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PREFACE

My father had spent most of his spare time since
the War in writing this book. Only two .months
before his death, while on our summer holiday in 1924,
he had brought some of the chapters with him, and
sent off the tinal draft of them to the Clarendon Press.
Even on these holidays, which he greatly enjoyed, we
were all accustomed to a good deal of work, and it
was an unexpected pleasure to find that with these
once dispatched to the press he took an unusually
complete holiday.

While rejoicing that he was so far able to com-
plete the book, we are sorry that a last chapter or
appendix in which he was greatly interested was
hardly begun. Apparently this was to deal with the
connexion between the rest of the book and Einstein’s
theory. To the mathematical world his interest in
this was shown by his Presidential address to the
London Mathematical Society in 1920—to his friends
by the delight he took on his frequent walks in trying
to explain in lucid language something of what
Einstein's theory meant.



vi PREFACE

We cannot be too grateful to Professor Elliott,
F.RS, an old friend of many years standing, for
preparing the book for the press and reading and
correcting the proofs. No labour has been too great
for him to make the book as nearly as possible what it
would have been. And the task has been no light one.

We should like to thank the Clarendon Press for
their unfailing courtesy and for the manner in which
the book has been produced.

J. M. H. C.

Christmas 1925.



EDITOR'S NOTE

My dear friend the author of this book has devoted
to preparation for it years of patient study and inde-
pendent thought. Now that he has passed away, it
has been a labour of love to me to do my best for him
in seeing it through the press. As I had made no
special study of Differential Geometry beforehand, and
was entirely without expeftness in the methods of
which Mr. Campbell had been leading us to realize
the importance, there was no danger of my converting
the treatise into one partly my own. It stands the
work of a writer of marked individuality, with rather
unusual instincts as to naturalness in presentation.
A master’s hand is shown in the analysis.

Before his death he had written out, and submitted
to the Delegates of the University Press, nearly all
that he meant to say. An appendix, bearing on the
Physics of Einstein, was to have been added; but
only introductory statements on the subject have been
found among his papers. Unfortunately finishing
touches, to put the book itself in readiness for printing,
had still to be given toit. The chapters were numbered
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in an order which, rightly or wrongly, is in one place
here departed from, but they stood almost as separate
monoégraphs, with only a very few references in general
terms from one to another. To connect them as the
author would have done in due course is beyond
the power of another. The articles, however, have
now been numbered, and headings have been given to
them. Also some references have been introduced.
The text has not been tampered with, except in details
of expression ; but a few foot-notes in square brackets

have been appended.

E. B. E.
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CHAPTER I
TENSOR THEORY

§ 1. The n-way differential quadratic form. Let us
cousider the expression

(Likdxidwk, ;‘ =1l..n (1 . 1)
which is briefly written for the sum of n? such terms, obtained
by giving to ¢, & independently the values 1, 2, ... n. If, for
instance, 7 = 2, the expression is a short way of writing
Az + 2a,de de, + ayded
for we are assuming that
Wiy = Ui (1.2)
Let us also denote by «f® the result of dividing by a itself
(=1)"** times the determinant obtained by erasing the row
and the column which contain a;, in the determinant
Uy oee Uiy
Uy vor Qyp (1.3)
The coefficients «;;, ... are at present arbitrarily assigned
functions of the variables «,...a,, limited only by the
condition that a is not zero.
When we are given the coeflicients a,,
arguments, there must exist » functions
X,...X,, r=3n{n+1l),
of the variables «, ... z,, such that

as functions of their

dX:+...+dX: = ayde;de,. (1.4)

The differential equations which will determine these
functions are bXp d Xp

E— DT, = aik. (1 . 5)

Just as in the expression a;,dx,dz; the law of the notation

is that, whenever a suffix, which occurs in one factor of
2843 B



2 TENSOR TIIEORY

a produet, is repeated in another factor; the sum of all such
products is to be taken, so here the above differential equation
is the short way of writing
dX, 20X, 2X, 2%,
dw; dxy, T duy duy,

= “'ik' (1 .6)

As there are just as many unknown functions as there
are differential equations to be satisfied, we know that the
functions X, ... X, must exist. The actual solution of this
system of differential equations is, however, quite another
matter, and questions connected with the solution form a chict
part in the study of Differential Geometry.

§ 2. The distance element. Euclidean and curved spaces.
If we regard ..., as the coordinates of a point in an
n-way space, then, X, ... X, being functions of «, ...2,. we
may regard this space as a locus in r.way Euclidean space;
and we may regard ds as the distance between two neighbour-

ing points x,...z, and 2, +dx,...2,+dr,, where ds is
defined by ds? = ayde,dxy,. (2.1)
Thus, if n = 2, tiie two-way space given by
ds?t = a;de; da,
lies within our ordinary Euclidean space, and it is with this
space that Differential Geometry has hitherto been chiefly
concerned.

If m = 3, the ‘curved’ three-way space lies, in general,
within a Euclidean six-way space. If, however, the coeflicients
;. instead of being arbitrarily assigned functions of their
arguments x,, «,, ,, satisfy certain conditions, the Euclidean
space may be only a five-way space, or even only a four-way
space. In yet more special cases the three-way space may
not be ‘curved’ at all, but only ordinary Euclidean space
with a different coordinate system of reference.

If » = 4, the curved four-way space lies, in general, within
a Euclidean ten-way space, and so on.

We know what a curved two-way space within a Euclidean
three-way space means, being a surface: but what does
a ‘curved’ three-way space mean? We have not, and we
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cannot have, a conception of a four-way space, Euclidean or
otherwise, within which the three-way space is to be curved.
But by thinking of the geometry associated with the forin

dg?® = «, da? + 2« da,day + ayda? (2.2)
we say that it is that of a curved two-way space; and we

know that it is, in general, different from the flat Euclidean
plane geometry associated with the forn

ds® = dxi + dxi. (2.3)

We can distinguish these two gcometries without any
1eference to the Euclidean threc-way space, or any other
three-way space. This distinction we, with our knowledge
of a three-way Kuclidean space, characterize by saying that
the first space is curved and the second flat, or Euclidean.

This is what we mean when we say that the space given by

ds? = a,-k(l.’(:lgdwk (2 4)
is, in general, a curved space, whilst that given by
ds* = dX2+...+dX? (2.5)

is a flat space. We shall find that a geometrical property
will be associated with a curved space, which will distinguish
it from a flat space.

If we have no real knowledge of a spaco of more than
three dimensions, we have at least no knowledge that it does
not exist: and, by analogy from our knowledge both of
a two-way space and a three-way space, we are able to make
use of the ideas of higher space to express analytical results
in an interesting forn.

The space in which we live may, or may not, be flat or
Euclidean. Up till quite recently it has been assumed to be
flat, and the geometry which has been built up has been
that associated with the form

ds? = da3 + dw? + daj.
The geometry which we wish to know about to-day would
be that associated with the form

ds? = a,-kdw,-dwk, ;‘ =1..4

where 2, ...z, are functions of the threc variables which
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locate an event in space, and a fourth variable which locates
it in time.

The geometry of Euclidean space is much simpler than the
geometry associated with the more general form, and its
properties have been more studied. It may therefore be of
advantage, at least in some ways, to regard the form

(ls" = (Lik(lmi(,lw,‘ (2 . 1)

as that of an n-way locus in a Hlat r-way space, although 7 is
generally a much larger number than n.

§ 8. Vectors in a Euclidean space which trace out the
space of a form. Let ¢/, ", /" ... be » unit vectors in the
Euclidean space and let 4 and z be vectors given by

y=y iy
é::’:l_}_‘;HLH_*_ }' (3'1)

What we call the scalar product of the two vectors y and
2z is denoted by yz and defined by

ye+y'z' +y"’2" +... = 0. 3.2)

The cosine of the angle between the vectors is defined as

?/I:I+?/IIZII+ .

=i )

Nyl ytie ey L

and may be written —

=, (3.3)
vy 2z

We shall generally write yy as y% but we must remember

then that the root of ¥* is not ¥.

The numbers %', y’’... are called the components of the
vector ¥ : they are ordinary scalar numnbers.

Now let z be a vector whose components are functions of
the n parameters , ... z,. Denoting the derivative of z with
respect to z, by z,, we have dz = z,dw, in the notation we
have explained, which is the foundation of the Tensor
Calculus. We therefore have

dzdz = z;2;,de;dzy,. (3.4)
N— N——
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The vector 2 traces out an n-way space within the Euclidean
r-way space, and in this n-way space the element of ¢ length’

is given by ds® = —dzdz; (3.5)
and therefore, if we take
* a,-k = —zizk, (3 . 6)
N
we have ds* = agdr;dw,.

We say that dz is an element in this space, and we notice
that an element has direction as well as length. The element
is localized at the extremity of the vector z; the element lies
in the n-way space, but the vector lies in the r-way Euclidean
space.

The direction cosines of the element in the r-way space arc

, (l;cp ' (l:vp
Py P (3.7)
» ds P

We write fp =0,

and we speak of ¢1, £2 ... £ ag the direction cosines of the
element in tho n-way space given by, or associated with,
ds® = ay da;da;,.

The upper aflixes in ¢1... ¢» have, of course, no implication
of powers as in ordinary algebra. The notation introduced is
in accordance with that of the tensor caleulus which we are
leading up to. In accordance with that calculus we ought
to write the variables ..., as a'...2" but we do not do
so, as the notation ...z, is at present too firmly fixed
perhaps.

If o is the angle between two elements, drawn through
the extremity of z, whose direction cosines with respect to
the n-way space are £ g g

7]1’ 7]2‘ .. 7’n’
respectively,
cosw = £Vl (22 +27 2"  + ...
= —gpn‘lngq = dyp, él'n'[. (3.8)

N—
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It should be noticed that a,,£/7? means precisely the same
thing as a;£'9% Repeated suffixes are called dummy suffixes
and’can be replaced by any other dummy suffixcs. The chief
rule that we need to follow is not to use the same dummy
more than twice in an expression containing a numbe1 of
factors.

It should be noticed that the angle, for which we have
found an expression, is that between two elements drawn
through the same point, viz. the same extremity of the
vector zz. We have no expression for the angle between two
elements at different points in our nm-way space. This is
something that distinguishes the geometry connected with
the form ds* = ay,da;da;, from the geometry of Euclidean
space.

§ 4. Christoffel’s two symbols of three indices. I.et

day Wu,‘., RIT

k)=, (bw, duy DM) ; (¢-1)

This is the definition of Christoffel’s threc-index symbol of

the first kind. It is exceedingly important in the theory

of differential geometry. The ftirst two suffixes are inter-

changeable. We may write it sometimes in the form 7}
when we regard ¢ and £ as tixed suffixes.

Since g = =235
N
we see that (ehty = — 2.2, (4.2)
N——
3z
where

Zik = @y,

We introduce the symbol €, to denote zero if ¢ and & are
unequal and unity if ¢ and k& are equal. We do not write
¢ as equal to unity, for by our convention
e€=ejtei+...+tel=mn

In employing dummy suffixes it is best to employ a letter
to which we have not attached a definite connotation.

From the property of determinants and their first minors
we see that attay, = €. (1.3)
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Let {ikj} = oIt (ikt) ; (4.4)
then {7kj} is Christoffel’s three-index symbol of the second
kind, The first two suffixes are int-rchangeable and it may
be written 7V when we regard ¢ and % as fixed suftixes.

We have at once (k) = it 1akt}. (4.5)

§ 5. Some important operators. Kven alrcady we have
come across a number of functions of the vaiiables which we
denote by integers attached to a certain letter. Thus we
havo the fundamental functions denoted by «gy ...5 we have
the direction cosines denoted by £1...£% and the functions

atk ...

More generally we may have a numnber of functions of the
variables, say 6, ¢, ¥, ... and we may form a function of
0, ¢, ¥, ... and their derivatives with respeet to the variables,
It may be that the function thus arrived at may be denoted by

o, By ...
Ta,b,... (5~1)
where o, 3, ... are integers of the nupper row, upper intezers

we call them, and @, ), ... are lower integers. Thesc integers
may take independently any of the values 1,2, ... 2 and thus

indicate how the function T:’ f’ is formed. The number
s by ..

of the upper integers is not necessarily equal to the number
of the Jower integers, It may be that there are no integers
in the upper row, or none in the lower, or even none in either.

We shall come across many functions which may be ex-
pressed in this manner, and we have come across some.

In connexion with functions which are expressed in the
above form there are m operators which are of fundamental
importance in tensor theory. These operators may be written

1,2 3.7,

where % denotes the operator

p)
s HOA Q= {apt) () (5.2)

and where (!) denotes the operation of substituting ¢ for A,
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A being any upper integer, and where ({) has a similar
mea.ning with respect to a lower integer.

Thus T 8

d o, B ¢, B o, ¢ «, B
=b_.'i:; o Titpag Ta + {tp B} Ta —{upt} Tt ;

(5.3)
the ¢ which occurs on the right is a dummy suffix, and thus,
for instance,

{tpcx}TtB
_{lg)a,T +f2po<}T +. +fnpa}T . (5.4)

We notice that tho definite integers 1,2,...n are not
dummies, and we should avoid the use of n as a dummy.

B _ 8
We write T:.,, =p T: . (5.5)

By aid of the symbolism thus introduced we can avoid
a prolixity which would otherwise almost bar progress. A
very little practice will enable one to use this symbolism
freely, and when necessary to express the results explicitly.

§ 8. Conclusions as to derivatives of a, a*k, and }loga.
We see from the definition that

d¢ L@k

= (Lz)]v)-*‘ ]u}’n)
o),
= ay, [ipt} +ay {kpt); (6.1)

and therefore the operator p annihilates each of the functions
a;;,» which, of course, could have been written T';,.
We have aitay, = € ;
and therefore
. . ,
Uk 57 a’t + a (tpk) + at (kpt) = 0.
Tp
It follows that
d . .
aklay, So att 4 ait {¢tpq} +ake (kpi} = 0;
4

that is, g;—aiq +a® {tpq} +alt {tpi} = 0. (6.2)
D
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It follows that the operator 7 also annihilates each of the
functions a'*,

By the rule for the differentiation of a determinant

du i J
= aull —— «a
duy du, P1

= awald (ptq) +aall (qtp)
w{ptp} +a{qtq}

i

2a {pip},
) 1 1 )
or az = a2 {ptp}. (6.3)
duay

This formula will be required later. |[It should be re-
membered that the symbol on the right stands for the sum of
2 sywnbols, with p =1, 2, ... w.]

§ 7. Tensors and tensor components defined. Wec must
now explain what is meant by a tensor. We have seen how
funetions denoted by

TO(, B, ..
@b e

may be derived from functions 8, ¢, { ... and their derivatives
with respect to &, ... ,. The different functions obtained by
allowing the integers to take all values from 1 up to n are
called components of the set.

Suppose that wo transform to new variables 2/, ...a/,, and
that 6" denotes the expression of 6 in terms of the new

variables, and that ¢’, 4" ... have similar meanings. Suppose
further that ‘o, B,

z ll', bl, I

are functions formed from 6, ¢’, ¥, ... and their derivatives
with respect to the new variables &', ... 2", by exactly the
same rules as the functions

Tor, B, ...
a, b, .. .*""
were formed from 6, ¢, yr, and their derivatives with respect

to & ... x,.
2843 C
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a, B, ...
We say that Tu‘ b, .-
are components of a tonsor if
’ ’
T’a', g, .. dw, dmy, Wy Ty T
/’ v . —— ’_—’ 7 T eee ’_‘_/ ves a, .
a ’ du o dx % bma b.ﬂﬁ !

Notice that the integers on the left are not dummies but
that the integers a, B, ... @, b, ... on the right are. Notice
also that the above equation must hold for all values of the
integers on the left if the expressions

T B, ...
ab, ..
are to bo tensor components.

This is the formal definition: we shall immediately come
across examples of tensors which will illustrate the definition.

¢ 8. The functions «;;, and «'* are tensor components.
If we transform to new variables 2’ ... @', the expression for
the square of the element of length must remain unaltered in
magnitude though its form may change We therefore have

' ™ N
ap,ldx[,dxq =« de’, da’,

0T, dx
’ — P "yq
and so “an =37 3w e (8.1)
AT
Thus the functions a;, ... satisfy the condition for being
tensor components.
Again from the fundamental equality

— A ’ ’
am(lwpdwq =a de Az

®
ow dz’
—P g ZE.
we have Upg3sa = Y an3m
A q
Notice that ¢ and X are no longer dummy suffixes in this
2
equality. Multiply across by a'A¢ ;:,’ , then we have
8
dz, O d’, dx
U@ P = a’ o' —# .
LEA E RN A# oz, ',
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The_exprossion on the right hand of this equality is

bw,, Qa, _é:l;’,, Ba:,.=b:z:r=€r=a .
4 b.z: !, oy o'y dm, ¢ pe
s O, bcc
. y_ _p
and tl.xerefom W (ul w'A bm S )

This equation holds for all va.lues ot P, ¢, and 7, and there-

fore, as the determinant « is not zero, we must have
dz, 0,
a’™? = '™ . 8.2
ax ba; (8.2)

It follows that the functions a'* .., ﬂ.]bO satisfy the condition
of being tensor components.

§ 9. Expressions for second derivatives when
(l,ikdw'dwk = (X,I,ikflw,,"(lm'k.
\a/l
3,
, M;A dxy N

2/ =g —A_TF A,
) NG R A ’ g
rq AK 'c)va o'y a.bpb.b 4

We have 2

where 2z’ i3 the expression of z in terms of the new variables,

azl a‘lzl
and 2', denotes —- and z’ denotes ———-. It follows,
o', dx pba: q
since by (4.2) (pgr)’ = —2"p,7;, that
SN—r
(pgr) = ( oLy dwy duy oz, O,

=t —A . (9,1
o’y o’ o, (’“aa, du'p o g (0.1)

Notice, that we see, from this equation, tha,t Chnstoﬁ'el’s
three-index symbols of the first kind do not satisfy the con-
dition of being tensor components.

g O
Multiply across by o’" “c,k , and we have
8
/w‘_”k
{pgs}’s,r
dxy dx, dxy s 0T X %y
— 8 A g.3 t Yk % % A
= (M‘t)bw o', 3, 3, Ay Py P
s 9%t bwk th

"But, by (8.2), a”

bw o’



12 TENSOR THEORY

and therefore the right-hand member of this equation becomes

D.L)\ b 32a}A
th th .
a'™ (Aut) ba, Y +u Uyg S M;,q,
. bfz bm 2
h o} A B 4 ek A .
that is, {Auk} S 3, & o {9.2)

q9

We therefore have the fundn.mental tormula, in the trans-
formation theory

%), L Az, dxz,
oa’y du’, — {pgsy’ b.z;i {Aples 0, ba,q. (8.3)
Similarly we have
Ay, 2, da’ da’
Ak’ A () k. .
Suyda, T KA Sy Sy PTG .4)

§ 10. Tensor derivatives of tensor components are tensor
components. We must now show that the operators

1,2,..4

when applied to any tensor components, gencrate other tensor
components.

’ /
= 2% 2 _ ey,
Leb = b a 5 = .y
x' g 'y’ 0xy dug
and assume that T“ f ' ""... are tensor components.
We have 1B CMN
T a’, V', ... (l, . N

which we briefly write 7 — 7)1
Expanding a—:,—M, using the formulac of the transforma-

p
tion theory which have been obtained,

d rrs dr
2, = (- a——w,;,,w») &
and therefore

7'M = (1’ Ay (1)

(f)M (10.1)
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Similarly we have
d dw .
2 N= a‘;?:,l (kat} ()= 1A} (D) ,

a.’l)pl

and therefore

-1 Dx ’ ’
pN=(Mﬂ,wqt}(p—mn} ()N (10.2)

bw

Now p'T = 3 (N} ()= {pp't}y (t)) 1,
v’

o
= sl = ﬁ({th} ()~ {pgt} () T
+({ A D= {pp't} (D)T. (10.3)
We have written -ﬁ -b/i;’L
o0&’y &y
note that M has the upper integers a, b, ... (as well as the
lower integers «’, 0/, ...) and that the upper integers in M are
the same as the lower integers in 7.
Similarly we note that the lower integers in N are the
upper integers in 7',
It follows that
N{tq)\}(i)TzT{yqt}(f‘)N, (10.4)
if we remember that these lower integers in N and upper
integers in 7' are just dummies.
We have similarly

. simply as M, but we must

M {pqt} () T'=T{tgr} ()M, (10.5)
Ny )T =T {pp't;" () N, (10.6)
M {,u}/t}'(}i) T= T{tp')\}'(){) M, (10.7)

b
and therefore P (TMN) = M NqT.

oo 3T, D boc da’ g 2’ g,
That is, p'T" = ql'——___xb g 2y 377y

.. 7 ceey 10.
Say T 5, dag dmy 0 (1008

and therefore p T %P8, . are tensor components,

* This is a very 1mportant theorem in the tensor calculus.
It is the rule of taking what we call the tensor derivative
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and we see that the tensor derivative of a tensor component
is a tensor component. We denote the p derivative by
®, B, ...
Y A (10.9)

§ 11. Rules and definitions of the tensor calculus. We
have now proved the most important theorem in the tensor
calculus: its proof depended on the transformation theorems.
These theoremns, having served their purpose, disappear, as it
were, from the calculus.

There are some simple rules of the calculus which we now
consider.

The product of two tensors is a tensor whose components
are the products of each component of the first and each
component of thoe second tensor. The upper integers of the
product are the upper integers of the two factors, and the
lower integers of the product are the lower integers of
the two factors.

Two tensors of the same character—that is, with the same
number of each kind of integers, upper and lower—can be
added, if we take together the components which have the
same integers. They can also be combined in other ways, as
we shall see.

We form the tensor derivative of the product of two tensors
by tho same rule as in ordinary differentiation.

The tensors «;, and a’ aro called fundamental tensors.
We have seen that they have the property of being annihilated
by any operator ). As regards tensor derivation they there-
fore play the part of constants.

The symbol ¢, satisfies the definition of a tensor. It also
is called a fundamental tensor.

Any tensor, formed by taking the product of a tensor and
a fundamental tensor, is said to be an associate tensor of the
tensor from which it is derived.

Suppose that T:’ f’ Y js any tensor. The tensor itself

s by Cy o
is the entity made up of all its components, formed by allow-
ing o, B3, % ..., @ b,c,... to take all integral values from
1 up to n. Suppose now, that instead of taking all the
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components, we take those in which one of the upper integers,
say a is equal to one of the lower integers, say b. The
entity we thus arrive at will be a tensor. For
oz 93{@ =1
» Bfl}'b/ bmb -
The tensor thus arrived at is denoted by

0, By, ...
@ P, C ...

< % B, s ...
aund is said to be Ta’ b, ¢ ..
contracted with respect to «, b.

We can contract a tensor with respeet to any number ot
upper integers and an equal number of lower integers,

«, 8
If we take the tensor / o’
an associate tensor would be
o 7‘“; B
€u a, b’
a, & B
o a, b?

and we might write this T
and as it is contracted with respect to two upper integers and

. . .. B
two lower we might write this simply as Tb .

. B B
So we may write «?? Trq as T .

We shall often usc this contraction when we are consider-
ing associate tensors ,

The rank of a tensor is the number of integers, upper and
lower, in any component. When the rank is zero the tensor
is an invariant. When the rank is even we can form an
associate tensor which will be an invariant. When the rank
is odd we can form an associate tensor of rank unity. When
the rank is unity the tensor may be said to be a vector in
the m-way space: a contravariant vector if the integer is
an upper one, a covariant vector if the integer is a lower
one. But it must be carefully noticed that when we think of
arvector in the flat »-way space, we are thinking of the word
vector in a different sense, Thus the vector z which traces
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out the n-way space is not an invariant, but rather the entity
of » invariants, and so as regards the derivatives of 2. In
the r-way space they are all vectors, but the coefficients of
the vectors ¢/, «”... come under the classification of tensors.
If we bear this distinction in mind we shall not be misled,
and we may gain an advantage by combining the two
notions. It is a useless exaggeration of the great advantages
of tho tensor calculus to ignore the caleulus of Quaternions.
Wo certainly cannot afford to give up the aid of the directed
voctor notation in the differential geometry of flat space
within which lies our n-way curved space.

§12. Beltrami’s three differential parameters. If we take
any function U of the variables, then

U, U, ..U,

will be tensor components. The tensor derivative of an
invariant is just the ordinary derivative; and thercfore the
above functions are just the same as

U, U.,..U., (12.1)

[For the notation see (5.5) and (10.9).]

But if we take the second tensor derivatives we come
across different functions from the ordinary second derivatives.
These second tensor derivatives we denote by U. ;... where

U'ikE U‘ik—{ikt} U,. (12.2)

These we have proved are tensor components (§ 10), whereas
the ordinary seccond derivatives U are not. It would be
a useful exercise to prove that the functions U.,, ... are
tensor components: it might make the general thcorem,
whose proof is rather complicated, more easily understood.

The square of the tensor whose components are U, ... U,
is a tensor whose components are U;U,. If we form the
associate tensor a*U,U, we have an invariant which is
denoted by A (U), so that

A (U) = kU U, (12.3)
This is Beltrami’s first, differential parameter. :
Similarly by forming the tensor which is the product of
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the two tensors whose components are U, ... U, and V; ... V,,

and taking the associate tensor ¢’ U;V,, we have Bgltrami's
‘mixed’ differential parameter

AU, V)=dk U, V. (12.4)
We, also have Beltrami’s second differential parameter
A (U)=alkU. . (12.5)

Clearly all these ‘ differential parameters’ as they are called
are invariants. They are of great utility, as we shall find, in
differential gcometry.

§ 18. Two associated vector spaces. Normals to surfaces.
Returning now to the vector z, whose extremity traces out
the m-way space within the flat »-way space, we have,
see (5.2) and (12.2),

Z.i,‘IZik~{’b'/Ut}Zt. (13.1)

Clearly the components of this vector 2., are tensor com-
ponents.

We have 3 (n+1) vectors 2., and we have n vectors z;;
as these (3m (n+1)+mn) vectors all lie in a Fn(n+1) flat
space there must be m lincar cquations connecting them.
These vectors all depend on the parameters x, ... x,, and we
may regard them as all localized at the extremity of the
vector z.

Now, sce § 4,

el .
<4k

~ — (2l ) ~
:op = l-,b.zp— (l//\/t; 7] ZT)’
—— N—

N—
= —(thp) +ay, ikt = 0. (13.2)
We thus see that the veetor 2., is perpendicular to every
element in the n-way space drawn through the extremity of z.
Let one of the n equations which connect the vectors
2. ik % be bire i+ 05 = 0,
where by, ... b, ... are scalars. Mul.t,iply the cquation by z,
and take the scalar product: then, since

Z. ,-kzp = 0,
N——r
we have l'tztzp =0;
. N— »
that is, biag, = 0,

2843 D
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and therclore, since the determinant ¢ cannot be zero, we have
by=0,=.. =0. (13.3)

It follows that the n lincar equations cunnect the vectors
Z. g ... only.

At any point of the n-way space, therefore, there are
n veetors z, ...z, gencrating a flat n-way space; and there
are §n(n+1) vectors z.,, only %n(n—1) of which are
linearly independent, and these generate a 3 n(n—1) Hat
space. These two flat spaces, associated with the point
Z, ... x,, arc such that every element in the one space, drawn
through the extremity of z, is perpendicular to cvery element
in the other space, drawn through the extremity of 2.

Thus when 7 is equal to 2, as it is in ordinary differential

geometry, the vectors W T 12 Zegg (13.3)

are parallel to the normal at the extremity of z which traces
out the surface we are concerned with.

§ 14. Euclidean coord‘nates at a point. Associated with
cvery point @, ... 2, we have a spccial system of coordinates
which we call the BEuclidean coordinates of the point. They
are very helpful in proving tensor identities, which without
their aid would prove very laborious.

At the point under consideration a; ... (ikj) ... arc constants.

Let another set of constants be defined by

it = Dby bige = bps (14.1)
and then another set by
(th)) = bjrCups Crgr = Cunis (14.2)
and consider the transformation scheme
oy = by Ty + Cip 0, (14.3)

We have
2= 'y (b + 57
S = 2ap (Oni+ Crig @) Qpup + €1 @) + 25 Crites
and therefore at the point
ag = a”)\;lb)\i’)pk’ (14.4)

(i.kj) = (A/lz])’ b}\i b,uk,)pj +a’Ar’)ij)\ik. (14 . 5)
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Now Usge = ]'/.n’)p.k = EAZ)M-I)N ,
and the determinant « is equal to the square of the deter-
minant b, so that the deter minant b cannot be zero.

It follows that Wy =€) (14.6)
and therefore (ikj) = (A\up)’ Oxiburbpj+bj Crires
that is, (Anp) bysbugby; =0
and therefore (Aup) = o. (14.7)
In this coordinate system the ground form at the point is
de?+ ... +dx 2, (14.8)

and the first derivatives of «y ... vanish at the point. Of
course it is only «t the point that these results hold.

§ 16. Two symbols of four indices which are tensor
components. Let us now consider the expression

Beri%eph—% h% ik

We see that since
_ &y dmpu dw, dwp

’ l

2. z.
SLEL A VRS aJkab ZanZovps
dx, dxp dw, oz,

’ ’ he?. hdad 4

and o = — %2, 2.,
kT kT N, ba:, day daf N

we have

’ 4 zl _ \iLA (\w a;l/P \-1;1, . .
(AP ERD Y SR A2 ¥ \.I} bxkax’ D.L ‘)\;LZ'E_."',\p“"yp,))
(]

(15.1)
that is, the expression is a tensor component which should be
denoted by 7',;.,;, but as is customary we denote it by

(rkhi). (15.2)

This is Christotfel’s four-index symbol of the first kind.

We see that if the two first integers are interchanged the
sign is reversed, if the last two integers are interchanged
the sign is reversed, and if the two extreme integers are inter-
changed and also the two middle integers there is no change.

The cxpression aktz. (15.3)
is & vector whose components are tensqr components: it is an
associate vector to z.; and may be denoted by z*.
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We then have z. 2!

~ ~t
B Y A
= aF (rkhi). (15.4)
This is Christoffel’s four-index symbol of the second kind,

which should be denoted by T,,n, but is denoted by

{rthi}. (15.5)

Like the four-index symbol of the first kind it is a tensor
component. If the last two integers are reversed the sign
is changed, so that  (yhi} = — {riih}. (15.6)

The three-index symbols, it will be remembered, unlike
the four-index symbols, are not tensor components.
We can express the four-index symbols in terms of the

fundamental tensor components «;;... and their derivatives.
We have

(7']\5]['?/) = Zz. ”'3 . kh—-Z . ,,hz < ik = Z,‘,L-Z'. kh—:,.hz ik

R R N {/~/fi}+z:1m {ikt};
N——— N——r

and, as 242 =—(rit), 2,2 =—(rkt),
d J
= = 2 hlk = 2k — ek ki
DCLI “ri l D.L'i dt-/]» ikl rh~ki>

we therefore have

(kb)) = 2 (rlk) — 2 (vik) + (vit) {kht} — (vht) {ikt}. (15.7)
2w, duy,
This formula may be written
(rkhi) = < (rhk)—F (rik),
if we make the convention that the operators are only to act
on the last integer, the first two being regarded as fixed, and

the last as a lower integer.
We also have

{rkhi} = ak* (rthi)
= ¥ (¢ (rht) — R (rvit))
= bt (rht) — hak (vit)

= (vhk} —h {rik};
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and therefore

{rkhi} = Sb_— {rhk} — 5_8_ {rie} + {tik} {rht} — {thk} {7it},
“ “ (15 .8)
since the last integer in {ikt} is to be regarded as an upper
integer.
It may be noticed that
{ikt} (rhl) = «'P (ikp) (rht) = (ikp) {vhp},  (15.9)
so that in the product {ikt} (rht) the two symbols {} and ()

may be interchanged.

§ 18. A four-index generator of tensor components from
tensor components. If we consider the expression
_— - «, B, ...
Gq—ap) 4 ay (16.1)
we see at once that it is a tensor component. To find out

what it is we employ Euclidean coordinates at a specified
point.

At this point we see that it is
a b m ”n ”
sy (o, T (O (0 7= (gt (0 7)

d P
— Y (o
bwq(0w1)1+{t2))\)(,\)1 l/"Pl}(,)I’),

that is,
d o J )

— —_ ] ¢ 17_ I ) o ”n
( sy (0N = o, {tA}) () 1 (55, (uats sz, pt3)( 1,
that is, ({txap} () —{ntgp} (4) T.

At the specitied point we therefore have

PP = (INgp} ()= {utap} () (16.2)
and, as this is a tensor identity, it must therefore hold at
every point.

The proof of this important theorem is a good example of
the utility of Euclidean coordinates, at @ point. The three-
index symbols of Christoffel vanish at any point when roferred
to the Euclidean coordinates of that point. If they had been
tensor components they would therefore have vanished in
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any system of coordinates. The four-index symbols do not
vanish when referred to Euclidean coordinates. The four-
index symbols and the tensor components which are associate
to them are the indispensable tools of the calculus when we
apply it to differential geometry and to the Modern Einstein
Physics. :
§ 17. Systems of invariants. We have (§ 12)
A (u) = atfuguy,

and, in accordance with the notion of associate tensors, we

may write uk = atku,,
and therefore A (uw) = uwluy. (17.1)
Similarly we have
A (u, v) = vy, = wol. (17.2)
In accordance with the same notion of associate tensors
we might say that w=ay. g ; (17.3)

but this is a rather dangcrous use of the notation, as 1t
suggests that the w on the left is the same as the w from
which we formed w.;, which is absurd. However, a very
moderate degree of caution will enable us to use the Calculus
of Tensors without making absurd mistakes on the one hand,
or, on the other hand, introducing a number of extra symbols,
and thus destroying the simplicity of the calculus, for the
sake of avoiding mistakes which no one is likely to make.
We lhave proved, in § 6, the formulae

0 . .
= Wi 4 it {tpg} + a2t {tpi} = 0,
bwp

d
a—wtuﬁ = ub {ptpj,
and therefore we have

P .

— ata? = —ataql? %)
a1 aa (3

bwt {pq 5

p:) .
It follows that b—w—tum"u,- = atatku. g, (17.3)

9 .
and therefore A(u) = a‘%&; atul. (17.4)
t
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If we have any invariant of the quadratic form g dx;dzy,,
say ¢. we can obtain other invariants A (¢), A,(¢) by means
of the differential parameters; and when we have two
invariants, ¢ and 4, we also have the invariant A (¢, V).

Clearly there cannot be more than n independent invariants.

Suppose that we have obtained, in any way, n independent
invariants w,....u,. Here the suffixes have no meaning of
differentiation or of beiny tensor components.

If we take the-e » invariants as the variables, then we have

atk = A (u;uy), (17.5)
and we can express the ground form in terms of the in-
variants.

In this case we can say that the necessary and sufficient
conditions that two ground forms may be equivalent—that
is, transformablo the one into the other—are that for each
formn the equations

AUy wp) = P (1 o ) (17.6)
may be the same.

For special forms of the ground form we may not be able
to find the required n invariants to apply this method. Thus
if the form is that of Kuclidean space there are no invariants
which are functions of the variables.

§ 18. An Einstein space, and its vanishing invariants.

Let us write A0 = (PkiR), (18.1)
then { )klh} = ('/kpArpih’ (18. 2)
and therefore (vkih) = ay, {rpik}.

We forin associate tensor components (§ 11) of (rkih) ...,
and we know that they will be tensor components. Thus
we know that ¥ (vkih) (18 .3)

will be a ten or component. We write
“InArk'ik = Al‘h = Ahr'

A spaco for which all the tensor components 4, ... vanish
is what is called an Einstein space. A space for which

(LikA,.kih = Al'h = 77?,(1).’”
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where m is independent of the integers 7, &, is called an
extended Einstein space.
We can form invariants from the associate tonsor com-

ponents. Thus alk A, (18.4)
is an invariant which we may denote by A.
Again, cc""A,-p (18.5)

. . . k
is a tensor component which we may write 4;,. We thus
have the series of invariants

ALAT, ALAD AT, AR APALAL. ... (18.6)
All of these invariants vanish for an Einstein space.

We can form another series of invariants which do not
vanish for an Einstein space. Thus we have

Aa 3 VY PO
aataVaP Ay, Ay

A ararraP afras 4 445,54 (18.7)

Apvp pqrs?

and so on.



CHAPTER II*
THE GROUND FORM WHEN n =2

§ 19. Alternative notations. We now consider the ground
form g da;da;, for the particular case when n = 2. That
is, we are to consider the geometry on a surface which lies in
ordinary three-dimensional Euclidean space.

The square of an elemont of length on any surface is

given by ds? = uyda? + 2a,dx, dx, + ag,de, (19.1)

where a,,, @), @, are functions of the coordinates z,, =,
which defiue the position of a point on the surface.

We often avoid the use of the double suftix notation, and
take w and v to be the coordinates of a point on the surface,

when we write  (Js? = edu? 4 2fdudv + gdv?; (19.2)
or in yet another form

ds? = A?du?+2 A B eosadudv + B2dv?, (19.3)

where o is the angle at any point between the parametric
curves, that is, the w curve along which only « varies and
the v curve along which only v varies, and Adu and Bdv are
the elementary arcs on these curves.

There is no difficulty in passing from one notation to the
other. The double suffix is the one in which general theorems
are best stated: it alone falls in with the use of the tensor
calculus which so much lessens the labour of calculation.

* [The packets of MS. containing Chapters 1I and III, as submitted to
the Delegates of the University Press, were numbered by the author in the
reveirse order, and that order would probably have been made suitable, by
some reairangement of matter, had he lived to put the work in readiness
for printing. It has seemed best, however, to revert to the order of a list
of headings found among the author's papers, an order in which the
chapters, as they stand, were almost certainly written.]
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In connexion with the form
ds? = edu? + 2fdudv + gdv®
we use h to denote the positive square root of eg—f?: that is
h = at = ABsina, where @ = a,,@p—a,%. (19.4)
The element of area on the surface is '
hdudv = ABsinadudv = atdudv. (19.5)

§ 20. An example of applicable surfaces. If we are given
the equation of any surface in the Euclidean space, we can
express the Cartesian coordinates of any point on the surface
in terms of two parameters and thus obtain e, f, g in terms
of these parameters,

e=wi+yitel, f=a@ Ytz g=ai+yita,

(20.1)
where the suffixes indicate differentiation with regard to the
two parameters. .

Thus, if w is the length of any arc of a plane curve, we
may write the equation of the curve y = ¢ (u), and the
surface of rcvolution obtained by rotating the curve about
the axis of & will have the ground form

ds? = du+ ¢ (u))?dr?,
where v is the angle turned through.

Can we infer that, if a surface has this ground form, it is
a surface of revolution? We shall see that we cannot make
this inference.

Thus consider the catenoid, that is, the surface obtained by
the revolution of the catenary about its directrix. The
ground form is (g2 = du?+ (u+ ¢?) dod

Take the right helicoid, given by the equation

7
z= ctan'lé;

this is clearly a ruled surface, and we can express the
coordinates of any point on it by

x = wcosv, ¥y =wusiny, z=cv.
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Its ground form is then
ds? = du? + (u? + c?) dv?,
and it is not a surface of revolution.
It is, however, applicable on the catenoid ; two surfaces
which have the same ground form being said to be applicable,
the one on the other.

§ 21. Spherical and pseudospherical surfaces. The
tractrix revolution surface. There are two distinet classes
of theorems about surfaces: there are the theorems which
are concerned with the surface regarded as a locus in space;
and there are the theorems about the surface regarded as
a two-way space, and not as regards its position in a higher
space. It is the latter type of theorems about which the
ground form gives us all the information we require.

Thus all the formulae of spherical trigonometry can be,
as we shall see [in the next chapter], deduced from the

ground form ds? = du® + sin?udv?, (21.1)
where w is the colatitude and v the longitude.
We shall prove the fundamental formula

cos ¢ = co3 @ cos b+ sin a sin b cos C, (21.2)
and the formula for the area
A+B+C—m, (21.3)

and from these all the other formulae may be deduced.
So from the ground form

ds* = du® + sinh? wdv? (21.4)
we can obtain the formulae of pseudospherical trigonometry

—the trigonometry on a sphere of imaginary radius.
The fundamental formula is here

cosh ¢ = cosha coshd—sinha sinhbcoshC, (21.5)
and the area of a triangle is
m—A—B-C, (21.86)
If in (21. 4) we make the substitution (¢ being a constant)
u=u"—¢, v=2e°%,
this ground form becomes ,
ds? = du? + (7% — €"~2¢)2dn?;
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and if we take ¢ to be a large constant it approximates to
the ground form ds? = du?+ e~ 2" dv?, (21.7)

and to this form pseudospherical trigonometry will also apply.

The formulae of spherical trigonometry or of pseudo-
spherical trigonometry will apply to any surfaces which have
the same ground form as the sphere or the pseudosphere.
A real surface may have as its ground form

ds? = du? + e~ 2% 2

Thus if we take a tractrix, the involute, that is, of a
catenary which passes through its vertex, the equation of
the catenary is y = cosh a, (21.8)

taking the dircetrix of the catenary as the axis of «; and if
we take w as the arc of the tractrix, measured from its cusp,
the vertex of the catenary, the cquation of the tractrix is

Y= e . R (21 . 9)

If we now revolve the tractrix about the axis of z we get
a surface of revolution with the ground form

do? = du? + e 2%dv? (21.7)

The figure of the tractrix is something like Fig. 1; and its
surface of revolution like Iig. 2.

§ 22. Ruled and developable surfaces. The latter ap-
plicable on a plane. Let us now consider the most general
ruled surface, formed by taking any curve in space as base,
or as we shall say as directrix, and drawing, through each
point of the directrix, a straight line in any direction
determined by the position of the point on the directrix.

If z, y, z are the coordinates of any point on the directrix,
and /, m, n the direction cosines of the line, then these
coordinates of the point and these direction cosines of the
line will be functions of a parameter v. We take w to be
the distance of any point on the line from the point where
the line intersects the directrix. Then the current coordinates
of any point on the ling may be written

o =x+ul, Y =y+um, Z=z+un;



Fre. 1.

Fie. 2.
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and for the ruled surface we have the ground form
ds? = du?+ 2 fdu dv + gdv?,

where
f=le,+my,+nz,, (22.1)
g = a2 +y3+22+2u (L@, + My, + ny2,) + u? ({2 +m3 +n3).
(22.2)
That is, f is a function of v only and g is of the form
axu?+2Bu+y,
where «, 8, y are functions of v only.
We have (s = (du +fdv)®+ (g —f2) do?; (22.3)

the coordinates of any line of the ruled surfuce are functions
of v only, and therefore the shortest distance between the
point u, v and a ncighbouring point on the line whose
coordinates are functions of v+dv is (g—f?) dv?

The value of w for which this shortest_distance will be
least is then given by %%: 0; that is, the equation of the

line of striction is dg
= 0.

u

If we take, as we may, the directrix to be a curve crossing

the generators at right angles, and dv to be the angle between
two neighbouring generators, we have

ds? = du? + (w—a)? + %) dv?,
where @ and b are functions of v. The line of striction is
now u = @, and the shortest distance between two neighbour-

ing generators is bdv.
For a developable surface therefore we have

ds? = du®+ (w—a)* dA (22.5)

(22.4)

If we take
uw = usinv—jacosvdv, v = wcos v—jasinvdv, (22.6)

we see that referred to the new coordinate system
do? = du'? + dv'?; (22.7)

so that the above transformation formulae establish a corre-
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spondence, between the points on any developable and points
on & Euclidean plane, such that the distance between neigh-
bouring points on the developable and the distance between
the corresponding neighbouring points on the plane are the
same. The developable is therefore said to be applicable on
the plane.

