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Preface

The treatment in this book emphasizes at all times that a vector is an
entity in itself and should not be considered merely as a triple of
numbers. Consequently, proofs by means of Cartesian coordinates
are avoided.

The first chapter contains the basic elements of vector algebra,
which are applied in the following chapter to the geometry of the
straight line and the plane. The third chapter discusses the funda-
mentals of vector calculus, and applications to differential geometry
are made in the fourth chapter. The contents of this chapter, with the
exception of the Frenet formulae, curvature and torsion, are required
for later developments of the theory.

Line integrals, surface integrals and volume integrals play an
important role in vector analysis. Many students will meet these
concepts before they have had formal courses in them. Consequently
the fifth chapter presents a concise account of these topics.

The following three chapters are respectively devoted to the
gradient, divergence and curl of a vector. Of these, the first is defined
in terms of the directional derivative whilst the latter two are defined
by limits of integrals. In this way the theory is developed inde-
pendently of any coordinate system. The operator V is not introduced,
as the author has observed that this is a dangerous tool in the hands of
the inexperienced.

There follow chapters on Stokes’s theorem, Green’s theorems and
orthogonal curvilinear coordinate systems.

The concluding chapter provides a link between vector and tensor
analysis. It includes a discussion on the physical components of a
vector as distinct from the components referred to a general basis.
There is some confusion in the literature of vectors about the validity
of the equation curl curl a = grad diva—A4a referred to a curvilinear
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vi PREFACE

coordinate system. Some authors in fact define 4a by means of this
equation. However, at this point a so-called natural basis is introduced
with respect to which this equation can be deduced.

No attempt has been made to apply vectors to problems in mathe-
matical physics. Indeed, a comprehensive treatment which would do
justice to those applications would necessitate a threefold expansion
of this book.

A representative selection of examples is inserted at appropriate
places and answers are provided at the end of the book.

During the preparation of this book, I have been greatly indebted
to Dr. J. H. Wilkinson who read the manuscript and made many
valuable suggestions which have been incorporated in the work.

My thanks are also due to my colleagues Dr. M. G. Smith and Mrs.
R. J. Church, the former for a critical reading of the manuscript and
the latter for the supply of a number of examples. For help in reading
the proofs I wish to thank my wife and elder son.

Finally, I wish to express my appreciation to the staff of the
publishers for their cooperation and for their help with the diagrams.

B. S.
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CHAPTER 1

Vectors

1 Vectors

Physical quantities such as mass, temperature and work are measured
by numbers referred to some chosen unit. These numbers are called
scalars.

Other quantities exist such as displacement, velocity, acceleration
and force, which require for their complete specification a direction
as well as a scalar. These quantities are called vectors and may be
represented by a straight line with an arrow.

-3 @
Fig. 1

Formally, a vector is a directed line segment. The vector depicted
in Fig. 1 from the point P, called the initial point, to the point Q

—
will be denoted by PQ. It has the length or magnitude PQ and the
direction from P to Q as indicated by the arrow.

In the special case when Q coincides with P, we refer to the zero

—_
vector PP denoted by 0. This vector has zero magnitude but indeter-
minate direction.

In addition to the notation ;’—é for a vector, it will be convenient
to designate a vector by a letter in bold type such as A, a, a, etc.

"The magnitude of a vector a will be denoted by either |a| or a and
it is well to emphasize that the magnitude of a non-zero vector is a
positive quantity.

A vector of unit magnitude is called a unit vector. The letters i, j,
k and I, J, K are reserved for unit vectors.

Two vectors are said to be equal if they have the same magnitude

1



2 VECTORS [Ch.

—_
and direction. Geometrically, all vectors obtained from the vector PQ
by a translation in space are equal.

EXERCISE

1. Which of the following are scalars and which are vectors? (a) volume,
(b) energy, (c¢) momentum, (d) temperature, (¢) work, (f) electric field
intensity.

2 Addition of Vectors

The addition of two vectors is defined by the so-called triangle or
parallelogram law.

o

Fig. 2

Let PORS in Fig. 2 be a parallelogram. Formally we define the sum

— — —
of the vectors PQ and QR to be the vector PR represented by the
third side of the triangle POR.

— —_—

Since the vectors OR and PS are equal, we may also define the
—

sum of the vectors 1—36 and PS, which have the same initial point P,

to be the vector f’—l-{) represented by the diagonal through P of the
parallelogram formed by PQ and PS.
Let us write

— —_ — —_—
PQ=SR=a, PS=QR=h.
— —
By the triangle law of addition, both the sum of PQ and QR and the
—_— — —_
sum of PS and SR are equal to PR. It follows that
a+b =Db+a.

That is, vectors satisfy the commutative law of addition.
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R

Fig. 3
With reference to Fig. 3 let us write
—_— —_ —
PS=a, SR=b, RO=c.
By the triangle law of addition we have
—_ —
PR =a+b, SO =b+c.
Further applications of the triangle law yield
_— — — —_ —>
(a+b)+c = PR+RQ = PQ = PS+SQ = a+(b+c).

That is, vectors satisfy the associative law of addition and so there is
no ambiguity if either expression is written without brackets in the
form a+b+ec.

Figures 4 (a), (b) and (c) show that in the case when F_Q> and 513
are parallel, the triangle law yields the result

—_— —> —
PQO+0OR = PR
— —>

whether the arrows along PQ and QR are in the same or opposite

directions. To avoid confusion the arrows are not drawn in the
figures.

R Q @

(a) ) )

Fig. 4
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At this stage it is well to point out that a physical quantity may be
specified by a direction and magnitude and yet not be a vector because
it does not obey the vector law of addition. Finite rotation of a rigid
body is such a quantity.

3 Subtraction of Vectors

—_—>
If the vector a is represented by the directed displacement PQ, we
—
define —a to be the vector represented by QP. Hence
a—a=»0.

Now we may define the difference a—b of two vectors a and b to
be the sum of the vectors a and —b. That is,

a—b = a+(—b).

P K] 0
Fig. 5

—

Let PQ and -1_’—3' in Fig. 5 represent the vectors a and b respectively.
Complete the parallelogram PQRS. It follows from the triangle law
of addition and the definitions of the negative of a vector and sub-
traction that

—_— —>
a—b = PO-PS
— —>
= PQ+SP
_— —>
= SP+PQ
-_—
= SO.
That is, the difference of two vectors can be represented by a diagonal
of a parallelogram.
ExERCISES

1. Show that |a+b|<|a|+|b|.
2. Show that |a—b]|>||a|—[b]].
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3. Under what conditions do we obtain equality signs in the inequalities
of Exercises 1 and 2?

4 Multiplication of a Vector by a Scalar

If X is a scalar and a is a vector, Aa is defined to be the vector with
the same direction as a if A is positive, the opposite direction to a if
A is negative, and with magnitude || times the magnitude of a.
Consequently we have

|Aa] = ] |a].

Note carefully that |a| denotes the magnitude of the vector a whilst
[A] denotes + A or — X according as A is positive or negative. Also we
see that a/a is the unit vector in the direction of a.

It follows immediately that

Mupa) = p(da) = Aua
and
(A+p)a = Aa+pa.

Fig. 6

Let OPQ (Fig. 6) be the triangle whose sides OP, PQ and 00
represent the vectors a, b and a+b respectively. Let RS, parallel to
PQ, cut OP and OQ in R and S. Then we have

—_ —> —
Denoting these equal ratios by 2, it follows that OR, RS and OS
represent the vectors Aa, Ab and A(a-b) respectively. Hence by the
triangle law of addition we have

Aa+b) = da+2b
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and so we are permitted to remove brackets in the usual algebraical
manner.

Two vectors a and b are co-directional if a=Ab, where A is
positive; that is, if a and b are parallel and have the same direction.

EXERCISES

1. If a and b are vectors whose directions are neither parallel nor
coincident, show that the relation Aa+ ub=0 implies that both A and u are
zero.

2. If P is any point and D, E, F are the mid-points of the sides BC, C4
and AB respectively of the triangle ABC, show that

_ —> —> —> —> —>
PA+4+PB+PC = PD+PE+PF.
5 Point of Division

Let R in Fig. 7 divide the join of 4 and B in the ratio AR/RB= .
—> —_—
Then AR=ARB.

o
Fig. 7

Further, let 4, B and R be given by the vectors a, b and r referred
to the fixed initial point O. Then we have

r—a = Ab-r),
from which it follows that
r = a+2b
T

In particular, we see that the mid-point of 4B is given by the vector
(a+b).

When the three points 4, B and R are collinear, the previous result
shows that a number A exists such that

a+Ab—(1+)r = 0.
Hence three non-zero numbers «, 8 and y exist such that

ca+pb+yr =0
and
at+B+y = 0.
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Conversely, given that ea+Bb+yr=0, where «, B and y are three
non-zero numbers satisfying e+ 8+ =0, there is no loss in generality
if we assume that «+85#0. Hence we have

_aa+pb
T a+B
and so R lies on 4B and divides it in the ratio §/e.
The vectors a, b, c, . . ., 1 are said to be linearly dependent if we

can find a set of scalars A, y, v, ..., p, not all zero, such that
Aa+pb+ve+ .- +pl = 0.
Otherwise they are linearly independent.
4

0
Fig. 8
Example 1. Prove that the medians of a triangle meet at a point which
divides each median in the ratio 2:1.
Let 4, B and C be given by the vectors a, b and ¢. Then the mid-
points D, E and F (Fig. 8) are given by 4(b+c), 3(c+a) and 1(a+b).
Let G be the point which divides 4D in the ratio 2: 1. Then G is given

by the vector 4(a+b+ c). Similarly G lies on BE and CF and so the
result is established.

A

Fig. 9
2—V.A.
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Example 2. Prove that the line joining the mid-points of two sides of
a triangle is parallel to the third side and is equal in length to half that
of the third side.

In Fig. 9 let 4, B and C be given by the vectors a, b and ¢. Hence
the mid-points E and F are given by 4(c +a) and 4(a+b). Accordingly

—> —>
FE=4(c+a)—%(a+b)=}(c—b). But BC=c—b and so the result
is established.

EXERCISES

1. Show that the mid-points of the sides of a skew quadrilateral form
the vertices of a parallelogram.

2. Show that four points 4, B, C, D, no three of which are collinear,
given respectively by the vectors a, b, ¢ and d are coplanar if and only if
four non-zero numbers «, 8, y and 8 exist such that

aa+ﬁb+yc+3d =0 and oc+ﬁ+'y—|-3 = 0.

3. Show that the lines joining the mid-points of the opposite edges of a
tetrahedron are concurrent and bisect each other at the point of concurrency.

4. The centroid G of the points 4;, 4, . . ., A, with associated numbers
my, my, . .., m, is defined by the equation

0GS m =3 (m O4,).
r=1 r=1

Show that the position of G is independent of the choice of the initial
point O,

6 Components of a Vector

—

Let ﬁ (Fig. 10) represent the vector a and OU the unit vector u
which makes an angle « with a. Let the perpendicular from P to OU
intersect it at L. The length OL, multiplied by plus or minus one

sl
u 17
e
0 a P 0 - i
(a) ()

Fig. 10

according as OL is in the same or the opposite direction to OU, is
called the component of a in the direction u. In either case the
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component is a cos «. Further, the vector acos @ u is called the
projected vector of a in the direction u.

The projected vector of a on a plane is defined to be the projected
vector of a in the direction of the line of intersection of the given
plane and the plane through a perpendicular to the given plane.

— —
Consider (Fig. 11) the vectors OP=a and PQ=b and the unit

—_—
vector OU=u. Let PL and QM be perpendicular to the direction
OU. The components of the vectors a and b in the direction u are
OL and LM respectively. The sum of a and b is represented by the

—
vector OQ which has the component OM in the direction wu.

P

Fig. 11

Accordingly the sum of the components of two vectors in a given
direction is equal to the component of the sum of the two vectors in
that direction.

This result clearly extends to any number of vectors. That is, the
sum of the components of any number of vectors in a given direction
is equal to the component of their sum in that direction.

EXERCISES
1. ABCDEF is a regular hexagon whose sides are of length 5 units, If

—> —_ —_—

AB=a and BC=b, find the following vectors in terms of a and b: (i) CD,
—_ — —_ P —_

(ii) DE, (iii) EF, (iv) FA4, (v) DA, (vi) EB. Further, obtain the components

—> —> — —_—
of FA and FE along BD and AB respectively.
2. ABCD is a regular tetrahedron whose edges are of length 3 units. If

— —_— — —_ —

AB=a, BC=f and CD=y, find the vectors 4D and CA4 in terms of a, B
—_— —_

and y. Further, calculate the projected vector of AD along CA.
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7 Fundamental System of Vectors

Introduce (Fig. 12) a right-handed system of mutually orthogonal
coordinate axes OX, OY and OZ. That is, a right-handed corkscrew
rotating through a right-angle from OY to OZ advances in the
positive direction OX. Similarly, if the corkscrew rotates through a
right-angle from OZ to OX or OX to OY it advances in the directions
of OY and OZ respectively. A left-handed system is obtained if the
direction of any one of the axes is reversed. We shall always select the
axes to form a right-handed system.

The three unit vectors i, j and k in the positive directions of the
coordinate axes are called a fundamental system of vectors.

—

Fig. 12

Let a represent the vector 5; Complete the rectangular parallel-
epiped with diagonal OP and edges through O along the axes. It is
clear from the figure that OL, OM and ON are the components of
a in the directions of i, j and k respectively and that the projected

_ —> —>
vectors are OL, OM and ON.
By the repeated application of the triangle law of addition of vectors

we have
— —_— —> —_— - —>
a=0P=0V+VP=OL+LV+VP
—_ =  —>
= OL+OM+ON
and so
a = ai+a;j+ak,

where a;, a; and a,, denote respectively the components of a relative
to the fundamental system.
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Further, we have

OP? = OV?+VP? = OL?2+0OM?+ ON?,
and so
a® = at+a?+ad.

EXERCISES

1. If a=4i+j—k, b=3i—2j+2k and c=—i—2j+k, calculate (i)
a+b+c, (ii) [a—b—e¢|, (iii) a unit vector parallel to 2a—b—c but in the
opposite direction.

2. Prove that the vectors i—k, —i+j+2k and i—j—3k can form the
sides of a triangle.

8 Scalar Product

The scalar product of two vectors a and b is defined to be the
scalar ab cos 6, where 0 is the angle between the vectors a and b.
The scalar product corresponding to the vectors a and b in Fig.

(a) ()
Fig. 13

13(a) is positive since 6 is acute, while the scalar product in Fig. 13(d)
is negative since 6 lies between 7/2 and .

We agree to denote the scalar product by a.b and so it is sometimes
referred to as the ‘dot’ product. (Other notations may be met, such
as a|b, (a, b).) We have

a.b = ab cos 6.
It follows that
a.b =b.a.

That is, scalar products satisfy the commutative law of multiplication.

From the definition, a.b=0 if either a=0, =0 or cos §=0. In
the latter case the vectors a and b are mutually orthogonal. Con-
versely, the scalar product of two orthogonal vectors is always zero.
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Again, we have from the definition that the scalar product a.b of
two co-directional vectors a and b is @b. Hence a.a =42 At times it is
convenient to write a.a=a?2

The fundamental system of vectors i, j and k satisfies the relations

ii=jj =kk=1,
jk=ki=1ij =0.

If A is a scalar, we see from the definition that
Ma.b) = (2a).b = a.(Ab)

and so we can write these equivalent expressions in the form 2Aa.b.
Another consequence of the definition of the scalar product is that
the component of the vector a in the direction of the unit vector u is
a.u.
In Section 6 we proved that the sum of the components of two
vectors in a given direction is equal to the component of the sum of the
two vectors in that direction. It follows (Fig. 11) that

(8.1)

a.u+b.u = (a+b).u.
On multiplication by the scalar A, we have
a.ct+b.c = (a+b).c

where ¢=Au. That is, we may remove brackets in scalar products as
in ordinary algebraic multiplication. In other words, scalar multi-
plication is distributive with respect to addition.

Let the vectors a and b have components a;, a;, a, and b, b;, by
respectively with respect to a fundamental system of vectors i, j and
k. Then

a.b = (ai+a,j+a;k).(bi+b;j+bk).

Removal of brackets and use of the scalar product properties (8.1) of
the vectors of the fundamental system yield

a.b = ab,+ab;+arb,.

Example 1. Show that the three altitudes of a triangle are concurrent.
Let 4, B and C be given by the vectors a, b and c referred to some
initial point. Further, let (Fig. 14) the perpendicular BY from B to
CA intersect the perpendicular AX from A to BC at the point H
given by the vector h.
The conditions of orthogonality are

(b—c).(h—a) =0 and (c—a).(h—b) = 0.
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From the identity
(b—c).(h—a)+(c—a).(h—b)+(a—b).(h—c) =0

we have
(a—b).(h—c) = 0.

That is, CH is perpendicular to AB as required.

c
7
X
A b 8
Fig. 14

Example 2. Obtain the acute angle between two diagonals of a cube.
Let the rectangular parallelepiped in Fig. 12 be a cube with edge of
length unity and let the perpendicular from P to the XY plane cut it

— —
at V. Then the vector OP=i+j+k whilst the vector NV =i+j—k.
Hence the angle « between the two diagonals is given by

li+j+k| |Ji+j—k| cosa = (i+j+k).(i+j—k),

from which cos @=1/3 and so «=70° 32',

EXERCISES

1. If a.b=a.c, show that either a=0, b=c or a is orthogonal to b—c.

2. Given a=i+2j—3k and b=3i—j+2k, (i) show that the vectors
a+b and a—b are mutually orthogonal, (i) calculate the acute angle
between the vectors 2a+b and a+ 2b, (iii) obtain a unit vector orthogonal
to both a and b.

3. Show that (a.b)?<a%b? and deduce that

(aibi+ ajby+ i) < (af + af + aR) (b7 + b7 + b).

4. Prove that a=(a.i)i+(a.j)j+(a.k)k.
5. Show that the perpendicular bisectors of the sides of a triangle are
concurrent. (Hint: use the identity

(b—c).(1~§(b+c)} +(c—a).{I—}(c+a)}+(a—b).{I—4(a+b)} = 0.)



14 VECTORS [Ch.

9 Vector Product

Let n be the unit vector orthogonal to both a and b and such that
a, b and n form a right-handed system. We define the vector product
of two vectors a and b inclined at an angle 6 to one another, where
0< @<, to be the vector ab sin 6 n.

We agree to denote the vector product by a x b and so it is some-
times referred to as the ‘cross’ product. (Other notations in use are

aAb, [a, b] and a b.) We have
axb = absin 0 n.
Since b, a and —n form a right-handed system, it follows that

bxa = —absinfn
and so
axb = —bxa,

That is, vector products satisfy an anti-commutative law of multi-
plication.

If axb=0, then either a=0, =0 or sin §=0. In the latter case
0=0 or 7 and the two vectors are parallel and have the same or
opposite senses. Conversely, the vector product of two parallel vectors
is the zero vector. As a special case we have axa=0.

From the definition we have that if a.a=b.b=1 and a.b=0, the
vectors a, b and axb form a right-handed system of mutually
orthogonal unit vectors.

