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INTRODUCTION.

THis book consists of extracts from one which was
intended to form a continuous system of Elementary
Geometry; but as the author finds no reasonable ground
for hoping that any one would adopt his system as a whole,
he has determined on selecting those parts which are either
wholly new, or wanting in the common treatises. In this
form they may be read as supplementary, by a student
who has gone through Euclid; yet the endeavour has been
made so to arrange them that no part shall be unintelli-
gible to a person who may have no previous acquaintance
at all with Geometry.

He anticipates that objections will be made on two heads
to the methods which he has' employed: to the introduction
of Motion into Geometry, and to the early use of the doc-
trine of Limits. It is said by many that Motion belongs
solely to Mechanics, and not to Geometry; but this is a
mere dogma, to which it is difficult to find reason for
deferring. It is true that in Mechanics the doctrine of
Motion is treated, but is treated on a perfectly different
footing. In Geometry we pay no attention to Velocity,
nor are we concerned with Measurements of Time, nor do
we consider Motion as an effect of Force. We regard
merely the successive changes of position which a body
undergoes; and although we know that such changes

B



P INTRODUCTION.

require both Time and Force, we are not concerned to esti-
mate that Time nor that Force ; but we abstract these con-
siderations as irrelevant to the subject. Now the points
which are purposely omitted in Geometry are specially
discussed by Mechanics; nay, form the sole business of
that branch of Mechanics which contemplates: Motion at
all. Hence we are perfectly clear from the charge of
intruding on the province of Mechanics.

This method has been deliberately preferred, from the
conviction that no definition of a geometrical figure is so
vivid to the understanding, or so satisfactory in a logical
point of view, as that which states kow the figure is to be
generated. Unless this can be done, the mind is justly in
suspense, whether the definition may not have laid down
something self-contradictory and absurd. It may be added
that the common systems, from Euclid downwards, intro-
duce the same thing in disguise, and cannot do without it.
Geometers call it Supraposition; and in the very first
theorem of the science it is employed. Yet it might seem
as if Euclid had been ashamed of it; for he does not
employ it afterwards, in numerous cases where it would
have made his proofs clearer and more concise. If, how-
ever, it may be used once, it may be used a thousand
times; and ought to be used, whenever such advantages
are to be gained.

If any one objects to the early use of the doctrine of
Limits, it will not be as though it were illogical, but
because it is imagined to belong rather to the higher
Geometry. If this remark means merely to state the
Jfact, that hitherto it has not been used in the Elements,
the writer can see no reason why the beaten track should
be held sacred, if a better offer itself. To him it appears
that the notion of a Limit enters into the very first concep-
tions of Geometry, (as of a surface, a line, and a point,)
and is essential to the establishment of those Laws, on
which he believes the science to rest. It is equally essen-
tial to an understanding of the doctrine of Ratio and



INTRODUCTION. 3

Proportion, if incommensurable quantities are to be treated
with logical accuracy. Nor does it seem to involve any
difficulty comparable to those with which the Elements of
Geometry abound.

The Lemma concerning Proportions has been added, as
appearing to him the most convenient link between the
doctrines of Proportion and Magnitudes. It consists in
nothing but the first and simplest problem of the Integral
Calculus in disguise. ‘

He has to acknowledge his obligation to Mr. Perronet
Thompson’s ¢ Geometry without Axioms,” (4th edition,)
for two very valuable hints, which have materially influ-
enced the form in which the First Part of these discussions
now appears; namely, First, to regard the doctrine of the
Sphere as prior to that of the Plane; Secondly, to pay
peculiar attention to such lines and surfaces as are capable
of sliding along themselves. But in the actual execution
of the plan there is here little or nothing in common with
the method which Mr. T. has chosen.

GENERAL PLAN OF THE FOLLOWING TREATISE.

‘We design to discuss successively certain points which
appear to be defective in the Elements of Geometry.
Firsr, The doctrine of the Straight Line and Plane.
In the common treatises a Straight Line is defined as
¢ one which lies evenly between its extreme points;” but
as the word evenly has not been explained, this is not more
instructive than to be told that it lies straightly between its
extreme points. A confession of the uselessness of the
definition is found in the device of an axiom, that ¢ two
straight lines cannot enclose a space;” which ought to be
a corollary from the definition, if the latter were adequate.
Some have defined a Straight Line to be “ the shortest
path between two given points;” but this is not legitimate,
till it have been proved that there is always some one path
B 2



4 INTRODUCTION.

shorter than all other paths. If any one choose to resort
to a very simple experiment in proof of this, he will at
once cut short all difficulties attending the doctrine both of
Straight Line and of Plane. And this is, perhaps, the
course which all our minds secretly follow. But it is
thought right to appeal to experiment as little as possible;
and perhaps the above appeal is not necessary. The
method used below of explaining the term evenly is funda-
mentally the same with that which Professor Leslie sug-
gested; but is much more developed.

The definition of the Plane found in Simson’s Euclid
and elsewhere, labours under the serious fault of being
redundant. A Plane (say they) is a surface, such that, if
any two points whatever be joined by a straight line, this
line shall lie wholly upon the surface. But how are we
to know that such a surface is possible? Let us try to
generate such a one. Take two straight lines, (Fig. 1.)
A0 B, 00D,inter-
secting each other
in0. In0A4,0D,
(or else in their
prolongations O B,
00C,) take two

‘\P” )
points, P and Q;
and first, let the

NP
>‘<
w7 |Q
,
distances O P, 0Q,

be in all cases equal; and through P and Q pass a
straight line. Then if the distance OP increase indefi-
nitely, and again diminish indefinitely, the straight line
P Q, moving with it, traces out a surface ; which surface
has the property, that ¢ if any two points in it that lie in
the same generatriz P € be joined by a straight line, this
line lies wholly upon the surface.” Now it remains to
prove that the same will be true when the points joined are
neither on the same generatrix, nor in the lines 4 B, 0 D.
But secondly, if to meet this difficulty we suppose O P and
0 @ not to be equal, but to bear some other ratio, or to vary

Fig. 1.

[\
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independently, it will then be no longer manifest that the
locus or surface, generated by the motion of PQ, is a single
continuous sheet, and not an infinity of different surfaces.
This, which needs to be proved, is assumed, and that,
covertly, in the common definition.

Some have put into its place the definition, that *“a
plane is a surface, which lies evenly between its extreme
boundaries.” But this is doubly objectionable, both from
the vagueness of the term evenly, and from the want of
proof that there is any one such surface; to say nothing
of our inability to decide what is meant by * extreme
boundaries.” The outline may be called ‘“ the extreme
boundary;” but what are the ¢ boundaries” in an oval
curve, for example?

It is to meet these difficulties, about the Straight Line
and Plane, that our FirsT PART is intended. To follow
the methods employed in the common treatises is impossi-
ble; for they assume, from the beginning, the very proper-
ties which we want to prove. It is well, however, here to
remark, that the proposition at which we are secretly
driving is, that which Euclid has made his 8th; namely,
that when the lengths of the three sides of a triangle are
given, the shape of the triangle is hereby entirely deter-
mined. The importance of this will be clearly understood
when it is remarked, that the same thing is not true of a
four-sided figure ; for if the lengths A B, B C,
CD, DA, (Fig.2,) were alone given, there c
is nothing to hinder the figure from assum- g (v
ing different shapes, as the diagram shows, ﬁ,
by a change of the size of the angles. If
any one choose to resort to experiment to
establish this peculiarity of the triangle, this would be a
way equally effectual with that suggested above, of cutting
short our First Part.

There is another defect, less fundamental, yet not unim-
portant, in this part of the common treatises, in their
neglecting to establish any satisfactory principles to regulate

Fig. 2.
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the addition and subtraction of angles. It is taken for
granted that if two angles, 4 0B, BOC, (Fig. 3,) be laid
Fig. 3. down, side by side, on a plane, the angle
A p A 0C may fitly be regarded as a sum of the
other two. But why on a “ plane ” in par-
ticular? The very word sum implies that
angles are quantities; or are resolvable into
parts as small as we please, all homogeneous to each other;
and conversely, that angles may be generated from the
accumulation of parts indefinitely small. But nothing is
laid down or proved concerning them in the Elements, as
usually treated, to justify and establish this view.

The subject is closely connected with that of the Shortest
Path that joins two points on a Sphere, and that of the
contact of two cones. The addition of angles may be
founded on either of these doctrines, if it be judged con-
venient to abstain so long from every allusion to angles as
quantities made up of parts.

SeconpLy, The endeavour has been made to remove
the celebrated difficulties embarrassing the doctrine of
Parallel Straight Lines. Euclid’s method of disposing
of it would be honest, and so far good, if the ambiguity of
the Greek term Aziom had not led to the annexing of the
12th axiom (so called) to others perfectly unlike it in kind.
It might be called @&{wpa, a “ Postulate,” or Assumption,
with much propriety, and no student would demur to grant
it. Yet it must tend to throw light on the philosophical
basis of the science, either to demonstrate this, or to prove
that no demonstration is to be looked for; neither of which
seems yet to have been done, so as to satisfy geometers
generally, To the writer it had always appeared that the
illustration offered by Professor Playfair, of the equality of
the three external angles of a triangle to four right angles,
contained the germ of an unexceptionable demonstration of
the same. This, accordingly, he has endeavoured here to
exhibit. As the proof is concise enough, it is, if logically
unimpeachable, practically deserving of acceptance.

(0]
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At the same time he is so deeply convinced that every
geometer secretly settles all questionings in his own mind
concerning the truth of Euclid’s 12th axiom, by appealing
to the doctrine of proportions, as to induce him to suspect
that future inquirers may succeed in obviating every objec-
tion which has been urged against Le Gendre’s method.
That in descending a sloping path, Fig. 4.
(Fig. 4,) we make equal vertical
descents, by traversing equal dis-
tances along the path, is a truth
of which the mind seems to possess
itself before it attains to the belief
that the slope may be carried so far as to descend to any
required level; which latter is substantially Euclid’s 12th
axiom. And whether the former proposition can or cannot
be established abstractedly, as by Le Gendre’s triangles; in
any case, the writer is persuaded that the latter should be
proved by the former, and not, in the reverse order which
Euclid follows, the former by the latter.

TuirpLy, The method of Measuring the Solid Angle is
treated ; not because it has any real difficulty, but because it is
rather unceremoniously slurred over in the common treatises.

FourTHLY, FrrrHLY, and SixTHLY, Some propositions
concerning Plane Curves, Double Curvature, and Curved
Surfaces, have been demonstrated, which are generally
assumed without proof, and are of no little importance in
the higher Geometry.

SevenTHLY, The Shortest Path on a Sphere has been
treated, with a view chiefly to the question concerning the
Addition of Angles.

The intelligent reader will probably remark of himself,
that as the main difficulty of Parallel Straight Lines is
identical with that of proving that no finite arc of a curve
can have its curvature every where infinitely less than that
of a circle; so the difficulty of demonstrating the evenness
of the plane, is here virtually reduced to that of proving
that no finite arc can have an infinity of cusps.
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Throughout, it has been endeavoured to handle every
topic in such a way as to prepare the mind for that large
view which must be taken in the higher mathematics; for
which, naturally and necessarily, the works of a Greek
geometer are wholly unfit. Especially, the undue con-
traction of definitions has been avoided; nor has the
writer felt it requisite so to press on towards the end
mainly sought, as not to tarry on collateral subjects which
would tend to illustrate the matter in hand, and which in
themselves are worthy of being known. ILeast of all can
he persuade himself, that the unbending formality which
characterises the Greek geometers,—the affected disdain
to notice difficulties, to obviate misconceptions, to offer
illustrations,—in any degree conduces to soundness of de-
monstration. Certainly, whatever helps the student to get
vivid and distinct notions, helps towards logical reasoning,
which must be in the mind, not on the paper; for the dead
letter does but give hints for the mind to seize; and it is
a strange feature in modern mathematics, that, as if to
discourage beginners, a more repulsive and unexplanatory
style is adopted in Geometry than in any other branch.
Yet, with all this sacrifice for the attainment of imaginary
“ rigour,” there is no department of exact science so full
of fundamental flaws. If the reason be asked, perhaps
none better will be found, than that we assiduously culti-
vate our Mechanics and Hydrostatics, our Algebra, our
Calculus, anxiously removing their defects in successive
generations, by help of the fresh light constantly poured
in; while in Geometry we have set up one of the ancients
for our idol, and have cramped the science in its adult
state by the trammels of its infancy.



DIFFICULTIES

OF

ELEMENTARY GEOMETRY.

ON SPACE GENERALLY.

1. GEoMETRY is a particular branch of the science of
Quantity, namely, that which is concerned with Space.

2. The difference in principle between this science and
Mechanics or Hydrostatics, is perhaps not so great as is
often supposed. In the two latter, the mathematician speaks
of bars absolutely inflexible, threads wholly inextensible,
balls perfectly elastic, fluids void of viscidity, and so on;
although he does not expect actually to meet such things.
But he seizes a few of the prominent and most influential
properties of matter, and stipulates to drop the rest, at
least for a while, and argue as if they had no existence.
Thus the things of which he speaks are not such as are
found in nature, but are imaginary %mits, towards which
nature only approaches more or less. Afterwards, in
adapting his science to practice, he has to make allowance
for the deviation, and, if possible, complete his theory by
taking in the circumstances before omitted.

Just so the geometer proceeds. He finds before him
bodies of different material,—stone and wood, iron and
silver,—but he drops all consideration of this point. They
differ in weight and in colour; but this too he neglects.
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He regards solely their size and shape. Again: he sees
some to be round and others square; and although on
close inspection each may be found to have irregularities,
being neither guite round nor quite square, he drops this
circumstance also. He invents for himself shapes simpler
than any found in nature, and which are mere limits more
or less distant from the realities of the world. In conse-
quence, his reasonings may possibly mislead him, when ap-
plied to practice, because what he actually encounters proves
to be not precisely that of which he has been treating.

As no one, without the experience of sensible Forces
and sensible Fluids, could form the notion of mathematical
Forces and Fluids, so neither, without the use of the
senses, to give us experience of actual matter, could we
arrive at the mathematical conceptions which are at the
basis of Geometry. It is not without touch that we gain
first the idea of Extension; as indeed also of Length,
Breadth, and Thickness; of Protuberance, of Flatness, of
Hollowness, of Pointedness. The earliest exercise of a
baby’s fingers and lips is, to assist in acquiring such
notions ; which gives a fair apology to those who would
call geometrical notions innate, as they are probably the
first that enter the mind at all.

3. We find, moreover, that those objects which resist our
touch do also mutually resist each other. Hence rises the
apprehension that each occupies a certain Space of its own,
into which a second body cannot intrude, without displac-
ing the former. We are farther thus enabled to neglect
all consideration of the material of which bodies consist,
and even the fact of substantial existence. For solid
bodies we substitute the empty space which they might
occupy. Consequently no absurdity is involved in speak-
ing of two ‘ solids” as penetrating each other, when
neither has corporeal substance.

4. It is likewise allowable to imagine a solid to be
transferred from one position into any other that can be
described. For as by experience we learn the possibility
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of this in the case of numerous light and small bodies, we
infer that a power may, without absurdity, be conceived,
which might wield at pleasure the greatest and the heaviest.
Much more, then, if we dispense with the idea of substance
and weight in the body transferred, does all difficulty vanish.
But, as was stated in the Introduction, it is no business of
the geometer to treat on Time, (nor consequently on the
Velocity of Motion,) any more than on Force.

5. The word Magnitude is employed universally to
represent Geometrical Quantity, of whatever kind the
quantity may be.

All Quantity, and therefore Magnitude, is generally
regarded as differing from Number, in being continuous.
It is impossible to count, without leaving finite gaps be-
tween the numbers, as in 1, 2, 3, 4, where we proceed
by units, or asin 1, 1-01, 1-02, 1:03, 1-04, &c. where we
proceed by hundredths of a unit: and this is Disconti-
nuity. Whereas in weights, we conceive of every inter-
mediate grade between one pound and two pounds; and
in size, of every intermediate bulk between a cannon ball
and the globe on which we stand. But the supposed
difference is fictitious, and a needless source of perplexity.
In the realities of life, Quantity as well as Number is dis-
continuous; while in theory, neither Quantity nor Number
need be regarded as such. The mind which can suppose
a quantity to increase from one value to another by finite
increments as small as it pleases, can pass to an imaginary
limit by a successive diminution of the increments, till it
arrives at the idea of continuity. And in Arithmetic, we
with equal ease conceive of continuous number; though
we devise modes of ewpressing the intermediate values only
so far as practical convenience dictates.

Thus, * Continuity of Magnitude ”
invented by the mind.

6. Relative Magnitude. No magnitudes can be regarded
as absolutely great mor absolutely little. There is no
object so great but we can imagine its double; and of this

is a theoretic limit
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latter the double again, and so on, until a magnitude is
attained, such as to exceed the first in any proposed ratio.
To suppose a termination of space bewilders the mind;
and amazing as is the thought of space infinitely extended
on all sides, yet we are incapable of conceiving a boundary
beyond which space should not exist.

Again: the least molecule that we can see or imagine,
has opposite sides, separated by a determinate interval;
and is in conception divisible into any number of parts.
Hence, also, an object is conceivable, which shall be Zess in
any required ratio than a given solid.

7. Actually to exhibit such multiples or submultiples, is
sometimes an important problem with the practical geome-
ter or mechanist. To graduate the arc of a large circle is
a most delicate affair, of the highest value to astronomy.
The fine screw which measures minute distances, is
equally essential for accurate observations. But to theo-
retic geometry such matters are quite irrelevant. Appeal
is made to the mind alone ; diagrams are meant to assist
the imagination; but expertness of manipulation is wholly
needless, as far as the logical texture of the argument is con-
cerned. Hence we should be perfectly at liberty to say :—
 Let the circumference of a circle be divided into 360
equal parts;” although we had not suggested by what
instruments it could be done, even without gross and
sensible inaccuracy. For the pure science, it suffices that
no absurdity is involved in the conception.

VOLUME, AREA, LENGTH.

8. By a Solid is then understood, any limited portion of
space. Sometimes, however, it is convenient to attribute
to it material existence, and, accordingly, to name it hard
and inflexible, or to attribute to it joints, breakages, and
such like.

9. The exterior boundary of a solid is called a Surfuce.
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The boundary of a surface is called a Line. The extremity
of a line is called a Point.

10. All three terms merely express a “limit,” which the
mind invents. The most obvious is the Surface, because
we suppose that we se¢ and touch the surfaces of all bodies,
not being aware of that which Optics and Mechanices teach,
that to the exercise of each sense some thickness is requisite
in the surface which is to be seen or felt. But since the
thickness may be lessened perpetually, and in any required
proportion, the mind has no difficulty in imagining it
wholly to vanish.

Again: we conceive the diameter of a rope or string to
be continually lessened, and the limit apprehended by the
mind is a line.

Similarly, we may suppose a solid to be perpetually
diminished, till it attains a size barely appreciable to our
senses. Thus, if from being as large as a cocoa-nut, it
shrink successively into the size of a walnut, a pin’s head,
a grain of sand, we hereby readily pass to the limit, and
form an idea of position independent of magnitude, in which
consists the notion of a geometrical point.

11. By Volume, or Bulk, is understood the magnitude
or capacity of a given solid, in comparison with that of
some other, which is assumed as a standard or unit. Thus
a numerical measure of volume is attained ; just as when we
say that a cask holds forty-two gallons; in which case the
cask or jar of one gallon is the standard, or arbitrary unit.

That any two solids admit of numerical comparison with
each other is easy to perceive. For that all the parts of a
solid are homogeneous to the whole, appears by consider-
ing, that if we repeatedly take away from the whole an
exceedingly small magnitude, we may at last, as nearly as
we please, exhaust the whole. And as any two solids,
when placed side by side, may be regarded as one, it
follows that they also are homogeneous to each other.

12. Area is the magnitude or extent of a given surface,
compared with that of some other, assumed as a standard.
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It is not altogether so easy to show, in this stage, that
any two areas admit of numerical comparison; or, what
comes to the same thing, that all the parts of a surface are
homogeneous magnitudes. Yet, by regarding a surface as
entirely cut up into very small portions, we presently are
able to pronounce that any one portion (A), in comparison
with any other portion (B), must needs be either greater,
or equal, or finally less. And if this were established, it
would follow that all its parts are homogeneous. But a
full proof of this is neither possible nor necessary, before
the curvature of surfaces has been discussed.

13. Length is the magnitude of one line compared with
that of another. It is of immediate importance to us to
show that any two lines admit of numerical comparison.

(Let it be observed, that although for the sake of illus-
tration we may already speak of Length, Breadth, and
Thickness, these are terms which cannot be at present
employed with scientific propriety in opposition to each
other. All three are at present merged in the one word,
Length.)

Since no magnitude is affected by change of position,
neither will part of a line be hereby affected. We may
then, without altering the magnitude of a line, suppose any
part to be bent aside at any point; or, what is the same,
we may imagine a joint to be introduced at any point,
about which each portion may freely play. Now let several
joints be supposed ; in short, let the number of joints at
every part of the line be continually increased ; and neither
does this imply any change of magnitude. Thus the mind
approximates to the idea of a line, which is the theoretic
limit of the above ; namely, one which is perfectly flexible
at every point. Such a line is called a Thread ; and pre-
serves the same magnitude (or length) in every position.

In the place of any line under consideration, we may
thus substitute a thread of equal length. Any two threads
admit of direct comparison; and consequently any two
lines (A, B,) are homogeneous magnitudes. A numerical
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measure of them is obtained, by assuming one (as A) for
the unit, which determines for the length of B some other
number, whole, fractional, or approximate.

14. If two lines, 4, B, (Fig. 5,) are equal in length, and
we suppose, first, a limited number of
joints introduced in B ; and then B to be
so applied on 4 as that one extremity of
both shall coincide (in m,) and that every
joint moreover in B shall (as far as pos-
sible) fall on the line 4 ; it is manifest
that by increasing perpetually the number
of joints in B, the line B (which tends
more and more to become a thread,) will
finally lie altogether along the line 4.
Let m, n, p, g, 7, 3, . . . be the successive
points of coincidence of the two lines; all
of these points, except the first, being jointsin B. It follows
from the above, that the two paths which unite any two con-
secutive joints, (as ¢ A7, ¢Br, which unite ¢ and ,) tend
more and more to perfect coincidence; so that the limit of
the ratio of the two lengths, ¢ A7 : ¢ Br, isabsolutely 1 : 1}
when the number of joints perpetually increases in all parts
of the line.

15. This conclusion, it must be observed, holds, what-
ever, may be the nature of the line B. It will not be
vitiated, should B happen to be what we shall afterwards
call a Straight Line.

16. Moreover if s is the farthest joint from e, Fig. 6.
(Fig. 6,) the ratio of the line m A s : broken line y
mBs; (or again, of the whole line 4 to mBs,)
has for its limit, 1:1. For m As tends to 4 as r
its limit, and mBs to the whole line B, while 4 A/
and B, by hypothesis, are equal.

17. It is convenient here to add, what is evi-
dently comprised in the above, that if mapgrs »p
be any line soever, and mn, np, pg, &c. be joined
also by short lines, such as we shall hereafter
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call Straight, then the sum of all the straight lines joining m
to s has for its limit the length of the curve line m ¢s, if the
number of points %, p, ¢, &c. intermediate to m and s, be
perpetually increased in every part of the line.

ON EQUALITY IN UNLIKE SHAPES.

18. This is perhaps the best place for bringing forward
the various circumstances under which Equality is found
among geometrical quantities.

The three notions, Equal, Greater, Less, arise simul-
taneously in the mind. Each implies the others, nor is it
possible to say which of the three ought to be defined
first, were definition possible. But no definition of any
can be given.

19. I. The simplest case of Equality is, when two
objects have the same shape, as well as equal size; that
is, when they are such that by a mere change of position
one may be made precisely to occupy the place which was
before held by the other.

[Of this kind is the equality of two straight lines, or of
two rectilinear angles, or of two circles, or of two curves
that are equally curved the one with the other.]

Magnitudes thus related are often called Identical, each
being a perfect counterpart of the other.

20. II. When two magnitudes are separable into an
equal number of parts, such that each of the one set has a
fellow in the other set, to which it is identical.

Thus, let P and Q be two mag-
nitudes (X%g.7); also, let

B P=A1+A2+A3+....+An
a Q Q=bB,+bL,+B;+ ....+ B,
E If then it be found that every

4 is identical with (and there-

fore equal to) its fellow B; we of

Fig. 7.
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course pronounce that P = @. For “ the sums of equals
are equal.”

[Such is the equality of two rectilinear plane areas, or of
two plane-sided solids. In the Greek geometry the two
cases of equality hitherto mentioned were regarded as the
most rigid, and a silent effort was made to reduce all to
these.]

21. III. When two magnitudes are the limits to which
equal series perpetually approach.

Thus, suppose that from P and Q, (F%g.8,) are taken parts
which are equal or identical ; Fig. 8.
as A, from P, B; from @;
where 4; = B;. Again, from
what remains take the equals
Asand B,. From the remain-
ders again take the equals A3
and B, and so on. If, by re-
peating this process continu-
ally, we can reduce both remainders to be as small as we
please, then P must needs be equal to Q.

By way of proof: Let p and v be the remainders after
(») subtractions; so that

P=(UA1+A3+ A5+ . ... +4,) +p
Q=B +By+Bs+ .... +B,)+v

Then, from the equality of each 4 to its fellow B, we get,
P~ Q =u-~v
[or, the difference of P & Q is equal to the difference of p & v.]

Now since u and v are each susceptible of being made as
small as we please by increasing (), much more is their
difference. Hence P and € have either no difference at all,
or a difference which can be made as small as we please by
increasing (»). But neither of them, nor therefore their
difference, depends at all upon (z), which is the arbitrary
number of subtractions. They have therefore no difference;
or are equal.

¢
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More concisely: P is the limit of the sum of the 4,
and Q is the limit of the sum of the B’s. Hence P = @,
because  the limits of equal sums are equal.”