§ 23. Elliptic coordinates. Consider now the system of
confocal quadrics

w2 y2 22
@t Fru T dru
We know that the relations
2t = («? +1‘1,) («? +v) (a2‘+w) )= (h? +u) (b2 +v) (b +"uv))
@ —=b% (a*~c*) ’ (PP —a?) (b2}

2 _ (2 + ) (c®+v) (c®+w)
° (cF=a?) (F—b?)

(23.1)

give the coordinates of any point in space in terms of the
focal coordinates u, v, w; and that the perpendiculars from
the centre on the threc confocals through any point are
given by

2 (a2 +w) (b2 + u) (¢ +2) o _ (@+v) (B*+2) (c2+)
- (v —v) (w—w) ’ T (v—u) (v—1w)

2 (a? + w) (b2 +w) (c* 4+ w) .
- (w—u) (w—2)

From the formula
p? = (a®+u) cos? o + (b2 +u) cos? B+ (¢2+u) cos’y, (23.2)
where xeosa+ycosB+zcosy =p
is the tangent plane to the surface u = constant, we sce that
2pdp = du, 2qdg =dv, 2rdr = dw,

2 d 2 d 2
and therefore 4ds? = (.h';_ + _1; + ,Q_;’_.
) q T

If we now take w = 0 and write
a"+u— U3 o*+v="V?% Ki= at—b?, K2 =ud?-c?

(23.3)
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50 that the new coordinates are the semi-major axes of the
two confocals through any point on the ellipsoid
. ’ a? g 22

atpta=h
we have
—a?) dU? (rr -V dv:
=~V )((U2 K)(U‘ & T (oK) (= )

23.4

It follows, as a particular case, that the ground foxfm for
a plane may be taken to be

2 2
ds? = (u?— @2)( du’ — o‘—il:_‘vv“) (23.5)
We thus have as ground forms of a plane
ds? = da? + dy?,
ds? = dr? +12d 62,
du? dv?
ds? = (u?—v?) (u———-z_~c, + (—2—:—@;2),
and we could find an infinite number of other forms for the
plane, or for any other surface.

We are thus led to inquire as to the tests by which we can
decide whether two given ground forms are equivalent ; that
is whether by a change of the variahles the one form can be
transformed into the other.

§ 24. The invariant K. A¢ and A,¢ when K is constant.
Consider the form agdz;dey, =12,

and let us use the methods of the tensor caleulus.
In terms of the four-index symbols of Christoffel we have
one and only one invariant
(1212) = a,* (24.1)
where a = @y g — (dgy)?
* [The invariants 4 of (18.4) reduce to one, Also, as the oqualities
(1212) = —(2112) = —(1221) = (2121)
hold, and the other symbols (1112), &c., vanish, the sum equal {o (1212)’ in
(15.1), with the notation of (15.2), is
dz, Bz, Az, b:cl)
- 1212 —
Sa 3o ia 3w (1212), i.e. (1212)
For the explicit expressicn of K see Chap. 1II, § 438.]
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We denote this invariant by K.

Let us first take the case when K is a constant and con-
sider the differential cquations

.+ Ku,p=0, ¢, +Ku,p=0, ¢.p+Ka,¢=0.

(24.2)

We shall prove that they form a complete system : that is,
a system such that no equation of the first order can be
deduced from them by differentiation only.

We have ¢t Hapyp, =0, ¢4+ Kape, =0,
and therefore [§ 16]

(21—12)p+ K (tyy po— a1y $y) = 0,

that is, —{1t12]) ¢+ K (¢),9,—uy,0,) = 0. (24.3)
We have then to show that this is a mere identity.
Now {1612) = a2 (1p12) = «*?(1212)

and therefore

{18612} ¢y = Ka (0P + ) = K (9, —up, @),
so that the equation of the first order turns out to be a mere
identity. Similarly we see that the other equation of the
first order is a mere identity.
If ¢ and { arc any two integrals of the complete system

we have d
s (B V) +EBY)
4
= (@hp) + K o By
'p

= qit ((P : ip‘l’k + ¢1\l’ : lrp) + K (¢p‘l’ + ¢‘1’]»)
— Ka'k (”ip Yit (ll:l)¢i) +K (¢1) ¥+ ¢‘Pp)
— K (¥ + €,00) + I (P, ¥ + $ry)

I

= 0. : (24.4)

We therefore have
A(¢p) + K ¢? = constant. (24.5)
We also have at once from (12.5) and the equations (24 .2)
A,(¢)+2K = o. (24.6)
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§ 25. Determination of a v such that A(p,y) =0. We
shall now prove that if we are given any function u, such
that A(u) and A,(u) are both functions of w, then, in all
cases (not merely when K is a constant), we can obtain by
quadrature a function v such that A (u,v) = 0.

Let - 4™,

p=e JAW T, (25.1)
A, (u) _ A, (u)
—H X)) Wiy P =—HY () Uy-

then sy =

The condition that  uat (w?dz, —u'dw,),
where u! = alu, + a?u,, u? = al’u, +a*u,,
may be a perfect differential is

d d
—— kol R 492 = 0;
5, () + 5 (nat)

that is, R Ay (1) + ad (pul + pyu?) = 03
and this condition is fulfilled. )
We can therefore by quadrature find a function v such that

v, = patu?, v, =—patul, (25.2)
and therefore vul +v,u? =0,
that is, A (u, v) = 0. (25.3)

§ 26. Reduction of a ground form when K is constant.
Returning now to the case when K is a constant, we have
seen that, if ¢ is an integral of the complete system,

A(P)+2K¢p =0, A(p)+ I ¢p?= constant,
and we can therefore by quadrature obtain v, where

A(g, ¥) = 0.

First let us take the case when K is zero.
Without loss of generality we may suppose that

Ap)=1, A ¢¥) =0, (26.1)
and we may take as new variables
m=¢ @, =V,

and the ground form becomes
ds® = da? + aydas.
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Since «, is an integral of the complete system, we have
{111} =0, {121} =0, {221} =0,
and therefore (111) =0, (121) =0, (221)=0.
From the fact that a,, is zero, we have
(122) +(221) = o,
and therefore (212) = 0;

so that a,, is a function of z, only.
We can therefore take the ground form to be
ds? = dx? + da3. (26.2)
We next take the case when K is a positive constant, say
R-%. We then have
A(¢) + R~2¢* = constant,

and, without loss of generality, we may suppose

A(p) = B2 (1-¢?), (26.3)
and, by quadrature, we can find yr so that
A(p, ¢)=0. (26.4)
Take as new variables
x, = Rcos™'¢, z, =1, (26.5)

and the ground form becomes
do? = dx} +ay,dai.
We have, since a,, is zero,
(122) + (221) = o,

and, since cos+. satisfies

R
.+ Ka,p =0,
we have (221) + %cot(% =0;

and therefore (212) = (% cot (%‘ s

d

. ) . (T
that is, 52, Uyy = 2«223—001 logSm(R),
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s0 that sin? ( ;L} )

u
22
is a function of 2, only.
We may therefore take the ground form as

z,

ds* = da3 + sin? R da3,
or if we take =Ry, w,= Ry,
we may take the ground form as
dst = R?(dw} +sin?a, dx?). (26.6)
When K is a necgative constant —R~% we see that the
ground form is (g* = — R? (dw3 +sin*z da3); (26.7)
or if we take a'y =, @y, =,
the ground form becomes
ds?* = R? (dw} + sinh? xltl.lzf::). . (26.8)
We have seen in § 21 how the ground form
s = RE(dw? + e *%dxy) (26.9)

may be deduced from this.

§ 27. The case of A(A) =0. We have now scen the
forms to which the ground forms are reducible when the
invariant K is a constant; and we sce that the necessary and
sufticient condition that two ground forms may be equivalent,
when for one of them X is a constant, is that for the other A’
may be the same constant.

We must now consider how we are to proceed when K
is not a constant.

If A (K) is zero, we choose as our variables @, = K, z, = v,
where v is any other function of the coordinates of the
agsigned ground form.

Since A () is zcro, ¢! is zero and the ground form may
be written

ds® = edu®+ 2 ¢, dudy, (27.1)

J .
where ¢ and ¢, (E a?) arc some functions of v and v.
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The equation which determines the invariant K which we
have taken to be w is therefore

2ug, = ("2 2?51:)

9 O 9
5 (ST - 2ug) = (27.2)

We may therefore take
e=2¢, +ug®+ap+p,
f= ¢2’

where a and B are functions of w only.
The ground form now becomes, if we take

or

T = ]\') Ty = ¢!
ds? = (@, 2% + ax,+ B) dai + 2 daydr,, (27.3)
where o and B are functions of 2, only.

We can then decide at onee whether two ground forms for
each of which A (K) is zero are cquivalent.

§ 28. The case when A, and AK are functions of A.
We may now dismiss this special ease when A (K) is zero: it
is not of much interest, as it cannot ariso in the case of
a real surface.

We now consider the case when K is not a constant and
A (K) is not zcro, but A, (i) and A (K) are both functions
of K. This arises when the surface is applicable on a surface
of revolution.

Let us take w=IK, (28.1)
and let v be the function which we have seen can be obtained
by quadrature to satisfy the equation

A (u,v) = 0, (28.2)
when A, (u) and A (w) are both functions of u, though the
reasoning would have held equally had A, (u)+ A(u) been
only assumed to bo a function of w.

We saw that if JAg(m
p=e

NG du

v, = patu? v, = —/Laﬁu‘.
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If then we take 0 =J,udu,
we have 0, = pu,y, 0,=pu,
and therefore v, = «l (a'%6, +a??0,) = «162
Similarly we have v, = —alf!;
and therefore 0, = —atv®, 6, = alv
It follows that 6,0' = v,0%  6,0% = v2!,
and therefore A (0) =A(v), A(f,v) =o0. (28.3)
We also have (d6)2 = (udw)t A (0) = (42 A (w),
and therefore -g(%z—) = % (28.4)
If we now take as the new variables 6 and v, the ground
form becomes a0 di?
ds? = 200 + IO}
du? dv?
= m + ma
_ du? +62J%’%>)““ v
T A A(u)

We therefore see that the ground form may be written

A, (K

ds® = (A(K))™ (dK)*+ e2J am dv?),  (28.5)

where v may be expressed by quadrature in terms of K and
integrals of functions of it.

We thus sec that given two ground forms, for each of
which A (K) is a function of K and also A, (K) is a function
of K,the two forms are equivalent if, and only if, the functional
forms are the same.

§ 29. Conditions for equivalence in the general case.
Finally we have the general and the simplest case when K is
not a constant, and A(K) and A, (K) are not both functions
of K. .

In this case we have two invariants, say w and v. We
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take these invariants as the coordinates, when the ground
form becomes
A (V) du?—2A (u, v) dudv + A (w) dvz.
AW A @)— (A W)

The necessary and sufficient conditions, that two such
. ground forms may be equivalent, are that, for cach of the
forms, Au), Aw,v), A(v) (29.2)
may be respectively the same functions of w and .

We now know in all cases the tests which will determine
whether two assigned ground forms are, or are not, equivalent.

ds? =

(29.1)

§ 80. The functions called rotation functions. When the
measure of curvature * is constant we saw [§ 24] that the re-
duction of the ground form to its canonical form depends
on finding an integral of the complete system of differential
equations

¢t Kuyp=0 ¢.,+Kap,p=0 ¢.p+Kay,p=0.
(30.1)
We shall now show how this integral may be found by
aid of Riccati’s equation.
Take any four functions, which we denote by ¢,, q,, 71, 75
and which will satisfy the three algebraic equations
Kay = qi+r}, Kay = q,q,+775 Kayy=qi+ri. (30.2)
The functions thus chosen are not tensor components, but
we shall operate on them in accordance with our notation
with 1 and 2.
These two operators annihilate Ka,,, Ka,,, Ka,, and there-
fore we have
hhatnTa =0, ¢+, =0,
Nt it at 77 =0,
Nzt GQrat M1l g+ 77 = 0,
T2921F 7o 1 = 00 QpQaeg 7370, = 0.
We define two other functions p, and p, by
i1 ="Pu G2 =Py (30.3)

* [This name for the invariant X will be shown later to have geometrical
fitness, See § 37.]
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]
)

It at once follows by simple algebra that
T+ =0, =" =
gt 1 =0, ra— 2" =
Toer TP =0 Gy — P17y
ToegtP20e = 05 ooy —=PyTy

o o

i

Il
o o

We then have Tt P i P12 = 0,
T TP it 1200 = 0,
and therefore (21 —12)7,+q, (Pyey—pyey) = 0
that is, {1612} 7y = G (Prea—DPye1)s (30.4)
or ath (1h12) 7 = q (Pyey—Pa-r)- (30.5)
Now
at(1l12)r, = a!®(1212) 1, = «K (¥ r + a),
=K ()7, —yyr) = vy (g5 +73) =7 (9. + 7,
= q, ("o, =714y,
and therefore Prra=Duer = Q00— o7y,
that is, 2’;—1 — gi): = ()7 — Q0 (30.6)

Similarly we have

o, o7,
b, ow, = NPTl (30.7)
ar, I,
ba, " om, = T Pale (30. 8)

Any six functions p,, p,, ¢, ¢4, 7, 7, which satisly these
three equations are called rotation functions. They have
important geometrical propertics and are much used by
Darboux, but here we simply regard them as algebraically
defined functions.

§ 81. Integration of the complete system of § 24. Now
consider the equations

2l
5&1 —mr,+ng;, = 0, b@ —mry,+ng, = 03
dm dm .
Sz, np; +7 lry=0, Sw, np, + Iry =0 |
My =0, 2" g, +mp, = 0 (31.1)
bw_l_(h-i-mpl_ > 5‘&;—]2 P, = 0. .
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These equations are consistent because the functions

Py P2s Q15 Qo> T15 T . .
are rotation functions; and we see that 24+ m24n2? is a
constant.

Let o= L+um : (31.2
VIE+mE+ni—n
where ¢ stands for v/ —1: we have
o thi+q T1—th
DTL; — 3 gl—u1ro + —*T ’
00 P+, , To— P
bi;————*é**ﬂ' —L720'+—‘-§—'— (31'3)

We can therefore find o by the solution of Riccati’s equation.
To determine /, m, n we have

- l+um -1 l—tm

= —— - - = e 3
VErmiyni—n’ VEFmErni+n

and 124+ m?2 +n? = constant :

and we thus sce how, when we are given the rotation
functions, we can determine , m, n.
We can now at once verify that

loy+Kayl=0, l.,+Kuapl=0, l.,+HKa,l=0, (31.4)
and that A (l) = K (m?+n?) = K (constant —(?). (32.5)

We have thus shown how a common integral of the com-
plete system can be obtained by aid of Riccati’s equation.
The I, m, n which we thus obtain will be the direction
cosines of the normal to the surface, but we do not make any
use of our knowledge of a third dimension in obtaining
!, m, n

2843 G



CHAPTER III*

GEODESICS IN TWO-WAY SPACE

§ 32. Differential equation of a geodesic. We have now
considered the ground form of a surface, and we know the
method by which we are to determine when two given ground
forms are equivalent; that is when they are transformable
the one into the other by a change of the variables.

We now wish to consider the geometry on the surface
regarded as a two-way space; and we are thus led to the
theory of geodesics. We have

(ZSZ = aikdwidwk, R (32 . 1)
and therefore
2d88 da; dda), dwy ddz;  dx; duy, «
AL l' “ds ks ds T ds ds R
d
=T ak l 31,~+u,, s 8 )

—tog (') =0 7 (o)

day day duyy,
ds ds dz,

R
For a path of critical length we therefore have

d @ da d dwk gy dxy day,
() ) =

ety
DJ,[

and we notice that, though (itk) # (kti), yect
(it l)(la; day, — (kt )dT day,

— (32.3)
* [Sce foot-note on p, 25.]

Now = (itk) + (kti) ;

ds s
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The path of eritical length thercfore satisfies the equation

(l( dix; da; day,

(.[\S Lit == s = ( t ) (32.' 4)

((a ds

§ 83. Another form of the equation. The e¢xpressions

(Ix, nd ix_
s vS

arc called the direction cosines of the element. They determine
the position of the element at the point z,, @,, but they arc
not, in goneral, the cosines of the angles the element makes
with the parametric lines. We denote them by £, £2 in tensor
notation.

For a geodesic wo therefore have

o ; , e
T (idh = (ith) ggh. (33.1)
We can put this equation in another form.  We have
d dw, da,, .
T =Tk TLI‘ = g1 (ipt) + & (Lpu),

and therefore

g ;‘f; Ei Ligr (ipl) + £Egr (tpi) = (3k) £5€F. (33.2)

Now ELED (tpi) = &P gk (1hi) = £ &F (ki)
and &k (itk) = ££F (kti).
We then have for a geodesic
(lit(((—igi—}-(ipt) gigl’ =, (33.3)

and therefore, multiplying by «'¢ and summing,
d . .
g (i) g8 = 0. (33.1)
For a geodesic we thus have either of the two cquivalent

equations ,
& augh = (p) gren (33.1)

dsé‘+ {pyi} g1 = 0. (33.4)'
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§ 84. Condition that orthogonal trajectories be geodesics.

If two elements al x,, x, are perpendicular to one another
we havé

ay, dx, 82, + ay, (dz, 8z, + dxw,82)) + ay,daw, 8z, = 0. (34.1)

The elements perpendicular to the curve ¢ = constant will
then satisfy the equation

b, (A dey + a4y dw,)) = ¢ (¢, day +agde,),  (34.2)

or U &'+ g’ = pey,
Uyt + g £ = py, (34.3)
where p is some multiplier.
We have

§'=p e +ay), £ = p (¢ +Pp,), (34.4)
a,nd, as (likéigk =1,
we sce that p(Eld, +&¢,)=1;
and therefore nrA(p) =1. (34.5)

We thus have

U '+, = —qil___ s Ul = _ b (34.

< p AN A ’ 6)
VA (p) vag)
Lo A, dl g, (34.7)
VA (@) VA (¢)

Now % (wy )~ (ipg) 1"

= &P 2 ¢1‘ . ¢
=¢ (5_:1'— JA@p) (ipg) ! 7@ ),

=¢(5s 0 _$i —{ipt} —H= -

LE ~/A<¢> vag’'

(P (#)
(JE(%) 2(A(¢ p)
al?(] ¢r]( _ ¢1 (A¢ )

_ WGPy ¢iA(¢: A9))
A9 2(A(9))*
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And, as A(p) = aPig, ¢,
we see that (A (¢)); = aP1. ¢, +al1$,6. .5,

= 20218, ..
We therefore have

d Y (i g (A(9);  $:A(g, Ag)
d;((tiigi)—(12JQ)£l éq - A (¢) - 9 (A (¢))2 .

Suppose now that ¢ is a function of the parameters such

that A (¢) = F(p). (34.9)
We see at once that the right-hand member of the above
equation vanishes; and thercefore the orthogonal trajectories
of the curves ¢ = constant are geodesics, if A(¢) is a
function of ¢.
Conversely we sec that, the orthogonal trajectories of any

system of geodesics being ¢ = constant, A(¢) must be a
function of ¢.

(34.8)

§ 85. Geodesic curvature. If £1, £2are the direction cosines
of an clement of the curve ¢ = constant, we have

§I1¢p = O! “ﬂ:gigk = 17
and thercfore

¢, = ad (AL, ¢, =—at(Ag)t LN (35.1)
Differentiating £, =0

with respeet to the are, we have

By 64 €6 B (210 9) = 0

. l , ,
that is, ¢p (:nglq. {ikp} étf’c)+¢_pq£p£q —o0.
We therefore have, summing along the curve,

J(y (g1 + {ik1) gighds)— g (g2 + (ik2) £igkds)

+j(¢'11 (¢2)2_2¢-12¢1¢2+¢-22 (¢x)z) 0«_% (A (¢))—¥ ds = 0.
(35.2)

*The first integral if summed along a small length of the
carve only differs by a small quantity of the second order
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from the same integral if summed along the curve formed by
the geodesic tangents at its extremitics.

Now, summed along a geodesic, wo know that the first
integral vanishes, but summed along the curve formed by
two geodesies the integral is

gin2— gy, (35.3)
where ¢£1, £2 and 9!, 9% are tho dircction cosines of the two
geodesies at their common point.

The angle o between the two clements whose direction
cosines are ¢!, ¢% and 5!, »%is given by

at (§'n:—£29Y) = sina. (85.4)

We therefore have the formula

0L (o B =280+ B (B 0 (a9)
(35.5)
where 8 is the small angle at which the geodesic tangents
at the extremities of s intersect. The formula for the
geodesic curvature of the curve ¢ = constant is therefore

;l——_- (P11 ($)*—26. 1000+ - () e (A¢)’g- (35.6)

§ 88. We can express the above formula in a better form:
to prove this we employ the ecoordinates which are Euclidean
ab a specified point.

We have at the specified point

(Ag), = 20,9 +20,0,,
(A¢)2 = 2¢1¢12+2¢2¢22*

and therefore
A (‘P’ A¢g) = ¢, (A¢)1 +9¢, (A¢)2,
= 2 (b1 (P + 21, B, P+ Buy (4,)7).  (36.1)
Now 8;(9) = b+ A(P) = ()2 +(9,)?
and therefore at the specified point
¢u (‘/’2)2 —2 ¢12 ¢1 ¢2 + ¢22¢f
=8, (p)A(P)—3A(4,A8), (36.2)

and at the specified point « is unity.
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We thus have at the specified point of the curve, and there-
fore at every point of the curve,

1A

Py (A(p)i

The method of thus employing Euclidean coordinates is

very helpful in proving formulae in the tensor calculus. The
direct proof of the equality

e raw@e
= (o (8= 2 pofut SN 7 (BHF (369

would be much longer.

+ A(p, (A (36.3)

§ 87. Polar geodesic coordinates. The measure of curva-
ture K. The geodesic curvaturc of a curve is given by the
formula

2 ] &1
pL,, = atg (U8 +pikey gigh) —wr e (CE 4 ik gigh),
(37.1)
where £, £2 are the direction cosines of an element of the curve.
If we take, and we shall see that we can take, the ground
form of the surface to be
du?+ B2dv?, (37.2)
where w is the geodesic distance of any point on the surface
from a fixed point on the surface,and the curves v = constant
are geodesics passing through the fixed points, dv being the
angle at the point betwecen two neighbouring geodesics, B
being a function of w and v which on expansion in the neigh-
bourhood of the fixed point is of the form w + ..., where the
terms denoted by +... are of degree above the first, we
employ what we may call polar geodesic coordinates with
respect to the fixed point.
Let us now employ polar geodesic coordinates to interpret
the formula for geodesic curvature. We have

{111} =0, {112} =0, {121} =0, {1227——];,

{221} =—~BB;, and {22’2}:13—2- (37.3)
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If 6 is the angle at which the curvo crosses the geodesics
through the fixed point,
f1=cos b, Bé®=sinb,
and [see § 43] the measure of curvature K of the surface is

given ll)ly KB+B, =o0. (37.4)
We have

ai(%% + {ik1 }g'g") = B(——sin 03? - %sin2 0),
at (‘ff +1{ik2) gigh)

_ B(cos()dO sin 6

iy (B, cos 6 + —B-?sin 6)

+ i sin 0 cos 6 + B 2 9in? 6)

Bt
1 _do B
and therefore by~ ds +5 !sin 6. \ (37.5)
Now consider the expression
f Kds, (37.6)

where dS is an element of arca of the surface, and take the
summation over the small strip bounded by two neighbouring
geodesics through the origin of the polar geodesic coordinates
and an clement of the curve.

The expression is f K Bdudv,
and this is equal to  — jfBlldudfu
= —J(B,— 1) dv,
= dv —J»— sin 0ds. (37.7)

It follows that
Pg

taken over the boundary of any closed curve surrounding
the point is equal to . ‘
27;_”de, (37.8)
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where the integral is to be taken over the area of the
curve.

We thus have a geometrical interpretation of the meastro
of curvature: it is the excess of 2m over the angle turned
through by the gecodesic tangent, as we deseribe a sinall closed
curve, divided by the area of the curve. It will be noticed
that in this definition we do not make use of any knowledge
of a space other than the two-way space of the surface itself.
This is what the curvature of a two-way space must mean
to a mathematician to whom the knowledge of a three-way
space can only be apprehended in the same vague way as
we speak of a four-dimensional space.

§ 88. Recapitulation. Parallel curves. It may be con-
venient to bring together the various formulae which so far
we have proved in connexion with dircction cosines and
geodesics before we proceed further.

_ dz, dx,

| QA NS
&= ds ¢ ds’

§=—uHAg) b, F=at(Ag) b, (35.1)
where the divection cosines are those of an element of the
curve ¢ = constant;

£ = (P +uP)(Ad)7E, £ = (ap, + ) (Ad)7H,
(34.7)

where the dircetion cosines are those of an element perpen-
dicular to the curve; for a geodesic we have

l i . L &L "
g £ = (k) gigh, (33.1)
v .. . ’
e+ pry gt =o. (33.4)

The orthogonal trajectories of the curves ¢ = constant,
where A (¢) is a function of ¢, arc geodesics, and the ortho-
gonal trajectories of any system of geodesics are curves
¢ = constant, where A (¢) is a function of ¢. (34.9)

Leaving aside the case when A (¢) is zero, we can choose
tho function ¢ so that A (¢) = 1.

2843 I
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If we know any integral of this partial differential equation
involving an arbitrary constant

¢ (2, 2y, ) =0,

then the system of curves ¢ =B

will be geodesics: for A(¢, b—&) =0,

and, as the condition that two families of curves
¢ = constant, {» = constant,
may cut orthogonally is A (¢, y) = 0, we conclude that the

curves <l> .y (38. 1)

will be geodesics, since they cut the curves ¢ = constant
orthogonally.
If we choose the arbitrary constant B so that the geodesics

given by ¢
=R

may all pass through a fixed point, and if we take the
equation of the geodesics to be v = constant and take v as
one of our parametric coordinates and ¢ to be the other
parametric coordinate u, we havo
Au)=1, Au,v)=0.

The ground form of the surface then takes the form

du? + BEdv?, (37.2)
and in the neighbourhood of the fixed point, through which
the geodesics pass, we may clearly take from elementary
geometry that B=w+....

We thus have what we called the polar geodesie coordinates.
We have d¢ = ¢,de, + ¢,dx,, and therefore, £!, £ being the

direction cosines of an element perpendicular to the curve

¢ = constant, the length dn of the normal element is given by

d¢ = dn(p, £ +¢,£) = dnv/ A (@),
or ’ g% = VA (¢). (38.'2)
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The curves which satisfy the equation

A(p) =1 . (38.3)
are called parallel curves. We see thus that two parallel
curves cut off equal intercepts on the geodesics which cut
themn orthogonally.

If particles, constrained to lie on a smooth surface and
acted on by no forces but the normal reaction of the surface,
are projected at the same instant, with the same velocities
normal to any curve, they will at any other instant lie on
a parallel curve.

From the theory of partial differential equations we know
that any curve on the surfaco will have a series of curves
parallel to it, though the finding of them involves the solution
of the equation A(p)=1.

The explicit forms of the differential equations

dg .
— ) £ } =
ds + fl £ {P(N; 0

of a geodesic are
@+ {111} &} +2 {121} & @, + {221} &% = 0,
@, 4 {112} @ +2 (122} dyd, + {222} 42 = 0, (38.4)

where the dot denotes differentiation with respeet to the are.
If we write the variables as « and y and let

_dy Ay
p= a‘a—; y = d? ’
we have g =ap, Y= ip+di’q,

and the equation of the geodesic becomes
q—{221} p*+ ({222} —2{121})p?
+(2{122} —{111})p+ {112} = 0. (38.5)

§ 89. Notes regarding geodesic curvature. Now consider-
ing geodesic curvature, in the fignre on p. 52 P and  are two
neighbouring points on any curve, PT and 7Q are the
geodesic tangents at I’ and @, and QM is an element of arc
perpendicular to the geodesic tangent J2T'M.

By definition the geodesic curvature of the given curve at
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P is the limiting ratio of the angle Q7'M to the arc PQ as ¢
approaches P.  We therefore have
1 2QM
py L%
and thus have the analogue of Newton's measure of curvature
of a plane curve for a curve on the surface. It'is the geodesic
curvature only that has a meaning when we confine our
attention to the two-way spaco on a surface.
We have the formula
1_ A6
Py VAP
and we may apply it to find the gcodesic curvature of the
curve all the points of which are at a constant geodesic

T M

(39.1)

+ A (. (AP)7Y), (36.3)

P
= Q

distance from the origin, in the polar geodesic coordinate
. K 2 Ty
system. We have (s = (qu?+ B*dv?,

¢ =y,
1 J

and therefore — = — log B.
Py Qu

The curvature will be constant if, and only if,
B = f(u) F (v),

that is, if the surface is applicable on one of revolution.

. 1 . .
The curvature will then only be 40 48 it would be in

a plane, if ds? = du? + w?dv?,

that is, if the surface is applicable on a plane.
If we take the case where K is positive unity and
ds? = du?+ sin? u d?, ,
we see that the geodesic curvature of a small circle is cot .

If we take the form ° ‘
ds? = du? e 24 dv?,
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which is applicable to the tractrix or any surface applicable
on it, we sce that the gecodesic curvature of the curves
% = constant is minus unity.

§ 40. The formula for the geodesic curvature may be written
1 - A2(¢)+A(¢:’l°g(A¢)—é), (40.1)
Py «/A¢)
Let g be an integrating factor of
ad (p? da, — @l ),
where P = al, +alt,, =P+ >,

so that pard? =, palpl = —,,
d b
gefore  -C - (maddh) + —— (natd?) = 0.
and therefore o, (padephy + 5%, (pate*) =0
Now i, () =g add, A(bw)=¢m,
t
and thercfore wA,(P)+A(p, u) =0,
that is, A, () + A (¢, log p) = 0.
The formula for curvature may therefore be writton
_ _1___: A(¢: IOQ/J(A¢)&). (40.2)
Py (At

This is an cquation to give the integrating factor. When
the integrating factor is known we can find the function
by quadrature; and, as

A(p, V) = ¢l = 0, (40.3)
we have then the equation of the orthogonal trajectories of
the curves ¢ = constant.

In particular when the curves ¢ = constant are geodesics,
we may take p=(Ad) (40 .4)
and we thus see that the orthogonal trajectories of any
system of geodesies may be found by quadrature.

In gencral we have uvVag = vAy,
and thus the formula for the geodesic curvature of the curves
¢ = constant may be written L

1 _A@logvay)
— — = e,
Py VAP

where the curves Y = constant are the orthogonal trajectories.

(40.5)
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{ 41. Integration of geodesic equations when K is con-
stant. Wehave obtained the differential equation of a geodesic
on any surface, but, in general, we cannot solve the equation
we have arrived at. Sometimes we can. Thus when the
measure of curvature is positive unity we may take the

ground form to be 2 = (Ju? 4 sin? u do2, (41.1)
We then have as the equation of the geodesic
dé B, .
T + - sin 0 =0,
. dé .
that is, cos §—— + cot usind = 0,
du
or sin 6 sin 4 = constant.
. d
Now sin():smuil—v,
s
. dv .
and therelore smzudg = sin q, (41.2)

where o is some constant.

We could have obtained this equation directly, as we easily
see, by the rules of the Calculus of Variations.

We deduce that

2
Sinzu(l - (((-Zg) ) = sin?q,

and therefore COS U = COS (X COS S,
and we thus obtain the equations
sinvy = —ssi‘ls—, cosv = él—z;(;iﬁ?, tanv = Z-?:llé. (41.3)
We now see that
COS U, COS U, + SIN U, sin U, o8 (v; —v,)
= c0s2 & €03 8, C0S 8, + sin% & COS 8, COS 8, + §in 8, 8in 8,,

= c08 (8, —8,).
This is just the well-known formula of spherical trigonometry
cos¢ = cos & cos b +sin asin b cos C. (41.4)

Similarly we could obtain the formula
cosh (s, —¢,) = cosh @, cosh u, —sinh w, sinh u, cos (v; —v,);
(41.5)
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which would be applicable to a surface of constant negative
curvature.

The formula
f‘lb f KdS = 2,

when applied to a geodesic triangle on a surface of curvature
positive unity, gives us the well-known formula for the area

of a spherical triangle 44 B 0— 4 ; (41.6)

and more generally for any surface of constant curvature
K-1(4+B+C~m). (41.7)

§ 42. Focal coordinates. If we take, as the coordinates of
a point on a surface, the geodesic distances of the point from
two fixed points on the surface, the ground form will take
the form (sin o) =% (du? + dv? — 2 eos & dudv),
where o is the angle between the two geodesic distances.

We earily see this gcometrically, using the property that
the locus of a point at a constant geodesic distance from
a fixed point is a curve cutting the geodesic radii vectores
orthogonally. Analytically we prove the formula from the
fact that A (u) and A (v) are both unity, and applying this to
the general ground form

A du? + B2dv?—2 A B cos adudv,

when we have A? = B% = cosec? a.
If we take 2x =w+v, 2y =u—v,
2 2 & 2 2 & 2
we have ds? = sce 3 da? 4 cosee -2-<¢ly . (42.1)

This system of coordinates may be called focal coordinates:
the curves & = constant will represent confocal ellipses; that
is, curves the sum of whose geodesic distances from two fixed
points, which we call the foci, is constant.

Similarly the curves y = constant will represent confocal
hyperbolas, and we see that the elhpses and hyperbolas
intersect orthogonally.

§ 43. Explicit expressions for sympols {ikj} and for K.
It will be convenient here to give in explicit form Christoffel’s
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three-index symbols of the second kind* as we so often need
them, and expressions for the measure of curvature.
‘We take the ground form

dg? = edu? + 2 fdudv + gdv?, (43.1)
and we then have a = L= eg—f? (43.2)
22 {111} = ge,+f(e,—2f), 2k*{112} =e(2f —e¢,) ~fe,,
212 {121} = ye,—fy,, 212 (122) = ey, —fe,,

22 {221} = g (2f,—91) —f9,. 2h* {222} =eg,+f(9,—2/)),
(43.3)...(43.8)

11K = e (g, (e,~— 2 /) +91) +9 (&1 (.= 2f,) +e3)

— 212 (e, + 9y —2/1)

+f(2/1(7‘»—'11)+2f5(f1 D e ga—eg), (43.9)
f Yoy 4 oS
AR R

or 4hK + —
o

{(%_%1 +2 ___71) 0. (43.9Y

If we take as the ground form
A?du?+ 2 ABcosadu dv+ B2dv?,

the last formula becomes

B,—A, coscx) d rA,— B, cosx 0
\u A'sin Qv Bsin o )_' ’
(43.10)

ABsina K + oy, +

which is Darboux’s form.

* [Thoso of the first kind are at once
(111) = }e, (112) =fi—3}c,,
(121) = (211) = }ey, (122) = (212) = }g,,
(221) = f4i—%g,, (222) = 4.,
We also have

B .l_ d¢p\2? :p(\(p
AP~ n 3e($> ~2s Dv Su” (bu)
( 1 Q220 ey A9 dy b‘f"\‘/’
A(,”‘P) bv \1} f(b’v au bua") ()uc\u

f
+y¢
R A R B
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In particular if the parametric coordinates are geodesics

we have (221} =0, {112} =0, (43.11)
and therefore

B, —A,cosx A,— B, cosa

el Db Sl ) S 2 TP

2 A sin » Nt TN ’
and the formula for the curvature takes the simple form
ABsin o l{ = o,. (43.12)

From this formula we could casily deduce again the formula

J.ds f KdS =2

When we take the ground form to be
A?du? + B*dv?,
we have

ABK + W(A-l gg) + % (8 ;i) =0. (43.13)

When we take the ground form to be

e(du® + dv?),
we have
e e e e
( 1= L Y —— 2, f V= 2 ( )y — L
(1 =gb, (nzp=— % {121 =%, (122} =L,
e e
{221}:——2—1(—;, {222}:;2(;:
(43.14)...(43.19)
J2 32
2eK + (37? + é—?ﬁ) loge = 0, (43.20)
» )2 )2
A,(p) =e (a‘{ﬁa’zﬁ)‘b’ (43.21)

d 2
s =1 (G0 +GD)) (13.22)
Finally, when we take the ground form to be
2fdu dv,

K + 3 (logf) =0, (43.23)
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4,(¢) = ;;ufv (43.24)
: d
A(g) = jaz bf (43 .25)

) 44. Liouville’s speciab form. When the ground form of
a surface takes the special form—Liouville’s form—

Uds? = (U + V) (du? + dv?), (44.1)
U and V denoting functions of w and v respectively, we
can find a first integral of the cquation of geodesic lines.
For the form e (du? + dv?),
Agl=cosh, ¢ =sind,

and the equation of a geodesic becomes

1 l0
263" +esinf—¢,cos60 = 0,
ds
. d . d -
that i<, S (¢} sin 0) + Y (¢2 cos ) = 0, (44.2)

We therefore have
etsind = ¢,, ceosd=—¢,,
and e=¢i+¢i,
that is, A(p) = 1. (44.3)
In the particular case of Liouville’s surface
$pi-U="V-9¢i,
and we obtain a complete integral of this partial differential
cquation by equating the above expressions to a constant.

We thus have ¢, = vVU+ta, ¢,=+vV—uq

giving the first integral

deosd =—U+a, etsinld=+vV—q, (44.4)
du? dv?
U+a~ V=ua
§ 45. Null lines. Complex functions of position. We

shall now consider a further application of Beltrami’s differ-
ential paramecters to the geometry of surfaces.

or (44.5)
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The null lines of a surface are the lines which satisfy the
equation adae;dx;, = 0. o (45.1)

These lines play the part in the geometry of a surface
which the circular lines play in plane Euclidean geometry.

If the equation of the null lines is ¢ = constant,
then A(p)=0. (45.2)

To obtain the null lines wo must thercfore be able to solve
this equation.

The equation will have two independent integrals. If we
take these integrals as the parameters we employ what we call
null coordinates. The ground form takes the form

2 fdudv, (45.3)
29
and, as we have seen, A(¢)= 7 33 %%5
If then A(p) =0,

¢ must be a function of w only, or a function of v only.
A function satisfying the equation may be called a complex
function of position. There are therefore only two types of
complex functions of position, viz. the two functions whose
differentials are multiples of the factors of ds* The first we
shall take as that which corresponds to the factor

(anda; + (ag+ vV a) day) + g}, (45 . 4)
and the second that which corresponds to
(e dicy + (@, — e Vu) day) + ap b (45.5)

We need only consider those which correspond to the first
factor, and, if we do this, we can say that every function of
position is a function of every other such complex function.

Thus in the case of the plane, where we have

ds* = dz* + dy* = dr?+17d 62,
@+ ¢y is a complex [unction of position since its ditferential is
a multiple (unity) of dz+ ¢dy of the first factor of u?+ dy?,
and logr+:¢0 is a complex function of position since its

differential (—ij-n +td 6 is a multiple (;) of dr+17d8 of the

first factor of dr2+72d6?; and logr-+.6 is a function of
x+1y.
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Just as the position of any point in the plane is given by
means of the complex variable @+ ¢y, so the position of any
point on a surface is given by means of the complex variable
w where « is an integral of

A(p) = o. (45.2)

§ 46. Conjugate Harmonic' Functions. Mapping on a
plane. Let tis now consider the equation

A,(p) =0, (46.1)
that i b%‘+aé2— 46. 2
at 1s, 55;_1(1('6 ‘T"‘_’é(t(l)_’ (46.2)

where ' =ad, + ¥, ¢ =P, +a¥,. (46.3)
The expression ateptda, —al¢plda,

is thus a perfect differential if A, (¢) is zero; and we have

atgl =, al¢?=—y, (46.4)
and thercfore aiy! =—¢,, aiy?=¢,, ) (46 . 5)
It follows that A,(y) =0, A(p, ) =0. (46.6)

Thus if ¢ is any integral of 4,(¢) = 0 we can by quad-
rature find v, another integral of the equation, and the two
curves ¢ = constant, Y = constant will cut orthogonally.

A real function, annihilated by the linear operator A, of
the second order, is said to be a harmonic function. The
function v, obtained as explained by quadrature from ¢, is
called the conjugate harmonic function to ¢. It will be
noticed that the function conjugate to 4 is not ¢ but —¢.

We also have A(p) = A(y), (46.7)
and therefore, since A(p,¥) =0,
we sce that A(p+uf) =0. (46.8)

The function ¢+ y is thus a complex function of position
on the surface.

If we take U=¢,v=1
we have ds? = (A (¢))7 (du? + dv?). (46.9)

Thus the problem of mapping any surface on a plane, .so
that the map may be a true representation of the surface as
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regards similarity of small figures in each, just depends on
the solution of the equation
A, () = o. (46.1)
The magnifying factor from the surface to the plane
is A(¢).
Thus to map any surface, applicable on a sphere of unit
radius, and whose ground form may therefore be taken as
du®+sin? udv?, (46.10)
upon a plane we have A, (¢) = 0;
and this tells us that ¢ must be a function of

i
log (tan 3 ) + 0.
We thus obtain Mercator’s Projection
U
w_log(’mnﬁ), Yy =v. (46.11)

The theory of conjugate functions of position on a surface
can be applied to problems in Hydrodynamics and Electricity
as has bcen done in the case of the plane. Thus if ¢ is
a harmonic function on the surface, we may take it to be the
velocity potential in the irrotational motion of a liquid over
the surfaco, and 4, the conjugate harmonic function, will then
be the streamn function.

Conversely, if the ground form is taken to be

ds® = e (du?+ dv?), (46 .12)
w and v will be conjugate harmonic functions.



CHAPTER 1V

TWO-WAY SPACE AS A LOCUS IN
EUCLIDEAN SPACE

§ 47. A quaternion notation. So far we havo been think-
ing of the two-way space associated with the ground form
ds? = ay,da;dxy, ;
we wmust now think of that spaco as a surface locus in
Euclidean space.
Let ¢/, ¢, «'" be three symbols which are to obey the

associative law and the following self-consistent laws:

1 71 ’ e " i rn
GO = CU =1 vl =1,

7 17 ’ ANy 124 rrn r 122
U ==, T ==, U ==,

L'[’:—'l, L"l,”:—l, LI”[’,,:—‘I, (47'1)
Let ', 2", ' be three ordinary numbers called scalar
quantities, then, if o — o,/ + /" /" 427", (47.2)

2 may be said to be a complex number.
If we take Y= ._/ f +:1/”t" ylll /n

we see that
1" " III 17 ’

(l}y:——(’b y +w y +wl'/ '/l)+(a/II III J )L

( I/I I a,ly,l,)l +(xl ”n — Ilyl) "III, (47. 3)
so that 2y consists of two parts, a scalar part and a complex
number. We write the scalar part

Say or wxy, (47 1)
and the complex part  Vay or ay. (47 .5)

It follows that «? is a pure scalar.
We may easily verify the following results:

—~~

vy = yo, @y =—ys, w@y+yz=_2ay,

wy—yo = 2@y, (z+y) = a*+y+2ay,
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and, by multiplying the two matrices
-/.l/" wll wlll i
’r

‘ ?// ?j :[/III
we verify that

oA L ’r
z 2

[\

wl 'CU" ?,U”’

_—

Sxyzw = LW Y2 —LZYW,
N N
Vayz = sa — Y22,

Vayz + Vyzm + szy =0.
If we take o/, ¢/, /" to be unit vectors in the positive
directions along the axes of rectangular Cartesian coordinates,
then 2 will be the vcctm from the origin to the point whose

coordinates are «’, &, "', The length of the vector z will

be denoted by |z|. The symbol ay will denoto a veetor at
right angles to « and %, and in the sense that, if the left hand

is along 2 and the right hand along 7, then the direction :;:?/
will be from foot to head; the magnitude of the vector will
be |@| |y |sin 8, where € is the angle between z and y from
left to right.

The scalar ay will be equal to —|a| |y ]cos 6.

