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PREFACE 

A sound mathematical training for the modern engineer 
is a sine qua rum for attaining new heights in all aspects 
of engineering practice. One of the areas of mathematics 
that plays a big role in the mathematical education of 
the engineer is vector amalysis, which is now invariably 
included in the curriculum of higher mathematics in 
engineering colleges. 

The present collection of problems in vector analysis 
contains the required minimum of problems and exercises 
for the course of vector analysis of engineering colleges. 

Each section starts with a brief review of theory and 
detailed solutions of a sufficient number of typical prob­
lems. The text contains 100 worked problems and there 
are 314 problems left to the student. There are also a 
certain number of problems of an applied nature that 
have been chosen so that their analysis does not require 
supplementary information in specialized fields. The 
material of the sixth chapter is devoted to curvilinear 
coordinates and the basic operations of vector analysis 
in curvilinear coordinates. Its purpose is to give the reader 
at least a few problems to develop the necessary skills. 

The exposition in this text follows closely the lines 
currently employed at the chair of higher mathematics 
of the Moscow Power Institute. 

The present text may be regarded as a short course in 
vector analysis in which the basic facts are given without 
proof but with illustrative examples of a practical nature. 
Hence this problem book may be used in a recapitulation 
of the essentials of vector analysis or as a text for readers 
who wish merely to master the techniques of vector 
analysis, while dispensing with the proofs of propositions 
and theorems. 

In compiling this problem book, the authors made 
extensive use of material in published courses of vector 



Preface 

calculus and collections of problems. Many problems 
were made up by the authors themselves. 

This collection of problems is designed for students of 
day and evening departments at engineering colleges and 
also for correspondence students with a background of 
vector algebra and calculus as given in the first two years 
of college study. 

We would like to express our sincere gratitude to 
Professor V. P. Gromov (the Moscow Krupskaya Pedagog­
ical Institute), Professor A. V. Efimov and Associate 
Professors I. M. Petrov, B. I. Fridlender, and V. N. Zem~ 
skov (the Institute of Electronics) for their thorough 
scrutiny of the manuscript of the book and for valuable 
tuggestions and remarks that were made full use of in 
she final editing. 

Moscow-Dubna, 1977. 

M. L. Krasnov 
A. I. Kiselev 
G. 1. Makarenko 



CHAPTER I 

THE VECTOR FUNCTION 
OF A SCALAR ARGUMENT 

Sec. 1. The hodograpll of a vector 
function 

Definition 1. A vector r is said to be the vector function 
of a scalar argument t if each value of the scalar taken 
from the domain of admissible values is associated with 
a definite value of the vector r. This can be written as 
follows: 

r ~ r (t). 

If the vector r is a function of the scalar argument t, 
r = r (t), 

then the coordinates z, y, z of the vector r are also func­
tions oft: 

• ~ • (t), y ~ y (t), ' ~ ' (t). 

Conversely, if the coordinates of the vector rare func­
tions of t, then the vector r itself is also a function of t: 

r ~ z (t) I + y (t) I + z (t) k. 

Thus, specifying a vector function r (t) is the same as 
specifying three scalar functions x (t), y (t), z (t). 

Definition 2. The hocWgraph of the vector function 
r (t) of a scalar argument is the locus described by the 
terminus of the vector r (t), as the scalar t v8.rTes, when 
the origin of the vector r (t) is fixed at a point 0 in space 
(Fig. 1). 

The hodograph of a radius vector r = r (t) of a moving 
point is the trajectory L of that point. Some other line L1 
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(Fig. 2) is the hodograph of the velocity v = v (t) of that 
point. Thus, if a material point (particle) is in motion 

around a circle with constant ve-A locity, 1 v 1 = constant, then its 
hodograph of velocities is like-

~t) wise a circle with centre at 0 1 

"t and with radius equal to I v 1-
Example 1. Construct the ho­

() 8 1t~aftt of the vector r = ti+ 

Fig. 1 Solution. 1°. This construc­
tion may be carried out by using 

points and setting up a table: 

, I· I 
r 1 o 1 i+J+k l2i-!-21+-1k l31+3J+9k 141+4J+16k 

2". Alternative solution. Denote by x, y, z the coordi­
nates of vector r; we have 

X = l, y = t, Z = t2• 

Eliminating the parameter t from these equations, we 
get equations of the surfaces y = x, z = x2 , the line L 

Fig. 2 

of intersection of which is what defines the hodograph of 
the vector r (t) (Fig. 3). 
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t. Construct the hodographs of the following vectors: 

(a) r=2i+tzj-t2k. 

(b) r= (~·:1;, i+ (t~t)' j. 

(c) r=cost·i+sint·j+k. 

Fig. 3 

(d) r=t1+-}t2j+-}t3k. 

(e) r 2tt+2tJ+(t1-2) k 
t'+2 

Sec. 2. The limit and continuity 
of a vector fundion of a scalar argument 

Suppose a vector function r = r (t) of a scalar argument 
t is defined in some neighbourhood of the value t 0 of the 
argument t, except perhaps for the value t 0 itself. 

Definition t. A constant vector A is said to be the 
limit of the vector r (t), as t-+ t0 , if for any e > 0 there 
is a 6 > 0 such that for all t =I= t0 that satisfy the con­
dition 1 t - t 0 I < B the following inequality holds true: 

I r (t) - A I < '· 
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As in the case of ordinary calculus, we write lim r (t) = 

~A. 
t--to 

Geometrically (Fig. 4), this means that the vector 
r (t) tends, as t-+ t 0 , to the vector A both in length and 

in direction. 
DellnlUon 2. A vector 

a (t) is said to be tnfini~ 
tesimal, as t -+ t0 , if 
a(t) has a limit, as t -+t0 , 

and that limit is zero: 

lima(t)-0. 
t-olo 

y or, what is the same 
thing, if for any e > 0 

Fig. 4 there exists a 6 >0 such 
that for all t =I= t 0 that 

satisfy the condition 1 t - t 0 1 < 6, the inequality 
I a (t) I < e holds true. 

Example 1. Show that the vector a (t) = ti + sin tj is 
infinitesimal when t-+ 0. 

Solution. We have 

la(t)l ~ lti+sin til<;; I 'I+ lsintl<;;21'1· 

From this it is evident that if for every e > 0 we take 
6 ~ e/2, then for I t - 0 I < 6 - e/2 we have I a (t) I < 
< e. By the definition, this means that a (t) is an infini­
tesimal vector when t-+ 0. 
2. Show that the limit of the modulus of a vector is 
equal to the modulus of its limit (if the limit exists). 
3. Demonstrate that for a vector function r (t) to have 
a limit A, as t-+ t0 , it is necessary and sufficient that 
r (t) be representable in the form 

r (t) ~ A + a (t), 

where a (t) is an infinitesimal vector when t-+ t 0• 

4. Show that if the vector functions a (t) and b (t) have 
limits as t-+ t 0 , 

lima(t)~A, limb(t)-B, 
1-olo t--lo 
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then their sum a (t) + h (t) and their difference a (t) -
- h (t) also have limits as t- t 0, and 

lim [a(t) ±b (t)[ -A ±B. 
t-to 

5. Let 
lima(t)-A, limb(t)-B. 
t-to t-to 

Prove that 

lim (a (t), b (t))- (A, B), 
t-to 

where {a (t), h (t)) is a scalar product of the vector fune. 
tions a (t) and b (t). 
6. Let 

r(t) - z (t) I + y (t) j + • (t) k, A - a,l + a,j + 
+ a,k. 

Show that if lim r (t) =A, then 
t-to 

limx(t)=a11 limy(t)=a2 , limz(t)=a3 • 
t-to t-lo t-to 

Find the following limits: 

7. l1i~ ( s~t 1+ cos;,-1 J+e' k), 

. (•-V< , ) 8.~~~ --r=r-'+T+tJ+k. 

9. ~~~ ( s~t l+cost·j+ ,!a). 
10. ~~~ (:~!I+ 1+;ost J+-i-k), 

H. \~0: ( ~~1' I+ 1~11 J+2k). 
Definition 3. A vector function r = r (t) defined in 

some neighbourhood of the value t = t0 is said to be 
contlnuoWI when t = t 0 if 

limr(t)-r(t0). 
t-t· 
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In other words, r = r (t) is continuous for t = t 0 if for 
every e > 0 there is a 6 > 0 such that for all t that 
satisfy the condition I t - t 0 I < 6 the inequality 
I r (t) - r (t0) I < e holds true. 

The hodograph of a continuous vector function of a 
scalar argument is a continuous curve. 
12. Start with the familiar inequality Ia - b I > 
> I I a I - I b I I and demonstrate that the continuity 
of a vector function implies the continuity of its modulus. 
Is the converse true? 
13. Show that if a (t) and b (t) are continuous for t = t 0 , 

then the vector function a (t) ± b (t) is also continuous 
for t = t 0• 

14. A vector function a (t) + b (t) is continuous for 
t = t 0 • Does it follow from this that the vectors a (t) 
and b (t) are also continuous when t = t 0? 
15. Prove that if a (t) and b (t) are continuous vector 
functions, then their scalar product (a (t), b (t)) and 
vector product [a (t), b (t)l are also continuous. 

Sec. 3. The derivative of a vedor 
function with resped to 

a scalar argument 

Suppose a vector function r = r (t) is defined for all t 
on the interval (t0 , t1). Take some value t E (t 0 , t 1), then 
give t an increment dt such that t + dt E (t0, t1) and find 
the corresponding increment 11r = r (t + 11t) - r (t) in 
the vector function r (t). Now consider the ratio 11rl11t. 

Definition. If, as 11t-+- 0, the ratio 11r111t has a limit, 
then that limit is called the derivative of the vector 
function r = r (t) with respect to the scalar argument t 
for a given value t of the argument and is denoted as 
dr (t)ldt or r' (t) or ; (t). Thus, 

drd~t) =~~~0 %=~~~0 r(t+!?-r(t) 

In this case the vector function r = r (t) is said to be 
differentiable. 
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16. Show that if the vector function r = r (t) has a 
derivative for some value t of the argument, then it is 
continuous for that value t. 

The derivative of a vector function r (t) of a scalar 
argument t is a vector directed along the tangent to the 

Fig, 5 

hodograph of the original vector at the point under con­
sideration (Fig. 5). The vector drldt is in the direction 
of the terminus of the vector r (t) as it moves along the 
hodogra ph when the parameter t increases. 

Suppose r = r (t) is the radius vector of a moving 
point. Then the vector v = dr/dt is the velocity vector 
of that point. 

Suppose 

r (t) ~ X (t) I + y (t) j + z (t) k, 

where the functions :c (t), y (t), z (t) are differentiable at 
the point t. Then there exists dr/dt for that value of t and 

*=*i+*j+*k. (1) 

Eiample 1. Find dr/dt if r = ia cos t + jb sin t (the 
point is moving in an ellipse). 
Solution. From formula (1), 

%-= -iasint+jbcost. 



16 The Vector FancUon of a Scalar Argamtnt [Ch. I 

By analogy with the differential of a scalar function, 
the diflerenttal of a vector function r = r (t) is a vector dr 
defined by the equality 

dr = #t- -dt, 

where dt = !J.t is the increment in the scalar argument t. 
As in the case of scalar functions, 

.6-r = tb + a·.6.t, 
where a= a(t, !J.t)-+0 as .6-t-+0. 

BMic ruks for di/ferenttating a vector function 

Assume that all functions being considered (both scalar 
and vector) are continuous and differentiable. 

1°. If cis a constant vector, then dc/dt = 0. 
2°. The derivative of a sum of vector functions is equal 

to the sum of the derivatives of the summands: 
d(a(t)+b(t)) =!!_-1-~ 

dt dt ' dt 

3°. Suppose a vector function a (t) is multiplied by 
a scalar function m (t) of the same scalar argument. Then 

d!~)=m~+~a 

4o. d(:;b)=(a,~)+({i-,b) 

so. d(:;bJ =[-*· b ]+[ 8,~] 
(In this formula, the order of the factors a and b in the 
right-band member must be the same as that in the left­
band member.) 

Let u.s prove formula 4°. We set cp (t) = (a (t), b (t)). 
Give t an increment .6-t; then, by the distributive prop­
erty, we have for the scalar product 

&q> - 'P (t + &<) - q> (t) - (a + &a, b + &b) - (a, b) 
- (&a, b) + (a, &b) + (&a, llb), 

whence 

*-(~~. b)+(a.~)+(4;-,&b). (2) 
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It is given that the functions a (t) and b (t) have deriva­
tives for the value t of the argument and, hence, are 
continuous for that value of t. Therefore 

}t?~*=~. 1~~04}=~. and 1!!!! ilh=O. 

Passing to the limit in (2) as llt-+ 0, we obtain 

d(:;b) = (#t-. b)+ (a, #t-). 
17. Given r = r (t). Find the derivatives: 

(a).fi-(r2), (b)-JT(r.*)· (cJft[r.T,J. 

18. Prove that if the modulus _I r I of the vector function 
r = r (t) remains constant for all values oft, then dr/dt,Lr. 
What is the geometrical meaning of this fact? 

)!Y." Prove that if e is a unit vector in the direction of 
the vector E, then 

(e, de]= 1 ~£t~J . 
20. Suppose 
u = u1 (z, y, z, t) i + u11 (x, y, z, t) j + u3 (x, y, z, t) k, 

where u1, u11 , u3 Ill'S continuously differentiable functions 
of their arguments, and x, y, z are continuously differentia­
ble functions of t. Show that 

du au 8ii' lk -ihl dy 8u dz 
Tt= Tt + 8Z -;u + 89-;u+a;- fit• 

21. Find the trajectory of motion for which the radius 
vector r (t) of a moving point satisfies the condition 
drldt = (a, r], where a is a constant vector. 

The derivative drldt of the vector function r (t) of a 
scalar argument is a vector function of the same argument. 
If there exists a derivative of drldt, then it is called the 
second derivative and is denoted €Pr/dt1• Generally, 

:;! =fe ( :;:~~), n=1,2, 

22. Given the radius vector of a point moving in space: 
r{asint, -acost, bt2) 

(t is time, and a and bare constants). Find the hodographs 
of velocity and acceleration. 

2·910 
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23. Given: r = a co.s rot + b sin rot, where ro, a, b are 
constants. Prove that 

(1) [ r, Tt-J =[roe, b), 

(2)_ ::; +ro1r=0. 

24. Show that if r = aewt + be-wt, where a and b are 
constant vectors, then tflrldt - ro7 = O. 
'25. Show that the modulus of the dilferential of the 
radius vector of a point is equal to the differential of 
the length of the arc described by the point. 
26. Suppose a = a (u) is a vector function of a scalar u, 
where u in turn is a certain scalBl' function of the buic 
scalar t. Assuming a (u) and u = u (t) to be differentiable 
the necessary number of times, find an expression for the 
derivatives of the composite function daldt, rPaldt2• 

Sec. 4. Integrating a vector function 
of a scalar argument 

Definition 1. We will say that the vector function A (t) 
is the primitive of the vector function a (t) when t 0 < t < 
< t1 if A (t) is differentiable and 

~~ =a(t), tE(t0 ,t1). 

Definition 2. The collection of all primitive functions 
of a (t) is termed the indefinite integral of ·the vector 
function of a scalar argument a = a (t) • .AJ?. in integral 
calculus, the indefinite integral of a vector function is 
denoted by the symbol J , and we have 

l•(t)dt-A(t)+C, 

where A (t) i.s one of the primitive fuuctions of a (t), and 
C is an arbitrary constant vector. 

The following propertie.s hold true for integrals of 
vector functions: 

1°. Jaa(t)dt=a.Ja(t)dt (o:i.sanumericalconstanl.). 
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2°. j (a(<)±b(t))dt~ ja(t) dt ± j b(t)dt. 

2:1. Show that if e is a constant vector, and a (t) is 11 

variable vector, then 

If 

then 

j (e,a(t))dt~(e, ja(t)dt), 

jle,a(t))dt~[e, ja(t)dtJ. 

a (t) ~ a, (t) I + a, (t) j + a, (t) k, 

ja(t)dt~lja,(t)dt+l j a,(t)dt+k ja,(t)dt. (I) 

That is, the integration of a vector function reduces to 
three ordinary integrations. 

Example 1. Fiii.d the indefinite integral for the vector 
function a (t) = i cos t + je-t + k. 

Solution. According to formula (1), 

) a(t)dt=i J costdt+i J e-1dt+k J dt= 

=isint-je-1+kt+e, 

where e is an arbitrary constant vector. 
Find the integrals of the following vector functions: 

28. a(t)=te1t+sinzt.j- t!r•· 
29. a(t)=w+tel"j+cost·k. 

30. a (t) =coste'lnt.t- tcost2·j+k. 

31. a (t)={t2J-tsin t·i+21k. 

Let a vector function a (t) be defined and continuous 
over a certain interval [t0 , Tl, which is the range of the 
argument t. 

Definition 3. We define the definite integral of a vector 
function a (t) on the interval [t0 , Tl a.s the limit of the 
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vector integral sums 
•-I 

a= ~ a ('l"Jr) dt,u 'tJr E (1,10 t11+1l ·-· as the length dt of the largest of the subintervals lt11 , tll+1] 

(k = 0, 1, ... , n - 1) into which the interval lt0, T] 
is partitioned tends to zero: 

T n-t 

J a(t)dt~Hm ~ a(<,)At,. 
lo <1t-o 11-0 

The following formula holds true: 
T 

J a(t)dt~A(T)-A(t0), (2) 

'• 
where A (t) is some primitive for the function a (t) on the 
interval lt0 , T]. 

If 
a (t) ~ a1 (t) I + a, (t) j + a, (t) k, 

then 
T T T T 

J a(t)dt~t J a,(t)dt+l J a0 (t)dt+k J a0 (t)dt. (3) 
lo lo lo lo ., 
Enmple 2. Compute J a (t) dt, where a (t) -1 cost­

o 
-jsin2 t. 

Solution. By virtue of formula (3), 
fl/2 ft/2 n/2 J a(t)dt=l J eostdt-j J sin2 tdt 
0 0 0 

. J"" ( t sin2t )J"/2 n =ismt 0 -j 2 --4- 0 =1-'TI· 

Compute the following integrals: 

32. J a(t)dt, where a=sin2t cos t·l+cos2tsint·J+k. 
0 
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I J 11!'-111 jel/1 1 33. a(t)dt, where a=-2 -+--y---+ke. 
0 

I 

34. r a(t)dt, where a=3ncosnt·i-~+2tk. 

35. j a(t)dt, where a=(2t+n)i+tsint-j+nk. 
0 

2t 

Example 3. An electric current I flows upwards along 
an infinite wire that coincides with the z-axis. Find the 
vector B of the magnetic --, ~ . 
field intensity set up by 2 
this current at an arbitrary 
point M (.x, y, z) of space 
(Fig. 6). l<(x,g,zj 

Solution. We consider a 
sufficiently small element 
PP1 = d~ ofthez-axis. By 
the Biot-Savart law, the 
intensity dB of the mag­
netic field set up at point 
M by the current flowing 
through element d~ of the 
wire coincides in direction 
with the vector product 
[d,, r 11, where dC = PP1, 

I d~ 1~~. r,~PM (see 
Fig. 6). By this same law, the Fig. 6 
modulus of the vector dB is 

idHi =--fr sin (d£,'.-1) d~, 
/' 

where (dt, r 1) is the angle formed by the vectors db and r 1 . 

Since 
/' 1 [d,, r 1[1 ~,,de sin(~. r 1), 

we can write 

(4) 
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In order to obtain the desired vector H at the point M 
we have to sum all vectors dH pertaining to distinct 
elements PP1 of the wire, that is, we have to integrate 
the expre.!ISion (4) over the whole z-axis: 

·~ 
H= j_ -frid,,r,]. (5) 

We have 
r 1 =OM- OP. 

But 
OM = xi + yj + z~, OP = CJ<, 

and therefore 

so that 

r, = (r,( = V x'+u'+ (z ')'-V p'+ (z-')', 

where p = y' x' + If is the distance of point M from the 
axis of the wire. 

For the vector product [dt, r11 we have 

and formula (5) takes the form (the point M (x, y, z) is 
fixed, I =constant] 

+~ 

H=l(-yi+xl) L IP'+I,'' 0'1'". (6) 

To compute the integral on the right-hand member of (6), 

make the substitu~~~···f·l~· q~-

~-z=ptant, db= c~:!,. 
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We then have 

•12 

=f,- J costdt=f.. 
-11/2 

Thus, the intensity vector H of the magnetic field is 
in our case given by 

H=7(-yi+.:tj) 

11=f.ri.rJ, 

where I = l·k is the current vector, r is the radius vector 
of point M (x, y, z:) of the field, and p is the distance of 
M to the axis of the wire. 

Example 4. The motion of an electron in a lwmogeneous 
magnetic field. 

1°. Suppose a magnetic field H is set up in some region 
of space; let it be constant in magnitude and direction 
(a homogeneous field). Suppose at time t = t0 , an elec­
tron enters the field with an initial velocity v0• Determine 
the path the electron will take. 

Solution. First suppose the vector v 0 is perpendicular 
to H and that the initial position of the electron is at 
point M 0• Choose the origin 0 at an arbitrary point of the 
planeP passing through M0 at right angles to the vector H 
(Fig. 7). Let t.he initial radius vector OM 0 be r 0, let r be 
the radius vector of the electron at the current instant of 
time t, and let v be the instantaneous velocity at that 
instant. The basic differential equation of motion is 

m ::=F. 
It will be recalled that the force F acting at timet on the 
electron by the magnetic field is 

F = -e0 [H, v), 
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where e0 is the absolute value of the electron charge. 
Thus, 

(7) 

At every instant t, the force F is perpendicular to the 
direction of velocity and to the direction of the fteld H; 

Fig. 7 

at every instant, it will force the electron to deviate from 
a rectilinear path and to describe a certain curvilinear 
trajectory. 

Let us rewrite (7) as 

m~=eo[~. H] 
and integrate from t 0 to t with respect to t. This yields 

mv- mv0 = e0 (r, B]- e0 (rl), HJ 

mv = e0 [r, H] + (mv0 - e0 [r 0, HI). (8) 

Now choose a coordinate origin 0' such that the term in 
parentheses in the right-hand member of (8) vanishes, that 
is, so that 

(9) 
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From (9) it follows that the initial vector r 0 must be 
perpsndicular to the vector v0 and must lie on the straight 
line M 0K, which is perpendicular to the plane of the 
vectors v 0 and H. By virtue of (9), the modulus of the 
vector r 0 must satisfy the relation 

e0 I r 0 1·1 H I= m I V 0 I, 
whence 

lrol = : \~11 • (10) 

This determines the position of the new origin 0'. Relative 
to this origin, equation (8) is rewritten thus: 

mv - e0 [r, HI (11) 

m {f= e0 [r, HJ. (12) 

From equation (11) it follows that the trajectory of the 
electron is a plane curve lying in the plane P because at 
every instant the vector v is perpendicular to H. Now take 
the scalar product of both sides of (12) by r: 

m (r,%) =e0 (r, [r, HI). (13) 

The mixed product in the right-hand member of (13) 
is zero, so that 

whence 

-it(r2)=0 or -#;-(r2)=0, that is, rz=constant. 

This is the equation of a circle lying in the plane P with 
centre at the chosen point 0'. The radius of the cirele is 
found from formula (10) since the initial point M 0 must 
also lie on that circle. Thus, we finally have 

r=r0 = :~~~: . (10) 

Thus, if an electron enters a homogeneous magnetic 
field H with an initial velocity Vn at right angles to H, 
then it will describe, in that field, a circular trajectory 
lying in the plane P perpendicular to H and passing 
through the initiaJ point. The radius of the cirele is 
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given by formula (10) and its centre 0' lies on the straight 
line perpendicular to the plane of the vectors v0 and H; 
note that a rotation from v0 to H must be seen from point 
0' as a counterclockwise rotation. 

From (10) it is evident that the radius r0 of the circle 
is inversely proportional to I H I· Thus, the greater the 
intensity of the magnetic field, the greater the curvature 
of the trajectory. 

From formula (11), 
mv = e0 {r, Hl, 

it is clear that if r is constant in modulus and is all the 
itme perpendicular to H, then also the velocity v of the 

Fig. 8 

point will be constant in magnitude, 

I v I = 110 = constant, 

so that the electron is in uniform motion in the orbit. 
The period of revolution T is 

T= 2nr0 = 21t _m_. 
Vo eo IHI 

(14) 

This formula does not. involve the initial velocity v0 • 

Thus, irrespective of the initial velocity v0 which is 
perpendicular to H with which the electron enters the 
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homogeneous magnetic field H, it will perform a single 
orbital revolution and always in the same time T. 

2°. Now suppose an electron enters a homogeneous 
magnetic field H with some initial velocity V that is 
not perpendicular to the vector H. This velocity may 
then be resolved into two components: the vector v 0 

at right angles to the field, and a vector v1 parallel to the 
magnetic field. 

From the formula 

F = e IV, Hl = e0 (v 0 , Hl 

it is evident that the "twisting" force F is given only by 
the perpendicular component v11 and that it imparts to 
the electron a rotational motion about the circle (centred 
at 0') discussed above. As for the other component v1, 

the electron will retain it by inert-ia and, besides having 
a uniform circular motion, it will have a rectilinear and 
uniform motion in the dirPction of H with a velocity 
v1 = I V I cos a. The combination of these motions 
yields a helical curve with axis parallel to the vector H 
and passing throu~h the point 0' (Fig. 8). 

Sec. 5. The first and second derivatives 
of a vector with respect to the arc length 

of a curve. The curvature of a curve. 
The principal normal 

Consider a curve L in space. On it, choose a point M 0 

as the origin and also choose a direction along L that will 
be regarded as positive. For a parameter, take the arc 
length s reckoned from M 0 of the curve .(Fig. 9). Then 
the radius vector of a point M of the curve is 

r = r (s). 

With that choice of parameter, 

;.=-ro, 
where ~ is a unit vector directed along the tangent to 
the curve L in the direction of increasing values of the 
parameter s. 
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If the vector r is given by the coordinates 

r=xi+yj+zk, 

then 

and 

Since 1 ,.0 1 = 1, the vector d-c0/ds is orthogonal to the 
vector -cO. 

The modulus of the vector d-c0/ds is 

Here, K is the curvature of the curve L at the point M. 
The straight line having the direction of the vector 

d-c0fds and passing through the point M of the curve is 

g 

" Fig. 9 

termed the principal normal of the curve at the point M. 
Denoting the unit vec.tnr of that direction by n°, we have 

(I) 



Sec. 5j The fir:rt and :recond dertvattve1 of a vector 29 

The inverse of the curvature of a curve at a given point 
is called the radius of curvature of the curve at that point 
and is denoted by R: 

R=-}. 
Thus, formula (1) may be rewritten as 

From this, 

K=Jr=l ~~I 
or 

Using (2), we can compute the curvature of a curve at any 
point if the curve is specified by parametric equations in 
which the parameter is the arc length s. 

In the particular case of a plane curve, a circle of 
radius a, 

we have 

. } x=acos ii• 

. ' y=asina, 

and formula (2) yields 

K=}= V }cos2-;-+}sin2-; =~. 

This means that the curvature of a circle of radius a is 
constant and is equal to the inverse of the radius of the 
circle. 



30 The Veelor FuncUon of a Scalar Argumenl [Ch. I 

If the cw-ve L is given by the vector-parametric equa­
tion r = r (t), where the parameter t is arbitrary, then 

1[ ,, '''JI 
K=..!_= F·tfii" 

R I~H 
(3) 

Formula (3) permits computing the curvature of the 
curve at any point P!<>'_!ided we have an arbitrary para­
metric specification of that curve. 

Example i. Compute the curvature of the helical curve 
r =a cos t·i +a sin t·j + htk. 

Solution. Since 

4F-= -asint·i+acost.j+hk, 

~:~ = -acost·i-asint·j, 

the vector product 

f*· ~J= -asint acost h I I j kl 
-acost -asintO 

=ahsin t.i-akcos t·j+a2k. 
Consequently, 

1[~. ~:~ Jl=a Va2 +h2 , l#t-j=Vaz+hz. 
By virtue of (3), 

R = a'~h' =constant. 

Thus, a helical curve has a constant radius of curvature. 
Find the radius of curvature of each of the given cw-ves: 

36. r =In cos t·l +In sin t·j + V2t·k. 
37. ' - t'l + 21'j. 
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38.r~3t'l+(3t-t')l+2k for t~l. 
39. r = a (cos t + t sin t) i + a (sin t - t cos t) j 
for t = n/2. 
40. r =a cosh t.J +a sinh t·j + atk at any point t. 

Sec. 6. Osculating plane. Binormal. 
Torsion. The Frenet formulas 

3t 

no;!:t::eap;~~~g ~~~Z~~ t:t !a~~:! i):;e i:n!;~:difb! 
osculating plane at the point M. 

For a plane curve, the osculating plane coincides with 
the plane of the curve. 

