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PREFACE

MY father .had spent most of his spare time since

the War in writing this book. Only two .months

before his death, while on our summer holiday in 1924,

he had brought some of the chapters with him, and

sent off the final draft of them to the Clarendon Press.

Even on these holidays, which he greatly enjoyed, we

were all accustomed to a good deal of work, and it

was an unexpected pleasure to find that with these

once dispatched to the press he took an unusually

complete holiday.

While rejoicing that he was so far able to com-

plete the book, we are sorry that a last chapter or

appendix in which he was greatly interested was

hardly begun. Apparently this was to deal with the

connexion between the rest of the book and Einstein's

theory. To the mathematical world his interest in

this was shown by his Presidential address to the

London Mathematical Society in 1920 to his friends

by the delight he took on his frequent walks in trying

to explain in lucid language something of what

Einstein's theory meant.



vi PREFACE

We cannot be too grateful to Professor Elliott,

F.R.S., s,n old friend of many years standing, for

preparing the book for the press and reading and

correcting the proofs. No labour has been too great

for him to make the book as nearly as possible what it

would have been. And the task has been no light one.

We should like to thank the Clarendon Press for

their unfailing courtesy and for the manner in which

the book has been produced.

J. M. H. C.

Christmas 1925.



EDITOR'S NOTE

MY dear friend the author of this book has devoted

to preparation for it years of patient study and inde-

pendent thought. Now that he has passed away, it

has been a labour of love to me to do my best for him

in seeing it through the press. As I had made no

special study of Differential Geometry beforehand, and

was entirely without expertness in the methods of

which Mr. Campbell had been leading us to realize

the importance, there was no danger of my converting

the treatise into one partly my own. It stands the

work of a writer of marked individuality, with rather

unusual instincts as to naturalness in presentation.

A master's hand is shown in the analysis.

Before his death he had written out, and submitted

to the Delegates of the University Press, nearly all

that he meant to say. An appendix, bearing on the

Physics of Einstein, was to have been added ; but

only introductory statements on the subject have been

found among his papers. Unfortunately finishing

touches, to put the book itself in readiness for printing,

had still to be given to it. The chapters were numbered
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in an order which, rightly or wrongly, is in one place

here departed from, but they stood almost as separate

monographs, with only a very few references in general

terms from one to another. To connect them as the

author would have done in due course is beyond

the power of another. The articles, however, have

now been numbered, and headings have been given to

them. Also some references have been introduced.

The text has not been tampered with, except in details

of expression ;
but a few foot-notes in square brackets

have been appended.

E. B. E.
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CHAPTER I

TENSOR THEORY

1. The n-wa,y differential quadratic form. Let us

consider the expression

aikdxidxk , \-= 1 ...n (1.1)

which is briefly written for the sum of r^ such terms, obtained

by giving to i, k independently the values 1, 2, ... n. If, for

instance, n = 2, the expression is a short way of writing

andxl + 2ct
l2dj'ldx2 + a

2^dx^ ;

for we are assuming that

tfc=fci- (*- 2
)

Let us also denote by a ih the result of dividing by a itself

(\) i+1* times the determinant obtained by erasing the row

and the column \vhi cli contain a in the determinant

a =

(1.3)

The coefficients aik ... are at present arbitrarily assigned
functions of the variables x

l
...^'n> limited only by the

condition that a is not zero.

When we are given the coefficients aik as functions of their

arguments, there must exist r functions

X
l
...Xr , r = -in(?M-l),

of the variables a^ ... xn , such that

dXl + ...+ dXl = a
ikdx4

dxk . (1.4)

The differential equations which will determine these

functions are %g ^%
= aik . (1.5)*i ^xk

Just as in the expression aik dxt
dxk the law of the notation

is that, whenever a suffix, which occurs in one factor of
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a product, is repeated in another factor^ the sum of all such

products is to be taken, so here the above differential equation

is the short way of writing

As there are just as many unknown functions as there

are differential equations to be satisfied, we know that the

functions X
l

... X r must exist. The actual solution of this

system of differential equations is, however, quite another

matter, and questions connected with the solution form a chief

part in the study of Differential Geometry.

2. The distance element. Euclidean and curved spaces.

If we regard xlt ..xn as the coordinates of a point in an

7i-way space, then, X1
... Xr being functions of y\ ...xn . we

may regard this space as a locus in r-way Euclidean space ;

and we may regard dk as the distance between two neighbour-

ing points x
l . . . xn and x

1 + dx
l ...xn + dxn ,

where ds is

defined by dsz =
(f{k

dXidxk . (2.1)

Thus, if n = 2, the two-way space given by

ds2 =
atffdxidxfr

lies within our ordinary Euclidean space, and it is with this

space that Differential Geometry has hitherto been chiefly

concerned.

If 7i = 3, the * curved
*

three-way space lies, in general,

within a Euclidean six-way space. If, however, the coefficients

a^, instead of being arbitrarily assigned functions of their

arguments x
lt

o/
2 ,
#3 , satisfy certain conditions, the Euclidean

space may be only a five-way space, or even only a four-way
space. In yet more special cases the three-way space may
not be * curved 1

at all, but only ordinary Euclidean space
with a different coordinate system of reference.

If n = 4, the curved four-way space lies, in general, within

a Euclidean ten-way space, and so on.

We know what a curved two-way space within a Euclidean

three-way space means, being a surface : but what does

a ' curved
'

three-way space mean ? We have not, and we
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cannot have, a conception of a four-way space, Euclidean or

otherwise, within which the three-way space is to be curved.

But by thinking of the geometry associated with the form

cfe
2 = au dxl + 2<f

12davir2 + ff 22<fo5 ( 2 2
)

we say that it is that of a curved two-way space ; and we

know that it is, in general, different from the flat Euclidean

plane geometry associated with the form

d*> = dxl+dxl. (2.3)

We can distinguish these two geometries without any
leference to the Euclidean three-way space, or any other

three-way space. This distinction we, with our knowledge
of a three-way Euclidean space, characterize by saying that

the first space is curved and the second flat, or Euclidean.

This is what we mean when we say that the space given by

ds* = (tfadxidxje (2 4)

is, in genera], a curved space, whilst that given by

d# = <Y.Y? + ...+<W:* (2.5)

is a flat space. We shall find that a geometrical property
will be associated with a curved space, which will distinguish

it from a flat space.

If we have no real knowledge of a space of more than

three dimensions, we have at least no knowledge that it does

not exist: and, by analogy from our knowledge both of

a two-way space and a three-way space, we are able to make
use of the ideas of higher space to express analytical results

in an interesting form.

The space in which wo live may, or may not, be flat or

Euclidean. Up till quite recently it has been assumed to be

flat, and the geometry which has been built up has been

that associated with the form

The geometry which we wish to know about to-day would

be that associated with the form

ds2 = afodxtdxfa \
= 1 ... 4,

where x...x are functions of the three variables which
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locate an event in space, and a fourth variable which locates

it in time.

The geometry of Euclidean space is much simpler than the

geometry associated with the more general form, and its

properties have been more studied. It may therefore be of

advantage, at least in some ways, to regard the form

ds* = aftdxidxje (2.1)

as that of an ft-way locus in a tiat r-way space, although r is

generally a much larger number than n.

3. Vectors in a Euclidean space which trace out the

space of a form. Let i'\ i"
,
i'" ... be r unit vectors in the

Euclidean space and let y and z be vectors given by

What we call the scalar product of the two ^vectors y and

z is denoted by yz and defined by

y^
+ y'Z

' + y"z"+... =0. (3.2)

The cosine of the angle between the vectors is defined as

-yz
and may be written _^_

. (3 . 3)

\yy zz

We shall generally write yy as 2/
2

,
but we must remember

then that the root of y
1
is not y.

The numbers y', y" ... are called the components of the

vector y : they are ordinary scalar numbers.

Now let z be a vector whose components are functions of

the n parameters x
l

... xn . Denoting the derivative of z with

respect to xr by zr , we have dz = z
p
dx

p
in the notation we

have explained, which is the foundation of the Tensor

Calculus. We therefore have

dzdz = ZiZkdXidXfr. (3.4)
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The vector z traces out an n-w&y space within the Euclidean

r-way space, and in this ?i-way space the element of
'

length
'

is given by efc = -cfe<fe; (3.5)

and therefore, if we take

a
ik
= ~Wk> (3.6)

we have cfes

We say that cite is an element in this space, and we notice

that an element has direction as well as length. The element
is localized at the extremity of the vector z

; the element lies

in the w-way space, but the vector lies in the r-way Euclidean

space.

The direction cosines of the element in the r-way space are

, dx n dx
p

**-*' **-*"- (3 * 7)

We write fp = />

s 7 >

els

and we speak of J

,

2
, ... g as the direction cosines of the

element in the ?i-way space given by, or associated with,

ds2 = a

The upper affixes in g
l

...
*
have, of course, no implication

of powers as in ordinary algebra. The notation introduced is

in accordance with that of the tensor calculus which we are

leading up to. In accordance with that calculus we ought
to write the variables x

l
. . . xn as a;

1
... xn

,
but we do not do

so, as the notation x
l .. f x

)l
is at present too firmly fixed

perhaps.
If CD is the angle between two elements, drawn through

the extremity of 0, whose direction cosines with respect to

the n-way space are i 2 tn

respectively,

q
= u

pq
l
'*]

(1 - (3.8)
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It should be noticed that ^pq^rj^ means precisely the same

thing as fl^^V' Repeated suffixes are called dummy suffixes

and'can be replaced by any other dummy suffixes. The chief

rule that we need to follow is not to use the same dummy
more than twice in an expression containing a number of

factors.
*

It should be noticed that the angle, for which we have

found an expression, is that between two elements drawn

through the same point, viz. the same extremity of the

vector z. We have no expression for the angle between two

elements at different points in our 7i-way space. This is

something that distinguishes the geometry connected with

the form ds 2

a^dx^lx^ from the geometry of Euclidean

space.

4. ChristofTel's two symbols of three indices. Let

. (4.1)

This is the definition of Chris toffel's three-index symbol of

the first kind. It is exceedingly important in the theory
of differential geometry. The first two suffixes are inter-

changeable. We may write it sometimes in the form T
t

when we regard i and k as fixed suffixes.

Since
fl<fe

= -^i
we see that (ikl)

= ~^^, (4 2
)

, Wz
where z

ijf
= .- vll{

dx.^rfr

We introduce the symbol e\
to denote zero if i and k are

unequal and unity if i and k are equal. We do not write

J
as equal to unity, for by our convention

e{=j+e!| + ... + = n.

In employing dummy suffixes it is best to employ a letter

to which we have not attached a definite connotation.

From the property of determinants and their first minors

we see that ait

0kf
=

^
m (i . 3)
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Let {ikj} =o#(arf); (4.4)

then {ikj} is Christoffel's three-index symbol of the second

kind. The first two suffixes are interchangeable and it may
be written TJ when we regard i and k as fixed suffixes.

We have at once
(/&j)

^
ajt {ikt}. (4 . 5)

5. Some important operators. Even already we have

come across a number of functions of the vaiiables which we
denote by integers attached to a certain letter. Thus we
have the fundamental functions denoted by u^...; we have

the direction cosines denoted by
1

...
n

,
and the functions

aik
....

More generally we may have a number of functions of the

variables, say 6, <, >//,
... and we may form a function of

6, 0, ^Jr,
... and their derivatives with respect to the variables.

It may be that the function thus arrived at may bs denoted by

where a, j8, ... are integers of the upper row, upper integers

we call them, and a, b
y
... are lower integers. These integers

may take independently any of the values 1, 2, ... u and thus

indicate how the function 7', ""
is formed. The number

-/ a, 5, ...

of the upper integers is not necessarily equal to the number
of the lower integers. It may be that there are no integers

in the upper row, or none in the lower, or even none in either.

We shall come across many functions which may be ex-

pressed in this manner, and we have come across some.

In connexion with functions which are expressed in the

above form there are n operators which are of fundamental

importance in tensor theory. These operators may be written

1,2, 3,...rc,

where p denotes the operator

and where (') denotes the operation of substituting t for A,
A.
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A being any upper integer, and where (*) has a similar

meaning with respect to a lower integer.

(5.3)

the which occurs on the right is a dummy suffix, and thus,

for instance,

We notice that the definite integers 1, 2, ... ?i are not

dummies, and we should avoid the use of 71 as a dummy.
-x - - /e e ^We write 1 a- P =l> 1 a (

5 5
)

By aid of the symbolism thus introduced we can avoid

a prolixity which would otherwise almost bar progress. A

very little practice will enable one to use this symbolism

freely, and when necessary to express the results explicitly.

6. Conclusions as to derivatives of a
ijc)

a*1

*, and

We see from the definition that

; (6.1)

and therefore the operator p annihilates each of the functions

aik , which, of course, could have been written Tik .

We have a a^ = ;

and therefore

/fc r a*7 + au (tpk) + a
u
(kpt)

= 0.
dx
p

It follows that

a**atk <- (fi + a** {tpq}+aH {kpi} = ;

that is, aty +a<
{pg} +a {ipi} =0. (6 .
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It follows that the operator p also annihilates each of the

functions aik
.

By the rule for the differentiation of a determinant

= a (tl
)(l

(ptq) + a a!"l (qtp)

- 2a{i>tp],

<* i i
or - </2 a*{ptp}. (6.3)

This formula will be required later. [It should be re-

membered that the symbol on the right stands for the sum of

n symbols, with p 1, 2, ... a.
]

7. Tensors and tensor components defined. We must

now explain what is meant by a tensor. We have seen how
functions denoted by

ra
> Py

(iy 6.
* * *

may be derived from functions $,</>, ty ... and their derivatives

with respect to X
1

... xn . The different functions obtained by

allowing the integers to take all values from 1 up to n are

called components of the set.

Suppose that we transform to ne\v variables a;'. ...x'n ,
and

that & denotes the expression of 6 in terms of the new

variables, and that
(/>', ty' ... have similar meanings. Suppose

further that r/ya',0',
/ / i./M (i f) ...

* *

are functions formed from 0',
X

, ^', ... and their derivatives

with respect to the new variables x\ ...x
}l by exactly the

same rules as the functions

rot,
A...

a, b, ...''

were formed from 0, 0, \/r,
and their derivatives with respect
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We say that 7^6,' '!.'

are components of a tensor if

TV ',', ... __ jta^ ^ ^V^V nr*,0,...
* ;*,... -5^,a*v" ^ >V"

ft
'
6""'

Notice that the integers on the left are not dummies but

that the integers a, )8, ... a
} 6, ... on the right are, Notice

also that the above equation must hold for all values of the

integers on the left if the expressions

r ,*,...

a, b, ...

are to bo tensor components.
This is the formal definition : we shall immediately come

across examples of ten&ors which will illustrate the definition.

8. The functions a^ and a ijc are tensor components.

If we transform to new variables x\ ... x'n ,
the expression for

the square of the element of length must remain unaltered in

magnitude though its form may change We therefore have

a
pq
dx

p
dx

q
= "\ndx\dx'p

and so = " <'>

Thus the functions aik ... satisfy the condition for being
tensor components.

Again from the fundamental equality

,

we have ana ;/ = a

Notice that q and X are no longer dummy suffixes in this

<>x

equality, Multiply across by a'KS ^~ , then we have
8

P t

-r = a
>'
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The'exprossion on the right hand of this equality is

**V^ _ ^s ^r _ ^V _ r _ -p
.

.

'
~~

'
~~ ~ ~ M '

therefore a
lia (a

r
l>- a'**^f r-^2 ) = 0.

jq \ <)xl)x/
and

This equation holds for all values of p, </,
and r, and there-

fore, as the determinant a is not zero, wo must have

It follows that the functions a*k ... also satisfy the condition

of being tensor components.

9. Expressions for second derivatives when

We have z' r
=

where z
f
is the expression of z in terms of the new variables,

and %' denotes ^ and z' a denotes ^ ,

~
. . It follows,? Zx'r W *

p <>Mq
since by (4 . 2) (pqr)

1 = -^2%, that

Notice, that we see, from this equation, that Christoffel's

three-index symbols of the first kind do not satisfy the con-

dition of being tensor components.

Multiply across by af r*

^

*
,
and we have

B

- n-a _^-7
-

J>^
___

x4
___

"But, by (8. 2), a' = a'*
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and therefore the right-hand member of this equation becomes

We therefore have the fundamental formula in the trans-

formation theory

Similarly we have

,, ^ da' a a;
7
.J. (9.4,

10. Tensor derivatives of tensor components are tensor

components. We must now show that the operators

1,2, ...n,

when applied to any tensor components, generate other tensor

components.

Let MS L.... X'...
and assume that

jT** ^
'"

... are tensor components.

We have >jv
>*',.. = T*'^~'MNJL

a', b',... JL a, b, ...
" IV

which we briefly write 2
T/ = TJUN.

Expanding -j-M, using the for
dx

p'

tion theory which have been obtained,

Expanding -j-M, using the formulae of the transforma-

and therefore

(10.1)
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Similarly we have

and therefore

p'N =
(^-/^}(

l

lt
}-{^p't}'(

l

lt))jf.
(10.2)

^X ^\

Now T=--T
i

We have written x ,

a
-rJ- . . . simply as My but we must

o T* Q 3* i.t

note that Jlf has the upper integers a, 6, ... (as well as the

lower integers a', &', ...) and that the upper integers in M are

the same as the lower integers in T.

Similarly we note that the lower integers in N are the

upper integers in T.

It follows that

if we remember that these lower integers in N and upper

integers in T are just dummies.

We have similarly

M{nql] (') T = T{tq\] (*)Jf, (10.5)

M{w't}'fyT=T{V*}'(D*I> (^.7)

and therefore $>' (TMN) =^ MNqT.

That is, p'T' = qT^~ ^~ ... r-A^-^ -^-' ..., (10.8)

and therefore '7^a
^'--- 1 t . are tensor components.

J. Ji Q 0) , , .

This is a very important theorem in the tensor calculus.

It is the rule of taking what we call the tensor derivative
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and we see that the tensor derivative of a tensor component
is a tensor component. We denote the p derivative by

T::!;;:. P
-

00.9)

11. Bules and definitions of the tensor calculus. We
have now proved the most important theorem in the tensor

calculus: its proof depended on the transformation theorems.

These theorems, having served their purpose, disappear, as it

were, from the calculus.

There are some simple rules of the calculus which we now
consider.

The product of two tensors is a tensor whose components
are the products of each component of the first and each

component of the second tensor. The upper integers of the

product are the upper integers of the two factors, and the

lower integers of the product are the lower integers of

the two factors.

Two tensors of the same character that is, with the same

number of each kind of integers, upper and lower can be

added, if we take together the components which have the

same integers. They can also be combined in other ways, as

we shall see.

We form the tensor derivative of the product of two tensors

by the same rule as in ordinary differentiation.

The tensors a^ and aift are called fundamental tensors.

We have seen that they have the property of being annihilated

by any operator jp.
As regards tensor derivation they there-

lore play the part of constants.

The symbol e^
satisfies the definition of a tensor. It also

is called a fundamental tensor.

Any tensor, formed by taking the product of a tensor and

a fundamental tensor, is said to be an associate tensor of the

tensor from which it is derived.

Suppose that 2 a be
'"

*s any tensor. The tensor itself

is the entity made up of all its components, formed by allow-

ing a, /?, y, ..., a, 6, c, ... to take all integral values from

1 up to n. Suppose now, that instead of taking all the
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components, we take those in which one of the upper integers,

say a, is equal to one of the lower integers, say^fc.
The

entity we thus arrive at will be a tensor. For

The tensor thus arrived at is denoted by

nrfp, 0,7. ...

* ,P,c, ...

1 'A 4- u 7^,0,7,...and is said to be y a> &> c>

contracted with respect to a, 6.

We can contract a tensor with respect to any number of

upper integers and an equal number of lower integers.

^l^r(X,

If we take the tensor J[ a b
'

an associate tensor would be

a 7^,
ea -/ a, 6

and we might write this y a

'

& >

and as it is contracted with respect to two upper integers and

r &̂

^7"fft/3 ^Trt(X/3

So we may write a^tf / pg
ns y

We shall often use this contraction when we are consider-

ing associate tensors

The rank of a tensor is the number of integers, upper and

lower, in any component. When the rank is zero the tensor

is an invariant. When the rank is even we can form an

associate tensor which will be an invariant. When the rank
is odd we can form an associate tensor of rank unity. When
the rank is unity the tensor may be said to be a vector in

the 7i-way space : a contravariant vector if the integer is

an upper one, a covariant vector if the integer is a lower

one. But it must be carefully noticed that when we think of

a- vector in the flat r-way space, we are thinking of the word

vector in a different sense, Thua the vector z which traces
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out the /i-way space is not an invariant, but rather the entity

of r invariants, and so as regards the derivatives of z. In

the r-way space they are all vectors, hut the coefficients of

the vectors i', i" ... come under the classification of tensors.

If we bear this distinction in mind we shall not be misled,

and we may gain an advantage by combining the two

notions. It is a useless exaggeration of the great advantages
of the tensor calculus to ignore the calculus of Quaternions.

Wo certainly cannot afford to give up the aid of the directed

vector notation in the differential geometry of flat space
within which lies our vi-way curved space.

12. Beltrami's three differential parameters. If we take

any function U of the variables, then

u,,ut , ..un

will be tensor components. The tensor derivative of an

invariant is just the ordinary derivative; 4ind therefore the

above functions are just the same as

U.
l9

U.
99 ...U. n . (12.1)

[For the notation see (5 . 5) and (10 .

9).]

But if we take the second tensor derivatives we come

across different functions from the ordinary second derivatives.

These second tensor derivatives we denote by U . ik ... where

0-. tt =Z7-tt -{ifc}tf,. (12.2)

These we have proved are tensor components ( 10), whereas

the ordinary second derivatives U
ik are not. It would be

a useful exercise to prove that the functions U.^... are

tensor components : it might make the general theorem,

whose proof is rather complicated, more easily understood.

The square of the tensor whose components are U
l

... Un
is a tensor whose components are U^U Ĉ

. If we form the

associate tensor a^U^U^ we have an invariant which is

denoted by A ([/), so that

&(U) =aik U
{
Uk . (12.3)

This is Beltrami's first, differential parameter.

Similarly by forming the tensor which is the product of
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the two tensors whose components are t^ ... Un and V
l

... Vn ,

and taking the associate tensor aik U
i
Vk ,

we have B.eltrarni's
* mixed* differential parameter

A (17, V)
= aik U

4
Vk . (12.4)

We. also have Beltrami's second differential parameter

&
2 (U) = a?k U. ik . (12.5)

Clearly all these ' difFerential parameters
'

as they are called

are invariants. They are of great utility, as we shall find, in

differential geometry.

13. Two associated vector spaces. Normals to surfaces.

Returning now to the vector z, whose extremity traces out

the n-way space within the flat r-way space, we have,

see (5.2) and (12.2),

*-M = *<ft-{'^}**- t
13 - 1

)

Clearly the components of this vector z . ^ are tensor com-

ponents.

We have ^/*,(>i+ 1) vectors z. ik and we have n vectors z
i ;

as these (%n(n+ 1) +n) vectors all lie in a %n(n+l) flat

space there must be n linear equations connecting them.

These vectors all depend on the parameters xl9 ..xnt and we

may regard them as all localized at the extremity of the

vector 0.

Now, see 4,

Z ' ih zp
= z

iJe
Z
p
~

tp {
ikt }

= 0. (13.2)

We thus see that the vector z .
i1c

is perpendicular to every
element in the ?i-way space drawn through the extremity of z.

Let one of the n equations which connect the vectors

*-ifc' *; bo bik z -ik + bt-t= >

where bik ...b
t

... are scalars. Multiply the equation by
and take the scalar product : then, since

we have

that is, t}
t
a
tp
~
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and therefore, since the determinant a cannot be zero, we have

6j
= 6

a
= .. = 0. (13.3)

It follows that the n linear equations connect the vectors

z> ih ... only.

At any point of the ?i-way space, therefore, there are

n vectors z
l
...zn generating a flat ii-way space; and there

are -|/i(/i-f-l) vectors .^., only %n(nl) of which are

linearly independent, and these generate a %n(nl) Hat

space. These two flat spaces, associated with the point
x

l
... xn ,

are such that every element in the one space, drawn

through the extremity of 0, is perpendicular to every element

in the other space, drawn through the extremity of z.

Thus when n is equal to ?, as it is in ordinary differential

geometry, the vectors 3 . u ,
z .

12 ,
z .

22 (13.3)

are parallel to the normal at the extremity of z which traces

out the surface we are concerned with.

14. Euclidean coordinates at a point. Associated with

every point x
l
...xn we have a special sjstem of coordinates

which we call the Euclidean coordinates of the point. They
are very helpful in proving tensor identities, which without

their aid would prove very laborious.

At the point under consideration aik ... (ikj) ... are constants.

Let another set of constants be defined by

aik = b
it
b
ki> bik

= 6M' i
14 - 1

)

and then another set by

(ikj)
= b

jt
c
tik ,

cm = c(M , (14.2)

and consider the transformation scheme

We have

z
J
= z

'p(
h
PJ
+ c

riq

*ik
= z\ (

b\i + c\

and therefore at the point

a tt

(ikj)
=
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Now t/
tt
= I'^k = eJA;^/,,

and the determinant a is equal to the square of thje deter-

minant 6, so that the determinant b cannot be zero.

It follows that a'^
= e

\
; (H.6)

and therefore

that is,

and therefore (V?)' - - O 4 - 7
)

In this coordinate system the ground form at the point is

dx
l*+...+dx

2
, (14.8)

and the first derivatives of (t
ik ... vanish at the point. Of

course it is only at the point that these results hold.

15. Two symbols of four indices which are tensor

components. Let us now consider the expression

We see that since

_3
~ Mr MIMk Mh Ciczf

f

(15.1)

that is, the expression is a tensor component which should be

denoted by T
rjc!iiy but as is customary we denote it by

(rkhi). (I 5 - 2
)

This is Christotfel's four-index symbol of the tirst kind.

We see that if the two first integers are interchanged the

sign is reversed, if the last two integers are interchanged
the sign is reversed, and if the two extreme integers are inter-

changed and also the two middle integers there is no change.
The expression aktz ^ (15.3)

is -a vector whose components are tensgr components : it is an

associate vector to z.
it
and may be denoted by z k

.
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We then have z .
ri z[ z.

llL z(

= ali
(rkhi). (15.4)

Tliis is Christoffel's four-index symbol of the second kind,

which should be denoted by J[ rhi > but is denoted by

{rthi}. (15.5)

Like the four-index symbol of the first kind it is a tensor

component. If the last two integers are reversed the sign

is changed, so that
{rthi} = -

{riih}. (15.6)

The three-index symbols, it will be remembered, unlike

the four-index symbols, are not tensor components.
We can express the four-index symbols in terms of the

fundamental tensor components ct
ik ... and their derivatives.

We have

(rkhi)
= -/A- = Xh-s-ik'

+ zrhzt (
ijct } >

and, as z^ = -
(r/7), z^ = ~

(rht),

* *

V7 Z
>'i

Zl;~~ l\^
Z
>h

Z k
- Zii-]th zrh s1ii>

\J tJL/1. ^+*^.^s vJUi >^__ -^ s>^ ^ *^- ^/
ft

^~ i - P -

we therefore have

(rkhi) = ^- (rhk)
-
^- (rile) + (rit) { kht }

-
(rht) {ikt}. (15.7)

cXi cxh

This formula may be written

(rkhi)
= i(rhk)-h(rik),

if we make the convention that the operators are only to act

on the last integer, the first two being regarded as fixed,- and

the last as a lower integer.

We also have

{rkhi} = akt
(rthi)

= at 1

(I (rht) -h (rit))

= iakt
(rld)-ha

ht
(rit)

= i {rltk}~h {rik} ;
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and therefore

{rkhi} = ^- {rhk}- ^- \rik} + {tik} {rht}- [thk] {rit},
*** ***

(15.8)
since the last integer in {ikt} is to be regarded as an upper

integer.

It may be noticed that

{ikt} (rht)
= a*P (ikp) (rid)

=
(ikp) {rhp}, (15.9)

so that in the product {ikt} (rht) the two symbols { } and ( )

may be interchanged.

16. A four-index generator of tensor components from

tensor components. If we consider the expression

(3-9$ 7*; ?;;;;, ue.i)

we see at once that it is a tensor component. To find out

what it is we employ Euclidean coordinates at a specified

point.

At this point we see that it is

that is,

that is,

At the specified point we therefore have

w-> = {^>} ^)- {/^%>l (^) ; (iG . 2)

and, as this is a tensor identity, it must therefore hold at

every point.

The proof of this important theorem is a good example of

the utility of Euclidean coordinates, at a point. The three-

index symbols of Christoffel vanish at any point when referred

to the Euclidean coordinates of that point. If they had been

tensor components they would therefore have vanished in
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any system of coordinates. The four-index symbols do not

vanish when referred to Euclidean coordinates. The four-

ind'ex symbols and the tensor components which are associate

to them are the indispensable tools of the calculus when we

apply it to differential geometry and to the Modern Einstein

Physics.

17. Systems of invariants. We have ( 12)

A (a)
= aM^uA ,

and, in accordance with the notion of associate tensors, we

may write uk ^ a^c
u.

,

and therefore A (u) u^u^ (17 . 1)

Similarly we have

A (u, v)
= ti

f v
t

u
t
vf

. (17.2)

In accordance with the same notion of associate tensors

we might say that u = uiku . ^ ; (17.3)

but this is a rather dangerous use of the notation, as it

suggests that the u on the left is the same as the u from

which we formed u.^, which is absurd. However, a very
moderate degree of caution will enable us to use the Calculus

of Tensors without making absurd mistakes on the one hand,

or, on the other hand, introducing a number of extra symbols,
and thus destroying the simplicity of the calculus, for the

sake of avoiding mistakes which no one is likely to make.

We have proved, in 6, the formulae

-^- a* -f au { tpq }+a&{tpi} = 0,x
p

a* = a* {pip},
t

and therefore we have

--
{pqi}.

*^t

It follows that ttla'*^ = a*aiku . ih , (17. 3)
/

and therefore &2\u) a"*^ a*u l
. (17 . 4)
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If wo have any invariant of tbe quadratic form a^dx^dx^,

say 0, we can obtain other invariants A (0), A
2 (0) by means

of the differential parameters; and when we have two

invariants, <f>
and

\Jr,
we also have the invariant A (0, \jr).

Clearly there cannot be more than n independent invariants.

Suppose that we have obtained, in any way, n independent
invariants tt

1
,...uri

. Here the suffixes have no meaning of

differentiation or of being tensor components.
If \ve take the^e n invariants as the variables, then we have

atk =A(v i
u

Jl), (17.5)

and we can express the ground form in terms of the in-

variants.

In this case we can say that the necessary and sufficient

conditions that two ground forms may be equivalent that

is, transformable the one into the other are that for each

form the equations

A 0'i Uk)
=

0toK---'M'fi) (
17 - 6

)

may be the same.

For special forms of the ground form we may not be able

to find the required n invariants to apply this method. Thus

if the form is that of Euclidean space there are no invariants

which are functions of the variables.

IS. An Einstein space, and its vanishing invariants.

Let us write A rldh
~

( rklh) , (18.1)

then
{ rkih} = <^A

rpih
, (18.2)

and therefore (rkil) ^ {rpih}.

We form associate tensor components (11) of (rkih)...,

and we know that they will be tensor components. Thus
we know that aM

(
rj^ (18.3)

will be a ten or component. We write

A space for which all the tensor components A
ij

... vanish

is .what is called an Einstein space. A space for which
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where m is independent of the integers r, A, is called an

extended Einstein space.

We can form invariants from the associate tensor com-

ponents. Thus aikA ik (18- 4
)

is an invariant which we may denote by A.

Again, dkA
ip (18.5)

is a tensor component which we may write A k

p . We thus

have the series of invariants

A'
PA*, A'

PA*AI A'pA*A
q
rA

r
t . ... (18.6)

All of these invariants vanish for an Einstein space.

We can form another series of invariants which do not

vanish for an Einstein space. Thus we have

}>qra
, (18.7)

and so on.



CHAPTER II*

THE GROUND FORM WHEN n = 2

19. Alternative notations. We now consider the ground
form a^dx^dx^ for the particular case when n = 2. That

is, we are to consider the geometry on a surface which lies in

ordinary three-dimensional Euclidean space.

The square of an element of length on any surface is

given by ds* = au dx[ + 2a^dxY dx^ + a^dxl t (19.1)

where o n ,
a

12 , L
,2

are functions of the coordinates x^ x
2

which define the position of a point on the surface.

We often avoid the use of the double suffix notation, and

take u and v to be the coordinates of a point on the surface,

when we write ds2 = edu? ^ 2fdudv + gdv* ; (19.2)

or in yet another form

(fe
a = A 2du2 + 2ABcosotdudv + B2dv2

, (19.3)

where a is the angle at any point between the parametric

curves, that is, the u curve along which only u varies and

the v curve along which only v varies, and Adu and Bdv are

the elementary arcs on these curves.

There is no difficulty in passing from one notation to the

other. The double suffix is the one in which general theorems

are best stated : it alone falls in with the use of the tensor

calculus which so much lessens the labour of calculation.

*
[The packets of MS. containing Chapters II and III, as submitted Jo

the Delegates of the University Press, were numbered by the author in the

reveiso order, and that order would probably have been made suitable, by
some reai rangement of matter, had he lived to put the work in readiness

for printing. It has seemed best, however, to revert to the order of a list

of headings found among the author's papers, an order in which the

chapters, as they stand, were almost certainly written.]

2843 E
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In connexion with the form

ch2 = edu2 + 2fdudv + gdv
2

we use h to denote the positive square root of egf2
: that is

h = a* = ^5sina, where a = an a22 a^. (19.4)

The element of area on the surface is

hdudv = ABsinadudv = a*dudv. (19.5)

2O. An example of applicable surfaces. If we are given
the equation of any surface in the Euclidean space, we can

express the Cartesian coordinates of any point on the surface

in terms of two parameters and thus obtain e,f, g in terms

of these parameters,

= &! +2/1+3?, /= i2 + 2/i2/2 + 2;i^ 9 = l+yl + *l>

(20 . 1)

where the suffixes indicate differentiation with regard to the

two parameters.

Thus, if u is the length of any arc of a plane curve, we

may write the equation of the curve y = <f> (u), and the

surface of revolution obtained by rotating the curve about

the axis of x will have the ground form

where v is the angle turned through.

Can we infer that, if a surface has this ground form, it is

a surface of revolution ? We shall see that we cannot make

this inference.

Thus consider the catenoid, that is, the surface obtained by
the revolution of the catenary about its directrix. The

ground form is fa* _.
cjuz + ^2 + c^ jv^

Take the right helicoid, given by the equation

z =
x

this is clearly a ruled surface, and we can express the

coordinates of any point on it by
i

x = u cos v, y = u sin v, z = cv*
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Its ground form is then

and it is not a surface of revolution.

It is, however, applicable on the catenoid
;
two surfaces

which have the same ground form being said to be^applicable,

the one on the other.

21. Spherical and pseudospherical surfaces. The

tractrix revolution surface. There are two distinct classes

of theorems about surfaces : there are the theorems which

are concerned with the surface regarded as a locus in space ;

and there are the theorems about the surface regarded as

a two-way space, and not as regards its position in a higher

space. It is the latter type of theorems about which the

ground form gives us all the information we require.

Thus all the formulae of spherical trigonometry can be,

as we shall see [in the next chapter], deduced from the

ground form <;6
2 _ rfu2 + S ;n2 u^ (21.1)

where u is the colatitude and v the longitude.

We shall prove the fundamental formula

cos c = cos a cos b + sin a sin b cos (7, (21 . 2)

and the formula for the area

4 + .B-K7-7T, (21.3)

and from these all the other formulae may be deduced.

So from the ground form

cL2 = du2 + sinh2 udv* (21.4)

we can obtain the formulae of pseudospherical trigonometry
the trigonometry on a sphere of imaginary radius.

The fundamental formula is here

cosh c = cosh a cosh b sinh a sinh b cosh C, (21.5)

and the area of a triangle is

n-A-B-C. (21.6)

If in (21 . 4) we make the substitution (c being a constant)

u = uf

c, v = 2e~ e
v'

9

this ground form becomes
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and if we take c to be a large constant it approximates to

the ground form
(/82 _ duz + e-^dv2

9 (21.7)

and to this form pseudospherical trigonometry will also apply.
The formulae of spherical trigonometry or of pseudo-

spherical trigonometry will apply to any surfaces which have

the same ground form as the sphere or the pseudosphere.
A real surface may have as its ground form

d** = du* + e-*
u dv\

Thus if we take a tractrix, the involute, that is, of a

catenary which passes through its vertex, the equation of

the catenary is
y
_ cosh x

, (21. 8)

taking the directrix of the catenary as the axis of x
;
and if

we take u as the arc of the tractrix, measured from its cusp,
the vertex of the catenary, the equation of the tractrix is

y = e-
u

. (21.9)

If we now revolve the tractrix about the axis of x we get
a surface of revolution with the ground form

d6* = du* + e-*
u
dv*. (21 .7)

The figure of the tractrix is something like Fig. 1
;
and its

surface of revolution like Fig. 2.

22. Ruled and developable surfaces. The latter ap-

plicable on a plane. Let us now consider the most general
ruled surface, formed by taking any curve in space as base,

or as we shall say as directrix, and drawing, through each

point of the directrix, a straight line in any direction

determined by the position of the point on the directrix.

If x, y t
z are the coordinates of any point on the directrix,

and I, m, n the direction cosines of the line, then [these
coordinates of the point and these direction cosines of the

line will be functions of a parameter v. We take u to bo

the distance of any point on the line from the point where
the line intersects the directrix. Then the current coordinates

of any point on the line may be written

a = x 4- ult y'
= y + um, z' = z + un

;



Fio. 1.

Fio. 2.



30 THE GROUND FORM WHEN H = 2

and for the ruled surface we have the ground form

d*2 = du2 + 2fdu dv + gdv
2

,

where

(22.1)

'

2 +m^
(22.2)

That is, / is a function of v only and # is of the form

where a, /3, y are functions of v only.

We have ds2 = (du +/cZy)
2 + (g-/2

) cfe
2

; (22.3)

the coordinates of any line of the ruled surface are functions

of v only, and therefore the shortest distance between the

point u
y
v and a neighbouring point on the line whose

coordinates are functions of v + dv is (gf2
)
dv2

.