§ 48. Introduction of new fundamental magnitudes and
equations. Now let 2 be a vector whose components 2%, 2", 2"
are functions of the parametors a; and ,, that is, of the

coordinates of the two-way space. We have
do = z,dz,
and

Ui = —7i%

The vector z traces out a surface. Lct the unit vector
drawn at the extremity of = normal to this surface be denoted
by A. Wo have proved [in § 13] that 2.y is parallel to A.
We thoerefore have Zog = g\ (48.1)
where £2;, is a scalar quantity.

We know that

Bk =% ink = (ke —Th) z; = {ithk} 2,
and therefore
(21— 2ip-1) 7\+‘Qilc}‘h_ﬂzlz7\k = {ithk} z,. (48.2)
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Multiplying across by A and taking the scalar product
we havg, since AN, =0, AN, = 0, Az, = 0,

the equation Do =2y (48.3)
This is true for all values of %, h, & from 1 to 2 inclusive,
and 2, = £2;;, so that
D=0y 2y, =020, (48.4)
These equations are known as Codazzi’s equations.

§ 49. Connexion of the magnitudes with curvature. The
length of the perpendicular from a point at the extremity of
the vector z+ 68z (where 8z is not nccessarily small) on the
tangent plane at the extremity of 2 is

—Ad=. (49.1)

If we now take 82 so small that cubes of dx,, Sz, may be
neglected, the length becomes
—3 (2., 0xF +2X2., 0,80, + A 2., 023),
that is, % (12,023 + 242y, 82,80, + 02, 83). (49.2)
The radius of curvature of any normal section of the
surface is therefore given by
1 ﬂikd.’rid.’ck
R= “_lk'd*wﬁ;; (49.3)
in the tensor notation, and the principal radii of curvature
are consequently given by
Ry —ay, ROy—ay,
ROy —dyy Ridyy—ay,
The product of the reciprocals of the principal radii of
curvature is therefore 02,,02,,— 027,

= 0. (49.4)

49.5
Up gy — WY, ( )

Now we saw that
(1212) = 2,042 .15 — 2.1 %09,
| S N——
=N (4, —.011-022),
= 0,,0,,—0%,, (49.6)
and therefore the invariant K is just the measure of curvature.
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We thus have the equations

Ka = 0,,0,,—10,, [(49.7)
‘Qn'z = nlz'v 922-1 = nm 23 (48- 4)

wherewith wo are to determine the functions
£y, L2y, D2, % (49.8)

When wo have found these functions we can find the principal
radii of curvature by aid of the equation

@ 1 3
2R <““'QZZ + 2y, ‘Qu —2 (512‘{212) + !211 ‘Qz.’_ﬂi 2 =0,
(49.9)

which may be written

1 1 .
yrr Rtukﬂ,ik+(rl([211.!22.4——.!2‘;'._,) =0, (49.10)
1

applying the tensor notation to the cocflicient of VR

If we were to keep strictly to the tensor notation we should
write £2,,02,,— 2%, as £2. We must distinguish between the
integer which denotes merely a power, as in 2}, denoting
the square of £2,,, and the integer which we called the upper
integer in a tensor component. The two meanings are not
likely to cause any practical difficulty in reality.

§ 50. The normal vector determinate when the functions
{2, are known. We must now show how we may determine
the unit vector A when the functions £2;;, are known.

* [It is usual to speak of the functions Q,y, Qy,, 0y, i.e. (by § 50) z@l,

2;A; = 2yAy, 25Xy, a9 tho fundamental magnitudes of the second order, those
of the first order being the a,;, 55, @y or ¢, f, g of the ground form ds?, and
to say that the six are connected by Gauss’s equation (49.7), in which K
(§ 48) is a known function of tho magnitudes of the first order and their
derivatives, and by the two Codazzi equations (48.4). Written at greater

length thoese two cquations are

9 o

— 0, {121} o, - {122} Q;, = > 0y, - {111} ,,— {112} 0,
s §

dz,
2 22} 121 2 {222} a,,—{221} 0
5;}912"{1“1012—{ = }nu=éx‘lnm‘-( = } 1271 } 11 9
and their explicit forms are obtained by substitdting in these for {111}, &e,
from § 43.]

2843 K
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We denote the ground form of the spherical image, that is,
of the sphere traced out by a unit vector drawn through the
origin, parallel to the normal at the extremity of z, by

a' g dodey, (50.1)
80 that (b"-k = —}\i}\k. (50 . 2) X
If A.ikEAik—{’I.kt}')\l,

where {ikt}’ refers to the ground form of the spherical image,

we sce as before that X.;, is parallel to the normal to the

sphere at the extremity of A: that is X, is parallel to A.
Now AN is zero, and differentiating we have

Mg+ A7) = 0,

80 that }‘}\‘ilc+A1'AIc = 0.
N—— ~
It follows that A’ik = ?\i?\k)\ = -—(L','];A 5 (50 . 3)

and as we have shown [in § 30] how, when a’;.... are given, A
can be obtained by aid of Riccati’s equation, we have only to
show how a'y;,... can bo expressed in terms of « ... and
2;....
Along a line of curvature we have

dz+ RAXN =03 (50.4)
let R’ and R be the prineipal radii of curvature, and let us
choose the lines of curvature so that they may be the para-
metric lines, that corresponding to R’ being

dx, = 0,
and that corresponding to R'* being
da, = 0.
We therefore have
2+ R'A\ =0, 2,+R")\,=0. (50.5)
And it follows that
ay = R'Mdy,, ayp=R'10Dy,, a,=R"Ny, ay=R"N0,,

Ny =Ra'y, Dy =R'dy, = R"dy 2y =R'dy,
(50.6)
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so that ay— R+ R') 2 +a’' R"R" = 0,
ty— B+ R') 0y +o B R =0, _ '
tge— (' + R'') 4+ 'R = 0. (50.7)

Now the expressions on the left in these equations are
tensor components, and therefore, as they vanish for one
particular coordinate system, they vanish for all systems.
That is, the equations are identities.

We may cxpress the identity in the form

dz?+ (R’ + R")Ydzd A + R’ R"dA? = o. (50.8)
N——r
We thus see how a';;,... are obtained.
We see that Ry = 20, = A5 (50.9)
for Az; =0,
and therefore Az +202, =0,
which gives Az + A2 = 0.

From the equations
?\\1/21 =M, A\L:: = ):?/ZI = £, )\\‘:,/Z‘_, =1, i\/zl =0, )\\Iz2 =0
(50. 10)

we can find z; and z, when A is known, and thus determine 2
by quadrature.

We have now shown how the determination of the surfaces
applicable to the ground form

aikdxidxk
depends on the determination of the functions 2.

But here comes the difficulty: the equations to determine
these functions

Ja = 2
Ny =0y Ry =12y 5, Ka=0,0,,-03,

are differential equations of the second order which, in general,
we cannot solve.

In one very special case we can solve them, viz. when the
invariant K is zero. In this case we have shown that the
ground form may be taken to be

da? +dwt. (50.11)
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The equations now become

d 9 d J
Sn,= Ly, —0,=
aa;l 12 (\wz 11 31132 12

and therefore
2 2 32
0,=2% 0,-2%  on,= (50.12)

n= g T a2 dal’
d2 )2 d2 2
where i (l; = (— ¢ Y.
dwi dw3 o, o,

We can easily prove that we are now led to developable
surfaces.

§ 61. Reference to lines of curvature. The measure of
curvature. When we refer to lines of curvaturc as para-
metric lines we have, in (50.6),

ap = R'f2yy, «, = R"4D,,,
and therefore, unless R’ and R’ are equal, we must have
a,, = {2, = 0. h (51.1)

If the radii of curvature arc cqual, operating with 1 and 2

which annihilate «;;,, we have
R 02, + Ry =0,

R,02,+ RN ., =0. (51.2)
Similarly by operating on
ay =Ry, ay, = Ridy,
we have R,02,+ R, ., =0,
R0, +RO,,. =o. (51.3)

From Codazzi’s equations we deduce that
R0, =R,0,,
RN, =RN0,
As we cannot have 2,12, = N3,,
unless R is infinite, we must have
R =0, R,=0, (51.4)
that is, R is constant and the surface must be a sphere.

Leaving aside the special case of a sphere, we have when
the parametric lines are the lines of curvature

ty, =y, =a', =0, (51.5)
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and we can often simplify proofs of theorems by referring to
lines of curvature as parametric lines.

The vector 2:22 is clearly normal to the surface at the
extremity of z: its magnitude is ad (or % as it is generally

written) and therefore 2,7, = abA.
Similarly we have A A, = @'k,
The expression Kz?k — ):: Az

is a tensor component. It obviously vanishes when we refer
to lines of curvaturoc: it therefore vanishes identically and

we have K3, = 5oh, (51.6)
We then have Ka} = '3, (51.7)

that is, the measure of curvature is the ratio of a small element
of area on the spherical image to the corresponding area on
the surface.

§ 52. Tangential equations. Minimal surfaces. We shall
now develop some further formulae. We have
2, R,—N%, =K =d' K™ = (aa’)};
1 1

1[»‘!2, —_ — 52.1
( .= , .
4 ik 1{/ + th (-.) )
and, from the formulae conneeting

gy Wiy 2

ik il

we casily deduce a'k 0, = R + R,

ik ! 1y? 1 y? rik ’ ”
aaly, = (R") + (R,-,) , Wiy = (R)24+(R")% (52.2)

We can also obtain formulae applicable to a surface given
by its tangential equation. This means that instead of
beginning with a vector z, given in terms of parameters a,
and @,, we begin with assuming that A is known in terms
of these parameters, and also p, the perpendicular from the
origin on the tangent plane to the surface.

The lines of curvature are given by

(B2 —ay) da, + (B2, —¢y,) day = 0,
(RN, —ayy) dey + (RN, —ay,) dx, = 0.
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They are therefore also given by
(02, — R’ ) dwey + (£2,,— B/ ) dae, = 0,
(2, — R’ ) doey + (24— B ) dzy = 0, (52.3)
as we see at once from the connecting equations.
Tho tangential equation of a surface is

P+Az = 0. (52.4)
By differentiation wo deduce that
P."*')‘\if =0,
ik +)\i,£z +Ai2, = 0.

With reference to the ground form of the spherical image we
thereforo have Pein A gz 2 =0

Now A =— g,
and therefore partdgp+2y =0 (52.5)
When therefore we are given the tangential equation of
a surface, the lines of curvature and the radii of curvature
are given by the formulae
(pn+u'yy (p+R))daey+ (poyg+u'yy (p+ R)) da, = 0,
(prp+ay(+R)de,+ (p.yy+ay (p+ R))da, = 0.
(52.6)
In particular if we want the parametric lines to be lines of
curvature on the surface we must have
Wy =42, =0,
and thereforc p must satisfy the equation
Py =0. (52.7)
There is a particular type of surface with which we
shall bave to do: the minimal surface characterized by the
property that the prineipal radii of curvature aro equal and
opposite.
The expression  §AX;2, —SAN2; (52.8)
is a tensor component., If the surface is a minimal one it
vanishes when we refer to lines of curvature, and therefore
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it vanishes always if, and, we see, only if, the surface is
& minimal one.
We always have the formula, as we easily see,

Alyp+2p+ R+ R = 0.
The tangential equation of a minimal surface is therefore
given by Alyp+2p=0. (52.9)
If we rofer to the null lines of the spherical image as para-
metric lines, the ground form of the sphere becomes
4 (14 a2,)2de, duy s
and the equation which » has to satisfy becomes

14 x2,)* *p +2p=0
(1 +wa, Sw, o, p=79
It may he shown by Laplace’s method that the most gencral

solution of this equation iy

(T+ay@y) p =2, f(2) + 20,0 (z,)

+(1 +aya) (e f () + 23 ¢’ (x), (52.10)
and we have thus obtained the tangential cquation of the
minimal surface.

§ 563. Weingarten or W surfaces. We now procced to
consider more gencrally surfaces which, like the minimal
surface, are characterized by the property that their radii of
curvature are functionally connected. These surfaces are
called W surfaces, after Weingarten, who studied their pro-
perties.

When we refer to the lines of curvature as parametric lines
we have (50. 5) 2+ RN =0, z,+R")\ =0,
and therefore (R'—R") A, = R Ay~ R\,

Let R = f(R)
dzx
and ¢ (x) = efx_Tm .

We easily verify that

F@¢@_¢'@ 1
pl@) ¢ @ a—/@)

I(a;)'
¢ @)

-

(53.1)
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Now
) R'.’., _ _f’ (li') jil ¢u (Iil) li’ ,
BB = RS ) ul log (¢ (1),
R, _ R, _¢(RVR, )
_Rl—ff” - ]ﬁr _f (12/ - ¢ (R' - ’w_.z ]Og (¢ (R )).

The equation satisfied by A thus becomes

d
A,2=A2ﬁlog(¢'(ﬂ’))—x -‘](w@)(R')) (53.2)

and theref‘ore, since 7\ A, is zero,

a N2y —
e (@) =0 5 M1 =

We may therefore, the lines of curvaturo still remaining
the parametric lines, take
M@E)+1=0; A @F@)*+1=0. (53.3
The spherical image of the W surface (that is, it will be
remembered, the surface traced out by a unit vector parallel
to the normal at the extremity of the vector z, and expressed
in the coordinates which give z), when the W surface is
referred to the lines of curvature as parametric lines, will be

therefove da? RN 53 4
) R))z"'(‘l’( ) das. (53.4)

It will be sometimes more convenient to express the para-
metric coordinates by w and v.

Conversely, if we are given the ground form of a sphere
in the form pdu?+ qdv?, where p and ¢ are functionally con-
nected, it will be the spherical image of a W surface referred
to its lines of curvature.

§ 54. An example of W surfaces. We may now consider
some examples. We saw (§ 42) that, referred to what we
called focal coordinates, the ground form of any surface may
be taken as ds® = sec? fdu’ + cosec? 6 dv?, (5¢4.1)
where 2u = PA+PB, 2v=PA-PB,
and 4 and B are any two points on the surface which we call
the foci; PA and P are geodesic distances and 26 is the
angle APB, .
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If the surface is applicable on a sphere weo sc¢ that

_ sin(c—v)sin (¢ +v)

tan? g = . - T )
sin(w 4+ ¢) sin (w—c¢)

where 2¢ is the geodesic distance betwcen A and B.

Thus ¢ (R') = cos 6, ¢' (R') = cosec 0,
and therefore cosec 0 (2% = —sin 6.

If we now integrate this equation we.have
4R =3sin20—20+¢,

where € is some constant.

: R .
But R—r =20 _ G geoso,
¢’ (R')
so that 4R =—20—sin20+¢,
and therefore 2 (R'—R") =sin(e—2R'—2R"). (54.2)

This is the relation betwcen the principal radii of curvature
of the W surface which corresponds to the spherical image

see? Oduw? + cosec? Odv. (54.1)

In this case we know the radii of curvature in terms of the
parameters since 6 is so known. We thus know the ground
form both of the surface and of the spherical image, and there-
foro can find the surface as a locus in space.

§ 5. The spherical and pseudo-spherical examples. In
the above example we began with a known ground form for
the spherical image and deduced the relation between the
curvatures,

If we take any known ground form for the spherical image

pdu? + qdv?,

where p and ¢ are functionally related, and known in terms
of the parameters, we could proceed similarly. We could
find the relation between the curvatures and we should
obtain in known terms of the parameters the ground form of
the. surface. We could then obtain the surface as a locus

in space. In my exposition of the method I have followed
2843 L
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Darboux and taken the example he gives, as I also do in
what follows.

"When on the other hand we begin with a known relation
between the curvatures, we cannot in general find the surface
as a locus in space. Thus, let us apply the method to the
problem of finding the surfaces applicable on a sphere of
unit radius,

Here we have R'R" =1, (55.1)
and we may take R’ — coth 8, R’ = tanh 6.

The function which expresses R' in terms of R’ is

1
Sa) = z’
dR’
PO
and p(R)=e I’ = cosech 0,

¢’ (') = cosh 0.
The ground form of the spherical image is*thus
sinh? 8 du? + cosh? 6 dv (55.2)
On the sphere the measure of curvature is unity, and therefore
our formula for X gives

6., + 05+ sinh 6 cosh § = 0. (55.3)

Now if we knew how to solve this equation we should
have an expression for 0 in terms of the parameters v and v,
and we should thus be able to write down the ground forms
of the surface and of the spherical image in terms of the
parameters ; and thus have the means of determining as loci
in space all the surfaces which are applicable on the sphere.

Unfortunately we cannot solve the equation generally.
This example shows how ultimately nearly all questions in
Differential Geometry come to getting a differential equation ;
and that the complete answer depends on the solution of the
equation. But cven when we cannot solve the equation we
gain in knowledge by having the differential equation in
explicit form. Thus it happens sometimes that two apparently
quite different geometrical problems may depend on the sgme
insoluble differential equation. The surfaces connected with
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the problems are thus broughtﬂ into relationship with one
another; and the relationship is sometimes very simple and
very beautiful. Illustrations of this will occur later. “All we
can say now is that the differential equation

0,,+ 0,5+ sinh @ cosh 6 = 0

is that on which depends the obtaining of all surfaces which
are applicable on the sphere: that is, the surfaces whose
geodesic geometry may be considered as absolutely known,
being just spherical trigonometry.

Similarly we might consider the problem of finding the
surfaces applicable on a pscudosphere. Herc we have

R'R" =—1, (55.4)
and wo take R = cot 0, R" = —tané.

We find that

¢ (cot 0) = cosce 6, ¢’ (cot ) = cos 6,
so that the ground form of the spherieal image is
sin? 0 du? + cos? 0 v”, (55.5)
and the cquation to determine 6 is
0,,—0,,+sinfcosf = 0. (55.6)
If we apply the substitution
2w = u+v, 20 =uw—r, 20 =0,
the equation takes the simpler form
0,, =sinf; (65.7)
and on this equation deponds the obtaining of the surfaces with
the known pseudospherical trigonometry, obtainable from
spherical trigonometry by writing c«, ¢b, t¢, for the arcs of
a spherical triangle.

§ 66. Reference to asymptotic lines. We have now con-
sidered the surface when referred to lines of curvature as
parametric coordinates, and the equations resulting,

2, =R\, 2, = R,
where R’ and R’ are the principal radii of curvature and A
is the unit vector paralle} to the normal at the extremity of 2.
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We now proceed to consider another speclal systemn of
coordinates.
"The ‘elements dz and &z on the surface which are drawn
through the extremity of the vector z are perpendicular if
d@z =0;
that is, if
side, 8x, + 2,2, (da, 82, + dw,8x,) + 25 da, 62, = 0,
or  dydx, 8z, + ), (dz, 82, + dz,0x,) + ayda,dx, = 0.
(56.1)
The elements dz and 8z at the extremity of z are said to be
conjugate, if the tangent planes at the extremity of 2z and at
the extremity of z+dz both contain the clement 8z; that
i, if 8z is perpendicular to the normals at the extremities of
¢ and of z+dz.  We therefore have for conjugate elements
8zdX =0,
that is,
5\ dx 8o + 2 Ay (dry 8, + dw, 8uy) + 5\2_2\2(Zx251‘2 =0,
or  f2, da 8y + 0, (dw 8, + dz,d0,) + L2y, 0,8, = 0.
(56.2)
Thus we sce that the lines of curvature at any point of
a surface are both orthogonal and conjugate, and conversely
we sce that lines which at any point are both orthogonal and
conjugate are lines of curvature.
An clement which is conjugate to itsell satisfies the equation

£, dat + 20, de, dr, + 2,,dx} = 0.
The self-conjugate clements at a point form the asymptotic
lines 0D, dae +2 02, doy+ 0,,dat = 05 (56.3)

and we sce that the rading of curvature of a normal section
in the direction of an asymptotie line is infinite.

We call day and ry
ds ds
on the surface. They tell us the direction but they are not
the cosines of the angles the element makes with the para-
metric lines. We often write them in the tensor notatipn

)

£\, £%; but we must remember ¢* is not the square of £, nor

the ¢ direction cosines’ of an clement
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is (£')% a tensor component £ but the square of £. We
have identically agbigh=1; ' )
and, if I is the radius of curvature of any normal section of
the surface, Rnikgigk = 1. (56.4)

Take now the asymptotic lines as parametric lines. We have
,,=0 01, =0,
and therefore by Codazzi’s equations
Dy = Alyeqy Dy = Dy,
0N,02,,—02,0,—Ka =0

d
we have S{blogﬂm: 111} — {212},

d
5, log 2, = {222} — (121},

§

Now we saw (§ 6) that the determinant o satisfied the
cquations d
Lot = W ({111} + (212),

at = ¥ (1121) 4+ {222}),
and thereforo - (log K%+ 2 (212} = 0
and therefore —Ml(og D+2{212; =0,

%}(10g1(é)+2{121} —o. (56. 5)

Thesc are the equations which the coeflicients a; must
satisfy if the parametric lines are to be asymptotic.

If we are given any ground form, and if we could transform
it so that the new cocfficients would satisfy the above equations,
then we could, since in this case we would know the functions
,,, 2,,, 2,, and the ground form, find the surfaces to which
the form would be applicable. But the transformation would
itself involve the solution of differential equations of as
great difficulty as Codazzi’s equations.

Taking the asymptotic lines as coordinate axes we have
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and therefore z, = })7\7\1, (56.6)
where p is some scalar.
Similarly we have 5, = qﬁw (56.7)
where ¢ is a scalar.
As 2 A, = 2\
we have PSAA A, = @SANA = —SANA,,
and therefore p=-—q. (56.8)
Since )TA.“, =] sz.“,,
we have - Iyt Vﬁﬁz = AT)\Z,
that is, — K2 (A,SANA=ASAMA,) = N Ay,
or KpPASA% = A, (56.9)
since )(:)\2 is parallel to A.
We thercforo have 5 = (— k)4, ) (56.10)
and g = (—K) 3N, 2, =—(—K) 1A\, (56.11)

These are the exccedingly important equations which we
have when we choose the asymptotic lines to be the para-
metric lines.

§ 57. Equations determining a surface. If we now take
Z=(—K)#, (57.1)
so that Z is a vector, parallel to the normal at the extremity
of 2, and of length (- K)~3, we can write the equations which
determine the surface in the simple form
% = Z’Zl, 2,= —iZz.
From these equations we have
Z?u =0,

and therefore Zy, = pi, (57.2)

where p is some scalar [not the p of (56.10)].
In order to find the asymptotic lines of a given surface we
have to solve the ordigary differontial equation

0, du? + 20, dudy + 0,,dv? = 0,
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and when we have done this we can bring the equation of
the surface to the form stated.
We have Z =c), (57.1)

and we notice that ¢ is an absolute invariant.
Differentiating we see that

CAyFC A+ C A 0 A = DA,
and therefore —CA A, = =0,
that is, ca'yy = Cp—pC. (57.3)

From the formulae
a/iknik = R +_R",

ﬂnnzz_(nxz)2 =d K,

1
we see that Wy = [ZIZ(R; + }%n),
and therefore p= “2_n (L + —l—) . (57.4)
¢ BAR" " R"

The equation of the surface referred to the asymptotic lines

is therefore 2, = Z?l, 2, = —iZZ, (57.5)
7 Cy 1 1 .

where Z,= (i‘ - nxz(]{: + g )) Z. (57.6)

§ 68. The equation for the normal vector in tensor form.
We can express the equation which the vector Z must satisfy
in tensor form so as to be independent of any particular
coordinate system.

The null lines on the surface applicable on the ground form

agdz;day,
aro the lines which satisfy the equation
tgda;dey, = 0.

On a real surface they are of course imaginary and are
characterized by the property that the distance, mecasured
along the curve, between any two points on a null curve
is zero.

Let us now consider the ground form

L]

ﬂikdwidw,\., (58. 1)
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remembering that any quadratic differential expression is the
ground form of some set of surfaces. The surface, to which
this form applies, will have as its null lines the correspondents
of the asymptotic lines on the surface we are considering.
Let Beltrami’s differential operator with reference to the

ground form . da;dx;,
be denoted by wly. (58.2)
Now we saw (43.24) that, with reference to the null lines

as parametric lines, that is with reference to the asymptotic
lines on the surface we are considering,

2 9 9

“5=n Sudw

The equation Z,, = ( -, R' + R")) 4
may be written
2 22

N, oZ= (n (,bu,bv (u' u"))‘
that is, Wby Z = (“’A ¢ 2(1137 + 171))/ (58.3)

and this is a tensor cquation independent of any coordinate
system.

§ 69. Introduction of a new vector ¢ Wec may write
this tensor equation briefly in the form

A, Z =pZ. (59.1)
Let 0 be any scalar quantity which satisfies the equation
A,0 = po.
We then have 0n8,Z=172A,0.

Now we saw (17.4) in the chapter on tensors that
d t
A, u = a~d —atul,
ouy
where ru’ =l Uy

and therefore u vt = vl
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We may then write the equation
0A,Z—7ZA,0=0

d

), .
in the form 0. VI'=72" V0o,
duy duy

or V07 -20) = 0 (59. 2)
(.',

[where £2 denotes £2,,42,,—£2%,].
If the asymptotic lines arc real 2 will be negative: we
therefore write this equation
ail V007 —Z0") + \j V07 —70% =0. (59.3)
We can then hy quadrature find a veetor ¢ such that
G=V—RO0Z—Z0%), —¢, = V002 —Z0"),
that is,
¢ V- = Z(”lzol—ﬂu 0,)~0 (2,2, —1,,Z),
S Vil = Z(0,0,—12,,0,)— 0 (2,,2,—12,,7)). (59 . 4)
It should be noticed that to find ¢ required a solution of
the equation A,0 = pé. (59.5)
§ 80. Orthogonally corresponding surfaces. We have
V(aZ)Z = o,

and therefore
P

J —_ .
l’Z\'.r (v —-0272") + VZ\(_ (V=227 =o,
o, 1 ‘o/z
or, sinec V2,7 = o,

d — 2
S VOV Y7
b.ul oy

Vv =077 =0.  (60.1)

We can therefore by quadrature find a veetor z such that
ov= v —RIR —2,= VDI,

that is, av -0 =VI0,7,-0,7,),
s,V =0 =VI(0,,7,—-0,7,). (60.2)

If the parametric lines are asymptobic these are just the
cquations we began with.
2843 M
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We see at once that
Z\LS‘I =0, Z\]__fz'*'fz’fl =0, Z\‘z_fz =0,
and therefore corresponding elements of the surfaces traced
out by z and by ¢ are connceted by the equation
dzd¢ =0, (60.3)
that is, corresponding clements are perpendicular to one
another. The surfaces arc then said to correspond orthogonally
to one another.

§ 61. Recapitulation. We may now restate the results we
have arrived at.
Consider the ground form

.Qikdwi(lwh
and let A, have reference to this form. Let Z be a vector
which satisfies the equation
Vz (AzZ) = 0.

Then o= V_RIL, zy=——0IN,
define a surface traced out by a vector 2.

On this surface the unit veetor parallel to the normal at
the extremity of 2 is given by

Z = ¢,
where ¢ = (=K)3
and K is the measure of curvature of the surface z.
We have A, 7 = pZ,
_ A 1 1
where p=—r —-2(1{,4- 1—,,)

The asymptotic lines on z are
ﬂik‘l“’idxk = 0.
The surfaces given by
G=V-R02-26), ¢, =—vV-—N02'-20"),
where 0 is any scalar satisfying the equation
. A,0=0pb,
correspond orthogonally to the surface z.
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§ 62. Relationship of surfaces z and ¢, When the para-
metric lines are asymptotic on z, that is, when
2,=0 N,=0,
G=02-6%, (=04,-6,7,

and therefore (2= 66‘ G+ %‘ G (62.1)

The parametric lines on ¢ are now conjugate lines: for if
we have an equation of the form
21y = P2+ 92,
where p and ¢ are any scalars,
A2, = 0.

It P=0
the conjugate lines have equal invariants in Laplace’s sense.
The parametric lines on ¢ are therefore said to be conjugate
lines with equal invariants. To the asymptotic lines on z
there correspond therefore conjugate lines with equal in-
variants on (.

If on any surface ¢ we aro given the conjugate lines with
equal invariants, we can find by mere quadrature a surface
whieh will correspond orthogonally to ¢ Ior if

0 0
$u= ?)1' $t ‘02§1’

then Co + % &+ %_{1 =0,
where 0p = 1;
? 2 2 —
and therefore  £-($*¢) + 5-(976) =0, (62.2)

where ¢? mecans the square of ¢ and is not a tensor notation.
We ean therefore find by quadrature a veetor Z such that
—¢*G = (92),, PG = (%)
that is, &L=0,72-07, ¢, =04,—-06,7.
The surface given by _ R
2y =74y, z,=—247,



84 TWO-WAY SPACE AS A LOCUS IN EUCLIDEAN SPACE

will correspond orthogonally to ¢ and will have the asymptotic
lines as parametric lines.

We have now seen the relationship to one another of the
surfaces z and ¢, and the mecthod by which, given cither, we
are to obtain the other.

§ 83. Association of two other surfaces with a c-surface.
Let a vector m be defined by the equation
¢=mé.
We have, taking as parametric lines the conjugate lines
with equal invariants on ¢,
0,Z—6Z, = mb,+m,0, 67,—0,Z=mb,+m,0,
and therefore
0,(Z—m) =0 (Z,+m,), 0,(Z+m)= 0(Z,—m,).
(63.1)
From these equations we sce that

/Af —
7,Z=0, mpum=0, -~
and, as

V(Z—m)(Z +m)) =0, V(Z+m)(Z,—m,) =0,

7 - 7 ;Y
24, —nomy + Zny + 4 m = 0,

=~ o~ o~ o~
20, —mmy—Zm,—Z,m = 0. (63.2)
We can take 2, =77, z2,=-727,
Y= MMy, Y, = — MM,
d  ~
and we have Y —2 = Am,
ou
b -_~
Yy—2y = .
Y 2 Qv ~

It follows that ¥ only differs by a constant veetor from
s+ ZT)L.
We have thus obtained the surface 3, where
Y =2+ Fm, (63.3)

directly from z and ¢, und the asymptotic lines on this surface
correspond to the asymptotic lines on z.
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§ 64. We obtain yet another surface directly from the

detinition n = Z¢, (64.1)
where 0p=1;

and we see that
m=72,p+7¢, = ¢* (7,670, = —¢*(mb, +m,0),

so that N, = me,—m,p. (64.2)
Similarly we sce that
N, = Myp—m¢,. (64.3)

The surface n will thercfore correspond orthogonally to the
surface 7; and to the asymptotic lines on 3 will correspond
on 5 conjugate lines with equal invariants.

We have thus four mutually related surfaces,

5 60
which arc intimately connected with two problems in the
Theory of Surfaces, viz. the theory of the deformation of a
surface, and a particular class of congruences of straight lines.
The relations between the four surfaces will be more com-
pletely stated when cight other surfaces are introduced, as
they will be when we consider the Deformation Theory.



CHAPTER V

DEFORMATION OF A SURFACE, AND
CONGRUENCES

$ 85. Continuous deformation of a surface. We have seen
that the problem of determining the surfaces in Euclidean
space, to which a given ground form

a; da,d;,
appertains, depends on the solution of the equations
Doy =Dy Dy =Dy
0, 02,,— N3, = Ka,
and we have pointed out the difficulty of solving these
differential equations.

There is a related problem the solution of which is simpler.
This problem is the dectermination of a surface differing
infinitesimally from a given surface and applicable upon the
given surface. Let z be the vector of the given surface, and
z+t¢ the veetor which describes the neighbouring surface
which we are secking, ¢ being a small constant.

We may regard ¢ as a small interval of time and ¢ as
a linear velocity vector, descriptive of the rate of increase
of 2z, as we pass to the neighbouring surface which is applicable
upon the given surface; or as the growth of the vector =
under the condition of preserving unaltered the element of
length.

If we can obtain ¢ we have the vector which defines the
continuous deformation of a surface.

We have at once

zl§‘1=0; zlvg‘z-}-zg\{l:o; zzvg:o, (65.1)

11°2
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that is, the vector ¢ describes a surface corresponding ortho-
gonally with the given surface described by z.

An interesting and immediately verifiable theorem on
surfaces which correspond orthogonally is the following :

‘If z and ¢ correspond orthogonally, then the surfaces traced
out by 2+ ¢ and z— ¢ are applicable on one another; and
conversely, if z and ¢ ave the vectors of two surfaces applicable
on one another, 2+ ¢ and z—¢ will be the vectors of two
surfaces which correspond orthogonally.’

§ 868. A vector of rotation. From the kinematical relation
of the vectors z and ¢, we see that d¢ is the relative velocity
of the extremitics of dz in the deformation of the surface 2.

In the deformed surface the element which corresponds to
dz will have the same length but will bave turned through
an angle. Let the rotation neccssary to produce this be
represented by the vector .

Now if a vector o, drawn from a point, is made to rotate
with an angular velocity whose magnitude and direction is
represented by a vector r, drawn through the same point, the

linear velocity of tho extremity of a will be given by .
It therofore follows that ¢= rdz,

—_

or S =12 (=13, (66.1)

The vector + is parallel to the normal to the surface ¢, at
the extrcmity of the vector ¢. We therefore have

—_
r=ad

where « is some scalar; and therefore

6= “Vzls‘:ﬁ = “flzl'(w

since 56 =0; St 2= 05 2, =0,
so that r= {‘—-‘.2; (66.2)
%1

and thus r is uniquely obtained, when 2z and ¢ are known.
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§ 87. Geometrical relationship of surfaces traced out by
cortain vectors. In cxactly the same way we see that

5= p6is 7y = Pl (67.1)
where p=t*. (67.2)
$1% :

we sce that 1,0, = 1,%,; (67.3)

and therefore the vectors », 1y, 2, 2, are all parallel to the
same plane, It follows that the normals to the surlaces
traced out by = and » arc parallel at corresponding points.
Similarly wo sce that the normals to the surfaces traced
out by the vectors p and ¢ are parallel at corresponding points.
But the vector 7 is parallel to the normal at the correspond-
ing point of ¢: it is thercfore parallel to the normal at the
corresponding point of p.
From the cquations fT .

po= X

gﬁ"
o= 1. (67.4)

~—

O
134
Q
)
134

(

i
e}
Il

>

( 1%

o~

we see that

~

It follows that the » and p surfaces ave polar reciprocals
with respect to a sphere whose centre is at the origin and
radius the square root of minus unity.

§ 88. The angular velocity » is applied at the cxtremity of
the veetor z. Now an angular velocity », at the cxtremity
of tho veetor z, and an angular velocity —» at the origin, are

cquivalent to a lincar velocity or.
It follows that a linear velocity ¢ and an angular velocity 7,
at the extremity of z, are equivalent in effect to a lincar

velocity g‘+;7', and an angular velocity » at the origin. We
are thus led to consider two other vectors,

§+2' and z+?p\.
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§68. A group of operators, and a system of twelve
associated surfaces traced out by vectors. The fundamental
relations between the veetors z, ¢, 7, p, are expressed by the
cquations d¢= *dz; ds = p’(Z{ (69.1)

These relations are unaltered by the transformation scheme
in 2z, ¢, 7, p,

z’:{-{-,;'\; d=r; = P_; p =z (69.2)
zp

which we shall denote by the operator A.
They are also unaltered by the transformation scheme
=y =2 r=p; p=m, (69.3)
which we shall denote by the operator B.
We see that the operators A2, 4% A*, A" arc respectively
the transformation schemes

’ 3+5 ’ P ’ < ’
o= - -3 = -3 r= —; =(+zr;
AT TN
. ¢ , e , g’+:‘/\ , :+5
=" = - 4 ”r = H = — 3
T T
’ ” ’ {+:/;; ’ N ’ (
T =5 = =5 T =2+(p; =55
r¢ ¢ r¢ P3P B
¥ ’ ;> ’ ’ ”
i =p; (=z4+¢p; v =¢; ) :q—(
We sce that A =1; B*=1, (69.4)
and A°B = DBA; A*B = BA?; A®B = BA3; A = BA*;
AB = B4S,

and so the operators A and B form a group of order twelve.
The operators 4 form a sub-group of order six; the opera-
tors I3 form a sub-group of order two.
If we tako P =43%;, Q=BA; R=A*
we have Pi=1;@Q*=1; RP=1, (69.5)
PQ=Qr; PR=RP; QR = R*Q; QR* = RQ,

and the operators P, @, R will generate the same group. Of

this group the operators £ form one sub-group, the operators
2843 N
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@ another sub-group, and the operators P and  together
a sub-group of order four. The operators R form a sub-group
of order three.

We thus obtain directly from the four vectors z, ¢, =, p
a system of twelve vectors which trace out twelve surfacos
connected in various ways at corresponding points.

§ 70. We may arrange the twelve surfaces in tabular
form thus

Z, fa r, Py

2+ {p 2 ~
! g‘+:7' = ¢

- b )_( b 4+£‘P7 2(’

)

c o gker il
Y.

— ”
p, +<ps 6 "'f’
- p
¢+an 7, A o
cp

The first column will denote a vector of a surface; the
second the vector of the surface which corresponds ortho-
gonally to the surface in the first column and in the same
row; tho third eolumn will denote the veetor which gives
the angular velocity corresponding to the surface in the same
row but in the first column; the fourth will denoto the
angular veloceity which eorresponds to the surface in tho same
row but in the second column.

The veetors in the third column are parallel to the normals
to the surfaces in the second column and in the same row;
the vectors in the fourth column are parallel to the normals
to the surfaces in the first column and in the same row.
Finally tho surfaces in the same rows and in the third and
fourth columns respectively are reciprocal to one another.
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§ 71. The twelve surfaces form three classes of four. Let
us now recall what we proved about the four surfaces which
we denoted in §§ 62-4 by 2, ¢, 7, 7, and the equations of con-
nexion when z is referred to its asymptotic lines.

We had

o =2k, 2= 10y, &= 6,2—04, $=02,—0,2,
{=mb, Z =36, y=z+Z?z.

Wo see that Z is parallel to the normal at the extremity of
z, and p is parallel to the same normal. Therefore

Z = pp, (71.1)
where p is some scalar.
Now 2, =p61=0,pZ—0pZ, = —0pZ,,
but 5 = ZAZI,
and therefore Z = —0p,
that is, n=—p (71.2)
Now y=z+27;1=z+;7—{\',
and therefore Y=z +a. (71.3)

The four surfaces are thercfore in the present notation
(merely changing the sign of the vector 7)

—
2, fa C+S‘P, P
that is, z, Bz, BAz, A%z,
PQR:z, Q:, PR
Now the asywmptotic lines correspond on two surfaces which
are polar reciprocal to one another, since conjugate lincs
reciprocate into conjugate lines; and we know that the
asymptotic lines correspond on .
-
z and z+ {p.

or

By

The asymptotic lines therefore correspond on

¢ =~ P
2, ) ] C+ )
¢ T o

that is, on 5, Pz, Qz, PQ-.
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The surfaces which correspond to these orthogonally are

Y tivel -
respectively 6 2, 2+ p
that is, PQRz, QRz, PRz, Rz

On these surfaces there correspond to the asymptotie lines
conjugate lines with cqual invariants. We will say con-
jugate lines with cqual point invariants.

The surfaces which are respeetively reciprocal to these

four are ¢t ~
r — o
,;‘(l §+"'1 ?1 {T’

that s Res, PR;, QR*s, PQRz.

We say that on these surfaces there correspond, to the
conjugate lines with equal invariants on their reciprocals,
conjugate lines with equal tangential invariants.

The twelve surfaces thus fall into three classes: viz those
on which the asymptotic lines correspond; those on which
conjugate lines with equal invariants correspond; those on
which conjugate lines with equal tangential invariants corre-
spond. The surfaces of any class are permuted amongst
thewmselves by the operations of the sub-group

1; P; Q; IQ.

§ 72. A case in which one surface is minimal. If the
vector z is of constant length we can prove that the surface

¢+ar (72.1)
is a minimal surface.

We saw that the normals at corresponding points of z and
of » were parallel. If then z is of constant length, the vector
z 18 pa.ra.llel to its own normal and therefore equal to kA,
where & is a constant, and A is the unit vector pamllcl to
the normal at the extremity of 7. But

)&’ D W

~—

and therefore 2,7y = 2,7
N

~~—
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We saw (52.8) that the condition that z might be a
minimal surface was Sz, AN, = S2z,A0,,
and clearly this condition will remain the same if we replace
A by any veetor parallel to it.

Let Y= +om
We sce by tho table that z is parallel to the normal at the
extremity of y. The condition that % may be a minimal
surface is then Sy,zz, = Sy,22,. (72. 2)
But by the fundamental formula of connexion and by the

table we see that — ~
Yy = 2Ty Yo = &0y

The surface 4 will therefore be a minimal surface if

—~ o~
Szrizz, = Szr, 2z,
that is, if 53,51 — 2%y o, = 222, — 5,2
N N N N— S -

Now 2 being of constant length this condition becomes

and this we have scen is true.

This theorem will be used in proving an interesting theorem
of Ribaucour's in connexion with a particular class of con-
gruences.

We now proceed to consider the theory of congruences of
straight lines in connexion with which the twelve surfaces
will be of interest.

§ 78. Congruences of straight lines. If we wish to con-
sider not merely the geometry on one particular surface but
the relation of points on that suriace to corresponding points
on another surface, we arc led naturally to congider the
congruence of straight lines which join the corresponding
points.

Let = be a vector depending on two parameters w and v, and
u & unit vector depending on the same two parameters, and
drawn through the extremity of z. Let w be a length taken
along the veetor p; the congruence will,then be defined by

2= cs+wp. (73.1)
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We regard z and g as functions of the parameters w and v,
and therefore the current vector s’ will be a function of the
three paramcters u, v, and .

The unit vector p will trace out a sphere which we call
the spherical image of the congruence.

Let F\wk = _l(’ik’
so that do? = a, du? + 2d,,dudv + ay dv? (73.2)

is the ground forin of the spherical image.
Let FiZl = @4
M= apa,—ai,;
and notice that in gencral
w;p, F @)
If we take two neighbouring rays of the congruence we have
d' = dz+wdp + pdac,
If X is a unit vector perpendicular to p and dpy,
doX = ,u/t—l\//, .“/1\/12 =lp;
and therefore
hdao) = V/;r/,tztl/x,
= pabylp—papydp,
= p, (1 dw+ @, dv) — p, (a,du + dy,do).
It follows that
hdohdz = (@, du+ ,,dv) (¢, du + a,,dv)
— (@ dw+ 0,dv) (a,,du+ a,,dv).
But, if 8 is the shortest distance between the two neighbour-
ing lines, 8 = —dz,
and therefore

hdad =

0+ o,dv, o,du+oyde (73.3)
adu+a,dy,  adw+ adv

§ 74. Focal planes and focal points of a ray. The valuc
of w which corresponds to the shortest distance between two
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ncighbouring rays is given by the fact that dz’ is perpendicular
to pand p+dp; and therefore

dz'du = 0.
We thus have dzdp+wdpu? = 0,

o dit (o), + 0,) dudy + w,,dv?

so that w . 2
a dut + 2¢,dudy + w,, dv?

(74.1)

The critical values of w, say w’ and w', as we vary the
ratio dw : dv, are therefore given by

y 1
®,—wdy, 3 (0, +o,)—wd,,

—0, (71.2
o, +o,)—wd,, o,—w, l ’ )

and the corresponding values of the ratio dw: dv are given hy

o du+ 3 (0, +0,)de, 3 (o, +o,)du+o,,dn

apdu+a,d,  apdutag,do

(74.3)

There are, by (73.3), two values of the ratio (w:dv which
make 8 = 0. Through cach ray of the congruence there thus
pass two developable surfaces defined by

o et o,dy, w,duto,,dy

aydwtay,de,  a,dutagdo | o (r4-4)
The planes which pass through this ray and touch the
devcelopables are ecalled the focul plines of the ray. The
points where the ray is interseeted Dy these neighbouring
rays are called the focal points of the ray.

