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PEEFACE

THE last edition of Salmon's Analytic Geometry of Three

Dimensions, which was published in 1884, has been out of

print for some years ; and although there are several excellent

works on Quadric Surfaces and other special branches of the

subject, such as those of Mr Blythe on Cubic Surfaces and of the

late Mr Hudson on Kummers Quartic Surface, yet there is no

British treatise exclusively devoted to the theory of surfaces of

higher degree than the second. I have therefore endeavoured to

supply this want in the present work.

The Theory of Surfaces is an extensive one, and a thoroughly

comprehensive treatise would necessarily be voluminous. I have

therefore decided to limit this work to the more elementary />^ai^^
portions of the subject, and have abstained fronTrTntroducing ^>^^/
inves¥igations^"wliich require a knowledge of the Theory of Cm^^
Functions and of the higher branches of Modern Algebra. The|^^j^»</

ordinary methods of Analytical Geometry are quite sufficient to <S**'*^'

enable the properties of cubic and quartic surfaces and twisted /Y^JC^^/

curves, and also the point and plane singularities of surfaces, to Mfm^i
be discussed with tolerable completeness, and to demonstrate a ^^^vXi
number of interesting and important theorems connected with ^rJiWW/i
them ; but for the purpose of confining this treatise within a ^S^^*^
moderate compass, I have abstained from any general discussion of ^<«-^**'

surfaces of higher degree than the fourth.

The properties of a point-singularity may usually be examined I

by means of a surface ofHow degree just as well as by one of the 1

nth degree ; but if the degree is less than a certain limit, which )

depends on the character of the singularity, the latter appears in

an incomplete form on the surface. Thus the properties of a triple

line cannot be fully investigated without employing a surface of

the seventh degree, and this fact has rendered it necessary to

partially discuss surfaces of higher degree than a quartic.



VI PREFACE

The resolution of a multiple point into its constituents has

been discussed by Professor Segre of Turin, and other Italian

mathematicians, in various papers jpublished in the Annali di

Matematica ; and these researches have shown that an important

analogy exists between the theories of plane curves and of surfaces.

The class of an anautotomic plane curve of degree n, and also the

reduction of class produced by a multiple point of order n, the

tangents at which are distinct, are both equal to n {n — 1) ; whilst

the constituents of the multiple point are \n{n — \) nodes. The

class of an anautotomic surface of degree n, and also the reduction

of class produced by a multiple point of order n, the tangent cone

at which is anautotomic, are both equal to n{n — Vf; and from

analogy I concluded that the constituents of the multiple point

were ^n{n — lf conic nodes. In 1908 I succeeded in obtaining a

formal proof of the last theorem, which enables a large number of

singular points to be resolved into their constituent conic nodes

and binodes.

In the present treatise I have incorporated a variety of results,

originally due to Italian and German mathematicians, many of

which have been published since the last edition of Salmon's

work ; and I have endeavoured to modernize the analysis and the

terminology by discarding antiquated methods and inappropriate

symbols and phrases. I have also to express my obligations to the

late Professor Cayley's papers, references to which are denoted by

the letters C. M. P. ; as well as to the Repertorio di Matematiche

Superiori by Professor E. Pascal, which contains a valuable epitome

of the subject, together with an exhaustive collection of references

to the original papers of British and foreign mathematicians, who

have studied this subject.

Fledborough Hall,

HoLYPORT, Berks.

March, 1910.
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CHAPTER I

THEORY OF SURFACES

1. The general equation of a surface of the nth. degree, when
expressed in Cartesian coordinates, is

tlo + Ui + U2+ ...ltn = (1),

where Un is a ternary quantic of {x, y, z). The number of terms

in (1) is equal to the sum of the series

i{1.2 + 2.3+...0i + l)(w + 2)},

that is to say i (n + 1) {n + 2) {n + 3).

The number of independent constants in (1) is one less than the

preceding quantity and is therefore equal to

^n{n^ + Qn + 11),

which determines the number of independent conditions that

a surface of the nih. degree can satisfy.

If in (1) we put y = z = 0, we obtain an equation of the nth.

degree for determining the points where the axis of a; cuts the

surface. Hence :

—

every straight line intersects a surface of the

nth degree in n points. Also if we put z = in (1), we obtain

an equation of the nth degree in x and y, which determines the

curve of intersection of the plane z = Q and the surface. Hence :

—

every plane intersects a surface of the nth degree in a curve of the

same degree.

Let Un = 0, Vm, = be two surfaces of the nth and wth degrees

respectively ; then if z be eliminated we shall obtain an equation

of degree mn in x and y, which represents a curve of degree

mn which is the projection on the plane ^ = of the curve of

intersection of the two surfaces. Hence :

—

two surfaces of degrees

m and n intersect in a curve of degree mn ; also every plane

intersects the curve in mn points.

B. 1



2 THEORY OF SURFACES

Three surfaces of degrees I, m and n intersect one another in

linn points ; for if Ui = 0, F^ = 0, Wn = be the three surfaces, it

is shown in treatises on Algebra that the result of eliminating

y and z is an equation of degree Imn in x, which determines the

values of x at the points of intersection of the three surfaces.

And by parity of reasoning it follows that :

—

every curve of degree

n intersects a surface of degree ni in mn points.

The curve of intersection of two surfaces does not in general

lie in a plane. There are consequently two kinds of curves in

space, called plane and twisted according as they do or do not lie

in a plane. It may also happen that a curve which is apparently

a twisted one may degrade into two plane curves lying in different

planes.

2. There are four distinct species of surfaces. First ordinary

surfaces such as (1). Secondly scrolls, which are also called skew

surfaces. These are generated by the motion of a straight line

which moves in such a manner that two consecutive generators

do not intersect. Thirdly, when each generator intersects the

consecutive one the surface is called a developable* surface, because

it is capable of being unrolled into a plane. Fourthly cones, which

are a special kind of developable surface, in which all the

generators pass through a point. A cylinder is a special kind of

cone which is obtained by projecting the vertex of the latter to

infinity. It will hereafter be shown that all surfaces of a higher

degree than the third are capable of assuming all four forms,

provided they possess certain singularities. Thus a quartic surface

which has a triple line is a scroll ; if it has a cuspidal twisted

cubic curve, it becomes a developable surface ; whilst if it has a

quadruple point, it becomes a cone.

Quadriplanar Coordinates.

3. In the quadriplanar system of coordinates, the position of

a point P is determined by its distances (a, /3, y, S) from the four

* Some writers call a developable surface a torse. This is an inaccurate use of

language, because torse is derived from torsi the perfect of torquere, to twist; and

since a developable surface is formed by bending a plane, and therefore involves the

idea of flexion alone, a word which connotes torsion is altogether inappropriate.

The Italians call a developable surface una sviluppahile , and a scroll una gohha.

Both scrolls and developables are included in the general term supcrjicic rignti'

or ruled surfaces.



QUADRIPLANAR COORDINATES 3

faces of a tetrahedron ABGD, called the tetrahedron of reference.

The coordinate a is the length of the perpendicular drawn from

P to the face BCD, and is positive or negative according as P lies

on the same or the opposite side as ^. If a, h, c, d be the areas

of the four faces which are respectively opposite to A, B, G and

D, and V the volume of the tetrahedron, then

which we shall write 1=1 (2)

;

accordingly any algebraic function of the coordinates, which is not

homogeneous, may be made so by multiplying each term by the

proper power of /; hence we need only consider homogeneous

functions of (a, /3, y, 8), that is to say quaternary quantics of the

coordinates. Any linear function of the coordinates represents

a plane ; a = is the plane BCD ; whilst / = is the plane at

infinity. Any quaternary n-tic represents a surface of the nth

degree ; and any ternary n-tic of three coordinates represents

a cone. Also since the equation of a sphere is S + u = 0, where

S is a given sphere and u an arbitrary plane, the equation of any

sphere may be expressed in the form S + Iu = 0, which shows that

all spheres intersect the plane at infinity in the same circle. This

circle is of course imaginary, and corresponds to the circular points

in plane geometry. -

4. We shall usually employ the symbols Un, Un to denote

ternary quantics of (/3, <y, S) ; whilst such symbols as Vn, Wn, o-n &c.

will denote binary quantics of (7, S). With this notation the

general equation of a surface of the nth degree is

a'X + a*""'?*! + OL'^-hio + ...Un = Q (3),

where Un = ^"^(Tq + ^'^~^<yi + . . . o-„.

To pass from quadriplanar to Cartesian coordinates, the plane

BGD must be projected to infinity, and the lines AB, AC and AD
projected so that they become the axes of x, y and z. Hence

a = const., which may be taken as unity, and (3) becomes

^to + "i*! + "^2 + . . . = 0.

5. If a surface passes through the vertex A it follows from

(3) that Wo = 0, hence :

—

if a surface passes through the vertices of

the tetrahedron of reference, the terms involving the highest powers

of the coordinates must be absent.

1—2
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Let the surface (3) pass through A, and let ABG be the plane

Wi ; then (3) becomes

a'*-^S + a'*-2'M2 + a'*-3M3+...^f„= (4).

The equations of AB^ which may be any line in the plane

ABC, are 7 = S = ; whence if 7 and S are each put equal to

zero in (4) it reduces to the binary quantic /3^ (a, /3Y~'^ = 0, which

determines the planes passing through CD and the point where

AB intersects the surface ; and since /S- appears as a factor, it

follows that AB has bitactic* contact with the surface at A, whence

ABC is the tangent plane at A. Accordingly :

—

if a surface of

the nth degree passes through the vertices of the tetrahedron of

reference, the coejfficients of the (n — \)th powers of the coordinates

are the tangent planes at these points.

The equation of the curve of section by the tangent plane at

A is obtained by putting S = in (4), which becomes

a'^-2F2 + a»-=^F3 + ...F„=0 (5),

where Vn = {l3, 7)'*; accordingly the section has a node at A.

Hence :

—

the section of a surface by the tangent plane at any point

is a plane curve having a node at the point of contact ; also if the

plane touches the surface at any other points, these will also be

nodes on the section.

Since the tangents at a node on a plane curve have tritactic

contact with the curve, it follows that two lines can in general be

drawn through the point of contact of the tangent plane to

a surface which have tritactic contact with it at this point. If

however these lines coincide, the condition for which is V2 = F-,

the point of contact is a cusp on the section. Such points are

called parabolic or spinodal points, and they lie on a certain curve

called the spinodal curve which (as will hereafter be shown) is the

intersection of the surface and its Hessian.

Since a straight line cannot intersect a quadric surface in more

than two points, unless it lies in the surface, it follows that the

tangent plane to every quadric surface intersects the latter in

* The phrase sextactic points was introduced by Cayley to designate the points

where a conic touches a plane curve at six coincident points. I have therefore

extended the use of this term, by defining a curve which has n-tactic contact with

a given curve or surface at a point A, to be one which intersects the curve or

surface in n coincident points at A. The introduction of this phrase avoids the

ambiguity and confusion caused by defining the circle of curvature to be a circle

which has a contact of the second order with a given curve.
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a pair of straight lines. In the case of a hyperboloid of one sheet

these lines are real ; but in the case of an ellipsoid they are

imaginary.

6. In (3) let Mq = Wj = ; also let AB he one of the generators

of the cone u^ = 0, then (3) becomes

d"-^ (/3vi + v^) + a'^-' (^'Wo + /3'w, + i3w^ + Ws) + ... a''-Hi, + ...Un =
(6).

Putting iy = S = 0, it follows that /3^ is a factor of the resulting

equation, which shows that the line AB has tritactic contact

with the surface at A. Hence all the generators of the cone

U2 = have tritactic contact with the surface at A, and the cone

is consequently a tangent cone to the surface at this point. The

point -4 is a singular point called a conic node, and possesses

properties analogous to an ordinary node on a plane curve.

The cones U2 and u^ have six common generators, and if AB
be one of them Wq = 0. If therefore we put 7 = S = in (6) it

follows that /3^ is a factor of the resulting equation and the line

AB has quadritactic contact with the surface at A. No other

generators can have a higher contact with the surface at A, and

these six common generators are called the U7ies of closest contact.

This theory can be extended to multiple points of any order

;

for if the first term in (3) is a^^~Pup, then J. is a multiple point of

order p, at which there is a tangent cone of degree p. All the

generators of this cone have {p + l)-tactic contact with the

surface at A, except the p{p + 1) common generators of the cones

Up and Up+i, which have (p + 2)-tactic contact and are therefore

the lines of closest contact at a multiple point of order p.

7. Returning to conic nodes, it is possible for the cone Wg to

degrade into a pair of planes ABC and ABB, and the first term

of (6) becomes d"'~^<y8. Such a singularity is called a biplanar

node or shortly a binode ; the two planes 7 and S are called the

biplanes; and their line of intersection AB is called the axis of

the binode. Putting 7 = 8 = 0, it follows that the axis of the

binode has tritactic contact with the surface at A. The section

of the surface by either biplane is a curve having a triple point

of the first kind at the binode, that is to say a triple point the

three tangents at which are distinct ; and the latter are the six

lines of closest contact. If however a line of closest contact in
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each biplane coincides with the axis, we obtain a special kind of

binode whose axis has quadritactic contact with the surface at A
;

also special kinds of binodes occur when any of the lines of closest

contact coincide. We shall hereafter show that the ordinary conic

node and binode are distinct singularities, the former of which

reduces the class of the surface by 2 and the latter by 3, so that

the binode is a singularity analogous to a cusp on a plane curve

;

but the binode whose axis has quadritactic contact with the surface

is a compound singularity, whose point constituents will be shown

to be two conic nodes and is therefore analogous to a tacnode on

a plane curve.

There are two kinds of ordinary binodes, according as the

biplanes are real or imaginary. In the latter case the singularity

might be called a cuspidal point, since it is formed by the revolu-

tion of a cusp about its cuspidal tangent. It may also be regarded

as the limiting form of a conic node whose nodal cone shrinks up

into its axis. For example, the equation of the surface formed by

the revolution of the cissoid y'^ =^ cc {x^ + y'^) about its cuspidal

tangent is y^-{-z^ = x {x^ + 2/^ + z"^), which shows that the singularity

at the origin is a binode whose biplanes are the two imaginary

planes y ±iz = 0. The biplanes may also be regarded as the limit

of the real cone y'^-\- z'^-= x^ tan^ a, when a = 0.

8. When the two biplanes coincide, the singularity is called

a uniplanar node, or shortly a unode ; and the pair of coincident

planes the uniplane. The first term of (6) now becomes a'*~^S^,

where h or ABC is the uniplane. The section of the surface by

the uniplane is a curve having a triple point of the first kind at

A, the tangents at which are the lines of closest contact twice

repeated. The unode will hereafter be shown to be a compound

singularity, whose point constituents are thiee conic nodes which

move up to coincidence in an arbitrary manner. Moreover there

are three primary species of unodes according as the tangents at

the triple point on the section by the uniplane are (i) all distinct

;

(ii) one distinct and two coincident
;

(iii) all three coincident

;

and it will be further shown in the last two cases that the point

constituents are C= 2, 5 = 1 ; (7 = 1, J5 = 2. The unode therefore

possesses features analogous to those of a triple point on a plane

curve.
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Singular Tangent Planes.

9. In plane geometry the equation of a straight line contains

two independent constants, and since two conditions are necessary

in order that a straight line should be a double or a stationary

tangent to a plane curve, it follows that every such curve must
have a determinate number of singular tangents. In the case of

a curve it so happens that the two simple line singularities are

the reciprocals of the two simple point singularities ; but there is

no such analogy between singular points on a surface and singular

tangent planes to a surface. The connection between the point

and plane singularities of surfaces, as we shall hereafter show, is

complicated.

The equation of a plane contains three independent constants,

which may be called its coordinates ; and the condition that a

plane should be an ordinary tangent plane to a surface is that the

section of the surface by the plane should be a uninodal curve,

whose node is the point of contact. Hence, if F (a, ^, <y,h) = Q

and ^a + 1;/3 + ^7 + ft)8 = be the equations of the surface and the

plane respectively, the required condition of tangency is that the

discriminant of the ternary quantic F [a, /3, 7, — (^a + tj^ + ^7)/&)}

should vanish. This furnishes a single relation between the co-

ordinates of the plane, which is called the tangential equation of

the surface.

10. We shall now show that every surface has associated

with it six important twisted curves and developable surfaces.

(i) The Spinodal Curve and Developable. Two equations of

condition are necessary in order that a plane should touch the

surface at a point which is a cusp on the section; hence the equa-

tion of such a plane contains only one independent constant, and

its envelope is a developable surface called the spinodal develop-

able. The point of contact of the tangent plane lies on a curve

called the spinodal curve, and the tangent at the cusp on the

section is a generator of the developable.

(ii) The Flecnodal Gurve and Developable. Two equations of

condition are necessary in order that a plane should touch the

surface at a point which is a,Jlecnode on the section. The envelope

of such planes is called the flecnodal developable ; and the points

of contact of the tangent planes lie on a curve called the flecnodal
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cm^ve ; also the flecnodal tangent on the section is a generator of

this developable.

(iii) The Bitangential Curve and Developable. Two equations

of condition are also necessary in order that a plane should be a

double tangent plane, in which case the section is a binodal curve

whose nodes are the points of contact of the tangent plane. The

envelope of these planes is called the bitangential developable ;
and

their points of contact lie on a curve called the bitangential curve.

The line joining the points of contact is a double tangent to the

surface and is also a generator of the developable.

The three remaining curves are the edges of regression of these

three developables ; whilst the remaining three developables are

those enveloped by the osculating planes to the spi nodal, flecnodal

and bitangential curves.

11. The six singular tangent planes arise from the fact that

a tangent plane may be made to satisfy three equations of con-

dition in six different ways. I shall denote these planes by

^1) ^2) ''''S) '^4
J
"^5 SM-d '57g.

•sTi is a double tangent plane, one of whose points of contact is

a node and the other a cusp on the section of the surface by the

tangent plane.

OTg is a double tangent plane, one of whose points of contact is

a node and the other a flecnode on the section.

•GTg is a triple tangent plane, that is a plane which touches the

surface at three points. Hence the section of the surface is a

trinodal curve.

574 is a tangent plane, whose point of contact is a bijlecnode on

the section.

OTg is a tangent plane, whose point of contact is a tacnode on

the section.

-576 is a tangent plane, whose point of contact is a hyperflecnode*

,

one of whose tangents has bitactic contact and the other quadri-

tactic contact with their respective branches; and therefore the

* The Italians have introduced the phrase a point of hyperinflexion to designate

a point, the tangent at which has a contact higher than tritactic. This very

convenient term may be extended to nodes, when either tangent has a contact with

its own branch which is higher than tritactic. The reader must recollect that

when a nodal tangent has n-tactic contact with its own branch, its contact with

the curve is (?i + l)-tactic.
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latter tangent has quinquetactic contact with the surface. Hence

the point of contact is a point of undulation on its own branch,

and no surface of lower degree than a quintic can possess this

singularity in a complete form.

The number of tangent planes of each species is known when

the surface is anautotomic, but the further consideration of them

and their reciprocals must be postponed for the present.

Tangential Coordinates.

12. The Boothian system of tangential coordinates may be

extended to surfaces ; for in this system a surface is regarded as

the envelope of the plane x^+yt] -{ z^=\, subject to the con-

dition F(^,r],^) = 0, which is called the tangential equation of

the surface. When the Cartesian equation is given, the tangential

equation in these coordinates is obtained by writing

w = a;^ + yrj + z^

and making (1) homogeneous by multiplying each term by the

proper power of w, and then equating the discriminant of the

resulting ternary quantic to zero.

In the same way it can be shown that if the tangential equa-

tion of a surface is

U0 + U1+ U2+ ...Un = (7),

where Un is a ternary quantic of (f, r), ^), the Cartesian equation

can be obtained in exactly the same manner. The following

additional theorems can be proved by the same methods as those

employed in the theory of plane curves.

(i) Iff{x, y,z) = is the Cartesian equation of a surface whose

tangential equation is F (|, 77, ^) = ; then /(^, rj, ^) = is the tan-

gential equation of a surface whose Cartesian equation is

F(w,y,z) = 0.

(ii) // F(^, 77, ^) = is the tangential equation of a surface

;

then F (oc/k^, y/k^, z/k'^) = 0, where k is a constant, is the Cartesian

equation of its reciprocal polar. Hence, the degree of the tangential

equation is the same as that of the reciprocal polar.

When a surface is expressed by means of quadriplanar coordi-

nates, the tangential equation may also be obtained by the usual

methods for finding the envelope of a plane. Thus the tangential
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equation of a quadric may be obtained by finding the envelope of

the plane

subject to the condition

(a, b, G, d, f, g, h, I, m, nja, /3, 7, hf = 0,

and the result can be expressed by the determinantal equation

a, h, g, I, I

h, h, f, m, 7}

g, f, c, n, ^ =0,

I, m, n, d, ft)

f, 7], ^, (O,

and if (|, rj, ^, co) be now regarded as quadriplanar coordinates of

a point, the last equation is the reciprocal polar of the quadric

represented by the preceding one.

Polar Surfaces.

13. The theory of polar surfaces can be developed in exactly

the same way as the theory of polar plane curves. Let

. ^ d d J d T d \

A'— ^ M R ^ J- ^ R ^
\

df dg dh dk,

also let F be any quaternary quantic of (a, ^, y, 8) of degree n,

and F' the same function of (/, g, h, k). Then it can be shown

that

-APF=^ 'L^A'n-pF' (9).
pi {n — p)l ^

Either of the expressions (9) equated to zero is the pth polar

of F with respect to the point (f, g, h, k) ; from which it follows

that the ^th polar with respect to A is

di'F
(10).

daP
=

If (f, g, h, k) lie on the surface, the polar plane becomes the

tangent plane at this point, and its equation is

^'F' = (11).
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The curve of intersection of the surface with its jjth polar is

called the pth polar curve, and its degree is n (n — p).

The following theorems may be proved in the same manner

as the corresponding ones in the theory of plane curves.

(i) The tangent cone from any point A touches the surface

along the first polar curve of A.

(ii) If the equation of any surface he luritten in the binary

form (a, 1)"' = 0, luhere the coefficients of a are ternary quantics of

(/8, 7, S) of prop)er degrees, its discriminant equated to zero is the

equation of the tangent conefrom A.

Let the equation of the surface be given by (3); then the

first polar of ^ is

nod^-hio + {n-l) oC^-hi^ + {n - 2) a"-hio^ + . . . Un-i = (12),

and the equation of the tangent cone from A is obtained by

eliminating a between (3) and (12); and this is the discriminant

of the binary quantic (a, 1)^ = 0.

(iii) The locus of points whose polar planes pass through a

fixed point is the first polar of that point.

(iv) The polar plane of every point on a surface is the tangent

plane at that point.

(v) Every polar of a point on a surface touches the surface at

that point.

If A be the point, the equation of the surface is

i^=a«-X + a"-2«2+ ...Un = (13),

and Mi = is the tangent plane at A to (13) and also to the

surface d»FldaP = 0.

(vi) Every multiple point of order p on a surface is a multiple

point of order p — r on the rth polar, where p > r.

(vii) The first polar of every point passes through each conic

node; and the axis of every binode has tritactic contact with the

first polar.

The first part follows from (13) by putting Ui = 0, and differen-

tiating with respect to D, which may be any arbitrary point; in like

manner the second part follows by putting w, = L<y^ + 2M<yS -f JSfS^.

(viii) If the first polar of B has a conic node at A, the polar

quadric of A is a cone whose vertex is B.
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In order that the first polar of B should have a conic node at

J., it is necessary that the surface should be of the form

a"Uo + a'^-i-Wi + 0.''-% + oC-^u^ + . . . m„ = 0,

in which case the equation of the first polar of B is

showing that the surface has a conic node at A. The polar

quadric of J. is

n (n - 1) a^Uo + 2(n-l) av^ + 2^2 = 0,

which represents a cone whose vertex is B.

(ix) The second polar of a point A passes through the points

where the generators of the tangent cone from A have tritactic

contact with the surface; and the number of these generators is

n(n — l)(n— 2).

The surface and its first and second polars with respect to A
obviously intersect in 7i (7i — 1) (n — 2) points; let B be one of

them, and let the equation of the surface be given by (3); then

if w, a- and r denote binary quantics of (y, 8)

The conditions that the first and second polars of A should

pass through B require that

Un-i = ^'^-Vi + ... O-n,

Un-2 = l3'''~'Wi + ...Wn.

Substituting these values in (3), and then putting j = B = 0,

it follows that (8) reduces to the form a^(a, ^Y~^ = 0, which shows

that the line AB has tritactic contact with the surface at B.

(x) The condition that a surface should have a double point is

that the discriminant of its equation should vanish.

This may be proved in exactly the same manner as the corre-

sponding theorem for a curve. Also since a cone is the only

quadric surface which has a double point, the vanishing of the

discriminant of a quaternary quadric is the condition that it

should represent a quadric cone.

The preceding theorem shows that only one condition is

necessary in order that a surface should have a conic node, and

that every additional conic node involves one additional equation

of condition. Two conditions are however necessary for a binode
;
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since the discriminant of the nodal cone at a conic node must

also vanish in order that the cone should degrade into a pair of

planes.

14. Surfaces are called autotomic* or anautotomic according

as they do or do not possess singular points or curves.

The class of a surface is equal to the number of tangent

planes which can be drawn to the surface through an arbitrary

fixed straight line.

From analogy to a curve it might be thought that the class

of a surface ought to be equal to the degree of the tangent cone

from an arbitrary point, which as will presently be shown is equal

to n{n — \); but in order to make the theory of surfaces and

curves correspond, we ought to define the class in such a manner

that it is equal to the degree of the reciprocal polar ; and we shall

now show that by virtue of the above definition :

—

The class of a surface is equal to the degree of its reciprocal

polar.

Let the given line be perpendicular to the plane of the paper

and cut it in ^. In the latter take any point as the origin of

reciprocation, and produce OA to A' so that OA . OA' = k^, where

k is a, constant. Let OP be the perpendicular from on to any

tangent plane drawn to the surface through the given line ; and

produce OP to P' so that OP . OP' = k". Then P' is the point on

the reciprocal surface which corresponds to the tangent plane A P.

Since OA . OA' = OP . OP', it follows that a circle can be drawn
through the points A, A', P', P ; and since the angle APP' is a

right angle, the angle AA'P is one also ; hence all the points on

the reciprocal surface, which correspond to the tangent planes

drawn to the original surface through the given straight line, lie

on the straight line A'P' which is perpendicular to OA' ; also the

number of points in which the line A'P' cuts the reciprocal

surface is equal to the number of tangent planes which can be

drawn to the original surface through the given line.

15. The class of an anautotomic surface of degree n is equal

to n (n — ly.

Let A and B be any two points on the given straight line, P
the point of contact of any tangent plane which passes through

" auTos = self, t€/j.i'u = 1 cut.
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AB. Then the first polars of A and B must pass through P;
hence the number of points such as P must be equal to the

number of points of intersection of the surface and the first

polars of two arbitrary points, which is equal to n{n — 1)1

The reduction of class produced by conic nodes and other

singular points will be considered later on.

Tangent Cones.

16. The degree of the tangent cone to any surface which does

not possess singular lines and curves is equal to n(n — l); and the

class of the cone is equal to that of the surface. Accordingly when

the surface is anautotomic, the class of the cone is equal to n (n — 1)^.

Let be the vertex of the tangent cone from an arbitrary

point ; then if the surface does not possess any singular lines or

curves, it will be possible to draw a plane section of the surface

through which does not pass through any singular points on

the surface. The section of the surface is therefore an anauto-

tomic curve of degree n, and the number of tangents which can

be drawn to it from is n{n— 1); and since every tangent is a

generator of the cone, its degree is equal to n(n— 1).

If however the surface possessed a nodal curve of degree b,

the plane would cut the curve in b points which are nodes

on the section, and the number of ordinary tangents would be

n (n — 1) — 26, and consequently the degree of the cone would be

equal to n(n—l) — 2b.

The class of the cone is equal to the number of tangent planes

which can be drawn to it through any arbitrary line through the

vertex, and since each of these planes is a tangent plane to the

surface, the class of the cone is equal to that of the surface.

If OP be any generator of the cone, the tangent plane at P
cuts the surface in a curve having a node at P, and every tangent

which is drawn to the section through P is a double tangent to

the surface ; and for certain positions of P, one of these double

tangents will pass through 0. When the section is a uninodal

curve, the number of double tangents to the surface which pass

through P is n (n-l) — Q= (n + 2)(n — 3) ; but before we can

ascertain the number of double tangents which can be drawn

from an external point 0, the following theorem must be proved.
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17. Every double tangent drawn from a -point to a surface

is a nodal generator on the tangent cone from ; and every sta-

tionary tangent is a cuspidal generator. Also the tangent cone to

an anautotomic surface possesses n {n — \) {n — 2) cuspidal gene-

rators.

Let OAB be a double tangent which touches the surface at

A and B; then the tangent planes to the surface at A and B are

tangent planes to the tangent cone from along the generator

OAB) and since these tangent planes do not in general coincide,

the cone has two tangent planes which touch it along the gene-

rator OAB, and therefore the latter is a nodal generator.

In the next place let A be the vertex of the tangent cone, and

let the generator AB have tritactic contact with the surface at B.

Then the equation of the surface must be of the form

oJ'u, + a'^-iwi + ...01? (/S'^-^Vi + . . . Vn-.) + a {^'''hv^ + . • . Wn-^)

+ /3'^-iFi + ... Wn^O (14),

for when 7 = 8=0, (14) reduces to a' (a, /S)'*-^ = 0. Draw any

plane 8 = ^7 through AB, and let Pi, P2 ... be the points where

this plane intersects the first polar curve of A ; then the lines

J-Pi, J.P2 ... will be generators of the tangent cone from A.

Putting 8 = ky in (14) it reduces to

j3^-^yW,' + ^'-'y(<xw,' + yW:) + ...=0 (15),

where the accents denote what the quantities become when 7=1,
S = k.

Writing down the first polar of A and making the same

substitution, we obtain

/3«-2^^/ + yS'^-s (3 Fo a' + 2a7v/ + 7X') + . . . = 0,

which shows that every plane through AB cuts the surface and

the first polar of A in two curves of degrees w and n — 1 to which

AB is the common tangent at B. Hence these curves intersect

in n {71— 1) — 2 other points, and therefore AB is a double gene-

rator of the tangent cone. Also since Wi = is the only tangent

plane to the surface which passes through B, it follows that this

plane is the only tangent plane to the cone along AB, and there-

fore AB is a. cuspidal generator on the cone.

We have shown in | 13 (ix) that the points of contact of the

stationary tangents are the intersections of the surface and its
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first and second polars with respect to the vertex of the cone

;

hence the number of cuspidal generators is n{n — l)(n — 2).

18, Through any arbitrary point ^n(n—l)(n—2)(n—S)
double tangents can be drawn to an anautotomic surface.

Let V and fx be the degree and class of the tangent cone

;

S and K the number of its nodal and cuspidal generators, then

Plucker's first equation is

fi = v{v-l)-2B-SK (16).

We have also shown in §§ 16 and 17 that

V = n(n — l), /jb = n(n — ly, K=n{n — l)(n — 2),

whence substituting in (16) we obtain

S = ^n{n-l)(n-2){n-S\

which determines B, and therefore the number of generators of the

tangent cone which are double tangents to the surface.

The following theorems can be proved in a similar manner.

(i) The degree of the tangent cone whose vertex lies on an

anautotomic surface is n {n — \) — 2, and its class is n(n — 1)1

(ii) The cone has |- {n — 3) {n — 4) (w^ + w + 2) nodal and

(w — 8) (n,^ + 2) cuspidal generators.

19. Every generator of the tangent cone from an arbitrary

point which passes through a conic node is a nodal generator;

and every generator which passes through a binode is a cuspidal

generator. Hence if a surface possesses G conic nodes and B
binodes, its class is determined by the equation

m = n(n-iy-2C-SB (17).

Let ^ be a conic node, the vertex of the cone ; then the

tangent planes through OA to the nodal cone at the conic node

are tangent planes to the surface and therefore to the tangent

cone from 0. Hence OA is a nodal generator of the cone.

To prove the second part it will be sufficient to use a cubic

surface, since the method and the result are the same when any

surface of higher degree is employed. Let the surface be

S« + 38^ (qa + FO + SB (pay + V,) + V, = 0,

where Vn = (/3, 7)**. The coefficient of a is SB (py + qB), which

shows that A is a, binode and that AB is its axis. Forming the

discriminant of this surface regarded as the binary cubic (B, ly = 0,
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it will be found that the tangent cone from D, which may be any
arbitrary point, is of the sixth degree, and that the terra involving

the highest power of a is Sp^-q^a^y^, which shows that DA is

a cuspidal generator of the cone.

It therefore follows from Pllicker's first equation, that the class

of the cone is given by (17); and since the class of the cone is

the same as that of the surface, the theorem at once follows.

20. The following additional theorems can be proved without

diflficulty.

(i) The number of ordinary tangent planes which can be

drawn to a surface through a line passing through a conic node

is m — 4i.

(ii) When the line passes through two conic nodes, the number

is m — 8.

(iii) When the line passes through a binode, the number is

m — 3.

(iv) When the line passes through two binodes, the number is

m— Q.

(v) When the line passes through a conic node and a binode,

the number is m — 7.

To prove (i), let be an arbitrary point, A a conic node ; then

by the theory of plane curves, the number of tangent planes which

can be drawn through OA to the tangent cone from 0, and there-

fore to the surface, is m — 4.

To prove (ii), we observe that every one of the planes

considered in (i) is a tangent plane to the tangent cone from

a conic node to the surface ; hence m — 4 is the class of this

cone. Also if B be any other conic node, AB is a nodal generator

of this cone ; hence the number of tangent planes which can be

drawn through AB to this cone, and therefore to the surface, is

m — 8. The remaining three theorems can be proved in a similar

manner.

21. We can now complete the theory of the tangent cone

drawn to a surface from an arbitrary point.

Let the surface possess G conic nodes and B binodes ; let

V, fjb be the degree and class of the tangent cone ; h, k the number

B. 2
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of its nodal and cuspidal generators ; r, i the number of its double

and stationary tangent planes. Then

v = n{n-l), iJi = m==n(n-iy-2G-SB ...(18).

B = ^n(n-l)(n-2)(n-S)+G
K = n{n-l)(n-2) + B '

^^^^'

By Plucker's equations

i = Sv(v-2)-6S-8k
2T = fj,{fjL-l)-v-Si \ (20).

/j, = v(v-1)-28-Sk

Substituting the values of v, 8, k from (18) and (19) in the

first of (20), we obtain

fc = 47i(w-l)(n-2)-6(7-85 (21).

Eliminating S and t between (20) we obtain

2t = (/a-5)2+8z/-3/c-25
= {n{n- If - 2G- 35 - 5}^ - n (w - 1) (Sn - 14) - 25 - 35

(22).

Equation (21) determines the number of stationary tangent

planes, and (22) the number of double tangent planes which the

tangent cone possesses.

22. The stationary tangent planes to the tangent cone touch the

. surface at the points where the curve of contact intersects the spinodal

curve.

To prove this it will be sufficient to employ the cubic surface

o?u, 4- 3aX + 3a (/3S + v^) + /S^S + ^hw^ + Wg = . . .(23).

The plane ABG or S touches the surface at the point B, and if

in (23) we put 8 = 0, it follows that J5 is a cusp on the section and

BG is the cuspidal tangent. This shows that 5 is a point on the

spinodal curve. Writing (23) in the form

clHiq 4- 3a^Mi + 3aM2 + u^ =

the tangent cone from A is

(Wo^s - WiWs)^ = 4 (Wo^a - Uf) (UiUs - u/),

and if in this we put S = 0, it will be found that 7* is a factor,

which shows that ABG is a stationary tangent plane to the cone

along AB.

23. To find the maximum number of double points which

a surface can have.
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It is obvious that a surface, like a curve, must have a maximum
number of double points ; also since a conic node reduces the class

by 2 and a binode by 3, it follows that all the double points may
be conic nodes, but only a limited number can be binodes. I shall

now establish a formula for calculating this maximum number.

Putting B= in (22), we obtain

2t ={n(n- ly -2G-5Y-n(n- 1) (Sn - 14) - 25. . .(24).

Since t is equal to the number of double tangent planes which

can be drawn to the tangent cone from an arbitrary point, t must

be zero or a positive integer, but can never be negative ; also

n(72-l)(3w-14) + 25

is an odd integer. The conditions of the problem will therefore

be satisfied by taking

n{n-iy-2G-5 = ±k,

where k is the least odd integer whose square is not less than

n(n-l){S7i-U) + 25.

The sign of k must be determined from the conditions that m and

t must both be positive, and the value of m must not be less than

a certain limit. Should the least value of k fail to satisfy these

conditions, a greater one must be taken.

The maximum values of G and the corresponding values of

m for the surfaces of the first twelve degrees are given in the

following table

:

n
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when the singularities are isolated, although they may exist in

the form of a compound singularity.

Binodes and Unodes.

24. The theory of these singularities will be required when

discussing cubic surfaces ; and we shall commence with the

following theorem due to Segre*.

When a surface has a multiple point of order p at A, the

conditions that the singularity should possess an additional conic

node indefinitely near to A in the direction AB are, (i) that AB
should he a nodal generator on the tangent cone at A; (ii) that

AB should he a line of closest contact.

Let the equation of the surface be

oC^'-PUp + aP-P-^Up+i + ...Un = (25),

where Up = jS^Vo + ^p~'Vi + ...,

Up+^ = ^+%o + l3Pw, + ....

When the surface has a conic node at a point B' on AB, the

line AB must intersect the surface in p points at A and two

points at B' ; accordingly when B' moves up to coincidence with

A the line AB must intersect the surface in p + 2 coincident

points at A. Putting y = B = in (25) this requires that Vq = Wq = 0.

Also the first polar of any arbitrary point must pass through

B' and have a multiple point of order p—1 at A ; accordingly

when coincidence takes place AB must intersect the first polar

in p coincident points at A. This condition requires that Vi = 0,

which shows that AB is a nodal generator on the cone Up and

an ordinary one on the cone Up+i.

Since every multiple point of order p gives rise to a multiple

point of order p — r on the rth polar, the theorem can easily be

extended to the singularity formed by the union of two multiple

points of orders p and p.

25. In (25) let p = 2, and we obtain

(2^-2^2 + a'^-s (/g^Wi + jSw^ + W;) + a^'-'^u, + . . . w^ = 0. . .(26),

which represents a surface having a binode at A, whose axis AB
has quadritactic contact with the surface. This singularity is

therefore equivalent to two conic nodes, and reduces the class by 4.

* Annali di Matematica, Serie II. vol. xxv. p. 28.
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The theory of binodes whose axes have a contact with the

surface which is higher than quadritactic, as well as that of

binodes when one or more of the lines of closest contact coincide

could easily be worked out ; but it does not seem worth while to

go into any further details*

26. By means of the Theory of Birational Transformation

which will be explained in Chapter V, it will be shown that

the equation of a surface having at A the singularity formed

by the union of a conic node and a binode is

+ a'*-4 (/33 Fi + . . . F4) + a^-^Wg + . . . «*n = 0. . .(27),

where IT is a constant, and all the suffixed letters except the

us, denote binary quantics of (7, h). The section of (27) by the

plane v^ = Wi is a curve having a rhamphoidf cusp at A ; but when

n = S the result fails, as might be expected, since the properties

of the binode we are considering are different from those of the

corresponding singularity on a cubic surface*.

27. Let us now suppose that there is another conic node on

AG indefinitely near A; then the form of (26) shows that V2 must

not contain 7 and the coefficient of a"^~^ must not contain 7^

Hence (26) becomes

an-2g2 + a«-3 (^2^^ + ^^^ + g jy^) + a^-4^^ + . . . w^ = 0. . .(28),

which is the equation of a surface having a unode at A.

Since the plane B intersects the cone /S^w^ + ^w^ + Ws=0 in

AB, AC and a third line AE, it might be thought that there is

a third conic node on AE, making altogether four conic nodes

;

but since it will be shown in the next section that a unode reduces

the class by 6, it cannot be composed of more than three conic

nodes. The explanation is that if A, B' , C are the nodes before

coincidence, the line AE is the ultimate position of BV.

28. The equation of a surface having a unode at A and the

plane ABC as the uniplane may also be written

an-2g2 + a'»-3(g3-pr ^ g2-fr ^ gy^ ^ y^) + ^n-i^^ + ... w« = 0...(29),

where F„ = (yS, 7)** ; from which it follows that the section of the

surface by the uniplane is a curve of the nth. degree having

* See Eohn, Math. Annalen, vol. xxn. p. 124 ; Sachsiche Berieht, 1884.

t From pa[x<f>os = a beak, elSoi' = appeared.
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a triple point* at A, the tangents at which are given by the

equation V3 = 0. There are accordingly three primary species of

unodes, according as the triple point is of the first, second or third

kinds ; and we shall show that their respective constituents are

0=3, B = 0; (7=2, 5 = 1; 0=1, B = 2.

Also since the characteristics of a unode on a quartic surface are

the same as on any other surface, we shall employ the surface

(30).

in which A is the unode and ABG the uniplane.

Writing down the discriminant of (30) regarded as the binary

cubic (B, 1)^ = 0, it follows that the tangent cone from D is of the

10th degree, and that the term containing the highest power of

a is aJVa, which shows that DA is a triple generator of the first

kind on the cone. Accordingly the number of tangent planes

which can be drawn through DA to the surface is m— Q.

The tangent cone from A is

(S^Fo + SB'V, + SBV, + Vsy = l2B'{S'W, + SB'W, + SBW, + W,)

(31),

which is of the 6th degree and has three nodal generators which

are the lines of intersection of the planes B — 0, F3 = ; hence

this cone is of the 24th class; and therefore 24 tangent planes

can be drawn to it through DA. But each of these 24 tangent

planes is a tangent plane to the surface ; accordingly m — 6 = 24,

giving TO = 30. Also by § 15, the class of an anautotomic quartic

surface is 36, and therefore the reduction of class produced by

a unode is 36 — 30 = 6.

When two of the tangents at the triple point on the section

by the uniplane coincide, we may take Vs = ^^<y. In this case

AB is a nodal and AG a tacnodal generator of the cone (31), so

that its class is still equal to 24, But the line DA now becomes

a triple generator of the second kind on the tangent cone from

D; hence the number of tangent planes which can be drawnf

* There are three kinds of triple points, which are of the first, second or third

kinds, according as all the tangents are distinct, two coincident and one distinct, or

all three coincident. I prefer this definition to the one given in Cubic and Quartic

Curves, § 159.

t The number of tangents which can be drawn from a multiple point will be

discussed in Chapter IV, but all the above results can be obtained directly by
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through it is m — 5. Accordingly m — 5 = 24, giving m = 29. The

coincidence of two of the tangents therefore reduces the class by

7, and changes one of the three constituent conic nodes into

a binode.

In the same way it can be shown that when all three tangents

at the triple point coincide, the reduction of class is 8, and the

constituents of the unode are (7=1, B=2.

Tropes.

29. A trope* is a tangent plane which touches a surface along

a plane curve.

When the curve of contact is a conic, the tangent plane is

called a conic trope; and in like manner surfaces may possess

cubic, quartic, &c., tropes.

The equation of a surface having a conic trope is

aPUo + a"'-i'Mi + . . . Ct^Un-2 + aUn-i + ^^Un-4 = 0,

where 11 is a quadric cone. The plane a, which is the conic trope,

touches the surface along the conic (a, H) and intersects it in the

residual curve (a, Un-i)- -^.Iso the cones H and Un-i have 2{n — l)

common generators ; and if AB be one of them,

which shows that the highest power of /S is the {n — 2)th, and

that its coeffici-ent is of the form la? + awi + v-^W^ : hence, 5 is a

conic node. Accordingly there are 2 (n — 1) conic nodes on the

conic of contact, which are situated at the points of intersection

of the cones 12, w„_i and the plane a. The reciprocal singularity

is therefore a conic node of a very special character, since there

are 2(w— 1) tangent planes to the nodal cone which touch the

reciprocal surface along a conic.

In like manner the reciprocal of a conic node is a conic trope

of a special character, which consists of a plane touching the

reciprocal surface along a conic which is the reciprocal of the

nodal cone, and intersecting it in a residual curve which is the

reciprocal of the tangent cone from the node. If the original

calculating the number of tangents which can be drawn from the point A to

the plane quintic curve

* From Tpo7r9j= a turn, from which the word tropic is derived.
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surface has only one conic node, the degree of the reciprocal surface

is n(n — ly — 2, and consequently the degree of the residual

curve is n (n — ly — 6. This shows that the class of the tangent

cone from the node on the original surface is n{n—lY—(i ; also its

degree is equal to the number of tangents which can be drawn

from the node to any plane section of the original surface through

the node, and is therefore equal to n{7i — l)—Q = {n + 2) (w — 3).

This is the class of the residual curve on the reciprocal surface

;

also, since the tangent planes to the nodal cone along the lines of

closest contact are also tangent planes along the same lines to the

tangent cone from the node, the conic of contact and the residual

curve touch one another at six points which are the reciprocals of

these tangent planes.

It thus appears that there is an important distinction between

the theory of the singularities of plane curves and surfaces ; for

the reciprocal of an ordinary node on a plane curve is an ordinary

double tangent and vice versa ; but the reciprocal of an ordinary

conic node on a surface is a special kind of conic trope and vice

versa.

It is also possible for a conic trope to touch the surface at

points lying on the residual curve ; and such points must be

nodes or cusps on the latter, although they are not necessarily

singular points on the surface. Double points on the residual

curve give rise to double and stationary tangent planes to the

tangent cone from the node on the original surface.

Bitropes.

30. The reciprocal of a binode is called a bitrope ; but it is a

bitrope of a special kind. Since any arbitrary section through a

binode is a nodal curve, the degree and class of the tangent cone

from the node are n{n — l) — Q and w (ri — 1)^ - 6 as in the case of

a conic node, and these are respectively the class and degree of

the residual curve on the reciprocal surface. The two biplanes

are triple tangent planes to the tangent cone from the node, and

respectively touch the cone along the lines of closest contact

;

also since the residual curve is the reciprocal of the tangent cone

from the node, the former must have a pair of triple points P and

Q winch are the reciprocals of the biplanes. The axis of the

binode reciprocates into the line PQ, and the three coincident
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points at A into three coincident tangent planes through PQ
;

hence the bitrope osculates the reciprocal surface at every point

of PQ. Accordingly the section of the reciprocal surface by the

bitrope consists of the line PQ repeated three times, and a

residual curve of degree n{n — If — 6. The degree of the recip-

rocal surface is n(n — iy — S.

The reciprocal polar of a unode is called a unitrope.

31. When a fixed plane touches a surface of the nth degree

along a straight line, there are in general n— 1 conic nodes on the

line ; hut when the plane has a higher contact, the n — \ points are

in general binodes.

Let CJ) be the line, BCD the fixed plane ; then the equation

of the surface is

a'% + a'^-^Mi + . . . a'Un-2 + au^-i + yS^ C/"„_2 = (32).

The line CD intersects the cone Un-i in n— 1 points, and if C
be one of them

hence the highest power of 7 in (32) is the {n — 2)th, which shows

that (7 is a conic node.

When the plane a has a higher contact, we must replace the

last term of (32) by /S'Un-s, and the coefficient of 7^-2 will be of

the form pu!^ + a (q^ + vB), which shows that is a binode.

Lines drawn on Surfaces.

32. A straight line cannot cut an irreducible plane curve of

the nth degree in more then n points ; for if it did, the curve

would degrade into the straight line and a curve of lower degree.

If however a straight line cuts a surface of the nth. degree in

n + 1 points, the surface does not degrade, but the line lies

altogether in the surface. Similar considerations apply to plane

and twisted curves on surfaces. It is also possible for a surface to

possess singular lines and curves ; that is to say lines and curves

such that if a plane be drawn through any point P on the line or

curve, the section has a singular point at P, whose character

determines that of the singular line or curve. We shall now
consider the elementary theory of lines lying in a surface.
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33. When a straight line lies altogether in a surface, the

tangent plane at any point usually rotates about the line as the

point of contact moves along it, and such a plane is therefore a

tarsal* tangent plane, and the line is called a tarsal line. It is

also possible for the tangent plane to be fixed in space ; and it has

been shown in § 31 that such a line is a singular one and has in

general n — 1 conic nodes lying upon it. When the tangent

plane osculates the line, so that every plane section has a point

of inflexion where the line cuts the section, the tangent plane is

called oscular. Similar considerations apply to multiple lines,

the tangent planes along which may be torsal, fixed or oscular, or

may even have a higher contact with their respective sheets.

34. A surface of a higher degree than the third cannot in

general possess straight lines lying in it.

We have shown in § 11 that every surface possesses a deter-

minate number of triple tangent planes, and that the section of

the surface by such a tangent plane is a trinodal curve ; and since

a trinodal cubic curve consists of three straight lines forming a

triangle, every cubic surface possesses a determinate number of

straight lines lying in it. But when the surface is a quartic, a

straight line cannot form part of a plane section unless the latter

degrades into an anautotomic cubic curve and the straight line

;

and this involves the four conditions that the three nodes on the

section should lie in the same straight line, which cannot in

general be satisfied.

35. Every plane containing a straight line lying in a surface

touches the latter at n—1 points.

The section of the surface by any plane through the straight

line consists of the line and a curve of degree n — 1; and since the

n — 1 points where the line and the curve cut one another are

nodes on the section, the plane has n — 1 points of contact.

Nodal Lines.

36. The tangent plane at any point on a nodal line may be

fixed or torsal. We thus obtain three primary species of nodal

lines.

* When a fixed plane touches a surface along a line, Cayley calls the latter a

torsal line. This is a singularly inappropriate definition, since torsal is derived

from torsi the perfect of torquere, to twist ; whereas the essential feature of such a

line is that the tangent plane is devoid of twisting.
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I. Both tangent planes torsal.

II. One tangent plane fixed, the other torsal.

III. Both tangent planes fixed.

When both tangent planes coincide at every point on the line,

the latter becomes a cuspidal line. There are consequently two

species of cuspidal lines, according as the tangent plane is fixed or

torsal.

Nodal lines of the first or second kinds possess a species of

singular points called pinch points, which arise in the following

manner. A point P which is constrained to move along a straight

line possesses one degree of freedom, and consequently its position

on the line is completely determined by a single parameter 6
;

hence the equation of any plane section through P contains this

parameter, and therefore the value of ,^ may be chosen so that the

node at P on the section changes its character and becomes a

cusp.

37. A nodal line of the first or second kinds on a surface of

the nth degree possesses 2w — 4 pinch points; hut when the line is of

the second kind, the pinch points coincide in pairs so that there are

only n — 2 apparent pinch points.

Let AB be the nodal line, then the equation of the surface

must be of the form

(U,V,Wly,Sy = (33),

where U, V, W are quaternary quantics of all the coordinates of

degree n — 2. The discriminant of (33) equated to zero is

V'=UW.... (34),

which is a surface of degree 27i — 4, and therefore the line AB
intersects (34) in 2w — 4 points. Let A be one of them, then

U = A^a''-^ +a«-3f7i +...,

V=A C'a'^-2 + a«-=* V^ +...,

Tf=(7^a"-2 +a"-3Fi+...,

where Un= Vn^ Wn ^ (yS, 7, B)^. Substituting these values in (33)

it follows that the coefficient of a^~^ is (Ay + CS)% which shows

that A is a, pinch point. Hence these points are those in which

the nodal line cuts the discriminantal surface (34), and there are

consequently 2n — 4 of them.
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When the nodal line is of the second kind, let 7 be the fixed

tangent plane ; then since <y must have tritactic contact with the

surface at every point of AB, it follows that

W^h {GoL^-' + a"-" Tfi + . . .),

but if A be one of the points in which (34) is cut by AB, it follows

that B = 0, and the coefficient of a'*"^ i^ ^33-) ^g ^^2^2^ which shows

that 4 is a pinch point. The term involving the highest power

of a in (34) is now A'^Ga?^~^^, which shows that ABC is the tan-

gent plane to (34) at A, and therefore the line AB touches the

surface at A. Hence the pinch points coincide in pairs, and there

are consequently only n—2 apparent pinch points.

37 A. At a real pinch point, a nodal line changes from a

crunodal to an acnodal one.

Let the equation of the surface be

j^n-2g2 + cjn-3 1^ (^y + 2%S + Gh^) + W3} + . . . = 0,

on which J. is a pinch point. Change the tetrahedron to

A'BGD, where A' is a point on AB, /3 = Xa is the equation of the

plane A'CD, and \ is a small quantity whose squares &c. are to

be neglected. The condition that the nodal tangent planes at A'

should be real is that

-A\>0.

Now X is a small positive quantity when A' lies between A
and B, and negative when A' lies on the side of A remote from B

;

if therefore the preceding inequality is satisfied when X is posi-

tive, the planes will be real ; but they will be imaginary when X
is negative.

38. The tangent plane at a pinch point touches the first polar.

Let .4 be a pinch point and ABC the tangent plane, then the

equation of the surface is

j^n-2g2 ^ ^n-z
(^^^ + V3) + . .

. = 0,

and the first polar of D, which is any arbitrary point, is

2a'^-2S + a'^-s {^v\ + v\) + . . . = 0,

where v'n — dvn/d8, which proves the theorem.

39. A pinch point, in common with all singular points of the

same character, is an incident of a nodal line or curve, which
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cannot be created nor annihilated by assuming any relations be-

tween the constants of the surface, although such relations may
apparently make some of them disappear by causing them to

coincide. It is of course possible to make the nodal tangents

at an arbitrary point coincide, but this does not introduce an

additional pinch point but alters the character of the nodal line or

of the surface. For example, the equation of a cubic surface on

which ^i? is a nodal line and A and B pinch points is

i9a7' + 2/332 + ^3 = (34 a).

Let the plane a' = a — A-^S = cut AB in B' \ then referring the

surface to the tetrahedron of reference AB'CD, (34 a) becomes

pay"" + yS ipXy' + qS') + ^/g = 0.