[Such is the equality which subsists between any two
plane areas, two areas on the surface of the same sphere,
two solid angles, or two curve-sided solids.]

22. IV. When two magnitudes are separable into an
equal, but variable, number of parts; such, that, (by
increasing the number,) every ratio, of each part in the one
set, to its fellow in the other set, approximates to the ratio,
1: 1, as its limit.

Fig. 9. Thus, as in the second case of
S~ equality (F%g.9,) let

P=A1+A2+ e +An; and

magnitudes, let () increase indefi-
nitely, and every 4 and every B
diminish indefinitely. And instead of supposing every 4
to be precisely equal to its fellow B, let every one of the
ratiosé 4y s
By’ By’ B
limit. And we assert still that P = Q.

The detail of proof belongs rather to Arithmetic than
Geometry. It is, however,* easy to see that the ratio

Eor A+ Ao+ 454+ ... + 4,

Q Bi+By+bBs+ ...+ 8,
must always be intermediate between the least and greatest
4y Ay
BB B

B
s W Q=Bi+Bi+...+B,
P 43 But instead of supposing () a fixed
A ¢ number, and the 4’s and B’s fixed
2
B

. approximate towards :I[ as their

. . A
of the partial ratios, J@l, and as none
1

#* If e is the greatest, and ¢ the least, of the partial ratios, then 4, s,
Az ... A, are not greater than eBj, ¢Bs eBy... eB,; but some are less:
consequently 4y + Ao 4 . . . 4 4, is lessthan e (Bi+ B2 4 ... + B,); that

. . P,
is, P< € Q. Similaily, P > ¢Q, or Qs less than ¢, but greater than é
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of these have any finite difference from their limit

. P .
, neither can = have any. DBut the last ratio does not

1
change with (7); hence it is absolutely = i That is,
P=q.

Two such equal magnitudes may be popularly said to
consist of an equal infinitely great number of equal infinitely
small parts.

[Such are two equal lines or areas, of different curvature. ]

DISTANCE.

23. By Distance is understood  least length,” under
various circumstances.
1. Between two points along a given surface. 1f A.B are

given points on a given surface, Fig. 10.

(Fig. 10,) and along the surface \

numerous paths 4 0B, ADB, c /
g

AFEB, are drawn to connect S
them, some of these paths may /

be shorter than others. Yet
there must exist one or more paths, than which none
shorter can be found. Just as if 4 and B were two towns,
to be joined by a road; there must needs be some limit to
the possible diminution of the length of the road, unless
indeed the towns were somewhere in contact. The length
then of the path, than which no path joining 4 and B can
be shorter, is called the Distance between 4 and B along
the given surface.

II. Between two points, when the path is not restricted
to any particular surface. In the former case, perhaps,
A E B may have been as short a path as possible; but now,
(Fig. 11,) by drawing the path so as not to lie along the
surface, it is conceivable that a yet Fie. 11
shorter may be found. If 4F B is o
as short as any possible, (and there

cQ

L&

T;:'_Fxf?B
E
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must be some least length,) then the length of 4 F'B is,
absolutely, the Distance, (or the Distance in Space,) be-
tween 4 and B.

Observe: We are not at present competent to assert,
that there is necessarily one, and only one path, 4 F'B, such
as to be of this least length; although the mind readily
persuades itself of this. But in fact, while the paths are
restricted to a given surface, there may be many which
have the shortest length. Thus on the globe, every me-
ridian, joining the north and south poles, is equal to every
other meridian.

IIT. Between a point (4) and a line (DCEB) upon

a given surface (F%g.12). From
A to the several points of the line,

let there be drawn (along the sur-

A éﬂ face) paths as short as possible.
D ! If, then, of all these paths none is

I shorter than A4C, the length of

A4C is the Distance (along the
surface) of A from the line D A.

IV. Between a point and a line, when the paths are not

restricted to any surface (Fig. 13).
/B The last case applies equally here,
g dropping the restriction of the sur-
C
D

Fig. 12.

Fig. 13.

A . .
face; in consequence of which the

Distance (or least length 40, is
probably shortened.

V. Between two lines (4.4 4, BBB,) along a given
surface (F%g. 14). From every point A in the one line,
let there be drawn along the sur-
face a path as short as possible,

to meet the other line. If of

A all these paths none be shorter

“ than a3, the length of a3 is

A the Distance between the lines
A

along the surface.

Fig. 14,
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VI. Between two lines, when no sur- ’
face is given (#%g. 15). The explanation )\ \%
B
(&
B

=

of the last case will include this, if the <«

surface be left out.

VII. Between a point (4) and a surface (Fig. 16). If
points B, C, D, on the surface, are assumed at random, and
they are joined to 4 by
paths A B, AC, A D, as
short as possible ; then
out of all such conceiv-
able paths one (or more)
is shorter than any other.
If A D is as short as any
of them, its length is the
distance of 4 from the surface.

VIII. Between a line (4’4 4") and a surface (Fig. 16).
If from every point of 4'A A" as short a path as possible is
drawn to the surface, any one of these which proves to be
as short as any of the rest expresses the distance between
the line and surface.

IX. Between two surfaces. In place of the line 4'4 4/,
in the last case, let a surface be introduced, and all which
is there said will apply here.

It is all along supposed that the points, lines, or surfaces,
between which we are estimating the distances, have no
part actually in common ; not so much as a single point in
common. Otherwise there is no shortest path, but the
distance is said to vanish, or to be zero.

24. Parllelism. By this wordis  , , Feln
understood “ Equality of Distance,”
under several circumstances.

I. Parallelism of a line to line: as
of AAA to BBB (Fig. 17). By A Ay
this it is understood, that every point
A4 in the one line lies at the same 5B By

Fig. 16.
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distance as every other point 4, from the other line
BBB.

II. Parallelism of a surface to a surface. The same
definition may be given here as in the former case, suppos-
ing only that 4 4 4, B B B, now represent surfaces instead
of lines.

25. We have as yet no way of ascertaining, whether to
a given line or surface a second line or surface can be con-
ceived such as to be parallel. But we shall very soon see
examples of parallel lines and surfaces, and this will at
once manifest that there is no intrinsic incongruity in that
for which we have been inventing a name.

Meanwhile it may be observed, that when two lines, or
two surfaces, are parallel, the distance of the first from the
second is the same as the distance of the second from the
first. In fact, if 4 B be a path, expressing
the distance of A4 from B BB, the same path
B A, in an opposite direction, expresses like-
wise the distance of B from 4 4 4. Else, let
B ( be shorter than B A4, ¢ being a point in
AAA. Then CB would be shorter than the
distance of every point in 4.4 4 from B BB,
which is self-contradictery.

It follows that the Parallelism is reciprocal ; or that if
AAA4 is everywhere equidistant from B BB, then so is
BBB from AAA: provided that every point in BB B s the
extremity of some shortest path drawn from A A A.

III. Parallelism of a line to a surface. This means,
that every point in the line lies at the same distance from
the surface. But, in this case, there is no reciprocation ;
for not all points in the surface necessarily lie at the same
distance from the line.

[We might here proceed to explain the nature of
Asymptotism ; when two infinite lines have evanescent
distance, without actually meeting. But it is of no im-
portance to our present objects.]

Fig. 18,
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LAWS OF ROTATION.

26. Let one end of a stick be thrust into the sand, and
any motion given to the opposite end. Next, suppose the
point to be made sharper and sharper, and that it is allowed
to move as little as possible out of its place. In this way
the mind passes to the coneeption of a body which has one
point fized ; and it appears that the body may nevertheless
turn on every side round this point.

Secondly, let some mechanical method be used of fasten-
ing a body as nearly as can be, at two points only. Thus,
it may be wedged between two walls, so as to touch each
wall in but a very small part. Now in every case there is
really a small surface in contact with the wall; and if we
attempt to move the body, perhaps the friction so resists
us that no motion can be produced. But if parts of the
surface in contact are successively cut away, we shall at last
be able to produce a sort of motion, even while the contact
at the two sides continues in nearly the same spot of the
wall. Such motion is called Rotatory. (See Fig.19.)

Many ways are conceivable of producing a more and
more perfect Rotation ; but it suffices here to enounce as
fact, that if a continual approach be made towards an accu-
rate fixing of #wo and only two points in an inflexible body,
we arrive at the result, that * not all motion of the system
is hereby hindered.”

27. It remains to state the peculiar character of the
motion which it then undergoes, wherein consist the Laws
of Rotation.

I. The motion of every particular point of the inflexible
system is then constrained to one determinate path; which
path, if the motion be continued in one direction, at length
rejoins itself. The whole system has then regained its
original position, and is said to have made one Revolution

II. If another revolution be given to it, the same point
must needs describe the very same path as before; and
this, although the motion be reversed.



24 DIFFICULTIES OF ELEMENTARY GEOMETRY.

III. If any revolving point be fixed, all motion is
stopped.

It appears to the writer, that our knowledge of these
laws is as truly based upon experiment as is our knowledge
that Water seeks its level. 'When he endeavours to assign
to himself a reason, why the motion must needs be con-
strained, he finds himself making an inward appeal to the
remembered sensation, that if an oblique pressure be ap-
plied, tending to cause motion along a new path, it is vio-
lently resisted, and cannot produce any effect, until some
part of the system is crushed, or is lengthened, or slips,
Easy as it is to satisfy oneself of this truth, by mechanical
and experimental considerations, he has hitherto wholly
failed in the attempt to prove it more abstractedly. Until,
therefore, others shall have supplied a deductive proof,
similar to the other demonstrations of Geometry, he will
hold these laws to be experimental, and that Geometry
stands on a like basis with Statics.

CIRCLES.

28. Circle. In any case of rotation, the self-rejoining path
(CC ¢ 0), described by any one point (C), is called a Circle.
29. Parallel Circles. Any second point D of the system
may simultaneously describe another circle DD D' ; and it
Fig. 19. is easy to see that this must be
[ a line parallel to the former
circle.

Forif D'C" be as short a path
as possible from one circle to
the other, then by supposing
the system to revolve, D’ and ¢’
will describe the two circles, and
the path D' (" accompanying D
expresses the shortest distance of every point D from the
circle CC'C.  (See Art. 24.)
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80. Slding of the whole circle on its own ground. If
a circle (CCOC) be regarded as a hoop of unappreciable
thickness, connected with the fixed points of the system
(4 and B) by inflexible lines, the rotation makes the cirele
turn along itself; so that while every point €' is moving
round, the circle as a whole does not change its position.

Hence it is like itself all round: in Homer’s language,
mavréoe Tan, “ on all sides equal.”

31. Surface of Revolution. If two of the circles, CCC,
D DD, be joined by a line C D, that revolves with the rest
of the system, this line will describe a self-rejoining surface,
which may popularly be regarded as a collection of Parallel
Rings, indefinitely thin, since every point in the line C.D
describes a circle.

Such a surface is called a Surface of Revolution; and if
it close on all sides, so as to contain a solid, this is called a
Solid of Revolution.

32. Proportional Arcs. It is manifest that any two
points (C, D) in the system must complete the revolution,
so as to regain their original position, simultaneously. For
if C be fixed, as well as 4 and B, the whole is fixed.
Hence any other point, as D, has its positien determined
by 4, B, and ¢; and when C has regained its original
place, D cannot be in any other place than that which it
held at first.

Let y be the point oppo-
site to O, in the circle of O,
so that the portion (or 4rc)
Cy is equal to the opposite
arc yC'; for there must be
some middle point of the
path Oy C. Then when the
system has been carried by rotation so far that ¢ has
reached vy, it may be said to have performed /Zalf a revo-
lution. For it is evident that D will simultaneously describe
half of its circle, and reach its opposite point &; and the
like may be said of every moving point in the system.

Fig. 20.
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To prove this more distinctly, we will take a larger
proposition. Let C reach ¢, at the same moment that D
reaches d; then, whatever ratio the arc Cc bears to the
entire length of the circumjerence Cy C, such likewise is the
ratio of Dd to D3D.

Suppose (¢, Dd, to be inflexible lines, attached to
ACDB; then when the rotation brings €' and D to ¢ and
d, let C¢ have the position ¢ ¢, and D d the position dd.
Then C¢, Dd/, are doubles of C¢, Dd; and, moreover,
when C reaches ¢/, D will reach d’. Similarly, if along the
one circle we take any number of ares equal to C¢, and
along the other the same number of arcs equal to Dd, the
points ¢ and D will, during the rotation, describe the two
sets of arcs simultaneously.

If now Cc were any fraction of the circumference, say
l—lzth, then Dd must be likewise 1—12th of its circumference.
For by taking C¢ twelve times we complete the circle; or
by passnig over twelve times C¢, the point (' regains its
position. Therefore by passing over twelve times Dd, the
point ;D regains its position; which proves that twelve
times Dd is equal to the circumference; or that Dd = %zth
of its circumference. And the like would apply, if for
jlﬁth we substituted 11—3th or ﬁth, or any other sub-
multiple ; from which the mind instantly collects that the
arcs described simultaneously by € and D are always Pro-
portional.

But to elucidate this conclusion the better, it is desirable
to make a short digression.
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DIGRESSION CONCERNING PROPORTIONALS.

33. A geometrical quantity may be supposed to vary
independently, under numerous circumstances; as, when
we suppose an object to become larger or smaller. But
often it happens that two magnitudes wary fogether ; as,
just now, did the two ares C¢, Dd. For if by a motion of
the system the length of C¢ change, the length of Dd
instantly changes likewise.

34, When two magnitudes thus vary together, the
law connecting them may be very different under different
circumstances. Sometimes, whatever increases the one
diminishes the other; sometimes, on the contrary, they
increase together and diminish together. Yet, even then,
it may happen that their rates of increase are very diffe-
rent. While one doubles itself, the other may become
five times as great; and while the former triples itself, the
latter may become twenty times as great. But the simplest
case of connected variables is, when they increase and di-
minish Proportionally; which is also of chief importance
in the Elements of Geometry.

85. It is requisite for Proportionality, that the two
variables wanish together. 'Thus, by taking C¢ as small as
we please, D d may likewise be made as small as we please;
and when Cc¢ is actually nothing, ¢ being at €, then d is at
D; or Dd is nothing. Regarding the magnitudes as in-
creasing instead of diminishing, we may say that C¢, Dd,
begin together from mothing ; which is obviously necessary
for Proportionality.

36. Again, when C¢ increases by the Fig. 21.
portion ¢p, (Fig.21,) let Dd increase by ¢

the corresponding portiondg. Then, in the D
case of proportional variables, since Cc¢ is to A 4
Cpas Dd is to Dyg, it follows that C¢ is to c/‘ 2
its increment ¢ p as D d to its increment dg. AN

Suppose Cy, DJ, to be any other corre-
sponding values of the variables, which of
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course are (by hypothesis) proportional to C'¢, Dd; then
we infer that the increments ¢p, d¢, are proportional to
the fixed magnitudes C'y, D3. Consequently, if the incre-
ment ¢p be a given magnitude, the magnitude of dg¢ is
instantly thereby determined, be the magnitude of Cc what
it may. Thus, if a new value be assumed for C¢, as in the
diagram, and consequently a new value for Dd, and yet cp
be assumed just as great as before, the d¢ likewise will be
just as great as before.

37. This last property of Proportional Variables admits
of being concisely expressed by saying, that they increase
uniformly. For if any number of successive increments
to the former be all equal, then the corresponding suc-
cessive increments to the latter will be also equal to eme
another.

38. So much being premised, it will be easier to under-
stand the following LEemma, which is the converse of all
this: viz. that ¢ Magnitudes which begin together from
nothing, and increase uniformly, are Proportional.”

Proor. Let # and y be two such variables, which have
increased together from nothing. Then # has been formed
by an aggregation of small increments, every one of which
may be regarded as equal to the first of them, viz. = /4; in
which case, by hypothesis, ¥ will have been produced by
the aggregation of the same number of increments, each
equal to the first of them, or =#%. Thus, # is the same
multiple of 4, as # is of £; and consequently # and y are
proportional to 4 and &; (z: .=y : k). This holds, how-
ever many fresh increments are added to both; so that if
2’ and oy are mew values of the variables, these also are
proportional to %z and £, and consequently to # and y. That
is, #: &/ =y : 4. Which was to be proved.

39. The only objection to this is, that if # and y increase
by finite additions, they will not receive all conceivable
values intermediate to the first and last. The reply is, that
the increments % and % may be in imagination lessened as
much as we please; and in this way # and y may be made
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to approach ever so close to any intermediate magnitude. If
farther satisfaction be desired on this head, let it be sup-
posed that 2’ and % do not exactly contain A and % ; but
that 2" contains % a certain number of times, and u over;
then 4 must contain £ the same number of times, and »
over. Consequently (¢ — p) is the same multiple of %, as
(y — v) is of k; and, reasoning as above, we find that
212 —pu=y:9y —v. Here p and v may be called the
errors incident to the 2d and 4th terms of the proportion
which we are aiming to establish. But by diminishing /%
and % as much as we please, we may make the errors less
than any proposed value; since u is less than %, and » than
% And such diminution leaves the values of @ 7 9y,
unchanged. Omitting, therefore, the errors as unreal,
because they have no assignable fixed value, we have as
before, 2 : &' =y : ¥,

In fact, in all cases, it is needless and useless to refine
concerning Geometrical quantities, as though, in respect
of Continuity, they required a different treatment from
Numbers. Every conclusion drawn generally, by treating
them as discontinuous, may unceremoniously be received
as universally proved: for an error which has no finite value
(as u and v just now) has evidently no ewistence at all.

40. The Lemma may be also modified conveniently, as
follows. “ Let d@, dy, represent the new increments which
2 and gy are just about to receive: if| then, the values of d#
and dy are determined solely by one anmother, without any
reference* to the values of # and y, supposing also that

* This may become yet clearer by considering the opposite case. Let S be
a point inside an oval curve; x=an arc 4P, y = area 4P, contained
between the curve, and two straight lines. Let Pp=0da;
then area PSp = 8y. Now a little thought shows, that PP
if 4 P be made longer, (or P be taken at a more distant A @
point in the curve,) although Pp should have the same \ "
Tength assigned to it as before, yet the area PSp would \\ e
ordinarily be different ; so that here 8y would depend not
only on &2, but also on &, or on the length 4 P. Thus here,  does not vary
proportionally to y.
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and gy begin together from nothing, it follows that these last
vary proportionally.”

For since the values of # and # do not affect those of d#
and 8y, a succession of increments to #, each equal to 3z,
would produce a succession of increments to y, each equal
to 8y, and thus 2 and y would éncrease uniformly.

41. Returning to the case of the arcs C¢, Dd, in Art. 32,
it is there plain that the two increments ¢p, dg, are deter-
mined solely by one another, and are nowise affected by the
lengths C¢, Dd, already attained. Moreover C'¢, Dd,begin
together from nothing. Hence we infer that they through-
out ‘“ vary proportionally.”

42. In like manner it appears that the swrface passed
over by the line ¢D, (Fig. 20,) which revolves with C,
varies proportionally to the arc described by €. For they
begin together from nothing ; and so long as ¢p, the incre-
ment of the are, is uniform, the corresponding increment of
the surface is likewise uniform.

43. Similarly, if 4 be a fixed point of the system, and
A C be a line revolving with C, the surface generated by
A 0O is proportional to the arc described by C.

SPHERES.

44. If AC be a stifl’ line, (F%g. 22,) of which one end 4
is fixed, the other end C is free to play round 4 in all
Fig. 22, directions. The locus in which ¢ then
lies is a surface. For if CC be any
path described by €, suppose CC' to
be a rigid line attached to 4 C and
AC', and let the whole revolve about
A. Then OO sweeping round 4 on
all sides, traces out a surface, into any
point of which the point ¢ may evi-
dently be brought. And as ¢C' may play round on all
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sides of A, the surface rejoins itself, and encloses a Solid.
This Solid is called a Sphere, and 4 its Centre.

45. Parallel Circles on the Sphere. 1f B be a second
fixed point, (Fig. 23,) and B C an inflexible line, the place
of C becomes restricted to a circle.
But this circle must lie upon the
sphere, since 4 C is still the same.
Change the length BC to BD and
BE; D and E being still on the
sphere, and B D, B ¥, inflexible;
then D and £ generate new circles
on the sphere, which are parallel
to the former circle described by C.

It is immaterial whether the second fixed point B be
within or without the sphere; or upon its surface.

46. A Spherical Surface is the Locus of all the points that
lie at gne particular distance from the centre. For, first, that
all the points on the surface, as €, D, F, &c. lie at one and
the same distance from the centre 4,-is manifest; because
the paths 4 C, 4 D, A E, &c. may be made wholly to coin-
cide. Next, (Fig. 24,) that a point F),
which is owtside the sphere, lies at a
greater distance from the centre than
do the points on the surface, follows
from this; that no path can join #
aud 4, without piercing the surface.
Lastly, if G be a point within the
sphere, we may conceive a new sphere
to be described from the same centre
A, by means of the line 4 G'; so that
G may be on its surface. Therefore all points on the
surface C D # are such, that the shortest path connecting
them with 4 pierces the surface of &, and consequently &
is nearer to A than are O, D, F, &c.

It thus appears that every point in the surface CDE,
and no point not in this surface, lies at the same distance
as O from the centre 4; and this is what is meant by

Fig, 24.
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calling that surface the Locus of all points which lie at
that distance.

Cor. We moreover infer that a Spherical Surface con-
sists of but one sheet. No part of the surface is overlapped,
or comprised within another part.

47. Parallel Spherical Surfaces. 'The concentric surfaces
described by € and G are obviously Parallel. Moreover,
the surface @ is entirely contained within the surface C';
and every point in G is nearer to the surface € than is the
centre 4.

48. Spherical Shell. The solid intercepted between two
concentric spherical surfaces is called a Shell. It is evident
that, about a given sphere, a shell may be conceived to be
added, such as to be less than any solid proposed. For the
inner surface of the shell having a determinate magnitude,
it is evident that if the thickness be perpetually diminished,
the magnitude of the shell becomes evanescent.

49. Continuous Increase of the Sphere. Hence a Sphere
in increasing from one size to another may be supposed to
pass through all intermediate magnitudes. For the suc-
cessive accessions of magnitude may be made as small as
we please.

Moreover, since a Sphere is readily conceivable less than
any proposed solid, and another Sphere greater than the
same; if the former increase till it reaches the magnitude
of the latter, it must pass through a state in which it was
equal to the solid in question. Or, “ There is some Sphere
equal to any proposed solid.”

50. No Second Centre to a Sphere. The Centre of a
Sphere is equidistant from all points on the surface. Con-
versely, if a point within a sphere be thus equidistant, it
will possess all the properties of a Centre; for there would
be no impropriety in conceiving the sphere to have been
generated from it. But, we say, ¢ there cannot be zwo
such Centres.” For it was shown that the centre 4 is more
remote from the outer surface than is any other point (G)
within the sphere, (Art. 47.) But it is obvious that there
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cannot be two points within the sphere, each more remote
from the surface than any besides -itself.

51. In fact, suppose the surface CDE to be given, we
may thus approximate towards one determinate centre
(Fig. 24). Take G within the body of the sphere, and
through it pass a new spherical surface, parallel to the
former; for we know that there may be one parallel. DBut
it is evident that no second surface can pass through G, also
parallel to CDE; for the mere principle of equidistance
suffices to fix the surface of G, when the first surface CD F
and the point G are given. Within the surface of & take
a new point Z, and it in like manner appears that through
H may pass one and only one spherical surface parallel to
that of . By continuing this process, we form a series of
spheres, less and less, each interior to the former, and
tending continually to shrink into a single determinate
point, which of course must be the centre 4.

This suggests another mode of stating the result of the
last Article, viz. “ If a spherical surface be given, the
centre is determined.”

52. Stiding of the Sphere on its own ground. 1If the sur-
face be stiff, and inflexibly connected with the centre, which
we may suppose to be fixed, rotatory motions in various
directions may be given to the sphere, by which its surface
will move, but only along itself; so that the sphere, as a
whole, will suffer no change of place.

During such sliding, every point G in the interior, (sup-
posing the sphere to be solid,) of course moves along a
concentric spherical surface, so that the centre is the only
point not susceptible of motion, while the outer surface, as
a whole, retains its position.

Thus every one of the concentric surfaces, G, H, &c. is
constrained to keep its own place, and slide along its own
ground, if the outermost surface is thus constrained; and
conversely. Hence it is obvious that ¢f by any means we
can secure that one surface, as C.D I retains its place, we
may infer that G, and that 7, and every other yet more

D
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interior surface, does the same, and consequently that
the centre A remains fived, since this series of surfaces
may be conceived to approach as near to the centre as we
please.

53. Poles of a Sphere. Let the centre 4, and some
other point B, be fixed, (Fig. 25,) B being either within or
Fig. 25. without the sphere, or on

< the surface, but connected
with it inflexibly. Then
the only motion of which
the system is susceptible
is, a rotation about the
fixed points 4 and B. Of
course every point C de-
scribes a circle 0 C ¢ upon
the surface, which slides
on its own ground; and all such circles are Parallel.

Now any one circle, as (0 C, divides the spherical sur-
face into two parts. On either side of CCC take a point
D on the surface, and let D DD be the circle parallel to
CCC. This cuts off a less portion of the sphere’s surface
on that side, and leaves a larger portion on the other.
Within the area cut off by D.D D on the opposite side from
0, take a new point #, and let £ EE be its circle parallel
to the former circles. Within KA F, and towards the
same side again, take /), and describe the parallel 7" F'F.
The process may be repeated continually, and each portion
of surface intercepted is wholly interior to the preceding.
Nor is there any internal aree which is a limit towards
which these areas converge; for within any such area a
new circle might be placed. Hence the series of circles
tends towards a determinate point, which we may call P,
intermediate to all such possible areas. P will then have
the peculiarity of turning about itself, so as not to change its
position during the rotation.

Again; on the other side of CCC we may suppose a
succession of parallel circles, G G G, HHH, &c., and it may
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similarly be proved that they tend towards a point Q on the
surface, which has similar properties to 2.

The points P and Q are called Opposite Poles.