The developables are defined by

o At o, dv = p(a,du+a,dv),
o, AU+ o, dv = P (a;, dw+a,,dv),
where p is some multiplier; and we see that this multiplier

isw. The focal distances, f* and f'’, are therefore the values
of w which satisfy the equation

W) — Wy, ©,— W, .] —o. (74.5)

Wy — Wiy, Wy — W

22
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§ 75. Limiting points. The Hamiltonian equation. Prin-
cipal planes. If we have any two real quadratic forms
ay, dut + 2a,,dudv + a,,dv?,
b dut+ 20y, dudv +b,,dv?,
we can, by a real transformation, bring then to such a form
that in tho new variables
gy = by, = 0.
It is therefore possible by a real transformation to make
w,+0, =0, «,=0. (75.1)

The points on the ray given by ', w” aro called the

limiting points of the ray. These points aro therefore real.
If we suppose the transformation applied which makes
w0,y =0, «,=0,

we have Wy =Wy, @y =10"y;

and the value of w which corresponds to the shortest distance
between two neighbouring rays is given by
2w . dwt + ' 2
b ay du? +w” ay,dv?
- 1.2 e
ty, du? + v

We may take

ty du? . (1, dV?
cos?f = - }zl+—l“_2‘, sin?0 = a 2.‘,‘2-;*—1.;,
[¢ 11( w ((22( v (lll W ((22( v
and we have the Hawmiltonian equation
w = w'cos? @ +w' sin* 6, (75.2)

showing that the shortest distance betwceen any two neigh-
bouring rays lies between the two limiting points.

The values of the ratio dw:dv which correspond to the
limiting points are given by

(W' —w")dudv = 0.

Leaving aside tho special congruence when the limiting
points may coincide, we see that corresponding to the limiting
point w’, du is zero, and the shortest distance is parallel to

;42. Similarly the shortest distance corresponding to w'’ is
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parallel to pup,; and these shortest distances are perpendicular
to one another since

Sppppty = ppopin — Bt = 0- (75.3)
The planes through the ray g which are perpendicular to

these shortest distances are called the principal planes of the
ray: and they arc perpendicular to one another.

§ 76. Principal surfaces, and the central surface. Return-
ing now to general coordinates we sec that

j‘l +fll — QU'+’IU”,
AR (ff = w' ") = (0 —w,)?

and therefore, in the important class of econgrucnces for which
®,; = w,;, the limiting points and the focal points coincide.
We sco also that the focal plancs will then coincide with the
principal planes.

When we take any cquation connecting the parameters w
and v of the congruence we obtain a ruled surface of the
congruence. The directrices of the ruled surface will be
curves lying on the surface 2. If w and v are functions of
a variable p, then p and w will bo the coordinates of the
ruled surface. The lines of striction on the ruled surface
will be given by

:(iuﬂ"llf:t(wwvm'f'wZJ)(l'lb(lU+@22(l_U"?‘ (76.1)
Wy AU+ 2, dudy + ay,dvt ’

where w and v are conncected by the equation which defines
the ruled surface.
The ruled surfaces given by
o w4 (@, +o,)dy,  § (0, +0,) U+ oy,dy

aydw+dyydo,  agdu+ dydv

(76.2)

arc called the prineipal surfaces of the congruence.

The locus of the points on rays midway between the foci,
and therefore midway between the limiting points, is called
the central surface of the congruence.

2843 o
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. § 77. The focal surface. Any ray of the congruence will
be intersected by a neighbouring ray if

. dz+udp+ pdw = 0.

The developables which pass through the ray are therefore
given by Sdzdup = 0;
that is, by S (c,du +2,dv) (u, du+ p,dv) p = 0.

The focal points are given by

(2, +wp,) du+ (2, +wp,) dv+ pdw = 05

that is, by Sz +wp,) (2, +wp,) p = 0.

The focal surface of the congruence is defined as the locus

of the focal points on the rays of the congrucnce. If we so
choose the parameters that the equation defining the develop-

ables is dudv = 0,
then Szpp=0, Sz,p,p=0;
so that s=ap+bu, z,=cp,+dpy,

where «, b, ¢, d are scalars.

Substituting in the equation

8@ +wp) (2, +wp) p =0,
which defines the focal points, we see that the focal surface
has two sheets given by
d=z—up, ZF=z—cp.

§ 78. Rays touch both sheets of the focal surface. The

congruence of rays of light. For the first sheet
Zy=0—a)p 2= (c—a)p,+(d—ay)p,

’

e = (b—=)) py+ (0= 55) iy
so that the normal to the first sheet is parallel to pu,; and
the ray touches the first sheet along the w curve on it—that
is, the curve along which only w varies; and the v curve is
conjugate to the w curve.

Similarly we see that the ray touches the second sheet
along the v curve on it, and the w curve on it is conjugate
to this,

Thus any ray of the congruence touches both sheets of the
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focal surface; and the tangent planes to the focal surface at
the two points of contact are tho tangent planes to the
devclopables through the ray. '
The edges of regression of the developables are the w curves
on the first sheet, and the v curves on the second sheet.
If the congruence is formed by rays of light, the focal
points on the ray arc the foci as defined in the theory of thin

pencils. F, and F, arc the foci on what is called the principal
ray of the thin pencil. The tangent plane at F, to the
second sheet, which is the tangent plane at F, to the develop-
able, is called tho first focal plane: so the tangent planc at £
to the first sheet, which is the tangent plane at K, to the
other developable, is called the second focal plane. ’

The developables through any ray are somewhat like the
above figure. .

The focal lincs as defined in some text-books on Geometrical
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Optics have no meaning at all; but it has been pointed out
that the lines conjugate to the principal ray on each sheet
have a physical meaning which might entitle them to the
name of focal lines.*

§ 79. Refraction of a congruence. Malus’s theorem.
A congruence is given in terms of the coefficients «; of its
spherical image and of the coeflicients

Wy Dy Wypy Dy

We can see how the congruence, when we regard it as
formed by rays of light, is altered by re-
fraction at any surface z, whose normal is
parallel to the unit vector A.

Let 4" be the unit vector into which pu is
refracted : that is, let p’ trace out the new
spherical image.

A P, u We have p’ = ap+0X, where « and b
arc scalars. In the ordinary notation of
optics, if ¢ is the angle of incidence, ¢
the angle of refraction, and % the index of
refraction,

ksin ¢’ = sin ¢,

Now X/\l' = (l}::[\l, ;Z'7¢ = 7))’\7;;

and therofore

asing =sing’, bsing = sin (¢p—¢’). (79.1)

We thus see that « is a constant independent of the angle ¢,
but b depends on ¢. We have

2 -Li—b'"’— 2abap =1,

. Ap+cosgp = 0.
Since = ap;+ 00X+ 0,
we have w; = oy + 00,

where 2, refers with its usual meaning to the surface of
refraction.

.
* [Probably the allusion is to a note ‘On focal lines of congruences of
rays’: Elliott, Messenger of Mathematics, xxxix, p. 1.]
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We see that cos¢' = wecos P+,
and therefore if we multiply

I"I’i = ulli—{- ]lAi-l- b1A

by ', that is, by ap+DA,
and take the sealar product, we get, since p’p; is zero,
ab (}lgi-f-)\ip) = /:icostj)’.\/ - (79.2)
We notice that if 0, = 0,
then o, =o,.
We shall see (83.2) that the condition
W, = ®y (79.3)

means that the rays of the congruence arc normal to a system
of surfaces and we now sec that this property is unaltered by
refraction.  This is Malus’s theorem.

We have now given the equations which would determine
any refracted congruence, when we are given the refracting
surface. Unfortunately the equations are complicated.

} 80. The Ribaucourian congruence. We shall now con-
sider some special classes of congruences,

Consider the congruenee formed by rays drawn from every
point of a surface, parallel to the normal at the corresponding
point of a surface which corresponds orthogonally to the
given surface. This is the Ribaucourian congruence, so called
as Ribaucour was the first to consider it.

We take ¢ to be the surface from which the rays are drawn
parallel to the normals to the surface z.

Taking the asymptotic lines on z as the, parametric lines

wo had & =0,4-0%,, ¢ =0%,—6,7
and 7 =cA,
where = (=K)3,

K being the mcasure of curvature on z.
To bring this into accordance with our notation for con-
gruences we write p for A, and we have

G=O0c—0c)p—0cp,, ¢ = (0c,—0,0)pu+bcp,.
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Since S&mp=0and S¢&u,p=0,
the equation which defines the developables is
dudv=0;

and the focal points are given by
w=ch, w=-—ch.

The surface ¢ is then the central surface of the congruence,
and the developables intersect it in conjugate lines with
equal invariants. These lincs correspond to the asymptotic
lines on 2, the surface which corresponds orthogonally to the
central surface.

§ 81. The Isotropic congruence. Ribaucour’s theorem.
We have a particular, and most interesting, case of this con-
gruenco, when the surfaco which corresponds orthogonally
with ¢ is a sphere with the origin as centre.

In this case ¢ is a constant and ¢ corresponds orthogonally
with p itself.

The congruence is 2= {+wp
and is called the isotropic congruence.

For the isotropic congruence,

w,=0, o,+w,, =0, o,=0, (81.1)

and therefore the limiting points of any ray coincide and are
on the central sarface. Any plane through a ray is a prin-
cipal plane and any surface may be regurded as a principal
surface. The lines of striction of all the ruled surfaces of the
congruence lie on the central surface.

In the chapter on the ruled surface [see § 108] we prove
that any two ruled surfaces of the congruence intersect at
the same angle all along their common generator.

The developables and the focal points we sec are imaginary.

We have proved that Y = §+/ﬁ.

is a winimal surface and that g is the unit veetor parallel to
the normal at the ecxtremity of y. The perpendicular p
on the tangent plane to this surface is given by

p+yp =0,
that is, by p+ul =0
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The tangoent plane is thercfore the plane drawn through the
extremity of ¢ perpendicular to the ray of the congruence.
We thus have Ribaucour’s theorem that ¢ The envelope of the
plane, drawn through the extremity of the vector which
tracos out the central surface, perpendicular to the corre-
sponding ray of an isotropic congrucnce, is a minimal surface’.

The surface corresponding orthogonally to the sphere is
therefore the pedal of a minimal surface.

If two surfaces are applicable on one another, and if the
distance between corresponding points is constant, we sce
that the line joining these points traces out an isotropic con-
gruence. For if u is the unit veetor parallel to the join of
the points, and z is the veector to the middle point of the
join, and 2¢ is the length of the joining line,

(zr+ep)? = Gr—ep)®s  (@Etep)’ = (z,—cp)?
Sz, +cp) (By+ep,) =8 —cp) (z,—ep,),

fromn which equations we at once deduce the result stated.

§ 82. W congruences. Let us now consider again the two
surfaces which we denoted by z and z+2;, and consider the
congruence formed by the line joining corresponding points
on these surfaces. Looking at the tabular arrangement of
the twelve surfaces we see that p is parallel to the normal
to z at the corresponding point, and that ¢ is parallel to the
normal to z+?;; at the corresponding point. The line joining

corresponding points on the two surfaces z and z+£‘,?, being
perpendicular to both p and ¢, is perpendicular to the normals

to z and to z + Z;, and therefore touches cach of these surfuces.

Now if a ray of u congruence touches a surface, that surface
must be a focal surface of the congruence. For, taking z to
be the vector to the surface, and x the unit vector parallel

to the ray, Suzz,=0;
and therefore, the focal points being given by
Sz +wp,) (z,+wpy) p =0,
we see that one of the focal surfaces is given by w = 0.
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It follows that z and z+?§ arc the focal surfaces of the
congruence we are considering. :

Now on these surfaces the asymptotic lines correspond.
Conversely it may be shown  that if the asymptotic lines
correspond on the two sheets of the focal surface the focal

—
surfaces are z and z + {p.
Congruences of this type may be called W congruences.

§ 83. Congruence of normals to a surface. We now come
to the case of congruences where the rays are normal to
a surface. The theory of such congruences is of special
intercst in geometrical optics as well as in gecometry.

Instead of u we shall write A, where A is the unit veetor
normal to the surface from which tho rays emanate.

We now have A, = 2, (83.1)

as a nceessary condition that the congrucnce may be a
normal one. :
This necessary condition is also suflicient : for if
Fa2 = K2
th L LA
o kT e
and we can therefore determine a function 2w such that
W= pE W, = EE,
Let ' =z+wp,
then dip=zptuwpt=0,
N N
Yop=zpta,p? =0,
N— N—
so that the rays are normal to the surface 2'.
The normal congruence is therefore defined by
Dy = Dyy, (83.2)

and the limiting points coincide with the focal points, and
the focal planes with the principal planes. The focal planes
are therefore perpendigular to one another.

Conversely if the focal planes arc perpendicular to one
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another the congruence is a normal one: for we sce that the
condition that the focal planes may be perpendicular is
(@15 = @yy) () gy —0t3,) = 0,
and therefore, since « t,, — %, is not zero,
@12 = By
§ 84. Reference to lines of curvature. Wec now take the

parametric lines on the surface 2 to be the lines of curvature,
and we have 2, =—R'\, 3z, =—R"x,

where It' and R are the principal radii of curvature.
We have

o, =—R'A}, o,=0, =0, o,=—R"r3

that is, o, = R'«,, o,=R"w,, o,=w0, =u1,=0.
Theo fucal points are given by
fl - _li" f‘l’ — lill,
and the two focal surfaces arec now given by
=+ RN, F=z4+DR7A
The equation of the developables is
(R —R")dudv = 0.
As we need not consider the case where R’ = R"” any
further than we have alrecady done we sce that the cquations
of the developables are

du=0, dv=0. (84.1)

For the focal surfaces we have
do’ = — (R —R') A, dv+ NdR'. (84.2)
Calling this the first sheet of the focal surlace, its ground
form is (dR')2+ (R —R')?a,,dv?, (84.3)

and therefore the o curve is a geodesic on the first sheet.
Similarly we sec that the v curve is a geodesic on the second
sheet.

§ 85. Tangents to a system of geodesics. Conversely if
we take any surface, and draw any singly infinite system
of geodesics on it, the tangents to these geodesies will gonerate
a normal congruence.

2843 P
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For take a surface with the ground form
. du? + B*dv?,
and consider the congrucnce formed by the tangents to the
curves v = constant, that is, by the tangents to this family
of geodesics. We have u = 2, and as

zi=~—1, 2,5,=0,
L
we must have ¢,:, =0, 2,,2,+2,2, =0,
so that 2,5, =0
Now Sypy = ,5, =0
and Sy, =25, =0,
ALz L
so that SaHy = 5 fhy,
N SN—

and the congruence is a normal one,

§ 86. Connexion of IV congruences which are normal with
W surfaces. Now let us consider the asymptotic lines on
the two sheets of the focal surface.

The vector to the first sheet is

=2+
and we have
. 2y =R\ Yy =—=(RV=R)\+ R\,
and therefore (R'—R")X,, = R" X\,—R',\,.
The equation of the asymptotic lines is
d:'\(iV =0,

if V is the unit vector parallel to the normal at the extremity
of 2.
Now A, is parallel to V, and thercfore the equation of the
asymptotic lines is dz'dA, = 0;
that is, S ((R”"—R') \,dv—AdR’) (\;;du+ A, dv) = 0.
We have, since A, A, is zoro,
Ady = =X\, = B)/A? = (R'—R"),
AAp =—X%, A, =0,
A = RAL + (R - R”),
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and therefore the equation of the asymptotic lines on the
first sheet is  \2 R’ du2 -3 R, dv* = o. (86.1)-

Simil:n'ly we see that the asymptotic lines on the second

sheet of the focal surface are given by
ARy du?—AZRY,dv? = 0. (86.2)

The necessary and sufticient condition that the asymptotic
lines on the two sheets may correspond is thercfore that R’
and R'" may be functionally connected.

We thus have the theorem that in a W congruence, if it is
also a normal one, the surfaces which intersect the rays
orthogonally have their radii of curvature functionally con-
nected : that is, they are W surfaces.

§ 87. Surfaces applicable to surfaces of revolution, and IV
normal congruences. We saw (§ 84) that the ground form of
the first sheet of the focal surface of a normal congruence was

(AR")* 4+ (R" — R')2a,,dv?, (87.1)
and similarly we sec that the ground form for the second
shect is (dR"}?+(R" = R )2a,,du® (87.2)

If the congruence is also a W congruence we know that
(B = R')*ayy = ($(R))",
(R = B')*a,y = (¢ (1)) 25
the ground forms of the first and second sheet are then
respectively (dR)2+ (¢ (R))2dv, (87.3)
(AR") 4+ (@' (1)) 2du? (87.4)

The two shcets are therefore applicable on surfaces of
revolution, the w curves on the first sheet corresponding to
the meridians, and the v curves on the second sheet.

Conversely, if we have any surface applicable on a surface
of revolution, the curves which correspond to the meridians
will be geodesics, and the tangents to these curves will
therefore trace out a normal congruence which will be a W
congruence ; and the surfaces which cud the rays orthogonally
will bo W surfaces.
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If the surfaco is one of constant curvature we need to solve
an cquation of Riccati’s form to obtain the curves which
correspond to the meridians, but in other cases"we can find
the curves by quadrature.

An interesting property of any given W surface, which is
not of constant curvature, is that we can find the lines of
curvature on it by quadrature.

For we can find the two sheets of the focal surface, and on
these sheets we can find by quadrature the curves which
correspond to the meridians. These curves will have as their
correspondents on the given W surface the lines of curvature.
This theorem was discovered by Lie.

§ 88. Surfaces of constant negative curvature. Returning
to the ground forms of the two sheets of the focal surface

(R + (¢ (R')2dr,
(AR + (¢ (R))~2n,

we see by aid of the formula

when the ground form is du®+ B%de?,) that, K’ denoting the
measure of curvatwie on the first sheet,

K’ gl:/)((lgj) 0. (88.1)

Similarly we find for the measure of curvature K" of the
second sheet 77 + (¢ ()4 = [(¢(R’)) ¢ (")) =0 (88.2)

since R = f(R'), R'—f(R') = ;’:‘(]R)

If the two sheets arc applicable on one another at correspond-
ing points we must have A’ = K’ and therefore we must have

¢ (1) ¢ (1) = £ (' ()" (88.3)

Taking the upper sign wo sce that

R
e B (R) = Do,

where « and b arc constants.
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We now see that R'—R =aq, (88.4)
: (R') '

from the equations R'—f(R') = (-li,—,,

] SI) = &Ry

RII =f(RI).

The measure of curvature is found to be —«~2 from the
formula . @ (R) .
K + gb(li') = (88.0)

The two sheets have then the same constant negative
measure of curvature —«~2, and the distance between the
corresponding points is equal to the constant a.

We therefore see how, when we are given a surface of
constant negative curvature, we can construct another surface
of the same constant curvature. We find asystem of geodesies
on the given surface—this involves the solution of an equation
of Rieeati’s form—and draw the tangents and take a constant
distance « along the tangent: the locus of the point so
obtained will be the surface required.



CHAPTER VI

CURVES IN EUCLIDEAN SPACE AND ON
A SURFACE. MOVING AXES

§ 89. Serret’s formulae. Rotation functions. Let A, p, v
be threc unit vectors drawn through the origin, respectively

parallel to-the tangent, principal normal and binormal of
a curve. We sce from the figure that

dX = pde, dv =—pdy,
where de and d7 are the angles between neighbouring positions
of the tangents and osculating planes respectively—in the
sense of the figure.

We thus have

X:E, 9:—#,
p T

where the dot denotes differentiation with respect to the are
of the curve, and p and o are the radii of curvature and
torsion respectively. We thus have

® 1 . 1

‘f-«::_p, /ﬂ/:a,
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and therefore, since  Ap =0, u =0,
we have /1)\:}, v = — !
~ P ~ [
It follows that
N=F p=—M Y oK 89.1
Ap,;t p+a"y_a- (89.1)
Theso are the formulae of Serrct.
1f we were to take unit vectors through the origin mutually
at right angles, the first, A, parallel to the tangent to the
curve, and the sccond, x4, making an angle ¢ with the principal
normal, we could casily deduce that
A=pur—vq, p=vp=Air, v=Aq—pup,
g="ng o _cme
p p
More generally, if X, y, v are three unit vectors mutually at
right angles which are given angular displacements

;o1
where p=¢+
o

pds, qds, rds,
we have
A=pr—vq, pg=vp—Xr, v=Xqg—pup, (89.2)
as we see from the figure.
The functions p, g, » may be called rotation functions.
If wds denotes the angular displacement which the vectors
regarded as a rigid systemn receive, where
o =pA+qu+ry,
we can write our equations in the more elegant form

—

A=\ p=op, b= (89.3)

§ 90. Codazzi’s equations. It will be useful to consider
a more general displacement.
Let the vectors A, p, v regarded as a rigid system receive

three angular displacements
o'du, o’dv, o’ dw.
We then have

™ 0 T
A =0'A, M=o A =0");

)
—~

and therefore  w’A,+ a;';7\ = w777\1 +°”;'\1>‘ ;

>
M
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or Voo A= Vo' o'\ = V(o —w’,) A,
that is, VoA = V(e — o) A (90. 1)

We have cxactly the same equation for x and therefore we
have identically oo = 0" — o'y

Similarly we obtain two other vectorial equations, and we
have

—~~~ —_~
’
a”l z_w 3 = a)llwlll wlg_m ’Il — wllla’l, wlll “"w'g — m’ w’l.
(90.2)

Suppose now that the vectors A, g, v instead of being drawn
through the origin are drawn at the extremity of the vector z,
which depends on the three parameters u, v, w. If we regard
the extremity of the vector z as the new origin then we may
say that the linear displacements of the origin arc

zdu,  z,dv,  sydw.
Let G=EN+n'p+l,
:2 — £,,A+””#+§’,V’
:3 — g"’h-*—’””/“"—(l,’y.
We therefore have
E A ppt Cor +E (7 —v ") " p =2")
+ " —pp”)
— £”1A + 77,,1/4‘+{’,1V+£” (""",_Vq’) + 17// (Vj)’—AT,)
’r ’ ’
+{ A —pp"),
SO tlla.t Ill—gz__ (’ rr (”{1"*“77 ,r 7}I)II
7) 1 "7 2 — él e é’lr + {”2}’ {’1}”
= o= P
Similarly we obtain two other sets of equations :
§III — {Il 224 {I'lqll+77'11,rll 7’”"”’
77/ él’ 11 g'll II (I’l " (I' III
{III (,l& —_ 17',2)/// Ill rr +§I’l ” 6”(1”, .
£ 8__gl/ll = (IIIqI {Iqll’_*_ 77,’"” 77’”"",
7]/3 I 1 — glll l gl III I II’ (III 4
S‘Ig_(l!' —_ nll’pl ’ "’+£I 2 gl’l ’
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If we ignore the parameter w, we have the six equations :
,1)12__2)//1 — q/,)_u _(l” ’)" ; (]‘_‘/ _(1111 — 7"2)”—’7'”2/ ;
,"12_7‘//1 — 2)1(11/ __])uq/ ;
£12_£II1 — (1’(“—(1“{’+7’”1]’—’)"17”;
77/2_17’/1 — 7‘I§II_/"IIEI +7)”§’——2)'(" ;
{,2'—('11 = 2,[7][/_(/)!/,7/ +qllél_qlgll. (90 . 3)
These are the cquations of Codazzi of which Darboux
makes so much use in his Theory of Surfaces.

§ 91. Expressions for curvature and torsion. Returning
now to the case of a curve, Serret’s equations may be written

).\:/(0\)\, ;1::(:/;, ﬁ:c;;;
A )
where o="4+" (91.1)
o p

If z is the vector which deseribes the curve to whiech we
arc applying Serret’s equations we may write
: - :/,t,—'—z”[” +z”,[”,’
where ¢/, ", /"' are threo fixed orthogonal vectors through
the origin, so that z’, 2", 2’"" are the Cartesian coordinates of
any point on the curve.
We have 2 = A and therefore

L=pz, v=cpitops+ Zé.

Denoting the components of the vectors A, u, » with respect
o I
to /, '/, " in the usual way, we know that
) ) y:

A’, A’I’ AIII
ﬂl, /‘II, lL”’ — 1 ;

’ 144
v, v, v

and therefore

3, &', %
plo | #, F, | =1, (91.2)
z"l’ b/l, zlll

1
P

and = (3')2 4 (2")2 + (8% (91.3)

These are the usual formulac in the theory of curves.
2843 Q
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If we take, as is more usual, z, 9, z to be the Cartesian
coordinates of any point on the curve and regard them as
functions, not of the are, but of any variable, we sec that

e A TR PR R
¢ y ~
&, Y % B 2
ote & G, 5|+ 5 T (91.5)
¥ % SR

§ 92. Determination of a curve from Serret’s equations.
We must now show how the equations
® A v . p

)\:I;, /1:~P+(—r, V= 0‘,

determine the curve when we are given the natural equations

of the curve; that is, when we arc given p and o in terms of
the are.
Any unit vector may be written
sinfcosp.A+sinOsing.pu+cosd.v.

Exprossing a fixed veetor in this way, and noticing that
there can be no relation between tho vectors A, g, v of the form
PA+qu+rv =0,
where j), q, r are scalars, we find, by aid of Serret's cquations,
that sin @ 1 _ cot fcos¢

6= , b+

= 92.1
- 5 = (92.1)
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6 .
Let ¥ = cot;z e,

then we find that + = 2‘(]_(\;,2_1)_‘%1'. (92.2)

This is an equation of Riccati's form. When we lave
solved it, we know 6 and ¢, and thus the position of a fixed
veetor with reference to A, u, . When we have thus found
three fixed vectors, with reference to A, & v, we koow
A, u, v in terms of the ave.

When we have obtained A in terms of the arc we can
find z by aid of the equation 3 — 3, (92.3)

It must now be shown how, when we are given any curve
in space, any other curve, with the same natural equations,
can by a mere movement in space be brought into coincidence
with the given curve.

If Xg, po, v, denote the positions of the vectors A, u, » when
the arc s is equal to s, or, say, to zcro, then we see, by
repeated applications of Serret's equations, that

A=a'N+a" p,+a"" v,

po=UN+ U g+ 0"y,

v=2c' AN+ p, +" v, (92.4)
whero the coeflicients of A, y,. », are known series in powers
of s ’

By a merc rotation we can bring A,, y,, v, into coincidence
with the tangent, principal normal, and binormal at the point
from which we measure the arc on the given curve.

It follows that A, u, » will be unit vectors coinciding with
the directions of the tangent, principal normal and binormal
at the point s on the given curve.

A mero translation will therefore bring the cnrve into
coincidence with the given curve when the required rotation
has been carried out, since we have

F=N 5 = &
and thus 2 =z+4a

where « is a fixed vector, that is, a *wector not depending
on the are.
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§ 93. Associated Bertrand curves. The right helicoid.
Let us now consider the curve defined by
c4lkp (93.1)
where & is some function of the are, and let us find the
conditions that the two curves defined by z and 2’ may have
the same principal normal.

We have = ()\ +pule+ k ! )) ((ll:
" _ A v ds
and therefore A\’ = ()\ +uk+k( . ’;)) "
Since Nup=0,

we must have [ oqual to zero [i.c. £ a constant].
Again, differentiating with respect to the arc &',

. . . s
£ (® +k(%§ —Gi— - é‘z))(fa,) \
+ (k2= 0)

) B d?%s
and therefore [ p”( ) ( )db" 0,
g sds kL d*s
IVO—'_“((ZS ) cdst
c e ds d?s .
Eliminating ax and o We obtain
p_PLo_,,
p—k p @

. . ko F
and integrating we have o + o= 1, (93.2)

where &' is a constant introduced on integration.

A curve satisfying the above equation is called a Bertrand
curve. We see that the property of a Bertrand curve is to be
associated with another Bertrand curve having the same
principal normal, the distance between corresponding points
being the constant k. «

If a Bertrand curve has more than one corresponding curve
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it will have an infinite number of such curves and will clearly
be a cireular helix, for p and o will cach be constant. )

We can immediately deduce that the only ruled minimal
surface is the right helicoid. For consider the curved asymp-
totic line on a ruled surface. We know that the osculating
plane of any asymptotic line on any surface is a tangent
plane to the surface. The generator of the ruled surface
therefore lies in the osculating plane of the other asymptotic
line through any point on it. If the surface is a minimal one
it must therefore be a principal normal, and since an infinite
number of asymptotic lines cut any generator orthogonally
the asymptotic lines must be circular helices. The surface is
therefore a right helicoid.

§ 94. A curve on a surface in relation to that surface.
We now pass on to consider the curves which lic on a given
surface. Since such curves are defined by a relation between
the parameters w and v, and since 2z, the vector of the given
surface, is a function of these parameters, we are really
given z in terms of one parameter along the curve defined by
an cquation F(u,v)=o0.

But since we want to consider the curves in relation to
the surface we proceed by a different method.

We have the formulae

A=pr—vq, p=vp—2Ar, v=Xq—pp,
where A is a unit vector parallel to the tangent to the curve,
p a unit veetor parallel to the normal to the surface and

making an angle ¢ with the principal normal to the curve;
and we havo scen (§ 89) that

gL % (a1
P P
where p and o are the radii of curvature and torsion of the
curve.
We know that

g2 =0, pz,=0, me = Ay e = g = Ly,

~— ~ ~

;o1
p=¢+ ., q=

L]
By = Ay ;

~
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we can therefore easily verify the formulae
Puy = (f02,—y02,) 51+ (f2)—ef2)) 2,,
I py = (f2y—yd2y,) 5 + (f:nlz_enzz) %95
and from these formulac we deduce
hpizy = (e, —f) py  hpz, = (f02,—902) p,
hpyzy = (efpy—fili) p,  hpyzy = (fflyy—yL2y) p.
It follows that
f‘vé‘: S (o + py) (3% + 2,9)
= £, %%+ 202,00 + 12,,0%, (94.2)
and that
Rt =hV (i +p,0) (5,0 +2,9)
= U ((6‘{212 —f2) 0+ (ef2gy—g 02, )ud + (f12,, _'.’]‘012)62)
ew+fo, fu+gv

TH 0 a1 0,0, 2,0+ 0,0 (94 3)
But ih = an=r =259
- = P
and hjz = hiX = hppu,
cos ¢ " .. .
and therefore — = {2, 0F + 202,00 + 0,0, (94.4)
TRANE e+ fu, fu+go .
h<¢+ a) = ‘ 0,0+ 0,,0, 02,0+ 02,0 (94 .5)

Wo have thus expressed the two angular velocity com-
ponents p and r of the curve under consideration in terms of
the derivatives of the parameters w and v with respect to the
arc and the functionsee, f, g and £2,,, £2,,, 2,,.

We must consider the remaining component q.

As the veetors A, p, v aro displaced from their positions
at P to their positions at P’, a ncighbouring point of the
curve under consideration, we may consider that they are
displaced along the goodesic 1" and then along the geodesic
TP

As we pass along P the displacement gds is zero and as
we pass along I'P" the displacement qds is also zero. The
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total displacement qds is therefore just the angle P'TM:

that is [§ 39] 1 )
q=-— (94.6)
Py
since the geodesic curvature of the curve is defined by the
formula L _ gy P'TM

Presr prp”
Py Ch

PI

P T

We should notice that unlike p and » the angular veloeity g
depends on the first ground form only and the derivatives
of w and v and not on £2,,, £2,,, £2,,

11 129
We have proved carlier (36 .3) tha,t
1 A, (F)
— = = +AF A(F 94.7
Py (F, (A (F)7). (94.7)

We express this formula in a more convenient form for
some purposes without the aid of the differential parameters by
LA 1o v Al Al o
1 2R BE FLF g
Py {u F3 =20, F\Fy+a,,F})2
where Fu,v) =0
is the equation of the curve, or, since
Fii+ F,o=0,
and PG+ {111) a2+ 2 (121} ad+ (221} 6%
+F, (04 {112} u?+2 {212} ud 4 {222} ©?)
+F. w2 F. 00+ F.,,0% = 0,

and Uy U+ 20,00 4 @y, 0° = 1,
in the form
1, 4 W+ 2 {121} 49+ {221) o
1_, u,@+{111}w+ {1 .}1}2.)+{ jot (94.9)

Py o, U+ {112} 42+2 {212} 4o+ {222} ¢*
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Wo have thus found expressions for the angular velocities
a1 _sing  cosd
1)—¢+;, qg=—", :—7—, (91.1)
along the curve in terms of the derivatives of w and v and
the functions which define the ground forms. We notice
that » and » depend only on the first derivatives, but ¢
depends on the second derivatives and is the geodesic curvature
of the curve.
We have seen [§ 49] that the curvature of the normal
section of the surface in the direction of the tangent to the
curve is given by

1 )
_ oo ‘2
= {2, 4*+ 20,40 + 42,,0°%

R
We thus have Meunier’s theorcn that
cos ¢ 1
DS 94 .10
= (94.10)
The expression é + ! - (94.11)
ag

is the same for all curves having the samc tangent at the
point under consideration. It is therefore the torsion of
the geodesic curve which touches the curve at that point.

§ 95. Formulae for geodesic torsion and curvature. We
can find another formula to express the torsion of the geodesic
by aid of the formula already proved

g+ (R +R") %4 +R'R" % = o.

Since z2=Xand g =vp—2Ar,
we have 1—- (R +R")yr+ R R" (p?+7?) = 0,
that is, P+ (II{-, - r) (—Rl~,, — 7') =0. (95.1)
If we take the parametric lines as the lines of curvature, so
that . _cos?d sin*d
=®m tERT

1
this becomes p = cos Osin @ (1% - Rn)

A B 1 1
or ¢+;=cosas1n6(R,—-R,—,)- (95.2)
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Since ¢ is the angular velocity about the normal to the
surface, as we pass along the curve wo are considering, we
sec thﬂb g = _0+Q,[b+(1” ,&’
where qa+q"o

is the angular velocity about the normal of the rigid systemn
made up of the normal and the tangents to the two lines of
curvature,

We thus have the formula for the geodesic curvature

1—-_:—6'+q'£b+q"/l}. (95.3)

Py
We have

1 = 2sin 0 cos 0 ( [—17, —_ 11,) 0 4 cos* 0 ([o ;d ( Ilt’) +9 ;L. (;y ))

cgafs O 1 LA,
wsint 0 (& () +93, ()
and thercfore =2 pq (95. 4)
depends only on the first derivatives of the paramecters w and
v, and so is the same for all curves on the surface having the
same tangent at the point under consideration. This theorem
is due to Laguerre.
In connexion with the formulac

1 sing  tan¢
(1=~v—::\—~~: [{ )

Py P
where R is the radius of curvature of the normal section of
the surfaco in tho direction of the tangent to the curve, it is
useful to remember that if a particle describes a curve on any

surface with velocity V, the acceleration normal to the path
2
and tangential to the surface is Zv—
g

(95.5)

§ 98. Surfaces whose lines of curvature are plane curves.
So far the curve we have been considering has been any
curve on the surface: suppose nowsthat it is a line of
curvature. )

2843 R
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We have p = 0, as we see from the formulu.

1 .
= cost‘).smG(R, - 1-2—'7)’
and therefore é + —s_z 0. (96.1)

If therefore the line of curvature is a plane curve its plane
makes a constant angle with the surface all along it; and
conversely if the osculating plane at cach point of a line
of curvature makes the same angle with the surface the
line of curvature is a plane curve.

We now propose to find the form of a surface if all its lines
of curvature are planc curves.

Let o be a vector perpendicular to the plane line of curva-
ture along which only v varies so that o depends on w only.

Similarly let 8 be a vector perpendicular to the plane line
of curvature along which only u varies.

In accordance with our general notation in the theory of
surfaces, let A be a unit vector normal to the surface at the
cxtremity of the vector 2.

We have, since the parametric lines are lines of curvature,

2y = RN, z,=R"A,;
and as xz,=0, B2 =0,
we also have ar, =0, BA =0.
It follows that o = pA;+qX, B = 17X +sA,

where p, g, 7, s are scalars.
Wo thus obtain the two equations

PA+PA A+ A =0,

A+ A+ 8 A+8A = 0. (96.2)
Now since SAA A, =0,
as the lines of curvature are conjugate lines,
7. =8=0;

and as there can be no relation between A; and A, of the form
aX +bA, =0,
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where a and b are sca.la.:;s, we must have;*

Po_8, T_1, (96.3)
p r r p
It follows that, (g7}, = (log 1)y == 71

and therefore we may take
p = F(u)é, r=f(v)é,

q=Fw)éo, s=fw)o,. (96. 4)
We also have 0,+0,6,=0,
so that A+ 0,0, +0,2, =0, (96.5)
and 0,,+0,6,=0. (96 . 6)
Let us now start again with these two cquations.
We see that 0,,+6,6,=0
tells us that S =Ffu)+¢@);
and, since 2\\,/)\2 =0,

the lines of curvature being at right angles, the equation

Ag+0,A+0,0, =0

tells us that %} (A3)+260,A3 =0,
d
5',;!()\3)'*‘261}‘3 =0,
so that A2 +e 20 F(u) = o,
AZ+e 299 (v) = 0. (96.7)

We can now so choose the parameters that
AM+e ¥ =0, A+ =0
The spherical image of the surface is therefore given by
ds? = A% (du? + do?)
where A =U+7,,

U being a function of w only and V a function of v only.
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But, from the expression for the measure of curvature of

the surface ds? = A?du?+ B2dv?,
i d /138 2,14
KAB+ 5 (350) * 30(335) =

We must therefore have
J2 J2
(U+V)*= (W + m)]og U+V);

and therefore 1= UU~U2+VV=V24+UV+VU. (9. 8)
It now casily follows that without loss of generality we
may take U = cosec o cosh u,
V = —cotacos v,

g coshu—cosacosv

so that e = . (96.9)
sin &

If p is the perpendicular on the tangent plane to the
surface of which we have found the spherical image we have

P+Az=0.
It follows that
mFANZ=0, p,+A,2=0, p,+A,2=0,

2
since Az =0, i\f2=0, Mo =0, Az =03
and therefore P+ 0,0, +6,p, =0,
that is, since 0,,+6,0,=0,
pdd = U+ 7V, (96.10)

where U is a function of w only and V a function of v only.
We know that

MAeT¥ =0, A=0, M+eT¥ =,

s coshu—cosacosv
where ¢ = -
sin

’

and therefore we can.find X by the solution of equations of
Riccati’s form. ‘
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We see that (cosh w—-cosxcosv)A
= sin o sinh wé + sin & sin 4 + (cos & cosh w — cos v) k.
where ¢, j, k are fixed unit vectors at right angles, will satisfy
the conditions; and we know that any other possible value of
the vector A can be obtained from this vector by a mere fixed
rotation.
The surface may therefore be regarded as the envelope of
the plane
2 sin & sinh % + ¥ sin asin v + 2 (cos acoshu —cosv) = U+ V.
(96.11)

§ 97. Enneper’s theorem Let us now consider a curve
which is an asymptotic line on the surface.
1

We have L= 0 for an asymptotic line and therefore
cos ¢ —o.
P

If p is infinite the asymptotic line is straight and therefore
the surface is ruled.
Leaving aside the case of ruled surfaces, cos ¢ is zero and

therefore ¢ = g, that is, the osculating plane of an asymptotic

line is a tangent plane to the surface.
For an asymptotic line the angular velocities are

q —1 g = 1 r=20
1) - 0', _1 - p’ - 3
and the formula p* + (% —7') (El,, —9-) =0
1 1

gives =0, (97.1)

P S

that is, the torsionis v/ — KA. This is Enneper’s theorem.
We also see that the geodesic curvature of an asymptotic
line is just the ordinary curvature.

§ 98. The method of moving axes. If wc now return to
the equations of Codazzi (90.3), which are the foundation of a
considerable portion of Darboux’s method of treating problems



126 CURVES IN EUCLIDEAN SPACE

of differential geometry, a method which is in effect the method
of moving axes, we may take {’, ¢’ to be zero.
The rotations are p’, ¢, »*; p", ¢"', "', and the translations
&g n',0; £, 7", 0; and the connexions are
’ ’” N7 o ’ [ Y B T B
PV =q7 =07 Q=@ 1 =7P —r]P,
N7 ", r ’ " I oo
=007 =p7 =g ="y ="
r’ 124 ml &1 S g R n_r __ rgn n g
M=y =g 0 i = = ' =
The displacements of a point whose coordinates with
reference to the moving axes are z, ¥, = are, with reference to
fixed axes with which the moving axes instantaneously
coincide,

de+ & du+ " dv—y ('du+r"dv) + 2 (¢'du+ q"'dw),
dy+n'du+q" dv—z (p'du+ p"dv) + 2 (' dw + 7" dv),

<
<

~
—~

dz—z (¢'du+q" dv)+y (p'du+p"dv).
Thus for a curve on the surface making an angle o with
the axig of =
dscosw = ¢'du+ ¢'dv, dssinw =n'du+n"dv. (98.1)

A point on the normal to the surface and at unit distance
from the surface traces out what we cali the spherical imago
of the surface.

Thus the spherical image of the curve is given by

docos = ¢'du+q"dv, dosinf =—p'du—p”dv. (98.2)

The direction of the line element conjugate to the line
clement whose direction is @ is 6 + 72_1-, and therefore the two
elements du, dv and 8u, v will be cunjugate if

gou+g’'8v _ 7n'du+q'dv

Pdu + " dv - q'du+q""dv (98.3)

The asymptotic lines, being the lines traced out by self-
conjugate elements, will therefore be given by

gdurg’dv _ n'du+n"dv

Pdu+p’dv T g'du+tq"dv’ (98.4)
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The spherical image of the surface will be given by
do? = (p'du+p" dv)? + (Q'dw + ¢" dv)? (98.5)
The principal radii of curvature and the lines of curvature
will be deduced from the fact that the point whose coordinates
are 0 0 R
will have no displacement in space and therefore
(¢ +Rq)ydu+ (£ + Rqg")dv =0,
(n'--Rp' )d?.b-}-( —Rp")dv=0.
It follows that the measure of curvature will be given by

P L ey M e S (98.6)

gl r gllrl gl Il g!l l

Here we should notice that the translation functions depend
only on the ground formn, as
e= )+ f=E1"+E" a=0"+0{")
and that " and »"* can be expressed in terms of the translation
functions, so that we see again and very simply that the
measure of curvature is an invariant.
If the surface is referred to parametric lines at right angles

we may take ds? = A?du?+ Bdv?,
and él = A, g” =0, 17' = 0, 7)” = B,
o Az o Bl.
We then have r=—, "=,
and at once deduce the formula
KAB+D (A)+av(B) (98.7)

If we rofer the surface to the lines of curvaturc as para-
metric lines we have p’ = ¢ = 0, and the principal radii of
curvature are A B

R = — 67 , R" = FH .

§ 99. Orthogonal surfaces. To illustrate the employment
of moving axes depending on three parameters we might
consider the case of orthogonal surfaces |

w = constant, v = constant,” w = constant,

(98. 8)
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and take as axes the normals to these three surfaces at
a point of intersection.

Wehave £7=¢g" =0, y"=y'=0, ¢ =¢" =0;
and we may write ¢’ =¢ 5" =y, ¢ =¢(
The equations satisfied by the translation functions now
become bo=—7"n, &=¢0 ==L m =&,
L=-¢4" L=,
Co" T =0, £+ =0, P +E¢" = 0.
We therefore have
p=0, ¢ =0 2" =0,
and we have the well-known theoremn that the lines of
curvature on the surfaces are the lines where the orthogonal
surfaces intersect them.

We shall return to the theory of orthogonal surfaces later
and so shall not pursue the study further here.



CHAPTER VII
THE RULED SURFACE

§100. Let a vector ¢ tracc out any curve in space, and let
Al, ¢’y v' be unit vectors drawn through its extremity, parallel
respectively to the tangent, principal normal and binormal
of the curve. Let

A=cosf.\ —sinfsing. u' +sin fcosp .o/,
p=cosp.u +sing .,
v=—sinf.X —cosfsing.pu +cosfcos¢p.r, (100.1)

then A, p, v will also be unit veetors mutually at right angles.
On the unit sphere, whose centre is the origin, vectors

z

B A

parallel to these two sets will cut out the vertices 4, B, C
and X, Y, Z of two spherical triangles as in the figure.

