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PREFACE.

THE. work now offered to the public contains,
as its title indicates, the substance of.lectures de-
‘livered for some years in the University of Dublin
to the candidates for mathematical honors of the
first year in arts; and supposes, accordingly, a
previous acquaintance only with the first six books
of the Elements of Euclid, and with just that
‘amount of the principles of Elementary Algebra
-essential to an intelligent conception of the nature
“of signs, and of the meaning and use of the ordi-
nary symbols of operation and quantity.

The acknowledged want of a systematic treatise
on Modern Elementary Geometry, adapted to the
requirements of students unacquainted with the
higher processes of Algebraic Analysis, which of
Iate years have been applied so successfully to the
extension of geometrical knowledge, has induced the
author to come forward with the present. attempt
to supply the deficiency. The only existing work
of the same nature in the English language with
which he is acquainted, the ¢ Principles of Modern
Geometry,” of the late lamented Dr. Mulcahy,
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vi PREFACE.

published in the year 1852, being now confessedly
behind the present state of the subject; and the
only other work of the same nature in any language
with which he is acquainted, the elaborate and
masterly ¢ Traité de Géométrie Supérieure” of the
justly celebrated M. Chasles, published in the same
year, having become so scarce as to be now
hardly attainable at any price.

Though designed mainly for the instruction of
students of the comparatively limited mathematical
knowledge generally possessed at the transition from
school to university life, and arranged with special
reference to the existing course of mathematical
instruction in the University of Dublin, the author
has spared no pains to render the work as gene-
rally interesting and instructive as the extent of
his subject admitted. The order adopted, though
framed on the basis of an existing arrangement,
appeared as natural as any other he could have
substituted for it; the principles established have
been considered in all the generality, and stated
with all the freedom from ambiguity, of which
they appeared to him susceptible; and the demon-
strations submitted, which are to a considerable
extent original,” have been presented as directly
referred to ultimate principles, and as completely
disencumbered of unessential details, as he was
capable of rendering them.



PREFACE. vii

To the second of the works above referred to,
the ¢ Traité de Giéométrie Supérieure” of M. Chasles,
the author is indebted for many important sugges-
tions in the advanced chapters of the work; in
those especially on the Theories of Anharmonic
Section, Homographic Division, Involution, &e., of
which its illustrious author was virtually the origi-
nator as well as the nomenclator, it will be at once
seen that he has profited largely by the results
so ably developed in the corresponding chapters of
that elaborate work, while at the same time he
can in no sense be regarded as the mere copyist
of any of its contents.

To the Board of Trinity College the best thanks
of the author are due for the liberal assistance
they have given towards defraying the expenses of
the work.

Trintry CoLLEGE, DUBLIN,
October, 1863.
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THE MODERN GEOMETRY OF THE:
“POINT, EINE, AND ‘CIRCLE.

"CHAPTER L. :

" ON THE DOUBLE ACCEPTATION OF GEOMETRICAL TERMS,

1. GEOMETRICAL propositions refer either to the compara-
‘tive magnitudes of geometrical quantities, as in the propositions’:
% Réctangle under sum and difference = difference of squares,”
% Square of sum + square of difference = twice sum of squares,”
&e., or to the relative positions of geometrical figures, as in the
proposntxons “# All points equidistant from the same point lie
‘on the same circle,” “ All lines equidistant from the same point
‘touch the same circle,” &c. Hence the modern division of the
‘science of Geometry into the two departments of Geometry of
‘magnitude or quantity and Geometry qf position” or jr'gure re-
spectlvely

.2.: The ordmary terms of Geometry are, with few excep+
‘tlons, employed in double acceptations with reference to-these
two departments, and denote sometimes magnitudes and some-
dimes figures ; the familiar term *line,” for instance, denotmg
sometimes -the indefinite figure so denominated extending ‘to
infinity in both directions and sometimes the distance from'one
point to another; the equally familiar term “angle,”-again
denoting sometimes the complete figure formed by two inde-
finite lines extending to infinity -in both directions and some=
times the_inglination of one line to another.  The ambiguity

B
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arising from this duality of application rarely, if ever, causes
any inconvenience or confusion, as the sense in which geo-
metrical terms are employed is generally apparent from the
context in which they occur, as for instance in the expressions:
“points of bisection of a line,” ‘“lines of bisection of an
angle,” &ec. '

3. The literal symbols also by which geometrical figures of
all kinds are wont to be represented, are employed occasionally
in a similar duality of application with reference to the two
departments of geometry; thus if 4 and B represent two points,
AB represents indifferently the indefinite line passing through
both and the linear interval between them. If 4 and B repre-
sent two lines, AB represents indifferently the unique point
common to both and the angular interval between them. If
A and B represent one a point and the other a line, AB re-
presents indifferently the indefinite line passing through the
former at right angles to the latter, and the perpendicular in-
terval between them; for the reason already stated the ambi-
guity arising from this duality of application rarely, if ever,
causes any inconvenience or confusion in practice.

4. Of the two different ways in which linear and angular
magnitudes are alike ordinarily represented, viz. by the two
letters which represent their extreme points or lines, or by
a single letter denoting the number of linear or angular units
they contain; the latter or uniliteral notation is generally the
more convenient when magnitude only need be attended to, as
in the familiar instance of the triangle in which the three sides
are ordinarily represented by the three small letters a, b, ¢,
and the three respectively opposite angles by the three corre-
sponding capitals 4, B, C, a notation than which nothing could
be more convenient; but the former or biliteral notation is,
on the contrary, the more convenient, when, as is often the
case, direction as well as magnitude has to be taken into
account, which under the biliteral notation may be indicated,
in a manner at once simple and expressive, merely by the
order in which the two letters are written, 4B naturally re-
presenting the segment, or the angle, or the perpendicular
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intercepted between the two points, or the two lines, or the
point and line, 4 and B considered as measured in the direc-
tion from A4 to B, and BA the same segment, or angle, or
perpendicular considered as measured in the opposite direction
from B to A4; this mode of distinction we shall have frequent
occasion to employ in the sequel.

5. When a geometrical magnitude of any kind is repre-
sented or said to be represented, as it often is, by a number,
or by a letter regarded as the representative of a number, it
is always to be remembered that what is meant by such number
or representative letter is the ratio the magnitude bears to
some other magnitude of the same kind, given or assumed
arbitrarily, but not either evanescent or infinite, to which it is
implicitly, if not expressly, referred as a standard, and which
is called the unst of that particular kind of magnitude, because
that when the compared and standard magnitudes are equal,
the number representing the former is then unity. The given
or assumed unit of any particular kind of magnitude may have
theoretically any finite value, as, whatever it is, it always dis-
appears whenever different magnitudes of the same kind are
compared with each other, their relative magnitudes, or ratios
to each other, being of course independent of the arbitrary
standard by which their absolute values may happen to be
estimated; it is thus, and thus only, that magnitudes other
than abstract numbers become subjects of ecalculation, the
proper and only subjects of which are numbers and numbers
alone,

6. With respect to the three species of geometrical magni-
tude, length, area, and volume, it is to be observed that as
the magnitudes themselves are not all independent of each
other, but on the contrary vary simultaneously according to
known laws, their three units consequently are never all arbi-
trary fogether, but are always made to correspond to each other
according to the same laws of simultaneous variation in a
manner at once obvious and natural; areas and volumes vary-
ing, ceteris paribus, as the squares and as the cubes respec-
tively of the lengths on which they depend, the unit of area

' B2
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aceordingly ‘is always the square and the unit of volume the
cube of the unit of length; the latter, however, or more gene-
rally some one of the three, being arbitrary ; it is for this reason
that we are justified in asserting the area of a parallelogram
and the volume of a parallelopiped to be equal in abstract
numbers to the products of their two and of their threc dimeny
sions respectively, and almllarly of other arcas and volumes
88 baving the same mecessary and known connection wnh the
}engths on.which they depend.

. 7 With respect to the only remaining species of geome-
trical magnitude, viz. inclination, a8 no connection exists between
it and any of the other three, its unit is therefore at once
arbltrary and mdependent of any of theirs; any finite angle,
consequently, may be given or assumed at pleasure, considered
as the -angular unit, and all other angles estimated by the
numbers, integer.or fractlonal of such units contained in them';
and this accordingly is what is done in- Astronomy, Geography;
Navigation, Geodesy, &c., and in other practical applications of
Geometry where angles are ordinarily estimated by the numbers
of degrees, minutes, and seconds, &c. which they contain. . -

" Theoretically oonsldered the most convenient unit of angulax:
measure as well in (zeometry as in the science which treats moye
equctally of-angles and their relations, is the angle which ‘from
the centre of a circle subtends an arc = the radws) and which,
as'all circles are similar figures, is consequently unique, because
in referen_ce to it as unit the numerical value of any_gmgle 18
simply the ratio of the subtending arc to the radius in any circle
described round the vertex as centre, a value simpler than for
any other unit. Practically eonsidered, however, -this unit  has
the twofold disadvantage firstly, of bemg so large. that angles
of ordmary magnitude, if referred to it, must be expressed as
fractnons_ and, secondly, of net being a sub—muhlple of, or even,
oonimensurablé withy four right angles, the exact divisions and:
sub-divisions of which are of such importance in all practlca.l\
subjects.

“8.. As in A.rlthmetlc the third proportlonal to any number
and . upity is termed the reciprocal of the number, so- in Geos-\

.
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metry the third prbportnonal to any magmtude and the unit,
whatever it be, to which it is referred, is termed the reczprocal
of the magnitude:

By taking the reciprocal of the reciprocal, as thus defined,
either .of a magnitude or number, we evidently get batk again
the original magnitude or number. Hence the reason why
magnitudes or numbers so related are termed reciprocals to
each other, the process by which either produces the other
always reciprocally reproducing itself from the other.

The product of the extremes being equal to the square of
the mean in every proportion of three termns, the product of
every pair of numbers reciprocals to each other =1, and that
of every pair of magnitudes of any. kind reciprocals to each
other = the square of the common unit, whatever it be, ta -
which they are referred; and, conversely, if the product of
two numbers =1, or the product of two magnitudes of any
kind = the square of the unit to which they are referred, such
numbers or ma.gmtudes are reciprocals to each other..

When,_ two ratios a:b and c:d are reciprocals to each
other, the four component: magmtudes a, b, ¢, d, whatever
be their. na’ture,‘ are evidently reciprocally proportional” in
Euclid’s mea.mng of the pllrase (Euc V1. 14, 15, 16).

9 As in. Arlthmetlc the numbers notkmq and znﬁmty are
reclprocals to each other, each being ev1dently the third propor=
tional to the other and any finite number, so in Geometry evanes-
cent and infinite values of .any kind of magnitude are always
reclprocals to each other, whatever be the absolute value of -the
unit to which they are referred, each being evidently the third
proportional to the other and any, Jfinite value of the same kind
of. magnitude.

The rectangle under two linear magmtudes, recnprocals to
each other, being constant and = the square of the unit, what-
ever it be, to which they are referred. The reader, familiar
with the Second Book of Euclid, may take as exercises in its
principles the four following problens: “Given the sum, diffe-
rence, sum of squares, or, difference of squares, of two linear
magnitudes reciprocals to each other to a given unit, to determine
the magnitudes.” ‘
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10. There are several constructions by which pairs of reci-
procals in linear magnitudes may be simultaneously determined,
of which the following is perhaps the simplest:

Round any one of the four corners C of any equilateral
parallelogram ABCD the common length of whose four sides

17'4 x\ /ID/A.

= the linear unit, let an indefinite line XY be conceived to

revolve intersecting the two sides 4D and BD opposite to C

in two variable points X and Y; the intercepts AX and BY

between the. two points of meeting and the two corners 4

and B adjacent to C are always reciprocals to each other.
For, by similar triangles X4AC and CBY,

AX: AC=BC: BY or AX.BY=AC.BC

in every position of the revolving line, and therefore, &ec.

The parallelogram in the above need not be equilateral;
any parallelogram, the rectangle under whose adjacent sides
CA.CB= the square of the linear unit, would obviously do
as well.

11. In case it should be desirable to have the simultaneous
reciprocals 4X and BY measured on the same in place of on
different lines, the following modification of the above may
be employed for the purpose:

Round the vertex C of any isosceles triangle ACB, the

/YABX\ X A..B'.Y\
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common length of whose sides = the linear unit, let two inde-
finite lines CX and CY inclined to each other at a constant
angle equal to either base angle of the triangle be conceived
to revolve intersecting the base 4B in two variable points
X and Y; the intercepts 4X and BY between the two points
of meeting and the two extremities of the base 4B, for -which
the three angles CAX, CBY, and XCY are of the same affec-
tion; that is, all three acute (fig. a) or all three obtuse (fig. B)
are always reciprocals to each other.

This is obviously identical with the preceding construction
modified by turning the unit line CB round C, bringing with
it the two indefinite lines BY and CY until the former coin-
cides with 4X, and the same demonstration, word for word,
and letter for letter, applies indifferently to either.

Since during the revolution of the constant angle XCY its
acute and obtuse regions alternately comprehend the intercept
XY, should any doubt exist in any particular position as to how
the two points X and Y correspond to the two 4 and B in
measuring the reciprocals 4X and BY, it will be at once
settled by remembering, as above stated, (see the figures of
the original as well as of the modified construction which have
been drawn to correspond) that the angles CAX and CBY
must be always of the same affection with XCY.

If the vertical angle of the isosceles triangle 4CB were
nothing, its unit sides C4 and CB would coincide and be
perpendicular to XY; the constant revolving angle XCY
would be right in every position; the two reciprocals 4X and
BY would be measured from a common origin, and the ambi-
guity adverted to above would not exist: in the corresponding
case of the original construction the lozenge ABCD would’
evidently be a square.

12. The following, however, is the most convenient con-
struction for the simultaneous determination of pairs of conter-
minous reciprocals upon any given indefinite line M, inasmuch
as by it they may be determined at pleasure either in similar
or in opposite directions from any given common origin O.

Drawing arbitrarily from the common origin O in any
similar or opposite directions, according as the directions of the
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reciprocals ‘ate to -be similar or opposite, any two lengths' OF

Ry A
Al
T SR ’K/

and 0@, the rectangle under which OP.0Q= the square of
the linear unit. Every circle passing through their two ex-
trerfities P and @ intersects the given line MN in two points
X and Y whose distances from O are always remprocals to
each - other.

For, Euc. 1. 35, 36, 0X.0Y=0P.0Q, whatever be the
circle, and therefore, &c

The above three methods have all the common advantage
of allowing to both reciprocals every range of magnitude from
nothing to infinity, and of shewing very clearly how the pas-
sage of either through nothing or infinity is accompanied by the
simultaneous passage of the other through infinity or nothing,
whatever, in any case, be the absolute value of the unit to
which they are referred, provided only it be finite.

13. Geometrical magnitudes of every kind, when compared
with others of the same kind, present in their evanescent and
infinite states some anomalous peculiarities, to which, as con-
stantly occurring in geometrical investigation, we proceed to
call early attention. .
 The product. of an evanescent or of an infinite with any
finite magnitude and the ratio of an evanescent. or of an in-
finite to any finite magnitude being necessarily evanescent or
infinite, when therefore two geometrical magnitudes of any
kind have any finite product or ratio, one necessarily becomes
infinite as the other vanishes, and conversely, in the former
case, and both vanish or become infinite together in the latter
case; hence, as in abstract numbers the product of 0 with o
or of o with 0, and the ratio of 0 to 0 or of ® to o is
plainly ¢ndeterminate, so in geometrical magnitudes of every
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kind, the product of an evanescent with an infinite or of an
infinite with an evanescent magnitude, and the ratio of an
evanescent to an evanescent or of an infinite to an infinite
magnitude, considered in the abstract, is also indeterminate;
though in every particular instance in which either product
or ratio actually arises it has generally some particular definite
value determinable and to be determined from consideration
of the particular circumstances under which it arises; as, for
instance, if the product or ratio were constant in the general
and therefore in every particular state of the magnitudes.

14. The ratio of two magnitudes of any kind, considered
in the abstract, being thus indeterminate when the magnitudes
are both- either evanescent or infinite, it follows therefore that
the two criteria of equality between two magnitudes of the
same kind when compared with each other, viz. that 1°. their
ratio =1, and 2°. their difference =0, each of which necessarily
involves the other so long as the magnitudes are finite, do not
involve each other when the magnitudes are either evanescent
or infinite, for while .the differcnce between two evanescent
magnitudes is always =0, their ratio, as above shewn, may
have any value = or not =1, and while the ratio of two infinite
magnitudes may be and often is =1, their difference, as may
be easily shewn, may have any value = or not =0.

15. The following useful example may be taken as an
illustration of the preceding observation:
. The ratio of the distances of a pomt P at infinity from
any two points A and B not at infinity is always equal to unity,
though their difference may (Euc. 1. 20) have any value from
nothing to the interval AB. »

For, whatever be the position of P, whether at or not at
infinity, or on or not on the line 4B, since (Enc. 1. 20) PA
differs from PB by a quantity not exceeding 4B, therefore
PA : PB differs from PB: PB, or 1, by a quantity not ex-
ceeding AB : PB, which quantity =0, whatever be the length
of AB whether evancscent or finite, when PB=oo, that is;
when P is any wherc at infinity whether on or not on the

line AB.
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In the particular case when the two points 4 and B co-
incide, then for every position of P, whether at infinity or
not, the two criteria of equality P4 : PB=1, and PA ~ PB=0
evidently hold, except only for the point 4 =B itself, for which
the ratio assumes the indeterminate form 0 : 0, and, therefore,
(13) may have any value as well as 1. This particular case
often occurs in geometrical investigations, and whenever it
does its peculiarity must always be attended to.

In the general case when 4 and B do not coincide, for
every point P on the indefinite line bisecting internally at
right angles the interval 4B, whether at infinity or not,
both criteria of equality P4 : PB=1, and PA ~ PB=0, hold
without any exception, while for a point P not on that line
PA ~ PB is never =0, and P4 : PB is therefore =1 only
when P is at infinity.

In the general case again, for every point P on the in-
definite line AB itself, whether at infinity or not, PA ~ PB,
except only for the finite interval between A4 and B, has
(Euc. 1. 20) the greatest possible value AB, and therefore
for points external to that interval P4 : PB=1 only when P
is at infinity, in which position it is consequently termed the
point of external bisection of the segment AB. Hence we
see that—

The point of external bisection of any finite segment of a line
18 the point at which the line intersects infinity, and conversely,
the point at which a line intersects tnfinity s the point of ex-
ternal bisection of any finite segment of the line.

In the particular case when the segment is.evanescent,
then, as already stated, every point on the line, except only
that at which the extremities coincide, is indifferently a point
of external bisection of the segment.

16. Admitting that any number of lines passing through
a common point divide similarly (Euc. VI. 10) any two parallel
lines in the ratio of their distances from the point, and that,
conversely, any number of lines dividing any two parallel lines
similarly in any ratio pass through a common point whose
" distances from the parallels are in that ratio; the following
very important, but at first sight somewhat paradoxical, con-~
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clusion respecting points at infinity, results immediately from
the general property of the preceding article, viz.—

Buery system of lines passing through a common point at
tnfinity 4 a system of parallel lines; and conversely, every
system of parallel lines is a system of lines passing through a
common point at tnfinity.

For, conceiving any two parallel lines Z and L' drawn
arbitrarily intersecting the entire system of lines, in either case,
in two systems of points 4, B, C, D, &c. and 4', B', ', D, &c.,
then since, in the former case, the several lines AA4', BB',
CC’y DD, &c. pass, by hypothesis, through a common point O,
therefore, (Euc. VI. 4)

AB: AB'=AC:AC=AD: AD,&ec.=A0: 40, =1,

since, by hypothesis, O is at infinity (15); therefore AB=A'B’,
AC=A4'C, AD=A4'D, &c.; and therefore (Euc. 1. 33)
BB', CC', DD, &c. are all parallel to 44’ and to each other;
and since, in the latter case, the several lines 44', BB', CC',
DD, &c. are, by hypothesis, parallel; therefore (Euc. 1. 84)
AB=A'B', AC=A'C"y, AD=A'D', &c.; and, therefore, as
AB: AB'=AC: AC' =AD: A'D, &c., the several lines
BB, CC', DD/, &c. all intersect A4’ at the same point O
(Euc. v1. 4); and as the common ratio =1 that point O is
at infinity (15).

The above is but one of a multitude of arguments for the
truth of a conclusion long placed beyond all question- by the
simplest considerations of projection and perspective.

By a very slight modification Euclid’s excellent definition
of parallel lines, those, viz., “ which lying in the same plane
never meet though indefinitely produced,” might be made to
express the preceding most important and indeed fundamental
property of such lines without failing to convey at the same
time the notion intended by the original. The simple sub-
stitution of the two words until infinitely in place of the two
though indefinitely would manifestly effect this.

It is evident from the above that the position of a point
at infinity both determines and is determined by the direction
of any line passing through it.
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17. If a variable line be conceived to revolve continuously
in one direction round a fixed point and to intersect in every
position a fixed line not passing through the point; the point
of intersection evidently traverses continuously in one direction
the entire fixed line in the course of each complete semi-
revolution of the variable line; approaches to infinity in the
direction of its motion as the latter approaches to a position
of parallelism with the former; reaches infinity as that position’
is attained ; and emerges again from infinity from the opposite
direction when that position is passed ; from this and from many
other considerations geometers have long satisfied themselves that

The two opposite directions of every line, not itself at infinity,
are .to be regarded not as reacln'ng infinity at two different and
opposite potnts, but as running into each other and meeting at
a single point at infinity.

Hence the propriety of the expression “point of externa]
bisection” of any finite segment of a line (15).

Paradoxical as the above conclusion may appear when first
stated, the grounds confirmatory of it are so numerous and
varied that any early hesitation in admitting its legltlmacy
is generally very rapidly got over.

18.. If the centre of a variable circle touching a fixed line at
a fixed point be conceived to traverse continuously in one direc~
tion the entire circuit (17) of the orthogonal line passing through
the point, starting from and returning to the point through
infinity (Eue. 111. 19). The circle itself evidently commences
from evanescence with the commencement of the motion; ex-
pands continuously at the side of the line corresponding to- its
direction during the first half of the circuit; opens out into
the line itself as infinity is reached; contracts continuously
at the opposite side of the line during the second half of the
eircuit; and, terminates in evanesence with the completion
of the motion. Hence, and from many other considerations,
it appears that—

Every point not at infinity may be regarded as a circle of
evanescent radius whose centre 13 the point; and every line not
at infinity as a circle of infinite radius whose centre is the point
at infinity in the direction orthogonal to the line (16).
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In the geometry of the point, line, and circle, therefore
the point and line are the limiting forms of the circle in the
extreme cases of its radius being evanescent and infinite.

19. If a variable line be considered to revolve continuously
in one direction round a fixed point, and to intersect in every
position a fixed circle passing through the point, the variable
point of intersection evidently traverses continuously in one
direction the entire circumference of the circle in the course
of each complete semi-revolution of the line; and, on its way
every time, approaches to, reaches, and passes through the fixed
point as the line approaches to, reaches, and passes through the
particular position n which it s a tangent to the circle at that
point.” Hence, and from innumerable other cousiderations, it
appears that—

When the two points of intersection of a line and circle co-
incide, the line and circle touch at the point of coincidence.

And generally that— -

When two points of interscction of any two figures coincide,
the figures themseclves touch at the point of coincidence.

This, indeed, as fundamentally correct in conception and
inivariably snmple in application, might be made the formal
eriterion of contact in elementary, as it is in advanced, geo-
metry; and from it the several known propertics respecting
the contact of circles with lines and with each other, established
in the Third Book of Euclid and elsewhere, might be easily
shewn to be mere corollaries from more general properties
respecting their intersection, deduced by simply introducing
into the latter the particular supposition of coincidence be-
tween their two, in general scparate, points of mtersectxon.
A few examples will shew this more clearly,

Ex. 1° A line and circle or two circles having contact at any point
can never meet again either by contact or intersectu (Eue. 111, 13 and 16.)

For they can never under any circumstances meet at all in more than
two points (Kue. 111. 2 and 10); which property being. true in gemzral
whatever be the interval between the pomts, is therefore true tn the
parhcular case where the interval =0; that is, when. the ﬁgures touch.

. Ex. 2°. At every point on a cucle the tangmt 18 perpendwulm to tlw
radius. (Eue. n1.18.) NI
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Let P be the point, XY any line passing through it, Q@ the other
point in which XY meets the circle, and OP
and OQ the radii to P and Q; then, what-
ever be the interval PQ, since the triangle
POQ is always isosceles, the two external
angles OP.X and OQY are always equal (Euc.
1. 6) ; they are therefore equal in the particular
case when Q coincides with P, and therefore :
0Q with OP, and therefore the angle OQY x - P
with the angle OPY, in that case, therefore,
the angles OPX and OPY are equal; and, therefore, (Euc. I. def. 11) the
radius OP is perpendicular to the tungent X Y.

Ex. 3°. At every point on a circle the angles made by any chord with
the tangent are equal to the angles in the allernats segments, (Eue. 111. 32).

Let P be the point, PR the chord, XY any line passing through P,
Q the other point in which XY meets the
circle, S any arbitrary point on the circle, and
SP, 8Q, SR the lines connecting it with
P, Q, R, then, whatever be the interval PQ,
the angles RPY and RSQ being in the same
segment are always equal (Euc. 111. 21); they
are therefore equal tn the particular case when
Q coincides with P, and therefore SQ with SP,
and therefore the angle RSQ with the angle
RSP, in that case therefore the angles RPY and RSP are equal, that is,
the angle the chord PR makes with the tangent X T is equal to the angle
in the alternate segment PSR.

Ex. 4°. When two circles touch, externally or snternally, the line joining
their centres passes through the point of contact and is perpendicular to the
line touching both at that point, (Euc. 111. 11 and 12).

Lot PQR and PQS be any two intersecting circles, P and Q their
two points of intersection, 4 and B their two centres, and XY the in-
definite line passing through P and Q; then, on account of the two isosceles
triangles PAQ and PBQ formed by connecting 4 and B with P and Q,
the line AB connecting their vertices 4 and B always both bisects and
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is perpendicular to their common base PQ (Euc. 1. 3); and this being
always true in general, whatever be the length of PQ, is therefore true
in the particular case when that length =0, that is, when the two points
P and Q coincide, but when they do, their middle point I coincides with
both, the two circles touch, externally or internally, at the point of
coincidence, and the indefinite line XY touches both at that point.

In every application of the above method, one precaution,
observed it will be perceived in each of the above illustrative
examples, is invariably to be attended to. The supposition
of coincidence between the two points of intersection P and @,
in which the contact of the figures consists, is never to be
introduced wntil the more general property, independent of
the distance between them, has first been established.

20. As in the compound figure consisting of a line and
circle variable in relative position with respect to each other,
the two points common to both pass evidently from separation,
through coincidence, to simultaneous disappearance, or con-
versely, as the distance of the line from the centre passes
from being <, through being =, to being > the radius of the
circle, or conversely; so in the compound figure consisting
of a point and circle variable in relative position with respect
to each other, the two tangents common to both pass similarly
from separation, through coincidence, to simultaneous dis-
appearance, or conversely, as the distance of the point from
the centre passes from being >, through being =, to being <
the radius of the circle, or conversely. Hence, as in many
ways otherwise, it appears that—

As every tangent to a circle or any other figure is the con-
nector of two coincident points on the circle or figure, and
conversely, so every point on a circle or any other figure is the
antersection of two coincident tangents to the circle or figure,
and conversely.

In the applications of this, as of the preceding principle, of
-which it is the correlative, the same precaution again is invariably.
to be observed; in investigating any property of a point on
a circle or any other figure regarded as the intersection of
two coincident tangents to the circle or figure, the supposition
of coincidence between the two tangents is never to be intro-
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duced until the more general property of the point of inter-
section of any two tangents, in which it is involved, has first
been established.

21. Ib the language of modern geometry every two points,
lines, or other similar clements of, or connected with, any
compound figure, which with change of relative position among
the constituents of the figure pass or are liable to pass, as
above described, from separation, through coincidence, to stmul-
taneous disappearance, or converscly, are termed contingent as
distinguished from permanent clements of the figure, and are
said to be real or imaginary according as they kappen to be
apparent: or non-apparent to sense or conception. Geometers of
course have not, nor do they profess to have, any conception of
the nature of contingent elements in their imaginary state, but
they find it preferable, on the grounds both of convenience
and accuracy, to regard and speak of them as imaginary
rather than as non-existent in that state: in the transition from
the real to the imaginary state, and conversely, -contingent
elements pass invariably through coincidence, through which,
as above described, they always change state together.

In the geometry of the point, line, and circle, it is only
in figures involving, directly or indirectly, the latter in: its
finite form, that contingent elements from their nature could
occur; in figures, however complicated, consisting of points
and lines only all clements not depending on the circle in its
finite form are invariably permanent.

22. When a line and figure of any kind intersect, the
angles between the line and the tangents to the figure at the
several points of intersection are termed the angles. of inter-
gection of the line and figure at the points; when two figures
of any kind intersect, the angles betwecen the tangents to
them at the several points of intersection are termed the angles
of intersection of the figures at the points; in the cases. of
a line and circle and of two circles the angles of . inter~
gection at the two points of intersection being ' evidently.
equal, each separately is called the angle of intersection of the-
figures. B : R ‘ ’ T
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With respect to the angle of intersection of a line and
circle it is evident that:

1°. Every line passing through the centre of a circle inter-
sects the circle at right angles; and conversely, every line
intersecting a circle at right angles passes through the centre
of the circle, (Euc. 111. 18, 19).

2°. Every line dividing a circle into segments containing
any angle, intersects the circle at the angle in the segments;
and conversely, every line intersecting a circle at any angle
divides the circle into segments containing the angle, (Euc.
111 32).

8°. A variable line whose distance from a fixed point is
constant intersects at a constant angle every circle of which
the point is the centre.

And with respect to the angle of intersection of two circles
that :

1. Every circle touching at either extremity any dia-
meter of another circle intersects the other at right angles;
and conversely, every circle intersecting another at ' right
angles touches at each point of intersection a diameter of the
other.

2'. Every circle touching at either extremity any chord of
another circle intersects the other at the angle in the segments
determined by the chord; and conversely, every circle inter-
secting another at any angle touches at each point of inter-
section a chord dividing the other into segments containing
the angle.

8. A variable circle of constant radius the distance of
whose centre from a fixed point is constant intersects at a
constant angle every circle of which the point is the centre.

A line and circle, two circles, or any other two figures,
intersecting at right angles, are said to cut orthogonally, or, as
it is sometimes termed, to be orthotemic.

23. In order to avoid the ambiguity as to which of the
two supplemental angles, regarded as magnitudes, between
the two tangents at either point of intersection of two circles
is to be regarded as the angle of intersection of the circles,

¢
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in cases in which it is necessary, as it often is, to distinguish
between them, the following convention has been agreed to
by geometers. .

The radius being perpendicular to the tangent at every
point of a circle, and the two supplemental angles between any
two lines being equal to those between any two perpendiculars
to them, if from either point of intersection P or @ (fig., Ex. 4°,
Art. 19) of the two circles, the two radii, P4 and PB, or, Q4
and @B, be drawn, one of thie two supplemental angles between
the two tangents is equal to the internal and the other to the
external angle between the two radii; the jformer, APB or
AQB, is that which is considered as the angle of intersection
of the circles; this is obviously tantamount to regarding that
angle as measured either from the convex circumference of
one circle to the concave circumference of the other; or, vice
versd, from the concave of one to the convex of the other;
but not either from the concave of one to the concave of
the other, or from the convex of one to the convex of the
other.

In accordance with this convention the angle of intersection
of two circles is to be regarded as acute, right, or obtuse,
according as the square of the distance between their centres
4 and B is less than, equal to, or greater than the sum of
the squares of their radii 4P and BP, or AQ and BQ (Eue. 11.
12, 13); in the extreme case of the former when AB=the
difference of the radii, that is, when the circles touch at the
same side of their common tangent, the angle of intersection
is to be regarded as =0; and in the extreme case of the
latter when A B =the sum of the radii, that is, when the circles
touch at opposite sides of their common tangent, the angle
of intersection is to be regarded as=two right angles; and,
for the same reason, generally, when any two figures touch,
their angle of intersection at the point of contact is to be
regarded as =0, or=two right angles, according as they ‘lie
at the same side or at opposite sides of their common tangent
at the point. ‘ :

24. In every case of the comparison of two or more angles
regarded as magnitudes (2) it is to be remembered: 1°. That
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every two finite conterminous lines determine two different
angular intervals of separation from each other, one exceeding
by as much as the other falls short of two right angles, and
having in the abstract equal claims to be regarded as the
angle between the lines; and, 2°. That every two intersecting
indefinite lines determine ¢wo pairs of opposite equiangular
regions, one exceeding, in angular interval of separation be-
tween the determining lines, by as much as the other falls
short of a right angle, and having in the abstract equal claims
to be regarded as the angle between the lines. The twofold
source of ambiguity thus arising must always be attended to
in comparing angular magnitudes, as, whatever be the nature
of two compared angles, the greater interval for one corre-
sponds often to the lesser for the other in the former case,
and the obtuse region for one corresponds often to the acute
for the other in the latter case ; and that even for angles similar
as figures, that is, whose sides, whether finite or indefinite, are
capable of simultaneous coincidence. =~ Whenever, therefore,
two angles different in position but similar in form, are said,
as they often are, to be equal, and when an angle variable
in position but invariable in form is said, as it often is, to be
constant, the terms so employed, though applicable properly
to magnitudes only, are to be regarded as indicating the afore-
said similarity or invariability of form, rather than absolute
equality or constancy of value, in such cases generally.

25. The two following examples, of repeated occurrence
in the modern geometry of the circle, are important illustra-
tions of the preceding observations.

1°. A variable point on the circumference of a fixed circle
subtends a constant angle at any two fixed points on the
circle.

2°. The segment of a variable tangent intercept:d between any
two Jiwed tangents to a circle subtends a constant angle at the
centre of the circle.

To prove 1°. Let O be the centre of the circle, 4 and B
the two fixed points and P the variable point; the angle 4PB
is, according to the position of P, equal to half the less or greater

c2
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angular interval 40D, and therefore constant in the sense
above explained.

For, joining 04, OB, OP, and producing the latter through
'O to meet the circle again at @ ; then, as in Euc. 111. 21, 22, the
angles APO and BPO being the halves of the angles 40Q
and BOQ, the sum, or difference as the case may be, of the
former, that is the angle APB, =half the sum, or difference,
of the latter, that is, half the (less or greater) angle 40B;
and therefore &c.

To prove 2°. Let AC and BC be the two fixed tangents,
XY the segment of the variable tangent intercepted between
them, @ its point of contact, and O, as before, the centre of
the circle; the angle XOY is, according to the position of XY,
. equal to half the less or greater angular interval 4 0B, and
therefore constant in the sense above explained.

For, joining 04, OB, 0Q; then, Euc. 111. 17, the angles
X0Q and YOQ being the halves of the angles 40Q and
BOQ, the sum, or difference as the case may be, of the
former, that is, the angle XOY = half the sum, or difference,
of the latter, that is half the (less or greater) angle 40B;
and therefore &c.

Now it is evident that it is as figures and not as magnitudes
(2) the two angles APB and XOY are strictly speaking invari-
able; for as the two points P and ), on which their positions
depend, traverse the entire circumference of the circle, their
magnitudes in the positions indicated in fig. (), in which they
are halves of the greater angular interval 4 OB, are evidently
the supplements of their magnitudes in the positions indicated
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in the figures (a) and (B), in which they are halves of the
lesser angular interval 40B; and so universally in all cases
of the same nature, two finite conterminous lines presenting
indifferently their greater and lesser angular intervals of
separation, and two indefinite intersecting lines their obtuse and
acute regions of figure, when revolving through four right
angles.

- In the particular cases when either the two fixed points 4 and
B or the two variable points P and @ are diametrically opposite
points of the circle, the two constant angles APB and X0Y
are always not only similar as figures but equal as magnitudes;
for in the former case, whatever be the positions of P and @,
the two pairs of lines P4 and PB, OX and OY intersect
evidently at right angles, and therefore &c., and in the latter
case (that represented in the figures), whatever be the positions
of A and B, the two pairs of lines P4 and OX, PB and OY
are evidently parallels, and therefore &c.
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CHAPTER IL

ON THE DOUBLE GENERATION OF GEOMETRICAL FIGURES.

26. WHEN a variable point moving according to some law
lies in every position on a figure of any form, such figure is
termed the locus of the point. When a variable line moving
according to some law touches in every position a figure of
any form, such figure is termed the envelope of the line. As
every simple figure, whatever be its form, may be conceived
to be generated, either, if not itself a point, by the continued
motion of a point, or, if not itself a line, by the continued
motion of a line; with those two exceptions therefore every
simple figure in geometry, whether existing alone or in combi-
nation with otber figures, may be regarded cither as the locus
of a variable point or as the envelope of a variable line.

27. The law directing the movement of the generating
point or line being given, the nature of the figure described
or enveloped is implicitly given with it, though its actual
determination presents of course very different degrees of
difficulty in different cases; thus, for instance, the locus of a
variable point, or the envelope of a variable line, moving so
as to preserve a constant distance from a fixed point, is evi-
dently a circle of which the fixed point and constant distance
are the centre and radius.

28. But the law directing the movement of the generating
point or line, by which a figure, the nature of which is given,
may be described or enveloped, need not necessarily be that
expressing the primary or fundamental property by which such
figure may have been defined, but on the contrary may be one
resulting from any of its secondary or derived properties in-
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stead: thus, though a circle may, as above, be regarded
either as the locus of a variable point, or as the envelope of
a variable line, the distance or the square of the distance of
which from a fixed point is constant; it may also, as will
hereafter appear, be regarded either as the locus of a variable
point the sum of the squares of whose distances, or as the
envelope of a variable line the sum of whose distances, from
any number of fixed points is constant.

29. A single geometrical condition governing the move-
ment of a variable point or line is sufficient in all cases to
restrict the point or line to some locus or envelope; thus, for
instance, the single condition that a variable point subtend, or
that a variable line intersect, a fixed circle at a constant angle,
is sufficient to restrict the point or line to a concentric circle
as its locus or envelope, of this the reason is evident, for
while no condition on the one hand leaves the point or line
free to occupy any position, two conditions on the other hand
suffice when independent to fix it altogether.

30. The locus of a variable point or the envelope of a
variable line may be, and often is, a compound figure whose
component simple figures satisfy separately the condition
governing the movement of the point or line; thus, for in-
stance, the locus of a variable point whose distances from two
fixed lines are equal consists evidently of the two lines of
bisection external and internal of the angle determined by the
lines, and the envelope of a variable line whose distances
from two fixed points are equal consists evidently of the two
points of bisection external and internal of the segment deter-
mined by the points; and similarly for any other constant-
ratio as well as that of equality. In such cases the compound
figure consisting of the two or more simple figures is some-
times termed the complete locus or envelope of the point or line.

31. With respect to particular cases of loci and envelopes
it is to be observed in general that—

1°. A locus or envelope, or any part of either if a com-
pound figure, which, under the general circumstances of the

~
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conditions under which it arises, is a circle in its finite form,
may, and often does, under particular circumstances of the
conditions, assume the evanescent or infinite form of point or
line (18): thus, for instance, the locus of a variable point or
the envelope of a variable line whose distance from a fixed
point is constant, which in general is the circle whose centre
and radius are the point and constant, becomes of course evan-
escent or infinite when the constant =0 or oo.

2°. A locus or envelope, which, under the general circum-
stances of the conditions under which it arises, is a single figure
of any form, often breaks up under particular circumstances
of the conditions into two or more figures of simpler forms;
thus, for instance, the locus of a variable point, the product of
whose distances from any number of fixed lines, or the en-
velope of a variable line, the product of whose distances from
any number of fixed points, is constant, which in general is a
single figure of form depending on the number and disposition
of the points or lines, breaks up into the entire system of lines
or points when the constant =0.

3°. A locus or envelope, which, under the general circum-
stances of the conditions under which it arises, is a definite
determinate figure, simple or compound, becomes often in-
determinate under particular circumstances of the conditions;
thus, for instance, the locus of a variable point whose distances
form two fixed lines, or the envelope of a variable line whose
distances form two fixed points, are equal, which in general
consists of the two lines or points of bisection of the angle
or segment determined by the lines or points, becomes indeter-
minate when the lines or points coincide; every point in the
former case, or line in the latter, then evidently satisfying the
conditions of the locus or envelope.

As particular examples of loci and envelopes will appear
in numbers in the course of the following pages, we shall
not delay to give any here, but shall devote instead the re-
mainder of the present chapter to the theory and properties
of stmilar figures considered under their double aspect as loci
of points and as envelopes of lines.
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82. Two geometrical figures of any kind F and F", whether
regarded as loci or envelopes, whose generating points or en-
veloping lines 4, B, C, D, &c. and 4', B', C', D', &c. correspond
in pairs 4 to 4’y Bto B', Cto C', D to D', &c. are said to be
similar when two points O and O, whether belonging to the
figures or not, exist, such that for every two pairs of corre-
sponding distances or perpendiculars OA4 and 0’4’y OB and
OB, the two angles A40B and A'O'B’ and the two ratios
OA: OB and O'4': OB’ are equal; and 8o also are two
figures composed of systems of any common number of isolated
points or lines, or mixed points and lines, 4, B, C, D, &c. and
A',B', (', D', &c. whose constituent elements correspondm pairs
fulﬁlling the same conditions. :

Two figures thus related to each other are said, like two.
hands or two feet, to be both right or left or one right and the
other left according as the directions of rotation of the several
pairs of corresponding angles AOB and 4'0'B’, BOC and
B'0'C'y COD and C'O'D, &c. are similar or opposite.

As two angles, two ratios, or two magnitudes of any kind
when equal to a third are equal to each other, it is evident
from the conditions of similitude as above stated, that fwo

JSigures of any kind when similar to a third are similar to each
other.

83. Since, for two figures fulfilling the conditions of simi-
larity, the ratios of the several pairs of corresponding distances
or perpendiculars 04 and 0’4’y OB and O'B’, OC and 0'C’,
OD and O'D', &ec., by the second condition, are all equal, the
constant value common to them all is termed the ratio of
stmilitude of the figures; in the particular case when the ratio
of similitude =1, that is, when the several pairs of corre-
sponding distances or perpendiculars are all equal, the figures
themselves also are said to be equal.

Since again, for two figures fulfilling the conditions of
similarity, the angles between the several pairs of corresponding
distances or perpendiculars 04 and 0'4', OB and O'B’, 0C
and 0'C’, OD and O'D', &c., by the first condition, are all equal
when the figures are both right or left, and all bisected by the
same two rectangular directions when they are one right and the
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other left, the constant value common to them all in the former
case is termed the angle of inclination, and the fixed directions
of bisection common to them all in the latter the directions of
symmetry of the figures; when in the former case the angle
of inclination =0 or=two right angles, that is, when the
directions of the several pairs of corresponding distances or
perpendiculars (in both cases of course parallel) are all similar
or opposite, the figures (in both cases said also to be parallel)
are said to be similarly or oppositely placed.

34. From the preceding it is evident, conversely, that—

When two lines OA and O'A', variable in length according
to any law, turn in similar or opposite directions round two
Jixed extremities O and O', revolving simultaneously through
equal angles and preserving as they revolve a constant ratio to
each other, their two variable extremities A and A' describe,
and the two perpendiculars to them at their variable extremities
A and A’ envelope, similar figures, whose ratio of similitude
and angle of inclination or directions of symmetry are those of
the lines.

*For if A and 4’y B and B’ be any two pairs of corre-
sponding positions of the variable extremities, it follows at
once from the conditions of revolution that the two angles
AOB and A'O'B’ and the two ratios 04 : OBand O'4': O'B’
are equal, and the two conditions of similarity of the figures
described or enveloped being thus satisfied, the other circum-
stances respecting their ratio of similitude and angle of in-
elination or directions of symmetry are in fact stated in the
conditions of revolution.

When the two fixed extremities O and O coincide, and
the two variable lines O4 and O'A’' revolve in the same
direction round the common extremity O, the species of the
variable triangle 404’ is evidently constant, hence—

If one vertex of a triangle variable in magmtude and posztcon
but invariable in figure be fixed, the two variable vertices describe,
and the two perpendiculars through them to the conterminous sides
envelope similar figures, whose common ratio of similitude and
angle of inclination are those of the variable sides containing

the fiwed vertex.



.

GEOMETRICAL FIGURES. 27

35. Two similar figures may be of such a form that a
correspondence between their points or lines, in pairs satisfying
the conditions of similarity, may exist ¢n more ways than one,
in the case of two regular polygons of any common order =,
for instance, it may exist in » ways, and in the case of two
circles in an infinite number of ways, and that whether the
two figures be regarded as both right or left or one right
and the other left. For, if O and O' be the centres of the two
figures in either case, any pair or vertices or sides of the
polygons, and any pair of points or tangents of the circles
may be regarded as corresponding, and the correspondence
between one pair of points or lines of the figures 4 and 4’
once established, that of all the remaining pairs B and B,
C and C', D and D', &c. is of course fixed by the conditions
that the several pairs of corresponding angles 40B and
A'OB'y, AOC and 4'0'C'y AOD and A'O'D', &c., measured
all either in similar or opposite directions of rotation, are equal.
Such cases of similar figures are of course exceptional, but
whenever they occur, as they necessarily do frequently in the
geometry of the circle, their peculiarity in this respect leads
sometimes to consequences not existing in the general case
when the correspondence between the points or lines of the
figures is unique.

36. In the particular cases when the radii of two circles
regarded as similar figures are either evanescent or infinite;
that is, when the two circles are either points or lines, their
ratio of similitude, being in all cases that of their radii, ds in-
determinate. This peculiarity, which is evident on the general
principles explained in (13), may easily be shewn, a prior?, for
both species of figures separately. For if I and I' be any
two lines regarded as loci of points, or any two points regarded
as envelopes of lines, O and O’ in either case any two points
taken arbitrarily, and 4 and 4', B and B', C and (', &c. any
number of pairs of points on the lines or of lines through the
points, for which the several pairs of angles /04 and I'0O'4’,
IOB and I'O'B', I0C and I'0'C’, &c. measured all in similar
or opposite distances of rotation round O and O’ are equal;
since then in either case the several ratios 04: 0'4', OB: OB,
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0C: 0 C', &c. are equal, the two figures are similar, and since
in either case their common value = OI: O'T, their ratio of
similitude, the two points O and O’ on which it depends being
arbitrary, is indeterminate.

The preceding peculiarities of circles in general, and of points
and lines in particular, regarded as similar figures, must always
be carefully attended to in every application of the general
theory of similar figures to their particular cases.

87. For every pair of corresponding points of two stmilar
JSigures F and F' regarded as loci, the two lines of comnection
with O and O make equal angles and ratios with the two per-
pendiculars on their tangents from O and O'.

For every pair of corresponding tangents to two similar figures
F and F' regarded as envelopes, the two perpendiculars from
O and O make equal angles and ratios with the two lines con-
necting their points of contact with O and 0.

To prove the first. If 4 and A4’ be the two points, B and
B’ any other pair of b7)
corresponding points, A
OPand O'P the two
perpendiculars from
O and O upon the
two indefinite lines 0
AB and A'B’, then since, whatever be the positions of the two
pairs of corresponding points 4 and 4', B and B’, the two
triangles AOB and 4'0'B' are by hypothesis similar (32), there-
fore the two triangles AOP and 4'O'P' are also similar, and
therefore the two angles AOP and A'O’'P' and the two ratios
OA: OP and O4': O'P are equal; and this being true on
general, whatever be the common magnitude of the two equi-
angular intervals AOB and A'O'B, is therefore true in the
particular case when that interval is evanescent, that is, when
(19) the two lines 4B and A'B’ are the two tangents to the
two figures at the two points 4 and 4.

To prove the second. If 4 and 4’ be the two tangents,
B and B’ any other pair of corresponding tangents, 04 and
04’y OB and O'B, the two pairs of perpendiculars upon them
from O and O, and P and P the two points of intersection of
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0
4 and B, and of 4' and B’; then since, whatever be the
positions of the two pairs of corresponding tangents 4 and 4',
B and B, the two triangles AOB and A4'(’B’ are by hypothesis
similar (32) ; therefore the two triangles A OP and A'O'P are
also similar, and therefore the two angles 40P and 4'0'P’, and
the two ratios O4: OP and O'4’: O'P are equal, and this
being true ¢n general, whatever be the common magnitude of
the two equiangular intervals 4 OB and 4'O'B', is therefore true
in the particular case when that interval is evanescent, that is
when (20) the two points P and P’ are the two points of contact
with the two figures of the two tangents 4 and 4'.

38. When two figures regarded as loct of points are similar,
they are also similar regarded as envelopes of lines, and conversely.

For if P and P, Q and ¢, be any two pairs of corre-
sponding points, S and §', T' and 7", the two accompanying
pairs of corresponding tangents; then since, by the preceding,
the two pairs of angles POS and P'0O'S', QOT and Q'O'T',
and the two pairs of ratios OP: OS and O'P': 0'S’, 0Q: OT
and 0'Q : O'T", are equal, when the figures whether regarded
as loci or envelopes are similar; therefore the equality of the
two angles POQ and P 0'Q, and of the two ratios OP: 0Q
and O'P': 0'Q involves that of the two angles SOT and
S O'T, and of the two ratios 0S: OT and O'S': O'T, and
conversely, and therefore &c.
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39. When two figures ¥ and F' are similar, every two
points or lines X and X', whether belonging to the figures or
hot, which are such that for any one pair of points or lines of
the figures 4 and 4', the two angles 40X and A'0O’'X’ and
the two ratios 0X: 04 and O'X': 0’4’ are equal, are evidently,
from the conditions of similarity (32), such that for every other
pair B and B', the two angles BOX and B'O'X’ and the two
ratios OX: OB and O'X': O'B’ are also equal. Every two
such points or lines, whether belonging to the figures or not,
are said to be similarly situated, and are termed homologous points
or lines, with respect to the figures; all pairs, of corresponding
points or lines 4 and 4, of tangents T and 7" at pairs of
corresponding points P and P’, and of points of contact P and
P of pairs of corresponding tangents 7" and 77, of the figures,
are evidently homologous.

From the nature of homologous points and lines as thus
defined, it is evident for similar figures in general that—

1°. If X and X' be any pair of homologous points or lines
with respect to two similar figures F and F', the two distances
or perpendiculars OX and OX' have the constant ratio of the
stmilitude of the figures.

For if 4 and 4’ be any pair of corresponding points or lines
of the figures, since then, by hypothesis, 0X: 04=0X": 0'4’,
therefore, by alternation, 0X: OX'=04: 0’4/, and there-
fore &e.

2°. If X and X' be any pair of homologous points or lines
with respect to two similar figures F' and F', the two distances
or perpendiculars OX and O'X' have the same angle of incli-
nation or directions of symmetry as the figures. »

For, if A and 4 be any pair of corresponding points or
lines of the figures, since then, by hypothesis, the two angles
AOX and 4'0O'X' are equal; therefore, according as their
directions of rotation are similar or opposite, the two distances
or perpendiculars OX and O'X’ have the same angle of incli-
nation or directions of symmetry as the two OA4 and o4,

and therefore &c.
8. If P and P, Q and Q be any two pairs of homologous
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points with respect to two similar figures F and F', the two
connectors PQ and P' @ have the constant ratio of the similitude
of the figures.

For, if A and 4’ be any pair of corresponding points or
lines of the figures, since then, by hypothesis, the two pairs
of angles AOP and A'O'P', A0Q and 4'0'Q', and the two
pairs- of ratios OP: 04 and OP: 04, 0Q: 04 and
0Q : OA' are equal; therefore the two angles POQ and
P O @ and the two ratios OP: 0Q and O'P': 0'Q are equal;
and therefore, by similar triangles {Euc. VvI. 4),

PQ:PQ=0P:0P=0Q:0Q=04:04,
and therefore &c.

2. If P and P, Q and Q be any two pairs of homologous
points with respect to two similar figures F and F', the two
connectors PQ and P' Q' have the same angle of inclination or
directions of symmetry as the figures.

For, if 4 and 4’ be any pair of corresponding points or
lines of the figures, since then, by hypothesis, the two pairs
of angles 40P and A'O'P, AOQ and A'0'¢, and the two
pairs of raties OP: 04 and OP': 04, 0Q: O4A and
0@ : 04’ are equal; therefore the two angles of inclination
of PQto OA4 and of P'Q to O'A’ are equal; and, therefore,
according as their directions of rotation are similar or opposite,
the two connectors PQ and P’ @ have the same angle of in-
clination or directions of symmetry as the two distances or
perpendiculars U4 and 0'4’, and therefore &c.

5°. If P and P be any pair of homologous points and L
and L' any pair of homologous lines with respect to two similar
Sigures F and F', the two perpendiculars PL and P'L' have the
ratio of similitude and the angle of inclination or directions ,qf
symmetry of the figures.

For, if 4 and 4’ be any pair of corresponding points or
lines of the figures, since then, by hypothesis, the two pairs
of angles AOP and A'O'P, AOL and A'O'L/, and the two
pairs of ratios OP: 04 and OP: 04, OL: 04 and
OL : OA' are equal; therefore the two angles POL and
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P'O'L' and the two ratios OP: OL and O'P' : O'L’ are equal ;
and therefore by pairs of similar right-angled triangles

PL: PL'=0P: OP=0L: O0OL'=04: 04,

and therefore &c; the second part being evident from the
parallelism of PL and OL and of P’L’ and O'L'.

6. If X and X', Y and Y be any two pairs of homologous
points or lines with respect to two similar figures F and F,
the two lines of connection or points of intersection XY and X'Y"
are homologous lines or points with respect to the figures.

For, drawing the two perpendiculars or connectors )P and
O'P from O and O' to XY and X'Y'. Since then for every
pair of corresponding points or lines 4 and A4' of the two
figures F' and F", the two pairs of angles 40X and 4'0'X’,
AQY and A'0'Y’, and the two pairs of ratios OX: 04 and
0X':04,0Y:0A4and O'Y': O'A’ are by hypothesis equal ;
therefore the two angles AOP and 4'0O'P’ and the two ratios
OP: OA and O'P : O'4’ are equal, and therefore &c.

7. If P and P’ be any pair of homologous points and L and
L' any pair of homologous lines with respect to two similar figures
F and F', the two perpendiculars PL and P'L' are homologous
lines and their two intersections with L and L' are homologous
points with respect to the figures.

For, drawing from O and O the two perpendiculars 0Q
and OQ to PL and PL. Since then for every pair of
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corresponding points or lines 4 and A’ of the two figures ¥
and F", the two pairs of angles AOP and A'O'P’;, AOL and
A'O'L', and the two pairs of ratios OP: 04 and O'P : 0’4,
OL: OA and OL': O'4’, are by hypothesis equal, therefore
the two angles 40Q and 4'0'Q and the two ratios 0Q : 04
"and O'Q : O'A’ are equal, and therefore &c.; the second part
following from the first by the second part of 6°.

8°. Any two homologous points P and P with respect to two
stmilar figures F and F' may be substituted for the two O and O
without violating the conditions of similitude of the figures.

For, if 4 and 4, B and B’ be any two pairs of corre-
sponding points or lines of the figures; then since by hypothesis
the two pairs of angles AOP and 4A'O'P, BOP and B'O'P),
and the two pairs of ratios 04 : OPand O'4': O'P, OB: OP
and OB': O'P are equal; therefore, by pairs of similar tri-
. angles, the two angles APB and A'P'B’' and the two ratios

PA : PBand P’A' : P'B' are equal, and therefore &ec., (32).
D
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9°. For every two similar figures F and F if any number
of points connected with cither F lie on a line L, the homologous
points with respect to the other F' lie on the homologous line L',
and, if any number of lines connected with either F' pass through
a point P, the homologous lines with respect to the other F" pass
through the homologous point P'.

For, since by 5° for every pair of homologous points P and
P, and for every pair of homologous lines L and L', of the
figures, PL : P'L’ = the constant ratio of similitude of ¥ and F",
therefore if either of them =0 so also is the other, that is, if
the point P lie on the line L the point P lies on the line L,
.and if the line L pass through the point P the line L' passes
through the point 7', and therefore &ec.

10°. For every two similar figures F and F', if any number
of points or lines connected with either F lie on or touch a circle
C, the homologous. points or lines with respect to the other F" lie
‘on or touch a circle C', the centres of the two circles being homo-
logous points and their radiv Kaving the ratio of similitude of
the figures.

For, since by 3” and 5° or by 8°, for every pair of homo-
logous points P and P, and for any number of pairs of homo-
logous points or lines X and X', Y and Y’, Z and Z', &c. of
the figures PX: P’ X'=PY: PY'=PZ: PZ'| &c.=the con-
stant ratio of similitude of F to F", therefore if PX= PY = PZ,
&ec., that is if X, Y, Z, &c. lie on or touch a circle of which Pis
the centre and their common distance from it the radius, then
PX =PY =PZ, &c., that is X', Y', Z', &c. lie on or touch
a circle of which P is the centre and their common distance
from it the radius, and therefore &ec.

11°. If a pair of homologous points or lines X and X' with
respect to two similar figures F and F' vary simultaneously
according to any law, the two figures G and G' they describe
or envelope are similar and have the same ratio of stmilitude
and the same angle of inclination or directions of symmetry as
the original figures.

For, if 4 and A4' be any pair of corresponding points or
lines- of ' and F', then since in every position of the two
variable homologues X and X', the two. angles 40X and
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‘A'0'X’ and the two ratios 0X : O'X’ and 04 : O'A’ are equal,
therefore &c., (32). This general property, here established on
general principles, includes of course the particular cases 9° and
10° established above by particular considerations.

Every two figures G and G described or enveloped as above
are said to be komologous figures with respect to the originals
F and F", which again reciprocally are evidently homologous
figures with respect to G' and @', and every pair of points
P and P, of lines L and L', of circles C and C’, and generally
of figures of any kind E and E', whieh are homologous with
respect to either pair F' and F” are evidently also homologous
with respect to the other pair @ and G, and conversely.

40. If a figure of any invariable form revolve- round any
point invariably connected with it as a fixed centre, varying in
magnitude as it revolves aceording to any law, all points in-
variably connected with it describe, and all lines invariably
connected with it envelope, similar figures, all right or left,
whose ratios of similitude and angles of inclination two and twe
are those of the distances of the describing points or em:elopmg
lines from the fixed centre.

For, if O be the fixed point, and X, Y, Z, &c. any number of

variable points or lines all invariably connected with the vari-
able figure; then since the form of the figure, whatever be
the law of its variation in magnitude while revolving round O,
is by hypothesis invariable, therefore, by the preceding (39),
the several angles X0Y, YO0Z, &c., and the several ratios
0X: 0Y, 0Y: 0Z, &c. are all constant, and therefore &c., (32).
- For points and lines of the revolving figure not evanes-:
cently or infinitely distant from O, it is easy to verify by
particular considerations as in 9° and 10° of the preceding’
article, that in particular, {f any one point P describe a line
or circle all points P, Q, B, &c. describe lines or circles, and if
any one line L envelope a point or circle all lines L, M, N, &c.
envelq)e points or circles ; this verification, there ‘gone through
in detail, need not of course be repeated here." -

41. When two similar figures of any kind, both r{qht&
left, are similarly or.oppositely. placed (33), -all lines A4'; BB',-
D2
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CC', DD, dec. connecting pairs of corresponding points pass
through a common point O, and are there cut, externally or in-
ternally, in the ratio of the similitude of the figures.

For if O be the point in which any one of them 44’
intersects the line PP,
connecting any pair of
homologous points P and
P with respect to the
figures; since then, by
hypothesis (33), the two
directions P4 and P'4’,
whether similar (fig. a)
or opposite (fig. 8), are
parallel ; therefore, by
similar triangles, the two
ratios OP: OP and
04 : 04’ are each =the
ratio PA:PA = the
ratio of similitude of
the figures ; therefore all
connectors AA4', BB', CC', DIV, &c. cut and are cut by the
same line PP at the same point O, and in the same ratio
OP: OP, and therefore &c.

Conversely, tf the several - lines connecting any arbitrary
point O with all the points A, B, C, D, &c. of a figure of any
kind, be increased or diminished in similar or opposite directions
in any common ratio, the several extremities A', B', C', D', ds.
of the increased or diminished distances determine a second figure
similar to the original, and similarly or oppositely placed twith
¢ according as the directions of the original and altered distances.
are simtlar or opposite.

For, every pair of corresponding angles 40B and A'OB’
and every pair of corresponding ratios OA4 : OB and 04': OB’
being equal, the figures are similar; and every pair of corre-
sponding directions O4 and 04', OB and OB', OC and 0C',
&c, being similar or opposite, the figures are similarly or
oppositely placed (33), and therefore &c.

Since, by pairs of similar triangles 4OB and 4'0B’, the
two lines AB and A'B’' connecting any two points 4 and B
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of either figure, and the two corresponding points 4’ and B’
of the other are always parallel, whatever be the angle between
the two lines 44’ and BB’ passing through O, they are
therefore so in the particular case where that angle =0, that
is, when 44’ and BB’ coincide and when therefore (19) 4B and
A'B’ are the two tangents to the figures at 4 and A'. Hence,
when two similar right or left figures are similarly or oppo-
sitely placed, all pairs of tangents at pairs of corresponding
points, like all other pairs of homologous lines of the figures,
are parallel.

42. The point O related as above to two similar right or
left figures, when similarly or oppositely placed, is termed their
centre of similitude, and is said to be external or internal, with
respect to them, according as the section by it of all lines
connecting pairs of homologous points in the common ratio
of their similitude is external or internal, that is, according
as they are similarly or oppositely placed; when the two
figures in either case are given in absolute position, their
centre of similitude O is evidently given by the intersection
of any two lines PP’ and Q@' connecting pairs of homologous
points on or in any way situated with respect to them.

As all lines connecting pairs of homologous. points P and P,
Q@ and @, R and R, § and §’, &c., situated in any manner with
respect to the figures, pass through O, and are there cut in
the ratio of their similitude, externally or internally, according
as their positions are similar or opposite; so, conversely, all
pairs of points P and P', Q and ¢, R and R, S and &', &e.,
which connect by lines passing through O, and there cut in
their ratio of similitude, externally or internally according as
their positions are similar or opposite, are evidently homo-
logous pairs with respect to the figures; and the two similar
and similarly or oppositely placed figures PQRS &c. and
P QRS &c., determined by any number of such pairs,
are evidently similarly situated with respect to, and have the
same centre and ratio of similitude with, the original figures
ABCD &ec. and A'B'C'D' &e.

Every line passing through O being cvidently its own
homologue with respect to both figures and intersecting them,
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if it meet them at all, at pairs of corresponding points 4
and 4’y B and B', C and (', &c., of which the number de-
"pends, of course, on the nature of the figures; at which the
several pairs of corresponding tangents, by (41), are parallel;
and for which the several pairs of ratios 04 : 04', OB: OB/,
0C: 0C', &c., by the same, are equal to the ratio of similitude
of the figures, so that if 04 = OB, or any two of the points of
meeting for either figure coincide, then also 0A4'= OB’ or the
two corresponding points of meeting for the other also coincide.
Hence, when two similar right or left figures are similarly or
oppositely placed, every line passing through their centre of simi-
litude, like every pair of homologous lines in general, divides
and ds divided by them similarly into pairs of corresponding
segments in the linear ratio of their similitude, intersects them
at equal angles at every pair of corresponding points of meeting,
and if it touch either at any point of meeting touches the other
also at the corresponding point of meeting.

43. Two similar figures of such a form, that a corre-
spondence between their points and lines in pairs satisfying
the conditions of similarity, exists in more ways than one (35),
may be, moreover, of such a form that when similarly placed
for one mode of correspondence, they are at the same time
oppositely placed for another, or conversely; as for instance,
two similar parallelograms, or, more generally, two similar
polygons of any even degree whose several pairs of opposite
gides are equal and parallel; every two such figures when
thus at once similarly and oppositely placed have of course
two different centres of simalitude, one external corresponding
to their similar, and the other internal corresponding to_ their
opposite, parallelism, each determined, as in the general
case, by the intersection of any two lines connecting pairs
of homologous points for the relative positions corresponding
to itself, and each possessing all the properties of the unique
centre of similitude of the -same kind with itself in the
general case.

- 44, Of figures coming under the above head two circles,
however circumstanced as to magnitude or position, absolute
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or relative, provided only they be in the same plane, possess,
for the reason explained in (35), the property, confined to
them exclusively, of being always at once similarly and op-
positely placed, and of having therefore in every position two

different centres of similitude, one E external as similarly
placed, figs. (a) and (8), and the other I internal as oppo-
sitely placed, figs. (a') and (8'); both situated on the line CC’
connecting their centres C and C' and dividing that line,
the former externally and the latter internally, in the ratio
of their radii; both determined by the intersections with that
line of the lines A4’ connecting the extremities of any two
parallel radii CA and C’'A4’ drawn in similar directions, figs.
(a) and (B), for the former, and in opposite directions, figs.
(a) and (B), for the latter—or, which comes to the same
thing, by the intersections with each other of the pairs of
lines 44' and BB', AB' and BA', connecting the extremities,
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adjacent for the former and non-adjacent for the latter, of
any two parallel diameters 4B and A'B’, figs. («") and (8");
and each possessing, as for every two figures coming under
the same head, all the properties of the unique centre of
similitude of its kind for any two similar figures similarly or
oppositely placed, (41) and (42).

As every line touching two circles in the same plane
connects the extremities of the two parallel radii to which it
is perpendicular (Euc. 111. 18); and consequently, by the above,
passes through either the external or the internal centre of
similitude of the circles, according as the directions of the radii
are similar or opposite; hence two circles in the same plane,
however circumstanced as to magnitude and position, admit,
in general, of two, and of but two, pairs of common tangents,
real or imaginary, both symmetrically situated with respect to,
and intersecting upon, their line of centres; one, termed in
consequence the external pair, intersecting at their external
centre of similitude, and the other, termed in consequence the
internal pair, intersecting at their internal centre of similitude ;
and, evidently, both real, both imaginary, or, one real and one
imaginary, according as the distance between their centres is
greater than the sum, less than the difference, or, intermediate
between the sum and difference, of their radii.

The two centres of similitude, external and internal, of two
given circles, determined as above, or by any other method,
give, consequently, in two conjugate pairs (Euc. 1i1. 17), the
four solutions, real or imaginary, of the problem ¢ To draw a
common tangent to the two circles.”
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CHAPTER IIL

THEORY OF MAXIMA AND MINIMA.