If the cubic has a third pinch point at B', p = or q= 0, in

either of which cases (34 A) becomes a cuspidal cubic cone.

40. Every tangent plane to a nodal line of the first kind touches

the surface at n— 2 points.

The equation of the surface may be written in the form

QoOL^'-'yS + a**-^ {/3 {P,y^ + Q^yS + R,S') + v,] + ...

+ /3'-^ {Pn-.y' + Qn-.yB + Rn-^^') + . . . = 0.

Writing herein a' + X/S for a, the coefficient of ^^~^ is

QoX^'-'yB + v"-' (Ar + QiyB + Ri^') +• • • Pn~2y'+Qn-.yB+Rn-28'=o.

Hence, if \ be determined by the equation

V-^R, + V-'R^ +... Rn-2 = 0,

the plane y will touch the surface at n — S other points, which

together with A make n — 2 points. Similarly the plane 8 touches

the surface at the point A and the n — S points determined by the

equation

\^-'P, + X^-'P, + ... Pn-^ = 0.

41. The equation of a surface having a nodal line of the third

kind is of the form

(«, ^T-H, + (P, Q, R, S^y, Sf = 0,

where P, Q, R, S are quaternary quantics of all the coordinates

of degrees n — S. The line has no pinch points, but it has n—2
cubic nodes or triple points, which are determined by the equation

(a, ^y-^ = 0. If A be one of these points, the first term must be
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of the form (a, fiy~^0V2, which shows that there is a tangent cone

at A whose equation is of the form

^^^2 + ^3 = 0,

and is therefore a cubic cone, on which AB is a nodal generator.

42. If three surfaces of degrees I, m, n intersect in a straight

line, which is a multiple line of orders p, q, r on each of them

respectively; then the number of their ordinary points of intersec-

tion is

Imn — Iqr — mrp — npq + 2pqr.

In order to prove this theorem, we shall employ a method very

successfully used by Salmon*, which depends upon the principle

that the number of points of intersection of three surfaces is an

invariable quantity ; in other words a point of intersection cannot

be created nor annihilated by means of any relations between the

constants, or by making the surfaces degrade into improper ones.

We may therefore replace the surface Si by p planes Up passing

through the given straight line, and another surface Si^p which

does not contain the line. Treating each of the other surfaces in

the same way, we have to find the number of points of intersection

of the compound surfaces Si-.pUp, S^-qUq, and Sn-rUr which do

not lie in the line. Now Si-p, Sm-q and Sn-r intersect in

{I — p)(m — q) {n — r)

points; also Si^p, Sm-q and Ur intersect in (I —p){m — q)r points;

hence the total number of points of intersection which do not lie

in the line is

(f,—p){m—q){n—r)-{-{l—p){m — q)r

+ (m — q)(n — r) p + (n — r){l — p)q
= Imn — Iqr — mrp — npq + 2pqr (35),

which shows that the number of points absorbed by the straight

line is

Iqr + mrp + npq — 2pqr.

If the three surfaces have a common straight line, p = q = r = I,

and the number of their ordinary points of intersection is

Imn — l—m — n + 2 (36).

If however the line is a nodal line on the surface I, and an

* Camb. and Dublin Math, Journ. vol. ii. p. 65.
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ordinary line on the other two, p = 2, q = r=l, and the number

of points is

Imn - I - 2m - 2n + 4 (87).

43. A nodal line of the first or second species on a surface of

the nth degree reduces the class by 7n — 12.

Since a nodal line on a surface gives rise to an ordinary line

on the first polar, we must put I = m = n — l; p = q = l, r=2; and

(35) becomes
n(n-iy-5n + 8.

This would give the reduction of class were it not for the

pinch points ; but we have shown in § 38 that the tangent plane

at a pinch point touches the first polar, hence every pinch point

absorbs an additional point of intersection. Accordingly the total

number of ordinary points of intersection is

n(n-iy-5n + 8-(2n-4^) = n (n - If -7n + 12,

and therefore the reduction of class is 7n—12.

It follows from the preceding investigation that before the

results of § 42 can be employed to determine the reduction of

class produced by a singular line on a surface, it is necessary to

examine the intersection of the surface and its first polar at the

singular points on the line. Hence the above result is not true

in the case of a nodal line of the third kind, since such lines

possess cubic nodes but no pinch points.

44. If a surface of the nth degree possesses a multiple line of

order n — 2, it has 2 (3n — 4) other lines lying in it.

If AB be the multiple line, the equation of the surface is

OPVn-i + O-^Wn-^ + ^(Tn-2 + °t-Vn-i + ^^n-i + Vn = 0,

and the section of the surface by the plane B = ky consists of AB
repeated n — 2 times and the conic

(A,B,G,A',B',G'^a,^,yy = 0,

where A, B, C are polynomials of k of degree n — 2; A', B' of

degree n — \; and G of degree n. If the plane is a tangent plane,

the conic must degrade into a pair of straight lines, the condition

for which is that its discriminant should vanish, which furnishes

an equation of degree 3n — 4 in k. Hence the surface contains

twice this number of lines.



32 THEORY OF SURFACES

45. If an anautotomic surface contains a straight line, the

number of tangent planes which can he drawn through it is

(n + 2){n- 2)1

If AB be the line, the equation of the surface is

a^'-^Vi + a""-^ {I3wi + Wj) + . . . = 0,

hence ^5 is a line lying in the first polar of every point on the

line. Accordingly by (36) the number of points of intersection of

the surface and its first polars with respect to A and B which are

absorbed by the line is Sn — 4, and therefore the number of

remaining points is

n{n - ly - Sn + 4! = (n + 2)(n - 2f.

Either of these theorems show that 10 lines intersect every

line lying in a cubic surface.

On the Intersections of Surfaces.

46. Three surfaces of degrees I, m, and n intersect in Imn

points, but when three or more surfaces are given by a set of

determinants, it frequently happens that they possess a common

curve; and we shall now show how to determine the degree of

this curve.

If u, u ; V, v' ; w, w he quaternary quantics of degrees I, m, n

respectively, the degree of the common curve of intersection of the

surfaces included in the set of determinants

u , V , w =

u', v', w'

is mn { nl -\- Ini.

The three surfaces are

vw' = wv, wu=uw', uv' = vu' (38),

and are of degrees m + n, n + l and l + m respectively ; and the

first and second surfaces intersect in a curve of degree

(m + n){n + I).

But this curve is a compound curve consisting of the curve of

intersection of the surfaces w = 0, w' = 0, which is of degree n^,

and a residual curve of degree

(m + n) (n + I) — n"^ = mn + nl + Im.

The coordinates of points on the curve w = w' = obviously do not
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satisfy the third of (38) ; hence the residual curve alone is the one

common to the three surfaces.

47. The four surfaces included in the set of determinants

u, u' , u", u'" =0,

w, w', w", w"

where the us, v's and w's are of degrees I, m and n respectively,

possess a common curve of intersection of degree

P + m? + n^ + mn + nl + Im.

Let A = vw — wv, B = wu' — uw, G = uv' — vu' . . .(39),

then the surfaces formed by omitting the fourth and third columns

respectively are

Au" +Bv" +Cw" =0'

Au'" + Bv"' + Gw"' = 0' ..(40).

The two surfaces (40) are each of degree l + m + n, and their

curve of intersection consists of the common curve of intersection

of the three surfaces A =0, B = 0, C = 0, which has been shown

to be of degree mn + nl + Im, and a residual curve of degree

l^ + m^ + n'^ + mn + nl + Im.

Now if we write down the identity

Au+Bv' + Gw'= (41),

and eliminate A, B and G from (40) and (41), w^e shall obtain the

determinant formed by omitting the first column, and the deter-

minantal surface thereby formed will be satisfied by all values of

the coordinates which satisfy (40) but which do not make A, B
and G vanish ; that is to say the coordinates of all points on the

residual curve. Hence the determinantal surface formed by

omitting the first column contains the residual curve. In like

manner by writing down the identity

Au + Bv + Gw = (42),

and eliminating A, B and G between (40) and (42), it can be

shown that the determinantal surface formed by omitting the

second column also contains the residual curve. Hence the four

surfaces included in the set of determinants intersect in a common
curve of the degree above mentioned.

B. 3
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48. The six surfaces included in the set of determinants

= 0,U, V, w, t

U, V, w , t

where the u's, v's, w's and t's are quantics of degrees I, m, n and p,

intersect in

Imn + mnp + npl +plm
common points.

The determinant is formed by eliminating the constant k

between the four equations

u = ku', v = kv']
.(43),

w = kw', t = kt',

and the condition that (43) should be satisfied by the same values

of the coordinates is that the elirainant of (43) should vanish.

Now it is known* that the highest power of k in the eliminant

is equal to

Imn + mnp 4- npl + plm ;

hence this is the number of sets of values of the coordinates

which satisfy (43), and therefore the determinantal surfaces

intersect in this number of common points.

When u, v, &c. are planes, the surfaces consist of six quadrics

which possess four common points of intersection. This may be

verified as follows. The three quadrics formed by omitting the

last column intersect in a twisted cubic curve ; and the quadrics

uv = vu' and ut' = tu intersect in the line u = 0, v = and a second

twisted cubic, and the points of intersection of the two twisted

cubics are those common to the system. Now if three quadric

surfaces possess a common straight line, it appears from (36) that

the latter absorbs four out of their eight points of intersection

;

hence the two twisted cubics intersect in four points, Avhich are

the ones in question.

The Hessian.

49. The Hessian of a surface is the locus of points whose polar

quadrics with respect to the surface are cones.

The locus of the vertices of these cones is a second surface

called the Steinerian.

* See Salmon's Higher Algebra, 4th edition, § 78. If P, Q, R, S be four

quaternary quantics of degrees I, m, n, p respectively, the eliminant is a homo-

geneous function of degree mnp of the coefficients of P ; of degree npl of those of

Q ; of degree plm of those of R ; and of degree linn of those of S.
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Let us temporarily employ (^, rj, f, w) to denote current

coordinates ; then the polar quadric of any point (a, /3, 7, S) is

Let a=^, f=dm' ^ = ci«^'^'-'^'- •••^^^^'

then (44) may be written in the form

ap + 6772 + c^2 + c?«2 + 2/^^+ 25r^f + 2/1^77

+ 21^00 + 2m77ft) + 2;i^a> = 0. . .(46),

or in the abbreviated one

(a, h, G, d, f, g, h, I, m, n\^,7],^,aif = (47).

The discriminant of (46) may be expressed in the form of the

symmetrical determinant*

H = a, h, g, I (48),

h, h
, f, ra

g> f , c, n

\ I, m, n, d

the vanishing of which expresses the condition that (46) should

reduce to a cone.

If the original surface is of degree n, each of the constituents

of H are of degrees n — 2; hence the degree of the Hessian is

4 (w - 2).

The Hessian may be expressed in a variety of forms, one of

the most convenient of which is the following. Let

A=bc-f\ B = ca-g\ G = ab - h')
•(49),

A' = gh-af, B' = hf-hg, G'=fg-ch]

also let A be the determinant formed by erasing the last row and

column in H ; then

H=M-{A, B, G, A\ B', G'Jl, m, ny (50).

The determinant obtained by putting d — Q is a well known

one, since it expresses the condition that the straight line

la + wyS + 717 =

should touch the conic

(a, 6, c,f,g,h^a,^, 7)' = 0;

* The letter n is used in two different senses in this and the following

sections ; but the reader will find no difficulty in avoiding confusing them.

3—2



36 THEORY OF SURFACES

hence the last term of (50) equated to zero is the tangential

equation of the conic.

50. The Hessian passes thfough every double point ; also its

curve of intersection with the surface is the spinodal curve.

The equation of a surface passing through A is

a^-^Ui + a^-^U2+...Un = (51),

and the polar quadric of A is

{n-l)(xUi + U2 = (52).

When J. is a double point Mj = and the polar quadric reduces to

the nodal cone, which shows that the Hessian passes through A.

When -4 is a point on the spinodal curve, we may put u^ = S, in

which case

u, = 8\ + 8(p^ + qj) + rrf,

and (52) becomes

[{n - 1) a + 8wo +^/3 + ^7} 8 + ^7^ = 0,

which is the equation of a quadric cone. This proves the second

part and shows that the degree of the spinodal curve is 4/i {n — 2).

51. Every conic node on a surface gives rise to a conic node on

the Hessian, having the same nodal cone and the same lines of closest

contact.

We shall choose the tetrahedron of reference so that the

equation of the surface is

C^n-2 (^^2 ^ ^^g) ^ an-3j^^ +...Un = (53),

the advantage of which is that when p = the singularity at A
becomes a binode, and when g* = it becomes a unode.

Retaining only the leading terms, we obtain

a = {n-2)(n- 3) (p^ + qryB) a''~*\

b = 2pa'^-^ + a^-^d^Us/d^""

c = a'^-H'Us/dy''

d = a''-'d'us/d8^

f= a^'-^d^'Us/d/Sdy

g = (n—2) qa^~^S

h = 2{n- 2) j9a"-3yg

l = {n-2) goL^-^y

m = a'^-H'Us/d^d8

n = qa""-^ + a^'-^^'us/dydS

y .(54).
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Substituting these values in (50) it will be found that the

only terms involving a^n-io^ which is the highest power of a, are

which is equal to

2pq' (n - 1) (n - 2) (pyS^ + qyS) a^"-" (55),

which proves the first part of the theorem.

To prove the second part of the theorem, we must calculate

the coefiicient of a^**"", which is rather a long expression and

seems hardly worth while writing down. The result is as follows.

Let AG and AD he two of the lines of closest contact, then

Us = /3« + /S^ (\y + fjiB)-\-/3 (Ly^ + 2MyB + M') + yS (Fy + G8),

and if U3 be the coefficient of a^''^-" in the Hessian, it will be found

that AG and AD are generators of the cone U^.

52. The spinodal curve has a sextuple point at a conic node.

If m and n are the degrees of two surfaces, which intersect at

a point A which is a multiple point of order ^ on one surface and

of order q on the other and the nodal cones are not specially

related to one another, any plane section through A will consist of

two plane curves which have multiple points of orders p and q at

A. These curves will therefore intersect in mn—pq ordinary

points, which shows that J. is a multiple point of order pq on the

curve of intersection of the two surfaces. If however p = q and

the nodal cones are identical, it can be shown as follows that the

order of the multiple point on the curve is ^ (^+ 1); for consider

the surfaces

a^'-PUp + a''-P-'Up+, + ...Un = 0,

where n > m. Multiply the second equation by a^-^ and subtract

from the first and we obtain

a^'-P-' (up+, - Up+,) + . . . w„ = 0,

which is the equation of a surface passing through the curve of

intersection of the two surfaces and having a multiple point of

order p + 1 &,t A, whence ^ is a multiple point of order ^ (^ + 1)

on the curve.

In the case of a surface and its Hessian p =2, and p{p + 1)=6.

53. Every binode on a surface gives rise to a cubic node of the

third kind on the Hessian, two of the tangent planes at which
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coincide with the biplanes ; also the spinodal curve has an octuple

point at the binode.

When ^ = 0, the double point becomes a binode, and (55)

vanishes. In this case the highest power of a is the (4w— ll)th,

and the terms containing it are

2bgnl - abn' = {n-l){n-2) a'^'-^^yBd^Us/dlS^

and consequently J. is a cubic node on the Hessian whose nodal

cone consists of the two biplanes and the plane d^u^jd^^ = 0. Such

a singularity is called a cubic node of the third kind.

To prove the last part consider the two surfaces

a"-3;S7S + a"-%4 +...«/« = 0,

where n> m, from which we deduce

which shows that A is an octuple point on the curve of inter-

section of the first two surfaces.

54. Every unode on a surface gives rise to a quartic node on

the Hessian, whose nodal cone consists of the uniplane twice repeated

and a quadric cone.

When q = 0, the singular point becomes a unode, and the term

containing the highest power of a is

which is a quartic node of the species described.

55. If a straight line lie in a surface, it will touch the Hessian

and therefore the spinodal curve.

Let AB be the line, let A be one of the points where AB cuts

the Hessian, and let ABG be the tangent plane at A ; then since

the section of the surface by the plane 8 must have a cusp at A,

it follows that the equation of the surface must be

7 {a«-2 (p7 + qh) + a'^-^w^ + . .
.}

+ h{oi^-^U, + (f'-^U^ + ...)==0 (56).

Now when 7 = S = 0, the values of a, b, h are zero ; and the

Hessian reduces to {fl — gmf = ; and on calculating this expres-

sion it will be found that yS^ is a factor, which shows that the line

AB touches the Hessian at A.
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56. The curve of contact of every trope on a surface formspart

of the spinodal curve.

Let a be the trope, (a, Og) the curve of contact, B any point on

it, then the equation of the surface is

a^Uo + a'^-'Un-i + . . . a^ (/Q'^-Vo + yS'^-Vj + . . .)

+ ai^-'To + ^^'-'r, + ...) + n/(/3"-^«Wo + ...) = 0,

where fl^ =^'-\ + ^'-% + ....

The polar quadric of 5 is

a (ao-o + (w - 1) /3to + Ti] + Vi^Wo = 0,

which represents a cone.

The reader is doubtless aware that Fresnel's wave surface

possesses 16 tropes whose curves of contact are circles, and that

4 of these tropes are real whilst the remaining 12 are imaginary

;

hence the spinodal curve consists of these 16 circles, which make

up an improper curve of the 32nd degree.

57. If a fixed plane touches a surface along a straight line, it

also touches the Hessian along the same line. Hence the line twice

repeated forms part of the spinodal curve.

The equation of the surface must be of the form

a"-^a + a'*-^ (B\ + Bv^ + ry^)

where ^5 is the line B the fixed tangent plane and J. is any point

on the line ; also the suffixed letters are binary quantics of (yS, 7).

Forming the Hessian, the coefficient of a^**"^ will be found to be

AB, where -4 is a constant.

58. If a surface has a nodal curve of degree b and a cuspidal

one of degree c, the degree of the spinodal curve is

4?^(7^-2)-86-llc.

This theorem is due to Cayley*, who proved it in a different

manner ; and it will be sufficient to consider the case of a surface

having a nodal line, the equation of which is

a'^-^yB+a'^-^Us+...=0,

where u^ = ^fu + 78^ + B^w,

u, V and w being arbitrary planes through A. Now if we proceed

in the same way as in | 51, it will be found that the highest

* C. M. P. vol. VI. p. 342.
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power of a in the Hessian is a*"~^^ and the term involving it is

(If+mgy. Omitting a, the coefficient is

= {n- 2)2 q^ (P72 + QyS + RBJ,

whence -45 is a quadruple line on the Hessian having two pairs

of coincident tangent planes ; accordingly AB repeated 8 times

forms part of the spinodal curve. In the same way it can be

shown that if the surface has a twisted nodal curve of degree b,

this curve is a quadruple curve on the Hessian, and that the

former 8 times repeated forms part of the spinodal curve. Hence

the degree of the residual intersection of the surface and its

Hessian, which is the true spinodal curve is 4w (n — 2) — 86.

The equation of a quartic surface having a cuspidal line will

hereafter be shown to be

(pay + q^By + (P, Q, R, S^y, Bf = 0,

where P, Q, R, S are arbitrary planes, and by forming the

Hessian by the same method it will be found that the line AB
repeated 11 times is part of the spinodal curve, but the work is

rather long.

59. In the same paper Cayley has also proved the corre-

sponding theorem for the flecnodal curve which is :

—

If a surface has a nodal curve of degree b and a cuspidal one

of degree c, the degree of the flecnodal curve is

w(llw-24)-226-27c.

A similar theorem undoubtedly exists for the bitangential

curve, but so far as I am aware it has not been investigated.

60. The Hessian of an anautotomic surface of degree n

possesses 10(n—2y nodes*.

Let us for convenience suppose the original surface to be of

degree n + 2, so that each of the constituents of the Hessian is of

degree n ; let

dH ^ dH ^ dH ^ dH ^ ,^.,

M=^' u=-^- a^=-^- -Tn=-^^ ('^)'

* Cayley, Proc. Lond. Math. Soc. vol. in. p. 23. C. M. P. vol. vii. p. 133.
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also let

J)= h , f, m (58),

f , c, n

in, n, d

then by means of (49) and (50) the following additional equations

can easily be proved, viz.

:

(59),

.(60).

BV'-AA' = Af, BC - A'' = Aa, &c.

A =Aa + B'g + G'h \

A, = Al +G'm+B'n
\

A,= C'l + Bm + A'n

A3 = B'l + A'm + Cn

Eliminating I between the second and third of (60) and taking

account of the first, we obtain

A^A — AjC" = A (wc - nf).

Hence if Q is any point at which two of the three deter-

minants A, Aj, A2 vanish, the third determinant will also vanish,

provided none of the quantities A, C and mc — nf vanish at Q.

Now the equations A = C' = mc — nf= are equivalent to

hlg = b/f=f/c = m/n (61),

so that the exceptional points, which we shall denote by P, are

the common points of intersection of the six surfaces included in

the set of determinants

h, b, f, m =0 (62),

g> / c, n

and since each constituent is of degree n, it follows from § 48 that

there are 4n^ points such as P.

The system of 4?i^ points included in (62) lies on the Hessian

and also on the surface i) = ; for if we put each of the ratios

(61) equal to k, and substitute in the determinants for ^and D,

they obviously vanish.

We have therefore proved that if Q be a point such that

dHjdd = and dH/dl = 0, then dH/dm = and dH/dn = 0, provided

Q does not coincide with any of the 4/i^ points P ; also the points

at which these differential coefficients vanish lie on the Hessian.
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In the next place write H in the form

d,
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Now it follows from § 47 that the four determinantal surfaces

(64) intersect in a common curve of degree 6n^ ; also the 4)^'

points P lie on this curve and also on the surface D ; and we

have to show that the points P are not nodes, and that the

number of the points Q is equal to lOri^

Let A be one of the points P, which are the points common to

the surfaces (61), then it follows that

&c., &c. Hence by (49)

A = (b, + c,-2f,)a'^-\ 5 = (ao-l)a^ (7= (ao-l)a^
^' = - (ao - 1) a^ B' = (h, +f, -b,- g,) a^-\

G' = (A + g^-(h-h,)a^-\

Substituting in H and D we obtain

H= {{ao-l)do - lo'+2k] {b, + c,-2f,) a'^-' + ...

,

D = (cZo-l)(6, + c,-2/0a^"-^+....

The first equation shows that J. is a point but not a node on

the Hessian, and the second equation shows that the Hessian and

D touch one another at -4.

Now the common curve of intersection of (64) obviously lies

in the Hessian ; and since it is of degree 6/i^ it intersects the

surface D in 18w^ points and touches it at the 4?i^ points P; hence

the number of remaining points of intersection, which are the

points Q, is equal to 18w^ — 8w.^ = lOn^, which is therefore the

number of nodes on the Hessian.

61. When the polar quadric degrades into a cone, the locus

of the vertex of the cone is a surface called the Steinerian. This

surface is the analogue of the plane curve of the same name,

which is the locus of the points of intersection of the pair of

straight lines constituting the polar quadric of points on the

Hessian. The Hessian* and the Steinerianf are discussed in the

papers referred to below.

* Hesse, Grelle, vols, xxviii. and xli. ; Sylvester, Phil. Trans, cxliii. ; Del Pezzo,

Rendiconti, Napoli, 1883 ; Brill, Math. Annalen, vol. xiii. ; Segre, Rendiconti,

Lincei, 1895.

t Crelle, vol. xlvii.



CHAPTER II

CUBIC SURFACES

62. There are altogether twenty-three different species of

cubic surfaces, which depend upon the number and character of

the point singularities which they possess. The class of an anau-

totomic cubic surface is n (71 — ly = 12 ; the degree of the tangent

cone is n(n — l) = 6; also the cone has n(n — l)(n — 2) = 6 cus-

pidal generators, but no nodal ones. From this it follows that a

cubic surface cannot have more than four nodes ; for if it had

five nodes, the class of the surface would be two, and quadrics are

the only surfaces of the second class.

63. Every cubic surface can be expressed in either of the forms

Su=S'u' (I),

or a^j = uvw (II),

where S, S' are quadric surfaces, and a, ^, 7, u, u , v, w are planes.

We have shown that every cubic surface possesses straight

lines lying in it ; hence if AB be one of these lines, the equation

of the surface must be of the form <yS = BS', which is of the form (I).

To prove (II) write the last equation in the form

ry{S + Bw)=B(8' + ryw),

where w is an arbitrary linear function of (a, yS, 7, B). Since two

conditions are necessary in order that a quadric surface should

degrade into a pair of planes, it is possible to determine the four

constants in w so that the quadrics S+ 8w and /S" -f- 7W should each

become a pair of planes, which proves the second form.

64. If a given quadric surface intersect a cubic surface in a

quartic curve and a conic ; then any other quadric surface drawn
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through the quartic curve intersects the cubic surface in a conic,

which lies in a plane passing through a fixed straight line on the

cubic surface.

Equation (I) shows that the quadric 8 intersects the cubic

surface in the quartic curve S = 0, S' — 0, and in the conic >S = 0,

u =0; also the plane u' = 0, which contains the conic, intersects

the cubic in the straight line u = 0, u' = 0. The equation 8' = \8,

where \ is an arbitrary constant, represents any other quadric

surface which intersects the cubic surface in the quartic curve

;

and if 8 and 8' be eliminated we obtain the equation u = \u',

which shows that the residual curve of intersection is a conic

lying in the plane u = \u', which passes through the straight line

w = 0, u' = 0.

The corresponding theorem for a plane cubic curve led to

Sylvester's discovery of the Theory of Kesiduation of curves ; and

it will hereafter be shown that the preceding theorem is a particu-

lar case of a corresponding Theory of Residuation of surfaces.

65. Through any straight line on a cubic surface, 5 planes can

be drawn which intersect the surface in a pair of straight lines.

Also 27 straight lines can be drawn on an anautotomic cubic

surface.

The first part of this theorem has already been proved in

§§ 44 or 45 ; and the second part can be established as follows.

Let any triple tangent plane intersect the cubic in the lines

X, fji, v; then since four other planes can be drawn through X,

each of which intersects the cubic in two other straight lines,

these four planes will furnish eight straight lines which together

with \ make nine. Similarly, each of the other lines fi and v will

furnish nine more, making a total of 27.

66. An anautotomic cubic surface has 45 triple tangent

planes.

Each of the 5 tangent planes drawn through a straight line on

a cubic touches the latter in three points, which are the vertices of

the triangle which is the section of the surface by the plane ; and

since 27 lines can be drawn on the surface, the number of such

planes is 27 x 5 = 135. But every plane such as ABG contains

each of the lines AB, AG and BG; hence the total number of

distinct planes is 135 -^ 3 = 45. _
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67. An anautotomic cubic surface has 54 tangent planes at

which the point of contact is a tacnode on the section.

The section of the surface by an arbitrary plane through the

line AB consists of AB and a conic which in general cuts AB in

two distinct points, and the plane is therefore a double tangent

plane ; but if the two points coincide, the point of contact is a

tacnode on the section. Let the equation of the surface be

+ ja^Mo + a (pl3 + v^) + jS^Wo + I3w, + ^2)8 = (1).

In (1) write S = ky, divide out by 7, and then put 7 = 0, and

(1) becomes

a'(Uo- Jcuo) + a/3 (P-pJc) + fiHWo- kw,) = (2).

Equation (2) determines the two points in which the line AB
cuts the conic ; but if AB touches the conic the two roots of (2)

must be equal, which furnishes a quadratic equation for deter-

mining k. Hence on each of the 27 lines there are two points

such that the section by the tangent plane consists of the straight

line and a conic touching it at the point; accordingly there are

54 of such points.

68. The literature on the 27 lines of a cubic surface, and the

different ways of arranging them is voluminous ; and the reader

is referred to the authorities cited below*. One arrangement is

that of a double-six, which consists of two systems of lines

1, 2, 3, 4, 5, 6,

1', 2', 3', 4', 5', 6',

such that each line of one system intersects every line of the

other system except the line represented by the figure above or

below it, as the case may be. There are altogether 36 double-

sixes.

The Hessian of a Cubic Surface.

69. We shall now give some theorems relating to a cubic sur-

face and its Hessian, which is a quartic surface, since 4 (w — 2) = 4

when w = 3.

* Schlafli, Phil. Trans, cliii. (1863), p. 193 ; Cayley, Ihid. clix. (1869), p. 231,

and G. M. P. vol. vi. p. 359, vol. vii. p. 316 ; Clebsch, Math. Annalen, vol. iv.
;

Cremona, Crelle, vol. lxviii. ; Dixon, Quart. Jouni. vol. xl. p. 246 ; Burnside,

Ibid. p. 381.
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If the polar quadric of any point A with respect to a cubic he a

cone whose vertex is B, the polar quadric of B is a cone whose vertex

is A. Hence the Hessian and the Steinerian are identical.

This theorem has already been given in § 13 (viii) ; but for a

cubic surface the proof is as follows. Let the equation of the

surface be

a^ + ahi^ + au2 + U3 = (3),

then the polar quadric of A is

SaP + 2au, + U2 = (4),

and if (4) is a cone whose vertex is B, it cannot contain /3 ; hence

Ui = ]j,y + vS, U2 = V2, and (3) becomes

a^ + a^ (fiy + vB) + av2+ Us = (5).

The polar quadric of B is now du^jd^ = 0, which is a cone

whose vertex is A. The points A and B are points on the

Hessian, and are called conjugate poles ; and a theory exists with

reference to them analogous to the corresponding theory for plane

cubic curves.

70. The tangent plane to the Hessian at A is the polar plane

of B with respect to the cubic.

The polar plane of B with respect to the cubic is d^u^/d^'^ = ;

and if we write down the Hessian of (5) it will be found that the

only terms which contain a^ are

b (acd + 2gln - an^ - cP - dg'^) (6).

Now b = d^U3ld^^, whilst the term in brackets is equal to

where -4 is a constant ; hence the equation of the tangent plane

to the Hessian at A is d^u^jd^'^ = 0, which proves the theorem.

Let V2=^72 + 2g7S + rS2 (7),

u^ =^X + /S'(% + i\^S) + /3 (P72 + 2Q7S + R^)
+ Frf + SGy'8 + SHyB' + K8' (8),

then the tangent planes to the Hessian at A and B are

Sl3wo + My +m =
•(9).

3a + fly +vS =0

71. If the line joining two conjugate poles A and B intersect

the. Hessian in two points A' and B', the tangent planes to the
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Hessian at A and B will intersect in the line joining the two

poles which are conjugate to A' and B'.

Let /3' = /3 — Xa = be the plane A'CD ; then since the points

G and D are arbitrary, we may suppose that G is the pole con-

jugate to A'. Changing the tetrahedron to A'BGD, (5) becomes

a^ + a^ (fiy + vB) + av^ + (\a + ^J w, + (Xa + ^J (% \ M)
+ (Xa+ yS0(-P7'+ 2Q7S + l'')-vFrf + ... = (10).

The polar quadric of ^' is a cone whose vertex is G, and must

not therefore contain 7 ; hence

/i = 0, ilf=0, ^ + XP = 0, g + XQ = (11).

Let D be the pole conjugate to B', and change the tetrahedron

to AB'GD, where a' = a — X'/3 = is the equation of the plane

B'GD, then the condition that the polar quadric of B' should

be a cone whose vertex is D will be found to lead to a system of

equations, which when combined with (11), give

i;=0, N=0, q=Q = 0, E = -XV (12).

Equations (9), which are the tangent planes to the Hessian

at A and B, now become /3 = 0, a = 0, which intersect in the

line GD.

72. The polar plane with respect to the cubic of any point on

the line joining two conjugate poles, passes through the line of

intersection of the tangent planes to the Hessian at these points.

By the last section the equation of the cubic is

a'+a(py+rB') + ^'Wo + ^{Pj' + R8') + w,= (13),

and the polar plane of any point (a', /3') on AB is

which passes through GD.

73. The polar plane of the Hessian, with respect to any point

on a cubic, intersects the tangent plane to the cubic at that point, in

the line which passes through the three points of inflexion of the

section of the cubic by the tangent plane.

Consider the cubic

a?^ + a {^v, + ySvi + 78) + ^'w, + ^'w^ + j3w,^-rf ^h'=0.. .(14).

This surface passes through the point A, and /3 = is the

tangent plane thereat; also the section of (14) by the plane /3 is

078 + 73+8^ = (15).
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Equation (15) is a cubic curve which has a node at A, and the

line CD passes through the three points of inflexion on the

section. Let

then if we write down the Hessian of (14) it will be found that

the only terms which involve a^ and a^ are

- abn^ + h^n^ - 2ghmn - 2hfnl = 4,a^ (a + 2Q/3 - 2pq/3).

The polar plane of A with respect to the Hessian H is

d'Hjda' = 48 (2a + Q^ - pqjS) = 0,

which passes through CD.

74. If the polar quadric of a point A consists of a pair of

planes, then A is a conic node on the Hessian.

The polar quadric of A is in general a cone whose vertex is B
;

and since the line AB must possess at least one degree of freedom,

the equation of the polar quadric of A must contain at least one

variable parameter \. If therefore X is made to satisfy the con-

dition that the discriminant of the polar quadric of A should

vanish, the cone will degrade into a pair of planes whose line

of intersection passes through B. From (5) and (7) the polar

quadric of the cubic with respect to J. is

8a2 + 2a {^l'y + vh) ^-p^^ + 2^70 4- rS^ = (16),

and its discriminant equated to zero gives

3pr + 2qiMv — Sg-^ — pv"^ — r/^^ = (17).

Equation (6) gives the term involving a^ in the Hessian, and if

the values of a, c, &c., be substituted from (5) it will be found

that (17) is the condition that this term should vanish. Hence A
is a conic node on the Hessian.

75. Let BG be the line of intersection of the planes, then (16)

must reduce to

^a? + 2a.vB + r82 = 0,

which requires that fju- p = q = 0, and (5) becomes

a'+va'S + roiS'+Us = (18),

and since B may be any point on BG, it follows that the polar

quadric of every point on BG consists of a cone whose vertex is A
;

hence BG is a line lying in the Hessian.

B. 4
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Let us now enquire whether the Hessian has any nodes lying

on BG. Let C be any point on BG, and let /3' = /3 — X7 = be

the equation of the plane A G'D ; then in order to find the polar

quadric of G', we must change the tetrahedron to ABG'D and

differentiate (18) with respect to 7. Accordingly the polar quadric

of 0' is

where u^ is given by (8). Writing this out at full length we obtain

+ 2(Q\+SG)yB + 2{N\+Q)B^ + 2(MX + P)^y = 0...{19),

and its discriminant when equated to zero furnishes a cubic

equation for X, showing that there are three points on BG at which

the polar quadric degrades into a pair of planes. Hence the

Hessian has three conic nodes lying on BG.

76. Every anautotomic cubic surface can be expressed in the

canonical form

aoL^ + 6/3^ + C72 + dh^ + eu^= 0,

where a+/3 + 7+S + M=0.

The preceding form of a quaternary cubic is due to Sylvester*,

and we shall now show how it can be established by means of the

foregoing results.

Let J. be a node on the Hessian ; then we have already shown

that (i) the polar quadric of A consists of a pair of planes inter-

secting in a straight line LMN] (ii) the line LMN lies in the

Hessian
;

(iii) it has three conic nodes upon it, which we shall

suppose situated at the points L, M, N. Let a = 0, u = be

the equations of LMN; then the polar quadric of A must be

of the form
aa^ — eu^ = 0.

Integrating with respect to a, it follows that the equation of

the cubic surface must be of the form

C7 = aa^ + b^ + 07^ + dh^ + eu^ + ^8^ (/i7 + vh)

+ yS (P72 + 2Q7S + M^) + Gy'^h + Hyh^ = . . .(20).

Let us construct a triangle bv drawing three lines LBD, MGD
and NGB in the plane a through L, M and N. Then each of

* A quaternary cubic can also be expressed as the sum of six cubes. See

Dixon, Proc. Lond. Math. Soc. Series 2, vol. vii. p. 389.
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these lines has one degree of freedom in the plane a ; also since a

may be any plane which passes through LMN, the plane a has

also one degree of freedom. The coordinates of L may therefore

be taken to be a = 0, 7=0, ^ + 8 = 0; hence the polar quadric

of X is

dl3 d8
~

'

which by virtue of (20) is

36/32 + 2/3 (fiy + vS) + P72 + 2Qy8 + E8'

- SdB' - 7/32 - 2yS (Q7 + BB) - Gry' - 2ir7S = . . .(21).

This is the equation of a cone whose vertex is A ; but since

L is by hypothesis a node on the Hessian, it follows that (21) must
degrade into a pair of planes intersecting in some line passing

through A, which we may take to be AG, since AG may be any

line passing through A. This requires that

f^
= p = Q^G =H = 0,

which reduces (20) to

U= aa' + bfi' + cy' + dB' + eu' + v^h + R^S' = 0. . .(22).

The coordinates of M are a = 0, /3 = 0, 7 + S = 0; and its polar

quadric is

Scy^-3dB'-vl3^-2R^B=0 (23),

which is a cone whose vertex is A. Now A and N are fixed

points, and the line ^C is a fixed line, hence AGN is a fixed

plane, but AB may be any line through A in this plane. We
shall therefore suppose it to coincide with one of the generators of

the cone (23), in which case v = 0. Also M is by hypothesis a

conic node on the Hessian, hence the discriminant of (23) must

vanish, which requires that Be = 0. Taking B = 0, (22) reduces to

U = aa? + b^' + cy' + dB^ + eu' (24),

the form of which shows that JSf is also a node on the Hessian.

77. To find the equation of the Hessian.

Let (a', /3', 7', h') be any point on the Hessian, u' the corre-

sponding value of u ; then the polar quadric of this point with

respect to the cubic is

fdV dU\ ^,iW dU\

4—2
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which by virtue of (24) becomes

aa'a^ + 6/S'^2 ^ ^y^s ^ ^g'g2 ^ g^'^2 = q (25).

Since (25) is a cone, its discriminant must vanish ; and the

latter is obtained by eliminating (a, y8, <y, B) between the equations

aa'a = b^'/3 = cy'y = dS'S = eu'u,

and a + y8 + 7 + 8 + w = 0,

which gives _,+ + + + = o (26),° aa op C7 ah eu ^ '

and since (a', /3', 7', 3') is by hypothesis a point on the Hessian,

(26) is its equation.

From the way in which this result has been obtained, it follows

that J. is a node on the Hessian ; and from symmetry it follows

that J5, (7, J) are also nodes. It has also been shown that the sides

BG, CD and DB of the tetrahedron cut the plane w= in three

points which are also nodes ; hence from symmetry the three

points where AB, AG, AD cut the plane u=0 are also nodes.

Accordingly we obtain Sylvester's theorem that:

—

The Hessian

has ten nodes, which are the vertices of a 'pentahedron ; also these

nodes lie in triplets on the ten lines which form the edges of the

pentahedron. These ten lines lie in the Hessian, as is otherwise

obvious ; for since the Hessian is a quartic surface, the line joining

three collinear nodes must necessarily lie in the surface.

Singularities of Guhic Surfaces.

78. Since a cubic surface may possess as many as four double

points, it may have compound singularities formed by the union

of two or more simple singularities ; but one caution is necessary.

The section of a surface by a plane through a conic node and the

axis of a binode is a nodocuspidal curve, having an ordinary node

at the conic node and a cusp at the binode ; accordingly when the

conic node and the binode coincide, the section will have a

rhamphoid cusp at the point. But a quartic is the curve of

lowest degree which can possess a proper rhamphoid cusp; and

since the section of a cubic surface through two double points

consists of a conic and the line joining them, the rhamphoid cusp

must appear in a degraded form on the section. The consequence

is that singularities composed of a determinate number of conic
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nodes and binodes possess special features, when the surface on

which they lie is a cubic, which are quite different from those of

the corresponding singularities on a surface of higher degree.

79. The hinode Bi=2C. We have shown in § 25 that the

equation of a surface having a binode formed by the union of two

conic nodes is

a«-2^S + a'^-s (I3^wi + fiw^ + Ws) + a^'-^u^ + ...Un = 0.. .(27),

where AB is the axis of the binode. The axis has quadritactic

contact with the surface at the binode, and the section of the latter

by any plane through the axis has a tacnode thereat ; also the axis

is one of the lines of closest contact in each biplane, so that the

axis is equivalent to two of such lines. Let n = S, and let AC he

one of the lines of closest contact in the biplane ABC, and AD one

of them in ABB ; then (27) becomes

aryB + /3^Wi + /3w2 + yBv^ = 0.

Change the tetrahedron to A'BCD, where /3' = yS— X,a=0 is

the equation of the plane A'GD, then the equation becomes

OL'yh + (/3' + \cLy w, + {^' + Xa) w^ + 7SW1 = 0,

which shows that w^ = is the tangent plane along the axis, and

is therefore fixed in space. The axis is therefore a singular line

analogous to the curve of contact of a trope ; hence a binode of

this species on a cubic surface is a totally different singularity

from one on a surface of higher degree.

80. The hinode B5 = G + B. Consider the equation

a'yh + ^l^''r^ + I3w^ + w.^= (28).

This surface has a binode at A, and the biplane 7 touches the

surface along the axis AB ; hence 7 is a singular plane, and the

axis a singular line analogous to the curve of contact of a trope.

Writing down the first polars of G and D we obtain

aS + /^)82 + /3w; +< =0 (29),

a7+ ^w^' + w^' = Q (30),

where vf = dw/dy and w" = dw/dS. Eliminating a between (28)

and (29), and between (28) and (30), we obtain

/3 (wa - 7W2') +W3- yws =
.(31).

fi^'y + /3{w^- Bw^") + w,- Sw/' = '
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Equations (31) represent two cubic cones, and their number
of common generators, exclusive of AB, gives the number of

ordinary points of intersection of (28) and the first polars of G and
D; and since AB is a nodal generator on the first of (31) and an

ordinary one on the second, the number of common generators is

equal to 7. Hence m = 7, and the constituents of this binode are

0=1, B=l.

It follows from § 26, that when a surface of the rtth degree

possesses a binode formed by the union of a conic node and a

binode, the singularity is of a totally different character. Also

when a surface of the nth. degree possesses a binode such that

(i) the axis lies in the surface, (ii) one of the biplanes touches

the surface along the axis, the constituents of the singularity are

altogether different from those of the binode we are considering.

81. The binode Be=2B. The equation of a cubic surface

having this binode is

aryB + fi^'y + ^yw, + Ws = (32),

so that the axis is not only a singular line, but one of the biplanes

osculates the surface along it.

We have shown in § 31 that when a fixed plane osculates a

surface along a straight line, there are in general n — 1 ordinary

binodes lying in the line. Hence the equation of a cubic surface

having a binode at A, and ABD as the osculating plane, is

a7 (p/3 + ^7 + rS) + /3V + /37W1 + W3 = (33).

Let the plane /3' = y8 — X,a = cut AB at A'; then changing

the tetrahedron to A'BGD, (33) becomes

ay [p {\0L + /3') + qy + rS] + (\a + ^J 7
+ (Xa + y8') 7^1 + «^3 = (34);

accordingly if X+|) = 0, A' will be the other binode; and if

p = the latter will coincide with A. In this case (33) becomes

o.y (qy + rS) + /S^ + /S7W1 + Wg = 0,

which is of the same form as (32). The constituents of this binode

are therefore 5=2, and the reduction of class produced by it is 6.

82. Unodes. The theory of the unode has been discussed in

§§ 27 and 28 ; and we have shown that there are three kinds of

unodes, whose constituents are (7 = 3, 5 = 0; G = 2, B = 1 ; (7=1,

B=2; and respectively reduce the class by 6, 7 and 8. The
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equations of a cubic surface having the three species of unodes

are

aB^ + Us =

aB^ + fjL^'8 + ^w, +W3 = - ....(35),

in which 8 is the uniplane. But a unode on a cubic surface is a

singularity different from one lying on a surface of a higher

degree, because the tangents at the triple point on the section of

the surface by the uniplane lie in it ; and a unode on a surface of

the nth. degree which possessed this property would be a special

kind of unode. In the first species of unode on a cubic surface,

the uniplane cuts the surface in three straight lines passing

through the unode, which when twice repeated constitute the six

lines of closest contact. In the second species, two of these lines

coincide, and the uniplane 8 touches the surface along the line AB
which is a singular line analogous to the curve of contact of a trope.

In the third species, all three lines coincide; and the uniplane

osculates the cubic along AB, which is likewise a singular line,

analogous to the curve of contact of a tangent plane which oscu-

lates a surface along a plane curve.

83. The first complete investigation of cubic surfaces was

made by Schlafli*, who showed that there are twenty-three species
;

and his results were subsequently extended and discussed by

Cayleyf. The last author has also found the equations of the

Hessian and the reciprocal surface, and the latter gives valuable

information respecting the character of the reciprocal singularities.

At the same time, since compound singularities on a cubic surface

possess special features of their own, the character of the singu-

larities on the reciprocal surface is not precisely the same as when

the original surface is of higher degree.

The following table gives the twenty-three species, in w^hich

the letters m, I and t denote the class of the surface, and the

number of lines and triple tangent planes.

* Phil. Trans. 1863, p. 193.

t Ibid. 1869, p. 231, and C. M. P. vol. vi. p. 359.
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in which a is one of the triple tangent planes. Putting S = \ol,

the section of the surface by an arbitrary plane through BG is the

conic

2a (/^ + ^7 + h\oi) + P^2 + Q72 + RX'ol'

+ 2{py + q^)\oL+2r^y + 2\l3y=0 (37).

Equating the discriminant to zero, we obtain

PQ (2h + R\)\ + 2{r + X){g + p\) (f+ q\)

- (2h + R\) (r + \yx -P(9+ pxy - Q (/+ q\y = . . .(38).

Equation (38) is a quartic equation for determining X, and

shows that in addition to the plane a four other planes can be

drawn through BG which cut the surface in a pair of straight

lines. If however (36) has a conic node at A, /= g — h=0, and

V is a factor of (38) ; and since X = corresponds to the plane

ABG, the fact that X, = is a double root of (38) shows that the

plane ABG is twice repeated, and therefore the two lines of closest

contact in this plane are each equivalent to two ordinary lines.

The quadratic factor of (38) which is

PQR + 2pq {r + X)-R {r + Xf - Pp' -Qf = (39)

furnishes two triple tangent planes through BG, which together

with BGD make three ; hence the 10 straight lines which cut BG
consist of the two lines of closest contact twice repeated, which lie

in the plane ABG, and six ordinary lines.

Again, three triple tangent planes can be drawn through each

of the 15 ordinary lines making 45 ; but since this number includes

every plane repeated three times, the number of distinct planes is

15. Every plane through a pair of lines of closest contact is

equivalent to two triple tangent planes, since each line is counted

twice; hence the total number of triple tangent planes ordinary

and extraordinary is 15 + 2 x 15 = 45.

85. The following analytical investigation is due to Cayley

;

but it contains some errors which I have corrected. The equation

of the surface may be taken to be

a (1, 1, 1, 1 + l~^, m + m~S n + n~'^\^, 7, ^Y + pqrs^yB/lmn =

(40)

where

p = mn —I, q = nl — m, r = lm. — n, s = Imn — 1 (41 ).
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The six lines of closest contact lie in the planes /3, 7 and 8

and their equations are

13 = 0, y+lB =0; 13 = 0, ry + 8/1 =0\

y =0, B +m^ = 0; j =0, B + /3/m = [ (42).

B =0, ^ + ny = ; B =0, ^ + y/n = )

The 15 ordinary lines are first CD, DB and BG. Through CD
two planes can be drawn one of which cuts the cubic in two lines

4, 5 ; whilst the other cuts it in two lines 6, 7. Similarly the

lines DB and BG are respectively cut by the lines 8, 9, 10, 11 and

12, 13, 14, 15 ; and the equations of these lines are

4. a + ps^ = 0, ^ + ny + mB = 0.

5. a+ps^ = 0, /3 + 7/w +S/m = 0.

6. a-qr^ = 0, ^ + y/n +mB =0.

7. a — qr^ = 0, fi + ny + B/m = 0.

8. a + qsy =0, y + IB + n/3 = 0.

9. a + ^57 =0, y + B/l + jS/n = 0.

10. a-rpy = 0, 7 + B/l + n^ =0.

11. a - rp7 = 0, y + IB + /S/w = 0.

12. a + rsB =0, B + m^ + ly =0.

13. a + rsB =0, B + ^l7n + y/l =0.

14. a-pqB = 0, B+^/m+ly =0.

15. a-pqS = 0, B + m/S + ^/l = 0.

To prove these results put a = - ps/3 in (40), and it becomes

/3' + y^ + B' + {I -{ I-') yB+{m + m,-') S/3

+ {n + n~'^) ^y - yBqr/lmn = (43).

Substituting the values of q and r from (41), the coefficient of

78 becomes equal to m/n + n/m, which shows that (43) is equiva-

lent to

(/3 + wy + mB) (/3 + y/n + B/m) = 0,

and the remaining equations can be proved in a similar manner.

If three lines lie in the same plane, the points where they cut

the plane BGD must obviously be collinear. Now the equation of

the plane through 4 and 8 is

a +ps^ +{j3 + ny-\- mB) Is = 0,

which can be written in the form

a + rsB + (B + m^ + ly) ns = 0,



5.
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three ordinary lines, each plane through a pair of such lines is

equivalent to three planes making 9 x 3 = 27; also each biplane

is equivalent to 6 triple tangent planes, making the total number

6 + 27 + 12 = 45.

87. Following Cayley, the equation of the cubic may be

expressed in the form

a{/3 + y + S)(l^ + my + nB) + {m-n){n- 1) {I - m) /3yS =
(45).

The equations of the six lines of closest contact are

^ = 0, 7 + S = ; l3 = Q,my + nB=0.

7 = 0, 8 + /3 = ; 7 = 0, ?iS + ^/3 = 0.

B =0, ^ + y =0; B =0, W +my = 0.

The nine ordinary lines are BG, CD and DB, and six others

whose equations are

a + l

a + l

a + m
a + m
a + n

a + n

TO-w)y3 = 0, 1/3 +my + lB =0.

m - w ) /3 = 0, 1/3 +ly +nB =0.

n — I )y =0, l^ + my + mS = 0.

n —I ) 7 = 0, m^ + my + nB =0.

I -m)B =0, 1/3 +ny + nB = 0.

I — m) B = 0, 71/3 + my + nB = 0.

88. One hinode B^. Let AB be the axis of the binode, and

let CD be one of the lines lying in the surface ; then the equation

of the latter may be written in the form

ayB + |S2 (py + gS) + /S (Fy^ + GyB + HS") = (46).

The fixed tangent plane which touches the surface along the

axis intersects the surface in the axis twice repeated, and in the

line

py + qB = 0, pqoL - (Ff - Gpq + iTp^) /8 = 0,

which is called the transversal. Hence the ordinary lines consist

of the transversal and the four other lines which are the residual

intersections of the planes containing the four pairs of lines of

closest contact. Cayley considers that the axis ought to be

regarded as equivalent to two ordinary lines, thus making a total

of 7 ; but as this line is a singular one, I am inclined to think that

it ought not to be included amongst the ordinary lines, but treated

as one sui generis.
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89. One binode B^. When q = 0, the tangent plane along the

axis coincides with the biplane 7, and the singularity becomes the

binode B^. The transversal consequently disappears, since it

coincides with the line of closest contact in the plane 7. There

are therefore only two ordinary lines, but Cayley considers that

the axis is equivalent to one ordinary line, thus making a total

of 3.

90. It seems scarcely worth while to pursue the investigation

of the lines which can be drawn on the remaining species of cubic

surfaces; but for the purpose of reference, I shall give Cayley's

form of the equations of the twenty-three different species, the

proof of which may be left to the reader.

I.



62 CUBIC SURFACES

91. Nodal lines. A cubic surface possessing a nodal line is

evidently a scroll, since any plane through this line intersects the

surface in the nodal line twice repeated and another line. We
have already proved in §§ 37 and 43 that a nodal line on a surface

of the Tith degree reduces the class by 7w— 12, and that it has

2w — 4 pinch points. Putting w = 3, these numbers become 9 and

2 ; hence cubic surfaces having a nodal line are of the third class

and possess two pinch points. When both pinch points are

distinct, both tangent planes are torsal and the line is one of the

first kind ; but when the pinch points coincide, one tangent plane

is torsal and the other fixed, and the line is of the second kind.

92. The point constituents of a nodal line on a cubic are

C=3, 5 = 1.

The equation of a cubic having a unode at A is

a(p;8^-g7 + rS)2 + y8^^'o + /3'yl + /8v2 + W3 = (47),

and if (47) has a node of any kind at 5, we must have p = Va= Vi=^\

and (47) becomes
a (57 + r8)2 + ;8v2 + ^3 = 0,

which represents a cubic surface on which AB is a nodal line of

the first kind and A is one of the pinch points. Since the con-

stituents of a unode are three double points, those of a nodal line

are determined by the equations

2(7 + 35 = 9, (7 + 5 = 4,

giving a =3, 5=1.

Since a nodal line of the second kind is produced by making

the two pinch points coincide, its constituents are the same as

those of a nodal line of the first kind.

A cubic surface cannot have a cuspidal line unless it is a cone,

for if we attempt to make every point a pinch point, the surface

reduces to the form
(pa + 9^8)^1^ + ^3=0.

93. Four nodes. We shall conclude by making a few remarks

about species XVI, the equation of which is

l^r^h + mr^Zoi + nhalS +pa^ry = (48),

or l/a + m/^ + n/y + pl8 = 0.. (49).

If we attempt to convert the conic node at A into a binode,

the surface degrades into a quadiic and a plane; hence a cubic
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surface cannot possess three conic nodes and one binode when the

singularities are isolated. But we have shown that the con-

stituents of a nodal line are C =S, B = 1, from which it appears

that certain combinations of conic nodes and binodes may exist in

the form of a compound singularity, although they cannot exist

when the double points are isolated.

Equation (49) is of the form

(^a)" + {mj3y + (nyY + (pSy = 0,

the reciprocal polar of which is obtained by changing v into

v/{v—l). Hence the reciprocal polar of (49) is

(la)^ + {m^f + {ny)^+(p8)^ = (50).

