vector
a = yi + zj — ek

through the outer side of the lateral surface of the cylinder
2? + y® = 4 bounded by the planes z =0 and z - y +

+z =4
120. Find the flux of the vector
a=uzi—zyj+zk
through the outer side of the cylindrical surface 2% + z* =

= R* bounded by the planes y =1 and z + y = 4.
121. Find the flux of the vector

a =24 — % + 2k

through the outer side of the cylindrical surface z* + y* =
= 9 bounded by the sphere z* + y* + z* = 25.
122. Find the flux of the vector field

a =zi — yj — zyz’k

through the outer side of the lateral surface of the cylin-
der 5 ? =1 bounded by the plane z =0 and the
hyperbohc paraboloid z = 2? —

123. Find the flux of the vector field
a=(@y—y)i+ @ -2 +ay)i+k
through the outer side of the lateral surface of the cylin-
der z* -4 y* =1 bounded by the elliptic cone z* =

=z2 4 3.

Case (2). Suppose the surface S is a part of the sphere
2 + y* + z2 = R? bounded by conical surfaces whose
equations in spherical coordinates have the form 6 =
=1 (9), 8 =f,(9) and by the half-planes ¢ = @,

P = Qs
For the points of the given sphere, set
z=Rcosgsin®, y=Rsingsin®, z= Rcosh,
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where ¢, < ¢ < @, and 6, < 6 < 6,. Then for the
element of area dS we obtain (Fig. 26)
dS = R?sin 0 dO dg.
In this case, the flux of the vector field a through the
outer part S of the sphere is found from the formula
O 8,
NM=Re S do j (a, n% sin 6.9, (14)
LA
where
o_ _grad (s24y3+22—RY) _ zityjtok
U Tend@teta—R91T . R
Example 13. Find the flux of the vector

Fig. 26

a=@—2+1)i+@+y—3)j+Gy+2k

through a part of the surface of the sphere 23 + y? + 2% =
=1 located in the first octant into a region where
242+ 22>

&
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Solution. Here we have
R=1,¢, =0 0,=x/2,0 =0,0, =n/2
0 =gi+yj+ok (8 n0) =2+ yP 2+ 2
On the sphere z* + y* + z* = 1 we introduce coordinates
@ and 6 so that
z =-cos@sin®, y=sin@sinb, z=cos0.
We then have
(a, n°) =1 + cos ¢sin 0
and, using (14), we obtain

2 a2z

n= S de X {1+ cos @sin ) sin 640

w2 w2

5 dqu sm0d9+S cosq)dtyj sin20d0 = %

124. Find the flux of the vect,or field

a=2—y*+zk
through the outer side of that part of the sphere 2> + y* +
+ 22 =1 cut out by the conical surface z* = a* + 2,
> VTP
125. Find the ‘flux of the vector field

a = ygd + zzj + zyk
through the outer side of that part of the sphere 22 + y* +
+ 2 = R® located in the first octant.
126. Find the flux of the radius vector

r=uzi+ yj + zk
ﬂnrough the outer side of that part of the sphere 22 + y* +
+ 2 that is bounded by the planes z = 0 and z = y.
127. Fmd the flux of the vector

a = zzi + yzj + 2%k
through the outer part of the sphere z* + y® + 2z =9
cut off by the plane z = 2 (z > 2).
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Sec. 12. The flux of a vector
through a closed surface.
The Gauss-Ostrogradsky theorem
Theorem. If in some region G of space the coordinates
of a vector
a=P(z' ¥ 2i+0@ vy i+ Ry )k
and have partial derivatives
6P/a;r, 60/6y, ORI0z, then the fluz of the vector a through
any closed piecewise smooth surface T located in G is equal
to the triple integral of 8Pléx + ao/ay + 8R/3z over
the region V bounded by the surface 2

_ _ P | 3 , AR
= 6. 00— 5‘55 Tt TR
T
(the Gauss-Ostrogradsky formula).
The normal n to the surface Z is taken to be the outer
normal.
Example 1. Compute the flux of the vector
a =24y + 7k
through the closed surface
24yt +2=R, z2=0(>0).
Solution. By formula (1),
n= 555(2z+2y+22)dv. )

The integral (2) is conveniently computed in the spherical
coordinates r, 8, ¢. We have

z=rsinBcosg, y=rsinBsing, z=rcosd

and the element of volume is

dv = r® sin 0 dr d0 do
so that

n=2 Sjj (rsin®cos ¢+ rsin@sin @
4

+rcos 0) r2sin 8 drdf do
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2 w2 R
=2j d(pS sinﬁ(sinecosw+sinBsinQ+cosB)dﬁSr’dr
o 0

2R‘ Sd@s cos B sin 8d0 = 'm‘

Example 2. Compute the flux of the vector
a = 4zi — yj + 2k

through the surface of a torus.
Solution. Taking advantage of the Gluss-Ostrogradsky
theorem we find that the desired flux is

1'I=’§s§(n, n%) do= Sis (%+ﬂ+—)dv~4l’

where V is the volume of the torus. To compute the
volume V, let us take advantage of the Guldin theorem

Fig. 27

on the volume of a solid of revolution, by virtue of which
the volume is equal to the product of the area of the
rotating figure into the path covered by the centre of
mass of the figure during the rotation.

Let R, and R, be the inner and outer radii of the torus
(Fig. 27). The area S of the circle, which during rotation
forms the torus, is equal to

S=n(Bfuyt
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The path length described by the centre of mass (the
centre of that circle) is the circumference ! of a circle
of radius (R, + R,)/2, that is,

1=2n ButBs 5 (R 1Ry

Thus, the volume V of the torus is equal to

V=n (B B) n Ryt R = 22 (Ry— Ry (ot Ry).
The desired flux is
=2 (Ry— R (Ry+ Ry).

Example 3. Using the Gauss-Ostrogradsky theorem,
compute the flux of the vector field

) . 22z (4 1442
a= ( 1_"_2, +By52)i+2zarcuny-1—‘(—mtﬂ-k

through the outer side of that part of the surface z =
=1 — 2? — y?® located above the zy-plane.

Solution. In order to be able to apply the Gauss-
Ostrogradsky theorem, close the given surface from
below with a portion of the zy-plane that is bounded by
the circle

2+yr=1, }
3=0.

Let V be the volume of the resulting solid bounded by
a closed piecewise smooth surface o consisting of a part
o, of the paraboloid of revolution z =1 — z® — y? and
a part o, of the plane z = 0 (Fig. 28).

The flux of the given vector through the surface o is,
by the Gauss-Ostrogradsky theorem, equal to

- G mar- [ (5 +4)
We find the sum

2(1+y)
REE e

P | 9Q , R _ 21y
w=twta —15s =0.
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Consequently, the flux is
M= @ (a, n% do = 0.
o

By virtue of the additivity of the flux we have
= SS (a, n% do+ jj (a, n% do=0.
o, o

Fig. 28

From this the desired flux is
n= (a, n%do= — (a, n% do.
-

The flux IT, of the vector a through the circle 2% + y* <
<1, 2=0 is equal to
O,= (a, n%do.
i
Since on the plane z = 0, we have

a—T‘-_T,-l-&’?zarctany ji—k, n°=—k,
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and hence (a, n°) = 1, it follows that the flux IT, through
the circle o, is equal to the area of the circle g,:

nz=jjdo=n.

oy

The desired flux IT, = —II, = —=.
By appropriately closing the given unclosed surfaces
and making use of the Gauss-Ostrogradsky theorem, com-
pute the fluxes of the vector fields through the indicated
surfaces (the normal to the closed surface is the outer
normal).
128. a=(1 —2z2)i 4+ yj +2k; S: 2® + 2 =22
0<z<K4).
129. a = 2% + 27) + yk; S: 2* + 3 —z (2 .
130.0—(y2+z’)i—y’j+2yzk S 42 =y
o<y<)

Sec. 13. The divergence of a vector field.
Solenoidal fields

The notion of the flux of a vector through a closed
surface leads to the concept of the divergence of a field.
This concept yields a certain quantitative characteristic
of a field at each point in the field.

Let M be a point of the field under study. Surround it
by a surface = of arbitrary shape, for instance, a sphere
of sufficiently small radius. Let the region bounded by
the surface = be (V) and its volume V. We consider

the ratio
@ (3, n%) do
=z
7 .

)

Definition. If the ratio (1) has a finite limit when the
region (V) contracts to the point M, then this limit is
termed the divergence of the vector field (the divergence
of the vector a) at the point M and is designated as
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div a (M). We thus have

5‘ (a, n% do

diva(M)= lim ‘T. 2)
W)-M

Formula (2) yields an invariant definition of diver-
gence. This definition means that the divergence of the
field a at the point M constitutes the volume density of
the flux of the vector a at that point.

The points M of the vector field a (M) at which div
a>0 are termed sources, while the points at which
div a < 0 are termed sinks of the vector field.

The divergence of a vector field is a scalar function of
the points of the field.

If the coordinates of the vector

a(M)=P(z,y2i+0@y2i+ Ry )k
have continuous partial derivatives dP/dz, 3Q/dy, dR/0z
in the neighbourhood of the point M (z, y, z), then, using

the invariant definition of divergence, we find from the
Gauss-Ostrogradsky theorem that

dlva——+ r +— 3)

All the ities in (3) are idered at the same point

Using (3) for divergence, we can write the Gauss-
Ostrogradsky theorem (see Sec. 12) in vector form:

@ (8, n%)do= Si 5 divady %)
z

Example 1. Using the invariant definition, compute
the divergence of the vector a = zi at the point O (0, 0, 0)
taking for the surfaces ¢ surrounding the point O the
spheres o, of radius e centred at that point.
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Solution. By the definition of di we have at

the given point
@ (a, 0% do

diva(0)= lim 2=
[CART)

Ve '

where v, is the volume of a ball bounded by a sphere

G, OF
@ (a, 0% do
diva(0)=lim 22— —
e~0 Ve

But since the volume of the ball is v, = 4ne®/3, it fol-

lows that
o mmao

diva(0) =lim 2
=0 Zae

Lot us compute the flux @(I, n% do of the given vector

o, .
through the sphere g,. Th‘e unit vector of the normal n°
to the sphere o, is directed along a radius of the sphere,
and so we can put

_r
B
where r° is the unit vector of the radius vector r =
= zi + yj + 2k, or

0 — po =X
nd=r 5

.
no— Zityitak
e

The desired flux is

§§ (a, n% do = @ 2 go.

e T
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Passing to coordinates on the sphere o,
z==¢ecos@sin®, y=-esingsin®, z=ecosb,
we get

@ (a, 0% do = Ss e‘cos'wsin'ge’sinedwde
%

2x n
=gl S cosz @ dg S sin’(pdo=-;- nes.
[ ]
Consequently
-;- et
diva(0)=lim 7
&0

-

Example 2. Compute div r.
Solution. We have r = zi + yj + zk, so that P = z,
Q=y, R=zand, hence. by fonnula 3),

dive= 5= + + .— =3.

Example 3. Compute div (u~a), where u (M) is a scalar
function and a(M) =P (z, y, 2)i+ Q(z, y, 2)j +
+ R (z, y, 2)k is a vector function.

Solution. Using formula (3), we get
div (ua)

0(uP)+5(uQ) a(un) +P 4 Ly 00_,_0"”
9u aR
+u— R——u( 6v+ )+P
+QW+RE=ud|v a+ (a, grad u).

Thus
div (za) = u div a + (a, grad u). (5)
Example 4. Find the divergence of the vector

a=q()r=20y,
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where r = | r | is the distance from the coordinate origin
to the variable point M (z, y, z).
Solution. Using formula (5), we obtain

diva= W'(’) divr+ (r, grad ‘P'(') .

Furthermore,

divr=3, grad "r(') = (_“'f" )I gradr="20—e0 (’)r._"’(') 0.
And so
diva= Wi’) 34 (r—w (’)r,_'”r) 10, l')

-3 wr(') +w’(r)r—w(rJ=2 ¢r(')+q,: .

131. For what function ¥ (r) will we have divy () r =

=29 (n)?
132. Find div (rr).
133. Find the divergence of the vector field
a=le,rl
where ¢ is a constant vector.
134. Find
div (r [w, r)),

where w is a constant vector.
135. For what function v (z) will the divergence of the
field
a=uzzi+ yji+ p @)k
be equal to z?
136. Find the flux of the radius vector r through the
surface of a sphere
137. The elecu-ostauc field of a point charge g is
©
E=fe Ane., B
Compute div E.
138. Show that

—;—@(r,n“)du=v
I
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where V is the volume bounded by a closed surface Z.
139. Prove that if 2 is a closed piecewise smooth surface
and ¢ is a nonzero constant vector, then

@ cos (u, ¢)do =0,
T

where n is a vector normal to the surface 3.
140. Prove the formula

@ (9a, n%) do = S j S (¢ diva+(a, grad §)) dv,
T 4

where ¢ = ¢ (z, ¥, z) and Z is a surface bounding the
volume V. Establish the conditions under which this
formula is applicable.
141. Prove that if the function u (z, y, z) satisfies the
Laplace equation

Pu | Pu oM

Frart =0

fara-o
z

where du/dn is the derivative with respect to the direction
of the outer normal to the piecewise smooth closed sur-
face Z.

142. Prove that if the function u (z, y, z) is a second-
degree polynomial and 2 is a piecewise smooth closed
surface, then the integral

u
@ i
x

is proportional to the volume bounded by the surface X.

Find the flux of a vector field through the indicated
c:losed surfaces: (1) directly, (2) via the Gauss-Ostrogradsky
theorem.

143. a=zxi+2k; S: {

then

2=z Y2,
z=4.
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144.

145.

146.

147.

148.

149.
150.

154.

152,

153.

154,

a=2zi+2yj—zk; S: {Z::;"+I!;’->0.
a=zi—zj; S: {;::;::::;0
a=yzi—zj—yk; S: :::z;i;gi)_
a=zi+2yj—zk; S: {zz:::I::'
a=2zi—(z—1)k S: {:’:0”27:1
24yt 22=4,

a=2zi—yj+zk; S: {33=zi+y2 (‘>,|_§,a).
a=yzi+2yj—zk; S: 2+y2+2=4.
a=(z+2)i+W+2)i+G+ok;

[ FHy=R

$: {z=y, 2220,

9—z=z2+y?,
a=3zi—yj—zk; S: {z=0, y=0, z=0 (first
octant).
z+y+z=1,
a=(—2) i+—p) it -9k S {z—y+z=1,
z=0, z=0.
. 1—z=224p2,
a=zi—2yj—zk; S: { =0,

Solenoidal fields

Definition. If at all points M of a certain region G
the divergence of a vector field (specified in G) is zero,

div a (M) = 0,

then we say that the field is solenoidal in that region.
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Thus, a solenoidal field is, by definition, without
sources and sinks.
From the Gauss-Ostrogradsky theorem it follows that
in a solenoidal field the flux of a vector a = a(
through any closed surface o
n lying in the field is zero:

@ (a, n% do=0.
In a solenoidal field G, the

vector lines cannot begin or
end. They can either be closed

7 curves or have ends on the
boundary of the field.
Fig. 29 The equation
diva (M) =0

is encountered in hydrodynamics and is termed the con-
tinuity equation of an incompressible fluid.

In this case, the amount of fluid exiting through some
closed surface o is alwnys “equal to the amount entering,
and the total flux is zero.

\lN!’uch of the following vector fields is a solenoidal
field
155. a =g (2 — M1+ y @ —2%)j+ 20— )k
156. a = )il — @+ M) j+ 2@y + Dk
157. a = (1 + 2zy) 1 — %) + (% — 22y + 1) k.

158, Show that the field of the vector

E=%r (=VFTETH)

is solenoidal throughout the region that does not contain
the coordinate origin O (0, 0, 0).