45. WHEN a geometrical magnitude of any kind, which
varies continuously according to any law, passes in the course
of its variation through a value greater than either its pre-
ceding or succeeding values, it is said to be @ mazimum, even
though at some other stage of its variation it may pass through
a value absolutely greater; and, on the other hand, when it
passes in the course of its variation through a value less than
either its preceding or succeeding values it is said to be a
minimum, even though at some other stage of its variation
it may pass through a value absolutely less; the terms *maxi-
mum” and ¢ minimum,” as employed in geometry, are therefore
relative, not absolute.

46. As, to a traveller on a road which is not a dead level,
the top of every hill is @ position of maximum, and the bottoin
of every hollow a position of minimum, elevation above the
sea or any other standard level; so, for gcometrical figures
of the higher orders, the different variable magnitudes con-
nected with them, may pass in the course of their variation
through several maxima and several minima values, of course
necessarily alternating with each other in the order of their
occurrence ; as, for instance, the linear distance from any
fixed point, or the perpendicular distance from any fixed line,
of a variable point, traversing the entire figure or any part
of it; for the point, line, and circle, however the variable
magnitudes most commonly considered in connection. with them
and their combinations, rarely pass during their variations
through more than a single maximum and a single minimum
value; as, for instance, the distance of a variable point on

’
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a circle from any fixed point or line situated in any manner
with respect to it, which, in either case (Euc. I11I. 7, 8, 19), is
a maximum for and only for the distance which passes through
the centre, and a minimum for and only for the distance which
if produced would pass through it; in all such cases the single
maxima and minima values are not only relatively but also
absolutely the greatest and least values through which the
variable magnitude passes in the course of its variation.

47. As every increase or diminution of a magnitude of any
kind is necessarily accompanied by the simultaneous diminu-
tion or increase of its reciprocal (8); it follows, of course,
that when a variable magnitude passes under any circamstances
through a maximum or minimum value, its reciprocal to any
unit, passes simultaneously through a minimum or maximum
value. ‘

48. The following are a few simple but fundamental ex-
amples of maxima and minima, to which many others are
reducible :—

Ex. 1°. When two sides of a triangle are given in magnitude the area
Vs a mazémum (in this case the mazimum) when they contain a right angle.

For (Euc. I. 41), whatever be their angle of intersection, acute, right,
or obtuse, the area = half the product of either into the perpendicular
on its direction from the remote extremity of the other, which perpen-
dicular is evidently equal to the other for the right and less than the
other for any position at either side of the right angle; and, in the same
way generally, when one side of a triangle is constant the area varies
as, and therefore passes through, its maxima and minima values with the
perpendicular upon its direction from the opposite vertex.

Ex. 2°. For the point of internal bisection of any segment of a line
the product of the distances from the extremities 18 a maxtmum, and the
sum of their squares u minimum.

For (Euc. 11I. 5 and 9, 10), the product for that point exceeds the
product for any other point of internal section on either side by the
square, and the sum of the squares for that point falls short of the sum
of the squares for any other point of section, external or internal, on
either side, by twice the square, of the distance between that and the
other point of section; and, in the same way generally, for any two
magnitudes expressed in numbers, as product = square of half sum -
square of half difference, and as sum of squares = twice square of half
sum + twice square of half difference; if the sum be constant, the product
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is a maximum and the sum of the squares a minimum; and if the product
or the sum of the squares be constant, the sum is a minimum in the
former case and a maximum in the latter, when the magnitudes are equal.

Ex. 3°. For any two magnitudes expressed in numbers whose sum is
constant, the sum, product, sum of squares, and product of squares, of the
reciprocals are all minima when the magnitudes are equal.

For, the product of the reciprocals being = the reciprocal of the product,
and the product of the squares of the reciprocals being = the reciprocal
of the square of the product are both minima when the product is a
maximum, that is, Ex. 2° when the magnitudes are equal; and again,
the sum of the reciprocals being = the sum divided by the product, and
the sum of the squares of the reciprocals being = the sum of the squares
divided by the product of the squares, are both minima also, when the
product is a maximum, the sum being constant by hypothesis, and the sum
of the squares being then a minimum, Ex. 2°.

Ex. 4°. For the point of snternal bisection of any side of a triangle
the area of the inscribed parallelogram formed by drawing parallels to the
other two sides is a mazimum.

For, whatever be the position of the point of section, the angle of the
parallelogram being constant, its area (Euc. V1. 23) varies as the product
of the parallels; that is, as the product of the segments of the divided
side determined by the point of section, the former being to the latter
product in the constant ratio of the rectangle under the other two sides
to the square of that side (Euc. VI. 23); but the latter product being a
maximum, by Ex. 2°, for the point of bisection of the side, so therefore
is the former, and therefore the area of the parallelogram; and, in the
same manner exactly, it appears that, for the point of internal bisection
of any side of the triangle the product of the perpendiculars on the
other two sides, or more generally of the two lines drawn in any two
given directions to meet them, is a maximum,

Ex. 5°. For the point of tnternal bisection of any arc of a circle, the
sum of the squares of the linear distances from the extremities is a maztmum
or a minimum, and for the point of external bisection a minimum or a
mazimum, according as the arc is greuater or less than a semicircls.

For, if AB be the arc, C' the middle point of its chord, M and N its
two points of bisection, internal and external, P any other point on the
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circle, and PQ the perpendicular from P on 4B; then since (Eue. II.
12, 13), whatever be the position of P, P.4*= PC*+ CA4'+ 2C4.CQ, and
PB'=PC*+ CB*'32CB.CQ, therefore PA*+ PB*=CA'+ CB* +2.CP%
which is a maximum or a minimum when CP is a maximum or a mini-
mum; that is (Euc. 111. 7), when P is at M or N in the former case, and
at V or M in the latter; and, in the same manner, it appears generally
that the sum of the squares of the linear distances of a variable point P,
on any geometrical figure from any two fixed points 4 and B, situated
in any manner with respect to the figure, increases and diminishes and
passes through its maxima and minima values, with the distance PC' of
the variable point P from the middle point C of the line 4B connecting
the two fixed points 4 and B.

Ex. 6°. For each point of bisection, ¢nternal and external, of any arc
of a circle, the sum and product of the linear distances from the extremities,
and the area of the triangle they determine with the chord, are all mazima.

For, since whatever be the position of P, (same figures as in last),
PA.PB = MN.PQ (Euc. vi. 16), and area APB = }4AB.PQ
(Euc. 1. 41); the property is evident as regards the product and area,
and it remains only to prove it for the sum P4 + PB, which is easily
done as follows: since for every position of P at the same side of the
chord with M (as in the figures), by Ptolemy’s Theorem (Euc. v1. 16, Cor.),
PA.NB i+ PB.NA=PN.AB, and since, by hypothesis, N4 = NB,
therefore P4 + PB: PN:: AB: AN or BN, that is, in a constant
ratio, and therefore P4 + PB is a maximum when PN is a maximum,
that is, when P is at M; and in the same way it may be shewn (by
simply substituting M for NV in the above) that for positions of P at
the same side of 4B with N, P4 + PB varies as PM, and is therefore
a maximum when P is at N.

Ex. 7° For each point of bisection, internal and erternal, of any arc
of a circle, the segment of the tangent intercepted between the tangents at
the exztremities, and the area of the tiiangle it subtends at the centre of
the circle, are both minima.

For, if AB be the arc, AC and BC the tangents at its extremities,
XY the segment intercepted between
them of the tangent at any other
point P, and O the centre of the
circle; then, since whatever be the
position of P, the lines OX and OY
bisect the angles 4 OP and BOP (Euc.
111 17), the angle between them, XOY
is equal to half the angle AOB sub-
tended at O by the arc 4 PB, therefore
in the triangle whose vertex is O and base XY, the altitude OP and vertical
angle XOY are both constant; and it is evident from the preceding, or
independently, that when the vertical angle of a triangle is constant, the
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altitude and area are both maxima for a given base, and the base and
area both minima for a given altitude, when the triangle is isosceles,
that is, for the triangle XO¥ when P is a point of bisection, internal or
external, of the arc 4 B.

Ex. 8°. For the point of internal bisection of any arc of a circle, the
area of the triangle formed by the tangent with the tangents at the ez-
tremities 18 a mazimum or a minimum, and for the point of external
bisection a minimum or a maxinum, according as the arc is less or greater
than a semicircle.

For, since in either case (same figures as in last), the pentagonal area
XAOBY, being double the triangular area XOY, is a minimum, by the
preceding, for each point of bisection of 4B; and the quadrilateral area
AOBC being of course constant, whatever be the position of XY, there-
fore the triengular area XCY, being = the quadrilateral — the pentagon
in one case (fig. @), and = the quadrilateral + the pentagon in the other
case (fig. B), is a maximum in the former case and a minimum in the
latter.

Ex. 9°. For each point of bisection, internal and external, of any are
of a circle, the product of the perpendiculars upon the tangents at the
extremities, and the product of the perpendiculars from the extremities
wupon the tangent, are both mazima.

For, if AB be the arc, P any point upon it, external or internal,
PM and PN the per-
pendiculars from P upon
the tangents at 4 and B,
AX and BY the per-
pendiculars from 4 and
B upon the tangent at
P, and PQ the perpen-
dicular from P upon the
chord 4 B; then, joining
P with 4 and B, by
pairs of equal triangles
APM and PAX, BPN and PBY, we have PM=A4X and PN = BY,
and therefore PM.PN=AX.BY, and by pairs of similar triangles
APM (or PAX) and BPQ, BPN (or PBY) and 4PQ (Euec. 111 32),
we have PM or AX: PQ:: PQ: PN or BY, both being = P4 : PB,
therefore PM.PN and 4X.BY both = PQ*, and therefore &ec.

Ex. 10°. Of ail lines passing through a fizxed point that which determines
with two fized lines the triangle of minimum area is that whose segment
intercepted between the lines ts bisected at the point.

For, if P be the point, 4C and BC the lines, 4B the intercept
bisected at P, and A4'B' or A”B” any other intercept; then through
A and B drawing 4D and BD parallels to BC and 4C, meeting 4'B
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or A“B" at X' and ¥ or X” and Y”. As the two triangles APX'
and BPB, or the two triangles BPY” and )
APA’, are evidently equal (Euc. I. 4); there-
fore the triangle 4 CB is less than the triangle
A'CB or A”CB”, and therefore &c.

The point and lines being given, to draw
AB so as to be bisected at P, is, of course,
but a particular case of the more general
problem to draw it so as to be cut in any
given ratio, of which the preceding construc-
tion suggests the following obvious solution: drawing from P any line P4’
or PA" to either line C4, and producing it through P to ¥ or Y so that
PA': PY’ or PA”: PY" =the given ratio, the parallel ¥’B or ¥"B
to CA4 through ¥’ or Y evidently intersects the other line CB in the
extremity B of the required line 4 B.

Ex. 11° Of all lines passing through either point of intersection of
two circles, that whose segment sntercepted between the circles is of maxi-
mum length, and subtends at the other point of intersection, the triangle of
mazimum area 8 that which is perpendicular to the chord of intersection.

For, if PQA and PQB be the circles, P and Q their points of inter-
section, and 4B any line passing through either of them P and meeting
the circles at 4 and B; then since, joining 4 and B with the other
intersection Q, the angles P4Q and PBQ are both constant (Euc. 111. 21),
the triangle 4QB is constant in species, whatever be the position of 4B,
and therefore its base 4B, area 4QB, and sides Q4 and QB are all
maxima together; but the sides Q4 and QB are maxima when they are
diameters of their respective circles, that is (Euc. 111. 81) when 4B is
perpendicular to PQ.

Ex. 12°. Of all lines passing through a
Sized point that whose segments intercepted
tn opposite directions between the point and
two fized lines contain the rectangle of mini-
mum area t8 that which makes equal angl
with the lines. )

For, if P be the point, AC and BC the
lines, AB the line through P making equal
angles with 4C and BC, and 4'B' or A"B"
any other line through P; then, as evidently
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the circle ADB touching AC and BC at A4 and B intersects 4'B’ or
A”B” at points X’ and ¥” or X" and Y internal to 4' and B’ or 4"
and B”, the rectangle P4 . PB which is equal to the rectangle PX". PY"’
or PX". PY"” (Euc. 11 33), is therefore less than the rectangle P4'. PB’
or PA". PB", and therefore &c.

Ex. 13°. Of all lines passing through either point of intersection of
two circles that whose segments tntercepted in opposite directions between
the point and circles contain the rectangle of mazimum area 18 that which
makes equal angles with the circles(22).

For, if PAQ and PBQ be the circles, P and Q their two points of
intersection, 4B the line passing el
through either of them P making
equal angles with the circles, that is
(22) with the tangents to them A4C
and BC at its extremities 4 and B,
and 4’B' or A”B” any other line
through P; then, as evidently the
circle 4DB touching AC and BC
at 4 and B intersects A'B' or A"B"
at points X' and ¥’ or X” and ¥
external to 4’ and B’ or 4" and B”;
the rectangle P4 . PB which is equal
to the rectangle PX'. PY" of PX".PY"
(Eue. 111. 35) is therefore greater than the rectangle PA'. PB' or
PA”.PB", and therefore &ec.

_Ex. 14°% The rectangle of maximum area inscribed in any segment of
a circle, or of any other convex figure, 18 that whose side parallel to the
base of the segment bisects the sides of the triangle formed with the base
by the lines touching at its extremities the circle or figure.
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For, if AEFB be the segment, EF the chord parallel to its base 4B,
which bisects the sides XZ and ¥Z of the triangls XZY formed with
AB by the tangents at E and F; then, by Ex. 4° the rectangle (or
parallelogram) EFKH is the maximum that could be inscribed in t.he
triangle XZY, and therefore, a Jortiors, in the segment AEFB to which
the triangle is external.
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To draw EF so as to bisect the tangents ZX and ZY is, of course,
a particular case of the more general problem, to draw it so as to cut
them in any given ratio, which for the circle may be done as follows:
through the centre O drawing OC and MN perpendicular and parallel
to AB (the former of course passing through Z), and through X and ¥,
supposed found, drawing XM and YN parallel to OC to meet the radii OE
and OF, supposed found, at P and Q respectively; then by pairs of similar
triangles PEX and OEZ, QFY and OFZ, the two ratios PE: EO and
QF: FO cach = the given ratio of the¢ tangents, and therefore as EO
and FO are given and equal, PE and QF, PO and QO, and the rect-
angles PE. PO and QF. QO, are given and equal; but by other pairs
cf similar triangles PEX and PMO, QFY and QNO, PM.PX=PE. PO,
and QN. QY = QF. QO, therefore the rectangles PM. PX and QN.QY
are given and equal; but MX and NY, being each = CO, are also given
and equal; therefore (Euc.11.6) PM and QN, PX and QY, and the
angles POM and QON are given and equal, and therefore £ and F
are known.

49. The next example we give separately as the basis of
some useful properties of the triangle.

a. The lines connecting a variable point on a fixed line
with two fixed points at the same side of the line have the
maximum difference when they coincide in direction, and the
manimum sum when the angle between them s bisected (of course
externally) by the line.

b. The lines connecting a variable point on a fixed line
with two fixed points at opposite sides of the line have the mini-
mum sum when they coincide in direction, and the mazimum
difference when the angle between them 1s bisected (of course
internally) by the line.

Let LL, figs. « and B, be the fixed line, 4 and B the two
fixed points, AE and BF the two perpendiculars from them
on LL, A' and B’ the two points on the perpendiculars for
which AE=FEA' and BF=FB', then the distances of any
point P on LL from A and 4, or from B and B’, being equal
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(Eue. 1. 4), if D be the point on it at which AB or 4'B’
intersects it, that is the point on it for which PA and PB
coincide in direction, and if C be the point on it at which
AB’ or A'B intersects it, that is the point on it for which the
angle APB is bisected (externally fig. a, or internally fig. 8)
by it; it is to be shewn that, in fig. @y D4 ~ DB> PA . PB,
and C4 + CB< PA + PB, and that, in fig. 8, DA+ DB<PA + PB,
and CA ~ CB> PA ~ PB, which are evident, the first for each
figure from the triangle APB or A'PB’, and the second for each
figure from the triangle APB’ or A'PB, any side of a triangle
(Eue. 1. 20) being greater than the difference and less than‘the
sum of the other two.

The maximum difference in a (fig. a), or minimum sum in
(fig. B), is of course the distance 4B between the two. points
A and Bj; the minimum sum in « (fig. a); or maximum difference
in b (fig. ﬁ), may be expressed in terms of the distances of the
points from the line and from each other as follows:

In both cases the. four points ABA'B' lie evndently.m a
circle, and the two pairs of opposite connectors AB and 4'B’,
AB' and A'B are evidently equal; therefore, by Ptolemy’s
Theorem (Euc. vi. 16, Cor.), 44'.BB'= AB'.A'B— AB.A'R'
in fig.¢,and = AB.A'B'— AB'.A'B in fig. 8; but A4'=2.AE,
BB'=2.BF,and AB'=A'B=AC+BCin ﬁg a, and =4 G~B€
in fig. B; therefore

(AC+ BC)'=4B"+4. AEBF. ...... m ﬁg a
and (4C~ BC)'=AB"-4.AE.BF.......in fig. B,

which are the formule by which to calculate in numbers tha
minimum sum or maximum difference when the distances of
the points from the line and from each other are given.

The line LL being in fig. a the external and in, fig. 8 the

internal bisector of the vertical angle C of the triangle 4 CB,
we see from the above formul® that—
- If from the extremities of the base of a triangle perpendiculars
be let fall upon the external or internal bisector of the vertical
angle, their rectangle=square of half sum of sides— square.of
half base in the former case, and = square of half base— square
of half difference of sides in the latter case.

If the interval 4B between the two points A and B be

E
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bisected or conceived to be bisected at O, and the point of
bisection O connected or conceived to be connected with the
feet of the two perpendiculars E and F; then, evidently,
OE=}BA' and OF = }AB', therefore OE= OF = §(4C+ BC)
in fig. @, and =4 (4C.~ BC) in fig. 8. Hence—-

. If from the extremities of the base of a triangle peqmadwulara
be let fall upon the ewternal or internal bisector of the vertical
angle, their feet are equidistant from the middle point of the
base by an tnterval=rhalf the sum of the sides in the former
oase, and = half the difference of the sides in the latter case.

From these last two properties combined we see .that,
when the base of a triangle is fixed and the sum or difference
of the sides. constant, if perpendicalars be let fall from the
extremities of the base upon the external or internal bisector
of the. vertical angle—

. .a. Their feet are oguadukmtﬁom the middle point of the base
by a constant nterval = half the sum or difference of the sides.

b. Their rectangle 18 constant and=square of half sum or
difference of sides ~ square of half base.

The interval EF between the feet of the perpendiculars
being a chord of the circle round O as centre, whose radius
=4(A0+ BC) in fig. a, and =}(4C ~ BC) in fig. B, and the
square of the semi-interval 4B between the two points 4 and
B being =the square of the radius of the circle ¥ the. rects
angle AE. BF, we see that—

The two peq)endwulars erected at the extremsties of any chord
of a circle meet any diameter of the circle at two points equi-
distant from the centre and contain a rectangle=the square of
the radius of the circle ~ the square of the semi-interval they
tntercept on the diameter.

A useful property of the circle which the reader may very
easily prove, & priori, for himself.

50. If from any pomt A a perpendi_cuhr be let fall upon
any line L, and produced, as in the preceding, through the
line to a second point 4’ equidistant from L with A4, the new
point 4’ is termed the reflexion of the original point 4 with
respect to the line L; and, generally, if from all the points
4, B, C, D, &c. of any geometrical figure perpendiculars be let
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fall upon any line L and produced through L, in the same
manner, to their reflexions at the opposite side, the new figure
4', B, C', D, &c. is termed the reflexion of the original with
respect to the line.—A convenient term introduced into Geo-
metry from the science of Optics,

The relation between any figure and its reflexion with
respect to any line is evidently reciprocal (8); that is, if one
figure F' be the reflexion of another F' with respect to a line
L, the latter F is reciprocally the reflexion of the former F”
with respect to the same line L; it is evident also, that every
two figures ¥ and F~ reflexions of each other with respect to
any line L are right and left figures (32), stmilar in form, equal
in magnitude, and symmetrically situated, like two hands or two
feet, with respect to the line and to each other,

Thus, the reflexion of a line is a line, of a circle a circle,
of the line passing through two points the line passing through
the reflexions of the points, of the circle passing through three
points or touching three lines the circle passing through the
reflexions of the points or touching the reflexions of the lines,
&c.; and, generally, of any figure intersecting or touching
another a similar and equal figure touching or intersecting the
reflexion of the other at the reflexions of the point or points
of intersection or contact of the original figures.

All points common to two ﬁgures reflexions of each other
lie of course on the line (or axss as it is sometimes termed)
of reflexion, which evidently bisects at once all the angles
finite or evanescent at which they intersect or touch each
other.

Every circle having its centre on the axis of reflexion of
any two figures reflexions of each other evidently intersects or
touches both, when it meets them at all, at pairs of points
reflexions of each other with respect to the axis; this peculiarity
of the circle arises from the evident circumstance that every
diameter of the fignre divides it into two halves reflexions of
each other with respect to itself.

If the plane of any figure be turned round any line in
itself through an angle of 180°, the figure in the new is
evidently the reflexion of itself in the old posmon with respect
to the line.

E2
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. From properties ¢ and b of the preceding article it appears
that—

_ When the lines connecting a variable point on a fixed line
with two fived points not on the line are rc;ﬂatwns of eack other.
with respect to the line, their sum 18 @ mintmum or thevr di, erence
a mazimum according as the points lie at the same or at opposzte
sides- qf the line. .

51 The next example again we give separately as the basis
of some important properties of the circle. .

" The lines connecting.a variable point on a fixed line, circle,
or any other geometrical figure with two fixed points sztuated
in any manner with respect to the figure, contain a maxtmum
or minimum angle for every point at which a variable circle
pqas_z'ng_.tkrough the points touches the figure.
~ For, (Euc. 111. 21 and I. 16), every chord of a circle sub-
tends at any point on the circle an angle greater than at any
point outside and less than at any point inside the circle, or
conversely, aocordmg as the lesser or greater angular interval
between the containing lines (24) is the subject of comparison
for each angle; and, when a circle touches a line, circle, or
any other figure, whnle the point of contact is common to the
circle and figure, those at both sides of it on the figure are
either both outside or both inside the circle acoordmg as- the
contact of the former with the latter is external or mternal
and therefore &c.

* The problem “ to find the points on a given line, circle, or any
oﬂzer qeometrwal jigure which subtend maxima or minima angles
at two given points” is reduced, therefore, to the problem o
describe a circle passing throuqh the two given points and
touching the given line, circle, or other Jigure ;" the solutions of
which for the line and circle are respectively as follows :

" For the line. If P and Q be the points and MN the line
(Bgs. a and B, Art. 12); H _descnbmg any circle PQX Y passing
through P ‘and @ and intersecting or not mtersectmg MN,

and drawing to it a tangent OT from the point O in Whlch
the line PQ mtersects MN, the circle round O as centre whose
radius = ‘OT intersects MN in the points of contact A and B
of the two circles required.
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For, from the described circle PQXY (Euo. 111, 36),
OT’ 'OP. 0@, and, by construction, 04* and OB"* each = 0T,
‘therefore 04* and OB" each = OP.0Q, aud therefore (Euc.
il 37) the' circles PQA and PQB touch respectlvely at 4
-and B the given line MN.

" For the circle. If P and @ be the points and MN the
clrcle descnbmg any circle PQX Y passing through P and Q

and intersecting MN in two points X and Y, and from the
point O in which thé chord of -intersection XY meets the line
PQ drawing the two tangents 04 and OB to MN, their point’s
-of contact .4 and B are those of the two circles reqmred

. For, from the given circle, 04* and OB* each = 0X.0Y
{Eue. 111, 36), and from the described circle 0X.0Y = OP.0Q,
‘therefore 0A* and OB* each =-OP.0@, and therefore (Eue.
1L -37) the circles -PQA and PQB touch respectively at A
and B the given circle MN." - -

If either of the points P or Q were on the line or
circle /N, the other not being on it, the two points 4 and B
would evidelltly eoincide with it and with each othér; and if
P and Q. were at- oppesite sides of the line or. circumferernce
"MN, A and B would evidently be both impossible -as no circle
“passing-through ‘P and @ could theén possibly touch MN.

‘Hence, for the lie or circle alike, the two solutions of the
problem would be distinct if P and @ were at thé same side
of MN, eoineident if either P or @ were upon MN, and tm=
possible if P and Q ‘were at opposite sides of MN. = -. - -

) VVlth respect to the point O, determined as above in
‘the solation for the circle, the followmg property is 1mportant——
. The extremities X' and Y' of every chord of. MN whose
‘direction passes throuqk O Ue in the same circle with P and @,
‘and conversely, the chord of intersection X'Y’ of every czréle
passing through P and Q and mceting MN passes through-O. -
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For, in the first case, the rectangles 0X'.0Y" and OP.0Q
being each equal to the rectangle OX.0Y are equal to each
other, and therefore &c.; and, in the second case, conceiving
O connected with either point of intersection X' of the two
circles MNX' and PQX', and supposing the connecting line
O0X' to meet them again if possible at two different points ¥~
and Y", we would have the two different rectangles 0X'.0Y"
and 0X'.0Y" equal to the same rectangle OP.0Q which
could not be, and therefore &c.

Hence the general property that—

If a variable circle pass through two fixed points P and Q
and intersect a fixed circle MN, the variable chord of tntersection
XY passes through a fixed point O on the line PQ, that, viz.,
Jor which the constant rectangle OX.0Y =the fixed rectangle
OP.0Q.

The circle MN being given, if P and @ be both given, O
is of course implicitly given with them, being, as above, the
point in which XY (the chord of intersection with MN of any
circle through P and Q) meets PQ; but, if on the other hand,
O only be given, P and @ may be (as in 12) on any line
passing through O, and at any two distances from O (measured
in similar or opposite directions according as O is external or
internal to MN) for which OP.0Q = the given rectangle
0X.0Y.

653. The problem to describe a circle passing through two
given points P and @ and touching a given line or circle MN,
is evidently a particular case of the problem.

To describe a circle passing through two given points P and

Q and tintercepting on a given line or circle MN a segment or
chord of given length XY.
- To solve which, as the direction of XY passes, by the pre-
ceding, in either case through O, we have 0X.0Y= OP.0Q
and OXF OY=XY according as P and @ are at similar or
opposite sides of MN, therefore, by Euc. 11. 6 or 5, we have
OX and OY and therefore X and Y themselves.

When P and @ are at the same side of MN, any length
of segment or chord XY (less of course than the diameter in
the case of the circle) might be intercepted by a circle through
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P and ¢, but when P and Q are at opposite sides of MN,
figs. 8 Art. 12 and ¢ Art. 51, since the rectangle under the
segments of a line cut internally can never (Euc. 11. 5) exceed
‘the square of half the line, no length less than twice the side
-of the square=the rectangle OP.0Q could be intercepted;.
in that case, therefore, the two solutions of the problem are,
distinct for any greater length, coincident for that particular
length, and impossible for any lesser length.

Cor. Since a circle passing through a fixed point and
having its centre on a fixed line passes necessarily through a
second fixed point the reflexion of the first with respect to
the line (50), the four following problems are reduced immedi-
ately to the preceding.

* 7o describe a circle passing through a given pownt, having
tts centre on a given line, and touching, or intercepting a given
segment or chord of, a given line or circle. '

54, If A be any point, 4’ its reflexion with respect to
any line Z, and £ and F the centres of the two circles passing
through 4 and 4’ and touching any circle MN, figs. a and 8,

then, if B be the centre of MN, it is evident that AE+ BE
and AF+ BF in fig. a, and AE ~ BE and AF ~ BF in .fig. B
=the radius BM or BN of MN. Hence the following solutions
of the two useful problems—

On a given line L to determine the two points E and F,
the sum or difference of whose distances from two given points
A and B shall be given. ‘

With either of the two given points B as centre and with
a radius BM or BN=the given sum (fig. a) or difference
(fig. B) describe a circle MN, the centres E and F' of the two
circles passing through the other given point 4 and its re-
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flexion 4’ with respect to the given-line L and touching that
circle, are the two points required.

Should MN happen to pass through either 4 or A’ the
two points of contact M and N would evidently coincide
:at whichever of them it passed through; therefore the two
centres £ and F would also coincide, and the construction
then at the extreme limait qf possibility or 1mpo:m'b1hty would
become that already given in (49) for the ménémum sum and
mammum difference of the distances in question.

. 55 The next example, again, we give separately as leadmg
nafurally to an important property of similar figures.

"“a. OF all triangles of any constant species, whose sides pass
through three fixed points, the maxtmum 18 that the perpendiculars
do whose sides at the points intersect at a common point,

b. Of all triangles of any constant species, whose vertices lie
on three fixed lines, the mintmum 1s that the perpendwulars to the
dines at whose vertices intersect at a common pomt

For if ABC and PQR be any two triangles such that the -
sides of ABC pass through the vertices of PQR, or the vertices
of PQR lie on the sides of ABC; the three circles Q4 R, RBP,
PCQ pass evidently in all cases (Euc. 111, 21, 22) through a
common point O, for which the three angles QOR, EOP, POQ
are equal or supplemental to the three angles BAC, CB4, ABC
respectively, and the three angles BOC, COA, AOB to the
sums or differences of the three pairs of angles BAC and QPR,
CBA and RQP, ACB and PRQ respectively (see 24), and
-which, when either of the two triangles ABC or PQR is fixed
and the species of the other constant, is therefore fixed, and
determines with the three sides of the variable triangle, which-
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ever it be, three variable triangles BOC, C0A, AOB, or QOR,
" *ROP, POQ of constant species revolving round it as a common
.vertex. Henee, O being fixed in both cases, when, as in (a),
PQR is fixed and ABC variable, BC, C4, AB are maxzima
-with 04, OB, OC, that is, when the latter are diameters of
‘the three fixed circles QOR, ROP, PO Q respectively, and there-
fore &c.; and when, as in (), ABC is fixed and PQR variable,
QR, RP, PQ are minima with OP, 0Q, OR, that is, when
‘the latter are perpendiculars to the three fixed lines BC, C4,
AB respectively, and therefore &c.

Hence, to construct the triangle of given species and maximum
area ABC whose sides shall pass through three given points
PQR, or the triangle of given species and mintmum area PQR
“whose vertices shall lie on three given lines BC, CA, AB. The
‘three angles QOR, ROP, POQ in the former case, and the
three BOC, CO4, AOB in the latter, being given by the
above relations, the point O therefore in either case is given
immediately by the common intersection of three given circles
(Euc. 111. 33), and therefore the three perpendiculars BC, CA4,
‘AB to OF, 0Q, OR in the former case, and the three OPF,
:0Q, OR to BC, CA, AB in the latter, are given, and there-
fore &ec.

Cor. 1°. By aid of the point O, determined as above, the
two problems: to construct a triangle ABC or PQR of given
‘magnitude and species, whose three sides BC, CA, AB shall
-pass through three given points P, @ R, or whose three vertices
P, Q, R shall lie on three given lines BC, CA, AB, of which
the two above are the extreme cases, may be solved with equal
readiness; for, the species of the six triangles BOC, C0A4,
"AOB and QOR, ROP, POQ being given in both cases, when,
-a8 in the former case, the three lengths BC, CA4, AB are
given, so therefore are the three 04, 0B, OC, and therefore
the three points 4, B, C on the three given circles QOR,
ROP, POQ, and when, as in the latter case, the three lengths
QR, RP, PQ are given, so therefore are the three OP, 09, OR,
and therefore the three points P, @, B on the three given lines
BC, CA4, AB. :

Hence, again, as in the problems, Arts. 51 and 53, the
two solutions of the problem are distinct, coincident, or im-
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possible according as the given magnitude of the triangle to
be constructed ABC or PQR, is less than, equal to, or greater
than its maximum value in the former case, or greater than, equal
to, or less than its minimum value in the latter.

Cor. 2°. By aid of the same again the two problems: é
construct a quadrilateral of given species, whose four sides
A, B, Cy D shall pass through four given points P, @, R, 8,
or whose four vertices P, @, R, 8 shall lie on four given lines
sl, B, 0, D may be readily solved. For, in the former case,
to find any vertex AB of the required quadrilateral 4BCD.
As the two triangles PRQ and PSQ, through whose common
vertices P and @ the two sides 4 and B corresponding to that
vertex pass, are given, and as the two triangles 4ACB and ADB,
which they determine with the other two sides C and D, are
of given species; therefore by the above the circle passing
through P and @ and though the required vertex 4B passes
through two given points M and N, whose distances from 4B
have a given ratio and which therefore determine 4B. And,in
the latter case, to find any side PQ of the required quadrilateral
PQRS, as the two triangles 4CB and 4DB, on whose common
sides 4 and B the two vertices P and ¢ corresponding to that
side lie, are given, and as the two triangles PR and PSQ which
they determine with the other two vertices B and 8 are of given
species ; therefore, by the above, the circle passing through the in-
tersection of 4 and B and though the extremities of the required
side P passes through two given points M and N, which conse-
quently determine that circle and with it therefore the two points
P and @ at which it intersects the two given lines 4 and B.

The same problem, the solutions of which, differing from those
of Cor. 1°, are always in both cases unique and possible, may
also, in the former case, to which the latter is evidently re-
ducible, be solved otherwise thus as follows: Since the diagonal
connecting any pair of opposite vertices 4B and CD of the
required quadrilateral ABCD divides the two corresponding
angles AB and CD each into segments of given magnitude;
it therefore intersects the two given circles through P and @
and through R and 8, on which 4B and CD lie, at two given
points 7 and J which consequently determine that diagonal
and therefore the quadrilateral.
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N.B. If the two points M and N in the former or the two
1 and J in the latter of the constructions just given kappened
to covncide, the construction otherwise determinate would be
evidently indeterminate, and consequently an tnfinite number of
quadrilaterals could be constructed satisfying the conditions of the
problem. The circumstances under which such cases arise in
general will be considered further on.

Cor. 8°. In the particular case of the above when, as is
nearly the case in fig. 8, one angle of the triangle PQR = two
right angles, and when therefore the other two each =0, it is
evident from the values of the three angles BOC, CO4, A0B,
a8 given above, that the point O lies on the circle circumscrib-
ing the triangle ABC. Hence we see that—

a. If three points P, Q, R, taken arbitrarily on the three sides
BC, CA, AB of any triangle ABC, lie in a right line ; the thres
circles QAR, RBP, PCQ intersect at a common point O on the
circle ABC.

b. If while the triangle is fixed the three points P, @, R vary
80 as to preserve the constancy of the three ratios QR : RP: PQ,
the point of intersection O s a fixed point, and conversely.

The four lines BPC, CQA, ARB and PQR, in the above,
being entirely arbitrary, it follows at once from property a, as the
reader may very easily prove & priors for himself, that—

The four circles circumscribing the four triangles determined
by any four arbitrary lines taken three and three intersect at
a common point.

By Cors. 1° and 2° applied to the same particular case we
obtain ready solutions of the two following problems, viz.

1°. To draw a line intersecting three given lines so that its
segment intercepted between any two of them shall be cut in given
lengths by the third.

2°. To draw a line intersecting four given lines so that its
segment intercepted between any two of them shall be cut in given
ratios by the other two.

56. From the nature of similar figures and of their homo-
logous points and lines, it appeared (40) that if one point O of
or connected with a figure F of any nature variable in magni-
tude and position but invariable in form be fixed, all points
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P, Q, B, 8, &c. of or connected with it describe, and all lines
A4, B, C, D, &ec. of or connected with it envelope similar figures,
80 that in such a case if one point P move on a line or describe
"a circle, all points @, R, 8, &c. move on lines or describe circles,
-and if one line 4 turn round a point or envelope a circle, all
lines B, C, D, &c. turn round points or envelope circles. Hence
from the preoedmg it follows that—

For a figure F of any nature variable in magnitude and posi-
tion but invariable in jform, if three points P, Q, R connected with
it in any manner move on fixed lines A, B, C, all points S, T, &c.
connected with it move on fixed lines Dy E, &c., and if three lines
A, B, C connected with it in any manner turn round fixed points
P, Q, R, all lines D, E, &c. connected with t turn round fixed
points S T, de.

For, in the former ease, the variable triangle P, Q, I, whose
- vertices move on the three fixed lines 4, B, C, and in the latter
case the variable triangle 4, B, C, whose sides pass through the
three fixed points P, @, R, bemg invariable in form; therefore
by the preceding the point O, connected as above w:th the vari-
able triangle and therefore wnth the figure, in both cases is a
fixed point, and therefore &c.
~ Cor. 1°. The above general properties supply obvious solu-
tions of the four following general problems, viz.

To construct a figure of given form, 1°. four of whose po'mts
shall lie on given lines ; 2°. four of whose lines shall pass through
gtven points ; 3°. three of whose points shall lie on given lines,
.and one of whose lines shall pass through a given point ; 4°. three
of whose lines shall pass through given points, and one of whose
points shall lie on a given line.

Of these four general problems 1°. and 2°. admit always of
possible and generally of unique solutions, depending on the
unique point of intersection of two lines in 1°., and on the
unique line of connection of two points in 2°., which may how-
ever by the possible coincidence of the two lines in 1°.,, or of the
two points in 2°. become in certain cases indeterminate (55,
Cor. 2°.); 3°. and 4°. on the other hand admit in all cases of two
‘solutions, distinct, coincident, or impossible according to circumn-
stances.

The circumstances under which the solutions of 1°, and 2°
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may in certain cases become indeterminate, appear at once from
the two general properties of the present article; the four points
of the figure P, @, R, S, in 1°. may so correspond to the four given
lines 4, B, C, D, or the four lines of the figure 4, B, C, D in
2°. to the four given points P, @, R, 8, that when in 1°. three
of the points P, @, B lie on three of the lines 4, B, C, the
fourth point S must lie on the fourth line D, or when in 2°.
three of the lines 4, B, C pass through three of the points
P, @, R, the fourth line D must pass through the fourth point S;
in either case the problem would evidently admit of an infinite
number of solutions and consequently be indeterminate.

Cor. 2°, The same again by aid of the principles established
in the preceding article supply obvious solutions of the four
following additional problems, viz.—

To construct a figure of given form and of minimum or givem
magnitude, three of whose poz'nts shall lie on given lines.

To construct a figure of given form and of maximum or given
magnitude, three of whose lines shall pass tkrough gtven points.

Of which the two for the cases of given magnitude admit
each, as in Cor. 1°. of the preceding, of two solutions, distinct,
coincident, or impossible, according as the given magnitude
happens to be within, upon, or beyond the limiting value of
which it is susceptible under the circumstances of the case.

57. There are many cases in which a variable magnitude is
shewn to be a maximum (or a minimum) in some partlcular
relative position of the elements of the figure with which it is
connected, by its being shewn that for any other relative posi-
tion it could be increased (or diminished), and that every change
which would increase (or diminish) it would tend to bring it to
the particular configuration in question, of this the four follow-
ing instructive examples may be taken as illustrations:

Ex. 1, The sum of the distances of a variable point on a fixed line
from two fixed points at the same side of the line is a minimum when they
make equal angles with the line (Ex. a, 49); from this it follows that—

Of all polygons of any order whose vertices in any assigncd order lie
on fired lines, that of mintmum perimeter i that whose several angles ara
all bisected externally by the lines on which their vertices lie.

For, supposing any angle of the polygon not to be so biseoted, the
removal of its vertex to the point at which it would be so bisected, would,
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without affecting n any manner the remaining sides of the polygon, diminish
the sum of the containing sides, and therefore the entire perimeter of
which that sum is a part.

Ex. 2. For the middle point of any are of a circle: 1°. The sum of
the chords of the segments and the area of the triangle they form with
the chord of the arc, are both maxima (Ex. 6° 48); 2°. The perimeter
and area of the quadrilateral formed by the tangent with the chord of
the arc and the tangents at its extremities are both minima (Ex. 7°, 48);
from these it follows that—

1°. Of all polygons of the same order inseribed in the same circle, that
of mazimum perimeter and area 1s the regular.

2°. Of all polygons of the sama order circumseribed about the same circle,
that of minimum perimeter and area 13 the regular.

For, supposing any vertex of the polygon in 1° not to bisect the
arc of the circle intercepted between the adjacent two, its removal
to the middle point would, without affecting tn any way the remainder
of the polygon, increase both the perimeter and area of the triangle
it determines with the chord of the arc, and therefore of the entire
figure of which that triangle is a part; and, supposing the point of contact
of any side of the polygon in 2° not to bisect the arc of the circle inter-
cepted between those of the adjacent two, its removal to the middle point
would, without affecting tn any way the remainder of the polygon, diminish
both the perimeter and area of the quadrilateral determined by that side
with the chord of the arc and the tangents at its extremities, and therefore
of the entire figure of which that quadrilateral is a part.

Ex. 3. When a line of any length is cut into two equal parts, the
product of the parts is greater, and the sum of their squares less, than
if it were cut into any two unequal parts (Ex. 2° 48); from this it
follows that—

1°, When a line of any length is cut into any number of equal parts,
the continued product of all the parts is greater, and the sum of thesr
aquares less, than if st were cut in any way into the same number of un-
equal parts.

29, When a line of any length is cut inlo any number of parts a,d, ¢, d,
&o. in the ratios of any set of integer numbers a, B, 4, 3, §c., the product

] $
.58, 6T, &b, drc. is greater, and the sum “:+%+ §+%'+ &e. is loss, than

tf it were cut in any other way into the same number of parts.

To prove 1°. Supposing any two of the parts not to be equal, the
equable division of their sum would, without affecting any of the remaining
parts, increase the product and diminish the sum of the squares of those
two, and therefore increase the product and diminish the sum of the
squares of the entire set.

To prove 2°. Conceiving a subdivided into « equal parts, b into 8
equal parts, ¢ into o equal parts, d into ¢ equal parts, &c., then since
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as = o> times the continued product of the a subdivisions of a, &8 = g8
times the continued product of the B subdivisions of b, ¢ = " times the
continued product of the « subdivisions of ¢, d® = & times the continued
product of the & subdivisions of d, &c.; and since a® = a times the sum
of the squares of the a subdivisions of a, 4*= 8 times the sum of the
squares of the 8 subdivisions of b, ¢* = ¢ times the sum of the squares
of the « subdivisions of ¢, d*= & times the sum of the squares of the 8
subdivisions of d, &e., therefore a*.3F.c7.d3.&c.=a* 88 .47.8% . &o.

times the continued prodat'lct ;;’f the whole a + 8 + o + & + &c. subdivisions,

of the entire line, and —-+/—g+f:+‘£+&o. =the sum of the squares of
the same @ + 8 + o + 8 + &c. subdivisions; and therefore, by 1°., the former
is a maximum and the latter a minimum when the several subdivisions
are all equal, that is, as a contains « of them, b, 8 of them, ¢, ¢ of them
d, 8 of them, &c., whena:b:c:d, &c.::a: 8:v:8, & Q.ED.

Ex. 4. When two conterminous lines of any lengths are placed at a
right angle, the area of the triangle they determine is greater than if
they were placed at any other angle obtuse or acute (Ex. 1°,48) from
this it follows that—

1°. When all the sides but one of a polygon are given in length and
order, the area of the figure ts the mazimum when the semicircle described
on the closing side as diameter passes through all its vertices.

2°, When all the sides qf a polygon are given in lmgth and order, the
area of the figure is the maximum when all its vertices lie in a circle.

3°. When the extremities of a bent line of given length are connected
by a straight line, the area of the enclosed figure is the mazimum when
its form is a semicircle.

4°, When the perimeter of a closed figure is given, its area ts the mazs-
mum when its form 18 a circle.

To prove 1° and 3°. Supposing any single vertex P of the polygon
in the former case, or any single point P of the bent line in the latter case,
not to lie upon the semicircle described on the closing side or connecting line
AB, then the two conterminous lines 42 and BP not being at a right
angle (Eue. 111. 31). The putting of them at a right angle would, without
affecting in any way, except in position, the remaining portions of the
Sgure which might be regarded as attached to and moveable with them,
increase the area of the triangle A PB and therefore of the entire figure
of which it is a part.

To prove 4°. Supposing the perimeter to form a circle, then any dia-
meter 4B would divide the whole figure into two semicircles, one or both
of which would necessarily be altered in form and therefore diminished in
area (3°.) by any change whatever from the circular form of the entire.

To prove 2° Supposmg the several vertices of the polygon to lie in
a circle, then conceiving the circle described through them, any change
whatever in the figure of the polygon would without affecting in any way
except in position the circular segments on the several sides which might be
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regarded as attached to and ble with them alter the form and therefore
diminish the area of the entire circular figure (4°.), and consequently of
the polygon itself the only part of the whole undergoing change of area.

Otherwise thus, from 1°. without the aid of 4°. the polygon and circle
being supposed described as hefore; then, firstly, if any two vertices of
the former 4 and B happened to determine a diameter of the latter, that
diameter would divide the polygon into two whose areas, by 1°, would both
be diminished by any change of figure they could receive; and, secondly,
if no two vertices happened to determine a diameter, then drawing any
diameter 4 B, and connecting its extremities 4 and B each with the two
adjacent vertices of the polygon M and N, P and Q, between which it
lies, that diameter would divide the entire figure consisting of the variable
original polygon and the two invariable appended triangles M AN and
PBQ into two parts, whose areas, by 1°, would both be diminished by
any change of figure they could receive; therefore in either case any
change of figure in the original polygon, as necessarily producing a change
of figure in one or both of the partial polygons, would diminish the area
of one or both, and therefore of the whole.

The former demonstration, though perhaps less elementary, will pro-
bably be regarded by the reader as simpler than the latter. .

58. In the Theory of Maxima and Minima it happens very
often, so often as to require special notice at the very outset
of the subject, that a variable magnitude which in a certain
relative position of the elements of the figure with which it
is connected has a maximum and a minimum value each for
the proper position corresponding to itself, appears in another
relative position of the very same elements to have two maxima
or two minima values for the same positions alternating with
two minima values each =0, or two maxima values each =,
at certain intermediate positions, as, for example, the distance
of a variable point on a fixed circle from a fixed line, which
when the circle and line do not intersect, is a maximum for
the farther and a minimum for the nearer extremity of the
diameter perpendicular to the line, but which when they do
intersect has apparently maxima values at both those ex-
tremities alternating with apparently minima values each =0
at the two points of intersection.

In the preceding, and in all similar cases, however—as will
more fully appear when we come to the subject of the Signs
of geometrical magnitudes—a ckange of sign takes place at
each passage of the variable through 0 or w, after which a:
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negative increase is of course a positive decrease, and conversely,
and a negative maximum consequently a positive minimum, and
conversely ; and the two values =0 or oo are not real minima
or mavima values at all (45), but merely the particular values
through which the variable magnitude tn continuous decrease or
tncrease passes at the moment of changing sign. Of course if
absolute values of magnitudes only were taken into account, asin
arithmetic and in the geometry of ancient times, the particular
values 0 and oo would be the least of all minima and the greatest of
all maxima for magnitudes of every kind ; but in the geometry of
the present day, in which magnitudes of certain kinds are re-
garded as having not only absolute value but also sign, they
are looked on as in no way differing from any other particular
values through which variable magnitudes in continuous de-
crease or increase may happen to pass. In the case of magni-
tudes incapable of change of sign, the values 0 and « are of
course the extreme minima and maxima values in modern as
in ancient geometry, and it might at first sight appear question-
able whether it would not be better to regard them as sich
for magnitudes of all kinds as well. The advantages, however,
resulting from the convention of signs in modern geometry are
so numerous and considerable, that in the present state of the
science it could scarcely be regarded as optional to forego them
or not. ' -

59, The extreme maxima and minima values of variable
magnitudes, in whichever light regarded, give evidently in all
cases the extreme limits of possibility and impossibility in the
solutions of all problems involving the magnitudes; it being of
course impossible to construct a magnitude of any kind greater
than the extreme maximum or less than the extreme mini-
mum of which it is susceptible nnder the circumstances of
its data. o

Should the extreme maxima and minima values of a magni-
tude variable in position Aappen to be equal, of course all inter-
mediate values would be also equal, and the magnitude would
be constant; in every such case the problem to construct the
magnitude 80 a8 to have a given value would of course be
tmpossible for any other than the constant value, while for that

F
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value it would evidently admit of an infinite number of solutions
or be indeterminate as it is termed.

When on the other hand, as is of course the case generally,
the extreme maxima and minima values of a magnitude variable
in position are not equal, the problem to construct the magni-
tude so as to have any intermediate value, admits always of at
least fwo distinct and definite solutions, more or less sepa-
rated from each other, which approach to coincidence as the
value continuing within the limits of possibility approaches either
limit, which actually coincide for each limiting value, and which
become impossible together once the limits are passed; and
the same is the case generally for all problems admitting of two
solutions and therefore for all in which, directly or indirectly,
the circle is involved, the two solutions tn general distinct become
cotncident at the limits of possibility and smpossibility, and so
pass together through cotncidence from possibility to smpossibility,
and conversely, (See 21).

As an example of the preceding principles: suppose it were
required to draw from a given point to a given circle a line
of given length. For the centre of the circle the solutions of
the problem would manifestly be imposiible for any valne of
the given length different from the radius and indeterminate for
that value; while for every point different from the centre it
would admit of two, and but two, determinate solutions which
would be distinct, coincident, or both impossible, according as the
given length happened to lie between, upon, or beyond the
extreme limits for the point.

The above principles are all general and deserving of par-
ticular attention; for, 1°.—No problem in geometry admitting
in its general form of but a single solution ever becomes im-
possible, however in certain cases it may appear to do so; 2°.—
Whenever a problem admitting in its general form of two
solutions becomes impossible, the two solutions always become
impossible together, and pass invariably through coincidence in
their transition from possible to impossible, and conversely ; and
8°.—There is no problem in geometry that does mnot become
indeterminate under certain circumstances of its data.
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CHAPTER 1IV.

ON THE TRIGONOMETRICAL FUNCTIONS OF ANGLES.

60. Ir from any point P taken arbitrarily on either M of .
two indefinite lines M and &N intersecting at a point O and
constituting an angle of any form MN a perpendicular PQ
be let fall upon the other line N, the perpendicular determines
with the two lines a right-angled triangle PQO whose form
it is evident depends only on that of the angle, and every
two of whose sides determine two reciprocal ratios which are
implicitly given with, and which, reciprocally, implicitly give
the form of the angle. The six ratios thus determined from
their importance in the science of Trigonometry are termed
the trigonometrical functions of the angle, and are designated
in that science by appropriate names as follows:

1°. The ratio of the perpendicular PQ to the interval PO
between its head and the vertex of the angle is termed the
sine of the angle.

2°. The ratio of the perpendicular PQ to the interval QO
between its foot and the vertex of the angle is termed the
tangent of the angle.

3°. The ratio of the former interval PO to the latter interval
QO is termed the secant of the angle.

4°. The ratio of the interval OQ to the distance OP is
termed the co-sine of the angle.

5°. The ratio of the interval 0@ to the perpendicular PQ is
termed the co-tangent of the angle,

6°. The ratio of the distance OP to the perpendicular PQ is
termed the co-secant of the angle.

Upon the question as to the origin and appropriateness of
the names ¢ sine,’ ¢ tangent,’ and * secant,’ we need not enter here ;
the three simple ratios so designated are of such frequent oc-

F2
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currence, the first of them especially, in geometrical researches,
as absolutely to require some distinguishing appellations; and
the old and familiar names by which they have always been
known in another science, are at least as convenient as any
others that might be proposed for the purpose ; the remaining
three, termed respectively co-sine, co-tangent, and co-secant,
hare been so named as being to the complement of the angle what
the sine, tangent, and secant, are to the angle itself.

If. the angle determined by the two lines be conceived to
change figure and to pass continuously through every variety
of form, from the extreme of two parallel to the opposite
extreme of two rectangular lines; the whole six ratios will
pass evidently in the course of the variation, the sine, tangent,
and secant in continuous increase, and the co-sine, co-tangent,
and co-secant in continuous decrease, through every variety of
value of which they are severally susceptible; the sine from 0 up
to 1 and the co-gine from 1 down to 0, the secant from 1 up to o
and the co-secant from o down to 1, the tangent from 0 up to o
and the co-tangent from o down to 0; the whole six being of course
implicitly given for each particular form of angle, and any one
of them reciprocally determining the correspondmg form of the
angle and with it of course the remaining five.

Of all the trigonometrical functions of the angle the gine is
that which enters most largely into the investigations of modern
geometry, and we shall accordingly devote the present chapter
to the consideration of a few simple but very important pro-
perties involving the sines of angles.

61. The ratio of the sines of the segments into which an angle
13 divided by any line passing through its vertex 1s the same as
that of the perpendiculars on its sides from any point on the line ;
and conversely, the ratio of the perpendiculars from any point on
the sides of an angle 13 the same as that of the sines of the segments
tnto which the angle is divided by the line connecting its vertcx
with the point. '

"For if AA’ and BB', or M and N, be the sides of the angle;
‘PP, or L, the line passing through its vertex O; P, or P, the
point, and PX and PY,or PX' and PY’, the perpendlculars
Then since by defmition PX: PO or P’X' : PO=sin LM
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and PY: PO or P'Y': P'O=sin LN, therefore PX : PY or
PX':PY =sin LM : sin LN, and therefore &c.

Cog. 1°. If the two perpendiculars PX and PY, or P'X’ and
P'Y', were turned round 5 () #
P, or P', through any com- “T
mon angle 50 as to become,
more generally, isoclinals
inclined at any equal ang-

les to the sides of the

given angle M and N, 4/ P ¥ 2

the same property would obviously be true of the isoclinals
as of the perpendiculars, as the ratio of the former would
evidently be constant and equal to that of the latter through
whatever angles they were turned.

Cor. 2°. A very obvious solution of a very useful problem
“to divide a given angle internally or externally into two
parts whose sines shall have a given ratio” might evidently
be based on the above, but another and in many respects
more convenient method of effecting the same division will be
given further on.

62. In a circle the ratio of any chord to the diameter is the
stne of the constant angle subtended by the chord at every point
on the circumference of the circle '25).

If AB be the chord; through either extremity of it 4 draw-
ing the diameter 4C and joining CB, then 'N
since the angle subtended by the chord at
any point on the circle is independent as to ’
form of the position of the point (25), if the ]
theorem be true for any one point on the Ax"
circle it is true for every point, but it is
true for the point C, for the angle ABC being in a semicircle
and consequently a right angle, therefore by (60) the ratio of
AB: AC is the sine of the angle 4 CB, and therefore &c.

Cog. 1°. Hence two or any number of chords of the same
circle are to each other as the sines of the angles they severally
subtend at the circumference of the circle ; for each chord, by
the above, being equal to the diameter of the circle multiplied
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by the sine corresponding to itself, and the diameter being
the same for them all, therefore &c.

Cor. 2°. The angle any chord of a circle makes with the
tangent at either of its extremities being similar in form to
that in the two segments into which it divides the circle (22).
Hence from Cor. 1°.—

Two or any number of chords of the same circle are to each
other as the sines of the angles they make with the tangents at

their several extremities.

Cog. 3°. The several chords may be conterminous, in which
case it appears at once from Cor. 2°., that—

Two or any number of chords diverging from the same point
on the circumference of a circle are to each other as the sines of
the angles they severally make with the tangent at the point.

Cor. 4°. Any two adjacent sides of any polygon inscribed
in a circle being conterminous chords of the circle ; therefore
from Cor. 3°.—

The tangents at the several vertices of any polygon tnscribed tn
a circle divide the several angles of the polygon externally into parts
whose sines are in the ratios of the adjacent sides of the polygon.

Cor. 5°. The three sides of every triangle being chords of
the same circle, that viz. which passes through its three
vertices, and the three angles being those subtended by their
opposite sides at the circumference of the circle ; hence at
once, from the above, the important property of the triangle,
that—

The sine of any angle of a triangle 1s equal to the opposite side
divided by the diameter of the circle circumscribing the triangle ;
and conversely, the diameter of the circle circumscribing any
triangle s equal to any side of the triangle divided by the sine
of the opposite angle.

Cor. 6°. Denoting in any triangle by a, b, ¢ the three sides,
and by 4, B, C the three respectively opposite angles, then
always—

a+sind=b+sinB=c+sinC,
for each by the above is equal to the diameter of the circle
circumscribing the triangle.
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Cor. 7°. Denoting by d the diameter of the circumseribing cir-
cle, and by p, ¢, r the three perpendiculars from the three vertices
4, B, C upon the respectively opposite sides a, b, ¢; then since
(60), p=c.sinBor b.8inC, g=a.sinC or c.sind, r=>b.8in4 or
a.sin B, and since, Cor. 6°., d=a +s8ind =b+sinB=c+sinC,
therefore pd = bc, gd=ca, rd = ab, and therefore generally—

In every triangle the product of any two sides 1s equal to the
product of the diameter of the circumscribing circle tnto the
perpendicular on the third side from the opposite vertex.

This property supplies an obvious method of solving the
problem : “ given of a triangle one side, the opposite angle, and
the product of the other two sides to construct st.”

Cur. 8°. If P be any point on the circumscribing circle,
and P4, PB, PC the
three lines connecting
it with the three ver-
tices 4, B, C, then
since, whatever be the
position of P, any two
of the connecting chords
PA and PB, divided each by the diameter of the circle d,
are the sines of the two segments PCA and PCB into which
the third PC divides, internally or externally, the angle ACB
through whose vertex it passes; it follows that—

The two general problems : * to divide a given angle internally
or externally into two parts whose sines shall have any given
relation to each other,” and “to divide a given arc of a circle,
internally or externally into two parts whose chords shall have
the same relation to each other,’ are udentical.

Cor. 9°. If PX, PY, PZ be the three perpendiculars from
P on the three sides BC, CA, AB of the triangle ABC, then

since, Cor. 7°,,
PB.PC=d.PX, PC.PA=d.PY, PA.PB=d.FPZ;

therefore

sin PAB.sin PAC = PX - d,
sin PBC.sin PBA = PY + d,
sin PCA .sin PCB= PZ+d;
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and therefore generally—

The product of the sines of the segments into which any angle
of a triangle 13 divided by a variable line passing through its
vertex, varies as the perpendicular to the opposite side from the
point in which the line meets the circumscribing circle.

This property gives a very definite conception of the law
according to which the product of the sines of the segments of
a fixed angle by a variable line of section varies with the
position of the dividing line, and supplies moreover an obvious
solution of the useful problem-—

To divide a given angle tinternally or externally into two
parts whose sines shall have a given product.

Cor. 10°. If 4, B, C, D be any four points on a circle, PX
and PX', PY and PY ' PZ and PZ' the three pairs of perpendl-
culars from any fifth pomt P on the circle upon the three pairs of
opposite chords BC and 4D, CA and BD, ABand CD they de-
termine, and d the diameter of the circle; then since by Cor. 7°.,

PX=PB.PC+d and PX'=PA.PD +d,

PY=PC.PA+d and PY'=PB.PD+ d,

PZ=PA.PB+d and PZ'=PC.PD+d;
therefore :

PX.PX' = PY.PY' = PZ.PZ = PA.PB.PC.PD + d*;
and therefore—

The products of the three pairs of perpendiculars from any
point on a circle upon the three pairs of opposite chords connect-
ing any four points on the circle are equal; and their common
value 18 equal to the product of the distances of the one point from
the four divided by the square of the diameter of the circle.

If the six perpendiculars were turned round the point P
through any common angle, so as to become, more generally, .
isoclinals inclined at any equal angles to the six chords; the
products of the three pairs of isoclinals for opposite pairs of
chords would still continue equal, each isoclinal being equal
to the corresponding perpendicular nultiplied by the secant
of the angle of rotation.

63. In every triangle the ratio of the sines of any two of the
angles 18 the same as that of the sides opposite to them.
For if 4, B, C be the three angles, a, b, ¢ the three opposite
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sides, and p, g, r the three perpendiculars on the latter from the
opposite vertices; since then by definition sinB=p:c and
sinC=p:d sinC=¢g:a and sind=g:c, sind=7r:5 and
sinB = r : a, therefore at once
sinB:sinC=b:c, sinC:sind=c:a,sind :sinB=a:},
and therefore generally for all three,
sind :sinB:sinC=a:b:ec,

or, tn every triangle the sines of the angles are as the opposite sides.

Otherwise thus: conceiving a circle circumscribed round the
triangle, then since, by the preceding (62), each side divided by
the diameter of the circle is the sine of the opposite angle,
therefore &c. .

This latter though less direct has the advantage over the
former and more ordinary method of proving this important
theorem, that besides establishing the proposition it gives at
the same time the common value of the three equivalent
quotients a = sind4, b+sin B, c+sinC) viz. the diameter of the
circle circumscribing the triangle.

Cor. 1°. The angle between any two lines being similar
in form to that between parallels to them through any point,
it follows at once from the above, that—

Every three lines drawn from a point parallel and equal to
the three sides of a triangle are to each other each as the sine
of the angle between the other two.

That is, if O be the point, and 04, OB, OC the three lines,
then 04 : OB: OC=sinBOC :8nC0A : sin40B.

Cog. 2°. In every parallelogram any two adjacent sides and
the conterminous diagonal being equal and parallel to the
three sides of either triangle into which the parallelogram is
divided by the diagonal. Hence from Cor. 1°—

" Each side of every parallelogram is divided by the diagonal
which passes through it into parts whose sines are in the vnverse
ratio of the adjacent sides of the parallelogram.

That is, if O4 and OB be the sides about the angle, and
-0OD the diagonal, then 8in 40D : sin BOD = OB : 0A.

Cor. 3°. The above supplies obvious and rapid solutions of
the two following problems:

1°. To divide two or four right angles into three parts whose
sines shall be as threz given numbers.
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2°. To determine two angles whose sines shall be to the sine
of their sum or difference as two given numbers to a third.

For, in the case of 1°., constructing any triangle whose three
sides ate as the three numbers, its three internal angles furnish
obviously the solution for two and its three external for four
right angles, (Euc. 1. 32) ; and in the case of 2°., constructing
any triangle two of whose sides are to the third as the two
given numbers to the third, its two internal angles opposite
to the two sides furnish obviously the solution for the case
of the sum, and either of them with the external adjacent to the
other for the case of the difference (Euc. 1. 32).

If the three given numbers were such that three lines
representing them were incapable of forming a triangle, that is,
(Euc. 1. 20), if one of them were greater than the sum or less
than the difference of the other two, the above constructions
would of course fail; thus showing that in such cases the re-
quired division or determination would be impossible.

Cor. 4°. The three internal angles BOC, COA, AO0B,
subtended by the three sides BC, CA, AB of any triangle
ABC at any arbitrary point O, being either together equal
to four right angles, or each separately equal to the sum or
difference of the other two, aceording as the point O is within
or without the triangle ; the above leads again, asin Cor. 3°, to
the four solutions of the following problem, viz.—

To determine the point O for which the sines of the three
angles subtended by the three sides of one given triangle ABC
shall be as the three sides of another given triangle A'B'C'.

For the three angles subtended at O by the three sides of
ABC being, according to the position of O, as just observed,
either the three external or one of the external and two of
the internal corresponding angles of A'B'C'; therefore de-
scribing on the three sides of ABC as chords the three pairs
of equal circles which intersect them internally and externally
at the three corresponding angles, internal and external, of
A'B (' (22) ; of the six circles thus described, the three which
intersect the sides of ABC internally at the three internal
and externally at the three external corresponding engles of
A'B'C’ intersect with each other at a common point O,
which is one of those required, and intersect with the remaining
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three, each with the two not corresponding to itself, at three
other common points P, @, R, which are the remaining three
of those required.

In the particular case when the three pairs of corresponding
angles of the two triangles ABC and A'B'C’' are equal, and
when the triangles themselves are therefore similar; while
the three circles determining the point O intersect at
the point of concurrence of the three perpendiculars from the
vertices on the oppusite sides of ABC, that being the point for
which the three internal angles BOC, COA, AOB, are the
supplements of the three internal angles R4C, CBA4, ACB,
of the triangle; the remaining three evidently coincide with
each other and with the circle circumscribing ABC, and the
three points P, @, R are consequently indeterminate. This is
also evident a prior: from (62); every point on the circle
circumscribing any triangle ABC subtending, as there shewn,
its three sides at angles whose sines are proportional to their
lengths.

Cor. 5°. Denoting by P, Q, R the radii of the three equal
pairs of conjugate circles in the preceding corresponding to
the three sides BC, CA4, 4B, respectively of the triangle ABC;
since then three of those circles for different sides pass through
the point O, and consequently circumscribe the three partial
triangles BOC, COd, AOB, therefore by (62).
2P=BC~+sinBOC,2Q= CA4 +sin COA, 2B =AB+sinA0B,
and therefore

P:Q:R=BC=+sinBOC: C4A+5sinC0OA4 s+ AB--sin 40B.
Hence again, by Cor. 4°.,, the four solutions of the following
additional problem, viz.—

To determine the point O such that for three given points
A, B, C the radii P, Q, R of the three circles BOC, COA, AOB,
shall be as three given numbers.

For since from the propositions just stated

8inBOC : 8sin COA : sinAd0OB=BC+P: CA+ Q: AB+ R,
the problem is therefore reduced at once to that of Cor. 4°,, the
two groups of three ratios BC: C4: AB and P: Q: R being
both given, and therefore with them the group to which the
three sines are proportional.
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In the particular case, when P= Q= R, since then
8sinBOC :8in COA4 : sin AOB=BC: CA: AB,

the point O as already noticed in Cor 4°., is either the unique
point of concurrence of the three perpendiculars from the
vertices on the opposite sides, or any point indifferently on
the circumscribing circle, of the triangle ABC; the three
equal circles BOC, CO4, AOB, in the former case being
equal to, and in the latter case coinciding with, the circle 4BC.

64. In every triangle the ratio of double the area to the
rectangle under any two of the sides is the sine of the angle
contained by those sides.

For if, as in the preceding, 4, B, C be the three angles,
a, b, c the three opposite sides, and p, ¢, r the three perpen-
diculars on the latter from the opposite vertices; since then
(Euc. 1. 42.) 2 area=ap=>bg=cr, and since (60) p=>5.s8in C
or ¢ sin By g=c sin 4 or a sin C, r=a sin Bor b sin 4, therefore

2 area=bc.sin 4 =ca.sin B=ab.sin C,
and therefore &c.
Cor. 1°. Since from the above
area = }bc. sin 4 = }ca. sin B= }ab. sin C,
therefore—

In every triangle the area is equal to half the product of any
two of the sides multiplied into the sine of the included angle.