Putting I = m = n = p = 1, and rationalizing, (50) becomes

(a2 4- ^2 + ^2 + g2 _ 2^^ _ 27a - 2a/3 - 2aS - 2/3S - 2ySy = 64>a/3yS

(51).

This surface is called Steiner's* quartic, and its properties will

be discussed in the chapter on Quartic Surfaces.

A cubic having four conic nodes is also the envelope of the

quadric (A, B, G, F, G, H~^\,
fj,, vf — 0, where A, B ... are planes.

* Crelle, vols, lxiii. and lxiv.



CHAPTER III

TWISTED CURVES AND DEVELOPABLES

94. Every curve, plane or twisted, may be regarded as the

limit of a polygon whose angles are denoted by the figures 1, 2,

3, &c. The lines 12, 23, &c. are tangents at successive points on

the curve, and the plane 123 contains these lines. When the

curve is twisted, the point 4 will in general lie in a different plane

234 which intersects the plane 123 in the line 23; also since these

planes pass through three consecutive points on the curve they are

osculating planes. A developable surface is a ruled surface each

generator of which intersects the consecutive one ; hence the

envelope of the osculating planes to a twisted curve is a develop-

able surface.

Since a point which is constrained to move along a twisted

curve has only one degree of freedom, the osculating plane has

likewise the same degree of freedom ; hence the constants in its

equation must be functions of a single parameter 6. Accordingly

the equation of the osculating plane must be of the form

z = ex + y(f>(d) + y}r(e) (1),

where ^ and -x/r are arbitrary functions*.

95. When a developable surface is generated in the above

manner, the curve whose osculating planes envelope the develop-

able is called the edge of regression ; and when the curve is an

algebraic one, the edge of regression is a cuspidal f curve on the

developable, that is to say the surface consists of two sheets

which touch one another along a cusp. If a sheet of paper is

* The elimination of 6 leads to the two well-known partial differential equations

q = (j) (p) and rt = s^.

t The Italians call a cusp un reijresso ; a rhamphoid cusp un regresso di seconda

specie and so on.
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bent along the lines 12, 23, &c., the continuations of these lines

in the opposite directions will form a twisted curve on the

developable ; but if pieces of fine wire be gummed to the paper

along the lines 12, 23, &c., whilst the continuations are left free,

the latter portions will generate the other sheet of the developable.

The surface therefore consists of two sheets, one of which is the

bent paper, whilst the other is generated in the manner above

described. The point where any plane section of the developable

cuts the edge of regression is a cusp on the section ; and it is

obvious that if it were possible for a developable to consist of one

sheet only, the point in question would be a point d'arret, and such

a singularity cannot be possessed by an algebraic curve.

Any plane through a tangent, such as 12, cuts the developable

in a curve having a point of inflexion at 1 and also in a generator

which is a stationary tangent to the curve. If a point moves

along the tangent from left to right keeping in the same sheet of

the developable, the point will begin to move along the curve as

soon as it has passed 1 ; for the continuation of the tangent is a

generator on the other sheet of the developable.

96. Every generator of a developable of degree v is cut by

v — 4i other generators.

Any plane through a generator 12 intersects the developable

in this generator and in a curve of degree v — 1 ; and since the

generator 12 touches this curve at a point of inflexion, it cuts it in

V — 4> points which are the points where y — 4 other generators

cut 12.

97. The reciprocal polar of a twisted curve is a developable

surface amd vice versa.

Let and P, lying in the plane of the paper, be the origin

of reciprocation and any point on the curve; and let the osculating

plane at P be perpendicular to the plane of the paper and cut it

in PA. Draw OA perpendicular to the osculating plane at P and

produce it to A', so that OA . OA' = ]<?; also let P' be a point on

OP such that OP . OP' = k^. Then the point A' is the reciprocal

polar of the osculating plane at P, and its locus is the reciprocal

of the developable ; also since the osculating plane at P has only

one degree of freedom, the point A' has the same degree of

freedom, and therefore its locus is a twisted curve.
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Since OA . OA' = OP . OP' = k"", it follows that the four points

A', A, P', P lie on a circle, and therefore the angle A'P'P is a

right angle. Hence the plane through A'P' which is perpen-

dicular to the plane of the paper is the reciprocal polar of P,

and since it has only one degree of freedom its envelope is a

developable surface.

98. Let E denote the original twisted curve, D the develop-

able which is the envelope of its osculating planes, D' the

developable which is the reciprocal polar of E ; then it follows

that the reciprocal polar of Z) is a twisted curve E' which lies in

B'. Now the three consecutive points 2, 3, 4 on JS" lie in the

osculating plane 234; and the three osculating planes 123, 234

and 345 each pass through the point 3 ; accordingly the tangent

plane to U which is the reciprocal polar of 3 contains the three

points on E', which are the reciprocal polars of the three planes

123, 234, 345 ; hence this plane is an osculating plane to E', and

therefore E' is the edge of regression of D'.

The curve and surface E and D' are the reciprocal polars of

one another, and so also are the surface and curve B and E' ; but

the curves E and E' are not reciprocal polars of one another.

At the same time they may be regarded as quasi-reciprocal curves,

since the reciprocal polar of any point on E is an osculating plane

to E' and vice versa. Hence a complete theory of reciprocation

exists between the curves E and E', in which the osculating

plane takes the place of the tangent in the ordinary theory of the

reciprocation of plane curves.

The degree y of Z) is equal to the number of points in which

an arbitrary straight line intersects it, and this is equal to the

number of tangents to E which intersect an arbitrary straight

line. Reciprocating, it follows that v is equal to the number of

tangent planes to E' which can be drawn through an arbitrary

straight line, that is to the degree of B'. Hence the degrees of B
and B' are equal.

99. Before considering the singularities of twisted curves, we

must explain their generation and classification.

The degree of the complete curve of intersection of two surfaces

is equal to the number of j^oints in which it is cut by an arbitrary

plane.

Two surfaces of degrees I and m intersect in a curve of degree
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Im, and this is the number of points of intersection of the two

surfaces and an arbitrary plane.

100. The degree of a cone standing on a twisted curve of

degree n is n ; but if the vertex lie on the curve, the degree of the

cone is n—1. Also a twisted curve cannot pass through more than

|-w (n + 1) arbitrary points.

Draw any plane through the vertex of the cone ; then this

will cut the twisted curve in n points ; and since every line

joining with one of these points is a generator of the cone, its

degree is n.

If however lie on the curve, the plane will cut it in only

n — 1 other points, which is therefore the degree of the cone.

Let the curve pass through r + 1 arbitrary points, and let the

vertex of the cone coincide with one of them ; then the cone

will pass through r arbitrary points. But a plane curve, and

therefore a cone of degree n — \, cannot pass through more than

|^(n — l)(w+2) arbitrary points; hence r cannot be greater than

this quantity, and therefore r + 1 cannot be greater than ^n {n + 1).

101. When the degree of a twisted curve is a prime number
it cannot be the complete intersection of two surfaces, for when

n is prime its only factors are n and 1, and the curve would be a

plane one. Consequently such a twisted curve must be the

partial intersection of two surfaces of degrees I and m, whose

complete curve of intersection is a compound curve consisting of

one of degree n and of another curve of degree Im — n. For

example, the complete curve of intersection of two quadric surfaces

is a twisted quartic curve of the first species, but if the quadrics

possess a common generator, the complete curve consists of the

common generator and a twisted cubic curve. It also frequently

happens that a curve whose degree is a prime number cannot be

represented as the complete intersection of two surfaces ; thus it

is possible for a cubic and a quadric surface to intersect in two

straight lines, lying in different planes, and in a residual quartic

curve ; but it can be shown that only one quadric surface can be

drawn through such a quartic curve, and therefore the latter

cannot be represented as the complete intersection of two quadric

surfaces. Such a curve is called a quartic of the second species.

102. The first and most important step in the classification

of twisted curves, which are the partial intersections of two

5—2
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surfaces, is to ascertain the two surfaces of lowest degree which can

contain the curve. Thus the two surfaces of lowest degree which

can contain a quintic curve are a quadric and a cubic surface

which possess a common straight line; and such a curve is called a

quintic of the first species. But two cubic surfaces can intersect

in a quartic curve of the first species and a residual quintic

curve, and we shall now show that the latter curve is a quintic of

the first species.

The equations of the curve may be expressed in the form

ryS=BS', yu = Sv (2),

where >S', aS" are quadric surfaces and u, v are planes. Eliminating

7, B we obtain

Sv = S'u (3).

The two cubic surfaces (3) and the first of (2) intersect in a

twisted quartic of the first species, which is the complete inter-

section of the quadrics S and 8\ and in a residual quintic curve

which lies in both the surfaces (2) ; accordingly although (2) are

the simplest equations for defining the curve, it may be expressed

as the partial intersection of two surfaces of higher degrees. But

the Theory of Residuation furnishes the simplest method of dis-

covering the two surfaces in question.

103. We must now consider the characteristics of E and D.

The degree w of ^ is equal to the number of points in which

the curve intersects an arbitrary plane. Now the class of a curve

is defined to be that particular geometrical property which is the

reciprocal of its degree ; and, in the case of a twisted curve, this

property is the number of tangent planes which can be drawn

to D' through a point. But every tangent plane to D' is an

osculating plane to E'
',
hence the class m of a twisted curve is

equal to the number of osculating planes which can be drawn to

it through a point.

A node B can arise in three ways : (i) when the two surfaces

containing the curve have ordinary contact at a point on the

curve
;

(ii) when one surface passes through a double point on the

other; (iii) when one of the surfaces possesses a nodal curve.

The reciprocal of a node is a doubly osculating plane ot; and

such a plane is a double tangent plane to the developable D'.

Since ib- must intersect the curve in at least six points, it cannot
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occur on any curve of lower degree than a sextic ; but, unlike a

double tangent to a plane curve, it need not occur at all. Let the

osculating plane at a point P cut the curve in points Q, R, S, ...
;

then since P has one degree of freedom, its position is determined

by means of a single parameter 6; accordingly the distance QR
can be expressed as some function F of 6. If, therefore, the para-

meter of P is a root of the equation F{0) = O, the points Q and R
will coincide and the plane will touch the curve at Q ; hence there

is a determinate number of osculating planes which touch the

curve elsewhere*; but a third point 8 cannot, in general, be made
to coincide with Q without assuming some relation between the

constants of the curve. The plane tn- is equivalent to the two

osculating planes at its points of contact.

A cusp K occurs when the surfaces containing the curve have

stationary contact at some point on it. A cusp may also, like a

node, arise from the surfaces having singularities.

The reciprocal of a cusp is a stationary plane a. Such a plane

passes through four consecutive points on the curve, and at the

point of contact two osculating planes coincide. The point is

also one at which the tortuosity of the curve vanishes and

changes sign ; and since the tortuosity is some function / of 0, the

plane a occurs at the points whose parameters are the roots of

the equation f{0) — 0. This plane osculates the developable D'

along a generator.

Since a cusp is the reciprocal of a stationary plane, the pre-

ceding argument shows that a cusp is a point through which four

consecutive osculating planes pass. If, therefore, the developable

is the envelope of the plane

aa -f- 6/3 + C7 + (ZS = 0,

where a, h, c, d are functions of a single parameter 6, the conditions

for a cusp are obtained by differentiating the above equation three

times with respect to 6 and eliminating (a, ^, 7, 8).

A double tangent t to E reciprocates into a double tangent

t' to F'. This singularity, unlike a double tangent to a plane

curve, need not occur ; for if a straight line touches a twisted

curve, it need not intersect it elsewhere. The double tangent is

a generator of D ; but since the osculating planes to E at its

points of contact are in general distinct, there are two tangent

* These planes will be discussed in § 111.



70 TWISTED CURVES AND DEVELOPABLES

planes to D along a double tangent to E. Hence a double tangent

to ^ is a nodal generator on D.

A stationary tangent t to E reciprocates into a stationary

tangent l to E'. Such a tangent touches the curve at a point of

inflexion, which is a point where the curvature vanishes and

changes sign ; hence l may always occur on a twisted curve and

must never he assumed to he zero. A stationary tangent to ^ is a

cuspidal generator on D.

It will hereafter appear that a considerable number of twisted

curves do not possess stationary planes and tangents, the expla-

nation of which is as follows. The tortuosity and curvature can

always be expressed in the form F {d) ; but if none of the roots of

the equation F {6) = are the parameters of points on the curve,

the tortuosity or curvature (as the case may be) can never vanish.

A simple example is furnished by the expression for the curvature

of an ellipse in terms of the excentric angle 0, which cannot be

made to vanish for any real value of ^.

There are four other singularities which have to be taken

account of.

If be the vertex of any cone which stands on the curve, a

generator which intersects the curve in two points P and Q is a

nodal generator of the cone and gives rise to an apparent node

on the curve* ; since, to an eye situated at 0, two branches of the

curve appear to intersect one another. The number h of such

nodal generators is equal to the number of apparent nodes on the

curve.

The reciprocal singularity is called an apparent douhle plane,

and consists of a pair of osculating planes whose line of intersection

lies in a fixed plane. The number g of such pairs of planes is

equal to the number of apparent double planes.

It is also possible for a pair of tangents to E to lie in a plane,

which is consequently a double tangent plane to E ; and the locus

of the points of intersection of such pairs of tangents is a nodal

curve on D. The degree x of this curve is equal to the number of

* Since a " double point " includes a cusp as well as a node, the phrase

"apparent double point" is inappropriate; for a twisted curve cannot, in general,

possess an apparent cusp. By properly choosing the vertex of the cone, it is quite

possible for the curve to appear to have a cusp to an observer situated at the

vertex ; but if the vertex be shifted, the apparent cusp will be changed into an

apparent node.
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points in which it intersects an arbitrary plane ; accordingly x is

equal to the number of pairs of tangents to E, whose points of

-intersection lie in a fixed plane.

The reciprocal singularity y is equal to the number of pairs of

tangents to E', which lie in planes passing through a fixed point

;

in other words, it is equal to the number of double tangent planes

to the curve which pass through a fixed point.

The Plucher-Gayley Equations.

104. Thirteen quantities have therefore to be considered
;

and the reader will observe that I have assigned definite geo-

metrical meanings to each of them, so that there is no need to

employ such verbose and obscure phrases as "rank of the system,"

" planes through two lines," and the like. For the purpose of

facilitating comparison, I subjoin my own notation and that of

Cayley and Salmon*.

Basset

—

v, n, in, 8, ct, k, a, r, t, h, g, x, y.

Cayley and Salmon—r, m, n, H, 0, /3, a, co, v, h, g, x, y.

Cayley obtained equations connecting the thirteen charac-

teristics of the curve in the following mannerf.

Consider any plane section 8 of the developable D. Let jB,

Jtt, ^, ^, 'S^, 31 denote the degree, class, and number of nodes,

cusps, double and stationary tangents to S.

The degree iS, of >Sf is equal to the number of points in which

it is cut by an arbitrary line lying in its plane ; that is to say to

the degree of D. Hence ^ = v.

The class JW of >S is equal to the number of tangents which can

be drawn to it through a fixed point in its plane ; and since each

tangent lies in a tangent plane through to D, this number is

equal to the class of D, that is to the class of E. Hence JW = m.

A node on S may arise in two ways, (i) If two tangents TP,

TQ to E intersect the plane of /Sf in a point T, the osculating

planes to ^ at P and Q intersect the plane of S in two lines

* The symbols 8, k, t, i have been used in England for many years to designate

the number of nodes, cusps, double and stationary tangents which a plane curve

possesses ; and to employ different symbols for the corresponding singularities of

a twisted curve introduces confusion and unnecessary complexity.

t C M. P. vol. I. p. 207 ; Liouville's Journ. vol. x. p. 245.
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TP', TQ', which are tangents to S at T. Hence two branches of

S cross one another at T, and T is a node. The number of nodes

arising from this cause is equal to the number x of pairs of

tangents to JS, whose points of intersection lie in the plane of S.

(ii) In the next place the point where every nodal generator of D
cuts the plane of ^ is a node on S; and since every such generator

is a double tangent to E, there are t nodes on S arising from this

cause. Hence "^ = cc + r.

A cusp on S also arises in two ways, (i) The points where

the plane of S cuts E are obviously cusps on S, and their number

is equal to the degree n of E. (ii) In the second place every

stationary tangent to E gives rise to a cuspidal generator on D,

and the points where these generators cut the plane of S are

cusps on S; there are consequently i cusps arising from this

cause. Hence Wi = n + t.

A double tangent to S arises in two ways, (i) If P and Q are

two points on E, the osculating planes at which intersect in a line

pq lying in the plane of S, and Pp, Qq are the corresponding

generators of D, the line pq is a double tangent to S whose points

of contact are p and q. There are accordingly g double tangents

arising from this cause, (ii) In the next place every doubly

osculating plane 'ur to E intersects the plane of 8 in a line which

is a double tangent to 8. Hence '^T = ^ + -ot.

A stationary tangent to 8 can only arise from the existence of

stationary tangent planes to E ; hence E = cr.

We must therefore write in Pliicker's equations

and we obtain

TO = y (j^ - 1) - 2 (a? + t) - 3 (n + t)
'

o- = 3z/ (i/ - 2) - 6 (a; + t) - 8 {n + i)

V = m (m — 1) — 2 (^ + ot) — 3cr

n + 1 = 3??i (m -2) — Q{g + zT)~8(T

of which only three are independent.

Four more equations can be obtained by considering the cone

which stands on the curve; but although the use of the cone

is instructive as a mathematical artifice, its employment is un-

necessary, since the four remaining equations can be obtained

from (4) by writing for each quantity its reciprocal. We thus

obtain

.(4),
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(5),

)i = v(v-\)-2(y+T)-S(m + i) \

^ = Sv(p-2)-6{i/ + T)-8(m + i)

v = 7i(n-l)-2 {h +S)-3k
m + t = Sn (n - 2) - (5 {h + 8) - 8k

of which only three are independent.

105. It may be wortli while to give a direct proof of (5).

The degree of the cone is equal to that of the curve, and its

class is equal to the number of tangent planes which can be drawn
through any arbitrary line passing through its vertex ; and since

the vertex may be any arbitrary point, this is equal to the number
of tangents to E which intersect an arbitrary line, that is to the

degree of D. Hence ^ = n, ifWl = v.

Every generator of the cone which passes through an actual or

an apparent node is a nodal generator. Hence 3© = A + S.

A cuspidal generator can only occur when the curve has a

cusp. Hence 1£t = «•

A double tangent plane to the cone arises in two ways,

(i) When the curve possesses a pair of tangents which lie in a

plane passing through the vertex, and the number of such pairs of

tangents is y. (ii) Every plane through the vertex and a double

tangent to ^ is a double tangent plane to the cone. Hence

A stationary tangent plane to the cone also arises in two ways.

(i) Every tangent plane to D, which passes through the vertex of

the cone, is an osculating plane to E, and the number of such

tangent planes is m. (ii) In the second place every tangent plane

which passes through a stationary tangent to E is likewise a

stationary tangent plane. Hence 5 = tti + t.

Substituting in Plticker's equations for the cone we obtain (5).

106. There are certain other equations, called the Salmon-

Cremona equations, the consideration of which will be postponed

for the present, and we shall proceed to find the characteristics of

the curve of intersection E of a pair of surfaces U and V whose
degrees are M and iV respectively, and which are arbitrarily

situated with respect to one another.

The degree v of the developable D is equal to

v =MN{M + N-2).
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.(6).

(7),

,(8).

The degree of D is equal to the number of tangents to E which

intersect an arbitrary straight line. Let the equations of the

latter be

poL+ q/3 + ry + s8 = OJ

The equations of the tangent to E are

where CTj = dV/d^, &c., (^, rj, f, w) being the point of contact ; and

the condition that (6) and (7) should intersect is

P, Q, R, S,

p, q, r, s,

u„ u„ u„ u„

Fx, F„ V,, V,,

Equation (8) is a sui-face of degree M + N—2, which passes

through the points of contact of those tangents to the curve which

intersect the line (6), and since the number of such points is equal

to the number of points of intersection of U, V and (8), the

former is equal to MN(M + N-2).

If (^, 7), ^, co) be the coordinates of any point in space,

(7) are the equations of the line of intersection of the polar planes

of with respect to the two surfaces ; and (8) shows that if this

line intersects a fixed straight line, the locus of is a surface of

degree M + N-2.

107. The degree of the curve is obviously equal to MN; also

if the surfaces do not touch one another B= k = 0, whence, by the

third of (5),

2h = MN{M-l)(N-l) (9).

Now the number of apparent nodes is obviously independent of

the number of isolated singularities of the curve ; hence the above

value of h is true when the curve is autotomic. If, therefore, we

substitute the value of h from (9) in (4) and (5), these equations

may be reduced to the following six :

—

v =MN(M + N-2)~2B-Sk (10),

m = nMN{M+N-S)-68-8K-i (11),

a = 2MN(SM+SN-10)--128-15K-2i (12),
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2{g + m) = MN [QMN{M^N - 3)^ - 22 (if+ i\^) + 71}

- QMN (M + N- 3) (6S + 8« + i)

+ {6B+ 8k + tf + UB+ 5Qk + 1i (13),

2{x + t) =MN {MN (M +N -2y - 4^ (M + N) + 8}

-2MN(M + N-2){2S + Sk)

+ (2S + 3/c)- + 8S+ll«-2i (14),

2 (2/ + t) =MN {MN(M+ N - 2f - 10 (if + N) + 28}

- 2JfiV^ {M + N-2) (2B + 2k)

+ (28 + 3«)^+208+27«: (15).

We have already shown that, when the surfaces containing the

curve are anautotomic and are arbitrarily situated with respect to

one another, S = k = 0; but Salmon has assumed, without proof,

that t = 0, which is not permissible. That t is zero may be proved

as follows. In order that the curve may have a point of inflexion

at P, the tangent at P must have tritactic contact with both

surfaces. Let PT be the tangent at P, and let PM, PM' be the

nodal tangents at P to the section of one of the surfaces by its

tangent plane at P; and let PN, PN' be the corresponding

tangents at the node on the section of the other surface by its

tangent plane at P. Since P has only one degree of freedom, it

is always possible to determine its parameter so that one or other

of the tangents PJf, Pilf' shall coincide with PT ; but since a

second equation of condition is necessary, in order that one or

other of the tangents PN, PN' should coincide with PT, a

stationary tangent cannot exist unless the surfaces are special

ones, or are specially situated with reference to one another. It is

also evident, from the discussion in § 103, that ot and t cannot

occur unless some special conditions are introduced.

108. If the curve of intey'section of two surfaces is an irredu-

cible one, the surfaces cannot touch one another in more than

\MN{M+N-^) + l

points.

Let S be the maximum number of points of contact ; then

3 + A is the maximum number of nodal generators which any cone

standing on the curve can possess ; whence

2 (S + A) = {MN - 1) {MN- 2).

Substituting the value of h from (9), we obtain the required

result.
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109. We shall now show that when the complete curve of

intersection of two surfaces degrades into a pair of irreducible

curves of degrees ih and n^, the characteristics of one curve can be

found when those of the other are known. We shall suppose that

neither of the surfaces have stationary contact with one another,

in which case neither curve can have any cusps; but if the two

curves intersect, their points of intersection will be nodes on the

compound curve and the two surfaces will touch at these points.

Let the suffixes 1 and 2 refer to the two curves ; and let H and h'

be the number of their apparent and actual intersections. Then

7i,+ n,-=MN (16),

and, by (9),

2{h, + h, + H) = MN{M-l){N-l) (17).

Applying the third of (5) to each of the curves 1 and 2, we

obtain

Vi= ^1 Oh — 1) — 2/ii1

; , .; \
(18).

2/3 = ^2(^^2- l)-2/io|

whence, taking account of (16), we obtain

v^-v,^(n,-n,)(MN-l)-2(h,-h,) (19).

Applying the same equation to the compound curve, we obtain

V, + v, =MN{MN- 1) - 2(A, + /?, + fi"+ h').

Substituting the values of v^, vo. from (18), and taking account

of (16), we obtain*

H+h' = n^n. (20).

Equation (20) determines the number of actual intersections

of the two curves, when the number of apparent intersections is

known, and vice versa.

The polar planes of U and V, with respect to a point 0, inter-

sect in a line i, and we have shown in § 106 that if L intersects a

fixed straight line, then will lie on a surface of degree M -\- N —2.

At a point where this surface intersects the curve ??i, L will be a

generator of the developable enveloped by its osculating planes

;

but if be a point of intersection of the curves n^ and n.2, the two

planes will coalesce with the common tangent plane to the two

surfaces, and L will be the line joining to the point where the

tangent plane cuts the fixed line. Hence

* Otherwise thus. The common generators of the wo cones standing on the

two curves must pass through the apparent and the actual intersections of the two

curves.
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Substituting the values of v-^, v.^ from (18) and that of 8' from

(20), we obtain

2/.,+ ff = n,(i/-l)(iV^-l)|

2/i2 +^ = w,(if-l)(iV^-l)J ^ ^'

accordingly 1{]i^-h^ = (n^-n^{M-\){N -\) (23),

also from (21) v^-v^ = {n^-n^){M+N-1) (24).

Since the surfaces are supposed to be so situated that i is zero,

we obtain, in like manner, from the last of (5)

m^-m^ = Z{n^-n^{M-\-N-^) (25),

and from the first two of (4)

o-i-o-2=2(wi-??2)(3if+3iY-10) (26).

The preceding equations contain the principal formulae, and

the reader can easily extend them to the case in which the two

curves have actual nodes and cusps.

110. When the vertex of the cone standing on the curve has

a special position, its characteristics are different from those of a

cone whose vertex is arbitrary ; and the following table, due to

Cayley*, gives various results of importance.

^j , T^ /M Nodal Cuspidal m i Stationary
Vertex Degree Class

Generators ditto ^^^^^^^ ditto

1. On a tangent n v-\ A-l + S k + 1 j/-i' + 4 m —

2

2. On the curve n—\ v -2 h-n+ 2 k y— 2u + 8 m-3
+ 8 +T +1

3. At a node n-2 i/-4 h-2n+ 6 k i/-2p + 20 m-6
8-1 +r +t

4. At a cusp n-2 v-3 h-2n + 6 k-1 ^-3v + l3 to-4
+ S +T +1

5. On a stationary n v-2 A -2 + 8 k-|-2 y-2v-\-^ m-Z
tangent +r +t- 1

6. At the point of n-l v-Z h-n + l « + ! y-3i^ + 14 m-4
contact of ditto +8 +r +t—

1

7. On a double n v-2 A- 2 + 8 k+2 ?/-2j' + 10 m-4
tangent + t — 1 +

1

S. At a point of n-l v-S h-n+ 1 k + 1 y-3i/ + 15 m-5
contact of ditto +8 + t — I +

1

* G. M. P. vol. VIII. p. 72 ;
Quart. Joiirn. vol. xi. p. 294.
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The reciprocal of the cone is a plane section of the developable

D', and the corresponding characteristics of the section are its

class, degree, double tangents, stationary tangents, nodes, and cusps.

Also in the eight special cases, the plane :—1 passes through a

tangent ; 2 is a tangent plane ; 3 is a double tangent plane ot
;

4 is a stationary plane cr ; 5 passes through a stationary tangent l
;

6 is the tangent plane at contact of ditto ; 7 passes through a

double tangent t ; 8 is a tangent plane at one of the contacts of

ditto. In each of these eight respective cases, the singularities of

the section can be obtained from the table by writing for each

quantity its reciprocal.

Denoting, as before, the characteristics of the section by old

English letters, it follows from Pllicker's equations that if the

values of ^, Jtt and 31 can be found, the remaining three can be

found from the equations

21B = M'-^OM + 8iW - SI,

Wi = sM-sM + ^,

2^ = in(iB-l)-ia-33I.
To prove 1, we observe that since the plane passes through a

tangent to E, the section of D consists of the tangent and a

residual curve of degree v—1. Hence ^=1^ — 1.

The class of the section is equal to m ; hence Jtt = m.

The tangent through which the plane passes is a stationary

tangent to the section, hence B = o- + 1.

Substituting in the first equation, we obtain

2'm=v^-l2v + 8+8m- Sa,

and from the first two of (4), we obtain

8m - 3o- + j;2 = lOi; + 2 (x + t),

which gives iIB = ic + T — y + 4,

and the rest may be proved in a similar manner.

The Salmon-Cremona Equations.

111. We have already shown that a determinate number of

planes exists, which osculate the curve at one point and touch it

at another. The reciprocal singularity, which we shall call y,

consists of a point the tangent at which intersects the curve. Let

the tangent at P intersect the curve at Q ; then Q is a point
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where two tangents intersect on the curve, and therefore the

nodal curve x intersects E B,t Q.

Every double tangent plane to E contains a pair of tangents

which intersect on the nodal curve x. The envelope of these planes

is a developable called the hitangential developable ; and its class

is equal to the number of double tangent planes which can be

drawn through a fixed point, that is to y. Its reciprocal polar is

the nodal curve on the developable D'.

Since every double tangent plane has one degree of freedom,

every curve possesses a determinate number t' of triple tangent

planes ; and the tangent lines at the three points of contact form

a triangle whose vertices lie on the nodal curve on D. The

reciprocal polar of a plane t' is a point on the nodal curve on D' at

which there are three tangent planes ; in other words it is a cubic

node on D'. The point may also be regarded as one from which

three tangent lines can be drawn to E' ; or as a triple point on

the nodal curve on D'.

Let k be the number of apparent nodes on the nodal curve on

D; then the reciprocal singularity is the number of apparent

double planes of the hitangential developable of E'.

Let q be the class of the nodal curve on D ; then its reciprocal

polar is the degree of the bitangential developable of E'.

We have therefore the following additional eight quantities,

the last four of which have a reciprocal relation to the first four.

7, the number of tangents which intersect E in one other

point.

t, the number of triple points on the nodal curve x.

k, the number of apparent nodes on x.

q, the class of the nodal curve x.

y, the number of tangent planes which osculate E at one point

and touch it at another.

t', the number of triple tangent planes to E.

k', the number of apparent double planes of the bitangential

developable of E.

q', the degree of the latter developable.

Cayley*, who was in correspondence with Cremona at the

time, has given eight equations connecting these quantities with

* G. M. P. vol. VIII. p. 72.
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the first thirteen characteristics of the curve; but instead of

following Cayley's method I shall employ that of Zeuthen*, who

made use of united points in the Theory of Correspondence. This

will illustrate a totally different method of dealing with these and

other problems.

112. The Theory of United Points, which is due to Chaslest,

depends upon the following theorem.

On a given straight line let there he two sets of points, whose

distances froin a fixed point on the line are x and y. Let X

points X correspond to a given point y ; and let fi points y corre-

spond to a given point x. Then if the distances between the two sets

of points are connected by an algebraic equation, the number of

points X luhich coincide with points y is \+ /j,.

These sets of coincident points are called united points.

By hypothesis, the distances between the two sets of points

are expressed by means of an equation of the form

x^ (Ay + Byi^-^ +...) + ^^~^ {^'y'^ + B'yi"-^ +...) + ... = .. .(1),

for if y has a determinate value b, equation (1) is of degree A, in ^
;

whilst a X has a determinate value a, (1) is an equation of degree

[X in y. When x = y, (1) becomes an equation of degree \-\- jxinx,

which proves the theorem.

Cayley+ has extended this theorem to curves of deficiency p,

and has shown that :

—

If two points on a curve of deficiency p have

a (X, fi) correspondence, the number of united points is X + /jb-{- 2kp

where k is a constant to be determined. But it will not be necessary

to consider this extension of Chasles' theorem.

Since the reciprocal of a point on a fixed line is a plane

through another fixed line, Chasles' theorem is true in the case of

two sets of planes through a fixed straight line, which have a

(X, fi) correspondence.

It frequently happens that p points x coincide with q points y,

in which case the point is equivalent to pq united points ; for if

we select any single point x of the group, there are q points y
which coincide with it ; and since there are p coincident points x,

* Annali di Matenuitica, vol. iii. Serie 2, p. 175.

t Nouvelles Annales de Mathematiques, 2" Serie, vol. v. p. 295.

X C. M. P. vol. VI. p. 9 ; Proc. Lond. Math. Soc. vol. i. April 16, 1866.
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the total number must be pq. The numbers p and q are deter-

mined by the conditions of the problem under consideration.

A line which cuts a twisted curve three times, four times, &c.,

is called a trisecant, quadrisecant, &c.

We are now in a position to proceed with the proof of the

Salmon-Cremona equations.

113. The trisecants envelope a scroll whose degree T is

T={n-^)[h-:Ln{n-\)]... (2).

Let X be the distance of any point on a fixed line L from

a fixed point on L ; let the line xPQ cut the curve in P and Q ;

let RPy and RQy' be two lines through another point R on the

curve, which cut L m y and y'
; and take x and y, y' as corre-

sponding points. Since the plane xFy cuts the curve in n points,

there are n — 2 points such as R ; also since each of the lines RF
and J?Q gives rise to a ?/ point, the plane xRy produces 2 (?i — 2)

points of type y corresponding to a single point of type x. But
the number of lines such as «PQ, which can be drawn through a

single point x, is equal to h ; hence the total number of points y
which correspond to a single point x is 1h {n — 2). Accordingly

\ = ^ = 2/i(?z-2) (3).

United points will occur :

—

(i) When the point R coincides with Q. In this case Qy' is

a tangent to the curve, and since there are w — 2 points of type x

in the plane through L and Q, this plane produces n — 2 united

points ; but z/ tangent planes can be drawn through any fixed line

to the curve, hence the total number of united points is v{n— 2).

(ii) When the plane through L contains a double point. The
degree v of D, which is equal to the number of tangent planes

that can be drawn through L to the curve, is given by the

equation

v = n{n- l)-2h-28-SK (4);

accordingly when the curve is anautotomic, the value of v is given

by the first two terms ; and (4) shows that every plane which

passes through a node is equivalent to two tangent planes, and

every plane which passes through a cusp is equivalent to three.

From this it follows that when the curve possesses B nodes and

K cusps, the number of united points is equal to (n — 2) (28 + 3/c).

B. 6
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(iii) When the line xPQ is a trisecant. Let R be the

remaining point in which this line cuts the curve ; then since the

trisecant is a triple generator of the cone whose vertex is x, the

number of its distinct apparent nodal generators is ^ — 3, and the

number of distinct points y produced by them is 2 (w — 2) {h — 3).

Also the number of points y arising from the plane through L and

the trisecant is 3(?i— 3). But if we take any line yPS in this

plane, we shall find that the number of distinct points x corre-

sponding to y is

2 {h - 1) (w - 2) + 2 (w - 4) + 2 -f 1 = 2/i {n - 2) - 1,

which shows that the point in which the trisecant cuts L is equi-

valent to two points X ; and therefore each of the points y under

consideration is equivalent to two points, making a total of

6 (w — 3). Accordingly the total number of united points pro-

duced by the trisecant is

2 (71 - 2) /i - 2 (w - 2) {h - 3) - 6 {n - 3) = 6,

and if Ttrisecants intersect L, the total number is QT.

Collecting our results we obtain

\ + fi = (v + 28+SK)(n-'2.) + 6T.

Substituting the value of X+ /j, from (3), and that of 28 + 3/c

from (4), we finally obtain

T=(n-2){h-in(n-l)] (5).

114. The degree of the bitangential developable is

q' = v{n-S)-2B-SK (6).

Let P and Q be the points of contact of a double tangent

plane to E ; then PQ is a generator of the bitangential develop-

able and the degree q' of the latter is equal to the number of lines

such as PQ which intersect a fixed line L.

We must first find the number of points I on L, from which a

pair of straight lines lying in a plane u through L can be drawn,

each of which intersects the curve E in two points.

The plane u will cut E in n points P, Q, ... P^ ; the line PQ
will cut L in a point x; the lines joining the n—2 remaining

points will cut L in i(?i — 2){n — 3) points y ; and we shall take x

and y as corresponding points. Since the cone, standing on the

curve, whose vertex is x has h apparent nodal generators, there
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are h lines such as xPQ ; hence the total number of points corre-

sponding to a single point a; is ^ {n — 2) (w — 3) h. We thus obtain

X = ^=^{n-'l){n-Z)h (7).

The points I are the only united points ; but since each point

I is equivalent to two x points, the former is equivalent to two

united points. We thus obtain

\+^i = {n-T){n-^)h=n (8).

In the second place, h — 1 apparent nodal generators can be

drawn through the point x exclusive of xPQ. Let the planes

through L and these h — 1 generators be the planes v, and take u

and V as corresponding planes. Since the plane w cuts the curve

in n points, there will be ^n{n — l) points on L such as x, and

consequently there will he \n{n—l){h—l) planes v corresponding

to a single plane u ; accordingly

\' = ^i' = \n(n-l){h-l) (9).

United planes will occur

:

(i) When the plane u contains a trisecant x'PQR. Since the

trisecant is a triple generator of the cone whose vertex is x, the

latter has only ^ — 3 distinct apparent nodal generators, and con-

sequently there are only ^ — 3 distinct planes v ; hence the

trisecant gives rise to two planes v which coincide with u. But the

number of distinct points a? on X is now equal to

i(7i-3)(n-4)-h3(7i-3) = i?i(7i-l)-3,

which shows that three points x coincide with x' ; accordingly a

trisecant gives rise to 6 united planes, and since T of them cut L,

the total number is %T.

(ii) When the plane u contains a generator of the bitangential

developable. Let x'PQ be the generator ; then since the tangents

to the curve at P and Q lie in the tangent plane to the cone along

x'PQ, this generator is an apparent tacnodal generator which is

formed by the union of two apparent nodal generators. Hence
there are only A — 2 remaining apparent nodal generators, which

give rise to one united plane ; accordingly the total number is q.

(iii) The v ordinary tangent planes which can be drawn

through L to the curve do not give rise to any united planes ; but

it is otherwise when a plane u passes through a double point.

Let i^ be a node, P any other point on the curve in the plane u,

and let NP cut L 'm x; then the line xPN is a triple generator of

6—2
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the cone whose vertex is x, because the node N gives rise to two

tangent planes and the point P to a third, all of which touch the

cone along the generator xPN. Let h' be the number of apparent

nodal generators exclusive of xPN, h the number of actual nodes

on the curve, then // + 3 + 8 — 1 = ^ + S, giving h' = h—2; hence

one V plane coincides with a u plane. But since the plane in

question is equivalent to two u planes, the node and the point P
give rise to two united planes ; also since there are n — 2 points

P and 8 nodes, the latter produce 2{n—2)S united planes.

(iv) Since a plane through L and a cusp is equivalent to three

u planes, it can be shown in the same manner that the k cusps

produce 3 (w — 2) «: united planes.

(v) The I points mentioned above obviously give rise to 21

united planes. We thus obtain

\' + fi' = 6T+ q' + {n- 2)(2S + Sk) + 21

Substituting the value of V 4- /a' from (9) and those of T and I

from (2) and (8), we finally obtain

q' = {n- 3) [n (n-l)- 2h] - {n - 2) (28 + 3«),

which by virtue of (4) may be expressed in the form (6) or by

the alternative equation

q=2h + v{n-2)-n{n-l) (10).

115. The number of tangents which cut the curve in one other

point is

ry = v{n-4>) + 4^h-2n(n-S)-2i-4^T (11).

Let a plane u pass through a line L and cut the curve in n

points P. Through one of these points draw a line PQR cutting

the curve in Q and R ; also through the line L and the two

points Q and R draw two planes v, v' ; and take u and v as

corresponding planes. Since by the table to § 110 the cone whose

vertex is P has h — n + 2 apparent nodal generators, the number

of planes v arising from a point P is 2 {h — n + 2), and since there

are n points P, the total number of planes v corresponding to a

single plane m is 2n{h — n + 2). Hence

X = fi = 2n(h-n + 2) (12).

United planes will occur :

(i) When a point Q coincides with P, in which ca,se PQR is

one of the tangents y.
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(ii) When one of the points P is a node. The cone whose

vertex is P now possesses h — 2n + Q apparent nodal generators,

hence the effect of a node is to produce

2(h- n + 2)-2{h-2n + 6) = 2{n-4<)

united planes. Accordingly 8 nodes produce 2 {n — 4i) 8 of such

planes.

(iii) When one of the points P is a cusp. If one of the planes

M is a tangent plane to the curve no united planes are produced,

but there are 2{h — n + 2) pairs of coincident planes v none of

which coincides with a u plane. But a plane which passes

through L and a node is equivalent to two tangent planes, and

the fact that a node produces 2 (w — 4) united planes indicates

that ri — 4 planes v coincide with each of the two u planes.

A plane through L and a cusp is equivalent to tliree tangent

planes, from which we conclude that a cusp produces 3 (n — 4)

united planes making a total of 3 (n — 4) k.

(iv) Let one of the points P be the point of contact of a

stationary tangent; then by § 110 the number of united planes is

2{h-n + 2)-2{h-n + l) = 2,

which makes a total of 2t united planes.

(v) Let one of the points P be the point of contact of a double

tangent ; then the number of united planes is in like manner 2,

but since there are two points of contact this number must be

doubled making a total of 4r.

(vi) Let the plane u contain a trisecant PQR ; then since this

line is an apparent nodal generator on each of the cones whose

vertices are P, Q and R, the number of distinct planes v is

2{n-S){h-n + 2) + 6{h-n + l) = 2n(h-n + 2)-6,

so that the number of united planes is 6, making a total of 6T.

We thus obtain

X. + /A = 7 + (w - 4) (2S + 3«) + 2fc + 4t + 6T,

which by (12), (4) and (2) may be expressed in the form (11), or

by the alternative equation

y = n(v + 4<)-Q(v + K)-4<{8 + T)~2t (18).
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116. The number of triple tangent planes is given by the

equation

4,y {v-5) = W + 37' + 7 + 12ct + 48 + 3t (i^ - 6) + 2t

+ 2t(i/-6)+i^(i^-4)(i;-5) (14).

Let Z be a fixed line, a fixed point on it, u an arbitrary

point on L. Through u draw a double tangent plane U to the

curve, touching it at P and Q ; let TP, TQ be the tangents at

P and Q; through TP and TQ respectively draw a seiues of

double tangent planes V, V intersecting L in v, v ;
and take

u and V as corresponding points.

The line TP is a generator of the developable D, and it is

intersected by y — 4 other generators, hence z/ — 4 tangent planes

can be drawn through TP to the curve ; but since one of these is

the plane IT, the number of remaining planes which determine the

points V is v — 5. Accordingly the number of v points which

correspond to a single point u is 2 (y - 5) ; but y double tangent

planes can be drawn through the point u to the curve, hence

2y (v — 5) points v correspond to a single point u ; and therefore

X = /x = 2y{v-5) (15).

United points will occur

:

(i) When CTis a triple tangent plane t'. Let R be the third

point of contact ; then U cuts D in three straight lines and in a

residual curve of degree v - S, but since TP touches this curve at

a point of inflexion at P, it intersects it in 1/ — 6 remaining points

and consequently v — 6 generators of D pass through TP. But

TQ and the tangent at R are two of these, therefore the number

of remaining generators is v — 8; accordingly the number of

distinct double tangent planes, which can be drawn through TP,

is v — S. It therefore follows that there are 2 (y — 8) = 2 (1/ — 5) — 6

planes V corresponding to the plane U, hence the number of

united points due to the t' planes is Gt'.

(ii) When ?7 is a plane 7'. Let this plane osculate the

curve at P and touch it at Q ; then the residual curve on D is

of degree y — 3 and consequently v — 7 double tangent planes,

exclusive of U, can be drawn through TP. Through TQ, v — 4<

double tangent planes can be drawn which include U twice

repeated by reason of the fact that U osculates the curve at P

;
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hence the number of distinct planes Fdue to TQ is v — G, making
the total number of points v equal to v — 7+v — 6 = 2{v — 5) — ^.

Accordingly each plane y' gives rise to three united points.

(iii) When U contains a tangent 7. Let P be the point of

contact, Q the point where the tangent intersects the curve ; then

the number of planes F is v-6 + v — ^ = 2(v— 5) — 1, so that one

united point is produced making a total equal to 7.

(iv) When C/" is a doubly osculating plane to E. The degree

of the section of D is y-4; also if TP, TQ be the lines of

contact of U, each of them osculates the section at P and Q,
hence the number of generators which cut TP, exclusive of TQ, is

y — 4— 6 — l = z/ — 11. Accordingly the total number of V planes

is 2{v — 11) = 2 (i* — 5) - 12 ; and therefore the number of united

points is 12ot.

(v) When U is an osculating plane at a node P. Let PT, PT'
be the nodal tangents ; then the degree of the section is v — 2,

and the line PT intersects the section in 3 + 1=4 coincident

points at P ; hence the number of generators which cut PT,
exclusive of PT', is i/ — 2 — 4-l = i^-7; and as there are

two osculating planes at a node, the number of planes V is

2(i/ — 7) = 2(i' — 5) — 4; hence S nodes give rise to 43 united

points.

(vi) A stationary tangent TP to ^ is a cuspidal generator on

D, and the tangent plane to D along it is the cuspidal tangent

plane. The degree of the section is therefore 1/ — 3, and the

number of generators which intersect TP is y — 3 — 3 = z; - 6.

Let one of the planes through TP and a generator TQ be a plane

U, then the number of points v due to TP is y — 7, and to TQ is

z/-l-3-2 = v-6, making a total of 2z/ - 13 = 2 (z/ - 5) - 3,

giving 3 united points. And since the total number of points u is

y — 6 and there are l stationary tangents, the number of united

points is 34 {y — 6).

(vii) We have still to consider the case in which U is the

cuspidal tangent plane to D. Since a stationary tangent is

equivalent to two ordinary tangents, the point in which U
intersects D is equivalent to two u points; also the only generator

lying in the plane U is the coincident tangent PT, and there is
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consequently only one v point, so that the total number due to

this cause is 2^.

(viii) Let a double tangent touch the curve at P and Q ; then

since PQ is a nodal generator on D, the degree of any section

through D is y — 2, and therefore y — 2 — 3 — 3 = v — 8 other

generators intersect PQ ; and if R is the point of contact of one

of them with E, the plane PQR is an improper triple tangent

plane to E, which is equivalent to one actual triple tangent plane.

Zeuthen has omitted the terms due to r, and his method does not

apparently enable them to be determined ; I shall therefore

assume that each plane such as PQR produces r united points,

and that the two osculating planes at P and Q produce s more,

making the total number equal to r (z/ — 8) + s, where r and s are

positive integers which will hereafter be determined.

(ix) Let u be one of the points in which L cuts D. Then if

I be the generator through u, v — ^ double tangent planes can be

drawn to E through I, and since TJ is one of them the number of

Y planes is v — o. But the number of U planes corresponding to

the point u is v — 4, which shows that {v — 4) (y — 5) points v

coincide with u, and since there are v points u, the total number

of united points is v{v— 4) {v -5).

Collecting our results we obtain

4?/ (y - 5) = m' + 37' + 7 + 12ot + 48 + 3i (z/ - 6) + 2i

^VT {V -S) + ST + V {v - ^){v - 5). . .(16).

In this equation substitute the value of 7 from (13) and the

value of 7', which is obtained from (13) by writing for each

quantity its reciprocal ; and we shall obtain

6^' = 42/ (z^ - 5) - (3m + ?i) (y + 4) + I80- - 3t (z/ - 8)

+ 6/c - z; (y^ - 9i; - 4) + {16 - r (i; - 8) - s| T. . .(17).

From the Plucker-Cayley equations we easily obtain

3m + n = a -\-^v — i,

2y = v{v- 10) -iSn-SK- 2r,

and if these values of Sm + n and 2y be substituted in (17), it

follows that all the quantities involved are independent of t except

t'. The term involving r is {36 — 4iv — r (v — 8) — s} t, and since we

have already shown that the effect of a double tangent is to

reduce the number of proper triple tangent planes by v — 8, it

follows that

36 - 4y - r (1/ - 8) - s = - 6 (v - 8),
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or r (y - 8) + 5 = 2 (y - 6),

which gives r= 2, s = 4. Substituting in (16), we obtain (14).

Equation (17) may now be reduced to

3^' = -z.(z;-6)(i/-7) + 87i + 2/(3z/-26)-2t (18)

by substituting the values of 7, 7' from (13) and reducing by means

of the Plucker-Cayley equations.

117. The number of apparent double planes of the bitangential

developable is given by the equation

2k' = y(i/-l)-q'-6t'-Sy'-Si{v-6)-2T{v-8)-28-18^
(19).

Let Bi) be the bitangential developable, Ef, its edge of regres-

sion; and let us denote the characteristics of Ei, by suffixed letters.

Then
Vi = q', rii^ = y, gi = k',

so that the third of (4) of 1 104 becomes

2k' = y (y - 1) - q' - 2^,- Sa, (20).

Every double tangent plane to E touches Dj along the chord

of contact of the two tangents to E, and is an osculating plane

to Eb ; hence if PQ, QR, RP be the tangents to E at the points

of contact of a triple tangent plane, the latter will osculate Ei, at

three points and will therefore be equivalent to three doubly

osculating planes. Accordingly the t' triple tangent planes to E
give rise to 2t' doubly osculating planes to E^.

Let TPQ be a double tangent to E; P and Q its points of

contact ; then v — 8 double tangent planes can be drawn to E
through TPQ. Hence if R be the point of contact of one of them,

this plane will touch Df, along the generators RP, RQ, and will

therefore be a doubly osculating plane to E^. Accordingly t

double tangents to E give rise to t{v — 8) doubly osculating

planes to Ej).

Let PT, PT' be the tangents at a node on E ; then the

degree of the section of D by the tangent plane along PT is

y — 2 — 4 = y— 6, which shows that PT is intersected by v -Q
generators of D, exclusive of PT'. Accordingly the plane TPT'
is equivalent to two double tangent planes to E and to two

osculating planes to Ej^. Hence this plane is a doubly osculating

plane to Ej, and the lines TP, T'P are the tangents at its points of
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contact ; and therefore B nodes on E produce S doubly osculating

planes to Ej,.

A doubly osculating plane to E produces on Ej, a compound

plane singularity, whose constituents are a certain number of

doubly osculating and stationary planes to Ef,. I have not been

able to determine the constituents of this singularity directly, and

I shall therefore assume that a doubly osculating plane -or to E
produces Xzr tangent planes OTi and /liot planes cti to E^,, and we

thus obtain

'ST, = St' + T{v-8) + 8 + \'^ (21).

Let a plane 7' osculate the curve at P and touch it at Q ; then

since every double tangent plane to E is an osculating plane to

Ej,, and the plane 7' is equivalent to two tangent planes at P,

the former is equivalent to two coincident osculating planes to

Eb, that is to a plane <Ti.

If PT is a stationary tangent to ^, v — Q double tangent planes

can be drawn through it to E, and since each of them osculates

the curve at P, each plane is a stationary plane to Ej,, the tangent

at which is the line joining P to its other point of contact with E.

Hence there are t{v — 6) stationary planes due to this cause

;

accordingly

(Tj =7' + t (l/— 6) + //,'5T (22),

Substituting these values of OTj and o-j from (21) and (22) in

(20) we obtain

2k' = yiy-l)-q'-6t' -2t(v-8)-2B
- 87' -di{v- 6)- (2A, + Sfi) OT (23),

adding this to (14) we obtain

2k' + 4^y (v - 5) = y (y -1) - q' + 28 + y + 4<T

+ z/ (y - 4) (i^ - 5) + (12 - 2\ - 3^) OT (24).

The singularities B, k, t are independent of one another and

need not exist ; and if we examine the Pllicker-Cayley equations

it will be found that v depends on n, 8 and k ; whilst y depends on

n, V, K and t, since m + t can be eliminated from the first two of

(5) of § 104. Also from (6), q' depends on v, n, 8, k ; whilst by (11),

7 depends on v, n, h, t and t. Hence in (24), k' is the only quantity

whose value is affected by changes in the value of ot
; and we can

therefore obtain the value of 2\ + S/m by ascertaining how many

planes k' are equivalent to a plane hj.

Let TP, TQ be two ordinary generators of D lying in the same
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plane, which are indefinitely close to the lines of contact of a

double tangent plane •bt to D. Let the generator T'P' intersect

TQ at a point T' near T, and let the generator T"Q^ intersect TP
at another point T" near T. When the generator T'P' coincides

with TP, and T"Q' coincides with TQ the plane TPQ becomes a

double tangent plane ct to D, which is equivalent to the three

coincident osculating planes TPQ, T'P'Q and T"PQ' to Ei,. These

three coincident planes are equivalent to |^ (3 x 2) = 3 planes k'
;

and a doubly osculating plane w therefore reduces the number of

planes k' by 3 and 'ik' by 6. Whence 12 — 2X, — 3/t = — 6, giving

2A- + 3/A= 18, and substituting in (23) we obtain (19).

Equation (19) gives the value of k' in the form obtained by

Cayley, G. M. P., Vol. viii, p. 76 ; and by means of the Plucker-

Cayley equations it can be reduced to the form

2k' = v" - 9v^ + I7v + y(y - 4>v + 19) + 4<n - Sk - 6t!T ...(25).

Cayley has given a direct proof of the value of k, and his result

may be obtained from (19) by writing for each quantity its

reciprocal, so that the last term is 188. According to Cayley,

X, = 6, //- = 2, but for the reasons I have stated in the Quart. Jour.

Vol. XL. note to p. 217, I am not satisfied with this result and am
inclined to think that X = 9, /a = 0. At the same time it is satis-

factory to have established, by an independent investigation, that

the coefficient of ct is 18.

118. Equations (10), (11), (18) and (25) give the four Salmon-

Cremona equations for q', y, t' and k', and the remaining four can

be obtained by writing for each quantity its reciprocal. The eight

equations are thus :

—

fy = 1/ (7^ _ 4) + 4/i - 2/1 {n - 3) - 2a - 4t,

^t = -v{v-Q){v-1) + ^m + x (3i/ - 26) - 2t,

q=^2g + v{m — 2) — nfh{m — l),

2k = v^- 9v^ + I7v + x(x-4<v + 19) + 4m - So- - 68,

ry' = v (m — 4f)+4>g — 2m (m — 3) — 2c — 4t,

St' = -v{v-6)(v-7) + 8n + y (Su - 26) - 2t,

q' = 2h+v{n-2)-n(n-l),

2k' = v^- 9v^ + I7v+y{y-4<v+19) + 4?i - 3a; - 6ot.

