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PREFACE.

WRrITING to Professor Hilbert my desire to base
a text-book on his foundations, he answered: ““ Ueber
Thre Idee aus meinen Grundlagen eine Schul-Geo-
metrie zu machen, bin ich sehr erfreut. Ich glaube
auch, dass dieselben sich sehr gut dazu eignen wer-
den.”

Geometry at last made rigorous is also thereby

made more simple.

GEORGE BRUCE HALSTED.
KENYON COLLEGE,
GAMBIER, OHIO.
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RATIONAL -GEOMETRY.

CHAPTER 1.
ASSOCIATION.

THE GEOMETRIC ELEMENTS.

1. Geometry is the science created to give under-
standing and mastery of the external relations of
things; to make easy the explanation and descrip-
tion of such relations and the transmission of this
mastery.

2. Convention. We think three different sorts of
things. The things of the first kind we call posnts,
and designate them by A, B, C, ... ; the things of
the second system we call straights, and designate
them by a, b, ¢,...; the things of the third set
we call planes, and designate them by a, 83, 1, . . ..

3. We think the points, straights, and planes in
certain mutual relations, and we designate these -
relations by words such as “lie,” “between,”” *‘ par-
allel,” ‘“‘congruent.”

The exact and complete description of these rela-
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tions is accomplished by means of the assumptions
of geometry.

4. The assumptions of geometry separate into five
groups. [Each of these groups expresses certain con-
nected fundamental postulates of our intuition.

I. The first group of assumptions: assumptions of
association.

5. The assumptions of this group set up an asso-
ciation between the concepts above mentioned,
points, straights, and planes. They are as follows:

I 1. Two distinct points, A, B, always determine
a straight, a.

Of such points besides ‘determine’ we also em-
ploy other turns of phrase; for example, A “lies
on’ a, A “is a point of” a, a ‘““goes through” A
“and through” B, a “joins” A “and” or “with”
B, etc.

When we say two things determine some other
thing, we simply mean that if the two be given,
then this third is explicitly and uniquely given.

If A lies on a and besides on another straight b
we use also the expression: “the straights” @ “and”
- b “have the point A in common.”

I 2. ANY two distinct points of a straight determine
THIS straight; and on every straight there are at least
two points. ' .

That is, if AB determine @ and AC determine
a, and B is not C, then also B and C determine a.

I 3. Three points, A, B, C, not costraight, always

determine a plane a.
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We use also the expressions:

A, B,C “liein” a, A, B, C, “are points of” a,
etc.

I 4. ANY three non-costraight points A, B, C of a
plane a determine THIS plane a.

Is. If two points A, B of a straight a lie in a
plane a, then every point of a lies in a.

In this case we say: The straight a lies in a.

I16. If two planes a, B have a point A in common,
then they have besides at least another point B in
common.

I7. In every plane there are at least three non-
costraight points. There are at least four mon-co-
straight non-coplanar points.,

6. Theorem. Two distinct straights cannot have
two points in common.

Proof. The two points being on the first straight
determine (by I 2) that particular straight. If by
hypothesis they are also on a second straight,
therefore (by I2) they determine this second
straight. Therefore the first straight is identical
with the second.

7. Theorem. Two straights have one or no point
in common.

Proof. By 6 they cannot have two.

8. Theorem. Two planes have no point or a
stratght in common.

Proof. If they have one point in common, then
(by I6) they have a second point in common, and
therefore (by I 5) each has in it the straight which
(by I 1) is determined by these two points.

9. Corollary to 8. A point common to two planes

e A w

fam .
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lies in a straight common to the two, which may be
called their straight of intersection or their meet.

10. Theorem. A plane and a straight not lying in
it have no point or one point tn common.

Proof. If they had two points in common the
straight would be (by I 5) situated completely in
the plane.

11. Theorem. Through a straight and a point not
on it there is always one and only one plane.

Proof. On the straight there are (by I2) two
points. These two with the point not on the
straight determine (by I 3) a plane, in which (by
I 5) they and the given straight lie. Any plane
on this point and straight would be on the three
points already used, hence (by I 4) identical with
the plane determined.

12. Theorem. Through two different straights with
a common point there is always one and only one
plane.

Proof. Each straight has on it (by I2) one
point besides the common point, and (by 6) these
two points are not the same point, and (by I 2)
the three points are not costraight.

These three points determine (by I 3) a plane in
which (by I 5) each of the two straights lies. Any
plane on these straights would be on the three
points already used, hence (by I 4) identical with
the plane determined.



CHAPTER II.
BETWEENNESS.

II. The second group of assumptions: assumptions of
betweenness.

13. The assumptions of this group make precise
the idea “ between,” and make possible on the basis
of this idea the arrangement of points.

14. Convention. The points of a straight stand
in certain relations to one another, to describe
which especially the word “‘ between’’ serves us.

II 1. If A, B, C are points of a straight, and B lies
between A and C, then B also lies between C and A,
and is neither C nor A.

A B (]

Fic. 1.

II 2. If A and C are two points of a straight, then
there is always at least one point B, which lies between

A B e D

Fic. 2.

A and C, and at least one point D, such that C lies
between A and D.
' 5
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II 3. Of any three poimis of a straight there is
always one and only one which lies between the other
two. .
15. Definition. Two points A and B, upon a
straight a, we call a segment or sect, and designate
it with AB or BA. The points between A and B
are said to be points of the sect AB or also situated
within the sect AB. All remaining points of the
straight a are said to be situated without the sect
AB. The points A, B are called end-potnis of the
sect AB. ‘

IT 4. (Pasch’s assumption.) Let A, B, C be three
points not costraight and a a straight in the plane
ABC going through nome of the points A, B, C; if

a

¢ B
Fic. 3.
then the straight a goes through a point within the
sect AB, 1t must always go either through a point of
the sect BC or through a point of the sect AC.

Deductions from the assumptions of association and
betweenness.

16. Theorem. Between any two points of a straight
there are always tndefinitely many points.,

[Here taken for granted, and its proof removed to
Appendix 1.]

17. Theorem. If any finite number of points of
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a straight are given, then they can always be ar-
ranged in a succession A, B, C, D, E, ..., K, such
that B lies between A on the one hand and C, D,
E, ..., K on the other, further C between A, B
on the one hand and D, E, ..., K on the other,
then D between A, B, C on the one hand and
E, ..., K on the other, and so on.

Besides this distribution there is only one other,
the reversed arrangement, which is of the same
character.

[This theorem is here taken for granted, and its
proof removed to Appendix I.]

21. Theorem. If A, B, C be not costraight, any
straight in the plane ABC which has a point within
the sect AB and a point within AC cannot have a
point within BC.

Proof. Suppose F, G, H three such costraight
points. '

One, say G, on AB, must (by II 3) lie between the
others. Then the straight AB must (by II 4) have
a point within the sect FC or the sect CH, which
(by 7 and II 3) is impossible.

Fic. 4.

22. Theorem. Every straight a, which lies in a
plane a, separates the other points of this plane a
tnio two regions, of the following character: every
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point A of the one region determines with every point
B of the other region a sect AB, within which lies-a
point of the straight a; on the comtrary, any two

ry

AN

FiG. s.

points A, A’ cof one and the same region always deter-
mine a sect AA’ which contains no point of a.

Proof. Let A be a point of @ which does not lie
on a. Then reckon to one region all points P of
the property, that between A and P, therefore

¥

A\

"
F16. 6.
within AP, lies no point of a; to the other region
all points Q such that within AQ lies a point of a.
Now is to be shown:
(1) On PP’ lies no point of a.
(2) On QQ’ lies no point of a.
(3) On PQ lies always a point of a.
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(1) From hypothesis neither within AP nor AP’
lies a point of a. This would contradict II 4, if
within PP’ were a point of a.

(2) By hypothesis there lies within AQ a point
of a, likewise within AQ’; therefore (by 21) none
within QQ’.

(3) By hypothesis AP contains no point of a;
AQ on the other hand contains one such. There-
fore (by II 4) a meets PQ.

23. Convention. If A, A’, O, B are four costraight
points such that O is between A and B but not
between A and A’; then we say: the points A, A’

A A ) B
Fic. 7.

lie in the straight a on one and the same side of the
point O, and the points A, B lie in the straight a on
different sides of the point O.

24. Definition. The assemblage, aggregate or to-
tality of all points of the straight a situated on one
and the same sideof O is called a ray starting from O.

Consequently every point of a stralght is the ori-
gin of two rays.

25. Convention. Using the notation of 22, we
say: the points P, P’ lie in the plane a on one and
the same side of the straight a and the points P, Q lie
in the plane a on different sides of the straight a.

26. Theorem. Ewvery two intersecting straights a,
b separate the points of their plane a not on either
into four regions such that if the end-points of a sect
are both in one of these regions, the sect contains no
point of either straight.
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Proof. Let O be their common point and A
another point on b, and B another point on a.
Then two points both on the A side of a and the
B side of b make a sect which (by 22) can contain
no point either of a or of b. So also if both were

Fic. 8. ~

on the A side of a and the non-B side of b; or both
on the non-A side of a and the B side of b; or both
on the non-A side of a and the non-B side of b.

27. Definition. A system of sects AB, BC,
CD, ..., KL is called a sect-train, which joins the
points A and L with one another. This sect-train
will also be designated for brevity by ABCD .. .KL.

The points within the sects AB, BC, CD,,. . ., K L,
together with the points A, B, C, D,..., K, L
are all together called the points of the sect-train.

In particular if the point L is identical with the
point A, then the sect-train is called a polygon and
is designated as polygon ABCD .. .K. :

The sects AB, BC, CD, ..., KA are called the
sides of the polygon. The points A, B,C, D, ...,
K are called the vertices of the polygon.

A sect not a side but whose end-points are ver-'
tices is called a diagonal of the polygon.
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Polygons with 3, 4, 5,..., # vertices are called
respectively trianglcs, quadrilaterals, pentagons, . . .,
n-goms.

28, If the vertices of a polygon are all distinct
from one another and no vertex of the polygon
falls within a side and finally no two sides of the
polygon have a point within in common, then the
polygon is called simple.

By quadrilateral is meant simple quadrilateral.

A plane polygon is one all of whose sides are co-
planar.

A convex polygon is one no points of which arv
on different sides of the straight of any of its sides.

29. Theorem. Every simple polygon, whose ver-
tices all lie in a plane «a, separates the points of this
plane «, which do not pertain to the sect-train of
the polygon, into two regions, an inner and an outer,
of the following character: if A is a point of the
inner (¢nterior point) and B a point of the outer
(exterior point), then every sect-train which jdins
A with B has at least one point in common with the
polygon; on the contrary if A, A’ are two points
of the inner and B, B’ two points of the outer, then
there are always sect-trains, which join A with A’
and B with B’ and have no point in common with
the polygon.

There are straights in « which lie wholly outside
the polygon; on the contrary no such straights
which lie wholly within the polygon.

Proof. Any simple polygon by jeining its ver-
tices gives a number of triangles. For a triangle
ABC there is (by 26) a region with points on the
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A side of BC, the B side of CA, and the C side of-
AB, i.e., an inner region. Moreover, the straight
determined by a point on b and a point on ¢ both in
non-A lies wholly without the region ABC, since *
it cannot again meet b or ¢ and so cannot (by II 4)

Cc A
ABC AEC
ABC 0

FiGc. 9.

have a point in common with BC. Moreover, if
any straight has a point within ABC, it has a point
on a side. For the straight determined by the
point within and any point on a side has (by II 4)
a point on another side, thus making another tri-
angle, in common with one side of which the given
straight has a point, and therefore (by II 4) with
another side, that is with a side of the original tri-
angle.

30. Corollary to 29. A straight through a ver-
tex and a point within a triangle has a point within
the ‘opposite’ side.
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31. Theorem. Every plane a separates all points
not on it into two regions of the following character:
every point A of the one region determines with
every point B of the other region a sect AB, within
which lies a point of a; on the contrary any two
points A and A’ of one and the same region always
determine a sect .AA’, which contains no point of a.

Proof. Let A be a point which does not lie on
a. Then reckon to the one region all points P of
the property, that between A and P, therefore with-
in AP, lies no point of a; to the other region all
points Q such that within AQ lies a point of a.

Now is to be shown:

(1) On PP’ lies no point of a.

(2) On QQ' lies no point of a.

(3) On PQ lies always a point of a.

(1) From hypothesis neither within AP nor AP’
lies a point of a. Suppose now a point of a lay on
PP’. Then the plane a and the plane APP’ would
have in common this point and consequently (by
9) a straight a. This straight goes through none
of the points A, P, P’; it cuts PP’; it must there-
fore (by II 4) cut either AP or AP’, which is con-
trary to hypothesis.

(2) By hypothesis there lies within AQ a point
of «, likewise within AQ’. The intersection straight
of the planes @ and AQQ’ therefore meets two sides
of the triangle AQQ’; consequently (by 21) it can-
not also meet the other side QQ’.

(3) AP contains by hypothesis no point of «;
AQ on the other hand contains one such. The inter-
section straight of the planes a and APQ therefore
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meets the side AQ and does not meet the side AP
in triangle APQ. Therefore (by 1l 4) it meets the
side PQ.

32. Convention. Using the notation of 31, we
say: the points A, A’ lie on one and the same side
of the plane «, and the points A, B lie on different
sides of the plane a.

Ex. 1. A straight cannot traverse more than 4 of the
7 regions of the plane determined by the straights of the
sides of a triangle. ‘

Ex. 2. Four coplanar straights crossing two and two
determine 6 points. Choosing 4 as vertices we can get
two convex quadrilaterals, one of which has its sides on
the straights.

Ex. 3. Each vertex of an n-gon determines with the
others .(# —1) straights. So together they determine
n(n—1)/2.

Ex. 4. How many diagonals in a polygon of » sides.

Ex. 5. What polygon has as many diagonals as sides?




CHAPTER II1.

CONGRUENCE.

III. The third group of assumptions: assumptions of
congruence.

33. The assumptions of this group make precise
the idea of congruence.

34. Convention. Sects stand in certain rela-
tions to one another, for whose description the
word congruent especially serves us.

111 1. If A, B are two points on a straight a, and
A’ a point on the same or another straight a’, then
we can find on the straight @’ on a given ray from
A’ always one and only one point B’ such that the
sect AB 1s congruent to the sect A’B’.

We write this in symbols AB=A'B’.

Every sect is congruent to itself,i.e.,always AB=AB.
The sect AB 1s always congruent to the sect BA, i.e.,
AB=BA.

We also say more briefly, that every sect can be
taken on a given side of a given point on a given
straight in one and only one way.

III 2. If a sect AB is congruent as well to the sect
A’B’ as also to the sect A" B, then 1s also A’B’ con-

15
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gruent to the sect A”B"”, ie., if AB=A'B’ and
AB=A"B", then is also A’'B'=A"B".

11 3. On the straight a let AB and BC be two sects
without common points, and furthermore A’B’ and
B'C’ two sects on the same or another straight, like-
" wise without common points; if then AB=A'B’ and
BC=B'C’, so always also AC=A'C".

’ ’
A g’ ¢ a’

1 1 1
A ) C a
FiG. 10.

35. Definition. Let a be any plane and &, k any
two distinct rays in a going out from a point O, and
pertaining to different straights. These two rays
h, Bk we call an angle, and des-
ignate it by % (k, k) or X (&, k).
The rays % and k, together with
the point O, separate the other
points of the plane a into two
regions of the following character:
if A is a point of the one region
and B of the other region, then
every sect-train which joins A with
B, goes either through O or has with & or k at least
one point in common; on the contrary if A, A’ are
points of the same region, then there is always a
sect-train which joins A with A’ and neither goes
through O nor through a point of the rays &, k.

One of these two regions is distinguished from
the other because each sect which joins any two
points of this distinguished region always lies wholly

Fi1G. 11.




CONGRUENCE. 17
in it; this distinguished region is called the nterior
of the angle (k, k) in contradistinction from the
other region, which is called the exterior of the
angle (h, k). The interior of % (h, k) is wholly on
the same side of the straight & as is the ray k, and
altogether on the same side of the straight k as is
the ray h.

The rays h, k are called sides of the angle, and
the point O is called the vertex of the angle.

IIT 4. Given any angle (h, k) in a plane a and a
straight @’ in a plane o', also a determined side of a’
on o'. Designate by h' a ray of the straight o’ start-
ing from the point O'; then there is in the plane o'
ONE AND ONLY ONE ray k' such that the angle (h, k)
is congruent to the angle (W, k'), and likewise all in-
terior points of the angle (W', k') lie on the given side

of .
k K
h 3
FiG. 12
In symbols:

1(hk)=xW,F).

' Every angle is congruent to itself, i.e., always

f(h, k)= % (h, k).
The angle (h, k) is always congruent to the angle
(k, h), ie., $(h, k)=%(k,h).
We say also briefly, that in a given plane every
angle can be set off towards a given side against a
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given ray, but in a uniquely determined way.
There is one and only one such angle congruent to
a given angle. We say an angle so taken is uniquely
determined.

II1 5. If an angle (h, k) is congruent as well to
the angle (W, k') as also- to the angle (b, k'), then is
also the angle (W, k') congruent to the angle (W', k');
ie,if X(hE)y=x(W, k) and X (b, E)=xX ", k'),
then always X (W', k)= (W, k).

- 36. Convention. I.et ABC be any assigned tri-
angle; we designate the two rays going out from
A through B and C respectively by & and . Then
the angle (k, k) is called the angle of the triangle
ABC included by the sides AB and AC or opposite
the side BC. It contains in its interior all the inner
points of the triangle ABC and is designated by
¥ BAC or £ A.

II1 6. If for two triangles ABC and A’B'C’ we
have the congruences

AB=A'B', AC=A'C’, ¥BAC=%B'A'C’,
then always are fulfilled the congruences
¥ABC=¥A'B'C’ and ¥ACB=%A'C'B.

Deductions from the assumptions of congruence.

37. Convention. Suppose the sect AB congruent
to the sect A’B’. Since, by assumption III 1, also
the sect AB is congruent to AB, so follows from
IIT 2 that A’B’ is congruent to AB; we say: the
two sects AB and A’B’ are congruent to one another.

38. Convention. Suppose ¥ (h, k)= £ (W', k’).
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Since (by IIT4) X (h, k)= % (h, k), therefore
(by III 5) X (k' k)= %(h, k). We say then: the
two angles ¥ (h, k) and % (W, k') are congruent to
one another. '

39. Definition. Two angles having the same ver-
tex and one side in common, while the sides not
common form a straight, are called adjacent angles.

40. Definition. Two angles with a common ver-
tex and whose sides form two straights are called
vertical angles.

41. Definition. Any angle which is congruent to
one of its adjacent angles is called a right angle.

Two straights which snake a right angle are said
to be perpendicular to one another.

42. Convention. Two triangles ABC and A’B'C’
are called congrifent to one another, if all the con-
gruences

AB=A'B', AC=A'C’, BC=BC(C,
¥A=xA'", ¥B=¥B, $C=x%(C

are fulfilled.
43. (First congruence theorem for triangles.)
Triangles are congruent if they have two sides and
the included angle congruent.

In the triangles ABC and A’B'C’ take AB=A'R/,
AC=A'C", A= x A"
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To prove AABC=aA'B'C’.

Proof. By assumption III 6 the congruences
¥B=%B and ¥C= ¥(C’ are fulfilled, and .so we
have only to show that the sides BC and B’C’ are
congruent to one another. '

Suppose now, on the contrary, that BC were not
congruent to B’C’, and take on ray B’C’ (by III 1)
the point D’, such that BC=B'D’. Then the two
triangles ABC and A’B’D’ will have, since ¥ B=
¥ B’, two sides and the included angle respectively
congruent; by assumption III 6, consequently, are
in particular the two angles BAC and B'A’D’ con-
gruent to one another. By assumption III 5, con-
sequently, must therefore also the two angles B’A’C’
and B’A’D’ be congruent to one another. This is -
impossible, since, by assumption III 4, against a
given ray toward a given side in a given plane
there is only one angle congruent to a given angle.
So the theorem is completely established.

44. (Second congruence theorem for triangles.)

Two triangles are congruent if a side and the two
adjoining angles are respectively congruent.

Fic. 14.

In the triangles ABC and A’B’C’ take AC=A'C’,
fA=oA', 4C=%C".
To prove AABC= rA'B'C".
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Proof. Suppose now, on the contrary, AB is not
=A’B’, and take on ray A’B’ the point D', such
that AB=A'D’. By lIll6, ¥ACB=$A'C'D’, but
by hypothesis X ACB= ¥ A’C’B’. Therefore (by
III 5) ¥ A’C’'B’= ¥ A’C’D’. But this is impossible,
since (by III 4) in a given plane against a given ray
toward a given side there is only one angle con-
gruent to a given angle.

Consequently our supposition, AB not=A'B’, is
false, and so AB=A'B’.

Now follows (by 43) that AABC= aA'B'C’.

45. Theorem. If two angles are congruent, so are
also their adjacent angles.

Take ¥ ABC= 4 A'B'C’.

To prove ¥CBD= ¥C'B’'D".

Proof. Choose the points A’, C’, D’ on the sides
from B’ so that A’B'=AB, C'B'=CB, DB=D'B’.

¢’

A B D w ~ B D’
Fic. 1s.

In the two triangles ABC and A’B’C’ then the
sides AB and CB are congruent respectively to the
sides A’B’ and C’B’, and since moreover the angles
included by these sides are congruent by hypothesis,
so follows (by 43) the congruence of those triangles,
that is, we have the congruences

AC=A'C’ and #BAC=%B'A'C.
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Now since (by III 3) sect AD=A'D’, so follows
(again by 43) the congruence of the triangles CAD
and C’A’D’, that is, we have the congruences CD =
C'D’ and XADC= AA'D'C’, and hence follows,
. through consideration of the triangles BCD and
B'C’'D’ (by II1 6), the congruence of the angles CBD
and C'B'D’.

46. Theorem. Vertical angles are congruent.

Proof. By III 4, ¥ ABC= ¥CBA. Therefore,
by 45, their adjacent angles are congruent, ¥ CBD=

£ ABF.
A 8 °

Fic. 16.

47. Theorem. Through a point A, not on a straight
a, there is one and only one perpendicular to a.

Proof. Take any two points P, Q on a. Take
from P against the side PQ of ¥ APQ, and on the
non-A side of a, ¥ BPQ=$¥APQ. Take PB=PA.
Since A and B lie on different sides of a, there must
be a point O of sect ABona. Then AOB is perpen-
dicular to a. '

For (by 43) ABPO= AAPO, so ¥ BOP= % AOP.
But these are adjacent. Therefore, by definition 41,
AOP is a right angle.

Moreover this perpendicular is unique. For sup-
pose any straight AQ’ perpendicular to a at ¢, and
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take on this straight on the non-A side of a the sect
O'B'=0'A. Then from hypothesis ¥ PO'B'=
¥ PO'A and so (by 43) APO'B’=AP0'A. There-

A
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F1c. 17.

fore #B’PO’ ¥ APO’ and B'P=AP. Therefore
(by IIl gand III 2), ¥ BP0’ = ¥ BPO and B’P=BP.
Hence the points B and B’ are not different. There-
fore no second perpendicular from A to a can exist,

48. Theorem. Let the angle (k, k) in the plane
a be congruent to the angle (#’, #’) in the plane «/,
and further let / be a ray of the plane a, which goes
out from the vertex of the angle (k, k) and lies in
the interior of this angle; then there is always a ray
! in the plane o', which goes out from the vertex of
the angle (%', £’) and lies in the interior of this angle,
such that X (b, )= (W', V) and £ (k, D=4 (¥, I').

Proof. Designate the vertex of % (k, k) by O, and
the vertex of ¥ (#’, k') by O’, and then determine on
the sides 4, k, i/, ¥/, the points A, B, A’, B/, so that
we have the congruences

OA=0'A" and OB=0O'B'.
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Because of the congruence of the triangles OAB

and O’A’B’ (by 43)

AB=A'B', ¥0OAB=¥0'A'B’, ¥OBA=%0'B'A’.
The straight AB (by 30) cuts [, say in C; then

we determine on the sect A’B’ the point C’, such
that A’C’ = AC, then is 0’C’ the ray sought, V'.

o’ hﬁ A’
Fic. 18.

In fact, from AC=A’C’ and AB=A’B’ we may,
by means of III 3, deduce the congruence BC=B'C’.
Therefore (by III 6) ¥ AOC= ¥ A’0’C’ and ¥ BOC
=4 B'0'C'.

49. Theorem. Let k, k, I on the one hand and
K, K, I’ on the other each be three rays going out
from a point and lying in a plane; if then we have
the congruences X (h, )= (h',V') and ¥ (k1) =
% (K, V), then also is always

$(hR)y=% 0, F).
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Proof. The rays are supposed such that either
no point is interior to ¥ (h,l) and ¥ (%, I), or to
X (W, V) and % (k, I), or else that if one of these
angles be within a second, then the angle congruent
to the first is within the fourth.

I. In the first case, if / be supposed within % (h, k),
take against »’ toward k', X (#', ¥’)= ¥ (h, k). By

Fic. 19.

48, take in angle (W, k’”) ray I’ such that % (W', I”)
=4 (k1) and 4", k¥')=%(,k). But by hy-
pothesis ¥ (W', I')=x (h,l). Therefore, by III s,
LW, V)=4(W]l"), and so, by III 4, ray I’ is iden-
tical with ray /. Then X (k’, ") =4 (K", I')=
Xk, )=o(,1V). So A£(K' V)= (F,6I), and, by
III 4, ray K’ is identical with ray &’.

But xX(W,k’)=4(h, k). Therefore % (h, k)=
1 (W, k). :

If, however, I be supposed not within % (h, k),
then it will liein X (4", k’") vertical to % (h, k). For
it cannot lie in ¥ (h, ¥’’) adjacent to X (k, k), since
then ¥ (/, k) would contain ¥ (k, I), contradicting the
hypothesis in this case of no point interior to these
two given angles. For like reason it cannot lie in
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% (W', k) adjacent to ¥ (h, k), since then £ (h, 1)
would contain % (I, k). Thus the ray m costraight
with [/ is within ¥ (k, k), and #’ costraight with Z
is within ¥ (W, #).

F1c. 20.

Then (by 45) % (h, m)= % (h', m') and % (k, m)=
¥ (k', m') [£’s adjacent to congruent A’s are con-
gruent], and so this sub-case is reduced to the pre-
ceding.

II. The remaining case, where one angle ¥ (h, [)
is within another, ¥ (%, /), follows at once from 48.

s1. Theorem. A/l right angles are congruent.
Let angle BAD be congruent to its adjacent angle
CAD, and likewise let the angle B’A’D’ be ron-
gruent to its adjacent angle C’A’D’; then are
¥BAD, ¥CAD, %¥B'A'D', $C'A’'D’ all right
angles.

To prove ¥ BAD= ¥ B'A’'D’.

Proof. Suppose, contrary to our proposition, the
right angle B’A’D’ were not congruent to the right
angle BAD, and then set off ¥ B’A’D’ against ray
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AB so that the resulting side AD"’ falls either in the
interior of the angle BAD or of the angle CAD; sup-
pose we have the first of these cases.

Because ¥ B'A’D'= ¥ BAD", therefore,
by 4s, ¥C'A’'D'= ¥CAD"”;  and since by
hypothesis ¥B'A'D'=4C'A'D’, therefore,
by III s, ¥BAD"=4CAD"”. Since further

¥ BAD is congruent to ¥ CAD, so there is (by 48)
within the angle CAD a ray AD’ such that

of § 0% o’

1
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Fi1c. 21.

¥ BAD"=¥CAD"" and also ¥ DAD" = ¥ DAD"".
But we had ¥ BAD"" = XCAD’, and therefore we
must (by III 5) also have XCAD”=xCAD".
This is impossible, since (by III 4) every angle can
be set off against a given ray toward a given side in
a given plane only in one way.

Herewith is the proof for the congruence of right
angles completed.

s2. Corollary to 51. At a point A of a straight a
there is not more than one perpendicular to a.

§3. Definition. - When any two angles are con-
gruent to two adjacent angles, each is said to be the
supplement of the other.

s4. Definition. If any angle can be set off against
one of the rays of a right angle so that its second
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side lies within'the right angle, it is called an acute
angle.

55. Definition. Any angle neither right nor acute
is called an obtuse angle.

§6. Definition. A triangle with two sides con-
gruent is called an zsosceles triangle.

57. Theorem. The angles opposite the congruent
sides of an isosceles triangle are congruent.

Let ABC be an isosceles triangle,
having AB=BC.

To prove ¥ A= %C.

Proof. Since in the triangles
ABC and CBA we have the con-
c  gruences AB=CB, BC=BA,
¥ ABC= 4CBA, therefore (by
II16) ¥CAB= £ ACB.

58. (Third congruence theorem for triangles.)
Two triangles are congruent if the three sides of the
one are congruent, respectively, to the three sides of the
other.

Fi1c. 22.

B’

Fic. 23.

In the triangles ABC and A’B'C’ take AB=A'F’,
AC=A'C', BC=B'C'.
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To prove A ABC=aA'B'C'.

Proof. In the plane of ABC toward the side of
the straight AC not containing B against the ray
AC take the angle CAB""= C’'A’B’. Take the
sect AB”=A'B’. Then (by 43) AAB"C="§A'B'C'.
Therefore B”’C = BC, and a BCB" is isosceles; there-
fore (by 57) ¥CBB"" = ¥CB""B. Soalso is A BAB"”
isosceles and ... ¥ ABB”=fAB"”B. Therefore
(by 49) the angle ABC=#£AB”"C. But ¥AB'"C
=yA'B'C’. ..(by43) aABC= rA'B'C'.

59. If A, B, C be any three points not costraight,
then (by the method used in §8) we can construct
a point B” such that AB”=AB and CB”"=CB.

Therefore a point D such that no other pomt
whatsoever, say D”, gives AD""=AD and C
CD, must be costraight with AC.

The following have been given as definitions:

If A and B are two distinct points, the straight
AB is the aggregate of points P for none of which
is there any point Q such that QA=PA and QB=
PB.

If A, B, C are distinct points not costraight,
the plane ABC is the aggregate of points P for
none of which is there any point Q such that
QA=PA, QB=PB, and QC=PC.

60. Convention. Any finite number of points is
called a figure; if all points of the figure lie in a
plane, it is called a plane figure.

61. Convention. Two figures are called congruent
if their points can be so mated that the sects and
angles in this way coupled are all congruent.

Congruent figures have the following properties:
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If three points be costraight in any one figure their
mated points are also, in every congruent figure,
costraight. The distribution of points in corre-
sponding planes in relation to corresponding straights
is in congruent figures the same; the like holds for
the order of succession of corresponding points in
corresponding straights.

62. The most general theorem of congruence for
the plane and in general is expressed as follows:

If (A4, B,C,...) and (A’, B, C',...) are con-
gruent plane figures and P denotes a point in the
plane of the first, then we can always find in the
plane of the second figure a point P’ such that
(A, B,C,...,P)and (A",B',C’, ..., P') are again
congruent figures.

If each of the figures contains at least three non-
costraight points, then is the construction of P’ only
possible in one way. _

If (A B,C,...) and (A', B, C’,...) are con-
gruent figures and P any point whatsoever, then we
can always find a point P, such that the figures (A4,
B,C,...,P)and (A’,B’,C", ..., P’) are congruent.

If the figure (A, B, C, . ..) contains at least four
non-coplanar points, then the construction of P’ is
only possible in one way.

This theorem contains the weighty result, that
all facts of congruence are exclusively conse-
quences (in association with the assumption-groups
I and II) of the six assumptions of congruence
already above set forth.

This theorem expresses the existence of a cer-
tain reversible unique transformation of the aggre-
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gate of all points into itself with which we are
familiar under the name of motion or displacement.

We have here founded the idea of motion upon
the congruence assumptions. Thereby we have
based the idea of motion on the congruence idea.

The inverse way, to try to prove the congruence
assumptions and theorems with help of the motion
idea, is false and fallacious, since the intuition of
rigid motion involves, contains, and uses the con-
gruence idea.

63. Exercises.

Ex. 6. Show a number of cases where two straights
determine a point. Show cases where two straights do
not determine a point. Are any of these latter pairs
coplanar?

Ex. 7. Show cases where three coplanar straights deter-
mine 3 points; 2 points; 1 point. Are there cases where
they determine no point?

Ex. 8. How many straights are, in general, deter-
mined by 3 points? by 4 coplanar points? What special
cases occur?

Ex. 9. Any part of a triangle together with the two
adjoining parts determine the 3 other parts. Explain.

Ex. 10. Try to state the first two congruence theorems
for triangles so that either can be obtained from the other
by simply interchanging the words side and angle.

Ex. 11. Principle of Duality in the Plane.

In theorems of configuration and determination we
may interchange point and straight, sect and angle.
Try to write down a theorem of which the dual is true;
is false.

Ex. 12. If two angles of a triangle are congruent it is
isosceles. '

Ex. 13. If the sides of a A are =, so are the s.

Dual?
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Ex. 14. In an isosceles A, sects to the sides from the
ends of the base making with it = s are =.

Ex. 15. If any two sects from the ends of a side of a
A to the other sides making = s are =, the a is isosceles.

64. Definition. Two parallels are coplanar
straights with no common point.

65. No assumption about parallels is necessary
for the establishment of the facts of congruence or
motion.

66. Theorem. Through a point A without a
straight a there is always one parallel to a.

Proof. Take the ray from the given point A
through any point B of the straight a. Let C be
any other point of the straight a. Then take in the
plane ABC an angle congruent to ¥ ABC against
AB at the point A toward that side not containing
C. The straight so obtained through A does not
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meet straight a. If we supposed it to cut a in the
point D, and that, say, B lay between C and D, ,
then we could take on a a point I/, such that B lay
between D and D’, and moreover AD=BD’. Be-
cause of the congruence of the triangles ABD and
BAD' (by 43), therefore ¥ ABD=%¥BAD'; and
since the angles ABD' and ABD are:adjacent
angles, so must then, having regard to 45, also the
angles BAD and BAD’ be adjacent angles. But
because of 6, this is not the case.
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67. Definition. A straight cutting across other
straights is called a transversal.

68. Definition. If, in a plane, two straights are
cut in two distinct points A, B by a transversal, at
each of these points four angles are made. Of
these eight, four, having each the sect AB on a side
le.g., 3, 4, 1/, 2"], are called interior angles. The
other four are called exterior angles. Pairs of angles,
one at each point, which lie
on the same side of the
transversal, the one exterior
and the other interior, are
called corresponding angles
[eg., 1 and 1'].

Two non-adjacent angles
on opposite sides of the
transversal, and both interior or both exterior, are
called alternate angles [e.g., 3 and 1'].

Two angles on the same side of the transversal,
and both interior or both exterior, are called con-
jugate angles [e.g., 4 and 1'].

69. Theorem. Two coplanar straights are parallel
if a transversal makes congruent alternate angles.
[Proved in 66.] '

7o. Theorem. If two straights cut by a trans-
versal have corresponding angles congruent they are
parallel.

Proof. The angle vertical to one is alternate to
the other.

Ex. 16. If two corresponding or two alternate angles

are congruent, or if two interior or two exterior angles
on the same side of the transversal are supplemental,

Fic. 235.
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then every angle is congruent to its corresponding and
to its alternate angle, and is supplemental to the angle
on the same side of the transversal which is interior or
exterior according as the first 1s interior or exterior.

Ex. 17. If two interior or two exterior angles on the
same side of the transversal are supplemental, the straights
are parallel.

Ex. 18. Two straights perpendicular to the same
straight are parallel.

Ex. 19. Construct a right angle.

Ex. 20. On the ray from the vertex of a triangle co-
straight with a side tgke a sect congruent to that side.
The two new end-points determine a straight parallel to the
triangle’s third side.

Ex. 21. On one side of any X with vertex A take any
two sects AB, AC and on the other side take congruent
to these AB’, AC’. Prove that BC’ and B’C intersect, say
at 0. Prove BC'=B'C, aBCD=aB'C'D, XBAD=
A B’AD.

Ex. 22. From two given points on the same side of a
given st’ find st’s crossing on that given st’, and making
congruent ’s with it.

Ex. 23. Construct a triangle, given the base, an angle
at the base, and the sum of the other two sides [A from
a, b, a+c].

Ex. 24. If the pairs of sides of a quadrilateral not con-
secutive are congruent, they are |.

Ex. 25. On a given sect as base construct an isosceles a.

Ex. 26. If on the sides AB, BC, CA of an equilateral
A, AD=BE =CF, then ADEF is equilateral, as is A
made by AE, BF, CD.
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CHAPTER 1V.
PARALLELS.

IV. Assumption of Parallels (Euclid’s Postulate).

IV. Through a given point there is not more than
one parallel to a given straight.

71.. The introduction of this assumption greatly
simplifies the foundation and facilitates the con-
struction of geometry.

72. Theorem. Two straights parallel to a third are
parallel.

Proof. Were 1 and 2 not parallel, then there
would be through their intersection point two par-
allels to 3, which is in contradiction to IV.

73. Theorem. If a transversal cuts two parallels,
the alternate angles are congruent.

Proof. Were say ¥ BAD not = £ ABC, then we
could through A (by III 4) take a straight making
¥BAD'= ¥ ABC [D’ and
D on same side of AB], and , A/ «
so we would have (by 69)
through A two parallels to

a, in contradiction to IV. /., =
74. Corollary to 73. A
perpendicular to one of two Fic. 26.

parallels is perpendicular to the other also.
35
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75. Theorem. If a transversal cuts two parallels,
the corresponding angles are congruent.

Proof. The angle vertical to one is alternate to
the other.

Ex. 27. A straight meeting one of two parallels meets
the other also. v

Ex. 28. A straight cutting two parallels makes con-
jugate angles supplemental.

Ex. 29. If alternate or corresponding angles are un-
equal or if conjugate angles are not supplemental, then
the straights meet. On which side of the transversal?

76. Theorem. A perpendicular to one of two
parallels is parallel to a perpendicular to the other.

Proof. Either of the two given parallels makes
(by 74) right angles with both perpendiculars, which
therefore are parallel by 69.

77. Corollary to 76. Two straights respectively
perpendicular to two intersecting straights cannot
be parallel.

Proof. For if they were parallel, then (by 76)
the intersecting straights would also be parallel.

78. Convention. When two angles are set off
from the vertex of a third against its sides so that no
point is interior to two, if the two sides not common
are costraight, the three angles are said together to
form two right angles.

79. The angles of a triangle together form two right

angles.
t B p Proof. Take alternate

¥CBF=%C and ¥ ABD

=yA; then (by 69) can

neither BF nor BDcut AC.

c A By the parallel postulate
Fic. 27. IV, then is FBD a straight.
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80. Theorem. If two angles of one triangle are
congruent to two of another, then the third angles
are congruent.

Proof. Given ¥ A=x A’ and ¥ B=xB’. Take
CP parallel (|) to AB and C'P’ | to A’B’. Then

\P
\
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" \

\ N\ @’
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Ya=%A and (f=¥B, xa'=%A" and ¥f'=
¥B'. ..{(by 49) ¥BCD=yxB'C'D'. ..(by 45)
the adjacent angles X ACB=y A’C'B'.

81. Theorem. Two triangles are congruent if they
have a side, an adjoining and the opposite angle re-
spectively congruent.

Proof. By 80 and 44.

Ex. 30. Every triangle has at least two acute angles.

Ex. 31. If the rays of one angle are parallel or per-
pendicular to those of another, the angles are congruent
or supplemental.

Ex. 32. In a right-angled triangle [a triangle one of
whose angles is a right angle] the two acute angles are
complemental (calling two angles complements which
together form a right angle).

82. Theorem. In any sect AB there is always one
and only one point C such that AC=BC.

Proof. Take any angle BAD at A against AB,
and the angle congruent to it at B against BA and
on the opposite side of a in the plane BAD; and
take any sect AD on the free ray from A, and one

-’
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BF congruent to it on the free ray from B. The
sect DF must cut a, say in C, since D and F are on
opposite sides of a. Moreover, C is between A and
B. Ofherwise one of them, say A, would be between
B and C. But then DA would have a point A on

A Cc™\ 8
A Y
\
\
\ ’ B
\',;/ F
Fic. 29.

BC, a side of triangle FBC, and so (by II 4) must
meet another side.. But this is impossible, since it
meets FC produced at D and is parallel to BF.
Since thus X¥A=%B, and ¥ ACD= ¥ BCF [ver-
tical], therefore (by 81) AACD= aBCF.

Therefore AC=BC.

If we suppose a second such point C’, then on
ray DC’ take C'F'=DC’. Therefore (by 43)
¥C'BF'= ¥ DAC= ¥ ABF, and BF'=AD=BF.
Therefore F’ is F and (’ is C.

83. Convention. The point C of the sect AB such
that AC=BC may be called the bisection-point of
AB, and to bisect AB shall mean to take this point C.

Ex. 33. Parallels through the end-points of a sect
intercept congruent sects on any straight through. its
bisection-point.

Ex. 34. In a right-angled triangle the bisection-point
of the hypothenuse (the side opposite the r'ty) makes
equal sects with the three vertices.

Hint. Take one acute A in the r't X.
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84. Theorem. Within any % (h, k) there is always
one and only one ray, 1, such that ¥ (h, )= A (%, ).
_ Proof. From the vertex O take OA=0A’. By
82 take C, the bisection-point '
of AA’. Then AAOC=a
A’'OC [as with 3 sides=
are=]. .. AOC=$A'OC.

If we suppose a second such
ray OC’, then AAOC'=aA
A’'OC" [as with 2 sides
and the included # =are=].
SAC'=AC. . (by 82) C7is C.

8s. Convention. The ray ! of X (k, k) such that
% (h, )= % (I, k) may be called the bisection ray or
bisector of ¥ (h, k), and to bisest ¥ (h, k) shall mean
to take this ray .

Ex. 35. An angle may be separated into 2, 4, 8, 16, ...,
2” congruent angles.

SYMMETRY.

86. Definition. Two points are said to be sym--
metrical with regard to a straight, when it bisects
at right angles their sect. The straight is
called their axis of symmetry. Two points
. have always one, and only one, symmetry
axis.
A point has, with regard to a given axis
of symmetry, always one, and only one, sym-
F16. 31. metrical point, namely, the one which ends
the sect from the given point perpendicular to the
axis and bisected by the axis. :
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87. Definition. Two figures

have an axis of symmetry when,
with regard to this straight,
every point of each has its sym-

metrical point on the other.
One figure has an
Fre. 32. axis of symmetry 1
when, with regard to this straight, every jJ

point of the figure has its symmetrical
point on the figure.

One figure is called symmetrical when
it has an axis of symmetry.

Any figure has, with regard to any given straight
as axis, always one, and only one, symmetrical figure.

88. Theorem. Amn angle is symmetrical with re-
gard to its bisector and the end-points
of comgruent sects from the vertex are
symmetrical.

Proof. Their sect is bisected at right
angles by the angle-bisector.
89. Definition. A sym-
Fic. 34 metrical quadrilateral
with a diagonal as axis is called a

deltoid.

Fic. 33.

’

P P

9o. Definition.
—— A sect whose end-
’ points are the bi- Fie. 35.

section-points of opposite sides
of a quadrilateral is called
a median. So is the sect from a
vertex of a triangle to the bisec-

tion-point of the opposite side.

B c’
Fic. 36.

(o]
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or1. Definition. A symmetrical quadrilateral with
a median as axis is called a symira.

Ex. 36. In a r't A if to set off one acute ¥, a, in the
other, B, bisects, so is it with #'s sides.

Ex. 37. The st’ through the bisection-point of the base
of a |4, and the opposite vertex is L to the base and
bisects

Ex. 38. The r't bi’ of the base of a + A bisects ¥ at the
vertex.

Ex. 39. The L from vertex bisects base and ¥ in a
+aA.

Ex. 40. The bisector of  at vertex of a + A is r't
bi’ of base.

Ex. 41. If a r't bi’ of a side contains a vertex, the A
is +.

Ex. 42. The bisector of an exterior ¥ at vertex of + a
is || to base, and inversely.

Ex. 43. The end of sect from intersection of congruent
sides of a | A costraight and = to one determines with
end of other a L to base.

Ex. 44. To erect a L at the end-point of a sect without
producing the sect.

Ex. 45. A || to one side of an ¥ makes with its bisector
and other side a + A,

Ex. 46. The bisectors of the = s of a+ A are=.

Ex. 47. Every symmetrical quadrilateral not a del-
toid is a symtra.

Ex. 48. The intersection point of two symmetrical
straights is on the axis.

Ex. 49. The bisector of an angle is symmetrical to the
bisector of the symmetrical angle.

Ex. 50. A figure made up of a stralght and a pomt is
symmetrical.

Ex. 51. In any deltoid [1] One diagonal (the axis)
is the perpendicular bisector of the other. [2] One
diagonal (the axis) bisects the angles at its two vertices.
[3] Sides which meet on one diagonal (the axis) are con-
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gruent; so each side equals one of its adjacent sides. [4]
One diagonal (not the axis) joins the vertices of congruent
angles and makes congruent angles with the congruent
sides. [s5] The triangles made by one diagonal (the axis)
are congruent. [6] One diagonal (not the axis) makes
two isosceles triangles.

Ex. 52. Any quadrilateral which has one of the six
preceding pairs of properties (Ex. 51) is a deltoid.

Ex. 53. A quadrilateral with a diagonal which bisects
the angle made by two sides, and is less than each of the
other two sides, and these sides congruent, is a deltoid
with this diagonal as axis.

Ex. 54. A quadrilateral with a side meeting a con-
gruent side in a greater diagonal which is opposite con-
gruent angles is a deltoid with that diagonal as axis.

Ex. 55. In any symtra [1] Two opposite sides are
parallel, and have a common perpendicular bisector.
[2] The other two sides are congruent and make con-
gruent angles with the parallel sides.