159. Under what condition will the vector field a =
= @ (r)r be solenoidal?

Suppose we have a field a (M), which is not necessarily
solenoidal. In the field, consider a closed oriented con-
tour L. The surface 2 containing the curve L as its edge
will be called a surface spanned by the contour L. Let us
agree to orient the normal n to the surface = so that the
chosen circuit about the contour L will be seen from the
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end of the normal as being counterclockwise (Fig. 29).
160. Show that in a solenoidal field the flux of a vector
a (M) does not depend on the type of surface I spanned
by t?e given contour L and depends solely on the contour
itself.

Sec. 14. A line integral in a vector field.
The circulation of a vector field

Suppose we have a continuous vector field a = a (M)
and a piecewise smooth curve L on which a positive
direction has been chosen (in other words, L is an oriented
curve),

Definition 1. The line integral from the vector a =
= a (M) along the oriented curve L is termed a line
integral of the first kind (an integral over the arc length
of a curve) of a scalar product (a, +%):

5' (a, %) ds,

where ° = «° (M) is the unit vector of the vector tangent
to the curve L whose orientation coincides with that
of L; ds is the differential of arc length s of L.

If r = r (M) is the radius vector of an arbitrary point M
of the curve L, then the line integral in the field a (M)
may be written thus:

5(-,x°)d;=5 (a, dr), )

L L
If a 1 di yz-system i
in the vector field, then r = zi + yj + 2k,
a=P@y2i+Q@y2i+tR@yk

and the line integral (1) can be expressed in terms of a
line integral of the second kind:

f@dan=[P@y9d+Qy0dy+R @y 2 de
L L

s i duced

When a = a (M) is a force field, the line integral (1)
yields the magnitude of the work of that field over the
curve L.

1-910
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Properties of a line integral
(a) Linearity:
[ (Ao, + pag, dr) =1 5 @y, dr)+ { (az,dr),
where A and p are constants.
(b) Additivity:
s (n'dr)=j (a,dr)+ S (a, dr),
Ly Le

LitLy
(c) The integral reverses sign with a change in the
orientation of L:

j (@,dr)=— j (a, dr),
BA 4B
where A is the initial and B is the terminal point of the
curve L.
Caleulating a line integral in a vector field
Let the curve L be specified by the parametric equations
z=09() y=v@ z=x0 GL<t<<t.
Here, at the initial point A of L the parameter ¢ assumes
the value ¢ = ¢, and at the terminal point B of L it
assumes the value ¢ = ¢, (the direction on L corresponds
to increasing values of the parameter ¢ from t, to ¢,);

the functions o (¢), ¥ (), % St) have continuous deriva-
tives on the interval [fo, t,]. Then

"
f@an= [@am={Peo.vo.xme o
L AB fo
+Qe VO, 2OV O+ Rip©. v 0,1 )7 O} dr.
If the curve L is given by a system of equations
y=v@,z=x@&),a<z<?H then
1]
f@an=[Plz v @ a@I+Qi v 1@V (2
AB a

+ Rz, (), x (@))% (2)) da.
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Similar formulas may also be written for cases where
the line is specified by one of the following systems
of equations:

z=9W z=x@ W<y<un

z2=0(@), y=v%@) @<z<z)
Example 1. Find the line integral of the vector a =
=r/ | r|, where r is a radius vector on the line segment
from point 4 (rn) to point B (rg).
Solution. The desired line integral is
~ [ (rdn
f@an={| L3 1)
AB

AB

or

From

dr, r)=@r, 1)+ (r, dr) =2 (r, dr)
we find
Edy=Fdrn=Fd(r)=F-2iridIrl=Ir e,
whence

LB —ap. @

Substituting (2) into the integral (1), we get

*p
{ @)= fairi={ airi=rsl—ra].
AB An. Th

Note that
|dr|sd|r|
Find the line integral over the line segment bounded
by the points 4 (r,) and B (r,) for the following vector
fields:
161. a =r.

162. a _!—I-

163. a= lrl' , r® is the unit vector,

164. Compute the line integral over the straight line
passing through the points O (0, 0, 0) and M, (1, 1, 1)

7%
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from point O to point M, if a = [b, r], where b is a con-
stant vector.
165. Prove that

S (grad u,dr) =u (B)—u(4).
4B

Example 2. Find the line integral of the vector
a=iz+ zj + yk
over an arc L of the heli-
cal curve
z=Rcost, y=Rsint,

z=
T 2n

from point A, the point of in-
tersection of the curve with
the plane z = 0, to point B,
the point of intersection with
the plane z =1 (Fig.

Solution. Here, the line in-
tegral is of the form

i (a, dr)

= j zdz+ zdy+ydz.
L

The helical curve is located
Fig. 30 on a circular cylinder z* +
+ y* = R At point A we
have ¢, = 0, at point B we have t, = 2n. Since
dz= —Rsintdt, dy=Rcostdt, dz=%,

it follows that the integral is equal to

2n
S (a,dr) = 5 (~= Rsint 4 Recostt+ gesint) dt
i o

2 28
=R? i oosztdt—%j tsintdt=nR*4+ R
[
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because
2n
S cos?tdt=
0
2n
S tsintdt=—2n.
o

Example 3. Find the line integral of the vector (see

example 2) Lo 4k
a = zi Yl

over the straight line AB (see Fig. 30) in the direction
from point A to point B.

Solution. Since the straight line AB (the generatrix
of the cylinder z* + y* = R?) is located in the zz-plane
and passes through the point 4 (R, 0, 0), it follows that
y=0, z = R, dz =0, and for the radius vector r of
the points of AB we will haver = Ri + zk, dr = dz-k.
Therefore the scalar product

(a, dr) =zdz+ zdy + ydz

on_AB will be zero.
Hence, the desired line integral

i (a,dr)= Ajﬂ (a,dr)

on AB will be zero.

From examples 2 and 3 it follows that in the general
case a line integral in a vector field depends not only on
the initial and terminal points of the path of integration
but also on the shape of the path.

Example 4. Compute the work done by the force field

F=yi+zi+@+y+2k
along the segment AB of a straight lme passing through
the points M, (2, 3, 4) and M,(3, 4

Solution. The work done by the force field will be

equal to the line integral along M,M,:

A= L(F.dr)= s ydz+zdy+(z+y+3)ds,
MMy

MMy
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Let us find the canonical equations of the straight line
M\M,. We have
z—2_y—3 _ 1—4

1 1 1

whence
y=z+1,
z=zr+2, }
dy = dz, dz = dz.
Here, z varies from 2 to 3 (since the abscissa of M, is
equal to 2 and the abscissa of M, is 3). The desired work is
3

= i(x+1+x+:+2+1+z+2)dz

3
= (5:+4)d1=%.

166. In the plane vector field
pi—aY
Vaty
compute the line integral along the semicircle
z=CRcost, y=Rsint 0t <)
I,M’ In the plane vector field
a=(@+yi+@—pi
compute the line integral over the curve y = |z | from
the point (—1, 1) to the point (2, 2).
168. In the plane vector field
a=(2—2y) i+ (4" — 2z}

compute the line integral:

(a) along the pauboln y = 2* from the point (—1, 1)
to the point (1,

(b) along a segment of the straight line joining the points
(—1, 1) and (1, 1).
169. Compute the work of the im-ce field F = 2zyi + 2%
along an arc of the circle z* + y? =1 from the point
(1, 0) to the point (0, 1) counterclockwise.
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170. Compute the work of the force field

F=(@4+2)i+ (2 + 7))
along the parabola y = z* from the point (0, 0) to the
point (1, 1).
171, In the vector field

zityj+ok
T Vetveto—i—yt

compute the line integral along a segment of the straight
line from the point (1, 1, 1) to the point (4, 4, 4
172. In the vector field

a=(@—2)i+ 24— 2k
compute the line integral over the line

z=1
y=2, o<it)
z=12

in the direction of increasing values of the parameter ¢.
173. In the vector field
a=yl+z+ 7k
compute the line integral along a turn of the helical curve
T=acost,
y=asint, 0O<t<2n)
z2="bt
in the direction of increasing values of the parameter ¢.
174. In the vector field
a=2z4+ %+ 2%
compute the line integral in the direction from the point
(0, 0, 0) to the point (1, 1, 1) along the line segment
between the two points.

Computing the circulation of a vector field

Definition 2. The circulation C of a vector field a =
= a (M) is a line integral taken around a closed oriented
curve L Thus, by definition,

c:§m@m
L
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where the symbol §; denotes the integral around the
closed curve L. i '
If the vector field a = a (M) is given' in coordinate
form,
a=P y2)i+Qk v i+ Ry Ik,

then the circulation of the vector field is
c=§Pdz+Qdy+Raz.
L

For the positive direction of traverse around the closed
curve L we take the direction in which the region bounded
by the curve is on the left.
xample 5. Compute the circulation of the vector
d

=i+

around the ellipse L: z%/a® + y%/b® = 1.
Solution. By the definition of circulation we have

16

c=§(a.dr)=§}—ysdz+zaay. 3)
L L
The parametric equations of this ellipse are of the form
r=acost,
y—bsint } 0<t<2n), (4)
whence
dz = —asin tdt, dy = bcos t dt. (5)

Substituting (4) and (5) into (3), we get
2
C=abs (62 sin® £+ a2 cost 1) di = -3 mab (a2 +-£2)
o

since
2n 2n
S sinttdr=1 j (1—cos 2t)2 dt
0 0

2n

=% § (1—20052)+L+°T°“i) dt
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2n 2n
=—:—‘S) (%—2c052t+%wsél)dt=% g %dl=% .
Similarly, we find that
2n
j cos‘tdt=%n.
0
1

E le 6. Cal
field

the circulation of the vector

a = ye™i + ze*j + zyzk

around the curve L obtained by cutting the cone z* + y* =
= (z — 1)® with the coordinate planes (Fig. 31).

Fig. 31.

Solution. The curve L consists of two parts BC and CA

located in the coordinate yz- and zz-planes respectively,
— 2+ =1

and the arc AB of the circle 7z =0f"

the circulation of the given vector field will be

c= ;§ (8,dr) =”sc(n,dr) +Cj; (a,dr) +i (a,dr).
y AB

Therefore

(1) On the line segment BC we have
z2=0,d2=0; z=1—y, dz=—dy; 1>y>0
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Consequently,
S (a,dr)= S ydz=0.
Bc BC

(2) On the line segment CA we have
y=0,dy=0; z=1—2g,dz=—dz; 0z 1
and so
S (a,dr)= S zdy=0.
ca ca

=1,

— 24
(3) On the arc AB of the circle —0

2=0, dz=0, which means that
f@an=fevydstady= |eram
B aB aB
B (0, 1)
= S a (g"’) =& L(l, 0)
aB

The desired circulation of the vector field is zero.
Example 7. Compute the circulation of the vector

} we have

=1—-1=0.

field
" a = zyi + yzj + zzk
i
{ 2pyr=t,
‘Nzty+z=1.

Solution. We have
C=§ (a,dr) = 5 zy dz+yzdy + z2dz.
L L

The curve L is an ellipse obtained by cutting the cylinder
z* + y* =1 by the plane z + y + z = 1. Let us find
the parametric equations of the curve. The projection
of any point of the curve on the zy-plane lies on the
circle z* + y* =1. From this we obtain z = cost,
y = sin t. But the ellipse lies in the planez + y + 2z = 1,
whence z=1—2z —y or 2 =1 —cost — sint. Thus
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the parametric equations of the curve L are:

T=cost,
y=sint, 0<ie<2n).
2=1—cost—sint

From this we find
dz = —sin tdt, dy = cos tdt, dz = (sin ¢ — cost)dt
and so the circulation is
28
C= S [—costsin2t+sin¢ (1 —cost —sin¢)cost
0
+cost (1 —cost—sint)(sint—cost)|de
2n

= S (—3sin2tcost+ sin 20— cos?¢ sin t—cos? ¢ 4 cos3¢) dt
Ll

2n
= —j costtdt= —m.
0

Compute the circulation C of a vector a around the
given curve L:
175. a= @z +p) i+ @ —2i— G+ Pk
2tyt=1,
L: { z2=3.

176. a = % + 2% + 2%k;

L 2+ y2+ 22 = R?,
{ 22+ y:=Rz

177. a = (2z + 2) i + (2y — 2) j + zyzk. L is the line of
intersection of the paraboloid of revolution z* + y* =
=1 —z with the coordinate planes.

178. Show that if in a vector field the circulation of a vec-
tor around any closed circuit is equal to zero, then there
can be no closed vector lines in such a field.

(2>>0).
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Sec. 15. The curl (rotation)
of a vector field

Suppose we have the vector field

a(My=P(z,y )i1+Q& y. )i+ Ry Ik
‘We will assume that the coordinates P, Q, R of the vector
a (M) are continuous and have continuous partial deriv-
atives of the first order with respect to all its arguments.

Definition 1. The curl (or rotatior) of a vector a (M)
is a vector (symbolized: curl a (M) or rot a (M)) defined
by the equation

R Q ( P ) i

curl a= "Ry 5

HE-%) W

or, in easy-to-remember symbolic form,

ii ok
a
curla=sz. 2
P Q R

This determinant is ordinarily expanded in terms of
elements of the first row, in which case the operations of
multiplication of elements of the second row by elements
of the third row are regarded as operations of differen-
tiation; for example,

L.
% 0=5"
Definition 2. If in some region G we have curl a = 0,
then the field of the vector a in G is said to be irrotational.
Example 1. Find the curl of the vector
a=@E+2i+@y+2)j+ @ +)k
Solution. Using formula (2), we obtain
i j k
I LJ
3 3y oz
4z y+z 22+z

curl a=
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Expanding the d i in terms of el of the
first row and .regarding the operation of multiplication,
say 0/dy by z° + z, as an operation of partial differen-
tiation, we obtain
curl a = —i— (2z — 1) j.
Example 2. Find the curl of H, the intensity vector of
a magnetic field under the conditions of example 3 of

ec. 10.
Solution. The magnelic-ﬁald intensity vector H is

H——[l ]
or
ijk
H=210017|= -2yt 2o
Tyz
where p* = z* + y*, whence, by (2),
i ik
a [ a 2 2lz
curl H= e W =[E (——z.+y,)

_ 2y 2z
4y R
a (_2ly _ 2yt~ 224yt —2% |
o () =21 (z’+u‘)‘ ~+ e k=0
(22 +y2+0).

Thus, curl H = 0 everywhere except the z-axis, at the
points of which the last formulas are meaningless (the
denominator vanishes), that is, the field of the vector H
is irrotational everywhere outside the points of the z-axis.

Find the curl of the following vectors:

179. @+ )i+ (y’ + 28§+ (2 + 2k

180 z'i +yi+

181. a = ? (—y%i + z‘]).

182. Show that if the coordinates of the vector a (M)
have continuous partial derivatives of the second order,
then

div curl a = 0,
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that is, thefield of the vector curl a (M) is a solenoidal
field.
183. Show that

(a) curl (a & b) = curl a 3 curl b,

(b) curl (Aa) = A curl a.
where A is a numerical constant.
184. Show that if u = u (M) is a scalar function and
a = a (M) is a vector, then

curl (ua) = u curl a + [grad u, al.

185. Show that if a and b are constant vectors, and r

is the radius vector of the point M (z, y, z), then
curl (r, a) b = [a, bl.

186. Show that

curl (ra)= %[r. al,

where a is a constant vector and r=|r|=
=VZ2+yFE+2 )

187. Show that curl (f (1) 8) = " [r, al, where f(r)
is an arbitrary differentiable function of its argument and
a is a constant vector.

188. Show that the vector field a = f (r) r isirrotational
that is, curl a =

189. Show that

div [a, b] = (b, curl a) — (a, curl b).