The fundamental system of vectors i, j and k satisfies the relations

ixi=jxj=kxk=0,

jxk = —kxj =i,
kxi= —ixk =j, ©-1)
ixj= —jxi=5k

If X is a scalar, we see from the definition that
Aaxb) = (Aa)xb = a x(Ab)

and so we can write these equivalent expressions in the form Aaxb.
At this stage we wish to establish the non-trivial relation

ax(b+c)=axb+axe.

As a first step let B (Fig. 15) be the projected vector of b on a plane
p perpendicular to a. We have 8=5 sin 8 and so

axb = ax@.
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Now let y be the projected vector of ¢ on the plane p. Then B+ is
the projected vector of b+ ¢ on the plane p. Hence

axc=axy
and
ax(b+c)=ax(@+y)

Fig. 15

Since a is orthogonal to B, it follows that a x is a vector in the
plane p with magnitude 4B in a direction orthogonal to 8. That is,
a x @ is obtained by rotating the vector af through a right-angle in the
plane p. Similarly a x y is the vector obtained by rotating the vector
ay in the plane p through a right-angle in the same sense as the
previous rotation. Thus a x 8 +a x y is the sum of the two vectors a8
and ay followed by the appropriate rotation in the plane p through a
right-angle. This sum (B +7Y) rotated through a right-angle in the
plane p is the vector ax (B+y) and so

ax(B+y) =axB+axy.
Accordingly, we have
ax(b+c)=axb+axec.

As a consequence we may remove brackets as in ordinary algebraic
multiplication. That is, vector multiplication is distributive with
respect to addition.

Let the vectors a and b have components a;, a;, a, and b, b,, b,
with respect to a fundamental system i, j and k. Then

axb = (ai+a;j+a.k)x (bi+b,j+bik).
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Removal of brackets and use of the vector product properties (9.1) of
the vectors of the fundamental system yield

ax b = (ajbk —_ akb,)i + (akbi b albk)j + (a’bj — a,b,)k. (9.2)

This expression may be written in the determinantal form

a a; a
B b bl
i j ok

Example. Let A, B and C be given by the vectors a, b and c. Show
that L(bx c+c xa+axb) is a vector orthogonal to the triangle ABC
with magnitude equal to the area of the triangle.

— —_

The vectors AB and AC are given by b—a and ¢—a. Hence the
required vector is 4(b—a)x (c—a) from which the required result
follows.

ExERcIsEs
1. Prove that (a x b)?=a’b?—(a.b)2

2. Given a=2i—3j+k, b=—i+k and e=2j—k, (i) calculate axb,
b x ¢ and ¢ X a in terms of i, j and k, (ii) obtain a unit vector orthogonal to
both b and ¢, (iiiJ calculate the area of the parallelogram with the diagonals
a+band b+c.
, 3. Given a.b=a.c, axb=axc and a is not the zero vector, show
that b=ec.

—_— — —
4. Let a, b and c represent the vectors BC, CA and AB respectively.
Show that axb=bx c=c x a and deduce the sine rule for a triangle.

10 Scalar Triple Product

We now consider a.b x ¢. There is no ambiguity in this expression
as the vector product b x ¢ must be evaluated and the scalar product of
this vector then taken with a. The result is called the scalar triple
product of the three vectors.
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The vector bxc is the vector bcsin § n where 6 is the angle
(0< 6 <7) between b and ¢, and n is the unit vector orthogonal to both
b and ¢ such that b, ¢, and n form a right-handed system (Fig. 16).
The magnitude besin 8 of the vector bxc can be interpreted
geometrically as the area of the parallelogram formed by b and c.
Let « be the angle (0 <a<7) between the vectors a and n. Then
a.b x c=abc sin 8 cos a.

The volume of the parallelepiped formed by the three vectors a, b
and c is equal to the product of the area of the parallelogram formed
by b and c with the height of the parallelepiped. This height is the
component of a in the direction n and so is a cos «. Accordingly, the
volume of the parallelepiped is abc sin 6 cos .

That is, the scalar triple product a.b x ¢ equals the volume of the
parallelepiped formed by the three vectors when set off from a
common point.

If a.b x c is positive, cos a is positive and so « is acute. Hence n
and a extend on the same side of the plane formed by b and ¢. How-
ever, if a.b x ¢ is negative, « lies between #/2 and = and so n and a
extend on opposite sides of this plane.

We extend the definition of right- and left-handedness to non-
orthogonal sets of three vectors thus: the vectors a, b and ¢ are
right-handed (left-handed) if a and n are on the same side (opposite
sides) of the plane formed by b and c. The reader is asked to verify
that when a, b and ¢ are mutually orthogonal, this definition coincides
with that of Section 7.

That is, a, b and ¢ form a right-handed or a left-handed system
according as a.b x ¢ is positive or negative respectively.

By a similar argument the volume of the parallelepiped is given
by b.cxa and c.axb and these triple products are positive or
negative according as a, b and ¢ form a right-handed or left-handed
system respectively. Hence we have

a.bxc=b.cxa =c.axbh.
Since c.axb=axb.c, it follows that
a.bxc =axb.c.

That is, we may interchange the dot and cross in a scalar triple
product.
Further, we see from the left-handed or right-handed properties
that
a.bxc = —b.axc.

The reader is asked to verify that in all cases the scalar triple product
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of a, b and c taken in the cyclic order a, b, ¢ equals a.b x ¢ but equals
—a.b x ¢ for any anti-cyclic order of the vectors.

From the geometrical interpretation it follows that the scalar
triple product a.b x ¢ vanishes if one of the vectors is the zero vector
or the three vectors a, b and ¢ are coplanar.

Conversely, let the three non-vanishing vectors a, b and c satisfy
the relation a.bx c=0. Then a is orthogonal to bx c. But by the
definition of a vector product, both b and ¢ are orthogonal to bx ¢
and so a, b and c are all orthogonal to b x c. Accordingly a, b and ¢
are coplanar vectors.

Let a, b and ¢ have components a;, a;, a;; b, b;, b, and ¢;, ¢;, ¢
respectively with reference to the fundamental system i, j and k.
Then by (9.2) we have

bx e = (bjer—bicy)i+ (buc;— bick)j + (bic;— by )k
and so

This result may be written in the determinantal form

a a; ag
a.bxc={b b bl
[#] Cj Cr

We agree to use the notation
[abc] = a.bxc.

We note that the vectors of a fundamental system satisfy the

relations
[ijk] = [jki] = [kij] = 1,
[ikj] = [kji] = [jik] = —1.
EXERCISES

1. Obtain the value of A which makes the vectors i—j+k, 2i+j—k and
Ai—j+ Ak coplanar. )
2. If a, b and c are orthogonal vectors, show that
[abe]? = a%b3c?.
3. Show that
(a+b).(b+c)x(c+a) = 2[abc].

11 Vector Triple Product

Consider the vector triple product ax(bxc). This vector is
orthogonal to both a and b x ¢. But b x ¢ is orthogonal to both b and
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c. It follows that the vector a x (b x ¢) lies in the plane of b and ¢ and
SO we may write
ax(bxc) = Ab+pc.

Since ax (bx c) is orthogonal to a, its scalar product with a is
zero and so
Aa.b+pa.c = 0.

Accordingly we may write
A = pa.c, p = —pa.b,
where p is still undetermined. Thus we have
ax(bxc) = p[a.cb—a.bc]. (1)

First we consider the case when a=b and take the scalar product
of both sides of this equation with ¢ to obtain

c.bx(bxc) = p[(b.c)?—b%c?].

Interchanging the dot and the cross of the scalar triple product we
have

—(bxc)? = p[(b.c)?2—b%c?].
Let the angle between b and ¢ be ¢. Then this equation yields
—b%c? sin? @ = p[b%c? cos? p— b7,
from which p=1 in this special case. That is,
bx(bxc) = b.cb—bZc. (2)

Now return to the general case when a and b differ and take the

scalar product of both sides of equation (1) with b to obtain
b.ax(bxc) = p[a.cb?—a.bb.c].

Interchange of the cyclic order of b, a and b x ¢ followed by substitu-
tion from equation (2) yields

—a.[b.cb—b%c] = p[a.cb®—a.bb.c],
from which we see that p is also unity in the general case. That is,
ax(bxc) =a.cbh—a.bc. (11.1)

Note carefully that (a x b) x c is not in general the same vector as
ax(bxc) because (axb)xc is a vector in the plane of a and b.
Accordingly it is essential to retain brackets in a vector triple product.
We have

(axb)xec = —cx(axb)
= a.cb—b.ca.
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EXERCISES

- 1. Establish the formula for a x (b x ¢) by introducing the components

of the vectors with respect to a fundamental system of vectors.
.2. Show that i x (j x k)=0.

-3. fa=i+2j— 3k, b=2i—j+kand c=—i+4j—k, calculate (i)a.bx ¢,
(ii) (axb) x ¢, (iii)bx (axe),(iv)(axb)x(cxa),(v)[axb bxc ecxa],
(vi) (axb)x{(bxc)x(cxa)}.

. 4. Show that ax (bxc)=(axb)xc if and only if b=0 or ¢ is parallel
to a or b is orthogonabto both ¢ and a.

,5. If a is not the zero vector, prove that every solution of the equation
axx=b is given by x=(b x a)/a®+ Aa, where A is an arbitrary scalar.

12 Products of Four Vectors

There is no ambiguity in the expression axb.ecxd as the two
vector products must be formed before the scalar product can be
evaluated. The interchange of dot and cross yields

axb.cxd = a.bx(cxd)

= a.(b.dc—b.cd)
= a.ch.d—a.db.c. (12.1)

In particular, choose c=a and d=b to obtain
(axb)? = a’b?—(a.b)2 (12.2)

Next let us consider (axb)x(exd) and evaluate as the vector
triple product a x (¢ x d), where a=a x b. The result is

(axb)x(cxd) = [abd]c—[abc]d.
The calculation can also be made from (ax b)xp, where p=cxd
with the result

(axb)x(ecxd) = [cda]b—[cdb]a.
Equate the two expressions for (axb)x(cxd); then solve for d,
provided that [abc] is not zero, to obtain

_ [bed]a+[cad]b+[abd]c
N [abc] |
This relation shows how any vector d can be expressed as a linear

combination of any three given non-coplanar vectors a, b and c.
That is, any four vectors are always linearly dependent.

d

(12.3)

EXERCISES

1. Prove
(i) ax(bxc)+bx(cxa)+ex(axb)=0
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(ii) [bxc exa axb]=[abc]?

iii) (bxe)x (axd)+(cxa)x(bxd)+(axb)x(cxd)=—2[abc]d,

(iv) bxc.axd+exa.bxd+axb.cxd=0,

(v) bxca.d+cxab.d+axbc.d=[abc]d.

2. The unit vectors a, b and ¢ define a spherical triangle ABC on a unit
sphere with centre at the origin O. Let «, 8 and y denote the arcs of the
+ great circles forming the triangle, labelled so that « is opposite to the
. angle at A4, etc. Show that (axb)x(axc)=[abcla and deduce that
sin « sin B sin C'=[abe]. Hence obtain

sind sinB sinC
sine  sinB8  siny

This relations is known as the sine law for spherical triangles.

13 Reciprocal Basis

A set of three non-coplanar vectors e,, e, and e; is called a basis
because any vector can be expressed linearly in terms of any three
non-coplanar vectors by equation (12.3). The basis is said to be right-
handed or left-handed according as [e;e,e;] is positive or negative.

A second basis e?, e? and e3f is said to be reciprocal to e;, e; and
eg if

e;.el =1 e;.e2=0, e;.e® =0,
e,.el =0, e.e?2=1, e;.e® =0, (13.1)
ea.el = 0, e3.e2= O, e3.e3= 1.

The vector e! is orthogonal to both e, and e; and so we may write
el=)e; x e;. Substitution in e;.e'=1 yields A[e,e e;]=1. Hence we
have

e;x e e;xe e xe
12" 3, e2=_2"1, e8=_-1"2. (13.2)
[eieqz€5] [e;eq€e3] [eiez€s]
From the relative symmetry in e;, e, e; and e', e?, e® we have
similarly that
e?xe® exel el x e?
e, = e, = —m——— €n = ————- 13.3
1 [elezea], 2 [e1e233]’ 3 [ele%e?) ( )
EXERCISES

« 1. Obtain a set of vectors reciprocal to the three vectors —i+j+k,
i—j+kandi+j—k.

+ The indices 1, 2 and 3 of e!, e2 and e® merely serve as distinguishing
‘labels’ and do not possess any significance as power indices.
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. 2. If e,, e, e; form a self-reciprocal basis, show that they are the unit
vectors of a fundamental system.
3. Prove that (i) [e,eqe;][e’e?e®] =1,

-(ii) e, xelt+e;xe’te;xe=0,
(iii) [e eqe;]’[e'e®e’]=[e, x €5 €3 X €; €; X €,].

MISCELLANEOUS EXERCISES

1. If bx c is not the zero vector, obtain x in terms of a, b and ¢ given
that a.x=1, b.x=0 and ¢.x=0.

2. If a, b and ¢ are three non-coplanar vectors, show that the vectors
b x ¢, cxa and a xb are non-coplanar and prove that any vector d can be
expressed in the form

d = {a.dbxc+b.dcxa+c.daxb}/[abc].

3. Show that the internal bisector of an angle of a triangle divides the
opposite side in the ratio of the other two sides. Deduce that the internal
bisectors of the angles of a triangle are concurrent.

4. The coplanar straight lines AL, BM and CN are concurrent. Prove
that the points of intersection of 4B and LM, BC and MN, CA and NL
are collinear.

5. Show that the mid-points of the diagonals of a complete quadrilateral
are collinear.

6. Show that the sum of the four vectors of magnitudes equal to the
areas of the faces of a tetrahedron and directed outwards perpendicular to
the faces is zero.

Generalize this result to a closed polyhedron.

7. If the vector triple el, e2, e® is reciprocal to the triple e;, e,, e,
show that any vector a satisfies the relation

a = (a.el)e; +(a.e?)e,+(a.e)e;
and
a=(a.e;)e'+(a.e;)e?+(a.e;z)ed.

8. Show that (axb)-(axc)=(b.c)(a.a)—(a.c)(a.b). Hence, with the
notation of exercise 2, page 21, deduce the cosine law for spherical
triangles

cos & = cos 8 cos y+sin B sin y cos 4.

9. Obtain the angle (a) between two faces, (b) between a face and an edge
which intersects it, of a regular tetrahedron.

10. D, E and F are points on the sides BC, CA4 and AB of a triangle
ABC such that AD, BE and CF are concurrent. Use vector methods to
prove Ceva’s theorem that

BD CE AF |



CHAPTER 2

Applications to Space
Geometryt

In this chapter vectors are used in two different ways. Firstly, the
position of a point in space is denoted by a vector whose initial point
is fixed. The other end of the vector determines the point uniquely in
space. Such vectors will be denoted by bold Roman letters. Secondly,
a vector may merely determine a direction in space irrespective of its
initial point. Such vectors will be denoted by bold Greek letters.

14 Straight Line

There is a unique straight line (Fig. 17) through A4, given by the
vector a referred to some fixed initial point O, called the origin, in
the direction of the vector a. Let r be the position vector of any point

A4 L
[

Fig. 17

_— —> —>
R on this straight line. From OR=04+ AR we have
r=atua

+ The content of this chapter is not required for the understanding of the
remainder of the text.

3—V.A. 23
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where the value of the parameter # depends on the position of R on
the straight line. As u varies from —o0 to +co the point R traces out
every point of the straight line.

—

We have AR=r—a and so AR?=(r—a)’>=u%a2. Accordingly, u
measures the actual distance 4R if and only if « is chosen to be a unit
vector.

The parameter u can be eliminated from the equation r=a+ua by
writing it in the equivalent form

(r—a)xa =0.

Next we calculate the perpendicular distance (Fig. 18) BM from
B, given by the vector b, to the straight line r=a+ua. We have
—

AB=b-—a and |;4_§ x | =aAB sin §=aBM, where 0 is the angle
BAM.
4 M

@«

Fig. 18

Accordingly,
BM? = {(a—Db) x a}?/a?.
An alternative method yields
BM? = AB?— AM?
= (a—b)*—{(a—b).o/a}?
_ (a=b)’e®—{(a—b).a}*

a2

The equality of the two expressions for BM? is verified from equation
(12.2).

Example. Show that if the two straight lines r=a+ua and r=b+ o8
intersect then (a—b).axB=0 but a x@#0.
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If the straight lines intersect, values of u and v exist for which
a+ua=b+oB. The required result is obtained by taking the scalar
product with a xB. Note that the vanishing of a x implies that the
straight lines are parallel.

15 Plane

Consider the plane (Fig. 19) through A, given by the vector a,
containing the directions given by the vectors a and B. By the
parallelogram law of addition of vectors, the vector AR corresponding

Fig. 19

to any point R on the plane of a and @ is given by ua+ o where u
and v are parameters. Then the position vector r of R is given by

r =a+tuatof.

This equation represents the required plane. To each point R on it
there corresponds a pair of values of u and v.

We may eliminate the parameters u and v to obtain the equation
of the plane in the form

(r—a).axB = 0.

This equation can be obtained directly by noting that axf is a
vector orthogonal to the plane and r—a is a vector lying in the plane.

The equation of the plane through the three points 4, B and C,
given respectively by the vectors a, b and e, is obtained by noting
that the vectors b—a and c—a are parallel to the plane. Hence the
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equation satisfied by r, the position vector of any point R on the plane,
is

r = atub—a)+ov(c—a)

= (1-u—v)a+ub+ve.
That is,

r = Aa+pub+re,
where

Adp+v = 1.

Next we calculate the perpendicular distance BL (Fig. 20) from B,
given by the vector b, to the plane (r—a).(a xB)=0. We note that

A/
N\
N\
N\

N\

A\

| - ~

8
Fig. 20

— —
BL is the component of the vector BA=a—b in the direction of BL.
This direction is parallel to the vector & x 8. Hence we have

_ -l_-(a—b).axp.
B = T axel

16 Shortest Distance between Two Skew Lines

Consider (Fig. 21) the two straight lines through 4 and B, given by
the vectors a and b, in the respective directions a and B. The corre-
sponding equations are r=a + ua and r=>b+ oB. The shortest distance
between a point and a straight line is the perpendicular to it from the
point. Consequently the shortest distance between two skew lines is
along the line which is perpendicular to both of them. That is, the
shortest distance between these two straight lines is LM, where LM is
perpendicular to both the vectors a and B. Accordingly, the vector
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. ﬁ é .
a x B is along LM. But LM is the component of the vector AB in the
direction of FW and so we have

(a—b).axp

LM = axpl

$

—
since (& x )/|a x B| is a unit vector in the direction of LM.

B
-5
M
/ ¢ A ¢
: b
a’
o
Fig. 21

We deduce that the necessary and sufficient condition that the two
straight lines intersect is (a—b).a x =0 provided that a x 0. We
note that this condition agrees with the result in Section 14.

MIiSCELLANEOUS EXERCISES

1. Calculate the perpendicular distance from the point (—2, 1, 5) to the
straight line joining the points (1, 2, —5) and (7, 5, —9).