[3] Each angle is congruent to one and supplemental
to the other of the wo not opposite it.

[4] The diagonals are congruent and their parts adja-
cent to the same parallel are congruent.

[s] One median bisects the angle between the two
diagonals, and also the angle between the non-parallel
sides (produced).

Ex. 56. Any quadrilateral which has one of the pre-
ceding five pairs of properties (Ex. 55) is a symtra.

92. Definition. A trapezoid is a quadrilateral
with two sides parallel.

93. Definition. A parallelogram is a quadrilateral
with each side parallel to another (its opposite).

94. Definition. A parallelogram with one angle
right is called a rectangle. A parallelogram with
two consecutive sides congruent is called a rhombus.

A rectangle which is a rhombus is called a square.
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95. Theorem. The opposite sides and angles of a

C 8

[/

D A

FiGc. 37.

parallelogram are congruent, and 1ts diagonals bisect
each other.

Proof. AABC=AADC [side and 2 adjoining
¥s=]. . .BC=AD. .. (asin 82) AF=FC and
BF=FD.

96. Theorem. If three parallels make congrucnt
Sects on one transversal, they do on every transversal.

Given a| bl ¢, also AB= e/ R
BC. - II
To prove FG=GH. A B
Proof. Take FL||GM|| / L
AB. Then FL=AB=BC < [\
=GM [95, opposite sides of W Fio. <8 ¢
1G. 38.

algm are=]. .. AFLG=
AGMH [side and 2 adjoining ¥s=]. .. FG=GH.

97. Corollary to 96. A straight through the bi-
section-point of one side of a triangle and parallel to
a second side bisects the third side. [In figure let
F coincide with A.]

08. Inverse of 97. The straight through the bi-
section-points of any two sides of a triangle is
parallel to the third side. [For, by 97, it is iden-
tical with the | to the third side through either
bisection-point.]
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99. Theorem. The sect whose end-points are the
bisection-points of two sides of
a triangle is congruent to each
sect made in bisecting the third
side. ‘

Proof. By 97 GH| BC bi-
sects AC. Since (by 98)

Fic. 39. FG|CH, .. (by9s) FG=CH.

100. Theorem. If two sides of a quadrilateral are
congruent and parallel it is a parallelogram.

Given AB=and ||CD.

Proof. AABC=sADC.

C

FiG. go.
s £ACB= 4 CAD. ..CB|AD.

Ex. 54. Every straight through the intersection of
its diagonals cuts any parallelogram into congruent
trapezoids.

Ex. 58. A quadrilateral with each side equal to its
opposite is a parallelogram.

Ex. 59. A quadrilateral with a pair of opposite sides
equal, and each greater than a diagonal, making equal
alternate angles with the other sides, is a parallelogram.

Ex. 60o. A quadrilateral with a side equal to its oppo-
site, and less than a diagonal opposite equal angles, is a
parallelogram.

Ex. 61. A quadrilateral with each angle equal to its
opposite is a parallelogram.

Ex. 62. A quadrilateral whose diagonals bisect each
other is a parallelogram.
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I01. Théorem. In any sect AB there are always
two, and only two, points, C, D, such that AC=
CD=DB.

F1G. 41.

- Proof. Take on any ray from A, any sect AF,
and a sect FG=AF, and a sect GH=FG. Take
FC|GD|HB. Then, by 96, AC=CD=DB.

Suppose two other such points C’, D’. Then, by
98, C’F||D'G. Now HB'||GD' (by 96) makes D'B’
=D’C’. .. from our hypothesis and III1, B’ is
identical with B. .. since GD|HB (by IV) D’ is
identical with D. ..since FC|GD (by IV) C’ is
identical with C.

102. The two points, C, D, of the sect AB such
that AC=CD=DB may be called the trisection-
points of AB.

103. Theorem. The three medians of a triangle are
-copunctarin that trisection-point of each remote from
ils vertex.

Proof. Any median AG must meet any other
CF, since A and G are on dif- B
ferent sides of the straight CF,
and so the cross of st’ AG
with st’ CF is on sect AG, and
similarly it is on sect CF. If .
P, Q, are bisection-points of ¢ N
OC and OA, then (by 98 and Fic. 42.

99) PQ| and =GF. ..by 100 PQFG isa|gm and
(by 95) PF and QG bisect each other.




|
46 RATIONAL GEOMETRY.

104. Definition. The cointersection-point of its
medians is called the triangle’s centroid.

105. Definition. A perpendicular from a vertex to
the straight of the opposite side is called an altitude
of the triangle. This opposite side is then called
the base. The perpendicular from a vertex of a
parallelogram to the. straight of a side not through
this vertex is called the altitude of the parallelogram
with reference to this side as base.

Ex. 63. The bisectors of the four angles which two
intersecting straights make with each other form two
straights perpendicular to each other.

Ex. 64. If four coinitial rays make the first angle con-
gruent to the third, and the second congruent to the
fourth, they form two straights.

Ex. 65. How many congruent sects from a given point
to a given straight?

Ex. 66. Does the bisector of an angle of a triangle
bisect the opposite side?

Ex. 67. The bisectors of vertical angles are costraight.

Ex. 68. If two isosceles triangles be on the same base
the straight determined by their vertices bisects the
base at right angles. )

Ex. 69. Suppose a A to be 3 bars freely ]omted at the
vertices. Is it rigid? Are the z;s fixed and the joints
of no avail? Of what theorem is this a consequence?
How is it with a jointed quadrilateral? Why?

Ex. 70. Joining the bisection-points of the sides of aa
cuts it into 4 =As.

Ex. 71. Joining the bxsectlon-pomts of the consecutive
sides of a quadrilateral makes a | g'm.

Ex. 72. The medians of a quadrilateral and the sect
joining the bisection-points of its diagonals are all three
bisected by the same point.

Ex. 73. If the bisection-points of two opposite sides
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of a || g'm are joined to the vertices the diagonals are tri-
sected.

Ex. 74. The 1s from any point in the base of an + A
to the sides are together an altitude.

Ex. 75. The diagonals of a rectangle are =, of a rhom-
bus are L.

Ex. 76. If 2||s are cut by a transversal, the bisectors
of the interior s make a rectangle.

Ex. 77. The angle-bisectors of a rectangle make a square.

Ex. 78. If the A s adjoining one of the || sides of a trape-
zoid are =, so are the others.

Ex. 79. The bisectors of the interior s of a trapezoid
make a quad’ with 2 r't ¥s.

Ex. 8o. The bisection-point of one sect between |s
bisects any through it.

Ex. 81. The = altitudes in | A make with the base
¥ s= to those made in bisecting the other .

Ex. 82. Through a given point within an ¥ draw a
sect terminated by the sides and bisected by the point.

Ex. 83. Sects from the vertex to the trisection-points
of the base of | A are =.

Ex. 84. If the s made by producing a side of a A are
=, so are the other sides.

Ex. 85. If a quad’ has 2 pairs of congruent consecutive
sides, the other A's are =.

Ex. 86. Two As are = if two sides and one’s median are
respectively =.

Ex. 87. Two + As are = if one ¥ and altitude are = to
the corresponding.

Ex. 88. Two As are = if a side, its altitude and an
adjoining X are respectively =.

Ex. 8¢9. If 2 altitudes are = the A is +.

Ex. go. Two 4s are = if two sides and one's altitude are
= to the corresponding. )

Ex. g1. Two as are = if a side, its altitude and median

are respectively =.
Ex. 92. Two as are = if a side and the other 2 altitudes

are respectively =.
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Ex.93. Two As are = if a side, an adjoining ¥ and
its bisector are respectively =.

Ex. 94. Two equilateral as are = if an altitude is =.

Ex. 95. The bisector is within the ¥ made by altitude
and median.

Ex. 96. In a right A one bisector also bisects x be-
tween its altitude and median.

Ex. 97. Two sects from the vertices of a A to the oppo-
site sides cannot bisect each other.

Ex. 98. The 1s from 2 vertices of a A upon the median
from the third are =.

Ex.99. Two | g'ms having an ¥ and the including
sides = are =.

Ex. 100. The L from the circumcenter to a side is half
the sect from the opposite vertex to the orthocenter.

Ex. 101. The centroid is the trisection point of the sect
from orthocenter to circumcenter remote from the ortho-
center



CHAPTER V.

THE CIRCLE.

106. Definition. If C is any point in a plane «,
then the aggregate of all points A in a, for which
the sects CA are congruent to one another, is called
a circle. [OC(CA).]

C is called the center of the circle, and CA the
radius.

107. Theorem. Any ray from the center of a
circle and in its plane a cuts the circle in one, and
only one, point.

108. Theorem. Any straight through its center
and in its plane a cuts the circle in two, and only
two, points, and these are on opposite sides of its
center.

Proof. On each of the two rays determined in
this straight by the center there is (by III 1) one,
and only one, sect congruent to the radius of the
circle.

109. Definition. A sect whose end-points are on
the circle is called a chord.

110. Definition. Any chord through the center
is called a diameter. '

111. Theorem. Every diameter is bisected by the

center of the circle,
49
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r12. Theorem. No circle can have more than one
center.

Proof. If it had two, the diameter through them
would have two bisection-points, which (by 82) is
impossible. ,

113. Theorem. The straight through the bisection
point of a chord, and the center of the circle, is perpen-
dicular to the chord.

Proof. AACO= ABCO, [Aswith

3 sides = are =]; .. ¥ACO=
¥BCO. But they are adjacent;
N .. by definition COL to AB.

‘114. Corollary to 113. The cir-
cle is symmetrical with regard

A [} B
to any one of its diameters as
F1c. 43. .
axis.

115. Corollary to r13. Ifwith o
the end-points of a sect each of :
two points gives congruent sects
the two determine its perpen-
dicular bisector.

116. Corollary to 115. If two
circles have two points in com-
mon their center-straight is the
perpendicular bisector of their common chord.

117. Theorem. The perpendicular bisecting any
chord contains the center. The perpendicular from
the center to a chord bisects 1t.

Proof. By 113 the three properties pertain to
one straight. But any two suffice to determine that
straight. '

118, Corollary to 117. Every point which taken

o

A 8

Fi1c. 44.
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with two points gives congruent sects is on the per-
pendicular bisector of their sect.

119. Theorem. FEuvery point on the perpendicular
bisector of a sect taken with 1its end-points gives con-
gruent sects.

120. Theorem. A straight cannot have more than
two points in common with a circle.

Proof. If it had a third, then, since (by 117) the
perpendicular bisecting any chord contains the cen-
ter, there would be two perpendiculars from the
center to the same straight, which (by 47) is im-
possible.

121. Theorem. Chords which mutually bisect are
diameters.

Proof. The perpendicular bisector of each con-
tains the center.

122. Theorem. Circles with three points in com-
mon are identical. '

Proof. The center is on the perpendicular b1-
sectors of the chords.

123. Theorem. Any three points not costraight de-
termine a circle.

Proof. If A, B, C be not costraight, bisect (by 82)
AB at D and BC at F by
perpendiculars. [Take (by
III 4) angles= to ¥C in
84.] These perpendiculars F
(by 77) meet, say at O.
Therefore (by 119) AO= * ° B
BO=CO. Therefore A, B, Fic. 45.

C are on the circle with center O and radius AO.
By 122 the three are on no other circle.

O
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124. Corollary to 123 and 120. [Points on the
same circle are called concyclic.] Every three points
are costraight or concyclic. No three points are
costraight and concyclic.

125. Definition. The circle through the vertices
of a triangle is called its circumcircle, ©O(R), and
the center O of the circumcircle is called the circum-
center of the triangle; its radius, R, the circum-radius.

126. Corollary to 123. The three perpendicular
bisectors of the sides of a triangle are copunctal in
its circumcenter.

127. Theorem. The three altitudes of a triangle are
copunctal. ' ‘

Given the A ABC. To prove that the straights
through A, B, C perpendicular to the straights a, b, ¢
respectively, are copunctal.

F1c. 46.
Proof. By 66, through A, B, C take B'C’, A'C",
A’B'|BC, AC, AB respectively. ..AABC=

AABC=A0ABC’ [As with a side and 2 adjoining
¥s= are =]. .© AB'=AC’, and AD is the Lbi’
of B’C’ [L to 1st of 2||s is L to 2nd].

Similarly BELbi’ of A’C’; and CFLlbi’ of A’B’.
~.AD, BE, CF are copunctal by 126.
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128. Definition. The point of cointersection of the
three altitudes is called the orthocenter of the triangle.

129. Theorem. If any ray, /, be taken within a
given angle, % (k, k), the bisectors m, n of the two
angles so made form an angle congruent to each of
the angles made in bisecting the given angle.

Proof. On the other side of % from k take
¥ (h,K)=%(k,n). Then since X (h, n)=x(n,h)
and ¥ (n,k) =% (h, k'), .. (by49) ¥ (h,k)=%(nF).

-
-
-

-

Fic. ;7.
But since X (n,)=%(k, n), .. ¥(n, D=A(, h).
But also X (I, m)=%(h,m). .. (by 49) X(n,m)=

X (¥, m), .. m bisects X(n, k). .". (by 48) x(m, n)
= ¥ (b, h) where b bisects ¥(h, k).

130. Theorem. The bisectors of adjacent angles
make a right angle.

Fic. 48.

Proof. Extend one of the bisectors, as I, through
the vertex O. Then x(V, h)=x(, h’') [vertical
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¥s are =]. .. (by IIIs) x(,h)=%(, k). But
by hypothesis, Xk, m)=x(k, m). . .. (by 49)
¥, m) =4V, m). ..bydefinition ¥(l, m) is right.

Ex. 102. If a straight satisfy any two of the following
conditions it also satisfies the others:

1. Passing through the center.

2. Perpendicular to the chord.

3. Bisecting the chord.

4. Bisecting the angle at the center.

Ex. 103. Every axis of symmetry for a.circle contains
the center.

Ex. 104. Where are the bisection-points of a set of
parallel chords?

Ex. 105. Where are the bisection-points of a set of

" equal chords?

Ex. 106. If from any point three sects drawn to a circle
are congruent, that point is the center.

131. Theorem. If any ray ! be taken without a
given angle, ¥(h, k), and of the two angles so
formed, one, ¥(k, I), be within the other, % (&, I),
then the angle formed by their bisectors, X (b, #),
is congruent to each of the angles as ¥(k, m) made
in bisecting the given angle.

b
!

o
Fic. 49.

Proof. By 129, since k is within X(I, h),
s X(m, n)=%(b, ). -But by hypothesis ¥(n, k)=
¥(, n), .. (by 49) ¥ (k, m)=%(n, b).
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132. Definition. An angle whose vertex is on a
circle of which its sides contain chords is called an
inscribed angle, and said to be upon the chord be-
tween its sides.

133. Theorem. Inscribed angles upon the same
chord and the same side of it are congruent.

Proof. 1st. If the chord BC be a diameter the
straight through the vertex A of A
any inscribed angle and the cen-
ter O makes two isosceles tri-
angles. .'. bisecting ¥xBOF we 8} 2 c
get ¥DOF=¥BAO. In same 4\
way ¥HOF=%CAO. .. (by F H
49) ¥BAC=%DOH, which (by
130) is right.

2d. If the vertex A be on the same side of the
straight BC as the center O,
then sect OA cannot cut BC,
and (by III 1) the center O
is between A and the other
point A’ of the circle on the
straight AO. If now ray OA
be costraight with a side of
¥ BOC, then A AOC being isos-
.celes, the bisector OF of ¥ BOC
makes ¥ FOC=X¥BAC.

Again if ray OA’ is within
¥ BOC, then the bisectors OF
and OH make
4 A'OF = XOAB and
£ A’OH = 4 OAC. .. (by 49) -
¥ BAC = ¥ FOH, which

FiG. so.

Fro. 510
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(by 129) is congruent to each angle made in bisect-
ing BOC.

If, however, ray OA’ is without ¥ BOC, then the
bisector OD of ¥ A’OB makes
¥A’'OD= ¥0AB, and the bi-
sector OE of X A’OC makes
¥A'OE= ¥ 0AC. .. (by 49)
¥ BAC = ¥ DOE, which (by 131)
is congruent to each angle made
in bisecting BOC.

3d. If the vertex A and the “center O be on
opposite sides of the straight BC. Let A’ be the
other point of the circle on the straight AO. Then
the six angles of the two triangles ABC, A’BC to-
gether form four right angles. But by case 1st,
the two angles at C form a right angle, likewise
the two at B. .. ¥ BAC is the A
supplement of ¥ BA'C.

134. Corollary to 133. The
inscribed angle upon a diameter

Cc
is right. 8
135. Definition. A polygon
A

whose sides are congruent and Fic. 54.
whose angles are congruent is called regular.

136. Definition. A polygon whose vertices are
" concyclic is called cyclic.

137. Corollary to 133. In a cyclic quadrilateral
the opposite angles are supplemental.

138. Theorem. If a straight have one point in
common with a circle and be not perpendicular. to the
radius to that point, it has also a second point 1n com-
mon with the circle.
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Let the straight a¢ have the point P in com-
mon with the ©C[CP] and
be not L to CP.

From C dropCM 1 to a.
From M on a set off MP’

=MP.
~.CP'=CP. ..P'ison N
oCI[CP]. Fic. s5.

139. Definition. A straight which has two
points in common with a circle is called a
secant,

140. Theorem. A straight perpendicular to a diam-
eter dt an end-point has only this end-point tn common
with the circle.

Proof. Any chord is (by 117) bisected by the
perpendicular from the center.

141. Definition. A straight which has only one
point in common with a circle is called a tangent to
the circle, and the point is called the point of
contact.

142. Theorem. If BC be perpendicular to AB,

and D any point on the

straight AB other than B,

and on ray CD we take sect
. CF=CB, then F is within

sect CD.
Proof. Otherwise since

ACBEF is isosceles, two an-
gles of a triangle would each be right or each obtuse,
which (by 79) is impossible.

143. Theorem. If the rays of one angle are within
another the angles are not congruent.

F16. 56.
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Proof. For suppose ¥ (h, m)=x(k, I) and
k, 1 within ¥ (h, m). On
the other side of m from
the points of % there is a
ray n such that X (m,n)=
¥ (h, k). .. (by 49) ¥ (k, n)
=4(h, m). .. from our
hypothesis X (&, n)= %X (k, 1),
which (by III 4) is impos-
F16. 57. sible.
144. Theorem. If Pbea pointwithin the triangle
ABC,then angle APC is not congruent to angle ABC.
Proof. The ray BP B
must (by 30) have on it a ’
point D within the sect

AC. ..PD is within

X APC. From P take ¢ u

PF | BC. It makes ¢ D A
X FPD = £CBD. From Fi16. 8.

P take PG| AB. It makes ¥GPD= ¥ ABD.
.. (by 49) ¥ FPG= 4CBA.
If now we supposed ¥ CBA= ¥CPA we should
have ¥ FPG= ¥ CPA, which (by 143) is impossible.
145. Theorem. If two triangles have a side 1n com-

% mon and the angles opposite it
congruent, and with vertices on
the same side of 11, the four ver-

’ tices are concyclic.
\', \ Proof. If the circle through

CU‘ A, B, C did not contain D, then
(by 138) it would have a second

Fi6. s59. point in common with the
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straight AD or CD, or else we would have OCL1CD
and OA1AD.

But in this last case the whole circle except
points A and C would be within ¥ADC. For
the center O would be
within ¥ ADC, being then
on the bisector of ¥ ADC
since, AADC being isos- —
celes, AAOD=aCOD [3
sides=]. Hence the point D
B would be within A ADC,
which (by 144) is impossi-
ble. But it is just as im-
possible that AD or CD
(besides A or C) should have a -point D’ on
the circle other than D. For then we would
have ¥ ADC= ¥ AD'C, which (by 79) is impos-.
sible. _

146. Theorem. If two opposite angles of a quad-
rilateral are supplemental 1t s cyclic.

Proof. Given the X CDA is
the supplement of ¥ B. On the
circle determined by A, B, C take
a point D’ on the same side of
AC as D. Then ¥D'=%D,
being each the supplement of
¥B. ..(by 145) D is concylic
with ACD’, that is, with
ABC.

147. Corollary to 146. A quadrilateral is cyclic
if an angle is congruent to the angle adjacent to
its opposite.

{

Fic. 6o.

F16. 61.
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Ex. 107. Defining a tanchord angle as one between a
tangent to a circle and a chord from the point of contact,
prove it congruent -to an inscribed angle on this chord.

Ex. 108. An angle made by two chords is how related
to the angles at the center on chords joining the end-
points of the given chords?

Ex. 109. The vertices of all right-angled triangles on
the same hypothenuse are concyclic.

Ex. 110. Tangents to a circle from the same external
point are congruent, and make congruent angles with
the straight through that point and the center.

Ex. 111. Two congruent coinitial chords are symmetric
with respect to the coinitial diameter.

Ex. 112. If triangles on the same base and on the same
side of it have the angles opposite it equal, the bisectors
of these angles are copunctal.

Ex. 113. The end-points of two congruent chords of a
circle are the vertices of a symmetrical trapezoid.

Ex. 114. The chord which joins the points of contact
of parallel tangents to a circle is a diameter.

Ex. 115. A parallelogram inscribed in a circle must have
diameters for diagonals.

Ex. 116. Of the vertices of a triangle and its ortho-
" center, each is the orthocenter of the other three.

Ex. 117. At every point on the circle can be taken one,
and only one, tangent, namely, the perpendicular to the
radius at the point.

Ex. 118. The perpendicular to a tangent from the center
of the circle cuts it in the point of contact.

Ex. 119. The perpendicular to a tangent at the point
of contact contains the center.

Ex. 120. The radius to the point of contact is perpen-
dicular to the tangent.

Ex. 121. An inscribed ||g’'m is a rectangle.

Ex. 122. The bisector of any ¥ of an inscribed quad’
intersects the bisector of the opposite exterior ¥ on the 0.

Ex. 123. The ©® with one of the = sides of a +4A as
diameter bisects the base.
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Ex. 124. The radius is = to the side of a regular in-
scribed hexagon.

Ex. 125. If the opposite sides of an inscribed quad’ be
produced to meet, the bisectors of the xs so formed
are 1.

Ex. 126. The circles on 2 sides of a & as diameters in-
tersect on the third side (in the foot of its altitude).

Ex. 127. The altitudes of a & are the X bisectors of its
pedal & (the feet of the altitudes).

Ex. 128. AB a diameter; AC any chord; CD tangent
BD1CD, meets AC on ©B(BA).

Ex. 129. Find a point from which the three rays to three
given points make = xs.

Ex. 130. The circum®s of 3 As made by 3 points on
the sides of a A, 2 with their vertex, are copunctal.

V. The Archimedes Assumption.*

V. Let A, be any point on a straight between any
given points A and B; take then the points 4,, A4,,
A,, ...,suchthat A, lies between A and A,, further-
more A, between A, and A,, further A, between A,
and A,, and so on, and also such that the sects AA,,
AA, AA, A, ..., are congruent; then in the
series of points A,, A,, A,, . . ., there is always such
a point A,, that B lies between A and A,.

148. This postulate makes possible the introduc-
tion of the continuity idea into geometry. We have
not used it, and will not, since the whole of the ordi-
nary school-geometry can be constructed with only
Assumptions I-IV.

* Archimedis Opera, rec. Heiberg, vol. I, 1880, p. 11.



CHAPTER VI.
PROBLEMS OF CONSTRUCTION.

Existence theorems on the basis of assumptions I-V,
and the visual represemtation of such theorems by
graphic constructions.

Graphic solutions of the geometric problems by
means of ruler and sect-carrier.

149. Convention. What are called problems of
construction have a double import. Theoretically
they are really theorems declaring that the exist-
ence of certain points, sects, straights, angles, circles,
etc., follows logically by rigorous deduction from the
existences postulated in our assumptions. Thus the
possibility of solving such problems by elementary
geometry is a matter absolutely essential in the
logical sequence of our theorems.

So, for example, we have shown (in 101) that a
sect has always trisection points, and this may be
expressed by saying we have solved the problem to
trisect a sect. Now it happens that a solution of
the problem to trisect any angle is impossible with
only our assumptions. Thus any reference to re-
sults following from the trisection of the angle would
be equivalent to the introduction of additional

assumptions.
62
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But problems of construction, on the other hand,
may have a reference to practical operations,
usually for drawing on a plane a picture which
shall serve.as an approximate graphic repre-
sentation of the data and results of the existential
theorem.

Our Assumptions I postulate the existence of a
‘straight as the resu]t of the existence of two points.
This may be taken as authorizing the graphic desig-
nation of given points and the graphic operation
to join two designated points by a straight, and as
guaranteeing that this operation can always be
effected. Confining ourselves to plane geometry, on
the basis of the same Assumptions I, we authorize
the graphic operation to find the intersection-point
of two coplanar non-parallel straights, and guaran-
tee that this may always be accomplished.

To practically perform these graphic operations,
that is for the actual drawing of pictures which shall
represent straights with their intersections, we grant
the use of a physical instrument whose edge is by
hypothesis straight, namely, the straight-edge or
ruler.

Thus Assumptions I give us as assumed con-
structions, or as solved, the fundamental problem
of plane geometry:

Problem 1. (a) To designate a given point of the
plane; (b) to draw the straight determined by two points;
to find the intersection of two non-parallel straights.

150. Our.Assumptions III postulate the existence
on any given straight from any given point of it to-
- ward a given side, of a sect congruent to a given sect.
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This may be taken as authorizing and guarantee-
ing the graphic operation involved in what may
be called

Problem 2. To set off a given -sect on a given
straight from a given- point toward a given side.

A physical instrument for actual performance of
this construction in drawing might be called a sect-
carrier. Our straight-edge will also serve as sect-
carrier if we presume that the given sect may be
marked off on it, and it then made to coincide
with the given straight with one of the marked
points in coincidence with the given point of the
straight.

Notice that in these graphic interpretations we
freely use the terminology of motion, while the real
existential theorems themselves are independent of
motion, underlie motion, and explain motion. We
assume that the motion of our physical instruments
is rigid.

151. We now announce the important theorem
that in our geometry all graphic problems can be
solved, all graphic constructions effected, merely by
using problems 1 and 2.

Theorem. Those geometric comstruction problems
(existential theorems) solvable by employing exclu-
sively Assumptions I-V are mecessarily graphically
solvable by means of ruler and sect-carrier.

The demonstration will consist in solving with
problems 1 and 2 the three following problems:

152. Problem 3. Through a given point to draw a
parallel to a given straight.

Given tle straight AB and the point P.
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Construction. Join P with anypoint A of AB by
Prob. 1. On the straight P Q
PA beyond A take (by
Prob. 2) AC=AP. JoinC
with any other point B of
AB. On the straight CB
beyond B take BQ=BC.
PQ is the parallel sought.

Proof. By 98. .

153. Problem 4. To draw a perpendicular to a
given straight.

Construction. Let A be any point of the given

straight. Set off from A
£ on this straight toward

both sides two congruent

sects, AB and AC, and
H_AE then determine on any
two other straights
through A the points E
and D, on the same side
of AB, and such that
AB=AD=AE. Since 7,<ABD and ¥ ACE are
angles at the bases of isosceles triangles, .". they are
acute, .". the straights BD and CE meef in F, and
also the straights BE and CD in H. Then FH is
the perpendicular sought. |

Proof. ¥ BDC and % BEC, as inscribed angles
on the diameter BC, are (by 134) right. Since (by
127) the altitudes of A BCF are copunctd.l . FH is
1 to BC.

154. Problem 5. To set off a given angle against
a given straight, or to construct a straight cutting a

given straight under a given angle.

Fic. 62.

B A c
FiG. 63.
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Given pB the angle to be set off, and A its
vertex.

Construction. We draw, by Prob. 3, the straight
! through A || to the given
straight against which the
given angle B is to be
set off. By Prob. 4 draw a
straight 1| to / and a straight
1 to one side of 3. Through
any point B of the other side
: of 8 draw, by Probh. 3, |s to
these ls. Call their feet C and D. Then (by
Probs. 4 and 3) draw from A a st’ L to CD. Call
its foot E.

Then ¥CAE=pf. So EA will cut the given
straight || to / under the given ¥ 3.

Proof. Since ¥ ACB and # ADB are right, so
(by 146) the four points A, B, C, D are concyclic.
Consequently ¥ ACD= ¥ ABD (by 133) being in-
scribed angles on the same chord AD and on the
same side of it. Therefore their complements
¥CAE= ¥ BAD.

155. This completely demonstrates our theorem,
151, since the existential theorems in Assumptions
IT guarantee the solution of problems requiring no
new graphic operations, such as to find a point within
and a point without a given sect, and certain other
problems of arrangement; while Assumption V
would simply guarantee the finding of a point with-
out a given sect by repeating a certain specific ap-
plication of our Prob. 2.

156. In our geometry, though constantly using

Fic. 64.
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]
graphic figures, we must never rely or depend upon
them for any part of our proof. We must always
take care that the operations undertaken on a figure
also retain a purely logical validity.

157. This cannot be sufficiently stressed. In the
right use of figures lies a chief difficulty of our in-
vestigation.

The graphic figure is only an approximate sug-
gestive representation of the data. We cannot rely
upon what we suppose to be our immediate per-
ception of the relations in even the most accurate
obtainable figure.

In rigorous demonstration, the figure can be only
a symbol of the conceptual content covered by its
underlying assumptions.

The logical coherence should not be dependent
upon anything supposed to be gotten merely from
perception of the figure. No statement or step can
rest simply on what appears to be so in a figure.
Every statement or step must be based upon an
assumption, a definition, a convention, or a preced-
ing theorem.

Yet the aid from figures, from sensuous intuition,
is so inexpressibly precious, that any attempt even
to minimize it would be a mistake. That treat-
ment of a proposition is best which connects it most
closely with a visualization of the figure, while yet
not using, as if given by the figure, concepts not
contained in the postulates and preceding propo-
sitions.

158. As an immediate result of Prob. 5, the proofs
in Chapters 1-V of our existential theorems give ruler
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and sect-carrier soluticns of the corresponding prob-
lems. We will now give some alte.native solutions.
159. Problem 6. At a given point A to make a

right angle.
A Solution. Draw through A

any straight AD, and through
D any other straight BC, and
make AD=BD=CD. Then

8 ° ® is ¥BAC right. [Inscribed
Fi1G. 65. .
angle on a diameter.]

160. Problem 7. From a given point A to drop a
perpendicular upon a given straight BC.

Solution. By Prob. 6, at. A
A construct a rt. ¥ BAC.
Make BD= BA. Draw DE
|AC. Make BF=BE.
Then is AF L BC. 8 FD C

Proof. AABF= ADBE. Fic. 66.

[2 sides and inc. ¥ =.]

161. Problem 8. At any point A on a straight BC
to erect the perpendicular.

Solution. By Prob. 7, from any point without the
straight drop to it a- perpendicular. By Prob. 3,
draw a parallel to this through A.

162. Problem 9. To bisect a given sect AB.

Construction. Draw through
B any other straight BC. Make

€ onit BC=CD=DE. Produce
°® o AE=EF. Draw FDG. Then

2 £ ~ is AG=GB.
F16. 67. Proof. D is the centroid

of AABF.
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163. Problem 5. At a given point in a given
straight to make an angle congruent to a given angle.
Required, against the given
ray AB of a, and toward a
given side of a, the C-side, to
make an angle = ¥ D (given). &

Construction. To one side F a
of the given acute angle erect FmA 68 8
(by 161) FH L DF, meeting o
the other side at H. Take AB=DF and BC1 AB
and BC=FH. .. (byIIlé6) ¥ BAC= ¥ FDH.

164. Problem 10. To bisect a given angle.

Construction. On one
side of the given XA

H c

'cl

B, take any two points B,

C. On the other side

A B c take AB’=AB, and AC’
Fic. 69. =AC. The sects BC’

and B’C intersect, say at D. AD is the desired bi-
sector.

165. Problem. To join two points by an arc con-
taining a grven angle.

Let A, B be the two points, « the given angle.
Make an angle BAC supplemental
to a. Erect the perpendicular to
AC at A, and to AB at the bi- a D a
section-point. Their point of in-
tersection is the center of the
required circle. ¥ AFB=a, e

Proof. Their supplements Fre. 7o.

¥ AOD =¥ BAC (complements of ¥ OAD).
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166. Problem. To describe a circle touching three
given intersecting but not copunctal straights.

Construction. At the
points of intersection draw
the angle-bisectors. From
the cross of any two of
these bisectors, the perpen-
dicular upon either of the
three straights is the radius
of a circle touching all
three. ’

167. Definition. The cointersection-point of the
three bisectors of the internal angles of a triangle, I,
is called the triangle’s in-center [r, the in-radius];
©I(r) the in-circle.

168. Definition. A circle touching one side of a
triangle and the other two sides produced is called
an escribed circle, or ex-©. The three centers I,,
I,, I, of the escribed circles OI,(r)), ©OI,(r,), OI4(rs)
of a triangle are called its ex-centers.

Ex. 131. A right angle can be trisected.

Ex. 132. To construct a triangle, given two sides and
the included angle.

Ex. 133. To construct a triangle, given two angles and
the included side.

Ex. 134. To construct a triangle, given two angles and
a side opposite one of them.

Ex. 135. To describe a parallelogram, given two sides
and the included angle.

Ex. 136. To construct an isosceles triangle, having gwen
the base and the angle at the vertex.

Ex. 137. To erect a perpendicular to a sect at its end-
point, without producing the sect or using parallels.

Hint. At this end-point against the given sect make
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any acute angle. At any other point of the sect make
. toward this a congruent angle.

Beyond the intersection-point of the rays, make on
this second ray a sect congruent to a side of this isosceles
triangle. Its end is a point of the required perpendicular.
" Ex. 138. Construct a circle containing two given points
with center on a given straight.

Ex. 139. To draw an angle-bisector without using the
vertex.

Ex. 140. Through a given point to draw a straight
which shall make congruent angles with two given
straights.

Ex. 141. In a straight find a point with which two
given points give equal sects. :

Ex. 142. From two given points on the same side of a

_straight to draw two straights intersecting on it and

making congruent angles with it.

Ex. 143. To draw a straight through a given point
between two given straights such that they intercept
on it a sect bisected by the given point.

Ex. 144. Through a given point to draw a st’ making
= s with the sides of a given .

Ex. 145. Construct + & from b and h»; from « and b;
from p and a+b; from B and h»;. from b and B; from p
and hp; from p and «; from b and 7.

Ex. 146. Construct r't A from « and he; from « and c;
from ¢ and r; from a and 7; from B and r; from a and
a+b; from R and 7.

Ex. 147. Construct A from p, a, and ha; from p, a,
and B; from its pedal; from b, a+t¢, a; from «a, ks, p;
from I,, I, I,.

Ex. 148. Without prolonging two sects, to find the
bisector of the ¥ they would make.

Ex. 149. Describe © through two given points with
center on given st’; with given radius.

Ex. 150. From one end of the hypothenuse lay off a
sect on it congruent to the 1 from the end of this sect to
the other side.
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Ex. 151. From 4 A cut a trapezoid with 3 sides =,

Ex. 152. To inscribe a sq. in a given r't4 A,

Ex. 153. Find point in side of |+ A& where L erected
and produced to other side is = to base.

Ex. 154. To describe a ©® which shall pass through a
given point and touch a given st’ at a given point.

Ex. 155. AB, AC, BD, CE, are chords. BD | AC,
CE || AB. Then AF | DE is a tangent. o

Ex. 156. To describe a © whose center shall be in one L
side of a r't A while the © goes through the vertex of the

r't ¥ and touches the hypothenuse.
* Ex.157. To describe a © of given radius with center
in one side of a given ¢ and tangent to the other side.

Ex. 158. Construct A from a, «, and that #. trisects a;
from a and orthocenter; from a and centroid.

Ex. 159. Construct A from «, 8, R; from feet of medians;
of altitudes.

Ex. 160. (Brahmagupta.) If the diagonals of an in-
scribed quad’ are .1, the st’ through their intersection
1 to any side bisects the opposite side.



CHAPTER VII.
SIDES, ANGLES, AND ARCS.

169. Convention. When a sect congruent to CD
is taken on sect AB from A and its second end-point
falls between A and B, then AB is said to be greater
than CD; (AB>CD). When an angle congruent
to X (h, k) is set off from vertex O against one of
the rays of ¥ AOB toward the other ray, if its
second side falls within ¥ AOB, then ¥ AOB is said
to be greater than ¥ (k, k). In symbols, ¥ AOB>
% (h, k).

170. Theorem. If the first side of a triangle be
greater than a second, then the angle opposite the first
must be greater than the angle opposite the second.

Given BA> BC. B

To prove ¥C> ¥ A. o

Proof. From B toward A take AA
BD=BC. The end-point D of ¢
this sect then, because BA> BC,
is between A and B, that is within X ACB, as is
therefore also CD. Then is aBDC isosceles,
.. ¥CDB=%¥DCB. ..%¥ACB> ¥ BCD or XCDB.
But (by 79) ¥CDB> £ A.

Fig. 7a.

73
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171. Inverse. If XA> A B, .".a>b.

Proof. [From 57 and 170.]

172. Definition. Except the perpendicular, any
sect from a point to a straight is called an obligque.

173. Theorem. From a point to a
straight any oblique is greater than the
perpendicular.

by Proof. Since¥CABisr’t, .. (by 79)

Fie. 73. ¥A>%B. .. (by171)a>b.

174. Theorem. Amny two sides of a triangle are
together greater than the
“third side.

Proof. On st’ BC, be-
yond C, take CD=CA.

. (bys7)¥CDA =4CAD.
But AC is within ¥ DAB,

¥DAB> ¥DAC=%¥D. o
. (by 171) BD> AB. Fic. 74.

175. Theorem. (The ambiguous case.) If two tri-
angles have two sides of the one congruent respectively
to two sides of the other, and the angles opposite one
pair of congruent sides congruent, then the angles oppo-
site the other pair are either congruent or supplemental.

F1c. 7s.

Hypothesis. AABC and AFGH with ¥A=%F,
AB=FG, and BC=GH.
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Conclusion. ¥C=%H, or #C supplement of
¥H.

Proof. At B against BA take, on the side toward
C, the ¥ABC'=%G. If ray BC’ falls on ray BC,
then (by 80) ¥C=¥H. If not on BC, suppose C’
between C and A. Then (by 44) ¥ BC'A=%¥H,
and BC'=GH=BC. .. (by3s7) ¥BC'C=%C.

176. Corollary to 175. Two triangles are con-
gruent if they have two sides and the angle opposite
the greater respectively congruent.

177. Definition. A triangle one of whose angles
is a right angle is called a right-angled triangle,
or more briefly a right triangle. The side opposite
the right angle is called the hypothenuse.

178. Corollary to 176. Two right-angled trian-
gles are congruent if the hypothenuse and one side
are respectively congruent.

Ex. 161. If two triangles have two sides of the one respec-
tively congruent to two sides of the other, and the angles
opposite one pair of congruent sides congruent, then if
these angles be not acute the triangles are congruent.

Ex. 162. If two triangles have two sides of the one
respectively congruent to two sides of the other, and
the angles opposite one pair of congruent sides congruent,
then if one of the angles opposite the other pair of con-
gruent sides is a right angle the triangles are congruent.

Ex. 163. If two triangles have two sides of the one
respectively congruent to two sides of the other, and
the angles opposite one pair of congruent sides congruent,
then if the side opposite the given angle is congruent to
or greater than the other given side the triangles are
congruent.

Ex. 164. If any triangle has one of the followmg proper-
tles it has all:
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. Symmetry.

. Two congruent sides.

. Two congruent angles.

. A median which is an altitude.

. A median which is an angle-bisector.

. An altitude which is an angle-bisector. .

7. A perpendicular side-bisector which contains a
vertex.

8. Two congruent angle-bisectors.

Ex. 165. The difference of any two sides of a triangle
is less than the third side.

Ex. 166. From the ends of a side of a triangle the two
sects to a point within the triangle are together less than
the other two sides of the triangle, but make a greater
angle.

Ex. 167. Two obliques from a point making congruent
sects from the perpendicular are congruent, and make
congruent angles with the straight.

Ex. 168. Of any two obliques between a given point
and straight that which makes the greater sect from the
foot of the perpendicular is the greater.

Ex. 169. Of sects joining two symmetrical points to a
third, that cutting the axis is the greater.

At bW N~

179. Theorem. If two triangles have two sides of
the one respectively congruent to two sides of the other,
then that third side is the greater
which 1s opposite the greater
angle.

Proof. Take the triangles
with one pair of congruent
sides in common, BC, and on
the same side of BC the other
pair of congruent sides, BA, BA’. The bisector
of £ ABA’, being within ¥ ABC, meets AC at a
point G. Then (by 43) AABG=28A'BG. ..AG
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=A’G. But (by 174) A’G and GC are together
greater than A’C.

179”. Inverse of 179. If two triangles have two
sides of the one respectively congruent to two sides
of the other, then, of the angles opposite their third
sides, that is the greater which is opposite the
greater third side.

Ex. 170. Two right triangles are congruent if the hy-
pothenuse and an acute angle are congruent, or if a per-
pendicular and an acute angle are congruent to a per-
pendicular and the corresponding acute angle.

Ex. 171. Given AB a sect, C its bisectiop-point, PA =
PB. :

Prove PC1AB.

Ex. 172. Inverse. GivenCP Lbi’of AB. Prove PA=PB.

Ex. 173. Given PM1AM =PN1AN. Provef PAM =
¥ PAN or its complement. .

Ex. 174. Inverse. Given A PAM = PAN. Prove
PM1 AM =PN1 AN. :

180. Definition. If AB is a diameter of a circle
with center C, then the two points of the circle on
any other diameter, being on opposite sides of C,
are (by 25) on opposite sides of the straight AB.
Hence the points of the circle other than the
points A, B, are separated by AB into two
classes of points uniquely paired. One of these
classes together with the point A is called a
semicircle. The other, with B, is the associated
semicircle; A and B are called end-points of each
semicircle.

181. Definition. If A, D are two points on the
circle with center C, then, since (by 142) the end of
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the perpendicular from C to the straight AD falls
within a radius, therefore the
points of the circle are not all
on the same side of the secant
AD. Hence the points of the
circle other than the points
Avo A, D are separated by AD into
two classes of points. One of
these classes, together -with
the point A, is called an arc. The other, with the
point D, is called the associated or explemental arc.
A and D are called end-points of each arc.

Of these two arcs the arc on the side of AD re-
mote from the center is called the minor arc. The
arc on the same side of AD as the center is called
the major arc. The chord AD is said to be the
chord of each of the two arcs. Thus to every arc
pertains a chord, and to every chord pertain two

arcs.
7‘:\ i ; c\’
A B A B’

Fie. 77.

Fic. 78.

182. Definition. Two arcs AB, A’B’, are called
congruent when, the end-points being mated, to
every point C of the first arc corresponds one, and
only one, point C’ of the second, such that AC=A'C
ani BC=B'C".
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.183. Corollary to 182. Congruent arcs have con-
gruent chords.

184. Definition. An angle having its vertex at
the center of the circle is called an angle at the center,
and is said to ¢utercept the arc and chord, whose
end points are on the angle’s sides and whose other
points are within the angle.

185. Theorem. In a circle or tn circles with con-
gruent radii, congruent angles at the center iniercept
congruent arcs.

A B8 Iy B
Fic. 79.

Given ¥ ACB=4$A'C'B’.

To prove the minor arc AB=minor arc A’B’.

Proof. Since (by 43) AACB=4A'C'B’; ". AB=
A'B'.

Moreover, if D is any point within arc AB then
ray CD is within ¥ ACB. Hence (by 48) there is
within ¥ A’C’B’ a ray C'D’ meeting arc A’B’ in D',
which makes ¥ A’C'D'=4$ACD and ¥B'C'D'=
XBCD. .. (by 43) A’D’=AD and B'D'=BD.

Also any point D’ of the minor arc A’B’ such that
A’'D"=AD would (by 58) be on the ray making
X A'C'D" =4 ACD= % A’C'D’, and hence identical
with D'.
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186. Corollary. Any arc may be bisected.

187. Theorem. Amny two congruent arcs have con-
gruent radii.

Given arc AMB=arc A'M'B’

To prove CA=C"A’.

M ™M

[+

)N

Fic. 8o.

Proof. The bisector of ¥ ACB cuts arc AMB in
a point M such that, (by 43) AACM=AaBCM.
s.AM=BM and ¥ BMC= ¥ AMC. From hypoth-
esis there is a point M’ of arc A’M’B’ such that
AA’M’B’E AAMB. . A'M'=B'M’.
‘. (by 58) AA’M'C'=20B'M'C".
A A'M'C’'=4B'MC.
‘. (by 48 and 84) X A'M'C’'= 4 AMC.
‘. (by 44) the two isosceles triangles A AMC=
AA’M'C’. SLAC=AC.
188. Inverse of 185. Congruent minor arcs are
intercepted by congruent angles at the center.
Proof. Since from hypothesis chord AB=chord
A’'B’, . (by 187 and 58) AACB=AA'C'B’.
. ¥ACB= ¥A'C'B’.
189. Theorem. In a circle or in circles with con-
gruent radit, congruent chords have congruent minor
arcs.
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For the angles at the center on the congruent
chords are congruent (by 58) [As with 3 sides=].
.. (by 185) the minor arcs they intercept are con-
gruent. :

190. Theorem. Given a minor arc and a circle of
congruent radius. There are on the circle two and
only two arcs with a given end-point, congruent to the
given arc.

Proof. An angle at the center which intercepts
the given arc can be set off (by III 4) once and
only once on each side of the radius to the given
point.

191. Theorem. From any point of a circle there
are not more than two congruent chords, and the chords
are congruent in pairs, one on each side of the diameter
from that point.