190. Show that the curl of a field of linear velocities v of
a rotating solid is a constant vector in the direction paral-
lel to the axis of rotation, the modulus of which is equal
to twice the angular velocity of rotation: curl v = 2a.
191. Determine the angular velocity ® of rotation of
a solid about a fixed axis passing through some point of
the solid if its linear velocity is

v = 2zi + y*j + xzk.

192. Show that the field of the curl of the vector a (M)
is free of sources and sinks.
193. What must the function f (z, z) be so that the curl
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of the vector field
a=ysi+ f(z, 2)j+ zyk

is coincident with the vector k — i?

Sec. 16. Stokes' theorem

Suppose the coordinates of a vector
aM)=P@y 20i+Q& y )i+ Rz vy )k

are and have i partial derivatives.
Theorem. The circulation of !

the vector a arounda closed con-

tour L is equal to the fluz of the

curl of the vector through any

surface Z spanning the con-

tour L:

? (a,dr)= ij (curl a,n%do.
)

It is assumed that the orien-
tation of the normal n® to the
surface 2 is matched with the
orientation of the contour L ‘%
so that, when viewed from the Fig. 32
end of the normal, thecontour
is traversed in the chosen direction counterclockwise.

Example 1. Compute the circulation of the vector

a=yi+a—zk
+ =

z 4,
around the contour L: { 7z =3 (1) directly and
(2) via the Stokes theorem.
Solution. (1) The contour L is a circle of radius R = 2
lying in the planez = 3 (Fig. 32). We choose the orienta-

tion as shown in the g. The p ic eq of
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the curve L are

z=2cost,
y=2sint, (0K t< 2m),
z2=3

so that
dr = —2sintdt, dy=2costdt, dz=0.
For the circulation of the vector a we have
2n
= S (2sin¢(—2sint) +4cos?t2cost—3-0)dt = — 4.
v

(2) To compute the circulation via the Stokes theorem,
choose some surface = spanning the contour L. For Z
it is natural to take a circle having- L as its boundary.
According to the chosen orientation of the contour the
normal n® to the circle has to be taken equal tok: n° = k.
Then

i Jj k
3
curla=a—zﬁﬁ—(2z—1)k
y 22 —z

Therefore, by the Stokes theorem,
C= (curl a,n% do= (2z—1)do
i i

o 2 3 12
= i dwi (2pcos«p—l)pdp=—2u"7 = —4n.

194. Show that the flux of the rotor through an open
surface spanning a given contour does not depend on the
shape of the surface.

Find the circulations of the vectors around the indi-
cated contours (1) directly and (2) via the Stokes theorem.
24 yt=4,

2=0.
22yt st=4,
24 yt=22 (22>0).

195. a=zi+zj+yk; L: {

196. a=yi—zj+zk; L: {
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197. a = 222i — yj + zk around a contour formed by
intersection of the plane z + y + 2z = 2 with the coor-
dinate planes.

=242,
198. a=yi—zj+ (@ +y) ki Lt {’ ok

z24-y2 +22 =16,
z=0,y=0,2=0.
z=y+22
z=9.

224 y2=9,
3y+4z=5.
24yt =1,

=1z,

199. a=2z%; L: {
200. a=zy?i+ zz%j+ 22yk; L: {
201, a=y2i+2%; L: {

202. a=yi—zj+zk; L: {

203. Given a vector field of velocities v of the points
of a solid rotating with a constant angular velocity ©
about the z-axis. Calculate the circulation of the field
around the circle

T=acost,

L: qy=asint, (0<t<<2n),
z2=0

directly and via the Stokes theorem.

From the Stokes theorem we find that the projection
of the vector curl a on any direction n is independent of
the choice of the system of coordinates and is equal to
the surface density of the circulation of the vector a
around the contour of the area perpendicular to that
direction:

§ (@,dr)
L— @

Here, (Z) is a plane area perpendicular to the vector n;
§ is the area of (Z); L is the contour of the area and is
oriented so that the traverse of the contour is counter-
clockwise as seen from the end of the vector n; the nota-

pro curl a5 = (curla, n°)| = lim
(B)-M

8-910



114 Veetor Fields [Ch. II1

tion (Z) = M means that the area (Z) contracts to the
point M at which we consider the vector curl a, and the
direction of the normal n to that area is always the same.

Example 2. Compute the density of the circulation of
the vector a = yi around the circle

z=acost,
L: qy=asint, (0<t<2m),
z2=0
at the centre of the circle, M (0, 0, 0), in the positive
direction of the z-axis.
Solution. Here, (Z) is a circle of radius @ with centre
at M, so that S = mna®.
The desired density of the circulation is

im 4 —lim L
"M=L'ﬂﬁr§("dr)_ll3m'§ydz

2n
. 1 .
=!.'."Jm§ (—a?)sinttdt= —1.

On the other hand,

i §j k
9 2

curl a= =W w =—k
y 00

and, hence,
(curl a, 0%) |y = (—k, k) = —1,
which, by virtue of (2), confirms the correctness of the

result.
204, Compute the density of the circulation of the vector
a=1z+4zj + yk around the circle L: {y =acost,
z=asint, z=0, (0 < t<2n)} at the centre of the
circle, C (0, 0, 0), in the positive direction of the z-axis.
Compute the density of the circulation of the vector
a = 2yl + 5zzj around the ellipse L: {z = acost, y =
=bsint, z =1(0 < ¢t < 2n)) at the centre C (0, 0, 1)
of the ellipse in the positive direction of the z-axis.
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Sec. 17. The independence
of a line integral of the path
of integration. Green's formula

Definition. A region G of three-dimensional space is
said to be simply connected (more precisely, it isa simply
connected plane region) if any closed contour lying in the
region can be spanned by, a surface lying entirely in G.
For example, the whole of .three-dimensional space and
the interior of a sphere are simply connected regions; the
interior of a torus and three-dimensional space with
a straight line deleted are not simply connected regions.

Theorem. In order that the line integral

{ @an= i P(@ 0,9 dz+Q (@ v, ) dy+ R (2,1, 9 ds
L

should not depend on the form of the path of integration L,
it is necessary and sufficient that the vector field
a=P( 4 )i+Q@ ¥ )i+ Ry Dk
be irrotational, that is,
curl a (M) = 0.

It is assumed here that the coordinates P (z, y, z),
Q (2, y, 2), R (2, y, 2) of the vector a have continuous
partial derivatives of the first order and the domain of
definition of the vector a (M) is simply connected.-

In that case, the line integral S (a, dr) will depend
L
solely on the position of the initial and terminal points
of the path of integration L. .
If the theorem is complied with, the circulation of

the vector a (M) around any closed contour C located in
the field of the vector a (M) is equal to zero:

§(a, dr)=0.
c
Example 1. Show that in the field of the vector
a = zy*zi + Pyzj + %a’y’k
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the line integral S (a, dr) is independent of the shape
L -
of the path of integration L.

Solution. The coordinates of the vector a are everywhere
continuous functions so that the domain of definition G of
the vector a is the entirespace (asimply d region)
In this region we have

i § ok
a a a3
curl a=| 2z 3 @& |=0.

2y sys 5 o
Consequently, the line integral
l‘(a, dr)= jzyzzdz+ z’ytdy+iz‘yzdz

is independent of the shape of the path of integration L
In particular, for the plane vector tield

a(M)=P@ )i+Q@ i )
we have
i j k
ourl a(M)=| L 2 2 |= (2 -2 )k
P QO

There(ore. for the plane vector field (1) that is dohned

in nsnmplyconnecud region G, the condition curl a (.

= 0 is written in coordinate form thus: aP/dy = 9Q. 6:
This means that in order for a line integral

l[P(z, Vdz+Q(z y)dy

in a plane field defined in a simply connected region G to
be independent of the shape of the path of integration, it
is necessary and sufficient that the following relation hold:

aP 3Q
=
Remark. The roquirement that the region G, where the
vector a = a (M) is defined, be simply connected is essen-
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tial. If the region G is nonsimply connected, then, provid-
ed that curl a (M) =0, the line integral may depend
on the shape of the path of integration.
Example 2. Lot us consider the line integral
-—yrlz zdy
At

Solution. The is ingless at the point
0 (0, 0); and so we ellmmnte that point. In the remaining
part of the plane (which is then a nonsimply connected
region), the coefficients of dz and dy are continuous and
have continuous partial derivatives, and the following
identity holds true:

2 z 3 v
= (w5p) =% (—=)-
On the other hand, if we compute the integral around the
circle L: 22 + y* = R?, then by parametrizing the equa-
tion of the circle we get -

2n
—ydz+zdy R’sin’ t+Ricostt , _
§ P 5 Re 4’_§dt_2m

We find that the circulation is nonzero and, hence, the
line integral depends on the path of integration.

Determine in which of the vector fields indicated below
the integral is independent of the shape of the path of
integration:
206. a = 2% + 2% + y’k.
207. a= zi+yj+k
T Ve rets

yi—zj+1k

208 0= Sy

Green's formula

Given in a region D with boundary L a plane vector
d

fiel
a=P( Yi+0Q yi

where the coordinates P (z, y), Q (z, y) are continuous
and have continuous partial derivatives dP/dy, Q/dz.
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Then Green's formula,
§sz+ody=jj(-"l——)dzdy, @

holds true. Here, the boundary L is zraverud so that the
region D is on the left.

—

——
Ly

Fig. 33

The region D may also be nonsimply connected so that
the boundary may consist of several components (Fig. 33).
In that case, the integral ~

L{Paxwdy

is understood to mean the sum of the integrals over all
components of the boundary of D.

Green's formula (2) is a special case of the Stokes theo-
rem (see Sec. 16).

In certain cases, Green s formuln permits simplifying
he of a vector field.

Enmple 3. Computo the circulation of the vector

a=VT+Z+y i+ylzy+In(z+VIF 2+ 7)1
around the circle z* + * = R2.
Solution. The circulation of the given vector is

C=(§(a, dr)=§]/1+12+y2 dz
i I

+yley+In(z+ VIitaF 2 )lay.
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Here
P=Vitz2+y, Q=zpr+yhn(zc+VI+2+4).
We find the partial derivatives
oh ___ ¥y X _ 7.3 N —
W= yirata o Virarr
Using Green's formula, we obtain

o= v+t~ v

= SDSy’dzdy‘

Passing to polar coordinates,
z=pcosp, y=psing,
we have

C= 5 szsinzwpdpd¢= 5 Sp’sin2 9dpdy.
Since 0 < o < 211 0 < p < R, it follows that
C= §sm’(vd®5p’dp

Compute the circulation of the following vectors around
the given contours using Green's formula:
29. a=@y+2i+@y—2iLiz+y=1,2z=0,
y=0.
210. a = (z — y%) i + 22y §; L’ y=uz,y=2.
2{.a=zln(1 +y’)l+1—;l. L: 2t + yt =
212, a =yt — :‘],L':+y——i z=0, y—O.

Gz—v VITIFE) 1+ (18242 VIETF ) )
213. a=
3V I+ +48

L: 224 y2=1.
214. Use Green's formula to compute the difference be-
tween the integrals

L= [ @+yrde—(e—yray
AmB
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and
L= | G4yrde—@—yray
AnB
where AmB is a line segment joining the points 4 (0, 0)

and B (1, 1), and AnrB is an arc of the parabola y = z°
215. Prove that the integral

§(2z+y)dz+ 2rdy,

L
where L is a closed contour, yields the area of the region
bounded by that contour.
216. Using Green's formula, compute the line integral

i (a, dr) in the vector field

a=(essiny —y)i+ (Scosy—1)j,

where the curve L is the upper semicircle z* + y* = 2z
traversed in the direction from the point 4 (2, 0) to the
point O (0, 0).



CHAPTER IV
POTENTIAL FIELDS

Sec. 18. The criterion for the potentiality
of a vector fiel

Definition. A vector field
aM)=P(z,y,2)i+Q( y, 2)i+ Rz y 2k
specified in a spatial region V is said to be potential if
there exists a scalar function ¢ (M) such that at all
points of V the following equality holds:
a (M) = grad ¢ (M). @)
The function ¢ (M) = ? (z, y, 2) that smsﬁes (1) in
V is termed the p 1 (or the p of
the vector field a.
The relation (1) is equivalent to the following three
scalar equations:

Py =3, 0@y =3, R@y9=3

(2)

The potential of a field is not defined uniquely but
only up to an additive constant.

Remark. For force fields, the function @ (M) is ordi-
narily cal{eda force function, and the potential is the func-
tion —@

Example 1. (The electrostatic field of a point charge.)
Show that the field of electric intensity E set up by a point
charge ¢ located at the coordinate origin,

, —Lr, o VFIEER,

is a potential field.
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Solution. The problem is posed thus: show that there
exists a function @ (z, y, ) such that relations (2) hold.
In our case, we have

Pizy=%, Qey9=%, R@yi=%
Since

8 (4 i or z
w(F)=—wa=-—%
and, analogously,

0 1 z
w (F)=—%. 5 (F)=—%
it follows thlt the iunchon

PR R —
Py 2)=— VaToas

is the potential of the given field:

LAY
grad ( _T) =E.

In this case, the coordinate origin (this is where the
charge ¢ is located) is a singular point of the field E.
Theorem. For a vector field a (M) specified in a simply
connected region V to be potential, it is necessary and suf-
ficient that the following condition hold at every point of V:

curl a = 0. ()]

In other words, for a vector field specified in a simply
connected region to be potential, it is necessary and suf-
ficient that it be irrotational.

The potential ¢ (z, y, z) of the vector field

a=P(y 2)i+Q(@ v 9)j+ Ry 9k

is defined by the formula

=y 2
®@ya= | PdztQday+Rdz, @

(o, Vo 20)

where (zg, Yo, %o) is s\;me ;ind point of the field and

(z, y, z) is an arbitrary current point.

Example 2. Show that the field of the vector
a =24+ % + 7%k

is a potential field.
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Solution. The coordinates P = 23, Q = y*, R = z* of
the vector a are infinitely differentiable functions through-
out the space so that a is an infinitely differentiable
;:eetor defined throughout three-dimensional space. We

ave

i jk

4 a8 3
curl a= % W =('7v z’——ﬂyz)i

2y g2

s I

By virtue of the theorem given on p. 122 the field of the
}Iector a is a potential field. It is readily seen that the
unction

oz y, 0= THLEL g,

where C is an arbitrary constant, is the potential of the
given field.

Check to see whether the following vector fields are
potential fields:
217. a = zzl + 2y
218. a = 2zy+Z’)l +(2w+z’)i+(2zz+v’)k
219. a = 3 (@ + y* + 22%k).
220. a = yz cos zy-i + zz cos zy-j + sin zy-k.
221. a n(i+z’)i+ln(1+z‘)|+:uk

1 0m (e £) 1 (o 2) 1 ()
223. H=2L (—yitai), P=z4p2, re0.

224. Prove ',hat ths hold a —-f(r) r. where f(r) is a
diffe a ield.

225. Show that the vector lines in the potential field
a = grad ¢ are perpendicular to the level surface of
the function ¢.
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Sec. 19. Computing a line integral
in a potential field

Theorem. A line integral in a potential field a (M) is
equal to the difference between the values of the potential
@ (M) of the field at the terminal and initial points of
the path of integration:

M,
[ =g ) —owr). )
M,

Example 1. Compute the line integral in the field
of the vector
r=uzi+yj + 2k
along the line segment bounded by the points M, (—1, 0,
3) and M, (2, —1, 0).
Solution. We will show that the field of the given vector
is a potential field. Indeed,
1§k
a a2 2
curl a= % W =0.
zy z
It is easy to see that the potential of this field is

? (2, ¥, z)=w_'_c.