If the vector r = r (t) has a continuous derivative 
drldt in the neighbourhood of a point t 0 and, besides, a 

second derivative Gtr (to)ldt2 such that 

l d~~t0) , d~1~4l) J =#= O, 

then at the point t = t 0 there is an osculating plane 'o 
the curve r = r (t) whose vector equation is 

(p-r(to), [drd:{l> • d~t~lo) J)=O, 
where p = p (t) is the radius vector of the current point 
of the plane. 

The normal to the curve at the point M, which normal 
is perpendicular to the osculating plane of the curve at 
that point, is called the binormal of the curve at the given 
point M. 

Denote by b0 the unit vector of the binormal oriented 
so that the vectors -r0 , n°, b0 form a right-handed trihedral 
(Fig. fO). Then 

bO"= 1, h0= ["1"0, nDJ. 

For the derivaOve db0/ds we get 

~~0 =r '"0· ~~0 l 
The vector db0/ds is perpendicular both to the vector -rO 

and to the veCtor-bb, that is, it is coJlinear with the vee-
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tor n°. Set 

I db'[~_!_. do T 

We then have 
db0 i 0 
""(i'$=fn. 

The quantity 1/T is termed the tonion of the gi'.'~n 
curve, and T is called the radius of torsion of the curve. 

is ~~!e!0~~0~he0ffo:m~i:"e 
f-=R2(~. ~:~. :), 

M d::~:~h: !;:e~0~r~~u!' ~l 
the vectors a, b, c, that is, 
(a, b, c) ~ (a, [b, c]). 

For the case where the 
curve is given by the vee-

Fig. 10 tor-parametric equation r = 
= r (t), we have 

(*·~·~) 
I[*·:~ Jl' . 

Example 1. Find the torsion of the helical curve 

r =a cos t·i +a sin t·j + htk. 

(I) 

Solution. We find the derivatives of the given vector: 

7f= -asint·i+acost·j+hk, 

::! = -a cost· i- a sin t · j, 

~ =asint.l-acost·j. 
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The mixed product of these vectors is 

(*. ~::, ~:: )= -a cost -asint 1

-asin t a cost 

asint -acost 

In example 1, Sec. 5, we found that 

j [%, ~~~ J j2 = a2(a2+h2). 

Using (1), we obtain for the torsion 
t k 

r=a'+h•" 
Thus, the torsion of a helical curve is the same at all 

its points. 
Example 2. Write the equation of the Osculating plane 

at the point t = 0 of the helical curve 

r =a cos t·i +a sin t·j + htk. 

Solution. We find the values of the derivatives of the 
given vector and its derivatives dr!dt and GJr/dt2 at the 
point t = 0: 

r (0) = ai, drd~O) = aj + hk, d~~~O) = - ai. 

Consequently (see example 1, Sec. 5), 

[ drd~O) , d1;1 ~0) J = _ ahj + a2k. 

The vector equation of the osculating plane is 

(p-r(O), drd~O)' d~1~0))=0 

(p - ai, -ahi + a'k) ~ 0. 

Since the radius vector of the current point of the oscula f... 
ing plane p = xi + yj + zk, it follows that by passing 
to coordinate notation we obtain an equation of the 
desired plane in the form hy - az = 0. 

Formulas expressing the derivatives of the vectors 
'fo, bo, n° are called Frenet formulas: 
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41. Write down the equation of the osculating plane at 
the point t = 2 of the curve 

r=ti-ti+ftzk. 

42. Write down the equation of the osculating plane at 
the point t = 0 of the curve 

r=eti+ e-tj+ V2tk. 
43. Find the torsion at the point t = 0 of the curve 

r = et cos t·i + e1 sin t·j + e1k. 
44. Find the torsion at any point t of the curve 

r = a cosh t· i + a sinh l·j + atk. 



CHAPTER II 

SCALAR FIELDS 

Sec. 7. Examples of scalar fields. 
Level surfaces and level lines 

Definition. If a value of a certain quantity is defined 
at every point of space or a portion of space, then we say 
that the field of the given quantity has been specified.~ 

The field is termed a scalar field if the quantity in 
question is a scalar quantity, that is, if it is fully de­
scribed by its numerical value.-

Examples of scalar fields are: a temperature field, an 
electrostatic field. 

Specifying a scalar field is accomplished by specifying 
the scalar function of a point M: 

u -f(M). 

If a Cartesian coordinate system $YZ is introduced in 
space, we have 

''-I (x, y, •). 

Geometrically, a scalar field is characterized by a 
level surface; this is a locus of points at which the scalar 
function of the field assumes the same value. The level 
surface of a given field is defined by the equation 

f (x, y, z) = C, where C = constant. 

In the case of a temperature field set up in a homo­
geneous and isotropic medium by a point source of heat, 
the level surfaces are spheres centred at the source (this 
is a central-symmetric field). 
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In the case of an infinite uniformly heated wire, the 
level surfaces (isothermic surfaces) are circular cylinders 
whose axes coincide with that of the wire. 

Example t. Construct the level surfaces of the scalar 
field 

u.=x+2y+3z. 

Solution. The level surfaces are given by the equation 

x + 2y + 3z = C, where C = constant. 

This is a one-parameter family of parallel planes. 
Example 2. Find the level surfaces of the scalar field 

u.=3f+yZ-zZ, 

Solution. The level surfaces are given by the equation 
z2 + y2 - zZ = C 1 Where C = COnstant, 

For C = 0, we obtain a circular cone. For any C > 0, we 
obtain a hyperboloid of revolution of one sheet with the 
axis coincident with the z-axis. For C < 0, we obtain 
a hyperboloid of revolution of two sheets. 

Example 3. Find the level surfaces of the scalar field 

' u =arcsin y z•+ y• . 

Solution. The domain of definition of the given scalar 
field is found from the inequality 

J Y z:+y• J:s;;;t. that is, 0~ z•~y• ~1., 
whence 0 < z2 :s;;; x' + y2 • This double inequality shows 
that the field is defined outside a circular cone z2 = 
= x2 + y2 and on it, with the exception of its vertex 
0 (0, 0, 0). 

The level surfaces are found from the equation 

arcsin Vz:+Y' =C, where -T:s;;;c~T-

That is, ziV :c2 + y1 =sin C or z2 = (:c2 + y2) sin2 C. 
This is a family of circular cones located outside the cone 
z2 = :c2 + y2 with a common axis of symmetry, Oz, and 
a common vertex, 0 (0, 0, 0), at which the given field 
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is not defined; note that the cone itself, z2 = x 2 + y2 , 

is also included in the family. 
Example 4. Find the level surfaces of the scalar field 

U = e<a,r), 

where a is a constant vector and r is the radius vector 
of a point. 

Solution. Here, 

r - {x, y, z) -xi + yj + zk 
and let 

a = {a1 , a,, a3 } = a1i + a:J + a3k 

The1,1 the scalar product 

(a, r) = a1x + as1J + a3z. 

The equation of the level surfaces is 

e<•.rl=C, C>O, 
whence 

(a, r) -InC 

a1:t + a2y + a3z = In C. 

This is a family of parallel planes. 
Find the level surfaces of the following scalar fields: 

45. U=f+f+ii• 
46. u=x2+y2-z. 

47. U=z1 ~ 111 • 
48. u=2y2+9z2. 
49. u = 33:+2 !1-~. 

50. U= ~:: ~~ (a, b are constant vectors). 

51. u = In I r !. 
52. u = e<•· h. r) (a, b are constant vectors). 

A scalar field is said to be plane if there is a plane 
such that in all planes parallel to the given plane the 
scalar field is the same. 
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If we take this plane as the xy-plane, then the scalar 
field is given by the scalar function 

u ~ f (z, y), 

which is to say it is not dependent on z. 
An example of a plane scalar field is the temperature 

field of an infinite, uniformly heated wire. 

Fig. it 

Geometrically, plane scalar fields are characterized 
by level lines; these are loci in which the scalar function 
has one and the same value. 

Example 5. Find the level lines of the scalar field 

u = r- u'. 
Solution. The level lines are given by the equations 

r - y2 = c' where c = constant. 

When C = 0, we obtain a pair of straight lines: 

y = x, y = -x. 

For C * 0, we obtain a family of hyperbolas (Fig. 11). 
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Find the level lines of the following plane fields: 
53. u=2x-y. 

54. u=ln v~. 
55. u=f. 

56. u = &='-v'. 
57. Find the level lines of the scalar field u given im­
plicitly by the equation 

u + x In u + y = 0. 

Sec. 8. Directional derivative 

Suppose we have a scalar field defined by a scalar 
function 

u- /(M). 

In the field, take a point M 0 and choose a direction 
indicated by the vector I. Then in the field take another 
point M so that the vector MoM is parallel to I. Denote 
by .1.u the difference 

6u -! (M) -I (M,) 

and by .1.l the length of the vector MoM. The ratio .1.ul.1.l 
defines the average rate of change of the scalar field per. 
unit of length' in the given direction. Allow the point M 
to move towards the point M 0 so that the vector MoM 
is always collinear with the vector I. Then .1.1-+ 0. 

Definition. If, as .1.l-+ 0, there is a limit to the ratio 
6u/6l, then it is called the deriuative of the function 
u = f (M) at the given point M 0 in the direction of I 
and is denoted by the symbol Ou/{Jl so that, by definition, 
we have 

~=!:~ -xf=!:~ f(M)-;J<Mo)' MoMlll. 

This definition of a directional derivative is invariant, 
that is, it is not connected with any choice of coordinate 
system. 
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Suppose a Cartesian coordinate system has been intro­
duced in space and suppose the function f (M) = 
= f (x, y, %) is differentiable at the point M0 (x0 , y0 , z0). 

Then 

~/M, =~IM. ~oso:+~[M. cos ~+~/M. cosy, (1) 

where cos a, cos~. cosy, the d~t:_ection c~nes of the 
vector 

I = a1i + as) + a3k, 

found from the formulas 

cosa=ftycos~=N· cos'\'=iiT· 

111 = Va~+ai+a~. 

The symbols .!._,•1 ,!.___,"/ ,!_,"I signify that the par-
~ M 0 Y !t/0 Z M 0 --

tial derivatives are taken at the point M 0 • 

For a plane field u = f (x, y), the directional derivative 
I at the point M 0 (x 0 , y0) is 

Tz /.~~.=~[AI, cos a+ */.,1• sin a, (2) 

where a is the angle formed by the vector I and the 
.x-axis. 

Rernark. The partial derivatives Ou!Ox, 8ullJy, 8u/8z 
themselves are derivatives of the function u in the direc­
tion of the coordinate axes Ox, Oy, Oz respectively. 

Formula (i)-used to compute the directional derivative 
at a given point-holds true even when the point M 
tends to M 0 along a curve for which the vector I is the 
tangent line at the point M 0• 

Example t. Find the derivative of the scalar field 
u = :z;yz 

at the point M0 (1, -1, 1) in the direction from M0 to 
M, (2, 3, 1). 

Solution. We find the direction cosines of t.he vector 
M0M1 ={1. 4, 0}, the length of which is IM0Md =Vii, 
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and we have 

cosa- V~, cos~= V~, cosy=O. 

The values of the partial derivatives of the function 
u = xyz at the point M0 (1, -1, 1) are 

*IM.=- 1• ~~M.= 1 • */M,=-1. 
Using formula (1), we get * IM. =- v~ + v~ - 1 ·0 = y3rr. 

The fact that ~ j Afo > 0 means that the scalar field at 

M 0 increases in the given direction. 
Example 2. Compute the derivative of the scalar field 

u = arctan xy 

at the point M 0 (1, 1), which belongs to the parabola 
y = ;_2 , in the direction of the curve (in the direction of 
increasing abscissas). 

Jolution. The direction of I of the parabola y = x2 at 
the point M0 (1, 1) is the direction of the tangent to the 
parabola at that point (Fig. 12). 

Suppose the tangent I to the curve at M 0 forms with 
the x-axis an angle a. We then have 

y' = 2x, tan a = y' L~:- 1 = 2, 

whence the direction cosines of the tangent line are 

cosa= Yi+:an'a = ;g, cos~= sin a 

tan a. 2 
= Vt+tan1 a = ¥5 · 

The values of the partial derivatives of the given function 
u (x, y) at the point M 0 (1, 1) are 
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Substituting them into (2), we obtain 

*=+· :5 +T· ~s = 2 ~s · 
E:tample 3. Find the derivative of the scalar field 

Fig. 12 

u = xz2 + 2yz at the point M 0 (1, 0, 2) along the circle 

x~1 +cost,} 
u=sint-1, 
z=2. 

Solulion. The vector equation of the circle is of the 
torm 

r (t) ~ (1 +cost) i + (sin t- 1) j + 2k. 

We find the vector T tangent to it at any point M to be 

'f=i = -sint.i+cost-j. 

The given point M 0 (1, 0, 2) is found in the xz:-plane in 
the first octant and is associated with the value of the 
parameter t = n/2. At this point we have 

T]M.= -sinf·i+cos i-·j= -i. 
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From this we obtain that the direction cosines of the 
tangent to the circle are equal to cos a= ~t. cos~= 0, 
cos 'I' = 0. The values of the partial derivatives of the 
given scalar field at the point M 0 (1, 0, 2) are: 

~~M. =zz[M, = ~. ~~M. = 2ziM. = 4• * ]M, = (2xz + 2y) J.,,. = 4. 

Hence the desired derivative is 

*1M. =*fM. =4·(-1)+4·0+4·0= -4. 

In the following problems, it is required to find, for 
the given functions, the derivative at the point 
M0 (x0 , y0 , z0) in the direction of the point M1 (xlt y1 , z1). 

y.-u~ V x'+Y'+•'· M0 (1, 1, 1), M,(3, 2-:-1). 
~ u=x'y+xz'-2, M 0 (1, 1, -1), M,(2, -1, 3). 

jAr. u~xe11 +ye"'~.z2, M0 (3,0,2), M1 (4,1,3). 

61. u=~~~. M0 (t,t), M 1 (4,5). 

62. Find the derivative of the sca.lar field 

U=ln(x'+y') 

at the point M 0 (1, 2) of the parabola y2 = 4x in the 
direction of the curve. 
63. Find the derivative of the scalar field u = arctan ylx 
at the point M 0 (2, -2) of the circle :rf + y2 - 4.:r = 0 
along an arc of the circle. 
64. Find the derivative of the scalar field u = x.2 + y2 

at the point M 0 (.:r0 , y0) of the cirele :rf + y2 = R2 in the 
direction of the circle. 
65. Find the derivative of the scalar field u = 2xy + y2 

at the point (112, 1) of the ellipse x"/4 + y212 = 1 in the 
direction of the outer normal to the ellipse at that point. 
66. Find the derivative of the scalar field u = x2 - y2 

at the point (5, 4) of the hyperbola x.2 - y2 = 9 in the 
direction of th6 curve. 
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67. Find the derivative of the scalar field u = 
=In (xy + yz + xz) at the point M 0 (0, 1, 1) in the 
direction of the circle x = cos t, y = sin t, z = 1. 
68. Find the derivative of the scalar field u = T + y2 + 
+ z2 at the point M 0 that corresponds to the value of 
the parameter t = n/2 in the direction of the helical 
curve :r = R cost, y = R sin t, z = at. 

Sec. 9. The gradient of a scalar field 

Suppose we have a scalar field defined by a scalar 
function 

u -I (z, y, z) 
where the function f is !J.SSUme~ to be differentiable. 

Definition. The gradient Of a scalar field u at a given 
point M is a vector denoted by the symbol grad u and 
defined by the equation 

grad U=~i+~j+~k. (p 
Using formula (1) of Sec. 8 for the directional derivative, 

we have 

*=(grad u, 1°), (2) 

where 1° is a unit vector in the direction of I, that is, 

1° =W= icosa.+jcos ~+kcosy. 

Properties of a gradient 

- 1. The gradient is in the direction of the normal to the 
level surface (or to the level line if the field is a plane 
field). 

• 2. The gradient is in the direction of increasing values 
' of the function of the field. 

3. The modulus of the gradient is equal to the largest 
directional derivative at a given point of the field: 

max-tr;]grad u] = V (*) 2 + (*) 2 + (*t . • 
• The maximum is taken over all directioo.s of I at the given 

point of the field. 
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These properties yield an invariant characteristic of 

the gradient. They state that the vector grad u indicates 
Lhe direction and magnitude of maximum change of 
a scalar field at a given point. 

Example 1. Find the gradient of the scalar field 

u=x-2y+3z. 

Solution. By (1) we have 

gradu=1i-2j+3k. 

The level surfaces of the given scalar field are the planes 
x- 2y + 3z = C; the vector grad u = {1, -2, 3} is the 
normal vector of the planeB of this family. 

of ~~=-:~;a!· :!:dx!haet f~:a~~~ts~ ~)~te) of rise 
Solution. We have 

grad u -= yxv-tj + :r;ll In xj, grad u IM = 4i + 4 In 2j, ( * )m,. ~ lgmdul ~4 V 1 +(In 2)'. 

Example 3. Find the unit vector of the normal to the 
level surface of the scalar field 

u = :r!- + y2 + z2. 

Solution. The level surfaces of the given scalar field 
are the spheres 

x2 + y2 + z2 = C (C > 0). 

The gradient is directed along the normal to the level 
surface so that grad u = 2z.j + 2y·j + 2z·k defines the 
vector of the normal to the level surface at the point 
M (x, y, z). For the unit vector of the normal, we obtain 
the expression 

nO= gradu = zi+vi+zk =·.!_ 
I grad uj V zl+yl+zl lrl' 

Example 4. Find the gradient of the field u = (a, b, r), 
where a and b are constant vectors and r is the radius 
vector of the point. 

Solution. Let 

a = {a~o a2 , a3), b = {b~o b2 , b3 }, r = {x, y, z}. 
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Then 

l
a1 a, a3 1 

u = bl b2 b3 • 
X y z 

By the rule for differentiating a determinant• we have 

i-~~~. i-~~~. i-~~~. Ia, a, a, I I"' a, "'I I"' a, "'I 
100 010 001 

abl: ~~~~~i~n! o1~~rminant D (t) wboBO elements a0 are difforenti· 

I 
•u(l) o,.(t) ... a,,(l) I 

D (t)= ~~.(I~ . ~~ ?). : ·: ~~~ (.1) .• 

a,u(l) 4n.a(l) ... ann(t) 

Then the derivative of the determinant, D' (t), is found from the 
rormula 

1

.;, (I) ••• (I) ••.••• (I) I 

D'(t)= ~~~.(t~. ~~.~~.(t~ ."~ ~~~(.t). 
Gnt (t) Gn1 (I) • • • Gnn (I) 

l
•u(l) a,.(l) •.. a,. (I) I 

+ ~it.(t~ , ~;,.(t~ ." '.' .a~(~). 
Gn1 (t) ana (t) • · · Gnn (I) 

... +I;::_~:;.~::_~:;~:~ ~:~i:~_l· 
a~t(tl a~1 (I) •• , a,U, (t) 
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Example 5. Find the gradient of the distance 

r-= V (z Xo)2 + (y Yof+ (z ZoF , 

" 

where P (x, y, z) is the point of the field being studied 
and P 0 (.x0 , y0 , z0) is some fixed point. 

Solution. We have 

gradr=*i+*J+*k 

(x-.xo) i+(u-Yo) j+(z-zo)k 

Jl'(.x .xol'+(Y Yol1 +(z zo)1 

which is the unit vector of the direction P0P. 

Fig. 13 

Example 6. Let us consider the scalar function 
u = r1 + r 2 , 

r•, 

where r1 , r, are the distances of some point P (x, y) of t.he 
plane from two fixed points, F1 and F2, of the plane. 

Solution. The level lines of this function are ellipses. 
We have (see example 5) 

grad (r1 + r2) = r~ + r~. 
This shows that the gradient is equal to the diagonal of a 
rhombus constructed on the unit vectors of the radius 
vectors drawn to point P from the foci F1 and F 2 (Fig. 13). 
Consequently, the normal 1o the ellipse at some point 
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bisects the angle between the radius vectors drawn to that 
point. 

Physical interpretation: a light ray coming from one 
focus enters the other focus. 

Example 7. Find the angle 8 between the gradients of 
the functions 

u=Vx2 +y2 and V=x+y+2VXii 

at the point M 0 (1, 1). 
Solution. We find the gradients of the given functions 

at the point M 0 (1, 1): 

xl+vi I i+l 
graduiM.= Vz'+v• M.= VZ, 

gradviM,~[(t+ Vf} 1+( 1+ Vf} i]l.,.~21+2i 
The angle 8 between grad u and grad v at the point M 0 

is found from 

(grad u, grad v) I 1~ 
cosS-= I grad u 1M; I grad viM. 

From this we have 
e ~ o. 

Example 8. Find the directional derivative of the 
radiusvectorr for the function u =sin r, where r = 1 r 1. 

Solution. By (2), the directional derivative of the 
given function of the radius vector r is 

~=(grad sin r, r0). 

We find the gradient of the function: 

grndsinr= a(~;r) i+ a(~:r) i+ a(~~nr) k 

= d(~rnr).;;. i+ d(~~nr) ~j+ d(~~nr) *k 

(3) 

={.:;.t+Wi+.:fk)cosr=r0 cosr. (4) 
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Substituting (4) into (3), we get 

.;;-=(r0 cosr, r0)=(r0, r0)cosr=cosr. 

Example 9. Find the derivative of the scalar field 
u = f (x, y, z) at the point M 0 (x0 , y 0 , z0) of the curve l 
specified by the system of equationa 

f(z,y,•)-a,} 
IJl (.x, y, z) -o , a= conatant, 

in the direction of the curve. 
Solution. The direction of the curve l is given by the 

direction of it:B tangent vector 't, which, by definition, 
is a vector that is tangent to the aurface f (x, y, z) = a. 
The surface f (x, y, z) = a is a level surface of the given 
acalar field u = j (x, y, z). Since 

Tz- =(grad u, 1°) =(grad u, 't0) 

and the vector grad u ia perpendicular to the level surface 
f (x, y, z) = a, it followa that grad u is perpendicular to 
the unit vector -r', and therefore 

~~M. =(gradu, 't0) IM.=O. 

Example 10. At the point M0 (1, 1, 1), find the direc­
tion of the greatest change in the scalar field u = .xy + 
+ yz + xz and the magnitude of that change. 

Solution. The direction of the greatest change of the 
field is indicated by the vector grad u (M). We find it 
thus: 

grad u (M) - (y + •) I + (z + •) j + (y + z) k 
and hence grad u (M 0) = 2 (i + j + k). Thia vector 
determines the direction of the greatest increase in the 
given field at the point M 0 (1, 1, 1). The magnitude of 
maximum change of the field at this point is 

max-%[= I gradu(M0) I =2 V3. 
69. Find the gradient of the scalar field u = In (.x2 + 
+yll + z2) at the point M 0 (1, 1, -1). 
70. Find the gradient of the scalar field u = zel'z+~z+•2 at 
the point 0 (0, 0, 0). 
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71. Find the angle <p between the gradients of the func· 
tion u = arctan z/y at the points M1 (1, 1) and 
M,(-1, -1). 
72. Find the angle <p between the gradients of the func­
tion u = (.z + y) r+-11 at the points M1 (0, 0) and 
M,(l, I), 
73. Find the angle cp between the gradients of the func­
tions u = V:tJ + y" + z1 and v =In (,xi+ y2 + z11) at 
the point M0 (0, 0, f). 
74. Find the points at which the gradient of the scalar 
field u = sin (.z + y) is equal to i + j. 
75. Find the points at which the modulus of the gradient 
of the scal9T field u = In V x' + y2 + z1 is equal to unity. 
76. Let"--u = u (x, y, z) and v = v (x, y, z) be functions 
differentiable at the point M (x, y, z). Show that 

(a) grad (Au) = A grad u, ). = constant; 
(b) grad (u ± v) = grad u ± grad v; 
(c) grad (uv) = v grad u + u grad v; 

(d) grad{-;-) 11gradu;ugradv 1 v.,.r:O. 

77. Show that 

grad u(qJ) =~grad qJ, 

where 'P = 'P (x, y, z) is a differentiable function and 
u = u ('P) has a derivative with respect to 'P· 

Find the gradients of the following sealar fields if 

r=xi+Vi+zk, r=lri=VxZ+yz+zz, 

and a and b are constant vectors. 
78.u=lnr. 
79. u = (a, r). 
80. u =(a, r)·(h, r). 
81. u = )Ia, rl )'. 
82. Show that 

(grad u (r), r) = u' (r) · r. 
83. Show that 

(grad u (r), rl = 0. 

84. Let w = f (u, v), where u = u (x, y, z), v = v (x, y, z). 
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Prove that 

grad w=~grad u+..;{;grad 11 

if f, u, 11 are differentiable func-tions. 
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85. Suppose G is a convex region in space (that is, a 
region such that if two points M and N belong to G, 
then the whole line segment MN lies in G). Let there be 
given in G a scalar field u (M) which at all points has a 
gradient that is continuollil and bounded in G: 

I grad u (M) I ~ A, MEG, A = constant. 

Prove that for any points M and N of G we have the 
inequality 

I u (N) - u (M) I ,:;; A I MN I· 

86. Find the derivative of the function u = x'la2 + 
+ y"lb2 + z2/c2 at an arbitrary point M (.x, y, z) in the 
direction of the radius vector r of that point. 
87. Find the derivative of the function u = 1./r, where 
r = 1 r 1 in the direction of the vector I = cos a:. i + 
+ cos ~ · j + cos 'V ·k. Under what condition is the 
derivative equal to zero? 
88. Find the derivative of the function u = 1/r, where 
r = I r 1. in the direction of its gradient. 
89. Find the derivative of the function u = yze% at the 
point M n (0, 0, 1) in the direction of its gradient. 
90. Find the derivative of the scalar field 

u = u (.x, y, z) 

in the direction of the gradient of the scalar field 

11 = 11 (.x, y, z). 

Under what condition is it equal to zero? 
91. For the following scalar fields, find the direction and 
magnitude of greatest change at the given points M 0: 

(a) u (M) ~ x'y + y'z + z'z; M, (I, 0, 0). 
(b) u (M) ~ zyz; M, (2, I, -1). 
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VECTOR FIELDS 

Sec. ,10. Vector lines. Differential equations 
of vector lines 

Definition 1. We say that a vector field is given if a 
vector quantity a = a (M) is specified at each point M 
of space or of a portion of space. 

If a Cartesian coordinate system is introduced in the 
space, then specifying the vector field a= a (M) is equiv­
alent to specifying three scalar functions of the point 
P (M), Q (M), R (M) so that 

a (M) - P (z, y, z) i + Q (z, y, z) j + R (z, y, z) k. 

Definition 2. A vector line of a vector field a is a 
curve at each point M of which the vector a is directed 
along the tangent to the curve. · 

Let a vector field be defined by the vector 

a-Pl+Ql+Rk, 
where 
P - P (z, y, z), Q - Q (z, y, z), R - R (z, y, z) 

are continuous funetions of z, g, z that have bounded par­
tial derivatives of the first order. 

Then the differential equations of the vector lines are 
of the form 

(I) 

Integrating this system of two differential equations 
(1) yields a system of two finite equations: 

IPJ. (z, y, z) = cl, !Jis (z, y, z) = c, 



Sec. tO] Vector ltnu 53 

which, taken together, define a two-parameter family of 
vector lines: 

4p.(x,y,z)-C1,} 

cp2 (x, y, z)=C2 • 
(2) 

If the conditions of the theorem of existence and 
uniquenea9 of a solution are fulfilled in a certain region 
G for system (1), then a unique vector line 

cp1 (x, y, z) = qJ 1 (xo, Yo• Zo), } 
qJ2 (x, y, z) = qJ2 (x0 , y0 , z0) 

passes through every point M 0 (x0 , y0 , z0) E G. 
Example 1. Find the vector lines of the vector field 

a= [e, r], 
where e is a constant vector. 

Solutton. We have 
e = c1i + cJ + c3k, r = xi + yj + zk 

so that 

II j k I 
a=(c, r]= c1 c2 c3 

X y ' I 
= (c2z-c3y) i + (ca.x-c,z) j + (c1y-c2x) k. 

The differential equations of the vector lines are 

c1z~c3y = t3%~c,z = c 1 y~c2x • (3) 
Multiply the numerator and denominator of the first 
fraction by x, the second by y, the third by z and add 
termwise. Using a property of proportions, we have 

dx dy dz xdz+ydy+zd: 
CaZ-C3y = C3X-CtZ CtY CsX 0 

whence 
xtk+ydy+zdz=O 

and this means that 
:r + y2 + z2 = A 1 , A1 =constant >0. 

Now, multiplying the numerator and denominator of the 
first fraction of (3) by c1, the second by c2, the third by c3 
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and adding termwise, we obtain 

~--·-·-=--·'- c1 d;r;+ctdfl+c8 dz c,z-c8y - cr:-clz c,y-cl:z; 0 
whence 

c1 d.x + c, dy + c3 dz = 0 

and, consequently, 
c1x + c,y + c3z = A 2 , A 1 = constant. 

