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^PREFACE TO THE SECOND EDITION.

rpHE object of this work is to remove the chief difficulties felt by those who
J- desire to understand the Sixth Book of Euclid. With the exception of the

note at the end of the book on irrational numbers, which is intended for teachers

and advanced students only, it contains nothing beyond the capacity of those who
have mastered the fii-st four Books, and has been prepared for their use. It is the

result of an experience of teaching the subject extending over more than twenty

years.

The Sixth Book depends to a very large extent on the Fifth, but this Fifth

Book is so difficult that in actual teaching it is usually entirely omitted with the

exception of the Fifth Definition, which is retained not for the purpose of proving

all the properties of ratio required in the Sixth Book, but only for demonstrating

two important propositions, viz., the 1st and 33rd.

Tlie other properties of ratio required in the Sixth Book are usually assumed,

or so-called algebraic demonstrations are supplied. The employment side by side

3 of these two methods of dealing with ratio confuses the learner, because, not being

^ equivalent, they do not constitute, when used in this way, a firm basis for the train

s of reasoning which he is attempting to follow. A better method is sometimes

T attempted. This is to insist on the mastering of the Fifth Book, expressed in

< modern form as in the Syllabus of the Association for the Improvement of

Geometrical Teaching, before commencing the Sixth Book.

But it is far too difficult for all but the best pupils, and even they do not grasp

^ the train of reasoning as a whole, though they readily admit the truth of the

S propositions singly as consequences of the fundamental definitions, which are

z: (I) The fifth definition, which is the test for the sameness of two ratios.

(II) The seventh definition, which is the test for distinguishing the greater

of two unequal ratios from the smaller.

5 * The alterations which have been introduced into this second edition are so extensive that the

^ preface to the first edition would not be intelligible without a copy of the text. That preface has

^ therefore not been reprinted. So much of it as is relevant to the second edition is here incorporated.

a- H. K. 6
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*(III) The tenth definition, which defines " Duplicate Ratio."

*(IV) The definition marked A by Simson, which defines the process for

compounding ratios.

In order to make things clear, it is necessary to explain what it is that makes

Euclid's Fifth Book so very difficult.

There is first the difficulty arising out of Euclid's notation for magnitudes

and numbers. This has been entirely removed in most modern editions by using

an algebraic notation and need not therefore be further considered.

There is next the difficulty arising out of Euclid's use of the word "ratio,"

and the idea represented by it.

His definition of ratio (see Note 4) furnishes no satisfactory answer to the

question, "What is a mtio?" and it is of such a nature that no indication is

afforded of the answer to the still more important question, " How is a ratio to be

measured ? " As Euclid makes no use of the definition in his argument, it is useless

to examine it further, but it is worth while to try to get at his view of ratio. He
asserts indirectly that a ratio is a magnitude, because in the seventh definition he

states the conditions which must be satisfied in order that one ratio may be greater

than another. Now the word "greater" can only be applied to a magnitude.

Hence Euclid must have considered a ratio to be a magnitude f. To this conclusion

it may be objected that if Euclid thought that a ratio was a magnitude he would

not so constantly have spoken of the sameness of two ratios, but of their equality.

One can only surmise that, whenever it was possible, he desired to leave open all

questions as to the nature of ratio, and to present all his propositions as logical

deductions from his fundamental definitions. Yet the question as to the nature

of ratio is one which forces itself on the careful reader, and is a source of the

greatest perplexity, culminating when he reaches the 11th and 13th Propositions.

The 11th Proposition may be stated thus:

—

If J. : jB is the same as C : D,

and if G : D 'v& the same aa E : F,

then A : B 18 the same as E : F.

Now if a ratio is a magnitude, this only expresses that if Z = Y, and if Y=Z,
then X = Z.

As this result follows from Euclid's First Axiom it is difficult to see the need
for a proof

* These are not required until the 6th Book is reached.

t Some writers maintain that the word "greater" as applied to ratio, is not used in the same sense
as when it is applied to magnitudes. This seems to make matters far more difficult.
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This only becomes apparent when the reader realises that Euclid's procedure

may be described thus:

—

Let A, B, G, D he four magnitudes satisfying the conditions of the Fifth

Definition, and let C, D, E, F be four magnitudes also satisfying the same
conditions, then it is to be proved that A, B, E, F also satisfy the conditions

of that definition (see Art. 175).

Remarks of a somewhat similar nature apply to the 13th Proposition.

The next difficulty to be considered is the indirectness of Euclid's line of

argument, arising from the fact that he uses the Seventh Definition where the

Fifth alone need be employed. His Fifth Definition states the conditions which

must be satisfied in order that two ratios may be the same (or if ratios are

magnitudes, that they may be equal).

If this definition is a good and sound one, it is evident that it ought to be possible

to deduce from it all the properties of equal ratios. This is in fact the case. It is

wholly unnecessary to employ the Seventh Definition, which refers to unequal

ratios, to prove any of the properties of equal ratios. Its use only renders the

proofs of the Propositions indirect and artificial and consequently difficult. Not

only does no inconvenience result from avoiding its use, but it is possible to get

rid of the latter part of the 8th Proposition, and of the whole of the 10th and 13th

Propositions, which deal with unequal ratios, and of the 14th, 20th and 21st

Propositions of the Fifth Book, which are particular cases of the 16th, 22nd and

23rd Propositions respectively.

The remaining Propositions are demonstrated by means of the Fifth Definition

alone ; and all, with three exceptions, fall under one or other of two well recognized

types, which correspond to the two forms of the conditions for the equality of two

ratios (Arts. 46, 48).

The first form of the conditions is Euclid's Test for Equal Ratios as stated

in the Fifth Definition of the Fifth Book. It contains three classes of alternatives,

one of which appears only when the magnitudes of the ratios are commensurable.

Sometimes it is possible to examine all three classes of alternatives in the same

way. On the other hand, in the extremely important Propositions Euc. V. 16, 22,

23, the examination of the cases in which the ratios are commensurable has to be

conducted upon different lines to those which are applicable when they are not

commensurable. This it is quite possible to do, but the line of argument is

artificial and therefore difficult for a beginner, as will be seen by consulting

Notes 6, 9 and 11 at the end of the book. The proofs of Euc. V. 16, 22, 23 as

completed by these Notes depend on the use of Prop. 63 (Euc. V. 4), but the way

in which that proposition has to be used does not suggest itself naturally.

62
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It is on this account that the second form of the conditions for the equality

of two ratios (Art. 48) has been introduced into this book. So far as the Author

knows it was first published by Stolz (see Arts. 47, 48).

Reference has been made above to three Propositions which do not fall under

either of the above recognized types. These are Prop. 62 (Eiic. V. 24), Prop. 65

(Euc. V. 19), Prop. 66 (Euc. V. 25). The proofs here given are Euclid's. They

are very much shorter than any direct deduction of the propositions from either

form of the conditions for the equality of two ratios. At the same time their

artificial character stands out in striking contrast to the directness of the proofs

of the other propositions.

A still greater difficulty than any of the preceding arises from the fact that

Euclid furnishes no explanation of the steps by which he reached his fundamental

definitions.

To write down a definition, and then draw conclusions from it, is a process

which is useful in Advanced Mathematics ; but it is wholly unsuitable for

elementary teaching. It seems not unlikely that Euclid reached his fundamental

definitions as conclusions to elaborate trains of reasoning, but that finding great

difficulty in expressing this reasoning in words owing to the absence of an algebraic

notation, he preferred to write down his definitions as the basis of his argument,

and to present the propositions as logical deductions from his definitions.

Apparently he has left no trace of the steps by which he reached his fundamental

definitions ; and one of the chief objects of this book is to reconstruct a path which

can be followed by begiimers from ideas of a simpler order to those on which his

work is based.

The most important of his definitions is the Fifth, on reaching which the

beginner, who has read the first four books of Euclid, experiences a sense of

discontinuity. He knows nothing which can lead him directly to it, he has no

ideas of a simpler order with which to connect it; and he is therefore reduced

to learning it by rote. His teacher may show him that it contains the definition

of Proportion given in treatises on Algebra; but even with this assistance it

remains difficult for him to remember its details. He may and frequently does

learn to apply it correctly in demonstrating the 1st and 33rd Propositions of the

Sixth Book, but the Author's experience both of teaching and examining leads

him to the belief that it is not really understood.

In the first edition of this book, the writer, following a suggestion due to the

late Professor De Morgan, derived Euclid's Test for the Sameness (or Equality) of

Two Ratios from the Theory of Relative Multiple Scales, and on this theory the

wh(jle treatment of the subject was based. This procedure made it possible to
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render Euclid's Fifth Book intelligible even to persons not possessed of any special

mathematical aptitude, but further study of the subject has led the writer to the

conclusion that ideas of a still simpler nature may be taken as a starting point,

and accordingly the use of the above-mentioned theory has been replaced by a

direct comparison of ratios with rational fractions.

The arrangement of the argument may be briefly summarised thus :

—

The first thing to be done is to consider the ideas connected with the term

magnitude. No attempt is made to define a magnitude*; all that is done is to

euurnerate the characteristic properties of a magnitude.

It is easy to give illustiations of what is meant by a magnitude, such as a

segment of a straight line, an area, a volume, or a weight. In regard to these it

is assumed that if any magnitude, which may be called A, exists, then any number
of magnitudes exist having exactly the same properties. Each of these is called

A, and it is assumed to be possible to add any number of them together to form a

new magnitude. Thus if r denote any integer, and r magnitudes each equal to A
are added together, the sum is called rA.

Conversely if any magnitude B exist it is assumed that another magnitude A
exists, such that B = rA. It should be carefully noticed that nothing more than

the existence of A is assumed. It is not assumed that it is possible to construct

the magnitude A when B is given.

The next step taken is to state the characteristic property of " magnitudes of

the same kind." It is easy to give illustrations of what is meant by such magni-

tudes, e.g. two segments of sti-aight lines, or two areas, or two volumes, or two

weights, and so on.

But in order to employ such magnitudes in analysis, something further is

required. This is expresvsed as follows :

—

Any two magnitudes are said to be of the same kind, whenever it is possible to

determine whether any multiple whatever that may be selected of one magnitude

is greater than, equal to, or less than any multiple whatever of the other magnitude

(Art. 21). In the next place the Axiom of Archimedes is assumed to hold good

for any two magnitudes of the same kind (Art. 22). Then the ratio of two

commensurable magnitudes is defined in the usual way, viz.:

—

The ratio of rA to sA, where r, s denote any two positive integers, is defined to

r
be the rational fraction - (Art. 30).

* It is not now usual to attempt to define a straight line. All that is done is to state the

characteristic property of the straight line that it is determined by two points.
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It is then proved (Art. 42) that if three magnitudes A, B, C have a common
measure,

and if A = B, then A:C = B:C;

but if A>B, then A:G>B:G.

These are the earlier parts of Propositions 7 and 8 of Euclid's Fifth Book, but

up to this stage in the argument they have been proved only if the magnitudes

concerned are commensurable.

If two magnitudes have no common measure, then the definition given for the

ratio of commensurable magnitudes does not apply, and the definition of ratio

must be extended before it can be applied to incommensurable magnitudes.

This requires for its full explanation the introduction into the subject of the

irrational number. As this is too difficult for the majority of those for whom this

book is written, it is given in a note* at the end of the book, whilst in the text it

is simply stated that the irrational number is a "magnitude-f* of the same kind"

(in the sense explained above) as the rational fraction, and a method of arranging

all ratios, whether they be ratios of commensurable or incommensurable magnitudes,

in order of magnitude, is constructed on the hypothesis that the propositions :

—

If A=B, then A:G=B:G,
and if A>B, then A:G>B:G
hold good, whenever the magnitudes A, B, G are of the same kind in the sense

explained above, whether they have or have not a common measure (Art. 43).

When irrational numbers have been defined, it is shown that if A, B be

magnitudes of the same kind which are incommensurable, then the ratio of A to

B is an irrational number. (Arts. 208—210.)

The hypotheses stated in the last paragraph but one make it possible to compare

any ratio with any rational fraction, and to determine whether any two ratios are

C(|ual or unequal, and if unequal which is the greater. Thus Euclid's Tests, given

in his Fifth and Seventh Definitions, are obtained.

Euclid however deduces the Propositions just mentioned, which have been

taken as hypotheses, from his Fifth and Seventh Definitions. These two definitions

present very great difficulties to the beginner. Their meaning is far more difficult

to grasp than the propositions quoted above. Accordingly in this second edition

the order of the argument has been inverted.

* Note 15.

t In the purely arithmetical theory a number is primarily a mark of order, and not a magnitude.

This purely Rrithnietical conception of a number if infiisted upon in the text would have made the

argument of too abstract a nature to be readily understood by those for whose use it is written.
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This is the principal change made in the argument. But it is of so far-reaching

a character that it has rendered it necessary to re-write the greater part of the

book.

This method of treatment leads naturally to Dedekind's Theory of the

Irrational Number, which, as already mentioned, is explained in a note* at the

end of the book, the material of which is drawn largely from Dedekind's work.

In this edition a section is devoted to the consideration of the ratios of

Commensurable Magnitudes, with the object of making it easier to understand

the treatment of the ratios of incommensurable magnitudes which follows.

The technical terms " Compounding of Ratios " and " Duplicate Ratio " present

some difficulty to beginners. So far as the Sixth Book of Euclid is concerned,

they are only required for the construction of two straight lines whose ratio is

equal to the ratio of two areas. The constructions present no difficulty and are

given in the text (Art. 36, Props. 40 and 42), whilst the technical terms are

relegated to notes in the Appendix (see Notes 13, 14). The effect of these

constructions is to reduce the measurement of areas to the measurement of

lengths.

Several alterations have been made in the order of the Propositions. De
Morgan pointed out that learners found great difficulty in reading the Fifth Book

on account of the abstract character of the reasoning, its application to something

concrete not being easily perceived. Accordingly in this work Propositions from

the Sixth Book are taken as soon as a sufficient number of Propositions from the

Fifth Book have been proved to make it possible to deal logically with those in

the Sixth Book. With regard to the enunciations no attempt has been made to

adhere to Euclid's words.

This work contains demonstrations of all-|- the Propositions in the Fifth Book

except Nos. 8, 10, 13 which depend on the Seventh Definition, and which are not

required for the understanding of the Sixth Book.

It contains also the demonstrations of all the Propositions in the Sixth Book

except No. 32, which is of no importance.

* It is hoped that what is there set down will induce some of my readers to study Dedekind's own

Tract on Continuity and Irrational Numbers. There is an English Translation by Professor Beman,

published by the Open Court Pubhshing Company, of which the London Agents are Kegan Paul,

Trench, Triibner & Co.

t The demonstration of Euc. V. 3 is involved in the proof of the Proposition here numbered 5.

Euc. V. 20 is a particular case of Euc. V. 22, here numbered 37. Euc. V. 21 is a particular case of

Euc. V. 23, here numbered 57.
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The Propositions here numbered 7, 8, 13, 14, 26, 39, 60, 61, 64 and 69 are not

in Euclid's Text.

There are given in suitable positions in the book, the definitions of Harmonic

Points and Lines, of the Pole and Polar, of Inversion, of the Radical Axis and

the Centres of Similitude of Two Circles, and (so far as is possible without

explaining the use of the Negative Sign in Geometry) of Cross or Anharmonic

Ratio, with the sole object of rendering intelligible the terminology employed in

a number of interesting examples in the book.

The harder examples are marked with an asterisk.

The Author believes that he has not taken without acknowledgment from

other text-books anything which is not common property.

His special thanks are due to the Cambridge University Press Syndicate,

who have made the publication of the book possible ; and to his friend and former

pupil, Dr L. N. G. Filon, for valuable suggestions and assistance.

He will be grateful to his readers for suggestions and corrections.
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they are about the same diagonal.

56. If 0^5 be a given triangle it is required to find a point P on AB or AB produced

so that if PQ be drawn parallel to OB to cut OA in Q, and if PR be drawn

parallel to OA to cut OB in R, then the parallelogram PQOR may have a given

SECTION X.

Propositions 57—64. The remaining important theorems in the Theory
OP Ratio.

PROP. 57. If A, B, C \y& three magnitudes of the same kind,

if Ty U, V he three magnitudes of the same kind,

and if A : B=U: F,

and if £ : C=T : U,

then A : C=T: V.

58. If A : B=X : F,

then A+B .B=X+r: r.

59. If A : B=X : F,

then A~B : B=X~T : Y.

60. If A : B=^X : F,

then A~B .A-\-B=X-^Y .X-i-Y.

61. li A, B, C\ D be four harmonic points, A and C being conjugate, and if be the

middle point of AC, then OG is a mean proportional between OB and OD.

62. If A : C=X : Z,

and if B:C=Y:Z,
then A-\-B .C=X+Y.Z.

6.3. If A : B=X : F,

then rA : sB=rX : sY.

64. If A', L, M, P he four straight lines in proportion, if the lengths of L and M be

fixed, if the length of K can be made smaller than that of any line however

small, to show that the length of P can be made greater than that of any line Q,

however great Q may be.
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SECTION XI.

Propositions 65, 66. Other Propositions in thb Theory of Ratio.

PROP. 66. li A, B, C, D are magnitudes of the same kind, and if .4 : B=C : D, then

A'^C:B~D=A : B.

66. If A, B, C, D are magnitudes of the same kind, and if J : B=C : D, then the

sum of the greatest and least of the four magnitudes is greater than that of

the other two.

Propositions in the Notes.

PROP. 67. If three magnitudes be in proportion, the first has to the third the duplicate ratio

of the first to the second.

68. If two ratios be equal, their duplicate ratios will be equal.

69. li A : B he any ratio, and C any magnitude, then a magnitude Z of the same kind

as C exists, such that A : B=C : Z.

ERRATUM.

Page 152, line 22. For ' segments of straight lines ' read ' magnitudes of (he same kind.'



LIST OF ABBREVIATIONS.

+ Plus.

- Minus.

= Equal to.

< Less than.

> Greater than.

^ Not equal to.

<t Not less than.

::}> Not greater than.

A~B The diflFerence of A and B.

A : B The ratio of A to B.

B=C : D The ratio of 4 to 5 is equal to the ratio of C to i).

-)(- Compounded with. (Art. 191.)

<-. Aggregated with. (Art. 194.)



SECTION I.
^

PROPOSITIONS 1—8.

ON MAGNITUDES, THEIR MULTIPLES AND THEIR MEASURES.

Art. 1. Number.

In this book except where otherwise stated the word Number will be used

as an abbreviatiou for Positive Whole Number.

Notation for Number.

A Number will always be denoted by a small letter.

Art. 2. Notation for Magnitude.

A Magnitude will be denoted throughout this book by a capital letter*.

Art. 3. Def. 1. MULTIPLE.

If A denote any magnitude, then it is usual to denote A-{- A by 2J. for

brevity, and in like mauner A -{ A ¥ A by 3J. for brevity and so on. If A be

added successively to itself until there are in the aggregate altogether r ^'s, the

result is written rA for brevity, and called the rth multiple of A.

It follows from the definition that

rA-\-A = {r + l)A.

If the magnitude B be the same as rA, then B is said to be a multiple of A,

and in general

One magnitude is said to be a multiple of another magnitude, when the

former contains the latter an exact number of times.

It will be in agreement with the above nomenclature, when A is equal to B,

to say that A is the first multiple of B\ and to call the rth multiple of B and

the rth multiple of C the same multiples of B and C.

* A point will also be denoted by a capital letter, but this will not lead to any difficulty.

H. E. 1
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Art. 4. It is necessary to prove certain propositions regarding magnitudes

and multiples of magnitudes before entering upon the discussion of the relations

between magnitudes.

These propositions depend upon the Commutative and Associative Laws for

Addition.

The Commutative Law is expressed by the formula

X+Y=Y^-X.
The Associative Law is expressed by the formula

{X-^Y)-\-Z=X-^{Y-\-Z).

The effect of these two laws is to render it permissible, when adding up any

number of magnitudes, to group them in any way, to add up the members of each

group, and then to add up the groups.

Art. 5. PROPOSITION I.* (Euc. V. 1.)

Enunciation. To prove that r{A+B) = rA-^ rB.

Since rA means A + A + A + ... io r terms,

r {A + B) means {A + B) -^ {A -^ B) + {A + B) + ... to r terms.

By means of the commutative and associative laws, the terms in the r groups
may be added up in any order.

Adding up the r A'^ together, the result is rA, and adding up the r J5's together
the result is rB.

Thus r{A-\-B) = rA+ rB.

Art. 6. EXAMPLE 1.

By repeated application of Proposition I. prove that

r{A+B-^ ...+K) = rA-\-rB + ... +rK.

Art. 7. PROPOSITION II.* (Euc. V. 2.)

Enunciation. To prove that (a + b)R = aR + bR.

By definition (a + b)R means R + R+... until there are (a + b) terms.

By the Associative Law these terms may be added up in any way.

* A nuae formal proof of this theorem will be found in the Appendix, see Note 2.
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Take therefore the first a R's and put them in one group, and put the

remaining b R's into another group.

The sum of the first group is aR.

The sum of the second group is bR.

.'. (a + b)R=aR + bR.

Art. 8. EXAMPLES.

2. Prove that (r + s + t + ... +z)A - rA + sA + tA + ... + zA.

3. If A and £ are both multiples of G, prove that A +B is a. multiple of G.

Art. 9. PROPOSITION III.* (Euc. V. 5.)

Enunciation. If A > B, then r{A-B)=rA--rB.

Since A>B,
let A = B+G.

.'. rA=r{B+C)
= rB + rC.

.-. rC=rA-rB.

But C^A-B,
:. r(A-B) = rA-rB.

[Prop. 1.

Art. 10. PROPOSITION IV.* (Euc. V. 6.)

Enunciation. If a> b, prove that (a — b)R = aR — bR.

Since a>b, and each is a positive integer,

.•. (a — b) is a positive integer which may be called c.

.-, a = b + c.

.-. aR = (b + c)R

= bR + cR. [Prop. 2.

.-. cR = aR-bR.

.-. (a-b)R = aR-bR.

* See Note 1.

1—2
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Art. 11. EXAMPLE 4.

If A and B are multiples of G, then the difference of A and 5 is a multiple of G.

Art. 12. PROPOSITION V.*

Enunciation. To prove that

r (sA) = rs (A) = sr (A) = s(rA).

Let a rectangle be drawn and divided into compartments standing in r columns

and s rows.

Place the magnitude A in each compartment.

Then the sum of the magnitudes in any row is rA, and the sum of those in any

column is sA.

Since there are s rows, the sum of all the magnitudes is s{rA).

Since there are r columns, the sum of all the magnitudes is r (sA).

If the number of the magnitudes be counted, it is rs, or it may also be expressed

as sr.

Hence the sum can be written in either of the forms rs (A) or sr (A).

But by the Commutative and Associative Laws the sum of the magnitudes

is the same in whatever way the magnitudes are added together.

.*. r (sA) = rs (A) = sr (A) = s (rA).

Art. 13. EXAMPLE 5.

If A and B are multiples of G, then the sum and difference of rA and sB are

multiples of G.

Art. 14. PROPOSITION VI (i).

Enunciation. If A> B, then rA>rB

;

If A = B, then rA = rB;

If A <B, then rA < rB.

If A>B,
let A = B + G.

* See Note 1.
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.-. rA=r{£ + C)

= rB ^- rC. [Prop. 1.

.•. rA > rB.

If A=B,

then rA = rB.

If A<B,
then B>A.

Hence rB>rA, by what is proved above.

.•. rA < rB.

Art. 15. PROPOSITION VI (ii).

Enunciation. // rA > rB, then A> B;

If rA=rB, then A = B;

If rA < rB, then A < B.

If rA> rB,

suppose if possible that A is not greater than B.

Then either A = B,

or A<B.
But by the first part of this proposition,

if A=B, then rA =rB;

and if A < B, then rA < rB.

Both these results are contradictory to the hypothesis that rA > rB.

Hence A must be greater than B.

The second and third cases can be proved in like manner.

Art. 16. PROPOSITION VI (iii).

Enunciation. If a>b, then aR > bR

;

If a = h, then aR = hR ;

If a <b, then aR < bR.

If a > 6,

let a = b -\- c,
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.-. aR = (b + c)R

= bR + cR; [Prop. 2.

.-. aR>bR.

If a=b,

then aR = bR.

If a<b,

then b > a,

.". bR> aR, by what was proved above.

.-. aR<bR.

Art. 17. PROPOSITION VI (iv).

Enunciation. If aR> bR, then a>b;

If aR = bR, then a = b

;

If aR < bR, then a<b.

If aR>bR,

suppose if possible that a is not greater tlian b.

Then either a = b,

or a<b.

But by part (iii) of this proposition, ,

if a = b, then aR = bR
;

and if a < 6, then aR < bR.

Both these results are contradictory to the hypothesis that

aR > bR.

Hence a must be greater than b.

The second and third cases can be proved in like manner.

Art. 18. EXAMPLES.

6. (i) If aU>hV,

hT>cU,

prove that aT>cV.

(ii) If nrU>tV,

and tT>nsU,

prove that rT>8V.
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7.* If rA>sB,

and rC<8D,

prove that no integers r', s' can exist such that

r'A < s'B,

and r'C>s'D.

Art. 19. If 5 = rA, then 5 was called the rth multiple of A.

The magnitude B is said to be measured by A ; and A is called a measure or

a partf oi B.

When A exists, it is assumed to be always possible to construct a magnitude

equal to rA.

But the reverse operation is not always possible.

When 5 is a segment of a straight line, a construction can be given, see Prop, 10,

for finding the segment of a straight line A, such that B = rA.

But if B is an arc of a circle, there exists no known general construction for an

arc A, such that B = rA for all values of the integer r.

Nevertheless it will be assumed that if 5 be any magnitude, and r any positive

integer, then a magnitude A exists, whether it can be constructed or not, such that

B = rA.

This same relation between A and B is denoted by

r

or A = -B.
r

Art. 20. PROPOSITION VII.

Enunciation. If the magnitudes A and rA be each divided into s equal

parts, prove that any one of the parts into which rA is divided will he r times

as great as any one of the parts into which A is divided.

Suppose that each of the parts into which A is divided is B.

Then A = sB.

:. rA = rsB = s {rB). [Prop. 5.

Hence each of the s equal parts into which rA is divided is rB, which is

r times as great as each of the s equal parts into which A is divided.

t The word part is here used in a technical sense. It does not mean any portion of B.
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If then — denote the sth part of A,
s

rA— will denote the sth part of rA,
s

and this proposition may be expressed thus:

—

rA „ /A'
^-f-rB-r(±).

rA_ /A

s
~ \s

Art. 21. MAGNITUDES OF THE SAME KIND.

It is usual to speak of two lengths as magnitudes of the same kind, or two

areas, or two volumes, or two weights.

The characteristic of two such magnitudes is this :

—

It is supposed to be possible always to find out whether any multiple of the

one is greater than, or is equal to, or is less than any multiple of the other.

Let the magnitudes be A and B.

Take any multiple of A say rA, and any multiple of B say sB.

Then all that is meant by saying that A and B are of the same kind is this :

—

It is assumed to be possible always to determine whether rA is greater than

sB, or equal to sB, or less than sB.

In particular it is assumed to be possible to determine whether A is greater

than B, or equal to B, or less than B.

The same thing may be put in a slightly different way thus :

—

Suppose that B is divided into r equal parts, each of which is denoted by —

;

that s of these parts are taken, giving * ( - ) > then it is supposed to be possible

/B\
always to determine whether A is greater than, equal to, or less than s (— ) •

If A>s(?).

then A > —, [Prop. 7.

.-. rA >sB.
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then A =—

,

r

.-. rA=sB.

If
^<*(f),

then A < — ,

r

.*. rA < sB.

Art. 22. AXIOM.

If A and B are two magnitudes of the same kind, it is always possible

to find a multiple of either which will exceed the other.

This is usually known as the Axiom of Archimedes. But Euclid uses it in

the Fifth Book, see Euc. v. 8, and it is also implied in the fourth definition of the

Fifth Book.

Art. 23. PROPOSITION VIII.