Proof. If AB is any chord, B
take at center C on the other side
of AC, the ¥ACB'= 4 ACB,

C

..by 43, AACB'=20ACB. A
- AB'=AB. .
Moreover, were B’ the end- .
point of a third chord from A Prc. B1.

congruent to AB and to AB’,
then B, B’, B"” would be at once on ©C(CA) and
O©A(AB), which, by 122, is impossible.

192. Definition. If all the points of one arc are
points of a second, but the second has also points
not on the first, then the second is said to be greater
than the first and any arc congruent to the second
is said to be greater than any arc congruent to the
first.
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193. Theorem. In a circle or in circles with con-
gruent radii, of two angles at the center, the greater
intercepts the greater arc and chord.

Hypothesis. CA=C'A’. ¥ ACD> £ A’C’'B'.

Conclusion. Arc AD>arc A’B’.

D
B B

Fic. 82.

Proof. From C against CA toward D, (by III 4)
take ¥ ACB= 5 A'C'B’. Then from hypothesis
ray CB is within X ACD.

.. B is within arc AD.

». (by 192) arc AD>arc AB. But (by 185)
arc A'B’=arc AB. .. (by 192) arc AD>arc
A'B.

Moreover A A’C’B’ has two sides C’A’, C’B’=CA,
CD of AACD, but XACD> £ A’C'B’, .'. (by 179)
AD> A'B'.

194. Inverse of 193. In a circle or in circles
with congruent radii the greater chord has the
greater angle at the center and the greater minor
arc.

For (by 179%) it has the greater angle at the cen-
ter, and .., by 193, the greater minor arc.

195. Inverse of 193. In a circle or in circles
with congruent radii, the greater minor arc has
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the greater angle at the center and the greater
chord.

196. Theorem. In a circle or in circles with con-
gruent radii, congruent chords have congruent perpen-
diculars from the center, and the lesser chord has the
greater perpendicular.

Proof. Of two chords from A on the same side of
the diameter AC, one, say AD, is (by III 4) without
the angle CAB made by the D

other, and hence its end-point 0 8
D is on the minor arc AB. Hence / < //
(by 195) ¥ ACB> ¥ACD and , o
AB> AD.

Moreover, the sect from the
center to the bisection-point of
AD, since D and so every point
of AD is on the opposite side of AB from C, crosses
the straight AB and .. (by 142) is >the perpen-
dicular from C to AB.

Moreover, congruent chords anywhere have con-
gruent perpendiculars (by 178).

197. Inverse of 196. In a circle or in circles with
congruent radii, chords having congruent perpen-
diculars from the center are congruent, and the
chord with the greater perpendicular is the lesser.
For (by 196) it cannot be greater nor congruent.

Fic. 83.

Two Circles.

108. A figure formed by two circles is symmetrical
with regard to their center-straight as axis.
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Every chord perpendicular to this axis is bisected
by it.

If the circles have a common point on this straight
they cannot have any other point in common, for
any point in each has in that its symmetrical point
with regard to this axis, and circles with three points
in common are identical.

199. Two circles with one and only one point in
common are called tangent, are said to touch, and
the common point is called the point of tangency
or contact.

200. If two circles touch, then, since there is only
one common point, this point of contact is on the
center-straight, and a perpendicular to the center-
straight through the point of contact is a common
tangent to the two circles.

Ex. 175. Two circles cannot mutually bisect.

Ex. 176. The chord of half a minor arc is greater than
half the chord of the arc.

Ex. 177. In a circle, two chords which are not both
diameters do not mutually bisect each other.

Ex. 178. All points in a chord are within the circle.

Ex. 179. Through a given point within a circle draw the
smallest chord.

Ex. 180. Rays from center to intersection points of a
tangent with || tangents are L. '

Ex. 181. A circle on one side of a triangle as diameter
passes through the feet of two of its altitudes. :

Ex. 182. In + AABC if D on AB=BC, prove CD> AD.

Ex. 183. A circumscribed parallelogram is a rhombus.

Ex. 184. In AABC, having AB> BC, the median BD
makes ¥ BDA obtuse.

Ex. 185. If AB, a side of a regular A, be produced
to D, then AD>CD> BC.

Ex. 186. If BD is bisector t», and AB> BC, then BC>CD,
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Ex. 187. How must a straight through one of the
common points of two intersecting circles be drawn in
order that the two circles may intercept congryent chords
on it?

Ex. 188. Through one of the points of intersection of
two circles draw the straight on which the two circles
intercept the greatest sect.

Ex. 189. If any two straights be drawn through the
point of contact of two circles, the chords joining their
second intersections with each circle will be on parallels.

Ex. 190. To describe a © which shall pass through a
given point, and touch a given O in another given
point.

Ex. 191. To describe a © which shall touch a given
O, and touch a given st’ [or another given ©] at a given
point.

Ex. 192. The foot of an altitude bisects a sect from
orthocenter to circum-©.

Ex. 193. If from the end-points of any diameter of a
given © 1s be drawn to any secant their feet give with
the center = sects.

Ex. 194. A, B, I, I. are concylic.

Ex. 195. If & meets circum-0© in D, then DA =DC =DI.

Ex.196. The 1s at the extremities of any chord
make = sects on any diameter.

Ex. 197. If in any 2 given tangent ©s be taken any
2 || diameters, an extremity of each diameter, and the
point of contact shall be costraight.

Ex. 198. If 2 Os touch internally, on any chord of one
tangent to the other the point of contact makes sects
which subtend = X s at the point of tangency of the Os.

Ex. 199. 2ms> = <a according as (A acute, r't,
obtuse.

Ex. 200. Chords joining the end-points of | chords
are =.

Ex. 201. St’ through point of tangency meets O O at A,
@0’ at A’. Prove AO | A'O'.
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Ex. 202. Intersecting Os are + with regard to their
center-st’ and if = are + with regard to their common

- chord. _
Ex. 203. Find the t1 of an ¥ without using its vertex.

Ex. 204. A quad’ with 2 sides | and the others = is
either a ||g’'m or a symtra.



CHAPTER VIII.
A SECT CALCULUS.

201. On the basis of assumptions I 1, 2,and II-IV,
that is, in the plane and without the Archimedes
assumption, we will establish a sect calculus or
geometric algorithm for sects, where all the oper- .
ations are identical with those for real numbers.
" The following proof is due to F. Schur.

202. (Pascal.) Let A, B, C and A’, B’, C’ be two
triplets of points situated respectively on two per-
pendiculars and distinct
from their intersection
point 0. If AB’is par-
allel to A’B and BC’
parallel to B’C, then is
also AC’ parallel to A’C.

Proof. Call D’ the
point where the perpen-
dicular from B upon the
straight A’C meets the
straight B’A’. Then C
is the orthocenter of the |/
triangle BA’D’; therefore ¢
D'CLA’'Band ... LAB'. Fro. 84.

Consequently C is also the orthocenter of the tri-
87
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angle AB’D’; .. AD’ 1L B’C and .". also | BC’. Con-
sequently B is the orthocenter of triangle AC'D’;
. AC'1LD'B and ... AC'|A’C.

203. Instead of the word ‘“‘congruent’ and the
sign =, we use, in this sect calculus, the word
“equal’’ and the sign =.

204. We begin by showing how from any two
sects to find unequivocally a third by an operation
we will call addition.

205. If A, B, C are three costraight points, and B
:lies between A and C, then we designate c=AC as
the sum of the two sects a=AB and b=BC, and
write to express this c =a +b.

B
a Le b_..-__.q
o
LY reees— gy, S———
Fic. 85

To add the two sects a and b in a determined
order, we start from any point A, and take the point
B such that AB=, thatis =a. Then on the straight
AB beyond B we take the point C such that BC =b.
Then the sect AC is what we have designated as the
sum of the two sects a=AB and b =BC in the order
a+b.

206. From III 3 follows immediately that this
sum is independent of the choice of the point A,
and independent of the choice of the straight AB.

By III 1, it is independent of the order in which
the sects are added. Therefore a+b=b+a.

207. This is the commutative law for addition.
Thus the commutative law for addition holds good,



A SECT CALCULUS. 89

is valid, for our summation of sects. But this law
is not at all self-evident, and expresses no general
magnitude relation, but a wholly definite geometric
fact; for a, b are throughout not numbers, but only
symbols for certain geometric entities, for sects.

208. The sects a and b are called less than C; in
symbols: a<c¢, b<c; and ¢ is called greater than ¢
and b; in symbols ¢>a, ¢>b.

209. To add to a+b a further sect ¢, take on
straight AB beyond C the sect CD=c. Then the
sect AD=(a+b)+c. But this same sect AD is, by
the given definition of sum, also the sum of the sects
AB and BD, that is of the sects a and (b +¢).

Thus a+ (b+¢) =(a+b) +c¢, and so is verified and
valid what is called the associative law for addition.

210. To define geometrically the product of a sect
a by a sect b, we employ the following construction.
We choose first an arbitrary sect, which remains the
same for this whole theory, and designate it by 1.
This we set off from their inter-
section point on one of two per- “
pendicular straights. On the

. other we set off on one ray a, on
the other b. The circle through
the free end-points of 1, a, b de-
termines on the fourth ray a sect
¢. Then we name this sect ¢ the
product of the sect a by the sect b; and we write
c=ab.

By = Asand 133, ab=ba. This is the commuta-
tive law for multiplication.

211. Considering the triangle of the end-points of

Fic. 86.
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1 and g, it is equiangular to that of the end-points
of b and ¢. This gives as an easy construction for
our sect product the following:

Set off on one side of a right angle, starting from
the vertex O, first the sect 1 and then, likewise from
the vertex O, the sect b. Then
set off on the other side the
ab sect a. Join the end-points
a of the sects 1 and a, and draw

\ a parallel to this straight
through the end-point of the
€ t b sect b. The sect which this
Fic. 8. parallel determines on the
other side is the product ab; or we may call it ba,
since, as we have already seen, ab=ba, which is
also given by the fact that the triangle of the end-
points of 1 and b is equiangular to that of the
end-points of @ and c.

212. We emphasize that this definition is purely
geometric; ab is not at all the product of two num-
bers. '

213. To prove for our multiplication the asso-

da=(bc) a
e=ba
d=bec
b \
1 c a
Fi1c. 88.
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ciative law for multiplication a(bc) =(ab)c we con-
struct first the sect d=bc, then da, further the
sect e=ba, and finally ec. The end-points of da
and ec coincide (by Pascal), and by the commuta-
tive law follows the above formula for the associa-
tive law of sect multiplication.

214. Finally is valid in our sect-calculus also
the distributive law a(p+c) =ab+ac.

To demonstrate it we construct the sects ab, ac,
and a(b+c), and draw through the end-point of
the sect ¢ (see Fig. 89) a parallel to the other side
of the right angle. The congruence of the two
right-angled triangles shaded in the figure and
the application of the theorem of the equality of

a(b+c)

ac
a
ab

%

h 1 c b+e
Fic. 89.

opposite sides in the parallelogram give then the
desired proof.

"~ 215. If b and ¢ are any two sects, there is always
one and only one sect @ such that c=ab; this sect

ais designated by the notation %, and is called the

quotient of ¢ by b.
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The Sum of Arcs.

216. Definition. If @ and b are two arcs with
equal radii, their sum, a+b, is the arc obtained
by taking together as one arc the arc a and an arc
congruent to b having as one of its end-points an
end-point of @ and its points taken as outside of a.

"~ 217. Theorem. In the same circle or in circles
with equal radii, if minor arc @ =minor arc a’ and

B'

D A D, A

FiG. §o.

minor arc b=minor arc b, then arc (a+bd)=arc
(a’ +b).

Let minor arc AB=a and minor arc BD =b,
minor arc A’B’=a’ and minor arc B’D’ =b’.

To prove arc ABD=arc A’B'D’.

Proof. ACBF=AC'B'F’ (two sides and in-
cluded ¥) .. 4{CBF=xC'B'F’. In same way
¥CBH=¥C'B'H’. ..(by49) ¥HBF={H'B'F'.
.. (two sides and included %) chord AD =chord
A'D’. .. (by 189) minor arc AD=minor arc A’D’;
and if @ +b is minor, so (by inverse of 133) is a’ +b'.
But if a+b be not a minor arc, then if P be any
point on the semicircle or major arc a+b, take
4 D'C'P'= 5 DCP with P’ on the same side of
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D'C’ with reference to A’ as P of DC with reference
to A. Thus D’P’=DP, also xDPA=xXD'P'A’

)

Fic. 91.

and ¥ DAP=xD'A’P’, since A and A’ are on the
same side of DP and D'P'. .. AAPD=AA'P'D".

218. Definition. If an angle at the center is
right the arc it intercepts is called a guadrant.

219. Corollary to 217. In a circle or in circles
with equal radii the sum of any two quadrants is
congruent to the sum of any other two, and all
semicircles are congruent.

A circle is the sum of two semicircles or four
quadrants.

Congruent major arcs are the sums of con-
gruent semicircles and congruent minor arcs.

220. Convention. We may look upon a semi-
circle as an arc whose chord is a diameter, and
we may look upon a whole circle as a major arc
whose two end-points coincide. The explemental
minor arc will then be one single point.

We may even think of arcs on a circle greater
than the whole circle. In such a case certain
points on the circle are considered more than once.

221. Any arc may now be expressed as a sum
of a number of quadrants and a minor arc.
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The Sum of Angles.

222. Definition. The sum of two acute angles
or of a right angle and an acute angle is the angle
obtained by setting off one against thc uther from
its vertex with no interior point in common, and
then omitting the common ray.

The sum of any two or more angles is an aggre-
gate of right angles and one acute angle such that,
taken as angles at the center of any one circle, the
sum of the intercepted quadrants and the arc inter-
cepted by the acute angle equals the sum of the
arcs intercepted by the angles to be added together.

223. Corollary to 79. The sum of the three
angles of any rectilineal triangle is two right angles.

The sum of two supplemental angles is two right
angles. ’

224. In the familiar terminology of motion
circles with equal radii are called congruent, and
we say they can be made to coincide if the center
of one be placed on the center of the other. ,

Since, in their congruence, any one given point of
the one can be mated with any point of the other, we
say, after coincidence the second circle may be turned
about its center, and still coincide with the first.

Hence also a circle can be made to slide along itself
by being turned about its center. This expresses a
fundamental characteristic of the circle. It allows
us to turn any figure connected with the circle about
the center without changing its relation to the circle.
Such displacement is called a rotation. '

A displacement of a figure connected with a
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straight, in which the straight slides on its trace,
is called translation.

That translation can be effected without rotation
is an assumption about equivalent to the parallel
Assumption IV.

225. Theorem. The diameter perpendicular to a
chord bisects the angle at the center, and the two
arcs, minor and major, made by the chord.

226, Convention. Parallel secants or parallel
chords are said to intercept the two arcs whose
points are between the paralldls.

227, Theorem. Parallel chords intercept congruent
arcs.

Given ABJ|A’B’.

To prove minor AA’=minor
arc BB’.

Proof. If CD 1 AB then also
(by 74) CD LA’B’. Then (by
117 and s8) ¥ ACD=¥BCD
and ¥A’CD=%B'CD. .. (by
49) ¥ ACA’=«BCB'. .. (by Fic. ga.

185) minor arc AA’=minor arc BB’.

228, Theorem. If a simple plane polygon be cut
into triangles by diagonals within the polygon the sum
of their angles, together with four right angles, equals
twice as many right angles as the
polygon has sides.

Proof. By a diagonal within
\| the polygon cut off a triangle.
This diminishes the number of
sides by one and the sum of the
angles by two right angles. So reduce the sides

A

A

F10. 93.
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to three. We have left two more sides than pairs
of right angles.

229. Definition. The exterior angle at any ver-
tex of a polygon is the angle between a side and the
ray made by producing the other side through the
vertex.

230. Theorem. In any convex plane polygon the
sum of the exterior angles, one at each vertex, is four
right angles.

Proof. The exterior angle is the supplement of
the adjacent angle in the polygon. This pair gives
a pair of right angles for every side. But (by 228)
the angles of the polygon give a pair of right angles
for every side except two.

Ex. z05. In r'ta, he makes ys= to « and 8.

Ex. 206. Always mc <}(a+b).

Ex. 207. From point without acute ¥ «, Lls to sides
make A =a.

Ex. 208. The sect joining the bisection-points of the
non-|| sides of a trapezoid is || to the || sides and half their
sum.

Ex. 209. How many sides has a polygon, the sum of
whose interior ¥s is double the sum of its exterior ys?

Ex. 2z10. How many sides has a regular polygon, four
of whose Xs are together 7 r't ys? '

Ex. 211. The trisection-points of the sides of an equi-
lateral A form a regular hexagon.

Ex. 212. The 1 s from A and B upon m. are =.

Ex. 213. Find the sum of 3 non-consecutive ¥s of an
inscribed hexagon.

Ex. 214. Construct + 4 from b and a+hs; from g
(or M) and perimeter.

Ex. 215. The sum of the three sects from any point
within a A to the vertices is < the sum and > 3§ sum
of the 3 sides.
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Ex. 216. Construct +r't A from b+c.

Ex. 217. In a given st’ find a point to which sects from
g given points have the least sum.

Ex. 218. The sum of the medians in A is < the sum
and > & sum of sides.

Ex. 219. Construct A from a«—8 and ¢. A from a, 8,
r; A from «, 8, R.

Ex. 220. The sum of 2 opposite sides of a circumscribed
quad’ is half the perimeter. The sum of the Xs they sub-
tend at the center is 2z r't Xs.

Ex. 221. In r'tA, a+b=c+2r=2R+2r.

Ex. 222. From the vertices of A as centers find 3 radii
which give ©s tangent, two and two.

Ex. 223. If H is orthocenter, the 4 circum-0s of A, B,
C, H are =.

Ex. 224. Of I, I,, I,, I,, each is the orthocenter of the
other 3, and the 4 circum-Os are =.

Ex. 225. If, of a pentagon, the sides produced meet,
the sum of the ys formed is 2 r't ys.

Fx. 226. If hy meets b at D, construct A from h, a—AD,
¢—CD.

Ex. 227. A quad’ is a trapezoid if an opposite pair of
the 4 As made by the diagonals are =.



CHAPTER IX.
PROPORTION AND THE THEOREMS OF SIMILITUDE.

231. With help of the just-given sect-calculus
Euclid’s theory of proportion can in the following
manner be established free from objection and with- °
out the Archimedes assumption.

232. Convention. If a, b, a’,b" are any four sects,
then the proportion a:b=a’: b’ shall mean nothing
but the sect equation ab’ =ba’.

233. Definition. Two triangles are called similar
if their angles are respectively congruent. Sides
between vertices of congruent angles are called cor-
responding. _

234. Theorem. In similar triangles the sides are
proportional.

Given a, b and a’, ¥’ corresponding sides in two
similar triangles.

b To prove the proportion
a:b=a':?. '

"~ Proof. We consider first

e the special case, where

\ the angles included by g,

> 7 b and d’, b’ in the two tri-

F16. 94. angles are right, and sup-

pose both triangles on the same right angle. We
98
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then set off from the vertex on one side the sect 1,
and take through the end-point of sect 1 the parallel
to the two hypothenuses. This parallel determines
on the other side the sect e. Then is, by our defini-
tion of the sect-product, b=ea, b’=ea’. Conse-
quently we have ab’=ba’, that is, a:b=a’: V.

We pass now to the general case. Construct in
each of the two similar triangles the in-center I,
respectively I’, and drop
from these the three per-
pendiculars 7, respect-
ively 7/, on the triangle’s
sides. Designate the re-
spective sects so deter-
mined on the sides of the
triangles by a, a., be, bs, Fic. 95.

Ca, b, respectively ay', a/, b/, bd, ¢i, &’. The just-
proven special case of our theorem gives then the
proportions ’
ap:r=ay:r, b.:r
as:r=al:7, bg:r

=b':7,

=b/: 7.

From these we conclude by the distributive law
a:r=a’:7, b:r=b:7,

a.nd consequently, in virtue of the commutative
* law of multiplication,

ca:a’ =r:r=b:b, and a:b=a":b.

235. From the just-proven theorem (234) we get
easily the fundamental theorem of the theory of
proportion, which is as follows:
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Theorem. If two parallels cut off on the sides of
any angle the sects a, b, respectively a’, &', then
holds good the proportion a:bp=a’:b’. Inversely,
when four sects a, b, @’, b’ fulfill this proportion, if
the pairs a, @’ and b, b’ are set off upon the respective
sides of any angle, then the straight joining the end-
points of @ and b is parallel to that joining the end-
points of a’ and b'.

Proof. First, since parallels make with the sides
of the given angle similar triangles,
therefore (by 234) a:b=a":b".

o/ o Second, for the inverse. Through
the end-point of @’ draw a parallel
i . to the straight joining the end-

7 \,, points of a and b, and call the sect
b it determines on the other side 4",
Fic. o6: Then by First a:b=a’:b"”. But

by hypothesis a:b=a’:b'. ..b"=V.

236. Thus we ‘have founded with complete rigor
the theory of proportion on the basis of the
Assumption-groups I-IV.

237. Corollary to 235. If straights are cut by
any number of parallels the corresponding inter-
cepts are proportional. ,

238. Corollary to 234. Parallels are divided
proportionally by any three copunctal transversals.

239. Corollary to 235. Two triangles are similar
if they have two sides proportional and the in-
cluded angles congruent.

240. Definition. A point P, costraight with AB,
but without the sect AB, is said to divide the
sect AB externally into the sects PA, PB.
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241. Corollary to 235. A sect can be divided
‘nternally or externally in proportion to any two
unequal given sects. The point of internal divi-
sion is unique; likewise the point of external divi-
sion.

242. Theorem. The bisector of any angle of a

c D, A Ds

Fi1c. 9.

triangle or of its adjacent angle divides the opposite
side in proportion to the other two sides..

[Proof. Take AF | to bisector BD. Then
BF =¢]

243. Definition. A sect divided internally and
externally in proportion is said to be divided har-
monically, and the four points are called a harmonic
range. '

244. Theorem. A perpendicular from the right
angle to the hypothenuse divides a right-angled tri-
angle into two others stmilar to it, and is the mean
proportional between the parts of the hypothenuse.
Each side is the wmean propor- 8

tional between the hypothenuse and
ils adjoining part.

Proof. The r't AABC ~ rt® © A
AABD, since ¥ A is common. Fic. 98.
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245. Corollary to 244. The
perpendicular from any point
a in a circle to the diameter is the
mean proportional between the
parts of the diameter.

o

()

Fic. 99. ‘

246. Theorem. The square of the hypothenuse
equals the sum of the squares of the two'sides.

Proof. AC:AB=AB:AD,thatis, AB*=AC-AD.
Same way BC?*=AC-DC. Now add.

.. AB*+BC*=AC(AD+DC)=AC*

247. Theorem. Triangles having their sides taken

in order respectively proportional are similar.

Fie. 100.

In the triangles ABC and A’B’C’ let AB:A'B’ =
AC:A'C'=BC:B'C'.

To prove that the triangles ABC and A’B'C’
are similar (~).

Proof. Upon AB take AF=A’B’, and upon
AC take AH=A'C'’. Then AB:AF=AC:AH.
. (by 239) AABC ~ to aAFH. ..AB:AF=
BC:FH. But by hypothesis AB:AF =BC:B'C’.
~.FH=BC". S.AAFH=AA'B'C’ [3 sides=).
s.AABC ~ AA'B'C.
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248. Theorem. The product of the sects into
which a given point divides chords of a given circle
s constant.

D

F1c. 1o1.

Hypothesis. Let chords AB and- CD intersect
in P.

Conclusion. AP-PB=CP-PD.

Proof. ¥ PAC=%PDB (by 133), and

¥APC=¥BPD; .. AAPC~2BPD.

249. Corollary to 248. . From a point taken on a
tangent the square on the sect to the point of con-
- tact equals the product of the sects made on any
secant.

The Golden Section.

250. Problem. To divide a sect so that the product
of the whole and one part equals the square of the
other part.

Required on AB to find P such that AB-PB =
AP3, .

Construction. Draw BC L BA and =3AB On
the straight AC take D between A and C, and E
beyond C such that CD=CB=CE. Take AP=AD
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and AP'=AE. P and P’ divide AB internally
and externally in the golden section.
Proof. By 249, AB*<AD-AE=AP(A’+AB)
=AP*+AP-AB.
.AB(AB-AP)=AP?*. ..AB-PB=AP?
Again, AB*=AE-AD=P'A(AE —-DE)
=P'A(P'A-AB)=P'A*-AB-P'A.
.AB(AB+P'A)=P'A% ‘
~.AB-P'B=P'A*.

m

g - P B
Fi1c. 102
251. Corollary to 250. If a is any sect divided
in the golden section, its greater part x=92-[(5)* - r].
a( s)‘*’)Q

2

2
For (by 246) AC’=AB’+BC’=a’+%=<

+. AP=AD=AC-CD=}a(s){-2.

252. Theorem. The products of opposite sides
of a momn-cyclic quadrilateral
are together greater than the
product of its diagonals.

o Proof. Make XBAF=
¥CAD, and ¥ ABF=
¥ ACD. Join FD.

Pro. 1o3. ¢ Then AABF~AACD,

.BA:AC=FA-AD.
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But this shows (since ¥BAC=xFAD),
ABAC~AFAD.

From AABF~aACD, ..AB-CD=BF-AC.

From ABAC~aAFAD, ..BC-AD=FD-AC.
.. AB-CD+BC-AD=BF-AC+FD-AC>BD-AC.

253. Corollary to 252 (Ptolemy). The product
of the diagonals of a cyclic quadrilateral equals
the sum of the products of the opposite sides.
(For then F falls on BD.)

254. Definition. Similar polygons are those of
which the angles taken in order are respectively
equal [7.e., congruent], and the sides between the
equal angles proportional.

255. Theorem. Two similar polygons can be
divided into the same number of triangles respect-
ively similar.

256. Theorem. If a cyclic polygon be equilateral
it is regular.

Ex. 228. If AB is divided harmonically by P, P’, then
PP’ is divided harmonically by A, B.

Ex. 229. If two triangles have the sides of one respect-
ively parallel or perpendicular to the sides of the other
they are similar.

Ex. 230. The corresponding altitudes of two similar tri-
angles are proportional to any two corresponding sides.

Ex. 231. To divide a sect into parts proportional to given
sects.

Ex. 232. A sect can be divided into any number of
equal parts.

Ex. 233. To find the fourth proportional to three given
sects.

Ex. 234. To find the third proportional to two given sects.

Ex. 235. If three non-parallel straights intercept pro-
portional sects on two parallels they are copunctal.
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Ex. 236. Every equiangular polygon circumscribed
about a circle is regular.

Ex. 237. Every equilateral polygon circumscribed about
a circle is regular if it has an odd number of sides.

Ex. 238. Every equiangular polygon inscribed in a
circle is regular if it has an odd number of sides.

Ex. 239. One side of a A is to either part cut off by a
st’ || to the base as the other side is to the corresponding
part.

Ex. 240. If a straight divides two sides of a A propor-
tionally, it is || to the third side.

Ex. 241. The bisectors of an interior and an exterior X
at one vertex of a A divide the opposite side harmonically.

Ex. 242. The perimeters of two ~ polygons are pro-
portional to any two corresponding sides.

Ex. 243. A median and two sides of a trapezoid are
copunctal. .

Ex. 244. The chords on a st’ through a contact-point
of two ©Os are proportional to their diameters; and a
common tangent is a mean proportional between their
diameters. :

Ex. 245. The sum of the squares of the segments of
2 4 chords equals the sq’ of the diameter.

Ex. 246. On the piece of a tangent between two || tan-
gents the contact-point makes segments whose product
is the square of the radius.

Ex. 24%. To inscribe in and circumscribe about a given
© a A~ to a given A,

Ex. 248. The hypothenuse is divided harmonically by
any pair of st’s through the vertex of the r't x making
=x¥s with one of its sides.

Ex. 249. The bisection-point of the base of a A and any
point on a | to the base through the vertex make a sect
cut harmonically by a side and the other side produced.

Ex. 250. I divides # as b to a-t-c.

Ex. 251t. Rr:ac=b:2(a+%t+c).

Ex. 252. In a r't A the L sides are as the in-radii of
As made by he.



PROPORTION AND THE THEOREMS OF SIMILITUDE. 107

Ex. 253. Sects from the ends of the base of a A to the
intersections of a| to base with the sides intersect on a
median.

'Ex. 254. A from 8, a/c, R.

Ex. 255. A quad’ is cyclic if diagonals cut so that
product of segments of one equals product of segments
of the other.

Ex. 256. The sides of the pedal cut off As ~ to the
original.

Ex. 257. Three points bemg given, to determine an-
other, through which if any st’ be drawn, Ls upon it from
two of the former, shall together be equal to the 1 from
the third.

Ex. 258. From two given sects to cut off two propor-
tional to a second given pair so as to leave remainders
proportional to another given pair.

Ex. 259. If one chord bisect another, and tangents from
the extremities of each meet, the st’ of their intersection
points is || to the bisected chord.

Ex. 260. In A, if sects from the ends of the base to the
opposite sides intersect on the altitude, the joins of its
"foot to their ends will make equal angles with the base.

Ex. 261. The diagonals of a regular pentagon cut one
another .in the goldén section, and the larger segments
equal the sides.

Ex. 262. From the vertex of an inscribed A a sect to
the base || to a tangent at either end of the base is a fourth
proportional to the base and two sides.

Ex. 263. Straights from the vertices of any A to the
contact-points of the in-© are copunctal.

Ex. 264. Construct A from b, 8, and that # ma.kes
segments as m to u.

Ex. 265. A from B, ms, and % between b and me.

Ex. 266. A from t, and 1s on it from A and C.

Ex. 267. o from B, a—¢, and difference of segments
made by he.

Ex. 268. R't A from a+b, and b+c.

Ex. 269. 4 from a—§, a:b=m:n, and a third propor-
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tional to the difference of segments made by ke and #he
lesser side.

Ex. 270. A from «, a+b, a+c.

Ex. 271. A from «, R, and b:c=m:n..

Ex. 272. a from a, b, a —he.

Ex. 273. Divide a given sect harmomcally as m to n.

Ex. 274. In ~ As, a:a’ =ha: W =ma:m’s’ =ta:l'd’ =17 =
R:R’.

Ex. 275. Two r't As are ~ if hypothenuse and a L are
proportional.

Ex. 276. If achord is bisected by another, either seg-
ment of the first is a mean proportional between the seg-
ments of the other.

Ex. 277. R’t A from a and the non-adjacent segment
made by he.

Ex. 278. The diameter of a ® is a mean proportional
between the sides of the circumscribed regular A and
hexagon.

Ex. 279. From the center of a given © to draw a st’
cutting off from a given tangent a sect any multiple of
the segment between © and tangent.

Ex. 280. If 2 As have two sides of the one proportional
to two sides of the other, and s, one in each, opposite
one corresponding pair of thesesides =, the s opposite
the other pair are either = or supplemental.

Ex. 281. The altitude to hypothenuse is a fourth pro-
portional to it and the sides. :

Ex. 282. The vertices of all As on the same base with
sides proportional are on a ® with center costraight with
base and radius a mean proportional between the sects
from its center to the ends of base.

Ex. 283. To inscribe a sq. in a given A.



CHAPTER X.
EQUIVALENCE.

The theory of equivalence in the plane.

257. We take as basis for the investigations in the
present chapter the Assumptions I, 1—2, and II-IV.
We exclude the Archimedes assumption. Our
theory of proportion and sect-calculus put us in
position to found the Euclidean theory of equiva-
lence by means of the assumptions named, that is,
in the plane and independent of the Archimedes
assumption.

258. Convention. If we join two points of a
polygon P by any sect-train which runs wholly in
the interior of the polygon we obtain two new poly-
gons, P, and P,, whose inner points all lie in the
interior of P.

We say: P is separated or cut into P, and P,;
P, and P, together compose P.

259. Definition. Two polygons are called equiv-
alent if they can be cut into a finite number of
triangles congruent in pairs.

260. Definition. Two polygons are said to be

equivalent by completion if it is possible so to annex
109
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equivalent polygons to them that the two polygons
so composed are equivalent.

261. We will use the sign of equality (=) between
polygons to denote *‘equivalent by completion.’’

262. From these definitions follows immediately:
By uniting equivalent polygons we get again equiv-
alent polygons. If we take away equivalent poly-
gons from equivalent polygons the remaining poly-
gons are equivalent by completion.

Furthermore, we have the following propositions:

263. Theorem. Two polygons P, and P, equiv-
alent to a third P, are equivalent.

Two polygons equivalent by completion to a third
are equivalent by completion.

Proof. By hypothesis there is as well for P, as
for P, an assignable partition into triangles such
that each of these two partitions corresponds re-
spectively to a partition of the polygon P into
congruent triangles.

~<_

N\,
-,
~-.

Fic. 104.

If we consider these two partitions of P, simul-
taneously every triangle of the one partition will in
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general be cut into polygons by sects which pertain
to the other partition. Now we introduce a suffi-
cient number of sects to cut each of these polygons
itself into triangles, and then make the two corre-
sponding partitions into triangles in £, and in P,.
Then these two polygons P, and P, are cut into the
same number of triangles congruent in pairs, and
are therefore by our definition equivalent.

Again, if Q,=Q, and Q,=(Q, then according to
definition the composite (,+ P, is equivalent to
Qs+ P,, and Q,+ P, is equivalent to Q;+ P,. There-
fore Q,+ P, + P, is equivalent to Qs+ P, + P,, which -
is equivalent to Q,+P,+P,. ..Q,=Q,.

Parallelograms and Triangles with equal bases and
altitudes.

264. Theorem. Two parallelograms with equal
bases and equal altitudes are equivalent by com-
pletion.,

Proof. ABAE=ACDF. Annex ABCH and
leave out ADHE. ..ABCD=EBCF.

A £ D ¢ A D _E F
H
: o B c
Fic. 105. Fic. 106.

To prove these parallelograms equivalent would
require here the Archimedes assumption. .
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265. Theorem. Any triangle ABC 1s always
c equivalent to a certain parallelo-
gram with equal base and half

altitude. .

) Proof. Bisect AC in D and BC
in E, and then prolong DE to F,
making EF =DE. The triangles

8  DEC and FBE are then congruent,
and consequently the A ABC and

“parallelogram ABFD are equivalent.

266. From 264 and 265 follows with help of
263 immediately:

Theorem. Two triangles of equal bases and equal
altitudes are equivalent by completion.

267. That two triangles with equal bases and
altitudes are always equivalent cannot possibly
be proven without using the Archimedes assump-
tion.

268. The remaining theorems of elementary
geometry about the equivalence by completion of
polygons, and also, in particular, the Pythagoras
equivalence theorem: ‘The square on the hy-
pothenuse of a right triangle is equivalent to the
united squares on the other two sides,”” are easy
consequences of the theorems just set up.

269. But, nevertheless, in further working out
the theory of equivalence we encounter an essen-
tial difficulty.

In particular our considerations hitherto leave
undecided whether perhaps all polygons are not
always equivalent by completion to one another.
In this case all the previously established -theo-

F1G. 107.
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rems would teach nothing and be without import-
ance.

The proven theorems about equivalence by com-
pletion are entirely rigorous; mnevertheless we
recognize on closer investigation that they all for
the present have no content. We do not yet know
whether there are polygons at all which are not
equivalent by completion.

270. And not only must we know this, if we
would undertake anything with our theorems, but
also we need to consider the more specific question
whether two rectangles equivalent by completion,
having one common side, have also necessarily
their other sides congruent, that is, whether a
rectangle is uniquely determined by one of its
sides and its equivalence by completion.

271. As the closer consideration shows, we need
for answering the questions raised the inverse of
266, which runs as follows:

Theorem. If two triangles equivalent by completion
have equal bases then they have also equal altitudes.

This fundamental theorem is the thirty-ninth
of the first book of Euclid’s Elements (Eu. I, 39).
However, to prove it Euclid invokes the general
theorem about magnitudes: ‘“ The whole is greater
than its part,”” a procedure which amounts to the
introduction of a new geometric assumption, that
is, the tacit assumption of a new and independent
magnitude, the ““surface” or “superficial content.”

272. Now for.the question of superficial content,
we can, on the basis of only our old assumptions,
though into them the word ““content” does not in -
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any way enter, prove that two polygons can be
compared as to content.

273. Thus the congruence and equality of sects
is fundamental or primitive, rooted immediately
in assumptions.

274. But the equality of polygons as to content
is a constructible idea with nothing new about it
but a definition. ‘

275. We proceed now to establish this theorem
(Eu. I, 39) and therewith the theory of content
in the way we desire, that is, merely with help of
the plane assumptions without using the Archimedes
assumption.

276. It need not surprise us that the proof is not
wholly simple. For that two triangles are equiva-
lent by completion according to definition only says
that certain ‘‘corresponding” triangle-partitions
exist; thereby can the number of the triangles be
very great and one does not immediately see how
from that we can conclude from equality of bases
equality of the altitudes.

277. We begin by introducing the idea of area.

The area of triangles and polygons.

278. Definition. In any triangle ABC with the
sides a, b, c,-if we construct
the two altitudes h,=AD,
h,=BE, then follows from
the similarity of the tri-
angles BCE and ACD,
(by 234) the proportion
a:hy=>b:h,, that is, ahg=>bhy,. Fic. 108.
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Consequently in every triangle the product of a
base and its altitude is independent of what side
of the triangle one chooses as base. Half the
product of base and altitude of a triangle A is
called the area of the triangle A, and designated
by A(a). -

279. Convention. A sect which joins a vertex
of a triangle with a point of the opposite side is
called a transversal; this cuts the triangle into two
triangles with common altitude, whose bases lie
on the same straight. Such a partition is called a
transversal partition of the triangle.

280. Theorem. If a triangle & is in any way cut
by any straights into a certain finite number of tri-
angles Ay, then is always the area of the triangle A
equal to the sum of the areas of all the triangles A .

Proof. From the distributive law in our sect-
calculus follows immedi- o
ately that the area of any
triangle is equal to the
sum of the areas of two 5 by
triangles which arise from ¢ b A
the first by any transversal Fic. 109.
partition. Thus, for example,

A(2)+A(2,) =3bh+3bh=3h(b, +b,)=3bh=A(A).

The repeated application of this fact shows that

the area of any triangle is also

equal to the sum of the areas of
all the triangles which arise
from the first, if we make suc-

Fic. 110.

cessively however many trans-
versal partitions.



116 RATIONAL GEOMETRY.

In order now to accomplish the corresponding
demonstration for any partition of the triangle A into
triangles A, we draw from one vertex A of the
triangle A through each dividing-point of the par-
tition, that is, through each vertex of the triangles
A, a transversal; by these transversals the triangle
A is cut into certain triangles A, FEach of these
triangles A, is cut by the dividing-sects of the given
partition into certain triangles and quadrilaterals.
If in each quadrilateral we draw a diagonal then
each triangle A, is cut into certain triangles A .

We will now show that the partition into trian-
gles A, as well for the triangles a, as also for
the triangles A, is a chain of transversal partitions. -

Fie. 111.

In fact, first is clear, that every partition of a tri-
angle into part-triangles can always be effected by
a series of transversal partitions, if, in the partition,
no dividing-points lie in the interior of the triangle,
and besides at least one side of the triangle remains
free from dividing-points. )

Now these conditions are evident for the trian-
gles &, from the circumstance that for each of them
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the interior and one side, that opposite the point
A, are free from dividing-points.

But also for every Ay is the partition into &,
reducible to transversal partitions. In fact, if we
consider a triangle A, then there is, among the
transversals from A in the triangle A a certain
transversal which either cuts the triangle aj into
two triangles, or else upon which a side of A falls.
For we recall that within no A are there dividing-
points. ' ‘

By construction, through every vertex of A goes

. a transversal from A ; and there is always one vertex

of & for which this transversal has a second point
not in the region exterior to aj; it therefore either
goes through the interior of A or upon it is a side
of A

In this latter case this side of the triangle A
remains altogether free from further dividing-points
in the partition into triangles a,. In the other
case the sect of that transversal within the triangle
A is for both the triangles thus arising a side which
in the partition into triangles A, remains surely free
from further dividing-points.

From the considerations at the beginning of this
demonstration the area A(a) of the triangle a
equals the sum of all areas A(a,) of the triangles
A, and this sum is equal to the sum of all areas
A(4a,). On the other hand is also the sum of the
areas A(a,) of all triangles A, equal to the sum of
all areas A(a,). Hence, finally, the area A(A) is
also equal to the sum of all areas A(A;). So the
theorem is completely proven.
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281. Definition. If we define the area A(P) of
a polygon as the sum of the areas of all triangles
into which it is cut in a certain- partition, then the
area of a polygon is independent of the way it is
cut into triangles, and consequently determined
uniquely simply by the polygon itself.

Proof. Suppose a. to be the triangles of a cer-
tain partition, and A, those of any other partition.
Considering these two partitions simultaneously, in
general is every triangle A, cut into polygons by
sects pertaining to Ax. Now we introduce sects
sufficient to cut these polygons themselves into tri-
angles A;. Then the triangles A, have (by 280) for.
the sum of their areas the sum of the areas of A,.
But so also have the triangles A .

[This fact, that the sum named is independent of
the way of cutting up the polygon, is the kernel,
the essence of this whole investigation.]

282. Corollary to 281. Egquivalent polygons have
equal area.

283. Moreover, if P and Q are two polygons equiv-
alent by completion, then there must be, from the
definition, two equivalent polygons P’ and Q’, such
that the polygon compounded of P and P’ is equiv-
alent to the polygon compounded of Q and Q’. From
the two equations

AP+P)=AQ+Q), AFP)=AQ),
we deduce at once A(P)=A(Q), that is, polygons
equivalent by completion have equal area.
284. From this latter fact we get immediately
the proof of the theorem of 271 (Eu. I, 39). For,



EQUIVALENCE. 119

designating the equal bases of the two triangles
by b, the corresponding altitudes by % and &/, we
then conclude from the assumed equivalence by
completion of the two triangles that they must
also have equal area; that is, it follows 3bh =3bh’,
and, consequently, after division by b, h=W;
which was to be proved. '

Area and Equivalence-by-completion.

28s. In what precedes we have found that poly-
gons equivalent-by-completion have always equal
area. The inverse is also true.

286. To prove the inverse, we consider first
two triangles ABC and AB'C’ with a common
right angle at A. The areas of these two triangles
are expresesd by the formulas

A(ABC)=3AB-AC, c

A(AB'C'=3AB'-AC'. ¢

If we assume that these
two areas are equal, we

have
AB-AC=AB'-AC’, A X X
or AB:AB'=AC":AC, Fic. 112,

and from this it follows (by 235) that the two
straights BC’ and B’C are parallel, and then we
recognize (from 266) that the two triangles BC’'B’
and BC'C are equivalent-by-completion. By an-
nexing the triangle ABC’ it follows that the two
triangles ABC and AB’C’ are equivalent-by-com-
pletion. Thus we have proved that two right-



120 RATIONAL GEOMETRY.

-angled triangles with equal area are also always
equivalent-by-completion.

287. Take now any triangle, with base b and
altitude %, then this is (by 266) equivalent-by-
completion to a right-angled triangle with the two
perpendicular sides b and %; and since the original
triangle evidently has the same area as the right-
angled triangle, so it follows that in the preced-
ing article the limitation to right-angled triangles
was not necessary. Thus we have shown that
any two triangles with equal area are also always
equivalent-by-completion.

288. Now let P be any polygon with area b.
Let P be cut into » triangles with the respective
areas by, b,,...b,; then is b=b,+b,+...+by.

Construct now a triangle ABC with the base
AB =b and the altitude 2 =1 and mark on the base
the points A,, A, ...A, such that b,=AA,,
b,=AA,, ... bn_y=Apn_An_;,, bpn=A._,B. Since

A b A, b Asbs Ay Aq by B

Fic. 113.

the triangles within the polygon P have respectively

‘the same area as the triangles AA,C, A,AC, ...,
An_3An_C, An_BC, so they are, by what has just
been proven, equivalent-by-completion to these.
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Consequently the polygon P is equivalent-by-
completion to a triangle with the base b and the
altitude h =1.

Hence follows, with help of theorem 287, that
two polygons of .equal area are always equivalent-
by-completion.

289. We may combine the two results found
in this article 288 and in 283 into the following
theorem: Two polygons equivalent-by-completion
have always the same area; and inversely, two
polygons with equal area are always equivalent-by-
completion.

290. In particular two rectangles equivalent-by-
completion which have one side in common must
also have their other sides congruent.

291. Also follows the theorem: 'If we cut a
rectangle by straights into several triangles and leave
out even one of these triangles, then we cannot with thz
remaining triangles fill out the rectangle.

In what precedes is shown that this theorem is
completely independent of the Archimedes assump-
tion. Moreover, without the application of the
Archimedes assumption, this theorem 291 does
not suffice of itself for demonstrating Eu. I, 39.

292. Definition. Of two polygons P and Q, we
call P of lesser content (respectively, of equal, of
greater content) than Q, according as the area A(P)
is less (equal, greater) than A(Q).

293. From what precedes it is clear that the
concepts of equal content, of lesser content, of
greater content are mutually exclusive.

294. Further, we see that a polygon which lies
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wholly within another polygon must always be of
lesser content than this latter.

295. Herewith we have established the essential
theorems of the theory of superficial content,
wholly upon considerations of the congruence of
sects and angles, and without assuming superficial
content to be a magnitude.

296. Theorem. The area of any parallelogram 1s
the product of the base by the altitude.

297. Corollary to 296. The area of any rec-
tangle or square is the product of two consecutive
sides.

298. A square whose side is the unit sect has for
area this unit sect,

since IXI=1I.

Any polygon has for area as many such unit
sects as the polygon contains such squares on the
unit sect.