The desired equations of the vector lines are: 
x2+y2+z2=A,, l 

c1x + C'Jll + c3z = A2 • 

These eq~;tions show that the vector lines are obtained 
via the intersection of spheres (having a common centre 1:1.t 

the origin of coordinates) 
Z with planes perpen~ 

dieular to the vector e = 
= c1i + czi + c,k. From 
this it follows that the 
vector lines are circles 
whose centres lie on a 
straight line passing 

y through the coordinate 
origin in the direction of 
the vector c. The planes 
of the circles are per­
pendicular to the indica t­
ed straight line (Fig. 
14). 

Fig. t4 Example 2. Find the 
vector line of the field 

a = -yi + xj + bk, 

which line passes through the point (1, 0, 0). 
Solution. The differential equations of the vector 

lines are 

whence we find 
r + y2 = ch cl >0 



Sec. tO] Vector llner 

or, introducing the parameter t, 

x=VG;cost, u=VG;sint. 
In this case, the equation 

takes the form 

dy .. 
7=T 

VC.:._costdt=.!!._ or dz=bdt, 
VC1 cost b 

whence we obtain 
z = bt +ct. 
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Thus, the parametric equations of the vector lines are 

x~ VC,cost,} 
u~ VC,sint, (4) 

z=bt+C2• 

If we require that the vector line pass through the point 
(1, 0, 0), we will have 

i=V'G;cosi, O=VG;sint, 0=bt+C2• 

The first two equations of this system are satisfied for 
t = 21m, k = 0, ±1, ... and for C1 = 1. Taking k = 0, 
we get t = 0 and the last equation of the system yields 
C 1 = 0. The desired vector line passing through the 
point (1, 0, 0) is 

x~cost, } 
Y=stnt, 
z=bt. 

This is a helical curve. 
Find the vector lines of the following vector fields: 

92.r=xi+yj+zk. 
93. a = a11 + aJ + a3k, where a1 , at, a3 are constants. 
94. a ~ (z - y) I + (x - z) j + (y - x) k. 
95. Find the vector line of the field 

a = xzi - yaj + z2k, 

which line passes through the point (1/2, - 1/ 1 , 1). 
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A vector field is said to be plane if all the vectors of a 
are located in parallel planes and the field is the same 
in each of the planes. 

If a Cartesian coordinate system xOy is introduced in 
one of the planes, the vec.tors of the field will not contain 
any components along the z-axis and the coordinates of 
a vector will be independent of z, that is, 

a - P (x, y) I + Q (x, y) j. 

The differential equations of the vector lines of a 
plane field are of the form 

dz dy dz 
P(z, y) = Q(z, y) =o 

dy Q(z. y) } 
a;= P(z, y)' 

z =constant. 

From this it is evident that the vector lines of a plane 
field are plane curves lying in planes parallel to the 
xy-plane. 

Example 3. Find the vector lines of a magnetic field 
of an infinite current conductor. 

Solution. We will assume the conductor is in the direc­
tion of the z:-axis and that the current I flows in that 
direction. The intensity vector H of the magnetic field 
set up by the current is 

H -f,fl, •J, (5) 

where I = l·k is the current vector, r is the radius vector 
of the point M (x, y, z), and p is the distance from the 
axis of the wire to the point M. Expanding the vector 
product (5), we obtain 

H=-~/1+~1zj. 
The differential equations of the vector lines are 

dz dy dz 
-=y=-;-=o· 
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whence 

Vector lines 

z2+y2=Rz, l 
a:=C. 
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That is, the vector lines are circles with centres on the 
z-axis (Fig. 15). 

Find the vector lines of the following plane vector 
fields: 
96. a ~ zl + 2yj. 
'¥/. a~ :ri + zk. 
98. a = zl - yj. 
99. a ~ 2zj + 4yk. 

100. a ~ z'l + y'j. 
101. a ~ •! - yk. 

The differential equations of 
the vector lines 

~=*=-5;-
may be written as 

or, in vector form, as 

#,~a(M). (6) Fig. 15 

This form of the equations of vector lines turns out to be 
convenient in the solution of a number of problems. 

Example 4.. Find the vector lines of the field a = (c, rl, 
where e is a constant vector. 

Solution. Applying (6), we get 

-#=fc, rj. (7) 

Forming the scalar product of both sides of (7) by e and 
using the properties of a mixed product, we find 

(c,-*)=ft-(c,r)=O. (8) 
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Similarly, forming the scalar product of both sides of (7) 
by r, we obtain 

( r, Tt-) =f,(r, r)=O. 

From equation (8) it follows that 
(c, r) = constant 

and from equation (9) it follows that 

(r, r) = constant. 

(9) 

The vector lines are lines of intersection of the planes 
(e, r) = constant with the spheres r' = constant. 

Find the vector lines of the following vector fields: 
102. a~ f (')·r. 
103. a = (a 0 , r) b0 , where a 0 , b0 are constant vectors. 

Sec. 11. The flux of a vector field. 
Methods of calculating flux 

J. The flux of a vector field. Suppose we have a vector 
field 

a (M) ~ P (x. y, z) I + Q (x, y, z) j + R (z, y, z) k, 
where the coordinates P (:r, y, z), Q (x, y, z), R (x, y, z) 
of the vector a (M} are continuous (the field a (M) is 
continuous] in some region G. Let S be a smooth or piece­
wise smooth two-sided surface in which a definite side 
has been chosen (an oriented surface). 

Definition. The flux n of a vector field a (M) through 
an oriented surface S is defined as the surface integral 
of the first kind, over the surface S, of the projection 
of the vector a (M) by the normal n (M) to that surface: 

n~ J J pr.adS~ J J (a, n')dS, 
s s 

where n° is the unit vector of the normal n to the chosen 
side of the surface S; dS is the area element of the sur· 
face· S. 

Tn the case of a closed surface, we will always choose 
the outer normal n that is directed outwards from the 
region bounded by the surface S. 
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If a, ~. '\' are the angles that the normal n forms with 
the coordinate axes Ox, Oy, Oz to the surface S, then 
the flux may be expressed in terms of a surface integral 
of the second kind: 

0= J j (a, n°)dS= j j (P(x, y, z)coscx 
s s 

11~ 1 r (a, n°)dS~ 11 P(x, y, z)dy_dz 
8 • 

+Q(x, y, z)dxdz+R(x, y, z)dxdy, 

where 
cos adS= dy dz, cos~ dS = dx dz, cosv dS = dx dy. 

Basic properties of the flux of a vector field 

(a) The flux reverses sign when the orientation of the 
surface is changed (that is, when the orientation of the 
normal n to the surface S is changed): 

11 (a, n°) dS ~- j j (a, n°) dS, 
s+ s-

where S+ is the side of.the surface S on which the normal 
n is chosen, and s- is the side of S on which the normal 
-n is taken (see (7]). 

(b) Linearity: 

.\ .\ (l.a+~b. n')dS~J, 1 j (a, n°)dS+~ j 1 (b, n°)dS, 
• s s 

where A and f.l are constant numbers. 
(c) Additivity: if the surface S consists of several 

smooth parts 8 10 8 2, ••• , Srn, then the flux of the vector 
field a (M) through S is equal to the sum of the fluxes 
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of the veetor a (M) through the surfaces S~o 8 2 , •• • , Sm: 

n- ~ j j (a, n')dS. 
11-1 811 

This property permits extending the notion of flux 
to piecewise smooth surfaces. 

Fig. t6 

Eumple 1. Find the flux of the vector a = i through 
an area perpendicular to the x-axis and having the shape 
of a rectangle with sides 1 and 2 (Fig. 16) in the positive 
direction of the x-axis. 

Solution. According to the definition of the flux of 
a vector through a surface S, we have 

n- j} (a, n')dS. 
s 

In our case, a = i, n° = i so that (a, n°) = (I, i) = 1. 
Taking into account that the area of the rectangle is 
equal to 2, we obtain 

n- ]J !dS~2. 
s 

Remark. If we had chosen the unit vector of the normal 
to the area 8 so that n° = -I, we would have got II = -2. 
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Example 2. Compute the flux of the vector field 
a = r, where r is the radius vector, through a right cir­
cular cylinder of ~tltilude h, base 
radius R and the z-axis. 

Solution. The surface S consists 
of a lateral surface CJ1, an upper 
base CJ 2 and a lower base a3 of the 
cylinder. By the additivity proper­
ty, the desired flux II is equal to 
n = nl + nt + na. where nl, fls, h 
n3 are the fluxes of the given field 
through 0 1, a2, 0 3 respectively. 

On the lateral surface o1 of the cyl­
inder the outer normal n° is paral­
lel to the xy-plane and therefore 

(a, n°) = (r, n°) = prnor = R 

Fig. 17). Hence 
Fig. 17 

ll, = ) 1 (a" n°) dS = R j j dS = R ·2nRh= 2nRth. 
a, o, 

On the upper base a2 the normal n° is parallel to the 
z-axis and therefore we can put n° = k (see Fig. 17). 
Then 

(a, n°) = (r, k) = pro: r = h 
and so 

112 = ~ J (a, n°)dS=h J j dS=h·nRZ=nRzh. 
a, a0 

On the lower base CJ 8 the vector a = r is perpendicular 
to the normal n° = -k. Therefore (a, n°) = (r, -k) = 0 
and 

ll3 = J) (a, n°)dS=0. 

The desired flux is then 

fl =@ (a, n°) dS = 3nRZh, 

' 
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Example 3. Find the flux of the vector field 

' ·=~ 

[Ch. Ill 

through a sphere of radius R with centre at the origin 
of coordinates. 

Solution. Since the normal n to the sphere is collinear 
wilh the radius vector r, we can take n° = ro = r/J r J. 
Therefore 

(a, 0 o)= (~·Th-) =Jr-(r, r)= 1:1: =~. 
Rut on the sphere S we have I r J = R, and so (a, n°) = 
= 1/R2• 

The desired flux n is 

n =~(a, n°)dS =W ~~ dS =4n 
5 5 

since the area of the whole sphere S is equal to ~dS = 

5 
= 4nR2• 

104. Compute the flux of the vector a = 3j through an 
area having the shape of a triangle with vertices at the 
points M1 (1, 2, 0), M2 (0, 2, 0), M 8 (0, 2, 2) in the direc­
tion of the coordinate origin. 
105. Find the flux of the vector 

a ~ Gti + ~i + yk, 

where a.,~. yare constants, through an area perpendicular 
to the z-axis and having the shape of a circle of radius R, 
in the positive direction of the z-axis. 
106. Find the flux of the vector a = r through the outer 
side of a circular cone whose vertex lies at the origin of 
coordinates; the base radius is equal to R and the altitude 
is h (the axis of the cone is along the z-axis). 
107. Find the flux of the vector a = f (I r I) r through 
a sphere of radius R with centre at the coordinate origin. 

II. Methods of computing the flux of a vector. 
1°. The metlwd of projection onto one of the coordinate 

planes. Let an open surface S be projected one-to-one 
onto the xy-plane into a region D.,; 11 • In this case, the 
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surface S may be given by the equation z = f (x, y) and 
since the area element dS of the surface is 

dS== dzdy 
I cosy I ' 

it follows that computing the flux n through the chosen 
side of the surfaceS reduces to computing a double integral 
via the formula ---

n~ r r (a, n')dS~ lll(•, ··>I I dxdy. (1) J J cosY z=/(:s:, y) 
s ., 

Here the unit vector n° of the normal to the chosen side 
of the surface S is found from the formula 

00 = ± grad (t-/ (.1:, y)] 
I gradlz /(z, y)] I 

+ -~i-*j+k . 

v(~)'+(*J'+t. 
(2) 

and cos'\' is equal to the Cl)efficient of the unit vector k 
in formula (2): ---

1 
(3) 

If \he angle '\' between the z-axis and the normal n° is 
acute, then in (2) and (3) the plus sign is taken, and if 
the angle'\' is obtuse, the minus sign is taken. The symbol 

(a, nO) I 
~z..,f(z,y) 

signifies that f (x, y) must be substituted for z in the 
integrand. 

If it appears to be convenient to project the surface S 
onto the yz- and xz-planes, use is made of the following 
formulas to compute the flux ll: 

n-ll <•· ··> 1 dyd• <4> - 1 cos a. J z=<rC¥.•l 

" 



64 Vector Field• [Ch. III 

11-- fJ ~~ dxdz (5) - b I cos~ I v-t(.o:,,) ' 

Formula (4) is used when the surface S is projected 
one-to~one into the region D 11z of the yz-plane, which means 
that it may be given by the equation z = <p (y, z); cos et 
is found as the coefficient of the unit vector I in the for­
mula 

That is, 

cosa=± t • 

v~+(~J'+(~)' 
The plus sign is taken if the angle a between the .x-axis 
and the normal n° is acute, and the minus sign if the 
angle a is obtuse. 

Formula (5) is used in the case of a one-to-one projec­
tion of the surface S onto the xz-plane; in this case, 
8 may be specified by the equation y = 1Jl (.x, z) and 
then 

00 =± grad!y-"4l(~. z)] 
I grad Ill 1Jl(:z:, z)J I 

cos P is equal to the coefficient of the unit vector j in 
this formula, that is, 

cosP=± 1 • 

¥!+(~)'+(~)' 
If the angle p between the y-axis and the normal no is 
acute, we take the plus sign, and if the angle ~ is obtuse, 
we take the minus sign. 

Remark. When the surface 8 is specified implicitly by 
the equation ctl (z, y, z) = 0, the unit vector of the 
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normal 
n° = i cos a + j cos~ + k cosy 

is found from the formula 

nO=± I=~=~~:;::::~ I 
=+ -:-l+~i+~k 

- v(~~)'+(~~)'+(~~)'· 
where the sign on the right is determined by the choice 
of the normal to the surface S. 

To compute the flux n of a vector field a through a 
surface S, it is necessary to project the surface one-to-one 
onto one of the zy-, .zz-, yz-planes; this is possible if the 
equation <ll (.z, y, z) = 0 is uniquely solvable with respect 
to • (• ~ f (x, y)), y (y ~ 'I> (x, z)) or x (x ~ ~ (y, z)) 
respectively. Then take advantage of one of the formulas 
(1), (4), (5). 

Example 4. Find the flux of the vector field 
a ~ (x - 2z) I + (x + 3y + •) j + (5x + y) k 

through the upper side of the triangle ABC with vertices 
at the points A (1, 0, 0), B (0, 1, 0), C (0, 0, 1). 

Solution. The equation of the plane in which the triangle 
ABC lies is of the form x + y + z = 1, whence z = 
= 1 - x - y. The triangle ABC is projected one-to-one 
onto the :z:y-plane into the regionD%JI' which is the triangle 
OAB (Fig. 18). . 

It is given that the normal n° to the plane in which the 
triangle ABC lies forms an acute angle y with the z-axis 
and so we take the plus sign in (2) and obtain 

no 1 ::! ~:t:t:-!~ 1 :a 1 + :a J + Jg k. (6) 
We find the scalar product 

(a, n')~(x-2z) J3 +(x+3y+z) J3 +(5x+y) J3 

1z+4y-z 

----v-r-
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From formula (6) we find that cosy = 1/~' 3 > 0 and, 
hence, 

dS= :~d~ = V3dxdy. 
Using formula (1), we compute the desired flux: 

n~ J J (a, n°)dS~ [ J (7x+4y-•) 1•~•-•-•dxdy 
S bxy 

1 1-x 

~ J J (8x+5y-l)dxdy~ J dx J (8x+5y-1)dy~f. 
D.~~~ 0 0 

Example 5. Find the flux of the vector a = y2j + zk 
through the portion of the surface z = :r?- + y2 cut off by 

B y 

Fig. iS 

the plane r. = 2. The outer normal is taken with respect 
to the region bounded by the paraboloid. 

Solution. The given surface (a paraboloid of revolution) 
is projected one-to-one onto the xy-plane into the circle 
D:r.u (Fig. 19). We find the unit vector of the normal o0 

to the surface 8: 

nO=± I:::~:-::-::~ I ± ;:!~!:!~~. 
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It is given that the normal n° forms an obtuse angle y 
with the z-axis and therefore the minus sign is taken in 
front of the fraction. Thus, 

no 2:d+2vJ-k 
V 4:z:1 +4v•+i ' 

whence 

cosy= 

Fig. t9 

and so 

dS= l::9d~l =li4.z2+4yZ+1d.zdy, 

We find the scalar product 

(a, nD)""" V4z2•v:~,z•+t . 

The desired flux is, by (1), equal to 

n- J J (a, n')dS- [ J (2y'-z) i•=•+;•dzdy 
S bJ:II 

= J J (2g3- fl2-.z2) dxdy, 
n., 
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The domain of integration Dz 11 is a circle of radius R = 
= V 2 with centre at the coordinate origin. Introducing 
polar coordinates :r = p cos q~, y = p sin q~, we have 

ll= j j (2p3sin3<p-pZ)pdpdcp 
D.tl/ 

2rt V2 v-
= J dq~) (2p"sin3cp-p3)dp= -2n-f-)o 2 = -2n. 

0 0 

Example 6. Find the flux of the vector field a = 
= i - j + :z:yzk through the circle S obtained by cutting 

Fig. 20 

the sphere z' + y1 + zl ~ R1 with a plane y = x. Take 
the side of the circle facing the positive portion of the 
z-axis. 

Solution. Since the plane y = z is perpendicular to the 
.xy-plane, the circleS lying in that plane is projected onto 
the .zy-plane into the line segment A 1A, and so the one­
to-oneness of the projection is disrupted. The circle S 
is projected one-to-one onto the other coordinate planes. 
Projecting the circle onto the xz-plane, we obtain a region 
D~, bounded by an ellipse (Fig. 20). The equation of the 
ellipse ean be found by eliminating y from the system 
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of equations 

whence 

The fl.u:r: ofo vector field 

xZ+yZ+zZ=R2,l 
Y=X, 

2x2+z2 =RZ or ;: +f.-=1. 
2 
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It is given that the normal to the circle 8 forms au 
obtuse angle p with the y-axis (see Fig. 20) and so we 
take 

n= -grad(y-x)=i-j, 

no=,-h= l:2i- ~2 j. 
From the latter equation we have cos p = -11V2 < 0. 
The area element dS of the circle is equal to 

dS= l~sd~l =V"2dxdz, 

We find the scalar product: (a, n°) = ¥2. 
The desired flux is, using formula (5), 

n- I J 2d.rdz-2 r J dxdz-2· '1; ~V2R•n 
D.n bu 

since the area Q of the region D:r:l bounded by an ellipse 
with semi-axes a = RIV2 and b = R is equal to 

Example 7. Compute the flux of the vector a = 
= xl + yj + zk through the outer side of the lateral 
surface of the circular cylinder xJ + y' = R2 bounded 
by the planes z = 0 and z = H (H > 0). 

Solution. The given cylinder is projected onto the 
.xy-plane into a line, namely, into the circle (Fig. 21) 

x2+y2=Rz,l 
z=O. 
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We will therefore project the cylinder onto the other 
coordinate planes, for instance, the yz·plane. Since the 
cylinder does not project one-to-one onto the yz-plane, we 
take advantage of the additivity property of the flux of 

the vector and represent the de-
Z sired flux II as a .sum of 

fluxes: II=IT1 +II11 , where II1 is 
the flux of the field through the 
portion sl of the cylinder located 
in the region where y ~ 0, and 
II 11 is the flux of that field 
through the portion S 2 of the 
cylinder located in the region 
where y < 0. On 81 we have 

no= .d1yj' (a, no)= :;~:'ty' = R 

and so 

n,~ J J RdS~B J J c!S~RS, 
s, .<:, 

Fig. 2t where S is the area of the por-
tion 8 1 of the cylinder. Since 

S = nRH, it follows that IT1 = nR9H. 
On S 2 we again have 

no= zl~yJ' (a, nO)= z'~Y' =R 

and so 

Il2 = j j RdS=RS=:r.R2H. 
s, 

The desired flux is II = 2nR'H. 
Remark. The solution is made simpler if we introduce 

curvilinear coordinates x = R cos <p, y = R sin <p, z = z 
on the cylinder (see item 3° below). 

To find the flux of the vector field a = P (x, y, z) I + 
+ Q (x, y, z) j + R (x, y, z) k through the surface S 
specified by the equation z = I (x, y) by the method of 
projection onto a coordinate plane, it is not necessary to 
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find the unit vector of the normal n°, and we can take 
the vector 

II= ±grad(z-/(z, y)]= ± ( -~1-.U.j+k). 
Formula (1) for finding the flux II becomes 

n- J J (a, n°) dS- J J (a, n) I dx dy. (7) 
s D.:w •=l(:.:,u) 

In similar fashion we obtain formulas for computing 
the fluxes through surfaces given by the equation x = 
- ~ (y, ') or y - 'I> (x, ,), 

Formula (7) is written thus in coordinate form: 

rr{ " " TI- ± j J -P(x, y, I (x. y)Jaz-Qlx, y, f(x, Ylla, 
D.~ II 

+R(x, y, f(x, Yll}dxdy. 

Example 8. Compute the flux of the vector field 

a=xl+yJ+ V xz+yZ-1 k 

through the outer side of the hyperboloid of one sheet 
z = v r + y' -1 bounded by the planes z = 0, z = va. 

Solution. The given surface is projected one-to-one onto 
the xy-plane into the region D:r: 11 bounded by the circles 

and x'+y'-1,) x'+y'-4,) 
z=O, z=O. 

We find the outer normal n: 

•-±grad(,-Vr+Y'-1)-±( v-:-:~:.~, +k). 
Since n forms an obtuse angle y with the z-axis (Fig. 22), 
we take the minus sign and, hence, 

n= zl+yJ -k. 
v'z1+y1-t 

We find the scalar product 

(a, n)= y;•::.._t -Vxz+y2-1= Vz•~u•-t. 
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Using formula (7), we obtain 

n ~ J J (a, n°) dS ~ J J .; dz dy • 
s v_. 11 r x 1 +y1-i 

Passing to the polar coordinates x = p cos 'P and y = 
= p sin q>, we have 

n ~ r r P<4>•• ~ 'i' d~ ( pdp 
lt~ y'p•-t J i {p•-t 

-2njlp•-ll: -2J13n. 
Example 9. Compute the flux of the vector field 

a-yt+zJ+.zk 
through a closed surface bounded by the cylinder r + y' 
= R'l. and the planes z = x, z = 0 (z ~ 0). 

Fig. 22 

Solution. The surface S is piecewise smooth and so we 
take advantage of the additivity property of a flux re­
presenting the desired flux II as a sum of fluxes II1, II 1 , ITs 
through the smooth portions 81 (semicircle x2 + y2 ~ R1, 

0 ~ z ~ R, z = 0), 8 2 (part of the plane z = x), and 
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Sa (part of the cylinder r' + y2 = R2): n = III + 112 + 
+ ll 3 • Since S is closed, we take the outer normal to it 
(Fig. 23). 

(1) On st. where z = 0, we have n° = -k and so 

(a, n°) = -x. 
This means that the flux 

TI,~- JJ xdS~- JJ xdxdy. 
s, s, 

Passing to the polar coordinates x = p cos <p and y = 

Fig. 23 

= p sin ~. we find 

nl = - j J pcos<ppdpd<p 
s, 

nt2 R 

=- } cos~d<p j p2dp= -j R 3• 

-n/2 o 

(2) On S 2, where z = x, we have 

n ~ ±grad (z- x) ~ ± (-1 + k) 
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and since the normal n to S 2 forms an acute angle with 
the z~axis, we take the plus sign in the right-hand member. 
Thus, n = -1 + k and, hence, (a, n) = x - y. 

Projecting S 2 onto the xy-plane, we get the semicircle 

Dx11 : O~x~V R2-yz. 
Then by (6) we have 

n,= j J (a, n) 1.~. dxdy, 

"'' and again passing to polar coordinates, we find 
rt/2 B 

0 2= 1 (cos!p-siniJl)d<p f pZdp=fns. 
-n/'Z o 

(3) On 8 3 , where xi + y' = R1 , that is, on the lateral 
surface of the cylinder, we have 

no=± l:::::t::-;:~1 ± ;~~:~~ =± xl!yj • 

In this case, the normal n forms a right angle with the 
z-axis and therefore cos y = 0 and so the choice of sign 
in the right-hand member is arbitrary. Take the plus 
sign and then 

nO= xl~yj' (a, nO)= (z~:)y 

and so 

n,=} J J (z+z)ydS. 
s, 

It is impossible to project the surface 8 3 (right cylinder) 
onto the .ty-plane since it projects into a line, a semicircle 

.f"'(the one.-to·one nature of the projection will be upset). 
The same occurs when projecting onto the xz-plane. We 
therefore project the surface S 3 onto the yz-plane, onto 
which it is projected one-to-one into the region D Ul 

bounded by the line 

x2+y:::.2_'} 
Eliminating x from this system, we obtain the equation 
for the projection of this line onto the zy-plane: zt + y1 = 
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= R2 is a circle. Since 

1 cos a 1 = 1 cos(r;::·h 1 = 1 (n:, i) 1 =li-I=.W (x#O), 

we will have 

n3 = *} J ~:c.c~z~ ~ lx=: dy dz = J J (r~z) y l:c.=: dy dz 
D11: D~: 

~ jj':' dydz~2 ( j ydydz. 
Dy; ~~~ 

Using the polar coordinates y = p cos (Jl and z = p sin Ql• 
we get 

n R 

0 3=2) J pCOS(Jlpdpd(Jl=2) COS(Jld(Jl j pldp=0. 
DN~ 0 0 

Thus, 

ll= --j-nRs+fnR3 +0=0. 

108. Compute the flux of the vector field a = yi + zj + 
+ xk through the upper side of a triangle bounded by the 
planes 

X + y + Z = a, X = 0, y = 0, Z = 0. 

109. Compute the flux of the vector field a = xzi through 
the outer side of the paraboloid z = 1 - z2 - y2 bounded 
by the plane z = 0 (z # 0). 
110. Compute the flux of the vector field a = xi + zk 
through the lateral surface of the circular cylinder y = 
= V R2 - z2 bounded by the planes z = 0, z = h (h > 0)• 
tt t. Compute the flux of the vector field a = xi + yj + 
+ zk through the upper side of a circle cut out of the 
plane z = h (h > 0) by the cone z = v r + y2 • 

112. Compute the flux ofthe vector field a = 3xi - yj -
- zk through the outer side of the paraboloid r + y2 = 
= 9 - z located in the first octant. 
tt3. Compute the flux of the vector field 

a~ (x' + y') I+ (y' + z') j + (z' + x') k 
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through the portion of the plane z = 0 bounded by the 
circle :r + y2 = 1 in the direction of the unit vector k. 
114. Compute the flux of the vector field a = yzi - xj -
- yk through the total surface of the cone :rfJ + y2 = z2 

bounded by the plane z = 1 (0 ~ z ~ 1 ). l 
115. Compute the flux of the vector field a = 2xi + 
+ (1 - 2y) j + 2zk through the closed surface bounded 
by the paraboloid x2 + :.2 = 1 - 2y (y > 0) and the 
plane z = 0 (z > 0). 
116. Compute the flux of the vector field a = ,x!i + 
+ y'j + z'k. through the total surface of a pyramid 
bounded by the planes x + y + z = 1, x = 0, y = 0, 
z = 0. 
117. Compute the flux of the vector field a = xl + yj + 
+ zk through the sphere r + y' + z2 = R*. 

2°. The method of protection onto three coordinate planes. 
Suppose a surface S is projected one-to-one onto all three 
coordinate planes. Denote by D,.11 , D:w Du% the projec­
tions of S onto the xy-, xz-, yz-planes respectively. 

In that case the equation F (x, y, z) = 0 of the surface 
S is uniquely solvable for each of the arguments x, y, z 
so that 

x = 3: (y, z), y = y (z, z), z = z (z, y). 

Then the flux of the vector 

a ~ P (z, y, z) I + Q (z, y, z) j + R (z, y, z) k 

through the surface 8, the unit vector of the normal of 
which is 

n° =cos a·i +cos ~·j +cos y·k, 

can be written thus: 

TI ~ \ j (a, n') dS ., 
= J J [P(x, y, z)cosa+Q(x, y, z)cos~ 

s 

+ R(z, y, z)cosy)dS. (8) 
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We know that 

The flru: of a !lector field 

dS cos a; = ±dy dz, 

dS cos ~ = ±d.x dz, 

dS cos v = ±d.x dy, 

77 

(9) 

the sign in each of the formulas of (9) being chosen to 
coincide with the sign of cos a;, cos ~. and cos v on the 
surface S. Substituting (9) into (8), we get 

11~ ± jjP[x(y, x), y, x[dydx± jjOir, y(r, x), x[drdx 
Dw• D.u 

± jj R[r, y, x(r, y)[drdy. (10) 
Dn 

Example 10. Find the flux of the vector 

a=xyi+yzi+xzk 
through the portion of the external side of the sphere 
r + y1 + z2 = 1 located in the first octant. 

Solution. We have 

n°= ~~=:~::t~:t::-:~ 1 ;~~~~Y~~~~ =xi+yi+zk, 
whence, taking into accqunt that the surface S lies in 
the first octant, we obtain 

COS a; = X ~ 0, COS ~ = y >:= 0, COSy = Z >= 0. 
We therefore take the plus sign in (10) in front of the 
integrals, and putting 

P = zy, Q = yz, R = zz, 
we obtain 

fl= li xydydz+ JJ yzdxdz+ JJ xzdxdy. (11) 

From the equation of the sphere x1 + y1 + zS = 1 we get 

z=z(x, y)= V1-x2-y2, y=y(x, z)= V1-x2-z2, 

x=x(y, z)=lf1-yZ-z2. 