Using formula (1), we obtain

My

‘i(a,dr)=<p(2, —1,0—p(—1,0,3 =2 —5=—5.

Note that it is immaterial what line joins the points M;
and M,; for fixed M, and M, the integral

M, M,
ﬂi(a' dr)= Szdz+ydy+zdz
0 M,

always has the same value.
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Computing the potential of a field in Cartesian coordinates
The formula
?(z, 4 2)
[EX)
= | PevaetQeuan+RE Y9
(%o, Vo, 7o)

@
may be used to find the potential function ¢ (M) =
= @ (z, y, 2) of a specified potential field

a@ y =Py i+Qy 9]
+ R (z, y, 9)k.
To do this, fix theinitial point M, (zo, Yo, 2o) and join
it with the current point M (z, y, z) with a broken line

Mz3,2)

(oo Z0)

B2

A(2.0:2,)

Fig. 34

M,ABM whose segments are parallel to the coordinate
axes; namely, Mo || Oz, AB || Oy, BM || Oz (Fig. 34).
Then formula (2) takes the form

= v
9@y 2= [P v 2 dz+ [ Qe mydy

£ vo
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+{a@yaa @
z

where z, y, z are the coordinates of the current point on
the segments of the broken line along which the integra-
tion is performed.

Example 2. Prove that the vector field

a=@+2it@E@+adi+@E+yk
is a potential field and find its potential.

Solution. Ist method. A necessary and sufficient condi-
tion for the potentiality of a field a (M) is that curl
a (M) be zero. In our case,

i i k
L 2 2

0z ay oz
y+zzt+zz+y

=(1—=1)i+{—=1)j+(1—1)k=0.
That is, the field is a potential field. The potential of
the field can be found with the aid of formula (3). For
the initial fixed point we take the coordinate origin
0 (0, 0, 0). We thus have

0@ 1 9= [0+0de+ [+ 0 dy+ [+ as
0 o 0

=zy+z24y3.
To summarize,
9@y =ay+az+y+C,
where C is an arbitrary constant.
2nd method. By definition, the potential ¢ (z, y, 2)
is a scalar function for which grad ¢ = a. This vector
equality is equivalent to three scalar equalities:

%=I!+Z. (4
D—ats ®)
Bty ®
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Integrating (4) with respect to z, we obtain
P
w,y,z)=§(y+z)a:=,y+,,+;(y,,), m

where f (y, z) is an arbitrary differentiable function of

y and z. Differentiating both sides of (7) with respect to

y and taking into account (5), we obtain a relation for

]flinding the as yet undetermined function f (y, z). We
ave

oo _ .
W=y
or
x+:=t+£’-.
whence
z——a-ﬁ- ®)

Integrating (8) with respect to y, we have
v
fw. z)=§zdv=zy+r(z). ®
where F (z) is an as yet undetermined function of z.
Substituting (9) into (7), we get
@y, ) =zy+az+zy+ F @)

Differentiating this equation with respect to z and taking
into account (6), we obtain an equation for finding F (z):

2+y=r+y+:—f.
whence dF/dz = 0 so that F (z) = C = constant.
Thus we have
Q@ y2)=zy+yz+z2x+C.

3rd method. By the definition of the complete differen-
tial of the function ¢ (z, y, 2) we have

dp=22 4z %2 L ay+ St % ga.
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Substituting in place of the partial derivatives dg/dz,
d9/dy, d¢/dz their expressions taken from (4), (5), (6),
we obtain

dp=(+nde+@+dy+@E+y)d
or, after some simple algebra,
dp=(ydzr+zdy) + @dz+ zds) + (ydz + zdy)
=d (zy) + d (z2) + d (y2) = d (zy + 22 + y32).

Thus
do = d(zy + yz + z2),

whence it follows that
®@ v ) =ay+ytm+C.

In the following problems, establish the potentialitv of
the given vector fields a (M) and find their potentials
(M):

2zysi + 2% + yk.
(yz + 1) 1 + zzj + zyk.
oy +2) i+ (@ — 2) § + ak.

_ 4k

229, a= 0=

yal + 23+ zyk
230. a= Traps
231. a=1.

G
232 a=1.
233. a=r.r.

When the region Q is a star with centre at the coordi-
nate origin O (0, 0, 0)*, the potential ¢ (M)of some

* The region Q is called a star-shaped ref:on relative to the
point O belonging to Q. if any ny_omuunng rom that point cuts
the boundary of the region at one poifit at most. For exam ]gla star-

ped regions in the plane are plane itself, a parallelogram,
a circle; in three-dimensional space, the space itself, a parallele-
piped, a sphere.
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vector field a = a (M) at the point M (z, y, z) may
be found from the formula

1
‘P(M)=E(G(M')»r(M))dt+C, C=constant, (10)
v

where r (M) = zi + yj + zk is the radius vector of the
point M (z, y, z), and the point M’ (tz, ty, tz) for 0 < ¢
<< 1runs over the segment OM of the straight line passing
through the points O and M.
Example 3. Find the potential of the vector field
a = yzi + zzj + zyk.

Solution. It is readily seen that curl a = 0, which
means the given vector field is a potential field. This
field is defined throughout three-dimensional space and
is star-shaped with centre at the coordinate origin

0, 0, 0), and therefore to find the potential we take
advantage of formula (10). Since in this case

a (M') = a(tz, ty, tz) = t*yzi + t*zzj + t2zyk,
it follows that the scalar product of the vectors a(M’)
and r (M) is equal to
(a (M), ¢ (M) = t* (zyz + zyz + zyz) = 3t*zyz.
The desired potential is

1 1
o(M)= j(. (M, r(M)) dz:;yzjatzd:+0=zyz+ c.
0 0

Thus,
Q (M) =zyz + C.
Using formula (10), find the potentials of the following
vector fields:
ai + Bj + vk, where a, B, y are constants.
a (y+z)|+(z+z)!+(y+z)k
236. a = yi + zj +
237, a=-e‘smyl+e‘cosyl+k

9-910



CHAPTER V

THE HAMILTONIAN OPERATOR.

SECOND-ORDER DIFFERENTIAL
OPERATIONS.

THE LAPLACE OPERATOR

Sec. 20. The Hamiltonian operator del

Many operations of vector analysis may be written in
abbreviated form and in a form convenient for calcula-
tions; this is done through the use of a symbolic operator
called the Hamiltorian operator del:

Voig itk o

This operator combines both differential and vectorial
properties. We will regard the formal multiplication of
8/6z by the function f (z, y, z) as the partial differen-
tiation of /oz.

Within the framework of vector algebra, we will per-
form the formal operations involving del as if it were
a vector. Using this formalism, we obtain the following.

1. If u = u (z, y, 2) is a scalar differentiable function,
then, by the rule of multiplying a vector by a scalar, we
have

Vu—\l 5,+J—+k )u
—l—+i W—H‘—-—gmdu 2

2. Ifa=P(z,y,2)i+0Q(y 2)ji+ Ry 2k,
where P, Q, R are differentiable functions, then, by
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the familiar formula for a scalar product, we have
(V@)= (1 +i o +ko, Pi+Qi+Rk)
_ Q LR _ o,
—§+a—v+7—dl\'!» 3)
in particular, (V, €¢) = 0, where ¢ is a constant vector.
3. I

fa=P@ ¥ 2)i+ Q@ y 2)i+ R y 2k,
then

V,a)=|5 = 2 {=curl a; (4)
P QR
in pamcnlar (v, c) = 0 whore ¢ is a constant vector.
the ions with Vv as
a veclor. we obtain the followmg from the distributive
property of scalar and vector products:

(V, a+b)=(v, a) + (v, b), ©)
that is, div (a + b) = diva + divh
(v, a+ bl =I[v, al + [v, bl )

or curl (a+ b) = curl a + curl b.

Formulas (5) and (6) may also be interpreted as an
exhibition of differential properties of the del operator
(Vv is a linear differential operator).

‘When using the formalism of operations involving the
del operator regarded as a vector, one must bear in mind
that del is not a vector, for it has neither magnitude
nor direction, so that. for example, the veotor v, al
will not, be di to the
vector a (howover, for the plane tield a=P @ yi+
+ Q (=, y) j the vector

[V,a]=curl a= (_:__) k

will be perpendicular to the zy-plane and, hence, to the
vector a). In the same way, the concept of collinearity is
meaningless with respect to the symbolic vector v. For
example, the expression [Ve, V), where ¢ and { are

9
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scalar functions, formally resembles a vector product of
two collinear vectors, which product is always equal to
zero. But this is not true in the general case. Indeed, the
vector Vo = grad ¢ is directed along the normal to the
level surface ¢ = constant, while the vector Vi = grad ¢
defines the normal to the level surface ¥ = constant,

\\ 9=constant

Fig. 35

and in the general case these normals are not necessarily
collinear (Fig. 35). On the other hand, in any differentiable
scalar field @ we have [Ve, Vo] = 0. These examples
show that the del operator must be handled with care.
Besides its vectorial nature, the Hamiltonian operator
del has a differential aspect to it. Taking into account
the differential aspect of v, we will agree that the operator
V acts on all quantities that follow it. In this sense,
(V, 8) = (a, V). Indeed,
(v, a) = div a,
whereas
d 2 a
(a, V)=P$+OW+RH

is a scalar differential operator.
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When applying the del operator to a product of any
quantities, one must bear in mind the rule for differenti-
ating a product:

3 u du
W= tug

From this it follows that the del operator must be applied
in succession to each factor, leaving the other factors
unchanged, and then the sum of the resulting expressions
taken. In this procedure we are guided by the following

rules.

1° If the del operator acts on some product, first
take into account its differential nature and only then
its vectorial properties.

2°. In order to note the fact that the del operator
does not act on some quantity involved in a complicated
formula, that quantity is labelled with the subscript ¢
(constant),” which may be removed in the final result.

3°. All quantities not acted upon by the del operator
are placed in front of the operator (that is, to the left)
in the final result.

Example 1. Show that

div (ua) = u div a + (a, grad u).

Here, u is a scalar function and a is a vector function.
Sol In boli .

div (ua) = (V, ua).
Taking into account first the differential nature of v,
we have to write
(v, ua) = (V, uca) + (V, uac).
Regarding the expression (V, u.a), we can take the con-
stant factor u, outside the del sign and, as a scalar, outside
the sign of the scalar product; this yields

(V, u.8) = (v, a) =y (V, a) =u (v, a).

(The last step is to drop the subscript c).
In the expression (V, ua,), the del operator acts only
on the scalar function u, and so we can write

(v, uva;) = (Vu, a;) = (a;, Vu) = (a, Vv)
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to get the formula
(v, ua) = u (v, a) + (a, Vu)
or
div (ua) = u div a + (a, grad u).
Example 2. Show that
curl (ua) = u curl a — [a, grad ul.
Solution. In symbolic notation,
curl (z8) = (V, ua).
Taking into account the differential properties of v, we
first write
v, ual = [V, ual + (v, val. )
Then in the first term on the right we take the scalar
factor u. outside the del sign and outside the sign of the
vector product, which yields
v, ual = u (v, al = ulv, al.
In the second term in (7) we refer u to the operator ¥ and
change the order of the factors so that the vector a., which
del does not act on, is in front of V. This yields

v, ua,] = [vu, a ] = —[a, Vul.

Thus
[v, val = u[v, al — la, Vul
or
curl (ual = u curl a — [a, grad ul.

Example 3. Use the symbolic method to find div (a, b]

Solution. We have
div [a, bl = (¥, [a, b)) = (v, l-, b :J)

v, la, bl). (]

Using the property of cyclic perm\nanon of factors in
a mixed product, we transform the expression on the
right of (8) so that all constant quantities are in front
of the del operator and all variable quantities follow it.
This yields
div{a, b]=((V, a], b.)—(V, [b, a])

=([V, a], b)—(IV. b}, a,)=(b. [V, a]) —(a, [V, b])
or div(a, b]=(b, curla)—(a, curlb).
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Remark. The use of the symbollc method enables us to
avoid b analytical and obtain
the final results very quickly. On the other hand, the
various formal transformations involving the del opera-
tor must be performed with extreme caution in order to
avoid serious mistakes. For this reason, if there is any
doubt about the final result, it is wise to verify it by
the analytical method.

238. Show that
u\_ oVu—uWo,

() V() =25

(b) vf (@) = f' (v) vu.

239. Prove that the vector [vu, wvl is solenoidal if
u and v are differentiable scalar functions.

Use the Hamiltonian operator del (V) to prove the
following equations:

240. (a) grad (uv) = v grad u + u grad v;

(b) curl (a, b) = (b, V) a — (a, V) b + adivbh —
— b div a.

241. curl [a, r] = 2a, where a is a constant vector.
242. Prove that the vector a = u grad v is orthogonal to
curl a.

Sec. 21, Second-order differential
operations. The Laplace operator

Second-order differential operations are obtained as
a result of a twofold application of the operator ¥ to
fields.

Suppose we have a scalar field u = u (M). In this
field, the operator V generates a vector field Vu = grad u.

In the vector field Vu, the operator v, when applied
a second time to Vu, yields the scalar field

(V, vu) = div grad u )
and the vector field
(v, Vi) = curl grad u. @)

If a vector field a = a (M) is given, the operator V
generates in it a scalar field (V, a) = div a. In the scalar
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ield div a the operator V generates a vector field
v (V, a) = grad div a. 3)

In the vector field a = a (M), the operator V also gener-
ates a vector field [V, al = curl a. If the operator V is
again applied to this field, we obtain the scalar field

(v, v, al) = divcurl a (4)
and the vector field
[v, lv, all = curl curl a. ®)

The formulas (1) to (5) define what are called differen-
tial operations of the second order.

Example 1. Suppose a function u = u (z, y, z) has
continuous partial derivatives up to second order inclu-
sive. Prove that

curl grad u = 0.
Solution. Ist method. Operating formally, we obtain
curl grad u = [v, vul = [v, Vlu =0
since [V, V] = 0 being the vector product of two identical
“vectors”.

2nd method. Using the expressions for the gradient and
curl in Cartesian coordinates and taking into account the
given conditions, we have

i k
4 2
w o |=[5 (3) -5 (5]
oo

dy o8z

+[5 (3) -3 (@) i+ [ (5) -5 ()]

3, 9, 2,

= (5= mess) i+ (srae— e (=) k=0,
since the mixed derivatives are equal in this case,

o _ o My _ M P o
Yo ey’ dzdz dzd:' Gzdy 9yoz'

curlgradu=

8l glo -
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In similar fashion proof is given that for the vector

field
a=P(y 2)i+0Q@y )i+ Ry Ik

the coordinates P, Q, R of which have continuous partial
derivatives of the second order, we obtain div curl a = 0.

Note particularly the second-order differential opera-
tion div grad u = (V, Vu). Assuming that the function
u (z, y, z) has second partial derivatives with respect to
z, ¥, z, we obtain

v w) (Zi+mitak 3|+6y i+ %K)
du =
() 4 (5) 45 (5) =Gt G+ =
Thus, (V, Vi) = Au, where the symbol
Pu P P
Ausé-ﬁ-#-;—;':
is termed the Laplace operator (or Laplacian). It may be

represented as a scalar product of the Hamiltonian oper-
ator V into itself, that is,

p 2
A=(V, V) =Vi= ot St o

This operator plays an important role in mathematical
physics.

Let us ine another d-ord: url
curl a. We have curl curl a=[v, (v, all. Let us uke
advantage of the formula for a vector triple product writ-
ten as [A, [B, Cll = B(A, C) — (A, B) C. Replacing
A by Vv, B by v, and C by a, we obtain

[v,[v, all =V (v, 8) = (V, V) a=V (7, a) — Aa (B)
or
curl (curl a) = grad div a — Aa, where Aa =

= AP.i + AQ-j + ARk.