Let ! and 1 denote respectively the curvature and torsion
g

of the curve and let

.1 sin ¢ cos ¢
— = = s 100.2
Pr=9+ o rEk > ( )
and p = p'cos@+7"sinf, ¢=q' =6, vr=1"cosf—p siné.

(100. 3)

2843 S
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By aid of Serrct’s equations we sco that
A= TU—qV, R =pPr—TA, V=QAN—Du, (100.4)
so that p, ¢, » are the rotation functions for the moving
triangle XYZ. The dot above any symbol denotes that it
is the symbol differentiated with respeet to the are of the
curve traced out by ¢: we denote the arc by v.

§101. The ground form and fundamental magnitudes.*
Let z = ¢+uA, so that w is the distance of the extremity of
the vector z from the extremity of the veetor ¢ As w and v
vary, the vector z will trace out a ruled surface of the most
general kind if 4 and ¢ arc functions of v.

The curve traced out by ¢ will lic on the ruled surface: it
is called the dircctrix of the ruled surface. Any curve on
the surface may be taken as dircetrix.

We have

2, =X % =N+uUr=cos O+ urp—(sin 0 +wq) v.
The ground formn of the ruled surface will be
ds? = du? + 2 cos Odudv + (u? (¢* + )+ 2uq sin 0+ 1) dv?,
(101.1)

We may write q=Mcosy, r=DMsiny,
when the ground forin becomes

ds® = du? + 2 cos Odudv+ (w* M4+ 2wl sin 6 cos r + 1) dv?,

(101.2)
so that q and » are given when the ground form is given.

The function % is given by

1% = wM?+ 2uM sin 6 cos y +sin® 6,
= (ud +sin @ cos yr) +sin® O sin? . (101.3)

The angle between two neighbouring generators is

Mdv, (101. 4)
and the shortest distance between them is
sin @ sin y dv. (101.5)

The unit vector whose direction is the shortest distance is
cos Y p+sin Y v. (101.6)

* {Sce also § 22.]
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Since 2, = A, 2, = cos OA + uM sin r u— (uM cos Y +sin ) v,
we have 2,2, = (wM cos yr+sin 0) p+uM sin v,

The unit vector normal to the surface at the extremity of =
is therefore Z, where

Z=h[(uMcosy+sin) p+uMsinyv]. (101.7)
If we calculate z,,, 2,,, =,, we deduce, by aid of the formulae
Ny =-22, ;= ~:L2/Z, 0, =—2,,7,

that 2,=0, N2,,=1"Msinysinb,
0y, = ph4 171 (w2 M2 +wM cos Y sin ) yr +uM sin y sin 6
+ M cos sin y (sin —u6)). (101.8)

We may write N for M cosyrsin @ when we are only con-
sidering the ground form.

§ 102. Bonnet’s theorem on applicable ruled surfaces.
We saw that one of the most difficult problems in the Theory
of Surfaces was, given the ground form, to determine the
surfaces in space to which the form was applicable; and we
saw that the solution of the problem depended on a partial
differential equation of the scecond order. In general we can-
not solve this equation, but there is a striking exception in
the case of the ruled surface.

Let us first consider a theorem on ruled surfaces.

If on the surface with the ground form a;da;dx; the
curves x, = constant are gcodesics, we must have {112} = 0.
If the curves z, = constant are asymptotic lines we must
have {2, =0. If both these conditions are fulfilled the
surface is ruled; that is, if

N, =0 and {112} =0, . (102.1)
tho surface is ruled and the generators are
x, = constant. (102.2)

Now suppose that we have a second ruled surface with the
same ground form and therefore applicable on the first surface,
and suppose if possible that its generatprs are not the lines

.
z, = constant.
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We can therefore choose our coordinates so that the two
surfaces will have the same ground form and that in the first
surface 2, = constant will be the equation of the generators
and on the sccond surface @, = constant will be the equation
of the generators.

We have f2,=0and £, =0,
and as for the two surfaces £2,,02,,—N2,
and 0,0, -0,
are the same, we must have
n:, =02, (102.3)

From Codazzi’s equation (48. 4) for the two surfaces we have

J
-2, + ({122} = (111}) 2, = 0,
oy

= 0, + ({211} — {222}) 12, = 0.
o, 2

It is therefore possible to satisfy Codazzi’s equation for
the given ground form with
{112} =0, {221} =0, (102.4)

by taking £2,, and £2,, both zero: that is, it is possible to
find a surface with both systems of asymptotic lines straight
lines; that is, to find a quadric applicable to the given
ground form.

Unless then the form

du? 42 cos 0du dv+ (M2u?+ 2 Nu+ 1) dv?  (102.5)
is applicable to a quadric, the generators of any ruled surface
which is applicable to it must be
v = constant. (102.6)
This is Bonnet's Theorem and Bianchi’s proof of it.
When therefore the ground form is given in the form
ds® = du®?+ 2 cos Odudv + (M*u?+ 2 Nu+ 1) dv?, (102.5)
we know that, leaving aside the case of quadrics, the surfaces
which are ruled and applicable.on it must be generated in the
method we have deseribed [so that their rectilinear generators
are applied to its rectilinear generators].
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When the ground form is given we arc given ¢ and . We
may take p as any arbitrary function of v. We then know
p and ¢ of the directrix, and so can find it by the solution of
Riceati’s equation. Similarly we obtain A and thus find the
ruled surface.

§ 103. Ground forms applicable on a ruled surface. If
we are given the ground form of a surface, how are we to
decide whether it is applicable on a ruled surface? It will
be applicable on such a surface if the ground form can be
brought to the form

du?+ 2 cos 0dudv+ (M2*u? + 2 Nu+1) v?  (102.5)

where 6, M, and N are functions of v only, but unless these
are given functions of the parameter the gencral method will
not immediately apply. This is the question we now wish
to consider.

The expressions du dv

I and 75
where w and v are the parameters of a point on the surface,
are tensor components.  We may denote them by 7" and 7%

The difficulty of the tensor notation ®omes in when we
want to cxpress the power of a tensor component with an
upper integer. Thus the square of 1'% would have to be
written 7?72, and in calculations this is inconvenient.

We therefore generally write the above two components as
¢ and 7 and try just to remember that they are tensor com-
ponents when we apply the methods of the tensor calculus.”

The equations of a geodesic are (§ 38)

2%5 F{111} g2+ 2{121} fn+ (221) 9% =

'(%Jr{nz} £542{122) &n+ (222 92 = 0,

and (l£ o€ 5
ds = oz, T3,
dn _ .91
s dw, K oz,
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The equations of a geodesic mé.y therefore be written

Qf d
g(b‘—l— U111 g4 (120 1,)+7,<5~f + 1121 £+ (221 1,)—_—0,
1

g(é\_:’l $1112; ¢4 (122} 17) + ,7(—— +1{122) ¢+ {222} n)—— 0.
(103.1)
Now these equations are very simply expressed in the
tensor notation by
™mry+ 17, =0, 1T'12 +1TT% =o0. (103.2)
The cquation of the asymptotic lines is given by
n,M"rn+20,Mmr+0,027¢ = 0. (103.3)
Now remembering that on a ruled surface one of the
asymptotic lines is a geodesic, and taking the tensor derivatives
of this equation, we have
2., 1" 1" +20,., T T*+ 0, 11" .
+21M (02,1, +2,T3)+21* (2,1, +2,,T%) =0,
(103. 4)
and £2,,.,1"1"+20,., 7" T+ 02,,., 11"
+2T (02,10, + 2,123 (+21* (2,1, +n2,,T) =0
(103. 5)
Multiplying the first equation by 7" and the sccond by 1%
and adding, and making use of the equations for a geodesic,
we see that if the surface is ruled we have for the equations
of that asymptote which is a generator
N8 +20,8n+2,0" =0, (103.6)
018 +3 02,80 +30y, 160"+ 82y,,9° = 0. (103.7)
If we write thesc two equations
(4, B,C ¢, n)* =0,
(@, b,0,dE )" =0,
the eliminant is (Salmon, Higher Algebra, § 198)
a*(*—6abBC*+ 6 acC (2 B*— AC) +ad (6 ABC—8 B*)
+90*A4C*—~18bc ABC+6bd A (22— AC) +9c*A2C
—fed BA* +d2 AP = 0. (103.8)
This vanishes for a ruled surface.
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Now we know that
02,,02,,— 0%, = K (a,a,,—¢f,),

and, since an arbitrary function is needed to express £2,,, £2,,,
{2, in terms of the parameters, there can only be onc other
equation connecting these functions.

Applying tensor derivation to this equation we have,
using Codazzi’s equations,

00+ 02,00, -2 02,00, = K (a,ay,—ais),

0202y, + 02,00, -2 02,0, = K, (40— a3,).
(103.9)

Wo thus have three equations, viz. these two and the
oliminant we have found. We conclude that this system
must be complete if the surface is ruled. For if another
equation of the first order in the derivatives of £2,, and £2,,
could be obtained—the function £2,, is known in terms of 2,
and £2,,—we could obtain £2,; and £2,, by quadratures, and
no arbitrary function woulll appear.

This mecthod, though tedious actually to carry out, will
enable us to determine whether any given ground form is
applicable to a ruled surface.

§ 104. Case of applicability to a quadric. We must now
consider the ground form

du®+2cos O dudv+ (M?*u?+2 Nw + 1) do?,

as regards its special form when it is applicable to a quadric.
The Cartesian coordinates of any point on a fixed generator
of a quadric may be taken to be

av+b,
av+b *?

_autb _ av+b,

Y = — : .
av+0"’ y av+b’ (104.1)

where the variable v denotes distance on that generator.

We have similar expressions for the coordinates on any
other generator; and the variables v and v’ of the points
which lie on the same generator of the opposite system will
be connected by a bilinear equation. L

It follows that if F is a point on the first generator and F,
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its correspondent on the sccond generator the direction cosines
of their join may be taken as

aydy—ayd,  bd,—b,d, ¢ dy—c,d,
it i T, (100.2)

where «,, b, ¢, d,, «,, b,, ¢,, d, are linear functions of v and
D? = d3 (a3 + 03 +c3)+di(a}+b}+c3)
—2dyd, (g +b by +epe). (104 3)
The coordinates of any point on the quadric may then be
expressed in terms of w and v in the form
@, wydy—a,d, _b w b,d,—b,d,

d D YTy, D

1

£ o=

__C e dy—cydy
=ttt D
It follows that M2, ND, cos 8D arc rational functions of v
which can be caleulated, and that D? is a quartic in ».

(104 . 4)

§ 106. Special ground forms. Binormals to a curve. Line
of striction. We havo found in §§ 100, 101 the chief formulas
required in the study of the general ruled surface. When
the ground form is given we are given ¢ and r, and we find
the different ruled surfaces which are applicable to the form
by varying p. This generally means that we vary ¢, the
angle of inclination of the osculating plane of the directrix
to the corresponding normal section of the surface. We
cannot however take ¢ to be zero unless the ground form is
special : for, if ¢ is zero, ¢+ 6 is zero: that is,

Mcosy+6=0;
which would give the special ground form
ds? = du? + 2 cos dudv + (M*u?—2 @ sin fu + 1) do?.
(105.1)
Thus the binormals to a curve in space trace out a ruled
surface with the special ground form
’U/2
ds? = du® + (—2 + l)dv“, (105.2)
. o

. . ¢ .
where ¢ is the radius of torsion.
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If we take as directrix an orthogonal trajectory of tho

generators, 6 is g, and the ground form is

ds? = du?+ (M2u?+ 2 Muw cos yr + 1) dv. ’ (105. 3)
In seeking the surfaces which are ruled and applicable to
this form we may take for one of them ¢ = g The directrix

of this surface will be an asymptotic line and the surface will
be generated by the principal normals of this directrix.

We obtain the equation of the line of striction from the
ground form itself. We have to find for given values of v
and dv the values of « and dw which will make

du?+ 2 cos Odudv + (M2u? + 2 Mu cos ¥ sin 6 + 1) dv?
least.

Clearly we must have

dw+cosfdv = 0,
Mu +cos ¥ sin 6 = 0.

The equation of the line of striction is therefore

Mu+cos{rsin 6 = 0. (105.4)
Let us take the line of strietion as the direetrix. We must
then have cosyrsind = 0. (105. 5)

We cannot have sin 6§ equal to zero unless the shortest
distance between neighbouring generators vanishes: that is,
unless the ruled surface is a developable. We must therefore
have in general, when the line of striction is taken as the

direetrix, ¢ = 127 , and therefore ¢ = 0.

It follows that 6 = H-I;—(—P, i.c. that 6, the rate of increase of

the angle at which the line of striction crosses the generators,
is equal to tho geodesic curvature of the line of striction. It
follows that the line of striction will cross the generators at
a constant angle if, and only if, it is a geodesic. In this case
the ground form will be

ds? = du? + 2 cos adudv + (?I%uz +1)dv?,  (105.86)

where o is the constant angle of crossing.
2843 T
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If a= g the form will be applicable on the surface gener-

ated by the binormals of a curve in space.

§ 108. Constancy of anharmonic ratios. Applicable ruled
surfaces and surfaces of Revolution. We shall now con-
sider the equation of the asymptotic line which is not
a generator.

The equationis 202, du+ 02,,dv = 0. (106.1)

Referring to the values given for £2,, and £2,, we see that
this is an equation of Riccati’s form. It follows that the
equation of an asymptotic line is
_ak+p

= s (106.2)

%
where «, B, y, & are some functions of v only, and £ is an
arbitrary constant.

We thus sec that every generator is cut in a constant
anbharmonic ratio by any four fixed asymptotic lines.

We also notice from the property of Riceati’s equation that
if we are given any one asymptotic line we can find the

others by quadrature.
We have also seen in § 101 that the normal to the ruled

surface is parallel to
udM (cos rp + sin Yrv) +sin 6 p.
It follows that the anharmonic ratio of four tangent planes
through any generator is
(g — %) (g — )
(g —uy) (up— )’

(106.3)

that is, the anharmonic ratio of the planes is the same as that
of the points of contact.

Suppose now that P is any point on a generator, and that
the tangent plane at P intersects a neighbouring generator
in P’. Then in the limit PP’ is the element of the asymptotic
line at P. It follows that the asymptotic lines through four
points on a generator intersect a neighbouring generator in
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the cross ratio of the tangent planes: that is, in the cross
ratio of the points of contact.

We thus have a second and more geometrical proof of the
theorem that every gencrator is cut in a constant cross ratio
by four fixed asymptotic lines. This theorem also is duo
to Bonnet.

The condition that the normals to a ruled surface, at two
points u,, u, on the same generator, may be perpendicular is

W W, M2+ (g +20,) Msin 6 cos Y +sin?0 = 0. (106.4)

The points are therefore corresponding points in an in-
volution range whose eentre is on the line of striction.

No ruled surface exists which is also a surface of revolution
except the quadric of revolution. We see this at once by
considering a surface of revolution in relation to any meridian
line. The asywmptotic lines, through any point on this line,
must be symmetrically placed with respect to the line. If
then one of these is a straight line so will the other be. The
surface will therefore, if it is a ruled one, be a quadric.

But the ruled surface may be applicable on a surface of
revolution without being a surface of revolution. We now
inquire what property the ground form must have if it is to
be applicable to a surface of revolution with generators
corresponding to the meridian lines.

Taking as directrix an orthogonal trajectory of the gencra-
tors we have (2 = (Ju?+ (M2u?+ 2 Nu+ 1) o2 (106.5)

If then this form is to be applicable to a surface of revolu-
tion M and & must be constants, and we sce that the ground
form may be written

ds® = du? + (u?+ ?) dv? (106.6)

where a is a constant,
Thus the catenoid and the helicoid will both have this
form applicable to them.

§ 107. Surfaces cutting at one angle all along a generator.
We now wish to investigate the cordition that two ruled
surfaces with a common generator may interscct at the same
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angle all along that generator. The condition will be found
to have an interesting connexion with a particular class of
congruences.

We have seen that

wM (cos Yy +sin Yrv) +sin Ou

is a vector parallel to the normal to the ruled surface at the
extremity of the vector 2.
As we move along the generator this vector turns through
an angle, remaining of course perpendicular to the generator.
The vector product of the above vector and the neighbouring

vector (w+dw) M (cos Yru + sin ) +sin Opu
is Mduw sin 6 sin A,
But the veetor product is also
(M?w?+ 2 M cos  sin 0 +sin® 0) d A,
where de is the angle turned through ; and therefore

de Msin @ sin y
du ™~ Myt 42 Mesin 0 cos \II +sm2f

Let M = ksin 8 sin

(107.1)

where £ is the ratio of the angle between two neighbouring
generators to the shortest distance between them.  Then

de L

du~ (buteot )i +1°
The equation of the linc of striction is
ka4 cot y = 0.

If therefore we measure o not from the directrix but from
the line of striction we have the formula

de k

do = FPFury1 (107.2)

It follows that if we have two ruled surfaces, for which %
is the same, and one «f the surfaces is given a movement in
space, bringing one of 1ts generators into coincidence with
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the corresponding generator of the other, and the correspond-
ing points of the line of striction into coincidence, then the
two ruled surfaces will intersect at the same angle all along
that generator.

§ 108. The ruled surfaces of an isotropic congruence.
Let us now consider a ruled surface referred to its line of
striction as dircetrix.

Now (§100) ¢ = )" = cos O\ —sin Oy.
}\ = ’l'/l.—(IV,

and, since the line of striction is the directrix, ¢ is zero. We
therefore have {'}\ = 0. (108.1)

Suppose now that ¢ is a vector depending on two para-
meters w and v, and that A is a unit vector depending on the
same two parameters.

Consider the congruence z = ¢+ wA.

Tho congruence is said to be isotropic if ¢ and X correspond
orthogonally. [Sec § 81.]

We have as the conditions for orthogonal correspondence

(\l}‘x =0, {I__)‘Z_*_(\?./)\l =0, f&z =0,

and therefore A= uxg‘,, A, = X\fz,

where @ 13 some scalar function of w and wv.

We thus have d\ = a)(t_l?, (108.2)

whatever be the values of dw and dv.

The ruled surfaces of the congruence are obtained by con-
necting 2 and v by some equation. For any ruled*surface of
the congruence wo therefore have

(A =0, A= a)\{,
where the dot denotes differentiation along the are of the
curve chosen.  This are will be the ling of striction since

AEo;
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and, since ¢ is therefore zero,
A = 7 cosec OA¢.
It follows that @ = 7 cosec 0,

that is, from our definition of % (§ 107),
a=r (108. 3)

The ruled surfaces of the isotropic congruence therefore
intersect at the same angle all along their common gencrator.
They have all the same & at the point where the common
generator intersects the surface w = 0, and their lines of
striction all lic on this surface. This surface is the central
surface of the congruence.



CHAPTER VIII
THE MINIMAL SURFACE

§ 109. Formulae and a characteristic property. If we
give to 2, the vector which traces out any surface, a small
arbitrary displacement normal to the surface at the extremity
of 2, wehave 2’ = z+At, where ¢ is a small arbitrary parameter.

Since ') = 2,4+ ME+AL, 2, = 2, + At + AL,
we have

’ r ' .
'y =a;—22 08, aly, =a,—220,t @y, =y, —22,A,8;
N— N~ N

that is, by (50.9),
a'y = ay =200y, oy = a,—2t0,, dy = a,—2t0,,.
(109.1)

If the area of the surface is to be stationary, under this
variation, then @ must be stationary, where

.
=) Uy — A3 4,
since the area is Jaidudv.

We therefore have
a2y, + ayyd2, — 20, 02, = 0 (109.2)
that is, the sum of the principal radii of curvature must
be zero.
The surface of minimum area, the minimal surface as it is
called, is therefore characterized by the property
R+R'"=0 (109.3)
where R’ and R’’ are the principal radii of curvature.
If we refer to lines of curvature as parametric lines on any
surface 5= RN, 2= RIA,

and therefore, if ay dutt gqtl0?
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is the ground form of the surface, the ground form of the
spherical image will be

(R~ (R")?
The surface and its spherical image will therefore be similar
at corresponding points if, and only if,
(R')2 = (R")?, (109.5)
that is, if the surface is a sphere or a minimal surface.
On a minimal surface
2 = R')\l, 2, =—R"N,,
and therefore 2 R'Aj,+ R', A\ + R’ X, = 0.
It follows that

(109.4)

d . d R
SE(R'}“E) =0, 3% (R’}\i) =0,

and therefore without loss of generality we may say

R'A}=—1, R'A\}=-1. (109.6)

The ground form may then be taken as
R’ (du? + dv?), (109.7)
the asymptotic lines as du?—dv? = 0, (109. 8)

and the ground form of the spherical image as
(R')~! (du? + dv?). (109.9)

We may now write R instead of R’, and since the ground
form of a sphere of unit radius is

d6%+sin?0d¢?,
we must have R(d6%+sin*0d¢?) = du®+dv? (109.10)
If we take w = cob ge“”,

wo see that the complex variable w is the complex variable
on the plane on to which the sphere of unit radius can be
projected stereographically from the pole, if we take the pole
as the origin from which 6 is measured and take the planc as
the corresponding equator. ’
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If w denotes the conjugate complex
0

Ze—

cot 5"

we sec that 4 sin* gdw dw = d6*+sin? 0d ¢2,

and therefore 4 R sin* g dwdw = du® + dv (109.11)

If we regard w+:v as the complex variable of another
planc and denote it by , we have

. 1 6
R = 4
4 cosee 2

de |2

dw

Now the curvature of the form
4 R sint 3 dwdw

is zero; and, from the formula for the curvature of the

ground form ds? = 2 fduwdv,
we have K :f1fz"ff127
and therefore R sint g = f(w) F (w), (109.12)

where f and F are functional forms. If the surface is to be
a real surface these forms must he conjugate forms.

. .0 _
Since cosee? 5= 1 40w

the formula for R may be written
R = (1 +ww) f (w) F (w). (109.13)

We notice that in a minimal surface the asymptotic lines
are perpendicular to one another in general though not
necessarily so at a singular point. This property is character-
istic of the minimal surface.

§ 110. Reference to null lines. Stereographic projection.
We now choose as the parametric lines on the minimal
surfaco its null lines (§ 45) and, instead~of writing w and w,
we take w and v to represent these complex quantities.

2843 U
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""The spherical image will therefore also be referred to its
unull, lines and their parameters will be the same w and % or
« and v.

The normal to the surface is therefore given by

+u) A = (w4v) ' =0 (w—v) " +(wv—1) "+ (110.1)
where //, i/, //" are three fixed unit vectors mutunally at right

angles and ¢ denotes v/ — 1.
It is now convenient to introduce two vectors defined hy

2p=(1—u?)+o(1+u?) " + 20",
20 = (1-0%)  — (1400 + 20" (110.2)

These vectors are conjugate veetors and of course not real.
They are, in fact, generators of the point sphere whose eentre
is the origin.

Such point spheres must play in solid geometry the same
part that the circular lines through a point play in plane
geometry. We iay ecasily verify the following relations
between p, o, and A ;

2,’); = (1+uv)?X, 2po = —(1+ww)?
2p = (14+uv)?A,, 20 = (1+uw)?A,,

;)X = --1p, oA = to,
,’ﬁl = (], 0/3\2 = —IA,
(1 +uv)2X N, = — 202, pP=0, o*=0. (110.3)

We have seen (§ 109) that the complex variable w on the

sphere 0

w = cot 5 e’ (110. 4)

is tho coinplex variable on the equator when we take the
ground form of the sphere to be

d 0% +sin% 0 d ¢?,
and project the sphere, from the pole from which we measure
6, stereographically on to the equator.

The conjugate complex v is the image of w in the real axis
of the plane.
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The complex u fixes a real point on the sphere, since when
w is given its two parts are given and so its conjugate v is
given. If w, is the complex which fixes a point K on the
sphere and wu, is the complex which fixes the diametrically
opposite point on the sphere, we have

14w, =0, (110.5)
and consequently we also have
1+w,v, = 0.
We should notice that we cannot have
wuv+1=0.

The complexes which correspond to the two opposite ends
of a diameter may be called inverse complexes.

§ 111. The vector of a null curve. A null curve is defined
as a curve whose tangent at every point intersects the circle
at infinity. Another way of stating the same definition is to
say that the tangent at every point is a generator of the point
sphere at the point. If 2 is the vector which traces out
a null curve we thercfore havo

d=t = 0. (111.1)

Now the components of a vector which satisfies the equation

a® = 0 may be taken as proportional to

1—u?, ((1+u?), 2u,
and therefore we must have
dz = f" (u) pdu, (111.2)

where f' (w) is some scalar function of the parameter u.

It follows that the vector z which traces out a null curve
may be defined by

5= o () —puf’ (W) + pof ()

since the third derivative of p vanishes.

We now denote the vector of the null ecurve by «, where

o= pf" (w)—p,f’ (W) + py, f (W) (111.3)

§ 112. Self-conjugate null curves. They may be (1) uni-
cursal, (2) algebraic. The conjugate null curve to « is clearly

& = of" (0)=&,f () +onf@), - (112.1)
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where f is the conjugate function to f, and o the vector we
have defined in terms of its parameter v.

A null curve is said to be sclf-conjugate, when for each
value of w a value v’ can be found, where v’ is the conjugate
complex to a complex «’, such that

®, = Gy (112.2)

We gencrally write p without specifying its parameter wu,

but sometimes we may need to bring the parameter into

evidence and then we write it p,.
Differentiating the equation

o, = A,
we have pul’ (W) = o f" (v )(h'
du
so that Vp, 00 =0,
and therefore 1+uwv' =0, (112.3)

If we now write p for p,, and o for o/, we have
ptout=0, p,+o,+20u =0, ulp,+0,+2uc,+2u% =0,
and we can writce
x, = —oulf" (W) + (o, +20u)f (w)

—(op+2uc,+ 21020)4—;—?, {112.4)

&y =af"” (V)=—o,F V) +af ). (112.5)
If we now equate the coefficients of the vector o,, on the
two sides of the equation o, =&,

we sce that fw) =~ u“f(— %) (112.6)

and we see further that this single condition is sufficient to

satisfy the cquation a, =& 1. (112.7)

In order then that a null curve may be self-conjugate it is
necessary and sufficient that the function f which defines
it should have the property

f'("w)'E-uZ.f'(— 1) (112.8)
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If we take
=1

f@)=a(1-w)+aut 2 Ugppy (WPH 4 0172P)

p=1
p=3
+ 2 t,p (UPP —u?"2P) + 1h, (1 +u?)
p=2
p=2 p=g
+1 2 bypir (W2P+ —ul=2r) 44 2 b_’p(uzl;+u2—2p)’
r=1 p=2

(112.9)
where the coeflicients are any rcal constants and the summa-
tions may pass to any limits, we see that the function will
satisfy the condition necessary to determine a self-conjugate
null curve ; and we see that this is the most general function
which will do so.

If we only take a finite number of constants the self-
conjugate null curve which results will be unicursal.

More generally, if we take ffu) to be an algebraic function
of , then f’ () and f'’ (w) will also be algebraic functions
of w. We can then express the Cartesian coordinates of any
point on the self-conjugate null curve rationally in terms of
f), ' (w), £ (u), and w. We shall then have six algebraic
equations, connecting the three Cartesian coordinates and the
four quantities f(u), f’ (w), f’' (), and w. We can eliminate
these four quantities and there will result two algebraic
equations connecting the Cartesian coordinates.

We have now seen how to construct null curves and self-
conjugate null curves; and also how we can construct
sell-conjugate null curves which will be unicursal; and yet
more generally how to construct self conjugate null curves
which will be algebraie.

§ 113. Generation of minimal surfaces from null curves.
Double minimal surfaces. When the minimal surface is
referred to the null lines on it as parametric lines we have

ay =0, ay=0,
and therefore, since @, 2, + @y, d2,, = 26,02, (113.1)
L]
we must have £2,, equal to zer'o.
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That is, we have

4

=0, 2:;

....
Lo
1
L
N
>
3
I
N
>
<
I
o

and therefore, since Az; =0, Az, =0,
we have Az, = 0.

We also have, from 2z} =0 23 =0,

that

and therefore Z1a = P,

where p is a scalar. But Az, =0,

and therefore 2= 0. (113.2)

The minimal surfacc is therefore a particular case of a
translation surface.
A translation surface is defined by

:;:CX-I—B, (1133)

where « is a vector describing a curve whose parameter is w
and B a veetor deseribing a curve whose parameter is v. Wo
see why it is called a translation surface as we can generate
it by translating the w curve along the v curve or translating
the v curve along the % curve.

We might also define a translation surface by

2z =a+p, (113.4)

when we see that it is the locus of the middle points of
chords one oxtremity of which lies on onc curve and onc
on the other.

In the case of the minimal surface we also have

’ (dx)? = 0 and (dB)2 =0,
since z; =0 and z} = 0.
The minimal surface is therefore given by
2z=a+p

where o and B are veetors tracing out null curves.
If we confine ourselves to réal minimal surfaces the null
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curves must be conjugate and the parameters of the two
points must be conjugate complexes. It is obvious that such
conjugate null curves will, if the corresponding parameters
are conjugate complexes, give a real surface, and the converse
may be proved.

If the null curve is a self-conjugate curve, however, we
must take as the corresponding complex, not the conjugate
complex, but the inverse complex.

Thus the general real minimal surface is given by

22 =&, +0Q&,; (113.5)

and the real minimal surface generated from a self-conjugate
null curve is given by 2, = a, +o‘(~1)’ (113.6)

where the suftix is the parameter of the null curve which is
to be taken.
We notice that in the minimal surface

2z = au+a(_1),
v

as we pass from the point whose parameters are u, v by
. . 1 1
a continuous path to a point whose parameters are — 2
we return to the point from which we started; the z of the
point will be the same but the A will be changed into —A.
That is, we are on the other side of tho surface. For this

reason the surface is called a double minimal surface.

§ 114. Henneberg’s surface. We have now seen how
minimal surfaces are generated from null curves, and how real
minimal surfaces are to be obtained, and how real double
minimal surfaces may be generated.

From what we said about the construction of null curves
we see how to ohtain minimal surfaces which will be rational
functions of their parameters and how to obtain more generally
algebraic minimal surfaces; and from what we said about the
construction of self-conjugate null guives we can construct
these surfaces to be double minimal surfaces.
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Thus

2::((1,,;"?")" Li’i)) +e ( - )*(HU))

+3 (u2+u‘2+v2 +v ) " (114.1)

will be an example of a real double minimal surface as may
casily be verified. It is known as Henneberg’s surface.

It may casily be shown that a minimal surface will then
only be algebraic when the null curves which generate it
are algebraic.

§ 115. Lines of curvature and asymptotic lines on minimal
surfaces. We Liave for a minimal surface
s =a+p
and, if the surface is to he real,

25 = o, +5(,J.
It follows that

25, = pf" (W), 22, = o (v),

and therefore 4;7:, =" () f" (v) ;}.

But 4/;;::(1+1w)‘}\:)\1,
and, if R, — R are the principal radii of curvature of the
surface, 972-.; _ —R"’XT}W-

We therefore have
16 12 = " (w) f*'" (v) (1 + uw)t, (115.1)

If we wute 7w = ( ) 7 (v) b‘(l)’) ,
412 = b\lf \I' + uv)?

then )

ddrn 2
and "’(au ’ m’(af '
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We then have
2 s 2
de? = %Bg(aa_‘f:) (ba\f) dudv

=-1(1 +uv)'~’(§_g)2 (%%—)z dudv

= —Rdyd,
so that if =&+, @ =€—uy
we como back to the ground form
ds® = R (g +dn?)

for the surface.

The lines of curvature are

& = constant, 7 = constant,

and the asymptotic lines are

£+ n = constant, ¢—7n = constant.
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We may therefore say, if I8¢ (u) donotes the real part of

¢ (w), that one family of the lines of curvature is

Rf/f’” (w) du = constant, (115.2)

and the othor Rtf V" (w)dw = constant ; (115.3)
whilst the asymptotic lines are given by

RJ‘ Vif" () du = constant, (115.4)

RJ‘«/——tj”’ (u) dw = constant. (115.5)

§ 118. Associate and adjoint minimal surfaces. The surface

obtained by substituting for f the function ¢*f where o is
a real constant is said to be an ussociate minimal surface

to f; and when we take for o« the number T it is said to be

2
the adjoint minimal surface.

An associate minimal surface is applicable on tho surface
to which it is associatc and the npormals are parallel at

corresponding points,
2843 X
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If ¢ is the vector which traces out the adjoint surface to 2
2dz = " (u) pdw+f"" (v) adv,
2d¢ = o(f" (w) pdw—f"" (v) alv), (116.1)
so that these two surfaces will also correspond orthogonally.

We see that ©— ¢ traces out not a surface but a null curve,
and s+ traces out the conjugate null curve.

Since ;)\\ =—1p, oA = o,
we also see that d¢= Xz, (116.2)

If then we are given a curve on the surface we shall know
the ¢ which will correspond to z along this curve, if we
know the normal to the surface along the curve. We shall
therefore know z +:1¢ and c—¢ along the given curve, and
thus have the null curves which gonerate the minimal surface.

The formula o, = 5— tJ‘)/\T[.: R (116.3)

is due to Schwartz.



CHAPTER IX

THE PROBLEM OF PLATEAU AND CONFORMAL
REPRESENTATION

§ 117. The minimal surface with a given closed boundary.
Any account of minimal surfaces would be incomplete without
some reference to the problem proposed by Lagrange: ‘To
determine the minimal surface with a given closed boundary,
and with no singularity on the surface within the boundary.’
This problem is known as the Problem of Plateau, who solved
it experimentally. The problem has not yet becn solved
mathematically in its general form; but has been solved in
some particular cases, where the bounding curve consists of
straight lines and plane arcs of curves.

Jonsider a part of the bounding curve, which is a straight
line, on a minimal surface. This line must be an asymptotic
line on the surface. Now we saw (§ 109) that, when the
surface is veferred to the lines of curvature, as parametric
lines, the equation of the asymptotic lines is

du?—dv* = 0; (117.1)
and the ground form of the surface is

R (du® +dv?), (117.2)
and the ground form of the spherical image is

R (du? + dv?). (117.3)

Wo conclude that when the surface is conformally repre-
sented on the plane, on which « and v are the rectangular
coordinates, the asymptotic lines are conformally represented
by lines parallel to the bisectors of the angle between the
axes, and the lines of curvature, and also their spherical
images, are conformally represented *by lines parallel to
the axes. * '
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If a part of the bounding curve is a plane curve, whose
plane cuts the minimal surface orthogonally, and is therefore
a geodesic, it must be a line of curvature. It will therefore
be conformally represented on the plane by a line parallel to
one of the axes.

If then the whole of the bounding curve is composed of
straight lines and such curves, the bounding curve will be
conformally represented on the plane by a figure, bounded
by straight lines, parallel either to the axes or to the
bisectors; and the part of the minimal surface, within the
boundary, will be represented by the area of the planc within
the polygon.

Next let us consider the spherical image of the surface
within and on the boundary. At each point of the boundary,
the normal to the surface will be perpendicular to a direction,
which will not change as we pass along a continuous part of
the boundary, but will change at cach angle of the boundary.

The boundary will therefore consist of “ares of great
circles.

If therefore we can find a function of w, the complex
variable which defines the position of any point on the sphere,
which will transfoim the spherical boundary into the plane
boundary, and points within the spherical boundary to points
within the plane boundary, we shall have w+ (v known in
terms of w, and can proceed to find the required surface as
follows.

We have (109.10) for an element of the sphere

do? = d6* +sin? 0 d ¢*, (117.4)
so that w = cot g ¢ (117.5)

is the complex variable which defines the position of points

on the sphere.
The normal, to the sphere, which is given by w, is by (110.1)

(1+ww)A = (w+w):" —(w—2) " +(ww—1) ", (117.6)
where ¢, "/, /" are+fixed unit vcetors, mutually at right
angles, ¢ is ¥/ —1, and w the cofjugate complex to w.
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Now we know that in terms of w and v
do? = R (du? + dv?)
and therefore R~ (du®+dv?) = d6*+sin® 6 d ¢ (117.7)
As we have seen in § 109, R is therefore known, being
given by da |2

dw

We can therefore construct the surface since B and A are
known in terms of w and %,

We can retrace our steps and see that the surface we have
obtained satisfies the conditions required.

We are thus led to the problem of conformal representation,
and this we proceed to discuss, so far as it bears on the
question before us.

R = %(l +wz_u)2

(117.8)

§ 118. The notation of a linear differential equation of
the second order with three singularities. Let a, ¢, b be
three real quantities in ascending order of magnitude, and let
« be a complex variable,

When z lies on the real axis between —o and «, or
between b and + o, we sce that

b—c v—a
b—w w—c

lies between zero and positive unity. When 2 lies between «
and ¢ c—b x—a

c—u w—0b
lies between zero and positive unity. We also see that the
reciprocals of these two expressions lie between zero and
positive unity, when z lies between ¢ and b.

When « is complex we see that the modulus of one of the
first two expressions is less than unity, or the modulus of
each of the reciprocals is less than unity.

Let oy, oy, By, B, ¥1s ¥, be six quantities real or complex,

but such that oG+ 0+ B+ Bty +y. = 1; (118.1)
and such that the real parts of

o —ay, ﬁz‘— B, Yo7
are each positive.
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Lt pz=i=0=% 1=B=B 1-vi=v (159
z—a z—0 r—c
(x—a) (@-"0) (x—c)Q
=% (@=b)(a=c) BBy (b—0a)(b=0c)  y,v,(c=a)lc=D)
- T—a z—b r—c ’
(118.3)

and let (o4, By Y1y %5, By, ¥ay @4 D, 0, 2)
denote the hypergcometric series

p(p+1) (I((I+1)£z+._. (118.4)

' . f) = p-q
It(p,q,o,f)_.1+l.r§+

1.2 r@+l)

where p = 0+ 8, +y,, ¢=0+B,+y, r=1+40—0,
c—bx—u
f“c--wu/;—b

We notice that I> and @ are unaltered by the following
substitutions :

(0q09), (BiBy)y (v172)s (Bivy) (Bay2) (be),
(710q) (Y225) (), (B)) (2,8,) (ud). (118.5)

§ 119. Conformal representation on a triangular area.
Consider now the differential equation

d?y da
Herlagy=o. (119.1)

It is known, and may easily be proved, that

y = ( )“x (w c\n (a=b)Xtn

-—/) (u_c)"l
(011 Bl, Y1 Ko Bzy Y2 @, b: ¢, (l:) (119. 2)

is a power series, beginning with (z—a)% for its first term
and expansible in powers of #—a in the neighbourhood of
@ = a, which will satisfy the differential equation. This
series when @« lies on the real axis is valid when « lies
between @ and c. It is therefore valid at any point in the
plane, the cirele through, whlch having o and b as limiting
points, intersects the real axis between a and c.
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Another power series also beginning with (z—a)* can be
obtained from the first by applying the substitution

(B171) (Byys) (be)

to it. The two series will therefore be identical at any point
where they are both valid. The sccond is valid for real
values of & between —oo and « and between b and + .
The region for which it is valid, when @ is complex, can be
obtained by a similar rule to that which was used as regards
the first series.

When one series is valid, but not the other, the valid serics
is a continuation of the other. We denote these series by Y.

By applying the substitution (x,a,) wo obtain two other
scries beginning with (x—«)%, valid over the same part of
the plane. We denote these series by Ya,.

By applying the substitution (y,o,) (y,a,) (ce) we get two
serics, Yy, beginning with (x—c)"1, and Yy, beginning with
(x—c)™, valid over the part of the plane which corresponds
to real values of & between ¢ and b.

By applying the substitution (8,y,) (B,y,) (bc) to these last
two serics we get two other serics, Y3, beginning with
(x—0b)%, and Y B, beginning with (x—0b)%, valid over the
same part of the plane. All these series, when valid, satisfy
the equation.

Let Ww = ._Y;‘Z
Yo,

Then we sce that, as x describes the real axis from b to +w,
and then from —o to @, w varies continuously and its argu-
ment is 7 (o, — o), if we agreo that the argument of a positive

- —7at e A+

quantity is to be taken as zero, and the argument of a
negative quantity as m, as & describes the real axis in this
definite way. '

Let @ be the point in the w pl&ne which corresponds to
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x =0b, and let I’ be the origin in the w plane corresponding
to = «. As x deseribes the path defined, w describes the

straight line QP

When @ deseribes the semicirele about « the arcument of 1w
diminishes by 7 (x,—q,;), and as @ describes the real part of
the axis the argument of 10 remains zero, till we come to R,
which corresponds to « = c.

Wo must now consider what happens as « deseribes the
semicircle round ¢, and then, passing along the real axis,
comes to b and passes round the semicircle there.

Over any part of the plane which corresponds to real values
of 2 between ¢ and b we can express w in either of the forms

C+DY2
Y')’l

Yg
A'+ B’ ;72
Y, ,
Yg
C'+ D" 50
Yg,
where A, B, C, D and A4’, B, C', D’ are certain constants.
Wo see this from the known properties of a linear differential
equation of the second order.

Now the argument of %:lz is the same as that of
1

Xr—C Ya— "1
— (c—a
(pogle=@)™ ™

and therefore zero, as  passes #flong the real axis from ¢ to .

or
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It follows that w describes a circle which passes through
Q@ and R.

The increment of the argument of w — g as we pass along
the semicirele ¢ is the same as the increment of the argument
of };—zz; that is, it diminishes by = (y,—v,). The circular

1
arc through R therefore makes an angle 7 (y,—1v,) with RP.

In the same way we see that the angle at Q is = (B,—8,).

Since, when « moves from its real axis to the positive side
of its plane, w must move to the inner part of the triangle
PQR, we sec that the positive part of the plane of x is con-
formally represented by the inner part of the triangle.

§ 120. The w-plane or part of it covered with curvilinear
triangles. Consider now the transformation
o = pr+q
re+S8
where p, q, 7, 8 are any constants, recal or complex.
If « deseribes a circle (or as a particular case a straight
line) in its plane, so will «’. If 2, and «, are any two points

P

R Q

inverse to the circle x, then ', and @', will be inverse to
the circle a'. :

We thus see that if P, @, R are the three points which, in
the above transformation, with Y&, - Y&, substituted for z,
correspond to the singularities at @, 0, ¢, the curvilinear
triangle PQR, formed by three circular arcs intersecting at
angles Aw, pm, v, where :

A==, p= PR3-, v=y,—y

2848 Y
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will enclose the part of the w plane, which conformally repre-
sents the upper part of the x plane.

Let w be the complex variable which defines any point S
within the triangle PQR, and let 2, be the complex variable
which defines the point S, which is inverse to S with respect
to the arc RQ.

Let w =0T (120.1)
. ™0 +8

be the substitution which transforms the arc R to a part of
the real axis of w in its plane.

Then }7’?47 + 7 and 7171)’ i(]

(120.2)
rT0+8 oy +8

are inverse to one another with respect to the real axis of 2.

Let f(r) be the function of # which we found would in
this case transform the upper part of the « plane to within
the curvilinear triangle in the w plane. We now assume the
quantities oy, a,, 8, B,, 71, ¥, to be all real. Along the real
axis of the plane @ the coeflicients in f(«) will be real, and
therefore f(z) will be the function which will transform the
lower part of the plane x to points without the curvilinear
triangle, where & denotes the conjugate variable to «.

We therefore have

pw+q . 7)7( +q
7‘w+s_f(®) and +s-j( )
It follows that
_sf(@)— o = S @)—q
v p—-'rf(w) and w, = @) (120.3)
and conséquently we have
- 8f(x)—
W= =g 120.4
p—rf (90) ( )

Eliminating f(Z) we have

¢ (ps—qr) w+qs—qs

G =y wt pi—gr
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If then w = F(x),
and w, = ¢ (&),
then 6 (3) = P=q F@) +8—g5 (120. 5)

(pr—rp) F @)+ pi—qr

If B is the inverse of P in the arc QR, we thus see how
the Jower part of the « plane is conformally represented on
the triangle BQR in the w plane.