Substituting these expressions for x, y, z Tespectively 
into the third, second, and first integrals on the right of 



78 Vector Field• [Cb. III 

(11), we get 

fl= \ f xVt-x2-y2dxdy+}) zV1-x2-zZdxdz 
Dx.v D.n 

+ J J u¥1-y'-z'dydz. (12) 

"" 
Let us compute the first integral on the right and pass to 
the polar coordinates x = p cos <p and y = p sin 1p, 
where 0 ~ 'P :s;;;; n/2, 0 ~ p =:s.;; 1. This yields 

11 = j j xVt-xz-yzdxdy= J J p2Vt-pzcosq>d<pdp 
D.rv Dxv 

H/2 I I 

= j cos<pd!pj pzy't-pZdp= J p2Vf-p2dp. 
0 0 0 

Setting p = sin t, dp = cos t dt in the last integral, we 
have 

11/2 tr./2 

/ 1= J sin2tcos2tdt=-} j sin22tdt=ftr. 
0 0 

The second and third integrals in (12) are computed in 
similar fashion and we obtain 

lz= J J zVt-z2-z2 dxdz=-iij-, 
o., 

13= AJ uVf-y2-z2dydz=fs-. 

The desired flux is 

fl=l1 +12 +13 ={i-. 
118. Use the method of projecting onto all three coordinate 
planes to compute the flux of the vector field through a 
surface S. 

(a) a - zl - •i + yk; 
S is the upper side of a bounded portion of the plane 
3.x + 6y - 2z = 6 cut out by the coordinate planes. 

(b) a- (• + y + z); + (• + y + z- I) j - 2k; 
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S is the upper side of part of the plane :r + y + z - 1 = 0 
lying in the first octant. 

(c) a~(r-Vy-z')I+i+(Vy-r'-z)k; 

S is the outer side of the paraboloid of revolution y = 
= r + z2 bounded by the plane y = 4 and lying in the 
first octant. 

3°. The method of introducing curvilinear coordinates 
on a surface. In certain cases, when calculating the flux 
of a vector field through a given surface S it is possible 
to choose a simple coordinate system on the surface 
itself to compute the flux instead of projecting onto 
coordinate planes. 

Let us consider some special cases. 
Case (1). Suppose a surface S is part of the circular 

cylinder r + y2 = Jl2 bounded by the surfaces z = 
= h (:c, y) and z = / 2 (.:z:, y), and we have / 1 (:r, y) ~ 
~It (:r, y). 

Setting 
:c = R cos q>, y = R sin q>, z = z, 

we have for the given surface 

0 ~ q> ~ 2n, /1 (R cos q>, R sin q>) ~ z ~ 
~ / 2 (R cos q>, R sin q>), 

and for the element of area dS we obtain the following 
expression (Fig. 24): 

dS ~ Rd~dz. 

Then the flux of the vector field a through the outer 
side of the surface S is computed from the formula 

2n / 0(11: CO,Sql, II: sin OJ>) 

n~RJd~ J (a,n°)dz, (13) 
0 / 1(R COSOJI, R slnq>) 

where 

no r::~~;:t::-;::r =zl;ul. 

Example 11. Find the flux of the vector 

r=:cl+vi+zk 
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through the outer side of the lateral surface of the cir­
cular cylinder ,x3 + y' = R' bounded by the planes 
z-0 and z-H (H>O). 

Solution. Here we have 

0 ::;;;:,; 1J1 ~ 2n; / 1 (R cos IJI, R sin IJI) = 0 
f1 (R cos IJI, R sin IJI) = H. 

Fig. 24 

Introducing curvilinear coordinates on the cylinder, 
we get 

z=RCOSIJI, y=Rsin1J11 z=z. 
Then the desired nux of the vector r is 

2• H 

li-R J d~ J (r, n')dz. 
0 0 

But since 

r = zi + yj + zk = R cos IJI.f + R sin IJI·j + zk 
and the normal n° on the cylinder is 

no= :d!yj = Reoscp·itRsinCJ~·J COSIJI•i+siniJI·j, 

it follows that the scalar product on the cylinder will be 

(r, n°) = R cos' IJI + R sin1 IJI = R. 
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Finally, we obtain 
2n 11 

n=Rz ~ dq> ~ dz,_- 2nRzH. 

Example 12. Compute the flux of the radius vector 
r=xi+yj+zk 

through the lateral surface of the circular cylinder 
T + y2 = 1 bounded from below by the plane x + y + 
+ z = 1 and from above by 
the plane x + y + z = 2. 

Solution. Here (Fig. 25) 
we have 

II~ 1,/,!x, y) -1-x­

- y,j2 (z, y) = 2 - X- Y· 

Passing to coordinates on 
the cylinder 

x=cosq>, y=sin<p, 

z = z, 

we get 
It (x, y) = 1-cos<p-sin q>, 

/2. (x, y) = 2 - cos q> -

- sinq>. 

According to (13), the flux 
of the vector r is 

Fig. 25 

fT = r dfll 2-cos rsin IJI (r' 110) dz. 

o I-eos IJI-&In 1J1 

But since on the cylinder x2 + y2 = 1 we have 

no= xi+ yj =cos q>·i +sin q>·j, 

it follows that 

(r, n°) = :r!- + y2 = cos2 <p + sin 2 <p = 1 
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and, hence, 

IT= r drp 2-cos rstnql dz = r d!p=2n. 

0 1-COSQl-SIIlQl 0 

119. Find the flux of the vector 

a=yi+xj-e=cuzk 

through the outer side of the lateral surface of the cylinder 
x2 + y2 = 4 bounded by the planes z = 0 and x -1- y + 
+ '~ 4. 
120. Find the flux of the vector 

a=xi-.xyj-1-zk 
through the outer side of the cylindrical surface x2 + z2 = 
= R2 bounded by the planes y = 1 and x + y = 4. 
121. Find the flux of the vector 

a = x'i - y3j + xz8k 

through the outer side of the cylindrical surface xz + y2 = 
= 9 bounded by the sphere z2 + y2 + z2 = 25. 
122. Find the flux of the vector field 

a=xi-yj-xyzllk 

through the outer side of the lateral surface of t~e cylin­
der x2 + y2 = 1 bounded by the plane z = 0 and "the 
hyperbolic paraboloid z = .x2 - y2. 
12.1. Find the flux of the vector field 

a= (xy- y2) i + (2x- x2 + xy) j + zk 

through the outer side of the lateral surface of the cylin­
der x~ + y2 = 1 bounded by the elliptic cone z2 = 
~ x'/2 + y'. 

Case (2). Suppose the surface S is a part of the sphere 
x 2 + y2 + z2 = R2 bounded by conical surfaces whOse 
equations in spherical coordinates have the form 9 = 
= / 1 (tp), 8 = f: (IP) and by the half-planes cp = <fl~> 
<fl = IP2· 

For the points of the given sphere, set 

.:z.· = R cos tp sin B, y - R sin rp sin e, z = R cos 8, 
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where cp1 ~ cp ~ cp 2 and a1 ~ a ~ a2• Then for the 
element of area dS we obtain (Fig. 26) 

dS = R2 sin a da dcp. 

In this case, the flux of the vector field a through the 
outer part S of the sphere is found from the formula 

(1), e, 
n = RZ J dq>) (a, n°) sin ada, (14) 

(1), 0, 

where 
0 grad(:r2+v2+z2-R1) zt+yJ+:k 

n""' Jgrad(.1'1+rs+zs R1)1 --R--

Example 13. Find the flux of the vector 

Fig. 26 

a ~ (x- 2y + 1) I + (2x + y- 3z) j + (3y + z) k 

through a part of the surface of the sphere r + y1 + zZ" = 
= 1 located in the first octant into a region where 
T+y2+z2>1. 
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Solution. Here we have 

R = 1, cp1 = 0, cp1 = n/2, 61 = 0, 61 = n/2, 

0° = xi + yj + zk, (a, n°) = z2 + If + Z2 + Z. 

On the sphere x' + y2 + z2 = 1 we introduce coordinates 
ql and e so that 

X = COS ql sin 6, y = sin q> sin 6, Z = COS 6. 

We then have 

(a, n°) = 1 + cos tp sin 0 

and, using (14), we obtain 

n/2 nfZ 

Il= ~ dq> ~ (1+cos<psin9)sin6d6 

n/2 n/2 11/2 '11/2 =I drp ~ sin6d6+ I cosrpdcp I sin26d8=fn. 

124. Find the flux of the vector field 
a~z'l-y'J+zk 

through the outer side of that part of the sphere :r:' + y' + 
+ z1 = 1 cut out by the conical surface z2 = r + y2 , 

z>Vx'+ys. 
125. Find the flux of the vector field 

a~yzl+.zzi+zyk 

through the outer side of that part of the sphere :r + y2 + 
+ z2 = R 2 located in the first octant. 
126. Find the flux of the radius vector 

r=xi+yj+zk 

through the outer side of that part of the sphere :r + y3 + 
+ z2 = 2 that is bounded by the planes z = 0 and z = y. 
127. Find the flux of the vector 

a=xzi+yzj+z2k 

through the outer part of the sphere :r + y2 + z2 = 9 
cut off by the plane z = 2 (z ;;;;:. 2). 
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Sec. 12. The flux of a vector 
through a dosed surface. 

The Gauss-Ostrogradsky theorem 

85 

Theorem. If in some region G of space the coordinates 
of a vector 

a ~ P (x, y, z) I + Q (x, y, z) j + R (x, y, z) k 

are continuous and have continuous partial derivatives 
OPIOx, OQ!Oy, OR/Oz, then the flux of the vector a through 
any closed piecewise smooth surface ~ Wcated in G is equal 
to the triple integral of OP/ax + aQ!ay + OR!az over 
the region V bounded by the surface !: : 

n~@ (a, n')do~ Jl j(-~+1%-+*) dv (1) 
z v 

(the Gaw;s-Ostrogradsky formula). 
The normal n to the surface !: is taken to be the outer 

normal. 
Example 1. Compute the flux of the vector 

a=x2i+y'J+z2k 

through the closed surface 

:jl + yt + z' = R2 , z = 0 (z > 0). 

Solution. By formula (1), 

n- I J I (2x+2v+2•)dv. (2) 

The integral (2) is conveniently computed in the spherical 
coordinates r, a, cp. We have 

x=rsinacos<p, y=rsinasinq>, z=rcosO 

and the element of volume is 

dv = r2sin a drd9 dq> 
so that 

0=2 J JJ (rsin9cosr.p+rsin9sinq> 

+ r cos a) rt sine drde d'J' 
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2:n: n./2 H 

-=2J d<p J sin8(sin8cos<p+sin8sin~p+cos8)d6jr3 dr 
" 0 0 

2n n/2 

= 2~" J d(p J cos8sin 8d8= x:'. 
0 0 

Example 2. Compute the flux of the vector 

a=4.xi-yj+zk 

through the surface of a torus. 
Solution. Taking advantage of the Gauss-Ostrogradsky 

theorem we find that the desired flux is 

n~@ (a, n°)dcr~ n J (~+*+~)dv~ 4V, 
s v 

where V is the volume of the torus. To compute the 
volume V, let us take advantage of the Guldin theorem 

R, 

Fig. 27 

on the volume of a .solid of revolution, by virtue of which 
the volume is equal to the product of the area of the 
rotating figure into the path covered by the centre of 
mass of the figure during the rotation. 

Let R1 and R 2 be the inner and outer radii of the torus 
(Fig. 27). The area S of the circle, which during rotation 
forms the torus, is equal to 
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The path length described by the centre of mass (the 
centre of that circle) is the circumference l of a circle 
of radius (R1 + R 1)/2, that is, 

l=2n R1 tR, =n(R,+Rz). 

Thus, the volume V of the torus is equal to 

V=n (R•-; R1 )
2n(R2+ R1) ={- (R 2 -R1)'l(Rz+ fit)· 

The desired flux is 

II=n2 (R2 -R1) 2 (R2 + R1). 

Example 3. Using the Gauss-Ostrogradsky theorem, 
compute the flux of the vector field 

a= { t~~~ +6yz2} i+2xarctany-j 2zz (tt2;t+y2 k 

through the outer side of that part of the surface z = 
= 1 - x" - y1 located above the xy-plane. 

Solution. In order to be able to apply the Gauss­
Ostrogradsky theorem, close the given surface from 
below with a portion of the xy-plane that is bounded by 
the circle 

xz+yz=1,l 
Z=O. 

Let V be the volume of the resulting solid bounded by 
a closed piecewise smooth surface cr consisting of a part 
cr1 of the paraboloid of revolution z = 1 - x2 - y2 and 
a part cr 2 of the plane z = 0 (Fig. 28). 

The flux of the given vector through the surface a is, 
by the Gauss-Ostrogradsky theorem, equal to 

n~ §(a, n')da~ JI r ( ~+~-'--';;'}-) dv 

We find the sum 

~+~+~=t~~~+ t~~~~- ~~t~y) ~o. 
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Consequently, the flux is 

n=~ (a, n°)da=0. 

By virtue of the additivity of the flux we have 

0 = J J (a, n°) dO+ 1 J (a, n°) do= Q, 
a, o, 

¥ 

Fig. 28 

From this the desired flux is 

fl1= J J (a, D0)do-- J J (a, n°)do. 
o, u, 

!Ch. Ill 

The flux 11 2 of the vector a through the circle x2 + y2 ~ 
~ 1, z = 0 is equal to 

0 2 = J J (a, n°) do. 
o, 

Since the plane z = 0, we have 
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and henCe (a, n°) = 1, it follOWS that the fluX fl2 through 
the circle o2 is equal to the area of the circle cr2: 

rr,~]Jdo~n. 
o, 

The desired flux II1 = -II 2 = -n. 
By appropriately closing the given unclosed surfaces 

and making use of the Gauss·Ostrogradsky theorem, com­
pute the fluxes of the vector fields through the indicated 
surfaces (the normal to the closed surface is the outer 
normal). 
128. a ~ (1 - 2z) I + yj + zk; S: z' + y' ~ z' 
(0 < '< 4). 
129. a = z2i + .zzj + yk; S: x2 + y' = 4 - z (z > 0). 
t30. a = (y2 + z2) i - y2 j + 2yzk; S: x2 + z2 = y2 

(O,; y,; 1). 

Sec. 13. The divergence of a vector field. 
Solenoidal fields 

The notion of the flux of a vector through a closed 
surface leads to the concept of the divergence of a field. 
This concept yields a certain quantitative characteristic 
of a field at each point in the field. 

Let M be a point of the field under study. Surround it 
by a surface 1: of arbitrary shape, for instance, a sphere 
of sufficiently small radius. Let the region bounded by 
the surface 1: be (V) and its volume V. We consider 
the ratio 

t(a, nG)da 

t --v--· (1) 

Definition. If the ratio (1) has a finite limit when the 
region (V) contracts to the point M, then this limit is 
termed the divergence of the vector field (the divergence 
of the vector a) at the point M and is designated as 
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div a (M). We thus have 

,,~ (a, nO) da 

diva (M) = (J1i~M -"--v--. (2) 

Formula (2) yields an invariant definition of diver­
gence. This definition means that the divergence of the 
field a at the point M constitutes the volume density of 
the flux of the vector a at that point. 

The points M of the vector field a (M) at which div 
a> 0 are termed sources, while the points at which 
diva< 0 are termed sinks of the vector field. 

The divergence of a vector field i.s a scalar function of 
the points of the field. 

If the coordinates of the vector 

a (M) ~ P (x, y, •); + Q (x, y, •) j + R (x, y, z) k 

have continuous partial derivatives iJP/iJx, iJQ/iJy, iJRifJz 
in the neighbourhood of the point M (x, y, z), then, using 
the invariant definition of divergence, we find from the 
Gauss-Ostrogradsky theorem that 

diva=~+~+*· (3) 

All the quantities in (3) are considered at the same point 
M (x, y, •). 

Using (3) for divergence, we can write the Gauss­
Ostrogradsky theorem (see Sec. 12) in vector form: 

Example 1. Using the invariant definition, compute 
the divergence of the vector a = xi at the point 0 (0, 0, 0) 
taking for the surfaces a surrounding the point 0 the 
spheres at of radius e centred at that point. 
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Solutfon. By the definition of divergence, we have at 

the given point 

@(a, nO) do 

diva(O)= lim -"•---, 
(a,J-.0 Vl 

where v, is the volume of a ball bounded by a sphere 

§(a, nO)da 

diva (0) =lim -"-• ---. 
e-o "l 

But since the volume of the ball is vl = 4ne8/3, it fol­
lows that 

@(a, on)da 

diva(O)=lim -"-•-4--. 
e-.o 3 ne3 

Let us compute the flux ~(a, n°) da of the given vector .. 
through the sphere ag. The unit vector of the normal n° 
to the sphere a. is directed along a radius of the sphere, 
and so we can put 

no= ro=Th-=f, 
where rD is the unit vector of the radius vector r = 
= xi + yj + zk, or 

The desired flux is 

@(a, nO)da=@ .fda. 
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Passing to coordinates on the sphere Oc, 
x = e cos cp sin 0, y = e sin cp sin 8, z = e cos 9, 
we get 

@ (a, n') da ~ J J e' cos' <P sin' 6e' sin 6d1J1 d6 

ere ere 

Consequently 

,. . 
=e3 j cosZq>dcp J sin3cpdrp=f nes. 

0 0 

.! ne• 
diva(O)=Iim-{---=1. 

e-o 3 aes 

Example 2. Compute div r. 
Solution. We have r = xi + yj + zk, so that P = x, 

Q = y, R = z and, hence, by formula (3), 

divr=*+*+~=3. 
Example 3. Compute div (u· a), where u (M) is a scalar 

function and a (M) = P (x, y, z) i + Q (x, y, z) j + 
+ R (x, y, z) k is a vector function. 

Solutton. Using formula (3), we get 

div (ua) 

=o~:) +a ~:Q) + iJ~R)=u~+ P*+u {t-+0~ 

+u~+R~=u (*+~+!i}-)+P~ 
+ 0~+ R %;-= udiv u+ (a, grad u). 

Thus 
div (ua) = u diva+ (a, grad u). (5) 

Example 4. Find the divergence of the vector 

ftc-=q>(r)r0 = CJ!;r) r, 
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where r = 1 r 1 is the distance from the coordinate origin 
to the variable point M (x, y, z). 

Solution. Using formula (5), we obtain 

diva= '4J~r) divr+(r,grad cp;r>). 
Furthermore, 

divr=3, grad ~~r) = ( cp~r) )' gradr='CfJ'(r),;-CfJ(r)ro. 

And so 

diva= cp~r) ·3 + (rep' (r~;-cp(r) ro, r) 

.-3 tp;r) +'!V'(r);~(r)=2 tp~r) +cp' (r). 

131. For what function ..p (r) will we have div 1p (r) r = 
- 2>1> (r)? 
132. Find div (r'r). 
133. Find the divergence of the vector field 

a= (c, rl, 

where c is a constant vector. 
134. Find 

div (r [w, rl), 

where w is a constant vector. 
135. For what function 1p (z) will the divergence of the 
field 

a - zzl + yj + ~ (z) k 
be equal to z? 
136. Find the flux of the radius vector r through the 
surface of a sphere. 
137. The electrostatic field of a point charge q is 

Compute div E. 
138. Show that 

E=.rt:eo ;. 

~ ~ (r, n°) do= V, 

' 
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where V is the volume bounded by a closed surface l:. 
139. Prove that if l: is a closed piecewise smooth surface 
and c is a nonzero constant vector, then 

@cos(u,c)da=O, 

' where n is a vector normal to the surface Z. 
140. Prove the formula 

@ (rpa, n°)dO"= j J J (rpdiva+(a, gradcp))dv, 

' v 
where rp = <p (x, y, z) and l:: is a surface bounding the 
volume V. Establish the conditions under which this 
formula is applicable. 
141. Prove that if the function u (x, y, z) satisfies the 
Laplace equation 

then 

where {)u/{)n is the derivative with respect to the direction 
of the outer normal to the piecewise smooth closed sur­
face Z. 
142. Prove that if the function u (x, y, z) is a second­
degree polynomial and l: is a piecewise smooth closed 
surface, then the integral 

K~da 
~ .. 
' is proportional to the volume bounded by the surface l:. 

Find the flux of a vector field through the indicated 
closed surfaces: (t) directly, (2) via the Gauss-Ostr9gradsky 
theorem. 
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{ 
9-z~x'+y', 

152. a=3.xi-yj-zk; S: x=O, y=O, z=O (first 
octant). 

{ 
x+Y+z~t, 

153. a~(y-x)i+(z-y)j+(x-z)k; s, x-y+z~l, 

x=O, z=O. 

{ 1-z=x2+y1 , 

tM. a=xi-2yj-zk; S: z=O. 

SoleMidal fields 

Definition. If at all points M of a certain region G 
the divergence of a vector field (specified in G) is zero, 

diva (M) ~ 0, 

then we say that the field is solenoidal in that region. 
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Thus, a solenoidal field is, by definition, without 
sources and sinks. 

From the Gauss-Ostrogradsky theorem it follows that 
in a solenoidal field the flux of a vector a = a (M) 

through any closed surface a 6 lymg m the held IS zero: 

I ~(a, no) do=O. 

In a soleno•dal held G, the 
vector hoes cannot begin or 
end. They can either be closed 
curve! or have ends on the 
boundary of the held. 

Fig. 29 The equation 
diva (M) ~ 0 

is encountered in hydrodynamics and is termed the con­
tinuity equation of an lncomprusible fluid. 

In this case, the amo~t of fluid exiting_ through some 
closed surface a is alwaYs equal to the amount entering, 
and the total flux is zero. 

Which of the followtii.g vector fields is a solenoidal 
field? 
155. a ~ z (,0 - y') I + y (.z' - '') j + ' (y' - z') k. 
156. a- y'J- (zl + y')j + z (3y' +I) k. 
157. a = (I + 2zy) I- y'zj + (z'y - 2zy + I) k. 
158. Show that the field of the vector 

E=f.-r" (r= V x2+y2+zz) 

i8 solenoidal throughout the region that does not contain 
the coordinate origin 0 (0, 0, 0). 
159. Under what condition will the vector field a = 
= 'P (r) r be solenoidal? 

Suppose we have a field a (M), which is not necessarily 
solenoidal. In the field, consider a closed oriented con­
tour L. The surface :E containing the curve L as its edge 
will be called a surface spanned by the contour L. Let us 
agree to orient the normal n to the surface l: so that the 
chosen circuit about the contour L will be seen from the 
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end of the normal as being counterclockwise (Fig. 29). 
160. Show that in a solenoidal field the flux of a vector 
a (M) does not depend on the type of surface l: spanned 
by the given contour L and depends solely on the contour 
itself. 

Sec. 14. A line integral in a vedor field. 
The circulation of a vector field 

Suppo.se we have a continuous vector field a = a (M) 
and a piecewise smooth curve L on which a positive 
direction has been chosen (in other words, L is an oriented 
curve), 

Definition 1. The line integral from the vector a = 
= a (M) along the oriented curve L is termed a line 
integral of the first kind (an integral over the arc length 
of a curve) of a scalar product (a, ,.0): 

l (a, -r0)ds, 

where ~ = Tl (M) is the unit vector of the vector tangent 
to the curve L whose orientation coincides with that 
of L; ds is the differential of arc length s of L. 

If r = r (M) is the radius vector of an arbitrary point M 
of the curve L, then the line integral in the field 8 (M) 
may be written thus: 

J (a,•')ds- J (a, dr), (1) 
L L 

If a rectangular~ coordinate .xy2-system is introduced 
in the vector field, then r = .xi + yj + zk, 

a - P (x, y, z) i + Q (x, y, z) j + R (x, y, z) k 

and the line integral (1) can be expressed in terms of a 
line integral of the second kind: 

J (a, dr)- J P (x, y, z) dx+Q (x, y, z) dy+R (x, y, z) dz. 
L L 

When 8 = a (M) is a force field, the line integral (1) 
yields the magnitude of the work of that field over the 
curve L. 
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Properties of a line integral 

(a) Linearity: 

J (A.a 1 +J.La2,dr)=A J (a 1, dr)+ ( (a2,dr), 
L L i 

where ). and fA. are constants. 
(b) Additivity: 

J (a,dr)- J (a,dr)+ J (a,dr), 
Lt+Lt L1 L2 

(Ch. Ill 

(c) The integral reverses sign with a change in the 
orientation of L: 

J (a, dr) = - J (a, dr), 
BA AB 

where A is the initial and B is the terminal point of the 
curve L. 

Calculating a line integral in a vector fteld 

Let the curve L be specified by the parametric equations 

z = ~ (t), y = 'I> (t), z = X (t) (t 0 ,;; t ,;; t,). 

Here, at the initial point A of L the parameter t assumes 
the value t = t0 and at the terminal point B of L it 
assumes the value t = t1 (the direction on L corresponds 
to increasing values of the parameter t from t 0 to t1); 

the functions ql (t), 1J' (t), X (t) have continuous deriva­
tives on the interval (t0 , t11. Then 

J (a, dr) = J (a, dr) = 'J {PI~ (t), 'I> (t), x (t)] ~· (t) 
L AB lo 

+Q 1~ (t), .p(t).x (t)J .p' (tJ+RI~ (t), "'(t),x (t)l x' (t))dt. 

If the curve L is given by a aystem of equations 
y = 1j.l (x), z = x (z), a ~ x ~ b, then 

' J (a, dr) = J {P jz, ¢ (z), X (x)J+ Q (z, '(> (z), X(•)) .p' (z) 
AB o 

+ R (x, .p (x), X (z)J x' (z)}dx. 
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Similar formulas may also be written for cases where 
the line is specified by one of the following systems 
of equations: 

X - ~ (y), Z - X (y) (y, <;; Y <;; y,) 

x = 1J1 (z:), y = ,P (z) (z:0 ~ z: ~ Z1). 

Example 1. Find the line integral of the vector a = 
= r/ I r !, where r is a radius vector on the line segment 
from point A (rA) to point B (r8 ). 

Solution. The desired line integral is 

J (a, dr) = f {;·,d;). (1) 
AB AB 

From 
d (r, r) - (dr, r) + (r, dr) - 2 (r, dr) 

we find 

(r,dr)-+ d(r, r)-+ d(lrl')- +·21•1 d lrl-1<1 d 1•1· 

whence 

(rj~r) =dirl. (2) 

Substituting (2) into the integral (1), we get 

J(a,dr)- Jdlrl-'.1 dlrl-l•sl-1••1· 
AB AB 'A 

Note that 
ldr l+dlr I· 

Find the line integral over the line segment bounded 
by the points A (r1) and B (r,) for the following vector 
fields: 
161. a = r. 

162. a=TfT--· 

163. a= 1;;1 • r0 is the unit vector. 

164. Compute the line integral over the straight line 
passing through the points 0 (0, 0. 0) and M 1 (1, 1, 1) 
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from point 0 to point M1 if a = [b, r] , where b is a con­
stant vector. 
165. Prove that 

J (grad u,dr)~u(B)-u(A) . ... 
Example 2. Find the line integral of ~he vector 

Fig. 30 

a~d+xJ+yk 

over an arc L of the heli­
cal curve 

x=Rcost, y=Rsint, 

' Z=2jt 

from point A, the point of in­
tersection of the eurve with 
the plane z = 0, to point B, 
the point of intersection with 
the plane z = 1 {Fig. 30). 

Solution. Here, the line in­
tegral is of the form 

l (a, dr) 

= l zdx+ xdy + ydz. 

The helical curve is located 
on a circular cylinder r' + 
+ y' = R 2• At point A 

have t0 = 0, at point B we have t1 = 2n. Since 

dx= -Rsintdt, dy=Rcostdt, dz=~, 
it follows that the integral is equal to ,. 
J (a,dr)= J ( --it-Rsint+R2cos2 t+~sint)dt 
L 0 

2n 2n 

=R2 J cosztdt-~ j tsintdt=nRZ+R . ' 
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because 
2n I cosztdt=n; 

2n I tsintdt= -2n. 

Example 3. Find the line integral of the vector (see 
example 2) 

a~zl+x!+yk 

over the straight line AB (see Fig. 30) in the direction 
from point A to point B. 

Solution. Since the straight line AB (the generatrix 
of the cylinder x2 + yl = R2) is located in the xz-plane 
and passes through the point A (R, 0, 0), it follows that 
y = 0, x = R, d:e = 0, and for the radius vector r of 
the points of AB we will haver = Rl + zk, dr = dz-k. 
Therefore the scalar product 

(a, dr) ~ z dz + z dy + y dz 

on AB will be zero. 
Hence, the desired line integral 

J (a,dr)~ J (a,dr) 
L AB 

on AB will be 2ero. 
From examples 2 and 3 it follows that in the general 

case a line integral in a vector field depends not only on 
the initial and terminal points of the path of integration 
but also on the shape of the path. 