We have also the alternative equations for q, q', viz.

q = v{m — S) — So- — 2vt,

q==v{n-S)-SK- 28.
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Unicursal Twisted Curves.

119. If the coordinates of any point on a twisted curve can

be expressed as rational integral functions of a parameter 6, the

curve is called a unicursal or rational curve.

120. A unicursal curve is the edge of regression of the develop-

able enveloped hy the plane

u = {a, b, G,d, e,f...a,nJP, 1)«^ = (1),

where a,b, c ... are arbitrary planes, and 6 is a variable para-

meter.

Let D be the developable enveloped by (1), E its edge of

regression ; E' and U the reciprocal polars of D and E. If the

coordinates of any point be substituted in (1), the roots of the

resulting equation will determine the parameters of the points

of contact P^, Pa ... P„i of the osculating planes to E which pass

through ; hence the class of E and therefore of D is equal to to.

These planes intersect in the lines OQ12 ..., where OQ12 is the line of

intersection of the osculating planes at Pj and Pg ; but if is so

situated that (1) has a pair of equal roots, two of the points Pj and

P2 will coincide, and OQjo becomes the tangent to E at Pj. Let

A,H, A,„_,. be the discriminants of (1) and of its rth differential

coefficient with respect to 6 ; then the condition for a pair of equal

roots is

A™=0 .....(2),

and this furnishes a relation between the coordinates of 0, which

gives the equation of the surface on which lies. Hence (2) is

the equation of the developable enveloped by (1).

If three roots of (1) are equal, must be a point through

which three osculating planes to E can be drawn ; hence must

lie on E. Accordingly the equations of E are

A^=0, A^_i = (3),

but (3) may usually be simplified by means of the Theory of

Invariants. Thus if m = 4, the simplest equations, which are

equivalent to (3), are 7=0, J= 0, where / and J are the invariants

of the quartic.

121. Equations (3) are equivalent to the result of eliminating

6 between the three equations

u = 0, du/de=^0, d'uld0' = O (4),
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which give two surfaces intersecting in the curve E. Equations

(4) are also those of three planes intersecting at a point on E, in

which the coefficients of the coordinates are rational integral

functions of 6 ; and their solution by the ordinary methods leads

to a system of equations of the form

a/4=^/5 = 7/C=S/i),

where A, B,C, D are rational integral functions of the coordinates.

But since we are concerned with the ratios of any three of the

quantities a, /3, 7, B to the fourth, and not with their actual values,

we may without loss of generality take

a = A, ^=B, 7 = 0, S = B (5),

which determine the coordinates of any point on E in terms of 0.

The point which is determined by (5) is the reciprocal polar of

the plane

Aa + Bl3+Gy+DS = 0,

and the envelope of this plane is the developable D'. The
coordinates of any point on E' in terms of 6 can be determined as

in the preceding section, but more simply as follows. Let (1) be

written in the form

where ^, 33, CD, IB are rational functions of 6 ; then the coordi-

nates of any point on E' are determined by the equations

a = ^, /3 = 23, y=(B, S =B (6).

These reciprocal relations are of considerable importance.

If four roots of (1) are equal, must be a point on E through

which four osculating planes can be drawn ; hence is a cusp.

Accordingly the conditions for a cusp are

A^ = 0, A,^i = 0, A,«_2 = () (7),

which can in like manner be simplified.

122. Every unicursal twisted curve must in general possess

a determinate number of cusps.

Equations (7) are equivalent to (4) combined with the ad-

ditional equation d^u/dO^ = 0, and if a, /3, 7, B be eliminated from

this equation and (4), the result will be a determinantal equation

for 0, which determines the parameters of the cusps.

123. If (1) has two pairs of equal roots, then (1) is a double

tangent plane to E, and is the point of intersection of the
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tangents to E at the poin'ts of contact of the plane. Hence the

locus of is the nodal cutve x on D.

If (1) has three roots equal to u and two equal to v, then

must be a point on the curve through which another tangent can

be drawn. The point is the singular point which is denoted by

7 ; and no curve of lower degree than a quintic can possess this

point.

If (1) has three pairs of equal roots, then is a point through

which three tangents can be drawn to E\ hence is a triple

point on the nodal curve x.

When ^=0, equation (1) reduces to a^ = 0; hence a^ is the

osculating plane at the point ^ = 0. In like manner the equations

am = 0, ttm-i = are those of the tangent at this point, whilst the

point itself is the intersection of the three planes a^ = 0, a^-i = 0,

Putting 6 = (fi~^, in (1) it can be shown in a similar manner

that a = is the osculating plane at the point 0= co; a = 0, b =
are the equations of the tangent at this point ; whilst the point

itself is the intersection of the planes tt = 0, 6 = 0, c = 0.

124. When all the planes a, 6, c ... are arbitrary, the singu-

larities a, -57, T, i and S are zero.

(i) Let ^ = or P be the point of contact of a stationary

plane ; then since two osculating planes must coincide at P, it

follows that the two equations a,«, = 0, am + am-i^0= must differ

by a factor. This requires that «,«,-! = ^o^m, where X, is a constant.

In this case the tangent at P is determined by the equation

am = 0, am-2 = 0, and the point P by these equations combined

with a^n-s = 0.

If ^ = 00 had been the point of contact of a stationary plane,

we should have obtained in like manner the condition b = \a, and

if the equation is transformed by writing = ^ —\, (1) becomes

{a,0,c\d'...-^cf>,iy- = (8),

in which the coefficient of ^*"~"^ is zero. This result is important,

since it shows that canonical and semi-canonical forms of binary

quantics cannot be employed in this subject, since they lead

to twisted curves and developables which possess special singu-

larities.



UNIOURSAL TWISTED CURVES 95

(ii) Let ^ = 0, 6 = QO be the points of contact of a doubly

osculating plane ; then the two planes a and Um must be identical,

which requires that am= fJ^CL-

(iii) Let ^ = 0, 6= co be the points of contact of a double

tangent; then since the planes ttTO = and a,^_i = must intersect

in the line (a, b) it follows that

ajn = pci + qb, cim-i = ra + sb (9).

(iv) Let = cc be a point of inflexion, then three consecutive

osculating planes must pass through the same straight line, the

condition for which is that c = A-a + fib. Transform (1) by writing

d = <f)-'^fi and it will be found that the coefficient of ^"*~" is of

the form \a; whence (1) becomes

(a, b,Xa, d... a,„][(^, 1)'^ = (10).

(v) A node possesses two parameters* which we shall take to

be ^ = and 6 = ao . Let 6 — cc be the parameter of A, then

a, b, and c must be three planes which pass through A, which

without loss of generality may be taken to be /3, 7, 8 ; but if A is

a node, it follows that am-2, ctm-D (^m must also be three planes

passing through A, and therefore cannot contain a.

We have thus shown that whenever any of the five singularities

exist, the coefficients of 6 in (1) cannot be arbitrary planes.

125. The deficiency of a twisted curve, like that of a plane

curve, is the difference between its maximum number of double

points, and those which the curve possesses. But in calculating

the deficiency, it is necessary to take into account apparent as

well as actual double points. Let n be the degree of the curve

;

h and 8 the number of apparent and actual nodes, k the number
of cusps ; then the deficiency p of any plane section of the cone

standing on the curve is

p = ^(n - l)(n - 2)- h- 8 - K (11),

and this is the deficiency of the twisted curve. The maximum
number of double points is ^ (n — 1) (n — 2), for if the curve had

* Let s be the length of the arc AN measured from some fixed point A, so that

AN=s. Let I be the length of the loop of the node ; then as we proceed round the

loop to N, the distance AN becomes s + l, showing that there are two values of the

parameter which correspond to N. When 1=0, the node becomes a cusp; hence

a cusp has two parameters both of which are equal. The same argument applies

when the parameter 9 is some function of s.
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•(12),

.(13),

any greater number, a plane section of the cone would become an

improper curve consisting of two or more curves of lower degrees.

126. The eight Plticker-Cayley equations are equivalent to

the six independent equations

2(h + S) = n?- lOn - Sm + 8v- St

1{g + 'ST) = m?- 10m - Sw + 8y - 8t

^(x-\-T) = v{v-l)-m-Sn-Si

2(y+T) = v{v-l)-n-Sm-St

cr = n—Sv + Sm + i

K = 'm — Sv + Sn + t

by means of which it can be easily shown that

^ = 1 (m — 1) (w — 2) — ^ — OT — cr.

from which it follows that the deficiency of the reciprocal curve

E' is the same as that of E. When all the planes which are the

coefficients of 6 in (1) are independent, the discriminant A^ is of

degree 2 (m— 1), which gives the value of v; accordingly if we put

a-=7JT = T = i = 8 — in (12) and use the above value of v, we shall

obtain

z^ = 2(m — 1), m=m, n = S{m — 2), /c = 4(m — 3)|

x=2(m-2)(m-S), y = '2(m-l)(m-S) [...(14),

A = i (9m^ - 53to + 80), g^^(m-l)(m-2) J

from which it follows that

h + K=^(Sm-1)(Sm-8)^i(n-l) (n. - 2),

showing that the deficiency of E is zero. Hence E and therefore

E' are unicursal curves.

127. WhenJ)
= 0, (11) becomes

2 (h + ^ + k) =(n - l)(n -2)

by means of which and (12), we obtain

7i = S(m-2)-2<T-t

V =2 (m — 1) — cr

yc = 4 (to - 3) - So- - 2t

^ + OT = i (to — 1) (m — 2) — cr

a; + T = 2 (m - 2) (m - 3) - ^ (4<m - 1 1) tr + Iq-"

2/ + r = 2 (m - 1) (to - 3) - i (4>m -1)a + -^a^-i

.(15),

. .(16),
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which give all the quantities in terms of m, a- and t, and agree

with those given by Salmon when cr = t = 0.

Twisted Cubic Curves.

128. Every twisted cubic curve is the partial intersection of tiuo

quadric surfaces.

Every quadric surface contains 9 arbitrary constants, and

therefore an infinite number of quadric surfaces can be drawn

through 7 points on a cubic curve ; but since a quadric cannot

intersect the curve in more than 6 points, it follows that every

quadric drawn through 7 points must contain the curve.

129. A cubic curve, which is the intersection of two quadric

surfaces having a common generator, cuts all the generators of the

same system as the common one in two points, and those of the

opposite system in one point.

Every generator of a quadric cuts any other quadric in two

points which lie on their curve of intersection ; but when the

quadrics have a common generator, any generator of the same

system does not intersect the common generator and must

therefore cut the cubic twice ; but any generator of the opposite

system cuts the common generator once, and must therefore cut

the cubic once.

130. The most convenient way of representing a twisted

curve is by means of the equations of three surfaces which

contain the curve; and by §46 a twisted cubic can be represented

by the system of determinants

= (1),

U, V, w

u', V, w'

where u, u! , &c. are planes. The determinant is equivalent to the

system of equations

ulu = vjv = w\w' (2),

but in practice a simpler method is preferable. Let A and D be

any points on the curve, then the cones having these points as

vertices which contain the curve are quadric cones ; and by

properly choosing the tetrahedron of reference, their equations

may be taken to be

^l-rf = 0, a7 - /3^ = 0,

B. 7
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from which we deduce aS = ^^, which also contains the cubic.

Hence (1) may be replaced by the system of determinants

131. Every twisted cubic is the edge of regression of the

developable enveloped by the plane

ae' + Wd'+ drye+B = (4).

The theory of these developables has already been considered

;

and the equation of the envelope of (4) is its discriminant, and is

(aS-;g7)^ = 4(a7-^=)(^S-7^) (5),

which is a quartic surface. The equations of the edge of regres-

sion are obtained from the conditions that (4) should have three

equal roots and are

a/^ = ^/y = y/8 (6),

which are equivalent to (3). The solution of (4) of §121 leads to

the three equations

a = -^/d=ry/e' = -sie^

hence the coordinates of any point on a twisted cubic curve may

be expressed in terras of a parameter by means of the equations

a = l, ^ = -e, 7 = ^^ S = -^3 (7),

but when we are dealing with more than one point on the curve,

each equation must be multiplied by a quantity <^, where ^ is the

value of a at each point in question. Accordingly all twisted cubic

curves are unicursal.

That the cubic curve is a cuspidal curve on (5) may be put in

evidence in the following manner. Let A be any point on the

cubic and write a + u^, a + v^, a + Wi, a + itj for (a, /3, 7, 8), where

the suffixed letters are linear functions of (^, 7, 8) ; then the highest

power of a is a^ and its coefficient is (u^ — Sv^ + Swi — tiY, which

gives the cuspidal tangent plane at A.

132, If a family ofquadrics have a common curve, the locus of

the poles of any fixed plane is a twisted cubic.

Let U, V be two given quadrics, and let the fixed plane be

oi + /3^y + 8^0 (8),

then the equation of any other quadric passing through their

curve of intersection is

U+\V^O (9).
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Let (/, g, h, k) be the pole of (8) with respect to (9), and let

Ui = dU/df, &c. ; then the equation of the polar plane is

(10),

and if (8) and (10) represent the same plane

Eliminating \, we obtain

V,-V, V,-V, F3-F4'

which are equivalent to (1).

133. All twisted cubics are anautotomic curves.

The equations of two quadric surfaces which intersect along

the line AB and touch one another at D are

(Pa + Q0 + Ry + S8)y + (P'a+Q'^)S = O,

(pa + q^ + ry + S8) y + (P'a + Q'^)8 = 0,

which shows that they intersect in the line AB and also in the

line 7 = 0, P'a + Q'/3 = 0. Hence the residual curve is a conic.

134. The characteristics of the cubic can now be obtained

from (14) of § 126 by putting w = 3, k = 0, and are v = 4, m = 3,

n = S, h = l, g = 1, and all the other characteristics are zero.

Since n = m = 3, it follows that all cubic curves are their own

reciprocals in the extended sense of the word, since any point on

a cubic corresponds to an osculating plane to another cubic.

Also since every twisted cubic possesses one apparent node, it

follows that every cone standing on the curve is a nodal cubic

cone. Hence every property of a nodal plane cubic curve

furnishes a property of a twisted cubic curve ; and this property

is capable of furnishing a reciprocal theorem for such curves.

135. Under these cii'cumstances, it seems unnecessary to

enter into any detailed discussion of twisted cubic curves; and the

following examples will illustrate the method.

Let G be the twisted cubic, and >S^ the plane nodal cubic which

is the section of any cone whose vertex is 0, which stands upon G.

Let P, Q, R be the three points of inflexion of S; then these

points lie in a straight line, and consequently in a plane passing

through 0. Let the generators OP, OQ, OR cut the twisted cubic

7-2
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in p, q,r; then the tangent planes to the cone along OP, OQ, OR
osculate the twisted cubic at p, q, r, and these points lie in the

plane OPQR Hence : (i) // from any point three osculating

planes be drawn to a twisted cubic curve, their points of contact lie

in a plane passing through 0.

For a plane nodal cubic curve, the theorem of § 108, Cubic and

Quartic Curves, becomes

:

If AP, AQ be the two tangents drawn from a point A on the

curve, and R be the third point where the chord of contact PQ cuts

the curve, the tangent at R intersects the tangent at A at a point on

the curve.

Hence : (ii) Through a point A on a twisted cubic curve and

any point draiu two tangent planes OAP, OAQ; and let the plane

OPQ cut the cubic in a third point R. Then the tangent planes at

R and A which pass through intersect in a straight line which

intersects the curve.

A plane nodal cubic has 3 sextactic points. Hence : (iii) With

any point as a vertex three quadric cones can be described which

have sextactic contact with a twisted cubic at three distinct points*.

Twisted Quartic Curves.

136. There are two distinct species of quartic curves, the first

of which is the complete intersection of a pair of quadric surfaces.

These consist of three subsidiary divisions according as the quadrics

* Sextactic points on plane curves have been discussed by Cayley, C. M. P.

vol. V. pp. 221, 545 and 618, vol. vi. p. 217. He shows that when a plane curve of

degree n possesses 5 nodes and k cusps, the number of sextactic points is

Hn (4m -9) -245 -27k;

from which it can be easily shown by means of Pliicker's equations that this

number is also equal to 3m {ivi - 9) - 24t - 27t. On p. 618, some remarks are made

with regard to the connection between these points and the reciprocant called the

Mongean, see Sylvester's Lectures on Reciproeants. Some further details with

respect to plane quartic curves have been given by myself, Quart. Jour. 1903, p. 1.

The following is a list of some of the principal memoirs on twisted cubic

curves : Mobius, Barycentric Calculus, 1827, Crelle, vol. x. ; Chasles, Apergu

Historique, Note xxxiii. ; SchrSter, Crelle, vol. lvi. ; Cremona, Ibid. vols, lviii.,

Lx.; Sturm, Ibid. vols, lxxix., lxxx., lxxxvi. ; Miiller, Math. Ann. vol. i.

The following papers relate to the connection between these curves and the

theory of invariants of binary quantics : Beltrami, 1st. Lomb. 1868 ; Voss, Math.

Ann. vol. xiii. ; D'Ovidio, Ace. Torino, vol. xxxii. ; Pittarelli, Giorn. di Batt.

vol. XVII.
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(i) do not touch one another, (ii) have ordinary contact, (iii) have

stationary contact ; in which three respective cases the curve is

anautotomic, nodal or cuspidal. But t = 0, otherwise a tangent

would have tritactic contact with both quadrics, and would there-

fore lie in both of them, in which case the curve would degrade

into a straight line and a twisted cubic. Similarly r = 0, otherwise

a tangent would be a double tangent to both quadrics, which is

impossible. Lastly ot = 0, since no curve of a lower degree than

a sextic can possess this singularity.

Quartics of the second species are the partial intersection of a

quadric and a cubic which possess two common straight lines lying

in different planes. They cannot possess any actual double points,

since as will hereafter be shown, a quadric and a cubic so

situated cannot touch one another ; but they may possess one or

two points of inflexion, which will occur whenever a generator of

the quadric through a point on the curve has tritactic contact

with the cubic. This shows that the second species constitutes a

totally different kind of curve; also that there are three subsidiary

divisions, according as the quartic possesses none, one or two

points of inflexion.

137. We shall give for reference a table of the values of the

singularities of the two kinds of quartic curves

n
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two straight lines form an improper conic having one apparent

node; hence /i2=l- Substituting in (23) of §109 Ave obtain

h^ = 3, The remainder of the thirteen characteristics can be

obtained from (4) and (5) of § 104 by putting w = 4, h = S,

S = K = T = 'U7 = 0, and t = 0, 1 or 2, The last eight can be

obtained in both cases from the Salmon-Cremona equations.

Quartics of the First Species.

138. Through every quartic of the first species four, three or

two qiiadric cones can be drawn according as the curve is anauto-

tomic, nodal or cuspidal.

Let S, S' be the two quadrics containing the curve, then the

equation of any other quadric passing through it is S + \S' = 0,

and the condition that this should be a cone is that its dis-

criminant should vanish, which furnishes a quartic equation for

determining X.

When the quartic is nodal, let A be the vertex of one of the

cones, B the node and ABD the tangent planes to both quadrics

at B ; then their equations may be written

S = aa^ + C72 -1- dS' + 2//37 + 2g'ya + 2locS +2nyS = j

and the discriminant of S + \S' is

(f+\y(P-ad-a\) = (2),

which shows that two of the cones coincide.

To find the condition that the quadrics should have stationary

contact at B, eliminate y from (1) and we obtain

aoL^ + cS'/4>l3' + {d-f)S' + 2la8 - (ga + nS) S7/3 = 0.

This is the equation of a quartic cone, whose vertex is G, which

stands on the curve, and the condition that the coefficient of /3^

should be a perfect square is l^ = a (d —f), which reduces (2) to

a (f+ xy = 0, and shows that three of the cones coincide.

139. If a plane passing through two fixed points on the quartic

intersects the curve in two other points P and Q, the line PQ
envelopes a quadric which contains the quartic ; also four planes of

the system touch the curve.

Let B and C be the two fixed points; A and D the vertices
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of two of the quadric cones which contain the quartic ; then its

equations may be expressed in the form

g2 + 2/37 = Oj
(3).

pa? + 2j9'/37 + 2^ 7a + ^r a/3 =
j

The equation of any plane through BG is S = Xol, whence the

chord PQ is the intersection of this plane and the plane

{p-p'\^)oL + ^'r^^-'lr'^ = (4),

and the envelope of this line is obtained by eliminating A, and is

pa? - p'B^ + 2q'ya + 2r'a/3 - 0,

which is the result of eliminating ^y between (3). The condition

that the plane B = Xa should touch the quartic is that the cone

Va^ + 2yS7 = 0,

and the second of (3) should touch ; which by eliminating y8 can

be shown to be

(p-pX'f = 8q'r'X',

and furnishes a quartic equation for determining \.

140. When the vertex of the cone standing on the quartic

lies on the curve, the cone will be a cubic cone which is anauto-

tomic, nodal or cuspidal according as the quartic belongs to one

or other of these species ; for since a straight line cannot cut a

quadric surface in more than two points, the cone cannot have

any apparent nodal generators. For the same reason the quartic

cannot have any trisecants. Also any stationary tangent plane to

the cone is an osculating plane to the quartic ; and since anauto-

tomic cubic curves possess 9 points of inflexion, it follows that

9 osculating planes can be drawn to the quartic through any

point on the curve. Again let P, Q, R be any three collinear

points of inflexion on a plane section, and let the generators OP,

OQ, OR cut the quartic in p, q and r ; then p, q and r form a

triplet of points which possess the property of lying in the same

plane, the osculating planes at which pass through a point on

the curve. Moreover since a real straight line can be drawn

through the three real points of inflexion, and also through each

real and two conjugate imaginary points of inflexion, there are

altogether four triplets corresponding to a point on the curve.

141. These results can be generalized. Let be any point

in space ; then since an anautotomic twisted quartic curve
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possesses two apparent nodes, the projection of the curve on a

plane is a plane binodal quartic curve ; and since such a curve

possesses 12 points of inflexion, it follows that through any point

0, 12 osculating planes can be drawn to the curve ; in other

words, the curve is of the 12th class as we have already shown by

means of the Pliicker-Cayley equations. By a known theorem*,

the 12 points of inflexion of a plane binodal quartic will lie on a

cubic curve, provided the four points in which the nodal tangents

intersect the curve are collinear ; if therefore the point be

chosen so that the four points in which the apparent nodal tangent

planes intersect the curve lie in a plane passing through 0, the

points of contact of the 12 osculating planes passing through

will lie on a cubic cone.

When the twisted quartic possesses an actual node, the

projection of the curve will be a trinodal quartic, in which case

only 6 osculating planes can be drawn through 0, and their

points of contact lie on a quadric cone which passes through two

generators OS, OS' of the quartic cone, which correspond to the

S points of a plane trinodal quartic curve. Also the theorems of

plane trinodal quartics relating to the conies which pass through

(i) the points where the nodal tangents intersect the curve and

(ii) the points where the tangents from the nodes touch the curve

can be adapted in like manner to nodal twisted quarticsf

.

142. When the excentricity of an ellipse is equal to

(\/5 — l)/2\/2, the circles of curvature at the extremities of the

minor axis intersect in two points E, E', which respectively lie on

the circles of curvature at the extremities of the major axis ; and

the inverse of the ellipse with respect to one of these points is a

trinodal quartic having 3 points of undulation. Now the four o-

planes of a nodal twisted quartic form a tetrahedron, and the cone

standing on the curve whose vertex is any one of the vertices of

the tetrahedron is a trinodal quartic cone of this character.

The developables enveloped by the osculating planes to the

three kinds of quartics of the first species have been discussed by

CayleyJ.

* Richmond, Proc. Lond. Math. Soc. vol, xxxiii. p. 218 ; Basset, Quart. Jour.

vol. XXXVI. p. 44.

t Basset, American Journal, vol. xxvi. p. 169. See also Appendix I.

X C. M. P. vol. I. p. 486 ; Cmnb. and Dublin Math. Jour. vol. v. p. 46. The
following papers relate to these curves. Hesse, Crelle, vol. xxvi. ; Reye, Ibid.
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143. A quartic of the first species is the partial intersection of

a quadric and a cubic which possess a common conic.

Let 8 = 0, 8=0 be the equations of the conic ; then the

equations of any cubic and quadric surface which contain this

conic are

BX = Su, Sv = S (5),

where 2 is another quadric, and u, v are planes. Eliminating S
and S we obtain

'Z = uv (6),

which shows that the quartic is the complete intersection of (6)

and the second of (5). This theorem is true when the conic

degrades into a pair of intersecting straight lines.

Quartics of the Second Species.

144. A quartic of the second species is the partial intersection

of a quadric and a cubic surface possessing a line in common,

which is an ordinary line on the quadric and a nodal line on the

cubic.

Let a quadric and a cubic intersect in the lines CD and (w, v)
;

then their equations may be taken to be

0Lu = ^v, a{uU + vV) = ^{uU'+vV') (1),

whence eliminating {u, v) we obtain an equation of the form

Pa^ + 2Qa^ + R^^ = (2),

where P, Q, R are planes. The quartic is therefore the partial

intersection of (2) and the first of (1), which proves the theorem.

145. A quartic of the second species cannot have any actual

double points.

Since CD is an ordinary line on the quadric and a nodal line

on the cubic, we may suppose that the two surfaces touch at A

,

in which case A will be a node on the quartic. Hence if ABC be

the common tangent plane to the two surfaces, we must have

u=p0+r8, v=p2 + F'/3 + Q'j + R'8.

Also if P = 0^ + Hy + KS,

Q=fa+g/3 + hy + k8,

vol. c. ; and Annali di Mat. vol. ii. ; Chasles, Comptes Rend. vols. Lii., liv.
;

Zeuthen, Acta Math. vol. xii. ; Schrotter's treatise on the Theorie der Raumcurven

^ter Ordnung, Leipzig, 1890.
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the conditions that 8 should be the tangent plane to (2) at A are

G + 2f=0, H=0,

which reduce (2) and the first of (1) to the forms

kx^B + 2a^ (g^ + hj + kB) + R^' = 0,

raB = ^{P'^+Q'y + R'B),

and show that the line (/3, 8) or AG lies in the quadric and

cubic. Hence the two surfaces intersect in three straight lines

and a residual twisted cubic curve.

146. The developable D which is the envelope of the plane

{a,b,c,d,e^ d,iy^O (3)

has been discussed by Cayley* and various other writers ; and we

shall show that it is the reciprocal polar of a curve which includes

all nodal and cuspidal quartics of the first species and all quartics

of the second species. Its characteristics are

v = 6, n = 6, m = 4, /c = 4, a; = 4, y = 6, h = 6, g = S,

and therefore those of the reciprocal polar E' of the developable

are

y = 6, m = 6, w = 4, a = ^, a? = 6, y = ^, h = S, g = Q,

which are those of a quartic curve of the second species and first

kind.

Writing as usual

I = ae- ^hd + 3c
.(4),/= ace + 26ccZ — ad"^ — Ife — c^

]

it follows that the equation of D, which is the discriminant of

(3), is

I^=27J' (5),

* "On the developable derived from an equation of the fifth order," C. M. P.

vol. I. p. 500; Camb. and Dublin Math. Jour. vol. v. p. 152. In this paper the

discriminant of a binary quintic is given in a form which would repay a geometrical

examination. " On certain developable surfaces," C. M. P. vol. v. p. 267 ;
Quart.

Jour. vol. VI. p. 108. "On the reciprocation of a certain quartic developable,"

C. M. P. vol. v. p. 505; Quart. Jour. vol. vii. p. 87. "On a special sextic

developable," C. M. P. vol. v. p. 511
;
Quart. Jour. vol. vii. p. 105.

The conditions for equalities amongst the roots of a quintic equation have been

discussed by Sylvester, Phil. Trans. 1864, Collected Papers, vol. ii. p. 452 ; and

these results have important applications with reference to the developables and

curves derived from the binary quintic (a, b, c, d, e, f\d, 1)''= 0.
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and those of E, which are the conditions that (3) should have

three equal roots, are

/=0, J=0 (6),

and the four cusps, which are the conditions that (3) should have

four equal roots, are determined by the equations

a/b = h/c = c/d = d/e (7).

The nodal curve on D is found from the conditions that (3)

should have a pair of equal roots, and its equations are

a<P = h% 2¥ + a^d = Sabc (8).

147. Every cusp on E is a cubic node of the sixth species on D
and an ordinary point on the nodal curve; also the latter is a

quartic.

Let A be the cusp, ABC the osculating plane at A, AC the

cuspidal tangent ; then we may take

a = S, 6 = /3, c = <y, e = a (9).

From (7) and (9) we obtain the equation ay = d^; and since

this is the equation of a cone which has to pass through A, it

follows that d = pS + q^ + ry = pS + u, say. Hence (6) reduces to

a'8' + 3a2 {(4i^d - Sy'-) S^ + 9 (yS - yS^^} + . . . = 0,

which proves the first part. Equations (8) become

S {pS + uY = a^\

B' (pS + u) = S^yS - 2/3^

whence eliminating 8 we obtain

(a + 2p^y /3 + (a + 2p^) {2u^ - Say + 12p/3y) u

+ 9p {2li^ - ^ay) y' - ^p^u' = 0. . .(10).

Equation (10) represents the cone standing on the nodal curve (8)

whose vertex is an arbitrary point D ; also DA is an ordinary

generator of this cone, and the latter is a quartic cone.

148. Equation (3) may be written in the form

AoL + B^-\-CyVD8 = (11),

where A, B, C, D are polynomials of 6 of degree four; whence it

follows from § 121 that the coordinates of any point on the quartic

E' can be expressed by the equations

a = A, I3 = B, y = C, B = D,
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but since the quartic is of the sixth class, it will be instructive to

find the parametric equation of its osculating plane. To do this,

we shall make use of the property that every curve of a higher

degree than the fourth possesses a determinate number of planes

which osculate it at one point and touch it at another.

Since the curve E, of which (6) are the equations, is of the

sixth degree, let the plane S osculate it at A and touch it at 5

;

let AG he the tangent at A, and BG that at B. Then

a = S, 6 = /3, c = 7, d=-poi-\-sh, e = a. (12),

so that (3) becomes

M = S6'^ + 4^613 + QyQ^ + 4 (pa + sS) 6* + a = 0.

The coordinates of any point on E are determined by (4) of

§ 121, which are equivalent to

g6'2 + 2/36' + 7 = 0,

yS6'2+276'+^a + s8 = 0,

76'2 + 2 (pa + sS) 6' + a = 0,

the solution of which is

a = - ^6 - 4s6'^

/3 = - ^pO' - 26' + s,

7 = 2pd' +6'- 2sd,

s == 4^6*^ + se^

multiplied by a constant, which without loss of generality may be

taken to be unity.

Hence the reciprocal developable, of which the quartic E' is

the edge of regression, is the envelope of the plane

a6' - 2pyd' + {Sp/3 -ry)6' + (4.sa + 2/3 - 4pS) 6'

-SSe' + 2syd-s^ = (13),

and the discriminant of this binary sextic will give the developable,

whose edge of regression is a quartic of the second species.

149. Since nodal and cuspidal quartics of the first species are

unicursal curves, and are therefore included amongst the curves

which are the reciprocal polars of the developable (5), the theories

of the two species of quartics overlap ; and we shall now proceed

to consider the first species further.

Nodal quartics and their reciprocals. The reciprocal develop-

able I) must have a doubly osculating plane ot, and by § 124
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e = \a, where X, is a constant. Let ABC be such a plane ; A and

B its points of contact ; AG and BC the tangents at these points.

Then we may take

a = 8, h — ^, c = 7, d = a, e = \B (14),

and the equations of E are

which are those of a sextic curve which is the complete intersection

of a quadric and a cubic surface ; and the reciprocal curve E' is a

nodal quartic of the first species.

By § 121, the parametric expressions for the coordinates of any

point on E are

;3 = - 36'^ - X

y = 26' + 2\e

8 = 4^^
)

and the nodal quartic E' is the edge of regression of the develop-

able which is the envelope of the plane

0(6' - 2^6' + SjSd' - 4>8e' + 3Xa^- - 2X^6 + X/3 = 0. . .(17),

and the node is at the point D.

150. The tangents at the points of contact of a doubly

osculating plane intersect at a point, which is a node on the nodal

curve.

By (8) and (14) the equations of the nodal curve are

a' = X^\ 2/8^ + aS^ = S^yS,

which represent a pair of conies whose planes intersect in the

line GD, which does not form part of the nodal curve. Also since

both conies intersect in the point C, and nowhere else, (7 is a node

on the nodal curve ; and this is the point where the tangents AG
and BG, at the points of contact of the doubly osculating plane,

intersect. This theorem is a general one.

151. Guspidal quartics and their reciprocals. We have shown

in § 124 that if in (3) we put 6 = 0, the curve E will possess a

stationary tangent plane. Let it be ABG ; A its point of contact

;

then we may take

a = S, 6 = 0, c = l3, d = y, e = a ....(18),



110 TWISTED CURVES AND DEVELOPABLES

and the equation for D becomes

a?h^ + 9a2/9S + Tia^' = 27 (a^ - 7^) {(a/3 - 7^) g _ 2^8^} . . .(19),

which shows that any plane section of (19) through A has a

tacnode thereat, hence : The points of contact of the stationary

planes are tacnodal points on E. This theorem is a general one.

152. Equations (6), which determine the edge of regression,

now become
aS + 3yS2 = 0, a/38-V-/8^ = (20),

from which we deduce
4a/3-37^ = (21),

which shows that the curve is the complete intersection of (21)

and the first of (20). Accordingly the curve is a cuspidal quartic

of the first species, which possesses one cusp and one stationary

plane, and is therefore its own reciprocal. Hence

:

A cuspidal quartic is the edge of regression of the developable

enveloped by the plane

86^ + 6^6' + 47^ + a = 0,

and the parametric equations for the coordinates are

a = S6\ ^ = d\ y = -se', S = -l.

153. Quartics of the second species having points of inflexion.

We have shown in § 124 (iv) that the condition for such a point

is c = \a; and if we put m = 4, t = 1, o- = w = t = in (16) of

§ 127, it will be found that the characteristics of E are the

reciprocals of those of a quartic curve of the second species which

has one point of inflexion. Hence such curves are the reciprocal

polars of the developables enveloped by the plane

(a, b, Xa, d, e'^O, 1)^ = (22).

154. A quartic curve which has two points of inflexion is the

reciprocal polar of the developable

(oi8-4^yy^27{(xy' + fi''Sy (23).

Equation (23) is the discriminant of (22), when X = and

a = 8, b = y, d = 0, e — a,

and it may be established as follows. Let A be one point of in-

flexion, D the other; also let AB be the tangent at A, DC that

at D. Then we may take

a = B, b=py + q8, c = 0, d = roL + s^, e — a,
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and the discriminant of (22) becomes

{aS - 4 (p7 + qS) (ra + s^)Y = 27 (S (ra + sjSy +oi(py + qSfY (24).

The form of (24) shows that AB and CD are double lines on

the developable ; also the term involving the highest power of /3

is 27s^yS^S2, and since B may be any point on AB, it follows that

the line is cuspidal. In like manner GD is a cuspidal line.

The plane ra + s^ may be any plane through GB, let us

therefore choose it for the plane ^ ; then r = and we may take

s = 1 ; hence the term involving the highest power of a is a°S^

The point A is now one where the stationary tangent touches the

curve, and is therefore a cubic node of the sixth kind on the

developable D. In like manner if D is the point of contact of the

other stationary tangent, p — 1, q=0, and (24) becomes

(aB-4>/3yy = 27(aY' + ^Sy (25).

155. It thus appears that anautotomic quartic curves of the

first species constitute a class of curves sui generis; but that nodal

and cuspidal quartics, and also all quartics of the second species,

constitute a class of curves which possess many features in

common. In particular they are all unicursal curves, and are

also included amongst those which are the reciprocal polars of the

developables enveloped by (3).

No quartic of the second species can possess a double tangent,

since the latter would be a line lying in the cubic and quadric

surfaces of which the quartic is the partial intersection ; in which

case the quartic would degrade into the double tangent and a

cubic.

A historical account of unicursal quartic curves, together with

a list of memoirs, has been given by Mr Richmond, in Trans.

Gamh. Phil. Soc. vol. xix. p. 132.

Quintic Gurves.

156. There are four primary species of twisted quintic curves *.

I. Quintics which are the partial intersection of a quadric and

a cubic surface, the residual intersection being a common straight

line. These possess four apparent nodes and may also have two

actual double points, which may be nodes or cusps.

* Cayley, C. M. P. vol. v. p. 15.
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II. Quintics which are the partial intersection of two cubic

surfaces, the residual intersection being a quartic curve of the

second species. These have five apparent nodes, and may also

possess an actual double point.

III. Quintics which are the partial intersection of two cubic

surfaces, the residual intersection being a twisted cubic curve and

a straight line. These have six apparent nodes.

IV. Quintics which are the partial intersection of a quadric

and a quartic surface, the residual intersection being three

generators of the quadric belonging to the same system.

The number of apparent nodes is obtained from the equation

2 {h - h') = (n- n') {M-\){N-\ ),

where the unaccented and accented letters refer to the quintic and

the residual curve. In the four respective cases h' = 0, 3, 4, 3

;

w' = 1, 4, 4, 3 ; which gives h = 4i, 5, 6, 6.

Since the cone standing on a twisted quintic curve is a quintic

cone having at least four double generators, a great many

properties of such curves may be derived from those of plane

quintic curves, which have been discussed by myself* ; I shall

therefore briefly consider the four species.

157. First Species. If U, V are quadric surfaces, the simplest

form of the equations of curves of this species is

U, a, ^

V, y, B

from which it can be shown as in § 102 that the quintic is also

the partial intersection of two cubic surfaces, whose residual

intersection is a quartic of the first species. We shall now show

that

:

158. A quintic of the first species is the partial intersection of

a quadric and a quartic surface, the residual intersection being a

twisted cubic.

Let U, F, W be quadric surfaces
\ p, q, r constants ; u, u', &c.

planes ; also let

\ = vw — v'w, fx = wu' — w'u, V = uv — u'v,

* Quart. Jour. vol. xxxvii. pp. 106 and 199. See also, "On plane quintic curves

•with four cusps," Rend. Palermo, vol. xxvi. p. 1.

= (1),
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and consider the equations

p\ + qfjb + rv = oi (2) ;

uX + Vfi -\- wv = OJ

the first two equations represent a quartic and a quadric surface

which intersect in the twisted cubic (X, fi, v) and in a residual

quintic curve, whilst the last one is an identity. Eliminating

(X,, fi, v) we obtain

U(rv — qw)+ V(pw — ru)+ W {qu-pv) = (3),

whilst the second of (2) may be written

u' (rv — qw) + v' (pw — ru) + w' {qu —pv) = (4).

Equations (3) and (4) represent a cubic and a quadric which

both contain the residual quintic, and consequently the latter is

of the first species.

159. Second Species. Let

U=a^-yS, V={a^+by)oL + (c^ + dy)B (5),

where (a, b, c, d) are arbitrary planes ; then U =0, V=0
represent a quadric and a cubic surface which intersect in the

lines BC and AD ; hence the residual intersection is a quartic of

the second species. From (5) eliminate successively {^, y) and

(a, B) and we obtain

by' + (a + d)^y + c^' = Oj

which represent a pair of cubic surfaces on which BG and AD
are nodal lines respectively. These intersect in a quartic of the

second species and a residual quintic curve of the same species.

160. Third Species. The equations of these quintics may be

expressed by means of the system of determinants

p, s, P, S

q, t, Q, T
r, u, M, U

where the small letters represent arbitrary planes; whilst the

capital letters represent six planes^ passing through the same

straight line but otherwise arbitrary. For if

\ — qu — rt, /j, = rs — pu, v = pt — qs,

B. 8

.(6),

= (7),
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the determinants are equivalent to

8k + Tfi+Uv = 0,

and these are the equations of two cubic surfaces each passing

through the twisted cubic (X, /j,, v) and the common line of

intersection of the six planes. The residual curve is therefore a

quintic.

161. Fourth Species. The lines CD and AB are generators of

the quadric 07 = ySS, and the equations of any other generator of

the same system are a = Xh, ^ = Xy; and the equation of any

qnartic containing the curve may be taken to be

P(a-Xh) + Qi\y-^) = (8),

where P and Q are quaternary cubics, which have to be determined

so that (8) vanishes when a = 0, /3 = ; or when 7 = 0, S = 0.

Let
n = aa^ + ba/3 + c^\ a' = ^ 7^ + 57S + Gh\

where a, A ... are constants ; then the values of P and Q may be

written

P = /80 + 7II' + a (a^i + /3o-i + v.^ + ^ (awj + jSr^ + lu^),

Q = an + m' + a (a< + /Scr/ + <) + /3 (aw,' + ^t^ + w.^\

where the suffixed letters denote quantics of (7, S). Denoting the

last two terms by f/, U', (8) becomes

(a7 - ySS) (\a + a') + {a-\t)U+ (\7 -^)U' = 0,

which shows that the curve is the intersection of the quadric

ay = ^B and the quartic

(a-XS) U+{\y-^) U' = (9).

By means of the equation of the quadric, (9) may be reduced to

^3a+ 233/8 + ®4 = 0,

where the old English letters denote binary quantics of (7^ 8),

hence : The curve is the partial intersection of a quartic which

has a triple line, and a quadric which passes through the line.

The following papers* relate to quintic curves; and the con-

sideration of sextic curves will be postponed until we discuss the

Theory of Residuation.

* Bertini, Collect. Math. 1881; Berzolari, Lincei, 1893; Weyl, Wiener Berichte,

1884-5-6; Montesano, Ace. Napoli, 1888.
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COMPOUND SINGULAEITIES OF PLANE CURVES

162. Although the geometry of surfaces is the object of

this treatise, yet the theory of their singularities cannot be properly

understood without a more detailed account of the corresponding

portion of the theory of plane curves, than is contained in my
treatise on Cubic and Quartic Curves. I shall therefore devote the

present chapter to the consideration of the compound singularities

of plane curves*.

163. Pllicker's equations show that the simple singularities of

a curve are four in number, viz. the node, the cusp, and their

reciprocals the double and the stationary tangent ; and also that

every algebraic curve possesses a determinate number of these

singularities which can be calculated from the formulae he gave.

From this it follows that every other singularity, which an algebraic

curve can possess, is a compound singularity formed by the union

of two or more simple singularities.

Compound singularities may be divided into three primary

species. First, point singularities, which are exclusively composed

of nodes and cusps. Secondly, line singularities, which are ex-

clusively composed of double and stationary tangents. Thirdly,

mixed singularities, which are composed of a combination of point

and line singularities.

164. The point constituents of a singularity can be determined

in the following manner. Pliicker's first equation is

2B + SK = n(n-l)-m (1),

where 8 and k are the number of constituent nodes and cusps, and
2S + Sk is the reduction of class produced by the singularity ; and
since the degree n of the surface is given, it follows that as soon

* Basset, Quart. Join: vols, xxxvi. p. 359, xxxvii. p. 313.

8—2
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as its class m has been ascertained, (1) furnishes one relation

between the unknown quantities S and k.

Another equation exists of the form

Z + K = \ (2),

where X is the number of constituent double points ; and as soon

as X has been found, (1) and (2) furnish two equations for deter-

mining 8 and k.

The line constituents can usually be found by forming the

reciprocal singularity, and ascertaining the number of its con-

stituent nodes and cusps.

The only point singularities which exist are multiple points of

order p, the tangents at which have (^-l-l)-tactic contact with

the curve at the point. If any tangent has a higher contact, the

singularity is a mixed one.

165. If r tangents at a multiple point of order p coincide, its

constituents are

B = ^p(p — l)-r + l, K = r — 1.

Since the properties of a multiple point of this kind are the

same on a curve of degree p + 1 as on one of higher degree, we

may employ the curve

aYUp_r+Up+i = (3),

the triangle of reference being chosen so that A is the multiple

point, and AB the line which coincides with the r coincident

tangents. The first polar of C, which may be any arbitrary

point, is

aY~^ {rup-r + yu'p-r) + u'p+i = (4),

where the accents denote differentiation with respect to 7.

Eliminating a between (3) and (4) we obtain

Y~^ {yUp-rU'p+i — (rUp^r + yu'p-r) Up+i] = 0,

which shows that the first polar of G intersects the curve in

2p —r+ 1 ordinary points ; hence

m = 2^ — 7' 4- 1,

and since the degree of the curve is p 4- 1, we obtain from (1)

28 + SK=p(p-l) + r-l (5).

Since the point G is arbitrary, it follows that if the curve has

another double point we may suppose it situated at G, in which
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case the terms in 7^+^ and 7^ must be absent, and (3) reduces to

the improper curve

showing that the deficiency of (3) is zero ; whence

h + K = ^p{p-l) (6).

Solving (5) and (6) we obtain the required result.

When all the tangents are distinct, r =1, and the constituents

of the point are S = ^jp(|) — 1), a; = 0. It can also be shown that

if r tangents coincide with a particular line AP, and s tangents

with another line A Q, the constituents of the point are

h = ^p{p-l)-r — s + % K=r+s — 2.

It is impossible for a multiple point to be composed exclusively

of cusps, for if all the tangents coincide r= p, and the constituents

are

S = i(P-l)(p-2), fc^p-l.

166. Reciprocating the theorem of § 165, we obtain : If a
multiple tangent of order p has (r + V)-tactic contact at one point,

and hitactic contact at p — r points, its constituents are

'^=ii'(i'-l)-^+l. t, = r-l (7).

167. Let r tangents at a multiple point of order p coincide

;

then if t he the number of tangents which can he drawn from the

point, and m the class of the curve

t = m — 2p + r—l (8).

The reciprocal polar of the multiple point is a multiple

tangent to the reciprocal curve, whose degree is m. The tano-ent

has (r + l)-tactic contact at one point, bitactic contact at p—r
points, and intersects the curve at t ordinary points ; hence

t + 2 (p — r) + r + 1 = m,

giving t = m — 2p + r — l,

and the number of ordinary points of intersection are the

reciprocal polars of the tangents drawn from the multiple point

on the original curve.

When all the tangents are distinct r = 1 and

t = m-2p (9).
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In the same way it can be shown that if r tangents coincide

with a line AP and s with a line AQ, the value of t is

t = m -1p + {r -I) + {s -1) (9 a).

168. When the number of constituent double points in a

singularity is unequal to ^p (p — 1), the latter cannot be a multiple

point but must be a mixed singularity. It is also possible for a

singularity to possess this number of double points without being

a multiple point. Thus the point constituents of an oscnode are

S = 3 ; and the distinction between a triple point of the first kind

and an oscnode is that (i) the three nodes move up to coincidence

in an arbitrary manner, whereas in an oscnode they move up to

coincidence along a continuous curve
;

(ii) the triple point has no

line constituents, whereas those of an oscnode are t = 3.

169. If an arbitrary straight line through a point P, which is

not a multiple point of order p, intersects the curve in p coincident

points at P, then P is called a singular point of order p. The

rhamphoid cusp and the oscnode are examples of singular points

of order 2. Also if from an arbitrary point on a tangent, which is

not a multiple tangent of order p, m—p tangents can be drawn to

a curve of class m, the tangent is called a singular tangent of

order p. The distinction between multiple points and singular

points is of importance in the theory of compound singularities,

170. The theorem of § 24 is applicable to plane curves, and

affords a ready means of determining the number of constituent

point singularities. It is

:

If a node moves up to coincidence with a multiple point of

order p along the line AB, the equation of the curve is

OL^-^rfUp_^ + OL^'-^-^r^Up + tt'^-^-^M^+s + . . . M„ = . . .(10).

The equation of a curve having an ordinary multiple point of

order p at u4 is

a^-fvp + a'^-^-iv^+i + . . . Wn = (11).

If the curve has a node at a point P on J.5,the line AB must

have p-tactic contact with the curve at A and bitactic contact at

P; hence when P coincides with A, the line AB must have

(p + 2)-tactic contact at A. Similarly the first polar of G, which

is any arbitrary point, must have ^-tactic contact at A. These

conditions reduce (11) to (10), and the point constituents of the

singularity are h = ^p {p) — \) -{ \.
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171. To find the line constituents, we must consider the

reciprocal singularity, and for this purpose we may employ the

curve

a^y^Up-^ + ayUp +Up+2 = (12).

From § 170 it follows that m = 4p, also 2p tangents can be

drawn from A to the curve ; hence the reciprocal singularity is a

tangent to a curve of degree 4ip, which touches it at ^ — 2 distinct

points, corresponding to the distinct nodal tangents Up^^ = ; also

the tangent intersects the curve in 2p points, corresponding to

the 2p tangents drawn from A ; and it touches it at \-

4<p-2p-2(p-2) = 4>

coincident points at a point A', which is the reciprocal of the

tangent AB to the original curve.

If we write down the first polar of (12) with respect to B,

which may be any arbitrary point on AB, and eliminate a7, the

result is a binary quantic of (yS, j) of degree 4>p — 2, which shows

that 4p — 2 tangents can be drawn to (12) from an arbitrary point

on AB. Hence an arbitrary line through ^1' cuts the reciprocal

curve in 4p — 2 ordinary points, and therefore A' is a singular

point of the second order.

The reciprocal singularity is therefore a tacnodal tangent,

which has bitactic contact with the reciprocal curve at p — 2 points,

and its constituents are

8 = 2, r=ip(p-l) + l,

whilst the original singularity is a multiple point having one pair

of tacnodal and p -2 ordinary branches, and its constituents are

B = ^p(p-1) + 1, T = 2.

172. The above results are true when there are any number
of tacnodal branches, and may be generalized as follows :

(i) // a multiple point of order p has s pairs of tacnodal

branches and p — 2s distinct ordinary branches, its constituents are

8 = ^p(p-l) + s, T=2s.

Putting p = 2s, it follows that

(ii) If a rnidtiple point of order 2s has s pairs of tacnodal and
no ordinary branches, its constituents are

h = 2s\ T = 2s.
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The reciprocals of these singularities are :

—

(iii) A multiple tangent which touches a curve at s tacnodes

and has bitactic contact with the curve at p — 2s points ; and its

constituents are

8 = 2s, T = i^ (p - 1) + s.

(iv) A multiple tangent which touches the curve at s tacnodes

and nowhere else ; and its constituents are

8 = 2s, T = 2s2.

173. We must now consider how these results are modified

when some of the branches coincide ; and we shall show that every

ordinary branch which coincides with a tacnodal branch changes a

node into a cusp, whilst every pair of tacnodal branches which

coincides with another pair of tacnodal branches changes two

nodes into two cusps. The first theorem is as follows :

—

If a midtiple point of order p consists (i) of one pair of tacnodal

branches, (ii) of r ordinary branches which coincide with the pair of

tacnodal branches, (iii) of p — r —2 distinct ordinary branches ; its

constituents are

h = ^p{p—l) — r-\-l, K = r, T = 2.

The curve

a" (X/3 + fjiyy+Hp-r-2 + oLUp+i + Up+2 = (13)

has a multiple point at A consisting of p— r— 2 distinct and

r + 2 coincident branches ; and if an additional double point

moves up to coincidence with A along AB, it can be shown as in

§ 170 that (13) becomes

0?Y^^Up_r-2 + OSiUp + Wp+2 = (14).

Write down the first polar of G, which may be any arbitrary

point, and eliminate a, and the result will be a binary quantic of

{B, 7) of degree 4p — r. Whence

2a + 3/c = (j9 + 2) (p + 1) - 4^ + r

=^(^-l)+r + 2.

Also 8 + /c = ^p (p— 1) + 1,

whence h = {p{p — l) — r+\, K = r (15),

which give the point constituents of the singularity.

The reciprocal singularity consists of a multiple tangent which

has bitactic contact with the reciprocal curve at p — r — 2 points and
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touches it at q points at a tacnode, and also cuts the curve at 2p

points, which correspond to the 2p tangents which can be drawn

to (14) from A. Hence

4^ _ r = g + 2 (p - r — 2) + 2^,

which gives g = r + 4.

Accordingly the line constituents of the original singularity are

T = 2 ; and the reciprocal singularity is :

—

(i) A multiple tangent which touches the curve at r+ 4! points

at a tacnode and has bitactic contact with it at p — r — 2 distinct

points ; and its constituents are

8=2, T = lp(p — l)—r + l, L = r.

Also the coincidence of each successive ordinary point increases

the contact by 1, and converts a double tangent into a stationary

one.

Let p — r — 2=0, then :

—

(ii) The constituents of a tacnodal tangent which touches the

curve at ?' + 4 points at a tacnode and nowhere else, are

B = 2, T = ir(r+l) + 2, t = n

Also each additional point of contact after the (r+4)^A adds

one stationary and r + 1 double tangents to the constituents of the

singularity.

174. The theory of coincident tacnodal branches is contained

in the following theorem :

—

// a multiple point of order p has s pairs of tacnodal branches

ofwhich r pairs are coincident, r> 1, and p — 2s ordinary branches;

its constituents are*

h = ^p{p-l)-\- s-2r + 2, K=2r-2, T = 2s-r+l.

This theorem, so far as its point constituents are concerned,

may be proved by the previous methods ; but the portion relating

to the line singularities will be proved in the next section. We
notice the following special cases.

If there are no ordinary branches p = 2s, whence

(i) If a midtiple point of order 2s consists of r pairs of

coincident and s — r pairs of distinct tacnodal branches, its con-

stituents are

S=2s2-2r+2, K = 2r-2, r = 2s-r + l.

* When r=l, all the tacnodal branches are distinct.
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If all the tacnodal branches coincide, s = r, whence

(ii) If a multiple point of order 2s consists of s pairs of

coincident tacnodal and no ordinary branches ; its constituents are

S=2s^-2s + 2, K=2s-2, t = s + 1.