Hence if two sides of a triangle be given, the area varies
as the sine of the included angle, has equal values for every
pair of supplemental angles, and is the maximum for a
right angle.

CoRr. 2°. Denoting by R the radius of the circle circumserib-
ing the triangle, then since by (62),

sind=a<+2 R, sinB=b+2R, sin C=c+2 R,
and since by the above, sin 4 =2 area + bc, sin B=2area + ca,
sin C= 2area -+ ab, therefore R = abc + 4 area, or—

In every triangle the radius of the circumscribing circle s
equal to the product of the three sides divided by four times
the area.

‘Which is the well-known formula by which to calculate
in numbers the value of R, when those of a, b, ¢ are given.
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CoRr. 3°. If from any point P perpendiculars PX, PY, P7,
be let fall upon the sides BC, CA, AB, of any triangle ABC,
then

2 area of triangle XYZ = (OR" ~ OF®).sin A .sin B.sin C
where O and OR are the centre and radius of the circle cir-
cumscribing the triangle ABC,

e,
o,
. ~‘~
- N
\/w

For, connecting P with any two of the vertices 4 and B of
the triangle ABC, and the point D where the connector for
either 4 intersects the circumscribing circle with the other Bj;
then by the above, 2area XYZ=2ZX.ZY .sin XZY; but the
two groups of four points Y, P, Z, 4 and X, P, Z, B being evi-
dently concyclic, and P4 and PB being the diameters of the
two circles (Euc. 111. 31.); therefore (62), ZY = PA.sin4,
ZX = PB. sin B, and (Euc. 111. 21. 22.) angle XZY = angle PBD,
the two angles PZX and PZY being equal to the two PBX and
PAY or CBD respectively ; therefore

2area XYZ=PA . PB.sinA .sin B.sin PBD,
but (63) PB.sin PBD = PD .sin PDB= PD .sin C, (Euc.111. 21.)

therefore
2 area XYZ=PA.PD.sinA4.sinB.sinC,

and therefore &c ; since (Euc. 111. 5. 36.) PA. PD = (OR'— OP*)
or (OP* - OR) according as P is within (fig a) or without (fig 3)
the circle circumscribing 4ABC. '

If in the above the three perpendiculars PX, PY, PZ, were
turned round P in the same direction of rotation through any
common angle, so as to become, more generally, isoclinals
PX', PY', PZ inclined at the complement of the angle to the
sides; the same value multiplied by the square of the secant of
the angle of rotation, or, which is the same thing, divided by the
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square of the sine of the angle of inclination to the sides (60),
would evidently (Euc. vI. 19.) be the value of the area of the
triangle X'Y'Z".

Cor. 4°. It follows of course from the preceding, Cor. 3°.,
that, whether for perpendiculars or isoclinals, the area of the
triangle XYZ is—1°, oonstant, when P i3 on any circle concentric
with O; 2°, evanescent when P 1s on the circle circumscribing
ABC; 3, a mavimum fn absolute value (58) when P 13 at O,
or at infinity ; from the second of which it appears that, the feet
of the perpendiculars upon the sides of a triangle from any point
on tts circumscribing oircle, or more generally of any tsoclinals
tnclined to the perpendiculars at the same angles and tn the same
directions of rotation, lie in a line ; a property the reader may
easily prove directly for himself. See figs. Cor. 9°. Art. 62.

Cor. 5°. The precsding properties, Cor. 4°., supply obvious
solutions of the three following problems:—“ On a given line
or circle to determine the point or points from which <f perpen-
diculars be let fall upon three given lines the area of the triangle
determined by their feet shall be a minimum, a maximum, or
gtven ;"' or more generally of the three corresponding problems
in which the perpendiculars are replaced by isoclinals inclined to
them in either direction at any given angle of rotation.

63. Every line passing through any vertex of a triangle
divides the opposite side into segments tn the ratio compounded of
that of the conterminous sides and of that of the corresponding
segments into which it divides the angle at the vertex.

For, if ABC be the triangle, C the vertex, and CZ the line;
letting fall upon CZ from the other two vertices 4 and B,

the two perpendiculars AP and B¢, then since by similar
triangles AZ: BZ=AP: BQ, and since by (60),

AP=AC.sinACP=AC.sinACZ,
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and BQ=BC.sin BCQ=BC.sinBCZ;
therefore AZ: BZ=AC.sinACZ: BC.sin BCZ,
that is, Euc. VI. (23) =the ratio compounded of the two ratios
AC: BC and sin4CZ : sin BCZ, and therefore &e.
Otherwise thus, since by triangles having the same alti-
tude, AZ': BZ=area ACZ: area BCZ, and since by (64)
area ACZ=} AC.CZ.sinACZ,
and area BCZ=1% BC.(CZ.sin BCZ,
therefore as before,
AZ: BZ=AC.,sinACZ: BC.sin BCZ,
and therefore &e.

Cor. 1°. If the sides 4C and BC about the vertex be equal,
then AZ: BZ=sin ACZ : sin BCZ, or—

Every line passing through the vertex of an isosceles triangle
divides the base tnto segments whose ratio vs the same as that of the
sines of the segments into which it divides the vertical angle.

Cor. 2°, If CZ bisect the angle through whose vertex it
passes either internally or externally, then, as in either case
sind CZ=sin BCZ, therefore AZ: BZ=AC: BC, or (Euc.
VI 8)—

The line bisecting internally or externally any angle of a tri-
angle divides the opposite side internally or externally into segments
tn the ratio of the conterminous sides.

Cor, 38°, If CZ divide the angle through whose vertex it
pasees into segments whose sines are in the inverse ratio of the
adjacent sides, that is,so that sin 4CZ: sin BCZ=DBC: AC,
then AZ: BZ=1, or—

The line dividing tnternally or externally any angle of a
triangle into segments whose sines are tn the tnverse ratio of the
adjacent sides bisects internally or externally the opposite side.

Cor. 4°. If CZ divide the angle through whose vertex it
passes into segments whose sines are in the direct ratio of the
adjacent sides, that is, so that sin ACZ:sin BCD=AC: BC,
then 4Z: BZ=AC*: BC’, or—
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The line dividing internally or externally any angle of a tri-
angle 1into segments whose sines are in the direct ratio of the
adjacent sides divides internally or externally the opposite side
tnto segments in the duplicate ratio of the conterminous sides.

Cor. 5°. As each angle of a triangle is divided externally
into segments similar in form to the other two angles both by
the parallel through its vertex to the opposite side (Euc. 1. 32),
and by the tangent at its vertex to the circumscribing circle
(Euc. 111. 32), the sines of the segments are therefore by (63),
inversely in the former case and directly in the latter, in the
ratio of the adjacent sides, and therefore, by Cors, 3°and 4°above—

Each side of a triangle is bisected externally by the parallel
to it tlzrough the opposite vertex, and divided ext:rnally into seg-
ments tn the duplicate ratio of the conterminous sides by. the
tangent to the circumscribing circle at the opposite vertex.

Cogr. 6°. Of the many methods of effecting the very useful
division “to divide a given angle internally or externally into two
parts whose sines shall have a given ratio,” the following based
on the above is perhaps on the whole the most convenient.

Connecting any two points 4 and B taken arbitrarily one
on each side of the given angle 4 CB, (see figures) and cutting
the connecting line 4B (Euc. VI 10), internally or externally
as the case may be, in the ratio compounded of the known ratio
of AC: BC and of the given ratio of the required segments,
the line CZ connecting the point of section Z with the vertex of
the angle C divides by the above the angle as required.

" The two points A and-B being both arbitrary, they might
be taken so that AC =BC, in which case Z would be simply
the point. of section; internal or. external, of ABin the given
ratio of the sine 4CZ : sin BCZ (Cor. 1° above), or they might
be taken so that AC: BC in the inverse of the given ratio of
8in 4 CZ ;: sin BCZ, in which case Z would be simply the point
of bisection, internal or external, of 4B (Cor. 3° above).

66. The difference of the squares of the sines of any two
angles 18 equal to the product of the sines of the sum and of the
difference of the angles.

The product of the sines of any two angles is equal to the
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difference of the squares of the sines of half the sum and of half
the difference of the angles.

The reader familiar with the Second Book of Euclid will
at once perceive that these are not two different propositions,
but only two different modes of stating the same general pro-
perty respecting the equal and unequal divisions of an angle;
nor can he fail to observe at the same time the complete
analogy between the common property they express, and the
general property respecting the equal and unequal divisions of
a line contained in propositions 5 and 6 of that Book.

- On account of their importance, however, we shall give
separate and independent demonstrations of each.

To prove the first. Constructing a triangle ABC, two of
whose angles 4 and B are equal to the two
angles, and through the third vertex C
drawing the chord CD of its circumscribing
circle parallel to the opposite side AB;
then since AD = BC (Euc. 11 30) and
therefore AC ~ BC= CD the four chords
AC, BC, AB, CD divided each by the diameter of the circle
are respectively (62) the sines of the four angles B, 4,
B+ A4,B~ A, and to prove the theorem it remains only to
shew that 4C* ~ BC'=A4B. CD.

From C and D letting fall CE and DF perpendiculars on
AB, then (Euc. 1. 47),

AC* ~ BC*= AE* ~ BE*=(AE+ BE).(AE ~ BE)
=AB.EF=AB. CD,

and therefore &c.
: To prove the second. Constructing as before a triangle 4 BC,
two of whose angles 4 and B are equal to the
two angles, measuring from its third vertex
Con either of the opposite sides C4 alength
CD equal to the other OB, joining BD
meeting the circumscribing circle of the
triangle at £, and drawing 4 £ and CE; then,
the angles CBE and 4BE being respectlvely half the sum and
half the difference of the angles B and 4, the four chords 4C,
BC, CE, AE divided each by the diameter of the circle are re-
G
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spectively (62) the sines of the four angles B, 4, }(B+ 4),
3 (B~ 4), and to prove the theorem it remains only to shew
that AC.BC= CE* ~ AE".

The triangle BCD being isosceles by constraction, so is'
the triangle A ED which is similar to it (Euc. 1. 21), therefore,
(Eue. 11, 5, 6, Cor.), EC* ~ EA*=CA.CD=CA.CB.

Cog. 1°. The preceding furnish obvious solutions of the two
following problems : '

1°. To divide a given angle, internally or externally, so that the.
difference of the squares of the sines of the segments shall be given.

2°. To divide a given angle, internally or externally, so that
the product of the sines of the segments shall be given.

Cor. 2°. The following deduction from the above furnishes a
convenient mode of representation, as well as a very definite
conception, of the law according to which the product of the
sines of the segments of an angle varies with the change of
position of its line of section.

If a circle of any radius be inscribed in an angle the product
of the sines of the segments into whick the angle is divided by a
variable line passing through its vertex varies as the square of
the segment of the line intercepted by the circle.

Let O be the centre of the circle, 4 and B its pomts of
contact with the sides of the angle,
and XY the line passing through C;
then letting fall 0Z perpendicular
from O on XY, we have by the above

8in4 CZ.sinBCZ=5s8in"0CA ~sin*0CZ
=(04~ 02%)+ 0C*
=(0X*~ 02"+ 0C*
=XZ2'+-0C"=XY*+40C":
therefore « XZ* or XY*. Q.E.D.

When the variable line of section in the course of its revo-
lution round C enters the supplemental region of the angle
ACB, the circle AOB is of course no longer available for the
above representation; but then it may be replaced by another
A'O'B inscribed in the supplemental region, and the new circle
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will continue to represent the law of the variation on the same
scale as before, provided only the distance CO’ of its centre from
the vertex of the angle is equal to the distance CO of the
centre of the original circle from the same,

- Com. 8°. Letting fall 4P and BQ perpendiculars from 4 and
Bon XY; then,since AP. BQ+AC.BC=sin ACZ.sin BOZ,
therefore, from Cor, 2°,, AP, BQ+ XZ*=AC.BC+ OC* or

44P.BQ+ XY*=AC.BC+ 0(C",
a property of the circle which may be easily proved directly.

67. The sum oj' the stnes of any two angles is equal to twice
the product of the sines of half the sum and of the complement of
half the difference of the angles

The difference qf the sines of any two angles is equal to twice
the product of the sines of half the difference and of the complement
of half the sum of the angles.

Constructing, as in the properties of the precedmg article,
a triangle A BC, two of whose angles 4 and
B are the two angles, bisecting internally
or externally the arc ACB of the circum-
scribing circle at M and N respectively,
and connecting both points of bisection
with 4, B, and C; then the angles MNA4,
or MNB, and MNC being respectively half
the sum and half the difference of the angles CNA and CNB,
that is, of the angles B and A4, the four chords C4, CB, MA4, or
MB, and MC divided each by the diameter of the circle are re-
spectively the sines of the four angles B, 4, }(4+B) and
3’4 ~ B), and the two chords N4, or NB, and NC divided each by
the diameter are the sines of the complements of }(4 + B) and
3(4 ~ B); and to prove the theorems it remains only to shew
that, (CA+CB): CN:: (MA+ MB) : MN,

and that  (CA ~ CB): CM:: (NA+NB) : NM.

From the two inscribed quadrilaterals MNCA and MNCB,
since by Ptolemy’s theorem,

CA .MN=CN.MA+CM.NA

and CB.MN= CN.MB% CM.NB,
G2
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therefore by addition and subtraction
(CA+ CB). MN= CN.(MA + MB)

and (c4~ CB) .MN=CM.(NA+ NB),
and therefore &c.

Or, more dnrectly, from the two inscribed quadnlaterals
ABCN and ABCM, since by the same theorem

' CA.NB+ CB.NA=CN.AB,
and CA.MB~ CB.MA=CM.AB,
therefore at once

(CA+ CB): CN=AB: (AN or BN)= (MA + MB): MN,
and (CA~,CB):CM=AB:(AM or BM)=NA+ NB: NM,
and therefore &e. _

Cor. The preceding supply evident solutions of the four
problems :

. To divide a given angle, mtemally or externally, tnto two parts

whose sines shall have a given sum or difference.

And the proportions on which they depend of the two

problems.
Given of a triangle (ACB) the base, the vertical angle, and
the sum or the difference of the sides, to construct 1.
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CHAPTER V.

ON THE CONVENTION OF POSITIVE AND NEGATIVE
IN GEOMETRY.

68. THE most striking characteristic of modern as contrasted
with ancient geometry is comprehensiveness of language and
demonstration. General enunciations on the one hand, and
general demonstrations on the other, comprehending in the geo-
metry of the present day all the different cases of the various
‘properties considered, arising from variations in number, position,
‘or magnitude, among the elements of the figures involved, which
in the geometry of former days would have been regarded as so
many distinct propositions, requiring each a separate statement
and independent proof of its own. All such enunciations and
‘demonstrations, moreover, unencumbered, in consequence of this
very character of comprehensiveness and generality, with the
accidental peculiarities and unessential details of particular cases,
and involving accordingly the essential elements of abstract
principles only, being thus the more readily apprehended, easily
remembered, and instructively suggestive, in proportion as they
are comprehensive and general. These important and charac-
-teristic advantages are mainly due to the employment, now
universally recognised by geometers, of the algebraic signs +
-and — to indicate the directions in which the various magnitudes
coming under their consideration are measured, with regard
to which they have laid down the following general rule of
convention.

In every case of the comparison of magnitudes susceptible of
measurement in either of two opposite directions the signs +
and — are employed to distinguish between the directions.

Segments measured on the same line, arcs measured on the
same circle, angles measured round the same vertex, triangles
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or parallelograms described on the same base, perpendiculars or
any other isoclinals erected to or let fall upon the same line, are
obvious examples of different kinds of geometrical magnitudes
coming under the above head ; every two of each of which, when
considered together in any number, are therefore to be regarded
as having similar or opposite signs according as the directions
in which they are medsured are similar or opposite.

69. In every application of the above principle of convention
it is optional which of the two opposites is to be regarded as the
positive and which the negative direction, but the selection once
made, and either sign given to either direction in any case, the
same sign must be given to the same direction and the opposite
sign to the opposite direction throughout the entire case. In

‘the comparison of magnitudes whose directions of measurement

are not either similar or opposite, such as segments on different
lines, triangles or parallelograms on different bases, perpen-
diculars or isoclinals to different lines, not parallel to each other,
the selection for each separate direction and its opposite is also
optional ; but once made for each in any case must invariably
be adhered to throughout the entire case.

It is this distinctive principle of modern as contrasted with
-ancient geometry, this recognition of magnitudes as having not
only absolute or numerical value but also sign determined by
application of the above general rule of convention, which has
mainly tended to render the language and demonstrations of
the former independent of all accidental variations among the
_component elements of the figures to which they refer.

70. In accordance with the preceding principle the familiar
terms “sum” and “difference” are employed in the geometry
of the present day with an important modification of their ac-
customed significations as employed in the geometry of former
times, and to the present day in arithmetic, which must be
carefully attended to in order to an accurate, and in. many cases
even an intelligible conception of the true meaning intended
to be conveyed by their use, which is as follows :

The term “sum ” as employed in arithmetic is used to denote
the result of adding together the numerical values of any number
of magnitudes taken absolutely without any regard to their
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-signs, so that there it is always a positive quantity ; in geometry,
.on the contrary, it is applied to the same result with this
«difference that the signs of the several magnitudes are taken
dnto account in the addition; so that the geometric sum of any
number of magnitudes really means the arithmetic sum of all
that are positive among them minus the arithmetic sum of all
that are negative, and this is what is uniformly meant by the
term “sum’’ as now invariably employed in geometry unless the
contrary be expressly stated.

"~ It thus appears that the sum of any number of geometrical
magnitudes is to be regarded as positive, negative, or nothing,
according as the aggregate of the positive individuals or terms
composing it happens to exceed, fall short of, or equal, that of
‘the negative.

All that has been said in the above remarks applies equally
to the term “difference” as employed in the geometry of the
present day in reference to two magnitudes. It denotes in
arithmetic the result of subtracting one from the other attending
only. to their absolute values, and in geometry the same result
taking into account also their signs; thus the geometrical
'difference of two magnitudes may be their arithmetic sum,
‘and conversely.

71. Similar remarks apply to the terms “product” and

*“ quotient” as employed in the geometry of the present day,
‘compared with their known significations as employed in arith-
metic; in the latter, as in the cases of “sum” and ¢ difference,”
the absolute values of the magnitudes only being taken into
‘account, while in the former their signs also are attended to.
Hence, since in the multiplication or division of any two quantities
like signs produce always a positive and unlike signs a negative
result, the preduct or quotient of any two geometrical magni-
tudes is to be regarded as positive or negative according as they
have similar or opposite signs ; and so, more generally, is the pro-
duct of any number of magnitudes according as there happens
to be an even or an odd number of negative signs amongst them.
The rectangle under any two lines being the same as their
product, and the ratio of any two lines the same as their quo-
tient ; it follows from the above that the rectangle and the ratio
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-of any two lines have always the same sign, and are positive or

negative together according as the lines themselves have
similar or opposite signs. The square of every real line for the
same reason is always positive, whether the line itself be posi-
tive or negative.

72. The terms “ Arithmetic Mean” and % Geometric Mean,”
as employed in the geometry of the present day in reference
to any number of magnitudes, ought for uniformity sake to
bear the same relation to their “ Arithmetic Sum” and “ Geo-
metric Sum” respectively. Such however is not the case,
those terms having been employed to denote two entirely
different things long before the consideration of signs had been
forced on the attention of geometers, the former to denote tke
n™ part of the sum, and the latter to denote the »™ root of the
product of any n magnitudes. In the same acceptations they
are still employed, only with this difference, that in estimating
the sum or product the signs as well as the absolute values of
the several magnitudes are taken into account.

In geometry, therefore, the terms ¢ Arithmetic Mean” and
“ Geometric Mean,” in reference to any number of magni-
tudes, denote respectively the n™ part of their geometric sum
and the n™ root of their geometric product, n being the number of
the magnitudes. Hence, n being necessarily a positive integer,
the former is positive or negative with the sum in every case,
and the latter positive or negative with the product when =
is odd, but real or imaginary and of either sign indifferently
according as the product is positive or negative when = is even.

N.B. The term ¢ Arithmetic Mean” is employed in geo-
metry in the same sense as the term “mean” or *average”
is employed in ordinary language.

73. Since by the evident law of continuity, as it is termed
in geometry, a magnitude of any kind which varies con-
tinuously according to any law cannot possibly pass either in
increase or decrease from any one value to any other without
passing through every intermediate value on the way. It might
appear at first sight as if a variable magnitude at the point of
transition from positive to negative, or conversely, should neces-
-sarily pass always through the particular value 0. Such however



NEGATIVE IN GEOMETRY. 89

is not the case. Magnitudes susceptible of indefiuite increase,
as for instance the distance of a variable from a fixed point
on a line, passing as often through « as through 0 in changing
sign.

To see this, if indeed it be not evident of itself from the
example adduced, we have but to conceive two reciprocal
magnitudes of any kind (8) to vary continuously, and either
of them to change sign by passing through 0; for since the
product of two such magnitudes is, from the nature of their
connection, invariable both in magnitude and sign, every
change of sign in either is necessarily accompanied by a simul-
taneous change of sign in the other, and every passage of either
through 0 or ® by the simultaneous passage of the other
through @ or 0, and therefore &ec.

On the other hand, however, magnitudes unsusceptible of
indefinite increase, and oscillating therefore as they vary be-
tween their extreme maxima and minima values (59), if
they change sign at all, do so only by passing through 0 at
each point of transition ; thus for instance, the sine of an angle
regarded as a magnitude, whose absolute value can never exceed
1 (60), changes sign only by passing through 0, its value
whenever the angle itself in continuous increase or decrease
= + 2n right angles, n being any integer of the natural series
0, 1, 2, 3, 4, 5, 6, &c. to infinity.

74. In every application of the principle of signs, some
method of notation which would indicate the directions, as
well as represent the magnitudes, of the quantities considered
would be of manifest convenience, and should as far as
possible be systematically adhered to; the biliteral notation
(4) which represents a magnitude of any kind by means of
the two letters representing its extremities, whenever otherwise
convenient, effects this purpose in as simple and expressive a
manner as could be desired, by merely the order (4) in which
the two letters are written.

Thus, a geometrical magnitude of any kind whose extremi-
ties are .4 and B is to be considered as measured, if represented
by AB in the direction from 4 to B, and if by BA in the op-
posite direction from B to 4. So that in accordance with the
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convention of signs, AB is always to be regarded as =— B4,
or which is the same thing 4B+ BA =0, whatever be the
nature of 4 and B and of the magnitude intercepted between
them (3).

This premised, we proceed now to illustrate the convenience
of the convention of signs by a few applications of very
general utility in almost every department of pure and applied

geometry.

75. If A and B be any two points on a line, and P any
third point taken arbitrarily on the same line, then whatever be
the position of P with respect to A and B,

AP—-BP=AB,

regard betnq had to the signs as well as the magnitudes of the
‘three intervals tnvolved.

For, if 1°., P be external o AB at the side of B, then as
AP, BP, and AB have all the same direction, and therefore
the same sign, the relation is evident; if 2°. P be external to
AB at the side of 4, then, as by case 1°.,, BP— AP= B4, and
as by the convention of signs B4 = — AB, therefore &c. And
if 8°., P be internal to 4B, then as evidently AP+ PB=AB,
and as by the convention of signs PB = — BP, therefore &c.

A point P thus taken arbitrarily upon a line 4B is said
to divide that line, externally or internally according to its
position, into two segments AP and BP, which, whether both
measured from the extremities of the line to the point of
section or from the point of section to the extremities of the
line, have evidently similar or opposite directions, and therefore
similar or opposite signs, according as the point of section is
external or internal to the line. Hence the above relation
expresses the general property that, when a line AB ¢s cut,
externally or internally, at any point P, the geometrical difference
(70) of the segments into which it ts divided 48 comstant and
equal to the length of the line.

The segments of a line AB divided at any point P having
similar or opposite directions, and therefore similar or opposite
signs, according as the point of section is external or internal to
the line, their rectangle and ratio are therefore both positive
wn the former case and negative in the latter.
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Hence, the problems “ to divide a given line into segments,
having a given rectangle or ratio,” which would be ambiguous
were the absolute magnitude of the rectangle or ratio alone
given, becomes completely determinate when the sign also is
given with it.

Cor. 1°. If a line AB be cut, externally or internally, at any
point P, then whatever be the position of P with respect to
A and B,

AP + BP*= AB'+ 24P.BP; ..
regard being had to the signs as well as the magnitudes of the
two seqgments AP and BP.
*  For, since by the above AP— BP= AB, whatever be the
“position of P, therefore AP*+ BP'—2A4P.BP=AB", and there-
fore &c.

This relation being true for every position of P includes
therefore the two properties (Euc. 11. 7 and 1), the rectangle
AP.BP being positive or negative according as P is external
-or internal to 4B.

Cor. 2°. If from any point P a perpendicular PQ be let fall
upon a line AB, then whutever be the position of P with respect
to A and B,

AP'— BP'*=AB'+2A4B.BQ,
regard being had to the signs as well as the magnitudes of
AB and BQ).

For by (Euc. 1. 47, Cor.) AP' -~ BP'=AQ’- B@", and by
the preceding Cor. 1°., AQ'=AB"+ B@'+24B.B¢Q, there-
fore &ec. ]

This relation being true for every position of P includes
therefore the two properties (Euc. 11. 12 and 13), the rectangle
AB.BQ being positive or negative according as the angle
PBA is obtuse or acute.

76. If A and B be any two points on a line, C the point on
the line for which AC+ BC =0, and P any other point on the
line, then whatever be the position of P,

AP+ BP=2.CP c.oovveverrenrivrineensrinienn 1),
AP.BP=AC.BC+ CP... ...covvnneuun... ),

AP'+ BP'= AC*+ BU*+2CP* ... (3), -
AP~ BPP=2AB.CP ..o, (4),
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regard being had to the signs as well as the magnitudes of the
several segments tnvolved. ’

For, taking the sum, product, sum of squares, and difference
of squares of the relations,

AP=AC+ CP, and BP=BC+ CP,

which by the preceding (75) are true, whatever be the position
of C, and remembering that by hypothesis AC+ BC=0, and
that always AC—BC=AB, the above relations are the im-
mediate results.

The point C on the line AB for which as above AC+BC=0
being evidently the point of internal bisection of the line; the
.second of the above relations includes therefore the two pro-
perties (Euc. 11. 5 and 6), and the third the two (Euc. 11. 9 and
10), both being independent of the position of Pj; the first
expresses that whatever be the position of P the distance CP
s the arithmetic mean of the distances AP and BP; and the
fourth, that whatever be the position of P the difference of the
squares of the distances AP and BP varies as the distance
CP. The four combined also supply obvious solutions of the
four general problems: *To cut a line of given length, so that
the sum, difference, sum of squares, or difference of squares of
the segments, shall have a given magnitude and sign.”

Cor. If AB and A'B' be any two segments on the same line,

O and C' their two middle points, then always
CC"=AA + BB or AB'+BA',

2 2
regard being had to the signs as well as the magnitudes of the
several segments tnvolved.

For, since for any arbitrary point P on the line, by the
first of the above relations

2.CP=AP+ BP and 2.C’P=A'P+BP,
therefore by subtraction
2(CP-C'P)=(4AP- A P)+(BP-B'P)or (AP-B'P)+(BP-A'P),
and therefore as above (see 75)

2CC'=44'+ BB or AB 4+ BA'. Q.E.D.
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77. If A and B be any two points on a line, a and b any two
numbers positive or negative whose sum 18 not =0, O the point on
the line for whick a.AO+b.BO=0, and P any other point on
the line, then, whatever be the position of P,

@, AP+ 5.BP=(a+4b8).0P...ccuccererercirirnnnees (1),
a.AP’+b.BP’=a. 40"+ b.BO* + (a+b).OF...(2),
regard being had to the signs as well as the magnitudes qf the
several quantities tnvolved.

For, since by (75), AP=A0+ OP and BP=BO0+ OP,
whatever be the position of O, multiplying the first by a and
thé second by & and adding, then multiplying the square of the
first by a and the square of the second by 5 and adding,
remembering in both cases that by hypothesis a.4 0+5.B0=0,
the above relations are the immediate result.

Given the two points 4 and B and the two multiples a and 3,
to determine the point O, for which as above a. 40 +5.80=0,
and which is evidently internal or external to AB according as
a and b have similar or opposite signs. Assuming arbitrarily
any point P on the line 4B, and measuring from it a length
a.PA+b5.PB

a+bd !

the point O by the first of the above relations is that required,

and by aid of it the two relations supply obvious solutions of

the two following problems: “on a given line AB to determine

the point P for which the sum a.AP+b.BP or the sum of

the squares a. AP’ +b.BP* shall have a given magnitude and
o

PO equal in magnitude and sign to the sum

In the particular case when a+5=0, the value of PO, on
which the position of O determined as above depends, being
then infinite, the point O is therefore at an infinite distance,
and the above relations both fail in consequence of their right-
hand members becoming both indeterminate (13). Smce, how-
ever, in that case b =— a, the sum

a.AP+b.BP=a.(AP—BP)=a.AB, (15),
and therefore s constant ; and the sum of the squares
a. AP +b.BP*=qa (AP' -~ BP*)=24.4B.CP, (16),
C being the middle point of 4B, and therefore varies as CP;
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relations simpler than those for the general case where a'+
is not =0.

CoRr. If from the three points A, B, and O, perpendiculars
or any other isoclinals AL, BL, and OL be let fall upon any
arbitrary line L, then, whatever be the position of L,

a. AL+ b.BL=(a+b).0L,
regard being had to the signs as well as the magnitudes of the
several quantities involved.

For, in the particular case when L is parallel to 4B, since
then AL=BL= 0L the relation is evident; and in any other’
case if P be the point in which L intersects 4B, since by
similar triangles AL : BL: OL=AP: BP: OP, and since by
the first of the above relations a.4P+b.BP=(a+b) OF,
therefore &ec.

78. If A, B, C, D, E, F, dic. be any number of points on a-
line, situated vn any manner with respect to each other, then, what-
ever be their order and disposition—

For every three of them A, B, C,

~ AB+BC+ CA=0.
For every four of them A, B, C, D,
AB+BC+ CD+DA=0.
For every five of them A, B, C, D, E,
AB+BC+CD+DE+EA=0;

and so on for any number, the last being always comwcted
with the first tn completing the circuit, and the signs as well as
the magnitudes of the several intercepted segments being always
taken in account tn the summation.

For, since by (75),

AB+BC=AC, AC+ CD=AD,
AD+ DE=AE, AE+ EF= AF, &e.,
therefore,  AB+ BC+ CA=AC+ CA=0,
AB+ BC+ CD+DA=AD+ DA =0,

AB+BC+ CD+DE+EA=AE+EA=0, &, -
and therefore &c. Q.E.D.
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T 79 [fA B, C, D, d&c. be any number (n) of points on a Tine,

- disposed in any manner, O the point on the line for which

A0 +BO+ CO+DO+de.=0, and P any other point on the
line, then, whatever be the position of P,

. AP+ BP+ CP+ DP+&c.=n.0P..........couueeeunee. (1),
AP 4 BP' 4 CP* + DP* + &c.= AO*+ BO*+ CO" + DO + &e.
B o T £ N (2),

t]w signs as well as the magmtudes qf' the several segments bem_q
taken tnta account sn the first.

For, taking the sum and the sum of the squares of the several
relations AP=A40+ OP, BP=BO+ OP, CP=C(CO0 + OP,
DP=DO + OP, &c., which by (75) are true whatever be the
posltmn of O, and remembermg that, by hypothesls,

AO+BO+ CO+DO+ &e.=

the above relations are the immediate result.
The point O on the line for ‘which, as above,
AO+BO+ CO+ DO+ &e.=0,
or, a8 it may be more concisely written, 3 (4 0) =0, being such
by relation 1, that for every other point P on the line the
distance OP ts the arithmetic mean of the several distances AP,
BP, CP, DF, dc., is termed, in consequence, the mean centre
of tke system of" pomts 4, B C, D, dc.; and to determine its
position. when the latter are given, we have but to assume
drbitrarily any pomt P on the line, and to measure from it a
distance PO equal in magnitude and sign to the n™ part of the
sum of the distances. P4, PB, PC, PD, &c., or, as it may be more

concisely written, = ( A)

; the point O, by relation 1, is that

required, and by its md the two relations 1 and 2 supply
obvious solutions of the two general problems: ¢ Given any
number of peints A, B, C, D, dc. on a line, to determine the point
P on the line for whick the sum = (AP) or the sum of the squares
2 (AP?) shall be given.”

. Cor.'1°. If at the mean centre O a perpendicular OS be
erected to the line whose square 08 =the n™ part of the sum of
the squares = (A '), then for any point P on the line the sum of
the squares = (AP") =n.8P".
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For, since by relation 2, = (AP*) == (40" +n.0P, and

since by construction, = (4 0%) =n.0S", therefore

2 (AP)=n(08"+ OP")=n.8P".
Hence the variable sum = (4.P") has equal values for every two
points on the line equidistant from O, and the minimum value
for the point O itself.

Cor. 2°. Since when, as in relation 1, = (4P)=n.O0P, then,
as in relation 2,

S (AP)=n.0P*+=(A0")=n.0P*+ X (4P~ OP)',
it follows consequently that—

" When the same sum, S (AP), 1s cut into any number n of
unequal parts AP, BP, CP, DP, &ec., and also tnto the same
number n of equal parts OF, OP, OP, OP, d&ec., the sum of the
squares of the n unequal parts 3 (AP") s equal to the sum of
the squares of the n equal parts n.OP" + the sum of the squares
of the n differences 3 (AP— OP)".

Cor. 8°. If A, B, C, D, &c. and A', B’y C'y I', &o. be two
systems of any common number of points on the same line, O and
O their mean centres, and n their common number of points, then

00 AA'+ BB'+ CC'+ DD’ + &e.
= n
any mode of correspondence between the points of the systems in
pairs being adopted in the summation.
. For since, for any arbitrary point P on the line, by relation 1,
n.0P= AP+ BP+ CP+ DP+ &c.,

and n.0P=A'P+ B'P+ C'P+ D P+ &e.
therefore.
n(OP- OP)=(AP— A'P) +(BP-B'P)
+ (CP— C'P) + (DP— D'P) + &c.,
or (75) n.00'=A4A4'+BB'+ CC' + DD’ + &e.,
and therefore &c.

Cor. 4°. If A, B, C, D, &ec.and A, B', C', D', &ec. be any two
systems of pomta on the same line, 0 and o tlmr mean centrea,
and n and v’ their numbers qf pomts, then ’

00 = (A,A)

nn
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every. peint of ane system- being combined in the summation with

every point of the other.

" For, adding together the several relations,

' A4+ BA'+ CA'+ DA’ + &e.=n.04, ;

' AB'+ BB'+ CB' + DB’ + &c.=n.0B, o
_AC'+BC + CC' + DC' + &e.=2.0C', -
AD' 4+ BD' + CD' + DD + &e.=n.0D', &e.

there results at once the relation

E(AA)—-n (04'+0B'+0C'+0D +&e.)=n.2(04' )—nn 00’

and 1:herefore &e.

80. .[fA B C, D, &-c b6 any system quomta on a lme,
disposed._in any manner, a, b, ¢, d, &ec. any system of corre-
apondmg multiples, positive or negative, wkose sum w not = = 0,
O the point on’the line for which

" @, AO+b5.B0+¢.C0 +d.DO + de.=0,

and P any other pomt on the line, tlum, whaitever be the poat-
tiom-of P,
6. AP+b, BP+c.CP+d.DP+ de.=(a+b+c+d+de.). OP (
a.AP'+b.BP*t¢.CP* +d.DP* + ¢v. '
' =a. A0 +b.B0*+ ¢.CO*'+d.D O + de.
+(a+b+etdt de).0P i, (2)y -

regard being had to the signs as well as the maqmtudes of the
geveral quantities involved.

For, multiplying the several’ relatlons AP AO + OP
BP—BO+ OP, CP=C0+ OP, DP=DO + OP, &c., whxch
by, (75), are true whatever be the position of O, a.nd also then'
gquares, by the several corresponding multlples a, b, c, d, &e.,
and adding, remembering in both cases .that by liypothéditi
3 (a.40) =0, the above relations are the immediate result. °

The point O on the line, for which as above = (a.40)="0,
is termed, in virtue of relation 1, the mean centre of -the system
quomtsA B, C, D, dc. for the system of multiples . a,b ¢, d,
de. ;' and to determme its position when the several poinis and:
multiples are given, we have but to assume arbitrarily any
point P on the line, and to measure from it a length PO equal

H
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in magnitude and sign to ﬂ—;'é%) , the point O, by relation 1,
is that required, and by its aid the two relations 1 and 2 supply
obvious solutions of the two general problems: * Given any
number of points on a line A, B, C, D, d&c., and the same number
of corresponding multiples a, b, ¢, d, d&c. whose sum 18 not =0.
To determine the point P on the line for which the sum = (a.AP),
or the sum of the squares = (a.AP®) shall be given.”

In the particular case when = (a)=0, the value of PO, as
given by the above formula, being then infinite, the point O is
therefore at an infinite distance, and the relations 1 and 2 both
fail in consequence of their right-hand members becoming both
indeterminate (13). This case, the laws of which, though
simpler, differ altogether from those of the general cage when
3 (a) is not =0, will be considered separately in the next section.

CoRr. 1°. If round the mean centre O as centre and with a
radius OP whose square equal to the absolute value qu(;.(_f)O’) )
disregarding its sign, a oirole be described tntersecting the line at
the points M and N, and the perpendicular to it through O in
either direction at the point S, then for amy point P on the line
the sum of squares 3 (a.AP')= 3(a).8P" or 3(a).MP.NP,
according as 3 (a) and 2 (a.4 0") have similar or opposite signs.

For since, by relation 2, = (a.4AP*) =3 (a). OP* + = (a.4 0",
and since by eonstruction 2 (2.4 0%) = + = (a). OR", therefore

2 (a.AP*) =3 (a).(OP* + OR") = 2 (a). 8P* or 2 (a). MP.NP.
Hence, in both cases, the variable sum = (a.4P) has equal
values for every two points on the line equidistant from O,
and the minimum value for the point O itself; it being re-
membered however that as it vanishes in the second case at the
two points M and N, and increases negatively from each up
to O, the term mingmum is to be understood in the sense of
negative maximum in that case, see (58).

Cor. 2°. If a system of any number of points on a line 4, B,
C, D, dc., and their mean centre O for any system of multiples
a, b, ¢, d, dc., be projected by perpendiculars or any other
parallels AA', BB', CC', DD, dc., and OO upon any arbitrary
ling L, then, whatever be the position of L.
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a. The projection O' of the mean centrs is the mean centre of
the projections A', B, C', D'y &c. of the points for the same
system of multiples.

b. The projector OO of the mean centre, is the mean of
the projectors AA', BB, CC', DD, &c. of the poinis for the
same gystem of multiples.

For, as in Cor. 1 (77), for the case of two points. If L
be parallel to the line of the points, both properties are evident ;
and in any other position, if P be the point in which the two
lines intersect, since by similar triangles,

AP: BP:CP: DP, &ec.: OP=A'P: BP:C'P: DP, &c.: OP
=AA4': BB : CC': DD, &e.: 00,
and sinee by relation 1,

= (a.4P) =3 (a). OP; therefore =(a.4'P) == (a). O'P,
and 2(a.44") =2 (a). 00, and therefore &c. ,

Cor. 8°. If 4, B, C, D, &c. and A', B, C', D', dx. be two
systems of any common number of points on the same line, O and
O their mdan centres for any common system of multiples a, b, ¢, d,
de. then

00 = a.A4'+b.BB' +¢.CC' +d.DD + &e.

a+b+ec+d+&e. !
pairs of points having common multiples being combined in the
summation,
For, since for any arbitrary point P on the line, by relation 1,

2 (a).0P =a.AP +b.BP+c.CP +d.DP + &e.,
and 2 (a).0P=a.A'P+b.BP+c.C’P+d.DP+ &e.,
therefore
2 (a).(OP~ O'Pjy=a.(AP- A'P) +b.(BP- B'P)
+¢.(CP—- C'P) +a.(DP— D'P) + &c.

and therefore as above
2(a).00' =a.44' +5.BB 4+¢.CC’ +d.DD' + &e.

Cor. #°. If A, B, C, D, dc. and 4', B', C', D', dsc. be any two
systems of points on the same line, O and O' their mean centres for
any two systems of multiples a,b, o, d, &c., and o', ¥, ¢, d, &e., then

2 (ad’.44)) N
00 =
"2(a).2(a)

H?2
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every point of orie system being combined in the summation with
every point of the other.
For, adding together the several relations.
3. AA'+b.BA' +¢.CA'+d.DA' + &c.=2(a). 04,
‘a.AB' +b.BB' +¢.CB' +d.DB' + &c.=2(a).0B,
- a. 40 +b5.BC"' +¢.CC'+d. DC +&e.=2(a).0C",
6.AD +b.BD +¢.CD' +d.DD' + &e. =2(a).0D, &e.
multlphed respectively by o/, ¥, ¢, d', &c. there results imme-'
tlxately the relation
" B(aa'.44)=2(a).3(a’. 0A)=2(a).2(a’).00’,
and thevefore &c. o '

81. If A, B, C, D, de. be any system of points on a line dis-
posed in any manner, a, b, o, d, de. any system of corresponding.
multiples, some positive and some negative, whose sum =0, then
Jor every point Pon the line not at infinity the sum Z(a. AP) has
the samé constant value.
¢ In the same case; if I be the point on the line for which the
sum 3 (a.AI*)=0, then for every other point P on the line the
sum 3 (a.AP")=2k.IP, k being the constant value of the sum

2 (a.AP) for every point on the line.

" “To prove the first,—since for any two pomts P and Q on
the line by (75),

AP—AQ—QP BP—BQ— QP O'P-- CQ=QP, DP—DQ QP &e.
therefore, multiplying by g, b, ¢, d, &c. and addmg,

' 3 (a.4AP) - 2(a.4Q)=2(a).QP=0,
when 2 (a) =0, whatever ‘be the positions of P and ¢, pro-
vided neither of them be at infinity, and therefore &c.

" To prove the second,—since for any two points P and Q on.
the line by (76 (4)),

AP~ AQ'=24R.QP, BP'-BQ'=2BR.QP,
CP*— C@¢=20R.PQ, DP'— D@ =2DR.PQ, &.

R being the middle point of PQ, therefore, multiplying by.
a, b, ¢, d, &c. and adding, -

2 (a.4P)-2(a. AQ") =22 (a. AR) .QP=2k. QP,
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when . = (a)= 0, whatever be the positions of -P and @; and
therefore when either of them @ is the particular point I for
which = (a.AI") =0, then for the other P, whatever be its
position, = (a. AP") = 2k.IP, as above stated.

From the above relations it appears that, while the sum
2 (a.AP) is invariable, the sum = (a.4P") follows a very simple
law of variation when 2(a)=0, being simply proportional to
the distance of P from a certain pomt I on the line, admitting
therefore of no maximum or minimum value, but susceptlble of
every value positive and negative from 0 to  , passing through
infinity as P passes through infinity, and through nothing as P
passes through I, and changing from positive to negative, and
conversely, at the passage through each. .

" Té¢ determine the point Z, when the several pomts 4,B, C,D,
&ec..and the several multlples a,b, ¢, d, &c. are gnven assuming
arbitrarily any point P on the lme, and measuring from it a
length PI equal in magnitude and sign to

2 (a. P4")  =(a.PA")
-2k = 2.2 (a.PA4)’
the. pomt I, by relation 2, is that required, and by its aid the
same relatlon supplies an obvmus solution of the more general
problem, “to determine the point P on the line for whick the
2 (a.PA?) shall have any given magnitude and sign.”

In the partlcular case where the constant % =0, the value
of PI, as given by the above formula, being then infinite,
the point [ is therefore at an 'infinite distance, and the relation

3 (a.AP*) =2k.IP fails in consequence of its rlght-hand member
becoming indeterminate (13). In that case however it is easy to
see that, as it ought, the sum Z (a.AP") has the same constant
value for every point on the line not at infinity.

. For since for every two points Pand Qon the line, as above
shown, =(a.AP") — 2(a.4 Q") =2k. QP, whatever be the value
of k, therefore when k=0, 2{a.AP") =3 (a.AQ"), whatever
be the positions of P and Q, prov1ded nelther of them be at
infinity, and therefore &c.

Among the various ways in which the constant % may be
represented in the form of a single quantity, when the several
pomts 4, B, C, D, &c. and the several multiples a, b, ¢, d, &c
are given, the iollowmg is perhaps the most convenient.’
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Concelving the entive system of points = (A) divided into two
distinct groups, one 3(A,) corresponding to the positive, and the
other X (A.) to the negative multiples. If O, and O_ be the mean
centres of the two groups for their respective systems of multiples
Z(a,) and 2 (a_), the constant sum

2(a.AP)=2(a,).0,0, or =2(a).0_0,.
For, 2(a.AP)=% (a,.4 P)+=2(a..A_P)=32(a,).0,P
+2(a_).0_P, by (80),

but 2(a,) + 2(a.) =2 (a) =0, by hypothesis,
therefore %(a.AP)=Z2(a,).(0P— O_P),
or=2(a).(0_P— 0,P)=2(a).0,0., or =2(a).0.0,.

Hence when the two points O, and O_ coincide, the constant
k=0 at all points of the line.

In every case where the constant k=0, the position of the
mean centre O of the entire system of points = (A) for the
entire system of multiples 2 (a) s indeterminate. The relation
= (a.4 0) =0, by which that point, in general unique, is charac-
terized (80), being then satisfied indifferently by every point on
the line. An example of this for the case of three points will be
given in the next number.

Hence, generally, the position of the mean centre O of any
system of points 4, B, C, D, &c. on a line for any system of
multiples a, b, ¢, d, &c. whose sum =0, is either indeterminate
or impossible a¢ any finite distance, indeterminate if the value of
the constant % =0, impossible if not.

82. If A, B, C, D be four points on a line disposed in any

manner, then always, none of the four being at infinsty,
BC.AD+CA.BD+ AB.CD =0,

regard being had to the signs as well as the magnitudes of the six
segments involved.

For since whatever be the positions of the four points (75),

AD—- CD=AC, and BD - CD= BC,
therefore, multiplying the first by BC and the second by 4C,
and subtracting
BC.AD+ CA.BD+(AC-BC) CD=0,

the same as above, AC — BC being always = AB (75).
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Henee, {see preceding article), the mean céntre O of three potnts
4, B, C on a line for three multiples a, b, ¢, proportional in
magnitude and eign to the three intervals BC, CA, AB 13 inde-
terminate. Every point P on the line in virtue of the above
relation, satisfying indifferently the characteristic condition,

a.AP+b.BP+ ¢c.CP=0.

As four points on a line 4, B, C, D, however disposed, deter-
mine in every case six different segments corresponding to each
other two and two in three different sets of opposlte peirs
BC and AD, CA and BD, AB and CD, the above is the general
relation connectmg those six gegthents in all cases, regard being
had to their signs as well as their niaghitudes, and interpreted
absolutely, disregarding signs, it expresses evidently the general
property that—

Whatever be thé disposition of four pomts on a line the rect-
angle under one pair of opposites of the six segments they deter-
mine ts numerically équal to the sum of the rectangles under the
other two pairs.

. If the four points in the order of their disposition be de-
noted by 1, 2, 3, 4 respectlvely, it is easy to see that in all
cases the rectangle 13.24 is the one that is equal to the sum of
the other two 12.34 and 23.14; for denoting by z, y, z the
absolute intervals from 1 to 2, 2 to 8, 3 to 4, respectively, disre-
garding their signs, the relation

@+y)(y+s)=ae+y @+y+32),
is evidently in all cases identically true.

Cor. 1°. If A, B, C, D be four points on a line disposed in
any inanner, and O any point whatever not at infinity, then always
area BOC. area AOD + area COA. area BOD

+ area AOB. area COD =0,

regard being had to their signs as well as their magnitudes.

For in the relation BC.AD+ CA.BD+ AB.CD =0, mul-
tiplying each segment by half thé length of the perpendicular
from O on the line, the relation just given is the immediate
restlt.

CoR. 2°. More generally if A, By C, D be any four points



Jo4 ON THE CONVENTION OF POSITIVE AND

and O any fifth point, none of the five being at infinity, then alwaya
area BOC. area AOD + area COA. area BOD
+ areaAOB area COD =0,

regard being had to their signs as well as their magnitudes. -

For conceiving the four lines 40, BO, CO, DO, met by a.ny
fifth line L not parallel to one of themselves in the four points
4', B',"C’, D', since then (64)

area BOC:area BOC' = 0B.0C: OB'. 00", '
and area AOD : area A'OD'=0A.0D: O4'. OD),
both pairs of triangles having the same angles at O; therefore
srea BOC. area 40D : area B'OC . area 4'OD/
=0A4.0B.0C.0D: 04'.0B'.0C'. 0D,

and (both remaining pairs of corresponding products having for
the same reason the same ratio) therefore

a.rea BOC.area 4 OD areaCOA.area BOD:area 4 OB, area COD
= area.B'OC" area A'OD :area C'OA'.area B'OD
:area A'OB'.area Cc'oDr;

but by Cor. 1°. the sum of the three consequents =0, therefore,
also the sum of the three a.ntecedents =0, and therefore &e.

COB 3 .(f OA 0B, 0 C, OD be four lines passing throu_qh
pomt then in all cases whatever be their directions, . _
sin BOC.sin 40D+s8in COA.sin BOD + sin 4 OB.sin COD=0,
regard being had to the signs as well as the ma_qmtudes of the six;
angles involved. .
For, if 4, B C, D be the four points in which any line not
passing thro‘ugh O intersects the four lines; since then by (64)

OB. OC smBOC—2areaBOCand0A 0OD.sind OD=2aread 0D
there}'ore B
OA UB. OC' OD. smBOC smAO.D-—4area BOC. areaAOD

and snmllar relations for the same reason exnstmg for the other
two pairs, therefore,

8in BOC .sin AOD : sin (’OA sin _BOD sin A OB sin COD
=arcaBOC.aread OD:area CQ4.areaB OD:aread OB.areaCOD,
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but by Cor. 1° the sum of the three antecedents =0, therefore
also the sum of the three consequents = 0, and therefore &c.
Otherwise thus, if 4, B, C, D, be the four points in which
any circle - passing through O intersects the four lines, then
since (62) diameter of circle.sin BOC=chord BC, and dia-
meter of circle.sin 40D =chord AD; therefore dlameter" of
circle . sin BOC.sin 40D = chord BC . chord AD, and (similar
relations for the same reason existing for the other two pairs)
therefore A
sin BOC.s8in AOD:sin COA.sin BOD:sin AOB.sin COD
= chord BC.chord 4D : chord CA4.chord BD : chord A B.chord CD;

but by Ptolemy’s theorem (Euc. vI. 16, Cor.) one of the three
consequents is always numerically equal to the sum of the other
two, therefore, disregarding signs, the same is true also of the
three antecedents, and therefore &ec.
Cor. 4°.  If A, B, C be any three points in a line, and AL, BL,
OL their three distances perpendicular or tn any common direction
Jrom any line L not at infinity, then always
BC.AL+ CA.BL+ AB.CL=0,

regard being had to the signs as well as the magnitudes of the several
quantities involved.

For, if L be parallel to the line containing the points, then
since AL=BL=CL, and since by (718) BC+ CA+ AB=0,
therefore &c., and if not, then if P be the intersection of the two
lines, since AL BL: CL AP: BP: CP, and since by the above
BC.AP+ CA.BP+ AB.CP=0, therefore &e.

Cor. 5°. If L, M, N be any three pa'rallel lines and PL PM,
PN their three dzstances perpendicular or in any common dzrectwn
f'rom any point P not at infinity, then always
- MN,PL+ NL.PM+ LM.PN=0,

reqard bemy had to the signs as well as the magnitudes of the
several quantities énvolved.

For if 4, B, C be the three points in which any line through
P not parallel to their common direction intersects L, M, N, then
since MN: NL: LM: PL:PM:PN:: BC: CA: AB: PA: PB: PC,
and since by the above BC.PA + CA.PB+ AB.PC=0,
therefore &ec. -
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CoR. 6. If L, M, N be any three &mes passing through o
point O, and PL, PM, PN the three perpendiculars or any other
tsoclinals upon them from any point P not at infinsty, then always

8in MN . PL +sin NL . PM +sin LM . PN=0,
regard being had to the signs as well as the magnitudes of the
several quantities involved.

For, dividing by PO the distance of P from O, or more
generally by the diameter of the circle passing through P and
O and through the feet of the three perpendiculars or isoclinals,
the relation becomes evidently identical with that of Cor. 8°. for
the four lines OL, OM, ON, OP, and therefore &e.

The three sides of every triangle being as the three sines of
the opposite angles (63), the three sines in the preceding formula
may therefore be replaced by the three sides of any triangle
formed by parallels to the three lines.

Cor. 7°. If a, B, & be the three angles of any triangle, and
o, By o those at which the three opposite sides a, b, c ¥ntersect
any line d, then always

sina.sina’ . +8inB.sin 8 +siney.singy' =0,
regard being had to the signs as well as the magnitudes of the six
angles involved.

For, drawing through any arbitrary point O four lines 04,
OB, 0C, OD parallel to a, b, ¢, d, then since by parallels
BOC=a, COA=B, AOB=v, and 40D=da, BOD=g,
COD = o/, the relation is evident from that of Cor. 3°.

83. If A, B, C be three points on a line disposed in any
manner, and AP, BP, CP the three lines connecting them with
any potnt P not at infinity, then always

BC.AP'+ CA.BP'+ AB.CP'=- BC.CA.AB,
regard being had to the signs as well as the magnitudes of the three
segments tnvolved.

For letting fall from P the perpendicular PQ on the line,
then since (75 Cor. 2°.)

» AP'—~ CP'=AC"+2A4C.0Q,
and BP' - CP'=BC"+2 BC.CQ,

therefore, multiplying the first by BC and the second by 4C,
and subtracting,
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BC.AP'+ CA.BP'+(AC-B(C).CP*=BC.AC*'-AC.BC*
=~BC.CA.(AC-BC)
the same as the above, 4 C— BC being always = 4B (75).

From the above which is the general relation connecting any
three lines drawn from a point to a line, and the three segments
they intercept on the line ; it is evident that when A, B, and C
are fixed, the sum BC.AP'+ CA.BP'+ AB.CP" 73 vndepen-
dent of the position of P and therefore constant for all points at a
Jenite distance ; an example of the general property established in
(81), that when, as in the present instance (see preceding article),
the sum = (a .4 Q) is nothing for every point on a line, then the
sum 2 (a.4 @°) is constant for every point on the line, and there-
fore for every point whatever not at infinity, the quantity
3 (a) PQ* by which the sums for the two points P and @ differ,
Euc. 1. 47, vanishing with'2 (a) for every position of P for
which P@Q is not infinite.

Dividing both sides of the above relation by its right-hand
member — BC.CA.AB, it assumes the not less symmetrical but
more compact form

AP BP* cp
aB.actBcpat caop="
regard being had of course to the signs as well as the magni-
tudes of the three rectangles AB.AC, BC.BA, CA.CB in
the addition. :

CoR. 1°. If A, B, C be three points on a line disposed in any
manner, and AR, BS, CT the three tangents from them to any
circle, not either at infinity or infinite in radius, then always

BC.AR'+ CA.BS*+ AB.CT"=- BC.CA.AB,
regard being had to the signs as well as the magnitudes of all the
quantities tnvolved.

For, if P be the centre of the circle, then since

AR'=AP'-PR', BS'=BP'- PS8, CI"=CP - PT",
and since PR = PS = PT = radius of circle, therefore

BC.AR'+ CA.BS*+ AB.CT*=BC.AP* + CA.BP*
+ AB.CP* - (BC + CA + AB).radius’ of circle,

the first part of which by the above =~ BC.CA4.4B, apd the
second point of which by (78) =0, and therefore &c.
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Dividing, as in the original, both sides of this latter rela-
tion by its right-hand member — BC. C4.A4B, it too assumes the
more compact and not less symmetrical form .

AR BS* or
as4actBoBat ca.cBT

regard again of course being had to the signs as well as the
magnitudes of all the quantities involved.

Cor. 2°. If CZ be any line drawn from the vertex C to the
base AB of any triangle ACB, then always .

AZ.CB*- BZ.0A*= AB.(CZ* - AZ.BZ),

regard being had to the signs as well as the magnitudes of the
three intercepts AZ, BZ, and AB.

This relation is obkusly the same as the above, only stated
in' the form in which it most naturally presents itself in tbe
process by which it was established above.

The following particular cases are deserving of notice :

. If Z bisect AB, then AZ=}A4AB and BZ ——‘}AB and
the relatlon becomes
- CZ*—- AZ.BZ=}(CA*+ CB"),
the known relation connecting the base, bisector of base, and
sides of a triangle, (Euc. 11. 12, 13, Cor.).

2°. If CZ bisect ACB externally or internally, then as
AZ: BZ=+ AC: BC, (Euc. V1. 3), therefore AZ.CB=+ BZ.CA
according as the bisection is external or internal, and the relation,
remembering that in either case 42—~ BZ=AB (75), becomes

CZ'- AZ.BZ=7% CA.CB,
the known relation connecting the sides of a triangle, either
bisector external or internal of the vertical angle, and the
segments into which it divides the base.

8°. If the triangle be isosceles, then C4= CB, and the
relation, remembering as before that always 42— BZ = AB_

becomes  (7*_ 4Z.BZ= CA* or CB* or CA.CB,

the known relation connecting either side of an isosceles tri-
angle, any line drawn from the vertex to the base, and the
rectangle under the segments into which it divides the base
(Eue. 11. 5, 6, Cor.).
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3°, 'If the triangle be right-angled, then C4*+ CB*=AB*,
and the relation, multiplying its two sides, the first by 4Z - BZ,
and the second by its equivalent 4B, which causes the rectangle
AZ.BZ to disappear in virtue of, the property of the triangle,
becomes

' BC*"AZ*+ AC*.BZ*= AB*.CZ",
the general relation connecting the sides and the distances of
any point on the hypotenuse from the vertices of a right-
angled triangle.

Cor. 3°. If A, B, C, D be any four points on a circle taken
in the order of their disposition, and P any fifth point without,
within, or upon the circle, but not at infinsty, then always
area BCD.AP* — area CDA.BP*+ area DAB.CP*

—area ABC.DP* =,

regard being had only to the absolute magnitudes of the several
areas which from their disposition are incapable of being compared
in sign.

For, joining P with the intersection O of the two chords
AC and BD, which from their positions necessarily intersect
internally ; then from the relation, Cor. 1°., applied successively
to the two triangles APC and BPD, disregarding all signs in
each, and attending only to absolute values throughout,

CO.AP'+ 40.CP*=AC.(PO*+ 40.C0),
_ DO.CP* + BO.DP*=BD.(P0* + BO.DO),
from which, as 40.C0=B0.DO, (Euc. 111. 35), therefore
immediately
BD.CQ.AP*+ BD.A0.CP*=AC.D0.BP*+ AC.BO.DP,

which is evidently identical with the other, the four rectangles
BD.CO, &c. multiplied each by the sine of the angle of inter-
section of the two chords 4C and BD being respectively the
double areas of the four triangles BCD, &c.

This theorem is due to Dr. Salmon, who has given it in
his Conic Sections as the geometrical interpretation of the ana-
lytical condition that four points 4, B, C, D should lie on a
circle.

Cor. 4°. If A, B, C, D be any four points on a circle taken
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tn the order of their disposition, and AQ, BR, C8, DT the four
tangents from them to another circle not either infinttely distant
or infinite tn radius, then always

area BCD.A Q* — area CDA.BR* + area DAB.CS*

. —area ABC.DT*=0,
regard being had, as in Cor. 3°., only to the absolute values of the
several areas.

For, if P be the centre of the latter circle, then since
PQ = PR=PS=PT=radius of that circle,
and since
area BCD + area DAB=area CDA + area ABC

=area of quadrilateral 4ABCD,
therefore

area BCD.P@Q" — area CDA.PR* + area DAB. PS*
—area ABC.PT* =0,

which relation, subtracted from that of Cor. 3°., leaves imme-
diately that just stated, and therefore &c.

If in this relation, as in that of Cor. 1°, any of the points
A, B, C, D be within the second circle, the squares of the corre-
sponding tangents are of course negative.

Cor. 5°. If OA, OB, OC, OD be four lines passing through
a point, then in all cases, whatever be their directions,
sin BOD.sinCOD  sinCOD.sin AOD + 8in4 0D.sinBOD _ 3
#nBOA.snCOA | snCOB.snA0B T snd0C.snBOC ™~ 7
regard being had to the signs as well as the magnitudes of the
sxr angles involved.

For, drawing any line L parallel to OD, meeting 04, OB,
00 in A4, B, C, then since (63)

sinBOD _ A0 . sinCOD _ A0
snBOA = 4B ™ snC04 =40’
therefore sinBOD.sin COD A0

sinBOA.smCOA ~ 4B.4A0’
and, similarly,
sinCOD.sinAd0D _ BO* d sinAOD.sinBOD_ co |
#nCOB.smAOB ~ BO.B4A ™™ sind0C.simnBOC ~ CA.CA’
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but, by the original relation of the present article, the sam of
the three right-hand members =1, therefore also the sum of the
left-hand members =1, and therefore &c.

Cor. 6°. If 04, OB, OC be three lines passing through a
point, and PA, PB, PC the three perpendiculars upon them from
any point P not at infinity, then always whatever be their directions

PB.PC.sinBOC+ PC.PA.sinCOA + PA.PB.sin A0OB
=—P0"sinBOC.sinCOA .sin 4 OB,

regard being had to the signs as well as the magnitudes of the
several quantities tnvolved.

For, dividing both sides of the relation by its right-hand
member — PO*.sin BOC.8in C0A.sin 4 OB, the relation of Cor.
5°., for the four lines 04, OB, OC, and OP, is the immediate
result, and therefore &c.

~ Cor. 7°. Ifa, B,y be the three angles of any triangle, and
oy By« those at which the thres opposite sides a,b, ¢ intersect
any line d, then always
sin@.siny _ siny.sina’  sina’.sinS’
sinB.siny | siny.sina  sna.smB
regard being had to the signs as well as the magnitudes of the six
angles tnvolved.

For, as in Cor. 5°. of the preceding article, drawing through
any arbitrary point O, four lines 04, OB, OC, 0D parallel to
a, b, ¢, d; then since BOC=a, COA=8, AOB=v, and
AOD=ad', BOD=g, COD=¢, the relation is evident from
that of Cor. &

Con. 8°. If A, B, C be the three vertices of any triangle, and
4X, BY, OZ three parallels drawn from them in any direction to
meet the three opposite sides BC, CA, AB, then always

BX.C’X+ 0Y.AY+ AZ.BZ _

4x* BY* (A A

regard being had to the signs as well as the magnitudes of the
three rectangles involved.

For, if a, B, v be the three angles of the triangle at 4, B, C,
and «, 8, o' those at which the three opposite sides intersect

L,

1,
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any line parallel to the common direction of the three parallels,

since then

BX sing’ d CX __sinf
" sin /8 = siny
therefore BX.CX sinf'.siny

AX*  sinB.siny’

)

and similarly,

CY. AY siny'.sina nd AZ.BZ _sind. sin B’
BY' " siny.sina ¢ TOZ " sina.sinf ’

and the relation consequently is evident from that of Cor. .

84. We shall conclude the present chapter with one or two
applications of a very simple problem of very frequent occurrence
in Pure and Applied Geometry

G1ven in magnitude and szgn the ratio m : n of the seqmnts
AP and BP into which a given line AB s cut at a point P, to
determine the segments in magnitude and sign. '

Since, by hypothesis, AP : BP=m : n, therefore

" AP: AP—BP:m:m—n, and BP: BP— AP=n: n—m,

and since in all cases 4P— BP=AB, and BP—AP=BA,
therefore

AP=-"_ 4AB=-"_ BA,
m-—n n—m
BP= " _ AB=-"_.BA,
m-—-n } n=m

which are the general formule by which to calculate in numbers
the segments of a line of given length cut in any given ratio.

Cogr. 1°. As an application of the preceding let it be required’
to determine for any triangle ABC the lengths of the bisectors,
external and internal, of the three angles, and the segments they
tntercept on the opposite sides.

. If AX, BY, CZ be the three external, and AX', BY', CZ'
the three mternal bisectors, then since (Euc VL 3)

EX_ BA dBX’_ BA.
cx=teoa*™ ox=" o4’
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therefore, by the above, . .
: BA ’ BA

BX= m.BO, BX = m.BG,
(0] ; o4 o
“X=ta-pa% X=ozy5a B

and therefore at once, by subtraction, remembering that similar
formule for the same reason hold for the other two sides,

) 2BA.CA > 2CB.AB
X' X= o A= O04" BC, Y'Y= ————CB,_AB,.CA,

24C.BC
which are the general formul® by which to calculate in numbers
the lengths of the three mtercepts X'X, Y'Y, Z'Z, when the
sides of the tnangle are given. :
" Since again, at once, by multiplication,

. BA.CcA . v vy BA.CA
with corresponding values for the other two sides, therefore, by
Cor. 2°, (83), :

.BC",

| AX'=DBA.CA {(BA CA) _11
. 4X"=B4.04 {1- (m‘l%'m)'}’

which with similar values for the other two sides are the formuls
by which to calculate in numbers the lengths of the six bisectors
AX and AX', BY and BY", CZ and CZ' when the sides of the
triangle are given.

From the above values for X'X, Y'Y, Z'Z, it is ewdent th&t
their reciprocals are connected in all cases by the two followmg
‘relations:

1 1 BC* 04* AB’
xxt W-* 77=%3d g3+ vy + 27
from which, regarding them as posmve or megative according
as they are similar or opposite in direction.with the sides of
the triangle measured from B to C, from C to 4, and from
A to B respectively, it is evident that one of them must have
in all cases the sign opposite to that of the other two.

=0,

I
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Cor. 2°. As a second application of the same, let it. be
required to determine for any triangle ABC the sides of the
squares exscribed and inscribed to the three sides, and the segments

they intercept on the perpendiculars from the opposite vertices.

(%) H o
x
x \
/l B/ D N
m AC y.'