2. Calculate the perpendicular distance from the point (—2, 3, —1) to
the plane determined by the three points (—4, 4, —8), (=5, 8, —11) and
(-7, -2, —8).

3. Calculate the shortest distance between the straight lines joining the
points (—14, 8, 6), (—11, 4, 1) and the points (3, 5, 5), (6, 11, 8).

4. Show that the straight line through the point represented by the
vector b perpendicular to and intersecting the straight line r=a-+{ua is
given by r=b+va x {(a—b) xa}.

5. Show that the equation of the plane through the points 4, B and C
given by the vectors a, b and ¢ respectively can be written in the symmetrical
form

(3r—a—b—c).(bxc+cxat+axb) =0,
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6. Show that the point of intersection of the straight line (r—a)xa=0
and the plane (r—b).@ =0 is at the point given by the vector a+ e, where

_(b—2a)p
A—'—a_'p——'

7. Show that the line of intersection of the two planes (r—a).a=0 and
(r—b).8=0is given by (r—c) x (a xB)=0, where

claxP)? = a.alf x(axP)]+b.Blax (B xa)].

8. The Plucker vectors of the straight line through the point A given by
the vector a and parallel to the direction of the vector a are p and q, where
p=a/|a| and g=a x p. Show that

(1) p is independent of the choice of the point 4 on the straight line,
(ii) the perpendicular distance from the point given by the vector b from
the straight line is |[pxb+q|,
(iii) the straight lines corresponding to the Plucker vectors py, q; and
P2 9. intersect if and only if p;.q.+p;.q: =0 and p, x p,#0,
(iv) the equation of the plane through 4 and the line with Plucker vectors

P1 qu is
r.q,—[rap]=a.q,.



CHAPTER 3

Dafferential Vector Calculus

17 Derivative of a Vector

Let p(#) denote a vector function of the scalar variable #, where u is
restricted to some range of values u; <u <wu,. By this statement we
mean that p(«) is uniquely determined when % is given a value in its
range.

As an example consider the vector p=a-+ua. As u varies, p
represents the vectors joining the origin to any point of the straight
line through the point} a in the direction a. For this vector, # may
range from —oo to +o0.

The vector function p(«) is said to be continuous at u, if, given
any positive number e, it is possible to find another positive number
8 such that |p(u)— p(u,)| < when |u—u,| < 8. This condition is also
written in the form lim p(u)=p(u,).

u-sug
The derivative p(x) is defined by
13(“) = flf_ = lim p(u+Au)_p(u)
du  mu-o du
provided that this limit exists. In this case we also say that p(x) is
differentiable. (The dot above the letter will always denote
differentiation with respect to u.)

Since p(u) is itself a vector function of u, we can consider its
derivative with respect to u. If this derivative exists we denote it by
p(u), where

. d . dz
P) = 2 (b(w) = &
Similarly, higher derivatives of any order can be defined.

—
1+ When the vector a represents the directed line segment OA4, where O is
the origin, we occasionally refer to 4 as the point a.

29
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Example. Obtain the derivative of the constant vector ¢. Let p(u)=c
and so p(u+4u)=c from which p(x)=0. That is, the derivative of a
constant vector is the zero vector.

18 Derivative of a Sum of Vectors
Divide both sides of the identity
{p(u+4u) + q(u+Au)} — {p(x) + q(u)}
= {p(u+4u)—p(u)} +{q(u+4u)— q(u)}
by 4u and proceed to the limit as 4u tends to zero. It follows that

dp , dq
(p+q) ot

It follows from the commutative and associative laws of addition
of vectors that for a finite number 7 of vectors p,(x) we have

d‘i(z ) zdPt

19 Derivative of the Product of a Scalar and a Vector Function

Consider p(u)=f(u)a(u), where f(u) is a scalar function of u and
a(u) is a vector function of u. Then we have

p(u+A4u) = f(u+du)a(u+du).
Divide both sides of the identity
p(u+4du)—p(u)
= f(u+du){a(u+Au)— a(w)} + {f(u + du) — f (u)}a(u)

by 4u and proceed to the limit as 4u tends to zero. It follows that

d da d
() =2+
ExERCISES
1. If n, a and b are constant and p=a cos nt+b sin ¢, prove that
_ d .d%p
px—;—t’=naxb and 71—2+n2p=0.

2. Find p satisfying the equation p(u)=au+b, where a and b are
constant vectors, given that p and p both vanish when u=0,

d L.
3. Show that —(p/p)=p/p—pp/p*.
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20 Derivative of a Scalar Product

Consider f(u)=a(u).b(x), where a and b are vector functions of
the scalar u. Then we have f(u+4du)=a(u+4du).b(u+A4u). Divide
both sides of the identity

J(u+du)—f(u)
= a(u+du).{b(u+du)—b(u)} + {a(u + du) — a(u)}. b(x)

by 4u and proceed to the limit as 4u tends to zero. It follows that
db da
+

d
‘-l;(a.b) =a._ E'b'
In particular, we have
d , d da
Z&a = Z‘(a.a) = Za.zl-.
But a2=42 and so i az = 2q ‘E- Hence we have
du du
da_ , do
2T %qm

P . d da .
Further, if a is a vector of constant magnitude, ES =0andsoa S 0.

That is, the derivative of a vector of constant magnitude is either
orthogonal to it or zero.

21 Derivative of a Vector Product

Consider p(u)=a(u) x b(u), where a and b are vector functions of
u. Then p(u+du)=a(u+4du) x b(u+4u). Divide both sides of the
identity

P(u-+41) ~ p(u)
= a(u+4du) x {b(u+ du)—b(u)} + {a(u + du) — a(u)} x b(x)

by 4u and proceed to the limit as du tends to zero. It follows that

d db da
E(axb) = aX%—F-‘EXb.

It is important in this case not to interfere with the order of the
_ vectors as vector multiplication is anti-commutative.
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We immediately deduce that
d . d
T (a.bxc) =a.bx ct+a.— (bxc)

=4a.bxc+a.bxct+a.bxé.
Similarly we obtain

adl—l{ax(bxc)} =ax(bxc)+ax(bxc)+ax(bxé).

EXERCISES
. d . X 34 d o oo o 000
1. Show that (i) - (pxp)=p xP, (i) 7 [PPBI=[PPP].
du du
2. If ais a unit vector in the direction of b, show thata x &= (b x b)/(b.b).

3. If -‘-13=o)xa and d——b=w x b, show that
¥ du du

£ (axb) = wx(axh)

N4 Ifr x% =0, show that r has a fixed direction. (Hint: Let r=f(u)e(x),

where e(x) is a unit vector. Deduce that e xé=0and e.&=0.)

22 Taylor’s Theorem for a Vector Function

Suppose that the vector p(x) and its derivatives up to order n—1
are continuous for @ <u < a+ hand p™(u) exists for a <u < a+h. Under
these conditions we prove Taylor’s theorem that

pla-+h) = p(a)+hp(a) + -

+ v _1 o1 Br=1pt-D(g) 4+ ;ll_' h"p™(a+ 0h), (22.1)

where 0 < 6<1.
If, in addition, lim {(#"/n!)p™(a+ 0k)}=0 the vector function

p(a+ k) has the Taylor expansion
1
p(a+h) = pa)+hp'(a)+- -+ HPP(@)+ -
Define the vector q(u) for 0<u<h by

q(¥) = pla+u)—p(a)—up'(@)— - — (n_—}l_)—' u*~p®~(a) _1_11_! u,
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where the constant vector A is chosen so that q(k)=0. We verify that
9(9), 9'(0), 9°(9), - - -, 4" 72(0)

are all zero.
Now choose an arbitrary vector ¢ and define the scalar Q(u) by

O(u) = c.q(u).
It follows that
0(0), 0°(0), 0"(0), - - -, Q®~1(0) and Q(h)

are all zero.

Successive application of Rolle’s theorem yields
(1) Q’(hy)=0, where 0<h; <k since Q(0)=0 and Q(k)=0,
(2) Q"(h2)=0, where 0<hy<hy since Q'(0)=0 and Q'(h;)=0,

(n) Q"X(h,)=0, where O<h,<h,_, since Q®-D(0)=0 and

Q(n_l)(hn—l) =0.
Since O<h,<h,_,<--- <h, <h, there exists a number 6 for which
h,=0hand 0<0<1. But

O"u) = ¢.q™(w) = c.[p™(a+u)-2]
and so
c [p™(a+6h)—2A] = 0.

However, c is an arbitrary vector and so A=p™(a+ 6h). Substitu-
tion in q(k) =0 yields equation (22.1) as required.
23 Derivative of a Vector Referred to a Fundamental System

Let the vector p(u) have components p,(x), p,(x) and p,(u) referred
to a fundamental system i, j and k. That is,

p(#) = py(w)i+p(w)j+ pu(u)k.
Then we have

B = 2 i)+ (0,5)+ o (i)
Since i, j and k are constant vectors, we have
B(v) = pi+p;j+pik.
ExERcISES

1. Given that r=a cos # i+ a sin « j+ buk, show that #2=qa2+ 52,

(#x¥)? = a%(a®+b%) and [£F¥¥] = a%.
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2. If a=ui—u?j+u®k and b=sinui+cosuj, calculate (i) g;—‘ (a.b),

4

(ii) % (axb).

24 Partial Derivatives of Vectors

Let p(u, v) denote a vector function of the independent scalar
variables u and ». By this statement we mean that p(x, v) is uniquely
determined when # and v are given values within their ranges.

As an example consider the vector p=a+ua+9@. As u and v vary
p represents the vectors joining the origin to any point of the plane
through the point a in the directions given by a and B.

The partial derivative p, is defined by

_% _ p(u +du, v)—p(u, v)
Pu = ou Au—»o du

provided that this limit exists.
Similarly, the partial derivative p, is defined by

_ P _ i P& v+ dv)—p(u, v)

V00 a0 dv

provided that this limit exists.

More generally, p may denote a vector function of any number of
independent scalar variables and it is clear how partial derivatives
are defined.

We may in the usual way define partial derivatives of higher order.
It may be shown, as in real analysis, that under suitable conditions
partial differentiation is commutative. For example, we have

oop_99p
ovou ouov

As in the preceding sections we can similarly establish the results
that

oq
(P+ q) = 54'5;

2 (o) =12 12 o,
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il ob 0a

(@b =a.5045..b,
b o0a

(axb)—a Xt om % xb,

7 0
o {pitpitpdk) = i By Doy

Note carefully that the indices 7, § and & refer to the components
of a vector with respect to a fundamental system. They will not be
used as partial derivative indices.

EXERCISES
1. If wv s . . W Op . O ...
L If p=e 1+(2u—v)]+v sin u k, calculate (i) o (ii) Ey (iif)

ou dv
(1v) ov 2 (v) 6u 61)
2
2. If a=uvwi+uw?—v°k and b=u%—uvwj+u%uk, calculate (i) —62 3av

2 2
at the origin, (ii) %1-; 2P 4t the point (1, 1, 0).

ou



CHAPTER 4

Applications to Differential
Geometryt

25 Curve and Tangent Vector

Consider the vector function r(x) of the scalar variable #. To each
value of u there corresponds a vector whose initial point is at the
origin. The other end of the vector determines a point in space. As u
varies, this point traces out a curve. To avoid having the curve
degenerate to a point, the case when r(u) is a constant vector is
excluded.

tu+Au)

Fig. 22

+ Sections 26 and 27 may be omitted by the reader who is not interested in
differential geometry. The remaining sections are vital to the subsequent
development,

36
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Let P and Q (Fig. 22) correspond to values u and u+du of the

scalar variable. Then OP and O—Q> are given by the vectors r(u) and
r(u+4u) respectively.

The tangent at a point P on the curve is defined to be the limiting
position of the chord PQ as Q tends to coincidence with P. We have

— _— —>
PO = OQ—OP = r(u+du)—r(u)
and so

PO r(u+du)—r(u)
du = T du

Let QO tend to P. Then 4u tends to zero and we obtain

—

PO
lim == = i(u).
Au—0 du ( )
—_
But lim A—Q- is a vector in the direction of the tangent and so the
4u—0

vector #(«) is a tangent vector to the curve r(x) at the point corre-
sponding to the scalar variable .

The vector #(x) is not tied to a fixed point as an initial point and
so by the convention introduced in Chapter 2 we ought to represent
it by a Greek letter. However, in this and in the following chapters we
shall not employ this convention. It is merely necessary to remember
that r(«) is tied to the origin O but other vectors are free in space.

Let the coordinates of the point P given by r(x) be », y and =z
referred to a set of rectangular axes with O as origin. Further, let
i, j and k denote the fundamental system of vectors with respect to
these axes. Then we have

r(u) = x(u)i+y(u)j+ 2(w)k,
where x(u), y(u) and 2(u) are scalar functions of u.

Introduce the scalar s which measures the distance along the curve
from some fixed point of the curve. Then we may select s in place of
the parameter % to obtain

1(s) = x(s)i+y(s)j + 2(s)k.
The vector r'(s), where the prime sign denotes differentiation with
respect to s, is now a tangent vector.

From ds?=dx?+dy?+ dz?, we have

[+ Y OP+[E@F = 1.
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Accordingly
r'(s).2'(s) = [#'()i+y"(s)i + 2 (s)k]?
= [¥'(P+ ')+ [='(5)]
= 1.
That is,

, dr
T(s) = £'(s) = T
is the unit tangent vector to the space curve r(s) and it clearly points
in the direction of increasing s.

Let A and B be points on the curve r(x) corresponding to the
parameter values u, and up. If #(x) is continuous for u, <u<up, we
say that the curve joining AB is a regular arc. A double point on a
curve is a point at which the curve intersects itself or is tangent to
itself. Further, a regular curve consists of a finite number of regular
arcs without double points. That is, there can at most be a finite
number of points with discontinuous tangents on a regular curve.

26 Frenet Formulae

The vector T(s)=r’(s) is the unit tangent vector to the curve r(s),
where s measures arc-distance along the curve from some fixed point
on it. Differentiation of r'(s).t'(s)=1 yields r'(s).r"(s)=0. That is,
the vector r”(s) is orthogonal to r'(s). The direction determined by
r’(s) is called the positive direction of the principal normal. Let
N(s) denote the unit vector in the positive direction of the principal
normal. Accordingly a function «, positive by convention, called
the curvature exists such that

NE) = 2£() (x>0

This equation can be written in the form

%‘ = kN.
The unit binormal vector B(s) is defined to be the unit vector
orthogonal to both the tangent vector T and the principal normal
vector N such that T, N and B form a right-handed system of unit

vectors. Accordingly
B=TxN, N = BxT, T = NxB.

B is a unit vector and so B’ is orthogonal to B (see Section 20).
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Further we have B.T=0and so B’.T+B.T'=0. But B.T'=B.xN=0
and so B’.T=0. Hence B’ is also orthogonal to T. Accordingly a
function 7(s), called the torsion, exists such that

, __dB
B —'Es——-—TN.

It is merely a matter of convention that 7 is introduced by this equation
with a negative sign. Note carefully that the sign of 7 itself cannot be
fixed by convention to be positive, but is positive if B’ and N have
opposite directions.

We have
N=BxT
and so
N =B'xT+BxT’
= —TNxT+Bxx«xN
= 7B—«T.

The three equations for the derivatives T, N’ and B’ in terms of the
basis formed by T, N and B are called the Frenet formulae. Col-
lecting the Frenet formulae together, we have

T = «N
N’ = —«T }+B (26.1)
B = ~7N.

Introduce the Darboux vector w= 7T + «B. Then the Frenet formula
can be exhibited in the symmetrical form

"= wxT, N =wxN, B = wxB.

The three vectors T, N and B are called the trihedral at a point.

Example 1. Show that the necessary and sufficient condition that a
curve be a straight line is that x=0,

If the curve is a straight line, the vector T is constant and so
T'=0. Hence «=0.

Conversely, given x =0, we have T'=0 and so T is a constant vector
and the curve is a straight line.

Example 2. The necessary and sufficient condition that a curve lie in
a plane is that »=0.

If the curve lies in a plane, select the origin in this plane. Both ¢’
and r” are vectors lying in this plane. Hence T and N lie in the plane
and so B is a constant vector, its direction being orthogonal to the
plane. Accordingly B’=0 and this implies that 7=0.

4—V.A.
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Conversely, given 7=0 we have B’'=0 and so B is a constant vector.
Let the curve be given by r(s). Then we have

;—s(r.B) =T.B+r.B' =0
and so r.B is a constant. That is, the vectors from the origin to points

of the curve are all orthogonal to a fixed direction B. Hence the curve
is a plane curve.

27 Curvature and Torsion

We have
r =T,
t” =T = kN,
and so
" = k'N+«N’
= k'N+x(—«T+7B) in virtue of (26.1)
= —k2T+«'N +«7B.
Thus
.t = K2
and

[
r'. " xr” = T.«Nx«rB = «2r.
Hence we have
’ ” U4
r. " xr

k=+/(".1") and 7= (27.1)

In general the parameter u in r(x) is not the arc-distance s and so
we cannot evaluate « and = directly from these equations.
For any vector a we have

Using this result in conjunction with the Frenet formulae (26.1) we
have

i=4§T, T=3iN, N=§—«T+7B), B= —sN,

f = § T+ %N,

F = § T+ $ikN + 285kN + 2N + $3x( — «T + 7B)

and so
f = (5§ — )T+ (3s5x + $2)N + 3% 7B.
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Hence
ExE = §3B,
[Ex & = |3k = [£]%,
. ExXE = §637,

I

Thus we obtain
rxt Ff.ExF
| EE , and 7 = Ifx'f'lz. (27.2)

K =

Example 1. Calculate the curvature and torsion of the curve

r = aBu—u®)i+3au?j+ a(3u+ud)k,

We have
£ = 3a(1—u?)i+ 6auj+3a(l +u?)k,
f = —6aui+ 64j + 6auk,
f= —6ai + 6ak,

Accordingly, calculation yields
|#]2 = 18a%(1+u?)2,
£x ¥ = 18a%(u?—1)i— 36a%uj+ 18a2(u®+ 1)k,
|Ex £|2 = 2.18%a%(1 +42)?,
EEXE = ixE.F = 2164°
Thus we obtain on substitution into equations (27.2) that

1
= 3a(1+ud)?
Example 2. By definition, a helix is a space curve whose tangent
makes a constant angle with a fixed direction. Show that any single
one of the following is a necessary and sufficient condition that a curve
be a helix: (i) the principal normal is orthogonal to a fixed direction,
(ii) /7 is a constant, (iii) " x £”. ¢ =0.

(i) By the definition a helix is a curve such that

K=T7T

T.e =cosa

where e is a fixed unit vector and « is a constant angle. Differentiation
yields T'.e=0. Application of the first of the Frenet formulae
followed by division by « yields N.e=0. That is, the principal normal
is orthogonal to the fixed direction e. Conversely, given N.e=0, we
have

d . _
a}(T.e) =T.e=«N.e =0

and so T.e is constant as required.
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(ii) Differentiation of N.e=0 yields (—«T+ 7B).e=0. Since N is
orthogonal to e, both T and B are coplanar with e. Hence T.e=cos «
and B.e=sin « if the relative positions are as depicted in Fig. 23. (If

B{u

Fig. 23

B is in the opposite direction, B.e= —sin « and the ensuing calcula-
tions require slight modification.) Thus we have —« cos e+ 7 sin =0
and so x/r=tan ¢« = constant as required.