If X, Y, Z be three magnitudes of the same kind and if

X>7+Z,
to prove that an integer t exists such that

X>tZ>Y.
Let sZ be the greatest multiple of Z which does not exceed F.

Then either (i) Y = sZ

or (ii) sZ<Y<(s + l)Z.

In case (i) Y=sZ,

.-. Y<(s + l)Z,

but X>Y+Z,
.-. X>(s + l)Z,

.-. X>{s + l)Z> Y.

Hence (s + 1) is the integer required.

H. E.
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In case (ii) F<(s4-1)-^,

X>Y-\-Z,

but Y > sZ,

.-. X>sZ+Z,

.•.X>{s + l)Z,

.-. X>(s+1)Z>Y.

Hence (5 + 1) is the integer required.

Art. 24. EXAMPLE 8.

If X, Y, Zhe three magnitudes of the same kind, and if X and Y be

unequal, prove that it is always possible to find integers n and t, such that ^^

tZ lies between nX and ?i Y.

Art. 25. An illustration of the preceding example is given in

Fig. 1 in the case where X, Y, Z are segments of straight lines.

Here OA and OB are the same multiples of X and Y, such that

AB is greater than Z, and OC is a multiple of Z, which is greater

than OA, but less than OB.

It should be noticed that 2Z lies between SX and 3F,

that SZ lies between 4X and 4F,

but this is ascertained only after the figure has been drawn, whilst

the fact that a multiple of Z, which in this case is 4>Z, lies between

5X and 5F is determinable from the consideration that 5 (F— X) > Z.

Art. 26. EXAMPLES.

9. If X, Y, Z be three magnitudes of the same kind, and if no multiple

of Z can be found which is intermediate in magnitude between the same

multiples of X and F, then X and Y must be equal.

10. If X~\, Y- 5, Z - 6, find from a figure the least value of n for

whicli a single multiple of Z is intermediate in magnitude between nX
and nY

.

Find also the least value of n for which two multiples of Z are inter-

mediate in magnitude between nX and nY.

5Y-|B

C

4Y-I

A
3Z

3Y-I

2Z_

2Y-

1Z_

1Y_

5X

4X

-3X

_2X

-IX

Y X Z

Fig. 1.
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11.* (i) If rA>8B,

and rC = 8D,

prove that integers n, t exist such that

nrA>tB,

and nrC<tD.

(ii) If rA=8B,

and rC<8D,

prove that integers n, t exist such that

nrA > tB,

nrC<tD.

2—2



SECTION II.

PROPOSITIONS 9—12.

COMMENSURABLE MAGNITUDES.

Art. 27. Def, 2. MEASURE.

If a magnitude A contains another magnitude B an exact number of

times, B is said to be a measure of A.

Art. 28. Def. 3. COMMON MEASURE.

If the magnitudes A and B each contain another magnitude G an exact

number of times, then G is said to be a common measure of A and B.

Art. 29. Def. 4. COMMENSURABLE MAGNITUDES.

If two magnitudes have a common measure they are said to be com-
mensurable.

Art. 30. ON COMMENSURABLE MAGNITUDES.

If there be two magnitudes B and G, each of which is a multiple of A, viz.:

—

B=rA,

C = sA,

then the ratio of £ to is defined to be the rational fraction -

.

s

Consequently the ratio of (7 to 5 is the rational fraction -

,

r

Thus the value of the ratio of 5 to is independent of the magnitude of their

common measure A, but it does depend on the order in which the magnitudes
B and C are taken.
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Art. 31. NOTATION FOR RATIO.

If two magnitudes of the same kind be called A and B, then the ratio of 4 to

B is written A : B, and A is called the antecedent or first term of the ratio,

whilst B is called the consequent or second term of the ratio.

If B = rA, G=sA,

then B.G = '^-,

s

T
.'. rA -.sA =-.

s

Putting A equal to unity, it follows that

r
r : s= -

.

s

Consequently rA :8A=r:s.

In this book, the fact that one ratio A :B is equal to another ratio C :D will

be expressed thus :

—

A'.B^G.D,

and not as it is written in most modern editions of Euclid :

—

A:B::C:B,
which is read :

—

the ratio oi A to B is the same as the ratio of G to D,

or more briefly, il is to £ as to D.

Art. 32. Def. 5. THE RATIO OF EQUALITY.

If in the preceding Article, both r and s be put equal to 1, then it follows that

A:A = l.

Each of two equal magnitudes is said to have to the other the ratio of equality.

Art. 33. Def. 0. PROPORTION.

If there are four magnitudes such that the ratio of the first magnitude

to the second is the same as that of the third magnitude to the fourth, then

the four magnitudes are said to be proportionals, or in proportion.

1{ A, B, G, D are four magnitudes, such that

A.B=C:D.
then A, B, G, D are proportionals.
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A and D are called the extremes of the proportion.

B and G are called the means of the proportion.

D is called the fourth proportional \xi A, B and G.

The antecedents A and G of the two equal ratios are said to be corresponding*

terms of the ratios ; so also are the consequents B and D.

The case in which the means of the proportion are equal to one another requires

special notice.

If X:Y=Y:Z,
then the three magnitudes X, Y, Z are said to be in proportion ; F is said to

be a mean proportional between X and Z, and Z is said to be a third proportional

to X and F.

Art. 34. PROPOSITION IX.

Enunciation. Two parallelograms, situated between the same parallels, have

commensurable bases, to prove that the ratio of the area of the first parallelogram

to the area of the second parallelogram is equal to the ratio of the base of the first

parallelogram to the base of the second parallelogram.

KLMB ENOF
Fig. 2.

Let the parallelograms ABGD, EFGH have their bases AB, ^JF^ commensurable.

Let ^^ be a common measure of AB, EF.

Suppose that AB = r{A A"),

and that EF=s{AK).
Let AB, EF be divided as in the figure into parts each equal to AK, and

through the points of division let straight lines be drawn parallel to the sides

AD, CB of the parallelogram ABGD ; and to the sides EH, FG of the parallelogram

EFGH, so that each parallelogram is divided up into equal parallelograms.

Then since the bases of all these parallelograms are equal, and they are

situated between the same parallels, they are equal in area.

Since AB contains r lengths each equal to AK, therefore the parallelogram

ABGD contains r parallelograms each equal to AKPD,
.-. ABGD = r {AKPD).

* Euclid uses the term 'homologous.'
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Also EF= s {EN) = s(AK).

Thus EF contains s lengths each equal to AK, therefore the parallelogram EFGH
contains s parallelograms each equal to AKPD,

.-. EFGH = s (AKPD).

Since AB = r{AK),

EF=s{AK),

Since

and

.-. AB.EF= .

s

ABGD = r(AKPD),

EFGH =s (AKPD),

.-. ABGD:EFGH = -

EF.:. ABGD:EFGH=AB
In the same way it can be shown that

If two triangles have the sa.me altitude, and have commensurable bases, the ratio

of the area of the first triangle to the area of the second triangle is equal to the ratio

of the base of the first triangle to the base of the second triangle.

Art. 35. A particular example of this proposition is the following. If a side

of a square be divided into ten equal parts, and perpendiculars be drawn to the

side through the points of division, the square will be divided into ten equal

rectangles ; and the area of each rectangle will be one-tenth of the area of the

square.

If the side of the square be divided into a hundred equal parts, and perpen-

diculars be drawn to the side through the points of division, the square will be

divided into a hundred equal rectangles, and the area of each rectangle will be

one-hundredth of the area of the square ; and so on.

Art. 36. The preceding proposition is sufficient to render it possible to

calculate approximately the area of any rectilineal figure.

Take the rectilineal figure ABCDE.
(Fig. 3.)

Join BD.

Draw CF parallel to BD to meet AB
produced at F.

Then aBDF^^ABDG, since they are

on the same base BD and between the

same parallels BD, FG.

Add to each the figure ABDE.
.-. ABDE + ^BDF = ABDE + ^BDG.

.-. AFDE = ABGDE.
Fig. 3.
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Now join FE. (Fig. 4.)

A F G
Fig. 4.

Draw DG parallel to EF to meet AF produced at G.

Then AFED = A FEG, since they are on the same base FE and between the

same parallels FE and DG.

Add to each the d.AFE.

.'. aAFE + ^FED = ^AFE + aFEG.

.-. AFDE = /\AEG.

y •

Fig. 5.

Through A (Fig. 5), draw a perpendicular AX to AG, and through E draw
EH parallel to J. G^ to meet AX at H.

Join GH.

Then aAEG = aAHG, for they are on the same base AG and between the
same parallels.

Hence ABODE = AFDE
= ^AEG
= LAHG.
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Hence a right-angled triangle AHG has been constructed having the same area

as the given rectilineal figure ABODE.
H

Fig. 6.

Now let AK (Fig. 6) be taken along AH equal to the unit of length, say

one inch.

Join KG.
Draw HL parallel to KO to meet AG produced in L.

Join KL.

Then [\KHG = t^KGL, since they are on the same base KG and between the

same parallels KG, HL.

Add to each A ^ZG^.
.-. ^AKG + ^KHG =^AKG + ^KGL.

.-. ^AHG = aAKL.
.'. ^AKL = ABODE.

Now bisect KL at M. (Fig. 7.)

Through M draw a perpendicular to AL, to meet KL at P, and produce it to

Q, until PQ = MP.

Now since M is the raid-point of AL, and MP is parallel to AKy therefore P is

the mid-point of KL, and MP is half of AK.
Then MQ = 2MP = AK.

Thus MQ is equal and parallel to AK.
.'. AMQK is a parallelogram,

H. E. 3
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and since KAM is a right angle,

.'. AMQK is a rectangle.

Also MP = PQ,

PL = PK,

mPl = QPK,
.'. the triangles MPL, QPK are congruent,

.-. ^MPL = aQPK.
Add to each AMPK,

.-. AMPK + aMPL = AMPK+ ^QPK,
.'. ^ALK = AMQK.

Hence a rectangle AMQK has been constructed, whose area is equal to that of

ABODE, and which has one side AK equal to the unit of length.

If now there be measured off consecutive units of length along AM as long as

this is possible, and then tenths of units as long as this is possible, and then

hundredths of units as long as this is possible, and so on, and if through the points

of division parallels be drawn to AK, then it follows from Art. 35 that AMQK
contains as many units and fractions of units of area as AM contains units and

fractions of units of length.

Art. 37. LEMMA.

If two intersecting straight lines OX, F be cut by four parallel straight lines

AE, BF, 00, DH\ and if AB = OD, then must EF= OH.

Draw EJ parallel to OX to meet BF at J, and draw GK parallel to OX to

meet DH at K.

Since AEJB is a parallelogram,

.-. EJ = AB.

Since OGKD is a parallelogram,

.-. GK = OD,

but AB = OD,

.'. EJ=GK.
Now consider the triangles EJF, GKH.

In these triangles

EJ=GK.

EFJ= GHK, •: BF is parallel to DH.

FEJ= HOK, '.' EJ is parallel to GK.

Hence the triangles are congruent.

.-. EF=GH.

Fig. 8.
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Art. 38. PROPOSITION X. (Euc. VI. 9.)

Enunciation, To divide a finite segment of
a straight line into any number of equal parts.

It is required to divide the segment OA
into r equal parts.

Through draw any straight line OX.

On it set off any length OB, and then

measure off consecutive lengths each equal to

OB, until a point is reached such that

00 = r{OB).

Join AO, and through the points of division

of OG draw parallels to AO.

These parallels will divide OA into r equal

parts by the lemma of Art. 37.
Fig. 9.

Art. 39. Def. 7. CORRESPONDING POINTS AND SEGMENTS ON
TWO STRAIGHT LINES.

When two straight lines are cut by a single system of parallel straight

lines, it is convenient to call the two points, in which one of the parallel

straight lines cuts the two straight lines, corresponding points; and to call

the segments of the two straight lines between any pair of the parallel

straight lines corresponding segments.

Note. If the two straight lines intersect, the point of intersection on one

straight line will correspond to itself on the other straight line.

Art. 40. PROPOSITION XI.

Enunciation. // two straight lines be cut by any number of parallel straight

lines, to prove that the ratio of any two commensurable segments of one line is equal

to the ratio of the corresponding segments of the other line.

Let OX, OF be the two straight lines cut by the parallels AE, BF, CO, DH,
and suppose that the segments AB, CD have a common measure AK.

Let AB = r{AK),

CD = s(AK).
3-2
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Fig. 10.

Then AB may be divided into r equal parts AK, KL, LB; and CD may be

divided into s equal parts GM, MN, NU, UD.

Through the points of division K, L, M, N, tTdraw parallels to ^^ to cut OY
at P, Q, R, S, T respectively.

Then it follows from Art. 37 that

EP = PQ = QF=GR=RS = ST= TH,

and since AB is divided into r pieces, each equal to AK, therefore EF is divided

into r pieces each equal to EP. This will be stated shortly thus* :

—

Since AB = r{AK\
.'. EF= r(EP),

and since GD=s {CM) = s (AK),

.-. GH=s{OR) = s(EP).

.-. AB:CD = r{AK):s{AK)

EF:OH= r{EP):s{EP)

.'. AB:CD = EF:GH.
Similar abbreviations in the argument are used below in this and some subsequent propositions.
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Art. 41. PROPOSITION XII.

21

Enunciation. In the same circle or in equal circles the ratio of two com-

mensurable angles at the centre is equal to the ratio of the arcs on which they stand.

Fig. 11.

Let AOB, GPD be angles at the centre of two equal circles having the angle

AOE as a common measure.

Let AOB = r{At)E).

Let CpD = s{AdE).

Then the angle AOB is divisible into the r angles AOE, EOF, FOG, OOH,
A A 111'*'HOB each equal to AOE; and the angle CPD is divisible into the s angles

cPk, kPl, lPm, mPn, nPq, qPe, rPd each equal to AOE.

Now in equal circles, equal angles at the centre stand on equal arcs.

.*. the arcs EF, FG, GH, HB are each equal to the arc AE; and since

AOB = r {AOE),

.'. arc AB = r (arc AE).

Similarly '.• CpD = siCpK)=s{AdE),
.'. arc CD = s (arc CK) = s (arc AE).

Now AOB : CpD = r (AOE) isiAOE)
_r
~s'

arc AB : arc CD = r (arc AE) : s (arc AE)

AOB : GPD = arc AB : arc CD.



SECTION III.

PROPOSITIONS 13, 14.

ON RATIO.

Art. 42. Let there be two magnitudes of the same kind, A and B.

Suppose that A is an exact multiple of (?, say aG ; and that B is also an exact

multiple of (?, say hQ.

Then the ratio of J^ to JB has been defined to be the rational fraction t .

Take now another multiple of Q^ say c(?, and let G = cG.

The ratio of (7 to 5 is f

.

Now if C>A,

cO > aO,

.'. oa,
c a

••ri-
.-. C:B>A'.B.

Hence \{G>A, then G:B>A:B.

Next if G=A,

cO = aO,

.*. c = a,

c _a
•*• h~b'

.'. G:B = A:B.
.'. if C = A, then G:B==A:B.
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Next if C<A,

cO < aG,

c<a,

c a

:. C:B<A:B.

Hence ifG<A, then C:B<A:B.

There are therefore the three propositions

(1) If C>A, then C:B>A:B.

(2) If C = A, then G:B=A:B.

(3) If C<^, then G:B<A:B.

The meaning of these is easily grasped if they are written out with fewer

symbols.

Thus the second says that equal magnitudes have the same ratio to a third

magnitude.

The first says that if C be greater than A, then C has a greater ratio to B
than A has.

The third is not essentially distinct from the first.

The converse propositions to the above will next be proved. These are

(4) If G:B>A:B, then G>A.

(5) If G:B = A:B, then G= A.

(6) If G:B<A:B, then G<A,

Take (4).

Suppose that G : B > A : B,

then one of the following alternatives must hold,

G>A, or G=A, or G<A.

Now a G = A, then hy (2) G :B = A : B which is contrary to the hypothesis.

And if G<A, then by (3) G :B < A :B which is contrary to the hypothesis.

Hence G is not equal to A, nor less than A, and therefore G is greater than A.

Propositions (5) and (6) depend on (1), (2), (3) in the same way.

Consequently (4), (5) and (6) are logical deductions from (1), (2) and (3).
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Art. 43. The proofs of (1), (2), (3) of the preceding article depend on the fact

that A, B, G are integral multiples of the same magnitude G.

It will be necessary however in what follows to deal with the ratios of

magnitudes which have no common measure.

Now the definition given for the ratio of magnitudes having a common measure

is not applicable to magnitudes which have no common measure.

Two alternatives therefore present themselves.

Either two magnitudes, which have no common measure, cannot be said to

have a ratio;

or the definition of ratio must be extended so as to apply to the case of two

magnitudes which have no common measure.

The latter alternative will be selected.

In the first place it is clear that the ratio of magnitudes having no common

measure is not expressible as a rational fraction.

Before it can be explained what is meant by the ratio of two magnitudes

which have no common measure, it is necessary to extend the idea of number,

by defining the irrational number. It will then appear that the ratio of two

magnitudes which have no common measure is an irrational number. This subject

is treated more at length in the Appendix, but here it will be enough to say that

the irrational number is a magnitude of the same kind (in the technical sense in

which these words are used in Art. 21) as the rational fraction. Hence it is

supposed to be possible to determine whether any irrational number is less than

or greater than any given rational number, whatever that given rational number
may be. Whenever this is possible the irrational number is considered to be

known.

In order to construct a theory of the ratios of magnitudes which have no

common measure, it will be assumed that the propositions

if G>A, then G.B>A'.B\
if G=^A, then G.B = A:B\

and a G<A, then G:B<A:B
hold good whether A, B, G have a common measure or not.

From these as explained in Art. 42, it follows

that if G:B>A:B, then G>A;
if G:B = A:B, then G=A',

and if G:B<A:B, then G < A.

From the above propositions the following will be deduced.
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Art. 44. PROPOSITION XIII.

To prove that

(1) If A:B>- ,then rA> nB.

(2) If A:B = -,then rA^^nB.
r

(3) If A:B<-,then rA< nB.
r

And conversely, (4) If rA> nB, then A:B>-.

(5) // rA=nB, then A.B = -.

(6) // rA<nB, then A.B<-.
r

(These propositions are very important and will be used repeatedly in what

follows.)

To prove (1). It is assumed * that a magnitude Q exists such that B = rQ.

Further by definition
r

Now, by hypothesis. A:B>'^,
r

:. A:rQ>nQ: rQ,

.-. A>nQ,

.". rA> rnQ,

.-. rA>n(rQ),

.-. rA> nB.

To prove (2). Here, by hypothesis.

r

[Art. 43.

.-. A:B = nQ:rQ.

But B = rQ,

.'. A.rQ = nQ : rQ,

.'. A = nQ, [Art. 43.

.*. rA = r (nQ) = n (rQ) = nB.

* It is not necessary to be able to construct Q, All that is assumed is that Q exists.

H. E. i
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To prove (3). Here, by hypothesis,

r

.-. A:B<nQ:rQ,
,'. A:rQ<nQ:rQ,

.-. A <nQ,

.'. rA< r(nQ),

.". rA <n(rQ),

.'. rA< nB.

To prove (4). Here, by hypothesis,

rA > nB.

Take B = rQ,

.-. rA>n (rQ),

.'. rA>r (nQ),

.: A>nQ;
.-. A:rQ>nQ:rQ,

.'. A:B>-.
r

To prove (5). Here, by hypothesis,

rA = nB,

B^rQ,

rA = n(rQ) = r(nQ),

A = nQ;

.: A:B = nQ:rQ = ^.

To prove (6). Here, by hypothesis,

rA < nB.

.-. rA < n (rQ),

.-. rA<r(nQ),

..A<nQ,
.-. A:rQ<nQ.rQ,
.'. A:B<nQ:rQ;

AT,'"'
r

[Art. 43.

[Art. 43.

[Art. 43.

[Art. 43.

Art. 45. It is now possible to find approximate values for the ratios of

quantities which have no common measure.

Let A and B have no common measure.
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Assume that a quantity Q exists such that B = rQ.

Now A is not a multiple of Q, for if it were A and B would have a common
measure, Q,

Consequently some integer s exists such that sQ is less than A, but (* + l)Q
is greater than A.

Since A > sQ,

.'. A:B>sQ:B, [Art. 43.

.: A:B>sQ:rQ,

Since

A :B> 8

r'

A< («+l)Q.

A :B< (*+l)Q: B,

A :B< (*+l)Q: rQ;

A :B<
s + 1

r

lies bet^iveen

s

r
and

5+1
r

[Art. 43.

The difference of these two fractions is - , which can be made as small as
r

we please, by sufficiently increasing r. This is possible, on the hypothesis made

that, B being given, and any integer whatever r taken, a quantity Q exists

such that

B = rQ.

In this way an approximate measure of the ratio of any two magnitudes

of the same kind can be obtained.

But it is not enough to decide the important question whether two given

ratios are or are not equal.

If each can only be measured approximately, it still remains possible for

their difference to be less than the degree of accuracy of measurement.

Art. 46. ON EQUAL RATIOS.

Two ratios are equal if no rational fraction lies between them.

Now if no rational fraction lies between A : B and G : D, then if any rational

fraction whatever - be selected, and it be found that A : B is erreater than -
,

r ° r
S • • 8

then C : D must also be greater than - ; if however A : B is equal to -
, then

r r

4—2
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s . s
C : D must also be equal to -

; but if A : B is less than - , then C : D must^ r r

g
also be less than -

.

r

These conditions must be satisfied for every value of the integers r, s.

The conditions, written more shortly are

K A:B>- , then must C:D>-;
r r

If A:B = -, then must G:D = -;
r r

s s
If A : B < -

, then must G : D <-

,

r r

whatever values the integers r, s may have.

By Prop. 13 these conditions are equivalent to the following.

If r, s he any integers whatevei% and

if all values of r, s which make rA > sB, also make rC > sD (1);

if all values of r, s which make rA =sB, also make rC = sD (2);

if all values of r, s which make rA < sB, also make rC < sD (3),

then A:B = G:R
These are the conditions given by Euclid in the Fifth Definition of the Fifth

Book for the equality of the ratios A : B and C : D.

The three sets of conditions given above may be called collectively the Test

for the Equality of two Ratios*.

Art. 47. They may be replaced by equivalent conditions in various waysf.

One of these is as follows:

—

If r, s be any integers whatever, and

if rC > sD, then must rA>sB; (4)

if rC = sD, then mn&t rA=sB; (5)

if rG<8D, then must rA<sB. (6)

To show that this is so, let it be supposed that (1), (2) and (3) hold.

If possible let some values of r, s exist, such that

rC > sD, but rA 1^ sB.

Then either rA = sB, or rA < sB.

* See Note 3. f See Prop. 14 and Examples 12 and 13 in Art. 50.
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If rA=sB. then by (2) rC^sD,

and if rA < sB, then by (3) rC < sD,

both of which are contrary to the hypothesis that rC > sD.

Hence rA >sB, and .'. (4) holds.

In like manner (5) and (6) can be proved.

The most important result in regard to the conditions (1), (2) and (3) is this,

that (2) is included in (1) and (3)*. This is proved in Proposition 14.

Art. 48. PROPOSITION XIV.

To prove that if all values of r, s which make

rA > sB, also make rC> sD (1),

and if all values of r, s which make

rA<sB, also make rC<sD (3),

then if any values of r, s exist which make rA =sB, they also make rC=sD.

Suppose that when r = ri, 8 = Si,

rA = sB,

but rC^sD,

i.e. r^A = s^B,

but either riC> s^D

or r^C <SiD.
'

Suppose first r^C > s^B.

Then r^C — s^D is a magnitude of the same kind C or D.

Hence by Archimedes' Axiom an integer n exists, such that

n(r,C-s,Z))>2)t,

/. nryG>{nSi-\-\)D,

but r^A = SiB,

:. nr^A =nSiBy

:. m\A < (nsi + 1)B.

Now putting r = tjTi, s = nSi + l in (3) it follows that as

nr^A <(fiSi+ l)B

* The first explicit mention of this result known to the author is in Stolz's Vorlesungen iiber Allge-

meine Arithinetik, Part i. p. 87, published in 1885.

t The proof may be completed by taking « (riC - siD) > C.
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it is necessary to have
nViC <(nSi+l)D,

which is contrary to what has been proved above that

nviC > (nsi + I) D.

Hence r^C is not greater than s^D.

Take next the case

Then SiD — VyC is a magnitude of the same kind as or D.

Hence by Archimedes' Axiom an integer n exists such that

n{8,D-r,C)>C*,

:. nSiD> (nri + 1)C,

i.e. (nvi + 1) C < nSiD.

But r^A = SiB,

.'. nViA =nSiB,

.'. (wri + l)A > nSiB.

Now putting r = wri + 1, s = nsi in (1), it follows that as

(nvi + 1) -4 > nSiB,

then must (wrj + 1)C >nSiD,

which is contrary to what has been shown above that

(nvi + 1)C < nSiD.

Hence r^C is not less than s^D.

It was proved before that

r,(7 is not greater than s^D.

Consequently rfi = SiD.

It follows therefore that there is no need to consider the set of conditions (2).

In fact this set of conditions is never satisfied unless the magnitudes concerned

are commensurable.

For if rA = sB, and if a magnitude Q be taken such that B = rQ, then

rA =s (rQ) = r (sQ),

:. A=sQ.

Thus A and B have a common measure Q.

Although it is not necessary to consider the set of conditions (2), this will

nevertheless be done in many of the proofs which follow, because in the comparison

* The proof may be completed by taking n («jD - riC)>D.
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of any ratio with any rational fraction there are always three alternatives to be

considered, and the consideration of the alternative corresponding to the condition

(2) is sometimes instructive, and does not involve any additional difficulty.

It follows therefore that in order to prove that A : B = G : D, it is sufficient

and necessary to shoiu that

if A:B>-, then C:D>-,

and if A: B<- , then G:D <-,
r r

whatever integers r, s may he.

Art. 49. UNEQUAL RATIOS.

In connection with Euclid's Test for Equal Ratios, it is interesting to consider

his test for distinguishing the greater of two unequal ratios from the smaller.

It is as follows:

—

If rA be greater than sB,

but rC be not greater than sD,

then A:B>C:D,

Now if rA > sB,

then A:B>1;
r

and if rC 4^ sD,

then C:D^-.

Hence A : Bis greater than -

,

but C:D is not greater than -

.

Consequently A : B is greater than C : D.

Notice that the conditions are equivalent to either

rA>sB, rG = sD,

or rA> sB, rC < sD,

each of which is inconsistent with the conditions laid down in the Test for Equal

Ratios.
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Art. 50. EXAMPLES.

12.* If all values of r, s which make rA > sB, also make rC > sD, and if all values

of r, 8 which make rC > sD, also make rA > sB, prove that A : B = C :I>.

13.* If all values of r, s which make rA <sB, also make rC <8D, and if all values

of r, 8 which make rC < sD, also make rA < sB, prove that A : B = C : D.

14. If for a single value of the integer r, say r^ , and a single value of the integer a,

say 8i, it is true that

ViA = 8iB

and rjC = s^D,

then prove that any values of the integers r, s which make

(1) .rA>sB, also make rC>8D,

(2) rA = sB, also make rC — sD,

(3) rA < sB, also make rC < sD.

15. If rA<8B,

if rC>8E,

if tA > uB,

if tC< uF;

and if further A.B=C:D,

prove that E<D<F.



SECTION IV.

PROPOSITIONS 15—26.

THE SIMPLER PROPOSITIONS IN THE THEORY OF RATIOS
WITH GEOMETRICAL APPLICATIONS.

Art. 51. PROPOSITION XV. (Euc. V. 15.)

To prove that A:B = nA : nB.

Take any rational fraction -

.

rf r

If A:B>i,
r

then rA > sB, [Prop. 13.

.-. n(rA)>n{sB);

i.e. 1' (nA) > s (nB)

;

.\ nA:nB>-. [Prop. 13.

Butif A:B<-,
r

then rA < sB, [Prop. 13.

.'. n (rA) < n (sB),

i.e. r (nA)<s {nB),

nA:nB<-. [Prop. 13.