54. If B be on the surface, it must obviously coincide
either with P, or else with Q. Thus one pole (say B or P)
being given, the opposite pole Q is determined.

55.  Poles of a Circle on the Sphere. Let CC'C" be any
circle upon a sphere, and suppose that we do not know from
what two fixed points the circle was generated. The poles
P and @ may nevertheless be determined just as before.

For we may conceive the circle as a line painted upon
the solid sphere, which sphere is hung upon an immovable
centre. Now by turning the sphere about, any point on
its surface may be guided along any line soever drawn on
its surface, but immovable in space. Wherefore any one
point €' may be made to describe the circle O'C" (", without
shifting the spheré's centre. As in this motion € successively
takes the place.C, €", &c., it is clear that (", (", &c. also
move round in the same path. Thus the circle slides along
its own ground, and the rotation is constrained, just as
when a fixed point B was given. We have therefore only
to proceed as before, and determine the points £ and @,
poles of the Circle.

56. It is easy to see that (counting distances along the
surface) any two parallel circles are equidistant; as F'FF
from ¢CC. Hence that P is more distant (along the sur-
Jface) from C'C 0, than is any other point #' within the same
area CPCC.

57. Since P and Q remain fixed during the revolution
of the circle, they may be regarded as the fixed points from
which it was generated; and they are at once poles of the
Sphere, and of the Circle upon the Sphere.

[Here we might proceed to explain the notions of Lati-
tude and Longitude, and others connected with them, if a
-complete Treatise of Geometry were aimed at.]

58. Points that lic evenly. It has appeared, that when
the points 4, B, ave fixed, the points £ and Q turn about

D 2
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themselves, or are fixed likewise. It is manifest that the
very same rotation of the system would be effected if B
were free, but P and 4 were fixed; or if B and 4 were
free, but P and @ were fixed. In fact, if all are inflexi-
bly connected, any two being fixed, the rest are fixed like-
wise. Three or more points thus related are said fo lie
evenly.

AXES.

59. Suppose, as originally, that 4 and B are given points
(Fig.26). If the size of the sphere change, many new
Fig. 26. pairs of poles P ¢, P'¢,
&c. are attainable, which
will all lie evenly with
4 and B. Let the sphere
change its magnitude by a
continuous motion; then
by its perpetual increase,
the opposite poles move
away from each other, trac-
ing out two lines, P/,
QQ, stretching to an un-
limited extent both ways. If the sphere perpetually
diminish, the poles move towards each other, and tend to
meet in the centre 4. When the sphere is such that B is
on its surface, B is itself one of the poles. Hence the
whole Jocus in which the poles lie, forms a single continuous
line, passing through 4 and B, and susceptible of indefinite
prolongation each way.

All the points in this line lie evenly with 4 and B, so as
to suffer no change of place by the rotation of the system,
of which this line is called the Awis.

60. It is now manifest that to fix any two points in the
axis is equivalent to fixing all its points. Also, to fix all
its points offers no impediment torotation. But if, besides
the axis, a point likewise is fixed which is not in the axis,
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then by the third Law of Rotation no farther motion is
possible.

61. Axzis of a Circle, or of a Surface of Revolution. All
the above applies to any rotatory system soever, in which
A and B are two fixed points. For it is evident that the
very same axis is produced, whether 4 or B is made the
centre of spheres; and that such spheres may be introduced
arbitrarily into any rotatory system.

62. No second Azis to a Circle. 1If a circle be given, but
the fixed points from which it was generated are not given ;
or, what is the same, if the axis be not given; it may be
inquired whether more than one axis is conceivable, from
which it might have been generated. We shall therefore
show that only one is conceivable ; so that, when the circle is
given, the axis is determined.

Let COC be a given circle, and (since it must needs
have at least one axis,) let one axis pass through 4 and B
(Fig. 25). A sphere is conceivable, large enough to con-
tain the circle within it, and consequently too large to pass
through the circle as through a hoop. Let such a sphere
have its centre placed upon the axis, and be moved along
the axis until it strikes against the circle in one point C,
the centre of the sphere being then at 4. Then, since
neither the circle nor the sphere changes its place by
rotation about the axis 4 B, it follows that every point C of
the circle lies on the surface of the sphere.

Now the axis 4B pierces the sphere’s surface in two
opposite points, P, Q, which are poles to the circle, upon
the sphere, and each of which is equidistant from all parts
of the circle, counting the distances along the surface. DBut
if the circle could have any second axis, this must pierce
the sphere in some other two points than P and Q. Sup-
pose, for an instant, it pierces the sphere in a second point
F, on the same side of 00 C as P is, and we shall see the
absurdity of it. For & would need to be equidistant from
all the points C, C, C, of the circle, (counting distance
along the surface,) a property which, it is evident by
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Arts. 55, 56, no point on the surface but P can possess.
There is then no second axis to the Circle.

63. The Awis of a Circle is the Locus of the Points, each
of which is equidistant from all points in the Circle. For,
first, that any one point in the axis is thus equidistant, is
manifest from the nature of rotation. But, next, we have
to prove that every point which has this property is in the
axis. Let 4 be equidistant from all points in the circle
00, then 4 may be the centre of a sphere, on the surface
of which the circle ¢CC lies. Hence, reasoning as in
Art. 55, it will appear that 4 remains fixed, while CCC
revolves on its own ground ; and consequently 4 is a point
in the axis, which was to be proved.

64. Aawes of the Sphere. In contrast to the circle, it is
manifest that a sphere possesses an infinity of axes, all
uniting in its centre. For 4 being the centre, B may be
chosen arbitrarily, and an axis 4 B may be determined,
piercing the sphere in opposite Poles. Thus, also, a Sphere
is a Surface of Revolution.

65. That portion of a Sphere’s Axis which is intercepted
between opposite poles, is called a Diameter, and the half
of it, between the centre and surface, a Radius.

It is manifest that all the diameters of a sphere are equal,
as likewise all the radii.

66. The mind here naturally guesses that the sphere is
the only rotatory system which has more than one axis;
which is nearly the truth. The exception is, that a Plane,
of which we shall soon speak, has likewise an infinity of
axes, all Parallel to each other.

67. Straight Line. It is with reference to the rotation
of bodies that the word Axis is used; but when rotation is
not immediately contemplated, a line, which has all its
points lying evenly, is called Straight.

68. The following properties of a straight line are mani-
fest from the mode of generating it.

I. If A, B, are points within a finite solid, the straight
line .4 B may be prolonged so as to pass out of the solid ;
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s0 also as to return no more into it if prolonged yet farther.
This is evident from the fact, that a sphere of centre 4 is
conceivable, large enough to envelop the whole solid, and
of course having the poles P, Q, which lie evenly with 4
and B, exterior to the solid; which must be true equally
of all larger concentric spheres.

II. In the same way it appears that if a straight line lie
on the surface of a finite sclid, it can be prolonged so far as
no longer to lie on the surface.

III. Any two points in a straight line of unlimited
length determine the whole.

IV. Hence, also, two straight lines of unlimited length
being applied together, so as to have two points in com-
mon, will entirely coincide.

V. Between two given points but one straight line can
be drawn.

VI. A straight line has but one prolongation each way.

VII. The parts of straight lines are straight.

VIIL. A straight line may slide along another, or along
its own direction; and if inverted it will, as a whole, still
occupy the same position.

CYLINDERS.

69. Let the points 4, B, be inflexibly connected, as
before, with the circle or hoop 0'C' (", and an axis pass
through 4, B. We have before remarked, Art. 63,
that any one point in the axis is at the same distance
from all points in the circle. But, on the other hand,
not all points in the axis lie at the same distance from
the circle; else the whole axis would lie on the surface
of a sphere whose centre is any one point C in the
circle—an infinite straight line on the surface of a finite
solid.

Hence if 4 slide to an indefinite distance along the axis,
carrying B with it, and the connexion of ¢ ¢ C" with A



40 DIFFICULTIES OF ELEMENTARY GEOMETRY.

and B be preserved inflexibly, the circle ¢ C' ¢ cannot
remain fixed, but must at length move also. This remark
Fig.27. being alike true, whatever point on

~ > the axis 4 may have reached, it fol-
%j lows that by moving 4 as far as we
é| please, we shall cause C'C'C" also to
:/j move indefinitely. By such motion

= ' o
\ \43*},/4 O (' (" traces out, or generates, a cer-
PR = tain surface, which forms a continuous
\ - % sheet surrounding the axis, and pro-
N/ B / longed indefinitely in both directions.
fv This surface is called a Cylinder, and
’,%::" the cirele’s axis, the Axis of the

(@}
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a
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Cylinder.*

L / 70. It is well to add here, that since
B the system 4 OB (' is inflexible, and
¢t = likeitself in all positions, C ¢’ " cannot

remain motionless, if 4 has any ever so
small a motion along the axis.

In fact, (since the cirele is deter-
mined, when one point in it is given,
and the axis is given,) all the points of
the circle either move together or are
at rest together; and not all its points
lie in one straight line. Hence, if the
circle be fixed, the whole system is immovable (Art. 60);
wherefore no motion whatever can take place in 4, unless

M
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the circle move with it.

1. A Cylinder is the Locus of all the Points which lie at
one particular distance from the Awis. For, first, that all
points O, D, on the cylinder, lie at the same distance, is
manifest. Next, that a point #, which is outside, is farther
from the axis than are €' and D, appears by this, that every
path from # to the axis must pierce the surface. Lastly,

* Here, then, is an example of a line (the Axis) which is Parallel to a sur-
face, (that of the Cylinder.) Also there is here a reciprocation found, such as
as not calculated on in Art. 25, No. I11.
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if G be within the cylinder, we may suppose G' to generate
round the axis an inner circle, and this circle to generate an
inner cylinder; whence it will follow that C'is more distant
from the axis than is G. Thus no point not on the surface
is at the same distance from the axis as are all the points
on the surface; which completes the proof of our statement.

72. The Oylinder is a Surface of Revolution. For if
D D' D" be a new position of the circle, and D C'* be a line
drawn upon the cylinder, every point in D C lies in one of
the generating circles. Hence the revolution of D ¢ round
the axis would generate the cylinder.

It also thus appears that the cylinder may revolve about
its axis, without changing its place as a whole; this being
common to all surfaces of revolution.

73. Sliding of the Cylinder. Regarding the surface as
indefinitely extended each way in the direction of the axis;
if the axis slide along itself, carrying the surface with it,
the cylinder, as a whole, does not change its place, but
slides along itself. This appears from the circumstance that
each particular circle, such as 0 C' 0", D.D' D", will thus be
made to slide along the surface.

4. Iwversion of the Oylinder. Let the whole system be
removed, and be then replaced with the axis inverted, but
holding its former place. Then, since the axis is where it
was, and the distance of the points on the surface of the
cylinder from the axis is as before, the surface also will
have regained its position as a whole.

75. After the inversion, let the axis slide up till the
circle 0 C'C" has regained its former place; and then let
the cylinder revolve till the point C has regained its own
place upon the circle. Let y be the point in the circum-
ference which is opposite to C, so that y bisects the cir-
cumference, counting round from € to ¢ again. It will

* The mind readily perceives that if D C be as short as possible between the
two circles, it will be a straight line. But to prove this, involyes the whole
difficulty of Parallel Straight Lines. The reader ought to be aware that we
have not yet proved it possible to draw a straight line on a cylindrical surface.
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follow that v also has, after the inversion, regained its proper
place ; but the opposite halves of the circle have exactly
changed places. Thus it appears that every circle is susceptible
of being doubled about itself, by a half revolution about two
opposite points in the circumference; so that the opposite
halves coincide.

76. Oentre of the Circle. Suppose that after the inversion,
and after ¢’ and y have regained their own places, 4 and
B have the new places a and {3 on the axis. Let also £ be
any point on the axis between 4 and B; and after the in-
version, let £ be found at &. Of course 4 £ = ae; but
ordinarily # and ¢ do not coincide, and 4 % is not equal to
half of Aa. Let A E increase or diminish, till it =1 4 q,
and then it is evident that Z and & will coincide, as at O.
Thus if O be connected with 4, and 4 O = a0, the point
0, like O and v, regains its own place after the inversion,

This amounts to saying, that if the circle perform half a
revolution about the points € and y, O turns about itself,
or lies evenly between €' and v, that is, between any fwo
opposite points of the circle. Thus all the straight lines
which join opposite points in the circle meet the axis, and
meet it in the same point.

This point (0) is called the Centre of the Circle.

77. The whole straight line ('O y is called the Diameter
of the Circle, and its half, 0O, the Radius. That all the
diameters of a circle are equal, and all the radii are equal,
is evident. ;

78. While A4 slides along the axis, and C'C' (" slides
with it (Axrt. 70,) along the surface, the centre O accompanies
C (' (" in its motion ; so that every point (as O or E) on the
axis, is centre to one, and only one, of the generating circles.

PLANES.

79. If O revolve through the circumference, and carry
the diameter ('O y with it, the two halves, € 0, O+, trace
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out or generate one and the same surface, since, after half
a revolution C and v exchange places. This surface is the
Locus of all the diameters, and is called the Plane of the
Circle. It is a species of Surface Fig. 25.
of Revolution.

80. Inwersion of the Plane. After
inverting the system as above, the
plane, as a whole, exactly regains
its own position. Thus it is like
itself at both sides, and cannot be
said to bend either way.

81. Concentric Circles. While
O O, revolving, generates the plane,
any point H in 0C (Fig. 28,) gene-
rates a new circle, / H' H", which
lies in the same plane with CCC,
and has the same centre O with it.
The two circles are parallel, as in
Art.29. But they are likewise evidently parallel, or equi-
distant, in another point of view, viz. by counting distance
along the plane surface. [For we have not yet shown,
what however is the truth, that the shortest path from # to
C lies along the plane.] Thus O is more distant from the
outmost boundary, €' C" ¢, than is any other point /, which
is within the circular area.

82. No second point (besides the centre) within that area,
can be equidistant from all the points of the outline 00" C".
For by Art. 63, no point can be equidistant from the circle,
unless it be in the axis; and the axis has no point in com-
mon with the plane, except the centre.

83. In fact, if the circle C' (' C", and therefore its plane,
be given, (F%g. 28,) we may thus approximate towards one
determinate centre. 'Within the circle, take any point A,
and through H pass a line upon the plane, parallel to C C'C".
There can be but one such parallel through #, and of course
it will be a circle, concentric with ¢ ¢". "'Within it again
take K, and by it determine another circle K K’ K", also




44 DIFFICULTIES OF ELEMENTARY GEOMETRY.

parallel and concentric with the former. This process may
be repeated as often as we please, and the central area be
diminished as much as we please. Iach new circle is
determinate, if one point in it be given; and hence they
converge towards a single determinate point, interior to
them all, which of course is the centre.

84. Lastly, the Plane may be looked on as the Locus of
Circles, which have the same Axis and Centre. For there are
no circles having the same axis and centre with 0 0 C, except
those which lie on the plane; and there is no point in the
plane which is not likewise a point in one of these circles.

We here conceive of the plane, as indefinitely extended,
as it evidently may be, by prolonging the line O ¢ which
generates it. And in this case it suffices to speak of “ A
Plane,” without adding * Plane of Circle;” since the circle
is but accidentally connected with it.

CURVED LINES.

85. The nature of Straight Lines will be yet better
understood, after putting them in contrast with Curved or
Bent Lines.

Let 4 O be some stiff line, (F%g. 29,) united to a point

B exterior to it. 4 and B re-

A A maining fixed, let 4 C generate
\ round 4 and B a self-rejoining

surface, like an umbrella round

o D its stick. It will be a continu-

B B ous surface of revolution.
Again: if at 4 be a joint,
and A C be set in a new direction 4 D, so as no longer to
lie on that same surface ; and be fixed in the new position;
then it may generate a new surface of revolution round 4 B.

Of the two surfaces thus produced, one is interior to the
other in the immediate neighbourhood of 4, and will there-
fore be justly said to be sharper at 4 than the other. We

Fig. 29.
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may also say that this surface, or indeed ordinarily each
surface, has a Peak at A.

If to the possible sharpness of the peak, produced by
altering the direction of 4 C, there is any limit, let 4 E
(Fig.80) be that position of 4 C which makes the peak
sharpest.  If there be no limit
attainable without making a part A
of the surface disappear at A4, this F A
is equivalent to saying that a part
AF of the line 4 0 is susceptible
of lying evenly with B, so as to
project out beyond the surface of
revolution. Then 4 F is a part of
the axis 4 B, and is absolutely B B
Straight.

In any other case it is manifest that no portion (as 4 F),
however small, can be cut from A4 £ such as to be straight ;
or no portion of 4 £, counted from 4, coincides with the
straight line 4 B. Then 4 E is properly called Curved at
A. The point 4 is a Peak of the surface* of rotation; and
there is an evident propriety in calling A & more or less
curved at 4, according as it deviates more or less from the
straight line A B; that is, according as the peak of the
surface at A is blunter or sharper.

86. Hwery line may be divided into finite portions that -are
Straight, and finite portions that are Curved ; if it be not
curved throughout, nor straight throughout. For instance,
if AE, which is curved at 4, is not curved throughout,
there must be some definite point P, along A I, at which
it first begins to be straight. Then the finite portion 4 P
is wholly curved. Next, setting out from P, we may cut
off a definite portion which is wholly straight. And so on
alternately.

87. Tangent, or Osculating Straight Line. 4 & having
been brought into such a position that the peak of the

Fig. 30.

F

* If a name be needed for this surface, it is obvious to call it a Bell.
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surface at 4 is as sharp as possible ; we are justified in using
the phraseology, that A # lies ¢ as near as possible to the
straight line 4 B at 4.” This is to use Distance in a new
sense, yet in a sense perfectly intelligible, and not at all
repugnant to its former use.

It is immaterial whether A4 ¥, turning about 4, be
brought towards 4 B, or A B, turning about 4, be brought
towards A F, as far as proximity of the two lines at 4 is
concerned. In either case, 4 B and A K are made to take,
as nearly as possible, the same direction at A4 ; that is, as
nearly as the nature of the curvature at 4, and the nature
of the straight line 4 B, allow.

Hence, (if the position of 4 I be given,) of all possible
straight lines that can be drawn from 4, none takes so
nearly the direction of 4 £ at 4, as does the straight line
A B; in other words, none fies so close to A E as does A B.
This line 4 B is therefore said to be the Tangent, (or Recti-
linear Tangent,) to the curve 4 & at A.

In a popular sense, any two lines fouck one another, when
they meet one another; and this is a defect in the name
Tangent. In consequence of this ambiguity we shall need
to be much on our guard; for instance, two solids might
“ touch one another,” and yet not be “in contact with one
another.” It is to be regretted that the word Osculator
has not been used in preference to Tangent; and Oscu-
lation for Contact. But in the higher Mathematics, Oscu-
lation has unfortunately been appropriated to a yet more
intimate sort of Contact.

88. It is well to remark on the wisual characteristic of
lines in contact; which is the same, whether one line, as
A4 B, be straight, or both lines be

Fig. 31. E ;

curved, (Fig. 831.) Let P be any
o £ point in the curve 4 £, and PN the
C shortest path connecting P to the line

A N N B e ..
. A B. Then, when 4 P diminishes,
o B A % (by taking P nearer to 4,) it is
1w NN presumed that £ NV and 4 IV likewise
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diminish; at least * after 4 P is less than a certain limit.
Now if PN diminish at last far more rapidiy than 4.P,
PN attains a size too small to be discerned at all by the
eye, while 4 P is still distinctly visible. When PN is
invisible, the two lines appear actually to coincide through
the part 4 P, AN ; and this apparent coincidence is the
Visual Peculiarity of lines in contact. But the pure science
of Geeometry recognizes the existence of PN, so long as
hypothesis alleges its existence, whether it be visible, or
no: hence these considerations do not affect our argument
at all.

89. Any continuous por- Fig. 32.
tion, A P, of a curved line, b E
is called an ARrc; and the
straight line A4 P, joining = o

the extremities, its CHORD.

90. If A be, not the extremity of a curve, but some
intermediate point in a
curve P A @, it has two

Q p O/
arcs, 4 P, 4 @), on oppo- o B
site sides of it, to each B P
of which we may sup-
A A

pose a tangent to be

drawn, viz. AB and

AC. Now three cases may happen: (I.) as in Fig. 32, the
two tangents 4 B, 4 0, may be
opposite branches of the same
straight line B4 ¢: (I1.) as in
Fig. 33, AB and AC may be
two different straight lines:
(II1.) They may, as in Fig. 34,
lie along the same branch of the same straight line 4 B.
In the first case, the curvature is said to be Continuous on
each side of 4. In the two latter cases, the curvature is

* For after 4 P attains a certain length, it is P g
conceivable that a farther increase of 4 P might P?él_\—"“

cause a diminution in P N, as in this diagram. N

Fig. 33.

Fig. 34.
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Broken or Discontinuous at A, and the curve has a PEAK or
Cusp at 4.

It is evident that, in the second case, the curve at A
makes an abrupt deviation from straightness, immensely
greater than in the first case ; while in the last the curve
at A turns right back in just the opposite direction.

91. If, in the last case, we look on 4P, 4Q, as two
separate curves, then, because they have the common
tangent 4 B, they are said themselves to be in contact. It
is indeed evident that in no other position could they lie so
close together in the neighbourhood of 4.

92. If A be a curve (Fig. 35,) divided at P, Q, RB. ...
and the chords A4 P, PQ, QR .... be all drawn, it
Fig. 35. appears by Arts. 14—17, that
by increasing perpetually the
points of division in all parts of
the curve, the sum of the chords
tends towards the sum of the
arcs, (or, towards the whole
length 4 %)) as its limit. Also:
that each particular chord, as
A P, tends to become equal in
length, and coincident in position, with its arc, so as to
be entirely confounded with it.

It immediately follows, that if the chords A R, AQ, A P,
are prolonged to 7, ¢, p, the straight lines 4, 4 ¢, A p, tend
more and more to coincide in direction as nearly as possible
with the arc AE at 4. Now the tangent 4 B, of all
straight lines, coincides in direction most nearly with the
curve at 4. Hence, if 4P be perpetually diminished in
length, the straight line 4 P p tends towards the position
of the tangent, as its limdt.

93. The review of Arts. 14—17 shows farther, that
though a true geometrical curve is not made up of little
straight lines, it may be looked on as a limit to which we
pass by considering a path made up of straight lines, which
become shorter and shorter, and bend oftener and oftener.
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A very small arc nearly coincides with its chord ; and by mak-
ing an arc as small as we please, we may make it coincide, in
direction and length, as nearly as we please, with its chord.
(Art. 14, 15.) Now, if PN be as short a path as
possible from P to the tangent 4 B, it is manifest, since
Ap tends to assume the direction 4B as its limiting
position, that the two lines 4 P, 4N, tend to con-
found themselves entirely, when the arc 4 P perpetually
diminishes.

If we call the length AN by the name of Tangent, in
reference to the arc 4P, we are now warranted to pro-
nounce, that the Tangent, Arc, and Chord, all tend to
confound their directions, when the arc perpetually dimi-
nishes ; and that the %mdt of the two ratios (Tang. : Arc) and
(Chord : Arc,) is, the ratio (1 : 1).

94. That the distance 2 N vanishes when the length
of the arc A4 P vanishes, is, of course, obvious. But
this fact alone will not suffice to account for 4P and
A N tending to assume the same direction. It is farther
necessary that P IV should diminish much faster than 4 P,
so that the ratio (P N : 4 P) must be perpetually getting
less, while 4 P diminishes. In fact, this ratio must be
susceptible of indefinite diminution, by lessening 4 P; but
the full proof of this must be reserved until the subject of
Proportional triangles has been discussed.

95. If P AQ be any curve, kaving no peak (Fig. 36),
and M L be any two points
in it, let a straight line of
indefinite length be drawn
through A and L; then
suppose the points M L to
move up towards each
other, carrying the line
with them. If 4 be the
intermediate point in which they tend to concur, and m 47
be the limiting position towards which M L tends, then “m!

is a Tangent to the curve at A.”
E

Fig. 36.
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For as the arc M AL tends perpetually to confeund
itself with the chord M L, the chord M L with thetangent
at M, and the tangent at J/ with the tangent at A4 ; the
conclusion is evident. It fails only when there is a peak at
A, which is excluded by the present hypothesis. In that
case the two tangents at M and L do not tend towards the
same tangent at A, nor does the arc M 4 L tend to confound
itself with the chord M L.

96. All the above will enable the reader to appreciate the
statement, that the Rectilinear Tangent “ is drawn through
two consecutive points of a curve.” Thisimplies that a chord
is first drawn through two neighbouring points, and is pro-
longed each way; and next, that the two points move
together, carrying the chord with them. It then tends to
become a Tangent, which is the limit. But if the presence
of a Peak be possible, then one of the two points must be
stationary, and the other must move towards it. Thus any
curve may be approximately represented by portions of its
tangents, or of lines which tend to the tangents as their
Fig. 37. limits. If 4Pp, PQgq,

QRr, RSs, STt, &c. (Fig.
37,) be straight lines, the bent
line APQRS ... is a rude
representation of a curve;
and how far it differs from a
curve, depends on the lengths

P "/ v of AP, PQ, &c. and their
4/«/-{1 S

A (Q
P
A

relative directions.

Suppose 4, P, Q, R ...to
have been originally taken in
| some particular curve, and to

m\w

a fix ideas, let the arcs A4 P,

PQ,QR,...be all equal. Then, as in Art. 92, if the
arcs are perpetually lessened, the lines 4p, Pgq, Qr, ...
will tend to become tangents. We may call them, ¢ ulti-
mately tangents to consecutive points in the curve,” and we
perceive that the tangents to two consecutive points inter-
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soct, as 4 p, and Pq in the point . Thus in passing from 4
to any other point 7' along the curve, we find the tangent
turn about successive points in its own length, and so deviate
into a new position.