Conversely, given «/r is constant, we can denote the constant by
tan « to give « cos a— 7 sin @=0. Then we have

(%(T cos ¢+ Bsin ) = T’ cos ¢+ B’ sin «

= (kcosa—7sina)N = 0,

and so T cos &+ B sin e =c, where ¢ is a constant vector. Accordingly
T.c=cos « and the curve is a helix.
(iif) We have the relations
r" = kN,
r” = —k®T+«'N+«7B,
" = =3ki'T+ (k" — k®— k72N + (2’7 + k7')B,
and so

d [+
"t xt" = 3k’ —k't) = k5 5 |=])-
ds \«

Thus 7/« =constant and r”.r” X r”” =0 each imply the other as required.

EXERCISES
1. For the circular helix r=a cos # i+a sin u j+buk, show that

k = al(a®+b%) and 71 = bj(a®+b?).
2. For the curve r=¢*(i—j)++/2uk, show that
k= —71 = 4/2[(e*+e" %)
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3. If a curve lie on a sphere show that %(K’/TK2)=T/K. (Hint: The

equation of the sphere with centre at ¢ and radius a is (t—c).(r—c)=a?.
Successive differentiation yields

(r—c).T=0, (r—c).N=—1/k, (r—c).B = «'[c?r
and (r—c).N = — == —)

28 Surfaces and Normals

Consider the vector function r(x, v) of the two independent scalar
variables « and v. To each pair of values of # and v there corresponds
a vector whose initial point is at the origin; the other end of the vector
determines a point in space. As u and v vary this point traces out a
surface. To avoid having the surface degenerate to a curve, the case

when o X o = 0 is excluded.
ou” v

All points on the surface for which v has the constant value v, lie
on the curve r(u, v,) with parameter #. This curve along which u
varies is called a u-curve. Similarly all points on the surface for which
u has the constant value #, lie on the v-curve r(u,, v). Collectively,
the u-curves and v-curves are called the parametric curves.

The vector r,=0r/ou is a tangent vector to the parametric curve
v=constant whilst the vector r,=0r/dv is a tangent vector to the
parametric curve u = constant.

The equations u=u(t), v=2v(f) determine the curve r(u(z), v(t))
with parameter ¢ on the surface. It has the tangent vector

d_ordu ordo_du do
dt  oudt ovdt dt V' dt™”

That is, at a point the tangent vectors to all curves on the surface

passing through the point lie in the plane formed by r, and r,. This

plane is called the tangent plane to the surface at the point.

We define the normal at a point on a surface to be the straight line
orthogonal to the tangent plane at that point. Let n denote the unit
vector along the normal and be such that the vectors r,, r, and n form a
right-handed system. The vectors r, and r, are both orthogonal to n
since they lie in the tangent plane. It follows that

_ Ty XTI,
(£ x £,
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Example. Obtain the unit normal vector to the sphere
r =asinucosvi+asinusinvj+acosuk.

(This vector equation does represent a sphere of radius a since the
components ¥, y and z of r satisfy the relation x2+y2?+4 22=4a2.
The parameter u represents the colatitude (that is, the complement of the
latitude) whilst » measures the longitude. The ranges of the parameters
are 0 <u < and 0 <v < 27. The u-curves and v-curves are respectively
the meridians and the parallels of latitude.)

We have

r, =acosucosvitacosusinvj—asinuk,
r, = —asinusinvi+asin u cos vj,
and so
r,xr, = a®sin® u cos v i+ a? sin? u sin v j+ a? sin u cos u k,
|ty x1,| = a®siny,
which yields
n =sinucosvi+sinusinovj+cosuk = r/a.

Thus the positive direction of the unit normal is outwards from the
sphere.

EXERCISES

1. Show that r=wucosvi+usinvj+f(u)k represents a surface of
revolution. What are the parametric curves? Obtain the unit normal vector
to the surface.

2. Show that r=u cos v i+u sin v j+ f(v)k represents the conoid, which
is the surface obtained by revolving a straight line about an axis per-
pendicular to it whilst simultaneously moving the straight line along the
axis. What are the parametric curves? Obtain the unit normal vector to the
surface.

29 Length of Arc on a Surface
The distance ds between the two points r and r+dr on the surface
r(u, v) is given by
ds? = dx?+dy*+d3?
= dr.dr
= (r,du+r,dv).(r, du+r, dv)
= E du?+2F du dv+ G dv?,

where
E=r,v,, F=r,.r, G=r,.1,
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E du®+2F du dv+ G dv? is called the first fundamental form of
the surface r(u, v).

In particular, the distance d,s along the u-curve for which dv=0 is
given by

d,s = +/E du.
Similarly, the distance d,s along the v-curve is given by
dys = 4/G dv.

If every u-curve is orthogonal to every v-curve, we say that the
parametric curves form an orthogonal system. Hence the necessary
condition that the parametric curves form an orthogonal system is
that the tangent vectors r, and r, at each point be orthogonal; that
is, if and only if F=r,.r,=0.

The scalar product —dr.dn plays an important role in the differen-
tial geometry of surfaces and is called the second fundamental form.

We have

—dr.dn = —(r,du+r,dv).(n, du+n, dv)

= L du?+2M du dv+ N do?,

where
L=-r,.n, 2M= —(r,.n,+r,.n)), N = —r,.n,

Since n is orthogonal to r, and r, we have r,.n=r,.n=0. Differentia-
tion yields

r,.n, +r,.n=>0 t,.n,+r,.n=0
r,.n,+r,,.n=0, r,.n,+r,.n =0

It follows thatr,.n,=r,.n,= —r,,.n and so we have

L=r,.n=/[trr,]/|r,xzt,,
M = r,,.n = [rrr,]/|r, x|,
N =ry,.n = [rrr,]/|r, xr).

EXERCISES

v 1. Obtain the first fundamental form of the sphere, surface of revolution
and conoid.
\2. Show that |r, xr,| =+/(EG— F?).
3. Obtain the second fundamental form of the sphere, surface of revolu-
tion and conoid.
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30 Scalar and Vector Element of Area
Consider (Fig. 24) the four neighbouring points 4, B, C, D on the

Fig. 24

surface such that the respective values of the parameters at these
points are (u,v), (u+du,v), (u+du,v+dv) and (u, v+dv). The
distances AB and AD measured along the parametric curves are
respectively d,s=+/E du and d,s=+/G dv. The scalar element of
area dS contained by ABCD is approximately a parallelogram and
so dS=sin w d,s d,s, where w is the angle between the tangents to
the parametric curves through 4. Since r, and r, are tangent vectors
to these parametric curves, we have

sinw = [ X Eo|,
EANEN
Consequently, we see that
dS = |r, xr,| du dv. (30.1)
The vector element of area dS is defined by
dS = r,xr,dudo (30.2)

and so
dS = ndS. ] (30.3)



CHAPTER 5

Integration

31 Riemann Integral

Let f(x) be a single-valued function of x defined in the interval
a=x,<¥<X,=>b. Divide this interval into m sub-intervals by the
points X, X1,..., X, Wwhere xo<¥; <¥Xg<---<Xp_y3<X, Let us
write dx,=x,—x,_;, choose £, such that x,_; < §,<«, and form the
sum

I, =§1f(§,)Ax,.

Let m tend to infinity in such a way that each 4dx, tends to zero. If the
limit of I,, exists and is independent of the mode of subdivision, this
limit is called the Riemann integral of f(x) from a to b and is
denoted by

J‘: f(x) dx.

It can be proved that this integral exists when f(x) is continuous
in the interval (a, b). However, the integral may exist in cases when
the function is not continuous.

32 Line Integral
The vector element of arc length ds is defined by
ds = T ds,
where T is the unit tangent vector dr/ds along the curve r(s). Let I"
denote the portion AB of the regular curve r(s) corresponding to the
range s, <5 < s of the arc distance s. Consider the vectors a(s) defined

at all points of I'. Then the line integral f a.ds taken over I'is
r

defined to be the Riemann integral

J a.ds = Jsﬂ a.T ds.
r 84

47
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That is, the line integral of a vector is the Riemann integral along the
curve of the tangential component of the vector.
Let

a = afx, y, Di+alx, y, 2)j+a(x, v, 2)k
and
r = x(Hi+y(s)j+ 2(s)k

referred to the fundamental system i, j and k. Then the line integral is

Sp dx dy dz
J;aTds j ( )ds J;A (a,$+ajz+akzv-)ds

I dx dy dz
—f ( d+ajd+akd)du,

Ua
where u, and ug are the parameter values of u corresponding to 4

and B.
If I' is a closed curve it is customary to denote the integral by

fj; a.ds.
r

Example. Evaluate the line integral of yd+zj+xk over the curves
(i) the circle x2+y%2—1=2=0, (ii) the triangle in the xy-plane with
vertices at (0, 0), (2, 0) and (2, 1), (iii) the skew quadrilateral with
vertices at (0, 0, 0), (1, 0,0), (1, 1, 0) and (1, 1, 1).

The line integral is

_ dx dy dz

(i) Over the circle traversed in the counterclockwise direction we

have x=cos #, y=sin u, 2=0 where 0 <u <27 and so

27
I= —f sinuduy = —m.
0

(if) Since 2=0, we have I= § Y5 du From (0, 0) to (2, 0) we

have y=0 and the contribution to the hne integral is zero. From (2, 0)
to (2, 1) we have x =2 and the contribution is again zero. From (2, 1) to
(0, 0) we have x= —2u, y=—u for the range —1<u<0 and the

0
contribution is | 2u du= —1. Thus I=-1.
(iii) From (0, 0, 0) to (1, 0, 0) we have y=2=0. From (1, 0, 0) to

(1,1,0) we have x=1, 2=0 and so the contributions to the line
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integral are zero. From (1, 1, 0) to (1, 1, 1) we have x=y=1, 2=u for
the range 0 <z <1 and the contribution to the line integral is

1
fdu=1.
0

From (1,1,1) to (0,0,0) we have x=y=x= —u for the range
(¢}

—1<u<0 and the contribution is 3 f u du= —3/2. Hence the
-1

value of I over the skew quadrilateral is — 1.
This example shows that the value of a line integral usually depends
on the choice of path.

EXERCISES

1. Calculate the line integral of y=zi-+ zxj+xyk over the curves (i) the
straight line joining the points (b, 0, 0) and (b, 0, 2wc), (ii) the circular
helix b cos i+ b sin u j+ cuk which joins the above points.

2. Calculate the line integral of (y2+22)i+(22+*2)j+(x*+y?)k from
(0,0,0) to (1, 1, 1) over the curves (i) the straight line joining the points,
(ii) the three straight lines which link these points via the points (1, 0, 0)
and (1, 1, 0), (iii) the curve ui+u%+u°k.

33 Vector Line Integral

With the notation of the previous section, divide I' into m sub-
intervals by the points with parameters s,=s;, §3, . . ., $» =$z. Denote
the arc length of the sub-interval (s,_;, s,) by 4s, = (s,—s,_,;) and
choose o, such that s,_; <o, <s,. Then form the vector sum

I, = rzl a(o,) ds,.

Let m tend to infinity in such a way that each 4s, tends to zero. If the
limit of I, exists and is independent of the mode of subdivision, this
limit is called the vector integral of a over the curve I" and is

denoted by
f ads.
r

Further, the vector line integral j axds is defined by
. r

f axds = f ax'Tds.
r r



50 INTEGRATION [Ch.

Example. Calculate § axds, where a=cosui+sinuj+e* kand I
r
is the circle p cos # i+ p sin #j. We have s= pu and so

r = p cos (s/p) i+psin (s/p) j.
Hence
T = —sin (s/p)i+cos(s/p)j = —sinui+cosuj
and so
axT = —cos ue* i—sin ue* j+k.

Accordingly the integral is
2%

p (—cos ue* i—sin ue* j+k) du = %p {(1—e**)(i+j) +4k}.
0

EXERCISES

1. Calculate § ads for the vector a and the curve I" of the above

r
example.
2. Show that § a X ds, where a=zi and I is the portion of the circular
r
helix b cos ui+b sin u j+ cuk between (—b, 0, 7¢c) and (b, 0, =c), is

32c% + 2bck.

34 Double Integral

Let f(x,y) be a single-valued function of the two independent
variables x, y defined over a finite region S of the xy-plane. Divide
the region (Fig. 25) into m sub-regions of areas 4S,,4S,,...,4S,,
(this is usually achieved by two families of curves), and choose any

Y
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point (¢, 7,) inside or on the boundary of the sub-region 4S,. Then
form the sum

Im = filf(gn nr) ASf’

Let m tend to infinity in such a way that each 4.5, shrinks to a point.
If the limit of I, exists and is independent of the mode of sub-
division, this limit is called the double integral of Sf(», ¥) over the
region S and is denoted by

L f(x, y) dS.

It can be proved that the double integral exists if f(x,) is con-
tinuous over the region S.

The value of a double integral is computed by a suitable choice of
sub-regions. For example, if the 458, correspond to the rectangles
formed by straight lines parallel to the coordinate axes (Fig. 26) we
write dS=dx dy.

Yoy
D
fo1 \\
L N
/ p)B
v
/
)4
Ind Ve
/
//
—
—
) X
Fig. 26

It can then be shown that
b Y@
f F(%, ) dS = f { f(%,9) dy} dx
N a v1(2)

_ f: { ”(y)f(x,y) dx} &,

z1(v)

where y=2y,(x) and y =y,() are the equations of the arcs ACB and
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ADB whilst x=x,(y) and x=x,(y) are the equations of the arcs
CAD and CBD. Further, a, b are the abscissae of the points 4, B
where the curve has vertical tangents whilst ¢, d are the ordinates of
the points C, D where the curve has horizontal tangents.

The regions considered in Figs. 25 and 26 are such that the
boundaries are cut in at most two points by parallels to the axes. The
definition of double integral can be extended to more complicated
regions if they can be dissected into a finite number of sub-regions
with the property just mentioned.

Now let the vector a(x, y) be defined at all points of the region S.
Then we can form the vector sum

I, = Z a(é,, n,) 45,
r=1

If the limit of I,, exists as m tends to infinity and is independent of the
mode of subdivision, this limit is called the vector double integral
of a(x, y) over the region S and is denoted by

fs a(x, y) dS.

35 Surface Integral

Let a(u, v) be a single-valued vector function of # and v defined
over a region S of the surface r(x, v). Divide the region (Fig. 27)
into m sub-regions of areas 45;, 48, ..., 4S, and choose any point

n{ /ln"r/

A
|
|

» 9 //‘n’r)
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(ur, v,) inside or on the boundary of the sub-region 4S,. Then form
the sum

m
L, = Z a(py, vp).n(py, v,) 48,
r=1

where n is the unit normal vector. Let m tend to infinity in such a
way that each 4., shrinks to a point. If the limit of 7, exists and is
independent of the mode of subdivision, it is called the surface
integral of a(u, v) over the region S of the surface r(u, v) and is

denoted by
f a.ndS = f a.ds,
s s
where dS=n dS.

The surface integral can be evaluated as a double integral by
interpreting u, v as rectangular Cartesian coordinates on a suitable
region S of the uv-plane. In addition (see equation (30.1)) we replace
dS by |r,xr,| du dv. Accordingly,

fa.ds - f_a.n|ru><r,,] dS,  (d3 = du dv).
S S

In particular, the area of any region S of the surface is given by

de: j n.dS = f_ I, x1,| dS.
S S S

m
< D, || and |a.n| <|a] it follows from the surface
r=1

From

m
>a
r=1

integral definition that

fa.dS
S

A surface which encloses a finite volume will be called a closed
surface. For example, a sphere is a closed surface but a hemisphere
without its diametral plane is not a closed surface. For closed surfaces
it is conventional to arrange that the positive direction of the normal
is outwards from the surface. If S is a closed surface it is customary to

< j |a.n] dS< f |a] dS. (35.1)
N N

denote the surface integral by § a.ds.
s
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Three types of vector surface integrals are defined in terms of
the corresponding vector double integrals by

f adS = f_a |r, x1,| S,
s 5

! -
f axdS = f_axnlruxr,,l ds,
S S

and

ffds - f_fn |tax 1| 45,
s 5
where f(u, v) is a scalar function defined over S.

Example. Evaluate J. ads, f a.dS and J‘ axdS for the vector
N S S

a=cos % cos v i+ cos # sin v j—sin # k over the octant of the sphere
r=psin u cosvi+ psinusinvj+ p cosuk corresponding to 0 <u < /2
and 0 <o <7/2.

We can readily calculate that

|r,xr,| = p?siny,
n=sinucosvi+sinusinvj+cosuk,

an=0 and axn =sinvi—cosvj.

Hence we have [a.dS=0 and

f adS = p? f_(cosucosvi+cosusinvj-—sinuk) sin u dS,
s §

J axdS = p2f_(sinvi—cosvj) sin u dS,
s 5

where S is the rectangle corresponding to 0 <#</2 and 0<v<7/[2
in the uv-plane. B
Simple calculations with dS=du dv now yield

f adS = 3p* (i+j—ink)
S
and

f axdS = p? (i-j).
S
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EXERCISES

1. Evaluate J a ds, f a.dS and f a x dS for the vector
S S s

a = (y+2)i+(z+x)j+(x+y)k,

where S is the surface of the cube bounded by x=0, y=0, 2=0, x=1, y=1
and 2=1.

2. Evaluate f xyz dS over an octant of a unit sphere whose centre is at
S

the origin.

36 Volume Integral

Let f(x,y, ) be a single-valued function of x, ¥ and z defined
throughout a three-dimensional region V. Divide ¥ into m sub-
regions of volumes 4V, 4V,, ..., 4V,. Choose any point (£,, 7,, {,)
inside or on the boundary of the region 4¥,. Then form the sum

I, = zlf(fn Nrs Zr) 4av,.

If the limit of I,, exists as m tends to infinity in such a way that each
A4V, shrinks to a point and if the limit is independent of the mode of
subdivision, the limit is called the volume integral of f(x,y, 3)
over the region 7 and is denoted by

J;f(x, y, 3)dV.

If the subdivision is made by planes parallel to the coordinate
planes, the volume integral can be evaluated as an iterated integral
by a generalization of the method outlined in Section 34.

Corresponding to the vector function a(x, y, 2), defined in the
region V, we can form the vector sum

I, = Z a(é, 1, L) AV,

r=1
and so in the usual way by a limiting process obtain the vector
volume integral
f adv.
v

1. Evaluate f a dV for the vector xi+yj+ 2k, where V is the region

ExEeRrcise

v
bounded by the surfaces x=0, y=0, y=6, 2=4 and 2=x2,
§—V.A.



CHAPTER 6

Gradient of a Scalar
Function

37 Directional Derivative

In this and the following chapters the function f(r)=f(x, y, 2) will
denote a single-valued function of the rectangular Cartesian co-
ordinates x, y and % defined at all points of a region of space. We some-
times say that a scalar field f has been defined in a region.