Hence it has been shown
s s

if A:B>-, then nA:nB>-,
r r

s s
but if A: B<- , then nA : nB < -

.

r r

H. E.



34 EUCLID, BOOKS V. AND VI. [51

Hence by Art. 48
A:B = nA:nB*.

The case of the above Proposition in which n = 2 will often be required,

i.e. A:B=2A:2B.
Since n represents any whole number whatever, it may have an infinite number

of values.

Hence nA and nB represent an infinite number of pairs of magnitudes, e.g.

2A and 25, 3-4 and SB, such that the ratio of any pair is the same as

that of A, B.

Hence there are an infinite number of pairs of magnitudes which have the

same ratio.

Hence if a ratio be given, the magnitudes of which it is the ratio are

not given.

Thus two magnitudes of the same kind determine a definite ratio ; but if a

ratio only be given, the magnitudes of which it is the ratio are not determined.

Art. 52. PROPOSITION XVI. (Euc. VI. 1.)

Enunciation. The ratio of the areas of two parallelograms (or triangles)

which have the same altitude is equal to the ratio of the lengths of their bases.

Any two parallelograms which have the same altitude may be placed so as to

lie between the same parallels.

D W X Y ZC H R L G

U VB
Fig. 12.

Let ABCD, EFGH be two parallelograms lying between the same parallels.

* If A and B are numbers, then denoting numbers by small letters it follows that

a: b=zna : nh.
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It is required to prove that

AB:EF= ABGD : EFQH.

s
Take any rational fraction -

.

The ratio AB : EF will be compared with this fraction.

Cut EF into r equal parts EP, PQ, QF.

Set off s consecutive lengths AS, ST, TU, UV each equal to EP along AB.

Then AV = s{EP).

Then three alternatives are possible

:

(i) AB>AV\
(ii) AB = AV]

(iii) AB<AV.
Through P, Q draw parallels to EH, FG ; and through S, T, U, V draw

parallels to AD.

Then the parallelograms EPRH, PQLR, QFGL are equal, and the parallelo-

gram EFQH is equal to r times the parallelogram EPRH.

In like manner,

A VZD = s {ASWD) = s {EPRH).

Now take case (i), (Fig. 12), AB>AV.
.-. AB:EF>AV:EF [Art. 43.

>s{EP):r{EP)

s

>r'

but since AB> AV,

.'. ABCD>AVZD',
.-. ABGD : EFQH > A VZD : EFOH [Art. 43.

> s {EPRH) .r {EPRH)

s>-.
r

It has therefore been shown that.

if AB:EF s

then ABGD : EFQH s>-

.

r

5—2
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AB = AV.Next take case (ii),

In this case V falls on B,

and the parallelograms AVZD, ABCD are the same,

•/ AB = AV,

.'. AB:EF = AV:EF
= s(EP):r(EP)

[52

[Art. 43.

Also ABCD = AVZD;

ABGD : EFOH = A VZD : EFQH
= s{EPRH):r{EPRH)

[Art. 43.

It has therefore been shown that,

if

then

AB:EF=-,
r

ABCD:EFGH = -
r

Lastly take the case (iii), (Fig. 13), AB < AV.

In this case the figure has the following form.

D W X Y KG M 2

Here

I B J V

Fig. 13.

AB<AV,
AB '. EF < AV '. EF

<s(EP):r{EP)
s

< -.
r

[Art. 43.
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But since AB < AV,

.'. ABGD<AVZD;

.'. ABCD : EFGH < A VZD : EFQH [Art. 43.

<s{EPRH).r{EPRH)

s
< -

r

It has therefore been shown that

if ilJS : ^^ < -
, then ABCD : EFQH < -

;

r r

and it was previously shown that

if AB : EF= - , then ABCD : EFGH=-
,r r

but if AB:EF>-, then ABCD : EFGH > -

.

r r

Putting these results together it follows by Art. 46 that

AB:EF= ABCD : EFGH.

Art. 53. EXAMPLES.

16. Given two rectilineal areas, and a straight line, find another straight line such

that the ratio of the areas is the same as that of the lines.

17. Given two straight lines, and a rectilineal area, find another rectilineal area

such that the ratio of the lines is the same as that of the areas.

18. Given three rectilineal areas, find a fourth such that the ratio of the first to

the second area is the same as that of the third to the fourth.

19. Prove that the ratio of the areas of two triangles on equal bases is the same as

the ratio of their altitudes.

20. If ABC be a triangle, and any point in its plane, and ii AO cut BC at D,

prove that

£D:DC =AAOB:AAOC.

445234
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Art. 54. PROPOSITION XVII. (Containing the first part of Euc. VI. 2.)

Enunciation. If two straight lines he cut by any numher of parallel straight

lines, to prove that the ratio of any two segments of one line is equal to that of the

corresponding segments of the other line.

Let the intersecting lines OX, OF be cut by the parallel straight lines AB,

CD, EF, GH.

Then the segment AC corresponds to the segment BB,

and the segment EG corresponds to the segment FH.

It is required to prove that AC:EG = BD: FH.

Fig. 14.

Take anv rational fraction - .

r

Divide EG into r equal parts, EK, KL, LG.

From A set off s consecutive lengths, each equal to EK, along A G.

Let AQ = s{EK).

Three cases are possible :

(i) AQ<AC,
(ii) AQ = AG,

(iii) AQ>AC.
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(i) Through the points of division K, L, W, Q draw parallels to AB.

Then by Art. 37 FM=MN=NH = BP = PR,

.-. FH=r(FM) = r{BP),

BR = 8{BP).

In figure 14 AC > AQ,

.-. AC:EG>AQ:EG [Art. 43.

>s{EK):r{EK)

> -.
r

Again from the figure,

since AG>AQ,

and AB, QR, CD are parallel.

.*. BD > BR,

.-. BD :FH>BR:FH

>s{BP):r{BP)

s
>-.
r

It is therefore proved that

if AG::EG>-,
r

then BD .FH>-.
r

(ii) In this case Q falls on C,

and therefore R falls on D,

AC = s (EK), EG = r (EK),

BD=s{BP), FH = r{BP)\

:. AC:EG = -

r

and BD:FH = -.
r

It is therefore proved that i{AC:EG=-, then BD:FH = -.

[Art. 43.
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(iii) In this case (Fig. 15) AC < AQ,

.'. AG:EG<AQ:EG [Art. 43.

<s{EK):r{EK)
s

<-.
r

In this csase AG < AQy

[ AB, QR, CD are parallel,

.-. BD<BR,
.'. BD.FH<BR.FH [Ai-t. 43.

<s(BP):r{BP)

s
< -.

r

Fig. 15.

It is therefore proved that if AG:EG < -
,

r

then BD'.FH<-.
r

Putting the three cases together, it follows by Art. 46 that

AC'.EG = BD'.FH.

Art. 55. COROLLARY.

As a particular case of the preceding, it follows that if ABC be a triangle,

and if the sides AB, AC be cut by any straight Jine parallel to BC, then the

sides AB, AC are divided proportionally.
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Let DE, parallel to BC, cut AB at D and ^0 at E.

There are three varieties of figure.

41

Fig. 16.

The point A corresponds to the point

>» » -O »

l> u •*-' fa

The segment AB
AD
BD

G
E

segment AG
AE
GK

From the above, by means of Proposition 17, the following results may be

deduced, the first being the one most frequently required.

AD:DB = AE:EG.
DB-.AD^EG.AE.
AB : AD = AG '. AE.

AD:AB=AE:AG.
AB:BD=AG:GE.
BD:AB = GE:AG.

These six results are not independent.

Any one of them being given, the rest follow as consequences by means of the

properties of ratio as will be seen hereafter.

Art. 56. PROPOSITION XVIII. (Euc. VI. 12.)

Enunciation. To find a fourth proportional to three given straight lines*.

Let AB, GD, EF be three straight lines.

• My attention was called to the construction here given by the late Mr Bndden.

H. E. 6
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It is required to find a straight line OL, such that AB:CD=^ EF : OL.

Then OL is called the fourth proportional to AB, CD, EF.

X

K

Y
Fig. 17.

Let OX, OF be two straight lines intersecting at 0; measure off on OX in

opposite directions OG = AB, 0H= CD.

On OF measure off OK=EF.
Join GK, and draw HL parallel to GK, meeting OF at L.

Then the intersecting lines OX, OY are cut by the parallels GK, HL.

The points G, 0, H correspond to K, 0, L respectively.

The segments GO, OH correspond to KO, OL respectively.

.-. GO:OH = KO: OL, [Prop. 17.

.''. AB:CD = EF:OL.

Art. 57. EXAMPLE 21.

Given three straight lines AB, CD, EF, it is required to construct another

straight line P such that

P .AB = GD .EF,

or AB .P =CD .EF,

or AB'.CD= P'.EF.

Art. 58. DEFINITION 8.

If in the figure of proposition 18

CD = EF,
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then OL is such that

AB'.GD = GD.OL,

and OL is called the third proportional \>o AB and CD.

Art. 59. EXAMPLE 22.

In the triangle ABC, a straight line DE is drawn parallel to BC cutting AB Bkt

D and AC sX E. DF is drawn parallel to BE, cutting ^C at ^.

Prove that AF i^a, third proportional to AC and AE.

Art. 60. Def. 9. SIMILARLY DIVIDED STRAIGHT LINES.

Two straight lines are said to be similarly divided, when the ratio of

any two parts of one straight line is the same as that of the two corre-

sponding parts of the other straight line.

Art. 61. PROPOSITION XIX. (Euc. VI. 10.)

Enunciation. To divide a straight line similarly to a given divided straight

line.

It is required to divide the given straight line AB similarly to the way in

which the line OF is divided at D and E. ^ ^ _

Through A draw any straight line AX (not in

the same straight line as AB), and on it measure

off AG = CD, GH = DE, HK = EF.

Join BK, and draw OL, HM parallel to BK
cutting AB in L, M respectively.

Then since OL, HM, BK are parallel lines, the

segments AG, AL correspond; so do GH, LM;
and HK, MB.

:. AL:LM = AG:GH
=^CD:DE.

Also LM.MB^GH-.HK
= DE.EF,

and so on.

Hence AB is divided similarly to CF.

L M B

Fig. 18.

[Prop. 17.

[Prop. 17.

6—2
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Art. 62. PROPOSITION XX. (Euc. VI. 33.)

Enunciation. In the same circle or in equal circles

(i) angles at the centre are proportional to the arcs on which they stand.

(ii) angles at the circumference are proportional to the arcs on which they

stand.

(iii) angles at the centre are proportional to the sectors bounded by the sides of

the angles and the arcs on which they stand.

If the angles are in the same circle, the figure may be drawn twice over, so

that it is sufficient to consider the case where there are two equal circles.

(i) Let A, B, Figs. 19—24, be the centres of two equal circles.

Let GAD, EBF be two angles at the centres standing on the arcs CD, EF.

It is required to prove that

GAD : EBF = arc GD : arc EF.

s
Let the fraction - be compared with the ratio

GAD : E^F.

There are three alternatives

:

(1) GAD :EBF>-;

(2) GAD '.EBF=-;

(3) GAD'.E^Fk-.
r

A A,

Make GAG equal to r(GAD), then since equal angles at the centre of a

circle stand on equal arcs it follows that

the arc GO =r(arc GD).

Make next EBH equal to s(E6F), then

the arc EH = s (arc EF).

In case (i), see Figs. 19 and 20.

•.• GAD.EBF>-,
r

r(GAD)>s(EBF

)

;
[Prop. 1 3.
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.-. GAG>EBH\
.'. &rc CQ> arc EH*

;

46

.-. r(arc CD) > s {oxc EF)\

c CD : arc

In case (ii), see Figs. 21 and 22.

arc CD : arc EF > -
r

Fig. 22.

CAD:E6f=-;
r

.-. r{CAD) = s{EBF)]

.-. CAG = EBH;

.-. arc CG = a.TC EH

;

.'. r(arc(7Z)) = s(arc EF);

.-. arc CD .Sire EF=- .

[Prop. 13.

[Prop. 13.

[Prop. 13.

• This foUows immediately from the proposition that in equal circles equal angles at the centres

stand on equal arcs.
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In case (iii), see Figs. 23 and 24.

CAD:EBF<-]
r

.'. r(GAD)<s(E6F)\

[62

[Prop. 13.

.-. CAQkEBH]

.'. &TC GO < a.rc EH*

;

'. r(arc CD)< s (arc EF);

.'. arc CD : arc EF<-.
r

[Prop. 13.

Hence if GAD: EBF>-,

then arc GD : arc EF > -
;

if GAD:EBF=-,

then arc GB : arc EF = -
;

r

and if GAD:EBF<-,
r

then arc GD : arc EF < -
.

r

GAD : EBF= arc GD : arc EF. [Art. 46.

* This follows immediately from the proposition that in equal circles equal angles at the centres

stand on equal arcs.
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(ii) An angle at the centre of a circle is double the angle at the circumference

standing on the same arc.

Hence the ratio of two angles at the centre of the same or of equal circles is

the same as that of the angles at the circumference on the same arcs. [Art. 51.

Hence, by case (i), the ratio of two angles at the circumference of the same or

of equal circles is the same as that of the arcs on which they stand.

(iii) The proof of this is derivable from that of (i) by replacing therein each

arc by the corresponding sector.

Art. 63. Def. 10. RECIPROCAL RATIOS.

The ratios A : B and B : A are called reciprocal ratios.

Art. 64. EXAMPLE 23.

If two reciprocal ratios are equal, prove that each of them is a ratio of equality.

Art. 65. PROPOSITION XXI. (Corollary to Euc. V. 4.)*

Enunciation. If two ratios are . equal their reciprocal ratios are equals

i.e. if A :B=C :D,

to prove that B : A = D : C.

Compare the ratio B : A with the rational number -

.

By Art, 48 it is necessary to consider only the alternatives

(1) B:A>^,

In case (1)

(2) B:A<-.
r

B:A>-',
r

.'. rB>8A\

.'. sA<rB',

•• A :B<-;
s

but A :B = G:D;

.-. C'.D<-\
8

[Prop. 13.

[Prop. 13.

.-. sC<rD; [Prop. 13.

Simson numbers this proposition Euc. V. B.
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[Prop. 13.

In case (2)

EUCLID, BOOKS V'. AND VJ

.-. rD >SG'y

•'• D :G
s

> -

.

r

B :A
s

.'. rB <sA;

.'. sA >rB;

•*• A .B
r

but A :B = G:Di

••• G :D
r

,-. sG >rD;
.-. rD <sG\

.-. D :G
s<-.
r

[Prop. 13.

[Prop. 13.

[Prop. 13.

[Prop. 13.

Hence ii B : A >-
, then D : G>-\

r r

but if 5:^<-, then D : G <-

.

r r

.'. B: A=D:G. [Art. 48.

Art. 66. PROPOSITION XXII. (Euc. V. 7, 2nd Part.)

Enunciation. If A, B, G be three magnitudes of the same kind, and if A be

equal to B, then

G:A = G:B.

If A be equal to B, then by Art. 43

A :G = B:G;
.-. G:A = G:B. [Prop. 21.

Art. 67. PROPOSITION XXIII. (Euc. V. 9, 2nd Part.)

Enunciation. If A, B,G be three magnitudes of the same kind, and if

G:A = G:B,

then A=B.
Now if C:A = G:B,

then A:G = B:G; [Prop. 21.

:. A=B. [Art. 43.
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Art. 68. EXAMPLE 24.

(i) If rA:B = sA:C, prove that 8B = rC. r :

(ii) U A:rC = B: sC, prove that sA = rB.

Art. 69. PROPOSITION XXIV. (Euc. V. 16.)*

Enunciation. If A, B, C, D be four magnitudes of the same kind, and if

A:B=C:D, to prove that A:C = B:D.
8

Compare the ratio A : G with any rational fraction - .

By Art. 48 it is necessary to consider only the two alternatives

(1) A:C>1,

(2) A:C<

In case (1), A:C>~,
r

rA > sG. [Prop. 13.

Hence rA — sG ia a. magnitude of the same kind as A, B, G, D.

Comparing it with Bf, then by Archimedes' Axiom (Art. 22) an integer n

exists such that

n{rA-sG)>B,

.'. nrA —nsG> B,

.'. nrA >n8G+B.

Hence a multiple of 5, say tB, exists such that

nrA >tB> nsC: [Prop. 8.

*.• nrA >tB,

[Prop. 13.
It I

but

.-. A :B > —
nr

A :B = G: D,

.'. G: D
nr

.'. nrC >tD (I). [Prop. 13.

* See Note 6. f The reader shoald complete the proof by taking D instead of B.

H. E. 7
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but tB>nsG (II),

/. 8nrC>stD from (I),

and rtB > msC from (II),

.-. rtB>stD,

.-. rB>sD*,

:. B :!)>-. [Prop. 13.
r

Q

In case (2), A:C<-
,

vAksC. [Prop. 13.

Hence sC— rA is a magnitude of the same kind as A, B, C, D.

Comparing it with J5f, then by Archimedes' Axiom an integer n exists such

that

n(sC-rA)>B,

:. nsC > nrA + B.

Hence (by Prop. 8) a multiple of B, say tB, exists such that

nsC >tB> nrA.

'.' nrA <tB^

t

but

bat

.-. A:B<-,
nr

A:B = G:D,

.-. C:D<-,
nr

.-. nrC<tD (HI).

nsG>tB (IV),

.'. snrG<stD from (III),

m8C>rtB from (in
.-. HB<stD,

.'. rB <8D,

.-. B.D<-.
r

[Prop. 13.

[Prop. 13.

[Prop. 13.

* This result is an algebraic consequence of the inequalities (I and II). It is obtained by trans-
forming them so that the multiple of C (which is the magnitude appearing in both) becomes the same in
each.

t The reader should complete the proof by taking D instead of B.
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Hence it has been proved that

if A:G>-, then B:D>-:
r r

andif A:C<-, then B:D<-.
r r

:.A:G = B'.D. [Art. 48.

Art. 70. COROLLARY. (Euc. V. 14.)

If A, B, C, D are all magnitudes of the same kind, and if

A:B = G:D,

then A^ C, according as B = D, and conversely.

Since A :B = C:D, and the magnitudes are all of the same kind,

.-. A:C=-B:D. [Prop. 24.

Compare now the ratio B : D with the rational fraction r-

.

If

then B>D. [Prop. 13.

Since

.-. A>a [Prop. 13.

The other cases may be proved in the same way.

Art. 71. EXAMPLES.

25. If A:B = C.D,

if E:C = F:A,

if E: D = F.G,

and if the magnitudes A, B, C, D, E, F, G are all of the same kind, prove that B = G.

[The proposition is also true ii A, B, F, G are of the same kind, and if C, D, E are

of the same kind, as may be proved by using Prop. 37 below.]

26. li A, B, G, D are four points on a straight line such that B divides AG
internally in the same ratio as J) divides it externally; prove that G divides BD
internally in the same ratio as A divides it externally.

7—2

B .i»l.

B>D.

B::D = A:• G,

A::0>1,
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Art. 72. Def. 11. HARMONIC POINTS.

Four points A, B, C, D on a straight line are said to be four harmonic

points if B and D divide AC in the same ratio, one internally and the

other externally.

Then A and C are called conjugate points; as are also B and D.

Art. 73. PROPOSITION XXV. (Euc. VI. 2, 2nd Part.)

Enunciation. If two sides of a triangle are divided proportionally so that

the segments terminating at the vertex common to the two sides correspond to

each other, then the straight line joining the points of division is parallel to the

other side.

Let the points D and E divide the sides AB,
AC of the triangle A BC, so that

AD:DB=^AE:EC,

then will DE be parallel to BC.

If DE be not parallel to BC, draw BF parallel

to DE cutting AC at F.

AD:DB = AE:EF, [Prop. 17.

.'. AE:EC = AE:EF,
.'. EC=EF, [Art. 43.

^'«- ^S-

which is impossible.

Hence DE is parallel to BC.

Art. 74. EXAMPLE 27.

If ABCD be a plane quadrilateral, and if £, F, G, H he points on A£, BC, CD, DA
respectively such that

AE : A£ = CF:CB = CG : CD = AH:AD,

prove that EFGH is a parallelogram.
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Art. 75. PROPOSITION XXVI.*

Enunciation. (1) A given segment of a straight line can be divided

internally into segments having the ratio of one given line to another in one

way only.

(2) A given segment of a straight line can be divided externally into

segments having the ratio of one given line to any other not equal to it in one

way only.

(1) Let AB he the straight line to be divided internally at some point C,

so that

AC'.CB = K:L,

where K, L are two given segments of straight lines.

Through A, one of the extremities of AB, draw aoy straight line AX, and

measure o^ AD equal to K, and DE equal to L in the same direction as AD.

K

•-I-

-^1
A

Fig. 26.

c ^' B

Join BE, and through D draw DC parallel to EB, cutting AB at C. Then

C will divide il5, so that i4(7:Cfi = ir:i.

Since AB, AX are cut by the parallel lines CD, BE; the segments AC, CB
correspond respectively to ^ID, DE.

.-. AC:CB = AD: DE [Prop. 17.

= K.L.

Hence C is one point which satisfies the required condition.

If possible let F be some other point which also satisfies the required

condition.

Join FD, and draw BG parallel to FD cutting AE At G,

* See Note 7.
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Then the segments AF, FB correspond to AD, DG respectively.

.-. AF:FB = AD:DQ, [Prop. 17.

but by hypothesis AF:FB=K:L.
.-. AD.DQ = K:L

= AD:DE.

.'. DG = DE, [Art. 43.

which is impossible.

Hence G is the only point which satisfies the required condition.

It is important to notice that '\i K < L, then AG <GB, and G is nearer to

A than to B.

If K = L, then AG=GB, and G is the middle point of AB.

U K >L, then AG> GB, and G is further from A than from B.

These three cases correspond to different figures in the second part of the

proposition.

(2) In this case the figures differ from that of the first case in having

the length DE (equal to L) measured in the opposite direction to AD; and

that is the only difference in the constructions for the cases K < L, K> L.

Fig. 27.

If K< L, then E must fall on DA produced through il as in Fig. 27, and

G is nearer to A than to B.

If K> L, then E must fall between D and il, as in Fig. 28, and G is further

from A than from B.

The proofs for the cases K <L and K > L are the same as in Case (1). They

need not therefore be repeated.
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Art. 76. NOTE ON CASE (2) OF THE PRECEDING ARTICLE.

\{ K = L, E coincides with A.

Hence BE coincides with BA.

Hence the parallel through D to BE is parallel to BA, as in Fig. 29.

Hence in this case from Euclid's point of view the construction fails, and there

is no point corresponding to C. See Note 7.

K=L

Fig. 29.



SECTION V.

PROPOSITIONS 27—34.

SIMILAR FIGURES.

Art. 77. Def. 12.

Similar rectilineal figures are those which satisfy the following two sets

of conditions.

(1) The angles of one of the figures taken in order must be respectively-

equal to the angles of the other figure taken in order.

(2) Those sides in the two figures which join the vertices of equal

angles being defined as corresponding sides, the ratio of any pair of

corresponding sides must be equal to the ratio of every other pair of

corresponding sides.

Let AiBiCiDiEi, A^B^CiDiE^ be two similar figures, then the two sets of

conditions are as follows:

—

Fig. 30.

(1)
A A
B^ = B^,
A A
(7i = (7a,

A A
El = E3.
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(As there is in this figure only one angle at each vertex it is sufficient to

indicate each angle by the letter standing at its vertex.)

It is often convenient to indicate the equality of two angles in two similar

rectilineal figures by marking the equal angles with the same number, e.g. in the

above figures the equal angles at ^,, A.^ are both marked 1.

A A

(2) Since Ai = A3,

A A
and ^1 = £^,

.'. the side -4jfii corresponds to the side ^252-

In like manner BiGi corresponds to B^C^, and so on.

.-. A,B^:A,B, = B,G,:B,C, = G,D,:C,D, = D,E,:D,E, = E,A,:E3A3.

Art. 78. Def. 13.

The ratio of a side of the first figure to the corresponding side of

the second figure is called the ratio of similitude of the first figure to the

second.

Art. 79. Note. It is obvious that two congruent figures are similar to one

another. For such figures the ratio of similitude is the ratio of equality.

Art. 80. Similar figures are said to be similarly described on two straight

lines, when these two straight lines are corresponding sides of the figures, e.g. :

—

The figures AiBfi^D^E^, AzBJJ^D^E-i are similarly described on A^B^, AiB^;

or on Bfii, B3C2', and so on.

(In general language two similar figures are similarly described on two straight

lines to which they have the same relation.)

Art. 81. EXAMPLE 28.

If B be the middle point of AC, and £X, CTbe drawn perpendicular to i4C, and

if ^ be joined to any point P on BX, and if on AP on the side remote from B a

triangle APQ be described similar to ABP so that the sides AP, PQ of APQ may

correspond to the sides AB, BP of ABP, prove that Q is equidistant from A and from

the straight line CY.

H. £.
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Art. 82. PROPOSITION XXVII. (Euc. VI. 21.)

Enunciation. Rectilineal figures which are similar to the same rectilineal

figure are similar to one another.

Let the figure ABCD be similar to AiBiCiDi, and also to A^JO^D^, it is

required to prove that A^BiG^D^ and AiB^GJ)^ are similar to each other.

/n / /
(2 3J [2 3] /a 3|

B C Bi C^ Bj Cj

Fig. 31.

Since ABCD is similar to AiB^CiDi

.-. A=A„ ^ = A, C=d„ ^ = A (1)

AB:A^B, =BG:BA = GD:C,D,=DA:D,A, (2).

Since ABGD is similar to A2B2G2D2

.-. A=A„ B = B„ G^G„ D = D^ (3)

AB:A,B, = BG:B,G, = GD:G,D, = DA:D,A, (4).

From (1) and (3) it follows thatAAAAAAAA ,.
A,=A„ B, = B„ C, = G„ D, = 3, (5).

From (2) AB: A,B, = BG : BA.
.-. AB:BG = A,B,.BA. [Prop. 24.

Similarly from (4) AB : BG= A^^ : B^G^

.'.A iBi :BiGi= A2B2 : B2G2

.'. A,B, : A2B2=BA : B^G^. [Prop. 24.

In like manner it can be shown that

B,G, : B2G2 = CiA : G2D, = A^i : A^a-

.
•. A,B, : A2B2 = B,G, : B^G^ = G,D^ : C^A = A^i : A^a (6).

Now (5) and (6) are the two sets of conditions which must be satisfied in

order that J.1AC1A and AJB^G^D^ may be similar (see Art. 77).

Hence A^Bfi^D^ and A^B^G^Dj are similar.
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Art. 83. ON SIMILAR TRIANGLES.

The different cases, in which two triangles are similar, correspond to some
extent to the cases in which two triangles are congruent.

For this reason the cases in which two triangles are congruent will first be

(enumerated.

Art. 84. Two triangles are congruent if

(1) The three sides of one triangle are respectively equal to the three sides

of the other triangle.

(2 a)* Two sides and the included angle of one triangle are respectively

equal to two sides and the included angle of the other triangle.

(3a)+ Two angles and the adjacent side of one triangle are respectively

equal to two angles and the adjacent side in the other triangle.

(3 6)f One side, the opposite angle, and one other angle of one triangle are

respectively equal to one side, the opposite angle, and one other angle in the

other triangle.

Besides the above cases there should be noted the following, in which three

elements (sides or angles) of one triangle are respectively equal to the three

corresponding elements of the other triangle, viz. those in which

(2 h)* One angle, the opposite side, and one other side of one triangle are

respectively equal to one angle, the opposite side and one other side of the

other triangle.

In this case the angles opposite the other pair of equal sides are either equal

or supplementary, and in the former alternative the triangles are congruent.

(This case is usually known as the Ambiguous Case.)

(4) Three angles of one triangle are respectively equal to three angles of the

other triangle.

This last case is only mentioned in order to complete all the possible cases

in which three elements of one triangle are respectively equal to the three

corresponding elements of another triangle. In it the triangles are not generally

congruent, but are always similar (see Prop. 28).