If Q4,QP... be prolonged to a, (3... the lines Qa,
Q3 also tend to confound themselves with the tangent at
A4, when the arcs are perpetually diminished ; for 4 Q tends
to A p, as was seen in Art. 92, and so does Pg, or Q 5.
The same must be true of the prolongations of P R, P S,
. QR, @8, QT...since all the points P,Q, R,S ... tend
to merge themselves in 4.

97. It now readily follows, that in a limited arc the num-
ber of Peaks must be limited ; or, what is the same thing,
that no two consecutive points of a curve can be Peaks. For
instance, if A be a peak, Q, indefinitely near to it, cannot
also be a peak. (Fig. 37.) For if we take P and R on
opposite sides of Q, and draw 3 P Qq, QR r, straight lines,
and indefinitely diminish PQ, Q B, as also 4Q; the two
lines Q3, Qr, whose limits are the tangents at €, do both
at once approximate towards Ap, so that the opposite
tangents 3, Qr, at length become a single straight line.
Peaks or Cusps are on this account called Singular points ;
because a finite arc, while it contains an infinity of points
which are not peaks, has but a finite number which are;
and every two consecutive peaks are separated by a finite
distance. This is as obvious, as that on a knife edge not
every part can be a point or peak.

98. Deviation of the Tangent. While a point M, as in
Fig. 36, traverses the curve from P to Q, let its tangent
move with it. Then, by Art. 96, the tangent deviates con-
tinually into new positions. But by the same article it
appears that (exceptat a peak) the deviation is gradual, de-
pending on the length of the arc through which M passes, and
capable of being perpetually lessened and caused to vanish,
by reducing the length of the arc, and causing it to vanish.

Only at a peak is the deviation of a tangent abrupt, and
¢ finite through an infinitely small arc.” To explain what

E2
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may seem an absurd phraseology, consider the curve in Fig.
36, in which there is a peak at 4. As M moves up from
P towards 4, the tangent at M tends more and more to
assume the position 4B, and when M actually reaches 4,
the tangent attains the position 4.B. But M cannot move
farther along 4 @, through any arc, however small, without
the tangent abruptly passing over into the position 4 C, or
a position indefinitely near to 4 ¢. Thus an ‘infinitely
small” motion of 2, through 4, produces a finite trans-
ference of position in the tangent.

Fig. 38. 99. Deviations of Curves from their Tangents.
—If now we suppose two curves to be placed
together, so as to have a common tangent at a
common point, as 4 C, 4D have the same
tangent 4 B at A, (Fl%g. 38,) aready test pre-
sents itself, as to *“which curve deviates the
more from the tangent.” For if we suppose
them simultaneously to generate bells around
A B, the bell whose peak at A4 is exterior to
the other evidently deviates the more.

But this does not enable us to pronounce anything con-
cerning the ratio of the two deviations. It does not even
suggest under what circumstances one curve might be said
to deviate fwice or three times, &c. as much as another.

Since it is manifest, by Art. 98, that the principal devia-
tions of curves are at their peaks, at which the tangent
itself deviates abruptly, this suggests the propriety of
treating on the deviations of straight lines, before consider-
ing any further those of curves.
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RECTILINEAR ANGLES.

100. When two straight lines proceed from one point, the
deviation of each from the direction of the Fig. 39.
other is called a Rectilinear Angle, or more
simply, an Angle. This Latin term may at
first seem to mean the same thing, as its
English representative, Corner; yet in
Geometry they do not mean the same.
For the Corner is the bare point in which
the lines meet, while the Angle (as we
said) is the ¢ deviation,” being a relation
between the direction of the one line, and
the direction of the other.

Depending thus solely on the direction of the lines, the
Angle remains the same, whether they be ever so long,
or ever so short. It is usual to denote the angle made by
A B and A 0O, by saying, “the angle BA C,” or, “ the angle
C A B,” putting the letter which is at the corner between the
other two.

101. A method perfectly similar to that of Art, 99,
enables us to decide which of two angles is to be called
the greater. For if 4 0, AD be two straight lines, each
deviating from the third line A5, we may suppose the
whole system to be inflexible, and each of them to generate
a surface of revolution round the axis 4 B; then if (asin
Fig. 39) the peak of A Dis exterior to the peak of 4C, we
pronounce that 4 D deviates more from 4 B, than does 4 C.

Since 40, A D cannot meet in any second point, the
surface of A C forms an entire covering, wholly separating
AD from A B; nor is it possible to pass from a point in
A D to a point in 4 B, without piercing the surface. 4D
is then called exterior, because we regard A B as interior.

But if BA be prolonged to [3, then if 4 3 be looked on
as interior, 4 ¢ becomes exterior to the surface of 4.D,
and A C deviates more from 4 3 than does 4 D.
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102. Cone.—If any straight line 4 C hang loosely from
A (Fig. 40), and after performing every circuit soever
Fig. 49. round 4B, return to its original po-

A sition; the surface which it has traced
out is called a Cone. In the par-
ticular case supposed above (Fig. 389),
4 C was inflexibly attached to 4 B ; so
that in every position its deviation was
the same, and the motion was a Rotation.
Such a Cone is called for distinction, “a
Cone of Revolution;” and as it is for
the most part the only Cone spoken of in Elementary
Geometry, this is generally understood, when “a Cone”
is mentioned, and when the contrary is not specified.

103. Supplement of an Angle.—Suppose now that in
Fig. 89, the line 4 ¢ shifts its place, and occupies that of
AD. Hereby the angle which it makes with 4B is
increased ; but the angle which it makes with 43, the
prolongation of B A, is diminished. Thus the two angles
BAC, 3A4C, stand in such a relation, that we cannot
increase the former, without diminishing the latter ; and of
course, conversely. These two are then ¢ Variables,”
mutually dependent, and they are called Supplements to
one another.

104. Vertical or Opposite Supplements.—But when a particu-

lar angle, B4 0, 1s given, two ways

now offer themselves of producing a
4 Supplement to it. For by prolong-
ing B A to 3, we get, as before, the
supplement 340 ; while if (#ig.
41) we instead prolong 04 to v,
the supplement to BAC is y A B.

d Before proceeding farther, we must

B consider whether this involves us in

any ambiguity.

The following reasoning shows that the opposite supple-
ments are absolutely equal ; or are, what we called in Art.

Fig. 41,

3
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19, ddentical magnitudes. Suppose the whole system of
lines (remaining inflexible) to be entirely removed; and
then replaced so that the angle B AC shall occupy the
same place as before, but with its lines interchanged, 4 C
being where A B was, and 4 B where 4C was. Then the
two prolongations A4 3, Ay, will also have exchanged
places, and, consequently, the angle C'4[3 has precisely
exchanged with BA+y. These angles are then coinciding
magnitudes, every way equal; and it is indifferent in
which of the two ways the Supplement to BA C is esti-
mated.

105. Right Angles—Let us now imagine that the line
A O originally very nearly coincided with 4B ; in which
position the angle B A ¢’ was very small, and, consequently,
its supplement 3 4 ¢/ was large. Suppose then, that BA ¢
gradually opens, and as it increases, its supplement will
diminish. If it continue to increase, the supplement will
at last become very small, until it all but vanishes.

In such a progress, the angle must have passed one, and
only one intermediate position, in which it is EQUAL to
its supplement. Thus, let 4 D be such as to make the
angle BAD = its supplement 3A4D. In this position,
each angle is said to be Right.

106. Moreover, if D A be prolonged to 8, the opposite
angles B A3, (3 43, which are the other supplements, are
equal to these by Art. 104. Thus the two intersecting
lines BA(3, D A3, produce four right angles. Kach of
them is said ““to make right angles,” “to be at right
angles,” or ““ to be Perpendicular” to the other.

107. We said, there is only one intermediate position, in
which the angle is equal to its supplement. Although
no one will question this, it may not be clear to some,
how we know it. To remove any doubt on this head, let
# be an angle, and y its supplement, and let it be remem-
bered, that the greater # is, the less y is. Hence, if 2/ is
another angle, and ¢/ its supplement, and #’ is greater than
#, then 7' is less than .
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It follows, that should # = 7, 2" is greater than ¢, and
much more greater than 4. Thus in no way can we have
simultaneously, # = ¢, and 2’ = #'; unless # and &/ were
absolutely identical. Or; there is but ome intermediate
angle, between the least and greatest, equal to its supple-
ment.

This is generally expressed, by saying that ¢ All Right
Angles are equal.”

108. Obliquity.—Every other straight line, as 4 €, which
is not perpendicular to B 4 (3, is said to be Oblique to it:
and of the two angles which it makes, the less (as C 4 B)
is called Acute; while the greater (as C43) is called
Obtuse.

109. Erecting a Perpendicular from o Straight Line.—
It is now evident, that if 4 be any given point in a given
straight line BA4(3; a perpendicular, as A4 D, may be
erected from 4. Nevertheless,  to erect a perpendicular,”
is not a determinate problem: for an infinity of per-
pendiculars can be drawn, the Locus of all which is the
surface of revolution generated by 4 D about the axis
BApB.

110. On comparing Articles 79, 80, it is very manifest

that the surface generated by 4 D is a Plane, and B Af3
the Plane’s Axis. Since the Axis is thus perpendicular to
the generatrix of the Plane in all its positions, the Axis
is said to be ¢ Perpendicular to the Plane.”
Fig. 42, A 111. Dropping a Perpendicular on a
| Straight line.—Let A B (Fig. 42) be the
straight line, which mustbe supposed sus-
ceptible of indefinite prolongation; and
let € be a given point ewithout it. Sup-
pose C to generate a circle round the axis
A B ; this circle must have a determinate
centre O; which is a point in the axis.
Join €0, and it will evidently be per-
pendicular to 4 B. It is said to be
“ dropt,” or ““let fall,” from €' on to 4 B.
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“ To drop a perpendicular” is a wholly determinate
problem. There can be no perpendicular as C P, P being
some other point in the axis, Forif the system be inflexible,
and slide together along the axis, so that the circle may
generate a cylinder, when P takes the place which O had
before, it appears by Axticles 70, 78, that the circle must
needs have some new position, as C' ¢" (. Thus the line
P will have come into the position O C'; and, conse-
quently, the angle ' P 4 being equal to C" O 4, is not equal
to C O A ; and is not a Right Angle.

112. Thus far we have succeeded in establishing between
different angles the relations of Greater, Equal, and Less.
But nothing has appeared as yet, by which a numerical
measure of angles may be attained. It is not possible to
affix any sense to the statement that one angle is double or
triple of another, until we can fix on a method by which
any number of angles can be added together; and con-
versely, by which an angle can be resolved into any number
of parts, whose sum shall constitute the whole angle.
Until this shall have been done, an Angle, if entitled to be
called a Quantity, is yet incapable of being measured, or
appreciated numerically.

Now that a method of addition may not be illusory, it is
requisite and sufficient, (1) that the result may be unaffected
by the order in which the parts are combined ; (2) that no
number of resolutions and recompositions may affect it.
Yet of various devices by which an unambiguous Sum of
several angles may be obtained, not all are equally natural
and proper, though all may be Pig. 43.

equally logical. Moreover, if

A B, 4C, 4D, (Fig. 43,) are / .
three straight lines proceeding /
from A, and making three A\D
angles, BAD, BAC, CAD,

it is by no means justifiable to say that the greatest of
the angles is the Sum of the other two. For in fact, if the
magnitude of the two smaller be given, this does not
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suffice to determine a single value for the third. For
instance, if the angles BA 0, C A D, be given, and B A4
revolve round 04 so as to generate a Cone, we have no
right to assert (what indeed is obviously untrue) that the
angle B A D remains constantly the same.

113, One method which recommends itself as at once
unambiguous and natural, is, to inquire in what position of
B A, the angle BA D attains its maxzimum : and to con-
sider this as the genuine sum of the two constituent angles.
But in our present stage we cannot have recourse to this.
We must be satisfied with ultimately proving that the
course which we have taken produces this very result.

Fig. 44. 114. When we consider
P .~ that the quantity to be mea-

N sured, is, the deviation of

P \\ 1 4 _i\\L the direction of one line from

\\ 2N the direction of another line,

AN the thought will instantly

arise, whether a comparison
of two angles cannot be
made, by measuring them
from leg to leg. For instance,
if POQ, MLN, are two
angles, to fix ideas, (F4g. 44,)
measure off from their legs
the lengths Op = Og=Lm
= Ln, = one yard; and
draw straight lines pg, mn.
Then if pg prove to be
double of m n, it might at first seem that the angle O must
be double of the angle L.

An objection to this presently discovers itself. Ifp Or,
r0gq, were angles having a common leg Or, and Op =
Or = Og, the line p ¢, which we have assumed as measur-
ing the angle p O, is not made up of the two lines pr, r g,
which are supposed to measure the smaller angles. But if
p 0¢ is to be regarded as a whole, made up of parts p Or,
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7 O ¢, then the measure of the whole ought to be made up
of the measure of the parts.

115. This remark readily leads to amode of obviating the
difficulty. Let a plane be laid upon the lines O P, O @, so
that the plane’s centre may fall on O, and O P, O @ become
two generatrices of the plane: then one circle of the plane
(Art. 84) will pass through p and ¢.* Similarly, through
m and n, pass a circle whose centre is L. And let us
assume the lengths of the circular arcs p q, mn, as the
measures of the angles POQ, M L N.

The former objection will not now apply; for if p Or,
7 0¢, be laid down on one plane, whose centre is O, one circle
of the same whose centre is 0, will pass } through p, 7, ¢;
and as the whole arc p ¢ = sum of the ares pr, rg, it is
congruous that the angle p O¢ measured by the arc pg,
should be regarded as the sum of p O 7, and r O ¢, measured
by the smaller arcs.

Thus far then, we are led to the principle, that angles which
are to be added together should be laid down side by side on
a plane, with the plane’s centre for their common corner.

116. But a new difficulty may be started, which must be
removed before we can acquiesce in this method of measur-
ing the amount of deviation; namely, that an arbitrary
quantityhas been introduced, in the length of the radius O p.
Nowif a change in this length will give different results in our
measurement, the method must be abandoned as useless.

To take a simple case: If (Fig.
45) PR is a circular arc of
centre 0, in which R @ is double
of P R ; whence we infer that the
angle RO Q may, without im-
propriety, be called double of
the angle PO R ; let us inquire,
whether the propriety of it will
be overturned by a change in the

* In future this may be expressed, “ With centre O, and radius O p, describe
a circular arc pq.” + Art. 84.
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radius O P. Take some other length O p along the line O P,
and from centre O describe a circular arc prg¢, cutting O B
in7, OQin ¢; which is possible, by what has preceded.
It is now very manifest, that if R @ be bisected in S, and
SO0 be joined, dividing the arc ¢ in s, we shall have
rs =sq. For if the system ROS be applied on the
equal and identical system S0 Q, so as to coincide, » and s
will take the places of s and ¢. Thusalso, PR, RS, S@Q,
being all equal, p» and s and s ¢ are likewise equal; which
gives, » ¢ double of pr. We find, then, the same ratio as
before, between the angles R0OQ, PO R, if we measure
them by pg, and p 7, instead of P Q and P R.

But it is at once clear that this may be generalized.
For remembering that an axis of rotation passes through O,
about which the circles of P Q and p ¢ are described, we
may regard P R, pr, as two Variables, depending on each
other, as in Articles 33, 41 ; and in Art. 41, it was shown
that they vary proportionally. Thus the ratio of P R to
R Q, is always equal to that of p» to r ¢, whatever is the
size of the angles at O, and whatever the lengths of the
radii O P, O p.

117. Not only, then, does this second objection fall to
the ground, but we perceive that we entirely succeed thus
in measuring the deviation, (or width of opening between
the lines which form the angle,) in the only linear method.*
For no other sort of line but a circular arc would give to
every elementary equal angle into which we might resolve
the whole, an equal measure.

As, however, by Art. 42, it appears that the Areas (or
Circular Sectors) PO R, p Or, are proportional variables,
these sectors also might be assumed as measures of the
angles. For as the sector PRO is proportional to the arc

* That is: ‘‘the only linear method attainable on @ plane.” We might
suppose the angles laid down on the surface of a cone, with their common
corner at the cone’s vertex. But this has a double objection ; (I.) It is arbi-
trary, what sort of cone to choose, or with how large a rotatory angle; (II.)
That some angles will be so large as not to lie on the cone at all.
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PR, and this arc to the angle PO R; it follows that the

sector is proportional to the angle. Thus:

Sector PR O : Sector ORQ =Angle POR: Angle RO Q.
118._If, as an arbitrary wnit for angular measurement,

four right angles were assumed; which are measured by

the entire circumference of the circle; then since, Any

Angle : Four Right Angles, (or 1,) = Arc : Circum-

ference; we get:

Arc )

Angle = Circumference

as a numerical valuation.
By similar reasoning, we get:

Sector
‘Whole Circular Area)

The preceding articles show, that the value of these
ratios or fractions is not at all affected by a change of the
radius.

119. It is usual to divide the circumference into 360
equal parts, called Degrees; so that every Right Angle
contains 90 degrees. But it is needless to enlarge on that
which is fully explained in so many other books. It is
sufficient here to remark, that, Any angle + its supple-
ment = 180°.

120. Periodic Magnitude. We have established that
angles are not only Magnitudes, but are Magnitudes
resolvable into parts all homogeneous to each other and to
the whole, so as to allow of numerical valuation. They
have, however, a great peculiarity, distinguishing them
from the other magnitudes which we have hitherto met, in
their not being susceptible of indefinite increase. There is
a maximum value for the angle, which it cannot pass,
namely, 180°. On attaining this, the angle vanishes; and
if the arc which measured the angle increase yet farther,
the angle begins again to increase from nothing.

We may, however, with propriety, extend the limits of
angles from 0° to 360°, in order to distinguish between the

Angle=
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direction of a line A B from A to B, and the direction of
the same from B to 4. In Fig. 34, we may say that the
tangent at 4, {which turns back upon itself,) deviates
through an angle of 180°. Generally, if 4 be the centre
Fig. 46. of a circle BCD EF GB, (Fiy.
0° 46,) and AC, AD, AE, AF,

Doy

C A G, lines issuing from A in all
- directions, we may estimate all of
O E—— g these with reference to the single

A direction 4 B, by means of the
¥ arcs BC, BCD, BCE, BDF,
\2-10, G BE @&, all counted round in the

same direction, and some of them,
perhaps, greater than 180°, or than 270°. Moreover, if
C A F be a straight line, and B € (for example) = 45°, so
that B D F = 225°, by assigning these two different arcs,
we distinguish between the opposite directions, 4 C, 4 F;
a matter which is often of importance in the higher mathe-
matics. Thus in Mechanics, two opposite forces might act
along 4 C and 4 F.

But while we may thus justify the extension of angular
magnitude as far as 360°, it is evident that beyond this
limit the angle does not increase with the arc. If to any
arc, as B €, we add 360°, the direction determined for the
line 4 C is the very same as before ; and by the  angle”
we explained that only * relative direction” was meant.
Herein, then, consists the periodicity of angular magnitude.
If the arc by which the angle is determined begin from 0,
and increase till it attain the length of 1, 2, 3, 4, . . . cir-
cumferences, the angle at the completion of each circum-
ference, vanishes, and then goes through the same series of
magnitudes as before.

121. But it may be proper here concisely to point out
the method of determining directions universally, whether
they do or do not fall on one plane. Suppose a sphere, (F%g.
47,) whose centre is 4, and Ay, A3, to be two straight
lines, whose directions, relatively to 4 B, are to be described
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or noted down. Let a plane whose centre is 4, and axis
P A Q, pass through A4 B, and cut Fig. 417,
the sphere along B D, which, of s
course, is a circle. Pass a like
plane through 4 P and 4, and a
third through 4 P and 43, cutting
the sphere along new semicircles
PyCQ, PDJ3Q. Then the
direction Ay, with reference to
A B, is fixed by the two arcs B 0,
P vy; also the direction of A & is similarly fixed by the arcs
B D, P3. And so with any other radii.

In geography, B € or B.D would be called Longitude,
and Py or P& North Polar Distance.

SCHOLIUM.

122, Very eminent modern geometers,* considering the
periodicity which characterizes Angles, have thought them-
selves justified in pronouncing that the angle has “a
natural unit; ” and assuming this to be true, have, by a
very few steps evolved conclusions, generally supposed to
be attainable only by long processes of reasoning, and by
help of the properties of Parallel Straight Lines.

In Art. 118, we assumed *four right angles™ as an
angular unit, and called it ¢ arbitrary.”. Arbitrary it is;
for any other angle might, with equal logical propriety, be
assumed : yet at a glance we see that it does not stand on
a like arbitrary footing with the assumption of a foot, a
vard, or a mile, for the linear unit; inasmuch as it is the
maximum value of angles, while lengths have no maximum.
Yet while we are thus led to remark a difference in the two
cases, it remains rather vague and uncertain what inferences
may be drawn.

* See Dr. Brewster’s Translation of Legendre’s Elements of Geometry.
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arc
circumf’
we had been able to show that the angle is proportional to

(————::S ); we should have demonstrated all that Legendre

desired. For it is clear that when the arc and the radius
are given, the angle is hereby determined, without knowing
any angular unit ; and the above proportion would show that
to give their actual length comes to the same thing as to give
their numerical representatives, and conversely. Hence an
angle could be determined from knowing the mere ratio of
two lines, and without having previously settled on any
angular unit. Angles, consequently, do not need an artificial
unit at all, which circumstance was naturally, and, as the
writer believes, truly accounted for, by saying that they
had a natural unit in the entire circumference.

123. But can we establish in the present stage, that the

arc \ , . .
- d.) 2 This obviously depends

on our ability to prove that the circumference and the
radius vary proportionally, which must rest on the following
train of reasoning.

Let R be radius of a circle, and O its circumference.
Then, if R be given, ¢' is geometrically determined, no
other element whatever affecting the value of C. We are
led to infer, that a mind perfect in intelligence, could deduce
by some process of reasoning, the arithmetical length of C
from the arithmetical length of R ; and this would imply,
that so long as the numerical value of 2 remained the
same, the numerical value of € would likewise be un-
changed, namely, that whether the 2 meant R yards, or R
miles, or R furlongs, &c., accordingly, the result would be
O yards, C miles, C furlongs, the linear unit being unim-
portant to the calculation. And this amounts to saying
that the circumference must needs bear in all cases the
same ratio to the radius. If any one refuse to admit the
inference, it must be by alleging, that for the computation

But, observe, that if instead of writing ; angle =

angle is proportional to(
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of C it might be insufficient to know the numerical length
of R, without knowing farther whether it was in yards or
miles, &c. But this seems opposed to the very nature of
caleulation ; as appearing to imply, that help from the
senses is needed ; by which alone a mile can be distinguished
to be a mile.

124. Whatever cogency this reasoning may possess, is
certainly not due to our secret knowledge that the same
result has been attained by other processes, according to the
received methods of geometry ; for it rests on a far wider
principle, applicable alike to other sciences, and known as
the Law of Homogeneity. In Mechanics, for instance, if
homogeneous quantities be mutually dependent on one
another, it is considered to be a sort of axiom, that the
relation between them, or rather, the equation which
expresses it, can only involve their ratios; insomuch that
such an equation is called *‘ Homogeneous in respect to
them.” And one might think that every geometer must
be conscious, that his mind seizes with a kind of intuition
on certain truths which depend solely on this principle, so
as to prove fully that we do not need to deduce them by the
ordinary steps, of which many are less strikingly obvious
than the conclusion. Such truths are those involved in the
doctrine of Similar Figures:— that if the three dimensions
of a figure vary proportionally, all the linear measurements
vary in the very same ratio ;—the areas in the duplicate of
it, (or as the squares of the lines,)—the volumes in the
triplicate of it, (or as the cubes of the lines.)

125. The reasonings of Art. 123, are not really needed
as a part of Legendre’s argument; but they are more or
less available for answering objections to it. Yet no
geometer thinks it logically incumbent on him to answer
objections, which, 7/ his demonstration be perfect, must
spring from ignorance. It is a condescension on his part
to try to help the objector out of a difficulty into which he
has plunged himself. '

At the same time it is hard to deny that the reasoning

F
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(whether as laid down above, or as by Legendre,) involves
an assumption which we would not willingly make, while
on the threshold of a science which aims at perfect demon-
stration, namely, the possibility that the science of Geometry
should exist. 1f it be conceded as possible, that by a mental
process the circumference can be deduced from the radius,
the demonstration appears complete. But if a stiff ob-
jector * protest, that for anything which has been yet proved
to him, geometry cannot in the nature of things become
a science of calculation, it may be very hard to answer
him,

CURVILINEAR ANGLES,

126. We may now return to the question which we left
in Art. 99, and consider how the deviation of curves, from
one another or from straight lines, is to be measured. And
we are naturally led to the following process by what has
been already laid down concerning the deviations of straight
lines.

Let 4 B be a common tangent to two curves, 4 C, 4D,

(Fig. 48,) just as in Fig. 38;
Fig. 48. and suppose a sphere of centre
A, small enough to meet 4 B
inP, A4Cin @, AD in R.
Then with centre 4, and
radius of the sphere for radius,
circular arcs P Q, P R may be described. The lengths of
these arcs, when the radius is very short, give a rough or
approximate measure of the two curvilinear angles B 4 C,

A P r B

* This is probably the meaning of Col. Perronet Thompson, who asserts
that Legendre has confounded the defermination of one quantity by others,
with its calculability : an assertion, the full force of which I did not estimate,
when with undue decisiveness I contested it in a Review of his work on
Geometry without Axioms.—(West of England Journal, 1835.)
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B AD. For, in that case, the arcs 4 C, 4 D, do not differ
greatly from their chords.
If the chord 4 Q be drawn, the rectilinear angle B 4 Q

is accurately measured by <ﬁ>, and if the radius

of the sphere be perpetually diminished, the chord and arc
A Q tend more and more to coincidence. Thus the limit
of the rectilinear angle B4 @ is the curvilinear angle
B A4 Q. Wherefore this last angle is measured by the limit of
PQ
( circumf.
tangent lies closer to the curve than does any other straight
line, it is evident that the peak of the surface generated by
A Cround A4 B is sharper than any conical peak; or no
conical peak can be introduced at A interior to the peak of
A 0. Hence the curvilinear angle B A4 C is sharper than any
possible rectilinear angle. (Which, it will be observed, is
thus proved generally of the angle between any curve and

). But this is of no direct utility to us; for as the

its tangent.) It follows that<_—“ci£u?n T ) is a ratio which
can have no finite limit, but must vanish more and more,
and tend perpetually towards zero as the radius of the
sphere diminishes.