The value of u for which this shortest, distance will be

least is then given by -^ =
; that is, the equation of the

oil/

line of strict!on is ^ n
V- = 0. (22.4)

dl6
V '

If we take, as we may, the directrix to be a curve crossing

the generators at right angles, and dv to be the angle between

two neighbouring generators, we have

ds2 = du2 + ((u
-

a)
2 + b2

) dv\

where a and b are functions of v. The line of striction is

now u = a, and the shortest distance between two neighbour-

ing generators is bdv.

For a developable surface therefore we have

d*2 = du2 + (u- a)
2 dv2

. (22.5)

If we take

u' = u sin v la cos vdvf v' = u cos v
|

a sin vdv, (22 . 6)

we see that referred to the new coordinate system

(22,7)

so that the above transformation formulae establish a corre-
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spondence, between the points on any developable and points

on a Euclidean plane, such that the distance between neigh-

bouring points on the developable and the distance between

the corresponding neighbouring points on the plane are the

same. The developable is therefore said to be applicable on

the plane.

23. Elliptic coordinates. Consider now the system of

confocal quadrics 992*2
,

y _ ,_ _?*
a2

-f u b2 + u c
2 + '16

We know that the relations

2 _ (a
2

-f u) (a
2 + v) (a

2 + w) 2 __ (b
2 + u) (b

2
-f v) (b

2
4- w)

( '

'

give the coordinates of any point in space in terms of the

focal coordinates u, v, w ;
and that the perpendiculars from

the centre on the threo confocals through any point are

given by

2 _ -

2 =~~
'

~~

(v u)(vw)
2
4- w) (b

2
4- w) (c* + w)2 __~~

w uw v

From the formula

p* = (a
2 + u) cos2 a + (6

2 + u) cos2 + (c
2 + u) cos 2

y, (23. 2)

where x cos a + y cos /? + z cos y = p

is the tangent plane to the surface u = constant, we see that

= du, 2qdq = dv, 2rdr = dw,

and therefore 4 cfe
a = + + -

(23 . 3)
p^ g

2 r^

If we now take w = and write
*

U\ a2 +v=F8
, K{^^~b\ K\ = a2~c2

,
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so that the new coordinates are the semi-major axes of the

two confocals through any point on the ellipsoid

we Jmve
*

y*-K*JK*)(U'-K*) (V*-Kl)(V*-K*)
(23.4

It follows, as a particular case, that the ground form for

a plane may be taken to be

,.,-, .^L. ,.

We thus have as ground forms of a plane

d*2 = dx2 + dy
2

,

/ 2 2\= (u
2- v2

) (
-~

5-
-f

-
'

and we could find an infinite number of other forms for the

plane, or for any other surface.

We are thus led to inquire as to the tests by which we can

decide whether two given ground forms are equivalent ;
that

is whether by a change of the variables the one form can be

transformed into the other.

24. The invariant K. A0 and A
2 when K is constant.

Consider the form a .,^ ,7^ _ t oaikaxi
(lxk) ^ *> ^>

and let us use the methods of the tensor calculus.

In terms of the four-index symbols of Christoffel we have

one and only one invariant

(1212)-ra,* (24.1)

where a = an ^ 22
~

(^] 2)
2

'

*
[The invariants A of (18. 4) reduce to one. Also, as the equalities

(1212) = -(2112) = -(1221) (2121)

hold, and the other symbols (1112), &c., vanish, the sum equal to (1212)' in

(15 . 1), with the notation of (15 . 2), is

For the explicit expressif n of K see Chap. Ill, 43.]
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We denote this invariant by K. ^

Let us first take the case when K is a constant and con-

sider the differential equations

(24.2)

We shall prove that they form a complete system : that is,

a system such that no equation of the first order can be

deduced from them by differentiation only.

We have
. m + A' u& = 0, <f>

. m +Ka^ = 0,

and therefore
[ 16]

that is, ~{H 12] (f> f
+K (all 2

-
la 1 )

= 0. (24.3)

We have then to show that this is a mere identity.

Now {It 12] = a f

l'(l2) 12) = ut2

and therefore

{1*12} fc =

so that the equation of the first order turns out to be a mere

identity. Similarly we see that the other equation of the

first order is a mere identity.

If and
-v/r

are any two integrals of the complete system
we have d

i (

p

- a *k
(0 .

ip+k + 0^ .

Jq})
+ K

= 0. (24.4)

We therefore have

A (0) + K 2 = constant. (24.5)

We also have at once from (12.5) and the equations (24 , 2)

A
2 (0)+2jff0 = 0. (24/6)
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25. Determination of a
\jr

such that A (0, \/r)
= 0. We

shall now prove that if we are given any function u, such

that A(u) and A
2 (u) are both functions of u

t then, in all

cases (not merely when K is a constant), we can obtain by

quadrature a function v such that A (w, v) = 0.

Let J*W*u
H = e J

AW
, (25.1)

, , A
2 (u)

then *=-*. I

The condition that

where u1 == a11u
1

may be a perfect differential is

that is, fi
a* A

2 (u) -f a* (//j
u1

-f /^2
u2

)
=

;

and this condition is fulfilled.

We can therefore by quadrature find a function v such that

v
1
=

/
ua^u2

, Vgsr-^aht
1

, (25.2)

and therefore ^u1
-f v2u

2 = 0,

that is, A(u, v) = 0. (25.3)

28. Beduction of a ground form when K is constant.

Returning now to the case when K is a constant, we have

seen that, if is an integral of the complete system,

A
2 (0)4 2#0 = 0, A ($) + /f< 2 = constant,

and we can therefore by quadrature obtain
\fr t

where

A(0,V) = 0.

First let us take the case when K is zero.

Without loss of generality we may suppose that

A(0)=l, A(0,^)=0, (26.1)

and we may take as new variables

x
l
=

0, aj
a
=

^r,

and the ground form becomes

cZs* = dx\ 4-tf 22 efce*.
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Since x
l
is an integral of the complete system, we have

{111} = 0, {121} = 0, {221} = 0, .

and therefore (111) = 0, (121) = 0, (221) = 0.

From the fact that a
12

is zero, we have

(122) + (221) = o,

and therefore (212) = ;

so that a22 is a function of OJ
2 only.

We can therefore take the ground form to be

cZs
2 = dx\+dx*. (26.2)

We next take the case when K is a positive constant, say

R-*. We then have

A (0) + jR~ 2 2 = constant,

and, without loss of generality, we may suppose

A(0) = ,R- 2
(l-0

2
), (26. 3)

and, by quadrature, we can find ^ so that

A (0, f)
= 0. (26 . 4)

Take as new variables

x^ R cos' 1

0, #
2
-

i//-, (26 . 5 )

and the ground form becomes

cZ&
2 = dx\ +a t22dx%.

We have, since a12 is zero,

(122) + (221) = 0,

/>

and, since cos-~ satisfies

= 0,

we have (221) + ^p
c
ot(J)

=
;

and therefore (2 1 2)
= cot

that is, ~a
22
= 2a 22
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so that sin2
( fl)

C/ 22

is a function of rr
2 only.

We may therefore take the ground form as

(/6-
2 = dxi + sin2

-,~ dx'] ,

or if we take ^ = Rx\, x\, = ^/
2 5

we may take the ground form as

ds2 = 2
(dU-J + sin2

^rficS). (26 . 6)

When K is a negative constant JK~ 2
,
we see that the

ground form is ^ _ -2l2

(dxl + sin 2

0^/0;:;) ; (26 . 7)

or if we take x\ LXV x'2 a\2 ,

the ground form becomes

da* = Ji2 (//^'J +sinh
2
a;

1 ^.]). , (26 . 8)

We have seen in 21 how the ground form

dtp = R* (dxi \-e~"**dx\) (26 . 9)

may be deduced from this.

27. The case of A (K) = 0. We have now seen the

forms to which the ground forms are reducible when the

invariant K is a constant; and we see that the necessary and

sufficient condition that two ground forms may be equivalent,

when for one of them K is a constant, is that for the other K
may be the same constant.

We must now consider how we are to proceed when K
is not a constant.

If A (K) is zero, we choose as our variables x
l
= K, x>2

= v,

where v is any other function of the coordinates of the

assigned ground form.

Since A(a;1)
is zero, a11 is zero and the ground form may

be written

dip = edu <2 + 2(f)2
dudv

y (27.1)

where e and </>., (
= --

] are some functions of u and v.
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The equation which determines the invariant K which we

have taken to be u is therefore

or (2 02 __
2u(/>)

= 0. (27.2)

We may therefore take

e 2o

where a and /? are functions of u only.

The ground form now becomes, if we take

x
l
= K, x2

== 0,

efe
2 -

(ajjoj^ + otx
2 + /3) dx\ + 2 cfoy7.r2 , (27 3)

where a and /3 are functions of a;
x only.

We can then decide at once whether two ground forms for

each of which A (K) is zero are equivalent.

28. The case when A
2
7i and AK are functions of K.

We may now dismiss this special case when A (K) is zero: it

is not of much interest, as it cannot arise in the case of

a real surface.

We now consider the case when K is not a constant and

A (A") is not zero, but A
2 (K) and A (K) are both functions

of /{". This arises when the surface is applicable on a surface

of revolution.

Let us take u = K
t (28 . 1)

and let v be the function which we have seen can be obtained

by quadrature to satisfy the equation

A(u,v) = 0, (28.2)

when A
2 (u) and A (u) are both functions of u

t though the

reasoning would have held equally had A
2 (u)

~- A (u) been

only assumed to bo a function of u.

We saw that if f
A * (n\/ ?t
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If then we take 6 = \idu^

we' have ()
l
= pu^ 2

=
/zi^.

and therefore ^ = a! (a
12^ + a22

2)
= a*02

.

Similarly wo have v
2
= alQ 1

;

and therefore
t
= a^v2

, 2
= alv1

.

It follows that tf^
1 = v2v

2
, 2

2 =
14 v

1
,

and therefore A
(fl)

= A (v), A (0, v)
= 0. (28 . 3)

We also have (c fl)
2 =

(yucJu)
2

,
A ((9)

=
(/z)

2 A (tt) s

and therefore ^ = ^- (28.4)
A((?) A(u)

7

If we now take as the new variables 6 and v, the ground
form becomes ^2 dvz

A
((9)

'

We therefore see that the ground form may be written

fA ? (*

J
AWrf

2 =
(A (A^)-

1

((dKf + c J
AW Jv2

), (28.5)

where v may be expressed by quadrature in terms of K and

integrals of functions of it.

We thus see that given two ground forms, for each of

which A (K) is a function of K and also A
2 (K) is a function

of K, the two forms are equivalent if, and only if, the functional

forms are the same.

29. Conditions for equivalence in the general case.

Finally we have the general and the simplest case when K is

not a constant, and A (K) and A
2 (K) are not both functions

of K.

In this case we have two invariants, say u and v. We
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take these invariants as the coordinates, when the ground
form becomes

,
2 __ A (v) (fa,

2- 2 A (u, v) dudv 4- A (u) dv*~
*

'

( }

The necessary and sufficient conditions, that two such

ground forms may be equivalent, are that, for each of the

forms, A (w), A(u, 9 v), A (v) (29.2)

may be respectively the same functions of u and v.

We now know in all cases the tests which will determine

whether two assigned ground forms are, or are not, equivalent.

30. The functions called rotation functions. When the

measure of curvature * is constant we saw
[ 24] that the re-

duction of the ground form to its canonical form depends
on finding an integral of the complete system of differential

equations

0. n + /fau = 0,
<f>. n + Kan (f)

= 0, (/>
. 22 + Ka22 (f>

= 0.

(30.1)

We shall now show how this integral may be found by
aid of Riccati's equation.

Take any four functions, which we denote by ql9 y2 ,
?

1

19
r
2

and which will satisfy the three algebraic equations

Kau = ql +rj, Kau = qfa + r^, Ka^ = q$+r*. (30 . 2)

The functions thus chosen are not tensor components, but

we shall operate on them in accordance with our notation

with 1 and 2.

These two operators annihilate Kan ,
Ka

l2 >
/ia

22 , and there-

fore we have

+ r
l
r1>a = 0,

We define two other functions pl
and p2 by

*
[This name for the invariant K will bo shown later to have geometrical

fitness. See 37.]
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It at once follows by simple algebra that

?V 2 + ?A,<72
^= 0, </2

.
2 -j>V'2 =

We then havo i^ + ^iV/i +7V/1-2 = 0,

and therefore (21 12)?^ + ql (p }
.
2 ?Vi) = 0,

that is, {1^12}^= <h(Pi-2-P*-i)> (30.4)

or atk
(1 i 12) r/

=
?1 (j>1 .,-^2

.
1 ). (30 . 5)

Now
atk

(1 fc 12) r
f
= a' 2

(12 12) -^
=

and therefore

Similarly we luive

(30 - 8)

Aay six functions ^ , ^;2 , ^ x , <72 ,
r
ls r,2 which satisfy these

three equations are called rotation functions. They havo

important geometrical properties and are much used by
Darboux, but here we simply regard them as algebraically

defined functions.

31. Integration of the complete system of 24. Now
consider the equations

A U= 0, v
-- mr2 + 7ija

=
;

'

c' X'

/ 7

0, ^-
-^a + Zr

2
=

;
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These equations are consistent because the functions

Pi>Pv Vi,<l2> r
i>

r
2

are rotation functions
;
and we see that I

2
-f- m2

-f n2
is a

constant.

Let q. = * +
'_.

, (31.2
V^2 +ma + 7t

2 -/J,

where stands for \/ 1 : wo have

We can therefore find or by the solution of Riccati's equation.

To determine Z, in, n we have

l + im , l im
cr = ""

and f
2 +m2 + 7i

2 = constant :

and we thus see how, when we are given the rotation

functions, we can determine I, m, n.

We can now at once verify that

l. u + Kan l = 0, I. l2 + Ka12
l = 0, l.

2Z + Kazz
l = 0, (31.4)

and that A (1)
= K (m* + n2

)
= K (constant

- 1
2
). (32.5)

We have thus shown how a common integral of the com-

plete system can be obtained by aid of Riccati's equation.

The I, m, n which we thus obtain will be the direction

cosines of the normal to the surface, but we do not make any

use of our knowledge of a third dimension in obtaining

I, m, n.



CHAPTER III*

GEODESICS IN TWO-WAY SPACE

32. Differential equation of a geodesic. We have now
considered the ground form of a surface, and wo know the

method by which we are to determine when two given ground
forms are equivalent; that is when they are transformable

the one into the other by a change of the variables.

We now wish to consider the geometry on the surface

regarded as a two-way space ;
and we are thus led to the

theory of geodesies. We have

ds2 = UikdXidXfa (32.1)

and therefore

dSs __
dx

A
dSxk dxk dSx {

cfo. dxk
2

7/iT
""

''* ds ^T + ik di ds
' +

ds "57 ik '

d

<fai <lxk d,. feT ~T~ ;

' ~
:^
- OX*.

ds ds dx
t

For a path of critical length we therefore have

d /
</./-,.

\ d/ dx,.\ <*(/*,. dxjdx,.
~T (

a
it ~j ) + -/-( ath i )

= -^ ,r-' (32 . 2)ds\ H dd/ ds\ tlc ds / dz
t

ds ds
v '

Now ^ =
(/tt) + (*);

o^
and we notice that, though (itk) ^ (kti), yet

^^ fc __ a
. dx

4
dx

L

(Uk}
'ds lfc- (Ul

>~ds'~ds (32 ' 3
^

*
[See foot-noto on p, 25.]
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The path of critical length therefore satisfies the equation

(/tfA. '(32:4)'

33. Another form of the equation. The expressions

dx. , flx>,--1 and ~

a 6- ds

are called the direction cosines of the element. They determine

the position of the clement at the point x
ly
#
2>

but they are

not, in general, the cosines of the angles the element makes

with the parametric lines. We denote them by
l

,

2 in tensor

notation.

For a geodesic wo therefore have

We can put this equation in another form. We have

and therefore

"
it

Now gp (tpi)
= ^^ (tki)

= g k
(kti)

and pg* (Ltk)
= ggt (kti).

We then have for a geodesic

and therefore, multiplying by a!*! and summing,

For a geodesic we thus have either of the two equivalent

equations ,/

'^ = 0. (33.4)'



44 GEODESICS IN TWO-WAY SPACE

84. Condition that orthogonal trajectories be geodesies.

If two elements at x
19

x
2 are perpendicular to one another

we* have

a
ll
dx

l
Sx

l -f a]2 (dx v 8x^ + dx^Sx^ + a
22
dx

2 8x2
= 0. (34 . 1)

The elements perpendicular to the curve = constant will

then satisfy the equation

2 (andxt + a
l2
dx

t2) (f> l (a^rf^ +tt22
tZoJ

2 ), (34.2)

or "n^ +f^ 2 = M>
^ 1 + "22^

2 = ^. (
34 - 3

)

where
/z

is some multiplier.

We have

fi = ,1 (^0,-f a
12

2), ^ - ^ (^
l

1
+ f(

M
a), (34 .4)

and, as {&**= ]

we see that // f^
1

X
-f ^ 0J = 1 ;

and therefore /^
2 A (0) = 1. , (34.5)

We thus have

L-, WW '+ M^ = _ , (34.
(0) -/A (0)

7)'
;

Now '~(au g)-(i
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And, as A
(<j>)

=
aPV<l>p <j>q ,

we see that (A (<j>))t
=

We therefore have

.

2A(0)~~ 2(A(0))
2

>

Suppose now that is a function of the parameters such

tbat A (0) = F($). (34 . 9)

We see at once that the right-hand member of the above

equation vanishes; and therefore the orthogonal trajectories

of the curves
<f>
= constant are geodesies, if A (0) is a

function of 0.

Conversely we sec that, the orthogonal trajectories of any

system of geodesies being (f)
= constant, A (0) must be a

function of 0.

35. Geodesic curvature. Jf l
,

2 are the direction cosines

of an element of the curve constant, we have

ft? -
. <'ikt't

k = i,

and therefore

& = a*(A0)*
2

, 2
= -a*(A0)*'. (35.1)

Differentiating P<f>
=

with respect to the arc, we have

that is, <

/
> (T;'

> + {ikp}
l

j
+ Q'pq^^

= -

We therefore have, summing along the curve,

1 + {
^ 1

} tf^ds) ^ (d^ +

f.
+

(35.2)

The first integral if summed along a small length of the

curve only differs by a small quantity of the second order
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from the same integral if summed along the curve formed by
the geodesic tangents at its extremities.

Now, summed along a geodesic, wo know that the first

integral vanishes, but summed along the curve formed by
two geodesies the integral is

IV-IV, (35.3)

where l
,

2 and
rj

1
, ??

2 are tho direction cosines of the two

geodesies at their common point.
The angle a between the two elements whose direction

cosines are l
,

2 and
rj

l
, r? is given by

a*(V-V) = sina. (35.4)

We therefore have tho formula

a~^ = (^^)2
~ 2^

(35.5)

where dO is tho small angle at which the geodesic tangents
at the extremities of ds intersect. The formula for the

geodesic curvature of the curve
</>

constant is therefore

^M0Mi(W
a

-20M20i& + 0.M (0,)>-Wr f
. (35-6)

36. We can express the above formula in a better form :

to prove this we employ the coordinates which are Euclidean

at a specified point.

We have at tho specified point

and therefore

Now A
2 (0) = u + 22 ,

and therefore at the specified point

,A0, (36.2)

and at the specified point a is unity.
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We thus have at the specified point of the curve, and there-

fore at every point of the curve,

> (36 - 3)

The method of thus employing Euclidean coordinates is

very helpful in proving formulae in the tensor calculus. The

direct proof of the equality

(36.4)

would be much longer.

37. Polar geodesic coordinates. The measure of curva-

ture K. The geodesic curvature of a curve is given by the

formula

+ {ik2} *'

(37.1)

where g
l

t

2 are the direction cosines of an element of the curve.

If we take, and we shall see that we can take, the ground
form of the surface to be

du* + l?dv\ (37.2)

where u is the geodesic distance of any point on the surface

from a fixed point on the surface, and the curves v = constant

are geodesies passing through the fixed points, dv being the

angle at the point between two neighbouring geodesies, jB

being a function of u and v which on expansion in the neigh-
bourhood of the fixed point is of the form tt-f ..., where the

terms denoted by +... are of degree above the first, we

employ what we may call polar geodesic coordinates with

respect to the fixed point.

Let us now employ polar geodesic coordinates to interpret

the formula for geodesic curvature. We have

{111}=0, {112} = 0, {121} = 0, {122}=^,

{221} = -/?!, and
{22f2}=jp. (37.3)
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If d is the angle at which the curve crosses the geodesies

through the fixed point,

and [see 43] the measure of curvature K of the surface is

given by KB + Bn = 0. (37.4)
We have

and therefore =
-, h -W- sin 0. (37.5)

A/ ds B ^ '

Now consider the expression

(37.6)

where dS is an element of area of the surface, and take the

summation over the small strip bounded by two neighbouring

geodesies through the origin of the polar geodesic coordinates

and an element of the curve.

The expression is KBdudv,

and this is equal to Bududv

r 7?

= dv-
U^sintfds. (37.7)

rds
It follows that

Jpg
taken over the boundary of any closed curve surrounding

the point is equal to <. ppP H
(37.8)
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where the integral is to be taken over the area of the

curve.

We thus have a geometrical interpretation of the measure

of curvature: it is the excess of 2?r over the angle turned

through by the geodesic tangent, as we describe a small closed

curve, divided by the area of the curve. It will be noticed

that in this definition we do not make use of any knowledge
of a space other than the two-way space of the surface itself.

This is what the curvature of a two-way space must mean
to a mathematician to whom the knowledge of a three-way

space can only be apprehended in the same vague wa}
r as

we speak of a four-dimensional space.

38. Recapitulation. Parallel curves. It may be con-

venient to bring together the various formulae which so far

we have proved in connexion with direction cosines and

geodesies before we proceed further.

ds * ds '

where the direction cosines are those of an element of the

curve = constant
;

(34 '.7)'

where the direction cosines are those of an element perpen-
dicular to the curve

;
for a geodesic we have

d ,

(
I'

/ = 0- (
33 *)'

The orthogonal trajectories of the curves
(f>
= constant,

where A (0) is a function of 0, are geodesies, and the ortho-

gonal trajectories of any system of geodesies are curves

(p
= constant, where A (0) is a function of

(f>. (34 . 9)'

Leaving aside the case when A (0) ^is zero, we can choose

the function so that A (0)
= 1.

2843 II
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If we know any integral of this partial differential equation

involving an arbitrary constant

<f>(xl9 x
2 , Oi)

= 0,

then the system of curves /J
oft

will be geodesies : for A ( 0, ^~ J
= 0,

and, as the condition that two families of curves

<p
= constant, ty

= constant,

may cut orthogonally is A (0, ty)
= 0, we conclude that the

CUrV6S ^ = (38.1)
da

will be geodesies, since they cut the curves = constant

orthogonally.

If we choose the arbitrary constant /? so that the geodesies

given by ^0 ^
da"'3

may all pass through a fixed point, and if we take the

equation of the geodesies to be v constant and take v as

one of our parametric coordinates and to be the other

parametric coordinate u, we have

A(u) = 1, A(tt, v)
= 0.

The ground form of the surface then takes the form

du* + B2
dv*, (37.2)

and in the neighbourhood of the fixed point, through which

the geodesies pass, we may clearly take from elementary

geometry that jB = 7t + . . . .

We thus have what we called the polar geodesic coordinates.

We have d<j>
=

<f> l
dx

l -\-(f>2
dx

2)
and therefore,

l
,

2
being the

direction cosines of an element perpendicular to the curve

= constant, the length dn of the normal element is given by

d<f>
=

~

or
* = ,/A70). (38/2)
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The curves which satisfy the equation

A
((/>)

= 1 (38 . 3)

are called parallel curves. We see thus that two parallel

curves cut off equal intercepts on the geodesies which cut

them orthogonally.
If particles, constrained to lie on a smooth surface and

acted on by no forces but the normal reaction of the surface,

are projected at the same instant, with the same velocities

normal to any curve, they will at any other instant lie on

a parallel curve.

From the theory of partial differential equations we know
that any curve on the surface will have a series of curves

parallel to it, though the finding of them involves the solution

of the equation A (0) = 1.

The explicit forms of the differential equations

of a geodesic are

a
l
+ {lll}xl+2 {121} 1

*
2 +{221}aj;j = 0,

a :

2 -f{112}a'i+2 {122} 0^2+ {222} a* = 0, (38.4)

where the dot denotes differentiation with respect to the arc.

If we write the variables as x and y and let

dy (Py= =

we have y = xp t y

and the equation of the geodesic becomes

</- {221 }>'' + ({222} -2 { 121 })^
2

+ (2 {122}
_ {]!!})>+ {112} = 0. (38.5)

39. Notes regarding geodesic curvature. Now consider-

ing geodesic curvature, in the figure on p. 52 P and Q are two

neighbouring points on any curve, PT and TQ are the

geodesic tangents at P and Q, and QM is an element of arc

perpendicular to the geodesic tangent JPTM.

By definition the geodesic curvature of the given curve at
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P is the limiting ratio of the angle QTM to the arc PQ as Q

approaches P. We therefore have

= 2

/|?f> (
39 -o

Pg J- W
and thus have the analogue of Newton's measure of curvature

of a plane curve for a curve on the surface. It is the geodesic

curvature only that has a meaning when we conline our

attention to the two-way space on a surface.

We have the formula

V (36 . 3)

Pg VA(0)
' ^" " '

and we may apply it to find the geodesic curvature of the

curve all the points of which are at a constant geodesic

distance from the origin, in the polar geodesic coordinate

system. We have ds 2 du? + K*dv\
= u,

and therefore = r- log B.
Pg

^
The curvature will be constant if, and only if,

B=f(u)F(v),
that is, if the surface is applicable on one of revolution.

The curvature will then only bo -
,
as it would be in

i *
u

a plane, it
-, 9 72,9721 '

ds2 = du* + u*dv*,

that is, if the surface is applicable on a plane.

If we take, the case where K is positive unity and

da2 = du2
-f sin

2 u dv2
,

yve see that the geodesic curvature of a small circle is cot u.

If we take the form
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which is applicable to the tractrix or any surface applicable
on it, wo see that the geodesic curvature of the curves

u == constant is minus unity.

40. The formula for the geodesic curvature may be written

(40
n

Let
fji

be an interating factor of

where 1 = tt
n
0,+a

12
2 ,

2 =

so that

and therefore ,
-

(/za0
]

) -f r-~7 (/zc^0
2
)
= 0.

O&'i O &'.,,

Now a*A
2 (0)

- ^0', A (0, /i)
= <pn t ,

and therefore /z
A

2 (0) + A (0, /z)
= 0,

that is, A.2 (0) + A (0, log /z)
= 0.

The formula for curvature may therefore be written

(4()

This is an equation to give the integrating factor. When
the integrating factor is known we can find the function

-v/r

by quadrature ; and, as

A (0,^)= 0^=0, (40.3)

we have then the equation of the orthogonal trajectories of

the curves = constant.

In particular when the curves = constant are geodesies,

we may take ^ (A0)~i, (40 . 4)

and we thus see that the orthogonal trajectories of any

system of geodesies may be found by quadrature.

In eneral we have

and thus the formula for the geodesic curvature, of the curves

= constant may be written

(40.5)
Pg

where the curves ^ = constant are the orthogonal trajectories.
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41. Integration of geodesic equations when K is con-

stant. We have obtained the differential equation of a geodesic
on any surface, but, in general, we cannot solve the equation
we have arrived at. Sometimes we can. Thus when the

measure of curvature is positive unity we may take the

ground form to be dtp _ du* + sin2 ^ dv^
(
4 1 u }

j

We then have as the equation of the geodesic

d6

that is, cos -,- + cot u sin 6 = 0,
au

or sin 6 sin u = constant.

XT A ^
JMow sin = smu-j-)

as

(ID
and therefore sinz u ,~ = sin a, (41.2)

where a is some constant.

We could have obtained this equation directly, as we easily

see, by the rules of the Calculuy of Variations.

We deduce that

and therefore cos u = cos a cos s,

and we thus obtain the equations

sin 8 sin a cos s . tans . .

sm v = - ,
cos v = .

-------
,

tan v = -.- (4 1 . 3)
sin u sm u sin a

We now see that

cos 14 cos u2 -f sin Uj sin u2 cos (vl
v
2)

= cos2 a cos Sj cos 82 -f sin
2 a cos s

x
cos s

2 -f sin !
sin s2 ,

= COS (^ Sg).

This isjust the well-known formula of spherical trigonometry

cos c = cos a cos 6 + sin a sin 6 cos (7. (41 . 4)

Similarly we could obtain the formula

cosh fo f
2)
= cosh *j cosh u2

sinh ^
t
sinh u2 cos (i^ v2)/

(41.5)
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which would be applicable to a surface of constant negative
curvature.

The formula

when applied to a geodesic triangle on a surface of curvature

positive unity, gives us the well-known formula for the area

of a spherical triangle A+B + CTT (41.6)

and more generally for any surface of constant curvature

TT). (41 . 7)

42. Focal coordinates. If we take, as the coordinates of

a point on a surface, tho geodesic distances of the point from

two fixed points on the surface, the ground form will take

the form
(
s in a)-a (^2 + dv2 __ 2 cos a dudv),

where a is tho angle between the two geodesic distances.

We easily see this geometrically, using the property that

the locus of a point at a constant geodesic distance from

a fixed point is a curve cutting the geodesic radii vectores

orthogonally. Analytically we prove the formula from the

fact that A (u) and A (v) are both unity, and applying this to

the general ground form

A 2
(In2 + B2dv2

when we have A 2 = B2 = cosec2
a.

If we take 2x

we have db2 = sec2 -- dx2
-f cosec

2 - dy
2

. (42.1)
2 6

This system of coordinates may be called focal coordinates :

the curves x = constant will represent confocal ellipses ;
that

is, curves the sum of whose geodesic distances from two fixed

points, which we call the foci, is constant.

Similarly the curves y = constant will represent confocal

hyperbolas, and we see that the ellipses and hyperbolas
intersect orthogonally.

.43. Explicit expressions for symbols {ikj} and for K.

It will be convenient here to give in explicit form Christoffers
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three-index symbols of the second kind,* as we so often need

them, and expressions for the measure of curvature.

"We take the ground form

da2 = cdu2
-f 2/dudv + gdv*, (43.1)

and we then have a == It
2 egf2

, (43 . 2)

*
2-2/1 ), 2/^(112} =

=tf(2/2 -fl 1)-/Sr
2 , 2 /,

2
{222 }

= */2

(43.3)... (43.8)

4 A4# = e
(r/a ( 2

- 2/J -f gl) + flf (^ (^
- 2/2) + e

)

If we take as the ground form

the last formula becomes

M n . ^ /R ul () cosa\ ^ /An B, cosa\
AB sin aA + a, 2 -f ^-- ( . .--- ) + ^ ( Si~ '-

1
= 0,1Z CU\ ^i Bin OK / CV \ ,0.3111 OK /

(43.10)
which is Darboux's form.

*
[Those of tho first kind arc at once

(HD-i^, (112) -^-ic
(121) (211) = J Ca , (122) (212)

(221) -/.H^, (222) = J^2 .

Wo also have

-h flf
(

-

Cr ^-- f
<>

2
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In particular if the parametric coordinates are geodesies

we have {221} = 0, {112} = 0, (43. ;i)

and therefore

rt
A 9 ~B, cos a

2 A sin a ' x B sin a '

and the formula for the curvature takes the simple form

ABsin aK =
12 . (43 . 12)

From this formula wo could easily deduce again the formula

r*uffA'ci=2,r.
J p^ JJ

When we take the ground form to be

2

we have

When we take the ground form to be

we have

{111}=, {112} -> {121} =-'2
-, [122}=*1 j 2e ( 2e ^ 2e *- * 2e

(221 }
= ~, {222} = -2-,

2e 2e

(43. 14) ...(43.19)

; 0, (43.20)

(43.21)

+ (!#)> (43.22)

Finally, when we take the ground form to bo

2fdudv,
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^
44. Liouville's special form. When the ground form of

a surface takes the special fdfm Liouville's form

17 and F denoting functions of u and v respectively, we
can find a first integral of the equation of geodesic lines.

For the form e

ci l = cos 0, ei
2 = wind,

and the equation of a geodesic becomes

^0 . A
2 e* + e

:
sin - 0o cos Q ~ 0,

that i,
-

(cl sin ^) + v (& cos 5) = 0* (44.2)
c l(j v V

We therefore have

e^ sin 6 = 0o, c^ cos = 0j ,

and e = 0i -f
</>;;,

that is, A(0) = 1. (44. 3)

In the particular case of Liouvillc's surface

<t>i-U=V-M,
and \ve obtain a complete integral of this partial differential

equation by equating the above expressions to a constant.

We thus have ^ = ^(j~+a t <P,
= SV~-a,

giving the first integral

e^cos^ = VU+a y
6*siii tf = -/F a, (44.4)

<^2 '^8

/^, r,or y7

- = TT
--

(44.5)

45. Null lines. Complex functions of position. We
shall now consider a further application of Beltrami's differ-

ential parameters to the geometry of surfaces.
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The null lines of a surface arc the lines which satisfy the

equation aikdx^lxk
= 0. (45 . 1)

These lines play the part in the geometry of a surface

which the circular lines play in plane Euclidean geometry.
If the equation of the null lines is

<f>
= constant,

then A (0) = 0. (45 . 2)

To obtain the null lines wo must therefore be able to solve

this equation.

The equation will have two independent integrals. If we
take these integrals as the parameters we employ what we call

null coordinates. The ground form takes the form

2fdudv, (45.3)

j i, x /*\ 2 ^0 ^0
and, as we have seen, A

(<p)
= - --- --- -

If then A (0) = 0,

must be a function of u only, or a function of v only.

A function satisfying the equation may bo called a complex
function of position. There are therefore only two types of

complex functions of position, viz. the two functions whose

differentials are multiples of the factors of d&. The first we

shall take as that which corresponds to the factor

(andxl + (a 12 + i Va) dx^ -f an , (45 . 4)

and the second that which corresponds to

(a ll
rfo;

1 -f ( 12
' Va) dx^ -f- ani. (45 . 5)

We need only consider those which correspond to the first

factor, and, if we do this, we can say that every function of

position is a function of every other such complex function.

Thus in the case of the plane, where we have

rfs
2 = dxz + dy* = dr* + r*dO*,

x + LIJ is a complex function of position since its differential is

a multiple (unity) of dx+idy of the first factor of dx^ + dif,

and log r + 1 d is a complex function of position since its

differential + idd is a multiple (-)
of dr+ird0 of the

first factor of cZr
2 + r2

d!
2

;
and log r -hid is a function of
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Just as the position of any point in the plane is given by
means of the complex variable x + iy, so the position of any

point oh a surface is given by means of the complex variable

u where u is an integral of

A(0) = 0. (45.2)

46. Conjugate Harmonic Functions. Mapping on a

plane. Let,tts now consider the equation

A, (0)^0, (46.1)

that is, -~i0 l + 7 td(f>*
= 0, (46.2)

C
Ct'^

C) jC'n

where 1 = au fa + al

*fa,
2 = al2

fa + a**fa. (46 . 3)

The expression a! ^fdxl
v& fa dx2

is thus a perfect differential if A
2 (0) is zero; and we have

alp = fa, a*<l>
2 = -fa t (46.4)

and therefore cdty
1

fa, a*\p fa, (46.5)

It follows that A
2 (fa = 0, A (fa fa = 0. (46 . 6)

Thus if
<f>

is any integral of A
2 (0)

= we can by quad-
rature find

*//,
another integral of the equation, and the two

curves = constant, ^ = constant will cut orthogonally.

A real function, annihilated by the linear operator A
2 of

the second order, is said to be a harmonic function. The

function
>//-,

obtained as explained by quadrature from 0, is

called the conjugate harmonic function to 0. It will be

noticed that the function conjugate to
i/r

is not
<f>

but
</>.

We also have A (0)
= A

(i/r), (46 . 7)

and therefore, since A
((/>, \fr)

= 0,

we see that A (0 + i\fs)
= 0. (46 . 8)

The function + i^ is thus a complex function of position

on the surface.

If we take u = 0, v =
y\r

we have cfo
2 = (A (0))-

1

(du* + dv2
). (46 . 9)

Thus the problem o/ mapping any surface on a plane, .so

that the map may be a true representation of the surface as
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regards similarity of small figures in each, just depends on

the solution of the equation

M0) = 0.

'

(46 '.!)

The magnifying factor from the surface to the plane
is A

(<f>).

Thus to map any surface, applicable on a sphere of unit

radius, and whose ground form may therefore be taken as

du2
4-sin

2 ucfe2
, (46.10)

upon a plane we have A
2 ($)

=
;

and this tells us that
<f>
must be a function of

, /. u\
logftan-J + iv.

\ t /

We thus obtain Mercator's Projection

(ni
^

tan-), y-v. (46.11)

The theory of conjugate functions of position on a surface

can be applied to problems in Hydrodynamics and Electricity
as has been done in the case of the plane. Thus if is

a harmonic function on the surface, we may take it to be the

velocity potential in the irrotational motion of a liquid over

the surface, and
\/r,

the conjugate harmonic function, will then

be the stream function.

Conversely, if the ground form is taken to be

ds2 = e(du
2 + dv*), (46. 12)

u and v will be conjugate harmonic functions.



CHAPTEE IV

TWO-WAY SPACE AS A LOCUS IN

EUCLIDEAN SPACE

47. A quaternion notation. So far we havo been think-

ing of the two-way space associated with the ground form

ds* = aikdx{
dx

lt ;

we must now think of that space as a surface locus in

Euclidean space.

Let i', t", t"
r

be three symbols which are to obey the

associative law and the following self-consistent laws :

,
<Y" = -4",

iY = - 1, i'Y' = -
1, "Y" = - 1. (47 . 1)

Let a/, x" , x 1"
be three ordinary numbers called scalar

quantities, then, if x = x' i' + JL" i" + x'" i", (47.2)

x may be said to be a complex number.

If we take y = y
'
L
'

+ y
"

L
" + y

'"
/",

we see that

xy = -
(x'y' + x"y" + x'"y'") + (x"y'"

- x'" y") i'

+ (x"'y'-x'y'") i" + (x'y" -x"y') i"', (47 . 3)

so that xy consists of two parts, a scalar part and a complex
number. We write the scalar part

Say or xy, (47 .4)

and the complex part Vxy or xy. (47 . 5)

It follows that x2 is a pure scalar.