Art. 85. To case (1) above corresponds the proposition that if the sides of

one triangle taken in order are proportional to the sides of another triangle

taken in order, then the triangles are similar.

* The nambers attached to the cases (2 a) and (2 b) both contain the same number 2 becanae

in each there r.re two sides and one angle given equal.

t The Tiumbers attached to the cases (3 a) and (3 b) both contain the same number 3 because

in each there are two angles and one side given equal.

8—2
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To case (2 a) corresponds the proposition that if two sides of a triangle are

proportional to two sides of another triangle, and the included angles are equal,

then the triangles are similar.

To case (2 6) corresponds the proposition that if two triangles have one angle

of the one equal to one angle of the other, and the sides about one other angle

proportional in such a manner that the sides opposite the equal angles correspond,

then the triangles have their remaining angles either equal or supplementary,

and in the former case the triangles are similar.

To cases (3 a), (3 6) and (4), in all of which the three angles of the one

triangle are respectively equal to the three angles of the other triangle, corre-

sponds the single proposition that if the angles of one triangle are respectively

equal to the angles of another triangle, then the triangles are similar.

Hence there are four cases of similar triangles to be dealt with.

It should be noticed that the first and last amount to the proposition that, in

the case of triangles, if either of the two sets of conditions for the similarity of

rectilineal figures be satisfied, then the other set must also be satisfied.

So that the two sets of conditions for the similarity of rectilineal figures

are not independent when the rectilineal figures are triangles.

Art. 86. In dealing with similar triangles the reader will find it useful

to draw the similar triangles separately if

they happen to overlap, and to mark equal

angles with the same numbers, as in the

figure. /
N. /Js.

Then those sides which join the equal * ^ ^—

^

angles have the same numbers at their ex-

tremities, and it is therefore at once evident

that they are corresponding sides.

If in the triangles ABC, DEF, A=b, B=E, and d^P, let A and D be

marked 1, let 5 and E be marked 2, and let G and F be marked 3.

Write down all the possible pairs of the numbers 1, 2, 3, viz. :—23, 31, 12.

Now 2 and 3 are at the extremities of BC in one triangle, and at the

extremities of EF in the other.

Hence BG, EF are corresponding sides.

In like manner the positions of the numbers 3 and 1 indicate that GA, FD
are corresponding sides, and the positions of the numbers 1 and 2 indicate that

A B and DE are corresponding sides.

.-. BG:EF=GA.FD = AB'.DE.



87] EUCLID, BOOKS V. AND VI. 61

Art. 87. PROPOSITION XXVIII. (Euc. VI. 4.)

Enunciation. If the three angles of one triangle are respectively equal to

the three angles of another tiHangle, then the triangles are similar.

Those sides correspond which join the vertices of equal angles.

In the triangles ABC, DEF, let

A. A
A = D,
A A
B=^E,
A A
C = F.

To prove that the triangles are similar*. q)

From A on AB measure off a length AO equal to

DE, and then draw GH parallel to BC cutting AC
at H.

It will first be shown that the triangles AGH, DEF wee congruent.

Since GH is parallel to BC,

AGH = ABC = DEF.

Also GAH = BAC= EDF,

and AG = DE.

Hence the triangles AGH, DEF are congruent.

.-. AH=DF,
GH = EF.

Since GH is parallel to BC,

.'. BA:GA = CA: HA. [Prop. 17.

.-. BA.DE^CA :DF.

fNow draw HK parallel to AB.

Then CA.HA^CB: KB. [Prop. 1 7.

* Observe that if the triangles are similar, the vertex A of the triangle ABC corresponds to

the vertex I) of the triangle DEF
;

and the side AB of the triangle ABC corresponds to the side DE of the triangle DEF.

t It has now been shown that the sides which meet at A are proportional to the corresponding sides

which meet at D.

Consequently a similar proof will show that the sides which meet at B are proportional to the

corresponding sides which meet at E.

.: BA •.ED = BC:EF.

.-. AB.DE=BC:EF=CA:FD.
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Now BOHK is a parallelogram,

.-. BK=GH = EF
and HA = DF.

/. CA:DF=GB:EF.

Hence BA:DE= CA:J)F=CB:EF,

which, taking the letters in order, may be more conveniently written

AB:DE= BG:EF = GA:FD.

Now AB, DE join the vertices of equal angles, and are therefore corre-

sponding sides.

In like manner BC corresponds to EF, and GA to FD.

Butalso A = D, B =E; G = F.

Hence the two sets of conditions for the similarity of the triangles ABG, DEF
are satisfied.

Hence the triangles are similar.

It should be noticed that corresponding sides of the triangles are opposite to

equal angles; e.g. AB corresponds to DE, and they are opposite to the equal
A A

angles G and F respectively.

Art. 88. COROLLARY TO PROP. 28.

If a triangle he cut by a straight line parallel to one of the sides, the

triangular portion cut off is similar to the whole triangle.

For with the figure of Prop. 28, OH may be regarded as any straight line

parallel to BG, the triangles AOH, ABG are equiangular, and therefore similar

by Prop. 28.

Art. 89. EXAMPLES.

29. Show how to draw a straight line across two of the sides of a triangle, but

not parallel to the third side, which will cut off a triangle similar to the original

triangle.

When will it be impossible to do this 1

30. If ABC be a triangle inscribed in a circle, and CD a diameter of the circle,

and AE a perpendicular from A on the side BC, show that the triangles AEB,
ACD are similar.
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Art. 90. PROPOSITION XXIX.* (Euc. VI. 5.)

Enunciation. If the sides taken in order of one triangle are proportional

to the sides taken in order of another triangle, prove that the triangles are

similar^ and that those angles are equal which are opposite to coiTesponding

sides.

lu the triangles ABG, DEF let it be given that

AB:DE=BC:EF = GA:FD, (I)

to prove that the triangles ABC, DEF are similar.

From A the vertex of the triangle ABC which corresponds to D, measure off

on AB, the side corresponding to DE, a length AG equal to DE.

Draw GH parallel to BC, cutting AG at H.

It will first be shown that the triangles AGH and DEF axe congruent.

The triangles AGH and ABC have the angles of the one respectively equal

to the angles of the other.

Therefore by Prop. 28 they are similar.

.. AB:AG = BC:GH=GA:HA. '

(II)

Now DE = AG,

.'. AB:DE = AB:AG. [Prop. 22.

Hence each of the three ratios marked (I) is equal to each of the three

ratios marked (II).

.-. BC'.EF^BC.GH,

.-. EF=GH. [Prop. 23.

* See Note 8.
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Also GA:FD = CA:HA,

.-. FD = HA. [Prop. 23.

Hence in the triangles DEF, AGH,

DE=AG,
EF=GH,
FD = HA;

.'. they are congruent.

.-. EDF^GAH^BAC,

DEF = AGH = ABC,

EFD = AHG^BGA.
Hence in the triangles ABC, DEF

AB'.DE=BG.EF=GA.FD,AAA AAA
A=D, B^E, G = F.

Hence the triangles are similar.

The equal angles BAG, EuF are opposite the corresponding sides BG, EF.
A A

,

The equal angles ABC, DEF are opposite the corresponding sides CA, FD.
A A

The equal angles BCA, EFD are opposite the corresponding sides AB, DE.

Art. 91. NOTE ON PROPOSITION 29.

The proviso that the sides of the triangles are proportional when taken in

order is very important.

It is quite possible for the sides of one triangle to be proportional to the

sides of another without the triangles being similar.

Suppose that in the triangles ABC, DEF,

BC:GA=EF.DE,
and BC:AB = FD:DE,

then it may be proved (see Proposition 57 below) that

GA:AB = FD:FE.
But the triangles are not similar.

In the first proportion BG corresponds to EF.

In the second proportion BG corresponds to FD.

Hence the sides of the two triangles cannot be made to correspond.
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Art. 92. PROPOSITION XXX. (Euc. VI. 6.)

Enunciation. If two sides of one triangle be proportional to two sides of
another triangle, and if the included angles be equal, then the triangles are

similar ; and those angles are equal luhich are opposite to corresponding sides.

In the triangles ABC, DEF let it be given that

BA:AC = ED:DF,

and BAG= e3f,

it is required to prove that the triangles are similar ; and that the angles BOA,
EFD opposite the corresponding sides BA, ED are equal ; and that the angles

ABC, DEF opposite the corresponding sides AG, DF are equal.

From A, the vertex of the triangle ABC which corresponds to D, measure

off on AB, the side corresponding to DE, a length AG equal to DE.

Draw GH parallel to BG cutting AG at H.

It will first be proved that the triangles AGH, DEF are congruent.

Since GH is parallel to BG,

.-. BA.GA = GA: HA, [Prop 17.

.-. BA.GA^GA.HA; [Prop. 24.

but it is given that BA:GA=ED: DF,

.-. ED:DF=GA'.HA.

But ED = GA by construction,

.-. DF=HA. [Prop. 23.

H. . d
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Now in the triangles DEF, AGH,

DE = AG,

DF^AH,

EDF = BAG = OAH.

Hence the triangles DEF, AOH are congruent.

.-. DEF = AGH= ABC,

and DFE=AIIG = AGB.

Hence the angles of the triangle DEF are respectively equal to the angles

of the triangle ABC.

Hence by Prop. 28 the triangles DEF, ABC are similar, and those angles

are equal which are opposite to corresponding sides.

Art. 93. EXAMPLES.

31. Two parallel straight lines are cut by any number of straight lines passing

through a fixed point.

Prove that the intercepts made on the parallel lines by any two of the straight

lines through the fixed point have a constant ratio.

32. If the tangents at A and 5 to a circle meet at C, and if P be any point

on the circle, and if PQ, PR, PS be drawn perpendicular to AC, CB, BA respectively,

then prove that the triangles PAS, PBR are similar; and that the triangles PBS, PAQ
are similar ; and that PS is a mean proportional between PQ and PR.

33*. If C be the centre of a circle, F any point outside it, if FA, FB be tangents

to the circle at A and B respectively, if FP be any straight line through F cutting

the circle at P ; and if through P a straight line be drawn perpendicular to FP
cutting CA at Q and CB at R ; then prove that the triangles CFQ, CRF are similar

;

and that CF is a mean proportional between CQ and CR.

34. Let be the centre of a circle, and C a fixed point in its plane. Let CO
cut the circle at A and B. Let P be any point on the circle, and through P let

a straight line be drawn perpendicular to CP, cutting the tangents at A and B
at Q and R respectively, then prove that

(1) the triangles ACQ, BCR are similar.

(2) AQ : AC = BC : BR.

(3) the angle QCR is a right angle.
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Art. 94. PROPOSITION XXXI. (Euc. VI. 7.)

Enunciation. If two tHangles have one angle of the one equal to one angle

of the other, and the sides about one other angle in each proportional in such a

manner that the sides opposite to the equal angles correspond, then the triangles

have their remaining angles either equal or supplementary, and in the former

case the triangles are similar.

In the triangles ABC, DEF it is given that

ABC = DBF,

and BA:AC=ED:DF,
to prove that either

(1) ACB = DFE,

and the triangles ABC, DEF axe similar;

or (2) ACB + DFE = two right angles*.

A

On AB, the side corresponding to DE, take a length AG equal to DE,

and draw GH parallel to BC cutting AG at H.

The triangles AGH, DEF will first be compared.

Since GH is parallel to BG,

:. BA:GA = CA: HA, [Prop. 17.

.-. BA.CA = GA:HA. [Prop. 24.

But BA.CA^ED.DF,
.-. ED:DF=GA:HA.

• Notice that the sides about the angles BAG, EDF are proportional in such a manner that

the sides AC, DF opposite the equal angles ABC, DEF correspond.
A A .

Notice further that in each triangle two angles have been referred to, viz. ABC, BAC w we

triangle ABC and DEF, EDF in the triangle DEF, and therefore the remaining angles are

ACB, D^E.
9—2
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But AG = DE,

.'. DF = HA. [Prop. 23.

Now in the triangles DEF, AGH,

DE = AG,

DF=AH,

DEF = ABC = AGH,
where it is to be noticed that the equal angles are opposite to equal sides.

Now there are necessarily two alternatives,

either (1) GAH = EDF,

or (2) GAH is not equal to E^F.

(1) If GAH = EDF,

then BAG = EDF,

and since ABC =- DEF,

:. BGA=EFD,
and in this case the triangles ABG, DEF are similar. [Prop. 28.

(2) If GAH be not equal to EDF, draw DK, making EDK equal BAG,
and cutting EF at K.

Then in the triangles AGH, EDK,

A&H = ABG = DEK,
GAH =EDK,
AG =DE.

Hence the triangles A GH, DEK are congruent.

.-. AH = DK,

AHG = DKE.

But AH = DF,

.'. DF=DK,
.'. DKF=DFK.

Therefore ACB + DFE = AHG + DFE
=DkE + DFE
= DFK+DFE
= two right angles.



96] EUCLID, BOOKS V. AND VI. 69

Art. 95. NOTE.

Euclid's method of stating Proposition 31 amounts to the insertion of

additional conditions in the statement here given, the effect of which is to

exclude the second alternative in those cases in which the two alternatives

are really distinct.

It is as follows :

—

If two triangles have one angle of the one equal to one angle of the other,

and the sides about two other angles proportionals ; then if each of the remaining
angles be either less or greater than a right angle, or if one of them be a right

angle, the triangles are similar and have those angles equal about which the sides

are proportionals.

Hence the additional conditions are that ACB and DFE are both less than

a right angle, or both greater than a right angle, or one of them is a right

angle.

If they are both less than a right angle, their sum is less than two right

angles.

If they are both greater than a right angle, their sum is greater than two

right angles.

In neither of these cases can the second alternative hold.

Hence the first alternative must hold, and the triangles are similar ; the angles

between the proportional sides being equal.

If next one of the two angles ACB, DFE is a right angle, then, whichever

alternative hold, the other angle is a right angle, hence the remaining angles are

equal, and the triangles are similar.

This is the case in which the two alternatives are not really distinct.

Art. 96. EXAMPLE 35.

If B and C are the centres of two circles, and A the point of intersection of their

internal or of their external common tangents, and if APQ be any straight line through

A cutting the first circle at P and the second at Q, prove that the angles AFJB, AQG
are either equal or supplementary.
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Art. 97. PROPOSITION XXXII. (Euc. VI. 18.)

Enunciation. On a given straight line to describe a rectilineal figure similar

and similarly situated to a given rectilineal figure.

Let AiBiCiDiEi be the given rectilineal figure ; it is required to describe

a similar figure on the given straight line A^B^, so that A^Bi and A^B^ may be

corresponding sides of the figures.

Fig. S7.

Join J-iCi, AiDi.
A

At B2 draw a straight line making with A.2B2 an angle equal to AiByC^, and at

A2 draw a straight line making with -42^2 an angle equal to BiAyGi. Let these

straight lines meet at C^.

At Co draw a straight line making with A^G^ an angle equal to AiG^Di, and at

A^ draw a straight line making with A.jO^ an angle equal to GiAiD^. Let these

straight lines meet at D^.

At Dj draw a straight line making with D^Az an angle equal to AiD^E^, and at

A^ draw a straight line making with AJ)^ an angle equal to DiA^Ei. Let these

straight lines meet at E^.

It will be proved that AiBfi^DiEi and ^a^gCjA^a are similar figures, and that

J-ijBi and A^B^ are corresponding sides.

In the three pairs of triangles in Figure 37, viz. :

—

AyBfii and A^BXI^, A^G^Di

and A2C2D.,, A^DiEi and A.^D^E^, let the equal angles be marked with the same

numbers. Then in each pair of triangles two angles of the one triangle are

respectively equal to two angles in the other triangle. Therefore the remaining

angles are equal. Let these be marked with the same number.
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Then it is at once apparent that the angles at ^j, 5,, Cj, Dj, ^i of the figure

A^BiG^DiEi are respectively equal to the angles at A2, B^, Cj, D^, E^ of the figure

A^BiC^D^Ei] so that the first set of conditions (see Art. 77) for the similarity of

the two figures is satisfied.

Next the triangles A^BiCi and A^BJJ^ are equiangular and therefore by

Prop. 28 are similar.

In like manner the triangles A^C^D^ and A^GJJ^ are similar ; and the triangles

AiDiEi and AJ)^E^ are similar.

From these pairs of similar triangles follow the relations

B,G, : B,G, = C,A, : C,A._ = A,B, : A^^ (1),

G,A,:G,A, = A,D,:A,D, = DA : D,G, (2),

A,Di .A^D^^D.E.'.D^E^^E.A^: E^A^ (3).

Hence

A,B, : A^B, = BA B^G, = G,D, : C,A = A^i : A^'a = E,A, : E^A^.

Hence the second set of conditions (see Art. 77) for the similarity of the two

figures is also satisfied.

Hence the two figures AiBiG^D^Ei and A^BJJJ^^E^ are similar figures, and

A^B^ and A2B2 are corresponding sides. Therefore the figures are similarly

described on A^B^ and A^B^ (see Art. 80).

Art. 98. PROPOSITION XXXIII. (Included in Euc. VI. 20.)

Enunciation. Two similar rectilineal figures may he divided into the same

numhei' of triangles such that every triangle in either figure is similar to one

triangle in the other figure.
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Let AiBiGiDi, A^B^CJ)^ be two similar figures, such that

aAg, = aAc,,

BiCiDi = Bfi^D^,
A A

CiDiAi — C3JJ2A2,

and A^B, : A,B, = BA ' B,C^ = C,D, : C,D^ = D,Ai • A^a-

Let Oi be any point in the plane oi A^BiG^D^, and join O^A^, OiBy, Ofii, O^Di.

Through A^ draw a straight line making with A^., an angle equal to BiAiOj.

Through B^ draw a straight line making with B^A^ an angle equal to A^BiOi.

Let these two straight lines meet at 0^.

Join O2C2, OJ)^.

It will be proved that the triangles OxA^B^, O^^B^ are similar; that the

triangles O^B^, O^B^G^ are similar, and so on.

A A
Since O^A ^B^ = O^A^^ ,

' 0,B,Ay = 0AA2,

.-. aABi = aAb,.

Hence the triangles AiOiB^, A^O^B^ are similar. [Prop. 28.

.-. ^,Bi : A^B^ = AOi : B^O^ = O^A^ : 0^,.

Since A,B, : A,B, = B,G, : B,G^,

.'. BiOi : B^02 = Bfii : -BjOj,

.-. 5,0, : B,G,=B^O^ : B^G^. [Prop. 24.

Also aXc, = aXc^\

aXo, = aAo„
A A

.
". OiBiCi = O2B2G2.

Hence by Prop. 30 the triangles OiB^G^, O^B^G^ are similar.

In like manner the triangles 0,(7,^ and O^G^D^ can be proved to be similar;

and also OiDi-^i> O^D^A^ can be proved to be similar.

So the two similar figures are divided up into the same number of triangles,

such that every triangle in either figure is similar to one triangle in the other

figure.

The point 0, in the one figure corresponds to the point Oj'in the other figure.

Since 0, is any point in the one figure, it follows that to every point in one of

the figures corresponds one and only one point of the other figure.
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Art. 99. COROLLARY.

If in Figure 38 the first figure be placed on the second so that Oi falls on 0^,

0,i4, falls along OiA^, O^B^ falls along O^B^, it can be shown that the sides of the

first figure will then be parallel to and in the same direction as the corresponding

sides of the second, and that the distances from Oi or 0^ to a point on either figure

along any straight line are in the ratio of similitude of the figures.

If Oi be placed on 0^, O^A^ along A^O^ produced through Og, and O^B^ along

B2O2 produced through 0^, the sides of the first figure will then be parallel but in

the opposite direction to the corresponding sides of the second figure.

When the two figures have been placed as described in either of the two

preceding cases, then the point Oj, with which Oj coincides, is called a centre

of similitude of the two figures.

The term centre of similitude is not however restricted to rectilineal figures.

(See Art. 100, Ex. 37 below.)

Art. 100. EXAMPLES.

36. If two similar rectilineal figures are placed so that two consecutive sides

of one figure are respectively parallel and both in the same direction as, or both in

the opposite direction to, the corresponding sides of the other figure, then each side

of the one figure will be parallel to the corresponding side of fche other figure, and

the straight lines joining corresponding angular points of the two figures are all parallel

or meet in a point ; and in the latter case the distances from that point along any

straight line to the points where it meets corresponding sides of the figures are in

the ratio of similitude of the figures.

What is the ratio of similitude when the lines joining corresponding angular points

are parallel?

37. If the straight line joining the centres A, B oi two circles be divided internally

and externally in the ratio of the radii of the circles, (the segment of the line AB
terminated at A corresponding to the radius of the circle whose centre is A), then show

that the points of division may be regarded as centres of similitude of the circles.

Art. 101. PROPOSITION XXXIV. (Euc. VI. 8.)

Enunciation. If a right-angled triangle be divided into two parts by a

perpendicular drawn from the vertex of the right angle on to the hypotenuse, then

the triangles so formed are similar to each other and to the whole triangle ; the

perpendicular is a mean proportional between- the segm£nts of the hypotenuse ; and

each side is a mean proportional between the adjacent segment of the hypotenuse and

the hypotenuse.

H. E. 10
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If ABC be the triangle, and B the vertex of the right angle, and if BD be

drawn perpendicular to J. 0, it is required to prove

(1) that the triangles ABC, ABD, BDG are similar.

(2) that BD is a mean proportional between AD and DC.

(3) that BG is a mean proportional between CD and AC.

(4) that BA is a mean proportional between AD and AG.

B B B B
'2^

Fig. 39.

The triangles ABG, ABD will be compared first.

BAG = BAD
ABG= ADB = a right angle.

.-. AGB = ABD.
Hence the triangles are similar (Prop. 28).

.-. BG:DB = GA.BA=AB: AD.

Since GA : BA = BA : AD,

.'. BA is a mean proportional between AG and AD.

In like manner it can be shown that the triangles ABG, DBG are similar ; and

that BG is a mean proportional between AG and GD.

Since ABD, GBD are similar to ABG they are similar to one another.

BAD = DBG
ABD = BCD
ADB = BDG,

.-. DB :DG = BA:GB = AD.BD.
Hence DB : DG = AD : DB,

.'. DG:DB = DB: DA. [Prop. 21.

Hence DB is a mean proportional between DA and DG.

Art. 102. EXAMPLE 38.

If in any triangle ABC, BD is drawn to cut ^C at 2) so that BDC is equal to ABC,
prove that the triangles ABC, BCD are similar; that BG is a mean proportional between
AC and CD, and that AC:AB = BC: BD.



SECTION VI.

MISCELLANEOUS GEOMETRICAL PROPOSITIONS. Props. 35, 36.

Art. 103. PROPOSITION XXXV. (Euc. VI. 13.)

Enunciation. To find a mean proportional between two given segments of
straight lin£S.

A

Fig. 40.

Let the given straight lines be K and L.

Take a straight line AD equal to K, and produce AD to C, so that DC is equal

to L.

On AG as diameter describe a semicircle.

Through D draw DB perpendicular to AC to cut the semicircle at B.

Then DB is the mean proportional between K and L required.

Join AB, BC.

Then ABC being the angle in a semicircle is a right angle.

Also BD, being drawn perpendicular to AC from the vertex B of the right

angle, is by Prop. 34 part (2) a mean proportional between AD and DC.

.'. BD is a mean proportional between K and L.

Art. 104. EXAMPLES.

39. Solve the problem of the last proposition by means of Proposition 34 (3) or (4).

40. If two circles touch each other and also touch a given straight line, prove

that the part of the straight line between the points of contact is a mean proportional

between tlie diameters of the circles.

10—2
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41. If through the middle point A of the arc BAC of a circle, a chord be drawn

cutting the chord of the arc HC at D and the circle again at E, prove that AB is a. mean

proportional between AD and AE.

42. If C be the centre of a circle, a point outside it, OT a, tangent from to the

circle, TP a perpendicular from T on OC, then prove that the radius of the circle is a

mean proportional between CO and CP.

Art. 105. PROPOSITION XXXVI. (i). (Euc. VI. 3 and A, 1st Part.)

Enunciation. If the interim' or exterior vertical angle of a triangle he bisected

by a straight line which also cuts the base, the base is divided internally or externally

in the ratio of the sides of the triangle.

AC D

Fig. 41. Fig. 42.

Let ABC be a triangle.

Let BD bisect the interior angle ABC in Fig. 41, but the exterior angle A'BC
between CB and AB produced to ^' in Fig. 42.

Let BD cut the base at D.

To prove that AD : DC = AB . BC.

Draw CE parallel to BD cutting AB at E.

Then BEG= DBA in Fig. 41 (or DBA' in Fig. 42)

= DBC

= BCE,

.'. BEC= BCE,
.-. BC=BE.

Since ADC, ABE are cut by parallel lines BD, CE,

.-. AD:DC = AB: BE, [Prop. 17.

.-. AD :DC = AB:BC.
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Art. 106. PROPOSITION XXXVI. (ii). (Euc. VI. 3 and A, 2nd Part.)

Enunciation. // the base of a triangle be divided internally or externally in

the ratio of the sides of the triangle, the straight line drawn from the point of
division to the vertex bisects the interior or exterior vertical angle.

Fig. 44.

Let ABC be a triangle.

Let D divide the base AG, internally in Fig. 43, externally in Fig. 44, so that

AJ):DG= AB'.BG.

To prove that DB bisects the interior angle ABG in Fig. 43, but the exterior

angle between GB and AB produced through B in Fig. 44.

Join DB, and draw GE parallel to DB cutting AB bX E,

Then AD.DG^AB: BE, [Prop. 17.

but AD:DG = AB:BG.

.-. AB'.BE = AB:BG,

.'. BE = BG, [Prop. 23.

.-. BGE = BEG.

Now ABD in Fig. 43, or A'^D in Fig. U=BEG
= BGE

==DBG,

.-. ABD in Fig. 43, or A'BD in Fig. 44 = DBG.

Hence DB bisects the interior vertical angle in Fig. 43, but the exterior

vertical angle in Fig. 44.
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Art. 107. EXAMPLES.

43. If the internal and external angles at B of the triangle ABC be bisected

by straight lines which cut the side AC &t D and E respectively, show that A, Z>, C, E
are four harmonic points.

44. By means of Proposition 36 construct the fourth harmonic to three given

points A, B, C on a straight line ; considering separately the cases which arise according

as the fourth harmonic is to be conjugate to il or 5 or C.

45. If ABC be a triangle inscribed in a circle, PQ a diameter of the circle

perpendicular to AC, if CB cut PQ at B, and AB cut PQ at S, prove that

Qli:BP=QS:SP.

Hence construct the fourth harmonic to three given points on a straight line.

46. Divide a given arc of a circle into two parts so that the chords of these parts

may be to each other in a given ratio.

47. A point P moves in a plane so that the ratio of its distances from two fixed

points A, B in that plane is always the same. Show that in general the locus of P is

a circle, the extremities of one diameter of which are the points dividing AB internally

and externally in the given ratio. What is the exceptional case 1

48. The side BC of a triangle ABC is bisected at Z>, and the angles ADC, ADB are

bisected by the straight lines DE, DF meeting AC, AB &t E, F respectively. Prove

that EF is parallel to BG.

49. If the bisector of the angle A of the triangle ABC cut BC at D, and if the

bisector of the angle B cut AC at E, and if DE be parallel to AB, prove that the

triangle ABC is isosceles.

50. If ABC be a triangle, if D be the middle point of BC, if any straight line

through D cut AB at E, AC at F, and a parallel through A to BC at G ; then prove

that E, D, F, G are four harmonic points.

Hence show that if any point be joined to four harmonic points, they will be cut

by any transversal in four harmonic points.

Art. 108. Def. 14. HARMONIC LINES.

If four concurrent straight lines be cut by any transversal in four harmonic

points they are called four harmonic lines, or are said to form a harmonic

pencil.



SECTION VII.

AN IMPORTANT PROPOSITION IN THE THEORY OF RATIO.

Art. 109. PROPOSITION XXXVII.