127. But while the above ratio does not help us to com-
pare the curvilinear with the rectilinear angle, (because the
former is indefinitely less,) we may probably in many cases
compare two curvilinear angles with each other. For,
drawing the chord 4 R, we have:

Rect. angle BA Q : Rect. angle BAR = PQ: PR,
the radius being here quite immaterial, while it is thesame
for both arcs. ILet the radius perpetually diminish; in
which case the rect. angles tend to confound themselves
with the curvilinear ones ; so that we get.:

Angle BAC : angle BAD = limit of {PQ: PR}.
Now a prior: it is impossible to foresee what will be the
limit of the last ratio, which must differ exceedingly in
different curves. It is not difficult, however, to invent

F2
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curves in which the limit may be (1:1) or (2:1) or
any other finite limit: or again, in which it shall be
zero, that is, in which the ratio shall diminish below all
limit,

128. To exemplify this, it will somewhat simplify the
matter to confine ourselves to curves drawn on a plane.
Let A be the centre of a plane, upon which arve drawn an
Fig. 49. indefinite number of circles,
whose common centre is 4,
asin Art. 81. Let A Bbe
a generatrix of the plane,
and A€ any curve drawn
upon the plane, so as to be
touched by 4 B in 4 ; and
of course 4 O, like A4 B, will cross the circles. Let
P P P"... be points in which 4B cuts them, and
Q Q g ... the corresponding points of intersection for
A 0. We will first show, that a new curve is conceivable,
which shall have its curvilinear angle (or curvature) at A4
just one half that of 4 C.

Bisect the arc B € in D, the arc P Q in R, the arc ' Q'
in R, P” Q' in R"; and so on; then the series of points
D, R, R, R". ..l between the curve 4 (, and tangent
A B. And they are indefinite in number, as are the circles
which lie on the plane. By increasing the number per-
petually, the points B R R” ... approach nearer and
nearer to one another, and tend to form a continuous line.
To use another form of speech; if the radius 4 P is arbi-
trary, and the arc PR = 3 PQ, the Locusof B is a
certain curve line 4 R D, which lies between P € and 4 B.
And since (PR:PQ) = 1: 2, a ratio which remains
constant however small A4 P becomes, it follows that
L BAD:/ BAC = 1:2; or that the curvature of
AD at A is half that of 4 B.

129. It is evident that in like manner a curve is conceiv-
able, whose curvature at 4 shall bear any required ratio
to that of A4 C.




CURVILINEAR ANGLES. 6D

But as it is only the bending in the immediate neigh-
bourhood of 4 which affects the curvilinear angle at 4, and
the farther parts of the curve R D may be bent aside with-
out affecting that angle ; it is by no means requisite that
every arc PR should be to its fellow PQ in that required
ratio, All that is needed, is that ke Zimit of (P R to P Q)
should = the ratio proposed.

130. To illustrate this simply, we will devise a new curve
wholly distinct from A C,—having no portion, however short,
in common with it at 4,—and yet having equal curvature
with it at 4. For this, call the length P @ = «, where
@ is some fractional number, referred to some linear unit,
suppose an inch. Then «* represents the second power of
a, according to algebraic notation ; and is less than a, while
@ is less than 1. Thusifa =3, «® = };ifa =3, > = 5; if
a=1a= L:ifa="1,a="01;if a =05, «® = 0025,
&c. Now whatever may be the length of P Q or a, which
continues to diminish, always take @.5, (in the prolongation
of the arc P ),) = a?; and hereby we determine a series of
points 8, S, 87 . .. whose locus is a curve 4 S Z. It can
never fall upon the curve 4 @ C'; for QS by hypothesis has
always some length. Yet this length (a*) bearsto Q P a
perpetually decreasing ratio: indeed SQ: Q P = d*: a =
w: 1, aratio which becomes less than any limit, as P ap-
proaches A. Thus the approach of ES to C'Q in the
neighbourhood of A4, is indefinitely closer than that of
CQto BP.

It is immediately evident that 4 S/ and A Q C have
equal curvature at 4. For PS8 = a + o*; PQ = a;
coPS:PQ=a+a:a=1+a:1l. But £ BAE:
/ BAC =limit of (PS: PQ) = limitof (1 + a:1);
which limit is barely (1 : 1); since a is evanescent. Hence
LBAE= /BAC.

This teaches us that two curves which have unequal
deviations, (estimated after the manner of Art. 99,) may
nevertheless have equal curvatures. ~ The respective
deviations through two equal finite arcs, however short,
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may be unequal; and yet they may approach towards
equality as the limiting state, if the ares be perpetually
shortened.

131. Instead of measuring a* along the prolongation of
P Q, cut off from P Q itself alength P T = a®; or what
is the same, PT =QS; PT' =Q8; P'T" = @' %,
&c. ... and let the locus of the points 77" 7" ...
be a curve 4T F, lying of course between 4B and
AQC. It is then evident, that as # T approaches A,
it lies indefinitely nearer to B P than does C¢. Tor
PT: PQ = «®>:a = a : 1, which is evanescent with
a. Hence the curvature B 4 F is indefinitely less than
B AC.

132. Orders of Curvature. We are led on toremark, that
yet a new curve is devisable, whose curvature at A shall be
indefinitely less than that of 4 F', which was itself indefinitely
less than that of 4 . For we may suppose P U always cut
from P Q, such as tobe = «, the #hird power of a; (thus,

fa=}i ¢ =};and ifa =1, ¢ = 0013)

Then PU: PT=d*:a®=a:l1.. LBAU: LBAT
= limit of a: 1; which is evanescent with 4 P, so that
£ B A U is indefinitely less than 2 B A T.

This process may be carried farther and farther by means
of the powers a*, a®, &c. so that an endless series of curves
is devisable, passing through 4, and touched by 4 B, each
having its curvature indefinitely less than that preceding it.
There is nothing paradoxical or mysterious in this. It is
only one form in which #he infinite divisibility of space
(in conception) is set forth. If we can suppose a per-
petual and indefinite division of the line PQ as it moves
towards 4, we can of course equally conceive of curves
tending towards 4 B more and more closely in their ap-
proach to 4.

The student who is familiarized to algebraic conceptions,
will at once perceive that between the series of curves just
now supposed, we can at pleasure interpolate others having
a like relation to the series. Thus between the curve of a,
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and the curve of o, we may interpolate a curve of
E — 3

a?or ¥a®>. Nowa®: o> = 1a: 1, which is evanescent :

3
also a’ : @« = 1/ a: 1, which again is evanescent. Hence

)

the curvature of o® is indefinitely less than that of «®; while
the latter again is indefinitely less than that of a.

Thus the geometrical doctrine of the Orders of Contact,
is identical with the algebraic doctrine of the Orders of
Infinitesimals. See Cauchy’s Cours d’Analyse.

133. The most natural inference from the above, is, that
Curvatures differ so enormously, and form so many new
series of magnitudes not homogencous with each other, as to
render hopeless the thought of ordinarily comparing them.
Yet the inference is mistaken. It may be interesting to
the student, even in this stage, to be informed, that except
at singular points, the curvature of any two curves soever is
of the same order. Thus 4 € and A F in Fig. 49, although
at A their curvature is so different, yet at Q and 7"probably,
(or indeed at every other point but A,) have curvatures
readily admitting of comparison. And in every curve of
limited length, the number of points which have any other
than ordinary curvature, is limited.

CURVATURE OF CIRCLES AND SPHERES.

184. We have pursued the subject of Curvature into
details not logically essential to the argument immediately
before us, yet, perhaps, useful in helping the student to
distinct ideas on the matter concerning which we are rea-
soning. 'We now resume the consideration of the particular
curve, which is to us in the present stage most important ;
taking up the subject in reality from Art. 111.

A Circle is everywhere curved : that is, no circular arc,
however short, can be a straight line. For since a circle
can slide along itself, the curvature or noncurvature at
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every point is the same. If then any, however small a
part, were perfectly straight, the whole would be straight ;
and a straight line would rejoin itself.

135. Prolongation of a Circular Arc. Any circular arc,
however short, admits of sliding along only a single deter-
minate path. For let €D be any arc (Fig. 50,) and let it
Fig. 50. slide into the position y D 3, the part D3
¢ being its prolongation. We say then,

there is no second prolongation as D &, such
that it might equally slide into the position
v De. For, if this were possible, then the
system y.DJ might revolve on y D, as an
axis, until 3 came into the position D« ;
which would imply that the part v D is a
straight line. But we have shown that no
portion of a circular arc can be straight.
Hence D & is the onrly prolongation of € D.

136. We infer that the sliding of €D along itself takes
place by a constrained motion ; and that if the prolongation
be continued on and on, the arc will at length complete
the whole circumference, and rejoin itself at C.

Moreover; Any arc of a circle, however small, is thus
proved sufficient to determine the whole circle. Wherefore,
two circles cannot have any small arc in common.

187. No Peak in a Circle. The uniformity of curvature
all round in a circle, proves that there can be no peak any-
where. For if one point were a peak, so would all be,
which is contrary to Art. 97.

Fig. 51. 138. The Tangent is Perpen-
T o) S dicular to the Radius. Let a
—’}L B circle have centre O, (Flig. 51,)

P » diameter C O y,andlet O 7', C S,
o be tangents to arecs C 4, ¢ B, on
D opposite sides of C. It appears

B by the last Article, that 77C.§
577 must be a straight line. But
besides, since by Art. 75, the circle may be doubled about

3¢
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its diameter C'y, so as to make the opposite halves C 4 v,
C By, coincide ; it follows that 'S and O 7' would coin-
cide, and the angles OCS, OCT are therefore equal.
Consequently, each is a right angle.

189. Three points in a Circle cannot be in the same straight
line. Thus C, 4, P cannot lie evenly together. Else, if the
circle were doubled about itself, till Pand A changed places,
and C fell upon @, Q also would lie evenly with 4, P, and
C; where PQ = A C. Similarly,if Q R = P 4, it would
follow that R lay evenly with Q, P, A, C. Again, take
RS =PQ, and § will be likewise in the straight line.
Continue measuring off parts, alternately equal to 4 P and
AC, and we shall at last come round either to (' exactly, or
toapoint beyond C. If we never light on any point twice,
however often we go round the circumference ; we shall de-
termine an infinite number of points, (as lying evenly with
C, A4, P,) whose locus is the circumference itself. This
would prove the whole circumference to be straight. But
if we light again on some point, as C, then a straight line
may rejoin itself. Either result is absurd.

140. The Toangent does not meet the Circle again.
That no small arc of the circle at C coincides with the
tangent, appears from Art. 134. Hence at C, the tan-
gent and circle part; the tendency of the circle, even
on starting at C, being towards v, in which ¢4 and OB
will at last meet; the tangent having no tendency
towards any point on one side of it more than on another
side. Now the arcs 04, OB, having once quitted the
tangent, by reason of their tendency towards y, can never
again return towards the tangent; but as their path is pro-
longed, must bend perpetually more and more away from
it, since their curvature is all one way. Hence the
tangent and circle meet in no point but C, the point of
contact.

Otherwise: If the tangent met the curve again as at P, take
COp = C P, at the opposite side of C'; and it must evidently
meet the curve likewise at p. Then P, C, p would be three
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points in the circle, lying in one straight line; which we
have just proved cannot be. For this cannot be evaded by
saying that P and p might be but one point, namely v, (as
CPy = Cpy): forif y were a point in the tangent, then
the diameter and the tangent would coincide ; contrary to
Art. 138.

141. Curvature of the Sphere. If the semicircle ' Ay
revolve about the diameter ¢'Ovy, the arc will generate a
sphere ; since the surface thus generated is evidently equi-
distant from O. (See also Art. 64.) Let Cay be any
position of the generating semicircle. Then since the
curvature of (' 4 and of C a, estimated at the point O, is
identical, we are justified in saying, that the curvature of
the spherical surface at C in every direction round C is equal.

Again ; since the sphere may slide on its own ground in
every direction, until any point ¢’ assumes the place of any
other point D; in which case the surface immediately
round C would occupy the place before held by the surface
immediately round D ; it follows that the curvature at C
= that at D.

It is manifest also, that the curvature of a sphere is
measured by that of its generating circle.

142. Straight line lying upon a Sphere. The line 7' C,
which is tangent to the generating circle, is obviously per-
pendicular to the sphere’s radius, which is the circle’s radius.
It is besides wholly wéthout the sphere. For it cannot be
wholly within ; for no infinite straight line can be shut up
within a limited solid, (Art. 68.) Nor can it pierce nor
again meet the surface ; for similar reasons to those urged
in Art.140. Hence it lies wholly without the sphere, and
has in common with the surface only the isolated point C.

143. It hence follows that if C 7'bea given straight line
of indefinite length, and O a point without it, the perpen-
dicular O C being dropped determines C as nearer to O than
is any other point in the line.

144. While the semicircle ¢4y revolves about the
diameter C'y, and generates the spherical surface, let the
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tangent € T' revolve with it. Then the locus of CT'is a
Plane, whose axis is Cy. This is fitly called the Tangent
Plane to the Sphere at C, because every one of its genera-
trices is a tangent to a generating circle of the sphere at C.
But for a fuller understanding of this, we must take up the
fnatter on more general grounds. ‘

145. If P be a point on any curved surface whatever,
and lines PQ, PQ, ]
P@Q' ... be drawn from L Fig. 52.
it along the surface, to L — = T
which PT, P T, PT"
.... are tangents, the
locus of all these tan-
gents is a single sheet,
forming a Cone whose
vertex is P. For if by
varying the nature of the curves P Q, (which are subject
only to the condition of being drawn from P along the
surface,) we could produce #wo or more sheets, then the
sheet which lay closer to the given surface would entirely
separate the other from it, so that P 7" on the outer could
not lie in contact with the surface at all, nor with any
curve drawn on the surface.

Such a cone is called the Tangent Cone at P. But the
Cone is susceptible of several varieties. (1.) It is possible
that the generatrix P 7' may move round in such a way as
to be always perpendicular to some axis drawn through P.
In this case the locus becomes a Plane, which is really only
a variety of the Cone; though from the absence of any
peak in the plane at P, we are not used to denominate a
plane a sort of Cone. The axis to the Tangent Plane is
then called the Normal at P. (2.) The Cone, although
not a Plane, may be such, that every line P 7 has its pro-
longation P ¢ also lying on the Cone’s surface. In this case
we may conceive the cone to be generated by the half revo-
lution of the line 7'P¢, which is fixed on a pivot P, and
vibrates above and below a certain plane, while performing
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its motion (/ig. 53.) No particular name has been given to
this variety. (3.) The number
of lines PT, PT, ... which
are such that their prolonga-
tions lie upon the cone, may be
finite ; in which case, these
form so many Ridges crossing
in P. Or there may be but
one ridge 7 P¢, as along the
top of a bank. (4.) No line
P 7" may have its prolongation
Pt lie upon the cone; and then
there is a true Peak at P;
this is what we generally un-
derstand by a Cone.

146. It would lead us into too long a digression to
attempt to prove, what the reader will readily convince
himself of,—that except at ‘ Singular Points,” a curved
surface always admits one Tangent Plane and Normal. To
express this otherwise : ““ Consecutive points on a curved
surface cannot be Peaks, and consecutive lines cannot be
Ridges.” This will be taken up afterwards.

147. Returning to the Sphere, we now see that the plane
generated by the revolution of €' 7' round Cy (Fig. 51,) is
fitly called tangent to the sp/ere, inasmuch as it contains the
tangent at ' not only to the circular arcs 0 4, Ca, &ec. . . .
but to every possible line that can be drawn from C along the
spherical surface. Also it is evident that no straight line
can be drawn from C, between the plane and the sphere.
For indeed this is contrary to the very nature of a tangent
plane. And the sphere and plane have but one point in
common, the point of contact.

Consequently, a straight line 7' €S, which in a popular
sense fouches the sphere externally, at a point €, does also in
a mathematical sense touch (or osculate) it ; and meets it in
that one point C'only. Itisalso perpendicular to the sphere’s
radius O €, which meets it in the point of contact.
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148. It is included in the above, that a Sphere does not
admit of Peaks or Ridges; for we have proved that it
has but one Tangent Plane at every point of the surface.

149. Any portion of a sphere’s surface s sufficient to deter-
mine the whole sphere. For in the given portion assume a
point A, and upon the surface Fig. 54
take a distance less than the
least distance of A from the
boundary line. With this dis-
tance, determine upon the surface
a circle whose pole is 4. The
circle has one determinate axis,
as Aa, which must also be an
axis of the sphere. Assuming a
second point B, we similarly de-
termine B [3, a second axis of the
sphere. But Aa, B3 cannot
have more than one intersection, O, which is thus the single
determinate centre to the spherical surface.

But when the centre O is settled, and a point B in the
surface, the whole sphere is determined. Hence there is birt
one spherical surface, of which the given area can form a
portion.

This is equivalent to saying, that ¢ two spheres cannot
have any area of their surface, however small, in common.’

150. The given area may of course slide along the sphere’s
surface, which is its prolongation (or extension) on all sides.
But, moreover, it must slide by a certain constraint, so as
never to be able to deviate from
this one surface; that is, it has
one determinate extension.” For
if two sheets were imagined, into B A
either of which it might slip, as B C
and BD in Fig. 55, then since ¢ P
these must have a common tangent plane at B, one must
have less curvature at B than has the other. Yet unless
both had everywhere curvature equal to that of 4 B, and

Fig. 55.
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therefore mutually equal, it is evident that 4 B could not
glide along them.

151. It is evident, farther, if in Art. 95, (Fig. 36,) we
suppose P A4 Q to be no longer a curve line, but a spherical
surface,and M, L, two points which run together, the straight
line M L being prolonged will tend towards a tangent (m A1)
to the sphere, as its limit. Else, the sphere would have a
peak at A ; which has been proved impossible.

152. Hence we infer, that on a spherical surface, not
more than two points can lie in a straight line. Forif M, NV,

P (Fig. 56,) were three points
M on a sphere that lay evenly, we
l might suppose the line P N M

P 4, to revolve about P, so that M
. and V might run together into
/ A a point A4 : in which case P 4

would touch (or osculate) the
sphere in E, although it likewise meets the sphere in P;
which is contrary to Art. 142.

153. Comwexity and Concavity. If any solid be enclosed
Fig. 57. by a surface (Fig. 57,) such
! that the straight line (4 B)
joining any two points (4, B)
on the surface lies wholly within
the solid, it is evident that every
tangent plane, or tangent cone
to the surface lies outside. For if
the chord B 4 revolve about the
point B, so that 4 may move
up towards B along any curve A4 ¢ B drawn on the surface,
the prolongation of B A lies entirely without the solid, and,
consequently, the tangent B T to which B A4 tends, will also
lie wholly without.

Hence the curvature is everywhere turned away from the
part exterior to the solid. The outer side is called Conver,
(protuberant, bulging) ; the inner, Concave (hollow).

The same names are popularly used, (and may be used

Fig. 56.
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with much propriety,) in the case of solids enclosed by

planes, and which therefore possess Fic. 58
g.

no curvature, at least, as far as has

yet appeared concerning the plane. ﬁ N
Thus if 4B CDEF (Fig. 58,) be a 2(7\ /
solid, fulfilling the condition that no X NV
straight line p ¢ joining two points Al
P» ¢, on its surface, has any point in A ¥

it ewterior to the solid, then the outer surface is called Con-
vex, and the same looked at from within, Concave.

A part of a surface may be called Convex on one side,
even when the whole is not. Fig. 59.
Thus, let 4 B C D E (Fig. 59,)
be a solid, which is 7ot wholly
convex externally, inasmuch as
the straight line O B lies with-
out it. Nevertheless another
portion, as B 4 E, may be ex-
ternally convex, tried by the
following test; that if a line Bmn K p B be drawn on the
surface, cutting off a certain area around 4, a new surface
is conceivable, which shall fill up the line Bmn Ep; and
shall, with the opposite area round 4, form a solid outwardly
convex. If so, we are justified in calling the area
ABmnlipB A by this name.

[154. If a solid is not only outwardly convex, but also
free from peaks and ridges, and is everywhere curved, so
that no straight line upon it can touch it in more than one
point at the part of contact; it is often called oval, or Egg
Shaped (se¢c Fig. 57): although this term is sometimes
confined to such solids as have a peculiar symmetry, especi-
ally those of Revolution.

It is evident from the above, that *“ Spheres are a species
of Ovals,” according to this definition. Also, Spheres are
externally convex.

155. Ovals touch one another externally in but one point.
Let the two ovals, P @, P R, be in external contact at .
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Then, the curvatures at 7 being in cpposite directions,
Fig. 60, the surfaces bend away from
each other on all sides round P.
If the two surfaces coincided
near the point of contact over
any small area, this must be
because the curvature of one
or both was there crushed by
pressure. For such area could not possibly be convex on each
of its sides, since convexity is the reverse of concavity.

Nor can the ovals have any line in common, in the neigh-
bourhood of P : for they must have a common tangent
plane at P, which entirely separates them ; and such line
(if it existed) must lie along that plane. Yet if it were a
generatrix of the plane, then it would be straight, and
would prove the solids not to be convex in this part: or, if
Fig. 61. it were curved, (¥%g. 61,) then it would be

P met by generatrices (£ p, Pp/, &c.) of the
plane in two or more points; and of such
generatrices many must be external to the
solids, otherwise the solids would have an area
(P pp")in contact. But if one such generatrix
existed, it would prove the solids to be there externally
concave; since the straight line (Pp) joining points to
(P, p) in their surface, is exterior to them.

Lastly, it having appeared that in the immediate neigh-
bourhood of P, the ovals have no point in common but the
isolated point P itself, it is farther plain that the surfaces
meet no more. For as they continue to bend away in
opposite directions they can not approach each other again.

156, It is included in the above that Spheres touch each
other externally in but one point, and have no second
point of the circumference in common. But as the reason-
ing in the last Article will to some appear laz, to others difficult
to follow, no use has boen made of it in the seqiel.]

7
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CONTACT AND INTERSECTION OF SPHERES.

157. “ A straight line is the Fig. 62.
shortest path between two given
points.”  Let the given points be
A, B, (Fig. 62,) and let €' be any
point in the straight line 4 O B.
We will prove that no path
joining 4 and B can be as short
as it might be, unless it passes
through €.

Draw O T at right angles to 4 ¢' B, and let it generate a
plane round the axis 4 C B. Also, with centres 4, B, and
radii 4 C, B C, describe two spheres. Then since the sphere
of centre 4 is on the same side of the plane that its centre
is, and the sphere of centre B is on the same side as is its
centre ; and the centres are on opposite sides; therefore
the plane wholly divides the spheres (Art. 147,) which have
thus only the point € in common. Hence any path
A P QB which does not pass through €, must pierce the
spheres in separate points, as £ and Q. Thus a needless
length P Q is incurred ; for the paths 4 P and B @ might
be otherwise directed, (without change of form,) so .as to
join the points 4 and €, B and ¢'; which would save the
distance P Q.

Thus any path, to be as short as possible, must pass
through €. But € is any point in the straight line 4 B.
Therefore no path can be as short as it might be, unless it
run along the whole straight line 4 B. Cor. Hence the
straight line is the measure of distance between two points
in Space.

158. Addition of Distances. 1f now A, B, 0, D . . . are
points whose distances, two and two, are given, (4 from
B, B from 0, C from D, &c.) or, what is the same thing,
if the line A BCD... is elsewhere inflexible, but
has joints at B, C, D, ... then the distance of the

G
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first from the last is greatest, when the points 4, B, . . . &
are ranged in order along a straight line.

For, first, if C be not in the straight line 4 B,
the straight line 4 ¢ is shorter than the sum of
the straight lines 4 B, B (; so that the distance
A ( is not so great as it might be, namely, by
bringing € into the prolongation of 4 B; and
thus the distance A4 € attains its mazimum.
Next, the same reasoning shows that 4 D does
not attain its maximum, until D is in the pro-
longation of 4 €. And so on continually.

159. Strained Thread. If then A E be a thread,
which is drawn tight, .so as to pull its extremities
as far apart as possible, (the length being supposed invari-
ble,) all the points in 4 F will dispose themselves in a
straight line.

This is an experiment made inadvertently by every
human creature; so simple and convineing, that it might
justly be made an Experimental Law of Geometry. And
if any of the reasoning above used is at all questionable as
to accuracy, this would be the most preferable mode of ob-
viating all objection. It would also greatly shorten the
process of attaining our farther results ; but this, in writing
an entire scientific treatise, is not always an advantage ; for
every step which we make is perhaps of intrinsic value,
and if omitted in one part, must be introduced in
another.

160. Ewtornal Contact of Spheres. Let two spheres be
placed at a distance, and two points 0, D, on their surfaces,
(Fig. 64,) which we design to bring into contact, be placed
in the line of their centres 4, B. Then let 4 and B,
¢ and D, slide with the spheres along this line, till € coin-
cides with D. Since the tangent planes at €' and D lie
outside the spheres, and do not meet one another till C and
D unite, (for else, contrary to Art. 111, from their con-
course would be dropt fwo perpendiculars to the line
A B,) it follows that the spheres are wholly separated

Fig, 63,
A

B

§0}
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until €' runs into D, and the two tangent planes
merge into one. In this
position no second point
is common to the sur-
faces of both spheres;
(because this is the only
point on which either
meets the tangent plane,
Art. 147;) and the pointof
contact lies in the straight
line of the centres.

Now I say, this is the only mode in which ¢’ and D can
be in contact. For if they could remain united while B
received ever so small a displacement, by the motion of the
sphere B about the fixed point C, let 4 B be joined, and it
would be shorter than 4.C 4+ C B, by Art. 157, or the
distance between the centres less than the sum of the radii;
which would imply that the curvature of one sphere or
other had been crushed in by the motion : which is not con-
templated by our hypothesis.