The number expressing the area of a polygon
will thus be the same in terms of our unit sect or in
terms of a square on this sect considered as a new
kind of unit, a unit surface, or unit of content.
Such units, though traditional, are unnecessary
and sometimes exceedingly awkward as, for ex-
ample, the acre.

Ex. 284. If twice the number expressing the area of a
triangle be divided by the number expressing the base,
the quotient is the number expressing the altitude.

Ex. 285. One side of a triangle is 35-74, and the alti-
tude on it is 6-3. Find the area.

299. Theorem. If two triangles (or parallelograms)
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have one angle of the one congruent to one angle of the
other, their areas are proportional to the products of
thetr sides about the congruent angles.

B
BI
c’x é 5
Fic. 114.
Let ¥C= 4,
they _Avea 8ABC _ 3AC-BD __AC-BD
Area AA'B'C’ 3A'C'-B'D’  A'C'-B'D”

. , BD BC
Butin ~aA’'s BCD and B’C’D’, W=B,—C.,‘.

. Area AABC AC-BC
"* Area sA’B'C" T A'C"-B'C"

300. Corollary to 299. The areas of similar tri-
angles are proportional to the squares of correspond-
ing sides.

3or. Problem. To construct a rectangle, given
two consecutive sides.

Construction. Take a straight and a perpendic-
ular to it. From the vertex of ’
the right angle take one given T 1
sect on the straight, the other L
on the perpendicular. Through
their second end-points draw
perpendiculars. These (by 77) meet. They inter-
sect in the fourth vertex of the rectangle required.

Proof. By construction the figure is a parallelo-
gram with one right angle; .". a rectangle.

F1G. 115.
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302. Corollary to 301. So we may construct a
square on any given sect.

303. Theorem. The square on the hypothenuse of
any right-angled triangle is equivalent to the sum of the

R squares on the other two sides.
Hypothesis. A ABC, r't-
u ¢ angled at C.
Conclusion. Square on AB
8y K is equivalent to sq. on AC
: +sq. on BC.
Proof. On hypothenuse
° P 16 AB, on side opposite C, con-

struct (by 302) the sq. ABDF. From its vertices
D, F drop DH, FG1CA, and .. || BC. Drop BK,
FL1DH, and .. || AC. Then ¥ABC =+4DBK
(complements of ¥ ABK). Also ¥ BDK=¥DFL
(complements of ¥LDF). Also ¥ DFL = ¥AFG
(complements of ¥AFL). .. (by 44), 6ABC=
ADBK=aAFDL=AFAG. .. BCHK is sq. on BC,
and FGHL =sq. on AC. .".sq.on AB=AFLKB+
2AABC=sq. on BC+sq. on AC.

304. Problem. To construct an equilateral triangle
on a given sect.

Construction. On the st. AB from A take the
given sect AB. At B erect to AB
a perpendicular. On this perpen-
dicular, from B take BC, the given
sect. Join AC. At C erect to the
straight AC the perpendicular CD.
On CD from C take CD, the given
sect. Join AD. Bisect AD at E,
and AB at F. Lrect at F to AB
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the perpendicular FG. From F take FG=AE.
ABG is the required equilateral triangle.

_ Proof. AG'=AF’+FG'=(3AB)* + (}3(AB)* =
AB".

305. Theorem. In any triangle, the square of a
side opposite any acute angle 1s
less than the sum of the squares’ !
of the other two sides by twice %Y i
the product of either of those sides L J
and a sect from the foot of that
side’s altitude to the vertex of the
acute angle.

Proof. Let a, b, ¢ denote the sides, and & denote
b’s altitude, and § the sect from its foot to the
acute angle A.

a’—h*=(b—j5)?=b*—2bj+7*=b*—2bj+¢*—h?
©.a*=b*—2bj+c

Fic. 118.

306. Theorem. In an obtuse-angled triangle the
square of the side opposite the obtuse angle is
.greater than the sum of the squares of the other
two sides by twice the product of either of those
sides and a sect from the foot of that side’s altitude
to the vertex of the obtuse angle.

Ex. 286. Find the area of an isosceles triangle whose
pase is 60 and each of the equal sides so.

Ex. 287. If two triangles (or parallelograms) have an
angle of one supplemental to an angle of the other, their
areas are as the products of the sides including the supple-
mentary angles.

Ex. 288. The area of any circumscribed polygon is half
the product of its perimeter by the radius of the inscribed
circle.



126 RATIONAL GEOMETRY.

Ex. 28¢9. To find the area of a trapezoid. Rule:
Multiply the sum of the parallel sides (its bases) by half
their common perpendicular (its altitude). »

Ex. 2go. The area of a trapezoid equals the product of
its altitude by its median (the sect joining the bisection-
points of the non-parallel sides).

307. To find the altitudes of a triangle in terms of
its sides.

Either ¥ A or X C is acute.
Suppose % C acute,

c¢*=a*+b*—2b5 (by 305).

. I19. R 25 .
. 3+b2_622 albz_ a2+b2_012
hb’=az_],=0’—(a 4b? ) =4 (4b’ ) =
(2ab+a*+b? —c’)(zab—a’—b’+c’)=
[@a+h) =l —(a—b)7
= 25 =
=(a+b+c)(a+b—c)(c+a—b)(c—a+b)
4b? ’

Put (a+b+c¢)=2s. Then a+b—-c=25—2c.
e 2s  2(s—c)2(s—b)2(s—a) .
e = 4b’ - ’

ooy =gl —a)(s—b)(s o).

308. (Heron.) To find the area of a triangle in
terms of its sides.

A =3bhy ——-%-l—j-[s(s —a)(s—=b)(s -—c)]*;
o A =[s(s—a)(s=b)(s —c)}.
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Ex. 291. If a?=0%+¢?, .. YA=r't X.
If a?>b%+¢? .. YA>T't X.
If a?<b?+c¢? .. fA<r't ¥

Ex. 292. Given for the three sides of a triangle numeri-
cal expressions in terms of a unit, compute the three
altitudes.

Ex. 293. The sum of the squares of two sides of a tri-
angle is equal to twice the square of half the third side
increased by twice the square of the median upon that
side. [a® +c* —3b? =2m?).

Ex. 294. The difference of the squares of two sides of
a triangle is equal to twice the product of the third side
by the sect from the foot of that side’s altitude to the

foot of its median. [] -2 —c’]'

Ex. 295. Given numerical expressions for the sides of
a triangle, compute the medians.
2m =[2(a® +b%) —ct.

309. Theorem. The product of two sides of a
triangle equals the product of two sects from that
vertex making equal angles with the two sides ana
extending, one to the base, the other to the circle cir-
cumscribing the triangle.

Proof. ACBD~AABE.

310. Corollary I to 309. If B8

BD and BE coincide they bisect m
the angle B; . A

2

..AB-BC=BD-BE
=BD(BD + DE)=BD*+BD-DE A
=BD*>+CD-DA (by 248).

Therefore the square of a bisector
together with the product of the sects Fic. 120.
it makes on a side equals the product of the other two
sides.
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311. Corollary II to 309. If BD be an altitude,
BE is a diameter, for then ¥ BAE is r't; there-
fore in any triangle the product of two sides equals the
product of the diameter of the circumscribed circle by
the altitude upon the third side.

Ex. 2¢96. To find the bisectors of the angles of a tri-
—c) i

Ex. 297. To find the radius of the © circumscribing a tri-
angle. Rule: Divide the product of the three sides by

angle, given the sides.

four times the area of the triangle. R=abc/sa.
Ex. 298. The in-radius. equals area over half sum of
sides. - [r=a /sl

Ex. 299. The side of an equilateral triangle is

b=R(3)t =2r(3)".

Ex. 300. The radius of circle circumscribing triangle
7, 15, 20, is 124. The in-radius is 2.

Ex. 3o01. To find the radius of an escribed circle. Rule:
Divide the area of the triangle by the difference between
half the sum of its sides and the tangent side.

, [r,=2a/(s—a)l

Ex. 302. A =(rryrrot.

Ex. 303. 1/r,+1/r,+1/rs=1/r.

Ex. 304. The sum of the four squares on the four sides
of any quadrilateral is greater than the sum of the squares
cn the diagonals by four times the square on the sect
joining the mid-points of the diagonals.

Ex. 305. The sum of the squares on the four sides of
a parallelogram is equal to the sum of the squares on the
diagonals.

Ex. 306. The product of the external segments (sects)
made on one side by the bisector of an external angle
of a triangle equals the square of t~ bisector together
with the product of the other two sides.

Ex. 307. Find r, 7,, r,, when a=79, b=15, c=20.
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The Mensuration of the Circle.

312. We assume that with every arc is connected
a sect such that if an arc be cut into two arcs, this
sect i8 the sum .of their sects; moreover, this sect
is not less than the chord of the arc, nor, if the arc
be minor, is it greater than the sum of the sects on
the tangents from the extremities of the arc to
their intersection. This sect we call the length of
the arc.

313. In practical science, every sect is expressed
by the unit sect preceded by a number.

From our knowledge of the number and the
unit sect it multiplies, we get knowledge of the sect
to be expressed, and we can always construct this
expression. For science, the unit sect is the centi-
meter [°™], which is thé hundredth part of the sect
called a meter, two marked points on a special bar
of platinum at Paris, when the bar is at the tem-
perature of melting ice.

314. If an angle of an equilateral triangle be
taken at the center of a circle, the chord it in-
tercepts equals the radius. Therefore the length
of a semicircle is not less than three times its
radius.

It is in fact greater, since joining a point on
the arc of one of these chords to its extremiities
gives a pair of chords together greater than the
radius. .

Again, taking any diameter, then the diameter
perpendicular to this, then perpendiculars at the
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four extremities of these, we have a square of tan-
gents equal to 8r.

Therefore the length of a semicircle is not greater
than four times its radius. It is in fact less, as is
seen by drawing a tangent at any fifth point of the
circlee. The number prefixed to the radius in the
expression for the length of the semicircle is desig-
nated by the symbol z.

The length of any circle is 2zr.

So the lengths of circles are proportional to their
radii.

Historical Note on =.

315. We have proved that = is greater than 3
and less than 4, but the Talmud says: ‘‘What is
three handbreadths around is one handbreadth
through,” and our Bible also gives this value 3.
[I Kings vii. 23; II Chronicles iv. 2.]

Ahmes (about 1700 B.c.) gave [4/3]*=3-16.
Archimedes placed it between 34 and 34. Ptolemy
used 3{%. '

The Hindoo Aryabhatta (b. 476) gave 3-1416;
the Arab Alkhovarizmi (flourished 813-833) gave
3-1416; Adriaan Anthoniszoon, father of Adriaan
Metius [in 1585] gave 355/113=3-1415929; Ludolf
van Ceulen [1540-1610] gave the equivalent of over
30 decimal places '

[r=3-141592653589793238462643383279 +1]
(the decimal fraction was not yet invented), and
wished it cut on his tomb at Leyden. Vega gave
140 decimal places; Dase, z00; Richter, so0.
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In 1873 Wm. Shanks gave 707 places of decimals.

The symbol = is first used for this number in
Jones’s ‘‘Synopsis Palmariorum Matheseos,”” Lon-
don, 1706.

In 1770 Lambert proved = irrational, that is,
inexpressible as. a fraction. In 1882 Lindemann
proved = transcendent, that is, not a root of any
algebraic equation with rational coefficients, and
hence geometrically inconstructable.

316. Kochansky (1685) gave the following simple
construction for the length of the semicircle:

Fic. 121.

At the end-point A of the diameter BA draw
the tangent to the circle ©C(CA). Take £ ACE =
half the angle of an equilateral triangle=% r't ¥.
On the tangent, take EF = 3r.

Then BF is with great exactitude the length of
the semicircle. Infact BF =713} —2(3)]{=3 14157

317. Definition. The circle with the unit sect
for radius is called the unit circle.

318. Definition. The length of the arc of unit
circle intercepted by an angle with vertex at center
is called the size of the angle.
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319. Definition. The angle whose size is the
unit sect is called a radiain. ‘

320. Theorem. A radian intercepts on any circle
an arc whose length is that circle’s radius.

321. Corollary to 32o0.

If u denote the number of radians in an angle
and ! the length of the arc it intercepts on circle
" of radius r, then
u=l/r.

322. Definition. An -arc with the radii to its
end-points -is called a sector. -

323. Definition. The area of a sector is the
product of the length of its arc by half the radius.

324. Corollary to 323 and 314.

The area of any circle, © =7x.

325. Corollary to 324.

The areas of circles are proportional to the areas
of squares on their radii.

Ex. 308. The areas of similar polygons are as the squares
of corresponding sides.

Ex. 309. Find the length of the circle when 7 =14 units.

Ex. 310. Find the diameter of a wheel which in a street
19,635 meters long makes 3125 revolutions.

Ex. 311. Find the length and area of a circle when
r=1.

Ex. 312. If we call one-ninetieth of a quadrant a degree
of arc and its angle at the center a degree of angle, find the
size of this y (size of ¥1°).

Ex. 313. How many degrees in a radian?

Ex. 314. The angles of a triangle are as 1:2:3. Find
the size of each. Find the number of degrees in each.

Ex. 315. The angles of a quadrilateral are as 2:3:4:7.,
Find each in degrees and radians.
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Ex. 316. In what regular polygon is every angle 1684°?
Ex. 317. If a 'ty be divided into % congruent parts,

how many of them would a radian contain?

Ex. 318. Find the length of the arc pertaining to a
central angle of 78° when r=1-5 meters.

Ex. 319. Find an arc of 112° which is 4 meters longer
than its radius.

Ex. 320. Calling » =22, find r when 64° are 704 meters.

Ex. 321. Find the inscribed angle cutting out one-tenth
of the circle.

Ex. 322. An angle made by two tangents is the differ-
ence between 180° and the smaller intercepted arc. Make
this statement exact.

Ex. 323. Find the size of half a right angle.

Ex. 324. Find the size of 30°; 45°; 60°.

Ex. 325. How many radians in z°? in 240°?

Ex. 326. Express the size of seven-sixteenths of a right
angle.

Ex. 327. How many radians in the angle made by the
hands of a watch at 5:15 o’clock? at quarter to 8? at
3:30? at 6:05?

Ex. 328. The length of half a quadrant in one circle
equals that of two-thirds of a quadrant in another. Find
how many radians would be subtended at the center of
the first by an arc of it equal in length to the radius of
the second.

Ex. 329. Find the number of degrees in an angle whose
size is ¥; is 4; is $; is {}; is 4x.

Ex. 330. The size of the sum of two angles is 21—.257:

and their difference is 17°; find the angles.

Ex. 331. How many times is the angle of an isosceles
triangle which is half each angle at the base contained
in a radian?

Ex. 332. Two wheels with fixed centers roll upon each
other, and the size of the angle through which one turns
gives the number of degrees through which the other
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turns in the same time. In what proportion are the radii
of the wheels?

Ex. 333. The length of an arc of 60° is 36%; find the
radius.

Ex. 334. Find the circle where X30° is subtended
by arc 4 meters long. \

Ex. 335. If © be area of circle, prove

/[0 ()} +1/[01,(r)E+1 /10 (r)l =1 0I(n)].

Ex. 336. The perimeters of an equilateral triangle, a
square, and a circle are each of them 12 meters. Find
the area of each of these figures to the nearest hundredth.

Ex. 337. An equilateral triangle and a regular hexagon
have the same perimeter; show that the areas of their
inscribed circles are as 4 to g.

Ex. 338. Find the number of degrees in the arc of a
sector whose area equals the square of its radius.

Ex. 339. Find area of sector whose radius equals 25 and
- the size of whose angle is §.

Ex. 340. The length of the arc of a sector is 16 meters,
the angle is § of a r't ¥. Find area of sector.

Ex. 341. If 24s have a common base, their areas are
as the segments into which the join of the vertices is di-
vided by the common base.

Ex. 342. The area of a circum-polygon is half perimeter
by in-radius [$p7].

Ex. 343. The area of a rhombus is half the product of
its diagonals.

Ex. 344. If we magnify a quad’ until a d1agonal is
tripled, what of its area?

Ex. 345. If the sum of the squares on the three sides
of a A = 8 times the square of a median the A is r’t-angled.

Ex. 346. Lengthening through A the side b of a a
by ¢ and ¢ by b, they become diagonals of a symtra whose
area is to that of the A as (b+c¢)? to be.

Ex. 347. If upon the three sides of a r't A as corre-
sponding sides similar polygons are constructed that on
the hypothenuse =the sum of those on the Ls.
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Ex. 348. The area of any r'tA =the sym of the areas of
the two lunes or crescent-shaped figures made by de-
scribing semi-@s outwardly on the-is and a semi-® on
the hypothenuse through the vertex of the r't ¥ [called
the lunes of Hippocrates of Chios (about 450 B.C.)].

Ex. 349. (Pappus.) Any two ||g’ms on two sides of a A
are together =to a ||g’'m on the third side whose consecutive
side is = and || to the sect joining the common vertex of
the other [|g'ms to the intersection of their sides || to those
of the A (produced).

Ex. 350. If all the sides of a quad’ are unequal, it is
impossible to divide it into = As by straights from a point
within to its vertices.

Ex. 351. The joins of the centroid and vertices of a a
trisect it.

Ex. 352. Make a symtra triple a-given symtra.

Ex. 353. On each side of a quad’ describe a sq’ out-
wardly. Of the four As made by joining their neighbor-
ing corners, two opposite =the other two and = the quad’.

Ex. 354. If from an f @ we cut two= as, one !, the
sq’ of one of the = sides of the + A equals the product of
the sides of the other A on the arms of the x a.

Ex. 355. If any point within a |g’'m be joined to the
four vertices, one pair of. As with | bases = the other.

Ex. 356. One median of a trapezoid cuts it into =parts.

Ex. 357. Transform a given A into an=4 a.

Ex. 358. Transform a given { A into a regular A.

Ex. 359. Construct a polygon ~ to two given ~ poly-
gons and = to their sum. '

Ex. 360. If a vertex of a A moves on a L to the oppo-
site side, the difference of the squares of the other sides
is constant.

Ex. 361. The X bi's of a rectangle make a sq’, -which
is half the sq’ on the difference of the sides of the rectangle.

Ex. 362. The bisectors of the exterior s of a rectangle
make a sq’ which is half the sq’ of the sum of the sides of
the rectangle.

Ex. 363. The sum of the squares made by the bisectors



136 RATIONAL GEOMETRY.

of the interior and exterior As of a rectangle equals the
sq’ of its diagonal; their difference is double the rect-
angle.

Ex. 364. If on the hypothenuse we lay off from each
end its consecutive side, the sq’ of the mid sect is double
the product of the others.

Ex. 365. In AABC, BD:-a=BF -c.

Ex. 366. In a trapezoid, the sum of the sq’s on the
diagonals equals the sum of the sq’s on the non-|| sides
plus twice the product of the || sides.

Ex. 367. Prove r,+r,+r,=r+4R.

Ex. 368. To bisect a A by a st’ through a given point
in a side; by a st’ || to a side; L to a side.

Ex. 369. Trisect a & by |s.

Ex. 370. A quad’ equals a A with its diagonals and
their % as sides and included .

Ex. 371. The areas of As inscribed in a @ are as the
products of their sides.

Ex. 372. Construct an equilateral a, given the altitude.

Ex. 373. afrom xs and area.

Ex. 374. Triple the squares of the sides of a A is quad-
ruple the sq’s of the medians.

Ex. 375. Any quad’ is divided by its diagonals into
four As whose areas form a proportion.

Ex. 376. AH-HD =BH-HE.

Ex. 377. The area of a + r't a is {c%.

Ex. 378. Construct + Ao =given A with same b and hs.

Ex. 379. Bisect any quad’ by a st’ from any vertex; from
any point in a side.

Ex. 380. Any st’ through the bisection-point of a diag-
onal bisects the [jgm.

Ex. 381. 3(a*+b*+c?) =4(ma?+mp?+mc?).

Ex. 382. Upon any st’ the sum of the Lls from the
vertices of a A is thrice the L from its centroid.

Ex. 383. In r't A, 5¢? =4(ma*+m.?).

Ex. 384. Trisect a quad’.

Ex. 385. Find A =AABC, but with sides m, n; with
side m and adjoining A 4; and opposite ¥ J.
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Ex. 386. Find + A =AABC, but with base m; with
side m. .

Ex. 387. Find A =given polygon.

Ex. 388. From any point in an equilateral a the three i s
on the sides together =the altitude.

Ex. 389. Sects from the bisection-point of a non-|| side
of a trapezoid to oppsite vertices bisect it.

Ex. 390. If the products of the segments of two inter-
secting sects are =, their ends are concyclic.

Ex. 301. Area of r't A = product of the segments of
the hypothenuse made by 1 from I.

Ex. 392. In r't A, areas of As made by hc are propor-
tional to areas of their in-@s.

Ex. 393. 1/ha+1/ho+1/he=1/r.

Ex. 394. hohwhe =(a+b+¢)%?/abe.

Ex. 395. If hd', ', b’ be the perpendiculars from any
point within a A, upon the sides, prove hd'/ha+hv'/hs
+he! the =1. '

Ex. 396. r =3AI-BI-CI(a+b+c) /abc.

Ex. 397. abc =a(AI)*+b(BI)*+c(CI)*.

Ex. 398. (AI)*+ (BI)*+(CI)* = ab+ac + bc — 6abc/(a +
b+o).

Ex. 399. R+r = 1s from O on sides.

Ex. 400. In + A, if b =hs, then §b =R.

Ex. 401. R=2R of ADEF.

Ex. 402. Area of A I, I,, I;=abc/2r. .

Ex. 403. If ga, @b, gc be the sides of the 3 sq’s inscribed
in a A, then 1/@a=1/hat+1/a; 1/@v=1/Mo+1/b; 1/qc
=1/he+1/C. ,

Ex. 404. 1/r=1/ha+1/ho+1/he; 1/ry= —1/ha+ 1/
+1/he; 1/ry,=1/ha—1/hs+1/he; 1/rg=1/ha+1/hb—1/he.

Ex. 405. 2/ha=1/r—1/r,=1/r,+1/ry; 2/lb=1/r—1/r,
=1/ry+1/r\; 2/he=1/r—1/rs=1/r,+1/1,.

Ex. 406. ha/2 =17, /(r,—7) =11,/ (r,+1,).

Ex. 407. R*=(I0)*+2rR=(I1,0)* —2rR.

Ex. 408. Find the segments of b made by #.

Ex. 409. The base of a A is 32 feet and its height 20 feet;
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what is the area of the a formed by 'drawing a st'|b
5 feet from B? Where must a st’||b be drawn so as to
divide the A into 2 parts of = area?

Ex. 410. Upon each side a of a sq’ as diameter semi-
circles are described within the sq’, forming 4 leaves;
find the area of a leaf.



CHAPTER XI.
GEOMETRY OF PLANES.

326. Theorem. Two parallels determine a plane.

Proof. By definition they are coplanar. Any
plane on these parallels would be on three non-
costraight points of this given plane, hence (by I 4)
identical with it.

327. Corollary to 326. If a plane contains one
of two parallels and any point of the other, it con-
tains both parallels.

328. Theorem. Three planes which do not con-
lain the same straight cannot have wmore than one
point tn common.

Proof. If they had two points in common
(by Is) the straight determined by those two
points would be in each.

329. Corollary to 328. If three planes not con-
taining the same straight intersect in pairs, the
three straights of intersection [common sections, or
meets) are either copunctal or parallel in pairs.

330. Corollary to 329. If a plane on one of two
parallels meet a plane on the other [neither that
of the ||s], the meet is parallel to each of the two
parallels. !

For (by 9) the three planes can have no point

139
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in common, since a point common to the three would
be common to the two parallels.

Ex. 411. If a st’' cross three copunctal st’s, the four
are copunctal or coplanar.

Ex. 412. If each of three st’s crosses the others, the
three are coplanar or copunctal.

Ex 413. The meet of planes determined by two pairs
of st’s on A is on A.

Ex. 414. If A is on a and «, it is on the intersections
of a with planes on a.

331. Problem. Through a given point A of a given
plane a to pass straights a and b in a.

Fi1c. 122.

Solution. There are (by I7) in the plane at
least three non-costraight points, A, B, C. But
(by I 5) A and B determine a straight in the plane a.
So do A and C. .

332. Problem. To put two planes on the straighi a.

[¢]

Fic. 123.

Solution. On a (by I 2) are at least two points,
A and B. There are (by I7) at least four non-
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costraight non-coplanar points, A, B, C, D. There-
fore A, B, and C are not costraight, otherwise
(by 11) A, B, C, D would be coplanar. Therefore
(by I3) A, B, C determine a plane which (by I 5)
contains a.

Just so A, B, D determine a plane on a.
. 333. Theorem. If a straight be perpendicular
to each of two intersecting straights, it will be per-
pendicular to every other straight in their plane and
on their point of intersection.

Hypothesis. Let BP be | to BA and BC.
Let BD be in plane ABC.

Conclusion. BP1 BD.

Fi1c. 124.

Proof. Take A and C on the sides of the angle
at B in which BD lies. Let D be the point where
AC crosses BD. Take BP'=BP. Then (by 43),
APBA=aAP'BA, and APBC=AP'BC.
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..PA=P'A and PC=P'C; .. (bys8) aAPAC=
AP'AC.

. ¥ PCD=AP'CD; ..(bya3) aPCD=aAP'CD.

s.PD=P'D; ..(bys8) aPBD=aP'DB.

.. ¥PBD=¥P'BD; .. BP] BD.

334. Definition. A straight is said to be per-
pendicular to a plane when it is perpendicular to
every straight in that plane which passes through
its foot,—-that is, the point it has in common with
the plane, called also their pass.

Then also the plane is said to be perpendicular
to the straight.

335. Definition. A straightis said to be paralleltoa
plane when it has no point in common withtheplane.

Then also the plane is said to be parallel to the
straight. B

336. Definition. A straight neither on the plane,
nor parallel nor perpendicular to the plane, is said
to be oblique to the plane. A sect from a point to a
plane, if it be not perpendicular, is called an oblique.

Fic. 125.
337. Problem. To construct a plane perpendicular
to a given straight a at a given point A.
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Solution. Put (by 332) through a two planes.
In each of them at A (by 161) erect a perpendicular
to a. The plane of these perpendiculars is (by 333
and’ 334) perpendicular to a at A.

338. Problem. To construct a plane perpendicular
to a given straight a through a given point P not on a.

Solution. By 160, drop PA]a.

By 332 and 161, erect another perpendicular AB
to a at A. Then (by 333 and 334) plane PABa.

339. Problem. To erect a perpendicular to a given
plane r at a given point A.

"Solution. Take (by 331) through A two straights,
a, b, in the plane y. Find (by 337) a plane a which
at A is | to a; also a plane 8 which at A is | b.

=

Fi1c. 126.

These two planes (by 329) intersect in a straight
¢ through A.

Since ¢ is in a, .’. (by 334) cis L a.

Sincecisin 8, ... cis L b.

*. (by 333 and 334) clr.
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340. Corollary to 339. Through a given point in
a plane there is only one perpendicular to that
plane.

Fic. 127.

Else each would be | to BC, the meet of their
plane § with the given plane a.

341. Problem. To drop a perpendicular to a given
plane a from a given point P.

Construction. In « take any straight a.

Fic. 128.

From P (by 160) drop PAja. In a (by 161)
erect bja. From P drop PB]b. Then PB]a.
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Proof. Produce PB through B, taking BP' = BP.
Then (by 43) aAPBA=aAP'BA; ..PA=P'A.
Further, since a] AP and a|AB, ..also (by 333)
alAP'. Thus if M be a second point on a,
o't ¥PAM=%PAM.

. (by 43) aAPAM=aAPAM; ...PM=P'M.

o (by 58) APBM=AP'BM; ..xPBM is r't.

But by construction ¥ PBA is r't, .. (by 333
and 334) PB]a. ‘

342. Corollary to 341. From a point P without
a plane a, there is only one perpendicular to the
plane a.

Take (by 341) PBla. Then if A be any other
point of a, the r't APBA has (by 79) the ¥ PAB
acute.

343. Corollary to 342. From a point to a plane,
the perpendicular is less than any oblique. Equal
obliques meet the plane in a circle, whose center
is the foot of the perpendicular. If through the
center of a circle a perpendicular to its plane be
taken, then sects from a point of this perpendicular
to the circle are equal.

344. Theorem. If a straight is perpendicular to
each of three straights copunctal with 4t, the three
are coplanar.

Hypothesis. PBlBA, BD, BC.

Conclusion. BC in plane BDA[«].

Proof. Let plane PBC[f] meet plane a in BC’.
Then (by 333) PB1BC’. By hypothesis PB1BC.
But (by 52) in 8 is only one perpendicular to PB
at B. ... BC’ is identical with BC.

345. Corollary to 344. Through a given point
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in a straight there is only one plane perpendicular

to that straight.

Fic. 129.

346. Theorem. All points, A, which with two
fixed points B, C given equal sects, AB=AC, are
in the plane a bisecting at right angles the sect

F16. 130.

BC, and inversely every
point A’ in the plane «a
bisecting at right angles
the sect BC gives A’'B=
A'C.

Proof. For the straight
from A to the bisection
point D of BC makesa ADB
=aAADC and ..(by 344)
is in a. .

Inversely every straight
A'D is | BC and .. makes

AA’'DB=aAA'DC, and ... A’ B=A'C.

347. Corollary to 338. Through a given point
without a given straight there is only one
plane perpendicular to that straight.

‘Take (by 338) a through P and | to a at B.
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-Then if A is any other point of a, the r't APBA
has (by 79) the A4 PAB
acute. So plane $ through
P and | to a could not
pass through A, and so,
passing through B, it is (by
345) identical with ea.

348. Theorem. If PB]-
BAC and BA_JAC, then
. PA]AC.

Proof. Make AC=BP. Fie. 131.

. (by 43) ACAB=
APBA. ..CB=PA, .. (by 58) aCBP=aPAC,

.. ¥CBP=4PAC.

N

e |

[ T

Fic. 132.

But by hypothesis ¥ CBP is right.

Ex. 415. If PBLBAC and PA1AC, then BALAC.
" Ex. 416. If PBLBAC and BA1 AC, all 1s to AC from

points in PB go to A. .
Ex. 417. If PH1LABC (H is orthocenter), then PA 1

to AK || BC.
349. Theorem. Two perpendiculars to a plane

are coplanar.
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Hypothesis. PB, P’Ala at B, A.

Conclusion. P’ is in the plane ABP.

Proof. In a erect AC|AB.

. (by 348) ACLAP. But by hypothesis
AC|AP.

<. (by 344) A, P, P, B are coplanar.

P P’

7

Fic. 133.

350. Corollary to 349 and 342. Two perpen-
diculars to a plane are parallel.

351. Inverse of 350. If the first of two parallels
is perpendicular to a plane, the second is also per-
pendicular to that plane.

For the perpendicular erected to the plane from
the foot of the second is (by 350) parallel to the
first and so (by IV) identical with the second.

352. Theorem. If ome plane be perpendicular
to ome of two imtersecting straights, and a second
‘plane perpendicular to the second, they meet and
their meet is perpendicular to the plane of the two
straights.

Hypothesis. Let @ be |JCA at A and B be
1CB at B.

Proof. The meet AD of a with plane ACB is
(by 334) LAC, and likewise BD]BC; .. (by 77)
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AD meets BD. Thus the planes a and 8, having
D in common, meet in DP, and (by 351) their
meet PD is | to a straight through D | to AC,
and also | to a straight through D || to BC.

P

A

—

G /
B

Fic. 134.

353. Theorem. Two straights, each parallel to
the same straight, are parallel to one another, even
though the three be not coplanar.

For a plane | to the third will (by 351) be |
to each of the others; ... (by 350) they are |.

Ex. 418. Are st’s | to the same plane ||? Are planes ||

to the same st’ |?
Ex. 419. A plane | to the meet of two planes meets

them in |[s.

354. Definition. The projection of a point upon
a plane is the foot of the perpendicular from the
point to the plane.

The projection of a straight upon a plane is the
assemblage of the projections of all points of the
straight.

355. Theorem. The projection of a straight on
a plane is the straight through the projections of any
two of its points.
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Given A’, P/, B’, the projections of A, P, B,
points of the straight AB, on the plane a.

To prove P’ in the straight A’B’.

Proof. A, A’, B, B’ are (by 349) coplanar,
P is (by Is) in this same plane, .. (by 350 and
327) sois PP’; ., (by 9) A’, P', B’ are costraight.

/

Fi1c. 135.

356. Corollary to 355. A straight and its pro-
jection on a given plane are coplanar. If a straight
intersects a plane, its projection passes through the
point of intersection. A straight parallel to a plane
is parallel to its projection on that plane.

357. Theorem. A straight wmakes with ils own

Fi1c. 136.

projection upon a plane a less angle than with any
other straight in the plane.
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Hypothesis. Let A’ and BA’ be the projection
of A and BA on «, and BC any other straight in «,
through B. ‘

Conclusion. ¥ ABA’'< £ ABC.

Proof. Take BC=BA’. Then AA’<AC. (The
perpendicular is the least sect from a point to a
straight.)

.. XABA'< ¥ABC,

(In two a’s,if a=a’, b=V, c<,thenC< £ "))

358. Definition. The angle between a straight
and its projection on a plane is called the snclina-
tion of the straight to the plane.

Ex. 420. One of three copunctal st’'s makes = ¥s with
the others if its projection on their plane bisects their ¥.

Ex. 421. An oblique makes with some st’ in the plane
through its foot any given X < the supplement of its
inclination and > its inclination.

Ex. 422. Equal obliques from a point to a plane are
equally inclined to it.

359. Definition. Parallel planes are such as
nowhere meet.

360. Theorem. Planes perpendicular to the same
straight are parallel.

Proof. They cannot (by 345 and 347) have a
point in common.

Ex. 423. A st’ and a plane 1 to the same st’ are ||.

361. Theorem. Euvery plane through only one of
two parallels is parallel to the other.

Given AB|CD in a, and g another plane through
AB.

To prove CD|| 8.
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Since AB is in a and in B, it contains (by 9)
every point common to the two planes.

D A
,
’ Fic. 137.

But CD is wholly in a. So to meet g it must
have a point in common with « and f, that is, it
must meet AB. But by hypothesis AB|CD.

Ex. 424. Through a given point to draw a st’ | to two
given planes. '

Ex. 425. If a|| «, and b the meet of a with 8, 8 on a,
then al|b.

Ex. 426. Through A determine a to cut b and c.

362. Problem. Through either of two straights not
coplanar to pass a plane parallel to the other.

/=

Fic. 138.

If AB and CD are the given straights, take
CF|| AB. Then (by 361) DCF | AB.




GEOMETRY OF PLANES. 153

Determination. There is only one such plane.
For, through DC any plane || AB meets plane ABC
in the parallel to AB through C, ..is identical
with CDF.
~ Ex. 427. Through a point without a plane pass any
number of st’s || to that plane.

Ex. 428. Through a point without a st’ pass any number
of planes || to that st’.

Ex. 429. Planes on a | @ meet « in |s.

Ex. 430. Ifa || a and a | 8, then a || to the meet apf.

363. Problem. Through any given point P to
pass a plane parallel to any two given straights,

/P

Fic. 139.

/

a, b. [The plane determined by the parallel to a
through P, and the parallel to b through P.] [There
is only one such plane.]

Ex. 431. Through two non-coplanar straights one and
only one pair of || planes can be passed.

364. Theorem. The intersections of two parallel
planes with a third plane are parallel.

Proof. They cannot meet, being in two parallel
planes; yet they are coplanar, being in the third

plane.
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365. Corollary to 364. .Parallel sects included
between parallel planes are equal.

Ex. 432. If two || planes meet two | planes, the four
meets are ||.

Ex. 433. If a || to the meet afB, thena|laand a| 8.

Ex.434. If a|| 8, alais LB

Ex. 435. Through A draw a || 8. [Solution unique.]

Ex. 436. If, in a, a cross a’, in 8, b cross ¥’, and a || b,
a' | b, then a | 8.

Ex. 437. Through A all st’s || « are coplanar.

Ex. 438. Two planes | to a third are |.

Ex. 439. The intercepts on |is between a and a || « are =.

Ex. 440. If AB || @« and BC || a, then plane ABC | a.

Ex. g441. If three sects are = and |, the as of their
adjoining ends are = and || .

Ex.442. f Ain al ¢, AB| aisin a.

366. Theorem. If two angles have their sides
respectively parallel and on the same side of the
straight through their vertices, they are equal.

/’? ® /
\ \

F1G6. 140.

Hypothesis. AB| A’B’ with A and A’ on the
same side of BB’; also CB|C’'B’ with C and C’
on same side of BB’.
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Proof. From A take (by 66) AA’||BB’; .. (by
95) AA’=BB’ and A'B'=AB. In same way CC’|
and =BB’ and B'C' =BC. But then AA’=CC’ and
(by 353) AA’||CC’; .. (by 100) AC=A'C’; .. (by
58) AABC=A0A'B'C'.

367. Corollary to 366. Parallels intersecting thc
same plane are equally inclined to it.

- 368. Definition. Let two planes, «, 8, intersect
in the straight a. Let A and A’ be points on a.
Erect now at A and A’ perpendiculars to a in one
hemiplane a’ of @, and also in hemiplane g’ of B.
Then (by 366) the angle of the perpendiculars at
A is equal to the angle of the perpendiculars at A’

<
S

Fi16. 141.

We call this angle the inclination of the two hemi-
planes ' and f'. A

When the inclination is a right angle the planes
are said to be perpendicular to each other.

369. Theorem. If a straight is perpendicular to
a given plane, any plane containing this straight
15 perpendicular to the given plane.

Proof. At the foot of the given perpendicular
erect in the given plane a perpendicular to the
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meet of the planes. From the definition of a
perpendicular to a plane (334) the given perpen-
dicular makes with this a r't x; but this angle
is (by 368) the inclination of the planes.

Ex. 443. A plane 1L the meet of two planes is 1 to
each; and inversely.
Ex. 444. Through a in a draw 8Ll a.

369 (b). Corollary to 369. A straight and its pro-
jection on a determine a plane perpendicular to a.

370. Theorem. If two planes are perpendicular
to each other, any straight in ome, perpendicular to
their meet, is perpendicular to the other.

371. Corollary to 370. If two planes are per-
pendicular to each other, a straight from any point
in their meet, perpendicular to either, lies in the
other.

For the perpendicular to their meet in one is
perpendicular to the other, and (by 340) there is
only one perpendicular to a plane at a point.

Ex. 445. If A in a1 B, from A, al B is in a.
Ex. 446. If a st’ be | to a plane, a plane 1 to the st’
is L to the plane.

372. Corollary to 371. If each of two inter-
secting planes is perpendicular to a given plane,
their meet is perpendicular to that plane.

Proof. The perpendicular to this third plane
from the foot of the meet of the others is (by 371)
in both of them.

Ex. 447. Through a st’ || a to pass 8| a.

Ex. 448. Through a draw a«l 8.
Ex. 449. Through A draw al 8 and 7.
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373. Theorem. If two straights be cut by three
parallel planes the corresponding seets are proportional.

A
AT

LY
(] A K

Fic. 142.

Let AB, CD be cut by the parallel planes a,
B, rinA, E, Band C, F, D.

To prove AE:EB=CF:FD.

Proof. If AD cut 8 in G, then (by 364) EG|| BD
and AC||GF.

.. (by 235) AE:EB=AG:GD and AG:GD=
CF:FD.

S.AE:EB=CF:FD.

Ex. 450. Investigate the inverse of 373.

374. Theorem. Two straights not coplanar have
one, and only one, common perpendicular.

Given a and b not coplanar.

To prove there is one, and only one, straight
perpendicular to both.

Proof. Through any point A of a take c|b.
Then (by 361) the plane ac or a||b. The projection
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b of b on a cuts a, say in B’; else were a|/b'|b.
Then, in plane b’b, B'B drawn L& is (by 370) La

b B
v e
3/
[
4 A
Fi1c. 143.

and (by 74) also 1 b, and is the only common per-
pendicular to a and b. For any common per-
pendicular meeting a at B” is | b"” through B |,
which is in «, and .". L, hence B” is a point of
b’ the projection of b on a; .. identical with B’, the
cross of b’ with a.

375. Corollary to 374. Their common perpen-
dicular is the smallest sect between two straights
not coplanar.

For (by 142) BB’ <BA.

Ex. 451. No- st’s joining points in two non-coplanar
st’s can be |. .

Ex. 452. From A, B, C, costraight, are dropped to a
non-coplanar st’ ls AD, BE, CF. Prove AB:BC
=DE:EF.

Ex. 453. A plane L to the common 1 to two st’s at
its bisection-point, bisects every sect from one st’ to the
other.

Ex. 454. Principle of Duality. When any figure is given
we may construct a dual figure by taking planes instead
of points, and points instead of planes, but straights where
we had straights.

The figure dual to four non-coplanar points is four
non-copunctal planes. State the dual of the following:

Two planes determine a straight.
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Three non-costraight planes determine a point.

A straight and a plane not on it determine a point.

Two straights through a point determine a plane.

. Ex. 455. A polygon whose vertices are always necessarily
coplanar is what?

Ex. 456. From each point in a plane costraight with and
equally inclined to two others the two 1s to them are =.

Ex. 457. If two planes are respectively 1L to two others
and the intersection of the first pair || to that of the second
pair, the inclinations are = or supplemental.

Ex. 458. Parallels have as projections on any plane
parallels or points.

Ex. 459. Parallel sects are proportional to their pro-
jections on a plane.

Ex. 460. From a point, Ls to two planes make an
¥ = or supplemental to the inclination of the planes.

Ex. 461. A st’ has the same inclination to || planes.

Ex. 462. If three meets of three planes are ||, the sum
of the three inclinations is two r't ¥s.

Ex. 463. If a st’ is || to each of two planes, any plane
on it cuts them in .

Ex. 464. Through a point without two non-coplanar st’s
passes, in general, a sin _le st’ cutting both.

Ex. 465. Why does each foot of a three-legged stool
meet the floor while one foot of a four-legged chair ma.y
be above the floor?

Ex. 466. If a, b non-coplanar, « { ameets 8 L binc L
r|la and b.

Ex. 467. If two projections of a trio of points on two
intersecting planes give costraight trios, the original
three are costraight. State the exception.

Ex. 468. No oblique to a plane makes equal angles with
three straights in the plane.

Ex. 469. Draw a plane with the same inclination to
two given planes.

Ex. 470. Draw a straight that shall cross three straights,
no two coplanar.
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Ex. 471. Draw a st’ to cross two given non-coplanar
st’s and || to another given st’. [Show solution, in general,
unique.]

Ex. 472. In a plane find a point which joined with three

" given points without the plane gives equal sects.

Ex. 473. The projection on a of r't ¥ (e,b) is a r't ¥ if
a| a.

Ex. 474. If a perpendicular to a plane be projected
on any second plane this projection is at right angles to
the meet or intersection of the planes.

Ex. 475. From a point without a plane, if there be
drawn the perpendicular to the plane and also a perpen-
dicular to a straight in the plane, the join of the feet of
these perpendiculars is at right angles to the straight.

Ex. 476. Two planes being given perpendicular to each
other, draw a third perpendicular to both.

Ex. 477. Three planes, no two parallel, either intersect
in one point (are copunctal) or in one straight (are co-
straight) or have their three intersection-straights (meets)
parallel.

Ex. 478. If two straights be at right angles either is
in the plane through their point of intersection (cross)
perpendicular to the other.

Ex. 479. If three planes have two of their intersec-
tion-straights parallel, the third is parallel to both.

Ex. 480. All straights on two intersecting straights,
but not on their cross, are coplanar.

Ex. 481. If the vertices of a triangle give equal sects
when joined to a point without their plane, the foot of
the perpendicular from this point to the plane is the tri-
angle’s circumcenter.

Ex. 482. All points which joined to three given points
give three equal sects are where?

Ex. 483. All coplanar points which joined to a given
point give equal sects are where?

Ex. 484. If a plane contains one straight perpendicular
to a second plane, every straight in the first plane per-
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pendicular to the intersection-straight (the meet) of the
planes is also perpendicular to the second.

Ex. 485. Any plane is equally inclined to two parallel
planes.

Ex. 486. If 1s from a point to two intersecting planes
be = it determines w1th their meet a plane equally in-
clined to them.

Ex. 487. Construct a plane contalmng a given straight
and perpendicular to a given plane.

Ex. 488. Two perpendiculars from a point to two inter-
secting planes determine a plane perpendicular to the
meet of the two planes. ‘

Ex. 489. If each of three planes be perpendicular to
the other two, their three meets are also perpendicular
to the planes and to one another.

Ex. 490. If any number of planes perpendicular to a
given plane hate a common point, they have a common
meet (intersection-straight).

Ex. 491. If the meets of several planes are parallel, the
perpendiculars to them from any given point are coplanar.

Ex. 492. Perpendiculars from two vertices of a parglielo-
gram to a plane through the other two are equal.

Ex. 493. Two sides of an equilateral triangle are equally
inclined to any plane through the third.

Ex. 494. If two straights be not coplanar, find a point
in one which, joined to two given points in the other,
gives equal sects.

Ex. 495. If @ 1 fand r. and themeet a8 || ar, then 3 ||r.

Ex. 496. If the four sides of a quadrilateral be not co-
planar it is called skew. No three sides of a skew quad-
rilateral are coplanar, nor can its four Xs be r't.

Ex. 497. If a sect divide one pair of opposite sides of a
skew quadrilateral proportionally, and another divide
the other pair in another proportion, these two sects will
cross and each cut the other as'it cuts the sides.

Ex. 498. Find that point in a given plane from which the
sum of the sects to two given points on the same side is least.
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Ex. 499. If A and a are in e, and B not, find the point
in a from which the sum of sects to A and B is least.