The following table is a pictorial display of second-
order differential operations:
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Scalar fleld u Vector fleld a
grad atv curl
H grad div a
Z | divgred u=Au div curl a=0
g 1 grad u=0 curl curl a
E curl grad u =grad div a—Aa

Example 2. The laws of the classical theorem of electro-
magnetism are postulated in the form of a system of
Maxwell equation.

In the most el y case of a homo-
geneous and isotropic medium and in the absence of
charges and currents, this system is of the form

q

£ Z _tv. . 1)
— LR _v.E) ®
(v, B)=0, ©
(v, H)=0. (10)

Here, E and H are vectors of the electric-field and mag-
netic-field intensity; e and p are coefficients of the permit-
tivity and bility (our pti are that e
and p are constants); ¢ is the velocity of light in empty
space.

Since the spatial and time derivatives commute, that is,

v, Bi=[v. 5],
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it follows that by differentiating (7) with respect to ¢,
we obtain

+w=[va]
Replacing 'Z—l;' taken from (8), we get % ':‘E =
- -%[v. [V, El) or

& 2L v, IV ElL ay
By virtue of formula (6), [v, [v, Ell = v(v, E) — AE.
Since (v, E) = 0, it follows from (11) that %22 = AE.

To summarize, for the vector field E we obtain the
equation
PE _ 3
Tty AE.
This is one of the basic equations of mathematical physics
and is called the wave equation.
It is easy to see (check thisl) that the vector field H
satisfies the same kind of wave equation
PH
ot
Thus, under our conditions, each of the coordinates
E. E,, E, and H,, H,, H, of the vectors E and
satisfies the equation

Py _ (P Pu, Pu
= (gt )

=< AR,
o

Here, a = ¢/} ep is the velocity of propagation of the
process. In a vacuum, where e = p = 1, we have a = ¢,
that is to say, in a vacuum, electromagnetic processes are
propagated with the velocity of light.

. Show that any solution of the equation (v, [v, All —
— KA = 0 that satisfies the solenoidal condition satisfies
the Helmholtz vector equation

VA + KA = 0.
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Definition. The scalar field u = u (z, y, z) that satis-
fies the condition Au =0 is termed a Laplace (or harmon-
ic) field.

Example 3. An important instance of a harmonic field
is the scalar field u=Fk/r, k=constant,r = }/ 2% + y* + 2%
This function is the potential of a gravitational
field generated by a point mass placed at the coordinate
origin. It is*easy to verify that the function u = k/r is
harmonic everywhere except at the coordinate origin,
where it is not defined. Indeed,

(v. &)=k (v. vE)=k(v. = wr)
==k (V. )= —k (V& ) k5 (7, 1)

=—k(=Zvrr)—Lw.

=2 o-—Lwm=E_k.2_,

for all r =0 since
1
@ O=(v.5)=(vi, r)+1 @0
v
=(-F )+d=—Fn+d
=—temio_ty3 2
Example 4. Prove that in the potential field of a vec-

tor a its potential function u (z,”y, 2) satisties the Pois-
son equation

Pu, Pu o
Bu=33tataa=r@ ¥ ), (12)
where p (2, y, z) is the divergence of the vector a.
Solution. It is given that
diva=p. 13)

Since the field of the vector a is a potential field,
it follows that a = grad u, where u is the potential of
the field. Substituting a = grad u into 13), we obtain
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div grad u = p or, since divgrad u = Au, we have
Au = p.

In the special case of points of the field where the diver-
gence is zero, equation (12) turns into the Laplace equa-
tion Au = 0. The Laplace-Poisson equation permits find-
ing the potential function u by integrating the partial

B 7 B v
d| E
+ + + + + + ++++++++,,,
A [ A
Fig. 36

differential equation. This turns out to be more convenient
in some problems.

In electrostatics, preference is often given to finding
the function v = —u instead of u. Then a = —grad v.
Accordingly, in the theory of the electrostatic field, Lhe
Poisson equation is of the form

™ 4
S o = e, (14

Let us consider an elementary case where the Poisson
equation is employed.

Example 5. Suppose two infinite parallel plates A4,
and BB, with opposite charges have potentials v, and v,;
for the sake of definiteness, v; > v,. Find the field E
between them (Fig. 36).

Solution. Send the z-axis at right angles to the plates
in the di of d and bring the
yz-plane to coincidence with the positively charged plate
AA,. We now seek the potential function from the Pois-
son equation. By virtue of the symmetry of the problem
about the z-axis and due to the mhmty of the plates,
We can lude that the eq ial surfaces are planes
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parallel to the plates, and the function v depends solely
on the variable z. Equation (14) takes the form

*o0 (15)

since space charges are absent throughout the space be-
tween the plates. Integrating (15), we find

v=_Cgz+C, (16)
where C, and C, are arbitrary constants.

We require that for z = 0 the function v take the value
vy and for = d, where d is the distance between’the
plates, that it take the value v,. This yields Cy=v,, vg=
= Cyd + C,, whence C, = vy, C, = (v, — v,)/d. Substi-
tuting these values of C, and C, into (16), we obtain

vy—, v —,
v="2Tlg{p =p,— ld 1z,

The vector E is found from the formula E = —grad v,
which yields

E=127
so that the field is homogeneous and in the direction of
the z-axis. The magnitude of E is equal at every point to
|E | = (v, — v,)/d, that is, it is equal to the potential
drop per unit length of the shortest distance between the
plates.
244. Suppose a scalar function @ (M) satisfies the Laplace
equation. Show that the vector V¢ is solenoidal and irrota-
tional.
245. Show that A (w) = u Av + v Au + 2 (Vu, Wv).
246. Prove that if r is the radius vector, then

% in space,
Ar= '
+ in the plane.

247. Check to see whether the following scalar fields
are barmonic or not:

(2) u =224 22y — 42,
(b) =2y + y’z + 2%,
(¢) u=2z*— y
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248. Show that the scalar field
u=!n%, where r=)/ 22+ (r+0),

is harmonic.
249. Find all harmonic fields that depend solely on z.
250. Find the general form of a homogeneous harmonic
polynomial of second degree in z and y.
251. Find all solutions of the Poisson equation Au =
= z"? that depend solely on z.
Example 6. Green's formulas. Let ¢, ¥ be two scalar
functions of a point. Set up the vector a = ¢ grad }.
hen
div a = div (¢ grad }) = ¢ div grad ¥ + (grad ¢, grad )
= 9:4% + (grad g, grad ¥).
Now apply the Gauss-Ostrogradsky formula

@(a. n%do = 5‘55 divadv.

b
Note that in our case

(a, 0°) = (@gradp, n°) =g (grad p, n")=w%,°—.
We thus obtain Green's first formula:
§ 1] 0av+erado, grdpiav=_{h o3 as, 17)
v z

which for ¢ = ¥ turns into
B

§§§0a0tigrmdoriar=§otta. ag
v z
If we put ¢ =1 in (17) we get

UjAwu@ L

In (17), interchange ¢ and v and subtract the resulting
formula

jj § A0+ (grad vy, grad )y o= §f ¢ 22 a0
I
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from (17). This then yields Green's second formula:

i1 @at—p-an o= (v 22— yp22) a0,
4 T

It is assumed here that all functions that we have to deal

with and also all their derivatives that occur in the for-

mulas are continuous in the region under consideration.
Example 7. Find the surface integral

I= @vwdo

taken over the sphere 2 2+ yt+2=1 for ¢p =
=z + y* and v = y® + 2.
Solution. By Green’s first im-mula, the desired integral
is
1= 5 § Ay -+ (grad o, grad )1 v,
where the regmn of integration V is a sphere: 22 + y* +
+

We have Ap = 4, grad ¢ = 2zi + 2yj, gradp =
= 2yj + 22k, (grad @, grad ) = 4y* and therefore

I= 55 S (4a? +4y>+4y?) dv =4 U S (22 2y?) dv.
Passing to the spherical coordinates z = r cos ¢ sin 0,
y=rsingsin®, z=rcosf, we obtain
I=4 ( j S (r2cos? @sin28 4 2r2sin2 @sin26) r2sin 6 dr d6 dg
v

2n n 1
=4 j (cos? @ +2sin? g) do 5 ain:sdej rédr
0 ] 0

2 5
=%S (1+sin2 @) do i (1 —cos20) sin 8 d0
0

_—a(——oose+ cos? 8 I ——u
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Example 8. Find the surface integral

T

taken over the suriace Z:22+yP=R,z2=0,2=H,
H >0, provided p =2+ y* + z+ 3z, ¢ = 1‘+l/ +
+ 22 + az.

Solution. By Green's second formula, the desired inte-

gral is
= j ij (@Ap—ypAg)dv.

For the given functions @ and p we have Agp = 4, Ap = 4
and therefore
I=—4f ” zdv.

Passing to the cylindrical coordinates z = p cos ¢, y =
= psin @, z = z, we obtain

2n R H
1= —4S§jzpdpdcpdz= —Aidwipdpizdz

= —2nRH?,
Example 9. Find the surface integral

I= @W—dﬂ

over a closed surface = bounded by the planesz + y + z=
=1,z=0,y=0, z=0, provided ¢ = ¢*siny + 1.

Solution. The given function is harmonic since Ag =
= ¢ sin y — ¢€* sin y = 0. Therefore, by (18) we have

1=\i5 | grad @ [2dv.

We find the modulus of the gradient of the function ¢:
grad @ = € sin y-i + e cos y+j, | grad ¢ | = €*
The desired integral is equal to

= S j S e dy= i ez‘dzijzdy '-35"'{12: %(91—5).
v [ [

10-910
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252, Compute the surface integral I = @w % 4o over

a closed sutice 3 {tyitz=1, y=0, y30),
provided @ =22, p=u122+y2—22

253. Compute the surface integral /= §§ ( o ) do

Z
taken over the entire surface of a closed cylinder Z:
{z2+y2=1, 2=0, z=1), provided ¢ =222, p=a2422.

254. Compute the surface integral I=§§cp%dﬂ, pro-
]

vided 9=(z+ y + 2)/V 3and 2 isa sphere: 22+ y2+22= R2.
255. Find the surface integral I= @ do, provided

@=e"siny+e¥sinz+z and I is a triaxial ellipsoid
(a%a?) + (y2/b2) + (3%/¢?) = 1.

Sec. 22. Vector potential
Let a vector field
a=al)=P@y2i+0@uai+REpk
be solenoidal in the region G, that is, div a (M) = 0inG.
Definition. The vector potential of a vector field a =
=a (M)isa vector b (M)=P, (z,4,2) i+ Q, (z, 4, 2) i +
+ R, (z, y, 2) k that satisfies in G the condition
curl b (M) = a (M) )
or, in coordinate form,
Ry _ 091 aP, R, _ a oP, _
et e el e
For a solenoidal vector field a (M) the vector potential
b (M) is not defined uniquely: the condition (1) is also
satisfied by the vector B (M) = b (M) + grad f (M),
where f (M) is an arbitrary differentiable scalar function,
since curl (grad f (M)) = 0.
Thus, two vector potentials of the solenoidal field a (M)
differ by the gradient of the scalar field.
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Finding the vector potential b (M) of the solenoidal
field a (M) reduces to finding some particular solution of
system (2) of three partial differential equations for the
three unknown functions P, (z, y, 2), Q, (z, ¥, 2),
Ry (2, y, 2).

The vector potential b (M) may be constructed in the
following manner: Taking advantage of the arbitrariness
of choice of the vector b (M), we will simplify matters by
setting P, (z, y, z) = 0, that is, the vector b (M) will
be sought in the form b(M)=0Q, (z, y, 2)j+
+ R, (z, y, z2) k. Then the system of differential equa-
tions (2) for finding the unknown functions Q, (z, ¥, 2)
and R, (z, y, z) takes the form

ﬂ_&=

ay '
Ho -0 ®)
&=R.

From the second and third equations of this system we
fin

Riz, v 9= =[0G v, 9@z +Criy. 9,
Qe v 2= [ R@ v, s +Cat, 2),

where C, (y, z) and C, (y, ) are any differentiable func-
tions of y and z. For the sake of simplicity, set C, (y, z) =
= 0 and choose the function C, (y, z) so that the first
equation of system (3) is satisfied. To do this, we sub-
stitute into the first equation the expressions that were
fmmd for Q, and R;:

ac,

j Q(z, y, z)dz+———j R(z, y, z)dz
=P(z,y, 2).
From this we get

=g f0@y dds+ L [ Ry, Ddr+PEy. ).
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It is easy to verify that the right-hand side of this
eqmbat.ion does not depend on z; this is because div a (M) =

n G.
Integrating the last equation with respect to y, we find
aw 9={[xfewuae
+2 [R@ v 2E+PE v 9|04 CE. @

Setting C, (z) =0 in (4) and substituting (4) into the
expression for R, (z, y, z), we get a particular solution
of system (3):

P,=0, 5)

Q= Rz v, 9ds, ®
a={[&fee v gd+ L [REv 9a

+Py. 9]dy— Q@ v 9dz. ()

The vector b (M), whose coordinates P, (z, y, 2),
Q, (z, y, 2), Ry (z, ¥, 7) are defined by formulas (5),
(6), (7), is the vector potential since it satisfies the condi-
tion curl b = a. --

Example 1. Find the vector potential b = b (z, y, 2)
for a solenoidal field given by the vector

a = i — zj + 22k,
Solution. We seek the potential b in the form
b=b v 2) =y 2i+ Ry 9k

where Q, (z, y, z) and R, (z, y, z) are found from (7)
and (8). Since in the given case P = 2y, Q = —z, R =
= 2z, we obtain

Q@ v, 9= [ 2zdr=a,

Ry(z, y, 2)= S zdz+ S 2ydy=zz+y2

Thus
bz, y, 2) =2+ @@z + P ke
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It is clear, by direct verification, that curl b = a,
and, hence, this vector is the vector potential of the given
field.

Remark. Due to the arbitrariness in choosing the vector
b, we could require Q, (z, y, 2)=0or R, (z, y, 2) =0
instead of P, (z, y, z) = 0. The system of equations (2)
and formulas (5), (6), (7) would naturally change.

Find the vector potentials of the following solenoidal

fields:
256, i+j+k
257, 2yi + 2
. (e — ev) k.
259, 6y + 62§ +
260. 3y’l — 3z — (y‘ + 2z) k.

261. a = ye'i + 2yzj — (zyze™ + ) k.

If the vector field a = a (M) is solenoidal in the re-
gion G, which is star-shaped (see Sec. 19, Chapter IV) with
centre at the coordinate origin O (0, 0, 0) [the field a (M)
may not be defined at the point O], then one of the vector
potentials b = b (M) may be found from the formula

1
b (M) = § fa (M), x(M))¢dt, ®

where r (M) = zi + yj + zk is the radius vector of the
point M (z, y, z) and the point M’ (tz, ty, tz) runs
over the line segment OM as the parameter ¢ varies
from 0 to 1.

Example 2. Use formula (8) to find the vector poten-
tial of the solenoidal field

a =2yl — g + 2ok,

Solution. The given vector field is defined throughout
three-dimensional space, which is a star-shaped region
with centre at the coordinate origin, and so we can use (8)
to lil:ld the vector potential. At the point M’ (tz, ty, tz)
we have

a (M") = 2yt — taf + 2tzk.
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We find the vector product
i ik
[a(M'), r(M))=|2ty —tz 2tz

z Yy z
=[—(2zy + 2?) i+ (222 —2y2) j + (2y2 + 22) k| 2.
Using (8), we obtain

1
b(M)= S [ — (2zy +22)i + (222 — 2yz) j + (242 + z2) k| t2dt
0

= —-l(2.ry+z3)I+l(z‘—yz)j+%(2y1+zz)k.