We see, therefore, that though ordinarily one body must
be fixed to another immovable body in * at least three
points which are not in the same straight line,” in order to
retain the latter immovably; yet in this case it suffices to
fasten the sphere B to the immovable sphere 4 (or con-
versely,) by a single point . For the curvatures, though
they are notin linear or superficial contact, preclude angular
motion as effectually as if they were; the curvilinear angle
being less than any rectilinear angle.

161. Internal Contact of Spheres. Of two given spheres,
let that whose centre is A be the larger, (Fig. 65,) and 4C
a radius. From O A cut off 0B, equal to the radius of the
smaller; and join 4 P, B P, where P is any point in the
surface of the larger. Then since 4 P is less than
AB 4+ BP,while AP =A4C= AB + BC(,; therefore
B is less than BP. Hence P is beyond the sphere
whose centre is B, and radius B €. If, then, the smaller

G 2
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sphere be placed with its centre at B, it will touch
Pig. 65. the other internaily at C,
and in no other point. Also,
the point of contact is now
in the line of the centres pro-
- longed.

Now I say, this is the
only position in which the
spheres can have internal

contact at C. For if a third sphere, whose centre is
D, be applied in external contact at C with the greater
of the two, it is, a fortiors, in contact with the less,
at . Hence by the last Article, 4, ¢, and D, are in a
straight line ; and so are B, €, and D, in a straight line;
which could not be unless 4, B, and O lay evenly with one
another.

162. The above is in harmony with what appeared
in Art. 149, that it is impossible for two different
spheres to have a portion of their surface, however small,
in common. Also, the greater sphere has the less cur~
vature.

168. Intersection of Sphere and Plane. Let O be any
point exterior to the straight line 4 B 0, (#g. 66,) and

O A be dropt perpendicular to 4 C.

» We have shown that O 4 is the short-
‘C} est path from O to the line, (Arts. 143

¥ and 157). If then, P traverses the
Bl, line 4 P O, the distance O P increases
\ at first, when P starts from 4. Now
f;—-—————-—%A we farther assert that OP always

j continues to increase, as the distance
(A4 P) of P from A increases.

For if not, we must make one of two suppositions.
E1THER, ¢ there is some portion (B O) of the line, such,
that while P traverses it, the distance O P is invariable.”
Now this would imply that an entire ring of the plane,
generated by B ¢ around the axis 0 4, is a portion of the

Fig. 66.

=
=
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spherical surface whose centre is O, and radius O C or O B :
thus, in every position, B C, as it revolved, would be a
straight line touching the spherical surface along its entire
length. But thisis impossible, by Arts. 142, 152. Again:
Erse, “there is a point B, up to which O P keeps in-
creasing, and at which O P reaches a maximum, and after-
wards decreases.” If so, then (3, y, being two points at
opposite sides of B, in the line 4 B C, and ever so near to
B, the distances O 3, O v areless than O B. Consequently
{3 and y would be points witkin the sphere of centre 0, and
radius O B; and the straight line 3 By would be a tangent
to the sphere at B, and yet be inside the sphere. which
again is contrary to Art. 142.

Since then the length O P begins by increasing, when P
starts from A4, and afterwards, it never remains constant,
and never diminishes, while 4 P continues to increase; it
follows that 4 P and O P perpetually increase together.

164. If now the line 4 C generate a plane round the
axis O 4, (Fig. 67,) the points B, P, ¢ will each generate a
circle of this plane. Let
BAB, PAP, CAC, be
diameters of these circles. Of
course, then, OB = OUF,
OP=0P,00=0C0C; or
the points equidistant from 4
along the line ¢' A4 €', are also
equidistant from O; as B and
B, Pand P, 0 and C; &e. ..
But farther, if a sphere be
described with centre O and
radius O P, it is clear that the
circle of 7 is a circle on the sphere. Also, by the last
Article, the circle of B lies within this sphere, since O B is
less than the radius O P.  This being true for every point B
between A and P, it follows that the whole plane area en-
closed by the circle of P lies within the sphere. On the
other hand, since O ¢! is greater than the radius O P, the

Fig. 67.
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circle of € is outside of the sphere: and this being true, so
long as 4 C is greater than 4 P, it follows that all that part
of the plane which is exterior to the circle of P, is outside
the sphere.

Hence the plane crosses or cuts the sphere in the circle of
P; and only this circle is common to the surface of the
sphere and the plane.

165. As it will soon be proved that all parts of a plane
are like all other parts, the above shows generally, that
“the intersection of a plane and sphere is a circle, whose
axis is the common axis of the sphere and plane.”

166. Intersection of Spheres. Let B, (Fig. 68,) be within or
without a sphere of centre 4; and let B A cut the sphere
Fig. 68. in the poles C and vy, of which C'is
nearer to B'than is y. It is then
evident from what was proved about
the contact of spheres, (Arts. 160,
161,) that if P is a point traversing
the surface, B P is least when P is
at O, and is greatest when P is at v.
Suppose then that P moves along
the surface from C'to y by as shorta
path as possible. On its starting
from O, the distance B P begins to
increase : but we now farther assert,
that B P perpetually increases with.
CP.

For, First, there is no small por-
tion (Q &) of P’s path, such, that
while P traverses it, the distance
B P can remain invariable : else the
sphere of centre B and radius BQ
or B R would have a band of surface, of which Q R is the
breadth, in common with the given sphere; namely, the
surface generated by Q B round the axis O'y. But this, by
Arts. 160, 161, is impossible. NExT; neither can B P
attain, as at Q, a maximum value and then again decrease.
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For if ¢, r, are two points in P's path, very close to Q, on
opposite sides, then B¢ and Br would be both less than
B Q, however short the distances @ ¢, §7. Consequently,
the sphere of centre B and radius B Q, would be touched
internally by the given sphere along the whole circle which
€ generates round Oy : for the band of the given sphere
generated by ¢ Q » would all lie inside the other sphere.
This again is obviously opposed to Arts. 160, 161.

As, therefore, during the increase of the distance C' P,
the other distance B P never remains constant and never
diminishes, it follows that B P ever increases with € P ;
that is, until C' P reaches its maximum; which must be
when 2 arrives at the other pole 7.

Hence, if two spheres having centres 4 and B, are placed
so near that the distance of their centres is less than the
sum of their radii, they intersect in a circle, (asin the circle
of Q,) whose axis is the line of the centres. For it is
manifest from the above, that a portion of the surface of
sphere 4, which is intercepted by the circle of Q round
the pole O, is énterior to the sphere of centre B and radius
B Q; while the rest of the surface is eaterior to that
sphere.

167. The distance of points on the sphere increases with
their absolute distance. For the above reasoning holds equally,
if B (Fig. 69,) coincides with 0. Then
it appears that €' P in space increases
with O P on the surface.

168. Moreover, (Fig.68,) the angle
O B P increases with the distance O P
along the sphere’s surface. Where-
fore the distance BP in a straight
line increases with the angle OB P.

When B coincides with C, (Fg. 69,)
we can say that ““the chord of O P increases with the arc
O P,” and consequently, * increases with the angle C 4 P.”
Thus the diameter €'y is evidently the longest chord in a
sphere.

Fig. 69.
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169. Triangle of Distances. When A B @ is an inflexible
system, (Fig. 70,) it was an experimental Law of Geometry
that the point Q revolving round the fixed points 4 and B,

generates a single self-rejoining

Q a line, which we call a Circle. But

f'\\ we are now able to say more;

/A % \ namely, that if the system be not

otherwise known as inflexible at

A, B, and Q, these three points

will be inflexibly connected, if

the distances 4 B, 4 Q, BQ are
three assigned invariable lengths.

We may state the matter thus. ILet 4 and B be points
fixed and known : let Q be a point whose distance from A4
is known, and whose distance from B is also known. Then
Q is on the spherical surface of centre 4 and radius 4 @;
and also on that of centre B and radius B Q. Hence its
locus is in the circle which is the intersection of those.
spheres. But this is the very circle to which it would be
restricted if the system were by hypothesis inflexible. Con-
sequently @ is laid under the very same restrictions by
assigning its distances from 4 and B, as by connecting it
inflexibly with those points.

Thus if A B, BQ, QA, are three given distances, the
shape of the system is determined, and (if these lines are
straight,) the three angles of 4, B, Q are determined.

Fig. 70.
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ON THE PLANE.

170. Evenness of the Plane. Let the axis B 4 0 (Fig.71,)
have 4 R perpendicular to it, Fig.71.
and let 4 R generate a plane
round it. We have to prove
that all parts of the plane are
Even; that is, ‘there is no
curvature at any part towards
either side.” This will have
been proved, if we have shown
that a straight line pressed
against any part of the plane
lies close against it along the
wholelength; or, (what amounts
to the same,) thatif D, £ be any
swo points socver on the plane, every point £ in the straight
line D E, or in its prolongation, is likewise on the plane.

Now observe; First; that every point B in the plane,
lies at the same distance from B as from C, if 4 B = 4 C.
This is clear by inverting the plane and its axis, so that B
and C' may exchange places, while 4 and £ remain as
before ; which is possible by Arts. 80, 81. NEXT; a point
Q on the same side of the plane as B, is nearer to B than
to 0. Forif Q C'be joined, it must cut the plane asat S:
join BQ, BS. Then BS = CS8, as before, S being on
the plane, like R: also BS + §Q is longer than B Q,
(Art. 187); ... CS + SQ or €Q is longer than B Q.
THIRDLY ; let B and O be fixed points, and R a movable
point whose position is assigned by the single condition
that it shall be as far from B as from C': and the above
justifies us in affirming, that the locus of R will be the plane.

Now D,’E being two points on the plane, each is as far
from B as from O'; so that the three distances D E, E B,
BD are identical with the three, DE, EC, CD. Con-
sequently B and ¢ are in a circle whose axis is D,
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(Art.169). Now P being in this same axis, is equidistant
from all points in the civele ; hence P.B = P C. Itfollows
that P also is on the plane. And P being any point in
D E, the whole line D £ is on the plane ; as was alleged.

Fig. 72, 171. New mode of generating
. \D |& v the Plane. 1t is now manifest
i that a plane can be generated

'

X | from any two given lines in it,

¥" as DO, Ke (Fig. 72). For if

a straight ruler XY press

d ¢ always against both lines, the

locus of X ¥ is the plane, if no other restriction is added
to its motion.

172. 1t thus appears also that one and only one plane can
pass through two lines, or through a line and a point, or
through three points; provided in each case that not all the
data lie in one and the same straight line.

173. Stiding of @ Plane. Supposing D 8, K= to be at rest,
the plane may be so transferred as to keep it always pressing
close against D 8, F«. But by such transference, the plane
(as an indefinitely extended whole,) would always occupy
the very same position. Thus it slides on its own ground.

174. Awes of the Plane. During the sliding, the axis may
be brought to pass through any point required of the plane :
so that the plane may be said to have an axis through every
point of it.  Originally, we supposed the plane to be gene-
rated from some one particular axis and centre: but it now
appears that there is nothing peculiar to distinguish this
axis from others,

175. Perpendicular to a Plane. Since an axis is perpen-
dicular to every generatrix of the plane, it is justly called
Perpendicular to the plane itself, as was noted in Art. 110.

From a given point in the plane there can be but one axis
to the plane, because there can be but one axis to every
circle on the plane. Hence but one perpendicular to a

X’/

plane can be drawn from a given point in it; for a second
perpendicular might evidently be made a second axis.
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176. Moreover, “from the intersection of two straight
lines, can be drawn one and only one line perpendicular
to them both : ” namely, an axis to the plane which passes
through them. For if a second common perpendicular could
exist, it might be made axis to a second plane that should
pass through both.

171, Perpendicular dropt on a; Plane. If 4 be a point
(Fig. 73,) which is not on a plane B C D,

there is some shortest path 4 C, from A A Fig. 7.
to the plane. Then the sphere of centre A

A and radius 4 € cannot intersect and go \\
beyond the plane ; therefore, neither can v

it coincide with the plane in more than g g D

one point, as appears by Arts. 142,

147. Hence, too, we ascertain that 4 (' is an axis to the
plane, and perpendicular to it. But no second perpendicu-
lar can be dropt, as 4 K else, joining €, we should have
AC and A4 E two perpendiculars dropped on the same
straight line O Z.

178. Euztension of the Plane. Any small plane may be
prolonged or extended indefinitely, but in a single deter-
minate sheet. This is evident from the generation of the
plane in Art. 171, or by its sliding along itself. It follows
also that any small plane within a given solid, however
large, may be extended so as to cut the surface in a self-
rejoining line, and then pass out.

179. Intersection of Planes. Moreover, two planes which
have two points in common, have in common likewise the
straight line joining these two points. But they can have
no other point in common without becoming one and the
same. Either plane may revolve on this line, until it coin-
cides with the other plane : and from the nature of rotation
we deduce that the planes here cross each other. The
common line is called their Intersection. The angle
between them is called Dihedral, and may be readily
measured, as in Art. 82. It is clear that if two planes have
one point in common, they must intersect, viz. in a straight
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line : for did they not cross each other, one or other would
have a peak or curvature at the common point.

180. Parameters. Since any one plane (of indefinite
extent,) can be made to coincide with any other, planes do
not differ at all. Having everywhere no curvature, any two
such surfaces are in quality perfectly alike. The same is true
of Straight Lines. But Circle differs from Circle, Sphere
from Sphere, Cylinder from Cylinder, by reason of the
difference of radii, which occasions a difference of curvature
in them. When, however, the length of the radius is
given, the shape and size of the figures (though not their
position,) is completely determined. With reference to
this property, their radii are called Parameters to them:
but Planes and Straight lines are said to have no Para-
meter.



PART II.

ON PARALLEL STRAIGHT LINES.

181. TuE term Parallax is well known in Astronomy, to
indicate “the change in the apparent position of objects,
caused by a change of position in the observer :” and more
especially, the difference produced by the fact that the
observer is on the earth’s surface, instead of being at its
centre.

Although the name is not particularly needed in Geometry,
we meet with the thing. We may regard it as an error
arising from Excentricity, in the computation of angles, when
the corner of the angle is regarded (for simplicity,) as though
it were in the centre of a circle, although this should not
be accurately true.

182. Let €D be the
arc of a circle (F4g.
74,) of which 4 is the
real centre, and B the
supposed centre. This
false supposition in-
volves the notion that
the angle CBD is
measured by the num-
ber of degrees in the
arcs CD: which we
know to be true con-
cerning  the angle

COAD. But as B is

Fig. 74.
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not the centre, it is most probably erroneous to imagine
those two angles equal : and the difference between them is
the error which results from assuming the arc €D as the
measure of £ OB D; or, (as we may also put it,) the error
arising from the excentricity of B.

183. There are two ways of diminishing the error. The
more obvious is, by seeking to diminish the distance of the
point B from the truecentre 4. But another method equally
effectual, is, by increasing the radius of the circle, and sup-
posing B C, B D prolonged, so as to meet the new circle in
O’ and D'; or (if the radius be again increased,)in 0" and D’;
then, I say, the angle B will at last, when the radius is of
enormous magnitude, be measured with far less error by
the degrees in the arc €' D', or ¢" D'. Toillustrate the
meaning, and at the same time bring conviction of its truth,
let B be one foot distant from the centre A, and the original
radius 4 ¢ = two yards. The error of taking the arc C.D
to measure the angle B, may be looked on as gross. But
take 4 C’, a new radius, = @ thousand miles : and it is clear
that one foot is so insignificant in comparison, that the error
of confounding B with the centre 4, must be very small
indeed. If, however, we wish to make it still smaller, take
A C" = a million miles : and so on, till it be as small as we
choose.

The same method would hold, if B were a mile, or were a
thousand miles, distant from 4 : for we might then suppose
A ¢’ = abillion miles, 4" = a trillion miles; and so on.
In short, if KL M N be any finite area enclosing the centre
A, we may supposc a radius 4 0" so vast, that this area may
be but a speck in comparison with the circle: and be the
error what it may, of confounding any point in this area with
the centre, that error may be reduced as small as any one
chooses to demand of us, if we may increase the dimensions
of the circle at pleasure.

To express ourselves in the phraseology of the higher
mathematics : we do not yet know how to estimate the error,
when the radius is given; but so much we know & priors -
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¢¢it is such a function of the radius, as to vanish when the
radius is infinite.” And if it be asked how we assure our-
selves of this, the only reply is, that by the very nature of
Quantity, anything that is finite, (as the amount of excen-
tricity,) becomes insignificant and evanescent in comparison
with that which is susceptible of increasing indefinitely : and
if any difficulty attach itself to the subject, it is not a purely
Geometrical one, but is equally found in the doctrine of
Quantity and Number.

184. Like reasonings apply to the sector B 0D, as well as
to the arc CD. Were B the true centre, it was shown
(Art. 117,) that if we assume the whole area of the circle
as the measure of four right angles, the sector BCD
would measure the angle BCD. This consequently will,
when B is excentric, deviate from the truth only by an
error which is evanescent when the radius is indefinitely
increased.

185. If the above be conceded as valid argument, all
difficulty on this subject is broken down: for it is now easy
to prove that ¢ the three external angles of any triangle
are together equal to four right angles.”

Let LM N be any triangle (F4g. 75,) within which take
Fig. T5. a centre O; and des-
; cribe a circle containing

the triangle. Prolong
LM, MN, NL, to
meet the circumference
in G, K, H. Let L,
M°, N° be the angles
HLG,GMK,KN H,
in degrees, and let A,
- u, v, be the circular
areas intercepted by
the same angles: also
let a = whole area of

the circle, r = area of the triangle.
Now if L were the true centre, and not O, we should
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have but this most probably is erroneous.®

A L
o =560
Let d be the error, so that we have accurately :
A L
™ 360°
where & is either (possibly) zero, or else some number
positive or negative. One thing only is known about 3, by
the preceding article, that if the radius of the circle is in-
definitely increased, & diminishes beyond all limit. We
similarly have:
u__ M

v -
; W-}-Sanda

+ J;

N° y
I
Consequently :
A+p+v _ L+ M4 N
a 360°

Now A + u + v = area of circle, minus area of triangle;

+ @+ &+ ).

A —
or, = a — 7; hence tptv_e—r g _ T
a

a o
Also, when the circle perpetually increases, a increases ad

o . . . T.
infin., while r remains finite. Consequently, — is evanescent,
o

But L°, M°, N° do not

and the limit of iﬁ—_‘_} is %

vary with the variation of the radius; and the limit of
(@ 4 & + &) is zero, because each separately tends to zero.
Hence we obtain :

1 _ L+ M+ N°
1= s
Or, L' + M° 4+ N° = 360°; which was to be proved.
Cor. 1. Therefore the three inmfernal angles, together
= 180°. Cor. 2. The four internal angles of a plane
Quadrilateral, together = 360°.
186. This is the proposition, from which Playfair in his

* By using the phrase ultimately in its well known acceptation, the details

of this argument will be shortened. Thus: A wltimately — B_L()_O and so.on,
o Y
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Geometry deduces the whole theory of Parallel Straight
Lines. But as I have introduced a new definition of the
word Parallel, (as equivalent to Equidistant,) it is desirable
to pursue the subject a little farther.

First, it must be proved that: ¢ If two straight lines
(4 B, 0 D,) in the same plane, are both perpendicular to a
third straight line, (EF,) they are Parallel.” (Fig. 76).
Let 4B, CD intersect £ F in G and H. Fig. 6.
Then since the angles at G'and // by hypothesis  © A
are right, G H is the distance of the point H ° H @
from the line 4 B, and of the point G from
the line C D: (Arts. 143, 157.) Let B be
any other point in 4B, and drop BD per- L X
pendicular to C H D ; then B.Dis the distance
of B from the line CD. Also: since the
quadrilateral B G HD fkas its four angles ie) 3
together equal to four right angles, and of these
we know three to be right, viz. G, H, and D; it follows
that B, the fourth, is also right. Therefore D B is the
distance of D from the line GB. And the point B was
arbitrarily chosen. It appears then, that to prove the
parallelism, or equidistance, of 4 B and €D, it is only
requisite to show that G H = B D.

Let K be the middle point in G B, and drop K L perpen-
dicular to 0 D ; then, as we showed above that the angles
at B were right, so can we show that those at K are right.
Now let the figure X B.D L turn round A L through half
a revolution, till &' B, L D have come into the directions
K G, LH Thensince KB =K G, B will fallon G. But
B D being in the plane of K, and LK BD = / KGH,
it follows that B D will have the direction of G H.
But Z D has simultaneously taken the direction of L H.
Therefore D, the intersection of BD and L D, falls
upon H, the intersection of GH and L H. Thus
G H, B D, coincide, and are equal. Which was to be
proved.

187. ¢ Through a given point (&) can be drawn one and

H
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only one line in a plane, parallel to a given straight line
CD;” and it will be itself straight.

For if we drop G H, perpendicular to C' D, we have only
to suppose G I to move in the plane G H D, so as to remain
always perpendicular to ¢'D, while H traces out the line
CD. Then G traces out the only line on the plane which
can lie at the distance G from O D; and it is evident from
the last Article that the locus of G will be none other than
the straight 4 G' B, perpendicular to £ F.

188. ““ A straight line (G' H) perpendicular to another
(C H D) is also perpendicular to every line (4 G B), which
cuts G H, and which, being in the plane G H D, is parallel
to the other (C'H D).”

For if 4 G B were not perpendicular to G 7, the line
which should be drawn through G in the same plane and
perpendicular to G H, would be also parallel to ¢ D. Thus
in the same plane through the same point G' pass two lines
parallel (or equidistant) to ¢'D; which is obviously absurd.

189. ““If a point (P) moves along a sloping path (4.5)
towards ahorizontal line (C D) in the same plane, the vertical
approach of P towards this line is proportional to the length
of the slope which it has traversed.” (#%g. 77.)

Let P, Q be any two points in the path, and PS, Q T'
Fig. 17. be perpendicular to CD: drop
A @ R perpendicular to P S. Then,
first, P.S, @71 are parallel (by
Art. 186,) and next, so are Q R,
R T8: whence Q7' = R S. There-
r fore in moving from P to Q, the
point has come nearer to the line
C D by the distance P R.—Take
p g = P Q,in another part of the
same slope; and similarly con-
struct the system of lines p g #sr: then it is easy to show
that the triangles @ PR, ¢pr, are every way equal; and
s pr = PR. Thus, if the length (P Q = p¢) along the
slope be in two cases the same, then the vertical descent

o ¢ES8S TS C
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(PR = pr)is also in each case the same, be the previous
distance A P what it may. Thus the sloping descent (4 P),
and the vertical descent (4 V), begin together, and increase
uniformly ; and consequently, (by Articles 38, 39,) the one
varies proportionally to the other. "Which was to be proved.

190. ¢ Straight lines in the same plane, which are not
parallel (or equidistant,) may be prolonged sofar as to meet.”
Or, what is the same thing: “ Those which, being in the
same plane, will never meet, cannot but be parallel; or
everywhere equidistant,”

For if AP B be not parallel to €D, let AN be the
vertical approach made towards C' D, in the descent 4 P;
(regarding C D as horizontal, to fix ideas.) Alsolet A N ¢
be the entire perpendicular from 4 to ¢'D. Since then a
multiple of A V can be found, so great as to exceed 4 C,
the same multiple of 4 P would assign a prolongation of
A P sufficient to carry it across C .

This proposition establishes the identity of Parallelism
(or equidistance,) with the notion of the same as given in
Euclid, and in most other geometrical treatises: and here,
therefore, we stop.

191. But as a matter of curiosity, it may be worth while
to go back to Art. 185, and offer an additional thought
concerning the argument there employed. We proceeded
upon the concession, or established truth, that §, &, &',
were all evanescent when the radius increased indefinitely.
Yet it does not appear that the knowledge of this is abso-
lutely essential to the conclusion at which we are driving.
It would be sufficient to admit, that ¢/ & have a limit
other than zero, yet that limit does not depend on L; and so
neither the limits of & and &’ on M and N. In this case,
it ¢ = limit of (& 4+ & + &), we know that & does not
depend on L, M, V; and we get

L'+ M+ N°

= S0 T

consequently (L° + M° + N°) has a constant value in every
H2
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triangle ; and from this, Legendre shows that we can easily
deduce the same results as before.

It may at first appear that this is lower and safer
ground : yet in fact we gain nothing by it. Forif we cannot
infer that & is evanescent for infinite values of the radius, we
have nothing at all to convince us, that the limit of 8 is not
dependent on L ; in which case & would vary in different
triangles. Hence the latter mode of stating the argument
is unserviceable.



PART IIL

ON SOLID ANGLES.

192. Trihedral and Polyhedral Angles. If several straight
lines in different planes, as O 4,

OB, 0C, &c. meet in one . Fig. 78.
point O; (Figs. 78, 79,) and ;TB
planes pass through each con- / ]
tiguous pair, when these are ///

taken in a certain order; there \

is formed at O that which is < Fig. 19.
called a Solid Angle, by reason &

of its analogy to plane angles.

/_/
. . ¢ - \\ B
It is named, according to the N /
number of the planes which e
form it, Trihedral, Tetrahedral,
Polyhedral, for three, four, or Y

more planes.

193. But we may also conceive of a solid angle formed
without any planes at all; as at the vertex of a Cone.
Such a solid angle bears to a polyhedral angle the same
relation as a curved line bears to a straight line, which is
bent in many places. We now encounter a difficulty in
part like that which was met in discussing plane angles,
viz. an inability to estimate their relative magnitudes.
But plane angles readily admitted of a direct comparison
as to greater and less, which is not the case with many solid
angles. For instance, if two cones be constituted (F%g. 80,)
with the same vertex, upon two oval curves, as their
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directrices, which intersect each other; no immediate

Fig. 80. supraposition of the vertical angles avails
A to establish the relation of greater and
less.