Let EFMN be, fig. a, the inscribed, or, figs. 8 and ¢, the
exscribed square corresponding to the side BC of the triangle
~BAC; then drawing AD the perpendicular on that side from
the opposite vertex 4, intersecting MN in O, by similar triangles
MAN and BAC,wehave MN : AO=BC : AD, but, on account
of the square, MN= 0D, therefore, disregarding signs for a
moment, DO : AO=BC: AD; that is the perpendicular 4D
is cut at the point O, internally, fig. a, in the case of the in-
scribed, and externally, figs. 8 and v, in the case of the ex-
scribed square in the ratio of BC: AD; and therefore, by the

‘above
BC BC.AD

BCi+AD"® -AD= BC+ 4D’

the upper sign corresponding to the inscribed and the lower to
the exscribed square.

Similar formule holding of course for the other two sides
CA and A4B; if a, b, ¢ be the three sides-of the triangle, p, ¢, »
the three perpendiculars upon them from the opposite vertices,
x, ¥,  the sides of the three inscribed, and &, ', 2’ those of the
three exscribed squares; then, by the above,

OD =

= ® - _or
atp’ y—b+g’ =
U ap ! bq ’ or
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which are the general formulm by which to calculate in numbers
the sides of the six squares when the sides of the trlangle are
given.
It is evident from these formule, or directly, that while the
inscribed square corresponding to any side of a triangle lies
always on the same side of that side with the triangle ‘itself,
(fig. a); the exscribed square on the contrary lies on the same:
or on the opposite side, figs. 8 and v, according as the side of
the triangle to which it corresponds is greater or less than the
perpendicular upon it from the opposite vertex ; in the particular
case when a side of a triangle is equal to the perpendicular
upon it from the opposite vertex, the exscribed square corre<
sponding to such side is infinite, and may therefore be rega.rded
as lying indifferently in either direction.

Combining the above formul® in corresponding pairs, by
addition and subtraction, we have immediately

2a 2b , %r v
m+m=a,,_pp,,.a, y+y=bz_qg-b, z+2=m-"1 .
. 2ap = 2bg o — 2¢r
z =7 plp7 ¥y-y= o qnq’ =F_paT

whxch latter, regard being had to their signs as well as thelr
magnitudés, are the formulw for the lengths of the segments
mtercepted on the three perpendiculars of the tnangle by the
three pairs of squares.

- Taking again the reciprocals of the above formulwl v:z

111 1 1,1 11,1
x p a' y q b & r c?
1.1 1 1_1 1 1_1 1

and combining them also in corresponding pairs, by addition and
subtraction, we get

1. 1 2 1 1 2 1 1 2
sto=-y st n=o, CFo=o,
z @ p' y'y q' =z 2 r
1_1_8 1_1_3 1_1_3
x 2 a' y y b & & ¢’

which are the formul® by which to calculate in numbers a side
and perpendicular of a triangle when their inscribed or ex-
scribed squares are given.

12
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From the several preceding formule it is evident that any
two of the four corresponding magnitudes, viz., a side of a
triangle, the perpendicular upon it, the inscribed and exscribed
squares resting upon it, determine the other two.

The sides of the squares inscribed and exscribed to any side
BC of a triangle 4BC, being given by the above formule, the
squares themselves can of course be immediately constructed ;
if however it were required only to construct them without
having also to calculate their sides, of the several methods of
doing so the following is perhaps the most convenient.

On the side BC of the triangle upon which the squares are
to be constructed, describe the square BCHK, and connect
its two opposite vertices H and K with the opposite vertex 4.
of the triangle; the two connecting lines H4 and KA will
intercept on BC the base. EF of the required inscribed or ex-
scribed square EFMN—of the. inscribed if HK and A4 lie at
opposite sides of BC (fig. a)—of the exscribed if they lie at the
same side of it (figs. 8 and «y).

For, drawing EM and FN perpendiculars to BC and joining
MN; as the three lines AH, AK, and 4B pass through a point
A, and as EM and EF are parallels to HB and HK, therefore
EM: EF=HB: HK, and similarly FN: FE—KC KH, but
by construction HB—KC’ =HK, therefore EM=FN= —EF and
therefore &e.

A method exactly similar might obviously be employed to
solve the more general problem: “ Or any side BC of a given
triangle ABC to tnscribe or- ewseribe a- parallelogram of any
given form.”
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CHAPTER VL

. THEORY GENERAL OF THE MEAN CENTRE OF ANY SYSTEM;
OF POINTS FOR ANY SYSTEM OF MULTIPLES.

85. THE main features of this theory for the particular case
of a system of points disposed along a line having been already
given in sections 79, 80, 81 of the preceding, its extension to
a system of points dlsposed in any manner will form the chief
subject of the present chapter ; the followmg fandamental theorem
may be regarded as the basis of this extension.

If A, B, C, D, dc. be any system of points, disposed in any
manner, but none infinitely distant, a, b, ¢, d, de. any system
of corresponding multiples, positive or negative, but none infinitely
great, and O a point such that for two lines M and N passing
-through 4t = (a. AM) =0, and = (a.AN)=0; then for every line
L passing tkrough 0 2(e.AL) =0, regard being had in all the
sums to the signs as well as tke magmtudes of the several quantities
tnvolved.

For, if O be at aninfinite distance, then for the several poinfs
‘by Cor. 5°. (Art. 82) of the preceding chapter,
MN.AL+ NL.AM+ LM.AN=0,
MN.BL+NL.BM + LM .BN =0,
MN.CL+ NL.CM+ LM .CN=0,
MN .DL+ NL.DM+ LM .DN =0, &c.
And, if O be at a finite distance, then for the several points by
Cor. 6°. (Art. 82) of the same,
' sin MN. AL +sin NL.AM +sin LM. AN =0,
sin MN.BL + sin NL.BM + sin LM. BN =0,
sin MN.CL +sinNL.CM + sin LM.CN = 0,
sin MN . DL+ sin NL.DM + sin LM.DN = 0 &e.
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which multiplied in either case by a, b, ¢, d, &c. and added, |
give at once, in the former case the relation

MN.2(a.AL) + NL.2(a.AM) + LM.% (a.AN) =0,
and in the latter case the relation
sin MN.2 (a.AL)+sinNL.Z(a.AM) + sin LM.2 (a. AN) =0,

from which it follows immediately in either case that if any two
of the three sums = (a.4L), 2 (a.4M), = (a.AN) =0, the third
also =0, and therefore &c.

The case of O at an infinite distance corresponds, as may be
easily shewn, to that of =(a) =0, a case requiring, as we shall
see, special treatment in almost every point connected with the
present subject; for, since Z(a.AN)-—3(a.AM)=2Z2(a).MN
for every two parallel lines M and N whatever be their interval
of separation MN'; therefore if, as above, = (¢.AN) =2 (a.4AM)
for any two parallel lines M and N not coinciding with each other,
then =(a)=0, and if conversely =(a)=0, then 2(¢.AN)=2(a.AM)
-for every two parallel lines M and N not infinitely distant from
.each other, and therefore &c.

86. The point O related as above to a system of points
.4, B, C, D, &c. that for every line L passing through it the sum

a.AL+b.BL+0.CL +d.DL + &c. =0,

'is termed the centre of mean position, or ‘more shortly the mean
_centre of the system of points for the system of multiples a, b, c, d,
"&c. and is in general a unique point depending upon and vary-
ing with the positions of the points and the values of the mul-
tiples; the propriety of the name depending on the properties
of the point will appear in the sequel.

In the science of Mechanics, if 4, B, C, D, &c. be the posi-
tions, and a, b, ¢, d, &c. the masses of any system of material
perticles situated in the same plane, then is the point O, as above
defined, the centre of gravity of the system; in that science,
therefore, all propositions relating to this subject are of con-
siderable importance.

87. For every system of points 4, B, C, D, &c. there exists
a particular system of multiples a, b, c, d, &c. indeterminate of
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course in absolute but fixed and unique in relative values, such
that for every line L not actually at infinity, the sum 2 (a. AL) =0,
and for which therefore the mean centre O of the system is inde~
terminate ; in all such cases it is easy to see, 1°. that 2 (a) =0,
and 2°, that each point of the system is the mean centre of the
others for their respective multiples ; for, the values of = (a.AL)
being by hypothesis = 0 for two different lines passing through
a point at infinity, therefore by the preceding = (a) =0, and
being again by hypothesis =0 for two different lines passing
through any point of the system, therefore by the same that
point is the mean centre of the others for their respective
multiples ; instances of such cases are of course exceptional, but
whenever they present themselves, as they oacasionally do, their
exceptional peculiarities must always be attended to.

88. From the fundamental property of the preceding article,
it is easy to see that if a system of multiples a, b, ¢, d, &c. cor-
responding to a system of points 4, B, C, D, &c. be such that
for any three lines L, M, N not passing through a common point
Z(a.4AL)=0, 2(a. AM)=0, =(a.AN)=0, then for every line
I not actually. at infinity =(a.41)=0. For, if L', M', N' be
any three lines passing respectively through the three points
MN, NL, LM, and inteysecting on I, then since by (85),

2(a.AL)=0, 2(a.AM')=0, =(a.AN")=0,
therefore by the same = (a.47) =0, and therefore &

89. From the same again it appears, that if for a system
of multiples a, b, ¢, d, &c. a system of points 4, B, C, D, &c.
have two different mean centres O, and O,, then is every point
O indifferently a mean centre of the same system of points for
the same system of multiples ; for, whatever be the position of O,
since for the two lines. Z, and L, connecting it with O, and O,
the two sums = (a.4L,) and = (a.AL,) are both =0, therefore
for every line L passing through O the sum 2 (a.AL)=0, and
therefore &c. [Hence, whatever be the positions of the points
A4, B, C, D, &c. and whatever be the values of the multiples
a, b, ¢, dy &c. the mean centre O is always either indeterminate
or unique.
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 90. If A, B, C, D, dc. be the several vertices of a reqular
polygon of any order, and O the geometric centre of the figure,
then ©8 O the mean centre of the several points A, B, C, D, &e. for
the particular system of multiples each = unity.

For, if the polygon be of an even order, since for every line

passing through O the several pairs of perpendiculars from
pairs of opposite vertices are equal and opposite, therefore for
every line passing through O the sum of the perpendiculars
from all the vertices = 0, and therefore &c.; and, if the polygon
be of an odd order, since for every line passing through O
and through a vertex of the figure the several pairs of perpen-
diculars from pairs of vertices equidistant from that through
which the line passes are equal and opposite, and the one from
that vertex -itself = 0, therefore for every line passing through
O and through a vertex of the figure, and therefore by the
preceding for every line passing through O, the sum of the
perpendiculars from all the vertices = 0, and therefore &c.
- In consequence of the above, all properties true in general of
the mean centre of any system of points 4, B, C, D, &ec. for
any system of multiples a, b, ¢, d, &c. whose sum is not =0,
are true in particular of the geometric centre of any regular
polygon regarded as the mean centre of its several vertices for
the particular system of multiples each = unity.

91. If A, B, C be the three vertices of any triangle, and O
thetr mean centre for any three multiples a, b, c, then always—

1°. The three lines AO, BO, CO vntersect with the three
oppostte sides BC, CA, AB at three points X, Y, Z such that
- 5.BX+4¢.0X=0, ¢.CY+a.AY=0, a.AZ+b.BZ=0.

. 2. The three triangles BOC, COA, AOB are connected
with the three multiples a, b, ¢ by the proportions
area BOC : areaCOA : area AOB=a:b:c,

re_qard being had to the stgna as well as the magnitudes of the
several quantities involved vn each.
To prove 1°. Since for every three lines L, M, N passing
through 0O, (86)
a. AL+b BL +¢.CL=0, a. AM+5. BM+c CM=o0,
aAN+bBN+c CN=0, :
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if L pass through A4, then
AL=0 and BL:CL=BX: (X,
and therefore . BX + ¢.CX =0; if M pass through B, then
BM=0and CM: AM=CY: AY,
and therefore ¢.CY +a.4Y =0; and if N pass through C, then
CN=0and AN: BN=AZ: BZ,
and therefore a.4Z+b.BZ=0.
To prove 2°. Since the two triangles 40B and 40C have
a common base A4 O, therefore
areadOB: areaAOC=BL : CL=BX: (X,
since the two BOC and BOA have a common base BO, therefore
areaBOC : area BOA=BM: CM=BY : CY,
and since the two COA4 and COB have a common base CO,
therefore
areaCOA:areaCOB=AN: BN=AZ: BZ;
and the proportions 2°. follow therefore immediately from the
relation 1°.

Cor. The above relations supply each an obvious method
of determining the mean centre O of any three points 4, B, C
forming a triangle, for any three multiples e, b, ¢ given in magni-
tude and sign; the two following particular cases are deserving
of attention: . :

1°. If in absolute magnitude a=>=c, then 4X, BY, CZ
bisect the three sides of the triangle, all internally or two ex-
ternally and one internally according as the signs of a, 3, c are all
similar or two opposite to the third; O in either case is the
intersection of the three bisectors; and the three areas BOC,
COA, AOB are equal in absolute magnitude and have signs
in accordance with those of a, b, c.

2°. If in absolute magnitude a: b : ¢=BC: CA : AB, then
AX, BY, CZ bisect the three angles of the triangle, all inter-
nally or two externally and one internally according as the
signs of a, b, c are all similar or two opposite to the third; O in
either case is the intersection of the three bisectors, and there-
fore the centre of the inscribed or of one of the three exscribed
circles of the triangle; and the three areas BOC, CO4, AOB
are proportional in absolute magnitude to the three sides BC,
CA, AB, and have signs in accordance with those of , b, c.
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92. If A, B, C, D, d&c. be any system of points, O their mean
centre for any system of multiples a, b, c, d, &c. whose sum s not = 0,
and L any arbitrary line, then always whatever be the position of L

2(a.AL)=2(a).0L,
regard being had to the signs as well as the magnitudes of the
several quantities involved.

For, drawing through O the line M parallel to L, then since
for any two parallel lines Z and M whatever be their common
direction or distance asunder = (a.AL) - = (a.AM) =3 (a). ML,
if, a8 in the present case, one of them M passes through O,
since for it =(a.AM)=0 (86) therefore for the other L what-
ever be its position = (a.AL) =2 (a).OL, and therefore &c.

Cor. 1°. This is the property which gives to the point O its
designation of * Mean Centre” of the system of points 4, B, C, D,
&ec. for the system of multiples a, b, ¢, d, &c., and by its aid when
the latter are both given the former may be determined in all
cases by the following general construction :

Drawing arbitrarily any two lines Z and L' not parallel to
each other, the two parallels to them M and M’ distant from
them by the intervals L)} and L'M’ equal in magnitude and
sign to the quantities 2 (; '(f)A) and = (;'(f)A) pass, by the
above, through, and therefore intersect at, the mean centre
O; in the particular case where =(a)=0, the position of O
thus given is at infinity (85), unless also = {a.LA) and 2 (a. L' A)
both =0, in which exceptional case it is indeterminate (87).

Cor. 2°. The mean centre O of any given system of points
A, B, C, D, &c. for any given system of multiples a, b, ¢, d, &c.
may also be determined by the following in general less rapid,
but in many cases not less convenient process, based like that
just given on the above, vis.:

Connect any two points 4 and B of the system, and take on
the connecting line 4B the point P for which a. 4P+ 4.BP=0
(17> Connect then the point P with any third point C of the
system, and take on the connecting line PC the point Q for
which (a +3) . PQ + ¢.CQ=0. Connect then the point Q with any
fourth point D of the system, and take on the connecting line
QD the pomnt R for which a+b+¢). QR +d.DR=0. Con-
pect then the point R with any fitth point E of the system,




OF POINTS FOR ANY SYSTEM OF MULTIPLES. 123

and take on the connecting line RE the point S for which
(@a+b+c+d). BS+e.EES=0, and so on, until all the points of
the system are exhausted, the last point O thus determined is
the mean centre required.

For since for every arbitrary line L, by (77) Cor.

a.AL+b.BL=(a+1b).PL,
(a+8).PL+c.CL=(a+b+c¢).QL,
(@+b+c).QL+d.DL=(a+b+c+d).RL,
(a+b+c+d).RL+e.EL=(a+b+c+d+e).SL, &e.

therefore for the last point O, by addition

a.AL+b.BL+¢.CL+d.DL+ &c.=(a+b+c+d+&c.).0L,

which, by the above, is the characteristic property of the mean
centre.

In the particular case when 2 (a) =0, the point O thus de-
termined being the point of external bisection of the last con-
necting line in the above process is therefore at infinity, unless
when the length of that connecting line =0 in which ewceptmal
case 1t 18 indeterminate.

Cor. 3°. Stating the above general relation in the equivalent
form 2 (a.AL) — 2 (a).OL =0, it appears that, if to any system
of points 4, B, C, D, &c. be added their mean centre O for any
system of multiples a, b, ¢, d, &c., then is the system of points
A, B, C, D, &c. and O, for the system of multiples q, b, ¢, d, &c.
and - 2 (a), of the exceptional character mentioned in (87), for
which for every line L not at infinity the sum 2 (a.4L)=0, and
for which therefore the mean centre is indeterminate. Hence the
original system of points 4, B, C, D, &c. and of multiples
a, b, ¢, d, &c. being entirely arbitrary, it appears that—

For a system of the exceptional character whose mean centre is
indeterminate, all but one of the points may have any positions
whatever, and their corresponding multiples any values whatever,
provided only the remaining pdint be the mean centre of the others
Jor their system of multiples, and the remaining multiple corres-
ponding to it be equal in magnitude and opposite in sign to the
sum of the others.

Cor. 4°. Since for every line L tangent to any circle round
.0 as centre the distance OL is constant and equal the radius
of the circle, and since, by the above, the sum Z(a.AL) is con-
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stant when the radius OL is constant, and conversely, there-
fore—

If A, B, C, D, &c. be any system of points, and O their mean
centre for any system of multiples a, b, ¢, d, &c. whose sum 13
not = 0, then for every line L tangent to any circle round O as
centre the sum =(a.AL) ¥ constant and = the radius of the circle
multiplied by = (a), and, conversely, every line L for which the
sum 2(a.AL) 18 constant touches the circle round O as centre
whose radius = the constant sum divided by 2 (a).

This property supplies obvious solutions of the following
general problems, viz.: “Given any system of points 4, B,
C, D, &c., and any system of corresponding multiples a, b, ¢, d,
&ec. whose sum is not =0, to draw a line L parallel to a given
line, or passing through a given point, or touching a given
circle, so that the sum 2 (a.AL) shall =0, or be a maximum,
or have any given value.”

CouR. 5°. For every line L tangent to the circle tnscribed in
any triangle ABC the sum of the three rectangles
. BC.AL+ CA.BL+ AB.CL

18 constant and equal to double the area of the triangle.

For, by (91), the centre O of that circle being the mean centre
of the three points 4, B, C for the three multiples BC, CA4,
AB, therefore, by the above,

b BC.AL+ CA.BL+ AB.CL=(BC+ CA+ AB).0L;

ut
BC.0L=2areaBOC, CA.OL=2areaC0A4, AB.OL=2aread OB;
therefore their sum =2 area ABC, and therefore &c.

A relation exactly similar holds of course for each of the
three exscribed circles of the triangle, the sign of the side
to which the circle is exscribed being merely changed in the
above, see 91, Cor.

Cog. 6°. For every line L tangent to any circle concentric with a
-reqular polygon of any order n the sum of the perpendiculars from
the several vertices 18 constant and =n times the radius of the circle.

For, by (90), the centre O of the polygon being the mean
centre of the several vertices 4, B, C, D, &c. for the particular
system of multiples each =1, therefore, by the above,
2(AL)=n.0L, and therefore &ec.
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For a reqular polygon of any order n the sum of the perpen-
diculars from any point P upon the several sides is also constant
and = n times the radius of the circle inscribed in the figure.

For the sums of the perpendiculars from the centre O and
from any other point P upon the several sides multiplied each
by the common length of all the sides = donble the area of the
figure, and therefore &c.

93. If any system of points = (A) and of corresponding mul-
tiples = (a) be divided into any number of groups =(A)), =(4,),
=(4,), 2(4,), &c., and 2(a,), Z(a,), = (a,), 2 (a,), dc., none of
the latter being =0 ; then,if O, O,y O, O,, &c. be the several
mean centres of the several groups of pm'nts ﬁ)r the several groups
of corresponding multiples, the mean centre O of the system of
ponts O, O,, O,, 0,, dc. for the systems of multiples = (a,), = (a,),
Z(a,), 2 (a,), dc. s the same as that of the system of poents
A, B, C, D, d&c. for the system of multiples a, b, c, d, .

For, since for every arbitrary line L, by the preceding,
2(e,.4,L)=%(a).0,L, =(a,,A,L)=2(a,).0,L,
2(a,.4,L)=%2(a,).0L, Z(a,.4L)=2(a).0L,&ec.;

therefore the sum of all the first members = the sum of all the
second members; but, by hypothesis, the sum of all the first
members = = (a. AL), and, by the preceding, the sum of all the
second members

={2(a,) +=(a,) +=(a,) + =(a) + &c.}.OL;
from which, since by hypothesis

2(a) +2(a) +2(a) +2(a) + &e.=2(a);
therefore = (a.AL) =2 (a).OL, and therefore &c.

Cor. In the particular case when = (a)=0, if E(A) be
divided into any two groups =(4,) and =(4,) for which = (a,y
and 3 (a,) are not separately =0; then since, by hypothesis;
2(a)+ =(a,) =0, if O; and O, be the mean centres of the two
groups for their respective shares of the multiples, that of the
entire system for all the multiples being, by the above, the
point of external bisection of the line 0,0, is therefore the
unique point in which that line intersects infinity (15), ewcept
only when the two partial mean centres O, and O, coincide in
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which exceptional case it 18 indeterminate (87). The division of
2 (4) may, if we please, be into the two groups =(4,) and
= (4_) corresponding to the division of = (a) into its positive and
negative constituents 3 (a,) and =(a_) respectively; or onme
group may, if we please, consist of but a single point and the
other of all the rest.

94. If A, B, C, D, &c. be any system of points, M any line
parallel to the direction of their infinttely distant mean centre for
any system of multiples a, b, ¢, d, &c. whose sum =0, and L any
other line, then, whatever be the position of L,

2 (a.AL)=F.sin ML,
k being a constant depending only on the disposition of the points
and the values of the multiples.

For, if N be a third line passing through the intersection P
of L and M, and perpendlcular to the latter, then as in (85) the
three lines LMN passing through a common point P,

sin MN.= (a.AL)+8inNL.2 (a.AM) + sin LM. = (a. AN) =0,

from which as = (a.AM)=0 from the property of the mean
centre (86), and as sin MN=1 from the right angle MN (60),
therefore

2 (a.AL)=Z= (a.AN).sin ML,
which proves the proposition, the two sums X(a.4L) and
= (a.AN) depending when = (a) =0 (85) only on the directions
and not on the absolute positions of Z and V.

Otherwise thus, as a corollary from the general case, when
= (a) is not =0; conceiving the entire system of points =(4)
divided into any two groups = (4,) and = (4,) for which the sums
= (a,) and = (a,) of the corresponding groups of multiples are
not separately =0; then, by the general relation of the preceding
article, if O, and O, be the mean centres of the two partial
groups for their respective systems of multiples, and L any line
intersecting O, O, at any point P and at any angle a,

2 (a,.4,L)=2(a).0,L, and = (a,.4,L)=3(a).0,L,
and therefore, by addition,
2(@.AdAL)=3(a).0,L+%(a).0,L;
but O,L=0,P.sina, 0,L=0,P.sina, and 3(a,)+ = (a,)=0;
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therefore

2 (a.4L)=32(a).0,0,.sina, or =(a,).0,0,.sina,
which proves the proposition, and gives at the same time in its
most convenient form the value of the constant & or = (a.4N)
viz. 2 (a,). 0,0, or 2 (a,).0,0,. See (81).

The law of the variation of the sum = (a.AL) for different
positions of L is therefore very simple when = (a) = 0; depending
only on the direction and not on the absolute position of L;
vanishing for the direction of the infinitely distant mean centre
of the system ; being a maximum for the rectangular direction ;
and varying as the sine of the angle of inclination to the
central for every intermediate direction; n the exceptional
case where the two partial mean centres O, and O, coincide, and
when (93, Cor.) the position of O is consequently indeterminate, the
sum 2 (a.AL) undergoes no variation and vs absolutely =0 for
every position of L not actually at infinity, see (87).

Cor. 1°. By means of the above relation the direction of
the infinitely distant mean centre of a given system of points
A4, B, C, D, &c. for a given system of multiples a, 3, ¢, d, &ec.
whose sum =0, if not previously known may be readily deter-
mined. For drawing arbitrarily any two lines Z and L' not
parallel to each other, the line M dividing the angle between
them LL' so that in magnitude and sign '

- sinML : sinML' =X (a.AL) : = (a. AL')
‘gives, by the above, the required direction; n the exceptional
case when the two sums = (a.AL) and 2 (a.AL') are both =0,
the mean centre of the system is indeterminate, see (87).

Cor. 2°. The above relation also supplies obvious solutions
of the six following problems, viz.: “ given any system of points
4, B, C, D, &c., and any system of corresponding multiples
a, b, ¢, d, &c. whose sum =0, to draw a line L passing through a
given point or touching a given circle so that the sum = (a. 4L)
shall be nothing, or a maximum, or have any given value.”

95. If any system of points A, B, C, D, d&c. and their mean
centre O for any system of multiples a, b, ¢, d, d&c. be projected
in any common direction upon any line L, the projection O' of the
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mean centre 18 always the mean centre of the projections A', B',
C', D', &ec. of the several points for the same system of multzples

For, from the several points 4, B, C, D, &c. conceiving lines
AA, BB, CC, DDI, &c. drawn parallel to the line L to meet
the lme 00’ then since, Euc. 1. 34, 44, =4'0', BB,=B'0,
CcC,=C0, DD1=D’ 0, &c., and since, by the fandamental
property of the mean centre (86), =(a.A44,) =0, therefore
2(a.A4'0)=0, and therefore O is the mean centre of the system
of points 4'y B', C', I, &c. for the system of multiples a, , ¢, d,
&c.; when L passes through O then = (a.4'0)=0 and O itself
is the mean centre of the projected as well as of the original
gystem for the same system of multiples.

In the particular case when O is at an infinity, and when
therefore =(a)=0, its projection O’ upon every base L is of
course also at infinity, except only when the direction of projection
18 parallel to that of O itself in which case it is indeterminate.

In the exceptional case when O itself is indeterminate, and
when therefore again =(a)=0, its projection O’ upon every
base and for every direction of projection is of course also
indeterminate.

96. If A, B, C, D, dc. be any system of points, O their mean
centre for any system of multiples a, b, c, dy dc. whose sum 13
not =0, and L and M any two parallel lines, then always

2 (a.AL") - 2 (a. AM™) = 2 (a).(OL* - OM"),

whatever be the common direction and distance asunder of L and M.

For, identically,

2(a.AL")~2(a. AM") =2 (a).{(AL + AM).(AL-AM)},
from which since (AL — AM)=the constant interval between
L and M= (OL—-0OHM), and since, by (92), =(a.AL)=3(a). 0L,
and =(a.AM) == (a). OM, therefore at once
2(a.AL") -2 (a.AM*) =2 (a).(OL+ OM).(OL - OM)

=3 (a).(OL*- OM*®). Q.E.D.

Coz. 1°. When one of the lines M passes through O, then

for the other L,
2(a.AL") =2 (a. AM*) + = (a). OL?,

from which it appears that for a given direction of L the sum
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2(a.AL") is & minimum when "L passes through 0, and has
equal values for every two. positions equidistant in opposite
direetions from O; it appears also from the same that if the
sum 3 (a. AM ") is constant for all lines passing through O the\ '
sum 2 (a.AL") is constant for all lines touchmg a circle of any
radius described round O as centre. -

_ Com. 2°. The same relation also supplles an obv.lous solutlon
of the general problem : “Given any system of pomts 4, B, C, D,
&e., and any system of corresponding multlples a, b, c,. d, &c.,
whose sum is not-=0; to draw a line L in a glven direction
80 tha.t the sum X (a. AL") shall be glven

97. If 4, B, C, D, &e. beang]systemqumnts a,b c,d&c
any system of corresponqu multiples whose sum = 0y.and L and
M any_two parallel lines, then always

(a.AL?) — 2(a. AM’) = 2,k.sina. ML

kand a having the same signification as in (94). -
For, as in the precedmg, identically : '

S(a.AL) - 2 (a. AM’) =ZX(a).{{AL+AM). (AL AM)}

from which since (4L~ AM) = ML and since (94) -
Z(a.AL)=3 (a.AM) = k.sina,
therefore at once, as above, - .~ . '
2(a.AL) — 2(a. AM") = 2k .sina. ML
Cor. 1°. When' one of the liries M is the pa.rtlcular line for

its direction for which the sum E(a AM =0, then “for the
other L, .
= (a ALY = ok sma ML .
from which it appears that for a-given direction of L the sum

3 (a. AL) follows a very simple law of variation. when ¥ (a) =0
being simply proportional in sign as well as-in magnitude to
the distance of L from a certain liné M in that direction,
admitting therefore of no minimum or maximum value; passmg
through 0 and o with the distance ML ; and changmg sign
at the passage through each. For the partwular direction jfor
which a =0 whatever be the value . qf E, and for the exéeptiondl
case for which k==0 ‘whatever be . the value of ay the sum
= (a. AL*) undergoes mo. variation with the ‘inovément of L, bui

K
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preserves in magnitude and sign the same constant value for
every position.of L in the same constant direction.

Cor 2°. To find the ine M corresponding to a given direc-
tion of L, for which in the general case the sum 2 (a. AM™)=0;
drawing arbitrarily any line L in the given direction, the
parallel M distant from it by the interval ML = in magnitude

2
and sign to the quantity 22(,:';111:) = 22;(&'.‘218, by the relation
of Cor. 1°) is that required. For the particular direction for
which am=0 whatever be the value of k, and for the exception
* ease for which k=0 whatever be the value of a, the sum = (a.AL)
being =0, the position of M given by the above is at infinity,
unless at the same time the sum 3 (a.AL") also =0 tn which
case it 18 tndeterminate.

Cor. 3°. The above supplies an obvious solution of the fol-
lowing general problem : ¢ Given any system of points 4, B, C, D,
&ec., and any system of corresponding multiples e, b, ¢, d, &e.
whose sum =0, to draw a line L in any given direction so that
the sum 2 (a.AL") shall have a given magnitude and sign.”

98. If A, B, C, D, &c. be any system of points, O their
mean centre for any system of multiples a, b, c, d, dc. whose sum
és not=0, and P any arbitrary point, then always, whatever be
the position of P, A

2(a. AP") = 2 (a.A0") + £(a). OP*
the same relation as for a system of points on a line and leading
to the same consequences. See (80).

For, from the several points 4, B, C, D, &c. conceiving
perpendiculars A4', BB, CC', DI &c., let fall upon the line
OP, then since (75, Cor. 2°.)

... APP=A0*+OP'+24'0.0P
BP*=B0*+0P*+2B'0.0P
CP'=C0'+0P*+20C'0.0P
DP*=D0*+0P*+ 2D 0.0P, &ec.
therefore multiplying by a, b, ¢, d, &c. and adding
-, Z2(a.AP)=32(a.A0") +2(a).OP*+2.2(a.4'0).0P,
from which, since by (95), = (a.4'0) =0, therefore &.
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Cor. 1°. If round O as centre and with a radius OR whose

E(a AO")

square ='the absolute value of , disregarding 1ts sign,

a circle be described intersecting tlw line OP at the two points
M and N, and the perpendicular to it through O n either direc-
tion at the point S, then, whatever be the position of P, the sum
2 (a.AP)=Z(a). SP" or = 2 (a). MP.NP according as 3 (a) and
S(a.4 0') have similar or opposite signs.
For, since, by the above relation,
3 (a. AP") =3 (a).0OP’ + 2 (a.40"),
and since, by construction, = (a.4 0") = + 2 (a). OR', therefore
2 (a. AP*) =3 (a).(OP'+ OR")= = (a). SP* or = (a). MP.NP.
Hence, in both cases, the variable sum X (a.4P") has the
same value for all positions of P equidistant from O, and the
minimum value for the point O itself; it being remembered
however that as it vanishes in the second case for all points on
the circle OR, and increases negatively from the circumference
in to the centre, the term minimum is to be understood in the
sense of negative maximum in that case. See (80), Cor. 1°

Cor. 2°. For every point P on any circle round O as cenfre,
the sum 2 (a. AP?) is constant and = = (a.04") + = (a).radius* of
circle; and, conversely, every point P for which the sum %(a.AP?)
13 constant lies on the circle round O as centre the square of whose
radws—z(a .AP) ()(a AO’) '

These are both evident from the above, the first from the
general relation 2(a. AP")=%(a.4 0%)+=(a).OP*, and the other
from its equivalent = (a.AP") —3(a. 40" =3 (a). OF*; and
they supply obvious solutions of the six general problems, viz.:
“ Given any system of points 4, B, C, D, &c. and any system
of corresponding multiples a, b, ¢, d, &c. whose sum is not =0,
to determine on a given line or circle the point P for which the
sum = (a.A4P?) shall be a maximum, a minimum, or given.”

From the general property of this corollary, combined with
that of Cor. 4°. (92), it follows evidently that every circle round
O as centre is at once the locus of a variable point P for which
the sum = (a.A4P")is constant, and the envelope of a variable
line L for which the sum = (a.A4L) is constant, -

K2
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Cog. 8°. For every point P on the circle inscribed in any tri-
angle ABC, the sum BC.AP*+ CA.BP*+ AB.CP® 1s constant,
and exceeds the corresponding sum for the centre O by double the
area of the triangle multiplied by the radius of the circle.

For, by (91), the centre O of that circle being the mean
centre of the three points 4, B, C for the three multiples BC,
CA, AB, therefore, by the above,

BC.AP*+ CA.BP'+ AB.CP*=BC.A0*+ CA.BO"
+AB.C0'+(BC+ CA+ AB).OP;
but, as in Cor. 5., (92),
(BC+ CA+ AB).OP=2 area of triangle ;
and therefore &c.

A relation exactly similar holds of course for each of the
three exscribed circles of the triangle, the sign of the side to
which the circle is exscribed being merely changed in the above.

See (91), Cor.

Cor. 4°. If O be the centre and OR the radius of the circle
which passes through the several vertices A, B, C, D, &c. of a
regular polygon of any order n, then for every point P without,
within, or upon the circle = (AP*)=n.(OR*'+ OP').

For O being the mean centre of the system of points 4,
B, 0, D, &c. for the system of multiples each =1 (90); there-
fore, by the above,

S(AP)==(A0")+n.0P%
but - OA=0B=0C= 0D, &c.= OR,
therefore S(AP)=n.OR'+2.0P.

In the particular case when P is on the circle, since then
OP= OR, therefore = (4P")=2n.0R".

99. If A, B, C, D, deo. be any system of points, and O their
mean centre for any system of multiples a, b, c, d, dc. whose sum
18 not =0, then always

2(a).Z (a.A0") =2 (ab. AB"),
every binary combination of the points of the system being included
1n the latter summation.

For, in the general relation of the preceding article,

2(a.4AP")=Z2(a).PO*+ 2 (a. 407,
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¢onceiving the arbitrary point P to coincide successively with
the several points 4, B, C, D, &c. of the system, then ’

a. A4’ +b.AB +c. AC*+d.AD*+ &c.= 2(a). A 0°+ = (a.4 07),
a.BA*+b.BB" +¢.BC"+d.BD" + &c.= 2(a). BO*+ 2(a.4 0%,
a.C4*+5.CB+¢.CC*+d.CD* + &e.= 2(a). C 0*+ Z(a.4 0),
a.DA*+b.DB*4¢.DC*+d.DD*+ &c.= 2(a).D 0°+ 2(a.4 0%), &c;
which multiplied by a, b, ¢, d, &c. and added give, as 4.4 =0,
BB=0, CC=0, DD =0, &c., the relation

2 (ab.AB' +ba.BA") =3 (a).2 (a. A0") + 2 (a). 2 (a. A O*);
or, which is the same thing, the relation

2% (ab.AB*) =22 (a).2 (a. 4 0%,

the same as the above multiplied by 2.

The relation just proved, as furnishing for any given system
of points and multiples the value of the indispensable constant
2 (.40 without requiring the previous determination of the

point O, is, consequently, of considerable importance in every
numerical application of the formula® of the preceding article.

CoR. 1°. If O be the centre of the circle inscribed in any tri-
angle ABC, then , ’
BC.A0'+ CA.BO*+ AB.CO’=BC.CA.AB,
with similar relations for the centres of the three exscribed circles,
the sign of the side corresponding to each being stmply changed
in the above. , _ _
For, by (91), O being the mean centre of the three vertices
A4, B, C for the three multiples BC, C4, AB, therefore, by-
‘the above, '
(BC.A0*+ CA.BO*+ AB.CO").(BC+ CA + AB)
=(BA.CA.BC*+ CB.AB.CA’+ AC.BC.AB")
=(BC.CA.AB).(BC+ CA+ AB);
which is the same as the above relation multiplied by
BC+ CA+ AB.

Cor. 2°. If O be the centre and OR the radius of the circle
which passes through the several vertices A, B, C, D, dc. of a
regular polygon of any order n, then always = (AB") =n".OR". -
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For, by (90), O being the mean centre of the system of
points 4, B, O, D, &c. for the system of multiples each =1;
therefore, by the above, 2 (4B8%) =n.2 (4 0"), but

‘ .04 = 0B= 0C= 0D, &ec.= OR;
therefore = (0A4*)=n.0OR", and therefore &ec.

100. If 4, B, C, D, dc. be any system of points, M and N
any two lines perpendicular to the direction of their infinitely
distant mean centre O for any system of multiples a, b, c, d, &c.
whose sum =0, and P and Q any two points on M and N not
either of them at infinity, then always

2 (a.AP") -3 (a. AQ) =2k.NM,
k having the same signification as in (94).

For, drawing through P and @ two other lines M, and N,
parallel to the direction of O, and therefore at right angles to
M and N, then (Euc. 1. 47)

Z(a.AP")=3%(a.AM") + = (a. AM}),
2(@.4¢)=3(a.AN*)+ 2(a.AN});
from which, by subtraction, remembering (97) that
2(a.AM) - 2 (a.AN*)=2k.NM,
and that 2(a.AM})—2(a. AN}) =0,
the relation above stated is the immediate result.

Cor. 1°. From the relation just proved it follows that the
two sums Z(a.A4AP") and =(a.AQ") are both constant as long
as the two points P and Q continue on the same two lines M
and N perpendicular to the direction of O. If one of them N
be the particular line in that perpendicular direction for every
point @ of which the sum 2(a.4 @) =0, then for every point
P on the other M not at infinity

% (a. AP") =2k. NM = 2%. NP;

from which it appears that the sum = (a. 4 P?) follows, for different
positions of P, a very simple law of variation when =(a)=0;
being simply proportional in sign as well as magnitude to the
distance NP of the variable point P from a constant fixed line NV
perpendicular to the direction of O; admitting therefore of no
minimum or maximum value; passing through nothing and infinity
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with the distance NP; and changing sign at the passage through
each. In the exceptional case when k=0, and when therefore (94)
the position of O 13 indeterminate, the sum Z(a.AP") undergoes
no variation with the variation of P, but preserves in magnitude and
sign the same constant value for all positions of P not actually at
enfinity ; an instance of which we have met with in (83), where
for three points 4, B, C on a line, we have seen that for the
three multiples BC, 04, AB, the sum :

BC.AP*+ CA.BP*+ AB.OP*

is constant, whatever be the position of P provided only it be
not at mﬁmty :

Cor. 2°. To find the particular line N' perpendxcular to the
direction of O for every point of which in the general case the
sum X(a.4 @")=0; drawing arbitrarily any line M perpendicular
to the direction of O, the parallel to it N distant from it by the
interval NM = in magmtude and sign to the quantity

2(e.AM")  2(a.4N)
ok 2%(a.dAM)’
by the above is that required. In the exceptional case when
" k=0, and when the direction of L is therefore indeterminate with
that of O, the position of N given by the above i3 at infinity, unless
at the same time = (a.AM®) also =0 in whick case it ts tn-
determinate.

Cor. 3°. The above supplies an obvious solution of the follow-
ing general problem: “ Given any system of points 4, B, C, D,
&ec. and any. system of corresponding multiples a, 3, ¢, d, &c.
whose sum =0, to determine on a given line or circle or any
other figure the point or points P for which the sum = (a.A4P")
shall have a given magnitude and sign.”

101. The law, determined directly in the preceding, of the
variation of Z(a.PA") for the particular case of 3 (a)=0, may
also be inferred as a corollary from that of the same for the
general case of 3(a) not =0, given in (98); for, as in (81) and
{94), conceiving the entire system of points Z(4) divided into
any two groups 3(A4,) and 3(A4,) for which the sums = (a)
and =(a,) of the corresponding groups of multiples are not
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separately =0; then, by the ‘general relation of that article (98),"
if 0, and O, be the mean centres of the two partial groups for
thelr respective systems of mu]tlples, and P any arbitrary point
not at infinity, as
2 (0, 4,7 = 2(0,.4,07) + 3 (a).O, P,
@d S }"‘ (ax'AuP) =2 (a,.A,O:) +2 (ag)‘onp;
therefore, by addition, remembering.that =(a,.4,0) and
3(a,.4,0,)" are both constant, and that =(a,) +2(a,) by hypothesis
=0, it appears that the sum 2(a.A4P") depends on the quantity.
£(a).(0,P*~ O,P*) or its equivalent Z(a,).(OP"— O,P"), that
is, on the difference of the squares of O P and O,P, and is
therefore “constant (Euc. 1. 47, Cor.) when P is any where
en the same line perpendicular to 0,0,, and therefore &c.
In'the'wcepnbnal case when O, and O, coincide, and when there-
Jore O 18 indeterminate, as OP‘ OP' 0 for every posztwan
P ot at infinity, the sum = (a AP undergoes therefore no varia-
tion, but preserves in magnitude and sign the same constant value
(which may = 0) for all positions of P not at infinity.

¢ Cor. If I be the line bisecting at right angles the interval’
010,; since then (76), O F* — O,P*=2.0,0,.1P, therefore

Z(a).(OP— O,P), or its equivalent 2 (a,).(0,P"- OF"),

=2%(a).0,0,.1IP, or its equivalent 23 (a,).0,0,.IP, =2k.IP,
(94); and therefore if P and Q be any two points on any two
lines M and N parallel to 7, that is, perpendicular to 0,0, the
dlrectlon of O, then, by the above, o

€

2(a. APY) — % (2.4 Q) =2k.(IP- IQ) = = 2k NM;

the same formula exactly as that found directly in the precedmg
and leading- of course to the same consequences there ngen

102. If O be the centre of the czrcle insoribed in any trwnqle
ABC, 0, 0", 0" those of the three exscribed to the three suies
a, b c, and 8 the semi-perimeter, then

For every arbttrary line L not at infinity,
(s—a) OL+(s—1b) .O'L+(8-¢).0"L—-s.0L=0.. (1)
( 2°. For ev.ry arbitrary point P not at infinity, .-
(8 —a). 0P+ (2=b).0"P*+(s—c).0" P* — 5. OP* = 2ab...(2).
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To prove 1°. From the general relation =(a.4L)=Z2(a). OL,
(92) applied successively to the four points O, 0', 0", 0" re-
garded- (91) as the four mean centres of the three points
A, B, C for the four varieties of signs of the three multiples
a,b, ¢,
a.AL+b.BL+c.CL=(a+b+c).0L =25.0L
b.BL+c¢.CL—a.AL=(b+c—a).0'L =2(s—a).0L s
¢.CL +a.AL—b.BL=(c+a—8).0'L =2 (s—3).0'L ")
a.AL+b.BL-c¢.CL=(a+b—-c).0"L=2(s~¢).0"L
and it is evident, from mere inspection of their right-hand

numbers, that, as above stated, the first is = the sum of the‘
other three.

To prove 2°. From the general relation
2 (a@.AP%)—2(a.40°) =2 (a).OP*, (98) .
applied successlvely to the four points O, O, 0", 0" regarded

as before, and remembering that by Cor. 1°. (99) p (a AO) = abe,
and that by the same 2(a. 4 0")=2(a.4 0™)=2(a. 4 0"*)=~
a.AP*+b.BP*+c.CP'—abc=(a+b+c¢).OP' =23.OP*
b.BP*+c¢.CP* —a. AP*+abc=(b+ ¢ - a). O'P* =2 (s—a).0' P*
¢.CP* +a.AP'~b.BP"tabc=(c+ a—b).0"P* =2 (s—b).0"P*
a.AP*+b.BP*—c.CP"t+abc=(a+b—c).0"P*=2 (s—c).0" P*
.................. (4),

the first of which subtracted from the sum of the other three,
gives evidently the above relation multiplied by 2.

" Cor. 1°. Since for every line L passing through any one. of
the four points 0, O', 0", 0" the perpendicular from that point
=0, therefore, by relatlon 1, each of the four points 0, 0, 0", 0"
' t}w mean centre of the remaining three for the correspondmg
three of the four multiples — 3, s — ay, 8—b, s— c; a property the.
reader may easily prove directly for lnmself
" Cor. 2. Denoting by r, #, =", #" the radii .of the four
circles, and by R that of the circle circumscribing the tnangle,
it ma.y be shown at once—

. From relation 1, that
OL O"L O"L OL

7 + 7" + gy == 0 ............. (5).
r r r r
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2°. And from relation 2, that

PI IIP! mP’ OP'
0, g + 0 U + 0 77 - = 8.R ......... (6),
r r r r

"

for since by (92, Cor. 5°.) (s—a) #' = (s—d) " = (s—'¢) »"'=sr =area
of triangle = A, and since by (64, Cor. 2°.) abc=4RA ; therefore
dividing 1 and 2 by A they assume at once the forms 5 and 6 ;
from the first of which again, as in Cor. 1°, it follows that eack
of the four points O, O’y 0", 0" is the mean centre of the re-
maining three for the corresponding three of the four multiples
- ;, ;, %, ;};7, the reciprocals of —s, (s—a), (8- 2), (s—c)
to the unit whose square = A ; a property again as easily proved
directly for the reciprocal as for the original multiples.

CoR. 3°. Conceiving in the four relations (4), the arbitrary
point P to coincide with the centre of the circle circumscribing
the triangle, and denoting in that case by D, IV, D", D" the
four distances OP, O'P, O"P, 0" P, then, as AP=BP=CP=R,
the four relations become

(e+d+c).R'—abc=(a+bd+c).D*
(b+c¢—a).R*'+abc=(b+c—a).D*
(c+a-0).R*+abc=(c +a—0).D"™ (" (™),
(a+b-c).R*+abc=(a+b—c).D"™
which are the formule by which to calculate in numbers the
four distances D, I¥, D", D" when the sides of the triangle
are given; and from which again, as for any other position of P,
it follows that

“(s8=a) D"+ (8- b) D" + (s — ¢) D'"™ — sD* =2abc ... (8).
Cog. 4°, Substituting in the four relations (7), for abc its

value 4RA (64,Cor.2".), and for s, (s- a), (s—b), (s—¢) their values

A .
%, ré" %, s We get at once the values of the four distances

in the well known forms®
D*=R'-2Rr, D"=R'+2Rr, D" =R'+2Rr",
D" =R+ 2Rr" ceevuvren. (9),

* See Galbraith and Haughton’s Manual of Euclid, Book 1v., Appendix,
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from which it appears that the radit of two circles and the
distance between their centres must fulfil a certain relation of
condition, tn order to the possibility of a triangle being at once
ctrcumscribed to one of them and inscribed or exscribed to the other ;
a particular case of a more general property which will be given
in another chapter.

Cor. 5°. If OT, O'T"y, 0"T", O"T" be the four tangents
from the four points O, O, 0", 0" to the circle circumscribing
the triangle ; since then
or=p0-r, 0T"=D"-R, 0'T"=D"-FR,

Ol" TIIH = DIII’ — H,
therefore, by relations 7,

P abe _ abe vrwm__ abe

OT’—_a+b+c’ O'T’—b+c—a’ Or—c+a—b’
1 e __ abc
L)

which are the formul® by which to calculate in numbers the
lengths of the four tangents OT, O'T", 0"T", O T" when the
sides of the triangle are given; and from which, as is other-
wise evident, it appears that the first of the four 0T is always
imaginary and the remaining three 0’1", 0"7", 0" T always
real.

Cor. 6°. Taking the values of D* ~R*, D"~ R*, D" - R",
D'"* — B from relation 9, we see again that
OT*=—-2Rr, O'T"=2Rr, O"T™=2Rr",

0"T"=2Rr" ......... (1),

which ‘are the formule by which to calculate in numbers the
length of any one of the four tangents OZ7, O'T, O"T",
O"T" when the radii of the circumscribed and of the corre-
sponding inscribed or exscribed circles are given ; and from which
it follows at once

that O'T": O"T™: O"T": OT =+ 1 "1 4"t — 1 ... (12),

1 1 1 1
that T + o™ + o + o= 0 tirercnniinnennns (18),

that O'T" + O"T" + 0" T + OT*=8R" veevevrrres (14),
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and that each of the four points O, O, 0", 0" is the mean
centre of the remaining three for the corresponding three of the
OlT" ! O"IT""’ 0"’11'"'"

Cor. 7°. Regarding the point O as the mean centre of the
three 0/, 0", 0" for the three multiples , , =, (Cor.2")
it follows at once from the general relation

2 (ab.4B")=2(a).2 (a. 40" (99),

four multiples 011,, ,

that
1 yns U Weli} G 01 "3
0'1101:1 0!1101"=IL 0:011 = 00/ + 001: +2% = 8 E A (15)’ .
rr rr rr rr rr rr r

which would also follow at once, as in the general relation re-
ferred to, by conceiving the arbitrary point P in relation 6,

Cor. 2°., to coincide successively with each of the four points
O’OI’ OII’ OIII.

103. If P be any point on the circle passing through the several
vertices A, B, C, D, &c. of a regular polygon of any order n, and
L any line passing through the centre O of the figure, then—

1°. The sum of the squares of the perpendiculars from P upon
the several radii OA, OB, OC, OD, dc. is constant, and = §n
times the square of the radius of the circle. _

2°. The sum of the squares of the perpendiculars upon L from
the several vertices A, B ,C, D, &c. is also constant, and = }n
tvmes the square of the radius of the circle.

To prove 1°. On the radius OP as diameter’ conceiving
another circle described intersecting the several radii 04, OB,
0C, OD, &c. in the feet 4', B, C', ', &c. of the several per-
pendiculars upon them from P; then the several angles 4'0OB’,
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B'OC', C'OD, D'OE', &c. being equal, and each = the »™
part of four right angles, the several points 4', B', (', D, &e,
form therefore on the auxiliary circle, if » be odd (fig. a) the #
vertices of a regular polygon of the order n, and if » be even

(fig. B) the 2 g vertices of two coincident regular polygons of

the orderg (since in that case they evidently coincide two and

two in opposite pairs), and therefore in either case =(PA4")
(98), Cor. 4°. = 2n times the square of the radius of the auxiliary,
that is = §n times the square of the radius of the original circle,
and therefore &c. ‘

N.B. In the same way exactly, it appears that the sum of
the squares of the several intercepts 04’y OB', 0C', OD', &e.
between the centre of the circle and the feet of the several per-
pendiculars from P upon the = radii 04, OB, 0C, OD, &c.
is constant, and = {n times the square of the radius of the circle,

To prove 2°. Since for any two points on a circle, the per-

pendicular from either upon the diameter passing through the
other = the perpendicular from the latter upon the diameter
passing through the former, therefore the several perpendiculars
from the n points 4, B, C, D, &c. upon the one diameter passing
through any other point P on the circle = the several perpen-
diculars from the one point P upon the several diameters passing
through the n points 4, B, C, D, &c.; but by 1°. the sum of the
squares of the latter is constant, and = }n times the square of
the radius of the circle, therefore so is also the sum of the squares
of the former, and therefore &e.
" N.B. In the same way exactly it appears, from the note
to 1°,, that the sum of the squares of the several intercepts be-
tween the centre of the circle and the feet of the several per-
pendiculars from the = vertices 4, B, C, D, &c. upon any diameter
L is constant, and = }n times the square of the radius of the
circle.

Cor. 1°. From the above 1°. and 2°. combined with the two
properties of regular polygons given in (92, Cor. 6° ) it folIows
that—

If O be the centre of a reqular polygon of any order n, 0Q



142 THEORY OF THE MEAN CENTRE OF ANY SYSTEM

and OR the radi¥ of its inscribed and circumscribed circles, P any
arbitrary point, and L any arbitrary line, then—

1°. The sum of the squares of the perpendiculars from P upon
the scveral sides vs constant and variable with OP, and

=n(0Q"+}0F).

2°. The sum of the squares of the perpendiculars upon L from
the several vertices 18 constant and variable with OL, and

=n(0L'+ ;OR").

To prove 1°. Since by (92, Cor. 6°.), the sum of the perpen-
diculars from P on the several sides = » times 0¢), therefore by
(79, Cor. 2°.) the sum of their squares = n times O @ + the sum of
the squares of the » differences between each of themselves and
0@Q; but the circle on OP as diameter intersecting the several
perpendiculars from P in the feet of the several perpendiculars
upon them from O, and intercepting therefore upon them the
several differences in question, therefore by the above 1°. the
sum of the squares of the n differences = 4n times the square of
OP, and therefore &c.

To prove 2°. Since by (92, Cor. 6°.) the sum of the perpen-
diculars upon L from the several vertices = » times 0L, therefore
by (79, Cor. 2°.) the sum of their squares =n term OL* 4 the
sum of the squares of the n differences between each of them-
selves and OL; but the parallel to L passing through O cutting
off from the several perpendiculars the » differences in question,
therefore by the above 2°. the sum of the squares of the » diffe-
rences = 4n times the square of OP, and therefore &c.; and
the same thing is also evident from the general property (96,
Cor. 1°.) of which this is evidently a particular case.

N.B. It is evident from the above 1°. and 2°. that every
circle concentric with a regular polygon of any order, is at once
the locus of a variable point the sum of the squares of whose
distances from the several sides is constant, and the envelope of
a variable line the sum of the squares of whose distances from
the several vertices is constant.

Cog. 2°. Conceiving, in the above, the arbitrary point P to
be on the circle 0@, and the arbitrary line L to touch the circle
OR, it follows at once that—
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1°. If from any point on the circle inscribed in a regular
polygon of any order n perpendiculars be let fall on the several
sides, the sum of their squares is constant, and = §n.radius’ of
circle.

2°. If upon any line L touching the circle circumscribed to a
reqular polygon of any order n perpendiculars be let fall from
the several wvertices, the sum of their squares s comstant, and
= §n.radius’ of circle.

For, when in 1°. OP=0Q, then 0@*+ {0OP*=40¢", and
therefore &c.; and when in 2°. OL= OR, then OL'+ {OR*
= §OR?, and therefore &c.

Cog. 8°. Comparing with each other the values of the two
sums of squares in the particular cases just given, it follows
also that—

1°. If two regular polygons of any common order n be con-
structed one ctrcumscribed and the other inscribed to the same
circle, the constant sum of the squares of the perpendiculars from
any point on the circle upon all the sides of the former = the
constant sum of the squares of the perpendiculars upon any tangent
to the circle from all the vertices of the latter.

2°. If two circles be described one circumscribed and the other
inscribed to the same regular polygon of any order n, the constant
sum. qf the squares of the perpendiculars upon all the sides of the
polygon from any point on the former = the constant sum of the
squares of the perpendiculars from all the vertices of the polygon
upon any tangent to the latter. ‘

Far, by the above 1°. and 2°. both constant sums, in the
former case= §n.radius’ of common circle, and in the latter
case =n.radius’ of inscribed circle + §n.radius’ of circumscribed
circle, and therefore &c.
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CHAPTER VII

ON COMPLETE AND INCOMPLETE FIGURES OF POINTS
AND LINES.

104. EVERY system of points or lines, whatever be their
number and position, in which the several lines of connection
or points of intersection of each point or line with all the
others are taken into account without exception, is said to form:
a complete ﬁg'ure, which in the absence of any as yet generslly
recognized nomenclature may be termed a polystigm in the
former case and a polygram in the latter. A system of points or
lines, on the other hand, in which any of the lines of connection:
or points of intersection of each point or line with all the others
are omitted, is said to form an ¢ncomplete figure, whose degree
of mcompleteness depends of course on the number of the omitted
points or lines. In the extreme case of the latter, when the
lines of connection or points of intersection of each point or.
line with but two others are taken into account, the figure:
evidently is simply a polygon, of which the several points or.
lines of the system are the several vertices or sides, and of which
the shape and character depend, of course, on the order of
Sequence in which the several points or lines of the system are
taken in the several connections or intersections of each with
the two regarded as adjacent to it. :

105. The several points or lines constituting the vertices or
sides of a polygon of any order being always taken in some
definite order of sequence, it is therefore an intelligible mode
of expression to speak, as is often done, of “opposite vertices”
and of “opposite sides” in one of an even order, or, of “the
vertex opposite to a side” and of * the side opposite to a vertex™
in one of an odd order; but to speak similarly of the con-
stituent points or lines determining a complete figure of any
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order would be meaningless and consequently inadmissible;
each point or line standing by itself absolutely, and having no
relation of the nature expressed by such terms as “adjacent,”
“ opposite,” &c. to any other.

106. But though the determining points or lines in complete
figures have no relation amongst each other as regards order of
sequence, certain other elements of the figures may be, and often
are, with propriety and convenience, said to be opposites to each
other; thus, for instance, in a tetrastigm or tetragram every
line of connection of two points or point of intersection of two
lines is said to be the opposite of that of the remaining two; in
a hexastigm or hexagram every triangle determined by three
points or lines is said to be the opposite of that determined by
the remaining three; and, generally in a polystigm or polygram
of any even order, every two polystigms or polygrams of inferior
orders determined by half the points or lines and by the re-
maining half are said to be opposites to each other, &e.

107. In the complete figure determined by any number of
points, every two points are said to determine a line of connection,
and every two lines of connection to determine an angle of con-
nection of the figure. In the complete figure determined by
any number of lines, every two lines are said to determine a
point of tntersection, and every two points of intersection to
determine a chord of tntersection of the figure; for the same
obvious reason as for the extreme case of incomplete figures,
the several chords of intersection in the latter case are some-
times termed also diagonals of the figure.

108. If n be the number of the points or lines determining,
a complete figure of either species, it may be easily shown
that, generally:

1°. The entire number of lines of comnection or of points of

. -1 . -
intersection of the figure = n(—né—) .
2°. The entire number of angles of connection or of chords of

n(n—1)(n—2)(n—3) )

intersection of the figure = 5

Al
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8°. The entire number of polygoms of which the determining
(n=1)(n—2) (n—38)...1
. .
For, in the case of 1°., the n points or lines connecting or
intersecting each with the remaining (n—1) produce n(n—1)
lines of connection or points of intersection coinciding in pairs,
n(n—1)
2
nection or points of intersection of two points or lines inter-

points or lines are the vertices or sides =

and therefore &c. ; in the case of 2°., the lines of con~

secting or connecting with the M;l_—i) for the remaining

(n—2) produce z (n—l)(n4— 2)(n-3) angles of connection or chords

of intersection coinciding in pairs, and therefore &c.; and, in
the case of 3°., any one of the n points or lines, taken arbitrarily
a8 first vertex or side of all the polygons, may be followed in
order of sequence by any one of the remaining (n — 1) as second
vertex or side, each of which (n—1) second vertices or sides may
be followed in order of sequence by any one of the remaining
(n —2) as third vertex or side, each of which (n—1)(n—2) third
vertices or sides may be followed in order of sequence by any
one of the remaining (n — 3) as fourth vertex or side, and so on
to the last, thus producing (n —1).(n — 2).(n — 3).(n — 4), &e. 2.3.1
last vertices or sides, and therefore the same number of polygons
coinciding in pairs, every order of sequence giving evidently
the same polygon as the reverse order, and therefore &c.

109. A polygon of any order greater than three is said to
be convex, reentrant, or intersecting, according as every two of
its non-adjacent sides intersect externally, as any two of them
intersect one externally and one internally, or as any two of
them intersect internally; thus the quadrilateral ABCD in

\ /4

fig. a is convex, in fig. 8 is reentrant, and in fig. v is intersecting,
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and it is evident from any of the three figures that of the
three different quadrilaterals ABCD, AECF, BEDF, deter-
mined by the same four lines (108), one is always convex, one
always reentrant, and one always intersecting.

110. The sum of the external angles of a polygon of any order,:
convex, reentrant, or intersecting, regard. being had to their signs
as well as their magnitudes, =+ 4m right angles, m being some
integer of the natural series 0, 1, 2, 3, &c. less than half. the order

of the polygon.

For, conceiving the polygon described by the motion of a
point setting out from any position on one of its sides, and
traversing its entire perimeter, returning again to the point
of starting; the several external angles of the polygon are then
evidently the several deviations to the right or left, in the
direction of its motion, made by the describing point in passing
during the circuit from the several sides to their successors,
which for convex polygons universally (fig. a), and for others
too occasionally (figs. 8’ and ¢'), take place all in the same direc-
tion, and have therefore all the same sign, but which for reen-
trant and intersecting polygons generally (figs. B, #, and ')
take place some in one and others in the -opposite direction,
and have therefore some one and others the opposite sign; but
since, on the completion of the entire circuit, the original
direction of the motion is always finally regained, therefore
the total amount of deviation however made up, that is the sum
with their proper signs of the external angles of the polygon,
=0, or =4 right angles, or =4m right angles, m however being

L2
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always less than half the order of the polygon, the deviation
at each angle being necessarily limited to two right angles.

In the three polygons represented in figs. a, 3, and vy, and
in all convex polygons universally, m =1; in the three repre-
sented in figs. o', 8', and ¢, m = 0, = 2, and =3 respectively ; and
in all six alike the sides are supposed to be described in the
directions indicated by the arrow heads in the figures, and the
deviations are supposed to be positive or negative according as
they take place to the right or to the left, as marked in the
figares.

Any two sides of a polygon are said to be measured cyclically
tn similar or opposite directions, according as a moving point,
going round as above the entire perimeter continuously in the
same cyclic direction, would describe both in directions similar
or opposite to those of their measurement or describe one in
the similar and the other in the opposite direction.

111. If the several sides of any polygon measured cyclically in
the same direction be projected in any direction upon any line, the
sum of the projections, regard being had to their signs as well
as to their magnitudes, = 0.

R A ’ B

r ! z : z
R,

For, if P, Q, R, 8, T, &c. be the several vertices of the
polygon, and P, Q,, R, 8, T,, &c. their several projections
upon any arbitrary line L, then the several sides, measured
cyclically in the common direction indicated by the arrow heads
in the figure, being PQ, QR, RS, 8T, &c. returning back again
to P, their several projections on L are respectively P, Q,, Q,R,,
R 8, 8,T, &e. returning back again to P, and the sum of the
latter (by 78) being always =0, therefore &e.
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The above useful property may obviously be stated otherwise
thus, as follows—

If the several sides of any polygon be projected in any direction
upon any line, the projection of any one side measured cyclically
in ether direction, or more generally the sum of the projections
of any number of the sides measured cyclically in either direction,
" 48 equal to the sum of the projections of the remaining sides
measured cyclically in the opposite direction.

112. Assuming the evident property that, if two finite
parallel lines, however circumstanced as to absolute position, be
equal and co-directional, their projections in any direction upon
any line are equal and co-directional ; the following consequences
result immediately from the very useful property of the pre-
ceding article, viz.—

1°. A4 system of any number of finite lines given in length
and direction but not in absolute position would form a polygon
if placed end to end in any order of sequence, provided that for
two different directions of projection the sum of their projections
upon any line = 0.

For, if when placed end to end in any one of the different
orders of sequence in which they could be disposed, the last
extremity of the last side failed to coincide with the first ex-
tremity of the first side, then, though the sum of their projections
would =0 upon every line for the particular direction of pro-
Jection parallel to the line comnecting those two extremities, such
obviously would not be the case upon any line for any other
direction of projection, and therefore &c.

- 2°. If a system of any number of finite lines given in length
and direction but not in absolute position would form a polygon
if placed end to end in any one ord.r of sequence, they would do so
equally for every order of sequence vn which they could be disposed.

For, if for any one order of sequence they formed a polygon,
then since, by (111), the sum of their projections in every
direction upon every line = 0, therefore, by 1°., they would form
a polygon for every order of sequence, and therefore &c.

3°. If a syst.m of any number of finite lines, however circum-
stanced as to direction, length, and position, be such that for two
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different directions of projection the sum of their projections upon
any line =0, then for every direction of projection the sum of their
projections upon any line = 0. :

For, if without alteration of length or direction they were,
if not already in such a position, placed end to end in any
order of sequence, then, since by hypothesis the sum of their
projections for two different directions =0, therefore, by 1°., they
would form a polygon, and therefore, by (111), the sum of their
projections for every direction = 0.

113. If from any point O as common origin (fig., Art. 111)
a system of finite lines 04, OB, 0C, OD, &c. be drawn parallel,
equal, and co-directional to the several sides PQ, QR, RS, ST,
&c. of any polygon PQRST &c. measured cyclically in the
same direction, it is easy to see from the same property that—

1°. The sum of their projections in any direction upon any
line = 0.

2°. The sum of the perpendiculars, or any other {soclinals,
Jrom their extremities upon any line passing through O =0.

8°. The sum of the areas of the triangles they subtend at any
potnt not at infinity = 0.

4. The sum of the rectangles under them and the perpen-
diculars upon them from any point not at infinity =0,

To prove 1°. and 2°. If O,, 4,, B,, C,, D,, &c. be the several
projections in any direction OO, of the several points O, 4, B,
C, D, &c. upon any line L; P, Q, R, S, T, &c. those of P,
Q, R, 8, T, &c. in the same direction on the same line, and 4.4,
BB', CC', DD', &c. the several isoclinals from 4, B, C, D, &e.
to 0O, in the direction parallel to L; then since, by hypothesis,
Art. 112, and Euec. 1. 34, P Q, =0 4,=A4'A, QR =0B,=B'B,
R,8,=0,0,=C'C, 8,T,=0,D,=D'D, &c., and since, by (111),

PQ + QR +RS+8T,+&e.=0,
therefore 0, 4,+ 0B, +0,C,+ 0,D,+ &e.=0,
and AA'+ BB’ + CC' + DD’ + &e.=0,
and therefore &c., the directions of L and of 0O, being entirely
arbitrary.