Ex. 500. Every plane not on a vertex cuts an even
number of the sides of a skew quad’ internally and an
even number externally.

Ex. sor. If non-coplanar as ABC, A’B’C’ have AA’,
BB’, CC’ copunctal, then the three pairs of sides AB,
A'B’; AC, A'C’; BC, B’C’ intersect in three costraight
points.

Ex. 5s02. If two st’s in one plane be equally inclined.
to another plane they make = xs with the common sec-
tion of these planes.

Ex. 503. If three planes be each 1 to the other two,
the sq’ of the sect from their common intersection to an-
other point equals the sum of the sq's of the three 1s
from that point to the planes. ’

Ex. 504. If three st’s be each 1 to the other two, twice
the sq’ of the sect from their common intersection to
another point equals the sum of the sq's of the three .s
from that point to the st’s.

Ex. 505. Draw a st’ to cut three given non-intersecting
st’s so that the intercepts may be as two given sects.

Ex. 506. If a plane cut a tetrahedron in a |jg'm, the
plane is || to two opposite edges.

Ex. 507. The aggregate of all points is divided by four
planes into (in general) fifteen regions.

Ex. 508. The medians of a skew quadrilateral bisect one
another.

Ex. 509. If two medians of a skew quadrilateral be 1 the
diagonals are =, and sections || to them are [|g’'ms of = pe-
rimeter.



CHAPTER XII
POLYHEDRONS AND VOLUMES.

Polyhedrons.

376. Definition. A tetrahedron is the figure con-
stituted by four non-coplanar points, their sects
and triangles.

The four points are called its summits, the six
sects its edges, the four triangles its faces. Every
summit is said to be opposite to the face made by
the other three; every edge opposite to that made
by the two remaining summits.

A point is within the tetrahedron if it is within
any sect made by any summit and a point within
its opposite face. Points not within or on are
without.

The faces taken together are called the surface
of the tetrahedron.

377. A polyhedron is the figure formed by » plane
polygons such that each side is common to two.

The polygons are called its faces, and taken
together, its surface. Their sects are its edges;
their vertices its summits.

A convex polyhedron is one through no edge of
which pass more than two faces, and which has no

summits on different sides of the plane of a face.
163
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A polyhedron of five, six, eight, twelve, twenty
faces is called a pentahedron, hexahedron, octa-
hedron, dodecahedron, icosahedron.

378. A pyramid is a polyhedron of which all the
faces, except one, are copunctal. This one face
is called the base, and the summit not on it the
apex.

The faces which meet at the apex are called
lateral faces, and together the lateral surface; the
edges meeting at the apex are called lateral edges.

The perpendicular from the apex to the plane
of the base is called the altitude of the pyramid.

379. Euler’s Theorem. In any convex polyhedron
~ the number of faces increased by the number of sum-
mils exceeds by two the number of edges.

To prove F+S=E+2.

Proof. Let ¢ be any edge joining the summits
A, B and the faces a, 8; and let ¢ vanish by the
approach of B to A. If a and B are neither of
them triangles, they both remain, though reduced
in rank and no longer collateral, and the poly-
hedron has lost one edge ¢ and one summit B.

If g is a triangle and a no triangle, B vanishes
with ¢ into an edge through A, but a remains.
The polyhedron has lost two edges of 8, one face j,
and one summit B.

If g and a are both triangles, 8 and a both vanish
with ¢, five edges forming those triangles are: re-
duced to two through A, and the polyhedron has
lost three edges, two faces, and the summit B.

In any one of these cases, whether one edge and
one summit vanish, or two edges disappear with
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a face and a summit, or three edges with a summit
and two faces, the truth or falsehood of the equa-
tion

F4+S=E+2

remains unaltered.

By causing all the edges which do not meet any
face to vanish, we reduce the polyhedron to a
pyramid upon that face. Now the relation is true
of the pyramid; therefore it is true of the undimin-
ished polyhedron.

380. Theorem. The sum of the face angles of
any convex polyhedron is equal to four right angles
laken as many times, less two, as the polyhedron has
summats. :

To prove 2 =(S—2)4 't ¥.

Proof. Since E denotes the number of edges,
2F is the number of sides of the faces.

Taking an exterior angle at each vertex, the
sum of the interior and exterior angles is 2E2 r't ¥,
or E4 r't ¥. But the exterior angles of each face
make 4 r't f; .. the exterior angles of F faces
make Far't f.

S Z=E4rtf —Far'tf =(E-F)4r1't £.
But (by 379) F+S=E+2;
SE-F=S-2;
S 2=(S=-2)41rt A.

Ex. g10. The number of face angles in the surface of
any polyhedron is twice the number of its edges.
Ex. s11. If a polvhedron has for faces only polygons
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with an odd number of sides, it must have an ever num-
ber of faces.

Ex. 512. If the faces of a polyhedron are partly of an
even, partly of an odd, number of sides, there must be an
even number of odd-sided faces.

Ex. 513. The number of face angles on a polyhedron
can never be less than thrice the number of faces.

Ex. 514. In every polyhedron }S<E.

Ex. 515. In any polyhedron E +6_:<_' 3S.

Ex. 516. In any polyhedron E +6 < 3F.

Ex. 5s17. In every polyhedron E <3S.

Ex. 518. In every polyhedron E <3F.

Ex. 519. In a polyhedron, not all the summits are
more than five sided; nor have all the faces more than
five sides. ) ’

Ex. 520. There is no seven-edged polyhedron.

Ex. 521. For every convex polyhedron the sum of theface
angles is four times as many right angles as the difference
between the number of edges and faces.

Ex. 522. How many regular convex polyhedrons are
possible?

Ex. 523. In no polyhedron can triangles and three-
faced summits both be absent; together are present at
least eight.

Ex. 524. A polyhedron without triangular and quad-
rangular faces has at least twelve pentagons; a poly-
hedron without three-faced and four-faced summits has
at least twelve five-faced.

The volume of tetrahedrons and polyhedrons.

381. Theorem. The product of an altitude of a
tetrahedron by the area of its base is independent of
what summit one chooses as apex.
~ Proof. From H and H’, feet of altitudes from
D and C, drop perpendiculars HK, and H'K’ to
AB.
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Then KD1AB. [If two planes ABC and HKD
are at r't ¥’s, then a st' AK in one | to their

[+]

Fic. 144.

intersection KH is also | to the other HDK and
..AK|KD.)]

In same way AK’1K'C.

.. (by 366) ¥ K=%K". .

.. the r't triangles HKD and H'K'C are similar.

..DK:CK'=DH:CH'.

..DK-CH'=CK'-DH.

.".3AB-DK -CH'=3AB-CK'-DH.

382. Definition. One-third the product of base
and altitude of a tetrahedron T is called the volume
of tetrahedron T and designated by V(T).

383. Convention. A plane through an edge of
a tetrahedron and a point of the opposite edge
is called a transversal plame; this cuts the tetra-
hedron into two tetrahedra with common altitude
whose bases ‘are coplanar. Such a partition is
called a transversal partition of the tetrahedron.
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384. Theorem. The volume of any tetrahedron
1s equal to the sum of the volumes of all the tetrahedra
which arise from the first by making successively a
set of transversal partitions.

Proof. From the distributive law in our sect-
calculus follows immediately that the volume of
any tetrahedron is equal to the sum of the volumes
of two tetrahedra which come from the first by
any transversal partition. Thus if the given tetra-

c hedron ABCD is cut by
the transversal plane ACE
passing through the edge
AC, the two tetrahedra
so obtained, AEBC and
AEDC, have in common
the altitude k, from C.
Moreover, the area of the
triangle ABD is equal to
the sum of the areas of
AEB and AED.

Thus V(T) + V(T,) = 4h,-A(a) + 4h -A(2,) =
bh [A(2)+A(a)]=%h,-A(2) =V(T).

Now our theorem follows merely by repeated
application of this single result.

385. Theorem. However a tetrahedron is cut by
a plane, this partition can be obtained in a set of
transversal partitions using not more than two other
planes * ’

Proof. Passing the case in which the plane

*See G. Veronese, Atti del R. Istituto Veneto, t. vi, s. vii;
1894-95.
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itself goes through an edge of the tetrahedron
ABCD, there remain three cases:

I. The plane passes through a single summit,
_ for example, A, thus cutting the tetrahedron ABCD
into the tetrahedron ABXY and the pyramid
with quadrilateral base AXYCD.

Fi1c. 146.

But this partition is in the set of transversal
partitions obtained by taking successively ‘the
planes ADY and AYX.

II. The plane cuts the three edges copunctal
_in a summit, for example, A, thus cutting the
tetrahedron ABCD into the tetrahedron AXYZ
and the convex polyhedron XYZBCD. But this
partition is in the set of transversal partitions
obtained by taking successively the planes BDY,
BYZ, YZX.

III. The plane cuts two pairs of opposite edges,
for example, AB, CD, and AC, BD.

Thus the tetrahedron is cut into the two poly-
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hedrons ADWXYZ and BCWXYZ. Draw the
two planes BDX and ACZ. By these at the same
time the polyhedron ADWXYZ is cut into the

Fic. 148.

three tetrahedra XZAY, XZAD, XZDW, and
the polyhedron BCWXYZ cut into the three
tetrahedra XZBY, XZBC, XZCW.
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But that these six tetrahedra form a set ob-
tainable by transversal partitions is seen by taking
first the plane BDX, and then in the tetrahedron
BDXC successively the planes CXZ and ZXW;
in the tetrahedron BDXA successively the planes
"AXZ and YZX. i

386. Theorem. If a tetrahedron T is in any way
cut tnto a certain finite number of tetrahedra Ty,
then s always the wvolume of the tetrahedron T
equal to the sum of the volumes of all the tetra-
hedra Th.

Proof. The plane a of any one face of any
one of the tetrahedra T, say, T,, makes in T a
partition which, by 385, can be obtained in a set
of transversal partitions of T made by introducing
two other planes B, 7y, cutting 7T into 7,, When
a cuts any tetrahedron Ty, say T,, add in this 7T,
the two planes d, ¢, making the corresponding set
of transversal partitions in this T,.

When B cuts one of these new tetrahedra,
say T,, add in it the requisite two planes ¢, 1.
So do for any tetrahedron T, met by B. Then
in the same way successively for 7.

Now produce a second face of T, say 6, to cut
those tetrahedra T, in which this face is situated.
Add in each of these T, the two planes to make
the transversal partition. When any plane cuts
a tetrahedron already existing, add the requisite
two planes.

Now produce a third face of T, to the nearest
tetrahedron transversally obtained from 7. Finally
take in the fourth face of 7,. Then T, appears
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in a set of transversal partitions of T; while if
cut itself, it is by a set of transversal partitions
of T,. In the same way for every other T}.

Thus after a finite number of constructions we
reach by a set of transversal partitions of 7 a final
set of tetrahedra T}, which are at the same time
also reached by transversal partitions of the tetra-
hedra T.

386b. Of the fundamental theorem 386:

For any partition of a tetrahedron into tetrahedru
the sum of their volumes equals its volume, the follow-
ing alternative proof is due to S. O. Schatunovsky
of Odessa.

386¢c. Partition method I. Cut a face, for ex-
ample BCD (Fig. 149), of the tetrahedron in

F1c. 149.

question ABCD into a finite number # of triangles,
and join their vertices with the summit A. The
tetrahedra so obtained have a common summit A,
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and the faces opposite it coplanar. [For the sake
of distinctness, Fig. 149 shows only one such part-
tetrahedron.]

By 280, the area of the base of the original tetra-
hedron equals the sum of the areas of all the bases
of the part-tetrahedra. It and they have the same
altitude. Our multipfication of sects is distributive.
Therefore its volume equals the sum of theirs.

386d. This I contains transversal partition (383)
as a special case [i.e. for n=2].

386¢. Partition method II. Cut the tetrahedron
ABCD so that all summits of the part-tetrahedra
lie on three edges meeting in the same apex, for
example on the edges AB, AC, AD (Fig. 150).

Fi1c. 150.

Then on the base BCD are, besides the points B,
C, D, no summits of the part-tetrahedra; and con-
sequently the face BCD is a face of a part-tetra-
hedron. The fourth summit. E of this part-tetra-
hedron may lie on the edge AB (Fig. 150).
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Therefore this partition into # part-tetrahedra
may be obtained by first cutting the tetrahedron
ABCD by a transversal partition (here through
DC) into two tetrahedra BCDE and ECDA, and
then ECDA in the same way into # —1 part-tetra-
hedra.

386f. Partition method III. Cut the given tetra-
hedron into part-tetrahedra by I, and these each -
into part-tetrahedra by II. A

386g. Partition method IV. (Paristion with help
of Central Projection.) ,

Take a point O either without the tetrahedron
ABCD or coincident with one of its summits, for
example A, and let the rays OA, OB, OC, OD
meet a plane « in A’, B/, C’, D’ which cannot be
costraight since A, B, C, D are not coplanar. Call-
ing A’ the central projection of A, then the figure
made by the central projections of the edges of the
tetrahedron ABCD is in general (the special cases

_are hereafter exhaustively treated) a quadrilateral
with its two diagonals, which cut it into triangles.
Cut now these last triangles in any way into part-
triangles, altogether # in number. The vertices
of these part-triangles (in our figures always only
one such triangle is shown) join with the projection-
centre O, whereby # tetrahedra OT//, OT)/,... 0T’
are made, which have a common summit O, and
whose bases T, T,,...T,’ are all the part-tri-
angles of the projection-figure A’B’C'D’. If O
coincides with A then the edges of the tetrahedra
oT/, OT/,...OT,’ cut the original tetrahedron
ABCD into »n part-tetrahedra.
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On the other hand, if O 1s different from A, then
the edges of OT/, OT,, ..OT, cut the tetra
hedron ABCD into a number of fruncated tetra.
hedra, among which as special cases may appear
the pyramid of five summits and the complete
tetrahedron. These pyramids appear if a vertex
of the corresponding triangle 77 falls on one of
the sects A’B’, A'C’'... Complete tetrahedra
appear if two vertices of the triangle 77 fall on one
of the said sects.

Always cut these truncated tetrahedra into three
(these pyramids into two) complete tetrahedra,
using a diagonal of each quadrilateral face [as in
385 II].

By this last partition we get no new summits.

The partition of the original tetrahedron into
part-tetrahedra so attained is called Partition with
the aid of central projection. The different cases
may be more explicitly set forth as follows:

Case 1. O coincides with A. This is Partition
method I [see 386c].

Case 2. O lies on the prolongation of an edge, for
example DA (Fig. 151).

The projection-points A’ and D’ coincide and we
get on the plane a as projection of ABCD a tri-
angle A’B'C’.

That face of the truncated tetrahedron (or pyra-
mid of five summits or complete tetrahedron) ob-
tained by the above given construction, which by
the projection of T, is made in the face BCD
designate by T,; that in face ABC by T,

The tetrahedra obtained by the transversal
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partition of this truncated tetrahedron designate
respectively by ¢/, ¢,”, ¢,."". Then is the volume of
ABCD equal to the sum of the volumes of all the .

For every tetrahed:on OT, is divided into at
most four part-tetrahedra OT,,, ./, t,”, t,/”, all

FiG. 151.
of whose summits lie on the three edges meeting
in apex O, that is every OT , is divided by Parti-
tion method II. Therefore .
V(OT)=V(OT)+ V@) +VE"M+ V(")
VOT,)=V(OT)+VE)+VE")+V(E"),

V(OT,)=V(OT )+ V() + V() + V().
Adding these equations to one another and notic-
ing that (by 386¢) on the one side
VOT)+V(OT,)+ ... +V(0T,)=V(OBCD),
on the other side
V(OTL)+V(OTp)+ ... +V(0OTw)=V(OABC),
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we find, using 3 to mean the sum from n=1 up

to n=mn,

V(OBCD) =V(OABC) + Z V() + V(") + V().
Furthermore, the division of the tetrahedron
OBCD by the plane ABC into the tetrahedra OABC

and ABCD is a transversal partition, and so (by 384)
V(OBCD) =V(OABC)+V(ABCD).
The last two equations give finally

V(ABCD) = [V +V(E") +VE/M];

therefore also for this case our theorem is proven.
Case 3. O lies without the tetrahedron on one of 1ts

boundary planes, that is in the plane of one of its

faces; for example, on the plane ABD (Fig. 152).

\N’Cl/ 3

FiG. 152.
Then the projections A’, B’, D’ are costraight;
therefore one of them, say A’, lies between the
other two,
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B’, ¢’, D" make a triangle which is cut by the
sect A’C’ into two part-triangles A’B’C’ and A’C'D’.
Correspondingly the plane OA’C’ cuts the tetra-
hedron ABCD into two part-tetrahedra AA, BC,
and AA,CD; and since this plane goes through the
edge AC, therefore it makes a transversal partition,
and we have (by 384)

V(ABCD) =V (AA,BC)+V(AACCD).

Since, however, O lies on the prolongation of the
edge A,A, therefore (by Case 2)

V(AA,BC)=3V(t,)
and
V(AA,CD) =3V(t,),

where ¢, are all the tetrahedra into which in accord-
ance with the above method the tetrahedron
AA,BC is divided [and t; those in AA,CD].

These last three equations give now V(ABCD) =
2V (), where t are all the part- tetrahedra of
ABCD.

Case 4. If O lies on no one of the boundary planes
of the tetrahedron ABCD, then no three of the pro-
jection-points A’, B’, C’, D’ are costraight.

Consider first the case in which one of these points
(say A’) falls within the triangle B'C'D’ made by
the other three (Fig. 153).

The joining sects A’B’, A’C’, A’'D’ cut the tri-
angle B'C’D’ into three part-triangles, and corre-
spondingly the tetrahedron ABCD is divided into
three part-tetrahedra AA,BC, AA,BD, AACD,
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giving a case of Partition method I; therefore
(by 386c)

V(ABCD) =V(AA,BC)+V(AA,BD)+V(AACD).

If we now, as above, divide the triangles A’B’'C’,
A’B'D', A’C'D’ into part-triangles, project these

back upon the corresponding part-tetrahedra and
designate the part-tetrahedra obtained in the
above given way of the tetrahedra AA,BC, AA,BD,
AACD with t,, t, t, respectively, then we obtain
the three equations

V(AA,BC) =2V (t,); V(AA,BD)=ZXV(t);
V(AACD) =3V (),

since O lies on the ray A,A, that is we have here
each time Case 2.

These last four equations give now V(ABCD) =
IV (t), where t are all the part-tetrahedra of ABCD.,
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Case 5. If, finally, again O lies in no one of the
boundary planes of the tetrahedron ABCD, but each
of the projections A’, B', C', D' falls without the
triangle made by the remaining projection-points,
then the projections of the edges of the tetrahedron
make a convex quadrilateral with its two diagonals.
This quadrilateral is divided by its diagonals into
four triangles, M'A’C’, M'A’D’', M'B'C’', M'B'D’
(Fig. 154).

Fre. 154.

The plane OA’B’ divides the tetrahedron by a
transversal partition into two parts, so that we
have (by 384)

V(ABCD) =V(AMBC) +V(AMBD),

where M is the point corresponding to the inter-
section point M’ of the diagonals A’B’ and C’'D’.
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If we now divide each triangle M’A’'C’, M'A'D’,
M’B'C’, M’'B'D’ into part-triangles and project
back upon the faces of the tetrahedron ABCD,
then the tetrahedra AMBC and AMBD are divided
each into part-tetrahedra, which, in general, may
be designated respectively ¢ and f,. Since now,
moreover, O lies in the plane AMB, therefore
(by Case 3) we have the equations

V(AMBC)=2V(,) and V(AMBD)=2V(t,).
Consequently is also in this case
V(ABCD)=ZV(t).

This completes the proof of the theorem that in
every partition of a tetrahedron by central projec-
tion the sum of the volumes of the part-tetrahedra
equals the volume of the whole tetrahedron.

386h. The most general partition can be built up
from the four partition methods already given, and
this proves the fundamental theorem 386.

For let ABCD be a tetrahedron and P,, P,, . . .
P, the part-tetrahedra which arise from any par-
tition of it. _

If, now, we project all these tetrahedra from the
point A upon the face BCD, then their projections,
which necessarily -all fall within the triangle BCD,
overlie and overlap, in general, manifoldly, and
cut one another into polygons. When we cut these
polygons into triangles and join their vertices
with A we divide each tetrahedron, P,(m =1,
2, ...k), into a number of truncated tetrahedra
(including perhaps pyramids of five summits and
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complete tetrahedra) which in turn in the well-
known way we divide into further part-tetrahedra.

Since the so obtained partition of each part-
tetrahedron P,, into further part-tetrahedra, which
may be designated t.', t,"”,...#"w, is accom-
plished with the aid of central projection, for each
projection-center lies without each tetrahedron,
only that one with the summit A excepted, so is

V(Pm) = V(tm,) + V(t;,.") +.. .+ V(t(:‘m)),

If we now give m successively the values 1,
2, ...k, we obtain k such equations, which added
give the following:

SV(Pp)=2V(ER)(Mzr2 -k

=1.2, Ny *

But, on the other hand. every tetrahedron AT,
where T is a part-triangle of BCD, cuts out from
the aggregate of part-tetrahedra ¢ a set, and each
tetrahedron of this set appears once and only once
in the above sum.

At the same time all summits of these last part-
tetrahedra lie on the three edges from A of the
particular tetrahedron AT ; that is, AT is divided
by this set of tetrahedra according to Partition
method II.

Furthermore, the whole tetrahedron ABCD is
divided into tetrahedra AT according to Partition
method I, so that it is divided according to Parti-
tion method III into part-tetrahedra ¢.

Now this complex of tetrahedra ¢ is identical

~
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with the complex #?, where l=1, 2,. . . %n; m=1,
2,...k
Consequently

V(ABCD) = SV(fD)(mzr2 - k

l=mz,2’ ] Ny ) ?

which combined with the previous equation gives
the desired proof of the fundamental theorem

V(ABCD) ="3 V(P.).

387. Theorem. If a polyhedron P is cut into
tetrahedra in two different ways, then the sum of the
volumes of the tetrahedra of the first partition equals
that of the second.

Proof. Suppose P divided into m’ tetrahedra
t, %, ...tm and again into # tetrahedra ¢/, 2/,

.

Construct a tetrahedron T which contains the
polyhedron P, and cut the polyhedron bounded
by the surface of P, and that of T in any definite
. way into tetrahedra T/, T, . ..

Thus we obtain two partitions of the tetrahe-
dron T and (by 386) the equations

V(D) =V@E)+ VL) +. ..
+V(@m)+V(T)+V(T))+. ..
VD)=V +V(E)+.
+V(t .) +V(T')+V(T +. .
whence

V) +V(t)+...+V(tm)
=V N+V@E)+...+V(E).
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388. Definition. The volume of a polyhedron 1s
the sum of the volumes of any set of tetrahedra
into which it is cut.

389. Definition. Two polyhedra P and Q of
equal volume are said to be equal. P is called
greater than Q if the volume of P is greater than
the volume of Q; less if volume is less.

If V(P)=V(Q), wesay P=Q.

If V(P)>V(Q), wesay P>Q.

If V(P)<V(Q), wesay P<Q.

The three cases are mutually exclusive.

390. Corollary. If a polyhedron be cut into poly-
hedra, the sum of their volumes equals its volume.

391. Corollary. If a polyhedron be cut into
polyhedra, if one of these be omitted it is not
possible with the others, however arranged, to
make up the original polyhedron.

The Prismatoid Formula.

392. Definition. A prismatoid is a polyhedron *
having for base and top any two polygons in parallel
planes, and whose lateral faces are triangles deter-
mined by the vertices so that each lateral edge
with the succeeding forms a triangle with one side
of the base or of the top.

The altitude of a prismatoid is the perpendicular
from top to base.

A number of different prismatoids thus have
the same base, top, and altitude.

A prismatoid with a point as top is a pyramid.
If both base and top of a prismatoid are sects, it
is a tetrahedron.
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If a side of the base and a side of the top which
form with the same lateral edge two sides of two
adjoining faces are parallel, then these two tri-
angular faces fall in the same plane, and together
form a trapezoid.

303. A prismoid is a prismatoid whose base and
top have the same number of sides, and every
corresponding pair parallel.

394. A frustum of a pyramid is a prismoid with
base and top similar.

395. Corollary. Every prismoid with triangular
base is the frustum of a pyramid.

396. A section of a prismatoid is the polygon
determined by a plane perpendicular to the alti-
tude.

397. Theorem. The area of a section of a pyramid
1s to the area of the base as the square of the perpendic-
ular on 1t, from the apex, is to the square of the alti-
tude of the pyramid.

To prove S:B =p?:a%

Proof. The section and base
are similar, since corresponding
diagonals cut them into tri-
angles similar in pairs because '
having all their sides respec-
tively proportional, each corre-
sponding pair being as a lateral

“edge to the sect on it made by
apex and section, which in turn Fie. 155.
are as altitude to perpendicular on section. But
(by 300) the areas are as the squares of these.
398. To find the volume of any pyramid.
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Rule. Multiply one-third its altitude by the area
of its base. Formula, YV =(—;B.

Proof. Cutting this base into triangles by planes
through the apex, we have a partition of the given
pyramid into triangular pyramids (tetrahedra) of
the same altitude whose bases together make the
polygonal base.

399. To find the volume of any pnsmatmd

Rule. Multiply one-fourth its altitude by the
sum of the base and three times a section at two-
thirds the altitude from the base.

Formula, D =$4‘(B +35).

v

) a
Fic. 156.

Proof. Any prismatoid may be divided into
tetrahedra, all of the same altitude as the pris-
matoid; some, as CFGO, having their apex in the
top of the prismatoid and their base within its
base; some, as OABC, having three summits
within the top and the fourth in the base of the
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prismatoid, thus having for base a point and for
top a triangle; and the others, as ACOG, having
for base and top a pair of opposite edges, a sect
in the plane of the base and a sect in the plane of
the top of the prismatoid, as OG and AC.

\ |

[\] o

(<]

Fic. 157.

Therefore if the formula holds good for tetra-
hedra in these three p031t10ns, it holds for the
prismatoid, their sum.

In (1) call S the section at two-thirds the alti-
tude from the base B,; then S, is 4a from the apex.
Therefore (by 397) the areas

S,:B,=(%a)*:a? ..S,=3B,; .

Dy=7(B,+35) = (B, +1B,) =4aB,

which (by 382) equals Y, the volume of this tetra-
hedron.
In (2) the base B, is a point, and S, is 4a from
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this point, which is the apex of an inverted
pyramid. '
.. (by 397) the areas S,:T,=(3%a)?:a?; .. S,=4T,;

a
5. Dy= (B, +35) = (0+4T) =§aT, = V.
In (3) let KLMN be the section S, Now the
areas ‘
AANK :8AGO=AN*:AG’=(}a)*:a’=1:9;
AGNM:A0GAC =GN’ :GA*=(3a)*:a%=4:9.
But the whole tetrahedron D, and the pyramid
CANK may be considered as having their bases

in the same plane, AGO, and the same altitude,
a perpendicular from C:

.CANK :Dy= AANK: 8AGO =1:9;
. CANK =1D,
In the same way
OGNM :Dy=AGNM : AGAC =4:9;
. OGNM =4D,;
. CANK +OGNM =3Dy;
. CKLMN +OKLMN =4D,
But by (308) CKLMN+OKLMN —}-3aS,+
}-4aS,=1%aS;; .. 4D,=1%aS,;
D,=Z3S,=Z(B,+3S,),

since here the area By;=o.
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400. Corollary to 399. Since, in a frustum of a
pyramid, B and S are similar; .". if b and s be corre-
sponding edges,

] 2
B:S=b%:5s%; ..the volume F=ZB(I +§b§;>

401. Definition. A prism is a prismatoid whose
base and top are congruent.

A right prism is one whose lateral edges are
perpendicular to its base.

A parallelopiped is a prism whose bases are
prallelograms. :

A cuboid is a parallelopiped whose six faces
are rectangles.

A cube is a cuboid whose six faces are squares.

402. Corollary to go0. To find the volume of
any prism.

Rule. Multiply its altitude by the area of its base.
Formula, V(P)=a-B.

.. To find the volume of a cuboid.

Rule. Multiply together any threc copunctal edges,
that is, its length, breadth, and thickness.

403. A cube whose edge is the unit sect has for
volume this unit sect, since 1 X1X1=1I.

Any polyhedron has for volume as many such
unit sects as the polyhedron contains such cubes
on the unit sect.

The number expressing the volume of a poly-
hedron will thus be the same in terms of our unit
sect, or in terms of a cube on this sect, considered
as a new kind of unit, a unit solid. Such units,
though traditional, are unnecessary.
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Ex. 525. If the altitude of the highest Egyptian pyramid
is 138 meters, and a side of its square base 228 meters,
find its volume.

Ex. 526. The pyramid of Memphis has an altitude of
73 Toises; the base is a square whose side is 116 Toises.
If a Toise is 1-95 meters, find the volume of this pyramid.

Ex. 527. A pyramid of volume 15 has an altitude of
g units. Find the area of its base.

Ex. 528. Find the volume of a rectangular prismoid
of 12 meters altitude, whose top is 5 meters long and
2 meters broad, and base 7 meters long and 4 meters
broad.

Ex. 529. In a prismoid 15 meters tall, whose base is
36 square meters, each basal edge is to the top edge as
3 to 2. Find the volume.

Ex. 530. Every regular octahedron is a prismatoid whose
bases and lateral faces are all congruent equilateral tri-
angles. Find its volume in terms of an edge b.

Ex. 531. The bases of a prismatoid are congruent
squares of side b, whose sides are not parallel; the lateral
faces are eight isosceles triangles. Find the volume.

Ans. ab*(2+ 2%).

Ex. 532. If from a regular icosahedron we take off
two five-sided pyramids whose vertices are opposite
summits, there remains a solid bounded by two congruent
regular pentagons and ten equilateral triangles. Find
its volume from an edge b. Ans. s+ 2(5)%].

Ex. 533. Both bases of a prismatoid of altitude a are
squares; the lateral faces isosceles triangles. The sides
of the upper base are parallel to the diagonals of the
lower base, and half as long as these diagonals; and b is
a side of the lower base. Find the volume. Ans. §ab’

Ex. 534. The upper base of a prismatoid of altitude
a=6 is a square of side, b,=7-07107; the lower base is a
square of side b, =10, with its diagonals parallel to sides
of the upper base; the lateral faces are isosceles triangles.
Find volume.

Ex. 535. Every prismatoid is equal in volume to three
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pyramids of the same altitude with it, of which one has
for base half the sum of the prismatoid’s bases, and each
of the others its mid-cross section:

D=3a (B' jB’ +2M) —31a(B, +4M +B)).

Ex. 536. If a prismatoid have bases with angles re-
spectively equal and their sides parallel, in volume it
equals a prism plus a pyramid, both of the same altitude
with it, whose bases have the same angles as the bases of
the prismatoid, but the basal edges of the prism are half
the sum, and of the pyramid half the difference, of the
corresponding sides of both the prismatoid’s bases.

Ex. 537. If the bases of a prismatoid are trapezoids
whose mid-sects are b, and b,, and whose altitudes are

a, +a, b,+b, 1a,—a, b,—b,
a, and a,, the volume=a( . = . )
2 2 3 2 2

Ex. 538. A side of the base of a frustum of a square
pyramid is 25 meters, a side of the top is 9 meters, and
the height is 240 meters. Required the volume of the
frustum.

Ex. 539. The sides of the square bases of a frustum
are 5o and 4o centimeters. Each lateral edge is 30 centi-
meters. How many liters would it contain?

Ex. 540. In the frustum of a pyramid whose base is
5o and altitude 6, the basal edge is to the corresponding
top edge as 5 to 3. Find volume.

Ex. 541. Near Memphis stands a frustum whose height
is 142 -85 meters, and bases are squares on edges of 185-5
and 3-714 meters. Find its volume.

Ex. 542. In the frustum of a regular tetrahedron,
given a basal edge, a top edge, and the volume. Find
the altitude.

Ex. 543. A wedge of 10 centimeters altitude, 4 centi-
meters edge, has a square base of 36 centimeters perimeter.
Find volume.

Ex. 544. The diagonal of a cube is #. Find its volume.

Ex. 545. The edge of a cube is #. Approximate to
the edge of a cube twice as large.
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Ex. 546. Find the cube whose volume equals its super-
ficlal area.

Ex. 547. Find the edge of a cube equal to three whose
edges are a, b, I

Ex. 548. If a cubical block of marble, of which the
edge is 1 meter, costs one dollar, what costs a cubical block
whose edge is equal to the diagonal of the first block?

Ex. 549. If the altitude, breadth, and length of a cuboid
be a, b, I, and its volume V,

(1) Given a, b, and superficial area; find V.

(2) Given a, b, V; find L

(3) Given V, (ab), (bl); find I and b.

(4) Given V, (%) (—I;) . find @ and b.

(5) Given (ab), (al), (bl); find a and b.

Ex. 550. If g7 centimeters is the diagonal of a cuboid
with square base of 43 centimeters side, find its volume.

Ex. 551. The volume of a cuboid whose basal edges
are 12 and 4 meters is equal to the superficial area. Find
its altitude.

Ex. 552. In a cuboid of 360 superficial area, the base
is a square of edge 6. Find the volume.

Ex. 553. A cuboid of volume 864 has a square base
equal in area to the area of two adjacent sides. Find
its three dimensions.

Ex. 554. In a cuboid of altitude 8 and superficial area
160 the base is square. Find the volume.

Ex. 555. The volume of a cuboid is 144, its diagonal
13, the diagonal of its base 5. Find its three dimensions.

Ex. 556. In a cuboid of surface 108, the base, a square,
equals in area the area of the four sides. Find volume.

Ex. 557. What is the area of the sheet of metal re-’
quired to construct a rectangular tank (open at top) 12
meters long, 10 meters broad, and 8 meters deep?

Ex. 558. The base of a prism 10 meters tall is an
isosceles right triangle of 6 meters hypothenuse. Find
volume.
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Ex. 559. In a prism the area of whose base is 210 the
three sides are rectangles of area 336, 300, 204. Find
volume.

Ex. 560. A right prism whose volume is 480 stands
upon an isosceles triangle whose base is 10 and side 13.
Find altitude.

Ex. 561. In a right prism whose volume is 54, the lat-
eral area is four times the area of the base, an equilateral
triangle. Find basal edge.

Ex. 562. The vertical ends of a hollow trough are
parallel equilateral triangles with 1 meter in each side,
a pair of sides being horizontal. If the length between
the triangular ends be 6 meters, find the volume of water
the trough will contain.



CHAPTER XIII

TRIDIMENSIONAL SPHERICS.

404. Definition. If C is any given point, then
the aggregate of all points A for which the sects
CA are congruent to one another is called a sphere.
C is called the center of the sphere, and CA  the
radius. :

Every point B, such that CA >CB is said to be
within the sphere. If CA<CD, then D is without
the sphere.

405. Theorem. Any ray from the center of a
sphere cuts the sphere in one, and only one, point.

406. Theorem. Any straight through its center
cuts the sphere in two, and only two, points.

407. Definition. A sect whose end-points are
on the sphere is called a chord.

408. Definition. Any chord through the center
is called a diameter. Its end-points are called
opposite points of the sphere.

409. Theorem. Every diameter is bisected by
the center.

410. Corollary to 106 and 409. A plane through
its center meets the sphere in a circle with radius
equal to that of the sphere. Such a circle is called
a great circle of the sphere.

194
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411. Corollary to 410. All great circles of the
sphere are congruent, since each has for its radius
the radius of the sphere. '

412. Theorem. Any two great circles of a sphere
bisect each other.

Proof. Since the planes of these circles both
pass through the center of the sphere, therefore
on their intersection is a diametér of the sphere
which is a diameter of each circle.

413. Theorem. If any number of great circles pass
through a given point, they will also pass through the
opposite point.

Proof. The given point and the center of the .
.sphere determine the same diameter for each of
the circles.

414. Corollary to 413. Through opposite points
an indefinite number of great circles can be passed.

415. Theorem. Through any two mnon-opposite
points on a sphere, one, and only one, great cm:le
can be passed.

Proof. . For the two given points and the center
of the sphere determine its plane. '

416, Definition. A straight or plane is called
tangent to a sphere when it has one point, and
only one, in common with the sphere.

Two spheres are called tangent to each. other
when they have one point, and only one, in com-
mon.

417. Theorem. A straight or plane having the
foot of the perpendicular to it from the center in com-
mon with the sphere is tangent.

Proof. This perpendicular, a radius, is (by 142)
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less than any other sect from the center to this
straight or plane. Therefore every point of the
straight or plane is without the sphere except the
foot of this radius.

418. Theorem. If a straight has a given pomt not
the foot of the perpendicular to it from the center
in common with a sphere, it has a second point on
the sphere.

Proof. This is the other end-point of the sect
from the.given point bisected by this perpen-
dicular.

419. Theorem. If a plane has a point not the

foot of the perpendicular to 1t
from the center in common with a
sphere, it cuts the sphere in a
crrcle.

Proof. If A be the common
point and C the foot of the
perpendicular, the circle ©C(CA)

Fie. 158. is on the sphere.

420. Corollary to 419. The straight through
the center of any circle of a sphere perpendicular
to its plane passes through the center of the sphere.

421. Definition. The two opposite points in
which the perpendicular to its plane, through the
center of a circle of the sphere, meets the sphere,
are called the poles of that circle, and the diameter
between them its axis

422. Theorem. Any three points on a sphere deter-
mine a circle on the sphere (I 3 and 419).

423. Theorem. The radius of any circle of the
sphere whose plane does not contain the center
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of the sphere is less than the radius of a great
circle.

Proof. The hypothenuse (by 142) is > a side.

424. Definition. A circle on the sphere whose
plane does not contain the center of the sphere is
called a small circle of the sphere.

425. Inverse of 417. Every straight or plane
tangent to the sphere is perpendicular to the
radius at the point of contact. For if not it would
have (by 418) another point on it.

426. Theorem. If two spheres have o points
in common they cut in a circle whose center is in
their center-straight and whose plane is perpendicular
to that straight.

Hypothesis. Let C and O be the centers of
the spheres having the points A and B in common.

Conclusion. They have in common all points,
and only those, on a circle with center on OC and
plane L to OC.

F1e. 159.

Proof. Since, by 58, AACO= ABCO, .. perpen-
diculars from A and B upon OC are equal and
meet OC at the same point, D. Thus all, but only,
points like A and B, in a plane | to OC, and points
of ®© D(DA), are on both spheres.
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427. Corollary to 426. If two spheres are tan-
gent, either internally or externally, their centers
and point of contact are costraight.

428. Theorem. Four points, not coplanar, deter-
mine a sphere. )

Proof. Let A, B, C, D
be the four given points.
Then (by 352) the plane
al to and bisecting AB
meets 8 L to and bisecting
BC in EH1ABC, and
meets 4 L to and bisecting
BD in FO1ABD.

.. EH]1EG, and FO1FG,
and (by 77) EH and FO
meet, say, at O; .. (by
346) O is one, and the
only center of a sphere containing A, B, C, D.

429. Corollary to 428. The four perpendiculars
to the faces of a tetrahedron through their circum-
centers, and the six planes bisecting at right angles
the edges, are copunctal in its circumcenter.

430. Problem. To inscribe a sphere in a given
tetrahedron.

Construction. Through any edge and any point
from which perpendiculars to its two faces are
equal, take a plane. Likewise with the other
edges in the same face. The cointersection of
these three planes is the incenter required. -

431. Theorem. The sects joining its pole to points
on any circle of the sphere are equal. ;

Proof (343).

Fic. 160.
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432. Corollary to 431. Since equal chords have
congruent minor arcs, .. the great-circle-arcs join-
ing a pole to points on its c
circle ‘are congruent.” Hence ‘
if C is any point in a sphere
«, then the aggregate of all
points A in «, for which the
great-circle-arcs CA are con-
gruent to one another is a
circle. Fr16. 161.

433. Theorem. The great-circle-arc fjoiming any
point in a great circle with its pole is a quadrant.

Proof The angle at the center is right.

434. Theorem. If A, B are
non-opposite, the point P is a
pole of their great circle when the
arcs PA, PB are both great-
circle-quadrants.

" For each of the angles POA,
POB is right and .. PO10OAB. .

435. Definition. The angle Fic. 163.
between two great-circle-arcs on a sphere, called
a spherical angle, is the angle between tangents
to those arcs at their point of meeting.

436. A spherical angle is the inclination of the
two hemiplanes containing the arcs.

437. Theorem. Amny great circle through a pole
of a given great circle is perpendicular to the given
great circle.

Proof. Their planes (by 369) are at right angles.

438. Inverse of 437. Any great circle perpen-

~
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dicular to a given great circle will pass through
its poles.

439. Theorem. If a sphere be tangent to the par-
allel planes containing opposite edges of a tetrahe-
dron, and sections made 1n the sphere and tetra-
hedron by ome plane parallel to these are of equal
area, so are sections made by any parallel plane.

|7 ——

P1G. 163.

Hypothesis. Let K J be the sect 1 to the edges
EF and GH in the || tangent planes. Then KJ=
DT, the diameter.

Let ©I(IP)=MO, sections made by the plane
1DT at I and 1K ] at R, where KR=DI.

Let ABCLSN be any parallel plane through a
point A of the sphere.

Conculsion. LN =@C(CA).

Proof. Since

ALEU~AMEW, and ALHV~AMHZ,
S MW:LU=EM:EL =JR :]JS (by 373).
MZ :LV=HM:HL=KR:KS.

But (by 366) ¥ ZMW =4 VLU.

. (by 299) area MO:area LN=WM-MZ:UL-LV

=JR-RK:JS-SK.
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But (by 325)

area ©I(IP):area ©C(CA)=PI*:AC?
=TI-ID:TC-CD (by 245);

.. area LN =area ©C(CA).

440. Cavalieri’s assumption. If the two sec-
tions made in two solids between two parallel
planes by any parallel plane are of equal area,
then the solids are of equal volume.

441. Theorem. The volume of a sphere of radius
7 is §nr®,

Proof. A tetrahedron on edge, and a sphege
with this tetrahedron’s altitude for diameter, have
(by 439) all their corresponding sections of equal
area, if any one pair are of equal area.

Hence (by 440) they are of equal volume.

.. (by 399) vol. sphere = $aS.

But a=27, and (by 245) S=4%r-§r-x.

.. Vol. sphere =427 -37-4r - =4nr".

442. Definition. The area of a sphere is the
quotient of its volume by one-third its radius.

Area of sphere = 4z

443. Corollary to 324. The area of a sphere is
quadruple the area of its great circle.

444. Definition. A spherical segment is the piece
of a sphere between two parallel planes. If one
of the parallel planes is tangent to the sphere,
the segment is called 'a segment of one base.

445. Corollary to 439 and 440. The volume of a

spherical segment is %z(r,’+ 37s°), where 7, is the
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radius of the section two-thirds the altitude from
the base whose radius is 7,. If the segment is
of one base its volume is {anr,®; which in terms

of 7, the radius of the sphere, is na’(r —%), and

2'
“equals %za(r,’+-‘;—). If we eliminate 7, by intro-

ducing 7,, the radius of the top, the volume of the
segment is }ra[3(r,*+7,%) +a?).

446. Problem. Given a portion of a sphere,
find its radius.

Construction. Take any three points of the part
given, say A, B, C. The plane A, B, C (by 419)
cuts the sphere in a circle. The straight at D,
the center of this circle perpendicular to the plane
ABC, contains the center O of the sphere (by 420) ~
and therefore meets the sphere,
say at P. In the plane PAD
draw AP’1l to AP and meet-
ing DO in P’. Bisect PP’ in
O. Then O is the center of
the sphere and OP is the radius.

Proof. O is circumcenter of
PAP,

.OP=0A. But since OD
is lO(D)DA at D, .. OA=0B=0C.

447. Corollary to 30s.

Fic. 164.

DA*+DP? . r’+h?
opP = DP that is, R-———zh—

Ex. 563. A circle on a sphere of 10 centimeters radius
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has its center 8 centimeters from the center of the sphere.
Find its radius.

Ex. 564. The sects from the centers of circles of equal
area on a sphere to the center of the sphere are equal.

Ex. 565. Where are the centers of spheres through
three given points?

Ex. 566. Find the volume of a sphere whose area is z2o.

Ex. 567. Find the radius of a globe equal to the sum
of two globes whose radii are 3 and 6 centimeters.

Ex. 568. A section parallel to the base of a hemisphere,
radius 1, bisects its altitude. Find the volume of each
part,

Ex. 569. The areas of the parts into which a sphere is
cut by a plane are as 5 to 7. To what numbers are the
volumes of these parts proportional?

Ex. 570. The volume of a spherical segment of one
base and height 8 is 1200. Find radius of the sphere.

Ex. 571. Find the volume of a segment of 12 centi-
meters altitude, the radius of whose single base is 24
centimeters, :

Ex. 572. In terms of sphere radius, find the altitude
of a spherical segment # times its base.

Ex. 573. Find volume of a spherical segment of one
base whose area is 15 and base 2 from sphere center. '

Ex. 574. In a sphere of 10 centimeters radius find the
radii 7, and 7, of the base and top of a segment whose
altitude is 6 centimeters and base 2 centimeters from the
sphere center.

Ex. 575. Out of a sphere of 12 centimeters radius is
cut a segment whose volume is one-third that of the
sphere and whose bases are congruent. Find the radius
of the bases.

Ex. 576. Find the radius of a sphere whose area equals
the length of a great circle.

Ex. 577. Find the volume of a sphere the length of
whose great circle is #.
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Ex. 578. Find the radius of a sphere whose volume
equals the length of a great circle.

Ex. 579. The volume of a sphere is to that of the cir-
cumscribing cube as = to 6.