We define the directional derivative D, f(r) of f(r) in the direction
given by the vector & by

o JEt ha) —f(x)

n—»o

D.f(r) =
provided that this limit exists.
Let P and Q be the neighbouring points (x,y,2) and

(x+A4x, y+ 4y, 2+4z) at a distance 4s apart. We use the notation g{

—
for the directional derivative of f(r) along the direction PQ. In this
case h=A4s and a=A4xi+4yj+4zk and so

of _ lim af _ f(x+Ax,y+Ay, z+42)—f(x, 9, 2) . (37.1)
3$ As—+0 As As-’o AS
We have

Af = (af +e1) Ax+ (af +ez) dy+ (af +83) Az,

where e;, &5 and &5 tend to zero as 4%, 4y and 4z tend to zero. Divide
56
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by 4s and proceed to the limit as 4s tends to zero with the result that

3f__ of dx of dy of dz
s %H_s"l-@y G oz ds (37.2)

It is clear from the definition of directional derivative that the

partial derivatives 61’ o and o are the directional derivatives in the
; ox 0y o2

directions of the coordinate axes.
Simple calculations yield

0 _ of ,08
‘é‘;(af'i'bg) = a—+b _S,

os
4 of

where a and b are constants.
The differential df is defined by

/A
and so

g:%a

EXERcISE

1. If f=a%+9%+2% find the directional derivative of f at the point
(1, —1, 2) in the direction of (i) the vector i+ 2j+k, (ii) the vector j—k,
(iii) in the direction of the normal to the surface &°+3°+2%=8,

2. Find the directional derivative of |A|? in the direction e.

38 Gradient of a Scalar Function

The equation f(x, y, 2)=Fk represents a surface. If we vary the value
of & we obtain a family of surfaces, one of which passes through any
particular point. Let n be the unit normal vector to the surface. The
directional derivative of f(, ¥, 2) in the direction of the normal to the
surface is called the normal derivative and denoted by 9f/on. We
define the gradient of f(x, y, 2), denoted by grad f, to be the vector

gradf = Ln (38.1)

Note carefully that this definition is invariant in the sense that grad f
is independent of the choice of the basis.
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It follows from the definition that grad ¢=0 if ¢ is a constant.
Let PN of length dn be drawn (Fig. 28) along the normal to

N Q

JE——

_— F

Fig. 28

f(x, y, 2)=constant at P and PQ of length 4s be drawn along a
direction making an angle ¢ with PN such that NV and Q are both on
the same neighbouring surface of the family. Accordingly, NQ is
approximately orthogonal to NP and so we have 4dn=x 4s cos ¢.
From the definition (37.1) we have that the directional derivative

of|os along PQ is given by

of _of

2 = 3p 08 P
Hence the maximum value of the directional derivative is attained in
the direction of the normal.

—
Let T denote the unit vector in the direction PQ. Then

cosp =T.n
and so

of _of _Y -
P a—n-T.n = %n.T = grad f.T.
That is, the directional derivative in any direction is the component
in that direction of the gradient.

Further, we have

df = g{ds = grad f.T ds = grad f.ds,
where ds=T ds.

Let fi, 3_f and g- be the directional derivatives in the directions
0s, 05y Osg

of the three mutually orthogonal unit vectors e;, €; and e;. Then

_ _d _o
gradf.e; = 257 grad f.e; = a5y grad f.eg = a5
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since we have just seen that the directional derivative is the com-
ponent of the gradient. Hence

grad f = 3f o . . o

s, el +332 ©s +8s3

In particular, if we 1dent1fy e;, €, and ez with the fundamental
system i, j and k, the corresponding directional derivatives are the

o of f

pe ay and

Accordingly, we have

grad f = —a£+2f- +§£k'
of

From the relation a=grad f.T and the properties of directional

derivatives it follows that

partial derivatives =

grad (af +bg).T = g} (af +bg)

|
Q

|
+
o™

=agradf. T+bgradg.T
(a grad f+bgrad g).T,

where a and b are constants.
Further, we have

grad (f5).T = ~ (f8)

of

f@s 8% os
= fgradg. T+ggradf.T
= (fgrad g+g grad f).T.

Since T is an arbitrary unit vector, we have
grad (af +bg) = a grad f+b grad g,
grad (fg) = fgrad g+g grad f.

EXERCISES

1. Calculate the normal derivatives at (—1,1,1) of the functions
(i) yz+2x+xy, (i) xy=, (i) x*—y%+ 2.
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2.4 Show that grad r=r/r and grad r*=nr""2r. (Hint: Use a funda-
mental system of basis vectors.)

3. Show that grad (f/g)={(g grad f—f grad g)/g2.
4. If ¢ is a constant vector, show that

(i) grad c.r=c,
(ii) grad |[exr|*=n|ext|*"2ecx (rxc),

(iii) c.grad (c .grad -}) ={3(c.r)2—c?r%}/r®.
5. Show that grad f(r)=f"(r)t/r.

39 Irrotational Vector

If a vector a(, y, 2) is defined at all points of a region, we say that
a is a vector field in the region.
The circulation of the vector field a round a closed circuit I" is

defined to be the value of the line integral 55 a.ds. The vector field a
r

is said to be irrotational if its circulation round all circuits is zero.

A region R is said to be connected if any two points of the region
can be joined by an arc lying completely in the region. Figures 29(a)
and (b) depict connected regions, but the region in Fig. 29(c) is not
connected.

____7_/-\___________
7 I
1 R ]
e
—{ =
(a)
// \\
(\ R \l
N
[' (C)
R
)

Fig. 29

1 The vector r in this text will always denote the position vector relative to
some origin.
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A region is said to be simply-connected if every closed curve in
the region can be shrunk continuously to a point in the region. The
region R of Fig. 29(a) is simply-connected, whilst that of Fig. 29(b)
is not simply-connected as the curve I" cannot be shrunk continuously
to a point without leaving the region.

A necessary and sufficient condition that the continuous vector
field a be irrotational in a connected region is that a single-valued
function f(x, y, 2) exists for which a=grad f.

To prove the sufficiency, we note that

ff; a.ds = § grad f.ds = § df =[flr=0
r r r
since f is single-valued.
To prove the necessity, let fﬁ a.ds=0 and consider the case when

r
the circuit I'is the curve LMPNL in Fig. 30. The line integral round
this closed circuit is zero and so we have

f a.ds = J a.ds.
LMP LNP
Q

M
Fig. 30
Choose L to be a fixed point. It follows that [ a.ds taken along any

path from L to P inside the region is a function of the position P
and so we may write

ﬂm=fam.

LP
The value of this function at a neighbouring point Q is given by

ﬂ@=faﬁ+faw.
Lp PQ
Hence the change 4f in f from P to Q is

4 = fQ~fB) = [ a.ds.

PQ
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Select the straight line path from P to Q. By continuity, we have that
along PQ
a=a(P)+e

where e tends to zero as Q tends to P. Accordingly
Af = a(P).ds+ j e.ds.
PQ

The integral term is of hlgher order than ds and so in the limit we
have

df = a.ds.
But df=grad f.ds. Thus

(a—grad f).ds = 0.

This equation is true for arbitrary ds and so we have the required
result that -

a = gradf.
Example. Obtain the conditions that the vector
x%yP2%(x'i + y™j + 2"k)
be irrotational.

By the theorem just proved there must be a scalar function f(x, y, 2)
such that
F

i
ox oy

Integration yields the following three possibilities for f:
xoti+ lyb %C

a+l+1 +‘/’1(y’ 2),
xayb tm+lgc
b+m+1
xayb gC+n+l
c+n+1
where i,, i, i3 are suitably chosen functions of the variables indicated.
The three values for f can be reconciled if
(i) I=m=n=—1, a=b=c. The corresponding scalar function is

f=(xyz)*a,

(ii) a=b=c=0 and the corresponding scalar function is

0
— xa+lybzc, — xayb+mzc’ _aiz — xaybzc+n.

+ (2, %),

+ ‘lb3(x’ J’),

xl+1 ym+1 zn+1

f =
IFitmritast
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EXERCISES
1. Show that (i) § r.ds=0, (ii) f c.ds=0 for any constant vector c.
r r

2, Tt is given that P, Q and R are functions of x, y and = with continuous
partial derivatives of the first order inside a simply-connected region which
contains the path I’ joining (%, ¥o, 2o) to (%,y, 2) by the straight lines
connecting the points via (, ¥,, %) and (¥, ¥, 2,). Show that
is irrotational if and only if

oR 00 oP _oR . 20 0P,

by 0z 6z ox 0 om0y

(Hint: define A(x, y, 2) = f a.ds and show that a=grad 4.)

r
3. Determine which, if any, of the following vector fields are irrotational:
(1) A.nw, (i) A.p)r, (i) A.Op+ (.o, (iv) A.0)p—(.r)A, where A

and . are constant vectors such that A x .#0. In appropriate cases, obtain
the scalar field whose gradient is the irrotational field of vectors.

40 Integral Definition of Gradient

Let S be a closed surface which contains a volume V and define
the vector a from the scalar field f(x, y, 2) by the equation

provided that the limit exists.
Choose S to be a cylinder (Fig. 31) with its generators parallel to
the fixed unit vector ¢. Then

.1
a.c = lim I—/§sfc.ds.

V-0

as

/e

Fig. 31
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On the curved surface of the cylinder ¢ is orthogonal to the unit
normal vector n and so ¢.dS=c.n dS=0. Thus the total contribution
to the surface integral comes from the base and top of the cylinder.

Let the cylinder be of height 4s and cross-sectional area 44. On
the base ¢.dS=c.(—c dS)= —dS whilst on the top

c.dS = c.cdS = dS.
By the mean-value theorems, the contributions of 4; Jfc.dS to the
S

base and top are
of
_(f+€1)AA and f+gAs+€2 AA,
where &; and &, tend to zero as 44 tends to zero. Thus

(?ZAS"l‘Ez_Sl) A.A

. \os of
a.c = Jm 4s A4 =
44— 0
. o . of
But the component of grad f in the direction ¢ is % and so
a = grad f.

That is, grad f can be defined as the limit of an integral. Since the
unit vector c is arbitrary, it follows from this definition that grad f is
independent of the choice of the basis vectors.



CHAPTER 7

Divergence of a Vector

41 Divergence of a Vector

Let a be a vector field defined inside a closed surface S which
encloses a volume V. We define a scalar field associated with a, called
the divergence of the vector a and written div a, by the relation

§ a.dS
S (41.1)

provided that the limit exists. It is clear from the definition that div a
is independent of the choice of the basis vectors.
If A, p and c are constants, we have from the definition that

div(da+ub) = Adiva+pudivb

diva = lim
'

and

div (fc) = lim {l f’; fc.ds} - c.lim {l fﬁ de}.
V-0 V S V-0 V S
That is,
div (fe) = c.grad f.

Substitute f=1 and we obtain div ¢=0.

Let a=a;i+ a;j+ a,k with respect to the fundamental system i, j, k.
Then we have

diva = div (gi) + div (a,j) + div (a,k)
= i.grad @;+j.grad a;,+ k.grad a.
But i.grad g is the directional derivative along the x-axis, etc. Thus

. _ _Oa 0Oa; Oa,
diva = 8_x+@+5;.

65
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The Laplaciant 4f is defined by
Af = div grad f
and so in a Cartesian coordinate system we have

_f P
Af = 3?4-@—24‘52—2"

EXERCISES

1. Show that div r*r=(n+3)r".

2. If cis a constant vector, show that (i) div (¢ x r)=0, (i) div (¢.rc)=c2,
(iii) div {e x (r x €)} =2¢2.

3. If p=+%i+y%+2%k, q=yzi+z2xj+xyk and u=wxyzj, calculate
(i) divp, (i) div q, (i) divu, (iv) div (qxu), (v) grad (p.q),
(vi) grad div (q x p), (vii) 4[pqu].

4. Calculate (i) 4(1/r), (ii) 4r?, (iii) 4f(r), (iv) 4[div (z/r?)].

42 Gauss’s Theorem

Consider a finite closed surface .S enclosing a volume V. Divide V'
into m sub-regions of volumes 4V,, 4V,,..., 4V, and choose any
point (&, 7, {,) inside or on the boundary 45, of the sub-region 4V,.
From the divergence definition we have

4v, div a(é’n Ui Cr) = § a.dS+e, 4V,
A48,

where e, tends to zero as 4V, tends to zero. Addition of all these
~equations for r=1, 2,..., m yields

m m m
2.4V, diva(¢, 1, L) = §§ a.dS+ > e 4V,
r=1 r=19 45, r=1

The boundary of each 4V, consists of a number of pieces which are
either part of the boundary of S or part of the boundaries of two
adjacent sub-regions. The total contribution from two adjacent
boundary surfaces is zero since the outward normals have opposite
directions over the common boundary surface.

m
Further, we have z e, AV, <V max e, and so this term tends to
r=1

1 No confusion will ensue from the use of Af in two different ways. It will
be clear from the text when 4 is the Laplacian operator and when it refers to an
increment.

Many authors use the notation V2 instead of 4 for the Laplacian operator.
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zero as 4V, tends to zero and m tends to infinity. Thus in the limit
we have

f divadV = ff a.ds. (42.1)
v S

This result, by which a volume integral is transformed into a
surface integral, is known as Gauss’s theorem or the divergence
theorem.

Since div (fc)=c.grad f, where c is an arbitrary constant vector,
the substitution a=fc in Gauss’s theorem yields

c.fgradde=c.§fds.
v S

But c is an arbitrary vector and so we have

fv grad fdV = SGS fds. (42.2)

Choose f=1 and we deduce that for a closed surface
5[5 ds = 0. (42.3)
]

Let us apply Gauss’s theorem to the vector field a defined in the
volume ¥V contained between the closed surface S and a sphere 3 of
radius R, centre at the origin, and sufficiently large to enclose S
completely. We have

fdivadV=3€ a.ds+4; a.ds,
v S xz

where the normal in the surface integrals is directed outwards from V.
From equation (35.1) we have

’4; a.dssfﬁ a] dS< 1%45 ds
z P z

if Ja| < ¢/R? at all points on 3. But § dS is the area of the sphere of
z
radius R and so
fj; a.dS
z

Now let us impose the condition on a that lim R?a=0. Then &
R— 0
can be made as small as we please and we obtain

fdivadV=3£ a.ds.
\'4 S

< 4re.
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That is, Gauss’s theorem extends to the infinite volume outside a
closed surface provided that lim R%a = 0.

R—=
Example. Evaluate 39 (a®x2+b%y? + c222) "% dS over the surface of
)
the ellipsoid ax?+by?+cz?=1.
The normal to the ellipsoid is along the direction of
grad (ax®+by® + c2?) = 2(axi+byj+ czk).
Thus the unit outward normal vector n to the ellipsoid is
n = (axi+ byj+c2k)/(a®x® + b2y + 232)112,
Accordingly, the surface integral is 4)‘ r-dS, where r=xi+yj+2k
s

since ax?+ by?+c22=1 on the surface.
By Gauss’s theorem, the surface integral is equal to the volume

integral j div r dV=3| dV. The volume enclosed by the ellipsoid

is 47/[34/(abc)] and so the original surface integral has the value
4rr[+/(abc).

EXERCISES

1. Evaluate ¢ a.dS, where a=yzi+2xj+xyk and S is the surface of

S
the cube formed by x=0, x=1, y=0, y=1, 2=0and 2=1.
2. For a closed surface S containing a volume ¥V, show that

(i)ff r.dS=3V, (i) f -lidV=§ r.ds,
s v? s 7

3. Evaluate § (ax2+by®+c2?) dS, where S is the sphere x®+y? 4 22=1.
s

Xt yt 2t
4, Show that the value of § p(;§+35+c—2) dS taken over the surface

of the ellipsoid x2/a®+y2[b%+2%/c2=1, where p is the perpendicular from
the origin to the tangent plane at (x, , 2), is 4mwabc(a®+ b+ c?)/5.

43 Divergence of the Product of a Scalar and a Vector

Corresponding to the vector field a(x, ¥, ) and the scalar field
f(x, ¥, 2), the divergence definition yields

div (fa) = lim {-11/-. ffsfa-ds}.



7] DIVERGENCE OF PRODUCT OF A SCALAR AND VECTOR 69

Let the values of a and f at some fixed point inside the small
region V be a, and f,. Then we may write a=a,+4a and f=f,+A4f
on the surface S. Hence

div (fa) = lim 3§ (fo+41)a.ds
- lim V{fo§ a.dS+ fﬁ (F—f-)(ao+2a). dS}
- ml_,{fosﬂ a.dS+a,. § fds
—foay. ﬂ ds+5{§sAan.ds}.

The last integral on the right-hand side will vanish in the limit as it
is of higher order than the other terms within the braces. Further,

Sg dS =0 by equation (42.3). Hence
S

div (fa) = lim Il,{ 3 §sa.ds+ao.3£sfds}.

div (fa) = fdiva+a.grad f. (43.1)

This result can be obtained more easily in the special case when the

basis consists of three mutually orthogonal fixed unit vectors. Let the
basis vectors be e;, e; and e; and let a=a, e, + ae,+ aze;.

From div (fc)=c.grad f in the case of the constant vector ¢, we
have

That is,

div (fa) = i div (fa,e,)
Z e,.grad (fa,)

CO

3
Z .grad a,+a.grad f.
r=1

Substitute f=1 and obtain
3
diva = Z e,.grad a,
=1
and so '
div (fa) = fdiva+a.grad f.
EXERCISES
1. Obtain f(r) if div {f(r)r}=0.
2. Show that div grad (fg)=f div grad g+g div grad f+2 grad f.grad g.



CHAPTER 8

Curl of a Vector

44 Curl of a Vector

Let a(x, y, 2) be a vector field defined inside the region V enclosed
by the surface S. We define a vector associated with a, called the curl
of the vector a and denoted by curl a, by the relation

35 axdS
S

curla = ~lim 5 — (44.1)

V-0

provided that the limit exists.
It follows immediately from the definition that

curl (Aa+pub) = Acurla+pcurlb

if X and p are constants. If ¢ is a constant vector we have

curl (fe) = —lim {l‘(f; fcde} = —cxlim {—1—§de}
1 2ad!] V S V-0 V S
That is,
curl (fe) = grad fxc, (44.2)
from which we deduce that curl c=0.
Let a=a,i+a;j+a;k with respect to the fundamental system i, j
and k. Then
curl a = curl (a) + curl (a;j) + curl (a k)
= grad q;xi+grad a;xj+grad g, x k
3a, . a_ai - aa, ) 8a, 3(1, - a_a] ) .
—(5— +ay,|+ k)xi +(a +3y" azk Xj
+ (%a" '+%J+ "k) xk
x oy
70
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=(%_3_”f)i+(% %)H(%_Q‘ﬂ)k.f (44.3)

dy oz oz ox ox oy
We deduce that
curl grad f=0 and divcurla=0
for arbitrary f and a.
ExERCISES

1. If a=zi—xj+yk, b=yi+2j—2k and f=xyz, calculate (i) curl a,
(i) curl b, (iii) curl grad f, (iv) div curl a, (v) curl {grad fx(axb)},
(vi) div grad f, (vii) curl curl (a xb).

2. Show that curl (r*r)=0.

3. If a=g grad f, where f and g are scalar fields, show that a.curl a=0.
4. If A and p are constant vectors, show that

(i) curl Axr)=22, (i) curl {u.rA}=Axp, (iii) curl {A x (rxp)}=p XA,
(iv) curl {r x (. x r)}=3r x ..