If A, By G are three magnitudes of the same kind

;

if Ty UyV are three magnitudes of the same kind

;

if A:B = T:U
and B:G=U:V,

then will A:C=T:V.

s
Compare A : C with any rational fraction

r

By Art. 48 it is necessary to consider only the two cases

(1) A:C>-

(2) A:C<1.
r

In case (1) A:C >-
,

r

rA>sa [Prop. 13.

Hence rA — sG is a, magnitude of the same kind as B.

Hence by Archimedes' Axiom (Art. 22) an integer n exists, such that

n (rA - sG) > B,

.-. nrA >nsG + B.

Hence a multiple of B, say tB, exists, such that [Prop. 8.

nrA >tB> nsG.

Since nrA > tB,

.-. A:B>—. [Prop. 13.
nr
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But

Since

But

But

In case (2)

A:B = T:U,

T:U> t

nr'

\ nrT> tU.

tB> mC,

B:G> ns

T'

B:C = U:V,

U:V> ns

J'
.-. tU>nsV.

nrT> tu,

. nrT> nsV,

:. rT>sV,

T: V> s

r'

A:C< s

But

Since

. A :B<
nr'

A :B = T:U,

. T: U< t

nr'

.'. nrT< tu.

tB< nsG,

'. B :C<
718

J'

[Prop. 13.

[Prop. 13.

[Prop. 13.

[Prop. 13.

r

rAKsC. [Prop 13.

Hence sG — r-4 is a magnitude of the same kind as B.

Hence by Archimedes' Axiom an integer n exists, such that i

n (sG - rA) > B,

:. nsG>nrA + B.

Hence a multiple of B exists, say tB, such that [Prop. 8.

nrA <tB < nsG.

Since nrA < tB,

[Prop. 13.

[Prop. 13.

[Prop. 13.
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But

But

EUCLID, BOOKS V. AND VI,

B:G=U: V,

.'.

t

.-. tU<nsV.

nrT<tU,

'. nrT< nsV,

:. rV<sV,

.-. T.V<-.
r

[Prop. 13.

[Prop. 13.

It has therefore been proved

(1) U A:C>-,i\ienT:V>-.

(2) If ^:C'<-, thenr:F<-.
r r

Hence by Art. 48
A:G=T:V.

Art. 110. EXAMPLE 51.

Two circles whose centres are G and G' intercept equal chords AB and A'ff on

a straight line cutting both circles.

The tangents at A and A' meet at T.

Prove that AT .A'T ^ AG : A'G'.

11



SECTION VIII.

AREAS.

PROPOSITIONS 38—50.

Art. 111. PROPOSITION XXXVIII (i). (Euc. VI. 16, 1st Part.)

Enunciation. If four straight lines are proportional, the rectangle contained

by the extremes is equal to the rectangle contained by the means.

Let K, L, M, P he the straight lines, such that

K:L = M:P,

it is required to prove that the rectangle contained by K and P is equal to that

contained by L and M.

L-

M-

P-

D H
Fig. 45.

Take AB equal to K.

Produce AB to G so that BG is equal to L.

Through B draw BD equal to M perpendicular to AB, and produce DB to E
so that BE is equal to P.

Complete the rectangles ABEF, BGGE, BGHD.

Siuce rectangles having equal altitudes are proportional to their bases (Prop. 16)

ABEF'.BGQE = AB.BG=K:L,
BGHD .BGGE =BD:BE=M:P.
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Now K.L = M'.P,

.-. ABEF : BGGE = BOHD : BGGE,

.'. ABEF = BOHD. [Art. 43.

Now ABEF is the rectangle contained by AB and BE, i.e. by -K'and P.

Wliilst BCHD is the rectangle contained by BG and BD, i.e. by L and M.

.'. the rectangle contained by K and P is equal to that contained by L and M.

Art. 112. PROPOSITION XXXVIII (ii). (Euc. VI. 16, 2nd Part.)

Enunciation. Let there be four straight lines, which taken in a definite order

are K, L, M, P ; and let it he given that the rectangle contained by the first and

fourth, K and P, is equal to the rectangle contained by the second and third, L and

M ; to prove that

K:L = M.P.

K-

L-

P-

F \
-r.

C)

A B c

Fig. 46.

Make the same construction as in the preceding part of the proposition.

The rectangle contained by K and P is the rectangle contained hy AB and

BE and is therefore ABEF.

The rectangle contained by L and M is the rectangle contained by BG and

BD, and is therefore BGHD.

.-. ABEF is given equal to BGHD.

.'
. ABEF : BGGE= BGHD : BGGE, [Art. 43.

but ABEF : BGGE = AB:BG=K:L, [Prop. 16.

and BGHD : BGGE = BD.BE^ M.P, [Prop. 1 6.

.-. K:L = M:P.
11—2
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Art. 113. COROLLARY TO PROPOSITION 38. (Euc. VL 17.)

Part 1. If three straight lines are proportionals, the rectangle contained hy

the extremes is equal to the square on the mean.

Part 2. Let there be three straight lines, which taken in a definite order are

K, L, and P; and let it he given that the rectangle contained hy the first and third,

K and P, is equal to the square on the second, L, then it will follow that

K:L = L'.P.

The first part is the particular case of Proposition 38 (i), and the second part

the particular case of Proposition 38 (ii), when M = L.

Art. 114. EXAMPLES.

52. Let C be the centre of a circle, any point in its plane ; let A and B be the

extremities of the diameter through 0; let P and Q be the extremities of any chord

through 0. Prove that the circle drawn through C, P and Q cuts OC in a point D
which is the same for all directions of the chord OPQ, and show that

OA:OD = OC : OB.

53. (i) Let A be the centre of a circle, B a point outside it, BD and BE tangents

to the circle, C the point in which DE cuts AB, BFG a straight line through B cutting

the circle at F and G ; then prove that the rectangle BA . BG is equal to the rectangle

BF.BG. Prove that CD bisects the angle FCG, and that if CD cut FG at H, then

B, F, If, G are four harmonic points. ^

(ii) Let A be the centre of a circle, B a point inside the circle, and let any chord

GBFhe drawn through B, and produced to // so that G, B, F, H are four harmonic

points, prove that the locus of // is a straight line which cuts AB at right angles at a

point C such that the rectangle BA . BC is equal to the rectangle BF . BG.

54. Ii A, B, C, D are four harmonic points and the middle point between the two

conjugate points A and C, prove that the rectangle contained by OB and OD is equal to

the square on OC.

Art. 115. Def 15. POLE AND POLAR.

If through any point a straight line be drawn cutting a circle at P and

Q, and on OPQ a point R be taken so that 0, P, R, Q are four harmonic
points, and R being conjugates ; then the locus of R is called the polar line

of 0, and is called the pole of the locus of R.

It is a result of Example 53 that the polar line is a straight line.
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Art. 116. EXAMPLES.

55. If C be the centre of a circle, any point in its plane and T the foot of the

perpendicular from C on to the polar line of 0, then prove that the rectangle contained

by CO and CT is equal to the square on the radius of the circle.

56. If A lie on the polar of B with regard to a circle, show that B lies on the polar

of A with regard to that circle.

(Two such points as A, B are said to be conjugate with regard to the circla)

57. If two circles cut at right angles prove that the extremities of any diameter of

either circle are conjugate points with regard to the other circle.

58. If il, 5 be two points, and if from A a perpendicular AP \ie drawn to the polar

line of B with regard to a circle whose centre is G, and if from B a perpendicular BQ be

drawn to the polar line of A, prove that

CA:CB = AP: BQ,

and show that the triangles CAP, CBQ are similar.

59. Let C be the centre of a circle, F" any fixed point in its plane, let CV cut the

circumference at A, and let a point P be taken on CV bo that the rectangle CV . CP is

equal to the square on CA. Let a straight line PY be drawn through P perpendicular

to CP, and let PYhe cut by any straight line through V in W, and by a perpendicular

through C to VW in X, prove that the rectangle PX . PW will always be equal to the

rectangle CP .PV in whatever direction the straight line VW may be drawn.

Art. 117. Def. IG. INVERSE LOCUS. CENTRE OF INVERSION.

If from any point a straight line be drawn to cut any curve at P, and

on OP a point Q be taken so that the rectangle OP . OQ has a constant area,

then the locus of Q is called the inverse of the locus of P with regard to as

centre (or origin) of inversion.

The side of the square whose area ia equal to the constant rectangle OP . OQ
is called the radius of invei*sion.

Also P and Q are said to be inverse points with regard to the circle whose

centre is 0, and whose radius is the radius of inversion.

Art. 118. EXAMPLES.

60. If the locus of P is a circle, show that the inverse locus is generally a circle,

but will be a straight line if the centre of inversion be a point on the circle on which

P lies.
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61. If the locus of P is a straight line show that the inverse locus is a circle passing

through the centre of inversion.

62. If two circles or a straight line and a circle or two straight lines intersect one

another, show that their angle of intersection is equal to the angle of intersection of

their inverse locL

Art. 119. Def. 17. THE RADICAL AXIS OF TWO CIRCLES.

The locus of points from which tangents drawn to two circles are of

equal length is called the radical axis of the two circles.

Art. 120. EXAMPLES.

63. If two circles intersect, show that the straight line joining their points of

intersection is their radical axis.

If they do not intersect, show that the radical axis is perpendicular to the line

joining the centres of the circles, and cuts it at a point which is such that double the

distance of this point from the point half way between the centres of the circles is

a fourth proportional to the distance between the centres of the circles, the sum of

their radii and the difference of their radii.

64. Show that the difference between the squares of the tangents from any point P
to two circles is equal to twice the rectangle contained by the perpendicular from P on

the radical axis, and the distance between the centres of the circles.

65. Show how to choose the centre and the radius of inversion so that two given

circles may be inverted each into itself.

Art. 121. PROPOSITION XXXIX.

Enunciation. The rectangle contained by the diagonals of a quadrilateral

cannot he greatei^ than the sum of the rectangles contained by opposite sides. (It

may be equal, and in that case a circle can be described through the vertices of

the quadrilateral.)
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Let ABCD be a quadrilateral.

It is required to prove that the rectangle AC .BD cannot be greater than the

sum of the rectangles AD. EG and AB . CD.

On BC describe the triangle BGE similar to ABD, so that the side BC of

BCE may correspond to the side BD of ABD.

Then C^E=ABD,

BGE = BDA,

BEG ^ BAD.
Also BD:BG=DA.CE=AB: EB.

From the first and second ratios it follows by Prop. 38 (i) that

rect. BD.GE= rect. AD.BG.

Also from the first and third ratios

BD:BG = BA:BE,

but also D^G = DBE + E^G

= DBE + DBA

= ABE.

Hence by Prop. 30 the triangles DBG, ABE are similar.

Fig. 49.

The side BD corresponds to BA,

the side BG corresponds to BE,

and the side CD corresponds to AE.

.-. BD:BA = DG:AE=CB:EB.
From the first and second ratios by Prop. 38 (i)

rect. BD.AE= rect. AB.GD.

Now it has been shown that

rect. BD.GE = rect. AD.BG,
.-. rect. BD.AE + rect. BD . CE = rect. AB . CD + rect. AD . BG.
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Now AC cannot be greater than AE-\- EG.

(The case in which AG is equal to AE + EG will be considered below.)

.-. rect. BD . AC cannot be greater than rect. BD . AE + rect. BD . GE.

.'. rect. BD . AC cannot be greater than rect. AB . CD + rect. AD . BG.

If AC= AE + EC,

then E lies on AG,

and rect. BD.AG = rect. AB.GD + rect. AD . BC.

Now BGE = BDA,
whilst in this case BGE = BGA.

:. BGA=BDA,
and therefore the circle circumscribing ABD passes through C.

Hence a circle can be described about the vertices of the quadrilateral ABCD.

Art. 122. It is interesting to examine what happens when D and C are

points on the straight line AB.

In this case the straight line can be regarded as a circle of infinite radius.

Hence taking the points on the line in the order A, B, C, D the lines

corresponding to the diagonals are AC, BD; whilst AB, CD correspond to one

pair of opposite sides; and BC, AD to the other pair.

Hence rect. AG.BD = rect. AB.GD+ rect. BC . AD.

This result is easily verified.

Art. 123. PROPOSITION XL. (Euc. VI. 23.)

Enunciation. To construct two straight lines whose ratio is equal to the ratio

of the areas of two equiangular parallelograms.

Since the parallelograms are equiangular they may be placed so as to have

a common angle, and their sides along the same straight lines, but in opposite

directions.

M C

Fig. 50.
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When this has been done let ABGD be one parallelogram, let AEFO be the
other.

Produce MD and FE to meet at H.

Join HA.

Produce HA to meet FO at K.

Draw KLM parallel to AD to meet AB, DC at L, M respectively.

Then AEFG is equal to ALMD, since they are complements about the

diameter of a parallelogram.

.-. ABCD :AEFG = ABCD :ALMD [Prop. 22.

= AB : AL. [Prop. 16.

The two lines required are therefore AB and AL.

In this way the problem of finding the ratio of two areas is reduced to the

simpler one of finding the ratio of two lengths.

The close connection of the construction employed in this proposition with that

given by Euclid in the 44th proposition of the First Book should be noted.

Art. 124. It is worth while to notice the relation of the line AL to the sides

of the parallelograms ABGD, AEFG.

AB:AE is the ratio of one side of the first parallelogram to one side of the

second parallelogram.

AD: AG is the ratio of the other side of the first parallelogram to the other

side of the second parallelogram.

But since the triangles ADH, AGK are equiangular, they are similar, and

therefore

AD : AG = DH: GK = HA:KA.

Now DH = AE,

and GK = AL.

Hence AD : AG =AE : AL.

Hence the two ratios of the sides of the parallelograms are ABiAE, and

AD: AG which is equal to AE:AL.

And the ratio of the areas of the parallelograms is AB: A L.

H. E. 12
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Art. 125. PROPOSITION XLI.

Enunciation. The ratio of the areas of two equiangular parallelograms is

equal to the ratio of the areas of the rectangles contained by their sides.

This follows immediately from the preceding proposition by observing that the

ratio AB-.AL depends only on the lengths of the sides, and not at all on the

common angle of the parallelograms.

For AL is determined by the proportion AD :AG = AE:AL.

Hence if a rectangle be constructed whose sides are equal to AB, AD and

another rectangle constructed whose sides are equal to AE, AG; the ratio of the

first rectangle to the second will as before be equal to AB : AL, and therefore equal

to the ratio of the parallelogram ABGD to the parallelogram AEFG.

Art. 126. PROPOSITION XLII.

Enunciation. // three straight lines he in proportion, then the ratio of the area

of the square described on the first line to the area of the square described on the

second line is equal to the ratio of the first line to the third line.

u D C M

\^
A B

F CX K

Fig. 51.

Let ABGD, AEFG be two squares placed so that they have a common vertex

and their sides on the same straight lines but in opposite directions.

Constructing the figure with the same letters as in Prop. 40, then

area ABGD : area AEFG = AB :AL,

where as before AD : AG = AE:AL.
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But AD=AB,
and AG = AE, .

.-. AB:AE = AE.AL.
Hence the square described on AB : the square described on AE

= AB:AL,

where AL is determined by the proportion

AB:AE=AE:AL.
This result will be repeatedly required in what follows, and should be carefully

remembered.

Art. 127. PROPOSITION XLIII. (Euc. VI. 19.)

Enunciation. The ratio of the areas of two similar triangles is equal to the

ratio of the areas of the squares described on corresponding sides*.

Fig. 52.

The triangles being similar may be placed so as to have a common vertex, and

the corresponding sides which meet at this vertex along the same straight lines

and in the same direction.

When this is done, let the triangles be ABC and ADE.

Since ABC = ADE,

.-. £C is parallel to i)j^.

Join DC.

Draw BF parallel to DC to cut AE at F.

Join DF.

* On account of the importance of this proposition an independent proof is given. See Note 10.

12—2
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Since BF and DC are parallel,

/. ^BGF=aBDF.

Add to each aABF,

.', aABF + I^BFG = ^ABF + ^BDF,
.-. ^ABC= ^ADF,

.'. aADE : aABC=^ADE : aADF [Prop. 22.

= AE:AF. [Prop. 16.

But AE:AG=AD:AB
since the triangles ADE, ABC are similar.

And AD:AB = AC:AF
since DC is parallel to BF.

.-. AE:AC = AC:AF.

Hence by Prop. 42

square described on ^i^ : square described on AC
=AE:AF

^^ADE.aABC.
Now AE and AC are corresponding sides of the triangles ADE, ABC.

Consequently the ratio of the areas of two similar triangles is equal to the ratio

of the areas of the squares described on corresponding sides.

Art. 128. EXAMPLE 66.

If ABC be a triangle, and if BE, GF be drawn perpendicular to the sides AC,

AB respectively; prove that the triangle ABE is to the triangle AGF as the square

on AB is to the square on AG.

Art. 129. PROPOSITION XLIV. (i).

Enunciation. Iffour straight lines are proportional, then the squares described

on them are proportional.ABODE F Q H

Fig. 53.
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Let A B, CD, EF, GH be four straight lines such that

AB:CD = EF: GH. (1)

It is required to prove that

sq. on J.5 : sq. on CD = sq. on EF : sq. on GH.

Construct straight lines X and Y such that

AB.GD^GD'.X, (2)

EF'.GH=^GH.Y. (3)

It follows from (1), (2), (3) that

CD:X = GH:Y. (4)

From (1) and (4) by Prop. 37 it follows that

AB:X = EF:Y,
but AB:X = sq. on AB: sq, on CD [Prop. 42.

and EF.Y = sq. on EF : pq. on GH, [Prop. 42.

.*. sq. on ilfi : sq. on CD = sq. on EF : sq. on GH.

Art. 130. PROPOSITION XLIV. (ii).

Enunciation. If four squares are in proportion , their sides will he in pro-

portion.

Let AB, CD, EF, GH be four lines such that

sq. on AB : sq. on CD = sq. on EF : sq. on GH.

Take a line X such that

AB:CD = EF:X.
Then it has been shown that

sq. on AB : sq. on CD = sq. on EF : sq. on X, [Prop. 44 (i).

.*. sq. on EF : sq. on GH = sq. on EF : sq. on X,

/. sq. on GH = sq. on X, [Prop. 23.

.-. GH = X.

.'. AB:CD = EF:GH.

Art. 131. PROPOSITION XLV. (Euc. V. 12.)

Enunciation. // there be any number of equal ratios in which the magnitudes

are all of the same kind, then the ratio of any antecedent to its consequent is equal to

the ratio of the sum of the antecedents to the sum of the consequents ; i.e. if

A:B = C:D = E:F,

then A:B = A+C + E:B + D + F.



94 EUCLID, BOOKS V. AND VI. [131

s
Compare A : B with the ratio -

.

There are three possible alternatives,

(1) A:B>

(2) A:B =

(3) A:B<-.
r

Of these it is not necessary to consider the second. [Art. 48.

In case (1) A : B >-,
r

.-. rA > sB. [Prop. 13.

Since A : B = G : D = E : F,

.'. C:D>-,
r

.'. rC > sD, [Prop. 13.

o

and E : F >- ,

r

:.rE>sF, [Prop. 13.

but also rA > sB,

:. rA+rC -\-rE>sB + sD + sF,

:. r(A + C + E)>s(B + I> + F),

.'. A+G + E:B + D + F>-. [Prop. 13.

Hence if A : B>- ,

r

then A + C+E :B + D + F>-.
r

*In like manner it can be shown that in case (3) if

A:B<-,
r

then A + C + E:B + D + F<-.
r

.-. A:B = A + G+E:B + D + F. [Art. 48.

* The demonstration of case (3) can be deduced from that of case (1) by replacing the sign > by

the sign < throughout.
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Art. 132. EXAMPLE 67.

The perimeters of similar triangles (or similar rectilineal figures) are to one another

in the ratio of corresponding sides.

Art. 133. PROPOSITION XLVI. (Euc. VI. 20.)

Enunciation. The ratio of the areas of two similar rectilineal figures is equal

to the ratio of the areas of the squares described on corresponding sides.

Let AiByCiDi and A^B^G^D^ be similar figures, jtnd AiBi, A^B^ corresponding

sides.

To prove that

AiBiGiDi : AiBiC^D^ = square on AiBi : square on A^B^.

Fig. 54.

Taking the figure of Proposition 33 it was proved that the triangles OiA^Bi,

O^A^B^ were similar, as were also OiBiCi and O^BiC^, OiGiDi and OiGiD^, OiDiAi

and O2D2A2.

Hence by Prop. 43

t^OiAiBi : LOiA^B^^ square on A^Bi : square on A^B^,

A OiBiGi : A O2B2 C4 = square on B^ G^ : square on B^ G^,

A Oi GiDi : A O2G2D2 = square on Ci Di : square on (7aA.

ZiiOiDiAj'.iiOiDiA 2 = square on DiAi'. square on Da-^g.

But since the figures are similar

A,B, : A,B^ = J5iCx : B,G, = G,D, : GoD, = A^i : D^A,.

Hence by Prop. 44 the ratios of the squares described on these lines are equal.

.-. A O^A.B, : ^0,A,B, - ^0,B,G, : ^O^B.G, = aOjOiA : ^O.GJ)^ = aO,D,A, : aO,A^a-
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Hence by Prop. 45

= figure AiB^CiDi : figure A^B^G^D^.

.'. figure AiBiGiDi : figure A^B^C^D^ = square on AiBi : square on A3B2.

Art. 134. PROPOSITION XLVII. (i). (Euc. VI. 22, 1st Part.)

Enunciation. Let there be four straight lines A, B, C, D which are in

proportion.

Let two similar rectilinear figures he similarly described on A and B.

Let two similar rectilinear figures be similarly described on G and D.

It is required to prove that

the area of the figure on A : the area of the figure on B

= the area of the figure on G : the area of the figure on D.

Let the areas of the similar figures similarly described on A and 5 be ?7

and V respectively.

zn zn
Fig. 55.

Then U:V= square on A : square on B. [Prop. 46.

Let the areas of the similar figures similarly described on G and D he W
and X respectively.

Then W
: X = square on G : square on D. [Prop. 46.

Now A:B = G:D,

.*. the square on A : the square on B
= the square on G : the square on D. [Prop. 44 (i).

.-. U:V=W:X.



136] EUCLID, BOOKS V. AND VI. 97

Art. 135. PROPOSITION XLVII. (ii). (Euc. VI. 22, 2nd Part.)

/" Enunciation. Let there he four straight lines A, B, G, D.

Let two similar figures he similarly described on A and B.

Let two similar figures he similarly described on G and D.

Let it be given that

the area of the figure on A: the area of the figure on B
— the area of the figure on G : the area of the figure on D.

It is required to prove that

A:B=G:D.

zn zn
Fig. 56.

Let the areas of the similar figures on A and Bhe U and V respectively.

Then U :V = the square on A : the square on B. [Prop, 46.

Let the areas of the similar figures on G and Dhe W and X respectively.

Then TT : X = the square on G : the square on D. [Prop. 46.

It is given that U'.V=W:X,
.•. the square on A : the square on B
= the square on G : the square on D.

.• . A:B=C:D. [Prop. 44 (ii).

Art. 136. PROPOSITION XLVIII. (Euc. VI. 31.)*

Enunciation. In any right-angled triangle, any rectilineal figure described on

the hypotenuse is equal to the sum of the two similar and similarly described figures

on the sides.

Let ABG be a triangle right-angled at G.

On AB let any rectilineal figure Z be described.

* I am indebted to Mr H. M. Taylor, the author of the Pitt Press Euclid, and to the Syndicate of

the Pitt Press for their kind permission to use this proof, which is substantially the same as that given

in the Pitt Press Euclid.

H. E. 13
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On BG let a rectilineal figure X be described similar to Z so that the side

BG of X corresponds to the side AB of Z\ and on AG let a rectilineal figure Y
be described similar to Z so that the side AG oi Y corresponds to the side

AB of Z.

It is required to prove that

Z= Z + F.

Since Z and X are similar figures, and ABy BG are corresponding sides,

therefore by Proposition 46

Z :X = square on AB : square on BG.

In like manner
,

Z : Y= square on AB : square on AG.

Now Z, X, Y and the squares on AB, BG,

GA are all magnitudes of the same kind, viz.

areas.

and

, by Prop. 24

Z : square on AB =

Z : square on AB =

X : square on BG =

X : square on BG,

F: square on AG,

Y: square on AG.

X : square on BG = X+Y: square on BG + square on AG
=X + Y : square on AB.

Z: square on AB = X + Y : square on AB.

.'. Z = X+Y.

Art. 137. EXAMPLE 68.

Fig. 57.

[Prop. 45.

[Art. 43.

In an acute-angled triangle similar figures are similarly described on the sides, shew
that the sum of the areas of any two of them is greater than the area of the third.

Art. 138. PROPOSITION XLIX. (Euc. VI. 25.)

Enunciation. To descHhe a rectilineal figure similar to one given rectilineal

figure and equal in area to another given rectilineal figure.

(In ordinary language to describe a figure having the shape of one given figure
and the size of another.)

Let it be required to describe a figure similar to the figure ABGDE and
equal to the figure FGHK.
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On AB describe a rectangle ABLM e(\usi\ to ABODE.

On BL describe a rectangle BLNO equal to FOHK.

Take PQ a mean proportional between AB and BO. [Prop. 35.

On PQ describe a figure PQRST similar to ABODE, so that PQ may
correspond to AB. [Prop. 32.

It will be shewn that PQRST is the figure required.

Since AB.PQ^PQ: BO,

.'. square on AB : square on PQ = AB : BO. [Prop. 42.

AB'.BO^ABLM .BLNO [Prop. 16.

= ABODE: FQHK.

ABODE : PQRST= square on AB : square on PQ. [Prop. 46.

.-. ABODE : FGHK = ABODE : PQRST.

.'. FGHK = PQRST. [Prop. 23.

Hence PQRST is equal to FGHK and similar to ABODE.

It is therefore the figure required.

Now

Also

Art. 139. Def. 18. FIGURES WITH SIDES RECIPROCALLY
PROPORTIONAL.

A figure is said to have the two sides about one angle reciprocally

proportional to the two sides about an angle of another figure when these

four sides are proportional in the following manner:

a side of the first figure : a side of the second figure

= the other side of the second figure : the other side of the first figure.

13—2
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Art. 140. PROPOSITION L. (i). (Euc. VI. 14, 1st Part.)

Enunciation. Parallelograms having equal area^ and having one angle of

the one equal to one angle of the other have the sides about the equal a/ngles

reciprocally proportional.

The ratio of the areas of two equiangular parallelograms is equal to the ratio

of the areas of the rectangles contained by their sides. [Prop. 41.

In this proposition it is given that the areas of the parallelograms are equal.

Hence the rectangles contained by their sides are equal.

Hence by Prop. 38 (ii)

a side of the first rectangle : a side of the second rectangle

= the other side of the second rectangle : the other side of the first rectangle.

.*. a side of the first parallelogram : a side of the second parallelogram

= the other side of the second parallelogram : the other side of the first

parallelogram.

Hence the sides about the equal angles are reciprocally proportional.

Art. 141. PROPOSITION L. (ii). (Euc. VI. 14, 2nd Part.)

Enunciation. Parallelograms having one angle of the one equal to one angle

of the other, and the sides about the equal angles reciprocally proportional are equal

in area.

Since the sides about the equal angles are reciprocally proportional, therefore

by Prop. 38 (i) the rectangle contained by the sides of one parallelogram is equal

to the rectangle contained by the sides of the other.

Therefore by Prop. 41 the parallelograms have equal areas.

Art. 142. COROLLARY TO PROP. 50. (Euc. VL 15.)

Enunciation (i). Two triangles having equal area^ and having one angle of

the one eqnal to one angle of the other have their sides ahout the equal angles

reciprocally proportional.

(ii) Two triangles which have one angle in the one equal to one angle in the

other and the sides about the equal angles reciprocally proportiorial are equal

in area.

These propositions may be deduced from Proposition 50 by constructing the

parallelograms of which the triangles are the halves.
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Art. 143. EXAMPLES.

69. Triangles which have one angle in the one supplementary to one angle in the

other and their sides about the supplementary angles reciprocally proportional are equal

in area.

70. Triangles having equal areas and having one angle of the one supplementary

to one angle of the other, have their sides about the supplementary angles reciprocally

proportional.