Ex. 580. Find altitude of a spherical segment of one
base if its area is A and the volume of the sphere V.

Ex. 581. The radii of the bases of a spherical segment
are 5 and 4; its altitude 3. Find volume.



CHAPTER XIV.
CONE AND CYLINDER.

448. Definition. The aggregate of straights de-
termined by pairing the points of a circle each
with the same point not in their plane is called a
circular cone of two nappes.

This point is called the apex of the cone. Each
straight is an element.

The straight determined by the apex and the
center is called the axss of the cone.

The rays of the cone on the same side of a plane
through the apex perpendicular to the axis are
one nappe of the cone.

The sects from the apex to the circle are often
called the cone, and are meant when we speak of
the area or the volume of the cone.

When each element makes the same angle with
the axis, the cone is called a right cone.

In a right cone all sects from apex to circle are
equal, and each is called the slant height.

449. Theorem. Ewvery section of a circular cone
by a plane parallel to the base is a circle. ’

Let the section D’H’B’F’ of the circular cone
A-DHBF be parallel to the base.

To prove D'H'B'F’ a circle.

205
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Proof. Let C be the center of the base, and

a C’ the point of the axis AC in
the plane D’'H’B’. The plane
through AC and any element AB
gives radii CB, CD, and parallel
to them the sects C'B’, C'D’.

. (by 75)2ABC~AAB'C’ and
AACD~rAC'D'.

c.(by 234) C'B’ : CB=AC(C":

F1c. 165. AC=CD':CD.

But CB=CD. ..C'B'=C'D'.

450. Corollary to 449.

The axis of a circular cone passes through the
center of every section parallel to the base.

451. Theorem. If a circular cone and a tetra-
hedron have equal altitudes and bases of equal area
and in the same plane, sections by a plane parallel
to the bases are of equal area.

\
1y

[ =X

F1G. 166.
Proof. BC : B'C'=AC : AC' =AL : AL'=
, =VT:VT' =VH : VH'=GH : G’H'.
.. BC*: B'C'"*=GH*: _G-T"‘
But (by 325)
area ©@C(CB) : area 0C’'(C'B’)
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=BC?: B'C'*=GH*: G’H"?
=area AFGH : area A F'G'H’ (by 300).

But by hypothesis area ©C(CB) =area A FGH.

. Area ©C'(C'B’) ==area s F'G'H’.

452. Corollary to 451.

Volume of circular cone is (vy 440) =volume of
tetrahedron of equal altitude and base = }arr?.

453. Theorem. The lateral area of a right cir-
cular come is half the product of the slant height by
the length of the base. .

Proof. It has the same area as a sector of a
circle with the slant height as radius and an arc
equal in length to the length of the cone’s base.

. (by 323) K =4ch=nrh.

454. Definition. A trumcated pyramid or cone is
the portion included between the base and a plane
meeting all the elements.

A frustum of a cone is the portion included be-
tween the base and a plane parallel to the base.

455. Theorem. The lateral area of a frustum
of a right circular cone is half the product of its slant
height by the sum of the lengths of its bases.

Proof. It is the difference of the areas of two

sectors with a common //m\\
angle, the lengths of the AR

arcs of the sectors being
" equal to the lengths of
bases of the frustum.
o F=%h(c,+¢,)
=nh(r,+1,). Fic. 167.
456. Corollary to 451 and 399.




208 RATIONAL GEOMETRY.
The volume of the frustum of a circular cone,
V-F =t%an(r®+3r,),

where r, is the radius of S.

457. Definition. A circular cylinder is the assem-
blage of straights each through a point of a given
circle but not in its plane, and all parallel.

The portion of this assemblage included between
two planes parallel to the circle is also called. a
circular cylinder. The sects the planes cut out
are called the elements of the cylinder.

The two circles in these planes are called the
bases of the cylinder.

The sect joining their centers is called the axis.

A sect perpendicular to the two planes is the
altitude of the cylinder.

If the elements are perpendicular to the planes,
it is a right cylinder; otherwise an obligue cylinder.

A section whose plane is perpendicular to the axis
is called a right section of the cylinder. Any two
elements, being equal and parallel, are opposite
sides of a parallelogram; hence the bases and all
sections parallel to them are equal circles.

A truncated cylinder is the portion between a
base and a non-parallel section.

458. Theorem. The volume of a circular cylin-
der s the product of its base by its altitude.

Proof. If a prism and cylinder have equal
altitudes and bases of equal area, any sections
parallel to the bases are of equal area.

.. (by g02) V-C=anr’
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459. The lateral area of a circular cylinder is
the product of an element by the length of a right
section:

C =2nra.

12

F1cG. 168.

Proof. It is equal to the area of a parallelo-
gram with one side an element and the consecu-
tive side equal to the length of a base.

An altitude of this parallelogram equals the
length of the right section.

460. Corollary to 459. The lateral area of a
truncated circular cylinder is the prod-
uct of the intercepted axis by the
length of a right section. e

Proof. For substituting an oblique |-
section for the right section through | -
the same point of the axis changes [
neither the area nor the volume, since
the portion between the sections is
the same above as below either.

461. Corollary to 460. The volume of a trun-
cated circular cylinder is the product of the inter-
cepted axis by the area of the right section.

462. Archimedes’ Theorem. The wvolume of a
svhere equals two-thirds the volume of the circum-
screbed cylinder.

Fic. 169.
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Proof. The volume of the circumscribed cylin-
der =nr?.2r =277,

Ex. §82. In a right circular cylinder of altitude a,
call the lateral area C and the area of the base B.

(1) Given a and C; find 7.

(2) Given B and C; find a.

(3) Given C and a=2r; find C + 2B

(4) Given C +2B and a=r; find C.

(5) Given a and B +C; find r.

Ex. 583. The lateral area of a right circular cylinder
is equal to the area of a circle whose radius is a mean
proportional between the altitude of the cylinder and the
diameter of its base.

Ex. 584. In area, the bases of a right circular cylinder
together are to the lateral surface as radius to altitude.

Ex. 585. If the altitude of a right circular cylinder
is equal to the diameter of its base, the lateral area is
four times that of the base.

Ex. 586. How much must the altitude of a right cir-
cular cylinder be prolonged to increase its lateral area by
the area of a base? '

Ex. 587. The lateral area of a right circular cone is
twice the area of the base; find the vertical angle.

Ex. 588. Call the lateral area of a right circular cone
K, its altitude a, the basal radius r, the slant height A.

(1) Given a and r; find K.

(2) Given a and k; find K.

(3) Given K and k; find r.

Ex. 589. How much canvas is required to make a
conical tent 20 meters in diameter and 12 meters high?

Ex. 590. How far from the vertex is the cross-section
which halves the lateral area of a right circular cone?

Ex. 591. Given the volume and lateral area of a right
circular cylinder; find radius.

Ex. 592. Given lateral area and altitude of a right
circular cylinder; find volume.
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Ex. 593. A right cylinder of volume 50 has a circum-
ference of g; find lateral area.

Ex. 594. In a right circular cylinder of volume 8, the
lateral area equals the sum of the bases; find altitude.

Ex. 595. If in three cylinders of the same height one
radius is the sum of the other two, then one lateral area
is the sum of the others, but contains a greater volume.

Ex. 506. What is the relation between the volumes
of two cyliders when the radius of one equals the alti-
tude of the other?



CHAPTER XV,
PURE SPHERICS.

463. If, instead of the plane and straight, we
take the sphere and its great circle, that is, its
geodesic or straightest, then much of our plane
geometry holds good as spherics, and can be read
off as spherics. Deducing spherics from a set of
assumptions which give no parallels, no similar fig-
ures, we get atwo-dimensional non-Euclidean géome-
try, yet one whose results are also part of three-
dimensional Euclidean.

I. Assumptions of association on the sphere.

I1'. For every point of the sphere there is
always one and only one
other point which with the
first does not determine. a
straightest. This second point
we will call the opposite of the
first.

Two points, not each the
other’s opposite, always deter-
mine a straightest.

Such points are said to be on or of the straightest,
and the straightest is said to be through them.

I2’. Every straightest through a point is also .
through its opposite.

Fic. 170,

212
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I3’. Any two points of a
straightest, not each the
other’s opposite, determine
this straightest; and on every
straightest there are at least
two points not opposites.

14'. There are at least
three points not on the same
straightest.

464. Theorem. If O’ s the opposite of O, then
O 1s the opposite of O'.

Proof. If O is not the opposite of O/, they deter-
mine a straightest. There is a point P not on this
straightest (by I4’), and this point is not the
opposite of O, since it is not O’. .. 0, P deter-
mine (by I1’) a straightest which (by I 2’) goes
through 0’. ... O, O do not determine a straightest.

465. Theorem. Two distinct straightests can-
not have three points in common. [Proved as in
6.1

II. Assumptions of betweenness on the sphere.

Fie. 171.

466. These assumptions specify how ‘‘ between”’
may be used of points in a straightest on a sphere.

II 1’. No point is between two opposites.

II 2’. No point is between its opposite and any
third point.

II 3’. Between any two points not opposites
there is always a third point.

114. If B is between A and C, then B is also
between C and A, and is neither C nor A.

II5'. If A and B are not opposites, then there
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is always a point C such that
B is between A and C.

I16’. Of any three points,
not more than one can be
between the other two.

II17. If B 'is between A
and C, and C is between A
and D, then B is between A
and D.

II1 8’. Between no two points are there two
opposites.

467. Definition. Two points A and B, not oppo-
sites, upon a straightest a, we call a sect and desig-
nate it with AB or BA. The points between A
and B are said to be points of the sect AB or
also situated within the sect AB. The remaining
points of the straightest a are said to be situated
without the sect AB. The points A, B are called
end-points of the sect AB.

II 9’. (Pasch’s assumption.) On the sphere,
let A, B, C be three points,
not all on a straightest, and
no two opposites, and let a be a
straightest on which are none
of the points A, B, C; if then
- the straightest a goes through
a point within the sect AB,
it must always go either
through a point of the sect
BC or through a point of the sect AC; but it can-
not go through both.

468. Theorem. Every straightest a separates

Fie. 172.

Fic. 173.
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the other points of the sphere into two regions,
of the following character: ’
every point A of the one re-
gion determines with every
point B of the other region,
not its opposite, a sect AB
within which lies a point of the
straightest a; on the contrary,
any two points A and A’ of
one and the same region al-
ways determine a sect AA’ which contains no point
of a.

[Proved as in 22.]

Points in the same one of these two regfons are
said to be on the same side of a.

469. Theorem. The points of a straightest a
other than two opposites, O, (', are separated by
0, O’ into two classes such that O or O’ is between
any point of the one and any non-opposite point
of the other, but neither O nor O’ is between two
of the same class. )

Proof. Take any other straightest b through

O and .. through O'. It (by
468) cuts the sphere into two
regions. Now (by II§’) a is
not wholly in either of these
© | regions; but all its points
other than O and O’ are in
these regions. Two in the
same region have no point
of b between them. But O
and O’ are points of b. Two

Fi6. 174.

Fro6. 1738.
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not opposites in different regions have a point of
b between them; .'. either O or O’.

470. Definition. The parts of a straightest
determined by a point of it O (with its opposite O’)
are called rays from O.

O and O’ are called end-points of the rays.

II110’. If C is a point of ray PP’, every other
point of the ray is between C and P or C and P’.

471. Theorem. Two opposites cannot both be
on the same ray.

Proof. II3’, Il 10’ and II 2’ .

472. Theorem.. Every straightest has a point
in common with any other.

Proof. If not, consider the straightest deter-
mined by any point of the one and a point of the
other. This would have on one ray a pair of
opposites, contrary to 471.

473. Definition. On the sphere, a system of
sects, AB, BC, CD, ... KL is called a sect-
train, which joins the points A and L with one
another.

The points within these sects together with
their end-points are all to-
gether called the pomnis of
the sect-train.

In particular, if the point

L is identical with the point

A, then the sect-train is called

a spherical polygon. The sects

are called the sides of the

Fio. 176. spherical polygon; their end-
points its vertices.
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Polygons with three vertices are called spherical
triangles.

Fre. 1797. F16. 148.

474. Theorem. Every spherical triangle sepa-
rates the points of the sphere not pertaining to
its sect-train into two regions, an immer and an
outer. [As in 29.]

.475. Convention. On a given straightest OA,
the two rays O0O’, from O to its opposite O’, are
distinguished as of opposite semse. This distinc-
tion may be indicated by a qualitative use of the
signs + and — (plus and minus), as in writing
positive and negative numbers.

Any sect PO’ or ray from P through O’, or any
sect PB where B is between P and (’, has the sense
of that ray OO’ on which is P.

Then also BP is of sense opposite that of PB.

III. Assumptions of congruence on the sphere.

III 1. If A, B are two points, not opposite,
on a straightest a, and A’ a point on the same or
another straightest a’, then we can find ona given
ray of the straightest o’ from A’ always one and
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only one point B’, such that the sect AB is con-
gruent to the sect A’B’.

Always AB=AB=BA.

II1 2. If AB=A'B’ and AB=A"B", then is
also A’B'=A"B".

III 3’. On the straightest a let AB and BC be
two sects without common points, and further-
more A’B’ and B'C’ two sects on the same or
another straightest, likewise without common
points; if then AB=A’B’ and BC=B'C’, then
is also AC=A'C". '

476. Definition. On the sphere, let k, & be any
two distinct rays from a point O, which pertain
to different straightests. These
two rays h, k from O -we call
a spherical angle, and desig-
nate it by ¥ (k, k) or % (&, h).

The rays h, k, together with
the point O separate the other
points of the sphere into two re-

- gions, the ¢nterior of the angle
Fre. 179. and the exterior. [Asin 35.]

The rays h, k are called
sides of the angle, and the
point O the vertex.

III 4’. On the sphere, given
a spherical angle % (b, k), and
a straightest a’, also a de-
termined side of a@’. Designate
by k' a ray of the straightest
a' starting from the point O':
then is there one and only one ray k' such that the

F1c. 180.
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%k, k) is congruent to the angle 2z, ¥),
and likewise all inner points of the angle
% (W, k') lie on the given side of a’.

Always o (b, k)=4 (h, k) =% (&, k).

s IE ¥ k)_’zZ W, k) and ¥ (h, k)=

¥ (W', B'"), then is also X (W', K)=% (W, k).

477. Convention. On the sphere let ABC be
an assigned spherical triangle;
we designate the two rays
going out from A through
B and C by h and k respect-
ively. Then the angle ¥ (h, k)
is called the angle of the
triangle ABC included by
the sides AB and AC, or
opposite the side BC.

It contams in its interior all the inner: points
of the spherical tnangle ABC
and is designated by ¥BAC
or XA.

III 6’. On the sphere, if for
two triangles ABC and A’B'C’
we have the congruences
AB=A'B', AC=A'C’", ¥BAC
=¥ B’'A'C’, then also always
are fulfilled the congruences
¥ABC=4A'B'C’' and ¥ ACB=%A'C'B'.

478. Convention. When the sect AB is set off
on a ray starting from A, if the point B falls
within the sect AC, then the sect AB is said to be
less than the sect AC.

Fi1c. 181.

Fic. 182.
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In symbols, AB<AC.

Then also AC is said to be
greater than AB.

In symbols, AC > AB.

AB>CD when E between A
and B gives AE=CD or BE=
Fio. 183, CD, using = for =.

479. Convention. When
F4AOB is set off from
vertex O’ against one of the
rays of $A'0O'C toward the
other ray, if its second side
falls within ¥ A’0’C, then the
¥ AOB is said to be less than
the ¥ A'O'C. Flo. 184.

In symbols,

¥ AOB< $A’0'C.

Then also FA’0O'C is said to be greater than
¥ AOB.
In symbols, A’0’C> % AOB.

480. Definition. Two spher-
ical angles, which have the
vertex and one side in common
and whose not-common sides
make a straightest are called
adjacent angles. '

Fic. 185.
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481. Definition. Two spher-
ical angles with a common
vertex and whose sides make
two straightests are called vertt-
cal angles.

Fic. 186.

482. Definition. A spherical
! angle which is congruent to
one of its adjacent angles is
called a right angle.

==~ S— Two straightests which
\\ make a right angle are said
* to be perpendicular to one
PMG. 187. another.

483. Convention. If A, B are points which deter-
mine a straightest, then we may designate one of
the regions or hemispheres it makes as right from
the straightest AB taken in the sense of the sect
AB (and the same hemisphere as left from BA
taken in the sense from B to A).

If now C is any point in the right hemisphere
from AB, then we designate that hemisphere of
AC in which B lies as the left hemisphere of AC.
So we can finally fix for each straightest which
hemisphere is right from this straightest taken in
a given sense.

Of the sides of any angle, that is designated as
the right which lies on the right hemisphere of
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that straightest which is determined (also in sense)
by the other side, while the left side is that lying
on the left of the straightest which is determined
(also in sense) by the other side.

Two spherical triangles with all their sides and
angles respectively congruent are called congruent
if the right side of one angle 1s congruent to the
right side of the congruent angle, and its left side
to that angle’s left; but if the right side of one
angle be congruent to the left side of the cun-
gruent angle, and its left side to that angle’s right,
the triangles are called symmetric.

484. Theorem. Two spheri-
cal triangles are either con-
gruent or symmetric if they
have two sides and the in-
cluded angle congruent.

[Proved as in 43.]

48s. Theorem. Two spheri-
cal triangles are either con-
gruent or symmetric if a side
and the two adjoining angles
are respectively congruent.
[Proved as in 44.]
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486. Theorem. If two spherical angies are con-
gruent, so are also their adjacent angles.

[Proved as in 45.]

487. Theorem. Vertical spherical angles are
congruent.

[Proved as in 46.]

o

488. Theorem. Allrightan-
gles are congruent.
[Proved as in 50.]

»
D
'
i
[
[
\
\
\

.
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b o

Fi16. 190.

489. Theorem. At a point A of a straightest a
“there is not more than one perpendicular to a.

[Proved as in §2.]

490. Definition. When any two spherical angles
are congruent to two adjacent spherical angles
each is said to be the supplement of the other.

491. Definition. If a spher-
ical angle can be set off against
one of the rays of a right angle
so that its second side lies
within the right angle, it is
called an acute angle.

Fi1c. 191.

492. Definition. A spherical angle neither right
nor acute is called an obtuse angle.
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493. Definition. A spheri-
cal triangle with two sides
congruent is called zsosceles.

Fi16. 192.

494. Theorem. The angles opposite the congru-
ent sides of an isosceles triangle are congruent.
[Proved as in §7.] .

495. Theorem. If two angles of a spherical tri-
angle be congruent, it is isosceles.

[Proved as in 485.]

496. Theorem. Two spher-
ical triangles are either con-
gruent or symmetric if the
three sides of the one are con-
gruent, respectively, to the
three sides of the other.

[Proved as in §8.]

Fi1c. 193.

497. Theorem. Any two
straightests perpendicular to a
given straightest inltersect in a
point from which all sects to the
given straightest are perpendic-
ular to it and congruent,
F16. 194.
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Given 't YA=%C. A
To prove PA=PC=PD,
and ¥D rt.

Proof. By 495, PA= PC

and (by 48s5) PA=PFP'A.
. (by 484) ¥ PDA=%¥P'DA;
.. (by 488) ¥PDA= 4 PAD;
14

.. (by 495) PD=PA.
. F16. 195.

498. Definition. The two opposite points at which
two perpendiculars to a given straightest intersect
are called its poles, and it the polar of either pole.

A sect from a pole to its polar is called a guadrant,

499. Theorem. All quadrants are congruent.

Let AB and A’B’ be two
quadrants.
To prove AB=A'B’,
Proof. At A take a r't%
L & X BAC, and alsoat A’. On AC
' take a sect AC, and on A'C’
take A’C'=AC. AtCand C’

Fie. 196. take straightests 1AC and
A’C’. These contain B and P
B’. .. (by 485) AB=A'B'.
500. Theorem. A point

which is a quadrant from two

points of a straightest not oppo-
sites 1s 1ls pole.

Let PA and PC be two '
quadrants. —

Proof. At A and C erect F16. 197.
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perpendiculars intersecting at P’. Then (by 499
and 496) 4 PAC=%P'AC.

so1. Theorem. If three sects from a point to a
straightest be equal, they are quadrants.

Proof. They are sides of two adjacent isosceles
triangles, and hence perpendiculars.

502. Contranominal of sor. If three equal sects
from a point be not quadrants, their three other end-
points are not on a straightest. )

s03. Theorem. Through a point A, no' on a
straightest a, there is to a always a perpendicular
straightest which, if A be not
a pole of a, is unique. ’

Proof. Take any sect QR
on a. Take on the other side
of a from A, ¥ BOR= ¥ AQR,
and QB=QA.

Then (by 484) ABL a at

F1c. 198. Moreover, if there were a

second straightest perpendic-

ular to a from A, then A would (by 498) be a pole
of a.

504. Definition. A point B of a given ray 00’
such that BO = B0’ will be called the bisection-point
of the ray. A point B between A and C such that
AB=BC is called the bisection-point of the sect
AC.

s05. Problem. To bisect a given ray
. 00'.

Construction. At two points of the given ray not
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both end-points erect perpen- °
diculars [take (by III 4') an- '
gles = to %S in 503, inter- . )
secting at P. Take another /

ray from O, not on the same
straightest as the given ray,
and at two points of it not
both end-points erect perpen-
diculars intersecting at (.
The straightest PQ bisects the Fic. 199.
given ray 0O'.
Proof. Since P and Q are poles, .. ¥B=
't ¥=%D. .. (by 485) OB=BO'.
506. Theorem. If O and O’ are opposites, then
with vertex O % (h, B)=% (h, k) with vertex O'.
Proof. Bisect (by s05) ray h at A and ray kat C.
Then (by 496) ¥A0C= 5 A0C. _
so7. Definition. From the vertex O, a ray b with-
in ¥ (h, k) making ¥ (h, b)= % (b, k) will be called
the bisector of % (h, k).
508. Problem. To bisect a given spherical angle.
Construction. By 505, bi-
sect the rays of the angle
¥B at H and F. Take A
between H and B and from
F on FB' take FC=HA.
Then AC intersects HF at D,
and BD bisects ¥ HBF. |
Proof. By 496, YACB=
RCAB’; .. by 485, HD=FD,;
Fe. 200. . by 496, ¥HBD=4FBD.
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509. Problem. To bisect a
given sect.

Construction. At the end-
points. erect perpendiculars
[by taking (by III 4') angles
=%S in 503).

Bisect (by 508) the ¥ be-
tween them.

Proof. By 497 and 484. Fie. zo1.

s10. Corollary. In an isosceles triangle the bi-
sector of the angle between equal sides bisects at
right angles the third side.

s11. Theorem. If two spher-
ical triangles have two sides
of the one equal respectively
to two sides of the other, and
the angles opposite one pair of
equal sides equal, then the
angles opposite the other pair
are either equal or supple-

Fi1G. 20a2. mental.

[Proved as in 175.]

512. Definition. In any spherical triangle the
sect having as end-points a vertex and the bisec-
tion-point of the opposite side is called a median.

s513. Theorem. An angle adjacent to an angle of
a spherical iriangle is greater than, equal to, or less
than either of the interior non-adjacent angles, accord-
ing as the median from the other interior non-adjacent
angle is less than, equal to, or greater than a quadrant.
And inversely. _

Proof. Let ¥ ACD be an angle adjacent to ¥ ACB
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of ~ACB. Bisect AC at F.

On straightest BF beyond F

take FH=FB. .. (by 484)

¥BAF=¥HCF. If now the

median BF be a quadrant

BFH is a ray and H is on

BCD. If the median BF be
less than a quadrant, H’ is
within ¥ ACD.

. YH'CA<%DCA. .. ¥DCA > ¥ BAC.

If BC be greater than a quadrant, H” is without

$ACD.
.. ¥H"CF > ¥ DCF. . ¥DCA< ¥ BAC.

s14. Definition. Two sects respectively congru-
ent to two made by a point on a ray with its end-
points are called supplemental.

515. Theorem. The supplements of congruent
sects are congruent.

Proof. They are sums or differences of quadrants
and congruent sects less than quadrants; and (by
499) all quadrants are congruent.

516. Theorem. If a median
be a quadrant, it is an angle-
bisector, and the sides of the
bisected angle are supplemental.

Let median BD in AABC
be a quadrant.

Proof. In 2“ABD and
ACB'D (by 484) AB =
CB' and ¥ABD=%CB'D=
4 CBD (by 506).

Fi1c. 203.
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s17. Inverse. If two sides of a triangle are sup-
plemental, the median is a quadrant.

Proof. AABC=or | AAB'C (by 496).

.. MABD=or + aCB'D (by 484). ..BD=DB'.

518. Corollary. If two sides of a triangle are sup-
plemental, the opposite angles are supplemental.

519. Theorem. Two spherical triangles are either
congruent or symmetric if they have two angles of the
one respectively equal to two of the other, the sides oppo-
site one pair equal, and those opposite the other pair
not supplemental.

Given ¥B=%E; ¥C=%F; AB=DE.; AC not
supplemental to FD.

Proof. On ray BC take
BG=EF. G must be C, else
wotuld we have a AACG with
adjacent ¥ AGB = ¥ ACG in-
terior non-adjacent and .-
with median a quadrant (by
513) and .". (by 516) with AC
Fto. 205 supplemental to AG, that is,

Y to FD.
s20. Theorem. Two spheri-
cal triangles are either congru-
ent or symmetric if they have
in each omne, and only one,
right angle, equal hypothenuses
and another side or angle con-
gruent.

Given ZCE?HEr’t ¥,
and c=h. If a=f, then if
AC>g,takeCD=g. ... BD=h=c, and (by 510) the

Fi16. 206.
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bisector of ¥ DBA is 1 to CDA. .. \by 498) B is
pole to CDA. .- ¥ A isalso r't.

If YA=¥F, then if 4 ABC >%G, take YABD=
2G. .. (by48s) YBDA=¥H=4C=rt%. ..B
is pole to CDA.

s21. Theorem. The straight-
est through the poles of two
straightests 1is the polar of their
intersection-points. .

Let A and B be poles of a
and b, which intersect in P.

To prove AB the polar of P.

Proof. AP and BP are
quadrants.

s22. Corollary to s21. The straightest through
the poles of two straightests is perpendicular to
both.

s23. Corollary to 521. If three straightests are
copunctal, their poles are on a straightest.

524. Definition. If A, B, C are the vertices and
a, b, ¢ the opposite sides of a spherical triangle, and
A’ that pole of a on the same side of a as A, B’ of
b as B, C’ of ¢ as C, then A’B'C’ is called the polar
triangle of ABC.

525. Definition. Of a spherical triangle A, B, C,
the polar triangle is A’, B’, C’ where A’ is that pole
of BC or a on the same side of a as A, B’ of b as B,
C' of cas C.

526. Theorem. If of two spherical triangles the
second is the polar of the first, then the first is the polar
of the second.

Let ARC be the polar of A’B'C’.

F1c. 209.
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To prove A’B’C’ the polar of ABC.
Proof. Since B is pole of A’C’, .. BA’ is a quad-
rant; and since C is pole of
o A’B’, ... CA’ is a quadrant;

.". (by 500) A’ is pole of BC.
K In like manner, B’ is pole of
AC, and C’ of AB. More- -

over, since by hypothesis A
and A’ are on the same side
of B’C’ and A is pole of B'C’,
.. sect AA’ is less than a quad-
rant. .. A and A’ are on the same side of BC, of
which A’ is pole. And so for B’ and C".

527. Theorem. In a pair of polar triangles, any
angle of either intercepts, on the side of the other which
lies opposite 1t, a sect which is the supplement of that
side. '

Let ABC and A’B’'C’ be
two polar triangles.

Proof. Call D and E re-
spectively the points where
ray A’B’ and ray A’C’ meet
BC. Since B is pole of A’C’,
.". BE is a quadrant, and since
C is pole of A’B’, .".CD is a
quadrant. .

But BE+CD=BC+CE+CB+BD =
BC+ (EC+CB+BD)=BC+DE.

528. Theorem. Two spherical triangles are either
congruent or symmetric if they have three angles of
the one respectively equal to three angles of the other.

c’

Fic. 208.

Fic. 209.
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Proof. Since the given triangles are respectively
equiangular, their polars are respectively equilateral.
For (by 484) equal angles at the poles of straightests
intercept equal sects on those straightests; and
these equal sects are the supplements of correspond-
ing sides of the polars Hence these polars, having
three sides respectively equal, are respectively
equiangular. Therefore the original triangles
are respectively equilateral, which was to be
proved.

529. Corollary to 511. Two spherical triangles
are either congruent or symmetric if they have two
sides of the one respectively equal to two of the
other, the angles opposite one pair equal, and those
opposite the other pair not supplemental.

530. Theorem. If two sides of a spherical triangle
are each less than a quadrant, any sect from the third
stde to the opposite vertex is less than a quadrant.

Let AB and BC be each less than a quadrant.

To prove BD< quadrant.

Proof. Let FG, the polar of
B, meet BDat H. If H were
between B and D, then GHF
would (by IIg’) meet CA,
and so have a point on each
of the three sides of AAB'C,
which (by II ¢’) is impossi-
ble. Hence D is between B
and H. That is BD<quad-
rant.

531. Corollary to 530 and 513. If two sides of a
spherical triangle are each less than a quadrant, the

F1c. 210.°
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angle opposite either is less than the supplement of
the angle opposite the other.

532. Theorem. If two sides of a spherical triangle
be each less than a quadrant, as the third side is greater
or less than one of these, so is it with the opposite angles.
And inversely.

Let in AABC, BC and
another side, AB, be each
less than a quadrant, and
AC>AB.

To prove ¥ ABC>¥ ACB.

Proof. Within AC take D
making AD=AB. Then (by
530) DB is less than a quad-
rant. .". (by 531) ¥ADB>
¥C. But ¥ABC>YABD=%5ADB>%C.

533. Theorem. If the three sides of a spherical tri-
angle are each less than a quadrant, any two are
together greater than the third.

[Proved as in 174.]

534. Definition. On the sphere, the assemblage
of points which with a given point give congruent
sects is called a circle. The given point is called a
pole of the circle. Any one of the congruent sects
is called a spherical radius of the circle.

Thus a straightest is a circle with a quadrant for
spherical radius. But henceforth, for convenience,
by circle we will mean a circle with a radius not a
quadrant.

A sect whose end-points are on a circle is called
a spherical chord, or simply a chord.

A chord containing a pole is called a diameter.

Since the supplements of congruent sects are (by

Fi1c. 211.
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515) congruent, therefore every circle has two poles
which are opposite points, and its spherical radius
to one pole is the supplement of that to the other. -

Always one spherical radius is less than a quadrant.

Call its pole the g-pole, and it the g-radius.

535. Theorem. Any spheri-
cal chord s bisected by the
perpendicular from a pole.

Proof. AD=BD (by 520).

536. Corollary. A straight-
est perpendicular to a diam-
eter at an end-point has only
this point in common with
the circle.

537. Definition. A straightest with one and only
one point in common with a circle is called a tangent
to the circle.

538. Theorem. If an oblique from a point to a
straightest be less than a quadrant, then there is one
and only one perpendicular sect from the point to the
straightest which wmeets it at less than a quadrant from
the foot of the oblique and this is less than a quadrant.

Let BA be oblique to CA
and <gq, and BC | CA.

Proof. @ Then CA cannot
=g, else would BA =q. Hence
CA may be taken <gq, since
from C to its opposite =2q.
Now take CA’=CA. Then
BA’=BA and BC is median
where the two sides are each
<q. .. (bys3o) BC<q. ..(by s03) its prolonga-
tion BC’ is the only other L from B to AC.

Fi1c. 212.

PFic. 213.



236 RATIONAL GEOMETRY.

539. Definition. If A be a point of a circle whose
g-pole is P, then P or any point between A and P is
said to be within the circle, while Q such that A is
between P and Q is said to be without the circle.

540. Theorem. Any straightest through an end-
point of a diameter, but not per-
pendicular to the diameter, has
a point within and a second
point on the circle.

Let P be the g-pole, and AC
the straightest through A, an
end-point of diameter BPA
(¥PAC not r't).

Proof. Take (538) PDJICA
with PD and AD each <q. Take DC=DA.

.". (by 484) PC=PA; thatis, Concircle. More-
over (by 513) ¥PAF>YPCA=YPAC. .. YPAD
acute. .. (by 532) PD<PA; that is, D within
circle. -t

541. Theorem. Amny straightest with a point on
and a point within a circle has a second point on the
circle.

Let AB have a point A on
and B within circle with g-
pole P. “

Proof. ¥ PAB cannot be =
r't. For if so, then produc-
ing PB to meet the circle at
C, (by 531) ¥ PCF>%PAC
>r't 4 PAB. .. ¥PCA ad-
jacent to obtuse ¥PCF is FiG. 215.
acute. But it is also obtuse, being (by 494)

Fi1c. 214.
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=¥ PAC. This is impossible, .. BA not 1L AP;
.*. (by 540) it has a second point on the circle.

542. Corollary. A tangent has no point within
the circle.

543. Theorem. If less than a quadrant, the per-
pendicular is the least sect from
a point to a straightest.

Proof. If any other sect
from P to AC were less than
the perpendicular PA, then
AC would have a point within
the circle with g-pole P and
g-radius PA, and .". (by 541)
a second point on this circle,
which (by 536) is impossible.

544. Convention. In general a sum of sects is a
number of quadrants plus a sect.

545. Theorem. Amny two sides of a spherical tri-
angle are together greater than the third.

Proof. Since each side is less than two quadrants,
we have only to prove AB+BC >AC when AB<q,
and BC<AC.

Fic. 216.

1. If BC=gq, then taking
CD=q, we have (by 500)
BD 1L AC.

... (by 543) AD<AB.

. AC=AD+ DC < AB+
BC. -

Fic. 217.
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II. If BC<q,
(1) if CA<gq, this is 533.
(2) if CA =q, erect | at A.
. (by 543) AB>BD. |
. AB+BC>DB+BC= DC
=AC.

Fi1c. 218.

(3) If CA >gq,take on it CD =qand make CBF =q.
Then sects AB and DF cross at

K, for I is on the non-C-side
‘ of AB, while D is on the C-side
{of AB. ... DF must have a

C

point on straight AB. But
‘ all points of sect DF are inte-
rior to 20 , .". this intersection
point is on sect AB, which is
all of straight AB within %C.
Then (by 543) BF<BK and AD<AK.

cAC=AD+DC<AK+CD
=AK+CF<CB+BK+KA.

III. If BC >gq, then in ABC’ all sides are less than
quadrants. '

.. (by533) CB+BA+AC'>CB+BC'=CA+AC'.

..CB+BA>CA.

546. Definition. A convex spherical polygon is
one no points of which are on different sides of the
.straightest of any of its sides.

547. Theorem. A convex spherical polygon is less
than one conlaining it,

(%

F1c. 219.
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548. Theorem. The sum of the sides of a convex
spherical polygon is less than four quadrants.

Proof. It is within, hence less than, any one of
its angles.

549. Theorem. If one angle
of a spherical triangle be greater
than a second, the side opposite
the first must be greater than the
stde opposite the second; and
inversely.

Given ¥C> ¥ B.

Proof. Take ¥DCB=¥B.
Then (by 495) DC=DB. But Fic. 220.

(by 545) DC+DA > AC.

s50. Theorem. In a cyclic quadrilateral, the sum of
one pair of opposite angles equals the sum of the other
pair.

Proof. By isosceles triangles.

s51. Theorem. Of sects join-
ing lwo symmetrical points to a
third, that cutting the axis is
the greater.
Proof. BA =BD+DA
=BD+DA'>BA’.

F16. 221.

552. Theorem. If two spherical triangles have two
sides of the one equal to two sides of the other, but the
included angles unequal, then that third side is the
greater which 1s opposite the greater angle, and in-
versely. :
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Proof. Against one of the equal sides of one tri-
angle construct a triangle with elements equal to
those in the other. Bisect the angle made by the
pair of equal sides. This axis cuts the third side,
which is opposite the greater angle.

553. Theorem. If each of the two sides about a
right angle is less than a quad-
rant, then the hypothenuse is
less than a quadrant.

Proof. Extend the two
sides BA, BC, taking BF =
BD =quadrant. Then (by
500) B is pole of DF. .. (by
498 and 497) ’:ZFis r't. ... (by

Fie. 222. 495) DF is a quadrant. .'. (by
so0) DA is a quadrant. .. (by 530) AC < quadrant.

554. Inverse of 553.

If the hypothenuse and a side are each less than
a quadrant, then the other side is less than a quad-
rant.

Proof. If B is r't (Fig. 222), and AB and AC
each <gq, there is (by 538) on st’ AB a p’'t H such
that CH and AH each <qwhileCH | AH.

But His Bor B'.

It cannot be B’ since BA<q and .-. (by II 10’)
AB' >q.

555. Theorem. - The straightest bzsectmg two sides
of a triangle meets the third side at a quadrant from its
bisection-point,

Let the straightest through A’, B’, the bisection-
points of two sides BC, CA, meet the third side pro-
duced at D and D'.
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Proof. Take (by 538) AL, BM, CN 1 A’B’ and
such that each is <g¢, and ’

also B'L, BN, A'M, A'N ‘\
each <gq.

~.ina’s ALB'and CNB' ' y
(by s19) AL=CN. Simi-
larly BM=CN. ..inn’s
ALD and BMD' (by 519) 7

AD=BD'. ..if C’ be bi-
section-point of AB, we Fic. 233.
have C’A+AD=C'B+BD’ =q.

556. Theorem. The end-points of any sect taken
with any point on its perpendicular bisector give
equal sects.

557. Corollary 556. Every point on the perpen-
dicular bisector of a sect is pole of a circle through
its end-points.

558. Corollary to 557.

The perpendicular bisectors of the sides of a

spherical triangle are copunctal (in its circumcenter).

559. Corollary I to 555.

The altitudes of a spherical triangle are copunctal
(in its orthocenter.

For, regarding A’B’'C’ as the trlangle, the perpen-
dicular to DC’ at C” is the polar of D, and .". 1 to
A'B.

Similarly, the perpendicular to BA’ at A’ is |
to B'C’, etc.

So the three altitudes of A’B’C’ are copunctal in
the circumcenter of' ABC.

560. Corollary II to 555. (Lexell).

The vertices of spherical triangles of the same
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angle-sum on the same base are on a circle copolar
with the stralghtest b1sect1ng their sides.

For AO=BO, Y0AB="40BA, YLAB= z,(MBA
=}[A+B+C]. Hence AAOB is ﬁxed and ... OC
[supplemental to OA).

561. Theorem. The straight-
ests through the corresponding
vertices of a triangle and its
polar are copunctal in the com-
mon orthocenter.

Proof. For AA’ is 1 to
BC and B'C’, since it passes
through their poles.

* Equivalence.

562. Theorem. Any angle made with a side of a
spherical triangle by joining its
end-point to the circumcenter,
equals half the angle-sum less
the opposite angle of the tri-
angle.

Proof. For A+ ¥B+%C
=2 ¥ OCA + 2 ¥ OCB +
240AB. .. Y0CA = }[$A
+ ¥B + ¥C] ~ [£0CB +
FOAB]=4{¥A+¥B+ ¥C]- ¥B.

563. Corollary to 562. Symmetrical spherical tri-
angles are equivalent or equivalent by completion.

For the three pairs of isosceles triangles formed
by joining the vertices to the circumcenters, hav-

Fic. 225.
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ing respectively a side and two adjoining angles
congruent, are congruent.

564. Theorem. Of the triangles formed by ihree
non-copunctal  straightests, two containing vertical
angles are together equivalent to that angle.

To prove AABC+ ~AB'C’
=¥ ABA'CA.

Proof. B'C' =BC, each
being supplement of CB’,
Again AC’'=A'C (supple-®
ments of AC). Again AB'=
A’'B (supplements of AB).

. (by 496) AAB’C’ ="ABCA’.
“a ABC + RAB'C' = i F1c. 226.
ABC+ABCA'=4¥ABA'CA.

§65. The spherical excess, e, of a spherical triangle
is the excess of the sum of its angles over two right
angles.

In general the spherical excess of a spherical poly-
gon is the excess of the sum of its angles over twice
as many right angles as it has sides less two.

566. Theorem. A spherical triangle is equivalent to

half 1its spherical excess.
Proof. Produce the sides
, of the A ABC until they meet
again two and two at A’, B,
. C’. The EABQ now appears
in three angles, X A, £ B, ¥C.
But (by 564) ¥A=2ABC+
AABC'. .. 4A+4B+%C
=271t 2’s+22ABC.
. 2AABC=YA+ 4B+ %C—21't {'s=e.

Fic. 227.
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567. Corollary I to 566. The sum of the angles
ofa ais >21't ¥'sand <6 r't ¥'s.

568. Corollary IIto 566.- Every X ofa A is >e.

569. Corollary III to 566. A spherical polygon is
equivalent to half its spherical excess.

Ex. 597. If a spherical angle adjacent to one angle of a
spherical triangle is equal to a second angle of the
triangle, the sides opposite these are together a ray.

Ex. 598. In a spherical triangle and the spherical
triangle determined by the opposites of its vertices the
sides and angles are respectively congruent.

Ex. 599. Where are the vertices of spherical triangles
on a given base the sum of whose other sides is a ray?

Ex. 60o. Does a triangle ever coincide with its polar?

Ex. 60o1. The difference of any two angles of a spherical
triangle cannot exceed the supplement of the third.

Ex. 602. The bisector of an angle passes through the
pole of the bisector of the supplemental adjacent angle.

Ex. 603. If two straightests make equal angles with
a third, the sects from their poles to its are equal. |

Ex. 604. If a straightest be through the pole of a second,
so is the second through a pole of the first.

Ex. 605. If two circles be tangent, the point of contact
is on their center-straightest.

Ex. 606. The common secant of 2 intersecting ©s bisects
a common tangent.

Ex. 607. The three common secants of 3 ©s which
intersect each other are copunctal.

Ex. 608. If a quad’ can have a @ inscribed in it, the
sums of the opposite sides are =.

Ex. 60g9. If two equal Os intersect, each contains the
orthocenters of as inscribed in the other on the common
chord as base.

Ex. 610. Three equal ©s intersect at a point H, their
other points of intersection being A, B, C. Show that
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H is the orthocenter of AABC; and that the a formed
by the centers of the circles is =to AABC.

Ex. 611. The feet of 1s from A of aABC on the ex-
‘ternal and internal bi's of ¥s B and C are co-st'ﬁwith
the bisection-points of b and ¢. Does this hold for a?

Ex. 612. (Bordage.) The centroids of the 4 as de-
termined by four concyclic points are'concyclic.

Ex. 613. The orthocenters of the 4 as determined by
four concyclic points, A, B, C, D, are the vertices of a quad’
= to ABCD. The incenters are vertices of an equian-
gular quad’. ;

Ex. 614. (Brahmegupta.) If the diagonals of a cyclic
quad’ are 1, the L from their cross on one side bisects
the opposite side.

Ex. 615. If the diagonals of a cyclic quad’ are .1, the
feet of the Ls from their cross on the sides and the bisec-
tion-points of the sides are concyclic.

Ex. 616. If an inscribed equiangular polygon have an
odd number of sides, it is equilateral.

Ex. 617. If a circumscribed equilateral polygon have
an odd number of sides, it is equiangular.

Ex. 618. If one of two equal chords of a © bisects

he other, then each bisects the other.

Ex. 619. The tri-rectangular A is its own polar.

Ex. 620. All=72s on the same side of the same base
have their two sides bisected by the same straightest.

Ex. 621. If the base of a A be given, and the vertex
variable, the straightests through the bisection-points
of the two sides always pass through two fixed points.

Ex. 622. If A and A’ be opposites, then as ABC,
A’BC are called colunar. A pole of the straightest
bisecting AB and AC is also pole of the circum-© of the
colunar aA’BC.

Ex. 623. Given b and a+ y—p to construct g-pole and
radius of circum-Q.

Ex. 624. If a+ 8 =7, the g-pole of circum-0© is bisection-
point of c.
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Ex. 625. Two ‘as with one ¥ the same and the opposite
escribed ©s =, have equal perimeters.

Ex. 626 The tangent at_ A to the circum-0 of aABC
makes with AB and AC 45 whose difference =ﬂ 7.

Ex. 627. The g-pole of the cu‘cum o of a A coincides
with that of the in-®@ of the polar a; and the spherical
radii of the 2 ©s are complementary.

Ex. 628. From each 2 of a & a L is drawn to the
straightest through the bisection-points of the adjacent
sides. Prove these ls copunctal

Ex. 629. Through each 4 of a A a straightest is drawn
to make the same 4 with one side as the L on the base
makes with the other side. Prove these copunctal. .

Ex. 630. Two birectangular as are = if the oblique x's
are =, or if the sides not quadrants are=.

Ex. 631. In a, if ¢ is fixed and a+ B ==, then C is on
a fixed straightest.

Ex. 632. (Joachimsthal.) If two diagonals of a com-
plete spherical quadrilateral are quadrants, so is the third.

Ex. 633. (1) A quad’ whose diagonals bisect each
other (a cenguad) has its opposite sides=; (2) and in-
versely.

(3) Also its opposite 2 s =; (4) and inversely.

(s5) Every straightest through this bisection-point
(spherical center) cuts the quad’ into =halves.

(6) Its opposite sides make = alternate 25 with a
diagonal.

(7) Inversely, a quad’ with a diagonal making with
each side a 2 = to its alternate is a cenquad. (8) So is
a quad w1th a pair of opposite sides = and making =
alternate z; s with a diagonal.

(9) Also a quad’ with a palr of opposite sides =, and a
diagonal makmg = alternate 4s with the other sides
and opposite 45 not supplemental.