We may easily verify the following results :

xy~yx = 2xy, (x + y)
2 = x2 + y
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and, by multiplying the two matrices

63

y" 11
W' 10"

we verify that

tixyzw xwyz xzyiv,

Vxyz = zxy yzx,

Vxyz -f Vyzx -\-Vzxy-Q.
If we take i, i"

y
i" to be unit vectors in the positive

directions along the axes of rectangular Cartesian coordinates,

then x will be the vector from the origin to the point whose

coordinates are x', x", x"' . The length of the vector x will

be denoted by |

x
|.

The symbol xy will denote a vector at

right angles to x and y, and in the sense that, if the left hand

is along x and the right hand along y, then the direction xy
will be from foot to head

;
the magnitude of the vector will

be \x\ | y| sin 6, where is the angle between x and y from

left to right.

The scalar xy will be equal to
|

x \y\ cos 6.

48. Introduction of new fundamental magnitudes and

equations. Now let z be a vector whose components z\ z" , z"'

are functions of the parameters x
l
and o?

2 ,
that is, of the

coordinates of the two-way space. We have

dz = z
p
dx

p

and

The vector z traces out a surface. Let the unit vector

drawn at the extremity of z normal to this surface be denoted

by A. We have proved [in 13] that z.^ is parallel to A.

We therefore have 3
.^
= /2^A,

where fl^ is a scalar quantity.

We know that

an.d therefore .

(48.1)

(48.2)
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Multiplying across by X and taking the scalar product
we have, since \\h

-
,
XX

7,
= 0, \z

t
= 0,

the equation fl
ik .h

= flih . % . (48.3)

This is true for all values of i, h, k from 1 to 2 inclusive,

and flfa
=

/2fc$,
so that

-On-2 = ^i2-i ^2
.1= /2

12 . 2 . (48.4)

These equations are known as Codazzi's equations.

49. Connexion of the magnitudes with curvature. The

length of the perpendicular from a point at the extremity of

the vector z + 8z (where 8z is not necessarily small) on the

tangent plane at the extremity of z is

-\8z. (49 -1)

If we now take Sz so small that cubes of 8x^ 8x% may be

neglected, the length becomes

that is, iC^n^i + 2f2
12
8x

1
8x

2 + fi,
2(2
$x *)' (49 . 2)

The radius of curvature of any normal section of the

surface is therefore given by
*

^*^i^ (49. 3)r\ il fl * ill' * '

j-i/ He, *^t /

in the tensor notation, and the principal radii of curvature

are consequently given by

l"-"' ^~^ 2 =0. (49.4)

The product of the reciprocals of the principal radii of

curvature is therefore /2n /222 -/2f 2
(49 g)

Now we saw that

(1212) = ^.^^.^-^-ii -^'

= /2n /2
22 -/2; a , (49 ..6)

and therefore the invariant K is just the measure of curvature.
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We thus have the equations

Ka = nnnn-ni*> .(49-7)

na .

t
= nu .

lt Aw-i-=A22 > (48.4)

wherewith wo are to determine the functions

nu,nM,nM *
(49.8)

When wo have found these functions we can find the principal
radii of curvature by aid of the equation

/2w-/2J a
= 0,

(49.9)
which may be written

i -
^n^+a-^n^^-n-,) = o, (49. 10)

applying the tensor notation to the coefficient of
-^

If wo were to keep strictly to the tensor notation we should

write /2n ,f2
22 /2| a as /2. We must distinguish between the

integer which denotes merely a power, as in /2j 2 denoting
the square of /2

12 , and the integer which we called the upper

integer in a tensor component. The two meanings are not

likely to cause any practical difficulty in reality.

SO. The normal vector determinate when the functions

f2jjc are known. We must now show how we may determine

the unit vector X when the functions nik are known.

*
[It is usual to speak of the functions flu ,

n 12 ,
n22 , i.e. (by 50) ZjAj,

SjAj = -2^i> ~a^2 as tho fundamental magnitudes of the second order, those

of the first order being the au ,
an , a.,^ or c, /, g of the ground form ds*

y
and

to say that tho six are connected by Gauss's equation (49 . 7), in which K
( 43) is a known function of the magnitudes of tho first order and their

derivatives, and by the two Codazzi equations (48.4). Written at greater

length these two equations are

sa -{i2i}n la
= - n ja -{222}n ja-{22i}n ll ,

v x^ f- %i

and their explicit forms are obtained by substituting in these for {HI}, &c.,

from 43.]

2843 K
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We denote the ground form of the spherical image, that is,

of the sphere traced out by a unit vector drawn through the

origin, parallel to the normal at the extremity of z, by

a'ij.tL'idXk, (50.1)

so that 0,'^
= A

t
-A

7r (50 . 2) ,

If X . ik =\ik -{ikt}'X t ,

where {ilct}' refers to the ground form of the spherical image,

we see as before that X.
iJc

is parallel to the normal to the

sphere at the extremity of A : that is \. ik is parallel to A.

Now AA
t
- is zero, and differentiating we have

M ik + \i\k
=

>

so that A A . ik + Ay A/.
= 0.

It follows that \. ik
= A;A 7(

.A = -u'
tV
.A

; (50 . 3)

and as we have shown [in 30] how, when '

t-/f
... are given, A

can be obtained by aid of Biccati's equation, we have only to

show how a'ik ... can bo expressed in terms of aik ... and

Along a line of curvature we have

cfe+RdA = 0; (50.4)

let R f and R" be the principal radii of curvature, and let us

choose the lines of curvature so that they may be the para-

metric lines, that corresponding to R' being

efajj
= 0,

and that corresponding to R" being

da^ = 0.

We therefore have

^H-jR'Aj = 0, z
2 + R"\ 2

= 0. (50. 5)

And it follows that

an = R'f2n ,
c* 12

= 7J'/2
12 ,

a
12
=ft"/2

I2l
a

22
= /T/2

22 ,

/2U = fi'a'n ,
/2

12
=.J2'a'M ,

/2
12
= JZ"ce'12 ,

/2W = E"a'
i2f

(50.6)
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so that an -(J8
/

+ JB //

)/211 + a/

11
B'JfZ

/'= 0,

fln + a
r

Vi
ll'R" = 0,

tln + a'nR'&" = 0. (50.7)

Now the expressions on the left in these equations are

tensor components, and therefore, as they vanish for one

particular coordinate system, they vanish for all systems.
That is, the equations are identities.

We may express the identity in the form

dz* + (K + R") dzd\ + R'R"d\* = 0. (50 . 8)

We thus see how o/^... are obtained.

We see that n
ik
=^ = z^ (50 . 9)

for \z
i
= 0,

and therefore ^ zik + ^u z
i >

which gives ^ z
'ik + ^k z

i
0-

From the equations

Aj^
= /2n ,

Ajj?,,

=^ = /2
12 ,

Ajjj2
= /2

22 , A^j
=

0, Xz^ =

(50.10)

we can find Sj and 2
when A is known, and thus determine z

by quadrature.

We have now shown how the determination of the surfaces

applicable to the ground form

depends on the determination of the functions fl^ .

But here comes the difficulty : the equations to determine

these functions

flu-2
= ^la-n Au-i = ^12 2'

K* ^ fliA-flfa

are differential equations of the second order which, in general,

we cannot solve.

In one very special case we can solve them, viz. when the

invariant K is zero. In this case we have shown that the

ground form may be taken to be

(50.11)
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The equations now become

-- u-wio -~ C u*i i
,

~
"*|o "~~ C "

*'2'2^ 12 c^
2

U
ZX>2

' 2 ^ 22

and therefore

,

where

- (50 12)2
~ (J - ;

We can easily prove that we are now led to developable

surfaces.

51. Eeference to lines of curvature. The measure of

curvature. When we refer to linos of curvature as para-

metric lines we have, in (50 . 6),

a
la
= ,R'/2

12 ,
a 12

= J2"/2 12>

and therefore, unless R' and R" are equal, we must have

a
la
=

.0,2
= 0.

^

<
51 - 1

.)

If the radii of curvature are equal, operating with I and 2

which annihilate aik ,
we have

2 . 2
= 0. (51.2)

Similarly by operating on

an = -R/2U , 22
= J?/2

22 ,

we have li
2
if2

11 + JR/2
11

.
2
= 0,

JS
1
/2

22 + ^^22-1 = -
(
51 3

)

From Codazzi's equations we deduce that

As wo cannot have /2n /2
22

/2 25

unless 7J is infinite, we must have

jRj
= 0, J2

2
= 0, (51 .4)

that is, U is constant and the surface must bo a sphere.

Leaving aside the special case of a sphere, we have when
the parametric lines are the lines of curvature

a
12
= /2

12
= a'

12
= 0, (51 .5)
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and wo can often simplify proofs of theorems by referring to

lines of curvature as parametric lines.

The vector z^z2 is clearly normal to the surface at the

extremity of z : its magnitude is ai (or h as it is generally

written) and therefore z^2
= a^A.

Similarly we have ^1^2 ^ tt'^

The expression Kz
i
zk ~X i \jc

is a tensor component. It obviously vanishes when we refer

to lines of curvature: it therefore vanishes identically and

WehaVO
K^z2

= \X2
. (51.6)

We then have Kal = a'*, (51 . 7)

that is, the measure of curvature is the ratio of a small element

of area on the spherical image to the corresponding area on

the surface.

62. Tangential equations. Minimal surfaces. We shall

now develop some further formulae. We have

/2/2,-/2? 2 =aK = a'K~ l = (aa';

n* = +
jn. (52.1)

and, from the formulae connecting

aik> u
'ik> ^ihi

we easily deduce a'ik flik
= R' + R",

We can also obtain formulae applicable to a surface given

by its tangential equation. This means that instead of

beginning with a vector z, given in terms of parameters x
l

and aJ
2 , we begin with assuming that X is known in terms

of these parameters, and also p, the perpendicular from the

origin on the tangent plane to the surface.

The lines of curvature are given by
= 0,

= 0.
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They are therefore also given by

(n,n -Ra\ l)dxl -}-(n^~Rii' v̂ dx^ = 0,

(/2 ia
- JRu'

12 ) c/^-f (/222
- JKa'2a) tte

a
= 0, (52 . 3)

as we see at once from the connecting equations.

The tangential equation of a surface is

p + Xz = 0. (52.4)

By differentiation wo deduce that

With reference to the ground form of the spherical image we

therefore have p . ^ + x .

ik z + f2
ih
= 0.

Now A.^ = -a'.
7,A,

and therefore />. ^ + a'^> -f- fl^.
= 0.

^ (52.5)

When therefore we are given the tangential equation of

a surface, the lines of curvature and the radii of curvature

are given by the formulae

i

= 0,

(52.6)

In particular if we want the parametric lines to be lines of

curvature on the surface we must have

and therefore > must satisfy the equation.

*>.,= 0. (52.7)

There is a particular type of surface with which we
shall have to do : the minimal surface characterized by the

property that the principal radii of curvature are equal and

opposite.

The expression SAA^-SAA^ (52 . 8)

is a tensor component.. If the surface is a minimal one .it

vanishes when we refer to lines of curvature, and therefore
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it vanishes always if, and, we see, only if, the surface is

a minimal one.

We always have the formula, as we easily see,

The tangential equation of a minimal surface is therefore

given by A'.p + 2^>
= 0. (52 . 9)

If we refer to the null linos of the spherical image as para-

metric lines, the ground form of the sphere becomes

4 (1 + x
l

(i'
2)-

2dx
l
dx.

t i

and the equation which p has to satisfy becomes

It may be shown by Laplace's method that the most general

solution of this equation is

(l+x^p = 2x
lf(x1)+2,*\2 <f) (x2)

+ (1 +*-1 ag (x\f (x^ + xl f (02)), (52 . 10)

and we have thus obtained the tangential equation of the

minimal surface.

63. Weingarten or W surfaces. We now proceed to

consider more generally surfaces which, like the minimal

surface, are characterized by the property that their radii of

curvature are functionally connected. These surfaces are

called W surfaces, after Weingarten, who studied their pro-

perties.

When we refer to the lines of curvature as parametric lines

we have (50. 5) ^ +1^ = 0, c
2 + #"A 2 ^0,

and therefore (R'-R") A 12
= JK''^- JR'.^.

Let R"=f(R
r

)

n dx

and (x)
=

ej
*-/(*) .

We easily verify that

f (x) $ (x} <f>"(x) 1. 0'fa)
' -

'

{ '
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Now
. R'.\ _ /' (K) R\ _ 0" (R>) R\ a

.'-."
~
Rr-t(R'}

~
"~0'TT~

~ ^ g '^ ( ^'

*' -JT
-

If -

The equation satisfied by A thus becomes

Xv=\4 lo
o' (*'W) -\ ^ log (^ (JZO), (53.2)

and therefore, since A,X2
is zero,

We may therefore, the lines of curvature still remaining
the parametric lines, take

+l=0. (53.3)

The spherical image of the TT surface (that is, it will bo

remembered, the surface traced out by a unit vector parallel
to the normal at the extremity of the vector z, and expressed
in the coordinates which give z), when the W surface is

referred to the lines of curvature as parametric lines, will be

therefore 2

It will be sometimes more convenient to express the para-
metric coordinates by u and v.

Conversely, if we are given the ground form of a sphere
in the form pdu? + qdv*, where p and q are functionally con-

nected, it will be the spherical image of a W surface referred

to its lines of curvature.

54. An example of W surfaces. We may now consider

some examples. We saw
( 42) that, referred to what we

called focal coordinates, the ground form of any surface may
be taken as J82 _ Sec2 $dv * + coscca0^ (&*.l)

where 2u = PA + PB, 2v = PA- PB,
and A and B are any two points on the surface which we call

the foci
;
PA and P$ are geodesic distances and 2 6 is the

angle APB.
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If the surface is applicable on a sphere we see that

. sin(c v)sin (c + v)
tan C7 = ".- ,

------ r :

----
:

c)

where 2e is the geodesic distance between A and B.

Thus (#') = cos 6, <$>' (R') = cosec (9,

and therefore cosec 6 ^ = sin d.
civ

If we now integrate this equation we- have

R' = sin 2 0-20 4- e,

where e is some constant.

But JK'-jR" = ^S- = sin 6 cos (9,

(/> (R)

so that 4E" = -20- sin 20 + e,

and therefore 2 (R'-R") = sin (e
- 2 E' - 2 .K"). (54 . 2)

This is the relation between the principal radii of curvature

of the W surface which corresponds to the spherical image

sec2 6du* + cosec2 6dv2
. (54 . 1)

In this case we know the radii of curvature in terms of the

parameters since 6 is so known. We thus know the ground

form both of the surface and of the spherical image, and there-

fore can find the surface as a locus in space.

55. The spherical and pseudo-spherical examples. In

the above example we began with a known ground form for

the spherical image and deduced the relation between the

curvatures.

If we take any knowft ground form for the spherical image

2*lu
2
-f qdv

2
,

where p and q are functionally related, and known in terms

of the parameters, we could proceed similarly. We could

find the relation between the curvatures and we should

obtain in known terms of the parameters the ground form of

the. surface. We could then obtain the surface as a locus

in space. In my exposition of the method I have followed
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Darboux and taken the example he gives, as I #lso do in

what follows.

When on the other hand we begin with a known relation

between the curvatures, we cannot in general find the surface

as a locus in space. Thus, let us &pply the method to the

problem of finding the surfaces applicable on a sphere of

unit radius.

Here we have R' R" = 1, (55. 1)

and we may take R' = coth 0, R' 1 = tanh 6.

The function which expresses R" in terms of R' is

p
dR'

PTT
and

(f) (R')
= e R' = cosech 0,

</>' (R
f

)
= cosh 0.

The ground form of the spherical imago is'thus

sinh2
(9 c/u2 + cosh2 6dv*. (55 . 2)

On the sphere the measure of curvature is unity, and therefore

our formula for K gives

6n + #22 + inh cosh 6 = 0. (55 . 3)

Now if we knew how to solve this equation we should

have an expression for in terms of the parameters u and v,

and we should thus be able to write down the ground forms

of the surface and of the spherical image in terms of the

parameters ;
and thus have the means of determining as loci

in space all the surfaces which are applicable on the sphere.

Unfortunately wo cannot solve the equation generally.
This example shows how ultimately nearly all questions in

Differential Geometry come to getting a differential equation ;

and that the complete answer depends on the solution of the

equation. But even when wo cannot solve the equation we

gain in knowledge by having the differential equation in

explicit form. Thus it happens sometimes that two apparently

quite different geometrical problems may depend on the sqme
insoluble differential equation. The surfaces connected with
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the problems are thus brought into relationship with one

another; and the relationship ia sometimes very simple and

very beautiful. Illustrations of this will occur later. All we

can say now is that the differential equation

n 4- 22 + sinh 6 cosh =

is that on which depends the obtaining of all surfaces which

are applicable on the sphere : that is, the surfaces whose

geodesic geometry may be considered as absolutely known,

being just spherical trigonometry.

Similarly we might consider the problem of finding the

surfaces applicable on a pseudosphere. Here we have

JZ'li" = -l, (55.4)

and wo take R' = cot 0, R" - tan 0.

We find that

<f> (cot 0) coscc 0, 0' (cot 6) cos 0,

so that the ground form of the spherical image is

sin2 0Ju2 + cos2 0(fo
2

, (55.5)

and the equation to determine 6 is

22
-0u -fsin0cos0 = 0. (55.6)

If we apply the substitution

2ti'=w + v, 2v' = u-r, 20 = 0',

the equation takes the simpler form

12
= sin0; (55.7)

and on this equation depends the obtaining of the surfaces with

the known pseudospherical trigonometry, obtainable from

spherical trigonometry by writing ia, ibs ic, for the arcs of

a spherical triangle.

66. Keference to asymptotic lines. We have now con-

sidered the surface when referred to lines of curvature as

parametric coordinates, and the equations resulting,

z
l
= U'Aj, 2

= R"\>
where R' and R" are the principal rajlii of curvature and A

is the unit vector parallel to the normal at the extremity of z.
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We now proceed to consider another special system ot

coordinates.
' The 'elements dz and z on the surface which are drawn

through the extremity of the vector z are perpendicular if

dz 8z = 0;

that is, if

cl </#! Sxl
-f ^ c

2 (dx l 8x^ + dx^Sx^ + z\ dx2Sx2
= 0,

or a
ll
dx

l
8x

l + a
l2 (dx i

8x
t2
+ tlxi8x 1)+a,i<>dx2 $x t,

= 0.

(56.1)

The elements dz and Sz at the extremity of z are said to be

conjugate, if the tangent planes at the extremity of z and at

the extremity of z + dz both contain the element 8z\ that

is, if Sz is perpendicular to the normals at the extremities of

z and of z + dz. We therefore have for conjugate elements

8zd\ = 0,

that is,

z
l
\

l
dx

l
Sx

1 + z
l
\2 (d if\8x2 -{-(Jx2 8.r l ) + ^ 2 \^dx2 8a\,, 0,

or /2
ll

rfo'
1

r
1 + n ]t> (djf' l 8x^dx^S^ l )

+ /2
2.//.f2

<Stf,2
= 0.

(5G.2)

Thus we see that the lines of curvature at any point of

a surface are both orthogonal and conjugate, and conversely
we see that lines which at any point are both orthogonal and

conjugate are lines of curvature.

An element which is conjugate to itself satisfies the equation

fi
ll dxl+2findxl

dx
2 + ftM(fa% 0.

The self-conjugate elements at a point form the asymptotic
lines nn dx\ + 2 fl^lx^a^ fl^(lx\ = ; (56 . 3)

and we see that the radius of curvature of a normal section

in the direction of an asymptotic line is infinite.

fix ft f
We call ~ and -.-

a the 'direction cosines' of an element
ds ds

on the surface. They tell us the direction but they are not

the cosines of the angles the element makes with the para-

metric lines. We often write them in the tensor notation

I
1

,

2
;
but we must remember -

is not the square of
, nor
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is Qf
1

)

2 a tensor component
12

,
but the square of l

. We
have identically ^'i-^i

k = 1
;

and, if R is the radius of curvature of any normal section of

the surface, Rfyk?? = 1-
(
5G 4

)

Take now the asymptotic lines as parametric lines. We have

nn = o, n2 ,
= o,

and therefore by Codazzi's equations

/2u /2.2
-/2

J2
/2

12
-7va =

lwe have log/2 12
= (111 j- {212],

Now we saw
( G) that the determinant a satisfied the

equations :\

--
o y

and therefore
c
-
(log 7v

r
^) -f 2

{
2 1 2

} =0,

^ (log /vi) -f2{121} = 0. (56.5)

These arc the equations which tho coefficients a^ must

satisfy if the parametric lines are to be asymptotic.

If we are given any ground form, and if we could transform

it so that the new coefficients would satisfy the above equations,

then we could, since in this case we would know the functions

/2U ,
/2

r> ,
/2

20
and the ground form, find the surfaces to which

the form would be applicable. But the transformation would

itself involve the solution of differential equations of as

great difficulty as Codazzi's equations.

Taking the asymptotic lines as coordinate axes we have

^A! = 0, z
8
A 2
= 0,
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and therefore z
l
= ^>AA 1 , (56 . 6)

where p is some scalar.

Similarly we have ^ _
q^ (56 . 7)

where q is a scalar.

As 3X = A

we have 2)S\X 1
X

2
= qS\\ 2 \ l

=

and therefore ^ ~ ~
7- (56.8)

Since A! A., = Kz^z^

we have -7^2 FAA
T
AA 2

= A^s ,

that is, -7i^
2
(A 2

/S
tAX

1
X-A&'XA l

X
2)
= CA 2^

or A>2 XAS
r

A'^ = X, (56.9)

since A
X
A 2 is parallel to A.

We therefore have p (
K)~t, (56.10)

and s
1 =(-A

r

)"*XX l> 2
- -(-A

r

)-*XX a
. (56.11)

These are the exceedingly important equations which we

have when we choose the asymptotic lines to be the para-

metric lines.

67. Equations determining a surface. If we now take

Z=(-K)~*\, (57.1)

so that Z is a vector, parallel to the normal at the extremity

of z
y
and of length (

Ar

)"J, we can write the equations which

determine the surface in the simple form

From these equations we have

^12 = 0,

and therefore Z12
= pZ, (57.2)

where p is some scalar [not the p of (56 . 10)].

In order to find the asymptotic lines of a given surface we
have to solve the ordinary differential equation

v* = 0,
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and when we have done this we can bring the equation of

the surface to the form stated.

We have Z = cA, '(57.1)'

and we notice that c is an absolute invariant.

Differentiating we see that

and therefore cA^ = CupCy

that is, ca' 12
= C

12 pc. (57.3)

From the formulae

a'
12
=

fl^f-^,
+ ITT/ )>we see that

and therefore p = - /2
12 ^ -f -^

-
(57 . 4)

The equation of the surface referred to the asymptotic lines

is therefore z
l
= ZZ

19 2
= -ZZ^ (57 . 5)

where Zn = -/2W + ^. (57.6)

68. The equation for the normal vector in tensor form.

We can express the equation which the vector Z must satisfy

in tensor form so as to be independent of any particular

coordinate system.
The null lines on the surface applicable on the ground form

are the lines which satisfy the equation

aikdx{
dxk = 0.

On a real surface they are of course imaginary and are

characterized by the property that the distance, measured

along the curve, between any two points on a null curve

is zero.

Let us now consider the ground form

fl
ihd'^dx^

'

(58.1)
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remembering that any quadratic differential expression is the

ground form of some set of surfaces. The surface, to which

this form applies, will have as its null lines the correspondents
of the asymptotic lines on the surface we are considering.

Let Beltrami's differential operator with reference to the

ground form fl^dx^lx^

be denoted by <yA2 . (58 . 2)

Now we saw (43 . 24) that, with reference to the null lines

as parametric lines, that is with reference to the asymptotic
lines on the surface we are considering,

2.
/2

12 du dv

The equation Zn =

may be written

that is, ttA2 ^ =(_ 2
( + -

/7 ))^ ; (58.3)

and this is a tensor equation independent of any coordinate

system.

59. Introduction of a new vector We may write

this tensor equation briefly in the form

^Z = pZ. (59.1)

Let be any scalar quantity which satisfies the equation

A
a
=

jp0.

We then have \ K = Z A
2
6.

Now we saw (17.4) in the chapter on tensors that

where ^u
f

and therefore u
t
vl = v

t
u*.
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We may then write the equation

6A.,Z-Z\0 ^

in the form 6
*

VttZ<< = Z --

Z6 (

)
Q (59.2)

[where /2 denotes /2n /2
22 ~/2i 2 ].

If the asymptotic lines are real /2 will bo negative : we
therefore write this equation

, .- __. c ,

-!#.{__ #02j_ Ot (59.3)

We can then by quadrature find a vector such that

that is,

V-/2 = 7(/2 1^ 1
-/2

]1 ^)-tf(/2 1^1
-/2

ll ^),

^-^,,^,)-^^^,-^^). (59.4)

It should ho noticed that to find required a solution of

the equation ^ g _ ^ e
(
59 B 5

)

60. Orthogonally corresponding surfaces. We have

V(A,,Z)Z= 0,

and therefore

or, since

^72/^ = 0. (GO .

We can therefore by quadrature find a vector z such that

z
l
= V

that is, ^ y

^-/2 I2
^

2 ). (60.2)

If the parametric lines are asymptotic these arc just the

equations we began with.

2843 T\f
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We see at once that

3i
= 0,

3j/2
+ 2

= 0, 0^2
= 0,

and therefore corresponding elements of the surfaces traced

out by z and by are connected by the equation

dsdf=0 t (60.3)

that is, corresponding elements are perpendicular to one

another. The surfaces are then said to correspond orthogonally

to one another.

61. Recapitulation. We may now restate the results we

have arrived at.

Consider the ground form

and let A
2
have reference to this form. Let Z be a vector

which satisfies the equation

Z) = 0.

Then z
l
= V, 2

define a surface traced out by a vector z.

On this surface the unit vector parallel to the normal at

the extremity of z is given by

#=cA
f

where c
( K)~* 9

and K is the measure of curvature of the surface z.

We have ^Z = Z

. A.,c
where 2,

=__
The asymptotic lines on z are

n
ik dxt

The surfaces given by

where 6 is any scalar satisfying the equation

. **6=p0 9

correspond orthogonally to the surface z.
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62. Relationship of surfaces z and When the para-

metric lines are asymptotic on 0, that is, when

nn = 0, /2
22
= 0,

and therefore fM =
|*

f2 + -^
. (62 . 1)

The parametric lines on are now conjugate lines : for if

we have an equation of the form

where p and q are any scalars,

Xjl2
= 0.

If p2
= ? l

the conjugate lines have equal invariants in Laplace's sense.

The parametric lines on are therefore said to be conjugate
lines with equal invariants. To the asymptotic lines on z

there correspond therefore conjugate lines with equal in-

variants on g.

If on any surface we are given the conjugate lines with

equal invariants, we can find by mere quadrature a surface

which will correspond orthogonally to . For if

~ ~

where 6<f>
= \

and therefore ~-
(<f>

2
^) + ~ (<^) = o, (62 . 2)

<j 16 o V

where
<j>

2 means the square of
(f>
and is not a tensor notation.

We can therefore find by quadrature a vector Z such that

that is, fl
=

The surface given by
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will correspond orthogonally to and will have the asymptotic
lines as parametric lines.

We have now seen the relationship to one another of the

surfaces z and and the method by which, given either, we
are to obtain the other.

63. Association of two other surfaces with a c-surface.

Let a vector m be defined by the equation

We have, taking as parametric lines the conjugate lines

with equal invariants on

and therefore

O^Z-m) = Otfi + mJ, 6.2 (Z+m) = 0(#2 -wJ.
(63.1)

From these equations we see that

Z
12
Z o, m

J2
m = o,

and, as

V(Z-m)(Zl
+ m

1 )
= 0, V(Z+m)(Z.,-m^ = 0,

ZZ
l luiihi -f ZiUi 4- ^^^ = 0,

J&ziMi z
Zm

2 Zs>ti = 0. (G3 , 2)

We can take s,
= ^, ,

z.
2
= ZX^

and we have
2/i ~^i T~"

It follows that y only differs by a constant vector from

s + Zni.

We have thus obtained the surface y, where

2/ = s-{-#m, (63.3)

directly from z and and the asymptotic lines on this surface

correspond to the asymptotic lines on z.
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64. \Vc obtain yet another surface directly from the

definition
?;
= #0, (

64 -J)

where
6(/>
= 1

;

and we see that

so that
77 L m(f> l

fin
l (f>. (04 . 2)

Similarly we see that

rj^
m

2 (j)~m02
. (G4 .3)

The surface
77

will therefore correspond orthogonally to the

surface y ;
and to the asymptotic lines on y will correspond

on
77 conjugate lines with equal invariants.

We have thus four mutually related surfaces,

s> 2/> ^
which are intimately connected with two problems in the

Theory of Surfaces, viz. the theory of the deformation of a

surface, and a particular class of congruences of straight lines.

The relations between the four surfaces will be more com-

pletely stated when eight other surfaces are introduced, as

they will be when we consider the Deformation Theory.



CHAPTER V

DEFORMATION OF A SURFACE, AND
CONGRUENCES

65. Continuous deformation of a surface. We have seen

that the problem of determining the surfaces in Euclidean

space, to which a given ground form

appertains, depends on the solution of the equations

and we have pointed out the difficulty of solving these

differential equations.

There is a related problem the solution of which is simpler.

This problem is the determination of a surface differing

infinitesimally from a given surface and applicable upon the

given surface. Let z be the vector of the given surface, and

z + t the vector which describes the neighbouring surface

which we are seeking, t being a small constant.

We may regard t as a small interval of time and ^ as

a linear velocity vector, descriptive of the rate of increase

of z, as we pass to the neighbouring surface which is applicable

upon the given surface
;

or as the growth of the vector z

under the condition of preserving unaltered the element of

length.

If we can obtain we have the vector which defines the

continuous deformation of a surface.

We have at once

i& = 0; X& + *
a fi

= 0; *
2&=0, (65.1)
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that is, the vector describes a surface corresponding ortho-

gonally with the given surface described by z.

An interesting and immediately verifiable theorem on

surfaces which correspond orthogonally is the following :

'

If z and { correspond orthogonally, then the surfaces traced

out by z -h and z are applicable on one another ; and

conversely, if z and are the vectors of two surfaces applicable

on one another, z + and z will be the vectors of two

surfaces which correspond orthogonally/

66. A vector of rotation. From the kinematical relation

of the vectors z and wo see that d is the relative velocity

of the extremities of dz in the deformation of the surface z.

In the deformed surface the element which corresponds to

dz will have the same length but will have turned through
an angle. Let the rotation necessary to produce this be

represented by the vector tr.

Now if a vector a, drawn from a point, is made to rotate

with an angular velocity whose magnitude and direction is

represented by a vector r, drawn through the same point, the

linear velocity of tho extremity of a will be given by ra.

It therefore follows that df = rdz,

or
1
= ^1; & = ^V (66. 1)

The vector r is parallel to the normal to tho surface ^, at

the extremity of tho vector g. We therefore have

where a is some scalar ; and therefore

since c^ =
; ^2 +^ =

;

5j
= 0,

so that r =
^y; (66.2)

and thus r is uniquely obtained, when z and { are known.
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67. Geometrical relationship of surfaces traced out by

certain vectors. In exactly the same way we see that

where P=TL^'
(
G7 - 2

)

&Vp2

By differentiation of the equations

we sec that r^ l

~
r,^; (G7 . 3)

and therefore the vectors r
t ,

r
29 y

lt
z
2
are all parallel to the

same plane. It follows that the normals to the surfaces

traced out by z and r are parallel at corresponding points.

Similarly wo see that the normals to the surfaces traced

out by the vectors p and are parallel at corresponding points.

But the vector r is parallel to the normal at the correspond-

ing point of : it is therefore parallel to the normal at the

corresponding point of p.

From the equations r* ^

we see that rp = 1. (67 . 4)

It follows that the r and p surfaces are polar reciprocals

with respect to a sphere whose centre is at the origin and

radius the square root of minus unity.

68. The angular velocity r is applied at the extremity of

the vector z. Now an angular velocity r, at the extremity
of the vector 0, and an angular velocity r at the origin, are

equivalent to a linear velocity zr.

It follows that a linear velocity and an angular velocity r,

at the extremity of 0, are equivalent in effect to a linear

velocity + zr, and an angular velocity r at the origin. We
are thus led to consider two other vectors,

+zr and
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69. A group of operators, and a system of twelve

associated surfaces traced out by vectors. The fundamental

relations between the vectors 0, r, p, arc expressed by the

equations d{=rds; dz = P7t{. (69.1)

These relations are unaltered by the transformation scheme

in 0, r, p,

*' = ^ + P; f = r; r' = ^ ; p'
= s, (09 . 2)

which we shall denote by the operator A.

They are also unaltered by the transformation scheme
' = {; f=; r' = p; p'

= r, (69.3)

which we shall denote by the operator S.

We see that the operators A z
, A*, A 4

,
A'' tiro respectively

the transformation schemes

. /' __ P. .

We see that A 6 = 1
;
B* = I, (69 . 4)

and A*B = BA; A*B = BA 2
;
A*B = BA* A 2 B = BA* ;

AB = BA*,

and so the operators A and B form a group of order twelve.

The operators A form a sub-group of order six
;
-the opera-

tors /{ form a sub-group of order two.

If we take p = A 3 Q = BA
;
R = A2

we have P2 = 1
; Q2 = 1

;
R3 =

1, (69.5)

PC = QP; PR = RP;QR = R*Q -, QW = RQ,

and the operators P, Q, R will generate the same group. Of
this group the operators P form one sub-group, the operators
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Q another sub-group, and the operators P and Q together
a sub-group of order four. The operators R form a sub-group
of order three.

We thus obtain directly from the four vectors 0, r, p
a system of twelve vectors which trace out twelve surfaces

connected in various ways at corresponding points.

70. We may arrange the twelve surfaces in tabular

form thus

The first column will denote a vector of a surface; the

second the vector of the surface which corresponds ortho-

gonally to the surface in the first column and in the same

row; the third column will denote the vector which gives

the angular velocity corresponding to the surface in the same

row but in the first column; the fourth will denote the

angular velocity which corresponds to the surface in the same

row but in the second column.

The vectors in the third column are parallel to the normals

to the surfaces in the second column and in the same row
;

the vectors in the fourth column are parallel to the normals

to the surfaces in the first column and in the 8ame row.

Finally the surfaces in. the same rows and in the third and

fourth columns respectively are reciprocal to one another.
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71. The twelve surfaces form three classes of four. Let

us now recall what wo proved about the four surfaces which

we denoted in 62-4 by 2, , y, 77, and the equations of con-

nexion when z is referred to its asymptotic lines.

We had

mO, Z = 77$, y = z -f Zm.

Wo see that Z is parallel to the normal at the extremity of

z, and p is parallel to the same normal. Therefore

Z = pp, (71.1)

where p is some scalar.

Now z= = O'Z'
but Si

= ^i,
and therefore Z dp,

that is, 77
=

p. (71 . 2)

Now y = z -f Zm z + rjg,

and therefore y z -f^p. (71 . 3)

The four surfaces are therefore in the present notation

(merely changing the sign of the vector 77)

that is, s, Hz, BAz, A 5
z,

or c, PQRz, Qz, PJlz.

Now the asymptotic lines correspond on two surfaces which

are polar reciprocal to one another, since conjugate lines

reciprocate into conjugate linos; and we know that the

asymptotic lines correspond on

z and z -h p.

The asymptotic lines therefore correspond on

that is, on z, Pz
9 Qz, PQz.
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The surfaces which correspond to these orthogonally are

respectively ^ ^ +
-

that is, PQRz, QRz, PRz, Rz.

On these surfaces there correspond to the asymptotic lines

conjugate lines with equal invariants. We Avill say con-

jugate lines with equal point invariants.

The surfaces which are respectively reciprocal to these

four are ,
r t

^ f+rz

rf
{ + '' * V'

that is, R 2
z, PR*z, QR*z, PQR2

z.

We say that on these surfaces there correspond, to the

conjugate lines with equal invariants on their reciprocals,

conjugate lines with equal tangential invariants.

The twelve surfaces thus fall into three classes: viz. those

on which the asymptotic lines correspond ;
those on which

conjugate lines with equal invariants correspond ;
those on

which conjugate lines with equal tangential invariants corre-

spond. The surfaces of any class are permuted amongst
themselves by the operations of the sub-group

i; P-, Q; PQ.

72. A case in which one surface is minimal. If the

vector z is of constant length we can prove that the surface

+w (72.1)

is a minimal surface.

We saw that the normals at corresponding points of z and

of r were parallel. If then z is of constant length, the vector

is parallel to its own normal and therefore equal to AA,

where k is a constant, and A is the unit vector parallel to

the normal at the extremity of r. But

and therefore



A CASE IN WHICH ONE SURFACE IS MINIMAL 93

We saw (52 . 8) that the condition that z might be a

minimal surface was #01 AA 2
= Uz

2
\\

l9

and clearly this condition will remain the same if we replace

X by any vector parallel to it.

Let y = g+zr.

We see by tho table that z is parallel to the normal at the

extremity of y. The condition that y may be a minimal

surface is then
Sy^zz^ = Sy^zz^ (72 . 2)

But by the fundamental formula of connexion and by the

table we see that ^ ^
2/i
= -r

i 2/2
= 7V

Tho surface y will therefore be a minimal surface if

Lliat IS, it ZZ^ZT-i Z T-tZt) ZZ-tZ^^ Z ^Vj^i

Now z being of constant length this condition becomes

At /" r> .

M^2 'v^i

and this we have seen is true.

This theorem will bo used in proving an interesting theorem

of Ribaucour's in connexion with a particular class of con-

gruences.

We now proceed to consider the theory of congruences of

straight lines in connexion with which the twelve surfaces

will be of interest.

73. Congruences of straight lines. If we wish to con-

sider not merely the geometry on one particular surface but

the relation of points on that surface to corresponding points

on another surface, we are led naturally to consider the

congruence of straight lines which join the corresponding

points.

Let z be a vector depending on two parameters u and v, and

ft
a unit vector depending on the same two parameters, and

drawn through the extremity of z. Let iv be a length taken

along the vector p, ;
the congruence will,then be defined by

(73.1)
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We regard z and p as functions of the parameters u and v,

and therefore the current vector z
1

will bo a function of the

three parameters u, v, and w.