71. If P be any point on the side AC of the triangle ABC, and if PQ be drawn

parallel to BC to cut AB at Q, then if a straight line through P cut BA produced

through ^ at ^ and BC at S so as to make the triangles ABC, BBS equal, prove that

QB will be a third proportional to QA and QB.

72. The triangles ABC, DEF are similar, and on DE the side corresponding to

AB Sk point K is taken so that DK is a third proportional to DE and AB, prove that

the triangles ABC, BKF &re equal in area.

(This is the proposition on which Euclid's proof that the areas of similar triangles

are to one another as the squares described on corresponding sides is based.)

73. If a straight line BE be drawn parallel to the base BC of the triangle ABC
cutting AB at D and AC &t E, and ii AFhe drawn perpendicular to DE, prove that the

rectangle AF . BC is double of the triangle AEB.



SECTION IX.

MISCELLANEOUS GEOMETRICAL PROPOSITIONS.

PROPOSITIONS 51—56.

Art. 144. PROPOSITION LI. (Euc. VI. B.)

Enunciation. If the vertical angle of a triangle be bisected by a straight line

which also cuts the base, the rectangle contained by the sides of the triangle is equal to

the rectangle contained by the segments of the ba^e togethei" with the square on the

straight line which bisects the angle.

Let ABC be the triangle.
A

Bisect BAG hy AD cutting the base BG at D.

It is required to prove that

rect. AB.AG= rect. BD . DG + square on AD.

Describe a circle round the triangle ABG, and

let -42) cut the circle at E.

Join GE.

In the triangles ABD, AEG

BAD = EAG
A, A

ABD = AEG, since they stand on the same arc AG.

.-. At)B = AGE.

Hence the triangles are similar.

.-. BD:EG = DA:GA = AB:AE.

From the second and third ratios

rect. AB.AG= rect. AD . AE
= square on AD + rect. AD . DE
= square on AD + rect. BD . DG.

[Prop. 28.

[Prop. 38 (i).
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Art. 145. PROPOSITION LII. (Euc. VI. C.)

Enunciation. Iffrom any vertex of a triangle a perpendicular he drawn to

the opposite side, the diameter of the circle circumscribing the triangle is a fourth
proportional to the perpendicular and the sides of the triangle which meet at that

vertex.

Let ABC be a triangle.

Let BD be perpendicular io AG.

Let a circle be circumscribed about ABC.

Let BE be the diameter through B.

Join CE.

Fig. 60.

In the triangles ABD, EBC
A A,

BEC=BAD, for they stand on the same arc BC.
A A

BGE = BDA, for each is a right angle.

.-. CBE=ABD.

Hence by Prop. 28 the triangles are similar.

.-. DB:CB = BA:BE=AD:EC.
From the equality of the first and second ratios it follows that the diameter

BE is a fourth proportional to the perpendicular BD and the sides BC, BA.

Art. 146. EXAMPLE 74.

If D is any point on the side BC of a triangle ABC, then the diameters of the circles

circumscribing the triangles ABB and ACD are proportional to the sides AB, AC.
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Art. 147. PROPOSITION LIII. (Euc. VI. 30.)

Enunciation. To divide internally or externally a finite straight line in

extreme and mean ratio; i.e. so that the whole line is to one segment as that

segment is to the other segment.

Let AB be the straight line, it is required to find a point C on it so that

AB:AG = AG:CB.

On AB describe the square ABDE.

Bisect AE at F.

Join FB. -

C

H'

Fig. 61.

On EFA measure FG = FG' = FB.

On AG describe the square A GHG.

On AG' describe the square AG'H'G'.

The points G, G' fall on AB, and are the required points.

It is proved in Prop. 11 of the Second Book of Euclid that

the square on AG = rect. AB . BG.

:. AB'.AG^AG.BG. [Cor. to Prop. 38.

To prove the same property for the point G'.

Since ^jE^ is bisected at F and produced to G',

:. square on FG' = square on FA + rect. EG' .AG',

.-. square on FB = square on FA + rect. EG'H'K'.
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.". square on FA + square on AB — square on FA + rect. EG'H'K'.

:, square on -4jB = rect. EG'H'K'.

.-. AEDB = EG'H'K'.

:. AEDB + AEK'G' = EG'H'K' + AEK'G'.

.-. BDK'G' =AG'H'G'.

.". rect. BA . BG' = square on AG'.

.'. AB : AG' = AG': G'B. [Cor. to Prop. 38.

Art. 148. EXAMPLE 75.

If ABC be a triangle right-angled at A, and AD he drawn perpendicular to the

hypotenuse cutting it at D, and if D divide BC in extreme and mean ratio, then prove

that the sides of the triangle ABC are in proportion. •

Art. 149. PROPOSITION LIV. (Euc. VI. 24.)

Enunciation. Parallelograms about the diagonal of any "parallelogram are

similar to the whole and to one another.

Let ABGD be a parallelogram.

Let AEFH, FKGG be parallelograms about the diagonal AG oi the

parallelogram ABGD.

It is required to prove that they are

similar to ABGD and to one another.

Since EF is parallel to BG,

the triangles AEF, ABG are similar.

[Cor. to Prop. 28.

.-. AE:AB = EF:BG = FA:GA.

Since FH is parallel to CD,

the triangles AFH, AGD are similar. pj g2.

[Cor. to Prop. 28.

.-. FA:GA = AH:AD = HF: DG.

Hence AE: AB = EF'.BG = FH: GD = HA : DA.

Further HAE = DAB,

AEF ^ ABG,

EFH = BCD,

FHA = g3a.

H. K. 14
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Hence the two sets of conditions for the similarity of AEFH, ABCD are

satisfied (Art. 77).

In like manner FKGO is similar to ABGD.

:. AEFH, FKGG are similar. [Prop. 27.

Art. 150. PROPOSITION LV. (Euc. VI. 26.)

Enunciation. If two similar parallelograms have a common angle and he

similarly situated they are about the same diagonal.

Let ABGD, AEFH be two similar parallelograms having the same angle A.

Let them be similarly situated, and let AB,
AE he corresponding sides.

It is required to prove that the diagonals

AG, AF coincide in direction.

Since the parallelograms are similar

ABG=AEF,
AB.AE = BG'.EF.

7

.•
. AB:BC=AE:EF. [Prop. 24. Fig. 63.

Hence the triangles ABG, AEF are similar. [Prop. 30.

In these triangles BG, EF are corresponding sides.

Hence the angles opposite them are equal.

.-. BAG=EAF.
Hence AG coincides in direction with AF.

Hence the parallelograms ABGD, AEFH are about the same diagonal.

Art. 151. EXAMPLE 76.

Let the straight line ^^ be produced through ^ to P and through B to Q, so that

AP is equal to £Q. On BQ, BP let similar parallelograms be similarly described,

viz. BQRS and BPTU. Prove that the parallelogram whose adjacent sides are QA, QR
is equal in area to that whose adjacent sides are PA, PT.
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Art. 152. PROPOSITION LVI. (Euc. VI. 27, 28, 29.)

Enunciation. If OAB be a given triangle it is required to find a point P
on AB or AB produced so that if PQ be drawn parallel to OB to cut OA
in Q, and if PR be drawn parallel to OA to cut OB in R, then the parallelogram

PQOR may have a given area.

There are two kinds of cases.

Case I. Suppose the point P to have been found and to lie between A
and F, the middle point of AB.

Let E be the middle point of OA.

Complete the parallelogram EA VF.

Let QP cut FV in T.

Let PR cut EF in S and AV in U.

Then OQPR = OESR + EQPS
=EAUS+PUVT
=EAVF-SPTF
=^OAF-SPTF.

Hence if P be between A and F the area OQPR is less than the triangle

OAF. (This is equivalent to the result of Euc. VI. 27.)

Hence 8PTF= aOAF- OQPR
— h (given triangle OAB) — (a given area).

Hence the parallelogram SPTF has a known area.

It is also known to be similar to the known parallelogram EA VF.

Hence it can be constructed by Prop. 49, and if it be placed so that the side

corresponding to FV falls along FV, and the side corresponding to FE falls along

FE, then its diagonal will fall on FA by Prop. 55.

Hence the position of P is known.

(This is equivalent to the result of Euc. VI. 28.)

In order that the construction for P may be possible it is necessary that the

given area should not exceed half the given triangle OAB.

The above construction applies only to the case where P lies between A and F,

the middle point of AB.

U—

2
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If P be one position of the required point, let a point P' be taken on FB
so that PF= P'F, and let Q', R', S', T be the points corresponding to Q, R, S, T.

Then the parallelograms SPTF, S'P'T'Fare equal.

Hence the parallelograms OQPR, OQ'P'R' are equal.

Hence P' is another position of the required point.

Case II. Let P be on BA produced through A, and let the same construction

be made.

Then OQPR = OESR + EQPS
= EAUS+ PUVT
^SPTF -EAVF
= SPTF -LOAF.

.'. SPTF= LOAF + OQPR
— i (given triangle OAB) + (a given area).

Hence the parallelogram SPTF has a known area.

It is also known to be similar to the known parallelogram EA VF.

Hence it can be constructed by Prop. 49, and if it be placed so that the side

corresponding to FV falls along FV, and the side corresponding to FE falls along

FE, then its diagonal will fall along FA by Prop. 55.

Hence the position of P is known.

(This is equivalent to the result of Euc. VI. 29.)

In this case the construction is always possible for all magnitudes of the given

area.
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If P be one position of the required point, and a point P* be taken on FB
produced through B so that P'F = PF, then it may be shown that P' is another

position of the required point.

It results from Cases I and II that if the given area be less than half the

given triangle OAB there are four solutions of the problem, viz. P may be

between A and F or between F and B, or on BA produced through il, or on AB
produced through B.

If the given area be equal to half the triangle OAB there are three solutions,

viz. P may be at F, or on BA produced through A, or on AB produced through B.

If the given area be greater than half the triangle OAB there are two

solutions, viz. P may be on BA produced through A, or on AB produced

through B.



SECTION X.

THE REMAINING IMPORTANT PROPOSITIONS IN THE THEORY OF
RATIO, WITH GEOMETRICAL APPLICATIONS.

PROPOSITIONS 57—64.

Art. 153. PROPOSITION LVII. (Euc. V. 23.)

Enunciation. If A, B, C are three magnitudes of the same kind,

if T, U, V are three magnitudes of the same kind,

if A:B=U:V,
and B:C=T:U,
prove that A:G = T:V.

s
Compare A : G with any rational fraction -

.

It is necessary to consider only the two cases [Art. 48.

(1) A:G>1.
r

(2) A:G<1.
r

In case (1) u4 :C>-,
r

.'. rA> sG.

.'. vA— sC is a magnitude of the same kind as B.
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Hence by Archimedes' Axiom an integer n exists, such that

n(rA-sC)>B,

.'. nrA > nsG + B.

Hence an integer t exists, such that

nrA >tB> nsC.

.'. nrA > tB,

111

but

Since

but

and from (I)

A:B>-;
nr

A:B=U: V,

U:V>-,
nr

. nrU>tV.

tB > mC,

B:C>'^;

B:G=T:U,

T:U>'^

,

z

:. tT>nsU;

'. rtT> msU,

snrU>stV,

'. HT>8tV,

.-. rT>sV,

T:V>-.

[Prop. 8.

(I)*

(II)'

Hence if

In case (2)

A:C>-, then T.V>-
r r

A:C<
r

.'. rA < sC.

.'. sC —rA is a magnitude of the same kind as B.

* In the above proposition the inequalities (I) and (II) are transformed so that the multiplea of U,

which occurs in both, are the same. The inequalities (III) and (IV) below are treated in the same way.
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Hence by Archimedes' Axiom an integer n exists, such that

n {sG - rA) > B,

.' . nsC > nrA + B.

Hence a multiple of B exists, say tB, such that

nrA <tB< nsG. [Prop. 8.

Since vrA < tB,

.-. A:B<-;
nr

but A:B=U:V,

:. U:V<*-,
nr

.-. nrU<tV. (Ill)

Since tB < nsC,

But B:C=T:U,

z

:.tT<nsU. (IV)

From (III) snrU<stV.

From (IV) rtT< msU,

:. rtT<8tV,

.-. rT<sV,

.'.T:V<-.
r

Hence if ^:C<-,then T.V<-.
r r

But if A'.G>-, then T:V>-.
r r

Consequently A:C = T:V. [Art. 48.
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Art. 154. PROPOSITION LVIII. (Euc. V. 18.)

Enunciation. If two ratios are equal, the ratio of the sum of the antecedent

and consequent of the first ratio to the consequent of the first ratio is equal to the

ratio of the sum of the antecedent and consequent of the second ratio to the consequent

of the second ratio

;

i.e.if A'.B = X'.Y,

to prove that A + B :B = X + Y:7.

Compare the ratio A +B : B with the rational fraction -

.

There are three alternatives

(1) A + B:B>1,

(2) A + B:B =
l,

(3) A + B:B<-,
r

In case (1) A+B:B>^,

.'. r(A+B)>sB.

In this case it is necessary to consider separately the cases

r < s, r = s, r > s.

If r < s, the last inequality can be written

rA >(s — r) B.

8— r

but

.-. A
r

A -.B^X-.Y,

.-. X
r

.'. 1rX>{s-r) Y.

:. r{X + Y)>sY,

.'. X + Y
r

15
H. E.
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If r = «, then rY=sY
and .'. r(X+Y)>sY,

.'. X+Y:Y>-.
r

If r>5, then rY > sY,

• .-. r(X + Y)>8Y,

.\X+Y:Y>-.
r

In case (2) A+B:B = -,

.'. r(A+B)=sB.

This is impossible unless r < s.

Hence it can be written

rA = (s — r) B,

:.A:B = '-^;
r

but A-.B^X.Y,

r

:. rX = {s-r)Y,

:. r{X + Y) = sY,

.'. X+Y:Y=-.
r

In case (3) A+B:B<-,

.-. r{A+B)<sB.

This is impossible unless r <s.

.'. tA <(s — r)B,

.-. A :B < .

r

But A:B = X:Y,
s — r

. X:Y<
r

.-. rX<{s-r)Y,
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.-. r(X+Y)<8Y,

.'.X+Y:Y<-.
r

Hence, if A+B:B>-, then X+ Y: Y>-,
r r

if A+B:B = -, then X+Y:Y=-,
r r

if A+B'.B<-, then X+Y:Y<-.
r r

:. A + B:B = X + Y:Y.

Art. 155. EXAMPLES.

77. If ABC be a triangle right-angled at C, and ii AD bisect the angle BAC
cutting £C at D, prove that

AC:CI) = AC + AB:£a
(By means of this proposition Archimedes showed that the length of the circum-

ference of a circle was less than 3^ times its diameter.)

78. If ABC be a triangle right-angled at C, if AD bisect the angle BAC and cut

BC at D, and if BE be drawn perpendicular to AD cutting it at B, prove that

AB:EB = AC + AB:BG.

(By means of this proposition Archimedes showed that the length of the circum-

ference of a circle was greater than 3^ times its diameter.)

Art. 156. PROPOSITION LIX. (Euc. V. 17.)

Enunciation. If two ratios are equal, then the ratio of the difference of the

antecedent and consequent of the first ratio to the consequent of the first ratio is equal

to the ratio of the difference of the antecedent and consequent of the second ratio to the

consequent of the second ratio ;

i.e.if A'.B = X:Y,

then A'-B-.B^X-^Y-.Y.

It is necessary to consider separately the cases

A>B,
A = B,

A<B.
15—2
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1{ A> B, and therefore X > Y, then it is required to prove that

A-B:B=X-Y:Y.
o

Compare A —B:B with the rational fraction -

.

There are three cases

In case (1)

but

In case (2)

but

(1) A-B:B>-.
r

(2) A-B:B = -.
r

(3) A-B:B- 8
<-.
r

A-B'.B
s

r

.'. r(A-B) >sB,

.-. rA :>{r+s)B,

.-. A:B r + s

^ r
'

A:B = X:Y,

.. X:Y r + s

^ r
'

.'. rX >(r + s)Y,

',riX-Y) >sY,

.'. X-Y:Y: s
>-.
r

A-B.B s

~r'

:. r{A-B):= sB,

.-. rA := (r + s)B,

.-. A:B:
r + s

" r
'

A:B-= X:Y,

.'. X: Y--
r + s

" r '

.'. rX-.= (r + s)Y,
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In case (3)

But

CLID, BOOKS V. AND VL

.-. r{X- y)= sY,

.'. X-Y :F=
8

r'

A-B :B<
s

r'

..r{A- B)< sB,

.'. rA < (r + s)B,

.-. A :B<
r + s

r

A :5 = X:Y.

.'. X :F< r + 8

r '

.'. rX< (r + s)Y,

.-. r(X- Y)<sY,

.. X-Y:Y<^ s

' r'

Hence if A-B:B>-, then X-Y: Y>-,
r r

if A-B:B = -, then X-Y:Y = -,
r r

if A-B:B<-, then X-Y:Y<-.
r r

:. A-B.B = X-Y.Y.
If^=5, thenX=F.

Hence the difference of A and B, and the difference of X and Y, are both zero.

Hence the first term of each of the ratios A —B:B and X — F: F is zero, and

the ratios may be considered to be the same.

K A <B, and therefore X <Y, then it is required to show that

B-A:B=Y-X:Y.
This may be proved independently as in the first case, or may be deduced

from it.

For if A:B = X:Y,
then B:A = Y:X. [Prop. 21.

.-. £-^:A = F-X:Z, by Case 1.

But A.B = X:Y.

.'. B-A:B=Y-X:Y. [Prop. 37.
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Art. 157. EXAMPLES.

79. Prove the last case of Proposition 59 directly in a manner similar to that

adopted for the first case.

80. li A:B=X: Y, sind A> £, prove that

A:A-B = X:X-Y.

81. If ^ : -ff = ^ : C, and il > B, prove that

A-C:A-B = B+C.B.

Art. 158. PROPOSITION LX.

Enunciation. // A:B = X.Y,

prove that A -- B:A + B = X -- Y.X + Y.

If A:B = X:Y,

then A+B:B=X + Y:Y,

.-. B:A+B=Y:X+Y.
Also A '-B:B = X --Y.Y.

.-. A'-B:A+B =X --Y'.X + Y.

[Prop. 58.

[Prop. 21.

[Prop. 59.

[Prop. 37.

Art. 159. PROPOSITION LXI.

Enunciation. If A,B,G, D befour harmonic points, A and C being conjugate,

and if be the middle point of AC, then 00 is a mean proportional between

OB and OD.

A O B C D

Fig. 66.

Since A divides BD in the same ratio as C does,

AB:AD = BC:GD.

.'. AB:BG=AD:GR
.-. AB-BO:AB + BG = AD-GD:AD + CD.

.-. 20B:20G=20C:20D.

.-. 0B:0G=0G:0D.
.'. OG is a mean proportional between OB and OD.

[Prop. 24.

[Prop. 60.

[Prop. 15.
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Art. 160. EXAMPLES.

82. Prove that if a circle be drawn through two points which are inverse with

regard to a second circle, then the two circles cut each other at right angles.

83. If A, B, C, D be four harmonic points, and if be the middle point of AC,

show that a circle can be drawn with centre so as to cut at right angles any circle

that can be drawn through B and D in the plane of the circle whose centre is 0.

84. If the diagonals AC, BD of the quadrilateral ABCD intersect at E and a

straight line EG be drawn parallel to one of the sides AB meeting the opposite side

CD in G and the third diagonal (i.e. the straight line joining U the intersection of AB
and CD to / the intersection of AD and BG) in /, then EJ is bisected at G.

[If EG cut AD in K and BC in Z, prove that

AB : BH=KL : LJ= EL:LG = KE: EG.]

Hence by the aid of Ex. 50 show that HA, HE, HC, HI are four harmonic lines.

Art. 161. PROPOSITION LXII. (Euc. V. 24.)

Enunciation. If

and

prove that

Since

but

but

A:G = X.Z,
B:G=Y:Z,

A + B:G =X+7:Z.

B:G=Y:Z,
.'. C:B = Z:Y,

A:C = X:Z,

.-. A:B = X:Y,
A + B:B = X+Y:Y,

B:C=Y:Z,

A + B:G = X + Y.Z.

[Prop. 21.

[Prop. 37.

[Prop. 58.

[Prop. 37.

Art. 162. PROPOSITION LXIII. (Euc. V. 4.)

Enunciation. If A:B = X:Y,

to prove that rA:8B = rX:sY.

P
Compare the ratio rA : sB with any rational fraction -
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There are three cases

(1) rA.sB>^,

(2) rA:sB = ^,
9

In case (1)

But

(3) rA'.sB-

rA'.sB
>'r

.'. q(rA) >p{sB),

.'. qrA >psB,

.-. A:B
qr'

A:B = X:Y,

.-. X:Y ps

''qr'

.'. qrX >psY,

:. q{rX) >p{sY),

:. rX:sY
9.

Hence if rA : sB >^ , then rX : sY>^.
2 q

In like manner it can be shown that

if rA:sB^^, then rX:sY = ^,
q q'

and if rA : sB

<

^, then tX.sYk^.
q q

.-. rA :sB = rX:sY.

Art. 163. EXAMPLE 85.

Prove the converse of Proposition 63, viz.

If rA:8B = rX:8T,

then A:B = X: ¥.
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Art. 164. PROPOSITION LXIV.

Enunciation. // K, L, M, P be four straight lines in proportion, if the

lengths of L atid M he fixed, if the length of K can he made smaller than that

of any line however small, to show that the length of P can be mude greater than

that of any line Q, however great Q may be.

By Archimedes' Axiom (Art. 22), it is always possible to find an integer r

such that

rM>Q.

Now divide L into r equal parts, and take K smaller than one of these

equal parts.

Then rK < L.

Now K'.L = M:P.

.'. rK:L = rM.P. [Prop. 63.

Now rK < L.

.-. rM<P.

But Q< rM.

:.Q<P.

Art. 165. EXAMPLE 86.

If K, L, M, F be four straight lines in proportion, if the lengths oi L, M he fixed,

and if the length of K can be made greater than that of any line however great, show

that the length of P can be made smaller than that of any line Q however small.

16



SECTION XI.

OTHER PROPOSITIONS IN THE THEORY OF RATIO.

PROPOSITIONS 65, 66.

Art. 166. PROPOSITION LXV. (Euc. V. 19.)

Enunciation. If A, B, C, D are magnitudes of the same kind, and

A.B=C.D,

prove that A -- G.B -^ D = A:B.

A:B=C.D,
.-. A:C = B:D, [Prop. 24.

.'. A--C:C = B~D:D, [Prop. 59.

.-. A'-C:B--D = G.D, [Prop. 24.

.-. A-'G:B'^D = A.B.

Art. 167. EXAMPLE 87.

If X, A, S, A' are four harmonic points, A and A' being conjugate, and if C be the

middle point oi AA', prove that

SA : AX=CS: CA = CA: CX.

Art. 168. PROPOSITION LXVI. (Euc. V. 25.)

' Enunciation. // four magnitudes of the same kind are proportional, then the

greatest and least of them together are greater than the sum of the other two.

Let A.B=G:D.
Suppose A the greatest of the four magnitudes.



169] EUCLID, BOOKS V. AND VI. 123

Then A > B.

.'. A:B>\.

.'. C:2)>i.

.-. C>D.

Again '.• A:B = C:D.

Now A>G.
.'. B>D. [Art. 70.

Hence D is the least of the four magnitudes.

Hence it is required to prove that

A+D>B+a
Since A:B^C:D,

.-. A-B:B = C-D:D. [Prop. 59.

.. A-B:G-D = B:D. [Prop. 24.

Now B>D.
... A-B>C-D.
.-. A +D>B + C.

Art. 169. EXAMPLE 88.

If three quantities be in proportion, show that the sum of the extremes will exceed

double the mean.

16—2



NOTES.

Art. 170. NOTE 1. On Props. 1—6, 15 and Art. 31.

Props. 1—5 relate to certain simple cases of the application of the Com-

mutative, Associative and Distributive Laws, with which the reader who has

commenced elementary Algebra is already familiar.

Prop. I. r(A+B) = rA+ rB.

Treating J. + -B as the multiplicand,

and r as the multiplier,

it is seen that the multiplicand is divided (or distributed) into its parts A^ B.

Prop. 11. (a + h)R = aR + bR

Treating a + 6 as the multiplier,

and R as the multiplicand,

it is seen that the multiplier is distributed into its parts a, b.

Prop. III. If A>B,
r(A-B) = rA- rB.

Here the multiplicand A — B \s distributed into its parts A, B.

Prop. IV. If a>b,

{a-b)R = aR- bR.

Here the multiplier a — 6 is distributed into its parts a, b.

Prop. V. r {sA) = (rs) A = {sr) A =s (rA).

This illustrates both the Commutative and Associative Laws.

The fact (rs) A = (sr) A
illustrates the Commutative Law.

The fact that r (sA) = (rs) A
and the fact that (sr) A = s (rA)

both illustrate the Associative Law,
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If Propositions 1—4, 6, 15 and Art. 31 be arranged in parallel columns, thus:

—

L r(A + B) = rA + rB. II. (a + b)R = aR-\-bR

III. r(A-B) = rA-rB. IV. (a-h)R = aR-bR.

VI (i). If A^B, Vl(iii). If a 1 6,

then rA | rB. then aR | bR.

VI (ii). If rA^rB, VI (iv). If aR%bR,
then A%B. then a 1 6.

XV. ^:5 = n^:wi?. Art. 31 a:b= aN:bN.

Then the two propositions in any one line are related to each other in such a

manner that magnitudes in either are replaced by whole numbers in the other.

NOTE 2. On Props. I. and II.

Art. 171. A more formal proof of Proposition I. will now be given.

The Commutative Law is

X+Y=Y+X. (I)

The Associative Law is

(X+ Y) + Z = X + {Y+Z). (II)

The argument will be followed more easily if the associative law be also written

X + {Y + Z) = (X+Y) + Z. (Ill)

When used in the form (II) the first term on the left X + Y is broken into

two parts, and the term Y is added to the second term Z on the left.

When used in the form (III) the second term on the left F+^ is broken into

two parts, and the term Y is added to the fii*st term X on the left.

Art. 172. LEMMA.

To prove {rA +rB) + {A + B)=^{r +1)A +{r+l) B.

Putting X = rA + rB, Y=A, Z=B iu (III),

irA+rB) + {A+B) = [{rA+rB) + A] + B.

Putting X = rA, Y=rB, Z = A in (II),

[{rA + rB) + A] = rA+ {rB + A)

= rA+{A + rB) by (I).
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Putting X = rA, Y=A, Z= rB in (III),

rA+(A+ rB) = {rA +A) + rB.

.'. [{rA+rB) + A]=^{rA-{-A) + rB.

.'. {rA+ rB) + {A-\-B) = [{rA +A) + rB] + B.

Putting Z = (ril + A), F= rB, Z=B in (II),

[{rA^A)-¥rB]+B = {rA+A)^-{rB + B).

.-. {rA+rB) + {A+B) = {rA+A)-^{rB^-B).

But by Art. 3 rA+A={r+\)A,
and rB + B = {r + \)B.

.'. {rA^-rB)^{A+B) = {r + l)A-^{r+l)B.

Art. 1 73. To prove r{A + B)= rA + rB.

Now since 2Z = Z + X,

.-. 2{A-^B) = {A+B) + {A^B).

But by putting r = 1 in Art. 172

(il + 5) 4- (^ + 5) = 2A + 25,

.-. 2 (^+5) = 2^ + 25.

Again since 3Z = 2Z + Z,

.-. 3(4 + J5) = 2(4+5)+(^+5),
.-. 3(^+5) = (24 + 25) + (^+5)

= 3^ + 3J5 by putting r = 2 in Art. 172.

Proceeding thus suppose it has been proved that for some positive integer t

t{A+B) = tA+ tB.

Since {t+l)X = tX + X,

.: {t + l){A+B)

= t{A + B) + {A + B)

= (tA + tB) + (A + B) by hypothesis

= (t + l)A+(t + l)B,

as is seen by putting r = t in Art. 172,

i.e. (t + l){A+B) = it + l)A+{t + l)B.