(10) From the spherical center ls on a pair of opposite
sides are =,
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(x1) If two consecutlve 45 of a cenquad are =, it has a
circum-o.

(x2) If two consecutive sides of a cenquad are=, it
has an in-0.

(x3) The polar of a cenquad is a concentric cenquad.

(14) A pair of opposite sides of a cenquad intersect on
the polar of its spherical center.

(15) Any two consecutive vertices of a cenquad and the
opposites of the other two are concyclic.

(16) If ABCD be a cenquad, then A, B, C’, D’ and A’,
B’, C, D are on = 0s with 9 poles opposites.

Ex 634. The sides of a A intersect the corresponding
sides of its polar on the polar of their orthocenter.

Ex. 635. The sect which a 4 intercepts on the polar of
its vertex equals a sect between poles of its sides.

Ex. 636. If a spherical quad’ is inscribed, and another
circumscribed touching at the vertices of the first, the
crosses of the opposite sides of these quad’s are on a
straightest.

Ex. 637. The crosses of the sides of an inscribed a
with the tangents at the opposite vertices are on a
straightest.



CHAPTER XVI.
ANGLOIDS OR POLYHEDRAL ANGLES

s70. Theorem. The area of a spherical angle, L,
is 2r’u.

Proof. For we have the proportion, area of 2 :
area of } sphere =size of ¥: size of r't ¥ =size of ¥
at center : size of r't ¥; that is,

L:rz=u:inr
.. L=2r%u.

s71. Corollary to 570 and 566. The area of a
spherical triangle is the size of its spherical excess
multiplied by its squared radius.

If ¢ is the u# of ¢,

A =erl

572. Corollary to 571. To find the area of a
spherical polygon, multiply its spherical excess in
radians by the squared radius.

573. Definition. Three or more rays, a, b, c,
from the same point, V, taken in a certain order
and such that no three consecutive are coplanar,
determine a figure called a polyhedral angle or an

angloid.
The common point V is the vertex, the rays a, b,
c,...are edges the angles yab Xbc, .. .are faces,

248
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and the pairs of consecutive faces are the dihedrals
of the angloid.

According to the number of the rays, 3, 4, 5,...
the angloid is called trihedral, tetrahedral, penta-
hedral, . . ., and in general polyhedral.

s74. If a unit sphere be taken with the vertex of
the angloid as center, this determines a spherical
polygon whose angles are of .the same size as the
inclinations of the angloid’s dihedrals, while the
length of each side of the polygon is the size of the
corresponding face-angle of the angloid.

Hence from any property of spherical polygons
we may infer an analogous property of angloids.

For example, the following properties of trihe-
drals have been proved in our treatment of spheri-
cal triangles:

I. Trihedrals are either congruent or symmetrical
which have the following parts congruent:

(1) Two face-angles and the included dihedral.

(2) Two dihedrals and the included face-angle.

(3) Three face-angles.

(4) Three dihedrals.

(3) Two pairs of dihedrals and the face-angles
opposite one pair equal, opposite the other pair not
supplemental. '

(6) Two pairs of face-angles and the dihedrals
opposite one pair equal, opposite the other pair not
supplemental.

II. As one of the face-angles of a trihedral is
greater than or equal to a second, the dihedral oppo-
site the first is greater than or equal to that opposite
the second, and inversely.
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III. Symmetrical trihedrals are equivalent or
equivalent by completion.

IV. Any two face-angles of a trihedral are together
greater than the third.

V. Intwo trihedrals having two face-angles respec-
tively congruent, if the third is greater in the first,
so is the opposite dihedral, and inversely.

VI. In any trihedral the sum of the three face-
angles is less than four right angles.

VII. In any trihedral, the sum of the three dihe-
drals is greater than two and less than six right
angles. '

In the same way, defining a polyhedral as convex
when any polygon formed by a plane cutting every
face is convex, we have:

VIII. In any convex polyhedral any face-angle is
less than the sum of all the other face-angles.

Proof. Divide into trihedrals and apply IV re-
peatedly.

IX. In any convex polyhedral the sum of the
face-angles is less than four right angles.

X. The three planes which bisect the dihedrals of
a trihedral are costraight.

XI. The three planes through the edges and
the bisectors of the opposite face-angles of a tri-
hedral are costraight.

XII. The three planes through the bisectors of
the face angles of a trihedral, and perpendicular
to these faces, respectively, are costraight.

XIII. The three planes through the edges of a
trihedral, and perpendicular to the opposite faces,
respectively, are costraight.
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XIV. If two face-angles of a trihedral are right,
the dihedrals opposite are right.

Ex. 638. The face a.ngles of any trihedral are propor-
tional to the sides of its & on any sphere.

Ex. 639. The area of a a is to that of the sphere as
its spherical excess is to 8 r't As (¢/:47).

Ex. 640. Find the angles and sides of an equilateral A
whose area is } the sphere.

Ex. 641. The angle-sum in ar't a is < 4 r't As.

Ex. 642. If one of the sects which join the bisection-
points of the sides of a A be a quadrant, the other two
are quadrants.

Ex. 643. Cut a tetrahedral by a plane so that the sec-
tion is a |jgm.

Ex. 644. To cut by a plane a trirectangular trihedral
so that the section may equal any given A.

Ex. 645. The base AC and the area of a a being given,
the vertex B is concyclic with A’ and C’.

Ex. 646. Given a trihedral; to each face from the
vertex erect a perpendicular ray on the same side as the
third edge; the trihedral they form is called the polar
of the given one.

If one trihedral is the polar of a second then the second
is also the polar of the first.

Ex. 647. If two trihedrals are polars, the face angles of
the one are supplemental to the inclinations of the corre-
sponding dihedrals of the other.

Ex. 648. If two angles of a 2 be r’'t, its area varies as
the third %

Ex. 649. If 1’, one minute, is one sixtieth of a degree,
and 1”, one second, is one sixtieth of a minute, find the
area of a A from the radius 7, and the angles a=20° ¢’
30", B=55° 53’ 32", r=114° 20’ 14" Ans. o0.18137%

Ex. 650. All trihedrals having two edges common, and,
on the same side of these, their third edges prolongations
of elements of a right cone containing the two common
edges, are equivalent.
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Ex. 651. Equivalent as on the same side of the same
base are between copolar = Os.

Ex. 652. Find the spherical excess of a 2 in degrees
from its area and the radius.

Ex. 653. If any angloid whose size is 1, that is, any
angloid which determines on the unit sphere a spherical
polygon whose area is 1, be called a steradian, and all
the angloids about a point be together called a steregon,
then a steregon contains 4z steradians.




APPENDIX 1.

THE PROOFS OF THE TWO BETWEENNESS THEOREMS
16 AND 17, TAKEN FOR GRANTED IN THE TEXT.*

s75. Theorem 1. If B is between A and C, and C
is between A and D, then C is between B and D.

Proof. Let A, B, C, Dbeona. Through C take
a straight ¢ other than a. On ¢ take a point E
other than C. On the straight
BE between B and E take F. /
Thus between B and F is no ¢
point of ¢. Now between A
and F there can be no point y 1 /c 5
of ¢, else ¢ would (by II4) °
have a point between A and
B, since, by the construction of F, ¢ cannot have a
point between B and F. Thus C would be between
A and B, contrary to our hypothesis that B is
between A and C. ’

Thus since ¢ cannot have a point between A and
F, it must (by II 4) have a point between F and D.
Thus we have the three non-co-straight points F,
B, D, and ¢ with a point between F and D, and, by
construction, none between F and B. Therefore it
must (by II 4) have a point between B and D. So
C is between B and D.

* These proofs are due to my pupil, R. L. Moore, to whom I have
been exceptionally indebted throughout the making of this book.

253

Fi1G. 228.
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576. Theorem II. If B is between A and C, and C
ts between A and D, then B is between A and D.

Proof. Let A, B, C, Dbeona. Through B take
a straight b other thana. Onbd
take a point E other than B. On
the straight CE between C and
E take F. Thus between C and
£— 535~ F is no point of b. Then since

\ by hypothesis B is between A
and C, therefore b must (by II 4)
Fic. 229. have a point between A and F.

Thus we have the three non-co-straight points A,
F, D, and b with a point between A and F. There-
fore b must have (by II 4) a point between A and D,
or between F and D. But it cannot have a point
between F and D, for then it must (by II 4) have a
point either between F and C, contrary to our con-
struction, or else between C and D, contrary to
Theorem I, by which C is between B and D. There-
fore it has a point between A and D. So B is be-
tween A and D.

577. Theorem. III Amny four points of a straight
can always be so lettered, ABCD, that B is between A
and C and also between A and D, and furthermore C
s between A and D and also between B and D.

Proof. We may (by II 3) letter three of our
points B, C, D, with C between Band D. Now as
regards B and D, and our fourth point A, either A
is between B and D, or B is between A and D, or D
is between A and B.

If B is between A and D, we have fulfilled the
hypothesis of Theorems I and II.
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If D is between A and B, then interchanging the
lettering for B and D, that is calling B, D and D, B,
we have the hypothesis of Theorems I and II. There
only remains to consider the case where A is be-
tween B and D.
~ If nowC is between D and A, we have fulfilled the

hypothesis of Theorems I and II, by calling D, A,
and C, B, and A, C, and B, D.

If, however, A were between C and D we would
have fulfilled the hypothesis of Theorems I and II
by writing for A, B, for D, A, and for B, D.

We have left only one sub-case to consider, that
where D is between A and C.
This sub-case is impossible.
Suppose ABCD on a.
Through C take a straight ¢
other thana. On ctake a
point E otherthanC. On 8 [¢ o A
the straight DE between D [
and E take F. Thusbetween
D and F is no point of c.

Then since by hypothesis C is between B and D,
therefore ¢ must (by II 4) have a point between B
and F. Therefore we have the three non-costraight
points B, F, A, and ¢ with a point between B and F.
Therefore ¢ has (by II 4) either a point between B
and A, or a point between F and A. But it cannot
have a point between F and A, else it would (by II
4) either have a point between F and D, contrary to
our construction, or else between D and A, giving
C between D and A, contrary to our hypothesis D
between A and C.

Fi1c. 230.
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So C would be between B and A, but this with D
between A and C gives (by Theorem I) D between
A and B, contrary to our hypothesis A between B
and D.

Thus there is always such a lettering that B is
between A and C, and C between A and D, whence
(by Theorem I) C is between B and D, and (by
Theorem II) B is between A and D.

578. Theorem. Are A, B, C, D points of a straight,
such that C lies between A and D and B between A and
C, then lies also B between A and D, but not between
C and D.

A 2 ¢ ]
Fic. 231.

Proof. The points ABCD, in accordance with
577, have an order in which two are each between
the remaining pair and of this remaining pair neither
is between two others. But here by hypothesis C
and B are between others. So we reach the follow-
ing arrangements ACBD, DBCA, ABCD, DCBA.
Of these arrangements, however, the first two do
not satisfy the hypothesis. For in both arrang-
ments C lies between A and B, which (by II 3) con-
tradicts the hypothesis “ B between A and C.”

In the third and fourth arrangement appears, by
577, that C lies between B and D, therefore, by II 3,
B cannot lie between C and D.

579. Theorem. Between any two points of a straight
there are always indefinitely many points.

Proof. By II 2, there is between A and B at
least one point C'; likewise there is between A and
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C at least one point C’. Further, there is within
AC’ at least one point C”, which likewise is within
AB but not within C’B; therefore since C lies within
C’'B, C" cannot be identical with C. In this way

A ¢r ¢ g B

Fi1c. 232.

we get ever new points of AB without ever coming
to an end.

580. Theorem. If ABCD is an arrangement of
four points corresponding to 577, then there is
besides this arrangement only still the inverse
which fulfills 577. [The proof is essentially already
given in proving 578.] :

581. Theorem. If any finite number of points of
a straight are given, then they can always be ar-
ranged in a succession 4, B, C, D, E, ..., K, such
that B lies between A on the one hand and C, D,
E, ..., K on the other, further C between A, B on
one side and D, E,..., K on the other, then D
between A, B, C on the one side and E, ..., K on
the other, and so on.

Besides this distribution there is only one other,
the reversed arrangement, which is of the same
character.

[This theorem is a generalization of 577.]

A B e [*] 3 K

F1c. 233.

Proof. Our theorem holds for four points by 577
and 580,
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We may show that the theorem remains valid for
n+ 1 points if it holds for # points. .

Let AA,A,... A, be the desired arrangement
for n points. If further we take an additional point
then there are forthwith three cases possible:

(1) A, lies between X and A,;

(2) A, lies between X and A,;

(3) X lies between A, and A,.

In the third case we prove further, that there is
one and only one number m, such that X lies between
Apand Ay,

Finally we show that the following arrangements
in the three cases have the desired properties:

(1) XA AA,... Ay,

(2) AJAA,. .. AKX,

(3) AJAA,. . ApXApmsy ... Ay
and that they with their inversions are the only ones
which possess those properties.
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THE COMPASSES.

582. Euclid’s third postulate is: About any cen-
ler with any radius one and only onme circle may be
* taken. This has been understood in ordinary geom-
etries as authorizing the use of a physical instrument,
the compasses, for drawing a circle with any center |
and any radius.

But this is only made fruitful, beyond the sect-
carrier, in problem solving, by two new assumptions:

Assumptions of the Compasses.

Assumption VI 1. If a straight have a point within
a circle, it has two points on the circle.

Assumption VI 2. If a circle have a point within
and a point without another
circle, it has two points on this
other.

583. Problem. Froma given
point without the circle to
draw a tangent to the circle.

Construction.  Join the
given point A with the cen-
ter C, meeting the circle in ;
B. Erect BD1 to CB, and (by VI 1) cutting in

259

Fic. 234.
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D the ©C(CA). Join DC, meeting ©C(CB) in F.
Then AF is tangent to ©C(CB).

Proof. Radius CA, L to chord HD, bisects arc
HD; .. if we rotate the figure until H comes upon
the trace of A, then A is on the trace of D; .". tan-
gent HB cn trace of AF.

Determination. Always two and only two tan-
gents. )

584. Problem. To construct a triangle of which
the sides shall be equal to three given sects, given
that any two whatever of these sects are together
greater than the third.

DA
'\ ,

F16. 235.

Given the three sects a, b, ¢, any two whatever
together greater than the third.

Construction. On a straight OF from O take
OG =b. Take ©0(a), and ©G(c). Since a+c>b,
these (by VI 2) intersect, say at K.

AOGK is the triangle required.

585. Problem. To construct a triangle, given two
sides and the angle opposite one of them.

Given a, ¢, and C.
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Case 1. If a<e.

On one ray of ¥C take CB=a. Take O B(0).
This (by VI 1) has two points A’,
A, on the straight of the other ray
of ¥C. The point C is between A’
and A,. .. if ¥C r't, we have two * c
congruent triangles (Fig 236); if *  Fo. 236.
oblique, only one triangle (Fig. 237).

o o Case 2. Ifa=c. [¥C acute.]
@ Then C coincides with A’ or A,,
A C w and we have only one triangle.
Fic. 237. '
Case 3. Ifa>c. [%¥C acute.]
I. If ¢=p, the perpendicular from B on C A, there .
is only one triangle.

II. If ¢>p, then A, and A’ are on the same side

of C and there are two different 8

triangles which fulfill the condi- /\

iions, namely, A’BC and A,BC A

(Fig. 238). % "
This is called the ambiguous Fio. 238.

case.

II1. If c<p, no triangle.
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\ THE SOLUTION OF PROBLEMS.

586. A problem in geometry is a proposition ask-
ing for the graphic construction of a figure which
shall satisfy or fulfill certain given conditions or
requirements. It has been customary to use the
ruler and compasses; that is, to allow our assump-
tions I-V and also VI (Appendix II), but no others.
Of these, assumptions V-VI have usually been
superfluous and unnecessary, the problems treated
not requiring the compasses, but only ruler and sect-
carrier.

587. When we know how to solve a problem, the
treatment consists of

(1) Construction: Indicating how the ruler and
sect-carrier or ruler and compasses are to be used
in effecting what is required.

(2) Proof: Showing that the construction gives a
figure fulfilling all the requirements.

(3) Determination: Considering the possibility of
the solution, and fixing whether there is only a
single solution or suitable result of the indicated
procedure, or more than one, and discussing the
limitations which sometimes exist, within which

alone the solution is possible.
262
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588, The first step toward finding a desired solu-
tion is usually what is called Geometrical Analysis.

This consists in supposing drawn a figure like the
one desired, also containing the things given, and
then analyzing the relations of the given things
among themselves and to the things or figure sought,
or the elements necessary for attaining such figure.

589. Methods of procedure in problem-solving.

I. Successive Substitutions.—We may substitute
for the required construction another from which it
would follow, and for this another, perhaps simpler,
until one is reached which we know how to accom-
plish.

Just so, in attempting to find a demonstration for
a new theorem, we may freely deduce from the de-
sired proposition by use of invertible theorems, and
if thus we reach a known proposition, the inversion
of the process will give the demonstration sought.

Fi1c. 239.

I Example 1. Theorem. If from any point P on
the circumcircle of the triangle ABC be drawn PX,
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PY, PZ perpendicular to the sides, the points X,
Y, Z will be costraight, the Simson'’s st’ of a for P.

Analysis. We will have proven X, Y, Z costraight
if on joining XY, XZ we show ¥PXY supplement-
ary to ¥ PXZ. But again this is proven if we show
¥ PXZ supplementary to ¥ABP and ¥PXY=
¥ ABP.

But ¥PXZ is supplement of ¥ABP since P, X,
Z, B are concyclic. And since P, Y, C, X are con-
cyclic, ¥PXY is supplement of ¥ PCY, as is also
XABP, since P, C, A, B are concyclic. )

I Example 2. Problem. Construct a 4, given an
angle, the side opposite and two sects proportional
to the other two sides. [A from a, a, b/c.]

Analysis. By a and a is (by 165) the circumcircle

given. Bisect YBAC by AD

and prolong AD to meet the
¢ circle again (by 138) in E.
B o Then (by 242) CD/BD =b/c.
So (by 241) the point D is
known. Moreover, since arc
BE =arc CE, the point E is
(by 225) known. Therefore,
E taking BC =a, the points D
Fie. 240. and E can be constructed, and

thus A by the prolongation of ED to the circle.

Analogous Problems: Ex. 1. Given a, R, b/c.
Ex. 2. Given a, R, b/c. Ex. 3. Given a, BD, CD.

II. Data.—The explicit giving of certain things
may involve the implicit giving of others more im-
mediately available.
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Such an implicitly given thing has been called a
datum.

For example, if a straight and a point without it
be given, the perpendicular from the point to the
straight is a datum.

If an angle and a point within it be given, then
the sect from the point to the vertex, the sect from
the point to one side drawn parallel to the other
side, and the sect this cuts off from the side are data.

With an angle a are given the constructible parts
}a, la, etc., but not }a, }a, etc.; also the supple-
ment and complement. "

If the sum and difference of two magnitudes are
given so are the magnitudes.

If in a triangle of the three things, a side, the oppo-
. site angle, the circumradius, two are given, so is the

third.

So also with base, altitude, area.

II Example 1. To construct a triangle from one
side, the opposite angle, and the difference of the
other two angles. (A from a, a, f—7.)

Analysis. Since @ is known, so is also 8+ r as its
supplement. .'. B and y are known, and we have a
side and the two adjoining angles.

II1. Translation.—Again new auxiliary parts may
advantageously be introduced. Certain procedures
are found particularly fertile.

In any triangle ABC, transporting AC parallel to
itself into BD, and extending BA equal to itself to
E, we have that the sides of EDC are double the
medians of ABC and parallel to them.
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The sides of ABC are two-thirds the medians of
EDC, and A is its centroid. Two of the altitudes
of the triangles AED, AEC, ADC are equal to two
altitudes of ABC and the content of EDC is triple
that of ABC.

If we have given such elements of ABC as render
possible, through these properties, the determina-

Fic. 241.

tion of one of the triangles EDC, AED, ADC, AEC,
then the triangle ABC will always be constructible.

III Example 1. Problem. Construct a triangle,
given one median m,, the angle between the others,
m, and m,, and two sects proportional to them:

[& from m,, xof m, and ms, m,/m,).

Analysis. In the AEDC we know DC=2FC =
am,; also ¥E and DE/EC. Therefore the problem
is reduced to I Example 2.

IV. Symmetry—Add to the tentatively con-
structed figure the figure symmetrical to it or to .a
part of it, with respect to a chosen straight as axis.
Particularly adapted for axis is an angle-bisector
or a perpendicular. Especially does this show
differences of sects or angles.
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IV Example . 1. Problem. To construct a tri-
angle, given two sides and the

? difference of the opposite an-
7 | gles:
/o [A from a, b, a—f].

F1G. 242. Analysis. Take CE | CA

with respect to perpendicular

CD. Then yAEC=a. But YAEC =¥B+ ¥BCE
=B+0. .o0=a—p. .

A BCE is therefore constructible (two sides and
included x).

The point D is the foot of the perpendicular from

C on BE. A . E (axis CD).
- IV Example 2. Given the two straights s and /
and a point A on s. Determine
the point X on s, such that AX =
perpendicular from X on /.

Analysis. With respect to the
bisector of ¥ AXB as axis, the
figure symmetrical to XBC is XAC,
and YACB is bisected by XC. Therefore, erecting
a perpendicular at the given point A, the bisector
of the angle ACB made with [ meets s in the required
point X.

V. Similarity.—When the figure to be constructed
is determinable by such conditions that, omitting
one, the remaining determine a system of similar
figures, then first determine this system of figures
similar to the one sought, and secondly, by taking
account of the suppressed condition, fix the one
which solves the problem.

F1G. 243.
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There are two sorts of cases according as the sup-
pressed condition determines (I) the size of the
figure sought; (II) its position or place. In the
first case the data are angles and proportions (giv-
ing the system of similar figures), and a sect (giving
the size of the particular figure). In the second case
are only given angles and proportions, but also is
imposed a condition that the figure demanded must
have a determinate position with respect to some-
thing given; for example, must contain a given
point, must contain a tangent to a given circle, etc.

V Example 1. To make a triangle, given an
angle a, sects proportional to the sides containing
it (b:c=m:n), and also its bisector #,:

[4 from a, b/c, t].

On the sides of @ take m and #n. On its bisector
take #,. Through the foot of ?, draw a parallel to
the straight through the ends of m and ». [Similarly:
A from a, B, m,; A from a, 8, hgl.

V Example 2. In a triangle ABC inscribe a
parallelogram of which one angle shall coincide with
angle BAC, and such that its sides are as m to #.

The vertices of the parallelogram sought must be
one at A, one on b, one on ¢, one on a. Omitting
this last condition, the fourth vertices of parallelo-
grams satisfying the other conditions are on a
straight determined by A and the parallelogram
with sides m and #.

The fourth vertex sought is where this straight
crosses the base b.
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VI. Intersection of Loci—All points in a plane
which satisfy a single geometric condition make up
often a single straight or a single circle, in rare cases
more than one. .

Neglecting these rare cases, we may call such
straight or circle the locus (place) of the points satis-
fying the given condition.

Where it is required to find points satisfying two
conditions, if we leave out one condition, we may
find a locus of points satisfying the other condition.

Thus, for each condition we may construct the
corresponding locus. If these two loci have points
in common, these points, and these only, satisfy both
conditions.

In a problem involving more than two distinct
conditions, two may be selected which give avail-
able loci, and then the remaining used to complete
the solution. If the circle occurs as locus, we may
assume the two postulates of the compasses (VI).

As preliminary it will be convenient to have a
collection of simple loci.

Locr.

1. The locus of points which with a given point P
give the sect 7 is OP(r).

This is also the locus of the centers of circles with
radius 7, which pass through P.

2. The locus of points P on one side of a st’ [ and
such that from them the perpendiculars on /- are
equal to k is the parallel to / through P, one such

point.
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This is also the locus of the centers of circles with
radius 7 tangent to / on one side.

3. The locus of the point to which sects from two
given points are equal is the perpendicular bisector
of the sect joining them.

This is also the locus of the centers of all circles
through the two given points. :

4. The locus of the vertices of all right angles on
the same side of a given sect as hypothenuse is the
semicircle on the given sect as diameter.

5. The locusof the vertices of all angles congruent
to B on a given sect AC as base is the arc on AC hav-
ing B as inscribed angle.

This is the locus of the vertex of triangles on the
same side of given base b with given opposite angle .

6. The locus of the point from which perpendic-
ulars on the sides of a given angle are equal is the
angle-bisector.

This is also the locus of the centers of circles
touching both sides of the angle from within.

7. The locus of the bisection-points of all chords
equal to k in a given circle is a concentric circle with
radius equal to the perpendicular from the center
on k.

8. The locus of the bisection-points of all chords
of a circle through a given point P is the circle on
the sect from P to the given center as diameter.

9. The locus of the centers of circles touching a
given st’ I at the point P is the perpendicular to [
through P.

ro. The locus of the centers of circles touching
the given circle ©C(CP) at P is the st’ CP.



APPENDIX IIL 271

11. The locus of the centers of circles with radius
r, touching a given circle with radius 7, from without
is a concentric circle with radius 7,+7,. From
within, radius 7, —7,.

12. The locus of the end-points of tangents=¢ to
the circle ©C(r) is the concentric circle with radius
from C to the end of one of these tangents.

This circle is also the locus of the centers of cir-
cles with radius ¢ which cut ©C(r) at right angles;
that is, so that at every intersection-point the tan-
gents to the two circles are at right angles.

13. The locus of the centers of circles of radius r
with centers on the same side of st’ ! and cutting
from / a chord =k is a parallel to ! through the vertex
of an isosceles triangle with base k on / and side 7.

14. The centers of circles of radius 7, cutting from
a given circle ©C(r,) an arc with chord ==k lie on
two concentric circles with radius from C to the
vertex of an isosceles triangle with base k a chord of
OC(ry) and side r,.

15. The locus of the centers of circles with radius
r, which bisect a given circle ©C(r,) is a concentric
circle with radius from C to the vertex of an isos-
celes triangle with base a diameter of ©C(r,) and
side 7,.

16. The locus of the centers of circles with radius
r, which are bisected by a given circle ©C(r,) is a
concentric circle having as radius the perpendicular
from C on any chord =2r, in OC(r,).

17. The locus of the vertices of triangles of equal
content on the same side of the same base is the
parallel to the base through the top of its altitude.
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18. The locus of the vertex B of all triangles on
the same base b in which a? 4 ¢* =constant is a circle.

19. The locus of the vertex B of all triangles on
the same base b in which a? —¢? =constant is a per-
pendicular to the base.

20. The locus of the bisection-point of a sect with
end-points on two straights at right angles is a circle
with their intersection as center and half the sect
as radius.

VI Example 1. To construct a triangle from
an angle and the altitudes
on the including sides (A £
from a, h,, hy).

Analysis. B is the inter-
section of a side of a with
the parallel to the other side
of a through the end of a
perpendicular to this side equal to A,.

A VI Example 2. To con-
struct a triangle from one
side and the altitudes to

N
' the other two (A& from a,
hz: hs)-
. Analysis. E is the inter-
B

section of semicircle on BC
with arc of radius=£h,. So
for F. Then A is intersec-
tion of CE and BF.

Fio. 245. VII. Reckoning. — Our
sect calculus may be freely used for making and
solving equations of the first and second degree
containing expressions for sought sects.

A

Bs

F1G. 244.
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VII Example 1. Construct, without using the
F compasses, an isosceles triangle
with the equal angles double the
third.
Construction. On one side of a
®right angle, B, take BA equal to
half the unit sect. BA=3%. On
the other side, BC=%. Prolong
£ 2 the hypothenuse AC to D, taking
FiG. 246. CD=1%. At D erect a perpendi-
cular, and on it take DF =1.
, On CA take CE=}. Take )

AA’'=2AE. At E erect the
perpendicular bisector EG,
taking EG=AF. Join AG
and A’G. The triangle AA'G
is the one required.

Proof. Take GH = AA’.
Join A'H.
EG:AF=[[(‘1‘+T%)‘+‘}]2+}]‘ A 3 Iy

=[[H(5)i+ 1]]’+4}]* Fi1c. 247.
=[+slro+2(5)"1]%
AE=}(5)*—1].

< AG? =g[10 4+ 2(5) ]+ 156 —2(5)¥] =1.
GH=AA"=2AE =3}[(5)*—1].
AH=1-3[(5)* —1]1 =133 - (5)*].
.GA:AA'=AA':AH.
». (by 239) AAGA'~AAA'H.
A H=AA =GH.
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o 4 AA'G= A A'AG = § AHA' =
— Y HGA' + £ HA'G =2 { HGA'.

VIII. Partition of a Perigon.—The four right
angles around a point, taken together, may be called
a perigon. Since any angle may be bisected, a peri-
gon can be cut into 2" congruent angles.

Since the supplement of the angle of an equilateral
triangle is one-third of four right angles, therefore a
perigon can be cut into 3-2" congruent angles.

The angles at the base of an isosceles triangle with
the equal angles each double the third are each one-
fifth of four right angles. Therefore a perigon can
be cut into 5-2" congruent angles.

The difference between one-third and one-fifth of
a perigon is two-fifteenths of a perigon. Hence a
perigon can be cut into 15-2" congruent angles.

If a perigon be cut into # congruent angles, the
rays determine on any circle about the vertex the
vertices of an inscribed regular polygon of # sides,
and the points of tangency of a regular circum-
scribed polygon of » sides.

From the time of Euclid, about 300 B.c., no ad-
vance was made in the inscription of regular poly-
gons until Gauss, in 1796, found that a regular
polygon of 17 sides was inscriptible, and in 1801
published the following:

That the geometric division of the circle into »
equal parts may be possible it is necessary and suffi-
cient that # be 2 or a higher power of 2, or else a
prime number of the form 2?"+1, or a product of
two or more different prime numbers of that form,
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or else the product of a power of 2 by one or more
different prime numbers of that form. Below 300,
the following 38 are the only possible values of #:

2, 3, 4,5, 6, 8 10, 12, 15, 16, 17, 20, 24, 30, 32, 34,
40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136,
160, 170, 192, 204, 240, 255, 256, 257, 272.

There is only one inscriptible regular polygon
known with the number of its sides prime and
greater than 257. This number is 2** +1=65,537.
For m=g5, m=6, m=17, the numbers obtained are
not prime. Further no one has gone.

Ex. 654. Show how to trisect the central 4 the in-
terior ¥, and the c(xterior ¥ of a regular n-gon where
n =2" or §5.2"™.

Ex. 655. Show how to cut the ¥ o° an equilateral
A into # equal parts if # is 2™ or 3.2™ or §5.2™.

Locr.

Ex. 656. In A, given b and B, find the locus of G; H;
I; I,; O.

Ex. 657. In ©C(r) find the locus of C:

(1) Given r and P (a point of ©).
(2) Given r and a tangent.

(3) Given P, Q (two points of ©).
(4) Given tangent at P.

(5) Given 2 | tangents.

Ex. 658. In a, given b and B, find locus of the bisection-
point of sect joining outer vertices of equilateral As on
a and c.

Ex. 659. Find locus of point the sum of the squares of
whose sects to A, B, C = k.

Ex. 660. Given an equilateral a, find the locus of the
point whose sect to one vertex is the sum of its sects to
the others.

Ex. 661. Find the locus of the point the sum of the
squares of whose Ls to the sides of a r't ¥ = k2,
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Ex. 662. Find the locus of the intersection of two
secants drawn through the ends of a fixed diameter in
a given O, one of the secants L to a tangent at the second
point where the other cuts o.

Ex. 663. Find the locus of the intersection of 2 st’s
drawn from the acute s of a r't a, through the points
where any 1 to hypothenuse cuts one opposite side and
the production of the other.

Ex. 664. Two given ©@s intersect. Find the locus of
the bisection-point of the sect through one of their points
of intersection with end-points one on each circle.

Ex. 665. Given AB divided at C. Find locus of P,
if YAPC =% BPC.

Ex. 666. Any 21 chords intersect in a given point
of a given ©. Find the locus of the bisection-point of a
chord joining their ends.

Ex. 667. The locus of a point, the sum of the squares
of whose sects from the vertices of a given equilateral a
equals twice the square on one of the sides, is the circum-o.

Ex. 668. The locus of the end of a given sect from the
point of contact and on the tangent is a concentric @.

Ex. 669. Find the locus of the foot of the L from P on
a st’ through B.

Ex. 670. Find the locus of the end of sect from P cut
by st’ a into parts as m to n.

Ex. 671. Find locus of end of sect from st’ a cut by P
into parts as m to #.

Ex. 672. Sects || and with ends in the sides of X « are
cut into parts as m to #. Find the locus of the cutting
points.

Ex. 673. Find the locus of a point P if PA:PB =m:n.

Ex. 674. The locus of the cross of two tangents to
©C(r), the st’ of whose chord of contact rotates about a
fixed point P is a st’ p LCP.

P is called the pole of p, and p the polar of P, with
respect to the given O.

Ex. 675. If A (given) is on the polar of X (variable),
find the locus of X.
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Ex. 676. To find the locus of a point from which rays
through the ends of a given sect make a given .

Ex. 677. Find the locus of the vertex B of As, given
band a:c=m:n. .

Ex. 678. [Circle of Apollonius.] If a sect is cut into
parts as m to #, and the interior and exterior points of
division are taken as ends of a diameter, this ® contains
the vertices of all As on the given sect, whose other two
sides are as m to #.

Ex. 679. Find the locus of those points in a plane «
from which rays to the ends of a given sect not on « are 1.

Ex. 68o. Find the locus of P if PA =PB =PC.

Ex. 681. If b’ is the projection of b on «|b, and ¥’ La
in «, find the locus of the bisection-point of a given sect
AB if A on a and B on b.

Ex. 682. A variable st’ is | to a given plane and meets
two non-coplanar st’s. Find the locus of a point which
cuts the intercepted sect into parts as m to #n.

Ex. 683. Find the locus of the point from which Lis
to three coplanar st’s are =.

Ex. 684. Find the locus of the point having one or two
of the following:

(I) Equal sects to two given points;

(II) Equal is to two given intersecting st’s;

(III) Equal ls to two given planes.

Ex. 685. Find the locus of the poles of great circles
making a given angle with a given great circle.

Ex. 686. Calling 2 ¥s ccmplemental wh'n their sum is
a r't ¥, what is the locus of the intersection of rays from
A and B making ¥ with AB the complement of ¥ with
BA?

Ex. 687. Calling a chord the chord of contact of the
point of interesection of tangents at its extremities, what
is the locus of points whose chords of contact in ©C(r)
equal r?

Ex. 688. The locus of vertex of 4 =s? on given b,
is st’ || b at altitude h», where bl =252,



278 RATIONAL GEOMETRY.

Ex. 689. The locus of vertex of A on given b, and
with a? —¢?=s? is st’ L to b at D, where AD?*—-CD? =s3,
Ex. 6g90. Find locus of trisection points of equal chords.
Ex. 691. The locus of a point from which tangents to
two given Os are = is a st’ | to the center sect, which
so divides it that the difference of the sq’s of the seg-
ments =r? —7,%.  This st’ is the radical axis of the 20s. If
* they intersect it contains their common chord.

Ex. 692. The locus of P such that PA:PB=m:n is ©
on D,D, as diameter, where DA B co-st’ and DA : DB =m : n.

Ex. 693. Given b and a— ¢, the locus of foot of L
from A on # is © with bisection-point of b for center and
#(a —c¢) for radius. .

Ex. 694. Given b and a +c, the locus of foot of 1L from
A on bisector of external ¥ at B is ® with bisection-
point of b for center and $(a +¢) for radius

Ex. 695. The locus of P cutting sects from A to a¢ as
m to n is a st’ || a.

Ex. 696. The locus of P cutting a sect s from A to a
so that s-AP =k is a 0.

Ex. 697. The locus of P cutting a sect from ©C(r) to
Aasmtonisa 0.

Ex. 698. If rectangles have one vertex at A and the
adjacent vertices on ©C(r), the locus of the fourth vertex
is @C(r,) where r,* =272 —AC?,

Ex. 699. The locus of the vertex B of a A of given b
and area is arc A’BC’. .

Ex. 700. Given b and (a«+7—g) in A, the locus of B
is arc ABC.
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Eissler’s Modern High Explosives........c.c.c.c ceavetcaansncssrnne 8vo,
Effront’s Enzymes and their Applications. (Prescott.).. ......vcc0vene 8vo,

Brdmann’s Introduction to Chemical Preparations. (Dunlap.)........13m0,
8
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Fletcher’s Practical Instructions in Quantitative Assaying with the Biowpipe
12mo, morocco, I

Fowler’s Sewage Works Analyses............cocvemenennnnnnn .....12mo0, 2
FPresenius’s Manual of Qualitative Chemical Analysis. (Wells.)......... 8vo, S
Manual of Qualitative Chemical Analysis. Partl. Descriptive. (Wells.)
8vo, 3
System of Instruction in Qmﬁuﬁve Chemical Analysis. (Cohn.) -
8vo, 12
i2mo, I
hmn'l Manual of Practical Aluyinx ........................ PN 8vo, 3
*Getman’s Exercises in Physical Chemistry........................... 12mo0, 2
Gill’'s Gas and Fuel Analysis for Engineers.............ccc0000vecen. 12mo, I
Grotenfelt’s Principles of Modern Dairy Practice. (WolL)............. 12mo, 2
Hammarsten’s Text-book of Physiological Chemistry. (Mandel)....... 8vo, 4
Helm's Principles of Mathematical Chemistry. (Morgan.)............ 12mo, I
Hering’s Ready Reference Tables (Conversion Factors)....... 16mo, morocco, 2
Hinds’s Inorganic Chemistry..... [T teseeneans ceesetenieannan 8vo, 3
*  Laboratory ManualforStudents .........ccceeeevevececcanccns 12mo,
Holleman’s Text-book of Inorganic Chemistry. (Cooper ) ............. 8vo, 2
Text-book of Organic Chemistry. (Walker and Mott.)............ 8vo, 2
»* Laboratory Manual of Organic Chemistry. (Walker.)............ 12mo, I
Hopkins’s Oil-chemists’ Handbook. ..........c.coiiieerinenannnnnnn. 8vo, 3
Jackson’s Directions for Laboratory Work in Physiological Chemistry. .8vo, =z
Koep's Cast ITon. . ..coovieretirieiiiinnoscsccionanananss ceesecnes 8vo, 2
Ladd’s Manual of Quantitative Chemical Analysis................. .. 12mo, 1
Landauer’s Spectrum Analysis. (Tingle.)...................ccovun... 8vo, 3
Lassar-Cohn’s Practical Urinary Analysis. (Lorenz.). .............. 12mo, 1

Leach’s The Inspection and Analysis of Food with Special Reference to State
Control. (In preparation.)

L5b’s Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) 1amo, 1

Mandel's Handbook for Bio-chemical Laboratory.................... 12mo, I

@ Martin’s Laboratory Guide to Qualitative Analysis with the Blowpipe. . 12mo,

Mason'’s Water-supply. (Considered Principally from a Sanitary Standpoint.)

3d Edition, Rewritten. ........ccc0iiiiiiinenninnencanans. 8vo, 4
Examination of Water. (Chemical and Bacteriological.)......... 12mo, I
Meyer’s Determination of Radicles in Carbon Compounds. (Tingle.). .13mo, 1
Miller’s Manualof Assaying........ccccvvevnvncnnnns cecetrnneanes 12mo, I
Mixter’s Elementary Text-book of Chemistry............... ceevecans 12mo, I
Morgan’s Outline of Theory of Solution and its Results...... eeesesss..12MO, X
Elements of Physical Chemistry...............coevivnineinnn. 12mo, 2
Morse’s Calculations used in Cane-sugar Factories.......... 16mo, morocco, I
Mulliken’s General Method for the Identification of Pure Organic Compounds.
D 1) T AN Large 8vo, 5
Nichols’s Water-supply. (Considered mainly from a Chemical and Sanitary
Standpoint, 1883.).....cciiiiiiieiiiiiitctanoteenenannann 8vo, 2
0’Brine’s Laboratory Guide in Chemical Analysis.............. [ 8vo, 2
O’Driscoll’s Notes on the Treatment of Gold Ores. .......co0uuvenennn.. 8vo, 2
Ost and Kolbeck’s Text-book of Chemical Technology. (Lorenz—Bozart.)
(In preparation.)

Ostwald’s School of Chemistry. Part One. (Ramsey.) (In press.)
* Penfield’s Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo, paper,
Pictet’s The Alkaloids and their Chemical Constitution. (Biddle.)....... 8vo, §
Pinner’s Introduction to Organic Chemistry. (Austen.).............. 12mo, I
Poole’s Calorific Power of Fuels...............cciiiiiiiinieinnnnns 8vo, 3
Prescott and Winslow’s El ts of Water*Bacteriology, with Special Refer-
ence to Sanitary Water Analysis........coeveeieneneccnnnns I2mo, I
* Reoisig’s Guide to Piece-dyeing.............. eereeteaaneaeas R 8vo, a5
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Richards and Woodman’s Air,Water, and Food from a Sanitary Standpoint.8vo, 2 oo
Richards’s Cost of Living as Modified by Sanitary Science.......... ...12mo, I 00
Cost of Food a Study in Dietaries.............cceiveeecenennnn 12mo, I 00
® Richards and Williams’s The Dietary Computer..........cco00euen.. 8vo, 1 SO
Ricketts and Russell’s Skeleton Notes upon Inorganic Chemistry. (Part L.—
Non-metallic Elements.).......cco00000.s ceseeens 8vo, morocco, 7%
Ricketts and Miller’s Notes on Assaying............ccoeveveeoconsanns 8vo, 3 00
Rideal’s Sewage and the Bacterial Purification of Sewage............... 8vo, 3 so
Disinfection and the Preservation of Food.......... et eescsace an 8vo, 4 00
Ruddiman’s Incompatibilities in Prescriptions......................... 8vo, 3 00
Sabin’s Industrial and Artistic Technology of Paints and Varnish. (In press.)
Sclkowski’s Physiological and Pathological Chemistry. (Orndorft.)....8vo, 2 50
Schimpf’s Text-book of Volumetric Analysis............ tescincenian 12mo, 3 S0
Essentials of Volumetric Annlysxs .............................. 12mo, I 38
Spencer’s Handbook for Chemists of Beet-sugar Houses.. . ... 16mo, morocco, 3 00
Handbook for Sugar Manufacturers and their Chemists. . 16mo, m 2 00
Stockbridge’s Rocks and Soifs. ..........ccocvveneennencennss PO .8vo. 2 8
* Tillman’s Elementary Lessons in Heat............. ceeescenene ee...8v0, 1 S0
* Descriptive General Chemistry............ cesssersestes ceess..8v0, 3 0O
Treadwell’s Qualitative Analysis. (Hall)............ccc0ee.. veeeeas..870, 3 0O
Quantitative Analysis. (Hall.)................... R ....8v0, 4 00
Turneaure and Russell’s Public Water-supplies................. eee...8v0, 5 00
Van Deventer’s Physical Chemistry for Beginners. (Boltwood )eeese..12Mm0, X 50
* Walke’s Lectures on Explosives...........cccvvveeeverenecaccenanes 8vo, 4 o0
‘Wassermann’s Immune Sera: Haemolysins, Cytotoxins, and Precipitins. (Bol-
QUANL). ottt iiiet ittt ittt reeerraeaaas I2mo, I 00
Wells’s Laboratory Guide in Qualitative Chemical Analysis............. 8vo, x S0
Short Course ir Inorganic Qualitative Chemical Analysis for Engineering
Students .......ccci0ve teierenccnnns e secssessosesesss.I2M0, I S0
‘Whipple’s Microscopy of Drinking-water.. ....ccoeecceecccococncacans 8vo, 3 S0
Wiechmann’s Sugar Analysis.....coeceeecceccssecccccecsces..Small8vo, 2 S0
‘Wilson’s Cyanide Processes.. .......... eeesssescsssssessssssessss..13MO, I SO
Chlorination Process. .......cccoceieierecerccnsasenccsnccnes I2mo, I S0
Waulling’s Elementary Course in Inorganic harmaceutical and Medical Chem-
istry... ... cescesecsens @ cecerscecsccce crtacsscsanssenns 1amo, 2 00

CIVIL ENGINEERING.

BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING
RAILWAY ENGINEERING.

Baker’s Engineers’ Surveying Instruments. .. .cocveeeeienececnnannn. 12mo, 3 00
Bixby’s Graphical Computing Table............... Paper 10%X24% inches. as
*¢ Burr’s Ancient and Modern Engineering and the Isthmian Canal. (Postage,

27 cents additional)......c.cceieieeninnncnn o P, ..8vo,net 3 so
Comstock’s Field Astr y for Engineers.......ccoveeveencecacannas 8vo, 2 50
Davis’s Elevation and Stadia Tables.............. sessaveses eetecaen 8vo, 1 00
Elliott’s Engineering for Land Drainage....... ecesescssansesnaseean 12mo, X 50

Practical Farm Drainage........ccoveeveeceascccsccesocacans 13mo, % 00
Folwell’'s Sewerage. (Designing and Maintenance.)........ccc0 couunn 8ve, 3 00
Freitag’s Architectural Engineering. 2d Edition, Rewritten............ 8vo, 3 So
French and Ives’s Stereotomy....... i eeetsesacacetsancsssetanannnn 8vo, 2 50
Goodhue’s Municipal Improvements. ...........ccco0cteececnccsanns 12mo, X 75
Goodrich’s Economic Disposal of Towns’ Refuse....... erscsacsecavacs 8vo, 3 so
Gore’s Elementsof Geodesy...........coeceieiveecans ceecaneanenan 8vo, 2 50
Hayford’s Text-book of Geodetic AStronomy. ..........ooevveeennnnns 8vo, 3 e0
Hering’s Ready Reference Tables (Conversion Factors)....... 16mo, morocco, 2 S0
Howe’s Retaining WallsforEarth..............ccviviveneenennnans I2mo, 1 2§
Johnson’s Theory and Practice of Surveving............ ceseanen Small 8vo, 4 00

Statics by Algebraic and Graphic Methods. ........ eetesesceesans 8vo, 2 00
5 .