The unit vector p will trace out a sphere which we call

the spherical image of the congruence.

Let

so that dcr* = au dfua + 2a
l2dudv + a

22 dv* (73 . 2)

is the ground form of the spherical image.

Let Wk = <*ik>

ll> ^n a
2U ""^12

and notice that in general

>ik
=

*>li-

If we take two neighbouring rays of the congruence we have

dz' dz + wd/j. -f p.
du\

If X is a unit vector perpendicular to
p,
and

cZ//,

da\ = pit //,

and therefore

Jul<r\

It follows that

<ondv) (al2

But, if 5 is the shortest distance between the two neighbour-

ing lines, 5 -AcZc,

and therefore

(73.3)
a

T T
du + a . 9 r /?;, a, cZu 4 a99dv11 '

1 / 7 14 Z^

74. Focal planes* and focal points of a ray. The value

of w which corresponds to the shortest distance between two
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neighbouring rays ivS given by the fact that dz' is perpendicular
to

\L
and

fi -f d/jL ; and therefore

dz'dp.
= 0.

We thus have dzdp + wdfi
2 = 0,

o)u du
2
-f (o)12 -f eO dudv 4- co^dv

2"

~ll- ~ - - --,, ,

so that
(
74 .1)'

The critical values of w, say w' and tc", as we vary the

ratio du : dv, are therefore given by

con wet

-f ox,,) wu
-

0, (74 . 2)

and the corresponding values of the ratio du: dv are given by

= 0.

(74.3)

There are, by (73. 3), two values of the ratio du:dv which

make 5=0. Through each ray of the congruence there thus

pass two developable surfaces defined by

= 0. (74.4)

The planes which ])ass through this ray and touch the

developablcs are called the focal pldiies of the ray. The

points where the ray is intersected by these neighbouring

rays are called the focal points of the ray.

The developables are defined by

= p (a^d^du +

where p is some multiplier; and we see that this multiplier

is w. The focal distances, /' and /", are therefore the values

of w which satisfy the equation

(74.5)
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75. Limiting points. The Hamiltonian equation. Prin-

cipal planes. If we have any two real quadratic forms

we can, by a real transformation, bring them to such a form

that in the new variables

It is therefore possible by a real transformation to make

12
= 0. (75.1)

The points on the ray given by w', w" are called the

limiting points of the ray. These points are therefore real.

If we suppose the transformation applied which makes

we have o>n = w'<tUJ o>
22
= iu"a

22 ;

and the value of w which corresponds to the shortest distance

between two neighbouring rays is given by

?(/(?!, du' + iv"a
29i
dv2

We may take

COS2 e - j^Li^
2

Sm2 e = -A2-^
2

,,,an du* + <t
2<,<lv*

((ndu* + ^^dv
L

and we have the Hamiltonian equation

w = ti;' cos2 + ^ r/
sin2

(9, (75 . 2)

showing that the shortest distance between any two neigh-

bouring rays lies between the two limiting points.

The values of the ratio duidv which correspond to the

limiting points are given by

(w'-w")dudv= 0.

Leaving aside the special congruence when the limiting

points may coincide, we see that corresponding to the limiting

point w\ du is zero, and the shortest distance is parallel to

fjL/ji2
. Similarly the shortest distance corresponding to to" is
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parallel to /i/^; and these shortest distances are perpendicular
to one another since

^>/*iW*a = W*Wi-PlW* = -
(
75 3

)

The planes through the ray /z
which are perpendicular to

these shortest distances are called the principal planes of the

ray : and they are perpendicular to one another.

70. Principal surfaces, and the central surface. Return-

ing now to general coordinates we see that

and therefore, in the important class of congruences for which

co
12

c
21 ,

the limiting points and the focal points coincide.

We see also that the focal planes will then coincide with the

principal planes.

When we take any equation connecting the parameters u
and v of the congruence we obtain a ruled surface of the

congruence. The directrices of the ruled surface will be

curves lying on the surface z. If u and v are functions of

a variable p, then p and w will bo the coordinates of the

ruled surface. The lines of striction on the ruled surface

will bo given by
~

cfo8

(76.1)

where u and v are connected by the equation which defines

the ruled surface.

The ruled surfaces given by

-f o>
21 ) db\ ^ (coV2 -f o>21 )

da -f o>^^v>

u + an dv, a^dvu + a^dv
(76.2)

are called the principal surfaces of the congruence.
The locus of the points on rays midway between the foci,

and therefore midway between the limiting points, is called

the central surface of the congruence.



98 DEFORMATION OF A SURFACE, AND CONGRUENCES

77. The focal surface. Any ray of the congruence will

be intersected by a neighbouring ray if

dz + wdp +pdw = 0.

The developables which pass through the ray are therefore

given by Sdzdpfi = ;

that is, by S (z^lu, + z^lu) (fadu + fadv) fi
0.

The focal points are given by

(zl + W/JL^ du 4- (^2 + w/O d v + pd =
5

that is, by S (z^ + W/JL^ (z% 4- w//2 ) /*
= 0.

The focal surface of the congruence is defined as the locus

of the focal points on the rays of the congruence. If we so

choose the parameters that the equation defining the develop-

ables is dudv = o,

then Kz
l jji l p. o, Sz^fajj.

=
;

so that o
1
= a^ + 6//, z> c^ + dp,

where a, 6, c-, d arc scalars.

Substituting in the equation

S (z l
-f wfij) fa + WfjiJ n = 0,

which defines the focal points, we see that the focal surface

has two sheets given by

Z' = Z
(l/JL,

Z* = 2C/JL.

78. Bays touch both sheets of the focal surface, The

congruence of rays of light. For the first sheet

z\ = (I
-

x ) p, z\ = (c
-

a) pz + ((Z
- ei

2 ) //,

so that the normal to the first sheet is parallel to
/JL/JL^ ;

and

the ray touches the first sheet along the u curve on it that

is, the curve along which only u varies ;
and the v curve is

conjugate to the u curve.

Similarly wo see that the ray touches the second sheet

along the v curve on it, and the u curve on it is conjugate
to this.

Thus any ray of the congruence touches both sheets of the
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focal surface
;
and the tangent planes to the focal surface at

the two points of contact are the tangent planes to the

developables through the ray.

The edges of regression of the developables are the u curves

on the first sheet, and the v curves on the second sheet.

If the congruence is formed by rays of light, the focal

points on the ray are the foci as defined in the theory of thin

pencils. F
l
and F2

arc the foci on what is called the principal

ray of the thin pencil. The tangent plane at f^ to the

second sheet, which is the tangent plane at F
l
to the develop-

able, is called the first focal plane : so the tangent piano at Fl

to the first sheet, which is the tangent plane at jF
2

to the

other developable, is called the second focal plane.

The devolopables through any ray are somewhat like the

above figure.

The focal lines as defined in some text-books on Geometrical
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Optics have no meaning at all; but it has been pointed out

that the lines conjugate to the principal ray on each sheet

have a physical meaning which might entitle them to the

name of focal lines.*

79. Refraction of a congruence. Malus's theorem.

A congruence is given in terms of the coefficients a^. of its

spherical image and of the coefficients

o>n ,
o>12 ,

o>
21 ,

co22 ,

We can see how the congruence, when we regard it as

formed by rays of light, is altered by re-

fraction at any surface z, whose normal is

parallel to the unit vector A.

Let p be the unit vector into which /z
is

refracted : that is, let // trace out the new

spherical image.
We have

/*'
=

f*/z + 6A, where a and b

arc scalars. In the ordinary notation of

optics, if
cf)

is the angle of incidence, 0'
the angle of refraction, and k the index of

refraction,

k sin 0' sin 0.

Now
X/JL' (iXfj., P-'P' bXji;

and therefore

a sin $ = sin0', 6sin0 = sin (0 0'). (79 . 1)

We thus see that a is a constant independent of the angle 0,

but b depends on 0. We have

A/z-f cos0 0.

Since ///
=

a/j, i
+ IXj + b

{ A,

we have &>;//

where /2^ refers with its usual meaning to the surface of

refraction.

*
[Probably the allusion is to a note 'On focal linos of congruences of

rays' : Elliott, Messenger of Mathematics } xxxix, p. 1.]
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We see that cos 0' = a cos + 6,

and therefore if we multiply

by /JL',
that is, by

and take the scalar product, we get, since
fi'ft'j

is zero,

(tbiXpi + kjji)
= /^cos0'. % (79.2)

We notice that if o^., co a

then o>' r , fc^r

We shall see (83.2) that the condition

o>
la
= o>

21 (79 . 3)

means that the rays of the congruence arc normal to a system
of surfaces and we now see that this property is unaltered by
refraction. This is Malus's theorem.

We have now given the equations which would determine

any refracted congruence, when we are given the refracting

surface. Unfortunately the equations are complicated.

> 8O. The Ribaucourian congruence. We shall now con-

sider some special classes of congruences.

Consider the congruence formed by rays drawn from every

point of a surface, parallel to the normal at the corresponding

point of a surface which corresponds orthogonally to the

given surface. This is the llibaucourian congruence, so called

as Kibaucour was the first to consider it.

We take to be the surface from which the rays are drawn

parallel to the normals to the surface z.

Taking the asymptotic lines on z as the, parametric lines

we had f A ZQZ f QZ QZ
Sl l/i*> I'"]) &2 u "2 l/ 2

/V
>

and Z c\,

where c =
( K)~*,

K being the measure of curvature on z.

To bring this into accordance with our notation for con-

gruences we write p. for A, and we hav
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Since S^fa/i and $^2 //2 //
= 0,

the equation which defines the developables is

dudv =
;

and the local points are given by

w = cO, w = cO.

The surface is then the central surface of the congruence,
and the developables intersect it in conjugate lines with

equal invariants. These lines correspond to the asymptotic
lines on z, the surface which corresponds orthogonally to the

central surface.

81. The Isotropic congruence. Ribaucour's theorem.

We have a particular, and most interesting, case of this con-

gruence, when the surface which corresponds orthogonally

with { is a sphere with the origin as centre.

In this case c is a constant and { corresponds orthogonally
with

p, itself.

The congruence is z' = + w/t

and is called the isotropic congruence.
For the isotropic congruence,

and therefore the limiting points of any ray coincide and are

on the central surface. Any plane through a ray is a prin-

cipal plane and any surface may be regarded as a principal

surface. The lines of striction of all the ruled surfaces of the

congruence lie on the central surface.

In the chapter on the ruled surface [see 108] we prove
that any two ruled surfaces of the congruence intersect at

the same angle all along their common generator.

The dev.elopables and the focal points we see are imaginary.
We have proved that y = s+^

is a minimal surface and that
p.

is the unit vector parallel to

the normal at the extremity of y. The perpendicular p
on the tangent plane to this surface is given by

p + yp = 0,
* - '

that is, by p + IL
~ 0.
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The tangent plane is therefore the plane drawn through the

extremity of perpendicular to the ray of the congruence.
We thus have Ribaucour's theorem that c The envelope of the

plane, drawn through the extremity of the vector which

traces out the central surface, perpendicular to the corre-

sponding ray of an isotropic congruence, is a minimal surface '.

The surface corresponding orthogonally to the sphere is

therefore the pedal of a minimal surface.

If two surfaces are applicable on one another, and if the

distance between corresponding points is constant, we see

that the line joining these points traces out an isotropic con-

gruence. For if
fj,

is the unit vector parallel to the join of

the points, and z is the vector to the middle point of the

join, and 2c is tlie length of the joining line,

from which equations we at once deduce the result stated.

82. W congruences. Let us now consider again the two

surfaces which we denoted by z and z + gp y
and consider the

congruence formed by the line joining corresponding points

on these surfaces. Looking at the tabular arrangement of

the twelve surfaces we see that p is parallel to the normal

to z at the corresponding point, and that is parallel to the

normal to z + p at the corresponding point. The line joining

corresponding points on the two surfaces z and z + p, being

perpendicular to both p and is perpendicular to the normals

to z and to z + p, and therefore touches each of these surfaces.

Now if a ray of a congruence touches a surface, that surface

must bo a focal surface of the congruence. For, taking z to

be the vector to the surface, and p the unit vector parallel

to the ray, 8^*2 = 0;

and therefore, the focal points being given by

S (zl
+ w^} (z2 + Wfi2) 14

= 0,

we see that one of the focal surfaces is given by w = 0.
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It follows that z and z + p are the focal surfaces of the

cpngruence we are considering.

Now on these surfaces the asymptotic lines correspond.

Conversely it may be shown, that if the asymptotic lines

correspond on the two sheets of the focal surface the focal

surfaces are z and z + gp.

Congruences of this type may be called W congruences.

83. Congruence of normals to a surface. We now come

to the case of congruences where the rays are normal to

a surface. The theory of such congruences is of special

interest in geometrical optics as well as in geometry.

Instead of
/z
we shall write X, where A is the unit vector

normal to the surface from which the rays emanate.

AVe now have ^ ^ = ^\ (83.1)

as a necessary condition that the congruence may be a

normal one.

This necessary condition is also sufficient : for if

nthen T-/*^ N ~/* i>^H,^* <*V^-

and we can therefore determine a function w such that

n\ = /^ ; u'
2
=

/*c.2
.

Let z' = z + iup.,

then z\yi = ZIIL + U\I& = 0,

so that the rays are normal to the surface z'.

The normal congruence is therefore defined by

o>
21
= a>

12> (83.2)

and the limiting points coincide with the focal points, and

the focal planes with the principal planes. The focal planes
are therefore perpendicular to one another.

Conversely if the focal planes are perpendicular to one
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another the congruence is a normal one : for we see that the

condition that the focal planes may bo perpendicular is

and therefore, since <-in <( 2̂ a\ a is not zero,

o>
12
= o>

2l .

84. Reference to lines of curvature. We now take the

parametric lines on the surface z to be the lines of curvature,

and we have z
l
= -R f

\
1 , ^=-R"X t, t

where II' and R" are the principal radii of curvature.

We have

con = -R'\l a>
la
= a>

al
= 0, a>

2a
= -.K"A 3,

that is, o)u R'alv a>^
= R"a^, co^ co

zl
u
ri 0.

The focal points are given by

f=R', f' = R",

and the two focal surfaces are now given by

The equation of the developables is

(R'-R")dudv = 0.

As we need not consider the case where R' R" any
further than we have already done we see that the equations
of the developables are

du = 0, tZy = 0. (84.1)

For the focal surfaces we have

</o' = -(R"-R')\dn + \dR'. (84 . 2)

Calling this the first sheet of the focal surface, its ground
form is

(dR')* + (R"-R')*Mdv\ (84 . 3)

and therefore the u curve is a geodesic on the ih-st sheet.

Similarly we see that the v curve is a geodesic on the second

sheet.

86. Tangents to a system of geodesies. Conversely if

we take any surface, and draw any singly infinite system

of geodesies on it, the tangents to these geodesies will generate

a normal congruence.
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For take a surface with tho ground form

and consider the congruence formed by the tangents to tho

curves v = constant, that is, by the tangents to this family
of geodesies. We have

/z
= s

l
and as

~ 2 _ i
^ ^ n

"i l
j ^2 u

>

we must have c
t

:
12
= 0, Sn^ + 'i^iu

= 0,

so that C2u ^ 0.

Now c;
2 /x 1

= o.
2

and c^ =
c^1

so that ^! =^2 ,

and the congruence is a normal one.

86. Connexion of W congruences which are normal with

W surfaces. Now let us consider the asymptotic lines on

the two sheets of the focal surface.

The vector to the first sheet is

and we have

o'
1
=-R'

1 X, c'
2
=

(II" R')

and therefore (R
r - R") X

12
= R'\ A

2
- R'

The equation of the asymptotic lines is

if V is the unit vector parallel to the normal at the extremity
of z'.

Now A
x

is parallel to V, and therefore the equation of the

asymptotic lines is dz'd\ =
;

that is, S((R"-R') \
2dv-\dR') (\udu + X

l2 dv) = 0.

We have, since AjA 2 is zero,

An A2
= A

T
X

12
=^ A

'f -r (R
f

R")>

XXn = X^, XX
]2
= 0,
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and therefore the equation of the asymptotic lines on the

first sheet is X*R'
ld<u,*-\lR"l<W = 0. (8G . 1).

Similarly we see that the asymptotic lines on the second

sheet of the focal surface are given by

\lR'2du
2 -\lR"2 <lv

2 = 0. (86.2)

The necessary and sufficient condition that the asj mptotic
lines on the two sheets may correspond is therefore that R f

and R" may be functionally connected.

We thus have the theorem that in a TF congruence, if it is

also a normal one, the surfaces which intersect the rays

orthogonally have their radii of curvature functionally con-

nected : that is, they are W surfaces.

87. Surfaces applicable to surfaces of revolution, and W
normal congruences. We saw

( 84) that the ground form of

the first sheet of the focal surface of a normal congruence was

(dR'Y + (R"-R')*an<lv\ (87 . 1)

and similarly we see that the ground form for the second

sheet is
(dR")* + (R"-RJandu2

. (87 . 2)

If the congruence is also a W congruence we know that

the ground forms of the first and second sheet are then

respectively (<fcfl')2 +^ (R'jfdtf, (87.3)

(dR")* + (<t>'(R')Y*dtf. (87.4)

The two sheets are therefore applicable on surfaces of

revolution, the u curves on the first sheet corresponding to

the meridians, and the v curves on the second sheet.

Conversely, if we have any surface applicable on a surface

of revolution, the curves which correspond to the meridians

will be geodesies, and the tangents to these curves will

therefore trace out a normal congruence which will be a W
congruence ;

and the surfaces which cufc the rays orthogonally
will bo W surfaces.
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If the surface is one of constant curvature we need to solve

an equation of Riccati's form to obtain the curves which

correspond to the meridians, but in other cases we can find

the curves by quadrature.
An interesting property of any given W surface, which is

not of constant, curvature, is that we can find the lines of

curvature on it by quadrature.
For we can find the two sheets of the focal surface, and on

these sheets we can find by quadrature the curves which

correspond to the meridians. These curves will have as their

correspondents on the given W surface the lines of curvature.

This theorem was discovered by Lie.

88. Surfaces of constant negative curvature. Returning
to the ground forms of the two sheets of the focal surface

we see by aid of the formula

whim the ground form is (hr + ffidr 2
, that, K' denoting the

measure of curvatuie on the first shoet,

Similarly we find for the measure of curvature K" of the

second sheet K" + <^> </') J

4
-f- [(0 (R'))'' <//' (R')]

^ (88 . 2)

since K' = /('), R'-f(R' }
=|^

If the two sheets are applicable on one another at correspond-

ing points we must have K' = K" and therefore we must have

0" (IV) (j> (K) - (f (R'))*. (88 . 3)

Taking the upper sign wo see that

where a and b are constants.
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We now see that R"-R' -a, (88 . 4)

from the equations It' -f (R
f

)
=

R" =f(R').

The measure of curvature is found to be a""
2 from the

formula 6" (R'\
A" + ?wr - (S8 - 6)

The two sheets have then the same constant negative

measure of curvature a~2
,
and the distance between the

corresponding points is equal to the constant a.

We therefore see how, when we are given a surface of

constant negative curvature, we can construct another surface

of the same constant curvature. We find a system of geodesies

on the given surface this involves the solution of an equation

of Riccati's form- and draw the tangents and take a constant

distance a along the tangent: the locus of the point so

obtained will be the surface required.



CHAPTER VI

CURVES IN EUCLIDEAN SPACE AND ON
A SURFACE. MOVING AXES

89. Serret's formulae. Rotation functions. Let A, p, v

be three unit vectors drawn through the origin, respectively

B

parallel to - the tangent, principal normal and binormal of

a curve. We see from the figure that

d\ = /zc/6, dv = /jidrj,

where de and drj are the angles between neighbouring positions
of the tangents and osculating planes respectively in the

sense of the figure.

We thus* have

where the dot denotes differentiation with respect to the arc

of the curve, and p and a- are the radii of curvature and

torsion respectively. We thus have

P -
1

t

a
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and therefore, since
X/JL
= 0, p.v

= 0,

we have /iX = -
, jw = ---

, ftp = 0.
- '

p
- o* < '

It follows that

v^-P- (89.1)
p

These are the formulae of Serrct.

If we were to take unit vectors through the origin mutually
at right angles, the first, X, parallel to the tangent to the

curve, and the second, /z, making an angle (/>
with the principal

normal, wo could easily deduce that

X = /jLT vq, /i
=

i>^ X/', v=- Xq fJLpy

. ; 1 sin cos
where p </> + , q = --r

,
r --

o- p p

More generally, if X, /^,
v are three unit vectors mutually at

right angles which are given angular displacements

pds, qds t rds,

we have

\ p.r-~vq, fi
=

vl> \r, v Xq p.^), (89.2)

as we see from the figure.

The functions p y q, r may be called rotation functions.

If cods denotes the angular displacement which the vectors

regarded as a rigid system receive, where

we can write our equations in the more elegant form

X = coX, (JL
=

a)//,
v = <>v. (89 . 3)

90. Codazzi's equations. It will be useful to consider

a more general displacement.
Let the vectors X, /*,

v regarded as a rigid system receive

three angular displacements

co'du, ("dv, co'"dw.

We then have

X
1
= o/X, X

2
= oFx, X3

= a/^X
;

and therefore
co'X^, + o?^X = ^'X^^ 4- a)'\X ;
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or Wo/7*- Fo>"o7x = V(<o'\ -cog X,

that is, Fo/^/'X = F(a)
//

1
-a)'

2)
X. (90 . 1)

Wo have exactly the same equation for
p.
and therefore wo

have identically ^// =^_^
Similarly we obtain two other vectorial equations, and we

have

o)'"
2

o>"3
= o>" o>'", o>'

3 co'"!
= a/"**/, a/'j a/2

= a)'a>".

(90.2)

Suppose now that the vectors X, p,,
v instead of being drawn

through the origin are drawn at the extremity of the vector z
}

which depends on the three parameters u, v, w. If we regard
the extremity of the vector z as the new origin then we may
say that the linear displacements of the origin are

z^lu^ z<2dv y z.^dw.

Let -'X +

We therefore have

so that

Similarly we obtain two other sets pf equations :
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If we ignore the parameter w, we have the six equations :

C*-C\=l>'*l"-P"l' + l"t'-<l't"' (90.3)

These are the equations of Codazzi of which Darboux
makes so much use in his Theory of Surfaces.

91. Expressions for curvature and torsion. Returning
now to the case of a curve, Serret's equations may be written

where

A = coA, fi COJJL,
v cov

;

>-
A "

00 "~
a- p

If is the vector which describes the curve to which we
arc applying Serret's equations we may write

(91.1)

where i
', t", i" are three fixed orthogonal vectors through

the origin, so that z'
,
z", z'" are the Cartesian coordinates of

any point on the curve.

We have z ~ A and therefore

or .

a pz y v <rpz + <rpz + 8.

P

Denoting the components of the vectors A
3 /z,

v with respect
to i \ i"> if" in the usual way, wo know that

" '"
A', A", A

and therefore

and

v , v

z', z", z"

z', z", I''

z', s", z'

(91.2)

1

p*
(91.8)

These are the usual formulae in the theory of curves.

2813 Q
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If we take, as is more usual, x, y, z to be the Cartesian

coordinates of any point on the curve and regard them as

functions, not of the arc, but of any variable, we see that

, y,
1

* "2

// <j / /

i/'j
-U

,
*

/y,
*

(91 .4)

(91.5)
4

, & *

, y, ^

92. Determination of a curve from Sorret's equations.

We must now show how the equations

.__/* ._ X v ___/*

p
'

p cr
y

<r

determine the curve when we are given the natural equations

of the curve ;
that is, when we are given p and <r in terms of

the arc.

Any unit vector may be written

sin cos $ . X + sin 6 sin
(f>

.
p. f cos . v.

Expressing a fixed vector in this way, and noticing that

there can be no relation between the vectors A, p,,
v of the form

pX + qp + rv = 0,

where p, q, r are scalars, we find, by aid of Serret's equations,
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Let ^ = cot I e"/',
u

then we find that
\/r
= L

(\//
2

I)
^-

(92.2)

This is an equation of Riccati's form. When we have
solved it, we know & and 0, and thus the position of a fixed

vector with reference to A, /z, v. When we have thus found
three fixed vectors, with reference to A, /z, v, we know
A, /z,

v in terms of the arc.

When we have obtained A in .terms of the arc we can

find z by aid of the equation \ t (92.3)

It must now be shown how, when we are given any curve

in space, any other curve, with the same natural equations,
can by a mere movement in space be brought into coincidence

with the given curve.

IF A
, /z ,

*/ denote the positions of the vectors A, /z, v when
the arc s is equal to s or, say, to zero, then we see, by
repeated applications of Serret's equations, that

^c'Ao + e'Vo+c"'^, (92.4)

whero the coefficients of A , /z , */ are known series in powers
of 8.

By a mere rotation wo can bring A
, /z ,

z/ into coincidence

with the tangent, principal normal, and binormal at the point
from which we measure the arc on the given curve.

It follows that A, /z, v will be unit vectors coinciding with
the directions of the tangent, principal normal and binormal
at the point s on the given curve.

A mere translation will therefore bring tne cfirve into

coincidence with the given curve when the required rotation

has been carried out, since we have

z - A, z
9 = A,

> *

and thus c'~0 + a

where a is a fixed vector, that is, a Vector not depending
on the arc.
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03. Associated Bertrand curves. The right helicoid.

.Let us now consider the curve defined by

z' = z + kii. (93.1)

where k is some function of the arc, and let us find the

conditions that the two curves defined by z and z* may have

the same principal normal.

we must have k equal to zero [i.e.
k a constant].

Again, differentiating with respect to the arc ',

and therefore /cA( TV ) + (
1 -ITT? >

*\db / \ /ds*
-

p

2

)
-

T- 2
a- ds 2

( I Q ^/ ^ ^

Eliminating ,
and

y-^
wO obtain

p A; p or

/; &'
and integrating we have

"

-f = 1, (93 . 2)

where k' is a constant introduced on integration.

A curve satisfying the above equation is called a Bertrand

curve. We see that the property of a Bertrand curve is to be

associated with another Bertrand curve having the same

principal normal, the distance between corresponding points

being the constant k.

If a Bertrand curve has more than one corresponding curve
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it will have an infinite number of such curves and will clearly

be a circular helix, for p and cr will each be constant.

We can immediately deduce that the only ruled minimal

surface is the right helicoid. For consider the curved asymp-
totic line on a ruled surface. We know that the osculating

plane of any asymptotic line on any surface is a tangent

plane to the surface. The generator of the ruled surface

therefore lies in the osculating plane of the other asymptotic
line through any point on it. If the surface is a minimal one

it must therefore be a principal normal, and since an infinite

number of asymptotic lines cut any generator orthogonally
the asymptotic lines must be circular helices. The surface is

therefore a right helicoid.

94. A curve on a surface in relation to that surface.

We now pass on to consider the curves which lie on a given
surface. Since such curves are defined by a relation between

the parameters u and v, and since z
y
the vector of the given

surface, is a function of these parameters, we are really

given 2 in terms of one parameter along the curve defined by
an equation F (u> v)

= 0.

But since we want to consider the curves in relation to

the surface we proceed by a different method.

We have the formulae

where X is a unit vector parallel to the tangent to the curve,

fji
a unit vector parallel to the normal to the surface and

making an angle with the principal normal to the curve
;

and we have seen
( 89) that

sn

p

where p and a- are the radii of curvature and torsion of the

curve.

We know that
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we can therefore easily verify the formulae

and from these formulae we deduce

///^ 1 1
= (e/222

It follows that

and that

A/cs = h

(94.2)

(94 3)

But

and

and therefore

cos 6
(JL\

r L

p

fjLZ ltfi\
=

/2n -i6
2
-f 2f2 12uv + f!

2 (94.4)

(94 . 5)

Wo have thus expressed the two angular velocity com-

ponents p and r of the curve under consideration in terms of

the derivatives of the parameters u and v with respect to the

arc and the functions e, /, g and fln >
/2

12 ,
/2

22 .

We must consider the remaining component q.

As the vectors X, //,
v are displaced from their positions

at P to their positions at P', a neighbouring point of the

curve under consideration, we may consider that they are

displaced along the geodesic PT and then along the geodesic
TP9

.

As we pass along Py the displacement qds is zero and as

we pass along TP' the displacement qds is also zero. The
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total displacement qds is therefore just the angle P'TM:
that is [39] i

g= (94/6)
Pff

since the geodesic curvature of the curve is defined by the

formula

Pff

= Lt,
P'TM

We should notice that unlike p and r the angular velocity q

depends on the first ground form only and the derivatives

of u and v and not on 4f2n ,
/2

r2 ,
/2

22
.

We have proved earlier (36 . 3) that

We express this formula in a more convenient form for

some purposes without the aid of the differential parameters by

P, {,t 11 Fl-2a llj
F

i^ + aM^}
where F(v,v)

is the equation of the curve, or, since

^16 + 1^=
and F

} (u+{ll\} u*+2 {121}^+ [221] v1

}

+ F
tji (i)+ {112}u

2 +2 {212} uv+ {222} v*)

+ F. nu* + 2F.uUV + F.
22
v* = 0,

and an
in the form

(94 . 8)

= h
Pa V,

(94 . 9)
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Wo have thus found expressions for the angular velocities

; 1 sin cos0 .^ A x

,,
= # + -, V = -f. 'r=-f> ()

along the curve in terms of the derivatives of u and v and

the functions which define the ground forms. We notice

that p and r depend only on the first derivatives, but q

depends on the second derivatives and is the geodesic curvature

of the curve.

We have seen
[ 49] that the curvature of the normal

section of the surface in the direction of the tangent to the

curve is given by

We thus have Meunier's theorem that

* = i- (*. 10)
p It

The expression -}-
%

(94.11)

is the same for all curves having the same tangent at the

point under consideration. It is therefore the torsion of

the geodesic curve which touches the curve at that point.

95. Formulae for geodesic torsion and curvature. We
can find another formula to express the torsion of the geodesic

by aid of the formula already proved

& + (R
9 + R") *p. + H'H"jP = o.

Since z = X and
(i
=

i/p Ar,

we have 1 - (R
f

4- R") r + R'R" (p* + r2
)
= 0,

that is, p* + (F
~ r

) (JET
~ r

)
= * (95 !)

If we take the parametric lines as the lines of curvature, so

that _ cos2 Q sin2

T ~~W~+ R"
'

this becomes p = cos sin d (-^ ^777 j

or -h
- = cos

0sin0(-g> jp)' (95.2)
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Since q is the angular velocity about the normal to the

surface, as we pass along the curve we are considering, we
see that

<
t

where q
f

it, + q" v

is the angular velocity about the normal of the rigid system
made up of the normal and the tangents to the two lines of

curvature.

We thus have the formula for the geodesic curvature

l- = - 6 + (/ (L + q"v. (95 . 3)

P<J

We have

and therefore r Zpq (95 . 4)

depends only on the first derivatives of the parameters u and

v, and so is the same for all curves on the surface having the

same tangent at the point under consideration. This theorem

is due to Laguerre.
In connexion with the formulae

1 sin tan

where R is the radius of curvature of the normal section of

the surface in the direction of the tangent to the curve, it is

useful to remember that if a particle describes a curve on any
surface with velocity V, the acceleration normal to the path

72
and tangential to the surface is --

Pff

96. Surfaces whose lines of curvature are plane curves.

So far the curve we have been considering has been any
curve on the surface: suppose now . that it is a line of

curvature.
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'X,
We 6a*ve p = 0, as we see from the formula

'

and therefore + - ^ 0. (96 . 1 j
0"

If therefore the line of curvature is a plane Qurve its plane
makes a constant angle with the surface all along it ; and

conversely if the osculating plane at each point of a line

of curvature makes the same angle with the surface the

line of curvature is a plane curve.

We now propose to find the form of a surface if all its lines

of curvature are plane curves.

Let a be a vector perpendicular to the plane line of curva-

ture along which only v varies so that a depends on u only.

Similarly let ft be a vector perpendicular to the plane line

of curvature along which only u varies.

In accordance with our general notation in the theory of

surfaces, let A be a unit vector normal to the surface at the

extremity of the vector z.

We have, since the parametric lines are lines of curvature,

and as as.2 0, /J^ = 0,

we also have aA
2
= 0, /?A 1

= 0.

It follows that oc=pX l -\-qX, /8
= rA2 -fsA,

where p, q, r, s are scalars.

We thus obtain the two equations

l
= 0. (90 . 2)

Now since SXUX 1
X
2
= 0,

as the lines of curvature are conjugate lines,

?2
= 8

i
=

5

and as there can be no relation between Aj and A2 of the form

g
= 0,
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where a and b are scales, we must hav$A

B = i, * = .'.' (9G.-3)
p r r p

8(7
It follows that (log>)12

= (logr)12
= --'

,

and therefore we may take

p = F(u)e', r=f(v)e,

q = F(u)J0l9 8=f(v)e'02
. (00. 4)

We also have
12 -f O

l 2
= 0,

so that \ 2 +02 A
i + 0iX 2

=
' (96*5)

and 0^ + 0^ = 0. (96.6)

Let us now start again with these two equations.

We see that 0i 2 +M2
=

tells us that e =f (u) + </> (v) ;

and, since \
}
A
2
= 0,

the lines of curvature being at right angles, the equation

tells us that (A?) + 2
2A = 0,

so that A!+6-
2tf

jP(w) = 0,

A^+e~
2
^0(v) = 0. (96.7)

We can now so choose the parameters that

Xf+- 8 =0, A+-M = 0.

The spherical image of the surface is therefore given by

where A~l

U being a function of u only and F a function of v only.
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But, from the expression for the measure of curvature of

the surface cfa* = A 2du2 + B*dv

An * /I ^7^\ * /I *A\KAB + --(-_) + --
(
- -

)
= 0.

<)u\A <>u/ 3v\B <>v/

We must therefore have

and therefore 1 = UU-U*+ VV- F 2 + UV+ VU. (96.8)

It now easily follows that without loss of generality we

may take fj C0sec a cosh u,

V = cot a cos v,

e coshu- cos a cosy
so that c =-

:
-- (96 . 9)

sin a v /

If p is the perpendicular on the tangent plane to the

surface of which we have found the spherical image we have

2) + Xz = 0.

It follows that

since A^ = 0, Xz2
=

0, Arc 2 = 0, A
2
x?

1
=

;

and therefore ^)12 -I- fl^^ 4- fl^ = 0,

that is, Bince d 12 + ^
t 2

-
0,

pe
e =U+V, (96.10)

where [7 is a function of u only and V a function of v only.

We know that

,
fi

where e =

= 0, A
1
A

2 =.0, A2+e- 2*= 0,

cosh u cos a cos v

sin a

and therefore we can find A by the solution of equations of

Riccati's form.
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Wo see that (cosh u cos ex cos v) A

= sin a sinh ui + sin a sin vj + (cos a cosh u cos v) k.

where i,j, k are iixed unit vectors at right angles, will satisfy

the conditions
;
and we know that any other possible value of

the vector A can be obtained from this vector by a mere fixed

rotation.

The surface may therefore be regarded as the envelope of

the plane

x sin ex sinh u -f y sin a sin v 4- z (cos a cosh u cos v)'= U+ V.

(96. 11)

97. Enneper's theorem Let us now consider a curve

which is an asymptotic line on the surface.

We have
y?
= for an asymptotic line and therefore

cos ft

P

If p is infinite the asymptotic line is straight and therefore

the surface is ruled.

Leaving aside the case of ruled surfaces, cos is zero and

therefore =
,
that is, the osculating plane of an asymptotic

Lt

line is a tangent plane to the surface.

For an asymptotic line the angular velocities are

1 1

^
r=0,

p* + (-j^
r\

(-^,,
r\ =and the formula

gives
I2+ _J_

7>
= 0) (97.1)

that is, the torsion is \/ K. This is Enneper's theorem.

We also see that the geodesic curvature of an asymptotic
line is just the ordinary curvature.

98. The method of moving axes. If we now return to

the equations of Codazzi (90 . 3), which are the foundation of a

considerable portion of Darboux's method of treating problems
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of differential geometry, a method which is in effect the method

of moving axes, we may take ',

"
to be zero.

The rotations are p', q', r'
; p" t q", r", and the translations

'' 'n't Q
> "> V? y

and the connexions are

q"r't <l',-<l'\
= r'p"-r"p',

7's-V't - r'S"-r"t', !>' l" ~2>" l' - q't"-q"t'.

The displacements of a point whose coordinates with

reference to the moving axes are x, y, z are, with reference to

fixed axes with which the moving axes instantaneously

coincide,

dx + gdu + "dv y (r'du + r"dv) + z (q'du + q"dv),

dy + rj'du + rj"dv z (p'du+p"dv) + x (r'du + r"dv),

dz x(q'du + q"dv) -f y (p'dii +p"dv).

Thus for a curve on the surface making -an angle o> with

the axis of x

ds cos co = 'du+ "dv, dsama> =
i]' du + r)" dv. (98 . 1)

A point on the normal to the surface and at unit distance

from the surface traces out what we call the spherical imago
of the surface.

Thus the spherical image of the curve is given by

da cos = q'du + q"dv, dcr sin 6 = p'dup"dv. (98 . 2)

The direction of the line element conjugate to the line

element whose direction is co is 6 -f -
, and therefore the two

i

elements du, dv and Su, Sv will be conjugate if

?8v, + t"8v_T,'tu + j'8v (
.

2/du+p"dv
~

q'du + q"dv
V '

;

The asymptotic lines, being the lines traced out by self-

conjugate elements, will therefore be given by

dv
'

( '

p'du +p"dv
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The spherical image of the surface will be given by

d(T
2 = (p'du +1>"dv)

z + (q'du + q"dv)*. (98 . 5)

The principal radii of curvature and the lines of curvature

will be deduced from the fact that the point whose coordinates

are R
will have no displacement in space and therefore

(' + Rq') du + d" + R<f) dv = 0,

It follows that the measure of curvature will be given by

rt/u"__/V r/ r
"

Here we should notice that the translation functions depend

only on the ground form, as

e = (I')
2 + (I")', /= IV + !'V. .9

= (V)
2 + (O 2

,

and that r' and ?" can be expressed in terms of the translation

functions, so that we see again and very simply that the

measure of curvature is an invariant.

If the surface is referred to parametric lines at right angles
we may take

( ;6
2 __ A 2du2 + JPdv f2

9

and ' = A,
" = 0, rj'

= 0, r?" = B.