5. By a method analogous to the proof of Gauss’s theorem show that
f curl a dV= —§ ax dS. Deduce that f grad de=3§ ds.
v s v s

6. Show that § rxds=0.
s
7. For any scalar field f, show that

@) 3§s ferad fx dS=0, (ii) §s F()rxds = 0.

45 Curl of the Product of a Scalar and a Vector
Corresponding to the vector field a(x, y, 2) and the scalar field
f(%, y, ), the curl definition yields

curl (fa) = —lim {—117 ﬁg fax dS}.

V-0

With the notation of Section 43 and by a similar method we obtain
curl (fa) = —lim l{fofﬁ axdS + a;x § de}.‘
voo V s s

1 This expression for curl a with respect to a fundamental system can be
written symbolically in the determinantal form

i j k
9 o @
ox oy oz

6-—v.A.
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That is,
curl (fa) = fcurl a+4grad fx a. (45.1)

EXERCISES

1. Show that curl {f(r)r}=0.
2. Calculate curl b in the cases when
(i) b=e**¥*3(y2i+ 2aj+ xyk), (ii) b=wxyz(e* i+ ¥ j+e* k).

46 Divergence of a Vector Product

Corresponding to the vector fields a(x, y, ) and b(x, y, 2), the
divergence definition yields

div(axb) = lim {—14)' axb.dS}.
V]s

V-0

With the notation of Section 43 and by a similar method we obtain

div(axb) = lim l{fﬁ axb,.dS +5€ aoxb.dS}.
vao V \Js s
We have
axb,.dS = —by.axdS and ay,xb.dS = a,.bxdS.
Consequently

div (axb) = 1iml{—bo.§ axds+ao.5€ bde}
V S N

/4adY)

and so
div(axb) = b.curla—a.curlb. (46.1)

EXERCISES

1. If ¢ is a constant vector, show that (i) div (c x grad ;) =0,
(ii) div {e x f(r)r}=0, (iii) div {r x grad f(r)}=0.

2. If A and . are constant vectors, show that (i) div {r x (A x 1)} =2r X2,
(ii) div {Ax ) x (X} =2A. (L X 1) — 2. (A X 1),

47 The Operator a.grad

Let a(x,y, 2) and b(x, y, 2) be vector fields defined inside the
region V enclosed by the surface S. We define the vector associated
with both a and b, denoted by (a.grad)b, by the relation

56 b(a.dS)
(a.grad)b = 1'1_12) S_V—’ (47.1)
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where a is to be regarded as constant over the surface S and provided
that the limit exists.

It follows immediately from the definition that

(a.grad)(Ap+pq) = Aa.grad)p +pu(a.grad)q,

where A and p are constants. Further, if ¢ is a constant vector, we
have

(a.grad)(fc) = %}13(1) %,if;sfc(a.dS) = ca.{fi_lg %§sfds,
since a is constant on the surface of S. That is,

(a.grad)(fc) = cgradf.a,
from which we deduce that (a.grad)e = 0.
Let a=ai+a;j+ak and b=bi+b;j+bk with respect to the
fundamental system i, j and k. Then
(a.grad)b = (a.grad)(bi)+ (a.grad)(d,j) + (a.grad)(b.k)
=igrad b.a+jgrad b;.a+kgrad b,.a

= (ZI; 1+ % J++ %, ) .(ai+ a;j+ ayk) + two similar terms

ob, ob, b,
( . 3x+ ; 6y+ * Fx )1+two similar terms

a gl—’ +a @ +a ﬂ)
tox ' oy *oz
EXERCISES
1. Show that a x curl a=14 grad a%?—(a.grad)a.

2. Show that (a.grad) (b.grad %) ={3a.rb.r—72a.b}/r5if a and b are

constant vectors.

48 Gradient of a Scalar Product

Corresponding to the vector fields a(x, y, 2) and b(x, y, 2) the
gradient definition yields

grad (a.b) = lim ~ & a.bds.
V]s

V-0
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With the notation of Section 43 and by a similar method we obtain

grad (a.b) = lim l—{§ a.b,dS + § a;.b dS}.
v-o V [s s
On application of the vector triple product formulae
a,x(bxdS) = a,.dSb — a,.bds,
by x (axdS) = b,.dSa — a.b, dS,

we have
grad (a.b) = lim —1-{—b0x§ axdS — aox§ bx dS
V=0 V S s
+§ a(by.dS) + fﬁ b(a,. dS)}.
) S
Consequently

grad (a.b) = bxcurla+axcurl b+(b.grad)a+(a.grad)b.  (48.1)

49 Curl of a Vector Product

Corresponding to the vector fields a(x, y, 2) and b(x, y, 3), the
definition of curl yields

curl (@axb) = —lim lfﬁ (ax b)xdS.
V-0 V S
With the notation of Section 43 and by a similar method we obtain
curl (axb) = —lim l{fﬁ (aoxb)xdS +fﬁ (axbo)de}.
V-0 vV S N
Expanding the vector triple products we have

curl(@axb) = —lim 1 fﬁ ba,.dS — fﬁ a,b.dS
8 s

V-0 V
+3§ boa.dS —fﬁ abo.dS},
s s
and so

curl (axb) = a divb—b diva+(b.grad)a—(a.grad)b. (49.1)

EXERCISES

1. If ¢ is a constant vector, show that grad (c xr)=ec.
2. If c is a constant vector, show that

curl (c x grad %) +grad (c .grad %) = 0.



CHAPTER 9

Stokes’s Theorem

50 Alternative Definition of Curl

In the curl definition (44.1) choose V to be (Fig. 32) a right circular
cylinder of cross-sectional area e and height /, where /2 is small

compared with . Let the unit vector in the direction of the generators
of the cylinder be c. Then

c.curla = —lim 1—4)‘ c.axdS
Vs

V-0

.1
= lim Vﬁ;sa.cxnd&

v-0

I
c
Fig. 32

The two flat ends of the cylinder make no contribution to the
integral since ¢ and n are parallel there. At a point P on the curved
surface, ¢ and n are mutually orthogonal unit vectors andsoexn=T,
where T is the unit tangent vector to the plane section I'p through P
parallel to an end. By convention, n is the outward normal and so the
direction of I'p is determined by the fact that ¢, n and T form a
right-handed system.

We now evaluate the surface integral as a double integral. Let A
be the length along a generator measured from the base of the cylinder
to P, and s be the arc length along I, the base curve of the cylinder.
We note that I'p is obtained by translating I" through a distance A

parallel to c.
75
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Since a depends on both s and A, whilst n is independent of A, we

have
1
§ a.cxndS=4; f a.cxndids
s rJa=o

=§chn.[£ad>\]ds.

As I%/e tends to zero with e, Taylor’s expansion (Section 22)
allows us to write

a(s, A) = a(s, 0)+n(s, A)

along a generator, where v tends to zero with A. Accordingly,

l
f ad\ = l(a+p),
]

where . is a vector function of s and / and tends to zero with /.
Noting that V'=e¢l, we finally obtain

c.curla = lim 14; cxn.l(a+p)ds
€l r

V-0

= lim 13@ cxn.ads

&0

€Jr
.1
= lim = ¢ a.ds. (50.1)
-0 € Jr

Accordingly, the component at a point in a direction ¢ of curl a is
the limit of the ratio of the circulation of a around a plane curve I
normal to ¢ and containing the point to the area enclosed by I

The direction of ds in the circulation integral is such that ¢, the
outward normal to I" and ds form a right-handed system.

Exzrcises

1. Determine curl a in rectangular Cartesian coordinates by choosing I'
to be a rectangle in a coordinate plane.

2. If a is an irrotational vector, show that curl a=0. Hence deduce that
curl grad f=0 for arbitrary f.

51 Stokes’s Theorem

Consider a space curve I'" bounding an open surface S. Divide S
into m sub-regions so small that they may be considered to be planar
with areas 45, 48S,, . ..,4S,, and choose any point (,, 1,, {,) inside
or on the boundary I, of 48, (Fig. 33).
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Choose a positive sense of description for I'. Then an orientation for
each I is determined by the conditions:

(i) if I', and I" have an edge in common, this edge is described in
the same direction along both boundaries,

(ii) if I', and I'(r # s) have an edge in common, this edge is described
in opposite directions.

Let the unit normal at (£, 7,, {,) be n, with positive direction such
that a right-handed corkscrew rotating in the direction of I, will
move in this direction.

n,

pd

45,

N

{6:. 7, &)

Fig. 33

From equation (50.1) we have

n,.curl a(¢,, 9, {,)4S, = fﬁ a.ds+e 48,
ry
where ¢, tends to zero as 4.5, tends to zero. Addition of these equations
forr=1,2,..., m yields

S n,.curl a(g, 1, 1) 45, = ﬁfﬁ a.ds + > ¢ 48,
r=1 r=19v7Tr r=1

The boundary I, of each 4S8, consists of a number of pieces which
are either part of the boundary I' or part of the boundaries of two
adjacent sub-regions. The contribution to the circulation from the
two adjacent boundary curves is zero as they are traversed in opposite
directions.

m
Further, we have Z e, 45,< S max e,, where S is the total area of
r=1
the surface, and so this term tends to zero as m tends to infinity in such
a way that each A4S, shrinks to a point. Hence in the limit we_have

~fn.curladS =§ a.ds,
S r
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where n denotes the vector field of positive unit normals to the surface
S. That is,

fcurla.dS =fﬁ a.ds. (51.1)
S r

This result by which a surface integral is transformed into a line
integral is known as Stokes’s theorem.

EXERCISES

1. Verify Stokes’s theorem by evaluating both integrals for the vector
yi+2j+xk and the surface S ngen by x®>+3%+22=1and 2>0.
2. Substitute a=fc, where ¢ is a constant vector, in Stokes’s theorem

and deduce that f grad fx dS=— fﬁ fds.

3. If S is a closed region of the xy-plane bounded by a simple closed
curve C, deduce from Stokes’s theorem that

9B 04
L(ax ay) ds = SE(Adx+de)

This result is known as Green’s theorem in the plane.

52 Surface Integral of the Curl of a Vector

Consider a closed surface S (Fig. 34) and let the closed circuit I’
divide it into two regions S; and S,.

Fig. 34

Apply Stokes’s theorem to both S; and S; and the results are

f curl a.dS =§ a.ds
S1 r

f curl a.dS =4; a.ds.
Sa r

and
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The orientations of the normals to S; and S, differ, one surface
having the normal in the outwards direction and the other in the
inwards direction. Hence by subtraction we have

§ curla.dS =0
s

for a closed surface S.

53 Curl of the Gradient of a Vector

Substitute a = grad f, where f(x, y, 2) is a scalar field, in Stokes’s
theorem to obtain

f curl grad f.dS = cJE grad f.ds = 0
S r

in virtue of the fact that grad f is always an irrotational vector as
shown in Section 39. However, S is any arbitrary surface and need
not be closed. It follows that

curlgradf= 0
for any function f.

If the vector field a satisfies the relation curl a=0, it follows from
Stokes’s theorem that a is irrotational. In such a case we have shown
(Section 39) that a scalar function f(, y, 2) exists such that a=grad f.
It follows that curl a=0 implies the existence of a scalar function f
for which a=grad f.

In this proof an appeal has been made to Stokes’s theorem. It
follows that the region in which a is defined must be simply-connected.

We now show by a counterexample that the vector field a may not
be irrotational if curl a=0 in a region which is not simply-connected.

Consider the vector

a=— 2 it j
¥4y xRy
This vector a is not defined at the origin but is defined in the multiply-
connected region between any two spheres with centres at the origin.
In this region we readily verify that curl a=0.
The line-integral of a round any closed circuit I'is given by

—yi+xj . .
1-§, (F59) @i

_ xdy—ydx_§ ( —1")
_j‘;r x2+y? rdtan y
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Select I' to be the circle x2+y*=p?, z=0. The substitution
x=p cos ¢, y=p sin ¢ yields

2n
I= dp =2m #0
0
and so a is not irrotational.

EXERCISE

1. If the vector field a is irrotational in the region ¥ enclosed by the
surface S and if a is along the surface normal on S, show that

f axgradfdV =0
v
for any scalar field f.

54 Divergence of the Curl of a Vector

Replace the vector a by curl a in Gauss’s theorem, equation (42.1),
and the result is

f divcurladV = 4; curla.dS =0
v s

since S is a closed surface. The volume integral is zero over any
arbitrary region and so we have

divcurla=0
for any vector a.

55 Solenoidal Vectors
A vector field a is said to be solenoidal if div a=0. Since
divcurla =0
for all vectors a, it is clear that curl a is always a solenoidal vector.
We now establish by a method due to L. Brand} the converse result

that corresponding to a solenoidal vector field a there exists a vector
field b such that a=curl b.

N

Fig. 35
+ Amer. Math. Monthly, 57, 161 (1950).
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Consider the closed surface S formed by a cone with vertex at O
and plane base (Fig. 35) determined by the closed circuit I'. Since
div a=0, Gauss’s theorem yields

f a.dS = 0.
s

Let us denote the curved surface by S, the flat base by .S, and the
equation of I' by r=r(s), where s measures arc distance along I" and
r has its initial point at O. The equation of S; is R=2Ar(s) for the
range 0< A< 1. The vector element of area dS in the direction of the
external normal to S; is given by

oR . R
s 70X
where T is the unit tangent vector to I". Thus

fa.dS=J' Xa(xr). T xr ds dA
Sy Sy

- j‘;rU: Xa(is) dA] Txrds

= §r rx U: Aa(Ar) d)\] .ds.

By application of Stokes’s theorem on the assumption that a=curl b

ds = dsd\ = AT xrdsd),

we have
f a.dS=f curlb.dS:jﬁ b.ds.
Sg Sa r
Accordingly
0= § a.dS = fﬁ p.ds,
S r
where

1
p=b+ rxf Aa(Ar) dA.
0

Thus the vector field p is irrotational and a scalar function f(x, y, 2)
exists such that p=grad f. Hence

b = grad f — rx f " xa(xr) . (55.1)

That is, we have obtained a vector b for which a=curl b. Note
that b is indeterminate to the extent that we may add the gradient of
any scalar function. We call b a vector potential of the solenoidal
vector a.



82 STOKES’S THEOREM

Example. Show that the vector a=zi+xj+yk is solenoidal and
obtain a vector potential for it.

Clearly diva=0 and so a is solenoidal. Application of equation
(55.1) shows that a vector potential is

1
—rxf A(Azi + Axj + Ayk) dA
0

= —3(xi+yj+2k) x (zi+ xj +yk)
= H{(ax—y?)i+ (ay— 22 + (2 - 27)k}.

EXERCISES

1. Show that the vector gradfxgrad g corresponding to the scalar
fields f and g is solenoidal.

2. Show that the following vectors are solenoidal and obtain vector
potentials: (i) (y—=2)i+(2—x)j+(x—2y)k, (ii) r*c x r, where ¢ is a constant
vector, (iii) y2i+ 2xj+xyk, (iv) €* j.

3. If the vector field a is both irrotational and solenoidal, show that
grad (a.c)=curl (a x ¢) for any constant vector c.

4. If the vector field a is solenoidal in the region ¥ enclosed by the
surface S and if the component of a along the surface normal vanishes, show

that f a.grad f dV =0 for any scalar field f.
14

5. If the vector field a is solenoidal, show that 2 f r.a dV=§ r?a.dS.
v s
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Green’s Theorems

56 Green’s Theorems

In the relation div(fa)=fdiva+a.gradf let us write a=grad g,
where g(x, v, 2) is a scalar field. Then

div (f grad g) = f div (grad g)+grad g.grad f
= fdg+grad f.grad g.
Integrate over the region V' contained by the closed surface S and we
obtain

f div (f grad g) AV’ = f fAgav+ f grad f.grad g dV.
14 14 \ 4
The integral on the left-hand side of this equation is § fgradg.dS
S
by Gauss’s theorem. However,
feradg.dS = fgradg.ndS = f = gdS
and so we obtain
§ fEas - f Flgdv+ f grad f.grad g dV.  (56.1)
s on v v
We deduce that
§§ rLas - f FAfav+ f (grad f)? dV (56.2)
d s on v v
an

3€s(f e f) as = f(fdg gaf)av.  (56.3)

These relations are generally known as Green’s theorems.
83
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57 Harmonic Functions

A scalar function ¢ is said to be harmonic if it satisfies Laplace’s
equation dp=0.

Let ¢, and ¢, be two harmonic functions in the region ¥ enclosed
by the surface S such that ¢; =@, on S. Then f=¢p; — @, is harmonic
in V and vanishes on S. Application of the equation (56.2) yields

f (grad )2 dV = 0.

Hence grad f=0in V. That is, f is constant in V. But f is zero on S
and so f=01in V. That is, p; =@, in V.
Consequently, a harmonic function in a region bounded by a
closed surface is uniquely determined by its values on the boundary.
Substitute f=1 and g=¢ in equation (56.3) when ¢ is harmonic.
The result is
o
Sﬁs% ds = o. (57.1)
That is, the surface integral of the normal derivative of a harmonic

function is zero over the bounding surface of the region in which it is
harmonic.

EXERCISES

1. If p is harmonic in the region V enclosed by the surface S and ¢ is
constant on S, show that ¢ is constant in V.

2. If ¢; and @, are both harmonic in the region V enclosed by the
surface S and their normal derivatives are equal on .S, show that ¢, — g, is
constant in V.

58 Uniqueness Theorem

We now prove that there can be at most one vector field in a region
V contained by a closed surface S, if the divergence and curl are
given everywhere in V and the component of the vector in the direction
of the normal to the surface is given on S.

Suppose a and b are two vectors satisfying the given conditions.
Form the vector p=a—b and we have

divp=0 and curlp=0inV
and
pn=0onS.
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Since curl p=0, the vector p is irrotational and thus a scalar field
f(#, y, 2) exists such that

p = grad f.
Accordingly
df = divgradf=divp=0 inV
and
of _ _ _
%—gradf.n—p.n—-O on S.

Application of equation (56.2) yields

J (grad )2 dV = 0.

The integrand is never negative and so we have (grad f)?=0. That is,
p=grad f=0. Hence a=b as required.

Note carefully that we have not shown that a vector field exists
satisfying the given conditions. We have merely shown that if one
such vector field exists, then it is unique.

59 Solid Angle

Form the cone joining the point O to the points of a closed curve
TI'. The solid angle of the cone is defined to be the surface area of the
unit sphere, with centre at O, intercepted by the cone.

Consider the vector

1 1 1
a=grad;= —;Egradr= -3 (r #0),

where r refers to O as initial point. Further, in virtue of equation
(43.1) we have div (fb)=f div b+b.grad f and so for 70 we have
. . (1 1 .. 1 3 3r

diva = —dw(r—3 r) == divr—r.grad (7—3) = — gtr. (—rz ;) = 0.