It is easy to establish that curl b (M) = a (.

Remark. In examples 1 and 2 we obtain different vector
potzentlals for one and the same solenoidal field a=
=2y .

by (M) = 2% + (22 + 12) k,
l*z(M)———(2==y+1’)l+ (a2— w)l+ (2y*+ z2) k.

They differ by a term equal to the gradient of some
scalar field f (M). This term plays the role of an arbitrary
constant (when acted on by the curl). It may be repre-
sented as the gradient of some scalar function_f (M).
Let us find this function in our example. We have

grad f (M) =b, (M) —bz(M)
=3 Qay+2) i+ (24 20) i+ + Qo).
To find the scalar field f (M), use formula (3) of Sec. 19,

in which we take the coordinate origin O (0, 0, 0) for
the point (2o, Yo, 2o). This yields -

F(My= § 0-dz+ j Iy j Lutyatc
0 [

= @+t +C,

where C is an arbitrary constant.
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Example 3. Find the vector potential b of a magnetic
field H set up by an electric charge e that is moving with
a constant velocity v.

Solution. By the Biot-Savart law, the intensity of the
magnetic field is

v 1)
H(M)="25 9)

where r is the distance of point M from the charge e.
Since H is a solenoidal vector, that is, div H = 0,
there exists for it a vector potential b such that H =
= curl b or, taking into account formula (9),
lev, r_ e [v,1]
=&
Let us rownte ﬂm formula as

cur]b=— {[ N I]+[¢v, —,—)] 4 [ev, %—k]}
= {l %] [ =]+ -%]}
w{lh (S (P ]+ ez ()

Employmg the readily verifiable equation

arla=[1 2 ]+[i $]+[x =]

we obtain

curlb="5"

curlb:%curl Ay
" G

whence
b=-L.2%

4nr ot

Using formula (8), find the vector potentials of the
iollowmg solenoidal fields defined in star-shaped regions:
=1i.

266. a= ‘{’:ff’ , 2 yr>0.



CHAPTER VI

CURVILINEAR COORDINATES.
BASIC OPERATIONS
OF VECTOR ANALYSIS
IN CURVILINEAR COORDINATES

Sec. 23. Curvilinear coordinates

In many problems it is more convenient to define the
position of a point M in space by three numbers (g;, 95, ¢s)
instead of the three Cartesian coordinates (z, y, 2
numbers often prove to be more suitable to the problem at
hand.

Let every point M be associated with a definite number
triple (¢;, ¢», 95) and, conva;sely. let every number triple
correspond to a unique point M. Then the quantities
Gy G2, gs are termed the curvilinear coordinates of the
point N

The coordinate surfaces in a system of curvilinear
coordinates q;, ¢y, g, are the surfaces

@ =0C, (1)

9p = Cy, @

95 = Cs, @
on_which one of the di remains

The line of intersection of two coordinate surfaces is
called a coardmate line (azis).

The g, and gy intai values
along the line of intersection of the coordinate surfaces
(2) and (3); it is only the coordinate g, that varies, Simi-
larly, on the lines of intersection of the surfaces (1) and (3)
and (1) and (2), it is g, and g; that vary respectively.

Let us introduce the unit vectors e,, e,, e; directed
along tangents to the coordinate axes (q;), (¢), (g5) at
the point M in the direction of increasing variables g, gs,




Sec. 23] Curvilinear coordinates 153

gy respectively (Fig. 37). Let us agree to take the unit
vectors e;, e,, e; always in that order so that, taken
together, they constitute a right-handed trihedral.
The basic difference between curvilinear coordinates and
Cartesian coordinates is this. In the Cartesian system, the
vectors e,, e,, e; are constant for all points of space
and are equal, respectively, to i, j, k. In any other

Fig. 37

system, they will, generally speaking, change their direc-
tions when passing from one point, M, to other points.
As exsmple; of curvxlmeur coordmnves we consider
drical an h
1° Cylindrical coordinates. The position of a point M
in space is defined in cylindrical coordinates by three
coordinates:

a=p 0<p<+o,
a=9 0<o<2m 4
qs =132, —oo<z<<-+too.

The coordinate surfaces are:
p = constant: circular cylinders with the z-axis;
@ = constant: half-planes adjoining the z-axis;
z= : planes perpendicular to the z-axis.
The coordinate lines (or axes) are:
(0): rays perpendicular to the z-axis and having their
origin on that axis;
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(p): circles with centre on the z-axis and lying in
planes perpendicular to that axis;

(2): straight lines parallel to the z-axis (Fig. 38).

Cartesian coordinates are

2| related to cylindrical coor-
dinates by the following
I formulas:
N z=pcosq,

[ fuire () y=psing, (5
e 2=z
] 2°. Spherical coordinates.

In spherical coordinates,

I A%  the position of a point M
: 'y position of a point
Line(y, L o, inspaceis defined by the
Tuf{;) following coordinates:
a=r, 0<r<+oo,
ol T =0 00, (6
~4) Y og=9 O0<o<2n
The coordinate surfaces
z are (Fig. 39):
Fig. 38 r = constant: spheres
centred at O:
6 = constant: circular half-angle cones with the
z-axis;

@ = constant: half-planes adjoining the z-axis.
The coordinate lines are:
(r): rays emanating from the point O;
(8): meridians on a sphere;
(9): parallels on a sphere.
Cartesian coordinates are related to spherical coordi-
nates via the following formulas:

T = rcos @ sin 6,
y=rsin¢sin0, 1)
z=rcos0.
A system of curvilinear coordinates is said to be or-
thogonal if at every point M the unit vectors e, €, 6
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are pairwise orthogonal. In such a system, the coordinate
lines and the coordinate surfaces are also orthogonal.
Systems of cylindrical and spherical coordinates are instan-
ces of orthogonal curvilinear systems of coordinates.

z Line (r)
\8=constant e,
Line(y). Su er
i
r
-et:ﬁlan_t — \ &
// \\\
a
£2 £
¥=constant.
T - Line@)
Fig. 39
H forth we ider only orth 1 systems of coor-

dinates.
Suppose r =r (¢, ¢s, ¢s) is the radius vector of
a point M. Then

dr = Hydg, e, + H, dg, e, + H, dgs 5. @®)
Here

ny BT G+ (ET -r2a

are the Lamé coefficients of the given curvilinear system
of coordinates.
In cylindrical coordinates,

Q=0 =0 ¢ =2z
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By virtue of (5) we have
s
H=H= )/ (G) +(5) +(5) -1

reen-V TETH T2
=/ ETT BT+ (BT -1

In sphencal coordinates,
a=rg=0g=9
By virtue of (7) we have

H=t =V ()4 (2 +(F) =t
Hz-He—-]/ az)+(ay (a) —r
”3=Hw=l/(—:—;m:(a——‘)=rsin9.

(3
The quantities

dly=H dg;, i=1,23

that appear in formula (8) are differentials of the arc
lengths of the coordinates lines, In a number of cases, this
consideration permits of a more simple computation of
the Lamé coefficients. For instance, in the case of cylin-
drical coordinates (4) (see Fig. 38), the differentials of
the arc lengths of the coordinates lines (p), (¢). (z) are

whence H, = 1;
@) -dp, whence H.
d(z) =1-dz, whence H,
It is just as easy to obtain expressions for the Lamé
coefficients in the case of spherical coordinates (6).

Sec. 24. Basic operations
of vector analysis in curvilinear
coordinates

1°. Differential equations of vector lines. Suppose we
have a vector field -

a=a; (41, 92+ 95) & + 25 (91, 920 95) €2+ a5 (91, 02, 95) &5.



Sec. 24) Basic operations of vector analysis 157

The vector-line equations in curvilinear coordinates
1y Gy g3 are of the form
Hidgy __ Hadey __ Hydgy
a1 (910 920 93) 82 (90 G20 99) G2 (1, 730 99)
In particular, in cylindrical coordinates (g, = p, ¢, = @,
95 = Z):

a —__Pdp dz .
alP @2 @l @2 el e’
in spherical coordinates (g, = r, g, = 8, ¢ = @):
dr __ rde ___rsinfdg
a(rn 8 @ a(n 09 &b e
. Example 1. A vector field is given in cylindrical coor-

dinates
a (M) = e, + geo
Find the vector lines of the field.
Solution. It is given that a, = 1, a, = 9, a; = 0. By
virtue of formula (1) we have

)

whence
z2=0C,,
o =Cs9,
which are Archimedean spirals lying in planes parallel
to the zy-plane.
2°. The gradient in orthogonal coordinates. Suppose we
have a scalar field

u=u (g 9 9)-
Then

gradu= gt et Jhet o e
In particular, in cylindrical coordinates (g; = p, ¢, =
=0, g5 =12
grudu— e,+— % €¢+ e,; (2)
in spherical coordlnntes (q, = r. 9, =86, ¢s=9)

gndu=f,—e, ee+,,m(,‘,wev 3)
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Example 2. Compute the gradient of the following sca-
lar field specified in cylindrical coordinates (p, ¢, 2z):
u=p+zcosq.

Solution. Using formula (2), we obtain
1 .
gradu=1 <e,—Tzs|nw~e,+cosw~e,.

Example 3. Find the gradient of the following scalar
field given in spherical coordinates (r, 8, ¢):

u=r+ ’ms —sinBcos ¢.
Solution. Using formula (3), we have
gradu= (1 — ":0) e+ —= °°’0 i—cosc;:) eo+ ’"W

3°. The curl in orthoganal coordinates. Suppose
a=a, (g, g2 9s) €11 85 (91, 920 9s) €2 + 03 (91, G, Gs) €5
Then 4 )
curla= @8 @ 2
991 943 993
a ), a,H, asHy
In particular, in cylindrical coordinates (g, = p, ¢, =
=, g3 =2):

1 1
—e, e —e
5% G 2

P

curla=(2 o 2 |; (4)
ap FI
4 pa; Gy

in spherical coordinates (¢, =r, g, =6, g5 = ¢):

1 1 1
Fsme & reine T ‘e
curla=| @ 3 a . 4"

o ® o9
a, ra, rsin8-a,
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Example 4. Compute the curl of the following vector
field specified in cylindrical coordinates:

—pze,.
Solution. Taking advantage of formula (4), we get
1 1
2% &% e
curla=| 0 2 o |=te0-0)—ey(—2—0)
® 99 oz 4

sing cos @ —pz
W

— e, (0O—cosg) = ze,— 2% e,

4°. The divergence in orthogonal coordinates. S\lppose we
have a vector field
a=a, (¢, qa, s) &+ 85 (¢, G20 95) €3 s (G1s 9, 9o) €.
Then

diva=

1 [a(a.t:l.l:rJ + a(a.H Hy) a(a.H.H.)]
HH,H, T g .
In particular, in cylindrical coordmnus @=p 2=
g5 = 32):

divamdoe) | Lo, e,
in spherical coordinaus (q, =r,g,=0,g5=09)
dw.— i 3("01) +rsm0 lm+?a’)'+rsm0 atp‘ O]
Enmple 5. Show that the vector field
._Zcrt;»soe + smO e

is solenoidal.
Solution. Using formula (5), we have

: (rzz¢:’0)+rs|n0 3 (sm& = )+0

(_2m9)+ Tsing

wherever r =0, which means that the field of the vector
a is solenoidal at all points with the exception of r = 0.

N 1
dw.=WF

—2sinBcos6=0
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267. Find the equations of the following vector fields:
(a) .=°n+’Tew+°|3

(b) a=pey+ peq+ 2,

Zacos [] e+ u.sme
Find the gradlents oi the following scalar fields.
(a) In cylindrical coordinates:

268. u = p* 4 2p cos ¢ — € sin @.

269. u = p cos ¢ + zsin® ¢ — 30,
(b) In spherical coordinates:

270. u = r*cos 6.

211, u =3r%sin® + e cosp —r.

272. u=p °‘:° , p=constant,

(c) a= eg, a =constant.

Compute the divergence of the following vectors.
(a) In cylindrical coordinates:
—pe,+zsmnpe.+e‘°cosze,
274, tan p-e, + 2e, — z%ce,.
(b) In sphencal coordmatea

275. a=r%,—2cos?Q-ep+ r‘+l eq.

Compute the curl of the following vector fields:
276. a = (2r + @ cos @) e, — a sin 8-eo + r cos 0-¢q,
o = constant.

277. a = r%, + 2 cos 6-eg — Qe,.

278. a=cos@-e,— ’i:w e+ ple,.
279. Show that the vector field
a= 2:0:0 e’_*_smo

is a potential field.
280. Show that the vector field
a=f()e,

where f is any differentiable function, is a potential field.
5° Computing the fluz in curvilinear coordinates.
S be a part of the coordinate surface g, = C, where C =
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= bounded by the di lines
G=a = (@ <a);
g =P =P Br1<By)
Then the flux of the vector

a = a; (¢, qar 9s) €1+ a3 (91, 90: 99) €2 + @5 (91 95, Go) €
through the surface S in the direction of the vector e, is
computed from the formula

a, By
= a‘.a' € g2 9 Hy(C, 02 49 Hs(C, 020 99 dgs dgs.
' ®

The calculation is similar for the flux of a vector
through a part of the surface g, = C or through a part of
the surface g; = C, where C = constant.

Example 6. Compute the flux of the vector field, speci-
fied in cylindrical coordinates,

a = pe, + 28
through the outer part of the lateral surface of the cylin-
der 3 =1, bounded by the planes z =0 and z = 1.
The di surface p =

is the
= C = constant and so the desired flux
2n 1

n:j S C2dzde = 2nC?,

o0
whence for the surface p = 1 we obtain
= 2n.

Example 7. Find the flux of the vector field, specified
in spherical coordinates,

a = rfe, + re* Bey
through the outer side of an upper hemisphere S of ra-
dius R with centre at the coordinate origin.

Solution. The hemisphere S is part of the coordinate
surface r = constant, namely, r = R. On the surface S
we have

q=r=R; ¢=8, 0<O8<F;
=9, 0<o<2m.

1n-910
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Taking into account that in spherical coordinates
Hy=H =1, Hy=Hy=r, Hy=H,=rsinb,
we find, via (G). that
a2 nj2

= j dej R sin0dg = 2nR j 05in 0 d0 = 2R,

Compute the flux of the vector field, specified in
cylindrical coordinates, through the given surface S.
281. a = — cos ¢-e, + ze,; S is a closed surface
formed by lﬁe cy]mder p =2 and by the planes z =0
and z =
282. a = pe, + ppe, — 2z¢,; S is a closed surface
formed by the cylmder P —1 the half-planes ¢ =0 and
@ = n/2, and by the planes z = —1 and z = 1.

283. Find the flux of the vector field a = (1/r%) e, through
a sphere of radius R with centre at the coordinate origin.
284. Find the flux of the vector, specified in spherical
coordinates,
a =re, + rsin 0.eg — 3rg sin 6-¢,
through an upper. hemisphere of radius R.
285. Find the flux of the vector, specified in spherical
coordinates,
a = rl, + R%cos ¢-e,

through the sphere r = R.

. Find the flux of the vector, specified in spherical
coordinates,

a=re, —rsinb-e,

through a semicircle of radius R located in the half-plane
@ = n/4 (the flux is taken in the direction of the vector

€g).
2%7, Find the flux of the vector, specified in spherical
coordinates,

a=rsin%e.+r=in0cos1p~e,
through the outer side of part of the half-angle cone
V 32" = 2* + y?, bounded from above by the plane z =
=V30<:z<V3).
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6°. Finding the p ial in curvilinear Jii . Giv-

en, in curvilinear coordinates ¢;, g3, g, the vector ficld
a (M)= 0, @ 92 g5) €1 + @2 (@1, 930 Gs) €5 +

+ 85 (@ 920 99) €5

this is a_potential field in some region @ over which

the variables g, gz, ¢s range, that is, curl a = 0 in Q.