We then have r' = ~
,

r" = ~
,

ti A
and at once deduce the formula

If we refer the surface to the lines of curvature as para-

metric lines we have p
r = q" = 0, and the principal radii of

curvature are A R

R'=-^t , R" =
^' (98.8)

99. Orthogonal surfaces. To illustrate the employment
of moving axes depending on three parameters we might
consider the case of orthogonal surfaces

t

u = constant, v = constant, w = constant,
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and take as axes the normals to these three surfaces at

a point of intersection.

We have " = "' = 0, i/" = rf = 0, { = f" = ;

and we may write g ^" 7^
'"

.

The equations satisfied by the translation functions now
become ^ = _/,, & = ^/, V;,

= _^/', , 1
= r",

fi
= -^/'", ^ = 9X",

^,/' + ,r'" = 0, f/" + ft/ = 0, 9i/ + ^/" = 0.

We therefore have

^' = 0, a
" = 0, r'" = 0,

and we have the well-known theorem that the lines of

curvature on the surfaces are the lines where the orthogonal

surfaces intersect them.

We shall return to the theory of orthogonal surfaces later

and so shall not pursue the study further here.



CHAPTER VII

THE RULED SURFACE

100. Let a vector trace out any curve in space, and let

X', yn', i/
f be unit vectors drawn through its extremity, parallel

respectively to the tangent, principal normal and binomial
of the curve. Let

X == cos 6 .X' sin sin . p! -h sin cos
</>

. v \

p,
= cos .

fj.

f + sin . i/',

p = -sin 0.X' cos sin .
/*' + cos cos 0./, (100. 1)

then X, //,
*> will also be unit vectors mutually at right angles.

On the unit sphere, whose centre is the origin, vectors

parallel to these two sets will cut out the vertices A, B, C
and X, F, Z of two spherical triangles as in the figure.

Let - and - denote respectively the curvature and torsion
P o-

of the curve and let

1 , sin d> , cos , , rt .

?/ = 0+ , 9'= ,
r' =

, (100.2)
<r ^) />

and ^)
= p' cos 5 + r' sin ^, (/

=
q' 0, r = r' cos fl p' sin 0.

(100.3)
2843 S
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By aid of Serret's equations we see that

\ = TfjL qv ) (Lpv r\, v = q\pn, (100.4)

so that p> </,
r are the rotation functions for the moving

triangle XYZ. The dot above any symbol denotes that it

is the symbol differentiated with respect to the arc of the

curve traced out by : we denote the arc by v.

101. The ground form and fundamental magnitudes.*

Let z = +uA, so that u is the distance of the extremity of

the vector z from the extremity of the vector As u and v

vary, the vector z will trace out a ruled surface of the most

general kind if Q and are functions of v.

The curve traced out by will lie on the ruled surface : it

is called the directrix of the ruled surface. Any curve on

the surface may be taken as directrix.

We have

Z
1
= A, z.2

= A' + u A cos \ + urp (sin + uq) v.

The ground form of the ruled surface will be

ds2 = du* + 2 cos Qdudv + (u
z
(q* + r2

) + 2 u? sin 0+1) <t/2 .

(101. 1)

We may write
? = ]\f cos^ r = j|/ s ju ^ ?

when the ground form becomes

efe
2 = duz + 2 cos 0rftt dv + (u

2
-J/

4 + 2 u3/ sin cos ^ + 1
)

c/t'
2

,

(101 .2)

so that q and r are given when the ground form is given.

The function h is given by
k2 = u2

JI/
2 + 2uJlf sin cos ^ + sin2

0,

= (uJf+ sin cos
^/r)

2 + sin- sin2
\/r. (101.3)

The angle between two neighbouring generators is

Mdv, (101.4)

and the shortest distance between them is

sin 0sin ^ dv. (101 . 5)

The unit vector whose direction is the shortest distance is

cos
i/f p, + sin ^ v. (101 . 6)

*
[Soo also 22.]
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Since z
l
= A, #

2
= cos 0X +uM sin-v/r/j (uM cost/r + sin d) j>,

we have r?2 = (uM cos
\/r
+ sin. 6) JJL

-f uJf sin
^/r

j/.

The unit vector normal to the surface at the extremity of z

is therefore Z, where

Z = /6'
1

[(uJfcos>/r + sin5)/z + ^^/sin\/rj/]. (101 . 7)

If we calculate 3n , 12 ,
s22 we deduce, by aid of the formulae

J2
11
=

z^Zj
J2

12
=

Z^L,
J2

22 z^Zy

that /2n = 0, /2
12
= /fW sin ^sin 0,

/2
22
=

p/^ 4- /^
-1

((it
2J/ 2 + u3f cos

*//-
sin 6) r/r +uM sin

*//
sin

+ J/cos(9sin^(sin^-ufl)). (101 .8)

We may write N for M cos
\/r

sin when we are only con-

sidering the ground form.

102. Bonnet's theorem on applicable ruled surfaces.

We saw that one of the most difficult problems in the Theory
of Surfaces was, given the ground form, to determine the

surfaces in space to which the form was applicable ;
and wo

saw that the solution of the problem depended on a partial

differential equation of the second order. In general we can-

not solve this equation, but there is a striking exception in

the case of the ruled surface.

Let us first consider a theorem on ruled surfaces.

If on the surface with the ground form a^dx^dx^ the

curves x
2
= constant are geodesies, we must have {112} = 0.

If the curves x
2
= constant are asymptotic lines we must

have /2
11
= 0. If both these conditions are fulfilled the

surface is ruled; that is, if

nn = and {112} = 0, . (102.1)

the surface is ruled and the generators are

<r2
= constant. (102.2)

Now suppose that we have a second ruled surface with the

same ground form and therefore applicable on the first surface,

and suppose if possible that its generators are not the lines

X) = constant.
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We can therefore choose our coordinates so that the two

surfaces will have the same ground form and that in the first

surface oc
2
= constant will be the equation of the generators

and on the second surface x
1
= constant will be the equation

of the generators.

We have /2n = and /2'
23
= 0,

and as for the two surfaces flu fl^ n^
and /2'n /2'

22-/r^,
are the same, we must have

/2*
2 =/2'?.>. (102.3)

From Codazzi's equation (48 . 4) for the two surfaces we have

It is therefore possible to satisfy Codazzi's equation for

the given ground form with

{112} = 0, {221} = 0, (102.4)

by taking flu and /2
22 both zero : that is, it is possible to

find a surface with both systems of asymptotic lines straight

lines; that is, to find a quadric applicable to the given

ground form.

Unless then the form

du* + 2 cos Odu dv+(M2 u* + 2Nu+l) civ* (102 . 5)

is applicable to a quadric, the generators of any ruled surface

which is applicable to it must be

v = constant. (102 . 6)

This is Bonnet's Theorem and Bianchi's proof of it.

When therefore the ground form is given in the form

d** = du* + 2 cos 0dudv+(M 2u2 + 2Nu+ 1) dv
2
, (102 . 5)

we know that, leaving aside the case of quadrics, the surfaces

which are ruled and applicable. on it must be generated in the

method we have described [so that their rectilinear generators
are applied to its rectilinear generators].



BONNETS THEOREM ON APPLICABLE RULED SURFACES 133

When the ground form is given we are given q and r. Wo
may take p as any arbitrary function of v. We then know

p and <r of the directrix, and so can find it by the solution of

Riccati's equation. Similarly we obtain X and thus find the

ruled surface.

103. Ground forms applicable on a ruled surface. If

we are given the ground form of a surface, how are we to

decide whether it is applicable on a ruled surface? It will

be applicable on such a surface if the ground form can be

brouht to the form

du* + 2 cos Odudv+ (M
2u* + 2iVW 1) <lv

2
, (102 . 5)

where $, J/, and N are functions of v only, but unless these

are given functions of the parameter the general method will

not immediately apply. This is the question we now wish

to consider.

The expressions du , dv
r and -T-,
as as

where u and v are the parameters of a point on the surface,

are tensor components. We may denote them by T
l and Tl

.

The difficulty of the tensor notation feomes in when we

want to express the power of a tensor component with an

upper integer. Thus the square of T 2 would have to be

written T2 T2
,
and in calculations this is inconvenient.

We therefore generally write the above two components as

and
?/ and try just to remember that they are tensor com-

ponents when we apply the methods of the tensor calculus/

The equations of a geodesic are
( 38)

+ {112} f + 2{122J^+{222],/

2 = 0,

and <l-. f *t +n li
its

C
5a;

1 'do--/

^ = *li + ),te*.
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The equations of a geodesic may therefore be written

+ 1121} +[221] ?=(),

(103.1)

Now these equations are very simply expressed in the

tensor notation by

T 1

T.\ +r^ = 0, T^T:\ + y-T.^ = 0. (103 . 2)

The equation of the asymptotic lines is given by

n
ll
T ixi + 2nu Tl T*+nM 'i*T* = o. (103.3)

Now remembering that on a ruled surface one of the

asymptotic lines is a geodesic, and taking the tensor derivatives

of this equation, we have

T* (/2 la 2V, + 12,2 T.\ )
= 0,

(103.4)
and /2

ll
.

2
7 T1 2Tl + 2/2

12
.

2
T 1 ?T2 + /2

2 ,. 2
7T2r

+ 2^(/2 11
TJa +/2 12^2 ( + 2r^/2 12 IV2 + /2

22^2 )
= 0.

(103.5)

Multiplying the first equation by T l and the second by T2
,

and adding, and making use of the equations for a geodesic,

we see that if the surface is ruled we have for the equations
of that asymptote which is a generator

<>, (103.6)

.
2V

i = 0. (103.7)

If we write these two equations

(a, b, c, dlg, rj)
?> = 0,

the eliminant is (Salmon, Uiylier Algebra, 198)

a*CJ- 6 abBC* + G acC (2 B*-AC) + ad (6 ABO- 8

+ 9 b i2ACrz- 18 6cJJ3C+ 66d4 (2 B*-AC) + 9 c

-fycdBAt + dtA*^ 0. (103.8)

This vanishes for a ruled surface.
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Now we know that

nna,,-ni 2 =K(ana^-ai 2 ) t

and, since an arbitrary function is needed to express /2n ,
/2

22 ,

fl
vj,

in terms of the parameters, there can only be one other

eq nation connecting these functions.

Applying tensor derivation to this equation we have,

using Codazzi's equations,

(103.9)

Wo thus have three equations, viz. these two and the

oliminant we have found. We conclude that this system
must be complete if the surface is ruled. For if another

equation of the first order in the derivatives of /2U and fi^
could be obtained the function /2

12
is known in terms of /2n

and /2
22

wo could obtain /2n and /2
22 by quadratures, and

no arbitrary function woulTl appear.
This method, though tedious actually to carry out, will

enable us to determine whether any given ground form is

applicable to a ruled surface.

104. Case of applicability to a quadric. We must now
consider the ground form

du2 + 2 cos dudv -f (M
2
i<? + 2Nu + 1) cZi;

2
,

as regards its special form when it is applicable to a quadric.

The Cartesian coordinates of any point on a fixed generator
of a quadric may be taken to be

av + b
' J av + b

'

av + b
A

where the variable v denotes distance on that generator.

We have similar expressions for the coordinates on any
other generator ; and the variables v and v' of the points

which lie on the same generator of the opposite system will

be connected by a bilinear equation.

It follows that if P
l
is a point on the first generator and P

2
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its correspondent on the second generator the direction cosines

of their join may be taken as

1) D D '

where a^ ,
blt c

l ,
<l

}
, a,

2 , 69 , 2 ,
d

t>
are linear functions of v and

jD2 = dj (af 4 &1 +c|) +d| (a | -f 6J + c| )

-2c/
1
rZ

2 (r/ 1 2 + 6
1
6
2 -h^ 1 ^). (104 3)

The coordinates of any point on the quadric may then be

expressed in terms of u and v in the form

61 (? 6.j ^i-1-"
(104.4)

It follows that J/2
, iV/>, coaOD are rational functions of ?;

which can be calculated, and that J)
2 is a quartic in v.

105. Special ground forms. Binormals to a curve. Line

of striction. We have found in 100, 101 the chief formulae

required in the study of the general ruled surface. When
the ground form is given we are given q and r, and we find

the different ruled surfaces which are applicable to the form

by varying p. This generally means that we vary 0, the

angle of inclination of the osculating plane of the directrix

to the corresponding normal section of the surface. We
cannot however take

(/>
to be zero unless the ground form is

special : for, if is zero, q -f- 6 is zero : that is,

M cos
\ls + = 0;

which would give the special ground form

cfc
2 =i <lu* + 2 cos Odudv + (M

2u2 - 2 6 sin 0u -f 1
)
dv*.

(105.1)

Thus the binomials to a curve in space trace out a ruled

surface with the special ground form

d** = du* -f ~ + lrfv2, (105 . 2)

where cr is the radius of Wsion.
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If we take as directrix an orthogonal trajectory of the

generators, is , and the ground form is
2

d8z = cZu2 + (4/
2u2 + 2 Mu cos ^ + 1

)
cfo

2
.

*

(105.3)

In seeking the surfaces which are ruled and applicable to

this form we may take for one of them
cf>
=

i
. The directrix

2

of this surface will be an asymptotic line and the surface will

be generated by the principal normals of this directrix.

We obtain the equation of the line of striction from the

ground form itself. We have to find for given values of v

and dv the values of u and dw which will make

du? + 2 cos Odudv + (JfcPu
2 + 2Mn cos ty sin 6 4- 1) dv

2

least.

Clearly we must have

dtb + cosOdv 0,

3/K, -f cos \//-
sin = 0.

The equation of the line of strictiou is therefore

J/u + cos^sinfl = 0. (105 .4)

Let us take the line of striction as the directrix. We must

then have cos
i/r

sin = 0. (105.5)

We cannot have sin 6 equal to zero unless the shortest

distance between neighbouring generators vanishes : that is,

unless the ruled surface is a developable. We must therefore

have in general, when the line of striction is taken as the

directrix, ^ = -
,
and therefore q = 0.

2

It follows that 6 =
,
i.e. that $, the rate of increase of

P

the angle at which the line of striction crosses the generators,

is equal to the geodesic curvature of the line of striction. It

follows that the line of striction will cross the generators at

a constant angle if, and only if, it is a geodesic. In this case

the ground form will be

tte
2 = du2 + 2 cos 0(dudv 4- (Jf?u

2
-f 1) dv*, (105.6)

where a is the constant angle of crossing.
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7T

If a = - the form will be applicable on the surface gener-

ated by the binormals of a curve in space.

106. Constancy of anharmonic ratios. Applicable ruled

surfaces and surfaces of Bevolution. We shall now con-

sider the equation of the asymptotic line which is not

a generator.

The equation is 2f2ndu + f2
22 dv = 0. (106 . 1)

Referring to the values given for /2
12 and /222 wo see that

this is an equation of Riccati's form. It follows that the

equation of an asymptotic line is

<">
where a, /?, y, S are some functions of v only, and k is an

arbitrary constant.

We thus see that every generator is cut in a constant

anharmonic ratio by any four fixed asymptotic lines.

We also notice from the property of Riccati's equation that

if we are given any one asymptotic line we can find the

others by quadrature.

We have also seen in 101 that the normal to the ruled

surface is parallel to

uH(cos tyfj, + sin tyv) + sin dp.

It follows that the anharmonic ratio of four tangent planes

through any generator is

(Ut-uJXut-uJ
- 9 v '

that is, the anharmonic ratio of the planes is the same as that

of the points of contact.

Suppose now that P is any point on a generator, and that

the tangent plane at P intersects a neighbouring generator
in P'. Then in the limit PP' is the element of the asymptotic
line at P. It follows that the asymptotic lines through four

points on a generator intersect a neighbouring generator in
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the cross ratio of the tangent planes : that is, in the cross

ratio of the points of contact.

We thus have a second and more geometrical proof of the

theorem that every generator is cut in a constant cross ratio

by four fixed asymptotic lines. This theorem also is duo

to Bonnet.

The condition that the normals to a ruled surface, at two

points ul9
u

2
on the same generator, may be perpendicular is

u^u^M** (M! + w-
2 )
Msin <9cos

i/r + sin 2 = 0. (106 . 4)

The points are therefore corresponding points in an in-

volution range whose centre is on the line of striction.

No ruled surface exists which is also a surface of revolution

except the quadric of revolution. We see this at once by

considering a surface of revolution in relation to any meridian

line. The asymptotic lines, through any point on this line,

must be symmetrically placed with respect to the line. If

then one of these is a straight line so will the other be. The

surface will therefore, if it is a ruled one, be a quadric.

But the ruled surface may be applicable on a surface of

revolution without being a surface of revolution. We now

inquire what property the ground form must have if it is to

be applicable to a surface of revolution with generators

corresponding to the meridian lines.

Taking as directrix an orthogonal trajectory of the genera-
tors we have

e^a = <JU2 + (j; 2^2 + 2 tfu + i) <lv*
m (1 OG . 5)

If then this form is to be applicable to a surface of revolu-

tion M and JVmust be constants, and we see that the ground
form may be written

rfs
2 = tin* + (u- + a2

)
dv*

^
(
1 06 . G)

where a is a constant.

Thus the catenoid and the helicoid will both have this

form applicable to them.

107. Surfaces cutting at one angle all along a generator.

We now wish to investigate the cor^dition that two ruled

surfaces with a common generator may intersect at the same
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angle all along that generator. The condition will be found

to have an interesting connexion with a particular class of

congruences.
We have seen that

uM (cos \ITJJL
+ sin

-fyv) -f sin 0/j,

is a vector parallel to the normal to the ruled surface at the

extremity of the vector 0.

As we move along the generator this vector turns through
an angle, remaining of course perpendicular to the generator.
The vector product of the above vector and the neighbouring

vector
(
u + du)M (cos i//yz 4- sin tyf) -h sin 6/n

is Mdiis'm 6 sin tyX.

But the vector product is also

(M2u* + 2MM cos ^ sin + sin 2

0) </eA,

where de is the angle turned through ;
and therefore

^ _ _

-Wain SUM/T
. (1071)du M-u* + 2 Ala sin flcos^-f H\I\*

^
'

'

Let M k sin sin \r

where k is the ratio of the angle between two neighbouring

generators to the shortest distance between them. Then

dti (ku + cot ^)~ + 1

The equation of the line of striction is

ku + cot
\fs
= 0.

If therefore we measure u not from the directrix but from

the line of striction we have the formula

It follows that if we have two ruled surfaces, for which k

is the same, and one of the surfaces is given a movement in

space, bringing one of its generators into coincidence with
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the corresponding generator of the other, and the correspond-

ing points of the line of striction into coincidence, then the

two ruled surfaces will intersect at the same angle all along
that generator.

108. The ruled surfaces of an isotropic congruence.
Let us now consider a ruled surface referred to its line of

striction as directrix.

Now
( 100)

'

= A' = cos <9A-sin 6v.

and, since the line of striction is the directrix, q is zero. We
therefore have

/A = 0. (108 . 1)

Suppose now that is a vector depending on two para-
meters u and v, and that A is a unit vector depending on the

same two parameters.
Consider the congruence z + w\.

The congruence is said to be isotropic if and A correspond

orthogonally. [See 81.]

We have as the conditions for orthogonal correspondence

<L
A

.

=
> <L^ +^ 1

=
' Q*=>

and therefore Aj = A^, A
2
= c/A^2 ,

where a is some scalar function of u and v.

We thus have d\ - a\d, (108 . 2)

whatever be the values of du and dv.

The ruled surfaces of the congruence are obtained by con-

necting u and v by some equation. For any ruled 'surface of

the congruence wo therefore have

f\
-

0, A = aA^

where the dot denotes differentiation along the arc of the

curve chosen. This arc will be the line of striction since
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and, since q is therefore zero,

X = r cosec 0A

It follows that a = r cosec 0,

that is, from our definition of k
( 107),

a = L (108.3)

The ruled surfaces of the isotropic congruence therefore

intersect at the same angle all along their common generator.

They have all the same k at the point where the common

generator intersects the surface w = 0, and their lines of

striction all lie on this surface. This surface is the central

surface of the congruence.



CHAPTER VIII

THE MINIMAL SURFACE

109. Formulae and a characteristic property. If we

give to z
y the vector which traces out any surface, a small

arbitrary displacement normal to the surface at the extremity

of 2, we have z' = z -f A ,
where is a small arbitrary parameter.

Since z'^Zi +W + Xtl, s'
a
= 32

we have

a'u = an 2z
l
\

1
t ) a']2

= a
12

22
1
A

2 , 22

that is, by (50 . 9),

(109. 1)

If the area of the surface is to be stationary, under this

variation, then a must be stationary, where

a = a
11

tf
22 -ai 2 ,

r
since the area is a^dudv.

j

We therefore have

an^22 + 22'ii- 2aiAa =
5 (109.2)

that is, the sum of the principal radii of curvature must

be zero.

The surface of minimum area, the minimal surface as it is

called, is therefore characterized by the property

22
/ + Ji" = (109.3)

where R' and R" are the principal radii of curvature.

If we refer to lines of curvature as parametric lines on any
surface

*j
= .R'Alf

z2 =#"t
A 2 ,

and therefore, if cd
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is the ground form of the surface, the ground form of the

spherical image will be

<*udu* a
Z2
dv*

(

.

WF (^")*

The surface and its spherical image will therefore be similar

at corresponding points if, and only if,

(R")\ (109.5)

that is, if the surface is a sphere or a minimal surface.

On a minimal surface

and therefore 2 'A12 + R'^ -f R\\ 2
= 0.

It follows that

and therefore without loss of generality we njay say

jR'Af=-l, Jf2
/

Xi=-l. (109.6)

The ground form may then bo taken as

R'(du
2 + dv2

), (109.7)

the asymptotic lines as dfu? dv2 = 0, (109 . 8)

and the ground form of the spherical image as

(R')-
l
(du* + dv*). (109.9)

Wo may now write R instead of R'
t and since the ground

form of a sphere of unit radius is

we must have R (d
2 + sin2 Od<f>

z
)
= dv? + dv2

. (1 09 . 1 0)

A
If we take w = cot-e1

^,
2

we see that the complex variable w is the complex variable

on the plane on to which the sphere of unit radius can be

projected stereographically from the pole, if we take the pole

as the origin from which 6 is measured and take the plane as

the corresponding equator.
*
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If w denotes the conjugate complex

A

we see that 4 sin4 diu dw d&1
-f sin

2

2

A

and therefore 4R sin4 - divdw = cZu2 -f (v2
. (109. 11)

If wo regard u + tv as the complex variable of another

plane and denote it by x, we have

1

4

Now the curvature of the form

4 jfisiri
4 dvnlw

4= cosec*

is zero
; and, from the formula for the curvature of the

ground form ( faa 2fdudv,

we have f*K =/lt/a ffl2 ,

and therefore ft sin4
=f(w)F(<iv), (109. 12)Z

where / and F are functional forms. If the surface is to be

a real surface these forms must be conjugate forms.

A

Since cosec2
1 -hww

the formula for R may be written

R =
(1+ ivwff (w) F (w). (109.13)

We notice that in a minimal surface the asymptotic lines

are perpendicular to one another in general though not

necessarily so at a singular point. This property is character-

istic of the minimal surface.

110. Keference to null lines. Stereographio projection.

We now choose as the parametric lines on the minimal

surface its null lines
( 45) and, instead'1 of writing iv and w,

we take u and v to represent tAese complex quantities.
2843 U
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"The spherical image will therefore also be referred to ifes

null, lines and their parameters will be the same w and w or

u and v.

The normal to the surface is therefore given by

(1 + uv) X = (u + v)t'-i(u-v)i"+(uv-l)i
f

",
*

(110.1)

where /, t", i" are three fixed unit vectors mutually at right

angles and i denotes V 1.

It is now convenient to introduce two vectors defined by

. (110.2)

These vectors are conjugate vectors and of course not real.

They are, in fact, generators of the point sphere whose centre

is the origin.

Such point spheres must play in solid geometry the same

part that the circular lines through a point play in plane

geometry. We may easily verify the following relations

between p, a, and X
;

= t(\ + uv)
<2

X,

2p = (l+iiv)*\ 2 ,
2(7 =

P\ = ip, CrX = i(T,

pA x
= \, crX 2

= ~fX,

-2(X, P
2 = 0, cr

2 = 0. (110.3)

We have seen ( 109) that the complex variable u on the

sphere Q
u = cot-e </>

(110.4)

is the complex variable on the equator when we take the

ground form of the sphere to be

and project the sphere, from the pole from which we measure

d, stereographicaJly on to the equator.
The conjugate corrfplpx v is the image of u in the real axis

of the plane.
<
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The complex u fixes a real point on the sphere, since wh&ri

u is given its two parts are given and so its conjugate v is

given. If Uj is the complex which fixes a point I\ on the

sphere and u
2

is the complex which fixes the diametrically

opposite point on the sphere, we have

1+1^2 = 0, (110.5)

and consequently we also have

We should notice that we cannot have

uv +1 = 0.

The complexes which correspond to the two opposite ends

of a diameter may be called inverse complexes.

111. The vector of a null curve. A null curve is defined

as a curve whose tangent at every point intersects the circle

at infinity. Another way of stating the same definition is to

say that the tangent at every point is a generator of the point

sphere at the point. If z is the vector which traces out

a null curve we therefore have

Now the components of a vector which satisfies the equation
X" = may be taken as proportional to

and therefore we must have

where/" (u) is some scalar function of the parameter u.

It follows that the vector z which traces out a null curve

may be defined by

since the third derivative of p vanishes.

We now denote the vector of the null curve by a, where

a = pf" (u)- Pl/(u) + pu /(u). (111.3)

112. Self-conjugate null curves. They may be (1) uni-

cursal, (2) algebraic. The conjugate nujl curve to a is clearly

(112.1)
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where / is the conjugate function to /, and a- the vector we

have defined in terms of its parameter v.

A null curve is said to be self-conjugate, when for each

value of u a value v' can be found, where v' is the conjugate

complex to a complex u', such that

We generally write p without specifying its parameter u,

but sometimes we may need to bring the parameter into

evidence and then we write it pu .

Differentiating the equation

<*u
= <V

we have pj'" (u)
= <v/'" (v

9

)^,
so that Vpu<rv

f =
>

and therefore 1 + u v' = 0. (112.3)

If we now write p for pu ,
and o- for ay, we "have

p + 0u
2 = 0, PJ + 0-2+20-U = 0, tt

2

pn + (T
22 + 2ii(r2 + 2u

2
(r = 0,

and we can write

= - <7U2
/" () +K + 2<TW.)/' (It)

-(<r.2 + 2w<r
2+2uV)^, (112.4)

tv

^ = -/" ("')
- ^/' (^) + ^2/(^'). (112.5)

If we now equate the coefficients of the vector cr^ on the

two sides of the equation a =a, /

we see that /(u) = - it
2

/(
---

) (112.6)

and we see further that this single condition is sufficient to

satisfy the equation # . ^ lt (112 7)
tt

In order then that a null curve may be self-conjugate it is

necessary and sufficient that the function / which defines

it should have the property

(112.8)
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If we take

7> = >-

(112.9)

where the coefficients are any real constants and the summa-

tions may pass to any limits, we see that the function will

satibfy the condition necessary to determine a self-conjugate
null curve

;
and we see that this is the most general function

which will do so.

If we only take a finite number of constants the self-

conjugate null curve which results will be unicursal,

More generally, if we take /(n) to be an algebraic function

of u
y
then /' (u) and /" (u) will also be algebraic functions

of u. We can then express the Cartesian coordinates of any

point on the self- conjugate null curve rationally in terms of

f(u )> /' (u)> f" (
u ), and u. Wo shall then have six algebraic

equations, connecting the three Cartesian coordinates and the

four quantities /(u), /' (u), f" (u), and u. We can eliminate

these four quantities and there will result two algebraic

equations connecting the Cartesian coordinates.

We have now seen how to construct null curves and self-

conjugate null curves; and also how we can construct

sell -conjugate null curves which will bo unicursal; and yet
more generally how to construct self conjugate null curves

which will be algebraic.

113. Generation of minimal surfaces irom null curves.

Double minimal surfaces. When the minimal surface is

referred to the null lines on it as parametric lines we have

n = 0> o 22
= 0,

and therefore, since a
11
/2

2:J -f-a22
/}

11
= 2# 12

/2
12 , (113.1)

we must have /2
12 equal to zei'o.
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That is, we have

z\ = 0, z\ 0, z
}
A 2
= ^Aj = :

and therefore, since \z
l
= 0, X02

= 0,

we have Xzl2
= 0.

We also have, from z\ cu = 0,

that -1^12
= ^ ^2^12

== 0>

and therefore 12 pA*

where > is a scalar. But A: 12
= 0,

and therefore z
l2
= 0. (113.2)

The minimal surface is therefore a particular case of a

translation surface.

A translation surface is defined by

s = a + ft

*

(113.3)

where a is a vector describing a curve whoso parameter is u
and ft a vector describing a curve whose parameter is v. We
see why it is called a translation surface as we can generate

it by translating the u curve along the v curve or translating

the v curve along the u curve.

We might also define a translation surface by

20 = a + /3, (113.4)

when we see that it is the locus of the middle points of

chords one extremity of which lies on one curve and one

on the other.

In the case of the minimal surface we also have

(cZa)
2 = and (d/3)

2 = 0,

since z\ = and z\ = 0.

The minimal surface is therefore given by

where a and /3 are vectors tracing out null curves.

If we confine ourselves to ral minimal surfaces the null
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curves must be conjugate and the parameters of the two

points must be conjugate complexes. It is obvious that such

conjugate null curves will, if the corresponding parameters
are conjugate complexes, give a real surface, and the converse

may be proved.
If the null curve is a self-conjugate curve, however, we

must take as the corresponding complex, not the conjugate

complex, but the inverse complex.
Thus the general real minimal surface is given by

20 = <x
IL
+ av ] (113.5)

and the real minimal surface generated from a self-conjugate

null curve is given by 2s = aM +a/_i\, (113.6)
\
~
?/

where the suffix is the parameter of the null curve which is

to be taken.

We notice that in the minimal surface

1Z = + /_ IN,

as we pass from the point whose parameters are u, v by

a continuous path to a point whose parameters are ,

we return to the point from which we started ; the z of the

point will be the same but the X will be changed into X.

That is, we are on the other side of the surface. For this

reason the surface is called a double minimal surface.

114. Henneberg's surface. We have now seen how
minimal surfaces are generated from null curves, and how real

minimal surfaces are to be obtained, and how i;eal double

minimal surfaces may be generated.

From what we said about the construction of null curves

we see how to obtain minimal surfaces which will be rational

functions of their parameters and how to obtain more generally

algebraic minimal surfaces; and from what we said about the

construction of self-conjugate null
<jui*ves

we can construct

these surfaces to be double minimal surfaces.
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Thus

will be an example of a real double minimal surface as may
easily be verified. It is known as Henneberg's surface.

It may easily be shown that a minimal surface will then

only be algebraic when the null curves which generate it

are algebraic.

115. Lmes of curvature and asymptotic lines on minimal

surfaces. We have for a minimal surface

and, if the surface is to be real,

2s =
It follows that

and therefore 4 -^ = /'" (it)/"' (v) pJr.

But 4/^ = (l+'uyJ'ATX,,

and, if R, Jl are the principal radii of curvature of the

surface, ^ _ ,> 2r\
^1^2

~ ~^ A
1
A 2'

We therefore have

U3R*-=f"(u,)f'"(v)(l+uu)*. (115.1)

then 4^=(l 4 t,),

, oand 2s =
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We then have

so that if
i//-

~
f- irj, \fr ?;

we come back to the ground form

ds* = R(d* + dri*)

for the surface.

The lines of curvature are

= constant, ?/
= constant,

and the asymptotic lines are

-f 77 constant, g rj
= constant.

We may therefore say, if R(f>(u) denotes the real part of

(it),
that one family of the linos of curvature is

R fVf" (u) du = constant, (115.2)
j

r __
and the other Ri </f" (u)du constant ; (115.3)

j

whilst the asymptotic lines are given by

R f V7f
tTr

(^) du = constant, (115.4)

R (V-/'"(tf)<Ztt = constant. (115.5)

110. Associate and adjoint minimal surfaces. The surface

obtained by substituting for / the function e
l(

*f wjiorc a is

a real constant is said to be an associate minimal surface

to /; and when we take for a the number ~ it is said to be

the adjoint minimal surface.

An associate minimal surface is applicable on tho surface

to which it is associate and the gormals are parallel at

corresponding points.
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If { is the vector which traces out the adjoint surface to z

2<b :-/'" (U)pdtl+f" (V) (Tttv,

2df = L (/'" (u) pdu-f" (v) <rdv), (1 16 . 1)

so that these two surfaces will also correspond orthogonally.

We see that z i traces out not a surface but a null curve,

and z + i traces out the conjugate null curve.

Since p\ //>,
crA JCT,

we also see that d{ = Xth. (116.2)

If then we are given a curve on the surface we shall know
the which will correspond to z along this curve, if we
know the normal to the surface along the curve. We shall

therefore know c-f/^ and z i along the given curve, and

thus have the null curves which generate the minimal surface.

p ^ ^

The formula Oi
(l
-^-i\ \dz

% (116.3)
j

is due to Schwartz.



CHAPTER IX

THE PROBLEM OF PLATEAU AND CONFORMAL
REPRESENTATION

117. The minimal surface with a given closed boundary.

Any account of minimal surfaces would be incomplete without

some reference to the problem proposed by Lagrange :

' To

determine the minimal surface with a given closed boundary,
and with no singularity on the surface within the boundary/
This problem is known as the Problem of Plateau, who solved

it experimentally. The problem has not yet been solved

mathematically in its general form
;
but has been solved in

some particular cases, where the bounding curve consists of

straight lines and plane arcs of curves.

Consider a part of the bounding curve, which is a straight

line, on a minimal surface. This line must be an asymptotic
line on the surface. Now we saw ( 109) that, when the

surface is referred to the lines of curvature, as parametric

lines, the equation of the asymptotic lines is

dtf-dv* = 0; 017.1)

and the ground form of the surface is

R(<lu* + dv*)> (117.2)

and the ground form of the spherical image is

R- l

(d>u? + dv*). (117.3)

Wo conclude that when the surface is conforinally repre-

sented on the plane, on which u and v are the rectangular

coordinates, the asymptotic lines are conformally represented

by lines parallel to the bisectors of the angle between the

axes, and the lines of curvature, and also their spherical

images, are conformally represented by lines parallel to

the axes.
*
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If a part of the bounding curve is a plane curve, whose

plane cuts the minimal surface orthogonally, and is therefore

a geodesic, it must be a line of curvature. It will therefore

be conforrnally represented on the plane by a line parallel to

one of the axes.

If then the whole of the bounding curve is composed of

straight lines and such curves, the bounding curve will be

conformally represented on the plane by a figure, bounded

by straight lines, parallel either to the axes or to the

bisectors ;
and the part of the minimal surface, within the

boundary, will be represented by the area of the plane within

the polygon.

Next let us consider the spherical image of the surface

within and on the boundary. At each point of the boundary,
the normal to the surface will be perpendicular to a direction,

which will not change as we pass along a continuous part of

the boundary, but will change at each angle of the boundary.
The boundary will therefore consist of

*

arcs of great

circles.

If therefore we can find a function of ^v
9
the complex

variable which defines the position of any point on the sphere,

which will transfoim the spherical boundary into the plane

boundary, and points within the spherical boundary to points

within the plane boundary, we shall have u-t iv known in

terms of w, and can proceed to find the required surface as

follows.

We have (109 . 10) for an element of the sphere

da* = dff* + sin2 6d$\ (U 7 . 4)

so that w = cotf^ (117.5)
j

is the complex variable which defines the position of points

on the sphere.

The normal, to the sphere, which is given by w, is by (110 . 1)

(l+ww)\ = (w + w)i' i(w w)i" + (ww-~l)i"
f

, (117.6)

where i't i"> i" are* fixed unit vectors, mutually at right

angles, MS \/ 1, and w the conjugate complex to w.
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Now we know that in terms of u and v

and therefore R~ l

(du? + dv*)
= dO* + *iri

2

6d$*. (117.7)

As we have seen in 109, R is therefore known, being

given by dx
(117.8)dw

We can therefore construct the surface since R and A are

known in terms of w and w .

We can retrace our steps and see that the surface we have

obtained satisfies the conditions required.

We are thus led to the problem of conformal representation,
and this we proceed to discuss, so far as it bears on the

question before us.

118. The notation of a linear differential equation of

the second order with three singularities. Let a, c, b be

three real quantities in ascending order of magnitude, and let

x be a complex variable.

When x lies on the real axis between oo and a, or

between b and + oo
,
we see that

b G j' a

b a x c

lies between zero and positive unity. When x lies between a

and c c b x a

c ct x - b

lies between zero and positive unity. We also see that the

reciprocals of these two expressions lie between zero and

positive unity, when x lies between c and b.

When x is complex we see that the modulus of one of the

first two expressions is less than unity, or the modulus of

each of the reciprocals is less than unity.

Let a
lf

Of
2 , /?!, j82 , y19 ya

be six quantities real or complex,
but such that ^ +^ +^ + ^4.^ +^ = i

; (118.1)

and such that the real parts of

a
2
- a

i> ft-01. ,72-71

are each positive.
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Let
a? a

(za)(x-l) (x c)Q

z+'-y'-y*. (1,8.2)b x c

T- -
1

--
jx a xb x c

(118.3)
and let (a t , ft, yu 2 , ft, ya , a, 6, c, a)

denote the hypergeometric series

where p^^ + ft + yx, ? = l
+ ft + yl ,

r =

6 ic a__
* a x b

We notice that P and Q are unaltered by the following
substitutions :

focg, (ft/U (yi ya),

(yaai)(y2a 2)M, (,^i) (*&)(&) (118.5)

110. Conformal representation on a triangular area.

Consider now the diffurential equation

It is known, and may easily be proved, that

is a power series, beginning with (x a)*
1 for its first term

and expansible in powers of x a in the neighbourhood of

x = a, which will satisfy the differential equation. This

series when x lies on the real axis is valid when x lies

between a and c. It is therefore valid at any point in the

plane, the circle through which, having a and 6 as limiting

points, intersects the real axis between a and c.
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Another power series also beginning with (x a)*
1 can be

obtained from the first by applying the substitution

to it. The two series will therefore be identical at any point

where they are both valid. The second is valid for real

values of x between oo and a arid between b and -f oo.

The region for which it is valid, when x is complex, can be

obtained by a similar rule to that which was used as regards

the first series.