Example 4. Compute the work done by the force field 
F ~ yl + xj + (z + y + •) k 

along the segment AB of a straight line passing through 
the points M 1 (2, 3, 4) and M 2(3, 4, 5). 

Solution. The work done by the force field will be 
equal to the line integral along M 1M 1 : 

A= \ (F,dr)= J ydz+xdy+(x-+·y+z)dz, 
M1:{.,1 M1M1 
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Let us find the canonical equations of the straight line 
M 1M 1 • We have 

whence 

z-2 y-3 z-4 
~=~=-.-. 

y=:c+ 1, l 
z=x+2. 

dy- d:e, dz- d:e. 

Here, x varies from 2 to 3 (since the abscissa of M1 is 
equal to 2 and the abscissa of M 2 is 3). The desired work is 

' A- { (z+1+z+z+z+1+z+2)d:e 

166. In the plane vector field 
y'i-.z:'J 

a= V z'+Y' 

3 

- {(5z+•)dx-~. 

compute the line integral along the semicircle 

x = R cost, y = R sin t (0 ~ t ~ n). 

JJY{. In the plane vector field 

a - (z' + y') I + (z' - y) j 
compute the line integral over the curve y = I x I from 
the point (-1, 1) to the point (2, 2). 
168. In the plane vector field 

a- (z'- 2zy) I+ (y'- 2zy) j 

compute the line integral: 
(a) along the parabola y = x2 from the point (-1, 1) 

to the point (1., 1); 
(b) along a segment of the straight line joining the points 

(-1, 1) and (1, 1). 
169. Compute the work of the force field F = 2xyl + ,x!j 
along an arc of the circle x2 + y2 = 1 from the point 
(1, 0) to the point (0, t) counterclockwise. 
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170. Compute the work of the force field 
~ F ~ (x' + 2xy) I + (x' + y') j 

103 

along the parabola y = r' from the point (0, 0) to the 
point (l, l). 
171. In the vector field 

ri+yJ+zk 
V r'+Y'+z1 :r y+2z 

compute the line integral along a segment of the straight 
line from the point (t, t, 1) to the point (4, 4, 4). 
172. In the vector field 
~ a~(y'-z')1+2yzj-x'k 
compute the line integral over the line 

;::2.} (O:s;;;t:s;;;1) 
z=ta 

in the direction of increasing values of the parameter t. 
173. In the vector field 

a~yl+zj+zk 
compute the line integral along a turn of the helical curve 

x~acost,} 
y =a sin t, (O:s;;;t<2n) 
z=bt 

in the direction of increasing values of the parameter t. 
174.. In the vector field 

a~x'l+y'J+z'k 

compute the line integral in the direction from the point 
(0, 0, 0) to the point (1, 1, 1) along the line segment 
between the two points. 

Computing the circulation of a vector field 

Definition 2. The circulation C of a vector field a = 
= a (M) is a line integral taken around a closed oriented 
curve L Thus, Ly definition, 

c~~(a,dr), 
L 
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where the symbol f denotes the integral around the 

closed curve L. 
If the vector field a = a (M) is glven· in coordinate 

form, 
a - P (r, y, z) I + Q (z, y, z) j + R (z, y, z) k, 

then the circulation of the vector field is 

C-~ Pdx+Qdy+ Rdz. 
L 

For the positive direction of traverse around the closed 
curve L we take the direction in which the region bounded 
by the curve is on the left. 

Eumple 5. Compute the circulation of the vector 
field 

• - -y'i + x'j 
around the ellipse L: :r!-la' + y'Afb' = 1. 

Solution. By the definition of circulation we have 

c-t(a,d•)-~i-y•dx+x'dy. (3) 

The parametric equations of this ellipse are of the form 
x=acost,) 
y- b sin t (O<;;t<2n), (4) 

whenee 
dx = -a sin t dt, dy = b cost dt. (5) 

Substituting (4) and (5) into (3), we get .. 
C = ab ~ (b2sin~ t +azcos• t) dt={ nab (a2+b2) 

since 
2n 2n 

J sin'tdt={- J (i-cos2t)2dt 
0 • 

2• 

={ J (t-2cos2t+ i+e;s 4t )dt 
' 
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2n 2n 

=-{- ~ (-}-2cos2t+{cos4t)dt={- i {-dt={n. 

Similarly, we find that ,. I cos'td.t={n. 

Example 6. Calculate the circulation of the vector 
field 

a = yer"i + xruj + xyzk 

around the curve£ obtained by cutting the conex2 + y2 = 
= (z - 1)2 with the coordinate planes (Fig. 31). 

Fig. 3t. 

Solution. The curve L consists of two part.!! BC and CA 
located in the coordinate yz- and xz-planes respectively, 

- x2 + y2 = 1) 
and the arc AB of the circle z _ 0 . Therefore 

tho circulation of the given vector field will be 

C ~ ~ (a, d•) ~ j (a, d•) + j (a, d•) + j (a, dr). 
l. BC CA. As 

(1) On the line segment BC we have 

X = 0, d:& = 0; z = 1 - y, dz = -dy; 1 > y ~ 0. 
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Consequently, 

J (a,d•)~ J yd.x-0. 
BC BC 

(2) On the line segment CA we have 

y = 0, dy = 0; z = I - z, dz = -d.x; 0 < z <;;; I 

and so 

J (a.d•)= J zdy=O. 
CA CA 

_ x2+y2=1,} 
(3) On the are AB of the circle z = 0 we have 

z = 0, dz-= 0, which means that 

j (a, dr) = j err1 (y dx + x dy) = j er11d (xy) 

AB As AB 
= r d(el:Y)=e%1118(0,1)=1-f=Q. 

J .4.(1,0) 

As 
The desired circulation of the vector field is zero. 

Example 7. Compute the circulation of the vector 
field 

if 
a=xyi+yzj+zzk 

I x'+y'=l, 
L: \z+y+•=t. 

Solution. We have 

C=~(a,dr)= r xydx+yzdy+xzdz. 
L L 

The curve L is an ellipse obtained by cutting the cylinder 
z2 + y2 = 1 by the plane X+ y + Z = f. Let US find 
the parametric equations of the curve. The projection 
of any point of the curve on the .zy-plane lies on the 
circle r' + yZ = 1. From this we obtain x = cos t, 
y = sin t. But the ellipse lies in the plane x + y + z = 1, 
whence a: = 1 - :z; - y or a: = 1 - cos t - sin t. Thus 
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the parametric equations of the curve L are: 

:::~~:: } (O~t<2n). 
z=1-cost-sint 

From this we find 
d:t =-sin t dt, dy =cost dt, dz =(sin t- cost)dt 

and so the circulation is 
2n 

C= ~ [-costsin2t+sint(t-cost -sint)cost 

+cost (1-cos t- sin t) (sin t-cos t)] dt 

'" = ~ (-:lsin2tcost+sin2t-cos2tsint-cos2t+cosJt)dt 

2n 

=- J cos2tdt= -n. 
0 

Compute the circulation C of a vector a around the 
given curve L: 
175. a - (xz + y) i + (yz - x) j - (x' + y') k; 

{
x2+y2=1, 

L: z=3. 

176. a = y2i + z'j + ,ilk; 

{
x2+ y'+ z2 = R2, 

L: x'+y2 -Rx 

177. a - (2x + z) I + (2y- z) j + xyzk. Lis the linen! 
intersection of the paraboloid of revolution x2 + y2 = 
= 1 - z with the coordinate planes. 
178. Show that if in a vector field the circulation of avec­
tor around any closed circuit is equal to zero, then there 
can be no closed vector lines in such a field. 
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Sec. 15. The curl (rotation) 
of a vector field 

Suppose we have the vector field 

[Ch. III 

a (M) - P (<, y, z) I + Q (z, y, z) j + R (<, y, z) k. 
We will assume that the coordinates P, Q, R of the vector 
a (M) are continuous and have continuous partial deriv­
atives of the first order with respect to all its arguments. 

Definition 1. The curl (or rotation) of a vector a (M) 
is a vector (symbolized: curl a (M} or rot a (M)) defined 
by the equation 

curl a= ( ~~ --il-) i+ ( ~~ - ~~) j 

+(~-*)k (1) 

or, in easy-to-remember symbolic form, 

a (1 a I , i k I 
curl a= ;: ;; ;; . (2) 

This determinant is ordinarily expanded in terms of 
elements of the first row, in which case the operations of 
multiplication of elements of the second row by elements 
of the third row are regarded as operations of differen­
tiation; for example, 

*·Q=~. 
Definition 2. If in some region G we have curl a = 0, 

then the field of the vector a in G is said to be irrotational. 
Example 1. Find the curl of the vector 

a - (x + z) i + (y + z) j + (z' + z) k. 
Solution. Using formula (2), we obtain 
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Expanding the determinant in terms of elements of the 
first row and .regarding the operation of multiplication, 
say iJiiJy by x2 + :, as an operation of partial differen­
tiation, we obtain 

curl a ~ -1- (2x- !) j. 

Example 2. Find the curl of H, the intensity vector of 
a magnetic field under the conditions of example 3 of 
Sec. 10. 

Solution. The magnetic-field intensity vector H is 

H=f.-(1, rj 

I
; j kl 

H=~ 0 0 I= -'*yi+'*xj, 
X y % 

where p2 = T + y2 , whence, by (2), 

I 
; j k I 

curl H= * -!y fz =[.:Z {x?~Ns) 
- x'2~yy1 z'2~~1./ll 0 

·• -fly ( )~1./yi) ]k=2/ [ x~~~~)~~ + z2(~~~)~y2 Jk=0 

(x'+Y'*O). 

Thus, curl H = 0 everywhere except the z-axis, at the 
points of which the last formulas are meaningless {the 
denominator vanishes), that is, the field of the vector H 
is irrotational everywhere outside the points of the z-axis. 

Find the curl of the following vectors: 
179. a~ (x' + y') I+ (y' + •') j + (•' + x') k. 
180 ..• ~ ,•; + y'j + x'k. 

181. a ~ + (-y'I + x'j). 
182. Show that if the coordinates of the vector a (M) 
have continuous partial derivatives of the second order, 
then 

div curl a = 0, 
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that is, the field of the vector curl a (M) is a solenoidal 
field. 
183. Show that 

(a) curl (a ± b) = curl a ± curl b, 
(b) curl (Aa) =A curl a. 

where A is a numerical constant. 
184. Show that if u = u (M) is a scalar function and 
a = a (M) is a vector, then 

curl (ua) = u curl a + (grad u, a). 

185. Show that if a and b are constant vectors, and r 
is the radius vector of the point M (x, y, z), then 

curl (r, a) b = {a, bl. 
186. Show that 

curl (ra)=+[r, al, 

where a is a constant vector and r = I r 1 = 

- v x' + y' + •'· 
187. Show that curl (J (r) a)= 1~ (r, al, where f (r) 

is an arbitrary differentiable function of its argument and 
a is a constant vector. 
188. Show that the vector field a = f (r) r is irrototional 
that is, curl a = 0. 
189. Show that 

div [a, b] = (b, curl a) - (a, curl b). 

190. Show that the curl of a field of linear velocities v of 
a rotating solid is a constant vector in the direction paral­
lel to the axis of rotation, the modulus of which is equal 
to twice the angular velocity of rotation: curl v = 2(1). 
191. Determine the angular velocity (I) of rotation of 
a solid about a fixed axis passing through some point of 
the solid if its linear velocity is 

v = 2xl + y2j + xzk. 

192. Show that the field of the curl of the vector a (M) 
is free of sources and sinks. 
193. What must the function f (.z, z) be so that the curl 
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of the vector field 

a=yzi+f(.z, z:)j+.zyk 

is coincident with the vector k - I? 

Sec. 16. Stokes' theorem 

Suppose the coordinates of a vector 

1ft 

a (M) - P (x, y, z) i + Q (x, y, z) j + R (x, y, z) k 

are continuous and have continuous partial derivatives. 
Theorem. The circulation of · 

the vector a aroundaclosedcon­
tour L is equal to the flux of the 
curl of the vector through any 
surface I: spanning the con­
tour L: 

~(a, dr) = j J (curl a, n°) drr. 

'· . 
(1) 

It is assumed that the orien­
tation of the normal n° to the 
surface I: is matched with the 
orientation of the contour L 
so that, when viewed from the 
end of the normal, the contour 
is traversed in the chosen direction counterclockwise. 

Example 1. Compute the circulation of the vector 

a=yi+.zlli-z:k 

Jx'+y'-4, 
around the contour L: l z = 3 (1) directly and 

(2) via the Stokes theorem. 
Solution. (1) The contour L is a circle of radius R = 2 

lying in the plane z = 3 (Fig. 32). We choose the orienta­
tion as shown in the drawing. The parametric equations of 
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the curve L are 

x~2co•t,} 
y=2sint, (O~t<2n), 

Z=3 
so that 

[Ch. III 

dx = -2 sin t dt, dy = 2 cos t dt, dz = 0. 
For the circulation of the vector a we have ,. 
C= J [2sint(-2sint)+4eos2 t2cost-3·0]dt=-4n. 

0 

(2) To compute the circulation via the Stokes theorem, 
choose some surface l: spanning the contour L. For 1: 
it is natural to take a circle having L as its boundary. 
According to the chosen orientation of the contour the 
normal no to the circle has to be taken equal to k: no = k. 
Then 

I ; j k I 
curl a= +z -/y -F; = (2x-1) k. 

y z2 -z 
Therefore, by the Stokes theorem, 

C= j J (curl a,n°)d0'= .\ J (2x-1)da 

' ' ,. ' 
= ~ dcp l (2pcosrp-1)pdp= -2n{-f:= -4n. 

194. Show that the flux of the rotor through an open 
surface spanning a given contour does not depend on the 
shape of the surface. 

Find the circulations of the vectors around the indi­
cated contours (1) directly and (2) via the Stokes theorem. 

(
xZ+yZ=4, 

195. a=zi+xj+yk; L: z=O. 

(
xz+y2+zZ=4, 

196. a=yi-xi+zk; L: xZ+yz=zz (z>O). 
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197. a = 2xzi - yj + zk around a contour formed by 
intersection of the plane x + y + 2z = 2 with the coor­
dinate planes. 

{
z=xz+yz, 

198. a=yi-xj+(x+y)k; L: z=i. 

{
xz+yZ+z2=16, 

199. a=z2i; L: x=O,y=O,z=O. 

{
x=yZ+z2, 

200. a=zy2i+xz2j+x2yk; L: x=g, 

{ 
x2-j-y2=9, 

201. a=yzi+z2j; L: By+-4z =S. 

{
xz+ yZ+zZ= 1, 

202. a=yi-xj+zk; L: X=Z. 

203. Given a vector field of velocities v of the points 
of a solid rotating with a constant angular velocity Co.l 

about the z-axis. Calculate the circulation of the field 
around the circle 

{
x=acost, 

L: y=asint, (O=<t<2n), 
Z=O 

directly and via the Stokes theorem. 
From the Stokes theorem we find that the projection 

of the vector curl a on any direction n is independent of 
the choice of the system of coordinates and is equal to 
ihe surface density of the circulation of the vector a 
around the- contour of the area perpendicular to that 
direction: 

f (a,dr) 

pr0 curlaiM=(curla,n°)1 =lim~· (2) 
M (E)-M 

Here, (~) is a plane area perpendicular to the vector n; 
S is the area of (~); L is the contour of the area and is 
oriented so that the traverse of the contour is counter­
clockwise as seen from the end of .the vector n; the nota-
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tion (l::)- M means that the area (l:) contracts to the 
point Mat which we consider the vector curl a, and the 
direction of the normal n to that area is always the same. 

Example 2. Compute the density of the circulation of 
the vector a = yi around the circle 

{
x=acost, 

L: y=asint, (O:s;;;:t<2n), 
z-0 

at the centre of the circle, M (0, 0, 0), in the positive 
direction of the z-uis. 

Solution. Here, (l:) is a circle of radius a with centre 
at M, so that S = na2 • 

The desired density of the circulation is 

!1M=lim~~ (a, dr)=lim~ ~ydz 
o-0 l"'O L o .. o reo L 

"' =lim....!, r (-a2)sin'tdt=-1. 
a-o na J 

On the other hand, 

I i I k I 
curl a= -#; -;y fs = -k 

y 0 0 
and, hence, 

(curl a, n') j, ~ (-k, k) ~ -1, 

which, by virtue of (2), confirms the correctness of the 
result. 
204. Compute the density of the circulation of the vector 
a = zl + .xj + yk around the circle L: {y = a cos t, 
z = a sin t, x = 0, (0 :::;;;: t < 2n)} at the centre of the 
circle, C (0, 0, 0), in the positive direction of the x-axis. 
205.. Compute the density of the circulation of the vector 
a = 2yi + 5xzj around the ellipse L: {x = a cos t, y = 
= b sin t, z = 1 (0:::;;;: t < 2n)} at the centre C (0, 0, i) 
of the ellipse in the positive direction of the z-axis. 
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Sec. 17. The independence 
of a line integral of the path 

of integration. Green's formula 

115 

Definition. A region G of three-dimensional space is 
said to be simply connected (more precisely, it is a simply 
connected plane region) if any closed contour lying in the 
region can be spanned by .. a surface lying entirely in G. 
For example, the whole of. three-dimensional space and 
the interior of a sphere are simply connected regions; the 
interior of a torus_ and three-dimensional space with 
a straight line deleted are not simply connected regions. 

Theorem. In order that the line tntegral 

j (a,dr)- J P (•, y, z) dz+Q (•, y, z) dy+R (•. y, z) dz 
L L 

slwuld 1Wt depend Q!! the form of the path of integration L, 
it ts necessary and sufficient that the vector field 

a - P (•, y, z) I + Q (•, y, z) j + R (•, y, z) k 
be irrotational, that is, 

curl a (M) - 0. 

It is assumed here that the coordinates P (:z:, y, z), 
Q (:z:, y, z), R (:z:, y, z) of the vector a have continuous 
partial derivatives of the first order and the domain of 
definition of the vector a (M) is simply connected.-

In that case, the line integral ! (a, dr) will depend 

solely on the position of the initial and terminal points 
of the path of integration L. 

If the theorem is complied with,· the circulation oj 
the vector 8 (M) around any closed contour C _located in 
the field of the vector 8 (M) is equal to zero: 

~(a, dr)~O. 
c 

Eumple t. Show that in the field of the vector 

a = :z:y11zl + .x2yzj + {.ry2k 
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the line integral J (a, dr) is independent of the shape 
L • 

of the path of integration L. 
Solution. The coordinates of the vector a are everywhere 

continuous functions so that the domain of definition G of 
the vector a is the entire space (a simply connected region). 
In this region we have 

I . j k I ' ' ' curl a= liZ Tu 
1

81 ::=0. 

:z:y2z :r;'l·yz 2 xlfi 

Consequently, the line integral 

J (a, dr) =I xy2z.dx+z2yz.dy+{-x2y2dz 

is independent of the shape of the path of integration L. 
In particular, for the plane vector lield -

a (M) ~ P (x, y) I + Q (x, y) j (I) 
have 

I I j k I a lJ a OQ aP curl a(M)~--- ~ (---)k. IJ:& IJg as IJz IJg 
p Q 0 

Therefore, for the plane vector field (1) that is defined 
in a simply connected region G, the condition curfa (M) = 
= 0 is written in coordinate form ti!_l!-8:. OP!Oy = 8Qlax. 

This means that in order for a Une Integral 

J P(x, y)dx+Q(x, y) dy 

in a plane field defined in a simply connected reglon G to 
be independent of the shape of the path of integration, it 
ts neussary and sufficient that the following relation lu:Jld: 

iJP iJQ 
av==az· 

Remark. The requirement that the region G, where the 
vector 8 = 8 (M) is defined, be simply connected is essen-
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!tJra!h~:Fi~(~i!ang~s~~tWnceo~::~:i t~i~ ~~~11d 
on the shape of the path of integration. 

Example 2. Let us consider the line integral 
r-udz zdy 
Jz1 +y1 + z1 +y1 " 
L 

Solution. The integrand is meaningless at the point 
0 (0, 0); and so we eliminate that point. In the remaining 
part of the plane (which i.s then a nonsimply connected 
region), the coefficients of dz and dy are continuous and 
have continuous partial derivatives, and the following 
identity holds true: 

-£ {z1~y1 } ~i {- z•~u•} • 
On the other hand, if we compute the integral around the 
circle L: r' + y2 = W, then by parametrizing the equa­
tion of the circle we get 

"' "' ~ -yz~~~:dy = JR1 sin1 ttR1 cos•tdt= jdt= 2n. 
L 0 0 

We find that the circulation is nonzero and, hence, the 
line integral depends on the path of integration. 

Determine in which of the vector fields indicated below 
the integral is independent of the shape of the path of 
integration: 
206. 8 = z11 + r'J + y2k. 
207. 8 zl+uJ+:k • 

Vt+z•+yl+:• 

208. a= ~~+:J."t:z~ . 
Green's formula 

Given in a region D with boundary L a plane vector 
field 

a ~ P (x, y) I + Q (x, y) j, 

where the coordinates P (x, y), Q (x, y) are continuous 
and have continuous partial derivatives iJP/fJy, fJQ/8x. 
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Then Green's formula, 

~Pdx+Qdy~ Jl(~-*)d.rdy, (2) 
L D 

holds true. Here, the boundary L is traversed so that the 
region D is on the left. - -·- · -

Fig. 33 

The region D may also be nonsimply connected so that 
the boundary may consist of several components (Fig. 33). 
In that case, the integral 

J Pdx+Qdy 
L 

is understood to mean the sum of the integrals over all 
components of the boundary of D. 

Green's formula (2) is a special case of the Stokes theo­
rem (see Sec. 16). 

In certain cases, Green's formula permits simplifying 
the computation of the circulation of a vector field. 

Example 3. Compute the circulation of the vector 

a~ V 1 +x'+y' I+ y(xy+ln (x+ Vt+x'+ y')] j 

around the circle r' + y9 = R2. 
Solution. The circulation of the given vector is 

C= ~(a, dr) = ~ Vt +x2+y2 dx 
L L 

+y[xy+!n(x+ V!+x'+y' )]dy. 
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Here 

P~ VI +x'+y', Q~xy'+Y In (x+ VI +x'+Y' ). 
We find the partial derivatives 

*= Vt+:'+v'' ~ =Y2+ Vt+11:1+Y' · 
Using Green's formula, we obtain 

C= I I {v2+ Vt+:'+v'- Vt+:'+Y') dxdy 
D 

Passing to polar coordinates, 
x=pcoscp, y=psincp, 

we have 

C= J )p2sin2 cppdpdcp=) jp3 sin2cpdpdcp. 
D D 

Since 0 ~ cp < 2:rt, 0 ~ p ~ R, it follows that 

c~ J•in'~d~Jp'dp~ ":'. 
Compute the circulation of the following vectors around 

the given contours using Green's formula: 
209. a ~ (y + x) I + (y - x) j; £: x + y ~ I, x ~ 0, 
y ~ 0. 
210. a ~ (x- y') I + 2xy j; £: y ~ x, y ~ x'. 
211. a = x In (1 + y2) i + 1~~~ j; L: x2 + y1 = 2x. 
212. a~y'l-x'j; £: x+y~ -1, x~O, y~O. 
2t3.a=(3z-y3f~)l+(t8v'+:af~)J. 

3ft+z'+4y3 ' 
L: z2+y2=1. 

214. Use Green's formula to compute the difference be­
tween the integrals 

11 = J (x+y)2dx-(x-y)2dy 
AmB 
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and 

12 - J (x+y)'·dx-(x-y)2dy, 
AoB 

where AmB is a line segment joining the points A (0, 0) 
and B (1, 1), and AnB is an arc of the parabola y = rl. 
215. Prove that the integral 

~(2x+ y) dx+ 2xdy, 

where L is a closed contour, yields the area of the region 
bounded by that contour. 
216. Using Green's formula, compute the line integral l (a, dr) in the vector field 

a = (ex sin y - y) t + (eX cosy - 1) j, 

where the curve L is the upper semicircle z2 + y2 = 2.x 
traversed in the direction from the point A (2, 0) to the 
point 0 (0, 0). 



CHAPTER IV 

POTENTIAL FIELDS 

Sec. 18. The criterion for the potentiality 
of a vector field 

Definition. A vector field 
a (M) ~ P (z, y, •) I + Q (z, y, •) j + R (z, y, •) k 

specified in a spatial region V is said to be potential if 
there exists a scallll' function <p (M) such that at all 
points of V the following equality holds: 

a (M) ~ grad ~ (M). (I) 

The function <p (M) = <p (x, y, z) that satisfies (f) in 
V is termed the potential (or the potential function) of 
the vector field a. 

The relation (1) is equivalent to the following three 
scalar equations: 

P(x,y,z)=*· Q(x,y,z)=*· R(x,y,z)=*· 

(2) 
The potential of a field is not defined uniquely but 

only up to an additive constant. 
Remark. For force fields, the function cp (M) is ordi­

narily called a force functton, and the potential is the func­
tion -<p (M). 

Example t. (The electrostatic field of a point charge.) 
Show that the field of electric intensity E set up by a point 
charge q located at the coordinate origin, 

E=f, r, r= V xz+y2+zZ, 

is a potential field. 
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Solution. The problem is posed thUB: show that there 
exists a function <p (x, y, z) such that relations (2) hold. 
In our case, we have 

P(x, y, z)=*, Q(x, y, z)=*, R(x, y, z)=~. 
Since 

fz-(~)=-+--*=-* 
and, analogously, * (+)=--!a. ai- (7)= -7. 
it follows that the function 

<p(x, y, z)=--!:- =- Yz'.:v'+z' 
is the potential of the given field: 

grad(-f}=E. 
In this case, the coordinate origin (this is where the 

charge q is located) is a singular point of the field E. 
Theorem. For a vector field a (.M) specified tn a simply 

connected region V to be potential, it is necessary and suf­
ficient that the following condltion hold at every point of V: 

curl a - 0. (3) 

In other words, for a vector field specified in a simply 
connected region to be potential, it is necessary and suf­
ficient that it be irrotational. 

The potential q> (x, y, z) of the vector field 
a - P (z, y, z) I + Q (z, y, z) j + R (z, y, z) k 

is defined by the formula 

<p(x, y, •)- '"1'' Pdx+Qdy+Rdx, (4) 
(:O:o, Vo. z0) 

where (z0 , y0 , z0) is some fixed point of the field and 
(x, y, z) is an arbitrary current point. 

Example 2. Show that the field of the vector 
a=xli+y2j+z2k 

is a potential field. 
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Solutton. The coordinates P = z', Q = yl, R = z1 of 
the vector a are infinitely differentiable functions through­
out the space so that a is an infinitely differentiable 
vector defined throughout three-dimensio;1al space. We 
have 

I f j k I a a a a a curl a=--- =(-z2--y2)f 
8z {Jg 8: ay {Jz 

z2 yz zZ 

+ (-i;z2--!;zz) J+{-!;yz-iJxz) k=O. 

By virtue of the theorem given on p. 122 the field of the 
vector a is a potential field. It is readily seen that the 
function 

tp(x, y, z)= z~+~3+s8 +C, 

where C is an arbitrary constant, is the potential of the 
given field. 

Check to see whether the following vector fields are 
potential fields: 
217. a = xzi + 2yj + xyk. 
218. a ~ (2xy + z') f + (2yz + x') j + (2xz + y') k. 

219. a ~ ~ (x'i + y'j + xz'k). 
220. a = yz cos xy-i + xz cos xy·j +sin xy·k. 
221. a ~ In (1 + z') i + In (I + x') j + xzk. 

222. a= ( 7+f) t+ (f.-++) J+ (*+~) k. 

223. H=~(-yi+xj), r2=xz+yz, r=FO. 

224. Prove that the field a= f (r)·r, where f (r) is a 
differentiable function, is a potential field. 
225. Show that the vector lines in the potential field 
a = grad q~ are perpendicular to the level surface of 
the function (jl. 
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Sec. 19. Computing a line integral 
in a pOtential field 

[Ch. IV 

Theorem. A line integral in a potential field a (M) is 
equal to the difference between the values of the potenUal 
cp (M) of the field at the terminal and tnttlal points of 
the path of integration: 

M, J (a, dr)~~(M,)-~(M,). (1) 
M, 

Example 1. Compute the line integral in the field 
of the vector 

r~rl+yj+:k 

along the line segment bounded by the points M1 (-1, 0, 
3) and M, (2, -1, 0). 

Solution. We will show that the field of the given vec.tor 
is a potential field. Indeed, 

curla=l*-}, ~~~o. 
% y ' 

It h~ easy to see that the potential of this field is 

<p(x,y,z)=:z:'+v2'+:' +C. 

Using formula (1), we obtain 

f• 5 ~ J (a, dr)~~(2, -1, 0)-~(-1, 0, 3)~ 2-5~ - 2 . 
M, 

Note that it is immaterial what line joins the points M1 

and M 2 ; for fix~d M 2 the integral 
M, M 1 

r (a, dr)= J xdx+ydy+zdz 
A-, M, 

always has the same value. 
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Computing the potential of a field in Cartesian coordinates 

The formula 
~(x, y, z) 

''1'' P(x, y, z) <ix+Q (x, y, z) dy+ R(x, y, z) dz 
{r0 , Vo. z0) 

(2) 
may be used to find the potential function q> (M) = 
= q> (x, y, z) of a specified potential field 

a (x, y, z) - P (x, y, z) I + Q (x, y, z) j 
+ R (x, y, •)k. 