Hence if r (^ + 5) = rA +rB, for any integral value of r, it is true for the

next integral value.

But it is true for r = 2 and r = 3, therefore it is true for r = 4, therefore for

?• = 5 and so on it is true for every positive integral value.
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Art. 174. A more formal proof of Prop. II. will now be given.

To prove aR + hR = {a + b) R,

aR + R = (a + l)R by Art. 3,

.-. {aR + R) + R = {a + 1) R + R = (a + 2) R by Art. 3.

Now (aR + R)+R = aR + (R + R) by (II) of Art. 171

= aR + 2R,

.-. aR + 2R=(a + 2)R,

.'. (aR + 2R) + R = {a+ 2) R + R = {a + d) R by Art. 3.

Now {aR -\-2R) + R = aR+ {2R + R) by (II) of Art. 171

= aR + SR,

.-. aR + SR = {a + S)R.

Suppose it has been proved by successive steps that

aR-\- cR = (a + c) R.

Then {aR + cR) + R = {a + c)R + R = (a + c + 1) R. [Art. 3.

But (aR + cR)+ R = aR + (cR + R) by (II) of Art. 171

= aR + {c + l)R,

.-. aR + {c+l)R = (a+c + l)R.

Hence if aR + cR=(a + c) R,

then aR + (c + l)R = (a + c + l)R.

Now it has been proved that

aR + SR = {a + S)R,

.-. aR + 4>R = {a + 4L)R,

and so on it follows that

aR + bR = (a + b)R,

where a, b are any positive integers.

Art. 175. NOTE 3. On Art. 46.

Euclid's Eleventh Proposition of his Fifth Book is as follows :

—

If the ratio of ^ : i? is the same as that oi G:D,

and if the ratio of J. : 5 is the same as that of E:F,

then the ratio of C : Z) is the same as that of E:F.

As remarked in the preface, if a ratio is treated as a magnitude, then this

merely expresses that if X = Y, and if X = Z, then Y = Z.
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Euclid in his proof takes a different point of view ; which may be expressed

thus :

—

If the magnitudes A, B, C, D satisfy the conditions of the Fifth Definition of

the Fifth Book ; and if the magnitudes A, B, E, F also satisfy them, then will the

magnitudes C, D, E, F satisfy them.

The proof, stated in the manner of this book, will be as follows:

—

Take any rational fraction - .

Compare with it the ratio G : D.

Then (1) C : D may be greater than -
,

or (2) G:D may be equal to -
,

or (3) G:D may be less than -

.

Take the case (1) G:D>-.

Then since A, B, G, D satisfy the conditions of Euclid's Fifth Definition

A.B>-,
r

and then since A, B, E, F satisfy the conditions of Euclid's Fifth Definition,

.-. E:F>-.
r

Hence if C: i)>- , then ^:i?'> - .

r r

Similarly if G.D = -, then E:F = -,

and if G:D<-, then E:F<-.
r r

:. G:D=E:F. [Art. 46.

Art. 176. NOTE 4. Euclid's Definition of Ratio.

Euclid's Definition of Ratio (the third Definition of the Fifth Book) is as

follows :

A6709 ecTTL 8vo fieyedwv 6fJ,oy€VMi/ r^ Kara •wrfKiKorriTa Trpo<i atCKifKa iroia
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De Morgan translates it thus

:

" Ratio is a certain mutual habitude of two magnitudes of the same kind

depending on their quantuplieity."

The word " quantuplieity " which represents the Greek " 7riyXt«oT»;«? " is

especially difficult. It contains the idea of relative magnitude.

De Morgan defines Ratio as Relative Magnitude on page 63 of his Treatise on

the Connexion of Number and Magnitude.

Art. 177. NOTE 5. Incommensurable Magnitudes. (See Art. 43.)

To prove that incommensurable magnitudes exist, it is sufficient to show this

in a particular case.

The case which will be selected is that of a side and a diagonal of a square.

Let X be the side, and Y the diagonal of the square OABG.

Along the diagonal BO take BD = BA. Draw DE perpendicular to BO to

meet OA at E.

Then the right-angled triangles BEA, BED have the

hypotenuse BE in common, and one side BA = one side BD.

Hence they are congruent.

.-. EA=ED.
Again DOE is an isosceles right-angled triangle,

.-. ED = DO.

Now OB = BD + DO
= 1{0A) + 0D,

0A = 0E + EA = 0E+0D.

Now let OA=X, 0B=Y.

Call OD = X„ OE=Y,.

Then F=1(X) + Z„

X = X,+ Y,.

Hence if X and Y have a common measure,

Xi is measured by it,

and .'. Fi is measured by it.

Hence if X and Y have a common measure, this common measure also measures

X, and Fi.

H. E. 1'
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Now Xi and Y^ are the side and diagonal of a smaller square.

But this is a process which can be continued without limit.

It will now be shown that any common measure of X and Y is also a common

measure of the side and diagonal of a square, whose side can be made as small as

we please.

Suppose that by repeating the construction on the square whose side is Xi,

another square is obtained whose side is X^ and diagonal Y^ and so on.

Now X = X,+ Y„

but Y,>X,.

.-. Z>2Zj.

Similarly Xi > 2X2,

and so on.

Hence after repeating the process w times, it follows that

X > 2»X„.

But 2« = (1 + l)** > 1 + 71 > n,

.'. X > nXn.

Hence the common measure ofX and Y, if it exist, is not greater than X^ and
X

.'. less than — however large n may be.

Now if X, Y have a common measure G, it is always possible by Archimedes'

Axiom to find an integer n, such that

nG>X,

..G>1,
n

which is contrary to what is proved above.

Hence X and Y have no common measure.

Hence the side and diagonal of a square have no common measure.

Hence incommensurable magnitudes exist.

Art. 178. NOTE 6. On Prop. 24.

In order to complete the proof of Prop. 24 without using Prop. 14 it is necessary

to show directly that

if A.B=G:D,
and if rA = sC, then rB = sD.
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If rA = sC,

then rA:B = sG:B.

Now A:B=G:D,
.'. rA:B = rG:D. [Prop. 63.

.-. sGiB^^rG'.D.

The required result follows from this by so altering the terms of the ratios that
the 1st term is the same in each.

Now 8G:B = rsG: rB, [Prop. 15.

and rG:D = 8rG: sD. [Prop. 1 5.

.
*. rsG : rB = srG : sD.

.-. rB^sD. [Prop. 23.

Another Proof.

Since A:B=G:D,
••• rA:rB = A:B, [Prop. 15.

and 8G:sD=G:D, [Prop. 15.

.-. rA:rB = sG:sD.

But rA = sC,

.-. rB = sD. [Prop. 23.

Art. 179. NOTE 7. On Prop. 26.

The 26th Proposition is a very suggestive one. It not only leads naturally

to the consideration of the point at infinity on a straight line, which is briefly

mentioned below, but also to the consideration of negative ratios (which are not

treated in this book).

It has been shown that if ^ : Z is not a ratio of equality, then there is one way

of dividing AB internally and one way of dividing it externally in the ratio K:L.

Let the internal point of division be G, and the external point of division G',

then it appears from the proof of Prop. 26 that G and G' always lie on the same

side of 0, the middle point of AB.

Further it follows from Prop. 61 that

the rect. OG . OG' = the square on OA.
17-2
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Now suppose that the length of K is fixed, and let the effect of diminishing

the length of L down to equality with that of K be investigated.

Then AG and GB tend to become equal, and therefore G approaches 0, and by

making the difference of K and L sufficiently small the length OG may be made

smaller than any length however small ; and therefore by Prop. 64 the length of

OG' can be made greater than any length however great.

Similar conclusions can be drawn from the case in which K is greater than L,

except that G and G' are on the same side of as 5.

When however K = L, the internal point of division is the middle point, but

the external point of division does not exist from Euclid's point of view ; because

Euclid regards parallel straight lines as never meeting and so the construction

fails in this case.

Hence from Euclid's point of view it is impossible to state generally that to

every point G on AB between A and B there corresponds a point C such that C
divides AB externally in the same ratio as G divides AB, because there is no

point corresponding to the middle point of AB.

From the point of view of Modern Geometry in which a straight line is

supposed to have one point at infinity, when G is at the middle point of AB,
G' is at infinity ; and the theorem can be stated quite generally that there is

one way of dividing AB internally and one way of dividing it externally in any

given ratio K : L.

Art. 180. NOTE 8. On Art. 91.

The contents of Art. 91 may perhaps be more easily appreciated by con-

sidering the following numerical case.

Consider the triangle whose sides are a, b, c ; and the triangle whose sides

k^ k' hF
are -

, -r ,
-

.

a b c

Then b
k^ k'

: c ^ — ' — •

c 6
'

t ,^.
c : a ^ — '

• 5

a C

_k\.^.
a : b

b a
'

so that any two sides of one triangle are proportional to some two sides of

the other.
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But the two triangles do not satisfy the condition in the enunciation of

Prop. 29 implied in the words " taken in order."

E.g. whilst h corresponds to — in the 1st proportion,
c

it corresponds to - in the 3rd proportion.

As a numerical example take a = 5, 6 = 3, c = 4 and 1(? = 60.

JL2 1.2 L2

Then - = 12, I = 20, - = 15
;

a c

and we have 8 : 4 = 15 : 20

4:5 = 12:15

3 : 5 = 12 : 20.

But since 5^ = 3^ + 4!',

but (20)2 4= (12)^ + (15)^

the first triangle is right-angled, the second is not ; and therefore the triangles are

not similar.

Art. 181. NOTE 9. On Prop. 37.

In order to complete the proof of Prop. 37 without using Prop. 14 it is necessary

to show dii-ectly that

if A:B = T:U,

if B:C=U:V,

and if rA = sC, then rT = sV.

If rA = sC,

then rA:B = sC:B.

Since A:B=T:U,
-. rA:B = rT:U.

Since B:C=U:V,
.-. B:sG=V:8V.

.-. sG:B = sV.U.

: rT:U = sV:U.

.-. rT = sV.

[Prop. 63.

[Prop. 63.

[Prop. 21.

ifr^=s(7, thenrr=5F.
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Art. 182. NOTE 10. On Prop. 43.

The areas of similar triangles are proportional to the areas of Ike squares

described on corresponding sides*

Let ABC, DEF be similar triangles.

Let AB, DE be corresponding sides.

On AB, DE describe the squares ABLK, DENM.

It is required to prove that

i\ABG : l\DEF = square ABLK : square DENM.

R F S

Draw GG perpendicular to AB, and FH perpendicular to DE.

Describe on AB the rectangle ABQP having the same altitude as the triangle

ABG, and on DE the rectangle DESR having the same altitude as the triangle

DEF.

The triangles AGG, DFH are similar, for

GAG = FbH,

GGA = FED,

.'. AGG = DFH.

* On account of the importance of this proposition an independent proof is given.



183] EUCLID, BOOKS V. AND VI. 136

Hence the triangles are similar by Prop. 28.

.-. CG:GA=FH:FD,
.'. CG:FH=GA:FD, [Prop. 24.

but GA:FD==AB: DE,

since the triangles are similar

;

.-. GG : FH =^ AB : DE,

i.e. AP:DR = AK:DM,
.. AP:AK = DR: DM, [Prop. 24.

.-. rect. ABQP : square ABLK = rect. DESK : square DENM,
.'. rect. ABQP : rect. DESR = square ABLK : square DENM.

[Prop. 24.

Now rect. ABQP = 2AABG

and rect. DESR = 2aDEF,

.-. rect. ABQP : rect. D^fifiJ = aABG: aDEF, [Prop. 15.

.-. aABG : AD^i^ = square ABLK : square D^^iVilf.

Art. 183. NOTE 11. On Prop. 57.

(a) In order to complete the proof of Prop. 57 without using Prop. 14 it is

necessary to prove directly that

if A:B=U:V,
if B:G=T:U,
and if rA = sG, then rT = sV.

If rA = sG,

then rA:B = sG:B (I).

Now A'.B=U:V,
.-. rA:B = rU:V (II). [Prop. 63.

Further B:G=T:U.
.-. G:B=U:T, [Prop. 21.

.-. sG:B = sU:T (III). [Prop. 63.

From (I), (II), (III) it follows that

rU:V=sU.T (IV).

In the last result it is possible to transform the terms of the ratios so that the

first term is the same in each.

rU:V=^U:sV (V), [Prop. 15.

sU:T=rsU'.rT (VI). [Prop. 15.
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From (IV), (V), (VI) it follows that

srU:sV=rsU:rT.

But srU=rsU,

.'. sV=rT. [Prop. 23.

.-. if rA = sG, then rT=^sV.

(/9) Propositions 37 and 57 are so nearly alike in form that the difference

between them should be carefully noted.

Arranging them in parallel columns :

—

Prop. 37. Prop. 57.

If A:B = T:U, If A:B=U:V,
and if B:G=U:V, and if B:G=T:U,

then A:C=T:V. then A:G=T:V,

it appears that the positions of the ratios T: U, U :V in Prop. 37 are interchanged

in Prop. 57.

Art. 184. NOTE 12. On Prop. 59.

The statement on lines 18 and 19 of Page 117 that two ratios in which the first

term is zero may be considered to be the same may present some difficulty, inasmuch

as a ratio presupposes the existence of two magnitudes, and the ratio of zero to a

magnitude has not been defined.

Without going fully into the subject, which here touches upon the difficulties

of the Infinitesimal Calculus, it may be sufficient to remark that since

[Prop. 15.
/C/

and

-:A-
n

= A •.nA,

.' A: nA
1

A
n
:A

1

n'

ANow imagine the integer n to increase without limit, then — tends to the

A
limit zero, and therefore the ratio — \ A is one in which the first term tends to

n

the limit zero, whilst at the same time the ratio, viz. - , tends to the limit zero.
n
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In this connection the following proposition is of interest.

If the ratio ofA to B is the same as that of G to D ; if A can be made as small

as we please, and if B and D be fixed magnitudes, then C can be made smaller than

any magnitude E, however small E may be.

It is possible by Archimedes' Axiom to choose n so that

nE>D\

J)
and by hypothesis A can be taken smaller than —

,

ie. nA < B,

But

A :B
1

<-.
n

A :B = C:D,

C :D
1

,-. nC <D,

.'. nC <nE,

/. C <E.

So that when the first term of the ratio of A to B tends to zero, so also does

the first term of the ratio of G to D.

Another proposition of a similar kind is this :

—

If the ratio of A to B is the same as that of G to D ; ifA can be made as smull

as we please, if G and D be fixed magnitudes, then B can be made smaller than any

magnitude E, howevei' small E may be.

It is possible by Archimedes' Axiom to choose n so that

nG>D.

.'. G:D>-.
n

Then since A'.B = G:D,

.'. A:B>-,
n

.-. nA > B.

Now by hypothesis A can be made as small as we please.

H. E. 18
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Choose therefore

A<-,
n

i.e. nA < E.

:.B<E.

Hence if the ratio of il io B be given, and one term tend to zero, so does

the other.

Art. 185. NOTE 13. THE COMPOUNDING OF RATIOS.

The 37th Proposition is a very important one.

It is as follows

:

if A:B=T:U,

and B:C=U:V,

then A:G=T:V.

Euclid describes the connection of the ratio A : G with the ratios A : B and

B -.0 by saying that the first ratio is compounded of the other two.

He uses the result in connection with Prop. 40, in which the ratio of the areas

of two equiangular parallelograms is determined.

This terminology has not been employed in the text, because it is found

difficult by beginners, Ou the other hand the object of the terminology, so far as

the determination of the ratio of the areas of two equiangular parallelograms

is concerned, is completely attained by the mode in which Prop. 40 is proved.

But the value of the terminology extends beyond its use in this proposition.

It will therefore be considered more at length.

Art. 186. The development of the process of compounding ratios is made in

four stages.

Stage 1. When it is necessary to determine the relative magnitude of two

magnitudes, A and C, of the same kind, it is often convenient not to make
the comparison directly, but indirectly by taking another magnitude B of the

same kind as A and C ; and then comparing A with B, and afterwards B with C.

From this point of view the relative magnitude of A and C is considered to be

determined by the relative magnitude of A and B and the relative magnitude of

B and C.
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Stage 2. Euclid expresses the general idea stated in the first stage by saying

that the ratio of A to C is compounded of the ratio of J. to i? and the ratio of

BtoC.

Stage 3. Def. 19. THE PROCESS OF COMPOUNDING RATIOS.

Let the ratios to be compounded be P : Q and T : U.

Take any arbitrary magnitude A, and then find B so that

P:Q=A:B (I),

and then find C so that T: U = B.G (II).

Then the ratio compounded of P:Q and T: II is the ratio compounded

of A:B and B : C, and is therefore A:G by the statement in the second

stage.

This process* contains an arbitrary element, viz. A.

Stage 4. In order to justify the process described in the preceding stage, it

is necessary to show that the presence of the arbitrary element in the third stage

has no influence on the value of the resulting ratio.

Suppose that instead of A, the magnitude A' had been selected, and that

B' and C had then been found so that

P:Q = A':B' (Ill),

T:U=B':C' (IV).

Then the resulting ratio would be that compounded of A' :B' and R : C,

and would therefore be A' : C.

In order that this may agree with the previous result, it is necessary to

show that
A:C=A':C' (V).

From (I) and (III)

A:B = A':B' (VI).

From (II) and (IV)
B:G = R:C' (VII).

From (VI) and (VII) by Prop. 37, the proportion (V) follows.

Hence the process in the third stage always leads to the same value of the

resulting ratio, whatever be the value of the arbitrary element.

This is the justification of the process described in the third stage.

* It should be noted that this process assumes the existence of B and C, when A has been chosen

arbitrarily, the proof of which depends on the Fundamental Proposition in the Theory of Ratios

(Art. 215).

18—2
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Art. 187. ARITHMETICAL APPLICATION OF THE PROCESS FOR
COMPOUNDING RATIOS.

To compound the ratio r : s with the ratio u : v where r, s, u, v are positive

integers.

r:s = ru:su
)
y by Prop. 15.

u:v— su: sv

Hence r : s compounded with u : v

= ru:su compounded with sv : sv

= ru:sv

by the definition of the ratio compounded of other ratios in Art. 186, Stage 2.

r
Now r:s = -

:

s

u
u:v=-: } [Art. 31.

V

- ru
and ru:sv= —

sv J

Observe further that — is defined to be the Arithmetical Product of -

sv 8

and - , the result being written

r u ru
- X - = —

.

s V sv

Hence this arithmetical theorem corresponds to the theorem that

r : s compounded with u:v = ru: sv.

Art. 188. Def. 20. DUPLICATE RATIO.

If a ratio be compounded with itself the resulting ratio is called the

duplicate ratio of the original ratio.

Thus [{ A : B be compounded with A : B, the resulting ratio is called the

duplicate ratio of A :B.
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Art. 189. PROPOSITION LXVII.

Enunciation. // three magnitudes he in proportion the first has to the third

the duplicate ratio of the first to the second.

Let A:B = B:G.

Then if A : B be compounded with A : B, the result is the same as if A: B he

compounded with B : G, and is therefore A : C. [Art. 186, Stage 2.

Hence A :G is the duplicate ratio of A : B, i{ A : B = B:G.

Art. 190. PROPOSITION LXVIII.

Enunciation. If two ratios be equal, their duplicate ratios are also equal.

If A.B=C:D (1),

it is required to prove that the duplicate ratio of A : 5 is equal to that of G:D.

Take JS: so that A.B = B:E (2),

and i?' so that G:D = D.F (3).

Then by (1), (2), (3) B:E=D:F (4).

Hence from (1) and (4) A:E=G: F, [Prop. 37.

But by (2) A:E is the duplicate ratio of A:B [Prop. 67.

and by (3) G:F is the duplicate ratio of G:D, [Prop. 67.

.'. the duplicate ratio of A :B is equal to the duplicate ratio of G:D.

Art. 191. EXAMPLES.

89. Using the symbol -^f as an abbreviation for the words "compounded with,"

prove that

(i) {A:B)^{C:D)^(G:D)^{A'.B).

(ii) [(A:B)^{C:D)]^{E:F)

= (A:B)^[{C:D)^{E:F)-].

90. Prove that {A : B) ^ [{B : A) ^ (C : D)] = C : D.

Hence show how to tind the ratio which must be compounded with A : B to give

the ratio C : D.

91. Prove that [{A : B) ^ {C : D)] ^ {D : C) ^ {A : B).
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92. If E'.C = A:P,

prove that {A :B) ^ {C : D)^{P: Q).

93. What is the result of compounding any ratio with a ratio of equality ?

What is the result of compounding a ratio of equality with any ratio ?

94. If a ratio be compounded with its reciprocal show that the result is a ratio

of equality,

95. If A, B, C, D he magnitudes all of the same kind, prove that

A : B compounded with C : D
gives the same result as

A : D compounded with C : B.

96. Prove that A : B compounded with C : D gives L : B where D :C = A : L.

97. li A, B, C, D are all magnitudes of the same kind, and

D : A compounded with D : B
is equal to D :C, find the relation between A, B, C, D.

If A, B, C, D are all magnitudes of the same kind, and \i A : D compounded with

B : D give C : D, find the relation between A, B, G, D.

98. (i) What ratio must be compounded with j4 : C to give B -.CI

(ii) What ratio must be compounded with C : ^ to give C :B1

99. If the duplicate ratio of J. : ^ be equal to the duplicate ratio oi C : D, then prove

that A.B=C:D.

100. (i) Prove the theorem of Menelaus ; viz. if a straight line A'B'C cut the sides

of the triangle ABC^ viz. BC in A', GA in B', AB in C ; then the ratio compounded of

the ratios

BA' : A'G, CB' : B'A, AG' : G'B
is a ratio of equality.

(ii) Pro^e the converse of the theorem of Menelaus : if the sides of the triangle

A'B'C be divided, BG in A', GA in B', AB in C", so that two of the points of division

are internal and one external, or else all three are external ; and if further the ratio

compounded of

BA' : A'G, GB' : B'A, AG': G'B

is a ratio of equality, then the points A', B', G' lie on one straight line.

101. Prove that the six centres of similitude* of three circles lie three by three

on four straight lines (called the axes of similitude of the circles).

[Apply the last example, taking A, B, G at the centres of the circles.]

* See Ex. 37, p. 73.
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102. (i) Prove the theorem of Ceva, viz. :

If be a point in the plane of the triangle ABC, ii AO cut BC at A', if BO cut CA
at B\ if CO cut AB at C\ then the ratio compounded of BA' : A'C, Cff : RA, AC : C'B
is a ratio of equality.

(ii) Prove the converse of the theorem of Ceva, viz.

:

If the sides of the triangle ABC he divided, BC at A', CA at B\ AB at C, ao that

two of the points of division are external and one internal, or else all three are internal,

and if further the ratio compounded of BA'.A'C, CB'-.EA, AC -.C'B is a ratio of

equality, then the three straight lines AA\ BB\ CC are concurrent.

Art. 192. Def. 21. CROSS OR ANHARMONIC RATIO.

If A, B, G, D be four points on a straight line, they determine six

segments on that line.

Take any one of these six segments, say BD.

Then A divides it in the ratio ABiAD; and G divides it in the ratio

GB'.GD.

Then the ratio which must be compounded with either of these ratios

to produce the other is a value of the cross or anharmonic ratio of the

four points*.

Art. 193. EXAMPLES.

103. Ii A, B, C, D he four points on a straight line, and any point not on

that straight line, and if through B a straight line be drawn parallel to OB to cut OA at

£ and OC at F, then prove that

(CB : CD) -K- (BE : BF) = (AB : AD).

104. By means of the preceding example prove that if four fixed straight lines

passing through a point be cut by any fifth straight line, then the cross-ratio of the four

points of intersection is independent of the position of the fifth straight line.

106. (i) If A, B, C are three points arranged in this order on a straight line L
;

if A', B\ C are any three points arranged in this order on another straight line L' ; if

the points A, B, C he joined to any point ; then prove that it is possible to draw a

transversal A"B"C" across the lines OA, OB, OC such that

A"B" = A'B', B"C" = B'C.

* This definition is sufficient for solving the problems set in this book. It is not however

a complete one as the signs of the segments have not been specified. When the signs are specified,

it can be shown that there are six values of the cross-ratio, all of which are determined when any

A a OT}
one is given. One of these six values is (AB : AD) -)(- (CD : CB) and is usually written

^X)
*

CB
*
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(ii) If through a point any four straight lines be drawn, and these be cut by any
transversal at A, B, C, D ; if the straight lines joining any point 0^ to A, B, C, I) be
cut by any transversal &t A^, B^, C^, D^; ii the straight lines joining any point Oj to

-^1) A. C'n A be cut by any transversal at ^2, i?2, 0^, A ; and if this process be repeated
any number of times, so that four points A^, 5„, C„, Z>„ are finally obtained ; then
prove that it is possible to draw a transversal A'BCD' across OA, OB, OC, OD such that

A'B'=A^B^, B'C'^B^G^, C'D'=G,D,.

(This is the geometric property which is unaltered by projection and corresponds to

the constancy of the anharmonic ratio of four points on a straight line.)

106. If ^1, Bi, Ci be any three points on a straight line ; and A^, B^, C^ any three

points on another straight line, show how to determine points D^, D^ on the two straight

lines so that the cross-ratio of A-^, B^, C\, D^ shall be equal to that of A^, B^, C^, A-
[On the straight line A^A.^ take any two points 0^, 0^. Let O^B^, O^B^ meet at B;
let OiCi, O2C2 meet at C; then show that the points D^, D^ are such that O^D OJ)^
intersect on BGi\

107. If ABC be a triangle, if B be the middle point of BC, if any straight line

through D cut AB at E, ^C at F, and a parallel through A to BC at G, then find

the value of the cross-ratio of E, D, F, G.

108. If A, B, G, D be four fixed points on a circle, and P, Q any two other points

on the same circle, prove that the cross-ratio of the four straight lines PA, PB, PG, PD
is equal to that of the four straight lines QA, QB, QC, QD ; and also to that of the four

points in which the tangent at P to the circle is cut by the tangents at ^, B, G, D.

109. Let the points P, P' on the straight line OX be said to correspond when the

rectangle OP . OF' is equal to a given rectangle. Then prove that the cross-ratio of any

four points is equal to the cross-ratio of their corresponding points.

110. If from any point two tangents be drawn to a circle, the points of contact

and the points of intersection of any secant from the same point are such that the

straight lines joining them to any fifth point on the circle form a harmonic pencil.

111. (i) Through any point a tangent OU and a secant ORS are drawn to a

circle; OPQ is another secant passing through the centre of the circle {P, Q being

the extremities of a diameter). Show that if QR, QU, QS cut the tangent at P at

R', U', S', respectively, then

PR':PU' = PU':PS'.

(ii) If the point be inside the circle, and U be taken as the extremity of the

shortest chord through 0, and the rest of the construction be as above, show that

PR' : PU' = PU' : PS'.
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Art. 194. NOTE 14. THE AGGREGATING OF RATIOS.

On proposition 62 depends the process, called in this book the Aggregating
of Ratios, which corresponds to the addition of the measures of the ratios.

The development of this process is made in four stages.

Stage 1. The general idea at the root of the process of aggregating ratios

is this :

—

When it is desired to find the ratio of one magnitude to a second, it is

permissible to break up the first magnitude into two parts, then to find the

ratio of each part to the second magnitude, and then to add the two ratios

thus found.

(It should be carefully noticed that it is the first magnitude, not the second,

which may be broken up.)

Stage 2. To make the general idea stated in the first stage quite precise the

following definition is necessary.

Let the ratio X + Y:Z he said to be aggregated from the ratios X : Z and

Y:Z. It is known when the magnitudes X, Y, Z are known.

(This may be compared with Euclid's 22nd Datum.)

Let the symbol '^ placed between two ratios denote that they are to be

aggregated.

Then X + Y:Z = (X :Z) r. (Y :Z).

Stage 3. In the second stage the two ratios which are aggregated both have

the same second term, and therefore do not at first sight appear to be entirely

independent.