When one series is valid, but not the other, the valid series

is a continuation of the other. We denote these series by Fa r

l>y applying the substitution (oqaj we obtain two other

series beginning with (x a)S valid over the same part of

the plane. We denote these series by Fo^.

By applying the substitution (y^) (y2 J (cu) we get two

series, Yy l beginning with (x c)
71

,
and Fy2 beginning with

(x c')
7z

,
valid over the part of the plane which corresponds

to real values of x between c and b.

By applying the substitution (Piyi)(P 2y2) (be) to these last

two series we get two other series, F/Jj beginning with

(x 6)^, and F/8 2 beginning with (x b)^
2
,
valid over the

same part of the plane. All these series, when valid, satisfy

the equation.

r . Ya2Let w -fr-^
Y*i

Then we see that, as x describes the real axis from 6 to -f oo
,

and then from oo to a, w varies continuously and its argu-
ment is TT (a2 (Xj),

if we agree that the argument of a positive

quantity is to be taken as zero, and the argument of a

negative quantity as ?r, as x describes the real axis in this

definite way. t

*

Let Q be the point in the'iu plane which corresponds to
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x = 6, and let P be the origin in the w plane corresponding
to x = a. As x describes the path defined, w describes the

straight line QP.
When x describes the semicircle about (6 the argument of w

diminishes by 7r(a2 o^), and as x describes the real part of

the axis the argument of w remains zero, till we come to R,

which corresponds to x = c.

Wo must now consider what happens as x describes the

semicircle round c, and then, passing along the real axis,

comes to b and passes round the semicircle there.

Over any part of the plane which corresponds to real values

of x between c and b we can express w in either of the forms

C + D-

where A t B, C
y
D and A', B', (7, D' are certain constants.

We see this from the known properties of a linear differential

equation of the second order.

Now the argument of ~^ is the same as that of
* Yi

/X C, A7a-7i
( -(c-a))
\X--(t '/

and therefore zero, as x passes iflong the real axis from c to b.
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It follows that w describes a circle which passes through

Q and E.

^
The increment of the argument of w ^ as we pass alongC

the semicircle c is the same as the increment of the argument

of y^ ;
that is, it diminishes by ^(y^ yi)- The circular

arc through R therefore makes an angle 7r(y2 "~yi) with jRP.

In the same way we see that the angle at Q is 7r(/32 jSJ.

Since, when x moves from its real axis to the positive side

of its plane, w must move to the inner part of the triangle

PQRy
we see that the positive part of the plane of x is con-

formally represented by the inner part of the triangle.

12O. The w-plane or part of it covered with curvilinear

triangles. Consider now the transformation

x , ^px + q

rx + s

where p, q, r, 8 are any constants, real or complex.
If x describes a circle (or as a particular case a straight

line) in its plane, so will x'. If x
l
and x^ are any two points

inverse to the circle #, then x\ and o/2 will be inverse to

the circle x'.

We thus see that if P, Q, R are the three points which, in

the above transformation, with F 2
~ Fo^ substituted for x,

correspond to the singularities at a, 6, c, the curvilinear

triangle PQR, formed by three circular arcs intersecting at

angles ATT, /i?r, VTT, where *

A = ,,-!, f= 0S-&, '"=72-71.
2843 y
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will enclose the part of the w plane, which conformally repre-

sents the upper part of the x plane.
Let w be the complex variable which defines any point 8

within tbe triangle PQR, and let w
l
be the complex variable

which defines the point 819
which is inverse to $ with respect

to the arc RQ.

Let rf

be the substitution which transforms the arc RQ to a part of

the real axis of w in its plane.

Then and (120.2)rw + s m\ + s
'

arc inverse to one another with respect to the real axis of iv.

Let f(x) be the function of x which we found would in

this case transform the upper part of the x plane to within

the curvilinear triangle in the w plane. We now assume the

quantities ot
19 a2 , J319 /?2 , yT , y2

to be all real. Along the real

axis of the plane x the coefficients in /(*') will be real, and

therefore f(x) will be the function which will transform the

lower part of the plane x to points without the curvilinear

triangle, where x denotes the conjugate variable to x.

We therefore have

It follows that

w =
-

and w =
-

.

(1 20 . 3
)

p-rf(x)
l

p-rj(x)
9 v ;

and consequently we have

p-rf(x)

Eliminating f(x) we have

*
(ps qr)w + 08-^ qsW =! *

/ _ 1_.
(jjw rp) w + p$ qr
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If then w = F(x),

and w
l </) (x),

then (x)
= (fo-g*)g(g)

+ g'-gg .

(120 . 5)v '

If
JFJ

is the inverse of P in the arc Q-R, we thus see how
the lower part of the x plane is conformally represented on

the triangle P$R in the w plane.

Similarly if (^ is the inverse of Q in RP, and 7?
x the

inverse of R in PQ, we can conformally represent the lower

part of the x plane on the triangle ^.RP, and on the triangle

R.PQ.
Just in the same way from the triangle 1\QR we can by

inversion obtain three other triangles, one of which will be

the triangle PQR. These triangles will give conformal repre-

sentations of the upper part of the plane x on the plane of w.

Proceeding thus we cover the whole, or a part, of the

^u plane with curvilinear triangles.

121. Consideration of the case when triangles do not

overlap. In general these triangles will overlap, so that

a point in the w plane may be counted many times over : in

fact, unless A, //,
v are commensurable, a point in the w plane

which lies within any triangle will lie within an infinite

number of triangles. If, however, X, /z,
v are each the reciprocal

of a whole number there will be no overlapping at all. We
now confine ourselves to this <!ase.
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One and only one circle can be drawn to cut orthogonally
the arcs of the fundamental curvilinear triangle in the w
plane. By inversion we may take PQ and PR to be straight

lines.

We see that the two straight lines and the circle divide the

w plane into eight parts. We see, however, by considering
the original figure with which we began this discussion, that

the triangle with which we are concerned is the shaded one.

For at the point L the variable w will move in the direction

of the arrow, for a corresponding movement of z to the upper

part of the x plane ; and, as w will not move oft' to infinity,

the triangle could not be the outward part of

The triangle PQll is therefore of one of the two forms

In case (1) P must lie within the circle of which EQ is

the arc.
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For, otherwise, the sum of the angles at Q and R being for

we are now assuming A = -
, /*

= -, ^ = ^

/I 1\

\q r/'

the sum of the angles at Q' and R' would be

,(2-1-1);\ q r/

and therefore 2 < 1.

q r

But this is not possible if q and r are integers. No real

circle can therefore be drawn with P as centre to cut the arc

QR orthogonally in case (1).

The two cases are therefore thus distinguished : in case (1)

A + /* + i/>l, (121.1)

and the orthogonal circle is imaginary : in case (2)

X + ^ + ,/< l, (121.2)

and the circle which is orthogonal to the three arcs is real.

122. Case of a real orthogonal circle as natural boundary.

Taking case (2), the circle, whose centre is at P and which

cuts the arc QR orthogonally, must intersect the circle QR at

the points of contact of tangents to the circle from P. Clearly

these points are without the arc QR, since the arc QR is

convex with respect to P. The points P> Q, R therefore lie

within the orthogonal circle. When we invert with respect

to a point outside the orthogonal circle we have three circular

arcs within the new orthogonal circle*. By considering the

point Pl
which is the inverse bf P with respect to QR, we see
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that P
l

also lies within the orthogonal circle. Proceeding
thus we see that all the curvilinear triangles are within the

real orthogonal circle which corresponds to the case

A+
fJL
+ V < 1.

In this case, therefore, only the part of the w plane which

lies within the orthogonal circle is covered with the curvilinear

triangles, which conformally represent the x plane on the

w plane. This circle is therefore the natural boundary of

the function which, with its various continuations across the

real axis of x, conformally transforms the x plane to the

w plane.

Since there are an infinite number of solutions of the in-

equality 1 i i- + + - < 1,
P 9 r

where p, q, and r are integers, we get an infinite number of

triangles which grow smaller and smaller as we continue to

invert and invert : and as we approach the -boundary the

orthogonal circle the triangles tend to become mere point

triangles.

123. Fundamental spherical triangles when there is no

natural boundary. We now consider the first case when

1 1 1

-+ + > 1

p q r

and the orthogonal circle is imaginary.
If we stereographically project the w plane on to a sphere

which touches the w plane at the real centre of the orthogonal

circle, the fundamental curvilinear triangle becomes a spherical

triangle which we shall now denote by ABC.
The only possible solutions of the inequality are

(1) p = 2, q = 2, r = m; (2) p = 2, q = 3, r = 3
;

(3) p = 2, q = 3, r = 4
; (4) p = 2, q = 3, r = 5

;

or equivalent results obtained by permutation of the integers.

We lose nothing by taking A, B, to be the correspondents
to the singular points a, c, b in the x plane.

We may thus have *for the fundamental spherical triangle

any of the four figures which follow.



FUNDAMENTAL SPHERICAL TRIANGLES 167

The operation of inversion is now replaced by the simple

operation of taking the reflexion of each vertex with respect

to the opposite side. We see at once that the whole surface

of the w sphere is covered by the triangles and their images.

In the first case we have 2m triangles in the upper part of

the hemisphere and 2m triangles in the lower part.

In case two we have a triangle whose area is ^ that of the

sphere, and by taking the six triangles with a common vertex

at A we have an equilateral triangle whose area is that of

the sphere : that is, we have the face of a regular tetrahedron.

In case three, which is just that of the triangle formed by

bisecting the angle G in case two, we have a triangle whose area

that of the sphere. By taking the eight triangles withs

a common vertex at A we have the equilateral quadrilateral

whose area is ^ that of the sphere, that is, the face of a regular

cube. Its angles are each ,-

;
and it is also the figureo
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formed by planes, through the centre of the sphere circum-

scribing a regular tetrahedron, perpendicular to two pairs of

opposite edges.

In case four we have a triangle whose area is T^ that of

the sphere. By taking the six triangles, with a common
vertex at B, we obtain an equilateral triangle, whose area is

,jV that of the sphere : that is, a face of the regular icosahedron.

124. Summary of conclusions. When A, /z,
and v arc

then the reciprocals of integers, we have found functions w
of the complex variable, which will conformally transform

the upper and lower halves of the x plane into the area

within the curvilinear triangles in the \o plane. To each

point in the x plane there will correspond, in the w plane, one

point in each triangle or in the triangle adjacent which is

its inverse. The real axis will be transformed into the

circular boundaries of these triangles.

Two different points in the x plane cannot h&ve the same w
to correspond to them. For by taking A, /x,

and v to be the

reciprocals of integers we have provided against any over-

lapping in the w plane.

It follows that # is a uniform function of iv.

In the case where A -f /z -f- v > 1 there are only a finite

number of values of w which will make x zero or infinite
;

and therefore x will be a rational function of w. We could

express each value of w which makes x zero in terms of any

one, and thus obtain the numerator of the rational function.

Similarly we could find the denominator. As we only wish

to give a general explanation we do not enter into any details.

We have now shown how to represent the 10 plane, or its

equivalent sphere, on the x plane.

125. Representation of the x-plane on a given polygon.

To complete the problem of conformal representation in so

far as it bears on the problem of Plateau, we have now only
to show how the x plane can be conformally represented on

a given polygon. The' procedure is much the same as in the

problem we have just discussed, tout much simpler.
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Let a, o, b be defined as earlier and let a, f}, y be three

real constants which are positive, and such that

a + /J + y = l. (125.1)

Let X = I** (x-a)"-
1

(x-l)f-
1

(x-c)^
1

dx, (125 . 2)
J-oo

and let A be the position which X attains as x moving along
its real axis approaches a.

As x moves along the real axis in its plane from oo to a,

the argument of X is zero, so that it too moves along the

real axis of its plane. As x moves along the small semi-

circle with centre at a, the argument of X diminishes by OLTT.

As x then moves along the real axis to c, X moves along
a straight line AC to (7, the point which corresponds to c.

When x describes the semicircle at c, the argument of X
again diminishes by yir. Then as x moves along the real

axis from c to 6, X describes a straight line CB to B the

point which corresponds to b. X is now again on its real

axis
;
and as x describes the semicircle at b the argument of

X diminishes by /JTT. Finally as x moves along the real

axis to +00 and then from GO to a, X describes the straight

line BA.
We thus have the figure

in the plane of X, and the upper half of the x plane is con-

formally represented by the area within this triangle.

By a transformation of the form X' = pX 4- q where p and

q are constants the triangle may be transformed into any
similar and similarly placed triangle in the plane of X

;

and thus the upper half of the x plane may be conformally

represented by the area within the triangle ABO which lies

in the piano pf X anywhere.
*
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We thus see, as before, that the pland'of x can be repre-

sented by a series of triangles in the plane of A", which will

cover it completely. But if there is to be no overlapping we
must have a, /?, and y to be the reciprocals of integers.

These integers must satisfy the equation

1-
q

1-
r (125.3)

and we see that the only solutions of this equation are

p = 6, 3=3, r = 2
;

p = 4, 3 = 4, r = 2
;

j>
= 3, 3=3, r=3. (125.4)

Wo thus have three cases

and we see into what kind of triangles the given polygon
must be decomposable in order that x may be a uniform

function of X.

We see that X is a doubly periodic function of x
; and

from the above triangles, and their images in the sides, with

respect to the opposite vertex, we can construct the period

parallelograms.

126. We have found corresponding to each value of ttf,

the complex variable of the sphere, a definite value of x.

This value of x will under certain circumstances which we
have considered be a rational function of w. To this value

of x we must choose/as its correspondent X, that value, or

those values, which lie within the given polygon. Since
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the values of w which lie on th# boundary of the spherical

polygon are to correspond to values of X lying on the

boundary of the plane polygon, and since these values of w
correspond to points on the real 'ftxis of x, we see that the

polygon must have its boundary made up of sides of the

elementary triangles in the X plane.

The principal results in the theory I have tried to explain
in outline are due to Riemann, to Weierstrass, and to Schwartz;

and my presentation is based on the treatises of Darboux and

Bianchi. The connexion of this branch of Geometry with

the Theory of Functions is interesting.



CHAPTER X

OKTHOGONAL SURFACES

127. A certain partial differential equation of the third

order. We now want to consider the theory of a triply

infinite system of mutually orthogonal surfaces
;

and \ve

begin by considering the partial differential equation of the

third order

p -f q Y- + sech2 x = q tanh x, (127.1)

where 20 = tan- _
(127 . 2)v '

and z is the dependent variable and x, y, and w the inde-

pendent variables. [Here p, q, r, s, t denote respectively

We shall see that it is on this equation that we depend
when we wish to obtain the general system of orthogonal
surfaces.

Let ~ be any function which satisfies this equation, and let

-,
cx cy d

W ~ p cosh2 x - h Q cosh2 x - h
-

1 dx *

<)y ^w

then it is not difficult to verify that

VW- WV = F(pcosh
2
o;)

. V. (127 . 3)

It follows that a function u exists which is annihilated by
the operators F and' W9 and also a function v annihilated

by U and W.
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Wo may therefore regard x and y as functions of u, v, and

w, and we have

<$u <>u <H<> <>u <*u
, a* + -, y.2

= 0, r #0 + r y ., + r = 0,2 3 t/0

where the suffixes 1, 2, 3 respectively denote differentiation

with respect to u, v, w.

But from the definition of 11 and v we have

^^6
J

. c)?C _ c^U . c)^6 <)iC

r + tan 6 . = 0, p cosh 2
a? r + q cosh2

tc - + -- = 0,
^)ic ^y ^x <>y div

^v
, A<*V ^ o ^v . ^v ^v

.
- cot ^ x

- = 0, w cosh2 x - + a cosh2 x ^ + - =
;ex dy

L dx J

dy %w

and therefore it follows that

= iV
2
~"

2/2 co^ ^ = 0,

= 0, 2/3 <1
cosh2 ^ = 0. (127 . 4)

We now see that

so that the equation with which we began becomes

3
= ^ sinh a; cosh <r, (127 . 5)

that is, 3
=

7/3 tanh x.

We thus have the three equations

#! + j^ tan = 0, .T
2 2/2 cot = 0, 3

=
?y3

tanh oj. (127.6)

Now let

sin*

, rj
= e~~

.,
- y-6'

fc
~ "

2
'

cos ------ cos --r
2 A

so that tan 6 = ^ ,

then we can verify that

**

*
*

'

(127.7)
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128. A solution led to when functions satisfying a set

of three equations are known. By retracing our steps wo

may verify that if we have any three functions which satisfy

these equations we shall be led back to the solution of the

equation of the third order. For we have clearly

x
l
+ yl

tan = 0, a*
2 ?/2

cot = 0, 3
= y3 tanh x ;

and therefore = a1

, 17, c- = # V.
^u L

<)v

NOW A = Sin2 Q u+ cos2 6V, ~ = sin 6 cos 6 (V- U) ;

and therefore we can verify that

A ^ = _^*_
,

<>2/
cosh2 ^ <)aj cosh 2 x

so that #3
= > cosh 2

#, 2/a
= 5 cosh2

.r. (128.1)

From #
13 -f 2/13

tan 6 + yl
sec2 0^ =

we verify that

U (p cosh2
s) + tan CT (5 cosh

2
a)

= (cot -f- tan $) q sinh xf cosh r/:,

and therefore tan 2 5 = 28 + 2 7 tanha!
. (128.2)

r ^ + 2
^> tanh a;

Finally we see that --- = TF,
oiy

and thus the equation 3
= y3

tanh x

or
3
= ^ sinh a? cosh a/

becomes Wd = g sinh a? cosh x. (128.3)

The equations

are thus connected in the way we have described with the

partial differential equation of the third order.

129. The vector qaq~
l
, where a is a vector and q

a quaternion. We now pass on to the geometry which we
associate with these three equations.

If we are given any vector an& any scalar quantity we can
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take the vector to bo r sin . e and the scalar quantity to be

r cos 0, where is a unit vector.

Let q = r (cos + e sin 0), (129.1)

then q is called a quaternion, e is called the axis of the

quaternion, 6 is called its argument, and r is called its modulus.

A quaternion is thus just the ordinary complex variable of

the plane perpendicular to the axis of the quaternion.

We have q~
l = r~ l

(cos 0-esin d). (129.2)

Any other vector may be written

xt' + ye, (129.3)

where x and y are scalars and e' is some unit vector at right

angles to e.

We see that q(xt' + ye)q~
l

is equal to x(e' cos 20-f e" sin 26) + yt, (129. 4)

where e" is the unit vector perpendicular to 6 and e'. That

is, if a is any vector, q(X q-i (
12 g . 5)

is just the vector oc rotated about the axis of the quaternion

through an angle double the argument of the quaternion.

130. Passage from set to set of three orthogonal vectors.

Let us now consider the quaternion

7= l+i + i)j + (k, (130.1)

where i, j, k are fixed unit vectors at right angles to one

another and
, 17, f are any three scalar functions of the

parameters u, v, and w.

Dq~
l = l-i-r,j-(k,

where D = 1 + 2 + rf +
*

. . (130.2)

Let X = qiq~
l

, /JL
= qjq~

l
,

v = qkq~
l

, (130 . 3)

then A, //,
v will also be three unit vectors mutually at right

angles to one another, no longer fixed vectors but depending
on the parameters u, v

9
w.

Any system of mutually orthogonal unit vectors can be so

defined.
*
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We easily see that

(130.4)
Now

, WVir^tfiT 1

,

and therefore W 1

!?!?"
1 = 9V/"^

It follows that

* + Oh - tfi

(130.5)

From qi
~
\q

we have 7V/~
1 ^""^ r/i7~

1 := ^11

and therefore f/i'/"
1 ^ ^ r/V/~

1 = ^r

It follows that, since

/zi> VJJL
= 2A, z/X At/ = 2/z, A/z /x\

= 2y,

Z)A
1 =-2(7l-^ 1

+^1 )
J, + 2(^-^ 1 +-^ 1)^ (130.6)

Let /S-

4 Zty'
" =

|3
-

itf, +^a) 4 D?'" = 7,3
-

then we have proved (130.6) that X,
= pr' vq'; and similarly

we prove the other equations of the system

(130.7)

It may be noticed that the q', q", q'" as here defined have

no direct relationship to the quaternion q where

q=
If >' =
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we see that A
1
= co

/

X, ^ =
o>'/*> i/

1
= a/j/,

A
2
= oPA, //2

= o>'>, i/
2
= o)" v,

A3
= o/"A, ^3 ==o/

7
>, j/3

= G>"V (130.8)

and we can easily verify from the formulae given that

a>' = 2,/7?-
1

,
a>" = 2<M-

1

,

'" = 2 (M"
1

(130.9)

where g is the quaternion.
We also have as we proved earlier [see 90] the equations

o)'"
2 a>"

;J o0"o>'", 0/30)'"! = &"'<*>'> 3>"i fi/2
== ^'^

(130.10)
The angular displacements of the vectors >,

/*,
*> regarded

as a rigid body are ^^ ,"<&,, n'" clw . (130 . 11)

131. Rotation functions. So far we have been consider-

ing a system of three unit orthogonal vectors of the most

general kind depending on three parameters, and we have

seen how they depend on the quaternion

l+i--iM + fc.

We now want to consider the particular system characterized

by the property that
p' q" = T

f" = Q, (131.1)

that is, by the property that
, 77, satisfy the three equations

(127 . 7) which in 128 we connected with the partial differential

equation of the third order with which we began our discussion.

We now have from (130 . 7)

\
l
= /ir'-rj', A

2
=

fir", A3
= -vq"',

K = -Xr', fr = n>"-\r", to = n>'">

v,
= X 9 ', ^2 = -w", v.

= A^'-W/".

It will be convenient to write

when the above equations become

= 0, /*2 + i/(32)+X(12) = 0,

(131.2)
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The six functions

(23), (32),- (31), (13), (12), (21)

we shall call rotation functions. They are connected by the

laws

(21) a +(3l)(32) = 0,

(23) 1 =(21>(13), (31) 2
= (32) (21), (12) 3

= (13) (32),

(32),
= (31) (12), (13) 2 =(12)(23), (21). = (23) (31),

(131.3)

as we can at once verify from the equations satisfied by

A, fi y
v. We can express these rotation functions, as we have

done, in terms of , 77, and their derivatives.

132. A vector which traces out a triply orthogonal

system. Now consider the system of equations

(132.1)

where a, /?, y are scalars to be determined by these equations.

We see at once from the set of conditions

(23), =(21) (13), (31) a =(32)(21), (12)3
=

(13) (32),

(32),
= (31) (12), (13)2

= (12) (23), (21). = (23) (31)

that they are consistent.

Let a, ft y be any three functions which satisfy them, and let

2 = aA + jfy + yy. (132. 2)

We have z
l
=

( 1 + j8(21)-f y(31))A,

(132.3)

and therefore the vector z traces out a triply orthogonal

system of surfaces.

Conversely we see that there is no triply orthogonal system
of surfaces which cannot be obtained by this method.
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133. Lines and measures of curvature. If we take

), 6 =02 + y (32) +

wo have z
l
= a\, z.2

= bp, z.A
= cv,

and we see that

,
= 6(21), 63 = c(32), c

1
=

3), (133.1)

and that these three last equations together with

a = -3u, 6= C<2

(133.2)
(13)

'

(23)
* '

are equivalent with the first six.

The three orthogonal surfaces are

u = constant, v = constant, w = constant ;

the unit vectors parallel to the normals at the extremity of

the vector z are respectively A, ^, v.

We have ^ = ^> ^ =
(
133 - 3)

and therefore the curves along which only v and iu respectively

vary are the lines of curvature on the surface u = constant,

and its principal radii of curvature are

(133<4)

We thus have the fundamental theorem about lines of

curvature of orthogonal surfaces, viz. that they are the lines

in which the two other surfaces intersect one of the surfaces.

If we consider the curve in space % along which only u

varies, and if we suppose its
principal

normal to make an

angle 6' with the vector
/*,

*and p' and cr' to be its two
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curvatures, we have in the notation we used in considering

curves in space (see 94)

cos0' sin 6'

(133.5)

Now aX = X
x , a/i = // 1 ,

av = j^,

since acZu is the element of arc of the curve, and as we have

we must have

, (31) =

"+ >
= 0,

(T

Thus considering the three curves we get

6'+ i = 0,
"

(23,
_

^ '
""

(32) =

"'
+ r,= 0,

or

(133.6)

and we thus see another interpretation of the rotation functions.

In the figure here given A, B, C represent the points where

e"

" A

the vectors X, /*,
^ intersect the unit sphere whose centre is

the origin ;
that is, the points* where parallels to the three



MEASURES OF CURVATURE 181

tangents to the curves intersect the sphere ;
and A', E\ C' the

points where the parallels to the corresponding principal
normals intersect the sphere.
The principal radii of curvature of the surface u = constant

were, we saw, /> c

(72)
and

(is)'

that is,
-p'"

and therefore the measure of curvature is

, / '
/

7)/////
- - //"///

P P P P

Similarly we have

- CO* C'A '

'"
- CosA 'B'

K" -~
p'"p'

Again, from the formulae

6'+- f
= 0, d"+4 = 0, d'"+-*,, = (133.9)

0" CT CT

we at once see that, if a line of curvature is a plane curve, its

plane cuts the surface at the same angle all along it.

134. Linear equations on whose solution depends that

of the equation of the third order. We now return to the

equation of the third order (127 . 1),

12 * d 12 ^ ^
p coslr x + q cosh

2 x + ~ = q smh x cosh a?,
dsc

2
ty 1*10

* '

where 2 5 = tan^
2g+2 ^ tanh

.

r t + 2p tanh a;

Suppose that z is any integral of this equation : we may
suppose it expressed in the series

* =/( 20 + ^0(0, 2/)+^
2

^(, 2/)4- ..., (134 .
1)

and if the integral is a general one we may take / to be any
arbitrary function of x and y.

We shall show how wh8n / is a known function the
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function
<f> depends for its determination on a differential

equation of the second order.

Let

and let /2 = cosh2 x ~- ~
4- cosh2 # ~

ox ex ^y cy

The equation which determines is then

Qf2P-Pfi,Q-2 sinhacosh x (P
2 + Q2

)

(134.2)

Now let tv = W' + ^'Q, where w is a small constant whose

square may be neglected, then

s = /+W' + w'(0 + 2' ^r) + ..., (134.3)

and by solving a similar equation to the above with /-M'
f

() </>

substituted for/we should find

+ 2?^, (134.4)

and thus obtain ty.

Proceeding thus we see the system of linear partial differential

equations on whose solution we depend for obtaining the

coefficients of the different powers of w in the series for z.

A particular solution of the equation of the third order

would bo obtained by taking/ to satisfy the equation

QflP-PflQ = 2 ^ sinh x cosh x (P* + Q*)> (1 34 . 5)
ij

when we could take to be equal to /.

135. Synopsis of the general argument. It may be useful

at this stage to give a re8um6 of the general argument.
z is a function of x, y, and w which satisfies the equation

<>0 ^0 10 ^6
p- h q rr- V secrr# - = q tanh x,1 *
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, o/j x iwhere 2 6 = tan"" 1
A

r t + 2 p tanh x

W =
2> cosh- x ^~- + q cosh2

a? + ^- ;* d# 2
c)7/ aw

and ?6 and v are defined by

Vn = 0, T^ =
;

L"y = 0, Wv = 0.

We can now express a, ?/, and in terms of if, v, and ?;
;

and having done so we define
, 77, by

y-f<9 . + 6
cos - sin

~___ _
7/-fl'

-
?/-g'

-
2

'

cos cos^
^j 2i

and we have

The functions ^, 77, now define a quaternion

'/= 1+^-f W + ^%

where /, j, k are any fixed unit vectors at right angles to one

another.

Three unit vectors mutually at right angles are now de-

fined by x = <]iq~
l

, /*
=

</^/"
1

,
v qhf-

1

,

where D([~
l = lirij k

and 7)= i+* +1?
2 +^

These vectors are not fixed.

We have

(31) = 0, //> + */ (32) + A (12)
=

5

and thus the six rotation functions

(23), (32), (31)* (13),' (12), (21)
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are defined. These functions satisfy the conditions

(31)8 +(I3) 1
+ (23)(21) = 0,

(31)(32) = 0,

^ = (21) (13), (31),
= (32) (21), (12) 3

= (13) (32),

(32),
= (31) (12), (13) 2

= (12) (23), (21)3
= (23) (31).

The vectors X, /*,
v are parallel to the normals at the ex-

tremity of some vector z depending on three parameters
which traces out the three orthogonal surfaces

n = constant, v = constant, w constant.

This vector z is defined by

z = X + /3/i + yv,

where a, j8, y are scalars to be determined by the six equations

y2
=

j8-(32).

Corresponding to each solution of this equation system we

obtain a system of orthogonal surfaces, and the different

systems thus obtained have the property of having their

normals parallel at corresponding points.

If a = ai + (21) + y (.31), b = /?, + y (32) 4- a (12),

c = ya + a(13)+/8(23), (135.1)

then c
1
= aX, z%

=
bfi, z.^ cv,

and a, = 6(21), 6
3
= c (32), c

1
= a(13),

3
= r(31), 6

1
= a(12), C

2
--= fc (23),

so that the ground form for the Euclidean space is

ds2 = a2
rfu2 -I- 6

2
cZi;

2 + c*dw\ (135.2)

136. An alternative method indicated. The functions

c(, 6, c of ^, v, w must satisfy certain conditions which can

at once be obtained by expressing the rotation functions in

terms of a, b, c and their derivatives and using the conditions

which the rotation functions "must satisfy. But we can
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more rapidly obtain these conditions by just saying that the

space defined by d8z - a*du*+ I>*dv2 + c*dw* (136.1)

is flat, and therefore (rkih) = 0. (130 . 2)

The conditions then arc seen to be

, 7 PI 7 <>>"

These six equations if we could solve them would equally
lead to orthogonal surfaces, and this is the usual method by
which the problem of orthogonal surfaces is approached. There

seems, however, to be an advantage in making the whole

theory depend on one equation of the third order as we
have done.

137. Three additional conditions which may be satisfied.

We now wish to consider a special class of orthogonal surfaces,

and we begin by inquiring whether there are any rotation

functions which, in addition to satisfying the nine necessary
conditions which all rotation functions must satisfy, also

satisfy the three additional conditions

(23) 3 +(32) 3 + (21)(31) = 0, (31), + (13) 3 +(32)(12) = 0,

(12).2 + (21) 1
+ (13)(23) = 0. (137.1)

If we take

(23)EEu; + (31)
= ^

(32) =x-, (13)E

and 2 u' = v + iv, 2 u' = w -f u, 2 iv
f = n + v,

and, /being a function of the parameters t</, v', ty', denote

respectively by /x , /2 ,
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we see that the twelve conditions which the rotation functions

now have to satisfy are expressed by

2/4
= -

& = -27;s, 7,3
= -2

*3
= -2^ f 17!

= - 2^, ^ = -2iya?. (137.2)

Now it is easily seen that these equations are satisfied by
taking

(23) = 4V%, + av%. (32) =

(12)
= -|/K; +^V3p (21) = i

(137.3)

where F is a function satisfying the 'complete' system of

equations

K ;14 + 2 v/CK4
V42

= 0, V.M + 2 VV~V~VK = 0,

;K4
= o, ^+2^1^7 = o.

(137.4)

\Ve thus see that such rotation functions exist. A particular

solution of such a system of equations would be obtained by

toeing
F<
= 0) ^a+2v%lKll-=0; (137.5)

and in this case

(23) = (32), (31)
=

(13), (12) = (21). (137.6)

It may be shown that this solution corresponds to the

particular solution of the original equation of the third order

when we take z to be independent of iv.

138. Orthogonal systems from which others follow by
direct operations. We must now consider the special property
which the orthogonal surfaces will have which correspond to

rotation functions satisfying the twelve conditions. We return

to the original variables n, v, w in what follows.

Let a, /3, y be any scalars which satisfy the equations

0,-=y (13), ia=a (21), y2
=

j8(32), (138.1)
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and let a, b, c be defined by

o = a
1 +/8(21)+y(31), b =

a + y (32) -f a (12),

c = ya + a(13)+j8(23).

We then have

(138.2)

Let a' =
</! + 6(12) + c(13), 0' = 6

2 + c(23) + rt (21),

/ = c
3 + a(31)+&(32).

We can at once verify that

^3=7' (13), ^ = ^(21), y'2
=

/8'(32); (138.3)

and therefore c' = a'X + /S'/i-f yV
will trace out another system of orthogonal surfaces. This

second system is thus obtained from the first by direct

operations not involving integration. We thus see that when
we are given any one system of orthogonal surfaces of this

particular class we can deduce by direct operations an infinite

system of such surfaces.



CHAPTER XI

DIFFERENTIAL GEOMETRY IN ?i-WAY SPACE

139. Geodesies in w-way space. In order to see what

kind of geometry we may associate with the ground form

of an 7i-way space, we naturally think of the simple case

when n was 2, and the space a Euclidean plane. The most

elementary part of that geometry was that associated with

straight lines ;
that is, the shortest distances between two

points. We are thus led to consider the theory of geodesies

in our 7i-way space.

We have

.
, f

2 T- = aik -7 +a ik ~i --, j -rda ll* ds ds ds da ds ds

d / dx- dx
1f

. \ d=
ds (

rt

ds
SX

><
+ a* -* **')

- 8X
>< ds

For a path of critical length therefore we must have

. ,

ds \ it d8 ds <
d~8

~
T^ ds 'ds

Now ( 6)

d Zaik dxp dxp// .

and therefore

dx: daw t
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It follows that

7?
=

and therefore a
it^ + (ikt)

d
p^ = 0. (139.2)'

ds* as as

Multiplying by alP and summing we have

X
f + {ikp}

_ -^ = 0. (139 . 3)

We thus have TI equations wherewith to obtain the coordinates

of any point on a geodesic in terms of the length 8.

But the equations are differential equations of the second

order
;
and in general we can only solve them so as to obtain

the coordinates in tbe form of infinite series. This is a

practical difficulty and one of the reasons why we cannot

have the same kind of knowledge of the theory of geodesies

in Ti-way space that we have in Euclidean geometry of

straight lines.

The direction cosines of an element of length in ?i-way

space are defined by

dv
ti> -

ax
p n _ i n / 139 4 \

i* ; * iJ 1 ,,/(/ i A o jj TI i

5 ds
' L v ;

Going along a geodesic, therefore, we have

and we see that, unlike the direction cosines of a straight

line in a plane, associated with the form

ds* = dx\ +dxl,

these direction cosines vary as we pass along the geodesic.

Thus we are familiar with the difficulty of keeping to the

shortest course between two given points at sea, viz. a great

circle. In this case the differential equations are soluble in

finite terms; but even with* this advantage we should need
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a continuously calculating machine to find the direction

cosines at each point of the course. If the ocean instead of

being spherical were ellipsoidal, we should not even have tho

advantage of being given the equations of the geodesic in

finite form, and the difficulty of keeping to the shortest course

would be even greater.

Now if we had built up our plane geometry by using the

form d8* = dxl+x*dxl,

the direction cosines of a straight line would also have varied

from point to point of the straight line and yet we would not

say that the direction of the straight line varied from point

to point. The navigator on the ellipsoidal ocean might hope
till he had learnt a little more geometry to mend the want

of constancy in his direction cosines as the plane geometer
could mend his by a proper choice of coordinates.

He could not mend this want of constancy by any choice

of coordinates, but though the direction cosines change in

passing along a geodesic there is no need to think of the
' direction

'

as changing.
We will then say that the direction in an 7i-way space is

the same all along a geodesic.

140. Geodesic polar coordinates and Euclidean coordi-

nates at a point. We recall the fact
( 2) that any w-way

space may be regarded as lying in a Euclidean ?*-fokl where

r = %n(n+ 1),
and that the vector z which lies in this r-fold,

depending on the n parameters x
l
...jcny has the property

that its extremity traces out our ?i-way space.

In the 7i-way space, unless it happens to be merely a

Euclidean space, we cannot think of a vector as lying in it :

it is only tho extremity of the vector with which we are

concerned.

But at any particular point of the 9i-way space there is

a Euclidean w-fold which we may usefully associate with

the point.

Let z be the vector to the point under consideration, and

let zlt .*zn be its derivatives at the point with respect to

x
l

... xn ,
the parameters of the jfoint.
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Let 1
...

w be the direction cosines of any element of the

n-way space at the point so that

!** = 1, 040.1)
then the vector defined by

= 1 s
l
+ . ..+%, (140,2)

will lie in the Euclidean Ti-fold at the point. It will clearly

be a unit vector sinco

We shall call this Euclidean '}i-fold in which lies the

tangential 7i-fold at the point.

The coordinates of any point in the tangential ?i-fold ma}''

be taken as
t

. . . gn , where

& = B
;

, (HO. 4)

s being a scalar.

We establish a correspondence between the points of our

?i-way space and the points of the tangential w-fold by taking
the coordinates of the 9* -way space to be

a
... M .

Consider the geodesic which starting at the point under

consideration has the direction cosines l
...

n
.

From the equation of a geodesic

ff .
---

.

ds d*

we see that the current coordinates are given by
'

> (140 . 5)>

where s is the arc from the initial point.

Let z
9

be the vector which traces out the ?i-way space at

the point x'
l
...x'n> and let

9

denote the same vector expressed
in terras of the coordinates & ... n -

We have [see 4 for the notation]

n = ^(*;-{^}r+'-o-
It follows that
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and therefore the transformation formula is

a>'n
= <*ik -(kpi)

l

'8-(i\k)?8 + ..., (140.6)

where + ... refers to higher powers of s.

We thus have at the oriin

that is, in the coordinates we have chosen the first derivative

of each of the coefficients in the ground form vanishes.

It follows that in this system of coordinates, which

establishes a correspondence between the points of the

tangential n-fold and the points of the ?i-way space, every
three-index symbol of Christoffel vanishes at the point under

consideration.

As regards the four-index symbol (rkih)' we have

=
(rkih). (140.8)

We may call this transformation a transformation to geodesic

polar coordinates at a specified point.

We can combine the transformation with any linear trans-

formation in the tangential 71-fold. To do this suppose
x

1
... xn to be the original coordinates, taken to be zero at the

point to be considered.

Let
i
= ^vX* (HO. 9)

where Cy.... denote constants.

We can now so choose these coordinates as to make the

coefficients take any assigned values at the point We can

then apply the geodesic transformation, and can thus arrange
that the coefficients aik may have any values we like (pro-

vided the determinant is not zero), and at the same time

have all the three-index symbols vanishing at the point.

In particular we caiiuso choose the constants that

'<&='< (140.10)
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at the point and that the three-index symbols may vanish.