To do this, f~_x the initial point M 0 (x0, y0, z0) and join 
it with the current point M (x, y, ·z) with a broken line 

N(z,y,z) 

Fig. 34 

MoABM whose segments are parallel to the coordinate 
axes; namely, M,A II Ox, AB II Oy, BM II Oz (Fig. 34). 
Then formula (2) takes the form . ' 
~(x, y, z)- J P(x, y0 , z0)dx+ JO(x, y, z0)dy 

r, Vo 



126 (Ch. IV 

+ { R(x, y, •)d,, (3) 
~ 

where .z, y, z are the coordinates of the current point on 
the segments of the broken line along which the integra· 
tion is performed. 

Example 2. Prove that the vector field 

a ~ (y + •) 1 + (x + •) j + (x + y) k 
is a potential field and find its potential. 

Solution. 1st method. A necessary and sufficient condi­
tion for the potentiality of a field a (M) is that curl 
a (M) be zero. In our case, 

curl •=I ~ +. f I 
y+zx+zx+y 

~(1-1) t+ (1-1)i+(1-1) k~o. 

That is, the field is a potential field. The potential of 
the field ean be found with the aid of formula (3). For 
the initial fixed point we take the coordinate origin 
0 (0, 0, 0). We thus have 

~(x, y, •)~ f<o+,O)dx+ f<x+O)dy+ {<x+y)d' 
0 0 0 

=xy+xz+yz. 
To summarize, 

c:p (x, y, z) = xy + xz + yz + C, 

where C is an arbitrary constant. 
2nd method. By definition, the potential c:p (x, y, z) 

is a scalar function for which grad <p = a. This vector 
equality is equivalent to three scalar equalities: 

*~y+•, (4) 

~~x+•, (5) 

*=x+y. (6) 
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Integrating (4) with respect to z, we obtain 

~(z,y,z)~ J<u+z)dz~zy+zz+f(y,z), (7) 

where f (y, z:) is an arbitrary differentiable function of 
y and z:. Differentiating both sides of (7) with respect to 
y and taking into account (5), we obtain a relation for 
finding the as yet undetermined function f (y, z:). We 
have 

whence 

Z=*· (8) 

Integrating (8) with respect to y, we have 

/(y, z)~ f•du~•u+F(z), (9) 
0 

where F (z) is an as yet undetermined function of z. 
Substituting (9) into (7), we get 

ql (z, y, z:) = zy + .zz + zy + F (z). 

Differentiating this equation with respect to z and taking 
into account (6), we obtain an equation for finding F (z): 

z+y=z+y+~, 
whence dF/dz = 0 so that F (z) ==- C = constant. 

Thus we have 

~ (z, y, z) ~ zy + yz + zx + C. 

3rd metlwd. By the definition of the complete differen­
tial of the function q1 (z, y, z:) we have 

dfp=*dz+~dy+~dz. 
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Substituting in place of the partial derivatives fJcp/fJx, 
acp/Oy, OqJIOz their expressions taken from (4), (5), (6), 

obtain 

d~ ~ (y + •) d. + (x + •) dy + (x + y) <h 

or, after some simple algebra, 

d~ ~ (y d. + X dy) + (• d. + X d•) + (y cU + 'dy) 

~ d (xy) + d (x.) + d (y•) ~ d (xy + X< + y•). 
Thus 

~~d(xy+y•+u), 

whence it follows that 

~ (x, y, •) ~ xy + Y' + u + C. 

In the following problems, establish the potentialitv of 
the given vector fields a (M} and find their potentials 
~(M}: 
226. a ~ 2xy•l + x'<j + x'yk. 
227. a ~ (y• + 1) I + x.j + xyk. 
228. a ~ (2xy + •) I + (x' - 2y) j + xk. 

229. a= ~tJY~: . 
230. a y:l t~z:~Yt~yk 

231. a= f. 
232. a=-;.. 
233. a=r·r. 

When the region Q is a star with centre at the coordi­
nate origin 0 (0, 0, O)•, the potential cp (M) of some 
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vector field a = a (M) at the point M (x, y, z) may 
be found from the formula 

I 

~(M)- f(a(M'), r(M))dt+C, C-constant, (10) 

where r (M) = .xi + yj + zk is the radius vector of the 
point M (x, y, z), and the point M' (t.x, ty, tz) for 0 ,.,;;; t 
,.,;;; 1 runs over the segment OM of the straight line passing 
through the points 0 and M. 

Example 3. Find the potential of the vector field 

a=yzi+xzj+xyk. 

Solution. It is readily seen that curl a== 0, which 
means the given vector field is a potential field. This 
field is defined throughout three-dimensional space and 
is star-shaped with centre at the coordinate origin 
0 (0, 0, 0), and therefore to find the potential we take 
advantage of formula (10). Since in this case 

a (M') = a (tx, ty, tz) = t2yzi + (lxzj + t2xyk, 

it follows that the scalar product of the vectors a (M') 
and r (M) is equal to 

(a (M'), r (M)) - t' (zyz + zyz + zyz) - 3t'zyz. 

The desired potential is 
I I 

~(M)- !(a(M'), r(M))dt~zyz!3t'dt+C-xyz+C. 
' 0 

Thus, 
~(M)-zyz+C. 

Using formula (tO), find the potentials of the following 
vector fields: 
234. a = cd + ~j + yk, where ex, ~. y are constants. 
235. a - (y + z) t + (z + z) j + (y + z) k. 
236. a - yt + zj + e•k. 
237. a= r sin y·l + r cos y·j + k. 



CHAPTER V 

THE HAMILTONIAN OPERATOR. 

SECOND-ORDER DIFFERENTIAL 
OPERATIONS. 

THE LAPLACE OPERATOR 

Sec. 20. The Hamiltonian operator del 

Many operations of vector analysis may be written in 
abbreviated form and in a form convenient for calcula­
tions; this is done through the use of a symbolic operator 
called the Hamiltonian operator del: 

(I) 

This operator combines both differential and vectorial 
properties. We will regard the formal multiplication of 
ataz by the function f (x, y, z) as the partial differen­
tiation Of lax. 

Within the framework of vector algebra, we will per­
form the formal operations involving del as if it were 
a vector. Using this formalism, we obtain the following. 

1. If u = u (x, y, z) is a scalar differentiable function, 
then, by the rule of multiplying a vector by a scalar, we 
have 

Vu=\i~+i-iy+kai-) u 

=i~+j*+k1i-=grAdu. (2) 

2. If a ~ P (x, y, z) i + Q (x, y, z) j + R (x, y, z) k, 
where P, Q, R are differentiable functions, then, by 
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the familiar formula for a scalar product, we have 

(V,a)=(tfz-+jfu+k-j;., Pi+Qj+Rk) 

=*+~+-%¥-=diva; (3) 

in particular, (V, c)= 0, where cis a constant vector. 
3. If a~ P (x, y, z) t + Q (x, y, z) j + R (x, y, z)k, 

then . ' ' I j j k I 
IV, aj = ~ ~ ;f =curl a; (/1) 

in particular (V, c) = 0, where c is a constant vector. 
Continuing the formalism of operations with V as 

a veetor, we obtain the following from the distributive 
property of scalar and vector product.!!: 

(V, a+ b)~ (V, a)+ (V, b), (5) 

that is, div (a + b) = div a + div b 

lv, a+ bl ~ lv, al + lv, bl (6) 

or curl (a + b) = curl a + curl b. 
Formulas (5) and (6) may also be interpreted as an 

exhibition of differential prop8J'ties of the del operator 
(V is a linear differential operator). 

When Wling the formalism of operations involving the 
del operator regarded as a vector, one mwt bear in mind 
that del is not a vector, for it has neither magnitude 
nor direction, so that, for example, the vector [V, a) 
will not, generally speaking, be perpendieular to the 
vector a (however, for the plane field a= P (x, y) i + 
+ Q (x, y) j the vector 

(V,aj=Curl a={~-*)k 
will be perpendicular to the xy-plane and, hence, to the 
vector a). In the same way, the concept of collinearity is 
meaningless with respect to the symbolic vector V. For 
example, the expression (Vt:p, V,.,], where 'P and ,., are 
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scalar functions, formally resembles a vector product of 
two collinear vectors, which product is always equal to 
zero. But this is not true in the general case. Indeed, the 
vector V<p = grad qJ is directed along the normal to the 
level surface <p =constant, while the vector VtP =grad ,p 
defines the normal to the level surface ,P = constant, 

Fig. 35 

and in the general case these normals are not necessarily 
collinear (Fig. 35). On the other hand, in any differentiable 
scalar field 'P we have fVq:>, V<p] = 0. These examples 
show that the del operator must be handled with care. 

Besides its vectorial nature, the Hamiltonian operator 
del has a differential aspect to it. Taking into account 
the differential aspect of v, we will agree that the operator 
V acts on all quantities that follow it. In this sense, 
(V, a) *(a, V). Indeed, 

(V, a)= diva, 
whereas 

(a, V)=P*+Ofu+Rfz-
is a scalar differential operator. 
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When applying the del operator to a product of any 
quantities, one must bear in mind the rule for differenti­
ating a product: 

.;;(uv)=v~+u-Tr-
From this it follows that the del operator must be applied 
in succession to each factor, leaving the other factors 
unchanged, and then the sum of the resulting expressions 
taken. In this procedure we are guided by the following 
rules. 

1°, If the del operator acts on some product, first 
take into account its differential nature and only then 
its vectorial properties. 

2°. In order to note the fact that the del operator 
does not act on Some quantity involved in a complicated 
formula, that quantity is labelled with the subscript c 
(constant),' which may be removed in the final result. 

3°. All quantities not acted upon by the del operator 
are placed in front of the operator (that is, to the left) 
in the final result. 

Example 1. Show that 

div (ua) = u diva + (a, grad u). 

Here, u is a scalar function and a is a vector function. 
Solution. In symbolic notation, 

div (ua) - (V, ua). 
Taking into account first the differential nature of "V, 

we have to write 

(V, ua) - (V, u,a) + (V, ua,). 

Regarding the expression ("V, uca), we can take the con­
stant factor uc outside the del sign and, as a scalar, outside 
the sign of the scalar product; this yields 

(V', u,a)- (u,v, a)- u, (V, a)- u (V, a). 

(The last step is to drop the subscript c). 
In the expression (V, uac), the del operator acts only 

on the scalar function u, and so we can write 

(V, ua,) - (Vu, a,) - (a" vu) - (a, vu) 
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to get the formula 
(V, ua) ~ u (V, a)+ (a, Vu) 

div (ua) = u div a + (a, grad u). 
Example 2. Show that 

curl (ua) = u curl a- [a, grad uJ. 

Solution. In symbolic notation, 
curl (ua) ~ (V, ua). 

[Ch. V 

Taking into account the differential properties of v. we 
first write 

rv. ua] ~ rv. u,a[ + lv. ua,[. (7) 

Then in the first term on the right we take the scalar 
factor uc outside the del sign and outside the sign of the 
vector product, which yields 

('V, Uca) = Uc (V, a) = U (V, a}, 

In the second term in (7) we refer u to the operator V and 
change the order of the factors so that the vector •e• which 
del does not act on, is in front of v. This yields 

rv. uacl = lvu, Bel = -Ia. vuJ. 
Thus 

rv. ua] ~ u rv. a] - [., vul 

curl (ua] = u curl a - (a, grad u]. 
Example 3. Use the symboJic method to find div (a, b] 
Solution. We have 

div [a, b] ~ (V, [a, b]) ~ (V, [a, b,l) 
+ (V, [a" b]). (8) 

Using the property of cyclic permutation of factors in 
a mixed product, we transform the expression on the 
right of (8) so that all constant quantities are in front 
of the del operator and all variable quantities follow it. 
This yields 
div[a. b[~([v. a]. b,)-(V. [b. a,[) 

~rrv. a[. b,)-([V. bJ. a,)-(b. IV, a[) -(a, [V. bl) 
or div[a, bl=(b, curla)-(a, curl b). 
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Remark. The use of the symbolic method enables us to 
avoid cumbersome analytical transformations and obtain 
the final results very quickly. On the other hand, the 
various formal transformations involving the del opera­
tor must be performed with extreme caution in order to 
avoid serious mistakes. For this reason, if there is any 
doubt about the final result, it is wise to verify it by 
the analytical method. 
238. Show that 

(a) 'V (-;-) =vVu~uVv; 

(b) VI (u) - I' (u) vu. 
239. Prove that the vector (Vu, vvl is solenoidal if 
u and v are differentiable sealar functions. 

Use the Hamiltonian operator del (V) to prove the 
following equations: 
240. (a) grad (uv) = v grad u + u grad v; 

(b) curl (a, b) - (b, V) a - (a, V) b + a div b -
- b diva. 
241. curl [a, rl = 2a, where a is a constant vector. 
242. Prove that the vector a = u grad v is orthogonal to 
curl a. 

Sec. 21. Second-order differential 
operations. The Laplace operator 

Second-order differential operations are obtained as 
a result of a twofold application of the operator 'V to 
fields. 

Suppose we have a scalar field u = u (M). In this 
field, the operator 'V generates a vector field vu = grad u. 

In the vector field vu, the operator V, when applied 
a second time to vu. yields the scalar field 

(V, vu) - div grad u (I) 

and the vector field 

(V, Vu) = curl grad u, (2) 

If a vector field a = a (M) is given, the operator V 
generates in it a scalar field (V, a) = div a. In the scalar 
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ield div a the operator V generates a vector field 

V (V, a) - grad div a. (3) 
In the vector field a = a (.M), the operator V also gener­
ates a vector field [V, a) = curl a. If the operator V is 
again applied to this field, we obtain the scalar field 

(V, lv, a]) - div curl a (4) 

and the vector field 

IV, lv, all - curl curl a. (5) 

The formulas (i) to (5) define what are called dtfteren­
tial operattons of the second order. 

Example t. Suppose a function u = u (x, y, z) has 
continuous partial derivatives up to second order inclu­
sive. Prove that 

curl grad u ~ 0. 
Solution. 1st method. Operating formally, we obtain 

curl grad u = [v. vu.l = rv. vl u = 0 

since [V, vl = 0 being the vector product of two i®ntical 
.. vectors". 

2nd method. Using the expressions for the gradient and 
curl in Cartesian coordinates and taking into account the 
given conditions, we have 

II j k I 
curlgradu= Tz i Tz- =fa%-(~)--fz-(~)]1 

au au au 
BiTyTz 

+[ * (~)-f.(~ )]i+[ +. (-~)-+. ( ~ )] k 

= (a~1=z- a~1;y) i + (a~1;x- !'~z}i+ (a:•;Y- ~·:z} k= 0, 

since the mixed derivatives are equal in this case, 

a•,t Olu iflu. o•u. o•u. R'u. 
Oyils 8t8y' Os8z Ozilz' 8z8y 8y8z" 
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In similar fashion proof is given that for the vector 
field 

a ~ P (z, y, ') i + Q (z, y, ')I + R (z, y, ') k, 
the coordinates P, Q, R of which have continuous partial 
derivatives of the second order, we obtain div curl a = 0. 

Note particularly the second-order differential opera­
tion div grad u = (V, vu). Assuming that the function 
u (.x, y, z) has second partial derivatives with respect to 
.x, y, z, we obtain 

<v. vu>=(.:Z.i+-fu-i+-fz-k, -£•+Wj+~k) 
=1;{~)+-fu- {~)+-1z.{~) =~+$+~==llu. 
Thus, (V, Vu) = llu, where the symbol 

llu==~+~+~ 
is termed the Laplace operator (or Laplacian). It may be 
represented as a scalar product of the Hamiltonian oper­
ator V into itself, that is, 

ll==(V, V)=V2=~+£s+fs. 
This operator plays an important role in mathematical 

physics. 
Let us examine another second-order operation curl 

curl a. We have curl curl a= IV, IV, alJ. Let us take 
advantage of the formula for a vector triple product writ­
ten as lA, IB, C]] ~ B (A, C) - (A, B) C. Replacing 
A by v, B by v, and C by a, we obtain 

lv, lv, all~ v (V, a)- (V, V) a~v (V, a)- 6a (6) 

or 
curl (curl a) = grad div a - lla, where lla = 

~ 6P·i + 6Q·l + 6R·k. 

The following table is a pictorial display of second­
order differential operations: 
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1--.. -.. - ---~,--------

! 1 .... dd.n 1 

,; I di' gnd u '" I di' oud a 0 

~I I'"''"'''· _ curl grad u 0 grad div 8 t.a 

Example 2. The laws of the classical theorem of electro­
magnetism are postulated in the form of a system of 
Maxwell equation. 

In the most elementary case of a nonconducting homo-­
geneous and isotropic medium and in the absence of 
charges and currents, this system is of the form 

+.;~Jv, HJ. (7) 

-+-':=IV, E], (8) 

(V, E)=O, 

(V, H)=O. 

(9) 

(10) 

Here, E and H are vectors of the eleetrie-field and mag­
netic-field intensity; e and JL are coefficients of the permit­
tivity and permeability (our assumptions are that e 
and J.l. are constants); c is the velocity of light in empty 
space. 

Since the spatial and time derivatives commute_, that is, 

f,1v. Hl=[v.~]. 
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it follows that by differentiating (7) with respect to t, 
we obtain 

-;:-;,~=[v.~]. 