(iii) If all the tacnodal branches coincide, and there are p — 2s

ordinary branches, the constituents of the multiple point are

h = \p{p-l)-s+2, K = 2s-2, T=s + 1.

175. We must now examine the reciprocal singularity. Con-

sider the two curves

a?<yHi^ + ayUiUs + Ue = (16),

a.^y' + aj^Us + Uo = 0.. (17).

The first curve is a sextic having a quadruple point at A,

which consists of two pairs of distinct tacnodal and no ordinary

branches ; consequently, putting ^ = 4, s = 2, r = 1 in the theorem

of I 174, it follows that the point constituents of the singularity

are 8 = 8, /c = 0,- which gives w = 14. The reciprocal of the quad-

ruple point is a tangent which touches the reciprocal curve at two

tacnodes and intersects it at six ordinary points, and consequently

its point constituents are S = 4, and therefore the line constituents

of the original singularity are r = 4.

In the second curve the two pairs of tacnodal branches coincide,

so that r = 2, which gives B = 6, k = 2; hence m = 12.

Also since six tangents can be drawn from A to (17), the

reciprocal singularity consists of a tangent which intersects the

reciprocal curve in six ordinary points and in six coincident points

formed by the union of the two tacnodes. Hence a node is lost by

the union of the two tacnodes on the reciprocal curve, and a double

tangent is lost by the coincidence of the two pairs of tacnodal

branches on the original curve. Accordingly the constituents of

the original singularity are 8=6, k = 2, t = 3, and those of the

reciprocal are S = 3, t = 6, t = 2. Generalizing this result we

obtain r = 2s — r + 1 for the line constituents of the singularity

discussed in § 174.

We thus obtain the following reciprocal theorems :

—

(a) A tangent touches a curve (i) at s— r distinct tacnodes;

(ii) at a point composed of the union of r -\-l collinear nodes

;

(iii) at p — 2s ordinary points; its constituents are

8 = 2s-r + l, T = ip(i>-l) + s-2r +2, / = 2r-2.
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(^) A tangent touches a curve (i) at s — r distinct tacnodes

;

(ii) at a point composed of the union q/ r + 1 collinear nodes, and

at no ordinary points ; its constituents are

a = 2s-r + l, T=2s2-2r + 2, i = 2r-2.

(7) A tangent touches a curve at a point composed of s + 1

coincident collinear nodes; its constituents are

g = s + l, T = 2s2-2s + 2, t = 25-2.

(S) A tangent touches a curve at a point composed of s-\-l

coincident collinear nodes and at p — 2s ordinary points ; its

constituents are

S = s+1, T = \p{p-l)-s + 2, i. = 2s-2.

Birational Transformation.

176. We shall now explain the theory of birational trans-

formation, and shall show how it may be employe^ to investigate

the constituents of the compound singularities of curves.

The conic a^ = /3y touches the sides AB, AG of the triangle of

reference at B and C. Let P be any point (^, tj, ^) ; and let AP
cut the polar of P with respect to this conic in a point P', whose

coordinates are (f, r]', ^'). The polar of P is

2a^-^^- 777 = 0,

and since this passes through P', we have

m'-^v-vK' = o '.

(1).

But the equation of AP' is,

W = 7/r = ^^ (say),

whence tj/t}' = ^/^' = k (2).

Substituting in (1) we obtain

Accordingly from (2), we have

which is the equation connecting the coordinates of P and P'.

It follows from the above construction, that any point on BC
except B and G corresponds to A ; any point on ^P except A
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corresponds to B; and any point on AG except A corresponds

to a

177. A node which does not lie on the sides of the triangle ABG
transforms into a node.

The curve u^U+ uvV+v^W=0,

where {u, v) are straight lines, and U, V, W are ternary quantics

of degree n — 2, has a node at the point of intersection of the lines

u = 0, v = 0; and if this curve be transformed by means of (3),

21 and V will become conies circumscribing the triangle ABC and

intersecting in a fourth point P' which corresponds to the node

{u, v). The point P' is obviously a node; and the theorem can be

extended to multiple points of any order.

178. Let a curve cut BC in two ordinary points P and Q,

which can always be effected by making B and C multiple points

;

then the transformed curve will have a node at A. And generally,

if the curve cut BG in s ordinary points, the transformed curve

will have a multiple point of order s at A ; also since any pair of

ordinary points gives rise to a node at A, it follows that the

number of constituent nodes of a multiple point of order s is equal

to the number of combinations of s things taken two at a time,

that is, to ^s (s— 1).

The directions of the nodal tangents at A are determined as

follows. Let there be two ordinary points P and Q on BG ; and

let p, q be two points on the curve in the neighbourhood of P
and Q. Then if p', q' be the corresponding points, Ap' and Aq',

and ultimately AP and AQ, will be the directions of the nodal

tangents at A. Hence if P and Q coincide, AP and AQ will also

coincide ; accordingly, if the curve touches BG at P and does not

intersect it at any ordinary points, the transformed curve will have

a cusp at A.

If BG touches the curve at P and intersects it at one ordinary

point Q, the transformed curve will have a triple point of the

second kind at A, consisting of a cusp and a branch through it

;

and its constituents are 8=2, k = 1. And generally if the curve

touches BG in r coincident points and intersects it in s — r points,

the transformed curve will have a multiple point of order s a.t A
at which r tangents coincide; and the constituents of such a point

are S = ^s(.9— 1) — r+ 1, K = r — 1.
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If BG cuts a curve at a node and in no ordinary points, the

transformed curve has a tacnode at A ; hence each of the two coinci-

dent points of which the node is composed transforms into a node,

whilst the two branches which pass through the node transform

into the two branches which touch one another at the tacnode.

For example the equation

a?Ui + ct^yVjU^ + ^^y%^ =

represents a sextic having nodes at B and 0, and a third node at

the point a = 0, Vj = ; and this transforms into the curve

a.%^ + a.ViU2 + W4 = 0,

which is a quartic having a tacnode at A.

If BG cuts the curve at a node and p — 2 ordinary points, it

can be shown in the same way that the transformed curve has a

multiple point of order p a,t A consisting of one pair of tacnodal

and p — 2 distinct ordinary branches. And since its point con-

stituents have been shown to he 8 = ^ p (p — 1) + 1, it follows that

each of the two points which coincide at the node gives rise to a

node, whilst every ordinary point in combination with either of

the nodal points or with another ordinary point gives rise to a

node. Also the theorem of § 172 (i) shows that this is true for

any number of nodes and ordinary points on BG; and it follows

from § 173 that if r ordinary points on BG coincide with a node,

the effect is to convert r of the constituent nodes of the trans-

formed singularity into cusps.

179. Before considering the case of a cusp, it will be useful

to state that the equations of a quartic curve which has a tacnode,

a rhamphoid cusp, an oscnode and a tacnode cusp at A may be

written in the forms

(oLUi + u^y +Ui = (4),

{aui + U2y + UyUs = (5),

(aui + Wg)^ + u^ {la. + m/3 -f- n<y) =0 (6),

(aWi + u^f + Uj^ (myS + ny) = (7).

180. Transform (5) birationally and it becomes

(aWa + ^yUiY + a^Ujit^ = (8),

which represents a sextic curve having nodes at B and G and a

double point on BG at the point G' where Mj = cuts it ; and if

ABG' be taken as a new triangle of reference, the double point
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will be found to be a cusp. Hence a cusp on BG transforms into a

rhamphoid cusp at A.

In the same way it can be shown that a tacnode and a

rhamphoid cusp at C respectively transform into an oscnode and

a tacnode cusp at A, provided the tangent at the singularity is an

arbitrary line through G. These results may however be proved

differently by means of the theorem of § 177 ; for a tacnode is

formed by the union of two nodes situated at G' and at an

arbitrary point P near G', such that ultimately G'P is the tac-

nodal tangent. Now the node at G' transforms into a tacnode at

A and AG' is the tacnodal tangent ; the line G'P transforms into

a conic which touches AG' at A ; whilst the node at P transforms

into a node at a point P' lying on the conic. Hence when P
coincides with G', P' coincides with A, and the singularity is an

oscnode which is formed by the union of three nodes which move

up to coincidence along a conic. The case of a tacnode cusp can

be dealt with in a similar manner.

181. By means of the theory of birational transformation, all

the preceding theorems relating to multiple points with tacnodal

branches can be proved (see Quart. Jour. vol. xxxvi. p. 313) ;

and by the same method the following theorems relating to

rhamphoid cuspidal branches can be established.

(i) If the line BG intersects a curve at a cusp and at p — 2

ordinary points, the transformed singularity consists of a multiple

point of order p cotnposed of a rhamphoid cusp and p — 2 ordinary

branches through it ; and its constituents are

8 = ^p{p-l), K = l, T=l, t = l.

(ii) // a multiple point of order p consists of a rhamphoid

cusp and one coincident and p—Z distinct ordinary branches ; its

constituents are

^=ip(p-i)-i> '^ = 2, T = l, i = l.

The reciprocal singularities are

(iii) A rhamphoid cusp, whose cuspidal tangent touches the

curve at p — 2 ordinary points ; and its constituents are

8=1, K = l, T = ^p(p-1), 1 = 1.

(iv) A rhamphoid cusp, whose cuspidal tangent has quinque-

tactic contact with the curve at the cusp, and touches the curve at

jj — 3 ordinary points ; and its constituents are

8 = 1, K=l, T = ^p{p-\)-\, t = 2.
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Putting p=S,it follows that the constituents of a rhamphoid

cusp whose tangent has quinquetactic contact with the curve are

B = l, K = l, T = 2, 1 = 2. It can also be shown by birational

transformation that the equation of a curve having a rhamphoid

cusp at A, and AB as the cuspidal tangent, is

a"-* (ilf/32 + Layf + a'^-^r ^h + a"^'7«*3 + ot^'-'u, + ... Un = . . .(9),

and if the tangent has quinquetactic contact at A, M = and (9)

becomes

Za'^-272 + a'^-^ry^Ui + a^'-'^yus + a'^-^u, + . . . m„ = . . .(10).

182. If the line BO intersects a curve at an n-tuple point of

the first hind and at no ordinary points, the transformed singularity

consists of a 'niidtiple point formed by the union of two n-tuple

points. Its constituents are

8=n{n — l), T= n{n — 1),

and the equation of the curve is

anyn + a^-iryu-i^^ + ^^^ ayu,n-2 + Um = 0.

It will be sufficient to prove this theorem for a sextic curve,

since the method of proof is the same for any other curve.

The sextic curve

a^Us + oi^Ui + 01.U5 + Mg = (11)

has a triple point of the first kind at A, and if it has another

triple point at a point P on AB, it follows that A and P are nodes

on the first polar and ordinary points on the second polar of G,

which may be any arbitrary point. Hence when A and P coincide,

AB must have sextactic contact with the curve, quadritactic

contact with the first polar, and bitactic contact with the second

polar of G. This will be found to reduce (11) to the form

a^yS _^ a^ry^u^ + OCjUi + Uq = (12).

Hence the singularity is a singular point of the third order, the

tanoent at which has sextactic contact with the curve. Writinsf

(12) in the form

a^Vi^ + a.^Vi^U2 + aViUi+UG = (13),

and transforming birationally, we obtain

a?UG + OL^jSryViU^ + al3^y^Vi^U2 + ^^y^Vj^ = (14),

which is the equation of a curve of the 9th degree, having triple

points at B and G and also at the point a = 0, Vj = on BG.
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The portion relating to the line constituents may be proved as

follows.

The reciprocal curve is of degree 18 ; also since the discrimi-

nant of (12) is of degree 12, it follows that 12 tangents can be

drawn from A to (12); hence if A' be the point on the reciprocal

curve corresponding to AB, the tangent at A' has sextactic contact

with the reciprocal curve at A\ The first polar of B, which may

be any arbitrary point on AB, is

a^y^U2+a<yUi+Ue' = (15).

Eliminating aj between (12) and (15) by Sylvester's dialytic

method*, it will be found that the eliminant contains the term

u^ulue^, and is therefore of the 15th degree ; accordingly 15

ordinary tangents can be drawn from B ; and therefore an arbitrary

line through A' intersects the reciprocal curve in 15 ordinary

points. Hence A' is a singular point of order three, the tangent

at which has sextactic contact with the curve ; accordingly the

singularity at A is its own reciprocal.

183. The singularity consists of n branches touching one

another at the same point. This is evident by considering a sextic

curve having such a singularity at the origin and the axis of y
as the tangent. The Cartesian equation of the curve is

aa^ + x^U.^ + xUi^ TJ, = (16),

where Un = {os, yY- If p be the radius of curvature at the origin,

y'^ = ^px\ whence substituting in (16), dividing out by a? and then

putting « = 0, (16) becomes

a + ftp + cp' + dp" = 0,

where a, b, c, d are constants. This proves the theorem and

determines the radii of curvature of the three branches. It also

follows that n complete branches touching one another at the same

* The easiest way of employing this method is to use polynomials instead of

binary quantics. Let u=(a, b, c, d\x, l)^ and v = (A, B, G\x, 1)2 ; and write down

the five equations xu= 0, x^v = 0, u= 0,xv= 0, v = 0. Then eliminating x*, x^, x^

and X, we obtain the determinant

a,
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point cannot be possessed by any curve of lower degree than the

2wth ; but a curve of lower degree may have n branches, some of

which are partial branches which commence at a point and proceed

in only one direction. Thus a quintic can have a cusp and a

complete branch through it which touches the cuspidal tangent.

The foregoing theory of the transformation of multiple points

may be extended to cases in which a ^-tuple, instead of a double

point, is the elementary singularity.

The Reciprocal Theorem.

184. There appears to be a remarkable reciprocal theorem,

which may be enunciated as follows :

—

Let there be two curves such that BC intersects them at a certain

singularity at a point C, and at no other points except B and G.

In the first curve let the singularity he 7'elated in a given manner to

the line BG ; and in the second curve let the singularity he related

in the same manner to the line AG'. Then when the curves are

transformed, the two singularities at A are the reciprocals of one

another.

I shall not attempt any general proof of this theorem, nor

venture to assert that it is true in every conceivable case that

may arise. I shall content myself with verifying its truth in the

case of one of the theorems previously discussed.

Let AG' and BG have r-tactic contact with their respective

curves at G', then the transformed singularities are their own

reciprocals.

The equation

a^Mo + o'^Vi + aVi^i + ^7^1 =

represents a cubic which passes through B and G, and has a point

of inflexion at G', and v^ or AG' is the stationary tangent. The
transformed equation is

OL^Vi + a^^iMj + a^<yVi + ^'^'fu^ = 0,

which represents a quartic having nodes at B and C, and a point

of undulation at A, the tangent at which is AG' . In the same

way it can be shown that if AG' has r-tactic contact with a curve

at G' , and BG does not intersect the curve at any other points

except B, G and C", the line AG' has (r-f l)-taetic contact with

the transformed curve at A.

B. 9
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If BG has r-tactic contact with another curve at C and does

not intersect it at any other points except B and G, the transformed

curve has a multiple point of order r at ^, the r tangents at

which are coincident; and this is the reciprocal of a multiple

tangent which has (r + l)-tactic contact and does not touch the

curve elsewhere.

185. The theory of the birational transformation of curves

and surfaces has been discussed by Cayley* at considerable

length : and the transformation which we have employed is a

particular case of the quadric transformation f. The theory has

also formed the subject of numerous memoirs by Italian mathe-

maticians! which are to a large extent connected with the theory

of the singularities of surfaces, to which as will be shown in the

next chapter a similar theory applies.

* Proc. Lond. Math. Soc. vol. in. p. 127 ; C. M. P. vol. vii. p. 189.

t Ibid. p. 170.

X Segre, " Sulla scomposizione dei punti singolari delle superficie algebriche,"

Ann. di Mat. Serie II. vol. xxv. p. 219 ; and various other papers published in this

journal.



CHAPTER Y

SINGULARITIES OF SURFACES

186. Before proceeding to consider the theory of quartic

surfaces, it will be desirable to discuss the general theory of the

compound singularities of surfaces; for just as most compound

singularities, which a cubic surface can possess, appear on the

latter in a special form, so various singularities which a quartic

surface can possess are deficient in certain peculiarities which

appear when the singularity occurs on a surface of higher degree.

From analogy to the theory of plane curves, it is to be anticipated

that the conic node and the binode are the only simple point

singularities which an algebraic surface can possess ; and that

every other singularity is a compound one which, so far as its

point constituents are concerned, is formed by the union of two

or more conic nodes or binodes. I have found this to be the

case in every compound singularity which I have examined ; and

I shall commence with the theory of the multiple point.

187. If three copies of degrees I, m, n have a common vertex

and no common generators, the vertex absorbs Imn of their points of

intersection.

Since the cones have no common generators, the common
vertex is their only point of intersection ; hence the theorem at

once follows ; but if the cones had a common generator, every

point on it would be common to the three cones, and the theorem

would no longer be true.

188. If three surfaces have multiple points of orders p, q, r at

A, and the nodal cones are not specially related to one another, then

A absorbs pqr of their points of intersection*.

* Berzolari, Ann, di Mateni, Serie II, vol, xsiv, p. 165.

9—2
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Let I, m, n be the degrees of the three surfaces ; then in order

to prove the theorem, we shall employ the method of Salmon

explained in § 42, Let the first surface Si be replaced by a

proper cone Sp, whose vertex is A, and a surface Si^p which does

not pass through A. Treating each of the other surfaces in the same

way, it follows that the number of ordinary points of intersection

consists of (i) the intersections of any cone such as Sp with the two

surfaces Bm-q ^^^ ^n-r 5
(ii) the intersections of any surface such

as Si-p with the cones Sq and Sr', (iii) the intersections of the

three surfaces 8i-p, Sm-q, Sn-r- Hence the total number of

ordinary points of intersection is

(m-q){n-r)p + (n -r)(l -p)q + (l- p)(m- q)r +{l -p) qr

+ (m — q) rp + {ii - r)pq + (l —p) {m — q) (n — r) = Imn — pqr

which shows that pqr points of intersection are absorbed at A.

189. When three surfaces intersect at a point A which is a

multiple point of order p on the first two, and whose nodal cones

are identical, whilst A is a multiple point of order q on the third,

the number of points of intersection absorbed at A is pq (^+1).

We may without loss of generality suppose the first two

surfaces to be of degrees p + i, in which case the equations of

their curves of intersection by any arbitrary plane 8 through A are

aup + Mp+i = 0, aup+ Up+i = 0.

These curves obviously intersect in 2^ + 1 ordinary points ; hence

the number of points absorbed at A is ^ (^ + 1). This shows that

A is a multiple point of order p(p + l) on the curve of inter-

section of the two surfaces.

If the nodal cone at the multiple point on the third surface is

not specially related to the two first surfaces, each branch of their

curve of intersection will cut the third surface in q coincident

points at A ; hence the total number of points absorbed at A is

pq(p + l).

This result is also true when the first two surfaces have the

same lines of closest contact ; for since they are of degree ^ + 1,

their curve of intersection consists of the p(p + l) lines of closest

contact and a residual curve of degree p+l. Let the equation of

the third surface be

a:'Uq + aUq+,+ Uq+,= (1),

then the residual curve intersects (1) in (p + l)(q + 2) ordinary
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points, whilst the lines of closest contact intersect (1) in 2p(p + 1)

of such points ; hence the number of points absorbed at A is

(P + 1)H^ + 2)-(p + l){q + 2)- 2p (p + 1) =pq (p + 1).

(i) If the nodal cone of the third surface contains all the lines

of closest contact of the first two surfaces, and q>p, the number of
points absorbed at A is p{p + l)(q + l).

(ii) But, if these are also lines of closest contact on the third

surface, the number absorbed at A is p{p + l){q + 2).

If Uq contain all the lines of closest contact, each will inter-

sect (1) in only one ordinary point ; hence the number of points

absorbed at ^ is

(i? + l)Hg + 2)-(^ + l)(g + 2)-p(^ + l)=p(p+l)(^ + l).

And if these are lines of closest contact on (1), they will not

intersect (1) in any ordinary points; hence the number of points

absorbed is

{p + iy(q+2)-{p + l){q + 2)=p(p + l)(q + 2).

The last two theorems are true* when p = q.

190. A multiple point of order p, the tangent cone at which is

anautotomic, reduces the class'f by p {p — ly.

When a surface has a multiple point of order ^ at J., the

first polars of any two points have multiple points of orders p — 1

at A ; also if the nodal cone is anautotomic, this cone and the

nodal cones at A to the first polars have no common generators

;

hence A absorbs p{p—^y of the points of intersection of the

surface and the first polars of any two points. Accordingly

m = n(n— ly —p {p — 1)^

191. Before finding the constituents of a multiple point, a

few additional remarks on the compound singularities of plane

curves will be necessary.

If h nodes on a plane curve move up to coincidence in any

manner whatever, the point constituents of the resulting compound

* If a surface of degree ^ + 2 has a multiple point of order p ai A, the tangent

cone from A obviously cannot possess any generators which have tritactic contact

with the surface at some other point P ; hence the surface and its first and second

polars with respect to A cannot intersect at any ordinary points, and therefore the

number of points absorbed dA, Ais p (p + 1) (p + 2). A similar argument frequently

gives a short cut to theorems of this character.

t Segre, Ann. di Matem. Serie II. vol. xxv. p. 28.
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singularity are B nodes ; but it is otherwise in the case of cusps.

For if K cusps move up to coincidence, it frequently happens that

2p of them are changed into 3p nodes, and this is especially the

case when the cusps move up to coincidence along a continuous

curve ; also since the reductions of class produced by a node and a

cusp are respectively equal to 2 and 3, the class of the curve

remains unaltered. The simplest example of the conversion of

cusps into nodes is furnished by the oscnode. For the equation of

a bicuspidal quartic curve can be expressed in the form

S'= uv' (2),

where u is the double tangent, v the line joining the cusps and

^ is a conic, which passes through the points of contact of the

double tangent and has tritactic contact with the curve at each

cusp; but when the line v touches the conic S, the two cusps

coincide and the resulting singularity becomes an oscnode. If

however the point constituents of an oscnode were two cusps, it

would be possible for the quartic to have a third double point

;

but if one be introduced, it can be shown in the following manner

that the quartic will degrade into a pair of conies which osculate

one another.

Let ABC be the triangle of reference, A the oscnode, AB the

oscnodal tangent ; then (2) becomes

(ay + P^' + Q^ry + Ry^) = (la + m^ + ny)rf (3).

Since G is an arbitrary point we may suppose it to be an additional

node, the conditions for which are

l = 2R, m = 2QR, n = R\

and (3) becomes

{P^^ + QPy + OLyf + 2PR^'y' = 0,

which represents a pair of conies. This shows that the union of

the two cusps produces a compound singularity whose point con-

stituents are three nodes ; and many other similar examples might

be given.

192. The constituents of a multiple point of order p, the tangent

cone at which is anautotomic, are*

G^hpip-^h ^ = 0,

* Basset, Bend, del Circolo Mat. di Palermo, vol. xxvi. p. 329.
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where C and B are the number of constituent conic nodes and

hinodes.

Let A be the multiple point, D any point in space ; then since

J. is a multiple point of orders ^ — 1 and p — 2 respectively on the

first and second polars of the surface with respect to D, it follows

that A absorbs p (j? — 1) (p — 2) of the points of intersection of the

surface and its first and second polars with respect to D. Hence

the number of distinct generators of the tangent cone from D,

which have tritactic contact with the surface, and which are

therefore cuspidal generators of the cone, is

K = n{n-l){n-^)-p{p- 1) {p - 2) (4).

Let V and ^l be the degree and class of the tangent cone from

By then
v=n{n—\.), /j, = n {n — iy—p(p — If (5)

;

also let 8 be the number of distinct generators which are double

tangents to the surface, and which are therefore nodal generators

of the cone.

Since the tangent cone at A is anautotomic, its class is p(p — 1),

and therefore DA is a multiple generator of the tangent cone fi^om

D of order p{p — 1), the tangent planes at which are distinct

;

hence J. is a multiple point of the same character on the section

of the cone by the plane ABC, and its point constituents are

iP iP — ^){p^~P~ 1) nodes.

Applying Pliicker's equations to the section of the tangent

cone from D, we obtain

fi = v{v-l)-p{'p-l){p'-p-l)-^h-^tc (6).

Substituting the values of k, /ju and v from (4) and (5) in (6),

we obtain

B = ^n{n-l)(n-2){n-S)-^pip-l){p-2){p-S)...(7),

hence if B' and k' are the number of nodal and cuspidal generators

which are absorbed by the multiple point

8' = ^p{p-l)ip-2)(p-S), k'=p(p-1)(p-2)...{8).

We shall now suppose that the multiple point at A is formed

by the union of G conic nodes and B binodes. These double

points are originally supposed to be isolated and to be arranged in

any manner on the surface ; hence the tangent cone from D will

possess two species of nodal and cuspidal generators, the first of

which arises from the double points on the surface, whilst the
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second arises from generators which are double and stationary

tangents to the surface. When the G conic nodes and B binodes

coincide at A, all the generators of the first species and 8' + /c' of

the secoud species will coincide with the line DA ; and we have to

find the number of those of the first species.

The multiple point at A on the section of the tangent cone

from D is of order j9(p — 1), and is composed of double points of

both species ; hence

G-^B-\-h' + K' = ^p-'{p-\f-\p{p-\) (9),

where h' is given by the first of (8), but nothing at present is

supposed to be known about k except that it represents the effect

of the coincidence of the p{p—^){p — 2) cuspidal generators of the

second species. Also since the reduction of the class of the surface

iQ p{p — \y, it follows that

2G+W=p{p-lf (10).

Substituting the value of 8' from the first of (8) we obtain from

(9) and (10)

C=lp{p-i) (10^ - 19) - S/c']

•(11).

2/c'-5=3j?(p-l)(p-2)

. Now if we supposed that the k distinct cuspidal genera-

tors of the second species were equivalent after coincidence to

p{p — l){p — 2) cusps, we should obtain from the last of (11)

B = -pCp-l){p-2\
which is impossible, since B cannot be a negative quantity. This

shows that the effect of coincidence is to convert the 2/c' cusps

into f /c' nodes, which produces no alteration of the class of the

tangent cone or of the surface, but makes

G = lp{p-iy, B = 0.

193. When the tangent cone is autotomic, the investigation

of the point constituents of any multiple point involves the solution

of two distinct problems. In the first place the class m of the

surface is determined by the equation

m=n(n-iy-2C-W (12),

and in the second place an equation exists of the form

G + B = X (13).

When the tangent cone is anautotomic the value of X by the

preceding theorem is |p(j3 — l)^ and the theorem of § 24 usually
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enables us to ascertain without much difficulty whether any change

in the character of the multiple point is produced by the conversion

of conic nodes into binodes, or by the union of additional double

points with the multiple point. The principal difficulty is to

determine the value of m, and we shall proceed to explain the

methods by which this can be effected*.

194. When the nodal cone at a multiple point of order p has

S nodal and k cuspidal generators, all of which are distinct, the

reduction of class is

p{p-iy+h-^2K,

and the point constituents of the singularity are

Let the equation of the surface be

aup + Up+i = (14),

then the first polars of C and D are

au'p +u'p+i =0 (15),

au"p + u"p+i = (16),

where the single and double accents denote differentiation with

respect to <y and 8 respectively ; whence eliminating a between

(14), (15) and (16) we obtain

UpU p^i = Up^iU p (-'-'/>

UpU p^i = Up^iU p \ -* "/•

Equations (17) and (18) represent two cones of degree 2p, and

their 4p^ common generators intersect the surface (14) at the

points where it is intersected by (15) and (16) ; but these generators

include the p{p + l) lines of closest contact, which do not give rise

to ordinary points of intersection ; hence the number of the latter

is reduced by p{p-{-l).

Again, if we temporarily regard the cones Up, u'p and u"p as

curves lying in the plane BCD, the last two will be the first polars

of Up with respect to C and D; accordingly if AB is a nodal

generator, it must be repeated once on the cones u'p and u'p, and

twice if it is a cuspidal generator, but the three cones Up, u'p and u"p

will not in general have any other common generator except AB.

Hence every nodal generator on Up produces a further reduction

* Basset, " Multiple points on Surfaces," Quart. Jour. vol. xxxix. p. 1.
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in the number of common generators eqnal to 1, and every cuspidal

generator reduces it by 2. Accordingly the number of ordinary

points of intersection of (14), (15) and (16) is 4>p-—p(p+l)— 8— 2k,

giving m = 4fp'^—p(p + l) — 8 — 2K

= (p + l)p'' -p (p-iy-S- 2k,

which shows that the reduction of class is given by the last three

terms. We thus obtain

2G + SB=p(p-iy+B + 2K (19).

From the theorem of § 24, it is easily seen that the reduction

of class is not produced by the union of any additional double

points with the multiple point; hence by § 193

G + B=lp{p-iy (20).

Solving (19) and (20) we obtain the required result.

195. If the nodal cone at a multiple point of order p possesses

a multiple generator of order q, such that r of the tangent 'planes

are coincident, the constituents of the singularity are

G=\p{p-\y-{q-\Y-r + \, B = (q-iy + r-l.

(i) Let all the tangent planes along the multiple generator

AB be distinct ; then since a multiple point of order q on a,

curve gives rise to a multiple point of order q — 1 on the first

polar, it follows that the first polars of two arbitrary points inter-

sect in (q — ly coincident points at B ; hence if s be the additional

reduction produced by the generator, s = (q — ly.

(ii) Let r of the tangent planes along AB coincide ; then

AB is a multiple point of order g- — 1 on the first polar, having

1— 1 coincident tangent planes ; accordingly AB will be repeated

r — 1 additional times on the first polars of two arbitrary points, so

that s = (5' — l)^ + r— 1. This gives

2(7+ SB=p (p - ly + (q-iy + r-l,

also G+ B = ^p(p-iy,

which proves the theorem.

It does not appear to make any difference whether the pre-

ceding compound singularities occur on a proper or an improper

cone. Putting q = S, r=l, it follows that the additional reduction

of class produced by a triple generator on the nodal cone is 4

;

and it can be shown, by an independent investigation, that the
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additional reduction of class produced by a triple generator when

the nodal cone is a quartic cone is the same, whether the cone is

(i) a proper one, (ii) a nodal cubic cone and a plane through the

nodal generator, (iii) two planes and a quadric cone passing

through their line of intersection.

Multiple Points in which the Cone co7isists of Planes

intersecting in the same Straight Line.

196. We shall now discuss multiple points in which the cone

degrades into p planes intersecting in the same straight line, and

shall commence with the following theorem.

When a multiple point of order p consists ofp distinct planes

intersecting in a point, the reduction of class is

^p{p-l)(2p-l),

and the point constituents of the singularity are

G = ip(p-l)(p-2), B = ^p(p-1).

But when the planes intersect in the same straight line, the reduc-

tion of class is (p +l)(p — ly, and the point constituents of the

singularity are

c=i(p-i)Hi>-2), B=(p-iy.

By means of the theorem of § 24, it can be shown in both

cases that the reduction of class does not arise from the union of

any additional conic nodes or binodes with the multiple point

;

hence the reduction is caused by the conversion of conic nodes

into binodes.

In the first case, when the planes intersect in the same point,

the number of their lines of intersection is ^p (p — 1); hence

2G + SB=p(p-iy + ^p{p-l),

also 0+ B=lp{p-lf,
whence G =^p{p—\){p — 2), B = ^p(p—1) (1).

To prove the second case, we may employ a surface of degree

p + l, which is

avp + Up+i = (2),

where m^+i = /3^+%o + /S^^^i + . . . Wp^^

.

The first polars of (7 and JD are

av'p + u'p+i = 0, av"p + m"^+i = (3),
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Multiplying the first of (3) by 7 and the second by B and

adding, we obtain

pavp + ^Pw, + 2/SP-'w, + ...{p + l) Wp+, = (4).

Eliminating a between (2) and (4), we obtain

p/3P+^Wo + ip-l)l3Pw,+ ...-iVp+, = (0).

Eliminating a between (3), we obtain

(y8^< + y8^-W+ ...) V' = (/SP<' + /3*-^w;'+ ...)<.. .(6).

Equations (5) and (6) represent two cones of degrees p + 1

and 2p—l, which possess (p + 1) (2p — 1) common generators;

and this number is equal to the number of ordinary points of

intersection of (2) and the first polars of two arbitrary points.

Hence
m = (p + l) {2p -l) = (p + l)p^-2G- HB,

accordingly 2C + dB = (p+ l){p-iy (7),

also G+ B = lp(j)-\f,

whence C=\{p-lf {p -2), B = {p-\f (8).

197. When s tangent planes coincide, the reduction of class is

(p + l){{p-lf + s-l].

In this case Vp = 8^Vp^s', hence

V = ^'v'p-s, V = ^'~' {^f^"p-s + svp-s)
;

accordingly (6) contains S*~^ as a factor which must be rejected,

and the resulting cone is of degree 2p - s. Whence

m = (p + l){2p - s) = (p + l)p^ -2G- SB,

giving 2C + SB = (p + l){{p-iy + s-l} (9),

from which it follows that each successive coincident plane pro-

duces an additional reduction of class equal to p + 1. When all

the planes coincide, p = s, and the reduction becomes p (p^ ~ !)•

198. We shall now explain a method for determining the

number of constituent conic nodes and binodes, when some of the

planes coincide, which depends upon the theorem of § 24.

Two cones of degree n which have a common vertex possess n^

common generators ; and a pair of such cones may be regarded as

an improper cone of degree 2n which has 01^ nodal generators. If

the two cones have an additional common generator they must

coincide ; hence a cone of degree n twice repeated may be regarded
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as an improper cone of degree 2n which has n^ + 1 nodal generators.

From this it follows that a pair of coincident planes may be

regarded as a hinodal quadric cone, the positions of whose nodal

generators are indeterminate. Similarly three coincident planes

may be regarded as an improper cubic cone having 2 + 2 + 2 = 6

common generators ; and generally if ts be the number of nodal

generators when there are s coincident planes,

the solution of which is ts = s{s — l). Accordingly s coincident

planes may be regarded as a cone of degree s which has s{s — \)

nodal generators, the positions of which are indeterminate.

199. When s coincident planes coincide, the constituents of the

singularity are

G=^\{p-\f{p-2)-{p+l){s-^l

B = {p-\Y + {p + l){s-^); when p + \^s{s-l),

and

C=^{p-\f{p-^)^{s-\){^s-p-l),

B = (p-iy-{s- 1) (2s -JO - 1) ; ivhen p+1 ^s(s-i).

The equation of the surface is

aP-PB%-s + a«-^-%p+i + ...Un = (10).

In the first case, each of the p + 1 lines of intersection of the

cone Up+i with the plane 8 may be regarded as nodal generators of

the cone 8* ; hence the number of additional nodes is p + 1, and

G + B = ^p(p-iy+p + l (11).

Combining this with (9) we obtain the first result. But in

the second case there are only s{s — 1) additional nodes, whence

G+B = lp{p-iy + s(s-l) (12),

which by virtue of (9) gives the second result.

When p = s, p + l<p(p — l) except when p ^l and p = 2
;

and in the latter case the singularity is an ordinary unode, and

the second result gives 0=3, B = 0, which is right. But when

p = s >2, the proper formulae are the first ones, and we obtain

G=i(p-inp-2)-(p+i){p-4.)l
B = (p-iy + (p + i){p-s) J

^'"'^'

where p > 2.
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200. I shall now explain another method of finding the

reduction of class produced by a multiple point.

Let A he a multiple point of order p, the tangent cone at

which is anautotomic, then the class of the cone is p(p -1);
hence if I) be any point of space, p{p — 1) tangent planes can be

drawn to the cone through DA, and therefore DA is a multiple

generator of the tangent cone from D of order p{p — '[). Now
the class m of the tangent cone from D is the same as that of the

surface ; hence by § 167,m — 2p(p — 1) tangent planes can be drawn

to the surface through the line DA. This number is obviously

equal to the class fi of the tangent cone from A to the surface

;

hence
m — 2p{p — l) = fi (1),

which reduces the problem to the determination of the class of

the tangent cone from A.

Let the surface on which the multiple point exists be of degree

p + 2; then since none of the generators of the tangent cone from

A can be double or stationary tangents to the surface, it follows

that the tangent cone is anautotomic ; and since the equation of

the surface is

a^Lip + 2a^tp+l + it^+a == 0,

that of the tangent cone from A is

^ p+l — UpUp^2 (^))

whence its degree is 2p + 2, and its class fx,
= {2p + 2) (2p +1).

Substituting in (1), we obtain

m-2p{p-l) = (2p + 2)(2p + l) (3),

giving m = {p + 2)(p + iy—p{p — l)%

and the last term is the reduction of class produced by the

multiple point.

Equation (2) shows that the lines of closest contact are

generators ; hence a singular generator of Up which is not a line of

closest contact will not affect the value of /a, but the left-hand side

(1) will be altered. Let the nodal cone at A possess 8 nodal and

K cuspidal generators, then the section of this cone by the plane

BCD will be a curve of degree p having S nodes and k cusps, and

the number of tangent lines which can be drawn through D to the

section is p(p — l) — 28 - 3«, and this is consequently the number

of distinct tangent planes which can be drawn through DA to the
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nodal cone. But every plane through DA and a nodal generator is

equivalent to two coincident tangent planes, and every such plane

through a cuspidal generator is equivalent to three coincident

tangent planes. Hence DA is a singular generator of the tangent

cone from D of order p{p — l) having S pairs of coincident tangent

planes, corresponding to each nodal generator, and k planes con-

sisting of three coincident tangent planes which correspond to

each cuspidal generator. Putting r = 2 and s = 3 in (9 A) of

§ 167, it follows that the number of tangent planes which can be

drawn through DA to the tangent cone from D is

m- 2p(p -1) -\- {r - 1) S + (s - 1) fc = m-2p(p -l) + 8 + 2fc;

and since this is equal to the number of tangent planes which

can be drawn through DA to the surface, (3) must be replaced by

m- 2p(p -1) + B + 2K = (2p + 2){2p + 1),

giving m = (p + 2) (p + ly — p (p — ly — B — 2k,

which furnishes another proof of the theorem of §194,

201. In I 169 we have called attention to the distinction

which exists between multiple points and singula?- points on plane

curves ; and we shall now prove that

:

If the nodal cone at a multiple point of order p possesses a

singular generator of order 2, whose constituents are 8 nodal and k

cuspidal generators, which move up to coincidence along a continuous

curve, the total reduction of class is

p{p-\f + 2B + ^K-l

and the point constituents are

G= \p{p -If -2B-U + 1, 5 = 284-3/c-l.

In this case, the number of distinct tangent planes which can

be drawn through DA to the nodal cone oXA i?, p{p — l) — 2B — 3/c

as before ; but the number of coincident tangent planes is 2S + 3/c.

Hence the number of tangent planes which can be drawn through

DA to the surface is m — 2p(p — 1) + 2S + 3/c— 1. Substituting

this quantity for left-hand side of (3) we obtain

m = {p + 2){p + lf-p{p-rf-2h-^K + \.

Also since the value of G-\-B is given by (20) of § 194, the

theorem at once follows.

Let us write 5 = 2S + 3« — 1, then the following special cases
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may be noted when the nodal cone has the following singular

generators

:

(i) Tacnodal generator. Here 5 = 2, /c = ; whence 5 = 3.

(ii) Rhamphoid cuspidal generator. Here S = 1, k = 1;

whence 5 = 4.

(iii) Oscnodal generator. Here S = 3, k = 0; whence s = 6.

(iv) Tacnode cuspidal generator. Here S = 2, k=1\ whence

5=6.

202. The preceding theorem requires modification when the

singular generator is a line of closest contact ; and we shall show

that:

If AB is a singular generator of order 2 on the nodal cone,

which produces an additional reduction of class equal to s ; then

when AB is a line of closest contact, the additional reduction is

5 + 1, and the point constituents of the singularity are

G = ^p(p-iy-s + 2, 5 = 5-1.

The equation of the surface must be of the form

^n-p (^p-2 ^^ ^ ^p-3 y^ + ^ ^
.

) _,_ f^n-p-i (^p+lW0 + /3PW2+...)

+ a^-P-^Up+^ + ... Un = 0,

where the w's are arbitrary binary quantics of (7, S), but the vs

are connected in a manner which depends on the character of the

singular generator AB. The latter has {p + l)-tactic contact with

the surface at A, and 2?-tactic contact with the first polar at A
;

but if Wo=0, so that AB becomes a line of closest contact, then

AB has (p + 2)-tactic contact with the surface at A and {p + V)-

tactic contact with the first polar at A. This shows that the

surface and the first polars of any two points intersect in an

additional point at A ; hence the total reduction of class is

2G + W=p{p-iy-{-s+\.

Also by § 24, this additional reduction of class is produced by

an additional double point which moves up to coincidence with A
;

. accordingly

c^B=ip{p-ir+\,
which gives the required result.

The reader will be assisted in understanding the process which

takes place, by considering the case of an ordinary conic node.

When the nodal cone has a nodal generator (that is becomes two
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planes) the conic node is converted into a binode ; but when this

generator becomes a line of closest contact, the binode is reconverted

into a conic node, and an additional conic node added, so that the

singularity becomes the special binode whose axis has quadritactic

contact with the surface.

203. The following theorem is an extension of this result.

If the nodal cone at a multiple point of order p possesses B nodal

generators, each of which is a line of closest contact ; then when all

coincide, the constituents of the singularity are

G=^p(p-iy-B + 2, 5 = 28-2.

To prove this theorem it will be sufficient to consider the case

of a tacnodal generator on a quartic cone.

When two generators AB, AB' are lines of closest contact the

effect is to add two conic nodes to the constituents of the singularity;

so that in the case of a quartic node, the total reduction of class is

2(7+ 35 = 36 + 2 + 2 = 40 ; and we shall now show that when AB
and AB' coincide, the effect is to produce a further reduction of

class equal to 2. Consider the surface

a (/3V + 2^ViV2 + 2^4) + k^% + /3%2 + . . . W5 = (4),

where Vi = 7 + S and A; is a constant. Equation (17) of §194 now

becomes

{^W + 2y8viW2 + 2^4) (A;/3* + /3V + • • •O
= 2 {k^% + /3^W2 + . . . w,) {^% + /3(v, + v,v^) + v:] (5),

or k^W + ^'^1 (2A;yi< + 2w^ - kv^w^) + . . . = (6).

Now write down the equation corresponding to (18) of § 194

and subtract, and it will be found that we shall obtain an equation

of the form

ySVXii+yS%A + /S'n5+...n8 = o (7),

from which it is easily shown* that (6) and (7) intersect in 54

ordinary generators and in 10 coincident generators along AB.

* Eegarding (6) and (7) as plane curves, we have to find the number of

coincident points in which they intersect at B ; and we may replace them by

two equations of the form

/3V + /37V2 + 1^4= 0,

^^y^Wi + PjWs + W5= 0.

Eliminating ^37, we obtain a binary decimic of (7, 8) which shows that the two

curves intersect in 10 ordinary points, and therefore the number of points absorbed

at 5 is 20-10 = 10.

B. 10
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But since AB is four times repeated amongst the lines of closest

contact of (4), the total number of ordinary lines of intersection of

(6) and (7) is

64 -10 -(20 -4) = 38,

whence m = 38 = 80 - 26' - SB,

giving 2C+35 = 42 = 36 + 6.

From this it follows that the coincidence of the two generators

AB, AB' produces a further reduction of class equal to 2 ; and by

taking a third generator AB", which is a nodal generator on the

cone and is also a line of closest contact, it can be shown that an

additional reduction of class 2 + 2 = 4 is produced. Generalizing it

follows that when there are 8 coincident nodal generators, all of

which before coincidence are lines of closest contact,

2G+SB= p{p-iy + ^8-2,

0+ B = ^p{p-iy + 8,

which proves the theorem.

Cubic Nodes.

204. There are six primary species of cubic nodes.

I. In the first species the nodal cone is an irreducible cubic

cone. Of these there are three subsidiary species, which occur

when the cone is (i) anautotomic, (7=6, B = 0; (ii) nodal, 0=5,
B = l; (iii) cuspidal, G = 4, 5 = 2.

II. In this species the cone consists of a quadric cone and a

plane ; and there are two subsidiary species according as the plane

(i) intersects the cone in two distinct generators, (7=4, 5=2; or

(ii) touches the cone, G = S, B = S. In the latter case the cone is

a reducible or improper cubic cone having a tacnodal generator,

and the values of the constituents follow from § 201.

III. Three planes intersecting in a point, G = d, B=S.

IV. Three planes intersecting in the same straight line,

(7=2,5=4.

V. One distinct and two coincident planes, (7=4, B = 4t.

VI. Three coincident planes, (7=6, 5 = 4.

All these results follow from the preceding theorems. With

regard to V, it follows from § 199 that p = S, 5 = 2, so that the
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second formulae are the proper ones ; but in the case of VI,

p = s = S and the first formulae must be used.

205. It will be noticed that I (iii) and II (i) have the

same point constituents, and a similar remark applies to II (ii)

and III. Exactly the same thing occurs in the theory of plane

curves, for the point constituents of a triple point of the second

kind and of a tacnode cusp are both equal to 8 = 2, k = 1; but the

line constituents are different, for in the former case they are

T = 0, 1 = 0, and in the latter t = 2, t = l. And since surfaces

possess plane as well as point singularities, it is practically certain

that the plane constituents in the above respective cases are

different; although the theory has not yet been worked out.

Quartic Nodes.

206. The theory of quartic nodes is coextensive with that of

quartic curves, since a plane section of the nodal cone may be any

quartic curve proper or improper. The theorems of § 201 give the

reduction of class when the nodal cone has a tacnodal, a rhamphoid

cuspidal, an oscnodal and a tacnode cuspidal generator which is

not a line of closest contact ; the theorem of § 202 solves it when

the generator is a line of closest contact ; whilst that of § 203

solves it when the cone m^+i touches the nodal cone along a

tacnodal generator, or osculates it along an oscnodal one. Triple

generators are discussed in § 195, and the various cases in which

the nodal cone degrades into four planes are dealt with in

§§ 196—9. I shall therefore only discuss two additional cases

for the purpose of illustrating the method employed.

207. When the nodal cone consists of a quadric cone and two

coincident planes, the point constituents of the quartic node are

C=l% B = 8.

We shall employ the sextic surface

+ B'W,+ ... We = ...(1),

where the suffixed letters denote binary quantics of {^, y). Write

(1) in the binary form

(a, b, c, d, e^B, 1)* = 0,

10—2
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then the equation of the tangent cone from D is

I' - 27J2 = 0,

where I = ae — 46c? + 3c^

/ = ace + 2bcd — ad? — Ife — c^,

and the values of a, b, c, d, e are

a = a^ + aFi+ W^,

c = ^a2/37 + aFg + W„

d = oiV,+ W„
e = aF,+ Fe.

Writing down the discriminantal equation of the tangent cone

from D, it will be found that the highest power of a is a", and the

term involving it is 27c^e (3ac — 26^); and that its coefficient (re-

jecting constant factors) is fi^'fV^{^^ — ^v^); also the coefficient

of a" does not involve /8 or 7 as a factor. From this it follows

that if fjb be the class of the cone, the number of tangent planes

which can be drawn through DA to the surface is /i — 22 = w — 26,

since yu, = m — 4.

The tangent cone /rom A has five nodal generators, which are

the lines of intersection of the plane h and the cone Fg ; also AD
is another nodal generator of the tangent cone ; hence its class is

90 — 10 — 2 = 78. The number of tangent planes which can be

drawn to this cone, and therefore to the surface, through AD is

accordingly 78 — 4 = 74; and we thus obtain m — 26 = 74, giving

m=100.

Let X be the reduction of class produced by each of the lines

AB and AD, then

m = 100 = 150 - 36 - 2a; - 2 - 2 - 2,

giving a; = 4.

Since the surface possesses an isolated conic node at D, it

follows that if this were absent we should have m = 102, whence

2(7 + 35 = 48.

Also from § 198 the union of the two planes produces two

additional conic nodes, whence

C + 5 = 20,

from which we obtain C =12, B=8.
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208. When the nodal cone at a quartic node consists of a

quadric cone twice repeated, the constituents of the singularity are

a=15, 5 = 8.

Consider the surface

oiu^ + Wg = 0,

then, proceeding according to the first method, the two cones

whose common generators determine the class are the sextic

cones

U^U^ = '^2^5,

which possess 36 common generators; but, since 10 of these

common generators are the 10 lines of closest contact, which are

the common generators of the cones u^ and u^, the total number of

ordinary generators is 26. Hence

7n = 26 = 80 - 2C - 2>B,

whence 2(7+35=54.

Now, from § 198, it appears that a quadric cone twice repeated

may be regarded as a quinquenodal quartic cone whose nodal

generators lie on the quadric cone u^, but are otherwise inde-

terminate ; also these five nodal generators may be regarded as

coinciding with five of the lines of closest contact. Hence

C+5=18 + 5 = 23,

giving 0=15, 5 = 8.

The foregoing result is capable of extension to multiple points

whose nodal cones are of the form u^Uq.

Singular Lines and Curves*.

209. A surface may possess any line or curve lying in it, such

that an arbitrary plane section through any point P on the line or

curve has a singular point at P of any species which an algebraic

plane curve can possess. Moreover all singular lines and curves

possess singular points, analogous to pinch points, at which the

singularity changes its character. Thus a cuspidal line possesses

certain points at which the cusp changes into a tacnode, and a

triple line of the first kind points at which the triple point changes

into one of the second kind and so on. We also saw in § 41 that

* Basset, Quart. Jour. vol. xxxix. p. 334.
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nodal lines of the third kind possess cubic nodes but no pinch

points ; and in like manner it will be found that singular lines

and curves possess multiple points lying in them of a higher order

of singularity than that of the line or curve.

The tangent planes at any point on a multiple line are in

general tarsal tangent planes ; it is however possible for any

tangent plane to be fixed in space, and such lines usually possess

distinct features of their own. There are consequently two species

of cuspidal, tacnodal &c. lines, in the first of which the tangent

plane is torsal and in the second it is fixed in space.

Cuspidal Lines.

210. The general equation of a surface having a cuspidal line

of the first species is

(Lay + M^Bf (a, |8)-^ + (P, Q, R, ^$7, 8)^ = (1),

where P, Q, R, S are quaternary quantics of (a, ^, 7, S) of degree

n—S. This equation when written out at full length is

(Lay + M^Sy {poo^-' +piOL''-'j3 +... i?n-4/3"~') + ol'^'^

Cuspidal lines possess two kinds of singular points which occur

(i) when the cusp changes into a tacnode, (ii) when there are cubic

nodes on the line. Let the plane a = \^ cut AB in B', then the

equation of the section is

/3'»-2 {L\y + MBf (poX""-' + piX""-' +... pn-i)

+ jS""-' (V'-% + X""-' F3 + . . . W3) + . . . = . . .(3),

which, for brevity, we shall write in the form

^/3'*-2ni2 + 5/3'*-3+... = (4).

211. The cuspidal line possesses n tacnodal points, and n — 4

cubic nodes, at which there is a cuspidal cubic cone.

The condition for a tacnodal point is that Hi should be a factor

of B, which requires that the eliminant of Hi and B should vanish.

This furnishes an equation of the nih. degree in \.

The points where the cuspidal line cuts the planes (a, /3)'*~* =
are cubic nodes on the line, and there are 7i — 4 of them. If A be

one of these points p^ = 0, and the coefficient of a^~^ equated to

zero gives

L%^y' + v, = 0,
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which shows that AB is a cuspidal generator of the cone. A
cuspidal line on a quartic surface has 4 tacnodal points, but no

cubic nodes ; hence on such a surface the line appears in an in-

complete form.

212. A cuspidal line of the second species possesses n — S

tacnodal points and n — 2 cubic nodes.

If 7 be the fixed tangent plane, the equation of the surface

must be of the form

y^{a,^r-^ + {P,Q,R,Slry,Sr = (5).

Proceeding as in § 210, the first term of the equation corre-

sponding to (3) must be of the form

^n-2^2 [p^Xn-2 +^^X"-3 + . . . _p^_^j^

and the condition for a cubic node is that this should vanish,

which furnishes an equation of degree ?i — 2 in X. The condition

for a tacnodal point is that the coefficient of B^ in the expression

should vanish, which furnishes an equation of degree n — S in X.

A quartic surface having a cuspidal line of this character possesses

both species of singular points.

213. The discussion of other species of singular lines is very

similar, and I shall therefore merely give the results, referring the

reader to my paper on Singular Lines and Curves on Surfaces.

Tacnodal Lines. The equation of a surface having a tacnodal

line of the first species is

(Lay + M^Bf (a, /S^-' + 2 (Lay + if/35) (F, G, ... ][a, yS)'*-*

+ {P,Q,R,8,Tly,Sy = 0...(6),

where F, G, ... are binary quantics of (7, 8) ; and P, Q, R, S, T
are quaternary quantics of all the coordinates. The singular

points consist of (i) 2ri — 4 points where the tacnode changes into

a rhamphoid cusp; (ii) w — 4 points which are cubic nodes, the

nodal cone at which consists of a quadric cone and a plane touching

the latter along the tacnodal line.

The equation of a tacnodal line of the second kind is

7' («, /3)"~' + 2y{F,G... Ja, /3y-''

+ iP,Q,R,S,T^y,Sy = 0...{7),
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and it possesses 2n — 6 rhamphoid cuspidal points and n — 2 cubic

nodes.

Rhamphoid Cuspidal Lines. The equation of the surface when
the line is of the first kind is

(Lay + M^B + pry^ + qyS + rB'f (a, ^f-^

+ {Lay + M^S)(F, 0, ...^u,^r-^ + (P,Q,R ...^y, Sy = 0...{8),

where F, G, ... are binary cubics of (7, S), and P, Q, ... are

quaternary quantics of all the coordinates. These lines possess

n — 4i cubic nodes, and n points where the rhamphoid cusp changes

into an oscnode.

When the line is of the second kind, its equation is

(ay + 297' + ^7^ + rBy (a, ^y-"- + y^ (a>'-\ + a^-'/3w^ + ...)