To find the potential u = u (q,, ' q,) of this field,
write the equation a (M) (M

an°|+¢zez+aa°a=”—lmeni-ﬂ—:a—hez-l'm,,—"ea'
From this it follows that

o ou ou _

'5;=4|Hn 5—%=th, ,,T"—'laﬂs« (7)
This is a system of partial differential equations whose
integration yields the desired potential u=u (g,, gs, g5) +
+ C, where C is an arbitrary constant.

The system (7) of differential equations is solved in
the same way as in finding the potential in Cartesian
coordinates

The system (7) of differential equations is of the fol-
lowing form:

(1) In cylindrical coordinates (g, = p, g3 = @, g3 =2),

a 2 2 "

.0_:=a,_ _5%=pa°' 6—:=a,. 7)

@) In spherical coordinates (¢, =7, g3 = 6, ¢, = ¢),
ou ou . -

?_a,, 0 =" G ——=r8in0-aq. ()

Example 8. Find the potential of the following vector
field specified in cylindrical coordinates:
a= ('“;"“+cos w) €,—Sin @-eg+ by i+:‘ e,.

Solution. By formula (4) we find

1 i
A L) i
] ) )
curla= » 3 ki =0 (p>0).
lnmn z P

Lo
R tcosp —psing 15
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This is a potential field. The desired potential u =
= u (p, @, 2) is the solution of the following system of
differential equations:

du nctunz

= teose,
ou
3= —Psin®,
6u lnp

kT

From the first equation, integrating with respect to p
we obtain

u = lnp-arctanz + p cos @ + C (9, 2). @®)
Differentiating (8) with respect to «p, we get

%= —psmv+—w

and since du/d¢p = —p sin @, it follows that 8C/dp = 0,
that is, C = C, (z). Thus

u = Inp-arctan z + p cos ¢ + C, (2),
‘whence

=B

By virtue of the third equation of the system we have

In v
1+p,l ‘+‘:a +€; (2)

or C; (z) =0, whence C, (z) = C = constant.
To summarize, the potential of the given field is
u(p, ¢, 2) =Inp-arctanz + p cos ¢ + C.
In the followmg problems. verify that the vector fields
given in cyli are p ial fields and
find their potentials.

288. u=e,+%e,+e,.

289. A=pe,+%e.,+ze,.
290. a = ze,+ ze9+ ppe,.

291, a=ePsing-e,+ % eP cos @ -eq + 2ze,.
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292. a=q@cosz-e,+cosz-e;+pPsinz-e;.
Example 9. Find the potential of the following vector
field given in spherical coordinates:

[}
a= %e"ve,-}— ru%’é ebve, ¥ QePeq.
Solution. Using (4’), we find that

e, res rsinf.ey
1 2 L) 2
curla= oma | 37 B @ |=0.

L glar.e® glnr.eto

'(l‘hi.s i.a a poltential field in the region where r > 0,0 s=nn
n=0, +1, ...).

The system (7) of differential equations for finding the
potential u = u (r, 8, ¢) is of the form

u 1
=7
2 =ge®lnr, ©
ou _
= 0e8® lnr.
Integrating the first equation of system (9), we obtain
u=eolnr+C (g 0) (10)

Differentiating (10) with respect to 6 and taking into
account the second equation of the system, we have
e In r = et ]nr+%.

That is, 9C/98 =0, whence C (9, 8) =C, (¢) and
therefore
u=2e%lnr+ C (). (11)

Differentiating (11) with respect to ¢ and taking into
account the third equation of system (9), we obtain

6% Inr =0e% In r + C; (¢)
or C,(p)=0, whence C,(9)=C = constant. The
desired potential is

u(r,9, ¢ =e®lnr+C.
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Establish the iality of the following vector
fields, specified in spherical coordinates, and find their
potentials.

293. a=0e, +ep.

294. ‘=2’°'+E‘n_e°'+':"°

295. .—_we +5me sme e""%e"'

296. a=cos@sinB-e,+ cospcosH-eg—sin @-e,.

" 2
297. a=e"sinf-e, +—§— e"cosB-eq+ W €.

7°. Computing the line integral and the circulation of
a vector field in curvilinear coordinates. Suppose a vector
field
a (M) =a,(qy go 9s) €1 + 22 (91, Gus ) €2

+ a3 (g1, 9o 95) €5
is defined and is continuous in a region Q over which the
orthogonal curvilinear coordinates g;, g;, g; range.

As we know [see Sec. 23, (8)l, the differential dr of
the radius vector r of any point M (g, g, ¢s) €Q is
equal to

dr = H, dg, e, + H, dgy e, + Hy dgs €5

Therefore the line integral of the vector a (M) over an
oriented smooth or piecewise smooth curve L — Q is

5 (8, dr) = | ., dg,+ a,H, dgs+ asHsdgs. (12)
L
In particular, for the cylindrical coordinates ¢, = p,
g2 = @, g3 = z we have

a=0a,(0 9 2)e+al ¢ 2e+a.lp o 2en
dr = dp-e, + pdp-e, + dz-e,,
and therefore

5 (a, dr)= s a,dp+ aop d9 +a, dz. 13)
L L
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For the spherical coordinates ¢; =r, g, = 8, g, = @ we
have

a=ua,(r,0 ¢)er + a5 (, 6, 9) o + a5 (1, 0, @) e,
dr = dr-e, + rdo-e; + rsin 0 do -e,,
and consequently
!(l, dr)= 5 a,dr+rag do+ ragpsin 0 do. (14)
The circulation C of the vector field a (M) is computed
in the curvilinear coordinates g, g,, ¢s via formula (12)
in the general case; for cylindrical or spherical coordi-
nates it is computed from (13) and (14) respectively.

Example 10. Compute the line integral in the vector
field, given in cylindrical coordinates,

a = 4p sin ¢-e, + zebe, + (0 + @) e,
along the straight line

=1
L: { =7
2=0,
from the point O (0, n/4, 0) to the point 4 (1, n/4, 0).
Solution. In the given example,
g, =4psing, a, =1z 2, =p+ 0.
By formula (13), the desired line integral is

j (a, dr)= S 4p sin @ dp + pze? do + (p+ @) dz.
L L
On the straight line L we have
o=7, do=0; z=0, dz=0; 0<p<1.
Therefore
1
i"' a)={2V2edo=V2 | 20d0=V2.
L 0

Example 11. Compute the line integral in the vector
field, given in spherical coordinates,

a = ¢" sin 0-e, + 36% sin @-eq + robe,
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along the line

0o 3,

in the direction from the pomt M, (1, 0, n/2) to the
point M, (1, n/2, n/2) (Fig. 40).

0-\;’*—2

Fig. 40

Solution. The curve L is an arc of a circle with centre
at the coordinate origin and radius r = 1 located in the
yz-plane. The coordinates of this vector are

a, =€ sinB, ap = 30'sing, ap=rgb.
By virtue of (14) the line integral is of the form

5 (a, dr)= 5 " sin 8 dr + 362r sin @ d0 + r2gBsin 6 dg.
L L

Taking into account that the following conditions hold
on L,

r=1, dr=0; g=7, dp=0; 0<O<
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we obtain
/2 s
j (a, dr)= { 36240 = j 302d8=2".
L L [

Example 12. Compute the circulation of the vector
field, given in cylindrical coordinates,
a = psin Q-e + pzeg + pe,
over the curve
p=sing,
L: 220, oo,

directly and via the Stokes theorem.
Solution. The coordinates of the vector are
@, =psing, a=pz a,=p"
The contour L is a closed curve located in the plane z = 0
(Fig. 41).
(1) Direct calculation of the circulation.

Fig. 41

Substituting the coordinates of the vector into (13),
we obtain

C=<§psinwdp+p’zdw+p’dz.
L

On the curve L we have
z2=0, dz=0; p=sing, dp = cos ¢ do,
I<e<sm
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Therefore the desired circulation is equal to
n
C=§psiuq)dp= j sin2@cos pdp =0.
L 0
(2) Computing the circulation via the Stokes theorem.
By the Stokes theorem, the desired circulation is equal
to

c= § (a, dr)= j j (curla, n%dS,
L §

where § is the surface spanning the contour L.
We find the curl of the given field:
e pe; e,
1 3 a2
curla=T % 9 = —pe, —3pe,
psing pz ps
+(2z—cos @) e,.
At points where p = 0 we redefine the value of curl a
with respect to continuity, setting
curl a (0, @, z2) = (22 — cos Q) e,.
Thus, curl a is defined throughout three-dimensional
space. Since the curve L lies in the plane z = 0, for
the surface S spanning this curve we take that portion
of the plane z = 0 that is bounded by the curve L. Then
we can take the unit vector e, for the unit vector of the
normal n° to the surface S, that is, n® =e,. We find
the scalar product:
(curl a, n% = (—pe, — 3p%, + (2z — cos ) e, €,)
=2z —cos
because by virtue of the orthonmormality of the basis
ey, eq, €, we have
(€pr€;) = (e, €;) =0, (e, ;) =1.
The desired circulation is

C= SSS (2z —cos ¢) dS.
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Taking into account that z=0 on S and the element of
area dS of the coordinate surface z = 0 is equal to

dS = p dp do,
we finally get

c=—U cos pdS = — U cos gp dp do

x sine n
=— 5 cos @ dg S pdp= —% S sinzgcos @ dp=0.
0 0 o
Example 13. Compute the circulation of the vector,

specified in spherical coordinates,
a =re, + (R + r)sin0-ey

around the circle
r=R
L: { B3
=7

in the direction of increasing values of the angle ¢,
directly and via the Stokes theorem.
Solution. In this example,
y =T, =0 ap = (R + r)sin 0.
) Du'e p of the circulati
By formula (14) ths deslred circulation is equal to

C=§rdr+(n+r)smersmedqz=
L

=§rdr+r(R+r) sin20dg.
L

On the given circle L, the centre of which lies at the
coordinate origin, we have

r=R, dr=0; 0=%; 0<e<2n,
and, consequently,

C=2R § dop= 2R22qu:=4nR'-‘.
L ]
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2) G of the circulation via the Stokes

The desu-ed circulation is, by the Stokes theorem, equal
to

C=0Q (a, dr)= (curla, n%ds,
§ioan=1 |
where S is the surface spanning the circle L.

We find the curl of the given vector:
e, reg rsinB.e

1 a a a3
cwla=5rglor % 59

r 0 (Rr4r?)sin20
=2 (R4r)cos8-e,— L (R+2r) sin b-es.

For the surface S spanning the circle L we take, for
example, the upper hemisphere of radius R: r = R,
0 < 8 << 7/2, 0 ¢ < 2n. The unit vector of the normal
10 to the outer side of the hemisphere S is directed along
the vector e,, and so we take n® =e,. We find the scalar
product

(curla, n% = (&;"') cosB-e,— R':'zr sin 6-eq, e,)
— 2R+ 09
T

since (e,,e,) =1, (e,, ) = 0.
Taking into account that r = R on the surface S, we
obtain the following expression for the desired flux:

n- (sj -2(—";"—')—eosﬁds=4jsj cos 8dS.

In spherical coordinates, the element of area dS of the
coordinate surface r = R, that is, the hemisphere S, is
equal to

dS = R*sin 6 d8 do
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and, consequently,

n =4H cos 8 R? sin 0d8 dg
8

n/2 2n
= 41?25 cos0sin 0 dej do=4nRe.
[ 0

By the Stokes theorem we get C = 4nR*.

For the surface S spanning the circle L we could take
the lower hemisphere, the unit vector of the mormal of
which, n® = —e,, and the result would be the same:
C = 4nR.

Note that it is not desirable to take the circle bounded
by L for the surface S spanning the circle L because the
circle has a point r = 0 (the centre of the circle) in which
the curl of the given vector has a discontinuity.

Compute the line integral along the given curves L in
the following vector fields specified in cylindrical coordi-
nates.

298. a = ze, + ppey + cos @-e,; L is a segment of the
straight hne p=1a 9=00<z<<1).

299. a = pe, + 2ptpe¢ + ze,; 'L is the semicircle: {o=1,
2=0,0<K09 <

300. n—eﬂcos e,+psmwe.,+ pe,; L is a turn
of the helical curve =R z=9 0< o< 2n).

Compute the line integral over the given curve L
in the following vector fields given in spherical coordi-
nates.

301. a = ¢" cosB.e, + 26 cos @-ep + @e,; L is the semi-
circle: {r =1, q>—0 00 )

3v2. a=4r® tan 7 e, -+ Opeg+-cos? p-eq; Lis a segment
of the straight line: {q>=%; 9=-1‘-,0<r<1}.

303. a=sin20.e,+sin 0-ep+robeq; L is a segment of
the straight line: {q:=%, r=ﬁ_ %geg%}.

Compute the circulation of the following vector fields,
specified in cylindrical coordinates, about the given con-
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tours, directly and with the aid of the Stokes theorem.
304. a = ze, + pzep + pe;; L is the circle: {p =1,
z =
?05. R_ p sin qz e, — p’ze, + ple,; L is the circle:
=R, z=
306. a—zcosqe,+pew+q>’e,, L is the loop: {p =
=sing, z=
Compute the circulation of the following vectors, given
in spherical coordinates, along the given contours L,
directly and with the aid of the Stokes theorem.

307. a = rBe, +rsin 8-e,; L is the circle: {r =1,0=
= _4’1 .

308. a = rsin 0-e, + 0Oefp; L is the loop: {r = sin @,
8= %. [ R n} .

309. a=rgbe,; L is a contour bounded by the semi-
circle: {r=R, =%, 0<0<n} and its vertical

diameter {«p—— 6:0}
Sec. 25. The Laplace operator
in orthogonal coordinates
If u=u(g g qa) is a scalar i\lnction, then
grod umg et g et g ()

1t
a=a, (1, 921 95) €2 + 5 (91, 92, 9o) €2 + G5 (91, Gas Do) €5
then

. 1 ] )
div a =H|Tx”s[ﬁ (a,H,Hy) + % (aHaH )

i@l )] @
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Using formulas (1) and (2), we obtain the following expres-
sion for the Laplace operator
. 1 @ (HyHy u
Au=div grad u=m[m( I;.'W
H\Hy, du H\Hy u
1Hy du H\Hy 0w
( Hy )+0q, TH, aq,)]’

+a
s
In cylindrical conrdmates.

s [ e H) (5 3)+ 3 ﬂ)J

In spherical coordinates,
oo
Au= ErT sme[ (rzsme—)+ (sm ew

810 (sme OW)J % ar
s odu 1 o
+orais 3 (590 0% ) + e gt -

Example. Find all the solutions of the Laplace equation
Au = 0 that depend solely on the distance r.

Solution. Writing the Laplace equation in spherical
coordinates and taking into account the spherical sym-
metry of the solution (it must not depend on 6 or @),
we have

AusFa—r(ﬂ )=0 (w=u(r),
whence
r3%=0,
so that
u=—+£'z.

where C, and C, are constants.
310. Given: a scalar field u = u (M) in cylindrical coor-
dinates
u(p, 9, 2) = p*e + 2°¢° — pgz.
Find Au.
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311. Given: a scalar field u = u (M) in spherical coor-
dinates
u(r, 0, ¢) = r’gd + r'g* + ¢ + 6%
Find Au.
312. Are the following functions harmonic?
(1) u = p? cos 2¢.
(2) u = rcos 26.
313, Find all possible harmonic functions that
(a) depend on 0 alone,
(b) depend on ¢ alone
(in the spherical system of coordinates).
314. Find all solutions of the Poisson equation

Ay =t

.

in the spherical system of

provided u = u (r).