To prove 3°. If I be the point and 44', BB, CC', DD,

&ec. the several perpendiculars from 4, B, C, D, &ec. upon
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the line OI passing through the two points O and I, then
since, by 2°.,
AA'+BB'+ CC" + DD + &e. =0,
and since by hypothesis OI is not infinite, therefore
OI.A4'+ O1.BB'+ OI.CC' + OL.DD + &c.=0,

and therefore &c., each rectangle being double the area of the
triangle subtended by its base at the point L

To prove 4°. If I, as before, be the point and IX, 1Y, 17,
&c. the several perpendiculars from it upon 04, OB, 0C,
&c., then since OA.IX =2 areaOAIL, OB.IY =2 area OBI,
0C.1Z=2 areaOClI, &c., and since, by 3°,

2 area0AI+2 areaOBI+2 areaOCI+ &c. =0,
therefore =~ 0OA.IX+ OB.IY+ 0C.1Z+ &e.=0,

and therefore &e.

Of the above properties, 2°. shews evidently (86) that the
point O is the mean centre of the system of points 4, B, C, D,
&ec. for any system of multiples having a common magnitude
and sign; and 4°. expresses obviously for any number of lines
04, 0B, 0C, OD, &c. passing through a common point O,
what the property, Cor. 6°., Art. 82, established on other con-
siderations in Chapter V., expresses for three.

114, When any number of lines 04, OB, OC, OD, &e.
diverging from a common origin O, are, as in the preceding
article, parallel, equal, and co-directional to the several sides
of a polygon PQRST &c. measured cyclically in the same
direction, any one of them OE turned without change of length
round the common origin O into the opposite direction OK is
termed the resultant of the others 04, OB, OC, OD, &c., a
name borrowed from the Science of Mechanics, in which the
properties of the preceding and of some of the following
articles are of considerable importance.

As all the sides but one of a polygon of any order are of
course perfectly arbitrary in length and direction, the length
and direction of the last however being implicitly given with
those of the others, therefore the several lines 04, OB, OC,
OD, &c. composing the system of which OK is the resultant
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as above defined are equally arbitrary in length and direction,
but their lengths and directions once given their resultant in
length and direction is implicitly given with them; two very
rapid constructions for its determination in all cases will be
presently given.

In the particular case of but two components 04 and OB,
the resultant OK in length and direction is evidently the con-
terminous diagonal of the parallelogram of which 04 and OB
in length and direction are adjacent sides. Al properties there-
Jore which are true in gemeral of any system of coinitial lines
and their resultant are true in particular of two adjicent sides
and the conterminous diagonal of any parallelogram.

115. Since, in accordance with the foregoing definition, the
several pairs of magnitudes OF and OK, OF and OK', OEI
and OKI, O,E, and O K, EE' and KK', &c., in the figure of
Art. 111, are equal and opposite, it follows at once from the
several properties of Article 113 that the resultant OK of any
system of lines 04, 0B, OC, OD, &c. diverging from a
cominon origin O possesses the following properties with respect
to the component lines of the system—

1°. The sum of the projections of the components tn any direc-
tion upon any line is equal in magnitude and sign to the projection
of the resultant in the same direction upon the same line.

2°. The sum of the perpendiculars or other isoclinals from the
extremities of the components upon any line passing through the
common origin O 1s equal in magnitude and sign to the perpen-
dicular or tsoclinal from the extremity of the resultant on the
same line.

3°. The sum of the areas of the triangles subtended by the
components at any point not at infinity is equal in magnitude
and sign to the area of the triangle subtended by the resultant at
the same point.

4°. The sum of the rectangles under the components and the
perpendiculars upon them from any point not at infinity is equal
in magnitude and sign to the rectangle under the resultant and the
perpendicular upon it from the same point.

These properties require no proof, they result immediately,
as above enumerated from those similarly mentioned in Art. 113,
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from the obvious consideration that when the sum of a number
of magnitudes of any kind = 0 then any one of them changed in
sign = the sum of all the others; and it follows at once from any
or all of them, as is also evident from the fundamental definition
of the preceding article, that for a system of components parallel,
equal, and co-directional to the several sides of any polygon
measured cyclically in the same direction, the resultant is in
magnitude evanescent and in direction indeterminate.

116. Given vn magnitude and direction any number of lines
OA, OB, 0C, OD, &c. diverging from a common origin O, to
determine their resultant OK in magnitude and direction.

First method. From any arbitrarily assumed point P (fig.,
Art. 111), drawing a line PQ parallel, equal, and co-directional to
‘any one of the components 04 ; from its opposite extremity @
a second QR parallel, equal, and co-directional to a second of
them OB; from its opposite extremity 2 a third RS parallel,
equal, and co-directional to a third of them OC; from its oppo-
site extremity S a fourth ST parallel, equal, and co-directional
to a fourth of them OD; and so on until all the components
are exhausted. The line OK from O parallel, equal, and co-
directional to the line PT connecting the first extremity P of
the first parallel PQ with the last extremity 7' of the last
parallel ST is (114) the resultant required.

Should the last point 7, determined by this construction,
coincide with the first point P, assumed originally, that is,
should the given lines 04, OB, OC, OD, &c. form a system
parallel, equal, and co-dircctional to the several sides of any
polygon measured cyclically in the same direction; their re-
sultant OK, thus determined would, as it ought (115), be evanes-
cent in magnitude and indeterminate in direction.

Second method. Projecting all the components 04, OB,
0C, 0D, &c. in any direction upon any line 0O, (same figure)
passing through their common origin O, and measuring from O
on 00, a length OK" equal in magnitude and sign to the sum
of the several projections 04', OB', OC', OD', &c., the length
OK' thus determined is (115) the corresponding projection of the
required resultant OK. Repeating the same process with a
different direction of projection on the same or another line
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passing through O, the new length similarly determined is a
second projection of the required resultant OK, and therefore &c.

Should the two different lengths, determined as above, be
both =0, that is, (112, 1°.) should the given lines 04, OB, OC,
0D, &c. form a system parallel, equal, and co-directional to the
several sides of any polygon measured cyclically in the same
direction, their resultant OK thus determined would again, as
it ought, be evanescent in magnitude and indeterminate in
direction.

Of the above two general constructions the second, though
less obvious and simple, is better adapted to numerical compu-
tation than the first.

117. The principles established in the preceding articles
supply a ready solution of the very general problem—

Required the locus of a variable point P for which the sum of
the areas of the system of triangles A, PA,, B PB, C,PC,, D PD,,
dec., subtended by any number of fixed bases A A,, BB, C,C,,
DD, dc. s constant, the length and line of direction with the
positive and negative sides of each base being given.

Case 1°. 'When the several lines of direction of the several
bases AlAa’ ‘BlBs’ 01027 Dl‘Dﬁ
&ec. pass through a common point
O; from the common point O
measuring on the several lines of
direction lengths 04, OB, OC,
0D, &c., equal to the several
lengtbs AIA” BlBe’ 01 027 ‘DrDa,
&ec., and in directions, indicated
by the arrow heads in the figure,
such that the positive and nega-
tive sides of the several bases correspond to the right and left
sides of the several directions, and taking, by (116), in length
and direction the resultant OK of the several coinitial lines
04, 0B, 0C, OD, &c. thus obtained; then for every arbitrary
point P not at infinity, since, by Euc. 1. 38, the sum of the
system of triangles 2(4,PA,) = the sum of the system of tri-
angles 2(OP4), and since, by (115, 3°.), the sum of the
latter system of triangles = the single triangle OPK, therefore

e e e ) ._.-.-.)N ———————
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for every position of P not at infinity the sum of the system
of triangles = (A4, PA.) = the single triangle OPK; but the base
OK of the latter being fixed its area is positive, negative, or
nothing, according as its vertex P lies on the right or left side
of or upon the line of direction of OK, and if its area is
constant the locus of its vertex P is a line parallel to OK and
at a distance from it equal in magnitude and sign to twice the
constant value divided by OK.

Cor. In the particular case when OK =0, that is, when the
several bases 4.4, BB, C,C, DD, &c. are parallel, equal,
and co-directional with the several sides of a polygon measured
cyclically in the same direction; then, as is evident from the
above, the sum of the areas of the system of triangles 2(A,PA,)=0

Jor every position of P not at infinity.

Case 2°. When the several lines of direction of the several
bases 4, 4,, BB, C/(, DD,
&ec. do not pass through a com-
mon point ; assuming arbitrarily
any fixed point O not at infinity,
drawing from it a system of
lines 04, OB, 0C, 0D, &c.,
parallel and equal to the several
bases 4.4, BB, CC, DD,
&ec., and in directions, indicated
by the arrow heads in the figure, such that the positive and
negative sides of the several bases correspond as before to the
right and left sides of the several directions, and taking as
before in magnitude and direction the resultant OK of the
system of coinitial lines 04, OB, 0C, OD, &c. thus obtained ;
then for every arbitrary point P not at infinity, since, by (75),
the sum of the system of triangles = (A4, PA,) = the sum of the
system of triangles =(4,04,) + the sum of the system of tri-
angles = (OPA), and since, by (115, 3°.), the sum of the latter sys-
tem of triangles = the single triangle OPK, therefore for every
position of P not at infinity, the sum of the system of triangles
3(A4,PA,) = the sum of the system of triangles =(4,04,) + the
single triangle OPK; but the sum of the system of triangles
(4,04, being fixed with the point O, and the base OK of
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the single triangle OPK being also fixed with the same, if the
sum of the system of triangles = (4,PA,) be constant, the locus
of P is a line parallel to OK and distant from it by an interval
equal in magnitude and sign to the constant sum = (A4, PA,) — the
fixed sum =(4,04,) divided by half the length of OK.

Cor. In the particular case when OK =0, that is, when the
several bases 4.4, BB, CC, DD, &c. are parallel, equal,
and co-directional with the several sides of a polygon measured
cyclically in the same direction, then, as is evident from the
above, the sum of the areas of the system of triangles = (A PA)
18 constant for every position of P not at infinity.

118. As the several fixed bases 4,4, B B,, C,C,, D D, &c.,
in the general case of the preceding, may be in length and
direction the several sides of any one of the different polygons
determined by their several lines of direction (108, 3°.) measured
cyclically in the same direction, and as then, by the corollary
to that case, the sum of the areas of the several triangles
A PA, BPB, CPC, DPD, &c.is constant for every position
of P not at infinity ; hence the important property that—

For a polygon of any form, convex, reentrant, or tntersecting,
the sum of the several triangular areas subtended by the several
sides at any point mot at infinity s constant, any two of the tre-
angles being regarded as having similar or opposite signs according
as they lie at similar or opposite sides of their respective bases
measured cyclically in either common direction.

This property is important as supplying a formal definition
of the area of a polygon, which is applicable without exception
to every variety of form whether convex, reentrant, or inter-
secting, viz., “ The constant sum of the areas of the several
triangles subtended by the several sides at any arbitrary point
not at infinity and regarded as positive or negative according
as they lie at the positive or negative sides of their several bases
‘measured cyclically in either common direction.”

If an intersecting polygon were of such a form that the
sum of the triangular elements constituting its area as thus
defined =0 for any one point not at infinity, they would of
course by virtue of the above = 0 for every point not at infinity,
and the area of the polygon would conscquently =0; an inter-



FIGURES OF POINTS AND LINES. 157

secting quadrilateral in which the two opposite sides that do not
intersect internally are equal and parallel, (as in fig. &', Art. 110),
furnishes the simplest example of a polygon of this nature.

119. The linear locus in the general case of Art. 117 supplies
obvious solutions of the four following very general problems—
Given in magnitude, position, and direction any number of

Jixed bases A A, BB, C,C,, DD, d&c. to determine—

1°. On a given line the point P for which the sum of the
several triangular areas 2 (A PA,) shall have any given value,
positive, negative, evanescent, or infinite.

2°. On a given circle the point P for which the sum of the
soveral triangular areas = (A, PA,) shall have the maximum, the
mintmum, or any intermediate given value.

In the particular case when the several bases 4.4, BB,

172
C,C, D,D,, &c. are parallel, equal, and co-directional with the
several sides of a polygon measured cyclically in the same
direction, the sum 3(4,P4) being then constant for every
position of P not at infinity, these several problems are in

~ consequence all indeterminate.

120. Denoting by 4, B, C, D, &c. the several indefinite
lines of direction, and by e, b, ¢, d, &c. the several numerical
values to any unit of linear measure of the several fixed bases
A A, BB, CC, DD, &c.in the linear locus of Art. 117; it
follows immediately from the general property there established
that—

If A, B, C, D, d&c. be any system of lines disposed in any
manner, but none infinvtely distant, and a, b, ¢, d, &c. any system
of corresponding multiples positive or negative, but none infinitely
great, the locus of a variable point P for which the sum ‘

a.PA+b.PB+c¢.PC+d.PD+ &e.,

or more shortly = (a.PA), has any constant value, positive, nega~
tive, or nothing, vs a line whose direction depends on the directions
of the lines and the ratios of the multiples, and whose position
dépends on the value of the constant. ‘

The positions and sides, positive and negative, of the several
lines 4, B, C, D, &c., and the magnitudes and signs, positive
or negative, of the several multiples a, b, ¢, d, &c. being given,
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to determine the common direction of the several loci for all
values of the constant, the particular position of the locus for
any particular value of the constant, and the law governing
the variation of the locus for the variation of the constant;
on the several lines 4, B, C, D, &c. from any arbitrarily
assumed points 4,, B, C,, D,, &c., taking any system of lengths
AA,, BB, CC, DD, &c., proportional to the numerical
values of the several multiples q, b, ¢, d, &c., and in directions,
indicated by the arrow heads in the figures, such that the positive
and negative signs of the several products a.PA, b.PB, c.PC,
d.PD, &c. shall correspond to the right and left sides of the
several directions; then since for every position of P not at
infinity 4,4 .PA =2 area A PA, BB,.PB=2 area BPB,,
C,C,.PC=2 areaC,PC,, DD,.PD=2 areaD PD,, &c., and
since therefore =(4,4,.PA)=2% (A4 ,PA,), therefore, by (117),
the locus of P for which =(4,4,.PA) has any constant value,
positive, negative, or nothing, is a line L parallel to the resultant
OK of any coinitial system of lines 04, OB, 0C, 0D, &c.,
parallel, equal, and co-directional with 4,4, BB, C,C,, D,D

1 i N la’.xﬂ 173 17 e)
&ec., and distant from it by an interval equal in magnitude and

sign to the quantity 2(4,4,.P A)O—I?(AxArOA)

, or to its

2 (a.PA) -2 (a.04)
k

equivalent , where % is the numerical

value of OK to the same unit that a, b, ¢, d, &c. are those of
04, 0B, 0C, 0D, &c.

If 1 be the particular line of the system parallel to OK for
which the value of the constant =0, it is easy to see that for any
other line L of the system 1ts value =k.LI; for, since for any
two points P and @ on any two lines L and M parallel to OK,
by (117),
2(a.PA)=2(a.04) +k.LO and 2(a.QA4)=2(a.04) + k. MO,
therefore at once, by subtraction,

2(a.PA)—2(a.Q4)=k.LM,
and therefore if M be the particular line I of the system for
every point @ of which = (a.Q4)=0, then for every point P
of any other line L of the system Z(a.PA)=k.LI, as above
stated.
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Ghiven the particulars of the system of lines A, B, C, D, dc.
and of the system of multiples a, b, ¢, d, dc. to determine the line I.
Assuming arbitrarily any point O, and drawing from it in
magnitude and direction the resultant OK of the coinitial
system of lines parallel, equal, and co-directional with the
several segments 4 .4, BB, CC, DD, &ec. determined as
above, the line I parallel to OK, distant from it by the interval
2 (a.0A)+k, and at the positive or negative side of its direction
according as the sign of =(a.0A) is negative or positive, is,
by the above, that required.

The line I, for every point @ of which the constant sum
2(a.QA4) =0, is termed the central axis of the system of lines
. 4, B, C, D, &c. for the system of multiples a, b, ¢, d, &c.,
and, by aid of it, determined as above or otherwise, the position
of the parallel line L for every point P of which the constant
sum 2 (a.PA) shall have any given value, positive or negative,
is given at once by the above; for it is distant from I by the
interval = (a.PA)+k, and it lies at its positive or negative side
according as the sign of =(a.PA) is positive or negative.

In the particular case when %4=0, that is (116), when the
several segments 4 4, BB, C,C, DD, &c., determined as
above, are parallel, equal, and co-directional with the several
sides of a polygon measured cyclically in the same direction,
the -central axis I 1s at infinity, except only when the value of
2(a.PA),whick (117,Cor.) 18 then constant for every position of P
not at infinity, = 0, in which exceptional case it 48 indeterminate.
And for the same reason generally the several parallel loci of
the present article are all at infinity, except only the particular
one corresponding to the constant value of 3 (a.PA), which one
is indeterminate.

121, If A, B, C be any three lines, 1 their central axis for
any three multiples a, b, ¢, and P, Q, R the three points at which
A, B, C intersect with I, then always (see 91, 1°.)

b.PB+¢.PC=0, ¢.QC+a.Q4=0, a. RA+b.RB=0.

For, since for every three points P, @, B on I, by the
preceding, a.PA+b.PB+¢.PC=0, a.Q4+b.QB+¢.QC=0,
a.RA+b.RB+¢.RC=0; if Plie on 4, then b.PB+ ¢.PC=0;
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if @ lie on B, then ¢c.QC+a.Q4=0; if B lie on C, then
a.RA+b.RB=0; and therefore &c. :

Of the above, which supplies an obvious and very rapid
method of determining the central axis I of any three lines
A, B, C for any three multiples a, b, ¢, the two following par-
ticular cases are deserving of attention. See (91, Cor.).

1°. If in absolute magnitude a=5=c the three lines con-
necting P, @, R with the three opposite vertices bisect (61) the
three opposite angles BC, C4, AB of the triangle 4BC, all
externally, or one externally and two internally, according as
the signs of a, b, ¢ are all similar, or that of one opposite to
those of the other two.

2°. If in absolute magnitude a : b : ¢ as the lengths of the
three corresponding sides of the triangle 4BC, the three points
P, Q, R bisect (65, Cor. 3°.) the three sides on which they lie, all
externally, or one externally and two internally, according as
the signs of a, b, ¢ are all similar, or that of one opposite to
those of the other two.

In the first case of 2°., the three points of external bisection
of the three sides of the triangle ABC being at infinity, so
therefore is the central axis I which contains them; this is
in exact accordance with the closing observation of the pre-
ceding article, the three segments 4. 4,, BB, C,C,, determined
as there directed on the three lines 4, B, C, being then parallel,
equal, and co-directional with the three sides of the triangle
ABC measured cyclically in the same direction.

122. The linear loci of Art. 120, determinable as there ex-
plained for all given values of the constant =(a.PA), supply
obvious solutions of the four following very general problems
analogous to those of Art. 119—

Ghven the positions and sides, positive and negative, of any
aystem of lines A, B, C, D, dc., and the magnitudes and signs,
positive or negative, of any corresponding system of multiples
a, b, c, d, dec., to determine— i

1°. On a given line the point P for which the sum = (a.PA)
shall have any given value, positive, negative, evanescent, or in-
Sintte.

2°. On a given circle the point P for which the sum = (a.PA)
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shall have the maximum, the minimum, or any intermediate gwen
value.

In the particular case, when, as explained in the cloamg
_ paragraph of that article (120), the particulars of the lines
and multiples are such that the sum 2 (a.PA) has the same
value for every position of P not at infinity, them such
problems are of course indeterminate for that particular value,
and impossible at a finite distance for every other value of
the sum. :

123. Since in the particular case when the several segments
A4, BB, CC, DD, &c., determined as in (120), onthe
several lines 4, B, C, D, &c. are parallel, equal, and co-direc-
tional with the several sides of a polygon measured cyclically
in the same direction, then, by (117), the sum 2 (a.PA4) has the
same constant value for every position of P not at infinity,
which value = 0 when the lines pass through a common point.
Hence—

When a number of fixed lines A, B, C, D, dc. are parallel to
the several sides a, b, c, d, dc. qf any polygon, and that their
positive and negative szdea correspond to those of the sides of the
polygon measured cyclically in either common direction, then for
every point P not at infinity the sum Z (a.PA) s constant, and =0
when the lines pass through a common point (see 113, 4°.).

‘When the polygon is equilateral, since then a =b =c¢=d, &c.,
therefore = (a.PA)=a.Z(PA4), and therefore the sum 3 (P4)
is constant for every point not at infinity. Hence-—

When a number of fixed lines A, By C, D, &c. are parallel to
the several sides of any equilateral polygon, and that their positive
and negative sides correspond to those of the sides of the polygon
-measured cyclically in either common directz'on, then for every
point P not at infinity the sum = (PA) 13 constant, and 0 when
the lines pass through a common point.

Of all equilateral polygons of any order, one, the r’e‘gular,
being also equiangular, the term “equilateral” may therefore
be replaced by “equiangular” in the statement of the latter
property, the altered however being but a particular case of the
original property, and no new principle of any kind being in-
volved or expressed in the change.

M



162 ON COMPLETE AND INCOMPLETE

124. The general property of the preceding article supplies
ready solutions of the two following problems—

Ghven three points, or two points and a line, P, Q, R, to deter-
mine the point O for which the sum a.OP+5.0Q+c.OR shall
be the mintmum ; a, b, c being any three positive multiples o ome
of which is greater than the sum or less tham the difference of the
other two.

For, if O be the point for which the three perpendiculars at
P, Q, R to OP, 0Q, OR in the for-
mer case, or the two perpendiculars at
Pand Q to OP and 0Q with the
line R in the latter case, determine
a triangle 4 BC similar to that deter-
mined by the three multiples a, , c,
and including O within its area; then if O be any other point,
and OP, 0'Q, OR the three perpendxculars from it upon the
three aides of ABC, since, by the preceding,

a.0P+b.0Q+c.OR=a.0P +5.0Q@ +¢c.OR,

therefore .04 +5.0B+¢.0C<a.0P+5.0Q+c.0OR in the
former case, and <a.0'P+b.0'Q+c¢c.OR' in the latter case,
-and therefore O in either case is the point required; but O is
the common intersection of the three known circles QOR,
ROP, POQ in the former case, and the intersection of the
two known directions PO and QO in the latter case, and
therefore &c.

When the three given multiples @, b, ¢ are incapable of
forming a triangle, the above method of determining O of
course fails in both cases, but it is easily seen, at once without any
construction, that if any of the three multiples a, b, ¢ in the
-former case, or either of the two @ and b corresponding to the
two points P and @ in the latter case be = or > the sum of
the other two, the point itself corresponding to that multiple
is that for which the sum a.0P+5.0Q + c.OR is the minimum.

But if the multiple ¢ corresponding to the line B in the
latter case be = or > the sum of the other two a and & corre-
sponding to the two points P and @, then through the required
. point O as before is easily seen without any construction to be on
the line B, to determine its position on that line, that is, the
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position of the point O on R for which the sum a.0OP+5.0Q is |
the minimum, is a problem incapable of solution by the geometry
of the point, line, and circle.

125. In the linear loci of Art. 120 the several distances
PA, PB, PC, PD, &c. need not be measured perpendicularly to
the several lines 4, B, C, D, &c.; they might be measured in
directions inclined to them at any constant angles a, 8, v, 8, &e.,
and the several conclusions there established, with some slight
and obvious modifications, would be true for the oblique as well
as for the perpendicular distances.

For, PA, PB, PC, PD, &c. being the several oblique dis-
tances, and a, b, ¢, d, &c. as before the several corresponding
multiples, if PA PB PC, PD,, &c. be the sevesal perpen-
dicular dlstances, and a, bl, 9 dl, &e. a system of multiples
.corresponding to them, having to the original multiples a, b, ¢, d,
&c. the constant ratios of the several oblique to the corre-
sponding perpendicular distances ; then, since for every position of
P not at infinity a.P4 =a,.PA,, b. PB=b,.PB,, c.PC=c,.PC,,
d.PD=d,.PD,, &c., therefore = (a.P4)=2(a,.PA)), and there-
fore &c., the multiples for the perpendiculars being simply
those for the oblique distances divided by the sines of the con-
stant angles of inclination.

By virtne of the above the four general problems of Art. 122
may be still further generalised, by the substitution for perpen-
dicular of oblique distances measured in any given directions
from the required point P to the given lines 4, B, C, D, &c.

126. If the several oblique distances P4, PB, PC, PD, &c.
in the preceding, were all measured in the same absolute direc-
tion, their several points of meeting 4, B, C, D, &c. with the
.several fixed lines would then lie in a line L passing through P
parallel to the direction, and the sum 3 (a.P4) would (Art. 80)
=2 (a).PO, when O is the mean centre on the line L of the
system of points A4, B, C, D, &c. for the system of multiples
a, b, ¢, d, &c. Hence, by the preceding—

For a variable line L moving parallel to itself in any constant
direction, and intersecting the several fixed lines of a polygram of

_any form in a system of variable points A, B, C, D, dc.
M2
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1°. The locus of the mean centre O of the system of points
A, B, C, D, dec. for any system of multiples a, b, ¢, d, &c. s a
line M whose position depends on the direction of L.

2°. The locus, more generally, of the point P on L for which

the sum 2 (a.PA) has any constant value, positive or negative, is
a line N parallel to M and distant from st in the direction of L
by the interval NM =2 (a.PA) + = (a).
. In the particular case when a=b=c=d, &c., the several lines
M, loci of O for different directions of L, are termed, from the
analogy of the circle, diameters of the polygram. The latter being
given, the position of the particular diameter M corresponding
to any given direction of L is determined by drawing any two
lines L, and L, parallel to the given direction, taking the two
mean centves 0, and O, of the two systems of points 4, B,
0, D, &c. and 4, B, C,, D, &c.,in which they intersect the
several lines of the figure, and drawing the indefinite line 0,0,.
-In the particular case where all the lines of the figure pass
through a common point O, as every diameter M, corresponding
to every direction of L, passes evidently through it, a single
other point O, is therefore sufficient to determine each particular
diameter in that case. Remarks precisely similar apply, of course,
when the several multiples a, b, ¢, d, &c. have any values
whatever.

In an equilateral triangle the several diameters of the figure
envelope the tnscribed circle ; this very particular case of a much
more general property, to be given in a future Chapter, is left
for the present as an exercise to the reader,

127. The general property of the preceding article, combined
with that of Art. 80, Cor. 1°., may be employed for the solution
of the following very general problem—

Given any system of lines 4, B, C, D, dc. and any corre-
sponding system of multiples a, b, c, d, dic. to determine the point
P for which the sum = (a. PA") is the minimum.

Drawing arbitrarily any two parallel lines Z, and L, inter-
secting the entire system of lines 4, B, C, D, &c. at the system
of angles @, 8, v, 8, &c.; taking the two mean centres O,
and O, of the two systems of intersections 4,, B, C,, D,, &c.
and 4, B, C,, D,, &c. for the system of multiples a - sin’a,
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b+sin’B, c+sin’y, d+sin’f, &c.; drawing then the indefinite
line O, O, intersecting the entire system of lines 4, B, C, D, &ec.
at the system of angles o', 8, v/, &, &c. ; and taking finally the
mean centre O’ of the system of intersections 4, B', C', D, &c.
for the system of multiples a - sin'a’, b+sin*8, c-=sin’y,
d~+sin’¥, &c.; the point O thus determined is that required.

For, by (80, Cor. 1°.), O is the point on the line 0,0, for
which the sum X (a.PA4®) is the minimum for points confined to
that line ; and supposing, if possible, a point 7 not on that line
were that for which it were absolutely the minimum, the line L
passing through I parallel to L, and L, would intersect the line
0,0, at a point O, which, by the preceding, would be the mean
centre for the system of multiples a + sin*a, b+ sin’(3, ¢+ sin"y,
d+ 8in*§, &c. of the system of points in which it would intersect
the system of lines 4, B, C, D, &c., and for which therefore,
by (80, Cor. 1°.), the sum = (a.PA4*) would be the minimum for
points confined to the line L, and consequently less than for
the point Z, which therefore could not, as supposed, be off the
line 0,0,; and therefore &c.

It is easy to see from the more general property (98, Cor. 1° ),
that the point P, however determined, for which the sum
2 (a.P4") is the minimum, is the mean centre of the feet of
the several perpendiculars P4, PB, PC, PD, &c. for the system
of multiples a, b, ¢, d, &e. -

128. We shall conclude the present Chapter with a direct
demonstration of the general property of Art. 120, not based
like that there given upon any property of polygons, but re-
sulting immediately from the nature of independent lines; the
following general theorem, analogous to that established in
Art. 85 for any system of points, may be regarded as the
basis of the direct demonstration—

If A, B, C, D, &c. be any system of lines, disposed in any
manner, but none infinitely distant, and a, b, c, d, &c. any system
of corresponding multiples, positive or negative, but none infintely
great, then for every three points P, Q, R in a line, supposed all
at a finite distance,

QR.Z(a.PA) + RP.2 (a.QA)+ PQ.Z (a.RA4) =0,
the distances under the symbols of summation being measured in
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directions inclined at any constant angles a, B, v, 8, &c. to the
several lines A, B, C, D, de.

For, the three points P, @, R being by hypothesis in a line,
therefore, for the several lines 4, B, C, D, &c., by (82, Cor. 4°.),
QR.PA+ RP.QA + PQ.RA =0,

QR.PB + RP.QB+ PQ.RB=0,
QR.PC+ RP.QC+ PQ.RC=0,
QR.PD+ BP.QD + PQ.RD =0, &c.,
from which, multiplying horizontally by a, b, c, d, &c. and then
adding vertically, the above relation at once results, and from
it the following consequences may be immediately inferred—
1°. When two of the three sums Z(a.QA) and = (a.RA)=0,
the third =(a.PA) also =0; this is evident, as the three co-
efficients QR, RP, PQ are by hypothesis all finite. Hence the
locus of a variable point P for which the sum 2(a.PA)=0 i3 a
line, the central axis I of the system for the particulars of
the case.
2°. When two of the three sums X (a.QA) and 2 (a.RA) have
equal values, the third 2 (a.PA) has the same value; this is
evident, as the sum of the three coefficients QR, RP, PQ is
always = 0 (Art. 78). Hence the locus of a variable point P
Jor which the sum 2 (a.PA) has any constant value, positive or
negative, 1s a line L parallel to the central line I ; for if it met
the latter at any finite distance, the sum X (a.PA) for the point
of intersection would have at once the two different values cor-
responding to the two lines.
3°. When one of the three sums = (a.RA)=0, then for the
other two 2(a.PA):2(a.QA)=PR: QR=PI: QI thisis evident,
as R, by 1°, is then on the central axis I. Hence for every point
P on any line L parallel to I, the constant sum = (a.PA) vs pro-
portional in magnitude and sign to the distance LI; these are
the principal results for the general case as otherwise established
in Art, 120,
4°. In the particular case when the central axis I of the system
s at infinity, the sum 2 (a.PA) has the same value for every
posttion of P at a finite distance ; for since, by 3°., for every two
points P and @ at a finite distance =(a. PA):2(a.QA4)=PI: QI,
whatever be the position of I, therefore for every two points
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P and @ at a finite distance = (a.PA): = (a.QA4)=1 when J
is at infinity, and therefore &c.
5°. When the sum X (a.PA) has the same value, finite or
evanescent, for three points P, Q, R not in the same line, it has
the same value for every point O at a finite distance ; for having
the same value for the three points P, @, R, it has it, by 2°., for
the three points X, Y, Z, in which the three lines OF, 0Q, OR
intersect with the three QR, RP, PQ, and having it for each
pair of points P and X, @ and Y, R and Z it has it, by the
same, for the point O which is in the same line with each pair;
and therefore &c.
6°. The particulars of the system being all given, the position

of the central axis I may be determined rapidly as follows :
assuming arbitrarily any three points P, @, B not in the
same line, and dividing the three distances QR, RP, PQ at
X, Y, Z respectively, so that in magnitude and sign

QX : RX=3(a.QA): =(a.RA),

RY : PY=2(a.RA): = (a.PA),

PZ : QZ=2%(a.PA): =(a.Q4);
the three points X, Y, Z thus determined lie, by 3°., on the
central axis I of the system, and therefore &c. ; when the three
sums = (a.PA), = (a.QA), = (a.RA) have the same value, the
three points X, Y, Z being then at infinity or indeterminate,
according as the common value is finite or evanescent, so also
is the central axis. '
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CHAPTER VIII

ON COLLINEAR AND CONCURRENT SYSTEMS OF POINTS
: AND LINES.

129, SySTEMS of points ranged on lines, and of lines passing
through points, enter largely into the investigations of modern
geometry, and are distinguished by appropriate names, as
follows :

A system of points ranged along a line is termed a collinear
system, the figure they constitute a row of points, and the line
on which they lie the dase or axis of the row. A system of
lines passing through a point is termed a concurrent system,
the figure they constitute a pencil of lines, or rays as they are
sometimes called, and the point through which they pass the
vertex or centre or focus of the pencil. The terms “Ray,”
4 Pencil,” and “Focus,” have been introduced into geometry
from the science of Optics.

The axis of a row of points, or the centre of a pencil of lines,
might be at infinity; in the former case the points of the row
would, of course, be all at infinity, and in the latter case the
lines of the pencil would (16) be all parallel; but in no other
respects is there any difference between these particular and
the general cases, when the axis of the row is any line whatever,
and the centre of the pencil any point whatever.

Two points of a row or rays of a pencil determine, of course,
the axis or vertex of the row or pencil to which they belong.

130. Two rows of any common number of points on different
axes, or pencils of any common number of rays through different
centres, 4, B C, D, &c., and A', B', C', D', &c., whose con-
stituents correspond in pairs 4 to 4', Bto B’, Cto C', D to IV,
&ec., are said to be in perspective, in the former case when the
several lines of connexion AA', BB CC’ DD, &c., of pairs of
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corresponding points are concurrent, and in the latter case when
the several points of intersection 44, BB', CC', DD, &c., of pairs
of corresponding lines are collinear. In the former case the centre
of the pencil determined by the several concurrent connectors is
termed the centre of perspective of the rows, and in the latter
case the axis of the row determined by the several collinear
intersections is termed the axis of perspective of the pencils.
Every two rows of points determined on different axes by the
same pencil of rays, and every two pencils of rays determined
at different centres by the same row of points, are evidently
in perspective ; the centre of the determining pencil being the
centre of perspective of the rows in the former case, and the
axis of the determining row being the axis of perspective of the
pencils in the latter case.

The centre of perspective of two rows in perspective, or the
axis of perspective of two pencils in perspective, might be at
infinity ; in the former case the several connectors 44', BB,
CC'y DD, &c. being all parallel, the two rows of points would
be similar (32), and in the latter case the several pairs of
corresponding rays 4 and 4, Band B', Cand C’, D and D', &c.,
being two and two parallel, the two pencils would be similar,
and at once similarly and oppositely placed (33). In these
particular cases of perspective the two rows or pencils ABCD
&c., and 4'B'C'D’ &c., are said also to be projections of each
other; though both terms “ perspective ” and “ projection” are
often applied indifferently as well to the general as to the
particular case, and, as we shall see in the sequel, to other
figures as well as to rows and pencils.

131. Every two rows or pencils of but fwo points or rays
each having different axes or vertices being, of course, neces-
sarily in perspective, however circumstanced as to position,
absolute or relative, or whichever way regarded as corresponding
two and two. Hence for two segments or angles 4B and 4'B'
having different axes or vertices, the two points of intersection,
or lines of connection, of 4B with A'B’, and, of 4B’ with 4'B,
are termed respectively the two centres of perspective of the
segments, or, the two axes of perspective of the angles—names, at
once convenient and expressive, by which to designate a pair
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of points or lines of very frequent occurrence in geometrical
research.

Reserving for future chapters the remarkable developments
of modern Geometry as regards collinear and concurrent systems
in general, we shall devote the present chapter to the considera-
tion of some of their most important properties as regards the
sides and angles of rectilinear figures in general, and of triangles
in particular.

132. When three lines LX, MY, NZ intersecting at right
angles the three sides BC, CA, AB of any triangle ABC are
concurrent, they divide them at the three parts of meeting X, Y, Z
80 as to fulfil the relation

(BX'—=CX")+ (CY*'- AY")+(AZ2*—BZ") =0
and, conversely, when they divide them at the three points of
meeting so as to fulfil the above re

To prove the first or direct part; if O be the point of con-
currence of the three lines LX, MY, NZ, then joining OA,
0B, 0C, since (Euclid 1, 47, Cor.) (BX*— CX*)= (B0O*- CO"),
(CY*- AYY)=(CO0'-A0"),(AZ*- BZ")=(A 0*- B("), therefore
(BX*- CX*)+(CY*"—AY") +(AZ"- BZ?)

=(BO'-C0O")+(CO*-A0") +(40*-B0") =0
as above stated. And to prove the second or converse part; if
O be the point of intersection of any two of them LX and MY,
and Z' the point at which the parallel through O to the third
NZ intersects the line 4B to which the third is perpendicular;
then since by the first part

(BX*- CX") + (CY*—AY")+ (AZ* - BZ™) =0,
and since by hypothesis

(BX*~ CX")+ (CY'- AY") +(4Z* - BZ") =0;
therefore (42" — BZ™)=(AZ"— BZ*), and therefore Z' =2,

which, of course, could not be the case unless, as above stated,
NZ passed through O.
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A relation of exactly the same form, and proved in precisely
the same manner as the above, connects the several pairs of
segments into which the several sides of any polygon are
divided by every concurrent system of perpendiculars to them.
But the converse property which establishes the relation as
a criterion of concurrence of the several perpendiculars ¢s true
only for the triangle. The reasoning by which it was inferred
as above for that case from the direct property evidently proving
only for the general case of any order (r), that when (n—1) of
them pass through a common point the n™ passes through the
same point.

The relation itself may evidently be written also in the
following form, viz.—

BX*+ CY'+ AZ*=CX*+ AY*+ BZ*,

which in cases of numerical calculation is sometimes more con-
venient than the original.

133. The following are a few examples of the application of
the preceding relation as a criterion of the concurrence of three
lines perpendiculars at three points X, Y, Z to the three sides
of a triangle ABC.

Ex. 1°. The three perpendiculars at the middle points of the sides of a
triangle are concurrent.

For, since here by hypothesis, BX = CX, CY = AY, AZ = BZ, there-
fore the criterion relation (BX* - CX?*) + (CY* - AY*)+ (4Z* - BZ*)=0
is satisfied identically in the simplest manner of which it is susceptible,
and therefore &ec.

Ex. 2°. The three perpendiculars throuyh the vertices o the opposite
sides of a triangle are concurvent.

For, since here, Euc. I. 47,

(BX*- CX*) = (BA*- C4"), (CY*-AY*) =(CB*'- 4B,
(AZ* - BZ*) = (AC*- BC");
therefore the criterion relation again is satisfied, and therefore &c.

Ex. 3°. The three perpendiculars to the sides of a triangle at the snternal
points of contact of the three exscribed circles are concurrent.
For, if a, b, ¢ be the three sides and s the semi-perimeter of the triangle,
then since, Euc. 1V. Appendix,
BZ=CY=(s-a), CX=AZ=(s-b), AY=BX=(s-c¢);
therefore, as in Ex. 1°, the criterion relation is identically satisfied, and
therefore &e.
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Ex. 4°. Every two perpendiculars to sides of a triangle at points of contact
of exscribed circles external to the same vertex are concurrent with the per-
pendicular to the opposite side at the point of contact of the inscribed circle.

For, if 4 be the vertex to which the two contacts are external; then
since, Euc. 1v., Appendix,

AY=BZ=(s-b), AZ=CX=(s-¢), BZ=CY =s;
therefore, here again, as in the preceding example, the criterion relation
is identically satisfied, and therefore &c.

Ex. 8° TWhen three circles touch two and two, the three tangents at the
three points of contact are rent.
For, if A, B, C be the centres of the three circles, a, b, ¢ the three radii,
and X, ¥, Z the three opposite points of contact, then since
AY=AZ=a, BZ=BX=b, CX=CY=c;
thercfore, as in each of the preceding examples, the criterion relation is
again identically satisfied, and therefore &e.

Ex. 6°. When three perpendiculars to the sides of a triangle are con-
current, the other three equidistant from the middle points of the sides are
also concurrent.

For, if LX, MY, NZ and L'X', M’'Y", N'Z’ be the two sets of perpen-
diculars, then since by hypothesis BX = CX’ and CX = BX', CY =AY’
and AY = CY', AZ = BZ and BZ = AZ'; therefore
(BX*-CX")+ (CY*-AY") + (42* - BZ")

=(CX"- BX") 4+ (AY"-CY") + (BZ™- AZ"),
and therefore when either equivalent = 0, so is the other; that is, when
either set of perpendiculars is concurrent, so is the other.

Ex. 7°. When the three perpendiculars from the vertices of one triangle
upon the sides of another are concurrent, the three corresponding perpen-
diculars from the vertices of the latter upon the sides of the former are also
concurrent.

Let ABC and A'B'C’ be the two tri-
angles. If 4'X, B'Y, C'Z pass through a
common point O, then AX"’, BY’, CZ’ pass 4
also through & common point O, and con-
versely. For, joining 4 with B’ and C", or
A’ with B and C; B with C’ and 4’, or B’
with C and 4; C with 4’ and B, or C' with
A and B; that is, each vertex of either
triangle with the two of the other it does
not correspond to, then
(BX'-CX") + (CY*-AY*) + (AZ*- BZ")

(BA*- C4™) + (CB*- AB*) +(AC™- BC")
= (C'4A*- B4') + (A'B*-C'B') +(BC*-4CY
=(C'X?*-BX") 4 (A4Y"-C'Y"?) +(BZ"- AZ"),
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but of these four equivalents the first = 0 is the condition for 4'X, B'Y, C'Z
to pass through a common point O, and the last = 0 is the condition for
AX', BY', CZ' to pass through a common point O, and therefore &c.

134. When three points X, Y, Z lying on the three sides BC,
CA, AB of any triangle ABC are collinear (figs. a, B, v).
a. They divide the three sides so as to fulfil the relation
' BX CY AZ
0X' AY'BZ~
b. They connect with the opposite vertices so as to fulfil the
relation

+ 1.

sinBAX sinCBY sindCZ .

snCAX sndBY snBCZ~ 13
and conversely, when they either divide the three sides so as to
Julfil the former relation, or connect with the opposite vertices so
as to fulfil the latter relation, they are collinear.

When three lines AX, BY, CZ passing through the three
vertices A, B, C of any triangle ABC are concurrent (figs.
oy By 7).

‘a’. They divide the three angles so as to fulfil the relation
sinBAX sin CBY sindCZ _
sinCAX "sinABY "sin BCZ .
b'. They intersect the opposite sides so as to fulfil the relation
BX CY AZ _
CX AY BZ ™~
and conversely, when they either divide the three angles so as to
Julfil the former relation, or intersect the opposite sides so as to
Julfil the latter relation, they are concurrent.

1.

1;

To prove the first or direct part of a.—From the three
vertices of the triangle ABC drawing three perpendiculars, or
parallels in any arbitrary direction, 4P, BQ, CR to meet the
line containing, by hypothesis, the three points X, Y, Z, then
since (Euc. vI. 4) BX: CX=BQ:CR, CY: AY=CR: AP,
AZ: BZ=AP: BQ; therefore, as above stated, the compound
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of the three antecedents =+ 1; the reason of the positive sign
appearing also from the obvious consideration that three collinear
points on the sides of a triangle necessarily divide an even
number of them tnternally (75). And to prove the second or
converse part of the same.—If Z' be the point at which the
line containing any two of the points X and Y meets the side
AB of the triangle containing the third Z; since then, by the
first part; X, Y, and Z’ being collinear,
(BX:0X).(CY:AY).(AZ' : BZ)=+1,
and since also, by hypothesis, ‘
(BX:CX).(CY:AY).(4Z: BZ)=+1,
therefore AZ": BZ'=AZ: BZ in magnitude and sign, and
therefore (75) Z'=2Z, so that, as above stated, Z is collinear
with X and Y.

To prove the first or direct part of a'.—From the point O
through which, by hypothesis, the three lines 4X, BY, CZ
concur, letting fall three perpendiculars, or isoclinals at any
arbitrary inclination, OP, 0@, OR upon the three sides BC,
CA, AB of the triangle ABC; then since (61)

sin BAX:8inCAX=-0R:0Q, sinCBY :sin ABY=-0P: OR,
sinACZ: sinBCZ=- 0Q: OF,

therefore, as above stated, the compound of the three antece-
dents =— 1; the reason of the negative sign appearing also
from the obvious consideration that three concurrent lines
through the vertices of a triangle necessarily divide an odd
number of the angles internally (75). And to prove the
second or converse part of the same.—If CZ’ be the line by
which the point O, common to any two of the lines 4AX and
BY, connects with the vertex C of the triangle through which
the third CZ passes; since then, by the first part, 4X, BY,
and CZ’ being concurrent,

(sinBAX:sinCAX).(sinCBY:sind BY).(sind CZ":sin BCZ')=-1,
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and since also, by hypothesis,
(sinBAX :8in CAX).(sinCBY : sinABY).(sin4 CZ:8in BCZ)=-1,
therefore sin 4 CZ" : sin BCZ' =sin ACZ : sin BCZ in magnitude
and sign, and therefore (75) CZ'= CZ, so that, as above
stated, CZ is concurrent with AX and B Y

Relations of exactly the same form, and proved in precisely
the same manner as the above (2 and a'), connect the several
pairs of segments into which the several sides of any polygon
are divided by every collinear system of points lying upon them,
and into which the several angles of any polygon are divided
by every concurrent system of lines passing through them; the
only modification being that while, in the former case, the sign
of the compound is, as above, always positive, in the latter case
it is negative only when, as above, the order of the polygon is
odd, but positive when it is even. The converse properties
however, which establish the relations ¢ and o' as criteria of
collinearity and concurrence of the several points and lines are
true only for the triangle; the reasoning by which they have
been inferred, as above, for that case from the direct properties
proving only for the general case of any order (n), that when
(n—1) of the points in the former case are collinear the n™ is
collinear with them, and that when (»—1) of the lines in the
latter case are concurrent the n™ is concurrent with them.

To prove b and &'.—Since, by (65), whatever be the posi-
tions of X, Y, Z in the former case, or the directions of 4X,
BY, CZ in the latter case,

BX B4 sinBAX CY CB sinCBY AZ AC smAOZ
CX~CA'snCAX’ AY 4B sndBY' BZ BC 'sna BCZ’

therefore, the two compounds

BX 0OY AZ _ d sinBAX sin CBY sindCZ
CX"4Y BZ ™ sinCAX ' 4ndBY " sin BOZ
are always equal in magnitude and similar in sign; whenever,
therefore, either = + 1, so is also the other, and therefore &c.
Relations of exactly the same form with these last (b and '),
and very easily proved directly, as they too may be, connect
the several pairs of segments into which, for any polygon of
an odd order (105), the several angles are divided by their con-
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nectors with collinear systems of points on the opposite sides,
and the several sides at their intersections with concurrent
systems of lines through the opposite vertices; but, as in the
cases of @ and a', the converse properties which establish the
relations as criteria of collinearity and concurrence of the several
points and lines, are, for the same reason as in their cases, true
only for the triangle.

The criteria (@ and &) for three points X, Y, Z on the sides
of a triangle to be collinear and to connect with the opposite
vertices by three concurrent lines 4X, BY, CZ, and the
criteria (b and a') for three lines AX, BY, CZ through the
vertices of a triangle to be concurrent and to intersect with the
opposite sides at three collinear points X, Y, Z, being in both
cases identical, if signs be disregarded or unknown; should
any ambiguity arise in consequence, as to which of the two
rclations in either case is indicated by the fulfilment of the
criterion in any particular instance, in which the signs of the
compound ratios are not explicitly given or known ; the obvious
consideration, on which the difference of sign in each case
depends, that an odd number of the points or lines must be
external to their respective sides or angles for collinearity, and
tnternal to them for concurrence, is sufficient always to re-
move it.

135. The following is an obvious corollary from, or rather
indeed a different manner of, stating the two general properties
a' and b of the preceding article, viz.,

When three points P, Q, R, however situated, connect with the
three vertices A, B, C of a triangle ABC by three lines AP, BQ),
CR which are either concurrent or collinearly intersectant with
the opposite sides, the three pairs of perpendiculars PP’ and PP",
QQ and QQ'y BR' and RR" from them upon the three pairs of
sides containing the respective vertices are connected by the relation

PP Q9 EE _
PPI . QQ” . .RR” =+ ]
and conversely, when the three pairs of perpendiculars from them

upon the sides of the three angles of the triangle are connected
by the above relation, the three lines commecting them with the
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corresponding vertices are etther concurrent or collinearly intere
sectant with the opposite sides.
For, whatever be the positions of P, @, R, since (61)
PP : PP"=—-sin PAB: sin PAC, :
. QQ:QQ'=-5inQBC:sinQBA, . o
RR': RR"=—sinECA : sinRCB,
therefore the two compounds '
PP Q¢ RE d sinBAP sinCB(Q sinACR
PP QQ"RE *"° SinCAP sndBQ sm BOR
are always equal in magnitude and opposite in sign, and there-
fore when either =+ 1 the other then =¥ 1, and therefore &e..

136. Two very important conclusions, one respecting points
at infinity, the other respecting parallel lines, result immediately
from the general relations a or b, and o' or &' of Art. 134, re-
garded as criteria of the collinearity of three points X, ¥, Z on
the sides, and of the concurrence of these lines 4X, BY, CZ
through the vertices, of a triangle 4ABC—

1°. Every three points X, Y, Z at infinity evidently divide
the three sides BC, C4, AB of every triangle ABC whosé
directions pass through them, so as to fulfil identically the
relation ’ ‘ o

(BX:0X).(CY: AY).(AZ: BZ)=+1,
and as evidently connect with the opposite vertices, so as to
fulfil identically the relation

(sinBAX:8in CAX).(sin CBY:sin ABY).(sin4 CZ:sin BOZ)=+1,

therefore, by relation a or b, they are collinear, and. therefore——
Every three, and therqfore all, points at infinity are collinear.
2°. Every three parallel lines 4X, BY, CZ evidently divide

the three angles BAC, CBA, AC’B of every triangle ABC
whose vertices lie on them, 8o as to fulfil identically the relation

(sin BAX:sinCA X).(sin CBY:sin A BY ).(sind 0Z:sin BCZ)=—1,
and as evidently intersect with the opposite sides, so as to falfil
the relation

(BX: CX).(CY: AY).(AZ: BZ)=-1,
therefore, by relation a' or ¥/, they are concurrent, and therefore—

Every three, and therefore all, parallel lines are concurrent, -
N
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Paradoxical as these conclusions always appear when first
stated, all doubt of their legitimacy has been long set at rest by
the number and variety of the considerations tending to verify
and confirm them. .

137. In the following examples of the application of the
preceding relations, as criteria of the collinearity of three points
X, Y, Z on three lines, and of the concurrence of three lines 4X,
BY, CZ through three points, one only of the two relations
equally establishing the circumstance being proved in each case,
the verification & priori of the other may be taken as an
exercise by the reader.

Ex. 1°. Every three points of bisection of different sides of a triangle
are collinear, or commect concurrently with the opposits vertices, according
as an odd number of them is external or internal.

For, since by hypothesis, BX:CX=11, CY: AY=+1, AZ: BZ=%1,
according as each section is external or internal, therefore the criterion
relation (a or &) for collinearity or concurrence, vis.

(BX:CX).(CY:A4Y).(AZ: BZ)=+1,

according as an odd number of them is external or internal, is satisfied in
the simplest manner of which it is susceptible, and therefore &c.

Ex. 2°. Every three lines of bisection of different angles of a triangle are
concurrent, or intersect collinearly with the opposite sides, according as an
odd number of them is internal or external.

For, since by hypothesis,

8in BAX :8inCAX =11, sinCBY :sindBY =11, sin4CZ:sin BCZ=+1,

according as each section is external or internal, therefore the criterion
relation (@’ or b) for concurrence or collinearity, viz.

(sin BAX :8inCAX) .(sinCBY : sin ABY).(sin ACZ: sin BCZ)=3F 1,

according as an odd number of them is internal or external, is satisfied in
the simplest manner of which it is susceptible, and therefore &e.

Ex. 3°. In every triangle circumscribed to a circle the three points of
contact of the sides connect concurrently with the opposite vertices.

For, if X, ¥, Z be the three points of contact, then, since, by pairs of
equal tangents from ABC to the circle, AY = 4Z, BZ= BX, CX = Cy,
therefore, as in Ex. 1°, the criterion relation (3') for the concurrence of
AX, BY, CZ is identically satisfied; it being evident, from the nature of
the case, that the three points X, ¥, Z must, according to circumstances,
be either all internal or one internal and two external to their respective
sides, and therefore &c.
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Ex. 4°." In every triangle inscribed in a civcle the thrée tangcntc ‘at tlu‘
vertices intersect collinearly with the opposite sides.

For if 4X, BY, CZ be the three tangents, then, sirice, by pmrs ol‘
equal angles between BC, C4, 4B and the circle, sinCBY = sin BCZ,
8inACZ = sinCAX, sin BAX = sin ABY, therefore, as jn example 2., the
criterion relation (5) for the collinearity of X¥Z is identically satisfied ; it
being evident, from the nature of the case, that the three lines 4X, BY, CZ
must, under all circumstances, be external to their respective angles, and
therefore &c.

Ex. 5°. In every triangle the three perpendwulan through tlw vertices
to the opposite sides are concurrent (See Ex. 2°, 133).

For, if AX, BY, CZ be the three perpendiculars, then, since, by pairs
of similar right-angled triangles about 4, B, C as common vertices,

sin ABY =sin ACZ, sin BCZ =sin BAX, sinCAX =sinCBY,
therefore the criterion relation (a’) for the concurrence of 4X, BY, CZis
identically satisfied ; it being evident, from the nature of the case, that, ac-
éording as the triangle is acute or obtuse angled, they are either all internal
or one internal and two external to their respective angles, and therefore &c.

Ex. 6°. In every triangle the three perpendiculars through any pownt $a
the three lines connecting them with the vertices intersect collmcarly wath the
opposite sides.

For, if O be the point, and OX, OY, OZ the three perpendiculars
through it to 04, OB, OC respectively, then, since, by (65), '

BX:CX=(BO:C0).(sin BOX :sinCOX),

CY: AY =(C0: 40).(sinCOY :8in 40Y),

AZ: BZ=(AO: BO).(sin 40Z :sin BOZ); T
and since, by pairs of perpendiculars, ) B

o .
8inCOY = sin BOZ, sin A0Z =3sinCOX, sin BOX =sin40Y,

therefore the criterion relation (a) for the collinearity of X ¥Z is satisfied ;
it being evident, from the nature of the case, that they must be, according to
circumstances, either all external or one external and two internal to their
respective sides, and therefore &e.

Ex. 7°. If the three sides of a triangle be reflected with respect to any
line (50), the three lines through the vertices parallel to the reflexions of tha
opposite sides are concurrent.

For,if AX, BY, CZ be the three parallels, then, since, by differences of
pairs of equal angles (50),

gin ABY =sin ACZ, sin BCZ =sin BAX, s8inCAX =sinCBY,

therefore the criterion relation (a’) for the concurrence of 4X, BY, CZ is

identically satisfied ; it being evident, from the nature of the case, that, ac-

cording as the axis of reflexion is or is not parsllel to a bisector of an
N2
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angle of the triangle, either two of them coincide with the sides of that
angle or two are external and one internal to their respective angles,
and therefore &c.

Ex. 8. If the three vertices of a triangle be reflected with respect to
any line (50), the three lines connecting the reflexions with any point on the
Hne intersect collinearly with the opposite sides.

For, if 4’, B', C’ be the three reflexions, O the point on the line, and
X, ¥, Z the three intersections of 04’, OB, 0C', with BC, CA, AB re-
spectively, then, since, by (65),

BX: CX = (BO: CO). (sin BOX : 8sinC0OX),

CY: AY = (CO: A0).(sin COY : sin 40Y),

‘AZ : BZ=(AO: BO).(sinAOZ : sin BOZ);
and since, by differences of pairs of equal angles (50),
. sinCOY =8in BOZ, sinA0Z =38inCOX, sin BOX=35nAd0Y,
therefore the criterion relation a, for the collinearity of X, ¥, Z, is satisfied
exactly as in Ex. 6°; it being evident, from the nature of the case, that, here

as well as there, they must, according to circumstances, be either all external
or one external and two internal to their respective sides, and therefore &c.

Ex. 9°. When three of the siz intersections of a circle with the three
stdes of a triangle connect concurrently with the opposite vertices, the re-
masning three also connect concurrently with the opposite vertices,

For,if X, Y, Zand X', Y, Z' be the two sets of intersections, then,
since, by Euc. 111. 35, 36,

AY AY' =AZ.AZ', BZ.BZ'= BX.BX', CX.CX'=CY.CY’,
therefore
(4Y:47) (BZ:BX).(CX:CY)=(AZ': AY')(BX': BZ')(CY":CX"),
and therefore when either equivalent = -1 so is the other; that is, when
either set of connectors 4 X, BY, CZ, or AX', BY', CZ’ is concurrent so

is the other. As no three points on a circle could be collinear, neither
equivalent could = + 1 in this case.

Ex. 10°. When three of the siz tangents to a civele from the three
vertices of a triangle intersect collinearly with the opposite sides, the remain-
tng three also intersect collinearly with the opposite sides.

For, if AX, BY, CZ and AX', BY", CZ’ be the two sets of tangents,
and a, b, ¢ the lengths of the three chords intercepted by the circle on the
three sides of the triangle, since then, by (66, Cor. 2°),

sin BAX .sin BAX ' :8inC4AX .sinCAX' =¢*: b,
8inCBY .sinCBY’ :sin ABY .sinABY ' =a': ¢,
8in ACZ ,sin 4CZ’' :sin BCZ .sin BCZ' =¥*:a",
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therefore v

(8in BAX :8inCA4X). (sinCBY : sin ABY ). (sin 4 CZ : sin BCZ)
=(sinC4AX':sin BAX').(sin ABY ' : sinCBY"). (sin BCZ' : sin BCZ’),

and therefore when either equivalent = + 1 so is the other; that is, when

-either set of intersections X, ¥, Z or X', ¥’, Z’ is collinear so is the

other. As no three tangents to a circle could be concurrent, neither equi-
valent could = - 1 in this case.

Ex. 11°. When three points on the sides of a triangle are either collinear
or concurrently connectant with the opposite vertices, the other three equally
distant from the bisections of the sides  are also either collinear or concur-
rently connectant with the opposite vertices.

For,if X, ¥, Zand X', Y, Z’' be the two sets of points, then, sirice,
by hypothesis, BX = CX’ and (X =BX', CY=A4Y' and 4Y = CY",
AZ = BZ'and BZ = AZ', therefore

(BX:CX).(CY:AY).(AZ: BZ)=(CX': BX'\(AY":CY")(BZ': AZ’),

and therefore when either equivalent =+ 180 is also the other; that is,
when either set of points X, ¥, Z or X', ¥’, Z’ is collinear, or, when
either set of lines 4X, BY, CZ or AX', BY', C’Z’ is concurrent, so is
also the other, and therefore &c.

Ex. 12°, When three lines through the vertices of a triangle are either
concurrent or collinearly sntersectant with the opposite sides, the other three
"equally inclined to the bisectors of the angles are also either concurrmt or
collinearly tntersectant with the opposste sides.
For, if AX, BY, CZ and AX', BY', CZ' be the two sets of lines,
then since by hypothesis BAX =CAX'and CAX = BAX', CBY = ABY'
and ABY = CBY', ACZ=BCZ' and BCZ = ACZ', therefore

(sin BAX : sin CAX).(sin CBY : sin ABY).(sin ACZ : sin BCZ)

= (sinC4X':sin BAX'). (sin 4BY' : sinCBY').(sin BCZ' : sin ACZ"),
and therefore when either equivalent =31 so is also the other, that is
when either set of lines AX, BY, CZor AX', BY', CZ' is concurreut,

or when either set of points X, ¥, Z or X', Y"', Z' is collinear, so is also
the other, and therefore &c.

Ex. 13°. When three lines through the tvertices of a triangle are con-
current, the siz bisectors of the three angles they determine tntersect with
the corresponding sides of the triangle at siz points, every three of which on
different sides are either collinear or concurrently connectant with the op-
posite vertices, according as an odd number of them is external or internal.

For, if O be the point of concurrence of the lines, and X, ¥, Z the
intersections with the sides of the tviangle of any three of the six bisectors
of the three angles BOC, COB, 4 OB, then, since Euc. vI. 3,

BX:CX=1+B0:00, CY: AY=1CO0: 40, AZ:BZ=1%+ AO0: BO,
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aocording as each bisector is external or internal, therefore
(BX:CX).(CY:A4Y).(AZ: BZ)=+%1,

sccording as an 0dd number of them is external or internal, and therefore &c.
Ex. 14°. When three points on the sides of a triangle are collinear, the

#i bisactions of the three segments they determine connect with the corre-

“sponding vertices of the triangle by siz lines, every three of which through

different vertices are esther concurrent or collinearly intersectant with the

opposite sides, according as an odd number of them is internal or external.
For, if P, Q, R be the three collinear points, and 4X, BY, CZ any

three of the six lines through 4, B, C bisecting externally and internally

the three intercepted segments QR, RP, PQ, since then, by (85, Cor 3°.),

8in BAX : 9inCAX =+ AQ: AR, sinCBY : sinABY =+ BR: BP,

J asin ACZ:sin BCZ=1 CP: CQ,

according as each bisector divides its angle of the triangle externally or

.internally, and since, by (a), " :

. (BP:CP).(CQ:4Q):(4AR: BR)=+1,

‘the three points P, Q, R being by hypothesis collinear, therefore

‘(8in BAX : 8inCAX).(sinCBY : sin ABY ) .(sin ACZ : sin BCZ) =¥ 1,

according as an odd number of the bisectors is internal or external, and

therefore &e. .

N.B. With respect to this last example and all others of
the same kind, it is to -be observed that, since, of the three
segments intercepted on any line by the three angles of any
triangle, two are always comprehended in the ¢nternal and one
always in the external regions of the intercepted angle, (see figs.
a, B, v, Art. 134), therefore an odd number of sections of either
kind for the segments corresponds always to an odd number
of sections of the other kind for the angles, and conversely.

138. The two last Examples, 13° and 14°, of the preceding
Article are particular cases of the two following general pro-
perties— :

1°. When three points X, Y, Z on the sides of a triangle
ABQO are collinear or connect concurrently with the opposite
vertices, their connectors 0X, 0Y, OZ with any arbitrary point
O divide the three angles BOC, COA, AOB subtended at that
point by the sides of the triangle, so as to fulfil the relation

sinBOX sinCOY sind0Z _ 1
#nCOX ' snd0Y snBOZ ~ * 7
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and conversely, when they connect with any point O 30 as to fulfib
the above relation they are collinear or connect concurrently with
the opposite vertices.
2°. When three lines AX, BY, CZ through the vertices of
a triangle ABC are concurrent or tntersect collinearly with the
opposite sides, their intersections X, Y, Z with any arbitrary line
L divide the three segments QR, RP PQ tntercepted on that line
by the angles of the triangle, so as to fulﬁl the relation
QX RY PZ
RX'PY Qz~
and conversely, when they intersect with any line L so as to fulfil
the above relation they are concurrent or tntersect collinearly with
the opposite sides.
For, whatever be the positions of X, Y, Z in 1° since, by
(65), disregarding signs for a moment,

sinBOX : sinCOX=(BX : CX).(CO : BO),
sinCOY :sind0Y=(CY:4Y).(40: CO),
sind0Z : snBOZ=(AZ : BZ).(BO: A0);

and since, evidently, the internal and external sections of BC’
CA4, AB and of BOC, COA4, AOB always correspond, tflere-
fore the two compounds,

(8inBOX : 8inCOX).(8inCOY : 8in40Y ).(sin4 0Z: smBOZ)
and (BX:0X).(CY: AY).(AZ: BZ)

are always equal in magnitude and similar in sign, and there-
fore when either of them =41 so is the other also, which, by
relations a@ and &' of the preceding, proves both parts of 1°
And whatever be the; posxtlons of AX, BY, CZ in 2°, since, by
the same, again disregarding signs for a moment,

QX: RX=(QA: RA).(sin CAX : sin BAX),
RY: PY=‘(RB : PB).(sinABY : sinCBY),
PZ : QZ=(PC : QO).(sinBCZ :sin 40Z);
and since, by (a), the three points P, @, R being collinear, V
(@A : RA).(RB: PB).(PC: QC)=+1;
therefore, remembering (see note to the preceding Article) that
the odd number of sections of either kind for QR, RP, PQ

+1,
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corresponds always to the odd number of sections of the other
kind for BAC, CBA, ACB, and conversely, the two compounds
(@X: RX).(RY : PY).(PZ: QZ)

and i
(8inCAX : sin BAX ).(sin ABY : sinCBY ).(sin BCZ : sin ACZ),
are always equal in magnitude and opposite in sign, and there-
fore when either of them =31 the other then =¥1, which,
by relations a’ and b of the preceding, prove both parts of 2°,
and therefore &ec.

139. The next example is given separately from the utility
of the double property in the modern geometry of the triangle.

a. When three lines through the vertices of a triangle are
concurrent, their three points of intersection with the oppostte sides
determine an tnscribed triangle whose sides intersect collinearly
with those of the original to which they correspond.

b. When three points on the sides of a triangle are collinear,
their three lines of connection with the opposite vertices determine
an exscribed triangle whose vertices connect concurrently with
those of the original to which they correspond.

"~ To prove a.—If ABC be the
original triangle, 4'B'C’ any in-
scribed triangle, and X, Y, Z the
three intersections of their three
pairs of corresponding sides BC
and B'C’, CA and C'4d’, AB
and A'B’, then, whatever be the
positions of A'B'C', since, by
(134, a.),
BX: CX
=(BC': AC').(4B'; CB),
CY:AY
=(C4': B4A").(BC': AC"),
AZ:BZ
=(4B': CB').(C4': B4),
therefore, in all cases,
(BX: CX).(CY: AY).(AZ: BZ) :
=(C4': BA')'.(AB': CB')’.(BC' : AC")',
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and therefore, as above stated, when 44', BB'y, CC' are con-
current X, Y, Z are collinear, and conversely, both equivalents
being then = +1.