Such a system of coordinates may be said to be the Euclidean

coordinates of the n-way space at the point.*

141. Riemann's measure of curvature of 7i-way space.

If we take the transformation

where , 77, ... are fixed vectors at the point, we find that

a'
22
= 'S*, (141.2)

and

(141.3)
and therefore

(1212)'

(141.4)

Now let us consider the expression on the left-hand side of

this Aquation.
In general the four-index symbol as applied to 7i-way space

is not the same thing as when applied to the lower space in

which the coordinates whose integers do not occur in the

symbol are put equal to constants. But in geodesic polar
coordinates at the point the equality holds, since ,the three-

index symbols vanish.

It follows (see 24, 37) that^ the expression on the left is

the measure of curvature at the point of the two-way surface

formed by keeping all the geodesic coordinates constant except
two. The expression on the right is therefore the measure of

* This system of coordinates has
jjeen

calld the system of Galilean cq-

ordinates at the point.

2843 C
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curvature of the geodesic surface that is, the surface formed

by the geodesies through the assigned point, which touches

at the point the Euclidean plane generated by the two vectors

and rj.

This is Riemann's measure of curvature of the 'ft-way space.

We see how it is connected with Gauss's measure of curvature,

and we should notice how in this respect the tangential

7i-fold takes the place of the mere tangent plane when n = 2.

In the flat Ti-fold we consider all the Euclidean planes by

taking
1

any two vectors in the Ti-fold. We see that these

two-way surfaces have different curvatures and so different

geometries.

142. Further study ofcurvature. The Gaussian measures

for geodesic surfaces. Orientation. We have now obtained

Riemann's measure of curvature and have seen how it is con-

nected with Gauss's measure of curvature of a surface.

We must now consider this curvature from another point

of view.

We saw that we were to consider the direction to bo the

same at all points of a geodesic in u-way space. This leads

us to define two 'parallel' displacements at neighbouring

points x
l

.. f xn and x
1 + dx1

... # + dxn as displacements whose

direction cosines 1
...

n and *-f d l
...

n + d n are con-

nected by the equations

dP+ {ikp} gdxk
= 0. (142 . 1)

Thus in this sense of 'parallel' the tangents are parallel at

all points on the same geodesic.

It may be noted that the equation defining parallel dis-

placements does not entitle us to say that

If this equation system held, the tensor component P would
be annihilated by every operator 1,2, ... TI, and therefore

which could only*be true in flal space.
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Let be any vector in the tangential ?t-fold at x^ ... ocn and

+ d be tho 'parallel' vector in the tangential ?i-fold at

n\ -f dxl
. . . xn -

We have df = {'(*.<* + [i&

As we pass from the point of departure with an assigned
value for

,
and the vector is carried parallel to itself, its

value at any other point is defined by the integral

3. ik Jxk , (142.2)

and this value depends on the path of integration.

Consider the small parallelogram in the ?i-way space whose

edges are parallel to the vectors and
77, the lengths of the

edges being respectively a and 6. Wo want to find the change
in f by integrating round the parallelogram.

We have i = = '-
where SjCp is the increment in the coordinate, neglecting

powers of small quantities of the second order, and

Z-tfc
=

(3-ifc)o + 0-tt/*+ (*^/ 3/fc+ (Ml S-ttL&V
and therefore

We thus have

*'* = ^'*-)o+ [r (*-^+ {i>j -

On the first edge at a point distant s this is

K f

*-tt)o+[^(*+ {*/*'} -.)n
on the second edge it becomes

tf
f

s-)o+[^ (-

+[r(^^
The change in ^ bj' integrating
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along the two edges is

) W]o-2 (
142 3

)

If we had integrated in the opposite sense along the other

two edges we should have interchanged and
77,

a and 6, and

we thus see that the change in by going round the parallelo-

gram in the same sense is

K'(-ttM -*-<M *)*V]o&>
that is, [f

f {#Ms,V] &.

The change in ^ is therefore

If is the angle between and

(142.5)

Let us now consider how the angle d is changed, if, keeping

77 fixed, we carry parallel to itself round the parallelogram.

ab.

It follows that <5d divided by the area of the small

parallelogram is equal to

~
6)

That is, 5^ 'divided by the area of the small parallelogram is

equal to the curvature of the geodesic surface which touches

the Euclidean plane generated by the two vectors formed by
the sides of the parallelogram.

From the equation

tff=f'*-ttk*
we see that the rate of Change of f in parallel displacement
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in the direction of the vector is ^C Ztil^ We maJ
express this result in the notation

Thus we have . = fe *'

It follows that

and therefore

(142.7)

Kieumnn's measure of curvature may therefore be written

^-fcf*
.^.. ____. (142.8)

||25""l?2l

Again the rate of change of in displacement along the

vector is just f
1 ^

1 + ... + n
<z> and therefore the vector

itself may be written 0.. Here we may notice that the

vector z unlike the displacement vector is not a vector in

the 7i-way space but only in the containing ?*-way flat space ;

the vector on the other hand marks a direction, or displace-

ment, in the n-way space, although it has only an elemental

length in this space.

There is then as regards the vector z in its parallel displace-

ment just the ordinary Euclidean ide'a of translation.
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Riemann's measure of curvature may therefore be written

-^- ^
(142.9)

This is Gauss's measure of curvature -of the geodesic surface,

made up of the singly infinite system of geodesic curves

drawn through an assigned point at which we require the

measure of curvature: the curves at the point all touch

the Euclidean plane generated by the vectors ^ and 77.

Riemann's measure of curvature has an ' orientation
'

given

by the vectors ^ and
77 ;

and at the assigned point, by varying
this plane, we get the different Gaussian measures.

143. A notation for oriented area. So far we have in

using vectors only considered their products as scalar products.

There is another product which we ought now to consider.

When 7i = 3 and the ground form is that appertaining to

Euclidean space, we know what the vector product means and

how useful it proved in Geometry, but it does not seem to be

capable of useful extension. We shall now think of the

product of two vectors ^ and
77

as defining an area in the

Euclidean plane formed by ^ and
77.

This area has then an

orientation, and we shall understand by 77
the area of the

parallelogram whose edges are the and
77 drawn through

the point.

The angle the vector makes with the vector
77 being 0, by

parallel displacement of the vector round the parallelogram
whose edges are in the directions and

77,
and whose lengths

are ds and Ss, this angle is increased by
z
tt~'w~~

z
t'<i

z
i]t

which may be written

^ /* _ /y /?z
tt
zw z

ft"nt

dzSz, (143. 1)'

z,z t z z

where dz, Sz represent*the sides ol the small parallelogram in

magnitude and direction*. *
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We should notice that area has a sign as well as a magni-
tude : we express this by the equation

17 + 1^ = 0. (143.2)

144. A system of geodesies normal to one surface are

normal to a system of surfaces. If the direction cosines of

a geodesic are l

,...
w

>
we have seen (139.5) that the

equations of a geodesic are

The geometrical interpretation of these equations is that

the tangent remains '

parallel
'

to itself as we move along the

geodesic.

We can put the equations in another form,

and therefore

since -r
as

Now -(t

and tberefore the equations of a geodesic may be written

We now wish to consider the expression

T
, = **

Wo know, from the theory of differential equations, that the

necessary and sufficient condition that Tx dx^ may be rendered

a perfect differential by multiplying by a factor is that

;

2*" T
)

should vanish identically for* all values of A, /*,
v ;

and that
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the necessary and sufficient condition that T^dx^ may vanish,

wherever (f>(x1
... xn)

= 0, is that

2\

A

should vanish for all values of X, /z,
v wherever

Geometrically interpreted these are the conditions that the

curves d ,j n

^==^==.,.=^ (144.3)

should (1) be cut orthogonally by a system of surfaces, (2) be

cut orthogonally by the definite surface

(,... )
= <>. (H4.4)

We are now going to prove that if the curves are geodesies,

and if the condition (2) is satisfied, (1) is satisfied also.

\
rp *^rn

Let -.Jsta, (144.5)

and T
p (97-) + Tq (rp) + TT (m)

=
[p, q, r]. (144.6)