Similarly if @, is the inverse of @ in RP, and R, the
inverse of R in P(@), we can conformally represent the lower
part of the « planc on the triangle @, RP, and on the trm.ngle
R, PQ.

Just in the same way from the triangle KQR we can by
inversion obtain three other triangles, one of which will be
the triangle PQR. These triangles will give conformal repre-
sentations of the upper part of the plane x on the plane of .

Proceeding thus we cover the whole, or a part, of the
2 plane with curvilinear triangles.

§ 121. Consideration of the case when triangles do not
overlap. In general these triangles will overlap, so that
a point in the w plane may be counted many times over: in

) ¥

fact, unless A, p, v are commensurable, a point in the w plane
which lies within any triangle will lie within an infinite
number of triangles. If,however, A, p, v are each the reciprocal
of a whole number there will be no oVellappmg at all. We
now confine ourselves to this dase.
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One and only one circle can be drawn to cut orthogonally
the ares of the fundamental curvilinear triangle in the aw
plane. By inversion we may take PQ and PR to be straight
lines.

We see that the two straight lines and the circle divide the
w plane into eight parts. We see, however, by considering
the original figure with which we began this discussion, that
the triangle with which we are concerned is the shaded onec.
For at the point Z the variable w will move in the direction
of the arrow, for a corresponding movement of z to the upper
part of the z plane; and, as w will not move oft' to infinity,
the triangle could not be the outward part of

R

The triangle PQR is therefore of one of the two forms

R R

P Q NC I

In case (1) P must lic within the circle of which RQ is
the arc.
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For, otherwise, the sum of the angles at @ and It beiné—for

. 1 1 1
we are now assuming A =2—), B = (—1, V=,
1 1
71'(& + ;)s

the sum of the angles at Q' and R’ would be

N

and therefore 2 — 1.1 < 1,
q

But this is not possible if ¢ and » are integers. No real
circle can therefore be drawn with P as centre to cut the are
QR orthogonally in case (1).

The two cases are therefore thus distinguished : in case (1)

Abp+r>1, (121.1)
and the orthogonal circle is imaginary : in case (2)
Aptr<l, (121.2)

and the circle which is orthogonal to the three ares is real.

§ 122, Case of a real orthogonal circle as natural boundary.
Taking case (2), the circle, whose centre is at > and which
cuts the arc QR orthogonally, must intersect the circle QR at
the points of contact of tangents to the circle from P. Clearly
these points are without the arc QR, since the arc QR is

convex with respect to P. The points £°, @, R therefore lie
within the orthogonal circle. When we invert with respect
to a point outside the orthogonal circle we have three circular
arcs within the new orthogonal circlé. By considering the
point 7, which is the inverse bf P with respect to QR, we see
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that I, also lies within the orthogonal circle. Proceeding
thus we see that all the curvilinear triangles are within the
real orthogonal circle which corresponds to the case
Atut+v <1

In this case, therefore, only the part of the w plane which
lies within the orthogonal civele is covered with the curvilinear
triangles, which conformally represent the x plane on the
w plane. This circle is therefore the natural boundary of
the function which, with its various continuations across the
real axis of w, conformally transforms the x plane to the

w plane.
Since there are an infinite number of solutions of the in-
equality 1 1 1

S+ o+ -< 1,
» 9

where p, ¢, and » are integers, we get an infinite number of
triangles which grow smaller and smaller as we continue to
invert and invert: and as we approach the .boundary—the
orthogonal circle—the triangles tend to hecome mere point
triangles.

§ 123. Fundamental spherical triangles when there is no
natural boundary. We now consider the first case when

1 1 1

S+ o+ >1

r g9
and the orthogonal circle is imaginary.

If we stereographically project the w plane on to a sphere
which touches the w plane at the real centre of the orthogonal
circle, the fundamental curvilinear triangle becomes a spherical
triangle which we shall now denote by ABC.

The only possible solutions of the inequality are

(1) p=2,¢=2 r=m; (2) p=2,g=3, r=3;

(B) p=2 q9g=38,r=4; 4) p=2,q=3,r=>5;
or equivalent results obtained by permutation of the integers.
We lose nothing by taking 4, B, C' to be the correspondents
to the singular points «, ¢, b in the « plane,

We may thus ha.ve'fo; the fundamental spherical triangle
any of the four figures which follow.
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The operation of inversion is now replaced by the simple
operation of taking the reflexion of each vertex with respect
to the opposite side. We see at once that the whole surface
of the w sphero is covered by the triangles and their images.

NA A

In the first casc we have 2m triangles in the upper part of
the hemisphere and 2 triangles in the lower part.

In case two we have a triangle whose area is 5% that of the
sphere, and by taking the six triangles with a common vertex
at A we have an equilateral triangle whose area is % that of
the sphere: that is, we have the face of a regular tetrahedron.

In case three, which is just that of the triangle formed by
bisecting the angle C' in case two, we have a triangle whose area
is 75 that of the sphere. By taking the eight triangles with
a common vertex at A4 we have the equilateral quadrilateral

whose area is § that of the sphere, that is, the face of a regular

2 o s
cube. Its angles are each .-3”:; and it is also the figure
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formed by planes, through the eentre of the sphere circum-
scribing a regular tetrahedron, perpendicular to two pairs of
opposite edges.

In case four we have a triangle whose area is 35 that of
the sphere. By taking the six triangles, with a common
vertex at B, we obtain an equilateral triangle, whose area is
7% that of the sphere : that is, a face of the regular icosahedron.

§ 124. Summary of conclusions. When A, g, and v aro
then the reciprocals of integers, we have found functions w
of the complex variable, which will conformally transform
the upper and lower halves of the & plane into the area
within the curvilinear triangles in the w plane. To each
point in the 2 plane there will correspond, in the w plane, one
point in each triangle or in the triangle adjacent which is
its inverse. The real axis will be transformed into the
circular boundaries of these triangles.

Two differeat points in the z plane cannot have the same w
to correspond to them. For by taking A, y, and » to be the
reciprocals of integers we have provided against any over-
lapping in the w plane.

It follows that x is a uniform function of 2.

In the case where A+pu+v > 1 there are only a finite
number of values of w which will make « zero or infinite;
and therefore z will be a rational function of w. We could
express each value of w which makes « zero in terms of any
one, and thus obtain the numerator of the rational function.
Similarly we could find the denominator. As we only wish
to give a general explanation we do not enter into any details.

We have now shown how to represent the w plane, or its
equivalent sphere, on the & plane.

§ 125. Representation of the a-plane on a given polygon.
To complete the problem of conformal representation in so
far as it bears on the problem of Plateau, we have now only
to show how the z plane can be conformally represented on
a given polygon. The' procedure is much the same as in the
problem we have just discussed, out much simpler.
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Let a, ¢, b be defined as earlier and let o, B, ¥y be three
real constants which are positive, and such that

a+B+y =L (125.1)
Let X ij (z—a)*~ ! (x=DP- 1 (m—c)" Tdx, (125.2)

and let A be the position which X attains as « moving along
its real axis approaches a.

As x moves along the real axis in its plane from —w to a,
the argument of X is zero, so that it too moves along the
real axis of its plane. As x moves along the small semi-
circle with centre at a, the argument of X diminishes by amr.
As « then moves along the real axis to ¢, X moves along
a straight line AC to C, the point which corresponds to c.
When « describes the semicirele at ¢, the argument of X
again diminishes by yw. Then as @ moves along the real
axis from ¢ to b, X describes a straight line CB to B the
point which corresponds to 4. X is now again on its real
axis; and as x describes the semicircle at o the argument of
X diminishes by Bw. Finally as  moves along the real
axis to +o0 and then from —ow to ¢, X describes the straight
line BA.

We thus have the figure

T
Bﬁ a.‘rA

in the plane of X, and the upper balf of the 2 plane is con-
formally represented by the area within this triangle.

By a transformation of the form X’ = pX +¢ where p and
q are constants the triangle may be transformed into any
similar and similarly placed triangle in the plane of X ;
and thus the upper half of the & plane may be conformally
represented by the area within the trlangle ABC which lies
in the plane of X anywhere. * ’

2843 Z
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We thus see, as before, that the p]ané’of x can be repre-
sented by a series of triangles in the plane of X, which will
cover it completely. But if there is to be no overlapping we
must have «, 8, and y to be the reciprocals of integers.

Thesc integers must satisfy the equation

1 1 1
2_)+6+;_1, (125.3)
and we see that the only solutions of this equation are
p =6, q=3, r=2;
P =4, g =4, r=2;
]):3, qg= 3, r=3. (125.’1)
Wo thus have three cascs
B

m
3

y

E)

1=
)
i}

A dle acs c AS ¢
and we see into what kind of triangles the given polygon
must be decomposable in order that & may be a uniform
function of X.

We see that X is a doubly periodic function of z; and
from the above triangles, and their images in the sides, with
respect to the opposite vertex, we can construct tho period

parallelograms.

§ 1268. We have found corresponding to each value of w,
the complex variable of the sphere, a definite value of .
This value of = will under certain circumstances which we
have considered be a rational function of w. To this value
of  we must choose,’as its correspondent X, that value, or
those values, which lie within the given polygon. Since
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the values of w which lic on the boundary of the spherical
polygon are to correspond to values of X lying on the
boundary of the plane polygon, and since these values of w
correspond to points on the real -axis of », we see that the
polygon must have its boundary made up of sides of the
elementary triangles in the X plane.

The principal results in theé theory I have tried to explain
in outline are due to Riemann, to Weilerstrass, and to Schwartz;
and my presentation is based on the treatises of Darboux and
Bianchi. The connexion of this branch of Geometry with
the Theory of Functions is interesting.



CHAPTER X
ORTHOGONAL SURFACES

§ 127. A certain partial differential equation of the third
order. We now want to consider the theory of a triply
infinite system of mutually orthogonal surfaces; and we
begin by considering the partial differential equation of the
third order

20 26 .. 00 _
')5?4‘(]5& + sech ‘Lm_qtanhtb, (127.1)
where 20 = tan~! 2s+?,qvt@ll_‘:c_‘ (127'2)

r—t+2ptanh e
and ¢ is the dependent variable and ., y, and w the inde-
pendent variables. [Here p, ¢, 7, 8, ¢ denote respectively
o0 dz Nz 2r ¥
oz’ dy’ wt’ dady’ w']

We shall see that it is on this equation that we depend
when we wish to obtain the general system of orthogonal
surfaces.

Let = be any function which satisfies this equation, and let

)
\——cot() , V“ +tzm0
) ) d
2, ¢ 2., 9
W = peosh TS5 + q cosh z3 37 + 300

then it is not difficult to verify that
UW-WU = U (pcosh?z).U,
VW—WV = V(pcosh?z). V. (127.3)

It follows that a functlon w exists which is annihilated by
the operators V and’ W, and also a function v annihilated
by U and W.
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We may thercfore regard @ and y as functions of u, v, and
, and we have

du du — 0 duw +bu7+bw_0
w2ty =0 Ght Y ’

Y dw
b_vw+b7;? —0 bvw_*_bvQ +.E"_._0-
du N 337‘/‘_— o @JL‘ dw

where the suffixes 1, 2, 3 respectively denote differentiation
with respect to w, v, .
But from the definition of « and v we have

d1 1t duw dww . duw

hit v 2,9% 2,007 4 T
" +tan03y =0, pecosh a’bw + q cosh xby + i 0,
QY dv g OV OV dv .
3., — oot 603; =0, pcosh x5+ cosh a,ay +t5,=0

and thercfore it follows that
x,+y,tand =0, ,—y,cotf =0,
x;—peosh?z =0, y,—qcosh?x = 0. (127. 4)
We now see that
d d d
55, =.ux, U, —b—v =&, V, m = ‘V;
so that the equation with which we began becomes
0, = qsinha cosh«, (127.5)
that is, 0, = y;tanha.
We thus bave the threc equations
2z, +y,tan 0 =0, a,—y,cot § =0, 0,=y,tanhe. (127.6)
Now let

COSM siny_te_
§=G'”*—2— =e® 2 g:tun?l___o
= il TE e EM

€08, — 08

so that tan 6 = 17155‘ ,
E+n¢

then we can verify that

Si—n6+{m =0, n,—(E,+EC = g, G—Enytnéy=0.
’ (127.7)
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§ 128. A solution led to when functions satisfying a set
of three equations are known. By retracing our steps we
may verify that if we have any three functions which satisfy
these cquations we shall be led back to the solution of the
equation of the third order. For we have clearly

¥ +y,tand =0, a,—y,cotd =0, 6,=y,;tanhx;

)
—=ux,V.

]
and therefore =4 U, oY

Now —b— =8in20U +cos?20V, 3« =sinfcos(V-U);
dw oy

and therefore we can verify that

0wy Yy
dy cosh®e ~ dz coshfz’
so that z, = peosh?x, y, = qcosh®.. (128.1)
From @+ 73 tan 6 +y,sec? 66, =0

we verify that
U (p cosh?.r) +tan 6 U (q cosh®x)
= (cot 0 + tan ) ¢ sinh « cosh ,

28+ 2¢gtanh x

., = - 2
and therefore tan26 = Tttzptanha (128.2)
. d .
Finally we sce that oy = W,
and thus the equation 6, = y,tanha
or 0, = ¢sinha cosh
becomes W0 = q sinh z cosh . (128.3)

The equations

E—nG+dm =0, n—(6+E6L=0, G—Entnb =0
are thus connected in the way we have described with the
partial differential equation of the third order.

§ 129. The vector qaq~!, where & is a vector and ¢
a quaternion. We now pass on to the geometry which we
associate with these thrée equations,

If we are given any vector anti any scalar quantity we can
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take the vector to be rsin 6. e and the scalar quantity to be
7 cos 8, where € is a unit vector.

Let q = r(cos 0 + esin ), (129.1)

then ¢ is called a quaternion, e is called the axis of the
quaternion, 6 is called its argument, and » is called its modulus.

A quaternion is thus just the ordinary complex variable of
the plane perpendicular to the axis of the quaternion.

We have ¢! =271 (cos § —esin b). (129.2)
Any other vector may be written
ze +ye, (129.3)
where 2 and y arc scalars and €' is some unit vector at right
angles to e.
We see that qxe +ye)q!
is equal to x(e' cos20+€" sin 26) +ye, (129.4)

where €'’ is the unit vector perpendicular to ¢ and ¢’. That
is, if o is any vector, quq! (129.5)
is just the vector o rotated about the axis of the quaternion
through an angle double the argument of the quaternion.

§ 130. Passage from set to set of three orthogonal vectors.
Let us now consider the quaternion
(l=1+f1:+17j+§/0, (130.1)
where ¢, j, & are fixed unit vectors at right angles to one
another and ¢, 5, ¢ are any three scalar functions of the
parameters u, v, and w.

Dyt = 1—gi—nj—¢k,
where D=1+&+92+ . (130.2)
Let =qiq7y p=qiqt, v=qkq?, (130.3)
then A, g, » will also be three unit vectors mutually at right
angles to one another, no longer fixed vectors but depending
on the parameters u, v, w.

Any system of mutually orthogonal unit vectors can he so
defined. ’



176 ORTHOGONAL SURFACES

We easily see that
DTy = (6 =n6a+ Cm) i+ (= Gy 4 £6) + (G bmt né) b

(130. 4)
Now | 9970 eT = aah
and therefore qq’:l\qlq‘l = q’;[".

It follows that
Dgrq~ = (= néy+ ) N+ (7, — S+ £¢) 1+ (¢ — Emy + ) v.

(130. 5)
From qt = Aq
we have GO A=A 7 = A,
and therefore ﬁ[“lk—hq:?l_l = A

It follows that, since
pr—vp =2X, vA—Av =2u, Ap—pX =2y,
DX =—=2(n,— & +EG) v+2 (L —én o) p. (130.6)
Let 3Dp' =& —n6+¢n, D¢ =0, - +£6,
DY =G —én+nd 3 DPY = =0l + .
3D =0, =6+ €, 3D = (—Eny+ g,
3 Dp" = g—ns+{ny, 3D = ny— e+,
3 D" = (—Eny+ nés;

then we have proved (130.6) that A, = ' —vq’; and similarly
we prove the other equations of the system

A =pr’—vy, py = vp’ =1, vi=Aq'—pp’,

A‘z — #rfl_yq’/’ l‘z — Vp"_A7"” V2 _— AI[”—FZ)”,

—;‘p,',
(130.7)

It may be noticed that the ¢’, ¢/, ¢’’’ as herc defined have
no direct relationship to the quaternion ¢ where

=1+&i+n5+ ¢k
If o' =pA+g'p+ryv, " =p"X+¢"p+1"v,

1y _*

2),"A '*"ql"}l‘l"?‘l”l/,

s

Aa — F’I‘”’—Vq'”, /‘3 - Vplll_krlll’ Va P Aq

w
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~ - -
we see that A\, = ', p, =o'py, v, =0’y
— — ,’7
Az = w")\, /“z = "/,L, y2 = V,
— ~~~ —~
AN=o""A, pm=0o"p v,=0"v, (130.8)

and we can easily verify from the formulae given that
o =207 o =2¢q7, o =2¢¢" (130.9)
where ¢ is the quaternion.
Wealso have—as we proved carlier [see § 90]—the equations

o', —o", = o W', o, -0 = oo, @’ -0, = oo’
(130. 10)

The angular displacements of the vectors X. p, v regarded
as a rigid body are ¢y, o'dv, o' dw. (130.11)

§ 131. Rotation functions. So far we have been consider-
ing a system of three unit orthogonal vectors of the most
general kind depending on threc parameters, and we have
seen how they depend on the quaternion

1+ &+ nj+ ¢k

We now want to consider the particular system characterized
by the property that »" = " = """ = o, (131.1)
that is, by the property that &, 5, ¢ satisfy the three equations
(127.7) which in § 128 we connected with the partial differential
cquation of the third order with which we began our discussion.

We now have from (130.7)

Al — /‘,'_r__yq/’ Az — /i""", 7\3 — _anl,
m=—A By =wp" =" gy =",
Vl — Aq’, V2 —_ —l‘l)”, Vu —_ A(I’”—‘/‘[}”’.

It will be convenient to write
Q¢ =(31), =12, p"=(23),
' =—(21), p""=-(32), ¢ =-(13),
when the above equations become
MN+Hpu@l)+v(31)=0, u,+v(32)+A(12) =0,
v+ A (13)+p (23) =0,
A, =p(12),  pp=A(21), ¥ =A(31),
AN=r(13), p=%(23)," v,=pu(32). (131.2)
2843 A a
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The six funct_ions
(23): (32)" (31)’ (13): (12)9 (21)

we shall call rotation functions. They are connected by the
laws

(23), + (32),+ (12) (13) = 0, (31),+(18),+(23) (21) =
(12)1+(21)2+(31) (32) =0,
(23), = (21)(13), (31), = (32) (21), (12); = (13)(32),
(32), = (31) (12), (13),= (12) (23), (21), = (23) (31),
(131.3)

as we can at once verify from the equations satisfied by
A, p, v. We can express these rotation functions, as we have
done, in terms of £, 7, ¢ and their derivatives.

§ 132. A vector which traces out a triply orthogonal
system. Now consider the system of equations

0(,:3(12), 63:')/(23), ‘ylzd(:ﬂ),
o, =v(13), By=a(21), y,=B(32), (132.1)

where «, B, y are scalars to be determined by these equations.
We see at once from the set of conditions

(23), = (21) (13), (31), = (32)(21), (12), = (13)(32)
(32), = (31)(12), (13),=(12)(23), (21);= (23)(31)

that they are consistent.
Let o, B, y be any three functions which satisfy them, and let

c=oaA+Bu+yr. (132, 2)
We have 2 = (q+B 2N +yBL)A,
' g = Bty (32) +a(12))

5= (ys+a(13)+ 8 (23)) , (132.3)

and thereforc the vector z traces out a triply orthogonal
system of surfaces.

Conversely we see ﬂmt there is no triply orthogonal system
of surfaces which cannot be obtained by this method.
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§ 188. Lines and measures of curvature. If we tako
« =0, +B 24y (31), b=RB,+v(32)+a(12),
€= y;+a(13)+B(23),
we have Z,=aX, z,=bp, z,=cy,
and we see that
a,=0(21), b,=¢(32), ¢, = a(13),
uy; =¢(31), b,=a(12), c,=b(23),

d
=20 b‘“ log (1 3)'“'2 2 Iog (23),
O3 = (‘b 100(13)+c(31) (13),

Cn = €5 100' (23) +c¢(32) (23), (133.1)

and that these three ]ast equations together with
o _ O
) T (e3)
arc equivalent with the first six.
The three orthogonal surfaces are

(133.2)

1 = constant, v = constant, w = constant;

the unit vectors parallel to the normals at the extremity of
the vector z are respectively A, p, v

b cA
We h Ty = s Ay =1 .
e have (12)>\" 23 13) (183.3)
and therefore the curves along which only v and v respectively
vary are the lines of curvature on the surface w = constant,

and its principal radii of curvature are
b c

15 " 1

We thus have the fundamental theorem about lines of

curvature of orthogonal surfaces, viz. that they are the lines
in which the two other surfaces intersect one of the surfaces.

If we consider the curve in space along which only u

varies, and if we suppose its prmcxPal norma] to make an
angle @’ with the vector u,*and p’ and o' to be its two

(133.4)
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curvatures, we have in the notation we used in considering
curves in space (see § 94)

. cosd’ sin 6’ , coq 0
A=— ,—p— ',”V; ,u—-(0+ )

’

P

= 312'6,)\ - (¢+ ;),1. (133.5)

Now ak =7, ap=up, av=uv,
since adw is the element of arc of the curve, and as we have
MN+Hp(Cl)+v(31) =0, u,=2A(21), »,=A(31),
we must have

o1 —acos b’ asin 6’
6+y=0, (21):——,),—~, (31) = ra
Thus considering the three curves we get
: 1 : 1 : 1
0I+ _7 — 0, 0’/+ —7; — 0, 9”/+ ’I’= 0’
(T a' ~
s 'n 61// . ’ 173
@23) =57,  (31)= ‘ﬁfl"‘ﬁ , (12) = qu 0" ,
P P P
. —beos§” —ccos 6" —acos 6’
(32} =TmmEh T (13) 7Y R (21) = — 5
P 3 P
(133.6)

and we thus see another interpretation of the rotation functions.
In the figure here given A4, B, C represent the points where

C
ell

Bl

B
c’ elll A

the vectors A, u, v mtersect the unit sphere whose centre is
the origin; that is, the points where parallels to the three
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tangents to the curves intersect the sphere ; and 4’, B’, ¢’ the
points where the parallels to the corresponding principal
normals intersect the sphere.

The principal radii of curvature of the surface « = constant
were, we saw, b c
—— and —,

(12) (13)

rr e

that i LIS — -
av s, sin @'’ cos 0"’

and therefore the measure of curvature is

n " Fal
K, = —~ 20}:'_03? 0 = Tc/(:irllgro * (133 * 7)
PP PP
Similarly we havo
’ ’ D
K= 0L g2 =0 A (155
p""p p'p
Again, from the formulae
6"+,1i:0 é”+}_=0’ 6'"’+»3"=0 133.9)
) "
[ g g

we at once see that, if a line of curvature is a plane curve, its
plane cuts the surface at the same angle all along it.

§ 184. Linear equations on whose solution depends that
of the equation of the third order. We¢ now return to the
equation of the third order (127.1),

d J .
p cosh? 20 + qcosh? z 20 + 20 = ¢ sinh z cosh z,
1 dx ¢ oy dw 1
where 20 = tan™! 28+ 2 g tanh

r—t+2 ptanhw'

Suppose that 2z is any integral of this cquation: we may
suppose it expressed in the series

s=f(@,y)+we(z,y)+wiy @ y)+..., (134.1)

and if the integral is a general one we may take f to be any
arbitrary function of = and y. .
We shall show how wh&n f is a known function the
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function ¢ depends for its determination on a differential
equation of the second order.

Let
2 2 2
1’52 rf +2tan1uf:3/f QED{ af+2tzmh@~3]—c
o Y Y ax? Yyt oz’
d
and let £ = cosh?x 2 + cosh?x —f 2.
X dw IRY]
The equation which determines ¢ is then
QﬂP—PﬂQ—2§§sinhwcoshw(P2+Q2)
kg ¢ ¢ 0P
=P 32E o +2tanh@-—)— Q(b,@b/+ta’nllm—b@)

(134.2)

Now let w = '+, where w, is a small constant whosc
square may be neglected, then

z=f+wyp+’ (¢+2“o‘l’)+ (134.3)

and by solving a similar equation to the a.bove with f+a,¢
substituted for f we should find

® + 2wy, (134.4)

and thus obtain .

Proceeding thus we see the system of lincar partial differential
equations on whose solution we depend for obtaining the
coefficients of the different powers of w in the series for 2.

A particular solution of the equation of the third order
would bo obtained by taking f to satisfy the equation

QRP-PNQ =2 gf;—/ sinh z cosh @ (P*+ (%), (134.5)
when we could take ¢ to be equal to f.

§ 135. Synopsis of the general argument. It may be useful
at this stage to give a résumé of the general argument.
2 is a funetion of @, ¥, and w which satisfies the equation
20

20 20
4) — —_ 2 —_— e
P 52 + qby % sech?z S = q tanh «,
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28+2qtanhz
. = -1 = " - .
where 260 = tan 7—t+2ptanhw
9 d _
U:a—i——cotﬂs-?}, V +tan0
W = p» eosh?: h2 2 2
= pcos L—* + g cosh w7+aw

and w and v are defined by
V=0 Wu=0; ULv=0 Wyv=o.

We can now express «, y, and 0 in terms of v, v, and w;
and having done so we define £, 5, ¢ by

9 .
- j o ?%-6 y—0
—_ =T _____ " R _ y—0
= cos?—i_g, T=e c()sy_g’ ¢ = tan —.
2 5

and we have
§i=n6i+ =0, m,—(E,+E6G =0, {—Ent+né =0
The functions ¢, 7, ¢ now define a quaternion
q=1+¢i+nj+ ¢k,
where ¢, 7, & arc any fixed unit vectors at right angles to onc

another.
Three unit vectors mutually at right angles are now de-

fined by X =iy, p=qjg, v=qlg,

where Dyt =1—¢i—nj— ¢k
and D=1+¢+n+¢%
These vectors are not fixed.

We have

M+pu@l)+r(31) =0, u,+v(32)+A(12) =0,
v+ A(13)+p(23) =0,
A=p(12), p=2A(21), v, =2A(31),
N=v(13), p=v(23), v,=p(32),
and thus the six rotation functions

(23), (32), (31} (13), (12), (21)
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are defined. These functions satisfy the conditions
(23),+ (32), + (12) (13) = 0, (31)+ (13), +(23) (21) = o,
(12), +(21),+(31) (32) = 0,
(23), = (21)(13), (31),= (32) (21), (12), = (13) (32),
(32), = (31) (12), (13),= (12) (23), (21), = (23) (31).
The vectors A, u, v are parallel to the normals at the ex-

tremity of some vector z depending on three parameters
which traces out the three orthogonal surfaces

% = constant, v = constant, 2 = constant.
This vector z is defined by
z=oA+Bu+yy,
where a, 8, y are scalars to be determined by the six equations
o, = B (12)’ Bs =y(23), =« (31),
oy =7y (13), By =a(21), y,=p(32)

Corresponding to cach solution of this equation system we
obtain a system of orthogonal surfaces, and the different
systems thus obtained have the property of having their
normals parallel at corresponding points.

If a=o+B(21)+y(31), b=B,+y(32)+x(12),

¢c=vy,+a(13)+06 (23), (135.1)
then sy=ul, zZ,=bp, z,=cy,
and ,=0(21), by=c¢(32), ¢, =a(13),

ay=rc(31), by=u¢(12), ¢,=0(23),
so that the ground form for the Euclidean space is

ds* = a’du? + U:dv® + ¢t dwt. (135.2)

§136. An alternative method indicated. The functions
«, b, ¢ of u, », w must satisfy certain conditions which can
at once be obtained by expressing the rotation functions in
terms of «, b, ¢ and their derivatives and using the conditions
which the rotation funétions “must satisfy. But we can
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more rapidly obtain these conditions by just saying that the

space defined by ds? = a2du?+ b2dv? + c*dw* (136.1)
is flat, and therefore (rkil) = 0. (136.2)
The conditions then are scen to be
b C, a,
((12:}:6{2'[—)34-(13‘2', b31=b3 [) -(‘(:
b,
1y _CI¢¢2+ ”) (136.3)
b, h ol _ ¢, a,
and () + (), =0 (), + (),
«, b, a,b,
(3)2 +(3) + =0 (136.4)

These six equations if we could solve them would equally
lead to orthogonal surfaces, and this is the usual method by
which the problem of orthogonal surfaces is approached. There
seems, however, to be an advantage in making the whole
theory depend on onc equation of the third order as we
have done.

§ 187. Three additional conditions which may be satisfied.
We now wish to consider a special class of orthogonal surfaces,
and we begin by inquiring whether there are any rotation
functions which, in addition to satisfying the nine necessary
conditions which all rotation functions must satisfy, also
satisfy the three additional conditions

(23),+ (32),+(21) (31) = 0, (31),+(13),+(32) (12) = 0,
(12),+ (21), + (13) (23) = 0. (137.1)
If we take
(28)=w+¢, (Bl)=y+n, (12)=z+¢,
(32)=e—¢, (13)=y—n, (2)=2-¢
and 24 =v+w, 2V =w+u, 2w =uw+v,

and, f being a function of the parameters v/, v’, w’, denote

N A

. o —
' 2T T T T W T

respectively by Joo Jor Far S
2848 B b
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we sce that the twelve conditions which the rotation functions
now have to satisfy are expressed by
x, =—2¥yz, Y,=-—-2zx, z,=-—2y,
y==26 Yy =2, s =2,
E=—272, my=-2(r, (=-2¢y,
&L=-2¢8y, n,=-2¢%; (¢ =-2q92 (137.2)
Now it is casily seen that these equations arc satistied by
taking
(23) =3V I+ 5V, (32) = 3V V=3V,
(31) =3V +3v ¥y, (13)=3vVu—3vV,,
(12) =3V Vi +3v Ve, (1) =3V, =3VV,
(137.3)
where V is a fanction satisfying the ‘complete’ system of
cquations

Vit 2V V Vo Ve = 0, Vg2V VWiV, =0,

]{112 +2 \/1/41 Ifl‘z_‘lf‘.’.; = 0’ 171—23+ 2 ‘\/Ifl‘lv]/‘l-:l/.ﬂ =0
(137.4)
We thus see that such rotation functions exist. A particular
solution of such a system of equations would be obtained by

tking  y_o, Vs Vlala=0;  (157.5)
and in this case

(23) = (32), (31)=(13), (12) = (21). (137.6)
It may be shown that this solution corresponds to the

particular solution of the original equation of the third order
when we take o to be independent of .

§ 138. Orthogonal systems from which others follow by
direct operations. We must now consider the special property
which the orthogonal surfaces will have which correspond to
rotation functions satisfying the twelve conditions. We return
to the original variables w, v, w in what follows.

Let o, B, ¥ be any scalars which satisfy the equations

0, =B(12), B, =y(23), y,=a(31),
0,=y(13), Bi=8&(21), y,=B(32), (138.1)
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and let «, b, ¢ be defined by
a=o,+B(21) 4y (31), D=L, +v(32)+a(12),
¢ =vy,+a(13)+B(23).
We then have
a,=0(21), by=1¢(32), ¢, =«(13),
a,=c¢(31), b, =a(12), c,=0(23). (138.2)
Let of = u;+0(12)+¢(13), B’ = b,+c(23)+«(21),
Yy =c,+a(31)+0(32).
We can at once verify that
oy =B'(12), By=7y"(23), ¥ =o' (31),
oy =y (13), B y=0a'(21), ¥y, =p"(32); (138.3)
and therefore Jd=o'A+Bu+y'y
will trace out another system of orthogonal surfaces, This
second system is thus obtained from the first by direct
operations not involving integration. We thus see that when
we are given any one system of orthogonal surfaces of this

particular class we can deduce by direet operations an infinite
system of such surfaces.



CHAPTER XI
DIFFERENTIAL GEOMETRY IN 2-WAY SPACE

§ 189. Geodesics in n-way space. In order to see what
kind of geometry we may associate with the ground form

ds® = ;. dxi(l.’vk

of an m-way space, we naturally think of the simple case
when 2 was 2, and the space a Euclidean plane. The most
elementary part of that geometry was that associated with
straight lines; that is, the shortest distances between two
points. We are thus led to consider the theory of geodesics
in our m-way space.

We have
dds _  dw;ddx, day, ddz; | dw; dz,
2 ds = Yk s Tds + ds ds ds ds 8ay

d

= ds

% d dz;
( zk (s aa’l + ay, Sk sxz) -3(I!k(—1 A db)

—8 d (a,uudxk) (Zm d‘l', Duzka "

T, -
Yds ds ds ds oy

For a path of critical length therefore we must have

da; da;, day, dz; dz
ds( ds)+ ( tk ds)‘ ba:, ds dg (13941

Now (§ 6)

d day dx, dz,, . .
s ik = bx' ds = s (@R + (kpi)),

and therefore

dw, da,,, i dm; dw,,

ds ds — ds ds ((zp k)+(kp7,))
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It follows that

d*a; Pz,  dx;de,,,. .
it T2 + ds‘, + :E‘ Z['((’Lpt)+(tpb))

‘fzk ‘f””*’ (Gepty + (tph)) = d” d“’f o ((ith) + (Rtd))
and therefore  «y dt = + (ikt) d—'lg (ffs" 0. (139.2)
Multiplying by «' and summing we have
d*x 1. d
~p 270 ax; (« CI}]
ds T (ikp} (s ds (139.3)

We thus have n equations wherewith to obtain the coordinates
of any point on a geodesic in terms of the length s.

But the equations are differential equations of the second
order; and in general we can only solve them so as to obtain
the coordinates in the form of infinite series. This is a
practical difficulty and one of the reasons why we cannot
have the same kind of knowledge of the theory of geodesics
in n-way space that we have in Euclidean geometry of
straight lines,

The direction cosines of an eclement of length in n-way
space are detined by

v (L, 1 139.4
& = T’ p=1..7 ( .4)
Going along a geodesic, therefore, we have
{ .
‘ g + {ikp) £gh =0, (139.5)

and we sce that, unlike the direction cosines of a straight
line in a plane, associated with the form .
ds? = dxi + du3,
these direction cosines vary as we pass along the geodesic.
Thus we are familiar with the difficulty of keeping to the
shortest course between two given points at sea, viz. a great

circle. In this case the dlﬁ'elentlal equations are soluble in
finite terms; but even with®this advantage we should need
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a continuously calculating machine to find the direction
cosines at each point of the course. If the ocean instead of
being spherical were ellipsoidal, we should not even have the
advantage of being given the equations of the geodesic in
finite form, and the difficulty of keeping to the shortest course
would be even greater.

Now if we had built up our plane gecometry by using the
form ds? = da? + 23 dal,
the direction cosines of a straight line would also have varied
from point to point of the straight line and yet we would not
say that the direction of the stmwht line varied from point
to point. The navigator on the ellipsoidal ocean mx(rht hope—
till he had learnt a little more geometry—to mend the want
of constancy in his direction cosines as the planc geometer
could mend his by a proper choice of coordinates.

He could not mend this want of constancy by any choice
of coordinates, but though the direction cosines change in
passing along a geodesic there is no need to think of the
“ direction’ as changing.

We will then say that the dircction in an n-way spacc is
the same all along a geodesic.

§ 140. Geodesic polar coordinates and Euclidean coordi-
nates at & point. We recall the fact (§ 2) that any n-way
space may be regarded as lying in a Euclidean 7-fold where
7 = 4n(n+1), and that the vector z which lies in this »-fold,
depending on the m parameters ,...u«,, has the property
that its extremity traces out our n-way space.

In the m-way space, unless it happens to be merely a
Euclidean space, we cannot think of a vector as lying in it :
it is only the extremity of the vector with whiéh we are
concerned.

But at any particular point of the m-way space there is
a Euclidean m-fold which we may usefully associate with
the point.

Let z be the vector to the point under consideration, and
let 2, ... 2, be its derivatives at the point with respect to

e Ty the parameters of the point.
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Let £'... £" be the direction cosines of any element of the
n-way space at the point so that

aikéiék= 1, (140,1)
then the vector ¢ defined by
E=&a+. + 8 (140.2)

will lie in the Euclidean n-fold at the point. It will clearly
be a unit vector sinco

(=880,

=—ayfigh=—1. (140.3)
We shall call this Euclidean n-fold in which ¢ lies the
tangential n-fold at tho point.

The coordinates of any point in the tangential n-fold may
be taken as £, ... £,, where

& =sgl, (140, 4)
s being a scalar.

We establish a correspondence between the points of our
n-way space and the points of the tangential n-fold by taking
the coordinates of the n-way space to be ¢, ... £,.

Consider the geodesic which starting at the point under
consideration has the direction cosines ¢!... £,

From the equation of a geodesic

dr; dw)\ ({x#
dst T g
we see that the current coordinates are given by
oy =k Es— i) £+ (140..5)

where s is the arc from the initial point.

Let 2z’ be the vector which traces out the n-way space at
the point &', ... 2’,, and let ¢’ denote the same vector expressed
in terms of the coordinates ¢, ... §,.

We have [sec § 4 for the notation]

=2l — (Epd) s kL),

It follows that .

{ifh == ~’,1 (€7~ IAP) &' s+ .a) (7 — (kpuq} £5+...),
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and therefore the transformation formula is
@', = g —(kpd) s —(ixk) s+..., (140.6)
where +... refers to higher powers of s.
We thus have at the origin

’
da ik — e),bau, _
24, tow,

(Mte) — (etk), (140.7)

that is, in the coordinates we have chosen the first derivative
of each of the coefficients in the ground form vanishes.

It follows that in this system of coordinates, which
establishes a correspondence between the points of the
tangential n-fold and the points of the m-way space, every
three-index symbol of Christoffel vanishes at the point under
consideration,

As regards the four-index symbol (rkik)" we have

LY = 22’y 3’y da’, 32,
(rhik) = (1) 3¢, 58, o8 38
= (pyst)e; €l €e
= (rkik). (140.8)
We may call this transformation a transformation to geodesic
polar coordinates at a specified point.

We can combine the transformation with any linear trans-
formation in the tangential n-fold. To do this supposo
Z, ... %, to be the criginal coordinates, taken to be zero at the
point to be considered.

Let ;= cg. 2"y, (140.9)
where c¢;;,... denote constants.

We can now so choose these coordinates as to make the
coefficients take any assigned values at the point We can
then apply the geodesic transformation, and can thus arrange
that the coefficients «,;, may have any values we like (pro-
vided the determinant is not zero), and at the same time
have all the three-index symbols vanishing at the point.

In particular we can.so choose the constants that

N a‘"i =.Ei~ (140 . 10)
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at the point and that the three-index symbhols may vanish.
Such a system of coordinates may be said to be the Euclidean
coordinates of the n-way space at the point.*

§ 141, Riemann’s measure of curvature of n-way space.
If we take the transformation
=g’ +n'a’y+ ...,
where ¢, 7, ... are fixed vectors at the point, we find that

0z, dx, dw,
1212 Tr T
(1212)" = (m”)a S, Oy

= (pqrs) 5”’775"7 , (141.1)
@'y = ag £i¢r,

’ — l k
a'y = agéin’,

« z,-—(l”n‘nl‘, (141.2)
and
W@y =Ty = F (0P~ E0n’) (§FnT—ETn") (g tyg— aig@pr),
(141.3)
and therefore
(1212) (in? — £n?) (g"n’l—-gq n*) (ipkq)
“,11“'22'—65’:12" (5177[’ &'n 1) (ék ""5"’1‘) (O pq'—atqa’pk)
(141.4)

Now let us consider the expression on the left-hand side of
this equation.

In general the four-index symbol as applied to n-way space
is not the same thing as when applied to the lower space in
which the coordinates whose integers do not occur in the
symbol are put equal to constants. But in geodesic polar
coordinates at the point the cquality holds, since the three-
index symbols vanish.

It follows (see §§ 24, 37) that the expression on the left is
the measure of curvature at the point of the two-way surface
formed by keeping all the geodesic coordinates constant except
two. The expression on the right is therefore the measure of

* This system of coordinates has Qeen called the system of Galilean cq-
ordinates at the point,.

2843 c¢c
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curvature of the geodesic surface—that is, the surface formed
by the geodesics—through the assigned point, which touches
at the point the Euclidean plane generated by the two vectors
¢and 7.

This is Riemann’s measure of curvature of the n-way space.
We see how it is connected with Gauss’s measure of curvature,
and we should notice how in this respect the tangential
n-fold takes the place of the mere tangent plane when » = 2.
In the flat n-fold we consider all the Euclidean planes by
taking any two vectors in the m-fold. We sce that these
two-way surfaces have different curvatures and so different
geometries.

§ 142. Further study of curvature. The Gaussian measures
for geodesic surfaces. Orientation. We have now obtained
Riemann’s measure of curvature and have seen how it is con-
nected with Gauss’s measure of curvature of a surface.

We must now consider this curvature from another point
of view.

We saw that we were to consider the direction to bo the |
same at all points of a geodesic in n-way space. This leads
us to define two ‘parallel’ displacements at neighbouring
points 2, ... @, and @, +dxz, ... 2, + dx, as displacements whose
direction cosines ¢'...¢&" and £'+dg'... £"+dg" are con-
nected by the equations

dge + {ikp} ¢da;, = 0. (142.1)

Thus in this sense of ‘parallel’ the tangents are parallel at
all points on the same geodesic.

It may be noted that the equation defining parallel dis-
placements does not entitle us to say that

ofP . .
3% + {ikp} ¢ = 0.

If this equation system held, the tensor component ¢» would
be annihilated by every operator 1, 2, ... 7, and therefore

== {tpki} g = o,
which could only.be true in flal space.
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Let ¢ be any vector in the tangential n-fold at z, ... 2, and
¢+ d¢ be the < parallel’ vector in the tangential i-fold at
wytde, ... T+ de,.
We have d¢ = ¢ (z. g+ (k) 2) day + 2,d ¢,
= {is. . day,.

As we pass from the point of departure with an assigned
value for ¢, and the vector is carricd parallel to itself, its
value at any other point is defined by the integral

(:j‘(f:.,.,».dwk, (142.2)

and this value depends on the path of integration.

Consider the small parallelogram in the n-way space whose
edges are parallel to the vectors ¢ and 7, the lengths of the
edges being respectively ¢ and 0. We want to find the change
in ¢ by integrating round the parallelogram.