Replacing ~~ taken from 

= -fi'<, ['1, Ell or 

(8), we get 

~~~=IV. IV. ElJ. 

e O'E 
caii""= 

(11) 

By virtue of formula (6), [<;>, [<;>, Ell= '1('1, E) - 6E. 

Since (V, E) = 0, it follows from (1.1) that?,-~= AE. 
To summarize, for the vector field E we obtain the 

equation 

~~ ="*AE. 

This is one of the basic equations of mathematical physics 
and is called the wave equation. 

It is easy to see (check this!) that the vector field H 
satisfies the same kind of wave equation 

~~=*l1H. 
Thus, under our conditions, each of the coordinates 

Er, E 11 , E, and Hr. H 11 , H, of the vectors E and H 
satisfies the equation 

~: =a2 ( :~ + ~~ + ~:). 
Here, a = clve;L" is the velocity of propagation of the 
process. In a vacuum, where e = fl = 1., we have a= c, 
that is to say, in a vacuum, electromagnetic processes are 
propagated with the velocity of light. 
243. Show that any solution of the equation IV, IV, A1J­
- filA = 0 that satisfies the solenoidal condition satisfies 
the Helmholtz vector equation 

17'A + k'A = 0. 
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Definition. The scalar field u = u (x, y, z) that satis­
fies the condition .1.u = 0 is termed a Laplace (or harmon­
ic) field. 

Example 3. An important instance of a harmonic field 
is the scalar field u=klr, k=constant, r = V x2 + y2 + z2• 

This function is the potential of a gravitational 
field generated by a point mass placed at the coordinate 
origin. It is•easy to verify that the function u = klr is 
harmonic everywhere except at the coordinate origin, 
where it is not defined. Indeed, 

(v. v+ )~k (v. v+) ~k (v. -},-w) 
= -k (v, {r0 ).'= -k (vj-, ro) -kf.-(v, ro) 

= -k ( -}vr, .-o)--t,<v, ro) 

=-}(ro, rO)-~(V, r0)=~-+.-·+=0 
for all r + 0 since 

(V, •"l~ (v. +)~(v+. •)++tv. •l 
=(-~. r)++=--;i-(r0 • r)+4 

= -+(rO, ro)+~= -+++=-?. 
Eumple 4. Prove that in the potential field of a vec­

tor a its potential function u (x, y, 2) satisfies the Pois­
son equation 

du=:~+~+~=p(x, y, 2), (12) 

where p (x, y, 2) is the divergence of the vector a. 
Solution. It is given that 

diva= p. (13) 

Since the field of the vector a is a potential field, 
it follows that a = grad u, where u is the potential of 
the field. Substituting a = grad u into 13), we obtain 



Sec. 21] Second-order differential op,atWn• 141 

div grad u = p or, since div grad u = 6.u, have 
O.u = p. 

In the special case of points of the field where the diver­
gence is zero, equation (12) turns into the Laplace equa­
tion 6.u = 0. The Laplace-Poisson equation permits find­
ing the potential function u by integrating the partial 

++++++ ++++++++ v, ,, 
Fig. 36 

differential equation. This turns out to be more convenient 
in some problems. 

In electrostatics, preference is often given to finding 
the function v = -u instead of u. Then a = -grad v. 
Accordingly, in the theory of the electrostatic field, the 
Poisson equation is of the form 

~+$+~=- 4:P. (14) 

Let us consider an elementary case where the Poisson 
equation is employed. 

Example 5. Suppose two infinite parallel plates AA 1 

and BB1 with opposite charges have potentials v1 and v:a: 
for the sake of definiteness, v1 > v,. Find the field E 
between them (Fig. 36). 

Solution. Send the z-axis at right angles to the plates 
in the direction of decreasing potential, and bring the 
yz-plane to coincidence with the positively charged plate 
AA 1• We now seek the potential function from the Pois­
son equation. By virtue of the symmetry of the problem 
about the x-axis and due to the infinity of the plates, 
we can conclude that the equipotential surfaces are planes 



"' Second-Order DiQerentlal Operaltons [Cb. V 

parallel to the plates, and the function v depends solely 
on the variable x. Equation (14) takes the form 

~=0 (15) 

since space charges are absent throughout the space be. 
tween the plates. Integrating (15), we find 

(16) 

where C1 and C2 are arbitrary constants. 
We require that for x = 0 the function u take the value 

u1 and for x = d, where d is the distance between· the 
plates, that it take the value v2• This yields C1=v1 , v2= 
= C1d + C1 , whence C 2 = v1 , C1 = (v2 -v1)/d. Substi­
tuting these values of cl and c2 into (16), we obtain 

V= v,-;;"lx+vt =llt- v,-:;v'x. 

The vector E is found from the formula E = -grad v, 
which yields 

E=v,-;v, i 
so that the field is homogeneous and in the direction of 
the :r-axis. The magnitude of E is equal at every point to 
I E I = (v1 - v1)/d, that is, it is equal to the potential 
drop per unit length of the shortest distance between the 
plates. 
244. Suppose a scalar function cp (M) satisfies the Laplace 
equation. Show that the vectorvcp is solenoidal and irrota­
tional. 
245. Show that 11 (uv) = u 11v + v 11u + 2 (vu, vv). 
246. Prove that if r is the radius vector, then 

11r= {
+in space, 

+ in the plane. 

247. Check to see whether the following scalar fields 
are harmonic or not: 

(a) u = .x2 + 2xy - y2 , 

(b) u = x2y + y2r. + r.2.z, 
(c) u = xz - yz. 
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248. Show that the scalar field 

u=ln+, where r= V xz+y2 (r=#:O), 

is harmonic. 

143 

249. Find all harmonic fields that depend solely on x. 
250. Find the general form of a homogeneous harmonic 
polynomial of second degree in x and y. 
251. Find all solutions of the Poisson equation .6.u = 
= xn-'1. that depend solely on x. 

Example 6. Green's formulas. Let c:p, 1.j> be two scalar 
functions of a point. Set up the vector a = c:p grad 1.1'­
Then 
div a = div (c:p grad 1.1') = c:p div grad 1.1' + (grad c:p, grad W) 

- ~· <\'i> + (grad~. grad 'i>l· 
Now apply the Gauss-Ostrogradsky formula 

~(a, n°)d<r-JJ J divadv. 

Note that in our case 

(a, n°)=(c:pgrad1.j>, n°)=c:p(gradW, n°)=c:p~. 
We thus obtain Grtum's first formula: 

J J J (~d'i>+(grad~, grad1j>)jdv-@~];!.do, (17) 
v • 

which for <p = 1.j> turns into 

J J J J~<\~+[grad~[2jdv-@~~do. (18) 
v • 

If we put c:p ::=:; t in (17) we get 

J J J d1)>dv- ~~do. 
v 

In (17), interchange <p and 1.j> and subtract the resulting 
formula 

f J J ('l>d~+(gradi>, grad~)Jdv-@')~do 
v r 
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from (17). This then yields Green's second forrnula: 

j jJ (~1>~-~-~~~)dv~@(~~-~~)dcr. 
v ' 

It is assumed here that all functions that we have to deal 
with and also all their derivatives that occur in the for­
mulas are continuous in the region under consideration. 

Example 7. Find the surface integral 

l=~q~*dcr 
' taken over the sphere 1::: r,2 + y1 + z3 = 1 for q> = 

= x2 + y?. and 1.1' = yz + z2. 
Solution. By Green's first formula, the desired integral 

is 

I~ J J J ~~~~~ + (grod ~. grad ~)I dv, 
v 

where the region of integration V is a sphere: x2 + y2 + 
+ z2::;;;:; 1. 

We have .6.1)> = 4, grad <p = 2xi + 2yj, grad 1f! = 
= 2yj + 2zk, (grad IJl, grad 'IJl) = 4y2 and therefore 

I~ J J J (4x'+4u'+4y')dv~4 J J J (x'+2y')dv. 

Passing to the spherical coordinates x = r cos <p sin a, 
y = rsin cpsin9, z = rcose, we obtain 

1=4 J J J (r2cos2q>sin29+2r2sin2cpsin2.9)r2sin9drd9dcp 
v 

2n n 1 

=4 j (cos2 cp+2sin2 cp) dcp J sin39d9 J r'dr 

' ' ' 2n n =-}I (1+sin2 cp)dcp I (1-cos2 8)sin9d9 

=-¥-n ( -cos8+fcos3 e) 1: ={ n. 
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Example 8. Find the surface integral 

I~@ H~--w~) da 

' taken over the surface Z: xi+ y' = R2 , z = 0, z = H, 
H > 0, provided <p = r + y2 + X + z, ~ = r + y2 + 
+ 2z + x. 

Solution. By Green's second formula, the desired inte­
gral is 

I~ J p (~11'1>-'l>ll~)dv. 
For the given functions <p and~ we have 6-<p = 4, 6.1Jl = 4 
and therefore 

I~ -4] iJ zdv. 

Passing to the cylindrical coordinates x = p cos <p, y = 
= p sin ql, z = z, we obtain 

I~ -4 J J J zpdpd<pdz~ -4 t d~ I pdp r zdz 

E.umple 9. Find the surface integral 

l=@<p :: da 

' over a closed surface l: bounded by the planes x + y + z = 
= 1, x = 0, y = 0, z = 0, provided <p = tf' sin y + 1. 

Solution. The given function is harmonic since 6-<p = 
= e" sin y - e" sin y == 0. Therefore, by (18) we have 

I~.\ p jgrad~J'dv. 
We find the modulus of the gradient of the function <p: 

grad <p = e" sin y·i + tf' cos y•j, I grad <p I = e". 

The desired integral is equal to 
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252. Compute the surface integral 1 =@ q> *do over 

' a closed surface l:: {x2+y2 +z2 =1, y=O, y¢0}, 
provided q>=z2, lp=xz+y2-z2. 

253. Compute the surface integral I=@ ( q>~- W~) do 

' taken over the entire surface of a closed cylinder l:: 
{xz+yz=1, z=O, z=i}, provided q>=2x2, ~=xZ+zz. 

254. Compute the surface integrall=~cp*da, pro-

' vided q>=(x+ y+z)IV 3and l: is a sphere: xz+yZ+zZ=Rz. 

255. Find the surface integral I=§~ da, provided 

' rp=exsiny+e11 sinx+z and I is a triaxial ellipsoid 
(x'ia') + (y'lb') + (z'lc') ~ 1. 

Sec. 22. Vedor potential 
Let a vector field 

a = a (M) = P (•, y, z) i + Q (•, y, z) j + R (•, y, z) k 
be solenoidal in the region G, that iB, div a (M) = 0 in G. 

DefiniUon. The vector potential of a vector field a = 
=a (M) is a vector b (M)~P, (•. y, z) i + Q, (•, y, z) j + 
+ R1 (x, y, z) k that satisfies in G the condition 

curl b (M) = a (M) (1) 

or, in coordinate form, 

"u~'- az, =P, a~,- aa~' =Q, aa~~- a~~ =R. (2) 

For a solenoidal vector field a (M) the vector potential 
b (M) is not defined uniquely: the condition (1) is also 
satisfied by tbe vector B (M) = b (M) + grad 1 (M), 
where f (M) is an arbitrary differentiable scalar function, 
since curl (grad I (M)) ~ 0. 

Thus, two vector potentials of the solenoidal field a (M) 
differ by the gradient of the scalar field. 
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Finding the vector potential b (M) of the solenoidal 
field a (M) reduces to finding some particular solution of 
system (2) of three partial differential equations for the 
three unknown functions P 1 (x, y, z), Q1 (x, y, z), 
R, (x, y, z). 

The vector potential b (M) may be constructed in the 
following manner: Taking advantage of the arbitrariness 
of choice of the vector b (M),· we will simplify matters by 
setting P 1 (x, y, z) === 0, that is, the vector b (M) will 
be sought in the form b (M) = Q1 (x, y, z) j + 
+ R1 (x, y, z) k. Then the system of differential equa­
tions (2) for finding the unknown functions Q1 (x, y, z) 
and R1 (x, y, z) takes the form 

!!!.!__!!h_=p 
01} Oz ' 

iJ~~=-Q, (3) 

From the second and third equations of this system we 
find 

R,(x, y, z)~- J Q(x, y, z)dx+C,(y. z), 

Q,(x, y, z) ~ J R (x, y, z) dx+ C, (y. z), 

where C1 (y, z) and Ca (y, z) are any differentiable func­
tions of y and z. For the sake of simplicity, set C2 (y, z) === 
=== 0 and choose the function cl (y, z) so that the first 
equation of system (3) is satisfied. To do this, we sub­
stitute into the first equation the expressions that were 
found for Q1 and R1: 

-i J Q(x, y, z)dx+ ~~~ --:: J R(x, y, z)dx 

~P (•, y, z). 

From this we get 

ac, • r • r 8g=ay J Q(x, y, z)dx+Di" J R(x, y, z)dx+P(x,y,z). 
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It is easy to verify that the right-hand side of this 
equation does not depend on x; this is because div a (M) = 
= 0 in G. 

Integrating the last equation with respect to y, we find 

C,(y, •)= J [f, J Q(x, ·'' z)dx 

+-f.. J R(x,y,z)dx+P(x, y, •)]dy+C3 (z). (4) 

Setting C 1 (z) ;;;;;; 0 in (4) and substituting (4) into the 
expression for R1 (x, y, z), we get a particular solution 
of system (3): 

Pt~o. 

Q,= J R(x, y, z)dx, 

R 1 = J [ -k j Q (:c, y, z)dx+.:Z J R(x, y, z)dx 

(5) 

(6) 

+P(x, y, z)]dy- J Q(x, y, z)dx. (7) 

The vector b (M), whose coordinates P 1 (x, y, .z), 
Q1 (x, y, z), R1 (x, y, z) are defined by formulas (5), 
(6), (7), is the vector potential since it satisfies the condi­
tion curl b = a. --

Example 1. Find the vector potential b = b (x, y, z) 
for a solenoidal field given by the vector 

a=2yi-zJ+2xk. 

Solution. We seek the potential b in the form 

b = b (x, y, z) = Q, (x, y, z) j + R,(x, y, z) k, 

where Q1 (x, y, z) and R1 (x, y, z) are found from (7) 
and (8). Since in the given case P = 2y, Q = -z, R = 
= 2x, we obtain 

Qdx, y, z)= j 2xdx=xz, 

Rt(x, y, z)=) zdx+ J 2ydy=xz+y2. 

Thus 
b (x, y, z) = x'j + (xz + y') k, 
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It is clear, by direct verification, that curl b = a, 
and, hence, this vector is the vector potential of the given 
field. 

Remark. Due to the arbitrariness in choosing the vector 
b, we could require Q1 (x, y, z) == 0 or R1 (x, y, z) == 0 
instead of P1 (x, y, z) == 0. The system of equations (2) 
and formulas (5), (6), (7) would naturally change. 

Find the vector potentials of the following solenoidal 
fields: 
256. a ~ I + I + k. 
257 •• ~ 2yl + 2zj. 
258. • ~ (e" - e') k. 
259. a ~ 6y'l + 6zj + 6zk. 
260. • ~ 3y'l - 3z'J - (y' + 2z) k. 
261. a = yCC11 + 2yzj - (2xyzer• + z:a) k. 

If the vector field a = a (M) is solenoidal in the re­
gion G, which is star-shaped (see Sec. 19, Chapter IV) with 
centre at the coordinate origin 0 (0, 0, 0) [the field a (M) 
may not be defined at the point OJ, then one of the vector 
potentials b = b (M) may be found from the formula 

I 

b(M)~ r (a(M'), •(M))tdt, (8) 

where r (M) = xi + yj + zk is the radius vector of the 
point M (x, y,· z) and the point M' (tx, ty, tz) runs 
over the line segment 0 M as the parameter t varies 
from 0 to 1. 

Example 2. Use formula (8) to find the vector poten­
tial of the solenoidal field 

a~2yl-zJ+2zk. 

Solution. The given vector field is defined throughout 
three-dimensional space, which is a star-shaped region 
with centre at the coordinate origin, and so we can use (8) 
to find the vector potential. At the point M' (tx, ty, tz) 
we have 

a (M') ~ 2tyl - tzj + 21zk. 
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We find the vector product 

I I . k I 
(a(M'), •(M)J~ 2ty _:, 2tx 

X y Z 

-1- (2xy+z') I+ (2x'-2yz) j + (2y' +xz) k]l. 
Using (8), we obtain 

I 

b (M) ~ J f-(2xy+z')l +(2x'-2yz)j +(2y'+xz)kft'dt 
0 

= --}(2xy+ zZ) I +-}(xZ-yz) j +-}(2y2+xz) k. 

It is easy to establish that curl b (M) = a (M). 
Remark. In examples 1 and 2 we obtain different vector 

potentials for one and the same solenoidal fiel£t a = 
~ 2yl - zj + 2xk: · 

b1 (M) ~ x'j + (xz + y') k, 

b,(M) ~ -+(2•y+z')l +{(x'-yz) j ~+(2y'+xz) k. 

They differ by a term equal to the gradient of some 
scalar field f (M). This term plays the role of an arbitrary 
constant (when acted on by the curl). It may be repre­
sented as the gradient of some scalar functioa. f (M). 
Let us find this function in our example. We have 

g•ad f(M)~b, (M)-b,(M) 

= }<2xy+z2) i+-} (x2+ 2yz)j+ +(2xz+y2)k. 

To find the scalar field f (M), use formula (3) of Sec. 19, 
in which we take the coordinate origin 0 (0, 0, 0) for 
the point (z0 , y0 , z0). This yields · . ' . 
f(M)~ ~ O·dx+ ~ .j-x'dx+ ~ +(2xz+y') dz+C 

=-{- (z2y + y2z + z2z) + C, 

where C is an arbitrary constant. 
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Example 3. Find the vector potential b of a magnetic 
field H set up by an electric charge e that is moving with 
a constant velocity v. 

Solution. By the Biot-Savart law, the intensity of the 
magnetic field is 

H(M)= r:~;l (9) 

where r is the distance of point M from the charge e. 
Since H is a solenoidal vector, that is, div H = 0, 

there exist.'! for it a vector potential b such that H = 
= curl b or, taking into account formula (9), 

curlb= 1:~;1 =-fn [v~r]. 
Let us rewrite this formula as 

curlb-i,;- {[ ev, +,-•]+ [ ev, f.- i] + [ ev, +.- k ]} 
=-.'n-{[1, -'~,']+[i, -'~v]+[k, --';;-]} 

=-in{[•. ;.- ( -7) ]+[i.-f.- ( -';'-)J+[k. -H~) ]}. 
Employing the readily verifiable equation 

curia= [1, *"J+[i. T.-J+[k. T,J. 
we obtain 

curlb=*curl-=;-, 

whence 

b=_!_ !:!... 

'" ' UsinJ;t formula (8), find the vector potentials of the 
following solenoidal fields defined in star-shaped regions: 
262.a=l. 
263. a = 6xl - 15yj + 9zk. 
264. a = s..'yl -,- I Ozyzk. 
265. a = 2 cos xz·j. 

_266. a= ~:~+Y~j , x2 + y2 > 0. 



CHAPTER VI 

CURVILINEAR COORDINATES. 
BASIC OPERATIONS 

OF VECTOR ANALYSIS 
11\ CURVILINEAR COORDINATES 

Sec. 23. Curvilinear coordinates 

In many problems it is more convenient to define the 
position of a point Min space by three numbers (q1 , q1 , q3) 

instead of the three Cartesian coordinates (.x, y, z). These 
numbers often prove to be more suitable to the problem at 
hand. 

L6t every point M be associated with a definite number 
triple (q1 , q2 , q3) and, conversely. let every number triple 
correspond to a unique point M. Then the quantities 
q1, q2, q3 are termed the curviltMar coordinates of the 
point M. 

The coordinate surfaces in a system of curvilinear 
coordinates qlt q2,- ·q3- are the surfaces 

q, ~ c,, (!) 
q, ~ c,, (2) 
q, ~ c,, (3) 

on which one of the coordinates remains constant. 
The line of intersection of two coordinate surfaces is 

called a Cl!_Qrdinate line (azis). 
The coordinates q, and q3 maintain constant values 

along the line of intersection of the coordinate surfaces 
(2) and (3); it is only the coordinate q1 that varies:_ Simi­
larly, on the lines of intersection of the surfaces (1) and (3) 
and (1) and (2), it is q2 and q3 that vary respectively. 

Let us introduce the unit vectors !l.J• e1, e3 directed 
along tangents to the coordinate axes.. (q'J, (q2), (q3) at 
the point Min the direction of increasing variables q1 , q,, 
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q3 respectively (Fig. 37). Let us agree to take the unit 
vectors e1, e2 , e9 always in that order so that, taken 
together, they constitute a right-handed trihedral. 

The basic difference between curvilinear coordinates and 
Cartesian coordinates is this. In the Cartesian system, the 
vectors e1, e 2 , e9 are constant for all points of space 
and are equal, respectively, to I, j, k. In any other 

(q,} 

., 
o, 

Fig. 37 

system, they will, generally speaking, change their direc­
tions when passitJ,g from one point, M, to other points. 

AB examples of curvilinear coordinates we consider 
cylindrical and spherical coordinates. 

1. 0 • Cylindrical coordinates. The position of a point M 
in space is defined in cylindrical coordinates by three 
coordinates: 

q1 = p, 0 ~ p < +oo, 
q2 = cp, 0 ~ cp < 2n, 

q9 = z, -oo < z < +oo. 
(4) 

The coordinate surfaces are: 
p = constant: circular cylinders with the z-axis; 

cp = constant: half-planes adjoining the z-axis; 
z = constant: planes perpendicular to the z-axis. 

The coordinate lines (or axes) are: 
(p): rays perpendicular to the z-axis and having their 

origin on that axis; 
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(q>): circles with centre on the z-axis and lying in 
planes perpendicular to that axis; 

(z): straight lines parallel to the z-axis (Fig. 38). 
Cartesian coordinates are 

related to cylindrical coor­
dinates by the following 
formulas: 

X= pCOSIJI, 

y ~ p sin ~. (5) 

2°, Spherical coordinates. 
In spherical coordinates, 

e, the position of a point M 
8 in space is defined by the 

u.na"(jJ) following coordinates: 
q1 = r, 0 ::;;;; r < +oo, 
q, = a, 0 < a < n, (6) 

q3 = q>, 0 ::;;;; q> < 2n. 

The coordinate surfaces 
are (Fig. 39); 

Fig. 38 r = constant: spheres 
centred at 0: 

a = constant: circular half-angle cones with the 
z-axis; 

q> = constant: half-planes adjoining the z-axis. 
The coordinate lines are: 

(r): rays emanating from the point 0; 
(9): meridians on a sphere; 
(.:p): parallels on a sphere. 

Cartesian coordinates are related to spherical coordi-
nates via the following formulas: 

X = r COS ql sin 9, 
y = r sin cp sin e, 
z = r cos e. (7) 

A system of curvilinear coordinates is said to be or., 
thcgomzl if at every point M the unit vectors e1, e2, e3 
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are pairwise orthogonal. In such a system, the coordinate 
lines and the coordinate surfaces are also orthogonal. 
Systems of cylindrical and spherical coordinates are instan­
ces of orthogonal curvilinear systems of coordinates. 

Fig. 39 

Henceforth we consider only orthogonal systems of coor­
dinates. 

Suppose r = r (qu q1 , q3) is the radius vector of 
a point M. Then 

dr = H 1 dq1 e, + H 2 dq2 e, + H 3 dq3 e3 • (8) 

Here 

Ht=V(*'r+(~) 2 +(~f. i=1. 2. 3 

are the Lame coefficients of the given curvilinear system 
of coordinates. 

In cylindrical coordinates, 
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By virtue of (5) we have 

H, ~ H, ~ y'- 7( ~:;;,;-;-);-2 +-(-.~"''7) 2;-+--,-( }"'";-;-;;) 2 ~ 1, 

H,~H,~ J/ (F.- )2 + (~) 2 +(To- )'~p, 

H,~H,~y (-*) 2 +(-*)' + (*) 2 ~L 
In spherical coordinates, 

q1 = r, q2 = 9, q3 = If!. 
By virtue of (7) we have 

H, ~ H, ~ V "( ~;;-:-;-;) ''+--;("*")'' +~( };;;-; ") 2 ~ 1, 

[Ch. VI 

H2 ~H, ~ V ( -lij-)' +( ~ )' + (T.-) 2 ~'­

HJ=H~= V (*r +(*) 2 + (~Y=rsine. 
The quantities 

az1 = n. aq,, i = 1, 2, s 
that appear in formula (8) are differentials of the arc 

~~~~~~~r~ftJ!: ~~~::~a~fs ~in~r!n s:;;l~bce:r::~::::~:h~~ 
the Lame coefficients. -For instance, in the case of cylin­
drical coordinates (4) (see Fig. 38), the differentials of 
the arc lengths of the coordinates lines (p), (q~). (z) are 

d (p) = 1-dp, whence H1 = 1; 
d ('P) = p·diJi, whence H2 = p; 
d (z) = 1-dz, whence H 3 = 1. 

It is just as easy to obtain expressions for the Lame 
coefficients in the case of spherical coordinates (6). 

Sec. 24. Basic operations 
of vector analysis in curvilinear 

coordinates 

1°. Differential equations of vector lines. Suppose we 
have a vector field 
a= ~ (qu qz, q3) el + at (qt, q,, q3) et + aa (qt, q't, qa) e3. 
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The vector-line equations in curvilinear coordinates 
q1, q,_, q3 are of the form 

11 1 dq 1 H 1 dq 1 H8 dq~ 

al (q" q,, qa) =a, (ql, q,, q3) = aa (ql, q,, q3) · 
In particular, in cylindrical coordinates (q1 = p, q1 = cp, 
Q3 = z): 

dp p do:p dz. (1) 
a1 (p, o:p, z) = a1 (p, o:p, z.) = a3 (p, o:p, z.) ; 

in spherical coordinates (ql = r, q, = e, q3 = cp): 
dr rd6 rsinado:p 

al(r, a, o:p) = al(r, a, o:p) = a3(r, a, o:p). 

Example 1. A vector field is given in cylindrical coor­
dinates 

a (M) = ep + cpeqo. 
Find the vector lines of the field. 

Solution. It is given that a1 = 1, a, = <p, a3 = 0. By 
virtue of formula (1) we have 

whence 

~= p:o:p =4;-. 
z = C1 , 

P = C,cp, 

which are Archimedean spirals lying in planes parallel 
to the xy-plane. 

2°. The gradient in orthogonal coordinates. Suppose we 
have a scalar field 

Then 

gradu=};~e1 +*~e2 +-J; :q: e3• 

In particular, in cylindrical coordinates (q1 = p, q2 = 
= rp, Q3 = z): 

gradu=~ep++"*e"+-%; ez; (2) 
in spherical coordinates (ql = r, q, = e, q3 = cp): 

grAd u=Trer++..; e9 + rsitn 0*c"'. (3) 
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Example 2. Compute the gradient of the following sca­
lar field specified in cylindrical coordinates (p, <p, z): 

u = p + zcos<p. 

Solution. Using formula (2), we obtain 

grad U= 1·ep-+ z sin <p·e~+ cos <p·ez. 

Example 3. Find the gradient of the following scalar 
field given in spherical coordinates (r, a, <p): 

u=r+ si~B -sin9cosrp. 

Solution. Using formula (3), we have 

gradu= ( 1- si~e) er+ cO: a ( +-cosq~) ee+ si;cp e.,. 

3°. The curl ~ ortJwgonal coordi1Ultes. ~uppose 

a=at (qt, qz, qa) el + az (qt, q'2, qa) e2 + aa (qt, qz, qa) ea. 

Then 

I 
H,~3 e 1 ' H 1

1
H 3 ez H1~2 e,l 

curl a= a a iJ • 
aq.- aq.- a;; 

a1H 1 a2H2 a,Ha 

In particular, in cylindrical coordinates (q1 = p, q2 = 
= <p, qa = z): 

l
fcp e"' -i-ezl 

cud a~ _!._ _!._ _!._ ; 
ap ihp az 
a1 ~ a3 

(4) 

in spherical coordinates (q1 = r, q2 = e, q3 = ip): 

1

1 1 1 I r'sine e, rsin6eo-;-e" 

curia= iJ iJ iJ • 
Tr 86 ~ 

al raz rsin9·aa 

(4') 
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Example 4. Compute the curl of the following vector 
field specified in cylindrical coordinates: 

a=sin<p·e11 + ~1' e"'-pze,, 
Solution. Taking advantage of formula (4), we get 

l
+e11 ecp -%-e,l 

curla~ _!__ _!__ _!__ =-'-e,(0-0)-e,(-z-0) 
OpO~pO: p 

SID<p COS<p -pz 
+fez(O-cos<p)=ze..,- co;q> 6z. 

4°. The divergence in orthogonal coordinates. Suppose we 
have a vector field 

a=al (qll q,, 9a) el + a2 (qh 9t• qa) es + aa (ql, q'l, qa) ea. 

Then 

div 8 = Hl;sHr [ O(a~~~IH3) + 0(4•~;Ha) + 0 (4~~:H•) J • 
In particular, in eylindriC"al coordinates (q1 = p, q1 = cp, 
qa = z): 

diva=f a':;J) +t~+~; 
in spherical coordinates (ql = r, q, = e, q, = cp): 

diva=-f. O(~:aJ) +rsi~fJ O(si:efJ·a~) +,s:ne~· (5) 

Example 5. Show that the vector field 

8=2~~0er+ s~O ee 

is solenoidal. 
Solution. Using formula (5), we have 

diva= -ft f ( r2 2c~s9} + rsitne fa {sine si~~e ) + 0 

=} (- 2 c,~sfJ} + ,... 9
1in62sin9cos9=0 

wherever r :::p 0, which means that the field of the vector 
a is solenoidal at all points with the exception of r = 0. 
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267. Find the equations of the following vector fields: 

(a) a=ep++e"'+e,; 

(b) a=pep+<fle~+ze1 ; 

(c) a=2a~~e e,+ o::i~na e9 , a=constant. 

Find the gradients of the following scalar fields. 
(a) In cylindrical coordinates: 

268. u = p2 + 2p cos fP - e' sin fP· 
269. u = p cos 'P + z sin2 q>- 3~>. 

(b) In spherical coordinates: 
210. u = r cos e. 
271. u = 3r2 sin e + e• cos <p - r. 

272. IL=fl c~a, f.L=Constant. 

Compute the divergence of the following vectors. 
(a) In cylindrical coordinates: 

273. a = pep+ z sin !p·e. + e"' cos z·e ,. 
274. a= q> arctan p·ep + 2e,- z21fe 1 • 

(b) In spherical coordinates: 

275. a=r2e,-2cos2 q>·e11 + ,~~ 1 eop. 

Compute the curl of the following vector fields: 
276. a= (2r +a cos cp) e,- a sin 6·eo + r cos 6-e"', 
a = constant. 
277. a= re. + 2 cos 6·ee- q>e". 

278. a=COSIJI·ep- si:cp e"'+pZe,. 

279. Show that the vector field 

a= 2~~s0 e,+si~3 0 ee 

is a potential field. 
280. Show that the vector field 

a=f(r)e,. 

where f is any differentiable function, is a potential field. 
5°. Computing the flu:x: in curvilinear coordinates. Let 

S be a part of the coordinate surface q1 = C, where C = 
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= constant, bounded by the coordinate lines 

ql = a 1, q, =a, (a1 <a,); 
q, - ~.. q, - ~. (~, < ~.). 

Then the flux of the vector 

l6t 

a = al (ql, q,, qs) el + a1 (q1, q,, q3) e 2 + a3 (q1, q1, q3) e3 

through the surface 8 in the direction of the vector e1 is 
computed from the formula 

a;,jl, 

11= J;, at(C, qz, 9a)Hz(C, q2, q3)Hs(C, q2, q3)dqa dqz. -. ~ 
The calculation is similar for the Ilux of a vector 

through a part of the surface q1 = C or through a part of 
the surface q3 = C, where C = constant. 

Example 6. Compute the flux of the vector field, speci­
fied in cylindrical coordinates, 

a=pep+ze"' 
through the outer part of the lateral surface of the cylin­
der p = 1, bounded by the planes z = 0 and z = 1. 

Solution. The cylinder is the coordinate surface p = 
= C = constant and so the desired flux 

2n I 

11= J J CZdzdq>=2nC2 , 

0" 
whence for the surface p = 1 we obtain 

11 = 2n. 
Example 7. Find the flux of the vector field, specified 

in spherical coordinates, 
a= rl9er + rtfJ6ee 

through the outer side of an upper hemisphere 8 of ra­
dius R with centre at the coordinate origin. 

Solution. The hemisphere S is part of the coordinate 
surface r = constant, namely, r = R. On the surface 8 
we have 

q1=r=R; qz=9, O~e~f; 
q3 =q>, O~q><2n. 
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Taking into account that in spherical coordinates 

H1 =Hr=1, H2 =Hs=r, H3 =H~=rsin8, 

we find, via (ti), that 
'fl/2 2'ft Jt/2. 

II= J d8 J R'tlsin9dq~=2nR' j 6sin8d6=2nR~. 
c " • 

Compute the flux of the vector field, specified in 
cylindrical coordinates, through the given surface S. 
281. a= pe11 - cos <p·e., + ze:; S is a closed surface 
formed by the cylinder p = 2 and by the planes z = 0 
andz=2. 
282. a = pe11 + p<pe"' - 2ze .; S is a closed surface 
formed by the cylinder p=1, the hnlf-planes <p=Oand 
<p = n/2, and by the planes z = -1 and z = 1. 
283. Find the flux of the vector field a = (1/ri) e,. through 
a sphere of radius R with centre at the coordinate origin. 
284. Find the flux of the vector, specified in spherical 
coordinates, 

a= re,. + rsin 8-ee- 3np sin 6-e., 

through an upper. hemisphere of radius R. 
285. Find the flux of the vector, specified in spherical 
coordinates, 

a= r'Zer + R 2 cos qJ·e,.. 
through the sphere r = R. 
286. Find the flux of the vector, specified in spherical 
coordinates, 

a= rer- rsin e.e'l' 
through a semicircle of radius R located in the half-plane 
Ql = n/4 (the flux is taken in the direction of the vector 
e..,). 
287, Find the flux of the vector, specified in spherical 
coordinates, 

a= rsin fee+rsin e COStp•eqo 

through the outer side of part of the half-angle cone 
v 3z2 = r + y2 , bounded from above by the plane z = 
~ j/3 (0.;;;'.;;; j/3). 
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6". Finding the potential itL curvilinear coordinates. Giv­
en, in curvilinear coordinates q11 q:11 q3 , the vector field 

a (M) = a1 (q1 , qt> q3) e1 + a2 (q1, q1 , qs) e1 + 
+ lis (qJ, q,, qs) es: 

this is a potential field in some region Q over which 
the variables q1, q2 , q3 range, that is, curl a = 0 in 0. 

To find the potential u = u (q1 , q2 , q3) of this field, 
write the equation a (M) = grad u (M) as 

a1e1+a2e2+a3ea=·i :q~ e,+i~e2+-J;-~ea. 
From this it follows that 

:q~ =a1H 1, ~=a2H2, ~=a3H3• (7) 

This is a system of partial differential equations whose 
integration yields the desired potential u=u (q1, q3 , q3) + 
+ C, where C is an arbitrary constant. 

The system (7) of differential equations is solved in 
the same way as in finding the potential in Cartesian 
coordinates 

The system (7) of differential equations is of the fol­
lowing form: 

(1) In cylindrical coordinates (q1 = p, q1 = fV, q3 = z), 

~=a.,, *=pa,., *=a,. (7') 

(2) In spherical coordinates (q1 = r, q3 = 9, qs = fV), 

Tr=a,, *=rae, *=rsin9·a.p. (T) 

Example 8. Find the potential of the following vector 
field specified in cylindrical coordinates: 

a= (are~n 1 +cos fV) ep-sin q>·e111 + il~~~ e,. 
SolutUm. By formula (4) we find 

curl a= 

1 
pep 

a 
dP 

arct;n z + cosq~ 

.. 
a .. 

~psincp 
lnp 
t+s1 

(p>O) • 
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This is a potential field. The desired potential u = 
= u (p, cp, z) is the solution of the following system of 
differential equations: 

au. arctan z + l ap=-.- cosrp, 

~= -psinq>, l 
au lnp 
{h= 1+zs• 

From the first equation, integrating with respect to p 
we obtain 

u = In p·arctan z + p cos cp + C (cp, z). (8) 
Differentiating (8) with respect to q>, we get 

~=-psinrp+* 
and since {Ju/Orp = -p sin q:., it follows that fJC/Ocp := 0, 
that is, C = C1 (z). Thus 

u = ln p·arctan z + p cos cp + cl (z), 
whence 

%i- = 1~~2 + C~ (z). 

By virtue of the third equation of the system we hav.e 

i~~~~ = 1~~~. + c; (z) 

or c~ (z) == 0, whence cl (z) ~ c = constant. 
To summarize, the potential of the given field is 

u (p, rp, z) =In p·arctan z + p cos cp +C. 
In the following problems, verify that the vector fields 

given in cylindrical coordinates are potential fields and 
find their potentials. 

288. a=ep+Te,p+e,. 

289. a=pep+fe,p+zez. 

290. a= <pzep+ze.,+pcpe,. 

291. a= ell sin cp·ep+ + ePcos<p ·e"'+2zez. 
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292. a= cpcosz·ep +cos Z·e,p+pcpsin Z·ez. 
Example 9. Find the potential of the following vector 

field given in spherical coordinates: 

a=+e~er+ ,.88
1i:"8 e8'Pe.,+ ~r cpe~es. 

Solution. Using (4'), we find that 

l
e, re, rs;no ... l 

t .i_ .!..._ ..!..._ 
curia= r'sinO iJr iJ8 iJcp =0. 

+e~ cplnr·e&-P 6lnr·eeq, 

This is a potential field in the region where r > 0, 6 =I= rut 
(n =0, ±1, ... ). 

The sy:11tem (7) of differential equations for finding the 
potential u = u (r, e, q~) is of the form 

*=+e~. 
~=cpe&!Plnr, (9) 

~=6e84'lnr. 
Integrating the first equation of system (9), we obtain 

u = e'o ln r + C (~. 0). (10) 
Differentiating (10) with respect to e and taking into 
account the second equation of the sy:11tem, we have 

cpe~lnr=cp~lnr+:;. 
That is, aC/06 ~ 0, whence C (q>, 6) ~ C1 (cp) and 
therefore 

u = e9" In r + C1 (cp). (11) 

Differentiating (11) with respect to cp and taking into 
account the third equation of system (9), we obtain 

eee" In r= 6e8" In r+ c; (cp) 
or c; (cp) == 0, whence C1 (cp) == C = constant. The 
desired potential is 

u (r, 0, ~) = e'o ln r + C. 
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Establish the potentiality of the following vector 
fie1ds, specified in spherical coordinates, and find their 
potentials. 
293. a= 9er + ee. 

294. a =2re,+ rs:n aeq,++ee. 

295. a=fcpZe,+ si:e e.,+~eo. 
296. a =Co.s<p sin 9-e.+ coscpcos9-e8-sin !p·e.,. 

297. a=e•sin9-e,++e•cos9·ee+ (t-t-r:p~irsine e.,. 

7°. Computing the line integral and the circulation of 
a vector field in curvilinear coordiruztes. Suppose a vector 
field 

a (M) = at (qt, q2• Qs) e1 + a2 (q1, q2, Qs) e2 

+ a~ (qt, 92• Qs) e3 

is defined and is continuous in a region Q over which the 
orthogonal curvilinear coordinates q1, q2 , q3 range. 

As we know !see Sec. 23, (8)1, the differential dr of 
the radius vector r of any point M (q1, q2 , Q3) E Q is 
equal to 

dr = H1 dq1 e1 + H 2 dq, e2 + H3 dq3 e3 • 

Therefore the ·line integral of the vector a (M) over an 
oriented smooth or piecewise smooth curve L c Q is 

J (a, dr)= I a111 1 dq 1 +a2H2 dq2 +a3H3 dq3 • (12) 
L L 

In particular, for the cylindrical coordinates q1 = P• 
q'l = q>, q3 = z we have 

a = ap (p, q>, z) ep + ~ (p, ql, z) e" + a z (p, q>, z) ez' 

dr = dp•ep + pdq>·e" + dz·e ,, 
and therefore 

j (a, dr)= j apdp+a,pdq:>+a,dz. (13) 
L L 
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For the spherical coordinates q1 = r, q2 = a, q3 = IJI we 
have 

a = a, (r, a, IJI) e, + aa (r, a, IJI) ee + ~ (r, a, IJI) eq~, 
dr = dr·er + r da·ea + r sin a dw ·e.... 

and consequently 

~(a, dr)= l a,dr+ra6 d9+ra,..sin9d!p. (14) 

The circulation C of the vector field a (M) is computed 
in the curvilinear coordinates q1 , q2 , q8 via formula (12) 
in the general case; for cylindrical or spherical coordi­
nates it is computed from (13) and (14) respectively. 