Since

A JL = -L. .* *? *

ds ^x~
~~~

Zx ds dx <>jc'

cts v XQ (jts * u
x^..

cts

Now

~
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It follows that

Now

and therefore \ve see that the first term in this expression

vanishes, since A and
/z are interchangeable.

We therefore have

It follows that
d

A. A.

[7- A. r]) + ||- ((rj>)
rx + [r, A,

*
>

D d
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Since a\^i^ *>

we have *rA = 1,

and therefore TK ^-
+

x~- = 0.

It follows that

d r T

Suppose now that over a given surface

[p, q, r]
= 0.

We then have

d
r -,

fc[P>1.r]

=
(qr) (p\) + (rp) (q X) + (pq) (r A).

Since [p, q, 7
1

]
is zero for all values of the integers over the

given surface, we have

=0,

0,

(sr) 9

(7*)> 0,

and therefore

(rs),

0,

M>
(F")

that is, (pq) (rs) + (^r) (/?) 4- (rp) (g)
= 0. (144.10)

It follows that if [p, g, r] is zero over a surface it is zero

everywhere, arid therefore if a system of geodesies are normal

to any one surface they
f

are noimal to a system of surfaces.

(P9)
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The direction cosines of the system of geodesies therefore

satisfy the equation system

It follows that K^aPi^^-aP^

= a
qr gi

r = 1, (144.11)

and therefore "nttf = P
-

'
( 144 12

)

145. The determination of surfaces orthogonal to

geodesies and of geodesies orthogonal to surfaces. We can

now find the equation which
(/>
must satisfy when the surfaces

= constant

are those which cut the geodesies orthogonally.

We have ^> = uP f ~-^=- (145.1)S V '

The equations of a geodesic being (131) . 5)

d

we must have

that is, aV --A~ a**-= = 0,

and therefore Pf

fc(,a
tx

,

A
)

= 0,

or =0. (145.2)

Expanding, A (0, <^)
= ___ A(^, A

2 A ()

that is, -r

**
q
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It follows that

and therefore A (0) must be a function of $.

Without loss of generality we may therefore say that

A(0) = l. (145.4)

We thus see that if we take any surface and consider the

geodesies drawn from every point on it perpendicular to

the surface, they are cut orthogonally by a system of surfaces

(f)
= constant, where A (0)

= 1.

In ordinary Euclidean space this is the theorem that the

lines normal to any surface are cut orthogonally by the

surfaces
(f>
= constant, where

Conversely, let be any integral of the equation A (</>)
= 1

;

then we shall show that the orthogonal trajectories of the

surfaces
(f)
~ constant will be a system of geodesies.

It will be convenient now to think of an (>i-h l)-way space

and to take, instead of the variables x
l

... tfn +i> a new system
of variables yl

... yn+l ,
where

y +iS0, (H5.5)
so that A(2/n+1 )

= l,

and to choose y l ...yn as n independent integrals of the

equation A (yn+l , y)
= 0. (145.6)

Let the ground form of the (n -f l)-way space be

1>K<lynlyit* 1
= 1, 2,... n+l. (145.7)

Since A (y ll + l )
= 1 and A (yn+l , yr)

= if r ^ (n+ 1),

we see that 6
n+1| n+1 = 1, &

n+1| r
= 0,

and therefore the ground form is

rfVi + 6<A<fyfc> 1-

= l> 2
>
- ^ (

145 8)

It will therefore be convenient to take as the ground form

in the (TI-J- Ij-way'fcpa^e

du*+btydXidxkt i
= 1 ... 7i, (145 . 9)

where 6^ is a function of x
l

... ccw and u.



GEODESICS NORMAL TO SYSTEMS OF SURFACES 205

The surface ih = is any arbitrary surface in the (n + 1)-

way space, and when u = we may write bik
= a^ . We

may consider
a^dx^lxj, (145.10)

to be the ground form of the u-way space deduced from the

(71 + l)-way space by putting u = 0.

The lower ground form may be said to be the ground form

of a surface in the higher space.

By varying u we obtain a series of surfaces cut orthogonally

by the curves whose direction cosines are given by
l = 0,

2 = 0,...^ = 0.

These curves are geodesies, since

{n+1, ti+1, p] =
0, p = 1 ...n.

It will be noticed that the first of the surfaces cut orthogonally

may be any whatever, but the other surfaces are given by

A(tt) = 1. (145. 11)

When we know the geodesies normal to u = 0, we know the

whole series of surfaces which are cut orthogonally, or at

least can find them by quadrature, since

'' =
< (145.12)

We obtain the geodesies, on the other hand, by the solution

of the linear equation A (u, v)
= 0, when we know u.*

146. A useful reference in (n + l)-way space. We have

shown (145.9) that the ground form of any (/i+l)-way

space may be taken to be

tin* + bftdxjdxjg ,

* = 1 . . . n,

where b^ is a function of x
l

... xn and u.

The surface u = is any surface whatever in* the (u+1)-

way space. By drawing the geodesies perpendicular to this

surface we obtain a series of curves which are cut orthogonally

by the surfaces u = constant, u being the geodesic distance

of any point from the surface u = 0.

*
[At this point hi the

author's
MS. Iliere ia a memorandum ' New

Chapter '.]
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The surfaces u = constant are said to be parallel surfaces,

and we have A (u) = 1. Travelling along any of the geodesies

from the surface u = 0, only u varies.

It will, however, be found useful to consider a more general

system of surfaces in the (n+ l)-way space.

We therefore consider any system of surfaces whatever in

this space, u = constant, where we no longer have A (u) = 1,

and by taking the orthogonal trajectories of these surfaces,

as the parametric lines

x
l
= constant, ... xn = constant

we may take the ground form of the space to be

2
<Zi6

2 + bikdx{
dxk , i

= 1 . . . n. (146.1)

The orthogonal trajectories are now no longer geodesies.

The function bik depends on the coordinates xlt .. ocn arid u,

and, when u = 0, b
ik
=

a^..

We now wish to consider the two round foi'ms

dxid^ (146.1)

and ^ikdx{
d^ k (146.2)

in connexion with Christoffel's symbols, where after calculating

their values for the higher space we put u 0. We can

obtain the special case of parallel surfaces by putting 0=1.
We shall thus be shown how to generate the (n+ l)-way

space which as it were surrounds any given 7i-way space.

When we place the suffix b outside a symbol this will

indicate that the symbol belongs to the higher space. The

suffixes will always be l...n. When we have to consider

the suffix which should correspond to the variable u it will

be denoted by a dot.

Let
* ^ = _ 2 /2<fef (146.3)

We see that

(ikh)b
=

(Usk)a ; (ik -)b
= fl

ilt tj>; (i- k)b
= - fl

ik$

{ikh} b
= {ikh}a ;

(rkhi),,
=
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in tensor notation,

147. Geometry of the functions /2^. If we are given

any n-way space we shall see that it may be surrounded by
what is called an (71+!)-way Einstein space. We shall

define this space shortly. A particular n-way space may be

surrounded by a Euclidean space of n + 1 dimensions
;
but

before wo consider particular kinds of this (714- l)-way space

we had better consider the geometrical meaning of the

functions /2
t̂

which together with
(f>

are to generate the space.

With this end in view let us consider two geodesies going
out from the same point x

l
... ocn ,

u = 0, and having the same

direction cosines *...
n

,
at this point, the first geodesic

being in the 7i-way space denoted by a, and the second in the

(n+ l)-way space denoted by 6.

We have (140.5) for the current coordinates on these

geodesies x\ ...x'n and x'\ ... x"n

and therefore, neglecting terms of the third order in the arc s,

we see that the coordinates are the same for the two geodesies.

But for the first geodesic the coordinate u is zero, and for

the second geodesic

The distance between two points, one on each of the geodesies,

is therefore 2 '
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8 being the distance of each point measured along its own

geodesic from the initial point.

This mutual distance we may consider to be normal to the

geodesies if we neglect terms of the third order in the arc.

The curvature of the first geodesic is defined by Voss as

the ratio of twice this distance to s
2

. This is obviously

a proper definition, agreeing with the ordinary definition

when we are dealing with Euclidean space.

We therefore have

^L\^axx ax^ /1
. O xm - llTt* . l

^f/'^A^A*
The curvature of the first geodesies may be called the

normal curvature in the (tt,+ l)-way space of the surface

u= in the direction dxlt
dx

2 , ...dxn .

Looked at in this way we may write our formula

1 = A/jx^ t (147.3)
jR ^Au^A M

To get what we may call the directions of principal curvature

we require the directions dx
t
which make ^ critical.

The directions of principal curvature are therefore given by

(ax/i
-H/2

A/l)cte/t

= O
f (H7.4)

where the values of R, the principal radii of curvature, are

given by the determinant

|aA/4
-JB/2

AM |

= 0. (147.5)

We shall.now show that the directions of principal curvature

are in general mutually orthogonal.
At any given point we can choose the coordinates so that

corresponding to the principal radius R^ only the coordinate

X} varies at the given point. We therefore have at the point
' a ilt

= Ri.fl'j..IK K IK'
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If, then, all the radii of curvature arc distinct,

a ik
= nik

= 0, if i&k, (147.6)

and therefore the coordinates are mutually orthogonal at the

given point: that is, the lines of curvature are in general

mutually orthogonal.

148. The sum of the products oftwo principal curvatures

at a point. We now wish to obtain an extension of the

well-known formula of Gauss

1
__ (1212)

for a surface lying in ordinary Euclidean space.

Consider any determinant

a

anl nn

and the corresponding determinant

If \a\ denotes the first determinant we see that any of its

minors is equal to
|

a multiplied by the complementary
minor of the second determinant.

Expanding the determinant (147 . 5), or say

we see that the determinant divided by \a\ is equal to

x x 2
'* .*/ i .

'* / v! Ill' t'li i'7 / / / / / \

a (a
? *a/' A -a?/

'rt
f

^(tt Ha ?fk
-a rha ik)-...,

(148. I)

the numerical factors T-TT,- > TT2 "TV*" being introduced
(1!) (2!) (3!)

in accordance with the convention about repeated factors.

We therefore have for the principal curvatures

(148.2)

^-a,;AJ. (148.3)wit
* K

e
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Now consider the expression, a tensor component clearly,

and similarly B
ri

== bkh (rlchi).

We have seen in 146 that

From the last equation, we see that

Vy /2
rA/V (148 . 4).,

From the second equation, we see that

(B,.)b
=

a'<>><l> (nfh . k-nhk . r). (148 . 5)

From the first and last equation, that

^. (H8.6)

The expression ariA
r ^

is an invariant which we denote by A.

We thus obtain

or, interchanging i and h,

E = A + a'*a*' (/2,A /2 i7,-/2

and therefore

2J5 = 2A+(ar*a1sh -arh uki) (Sl rh Slik
-

(148.7)
It follows that

2B= 2A + 4S-~
L

jy +40~
2 5... (148.8)

Kemembering that B is an invariant in the (n+ l)-way space,

and B.. a tensor component in this space, and that A is an

invariant in the ?i-way space obtained as a section of the

(7i+l)-way space by the surface u = 0, we may express

the result at which we have arrived in the following way.
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Consider any (>i-h l)-way space, and a section of it by any
surface.

Let g
l

...
n ~Hl be the direction cosines of this surface, re-

garded as a locus in the (n+ l)-way space.

The diiection cosines are connected by the identical equation

1 = !>,#?
The expression Vljt

(rkld)^
r
g

l
is an invariant of the

(ft + l)-wuy and the surface we have chosen. When we
take the ground form ^du^-i-b^dx^dx^ and the surface

u = the expression becomes 0~
2
./?.., since *

... g
n are zero,

and
02

71+1 7* +1 __
i

If B is the invariant of the (n+ l)-way space,

and if A is the corresponding invariant of the /i-way space
which is the section of the (71+!)-way space by the given

surface, then what we have proved is the following.
The sum of the products, two at a time, of the reciprocals

of the principal radii of curvature of the surface, regarded as

a locus in the (>i-f l)-way space, is equal to

-I (B-A)-bl(h
(rkhi) b g

r
tf. (148 . 9)

149. Einstein space. Suppose, now, that instead of

taking any surface we choose a surface whose direction

cosines satisfy the equation

%J3=bUt
(rkhi)g

r
g

!

', (149.1)

we shall have
1

i^ + J 7r/^=0. (149.2)
^i^k

For the case n = 2, this becomes Gauss's well-known

formula t (1212)

li
l
^

2
ana 22

a
j 2

If, then, the (?i-f l)-way space is to be such that for all

surfaces lying in it the formula of Gauss will hold, the equation

i^ = **?'
must be identical with 1 =
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We must therefore have

BH = WbH , (149.3)

and in consequence of this

that is, B = %(n+l)B. (149.4)

Leaving aside the case when n = 1, we must have

5=0, (149.5)

and therefore B
ri
= 0. (149.6)

A space with this property is what is called an Ein.stein

space.

It is interesting to see how from mere considerations of

purely geometrical ideas we should be led to Einstein space.

150. An (H+ l)-way Einstein space surrounds any given

91-way space ( 150-4). We shall now show how, being

given the ground form of any ?i-way space, we may obtain

the ground form of a surrounding (n+ l)-way Einstein space.

We look on aik . t . as functions of x
l
...xn and u whose

values are known when it = 0. We have if possible to

determine functions /2
2

-

fe
... and

<p
which will satisfy the

equations alh (fl tll
. h ~flhl..

t)
= 0, (150 . 1)

(150.2)

6 = -2/2^0, (150.4)

when u ~ 0.

If we can find such functions, we take

and thus find the Einstein form

2 cZu2 + bftdxidxk (1 50 . 5)

in the immediate neighbourhood of the surface u = 0, that

is, in the immediate neighbourhood of the given n-way space,
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and proceeding thus by the method of infinitesimal stages we

ultimately obtain the Einstein space which we require.

Let A^ = axt {tppn}. (150.6)

We shall first prove the fundamental identity

Employing the geodesic coordinates at a given point,

and therefore in this system of coordinates we have at the

given point

(150 ' 8)\a >A
Similarly wo have

ft A

and therefore A..

= 0. (150.7)

The required identity holds therefore universally, since it

is a tensor equation which vanishes for geodesic coordinates.

151. We now transform the functions f2
ijt ..., which are

to be found thus.
*
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Let V* = aktn
it ,

and therefore fl
il{
= ftki

= a^V* = aa F
x

,

Wilting F for F we now have

x=V, (151.2)

that is, multiplying by aA^ and summing,

#(^+

The third equation is

and by aid of the second equation this may be replaced by

A = FF-F2
. (151.4)

We thus have the equations

V* V A 1/7* yx V2K A*A %> ^ K A ^A1
"" K

>

and, writing <fy for ax*0 ^
in the other equation (151 . 3),

Tl:ese are only assumed to hold when u = 0.

152. Noticing that = A
2 (0),

we have $. x
= Aax<

0. Mf
= axt

\p.<f>t

and therefore ^-A+'^^A ^^^2(0)- (
152 -
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We now operate with A on the equation

where A = + {t\8}(()-{p\t} (<),
Ox\

s being the upper integer here A itself so that we employ
another integer 8 and

p.
the lower integer in V^.

We easily verify that

A-~ = Ax-(')jLj$x8) +().-
<ht <)', w du ' J V c)u

and therefore

.,. (152.2)

Now, since (4 . 3)
x/1

a^ s
=

ej-,

we see that . - a^ =2<j>a" Vf, (152.3)
V Li

and ~{rkh] = ~a

we see that

*. (152.4)

Since

. (152.5)
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Now if we multiply each side of this equation by 7l and

sum, remembering that

we get

Vl

= v 1

;. (tkvf + Ff . ,)
-

0,.n vl - <f>,: V;. vi

Fl'.,+ F!'.<)

(152.6)

We deduce from the equation for -- {rkh} that

*~
{ rklcl = <t>/

V'
l

. + <t>V
l

r . t -<t> l
.V-<

= -/>, F-0F,. - (152.7)

Combining the formulae \ve have proved, we now see that

*- v^ - v h

, (<t> vl ., +^ v I)
-
7; (

We also have - V =
</> (A + V2

) -f A 2 (0),
o!6

and therefore

A Fa = M (4 + V'2
)

so that r-
-

(1

A-^-2FF^. (152.9)

Now

and therefore ^
M + 2

FF^,
= 2 7* V'l . M .

We have proved (150.7) that 4* . K
=
%A^

and we have K. A ='F/J ;
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it follows that we have

^(V^-VJ = 0. (152.10)

153. Now A is an invariant for any transformation of the

coordinates x
1
...xn in the ^-way space, and so therefore is

j-~.
We shall therefore, in finding an expression for -->

employ geodesic coordinates at a given point and thus materially

simplify the necessary algebra.

and therefore

and we proved in the last article (152 . 7) that

Hence, in geodesic coordinates,
- - is equal to

'

Now
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and therefore

Xt) V
1

,,

%0

(153.2)

It follows that - is equal to

, (F) + 24'/ F,>. (153 . 3)

Again, a^r^'T*,
'

and therefore

^^ n-x = 0/a^ T^.,
= a">, F^

= A (0, TO,

^^
so that -r is equal to

%u ^

-2FA2 (0) + 2^r^ +2^F> (153.4)

Since, then, the equation

^F^ (153.5)

is expressed in invariant form, it is true not merely at the

point, whose geodesic coordinates we employed, but universally.

Now

so that (F^F^-F
2-vl)= 0. (153.6)
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154. If, then, we are given any 7i-way space, and we find

functions V\ such that

which will satisfy tho equations

^x=^, A=VlV*-V, (154.2)

and if, taking arbitrarily any function <p of #15 J\2 , ... xn and

a new variable u
t
we allow a^. and Vl to grow in accordance

with the laws

^ = -20^ (154.3)

^ =
<j>(A

i

l + VV''i ) + a'<j>. H , (154.4)
<H(/

taking as their initial values when n the given values ot

aik
in terms of ^ ...#, and the values initially found for Vf,

the equations V^.^=V^ A = V*V*-V* (154 . 2)

will remain true when u takes any value \vhatever, and the

form 2 c?u2 + a{udx{
dxu (154.5)

will be the ground form of an (u-f l)-way Einstein space.

The surfaces u = constant may be any whatever in the

Einstein space; and we see (149 . 2) that the property of this

space is that the sum of the products two at a time of the

reciprocals of the principal radii of curvature of any surface in

this space is equal to \ A ,
where A refers to the n-way space

given as the section by the surface of the (ti + l)-way Einstein

space.



CHAPTER XII

THE GENERATION OF AN (w + l)-WAY STATIONARY
EINSTEIN SPACE FROM AN oi-WAY SPACE

155. Conditions that the (>i+l)-way Einstein space

surrounding a given )i-way space be stationary. Wo have

shown tbat any rt-way space is surrounded by an (n-f-l)-way

Einstein space, and that the equations which lead to the

Einstein space are

VK V' A V x V^ V2
Y '

>
"

'

where A* = axt
{t

The Einstein space has the ground form

<t>'

2du2 + bji.dxidxj.,

where bjjs
is equal to a^ when u = 0.

We now inquire what properties the n-way space ground
form must have if

(f)
and byc

are to be independent of u.

Clearly the necessary and sufficient conditions are that

V\ = 0. (155.1)

Wo therefore have -4 = 0, <J)A^ + 0^
=

;

that is, 0{X/}+0- x^=0; A
2 (0)

= 0. (155.2)

We now 'want to transform the ground form

a
ik dxi

dxk

and the function
(f> by the transformation

<*=&*". <^= (2 -n)r
- 055.3)

We have a"- = e~ zv lik
,



THE APPROPRIATE W-WAY FORM 221

Let*
0'*

where QJ =
and therefore 6- a -ft.

We also have A (0)
= 0% A

2 (0) = 0'.,.

It is easy to verify the following relations :

0r,./,-0,Vi = (^-2)d. th + a
rh \(0). (155.4)

Now W}a={^'h+^,
and

{rkih} = ^- {rifc}
- .--

{ r/Jj} + {r} [thk]
-

|r/^] {fit},d^A MI
and therefore

We also sec that

) a -(n-2) (A

and therefore

(A 2 (F)-(ft-2)A(F)) rt -(A2 (F)) 6 =0. (155.0)

NOW F;,. /( -F,V,+F!.,F;,-F;,,F,,

= (n-2)(F. rA+Fr
F

7i ) + a,.7( (A2 (F)-Oi-2)AF),
and therefore

{rtth} a
= [rtth} b + (n-2)(V. rh +Vr Vk ). (155.7)

It follows that, since

-1) VrVh = 0. (155.8)

*
[This is not the introduction of some new function 0, but an assign-

ment of meanings to
0^.

and 0* in connexion with any known
0^.

The

meaning of
f^

is that assigned in ^.]
*
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For the form b^dx^dx^ we therefore have

A2 (F) = 0, {rtth} b
+ (n-l)(n-2)Vr Vh = Q. (155.9)

If we can find a ground form to satisfy these conditions, then

<*
= &

Sr
.

= e(
2-"> r

(155.10)

will give a ground form which will lead to an (7i + l)-way
Einstein form, the coefficients ofwhich will be independent of u.

158. Infinitesimal generation of the (?i-fl)-way from

the n-way form. In order to simplify the problem of finding

the ground form b^dx^lx^ we shall regard it as an (n+ 1)-

way form and bring it to the form

*
<p*du~ + bfadzidXk , J

= 1 . . . n, (156.1)

as we have done before.

The equations

A, (V) = ; {rtth} + it (n- 1) Vr Vh =

now become, if we take VVn (
1 n) u,

{rtt-} = 0. (156. 2)

If we regard the form as generated from ^ i^dx^Lr^ wo
have ( 146) the equations

We therefore have

.,i
-
^n^-a^a^n^n^, (ise . 3)

= a"'(n r!t
. k-nMi .

l), (156.4)

o = 4>(A H + uKi'(n ri
nhk-nrK

n
id-

* The
tf

used here is not the ^ of the Einstein form.
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The first equation may be replaced by
- 0-

2 = A + a^ (fl fi fl^
-fl,^ a* 1

.

The geometrical meaning of this equation, since it may be

written

is

12
that is, the sum of the products two at a time of the principal

curvatures of the equipotential surface V= regarded as

a locus in the (n+ l)-way space is equal to %(A + 0~
2
).

Making the transformation to the functions VI we have

^=-20a f
.

v y?, (156.7)

and, from [A 2 (u)] b
= 0, we have

that is,
- X/1 /2A A-' -0- 4

^ = 0,
16

or - F0-
1 -

</>->^ = 0;
c)U

so that ^ + F02 = 0. (156.8)

We have, a denoting the determinant of the form a
ili
dx

/i
dxk ,

t>ct j*ba
- - = aa l- - -

en du

= - 2 aai/f f2ih (f)
= -2a V<f> ;

and therefore ^ (a0~
2
)
= -2aF0- 1

-2a0~3^;o '\jj v 16

so that the equation
-~ + F02 =

may be replaced by (<^0~
2
)
=- 0. (156. 9)
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We have the equations

As earlier, we therefore see that

(156.10)

and this ia equal to zero, since

0-
3
<^ = i^-J7X>+ FFx-

We also have, from what we proved earlier (153 . 5),

and we have

i.
(0-2 + F 2-

7$; F^)
= - 2 tfr

3

1|
+ 2 F (0 (vl + F 2

) + A.

and therefore (^ + 0~
2 + F 2- F

)
= 0. (156.11)

We thus see that the required (7i,+ l)-way form can be

generated from any w-way form innnitesimally by choosing Fl

and to satisfy the equations

F* =F,,; A + 4>-*+V*-V*V$ = Q. (156.12)
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157. Kestatement and interpretation of results. We
may now restate the result at which we have arrived.

Let a^dx^dx^ be the ground form of any 7i-way space
whatever.

Find functions Ff such that a^K V i
= aiK V k ,

and which

satisfy the equations F*. x
= T^.

Define a function by the equation

where A=a
Let the coefficients a^ and the functions and Ff grow,

with respect to a new variable u, according to the laws

having as initial values, when u = 0, the given values of a ĉ

in terms of x^ ... a;M and the values initially found for F* and
(/>.

The equations I/A __ rrH y - y

will remain true when u takes any value whatever ; and,

a denoting the determinant of t^..., a</>~
2 will remain

a function of x
l

... xn only.

Tho (n+ l)-way form

(/>

2du2 + a^d.^dxj., i
= 1 . . . ?i,

will now have the properties

A
2 (u) = 0; {.ft-}

= l; {rA}=0; {r^-*} = 0.

Transform now to any new variables which we may still

denote by x
l ... xn , %n+l ,

and let

n (n 1)
=

and thus let the (71+ l)-way form be
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It will now have the properties

where A
2 (7) = 0.

From this (n+ l)-way form let us pass to the form

bftdxidxfr

where bik
= aih e

2v
y

and let 6 = ^ l^ v
.

We now have, for the (u-f l)-way form

Iwlxtdxk, [
= 1 ...71+1,

or = 0,

where ^ = ft*' {rtf/ij,
= 6^

(9.,^.

The (?n-2)-way form Q^du^-^b^dx^lx^ will now bo an

Einstein form and the coefficients b^ and 6 will he inde-

pendent of 16.

158. A particular ease examined when n = 2. As

a particular case we might consider what properties the

n-way space must have if in the (u + l)-\vay form which it

generates, namely 02</w
2 + a^.d^d^. , (158.1)

the coefficients a^. and the function are to be independent
of u.

We must have, as the necessary and sufficient conditions,

A -4 0"
2 - 0,

0^ + ^'0. //t
=0,

that is, A H- 0~
2

0,

0(A^}+0. ;At
= 0. (158.2)

Now the chief interest of an Einstein space is when its

dimension is 4. We shall therefore only consider this special

case when n = 2. We thus have

that is, '20
2 Ar

r= 1. (158.3)
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The other equations become

^allA"-0. 1l
= 0; 0a12

/t
r

-0. ]2 =0; 22tf-0. 22
= 0. *

(158.4)

We wish to find the properties of the two-way form which

will satisfy these tensor equations.

The element of length on the corresponding surface* we
take to be given by ds* = 2e

- edudv.

We then have
{111} + ^ = 0, {222}+02

= 0,

{112} = [121} = {122} = {221} = 0,

and A" = e*0
12

.

The equations which have to be satisfied will now be

0,i + 0i0i = 0; 200 I2
= C -'; 23 +0a 2 =0;

20V0 ]2
= 1. (158.5)

We should notice that the suflixes in these differential equations

denote ordinary differentiation, and not tensor derivation

which would be indicated by the dot before the suffixes.

By means of the equation 20012
= e~~ wo can eliminate

from the other three equations, and we see that they reduce

to the two equations

00i0ii2 = 0i2(00ii-0l)>

0020221 = 012 (0022-01)- (158.6)

These two equations may be written

^- (
lo 0i2 + l<>g -log 0,)

= 0.

Consequently
*'20 and ^20

(158.7)
01 02

are respectively functions of v only and of it only.

Wo do not IOFO in generality by assuming that

0J20 = 01 = 02

and therefore = F (u + v)\

where F"J? = P .
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The ground form of the surface is therefore

<fc
a = iFdudv, (158.8)

where F is a function of u + v given by F"F = F'.

If we take the parameters on the surface

then ck2 = F' (x) (dx
2 + dy*), (158.9)

and F" (x) F(x) = F' (x). (158 . 10)

The surface is thus a particular case of a Liouville surface.

159. General procedure in looking for a four-way

stationary Einstein space. In general, when we want a four-

way Einstein space of the form

62du2 + bikdxi
dxk , j.

= 1, 2, 3,

in which the coefficients bik and are to be independent of u,

that is, what is called the '

stationary
'

form, we begin with

the ground form
ail dx\ + ^ a^dx^x^ a^dx\ . (159 . 1)

We then find in any way three functions

/211S /212 =r /2
21 ,

/222

of the parameters x
}
and #

2 which satisfy the tensor equations

/2n .

8
= /2ls . lf /22ri = /2

12
.

2 . (159.2)

We define a function by the equation

/2n /2
22 + /2? 3 . (159.3)

We now let the coefficients aik and the functions fi
ij grow

with respect to a new variable u in accordance with the laws

7J?
= - 2* fltt' <

159 - 4
)

75?= *' ifc
-
15

The equation which defines
<f>

will be unaltered, and the

equations /2U . 2
= B^^, ^^ = BM . g (159. 2)

will remain true. *
r
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We thus attain the three-way form

4>
2cZu2 + andx\ -{2a^ 2dxl

dx2 + a^dx\, (1 59 . 6)

in which in general </>
and the coefficients a^ will be functions

of #!, #
2 ,
and u.

In the particular case we considered in the last article,

when the two-way form appertained to a particular class of

Liouville surface, the function
</>
and the coefficients a^ will

not involve u.

But in all cases the three-way space with the form

will have the property A
2 (u) ~ 0, (159 . 7)

{ittk} = 0, {itt-} = 0, {} = !, (159.8)

and therefore

(2323) = -fa22 ; (31 31) - _ *
; (31 23) - Ja12 ;

(23 12)
-

; (31 12) - ; (12 12) =
"

(159.9)

From this three-way form we can deduce the ground form

of a stationary four-way space by the rules we have given in

the general case.

We should notice that if we begin with the proper Liouville

surface, the Einstein stationary form at which we arrive

can be, by a proper choice of the parameters, thrown into

a form in which all the coefficients will be functions of two

parameters only.

160. Conclusions as to curvature. The three-way space
with the form

is such that, if we regard the surface u = constant as lying in

it, the product of the reciprocals of what we have called its

principal radii of curvature is

J/11 UoO """"" U T 911 22-f1 -

(160,])aiia22~~ a f2 *

We must not confuse thgse racHi of curvature with the
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radii of curvature of the surface n = constant regarded (as it

may be) as lying in Euclidean space.

We have in fact the theorem :

* the product of the reciprocals

of the principal radii of curvature of the surface, u constant,

is equal to ]{ --J-0-*, (160 . 2)

\vhere K is Gauss's measure of curvature/

Riemann's measure of curvature corresponding to the

vectors and
77

which lie in the tangential Euclidean space

at any point is
( 141)

{]GO 3)
i

,
l ii )'

where the direction cosines of the vectors and
77

are re-

spectively \
2

,

3
,
and

7/

1
, r;

2
, rj''.

If the vcctois and
TJ
touch the surface u = constant, this

becomes -|0~
2

. If their plane contains the normal to the

surface it becomes \

" 2
.

In the particular case when we start with the proper
Liouville surface these are respectively K and K, where K
is Gauss's measure of curvature.



CHAPTER XIII

it-WAY SPAOK OF CONSTANT CURVATURE

161. Ground form for a space of zero Rlemann curvature.

We shall now consider the simplest form in which the ground
form of a space may be expressed in which Riemann's

measure of curvature is zero everywhere and for all orientations.

For such a space {trpr/} (161 . 1)

for all values of the integers.

Consider the system of differential equations

0.^
= 0. (101.2)

We have
0.^,.

= 0, <f>.prq
= 0,

and therefore (* <] <]?') 0,, >

that is, tlrfrq] fa
= 0. (161 .3)

A system of equations with the property that no equation
of lower order can be deduced from them by the processes of

algebra and of the differential calculus is said to be '

complete '.

The necessary and sufficient conditions that the system of

differential equations 0.^ = may be complete is then

-\ptrq]
= 0, (161 . 1)

that is, that Riemann's measure of curvature is everywhere
zero.

If 'ii and v are any two integrals of the complete system

-0, (161.4)

and therefore, since A (?(, v) is an invariant, it is a mere

constant.
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If, then, we take any n independent integrals of the equation

system
0.pg

= (161.2)

as our new variables, the ground form will take such a form

that each a^ is a mere constant.

The ground form can therefore be so chosen as to have the

Euclidean form d*l + ...+ds* m (161 .5)

162. Ground form for a space of constant curvature for

all orientations. We next consider the ground form which

corresponds to a space for which Rieinann's measure of

curvature is the same constant for all orientations.

We have (Xw) = K
(a^a,,p-a^V),

ami therefore [Xtpp} = Kfr^-a^fy. (162.1)

If, then, t ^ p and t ^ (a,

we Lave :X/z/jj=0, (162.2)

and (A2W}=A'aAM

"

(162.3)

it p is not equal to
p,.

Here the repeated integer p is not to

have the usual implication of summation.

Consider now the system of equations

u
ftq
+ Ka

l)q
u=0. (162.4)

We see that tho system is complete : for

u. tr + Ka )q
u r
= 0,

ruq
= 0,

and therefore \ptrq] ut + K(aljq
ur a

pru^ = 0,

and for a space such as we are considering this is a mere

identity and not a differential equation of the first order.

The system is therefore complete.

Now let u be any integral of the complete system (162 . 4).

We have ?& u = fa^

= - K
(
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and therefore Au -hKu2
(162.5)

is a mere constant.

As u does not satisfy any equation of the first order, being
defined as any solution of the complete system, we can choose

ib so that A (u) + Ku2
is eipial to zero at the origin, and

therefore zero everywhere.

Let Ar = -
j (102. G)

We now have A (log u) = />2

Take now as now variables

where A
(//,, 7/ 7.)

= 0, & = 2, ... u.

The ground form will take the form

dx'[ -f a^dx^dxj.y
*

2, ... a,

i

r/
/"/'"'

ami, since
'^-^r/ "TJ-T"

and u

we have
!
tk 1

\
H

j~-
=

;

that is, (ikl) + - = 0,

t> 2
or -

(log ay.) -p

It follows that a
i1f
= e"

/>,-/., (102 . 7)l/t t/l. 7 \ /

where b^ is a function of .i'2 ... xn only.

As regards the form
b.^dx-dxi.,

' = 2, ... ?,,

wo see that, since
'2xi

(rldh)a = e"^ (rkih)b + {ikl} (rhl)
- {hkl } (ril)

H L
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and since (162.1)

wo must have (rkih)^ = 0. (162 . 8)

It follows that the ground form of a space of constant

negative curvature may be taken as

dxl+e (tteS + ...+<&,;). (162.9)

By the substitution

the form may be written

7) >

(102. 10)

The corresponding form for a space of constant positive

curvature may be taken as

7?2

f -(-<Lx\+dx\+...+dxl). (162.11)
Xi

163. Different forms for these spaces. We may find

other forms for these spaces.

Taking the case of positive curvature, instead of choosing u
so that A(u)+ Ku* = 0,

we may choose u so that

(163.1)

/>

Let u = cos z
,

then A (x^ 1,

and the ground form may be taken

dx\ + aik djCidxk , [
= 2, ... n. (163.2)

Since u

we now have (i/ol) + %^ cot ^J = 0,
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and therefore a v .
= sin 2

^k-;., (163 3)1

JLi

where b^, depends on #'
2 ... xn only.

We have

(ikl} (rhl)-{hkl} (ril),

and therefore

rf^ = ;* ^ (rAtt)6 + cot* 5
"

'

*"H^4^ ;

that is, (,*;/o,.
= *''**->V

The ground form may therefore be written

where b^dx^dxj. is a ground form in o^...^ only, with the

same constant positive measure of curvature.

It at once follows that the ground form for a space of

constant positive curvature may be written

/-V> /Y*

dx\ + sin2 '! tU-rt + sin 14

-.! sin
2

'-J dx\ + . . . ;

/i li JK

or perhaps better as

7i
2

(c/a;? 4-siir a.y/.r? -|- sin-a.
t

1
sin 2 ai

2 (/iC5 -f ...). (1G3 . 5)

A form obviously equivalent would be

li2
(dx* + cos2

a\dx^ + cos2

a^cos
2
xjlx\ + ...) (163.6)

The latter form when applied to a space of constant negative

curvature would become

-R* (dx\ + cos2^^^ 2 + cos2 a\ cos2
X^IJL\ + ...), (163.7)

and this may be written

R*(dxl +cosh 2
.r

l (te| + cosh 2^ cosh2

x^dx\ + ...). (163 . 8)

The surface ^ = constant, that is, the (n l)-way space

x.z ... xn , regarded as a locus in the oi-wny space of constant

curvature given by the form

(ta| + ..., (1G3.9)
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has all its principal radii of curvature equal to

n x*H tan -73 9M
and any line on the surface is a line of principal curvature.

164. Geodesic geometry for a space of curvature -f-1.

We shall now consider the geodesic geometry of a space

whose curvature is positive unity : that is, the space corre-

sponding to the form

dt? = d-jci -f sin
2
aj,^? +sin2

aJ
1
sin2

a3
J
rfo; + .... (164 . 1)

We shall first find the equation which a path must satisfy

if it is to he stationary with respect to variation of the

coordinate x
l

.

If we write for -4-* we must have
*

<is

and therefore, since

1 = x\ -f- sin
2 x

v x\ -f sin
2
#, sin 2

c.2 ?t + >

wo have ^ = cot^ (1 -x\). (1G4.2)

It follows that -
l

. sin2
;r

x (x\
- 1

)
= 0,

and therefore cos j\ cos a
x
cos (s + l ) 1 (1G4 . 3)

where a
a
and

l
are constants, and s is the arc measured from

some point on the path.

It follows that

_-- --
r/

(1 COS''
Ofj

COS^ ( -I- a ))"

-, tan (s 4- f,)l -----

(164.4)

T ^ A -
Let **, = tan

1 sin

then we have ds'i
=

rfe^ -f- sin
2 #2 cZ#o + . . . . (164.5)

Here 8
l

is the arc in, an (/i-l)-way space of curvature

positive unity, and if 8 is to be stationary for variation of #
a ,

then 8
1
must also be stationary.

'
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Proceeding thus we see that the equations which define

a geodesic are COs x
l
= cos a

t
cos

( + e^,

cos ,T
2
= cos a

2 cos^ + 6
2),

. . .
, cosu^j = cos an _ 1

cos (sn_ 2 4- en _i)>

a
'n

== 8n-l + n>

sin a
t
tan s

1
= tan (s -f fj),

sin or
2
tan s

2
= tan fa + e

2),
. . . ,

sino^.jtans^ = tan
( /4

_ 2 4- e
M _,). (1G4.6)

If we take

j
r cos a?

x , 2
= r sin a\ cos i^

2 ,
, r sin ^j sin o?

2
cos C

:i ,

n = rsinaj
1

... sina'
7? _ 1

cos,r
?i , w+1

we see that ! +I + ."+n+
and we easily verify that

(164.7)

The 7i-way space of curvature positive unity is then the

section of an
(?i + l)-way Euclidean space by a sphere of

radius unity.

165, Geodesies as circles. We shall now prove that

every geodesic is a circle of unit radius in ordinary Euclidean

space of three dimensions, but generally two geodesies will

not lie in the same Euclidean three-fold.

We have for a geodesic

sin x
r cos s

r
sin a,, cos (^-.j 4- e

y.),
sin x r sin s r

= sin (s r_ l + e r),

and therefore

sin xr cos xr+l = A
f cos s

r_ 1 + Bf
sin ts

r^ l

= ar cos( r_ 1 + J.)
+ 6,.sin(8 r_ 1

+ r), (165. 1)

where -4 r ,
B

r ,
a r , &,. are some constants.

It follows that

sin ccr sin xr+1 cos
cc,. +2

= sin a1

/. (-4,. +1 cos 8r + Br+l sin s r)

= J. r+1 sin ar cos (8,..! 4- e r) + J5
y

.+1 sin ^..j + er),

and therefore

br cos a r sin x r sin xr+l cos ^r4. 2
fer+1 cos a r

sin j' r cos a?r4 1

=
(JBr+1 (fr sinar

6
r -4 r+1)cosa: l

.. (165.2)
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We thus have a linear relation between the three coordinates

/> s/'+l' br+2*

By a linear transformation in the ('Ji-H)-way Euclidean

space t
... w+1 wo can take it that the first such relation is

1
=

'
and that

? +j + ... +* + i
= *

Proceeding thus with respect to any one geodesic we can

take it that the equations which define it are

i.1 1
that is, ^

t
=

,
ar

a
=

, ... a?M-1 =
t t &

It is therefore just a circle in the space given by
''

2 = d+'*!5 + i. 065 - 3
)

and its equation is
j{ +^- + 1 1, (165 . 4)

with & = 0, & = 0, ... _,
= ().

166. Geodesic distance between two points. We shall

now find an expression for the geodesic distahce between any
two points in the u-way space whose measure of curvature is

positive unity.

Let the two points whose coordinates are

a, ...#,* and y^...yn

be denoted by x and y y
and cousider the geodesic which joins

the two points. Let s, s
lf

... ,s
/l_ 1

be the arcs which correspond
to x, and s', s'

19 ... s'^-i the arcs which correspond to y.

We have

cos x
l
cos 2/t + sin x

l
sin y L

cos 5
t
cos ft\ + sin ^ sin yl

sin
,_

sin s\

= cos2
a, cos (s 4- e^ cos (s' -f fj) + sin2

j
cos (s + 6j) cos (' 4- 6j)

+ sin (s -t- 6
t )

sin (' + l ) t

and therefore

cos(s' s)
= cos x

l
cos

2/j 4- sin x l
sin yt

cos (8\ s
l). (1GG . 1)

Similarly we see that

cos^'j si)
= cos cc

2
cos 7/2 4- sina?2

sin y cos (8'2 sj (166 . 2)

(1C6.3)
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It follows that, denoting the geodesic distance between the

points x and y by (xy),

cos (xy) cos x
l
cos yl + sin x

l
sin yl

cos cc
2
cos y >2

+ sin
0,'j

sin y l
sin #

2 sin y2
cos #3

cos y., 4- . . .

+ sin x
l
sin ^ sin x^ sin ^ ... sin j?M-1 siii yll

_ 1
cos (xn-yn).

(166.4)

This is the formula which is fundamental in the metrical

geometry of w-way space of curvature positive unity.

167. Coordinates analogous to polar coordinates. We
can now employ a system of coordinates, to express geo-

metrically the position of any point in our space, which will

be analogous to the use of polar coordinates in ordinary
Euclidean space.

We take any point in the space as origin, that is, the point
from which we are to measure x

l ,
the geodesic distance from

the origin.

It will be convenient to denote this distance by tan" 1

r, so

tliat r = tana:
1

. (167.1)

Let us now consider the system of geodesies which pass

through this origin. For any one of these geodesies #
2 , ... x

fl

are fixed, and we may therefore regard *r
2 ,

...xn as the co-

ordinates which define the geodesic, and thus regard r, a'
2 ,

...xn

as the polar coordinates of a point in our space.

The geodesies through the origin cut the surface r = con-

stant iii an (?i l)-way space of positive curvature 1 +r~ 2
.

In particular the surface r = infinity (167 . 2)

is an (/i l)-way space of curvature positive unity, and the

coordinates of any point in this space define a geodesic through
the origin.

The geodesic distance between two points at smull distances

x
l
and y1

from the origin is given by

cos (^2/1)
= cos x

l
cos 2/!

+ sin x
l
sin yl (cos x2

cos y2 + sin x
2 siny2 cos #3 cos 2/3 4- . . .),

and therefore
t

X 2
1/

2



240 ?-WAY SPACE OF CONSTANT CURVATURE

But, if is the angle between the geodesies through these

points and the origin,

(^2/i)
2 = x

l +2/1
- 2 ^i 2/i

cos 0-

It follows that

cos Q = cos x
2
cos

// ,, -f sin :c sin
//,,

cos #a cos y3 -f . . .
, (167.3)

that is, the angle between the two geodesies is the geodesic

distance between the points where the geodesies intersect the

surface r = infinity.

The geodesic distance between any two points is therefore

the geodesic distance between two points, on a sphere of unit

radius, whose polar distances from a point on that sphere are

#! and 2/1, and the difference of whose longitudes is the angle
which the geodesies through the points cut out on the surface

r = infinity.

168. The three-way space of curvature -f 1. We now
limit ourselves to the case where n = 3, that is, the three-way

space of curvature positive unity. For this space x is the

geodesic distance from the origin ;
and x

(2
and x

(} may be

taken as the polar coordinates of the point on the two-way

surface of positive curvature unity, ./'!
=

.
where the

<L

geodesic, through the point x, x%, x
3 and the origin, inter-

sects the surface.

We may without loss of generality suppose that x
l

lies

between and , x.2 between and TT, and #
a between and

i

2n. In the surrounding four-way Euclidean space x
will

then always be positive.

Through 'two points in our space one, and only one, geodesic

can be drawn, unless the two points lie on the same geodesic

through the origin, and are the two points where that

geodesic intersects the surface x
1
=

Through three points in the space we can in general draw

one, and only one, two-w&y locu^s of positive curvature unity.
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We see this by noticing that three points (xl9 ;r
2 ,
x
3), (yl> y2 , y^),

and (z lt 2 ,
s

:j ) determine the plane

in the surrounding Euclidean space. The exceptional case

would be when the three points lie on the same geodesic.

By a linear transformation, in the Euclidean four-way

space, we may take the plane to be
t
= and the locus of

the points of intersection with the sphere to be given by

There will then be a corresponding set of coordinates

o/p .r
2 ,

r, such that tlie locus is given by x
l
= in the new

*""

u

coordinate system.
It will be convenient to call any^ two-way Jocus of curvature

positive unity a plane, though we should remember that it is

only properly a plane in the Euclidean four-fold. Similarly
we shall call any geodesic a line.

Plane geometry in our space is therefore just spherical

trigonometry.

169. The geometry of the space. We may now introduce

a different system of coordinates in order to bring out the

relationship between the geometry of space of curvature

positive unity and that of ordinary Euclidean space.

Let x tan n\ sin x
2 cos ,r

;

,
,

y = tan x
{
sin .r

2
sin ;r

3 ,
z tan Jc

l
cos tr

2 . (169 . l)

In this system of coordinates the geodesic distance between

two points (x, y, z} and (,', y', z') will be

cos" 1 ^--
t-i~^ yri '

"

(169 . 2)

where r2 = x2
-f y

2 + z*.

The square of the element of length will be given by

dtp = (1 -f r
2
)"

1

(dx* + dy
2*

4- dz* ( -f r-)~
l r2

dr-) ; (169 . 3)

but in this geometry, as ir) EucMcan geometry, having the
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expression for the actual distance between any two points, we

do not need to make so much uso of the expression for the

element of length.

The equation of any plane is

\x + p.y + vz + 8 0.

Now a plane, we know, is a two-way surface of curvature

positive unity. Let x
lt yv z

l
be the coordinates of its centre,

that is, the point at a geodesic distance - from every point
u

of it.

We then have sx
l + yy {

+ zz +1=0, (169.4)

and therefore Bx
l
= X, Byl

=
//,

8z
l
= v.

The angle between two planes is, as in spherical trigonometry,
the supplement of the angle that is, the geodesic distance

between their centres.

The cosine of the angle between the two planes

,1 r 12 15i , v ,,,
is therefore

l- 2~~f^^\^
l 2 ~ l

-
-

(1 GO 5)

(Xf +f*i+vl + Sir(W+Ltl+i>
2
> + 8rf

The equation of a plane, given in terms of the coordinates

of its centre, is ^ + yy v +^ + 1 = 0.
(1 G9 . 4)

The condition that the plane passes through the origin, that

is, the point where x, y> and z are each zero, is that its centre

should lie on the plane whose centre is the origin.

The equation of a line is given aw the intersection of two

planes tCXl + yyl +^+1 = 0,

^2 + 2/2/2 + ^2+ 1 0.

In connexion with this line we consider the line joining the

points (xlt y^ X)
and

(u?2 , #2 ,
z

>2).

The plane whose centre is A may be called the polar plane
of A. We see that if J5*lies on the polar plane of A, then A
lies on the polar plane of .&
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We now see that if (x l9 y^ X)
and (x,2 , y25

z
2)

are any two

points on a line, then every other point on the line is given by

Z = 1*
9 (1G9.6)J

where p : q is an arbitrary parameter.
The line given as the intersection of the planes

^+1 = 0,

stands therefore to the line joining (xly yly z^) and (#2 , y^ 2)

in the relationship, that the distance between any point on

the one line and any point on the other line is -
. The lines

Li

which are in this relationship will be called polar lines.

We now wish to consider two lines, viz. the line given by

C3
2 +l = 0,

and the line given by

^4 + 2/2/4 + S3* +1 = 0.

If these lines intersect, the four points

('''l i 2/1 .
C
l) 5 ('<'*> ?/2^2)> (^3 2/3 . -a)> (^ 4 #4> -4)

lie on a plane, and we thus see that if two lines intersect their

polar lines also intersect, and the plane on which they lie is

the polar plane of the point of intersection.

170. Formulae for lines in the space, and an invariant.

Just as in Euclidean geometry, a line has six coordinates.

We define these coordinates

I = #
2
- iH

t ,
m =

7/a
- y l , n = z, -zv X = y^-y^ ,

The six coordinates are those of the line joining the points

(xl , I/,, , j) and (ic2 , ?/2 ,
^
2 )> an<^ ^ey are connected by the relation

ZA + w/*-Hii'= 0. (170.2)

We easily see that if Z, m, w, A, /i,
V are the coordinates of

a line, the coordinates of itfj polar line are A, /z, i/, ^, ?>i, n.
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If (12) denotes the geodesic distance between the points

COS (12)=- y^y,
'
J*

and therefore sin' (12)=
m + tt + + j* +

.

( }'

(l+^i)(l+^)
^ ^

Consider the expression

IV + w/m' 4-
<?m /

+ XX" + / + i/^ _
/*

2 + A- + /
2 + i^*(^^

where
(Z, m, -H, A, /^, i/)

and
(/', m', /i', A', /, i/') are the co-

ordinates of the lines which respectively join the points 1 and

2, and the points 3 and 4.

It is easily verified that the numerator of the expression is

and the denominator is

^l 1 + 6
'i) (1 + *y I

1 + 6
'.;) (I + ^4)

^'m (12) sin (34).

The expression is therefore equal to

cos (13) cos (24) -cos (14) cos (23)

sin (12) sin (34)
' (170.4)

and this is clearly an invariant.

Suppose now that the points 1 and 3 coincide. The ex-

pression becomes
cos(24) - cos (14) cos (12)

sin "(12) sin (14)
'

and we<see that this is the cosine of the angle between the
lines 12 and 14.

Suppose next that the 6
line 13 is perpendicular to the lines

12 and 34.
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Clearly, from the formula

cos (24) = cos (14) cos (12) (170.6)

when the lines 12 and 14 are perpendicular, the line 13 will

be the shortest distance between the lines 12 and 34.

The planes 132 and 134 will be the planes through the

shortest distance and the lines 12 and 34.

We may, to interpret the expression

W + in m' + 'tin' + XX' + fifi + i/i/

since we have seen that it is an invariant, take the points

1, 2, 3, 4 to be

0,0.0; <r
2 , 0, 0; 0, 0, s.,

; 4 ,?/4 ,ca ;

it now becomes ^ =
The equations of the planes 132 and 134 become respectively

The angle between these planes is

cos" 1 JL_

The shortest distance between the lines is

1

cos~

and therefore the invariant expression is equal to the product
of the cosine of the shortest distance between the lines into

the cosine of the angle between the two planes drawn through
the shortest distance and the two given lines.

The invariant vanishes if the lines are polar lines. It also

vanishes if the planes through the shortest distance and the

two lines are perpendicular.
If the lines are not polar lines and if the invariant vanishes,

we see that the polar line of 12 intersects 34 and the polar
line of 34 intersects 12.
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171. Volume in the space. The expression for the element

of volume in a space of three dimensions and with the

measure of curvature positive and equal to unity is

sin2 x
l
sin .r^

dx
l
dx.2 dx.3 , (171.1)

returning to the original notation of 1G8.

The volume enclosed by an area of any plane that is,

a two-way surface of curvature positive unity and the lines

joining the origin to the perimeter of the area is

los ojj)
sin #

2 (L'2 dx } , (171.2)

where x
l
is the geodesic distance from the origin to a point

within the perimeter.
If the plane is at a geodesic distance p from the origin we

can use the equation tan p = tan x
l
cos x.2 ,

and express the above integral in the form

P X 7

i \\P~~ ^anP x
i
c t x

i
' ( '''> > (171.3)

J

where x
1

is now the geodesic distance to a point on the peri-

meter from the oiigin.

If we take r to be the geodesic distance of a point on the

perimeter from the foot of the perpendicular, and take x
[}
to bo

the corresponding longitude 6 in the plane, the above formula

becomes

- p / tan p cos p cos r cos" 1

(cos p cos r) \ A
2 ( /> =-^ 7- )<10- (171 . 4)
J v VI cos p cos" >'

/

If the foot of the perpendicular lies within the area, this

formula gives us for the volume the expression

fsin p cos r cos" 1

(cos^ cos r)
fi

pTT
- ~~ j= -~=^= (6C7, (171 . 5)

J V 1 ~COS Z

^> COS- ?'

where the integral is to be taken round the perimeter.
We notice that in space of curvature positive unity when s,

the variable in the equation of a geodesic, increases by 2 TT,

then 8
1?

s
2 ,

... also increase by 2 TT, and therefore the coordi-

nates #, , . . . xn all increase t>y 2?r. cWe thus, in proceeding along
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a geodesic, come back to the point we started from. We cannot

have any two points at a greater distance from one another

than TT.

172. An ti-w&y space of constant curvature as a section

of an extended Einstein space. We now wish to consider

the 'ii-way space of constant curvature as a section of an

(/6 + l)-way surrounding space.

We take the (71+ l)-way space ground form to be

pdut + bftdXidx!., I
= 1 ...>*, (172.1)

where bik
= a

ije
when u 0.

We have ( 146)

(r- A-)6
-

Extending the definition of an Einstein space, wo shall now

say that a space is an Einstein space if

bM(rkih) = cblh , (172.3)

where c is a constant.

We have

%. (172.4)

If the surrounding (u+l)-way space is to be Einstein

space according to the new definition,* we must have

[Called iii 18
311 extended Einstein space. \
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ca ri
= J

rt +
* ft

(/2 rt
J2

4fe
-/

That is, if Ff = u ktn
tl (172.5)

where /2,7,
= /2H =

a,,x F* = </,<A F*,

we must have c = $-* (\ ((f>)-a
ri

^
fl, ;)

- F* F^ , (1 72 . G)

VJ.,= F
M

. (172.7)

Now ^^^
and therefore

Multiplying by ct'^ and summing,

ref = A V
, + vj

; v + <f>-
1

0J
1 - -- F'; (172 . 8)

We also have

That is, we have

~

We may replace the equation

iV=**<*

by ^ + F 2 - F F^ = (TI
-

1) c.
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The equations therefore become

A + V2-V*V = (n-l)c, (172.9)

F^ = ^ ( (172.10)

= _20 ft y;. (172.12)

We may easily verify that the results which we have

proved for the case c = still hold in this more general

Einstein space.

The special conditions that the coefficients b^ and the

function may be independent of u become

A = (M-l)c, H + = c0,
that is, 0{Afy*} + 0.AM 0tfA/n A

2
= 0. (172.13)

Now let us assume that the ?i-way space is of constant

curvature K. We have

{\ttfi} = (l-n)A
r

ra/z.

If we choose /i so that //& = -C, the conditions that the

surrounding Einstein space may satisfy the required conditions

become ^ +Ka^ = 0,

Az(<f))+Ku(/) = 0.

The second condition is a consequence of the first set, and we
see that all that we need is that the system

0.A/i + A
r
aAAi0

= (172.14)

may be complete.
We know it is, and thus we may take

</>
= cos#

1}
and the

space o'iven by
cfe

2 = cos 2 ^duz + R- (dx \ + sin2^ dx * + . . .
) (172.15)

will be an Einstein space of the kind required.
If the space is of constant negative curvature we should see

that regarded as a locus in (n 4-1)-way Euclidean space it

would be an imaginary section.

The expression for the geodesic distance in space of negative
curvature unity is given by
cosh s + sinh x

1
sinh y l

+ cosh x
l
cosh 2/^sinh #2

sinh y2 + , . .

f sinh x
l

. . . sinh xn _ 2 sinh yl
. . . sinh yn _ 2

cosh xn^^ cosh l'n- l

... cosh xn _pco*>h[yl
... cosh yn -

l
cosh (%n --yn )'



CHAPTER XIV

vi-WAY SPACE AS A LOCUS IN (n+i)-WAY SPACE

173. A space by which any u-way space may be sur-

rounded. We now consider again the ground form of an

(>b+ l)-way space du* + b
ik dxi

(lx
j

. which, when we put u = 0,

becomes a^dXfdx^.
We have, by the formulae of 146,

{Mi},, = {ikh: a
-

{ik-] b
= n

{h -, {i-k\ b
= -

= * + 2/2, .

d a lf>

\V
f

e shall prove that we may surround any 91-way space
with a space for which

(^')ft = 0; (r-i-) h = 0. (173.1)

** = -%
then A/,

//>fc
=

(*/ nH- {rw, n ti
-

{
ikt

}
n

lr)

\rkt} -n t , {Hot}.
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Now we have seen that

and therefore

that is, A*.* =
x*
(^A-fc-^A-'Vfc)

= 0. (173,2)

Thus we see that the relations fl
ri .^

=
-^iVi- persist when

U. and lO row in accordance with the laws

+ax
"/2,.x/2^=0, (173.3)

7^ + 2^=0. (173.4)

We can therefore surround the 7i-way space with a space
for which

(
r
]>i.) b

_ o
; (r-i-) b

= 0.

174. Curvature properties of this surrounding space.

We will now consider what properties such a surrounding

space would have as regards curvature.

Consider the ground form of the surrounding space, which

we denote by the suffix ft,

Let B

7;
=

i;x? l
+ ... + v

be two vectors of lengths j |

and
| rj \

inclined at an angle &
which lie in the tangential (^+l)-fold and therefore in

Euclidean space.

Let = i

0i + ...+ 5

be two corresponding vectors of lengths | |

and
| TJ \

inclined

at an angle 6 aad lying in^he tangential n-fold.
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Wo have
I I*

= ''*,

4
| |

2
! r, |

sin* = (V-|V)(V-V)(-%V-
The measure of curvature 7fa , according to Riemann, which

corresponds to the orientation given by the vectors and ?;,

satisfies the equation

4 sin* 6
| |

2 h |

2 A'a - ( V- V)(V -

Now consider the vectors
, 77 when u = 0.

i;| cos*)

= 0,

We therefore have

snce

But (

aud therefore

n
pk
-n

ilt
nM ). (174.1)

Here Kb is the Riemann curvature in the (ra-f l)-way space

corresponding to the orientation of the vectors + z and

rj
4-

772; ;
and iTa is the Riemann curvature in the '/i-way space

corresponding to the vectors and
77.

175. We may express the result in yet another form.

Consider the ground form cfl^dx^dx^y where c is a constant

introduced to keep the dimensions right, and let a vector (
be defined by the equations /.A.-f r/2-/

= 0.

The vector will then trace out in some Euclidean r-fold an

7i-way space vc
l
...xn .

*
c
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In this space let us consider two vectors and
77

of lengths

| |

and
77 |

inclined at an angle 0', where

We have

4sin2 0'
|

2

1 77 1

2

= *('y-V)(W
and therefore

2
!r;i

2 + >)

2

!|
2
-277!!|77 cos0) = 0.

(175.1)

We see that the curvature of this (71+!)-way space which

surrounds the given ?i-way space depends, then, on the know-

ledge of the ground form fl^dx^dx^ with the property that

176. A condition that the surrounding space may be

Euclidean. We now ask whether the surrounding space can

be Euclidean ?

If it is Euclidean we must have

. 0.

We have seen in 173 that, if when u the equations

H
ri

.

ll
= fl rk .

i
^

(176.1)

hold, they will persist for any value of u whilst n
ik

and
a,-/,

grow in accordance with the laws

\^

(170.2)

= 0. (176.3)
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We shall now prove that if these equations hold, then, if

(rkih)+n rhnik-n ri
nhk - o (ire . 4)

holds when u = 0, it also will persist when u has any value.

The expression

~
(rkih) + {rtih} n ]d

-
{Idih} fl

fl

is a tensor component : when we refer to the geodesic coordi-

nates of any given point we shall find that it vanishes at that

given point and therefore vanishes identically.

So referred,

(rkih)
= - ( (rik) (

ii i

Now = Sl
fi

. k + { rkt }
nu + { ild} n,t ,

and therefore

~
(rkih) = A ( [ikt}il rt

-
{ irt] nM )

= f2
rt [ktlh] -n l:l (rtih], (176 . 5)

which proves the required formula.

Again

fXa^ (kphi)
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It follows that

^ ((rkih) +n^n^-n,^) = o
;

that is, the equations

Sl
ik '-fl ti

fl
Ilk
= 0, (176 . 6)

if true when -u = 0, will always be true.

The condition that an ')i-way space may be contained in

a Euclidean (H + l)-\vay space is that the equations

n
ri

.
jf
= n

tjf
.
i9 (17G.7)

may be consistent.

177. Procedure for applying the condition when n > 2.

There is now an essential distinction between the case n 2

and the case n > 2.

A two-way space is always contained in a Euclidean space
of three dimensions, and we have considered the problems
associated with this case.

If 71 > 2 we can uniquely determine the functions flik in

terms of the four-index symbols of ChrisloiFel, by aid of the

equations

alone. If n > 3 we even have relations between the four-

index symbols from the consistency of these equations. It is

a problem of algebra merely to determine the functions /J^,
and the functions so determined arc tensor components.

If the surrounding space is to be Euclidean, the functions so

determined must satisfy the equations f2
t ^.j.

= f2 r j{ .^ We
can therefore, when we are given the ground form ^^t/.r^fo/.,

determine, by algebraic work merely, whether the space to

which the ground form refers is or is not contained within

a Euclidean (91+!)-way space. The actual work would,

however, be laborious.

178. The n-way space as a surface in the Euclidean

space when this exists. Suppose, ^iow, that we are given the

ground form a^dx^lxj^ and that we have found that the space
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to which it refers is contained in a Euclidean (?i+l)-way

space and have calculated the functions flik : we may ask,

what is the surface in Euclidean space which is the given
n-way space?
Let z bo the vector in the Euclidean (n-fl)-way space

which traces out the given ?i-way space. We know from our

earlier work that z. ik is normal to each element of the space

drawn through the extremity of z. Now there is only one

such vector in the Euclidean (?i+ l)-fold. Let A be the unit

vector which is normal to the surface. Then

-to = ./, A, (178.1)

where w^ is some scalar.

We have ~
.,
_ w .\. 4-?/> . , \" ~

and therefore, since

kl-lk - \tpik\ (p- \qtik\ (J),

where p is an upper integer and q a lower integer, we have

-
[Ttik\ Z

t
= Wfi\k-Wrk*i + (Wri-k--wrk*i)*- (

l 7S ' 2
>

Multiplying by A, and taking the scalar product, and noting
that X\

p
= 0, we have v ,

f

.

fc
= Wrk^

We also have - = (rkhi),

and therefore wrhwki~~~w ri'
wkh

~

It follows that wik
= /2

{/ ., (178 . 3)

and we have z. ik /2
l7
,A. (178. 4)

We also have [rtik\ z
t
= /2

/
.

7i
.A

i
-/2

/{
A

/., (178 . 5)

so that when we know A we can find z by quadrature and

thus determine the surface save for a translation.

179. We have now to show how to determine A.

Xz
p
= 0,

and therefore ^g^ + Xz. 0.

It follows that XjZfr
= t\^ = fl

ik
.

^~ ^- t
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From the equation

{rtik} z
t
= fl

fl6\i-Sl ri

{rtik} fl
tp
= n

rlc\i\p
- fl

and therefore

tt (rryi/c) /2,p
= n,rk \j\p

-{2H\k \
l)

that LS, c*'tf/2,p (fi ri
f2

qk
-fi rk f2qi)

= ^x^-^x^,
or /2,,.fe (AjA + a'S-fyp/fy)

= ^(X + c^/2/2). (179 . 2)

Unless, then, the coefficients of f2rk and /2^ are zero, we must

have nrkngi
= n

ri
nsk ,

which would mean that (rski)
= and that the 76-way space

was Euclidean, a case we need not consider. We conclude that

\i\k + aP(in,
pi
n

qk
=0. (179 . 3)

We thus know the ground form of the surface traced out

by the unit vector X.

Let \. ik
=^~ -(ikt>'^> (179.4)**

*xt*xk <>^
t

where {ikt\* is formed witli reference to this ground form.

We have
AX; = 0,

and therefore XX.^-hX^X^. 0.

Now \. ik is parallel to the normal to the surface traced out

by X, and therefoi*e, as X is a unit vector, is parallel to X.

it follows that A.^-ha^/i^^X = 0. (179 . 5)

We thus have the equations which determine X.

These equations may be written

A-<* + a '<*A
=

> (179.6)

where a'
ik denotes a coefficient in the ground form of X. As

this ground form is that of a space of constant positive

curvature we see that the system is
c

complete '.

It follows that we can allow X
t

. . . Xn to take any initial

values and thus we can determine X save as to a ' movement
'

in Euclidean space.
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We have considered three ground forms
;
these maybe written

dzdz =

dzd\ =

d\d\ =

We saw (147.4) that the lines of principal curvature were

given by the equations (apq
-Rfl

pq} dxq
= 0,

that is now, by zp (dz Rd\) = 0,

and as we also have X (dz RdX) = 0,^ ^/

we conclude that dz = Rd\ (179.7)

is the equation of the line of curvature corresponding to the

principal radius of curvature It.
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Limiting points of ray of con-

gruence, 96.

Lines in three-way space of curva-

ture + 1, 243.

Liouville, 58.

surfaces, 228.

Malus's theorem, 101.

Measure of curvature (see Curva-

ture, and Invariant K).
Riemann's oriented hi ^-way

space, 194, 198.

Mercator's projection, 61.

Mourner's theorem, 120.

Minimal surfaces, 70, 92, 103,

143, &c., 155.

associate and adjoint, 153.

double, 151.

Moving axes, 125.

n-way principal curvatures :

orthogonal directions of, 208,
229.

sum of products of, 209.

n-way space :

in a higher Euclidean space,

4, 17.

in (w-f l)-way space, 206, 250.

in (?i-f l)-way Einstein space,
212, 219.

111(71+ l)-way Euclidean space,

253, &c.

of constant curvature for all

orientations, 232, 247.

of zei o Kiemanu curvature, 231.

Normal vector, 17, 63, (>5, 78.

Null curves, 147.

Null lines, 58, 145.

Orthogonal burfaces, 127, 172, c.

intersect in lines of curvature,
179.

special classes of, 185, 187.

Parallel curves, 51.

Plateau, the problem of. 155, 168.

Polar coordinates in n-way space
of curvature + 1, 239.

geodesic coordinates, 47.
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Principal planes of a lay, 97.

surfaces of a congruence, 97.

Pseudosphere, 27, 75.

Pseudo-spherical trigonometry,2 7.

Quaternion, 174.

notation, 62.

Rank of a tensor, 15.

Reduction of a two-way form :

with constant K, 34, &c.

with &(K) = 0, 36.

with A(]r) and A 2 (#) functions

of J{, 37.

in general, 38.

Refraction of a congruence, 1 00.

Regular solids, 167.

Ribaucour, 93, 101, 102.

Riccati's equation utilized, 39,

41, 108, 109, 115, &c.

Riemann, 171, 194.

Rotation functions, 40, 111, 178.

vector, 87.

Ruled surfaces, 28, 129, &c.

anharmonic properties on, 138,
139.

applicability on, 133, 135.

ground form for. 130.

line of stiiction on, 137.

which cut at one angle along
a generator, 140, 142.

Scalar product, notation for, 4, 62.

Schwartz, 171.

Second derivatives in transforma-

tion theory, 1 1.

Self-conjugate null curves, 148,
151. -T-

j/iQiyl i' P'l'i'n' 1 1 ii 1 1 and torsion

formulae, 110, 114.

Space of curvature -f 1, 237, 240.
of curvature zero, 231.

Spherical image, 66, 73.

trigonometry, 27.

Surfaces of revolution, applica-

bility on, 26, 107.

orthogonal to geodesies, 199,
203.

with plane lines of curvature,
122.

Tangential equations, 69.

Tangential Euclidean n-fold, 191.

Tensor calculus, rules, &c. of, 14.

components, defined, 9.

generated from others, 21.

derivatives, 12, 13, 16.

Tensors, fundamental and asso-

ciate, 14.

Three-way space of curvature + 1
,

240, &c.

Tractrix, 28.

Translation surfaces, 150.

Twelve associated surfaces, 89, 9 1 .

Upper and lower integers, 7.

Vanishing invariants of Einstein

space, 23.

Vector, the rotated qOCq~
l

,
174.

of triply orthogonal svstem,
178.

Vectors in a Euclidean space, 4.

ets of orthogonal, 175.

Vector-products, notation for, 62.

Volume in three-way space of

curvature -f 1, 246.

Voss, 208.

W congruences, 103, 106, 107.

W surfaces, 71, 72, 106.

-Woki^rass, 171.

Weingarten,""71

Zero Riemann curvature, space
of, 231. .