+ 7 (a"-%3 + OL^'-'lSws +...)

+ a^-'w, + OL^-'{^W,+ We)+... Wn = 0...(9),

and the line possesses w — 4 cubic nodes and n — S oscnodal points.

214. The highest singular line of the second order and first

species which a quartic surface can possess is a tacnodal line

;

but when the line is of the second species, such a surface may
possess a rhamphoid cuspidal and an oscnodal line. The equa-

tions of the surface in the two respective cases may be reduced

to the forms

{ay+B'y + y(ayVi + ^yw^ + Ws) = (10),

and (ay + BJ + y' {Pa+ Ql3 + Ry + SB)= (11).

The section of (11) by the plane a = X/3 is

(X^y + B^y + y' [{P\ +Q)^ + Ry + 8B] = 0,

and the condition that B' should be a tacnode cusp is that

\= — QjP. An oscnodal line of the second kind on a quartic

has therefore one tacnode cuspidal point on it. It is not possible

for a quartic to have a tacnode cuspidal line, since the conditions

are that PX + Q = for all values of \, which require that

P = Q = 0, in which case (11) becomes a cone.

Triple Lines.

215. There are ten primary species of triple lines.

I. Three distinct tangent planes ; all of which are torsal.

II. Three distinct tangent planes ; one fixed and two torsal.
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III. Three distinct tangent planes ; two fixed and one torsal.

IV. Three distinct tangent planes ; all three fixed.

V. Two coincident fixed tangent planes ; one distinct torsal

plane.

VI. Two coincident fixed tangent planes ; one distinct fixed

plane.

VII. Three coincident fixed tangent planes.

VIII. Two coincident torsal tangent planes ; one distinct

torsal plane.

IX. Two coincident torsal tangent planes ; one distinct fixed

plane.

X. Three coincident torsal tangent planes.

Triple lines possess a variety of species of singular points,

which we shall proceed to consider. Thus when the line is of the

first kind, points exist at which a pair of tangent planes coincide,

so that the section of the surface through the point has a triple

point of the second species thereat ; also in certain cases points

exist which are quartic nodes on the triple line.

I. A triple line of the first kind on a surface of the nth degree

has 4n — 12 points at which two of the tangent planes coincide.

The equation of the surface is of the form

(P,Q,R,Sly,Sr=0 (12),

where P, Q, R, S are quaternary quantics of degree n — S.

Equation (12), when written out at full length, becomes

d^-% + a"-* (/3w3 + w,) + ... /S""-' Ws + /3''-* W, + ...Wn = 0.. .(13),

and the equation of the section by the plane a = X./3 is

^n-3
(x'^-3^3 + \^-*Ws + ...Ws)

+ ^'^-^ (\"-%4 + X*^-' F4 + . . . F4) + . . . = 0. . .(14),

or ^/3^-^ + 5/3'*-*+... = (15).

The points at which a pair of tangent planes coincide will be

called pinch points, and the condition for their existence is that

the discriminant of A should vanish; and since ^ is a binary

cubic of (7, 8) whose coefficients are polynomials of X of degree

w — 3, the discriminant is of degree 4n ~ 12 in X.

Every tangent 'plane touches the surface at n — 3 distinct points.
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The condition that 7 should be a tangent plane at the point

B' where the plane a = \/3 cuts AB, is that the coefficient of

B^ in A should vanish. This furnishes an equation of degree

n — 3 in \, which shows that there are w — 3 of such points.

The theory of coincident pinch points will be considered in

§ 216, but in the meantime I shall enunciate the theorems

concerning them.

II. When 2w — 6 pinch points coincide in pairs, one of the

tangent planes is fixed in space, and the line becomes one of the

second species.

III. When all the pinch points coincide in pairs, two tangent

planes are fixed in space.

IV. When all the tangent planes are fixed in space, the triple

line possesses n — S quartic nodes.

In this case

A = yBv, {V'-^ + ...Wo) = yBv.Ao,

and a quartic node will occur whenever A^ vanishes. It will

hereafter be shown that the pinch points coincide in quartettes

at each quartic node.

The equation of the surface may be written in the form

jBv, (a, /3)-^ + (P, Q, R, 8, T^r^, By = 0,

and the points where quartic nodes occur are given by the equa-

tion (a, ^Y~^ — ; hence if J. is a quartic node, the nodal cone

is of the form

/37SW1 + V4 = 0,

which is the equation of a quartic cone having a triple generator

of the first kind.

V. When all the pinch points coincide in quartettes, two

coincident tangent planes are fixed in space, and the third one is

torsal ; also the line possesses n — ^ singular points, at which the

triple point of the second kind changes to one possessing a pair of

tacnodal branches and one distinct ordinary branch.

The value of A in equation (15) is of the form

A=y'B„

and the condition for a pinch point is that the coefficient of B in

Bi should vanish, which shows that there are n — 3 apparent pinch

points.
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Equation (15) now becomes

B,^''-Y + B^''-' + . . . = 0,

and if the coefficient of S in 5 vanishes, 7 will be a factor of B,

and the point consists of a pair of tacnodal branches and one

ordinary branch through it. Since B is of degree n — 4 in X,, there

are n — 4 of such points, and, like pinch points, they affect the

class of the surface.

VI. When two coincident tangent planes are fixed in space,

and the distinct plane is also fixed, the triple line possesses n—S
quartic nodes, and n — ^ of the points considered in V.

For the equation of the section by the plane a. = \j3 is

{V'-% + ... Fo) yS^-^Y^S + B^^-^ + . . . = 0.

VII. When three coincident tangent planes are fixed in space,

the line possesses n — 3 quartic nodes, and w — 4 points consisting

of a pair of tacnodal branches and a coincident ordinary branch.

The equation of the section is

AS''^'^^ + -S/S'*-' + . . .
= 0.

The first kind of points occur when Aq = {), and the second

when 7 is a factor of B. The constituents of the latter point

(on a plane curve) are three nodes and one cusp ; and both kinds

of points affect the class of the surface.

216. The theory of coincident pinch points is best investigated

by the following method. Let A be the discriminant of (12), so that

A = P'B' - 6PQRS + 4^PR' + ^Q'S - SQ'R' (16),

then A = is a surface of degree 4/i — 12, and we shall first show

that the pinch points occur where AB intersects the surface

A = 0. Let
P = PoOi^-' + P,a^-' + . . . P«_3,

with similar expressions for Q, R, S, where Pns = {^, y, 8)"~^

;

then if J. be a pinch point and y'^S = the equation of the tangent

planes thereat, it follows from (12) that

Po — Ro = So = 0.

The term 4Q^^ in (16) contains the highest power of a which is

the (4/1 — 13)th, and shows that the surface A = passes through A.

In the next plane consider the line II in which 7 = is the
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fixed tangent plane. The values of P, Q, and R remain unaltered,

but S=ty + TS, where %T= (a, /3, 7, By-\ Let

t = a-oa''-' + o-ia"-s + . . . o-„_4,

where cr^, tn = {^, 7, S)**; then the two terms in (16) which con-

tain the highest powers of a are

putting 7 = S = 0, this reduces to A?yQV*~^*, where A; is a constant,

which shows that the line AB touches the surface A = at A,

and therefore two pinch points coincide. If however we had

supposed that the tangent planes at A were yS^, we should find

that A = intersects but does not touch AB at J., so that A is

an ordinary pinch point. Accordingly the discriminantal surface

cuts AB in 2n— Q points and touches it at ti — 3 points, which

shows that there are 2^1 — 6 distinct pinch points and 2n — 6 which

coincide in pairs.

In the same way any other case may be treated.

We shall now inquire what becomes of the pinch points in the

case of line IV. Let if be a binary quantic of (a, /3) of degree

n — S; also let P, P', &c. be quaternary quantics of degree n — 4.

Then the equation of the surface may be written in the form

rf (Py + Q8) + SyS (Mf+ Fy + Q'h)

+ 875^ {Mg + R'y + 8'B) + h' (Ry + SS) = 0,

where 7S (/y + gS) = are the three fixed tangent planes. Writing

down the equation of the discriminantal surface, and then putting

ry = 8 = 0, it will be found to reduce to — Sf^g^M^ = 0, which shows

that the surface A has quadritactic contact with the line AB 8bt

the quartic nodes. This shows that the pinch points coincide in

quartettes at the quartic nodes.

217. VIII. The remaining three species present many features

in common with cuspidal lines of the first kind ; and the equation

of a surface having a line of the eighth species is

(Lay + M^hy (F, G,... $«, /3)»-«

+{p,Q,R,s/riy,hy=Q ...(17),

where F, G, ... are linear functions of (7, h), and P, Q, ... are

quaternary quantics of (a, /3, 7, h). Equation (17) when written

out at full length is of the form
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{LoL'y + M^hf (Fa''-' + Ga^'-'IS + ... K^^-')

+ a'^-%4 + a''-' (/3 F4 + Fg) + . . . + /S'^-%4 + ...Wn = 0.. .(18).

Equation (18) shows that no surface of a lower degree than a

sextic can possess a line of this species ; for if n = 5, (18) reduces

to the form

(Lay + M^Byvi + aVi + ^Wi + w, = (19),

in which the distinct tangent plane is fixed in space, and the line

therefore belongs to species IX.

The section of (18) by the plane a = X/3 is

(L\y + MSy (FV'-' + GX""-' +...) /3''-'

+ (V'-% + V'-'V,+ ...)^^-*+...=0,

which we shall write

Avi'f3''-' + Bl3^-'+... = (20).

(a) The first kind of singular point occurs when all the tangent

planes coincide, and there are n — 4< of them.

The condition for these points is that A = kv-^, where ^ is a

constant, which furnishes an equation of degree r? — 4 in \.

(h) There are n points at which the triple point of the second

kind changes into one consisting of one pair of tacnodal branches

and an ordinary branch passing through it.

The condition for these points is that v^ should be a factor of

B, which furnishes an equation of degree n in \.

IX. When the distinct tangent plane is fixed in space, the

equation of the surface is

{Lay + MjSBf (py + qB) (a, /3)"-^

+ (P,Q, R,S,T'^y, By = 0... (21),

and the section by the plane a = \/3 is

(L\y + MBf (py + qB) (FX""-' +...) ^^-^

+ (V'-% + X''-'V, + . . .) /S**-" + . . . = 0,

or Av^'w,/3''-^ + B^^-^+...=0 (22).

(a) There are n— 5 quartic nodes which are the intersections

of the triple line and the planes (a, I3Y~' = 0.

A quintic surface cannot possess these quartic nodes, and

therefore the singularity occurs on such a surface in an incom-
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plete form. When n> 5 the equation of the nodal cone is of the

form
7^ (py + qB)l3 + Vi = 0.

(b) There is one pinch point, which occurs when Lq\ = Mp.

(c) There are n points luhere the triple point of the second kind

changes into one consisting of a pair of tacnodal branches and one

distinct ordinary branch.

X. The equation of the surface is

{LoLr^ + M^ZYia, ^r-' + {P, Q, R, S, T][7, Sy = 0...(23),

and the section by the plane a = X/3 is

{LXy + M8f (FX''-' +...) 13^-^- + {\''-% + . .
. )

y8'*-^ + . . . = 0,

or A iS^'-'v,^ + B^-^ + . . . = 0.

(a) There are n — Q quartic nodes, and the equation of the

nodal cone is of the form

rf^ + V4 = 0.

A sextic is the surface of lowest degree which can possess this

line, and since there are no quartic nodes the singularity occurs in

an incomplete form.

(b) There are n points at which the triple point of the third

kind changes into one consisting of a pair of tacnodal branches

and one coincident ordinary branch.

Both these singular points affect the class of the surface.

Nodal Curves.

218. The equation of a surface of the nih. degree which has

a plane nodal curve of degree s is

a^ Vn-2 + 2ansUn-s-i + n/ w,i_2s = (24),

where F is a quaternary quantic of (a, y8, 7, B), and D,, u are

ternary quantics of (/3, 7, S) of the degrees indicated by the

suffixes. We shall usually omit the suffix s in 12.

219. The nodal curve possesses 2n (71 — s — 1) pinch points,

which are the points of intersection of the curve and surface

''' ji—s—1
^^ ' n—-i^n—is (.•""/•

Let B be one of the points of intersection of (25) and the
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nodal curve, and let u^-^ be the portion of Vn-2 which is inde-

pendent of a ; then (25) may be replaced by

'^ n—S-l ^^ ^("11—2^11—28 V^"/*

Since S = is any arbitrary section of the surface through

B, we have to show that the section has a cusp at B ; also since

(26) has to pass through B which is a point on 11, it follows that

when S =

Un-2 = f^''-^ + PiyS"-' 7 + • • • i?«-27"~']

Un-s-, = MyS--^-^ + ^,yQ'^-«-^ 7 + . . . (

^27).

Un-2B = q'/S""-^ + n^""-''-' 7 + • • •

I"

From these results it follows that the highest power of /3 on

the section of (29) by S is the (n — 2)th and that its coefficient is

(pa. + qkf{f, which shows that 5 is a pinch point.

220. The plane a intersects the surface in the nodal curve

twice repeated, and in the curve a = 0, Un-2s = 0, which is called

the residual curve ; and the latter curve intersects the nodal curve

in s{n—2,s) points. When the curve is of a higher order of

singularity, these points are as a general rule multiple points on

the singular curve, but when the latter is nodal the plane a is a

tangent plane at these points ; in other words, a is one of the two

nodal tangent planes. To prove this, let B be one of the points

in question ; then

where Un = (a, 7, S)", and v^ = w„ = 0„ = (7, 8)^ from which it

follows that the coefficient of yS'*-^ in (24) is a (auo + 2vofli).

Cuspidal Curves.

221. When the singular curve is cuspidal, every point on it

must be a pinch point, which requires that equation (26) should

contain H as a factor. Accordingly

U n—s—i '^n—2^n—2s ^^ i^ ' i' • yZo)y
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where 0,' = (y8, 7,
8)2»i-3s-2, xhe right-hand side of (28) vanishes

at every point on the cuspidal curve, hence the left-hand side

of (28) must do so also. Now Un-2s vanishes at the points where

the residual curve intersects the cuspidal curve, hence Un-s-i must

also vanish at these points ; accordingly

where o- and w are undetermined ternary quantics of (/S, 7, 8).

Substituting from (29) in (28), we obtain

and since O has to be a factor of the left-hand side, we must have

Un-2 = Un-2s(^\-i + 0.<f>n-s-2 (30),

where <j) is another ternary quantic of {/3, 7, S).

Substituting from (29) and (30) in (24) and writing

S = aa-s-, + n (31),

we obtain

S^ (Un-is + 2ccWn-2s-i) + So?' {(f)n-s-2 " 4!(Ts_iWn-2s-i) + ^^U''n-s = 0,

which is the equation of a surface having a plane cuspidal curve

of degree s ; but it can be easily verified that such a surface may
be represented by the more general equation

S'Un-2s + ^0L^SVn-s-2+a'Wn-s^0 (32),

where U, V, W are quaternary quantics of the degrees indicated

by the suffixes.

Some writers seem to have thought it possible that a surface

possessing a cuspidal curve, plane or twisted, might be represented

by an equation of the form S"U+X^V=0, where S and 2 are

two surfaces whose intersections determine the cuspidal curve

;

but although the above equation undoubtedly does represent such

a surface, equation (32) indicates that it is deficient in generality,

since it does not appear possible to transform (32) so as to get rid

of the second term. Omitting suffixes, (32) may be written in the

form
{SU+a^Vy + a'(UW-V'a) = (33),

which shows that the surface UW= V^a touches (32) along its

curve of intersection with the surface 8U + a.^V=Q.

222. The surface possesses s{n — 3) tacnodal points, which are

the intersections of the surface Wns = a^id the cuspidal curve.
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Let B be one of the points of intersection ; then

8 = fi'-'(a, + acTo)+ (34),

and the coefficient of /g"-^ in (32) is (fij + aoo)^ and that of yS'^-^

contains Hi + olctq as a factor, which shows that 5 is a tacnodal

point.

223. The surface possesses s(n — 2s) cubic nodes, which are the

points of intersection of the cuspidal and residual curves ; also the

nodal cone possesses a cuspidal generator, which is the tangent to

the cuspidal curve at the point.

Let B be one of the points of intersection of the two curves

;

then S is given by (84), whilst the value of Un-2s, whose inter-

section with the plane a is the residual curve, is

where Un = (a, 7, Sy\ The highest power of ^ in (32) is the

{n — 3)th, and its coefficient equated to zero is the cuspidal cubic

cone

(ao-o + flif Ui + 2a" (aa^ + Oj) v^ + cl^w^ = 0,

which is the cone in question.

224. In the paper from which these investigations have been

taken, I have discussed the cases of a tacnodal and a rhamphoid

cuspidal curve. The results are as follows

:

(i) A tacnodal curve possesses 2s (n — s — 2) points where the

tacnode changes into a rhamphoid cusp.

(ii) The s{n — 2s) points luhere the tacnodal curve intersects the

residual curve are cubic nodes, tuhose nodal cone consists of a

quadric cone and a plane.

(iii) A rJiamphoid cuspidal curve possesses s(n — o) oscnodal

points.

(iv) The s{n—2s) points luhere the residual curve intersects

the rhamphoid cuspidal curve are cubic nodes of the fifth species.

11
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Nodal Twisted Cubic Curves.

225. The theory of nodal curves, which are the partial inter-

sections of two surfaces, has been discussed by Cayley*; but he

has not given the number of pinch points nor considered curves of

a higher singularity. Salmon has also, by a very obscure method,

arrived at the conclusion that when the surface is a quartic, the

number of pinch points is 4. Let u, u' ; v, v ; w and w' be

quaternary quantics of degrees I, m, and n respectively ; then we

have shown in § 46 that the system of determinants

= (35)
U , V , w
u, v', U)'

represents three surfaces having a common curve of intersection of

degree 'nm + nl + Im. Hence if

X= vw' — wv
,

/i = wu! — uw, V = uv' - vit (36),

the equation

(U, V, W, U', V\ W'^\,,M,vy = (37),

where JJ, V, ... are quaternary quantics of proper degrees, repre-

sents a surface having a nodal twisted curve, which is the common

curve of intersection of (35).

226. To apply this to a cubic curve, all the quantities ii, u,

&c. must be planes, and U, V, &c. must be quaternary quantics of

degrees ?i — 4. Also if J. be a point on the cubic, the quadrics

\, fji, V must pass through A, the condition for which may be

satisfied by taking

u = oluq-\-Ui,u' =kctUQ + u-^ (38),

with similar expressions for v, v' ; w, w'. Hence

X = a [{hvi — Vi) Wo - (kwi — w/) Vo] + VjWi — w^Vi

= aXi H- Xa (say),

accordingly XiUo + /J'iVq + v^iUo = (39).

Let U = UooC'-* -f- U^oC'-' + . .

.

with similar expressions for V, W, &c. ; then if these values be

substituted in (37), the highest power of a will be a'*~2, and its

coefficient equated to zero gives

(Uo, Vo, Wo, Uo', Vo', Wo'i\,H'uv,y=o (40),

* " On a Singularity of Surfaces," G. M. P. vol. vi. p. 123 ; and Quart. Jour.

vol. IX. p. 332.
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which by virtue of (89) is resolvable into two linear factors.

Hence (40) combined with (39) give the nodal tangent planes

at A.

To find the number of pinch points, consider the determinantal

surface

A =

u.
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&c., and equation (39) will still hold good. Also, if

A = VW- U'\ A' = V'W'- UU\ &c,

the determinantal equation (41) becomes

{A, B, G, A\ B', C"$w, V, wy = (42),

which is of degree 2(s — I — m — n); and the degrees of A, A' are

respectively equal to 2(s — 2l — m — n) and 2s— 21— 3m — Sn, so

that there are apparently 2 (mn + nl + Ini) (s — I — m — n) pinch

points. But the three points of intersection of the surfaces u, v,

and w are nodes on (42) and are ordinary points on the nodal

curve ; hence the total number of pinch points is

2 {s (mn + nl + Im) — P (m + n) — ni? (n + I) — n^ (l + m) — 4ilmn] .

These results hold good whenever it is possible to represent

a surface having a nodal twisted curve by means of an equation

such as (37).

Birational Transformation*.

228. In Chapter IV we employed the theory of birational

transformation to investigate the constituents of the point, line,

and mixed singularities of plane curves ; and we shall now show

that the same transformation may be used to analyse the point

constituents of various kinds of multiple points on surfaces. One

result of the investigation is to show that there is an important

analogy between the theories of curves and surfaces, and that a

fairly complete theory exists Avith respect to the changes produced

in the constituents of a multiple point on a surface, when the

tangent cone possesses singular generators.

229. Let P be any point whose coordinates are (^, ij, ^, to)

;

let n = (y8, 7, Sy ; and let AP cut the polar plane of P with

respect to the quadric a^— H, in P'. Then the equation of the

polar plane of P is

2a^ -^dnjdr]-ydnjd^-Bdni/dco = (1),

where Hi = (t?, ^, co)^ ; and those of -4P are

^/v = y/^=Blco = h (say) (2);

whence, if (f, 7)\ ^', w) be the coordinates of P', we obtain from

(1) and (2)

2 II' = h (vdajdrj + ^dn,ld^+ (odnjdoi) = 2hn, (3),

* Basset, Quart. Jour. vol. xxxix. p. 250.
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accordingly, by (2) and (3),

?£ = ^' = i^ = —
ill 7) ^ ft)

*

From this it follows that if (a, ^, y, 8) and (a', /9', y, B') be the

coordinates of a pair of corresponding points P and P', these

quantities are connected by the equations

J'=S=i4.=^(-^) w.

Substituting the values of ^', y, B' from the last three of (4),

we obtain

whence rv = ^^5^ = ^~' = ^s^ (^)-
il a p ay ao

The value of H will usually be written in the form

= /S^ + y30i + n2 (6),

where 0„ = (7, S)".

230. A conic node, whose position is arbitrary, gives rise to

a conic node on the transformed surface.

To prove this it will be sufficient to consider the quartic

surface

a^ (13- + I3vi + v^) + a (2X/3^ + ^'Wj, + ^w^ + w^)

+ \'^' + (Xwi - \%) ^' + ^'V, + ^V,+ V, = 0,

which has a conic node at A and also at the point B', where AB
is cut by the plane a 4- X./3 = 0. The transformed equation may be

put into the form

+ a' {/3'V, + /3F3 + F4) + an (^w, + w,) + n% = 0.

This is the equation of a sextic surface which has a quadruple

point at A, and a conic node at the point B', where AB is, cut by

the plane Xa + ;8 = 0. The quadric JQ + \a^ = 0, into which the

plane a + X/3 = is transformed, also passes through B'.

If the conic node on the original surface is situated at B, X = 0;

whence the conic node on the transformed surface is situated at A.

Hence : Evei'y conic node situated at a point B in the plane a becomes

a conic node at A on the transformed surface, which moves up to

coincidence with A along the line AB.
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231. We are now in a position to apply the theory of birational

transformation to multiple points on surfaces.

(i) A multiple point of order p on a surface corresponds to a

curve of degree p on the transformed surface, which is identical

with the section of the tangent cone by the plane a.

The equation of the original surface is of the form

a^-PUp + a''-P-hip+^ + oi''-P-'Up+^ +...Un = (7),

and that of the transformed surface is

(8).

The latter surface is therefore of degree 2n — p, and has a

multiple point of order n &\, A ; also the section of (8) by the

plane a is a multiple conic of order n — p and a curve of degree p,

(ii) Every nodal generator of the tangent cone at A , which is

not a line of closest contact, corresponds to a node on the section of

the transformed surface by the plane a.

Let
Up= ^P-% + l3P-% +...v^ \

Up+,= l3P+'Wo + /3Pw, +..,Wj,+A (9),

Up+,=^p+'-W'+ /3P+'W, + ...Wp+J

then AB is a nodal generator of the cone u^). Also the highest

power of /3 in (8) is the {2n --p — l)t\i, and its coefficient is avj^,

which shows that the plane a touches the transformed surface at

B ; hence 5 is a node on the section.

It follows from § 194 that every nodal generator of the tangent

cone at A converts one of the constituent conic nodes into a

binode ; and the preceding result shows that, if the plane a touches

a surface at B points, the transformed surface has a multiple point,

the tangent cone at which has 8 nodal generators.

(iii) Every cuspidal generator of the tangent cone at A, ivhich

is not a line of closest contact, corresponds to a cusp on the section

of the ti'ansformed surface by the plane a.

This may be proved in a similar manner by putting V2 = Vi".

In the same way it can be shown that if the tangent cone at A
has a singular generator of any species whatever, the section of

the transformed surface by the plane a possesses a singular point

of the same character.
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We shall now suppose that the singular generator of the

tangent cone at ^ is a line of closest contact, in which case

Wo= 0.

(iv) Every nodal generator of the tangent cone at A, which is

a line of closest contact, corresponds to a conic node on the section

of the transformed surface by the plane a; and such a generator

adds an additional conic node to the constituents of the mtdtiple

point.

When Wo = 0, the highest power of /3 is the {2n —p — 2)th, and

its coefficient is

a'Tf' + awi + Va (10),

which shows that 5 is a conic node on the transformed surface.

Also we have shown in § 230 that this conic node becomes a

conic node on the original surface, which moves up to coincidence

with A along the line AB. This furnishes another proof of the

theorem § 24.

(v) Every cuspidal generator of the tangent cone at A, which

is a line of closest contact, corresponds to a conic node on the section

of the transformed surface such that the tangent cone thei^eat touches

the plane a; and such a generator adds an additional binode to the

constituents of the multiple point.

In this case V2 = Vi', and the expression (10) equated to zero

gives the tangent cone at the point B on the transformed surface.

It follows from § 230, or from § 24, that an additional double point

is added to the multiple point at A on the original surface, and

§ 202 shows that this double point is a binode.

The results (iii) and (v) fail when p = 2; for in this case the

cone Up becomes a pair of coincident planes and the singularity at

A on the original curve is a unode.

(vi) Every binode on the section of the transformed surface

by the plane a adds a binode to the constituents of the multiple

point on the original surface.

Let Wi = W(vi + Ti), V2 = Viri, then the expression (10) becomes

{0LW+v,){aW+r^),

which shows that the singularity at B on the transformed surface

is a binode whose axis is arbitrary. The original surface may
now be written in the form
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+ a"-^-i (/3^-%2 + . . . w^+,) + a^-P-^ (^P+^ Fa + . . . Wj>+,)

+ a''-P-'Up+, + ...Un = (11).

By means of the methods explained in Chapter IV, it can be

shown that the section of (11) by the plane Vi = Ti is a curve

having a rhamphoid cusp at A and p - 2 ordinary branches

through it. To find the reduction of class, it will be sufficient to

consider a quartic surface, since the method employed is applic-

able to any surface. Putting n = 4<, p = 2, Wi = B, Tj = J07 + qB,

the surface (11) becomes

(aS + WjS') [a (py + qS) + W^'] + a (^w, + w,)

+ ^'W^ + ^'W, + I3W,+ 1^4 = 0.. .(12),

and the first polar of D, which may be any arbitrary point, is

a {a (py + qB) + W^'] + qot (aB + W^') + a {/3w^' + <')

+ /S='F/'+... W:' = 0...iU).

The sections of (12) and (13) by the plane B=py -{- qB may be

written in the form

{aB+W^J + oiB^A, + BA, = (14),

and a{aB+W/3^) + a8B, + B, = (15),

where A^ = Bn = (/S, By.

Eliminating a between (14) and (15), it will be found that

the eliminant is a binary septimic of (/3, B), which shows that

(14) and (15) have quinquetactic contact with one another at A.

Accordingly the surface (12) and its first polar with respect to

any arbitrary point intersect one another in five coincident points

at A ; hence the reduction of class is 5, which shows that the

singularity at A is formed by the union of a conic and a binode.

The case of a cubic surface is peculiar. Let us consider the

equation

0LU2+Us = (16),

which represents a cubic surface having a conic node at A. The
transformed surface, when written at full length, becomes

a (^'Wo + I3'w, + ySwo + Ws) + n (/3X + ^v, + v^) = . . .(17).

In order that (17) should have a conic node at B, it is necessary

that Wo = Va = Vi = 0, in which case the equation of the nodal cone is

awi + ^2 = 0,



BIRATIONAL TRANSFORMATION 169

and, if 5 is a binode, V2 = w^Ti and (16) becomes

awjTi + ^^Wi + ^W2 + Ws = (18),

and the singularity at A is Salmon's binode Br,, which, as pointed

out in § 80, is a singularity of a different character to the singular

point 0=1,5=1 on a surface of higher degree than the third.

232, The preceding results enable us to develop an important

analogy between the theory of the birational transformation of

curves and surfaces.

Let ABG be the triangle of reference of the curve, and ABCD
the tetrahedron of reference of the surface ; then the following

correspondence exists between the different elements of a curve

and a surface, which is shown in the table on page 170.

233. The first theorem has alread}^ been proved, and the

others may be established as follows. For brevity we shall write

(ii) The first two portions are proved in § 165, where it is

shown that when 2r tangents coincide in pairs, each pair being

distinct, the constituents of the multiple points are

S = \ — 7', K = r.

In § 194 it is shown that when the tangent cone has 8 distinct

nodal generators, the constituents of the multiple point on the

surface are

C = fji-8, B = 8.

(iii) From § 165 and § 194 it follows that if a multiple point

on a curve has r tangents, each of which consists of three coincident

tangents, the constituents of the multiple point are

S = \-2r, K = 2r,

whilst, if the tangent cone at the multiple point on the surface

has K cuspidal generators, its constituents are

C = fi-2fc, B=2k.

(iv) The first two portions follow from § 165 ; and the con-

stituents of the multiple point on the curve are

8 = \-2r + \, /c = 2r-l,

whilst the latter part follows from | 201, which shows that the

constituents of the multiple point on the surface are

G = ^JL-28^-l, 5 = 2S-1.
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(v) By § 172 (i) it follows that if a multijDle point on a curve

has s pairs of tacnodal branches and p — 2s ordinary branches, all

of which are distinct, its constituents are

S = \ + s, K = 0,

and it follows from the theorem, § 24, that if the tangent cone at a

multiple point on a surface has S nodal generators, all of which

are lines of closest contact, the constituents are

G=fi + 8, 5 = 0.

(vi) Putting 2r for r in § 173, it follows that the constituents

of the multiple point on the curve are

S = X-2r + l, K = 2r.

Let the tangent cone at the multiple point on the surface have

S + 1 distinct nodal generators, and let one of them AB he a. line

of closest contact. Then it is shown in § 201 that if the cone

possesses S + 1 nodal generators, which move up to coincidence

along a continuous curve, the total reduction of class is 2/x, + 2S + 1

;

whence s = 2S + l. Also it follows from §202 that if one of the

generators before coincidence is a line of closest contact the con-

stituents of the singularity are

G = fM-2S+l, B=28,

since we have shown that s = 28 + 1.

(vii) The first two portions follow from § 174, which shows

that the constituents of the multiple point on the curve are

8 = \ + s-2r + 2, K = 2r-2.

To prove the third part, it follows from § 203 that if the tangent

cone at the multiple point has r coincident nodal generators, all of

which before coincidence are lines of closest contact,

2(7 + 35 = 2/i + 4r - 2,

C + B = fjL + r.

But if the tangent cone possesses S — r additional distinct nodal

generators, all of which are lines of closest contact, their effect is

to produce an additional reduction of class equal to 28 — 2r, and

to add B — r double points to the constituents of the multiple

point ; whence

2G + SB=2fi + 2B + 2r-2,

C-\-B = ti+S,

accordingly G = fji + S — 2r + 2, B=2r — 2.
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(viii) If in §173 we put r=l, we obtain the singularity in

question, and its point constituents are

8=\ K = l,

and it follows from § 202 that if the tangent cone at a multiple

point possesses a cuspidal generator, which is a line of closest

contact, the constituents are

C=iJL, B = l.

(ix) The first two portions are proved in 1 181 ; and the last

two portions in § 231 (vi). The point constituents of the singulari-

ties are S=X, k=1 for a curve ; and G = /x, B=l for a surface.

234. It may, at first sight, appear strange that two such

different singularities as the ones discussed in (v) and (vi) of

§ 231 should have the same point constituents ; but the theory of

curves supplies the explanation. The singularity corresponding to

(v) in plane geometry is a multiple point consisting of one pair

of tacnodal branches, one coincident ordinary branch, and p — 3

distinct ordinary branches ; and its constituents are given by the

equations S = \, k = 1, t = 2, t = 0, whilst the one corresponding

to (vi) is a multiple point consisting of a rhamphoid cusp and

p — 2 distinct ordinary branches passing through it, and its con-

stituents are given by the equation S = X, k = 1, t = 1, i=l.

Both singularities are therefore mixed ones, whose point con-

stituents are the same, but whose line constituents are different

;

and from analogy we should anticipate that the singularities (v)

and (vi) of §231 in solid geometry are mixed ones, whose con-

stituents consist partly of point and partly of plane singularities

;

but that the plane constituents of (v) and (vi) are different.



CHAPTEH VI

QUARTIC SURFACES

235. The class of a quartic surface may be any number lying

between 3 and 36. In the latter case the surface is anautotomic

and its equation contains 34 independent constants ; whilst in the

former it is the reciprocal polar of a cubic surface, A quartic

surface may also possess as many as 16 double points, which may

be isolated or may coalesce so as to form a variety of compound

point singularities as well as singular lines and curves. A com-

plete investigation of quartic surfaces would require a separate

treatise, and all that can be attempted in the present chapter is

to give an account of some of the principal results, with references

to the authorities where further information may be obtained.

Nodal Quartics.

236. The theory of these surfaces has been worked out by

Cayley* at considerable length. When the surface has not more

than four nodes, these may be taken as the vertices of the tetra-

hedron of reference, and the highest power of the coordinate a

corresponding to any node A must be al

The existence of each node involves one equation of condition
;

but if the node is situated at a given point, three more equations

are required to determine the point. Hence a given node involves

four equations of condition ; accordingly if the surface has k given

nodes, it cannot contain more than 34 — 4<k constants. When
^ > 8, this expression becomes negative, the explanation of which

is that a quartic surface cannot possess as many as 9 nodes which

are arbitrarily situated ; but the nodes must lie on one or more

given surfaces called dianodal surfaces. We shall hereafter show

* Proc. Lond. Math. Soc. vol. iii. pp. 19, 198, 234 ; and G. M. P. vol. vii.

pp. 133, 256, 264.
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that 7 is the greatest number of arbitrarily situated nodes which

a quartic surface can possess.

237. Five given nodes. Let A, B, C, Dhe four of the nodes,

and let the fifth be at the point (/, g, h, k). Let P, Q, R, S, T be

five quadric surfaces, each of which passes through the five nodes

;

then the equation of the quartic is

(P,Q,R,S,Tf = (1),

for it obviously possesses nodes at the five given points, and since

it contains 14 independent constants, it is the most general form

of the required surface. The five quadrics may be taken to be

P = ^(ky-h8), Q = ^{fy-ha), R^y(k^-gS),

S = y{f^-g^\ T=fk^y-ghoLS,

from which if we eliminate (a, /3, 7, B) it can be shown that there

is one relation between the five quadrics, which is a cubic and not

a quadric function.

238. Six given nodes. In the last article, the analysis may be

simplified by writing a' = a/f, in which case the coordinates of the

fifth node are (1, 1, 1, 1), and we shall take the coordinates of the

sixth node to be (/, g, h, k). Let P, Q, R, S be four quadrics

passing through the six points, then the equation of a quartic

having these points as nodes is

(P,Q,R,Sy = (2),

but since this contains nine instead of ten constants, it is not the

most general form of a sexnodal quartic. Let J be the Jacobian

of the four quadrics, then it can be shown that the latter is a

surface having the six points as nodes which is not included in (2).

Hence the required equation is

(P,Q,R,Sy+\J==0 (3),

where A, is a constant.

The four pairs of planes

^[a{h-k) + y{k-f) + B(f-h)]=0.

y[a(k-g) + ^if-k) + 8(g-f)} = o\

B {a(g-h) + /3(h-f) + j{f-g)} = 0l

a{^{k-h) + y(g-k) + 8{h-g)} = 0i

pass through each of the six points ; but if we add together the

equations of the second planes in each pair, the result vanishes,
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which shows that the planes are not independent. We shall

therefore take the first three pairs as the surfaces P, Q, R; and

the surface S to be the cone

S = g{k-h)yS + h(g-k)8^ + k{h-g)^y = (5)

whose vertex is A, and which passes through the remaining five

points.

The Jacobian of P, Q, R, S will be found to be

+ {k - g) {ho? -M B^ + (h - f) {k/3^^ -gB^)ay

+ (g- h) {ka^ - /80 /3y + {k-f) (gy' - hfi^) aB . . .(6),

from which it can be shown that J cannot be expressed as a

quadric function of P, Q, R, S; also J has nodes at each of the

points A, B, C, D and it can easily be shown that it has nodes at

the two remaining points.

Weddle's Surface.

239. Weddle showed* that the locus of the vertex of a

quadric cone which passes through six given points is a quartic

surface ; and we shall now show that this is the surface (6).

The surface

lP + mQ + nT+pS = (7),

where (I, m, n, p) are arbitrary constants, represents any quadric

surface passing through the six points. If this surface has a node,

the coordinates of the latter are obtained by differentiating (7)

with respect to (a, /3, 7, B) ; but since only three equations are

necessary to determine a point, the elimination of (a, ^, <y, B)

furnishes a relation between (I, m, n, p), viz. the discriminant of

the quadric, which is the condition that (7) should be a cone.

If on the other hand we eliminate {I, m, n, p) we shall obtain

the equation of the locus of the vertex of the cone, which is the

Jacobian of (P, Q, R, S). Hence (6) is the equation of Weddle's

surface.

240. Weddle's surface possesses several remarkable properties,

among which the following may be noticed.

(i) The six given points are nodes on the surface.

* Camb. and Dublin Math. Jour. vol. v. p. 69 ; Bateman, Proc. Land. Mat It.

Soc. vol. III. (2nd Series), p. 225.
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For the highest power of a in (6) is a^, and its coefficient is

the cone S.

(ii) The surface contains 25 straight lines, which consist of two

sets of 15 and 10.

When ry = g = 0, / = 0; hence AB lies in the surface. This

shows that / contains each of the 15 lines joining the 15 pairs

of nodes. Let E and F be the two remaining nodes ; then there

are 10 lines which are the intersections of a pair of planes such as

ABC and DEF; and the equations of this line are

8 = 0, {g-h)a^{h-f)l3-V{f-g)r^ = L = Q.

Putting 8 = in (6) it reduces to kLaj3y=0, which shows

that / contains the line in question.

241. Seven given nodes. Let P, Q, R be three quadric

surfaces passing through the 7 points ; then the equation

{P,Q,Rr = Q (8)

represents a quartic surface having the 7 points as nodes, but

since three quadrics intersect in 8 points, the eighth point of

intersection is also a node. The required quartic must contain

six constants, whilst (8) contains only five; but if A is some

particular quartic which has a node at 7 of the points of inter-

section, the equation

{P,q,Rf + \^ = o (9)

represents a quartic having only seven nodes and containing six

constants.

Let n = a^r^h + hriha.-\-cha^ + da^-i (10),

then fl = is the equation of a quadrinodal cubic surface, whose

nodes are A,B,G, D. Since the cubic contains three independent

constants, these may be determined so that ft passes through the

reinaiuing three nodes ; and if u be the plane passing through the

latter, the equation

{P,Q,Ry+\^u = Q (11)

represents the required quartic,

242. Eight nodes. Let 6, 0, -^^ be the differential coefficients

of (8) with respect to P, Q, R respectively ; then if (9) has an

eighth node at any point (a, /3, 7, 8), the equations determining

the node are

edP/da + <\>dQjda + fdR/da + XdA/da =0 (12)
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with three similar ones. The elimination of (a, /3, 7, 8) from (12)

gives rise to a relation between the constants of (9) which reduces

them to five ; but if (0, cf),
i/r, X) be eliminated, we shall obtain

the equation

J(P,Q,E,A) = (13),

where J is the Jacobian of P, Q, R, A. This is a surface of the

sixth degree, and (12) shows that the eighth node may be any-

where on this surface ; moreover the latter passes through the

remaining seven nodes, and is therefore the dianodal surface.

Since any given point on (13) requires two equations of

condition for its determination, the equation of a quartic which

possesses seven arbitrary nodes and an eighth one, which lies on

the dianodal surface (13), contains three arbitrary constants.

We have therefore shown that a quartic surface cannot possess

more than seven conic nodes which are arbitrarily situated. If a

quartic possesses more than this number, the nodes must lie on

a certain surface (which need not be a proper one) called the

dianodal surface.

243. The octonodal quartic (8) has been discussed by Cayley*

and is one of considerable importance. It will hereafter be shown

that all quartic surfaces having a singular conic can be reduced

to this form ; the equation also includes the reciprocals of the

following surfaces, viz. parabolic ring n=6; elliptic ring n = 8;

parallel surface of a paraboloid, and first negative pedal of an

ellipsoid n = 10 ; centro-surface of an ellipsoid and parallel surface

of an ellipsoid n = 12. Also the general torus, or surface generated

by the revolution of a conic about any axis whatever.

The proof of these theorems belongs to the theory of quadric

surfaces rather than to that of quartics ; I shall therefore merely

give the following investigation due to Cayley f in order to

illustrate the method to be employed.

244. (i) The centro-surface of an ellipsoid is the locus of

the centres of principal curvature. Let P be any point on the

surface, (x, y, z) the coordinates of either of the centres of principal

* G. 31. P. vol. vn. p. 304; Quart. Jow: vol. x. p. 24; C. M. P. vol. vin.

pp. 2 and 25.

t "On the Centre-Surface of an Ellipsoid," C. M. P. vol. viii. p. 303; Trans.

Camh. Phil. Soc. vol. xii. pp. 319—365.

B. 12
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curvature corresponding to P, p either of the radii of curvature,

^ the perpendicular from the centre of the ellipsoid on to the

tangent plane at P, then it is shown in Treatises on Quadric

Surfaces* that (w, y, z) satisfy the equation

a^x^ h^if cV , /to X

+ 77;^-rTv.+ 7:;^r^.= i (13a),

where f = 'pp. Since the quantity ^ is a function of the position

of P, the equation of the centro-surface is the envelope of (13 a)

where |^ is a variable parameter, and its equation is therefore the

discriminant of (13 A) regarded as a binary sextic (^, 1)^ — 0. But

since the surface is the envelope of the ellipsoid (13 a), the re-

ciprocal surface must be the envelope of the reciprocal ellipsoid

{a? + ^fx'la? + (62 + |)^2/V&' + (c' + D'^V^' = ^,

and since this is a quadratic equation in ^, its discriminant is

(aV + 62^2 + C2^2 _ ^) (^2/^2 ^ ^2/^2 ^. ^l^^f^ ^ ^^2 + 2/2+ ^2)2^

which is of the form (8).

(ii) The rings in question are the envelopes of a given sphere

of constant radius c, whose centre moves on a conic section. Let

^ = 0, 2/^ = ^ax be the equations of a parabola; then the coordinates

of any point on the curve are x = aQ'^, y = 2a0, z = 0. Hence the

equation of the sphere is

(x - ae-y + (y- 2aey + z^ = c",

and the discriminant of this equation regarded as the binary

quartic (6, 1)^ = gives that of the ring, which will be found to

be of the sixth degree.

The reciprocal polar is the envelope of the reciprocal of the

sphere, whose equation can easily be shown to be the quadric

^2 = ^^2^ + 2a0y + cr,

where k is the constant of reciprocation ; whence the equation of

the reciprocal surface is

(ay^ + k^xY = c^x" {x^ + 2/^ + z-),

which is a quartic. Therefore the original surface is of the fourth

class.

245. I shall not attempt to discuss the remaining cases

in detail ; but there are a few points which require consideration.

* Frost's Solid Geometry, vol. i. (1875), § 618.
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= 0, •(14),

The equation

a, h, g, I

h, h, f, m

g, f, c, n

I, m, n, d

where the letters represent arbitrary planes, is a quartic surface

called the Symmetroid. It possesses 10 nodes, which lie on the

cubic surfaces obtained by equating the minors of this determinant

to zero. The Hessian of a cubic surface is a particular case of

the symmetroid, and the existence of the nodes on the latter has

been proved in § 60.

It can also be shown that the vanishing of any of the four

quantities a, h, c and d produces an additional node. When all

four vanish, (14) assumes the form

(lf)i + (mg)i + {nh)i=0 (15),

which is a special case of a quartic with 14 nodes.

The equation of a quartic surface having a conic node at A is

a^Wg + 2aw3 + W4 = (16),

and the tangent cone from A is the sextic cone

ti/ = U2U4 (17).

Now a proper sextic cone cannot possess more than 10 nodal

generators ; if therefore a quartic surface possesses more than 11

conic nodes, the tangent cone (17) will degrade into an improper

cone, and this fact has been made use of by Cayley* for finding

the equations of quartic surfaces with more than 11 nodes.

Kummers Surface.

246. This surface has been so fully discussed in Mr Hudson's

recent treatise f that only a slight sketch will be given. The

equations of a quartic having a node at A and of the tangent

cone from A, are given by (16) and (17) and the latter obviously

touches the nodal cone u.^ along the lines of closest contact. The

line joining A to any other node on (16) must be a nodal generator

of (17); and since Rummer's surface possesses 16 nodes, the sextic

cone (17) must possess 15 nodal generators and must therefore

* Proc. Lond. Math. Soc. vol. iii. p. 234.

t Kttmmer's Quartic Surface, Cambridge University Press.

12—2
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degrade into six planes. Each of these planes is intersected by the

five other planes, and their five lines of intersection connect A
with five nodes ; hence each of the six planes contains six nodes.

But since each of the six planes forms a part of the improper

tangent cone from A, each plane must touch the quartic along its

curve of intersection and therefore the latter must be a conic twice

repeated ; in other words, each of the six planes is a conic trope on

which lie six nodes. Also since the surface is of the fourth class,

it is its own reciprocal ; moreover the reciprocal polar of a conic

node is a conic trope on the reciprocal surface, and since the

original surface possesses 16 conic nodes, it must also possess the

same number of conic tropes.

247. Kummer starts with the irrational equation

{ot-u)^^^ + (a-vfy^ + {a-w)^B^=0 (18)

or

(a - uf /32 4- (a - vf r^''+ {a- wf 8" - 2 (a - ?;) (a - w) 7S

-2(oi-w){a-u)B^-2{a-u)(a-v)/3y = (19),

where u, v, w are any three planes passing through A. Equation

(19) may be written in the form

^a^-25a + C = 0,

where

^ = /32 + 72 + §2 _ 2^8 _ 2g^ - 2/37,

B = ^hi + r^H + hhu - (w + w) 78 - {uj + u) S^-(ii + v) ^y,

C = ^hi^ + rfv^ + Bhu'^ — 2vwyS — 2wuS/3 — 2uv^y
;

hence ^ is a node. Writing (18) in the form

it is obvious that the points of intersection of the eight triplets

of planes viz. /3, 7, 8 ; l3,j,Z; jS, Y, S; jB, Y, Z; X, y, B; X, y, Z

;

X, F, S ; X, F, Z are nodes ; but we shall show that (18) possesses

altogether 13 nodes.

Let cr = /3 + 7 -I- 8, 2 = jSit + 7^ + Bw,

then ^=2(/32 + 72 + 8")-o-^

B = 2 (I3'u + y-'v + B-'w) - Xa,

C=2 (/3V + y-v" + B'^vfi) - 1\

and if the above values oi A, B and G be substituted in the

equation AC =^ B" it reduces to

2^yB {/3 (u — v) (w — ?/) + 7 (m — v){v — iv) + B(v — w) (vj — u)] = ;
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hence the tangent cone from A consists of three planes and a

proper cubic cone. The complete cone has accordingly 12 nodal

generators, viz. the lines AB, AG and AD, and the three lines in

which each of the planes ABC, AGD and ADB intersect the cubic

cone

^l{v-w) + r^l{w-u) + ZI{u-v) = (20).

The quartic therefore possesses 13 nodes ; but it will have 14

when (20) has a nodal generator; 15 when (20) consists of a

quadric cone and a plane; and 16 when (20) consists of three

planes.

The condition that the plane ^jl + 7/m + hfu = should touch

the cone J. = is that l + m + n = 0, and Kumraer takes

u = l (^1^27 — m{ni2^), V = m (lil^B — n-ji^j^),

10 = 01 (mlW^2/S — ^1^27),

where l + m + n = li+ m^ + n^ = h-\- ^1.2 + Wa = ; from which it can

be easily shown that the equation of the tangent cone becomes

Kl3yB (1311 + y/m + 8/71) (fi/h + y/m, + S/%) {^Jk + j/m, + S/n,) = 0,

where K = ^llil^mmimonninz.

248. A particular case of Rummer's 16 nodal quartic surface

is the Tetrahedroid, which can be projected into Fresnel's wave

surface
^2^2 Jfy2 g2^2

J.2
_ g2 ^2 _ J2 ^,2 _ fZ

The sections of the surface by each of the coordinate planes

consist of a circlis and an ellipse, and if a>b> c the four points of

intersection in the plane y = are real and give rise to four real

conic nodes, which produce external conical refraction ; the eight

points of intersection in the planes a? = 0, ^ = are imaginary, and

give rise to eight imaginary conic nodes ; and the section by the

plane at infinity consists of the factors

^^2 ^ y2 ^^2 ajj(J 0^2^.2 ^ l,2y2 _|. g2^2^

showing that there are four nodes on the imaginary circle at

infinity *.

* In 1871 Lord Eayleigh proposed a theory of double refraction, which is

discussed in Chapter XV of my Physical Optics, in which the velocity of pro-

pagation is determined by the equation

{ A =0.
!

~
^,2 ),2

~
™,2 ,.2

Prom this it follows that the pedal of Lord Eayleigh's surface is Fresnel's, and that
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The surface has also 16 conic tropes, four of which are real and

the remaining 12 imaginary. The Hessian intersects the surface

in the 16 circles of contact and the latter constitutes the spinodal

curve. The flecnodal and bitangential curves do not appear to

have been investigated.

Quartics with Singular Lines.

249. The theory of surfaces with singular lines has already

been given, and we shall now enquire what lines of this character

a quartic surface can possess.

Nodal line of the first kind. We have shown in §§ 43 and 37

that when the surface is of the nth. degree, the reduction of class

i^ = 7w — 12, and that the number of pinch points is 2n — 4.

Hence when n = 4, i2 = 16, m = 20 and the number of pinch points

is four ; accordingly if A and B are two of them, the equation of

the quartic is

pa"^ + 2a/3v^ + q^Y + 2ai;3 + 2/3w., + tv, = (1).

250. The surface has 16 lines lying in it, all of which intersect

the nodal line.

The section of the surface by the plane S = ky consists of AB
twice repeated and a conic ; and if the discriminant of this conic

be equated to zero, it will furnish an equation of the 8th degree

in k, which shows that there are eight planes in which the conic

degrades into a pair of straight lines. There are thus 16 lines,

which lie in pairs in eight planes passing through AB. See also

§44.

its reciprocal polar is the inverse of Fresnel's surface, and is of the 6th degree.

The surface is therefore of the 6th class, and if a certain inequality existed between

the optical constants, biaxal crystals would be capable of producing triple refraction.

A principal section of the reciprocal surface consists of a circle and the inverse of

an ellipse with respect to its centre, and since the last curve is a trinodal quartic,

and therefore of the 6th class, the principal sections of Lord Eayleigh's surface

consist of a circle and a sextic curve of the 4th class. The surface is therefore of

the 8th degree. For a uniaxal crystal, this wave surface degrades into a sphere,

and the reciprocal polar of the inverse of a spheroid with respect to its centre. The

inverse of a spheroid can possess a pair of real tropes having real circles of con-

tact, which reciprocate into a pair of real conic nodes having real nodal cones
;

hence Lord Rayleigh's theory leads to the result that uniaxal crystals might not

only possess tivo extraordinary rays as well as one ordinary ray, but might also

produce external conical refraction.
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251. An arbitrary plane cuts the surface in a uninodal

quartic, but a triple tangent plane cuts the surface in a pair of

conies which pass through the point where AB intersects the

plane, and intersect one another in three other points which are

the points of contact of the plane. Let BCD be a triple tangent

plane, then the equation of the surface must be of the form

(aU+Pr)y' + {aV+PQ' + P'Q)yB + {aW+QQ')B"^ = 0...(2),

where U, V, W are arbitrary planes, and P, P', &c. are planes

passing through A ; for when a = 0, (2) becomes

{Py + QB)(P'ry + Q'B) = = SS' (say) (3).

Let AG he one of the 16 lines, ABD any one of the eight

planes, D the remaining point where BP cuts S ; then

lf=f^ + hB, P = \^ + vB, Q = G^ + Hy,

F = \'/3 + fiy + vB, Q' = Q'^ + R'y + K'B,

F= P(P'a + Q'^ + K'B) + F'Gt^ + %.
Putting 8 = 0, (2) becomes

^{/a + X(X'/3 + /7)|=0 ....(4),

which shows that J.0 is one of the lines lying in the plane ABC,
whilst the other line is given by the remaining factor of (4). Let

G' be the point where the last line cuts BG\ then it follows from

(3) and (4) that G lies on the conic ^, and G' on the conic S'.

Let P' be the remaining point where BP cuts the conic B'
;

then putting 7 = in (2), it follows that the equation of the lines

lying in the plane ABB is

(Pa + Q^) {F'oL + G'^ + K'B) = 0,

the first of which passes through the point D which lies on the

conic 8, whilst the second passes through the point D' which lies

on the conic 8'. Hence :

—

If BGP he any triple tangent plane,

the section of the surface by it consists of two conies 8 and 8' ; also

one of the lines in each of the eight planes intersects the conic 8,

whilst the other intersects the conic 8'.

Since the nodal tangent planes at B are \y + GB = and
V7 + G'B = Q, it follows that :

—

The nodal tangent planes at B
(ouch the two conies respectively.