194. In another view, however, the
Solid Angle is more manageable than the
plane angle: viz. that it is very obvious
under what circumstances one solid angle
is justly said to be divided into two others.
In fact, if any plane pass through the vertex of the angle,
(as in one of the Cones just supposed,) and divide the base
into two parts; this plane also divides the solid angle into
two parts, the sum of which makes up the whole solid angle.
195. It is, then, easy to show the homogeneity of any
two solid angles, by a proceeding similar to that which we
used in the case of any two solids of limited extent. For,
any very small part of a solid angle is homogeneous to the
whole. To convince ourselves of this, we have only to
consider that by repeatedly taking from the whole a very
small part, we may as nearly as possible exhaust the whole,
This shows that we may institute a numerical comparison
between the whole and such a part; which indeed may be
an exact submultiple of the whole. By subdividing this
part continually, we may make it differ as little as we please
from being a submultiple of any second proposed solid angle.
‘Wherefore any two proposed solid angles admit of numerical
comparison.
Fig. 81. 196. But as the comparison of
[ plane angles is facilitated, by
proving that they are proportional
to the arcs of a circle, when the
vertex of the angles is at the
centre; so the comparison of
solid angles is more vividly ap-
prehended, by a like use of the
spherical surfaces on which they
stand.
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Let two solid angles have O for their common vertex.
With centre O, suppose any sphere to be described ; and
on the surface, let the solid angles determine the areas or
bases M N P, pvw (Fig. 81.) The two solid angles shall be
proportional to these their spherical bases.

Call the two solid angles 4 and a, and the areas of their
bases B and (3; we have then to prove, that 4 is to a as
Bisto 5.

197. Now, FIrsT, it shall be shown that in every case in
which the base B = the base (3, it is also true that the
angle A = the angle a.

The possible cases of equality between B and (3 are
three: (I.) B and 3 may have the same shape as well as
size; or be absolutely identical. In this case the sphere
may slide on its own ground, while the centre is unmoved,
until B actually coincides with 3; and then A precisely
coincides with a; or 4 = a. (II.) B and 3 may be divisible
into an equal finite number of parts, as B R, Bs.... &,
and py py ps <+« + oy such that every R is identical with a p
that corresponds. For this gives

B = R] -+ _Rz + oo + Rnl AlSO, Rl = p11
13=P1+P2+.'.+P7LJ Rz=pz
whence B = f3. &e. &e.

Now in this case, the division of the base B into (n) such
parts, furnishes a corresponding division of the angle 4 into
(n) parts, which may be called 8y 8: S5 ... S.; so that

A=8+8+8&+... + 8.
Similarly ¢« = ¢, + o + o5 + ... + on;

since the division of the base 8 equally gives rise to a
division of the other angle a into () parts. Moreover,
since R; is identical with p,, in shape and size, therefore
Si = oy, (by Case I. just treated,) if these are the angles
which have the bases &, and p,. Similarly we have
S = 6,, 8 = o3, and so on. .. Wherefore 4 = «.
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(II1) B and 3 may be called equal, on yet a third
ground ; viz. when each is divisible into parts which form a
converging infinite series, say,

B = limit of B, + R, + R; + R, + &ec. ad infin.
B = limitof p, + p» + ps + ps + &ec. ad infin.

such that B, = p, , Ry = p, , Iy = p, , &c. ad infin.

where these last equalities imply areas which are either
identical, or may become so by a mere redistribution of parts.
This falls under Cases I. or II. just treated. Hence,
retaining the same notation as before, we infer by those
Cases, that 8, =61, = & = 02, S = o3, &e. ad infin. At
the same time we get :

A = limit of 8, + & + S, + &c. ad infin.
a = limit of &, + o + o + &c. ad infin.

whence it follows that 4 = a.

The fourth case of conceivable equality, mentioned in
Art. 22, need not here be treated, because the bases B
and [ are surfaces of like curvature everywhere, so that
every part may coincide by supraposition with every other
part. ’

Generally then, it has been proved thatif B = 3, 4 = a;
or, what is the same, that the magnitude of the angle (4)
is determined, when the area of the base (B) is given.

198. We have further to prove, that ¢f the area (B) varies
at ally the angle (A) varies in the same ratio, the sphere being
unaltered.

They are magnitudes which vary fogether, by what has
already been established. Moreover, when B becomes very
small so as to be ready to vanish into nothing, 4 likewise
is ready to vanish, and may be made as small as we please
by diminishing B. Contrariwise then, if we regard 4 and B
as increasing, we may state that they begin together from zero,
and increase together,

Suppose, then, any increment A B to be assigned to B;
then a corresponding increment A A4 at once accrues to 4.
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Also the magnitude of A 4 is determined by the magnitude
of AB, and by that alone; be the magnitude of B what it
may. Hence it immediately follows, (by the doctrine of
Proportion delivered in Axrt. 40,) that A earies propor-
tionably to B.

199. We have thus established generally, that on the
surface of a given sphere, the area inclosed by a solid angle

whose vertex is at the centre, is a proper MEASURE of the
Solid Angle.



PART 1IV.

CERTAIN ELEMENTARY PROPERTIES OF PLANE CURVES.

200. Frowm the Hvenness of the Plane, it follows that all
the Chords of a plane curve lie in its plane: so therefore do
all its Tangents, since they are limits to the chords.

Fig. 82. 201. That side of a plane curve on
which the tangent falls, (Fig. 82,) is
suitably called Convea, and the opposite
side Concave; in conformity with the
language used in Art. 153.

202. Normal. By this word is under-
stood a perpendicular to the tangent,
drawn through the point of contact,
and in the plane of the curve. (Fig. 83.)
Hence the radii of a circle are all
Normals.

203. Undulation. If, at any point (4) in a plane curve,

(F4g. 84,) the tangent changes

its side, so that the curve,

from being convex at one
side, becomes presently con-
cave, or vice versa ; the curveis
said to undulate at this point,
if there is here no breach
of the continuity; that is, if
there is here no peak. The

tangent cufs the curve at a point of undulation.
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This may lead us to remark the incorrectness of laying
down that a Tangent is a straight line which “ meets a curve
without cutting it ; ” a coarse definition, suited only to a very
crude state of geometrical knowledge.

204. Points of Undulation, like peaks, are Singular
points; that is, are of finite number in a finite arc. If we
try to conceive them occurring consecutively, all idea both
of convexity and of concavity is destroyed. Wherefore
from a given curve at a given point 4, there can always be
cut an arc 4 B so short as to have neither peak nor undu-
lation. (F%g. 84.)

205. If a connected curve have #hree points (4, B, O)
in a straight line, this implies that Fig. 85.
the curvature has not been all to-

wards one side continuously : hence /%{

there must be between the extreme

points either a peak or an undu- C 7'(;
lation. (F%g. 85.) B

206. If the plane curve (4 .B)
(Fig. 86,) be destitute of singular points, and m, %, p,q. ...
are taken in it, between 4 and B; and chords A m, mn,
«e.. g B are drawn; it is
evident that all the angles ”
Amn,mnp,....pq B,are
pointed towards the side on
which the curve is convex.
For if two of these angles,
as A mn,mn p, were turned
opposite ways, a straight
line could be drawn from a
point in the arc 4 m, cutting
the chords mn, np; and consequently, cutting the arcs of
those chords. It would then meet the curve in as many as
three points, (, s, ¢.) But this is not possible, if the curve
have neither peak nor undulation.

The Rectilinear path 4 mnpg B may be called Convex
on the side towards which the angles present themselves.

Fig. 86.
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207. Deviation. In such a path, each straight line leaves
the direction of that immediately preceding it, and deviates
into a new direction : but all deviate towards the same side.
If we prolong Am to p, mn to v, np tom, pgtox (Fig.
87,) the successive deviations at m, #, p, ¢, are measured

by the angles pmn,
Fig. 87. o~ vap, wpg kqB;
and the sum of all
these together might
be called the Zotal
deviation.

But if again we
prolong g p, B g back-

ward, so as to meet 4y in P and Q, between m and u, the
angles u Pg¢, uQ B, measure the deviations of pg and ¢ B

from the original direction 4 m. Wemaycall £ u @ B the
wltimate deviation attained by the path ¢ B.

208. That the wltimate is equal to the fofal deviation,
readily appears from the doctrine of Parallel Straight Lines,
and the propositions connected with it. In fact, consider-
ing the triangle P¢ Q, of which u Q B is an external angle,
and P¢ @ an internal angle = k¢ B, we have at once:
LuQB = LuPq + LkqB: which expresses, that the
ultimate deviation of ¢ B, exceeds that of p ¢, by the amount
of the deflection at g. Thus each successive deviation is
added to that which before existed.

On the other hand, it is so simple a principle as to bring
conviction to the mind by a direct process; that when all
the deviations are ¢n one plane and towards the same side, the
Ultimate deviation must be equal to the Sum of the separate
deviations. It may, therefore, deserve the consideration of
geometers, whether this might not be proposed in such a
form, as to make it the foundation on which the doctrine of
Parallels might rest.

209. Once more, suppose such a path, 4 B C D E'F, with
the angles all turned one way. (F%g.88.) Select one corner,
as 0, and cut it off by the line mn. . By taking either m or n
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as near as we please to C, we may evidently make the dif-
ference of length between (m ¢ + Cn) and m n, as small as
we please: yet (mC + Cn) is always longer than m n,
while a triangle m O'n exists. Hence dBmn DEF is a
new path like the former, Fig. 88.
only shortened, and that, as
little as we please.

But again, we may cut
off the corner # by a straight
line p ¢; and next, cut off
the corner ¢ by a straight &
line rs; and so on continually, The resulting interior
path which connects 4 to £, is always shorter than the
exterior. Hence if AbcdI" be any such interior path,
(the angles at b, ¢, d ... being all turned the same way as
B, C, D...) it is shorter than 4 BC D £ F.

210. Let now A P F be any arc of a plane curve (Fig.
89,) concave towards the chord 4 F, and without peak : and
by perpetual division of the arc Fig. 89.
let chords be inscribed. Thus, :
first, take D on the arc, and join
AD, DF. Next, on the arc
A D take O, andon D F take I ;
join 4 C,CD; DE, EF. Next;
on AC take B; and so on. & I
Then the chord 4 F is shorter than A DF; ADF
than ACD EF; this last than ABCDEF: and so
on. Or the sum of the chords, as they thus increase in
number and diminish in length, i @ perpetually increasing
quantity.

But the limit towards which their sum tends, is, the
length of the arc 4 P F itself. (Art. 17.) Since, then, they
increase towards 1t, it is always ¢ greater than their sum,”
which also is manifest from the circumstance that each
small arc is longer than its chord, by Art. 157.

211, Again: let the tangents at 4 and I" meet in 7', on
the side of the convexity 4 P #; and we may now show
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that * the sum of thetangents(A T+ T' F) is longer than the arc
APF; the limitation being continued as before, that A P F
Fig. 90. has no Singular point; that
is, neither undulation nor
peak. (Fig. 90.)
For, a series of paths is
conceivable, of which A T F
A F s the first in order; that shall
continually diminish in length, and shall tend towards the
arc 4 P I as their limit. If this can be proved, then the
arc will manifestly be shorter than any of them, and of
-course shorter than the longest of them, namely, than 4 T F.
To exhibit the truth of the above: first suppose the
.angle 7 cut off by a straight line m p n, which touches the
curve in p. Then since m n is shorter than (m 7' + T'n),
the path A mnF is shorter than A 7' F.—Next, let the
corner z be cut off by a straight line ¢ P, touching the
curve in Pj; then ¢r being shorter than (gn + n7), the
path Amgr F is shorter than Admn F. By proceeding
thus, always cutting off the angles of the path by tangents,
it is evident that each new path which is produced is
shorter than that from which it was formed. It is likewise
manifest that the curve 4 P F itself is the limit towards
which we tend : and this is what we undertook to prove.
212. Let us now imagine two curves 4 P F, 4 Q F', both
concave towards the common
chord 4 F, and on the same side
of it. If one contains the other,
that which is the interior (as
A QF) is the shorter.—For be-
tween the two we can draw a
rectilinear path 4 BC ... F,

Fig. 91. P

* Many Geometers assume this as an Aaiom. But as all our definitions
.are complete, we have no pretence for any such assumption; but if it be true,
it can be, and ought to be, deduced from the definitions. The proposition,
moreover, makes a very cumbrous axiom, because of its being embarrassed by
the limitation that the arc must be free from peaks and undulations.
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having all its corners presented towards 4 P F": and by the
preceding articles it is evident that this path will be shorter
than 4 P F, but longer than 4 Q F' (Fig. 91.)

218. The reader will with great ease infer, that of fwo
plane ovals that which may be con- Fig. 92.
tained within the other, (as @ Q Q P
within P P P,) has the shorter
outline. (F%g. 92.)

214. Besides Peaks and Undu-
lations, there are other singular
points to be noticed, depending on T
an irregularity in the curvature.

It was explained above, (Art. 127,) how two dlﬁ’erent
curvatures may be arithmetically compared : and this same
method is evidently applicable to compare the curvatures a¢

the opposite sides of the same Fig. 9.
point in one and the same curve. Mm P o N
Thus, if 4 PB is a curve, 37 T
(F4g. 93,) we have to consider 4 5

at P two different curvatures,

that along P 4, and that along P B. With centre P and

any radius P M = P N, describe a semicircle, cutting the

tangent at P in M and &V, and the curve in @ and B. Then

the ratio {M @ : N R} will roughly show the ratio of the

curvatures P ) and PR to each other, if PM is small:

and if P M is perpetually diminished, the lmdt of the ratio

{M @Q: N R} expresses the ratio of the two curvatures.
215. If now the limit of {3 Q : N R} Fig. 94,

is the ratio {l : 1}, the opposite cur- M L N

vatures are exactly equal. But no one Q

is able to predict concerning any curve

soever that this must needs be the case. 3

In fact, it is easy to construct a curve

in which it shall be otherwise. Thus,

if two unequal semicircles P QS, PR T T

be applied on opposite sides of a straight line P S 7, which

is perpendicular to M P IV, it is at once clear that the curve

R
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SQP R T has on opposite sides of the point P unequal
curvatures. (For although we have as yet given no rigorous
demonstration that unequal circles have unequal curvatures,
it is allowable to assume it, when we are only aiming at
illustration.)

216. A similarly abrupt change of curvature might
happen at a point of undulation ; as will be seen by reversing
Fig. 95. one of the semicircles so as to
5 produce an undulation at P.
Then, if for illustration we sup-

AP pose the curvature of §Q P to
M N be represented by 1, and that of
\" PRT by 3, we may with pro-

priety say that at the point P
the curvature changes suddenly
from + 1 to — 3; or from — 1
to + 3; since it changes in
T direction as well as in amount.

217. This leads us to remark that a point of undulation
will always imply an abrupt and finite change of curvature,
unless the curvature becomes actually zero on each side of
Fig. 96. the point: in which case we may say that, in

N changing from positive to negative, it passes

R through zero. There is then no discontinuity.

Should this be the case, the curve in the im-
mediate neighbourhood of the undulation
P appears almost straight; and although the
tangent cuts it, the contact is infinitely closer

U than under ordinary circumstances. (F4g. 96.)
218. Measure of Circular Curvature. Let us
assume, in accordance with Art. 208, that the
ultimate deviation of a bending path is equal to the sum of
all the separate deviations. Itimmediately follows, that, if
A B be a circular arc, (Fig. 97,) and 4 Qu, B @ tangents,
the angle B Q u, which is the ultimate deviation of the are,
between 4 and B, is also the sum of the deviations, (or, as
we may now say, the sum of the curvatures) of the whole

Q IM
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arc. Hence the angle B Qu, divided by the length A B, is
the proper measure or quantum of curvature at every point
of the circular are.

This expression admits of a very simple o Tig. 97.
transformation. Let O 4, OB be radii of |\
the circle. Then the angles at 4 and B \
being right, in the quadrilateral O 4 § B, the \
other two angles at O and @ in that quad- \
rilateral must be mutually supplements; >
(Art. 185,Cor. 2): and therefore, L, BQu = 5 'Qi’\\
£ 0. Next; the angle O is to four right “
angles, as the arc 4 B is to the circumference. Ifence the

fraction wl which measures the curvature =—
arc A8 |
(4 right angles ) 1%

: - ———, if we suppos o
( circumf. radius’ ppose a right angle

to be measured by one quarter of the circumference whose

radius = l.—Also, when rad. = 1, curvature = 1.
Making then the standard ““unit of curvature,” the cur-

vature of the circle whose radius is 1, the curvature of any

other circle is measured by ( L )

radius
219. Finite Curvature.—Let 4 B be Fig. 98.
any plane curve soever, which is not a //
circle, (Fiig. 98,) and having its curva- B

ture turned all one way. Suppose the /
NSl A
Q

extreme tangents A u, B @ to meet in
Q, so that £ B Q u as before expresses
the ultimate and total deviation through 4 B, or the sum of
all the curvatures; which may be conceived of as angles
infinite in number, but each infinitely small. Then the
fraction { -———aLch AQg
the course of the arc 4 B: and as each term of this ratio or

} expresses the awverage curvature in

% We here borrow the proposition, that the cireumferences of circles are
proportional to their radii.
1
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fraction is finite, a finite line & must exist, such that ( ]!B)

is equal to the fraction. Then the circle whose radius is R,
has a curvature which is the average of that in the arc 4 B.

It is then impossible that this arc should have, at every
point of it, curvature infinitely less than that of a circle, or,
what is the same, LEss than the curvature of any circle
however great : for in that case, its average curvature would
also be less than that of any circle ; which, we have just
seen, cannot be. And this holds, however short the arc
4 B be supposed, so long as it is finite.

In like maner it appears, that the curvature of 4 B
cannot be, at every point, GREATER than that of any circle
however small.

In the above, we have supposed the curvature of 4B to
be turned all the same way : but every finite plane curve
can be divided into a finite number of portions, alternately
concave and convex. We can then pronounce generally,
that the points of curves at which the curvature is infinitely
greater or infinitely less than that of a circle, are isolated
or Singular; their number is finite in a finite arc, and
every adjoining pair of such points is separated by a finite
distance. 'The ordinary curvature may thus be measured
by that of a Circle; the cases in which this happens being,
in a finite arc, infinite in number, but the exceptions finite
in number. Hence the curvature of circles is the ordinary
standard, and is named Finite Curvature.

220. The CuaneEs of Curvature are ordinarily gradual :
or the anomaly remarked on in Art. 215, can occur only at
Singular points.

To prove this, we must first consider how to determine
for any point of a curve, the circle which shall have equal
curvature with it. That some such circle exists, except at
singular points, appears by the last article. If then
A CPB be any curve, (Fig. 99,) take £, /, points in the
curve near to €, and through C, %, I, suppose a circle to
pass, which is ordinarily possible, Next, let %, /, move
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up towards €, and the circle change its form and position
with them. The limiting circle, if any, to which the variable
circle will tend, may be

sald to pass through #/hree

contiguous points of the L5
curve ; and since no circle .
can be made to pass §,
through more than three \
given points, mno circle \B
can be imagined that shall

more nearly coincide with the curve at C than this does. 1t
will therefore be the equicurve circle itself’; and this proves,
that, unless € be a singular point, such a limiting circle
exists.

Take 4, g, on the opposite sides of C; and by passing a
circle through C, %, ¢, we may form the idea of a second
equicurve circle osculating the curve along C4g. Our
immediate business is to prove, that, except at singular
points, the same circle osculates along C%I, and along
Chy.

Let 4 be a singular point, having unequal curvatures on
its opposite sides. Then, I say, C, @ contiguous point, can-
not have a like property. This means, that if ' constantly
move up towards 4, the two circles which osculate along
Ckl and along Chg, must, at least at length, tend to
become one and the same; and this, nearer than any assign-
able difference. For: when O moves up towards A4, it
simultaneously moves up towards ¢, which is always between
A and O. Therefore the circle through g, %, C, and that
through €, %, /, tend to confound themselves in one ; since
indeed we may regard the former as either osculating at O,
in the direction Cg, or (equally well) as osculating at g, in
the direction ¢ C.

221. We do but put the same under a different aspect, in
saying, that if P is not a singular point, we may measure
off Pn, P ¢, finite distances, on each side of it, such, that
within » P ¢ the curvature receives no abrupt increment
o]

1%

Fig. 99.
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(like that noticed in Art. 215); but, thatif », ¢ move
together, meet where they will within # Pg, they bring
equal curvatures with them, counted along 24, ¢ B,
opposite ways. Thus we may announce generally, that
¢ Lzcept at Singular points, the change of curvature in an
indefinitely small arc is indefinitely small.”

222. Supposing 4 B to be any curve soever, having finite
Fig. 100. curvature at A4, (#ig. 100,) a part

0 Am may be cut off so small, that
“ the change of curvature in Am
may be less than any assigned
amount ;” as is manifest from the
last article. This is equivalent to
B saying, that “ the arc 4 m shall differ
from a circular arc as little as may be
- required.”

A T a— Hence if tangents be drawn from
A and m to meet each other in 7
the parts 4 T, m 7' are nearly equal, if 4m be very
small; and when 4 m is perpetually diminished, the ratio
{AT:Tm) tends to the limit {1:1}. Thus also the
angles (whether curved or rectilinear) 7'4m, Tm A, are

said to be wltimately equal.

Moreover, if from A4 and m normals to the curve are drawn,
meeting in O, it follows that these likewise are ultimately
equal ; that is, the limit of {40 :m O} is {1:1}, if the
arc A m is perpetually diminished. On this is founded the
simplest method of determining the circle which shall have
equal curvature with the curve at 4 ; viz. Draw normals
from contiguous points A, m, and suppose them to intersect
in O; then O is the centre, and O A4 or O’ the radius
of the circle required. Also, as in Art, 218, we have

1 1 . . .
) =%—; a formula much used in arithmetic
geometry.

In strictness, if A m has a small finite length, this formula
does but determine a radius which expresses the average
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curvature of the arc 4 m; yet as the variation of curvature
is very small, this is nearly the same as the curvature at 4.
But we must suppose the length 4 m perpetually diminished,
and so pass to the limit of the ratio, in order to determine
a radius which rigorously corresponds to the curvature at
the very point A. 'This is called the Radius of Curvature
to that point; and the centre O which corresponds, the
Centre of Curvature. The Circle is also said to osculate
the curve. From Articles 219, 220, we infer, that except
at Singular points, the radius of curvature has a finite and
only a single value.

223. In concluding this sub- Fig. 101. Fig. 102.
ject, it may be well to point out ¥ ®

how the results at which we , /
N
/ N / / \
g b 7 7

have arrived affect the nature \
of the curve which is the Locus @ 7 /R R
of the centres of curvature.

Let Q@ P R be any curve, and suppose the centre of cur-
vature corresponding to every point in it to be found. The
assemblage of these centres will make Fie. 103
a new curve, called the Ewolute to the MNP N
former ; or to speak more accurately, X%
the locus of the centres is the Evolute. |
In Fig. 101, the portion P Q givesrise =
to the evolute p ¢, and the opposite
portion P R to the evolute pr. Inthis
figure it is supposed that the curvature
is always finite, increasing from Q to P,
and decreasing from P to £.

But if Q PR con- Q
tains a singular point ¥
P, at which the cur- e
vature Is dnjfinitely T —n
great, the radius of | 7
curvature is here infi- /
nitely small, or p runs
up into P, as in Fig.

=
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102. Then the evolute and original curve have the point 2
in common.

If the curvature at P is infinitely small, as in each of the
figures 103, then the radius is here infinitely great. Con-
sequently the evolute has two infinite branches rn, ¢m.
Should there be also a point of undulation at P, as in the
second F%g. 103, then ¢m and rn are at opposite sides
of QP R, and the infinite branches run off in contrary
directions.

Pig. 104, If the singularity of P con.sist i,n this, that
= the curvature at opposite sides is unequal,
/ K there are here #wo centres of curvature, as =
4 7i/;p » and p in Fig. 104. Then the evolute con-
K sists of two finite portions, as p ¢, m », which
7 are broken apart at = and p. A yet more
entire disruption of the evolute would happen, if there
were a peak at £,
Finally, if the curvature come to

Fig. 105. ' wure
P a maximum at P, as in Fig. 101,
/W\"‘\\ or to a minimum, as in #4g. 105,
qQ "R without becoming infinitely small
T~ or mﬁr?itely great, the ' evolute
4 turns directly back on itself at

P

the corresponding point p, pro-
ducing there a sharp peak.

294, Tt is also very obvious that any radius of curvature
to the original curve, as O L in #%g. 103, is a tangent to the
evolute at 0. In fact, if &K, L are consecutive points in
the curve, and o, O the corresponding centres of curvature,
which are therefore consecutive points of the evolute, it
has already appeared that O is likewise a point in’ the
normal K o, since it is the intersection of the contiguous
normals X0, L O. Wherefore K 0O passes through the
consecutive points o, O of the evolute ; and is consequently
a tangent.

On this is grounded the property which has given rise to
the name Evolute; viz. that the original curve may be
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looked on as produced by the unwinding of a string
K O, which is ever kept stretched, and pressing against the
evolute.

225. Hence also it follows, that the length of any part
of the evolute, as Og¢, is equal to the difference of
the radii OZL and ¢ Q, which belong to the points O
and ¢.



PART V.

DOUBLE CURVATURE.

226. If we suppose a curve to be drawn on a piece of
flat paper, and next that this paper is curled up in some
way, as by rolling it upon any cylinder ; the curve assumes
a new shape, in which it may be said to have fwo curvatures.
The one is its own, such as it had while yet on the plane,
the otheris the curvature which the plane itself has received,
or the curvature of the cylinder, which is identical with
that of the cylinder’s base.

Upon regarding the matter thus, we are led to inquire,
conversely, whether, if any curve which is not a plane be
Fig. 106. given, we can resolve its

curvature into that of two
plane curves. And the

— above suggests the method
" L——|--\ of projecting the curve
1] \‘\.\_ by perpendiculars on to a

plane; so as to produce a
cylindrical * surface (F%g. 106.) The uncurling of this sur-
face will exhibit upon it a plane curve, the curvature of
which, joined to the curvature of the cylinder’s base, consti-
tutes that of the given curve. »
227. On farther consideration it appears that this in-
troduces an arbitrary element,—the position of the plane,
—which might be such as to produce results needlessly

* Phe word Cylinder is here used in a larger sense than in Art. 69.
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complicated. Nay, if the given curve were actually plane,
yet by projecting it thus on another plane, it would seem
to be a curve of double curvature. It is therefore to be
desired, that we estimate the curvature of the proposed line
without introducing anything arbitrary.