To prove b.—If ABC be the original triangle, 4, B,C, any
exscribed triangle, and X, Y, Z the three intersections of their
three pairs of corresponding sides BC and B,C,, C4 and C 4,
AB and A B, then, whatever be the directions of 4X, BY, CZ,
since, by (134, a'.),
sinBAA, :8inCAA,=—(sinBCZ: 8inA CZ).(sinABY : sinCBY),
sinCBB, : sind BB,=—(sinCAX :sin BAX).(sinBCZ : sin4 CZ),
8in4 CC,: sinBCC,=—(sin4BY :sin CBY).(sin (4 X : sinBA X),
therefore, in all cases, ,

(sinBAA, :sinCAA,).(sinCBB, :sinABB).(sinA CC, : sin BCC,)
=-(8inCAX:sinBAX)".(sinABY :sin CBY )’.(sinBCZ:sind CZ)*,
and therefore, as above stated, when X, Y, Z are collinear
AA,, BB, CC, are concurrent, and conversely, both equivalents
being then =—1.

Cok. 1°. When, as in a, the three lines 44', BB', C(" are
concurrent, and the three points X, Y, Z therefore collinear,
or conversely, it is easy to sce that then always

BX B4 C0Y OB A4z  AC
CX~ ~ CA'' AY  ~ 4B’ BZ ~ BC"
relations which give at once, numerically, the positions of the
three points X, Y, Z when those of the three 4', B', ' are

known, and conversely.

For, by (184) a and &', the common values of the three pairs
of equivalents are expressed alike by the three compounds,

(BC': AC".(AB': CB'), (CA4':BA).(BC':AC),
(4B': CB').(CA' : B4),
respectively, and therefore &c. ‘

Cor. 2°. When, as in b, the three points X, Y, Z are col~
linear, and the three lines 44, BB,, CC, therefore concurrent,
or conversely, it is easy to see that then always

sinBAX  sinB4A4 sinCBY _ sinCBB,
sinCAX ~ ~ sinCd4,’ sinABY  ~ sindBB’
sindCZ _ sinACC,
sinBCZ ~ ~ smBCC,”
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relations which give at once, numerically, the directions of the
three lines 44, BB, CC, when those of the three AX, BY,
CZ are known, and conversely.

For, by (134) 4 and a', the common values of the three pairs
of equivalents are expressed alike by the three compounds

(sinBCZ : 8sin ACZ).(sin ABY : sin CBY'),

(sinCAX: sin BAX).(sinBCZ : 8inACZ),

(3indBY: sinCBY ).(sin CAX : sin BAX),
respectively, and therefore &c.

Cogr. 38°. From the preceding relations it may be easily
shown, that, for the same triangle 4ABC, the same line XYZ
corresponds always to the same point O, and the same point O
to the same line X YZ, in the two properties a and .

For, if XYZ be given, then since, by the relations of Cor. 1°,
the three sets of lines BY, CZ, and 44', CZ, AX, and BB,
AX, BY,and CC'in (a) are concurrent, and since, by hypo-
thesis, the three sets BY, CZ, and 44, CZ, AX, and BB,
AX, BY, and CC, in (b) are concurrent, therefore three pairs
of lines A4’ and 4A4,, BB’ and BB,, CC' and CC, coincide,
and therefore &c. And, if O be given, then since, by the
relations of Cor. 2°, the three sets of lines BO, CO, and BC,
CO, A0, and C/A,, A0, BO, and A B, in (b) intersect col-
linearly with the opposite sides of ABC, and since, by hypo-
thesis, the three sets BO, C0, and B'C’, C0, 40, and C'4’,
A0, BO, and 4'B' in (a) do the same, therefore the three points
X, Y, Z are the same for both, and therefore &c.

Cor. 4°. Given, with the triangle ABC, either the point O
or the line I containing the three points X, Y, Z, which in the
modern geometry of the triangle are intimately connected with
each other, and distinguished by correlative names expressive
of their relation to each other and the triangle, the other may
be immediately determined by mere linear constructions based
on the above properties a and b, as follows—

For, the triangle ABC being given, the point O gives the
three lines 04, OB, 0C, they the three points 4, B', (', they
the three lines B'(", ("4', 4A'B', they the three points X, ¥, Z,
and they finally the line J, by property (@); and conversely:
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the triangle ABC being given, the line I gives the three points
X, Y, Z, they the three lines AX, BY, CZ, they the three points
A, B, C,, they the three lines 44, BB, CC,, and they finally
the point O, by property (b).

Cor. 5°. The point O, or line J—and with either of course
the other—being given, if from the original triangle ABC two
series of triangles 4'B'C’, A"B"(C", A"B" (0", &c., and 4,B,C,
4,B,C,A4,B,C,, &c. be derived by the continued repetition
of the two inverse constructions indicated in the statements of
the properties a and b; applied first to the original triangle
itself ABC, as in the figure, producing the two first derivatives
A'B'C' and 4,B,C, then to each of them, in the same manner,
producing the two second derivatives 4"B"C" and 4,B,C,
then to each of them again, in the same manner, producing the
two third derivations 4”B"C" and 4,,B,,C,,, and so on to in-
finity ; the two series of triangles thus derived from 4BC, by
the directing agency of O and I, would form evidently, through
the connecting link of the original, one continuous, and in both
directions unlimited, system of connected triangles, each in-
scribed to one and exscribed to the other of the two between
which it lies; their three systems of corresponding sides passing
in different directions through the same three points X, Y, Z
on the line I; their three systems of corresponding vertices
lying in different positions on the same three lines 04, OB,
OC through the point O; and the point and line O and I having
to each and all of them, individually and collectively, the same
relations as to the original 4ABC.

In the particular case of the line I being at infinity, the
triangles constituting the system would evidently be all imilar,
alternately similarly and oppositely placed, and having all the
point O for common centre of similitude, (42).

140. The next Example, again, is given separately from the
importance of the property as the basis of the theory of per-
spective, or homology, as it is termed by the French writers, in
the geometry of plane figures.

For two triangles of any nature whose vertices and sides corre-
spond in pairs, when the three pairs of corresponding vertices
connect concurrently the three pairs of corresponding sides intersect
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collinearly, and conversely, when the three pairs of corresponding
sides intersect collinearly the three pairs of corresponding vertices
connect concurrently.

For, if ABC and A'B'C' be any two triangles whose vertices
and sides correspond in pairs, A4’, BB',
C(C',the three connectors of correspond- 4
ing pairs of vertices, and X, Y, Z the
three intersectionsof corresponding pairs
of sides; from the vertices A BC of either
letting fall pairs of perpendiculars 4P
and AP, BQ and B¢, CR and CR
upon the pairs of sides about the cor-
responding vertices A', B', C' of the
other, since then, in all cases,

BQ: CR'=BX: CX,

CR: AP =CY: 47,

AP: BQ =AZ: BZ;
therefore, in all cases, the two compounds

(BQ:CR).(CR: AP).(AP: BQ),

or (4P: AP).(BQ: BQ).(CR: CR),

and (BX:CX).(CY: AY).(AZ: BZ),

are equal in magnitude and similar in sign, and therefore when
either =+ 1 80 is the other also ; but when the former =+ 1 the
three lines 44’y BB', CC’ through the vertices of 4', B', C' are
concurrent, and conversely, (135), and when the latter =+ 1
the three points X, Y, Z on the sides of ABC are collinear, and
conversely, (134, a.), and therefore &c. Of course when either
equivalent = — 1 80 too is the other also, but the general property
resulting from the circumstance, though equally obvious, is not
equally important in that case.

As both parts, a and b, of the property of the preceding
Article are evidently included in the above as particular cases,
the former, therefore, though independently established in the
text, are not really independent, but are merely converse proper-
ties; which is evident also from the obvious consideration, adverted
to in Cor. 5°, that the two derived triangles 4'B'C' and 4 B, C

1
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see figure to the preceding Article, are related each to the
original ABC as the original-to the other.

141. From the above the following important extension of
itself may be readily inferred, viz.—

For two geometrical figures of any kind, F and F', whick are
of such a nature that, to every point of one corresponds a point
of the other, to every line of one a line of the other, to every point
of intersection of two lines of ome the point of intersection of the
two corresponding lines of the other, and to every line of con-
nection of two points of one the line of connection of the two corre-
sponding points of the other ; when the several pairs of correspond-
ing points connect concurrently the several pairs of corresponding
lines intersect collinearly, and conversely, when the several pairs of
corresponding lines intersect collinearly the several pairs of corre-
sponding points connect concurrently.

For, if, in the former case, L and L', M and M', N and N'
be any three pairs of corresponding lines, and therefore, by the
" assumed connections, MN and M'N', NL and N'L';, LM and
L'M' three pairs of corresponding points, of the figures; since
then, by hypothesis, the three latter connect concurrently, there-
fore, by the above, the three former intersect collinearly; and
the property being thus true for every three is therefore true for
all pairs of corresponding lines, and therefore &c.; and if, in
the latter case, Pand P, @ and ¢, R and R’ be any three pairs
of corresponding points, and therefore, by the assumed con-
nections, QR and Q'R', RP and R'P, PQ and P @' three pairs
of corresponding lines, of the figures; since them, by hypothesis,
the three latter intersect collinearly, therefore, by the above,
the three former connect concurrently ; and the property being
thus true for every three is therefore true for all pairs of corre-
sponding points, and therefore &c.

Every two triangles, or figures of any nature related as above
to each other, when so relatively situated that their several
pairs of corresponding points connect concurrently and their
several pairs of corresponding lines intersect collinearly, are
said to be ¢n perspective, or, as the French writers term it, in
homology with each other; and, in the same case, the point
of concurrence () of the several concurrent connectors, and the
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line of collinearity I of the several pairs of collinear inter-
sections, either or both of which may be at infinity, are termed
respectively the centre and the axis of perspective or homology ;
the meaning and origin of the terms are obvious,

142. Two similar figures F and F”, both right or left, what-
ever be their nature, when placed either in similar or in opposite
positions with respect to each other (41), furnish the most
obvious as well as the simplest example of figures in perspec-
tive; for, their several pairs of homologous points P and P’ con-
nect concurrently through their centre of similitude (42), which
therefore in their case is the centre of perspective; and, their
several pairs of homologous lines L and L', being parallels,
intersect collinearly on the line at infinity (136, 1°.), which there-
fore in their case is the axis of perspective.

Conversely, when the axis of perspective of two figures
F and F'in perspective is at infinity, the figures themselves,
whatever be their nature, are similar, both right or left, and
either similarly or oppositely placed ; for, as their several pairs of
corresponding lines L and L' intersect at infinity, they are
parallel, and, as their several pairs of corresponding points
P and P connect through the centre of perspective, that point
satisfies for the figures the conditions of similitude (32), and
therefore &c. When, in addition, the centre of perspective also
is at infinity, the ratio of similitude being then =+ 1, the figures
are not only similar in form, and similarly placed in position,
but also equal in magnitude.

143. Two figures ¥’ and F' composed of pairs of corres-
ponding points P and P, @ and ¢, R and R, &c., connecting
by parallel lines all cut in the same ratio by the same line 7,
furnish another obvious example of figures in perspective, the
line of section being the axis, and the point at infinity in the
direction of the parallels the centre, of perspective; for per-
pendicular section generally, every two such figures are said
also to be refractions, and in the particular case when the ratio
of section = — 1, as already mentioned in (50), to be reflections of
each other, with respect to the line or axis of section ; the general,
like the particular, name having becn introduced for convenience
into Geometry from the science of Optics.
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Conversely, when the centre of perspective of two figures
F and F’ in perspective is at infinity, the figures themselves,
whatever be their nature, are connected with each other by the
preceding relation ; for, as every two connectors PP’ and Q@' of
their pairs of corresponding points intersect at infinity, they are
parallel, and, as the two corresponding lines PQ and P'Q
connecting their extremities intersect on the axis of perspective,
they are divided by that line in the same ratio, and therefore &c.
When, in addition, the axis of perspective also is at infinity,
the ratio of section being then =+ 1, the figures, which for that
ratio would necessarily coincide were the axis not at infinity,
are, as already noticed in the preceding article, exact duplicates
in form, magnitude, and direction, and merely separated from
each other in absolute position by an interval of finite magnitude.

144. Two figures F and F' may be of such a nature as
to form, and so circumstanced as to position, that a correspon-
dence between their points and lines in pairs, satisfying the
conditions of perspective, may exist in more ways than one.
Two similar figures, for instance, of such a form as to be suscep-
tible simultaneously of similar and opposite positions by different
ways of correspondence (35), are of such a character, and are
accordingly not only in perspective but doubly in perspective
when in any positions of similitude or opposition, the two
centres of similitude, external and internal, being the centres
of the two perspectives, and the line at infinity the common axis
of both.

Two circles being similar figures which, however situated,
are always at once in similar and opposite positions with respect
to each other, are therefore always in perspective for each centre
of similitude ; but, as we shall see in another chapter, they
possess moreover the additional property of being not only in
perspective but doubly in perspective for each centre of simili-
tude, the line at infinity being the common axis for two of the
perspectives, and another line at a finite distance the common
axis for the other two,

145. In the perspective of two rows of points on different
axes or of pencils of lines through different vertices, already
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alluded to in (130), an exceptional peculiarity presents itself,
which, if not attended to, might cause embarrassment in the
applications of the general theory to their particular cases;
while the centre of perapective in the case of the rows, and the
axis of perspective in the case of the pencils, is unique and
determinate (130), the axis in the former case, and the centre in
the latter, is indeterminate; every line concurrent with the
axes of the rows in the former case, and every point collinear
with the centres of the pencils in the latter case, being indif-
ferently an axis of perspective in the one case, and a centre of
perspective in the other. All such cases however are excep-
tional, figures in perspective having in general but a single
centre and a single axis of perspective, both generally at a
finite distance, but either or both of which may be at infinity.

146. The following are a few consequences from the funda-
mental theorem of the preceding article (140) respecting triangles
in perspective— .

a. When three pairs of points P and P', Q and @', B and R’
connect concurrently, the six centres of perspective X and X',
Yand Y'y Zand Z' of the three pairs of segments Q@' and RE',
RR' and PP', PP' and QQ' they determine (131), lie in four
groups of three XYZ, Y'Z'X, Z’X'Y, X'Y'Z on four lines ;
each pair of corresponding centres thus constituting a pair of
oppostte intersections of the same tetragram (106).

a'. When three pairs of lines L and L'y M and M'y N and N'
tntersect collinearly, the six axes of perspective U and U', VandV",
.Wand W' of the three pairs of angles MM' and NN'y NN’ and
LL', LL' and MM’ they determine (131), pass in four groups of
three UVW, V'W'U, W'U'V, U'V'W through four points;
each pair of corresponding axes thus constituting a pair of
opposite connections of the same tetrastigm (106).

For, in the former case, the directions of the three segments
PP, Q@ BE being by hypothesis concurrent, the three pairs
of points P and P, @ and ¢, R and R’ determine therefore
four pairs of triangles PQR and P'QR, QRP and QRP,
RPQ and R'P'Q, PQR and P’ @R, whose pairs of correspond-
ing sides by (140) intersect collinearly at the six centers of
perspective of the three segments, viz. QF and Q'R at X,
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RP and R'P' at Y, PQ and P'Q at Z, QR' and Q'R at X,
RP and R'Pat Y’ PQ and PQat 7, and therefore &c. ; and,
in the latter case, the vertices of the three angles LL, MM', :
NN’ being by hypothesis collinear, the three pairs of lines L
and L'y M and M’y N and N’ determine therefore four pairs of
triangles LMN and L'M'N'y MNL' and M'N'L, NLM' and
N'I'M, LMN’ and L' M'N, whose pairs of corresponding vertices,
by (140), connect concurrently by the six axes of perspective
of the three angles, viz.,, MN and M'N’' by U, NL and N'L'
by V, LM and L' M’ by W MN' and M'N by U' NL and NL
by V’ LM' and L' M by W' and therefore &c.

b. When three triads of points P, Q,R; P', @, R'; P", Q", R
determine three triangles whose sz'des pass concurrently through
three collinear points, the three conjugate triads P, P', P'; Q, @', Q";
R, R', R" also determine three triangles wkose suiea pass con+
cm"rently through three collinear points.

b'. When three triads of lines L, M, N; L'yM',N'; L", M", N”
determine three triangles whose vertices lie collzmarly on ti;ree
concurrent lines, the three conjugate triads L, L', L"; M, M', M";
N, N’y N" also determine three triangles wlwse vertzces lze col-
lmearly on three concurrent lines.

For, in the former case, if L, M, N; L',M',N'; L", M", N”
be the three triads of sides of the three ongmal and U U, U "
V,V',V"; W, W', W" those of the three conjugate trlangles,
then, smce by hypothesns the three triads of points L'L") M'M",
N'N"; L"L, M"M, N'N; LL'y MM'y NN' are collinear, there-
fore by (140) the three triads of lines U, V, W; .U, V', W';
U", V", W" are concurrent; and again, since by hypothesis
the three triads of lines L, L', L"; M,M', M"; N, N', N" are con-
current, therefore, by (140), the three trlads of pomts VW,
vw, v'w"; wo, wu, w'u'; UV,UV', U'V" are col-
linear, and therefore &e. And in the latter case, if P, ¢, R
P,Q,R; P',Q', R be the three triads of vertices of the'
three original, and X, X', X"; Y, Y, Y"; Z,Z',Z" those of the
three conjugate triangles; then, since by hypothesis the three
triads of lines PP, Q' Q",R'R"; P'P, Q"Q, R"R; PP, Q¢, RR'
are concurrent, therefore, by (140), the three triads of points.
X, Y,Z2; X,Y,2'; X", Y", Z" are collinear ; and again, since
by hypothesis the three triads of points P, P, P"; @, ¢, Q";

0
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R, R, R' are collinear, therefore, by (140), the three triads of
lines YZ, Y'Z', Y"2"; ZX, Z’X', 2"X"; XY, X'Y', X"Y"
are concurrent, and therefore &c.

c. When three figures of any kind F, F', F", tn prespective
two and two, have a common axis of perspective, the three centers
of perspective of the three pairs they determine are collinear.

c'. When three figures of any kind F, F', F", in perspective
two and two, have a common centre of perspective, the three axes
of perspective of the three pairs they determine are concurrent.

For, in the former case, if P, Q, R; P, @, R'; P, ¢",R" be
any three triads of corresponding points of the three figures; then,
since by hypothesis the three triads of lines QR, ¢'R', @"R";
RP, R'P', R'P"; PQ, PQ, P'Q" pass concurrently through
three collinear points, therefore, by the preceding (), the three
triads of lines PP’ ¢'Q", RR"; P'P, Q'Q, R"'R; PP, QQ,
RR' also pass concurrently through three collinear points, and
therefore &c. And, in the latter case, if L, M, N; L',M',N';
L'y M", N" be any three triads of corresponding lines of the
three figures; then, since by hypothesis the three triads of
points MN, M'N'yM"N"; NL, NL'y N"L"; LM, LM', L"M"
lie collinearly on three concurrent lines, therefore, by the pre-
ceding (), the three triads of points L'L", M'M", N'N"; L"L,
M'M, N'"N; LL'y MM', NN' also lie collinearly on three con-
current lines, and therefore &c.

These two latter properties the reader may easily verify,
a priori, for the particular cases when the common axis in the
former case and the common centre in the latter case is at
infinity.

147. When two triangles ABC and A'B'C', whose vertices
and sides correspond in pairs, are in perspective.
a. The sides of each intersect with the non-corresponding
pairs of sides of the other so as to fulfil (see fig.)
Jor ABC the general relation
BY.BZ' CZ.CX' AX.AY'
CY.0Z 4ZAXx " BX.BY ~Th
Jor A'B' C' the corresponding relation
BY.BZ CZ.CX AX'.AY

CY.0Z A7 AX BX.By—11
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b. The vertices of each comnect with the non-corresponding
pairs of vertices of the other so as to fulfil (see fig.)
Jor ABC the general relation
sinBAB' .sinBAC’ sinCB('.sinCBA' sinACA'.sinACB’ _ 1
5nCAB snCAC " sndBC snABA " sinBOA .smBCB
Jor A'B'C' the corresponding relation
sinB'A'B.sinB'A'C sin(C'B'C.sinC'B'A sind'C'A.sin4'C'B
sinC'A'B.sinC'A'C "sinA'B'C.sind'B'A " sinB'C'4.8in B'C'B
=4 l’
and conversely, when two triangles ABC and A'B'C’, whose
vertices and sides correspond in pairs, are such that the sides of
one intersect with the non-corresponding pairs of sides of the other
s0 as to fulfil either relation (a), or that the vertices of one connect
with the non-corresponding pairs of vertices of the other so as to
Sulfil either relation (b), they are in perspective.

For, from the three vertices
of either triangle 4ABC, letting
fall the three triads of perpendi-
culars AP, AP AP"; BQ, BQ,
BQ'; CR, CR, CR" upon the
three sides, corresponding and
non-corresponding, of the other
A'B'C'; then, since, in the case
of (@), by pairs of similar right-
angled triangles,

BY :CY=BQ :CR and BZ' : CZ'=BQ: CR",
CZ: AZ=CR : APand CX' :AX'=CR: AP,
AX:BX=AP :BQand AY : BY'=AP:BQ";
and since, in the case of (b), by (61), directly
sinB'A'B :sinC'A'B= B : BQ

and sinB'A'C:sinC'A'C=CR : CR",
sinC'B'C : sind'B'C=CR : CR

and sinC'B'4 : sinA'B'A=AP : AP,
sind'C’'A : sinB'C'A=AP': AP

and sind'C'B:sinB'C'B=BQ : B,

02
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therefore the left-hand numbers of the first relation (a) and of
the second relation (b) are always equal in magnitude and sign
to the compound

(B : CR").(CR': AP").(AP : BQ"),
or which is the same thing to the compound

(4P : AP").(BQ : BQ").(CR': CR"), ‘
which, by (135), =+ 1 when the triangles are in perspective,
and conversely, and therefore &c.

By simply interchanging the two triangles in the preceding
construction and demonstrations, the second relation (@), which
is for A'B'C’ what the first is for ABC, and the first relation
(), which is for ABC what the second is for 4'B'C’, result of
course in the same manner.

148. With an important example of the application of each
of the preceding criteria of perspective between triangles, whose
vertices and sides correspond in pairs, we shall conclude the
present chapter.

Example of criterion (a).—In every hexagon tnscribed in a
circle the two triangles determined by the two sets of alternate
sides are tn perspectz’ve, opposite sides tn the hexagon being cor-
responding sides tn the perspective.

For, supposing in the figure of the precedmg artlcle the
six vertices X and X', Y and Y, Z and Z’ of the hexagon
YZXY'ZX' determined by the six sides of the two- triangles
ABC and A'B'C’ to be six points on a circle; then, since
Eue. 1. 35, 36,

AX. AY’=AZ AX, BY BZ' = BX.BY', CZ.0CX'=CY.CZ,

therefore relation (a) for the triangle ABC is satisfied in the
simplest manner of which it is susceptible, and therefore &ec.

This is the celebrated Theorem of Pascal respecting a
hexagon inscribed in a circle, and accordingly the centre and
axis of the perspective in this case are often spoken of as the
Pascal point and line of the hexagon.

Example of criterion (b).—In every hexagon circumscribed to
a circle the two triangles determined by the two sets of alternate
vertices are in perspectwe, opposite vertices in the hexagon bemg
correspondmg vertices in the perspective,
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For, supposing in the same figure the six sides BC' and B'C’,
C4' and ('A, AB' and A'B of the hexagon BC'AB'CA, deter-
mined by the six vertices of the two triangles ABC and 4'B'("
to be six tangents to a circle; then, if a, 3, ¢ be the lengths
of the three chords intercepted by the circle on the three sides
BC, CA, AB of either triangle 4 BC, since, by (66, Cor. 2°),

sin BAB'.sinBAC' : sinCAB'.sinCAC' =¢*: ¥,

sinCBC’.sin CBA' : sindBC'.sinABA'=a": ¢,

8ind CA'.sin ACB' : sin BCA'.sin BCB' =¥": o',
therefore relation (b) is satisfied for the triangle ABC, and
therefore &c. - ) -

This is the celebrated Theorem of Brianchon respecting &
hexagon circumscribed to a circle, and accordingly the centre
and axis of the perspective in this case are often spoken of as
the Brianchon point and line of the hexagon.

If of the two triangles ABC and A'B'C’' one be either
inscribed or exscribed to the other, and the latter therefore either
exscribed or inscribed to the former, the circle in either of the
above properties would manifestly pass tbrough the three
vertices of the inscribed and there touch the three sides of the
exscribed triangle, and the two properties of triangles circum-
scribed and inscribed to a circle, given in examples 3° and 4°,
Art. 137, would follow at once as particular cases from either
of the above.

]
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CHAPTER IX.

THEORY OF INVERSE POINTS WITH RESPECT TO A
CIRCLE.

149. EvVERY two points P and Q on any diameter of a
circle, the rectangle CP.CQ under whose distances from the
centre C is equal in magnitude and sign to the square of the
radius CR, are said to be inverse points with respect to the circle.

From the mere definition of inverse points it is evident that :
1°. When the radius of the circle is real they always lie at the
same side of the centre and at opposite sides of the circum-
ference, and coincide on the latter when their common distance
from the former is equal to the radius; 2°. When the radius is
imaginary they always lie at opposite sides of the centre, never
coincide, and are at their least distance asunder when equidistant
from the centre; 3°. Whether the radius be real or imaginary,
es one recedes from, the other approaches to the centre, and
conversely, and when one is at infinity in any direction the
other is at the centre, and conversely; 4°. In the extreme case
when the radius is evanescent, and the circle therefore a point,
one is always at the point and the other any where indifferently ;
5°. In the other extreme case when the radius is infinite, and
the part of the circle not at infinity therefore a line, they are
simply reflexions of each other with respect to the line (50). Of
these particulars the last, less evident than the others, will appear
more fully from the following general property of inverse points.

150. If P and Q be any pair of inverse points with respect
to a circle of any nature, A and B the two extremities, real or
tmaginary, of the diameter on which they lie, and C the centre
of the circle, then always

AP': AQ*=BP': BQ'=CP: CqQ.
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For, since, by hypothesis, CP.CQ = CR’, therefore
CP:CR=CR:CQ=CP+CR: CR+ (g,
and therefore (CP+ CR)": (CR+ CQ)'= CP: CQ, but
CP+CR=AP, CQ+CR=4Q, CP-CR=BP, CQ-CR=BQ;
and therefore &ec.

Hence, in the particular case when C is at infinity, that is,
when the part of the circle not at infinity with it is a line at
a finite distance; since then CP: CQ=1, therefore, by the
above, 4AP': AQ'=1 and BP': B@*=1, or the two points
4 and B are the two points of bisection, external and internal,
of the segment PQ), and therefore, as stated in the preceding
Article, the two points P and @ are in that case reflexions of
each other with respect to the line into whick the part of the circle
not at infinity then opens out.

In the Geometry of the Circle, upon which we are now
formally entering, the reader will find, as he proceeds, that
universally, as above, when the centre of a circle goes off to in-
finity without carrying the entire circle with it, the line at a
finite distance, into which the figure in its limiting form for the
extreme magnitude of its radius =co then opens out (18), is
in reality but part of the entire circle ; the line at infinity (136)
being invariably the remaining part, and possessing, in com-
bination with the line not at infinity, all the properties of the
complete circle in the general case; instances confirmatory of
this will appear in numbers in the sequel, and though t6 avoid
circumlocution we shall continue generally to speak, as we have
hitherto done, of a circle becoming a line when its centre goes
to infinity leaving itself behind, the circumstance that the line



200 THEORY OF INVERSE PUINTS

at infinity is always to be associated with the line not at infinity
as part of the entire circle must never, in such cases, be lost sight
of whenever it may be necessary, as it often is, to take it into
account.

151. Whatever be the nature of the circle, the inverse @
of every point P, not the centre C, is evidently unique and
determinate, being on the line CP connecting two known points
C and P, and at a distance CQ from one of them C of known
magnitude and sign; of the centre itself, however, the inverse,
being on the line connecting two coincident - points, is indeter-
minate, any point at infinity when the radius is finite, and any
point whatever in the particular case when it is evanescent,
satisfying evidently the conditions that determine it. :

When two points P and @ are such that one P is the inverse
of the other @ with respect to any circle, the latter Q is, of
course, reciprocally, the inverse of the former P with respect
to the same circle. '

152. As every circle has an infinite number of pairs of inverse
points P and @, P’ and @', P" and Q", &c., whose lines of con-
nection all pass through its centre C, and for which the several
rectangles CP.CQ, CP.CQ, CP".CQ", &c. are all equal in mag-
nitude and sign to the square of its radius CR; so conversely, every
two points P and @ have an infinite number of circles to- which
they are inverse, whose centres C, C’, ", &c. all lie on their
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line of connection P, and the squares of whose radii CR, C'R’,
C"R’, &c. are severally equal in magnitude and sign to the
corresponding rectangles CP.CQ, C'P.C'Q, C"P.C"Q, &c.;
every such circle is said, for a reason that will appear in an-
other chapter, to be coazal with the two points P and @, and
its radius CR is evidently real or imaginary according as its
centre C is external or internal to the segment P, evanescent
when C coincides with either point P or @, and infinite when
C is at infinity, in which case the line into which the part of
the circle not at infinity then opens out is (150) the axis of re-
flexion L of the two points P and Q.

Every two circles belonging to such a system being evidently
equal in magnitude when their centres C and D, C' and D,
C" and D", &c. are equidistant in opposite directions from the
middle point of PQ, the entire system consists therefore of
two similar and opposite groups, symmetrically disposed in
equal and opposite pairs, reflexions of each other with respect
to the axis of reflexion of P and @, by and through which, in
combination with the line at infinity, the circles of one group
are separated from and pass into those of the other; each circle
of each group enclosing all within and being enclosed by all
without itself ; and each point P and @ being the nucleus round
which the circles of its own group are eccentrically disposed,
and the evanescent limit through which they pass from real to
imaginary, and conversely.

In the particular case when the two points P and @ coincide,
the circles of the system are all real, the range of centres PQ
for which they are imaginary in the general case being then
evanescent. In this, the only case in which any two circles
of the entire system have a common point or any two of the
same group a common tangent, they evidently all pass through
the point of coincidence P= @, and all touch at that point the
line L passing through it perpendicular to their line of centres;
and all the other particulars respecting their distribution, as
above stated for the general case, are obvious, and have been
already stated in Art. 18.

153. In connection with the subject of the preceding Article
the following problem not unfrequently presents itself:



202 THFORY OF INVERSE PUINTS

Ghiven two pairs of points P and Q, P and Q on the same
line, to determine the centre C and radius CR of the circle coaxal
with both.

To solve which, since, by the preceding,

CP.CQ=CP.CQ =CR,

therefore, assuming arbitrarily any point M not on the line,
describing through it the two circles PMQ and P M, and
drawing their chord of intersection N intersecting the given
line at the point C; the circle round C as centre, the square of
whose radius CR is equal in magnitude and sign to the rectangle
CM.CN, is evidently that required. For (Euc. 111. 35, 36)

CP.CQ=CP.CQ=CM.CN=CR,

and therefore &c.

The circle thus determined, though its centre C is always
real, is itself imaginary when the two points P and @ alternate
with the two P’ and @' in the order of their occurrence on their
common axis ; this is evident from the obvious circumstance that
the rectangle CM.CN is then necessarily negative; in every
other case however it is positive, and the circle is therefore real.

In the particular case when the two intercepted segments
PQ and P'Q have a common middle point, the centre C, deter-
mined as above, being then at infinity, the part of the circle
itself not at infinity opens out, as it ought, into the common
axis of reflexion of the two pairs of points P and @, P and ¢,
see (150).

154. Any two segments of the same diameter of a circle,
which are such that the extremities of one are the inverses of
the extremities of the other with respect to the circle, are termed
tnverse segments with respect to the circle; thus, if PP be the
segment intercepted between any two points P and P’ on the
same diameter of a circle, and Q@' that intercepted between
the two inverse points @ and ', the two segments PP’ and Q@'
are inverse segments with respect to the circle.

Since, from the interchangeability of inverse points (151),
every two pairs of inverse points P and @, P and @ on the
same diameter of a circle, determine evidently two different
pairs of inverse segments PP’ and Q@', PQ and QF, hence
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connected with every pair of inverse segments PP’ and Q¢
with respect to any circle, there exists always a conjugate pair
PQ and QP with respect to the same circle.

Again, as every two segments PQ and P’ @' of the same line
thus determine two different pairs of segments PP and Q@
P@ and QP inverse to the unique circle coaxal with themselves
(153), so conversely, they determine two different circles with
respect to which they are themselves inverse segments, one that
coaxal with the two PP’ and @@, and the other that coaxal
with the two PQ and QP (153).

Hence the useful problem, given two segments PQ and P'Q'
of the same line, to determine the two circles with respect to which
they are inverse segments, is reduced to that of the preceding
Article (153), viz. to determine the two circles which are coaxal,
one with the two segments PP’ and Q¢, and the other with
the two PQ and @QP', and which, from the construction given
in that Article, are easily seen to be both real in the case when
the extremities of the two given segments PQ and P ¢ alter-
nate with each other in the order of their occurrence on their
common axis, and to be one real and one imaginary in either
of the two cases when they do not.

155. Every two points and their two inverses with respect to
the same circle lie in a circle.

For, if (fig., Art. 150) P and P’ be the two points, @ and @'
their two inverses, and C the centre of the circle; then since,
by the definition of inverse points, CP.CQ=CP.C¢, each
being = the square of the radius of the circle, therefore &c.

Conversely, every circle passing through a patr of inverse
points with respect to another circle determines a panr of inverse
points on every diameter of the other.

For, if P and Q, P and @' (same figure) be the two pairs
of points in which any circle intersects any two diameters
of any other circle, and C the centre of the latter; then, since
CP.CQ=CP.C¢q, if either rectangle = the square of either
radius, so is the other.

Cor. 1°. It is evident from the above that if the same circle
pass through a pair of inverse points with respect to one circle,
and also through a pair of inverse points with respect to an-
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other circle, it cuts the diameter common to both in a pair of
inverse points common to both,

Cor. 2°. The preceding furnishes an obvious solution of
the problem, “ to determine on the common diameter of two given
circles the tico points, real or tmaginary, inverse to both.”” For,
assuming arbitrarily any point P, and describing the circle passing
through it and through its two inverses @ and R with respect
to the two eircles; the circle PQR thus described intersects, by
the preceding, the common diameter in the two points required.

The two points E and F thus determined are imaginary
when the two circles intersect, real when they do not, and co-
incident at the point of contact when they touch. See Art. 152.

156. Every circle passing through a pair of tnverse potnts
with respect to another circle is orthogonal to the other. (22).

For, if C (fig., Art. 150) be the centre of any circle, P and
Q any pair of inverse points with respect to it, and R either
point in which any circle through P and @ intersects it ; since
then by hypothesis CP.CQ=CR", therefore CR, a radius of
one circle, is a tangent to the other, and therefore &c. (22).

Conversely, cvery circle orthogonal to another determines pairs
of inverse points on all diameters of the other.

For, if C (same fig.) be the centre of either circle, P and
Q the two points in which any line through it meets the other,
and R either point of intersection of the two; then since the
radius CR of the former is, by hypothesis, a tangent to the
latter, therefore CP.CQ=CR’, and therefore &c. (22).

Cor. 1°. It is evident from the above that every circle pass-
ing through the common pair of inverse points with respect to two
others (155; Cor. 2°) 48 orthogonal to both, and conversely that,
every circle orthogonal to two others passes tlzrouqk their common
pair of inverse points.

Cor. 2°. It is also evident from the same that all the circles
of a system having a common pair of tnverse points (see the
undotted circles of fig., Art. 152) are cut orthogonally by every
circle passing through the points, and, conversely, that all the
circles of a system passing through a pair of common points (see
the dotted circles of same figure) are cut orthogonally by every
circle coaxal with the points,
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Cor. 8°. It follows also from the above and from Cor. 1°.
that of a variable circle pass through a fixed point and cut a
Jixed circle at right angles, or, more generally, if it cut two fixed
circles at right angles, the locus of its centre vs a line ; for passing
through the point and its inverse with respect to the circle in
the former case, and through the common pair. of inverse points
with respect to the two circles in the latter case, its centre in
either case describes therefore the axis of reflexion of the two
points through which it passes; a more general proof for the
second case will be given in another chapter.

Cor. 4°. The preceding supply obvious solutions of the three
following problems: “To describe a circle, 1°. passing through
two given points and cutting a given circle at right angles;
2°. passing through a given point and cutting two given circles
at right angles ; 3°. cutting three given circles at right angles.”
For the circle passing through the two points and through the
inverse of either with respect to the circle, in the first case;
that passing through the point and its two inverses with respect
to the two circles, in the second case; and that orthogonal to
any one of the three circles, and passing through the common
pair of inverse points with respect to the other two, in the third
case; is evidently that required; a more general construction
for the third case will be given in another chapter.

157. The two tangents to a circle from any point in the axis
of reflexion of any pair of inverse points are equal to the two
distances of the point from the inverse points.

For, if P and @ (fig., Art. 150) be the inverse points, O any
point in their axis of reflexion L, and OF and O8 the two
tangents from O to the circle; since then, by the preceding,
the circle round O as centre which passes through P and @
cuts the original circle at right angles, it passes through R and
8, and therefore &c.

Conversely, the locus of a variable point, not at infinity (15),
the tangents from which to a fixed circle are equal to its distance
from a fived point is a line, the axis of reflexion of the point
and 1ts inverse with respect to the circle.

For, if P (same fig.) be the fixed point, and O any point for
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which the two tangents OR and OS to the fixed circle are
each equal to the distance OP; since then the circle round O
as centre which passes through P passes through R and &5, it
cuts the fixed circle at right angles, and therefore passes also
through @, the inverse of P with respect to the fixed circle,
and therefore &c.

Cor. 1°. It is evident from the first part of the above that
when (152) any number of circles have a common pair of in-
verse points P and ¢, tangents to them all from any point in
the axis of reflexion L of the two points are equal.

Cor. 2°. The second part of the above supplies of itself
obvious solutions of the two following problems:

1°. To determine the point on a given line or circle, the tangents
Jrom whick to a given circle shall be equal to its distance from a
gtven point.

2°. To determine the point, the tangents from which to two
gwven circles shall be equal to dts distances from two given points.

And, by aid of Cor. 2°., Art. (155) of the two following :

1. To determine the point on a given line or circle, the tan-
gents from which to two given circles shall be equal.

2'. To determine the point, the tangents from which to three
given circles shall be equal.

158. The squares of the distances of a variable point on a
JSized circle from any fixed pair of inverse points have the constant
ratio of the distances of the centre from the inverse points.

For, if C be the centre of the circle, P and @ the fixed pair
of inverse points, and X
the variable point on the
circle; since then, by hy-
pothesis, CP.CQ=CX" or,
which is the same thing, 2
CP:CX:: CX: CQ); there-
fore the triangles PCX
and XCQ are similar, and
therefore PX*: @QX*:: PC*: CX*:: CX*: QC*:: PC: QC. The
property of Art. (150) is evidently a particular case of this.
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Conversely, the locus of a wariable point the distances of
whick from two fixed points have any constant ratio, is the circle
coaxal with the fixed points (152) whose centre divides the dis-
tance between them in the duplicate of the constant ratio.

For, if P and @ be the two fixed points, X any position
of the variable point, and C the point on PQ for which
CP.CQ=CX"; then since, as above, the triangles PCX and
XCQ are similar, therefore, as above, PC: QC :: PX*: QX"
which being by hypothesis constant, therefore &c.

If while the two points P and @ remain fixed, the constant
ratio PX: QX be conceived to vary and pass continuously
through all values from 0 to oo , the locus circle will pass evidently
through all the phases of coaxality with P and @ described in
(152) ; see fig. of that article. Commencing with the point P as
the nascent limit for the extreme value 0; opening out into
the axis of reflexion L of P and @ as the part of the locus
not at infinity (150) for the mean value 1; and ending with the
point @ as the evanescent limit for the extreme value o .

Since for every point X at infinity the ratio PX: QX=1
(15), the complete locus, which for every value of the ratio not
=1 is by the above a single unbroken circle in its general
form, consists therefore for the particular value of the ratio =1
of two lines, viz. the axis of reflexion of P and ¢, and the line
at infinity (136); this is an instance confirmatory of the general
statement made at the close of Art. (150), that when the centre
of a circle of infinite radius is at infinity the circle itself breaks
up into two lines, one at a finite distance, and the other at
infinity.

Cor. 1°. Since from the similarity of the two. triangles
PCX and QCX in the first part of the above, the two pairs
of angles XPC and QXC, XQC and PXC are always similar
(24), it follows consequently that—

Of the two lines connecting any point on a circle with any
pair of tnverse points, the angle determined by either with the
radius at the point 8 similar to that determined by the other
with the diameter containing the tnverse points.

Cor. 2°. The second part of the above supplies obviems
solutions of the two following problems:
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1°. To determine the poz’nt on a given line or circle, the ratio
of whose distances from two given points shall be given.

2°. To determine the pomt the ratios of whose distances from
three given points shall be given.

159. The square of the distance of a variable point on a fixed
circle from any fixed point varies as its distance from the axis of
reflecion of the point and 1ts inverse with respect to the circle.

For, if C (figure of last Article) be the centre of the circle,
P and @ the fixed point and its inverse, X any position of the
variable point on the circle, and XL the perpendicular from X
on the axis of reflexion L of P and @; since then, Euc. 11., 5, 6,

PX'—QX'=2PQ.LX=2(PC-QC)LX,

and since, by the preceding, PX": QX*:: PC: QC, therefore
PX*=2PC.LX and QX"=2QC.LX, and therefore &c.

Conversely, the locus of a variable point the square of whose
distance from a fixed point varies as its distance from a fixed
line s a circle coaxal with the point and its reflexwion with
respect to the line (152).

For, if P (same fig.) be the ﬁxcd point, L the fixed line,
Q the reflexion of P with respect to L, X any position of the
variable point, XL its distance from the fixed line, and C the
point on PQ for which PX*=2PC.LX; since then, as above,

. PX'—QX*=2PQ.LX=2(PC- QC) LX,

therefore QX*=2¢QC.LX, and therefore PX*: QX*:: PC: QC,
from which, since by hypothesis PC is constant, and therefore
C fixed, it follows from the preceding that the locus of X is the
circle coaxal with P and @ whose centre is C.

If while the point and line P and L remain fixed, the base
PC of the variable rectangle PC.LX be conceived to vary and
take successively in the direction opposite to that of PQ all
values from 0 to o, the locus circle will pass evidently through
half the system of phases of coaxality with P and @ described
in (152); commencing with P as the nascent limit for the
extreme value 0, and cnding with L as the part not at infinity
of the infinite limit for the extreme value oo. And if then after
passing through infinity PC be conceived to change direction
and take successively a]l values from o to PQ, the lacus circle.
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will pass evidently through the remaining half of the same series
of phases; commencing with L as the part not at infinity of the
infinite limit for the extreme value o, and ending with Q as
the evanescent limit for the extreme value PQ; after which,
changing its nature, it will evidently become and continue ima-
ginary for all lesser values from PQ down to 0.

Cor. The second part of the above supplies obvious. solu-
tions of the two following problems:

-1°. To determine the point on a given line or circle, the square
of whose distance from a given point shall be equal to the rectangle
under a given base and its distance from a given line.

2°. To determine the point, the squares of whose distances from
two given points shall be equal to the rectangles under two given
bases and its distances from two given lines.

160. The angle connecting any point on a circle with any
pair of inverse points is bisected, internally and externally, by
the lines connecting the point with the extremities of the diameter
containing the tnverse points.

For, if (same figure as in Art. 158) C be the centre of the
circle, P and Q the pair of inverse points, 4 and B the ex-
tremities of the diameter on Which they lie, and X any point
on the circle; since then, by the first part of (158),

: QA’=PB*: QB*=PX": QX*=PC: QC,

'therefore (Euc. vI. 3) the angle PX(Q is bisected internally and
‘externally by the two lines P4 and PB, and therefore &e. -

Conversely, the locus of a variable point the angle connecting
which with two of three fixed collinear points is bisected, internally
‘or externally, by the line connecting it with the third, c's the circle
coazxal with the two which passes through the third. ’

For, if P and @ (same figure) be the first and second of
the fixed points, 4 or B the third, C the point on their common
line for which PC: QC=PA*: QA" or PB*: @B’ and X any
position of the variable point; since then, by hypothesis, the
angle PXQ is bisected by the line P4 or PB, therefore (Euc.
VL. 3) PX*: QX*=PA": QA® or PB*: QB'=PC: QC, con-
sequently, by the second part of (158), CX*=CP.CQ=CA4*

or CB* and therefore &e.
P
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Cor. “The second part of the above supplies obvious solutions
of the two following problems:

1°. To determine the point on a given line or circle, the angle
connecting which with two of three given points in a line shall be
bisected by the line connecting it with the third.

2°. To determine the point, the angles connecting which with the
extremities of two given lines shall be bisected by the lines connect-
tng 1t with two given points on the lines.

161. Every two tnverse segments of any diameter of a circle
(154) subtend similar angles (24) at every point on the circle.
@ -
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For, if PP’ and Q@' be the two inverse segment;, Pand Q,
P and @ their two pairs of inverse extremities, 4 and B the
extremities of the diameter to which they belong, C the middle
point of AB, and X any point on the circle; then since, by
the first part of the preceding (160), the two angles PXQ and
P XQ have the same bisectors X4 and XB, therefore the two
angles PXP and QX¢ (and also the two PX¢ and QXP
(154) ) are similar, and therefore &c. )

Conversely, the locus of a variable point the angles subtended
at which by two fixed coaxal segments are similar, consists of the
two circles (154) with respect to which the two segments are tnverse.

For, if PP’ and Q@ (same figures) be the two segments,
and X any position of the variable point; then since, by hypo-
thesis, the two angles PXP' and QX' are similar, therefore
either the two angles PXQ and P'X(Q, or the two PX@ and
QXP', have the same bisectors; in the former case (that of the
figures), if C be the middle point of the segment AB inter-
cepted on the axis of the segments by the common bisectors
X4 and XB, then since, as in the second part of the preceding
(160), CX*=CP.CQ=CP'.CQ, therefore C and CX are the
centre and radius of the circle coaxal with PQ and P'Q' (153),
and therefore &c.; and in the latter case (not that of the
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figures), if C' be the middle point of the segment 4'B’ inter-
cepted on the axis of the segments by the common bisectors
XA' and XB', then since, for the same reason as before,
C'X*=CP.C'Q=0CQ.C'P, therefore C' and C'X are the
centre and radius of the circle coaxal with PQ' and P'Q (153),
and therefore &c. ’

Of the two different circles comprising the above locus,
though the first is real for all the three possible modes (82)
in which the two segments PP’ and Q@' could be disposed on
their common axis, as represented in the three figures (a), (8),
(), the second is real only for the disposition, represented in
fig. (B), in which the extremities of one segment alternate with
those of the other in the order of their occurrence on their
common axis (see 153),

Cor. 1°, From the similarity of the two pairs of angles
PXP' and QXQ, PXQ' and QXP in the first part of the
above, it follows immediately from (65), combined with (158),
that )

PP.P¢ PX' P4 PB* _PC
QP.QQ¢ QX' Q4" 9B QC’
and, of course, for the same reason that
PP.PQ_ PX* P4 PB _PC
Q’P-Q,Q = QrXu - QIA'J - QIB2 - QIC‘I
and therefore, gencrally, that— :

The rectangles under the distanees of any pair of inverse
points from any other pair on the same diameter are as the
squares of their distances from each extremity of the diameter, -
and as their distances from the centre of the circle.

Cor. 2°. The second part of the above supplies obvious
solutions of the two following problems :

1°. To determine the point on a given line or circle, the angles
subtended at which by two given coaxal segments shall be similar.

2°. To determine the point, the angles subtended at which by
three given coaxal segments shall be similar, '

162. The extremities of any chord of a circle, the centre, and
the inverse of any point on the chord, lie in a circle.
For, if C be the centre of the circle, X and Y the ex-
r2
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tremities of any chord, P any point, external or internal, on
XY, and @ the inverse of P with respect to the circle; since
then CX*® or CY*=CP"'— PX.PY, by the isosceles triangle
XCY, and = CP.CQ= CP'— PC.PgQ, by the inverse points P
and @, therefore PX.PY =PC.PQ, and therefore &c.

Conversely, every circle passing through the centre of another
circle passes through the inverse of every point on 4ts chord of
tntersection with the other.

For, if C be the centre of any circle, X and Y its points
of intersection with any circle passing through C, P any point,
external or internal, on XY, and @ the point in which the
circle XCY intersects the line CP; since then PC.PQ=PX.PY,
therefore PC*— PC.P@Q= PC*— PX.PY, that is, CP.CQ=CX*
or CY?, and therefore &c.

Cor. 1°. From the above, supposing the two points P and Q
to remain fixed, and the line and circle XY and XCY to vary
simultaneously, it appears that—

If a variable line pass through a fixed point and intersect a
Jixed circle, the circle passing through the points of intersection
and though the centre of the latter passes through a second fized
point, the inverse of the first with respect to the fixed circle.

And conversely, that—

If a variable circle pass through a fixed point and through
the centre of a fiwed circle, vts chord of intersection with the latter
passes through a second fixed point, the inverse of the first with
respect to the fixed circle.

Cor. 2°. From the same, supposing, conversely, the line XY
and circle XCY to remain fixed, and the two points P and @
to vary simultaneously, it appears again that—

If a variable point describe a fixed line, its inverse with respect
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to any circle describes the circle determined by the centre of the
latter and by its intersections with the fixed line.

And conversely, that—

If a variable point describe a fixed circle, its tnverse with re-
spect to any cirele through whose centre it passes describes the line
determined by the points of intersection of the two circles.

CoRr. 8°. In the particular case when P is the middle point
of the chord X, since then CQ is evidently a diameter of the
circle XCY, therefore the two angles CX@Q and CY@Q are both
right, and therefore, from the above—

The middle point of any chord of a circle and the intersection
of the two tangents at ils ewtremities, and conversely, the inter-
section of any two tangents to a circle and the middle point of
thevr chord of contact, are inverse points with respect to the circle.

163. The diameter containing any pair of tnverse points with
respect to a circle bisects, externally or internally, the angle sub-
tended at either point by any chord of the circle whose direction
passes through the other.

For, if P and @ (figures of last article) be the two points,
X and Y the extremities of any chord passing through either
of them P, and C the centre of the circle ; then, since by (158),
PX*: QX*=PY": QY* each being = PC : QC, therefore, by
alternation, PX*: PY* = QX*: QY and therefore, Euc. VI. 3,
the angle XQY is bisected, externally or internally, by QP;
or, since, by (162), the circle XCY passes through @, as the
arc XY is bisected, externally er internally, at C, so is the
angle XQY by QC.

Conversely, if two points on the same diameter of a circle be
such that the angle subtended at one of thom by any chord of the
- circle, not perpendicular to the diameter, whose direction passes
through the other s bisected by the diameter, they are inverse
points with respect to the circle.

For, if P and @ (same figures as before) be the two points,
and XY the chord whose direction passes through one of them P;
then, since by hypothesis, the angle XQY is bisected, externally
or internally, by QP, therefore, Euc. vI. 3, PX: QX =PY : @Y,
and therefore (158) X and Y are two points on the same circle
coaxal with P and ¢, which, as its centre lies on the line PQ),
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unless in the particular case when XY is perpendicular to £Q,
coincides therefore necessarily with the original circle, and
therefore &c.; or, if C be the point in which the circle XQY
intersects the line P, since by hypothesis the angles XQC and
YQC are equal or supplemental, therefore the lines CX and
CY are equal, and therefore either XY is perpendicular to P@,.
or C is the centre of the original circle, in which case (162)
CP.CQ=CX"* or CY?*, and therefore &ec.

Cogr. 1°. It is evident from the above, that when any number
of circles have a common pair of inverse points (152), all pairs
of opposite segments, intercepted by pairs of them on any line
passing through either, subtend stmilar angles at the other. For,
if XY and X'Y" be the two chords intercepted by any two of
them on any line passing through either point P, the two angles
XQY and X'QY",subtended by them at the other @, have the
same bisector PQ), and therefore the two pairs of angles XQX'
and YQY', XQY' and YQX' are similar.

Cor. 2°. 1t is also evident from the converse, that the two
centres of perspective of any two parallel chords of a circle
are tnverse points with respect to the circle. For, when two
chords XY and X'Y" are parallel, the two pairs of opposite
lines XX" and Y'Y’, XY" and YX' connecting their extremities,
two and two, intersect evidently upon, and make equal angles
with, the same diameter, and therefore &c.

164. If a variable chord of a fixed circle turn round a fixed
point, the rectangles under the distances of its extremities from the
tnverse of the point and from the axis of reflexion of the point
and its inverse are both constant.

For, if C (same figures as before) be the centre of the circle,
P the fixed point, ¢ its inverse with respect to the circle, L the
axis of reflexion of P and ¢, and XY any position of the variable
chord turning round P; then, to prove the first, since, by (158),

' QX': PX'=QY": PY*=QC: PC,
therefore QX.QY: PX.PY=QC: PC,
and since (Euc. 111. 35, 36)

PX.PY=PC.PQ=2PC.PL,

therefore QX.QY=QC.QP=2QC.QL,
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and therefore &c.; and, to prove the second, since, by (159),
PX*=2PC.LX and PY*=2PC.LY,
therefore LX.LY=PXPY*+4PC*
and since (Euc. 111. 35, 36)
PX'. PY'=PC'.PQ*=4PC".PL",
therefore LX.LY = LP*, and therefore &c.

Conversely, if a variable chord of a fiwed circle, turning round
one of two fiwed points on the same diameter of a circle, be such
that the rectangle under the distances of its extremities either from
the other or from the axis of reflexion of the two s constant, the
two points are inverse points with respect to the circle.

These are both evident from the direct properties, by taking
the two extreme positions of the variable chord, those, viz.
in which it coincides with the diameter containing the points,
and in which it either intersects that diameter at right angles or
touches the circle according as the point round which it turns
i3 external or internal to the latter.

Cor. It follows at once from the above, that for a system
of circles having a common pair of inverse points (152), the
several rectangles under the distances of the extremities of all
chords passing through either from the other are comstant, and
Jrom the axis of reflexion of both are constant and equal to the
square of the semi-segment intercepted between them.
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CHAPTER X.

THEORY OF POLES AND POLARS WITH RESPECT TO
A CIRCLE.

165. THE line passing through the inverse of any point with
respect to a circle, and intersecting at right angles the diameter
containing the point, is termed the polar of the point with
respect to the circle; and, conversely, the inverse of the foot of
the perpendicular from the centre of a circle upon any line is
termed the pole of the line with respect to the circle.

From the mere definition of a point and line, pole and polar
to each other with respect to a circle, it is evident that—In
the general case when the radius of the circle is finite, 1°.
They lie at the same side or at opposite sides of the centre,
according as the circle is real or imaginary; 2°. In either case,
as one approaches to or recedes from, the other, conversely,
recedes from or approaches to, the centre; 3°. The polar of the
centre is the line at infinity, and conversely, the pole of the
line at infinity is the centre; 4°. The polar of any point on the'
circle is the tangent at the point, and conversely, the pole of
any tangent to the circle is the point of contact; 5°. The polar
of any point at infinity is the diameter perpendicular to the
direction of the point, and conversely, the pole of any diameter
is the point at infinity in the direction perpendicular to the
diameter; 6°. The point of intersection and chord of contact of
any two tangents to the circle are pole and polar to each other
with respect to the circle (162, Cor. 3°.). In the extreme case when
the radius of the circle is evanescent, 1°. Every line, however
situated, is a polar of the centre; 2°. Every line, not passing
through the centre, is a polar of the centre only; 3°. Every line
passing through the centre is a polar, not only of the centre,
but of every point indifferently on the orthogonal line passing
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through the centre. And in the extreme case when the radius
is infinite, the polar of every point, however situated, is parallel
to the line into which the part of the circle not at infinity then
opens out, and distant from it at the opposite side by an interval
equal to that of the point. ,

Every two angles being similar whose sides are mutually
perpendicular, it is evident also that, whatever be the nature of
the circle, the angle subtended at the centre by any two points
is similar to that determined by the polars of the points, and
conversely, the angle determined by any two lines is similar to
that subtended at the centre by the poles of the lines.

In the theory of poles and polars with respect to a circle,
the diameter passing through any point is termed the polar axis
of the point, and the projection of the centre on any line the
polar centre of the line.

166. Of the various properties of points and lines, pole and
polar to each other with respect to a circle, the two following,
converse to each other, lead to the greatest number of conse-
quences, and may be regarded as fundamental.

When a line passes through a point, its pole with respect to
any circle lies on the polar of the point with respect to the circle ;
and conversely, when a point lies on a line, its polar with respect
to any circle passes through the pole of the line with respect to the
circle.

J}\‘*
N
\

To prove which, P and L being the point and line, pole and
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polar to each other, and C the centre of the circle; if, in the
first case, XY be any line through P, CE the perpendicular
from C on XY, and M the point in which CE intersects L;
then since, by similar right-angled triangles CEP and CQM, the
rectangles CE.CM and CP.CQ are equal, and since, by hypo-
thesis, the latter rectangle CP.CQ = the square of the radius of
the circle, therefore the former rectangle CE.CM is also = the
square of the radius, and therefore the point M is the pole of the
line XY with respect to the circle. And if, in the second case,
M be any point on L, MC the line connecting it with C, and
PE the line through P perpendicular to MC; then, as before,
CE.CM=CP.CQ = square of radius of circle, and therefore
the line PE is the polar of the point M with respect to the circle.
. Cor. 1°. Since, by the above, the pole of every line passing
through P lies on L, and, conversely, the pole of every point
lying on L passes through P, it follows consequently that—

If any number of lines of any geometrical figure pass through

" a point, their poles with respect to any circle lie on a line, the
polar of the point with respect to the circle; and conversely, if any
number of points of any geometrical figure lie on a line, their
polars with respect to any circle pass through a point, the pole of
the line with respect to the circle.

Cor. 2°. If, in the above, one pole and polar P and L be
conceived to remain fixed with the circle, and the other M and
XY to vary, it appears again that—

If a variable line turn round a fixed point, tts pole with
respect to any fixed circle describes a fixed line, the polar of the
point with respect to the circle; and conversely, if a variable point
describe a fixed line, its polar with respect to any fixed circle turns
round a fixed point, the pole of the line with respect to the circle.

Cogr. 3°. Since when, as in the figures, the points X and ¥
are real, tangents at them intersect at M, and conversely (162,
Cor. 3°), it follows of course, as included in the preceding, that—

1If a variable chord of a fixed circle pass through a fixed point,
the two tangents at its extremities intersect on a fixed line, the
polar of the point ; and conversely, f two variable tangents to a

Jizwed circle intersect on a fixed line, their chord of contact passes
through a fixed point, the pole of the line.
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Cogr. 4°. It being evident, from the right angle PEC, that
as the point M describes the line L its inverse £ with respect to
the circle describes the circle on PC as diameter, and conversely.
Hence, as shewn otherwise for a particular case in (162, Cor. 2°)—

If a point describe a line, its inverse with respect to any circle
describes the circle passing oppositely through the centre of the
circle and the pole of the line ; and conversely, if a point describe
a circle, its inverse with respect to any circle through whose centre
it passes describes the line polar with respect to the latter of the
potnt of the former opposite to its centre.

The above properties, suitably modified, are of course all true
in the particular cases when either of the two points P or @ is
at infinity, and the other therefore at the centre of the circle.

167. From the fundamental property of the preceding
article, it is evident with respect to any circle, that—

The line of connection of any two points s the polar of the
point of intersection of the polars of the points ; and, reciprocally,
the point of intersection of any two lines ds the pole qf the line of
connection of the poles of the lines.

For, by that property, when a line passes through two points
its pole lies on the polars of both, and reciprocally, when a point
lies on two lines its polar passes through the poles of both,
and therefore &c.

The point of intersection and the chord of contact of any two
tangents to a circle being pole and polar to each other with
respect to the circle (162, Cor. 8°), it follows, of course, as included
in the preceding, that the point of intersection of the two chords
of contact and the line of connection of the two points o inter-
section of any two pairs of tangents to the same circle, are pole
and polar to each other with respect to the circle.

Of the many consequences from the above, which in the
modern geometry of the circle are numerous and remarkable,
the six next articles contain a few of the most important.

168. When a triangle is such that two of its vertices and their
oppostte sides are pole and polar to each other with respect to a
circle, the third vertex and its opposite side are pole and polar to
each other with respect to the same circle.
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For, since for three points PMN, (see figures of article 166),
when P is the pole of MN, and M the pole of PN, then, by the
preceding, N is the pole of PM, and therefore &c.

Every triangle MPN thus related to a circle, that its three
vertices and their opposite sides are pole and polar to each
other, is said (for a reason that will presently appear) to be
self-reciprocal with respect to the circle; and it is evident from
the definition of pole and polar, in Art. 165, that tn every self-
reciprocal triangle with respect to a circle, the three perpendiculars
JSrom the vertices upon the opposite sides tntersect at the centre,
and are there divided so that the rectangle under the segments of
each = the square of the radius of the circle.

Since in every triangle ABC the three perpendiculars 4X,
BY, CZ from the vertices upon the opposite sides intersect at
a common point () for which the three rectangles 04.0X,
0B.0Y, 0C.0Z are equal in magnitude and sign; there-
fore, by the above, every triangle ABC 18 self-reciprocal with
respect to the circle whose centre 18 the intersection O of the three
perpendiculars AX, BY, CZ from its vertices on its opposite
sides and the square of whose radius vs the common value of
the three equal rectangles 0A.0X, 0B.0Y, 0C.0Z, and which
18 therefore real or imaginary according as that common value
13 positive or megative, that 13, according as the triangle vs obtuse
or acute angled.

In the particular case of a right-angled triangle of any
finite magnitude, the point O being the vertex of the right
angle, and the common value of the three rectangles 0A4.0X,
0B.0Y, 0C.0Z being = 0; hence, from the above, every
right-angled triangle of finite magnitude s self-reciprocal with
respect to the circle of evanescent radius whose centre s the vertex
of the right angle.

If, while the vertex of the right angle remains at a finite
distance, the opposite side be conceived to recede to infinity;
since, then, the common value of the three rectangles 04.0X,
0B.0Y, 0C.0Z is indeterminate (13), hence, again, from the
above, every right-angled triangle whose hypotenuse 13 at infinity
18 self-reciprocal with respect to every circle of finite radius whose
centre 18 the vertex of the right angle. :

For any triangle 4BC, whatever be its magnitude and form,
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if 4, B, C be its three angles, and d the diameter of its cir-
cumscribing circle ; the square of the radius OR of the circle
to which it is self-reciprocal is given in all cases by the formula

OR'=-d*.cos A.cosB.cosC,

which, as the cosine of a right angle is evanescent, includes
evidently with all others the two particular cases just noticed.
For, since for its centre O, which, in virtue of the property
of the present article, is termed the polar centre, as the circle
itself is, for the same reason, the polar circle of the triangle,
the three circles BOC, COA4, AOB are all equal to the circle
ABC, therefore, by (62, Cor.7°) and by (62), disregarding signs,

0X=0B.0C+d, 0Y=0C.04+d, 0Z=04.0B+d,
and OA=d.cos 4, OB=d.cos B, 0C=d.cosC,
therefore
OR'= 0X.04A=0Y.0B=0Z2.0C
. = 0A4.0B.00+d=d".cos A.cos B.cosC,

and as the two magnitudes thus shewn to be always equal in
absolute value are evidently always opposite in sign, there-
fore &ec.

If a, b, c be the three sides of the triangle, and d, as before,
the diameter of its circumscribing circle, it is easy to see from
the above, or directly, that also

OR'=}(a’+ b+ ") - d°,
which is the formula for the square of the radius of the polar
circle in terms of the three sides of the triangle.

In every triangle the polar circle, real or tmaginary, intersects
at right angles the three circles, of which the three sides are dia-
meters. For the extremities of each perpendicular of the tri-

-angle being inverse points with respect to the polar circle (149),

and the circle on each side as diameter passing through the
four extremities of the two perpendiculars to the other two sides
(Euc. 111. 31), therefore &c. (156).

169. When two triangles, whose vertices and sides correspond
in pairs, are such with respect to a circle, that each vertex of one
18 the pole of the corresponding side of the other, or conversely,
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then, reciprocally, each vertex of the latter i3 the pole of the corres-
ponding side of the former, or conversely.

For if P, @, B be the three vertices of either triangle, and
L', M', N' the three corresponding sides of the other; then,
since, by hypothesis, P is the pole of L', @ of M", R of N', there-
ore, by (167), QR is the polar of M'N', RP of N'L', PQ of
L'M', and therefore &c.

More generally, when two polygons of any order are such
with respect to a circle, that every vertex of one 13 the pole of a
corresponding side of the other, or conversely, then, reciprocally,
“every vertex of the lutter is the pole of a corresponding side of the
Jformer, or conversely. :

For, if P, @, R, S, &c. be the several vertices of either
polygon, and L', M', N', O, &c. the several corresponding
sides of the other ; then, since, by bypothesis, P is the pole of L/,
Q of M', R of N'y §of O, &c., therefore, by (167), PQ is the
polar of L'M', QR of M'N', RS of N'O', &c., and therefore &c.

More generally still, when two figures of any nature are such
with respect to a circle, that every point of one s the pole of a
corresponding tangent to the other, or conversely, then, reciprocally,
every point of the latter is the pole of a corresponding tangent to
the former, or conversely.

For if Pand @ be any two points of either figure ¥, and L’
and M’ the two corresponding tangents to the other F', then,
since, by hypothesis, P is the pole of L' and Q of M’, therefore
by (167), PQ is the polar of L'M’; and this being true in all
cases, whatever be the separation of @ from P or of M’ from L,
is therefore true in the particular case when @ coincides with
P, and consequently M’ with L'; that is, when (19) PQ is the
tangent L at the point P to the figure F, and when (20) L'M' is
the point of contact P of the tangent L' with the figure F",
and therefore &c.

170. Every two triangles, polygons, or figures of any kind
F or F' then reciprocally related to each other, that the several
points of either and the corresponding lines of the other are pole
and polar to each other with respect to a circle, are said, each to
be the polar of the other, and both together to be reciprocal
polars to each other, with respect to the circle; the reciprocality
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between them consisting in the circumstance, above established,
that when either is the polar of the other with respect to a
circle, then, reciprocally, the latter is the polar of the former with
respect to the same circle.