We have E= (¢, 8¢ = (¢1)o— A}y (¢N) 8,
where duy, is the increment in the coordinate, neglecting
powers of small quantities of the second order, and

2o = (Z'ilc)0+[3'i/r;t+ {L:ut] ot {k/‘“"{ Z'a’t]o 8‘1'#’
and therefore
$ooge = o+ [Conu+ ¢ lipt) 2og+ (T hpt) 2.4], 02,
~[¢* i}z 8,
We thus have
o= (2. 0)0+ (¢ @earpt (hpt) 2], 8,
On the first edge at a point distant s this is
(€2 o+ [T eippt (hpt) Sog) €085
on the second edge it becomes
(¢ o+ [ Geappt kpt) 2.4) €
+[¢ Gt (kpth 2. ) n*]o8 s,
The change in ¢ by integrating

$im g day?
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along the two edges is
; . ; . ; dagq @2
[$Pz-a ot an ] b+ [ (2ot hpt) =.0) E°€
+ 1—.(” (z'ik,u + {klu’t} z'it) £“77k]0 ab

o b2
+ ¢ it (Rt 2 0]y, - (142.3)

If we had integrated in the opposite sense along the other
two edges we should have intelchanged ¢ and 7, @ and 0, and
we thus see that the change in ¢ by goiny round the parallelo-
gram in the same sense is

[{i (:'ﬁx'#—z"i;l k) §F77k]0“b’

that is, [¢F itk p) 2, £ 0¥] b,
The change in ¢! is therefore
L[¢F {ithpy (g4 gk —Eint)], «d. (142.4)

If 6 is the angle between ¢ and 7,
cos 0 = a;;. £k,
sin? @ = } (0 — P ') (€5 01— E1nP) (g —azqay).
(142.5)
Let us now consider how the angle 8 is changed, if, kecping
n fixed, we carry ¢ parallel to itself round the parallelogram.
—sin 080 = a7 8¢t
= —bayntg {Lipg} (- Eint) b
= 3 (gl = gn') (€0 n1— g1 (thpy) .
It follows that &0 divided by the area of the small
parallelogram is equal to

(TP —gpnf) (80T — g1y (iphq) . (142.6)
(617’1) £Pn’) (fl 1 —6777") (i g~ %igUip) o
That is, 86 -divided by the area of the small parallelogram is
equal to the curvature of the geodesic surface which touches
the Euclidean plane generated by the two vectors formed by
the sides of the parallelogram.
From the equation
U¢ = ¢z dmy,
we see that the rate of ¢changeof ¢ in parallel displacement
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in the direction of the vector ¢ is ¢¥¢iz.;. We may then
express this result in the notation

{f = ékfiz°ilc‘

Thus we have 55 = fkfiz-ik’

¢, ==&z,

1, = n¥n'z.
Also fg gidia,,
J = \_g f"’l Uik
7 = nFpiay,

It follows that
E\‘f:"/_éﬁf = gighnryt (2352 g = Z+ig? 1)
g6 —Enné = £ Pt (g — gy,
and therefore
Sty (E5nP —grn') (Ebn1—g10¥) (ipyh)

é\é@ _@ Zl'g = (gi,]p fp t) (équ gq ﬂk) (u”‘upq u'qukp) .
(142 .7)

Riemann’s measure of curvature may therefore be written
STy e
Again the rate of change of z in displacement along the

vector ¢ is just £'z +...+¢"z,, and therefore the vector §

itself may be written 2 Here we may notice that the

vector z unlike the displacement vector £ is not a vector in
the n-way space but only in the containing r-way flat space ;
the vector ¢ on the other hand marks a direction, or displace-
ment, in the n-way space, although it has only an clemental
length in this space.

There is then as regards the vector Z'in its parallel displace-
ment just the ordinary Euchd?a.n idea of translation.

(142.8)
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Riemann’s measure of curvature may therefore be written

N P
et %m T en e
N N

S (142.9)
EETT e
This is Gauss's measure of curvature of the geodesic surface,
made up of the singly infinite system of geodesic curves
drawn through an assigned point at which we require the
measure of curvature: the curves at the point all touch
the Euclidean plane generated by the vectors ¢ and 7.
Riemann’s measure of curvature has an ‘orientation’ given
by the vectors ¢ and 7 ; and at the assigned point, by varying
this plane, we get the different Gaussian measures.

§ 148. A notation for oriented area. So far we have in
using vectors only considered their products as scalar products.
There is another product which we ought now to consider.
When n = 3 and the ground form is that appertaining to
Euclidean space, we know what the vector product means and
how useful it proved in Geometry, but it does not seem to be
capable of useul extension. We shall now think of the
product of two vectors ¢ and 7 as defining an avea in the
Euclidean plane formed by ¢ and . This area has then an
orientation, and we shall understand by ¢»n the arca of the
parallelogram whose edges are the ¢ and 5 drawn through
the point.

The angle the vector £ makes with the vector 5 being 6, by
parallel displacement of the vector ¢ round the parallelogram
whose edges are in the directions ¢ and », and whose lengths
are ds and ds, this angle is increased by

2,2 —=Z2,2
&7 TénTug
S S

gndsés,
T o % %y
which may he written
Ze6%m ™ %en e
— dzdz, (143.1)

where dz, 8z represent’the sides of the small parallelogram in
magnitude and direction' .
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We should notice that area has & sign as well as a magni- -
tude: we express this by the equation

fn+nt =0 (143.2)

§ 144. A system of géodesics normal to one surface are

normal to a system of surfaces. If the direction cosines of

a geodesic are £!,...£" we have seen (139.5) that the
equations of a geodesic are

:Tlsé”+ {ikp} g'¢F = 0.

The geometrical interpretation of these equations is that
the tangent remains ‘ parallel’ to itself as we move along the
zeodesic.

We can put the equations in another form,

\p [ 5”"’(1/ A)§ fk_ 0,

and therefow
{ (“,\pfp) gpéf )\p+(2’”\) §réh =0,

: t
since —
([b =¢ ‘.L,

N
Now b(—a:,a”’ = (Atp) + (ptAr),

and therefore the cquations of a geodesic may be written
d
7 (Gpéh).= (Atp) gpet. (144.1)
We now wish to consider the expression
T, = a,,¢"

Wo know, from the theory of differential equations, that the
necessary and sufficient condition that 7', da, may be rendered
a perfect differential by multiplying by a factor is that

m(%ﬂﬂ- 3%1’,‘)+Tﬂ(é.i;g;_b_%n)

P 2
L(og, Tum 2, ) (144:2)
should vanish identically fof all va.lues of A, u, v; and that
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the necessary and sufficient condition that T', de, may vanish,
wherever ¢ (z, ... z,) = 0, is that

2., 2 d 2
T (55 5, T+ Te(5 T 5 1)
A d
+1),(5;A T/“-— D—ZEPTA)
should vanish for all values of A, u, » wherever
¢ @ ...cp) = 0.
Geometrically interpreted these are the conditions that the
curves de.  dax da.
?—1=5F2=_,,.—_?:! (144.3)
should (1) be cut orthogonally by a system of surfaces, (2) be
cut orthogonally by the definite surface

B (@ ...z,) = 0. (144.4)
We are now going to prove tha,t if the curves arce geodesics,
and if the condition (2) is satisfied, (1) is satisfied also.

oT ’T,

_r_ 9= .
Let 52, 57 z, = (pq) (144.5)
and T, (qr)+ Ty (rp)+ T, (pg) = (D, 0 7] (144.6)
Since
d 2 d d £ D
& 2, = 5, ds  day 07

d 2 d 2 d \ga,+agla
S b T Sl P B PR TR PP TR
Now

o d _ 9 A ap
gv‘q(—[sTpv*—(PM‘)ff

)\
= (pAn) (£ St ;) tEe b:ac; (pAx)
=g Xé— ((p}\/.t)+ (p,u?\))+§)‘£“5%q (PAp)

LT Ly ;};(m)-

bacq b.z
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It follows that

200 = ¢ (5 - (2w) —~—<f17\/t)

+ 37 (5# ba’t\# T, (“'1’#5“))

X
B.’i ¢ b.'q (a “gl‘))
Now azq'(?”‘/l)— ()

= (Appq) + (rqt) Aptj —{upt} (A

qt),

and therefore we see that the first term in this expression

vanishes, since A and u are interchangeahle.
We therefore have

!
-(".(2”1)
_ g 2 g d
" dw, a%[’“’ da, 11’) + dur,, \w)\ a"aZ;T*)
d d
= 5 (M)——év\q) (144.7)

l
It follows that

d
‘{‘[1): Ve ']

, {
= (q?’)d )+ (7]) 1 +(pq)

+1},(%§C—:(AQ)—-\—£— )\1)>+1',1(\ (M fv:r()\p))

d A d A
+Tr(;ff;<*2’>— a§, ()

= @€ 5 Ty (D)€ 5T+ (p0) €

2
Zx
2 ,
+ S (@) Ty + [0, A 2] + 3? (("]’) Ty +[r A
P Tq .,

Dg)‘ .
+ . ((2”1) 1)\+ [?)» A, (1])
148 ' D d

?))

(144.8)
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Since awg"g# =1,
we have &r, =1,
d )
and therefore f + & 2Ty = 0.

Ty bm o,

It follows that
d
(_i‘_g [2)’ (I) ’I']
= (7)) (PA)+(rp) (4A) +(pq) ()
d A ) A d A
+ bfp los A 7] + 3—5; (A p]+ 3% [ q]. (144.9)

Suppose now that over a given surface

[p,g.r]=0o.
We then have

(lb[p’ 7]
= (@) (PA) + (rp) (9N) + (pq) (rA).

Since [p, ¢, 7] is zero for all values of the integers over the
given surface, we have
T rs)+ T, (s9) + T, (qr) = 0,
T, (sr)+ T, (ps) + T, (rp) = 0,
T,(qs) + Ty (sp) + Ty (p7) = 0,
T, rq)+ Ty (pr)+ T, (qp) = 0,
and therefore
o, (%), (s (q7)
(s7), 0, (ps), (rp)
(@) (sp), 0, (p9)
), (pr), (qp), 0
that is, (pq) (r8) + (q7) (ps) + (rp) (¢8) = 0. (144.10)
It follows that if [p, ¢, 7] is zero over a surface it is zero

everywhere, and therefore if a system of geodesics are normal
to any one surface they ‘are normal to a system of surfaces.

i
E=)
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The direction cosines of the system of geodesics therefore
satisfy the equation system

(Lplft = ]x'(,bp.
It follows that K2uPi¢, ¢, = aPla, &', £

= E([’gt q,-gr
=aqr541§r—_—1, (144.11)
o
d therefor t= T 144.12
and therefore ap,f 75 9) ( )

§ 145. The determination of surfaces orthogonal to
geodesics and of geodesics orthogonal to surfaces. We can
now find the equation which ¢ must satisfy when the surfaces

¢ = constant

are those which cut the geodesics orthogonally.

¢ ¢{
\V h VD= P L. (145.1
e have F4 ¢ NG )

The equations of a geodesic being (139, 5)
d ;
L ¢p o) £1gh —
ds£ + {thp) £1£F =0,
we must have
At I’x]
(m.iLni.MA;&7)+QM412¢;@=0

a5\ Tag) T A(g) ’
that is, ! 7?@)(“': J?L@) —o,
and therefore «?' \/Z’((P)(akqa“‘ /ZA@)) =0,
or ! «/A(¢)(/A(¢)) =0 . (145.2)

Expanding, A (¢, ¢,) = __@1__ A(p, A(9)),

that is, A(P) = ?QA(?.) A 9)).
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It follows that
d d
—_— = —— 145.3
bim (DO =Py @), (1459

and therefore A (¢) must be a function of ¢.

Without loss of generality we may thereforo say that

A(g) = 1. (145.4)

We thus see that if we take any surface and consider the
geodesics drawn from every point on it perpendicular to
the surface, they are cut orthogonally by a system of surfaces
¢ = constant, where A(¢) = 1.

In ordinary Euclidean space this is the theorem that the
lines normal to any surface are cut orthogonally by the
surfaces ¢ = constant, where

(2 + G2+ (2 =

Conversely, let ¢ be any integral of the equation A (¢) = 1
then we shall show that the orthogonal trajectories of the
surfaces ¢ = constant will be a system of geodesics.

It will be convenicnt now to think of an (14 1)-way space
and to take, instead of the variables a; ... w,,, & new system
of variables ¥, ... y,,,, where

Yni1 = b (146.5)
so that AYpy) =1,
and to choose ¥,...7, as n independent integrals of the
equation A (Yus1s 9) = 0. (145.6)
Let tho ground form of the (n + 1)-way space be
by dyyy, 1=1,2,...n+1. (145.7)
Since A(y,4;) =1 and A(Yuy, ¥,) = 0 if » 3 (n+1),
we see that bpsr,ner =1 Upyy r =0,

and therefore the ground form is
Ay + o dydyy, =1,2,.. 0 (145.8)
It will therefore be convenient to take as the ground form
in the (n + 1)-way Space
du*+ by deyday, i=1...m, (145.9)
where b;;, is a function of @, ..."a:,, and u.
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The surface @ = 0 is any arbitrary surface in the (n+1)-
way space, and when w = 0 we may write ;;, = a;,. We
may consider aikdw‘-dwk (145 . 10)
to be the ground form of the n-way space deduced from the
(n+ 1)-way space by putting w = 0.

The lower ground form may be said to be the ground form
of a surface in the higher space.

By varying w we obtain a series of surfaces cut orthogonally
by the curves whose dircetion cosines are given by

&§=0 £=0..£"=0.
These curves are geodesics, since
{n+1l,n+1,p} =0, p=1..%

It will be noticed that the first of the surfaces cut orthogonally
may be any whatever, but the other surfaces are given by

A(u) = 1. (145.11)
When we know the geodesics normal to « = 0, we know the
whole scries of surfaces which are cut orthogonally, or at
least can find them by quadrature, since

“il;fk = Uy;. (145 . 12)

We obtain the geodesics, on the other hand, by the solution
of the lincar equation A (v, v) = 0, when we know w.*

§ 146. A useful reference in (n+ 1)-way space. We have
shown (145.9) that the ground form of any (n+1)-way
space may be taken to be

du+ by de,dey,, ¢ =1..m,

ik 13
where by, is a function of «; ... z, and u.

The surface © = 0 is any surface whatever in’the (n+1)-
way space. By drawing the geodesics perpendicular to this
surface we obtain a serics of curves which are cut orthogonally
by the surfaces w = constant, « being the geodesic distance

of any point from the surface w = 0.,

* [At this point in the authop’s MS. éhere is a memorandum ‘ New
Chapter’.]



206 DIFFERENTIAL GEOMETRY IN 7.WAY SPACE

The surfaces w = constant are said to be parallel surfaces,
and we have A (u) = 1. Travelling along any of the geodesics
from the surface w = 0, only w varies.

It will, however, be found useful to consider a moro general
system of surfaces in the (n + 1)-way space.

We therefore consider any system of surfaces whatever in
this space, w = constant, where we no longer have A (u) =1,
and by taking the orthogonal trajectories of these surfaces,
as the parametric lines

x, = constant, ... a, = constant
we may take the ground form of the spaco to be
P dul + by dayday, = 1., n. (146.1)

The orthogonal trajectories are now no longer geodesics.

The function b;;, depends on the coordinates z, ... a, and w,
and, when v = 0, b;, = a.

We now wish to consider the two ground foyms

P2du® + by dayday, (146.1)
and wg.da;dag, (146.2)
in connexion with Christoffel’s symbols, where after calculating
their values for the higher space we put v =0. We can
obtain the special case of parallel surfaces by putting ¢ = 1.

We shall thus be shown how to gencrate the (n+ 1)-way
space which as it were surrounds any given n-way space.

When we place the suffix b outside a symbol this will
indicate that the symbol belongs to the higher space. The
suffixes will always be 1...n. When we have to consider
the suffix which should correspond to the variable w it will
be denoted by a dot.

Let : ﬁ¢u=—2nik¢. (146.3)

We see that

(ikh)y = (ikh)g; (kY = yd; (k) =~y
{tkh}y = {ikh}o;  {iha}y = Ry 971 {E-k}y = —ak 0y,
(rkhi)y, = (vkhi), + 2,245 — 02,0245



A USEFUL REFERENCE IN (n+1)-WAY SPACE 207

d P '
(rkh-), = vz, (nf) = 55 (Pud)+ Ly — 211
— {klct} (02, B+ (TRt} 2D
= ¢ (ﬂ,.h ok _'n’hk'r)’

in tensor notation,
d Ap 42
(rhe)y = ¢(mﬂrh—¢-m +a P\ L2y, (146.49)

§ 147. Geometry of the functions f2;. If we are given
any n-way space we shall see that it may be surrounded by
what is called an (n+1)-way Einstein space. We shall
define this space shortly. A particular n-way space may be
surrounded by a Euclidean space of n+1 dimensions; but
before we consider particular kinds of this (n+ 1)-way space
we had better consider the geomectrical meaning of the
functions £2,;, which together with ¢ arc to generate the space.

‘With this end in view let us consider two geodesics going
out from the same point , ... z,, w = 0, and having the same
dircction cosines ¢£1...£" 0 at this point, the first geodesic
being in the n-way space denoted by a, and the second in the
(n+ 1)-way space denoted by b.

We have (140.5) for the current coordinates on these

. Y ’ N ’
geodesics a/; ...«", and 27, ... 2",

. 8% .
x’i = xi'l'sgt— E {Ayb}a£\£#+ veey

, . 82 .
oy = xi+sft — ) i} 68+,

and therefore, neglecting terms of the third order in the arc s,
we see that the coordinates are the same for the two geodesies.
But for the first geodesic the coordinate w is zero, and for
the second geodesic

82( P LAY
w=—g A lpé &+

The distance between two points, one on each of the geodesics,

is therefore 82 s
bo ML E 8L+ (147.1)
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8 being the distance of each point measured along its own
geodesic from the initial point.

This mutual distance we may consider to be normal to the
geodesics if we neglect terms of the third order in the are.

The curvature of the first geodesic is defined by Voss as
the ratio of twice this distance to s’ This is obviously
a proper definition, agreeing with the ordinary definition
when we are dealing with Euclidean space.

We therefore have

1
S = p0w e
_ P dayde,
T apdaydx,
= uday da, (147. 2)
ay, Axy d,

The curvature of the first geodesics may be called the
normal curvature in the (n+1)-way space of the surface
w = 0 in the direction dz,, dx,, ... dz,. )

Looked at in this way we may write our formula

1 _ 0, deyda, (147.3)
R a,,de, dx,
To get what we may call the directions of principal curvature

. . . . 1 -
we require the directions da; which make ; critical.

R
The directions of principal curvature are therefore given by
(e, —RR,,)dz, =0, (147.4)
where the values of R, the principal radii of curvature, are
given by the determinant
| ay,— R, | = 0. (147.5)

We shallnow show that the directions of principal curvature
are in general mutually orthogonal.

At any given point we can choose the coordinates so that
corresponding to the principal radius R; only the coordinate
x; varies at the given point. We therefore have at the point

‘ag = Rylly,
i = By ddy.
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If, then, all the radii of eurvaturc are distinet,

wy, =92, =0, if ¢ FEk, (147.6)
and therefore the coordinates are mutually orthogonal at the
given point: that is, the lines of curvature are in general
mutually orthogonal.

§ 148. The sum of the products of two principal curvatures
at a point. We now wish to ohtain an extension of the
well-known formula of Gauss

1 (1212)
R R, a,a,—ai,

for a surface lying in ordinary Eueclidean space.
Consider any determinant

Uy een gy

Upp oer Ugy
and the corresponding determinant

AL AL

(:Lnl L
If |«| denotes the first determinant we sec that any of its
minors is equal to [« | wmultiplied by the complementary
minor of the second determinant.
Expanding the determinant (147. 5), or say
[ —Aa’y, |,
we see that the determinant divided by |« | is equal to
A .l . . ' e ’ 4 ’ ’
an "o ¥ (27)3(“”“”7' —aMaF) o’y —a ) = s
(148.1)
1 1 1
(ant’ @y’ @y
in accordance with the convention about repeated factors.
We therefore have for the principal curvatures

the numerical factors .. being introduced

21%’- = APy, (148.2)
¢ °
2 R‘R N = a,')\uhll u-]tu/\./") (ﬂn.{lw-—ﬂ,.hﬂw). (148 . 3)

2843 E e
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Now consider the expression, a tensor component clearly,
A, = okl (vkhi)
and similarly B,; = b (rkhi).
We have seen in § 146 that
(rkhi)y = (rkhi), + 02,025, — 12,02

(rkh)y = ¢ (21— L2pge-),
, . 0
(reed)y = (7i)y = ¢(¢'1~i - Sﬂ,n"i) — ¢, 0,
From the last equation, we see that

, d .
(B")b = a”gb((p.m- -— 5_1,;/ ﬂl’i) -—(LTIL(L)\F¢2 .Qr)‘ﬂi“. (148 . 4)

ik

From the second equation, we see that

(Br')b = akh¢(‘Ql‘h'k—nhk‘r)' (148'5)

From the first and last equation, that
(Bm')b = (4,),+ akh (nrinhk—'nrhnik)

d
+¢_1(¢'m’_mn”‘ —a 0, 0;,. (148.6)

The expression "4, is an invariant which we denote by 4.
We thus obtain
B=A4+ arialh (nl'inhk - n/hnik) +2 ¢_2B" >
or, interchanging ¢ and £,
B=A+ama" (2,025 —02,,2,)+2¢72B..;
and therefore
2B = 24 +(«"alh — i) (02, 024, — 12,;02,;) + 4972 B...
(148.7)
It follows that
- 1
2B=2A4A+4% Rl B
Remembering that B is an invariant in the (n 4 1)-way space,
and B..a tensor component in this space, and that 4 is an
invariant in the n-way space obtained as a section of the
(n+1)-way space by the surface w = 0, we may express
the result at which we have arrived in the following way.

- +4¢72B... (148.8)
2
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Consider any (n+ 1)-way space, and a section of it by any
surface.

Let £'...£7+! be the direction cosines of this surface, ve-
garded as a locus in the (n+ 1)-way space.

The direction cosines are connected by the identical equation

1=10,;£¢.

The expression UM (rkli), ¢l is an invariant of the
(n+1)-way and the surface we have chosen. When we
take the ground form ¢*du?+ b, dz;dx;, and the surface
w = 0 the expression becomes ¢~2B.., since £!... £* are zero,
and ¢2£n+l£n+l =1.

If B is the invariant of the (n+ 1)-way space,

brivh (vklid)y,,

and if A is the corresponding invariant of the n-way space
which is the section of the (n+1)-way space by the given
surface, then what we have proved is the following.

The sum of the products, two at a time, of the reciprocals
of the principal radii of curvature of the surface, regarded as
a locus in the (1 + 1)-way space, is equal to

3 (B—A) =V (rkhi), g7 ¢ (148.9)
§ 149. Einstein space. Suppose, now, that instead of

taking any surface we choose a surface whose direction
cosines satisfy the equation

3 B = b (rkhi) grgi; (149.1)
we shall have . 1
For the case m = 2, this becomes Gauss’s well-known
formula, 1 (12 12) ¢

I R, - Uy gy —dis .
If, then, the (n+ 1)-way space is to be such that for all
surfaces lying in it the formula of Gauss will hold, the equation
3B = Brigrgi *

must be identical with 1 =eb,, £"£2
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We must therefore have
B,=1DBb,, (149.3)
and in consequence of this
biB,, = 3B,
3

ry res

that is, B=3(n+1)DB. (149.4)
Leaving aside the case when n = 1, we must have

B=o, (149.5)

and therefore B,,=0. (149.6)

A space with this property is what is called an Einstein
space.

It is interesting to see how from mere considerations of
purely geometrical ideas we should be led to Einstein space.

§150. An (1+1)-way Einstein space surrounds any given
n-way space (3§ 150-4). We shall now show how, being
given the ground form of any m-way space, we may obtain
the ground form of a surrounding (n + l)-wzfy Einstein space.

We look on «, ... as functions of z,...., and « whose
values are known when w = 0. We have if possible to
determine functions £2;,... and ¢ which will satisfy the

equations akh (82,0, —=D2y-,) = O, (150.1)
d
A, +a (02,02, =202, 02, )+ ¢.,; — S f2,,=0,
(150. 2)

. b
“rl(¢. e S,&nl'i—'(p“)\#ni'i\nif‘ =0, (150. 3}

bai,.
—H =20, 150.4
& o (150.1)

when © = 0,
If we can find such funections, we take

bi, = (@ipJu=0—2¢ 2w+ ...,
and thus find the Einstein form
P2 du? + by, da;da;, (150 . 5)

in the immediate neig'hbourhood of the surface w = 0, that
is, in the immediate neighbourhood of the given n-way space,
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and proceeding thus by the method of infinitesimal stages we
ultimately obtain the Einstein space which we require.

Let Ay = M {tppps. (150. 6)
We shall first prove the fundamental identity
Ar, =34, (150. 7)

Employing the geodesic coordinates at a given point,
A = (\ppp)
d d
= 3;5; (App) — 3971‘(7‘/‘1)):

and therefore in this system of coordinates we have at the
given point

a a2
L\ -
AH.’\_W App) — \:1 Y -(App). (150. 8)
Similarly we have
19
34, =343 r= §W(u o) = 5 (M\p) (150.9)
and therefore A,’).A~-§Au

=10 e Lt ap)
T diry du, rp)+ 2 Qx, o 1

1 2 N 1 2 ()
2w, 0w, ()= 22,0, LH
1
= & 307, 1000+ (20N
1 9
= 3 2,22, L) + (2]
1 day,, 1 pr
T2 0w,0u,0, T2 o, RN .
= 0. (150. 7)

The required identity holds therefore universally, since it
is a tensor equation which vanishes for geodesic coordinates.

§ 161. Wo now transform the functions £2;;..., which are
to be found thus. . .
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Let Vzk = a"'ﬂi,,
and therefore ﬂik = .Qki = Uy Vf\ = 1fi.‘,
d
50 i = iy, L V" i

- “M(a V24V V):

Writing V for V) we now have
Via=V

we

d
] (AA;;'*' Up¢ VVL) +Poan— du V.=

m

that is, multiplying by «*? and summing,

¢(Al';+ VVﬁ)+a"'¢.,F \u Vﬁ

The third equation is
A A_ oy
«HFptdViVe= 5= v,

(151.

(151,

and by aid of the second cquation this may be replaced by

4 =VEV,— Ve
We thus have the equations

VA=V, A=VEVi-Ve,

I3

(151,

and, writing ¢} for «*¢ ¢ In the other equation (151.3),

]
S V=g 4L+ TVV)) + ¢
Tl:ese are only assumed to hold when u = 0.

§ 162. Noticing that ¢} = A, (¢),
we have Pror =AM = AMApug,
= & (uAg,— {tgpA} $,)

= aM.p—aMar? (pirp) $,

= pb,($)—atP{(pAhpu} ¢,
and therefore PuoatAhoy 5 1O, ().

(151.

(152.

.2)

o
~

1)
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We now operate with X on the equation

R Y SR

where A= bi—A + {EAs} () —{pAE} (),

s being the upper integer—here A itself so that we employ
another integer s—and u the lower integer in V.
We easily verify that
A2 =23
du bw
and therefore

b ]
() 5 1R8] + () s (AL,

J
2 L= Vs (N _1“ {,mt}+¢A(A;+ Vv

hYTAE
+¢>( y-A+V,\V,§+VVﬁ.A)+¢2.A. (152.2)

Now, since (4.3) Ma,, = €,
we see that ;L(LAF = 2¢urt V¥, (152.3)
2
b o
and {’rUL } = "t (rkt)
- 1ami datyy , 3%y 2,
27 u\dx,  dxy,  dwy
+ (rkt) (2pa'? V)
J J
= ;uh'(u 2600~ 5 260 M:’,‘2¢n,.,)
+2¢a'? (rkt) V7. (152.4)
Since
k= ¢Inrk +¢ (nl'k't + ‘“'tp} npk+ {MP} 'er))
we see that :
d 2,0+ P02, — D L2)— P2
kbt = alt( Tt rk rket reeRt— kt*r
du {TH ( =32y — P02, — 2 {krp} ¢npt)

+2¢a'? (rkt) V,
= a"‘akl) (¢t vy +¢ vy -i) -9,° h'-¢k V:l
—¢ (Viot Vi) —2¢ {krp} Vi+2¢ {rkp} V. (162.5)
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Now if we multiply each side of this cquation by V and
sum, remembering that

I ok
Vi Upp = I » Qs
we get

Vioo {910} = Vit 6, V4§ V.) ¢, ViV
— @ VIVE—pVi(Vi.+ Vi)
= Vi@ Vit Vi)—¢ViVi—¢, ViV,
—pVi(Vi+ Vi)
=—Vi( Vi, +¢, V. (152.6)

We deduce from the equation for ;fo {rkh} that

9
30 {’lvk/»‘} = ¢, V:-{-(l) Vf,.,__¢" V___gbt Vf_gb (Vr+ V//l)
=—¢, V-9V, . (152.7)
Combining the formulae we have proved, we now sec that
VA= Vi@Vt 9, VD= Vi@,V +9V)
+pd, (¢)+¢A VVi+¢ AL+ RVA+ VYV, (152.8)

We also have 5}2 V=9¢(A+V)+4,(¢),
and therefore
J ,, .
aEV“ =¢,(4+ V~)+¢(A#+21’1{‘)+,;A2¢,
d
= 4 (ViVi—4=V)
+ P (ViViu+ AL+ VVia—4,-2VV). (152.9)
Now A+VEi=V(Vi,
and therefore A4,+2VV, =2 ViV
We have proved (150 $) tlmt. 45, =34,

and we have Vz.)‘ =V ;
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it follows that we have

5%(1/*2“_ V) =o0. (152.10)

§ 163. Now 4 is an invariant for any transformation of the

coordinates «, ..., in the n-way space, and so therelore is

a.A- . . . -
Su We shall therefore, in finding an expression for %%,

employ geodesic coordinates at a given point and thus materially
simplify the necessary algebra.

QA

ou

d sy d d
= 2" (5, A1) = 55 DRt + (Rt N}~ (18] D).

9
Now Su Apt) =dPa, (@, Vi+0Vi.)

- ¢)‘ V:"—(p# V;\_¢ (V:“'A+ Ir;\'y)
and therefore
d
M S At} = APV V)= (B, V149, V)
.._LLM‘(P (‘V,L.')\ + 1”)\';4)’
and we proved in the last article (152.7) that

d
o f = - -— 7 .
o (ALt} o V-0V,

Hence, in geodesic coordinates is equal to

' du
d d
Nm Saa}\"+a)‘“ 5, (tbp)

=20V (Nt} — ™ CEMET- TSN AT- A

—aP(P. V+oV.  +8,Vi+ 6, V) .

+a™ (¢, Vit 4 @ Vit Vit b V)

+aM ey (Vppr+ Ve +#a¥e (Vi + Vie,)- (153.1)
Now Vi =iAV, =XV, +{qtAt} Vi—{puqrt} V,

= Vit {9t} Vi—*pgat} V,,
Viewe = Viut+ {qt'/ttf} Vi~ {nqut}V,,

-

2848
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and therefore
Wt (Viaet Viewd)
=a¥o (Vi + Vi) +2a™¢ (gtat) Vi,
—aMatP (upAt) Vi—a¢a1? (upat) V,,
= 2aM$pV.,,—2aM ¢ (qUN} VI +2aP [ pAXL) Vd
=2¢Aa,(V)=2d"P¢ {Attp! Vi + 241V, ¢. (153.2)
It follows that 2—;% is equal to
—VA,($) -9, (V)-24(¢, 1)
= VA, (p)—98,(V)—24(p, V)
A
+a™ (¢a Vy+ b, W+ P V:z + ¢ V;\
+2a™ ¢, V. +2¢4,(V)+241V,¢. (153.3)

Again, oM I'L = «* V,’;,
and therefore
a o Vi =tV = a ¢, V, = A, 1),

)
_so that 24 is equal to

ou
—2VA,(p)+2¢L Vi+245 V1. (153.4)
Since, then, the equation
A ,
54 =2V A @)+ ePLVA+24, Vi (153.5)

is expressed in invariant form, it is true not merely at the
point, whose geodesic coordinates we employed, but universally.

Now oo (VEVA-T?)
=2V (@Au+VV)) +8) -2V (P (4+ V) +4,(9)

=—2Vap+2¢,Vi+245 Vi,

so that b%L(V;V:t—l"z—A)= 0. (153.6)
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§ 154. If, then, we are given any n-way space, and we find
functions V} such that

AV =ay Vi (151.1)
which will satisfy the equations
Via=V, A=V,Vi-V3 (154.2)

and if, taking arbitrarily any function ¢ of «;, 7,, ... x, and

. A .
a new variable u, we allow «;;, and V|, to grow in accordance

with the laws
da;

Sk =—2a, Vi (154.3)
]
baV G FVV ) 4aMp.,;,  (154.4)

taking as their initial values when w = 0 the given values ot
g, in terms of 2, ... x,, and the values initially found for V7,
the cquations VZ-)\ =V, A= PAVE_V? (154.2)
will remain true when w takes any value whatever, and the
form P dul + ay da;da;, (154.5)
will be the ground form of an (n + 1)-way Einstein space.

The surfaces w = constant may be any whatever in the
Einstein space; and we sce (149.2) that the property of this
space is that the sum of the products two at a time of the
reciprocals of the principal radii of curvature of any surface in
this space is cqual to —% 4, where A refers to the n-way space
given as the section Ly the surface of the (1 + 1)-way Einstein
space.



CHAPTER XII

THE GENERATION OF AN (n+1)-WAY STATIONARY
EINSTEIN SPACE FROM AN 2-WAY SPACE

§ 155. Conditions that the (i + 1)-way Einstein space
surrounding a given n-way space be stationary. Wo have
shown that any n-way space is surrounded by an (n +1)-way
Einstein space, and that the equations which lead to the
Einstein space are

VA=V, A=VivE_Vy
A

ik A
T;: ==2¢uy Vi,

S VE=p(AN+ VR4,
where A,’: =dt {tppp}, ¢>2 ESTAL
The Einstein space has the ground form
¢2du? + by, da;dry,,
where by, is equal to a;;, when w = 0.
We now inquire what properties the n-way space ground
form must have if ¢ and by, are to be independent of w.
Clearly the necessary and suflicient conditions arc that

Vi=o. (155.1)
Wo therefore have 4 =0, ¢pAL+¢,=0;
that is, @ NUpf+¢.,,=0; Ay(¢)=0. (155.2)

We now'want to transform the ground form
g da;diry,
and the function ¢ by the transformation
dyge = b ?V, ¢ =eE-M7, (155.3)
We have  aff = ¢=2Y ik,
likjia = {thjly+ ol (0q Vit g Vi— g, V).
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Let* 0‘)‘ = 630k+€[0i—aik0'iy
where 6/ = aitd,
and therefore 6 = «; 0.

We also have A (6) = 0 0,, 4,(0)=26",.
It is easy to verify the following relations :
6,0, = 216,60, —na,;, A(6),
010, = (n+2)0,0,—2a,,A(6),
B0 —0rs = (1—2) 0., +a, A, (6). (155 . 4)

Now {ikyl, = {ilghy+ Vi,
and
. d . d .
{rkih} = by {rik} — o, {rhk} + {vit} {thk} — {rht) {tik},
and thercfore
- . 1 d 11
{rkih}, = {vkil}y + 5, V,— 5, v,

it} Vo4 Vo, ((thle) o= Vi)
—{rht) Vi= Vi ((tik}o— Vi)
= (vkilyy+ V=V + ViVu—Vu V. (1565.5)
We also see that
(8, (V)= (n=2) (& (V))o = €727 (2,(V))a
A, =MV = (2-n) 2=V (A, (V)-(n—2) A(V)),
and therefore
(A (V)"(”/"z)A(V))a: (AZ(V))I): 0. (155'(")
Now =V VaVi=VuV.
= (n—2) ( it Vr Vh)+a)'h (A2 (V) ——(7?,—2) A V)r
and therefore
{rtth}, = {rithiy+ (m—2) (V. + V. V). (155.7)
It follows that, since .

(rlth}, + ¢(’P”' =0,

{rtth}y+ (n—2) (n—1) V. V}, = 0. (155.8)

* [This is not the introduction of some new function 6, but an assign-
. P .0 .
ment of meanings to 6/, and 6° in connexion with any known 6,. The

meaning of eﬁ is that assigned in §¢t.] *
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For the form b, dx;dx;, we therefore have
A,(V)=0, {rtth},+(n—1)(n—-2)V,V,=0. (155.9)
If we can find a ground form to satisfy these conditions, then
ay = bye?’, ¢ =MV (155.10)
will give a ground form which will lead to an (n+1)-way
Einstein form, the coefticients of which will be independent of u.

§ 166. Infinitesimal generation of the (n+1)-way from
the n-way form. In order to simplily the problem of finding
the ground form b dw;dx; we shall regard it as an (n+1)-
way form and bring it to the form

*prdu? + by deyday, | =1..mn, (156.1)
as we have done before.

The equations

A, (V)y=0; {vtth}+n(n=1)V,V, =0
now hecome, if we take V+/n (1—n) = u,
A, (u) =05 (tty =15 {rith} =0;
(it} = o. (156, 2)

If we regard the form as gencrated from o, da;dry, we
have (§ 146) the cquations

g,
Su = 229
(r]ﬂhl:)h = (TIC]LL.)(‘ + ﬂ,.iﬂhk —-.Ql.h nik’

(7‘]‘:}6 ')b =¢ (‘Ql'h' L= ‘th' o) ’

9
(r-he), = ¢ (aTb 2—9. rh) + @ PR 12y,
We therefore have

. d .
1=awig(p.,~ - D) -aia¥$ 0,0, (156.3)

0 = (nr‘h'k'— nhk‘ o) (156. 4)
0= ¢ (4, + " (02,0, — 2,42y) -2, 12;)
b}
v +¢""i— éuﬂ,i. (156.5)

* The ¢ used here is'not the & of the Einstein form.
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The first equation may be replaced by
—¢2= A+ (2, 0,,—0,10;,) "
The geometrical meaning of this equation, since it may be
written
—¢2 = A+ (@i —ar ¥ 02,02,,-02,0;),

is %(A+¢—2)=_2R1‘1R" (156. 6)
2

that is, the sum of the products two at a time of the principal
curvatures of the equipotential surface V = 0 regarded as
a locus in the (1 + 1)-way space is equal to —3 (4 +¢7?).

Making the transformation to the functions V' we have

d v
2=+ VT
A
V# 2 V#’
A

¢ P+ A4+ VE=VRV, =0,

)
g it = =295 e (156.7)
and, from {4, (u)], = 0, we have

—a* A} —g e} = 05

that is, —« "Q ¢— —¢- 4¢b¢ =0,
50 that ggb +Vgt=o. (156.. 8)
We have, « denoting the determinant of the form «;;dx;dz;,,
3% = ua'k b—(-%’f

=—2ua Ry =—2aV¢; ’

ctore 2 (agY = — 20V — 2229
and therefore bu(a¢ )=—2aV¢ 2a¢ S’

so that the equation M +Ve¢2=0

may be replaced by ——(¢ 72 =s0. (156.9)
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We have the equations
Via=V,; ¢ 2+ A+V2-ViVi=0,

d
]
D_L—b“ik = —2¢ai\ 1’?,
d r
5;2 ¢ = -—] ¢2.

As earlier, we therefore see that
D 7.
370(1 A=V

=, (VIVi—4—V?)

+ (Vo Vi + 45+ VVha—4u—2VV,)
= Gup 2+ (Vo Vi o+ 5 Aut+ VVim Au—2V V)
(156.10)

and this is equal to zero, since

- Ay 1
PP pu=34,—=V, V). + V.
We also have, from what we proved earlier (153.5),

24
5, =—2Va(p)+28, Vi+240V g,

and we have

d . , , Y )

m(q& 4 VZ—V§12)=—2¢ 337; +2V(p(A+VH)+D,(4)
—2VE(p AL+ VIV +8,)

and therefore b%« (A+¢~2+ VE=VEVY)

=29 Lavp s - vivY

_—_2V¢(A+V2_V£V2+¢—2)=0' (156.11)

We thus see that the required (n+1)-way form can be
generated from any n-way form infinitesimally by choosing V'
and ¢ to satisfy the equutions

Via="Vu; A+g-2eVi=VEVi=0. (156.12)
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§ 187. Restatement and interpretation of results. We
may now restate the result at which we have arrived.

Let a;dx;dz; be the ground form of any m-way space
whatever.

Find functions V such that ay, Vi = a;, Vi, and which
satisfy the equations V3., = V.

Define a function ¢ by the equation

A+¢p=2+V:i-ViVH =0,
where A =a™M {\ttu).

Let the coefficients «;;, and the functions ¢ and vt grow,
with respect to a new variable u, according to the laws

ba,-,'.
S = 28un VT,
-
V= (Al VY +aid.y,
d
b =—Ve?
A4 ¢7,

having as initial values, when w = 0, the given values of ay,

in terms of @, ... z,, and the values initially found for Vi and ¢.

The equations A
q Vﬂ.)\_ s

Aozt VQ—V/’:V;‘ =0
will remain true when w takes any value whatever; and,
@ denoting the determinant of «; ..., a¢p~2 will remain
a function of 2, ...z, only.
The (n+ 1)-way form
Prdut+adayde, =1..mn,
will now have the properties
A, (u)=0; {8t} =1; (rith} =0; {2t} =o0.
Transform now to any new variables which we may still
denote by «, ... x,, ,,,, and let
Vv/—nn=1)=u,

and thus let the (7 + 1)-way form be

av,-kdxidxk, 3 2 = 11. n+1.

2843 G v
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It will now have the properties
{rtth} +n(n—1) V.V, = 0,

where A, (V)= o.
From this (n + 1)-way form let us pass to the form
‘ by da;day,,
where by = age>’,
and let 0 =el-"7,

We now have, for the (i + 1)-way form
b da;day, i =1..7n+1,
0 rtth}+6.,=0 4,00 =0,
or B =o, 6824—02:0,
where B;‘L =D {rttp), 9; =00.,,.
The (n+2)-way formn 6%du?+ by de;dr, will now be an

Einstein form and the coeflicients b;;, and 6 will be inde-
pendent of .

§ 158. A particular case examined when n = 2. As
a particular case we might consider what properties the
n-way space must have if in the (i +1)-way forin which it
generates, namely Prdu? +ag.daydey,, (158.1)
the coefficients «;;, and the function ¢ are to be independent
of u.

We must have, as the necessary and suflicient conditions,

A+¢p72=0,

¢A2+(W¢.,H = 0,

that is, A4¢p =0,
¢ (Nttu}+¢.,, =0 (158.2)

Now the chief interest of an FEinstein space is when its
dimension is 4. We shall therefore only consider this special
case when n = 2. We thus have

_ Uy Uy —atfy
(1212) = i,

that is, 292K = 1. (158.3)
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The other equations become
pap—¢.,=0; ¢ap,K—¢.,,=0; ¢apK—¢.,=0. «
(158. 4)

We wish to find the properties of the two-way form which
will satisfy these tensor equations. ~

The element of length on the corresponding surfaces we
take to be given by 72 _ o ,~04, 4,

We then have (111}46, =0, {222} +6,=0,
112} = {121} = {122} = {221} =0,
and K=¢d4,.
The equations which have to be satistied will now be
b+ 6,4, =05 2¢p, = 7 Byt 0,6, = 0;
20290, = 1. (158.5)
We should notice that the suflixes in these differential equations

denote ordinary ditferentiation, and not tensor derivation

which would be indicated by the dot before the suffixes.

By means of the equation 2¢¢,, = ¢~% wo can eliminate 6

from the other three equations, and we see that they reduce
to the two equations

¢b1 b1 = Dy (¢¢11_¢f)’
PP, oy = b1y (¢¢z:_¢_:) (158.6)

These two equations may be written

o
5 (log P +logp—log ¢)) = o,

p)
Y (log p o +log p—log ¢,) = 0.