Example 10. Compute the line integral in the vector 
field, given in cylindrical coordinates, 

a = 4p sin IJI•ep + z&e. + (p + IJI) ez 

along the straight line 

L: {'~'~T; 
z=O, 

from the point 0 (0, n/4, 0) to the point A (1, n/4, 0). 
Solution. In the given example, 

aP = 4p sin IJI, a,. = zeP, a: = p + Ill. 
By formula (13), the desired line integral is 

J (a, dr)= j 4psin!pdp+pz&dw+(P+<P)dz. 
L L 

On the straight line L we have 

w=-f, d1J1=0: z=O, dz=O; o:;;;;p<1. 
Therefore 

) t•. d•l~) 2 V2pdp~ V2 I 2pdp~ V2. 
L L 0 

Example 11. Compute the line integral in the vector 
field, given in spherical coordinates, 

a = e' sin a.e, + 392 sin IJI·ea + r~p8e111 
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along the line 

L: { r:i~ o~e:S;;y, 
<p 2 • 

in the direction from the point M 0 (1, 0, n/2) to the 
point M, (1, n/2, n/2) (Fig. 40). 

Fig. 40 

Solution. The curve L is an arc of a circle with centre 
at the coordinate origin and radius r = 1 located in the 
yz-plane. The coordinates of this vector are 

a,. = er sin a, as = 392 sin <p, a. = np8. 

By virtue of (14) the line integral is of the form 

J (a, dr)= J e"sin9dr+39Zrsin<pd9+r2qJ9sin9d<p. 
L L 

Taking into account that the following conditions hold 
on L, 

r=i, dr=O; <p=T. d<p=O; o~e~f. 
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we obtain 
•12 

J (a, dr)- _\31l'd0- J 30•de-{-. 
L L 0 

Example 12. Compute the circulation of the vector 
field, given in cylindrical coordinates, 

a= psin q>·e., + pze"' + p3e, 
over the curve 

J p=sinq:., 
L: 1 z=O, O~cp~n, 

directly and via the Stokes theorem. 
Solution. The coordinates of the vector are 

ap = p sin q:., aq. = pz, a:= p3. 
The contour L is a closed curve located in the plane z = 0 
(Fig. 41). 

(t) Direct calculation of the circulation. 

z 

Fig. 41 

Substituting the coordinates of the vector into (13), 
we obtain 

C= ~ psinq:.dp+p2zd!Jl+p3dz. 
L 

On the curve L we have 
z = 0, dz = 0; p = sin Q), dp = cos cp dQ), 

0~ 'P ~ n· 
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Therefore the desired circulation is equal to 

C=~psiurpdp= J sin2cpcoscpdcp=0. 
L 0 

[Ch. VI 

(2) Computing the circulation via the Stokes theorem. 
By the Stokes theorem, the desired circulation is equal 

to 

C =~(a, dr) = J J (C!.!rl a, n°) dS, 
L S 

where S is the surface spanning the contour L. 
We find the curl of the given field: 

curla=....!....ll ~ ~~= -pep-3p2e" p ap Q~p {Jz 

p sin cp p2z p3 

+(2z-cos<p)e,. 
At points where p = 0 we redefine the value of curl a 
with respect to continuity, setting 

curl a (0, cp, z) = (2z - cos cp) e z· 

Thus, curl a is defined throughout three-dimensional 
space. Since the cUrve L lies in the plane z = 0, for 
the surface S spanning this curve we take that portion 
of the plane z = 0 that is bounded by the curve L. Then 
we can take the unit vector ez for the unit vector of the 
normal n° to the surface S, that is, n° = ez. We find 
the scalar product: 

(curl a, n°) =(-pep- 3p~ + (2z- cos c:p) ez, ez) 
=2z-cos<p 

because by virtue of the orthonormality of the basis 
ep, e111 , e z we have 

(ep, ez) = (e"" ez) = 0, (ez, ez) = 1. 
The desired circulation is 

C= j} (2z-cos<p)dS. 
s 
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Taking into account that J = 0 on S and the element of 
area dS of the coordinate surface z = 0 is equal to 

dS- pdp d~, 
we finally get 

C=- J J coscpdS=- j J coscppdpdcp 

• • 
n 1ln~ n 

=- j coscpdcp J pdp=--} j sin2 cpcoscp dcp=O. 

' ' ' Example 13. Compute the circulation of the vector, 
specified in spherical coordinates, 

a = rer + (R + r) sin El·e" 
around the circle 

L: {::~ 
in the direction of increasing values of the angle cp, 
directly and via the Stokes theorem. 

Solution. In this example, 

ar = r, ae = 0, a, = (R + r) sin e. 
(1) Direct computation of the circulation. 
By formula (t4) the desired circulation is equal to 

C = ~ r dr+ (R+r) sin E1 r sin Eldcp= 
L 

= t r dr + r (R+r) sin2 EI dcp. 

On the given circle L, the centre of which lies at the 
coordinate origin, we have 

r=R. dr=O; EI=T; o:s;;;cp<2ll, 
and, consequently, 

2n 

C-21l2 ~d~-2R2 J d~-4n/l2 • 
L 0 
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(2) Computation of the circulation via the Stokes 
theorem. 

The desired circulation is, by the Stokes theorem, equal 
to 

C = ~ (a, dr) = J J (curl a, n°) dS, 
L 8 

where S is the surface spanning the circle L. 
We find the curl of the given vector: 

=~ (R+r)cos6·e~-+(R+2r) sin 9·e11 , 

For the surface S spanning the circle L we take, for 
example, the upper hemisphere of radius R: r = R, 
0 :s;;; 6 :::;:;;; n/2, 0~ cp < 2n. The unit vector of the normal 
n° to the outer side of the hemisphere S is directed along 
the vector e,, and so we take n° =e,. We find the scalar 
product 

(curla,n°)={ 2(Rr+r) cos6·e,- R-; 2' sin9·e11 ,e,) 

= 2 (R,+r) cos 9 

since (ene,) = 1, (e, e 11) =0. 
Taking into account that r = R on the surface S, we 

obtain the following expression for the desired flux: 

fi= j j 2(Rr+rl cos6dS=4J} cos6dS. . ' 
In spherical coordinates, the element of area dS of the 
coordinate surface r = R, that is, the hemisphere S, is 
equal to 

dS = R2 sin9d8dlp 
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and, consequently, 

r1=4) J cos9R2sin0d0d<p 
8 

1112 2n 
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=4R2) cosOsinOdOJ d<p=4nR2, 
0 0 

By the Stokes theorem we get C = 4nR2• 

For the surface S spanning the circle L we could take 
the lower hemisphere, the unit vector of the normal of 
which, nO = -en and the result would be the same: 
C = 4nR1• 

Note that it is not desirable to take the circle bounded 
by L for the surface S spanning the circle L because the 
circle has a point r = 0 (the centre of the circle) in which 
the curl of the given vector has a discontinuity. 

Compute the line integral along the given curves L in 
the following vector fields specified in cylindrical coordi­
nates. 
298. a= zep + pcpe~+cos<p·e 1 ; Lis a segment of the 
straight line: {p = a, <p = 0, 0 ~ z ~ 1}. 
299. a = pep + 2p<J)e"' + ze r: L is the semicircle: {p = 1, 
z = 0, 0 ~ <p ~ n}. 
300. a= eP cos <p·ep + p sin cp·e"' + pe,; L is a turn 
of the helical curve: {p = R, z = <p, 0 ~ <p ~ 2n}. 

Compute the line integral over the given curve L 
in the following vector fields given in spherical coordi­
nates. 
301. a= er cosO·er + 20 cos <p·eo + <J)eq.>: Lis the semi­
circle: {r = 1, cp = 0, 0 ~ e ~ n}. 

3tll. a=4r3 tan fer+ Orpe8 +cos2<p·e.,; Lis a segment 

of the straight line: {~P=f: 9=-f.O~r~1}. 
303. a=sin20·er+sin9·ee+r<p0e.p; Lis a segment of 

the straight line: {Ql=-]-, r= si~e, T~e~f}. 
Compute the circulation of the following vector fields, 

specified in cylindrical coordinates, about the given con-
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tours, directly and with the aid of the Stokes theorem. 
304. a= ze11 + pze"' + pezi L is the circle: {p = 1, 
'~ 0). 
305. a = p sin <p ·e11 - p2ze'~' + pie,; L is the circle: 
{p ~ R, z ~ R). 
306. a= z cos !p·e11 +pel!'+ <p2ez; L is the loop: {p = 
=sin<p, z=1}. 

Compute the circulation of the following vectors, given 
in spherical coordinates, along the given contours L, 
directly and with the aid of the Stokes theorem. 

307. a= r8er +rsin 9-e,: Lis the circle: {r = 1, 9 = 

~n 
308. a= r sin 9·er + 9e8e0 ; L is the loop: {r =sin cp, 

a=y.o:s;;;q>=s;;;n}. 
309. a= np9e'~'; L is a contour bounded by the semi­

circle: {r=R, <p=T· 0~9~n} and its vertical 

diameter {'P=T.a~o}. 

If 

Sec. 25. The Laplace operator 
in orthogonal coordinates 

If u = u (q1, q1 , q3) is a scalar function, then 

grad U=* :~ e1+* :~ e2+* :;, e3 • (1) 

a=a1 (ql, q2, qa) e1 + az (qlt qt, qa) e2 + aa (q1, qt, qa)ea, 

then 

div 8= H,;28,[-/q;<a1H2H3)+-1q;(a2H3H1) 

+k(aaH1H 2)]. (2) 
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Using formulas (1) and (2), we obtain the following expres­
sion for the Laplace operator du: 

du= div grad U= 91i 1n 1 [ jq; { 9fi~g :q:) 
+-k ( n8~a ;~) +-k ( n8~. ~:)]. 
In cylindrical coordinates, 

&u~+[~ (v~)+-k-(+*)+f, (p ~ )J 
=fi- (P~) +f.-~~+~:~· 

In spherical coordinates, 

L\U= rlsfintl [.;;. (r2sina T,:-) +~(sin a~) 
+-k(si!a1i)J=~-fr-(rzt) 

+ r':in6 ~(sin~)+ r•si~•a ~~ · 
Example. Find all the solutions of the Laplace eqUation 

du = 0 that depend solely on the distance r. 
Solution. Writing the Laplace equation in spherical 

coordinates and taking into account the spherical sym­
metry of the solution (it must not depend on a or <p), 
we have 

dul!5+.--!;- (rz~) =0 (u=u(r)), 

whence 

so that 

U=~+Cz, 
where C1 and C, are constants. 
310. Given: a scalar field u = u (M) in cylindrical coor­
dinates 

Find du. 
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311. Given: a scalar field u = u (M) in spherical coor­
dinates 

u (r, e, ~) ~ r'~ + r'~' + ~ + e•. 
Find llu. 
312. Are the following functions harmonic? 

(1) u = p2 cos 2cp. 
(2) u = rcos 28. 

313. Find all possible harmonic functions that 
(a) depend on 8 alone, 
(b) depend on cp alone 

(in the spherical system of coordinates). 
314. Find all solutions of the Poisson equation 

llu = rn-1 

in the spherical system of coordinates, provided u = u (r). 



ANSWERS 

1. (a) The half-line 1 x= 2• . 
\ y= -z, y~O. z~O IS traversed 

twice when-oo<t< +oo. (b) When tE(-oo,-1} 

U (-1, +oo) the point r(t) = (:~~)t' i+ (I!\)' j 

twice traverses the half-line x+y=i, .x~{-. y~{-. 

(c) xz+yz=t,). (d) u=T. z=f. 
Z=i; 

(e) z2+y2+z2=1, x-y=O. 

7. l+k. 8. l+k. 9. -i+.,k- k. 

10. -l+k. II. ei-i+2k. 12. No. 14. No. 

17. (a) 2 (#t-r); (b)l-ifl2 + (r, ~:~}; (c) [r, :,': J. 
21. Circles lying in planes perpendicular to the vector a. 
22. The hodograpb of velocity is a helical curve: x = 
= a cos t, y = a sin t, z = 2bt; the hodograph of accele­
ration is a circle: x = -a sin t, y = a cost, z = 2b. 

26. 1r=~ ~; ~:~ = ::~ (7;-)2 +~ :;: . 
28. (t-1)e1i+{- (t-fsin 2t) j-arctant·k+c. 

29. -i-In (i+tz)·i+f.e'··j+sin t·k+c. 

30. e$ln 1.J--}sin t2·j+tk+c. 
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31. -ti+(tcost-sin t)j+ 1!1
2 k+c. 

32. fl+nk. 33. (1-e-li')l+(e'i2-1)j+(e-1) k. 

34, -In 2·j+k. 35. 2nZI+nj+n2k. 36. R= lsi~;tl . 

37. R~fltl(1+9t2)'"· 38. R~6. 39. R~+an. 
40. R=2acoshzt. 41. x+y=O. 

42. x-y-V2z=0. 43. T=+· 44. -}= 2ac:sh't. 

45. -f+f+-tr=C, a family of triaxial ellipsoids. 

46. x2 + y?. - z = C, a family of paraboloids. 
47. x3 + y2 = Cz, a family of paraboloids. 
48. 2y2 + 9z2 = C, a family of elliptical cylinders. 
49. x + 2y - z = C, a family of parallel planes. 
50. A family of planes resulting from the sheaf of planes 
a1x + a2y + a3z = C (b1x + b2y + b3z) passing through 
the straight line 

a1x+aiD+a3z=0, l 
b1x+b2JI+b3z=0. 

via the elimination of the straight line itself. Here, a1, a2 , 

a3 are the coordinates of the vector a; bh b1 , b8 are the 
coordinates of the vector b. 
51. z2 + y2 + z2 = C2, a family of concentric spheres. 

lz y ' I 52. (a, b, r) = C or a1 a2 a 3 = C, a family of parallel 

b1 b2 ba 
planes. 
53. 2x - y = C, a family of parallel straight lines. 
54. y = Cx, C > 0, x -=1= 0, a family of rays. 
55. y2 = Cz is a family of parabolas with the vertex 
0 (0, 0) deleted. 
56. x 2 - y2 = C, a family of hyperbolas. 
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57. y = -zInC- C, C > 0, a family of straight lines. 

58. ~15 . 59. -r". 60. ~3 e'. 61. --}. 

62. {V2. 63. +· 64. o. 65. 'r3 (V2+3). 66. o. 

67. -2. ss. v~~:;a~R'. 69. f<i+j-k). 

10. k. 11. ~~·. 12. ~~o. 
73. ~ ~ 0. 74. y ~ -• + 2nn, n ~ 0, ±1, ±2, ..•• 

75. x2+y2+zZ=1. 78.f.-. 79. a. 80. a(b, r)+b(a, r). 

81. 21al2r-2(a, r)a. 86. ¥,=¥. 
/"'._ 

87. *=-cos~~· I); -jf=O for r ..Ll. 

88. Tt=+.-. 89. Tz-=1. 
90. ~ (gratg:~l:~d v); !Jf=O if grad u..Lgrad v. 

91. (a) 1 in the di~ection of the y-axis; (b) 3 in the 

direction of the vector a= -i-2J+2k. 

92. y=e1.x; z=e2x. 93. y=~x+C1 ; z=~x+C2 • 

t t 1 t 94. z2+y2+z2=C~, ~95. ---=1, -+-2 1 =4. z z z II 
x+y+z=C2• 

96. x2=C1y, z=C2• 97. z=C1x, y=C2• 98, xy=Ct, z=Cz. 

99. x=C1, 2y2-zZ=C2• 100. +-+=Ctt z=C2• 

101. y2 +z2 =C1, x=C2• 102. x=Cty, x=Czz. 

103. ~= fo;+C1, } 

~=fo;+C3, 

12• 



"" 
where b01 , b0,, b03 are cooordinates of the vector b0 • 

104. ll ~ -3. 105. ll ~ nR'y. 106. ll ~ nR'h. 

107. ll=4nR3f(R). 108. II=f. 109. fl=%. 
110. fl={nR2h. 111. IT=nh3. 

112. TI=~n. 113. II=f. 

114. n~o. 115. rr~-i-- 116. rr~+. 117. rr~4nR'. 

118. (a) ll= -~; (b) ll= -};(c) ll~n. 119. ll=O. 

120. ll = 6nR. 121. ll = 0. 

122. ll=n. 123. ll=O. 124. ll=}n(!- ~2 ). 

125. n~fR•. 

126. ll=VZn. 127. ll=45n. 128. ll= ~6 n. 

129. ll=O. 

130. ll = n. 131. 1j> (') ~ f. 132. 7''· 133. 0. 134. 0. 

135. 1j> (z) = C - z, C = constant. 136. ll = 4nR'. 
137. divE= 0 (' +0). 

U3. 16n. 144. nH 3 • 145. ¥ n. 146. 0. 147. T· 
148. 4n. 149 . .!fn. 150. -¥-n. 151. 2RJ. 

152. -¥- n. 153. - t. 154. 

155. Solenoidal field. 
156. Nonsolenoidal field. 
157. Solenoidal field. 

159. IJl(r)=-*· r:;60, C=constant. 

161. rl-;rf. 162. ln.;;. 163, -k--1-;. 164. 0. 



Answer~ ,., 
166. -{R'. 167. {. 168. (a)-.ji.; (b)-}. 169. 0. 

110. -}. 111. 3 Vii. 112.+,. 

173, -naZ, 174. 1. 

175. - 2n. 176. - n:s . 177. {. 

179. -2(zi+xi +yk). 

180. 3 (zZ-,x2) j. 181. (x+y) k. t91. ro={curl v = --i- j. 

193. f(.:t, z)=xz+x+z+C, C=constant. 

195. 4n. 196. -4n. 197. {. 198. -2n. 199. '~. 
200. 729n. 201. 0. 202. - V2 n. 
203. 2rona2. Hint: v = [m, r]. 
204. f.1c=1. 205. J.lc=3. 206. Dependent. 

207. Independent. 208. Dependent. 209. -1. 210. -:s. 
211. o. 212. -}. 213 . ..;.. 214. {. 

216. f. Hint: Supplement the path of integration L 

with the line segment OA of the x-axis. 
217. No. 218. Yes. 219. No. 220. Yes. 221. No. 222. No. 
223. Yes. 226. q~ = z'lyz. 21:/. q~ = x + xyz. 228. q~ = 
~ x'y - y' + xz. 229. ~ ~ In I x + y + z I· 230. ~ ~ 
= arctan (xyz). 231. q~ = r. 232. q~ = In r. 

233. q~={ra. 234. q~=ax+~y-1-yz+C. C=constant. 

235. q~=xy+yz+zx+C. 236. q~=xy+e•+C. 
237. q~ = e"' sin y + z +C. 247. (a) Yes, (b) No, 
(c) Yes. 
249. u = C1x + C2• 

250. u = Ax2 + Bxy + Ay2 , where A and B are arbi­
trary. 

251. u(x)={ (n..:_"t)n +Cix+C2 if n:Ft. 
x ln [xJ+C1x+C2 if n=1(x:1=0). 
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252. 1= fs4 n. 253. I=-~. 254. l=~nR'. 
255. I~ 0. 
256. b ~ zj + (y- x) k. 257. b ~ (y' - 2xz) k. 
258. b ~ (e" - xe') j. 259. b ~ 3x'j + (2y' - 6xz) k. 
260. b ~ -x (x + y') I+ (x' + y')k. 
261. b = - (xz2 + yze:t2) j - 2xyzk. 

262. b~-}(-zj+yk). 
263. b ~ -Byzi + xzj + 7xyk. 
264.. b = 2xy2zi - 3.z2yzj + r'y2k. 

265. b=~sinxz·i-fsinxz·k. 

266. b= :!t~! z-k. 267. (a) p=«p+C1, p=z+C2; 

(b) p= - 1n~1 CJI, p=C2Zi (c) cp=C1, r=C2 sin2 9. 

268, grad u=2(p t-cosq>)ep- (2sincp+fe'coscp) e. 
-ezsinq>·e,. 

269. grad u=(coscp-3P ln 3)ep+ (isin2qJ-sin 'P) e, 

+sin2 <p·ez. 
270. grad u=2rcos9·er-rsin9·ee. 

271. grad U=(6rsin9 +ercosq>-1)er+3rcos9·ee 

_ e;~i:: e~. 
272. grad u= -JJ. ( 2c;':a e,+ sir~ a ee). 

273. div a=2+~cosq>-e'Psinz. 

274. div •=-}arctan p+ f:ps -(z2 +2z)e'. 

275. div a=4r-fcos2 <pcot9+ r(rs+!)sine. 

276. curl a= cs~:~ er- (2cos9+ ~:~~:) ee- a.s;na eop. 



277. curl eo:::: -f. cot 9·er+fee+ Zc~e e"'. 

278. curl a= - 2peq, + si; ~P e,. 

281. 24n. 282. {n. :283. 4n. 284. ~ nR( 

285. 4nR'. 286. - f R3. 
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287. 48. Hint: Write the equations of the surfaces in 
spherical coordinates. 
288. u ~ p + 'I'+ z + c. 
289. u~t(P'+'I''+•')+C. 290. u~pq>z+C. 
291. U = ePsin (J) + z1 +C. 292. U = pq>COSZ +C. 
293. u ~ "'+ c. 294. u ~ r' + 'I'+ e + c. 
295. u = {(np11 +as)+ c. 296. u = r cos q> sin a+ c. 
297. u = er sin 6 +In (1 + q>2) +C. 
298. 1. 299. n 2 • 300. 2nR. 301. n 2 • 302. 1. 

303. -T+ >',2 -1. 

304. 0. 305. - 2nR'. 306. n. 

307. n. 308. 0. 309. 0. 

310. Llu=4q>--T+ 6::' +2q~3. 

311. 6u=6cp6+12rq>2 +j-+IJlcOt6+~ cot6+ si!riQ. 

312. (1) Yes, (2) No. 

313. (1) u(6)~C,Inltan~I+C,, (2) u(q>)~C,q>+C,. 

r 
rn+l C1 

(n-t-t)(n-t-Z) +-;:--t-C2, n::;i:-1, -2, 

314. u(r)= lnr+~-t-C2, n-=-t, (r::FO) 

l-l~r+~-t-C2 , n=-2. 



APPENDIX I 

BASIC OPERATIONS OF VECTOH 

ANALYSIS IN ORTHOGONAL 

CURVILINEAR COORDINATES 

1. The scalar field is given in orthogonal curvilinear 
coordinates, u = u (q1, q", q3). Then we have 

gradu=i :~ e,+* :: e2+* ::3 ea. 
The Laplace operator is 

L\u = n,i1H1 [a!, (Hit~ a :;, ) + a!1 ( 
9It~1 ::, ) 

+a!. ( H1~' :q:} J. 
Special cases: (a) The scalar field is given in cylindrical 

coordinates, u = u (p, <p, z). Then we have 

grad u=*ep+*~eop+~e:· 
The Laplace operator is 

L1u=ti-(P*)+f,-~~+~~ · 
(b) The scalar field is given in spherical coordinates, 

u = u (r, 8, IJI). Then we have 

gradu=*e,++*ee+ rsitna *e ... 
The Laplace operator is 

L\u=-!s--1;- (rz-Tr-) + r•stin6 ~ (*sin e) 

+ r1 s:n•a ~~ · 
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2. The vector field is given in orthogonal curvilinear 
coordinates: 

a = al (ql, q,, q,) el + a, (ql, qt, qa) et 

Then we have 

divA= u)tHa [ O(a~~;H,) + O("Ja~:Ha) + O(as;:a!Ha) ]. 

H1H8 91 H1H8 e2 H1H2 ea II I I I 
curl a= 0: 1 a:. a:. . 

a1H 1 a2H2 aaHa 
Special cases: {a) The vector field is given in cylindrical 

coordinates, 

a = a1 (p, q~, z) ep + a2 (p, <p, z) e<l' + a3 {p, q~, z) e z· 
Then we have 

div •=* a~a,) +t ~~+a~~, 

l
fep e.., ~ezl 

cud a~ i +.- f. . 
al p~ aa 

(b) The vector field is given in spherical coordinates: 

·~~~~~~+~~~~-+~~~~~ 
Then we have 

div a=j. O(~~r2) + rs:ne O(a~~in9) + rs:ne ~; • 

II I I I r1 si;e er ~ee -;-e.., 

• • curl a= Tr ... 8W' 
a, ,., a3rsin8 



APPENDIX II 

AREA ELEMENTS 

OF COORDINATE SURFACES 

c~~~e!· I Coordinate turtAcea I Area elcmentl 

General I q,=C=constant ldS 1=H,(C,q1,q8) H8 (C,q1 ,q8)dq1 dq8 

q1 =C=constant dS 1=H1 (q1,C.q1) H 3 (ql, C.q.)dql~3 
q1 , q,, 9a q8 =C=constant dS1=H1(q1,q1 ,C) H 1 (q 1,q1 ,C)dqt d11• 

Cylind-
rical 
q1 =p p=C=conslant 
fJt=IJI .p=C=constant 
q8 =z z=C=constant 

Sph"'"'\ I q1 =r r=C=constant 
q1 =B 9=C=constant 
q8 =q:. cp=C=constant 

dS=Cdrpdz 
dS=dpdz 
dS=pdpdq> 

dS=Cisin9d9dcp 
dS=rsinCdrdcp 
dS=rdrd9 
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area elements of coordinate sur· 
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axis 152 

binormal 31 

circulation t03 
of a vector field 96 

continuity equation of a 
compressible ftuid 96 

continuity of a vector function 11 
convex region 51 

oordinate(s) 
curvilinear 152 
cylindrical 153 
spherical 154 

coordinate line 152 
curl 108 

in orthogonal coordinates 158 
curvature of a curve 27 
curvilinear coordinates 152 

basic operations in 152, 156 
circulation (computation on 

'" ftux in 160 
line integral in (computation 

of) 166 
orthogonal 154 
potential in 163 

definite integral 19 
del 130 

derivative, 
directional 39 
of a vector function 14 
first and second (with respect 

to arc length) 27 
differential equations of vector 

lines 156 
directional derivative 39 
divergence in orthogonal coor· 

dinates 159 
divergence of a vector field 89, 90 

tlquation(s) 
continuity 
Maxwell 133 
Poisson 141 
wave 139 

field(s) 
harmonic 140 
irrotational 108 
Laplace 140 
potential 121 

flu< 
in curvilinear coordinates 160 
of a vector 85 
of a vector field 58 
methods of computing 62 

force function 121 
formula(e) 



badez 189 

Frenet 31, 33 
Gauss-Ostrogradsky 85 
Green's H5, it7, 143, 1.44 

Frenet formulas 31, 33 
function 

force 1.21 
potential t21. 
primitive 18 
vector 9 

Gauss-Ostrogradsky formula 85 
Gauss-Ostrogradsky theorem 85 
gradient in orthogonal coordi-

nates 1.57 
gradient of a scalar field 44 
Green's formulas H5, H7, 1.43, 

144 
Guldin theorem 86 

Hamiltonian operator 130 
harmonic field 140 
hodograpb of a vector function 9 

indefinite integral 18 
integral 

definite 19 
indefinite 18 
line (see line integral) 97 

irrotational field 108 

Lame coellicients t55 
Laplace field t40 
Laplace operator 130, tJ5, t37 
Laplace operator in othogonal 

coordinates 1.74 
Laplacian 1.37 
level lines 35 
level surfaces 35 

limit of a vector functiGn 1.1 
line integral 97 

calculating (in a vector field) 98 
computation of (in a potential 

field) t24, 125 
independence of path of inte­

gration of 115 
properties of 98 

Maxwell equations 1.38 
method of 

introducing curvilinear 
dinates 79 

projection on one plane 62 
projection on three planes 76 

normal, principal 28 

operator 
Hamiltonian t30 
Laplace t30, t35, t37 

orthogonal coordinates 
curl in 1.58 
divergence in t59 
gradient in t57 
Laplace operator in 1.74 

orthogonal curvilinear coordi­
nates, baeic operations in 184 

orthogonal system of curvilinear 
coordinates 1.54 

osculating plane 3t 

Poi8!10n equation 1.41 
potential t21 
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vector 1.46 

potential fields t21 
potential function t2t 
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primitive function '18 
principal normal 27, 28 

radius of curvature 29 
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rotation 108 

scalar field 35, 37 
plane 38 

second-order differential opera-
tions t30, 135, t36 

sink 90 
solenoidal fields 89, 95 
source 90 
star-shaped region 128 
Stokea' theorem tit 
surface(s) 
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level 35 

theorem 
GauS&-Ostrogradsky 85 
Guldin 86 
Stokes' tit 

torsion at, 32 
radius of 32 

vector field 52 
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vector function 9 
integrating a t8 
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vector potential 146 

wave equation t39 
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