Two polygons of any order, one inscribed and the other
circumscribed to a circle at the same system of points on its
circumference, furnish an obvious example of a pair of polygons
reciprocal polars to each other with respect to the circle; the
vertices and sides of the former being respectively the points of
contact of the sides and the chords of contact of the angles of
the latter. Two concentric circles again furnish another obvious
example of a pair of figures, reciprocal polars to each other with
respect to the concentric circle the square of whose radius equals
the rectangle under their radii; either being indifferently the
locus of the poles of all the tangents to the other, or the enve-
lope of the polars of all the points of the other, with respect to
that circle.

A figure of any nature F is said to be self-reciprocal with
respect to a circle, when its several points and lines correspond
in pairs pole and polar to each other with respect to the circle ;
thus, as stated in (168), every triangle ABC is self-reciprocal
with respect to the particular circle, real or imaginary, to which
its vertices and opposite sides are pole and polar to each other.

If either of two figures of any nature, reciprocal polars
with respect to any circle, be turned round the centre of the
circle into the apposite position, the two figures will then evi-
dently be reciprocal polars with respect to the concentric circle
the square of whose radius is equal in magnitude and opposite
in sign to that of the original circle; of the two circles, for
the two opposlte posmons, one therefore is always real and
the other always imaginary.

171. Every two figures F' and F”, reciprocal polars to each
other with respect to a circle, possess evidently (165 and 166)
the following reciprocal properties:

1°. Every line L of either is perpendicular to that connecting
the corresponding point P’ of the other with the centre of the
circle; and conversely.

2°. The angle determined by any two lines L and M of either
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is similar to that subtended by the two corresponding points P’
and @ of the other at the centre of the circle; and conversely.

8°. When of three lines L, M, N of either, two make equal
angles with the third, then of the lines connecting the three
corresponding points P, ¢, R’ of the other with the centre
of the circle, the corresponding two make equal angles with
the third ; and conversely.

4°. The rectangle under the distances of any point P of
either and of the corresponding line L' of the other from the
centre of the circle is constant; and conversely.

5°. When two points P and @ of either are equidistant from
the centre of the circle, the two corresponding lines L' and A’
of the other are equidistant from the centre of the circle; and
conversely.

6°. When three points P, Q, R of either are collinear, the
three corresponding lines L', M’y N’ of the other are concurrent ;
and conversely.

172. Any figure F' being given or taken arbitrarily, its
polar F' with respect to any circle can always be derived from
it, by the simple construction of taking either the polars of its
several points or the poles of its several lines with respect to
the circle; and the repetition of the same process to the new
figure F”, thus determined by either construction, always (169) _
reproduces the original figure F'; thus, every figure F, what-
ever be its nature, has its polar ﬁgure F" with respect to every
circle, and every two figures ' and F", reciprocal polars to each
other with respect to any circle, always produce and reproduce
each other alternately by continued repetition of either process
by which one may be derived from the other.

The process of transformation, just described, by which all
the points of a figure of any nature are cha.nged into their
polars, and all the lines of the figure into their poles, with re-
spect to an arbitrary circle, is sometimes termed polarization,
the circle by aid of which it is performed the polarizing circle,
and the centre and radius of the circle the centre and radius of
polarization ; but from the reciprocality, as above explained,
existing between the original and derived figures, the process
of transformation is more generally known as reciprocation, the
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circle by aid of which it is performed as the reciprocating
circle, and the centre and radius of the circle as the centre and
radius of reciproocation.

In the process of reciprocation, the reciprocating circle,
provided only it be of a finite radius and at a finite distance,
-being otherwise entirely arbitrary as to magnitude and position,
should of course, when necessary, be selected so as to accord
most. conveniently with the circumstances of the case; as, for
instance, if it were required to obtain the reciprocal of any
property of a single circle as far only as another property of.
a single circle is concerned, the circle itself, or at least one
concentric with it, should be made the reciprocating circle, as
one not concentric with it would transform it by reciprocation
into a figure of more general form than a circle; or, if it were
-convenient for any reason to have any point or line of the
reciprocal figure at infinity, the centre of the reciprocating
circle should be placed on the corresponding line or at the
corresponding point of the original figure, as any other position
of its centre would leave the point or line in question at a finite
distance (165, 3°, 5°) ; thus, a tetrastigm in its general form reci-
procates into a tetragram in its general form, into a trapezium,
or into a parallelogram, according as the centre of reciprocation
is arbitrary, on any one of its six lines of connection, or at the
vertex of any one of its three angles of connection (107);
a circle, as above stated, reciprocates into a figure of more
general form or into a circle, according as the centre of reci-
procation is arbitrary or at its centre; and similarly, for figures
-of all kinds, the reciprocals of whose properties adapted to reci-
procation are often much simplified by a convenient selection
of the reciprocating circle.

173. As figures consisting’ of combinations of points and
lines give by reciprocation to every circle figures consisting of
combinations of lines and points, all properties of such figures
adapted to reciprocation are accordingly double, and from either
of two reciprocal properties established for such a figure the
other may always be inferred without further demonstration ; thus,
from the Theorem of Pascal (148, a), that “in every hexagon
inscribed in a circle the three pairs of opposite sides intersect

Q
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collinearly,” may be, and in fact originally was, derived, by
reciprocation to the circle, the Theorem of Brianchon (148, ),
that “in every hexagon circumscribed to a circle the three pairs
of opposite vertices connect concurrently,” or conversely, (see
171, 6°)—Hence one very tmportant use of the reciprocating process
as enabling us at oncs to double our previous knowledge of all pro-
perties adapted to reciprocation in the geometry of the point and line.

Again, as circles give by reciprocation to circles not con-
centric with themselves figures of more general forms than
circles, all properties of circles obtatned by reciprocation are
consequently true of the more general figures derived from them
by reciprocation, and from either of two reciprocal properties
established for a circle, the other may always be snferred without
Sfurther demonstration for the more general figures into which the
ctrele reciprocates for different positions of the centre of reciproca-
tion ; thus, from either of the two aforesaid reciprocal properties
of Pascal and Brianchon established for the circle, the other
may be inferred without further demonstration for every variety
of figure into which the circle reciprocates—Hence another and
still more important use of the reciprocating process, as enabling
us to evolve from the familiar and comparatively simple properties
of the circle adapted to reciprocation, all the reciprocal properties
Jor the more general figures into whick the circle becomes trans-
formed by reciprocation.

In a treatise confined like the present to the geometry of
-the point, line, and circle, any examples of the reciprocating
process in its second and higher use cannot of course be given,
nor would they be intelligible to the reader without some pre-
vious knowledge of the Theory of Conic Sections; in its other
use, however, examples of reciprocal properties of elementary
figures, grouped in reciprocal pairs, marked by corresponding
numbers or letters, but independently established, will be found
in considerable numbers all through the advanced chapters of
the work ; the process of connecting the several pairs by reci-
procation as they occur, thus furnishing a continued and very
.valuable exercise to the reader,

174. The two fundamental properties of Art. 167, from
-which the important consequences of the several succeeding
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Articles have been inferred, may obviously be stated otherwxse
thus, as follows—

When two points are such that one lies on the polar of the
other with respect to a circle, then, reciprocally, the latter lies on
the polar of the former with respect to the circle ; and, conversely,
when two lines are such that one passes through the pole of the
other with respect to a circle, then, reciprocally, the latter passes
through the pole of the former with respect to the circle.

For, as there proved, see figures of that Article, when M
lies on L then P lies on XY, and, conversely, when XY passes
through P then L passes through M and therefore &ec.

Every two points thus related to each other, that each hea
on the polar of the other with respect to a circle, are termed
conjugate points with respect to the circle; and every two lines
thus related to each other, that each passes through the pole
of the other with respect to a circle, are termed conjugate lines
with respect to the circle; in the figures of Art. 166 the two
points M and N are evidently conjugate points, and the two
lines PM and PN are evidently conjugate lines with respect to
the circles.

From 5°) Art. 165, it is evident that—ZEvery two points at
infinity in directions at right angles to each other are conjugate
points with respect to every circle, and every two lines at right
angles to each other are conjugate lines with respect to every circle
whose centre 18 the intersection of the lines,

175. Conjugate points and lines with respect to a circle
possess evidently, see figures of Art. 166, the following general
properties—

1°. Every point has an infinite number of conjugates, viz.
all points lying on its polar; and, every line has an infinite
number of conjugates, viz. all lines passing through its pole.

2°. When two points are conjugate so are their polars; and,
conversely, when two lines are conjugate so are their poles.

8°. The common conjugate to any two points is the pole of
their line of connection ; and, conversely, the-common conjugate
to any two lines is the polar of their points of intersection.

4°. The lines by which two conjugate points connect with
the pole of their line of connection are the polars of the points;

Q2
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and, conversely, the points at which two conjugate lines intersect
with the polar of their point of intersection are the poles of
the lines.

5°. Every two conjugate points connect with the pole of
their Jine of connection by a pair of conjugate lines; and, con-
versely, every two conjugate lines intersect with the polar of
their point of intersection at a pair of conjugate points.

6°. Every two conjugate points determine with the pole of
their line of connection a self-reciprocal triangle (168); and,
conversely, every two conjugate lines determine with the polar
of their point of intersection a self-reciprocal triangle (168).
Hence, every self-reciprocal triangle with respect to a circle is
said also to be self-oonjugate with respect to the circle.

176. For every pair of conjugate points with respect to a
circle the following metric relations exist, each of which reci-
procally determines a pair of conjugate points with respect to
the circle.

1°. The square of the distance between them s equal to the
sum of the squares of the tangents from them to the circle.

2°. The semi-distance between them ts equal to the length qf
the tangent from its middle point to the circle.

8°. The rectangle under their distances from the polar centre
of their line of connection is equal tn magnitude and opposite in
sign to the square of the tangent from that point to the circle.

For, if M and N (figures, Art. 166) be any two points, O and
¢ the middle point and polar centre of their line of connection,
C the centre of the circle, and P the intersection of the three
perpendiculars MF, NE, and CQ of the triangle MCN, then—

To prove 1° and its converse. Since, by Euec. 11 12, 13,
MN'=CM*+CON*—2CM.CE or —2CN,CF; when M and N
are conjugate points, and when therefore CM.CE, or its equi-
valent CN.CF, = rad’ of circle, then MN*=CM*+ CN*-2 rad*
of circle=(CM* - rad®) + (CN* —rad®) = tan® from M+ tan® from
N; and, conversely, when the latter relation holds, then CM.CE,
or its equivalent CN.CF, = rad® of circle, and therefore M and
N are conjugate points with respect to the circle.

To prove 2° and its converse. Since, by 98, or Euc. 1r. 12, 13,

Cor., CM*+ CN*= OM*+ ON*+200C",



WITH RESPECT TO A CIRCLE. 229

and consequently
CM*+ CN* -2 rad® of circle= OM*+ ON*+2 tan*

from O to circle; when M and N are conjugate points, and when
therefore, by 1°,

CM*+ CN*—2 rad® of circle= MN*=2 (OM* + ON*),

then OM "+ ON*=2tan® from O to circle, and therefore
OM*= ON"*=tan" from O to circle; and, conversely, when the
latter relation exists, then CM* + C’N *— 2 rad’® of circle=MN?,
and therefore, by 1°, M and N are conjugate points with respect
to the circle. -

To prove 3° and its converse. Since, by either pair of
similar right-angled triangles MQP and CQN, or NQP and
CQM, the two ratios QM : QP and QC : QN, and therefore the
two rectangles QM.QN and QP.QC, are equal in magnitude
and opposite in sign; when M and N are conjugate points, and
when therefore (174) P is the pole of MN, then the latter rect-
angle (165) is equal in magnitude and sign to the square of
the tangent from @ to the circle; and, conversely, when the
latter rectangle is equal in magnitude and sign to the square
of that tangent, then (165) P is the pole of MN, and therefore
(174) M and N are conjugate points with respect to the circle.

In the particular case when the radius of the circle is
evanescent, the above properties all follow immediately from
the obvious consideration (168) that every two conjugate points
with respect to an evanescent circle subtend a right angle at
the centre of the circle, and that, conversely, every two points
which subtend a right angle at the centre of an evanescent circle
are conjugate points with respect to the circle.

177. BEverycircle having for diameter the interval between two con-
Jugate points with respect to another circle i3 orthogonal to the other.

For, the circle on MN as diameter (figures, Art. 166) passes
evidently through the two points £ and F, which are the in-
verses of M and N when the latter are conjugates with respect
to the circle C, and therefore &c. (156).

Conversely, When two circles intersect at right angles, the
extremities of every diameter of either are coryugate points with
respect to the other.
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For, MN (same figures) being any diameter of either, C the
centre of the other, and E and F the two points in which the
former intersects the two diameters CM and CN of the latter ;
since then (156) E and F are the two inverses of M and N with
respect to the latter, therefore (165) EN and FM are the two
polars of M and N with respect to the same, and therefore &o.
(174).

Cogr. 1°. The above property is evidently identical with 2° of
the preceding Article, and from either it obviously follows im-
mediately that—

1°. The line connecting any two conjugate points twith respect
to a circle may be turned round its middle point through any angle
without its extremities ceasing to be comjugate points with respect
to the circle.

2°. When the distance between two conjugate points with respect
to a circle of given radius is given, the distance of their middle
point from the centre of the circle is also given, and conversely.

8°. If the same circle be orthogonal to a number of others, the
extremities of every diameter of it are conjuqate points with re-
spect to all the others.

4°, The locus of points having a common conjugate with respect
to thres cvrcles 13 the circle intersecting the three at right angles.

Cor. 2°. Bince, when two points arc conjugates with respect
to a number of circles, the polars of either with respect to them
all pass through the other (174); hence, from 3° and 4°, Cor. 1°—

1°. If the same circle be orthogonal to a number of others, the
polars of every point on it with respect to them all pass through
the diametrically opposite point.

2°. The locus of points whose polars with respect to three
circles are concurvent s the circle intersecting the three at right
angles.

Cor. 8°. By aid of 156, Cor. 3°, the above supply obvious
solutions of the four following problems—

1°. On a given line or circle to determine two points separated
by a given interval which shall be conjugates with respect to a.
given circle. .

2°. On a given line or circle to determine two points which
shall be at once conjugates with respect to two given circles.
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178. When a line intersecting two circles meets either tn a
pair of conjugate points with respect to the other.

1°. Then reciprocally it meets the latter tn a pair of conjugate
points with respect to the former.

2°. Its two segments intercepted by them are bisected by the
circle passing through their points of intersection whose centre
bisects the distance between their centres.

8°. The rectangle under its distances from their centres is equal
in magnitude and sign to kalf the sum of the squares of thetr radii
— half the square of the distance between their centres.

For, if C and C' be the centres of the two circles, R and &
their two points of intersection, MN and M'N’ the two segments
they intercept on the line, O and O' the two middle points of
the segments, and 1 the middle point of CC'; then—

- To prove 1°. The relation OM'.ON'= (}MN )", or the equi-
valent relation OM.O'N= (}M'N")*, (Euc. 11. 5, 6), being af
once the condition (176, 2° and 3°) that M and N should be con-
jugate points with respect to the circle C’, and that M’ and N’
should be conjugate points with respect to the circle C, there-
fore &e.

To prove 2°. Since

OM'.ON' = (}MN)* and OM.ON=(}M'N')’,
therefore C'0*-COR'=CR-C0O,
and C0"-CR'=CR'-(C'0%;
therefore CO0*+ C'0*= CO0"+ C'0*=CR'+ O'R’,

from which it follows, by (98, Cor. 2°.), that O, 0', and R lie on
the same circle having I for centre, and therefore &c.
To prove 8°. Since OC and O'C’ are perpendiculars at the
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extremities of the chord 00’ of the circle OR0O’, meeting the
diameter CC' at the points C and C’ equidistant from the
centre I; therefore (49)

C0.C’'0O'=1IR'- (§CC')*=} (CR*'+ O'R*-CC"™),(83,Cor.2°.) 3
and therefore &e.

Cogr. 1°. In the particular case when the two circles inter-
sect at right angles, since then (23) CR’+ C'R'= CC", there-
fore, from the above (3°), CO.C'0’'=0; and therefore, as proved
otherwise in the preceding Article—

When two circles intersect at right angles every line tntersecting
etther tn a pair of conjugate points with respect to the other passes
through one of their centres.

Cor. 2°. The above (2°and 3°) supply obvious solutions of
the two following problems—

1°. Through a given point to draw a line tntersecting one of
two given circles in a pair of comjugate points with respect to the
other.

2°. To draw a line intersecting two of three given circles in
pairs of conjugate points with respect to the third.

179. In connection with the subject of poles and polars with
respect to the circle, the following useful theorem is due to
Dr. Salmon.

. The distances of any two points from the centre of a circle
have the same ratio as their distances each from the polar of the
other with respect to the circle.

If P and Q be the two points, M and N their two polars, and
O the centre of the circle, then PC: QC=PN : QM; for, letting
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fall from P and Q the perpendiculars PX and QY upon the
diameters 0@ and CP, then since (165)

CP.CM= CQ.CN=rad® of circle,
therefore CP: CQ=CN: CM=CX+ PN: CY + QXM,
but, by similar right-angled triangles, CP:CQ = CX :CY, there-
fore CP: CQ=PN: QM, and therefore &c.

In the particular case when CP= C@Q, it is evident without
proof that then PN = QM, or, in general, that—Every two points
equidistant from the centre of a circle are equidistant each from
the polar of the other ; and,in particular, that-—FEvery two points
on the circumference of a oircle are equidistant eack from the
tangent at the other.

Cor. 1°. If one of the two points @, in the above, with i3
polar N, be supposed fixed and arbitrary; and the other P,
with its polar M, variable and confined to the circumference of
the circle; since then the ratio CP: CQ is constant, therefore,

Q N

@

P

by the above, its equivalent PN: QM is also constant, and
therefore, the polar of any point ont a circle being the tangent
at the point,

The distance of a variable point on a fived circle from any
Jiwed line s to the distance of the tangent at the point from the
pole of the line in the constant ratio of the radius of the ctrcle to
the distance of the pole from 1its centre.

Cor. 2°. The following among many consequences follow

immediately from Cor. 1°—
1°. The product of any number of constant ratios being of

course constant, therefore—
The rectangle under the distances of a variable point on a
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JSized circle from any two fixed lines i3 to the rectangle under the
distances of the tangent at the point from the poles of the lines in
the gonstant ratio of the square of the radius of the circle to the
rectangle under the distances of the poles from its centre.

2°. Every two polygons reciprocal polars to each other with
respect to a circle (170) being such that the vertices of either
and the corresponding sides of the other are pole and polar to
each other with respect to the circle, therefore—

For every two polygons, reciprocal polars to each other with
respect to a circle, the product of the distances of any potnt on
the circle from the n sides of either is to the product of the distances
of the tangent at the point from the n vertices of the other tn the
constant ratio of the n" power of the radius of the circls to the
product of the distances of the n vertices from its centre.

8°. For every two polygons, one inscribed and the other
circumscribed to a circle at the same system of points on its
circumference (polygons which evidently come under the pre-
ceding head) the products of the distances of the two sets of
sides from any point on the circle being equal (48, Ex. 9°.),
therefore—

For every two polygons, one inscribed and the other circum-
scribed to a circle at the same system of points on its circumference,
the products of the distances of the two sets of vertices from any
tangent to the circle have the constant ratio of the products of thedr
distances from the centre of the circle.

4°. In every tetrastigm inscribed in a circle, the rectangles
under the distances of the three pairs of opposite connectors from
any point on the circle being equal (62, Cor. 10°.), therefore—

In every tetragram circumscribed to a circle, the rectangles
under the distances of the three pairs of opposite intersections from
any tangent to the circle have the constant ratios of the rectangles
under their distances from the centre of the circle.

180. With the three following properties of two triangles,
reciprocal polars to each other with respect to a circle, we shall
close the present chapter.

1°. Every two triangles reciprocal polars to each other with
respect to a circle are in perspective (140).

For, if ABC and A'B'(C’ be the two triangles, and O the
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d ¢ i 4
A

centre of the circle, from the three vertices 4, B, C' of either
triangle, letting fall the three pairs of perpendiculars AP and
AP, BQ and BQ', CR and CR' upon the three pairs of sides
about the corresponding vertices of the other 4'B'('"; then, since
by Dr. Salmon’s Theorem (179),
BQ OB CR 0C AP 0OA
CR~ 00 AP~ 04’ B¢ OB’
therefore, at once, by composition
4P BQ CR_,
AP'BQ'CR 7
and therefore &e. (140).

In the particular case of two triangles, one inscribed and the
other circumscribed to a circle at the same three points on its
circumference, this general property obviously gives at once
the two reciprocal properties established on other principles in
Examples 3° and 4°, Art. 137, See also (148), where the same
properties have been already inferred as particular cases from
the general theorems of Pascal and Brianchon, respecting any
hexagons inscribed and circumscribed to a circle.

2°. Any two triangles, kowever circumstanced as to magnitude
and form, may be placed relatively to each other, so as for any
assigned correspondence of vertices and sides to be reciprocal polars’
with respect to a circle; and that in one or in three patrs of opposite
positions (170), according as the two sets of corresponding vertices’
are disposed in similar or opposite directions of rotation round the
two triangles. :
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For, that the two triangles ABC and A'B’'C’ (same figures as
before) should be reciprocal polars with respect to a circle, real
or imaginary, it is sufficient that the three perpendiculars
AX', BY', CZ' from the vertices of 4 BC upon the corresponding
sides of A'B’' (' pass through a common point O, and that the three
A'X, B'Y, C'Z from the vertices of 4'B'C’ upon the correspond-
ing sides of ABC pass through the same point O (133, Ex. 7°.);
those conditions securing (by pairs of similar triangles, see
figures), that the six rectangles 04.0X', 0B.0Y’, 0C.0Z",
04'.0X, OB'.0Y, 0C'.0Z shall be equal in magnitude and
_ sign; taking therefore, according as the corresponding vertices
of the two triangles are disposed in similar or opposite directions
of rotation, as in figs. « and B respectively, for the triangle
ABC, the internal or one of the three external points O for
which the three angles BOC, COA4, AOB are similar to the
three B'A'C', 'B'A’, A'C'B’, and for the triangle A'B'C’, the
internal or corresponding external point O’ for which the three
angles B'O'C', C'O'4', A'O'B’ are similar to the three BAC,
CBA4, ACB (63, Cor. 4°.); and then placing the two triangles,
so that the two points O and O shall coincide, and that the six
connectors 04, OB, 0C, 04’', OB, OC' shall be similar or op-
posite in direction with the six perpendiculars 0X', 0Y", 02",
0X, 0Y, 0Z, the required position is obtained; the circle, to
which the triangles are polars, being real in the former case
and imaginary in the latter (170). .

In the particular case when the two triangles are similar,
and when the correspondence is between their homologous ver-
tices and sides, the two points O and O, evidently homologous
points with respect to the triangles (89), are, for similar direc-
tions of rotation, fig. a, the two points of concurrence of their two
sets of perpendiculars (63, Cor. 5°.), and for opposite directions of
rotation, fig. 8, any two homologous points on their circumscrib-
ing circles (63, Cor. 5°.); hence, as is also evident directly— Fvery
triangle reciprocates tnto a similar triangle to every circle whose
centre is either the unique point of concurrence of its three per-
pendiculars or any point indifferently on its circumscribing circle ;
the two similar triangles being both right or left in the former case,
and one right and one left in the latter (32); in the former case
also their homologous sides being evidently parallel, they are
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consequently similarly or oppositely placed (33), thus verifying
for their particular case the general property 1°, see (142).

8°. If ABC be any triangle, A'B'C' its polar triangle with
respect to any circle, O the centre and OR the radius of the
circle, then -

vpr e O (4BC)
(4'B'0) =1 B06Y.(C04) .(40B)’

and similarly for (ABC) in terms of (A'B'C'); the guantities
within the parentheses signifying the areas of the several triangles
they respectively represent.

For, since, by pairs of similar angles (64), (same figures as
before)
(B'OC') _0B.0C' (C'04') _0C'.04' (A'0OB') 0A.OB
(4BC) ~ AB.AC' (ABC) BC.BA' (4BC) CA4,0B?
and, since, by (165),

04'.0X=0B.0Y=00('.0Z= OR?,

therefore
Bogy— . OF-(4BC) __OR _(4BC)
(B'OC)= 7B.02).(4C.07) = 1 ‘[d0B){400C)’
.. OR.(ABC) _ OR* (ABC)
(004) = 50.0%).(84.02) = ¢ '(BOC)(BOA)’
(40B)— _ OF-(4BO) OR*  (4BC)

(C4.0Y).(CB.0X)~ "2 '(C04).(COB)’

and therefore, by addition, remembering whatever be the posi-
tion of O (118), that

(B'OC')+(0'04) +(4'0B) =(4'B'C"),
- and that  (BOC)+(C04)+ (40B)=(4BC),

the above relation is the evident result.

It is evident from the above, that for a given triangle 4BC,
and for a circle of given radius, but variable S&ntre O, the area
of the polar triangle A'B’'C’ varies inversely as the product of
the three areas (BOC), (C0A4),(A0B), and is therefore a mini-
mum when that product is 8 maximum, that is (57, Ex. 3°.),
when its three factors, their sum being constant (118), are equal,
or when (91, Cor.) O is the mean centre of the three points
A, B, C for multiples all =1.
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It may also be readily shewn from the same that—.In every
triangle the polars of the middle points of the sides with respect to
the inscribed circle determine a triangls equal tn area to the
original ; for a, b, ¢ being the three sides, a, 8, v the three
perpendiculars, s the semi-perimeter, and » the radius of the
inscribed circle of any triangle; if 4, B, C be the middle points
of its sides, and O the centre of its inscribed circle, the three
areas (BOC), (COA), (4 O0B), in the above, are easily seen, on
drawing a figure, to be equal to the three products

G B2 -9
from which, since
aa=bf=oy=_2sr=2 area of abc=8 (4BC),
it follows, without difficulty, from the above, that
& _ area’ of abe
8(s—a)(s—>d)(s—c) area’ of abe
and therefore &c.

(4B C)=

= ares of abc,
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CHAPTER XI

ON THE RADICAL AXES OF CIRCLES CONSIDERED
IN PAIRS.

181. THE line intersecting at right angles the common
diameter of two circles, and dividing the internal 4B between
their centres 4 and B at the point I for which the difference of
the squares of the segments AI*— BI” is equal in inagnitude
and sign to the difference of the squares of the conterminous
radii AR*— BS* is termed the radical axis of the circles.

From the mere definition of the radical axis of two circles, it
is evident that: 1°. when the circles intersect, it passes through
the two points of intersection (Euc. 1. 47) ; 2°. when they touch,
it touches both at the point of contact (Euc. 111. 16); 3°. when
they are equal and not concentric, it coincides with their axis of
reflexion (50); 4°. when they are concentric and not equal, it
coincides with the line at infinity (136,1°); 5°. when they are at
once equal and concentric, it is indeterminate (13); 6°. when
one is a line and the other not, it coincides with the line (150);
7°. when one is a point and the other not, it coincides with the
axis of reflexion of the point and its inverse with respect to the
other (157); and 8°. when they are both points or lines, the case
comes under the head of 3°. or of 5°. Of these particulars, some,
less evident than the others, will appear more fully from the
general properties of the radical axis of any two circles, which
will form the main subject of the present chapter.

When two circles, whatever be their nature, are given in
magnitude and position, their radical axis, when not indeter-
minate, is of course implicitly given with them; the relation
AI'— BI'= AR' - BS® fixing, evidently, the position, when
determinate, of the point 7 at which it intersects at right angles
their line of centres AB.
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182. Of all the properties of the radical axis of two circles,
the following leads to the greatest number of consequences, and
may be regarded as fundamental. .

The difference of the squares of the tangents from any point to
two oircles = twice the reotangle under the distance between their
centres and the distance of the point from their radical axis.

For, if 4 and B be the centres of the two circles, AR and

BS thelr radii, JL their radical axis, P the point, PR and P8
the tangents from it to the circles, PL and PQ the perpendi-
culars from it on /L and 4B, and C the middle point of AB;
then, since, (Euc. 1. 47),

PR*= AP'— AR’ and PS*= BP* - BS",

therefore
(PR*— P§*) = (AP~ BP')— (AR'- BS"), but, (Euc, 1. 47),

AP'— BP'=AQ@ — B¢'=2A4B.CQ, (Euc. 11. 5, 6),

and, by the definition of the radical axis (181),
AR'— BS*=AI' - BI' =2A4B.CI, (Euc. 11, 5, 6),

therefore |

(PR*- PS")=2A4B.(CQ- CI)=2A4AB.1Q=2A4B.LP,
and therefore &e. :

Cor. 1°. If PL=0, then PR"— PS*'=0; and, conversely, if
PR* - P8*=0, then PL=0. Hence— Tangents to two circles
Jrom any point on their radical axis are equal ; and, conversely,
when tangents to two circles from a point not at infinity are equal,
the point i3 on the radical axis of the circles.

1t is this property, of which that .of (157) is evidently a par-
ticular case, which has given the name “ Radical axis” to the
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line in question, the tangents to two circles from any point being
expressed by radicals, and the locus of points for which they are
equal heing a line.
The two tangents to the same circle from any point being
equal, it follows of course from the second part of the above, that—
The tangents to two circles at their points of contact with any
circle touching both intersect on their radical axis.

Cor. 2°. If PS=0, then PR*=2AB.LP, and conversely, if
PR'=2AB.LP, then PS=0. Hence—

The square of the tangent to either of two circles from any
point on the other varies as the distance of the point from their
radical axis ; and, conversely, when the square of the tangent from a
point to a circle varies as the distance of the point from a line, the
point lies on another circle, of which and the original the line is the
radical axis.

Of this property, that of (159) is evidently a particular case.

Cor. 3°. If O be the intersection of any two chords XX’ and
YY' of the circles. Since, when their four extremities are con-
cyclic, then OX.0X'=0Y.0Y', and conversely, (Euc. IIL
35, 36) ; and since, by Cor. 1°., the same is the condition that the
point O should be on the radical axis of the circles, and con-
versely. Hence—

Every two chords of two circles whose four extremities are
concyclic intersect on their radical axis ; and, conversely, when two
chords of two circles intersect on their radical axis, their four
extremities are concyclic.

This property will be stated more generally in the next
article.

Cogr. 4°. The point O, as before, being on the radical axis, if
OX = OY, that is, if X and Y be two of the four intersections
with the two circles of any third circle having its centre on
their radical axis ; then, since, by Cor. 8°.,, XX'= YY", and since,
by (62), XX'=24X. cos 4X0, and YY'=2BY.cosBYO;
therefore cos AX 0 : cos BYO=BY: AX, and both angles having
evidently the same affection (11). Hence—

Every circle having its centre on the radical axis of two others
intersects them at angles, of the same affection, whose cosines are
tnversely as their radii ; and, conversely, every circle intersecting

R
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two others at angles, of the same affection, whose cosines are tn-
versely as their radiv, has its centre on their radical axis.

The general property, of which this is a particular case, will
be given further on.

Cor. 5°. Inthe same case, since when XX’ =0, then YY' =0,
and conversely, therefore as a particular case of Cor. 4°., or as is
also evident directly from Cor. 1°.—

Every circle having its centre on the radical axis of two others,
and intersecting either at right angles, intersect the other at right
angles ; and, conversely, every circle intersecting two others at right
angles has its centre on their radical axis.

This last is the more general proof of the latter property to
which allusion was made in Art. 156, Cor. 3°. of chap. IX.

Cor. 6°. Whatever be the position of the point O, whether
on the radical axis or not, since, by the fundamental property
above,

0X.0X'-0Y.0Y'=24B.L0,
where L O is the distance of O from the radical axis, if 0.X= 0Y,
that is, if X and Y be two of the four intersections with the two
circles of any third circle having its centre at O, then

O0X.(XX'-YY')=24B.0L,

and therefore
O0X:0L=24B:XX'-YY'=AB: AX.cos AXO-BY.cos BY O,
a ratio which is constant when the two angles of intersection
AXO and BYO, whatever be their affections, are constant.
Hence—

If a variable circle intersect two fixed circles at two constant
angles, its radius s to the distance of its centre from their radical
axis in a constant ratio ; and, conversely, if a variable circle, whose
radius 13 to the distance of its centre from the radical axis of two
Jixed circles in a constant ratio, intersect either circle at a constant
angle, it intersects the other also at a constant angle.

Cor. 7°. As either angle of intersection may = 0, or = two
right angles. Hence, by (23), as a particular case of the
preceding—

If a variable circle touch two fixed circles, the nature of its con-
tact with each being invariable, its radius is to the distance of its
centre from their radical axis in a constant ratio ; and, con-
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versely, if a variable circle, whose radius 1s to the distance of its
centre from the radical axis of two fixed circles in a constant
ratio, touch in every position either circle with contact of the same
8pectes, it intersects the other at a constant angle, whick may =0
or two right angles.

Cogr. 8°, The ratio OL : OX being (22) the cosine of the
angle, real or imaginary, at which the variable circle in Cors. 6°.
and 7°, intersects the radical axis of the two fixed circles.
Hence, in general, from Cor. 6°—

A wariable circle intersecting two fixed circles at constant
angles intersects their radical axis at a constant angle ; and, con-
versely, a variable circle intersecting either of two fixed circles
and their radical axis at constant angles intersects the other at a
constant angle.

And, in particular, from Cor. 7°—

A variable circle touching two fixed circles, the nature of the
contact with each being invariable, intersects their radical axis
at a constant angle ; and, conversely, a variable circle intersecting
the radical axis of two fixed circles at a constant angle, and touch-
ing either circle with contact of invariable species, intersects the
other at a constant angle, whick may = 0 or two right angles.

The general property established in this corollary is but a
particular case of another still more general, which will be given
in a subsequent article of the present chapter.

Cor. 9°. It is immediately evident from Cor. 1°. that—

The radical axis of two circles buisects the four segments of
their four common tangents, real or imaginary, intercepted between
their points of contact with the circles ; and, conversely, the line
Jotning the middle points of the intercepted segments of any two of
the four common tangents to two circles, or, more generally, any
two points the tangents from which to two circles are equal, is the
radical axis of the circles.

And, from the first part of this latter property, that—

The two chords of contact of two circles with each pair of their
common tangents, external and internal, are equidistant in oppo-
site directions from their radical axis; and so, therefore, are the
two chords for both pairs in the two circles from each other.

CoR. 10°. Since when two circles intersect at right angles,
R2



244 ON THE RADICAL AXES OF

their chord of intersection is the polar of the centre of each with re-
spect to the other (165,6°.). Hence from Cors.5°. and 8°. see (166)—

The chords of intersection with two circles of every circle
orthogonal to both pass through the poles of their radical axis.

The polars with respect to two circles of any point on their
radical axis intersect on their radical axis.

This latter property is evidently true also of the line at
infinity, a line which we shall see, in the sequel, possesses with
respect to two circles nearly all the properties of their radical
axis,

183. The following general property of any three circles
includes evidently the first part of that established in Cor. 3°. of
the preceding article as a particular case, viz.—

The three radical axes of any three circles, taken two and two,
trtersect at a common point, termed the radical centre of the circles.

For, if A, B, C be the three centres of the circles, AR, BS, CT'
their three radii, L, M, N the three radical axes of their three
groups of two, and X, Y, Z, the three points in which L, M, N
intersect at right angles the three sides BC, C4, AB of the
triangle ABC; then since, by definition (181),

(BX*- CX")=(BS*'- CT),
(CY*-AY?)=(CT*- AR,
(42" — BZ") = (AR - BS"),
therefore
(BX'—- CX"+(0Y*- AY")+ (42"~ BZ*) =0,

and therefore (132) the three perpendiculars L, M, N intersect
at a common point O.

Cor. 1°. It is evident from Cors. 1°. 4°. and 5°. of the pre-
ceding, that—

1°. The six tangents, real or imaginary, to three circles from
their radical centre are equal; and, conversely, when the siz
tangents, real or vmaginary, to three circles from a point, not at
snfinity, are equal, the point vs thevr radical centre.

2°. Every circle having its centre at the radical centre of three
others intersects them at angles, of the same affection, whose costnes
are inversely as their radii; and, conversely, every circle inter-
secting three others at angles, of the same affection, whose cosines
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‘are tnversely as their radii, has dts centre at their radical
centre.,

8°. The circle having its centre at the radical centre of three
others, and intersecting one of them at right angles, intersects the
other two at right angles ; and, conversely, the circle intersecting
three others at right angles has its centre at their radical centre.

The obvious solution of the problem *to describe the circle
which intersects three given circles at right angles,” furnished
by this latter property, is that to which allusion was made in
Art. 156, Cor. 4°, of Chap. IX.

Smce for every three chords XX', YY', ZZ' of any three
circles 4, B, C, which concur to thelr radlca.l centre (), the
three products OX. 0X', 0Y.0Y', 0Z.0Z" are always equal
in magnitude and sign ; their common value is sometimes termed
the radical product of the three circles, and is, of course, always
equal in magnitude and sign to the square of the radius of their
‘orthogonal circle, which circle, consequently, is real or imaginary
‘according as the sign of the radical product is positive or
negative.

CoRr. 2°. The point of concurrence O of the three perpendi-
culars AP, BQ, CR of any triangle ABC is the radical centre
of the three circles of which the three sides BC, O'A ADB are
diameters.

For, as the three circles on BC, C4, AB as diameters pass
respectively through the three pairs of points @ and B, R and P,
Pand @, (Euc. 111. 31), therefore AP, BQ, CR are the three
common chords of those circles, taken two and two, and therefore
&e. (181, 1°.).

CouRr. 8°. More generally, the point of concurrence O of the
three perpendiculars AP, BQ, CR of any triangle ABO 4s
the radical centre of the three circles, of which any three lines
AX, BY, CZ drawn from the vertices to the opposite sides
BC, CA, AB are diameters.

For, whatever be the positions of the three diameters 4X,
BY, CZ, the three perpendiculars AP, BQ, CR are three chords
of the three circles concurring to a point O for which the three
products 0A4.0P, 0B.0Q, OC.UR are equal in magnitude
and sign (168), and therefore &c. (Cor. 1% 1°)
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Cor. 4°. For any system of three combined with any system of
two circles, both systems being arbitrary.

a. The six radical axes of the six combinations of one of the
three with one of the two determine two triangles in perspec-
tive (140).

b. The radical centre of the three and the radical axis of the
two are the centre and axis of the perspective (141),

For, if 4, B, C be the system of three, £ and F the system
of two, U, V, W and X, Y, Z the two sets of three radical
axes of 4, B, C combined each with £ and F respectively,
L, M, N the three radical axes of Band C, C and 4, 4 and B
respectively, which by the above intersect at the radical centre
O of A, B, C, and I the radical axis of E and F'; then, by the
above, the three points UX, VY, WZ lie on I, and the three
pairs of points VW and YZ, WU and ZX, UV and XY lie
on L, M, N respectively, and therefore &c.

The radical axis of two circles which intersect being their
chord of intersection (181, 1°.), the properties just proved are con-
sequently true, in particular, of the two triangles determined by
the six chords of intersection of any two with any three circles
with which they intersect, both systems in all other respects
being arbitrary.

Cor. 5°. If A, B, C be the three centres, and AR, BS, CT
the three radii, of any three circles, L, M, N the three radical
axes of their three groups of two, O their radical centre, P and
PQ the centre and radius of any fourth circle which intersects
them, and a, B, vy the three angles of intersection ; then—

PL : PQ =BS.cosB— CT.cosy : BC,
PM: PQ= CT.cosry— AR.cosa : CA,
PN:PQ=AR.cosa— BS.cosB : AB.
For, if X, Y, Z be three of their six points of intersection with
the fourth circle, and X', Y, Z' their three second points of
intersection with its three radii PX, PY, PZ; then, since, by the
fundamental property of the preceding article (182),
PY.PY'—-PZ.PZ =2.BC.PL,
PZ.PZ —PX.PX'=2.CA.PM,

PX.PX'-PY.PY'=2.4B.PN,
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therefore, as in Cor. 6°. of the same,
PL:PQ=YY' —-ZZ :2BC,
PM:PQ=27Z" —XX':2CA,
PN:PQ=XX'—YY':24B,

and since (62), -
' XX'=2A4R.cosa,
YY'=2BS.cosp,
: ZZ' =2C0T.cosy,
therefore &c.

Hence, for the three circles whose centres are 4, B, ¢ and
radii AR, BS, CT, the centre P of the circle which intersects
them at the three angles a, 3, v lies on the line passing through
their radical centre O which makes with the three radical axes
L, M, N angles whose sines are proportional (61) to the three
quantities . :

BS.cosB—CT.cosy OT.cosry—AR.cosa AR.cosa—BS.cosB
BC ! c4 ! AB

and which therefore is given when the -three circles and- the

three angles of intersection are given.

Cogr. 6°. It appears, from the preceding, (Cor. 5°.), that the
solution of the general problem  to describe the circle which inter-
sects three given circles at three given angles,” is reduced to that of
the problem “ o describe the circle having its centre on a given line
and intersecting two given circles at given angles;”’ which in the
particular case of contacts of assigned species with the two (23),
(to which, as we shall see in the sequel, every other case may be
reduced), can always be solved by (54) ; the sum or difference,
according to the nature of the contacts, of the distances.of its
centre from those of the two circles being evidently given. ‘Of the
celebrated problem “to describe the circle having contacts of
gtven species with three given circles,” which is of course a parti-
cular case of the above, a more general and instructive solution
will be given in the next chapter.

184. Any number of circles whose centers 4, B, C, &c. are
collinear, and whose radii AR, BS, CT, &c. are such that

AR'— AI'=BS’— BI'= CT"- O = &e. =+ I,
L 4
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I being any point on the line of centres, are said to be coaxal,
every two of them having evidently the same radical axis, viz.
the perpendicular to the line of centres at the point 7 (181).

Of coaxal systems of circles there are two species, the sign of
the constant difference or modulus, as it is termed, of the system
+ k" being positive for one and negative for the other ; in the

former case, if M and N (fig. a) be the two pbints on the radical
axis, for which

IM*=IN'=AR'- A’ =BS*- BI’'=CT"-CI'=&e. =K,

all the circles of the system (Euc. 1. 47) pass evidently through
M and N, and the system accordingly is said to be of the common
potnts species ; the two points M and N being common to all the
circles, which, in that case, are all real, whatever be the positions
of their centres 4, B, C &c. upon the line on which they all lie ;
and, in the latter case, if £ and F (fig. 8) be the two points on
the line of centers, for which

IE*=IF"=Al'- AR'=BI’- B§"= CI' - OT" &e.=F,

all the circles of the system (Euc. 11. 5, 6) have evidently E and
F for a common pair of inverse points (149), and the system
accordingly is said to be of the limiting points species ; the two
points E and F being evanescent limits (152) to the circles,
which, in that case, are real or imaginary, according as their
centres 4, B, C, &c. are external or internal to the intercepted
segment EF of the line on which they all lie. In both cases
alike the radical axis itself is evidently the part not at infinity
of the particular circle of the system corresponding to the parti-
cular position of the centre at an infinite distance, and is the
common axis of reflexion (50) of the several pairs of evidently
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equal circles of the system whose centres are equidistant in
opposite directions from the central point I; for which particular
point as centre the square of the radius of the corresponding
circle of the system is evidently the absolute minimum in the
former case, and the negative maximum in the latter.

In the particular case when the constant %= 0, the system
may be regarded as belonging indifferently to either of the above
species, or, more properly, as being at once in the limiting state
of each, and at the transition phase from one to the other; the
two common points M and N of the former species, or the two
limiting points £ and F of the latter, then evidently coinciding
at the point J, the circles of the system all passing through that
point, and the system itself being of the comparatlvely simple
kind considered in (18).

It is evident from the above that two circles, given in magni-
tude and position, determine in all cases the coaxal system,
whatever be its species, to which they belong; for, by the pre-
ceding article (181), they determine the position of the central
point 7, and with it the value of the modulus + %', of the system,
and therefore &e.

185. Connected with every coaxal system of either species,
as explained in the preceding article, there exists a conjugate
system of the other species; the two common or limiting points
of one being the two limiting or common points of the other;
the radical and central axes of one being the central and radical
axes of the other; the constant difference of squares or modulus
for one being equal in magnitude and opposite in sign to the
constant difference of squares or modulus for the other; and
every circle of one system intersecting at right angles every
circle of the other system; which latter property is evident from
the consideration, that every circle coaxal (152) with the two
common points M and N of a common points system, or passing
through the two limiting points £ and F of a limiting points
system (see the dotted circles in figs. « and 8 of the preceding
article) intersects at right angles, by (156), every circle of the
system.

Between the original and its conjugate or orthogonal system,
as in consequence of the preceding property it is also termed,
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the relations, as above stated, are evidently reciprocal (8);
cither being transformable into the other by the simple inter-
change of the elements peculiar to its character, and every
property true’ of either in relation to the other being, conse-
quently, true also of the latter in relation to the former.

186. Gven two circles of a coaxal system of either spectes, to
determine the circle of the system which, 1°. passes through a gtven
point ; 2°. cuts orthogonally a given line or circle; 8°. touches &
given line or circle.

These three problems, to which many others in the theory of
coaxal circles are reducible, require different solutions accord-
ing as the system to which the given circles belong is of the
common or of the limiting points species; in the former case,
the two points common to both on their radical axis are the
common points of the system, and in the latter case, the two points
inverse to both on their central axis (155, Cor. 2°.) are the limit-
ing points of the system ; and the common or limiting points, as
the case may be, being thus given, the solutions, based in the
latter case on the general property of the preceding article,
are respectively as follows:

To solve 1°.; in the former case, the circle passing through
the given point and through the two common points is that
required ; and in the latter case, the tangent at the given point
to the circle passing through it and through the two limiting
points intersects the central axis at the centre of the required
circle (152). To solve 2°.; in the former case, the circle passing
through the two common points and through the inverse of
either with respect to the line or circle is that required (156);
and in the latter case, the two circles passing through the two
limiting points and touching the line or circle (51) determine
on the latter its two points of intersection with the required
circle. And to solve 3°.; in the former case, the two circles pass-
ing through the two common points and touching the line or
circle (51) are those required; and in the latter case, the
circle passing through the two limiting points and through
the inverse of either with respect to the line or circle de-
termines on the latter its points of contact with the two circles
required.
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187. For coaxal systems in general, whatever be their
species, it is evident, from Cors. 1°, 8°, 4°, 5°, Art. 182, that—

1°. The tangents, real or imaginary, to all the circles of a
coaxal system from any point on their radical axis are equal;
and, conversely, when three or more circles are such that
for two points, not at infinity, the tangents to them, real or
imaginary, are equal, they are coaxal, and the line containing
the two points is their radical axis.

2°. The chords of intersection, real or imaginary, of all the
circles of a coaxal system with any arbitrary circle concur to a
point on their radical axis; and, conversely, when three or more
circles are such that their chords of intersection, real or ima-
ginary, with two others are concurrent, they are coaxal, and the
line containing the two points of concurrence is their radical axis.

3°. Every circle having its centre on the radical axis in-
tersects all the circles of a coaxal system at angles, of the same
affection, whose cosines are inversely as their radii; and, con-
versely, when three or more circles are intersected by two
others at angles, of the same affection, whose cosines are in-
versely as their radii, they are coaxal, and the line of centres of
the two is their radical axis.

4. Every circle having its centre on the radical axis and
intersecting any circle of a coaxal system at right angles in-
tersects every circle of the system at right angles; and, con-
versely, when three or more circles intersect two others at right
angles, they are coaxal, and the line of centres of the two is
their radical axis,

It is evident also from (177), combined with the preceding
property 4°, that—

5°. Every point has a common conjugate with respect to all
the circles of a coaxal system, viz. the diametrically opposite
point of the circle of the orthogonal system which passes through
it; and, conversely, when three or more circles have two pairs
of common conjugate points, whose distances are not at once
equal and concentric, they are coaxal, as intersecting two different
circles at right angles (4°).

188. For systems of the limiting points species in parti-
cular, it is also evident, from the properties. referred to, that—
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1°. The two limiting points are inverse points with respect to
every circle of the system; and, conversely, when two circles
have a common pair of inverse points, those points are the
limiting points of the coaxal system they determine (152).

2°. Each limiting point and the perpendicular to the line of
centres passing through the other are pole and polar with
respect to every circle of the system ; and, conversely, when two
circles have a common pole and polar, the pole and polar centre
are the limiting points of the coaxal system they determine (165).

3°. The tangents to every circle of the system from each
limiting point are bisected by the radical axis; and, conversely,
when the tangents to two circles from a point on their line of
centers are bisected by their radical axis, that point is a limit-
ing point of the coaxal system they determine (157).

4°. The tangents to every circle of the system from any
point in the radical axis are equal to the distances of the point
from the two limiting points; and, conversely, when the tan-
gents to two circles from any point in their radical axis are
equal to the distances of the point from two points on their line
of centres, the latter are the limiting points of the coaxal system
they determine (157).

5°. Every circle passing through the two limiting points is
orthogonal to every circle of the system; and, conversely, when
two circles which do not intersect are orthogonal to two circles
which do, the common points of the coaxal system determined
by the intersecting pair are the limiting points of the coaxal
system determined by the non-intersecting pair (156).

6°. For every line touching two circles of the system, the
segment intercepted between the points of contact subtends a
right angle at each limiting point; and, conversely, when for a
line touching two circles the segment intercepted between the
points of contact subtends right angles at two points on their
line of centres, those points are the limiting points of the coaxal
gystem they determine. (22, 1', and Euc. 111. 31.)

189. If X, Y, Z be any three collinear points on the three
sides BC, CA, AB of any triangle ABC.

1°, Tke tkree circles on the three connectors AX, BY, CZ, as
diameters, are coaxal.
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2°. The four polar centres of the four triangles YAZ, ZBX,
XCY, and ABC are on their radical axts.

8°. The four polar circles of the four trt'angles YAZ, ZBX,
XCY, and ABC are coaxal.

4°. The three middle pomts of the three connectors AX, BY,
OZ are on their radical axis.

For, the three connectors AX, BY, CZ being three lines
from the vertices to the opposite sides of each of the four triangles
YAZ, ZBX, XCY, and ABC; therefore, by Cors. 8°. and 1°
Art. 183, the four polar circles of the four triangles (168) inter-
sect at right angles the three circles of which the three con-
nectors are diameters, and, as consequently the circles of the two
groups are conjugately coaxal (185), therefore &c.

Cor. 1°, The four lines BXC, CYA, AZB, and XYZ in the
above being entirely arbitrary, the four properties consequently
may be stated, otherwise thus, as follows—

1°. The three circles of which the three chords of intersection
of any four lines are diameters are coaxal.

2°.  The four polar centres of the four triangles determined by
the four lines are on their radical awxis.

8°. The four polar circles of the four triangles determined by
the four lines are coaxal.

4. The three middle points of the three chords of tntersection
of the four lines are on their radical axis.

Cor. 2°. The centres of all circles of a coaxal system being
collinear (184), and the two lines of centres of two conjugate
systems being orthogonal (185), it follows, consequently, from
Cor. 1°,, that, for every system of four arbitrary lines—

1°. The three middle points of the three chords of intersection
they determine are collinear.

2°.  The four polar centres of the four triangles they determine
are collinear.

8°. The two lines of collinearity for the middle points of the
chords and for the polar centres of the triangles are orthogonal.

The preceding properties may be established by many other
considerations, but by none more simply or elegantly than the
above, which are duc to Mr. W. F. Walker.

190. If D, E, F be three circles connected with three others
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A, B, C by the relations that D 1s coaxal with B and C, E with
C and A, and F with A and B, then—

1°. They have always the same radical centre and product
with 4, B, C.

2. When they pass through a common point P they pass
through a second common point P'.

8°. When their centres are collinear they are themselves coaxal.

For, if RR', 88', TT" be any three chords of 4, B, C con-
curring to their radical centre O, and UU’, VV', WW' any
three of D, E, F concurring to the same point Oj; then, to
prove 1°,, since by hypothesis, the three groups of circles B, C,
and D; C, 4,and E; A, B;and F are coaxal, therefore (187, 1°)
the three groups of rectangles 08.08', 0T.0T", and OU.OU";
O0T.0T', OR.OR, and OV.0OV'; OR.OR, 08.08', and
OW.OW'’ are equal in magnitude and sign, and therefore the
two groups of circles D, E, F and 4, B, C have the same radical
centre and product (183, Cor. 1°.) ; to prove 2°., when D, E, F'pass
through a common point P they pass also through a second
common point P, that viz. on the line OP for which the
product OP.OP is equal in magnitude and sign to their radical
product, and of course to that of 4, B, C (1°.); and to prove 3°.,
when the centres of D, E, F are collinear, if X, Y, Z be their
three centres, XU, YV, ZW their three radii, and I the foot of
the perpendicular from O on the line XYZ; since then, by 1°,

XO-XU'=YO0'-¥V*'=20'-ZW?, ‘
therefore (Euc. 1. 47),
XI'-XU'=YI'-YU*'=2I"-ZW?,

and therefore the three circles D, E, F are coaxal (184).

Otherwise thus: the circle G orthogonal to the three 4, B, C
being, by (182, Cor. 5°.), orthogonal also to the three D, E, F, its
centre O and the square of its radius OG" are, by (183, Cor. 1°.),
the radical centre and product of both triads 4, B, C and D, E, F
which proves 1°.; when D, E, F pass through a common point
P, they pass also, by (156), through its inverse P with respect
to the circle @, which proves 2°.; and when the centres of
D, E, F are collinear, they are at once orthogonal to the circle
G and to the line of their centres (22, 1°.), and therefore coaxal
(187, 4°.), which proves 3°.
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Cor. In the general case, if P and P', @ and ¢, R and R’
be the three pairs of intersections of the three pairs of circles
E and F, F and D, D and E, and if X, Y, Z be the three inter-
sections of the three pairs of lines QR and @'R', RP and R'P’,
PQ@and P @ ; then since, by 1°, the three lines PP, Q@', RR' are
concurrent, and the three rectangles OP.OF', 0Q.0¢, OR. OR'
are equal in magnitude and sign, therefore (140) the three
points X, Y, Z are collinear, and, (Euc. 111. 35, 36), the three
pairs of rectangles X@Q. XEand X@'.XR', YR.YPand YR.YP,
ZP.ZQ and ZP'.Z¢Q' are equal in magnitude and sign; or,
in other words, the two triangles PQR and P'Q'R’ are in per-
spective, and the centre and axis of their perspective are the
radical centre of the three circles 4, B, C and the radical axis
of the two PQR and P ¢'R'.

191. If A, B, C be the three centres, and AR, BS, CT the

three radii, of any three coaxal circles, the relation
AR* BS* cr
4B.4AC T BC.BA " T4.0B

ts true tn all cases, whatever be the species of the systems to which
they belong.

For since, by hypothesis (184), I being the central point of
the system, AR'— AI'=BS'—BI'=CI"- CI'=1k =the
modulus of the system ; therefore,

BC.AR'+ CA.BS* + AB.CT*
= BC.A'+ CA.BI* + AB.CI* + (BC+ CA+ AB).K*;
but, by (78), BO+ C4 + AB=0, and, by (83),
BO.AI'+ CA.BI*+ AB.CI*=— BC.CA.AB,

therefore
BC.AR*+ CA.BS*+ AB.CT*=~ BC.CA.AB,

and therefore &c., the latter relation being evidently equiva-
lent to the above.

The above general relation, which when the circles belong
to a system of the common points species is evident from (83),
may be regarded as the criterion of coaxality between three
circles whose centres are collinear, and by aid of it the radius
corresponding to a given centre, of any circle coaxal with two

Wy

=1
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others, is given at once without requiring the previous de-
termination of the central point 7 and of the modulus + &* of the
system ; it is evident also from it that when two of three coaxal
circles are concentric and unequal, the third, asit ought (181, 4°.),
is concentric with both.

Cor. 1.° If CT=0, that is, if, in a system of the limiting
points species, C be one of the two limiting points; then,
whatever be the positions of 4 and B and the magnitudes

of AR and BS,
AR* BS®

AC " BC
which accordingly is the relation by which to calculate in
numbers the positions, real or imaginary, of the two limiting
points, when two circles of the system are given in magnitude
and position.

Cor. 2. If AR=0 and BS=0, that is, if, in a system
of the limiting points species, 4 and B are the two limiting

points; then, for every position of C, whatever be the inter-
val AB,

= 4B,

) CT*= CA.CB,
from which it appears, as stated in (184), that, in a system
of the limiting points species, the two limiting points are inverse
points with respect to every circle of the system (152).

192. If A, B, C be the centres of three coaxal circles, AR,
BS, CT their three radit, and PR, PS, PT the three tangents
to them from any point P not at infinity, the relation

BC.PR'+ CA.PS*+ AB.PT*=0
18 true in all cases, whatever be the species of the system to which
they belong.
For, since, by the general relation of Art. 83,
BC.AP'+ CA.BP'+ AB.CP*=- B(C.CA.AB;
and si;xce, by the general relation of the preceding article,
BC.AR'+ CA.BS*+ AB.CT"=~ BC.CA.AB;
therefore, at once, by subtraction,
BC.(AP'— AR’) + CA.(BP'—BS")+ AB.(CP*- CT) =0,
which is manifestly the same as the above.

»
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Otherwise thus: if D be the centre of the circle of the system
which passes through P, then since, by Cor. 2°, Art. 182,

PR'=2.4D.LP, PS*=2.BD.LP, PT*=2.CD.LP;
therefore, multiplying by BC, CA4, AB, and adding
BC.PR'+ CA.PS*+ AB.PT*
=2.LP.(BC.AD+ CA.BD + AB.CD) =0,
since LP by hypothesis is not =, and therefore &c.

Cor. 1°. If PT=0, that is, if P be on the circle C, then
BC.PR'+ CA.P§*=0, or PR*: PS*=AC: BG,

and, conversely, if the latter relation exist, then P7'=0, or Pis
on the circle C. Hence—

When three circles are coaxal, the squares of the tangents to
two of them from any point on the third have the constant ratio of
the distances of their centres from the centre of the third ; and,
conversely, the locus-of a variable point the squares of the tangents
Jrom which to two fixed circles have any constant ratio, positive or
negative, s .the coaxal circle whose centre divides the distance
between their centres in the magnitude and sign of the ratio.

By aid of Cor. 2°, Art. 182, this important property, which
obviously includes those of Art. 158, and of Cor. 1°, Art. 182,
as particular cases, may be proved, otherwise thus, as follows :
since, by the corollary in question, when P lies on the circle
C, then PR*=2.4C.LP, PS*=2.BC.LP, and conversely,
therefore, at once, by division, PR': PS*=AC: BC, and
therefore &c. , :

Cor. 2°. If PR=0, and PS=0, that is, if P be on two of
the circles 4 and B at once, then PT'=0, or P is on the third
circle also. Hence, as already stated in (184), when two circles
intersect, every third circle coaxal with them passes through
their points of intersection.

Cor. 8°. If M and N be the two points of contact with any line
of the two circles of any coaxal system which touch t, P and Q its
two points of intersection with any third circle of the system, and
O its point of intersection with the radical axis, then always

PM*: QM*=PN": QN*=PO : QO.
S
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For, if 4 and B be the centres of the two circles touching
the line at M and N, C that of the circle intersecting it at P and
@, and L the radical axis of the system; then since, as above,
by Cor. 2°, Art. 182,

PM*=2.4AC.PL, QM*=2.4C.QL,
PN*=2.BC.PL, QN*'=2.BC.QL;

therefore, at once, by division,
PM*: QM*=PN*: QN*'=PL : QL,
and since, by similar triangles, PL : QL = PO : QO, therefore &c.

CoR. 4°. In the same case, for a system of the limiting points
species, tf E and F be the two limiting points, the two angles
MEN and MFN are right angles, and their sides bisect externally
and tnternally the two angles PEQ and PFQ respectively :
see 186, 6°.

For, since by Cor. 1°,

PM*: PN*: PE*: PF*=QM*: QN*: QE* : QF",
therefore at once, by alternation,

PM*: QM*=PN*: QN*'=PE*: QE'=PF*: QF",
and therefore &c. (Euc. V1. 3.)

Cor. 5°. If P, Q, B be the three vertices of any triangle sn-
scribed in any circle of a coaxal system, X, Y, Z the three ex-
ternal, and X', Y, Z' the three internal, points of contact with <ts
sides QR, RP, PQ of the six circles of the system which touch
them tn pairs (186, 3°), then always—

a. The four groups of three points Y',Z2', X; Z', X', Y;
X, Y,Z; and X, Y, Z are collinear.

b. The four groups of three lines QY, RZ, PX'; RZ, PX, QY";
PX, QY, RZ'; and PX', QY'y RZ" are concurrent.

For,if 4 and 4’y Band B, C and C' be the centers of the
six circles touching QR, EP, PQ at X and X', Y and Y,
Z and Z respectively, and D the centre of the circle containing
P, Q, R, then since, by Cor. 1°,

PY'_BD Q7 0D RX'_AD
PZ*  CD' QX* AD’® RY* BD?’
with seven other groups of the same form, one for the accented,
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and six for the mixed accented and unaccented letters ; therefore,
at once, by composition of ratios,

PY* QZ' RX*

PZ ' QX*'RY*™
and similarly for each of the seven remaining groups, and
therefore &ec.

It is evident also, from Cor. 3° that the three intercepts
XX', YY", ZZ between the points of contact of the three pairs
of circles touching the three sides of the triangle, are cut inter-
nally and externally in common raties by every circle of the
system, and are bisected internally by its radical axis.

L,

Cor. 6°. The general relation of the present article may
obviously be stated in the equivalent form

BC.PX.PX'+ CA.PY.PY + AB.PZ.PZ =0,

X and X', Y and Y, Z and Z’, being the pairs of intersections
with the three circles of any three lines passing through P. This
form has the comparative advantage, that the three rectangles it
involves, whatever be their signs, are always real, whereas the
three tangents, whose squares are involved in the original
form, may be, and often are, some or all, imaginary.

198. If A, B, C be the centres of three coaxal circles, AR,
BS, CT their three radii, and a, B, <y their three angles of in-
tersection with any arbitrary circle whose centre vs not at infinity,
the relation

BC.AR.cosa+ CA.BS.cosB+ AB.CT.cosy=0
48 true in all cases, whatever be the species of the system to which
they belong.

For, if P be the centre of the arbitrary circle, P its radius,
X, Y, Z three of its six points of intersection with the three
coaxal circles, and X', Y, Z' their three second points of inter-
section with its three radii PX, PY, PZ; then since, by the
general property of the preceding article,

BC.PX.PX'+ CA.PY.PY'+ AB.PZ.PZ =0;
and since in the present case PX = PY = PZ = P(), therefore

(BC+CA+ AB). PQ*+(BC.XX'+CA.YY'+AB.ZZ"). PQ =0,
82
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from which as BO+CA + AB =0, and as PQ not = o , therefore

BC.XX'+CA.YY'+ AB.ZZ"' =0,
which, as

XX'=2.4R.cosa, YY'=2.BS.cos8, ZZ =2.CT.cosry,

is therefore equivalent to the above.
Otherwise thus: by Cor. 6°, Art. 182, see also Cor. 5°, Art. 183,

BS.cosB—CT.cosy  CT.cosy—AR.cosa _ AR.cosa—BS.cosf

BC - c4 = 4B ’
each being = PL : PQ = the cosine of the angle, real or ima-
ginary, Cor. 8°, Art. 182, at which the arbitrary circle intersects
the radical axis L of the three coaxal circles 4, B, C, and from
either of these equalities the above manifestly results im-
mediately.

This latter method has the advantage over the former, of
not only establishing the general relation connecting the ¢osines
of the three angles of intersection, real or imaginary, of any
arbitrary circle with three coaxal circles, but of connecting
with them at the same time the cosine of its angle of intersec-
tion, real or imaginary, with their radical axis,

Cor. 1°. When C is such, that
BC.AR.cosa = AC.BS.cosp,
or, which is the same thing, that
AC: BC=AR.cosa : BS.cosp,

then CT.cosy =0, and therefore cosy =0; except only when
CT=0, in which case it is indeterminate. Hence—

Every circle tntersecting two circles A and B at two angles
a and B tntersects at right angles the coazal circle C whose centre
18 given by the preceding proportion; except only when that circle
18 a point, in which case 1t passes through it, and intersects it at
an tindeterminate angle.

Cor. 2°. When in Cor. 1°, cosa : cos8 =11, that is, when
a and 3 are equal or supplemental then AC:BC=+AR: BS,
and therefore (44) C is a centre of similitude, external in the

former case and internal in the latter case, of the circles A
and B. Hence—
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Evyery circle intersecting. two circles A and B at equal or sup-
plemental angles, intersects at right angles the coazal circle, real
or vmaginary, whose centre 18 the external or internal centre of
similitude of A and B ; except only when that circle is a point,
in which case it passes through t, and intersects 1t at an inde-
terminate angle.

" Cor. 8°. When in Cor. 1°, AR.cosa: BS.cosB=4+1, that
is, when cosa:cosB=1BS: AR, then AC: BC= +1, and
therefore C is a point of blsectlon, external in the former case
and internal in the latter case, of the interval 4B. Hence—

 Every circle intersecting two others A and B at angles, of
stmilar or opposite affections, whose cosines are inversely as their
radii, intersects at right angles the coaxal circle whose centre
bisects externally or internally the interval between the centres
of Aand B; except only, in the latter case, when that circle s @
point, tn which case it passes through it, and intersects it at an
indeterminate angle.

Cor. 4°. When AR.cosa=0, that is, when either AR=0
or cosa=0, then 4C.B8S. cosB AB.CT.cosvy, or, as before
(Cor. 1°.), BS cosB: CT. cosyy = BA:CA. Hence—

Every circle either passing through a point or cutting ortho-
gonally a line or circle A, and intersecting another line or circle B
at any other constant angle B, intersects every third line or circle
C coaxal with A and B at a third constant angle vy, whose cosine
13 given by the preceding relation.

Cor. 5°. When AR.cosa=0, and BS.cos8=0, that is,
when either AR =0 or cosa =0, and either BS=0 or cos8=0,
then CT.z08y =0, whatever be the position of C, and therefore
cosy=0; except only when CT'= 0, in which case it is indeter-
minate. Hence, see 156 and 185—
 Ewery circle passmg through two points, or cutting orthogonally
two circles, or passing through a point and cutting orthogonally a
circle, cuts orthogonally every circle coaxal with the two ; except
only when that circle s a point, in which case it passes througk i,
and intersects it, like every other evenmescent circle, at an inde-
terminate angle.