228. Along any curve take points
A, B, 0, D, E ... which we call
consecutive ; (that is, we intend at
a later stage to introduce the sup-
position, that they approximate
towards one another without limit :)
and to fix ideas, let them be at
equal distances, two and two,
counting along the curve.

Draw chords 4B, BC, CD,
&c. ... Then since the curve is by hypothesis not plane,
we presume that the plane 4 B C is not the same as the
plane B CD, except in singular positions of 4, B, &ec.
Yet as the points 4 B € can be in one straight line only in
singular positions, a plane 4 B C is always determined by
them, when the distances 4 B, B ( perpetually diminish.
Hence the plane which is the limit towards which 4 B C
tends, may be said to pass through three consecutive points in
the curve; and is called the Osculating Plane.

Thus each different point, as 4 and P, (if these are sepa-
rated by afinite distance,) has its different osculating plane;
and when a pencil traces out the curve, we may suppose an
osculating plane to accompany its motion, turning about
into such and such successive positions. Consecutive points
A, B, C. .. yield consecutive osculating planes.

229. If the chords 4 B, B C be prolonged, these ulti-
mately confound themselves with tangents. Thus the limit
to the plane 4 B (' is the same as the limit to the plane of
the tangents to two consecutive points at 4, B. Hence we
may also describe the Osculating Plane as passing through
two consecuiive tangents.

230. Since the ares 4 B, B C may be made to differ as

Fig. 107.
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little as we please from their chords, by diminishing the
distances 4 B, B (; the whole arc A B C may be made to
differ as little as may be desired from a plane curve, by
shortening it as much as we please. Bisecting, therefore,
the chords 4 B, B O, by perpendiculars drawn in the plane
of B A C, we obtain two consecutive normals, which inter-
sectin O. This will of course be the centre of the Oscu-
lating Circle.

231. Every point, as 4, admits evidently an infinity of
normals, the locus of which is the plane passing through 4,
perpendicular to the tangent 4. This plane is called the
Normal Plane. But of all the normals, that which lies in
the osculating plane is the most important ; and is named
the Principal Normal.

By the last Article it appears that two consecutive prin-
cipal normals of necessity intersect each other; viz. in the
centre of curvature ; wherever the curvature is finite.

232. Another way of looking at the principal normal is
sometimes convenient. Let 4 7 be tangent to the curve
Pig. 108. A P; and take equal lengths 47, 4P
\ TTTT along them. Join 7'P and prolong it to
i’#ﬁ?‘l’/l’/? R; then let the distance 4 7" be perpetually

diminished ; and 7P R will tend more

and more towards some position 4 O, as its

limit. I say, this is the Principal Normal.

For since the amount of curvature in

= A P becomes indefinitely small, when 4 P

is perpetually diminished, 4 P 7" tends more and more to

become an isosceles triangle. But the angle 774 P being

infinitely small, 7 P R is ultimately perpendicular to 4 T';

or becomes a normal at 4. Yet this normal (4 0) is in the

plane of the tangent 4 7', and of a consecutive point P;

that is, it is in the osculating plane. Hence it is the Prin-
cipal Normal.

233. It must be already manifest, that the two sorts of

curvature which of necessity meet us in any curve which is

not plane, are, first, the curvature as measured by the oscu-
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lating circle in the osculating plane ; secondly, the curvature
or revolving which is to be discovered in the osculating
plane itself. The former differs not at all from plare cur-
vature, and needs no farther remark here, except as it leads
us to estimate the latter.

If 4 B (Fig. 107,) = @, and the angle O between two
consecutive principal normals = w, it appears by Art. 222,
that L = limit of (S) ); which determines the first

Rad. \a
curvature. Suppose, then, that while the principal normal
thus turns through angle = o, the osculating plane (revol-
ving about that normal) turns through an angle = .. Take

a length p, such that L. limit of ’;l’ Then it is clear that
a

the circle whose radius is p will exhibit the second curvature
at 4; or the proportionate rate at which the osculating
plane is revolving.

234. The locus of all the centres of curvature produces
an evolute, exactly as in plane curves; but besides, the
locus of the radii of curvature is a surface worth attention.
Generated by the motion of this radius, it has the property
that any two consecutive generatrices meet each Fig. 109.
other, (viz. in the evolute,) and of course, asin ¢4,
plane curves, these are tangents to the evolute,
but principal normals to the original curve. o
But, in consequence of the mode of generation,
it is a surface of such a nature as to be suscep-
tible of being unfolded and spread out on a Bl /S
plane: for which reason it is named Dewelopable. ¢ /

To see the truth of this statement, suppose D/
a series of straight lines a4, 6 A B, ¢BC, /
d0D,eD B, fEF . . .tobedrawn, (Fig. 109,) '/
intersecting one another successively in 4, B, ¥
C, D, E,...butin any planes soever. If, then, we sup-
pose the system capable of revolving about any of these
straight lines, so as to change its shape in any manner;
provided only that the angles a 45, b B¢, ¢Cd, &c. . .-

d

At
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retain the same magnitude, and the lengths 4 B, BC, C D,
&e. ... remain unaltered; it is evident that we may
unfold each angle in succession so as to bring all into the
plane of the first, without any tearing of the system. This,
being true however small the angles a 46, b Be, &c. . ..
become, and however short the distances 4 B, B C, C' D, &c.
will be true also when the lines ¢ 4, b B, &c. are the
tangents to a curve A B ... F. Wherefore the surface
which is the locus of the tangents of any curve of double
curvature, is Developable : and this will apply to the oscu-
lating surface above spoken of, by considering that its
generatrices are tangents to the evolute. It is manifest
that the plane of two consecutive generatrices, as d ¢ D,
eD, is ultimately a Tangent Plane to the developable
surface.

235. Let PO, po be consecutive radii of curvature of the
Fig 110. curve P Q (Fig. 110); and from O, o,

draw two perpendiculars O G, og to

the successive osculating planes. Then

whatever is the angle of inclination

\/ between those planes, the same must

[\\ .

be the angle between the perpendicu-

lars, if they meet. Suppose them to

meet in ('; then the angle O Co = the angle between suc-

cessive osculating planes, or may be used to measure the
second curvature of P Q at P.

Since every point in O ¢ may be made centre of a circle
passing through three consecutive points of the curve, say
P, p, q; and similarly every point in og centre of a circle
passing through p, ¢, 7, the three next points: it follows
that C, the point of meeting, is equidistant from four con-
secutive points P, p, ¢, r; and may thus be regarded as
centre of an Osculating Sphere. It is the point of con-
course of three successive normal planes.

236. But it may be inquired whether O G, og are ulti-
mately in one plane, so as to have amy ultimate point of
concourse C. The reply is, that except at Singular Points,
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the deflections of the curve P pgr follow the law of con-
tinuity, and so therefore does the change of position in the
normal plane. Wherefore the locus of O G is a surface,
whose curvature does not change abruptly except at Singular
Positions of O G. It follows, that ordinarily the pair of
lines O G, 0 g determine its tangent plane. There is, then,
no incongruity in supposing them to meet at (.

It is true that OG, og, may be parallel at Singular
Points. But if through a finite arc P @, the series of lines
0G, OG, 0'G" ... were always parallel to each other,
their locus would be a Cylinder, and.the arc P Q would be
Plane. Hence in a cuarve of double curvature, the point
C ordinarily exists.

237. The locus of the centre € is a curve, to which the
perpendicular O (' is a tangent: that is, the system of
tangents to this curve forms the developable surface, which
has for its tangent planes the normal planes of cur given
curve, This surface is named by French geometers, La
Surface Reglée ; (ruled surface ?)

238. 1t is now not difficult to ¢ Fig. 111
show, that, (besides the princi- \
pal Evolute, which is the locus i
0, as in plane curves,) aninfinity X
of other evolutes exist, all lying
on the ruled surface: each
having the property which gave
rise to the name Evolute, viz.
that the original curve can be
generated from it by the un-
winding of a string. Thus if
00, 00, dc, o are successive
generatrices of the Ruled Sur-
face, (F%g. 111,) meeting one
another in O, ¢, ¢; while
0, 0,0, 0", are the centres of curvature determined by the
intersections of five consecutive principal normals, at
P, p, o Py p”; take G arbitrarily in O C'; join G'p, and
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let it cut 0 C'in g. Next, join g p, and let it cut 0" ¢ ing.
Join ¢ p", and let it cut o”¢ in ¢"; and so on. Then
G g g ¢"is a part of an Evolute ; and astring Ggg ¢” p" by
unwinding will generate p” P, for the string is always per-
pendicular to P @, and the circle whose radiusis G p, gp”. ..
passes through three consecutive points of P §. Because
of this property, the Ruled Surface might be termed the
Surface of Evolutes.

239. Since the curve which is the locus of the centres
0, ¢,¢ . .. cannot have two consecutive Cusps ; since also
its successive deflections are equal to the second curvature
of the given curve, the second curvature is subject to the
same laws of continuity as is the first curvature. There-
fore also it is only at Singular Points that a curve can have
two Osculating Planes, any more than two tangents, In
fact, since the successive angles O (/o may be all laid down
on a plane, by uncurling the Surface of Evolutes, we can
thus produce a plane curve, whose deflections shall accu-
rately represent the second curvature of our original
curve.



PART VI.

CURVED SURFACES.

240. If P be any point on a curved surface, (Fig. 112,)
and lines PQ, P Q', PQ ... be drawn in all directions
round P along the surface; it ap-
pears by Art. 238, that if we take
all of these lines as short as we
please, we may make every one
differ as little as we please from a
straight line.

Round 2 draw on the surface a
a line @ Q' Q" Q" € rejoining itself; then the above may be
otherwise stated thus: If we take the area round P as
small as we please, we may attain a portion of surface dif-
fering as little as we please from a Cone, generated round P
by the motion of a straight line: (See Art. 102.) Such an
area then, differs to an indefinitely small amount from an
area marked out on the Tangent Cone round P, (See Art.
145).

Now the cases in which the tangent cone does not merge

Fig. 112.

itself into a tangent plane, may be spoken of under two
heads: first, when at P is a peak, as in ordinary cones;
secondly, when P is (what we may call) @ centre of undu-
lation, such as is described in Art. 145, under numbers (2)
and (3).

241. Consider next the case of a Cone, (#%g. 113,) (using
the word in its most extended sense,) which has P for vertex,
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and QQ Q" Q" Q for the directrix by which it is generated.
If this directrix have any peaks, as at Q and ¢, the lines
Fig. 113. P, PQ” will probably be
Ridges along the surface. For if
m, n be taken in the directrix,
at opposite sides of ", and the
distances @ m, §)n,be diminished
indefinitely; each of the planes
P Q" m, PQ" n,tend to become
tangent planes to the cone along
P ", But by reason of the
peak at @” in the directrix, it is possible that the two
planes may not tend to one and the same plane : in which
case P Q" will be a Ridge.

But two consecutive generatrices Pm, P Q”, could not
be ridges ; otherwise the consecutive points m, Q”, must
needs be both peaks in the directrix ; which is impossible.

It is obvious also, that no point but P in the line 2 § or
P @, &c. can be a peak to the surface; for these lines are
straight. Ience both the peak P and any ridges that pro-
ceed from P, are Singular; so that in a finite curvilinear
area both the peaks and the ridges are finite in number.

The same is true of such points as

we have called centres of undulation.

Q" If P be such a one, (#ig. 114,) sup-

pose &2 tobe a second point indefinitely

(31{, near to £, and in the generatrix P Q;

still considering P Q, PQ, &ec. as

straight lines. Take P Q" another generatrix, indefinitely

near to P R Q; then the plane Q P Q" is a tangent plane

to the surface along the line 2 R Q, and consequently the

point & admits a tangent plane, which contains the tangent

to every curve 2 2 drawn from R to meet P ¢". Every

point B in Q P Q’, except the point 2, (which admits of no

such lines as R R”,) has thus a tangent plane. Wherefore
AL is altogether isolated and unique.

242. What has been proved of the Cone, applies to the

Fig. 114.
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surface in IMig. 112, which by perpetual diminution might
be made to differ as little as we pleased from the Cone.
Thus any given curved surface of finite dimensions,—ezcept
at a limited number of isolated points, and along a limited
number of straight lines,—admits at-every point of it one,
and only one, Tangent Plane.

248. Every curved surface may con-
sequently be distributed into portions
so small, that each may differ jfrom a
plane surface as little as may be re-
quired.—To fix ideas, let Fig. 115
represent any curved surface, having
an isolated peak P, and ridges
NKM, KL TRound P draw a line, cutting off an area
as small as we please ; and we may make it differ as little
as we please from a cone. But a cone is a developable sur-
face, and may be laid out on a plane; hence this portion,
(which might indeed be neglected as evanescent,) is com-
parable to a plane surface. Divide the rest into three
parts, NQMK, MK L, and NKL R, (omitting the
system of P ;) then neither of these parts has any singular
point such as have here been discussed. Consequently,
each is resolvable into small parts, differing from the tangens
planes as little as we please.

244. A curved surface is then always* comparable
in respect to magnitude with a plane surface; or,
Any curved surface being given, a plane surface is con-
ceivable, (say a circle or a square,) equal to it in area. See

Art. 12.
245. Analogy might seem to require that we follow

the subject of curvature in surfaces; and establish the
very remarkable and elegant properties, which, except
at Singular Points, they are known to possess. But the

Fig. 115,

* In the Diff. Calc. this is assumed as an Axiom. Thus, if « = area of an
ellipsoid, whose semi-axes are @ b, ¢, it is at once assumed that « is a function
of a, b,ec, of two dimensions.

K
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writer has not succeeded in finding how to do this by
any simple * and satisfactory method; and, in fact, there
is little or no occasion for it, inasmuch as every step
has now been made good, which was a prerequisite to

the application of the Differential Calculus to curved lines
or surfaces.

# Monge has attempted it in his Descriptive Geometry. He appears to
me to fall short of demonstrative reasoning on this subject, which yet is well

worthy of being studied by those who do not aim at high mathematical
attainments,



PART VIL

SHORTEST PATII ON A SPHERE.

246. In investigating the question, * What is the shortest
path along a sphere from one point to another?” it is
found convenient to establish several subordinate propo-

sitions.

First: ¢ The shortest path 4 P (in Fig. 116.
space) (#'%g. 116,) from a point A K G
to a curve B P C that has no peak, QPB/
is at right angles to the curve.”

For if Q, R are points near to 2,
and at opposite sides of it, the dis-
tances 4 ¢, A R are never less than A
A P, however near ¢ and R are to P; because 4 P is a
shortest path from A4 to the curve., Hence if a sphere be
conceived, of centre 4 and radius 4 P, ¢ and R can never
fall within the sphere. And since we suppose that there is
no peak in the curve at P, the straight line Q B being pro-
Ionged each way, tends to become a tangent to the curve at
P, when the distances P Q, P R, are perpetually diminished,
(Art. 95.) But it also tends to become a tangent to the
sphere at P; for if it entered the sphere at P, either Q or
R must lie inside the sphere; which is not the case. Thus
the curve and sphere have a common tangent at /. This
tangent being perpendicular to the radius 4 2, it remains
that the shortest path A P is justly called perpendicular
to the curve at P.

9]
~
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Observe: If P were an extreme point of the curve (#%g.
Fie. 117, 117,) so as not to allow opposite points Q, R ;
o this would be equivalent to the case of P being
a peak: for the curvature would be there sud-
denly arrested.

P 247, Cor. If B C, AD are curves without
peaks, no path 2 O to join them can be as

A short as might be, unless it is perpendicular

to both curves. (Fig. 118.)
Fig. 118. 248. Secondly: ¢ The same things are
B ¢ true, if the path is constrained to a par-

P ticular surface, on which the curves B P C,

A 0D, lie” (Fig. 119.)

0 When from a given point A, the path
A D4 Pis drawn along the surface to B 0, let
@s 3,7 . . . be points in the path. Then A P cannot be as
short as possible, if « P could be shortened without shifting
a; and the like may be said of 3 P, y P, &c. however near
a,3,y...may be to P. Butwhen these distances become
very small, the arcs a P, 3P, vP,. ..
tend to confound themselves with the
chords ; and by the theorem just proved,
the chords are perpendicular to B C, when
they are the shortest paths (in space).
Here, therefore, the chords tend more
and more to perpendicularity, as they
diminish: consequently, the tangent P 7
to the curve P A4, is actually perpendicular to 4 P ('; that
Fig. 120. is, the two curves 4 P, B P C, are perpen-

AT dicular to each other at 2.

When the point 4 is not given, but two
curves B U, A D, are given ; it follows ex-
actly as in the Cor. to the former article,
that O P must be perpendicular to both

© curves, if it is as short a path as possible

from one to the other. Fig. 120.

249, Thirdly : ¢ On a Surface of Revolution, the shortest
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possible path to connect two points in its plane generatrix
lies along the generatrix itself.” (#4g. 121.)

Let G P O be any portion of a plane curve, which, by
revolving round the axis G M NV in its own plane, generates
a surface of revolution. It isfirsteasy Fig. 121.
to see, that every circle generated is
perpendicular to the generating curve.
For if P generate the circle B P C,
whose centre is M, and P R be a
tangent to the circle, and P 7 a
tangent to the curve P O; then
since the axis VA is perpendicular
to the plane of the circle, so also is
the plane VM P that passes through
the axis. Now the intersection of
these rectangular planes is M P ; to
which is drawn in one of them the perpendicular P R.
Wherefore P R is perpendicular to the other plane NV M P
and consequently, since P 7' is in this last plane, the angle
R P Tisright. That is to say, O P is perpendicular to
B P( at the point P.

Next: a path on the surface to join O and G, will not
be as short as possible, unless the path from O to the circle
B P be also a minimum : for all points in that circle lie
at the same distance from G. Hence by the last Article,
the shortest path from O to G, must cut the circle B P C
(and every parallel circle) at right angles.

But no path joining O and @, except the plane gene-
ratrix O P @, can cutall the parallel circles at right angles.
That this path does, we have shown ; but any deviation from
this must instantly produce a path more or less oblique to
the circles. Wherefore no other line drawn on the
surface from O to G, is so short as the plane generatrix
0 PG.

Finally ; if O and P be given points in the same plane
generatrix, this line P O is as short as any other that can
be drawn on the surface to connect O and P. For O P

T
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cannot be a minimum, unless its part O Pisalso a minimum.
Which was to be proved.

250. A Sphere is a particular sort of Solid of Revolution,
its plane generatrix being a semicircle. By the theorem
just proved, it appears that the shortest line which can join
two points on a sphere, is, one arc of the generating semi-
circle which passes through them. To determine this arc,
we have only to pass a plane through the centre of the
sphere, and the two given points: the intersection of the
plane and sphere affords the path sought for.

SCIHOLIUM.

251. To the establishment of Art. 249, some propositions
concerning the intersections of planes are needed, which
are found in the XIth book of Xuclid. In all this,
however, there is nothing which absolutely demands that
we shall have settled any principles concerning the addition
and subtraction of rectilinear angles. The comparison of
angles, as regards greater and less, is effected as in Art. 101 ;
and we may proceed from thence as far as Art. 111, and
then skipping to Art. 154, continue to the end of the
Ist Part. If any one choose next to treat of the Inclination
of Planes, so far as to establish the simple theorems needed
in Art. 249, (which is easy, especially by help of the
Sphere,) he might then lay down principles for effecting
the addition and subtraction of angles, in some respects
more satisfactory than those of Articles 113—117.

252. For if A OB, B O ( are any two angles to be added
Fie. 122, together, (#%g. 122,) we must inquire how we
) can make the angle 4 O C greatest; and we
must count this to be their Swm. Sup-
pose then, that we cut off 04 = OB =00,
and regard 4, B, C' as on the surface of a
sphere whose centre is O; and that 4 B,
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B, 40, are arcs of greatcircles. Then by Art. 250, 4 ¢
isless than A B + B C, except when € is in the prolongation
of A B; as at y. Thus the distance 4 C, (and conse-
quently, the angle 4 O () is greatest, when 4, B, (' are
all in one plane with O, and 4, B, ¢ stand in order round
the circle.  And this requires that the two angles 4 0 B,
B 0 0, be put side by side upon a plane.

253. In composing a continuous treatise of Elementary
Geometry, the writer is (on the whole) of opinion that it
might be advisable to follow this order. Articles 113—133,
will then be omitted from their place above; and after
establishing the Evenness of the Plane, &c., as in Articles
170—180, Dihedral Angles must be treated, and a certain
part of what is commonly found in Spherical Trigonometry :
after which, the doctrine of the Addition and Measurement
of Angles upon the basis just suggested would follow.

The nearer we come to the true and natural method of a
science, the more immediately do we find ourselves able to
deduce our conclusions out of first principles. This neces-
sarily draws after it a new difliculty, viz. an uncertainty as =
to which arrangement of subjects is most to be preferred:
and if there be also a doubt, which of several Experimental
Laws deserves to be made the basis of the science, there is
still more room for hesitating as to the most advisable Order
of a treatise. This has evidently been much felt by writers
on Statics; and I am strongly conscious of the same, in
regard to Geometry. But there is here some danger of a
fantastic desire of an artificial consecutiveness. For how-
ever specious may be the system, which would make
Geometry as nearly as possible a chain of propositions,
linked each to the one before it, so as to admit of no dislo-
cation ; it may be questioned whether this can ever be an
arrangement Zo be aimed at. On the contrary, if we desire
a deep knowledge on the student’s part as to what he is
about, the more our proofs are drawn from first principles,
the better. Yet this will give to a treatise the appearance
of being ill-connected.
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254. The doctrine of Parallel Straight Lines may be re-
garded as dividing Geometry into two parts. = Before this
doctrine is established, the whole theory of the mensuration
of angles, plane, spherical, curved, and solid, can be treated
satisfactorily; but we can scarcely touch the theory of
linear, superficial, and solid measurements without it. ~As
this is the critical step by which we pass to the calculation
of lengths, surfaces, and volumes, so also it was shown in
Art. 123, that we can prove the doctrine itself by barely
assuming that Geometry is a science of calculation.

It may appear strange to some, that we do not propose
to prove by experiment some fundamental law on which
the doctrine of Parallels may rest, since this proceeding
has been vindicated above, as the basis of the science.
The only reply which the writer can give, is, that while he
has an internal consciousness that his conviction of the
Laws of Rotation is of a mechanical origin, he has just the
opposite inward persuasion concerning the relations of
Parallel Straight Lines. Here the appeal seems to him to
be made to the pure reason, and not to outward trial of any
sort; and the remark made in Art. 124, concerning the
doctrine of Homogeneity, as common to other sciences,
confirms him in this view.

255. Yet, as the Evenness of the Plane has been shown
to result out of the principle that Peaks are Singular
points, there is much speciousness (to his mind) in the
thought, that the doctrine of Parallels ought to be elicited
out of the theorem that ¢ curvature is finite,” (or comparable
with that of a circle) ““except at singular points.” He
once thought that he had succeeded in demonstrating this;
but at last it appeared, that there was a concealed assump-
tion that ¢ the total deviation is not infinitely greater than
the ultimate deviation.” But in case any should be dis-
posed to pursue this investigation, it may be remarked, (1)
that the doctrine of Parallels is easily established, if it
can be shown that the Cylinder, defined as in Art. 69,
has no longitudinal curvature. (2) Since a longitudinal



SCHOLIUM. 137

section of the cylinder is clearly nof a circle, it must either
be a straight line, or an unknown curve which has at every
point equal curvature. (8) The latter alternative is instantly
disproved, if it be conceded that ordinary curvature is
finite. TFor the (supposed) curve under examination can
nowhere have its curvature so great as that of any circle:
which is contrary to the concession.

It may finally be noticed, that by the method of Articles
127, 214, the conception of finite curvature can be dis-
tinctly formed, without any premature assumptions - con-
cerning the circle of curvature.
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APPENDIX.

No I.

Arrer the foregoing pages were in the printer’s hands, my attention
was arrested by Lieut.-Colonel Perronet Thompson’s small book, on the
“ Equiangular Spiral,” used as the foundation of the Theory of Parallels.
Having before found him to supply instructive suggestions, I turned with
interest to the examination of his new proof.

It appears quite safe to assert, that if’ the Second Corollary to his Pro-
position A is sound, his method is logically perfect. But I am sorry that
in that one most important step his proof is quite deficient, in my judg-
ment. He is essaying to demonstrate, that if (r, @) are coordinates to
the Spiral, we may make (w) as great as we please, by taking (») as great
as we please ; or, what is the same, that if (r) increases without limit,
(@) cannot approximate to a finite limit; or that while () is finite, (r)
cannot be infinite. But there is a clear petitio principii, in his proof,
that (r) cannot be infinite; and moreover, it proves too much. His
Second Corollary is not limited to the Equiangular Spiral, but to a spiral
which fulfills the condition named in his first Corollary. This is, virtually,
the equation, d» & ¢ () . do, where ¢ (r) = circumference of a
circle, whose radius is (r); a function about which he has established
nothing, except that it is finite, while () is finite. It is easy to prove
farther, that it increases with ().  But the conclusion from such premises,
in his Second Corollary, is undoubtedly too wide: for instance, if
¢ (r) = ¢, it is readily proved false. Or, again, if ¢ () = @ rl+n,
the conclusion is false as long as (u) has a real positive value. It is
then essential to Col. Thompson’s method, first to establish that the cir-
cumference does 70 increase in a Zigher ratio than as the radius directly.

On a superficial view it may seem that all that is needed, is to prove
that the Equiangular Spiral cannot have an asymptote through its pole ;
for which an easy geometrical vroof is devisable. But this is not really
enough; nor can I complete the proof without assuming the following
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