252. The theorems of § 250 or § 44 show that eight tangent

planes can be drawn to the quartic through the nodal line AB.
Now a node diminishes the class of the surface, and therefore
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the number of tangent planes which can be drawn through an

arbitrary straight line, by 2 ; hence the plane through the line

and the node is an improper tangent plane, which is equivalent

to two ordinary tangent planes. If therefore the surface possesses

an isolated conic node, only six ordinary tangent planes can be

drawn through AB, giving 12 ordinary lines, whilst the two

remaining lines consist of a pair passing through AB and the

node, each of which is equivalent to two ordinary lines. Since a

binode reduces the class by 3, it follows that if the surface

possessed an isolated binode, there would be only five planes and

10 ordinary lines, and each of the lines through AB and the binode

would be equivalent to three ordinary lines. When the surface

possesses four conic nodes, there are only eight lines, which consist

of four pairs such that the lines belonging to each pair intersect

at a conic node ; and in this case the equation of the surface may
be expressed in the form

{U,V,Wf = (5),

where U, V, Ware three quadric surfaces, which possess a common
straight line. The latter is the nodal line on the quartic, and the

four distinct points in which the quadrics intersect are the four

nodes on the quartic.

253. Since not more than eight tangent planes can be drawn

through the nodal line AB, it follows that if the quartic has a

fifth node it must lie in a plane through AB and one of the four

other nodes ; for if not, five improper tangent planes, which are

equivalent to ten ordinary tangent planes, could be drawn through

AB to the surface, which is impossible. Now it follows from § 31

that if a surface of the nth degree possesses n — 1 conic nodes

lying in the same straight line, the latter not only lies in the

surface, but the tangent plane along it is a fixed instead of a torsal

tangent plane ; accordingly if two conic nodes P and Q lie in the

plane ABPQ, the point where the line PQ cuts AB is a third

node on the section and therefore the plane must touch the quartic

at every point on PQ.

This result may be proved more simply for a quartic as follows.

If there is a conic node at P, the section by the plane ABP must

consist of AB twice repeated and two straight lines Pp, Pq ; but

if there is another node at Q, Pp and Pq must pass through it

and must therefore coincide. It therefore follows that:

—

Whe7i



= 0,

plijcker's surface 185

a quartic surface possesses a nodal line AB and eight conic nodes,

the latter lie in pairs in four planes passing through AB ; also

each of these planes touches the quartic along the line joining the

pair of nodes lying in it.

This surface is called PlilcJcer's Complex Surface, by whom it

was studied in connection with the theory of the Line Complex*.

254. The equation of Pluckers surface may he expressed in

theform
a, h, g, a

h, h, f ^

g, f, G, 1

oc, /3, 1,

where a = b = h = {<y,By; f=g = {y, By ; and c is a constant.

By § 49 the determinant when expanded becomes

(be -p) a^ + {ca - g") 13' + ab - h^

+ 2(gh-af)^ + 2(hf-bg)a + 2{fg-ch)cc^ = 0...(6).

Let 8= ky be any arbitrary plane through AB, and let a', b',

&c. denote what a, b, &c. become Vv^hen 7 = 1, S = k; then (6)

reduces to 7^ multiplied by the conic

(6'c-A ...][«, /3, 7)^ = 0.. (7),

and if the plane B = ky touch the quartic, the discriminant of (7)

must vanish ; but this is equal to the square of the discriminant of

(a\b\c,f,g',h''$_a,^,yy = 0,

hence the discriminantal equation for k is one of the eighth degree

having four pairs of equal roots, and the quartic has a node in

each of the planes corresponding to the four values of k.

Let us now suppose that S = is any one of the four planes

through a node; and let a = a^f^'^ + a^yB + a^^'B"^. Then the equation

of the section is obtained by writing «„ f^n- cu &c. in (6) ; but if G is

a node, the section must reduce to a pair of straight lines inter-

secting at C, whence

5'o//o = fto/^o = h^jho = q (say),

so that the section becomes

(boC-fo'){a-ql3Y = 0,

* Neue Geometrie des Raumes. Jessop, Treatise on the Line Complex, § 86.
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and therefore consists of a straight line through B twice repeated,

so that the plane S is a fixed tangent plane along this line.

255. Nodal line of the second kind. This line has only two

actual pinch points, owing to the fact that the four pinch points

coincide in pairs ; and the equation of the quartic is

paY + ^01^jv^ + 9/3V + 2av3 + 2^Ws + w, = (8).

The section of the surface by the plane 7 = consists of AB
three times repeated and another line ; also proceeding as before,

the discriminantal equation will be of the seventh degree in k.

Hence the 16 lines consist oi AB and 15 other lines.

256. Nodal line of the third kind. The equation of the

quartic is

a^v^ + avs + fiiv^ -\-Wi = (9),

and it has two cubic nodes at A and B. The lines of closest

contact at each cubic node lie in the surface, and they consist of

the line AB six times repeated and six other lines, making

altogether 12 ; also the discriminantal equation furnishes 12

more, making a total of 24 lines. The class of the surface is

obtained by differentiating (9) with respect to 7 and h and

eliminating (a, /3) ; whence m = 14.

257. Cuspidal line of the first kind. The general theory of

these lines has been discussed in §§ 210, 211. When the surface is a

quartic the line has four tacnodal points but no cubic nodes ; and

if A and B be two of these, the equation of the surface may

be written

(a7 + y88)2 + a7W2 + ;88m;2 + w, = (10).

258. The surface is of the twelfth class.

Let n = a7 + ySS (11).

Differentiating (10) with respect to 7 and S, we obtain

2na + av. + a7V,/ + /SSm/ + w/ = (12),

2ny3 + a7<' + ^w^ + ySSw/' + W," = (18),

from which we deduce

a7W2 + ySSwo + 2^4 = (14),

a' = w, (15).
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Eliminate (a, ^) between (11), (12) and (14) and we shall

obtain an equation of the form

n^v,-\-nv,+ v, = o (i6),

where Vn = {<y, 8)^. Eliminating 12 between (15) and (IG) the

result is a binary quantic of the 12th degree, which shows that

m = 12.

259. Putting S = in (10) it follows that the section of the

surface by the tangent plane at a tacnodal point is a pair of

straight lines which intersect at the point. Thus there are four

pairs of lines lying in the surface which intersect at these points.

That there are no other lines can be shown by putting B = ky in

(10) and equating the discriminant of the resulting conic to zero,

which will be found to be of the form k^ {w^ — v^y = 0, where

V2y Wi are the values of v^ and w.^ when 7 = 1, h = k. The double

root ^^ = 0, corresponds to the point A, whilst the other two double

roots correspond to the two other tacnodal points exclusive of B.

There are consequently no proper tangent planes to the quartic

through AB.

260. It is possible for a quartic having a cuspidal line to

possess as many as four conic nodes. Changing the planes 7 and

h to any arbitrary planes through AB, the equation when there is

a node at G is

(a^i + /3wi)^ + h {oLV^pi + ySwio-i + hw^) = 0,

and the section of the surface by the plane ABC consists of AB,
and a line GE through the node both twice repeated. Hence the

plane B touches the quartic along this line, which is therefore a

singular line of the nature of the curve of contact of a trope.

When the quartic has four nodes, its equation is

iavi + ^w,f + ryB{Ly' + MyB + M') = (17).

261. Guspidal line of the second kind. These lines possess

three tacnodal points and two cubic nodes, and the equation

of the quartic is

oc^r + aVs + /3w., + w^ = (18).

262. Tacnodal line of the first kind. The equation of the

quartic is

{ay + j3Sy + 2 (ay + ^S)v, + v, = 0... (19),
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and there are four points where the tacnode changes into a

rhamphoid cusp, see § 213. The surface is of the fourth class and
is a scroll, for if we put S = ky, the section consists of the line AB
twice repeated, and the curve

(a + k^y + 2P (a + k^) + Qy' = 0,

which represents two straight lines.

263. Tacnodal line of the second kind. The equation of the

surface is

(Za^ + Ma^ + iV^2) ^2 ^ 27 {av^ + ySw^ + W4 = . . .(20),

and it possesses two cubic nodes at the points where AB intersects

the planes La? + il/a/3 + N^"^ = 0, and two rhamphoid cuspidal

points.

264. The highest singular line of the second order and first

kind, which a quartic surface can possess, is a tacnodal line ; but

when the line is of the second species, a quartic surface as shown

in § 214 may possess a rhamphoid cuspidal and an oscnodal line.

Quartic surfaces may also possess triple lines, the discussion of

which will be postponed for the present*.

When a quartic surface possesses a singular conic, the latter

can degrade into a pair of straight lines. These surfaces will be

considered under the head of quartics having nodal conies.

Nodal Conies.

265. Professor Segref has enumerated as many as 76 different

species of quartic surfaces which possess a singular conic, the

principal of which are the following :—(i) a nodal conic, m = 12;

* The following papers relate to the subjects discussed iu §§ 249 to 264.

Clebsch, Crelle, vol. lxix. p. 355 ; Math. Ann. vol. i. p. 260 ; Atti del R. 1st. Lomh.

12th Nov. 1868. Cayley, " Quartic and Quintic Surfaces," Proc. Lond. Math. Soc.

vol. III. p. 186 and the authorities there cited. Basset, Quart. Jour, vol. xxxviii.

p. 160 ; vol. XXXIX. p. 334.

t Math. Ann. vol. xxiv. p. 313. The following are some of the principal

memoirs on the subject. Berzolari, Annali di Matematica, Serie II. vol. xiii.

p. 81 ; Zeuthen, Ibid. vol. xiv. p. 31 ; Kummer, Borchardt, vol. lxiv. p. 66

;

Clebsch, Ihid. vol. lxix. p. 142 ; Geiser, Ibid. vol. lxx. p. 249 ; Cremona,

Rendiconti del R. Istituto Lombardo, 1871 ; Sturm, Math. Annalen, vol. iv. p. 265

;

Moutard, Nouvelles Annales, 1864, pp. 306 and 536 ; Loria, Mem. dclV Accad. delle

Seienze di Torino, Serie II. vol. xxxvi. ; Veronese, Atti di R. Istituto Veneto,

Serie VI. vol. ii.
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(ii) a cuspidal conic, 7n = 6; (iii) two nodal lines intersecting in a

point, m = 12 ;
(iv) a nodal and a cuspidal line intersecting in a

point
;

(v) two cuspidal lines, m = 6 ;
(vi) two coincident nodal

lines. All these six species may be divided into various subsidiary

ones, owing to the fact that the surface may possess isolated conic

nodes and binodes, as well as a variety of compound singular

points,

266. The point constituents of a nodal conic on a qiiartic are

12 conic nodes, and it has four pinch p)oints ; also m— 12.

Consider the quartic

a- {ahio + awi + Mo) + {aU^+ U.^ (a. t// + Z7/) = . . .( 1 ).

The section of the surface by the plane BCD consists of two

conies, and if B, G, D be three of their four points of intersection

we may take

U,^P/3+ Qy + RB, U,'=P'^+ Q'y + R8
]

U, = LyS + MS/S + my, U,' = L'y8 + M'SjS + N'/3y j"

u., = i^/32 + (7r + HB'^ + fyB + gS^ + h^y.

The coefficient of /3^ in (1) is

F(x^ + (Pa + M8 + Ny) {P'oL + M'h + N'y),

which shows that 5 is a conic node ; hence the four points in which

the two conies intersect one another are conic nodes on the quartic.

Let F=0, P'/P = M'/M = JSf'/N, then 5 is a unode ; from which

it follows that if the quadrics aUi+ U^ and aU/ + U^ become

identical, the quartic will have unodes at each of the four points

of intersection of the plane a. and the cones i<2 and Un, But when
this happens, these two conies coalesce into a nodal conic, whose

pinch points are the four points of intersection of a, u.^ and ?Z,

;

also since a unode is equivalent to three conic nodes, the nodal

conic is equivalent to 12 conic nodes, whence m = 36 — 24 = 12.

Equation (1) now becomes

a^ (ahif, + mti + u^) + (a C/j + U^f = 0,

which is of the form

a;^W+V' = (3),

and is a special case of the quartic (U, V, Wy= 0, where U, V, W
are quadric surfaces. The equation may also be written in the

form
a'U + 2anU^ + a' = (4),
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where U is an arbitrary quadric, U-i, any plane through A, and ft

a cone whose vertex is A.

In accordance with the theory explained in § 219, the pinch

points are the intersections of the nodal conic and the surface

for if B is one of their points of intersection

where F„, = (a, 7, S)" and the coefficient of /S^ in (4) is

(pa + /j,B + vyf.

267. The surface possesses five hitangential quadric cones.

Equation (3) shows that the quadric V intersects the quartic

in the nodal conic twice repeated and in a twisted quartic curve,

and that the quadric W touches the quartic along this curve.

Now (3) may be written in the form

a^{W-2\V-\^0L^)^{V+\0Lj=0 (5), •

where \ is an arbitrary constant ; and if the discriminant of the

quadric
Tf-2\F-W"=0

be equated to zero, it will become a cone. Since the discriminant

furnishes a quintic equation for X, it follows that there are five of

such cones, which are called after the name of their discoverer

Kummers cones* ; and the quartic may be represented by an

equation of the form (3), where W is one of Kummer's cones.

268. The surface possesses 16 straight lines lying in it, each

of which intersects the nodal conic ; also each line is intersected by

5 others none of which lie in the same plane.

Let p and q be the points of contact of any double tangent

plane ; then since the latter intersects the nodal conic in two

points P and Q, the section of the surface by the plane in general

consists of two conies which intersect in p, q, P, Q. But since

every double tangent plane possesses one degree of freedom, and

therefore contains a single variable parameter, it is possible to

determine the latter so that three of the points P, ^ and q should

lie in the same straight line, in which case the section consists of

the straight line Ppq and a nodal cubic curve whose node is at Q.

* Crelle, vol. lxiv. p. 06.
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Let AB be one of the lines, then the section of the quartic by

any plane 8 = ky through AB consists of this line and a cubic

curve which intersects AB in the point B and in two other

points, whilst the cubic has a node at the point C in which

the plane cuts the nodal conic. If therefore the value of k be

determined so that the cubic curve degrades into a conic and a

straight line, the latter must intersect AB, and we shall now show

that there are 5 of such lines.

The equation of the quartic may be written in the form

a- (avj + ^w, + lu,) + aO (P/3 + Qy + RS) + fl^ = 0. . .(6),

where ft = \yS + /a8/3 + v^y^

and if the tetrahedron be changed to ABC'D, we must write

8 = B' + ky, /3 = (/3'-X^•7)^,

where p = fjbk + v. Let Vi, Wi, W2 be what Vi, w^, w^ become

when 7=1, 8 = k; then making these substitutions the section

of (6) by the plane 8' will be the line AB and the cubic curve

a (a'V.p + a/3'Fx + P/3'0 + 7 [{W,p - XkW,) oe

+ [{Q + Rk)p- \kP} a^' + p^'^] = 0. . .(7).

In order that (7) should degrade into a conic and a line

through C", it is necessary that the coefficients of a and 7 in

brackets should have a common factor ; the condition for which

is that the eliminant of

x^^V,p+xWi + P = 0,

x^W.p - \kW,) + a){(Q + Rk) p - \kP] +p = 0,

should vanish ; but if the eliminant be written down it will be

found that the term which does not explicitly involve p vanishes,

hence /o is a factor of the eliminant and the remaining one

furnishes an equation of the fifth degree in k. The root p =
corresponds to the plane 8 = 0, that is to the line AB ; and the

remaining quintic factor gives five other lines, and since none of

the roots are equal, all these lines lie in different planes.

' Let 2, 3, 4, 5 and 6 denote the five lines which cut the line 1

;

then we have to find a certain number of other lines such that

each of the first five lines are intersected by five others, the

arrangement being such that only two lines lie in the same plane.

The 16 lines are shown in the following table, in which the top
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tangents can be drawn to the surface from this point ; hence the

cone must be anautotouiic. Accordingly it has 28 double tangent

planes ; but the form of (9) shows that two of them are a" Uq + u-^ = 0,

which are the nodal tangent planes at B ; hence the cone has 26

remaining double tangent planes.

Each of these 26 double tangent planes touches the surface at

two points P and Q, and intersects the nodal conic at B and a

fourth point E ; hence the section of the quartic by such a plane

is a pair of conies unless three of the points lie in the same straight

line, in which case the section will consist of a straight line and a

nodal cubic. Now the tangent plane at any point on one of the

sixteen lines is a torsal plane ; hence there must be a certain

position of the point of contact for which the tangent plane passes

through B. From this it follows that 16 of the 26 double tangent

planes to the cone contain one of the 16 lines, w'hilst the remaining

10 cut the quartic in a pair of conies.

To prove the remaining part of the theorem, let A be the

vertex of one of Rummer's cones, B any point on the nodal conic,

and let the tangent planes to the cone through AB touch it along

AO and AD. Then the equation of the surface may be written

in the form
a2(/32 + V)= U^ (10),

where /3^ + kr'^^ = is the Rummer's cone whose vertex is A.

The section of the surface by the tangent plane 7 to the cone is

a/3 ± TJ' = 0,

where TJ' is what U becomes when 7=0, which represents a pair

of conies.

270. Each of the 16 lines touches each of Kummers cones.

The tetrahedron can always be chosen so that A is the vertex

of one of Rummer's cones, G the point where one of the lines

intersects the nodal conic, whilst ABC contains this line. Also

D may be any point on the conic. Hence the equation of the

surface may be taken to be

-{a2 + a(P/3+(27+i2S) + O}2 = 0...(ll).

Let S = 0, a = k^ be the equations of the line through C, then

the conditions are that

k' (F'^' + G^y + HY) - {k'^ + k (PyS + Qy) + vyf - 0,

B. 13
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which requires that

G = 2FH, F=P + k, kH=Qk + v.

The first condition reduces the equation of the cone to

B^Vo + SVi + {F^ + Hyy = 0, which shows that the plane S, and

therefore every line lying in it, touches the cone.

Pinch Points.

271. We shall now give a few theorems concerning these

points.

The tangent planes at thefour pinch points intersect at a point.

Let the equation of the quartic be

a^ (ahi, + au, + u,) + {oLU,+ U,y = (12),

where
u, = p^ + qy + rS, U, = P^ + Qy + RB 1

u^=fryB + gS^ + h0y, U, = FyB + GB/3 + Hl3yj"'

The four pinch points, being the points of intersection of u^

and C/g, are B, C, D and a fourth point E ; also the equations of

the tangent planes at B, C, D are

Pa + iTy + (?S = 0'

Qa-vH^ + FB=0- (14),

Ra+O^+Fy = 0^

and since these planes cannot pass through the same straight line,

they must intersect at a point ; and if this be taken as the vertex

A,P = Q = R = 0.

The coordinates of E are

{Hg-Gh)^ = {Fh-Hf)y^{Gf-Fg)h

or Bj3=Gy = D8 (say),

whence changing the tetrahedron to ABDE by writing

^' = B^- Cy, B' = Cy- DB,

it will be found that the tangent plane at E is

/3' (GG + HD) - B'(FB +GG) =

or B-'F^ + C'Gy + B'HB = (15),

which passes through A.

272. The section of the surface by the tangent plane at a pinch

point has a triple point of the second kind thereat.
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Recollecting that P = Q = R = 0, the section of (12) by the

plane Hy + G8 = 0, which is the tangent plane at B, is a quartic

curve in which the term involving /S is

0L'\pcc + (Gh-Hg)y/O]^,

which shows (i) that 5 is a triple point of the second kind on the

section
;
(ii) the cuspidal tangent at the triple point is the tangent

to the nodal conic; (iii) the line Gpa + {Gh — Hg)y = is the

tangent at the ordinary branch.

273. Each of Rummer's five cones passes through the four

pinch points; also the tangent planes to each cone along the

generators, which pass through a pinch point, contain the ordinary

tangent at the pinch point.

If A be the vertex of one of Rummer's cones, the equation of

the quartic must be of the form

a'u^+{a' + aU^+ U,Y=0 (16),

where the U's and ^2 are given by (13). The form of (16) shows

that the cone Uz passes through the pinch points.

The tangent plane along the generator of U2 which passes

through B is

hy + gS = (17),

and the tangent plane at B is

Pa + Hy + GB==0 (18),

and if B be eliminated between (16) and (18), the ordinary tangent

at B is given by the intersection of (18) and the plane

Ghy-g(Pa + Hy) = (19).

Eliminating a between (18) and (19) it follows that this line

lies in the plane (17).

274. There are 40 triple tangent planes*.

Let TP, TQ be a pair of lines lying in the same plane, P and

Q the points where they cut the nodal conic ; then the section

consists of the two lines and a conic passing through P and Q and

intersecting TP, TQ in p and q. Hence the plane is a triple

tangent plane which touches the surface at T, p and q. Now the

first six columns of the table of § 268 furnish 25 planes which

contain a pair of lines, columns 7 to 11 furnish 13 more and

* Berzolari, Ann. di Mat. Serie II. vol. xiv. p. 31.

13-2
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columns 12 to 16 furnish 2; accordingly the total number of

planes is 40.

275. There are 52 planes whose point of contact is a tacnode

on the section.

The equation of the surface may be written a^W = V'\ where W
is one of Rummer's cones. Let be the vertex of the cone W;
P and Q the points where any generator touches the quartic ; then

these will be the points where the generator intersects the quadric

V, also the tangent plane to W along OFQ will be a double

tangent plane to the quartic surface. Now P and Q will coincide

when OFQ is a generator of the tangent cone from to the

quadric V; and since this cone and the cone W have four common
generators, there will be four planes Wg corresjDonding to each of

Rummer's five cones. Hence the total number due to this cause

is 20.

Let AB be one of the 16 lines, then the equation of the quartic

is given by (6). Let S — ky be any plane through AB, then the

section consists of this line and the cubic curve

a" (av,' + (3w,' + yw,') + va/S (P/8 + Qry+ Rky) + z/==/3^7 = 0,

where v' &c. denote what v &c. become when 7 = 1, S = k. The

line AB intersects this cubic curve at B, and in two points p and q

which are determined by the equation

a%' + ai3w,' + Pvfi' = (20),

and the condition that p and q should coincide is w/^ = 4Pz/v/,

which is a quadratic equation for determining k. This shows that

each line gives rise to two planes •srg, so that the 16 lines produce

32 planes, making a total of 20 + 32 = 52.

276. Equation (20) shows that every tangent plane to the

quartic along one of the 16 lines is a double tangent plane;

hence these lines form part of the bitangential curve. Also the

five curves of contact of each of Rummer's cones, which are quartic

curves, form part of the bitangential curve, which together with

the 16 lines make up a curve of degree 36. It will be shown in

Chapter IX that the degree of the complete bitangential curve on

a quartic is 320, and therefore the degree of the residual curve is

320 — 36 = 284. Moreover if P and Q are the points of contact

of a double tangent plane, it follows from what has preceded that

PQ is a generator of one of Rummer's cones ; hence the residual

curve consists of the nodal conic repeated 142 times.
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277. Cremona* has shown that it is possible to transform a

quartic having a nodal conic into an anautotomic cubic surface

and vice versa by means of the equations

a ^ J S

a'2 a'/3' aV ^'^' -^''

which are equivalent to

a' y8' 7' a'

•(21),

.(22).
a/3 y82 ^^ aS + 72

Let AD be one of the 27 lines lying in the cubic ; draw any

plane through AD, then the section of the cubic will consist of

the line AD and a conic, which intersects AD in A and D ; let

CA, CD he the tangents to the conic at A and D; and let B be

any arbitrary point. Then the equation of the cubic will be

^(8^ + 8Mi + «g + (aS + 7^)7 = (23),

where Un = (a, /S, 7)^ Transforming (23) by means of (21), it

becomes
a''« + y'B') + cL\'n' + O'" = (24),

where O' = I3'B' — 7'^ ; which is the equation of a quartic having a

nodal conic a' = 0, II' = 0.

(i) Since the plane ABD is any plane through AD, let us

choose it so that it contains one of the pairs of lines which cut

AD ; then we must have

Substituting these values in (23), and putting 7 = 0, it becomes

/3{S''+Bv+pv'')=0 (25),

where v =^fa + g^; and the second factor gives the equation of

one pair of lines which intersect AD. Transforming the factor by

means of (21), it becomes

pa'V^ + a'^'h'v + /S'^S'^ ^0 (26),

which represents a pair of conies.

The form of (24) shows that the point D' lies on the nodal

conic, and that the section of the quartic by the plane 7' consists

of the pair of conies (26). Hence the 10 straight lines on the

cubic which intersect AD transform into 10 conies on the quartic,

which lie in five planes passing through D'.

(ii) The remaining 16 lines which lie in the cubic must pass

through the conic /3 = 0, aS + 7" = 0. Let us therefore take B as

* Rend. 1st. Lombardo, 1871 ; Geiser, Crelle, lxx.
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the point where two of them intersect; then U2=^ fiv^ + v^, where

^n = (a> 7)" ; also these lines must be generators of the cone and

the quadric

aS + 72 = 0,

8^ + Swi + /3vi + V2 = 0,

whence eliminating h, we obtain

7^-a7X + an/Svi + W2) = (27). •

Equation (27) is that of a quartic cone whose vertex is D, on

which DB is a triple generator; hence the constants must be

determined so that (27) degrades into a pair of planes and a

quadric cone which pass through DB ; but it will not be necessary

to work out the necessary conditions, because (21) transforms (27)

into itself, and therefore a pair of intersecting straight lines on the

cubic which pass through the conic, transforms into a pair of

intersecting straight lines on the quartic which pass through the

nodal conic. This pair of lines on the quartic lie in the plane 8',

for if we put 8' = in (24) it reduces to (27), We thus obtain

the theorem

:

If a cubic surface pass through the conic /S = 0, aS + 7^ = 0, and

is not touched at D by the plane a; equations (21) transform the

cubic into a quartic having a nodal conic whose equations are a' = 0,

^'8' — y^ = 0. The 16 lines which intersect the conic through which

the cubic passes transforvfi into the 16 lines on the quartic; the

10 lines which intersect the line AD on the cubic transform into

10 conies, which form five pairs lying in five planes passing through

the point D' on the nodal conic; and the line AD on the cubic

transforms into the point D' on the quartic.

278. The theory of quartics furnishes the following theorem

with respect to cubics :

Let a plane cut a cubic surface in any line AD and a conic S.

Then (i) 16 li7ies pass through 8 ; (ii) each of these 16 lines is

intersected by five others which pass through 8 and five which pass

through AD ; (iii) of the first set no two lie in the same plane, and

the same is true of the second set, but a plane can be drawn through

any line of the first set and one line of the second set ; (iv) when

two lines passing through 8 intersect, the residual intersection of

the plane and the cubic is a line passing through AD.



CUSPIDAL CONICS 199

Cuspidal Conies.

279. The equation of a quartic surface liaviog a nodal conic

is given by (4) of § 266, where U=a.'^Uo + au^ + Uz] and the pinch

points are the four points of intersection of the nodal conic with

the quadric cone

But if the conic is cuspidal every point must be a pinch point,

which requires that U-^" — u^ — kD,, and (4) is reducible to the form

a^u+U^ = (1),

where u is r plane and U a quadric surface.

The quadric U has tritactic contact with the surface along

the cuspidal conic, and intersects it in a conic along which the

quartic is touched by the plane u ; hence w is a conic trope. Let

C and D be the points where the trope intersects the cuspidal

conic ; then

U, = XyB + fiS/3 + v^y J

'^'^^'

and (1) becomes

a'{la + m^) + {aU,+ U^f^O (3).

Since (3) may be written in the form

I3V + I3un, + O2 = 0,

it follows that G and D are tacnodal points. These are the only

singular points on the cuspidal conic ; also the form of (3) shows

that the cuspidal tangent planes envelope a quadric cone, whose

vertex is the pole of a with respect to the quadric a Ui +' U2 = 0.

280. Every plane passing through the tangent to the cuspidal

conic at the tacnodal points cuts the surface in a quartic curve

having a tacnode cusp * thereat, the tangent at which is the tangent

to the cuspidal conic.

The equation of any plane through the tangent at C to the

conic is

\h-^v^ = koL (4),

whence eliminating h between (3) and (4) we obtain

a' (^a + myS) + [a [P^ + Qy + R {koc - v^)l\}

+ kay + /JL^ {ka - v^)/xy = . . .(.5),

* The equations of a quartic curve having tacnodes &c. are given in § 179.
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which is the equation of a quartic curve having a tacnode cusp at

G, and a = is the cuspidal tangent.

281. Every plane through the tangent to the conic of contact at

the tacnodal points cuts the surface in a quartic curve having a

rhamphoid cusp at this point, whose cuspidal tangent is the tangent

to the conic.

Let the conic trope cut AB in B', and let a' = Za + m/S ; then

changing the tetrahedron to AB'GD, the equation of the surface

DGCOIUGS

a' (a - m/Sy + I {{a' - m^) U,-\- IU,Y = (6).

The equation of any plane through the tangent at G to the

conic of contact is

l(\8 + v/3)-mQ^ = koi (7),

whence proceeding as before the equation of the section will be

found to be

a' (a' - m^f + l\(Q + k) a 7 + La.'' + Ma'^ + N^'Y = 0.

which is the equation of a quartic having a rhamphoid cusp at G.

282. The tangent planes at the tacnodal points cut the surface

in two quartettes of straight lines. These eight straight lines may
he divided into four pairs, such that each pair lies in a plane

passing through both the tacnodal points.

The tangent plane to the surface at G is

Qa + v^ + X8 = (8),

and the section of (3) by it consists of the four straight lines

a'{la + m^) + {Pa^-(Roc + ,jil3)(Qa + v^)/xY = ...(9),

and the section of the surface by the tangent plane at B, which is

Roc + fi^ + \y = (10),

consists of four straight lines which are the intersections of (9)

and (10).

283. There are three Kummers cones, whose vertices lie on the

line of intersection of the tangent planes to the quartic at the tacnodal

-points; also each cone touches these planes and also passes through

the cuspidal conic.

Let G and D be the tacnodal points, A the vertex of one of

Rummer's cones, then the equation of the quartic may be written

in the form
Za2(Za + 2w^) + (a?7i + n)2 = (11)
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or

a2 (Pa^ + 2?ma/3 - 2\a U, - 2\n - X'^a?)

+ (\a2 + aZ7a + n)2 = ...(12).

Since A is the vertex of one of Kummer's cones, it follows

from § 267 that l = \, f/'i = m/3, which reduces (12) to

na?D.-{l<x" + ma^ + af = (13),

and shows that the cone O, which contains the cuspidal conic, is

one of Kummer's cones. Also if

the tangent planes at G and D are

\^+vl3 = 0, \y + /j,/3 = 0,

which pass through A. These planes obviously touch the cone O.

The other two cones are obtained by equating to zero the dis-

criminant of the quadric

{I' - X') a^ + 2m{l- X) a/S - 2XQ = 0,

which will be found to furnish a cubic equation for X, one of

whose roots is X = l, which corresponds to the cone fl.

Since Kummer's cones pass through the cuspidal conic, they

are not strictly speaking double tangent cones ; for each generator

is an ordinary tangent at one point, but the contact at the other

point is of the same character as that of a line passing through a

double point.

284. It is known from the theory of plane quartic curves,

that every bicuspidal quartic is of the form (1), where a is the

line passing through the cusps, u the double tangent, and U a

conic which has tritactic contact with the curve at each cusp and

also passes through the points of contact of the double tangent.

Now every quartic curve of this species can be projected into an

oval of Descartes in which the cusps are at the circular points

;

and in like manner every quartic having a cuspidal conic can be

projected into the surface formed by the revolution of an oval of

Descartes about its axis, in which case the cuspidal conic is the

imaginary circle at infinity.

The equation of the surface is

{x^ + 2/' + ^' + ace + cf + Ax-\-B = (14),

and if this be transformed to quadriplanar coordinates, it becomes

(yQ^ + 72 + 8^ + a^ + a-)^ + {A^ + Ba)a?^0 (15).



202 QUARTIC SURFACES

The form of (14) shows that the triangle BCD is self-conjugate

to the cuspidal conic ; whence if C" and D' are the points where

CD cuts the conic, and we change the tetrahedron to ABC'D' by

writing y = ry + iS, S' = 7 — tS, (15) becomes

(/3' + y'8' + a^ + aj + (A^ + Ba)a' = (16).

The points C, D' are the tacnodal points, and the tangent

planes thereat intersect in the line AB\ hence the axis of x in

(14) is the line of intersection of the tangent planes at the

tacnodal points.

285. Since an oval of Descartes possesses eight stationary

tangents which intersect in four pairs on the axis of x, it follows

that

:

Every quartic which possesses a cuspidal conic hasfour stationary

tangent quadric cones, that is to say cones whose generator's have

tritactic contact with the surface ; also the vertices of these cones lie

on the line of intersection of the tangent planes at the tacnodal

points.

This result affords a verification of Cayley's theorem § 58 for

the degree of the spinodal curve; for the latter consists of the

cuspidal conic 11 times repeated, the conic of contact of the four

cones and the conic of contact of the trope, which together make

up a curve of the 82nd degree. It also follows from § 55 that each

of the eight lines lying in the surface must touch these conies of

contact.

286. Again the eight points of inflexion of an oval of Descartes

lie on a circular cubic, whence : A cubic surface can he described

which intersects a quartic with a cuspidal conic in the curves of

contact of these four cones and also in the cuspidal conic.

287. In the same way the existence of the three quasi-

Kummer's cones can be proved. An oval of Descartes is a curve

of the sixth class, consequently three tangents can be drawn from

each cusp, which intersect in pairs on the axis of x, hence

:

The quartic surface possesses three tangent quadric cones which

also jittss through the cuspidal conic ; also the vertices of these cones

lie on the line of intersection of tlie tangent planes at the tacnodal

points.
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288. Quartics with a cuspidal conic may have one other

double point, which may either be a conic node or a binode. In

the former case the quartic is of the fourth class and may be pro-

jected into the surface formed by the revolution of a lima^on

about its axis of symmetry. In the latter case the quartic is of

the third class, and may be projected into the surface formed by
the revolution of a cardioid or of a three-cusped hypocycloid about

such an axis.

Two intersecting Double Lines.

289. Two intersecting Nodal Lines. Let the nodal conic

degrade into the two lines BG and BD ; then the equation of the

surface is

a2f7 + 2a7gC7i + 7^82^0 (1),

where
U = a^Uo + aui + U2

Ui =p^ + qy + rB

n, = F^' + Gy' + HB' +/7S + gB^ + h/Sy]

The pinch points are the intersections of the nodal lines with

the quadric

Ui^=U (3),

and there are four of them, one pair lying in each line.

Equation (1) may also be written in the form

where O^ = (a, y, B)^ ; which shows that 5 is a peculiar kind

of pinch point, the tangent plane at which is a factor of the

coefficient of ^. The line AB may be any arbitrary line through

B, and therefore the plane 8 = ^7 is any arbitrary plane through

B, hence : The section of the quartic by any plane through the

point of intersection of the nodal lines has a tacnode thereat.

290. The surface possesses 16 lines lying in it, of which eight

intersect one of the nodal lines and the remaining eight intersect the

other. Also every line of one system is intersected by four lines of

the other.

Let AD be one of the lines; then Uo = r = I[; and by pro-

ceeding as in § 268 it can be shown that there are seven additional

lines which intersect BD>
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Writing /S = X7 in (1), it becomes

amp\ + q)ci + (f+g\)S]

+ 7 {a2 {FX' + h\ + G) + 2a8 (PX + Q) + S^} = 0,

showing that the section consists of AD and a cubic, whose node

is the point C where the section intersects BG. The condition

that the cubic should degrade into a conic and a line through C
is obtained by eliminating a and S between the coefficients of a^

and 7 in this equation, which furnishes a quartic equation for \.

The surface possesses only four Kummer's cones.

291. A Nodal and a Cuspidal Line. When BG is a cuspidal

line, every point on it must be a pinch point ; hence BG must be

a generator of the quadric (3), the conditions for which are

P=P^ G = Q% h = 2PQ (4),

and (1) becomes

a' [a'uo + otu, + (HB +h + gl3) 8] + 2RaryB^

+ {Pa^ + Qay + rySy = ...(5).

Putting a = 7 = 0, (3) now becomes

{{g-2PR)^ + (H-R^)8] = 0,

which shows that one of the pinch points coincides with B, so that

there is only one distinct pinch point on BD.

292. The cuspidal line possesses two tacnodal points, through

each of which a pair of straight lines can he drawn which lie in the

surface.

Let G be one of these points, ABG the tangent plane ; then

Q = g* = 0, and (5) becomes

a^ {aX + a (i?/3 + rh) + {HB +// + g^) h]

+ 2Pa7S^ + (Pa/3 + 78)= = . . .(6).

To find the other point, let ^ = Icy, and change the tetrahedron

to ABG'D; then the required condition is

k (p - Pf+ 2EP'k) = 0,

and since the root ^ = corresponds to C", there is one other

tacnodal point.

To prove the second part, put 8 = in ((>) and it reduces to

a^(aX+i?a/3 + ^'/S-) = (7),
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which shows that two straight lines can be drawn through G, and

similarly for the other tacnodal point.

293. There are four straight lines lying in the surface ivhich

intersect the nodal line; and each of these lines intersects one of the

lines which pass through the cuspidal line.

Let AD be one of these lines ; then UQ = r =H =0, and (6) and

(7) become

a^ {pa^ +fjB + g^S) + 2RayB' + {Pa^ + 7S)" = . . .(8),

and a'/S (pa + P-/3) = 0,

which shows that the line AG through the point G intersects AD.
Putting 7 = in (8), it becomes

a'^(pa + g8 + P/3) = 0,

which gives the other line lying in this plane ; and if in (8) we

put j~ka, the discriminantal equation will furnish one other

value of k, showing that there are two other lines.

294. The section of the surface by any plane through the point

of intersection of the two lines, has a rhamphoid cusp thereat.

The section by the plane 8 = ky is

(Pal3 + kryj + a (a, ^, yf = 0,

which shows that jB is a rhamphoid cusp.

295. Two Guspidal Lines. The line BD must also be a

generator of (8), which involves the additional equations H = R^

g = 2PR; whence the equation of the surface becomes

Oi'(uhio + oiu,+fy8) + (aU, + yBf = (9).

Each line has one tacnodal point lying in it ; and if G and D
be these points (.9) becomes

a" {a'uo+pa^ +f(Qy + R8) a +fryS} + (aU, + ry8y = 0... (10),

and the section of the surface by /3, which may be any plane

through G and D, consists of a pair of conies which touch one

another at these points. Also the tangent planes at G and D are

Qa + S=0 and i?a + 7 = 0.

296. The tangent plane at each tacnodal point intersects the

surface in a pair of straight lines ; each line of one system intersects

one line of the other ; also the two points of intersection of the lines

lie in a line passing through the point of intersection of the cuspidal

lines.
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The section of the surface by the tangent planes at G and D
are both represented by the equation

(P/S - QRaf + (uo - QRf) a' +pci/3 = (11),

which gives the projection on the plane ABC of the two lines ; and

since they are identical, each line of one system intersects each

line of the other system in a line passing through B.

297. The section of the surface by an arbitrary plane through

the point of intersection of the cuspidal lines has an oscnode thereat.

Let V=(Q + Rk)a + k<y; then the section of the surface by

the plane S = kry may be put into the form

(Pa/3 + VyY + a' {{u, - If^) oi + {p- Pf) /3} = 0,

which represents a quartic having an oscnode at B, and the line

of intersection of the plane, with that containing the cuspidal

lines, is the oscnodal tangent.

298. It is possible for the singular lines to coincide, in which

three respective cases the surface will possess a tacnodal, a

rhamphoid cuspidal, and an oscnodal line. These have been

considered in § 214; and in § 191 we have explained why it is

that an oscnode can be formed by the union of two cusps, although

its point constituents are three nodes.

Gyclides.

299. When the nodal conic is the imaginary circle at infinity,

the quartic is called a cyclide. The cyclide with four additional

conic nodes was first studied by Dupin*, and is usually called

Dupin's cyclide ; but the subject was afterwards taken up by

Caseyf in a paper, which contains an extension to quartic surfaces

of his previous investigations on bicircular quartic curves |. The

reader may easily adapt the investigations of Chapter IX of my
treatise on Cubic and Quartic Curves to cyclides, and I shall

therefore deal briefly with the subject.

* Applications de Geometric, 1822.

t Phil. Trans, clxi. (1871), p. 585. See also Clerk-Maxwell, Scientific Papers,

vol. u. p. 141 ; and Qaart. Jour. 1867.

X Trans. Roy. Irish Acad. vol. xxiv. p. 457.
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300. If OT he the perpendicular from any fixed j)oint on to

the tangent plane at any point Q of a fiwed quadric surface ; and

if two points P, P' he taken on OT such that TP = TP', and

OT^-PT^ = h\

where S is a constant, the locus ofP and P' is a cyelide.

When the fixed quadric is an ellipsoid or a hypei'holoid, the

itnaginary circle at infinity is nodal ; when the quadric is a sphere,

the circle is cuspidal; and when the quadric is a paraboloid, the

surface degrades into a cubic which contains the imaginary circle at

infinity.

Let EYhe the perpendicular from the centre E of the quadric

on to the tangent plane at any point Q. Let (/, g, h) be the

coordinates of referred to E
;

(x, y, z) those of P referred to 0.

Let OP = r, EY=p, and let (X, //,, v) be the direction cosines of

EY.

Then OT=p -fX- gfi- hv,

PT=r-OT,
8^ = 2rOT - r\

whence r^ + 2r (/A, + ^'/u- + Ai*) + S^ = 2rp (1).

(i) When the quadric is central

p^ = o?X' + ^fj? + c'^v^,

and (1) becomes

(r^ + 2/^ + 2gy + Ihz + ^f = 4 {a'x'' + bhf + c-z") . . .(2).

(ii) When the quadric is a sphere, a — h = c; and (2) may be

put into the form

(r^ + 2fx + 2gy + 2hs + S^ _ 2a^f
^

= 4a^ (a"- - 2fx - 2gy - 2hz - 8-) . . .(3),

which is the equation of a quartic having a cuspidal conic.

(iii) When the quadric is the paraboloid

y'^/l + z'^jm = 2x,

then 2pX + l/x^ + nv^ = 0,

and (1) becomes

X (r" + 2fx + 2gy + 2hz + P) + ly'- + mz"" = (4),

which represents a cubic surface passing through the imaginary

circle.
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301. A cyclide is the envelope of a variable sphere, whose centre

moves on a fixed quadric called the focal quadric, and which cuts a

fixed sphere orthogonally.

The moving sphere is called the generating sphere, and the

fixed sphere is the sphere of inversion ; and the theorem may be

proved in the same manner as the corresponding one for bicircular

quartic curves. See Cubic and Quartic Curves, § 205.

302. There are five centres of inversion, which are the vertices

of Kumi7iers five cones.

In (2) the origin is the centre of the fixed sphere, and if (2)

be inverted with respect to 0, the inverse surface is another cyclide;

hence is one centre of inversion. Also the form of (2) shows that

the surface a^x^ + h-y"^ + c'^z^ = is one of Rummer's cones, and that

its vertex is ; and since there are five of such cones, the surface

has five centres of inversion.

A surface which is its own inverse with respect to a point is

called by Darboux an anallagmatic^ surface.

303. When the sphere of inversion touches its corresponding

focal quadric, the point of contact is a node on the cyclide.

Let R be the point of contact
; (^, 77, ^) the coordinates of R

referred to E. Then

^=/+ax,, 7} = g + Sfi, ^=h + Sv,

a'\=p^, ¥fx=pr), C'v=p^,

p =f\ + gfi + hv + S.

Substituting in (2) it becomes

(r2 + 2x^ +2yr] + 22^+ 2p8y = 4 {a^a;^ + by + c~z'

+ 2pB (x^ + yv + zO + P"^-

The terms of lowest dimensions are

a;2 (f + ph - ft2) + 3/2 (^^2 ^_ pg _ js'i _,_ ^2 (^2 + pg _ c2)

+ 2yzr]^+ 2zx^^ + 2xy^rj = 0,

which shows that J? is a conic node on the surface. The condition

* a privat. a\Xa7/xa=that which is given or taken in exchange. Inversion

usually changes a surface into a different one, but this does not occur when these

sui'faces arc inverted with respect to the five centres of inversion.
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that R should be a binode is that the discriminant of the nodal

cone should vanish, which furnishes the equation

ph — a^ pB — Jf p8 — c^

304. The following theorem furnishes a method of generating

nodal cyclides.

The inverse of a quadric surface with respect to an ar-bitrary

point is a uninodal cyclide. That of a quadric cone is a hinodal

cyclide, whos6 second node is the inverse point of the vertex of the

cone. That of a quadric of revolution is a trinodal cyclide. That

of a circular cone or cylinder is a quadrinodal cyclide.

Uninodal Gyclides. If Un = {x, y, 2y\ the equation of any

quadric surface referred to an arbitrary origin is

(k'+u,y = u, (5),

whence inverting with respect to 0, (5) becomes

(r^ + u^y = U2 (6),

which is the equation of a uninodal cyclide, whose node is at 0.

These cyclides are also the pedals of central quadrics with

respect to an arbitrary point 0, whose coordinates referred to its

centre are (f g, h). For if r and j9 be the perpendiculars from

and the centre on to the tangent plane at any point P,

r + \f+fMg + vh=p,

whence (r^ +fx + gy + hzf = a^oc^ + h^y^ + d^z^,

which is of the form (6).

Since ordinary inversion is a special case of the quadric trans-

formation in the Theory of Birational Transformation, it follows

that any quartic having a node and a nodal conic can be trans-

formed into a quadric surface and vice versa. Let the quadric be

(a + ^t^)2= ^^2 (7),

and employ the equations

aa'/O' = /S/yQ' = 7/7' = 8/S',

and (7) becomes (a'w/ + 11')^ = ol"^u<^,

which is the equation of the quartic in question.

305. Transformation of a Surface into a Plane. The pre-

ceding theorem is a very simple example of a general theory,

B. 14
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which has been studied by Cremona and various other geometers,

and consists in ascertaining

—

what surfaces are capable of being

transformed into a plane, in such a manner that each point on the

surface corresponds to a single point on the plane and vice versa ?

A quartic having a conic node at an arbitrary point and a

nodal conic in an arbitrary plane can be birationally transformed

into a central quadric, and if the centre be taken as the origin, the

Cartesian equation of the latter is af/a^ + y^/b" + Z'/c"^ = 1. In this

write x/a = x', &c., and it becomes a sphere; and if the latter be

inverted with respect to a point on its surface, it becomes a plane.

Hence the quartic in question can be transformed into a plane, by

means of an algebraic system of equations between the coordinates

of any point on the surface and the corresponding point on the

plane ; also every curve on the surface can be similarly transformed

into a plane curve. Surfaces of this character are called unicursal

by Cayley and homaloidal* by Cremona; the algebraic relation

between the two sets of coordinates is called a birational or

Cremoiiianf transformation ; and the condition that such a rela-

tion should be possible is, that the coordinates of any point on the

surface to be transformed should be expressible as rational functions

of two parameters and (p.

When a surface is not homaloidal, its coordinates are usually

expressible in terms of two parameters by means of elliptic or

other transcendental functions; but this branch of the subject

cannot be studied without a knowledge of the Theory of

Functions.

306. Binodal Cyclides. Since the inverse of a conic node is

another conic node situated at the inverse point, it follows that

when the cyclide is binodal the quadric must be a cone. Let the

vertex of the cone be the point x =f then its equation is

{x -ff + Gy-" + Hz^ + 2F'yz + 2 (^ -/) {gy + hz) = 0. . .(8),

the inverse of which with respect to the origin is of the form

(?-^ —fx — gy — hz)' = Ay" + Byz + Cz" (9).

The planes Ay^ + Byz + Cz^ = are conic tropes, which touch

the cyclide along a pair of circles intersecting at the two nodes.

* 6/j.a\6s = level ; eWov= appeared.

t Cayley, Proc. Land. Math. Soc. vol. iii. p. 171 ; G. M. P. vol. vii. p. 189

;

Cremona, Gott. Nach. 1871 ; Math. Ann. vol. iv. ; Rend. 1st. Lombardo, 1871 ; Ami.

di Mat. vol. v. ; Ace. Bologna, 1871-2 ; Nother, Math. Ann. vol. ni.



Vte-

BINODAL CYCLIDES 211

By § 29; it follows that when a surface possesses a conic trope

there are in general 2(n—l) conic nodes lying in the conic of

contact, which in the case of a quartic equals 6. The curves of

contact of the two tropes intersect at the two conic nodes on the

surface ; and to find the position of the other four, the simplest

course is to transform (9) to quadriplanar coordinates, and it

becomes
(au,+p^"^ + ^v, + sy8y = a'ryB (10),

where y and S are the two tropes, C is one of the points where

the plane <y cuts the nodal conic and D is one of the points where

S cuts this conic. The point C is a pinch point on the nodal conic,

and the other point C where 7 intersects the conic is another

pinch point ; hence each of these two pinch points are equivalent

to two conic nodes on the conic of contact, which makes 6.

307. A special case arises when the tropes intersect in a

line lying in the plane of the nodal conic ; for the equation of the

surface must be of the form

(r^ + 2fx + 2gy + 2hzy + (x - a) {x-h) = 0,

whence transferring the origin to the centre of the sphere, this

becomes

{r^^cJ + {a)-A){x-B) = (11),

which is a surface of revolution, whose meridian curve is a hemi-

symmetrical bicircular quartic curve. Since these curves possess

six pairs of stationary tangents which intersect on the axis of x,

the surface possesses six stationary quadric tangent cones whose

vertices lie in a straight line. The curve also possesses a pair of

double tangents perpendicular to the axis of x, and three pairs

which intersect on that axis ; hence Rummer's cones consist of

the two tropes each repeated twice, and three cones whose vertices

lie on the line passing through the vertices of the stationary

tangent cones.

When (11) is transformed to quadriplanar coordinates, we

must recollect that the point A, the line AB and the plane AGD
are determinate, but the planes 7 and S may be any planes through

AB. We shall therefore choose them so as to pass through the

two points where the tropes intersect the nodal conic. Hence

(11) becomes

(/3^ + 78 + a.J + {Aa - /3) (Ba - /3) a^ = 0,

14—2
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which shows that the points G and D are tacnodal points on the

nodal conic.

308. Trinodal cyclides. When a cyclide is trinodal, it must

possess a pair of tropes, and two of the nodes are situated at the

points of intersection of the circles of contact, whilst the third

node is isolated. If therefore the cyclide be inverted with respect

to the third node, the surface becomes a quadric, and the two

tropes become a pair of spheres passing through the third node,

which touch the quadric along a pair of circles. Hence the quadric

must be one of revolution.

Let u =fx-\-gy + hz, then the equation of the quadric is

ax^ + 6 (2/2 + ^2^ + w + 1 = 0,

the inverse of which is

r^-\-¥r''{uJth¥) + k'{a-h)x'' = 0,

which may be written in the form

{2^2 + A;2 (w + hk^)Y + k^ {4 (a -h)x^- (u + h^f] = 0. . .(12),

and the last term equated to zero gives the two tropes.

309. Equation (12) includes several well-known surfaces.

When u =fx, the third node is situated on the axis of revolution,

and the meridian curve is a hemisymmetrical trinodal bicircular

quartic ; and the surfaces include those formed by the revolution

of the lemniscate, the limagon, the cardioid and the three-cusped

hypocycloid about an axis of symmetry. In the case of the

lemniscate the imaginary circle is a biflecnodal one, and the origin

is a biflecnodal point. The quadriplanar equation is of the form

o?ii^-\-u^ = ^, which shows that the eight common generators of the

cones ^2 and ii^ lie in the surface ; whilst in the case of the three

last surfaces the imaginary circle is cuspidal.

310. Quadrinodal Cyclides. In this case the quadric is a

circular cone, and if (/, g, h) be the coordinates of its vertex, its

equation is

Aix-fy + B(y-gy+B(z-hy^O (13),

the inverse of which is

(4/2 + B(g^ + h')] r^ - 2r2 (Afx + Bgy + Bhz)

+ Ax''-\-B,f + Bz"^0 ...(14).
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One of the nodes is at the origin, the second is the vertex of

the cone, and the two others are the points of intersection of the

circles of contact of the two tropes

(J/^ + Bg"' + Bh^) {A -B)x^

-{Afa; + Bgy + Bhz-^By = ...(15).

311. This cyclide is usually known as Dupins cyclide, by

whom it was first studied. It may also be defined as :—(i) The

envelope of a sphere, whose centre moves in a plane and which

touches two given spheres, (ii) The envelope of a sphere whose

centre moves on a conic and touches a given sphere, (iii) The

envelope of a sphere whose centre inoves on a conic and cuts ortho-

gonally another sphere. Also the lines of curvature are circles.

312. When the centre of inversion lies on the axis of the

cone, the cyclide becomes an anchor ring, and is sometimes called

the ring-cyclide. When the line about which the circle revolves

lies outside it, all the double points are imaginary ; but when it

cuts the circle two of them are real. The remaining two imaginary

nodes lie on the imaginary circle.

313. There are two other forms of quadrinodal cyclides called

the horned-cyelide, consisting of two sheets external to one another,

which are connected at the two real double points ; and the spindle-

cyclide, consisting of two sheets internal to one another similarly

connected. When the cyclide is generated as the envelope of a

sphere whose centre lies on a parabola, the surface becomes a

quadrinodal cubic, which passes through the imaginary circle, and

there are two forms called the parabolic horned- cyclide in which

two of the double points are real, and the parabolic ring-cyclide in

which all these points are imaginary. Figures of these surfaces

have been drawn by Maxwell*.

314. Since a nodal conic on a quartic reduces the class by 24,

the classes of the four species of nodal cyclides are respectively

equal to 10, 8, 6 and 4, When the imaginary circle is cuspidal

the class of the cyclide is 6, and there are only two subsidiary

species in which the surface has one isolated double point, which

may be a conic node or a binode.

* Quart. Jour. 1867 ; Scientific Papers, vol. ii. p. 144.
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.