CoRr. 6°. When O is such, that

BC.AR.cosa — AC.BS.cosB=1 AB.CT,
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the relations, as above stated, are evidently reciprocal (8);
either being transformable into the other by the simple inter-
change of the elements peculiar to its character, and every
property true’ of either in relation to the other being, conse-
quently, true also of the latter in relation to the former.

186. Given two circles of a coaxal system of either species, to
determine the circle of the system whick, 1°. passes through a given
point ; 2°. cuts orthogonally a given line or circle; 3°. touches a
given line or circle.

These three problems, to which many others in the theory of
coaxal circles are reducible, require different solutions accord-
ing as the system to which the given circles belong is of the
common or of the limiting points species; in the former case,
the two points common to both on their radical axis are the
common points of the system, and in the latter case, the two points
inverse to both on their central axis (155, Cor. 2°.) are the limit-
ing points of the system ; and the common or limiting points, as
the case may be, being thus given, the solutions, based in the
latter case on the general property of the preceding article,
are respectively as follows:

To solve 1°.; in the former case, the circle passing through
the given point and through the two common points is that
required ; and in the latter case, the tangent at the given point
to the circle passing through it and through the two limiting
points intersects the central axis at the centre of the required
circle (152). To solve 2°.; in the former case, the circle passing
through the two common points and through the inverse of
either with respect to the line or circle is that required (156);
and in the latter case, the two circles passing through the two
limiting points and touching the line or circle (51) determine
on the latter its two points of intersection with the required
circle. And to solve 8°.; in the former case, the two circles pass-
ing through the two common points and touching the line or
circle (51) are those required; and in the latter case, the
eircle passing through the two limiting points and through
the inverse of either with respect to the line or circle de-
termines on the latter its points of contact with the two circles
required.
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187. For coaxal systems in general, whatever be their
species, it is evident, from Cors. 1°, 8°, 4°, 5°, Art. 182, that—

1°. The tangents, real or imaginary, to all the circles of a
coaxal system from any point on their radical axis are equal;
and, conversely, when three or more circles are such that
for two points, not at infinity, the tangents to them, real or
imaginary, are equal, they are coaxal, and the line containing
the two points is their radical axis.

2°. The chords of intersection, real or imaginary, of all the
circles of a coaxal system with any arbitrary circle concur to a
point on their radical axis; and, conversely, when three or more
circles are such that their chords of intersection, real or ima-
ginary, with two others are concurrent, they are coaxal, and the
line containing the two points of concurrence is their radical axis.

8°. Every circle having its centre on the radical axis in-
tersects all the circles of a coaxal system at angles, of the same
affection, whose cosines are inversely as their radii; and, con-
versely, when three or more circles are intersected by two
others at angles, of the same affection, whose cosines are in-
versely as their radii, they are coaxal, and the line of centres of
the two is their radical axis.

4’. Every circle having its centre on the radical axis and
intersecting any circle of a coaxal system at right angles in-
tersects every circle of the system at right angles; and, con-
versely, when three or more circles intersect two others at right
angles, they are coaxal, and the line of centres of the two is
their radical axis.

It is evident also from (177), combined with the preceding
property 4°, that—

5°. Every point has a common conjugate with respect to all
the circles of a coaxal system, viz. the diametrically opposite
point of the circle of the orthogonal system which passes through
it; and, conversely, when three or more circles have two pairs
of common conjugate points, whose distances are not at once
equal and concentric, they are coaxal, as intersecting two different
circles at right angles (4°).

188. For systems of the limiting points species in parti-
cular, it is also evident, from the properties referred to, that—



250 ON THE RADICAL AXES OF

the relations, as above stated, are evidently reciprocal (8);
either being transformable into the other by the simple inter-
change of the elements peculiar to its character, and every
property true’ of either in relation to the other being, conse-
quently, true also of the latter in relation to the former.

186. GHven two circles of a coaxal system of either spectes, to
determine the circle of the system which, 1°. passes through a given
point ; 2°. cuts orthogonally a given line or circle; 8°. touches a
given line or circle.

These three problems, to which many others in the theory of
coaxal circles are reducible, require different solutions accord-
ing as the system to which the given circles belong is of the
common or of the limiting points species; in the former case,
the two points common to both on their radical axis are the
common points of the system, and in the latter case, the two points
inverse to both on their central axis (155, Cor. 2°.) are the limit-
ing points of the system ; and the common or limiting points, as
the case may be, being thus given, the solutions, based in the
latter case on the general property of the preceding article,
are respectively as follows:

To solve 1°.; in the former case, the circle passing through
the given point and through the two common points is that
required ; and in the latter case, the tangent at the given point
to the circle passing through it and through the two limiting
points intersects the central axis at the centre of the required
circle (152). To solve 2°.; in the former case, the circle passing
through the two common points and through the inverse of
either with respect to the line or circle is that required (156) ;
and in the latter case, the two circles passing through the two
limiting points and touching the line or circle (51) determine
on the latter its two points of intersection with the required
circle. And to solve 3°.; in the former case, the two circles pass-
ing through the two common points and touching the line or
circle (51) are those required; and in the latter case, the
circle passing through the two limiting points and through
the inverse of either with respect to the line or circle de-
termines on the latter its points of contact with the two circles
required.
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187. For coaxal systems in general, whatever be their
species, it is evident, from Cors. 1°) 8°, 4°, 5°, Art. 182, that—

1°. The tangents, real or imaginary, to all the circles of a
coaxal system from any point on their radical axis are equal;
and, conversely, when three or more circles are such that
for two points, not at infinity, the tangents to them, real or
imaginary, are equal, they are coaxal, and the line containing
the two points is their radical axis.

2°. The chords of intersection, real or imaginary, of all the
circles of a coaxal system with any arbitrary circle concur to a
point on their radical axis; and, conversely, when three or more
circles are such that their chords of intersection, real or ima-
ginary, with two others are concurrent, they are coaxal, and the
line containing the two points of concurrence is their radical axis.

3°. Every circle having its centre on the radical axis in-
tersects all the circles of a coaxal system at angles, of the same
affection, whose cosines are inversely as their radii; and, con-
versely, when three or more circles are intersected by two
others at angles, of the same affection, whose cosines are in-
versely as their radii, they are coaxal, and the line of centres of
the two is their radical axis.

4°. Every circle having its centre on the radical axis and
intersecting any circle of a coaxal system at right angles in-
tersects every circle of the system at right angles; and, con-
versely, when three or more circles intersect two others at right
angles, they are coaxal, and the line of centres of the two is
their radical axis,

It is evident also from (177), combined with the preceding
property 4°, that—

5°. Every point has a common conjugate with respect to all
the circles of a coaxal system, viz. the diametrically opposite
point of the circle of the orthogonal system which passes through
it; and, conversely, when three or more circles have two pairs
of common conjugate points, whose distances are not at once
equal and concentric, they are coaxal, as intersecting two different
circles at right angles (4°).

188. For systems of the limiting points species in parti-
cular, it is also evident, from the properties referred to, that—
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the other intersect them at angles the squares of whose sines have
the constant tnverse ratio of the distances of their centres from the
centre of the first, and therefore intercept in them chords whose
squares divided by the squares of their radii have the same con-
stant ratio.

In the particular case, when sina:sinB8=1, or (62) when
XX': YY'=AX: BY, or (44) when the line of intersection
passes through a centre of similitude, external or internal, of
the circles intersected, then AC: BC=1, and therefore, of the
four vertices of the quadrilateral PQRS, two opposites lie on
the line at infinity, and the remaining two lie on the radical axis
of the circles 4 and B, the two lines into which the coaxal
circle C then breaks up (184); and the same is evident from the
consideration that when a = 8 the pairs of tangents at two pairs
of intersections X and Y, X' and Y’ are parallel, and intersect
consequently at infinity, and the pairs of tangents at the re-
maining pairs of intersections X and Y’, X' and ¥ form isosceles
triangles with the line of intersection and intersect consequently
on the radical axis of 4 and B. (182, Cor. 1°.)

Cor. 2°. If L and L'y M and M', N and N' be the three pavrs.
of opposte lines connecting any four points P, Q, R, S on a circle,
Xand X'y Yand Y', Z and Z' their three pairs of tntersections
with any line making equal angles a=a' with one pavr of them LL',
and therefore (Euc. 111. 21, 22) pairs of equal angles B=p' and
=9 with the remaining two pairs MM' and NN'; the three circles
touching L and L'y M and M’y N and N' at X and X', Y and Y"',
Z and Z' are coaxal with each other and with the circle PQRS.

For, by the first part of the above, the latter circle is coaxal
with every two of them, and therefore &c.

If the intersecting line pass, as it or a parallel to it in every
case may, through one of the three points LL', MM’', NN',
the corresponding circle of contact being then evanescent, that
point is consequently a limiting point of the coaxal system to
which the remaining two and the circle PQRS belong; and if
it pass through two of them at once, which, in compliance with
the condition restricting it to one or other of two rectangular
directions, it only could do when one of the three is at infinity,
the two corresponding circles of contact being then evanescent,
these points are consequently the two limiting points of the
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coaxal system to which the third and the circle PQRS belong.
Hence, see Cor. 2°) Art. 163, the two centres of perspective of any
two parallel chords of a circle are at once inverse points with re-
spect to the circle itself and to that which touches the two chords
at their middle points ; a property the reader may easily verify,
a priort, for himself.

Cor. 8°. If X and X', Y and Y’y Z and Z' be the three pairs
of intersections of an arbitrary line with any three circles, L and
L'y M and M’y N and N' the three pairs of tangents at them to the
circles ; the three circles containing the vertices of the three quad-
rilaterals, of which MM' and NN'y NN' and LL') LL' and MM’
are pairs of opposite sides, are coaxal.

For, if 4, B, C be the centres of the three original circles,
a, B, v their three angles of intersection with the line, and
A’y B’y C' the centres of the three circles containing the vertices
of the three quadrilaterals, which, by the above, are coaxal with
the pairs of the originals whose centres are B and C, C and 4,
A and B respectively; then since, by the abeve,

BA' sin’y COB' sin’a AC _sin'B
C4A’' " sin’B’ 4B ~ sy’ BC' sin’a’
therefore, at once, by composition of ratios,
BA' CB' AC
CA4’'" 4B’ " BC'
consequently (134, a) the three centres 4', B', C" are collinear,
and therefore &c., (190, 3°.).

In the particular case when the centres of the three originak
circles 4, B, C are collinear, those of the three derived circles:
A’y B’y (' are of course necessarily collinear with them; but
the preceding relation, proved exactly as above, exists in the
particular as in the general case, and equally in both establishes:
the coaxality of the derived systcm; the same remark applies
to the similar property proved, in a similar manner, in Cor. 10°
of the preceding Article.

=17

Cor. 4°. For a variable polygon of any order inscribed to a
Jiwed circle of any coaxal system, if all the sides but one touch in
every position fixed circles of the system, that one also touches in
every position a fixed circle of the system.
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Let P, Q, R, S,&c. T)and P, @, R, §', &ec. T" be any two posi-
tionsof the vertices of the polygon on
the circle of the system round which
they move. If in the two positions
the several pairs of sides PQ and
P @, QR and @R, RS and R'S’,
&ec. up to, but not including, the last,
touch the same circles of the system,
the last pair TP and 7" P also touch
the same circle of the system.

For, joining the extremities PP,
QQ, RR, 88', &c. TT of the several pairs of sides touchmg
the same cnrcles in the two positions of the polygon ; then since,
by hypothesis, PQ and P'Q touch a common circle of the
system, therefore, by the second part of the above, PP’ and
Q@ touch a common circle of the system; since again, by
hypothesis, Q2 and Q'R’ touch a common circle of the system,
therefore again, by the same, Q@' and RRE’' touch a common
circle of the system; since again, by hypothesis, RS and R'S"
touch a common circle of the system, therefore again, by the
same, RR' and S8’ touch a common circle of the system; and
50 on to the last pair of sides but one; from which it follows
that the first and last connectors PP’ and T'T" touch a common
circle of the system, and therefore, by the same as before, that
the last pair of sides 7P and 7"P touch a common circle of
the system.

This simple and elegant demonstration of the above cele-
brated Theorem of Poncelet is due to Dr. Hart, who published
an extension of itin The Quarterly Journal of Pure and Applied
Mathematics, Vol. 11., page 143; a proof nearly identical was
arrived at independently about the same time by Mr. Casey.

Cor. 5°. The principle of the above demonstration depending
on the circumstance that the several chords of connection PP,
Q@Q, BRR, 8S', &c. TT" for any two positions of the polygon
all touch a common circle of the system, and that again de-
pending only on the circumstance that every circle of the system
touched by a side of the polygon in one position is touched also
by a side of the polygon in the other position, irrespectively
altogether of the circumstance as to whether the contacts of
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‘the several sides of the polygon with the circles they touch
take place in the same order of sequence in the two positions
or not; hence, in Poncelet’s Theorem the order of sequence in
whach the several circles enveloped are touched by the several suc-
cesstve sides of the variable polygon in its different positions s
entirely arbitrary, provided only no circle touched in one position
be omitted in another ; a circumstance noticed by Poncelet him-
self, and established by him, in connection with the Theorem, on
principles instructive and suggestive but involving conceptions
beyond the limits of mere elementary geometry.

To see this clearly, the figure and notation employed above,
for facility of conception in the first instance, being adapted
only to the case when the order of the contacts with the several
‘circles touched is the same in the two positions of the polygon;
denoting by PP, and PP/, @@, and Q,/Q,, B R, and B'R/,
8,8, and 88, &c., the several pairs of sides of the two
polygons corresponding to the two positions which touch the
same circles 4, By C, D, &c. of the system, measured cyclically
in the same direction for each polygon (110), but in similar or
opposite directions for both, and independently altogether of
the order of sequence in either; then since, by the above, the
several pairs of connecting chords PP’ and PP/, Q @, and
Q.Q.), BR' and ER/, 88/ and 8,8/, &c. touch the same
circles of the system 4', B, C', D, &c.; and since, from the
nature of the case (every side of a polygon being conterminous
with the two adjacent), every connector of the system PP/,
Q.Q/,RR' 88/, &e. coincides necessarily with some connector
of the opposite system PP/, Q,Q,, B.R,, 8,8, &c., and con-
versely ; therefore the several circles 4’y B', C', D', &c. touched
by the several pairs of connectors all coincide, and therefore &c.

Cogr. 6°. It appears at once from the above, Cors. 4’ and 5°,
that the general problem, “to inscribe in a given circle of a
coazxal system a polygon of any degree whose several sides in any
order of sequence shall touch given circles of the system,” is in-
determinate when the circles are such that for every polygon
inscribed to the first, all whose sides but one touch in any order
of sequence all the others but one, the last side touches the last
.circle; when this is not the case the four common tangents, real
or imaginary, to the last circle and to that touched in every
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position by the last side (Cor. 4°), give the last sides of the four
polygons that solve the problem, and with them therefore the
polygons themselves.

Since, when two circles intersect, two of their four common
tangents, those passing through their external centre of simili-
tude, are always real, and the other two, those passing through
‘their internal centre of similitude, are always imaginary ; hence
when, in the above problem, the coaxal system to which the
circles belong is of the common points species, two of the four
polygons that solve it are always real and the other two always
imaginary ; when, however, the system is of the limiting points
species, all four may be real or all four imaginary according to
circumstances.

Cor. 7°. As all the circles touched by the several sides of
the variable polygon in every position may coincide, thus re-
ducing the several circles in the general case to two, it appears
therefore, from the same, that the modified problem, “t con-
struct a _polygon of any order all whose vertices shall lie on one
gitven circle and all whose sides shall touch another given circle,”
is indeterminate when the two circles are such that for every
polygon of the required order all whose vertices lie on the first,
and all whose sides but one touch the second, the last side also
touches the second. When this is not the case the four common
tangents, real or imaginary, to the second circle, and to the
third circle, coaxal with the first and second, which is touched
in every position by the last side (Cor. 4°), give, as in Cor. 6°,
the last sides of the four polygons that solve the problem ; which
‘polygons for all odd orders, bytaking the two symmetrical positions
for which the last side is perpendicular to the line of centres of
the three circles, are easily seen to be all real, all imaginary, or,
two real and two imaginary, according as the distance between
the centres of the two given circles is greater than the sum,
less than the difference, or, intermediate between the sum and
difference, of their radii.

In the particular case when the polygon is a triangle, the
condition for indeterminateness, as regards the centres and
radii of the two given circles, is given immediately by the
‘known relation (102, Cor. 4°) that for every triangle, having no ex-
ceptional peculiarity of form, the square of the distance between
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the centres of the circle passing through its three vertices and
of any of the four touching its three sides = the square of the
radius of the former + twice the rectangle under the radii of
both ; when, therefore, for {wo circles given in magnitude and
position, the centres and radii fulfil either condition expressed
in that relation, the problem to construct a triangle having its
three vertices points on one and its three sides tangents to the
other is indeterminate; and when they do not, though four or
two real solutions still exist under the circumstances stated
above, the resulting triangles, as may be easily seen on drawing
the figures corresponding to the two cases, have each a pair of
coincident sides, and therefore, besides their ordinary inscribed
and exscribed circles, which for them as for every other triangle
fulfil the relation, have each an indefinite number of other circles
touching its three sides, which, including the given circle touched
by the three, do not fulfil either relation. The fact as well as the
explanation of the existence of real solutions in the latter case
has hitherto been very generally overlooked by geometers.
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CHAPTER XII

ON THE CENTRES AND AXES OF PERSPECTIVE OF CIRCLES
CONSIDERED IN PAIRS.

195. THE two points on the common diameter of two circles
which divide the interval between their centres, externally and
internally, in the ratio of the conterminous radii, are termed
indifferently (44) the two centres of similitude, external and
internal, and also (144) the two centres of perspective, external
and internal, of the circles; that they possess a double right to
the latter appellation will appear in the sequel.

From the mere definition of the centres of similitude or
perspective of two circles, it is evident that: 1°. When the
circles intersect, they connect with each point of intersection by
the two bisectors, external and internal, of the angle between
the radii, and therefore (23) of the angle between the circles
at the point (Euc. vi. 3); 2°. When the circles touch, one
of them, the external or the internal according to circum-
stances, coincides with the point of contact; 3°. When the
circles are equal and not concentric, they bisect, externally and
internally, the interval between the two centres; 4°. When the
circles are concentric and not equal, they both coincide with
the common centre; 5°. When the circles are at once concentric
and equal, one, the internal, coincides with the common centre,
while the other, the external, is entirely indeterminate (15);
6°. When one circle is a point and the other not, they both
coincide with the point; 7°. When one circle is a line and the
other not, they coincide with the extremities of the diameter
of the latter whose direction is perpendicular to the former;
8°. When both circles are points, with the exception of dividing,
externally and internally, in a common ratio the interval be-
tween the points, they are otherwise both indeterminate (13);
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and 9°. When both circles are lines, they connect from infinity,
as in 1°, with the point of intersection by the two bisectors,
external and internal, of the angle determined by the lines.
Of these particulars, some, less evident than the others, will
appear more fully from the general properties of the centres
of similitude or perspective of any two circles, which will form
the main subject of the present chapter.

When two circles, whatever be their nature, are given in
magnitude and position, their two centres of perspective, ex-
ternal and internal, being in fact the two centres of perspective,
external and internal, of any pair of their parallel diameters (131),
are of course implicitly given with them ; and, as already stated
in (44), possess with respect to the circles, considered as similar
figures at once similarly and oppositely placed, all the pro-
perties of the corresponding centres of similitude of similar figures
of any form similarly or oppositely placed; all lines passing
through either intersecting them at equal angles, dividing them
into pairs of similar segments, determining on them pairs of
homologous points at which the radii and tangents are parallel,
and intercepting in them pairs of homologous chords in the
constant ratio of the radii; and the two particular lines, real or
imaginary, which are tangents to either circle being tangents
to the other also (42). '

196. The circle on the interval between the centres of simi-
litude of two circles as diameter, which when the ‘circles inter-
sect passes evidently through the two points of intersection
(195, 1°), is sometimes called the circle of similitude of the circles,
and may be easily shown to be always coaxal with them, and
to be such that from every point of it they subtend equal angles,
real or imaginary.

For, the distances of every point on it from their centres
having, by (158), the constant ratio of their radii, therefore, by
pairs of similar right-angled triangles, the tangents to them from
every point on it have the same constant ratio ; but because the
ratio of the tangents to them from every point of it is constant,
it is coaxal with them (192, Cor. 1°); and because the constant
ratio is that of their radii, the pairs of tangents to them from every

point of it contain equa] angles,realor imaginary,and therefore &c.
T
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Or, more briefly, thus: the tangents, real or imaginary, to
_two circles from each of their centres of similitude having the ratio
.of their radii (44), therefore, by (192, Cor. 1°), so have the tan-

gents, real or imaginary, to them from every point of the circle
of which the interval between the two centres of similitude is
diameter, and therefore &c.

We shall see, in the next article, that the three circles of
similitude of the three groups of two determined by any system
.of three arbitrary circles, besides being thus coaxal each with
the two original circles of its own group, are also coaxal with

each other.

197, For any three circles, whose centres are A, B, C, and
radii AR, BS, CT, if Xand X'y Yand Y', Zand Z' be the
three pairs of centres of similitude, external and internal, of the
three groups of two whose centres are B and C, Cand 4, A and B,
respectively, then—

1°. The six points X and X', Y and Y', Z and Z' lie three
and three on four lines.

2°. The six lines AX and AX', BY and BY', CZ and CZ'
pass three and three through four points.

8. The three middle points of the three segments XX', YY",
ZZ' are collinear.

4", The three circles of which the three segments XX', YY",
ZZ' are diameters are coaxal.

Of these properties, the two first follow at once from the
general criteria @ and &' of Art. 134, by virtue of the relations
(195) which determine the three pairs of points X and X', ¥
and Y', Z and Z' on the three sides BC, CA, AB of the
tnangle ABC, viz.:

BX_+§§ CY CT AZ AR
ox~ter Ay~VaR B2=*BS

BX' BS CY' CT AZ __ AR,

CX'~ CT' AY 4R’ BZ ~~ BS’
and the two last follow immediately from the first, by virtue of
the two general properties 1° and 4° of Cor. 1°) Art. 189, of
which they furnish obvious examples; or they may be esta.bllshed
independently as follows.
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If U, V, W be the three middle points of the three segments
XX, YY' ZZ', then since, by (150),

BU BS* CV_CT* AW AR
CU~ CT*’ AV AR’ BW BS%’

therefore, by (134, a), the three points U, ¥, W are collinear ; and
because the centres of the three circles of which the three
segments XX', YY", ZZ are diameters are collinear, the
three circles themselves, being, by the preceding (196), coaxal
-each with the corresponding pair of the original circles to which
it is the circle of similitude, are therefore, by (190, 3°), coaxal
with each other.
. The four lines Y'Z'X, ZX'Y, X'Y'Z, and XYZ, on which
the six points X and X', Y and Y’, Z and Z', by property 1°,
are grouped three and three, are termed, from their origin, the
four axes of similitude of the three ongmal clrcles, and occur
very frequently in Modern Geometry in enquiries connected
‘with systems of three circles. As passing each through a centre
of similitude of every two of the three, they each, if they meet
the three circles at all, intersect them at three equal angles;
determine on them two systems of three points at which the radii
and tangents are parallel ; intercept in them three chords in the
ratios of their radii; and, if happening to touch one of the three,
touching the other two also (42). .

The four axes of similitude of any system of three circles
furnish evidently the four solutions of the problem “to draw a
line intersecting the three circles at equal angles.”

~ 198.  As every line passing through either centre of similitude

O, external (fig..a) or internal (fig. B), of any two circles whose

centres are C' and (', meets them at two pairs of komologous
: ' ! i

T2



276 ON THE CENTRES AND AXES OF PERSPECTIVE

points (39) X and X', Y and Y7, at which the two pairs of
corresponding radii CX and C'X’, CY and C'Y’, and of cor-
responding tangents ZX and Z'X’, ZY and Z'Y’ are parallel
(42); so it meets them at two pairs of anti~komologous points,
as they are termed, X and Y’, Y and X', at which the two
pairs of corresponding radii CX and C'Y’, CY and C'X’", and
of corresponding tangents ZX and Z'Y", ZY and Z'X’, though
not parallel, make equal angles and determine isosceles triangles
with the line. Hence any two circles C and C' may be con-
ceived to be divided by a variable line revolving round either of
their centres of similitude O, and simultaneously exhausting
them both, either into pairs of homologous points X and X' or
Y and Y”, or into pairs of anti-homologous points X and ¥” or
Y and X'; the distances of every two of the former from the
centre of similitude to which they correspond having, as already
shown in (42), a constant ratio termed that of the similitude of
the figures, and the distances of every two of the latter from
the same having, as may be easily shewn, a constant product
termed that of the anti-similitude of the figures.

For, since, by (Euc. 111. 85, 36), the two rectangles 0.X.0Y
and OX'.0Y" are both constant, and since, by (42), the two
ratios OX:0X’ and OY: OY' are both constant and equal,
therefore the two rectangles OX.0Y' and 0Y.0X' are both
constant and equal, and therefore &c.

The constant ratio 0X : OX' or 0Y : OY" being positive or
negative according as O is the external or the internal centre
of similitude, and the two constant rectangles OX.0Y and
0X'.0Y' being both positive and both negative together
according as O is external or internal to the circles; hence, as
regards the two centres of similitude of any two real circles, the
constant rectangle of anti-similitude 0X.0Y" or 0Y.0X' is
positive for the external and negative for the internal, positive
for the internal and negative for the external, or, positive for
both, according as the distance between the centres of the
circles CC" is greater than the sum, less than the difference, or,
intermediate between the sum and difference, of their radii.

199. From the properties of the preceding article, it follows
evidently, conversely, that—
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If on a variable line, revolving round a fixed point O and
tntersecting a fixed circle C in two variable points X and Y, two
variable points Y' and X' be taken, such that 0X.0Y'=0Y.0X'
= any constant magnitude, positive or negative ; the locus of the
two points Y' and X' is another circle C'y with respect to which
and the original the point O 1s a centre of similitude, the external
or the internal according as the two constant rectangles 0X.0Y",
or 0Y.0X', and OX.0Y have similar or opposite signs.

For, if on the diameter AB of the original circle which
passes through O (figs. of last article) the two points B’ and 4’
be taken for which 0A4.0B'= OB.0A' = the given rectangle,
the circle on 4'B’ as diameter fulfils evidently, by the pre-
ceding, the conditions of the required locus ; but since, as regards
it and the original, if C' be its centre, as 04.0B'= 0B. 04,
therefore ’

0A4:04'=0B:0B'=0C:00'=CA:C4'=CB:CB,
and therefore &c.

If D and D' (same figures) be the two inverses of the point O

with respect to the two circles ; since then, by (164),

0X.0Y=0C.0D and 0X'.0Y'=0C'.0D,
therefore the constant product of anti-similitude for the point
0, viz.,

0X.0Y or 0Y.0X'=00C.0D or 0C'.0D;
a value found very useful in the modern Theory of Inversion.

200. The two products of anti-similitude, external and in-
ternal, for any two circles may be expressed, in terms of their
radii and of the distance between their centres, as follows:

If (same figures as before) Cand C' be their two centres, CR
and C'R’' their two radii, and O either centre of similitude,
external (fig. ) or internal (fig. B), then since (Euc. 111. 35, 36),

0X.0Y=00"- CR* and 0X'.0Y'=0C"- C'R",
and since (42) A
0X:0X'=0Y:0Y'=0C:0C'=+(CR:CR),
accerding as O is external or internal, therefore 0X.0Y", or its
equivalent 0Y.0X', = 0C.0C'¥ CR.C'R’; but, by (84),

CR ,_ CR ,
00= m.o 0 and 00 ———‘_C,R,:F CR-CC 3
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therefore, denoting by » and »' the two radii and by d the dis-
tance between the two centres, the two products of anti-simili-.
tude, external and internal, have respectively for values
rr 2 —_ 2 rr’ NS __ J%) .
'(-;_—r,)—,.{d —(r r')} and ——(r+r,),.{(r+r) d},
which are the formul®e by which to calculate them in numbers
when the centres and the radii of the circles are given, and
which for real circles, it will be observed, give them signs in
exact accordance with the particulars already stated in Art. 198.

201. The two circles round the two centres of similitude of
any two circles as centres, the squares of whose radii are equal
in magnitude and sign to the corresponding rectangles of anti-
similitude, are termed the two circles of anti-similitude, external
and mternal of the original circles. When the latter intersect,
they ev1dently (198) pass through their two points, and blsect
externally and internally, their two angles, of intersection, and
are therefore in that case coaxal with them and with their circle
of similitude (196); that they are so in all cases may easily be
shewn as follows:

Since for each centre of similitude O (same figures as before)»

0X:0X'=0Y:0Y'=0C:00C,
therefore-

0C'.0X.0Y-00.0X.0Y" :
) =(0C- 00).(0X.0Y or 0Y.0X"),
but OC - 0C' = C'0, and 0X.0Y"' or its equivalent 0Y.0X’
= the square of the radius of the circle of anti-similitude round
0, =— 0X".0Y", if X" and Y" be any two diametrically

opposite points of that circle ; therefore for the three circles
whose collinear centres are C, C' and O,

00.0X.0Y- 00.0X'.0Y' = C(C'.0X".0Y",

and therefore by (192, Cor. 6°) those three circles are coaxal.

As every two anti-homologous points with respect to either
centre of similitude of two circles are evidently inverse points
(149) with respect to the circle of anti-similitude corresponding
to that centre, it follows therefore, from (156), that every circle

passing through any pair of anti-homologous points with réspect to
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either centre of similitude of two circles intersect at right angles
the circle of anti-similitude corresponding to that centre.

Again, as every circle orthogonal to two others is orthogonal
to every circle coaxal with the two (187, 4°), it follows, of course,
from the relations of coaxality, established above and in (196),
between any two circles, their circle of similitude, and their two
circles of anti-similitude, that every circle orthogonal to two
others is orthogonal at once to their circle of similitude and also
to their two circles of anti-similitude.

202. For any three circles A, B, C, if D and D', E and E',
F and F' be the three pairs of circles of anti-similitude, external
and internal, of B and C, C and A, A and B respectively ; then—

1°. The four groups of three circles E'y F',D; F', D, E
D, EF; and D, E, F are coaxal.

2% Tkezr four radzcal axes pass through the radical centre qf
the original group A, B, C.

3°. Their four paz’rs of common points, real or vmaginary, are:
tnverse pairs with respect to the four axes of similitude, and to the
orthogonal circle, of the group A, B, C.

4°. Their four pairs of limiting points, tmaginary or real, are
the intersections of the four axes ¢f similitude with the orthogonal
circle of the group A, B, C.

These several properties follow immediately from, or rather
are all examples of, the general properties of Art.190; the three
pairs of circles D and D', E and E', F and F" being coaxal with
the three pairs Band C, C and 4, 4 and B (201); the four
groups of centres of the four groups of circles E', ", D; F', D', E
D', E', F; and D, E, F being collinear (197, 1°) ; their four lines
of centres Y',Z',X; Z', X', Y; X', Y',Z; and X, Y, Z being
the four axes of similitude of the group 4, B, 0 (197); and the
whole six circles themselves being all cut orthogonally by the

common circle, real or imaginary, orthogonal to the three
4, B, C (188, Cor. 1°). .

203. As for any two circles, regarded as similar figures, every
two points P and P, or @ and ¢, whether on the circles or not,
which connect through either centre of similitude O, and which
are such that the ratio of their distances from it OP: OF, or
0@ : 0@, is equal in magnitude and sign to the constant ratio
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of similitude for it, are termed homologous points with. respect
to it (42); so for any two circles, regarded as anti-similar
figures, every two points Pand ¢, or R and §', whether on the

circles or not, which connect through either centre of anti-
similitude O, external (fig. a) or internal (fig. 8), and which are
such that the product of their distances from it OP.OQ/, or
OR.08',is equal in magnitude and sign to the constant product
of anti-similitude for it, are termed anti-homologous points with
respect to it. And again, as in the former case, every two
connectors PQ and P’ Q' of two points P and @, and of their two
homologues P’ and ¢ with respect to either centre of similitude
0O, are termed homologous lines with respect to that centre (39, 6°);
80, in the latter case, every two connectors PR and @8’ of two
points P and R, and of their two anti-homologues @ and 8’
with respect to either centre of anti-similitude (J, external (fig. a)
or internal (fig. B), are termed anti-homologous lines with
respect to that centre.

It is evident (Euc. 111. 35, 36) that every two pairs of anti-
homologous points P and ¢, B and S’ with respect to either
centre of similitude O of two circles, whether on the circles or
not, lie, when not collinear, on a circle, the square of the tangent
to which from that centre is equal in magnitude and sign to the
corresponding product of anti-similitude of the circles; and,
conversely, that every circle passing through any pair of anti-
homologous points P and Q' with respect to either centre of
similitude O of two circles, whether on the circles or not, deter-
mines pairs of anti-homologous points 2 and §', real or imaginary,
with respect to that centre on all lines passing through it;
intersects the circles themselves in two pairs of anti-homologous
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points U and V', X and Y”, real or imaginary, with respect to
the same ; and, when, by the coincidence of the two points of
intersection at E or @, touching either circle, then, by the
simultaneous coincidence of the two anti-homologous points of
intersection at " or H', touching the other also (19).

It is evident also that, in their more general as in their more
restricted acceptation (198), all pairs of anti-homologous points
Pand @, B and 8§, &ec. with respect to either centre of simili-
tude O of two circles are inverse pairs with respect to the
circle of anti-similitude corresponding to that centre (201);
and that, consequently, all circles passing, as in the above
figures, through any pair of them P and @', with respect to
either centre O, intersect at right angles the circle of anti-
similitude corresponding to that centre (156).

204. AUl pairs of homologous tangents with respect to either
centre of similitude of two circles intersect on the line at infinity.

AUl pairs of anti-homologous tangents with respect to either
centre of similitude of two circles intersect on their radical axis.

For, if X and X' or Y and Y" (figures of Art. 198) be any
pair of homologous points on the circles, X and Y’ or ¥ and X"
any pair of anti-homologous points on the same, and O the
centre of similitude, external or internal, to which they corre-
spond; then the two pairs of tangents at the former being
parallel (41) intersect therefore on the line at infinity (16);
and the two pairs at the latter determining isosceles triangles
XPY' and YQX' with the line of the points (198) intersect
therefore on the radical axis (182, Cor. 1°).

Conversely, ¢f from any point either on the line.at infinity or
on the radical axis of two circles four tangents be drawn to the
circles, their four chords of contact with different circles intersect
two and two at the two centres of similitude, external and internal,
of the circles.

For, the four tangents being parallel in the case of the line
at infinity (16) and equal in the case of the radical axis (182,
Cor. 1°), their four chords of contact with different circles in either
case make equal angles with the circles, and therefore &c. (42).

Cor. Since, in the converse property, the two chords of
contact of the two pairs of tangents to the same circles in-
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CHAPTER XII

ON THE CENTRES AND AXES OF PERSPECTIVE OF CIRCLES
CONSIDERED IN PAIRS,

195. THE two points on the common diameter of two circles
which divide the interval between their centres, externally and
internally, in the ratio of the conterminous radii, are termed
indifferently (44) the two centres of similitude, external and
internal, and also (144) the two centres of perspective, external
and internal, of the circles; that they possess a double right to
the latter appellation will appear in the sequel.

From the mere definition of the centres of similitude or
perspective of two circles, it is evident that: 1°, When the
circles intersect, they connect with each point of intersection by
the two bisectors, external and internal, of the angle between
the radii, and therefore (23) of the angle between the circles
at the point (Euc. VI. 3); 2°. When the circles touch, one
of them, the external or the internal according to circum-
stances, coincides with the point of contact; 3°. When the
circles are equal and not concentric, they bisect, externally and
internally, the interval between the two centres; 4°. When the
circles are concentric and not equal, they both coincide with
the common centre; 5°. When the circles are at once concentric
and equal, one, the internal, coincides with the common centre,
while the other, the external, is entirely indeterminate (15);
6°. When one circle is a point and the other not, they both
coincide with the point; 7°. When one circle is a line and the
other not, they coincide with the extremities of the diameter
of the latter whose direction is perpendicular to the former;
8°. When both circles are points, with the exception of dividing,
externally and internally, in a common ratio the interval be-
tween the points, they are otherwise both indeterminate (13);
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and 9°. When both circles are lines, they connect from infinity,
as in 1°, with the point of intersection by the two bisectors,
external and internal, of the angle determined by the lines.
Of these particulars, some, less evident than the others, will
appear more fully from the general properties of the centres
of similitude or perspective of any two circles, which will form
the main subject of the present chapter.

When two circles, whatever be their nature, are given in
magnitude and position, their two centres of perspective, ex-
ternal and internal, being in fact the two centres of perspective,
external and internal, of any pair of their parallel diameters (131),
are of course implicitly given with them ; and, as already stated
in (44), possess with respect to the circles, considered as similar
figures at once similarly and oppositely placed, all the pro-
perties of the corresponding centres of similitude of similar figures
of any form similarly or oppositely placed; all lines passing
through either intersecting them at equal angles, dividing them
into pairs of similar segments, determining on them pairs of
homologous points at which the radii and tangents are parallel,
and intercepting in them pairs of homologous chords in the
constant ratio of the radii; and the two particular lines, real or
imaginary, which are tangents to either circle being tangents
to the other also (42). '

196. The circle on the interval between the centres of simi-
litude of two circles as diameter, which when the circles inter-
sect passes evidently through the two points of intersection
(195, 1°), is sometimes called the circle of similitude of the circles,
and may be easily shown to be always coaxal with them, and
to be such that from every point of it they subtend equal angles,
real or imaginary.

For, the distances of every point on it from their centres
having, by (158), the constant ratio of their radii, therefore, by
pairs of similar right-angled triangles, the tangents to them from
every point on it have the same constant ratio ; but because the
ratio of the tangents to them from every point of it is constant,
it is coaxal with them (192, Cor. 1°); and because the constant
ratio is that of their radii, the pairs of tangents to them from every

point of it contain equal angles,real or imaginary, and therefore &c.
T
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chords determined by any two lines passing through O and
intersecting the circles, the two diagonals ZZ' and WW’, which
connect the homologous intersections of pairs of chords of the
same circles, being both bisected by the radical axis, their ex-
tremities lie consequently, as in the preceding (205), on the two
polars of the point O with respect to the two circles; lines
which with respect to that point possess evidently the property
peculiar to themselves of being at once homologous and anti-
homologous chords of the figures.

In the application of the above properties to any system of
two circles, it is evident, from Art. 204, Cor., that—

All pairs of chords passing through the two poles of and tnter-
secting upon the line at infinity are homologous pairs with respect
to both centres of similitude.

All pairs of chords passing through the two poles of and tnter-
secting upon the radical axis are anti-homologous pairs with re-
spect to both centres of stmilitude.

207. The two general properties of the preceding article
establish, as stated in (144), the quadruple relation of perspective
existing between every two circles in the same plane, however
circumstanced as to position and magnitude ; the first their double
relation of perspective as similar figures at once similarly and op-
positely placed, and the second their double relation of perspective
as anti-similar figures at once similarly and oppositely placed ;
the line at infinity and their radical axis being the axes of their
double perspective in the two cases respectively, and the two
centres of similitude or of anti-similitude, external and internal,
being the centres of their double perspective in both cases alike.

As every two figures in perspective, whatever be their nature
(141), evidently intersect their axis of perspective, whatever be
its position, (or each axis of perspective if like two circles they
have more than one), at the same system of points, real or
imaginary, whose number depends, of course, on the nature of
the figures; it follows, consequently, from the above, that jfor
every two circles in the same plane, however circumstanced as to
magnitude and position, the radical axis and the line at infinity,
being both axes of perspective, are both chords of intersection ; the
corresponding points of intersection, real or ¥maginary, according
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to circumstances in the case of the former, being of course from
the nature of the figures always tmaginary in the case of the
latter. This remarkable conclusion, as regards the line at in-
finity in relation to every two circles, the reader will find
abundantly verified by various other considerations in the course
of the sequel.

As again, every two figures in perspective, whatever be their
nature, subtend, as stated in (41), their centre of perspective,
whatever be its position, (or each centre of perspective if like
two circles they have more than one), in the same system of
tangents, real or imaginary, whose number depends, as before,
on the nature of the figures. Hence, and from the above, the
following pair of analogous properties respecting the two centres
and the two axes of perspective of every two circles in the same
plane, viz.—

Every two circles tn the same plane, however circumstanced as
to magnitude and position, subtend the same two angles, real or
tmaginary, at their two centres of perspective.

Euwery two circles in the same plane, however circumstanced as
to magnitude and position, intercept the same two segments, real or
tmaginary, on their two axes of perspective.

208. The following pairs of polar relations, common re-
spectively to both centres and to both axes of perspective of
two circles, supply additional illustrations of the analogy noticed
at the close of the preceding article, viz.—

a. The two poles of every line through either centre of per-
spective of two circles connect through the same centre of perspective.”

a'. The two polars of every point on either axis of perspective
of two circles intersect on the same axis of perspective.

For, in the former case, the two polars of the line are
evidently homologous points with respect to the centre, which-
ever it be, and therefore &c. (41); and, in the latter case, the
property is evidently that already noticed in Art. 204, Cor., and
therefore &c.

b. Every two lines through etther centre of perspective of two
circles which are conjugates with respect to either circle are con-
Jugates with respect to the other also.

b'. Every two points on either axis of perspective of two circles
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whick are conjugates with respect to either circle are conjugates
with respect to the other also. )

For, in the former case, the two lines, passing each through
the pole of the other with respect to one of the circles (174),
pass, therefore, by (a), each through the pole of the other with re-
spect to the other circle also, and therefore &c.; and, in the latter
case, the two points, lying each on the polar of the other with
respect to one of the circles (174), lie, therefore, by (a’), each
on the polar of the other with respect to the other circle also,
and therefore &c.

¢. In every two circles the two centres of perspective are those
of .every two inscribed chords whose poles coincide on either axis
of perspective.

c. In every two circles the two axes of perspective are those
of every two circumscribed angles whose polars coincide through
etther centre of perspective.

For, in the former case, the four extremities of the two
chords determine, according to the axis, two pairs either of
homologous or of anti-homologous points with respect to both
centres of perspective (204), and therefore &c.; and, in the latter
case, the four sides of the two angles determine, whichever be the
centre, two pairs of homologous and two pairs of anti-homologous
tangents with respect to the centre (204), and therefore &c.

d. In every two circles the two centres of perspective divide,
externally and internally, in common ratios the tntervals between
the two poles of each axis of perspective.

d. In every two circles the two axes of perspective- divide,
externally and internally, in common ratios the tntervals between
the two polars of each centre of perspective. :

For,in the latter case, the two axes of perspective, as al-
ready shewn in (205), bisect, externally and internally, the
intervals between the polars of each centre of perspective, and
therefore &c.; and, in the former case, the two centres of per-
spective being, by (204, Cor.), those of every pair of chords of
the circles which pass through the poles of and intersect on either
axis of perspective, are therefore those of the particular -pair
perpendicular to the line of centres, the interval between which
they consequently divide, externally and internally, in the ratio.
of their lengths, and therefore &c.
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e. When two circles intersect at right angles, the polar of either
centre of perspective with respect to either circle is the polar of the
other centre of perspective with respect to the other circle.

. When two circles intersect at right angles, the pole of either
axis of perspective with respect to either circle vs the pole of the
other axis of perspective with respect to the other circle.

For, in the latter case, the centre of each circle being the

_pole of the line at infinity with respect to itself (165, 3°), and
the pole of the radical axis with respect to the other (165, 6°),
therefore &c.; and, in the former case, as the two lines connecting
either point of intersection of the circles with their two centres
of perspective make each half a right angle with each of the
two radii at the point of intersection (195, 1°), therefore the
two lines from either point of intersection which make each
half a right angle with the line of centres of the circles intersect
that line at two points, each of which, by (158, Cor. 1°), is the
inverse of one centre of perspective with respect to one circle,
and of the other centre of perspective with respect to the other
circle, and therefore &c. (165).

J- When two circles intersect at right angles, every two tangents
to either which intersect on a polar of either centre of perspective
are conjugate lines with respect to the other.

J's When two circles intersect at right angles, every two points
of either which connect through a pole of either axis of perspective
are conjugate points with respect to the other.

For, in the latter case, the centres of the two circles being
the poles of both their axes of perspective (165, 3°, 6 °), and the
extremities of all diameters of either being con_]ugate points
with respect to the other (177), therefore &c.; and, in the
former case, if C and C' be the centres of the two circles, O
either of their centres of perspective, the external (fig. a) or the
internal (fig. B), X and Y, X' and Y’ their two pairs of inter-
sections with any line passing through O, X'Z' and Y'Z' the
two tangents to either C’ at its pair of intersections X’ and Y7,
which, by (166, Cor. 3°), intersect on the polar of O with respect
to itself, P and @, B and S their two pairs of intersections with
the two homologous radii CX and CY of the other C, to which,
by (198, and Euc. 111. 18), they are respectively at right angles,
and, P and @, B’ and §' the two pairs of intersections, real or
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imaginary, of their circle with the same radii; then, since, by
the isosceles triangle X'Z'Y", the two angles at X’ and YT are
equal, therefore, by (63), or by (134, a),
PX": QY"=PX*: QX*, and RX": SY"=RY*: SY*,
and therefore, by Euc. 111. 35, 36,
PP.PQ : QP.QQ =PX*: QX*,
and RR.RS': SR.88'=RY*: 8Y*;

but, since the circles, by hypothesis, intersect at right angles,
therefore, by (156),

CP.C¢=CX* and CR.CS'=CY?,
and therefore, by (161, Cor. 1°),
CP.CQ=CX", and CR.CS=CY",

from which, since, by (198), the two tangents Z’X’ and Z'Y”
are perpendiculars to the two radii CX and (Y, it follows, con-
sequently, from (165), that they are the polars of the two points
Q and R with respect to the circle C, and therefore &c. (174).

209. Every circle having contacts of similar species with two
others touches them at a pair of anti-homologous points with re-
spect to their external centre of perspective.

Every circle having contacts of opposite species with two others
touches them at a pair of anti-homologous points with respect to
their internal centre of perspective.

For, if C and C' (figures, Art. 198) be the centres of the
two touched circles, and X and Y’, or ¥ and X', their two
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points of contact with the touching circle; then since the chord
of contact XY, or YX', makes equal angles with the radii of
the latter, it does so with those of the former at its extremities,
and therefore (42) passes through a centre at perspective of the
former, the external (fig. a) or the internal (fig. B), according as
their radii CX and C'Y", or CY and C'X’, at its extremities
are at similar or opposite sides of it (44); that is, according
as the contacts of the touching with the touched circles are of
similar or opposite species, and therefore &c.

Conversely, Every circle passing through a pair of anti-
homologous points with respect to either centre of perspective of
two others, and touching either with contact of either species,
touches the other with contact of similar or opposite species, accord-
ing as the centre of perspective is external or internal.

For the line XY', or YX', (same figures as before), passing
through a pair of anti-homologous points X and Y”, or ¥ and X',
with respect to a centre of perspective O of the two circles
whose centres are C and (', makes equal angles with their radii
at the points, and also with those of every circle passing through
the points; consequently, if the latter circle have contact of
either species with either of the former, it has contact of similar or
opposite species with the other, according as their radii at the
points, (those of itself lying necessarily at the same side), lie at
similar or opposite sides of the line ; that is, according as the
centre of perspective is external (fig. a) or internal (fig. 8), and
therefore &c. See also Art. 203.

Cor. 1°. Every two antx-homologous points with respect to
either centre of perspective of two circles being inverse points
with respect to the corresponding circle of anti-similitude (203), it
follows .at once (156) from the first part of the above, that—

Every circle having contacts of similar species with two others
intersects at right angles their external circle of anti-similitude.

Every circle having contacts of opposite spectes with two others
antersects at right angles their internal circle of anti-similitude.

Properties which, as the two circles of anti-similitude are
.coaxal with the original circles, coincide consequently with
those already established on other pnnc:ples in (193, Cor. 2°),
viz. that—

U
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Every circle having contacts of similar species with two others
tntersects at right angles the coaxal circle whose centre s their
external centre of perspective.

Every circle having contacts of opposite species with two others
tntersects at right angles the coaxal circle whose centre is their
tnternal centre of perspective.

Cor. 2°. Since when a number of circles are orthogonal to
the same circle, the radical axis of every two of them passes
through, and the radical centre of every three of them coincides
with, its centre; it follows consequently, from Cor. 1°, or indeed
again directly from the first part of the above, that—

For every two circles having contacts of similar species with
two others, the radical axis passes through their external centre of
perspective.

For every two circles having contacts of opposite species with
two others, the radical axis passes through their internal centre of
perspective.

For every three circles having contacts of similar species with
two others, the radical centre coincides with their external centre
of perspective.

For every three circles having contacts of opposite species with
two others, the radical centre coincides with their internal centre of
perspective.

Cor. 3. Since when three circles are orthogonal to three
others, both systems are coaxal and conjugate to each other
(185), it follows also from Cor. 1°, or again, directly from the
first part of the above, that—

The circle orthogonal to three others, and the two circles
touching the three with contacts of similar species, are coaxal,
and have for radical axis the line passing through the three
external centres of perspective of the three groups of two con-
tatned in the three (197, 1°).

The circle orthogonal to three others, and the two circles touching
the same two of them with contacts of similar spectes and the
third with contact of the opposite species, are coaxal, and have for
radical axis the line passing through the external centre of per-
spective of the two and the two internal centres of perspective of
the two combined each with the third (197, 1°).
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Cor. 4°. The second part of the above supplies obvious and
rapid solutions of two following problems, viz.—

T0 describe a circle passing through a given point and
having contacts of similar or opposite species with two given
circles. _

For by it, (see figures Art. 203), the two circles, real or
imaginary, passing through the given point P and its anti-
homologue Q' with respect to either centre of perspective O of
the given circles, and touching either circle, touch the other
with contact of similar or opposite species, according as O is
(fig. a) the external or (fig. B) the internal centre of perspec-
tive of the two, and therefore &c. ,

Of the four circles supplied in pairs by the two cases of the
above, each evidently is the unique solution of some one of the
four different cases of the more definite problem: ¢ To describe
a circle passing through a given point and having contacts of
assigned spectes with two given circles.”

Cor. 5°. Since if a circle O have contacts of definite species
with three given circles 4, B, C, a concentric circle O’ passing
through the centre of any one of them C evidently touches with
contacts of definite species two circles 4’ and B’ concentric with
the other two 4 and B, whose radii are equal to the sums or
differences, according to circumstances, of the radii of 4 and C
and of B and C, and which are therefore given with the latter ;
hence the unique solution of the definite problem: ¢ 7o describe
a circle having contacts of given species with three given circles,”
is reduced at once to that of the definite problem just stated:
% To describe a circle passing through a given point and having
" contacts of given species with two given circles ;" and, consequently,
the eight different solutions of the cclebrated problem: ¢ 7o de-
scribe a circle touching three given circles,” corresponding to the
eight different combinations of contacts of both kinds with the
* three, may be regarded as all given in detail by so many appli-
cations of the definite construction of Cor. 4°, which, though
indirect, is perhaps on the whole the simplest of which they are
susceptible, see 183, Cor. 6° and 186, 3°.

Of all the constructions ever given for the direct determina-~
tion of the eight circles of contact of three given circles, that
of M. Gergonne, who regarded them as divided into four con-
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jugate pairs having contacts of opposite species with the three
given circles, and who determined simultaneously the six points
of contact of each pair of conjugates, is decidedly the most
elegant. The principles on which it depends are contained
also in the above, and form the subject of the next article.

210. When two circles have contacts of opposite species with
each of three others.

a. If they have each contacts of similar species with the three,
their radical axis passes through the three external centres of
perspective of the three groups of two contained in the three.

b. If they have each contacts of stmilar species with the same
two of the three and contact of the opposite species with the third,
their radical axis passes through the external centre of perspective
of the two and through the two internal centres of perspective of
the two combined each with the third.

¢. Their three chords of contact with the three pass, in either
case, through the radical centre of the three and through the three
poles of their radical axis with respect to the three.

For,if 4, B, C be the three centres of the touched circles,

X, Y, Zand X', Y', Z' their six points of contact with the
two touching each with contacts of opposite species and having
themselves each either contacts of similar species with all three
(fig. a), or contacts of similar species with two of them 4 and B
-and contact of the opposite species with the third C (fig. 8),
D, E, F the three centres of perspective, external or internal,
of Band C, C and 4, 4 and B respectively, through which
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the three pairs of connectors YZ and Y'Z', ZX and Z'X,
XY and X'Y" by (209) pass, and O the internal centre of
perspective of XYZ and X'Y'Z’, through which the three
connectors XX', YY', ZZ' by tbe same pass then, since,
by (198),

DY.DZ=DY'.DZ'|\ EZ.EX=EZ'.EX', FX. FY—FX’FY

therefore, by (182, Cor. 1°), the line DEF (197, 1°) is the radical
axis of the two circles XYZ and X'Y'Z’, which proves a and
b; since, by (198), 0X.0X'=0Y.0Y'=0Z.0Z', therefore,
by (183, Cor. 1°), the point O is the radical centre of the three
circles 4, B, C, which proves the first part of ¢; and, since,
by (182, Cor 1°), the three pairs of tangents at X and X,
Yand Y, Zand Z’ to the two circles XYZ and XYz in-
tersect on their radical axis DEF, therefore, by (166, Cor. 3°),
their three chords of contact XX’, YY', ZZ' pass through the
three poles P, @, R of that line with respect to the three circles
4, B, C, which proves the second part of ¢; and therefore &ec.

Cor. 1°. Hence the following elegant construction of M.
Gergonne for determining directly the six points of contact
X, Y, Zand X', Y, Z' of any particular conjugate pair of the
eight circles of contact of three given circles 4, B, C.
~ Take the axis of similitude DEF of the three given circles
(197) which, by the above (a or b), is the radical axis of the
conjugate pair whose points of contact are required, and connect
its three poles P, @, B with respect to the given circles with
their radical centre O; the three connecting lines OP, 0Q, OR
intersect the three circles in three pairs of points, real or ima-
ginary, X and X', Y and Y’, Z and Z', which, by the above
(c), are the six points required.

.The unique solution of the definite problem,  to describe a
circle having contacts of given species with three given circles,”
is of course involved in this construction, which with its three
points of contact gives evidently those of its conjugate at the
same time.

Cor. 2°. If @ and G be the centres of the two circles
XYZ and X'Y'Z', since, by (199) and (181), the line GG"
passes through the point O and intersects at right angles the
line DEF. Hence—
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For the eight circles of contact of any system of three circles,
the eight centres lie two and two tn conjugate pairs on the four
perpendiculars to the four axes of similitude through the radical
centre of the three.

Cor. 3°. The circle round O as centre, the square of whose
radius is equal in magnitude and sign to the common value of
the three equal rectangles 0X.0X', 0Y.0Y', 0Z.0Z', being,
by (201), the internal circle of anti-similitude of the two XYZ
and X'Y'Z’, and, by (183, Cor. 1°), the orthogonal circle of the
three 4, B, C. Hence—

Of the eight circles of contact of any system of three circles,
the four conjugate pairs have a common internal centre and a
common internal circle of anti-similitude, viz. the radieal centre

and the orthogonal circle of the three.

Cur. 4°. Each circle of anti-similitude, external and internal,
of any two circles being coaxal with the two (201). Hence
by Cor. 3°.—

Of the eight circles of contact of any system of three circles,
the four comjugate pairs belong to the four coaxal systems de-
termined by the four axes of similitude with the orthogonal circle
of the three. See Cor. 3°) Art. 209.

211. The two properties of Art. 209 are evidently parti-
cular cases of the two following, viz.—

For any system of two circles, every circle passing through any
pair of anti-homologous points with respect to their external centre
of perspective intersects them at equal angles, and every circle
passing through any pair of anti-homologous points with respect
to their internal centre of perspective intersects them at supple-
mental angles.

For, if C and C’ (figs. Art. 203) be the centres of the two
circles, Pand ¢ any pair of anti-homologous points with respect to
either of their centres of perspective, the external (fig. a) or the
internal (fig. 8), UX and V'Y their pair of anti-homologous
chords of intersection (203) with any circle passing through
P and ¢, and I the centre of that circle; then, since (Euc. 1. 5)
the two pairs of angles JUV' and IV'U, I1XY' and 1Y'X are
equal, and since (198) the two pairs of angles CUV" and C'V'U,
CXY'and C'Y'X are equal (fig. ) or supplemental (fig. 8),
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therefore the two pairs of angles JUC and IV'C’y, 1XC and
IY'C' are equal (fig. a) or supplemental (fig. 8), and there-
fore &c. (23).

Conversely, For any system of two circles, every circle inter-
secting them at equal angles intersects them in a pair of anti-
homologous chords with respect to their external centre of perspective,
and every circle tntersecting them at supplemental angles inter-
sects them in a pair of anti-homologous chords with respect to their
anternal centre of perspective.

"For, if C and ¢’ (same figures as before) be the centres of
the two circles, UX and V'Y’ their two chords of intersection
with any circle intersecting them at equal angles (fig. a) or at
supplemental angles (fig. B), and I the centre of that circle;
then, since (Euc. 1. 5) the two pairs of angles JUV' and IV'T,
IXY' and IY'X are equal, and since, by hypothesis, the two
pairs of angles IUC and IV'C', IXC and IY'C' are equal
(fig. &) or supplemental (fig. B), therefore the two pairs of angles
CUV'and C'V'U, CXY' and C'Y'X are equal (tig. a) or sup-
plemental (fig. 8), and therefore &c. (198.)

Cor. 1°. Every two anti-homologous points with respect to
either centre of perspective of two circles being inverse points
with respect to the corresponding circle of anti-similitude (201),
it follows at once from the second part of the above, precisely
as in Cor. 1°, Art. 209, that—

Every circle intersecting two others at equal angles intersects
at right angles their external circle of anti-similitude, and every
circle intersecting two others at supplemental angles intersects at
right angles thevr internal circle of anti-similitude.

Properties which, as both circles of anti-similitude are coaxal
with the original circles, coincide evidently, as in the corollary
referred to, with those already established on other principles in
(193, Cor. 2°), viz. that—

Every circle intersecting two others at equal angles intersects
at right angles the coaxal circle whose centre is their external
centre of perspective, and every circle intersecting two others at
supplemental angles intersects at right angles the coaxal circle
whose centre 18 their internal centre of perspective.

Cor. 2°. Again, as in Cor. 2°, Art. 209, since, when a
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number of circles are orthogonal to the same circle, the radical
axis of every two of them passes through, and the radical centre
of every three of them coincides with, its centre; it follows
therefore, from Cor. 1°, as in the corollary referred to, that—

When two circles intersect two others at equal angles their
radical axis passes through the external centre of perspective of the
two, and when two circles tntersect two others at supplemental
angles their radical axis passes through the internal centre of
perspective of the two.

When three circles tntersect two others at equal angles their
radical centre covncides with the external centre of perspective of
the two, and when three circles intersect two others at supple-
mental angles their radical centre coincides with the tnternal
centre of perspective of the two.

Cor. 8°. Again, as in Cor. 3°, Art. 209, since when three
circles are orthogonal to three others, both systems are coaxal
and conjugate to each other (185); it follows also from Cor. 1°,
as in the corollary referred to, that—

Every three circles intersecting three others at equal angles are
coazxal, and have for radical axis the line passing through the
three external centres of perspective of the three groups of two
contained tn the three (197, 1°).

Every three circles intersecting the same two of three others at
equal angles and the third at the supplemental angle are
coazal, and have for radical axis the line passing through the
external centre of perspective of the two and the two internal
centres of perspective of the two combined each with the third
(197, 1°).

Cogr. 4°. As the unique circle, real or imaginary, orthogonal
to three others intersects the three at equal angles, and,
at the same time, every two of the three at equal angles and
the third at the supplemental angle, it follows immediately as
a particular case of Cor. 3°, that—

The unique circle orthogonal to three others s coaxal with
every two circles intersecting the three at equal angles, and also
with every two tintersecting the same two of them at equal angles
and the third at the supplemental angle ; the axis of similitude
of the three external to them all in the former case, and that
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external to the two and internal to the third in the latter éase,
being the corresponfling radical axis of the system.

Cor. 5°. In the particular case where one of the two in-
tersecting circles has one combination of the angle of intersec-
tion and its supplement, and the other the opposite combination
of the same angle of intersection and its supplement, with the
three; then, by the second part of Cor. 1°, for the same reason
as in (210, Cor. 3°), the radical centre and orthogonal circle of
the three are the internal centre and circle of anti-similitude of
the two. Hence the following extension of the property Cor: 8°,
of the preceding article, viz.—

The unique circle orthogonal to three others 1s the common
tnternal circle of anti-similitude of every pair of conjugate circles
tntersecting the three at any opposite combinations of the same
angle and its supplement.

Cor. 6°. The following properties of a variable circle inter-
secting a system of two or three fixed circles at equal or sup-
plemental angles are evident, from Cors. 1°, 3° and 4’ of the
above, viz.— '

a. A variable circle passing through a fixed point and intersect-
ing two fizxed circles at equal or at supplemental angles passes through
a second fixed point, the anti-homologue of the first with respect to
the corresponding centre of perspective of the circles.

b. A variable circle intersecting three fixed circles at equal or
at any invariable combination of equal and supplemental angles
describes the coaxal system determined by the corresponding axis
of similitude with the orthogonal circle of the three.

Properties, the converses of which supply obvious solutions of
the several problems of the three following groups, viz.—

To describe a circle (a) passing through two given points and
tntersecting two given circles at equal or at supplemental angles,
(8) passing through a given point and intersecting three given circles
at equal or at any assigned combinations of equal and supple-
mental angles, (c) intersecting four given circles at equal or at any
assigned combinations of equal and supplemental angles.

212. With the two following properties of a system of three
arbitrary circles, we shall conclude the present chapter and
volune. ’

X
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1°. For any system of three circles, the three patrs of points,
at which they are touched by the three pairs of circles tangent to
one and orthogonal to the other two, lie on three circles, coazal
each with the two of the original three to which vt does not corre-
spond, and coaxal with each other.

2°. For any system of three circles, the three pairs of points,
at which they are touched by any corjugate pair of their eight
circles of contact, lie on three circles, coaxal each with the two of
the original three to which it does not correspond, and coaxal with
each other.

For, if A, B, C, be the three circles, 4, B, C their three
centres, O their radical centre, Pand P, @ and ¢, R and R
the three pairs of points of contact in either case, and X, ¥, Z

the three circles passing through them and having their three
centres X, Y, Z on the three lines BC, C4, AB respectively ;
then, since P and P, @ and ¢', B and R', in the case of 1°, by
186, 2°, are the intersections with 4, B, C, of the three circles
orthogonal to themselves and coaxal with B, and C,, C, and 4,
A, and B, respectively, and in the case of 2°, by 210, c., are
collinearly distant from O by intervals such that the three
rectangles OP.OP, 0Q.0Q', OR.OR’ are equal in magnitude
and sign, the first parts of both properties are evident; and it
remains only to shew that in both cases the three points X, ¥, Z
on the three lines BC, CA, AB are collinear, in order to shew
that in both cases the three circles X, Y, Z, of which they are
the centres, are coaxal. See 190, 3°,

. In the case of 1°, if a, B, 7y be the three angles of intersection,
real or imaginary, of the three pairs of original circles B, and C,,
C, and 4, 4, and B, respectively ; then, since by the above, the
three circles X, Y, Z are coaxal with B and C,, C,and 4,

- A, and B, and orthogonal to 4, B,, C, respectively, therefore,
by 193, Cor. 1°,
BX BQ.cosy CY OCR.cosa AZ _AP.cosB
CX ™~ CR.cosB’ AY AP.cosy’ BZ BQ.cosa’
and therefore &c. (134, a.). See also 193, Cor. 10°, where it
was shewn, in a manner exactly similar, that three circles ortho-
gonal to the same circle and coaxal each with a different pair of
three others, all four being arbitrary, are coaxal with each other.
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In the case of 2°, if PB, and PC,, QC, and Q4 , RA and RB,
be the three pairs of tangents, real or imaginary, from the
three points P, @, R to the three pairs of original circles
B and C,, C,and 4, A, and B, respectively, and D, E, F the
three centres of perspective of the latter at which the three
lines QR, RP, PQ intersect collinearly with the three BC, C4,
AB respectively (210, a and 3); then, since by 134, a.,

QD REPF_. .. BD CE AF_,
ED'PE'QF " CD'AE'BF
therefore, from the first, immediately,
QD.QR RE.RP PF.PQ
RD.RQ' PE.PR " QF.QP
but since from the three constant ratios of similitude of the three
pairs of circles B, and C,, C,and 4, 4 and B, respectively,
by Euc. 111. 35, 36,

1;

@D.QR __BD QC;
BRD.RQ  CD' RB*
RE.ERP__CE R4}
PE.PR~  AE  PC»’
PF.PQ _AF PB}
QF.QP~ " BF Q4}’
therefore, from the second, by composition,
QC*' RA® PB?
RB* " PC!" QA}
from which, since by 192, Cor. 1°
PB' BX QC! CY RA' AZ
PC! CX' Q4A} AY' RB! BZ’
therefore &c. (134, a.) .

Of the eight circles of contact of any system of three arbi-
trary circles, Dr. Hart has shewn, by a process, of the first part
of which he has given an abstract in the Quarterly Journal of
Pure and Applied Mathematics, Vol. 1v. page 260, that they
may always be divided, in four different ways, into two groups
of four and their four conjugates, having each a fourth common
circle of contact in addition to the original three; and Dr.
Salmon, by an analysis of remarkable elegance, which he has




I

300 CENTRES AND AXES OF PERSPECTIVE OF OIRCLES,

given in Vol. VI. page 67 of the same periodical, has verified
Dr. Hart's results and extended them to the more general
figures of which circles are particular cases. The methods
employed by both geometers, however, involve principles be-
yond the limits of the present work; and a demonstration of
the property by Elementary Geometry, within the domain of
which it manifestly lies, has not, so far as the Author is aware,
been yet given.

END OF VOL. I.
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