Apply Gauss’s theorem, equation (42.1), to the region (Fig. 36) of ‘
the cone bounded by the curved surface G formed by the generators,
an open surface S whose boundary is I" and the portion ¢ of the small
sphere of radius p intercepted by the cone. (We emphasize that p will
not tend to zero. We choose p sufficiently small so that the surfaces S
and o do not intersect.) The result is |

f gradl.ds+f grad l.dS+f grad l.dS = 0.
s r o r G r
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On G we have grad;= —-rla r and r is orthogonal to the surface

normal n. Accordingly, f grad}.dS=O. On o we have r=p and
G

n= —r/p, the sign being negative because the normal is outwards
from the surface, and so

fgradl.dS=f——dS——de
a r
0
P

' Fig. 36

But the solid angle 2 of the cone is given by de taken over the

portion of the unit sphere intercepted by the cone. Hence J‘ dS=p?Q
g

and so f grad ;1-.dS= £. Thus we obtain
[

Q= —J. grad l.dS.
s r

As a corollary, it follows for a closed surface S that

j; grad .dS = —4r if O is inside 5,

s .
=0 if O is outside S.
ExERCISE :

1. Show that the solid angle subtended at the origin by a closed curve I’

. 2(y dx—x dy)
is given by + §r T2+ )

60 Green’s Identity

We apply equation (56.3) with g=;, where r is the distance from a



10] GREEN’S IDENTITY 87
fixed point O, to the region ¥ contained by the closed surface S. In
virtue of the result dg=div grad ;:0 established in the preceding

section we have

§ [r2(0)-12]as+ [Lav-o

Consider the case when O lies inside the surface S. We exclude
O by surrounding it with a small sphere o of radius &. Then we have

FIra ()1 g lr () 28] ] 2 -,

where 7 is the region contained between ¢ and S.
On the surface ¢ we have r=¢ and the external normal is directed

towards O. Thus we have 3_f_= _?I whilst
on or

9 (L __11 _1_1
on\r) dr T2 2

Further, dS=¢? dQ, where df2 is the solid angle subtended by dS at

O. Hence
i ()2 3] s = §, [ovi 3o oo

(e

—4af, as &—0,
where f, denotes the value of f at O. Let ¢ tend to zero; the result is
Green’s identity

fo=-=$ 115 G) -7 2] as -4 [Lav. o)

If O is outside the region V' contained by S, equation (56.3)
immediately yields

§s [f% G)‘;%] ds + fv‘gdv =0,

Consider the case when the function f is harmonic, that is 4f=0.
We deduce from (60.1) that

Y N

7—V.A.
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Accordingly, the values of a harmonic function f and its normal

derivative %r at all points on the boundary S of a closed region deter-

mine the value of the function at all interior points.

It can be shown that either a knowledge of f or 2-{; on S determines
the other when f is harmonic. Consequently this result has little
practical value.

Further, consider the cases when S is a sphere with centre at 0.

Since 2 (1) — — 1 e have in virtue of (57.1) that
n\r r

1
fo = s ffsde.

That is, if a function is harmonic in a spherical region, its value at
the centre is the arithmetic mean of its values on the surface of the
sphere. It can be shown that a function with this property is harmonic.

In Section 42 we saw that Gauss’s theorem can be extended to the
infinite volume outside a closed surface provided that lim R2%a=0.

Ro> o

In the same way Green’s theorems can be extended to the infinite
volume provided that lim RZ?fgrad g=lim R?%s grad f=0. Corre-
R— R— 0

sponding to g=} we have grad g= — ,1_31' and these conditions are
lim (—fr)/r= lim7 grad f=0.
r—» o r—>w

Thus, under these conditions, we may apply Green’s identity to

the case when V is the region outside the closed surface S containing
the point O. Now let .S shrink to the point O and we obtain

fo = —‘é 4;‘de,

where the volume integral is taken over the whole of space.



CHAPTER 11

Orthogonal Curvilinear
Coordinates

61 Curvilinear Coordinates

Let us change from rectangular Cartesian coordinates x, y and 2 to
curvilinear coordinates %, v and w by means of the three equations

x = f(u,v,w), y=guow), z=h@um-ow),

where f, g and 4 are single-valued functions with continuous partial
derivatives of the first order in some given region. The functions f, g
and % must be independent and the condition for this is that the
Jacobian determinant

ox 0x 0oOx
ou v ow
ox, 3, 3) _ |y o oy £ 0.

o(u,v,w) |[ou ov ow

ou ov ow

In practice this condition may not apply at some points and particular
care may be necessary there.

-Under the given conditions it can be shown that u, v and w can be
obtained as single-valued functions of x, y and z with continuous
partial derivatives of the first order.

If one of the coordinates u, v and w is held fixed and the other two
allowed to vary, the point (x,y, 2) traces out a surface called a
coordinate surface. There are three families of such surfaces
corresponding to constant values of , v and w.

If two of the coordinates #, v and w are held fixed and the third
coordinate allowed to vary, the point (x,y, 2) traces out a curve

89
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called a coordinate curve. There are three families of such curves
corresponding to varying #, v and w respectively. Each coordinate
curve is the intersection of two coordinate surfaces. For example, the
curve corresponding to varying u is the intersection of the surfaces
corresponding to fixed v and w.

Let P be given by the position vector r=xi+yj+ 2k where i, j and
k form a fundamental system. The change of coordinates to u, v, w

or
%, %, % are
tangent to the coordinate curves. Denoting the unit vectors tangent
to the coordinate curves by I, J and K, we have
or or 0

r
a_'u = hll) 5{) = h2J’ % = hSKy

makes r a function of #, v and w. Then the vectors

where
a_r
ou

or!
ov

or
ow

hy = ’ 2 = ’ 3 = .

62 Orthogonal Curvilinear Coordinates
We shall now impose the restriction that the coordinate curves are
mutually orthogonal. In this case we refer to an orthogonal
curvilinear coordinate system and the vectors I, J and K satisfy the
relations
JK=KI=LJ=0.
Further, we have
or or or
dr = 3 du+% d‘v+% dw
= hy dul+hy dv] + by dwK
and so the length ds of arc between the neighbouring points (u, v, w)
and (u+du, v+dv, w+dw) is given by
ds? = dr.dr = h3 du® + hZ dv? + hi dw?,
since I, J, K form an orthogonal system of unit vectors.
The arc lengths ds;, ds, and dsg along the coordinate curves are
given by
dsl = hl du, d32 = h2 d‘v, d53 = h3 dw.
Example 1. Obtain h,, hy, h; and the vectors I, J, K for the
cylindrical coordinate system given by x=u cos v, y=u sin v, z=w.

The ranges of u, v and w are given by u>0, 0<v<27 and
—00 < W <00,
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We have
r = ucosvitusinvj+wk.

Thus
or T or
5y = Cosvitsinoj, wal = 1
or .. . |or
55 — —usinvitucosvj, )% = u,
or or
porie k, ol = 1.

Hence

hy =1, hy=u, h3=1
and
I=cosvi+sinvj, J= —sinvitcosvj, K=k

Example 2. Obtain h,, hy, h; and the vectors I, J, K for the spherical
polar coordinate system given by x=u sin v cos w, y=u sin v sin w,
2=1u COS 7.

Here the ranges of u, v and w are given by >0, 0<v< 7 and
0< w<2n. We have

r = usinvcoswi+usinvsinwj+ucos vk.

Thus
or . . .. or
= = sinv cos wi+sin vsin wj+cos v k, —| =1,
ou ou
or . .. . or
5= =u#cosvcoswitucosvsinwj—usinvk, |~ =,
ov ov
or . . . . . or .
-— = —usinvsin w i+ % sin v cos w j, —| = usin v,
ow ow
Hence
hl = I, h2 = u, h3 = usinv
and
I = sin v cos w i+ sin v sin w j+ cos v k,
J = cosvcoswi+cosvsinwj—sin vk, |
K= —sinwi+coswj.
EXERCISE ‘

1. Obtain Ay, hy, kg and the vectors I, J, K for the following coordinate
systems:
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(i) parabolic cylindrical coordinates given by
x=1u?-0%), y=uv, z=wm,
(ii) paraboloidal coordinates given by
x = uvcos w,y = uv sin w, 2 = }(u?—v?),
(iii) prolate ellipsoidal coordinates given by
x = a\/{(u?—1)(1—v?)} cos w, y = ay/{(u®—1)(1—22)} sin w,

I = quo.

63 Gradient
In Section 38 it was proved that

grad f = -ll+8s];J+ afK

0s3
However, the directional derivative of/ds, is given by
o _ f(u+Au, v, w)—fu,v,w) _129f
3.8‘1 Au-»() hl Au hl 3u

.. of _1of of 1 of
Similarly a5, ’72-51—) and 5, ~ Iy and so

grad f = _1—2{¢I+h_26{JJ+ 1 8f (63.1)

From this result we see that

1 1 1
gradu = 71—1~I, gradov = iz_;J’ grad w = h—aK.

Hence
I = JxK = hyhg grad v x grad o,
J = KxI = hgh, gradwx grad u, (63.2)
K= Ix]J = hh;graduxgrado.
Using the results of examples 1 and 2 of the previous section, we have
that grad f in cylindrical and spherical polar coordinates is given by

o 1afJ+ afK

+__.

ou” " udv

and
6f 1of 1 6f
6u u@vJ usmvaw

respectively.
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EXERCISE

1. Obtain gradf in the following coordinate systems: (i) parabolic
cylindrical coordinates, (ii) paraboloidal coordinates, (iii) prolate ellipsoidal
coordinates.

64 Divergence

Consider the vector a=a]I+a;J+azK, where the a;, a; and ag
are now components with respect to the basis I, J, K. From

div (fa) = fdiva+a.grad f
we have in virtue of (63.2) that
div (a;I) = div (a;hh; grad v x grad w)
= a;hohy div (grad v x grad w) + grad v x grad w. grad (a;hohs).
But div (axb)=b.curl a—a.curl b and curl grad f=0. Hence
div (aI) = grad v x grad w.grad (a;hohs)
by [ ok )

1 &(ashohs)
Y ow K]

1 2
= h-——lhzhs % (a1h2h3).

Adding the corresponding results for div (a,J) and div (¢zK) we have
. 1 2 0 d '
diva = e [& (rhals) + 5 (ashsh) + (aKhlhz)]. (64.1)

In particular, the corresponding results for cylindrical and spherical
polar coordinates are

178 oa, @
” [E“ (uay) *t%50 T 5w (“ax)]

and
1 2,4 . 0 . 0
g [% (u? sin v a)) +% (u sin v a;) +30 (uaK)]
respectively.

The Laplacian of f has been defined by 4f=div grad f and so by
the combination of the formulae for gradient and divergence we have

_ 1 [ (ks ¥\, B (hshy Of\ . D (hihy Of
4 = i 5 (e ) (5 2) o (z)] ©2
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The corresponding results for cylindrical and spherical polar

coordinates are
1o (o, L& &f
u ou

“ou) Tu2 002 T ow?
and
10 (,0 1 o of 1 o%f
42 Ou (u 51;) t e sino oo (sm 871) t T sinT o 0w’
respectively.
EXERCISES

1. If u, v, w are cylindrical coordinates, show that grad log # and grad v
are solenoidal vectors in any region which does not contain the origin.

2. Obtain div a and 4f in the following coordinate systems: (i) parabolic
cylindrical coordinates, (ii) paraboloidal coordinates, (iii) prolate ellipsoidal
coordinates.

65 Curl
From curl (fa)=f curl a+grad fx a we have

curl (aI) = curl (a;h; grad w)
= a;h, curl grad u -+ grad (a;h,) x grad u.
But curl grad u=0 and so we have

1 0 10 I
curl () = {1 2 (@h)U+ g o (@) 5 7 (@) | o

1

1 ¢ 1 ¢
= m‘l 2w (a:hy)) —h_ljl‘z' 2 (a:h,)K.

Adding the corresponding results for curl (¢,J) and curl (agK) we
have

1 0 0 1 (o 0
cutla = ;1 {2 (ach) — Z (@ 1 {2 (a) (axhs)}J

1 0 0
i {2 (o)~ 2 ) K. (65.1)

In particular, the corresponding results for cylindrical and spherical
polar coordinates are

1[0ag  Oa; oa; 6aK] l[ __3&]
;[%"“%]”[aw u [Vt [7a @)
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and
'125%5 [ 4 — (sinv ag)—u Z:’}I+u—si1n—v [Zz; sin v aa (uaK)]
[ (ua J)_aa,]
EXERCISE

1. Obtain curla in the following coordinate systems: (i) p;arab.olic
cylindrical coordinates, (ii) paraboloidal coordinates, (iii) prolate ellipsoidal
coordinates.

66 Curl of the Curl of a Vector

With reference to a fundamental basis i, j and k we have

_ (92 _0a;\.  (9a; Oay\. _6&_?_(1,)
curla = (%‘55)”(5;, 7 3\ 7 ")

and so the coeflicient of i in curl curl a is
0 (0oy_da) 0 (0u_day
oo \ou oo ow ou

_ 0%a; 0%a; 0%a) 0 (0a; Oay 6ak)
ou

=\t o R

Let us define the Laplacian operating on a vector by

Aa = Aa‘i'l‘Aajj"l‘Aakk.
Then we have
curl curl 2 = grad diva—4a. (66.1)

It is important to note that this relation has only been proved for
a fundamental basis. Some authors define 4da in an orthogonal
curvilinear coordinate system by this relation. The reader is referred
to Section 76 for a full treatment of curl curl a. There we show that

this relation is always valid for one particular basis, called the natural
basis.
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MISCELLANEOUS EXERCISES

1. Show that
o _ 1ok 1ok al _ Lok aI _ Lok
ou hy 007 hy 0w "’ “hou” =% ou
A_Lohy a_ _ 1a_h_21_lah2K f’l 10k g
ou  hy ov ov  h, ou hy Ow ow  hy Ov
oK _ 10k 9_1_{ Lohyy OK_ 10k 1k
u  hg ow ' T hyowY ow hiou " hy v

(Hint: The derivatives are linear combinations of the basis vectors. Use

relations of the type
8 a &%r
ot A 3 R ana Ly = L k) = 25 5

2. If I, J and K are the basis vectors for a spherical polar coordinate
system, show that

cot v cosec? v
curlcurlI =0, curlcurl] = 3 I, curlcurlK = 3

K,

cot v, cosec? v

1,

graddivl = —u—22 I, graddiv] =
grad divK = 0.

3. In an orthogonal curvilinear coordinate system for which %, =1, A, is
a function of u and kg is a function of # and v, show that

1 [a(hhg N 2 (M a_l) (h1h2 61)]
A== [‘a?;('iﬁ'% too\ h; 30)  ow\ ks ow



CHAPTER 12

Contravariance and
Covariance

67 Contravariant Components

Consider the basis formed at each point by the three independent
vector fields e, e, and e;. These vectors are not in general unit vectors,
nor are they mutually orthogonal. We may write

a = a'e,; +ad%e,+ae;

and then refer to a', a2, a® as the contravariant components of a
with respect to the basis e,. For brevity, the convention is made that
all Greek indices have the range 1, 2, 3.
Further, we introduce the Einstein summation convention that
a repeated index implies summation over the range of values 1, 2 and
3. That is, we may write
a = a%e,.

Let the contravariant components of a with respect to a second
basis e, be a’®. That is,
a = a'%e,.
Both sets of vector fields e, and e, form bases and so we may express
each vector of either basis linearly in terms of the vectors of the other
basis. Accordingly,

e, = ple;, and e, = ¢le, (67.1)

where p£ and ¢f each represent nine quantities which are not in general
constants.

The repeated index B, called a dummy index, in the above
equation can be changed to y whilst the free index o« can be changed
to B. As a result we may rewrite the equations in the forms

7 ’
e; = pje, and e, = ge}.
97
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Substitute in the previous equations to obtain
e, = pagre, and e, = pigie,,

where the two sets of repeated indices imply double summations.
Introduce the Kronecker delta by

{1 if y=o

Y =
8 0 if y#oe

4

and we deducet that
e} = phas = L.
Further, we have

— a, —_— ’ ’
a = a%e, = a'%e,,

and so

a’qle; = a'’e; and afe; = a'ple,.
The vectors e, and e; form bases and so no linear combination of
them can vanish. Accordingly, we have

a'? = gfa® and af = pla’e. (67.2)

68 Covariant Components

Let the vector fields e!, e and e® be reciprocal to e,, e, and e;.
Then the conditions of (13.1) can be written

e,.ef = 85,
If e’® form the basis reciprocal to e; we have
e,.e'? = 85,
We may write
a = q,el+ae?+aze® = aqe’

The quantities a;, a,, a5 are called the covariant components of a
with respect to the basis e,. Note carefully that a;, a,, a; are con-
travariant components with respect to the reciprocal basis e®.

From a=a,e*=a,e’% we have in virtue of equation (67.1) that

a.e”.e; = a.e'”.e; = aze’®.qgle,
and so
a0f = auq5o3,
from which by summation we have
ag = q}a,. (68.1)

+ The reader familiar with matrices will recognize that [gf] is the matrix
inverse to [pf].
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Similarly, we obtain

a; = pia,. (68.2)
Further, we have in virtue of equation (67.2) that

a = ae’ = ape’’ = plae’’
and so
a,(e’—ple’?) = 0.

The components a, are arbitrary. We may in turn select one com-
ponent to be unity and the others to be zero and we obtain

e’ = pje’s. (68.3)
Similarly, we obtain

e’ = gjel. : (68.4)
EXERCISES

1. Show that az=p}a,.
2. Show that e'”=g}e".

69 Fundamental Tensors
We define g,5=_gs,, called the covariant fundamental tensor, by

8ag = ©€2:-€3 = Lpar

From
a = a%e, = a,e*
we have
ae,.ep = a,e%.€5 = a,df = a;
and so

ag= gaﬂaa. (69. 1)

Further, define g*#=_gf¢, called the contravariant fundamental
tensor, by
gaB = e%.ef = gﬁa_
Then we have
a%e,.e? = a,e®.eb,
from which we obtain
af = g*a,, (69.2)

Again, using equation (69.1) we have
ae, = agef = g a%ef
and so

aa(ea"gaﬂeﬁ) = 0.
8—v.A.
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Since the components a® are arbitrary, we have as in the preceding
section that
e, = g€’ (69.3)
In a similar way, we obtain
e® = g*e,, (69.4)
Hence we have
e® = g%gge’
and sot
8%8sy = &5 (69.5)

EXERCISES

1. Show that e*=_g*fe,,
2. If a and b are vectors, show with the usual notation that

a.b = a%, = a,b* = g*a,b; = g,,a°b°.

70 Natural Basis

Consider the coordinate systems #* and u’® and let r denote the
vector position relative to the origin O of the u* system and r+c
denote the vector position relative to the origin O’ of the #'® system,

_—
where ¢ is the constant vector O’'O. We choose as the natural bases
the vectors e, and e, given by
or , _Or+c) or

€a = Zua and  e; o'  ou%

The chain rule of partial differentiation states that

o _exow oo o ou
ou'*  ouP ou'® u* ~ ou'? ou”
Hence we have
, ouf d ou't
e, = au—,ae” an €, = a—ua eB.