Kiersted'sSewage Disposal. ... .....oiviieieneinennenacannenennnnn 12mo,
Laplace’s Philosophical Essay on Probabilities. (Truscott and Emory.) 1amo,

I 28
2 oo
Mahan’s Treatise on Civil Engineering. (1873.) (Wood.)....... e....8v0, S 0O
®  Descriptive Geometry............c.veiiinenennnnns ceeessnennans 8vo, 1 S0
Merriman’s Elements of Precise Surveying and Geodesy................ 8vo, 2 S0
Elements of Sanitary Engineering. ..........ccciiiiiiniiiinnnnns 8vo, 2 00
Merriman and Brooks’s Handbook for Surveyors .. .16mo, morocco, 2 00
Nugent’s Plane Surveying.........cc000vene. Cetetceneceaetenaanannn 8vo, 3 S0
Ogden’s Sewer Design. .......ccco0eeveeecnannen eereieiitiiaaans 12mo, 3 00
Patton’s Treatise on Civil Engineering..............c.c.... 8vo half leather, 7 S0
Reed’s Topographical Drawing and Sketching...........co000vveeen... 4to, 5 0O
Rideal's Sewage and the Bacterial Purification of Sewage................ 8vo, 3 50
Siebert and Biggin’s Modern Stone-cutting and Masonry................ 8vo, 1 50
Smith’s Manual of Topographical Drawing. (McMillan.).............. 8vn, 3 S0
Sondericker’s Graphic Statics, witn Applications to Trusses, Beams, and
Arches........coooevivnnceccnnnanes essens ceencreennesanans 8vo, 3 o0
* Trautwine’s Civil Engineer’s Pocket-book......... ceeeeee 16mo, morocco, 5 00
Wait’s Engineering and Architectural Jurisprudence.........ccccveee... 8vo, 6 o0
Sheep, 6 50
Law of Operations Preliminary to Construction in Engineering and Archi-
B PN 8vo, 5 0O
Sheep, 5 50
Law of Contracts........... tecseenncenancee crecessesantannons 8vo, 3 00
Warren's Stereotomy—Problems in Stone-cutting..................... 8vo, 2 S0
Webb’s Problems in the Ure and Adjustment of Engineering Instruments.
16mo, morocco, 1 2%
® Wheeler’s Elementary Course of Civil Engineering....c.cccveveeean.. 8vo, 4 oo
Wilson’s Topographic Surveying........... . cevssasee ceseacesassans 8vo, 3 50
BRIDGES AND ROOFS.
Boller’s Practical Treatise on the Construction of Iron Highway Bridges. .8vo, 2 oo
* Thames River Bridge..........coc00veteecenecnacenenns 4to, paper, 5 00
Burr’s Course on the Stresses in Bridzes nnd Roof Trusses, Arched Rubs, and
Suspension Bridges.............ccc0iii0neen [N 8vo, 3 S0
Du Bois’s Mechanics of Enzineedn: VoL IL..ivieencoceanns Small 4to, 10 00
Poster’s Treatise on Wooden Trestle Bridges..... cesens tesesnecsnancan 4to, S5 00
Fowler’s Coffer-dam Process for Piers.........co000eeees ceeeneeenaas 8vo, 2 50
Greene’s Roof Trusses.....cccoveaenas eessuvesssseseansosssran 8vo, 1 25
Bridge Trusses. ...oooceeceecsaccse coosaes tereteatsecseseanen 8vo, 2 =0
Arches in Wood, Iron, and Stone.....co.evveess sesossssassnsans 8vo, 2 s0
Howe’s Treatise on Arches...........ccceveinesrcnsnnnassseccananns 8vo, 4 oo
Design of Simple Roof-trusses in Wood and Steel ..... ceriennen ....8v0, 2 oo
Jehnson, Bryan, and Turneaure’s Theory and Practice in the Designing of
Modern Framed Structures...........ccceceevcaense Small 4to, 10 0O
Merriman and Jacoby’s Text-book on Roofs and Bridges:
Part L.—Stresses in Simple Trusses....... oo 2 50
Part IL.—Graphic Statics 2 so
Part III.—Bridge Design. 4th Edition, Rewritten .. 32 s0
Part IV.—Higher Structures.......... eesessncesse sessssne e....8v0, 2 50
Morison’s Memphis Bridge...........cciiiiuiiiiiniiinieniecennens 4to, 1000
Waddell's De Pontibus, & Pocket-book for Bridge Engmeem. .16mo, morocco, 3 00
Specifications for Steel Bridges. .........co0eevecrenciacecenens 12mo, I 25
Wood’s Treatise on the Theory of the Construcuan of Bridges :nd Roofs.8vo, 2 oo
Wright’s Designing of Draw-spans:
Part 1. —Plate-girder Draws.......cccteveeronceccccnnnocacns 8vo, 2 50
Part II.—Riveted-truss and Pin-connected Long-span Draws....... 8vo, 2 S0
Two partg inone VoOlume. .....ccccvueececenaancans cevesesrennes 8vo, 3 S0
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HYDRATULICS.

Bazin’s Experiments upon the Contraction of the Liquid Vein Issuing from an
Orifice. (Trautwine.) .......... cesecsssscsscssscsassecss.8Y0, 3 00
Bovey’s Treatise on Hydraulics.......ccveeeeveecnssccscessscaee

Church’s Mechanics of Engineering.......cco0ccettecncecocecnns ..8vo, 6 oo
Diagrams of Mean Velocity of Water in Open Channels.......... paper, 1 S0
Coffin’s Graphical Solution of Hydraulic Problems.......... 16mo, morocco, 3 50
Flather’'s Dynamometers, and the Measurement of Power............. 12mo, 3 00
Folwell’'s Water-supply Engineering.....coc000eeeeen. etesscasannias 8vo, 4 00
Frizell’'s Water-power..... Ceesacscen tevessasccscsrencas teceseeses.8v0, 5 0O
Fuertes’s Water and Pnbhcllulth sssesecssestesseretsessssasenes 12mo, 1 %0
‘Water-filtration Works............... ceecssessssessssscssss 13m0, 3 SO
Ganguillet and Kutter’s General Fotmuh for the Uniform Flow of Water in
Rivers and Other Channels. (Hering and Trautwine.)........ 8vo, 4 00
Hazen's Filtration of Public Water-supply..... cereens cesesenassesss 8v0, 3 00
Hazlehurst’s Towers and Tanks for Water-works......ccoceeeencneess 8vo, 2 so
Herschel’s 115 Experiments on the Carrying Capacity of Large, Rivetad Metal
ConduitB..coovt toiiieieeiieietatncccssacasenssscsaocnns 8vo, 2 o0
Mason’s Water-supply. (Considered Principally from a Smitnry Stand-
point.) 3d Edition, Rewritten ...... ectescsnseennns ceeees 870, 4 00
Merriman’s Treatise on Hydraulics. oth Edition, Rowritton. ceeses ce..8v0, S 00
* Michie’s Elements of Analytical Mechanics.........cccovecveennnnes 8vo, 4 oo
Schuyler’s Reservoirs for Irrigation, Water-power, and Domestic Water-
supply...... epsesecs s cesasreasnsessasanssassosnes Large 8vo, s 00
*¢ Thomas and Watt’s Improvement of Riyers. (Post., 44 c. additional), 4to, 6 oo
Turneaure and Russell’s Public Water-supplies. ..........cco00eeeenns 8vo, 5 00
‘Wegmann's Desien and Construction of Dams...... PN 4to, 8 00
‘Water-supply of the City of New York from 1658 t0'1898.......... ..4to, 10 00
‘Weisbach’s Hydraulics and Hydraulic Motors. (Du Bois.)............. 8vo, 5 00
Wilson’s Manual of Irrigation Engineering.........cc0vvveueee Small 8vo., 4 oo
Wolff’'s Windmill as & Prime Mover..........ccccvcecneeccnscssess.8v0, 3 00
Wood’s Turbines. .......ccoiiiiiirrrnrcvarocncacenscaencnns ...8v0, 2 %0
Elements of Analytical Mechanics....... eteessaceserscnscessese 8vo, 3 oo

MATERIALS OF ENGINEERING. )
Baker’s Treatise on Masonry Construction........ eesessvesssanssnres 8vo, s 0O

Roads and Pavements........ sesesssnesssas eresesscacastsecsss 8vo, 5 00
Black’s United States Public Worh..........................Oblon¢4to. s 00
Bovey’s Strength of Materials and Theory of Structures................. 8vo, 7 S0
Burr’s Elasticity and Resistance of the Materials of Enzineennz. 6th Edi-

tion, Rewritten........ ... [ 7 S0

Byrne’s Highway Construction.......c.coeeeveesronennnanss eeeranan s 00

Inspection of the Materials and Workmanship E loyed in C: ti

16mo, 3 oo

Church’s Mechanics of Engineering...... eescoscecsestsetarestaeeans 8vo, 6 oo
Du Bois’s Mechanics of Engineering. Vol I........... vesse. .Small 4to, 7 s0O
Johnson’s Materials of Construction............. eseescenes ...Large 8vo, 6 oo
Keep’'s Cast Iron. ... .coivieeeeinrereesnseccccsarossoscscansnnnnns 2 50
Lanza’s Applied Mechanics 7 S0
Martens’s Handbook on Testing Materials. (Henning.) 2 vols......... 8vo, 7 so
Merrill’s Stones for Building and Decoration........... eesetretnenanes 8vo, 5 00
Merriman’s Text-book on the Mechanics of Materials.................. 8vo, 4 oo

Strength of Materials.......ooiueeenerennrensencenscnaneenaan 12mo, 1 00
Metcalf’s Steel. A Manual for Steel-users.,......... PR Ceveane 12mo, 3 00
Patton’s Practical Treatise on Foundations...... cessenen teeseireeeans 8vo, 5 0g
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Rockwell’'s Roads and Pavementsin France.........co000venn.. ¢ev..I2mo0, X
Smuth’s Materials of Machines........... eesceescssersssencsnnsnra 12mo, 1
Sanow’s Principal Species of Wood................ cereseneenes sesses 8vo, 3
Spalding’s Hydraulic Cement...... eee  ceecsssevessssenas cesecenne 12mo, 2
Text-book on Roads and Pavements. ......... cessssernioe «e...12m0, 3
Thurston’s Materials of Engineering. 3 Parts...................... 8vo, 8
art L—Non-metallic Materials of Engineering and Metallurgy..... 8vo, 2
Part Il.—Iron and Steel......coocceivnienrnriirennccccccncans 8vo, 3

Pnnln.—ATmﬂuoan-u.Btonzu.nndOtherAnonmdthur
Constituents. . ... Geecseseaserasratesascaccsncsorstasanes 8vo, 32
l‘hunhn'u'l‘nt—bookoﬁhlnhﬂlholConmﬁon...... ........... 8vo, s
Tillson's Street Pavements and Paving Materials...................... 8vo, 4
Waddell’s De Pontibus, (A Pocket-book for Bridge Endnun.) ..16mo, mor., 3
Specifications for Steel Bridges........cccviiviniiioiiianennn. 12mo, I

Wood’leduonththnuolhhﬂdl.mduAmdixonthaPru-
ervation of TImMber..ceeccececcrccreicacranaccanns ceserann 8vo, 2
Elements of Analytical Moechanics........cocovtiiieeencrcneans 8vo, 3
‘Wood’s Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. . .8vo, 4

RAILWAY ENGINEERING.

Andrews’s Handbook for Street Railway Engineers. 3Xs inches. morocco, 1
Berg’s Buildings and Structures of American Railroads.................. 4to, 8
Brooks’s Handbook of Street Railroad Location.............16mo. morocco, r
Butts’s Civil Engineer’s Field-book......ccccccva. PR 16mo, morocco, 3
Crandall’s TransitionCurve................ cesesetscsaann 16mo, morocco, 1
Railway and Other Earthwork Tables..........ccocevevevoennn.. 8vo, 1
Dawson’s “Engineering’’ and Electric Traction Pocket-book. xGmo. morocco, S
Dredge’s History of the Pennsylvania Railroad: (1879)............. Paper, 5
* Drinker’s Tunneling, Explosive Compounds, and Rock Drills, 4to, half mor., 25

Fisher’s Tableof Cubic Yards. ......ccceceeieiincnncanncnscans Cardboard,
Godwin’s Railroad Engineers’ Field-book lnd Explorers’ Guide.. . . .x6mo, mor., 3
Howard’s Transition Curve Field-book.......... teeevsenes 16mo, morocco. I

Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-

bAnkmMents ...ccocvviiincnnccaccacsnscoscenns terecenanns 8vo, 1
Molitor and Beard’s lhmu! for Rnidont Engineers................. 16mo, 1
Nagle’s Field Manual for Railroad Engineers............... 16mo morocco. 3
Philbrick’s Field Manual for Engineers.........c.c00......16mo, morocco, 3
Searles’s Field Engineering....cocce0ceeececccceses.s...16mo, morocco, 3
Railroad Spiral...... ceseesncssnesaan teesenncranes 16mo, morocco, I
Taylor’s Prismoidal Formule and Earthwork........ccco00ieiennnnnn. 8vo, 1

* Trautwine’s Method of Calculating the Cubic Contents of Excavations and
Embankments by the Aid of Diagrams....................... 8vo, 2

The Field Practice of [Laying Out Circular Curves for Railroads.
13mo, morocco, 3

Cross-section Sheet....coceeeniceaceriansccesscascesnnnnns Paper,
Webb’s Railroad Construction, 2ad Edidon. Rewritten...... 16mo. morocco, S
Wellington’s Economic Theory of the Location of Railways...... Small 8vo, s

DRAWING.

Barr’s Kinematics of Machinery..... ceesesscesecatcetnnsecaceanannn 8vo, 2
L4 Buthtt's l!oclnmcal Drawing. ...coeicenceerereeccresenanccnnnes 8vo, 3
* “ Abridged Ed.....ovevennnnncnnnnnnnas 8vo, I
Coolidge’s Manual of Drawing..........ccceivneeecnncneanns 8vo, paper, I

Coolidge and Fi n’s El ts of G 1 Drafting for Mechanical Engi-
neers. (In press.)
Durley’s Kinematics of Machines............cccceeuss cesesecraseaas 8vo, 4
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Hill’s Text-book on Shades and Shadows, and Perspective....veceac... 8V0, 2
Jamison’s Elements of Mechanical Drawing. (In press.)
Jones’s Machine Design:
Part L.—Kinematics of Machinery........ cessacan [ 1 (Y
Part II.—Form, Strength, and Proportions of Parts. .......cc00.... 8vo,
IuCordlElementsofDeuripﬂvoGeomm Lesecessecscesescans 8vo,

IeclnnialDuwln; ...... eseescsscensaane cesecssressrensevsss 4to,
Velocity Diagrams. .....c.cceeecveesacccancns cesesnns e iesecsss.8V0,
* Mahan’s Descriptive Geometry and Stone—cutﬁnz. PN Inesesaas 8vo,
Industrial Drawing. (Thompson.)............. [P - ('Y
Reed’s Topographical Drawing and Sketching.....co.ccceeievececene o0 .4t0,
Reid’s Course in Mechanical Drawing.............. cevscsessesananes 8vo,
Text-book of Mechanical Drawing and Ekmenury Machine Delign .8vo,
Robinson’s Principles of Mechanism..................ciiiieiinnnenns 8vo,
Smith’s Manual of Topographical Drawing. (McMillan.).............. 8vo,
‘Warren’s Elements of Plane and Solid Free-hand Geometrical Drawing. . 1amo,
Drafting Instruments and Operations. . .c.e.ooovvvvveronvannnns 12mo,
Manual of Elementary Projection Drawing. .................... 12mo,
Manual of Elementary Problems in the Linear Perspective of Form and i
Shadow. .. .c.ovveviniiiiiirnrecnnnennannens eeseseeens 12mo, I
Plane Problems in Elementary Geometry. .........c.ccveeeven.. 1amo, X
Primary Geometry. .. ...c.vviieeieneneacacnennsncanonasaans 13mo,
Elements of Descriptive Geometry, Shadows, and Perspective....... 8vo,
General Problems of Shades and Shadows......cccvveeecccccsssss 8V0,
El ts of Machine C: jon and Drawing......ccccccc000..8v0,
Problems, Theorems, and Examples in Descriptive Geometrv. .......8vo,
Waeisbach’s Kinematics and the Power of Transmission. (Hermann and
Klein.) ........... eesesesseccssesassscvcascans esssacss.8vO,
Whelpley’s Practical Instruction in the Art of Letter Engraving........13mo,
Wilson’s Topographic Surveying........ cessactsscsccsssssscscassss s 8V0,
Free-hand Perspective....
Free-hand Lettering. .. ........ P - L.
Woolf’s Elementary Course in Descriptive Geometry....... e eeo..Large 8vo,
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"ELECTRICITY AND PHYSICS.

Aanthony and Brackett’s Text-book of Physics. (Magie.)........Small 8vo,
Anthony’s Lecture-notes on the Thoory of Electrical Measurements. . .. .xamo,
Benjamin’s History of Electricity........... sesscescsressee cecesasa.8v0,
Voltaic Cell.vviveerererrereennseessenonnncanaans cecssrernans 8vo,
Classen’s Quantitative Chemical Analysis by Electrolysis. (Boltwood.). .8vo,
Crehore and Squier’s Polarizing Photo-chronograph....... cesssccsosen 8vo,
Dawson'’s “Engineering” and Electric Traction Pocket-book. . 16mo, morocco,
Dolezalek’s Theory of the Lead Accumulator (Storage Battery). (Von

NWWwww =W

D 23T T T 12mo,%2
Duhem’s Thermodynamics and Chemistry, (Burgess.)...eoeveeeen.nn.. 8vo, 4
Flather’s Dvnamometers, and the Measurement of Power.............13mo, 3
Gilbert’'s De Magnete. (Mottelay.)......... ceresaen ceecsssasnsecs. 8V0, 2
Hanchett’s Alternating Currents Explained. ........ccoovveenennn... 12mo, I
Hering’s Ready Reference Tables ( Conversxon Factors)...... 16mo, morocco, 3
Holman’s Precision of Measurements.......cco.oveeeeeeessconsconnss 8vo, 2

Telescopic Mirror-scale Method, Adjustments, lnd Tests.....Large 8vo,

.Landauer’s Spectrum Analysis. (Tingle.)........... ceenneae N 8vo,

Le Chatelier’s High-temperature Measurements. (Boudouard—Burgess.)1amo,

Ltb’s Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) 12mo,

® Lyons’s Treatise on Electromagnetic Phenomena. Vols. L. and IL. 8vo, each,

® Michie. Elements of Wave Motion Relating to Sound and Light.......8vo,
9
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Niaudet’s Elementary Treatise on Electric Batteries, (Fishoack.)......12mo,
® Rosenberg’s Electrical Engineering. (Haldane Gee—Kinzbrunner.). .. .8vo,
Ryan, Norris, and Hoxie’s Electrical Machinery. VoL L.....ccceve....8v0,
Thurston’s Stationary Steam-engines...... S )
* Tillman’s Elementary Lessons in Heat....... S 8vo,

LAW.
®* Davis’s Elements of L&W ......ccccvvieencccsscssosssssscssnsacs.8V0,

* Treatise on the Military Law of United States......ccccc00ee....8v0,
* Sheep,
Manual for Courts-martial. ........cccc0eeveeescscesas..16mo, morocco,
Wait’s Engineering and Architectural Jurisprudence......cccceuue... ...8vo,
Sheep,

Law of Operations Preliminary to Construction in Engineering and Archi-
tecture..... cesssssssssasssssesesscccsssssssssscccnsess VO,

Sheep,

Law of Contracts..... e L LY

Winthrop’s Abridgment of Military L&W. ...c.cocceecvecncccccassss.12M0,

MANUFACTURES.

Bernadou’s Smokeless Powder—Nitro-cellulose and Theory of the Cellulose
Molecule..... ceseree sessscsesas cetesecneranstansananan 12mo,
Bolland’s Iron Founder. ....... ceneetsanns tee sssecestetssscnannan 12mo,
“ The Iron Founder,” Supplement...... P N 12mo,
Encyclopedia of Founding and Dictionary of Foundry Terms Used in the
Practice of Moulding.....coeveceuenrerencecoenennannnnns 12mo,

Eissler’s Modern High Explosives......c.co0cveeenensse P «e...8v0,
Effront’s Enzymes and their Applications. (Prescott.)........c.ccuuen. 8vo,
Fitzgerald’s Boston Machinist........ sesesesncne eetensciareasanan 18mo,
Ford’s Boiler Making for Boiler Makers........ ceeestesecnctntnnann 18mo,
Hopkins’s Oil-chemists’ Handbook........ teeetsseeetenttetacasas e 8vo,
Keep's Cast Iron....ccoceeeinrncorensercescnssonnsnsosscanesonans 8vo,

Leach’s The Inspection and Analysis of Food with Spechl Reference to State
Control. (In preparation.)

Metcalf’s Steel. A Manualfor Steel-users........ccceeeeeocnccccennn 12mo,
Metcalfe’s Cost of Manufactures—And the Administration of Workshops,

Public and Private......coc0ee.. e reseetieeaseinitenne os 8vo,
Meyer’s Modern Locomotive Construction. .......cocveeeeeenannnnnn.. 4to,
Morse’s Calculations used in Cane-sugar Factories. ......... 16mo, morocco,
® Reisig’s Guide to Piece-dyeing..... e eesecsecreeneaseareanasanan 8vo,
Smith’s Press-working of Metals............o0000s cesssecsasseaaray s 8vo,
Spalding’s Hydraulic Cement......cocveeveeevccaancnnanss Cereeeaas 12mo,
Spencer’s Handbook for Chemists of Beet-sugar Houses..... 16mo, morocco,

Handbook tor Sugar Manutacturers ana their Chemists.. . 16mo,morocco,
Tharston’s Manual of Steam-boilers, their Designs, Construction and Opera-

- 1 8vo,
® Walke’s Lectures on Explosives.....c.ccvevteiireenieiecncennnenss. 8vo,
West’s American Foundry Practice........... ceseeens eeseraenaaan 12mo,

Moulder’s Text-booK. c..coceveerrereresereosesenncsesnnnanas 12mo,
Wiechmann’s Sugar Analysis....... pevsecssses tesessennsvsnas Small 8vo,
Wolff’'s Windmillas a Prime Mover.........cocieetvienroccnacacanns 8vo,
Woodbury’s Fire Protection of Mills. ..........ccoiiiiiinneenannnnes 8vo,

‘Wood’s Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. . .8vo,
10
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MATHEMATICS. »
Baker’s Elliptic Functions......cccceeeceveccccncconess eeesesienns 8vo,

® Bass’s Elements of Differential Calculus........... cerecenns sesese 12mo,
Briggs’s Elements of Plane Analytic Geometry......... cevectassaans 12mo,
Compton’s Manual of Logarithmic Computations............... +e...13mo0,
Davis’s Introduction to the Logic of Algebra......... [ eenann 8vo,
® Dickson’s College Algebra............ccc000e o seessssanecs Large 12mo,
*  Answers to Dickson’s College Algebra . .................... 8vo, paper,
®  Introduction to the Theory of Agebraic Equations .......Large 12mo,
Halsted’s Elements of Geometry...ccceeceveccscccssecscsanscssasass .8V0,
Elementary Synthetic Geometry........cccveneeeienrvcccncennss 8vo,
RAtional GeOmMetry. «...vovveeneennsnsaeennsscaoreseennannns 12mo,

* Johnson’s Three-place Logarithmic Tables: Vest-pocket size...... paper,
100 copies for

. } Mounted on heavy cardboard, 8 X 1o inches,
10 copies for

Elementary Treatise on the Integral Calculus.... cecvecen .. Small 8vo,
Curve Tracing in Cartesian Co-ordinates............... P 12mo,
Treatise on Ordinary and Partial Differential Eq\utions. «e...Small 8vo,
Theory of Errors and the Method of Least Squares............... 12mo,

®  Theoretical Mechénics.......cco0veeennnnnns ceesecsateonans 13mo,
Laplace’s Philosophical Essay on Probabmtiu. (Truscott and Emory.) 12mo,
# Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other
TableS. ....ccovecenneonceecosannonnssnne eretetenenaaans 8vo,
Trigonometry and Tables published separately................ Each,

* Ludlow’s Logarithmic and Trigonometric Tables .................... 8vo,
Maurer’s Technical Mechanics........ccoovieevceeccncens ceseeseans 8vo,
Merriman and Woodward’s Higher Mathematics ....cco0ceeveeces....8v0,
Merriman’s Method of Least SQUATes. .....cccoveereenncenrosoccecenss 8vo,
Rice and Johnson’s Elementary Treatise on the Differential Calculus.Sm., 8vo,
Differential and Integral Calculus. 2 vols. in one.......... Small 8vo,
Sabin’s Industrial and Artistic Technology of Paints and Varnish. (In press.)
Wood’s El ts of Co-ordinate Geometry......ccoveescennecncccanes 8vo,

Trigonometry: Analytical, Plane, and Spherical......cc0cc00e...12m0,

MECHANICAL ENGINEERING.
MATERIALS OF ERGINEERING, STEAM-ENGINES AND BOILERS.

Baldwin’s Steam Heating for Buildings.....ccc00000eee.. ceeessesnan 12mo,
Barr’s Kinematics of Machinery........ceeeeeeececccnceces PN 8vo,
- Bcrtlett's Mechamcal Drawing... ..coveveneenecess [P Ceeeens 8vo,
. “ Abridged Ed........ eevecssnse [P 8vo.
BenjnminuWrinkluandRccim .......... ceesesetseertenraneanns 12mo,
Carpenter’s Experimental Engineering.......ccccvivieeenienencennns 8vo,
Heating and Ventilating Buildings.......ccoceeieveicoececcennn. 8vo,
Cary’s Smoke Suppression in Plants using Bituminous Conl. (In prep-
aration.)
Clerk’s Gas and Oil Engine....... eesesecsscescsnasseressnnan Small 8vo,
Coolidge’s Manual of Drawing.........ccec0veeanns eeesess..8v0, paper,

Coolidge and Freeman’s Elements of General Drafting for Mechanical En-
gineers. (In press.)

Cromwell’s Treatise on Toothed Gearing........coc000eeveesceannans 12mo.

Treatise on Belts and Pulleys.............. tessesececercanians 12mo,
Durley’s Ki tics of Machines..........cco0o0veeunenns cetceecanan 8vo,
Flather’s Dynamometers and the Meuuremont of POWer....occeuuuns 12mo,

Rope Driving.....ccocereneiiecicnciccsssncececsascssenseseI2MO,
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Gill's Gas and Fuel Analysis for Engineers...... [ N 12mo, I 25§
Hall’s Car Lubrication..........coviieiinvininnnnnnnnn. N 12mo, X OC
Hering’s Ready Reference Tables (Conversion Factors)...... 16mo, morocco, 2 50
Hutton’s The Gas Engine............ccc0uvuee ersecescssstncassnans 8vo, 5 oo
Jones’s Machine Design:
Part I.—Kinematics of Machinery............cooveieienennnnn. 8vo, x s0
Part IL.—Form, Strength, and Proportionsof Parts................ 8vo, 3 oo
Kent’s Mechanical Engineer’s Pocket-book................ 16mo, morocco, S 00
Kerr’s Power and Power Transmission........... eesseceserenssnenas 8vo, 2 oo
MacCord’s Ki tics; or, Practical Mechanism................ cesane 8vo, s o0
Mechanical Drawing...... cetsescsenenerrasnane eesessesecnnnen 4to, 4 o0
Velocity Diagrams. ..........ccc0000 eeeessesessiestascncesans 8vo, x sO
Mahan’s Industrial Drawing. (Thompson.).......ccceeeviecerenanens 8vo, 3 so
Poole’s Calorific Power of Fuels..... cesosscassse sesessecersnssssans 8vo, 3 oo
Reid’s Course in Mechanical Drawing........cocoeveveceaanncannnnns 8vo, 2 oo
Text-book of Mechanical Drawing and Elementary Maclune Design. .8vo, 3 oo
Richards’s Compressed Air.........ccoo00veeenneencconns eseeee e 12mo, Xx SO
Robinson’s Principles of Mechanism. . . 3 oo
Smith’s Press-working of Metals. ... 3 oo
Thurston’s Treatise on Friction and Lost Work in Hu.chinery and Mill
Work. .... teteses cesncesaasnessssttenccsstttttaceasnnnae 8vo, 3 oo
Animal as a Machine and Prime Motor, md the Laws of Energetics.1amo, 1 oe
Warren’s El ts of Machine C uction and Drawing.............. 8vo, 7 so0
Woeisbach’s Kinematics and the Power of Transmission. Herrmann—
Klein.).oovoeeeeiecenens covonneestoennnnnnnnnne [P 8vo, 5 00
Machinery of Trausmission and Governors. (Herrnunn—Kleln )..8v0, 5 0O
Hydraul.cs and Hydraulic Motors. (Du Boig.)e...covveeneencnnns 8vo, 5 00
Wolff's Windmiil as & Prime Mover.......... teeeceresinanne PP '...8v0, 3 00O
Wo0d’s Turbines......ccoeoevenncecescnees secoesanssssnscssresssen 8vo, 2 s0
MATERIALS OF ENGINEERING.
Bovey's Strength of Materials and Theory of Structures................ 8vo, 7 s0
Burr’s Elasticity and Resistance of the Materials of Engineering. 6th Edition,
Reset.....occceeeencenenccnencses ceeescecacsnssscnscaess8V0, 7 50
Church’s Mechanics of Engineering .....c.coeveeeeeccccncen. eeeenn 8vo, 6 oo
Johnson’s Materials of Construction....cc.ecvueve. vecessves..large 8vo, 6 0O
Keep’s Cast IT0N. .. yecoeesenseocscescocsseonccsccassscsscscane ...8v0, 2 S50
Lanza’s Applied Mechanics.......ccveevencecccccacacenes ceececeass.8V0, 7 50
Martens’s Handbook on Testing Materials. (Henninz Yeeeereeesenne..8v0, 7 50
Merriman’s Text-book on the Mechanics of Materials.........c..... ...8v0, 4 00
Strength of Materials........ooeceeseoecccncsccecanss P 12mo, I 00
Metcalf’s Steel. A Manual for Steel-users........... teecestetantnan 12mo, 3 00
Smith’s Materials of Machines.......cceveceeeccceeoncccnccnacnnes I2mo- 1 00
Thurston’s Materials of Engineering.....cceceeeeececsceneas 3 vols., Svo, 8 oo
Part IL.—Ironand Steel.....coeeuiiecirnennereesnccannnnrsans 8vo, 3 50
Part III.—A Treatise on Brasses, Bronzes, and Other Alloys and their
Constituents.. . .oeveerreerronesees conernaccsnasacnonnnns 8vo 250
Text-book of the Materials of Construction.....cceecveereceanans 8vo, 5 00
Wood’s Treatise on the Resistance of Materials and an Appendix on the
Preservationof Timber........ccocieeeiieieinrerennccannas 8vo, 2 oo
Elements of Analytical Mechanics........cccoevvevencnccrovaneas 8vo, 3 00
‘Wood’s Rustless Coatings: Corrosion and Electrolysis of Iron and Steel.. .8vo, 4 oo
STEAM-ENGINES AND BOILERS.
Carnot’s Reflections on the Motive Power of Heat. (Thurston.)....... 12mo, 1 50
Dawson’s “Engineering” and Electric Traction Pocket-book..16mo, mor., 5 co
Ford’s Boiler Making for Boiler Makers...........c0000 vesepssesss I8MO, I 00
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Go88’8 Locomotive SpParks. .......ocveieeeeeneeneincencnoconennnens 8vo, 2 o0

Hemenway’s Indicator Practice and Stum-enzlne Economy.......... i2mo, 2 00
Hutton’s Mechanical Engineering of Power Plants.................... 8vo, s 00
Heat and Heat-engines.........cccoceeeeeeeeneneennereennans 8vo, 5 00
Kent’s Steam-boiler ECONOMY. .. ..uuuueenreeeneeneeneeneenonneannas 8vo, 4 00
Kneass’s Practice and Theory of the Injector........cocoevevureenne.. 8vo 1 s0
MacCord’s Slde-VAlVes........cccoveuenenreennnenns eeteeneneenn 8vo, 3 00
Meyer’s Modern Locomotive Conntmcﬁon ............................ 4to, 10 00
Peabody’s Manual of the Steam-engine Indicator................... 12mo, 1 50
‘Tables of the Properties of Saturated Steam and Other Vapors...... 8vo, I 0O
‘Thermodynamics of the Steam-engine and Other Heat-engines. . ... 8vo, 5 00
Valve-gears for Steam-engines.........coooeeeeeeceeerennnnnnns 8vo, 2 SO
Peabody and Miller’s Steam-boilers ........co00uuenn. esereecaranan 8vo, 4 00
Pray’s Twenty Years with the Indicator..........coo0eeeennn.. Large 8vo, 2 so
Pupln’s Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.
(OSterberg.). . coooveveeneee cotenentoaececaccsnssocsssnnns 12mo, r 2%
Reagan’s Locomotives: Simple, Compound, and Electric.............. 12mo, 2 50
Rontgen’s Principles of Thermodynamics. (Du Bois.)................ 8vo, 5 00
Sinclair’s Loconiotivc Engine Running and Management.............. 12mo, 2 00
Smart’s Handbook of Engineering Laboratory Practice..... Cevecnnees 2 50
Snow’s Steam-boiler Practice......ccc0u... scsssscsscscsssnsnnne 3 oo
Spangler’s Valve-gears........... cvae 2 S0
Notes on Thermodynamics............ 1 00
Spangler, Greene, and Marshall’'s Elements of Steam-engineering........ 8vo, 3 o0
Thurston’s Handy Tables............. cesssensesasceccrvessasacesre 8vo, 1 S0
Manual of the Steam-engine........... csvsscsscns «e «s.. 3 VOl8., 8vo, 10 0O
Part L—History, Structuce, and Theory........ ceeenn [ 8vo, 6 oo
Part II.—Design, Construction, and Operation. ..... ceeseenanenenn 8vo, 6 o0
Handbook of Engine and Boiler Trials, and the Use of the Indlcator and
the Prony Brake........c.coeviennnss R ceecesccccannans 8vo 5 00
Stationary Steam-engines.........ccccceeciereceas 2 50
Steam-boiler Explosions in Theory and in Practice I 50
Manual of Steam-boilers, Their Designs, Construction, and Operation.8vo, s 00
‘Weisbach’s Heat, Steam, and Steam-engines, (Du Bois.)............. 8vo, 5 00
‘Whitham’s Steam-engine D:sign..... ceveasecscssesanas cecsecsess..8v0, 5 0O
Wilson’s Treatise on Steam-boilers. (thhcr.). ..... creeessesannnen 16mo, 2 Se
Wood’s Thermodynamics Heat Motors, and Refrigerating Machines. ...8vo, 4 oo
MECHANICS AND MACHINERY.
Barr’s Kinematics of Machinery..........c.ccoivenenenercncnnnnnnes 8vo, 2 S0
Bovey’s Strength of Materials and Theory of Structures................ 8vo, 7 50
Chase’s The Art of Pattern-making....... cesossccssenans cerseeens 12mo, 2 S0
Chordal.—Extracts from Letters.......ccoe0eeeececnccces tesessss.12MO, 2 00
Church’s Mechanics of Engineering..... cevesseccnnenanans 8vo, 6 oo
Notes and Examples in Mechanics...... rescesesscsensssaas ve..8v0, 2 00
Compton’s First L in Metal-working.....cecvvececancces ceees123MO, I S0
Compton and De Groodt’s The Speed Lathe..........c.c... eesancsee 12mo, 1 50
Cromwell’s Treatise on Toothed Gearing........ secessaresssnsine ..I12mo, I 50
Treatise on Belts and Pulleys...........coiivvenvnennnneceans 12mo, I 50
Dana’s Text-book of Elementary Mechanics for the Use of Colleges and
£ 1T ...12mo, 1 S0
Dingey’s Machinery Pattern Making..........c.cc0ievnienennanns ..12mo, 2 00
Dredge’s Record of the Transportation Exhibits Building of the World's
Columbian Exposition of 1893........... ceenes 4to, half morocco, 5 00
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Du Bo's’s Elementary Principles of Mechanics:

Vol I.—Kinematics..... “ ereeseccasessenas tesessenetsasanss 8vo, 3 s0
Vol IL—Statics.. .c.eev vovacarncnnes veses seassssssasesscas 8vo, 4 o0
Vol. IIl.—Kinetics. .. ..coovt cevianees ans teseesvessssesracnn 8vo, 3 so
Mechanics of Engineering. Vol I...... secesseseevancans Small 4t0, 7 so
VoLIL......coonnn [ Small 4to, 10 ©O
Durley’s Kinematics of Machines ...... ceenen tessnsecanacsasanennas 8vo, 4 oo
Fitzgerald’s Boston Machinist. ........covcveivinnannans ceseseenns 16mo, x OO
Flather's Dy t and the Measur t of Power.............12m0, 3 ©0
Rope Driving......cccciieennennnes secctacssssrasscescsnncs 1amo, 3 oo
Goss's Locomotive Sparks.............. cevscsvcccnes .2 oo
Hall's Car Lubrication.....cc000ee sessescesces cesseane I oo
Holly's Art of Saw Filing............. eeeessscsscssnans 7s
¢ Johnson’s Theoretical Mechanics........... cessssencacnce sstarae 3 oo
Statics by Graphic and Algebraic Methods..... cesetsceanane 2 oo
Jones’s Machine Design:
Part I.—Kinematics of Machinery...........cc0000.t cessenenan .8vo, 1 sO
Part II.—Form, Strength, and Proportions of Putl... ..... ceesss.8v0, 3 OO
Kur'sPowunndPowotTnnmhon......... ..... P ceeeee ve..8v0, 2 0O
ceteesseessse.8v0, 7 S0
................Bw. s oo
eesetsststessasassccsaness8V0, 4 OO
....‘8vo. 4 00
OIkhie'lEhmenuo(Annlyﬁullechlnkl ......... teesessccses..8v0, 4 OO
Reagan’s Locomotives: Simple, Compound, and Electric..............33m0, 2 S0
Reid’s Course in Mechanical Drawing.......ccovvieiiiinninennnnnnn. 8vo, 3 0o
Text-book of Mechanical Drawing and Elementary Huhine Design. .8vo, 3 oo
Richards’s Compressed Air............ sesvensesaes seessesvecesene 1amo, I S50
Robingon’s Principles of Mechanism........ eresesccenn sesssscssss.8v0, 3 0O
Ryan, lonh.mdﬂoxin'lkhcuiullhchinery Vol. I................Bvo. 2 80
Sinclair’s Locomotive-engine Running and Management..............13mo, 3 00O
Smith’s Press-working of Metals....ccceccecrescoccsoccasoscsecannans 8vo, 3 00
Materials of Machines.......cccoevvnenccenes ceceess.13mO, I 00
Spangler, Greene, and Marshall’s Elements of Steam-engineering.......8vo, 3 0o
Thurston’s Treatise on Friction and Lost Work in Machinery and Mill
WOrK...cietete sovecasnccassncnsanas ceescsscasasncnvane 8vo, 3 00
Animalasa Machine and Prlme Hotor. and the Laws of Energeticn 12mo, I 00
Warren’s Elements of Machine Construction and Drawing............. 8vo, 7 50
Weisbach’s Kinematics and the Power of Transmission. (Herrmann—
€ T T T 8vo, 5 00
Machinery of Tununisslon and Governors. (Hermnnn——xmn.) 8vo, § 00
Wood’s Elements of Analytical Mechanics..... sesecncen cecsescssacs 8vo, 3 00
Principles of Elementary Mechanics.....ccoeeeeeeseccccecsss.12mo, 1 3§
Turbines........cco0 coeenee e ) (T . )

The World’s Columbian Exposition of 1893.ccceeveeccccres ivosssscess 40, I 00

METALLURGY.

Egleston’s Metallurgy of Silver, Gold, and Mercury:
Vol L—Silver.... .ccvvevveennn ceessasoeeee ceseensssassnass.8v0, 7 50
VoL II.—Gold and Mercury tetescscecsees.8V0, 7 50
o¢ Jles’s Lead-smelting. (Postage 9 cents nddmonnl.) cececsssecess13M0, 3 50
Keep's Cast Iron. . ..cooevvereieneneccncnnnns cesane cessenetcananen 8vo, 2 50
Kunhardt’s Practice of Ore Dressing in Europe.......... teecesceanne 8vo, 1 S0
Le Chatelier’s High ture Measurements. (Boudouard—Burgess.).12mo,3 00
Metcalf’s Steel. AMnnulforSteel-users..................... ..... 13mo, 2 00
Smith’s Materials of Machines.................. ereeccsccnssssssss 13m0, T 00
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Thurston’s Materials of Engineering. In Three Parts................ 8vo,
Part II.—Iron and Steel.....cccoviieeeeeenennncnncasosannnnns 8vo,
Part IIL.—A Treatise on Brasses, Bronzes, l.nd Other Alloys and their
Constituents. ..ccoceveeees covennnane [ 1 (D

Ulke’s Modern Electrolytic Copper Refining........ccc000ececeeesssss 870,

MINERALOGY.

Barringer’s Description of Minerals of Commercial Value. Oblong, morocco,
Boyd’s Resources of Southwest Virginia......... eesesvessranssanasss 8vo,
Map of Southwest Virginia............co00eveeesee .Pocket-book form,
Brush’s Manual of Determinative Mineralogy. (Penfield.).......... . .8vo,
Chester’s Catalogue of Minerals....... eetesecssanacsssasssss.8V0, paper,
Cloth,

Dictionary of the Names of Minerals.......cco0ececcecacaes .....8v0,

Dana’s System of Mineralogy¥............... ceeees Luze 8vo, half leather, 1

First Appendix to Dana’s New “Syttcm of Mineralogy.”. .. .Large 8vo,
Text-book of Mineralogy........ ceensssaseancasen cessesnascans 8vo,
Minerals and How to Study Them. .. ...coeeeenceecccannaanss 12mo,
Catalogue of American Localities of Minerals..............Large 8vo,
Manual of Mineralogy and Petrography...... essesresans R 12mo,
Eakle’s Mineral Tables.. ......cccvvreiiienrenennneeneenrnnneannnns 8vo,
Egleston’s Catalogue of Minerals and Synonyms.......cccocveeeeeenn. 8vo,
Hussak’s The Determination of Rock-forming Minerals. (Smith.) Small 8vo,
Merrill’s Non-metallic Minerals: Their Occurrence and Uses............. 8vo,
® Penfield’s Notes on Determinative Mineralogy and Record of Mineral Tests.
8vo, paper,

Rosenbusch’s Microscopical Physiography of the Rock-making Minerals.
(Iddings.)........ Cereseseceesans cessececcecscansssnacnns 8vo,

* Tiliman’s Text-book of Important Minerals and Docks...............8v0,
Williams’s Manual of Lithology....ccceenneeenes A A LY

MINING.

Beard’s Ventilation of Mines............ ceetesssssssssseenesaness12MO,
Boyd’s Resources of Southwest Virginia.....coe0000eveeccecsccccaans 8vo,

Map of Southwest Virginia............... cessenann Pocket-book form,
¢ Drinker’s Tunneling, Explosive Compoundl. and Rock Drills,
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Eissler’s Modern High Explmlm.................... .............. 8vo,
Fowler's Sewage Works Analyses........c..civevecaecnnccccscccnns 13mo,
Goodyear’s Coal-mines of the Western Coast of the United States...... 12mo,
Thiseng’s Manual of Mining.......ccueveciineccnannsnecnnes ceess..8V0,
8 [les’s Lead-smelting. (Pomzeoc.nddltionnl.) ...... cesssess.12M0,
Kunbardt’s Practice of Ore Dressing in Europe......... cesesenes 8vo,
O'Driscoll’s Notes on the Treatment of Gold Ores......ccccceeueee ves.8v0,
$ Walke’s Lectures on Explosives......... cettssccessanans
Wilson’s Cyanide Processes........ccocceeecesscccnes cevesnen 13mo,

Hydraulic and Placer Mining.....c.ccc0ececececesssscscesss. 120,
Treatise on Practical and Theoretical Mine Ventilation...........33mo

SANITARY SCIENCE.

Copeland’s Manual of Bacteriology. (In preparation.)

Folwell's Sewerage. (Designing, Construction and Maintenance.)......8vo,
‘Water-supply Engineering.......cccoooceenencane teeesesccscces 8VO,

Fuertes’s Water and Public Health............... PP ceecscesses13MO,
Water-filtration Works............co00ee cesessssescssssssssI2MO,
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Gerhard’s Guide to Sanitary House-inspection..........ce000vee....16mo, I 00
Goodrich’s Economical Disposal of Town’s Refuse......... ees..Demy 8vo, 3 =0
Hazen’s Filtration of Public Water-supplies. . ... ceecssccesccesnne ....8v0, 3 00
Kiersted’s Sewage Disposal................. eesessssanssasassnaas I2mo, X 35
Leach’s The Inspection and Analysis of Food with Special Reference to State
Control. (In preparation.)
Mason’s Water-supply. (Considered Principally from a Sanitary Stand-
point.) 3d Edition, Rewritten.......cccccuverenne cecene ..8vo, 4q oo
Examination of Water. (Chemical and Bacudologicll.).. vesessI2mO, X 2§
Merriman’s Elements of Sanitary Engineering ....... .......... ve...8v0, 3 OO0
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