It is necessary therefore to explain what is meant by aggregating ant/ two

ratios, i.e. two ratios whose terms are all independent.

Def. 22. THE PROCESS OF AGGREGATING RATIOS.

Let the ratios to be aggregated he A:B and G : D.

Take any arbitrary magnitude Z.

Then find* two others X and Y such that

A:B = X:Z,

C.D^Y.Z.

* This assumes the Fundamental Proposition in the Theory of Ratios (Art. 216).

H. E. 1^
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Then (A : B) rs (G : D)

= (X:Z)r.{Y:Z)

= X+Y:Z.

Stage 4. The form of the resulting ratio found in the third stage depends

on the value of the arbitrary magnitude Z. If the process is to be of any use it is

necessary to show that the value of the resulting ratio does not depend on the

value of Z.

This will be accomplished when it is shown that if any other magnitude

be taken, say Z', instead of Z, and the process repeated, then the value of the

resulting ratio is unaltered.

Let therefore X', Y' be found so that

A:B=X':Z\

G'.D=Y':Z'.

Then {A:B)r.{G: D)

= (X':Z')^{Y':Z')

= X'+Y':Z'.

Since A:B =X .Z,

and A:B = X':Z',

/. X:Z = X':Z'.

Since G:D=Y:Z, ,

and G:D=r:Z',
.'. Y:Z = Y':Z'.

Since X:Z=X':Z',

and Y:Z = r:Z\
.-. X+Y:Z=X'+r:Z'. [Prop. 62.

i.e. the valus of the resulting ratio is unaltered.

This is the justification of the process, and shows that it always leads to

consistent results.

112. Prove that

113. Prove that

Art. 195. EXAMPLES.

{A:B)r^{C :D) = {G :D)r^{A'.B).

[{A:B)r^(C:D)]r^(E:F)

= {A'.B)r^[{C:D)r^{E:F)\
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Art. 196. ARITHMETICAL APPLICATION OF THE PROCESS OF
AGGREGATING RATIOS.

If r, s, u, V are integers, prove that

(r : s) '^ (u : v) = (vr + us : va).

This corresponds to the Arithmetical Theorem - + - = ^IZJ^
S V V8 ]

Now r:8 = vr:vs [Prop. 15.

and u:v = u8:v8. [Prop. 15.

.'. (r:«) '^(u:v)

= {vr : vs) '> (us : vs)

= vr + u^:v8.

Art. 197. EXAMPLE 114.

Prove that [(^1 : B)^{C :D)]^ (E-.F)

= [{A:B)^(E:F)]r.[(G:D)^{E:F)].

Art. 198. NOTE 15. INTRODUCTION OF THE IRRATIONAL
NUMBER INTO ANALYSIS*

There are two direct operations which can always be performed on integers,

viz. addition and multiplication ; and the results are always positive integers.

If however an attempt is made to reverse these processes, the result is not

always a positive integer, e.g. if any two positive integers a and b being given,

it is desired to find the number, which when added to a will give b, the result will

be a positive integer only when b is greater than a.

Again if it is desired to find the number which when multiplied by a will

give 6, the result will be a positive integer only when b is an integral multiple

of a.

In order that it may be always possible to reverse the process of addition it is

necessary to invent the negative integer, and in order that it may be always

possible to reverse the process of multiplication, it is necessary to invent the

positive rational fraction.

* The ideas on which this note is based are due to Dedekiud, as stated in the Preface.

19—2
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If two positive rational fractions are added together, the result is always a

positive rational fraction ; but if it is desired to reverse the process of addition of

positive rational fractions, it is necessary to invent the negative rational fraction.

The positive integers, the negative integers, the positive rational fractions and

the negative rational fractions, are together said to form the system of rational

numbers, and the system may be denoted by the letter R.

Art. 199. If -, - be any two rational numbers, then it is known that
q s

^

p _p8
q'qs'

r qr

s qs'

There are now three possibilities.

(1) ps>qr,

(2) ps = qr,

(3) ps < qr.

In case (1) ^?>«-^
^ ' qs qs

"
q s'

In case
^ ^ qs qs'

p _r
" ?~s*

In case (3) ^<2r,
^ ^ qs qs'

"
2

«
7) T

In case (2), - and - are not regarded as essentially distinct.

Art. 200. The first property of rational fractions to be proved is that

if ->-,
q 8

and if - > -
,

s u
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then

Since

Since

by (II)

p
9 u

P
9

r

.*. ps >qr.

r

8

t

>u'

.'. ur >ts.

pur >pt8,

. pur >t{ps).

tips) >t{qr).

pur >tqr,

:. pu >tq.

. P t

(I)

(II)

(III)

Now from (I) t (ps) > t (qr). (IV)

Hence from (III) and (IV)

Art. 201. A geometrical analogy to this proposition is as follows:

—

If A, B, C be three points on a straight line, and if ^ be to the right of B and

if B be to the right of G, then A is to the right of G.

Art. 202. The second property of the system of rational numbers to be proved

is that between any two distinct rational numbers, another rational number

always exists.

Let - and - be two distinct rational numbers, then the rational number
q s

^-zr—- lies between them.
2q8

p r
Suppose - > -

,

It is to be proved that

q s

.'. ps>qr.

p ps +rq r

q 2qs s

To prove - > *—^—-
, it is necessary to show

which is the case.

2ps >ps + rq,

ps > rq,
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To prove ^—^

—

- > -
, it is necessary to show

ps + rq> 2rq,

.'. ps >rq,
which is the case.

Art. 203. A geometrical analogy to the above result is as follows :

—

If A and B be any two distinct points on a straight line, then another point

C lies between them.

Art. 204. Now let - be any positive rational number. Then all the numbers

belonging to the system of rational numbers, viz. R may be separated into two

groups or classes as follows.

Into the first class, which may be called the lower class and which may be

denoted by Ri, let there be put all the positive rational numbers less than - , and

all the negative rational numbers.

Into the second class, which may be called the upper class, and which may be

denoted by R2, let there be put all the rational numbers greater than -
.

o

V
Let - be put into either class, it does not matter which.

V
If - be put into Ri, it is the greatest number in Ri. \

V
If - be put into R^, it is the least number in R2.

s

In either case the separation of the system of all the rational numbers R into

the two classes Ri, R^is such that every number of the lower class Ri is less than

every number of the upper class R^.

Art. 205. The following is a geometrical analogy to the preceding.

If P be a point in any straight line then all the points in the straight line may
be separated into two classes Pj, P^, as follows.

The first class, Pi, contains all the points that lie on one side, say the left, of P.

The second class. Pa, contains all the points that lie on the right of P.

The point P itself may be put into either class, it does not matter which.

If P be put into the class Pi, then the class Pi has a point, viz. P, which is the

farthest to the right, but the class P^ has no point which is farthest to the left.
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If P be put into the class P^, then the class Pj has a point, viz.P, which is the

farthest to the left, but the class Pi has no point which is farthest to the right.

In either case the separation of all the points on the straight line into the

two classes Pj, P^ is of such a nature that every point of the first class P, is on the

left of every point of the second class Pj.

Art. 206. It will now be shown that it is possible to separate the system of

all the rational numbers R into two classes such that

(a) every number in one class (the lower class) is less than every number
in the upper class

;

(6) the lower class has no greatest number

;

(c) the upper class has no least number.

Note carefully the distinction between this enunciation and that of the

separation of the system of rational numbers effected by means of -
, in which

either the lower class had a greatest number, or the upper class had a least

number.

Art. 207. Algebraic illustration of the separation of the system of rational

numbers into two classes possessing the characteristics (a), (b) and (c) of Art. 206.

Let Dhe a. rational number, which is not the square of any rational number.

Let all positive rational numbers whose squares are greater than D be placed

in the upper class.

Let all positive rational numbers whose squares are less than D, and all

negative rational numbers, be placed in the lower class.

It will be proved that the upper class has no least number, and that the lower

class has no greatest number.

Let x be any rational number.

a^ + SxD ,j.

^^ y^^^f^rw ^^>-

Then, since x and D are rational, it follows that y is also rational.

From (I) it follows that

1x{D- a^) ....
2'-^ = -3^+i) ^">'

and 3/-i> =g^; (HI).
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Now choose any number x in the upper class, so that

then y<x, by (II),

and y^>Dy by (III).

Hence t/ is in the upper class, but is less than x.

Hence the upper class has no least number.

Next let X be in the lower class

.-. si^<D,

.'. y>x, by (II),

and y^ < D, hy (III).

Hence y is in the lower class, but is greater than x.

Hence the lower class has no greatest number.

The numbers in the lower class are all less than the numbers in the upper

class.

Since no rational fraction exists whose square is equal to D, it follows that all

the rational fractions have been separated into two classes, which possess the

characteristics (a), (6), (c) of Art. 206.

Art. 208. Geometric illustration of the separation of the whole system of

rational numbers into two classes, possessing the characteristics (a), (6), (c) of

Art. 206.

Let A and B be two segments of straight lines, which have no common
measure.

Let - be any rational fraction.

Let Q be a magnitude such that B= rQ.

Now let the magnitude nQ be compared with A.

Then A cannot be equal to nQ, for then Q would be a common measure of

A and B, which is assumed not to be the case.

Hence either A < nQ, or ^ > nQ.

If A< nQ,

then A:B<nQ:B, [Art. 43.

.-. A:B<nQ:rQ.

.-. A:B<-.
r
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n .
'

This being so, let - be assigned to the upper class.

But if A> nQ,

then A:B>nQ:B,

:. A:B>nQ:rQ,

.. A:B> -.
r

In this case let - be assigned to the lower class.

Hence every rational fraction falls into one of the two classes.

Those in the upper class are greater than A :B.

Those in the lower class are less than A : B.

Hence every rational fraction in the lower class is less than every rational

fraction in the upper class.

Art. 209. It will next be proved

(i) that the lower class contains no greatest number.

(ii) that the upper class contains no least number.

(i) Let - be any rational number in the lower class.

Choose Q so that B = rQ.

Then by the preceding argument A > nQ.

Since A is not a multiple of Q, it must lie between two consecutive multiples

of Q.

Let sQ<A<(s + l)Q.

Now n cannot be greater than s, for sQ is the greatest multiple of Q which is

less than A.

If n be less than s, then since

B = rQ, A>sQ.
n

Therefore - is a rational number in the lower class, which is greater than - .

r '

If however n = s, then
A-sQ<Q.

Choose t so that
t{A-sQ)>Q.

20
H. B.
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Let F be a magnitude such that

Q=tV,

.'. t{A-stV)>tV,

.-. A-stV>V,
.-. A>{st + l)V;

but B = rQ = rtV,

.'. A:B>(st + l)V:rtV,

st + 1
.-. A:B>

rt

.*. —-- is in the lower class :

rt

, ^ st + 1 st
but > — ,

rt rt'

st+1 s

rt r

st +ln
rt r

'

Hence in each case a rational number greater than - exists which is in the

lower class.

Hence the lower class has no greatest number. I

7i

(ii) Let - be any rational number in the upper class.

Then if B = rQ,

A<nQ.
As before let

sQ<A<(s + l)Q.

Then n cannot be less than (s + 1).

If n>s + l.

Then

and

But if

then since

s + l n

r r

is in the upper class.

n = (s + l).

(s + i)Q — A is less than Q,
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find < SO that t[{8+l)Q- A]> Q.

As before let Q = tV,

.'. t[{8+l)tV-A]>tV,

(8+l)tV-A> V,

A<[{s-^l)t-l]V.

Now B = rQ = HV,

.'. A:B<[{s+ l)t-l]V:rtV,

.:A:B<^'^'^'-\
rt

„ (s + l)t-l . . ^
Hence ^^ -^ is in the upper class.

T^ (8 + l)t-l (s + l)tNow ^^ < ^^ ^
.

rt rt
'

(s+l)t-l s + 1

rt r '

{8 + l)t-l n

rt r'

Hence a rational number smaller than - has been found, which is in the
r

upper class.

Hence the upper class has no least number ; and the lower class has no greatest

number. Also every number in the lower class is less than every number in the

upper class.

Hence the existence of the two incommensurable magnitudes A, B renders it

possible to separate the whole system of rational numbers into two classes

possessing the characteristics, marked (a), (6), (c) in Art. 206.

Art. 210. Correspondence between the rational numbers and the points on a

straight line.

If we select any origin on the line, and a unit of length, then to the rational

number - there will correspond a point P whose distance from is equal to

- units of length, and which is on a definite side of 0, previously chosen. In the

same way, the negative i-ational numbers will correspond to points on the line on

the other side of 0.

20—2



156 EUCLID, BOOKS V. AND VI. [210

Thus all the positive and negative rational numbers correspond to definite

points on the straight line. But it is not true conversely that all the points on the

straight line correspond to rational numbers. For example, if the side of a square

be taken as the unit of measurement, and a length OP be measured from the

origin on the line equal to the diagonal of the square, then to the point P on the

line no rational number will correspond, because as has been shown (Note 5,

Art. 177), the side and diagonal of a square are incommensurable.

Now it may be proved that there are an infinitely great number of lengths,

which are incommensurable with the unit of length.

Therefore the straight line has an infinite number of points which do not

correspond to the rational numbers.

If therefore it is desired to construct a number which shall correspond to each

point on a straight line, then it is clear that the system of rational numbers will

not suflBce, and it is therefore necessary to invent new numbers, so that the system

of numbers invented shall possess the same degree of completeness as the straight

line. This property of completeness is called the continuity of the straight line.

The preceding comparison of the system of rational numbers R with the

points on a straight line has led to the recognition of the fact that whilst all

rational numbers correspond to points on a straight line, all points on a straight

line do not correspond to rational numbers.

Consequently there exist gaps in the system of rational numbers ; there is an

incompleteness or discontinuity in this system ; whilst the straight line is con-

sidered to be free from gaps and to possess completeness or continuity.

It is necessary to explain in what this continuity consists.

It was shown in Art. 205 that every point P of a straight line separates the

straight line into two parts such that every point of one part lies to the left of

every point of the other part.

The essence of continuity consists in the converse of the above, viz. in the

following principle.

" If all points of the straight line fall into two classes such that every point of

the first class lies to the left of every point of the second class, then there exists

one and only one point which produces this separation of all points of the straight

line into two classes."

This principle is known as the Cantor-Dedekind Axiom. It cannot be proved,

It is the Axiom by means of which we attribute continuity to the straight line.

Compare this with the following statement regarding the system of rational

numbers.
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" If all rational numbers are separated into two classes such that every number
of the first class is less than every number of the second class, then only when the

first class has a greatest number or the second class a least number does there exist

a rational number which produces this separation of all the rational numbers into

two classes."

We can now proceed to complete the discontinuous system of rational numbers
so as to obtain therefrom a continuous system.

Just as negative and fractional numbers are invented and introduced into

analysis, and as the laws of operating with these numbers may be reduced to the

laws of operating with positive integers, so it is necessary to invent irrational

numbers and to define them by means of the rational numbers alone.

It appears from the preceding discussion that if any rule be given for separating

all rational numbers into two classes such that every number in the lower class

is less than every number in the upper class, the following are the possible

alternatives :

—

(i) the lower class has a greatest number and the upper class has no

least number

;

(ii) the upper class has a least number and the lower class has no

greatest number

;

(iii) the lower class has no greatest number and the upper class has no

least number.

. T
Suppose that in case (i) the greatest number in the lower class is -

.

If this number - is transferred to the upper class, there will be formed another

separation of all the rational numbers into two classes such that every number in

the lower class is less than every number in the upper class, but this sepai-ation of

the system of rational numbers is regarded as essentially the same as the one from

which it was produced by the transfer of - from the lower to the upper class.

Both separations are regarded as produced by - ; and - is the number which

corresponds to the separation.

In case (iii) the separation is not produced by any rational number. It is

regarded as produced by an irrational number, which is said to correspond to the

separation.

Dedekind called a separation a ' cut.' It will be called here a ' section.' . , ,

It is in this property that all sections of the system of rational numbers cannot
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be produced by rational numbers that the incompleteness or discontinuity of the

system of rational numbers consists.

An irrational number is regarded as known, whenever a rule is given for

determining whether any given rational number belongs to the lower or upper

class of the section of the system of rational numbers to which the irrational

number corresponds because all the properties of the irrational number can be

deduced from a knowledge of the numbers contained in these two classes.

It is usual to denote the irrational number itself by a single symbol.

Hence to every section of the system of rational numbers there corresponds a

definite rational or irrational number.

For example, the irrational number corresponding to the section described in

Arts. 208 and 209 is equal to the ratio of A to B.

Two numbers are regarded as different or unequal only when they correspond

to essentially different sections.

The aggregate of all the rational and irrational positive and negative numbers

is called the aggregate of real numbers.

Art. 211. Operations with real numbers.

To reduce any operation with two real numbers a, /3 to operations with rational

numbers, it is necessary to show how from the section (^i, A^, which defines

a, and the section {B^, B^ which defines y3, to define another section (Cj, Cj)

which is to correspond to the result of the operation.

As examples consider the cases of addition and multiplication of two irrational

numbers a, ^.

*Let p^ be any number in A^,

P2 ^2.

qi A,

?2 B^.

It will be proved that by a suitable choice of these numbers it is possible

to make

(Pi+q^J-iPi+qi),

and P2q2~Piqu

as small as we please.

Write down in order of magnitude the rational fractions whose denominator is n.

There must be some stage at which we pass from the lower to the upper class

of a.

* In this and some of the following articles small letters with suffixes denote rational fractions.
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T , m m + 1
Let — < a < .

n n

Divide the interval ( — ,

J
into t equal parts, and consider the fractions

whose denominators are tn, viz.

tm tm + 1 tm + t

tn' tn ' tn

The first belongs to the lower class of a, the last belongs to the upper class

of a.

Hence an integer k exists, such that

tm + k tm + k+1 ,, - ^,

In like manner we can find

r „ r + 1

Take now

n n

—r— <^< -. . (i + 1 5
tn tn

tm + k tm + k + 1

H + l rt+l + l

tm + tr + k + l + l

P^qi -piqi = ^^
•

Now k<t,

l+l^t,
.'. k + l + l<2t,

m + r + 2 1
.-. p2q2-'Piqi<—-,—

.J.

Now suppose m, r, n to be fixed ; then by increasing t without limit, it follows

that {Pi + q2)-{pi + qi) and p^q^ - p^q^ can each be made as small as we please.

Art. 212. Now consider the case of addition.

Form all possible sums o^ the form p, + q^, and put every rational number which

is greater or equal to any sum of this form into a class, which may be called the

upper class.
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Form all possible sums of the form Pi + qi, and put every rational number which

is less or equal to any sum of this form into another class, which may be called the

lower class.

Let Si be a number of the lower class.

Let 52 be a number of the upper class.

Then it is always possible to find jpi, p^, qi, q-i such that

S2^^2 + g'a-

But pi<P2, qi<q2,

Hence every number in the lower class is less than every number in the upper

class.

It will next be shown that the two classes include all the rational numbers with

the possible exception of one rational number.

If possible let there be two distinct rational numbers a, b which belong to

neither class.

If a do not belong to the upper class, a is less than every sum of the form

Pi + q2-

If a do not belong to the lower class, a is greater than every sum of the form

Pi + qi-

Hence if a belong to neither class Pi + qi<a <p2 + q^-
1

Similarly Pi + ?! < ft < i?2 + S'2,

•
•.

{P'l + ^2) - (Pi + gi) > a '*' &.

But it has been shown that {p.2 + q^) — (pi + qi) can be made as small as we

please. Hence it can be made smaller than a >>*}), which is contrary to what has

been proved.

Hence two distinct rational numbers, each of them belonging to neither class,

cannot exist.

It is therefore proved that there can exist at most one rational number which

belongs to neither class, but it is not proved that there is one such rational number.

Consequently there may be no rational number which belongs to neither class.

If one rational number exist which does not belong to either class, it is greater

than all the numbers in the lower class and less than all the numbers in the upper

class. Put it into either class, and a section will be defined by the two classes so

formed. The number corresponding to this section is the single rational number

just mentioned, and it is called the sum of a and ^,
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If no rational number exist, which does not belong to either class, then all the

rational numbers belong to either the lower or upper class. Hence the two classes

define a section. The number corresponding to this section is an irrational number.

This irrational number is defined to be the sum of a and /9.

Art. 213. Next consider the case oi multiplication.

Now the upper class consists of all the rational numbers which are greater or

equal to any product of the form ^272-

The lower class consists of all the rational numbers which are less or equal to

any product of the form p^qi.

The demonstration may be obtained from the demonstration in the case of

addition by replacing throughout the word ' sum ' by the word ' product ', j>i + Qi by

pi^i, and p^ + q2 by p^q^.

Art. 214. On the Compounding of Ratios.

Let the ratio of il to 5 be equal to ».

Let the ratio of 5 to be equal to ^.

Let ^1*, P2 be rational numbers in the lower and upper class of a.

Let ^i, q^ be rational numbers in the lower and upper class of ^9.

Then p,B<A<p.,B,

qiC < B Kq^G,

.'. PiqiC<p,B

<A
Kp^B

< p^qfi,

.-. p^qiG <A Kp-^q^G.

* If ». = * ,and A : B>Pi,

tben

This is also written

If therefore A : B >p^ , then

H. R.

A iB >-

,

r

rA >8B,

A
sB

>—

.

r

A
r

A >p,B,

21
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Hence if the ratio of J. to C be equal to 7, then every p^q^ and all greater

numbers are in the upper class of 7, whilst every p^q^ and all smaller numbers

are in the lower class of 7.

Consequently 7 = a/S, by Art. 213.

Hence if ^ : 5 = a, and if J5 : (7= /S,

then A :G=a^.

Art. 215. PROPOSITION LXIX.

(The Fundamental Proposition in the Theory of Ratio.)

Enunciation. If A, B he two magnitudes of the same kind, and if G be any

third magnitude, to prove that there exists a fourth magnitude Z, &mh that

A:B = C:Z.

It is suflScient to prove that there exists a magnitude Z such that Z :C = B:A,

(1) If B and A be commensurable, le*t

rB:A=-.
s

Then it is necessary to find Z, so that

Form the magnitude

r
Z:C=-.

s

rC
s

Then —:C = s(—):sG [Prop. 15.

= rG:sG

Hence Z = —

.

s

(2) If B and A have no common measure, let jB : ^4 be equal to the irrational

number p.

Let pi, p^', pi", ... represent rational numbers in the lower class of p in

ascending order of magnitude.

Let P2, P2, pz', •• represent rational numbers in the upper class of p in

descending order of magnitude.
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Let the magnitudes

P.C, p,'G, p,"G, ...,

pA p,V, p,"C, ...

be constructed.

Then p,C < p,'G < p^'G <...<p,"G< p^G < p,G.

Consider now the set of all the magnitudes of the same kind as G. They fall

into two classes.

(i) Those which are greater than every magnitude of the form p^G. Call any

magnitude of this form a magnitude Y.

(ii) Those which are not greater than every magnitude of the form piG.

Call any magnitude of this form a magnitude X.

In the first place it will be proved that every magnitude Y is greater than

every magnitude X.

From the definition of the magnitudes X, it appears that any X, say Z,, does

not exceed every magnitude of the form piG.

Suppose that X^ does not exceed the magnitude pi'G.

Then by the definition of the magnitudes Y, every Y exceeds every p,C and

therefore every Y exceeds pi'G.

But Xi does not exceed pi'G.

Therefore Y exceeds Xi.

Therefore every Y exceeds every X.

In the second place it will be shown that the set of magnitudes X include no

greatest magnitude.

The characteristic of the magnitudes X is that they are not greater than

every magnitude p^G.

Suppose X' one of the magnitudes X, and let X' ^ piG.

Now there is no greatest pi.

Suppose pi < pi",

then p,'G<p,"G.

Take then X" =pi'G, which is possible.

.-. X">X'
and so on other magnitudes X can be found in increasing order of magnitude.

Thus the magnitudes X include no greatest magnitude.

Now the magnitudes X and Y together include all the magnitudes of the same

kind as G. In regard to these magnitudes we assume an axiom coiTesponding

to the Cantor-Dedekind Axiom for the straight line, as follows:

21—2
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" If all the magnitudes of the same kind as (7 be separated into two classes

such that every magnitude of the one class is less than every magnitude of the

other class, then there is one and only one magnitude of the same kind as G which

produces this separation, and it is either the greatest magnitude of one class, or

the least magnitude of the other class."

Now we have proved that the magnitudes X include no greatest magnitude.

Therefore the magnitudes Y include a least magnitude.

Call this least magnitude Z.

Since the magnitude Z is a magnitude Y, therefore Z is greater than every

magnitude of the form p^G.

Write this thus

:

Z > every p^C,

.'. Z : C > every p^.

We have next to prove that

Z : G < every p^,

i.e. Z< every p^G.

Suppose if possible

^ ^ some p^G.

Then since the rational numbers p^ include no least rational number, let

Pi > Pa'-

Form the magnitude P2G.

Then p.'G<p.A

.-. p,'G<Z.

Now every p2 > every p^,

.-. P2 > every ^„
.•. p-i'G > every piG,

therefore p^'G is a magnitude F.

But p^V < Z.

Hence there is a magnitude F, which is less than Z; which is contrary to the

definition of Z, viz. that it was the least of the magnitudes F.

Hence Z < every p^G,

.'. Z : G < every jpa.

And it was proved that

Z : G > every pi.

Hence Z : G determines the same section as the irrational number p, i.e. the

same section as B : A.

.: B:A=Z:G,
:. A:B=G:Z.
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Multiplier, Distribution of 7, 10, 170

Notation for Aggregating Ratios 194

— — Compounding Ratios 191

— — Magnitude 2

— — Positive Whole Numbers 1

— — Ratio 31

Number, Irrational 198-215

— Positive whole. Notation for 1

Parallelograms, Equiangular 123

— of equal altitude proportional

to their bases 34, 52

Part 19

Point at infinity on a straight line 179

Points, Harmonic 108

Polar, Definition of 115

Pole, Definition of 115

Positive whole number. Notation for 1

Process of Aggregating Ratios 194

— of Compounding Ratios 186

Proportion, Corresponding Terms in 33

— Definition of 33

— Extremes of a 33

— Homologous terms in a 33

— Means of a 33

Proportional, Fourth 33, 56

— Third 33

Proportionality of angles at centre of a circle

to their arcs 41, 62

— of parallelograms of equal alti-

tude to their bases 34, 52

— of triangles of equal altitude to

their bases 34, 52



INDEX 167

Badical axis of two circles 119

Ratio 42-50

Batio, Anharmonic 192

— Antecedent Term of a 31

— Approximate Value of 45

— Comparison with rational fraction 44
— Consequent Term of a 31

— Cross 192

— Definition of 30, 210

— Duplicate 188

— Extreme and Mean 147

— Measure of 30, 210

— Notation for 31

— of areas of Equiangnlar Parallelograms

123

— — of Similar Bectilineal Figures

133

— — — Triangles 127, 182

— — of two Squares 126

— of Commensurable Magnitudes 30

— of Equality 32

— of Similitude 78

Rational Fraction 30

Ratios, Aggregating of 194

— Compounding 185-187

— Equal 46-48

— Reciprocal 63

— Unequal 49

Reciprocal Ratios 63

Right-angled triangles divided into similar tri-

angles 101

Segments, Corresponding 39

Similar figures 77-102

— — Corresponding sides of 77

— — Definition of 77

— — Batio of Similitude of 78

— — similarly described on sides of

a right-angled triangle 136

— — when similarly described 80

Similar rectilineal figures, ratio of area of 133

— Triangles 83, 87-95

— — Areas of, proportional to squares

described on corresponding

sides 127, 182

Similarly described figures 80

— divided straight lines 60, 61

Similitude, Ratio of 78

Symbols employed 191, 194

Terms of a Ratio 31

Test for Equal Ratios, Euclid's 46

— greater of two unequal ratios, Euclid's

49

Third proportional to two straight lines 58

Triangle, right-angled, divided into similar tri-

angles 101

Triangles, congruent 84

— of equal altitude proportional to their

bases 34, 52

— similar 83, 87-95

Unequal Ratios, Euclid's Test for distinguishing

the greater of two 49
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