??(1;‘1’ and Pr2® (158.7)

1 2

Consequently

are respectively functions of v only and of w only.
We do not lose in gencrality by assuming that
$p=¢ = ¢,
and therefore ¢ = F(u+v),
where Fd = F*.
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The ground form of the surface is therefore
ds® = 4 F' dudy, (158.8)

where F is a function of w +v given by ¥’ F = F”,
If we take the parameters on the surface

r=u4v, Y=u—v,
then dst = F' (z) (da? + dy?), (158.9)
and F’ () F (z) = F' (). (158.10)
The surface is thus a particular case of a Liouville surface.
§ 169. General procedure in looking for a four-way

stationary Einstein space. In general, when we want a four-
way Einstein space of the form

6261u2+ b,'kdx,-dmk, ; =1, 2, 3,

in which the coefficients b;;, and 6 are to be independent of u,
that is, what is called the ‘stationary’ form, we begin with

the ground form o, dx? + 2a,de, de, + a‘ndm‘g . (159.1)
We then find in any way three functions
£y, =4y, M,

of the parameters «, and @, which satisfy the tonsor equations

Doy =9l gy = Dy (159.2)
We define a function ¢ by the equation
é%iz (1212)— 2,2, + 23, (159.3)

We now let the coefficients a;;, and the functions £2;, grow
with respect to a new variable u in accordance with the laws

da,;
Sk =—2442, (169. 4)
oM, a;
S = g 5'?’: —a* 0, 0,,¢. (169.5)
The equation which defines ¢ will be unaltered, and the
equations R0 =215 2= 4y, (159.2)

will remain true. ¢ ,
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We thus attain the three-way form
P2dud + a,,det +2a,de, dey + agd,  (159.6)

in which in general ¢ and the coefficients a;; will be functions
of z,, z,, and u.

In the particular case we considered in the last article,
when the two-way form appertained to a particular class of
Liouville surface, the function ¢ and the coefficients a,; will
not involve w.

But in all cases the three-way space with the forin

$*du? + ay ded + 2ay,de,dr, + dy,dac’
will have the property A, (u) = 0, (159.7)
ittky =0, {itt-} =0, {4t} =1, (159.8)
and therefore
(2323) = —3aq; (3131) = —3}q;;; (3123) = jay,;
(2312) = 0; (3112) = 0; (1212):2%2.

(159.9)

From this three-way form we can deduce the ground form
of a stationary four-way space by the rules we have given in
the general case.

We should notice that if we begin with the proper Liouville
surface, the EKinstein stationary form at which we arrive
can be, by a proper choice of the parameters, thrown into
a form in which all the coefficients will be functions of two
parameters only.

§ 160. Conclusions as to curvature. The three-way space
with the form
Prdul? + a,,dict + 2ay,de, dx, + apdua
is such that, if we regard the surface w = constant as lying in
it, the product of the reciprocals of what we have called its
principal radii of curvature is
nnnzz"n_;z_ (160.])
Uy Qg — Uiy

We must not confuse thgse racii of curvature with the
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radii of curvature of the surface w = constant regarded (as it
may be) as lying in Euclidean space.

We have in fact the theorem : “the produet of the reciprocals
of the principal radii of curvature of the surface, w = constant,
is equal to K -3¢ (160.2)
where K is Gauss’s measure of curvature.

Riemann’s measure of curvature corresponding to the
vectors £ and 7 which lie in the tangential Euclidean space
at any point is (§ 141)

(§71 = &0n") (¢h " =&Y (iphg) 0 )
§'7]1'_61';]')(§/~ n't— &4t ( “1/~“1N1—“1(1“/") ’

where the direction cosines of the vectors ¢ and 7 are re-
spectively £1, £% £3, and 73t 9% ™

If the veetors ¢ and 5 touch the surface w = constant, this
becomes %% If their plane contains the normal to the
surface it becomes —3 ¢ %

In the particular case when we start with the proper
Liouville surface these are respectively A and — A, where N
is Gauss's measure of curvature.



CHAPTER XIII
n-WAY SPACE OF CONSTANT CURVATURE

§ 161. Ground form for a space of zero Riemann curvature.
We shall now consider the simplest form in which the ground
form of a space may be cxpressed in which Riemann’s
mcasure of curvature is zero everywhere and for all oricntations.

\ ) 0y -
For such a space Ctrpy ) =0 (161.1)

for all values of the integers.
Consider the system of differential equations

bpyg = O- (161.2)
We have e =05 Pupry =0,
and therefore (iG—q7) ¢, =0,
that is, ptrgy ¢y = 0. (161.3)

A system of equations with the property that no cquation
of lower order can be dedueed from them by the processes of
algebra and of the differential calculus is said to be ¢ complete .

The neeessary and sufticient conditions that the system of
ditfercntial equations ¢.,, = 0 way be complete is then

Iptrg) = 0, (161.1)
that is, that Riemann’s measure of curvature is everywhere
Zero.

If v and v arc any two integrals of the complete system

¢'pq =0, .

FA (w,v) = Fau, vy
= w"“u.)‘,.v,t+(¢'\"'u,\v.w.
=0, (161. 4)

g . . L] . o .
and therefore, since A (u,v) is an invariant, it is a mere
constant.
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If, then, we take any n independent integrals of the equation
system $pyg =0 (161.2)
as our new variables, the ground form will take such a form
that each a,; is a mere constant.

The ground form can therefore be so chosen as to have the
Euclidean form da + o+ da2, (161.5)

§ 182. Ground form for a space of constant curvature for
all orientations. We next consider the ground form which
corresponds to a space for which Riemann’s measure of
curvature is the same constant for all orientations.

We have (Arpp) = K (a0, =y, ¢,)s
and therefore  (Afpup) = K (), €, —ay,e). (162.1)
If, then, t#p and t # g,
we have ‘Atpup} =0, (162.2)
and Appp; = Kay, ‘ (162.3)

if p is not equal to p. Here the repeated integer p is mot to
have the usual implication of summation.
Consider now the system of equations

U g+ Ka,yu=0. (162.4)
We see that the system is complete: for

ppr T K(c,)qur =0,

Uepry+ Keyou, =0,

and therefore  {ptrq} w,+ K (a,,u u,) =0,

Iz Cpr™
and for a space such as we are considering this is a mere
identity and not a differential equation of the first order.
The system is therefore complete.

Now let v be any integral of the complete system (162 . 4).

We bave 7A (u) = 7a™u, u,
A A
= aFu,u, +atu, v,
— L Ap
= —«* Kay,uu, —a™* Ka,, v,
=-K (wu, 1 wu,),
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and therefore A+ Ku? (162.5)
is & mere constant,

As w does not satisfy any equation of the first order, being
defined as any solution of the complete system, we can choose
w so that A (w)+ Ku? is equal to zero at the origin, and
therefore zero everywhere.

Lot K=, (162.6)
1
We now have A(logu) = e

Take now as new variables

Y= Rlogu, v, ...9,,

where A,y =0, k=2,..
The ground form will take the form
([;CI, + (l,ik(l.lf,i(lxh, } = 2, oo 1Ly
g

and, since Wepg = >

and w = ¢k,

we have Gt + Yk = o
' g R ’

that is (k1) + G _ 0
> Dt =0

d 2

or bel (log «;) = &

.[t follows that (l’ik = ¢ £ I),”L., (162 N 7)

where b, is a function of u.y... 2, only.
As regards the form by da;day,,

P TR )
wo see that, since
2xy

(kih), = ek (rkik)y+ {th1} (rh1)— {kl1} (ril)

2xy

L]
= Wpgy Wr,— Ay (L1,
= ¢k (’l'k@h)(,-{- rh %k ri bl ,
[ ]

ofRu
2843 H h
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Qpp Qi — Cri Uy

R ’
wo must have (rkih), = 0. (162.8)

and since (162.1) (rkik), =

It follows that the ground form of a space of constant
negative curvature may be taken as
dit + € B (3 + ... +da?), (162.9)
By the substitution

x

h=¢ L Ry,=ua,.. Ry,=usw,
the form may be written
R ‘ .
— (o} + dad + ...+ dur?). (162.10)

1

The corresponding form for a space of constant positive

curvature may be taken as

. .
(—da? +dx3 +...+da?). (162.11)

i
§ 163. Different forms for these spaces. We may find
other forms for these spaces.
Taking the case of positive curvature, instead of choosing w

8o that A )+ Ku? =0,
we may choose u so that
1—u?
Au) = R (163.1)
Let U = cos 2‘: ,
then A(x) =1,
and the ground form may be taken
dai +aydedr, =2,.. 10 (163.2)

Since w,,  +a u_o
‘pe T pe pE T Y

we now have (k1) + (%’f cot% =0,
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and therefore ;. = sin? Rl by (163 3)
where 0;;, depends on w, ..., only.
We have

(rkik), = sin? ‘é (vkik), + {ik1} (rh 1)~ (R 1} (19 1),
and therefore

Wi Upge— Oy g Uy Ly i — gy

— ut 2
iz = sin 1 (7/»4/¢)b+cot R e ;
. . 0,04 =030
that is, (rkih), = MFM .
The ground form may therefore be written
(IJ"]') + sin? %ﬂl bi};‘ll'id"'ln (163 . 4)

where ;. d.e;dx;, is a ground form in z,...x, only, with the
same constant positive measure of curvature.

It at onco follows that the ground form for a space of
constant positive enrvature may be written

d@? +sin® H(lt-+'~uu Ksm 4[6 +.

or perhaps better as
R* (dw? +sin® a2 + sin® 2 sin?ayda +...). (163.5)
A form obviously equivalent would be .
R2 (e + cos? wyda? + cos® wycos® xpdal +...).  (163.6)
The latter form when applied to a space of constant negative
curvature would become
—R* (dx} +cos?a dad +costa costawydad +...), (163.7)
and this may be written .
R*(dz? + cosh? &, dx3 + cosh*x, cosh®x, dz; +...). (163.8)
The surface x; = constant, that is, the (n—1)-way space
Z, ... &y, regarded as a locus in the 2-way spaco of constant
curvature given by the form

. o
dw%+sm2fédz%+..., (163.9)
L[]
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has all its principal radii of curvature equal to

@
— Rtan=1,

I
and any line on the surface is a line of principal curvature,

§ 184. Geodesic geometry for a space of curvature + 1.
We shall now consider the geodesic geometry of a space
whose curvature is positive unity: that is, the space corre-
sponding to the form

do? = da? +sin?x, ded +sine;sinfz, del +.... (164.1)
We shall first find the equation which a path must satisfy

if it is to he stationary with respeet to variation of the
coordinate a;.

. . s
If we write @; for » * we must have
oS

7/

; : o (22 LsinZea? .
RE = sing cos (&3 +sin” @23 +...) ;

and therefore, since

1 = &? +sinfe, @2 +sin?a, sin?.0,83 + ...,

wo have &, = eotx, (1 —a7). (164.2)
It follows that _([ls, sinZuy (83 —1) = 0,

ds
and therefore cos iy = €08 &, COS (8 +€,), (164.3)

where &, and ¢, are constants, and s is the arc measured from
some point on the path.
It follows that
sin® &
(1 —cos*ay cos* (s + €1)*

= @2 +sine,dd +.... (164.4)

o tan(s+e
Inet = tan ( ])
sino,
then we have  ds} = du} +sin® wyda; +.... (164.5)

Here s, is the are in, an (n—1)-way space of curvature
positive unity, and if s is to be stutlonary for variation of ay,
then s, must also be qtatlonary
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Proceeding thus we see that the equations which define
a geodesic are COS T, = COS O COS (8 +¢€,),
COS &y = COS Ky COS (3, 1 €,), ..., COSIL,_| = COB O,y COS (8,0 + €5_1),
Ty = 8y t+€ps
sina, tans, = tan (s+¢;), sina,tans, = tan (s, +¢,),...,
sina,_;tans,_; =tan(s,_,+€, ;) (164.6)
1f we take
£ =reose,, §,=rsina cosz,, § =rsinzsing,cosa,,
g.=rsing, ...sinx,_ cosx,, £, =7rsine...sinz, sinz,,
we see that E1+E3+. H =1
and we easily verify that
A2+ AT+ . +dE2 = drt+r? (e +sin? e ded +..0).
(164.7)

The n-way space of curvaturc positive unity is then the
section of an (n+1)-way Euclidean space by a sphere of
radius unity.

§ 185. Geodesics as circles. We shall now prove that
every geodesic is a circle of unit radius in ordinary Euclidean
space of three dimensions, but generally two geodesics will
not lie in the same Euclidean three-fold.

We have for a geodesic
Sin@, cos 8, = sin &, €08 (8,-, +€,), sinw,sins, = sin (s,_; +¢,),
and thereforc

sin@,co8x,,, = A, coss,_;+ B, sins,._;

=, co8(s,_; +€)+b.sin(s,_, +¢,), (165.1)
where 4,, B,, a,, b, are some constants.

It follows that
sinz,sin®,,, cos &, .,

=sina,(4,,,co88.+ B, sins,)
= A, sin®,.cos (8, +¢€,)+ B, sin (s, +€,),
and therefore
b,cos &, sinx, 8in &, COS L, 5 — B, cos,sinx, cos x, 4,

= (B,4,0,—sin c'x,. b,A4,,)cosz,.. (165.2)
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We thus have a linear relation between the three coordinates
£,~, £r+l’ §r+2'

By a linear transformnation in the (2 +1)-way Euclidean
space £, ... £,4, We can take it that the first such relation is
£, = 0, and that E1+&i+.+E,, =1
Proceeding thus with respect to any one geodesic we can
take it that the equations which define it are

§i=0, £&£=0, ... & =0,

that is, £y = Z, x, = ;T, v Ly_q = ;T
It is therefore just a circle in the space given by

ls% = (lg;-:—-}—(lg;iﬂ, (165.3)
and its equation is 2482, =1, (165 . 4)
with £L=0, £,=0, ... §,,=0.

§ 168. Geodesic distance between two points. We shall
now find an expression for the geodesic distahce between any
two points in the n-way space whose measure of curvature is
positive unity.

Let the two points whose coordinates are

..., and Y, .Y,
be denoted by  and y, and consider the geodesic which joins
the two points. Let s, s, ... s,_, be the ares which correspond
to z, and &', s';, ... 8", _, the ares which correspond to y.

We have
cos @, oS Y, +sin 2, sin y, cos 8, cos 8’ +sinz, sin y, sin s, sin s’

= cos?x, cos (34 ¢€;)cos (8" + €)) +sin o, cos (84 €;) cos (8" +¢,)

. .,
+sin (s+¢€) sin (s" +¢,),
and therefore
’ . 5 . '

cos (8" —8) = cos x, cos Y, +sin &, siny, cos (', —s). (166.1)

Similarly we see that
cos (s’ —s,) = €os @, 08 %, +8inx,siny,cos (s'y—s )  (166.2)

.
.

’
€08 (8'p—y — Sy—p) ]
= COS&,_, COSY,_,+sinz,_ siny,_,cos(s’,_;—s8, ),
l, : — . yr
8 =S =V, (166.3)

n-1 “n-1
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It follows that, denoting the geodesic distance between the
points « and y by (xy),
cos (zy) = cosx, cos ¥, + sin &, sin ¥, cos &, cos ¥,
+ sin @, sin g, sinx, 8in y, cos 2, cos Y, + ...
+sin, siny, sin,siny, ... sinx, _; siny, _; cos (x,—v,).
(166. 4)
This is the formula which is fundamental in the metrical
geometry of n-way space of curvature positive unity.

§ 187. Coordinates analogous to polar coordinates. We
can now cmploy a system of coordinates, to express geo-
metrically the position of any point in our space, which will
be analogous to the use of polar coordinates in ordinary
Euclidean space.

We take any point in the space as origin, that is, the point
from which we are to measure «,, the geodesic distance from
the origin.

It will be convenient to denote this distance by tan=!7, so
that r = tana,. (167.1)

Let us now consider the system of geodesics which pass
through this origin. For any one of these geodesics «,, ...z,
are fixed, and we may therefore regard .,, ...x, as the co-
ordinates which define the geodesic, and thus regard r, «,, ... x
as the polar coordinates of a point in our space.

The geodesics through the origin cut the surface » = con-
stant in an (n—1)-way space of positive curvature 1+ -2

In particular the surface 5 = infinity (167.2)

n

is an (n—1)-way spacc of curvature positive unity, and the
coordinates of any point in this space detine a geodesic through
the origin.

The geodesic distance between two points at small distances
x, and g, from the origin is given by
cos (x,7/;) = €08 &, oS Y,

+ sin, sin y, (Cos &, €08 ¥, + sin &, siny, cos 2, cos y, +...),

and therefore .
21

0 yi oL :
1—3 (@) =1-— 5 "-2—‘ +ayy, (cosw,cosy,+...).
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But, if 8 is the angle between the geodesics through these
points and the origin,

() = 2 +y3 —22,y,cos 0.
It follows that
cos 8 = cosx,cos y,+sina,sin y, cosw cos iy, + ..., (167.3)

that is, the angle between the two geodesies is the geodesic
distance between the points where the geodesics interseet the
surface 7 = infinity.

The geodesic distance between any two points is therefore
the geodesic distance between two points, on a sphere of unit
radius, whose polar distances from a point on that sphere are
2, and ¥,, and the difference of whose longitudes is the angle
which the geodesics through the points cut out on the surface
r = infinity.

§ 168. The three-way space of curvature + 1. We¢ now
limit ourselves to the case where n = 3, that is, the three-way
space of curvature positive unity. Ior this space z, is the
geodesic distance from the origin; and &, and &, may be
taken as the polar coordinates of the point—on the two-way

- . T
surface of positive curvaturc unity, .:']=2-——where the

geodesie, through the point z,, z,, ; and the origin, inter-
sects the surface.
We may without loss of generality suppose that z; lies

between 0 and g, z, between 0 and 7, and 2, between 0 and

27, In the surrounding four-way KEuclidean space ¢, will
then always be positive.

Through two points in our space one,and only one, geodesic
can be drawn, unless the two points lie on the same geodesic
through the origin, and are the two points where that

. . w
geodesic intersccts the surface x, = 9"

Through three points in the space we can in general draw

one, and only one, two-way locug of positive curvature unity.
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We see this by noticing that three points (), x5, ), (V15 ¥a» Ys)s
and (z,, 2,, 5,) determine the planc

i+ ot b+ gy = 0
in the surrounding Euclidean spacc. The exceptional case
would be when the three points lie on the same geodesic.
By a linear transformation, in the Euclidean four-way
space, we may take the plane to be ¢ = 0 and the locus of
the points of intersection with the sphere to be given by

E3+63+6i=1
There will then be a correspondine set of coordinates
E g

@, £y, @, such that the locus is given by a, :7; in the new
coordinate system.

It will be convenient to call any two-way locus of curvature
positive unity a plane, though we should remember that it is
only properly a plane in the Euclidean four-fold. Similarly
we shall call any geodesic a line.

Plane geometry in our space is thercfore just spherical
triconometry.

{ 189. The geometry of the space. We may now introduce
a different system of coordinates in order to bring out the
relationship hetween the geometry of space of curvature
positive unity and that of ordinary Euclidean space.

Let @ = tan ., sin &, cos .2,
9y = tang sina,sinw,, 2= tanwx cosw,. (169.1)
In this system of coordinates the geodesic distance between
two points (z, y, 2) and («', ¥, 2") will be
1+l,l + Yy +W .
TR RO,

where 12 = at+yt 4225

(169. 2)

The square of the element of length will be given by
ds? = (1472~ (e + dy? + dt— (1 + %) 1r2dr) 5 (169.3)

but in this gcometry, as in Kucliflean geometry, having the
2848 Ii
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&
-

expression for the actual distance between any two points, we
do not need to make so much use of the expression for the

element of length.
The equation of any planc is
Ax+py+vz+8=0.
Now a planc, we know, is a two-way surface of curvature
positive unity. Let @, 3, 2, be the coordinates of its centre,

that is, the point at a geodesic distance g from every point

of it.

We then have  ww, +yy,+2:,+1 =0, (169.4)
and therefore &2, =\, &y, =p, &z =v.

The angle between two planes is, as in spherical trigonometry,
the supplement of the angle—that is, the geodesic distance—
between their centres.

The cosine of the angle between the two planes

Ne+py+rz+d =0,
A+ py+v,c+8,=0

AN Emp 8,6,

— — -~ (169 5
CYERERErE o el o

is therefore
The equation of a plane, given in terms of the coordinates
of its centre, is aw + Yy, +52+1 = 0. (169.4)
The condition that the plane passes through the origin, that
is, the point where z, 7, and z are each zero, is that its centre
should lie on the plane whose centre is the origin.
The equation of a line is given as the intersection of two

planes cr Yy, sz, + 1 =0,
aLy+YYy+22,+1 = 0.
In connexion with this line we consider the line Jjoining the

points (z;, 41, 2) and (£, Uy, 2,)-
The plane whose centre is 4 may be called the polar plane
of A. We see that if Bies on the polar plane of A, then 4

lies on the polar plane of &,
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We now see that if (x,, %,, %) and (x,, ¥,, 2,) are any two
points on a line, then every other point on the line is given by
— p_"il_i(fl_‘; 2}y1 Y 5 = le + gz, (169 . 6)
ptq p+q pra
where p : q is an arbitrary parameter.
The line given as the intersection of the planes
ro+ Yy +e5 +1 =0,
ar, +YY,+23,+1 =0
stands therefore to the line joining (z, 4, 2;) and (xy, ¥,, 2,)
in the relationship, that the distance between any point on
the one line and any point on the other line is 7% The lines

which are in this relationship will be called polar lines.
We now wish to consider two lines, viz. the line given by
xr + Y +cs+1 =0,
ax, +yyY,+2z,+1 =0,
and the line given by
Ly + Yy, + 22,41 =0,
arg+yy,+52,+1 =0
If these lines interseet, the four points
(oY) (ol sy (U5 %), (Lo ¥a %)
lic on a plane, and we thus see that if two lines intersect their
polar lines also intersect, and the plane on which they lie is
the polar plane of the point of intersection.

 170. Formulae for lines in the space, and an invariant.
Just as in Kuclidean geometry, a line has six coordinates.
We define these coordinates
l=wy—u, MEY,—y, W=E,—2, AZY5—U%,
B= iRl V=AY 8 (170. 1)
The six coordinates are those of the line joining the points
(%,,¥1,%,) and (x,,¥,, 7,), and they are connected by the relation
IN+mp+ny = 0. (170.2)
We easily see that if 7, m, n, A, y,'v are the coordinates of
a line, the coordinates of itg polar Yine are A, u, v, I, m, n.
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Let s, = way4y,0h+52, 8 =S ai+yi+ei.

If (12) denotes the geodesic distance between the points
(@), ¥y, 2,) and (2, 7, 5,),

= Tt
COS(IQ) - (1+sl)’}_ (1+32)£’
sin (12) = §(148)(145)=(145,)% g’
U (Ts)(T4s) )

ErmP+n®+ N+ p’+o*
(L45) (145

and therefore sin®(12) = (170.3)

Consider the expression

W +mm’ +un’ + AN+ pp’ + v/’
(P N P ) (2 a2 R N

where ([, m, n, A, g, v) and (', m’, n’, N, @/, v’) are the co-
ordinates of the lines which respectively join the points 1 and
2, and the points 3 and 4.

It is easily verified that the numerator of the expression is

(1 +835) (1 +85) — (1 +814) (14 8,,)

and the denominator is

V(1+8) (148, (1+s,) (1 +8s,) sin (12) sin (34).
The expression is therefore equal to

cos (13) cos (24)—cos (14) cos (23)

sin (12) sin (34) , (170. 1)

and this is clearly an invariant.
Suppose now that the points 1 and 3 coincide. The ex-

pression becomes 4. (24) —cos (14) cos (12) (1705
sin (12) sin (14) ’ -5)

and we:see that this is the cosine of the angle between the
lines 12 and 14.

Suppose next that the®line 13 is perpendicular to the lincs
12 and 34.
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Clearly, from the formula
cos (24) = cos (14) cos (12) (170.6)

when the lines 12 and 14 are perpendicular, the line 13 will
be the shortest distance between the lines 12 and 34.

The planes 132 and 134 will be the planes through the
shortest distance and tho lines 12 and 34.

We may, to interpret the expression

W+mm +an" + AN + pp’ + vy’
(é/.+,”L~_‘+ Ib"+)\""+/£“'+x'2)'l" (l’z'*"l?l/"—{r-n" 4 )\"+/1 +V")

since we have scen that it is an invariant, take the points
1,2, 3,4 to he
0,0.0; «,,0,0; 0,0,2,; @,¥, 2,
o

Vai+yivi+zg

it now becomes

The cquations of the planes 132 and 134 hecome respectively
y=0, yx,—ay, =0.
'The angle between these planes is

&€
cos™! LI
vai+y

The shortest distance between the lines is

cos™! ——
T V1423
and therefore the invariant expression is equal to the' product
of the cosine of the shortest distance between the lines into
the cosine of the angle between the two planes drawn through
the shortest dlstance and the two given lines.

The invariant vanishes if the lmes are polar lines. It also
vanishes if the planes through the shortest distance and the
two lines are perpendicular.

If the lines are not polar lines and if the invariant vanishes,
we see that the polar line of 12 infersects 34 and the polar
line of 34 intersects 12.
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§ 171. Volume in the space. The expression for the clement
of volume in a space of threc dimensions and with the
measure of curvature positive and equal to unity is

sin® &, sin &, dz, dz, dz,, (171.1)

returning to the original notation of § 168.

The volume enclosed by an area of any plane—that is,
a two-way surface of curvature positive unity—and the lines
Jjoining the origin to the perimeter of the arca is

’u)f (¢, —sin @, cos @) sin &, dr, dz,, (171.2)

where @, is the geodesic distance from the origin to a point
within the perimeter.
If the plane is at a geodesic distance p from the origin we

can use the equation ton p = tan a, cos x,,

and express the above intogral in the form
%J(p~tanp.xl cotz,) ey, ) (171.3)

where 2; is now tho geodesic distance to a point on the peri-
meter from the origin.

If we take » to be the geodesic distance of a point on the
perimeter fromn the foot of the perpendicular, and take 2, to be
the corresponding longitude 6 in the plane, the above formula
becomes

tan 9 cos p cos r cos™! (cos p cosr
%j(,)_ poonpeRTe (cos ))(ze. (171. 4)
vV 1—cos® peos? r

If the foot of the perpendicular lies within the area, this
formula givés us for the volume the expression

pr e o 171.5
! V' 1 —cos p cos? 7 ’ ( )

. J‘sin 70¢08 7 c0s ™1 (¢os p cos 1)

where the integral is to he taken round the perimeter.

We notico that in space of curvature positive unity when s,
the variable in the equz.xtion of a geodesic, increases by 2,
then s, s,, ... also increase by 2, and therefore the coordi-
nates &, . ..., all increase by 27. (We thus, in proceeding along
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a geodesic, come back to the point we started from. We cannot
have any two points at a greater distance from one another
than 7.

§ 172. An n-way space of constant curvature as a section
of an extended Einstein space. We now wish to consider
the m-way space of constant curvature as a scetion of an
(10 + 1)-way surrounding space.

We take the (n+ 1)-way space ground forin to be

P+ by dayday, L, =1...1, (172.1)
where by, = a;;, when w = 0.
We have (§ 146)
(7‘/"]“:)11 = (",“/'i)a+ “Qli "Qhk - "thﬂilﬁ

(7'/"h'>b = ¢ (‘Qih T "Qh’x ‘)

9 ;
(b h=¢ (D'I.b 2,,—¢. rh) +a ‘Vnmﬂh,u
(\7),”‘4
du

Extending the definition of an Einstein space, we shall now
say that a space is an Einstein space if

:—-*2..(2”..¢). (172‘2)

b (rkil) = eb,,,, (172.3)
where ¢ is a constant.
We have
. d ML v
(B ')b = “”¢ ((/) " du ‘Q/i>—“““)\f ¢~‘Qr)\ni/u
(B, = atp (12,0, — 21,

(B, = (4, + M (02,02, — 02,,02,)

N
+¢—l(¢wi_ 5o i), (172.9)

If the surrounding (n+1)-way space is to be Kinstein
space according to the new definition,* we must have
v — =1 d n 1 A
C =« ¢ (¢.“:— ('\ll, ”:)—(L o .QM.Q,-#,
— gkl
0=u (“th'h_nllk'l)’ )

* [Called in § 18 gn extended Ewnstein space. |
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Clyy = AM+” (2, 2, — 2, 024.)
+¢7 (80— % 02,;) =02, 02,
That is, if V=, (172.5)
where 2. =42, = a;, V= N vy,
we must have ¢ = ¢! (A2 (cp)—a”"a?—wﬂ,i ViV, (172.0)

Vi =", (172.7)

‘.(2”: = (li)‘(a—t; VAA—'2¢V; 17?‘)7

2

Now
d

and therefore
—_ 3 Ap
Uy = A+ FD 0y —2d 0, 0

- ) A t 1A
+‘l) ]((i).’i_((i’\—a_')_zl,’ +2(f)(6[/\1,1'1 I)

=A4,,+1, V+¢—1(</> iy, V)‘>
Multiplying by «'? and summing,
ce’ = Al VIV 4 ¢ (¢” 2 V") (172.8)
We also have
S CACER V+z¢ww) VAVE,
That is, we have

d
= Vi=¢n+d AL+ VVi—ce),

U
V= AP VIVE—ch,
Vi, = V.

We may rep]ace the equation
5oV =0,8)+pVyVi-co

by A+VEaVAVE = (n—1)ec.

TR
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The equations therefore become

A+V2-_VIVE = (n—1)c, (172.9)
k — 3
X Vﬂ.)\-—V#, (172.10)
¢ A A A A A ‘
3{b.VM_.§1>lu-|-g15(/1#+VVM—Cs#), (172.11)
dat;
-T:Lk :—2¢(0,MV[,;. (172- 12)

We may easily verify that the results which we have
proved for the case ¢ = 0 still hold in this more general
Einstein space.

The special conditions that the coefficients b, and the
function ¢ may be independent of % become

4 =(n-1)c ¢A:‘,+¢2 = Cgbsi:,
that 1s, dNLbp}+Poau = chury, A =cop. (172.13)

Now let us assume that the n-way space is of constant

curvature K. We have
{(Attp} = (1 —n) Kaap.

If we choose K so that Kn = —¢, the conditions that the
surrounding Einstein space may satisfy the required conditions
become & an+ Karugp =0,

A, () + Kng = 0.
The second condition is a consequence of the first set, and we
see that all that we need is that the system

(i).A#—i-I\’(l)\#(j): 0 (172.14)
may be complete.

We know it is, and thus we may take ¢ = cos z,, and the
space given by

ds® = cos? w;du?+ R? (dai +sin®ayded +...)  (172.15)
will be an Einstein space of the kind required.

If the space is of constant negative curvature we should see
that regarded as a locus in (n+1)-way Luclidean space it
would be an imaginary scction.

The expression for the geodesic distance in space of negative
curvature unity is given by
cosh s + sinh z, sinh 7, + cosh &, cosh y, sinh a,sinh y, + ...

+sinha, ... sinha,_,sinhy, ... sinh y,,_, cosh,_, coshy,_,

= cosha, ... cosh x,_pcosh7y, ... cosh y,_, cosh (?n_?/n)-

2843 K k



CHAPTER XIV

n-WAY SPACE AS A LOCUS IN (n+1)-WAY SPACE

§ 173. A space by which any n-way space may be sur-
rounded. We now consider again the ground form of an
(n+1)-way space du?+ by dz;da;, which, when we put v = o,
becomes ay, dic;day,.

We have, by the formulae of § 146,

{ikh}b = (llth,“, {'1:]0'}[) = ﬂih; {i.k}b = —(t”’..Qi/,
("kih)b = ("]“l/‘)a + nrhﬂik - n’linhln
(l'/\;?:')b = ..Q, il -

AR

, M,
(rei)y = La a0,

”.L’

(’l
0= Du, 2;{221
We shall prove that we may surround any n-way space
with a space for which

(rhiv), =03 (reiv), = 0. (173.1)

. o002 ..

. 0., = o4l

Let ih= g

d
then mﬂ,f'k - bﬂ(b.r’;n'i_—

€

(rkt) 25— (ikt) n,,)

J . . .
= " £2,;— {rkt} 02, —{ikt} 12,
d 2 .
——ﬂ,i 5‘&/ {’rk‘t} -—ﬂ“ b—’ti {'th}
= ..Q,, I ,_fl” \ (’rkt ﬂt, ‘(?z]bt;
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Now we have seen that
b [ t t
ﬁ[’rkt] = L!A(CkI‘V,..,\-—]/L.,.'-—V,v,k

= o ' tA
= A2 =2y — 2

— A
R
and therefore

d A A
mn:i‘h =—a #‘Ql')\ﬂi,u'k-“ #‘Qr)\'kniy
+ ((’Mniiﬂw\'k-”a’”\n// ni)\'k ;
. d
that is, le,n’i'k =a™ (nl‘#niz\‘k_nmniu'k)

= 0. (173. 2)

Thus we see that the relations £2,;., = £2;.., persist when
«y, and £2;;, grow in accordance with the laws

?nilc

A

o +a ”JZI-AJZA.# =0, (173.3)
(\(l']‘.

37;0 4242, = 0. (173.4)

We can therefore surround the n-way space with a space
for which (rki-)y = 03 (r+4+), = 0.

§ 174. Curvature properties of this surrounding space.
We will now consider what properties such a surrounding
space would have as regards curvature.

Consider the ground form of the surrounding space, which
we denote by the suffix b, g2 by, lgdey,.

Let = o+ + 8o, +E5
N = le + .+t 2

be two vectors of lengths |£]| and | 4| inclined at an angle 6’
which lie in the tangential (i +1)-fold and therefore in
Euclidean space.

Let =82 +... +£2,

1=+ . 2,
be two corresponding vectors of lengths |£| and |7 | inclined
at an anglo 9 and lying in ¢he tangential n-fold.
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We have €12 = a7 ¢F,
[n[*= agn'n",
[€]1n]ecos 6 = a;€'n",
4|£1%|m|?sin 0 = (¢'nP—£Pn') (¢hnT— E1nk) (@, 4y — i@y,
The measure of curvature K, according to Riemann, which
corresponds to the orientation given by the vectors ¢ and 7,
satisfies the equation

4sin® 0 |£|*[ 9 |* K, = (§'9P —£Pn') (¢ nt — £1n") (ipkq),.
Now consider the vectors £, 4 when u = 0.
| £l =1¢1=8 14]2=n[=4"
$|£1214]2 sin* &'
= 4 £12]n[*sin® 0+ (¢4 — ) (4 — En¥) ay
= 4 (12 niPsin? 0+ & |24 4* | £ 2265 | €] | cvs )
We therefore have
4K, (£ [ ni*sin? 0+ £ "+ 9% £2—2£7 |£]|n]cos 0)
= (¢'nP — Pn") (E* 01— £10%) (ipkq)y,
since (epk-)y = 0, (i-k-)y=0.
But (ipkq)y, = (ip/cq)a+!Z,‘qﬂpk—{l@-kﬂm,
and therefore
4Ky (€[*1 7 |sin® 0+ £2n 2+ 4% [ P — 240 | £1]n |cos 6)
= 4K, £1*|n|*sin® 0
+ (P —EPn) (EFnt—£19%) (250~ 4.2, (174.1)
Here K is the Riemann curvature in the (n+1)-way space
corresponding to the orientation of the vectors ¢+ £% and

n+1%; and K, is the Riemann curvature in the n-way space
corresponding to the vectors £ and 7.

§ 175. We may express the result in yet another form.

Consider the ground form c¢{2;; dx;dx;, where c is a constant
introduced to keep the dimensions right, and let a vector ¢
be defined by the equations (i{k +efdy = 0.

The vector ¢ will then trace out in some Euclidean 7-fold an

n-way space &, ... Z,. ° .
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In this space let us consider two vectors ¢ and 4 of lengths
|£| and | 4| inclined at an angle @', where

E=EG+. 8w
= 77|{1+ et ’7"51-
We have
4sin? @’ | £ 2] %
= ¢ (§i’7p"§p'7i) (fk’?'l —gan) (nik“(zpq _niqnl{p)’
and therefore
1% 2 in 0 (K, — K,) + €171 [2sin 0/
I @l P+ PP =240 1€ [n] cos ) = 0.
(175.1)
We sce that the curvature of this (n+ 1)-way space which
surrounds the given n-way space depends, then, on the know-
ledge of the ground form 2, dx;dxz; with the property that
251, = Lygese

2

§ 178. A condition that the surrounding space may be
Euclidean. We now ask whether the surrounding space can
be Euclidean ?

If it is Euclidean we must have

('I"/JZ:]L) + .Q,.hﬂi,‘.—-ﬂl.iﬂhk = 0,
n N
R )

M, 0y, = 0,

ricle = C4rkeiy

Db'l’"
-+ 2425 = 0.
du + 24y =0

We have seen in § 173 that, if when « = 0 the equations
.Q,.i.,;:[l,.k.i . (176.1)
hold, they will persist for any value of w whilst £2;;, and a;,
grow in accordance with the laws
da.
ik 4 20y = 0. (176. 2)
oy,

A
= +? #nil\pk# = 0. (176.3)
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We shall now prove that if these oquations hold, then, if
(7]AL’L)+D !ll.iﬂhk =0 (176.4)

lolds when u = 0, it also will persist when v has any value.
The expression

rl

\ . . .
55&4 (rkib) + {vtil) £2,,— (Ltil) 02,
is a tensor component: when we refer to the geodesic coordi-
nates of any given point we shall find that it vanishes at that
given point and therefore vanishes identically.

So referred,

d
(: kil) = (b (Tl/u - 5751.("11]".))

_ Q2 'Q".i_ 2 ‘O‘ik )2 _th )2 ﬂnh_»
Tuwpduy dwy e, dwpduy,  dayduw,
N bnli f ] (21
ow —a_a;;' = 'Ql'i'k + 1 7'/l7t i 'Qit + 1 b/th .Q,,,,
.M.

= gy, + it 02y, 4 (hert) 02
ox,

and therefore

d . . .
(vkil) = a—a— ({eht} a2, —{irt) 02y)

9
<= (Vhkt) 02, — (hot} L2,
‘)‘l"z( 4 (vt s 42y
= A, (kteh) — 02, (rtih), (176.5)
which proves the required formula.

Again
o (20— 2, 0) = 0 2y Dy 2 12,
— M0 0 0, — 2y 02,0,
= ‘Qk#“)\# (12,42 — £2,3,42))
+ 02,0 (202, — 2502
sz 0y M (P Nik) + 02,0 0™ (kphi)
=0y, (rguih} — 02, (kNik}
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It follows that

o .
b/[o ((7']\%’&) + ﬂ,hﬂtk-ﬂ”ﬂhk) =0 5

that is, the equations
(7‘/&[7&)+ﬂrh.fll-k—ﬂ,iﬂ,lk = 0, (17(‘;.6)

if true when « = 0, will always be true.
The condition that an mn-way space may be contained in
a Kuclidean (n + 1)-way space is that the cquations

.Q,.i.z.-——[l,k.i, (170.7)
(rkil) = £2,;02, = 02,302, (176.8)

may be consistent.

§ 177. Procedure for applying the condition when n > 2.
There is now an essential distinetion between the case 7 = 2
and the case n > 2.

A two-way space is always contained in a Euclidean space
of three dimensions, and we have considered the problems
associated with this case.

If » > 2 we can uniquely determine the functions £2,; in
terms of the four-index symbols of Christoffel, by aid of the
squations (rhih) = 2,; 0257, — 2,02,

alone. If n >3 we even have relations hetween the four-
index symbols from the consisteney of these equations. It is
a problem of algebra merely to determine the functions £2;;,,
and the functions so determined arc tensor components.

It the surrounding space is to be Euclidean, the functions so
determined must salisfy the equations £2,;.,. =02,.,. We
can therefore, when we are given the ground form uyde;day,,
determine, by algebraic work merely, whether the space to
which the ground formn refers is or is not contained within
a Euclidean (n+ 1)-way space. The actual work would,
however, be laborious.

§ 178. The n-way space as a surface in the Euclidean
space when this exists. Suppose, how, that we are given the

ground form «g,du;dwy, and that we have found that the space
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to which it refers is contained in a Euclidean (n+1)-way
space and have calculated the functions £2;,: we may ask,
what is the surface in Euclidean space which is the given
n-way space ?

Let z be the vector in the Euclidean (n+1)-way space
which traces out the given n-way space. We know from our
carlier work that 2., is normal to each element of the space
drawn through the extremity of z. Now there is only one
such vector in the Euclidean (n+1)-fold. Let A be the unit
vector which is normal to the surface. Then

el = Wik Ay (178.1)
where w;;, is some scalar.
We have Suyik = WAL 10,4 LA,
ot = WA 0y A,
and therefore, since
ki—ik = [tpik; (1)~ iqtiki (),
where p is an upper integer and ¢ a lower integer, we have
- {l'tik; o= ’U’,.iAk — ’U',.kAi + (u‘ri. k—wrk.i) A. (1 8. 2)

Multiplying by A, and taking the scalar product, and noting

that A\, =0, we have W5 = Wpeie

We also have 5. .o, 2. 5., = (rkhi),
N——

N———
and therefore W p Whi — Wi, = (vhhi).
It follows that wy, = 24, (178.3)
and we have 2o = 2 (178.4)
We also have wrtik} zp = g A — 02,0, (178.5)

so that when we know A we can find & by quadrature and
thus determing the surface sauve for a translation.

§ 179. We have now to show how to determine A.

A =0
and therefore )\E,zl‘f 7:_2/.1,([ = 0.
It follows that A2, =gz = (2.
N N '
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From the equation
{’l‘t@k} ztzﬂ,k}\,-—ﬂ“-)\k, (179.1)
[rtil} g, = Da A, — Mg\, 5
and therefore
M (rqik) 2y, = L Mdp — 2N A5
tha.t is, af’l.ﬂ,p (ﬂl‘i ﬂqk — ﬂ,kﬂqi) = ﬂ,,k Aj«’_{‘}‘ —_ ..Q”)\!L)\p,
or [l,.k (Aikp + (Ltq .Q,pﬂqi) = ..Qm- ()\kA]' + tbtq .!Z,Pﬂqk). (1 79 . 2)
Unless, then, the coeflicients of £2,; and £2,; are zero, we must
have 2,0y = 02,402,
which would mean that (rské) = 0 and that the n-way space
was Euclidean, a case we need not consider. We conclude that
AN+ P12, 0y = 0. (179. 3)
We thus know the ground form of the surface traced out
by the unit vector A.

%A oA
L i = —— — ikt — 179.4
Ot )\ ik = bwibwk l&]vt, b-l),' ( )
where {ikt}’ is formed with roference to this ground form.
We have A =0,
and therefore AN+ AA = 0.

Now \.;;, is parallel to the normal to the surface traced out
by A, and therefore, as A is a unit vector, is parallel to A.

Since M., = aPl 0,0,
it follows that A +uaP1O2 02N = 0. (179.5)

We thus have the equations which determine A.

These equations may be written

Agt+a'gA=0, (179.6)

where a’y, denotes a coefficient in the ground form of A. As
this ground forin is that of a space of constant positive
curvature we see that the system is ¢ complete’.

It follows that we can allow A, ...\, to take any initial
values and thus we can determine ) save as to a ‘movement’

.
in Euclidean space.
2848 L1
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We have considered three ground forms ; these may be written
—dzdz = a‘kdx‘dxk,
N’
—_— dZdA = ﬂ;k dw‘dmk s
N’
—dAd\ = uP1 n]‘i ﬂqkdw,-dwk .

N
We saw (147.4) that the lines of principal curvature were

given by the equations (apg—RL2yg) dzy = 0,

that is now, b z, (dz— Rd\) = 0,
y g( )
and as we also have A (dz—RdA) = 0,
\\___——/
we conclude that dz = RdA (179.7)

is the equation of the linc of curvature corresponding to the
principal radius of curvature E.
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Plateau, the problem of, 155, 168.
Polar coordinates in n-way space
of curvature + 1, 239.

geodesic coordmates, 47.
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Riemann, 171, 194.
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Ruled surfaces, 28, 129, &c.
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139.
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Schwartz, 171.

Second derivatives in transforma-
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Spherical image, 66, 73.
trigonometry, 27.
Surfaces of revolution, applica-
bility on, 26, 107.
orthogonal to geodesics, 199,
203.
with plane lines of curvature,
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Tangential equations, 69.
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240, &ec.
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178.
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sets of orthogonal, 175.
Vector-products, notation for, 62.
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Voss, 208.
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irvature and torsion
formulae, 110, 114.
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of curvature zero, 231,
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Weingarten, 71
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