Accordingly the pZ and ¢ defined in Section 67 are given by
B auIB

ou
ba=gm ad ga=Z0

+ That is, the matrix [¢*#] is the inverse of the matrix [gqs].
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and so, using (67.2), (68.1) and (68.2), the contravariant and covariant
components of the vector a transform by
oub _ ou'®

!
a3=au—,aa'“, aﬁ—ﬁa“,
(70.1)
ouw'e* , , ou®
A A v

The transformation laws with respect to the natural bases have a
simple structure and provide the starting point in the development of
the tensor calculus.

71 Physical Components of a Vector

We have defined the contravariant and covariant components of a
vector with respect to any given basis. But the component as
defined in Chapter 1, for emphasis now called the physical compo-
nent, of a vector a along the direction given by the unit vector 1 is
a.l

We have e,.e;=g,; and e®.ef=g* and so |e,’=g, and
|e%|2=g*%, where there is no summation over the repeated index e.
That is, the unit vectors in the directions e, and e* are respectively
€./ 8 and e%/4/g**, (no summation). Hence the physical compo-
nents of a along the directions e, and e* are

a‘eal\/gaa = aﬁeﬁ'ea/\/gaa = aﬂag/'\/gaa = aa/'\/gaa

B.0%1y/g% = aley.e/g = aPBilg™ = avg

When the basis vectors consist of three mutually orthogonal unit
vectors we have g,5=08% and consequently e,=e? That is, the basis
is self-reciprocal. We see in this case that the contravariant, covariant
and physical components are identical.

Consider the vector gradf whose components referred to a
rectangular Cartesian coordinate system x% are 9f/ox*. On trans-
formation to the #* coordinate system, the covariant components with
respect to the natural basis are given in virtue of (70.1) by

Of ox* _ of
0x% ouf ~ ouf

If the »* form an orthogonal curvilinear coordinate system, we
have g,,=h% (no summation) and so the physical components of the

gradient are 7}- ai{; (no summation) as already obtained in Section 63.
(*4

and
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72 Derivatives of Natural Basis Vectors

The natural basis vectors have been defined by e, = dr/du* and so it
follows that

Further, differentiation of the relation e,.e;=g,; with respect to u?
yields
de, oeg;  0gu

P BTy =

Note carefully that de,/ou” represents nine vectors, each of which can
be expressed in terms of the basis vectors themselves. Accordingly,
we may write

de

%g = As€p,
where AJ; represents the 27 coefficients involved. Substitution in the
previous equation yields

%8s
ou?

That is, in virtue of the definitions in Section 69,

(74
LoaMoy T 8aoly = auayﬂ‘

Ae,.ezte,. e, =

Permuting the indices «, 8 and y cyclically we obtain

0,
Lo \bat 880N = aff:

and

0,
gaa‘\rﬂ'l'gvp}‘aa = 5‘:::

We introduce the Christoffel symbols [«8, y] and {033} defined by
005, O8a O
fof, ] = 3( 22+ Bz - %et) — (s 5]

{fﬁ} - £"1o8, 71 = {g, )

oeg . .
In virtue of = 67‘ we have A%; =23, and so a simple calculation

and
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gives

8ovMes = [, ¥)-
Hence we have

Xy = 890, = g77g,,085 = £"[of, y] = { B}

and so the derivatives of the basis vectors are given by

oeq. _ [p
W = {aﬂ €, (72.1)

To obtain the corresponding derivatives of the e%, we differentiate
the relation e,.ef =32 with respect to u” to yield

oef oe,
Ca 8u7+5u—7 e =0.

oef o
Let -a—:;=y'3,,e" and we have by substitution that
e,,,.p,‘;,e"+{ P } e,.ef =
oy

85 u5,+ 85 {:y} =0

- {2)

Accordingly the required relations are

oe” o
'a—u-ﬁ- = - {ﬂp} e’. (72.2)

73 Derivatives of Vectors

That is,

from which

Consider the vector a=a%,. On differentiation we have

2 oa® e +a de,
ouP ~ ouf Ca oub
oa® )

= 54 e,+a” {aB} €,

= afﬁem
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where we have written

oa® p
o — Y&
%5 oub + {aﬁ}

The expression @% is called the covariant derivative of a® with
respect to u”,
Similarly from a=a,e* we have

o _ a,

where we have written

da, [a
asp = W_ BP Ay

The expression a, 4 is called the covariant derivative of a, with
respect to #5,

EXERCISES

1. If the basis vectors are constant, show that covariant differentiation is

partial differentiation.
2, 2,

2. By considering 8u?‘ ;u’ = aui gu“’ show that

o (oo}~ Lol i =Gl -
74 Gradient

In Section 71, we saw that the covariant components of grad f
referred to the natural basis e, are 9f/ou®. Accordingly, we have

gradf = L ec. (74.1)

Hence
gradu® = e* and curl e* = curl grad u® = 0. (74.2)

Let us write A=[e'e?e?®] and we have
a% = [ge: e2e3] + [el Zez e"’] + [ele2 Zea]
= {a [ - {ap) [l - G} [+
- -lay e @)l [soe] - (o
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Consequently, we obtain

— aA o — B a
grad)\——;—e = — a})\e. (74.3)

75 Divergence

From equation (46.1) we have div (e x e#)=e”.curl e*—e”.curl e*.
Further, equation (74.2) states that curl e*=0 and equations (13.3)
take the form le, =e? x e3, etc. Accordingly we derive div (Ae,)=0
from which in virtue of (43.1) we have

Adive,+grad d.e, = 0.
On application of (74.3) we deduce that

diveo = {Jf e = {fﬁ} %= {fﬁ}

Using equation (69.4) the divergence of the reciprocal vectors may be
calculated from

div e* = div (e®.e” ep)

= e%.ef div eg+grad (e®.ef).e;

g% {gy} +% (e®.€f) e’.e;.

- {;o} e’ and appropriate changes of dummy

dive* = — "7{; }
£ Y

div (a,e%)

I

oe®

Useof e”.e;= 5}, =

indices yields

Accordingly, we have

diva = div (a%e,)

= a%div e,+grad a®.e, a,div e®*+grad a,.e*

B oa® oa
(] — ef = — By J 8 o€
a {aﬂ +8u" e’.e, = a.g ﬁ'y + e”.e

-gar{abe o)

= a:'a = Qg.p e%.e’.

Il
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We deduce that

grad diva = 3_—2’ (@, €%.€5)e”

oa o
= 28 et ef o7 a“ e’.ef e’—aq, se%. e’ B e’
ou’ yo

o {g) e

= @,y €%.€% &7,

where we define 4, 4, by the expression in the square brackets in the
line above.
The Laplacian da of the vector a is defined by

= — ob
da = a, ze% ef.e’ = gfa, ,, €%

The reader is asked to verify that this definition produces the same
result as that of Section 66 in the case of a fundamental basis.
Hence we have

graddiva—A4a = g, 4, e%.ef €’'—aq, ;, e*ef. e’
= a, 4, €% x (e? x e%).

EXERCISES
1. Show that

— By
da =g (u" ou’ {By Bu")

2. Using the result of Exercise 1 of Section 73, show that a, 45, =a, .

76 Curl
Since curl e*=0, we have in virtue of (45.1) that

curl a

curl (a,e%)
= a, curl e*+grad a, x e*
= —erxe’
ou’
. ¢ . . . . . .
Since { } is symmetric in @ and y and e” x e® is skew-symmetric in
oy

o and y, it follows that {:y} e’xe*=0and so

curla=a,, e"x e
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Further,

curl curl a = curl (g, ,e" x &%)
= curl (a,,e" x [e®.e,le?)}

= {6%" (aq,e? x e, e,)}e" x e’
Oag,y Yol Y fatae %l rarat
= 2w [e’e ea]"aa.'y pe [e’ee,] —a,,, pe [e7e’e,]
& Yal, ‘ 0 g
+a,,,.,{ap}[e e es]}e x 7,
The last summation vanishes since {U‘;} e’ x e?=0. Hence

[e7e%e,] {aaa—:‘;’— {Pi} Qyp -—{[fx} am} e’ x e’

= a, [e’e%e,le’ x e’
= a,,,e°x{e’x [e*.e,]e’}
= a,,,e° x(e’x e%).}

curl curl a

In virtue of Exercise 2 of the preceding section 4, ,, is symmetrical
in y and p. Hence we have

curl curla = q, ,,e° x (e’ x e%)
= a, g,e? x (e’ x e%).
That is, we have established that
curl curl a = grad diva-—4a.

It is well to emphasize that this relation holds for the tensor com-
ponents referred to a natural basis, but not in general for the physical
components of the vector a.

1 (e®.e,)e’ = 8% e? = e”.



Solutions

Chapter 1

§1 1. (¢) and (f) are vectors, others are scalars.
§6 1. (i) b—a, (ii) —a, (iii) —b, (iv) a—b, (v) —2b, (vi) 2a—2b.

Components of FA are —54/3/2 and 5/2.
Components of F—'E')are 54/3/2 and 5/2.

2, ;.I_B>=a+p +v, ca= —a—[3, projected vector is — (e +)/2.
§7 1. (i) 6i—3j+2Kk, (ii) 3+/5, (iii) —(6i+ 6j— 5k)/+/(97).
§8 2. (ii) sin~* (31/50), (iii) + (i—11j—7k)/4/(171).
§9 2. (i) =3(i+j+Kk), —(2i4+j+2k), —(i+2j+4k), (i) +(2i+j+2k)/3,
(iii) 4/(21)/2.
§10 1

1. 1.
§11 3. (i) —22, (i) 27i +4j — 11k, (iii) —2(5i+j— 9k), (iv) 11(2i +4j — 6k)
(v) 540, (vi) — 11(54i+ 8 — 11k).
§13 1. 4(i+k), 3(k+i), 3(i+j)-

MisCELLANEOUS EXERCISES
1. (bx c)/[abc].

Chapter 2

MISCELLANEOUS EXERCISES

1. 7.

2. 9/4/(17).

3. 58/(54/2).

9. (a) cos~1 4, (b) cos~1 1/4/3.

Chapter 3

§19 2. p=1ufa+1u®h.
§23 2. (i) (14+4?)sinu—wucosu,

(it) (1® sin u— 342 cos u)i+ (#° cos u+ 3u? sin u)j

+(cos u+u sin #+u? cos u)k.

§24 1. (i) ve®i+2j+vcosuk, (ii) v2ei—vsinuk,

(i) (14 uv)e*® i+cos u k, (iv) u2e*? i,

(v) (2 sin u+v cos u)i+ v(u cos u—sin u)e*® j— (2u 4 v)e*’ k.

2. (i) 0, (ii) —36j.
108




SOLUTIONS 109
Chapter 4
§28 1. (—fcosvi—fsinvj+k)\/(1+f2).

i . . df . A%
2 (% sin o i——-- cos 'vj+uk)/~/{u +(dv) .
. 2
§29 1. a%(dud+sin® do?), (1+f2) dud+u? do, du2+{u2+ (%) } do?,
3. —a(du?+sin? v dv?), (f du?+uf dv?)[(1+£2)"2,

(ovsrh )l ())"

Chapter 5
§32 1. (i) 0, (ii) 0.
2. (i) 2, (ii) 3, (iil) 2:4%-
§33 1. p(e?*—1)k,
§35 1. 6(i+j+k), 0, 0.
2. 1/8.
§36 1. 24i+96j+ 394k/5.

Chapter 6
§37 1. (i) 74/6/2, (ii) —9/4/2, (iii) 1/4/2. 2. 2A.0.

§38 1. (i) 2, (ii) /3, (iii) 1/(14).
§39 3. No, (i) Yes, 3(A.w)r?, (iii) Yes, (A.r)(.r), (iv) No.

Chapter 7
§41 3. (i) 2(x+y+2), (ii) 0, (iii) =2«, (iv) 0,
V) y2(2x+y + )i+ zx(x+ 2y + 2)j + xy(x +y + 22)k,
(vi) 0, (vii) 2zx(z— x)(x2+ 6y? +z’+ 2x).
£.() 0, Gi) 6, i) ST+ 29, 4y 2
§42 1. 0.

3. 4n(a+b+c)/3.
§43 1. ¢/r® for any constant c.

Chapter 8
§44 1. (i) i+j—k, (i) —i+j—k, (iii) 0, (iv) O,
(v) (3y%2+ 3y22 + 2xy% 4 2x22)i + 2(3x2 + 320 — 2y2)j
+y(3x% + 3xy — 2y2)k, (vi) 0, (vii) 0.
§45 2. (i) & Hu(y - 2)i+y(s— )i+ 2(x—y)k},
(ii) x(ze*—ye')i+ y(xe* — ze*)j + 2(ye? — xe*)k.

Chapter 9
§50 1. See equation (44.3).
§55 2. (i) (9% +2)i+ (2% +2%)j+ (x2+ 2k, (ii) r°r x (r x c)/6,
(i) Hoe(3? - yNi+y(x* - 37)j + 2(y% — 27)k},
(iv) (ve* + 1 —e*)(zi— xk)/x2,



110 SOLUTIONS
Chapter 11
§62 1. (i) hy=hy=+/(1®+2%), hy=1,
I=(ui+0j)/v/ (4?4 0%), J=(—vi+4j)/v/(s*+9%), K=k,
(ii) 2y =hy=1/(4%+v?), hg=uv;
I=(v cos wi+vsin wj+uk)/+/(u?+v2),
J=(u cos wi+u sin w j—vk)//(4*+0?),
K= —sinwi+tcos wj.

(i) 2y =ay/{(u?—0%)/(u — 1)}, hy=av/{(u*—v?)/(1—v?)},
hy=av/{(1®—1)(1-2%);

1—o u?—1

I=uJ(;T——){cosw1+51n w;}+v/(zﬁ—_5§)k,
u?— 1—9¢%)

J_—vA/(u ){cosw1+s1n wJ}+uA/(m)k,

K——-smw1+cosw_j
56 1 (Z1+Zy) 1o+ L&
@ (Z I+6f L3) W+o?) +5-{ K|(u),
(i) {\/(uﬂ— 1) & Lv/(1-2) L oy - o)
+ L Rlaviw-1)1-09.
564 2. ) grgn (VO 0%0r) + 2 (/4000 + o) S
u2+vz{32f 23; +aa*;f§’

) W(TI-—vT) {574 [wov/(4*+0%)ar] + a% [uvy/(u®+ vz)aﬂ}

oty {2 () 5 ()
) T——) {% (VA - 1) —v)ay)

+ (V=00 — o) )}
1 Oag
T o

az(uz-—vz) {614 (@=1) f] av[(l_ )%]}

P
B 1)(1 o) Dt




SOLUTIONS 111
§65 1. (i) e 2+v){6ax 6aKJ} aa,J_aa,I
,,2+,,2 {f W+ )2 (v +oia) K,

(i) — V(u2+,,2) {43 wall—0 2 @war)}

{3:1,]_
+u2+,)2 53 (VO +0)a) = (/0 +0a) | K,
) =T (75 (A~ D0 ~een - - (=)
a\/«l vz)(uz—vf*)}{/ ()52 (‘/ (= 1)1 =o%a)

D (6 2 ()




Index

Addition of vectors 2 Curvature 38
Anti-commutative law 14 Curvilinear coordinates 89
Associative law 3 Cylindrical coordinates 90, 92-94
Basis 21, 100 Darboux vector 39
Binormal 38 Definite integral 47
Boundary conditions 84 Differentiation 29
Directional derivative 56

Centroid 8 Direction-cosine 56
Christoffel symbols 102 Direction-ratio 56
Circular helix 42 Distributive law 12, 15
Circulation 60 Divcurla 80
Co-directional vectors 6 Divergence 65, 93, 105
Collinear points 6 ofaxb 72
Commutative law 2, 11 of fa 69
Components 8 theorem 67
Connected region 60 Dot product 11
Continuity 29 Double
Coordinate integral 51

curve 90 point 38

surface 89 Dummy index 97
Conoid 44

Einstein summation convention 97

ontravariant onent 97
Contr comp Equal vectors 1

Coplanar points 8

Covariant First fundamental form 45
components 98 Frenet formulae 39
derivative 104 Fundamental
Cross product 14 system of vectors 10, 12, 14, 18
Curl 70,75, 94, 106 tensor 99
ofaxb 74
of fa 71 Gauss’s theorem 66
of gradf 79 Gradient 57, 63, 92, 104
of curl 95, 107 ofa.b 74

112



INDEX

Green’s
identity 87
theorems 83

Harmonic function 84, 88
Helix 41

Irrotational vector 60
Kronecker delta 98

Laplacian 66, 93, 95, 106
Length
of a vector 1
of arc on a surface 44
Line
equation of a 23
integral 47
Linearly dependent vectors 7, 20

Magnitude of a vector 1
Median 7

Natural basis 100, 102
Negative of a vector 4
Normal

derivative 57

principal 38

to a surface 43

Operator a.grad 72
Orthogonal
curvilinear coordinates 90
system of parametric curves 45
Orthogonality of vectors 11

Parabolic cylindrical coordinates
92-94

Paraboloidal coordinates
Parallelepiped 10, 17
Parallelogram law of addition 2
Parametric curves 43
Partial differentiation 34
Perpendicular distance from

line 24

plane 26

92-94

113

Perpendicularity of vectors 11
Physical components 101
Plane
curve 39
equation of a 25
Polyhedron 22
Position vector 23
Principal normal 38
Products of vectors
20
Projected vector 9
Prolate ellipsoidal coordinates 92-
94

11, 14, 16, 18,

Reciprocal bases 21
Regular

arc 38

curve 38
Riemann integral 47

Scalar 1

element of area 46

field 56

product 11

triple product 16
Second fundamental form 45
Shortest distance between two skew

lines 26

Simply connected region 61
Solenoidal vector 80
Solid angle 85
Spherical

polar coordinates 91-94

triangle 21
Square of a vector 12
Stokes’s theorem 76
Straight line, equation of a 23
Subtraction of vectors 4
Sum of vectors 96
Surface

integral 52

of revolution 44

Tangent 37
plane 43
vector 37



114 INDEX

Taylor’s theorem 32 double integral 52
Tetrahedron 22 element of area 46
Torsion 39 field 60

Triangle law of addition 2 line integral 49
Trihedral 39 potential 81
Triple products 16, 18 product 14

projected 9
surface integral 54
triple product 18

Uniqueness theorem 84
Unit
binormal vector 38

principal normal vector 38 :,lgllém: integral 55
surface normal vector 43 g
Vectors

tangent vector 38 co-directional 6

vector 1 fundamental system of 10, 12,
Vector 1 14, 18

addition 2 Volume

components of a 8 integral 55

derivative of a 29, 33 of a parallelepiped 17
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VECTOR ANALYSIS

Tmis revised second edition provides a systematic account of vector
algebra and calculus from the fundamental definitions. Improvements
include a rigorous proof of Taylor’s theorem for a vector function, a
vectorial definition of directional derivative, more material on Green’s
identity and several extra examples. The book is intended for first year
students reading an honours course in mathematics and for students of -
mathematics, the physical sciences and engineering at universities and
technical colleges.

The theory is developed with emphasis on the vector as an entity in
itself rather than on its definition as a number triple. It includes a chapter
on line integrals, surface integrals and volume integrals, as many students
require these concepts in vector theory before they have taken a formal
course on integration. ;

The theory is presented independently of any co-ordinate system.
In particular, the gradient is defined in terms of the directional derivative
whilst the divergence and curl are defined by means of limits of integrals.
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