ANSWERS

. z=2,
1. (&) The halt-line { y=—1z,y>0, 2<0 is traversed
twice when— oo <t << +00. (b) When tE(—eo, —1)
U (=1, +o0) the point r(f)= (t+l)' i+ (—ri

twice traverses the half-line z+y=1, 127 B yé?.

(©)
(e) 1‘+y’+2’=1, z—y=0.
itk 8 itk 9. —j4ork
10. —i+k. 11. ei—j+2k. 12. No. 14. No.

di 2 3y 9
17. @ 2(55)s O] 5[+ (n 55) ©[nar ]
21. Circles lying in planes perpendicular to the vector a.
22, The hodograph of velocity is a helical curve: z =
= acost, y = asint, 2 = 2bt; the hodograph of accele-
ration is a circle: z = —a sin t,y=acost, z=2b.

da __da du d'a _ d%a da d%u
B G- ()

28. (t—1f)eit+ (t—%sin 2;) j—arctant-k+c.

o=t ] @ =5 =7
=1;

29, 5 1o (148) i+ 4o j+sin t-ktc.
30. e“"'-i—%sin 2.j+tk+ec.

12-910
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3. —I+(tcost—sm i+ = ln2 k+e.
32, TH-uk. 33, (1—e='2) i+ (e2—1)j+(e—1) k.

34. —In 2-j+k. 35. 2n% + xj + n2k. 36. R=ﬁ.
37. R=2 10 (149129 38. R=6. 39. R=—4-an.
40. R=2acosh2t. 41. z+y=0.

42 x—y—V§z=O. 43. L=%. “ Lt

45. — 4 + +W=C a family of triaxial ellipsoids.

46, 2* + y* — z = C, a family of paraboloids.
47. z* + y* = Cz, a family of paraboloids.
48. 2y® + 922 = C, a family of elliptical cylinders.
49, z + 2y — z = C, a family of parallel planes.
50. A family of planes resulting from the sheaf of planes
a,x + agy + agz = C (byz + byy + byz) passing through
the straight line

az+ay+az=0, }

by + by + bz =0.

via the elimination of the straight line itself. Here, g;, a,,
ag are the coordinates of the vector a; b, by, b are the
coordinates of the vector b.

51. 2% + y® + 22 = C%, a family of concentric spheres.

Ty 2z
ay a; a;

by by by

52. (a,b,r)=C or =C, a family of parallel

planes,

53. 22 — y = C, a family of parallel straight lines.
54. y = Cz, C >0, z 540, a family of rays.

55. y* = Cz is a family of parabolas with the vertex
0 (0, 0) deleted.

56. 2* — y* = C, a family of hyperbolas.
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57. y = —zInC — C, C > 0, a family of straight lines.
Vs -V Va 2
58. ——. 59. —5—. 60. . 61—,
62. 22 63 1. 64 0. 65. “’3 (V3+3). 66. 0
nat .
67. —2. 68. Vorm 69. T(i+)——k)‘
70. k. 1. ¢=n. 72. ¢=0.
7. 9=0.74. y=—z+ 2nn, n=0, 1, +2, ... .
75. g4 yr42t=1. 78.. 79. a. 80. a(b, ) +b(a, 1).

81. 2jaj2r—2(a, r)a. 86. %=%
a ). s
87~%=—m(:; ). T:=O for r L1

ou _ 1 du
8. or=-. 89. =1,

90. ':'; %ﬂ‘l 2—0 if grad u _L grad v.

91. (a) 1 in the direction of the y-axis; (b) 3 in the

direction of the vector a= —i—2j+2k.

92. y=e,z; z=e,z. 93. y=i¢+C.; z=fiz+C,.

94. 22424 22=C}, } 95. ———_1 —+7_4
z+y+z=C,

96. 22=Cyy, 2=C,. 97. z=Cz, y=C,. 98. zy=C,, 2=C,.

99. z2=C,, P—22=C, 100. }—%=c., =G,

101, y2+22=C,, z=C,. 102. z=Cyy, 2=Cy2.
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where boy, bos, bos are cooordinates of the vector b,.
104. IT = —3. 105. 1 = aR%. 106. 11 = nR%.

107, = 4nR5f (R). 108. T=5- 109, n_—e-.

140, =3 xRk, 111, M=k,

12, n=8n 13 m=2,

14, M=0. 5. M=2 116. M=, 117. M=4aRs.
18, () M=—; (b)) M=—7; (c) M=n. 119. M=0.
120. T=6xR. 121. M=0.

122. M=n. 123. =0. 124. n=§n(1—#).

125. =2 R,

126, =Y. 127. M=45n. 128, M= 285

129, M=0.

130. M==n. 131. \p(r)-——, 132. 7r¢. 133. 0. 134. 0.

135. ¢ (z) = C — z, C = constant. 136. I = 4nR®.
137. divE = o (r 0).

143, 16m. 144. nH5. 145, 2 . 146. 0. 147. ..
148, 4m. 149, Pon. 150. L 151, 2R,

152, T"' 153, —1. 154, —

155, Solenoidal field.
156. Nonsolenoidal field.
157, Solenoldnl field.

159. 9(N =5, r+£0, C=constent.
t61. = g6z 1n 2. 163 AL 464 0.
2
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4
166, — % 167. 5 168, ) — ;1) 2. 169. 0.

170. 3. 171, 3V3. 112.E

173, —ma?. 174, 1.

175, —2n. 176, — 28 q77. £

179. —2(zi +zj + yk).

180. 3 (22—2%) j. 181, (z+y)k. 191, o= curlv = —Zj.
193. f(z, 2)=zz+z+42+C, C=constant.

195. 4n. 196, —4n. 197. 5. 198, —on. 199, 22

200. 7297, 201. 0. 202. — /2 x.
203. 20na?. Hint: v=|[o, r].
204. p.=1. 205. p.=3. 206. Dependent.

207. Independent. 208. Dependent. 209. —1. 210. —.
2 L3 1
2t.0. 212. 2. 213 2. 214 &

216. % Hint: Supplement the path of integration L

with the line segment OA of the z-axis.

217. No. 218. Yes. 219. No. 220. Yes. 221. No. 222. No.
223. Yes. 226. ¢ = z%z. 221. ¢ = z + zyz. 228. ¢ =
=2y —y*+ a2z 229. g=In|z+y+z| 230. ¢ =
= arctan (zyz). 231. ¢ =r. 232. ¢ = Inr.

233. Q=%r’. 234. 9=az+Py-+vyz+C, C=constant.
235. g =azy+yz+22+C. 236. p=zy+ e+ C.
237. w =e*siny +z+C. 247. (a) Yes, (b) No,
(©) Yes.

29. u=Cgz+C,

250, u = Az* + Bzy + Ay®, where A and B are arbi-
trary.

251. u(r)=-{ T Ot G i,
In |z]+Cz+C, if n=1(z50).
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—4 n
252. I=—m. 253. I=—~. 254. I=—uR3
255. I = 0.
256. b =zj + (y — 2)k. 257. b= (3 —
258. b = (¢* — z¢¥) j. 259. b—31‘]+(2y’—6:z)k.
260. b z(z+ 1) i+ @+ Pk
261. b (z2® + yze=®) j — 2zyzk.
262. b=l(_zj+yk)
263. b = —8yzi + zzj + Tzyk.
264. b = sz i — 31".’12! + z*y%k.
265, b=—sm.u~i—7smu‘k4

266. b—%z_k 267. (8) p=¢+Cp p=2+Cy
(®) p=

268. grad u=2(p+cosg)e,— (2sinq;+-p-e‘cosw) [

I“Cw , p=Cyz; (¢) p=Cy, r=C,sin26.

—e’sing-e,.
269. grad u=(cosp—3° In 3)e,+(—sm2w—sm v)
+sinZ@-e,.
270. grad u=2rcos0-e,—rsin6.ep.
271. grad u=(6rsin® e cos@—1)e,+3rcosB-ep

e’ sin @
rsin®

272. grad u=—p e+

273. div .=2+F cos ¢— ePsin z.

(20030 st )

i =2 @
274. div a—?arctan p+ T+ — (224 2z) €.

275. div a=4r—-f—cos2qzcot9+

1
r(r*+1)sin@ *

__cos20 asing asind
276. curla= Y e,—(2cose+ Ty )eg—f e
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277. curl n=——co!9 -e, +—e +2°”0 (%

sm sing o

278. curl a= —2pe;+——
281, 24n. 282. —n 283. 4m. 284, —nH’

285. 4nR*. 286. —? R,

287. 48. Hint: Write the equations of the surfaces in
spherical coordinates.
288 u= o +o+:z4C.

289, u——(pz+tpz+zz)+0 290. u=ppz+C.

201, u—evsmw+z’+c 292. u =pgcosz + C.
293. u=r9+C. 2% u=r"+9+6+C.

295. u=7(m’+e’)+am. u=rcos@sind + C.

297, u=¢"sin6 + In (1 + ¢* + C.
298, 1. 299. n%. 300. 2aR. 301. n%. 302. 1.

n, V2
303 X4 YEi_y
304. 0. 305. —2n R4 306, n.
307. . 308. 0. 309. 0.
310, Au=do— 2 + 52 W‘ +2g8.
31, Au=e¢e+12rw+7,+qnoze+f—? cot B 2.
312. (1) Yes, (2) No.
313, (1) u(®)= C,lnltan |+c,, 2) u(@=Co+Cs.

Ly

TG G =t -2,
34 u(r)= lnr+T+Cz. n=—1, (r+0)
—l—“.:‘+%+cz' n=—2.



APPENDIX |
BASIC OPERATIONS OF VECTOR
ANALYSIS IN ORTHOGONAL
CURVILINEAR COORDINATES

1. The scalar field is given in orthogonal curvilinear
coordinates, u = u (g;, ¢, ¢s). Then we have

1 o 1 1 o
= —— —— —_—— o
gradu =g G et g & W o
The Laplace operator is

Au— H,H, u

wr; Lo (P 2a) e (P

s 94,
3 (H\H, ou
+ar () |-
Special cases: (a) The scalar field is given in cylindrical
coordinates, u = u (p @, 2). hen we have

grad u—-Tp-e,+— 7 e,+';—':e,.
The Laplace operator is

1
Au_-i )+_r3q;+v‘

(b) The scalar fzeld is given in spherical coordinates,
u=u(r, 0, ¢). Then we have
8radu-—e,+—-—- e+ oy
The Laplace operator is

1 2 du 1 a o
A“—T-F(” 3r)+r'sm0 E) 00 sm9)

rnno 5@

1 Pu
+ 5w et
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2. The vector field is given in orthogonal curvilinear
coordinates:
a=20,(q g g) €1+ a3 (@1, 9u G5 €2
+ a3 (@1, 92 9s) s
Then we have

PO | d(aHaHy) | 3yl Hy) | 0 (asHyHy) ]

div = gy [ SO S+ J:
1 1 1

TE T, * T

=2 2 2
ol a=| 30 =W 5
aH, a,H, asH,

Special cases: (a) The vector field is given in cylindrical
coordinates,

= a e et al @ et o e
Then we have

10(ps) , 1 0ay  Gay
div =% +p W+ .
1 1
o € pe
curl a=|-2 2 2
Wl A=1% 9 %
ay  pa; G

(b) The vector field is given in spherical coordinates:
a=2a,(r8, g)e,+a,(r, 0, ¢)es + a5 (r, 6, 0) €.
Then we have

1 a(a r’) 1 a(a,sm )
diva=-3 = z + Sin 0 +rsm0 51:
1 1
r’sin§ er Teing i
2 a a
curl a=| - % %

ay ra, agrsin @
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AREA ELEMENTS
OF COORDINATE SURFACES

Cootds- | Coordinate surtaces Area elements

gy=C=constant |dS,=H,(C,ge.q5) Hs (C,qs.qs) dgs dgs

Senoral 45, H, (21,C.93) Hy (01:C195) 343
1 941 93| gy=C =constant |dSy=H (g1, 92 €) Hy (91,9, C) day duy
Cylind-

rical

p=C=conslant
¢=C=constant
z=C=constant

r=C=constant dS = C%sin 0 d0 dp
dS =rsin Cdrdp
@=C=constant dS=rdrdd
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area elements of coordinate sur-
faces 185
axis 152

binormal 31

circulation 103
of a vector field 96
continuity equation of a non-
compressible fluid 96

continuity of a vector function 11
convex region 51

oordinate(s)

curvilinear 152

cylindrical 153

spherical 154
coordinate line 152
curl 108

in orthogonal coordinates 158
curvature of a curve 27
curvilinear coordinates 152

basic operations in 152, 156

derivative,
directional 39
of a vector function 14
first and second (with respect
to arc length) 27
differential cquations of vector
lines 156
directional derivative 39
divergence in orthogonal coor-
dinates 159
divergence of a vector field 89, 90

equation(s)
continuity
Maxwell 133
Poisson 141
wave 139

field(s)

of)
188
flux in 160
line integral in (computation
of) 166
orthogonal 154
potential in 163

definite
del 130

integral 19

harmonic 140
1 10!

Laplace 140
potential 121
fux
in curvilinear coordinates 160
of a vector 85
of a vector field 58
methods of computing 62
force function 121
formula(s)
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189

Frenet 31, 33

Gauss-Ostrogradsky 85

Green's 115, 117, 143,
Frenet formulas 31, 33
function

force 121

potential 121

primitive 18

vector 9

144

Gauss-Ostrogradsky formula 85

Gauss-Ostrogradsky theorem 85

gradient in orthogonal coordi-
nates 157

gradient of a scalar field 44

Groen’s formulas 115, 117, 143,

144
Guldin theorem 86

Hamiltonian operator 130
harmonic field 140
hodograph of a vector function 9

indefinite integral 18
integral

definite 19

indefinite 18

line (see line integral) 97
irrotational field 108

Lamé coetsicients 155

Laplace field 140

Laplace operator 130, 135, 137

Laplace operator in othogonal
coordinates 174

Laplacian 137

level lines 35

level surfaces 35

limit of a vector function 11
line integral 97
calculating (in a vector field) 98
computation of (in a potential
field) 124, 125
independence of path of inte-
gration of 115
properties of 98

Maxwell equations 138
method of
introducing curvilinear coor-
dinates 79
projection on one plane 62
projection on three planes 76

normal, principal 28

operator
Hamiltonian 130
Laplace 130, 135, 137
orthogonal coordinates
curl in 158
divergence in 159
gradient in 157
Laplace operator in 174
orthogonal curvilinear coordi-
nates, basic operations in 184
orthogonal system of curvilinear
coordinates 154
osculating plane 31

Poisson equation 141
potential 121
in curvilinear coordinates 163
vector 146
potential fields 121
potential function 121
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primitive function 18
principal normal 27, 28

radius of curvature 29
radius of torsion 32
rotation 108

scalar field 35, 37
plane 38
second-order differential opera-
tions 130, 135, 136

sink 90

solenoidal fields 89, 95
source 90

star-shaped region 128
Stokes’ theorem 111
surface(s)

isothermic 36
level 35

theorem
Gauss-Ostrogradsky 85
Guldin 86
Stokes’ 111

torsion 31, 32
radius of 32

vector field 52
flux of 58
plane 56
vector function 9
integrating a 18
vector line 52
vector potential 146

wave equation 139
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This text is designed for students of
engineering colleges and also for
practising engineers who feel a need
to refreshen their knowledge of
such an important area of higher
mathematics as vector analysis.
Each section of the text starts out
with a brief review of the essentials
of theory (propositions, definitions,
formulas). This is followed by
detailed solutions of examples and
problems.

The book contains 314 problems to be
solved by the student. They are all
provided with hints and answers. The
41 drawings that accompany the text
serve to help the reader in analysing
the theoretical material and problems.
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