Steiner's Quartic.

315. The reciprocal of a quadrinodal cubic surface is called

Steiner's quartic, and in | 93 its equation is shown to be

(a^ + yS^ + 7" + h- - ^l^r^ - 27a - 2a/3 - 2aS - 2/SS - 278)'''

= 64a/37S ...(1).

316. The surface has four conic tropes which form a tetra-

hedron ABGD. The conic of contact of the trope a touches the lines

CD, DB and BC at the points C, F' and H' ; those situated in the

planes /3, 7, 8 touch these lines at the same points respectively ; and

the conies in the planes 7 and S ; 8 and /3 ; yS and 7 respectively

touch AB, AG and AD in three points B', E' and G'. Also the

three lines B'G', E'F', O'H' intersect at a point 0, whose coordinates

are a = /3 = y = S.

In (1) the planes a, ^, 7, S are conic tropes, and the conic of

contact in the plane a touches GD at a point G' whose coordinates

are a = 0, /3 = 0, 7 = 8; and this is the point where the conic of

contact in the plane ^ touches GD. And similarly for the other

five edges of the tetrahedron.

The equations of B'G' are

hence B'G' passes through the point ; and similarly E'F', G'H'

pass through the same point.

317. ' The lines B'G', E'F', G'H' are nodal lines on the surface,

and their point of intersection is a cubic node of the third kind.

Also each nodal line intersects two of the conies of contact in points

which are pinch 'points on the nodal line.

Change the tetrahedron to AB'G'D ; then we must write

a: = a-^, B' = S-y,
and (1) becomes

{(a'-8')'-4a'7-4/38'p=16/37(a' + S0' (2),

which shows that the line a' = 0, B' = or B'G' is a nodal line

on the surface. Similarly E'F' and G'H' are nodal lines which

intersect in the point 0.

Again the coefficients of y8^ and 7^ in (2) are 48'^ and 4a'-

respectively, which shows that B' and G' are pinch points on B'G'
;

accordingly there are only two pinch points on each nodal line,

the remaining two being absorbed at the point 0.
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. In (2) transfer the tetrahedron to AOG'D by writing 7 = ;8 — 7'

and it becomes

{(a' - hj + 4aVp = 8y3 (a'^ - h'') (a' -h' + 27'),

which shows that is a cubic node of the third species.

318. Every quartic which has three nodal lines intersecting at

a point is a Steiners quartic.

Let AB, AG, AD he the nodal lines, then the equation of the

surface is

7^S" +W + /3'7' + yS7S (Z/3 + m7 4- nh) + ka^^h = . . .(3).

The section of (3) by the arbitrary plane a + p^ + 5-7 + 7^S =
is

+ (m - qk) ry i- (n - rk) 8} = . . .(4).

There are four sets of values of ^, q, r, such that (4) becomes a

perfect square, one of which is I—pk = m — qk = 71 — rk = 2; hence

the surface has four conic tropes, and by changing the tetrahedron

so that its faces are the tropes, (4) can be reduced to (1).

319. An arbitrary plane section of the surface is a trinodal

quartic, whose nodes are the points where the plane is intersected

by the three nodal lines ; and every tangent plane cuts the surface

in a pair of conies, which intersect in these three points and also

in the point of contact.

We have shown in § 56 that the Hessian of a surface passes

through the curve of contact of every conic trope; and in § 58

that every nodal line on a surface gives rise to a quadruple* line

on the Hessian ; and since the Hessian is a surface of the 8th

degree, the spinodal curve consists of the three nodal lines each

repeated eight times and the four conies of contact, which together

make up a curve of the 32nd degree.

320. Properties of Steiner's quartic may also be obtained by

reciprocating known properties of a quadrinodal cubic. Thus an

arbitrary section of the cubic is an anautotomic cubic curve,

* The equation

represents a surface of the (n + l)th degree on which AB is a multiple line of order

n; from which it can easily be shown that JB is a multiple line of order 4?i- 4 on

the Hessian. Putting n— 2, we obtain the theorem in question.
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hence :

—

The tangent cone from an arbitrary pomt to Steiner's

quartic is a sextic cone having nine cuspidal generators. Also since

the tangent plane to the cubic cuts the surface in a nodal cubic

curve, the tangent cone from a point on the quartic is a tricuspidal

quartic cone*.

Nodal Twisted Cubic Curve.

321. The theory of surfaces having a nodal twisted cubic

curve is given in |§ 225— 6, where it is shown that the number of

pinch points is 6?^ — 20. Hence a quartic surface possesses four

pinch points.

Every quartic having a nodal twisted cubic is a scroll ; also the

two lilies joining any point on the curve with the points in which

the nodal tangent planes respectively intersect the cubic curve, are

generators of the scroll.

Let A be any point on the cubic ; then since the nodal tangent

planes at A have bitactic contact with the curve at A, each plane

can cut the cubic in only one other point. Let these poiots be

P and Q. Then since every line through J. in a nodal tangent

plane has tritactic contact with the surface at J., it follows that

the line AP has tritactic contact with the surface at A and

bitactic contact at P, and therefore intersects the surface in five

points. Hence AP, and therefore AQ, both lie in the surface;

and therefore the latter is a scroll of which AP and AQ are

generators.

322. Only one generator passes through each pinch point, and

the former is a singular line on the quartic.

When ^ is a pinch point, the two nodal tangent planes, and

also the lines AP and AQ coincide ; and the tangent plane at the

pinch point touches the quartic along the line AP and intersects

the surface in a residual conic. Hence the line AP is a singular

line analogous to the curve of contact of a trope.

323. The preceding theorems can be proved analytically as

follows. Let

X = a7 — 8-, /ji = y8~(x/3, v = fih — <f (1),

* For further information, see Cremona, Crelle, vol. lxiii. p. 315 ; Kummer,

Ibid. vol. Lxiv. p. 6C ; Shrotter, Ibid. p. 79 ; Cayley, C. 31. P. vol. ix. p. 1 ; Proc.

Land. Math. Soc. vol. v. p. 14.
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then the equation of the quartic is

(a% h\ c\f, g, hW /JL, vy = (2),

and that of the nodal tangent planes at A is

aV + W-2AyS7 = (3).

Accordingly the latter intersect in the line AD, which is the

tangent to the cubic at A. The two generators of the quartic,

which pass through A, must obviously be generators of the cone

y = 0, and therefore lie on the quartic

a2\2 + ^,2^2 ^ 2AX/i = (4).

Eliminating S between v = and (4), we obtain

(al3'-ry^){aY + ¥l3'~2h^y)=0 (5),

which shows that the cone v intersects the quartic in the nodal

cubic twice repeated, and in two straight lines AP and AQ which

lie in the nodal tangent planes (3). Writing ^8 for 7^ in (3), it

follows that the equation of the plane PAQ is

a^B + b^fi-2hy = (6).

When J. is a pinch point, h=aby and (3) and (6) become

ay-h/3 = 0, a^B + b'^-2aby = (7),

the first of which is the tangent plane at the pinch point, and the

second is the tangent plane along the singular line. Equation (2)

now becomes

{a\ + bfiy + v(c^v + 2ffi + 2g\) = 0,

the section of which by the second of (7) can be put into the form

(aB - byf [{aoL - bSf - c'v - 2ffx - 2g\] = 0,

which shows that the section consists of the singular line twice

repeated and a conic,

324. Whe7i a quartic possesses a cuspidal twisted cubic curve,

it is the developable enveloped by the plane

ud' + Sv6' + Sw0 + t = 0,

and its equation is

{wv-uty = 4i{uw-v^){vt-w^) (8).

Let \ = vt — w^, fi = wv — ut, V = nw — v^,

and let the equation of a quartic having a nodal twisted cubic be

bfi^ = 2g\v ...(9).
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By § 226, the equation of the quadric passing through the pinch

points is obtained from the condition that the line

\u + fiv + vw =

should touch (9), and is

2buw = gv^ (10), ^

and when the cubic is cuspidal every point must be a pinch point,

in which case (9) must contain the cubic and therefore 26 = ^,

which reduces (9) to (8).

Quartic Scrolls.

325. The theory of quartic scrolls has been discussed by

Cayley* and Cremona-)-, who divided them into 12 species. The

general theory of scrolls will be considered in the next chapter,

and we shall proceed to examine the properties of quartic scrolls.

326. Every quartic which has a triple line must necessarily

be a scroll, since any section through the triple line consists of

the line three times repeated and another line. By § 215, a triple

line of the first kind has four pinch points, and if A and B be two

of them and (7, B) the tangent planes thereat, the equation of the

surface must be of the form

ay' {py + qB) + y8S^ {ry + sB) = {F, P, Q, R, O^y, By...{l)

or OLy%+ ^B'Wi = V4

.

The section of the surface by the plane B is the line AB^ and

the line pa = F>y, and if the latter be taken as the side BG, F= 0.

Similarly the section by the plane 7 consists of AB^ and the line

8/3 =GB, and if this be taken as the side AD, G = 0. We can

therefore reduce (1) to the form

ay% + ^B'w, = yB(Py'+QyB+RB') (2).

The tangent plane at C, which may be any point on BG, is

poi = PB, and the section of (2) by this plane consists of BG' and a

conic passing through B. Hence BG is a singular line the tangent

plane along which is fixed, and if this plane be taken as the plane

a, P= 0. In like manner the tangent plane along AD is fixed in

* CM. P. vol. V. pp. 168, 201 and vol. vi. p. 312 ; Phil. Trans. 1864 and 1869.

t Mem. di Bologna, vol. viii. (1868). See also, Chasles, C. B. 1861 ; Rohn,

Math. Ann. vols. xxiv. and xxviii. ; Segen, Crelle, cxii.
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space, and if the plane be taken as the plane /3, R = 0. Accord-

ingly (2) can be reduced to

ay^Vi + ^S'w, = Qy'B' (3).

The preceding argument shows that:

—

Through each of the

four pinch points a singular line passes, the tangent plane along

which is fixed in space.

327. The surface (3) gives rise to four species of scrolls.

(i) dth species of Gayley ; 8th of Cremona. Since every

plane through AB intersects the surface in AB^ and a line which

passes through AB, all the generators pass through this line.

Also writing the equation of the surface in the form

ajB {py + qS) + ^Vs = v^

it follows that each of the tangent planes at the point A intersect

the surface in a line passing through A , hence :

—

Through every

point on the triple line three generators can he drawn, which lie in

different planes

328. (ii) Zrd species of Cayley ; 9th of Cremona. When
Q = 0, the line CD lies in the surface ; hence there is one

generator which does not cut the triple line. The equation of

the surface is now
ary% + l3B''w, = (4),

and the section of the surface by the plane /3 = \a is

7-V1 + XS^Wi = 0,

and therefore consists of three straight lines which intersect on

the triple line. Hence :

—

Through every point on the triple line

three generators can be drawn, which lie in a plane passing through

the generator which does not intersect the triple line.

329. (iii) 11th species of Cayley ; ^rd of Cremona. When
ps = qr, the triple line becomes one of the second kind, since one

of the tangent planes is fixed in space ; and (3) may be written

(ay^ + 13^) (py + qB) = Qy^S' ....... .. .:...,. (5).

There are only three distinct pinch points, since by § 216 one-

pair coincide; and by forming the equation of the discriminantal

surface as in § 216, it follows that the points A and B are the

distinct pinch points, and that the other two coincide at a point



220 QUARTIC SURFACES

A', such that q^a+p'^ = is the equation of the plane A'GD.

Writing ^' = q^a-\-p^^, (5) becomes

a (^7 - qh) (py + qSf + ^'B' {py + qB) = Qp'y'B' (6),

which shows that A' is a pinch point.

Writing (6) in the form

ayB (py + qB) + ^yv^ = v^

,

it follows that the planes B and py + qB intersect the surface in

AB^ and two lines passing through A ; but that the fixed plane y
intersects the surface in AB^, hence:

—

Through every point on the

triple line only two distinct generators can he drawn, since the

third one coincides with AB.

330. (iv) Qth species of Gayley ; 10th of Cremona. In this

case the triple line is of the third species, one of the tangent

planes being torsal and the other two fixed in space. There are

only two distinct pinch points, by reason of the fact that they

coincide in pairs. The equation of the surface is

ay-'B + ^yB'^v, (7),

where A and B are the pinch points.

331. (v) 10^^- species of Cayley ; 1st of Cremona. The

quartic has a proper nodal twisted cubic, and its equation is

{a, b, c,fg,h'^\,fji, vy = 0,

where (X, /x, v) have the same meanings as in | 323, where this

surface has been discussed.

332. (vi) 8th species of Cayley; 7th of Cremona. The

scroll* ^(1, 3^) is a special case of the last species, since every

generator intersects the cubic twice and also intersects a fixed

straight line, whose equations may be taken to be

la + m^ + ny -^-pB = 0,

l'a + m'^-\-n'y+p'B = 0.

Also if a = mn —m'n, f=lp' —I'p,

h = nl' —n'l, g = 7np' — m'p,

c = Im' — I'm, h = np — n'p,

where a, b, c, f, g, h are the six coordinates of the line, the identical

relation

af+bg + ch = (8)

Exists between the six coordinates.

* The notation for scrolls will be explained in the next Chapter.



QUARTIC SCROLLS 221

Let \ =
fj,
= v — be the equations of the cubic, where

\ = /3S-7^ iii = /3y-0LS, v = ay-^'' (8a),

then the parametric values of the coordinates of any point on the

cubic are p, p6, p6^, p6\ and therefore the equations of the line

through any two points 6 and on the cubic are

a- p _ /3-pd _ j-pO^ _ B-pd'

p — cr pd — a(f) pd'^ — cr^^ pd"^ — acf)^ '

which shows that the coordinates of any point on the line are

given by equations of the form

«=! + «, ^ = + (o(f), J = 6^ + &)</)-, B = 0^ + Q)(f>^,

where to is a variable parameter which depends upon the position

of the point (a, j3, j, 8) on the line. Substituting these values in

(8a) and rejecting the common factor Q)^{d — (f)Y, we obtain

\: fi:v = d(t):-e-(j>:l.

The conditions that the variable line should intersect the

directrix line are

I +m6 +n6'' +pe^ +q)(1 +m4> +w<^2 ^.^^s^^q,

r + m'd + n'^2 + 'p'&' + « (r + m'<^ + n'^'' + p'<^^) = 0,

eliminating w and dividing out by the common factor ^ — 0, we
obtain

c-h((f> + 0) +/{((/. + ey - (jiO] + a(f)e+g(f>e (<t>
+ e) + hj^'^e^

=

o.

tuting the values of <p9 and ^ + ^ in terms

les

cv^ + hixv +f(fi^ - \v) + a\v - gXfi + hX" = 0,

or (A, B, C, F, G, ff^X, fi, vy = (9),

where A, B, G, ^F, 2G, 2H=h,f, c, b, a-f, -g,

which by virtue of (8) becomes

AG+B^^WG-^FH= (10).

Hence :

—

In order that the scroll (9) should belong to the species

8 (1, w^), which is generated by a straight line which intersects the

cubic twice and the given straight line once, it is necessary that the

coefficients should be connected by the relatio7i (10).

Since a twisted cubic cannot possess a trisecant, it is impossible

for scrolls of the species S (8^) to exist.

Substituting the values of
(f>6

and ^ + ^ in terms of \, jj,, v

this becomes
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333. (vii) 7th species of Gayley ; '2nd of Cremona. The

surface possesses a nodal conic and a nodal line which cuts the

conic.

Let J.5 be the nodal line, (a, O) the nodal conic where

n = X7S + /x8y8 + 1^/87

;

then the equation of the surface is

a? (Ly-" + MyB + NB') + a(jjy + qS) ^ + D,' = .. .(11).

Since the points C and D are any points on the nodal conic, let

them be those in which the nodal tangent planes at A cut the

conic; then L = N=0. The section of the surface by the plane

AGJD now becomes

yB{Ma^ + \0L{py + qS) + X'y8} = (12),

which consists of a conic cutting the nodal conic at C and D, and of

the straight lines AC and AD. These lines are obviously generators

of the scroll.

Returning to the more general equation (11), in which C is

any point on the nodal conic, transfer the vertex A of the tetra-

hedron to A', where ^ = ka is the equation of the plane A'CD.

Then (11) becomes

a% + awi [X7S + (fiS + vy) (ka + 13')] + {\yS + ...^ = 0,

and the condition that the line A'G should lie in the surface is

L +pvk + k'^v^ = 0,

which shows that there are two points A', corresponding to any

point G on the nodal conic, such that two lines GA', GA" lie in

the quartic surface. Hence the latter is a scroll. Also if A be

one of these points, Z = and (11) becomes

a^S (ilf7 + i\^S) + a^ifl + O^ = (13),

the section of which by the plane S is

72/8(^a + i//3) = 0.

Hence :

—

Through every point on the nodal conic tiuo straight

lines can he drawn lying in the surface, both of which inteisect

the nodal line ; also the two points of intersection have one conmion

tangent plane in which both the ttuo lines lie.

The section of (13) by an arbitrary plane through AG consists

of this line and a cubic curve; but from the first portion of this

article, it is obvious that there is a certain position of this
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plane such that the section consists of the line AG, another line

AD' intersecting the nodal conic in D', and a conic cutting the

nodal conic in G and D\ Hence :

—

The scroll may be generated by

a line which intersects (i) the line AB ; (ii) a conic passing through

B and lying in the plane BGD ; (iii) a conic lying in the plane

AGD, which intersects the first conic in G and D, but which does not

pass through A.

334. (viii) llth species of Gayley ; Uh of Gremona. Equation

(11) shows that both nodal tangent planes are torsal, hence the

nodal line is of the first kind ; but if iV^= the tangent plane 7 is

fixed and the nodal line becomes one of the second kind. The
section of the surface by the plane 7 consists of AB^ and a line

through the point B, where the nodal line intersects the nodal

conic. In both cases an arbitrary section of the surface by a plane

through the point B has a tacnode thereat; and therefore the

section belongs to the same species of curves as the conchoid of

Nicomedes, which possesses a node and a tacnode.

335. (ix) 2nd species of Gayley ; 5th of Gremona. In this

case the nodal conic degrades into two straight lines ; hence the

nodal curve consists of three straight lines, one of which cuts the

remaining two which lie in different planes. Hence if AB, BD and

DG be the three lines, the equation of the surface is

a?h (3Iy + M) + a(py + qS) jSy + jSy- = (14).

336. (x) 4<th species of Gayley; 12th of Gremona. The
surface possesses a tacnodal line of the fi7^st kind, and its equation

may always be reduced to the form

{aB-l3j + v.y + v, = (15),

and the section of the surface by an arbitrary plane through the

tacnodal line consists of two straight lines.

It is a remarkable fact that quartic surfaces which possess

tacnodal lines of the second kind are not scrolls; for the equation

of the quartic is

a^ry^ + 27 (av., + /3w2 + w-,) + Vi = 0,

and the section by an arbitrary plane through AB consists of AB^
and a conic, and it is only for certain positions of the plane that

the conic degrades into two straight lines. Similar observations

apply to quartic surfaces possessing rhamphoid cuspidal and

oscnodal lines.
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337. (xi) bth species of Gayley ; &h of Cremona. It is

possible for a quartic to have a tacnodal line AB of the first kind,

and a nodal line BD intersecting it, in which case its equation is

(aS - /37 + 7^0' + 7'V2 = (16).

338. (xii) 1st species of Gayley ; lltli of Cremona. The
surface possesses two nodal lines AB, CD which lie in different

planes, and the equation of the surface is

o?v^ + aPw^ + ^'a^ = Q (17),

from which it can be shown that if A' be any point on AB, there

are two positions of A' such that the line GA' lies in the surface.



CHAPTER VII

SCROLLS

339. The envelope of a plane which possesses one degree of

freedom is a developable surface ; but that of a line is a scroll,

since it is not necessary that each line should intersect the next

consecutive one. The theory of scrolls has been discussed in three

memoirs by Cayley*, of which some account will be given.

340. When a straight line moves in such a manner that it

intersects three twisted curves, its envelope is a scroll.

Let be any point on the first curve ; and with as a centre

describe the cones standing on the second and third curves. Then

the common generators of the two cones intersect the three curves

;

and if OPQ be one of them, the direction cosines of this line will

be functions of the parameter 6 of and of the constants of the

other two curves. Accordingly the coordinates of the line will be

functions of a single parameter 6, and therefore its envelope is a

scroll.

The three curves are called directing curves.

341. We shall now explain the notation employed.

The symbols 8 (I, m, n), S (m, n^), 8 (n^) will be used respec-

tively to denote the scrolls generated by a straight line which

intersects (i) three curves of degrees I, m and n
;

(ii) the curve m
once and n twice

;
(iii) the curve n three times. Hence the last

scroll is the one generated by the trisecants of the curve n. In

like manner, 8(1, m, n), 8(1, 1, n) &c. denote the scrolls generated

* Cayley, C. M. P. vol. v. pp. 168 and 201, vol. vi. p. 312 ; Salmon, Camb. and

Dublin Math. Jour. vol. viii. p. 45 ; Cremona, Mem. di Bologna, vol. viii. (1868) ;

Schwarz, "On quintic scrolls," Crelle, vol. lxvii. (1868).

B. 15
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by a line which intersects (i) a straight line and the curves m and

n
;
(ii) two straight lines and the curve n. These symbols will also

be frequently used to denote the degrees of the scrolls.

When the curve m consists of a curve I indefinitely close to

the first curve I, the symbol 8 {I, I, n) is used to denote the scroll.

In this case the curve I is called a doubly directing curve, and

we shall hereafter show how to find the equation of the scroll

when Hs a straight line.

342. Since every straight line which intersects three curves

possesses one degree of freedom, a determinate number of lines

exists which intersect four curves of degrees I, m, n and p ; and the

symbol G (I, m, n, p) will be used to denote the number of such

lines ; also such symbols as G (1, 1, n, p) &c. denote the number of

lines when I and m are straight lines. The symbols G {I, m, n?),

G (m^ 'n?), G (m, n^) respectively denote the number of lines which

intersect (i) the curves I and m once and n twice
;

(ii) the curves

m and w twice
;

(iii) the curves m once and n three times.

343. To prove that

S(l, m, n) = lS{l, m, n) = lmS(l, 1, n) = lm7iS(l, 1, 1)...(1),

where S denotes the degrees of the respective scrolls.

The degree of a scroll is equal to the number of points in

which an arbitrary straight line intersects it, and this is equal to

the number of generators which intersect the line. Now the curve

I intersects the scroll 8(1, m, n) in 18 {\, m, n) points, and since

the generators through each of these points intersect the line 1,

this must be the number of generators of the scroll 8 {I, m, n)

which pass through 1, and is therefore equal to the degree of this

scroll. Hence
8 {I, m, n) = lS(l, m, n).

Proceeding in the same manner we obtain the remaining

formulae (1).

344. The degree of the scroll whose directing curves are I, m, n

is 2lnin.

From the last article it follows that the degree of the scroll is

lmnS(l, 1, 1), and we shall now show that the second scroll is a

hyperboloid.
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The hyperboloid fia'y = A./3S (2)

obviously passes through the lines AB and CD, and also through

the line

a + \S = 0, l3 + fiy = (3).

Now the line fiy + e8 = 0, oc + \^/e = (4),

where ^ is a variable parameter, is a generator of (2) ; also the

three planes (3) and the first of (4), intersect in the point

a = - XjS/e = \fijl6 = - \S,

which lies in the second of (4) ; hence the hyperboloid (2) is the

envelope of the line (4), which intersects AB, CD and (3),

Accordingly S (1, 1, 1) = 2, which gives

8 {I, m, n) = 2lmn.

345. The three directing curves I, ni and n are multiple

curves of orders mn, nl and Im respectively on the scroll ; for if P
be any point on I, the cones whose common vertex is P and which

stand on the curves m and n have mn common generators, hence

mn generators of the scroll pass through P.

346. Every scroll of degree v has in general a nodal curve,

which is intersected by every generator in v—2 points. Also the

tangent plane along a generator is a torsal plane, which touches the

generator at only one point.

The section of the scroll by any plane through a generator G
consists of the latter and a curve of degree v — 1, which cuts G
in the same number of points P, Pi ... P„-2. Through ever}?-

ordinary point on this curve only one generator of the system

in general passes ; hence the generator G will belong to one of

these points P, whilst a different generator will pass through the

remaining v — 2 points. The plane will therefore be a proper

tangent plane at P; but at each of the other points Pj, Pg ...

there will be two tangent planes corresponding to the two

generators passing through it ; hence these are fixed points lying

in a nodal curve ; also since the point of contact P moves along

the generator as the plane rotates round it, the tangent plane to a

scroll is a torsal plane.

347. Let the directing curves m, n ; n, I ; I, m intersect one

another in p, q and r points respectively ; then the degree of the

scroll is

2lmn — pi — qni — rn,

15—2
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whilst I, m and n are multiple curves of orders mn—p, nl — q,

Im — r respectively.

Let P be one of the points of intersection of m and n ; then

the complete scroll will be an improper one, consisting of the cone

whose vertex is P which stands upon the curve I, and a residual

scroll of degree ^Imn — I. Accordingly if the curves m and n

intersect in p points, the degree of the proper scroll is ^Imn — pl.

This proves the first part.

Since the cone I forms one sheet of the complete scroll, only

mn — 1 sheets of the residual scroll pass through the curve I
;

hence if the curves m and n intersect in p points, the multi-

plicity of the curve I is mn—p.

This theorem requires modification when the directing curves

intersect at a multiple point*.

348. Every generator intersects every other generator in

2lmn — mn — nl — lm + 1

points not on the directing curves.

The point where any generator G intersects the curve Z is a

multiple point of order mn, hence mn—1 other generators pass

through this point. Accordingly the total number of ordinary

generators which intersect G is

2lmn - 2 - (mn - 1) - (nl - 1) - (Im - 1)

= 2lmn — mn — nl — lm + 1.

349. The degree of the scroll generated by a line which cuts a

curve I once and a curve n twice is

l{h + ^n(n-l)],

where h is the number of apparent nodes possessed by n.

Equations (1) apply to all three species of scrolls, hence

S{l,n') = lS{l,n^).

Let be any point on the line 1, h the number of apparent nodes

possessed by n ; then since h generators of S (1, n^) pass through 0,

the line 1 is a multiple generator of order h on the scroll. The

section of the scroll by any plane through 1 consists of 1 repeated

h times and a residual curve of degree S-h\ moreover the plane

intersects the curve n'm.n points, and from the mode of generation

* See Picquet, Com-pt. Bend, vol, lxxvii. (1873) ; Guccia, Rend. Palermo, vol. i.
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it follows that the residual curve must consist of the ^n{n — l)

lines which connect these n points ; hence 8 — h = ^n(n — l), giving

350. The degree of the scroll 8 (n^) is

{n-2){h-^n{n~l)}.

This result has been proved in § 11.3 by the Theory of Corre-

spondence.

351. The class of the tangent cone is equal to the degree of the

scroll.

Let be any point, OL a fixed straight line through 0. Then

since each generator which passes through OL possesses one torsal

tangent plane, there must be a certain position of the point of

contact, such that this plane passes through OL. Hence the class

of the cone is equal to the number of generators of the scroll which

pass through OL, that is to its degree.

The G formulce.

352. The number of lines which cut four curves of degrees

I, m, n and p is obviously equal to the number of points in which

the curve p cuts the scroll S(l, m, n) ; hence

G (I, TO, n, p) =p8 (I, m, n) = '2hnnp (5).

In (5) put ^ = 1, and we obtain

G (1, I, m, n) = 8 {I, m, n) = 18 (1, to, n)

and

G {I, TO, n, p) =pG (1, I, TO, n) = IpG (1, 1, m, n)

= lmpG(l, 1, 1, n) = lmnpG(l, 1, 1, 1),

so that G (1, 1, 1, 1) = 2, as is otherwise obvious since a straight

line can intersect a hyperboloid in only two points. The last result

also shows that two straight lines can be drawn which intersect

four given straight lines.

353. The number of straight lines which intersect a given curve

n twice and two curves I and ni once is

Im {hs + ^n{n — 1)},

where h^ is the number of apparent nodes possessed by n.



230 SCROLLS

By means of the last article, it can be shown that

G{1, m, n') = lmS{l, if) = lm [h + \n (w - 1)| (6)

by §349.

354. The number of trisecants of a curve n, which intersect a

curve I once is

l{n-2){hs-in{n-l)}.

It can be shown as in § 352 that

G{l,n') = lS{n') = l{n-2){h-:Ln{n-l)} (7)

by § 350.

355. To prove that

G{1\ m') = h,h, + ^lm{l-l){m-l) (8),

where hi, h^ are the number of apparent nodes possessed by I and m.

To establish this result, I shall adopt an indirect method.

Let L = ^1(1-1), M = ^m(m-1),

then we have shown in § 353 that

G{l,l,l') = hi + L; G{1, l,m') = h, + M.

Now G{1, 1, P) may be regarded in two lights; first, as the

number of lines which intersect the curve I twice and two given

straight lines, lying in different planes, once ; or secondly, the two

straight lines may be regarded as an improper conic which the

line intersects twice. Hence under these circumstances,

G{hl,P)=G{2M%

and the required formula must therefore reduce to G (1, 1, P),

when the curve m consists of two straight lines. We shall

therefore assume

G {P, m^) = ALM + BLh^ + GMh, + DhX (9),

where A, B, G, D are constants. This formula satisfies the con-

dition of being symmetrical with respect to the two curves I and m.

When the curve 7n becomes two straight lines, m = 2, h^^l,

M=l\ and (9) becomes

K + L = {A-^B)L^-{C^D)K,

whence A-\-B=l; G-^D=1 (10).
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When the curve I becomes two straight lines, we shall obtain

in like manner

A + G=l, B + D = l (11),

but (10) and (11) are only equivalent to the three independent

equations

B = l-A, G=l-A, D==A (12).

To obtain a fourth equation, let I and m be a pair of conies

lying in different planes, then the only line which intersects both

conies twice is the line of intersection of their planes ; hence

G{2\ 22) = 1; also l==m = % }h = h = 0. We thus obtain

A=D = 1\ B = G = 0,

which gives the required result.

356. This result may be verified as follows. Let G {m + m')-

denote the number of lines which intersect the curve I twice, and

a compound curve m + m' twice, consisting of two simple curves of

degrees m and m'. Then this number is obviously equal to the

number of lines which intersect I twice, and also (i) m twice

;

(ii) to' twice; (iii) to and to' each once. The latter quantity is

given by § 353 ; hence

G (TO + to') = G (to^) + G (to'O + toto' {h, + ^l(l- 1)1 . . .(13),

where G {irtP) is written for G {P, m% And if the value of the G'&

be substituted from (8), it will be found that (13) is satisfied.

357. The number of quadrisecants of a huisted curve of degree

n IS

^h(h-4n + U)-^\n(n-2)(n-S)(n-lS) (14),

where h is the number of apparent nodes.

This result was first obtained by Cayley*; and other proofs

have been given by Zeuthenf by means of the Theory of Corre-

spondence, and also by Berzolari :]:. According to the functional

notation of § 352, the number in question is represented by G (w*)

;

and as in the last article, I shall proceed to form the functional

equation for a compound curve consisting of two simple curves of

degrees n and n'.

*• C. M. P. vol. V. p. 179.

t Annali di Matematica, Serie II. vol. in. p. 189.

J Rend. Palermo, vol. ix. (1895).



232 SCROLLS

The value of G (n + n'y for the compound curve is equal to

(i) the number of quadrisecants of the two simple curves n and n',

that is to G (n^) + G {n^)
;

(ii) the number of lines which cut n
three times and n' once, that is to G (w^ n)

;
(iii) the number

which cut n once and n' three times, that is to G {n, n'')
;
(iv) the

number which cut n and n twice, that is to G{n^, n'% We thus

obtain

G{n + n'y = G (n') + G {n'') + G (n^ n')

+ G{n,n'')+G{n^7i'')...{lD).

The value of G{n% n') is obtained from (7) by writing h^^h,

l = n\ where h is the number of apparent nodes of n; whilst that

of G{n'^, n'^) is obtained from (8) by writing hi = h', li = h^, l = n',

m = n; accordingly the last three terms of (15) become

n' (n -2){h- 1% (n - 1)} + n (n' - 2) [h' - ^n' {n' - 1)}

+ hh' + \nn' {n - 1) (n' - 1).

The solution of the functional equation (15) thus consists of a

particular solution and of the complementary function, and Cayley

has deduced the value of G (n*) by solving this equation. But if

its value be substituted in (15) from (14) the functional equation

will be satisfied.

The reader will find some further information on the general

theory of scrolls, together with references to the original authori-

ties, in Pascal's Repertorio di Matematiche Superiori, vol. ii. pp.

515—525.

358. To find the equation of the scroll S (1, 1, n).

Let AB he the directing line I; and let the line m be any line

CD' lying in the plane ACD. Then the equations of the directing

lines are

ry = 0, 8 = 0; and a + S = 0, /S = (1),

and the directing curve may be taken to be any curve in the

plane BCD, and therefore its equations are

a=0, fi'% + ^''-% + vn = (2).

Let A' be any point on AB, 6a = ^ the plane A'CB ; then the

coordinates of A' are (|, 6^, 0, 0). Also if (0, g, h, k) be the

coordinates of any point P on (2), the equations of the line

A'P are
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whence

.(4),

S = \k

from the first two of which we obtain

I3 = \g + ea (5).

The conditions that (3) should intersect the directing line CD'

are

\g + e^{l-\) = 0,

from which we obtain g — 0k = (6),

which by the last of (4) becomes

^9 = e^ (7).

Eliminating 6 between (5) and (7) we obtain

-^=^a («>

Let Vn be what Vn becomes when 7 = A, 8 = k ; then since P
lies on the curve (2)

g'^Vo +y-^Wi' + g''-^' + Vr,' = 0,

which by the last two of (4) becomes

(\gyvo + (\gy'-'v, + Vn = (9).

Eliminating \g between (8) and (9) we obtain

y8»SX + (a + S) /S"-^S"-iWi + {a + 8Yvn = 0... (10),

which is the required equation of the scroll.

If the tetrahedron be changed to ABGD', so that the directing

line GV lies in the plane BCD', (10) becomes

/3«8% + a'/3"-i 8^-1^1 + a'^Vn = (10 a).

359. To find the equation of the scroll S(l, 1, n).

Since a hyperboloid can be described through any two straight

lines, the doubly directing line may be supposed to consist of two

generators belonging to the same system of a hyperboloid, which

are indefinitely close together. Let AB he the doubly directing

line. A' any point on AB; (2) the directing curve n\ also let the

tangent plane to the hyperboloid at A' intersect (2) in P ; then



234 SCROLLS

A'F is the line which generates the scroll. The equation of the

hyperboloid may be taken to be

ciy = ^S (11),

and if 6a = ^ be the plane A'CD, the tangent plane to (11) at

^'is

7 = ^S (12),

and the coordinates of P are (0, g, 6k, k). Hence the equations of

AT are

~^^7=^^^ek'^k^^ ^^^^'

From the first two of (13) we deduce (5), whence eliminating

6 by (12) we obtain

Xg = (^S-ay)/S.

Accordingly from (9) we get

(^8-ayTvo + (^B-ayy-'Bv,+ 8''Vn = (14),

which is the required equation of the scroll.

360. Equations (10) and (14) furnish a method of classifying

the scrolls 8(1, 1, n) and ^(1, 1, n), which depends on the

character of the curve n and not on the degree of the scroll. Let

this curve have a multiple point of order p Q,t B and of order q at

C. Let p have any value from to ?i— 1, and q any value from

to r, where r is a number whose limiting value is obtained from

the condition that the curve n is always a proper curve. Then by

considering all possible curves of given degree subject to these

conditions, we obtain the equations of all possible scrolls generated

by them.

361. Cubic Scrolls, (i) Let the nodal line AB he the curve

I, and the line yS = 0, a + 3 = or CD' be the line m ; and let the

curve w be a plane cubic whose node is at B. Then in the formulae

of § 847, we must put ? = m = 1, w = 3, g = 2, r = 0, in which case

the lines AB, CD' and the plane cubic will be multiple lines of

orders ^—p, 1, 1 ; but since AB is a nodal line ^ = 1, and conse-

quently the line CD' must intersect the cubic curve in one point.

Let C be this point, then the equation of the cubic curve is

/3v2 + Bw„ = 0,

and by (10) that of the cubic scroll is
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which is the equation of a cubic surface having a nodal line of the

first kind, and is of the form 5(1, 1, 3).

(ii) In the case of the cubic scroll *S^ (1, 1, 3) the line CD'

becomes one indefinitely close to AB, and therefore BG must be

the tangent at B to the section by the plane a, the equation of

which is therefore

^hv, + ^3 = 0.

Accordingly by (14) the equation of the scroll is

(/3S - a7) ^1 + ^3 = 0,

which is the equation of a cubic scroll having a nodal line of the

second kind.

Quartic Scrolls.

362. We have already considered the different species of

quartic scrolls, and we shall now explain Cayley's method of

generating them. There are three species of the form S{1, 1, 4)

and three of the form S(l, 1, 4).

1st species. This scroll is of the species S(l, 1, 4); AB and

CD' are nodal generators, and therefore the section by the plane

a is

^% + /SSWa + ^^2= 0,

and therefore by (10 a) the equation of the scroll is

a'Va + a'/Swa +^% = 0.

2nd species. Let the generating curve have a tacnode at B
and a node at G; let BD be the tacnodal tangent and GD one of

the nodal tangents at G. Then the equation of the section is

and that of the scroll is

I3y + a'/3yv^ + a'^Sw, = 0,

which is of the same form as (14) of § 335.

Srd species. Let the generating curve have a triple point at

B and pass through G. Then its equation is

^Vs + 8w3 = 0,

and that of the scroll is

fivs + afws= 0,

which can be reduced to (4) of § 328 by taking A and B as two of

the pinch points.
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363. The next three species are of the form S(l, 1, 4).

4<th species. Let the generating curve have a tacnode at B
and let BC be the tacnodal tangent. Then the equation of the

curve is

yg^S^ + ^gy^ + Vi = 0,

and by (14) that of the scroll is

(yS8 - ayf + (/3a - a7) v^ + v, = 0,

which can be reduced to (15) of § 336.

5th species. Let the generating curve possess a node at D in

addition to the tacnode at B. Then its equation is

j3'S' + iSByVi + y% = 0,

and by (14) that of the scroll is

(/3S - a7)2 + (/3S - a7) 7^1 + 7% = 0,

which can be reduced to (16) of § 337.

6th species. Let the generating curve have a triple point at B,

and let BC be one of the tangents. Then its equation is

^Bv2 + ^4 = 0,

and that of the scroll is

(/3S - a7) V2 + V4, = 0,

and the latter possesses a triple line having one torsal and two

fixed tangent planes, and can be reduced to (7) of § 330.

364. 7th species. This species is of the form S (1, 2, 2). The

line AB is the directing line and there are two directing conies
;

one of which passes through B, C and D, whilst the other lies in

the plane AGD and intersects the first conic in G and D, but does

not pass through A. Hence in § 347

1=1, m = 2, n = 2, p = 2, q = l, r = 0,

and the scroll is of the fourth degree. The line AB and the conic

BCD are nodal curves on the scroll, whilst the conic in the plane

ACD is an ordinary conic; the section of the scroll by the plane

ACD must therefore consist of the last conic and the lines AC, AD.

This scroll has been discussed in § 333.

8th species. This is the scroll S{1, 3-), which has been discussed

in S 332.
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Cayley's 9th and 12th species are quartics with triple lines and

have been fully discussed in §§ 327 and 329. The 11th species has

been considered in § 334 (viii), where it appears as a particular

case of (vii). The 1 0th species is a quartic having a nodal twisted

cubic and has been dealt with in §§ 321 and 331. It is a special

case of the scroll /S (4, 3^), where 4 is a plane trinodal quartic whose

nodes lie on the twisted cubic 3 ; and the scroll may be generated

by a straight line which intersects the cubic twice and the quartic

once.



CHAPTEH VIII

THEORY OF RESIDUATION

365. The theory of residuation of plane curves was discovered

by the late Prof Sylvester, and has formed the subject of numerous

investigations by German and Italian* mathematicians. We shall

commence by explaining this theory so far as it relates to plane

curves, and shall afterwards show how it can be extended to

surfaces.

366. We shall denote a given curve of the nth degree by Gn ;

and one whose coefficients are wholly or partially arbitrary by Sn-

The curve Cn whose properties we are considering will be called

the primitive curve.

If a group of points on a curve contain p points, p is called the

degree of the group.

Let two curves On and Ci intersect in In ordinary points, and

divide them into two groups p and q, so that hi=p + q. Then

the group p is called a residual of the group q and vice versa.

Hence two point groups p and q on the primitive curve are said

to be residual to one another, whenever it is possible to draw

another curve through them which does not intersect the primi-

tive curve elsewhere. Also the group p + q is said to have a zero

residual, which we shall express by means of the symbolic equation

[p+q]^0 (1).

If two point groups p and q have a common residual r, they

are called coresidual point groups, which we shall express by means

of the symbolic equation

[p-q] = (2).

* F. S. Macaulay, Proc. Land. Math. Soc. vol. xxvi. p. 495 ; Ibid. vol. xxix.

p. 673 and the authorities there cited.
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367. The theory of residuation depends upon three subsidiary

theorems, which may be respectively called the addition theorem,

the multiplication theorem, and the subtraction theorem.

I. The Addition Theorem. Ifp and q be two point groups on

a curve G^ , each of which has a zero residual, then the group p + q
has a zero residual.

Since [p] = 0, this group must be the complete intersection of

a curve Ci with G^ ] and for the same reason the group q must be

the complete intersection of another curve C^ with (7^. Let

I -\-m=n', then the curve

GnSi^m-n + GiCm =

obviously passes through the group p + q and intersects 0^ no-

where else ; hence [p + q] = 0.

Let 1+ m<n, and I —m; then the group p consists of In points

which are common to the curves Gi and Gn ; and since a proper

curve of degree I + m cannot intersect a curve of degree I in more

than 1(1 + m) points, it follows that ii nl>l{l + m) or n>l + m, a

proper curve of degree l + ni cannot be drawn through the group

p + q. Hence the only curve of degree I + m which can be drawn

through the group p + q is the improper curve GiG„i= ; accord-

ingly in this case also [p +q] = 0.

II. The Multiplication Theorem. If the group p has a zero

residual, then np where n is any positive integer has also a zero

residual.

This at once follows as a corollary of the addition theorem

;

but there is no division theorem, that is to say if np has a zero

residual it does not follow that sp, where s is any factor of n, also

has a zero residual. This may be proved as follows. Let a proper

conic touch a proper cubic at A, B and G; then [2J. + 25 + 2CJ = 0;

but A + B+ G cannot have a zero residual unless the three points

lie in the same straight line, which is contrary to the hypothesis

that the conic is a proper one.

III. The Subtraction Theorem. Ifp + q and p be two point

groups on a curve Gn, each of ivhich has a zero residual, then q has

a zero residual.

The groups p + q and p are the complete intersections of G^

with two curves (7z+„i and Gi respectively ; hence ii I + m = n, the

equation

Gi+mSo + GnSi+m-n + GiS^ =
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represents some curve which passes through the group p. But by

hypothesis it must be possible to determine the arbitrary constants

so that this curve passes through the group 'p ¥ q] hence it must

be possible to determine a curve ^S^^ which intersects G^ in the

group q and nowhere else.

Let l + m<n, and l^m. The curve Gi^m intersects C„ in

n{l + m) points of which, by hypothesis, nl points are the complete

intersections of a curve Gi with C„ ; but since a proper curve of

degree Z + m cannot be drawn through more than l{l + m) points

on a curve of degree I, it follows that if nl > 1(1 + m) or n>l + m,

the curve C^+,^ must be an improper curve consisting of two curves

Gi and Gm, of which the latter intersects Gn in the group q and

nowhere else. Hence in both cases q has a zero residual.

IV. The Theorem of Eesiduation. If two point groups p
and q have a common residual, then any residual of p is

a residual of q.

Let r be the common residual of p and q ; and let s be a re-

sidual oip. Then by hypothesis

[p+r] = 0, [g-i-r] = 0, [_p+s] = 0;

adding the second and third we obtain

[p + q + r + s] = Q,

and subtracting the first, we get

[^ + s] = 0,

which shows that s is a residual of q.

In the preceding theory we have expressly assumed that none

of the curves pass through a multiple point on any other curve,

so that all the points are ordinary points. The case of a node

will be discussed later on. The theory is also subject to certain

exceptions*, when the points composing any group such as p are

so situated that a curve of lower degree than I can be described

through them. For example, a cubic is the curve of lowest

degree which can be described through six arbitrary points

on a given curve ; but if the six points were so situated that

a conic could be described through them, an exceptional case

would arise.

* Bacharach, Math. Annalen, vol. xxvi. p. 275 ; Cayley, C. M. P. vol. xii. p. 500.

An exceptional case occurs in a theorem proved by myself, Quart. Jour. vol. xxxvi,

pp. 50 and 51.
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368. We shall now give some examples.

(i) If a straight line intersects a curve of the nth degree in n

ordinary 'points, the tangents at these points intersect the curve in

n {n —2) points which lie on a curve of degree n — 2, which is called

the satellite curve.

Let the straight line intersect the curve in the group P, and

let the tangents at P intersect it in a group Q. Then

[P] = and therefore [2P] = 0.

The tangents form an improper curve of degree n, which inter-

sects the primitive curve in the groups 2P and Q ;
hence

[2P+Q]=0.

Accordingly by the subtraction theorem

'

[^] = 0.

Since the group Q contains 71^ -2n^n (n — 2) points, a curve

of degree n — 2 can be drawn through them. Also every curve of

degree n can be expressed in the form

ft ^n—2 "I" tit^ • • • fji ^^ '-'j

where a is the line, ti ... tn the n tangents at the points where it

cuts the curve, and Sn-2 the satellite curve.

(ii) If from any point 0, n{n—l) tangents be drawn to an

anautotomic curve, the points where the tangents intersect the curve

lie on one of degree {n — 1) (n — 2).

The n{n — l) points of contact form a group P, which is the

complete intersection of the curve and its first polar with respect

to ; hence

[P] = and therefore [2P] = 0.

The tangents form an improper curve of degree n(n— 1),

which touches the curve at the group 2P and intersects it at a

group Q consisting of n (n — l) {n — 2) points ; hence

[2P + Q] = 0,

whence by the subtraction theorem

[Q] = 0;

hence the group Q is the complete intersection of the primitive

curve with one of degree {n — l){n — 2).

B. 16
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(iii) // six of the points of intersection of a cubic and a quartic

lie on a conic, the remaining six points of intersection lie on another

conic; also the four remaining points where the two conies intersect

the quartic are collinear.

Let 6 and 6' be the two groups of six points in which the cubic

intersects the quartic, and let the group 6 lie on a conic. Then

the conic will intersect the quartic in two points 2, and the straight

line through 2 will intersect the quartic in two other points 2'.

Hence
[6 + 6'J=0, [6 + 2] = 0, [2 + 2'] = 0.

Adding the first and third and subtracting the second, we

obtain
[6' + 2'] = 0,

which shows that the eight points 6' + 2' lie on a conic.

Let a straight line intersect a quartic in the four points S, S',

T, T' ; then since the straight line repeated three times forms an

improper cubic, it follows that if a conic can be described oscu-

lating the quartic at 8 and S', another conic can be described

which osculates the quartic at T and T'.

(iv) A cubic can be drawn through the six points, where the

stationary tangents of a trinodal quartic intersect the curve, which

osculates the quartic at the T points*.

Let / denote the six points of inflexion, and /the points where

the tangents at the former points intersect the quartic. Then

since the six stationary tangents form an improper sextic,

[3/+J] = 0.

It is a known theorem that if S and T denote the 8 and T
points, the eight points I and 8 lie on a conic ; hence

[/+/Sf] = 0; also[>Sf+r] = 0;

accordingly [37 + 3^ = 0, [3>Sf + 3r]=0.

Subtracting the first and fourth and adding the fifth, we obtain

[J + 3T] = 0.

* See Appendix I in which the S, T and Q points of plane quartic curves are

explained. The S points are those denoted by P and Q in Cubic and Quartic Curves,

§ 19.3 (iv) ; and the two remaining points in which the line joining the S points

cuts the quartic are called the T points. If the tangents at a node intersect the

quartic in D, D', the hne DD' cuts it in two other points called the Q points. See

also Basset, Amer. Jour. vol. xxvi. p. 169.
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which shows that the six points /and the two T points three times

repeated lie on a cubic.

(v) A conic can he described through the six Q points and the

two T points of a trinodal quartic.

Let D denote the six points where the nodal tangents intersect

the quartic; then since the three straight lines passing through

each pair of D points and the corresponding pair of Q points form

an improper cubic

[i) + Q] = 0.

It is a known theorem that a conic can be described through

the six D points and the two S points, whence

[D + S] = 0, also [8-{-T] = 0;

accordingly [Q + J'] = 0,

All the preceding theorems can be proved by trilinear coordi-

nates ; and (iv) and (v) by the parametric methods applicable to

trinodal quartics*.

369. We shall now consider how these results are modified

when a nodef forms part of the group; and we shall confine our

attention to the case in which two curves have the same node and

the same nodal tangents, and such curves will be called nodo-

tangential curves. We shall define a cluster of points to be any

special arrangement of points indefinitely close together.

If a nodal curve he cut hy tivo nodotangential curves in two

groups of ordinary points p and p + r, then r has a zero residual.

Let the curve Gn have a node at A, and let the nodotangential

curve Gi cut G^ in a group of ordinary points of degree p. Then

Gn = a^'-^Mg + cC^~hi.i + . . . Uy
(3),

Gi = aJ'-^iL^ + a^-%3 + . . . w,;

also let 8r = Ir'Wh a'-* Sr = %'Wk(f-^ (4),

and consider the curve

^l+m = ^11 ^^ l+m—n + ^l^m = ^ (5),

where I + m ^7i. Multiplying out, we obtain

2z+r«=a^+"*-n< + w;o)w2+ (6),

* See E. A. Eoberts, Proc. Lond. Math. Soc. vol. xvr. p. 44.

t Basset, Quart. Jour. vol. xxxvi. p. 43.

16—2



244 THEORY OF RESIDUATION

which shows that Xi+m is a nodotangential curve ; hence Cn, Gi

and %i+m each pass through the same cluster A of six points at

the node. Let p + r be the number of ordinary points in which

S^+m intersects Gn ',
then

p = ln — A,

p + r = (I + m)n — A,

whence r = mn.

Now by hypothesis

[p-\-A'\ = and ['p-[-r -\- A'] = 0,

and equation (5) shows that it is possible to determine a curve S^^

Avhich intersects G^ in a group of 7mi ordinary points and nowhere

else ; hence r has a zero residual. When l^-m< n, "Xi+m is of the

form GiSm, and the same result follows.

370. Let two nodotangential curves intersect a nodal curve in

two groups of ordinary points p and q; then p and q are coresidual.

By hypothesis we have the following equations

[A+p] = 0, [^+^]=0 (7).

Draw any other nodotangential curve cutting the primitive

curve in the groups p and q and in a further group of ordinary

points r ; then

[A+p + q + r] = (8).

The theorem of the last article shows that we may subtract

(7) from (8) in the same way as if they were groups of ordinary

points; we thus obtain the two equations

[p + r] = 0, [q + r] = 0,

which show that p and q are coresidual. We may therefore apply

the theory of residuation to nodotangential curves in the same

way as to groups composed of ordinary points ; also the theory

applies to nodotangential curves having any number of nodes, and

is also true when the double points are biflecnodes.

371. Since a curve, which has none but ordinary nodes, its

Hessian and its nodal tangents form a nodotangential system, it

follows that :

—

(i) On a curve ivhich has none but ordinary nodes, the points of

inflexion and the points ivhere the nodal tangents cut the curve forin,

a pair of coresidual point groups*.

* Richmond, Proc. Lond. Math. Soc. vol. xxxiii. p. 218.
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Also since the first polar with respect to the node of a nninodal

curve (including the case of a biflecnode) is a nodotangential curve,

it follows that :

—

(ii) The points of contact of the tangents drawn from the node

of any uninodal curve, the points of inflexion and the points luhere

the nodal tangents intersect the curve form a coresidual system.

Let /, D and E denote the number of points of inflexion, the

number of points where the nodal tangents intersect the curve,

and the number of points of contact of the tangents drawn from

the node. Then for a uninodal quartic I = 18, D = 2, E = 6 ; also

the two Q points are a residual of D. Hence :

—

(iii) The 18 points of inflexion of a uninodal quartic lie on

a quintic, which passes through the Q points.

It will hereafter be shown that every quintic which passes

through the points of inflexion passes through the Q points

;

hence if C^ be the quartic and Og the quintic, there is a triply-

infinite system of such quintics which are determined by the

equation

Cg + (la + m/3 + nj) G^ = 0.

When the node becomes a biflecnode the D points coincide

with the node, hence :

—

(iv) The 16 points of inflexion of a unihiflecnodal quartic lie

on a quartic.

For a binodal quartic, 7=12, i) = 4; also the D points lie on

a conic passing through the nodes ; but if the conic degrades into

a straight line passing through the D points and one passing

through the nodes, [Z)] = 0, hence [/] = 0. Accordingly :

—

(v) If the four points, where the nodal tangents of a binodal

quartic ititersect the curve are collinear, the 12 points of inflexion

lie on a cubic.

When the nodes are biflecnodes, this becomes :

—

(vi) The eight points of inflexion of a quartic with two biflec-

nodes lie on a conic*.

Assuming the theorem of Cubic and Quartic Curves, § 194, we

obtain :

—

* The expression for the radius of curvature of a Cassinian, see Cubic and

Quartic Curves, § 251, combined with the theory of projection, furnishes a direct

proof of this theorem.
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(vii) The six points of injiexion of a trinodal quartic lie on a

conio ivhich passes through the S points.

For a uninodal quartic E= 6; hence :

—

(viii) The six points, tuhere the tangents drawn from the node

of a uninodal quartic touch the curve, lie on a conic passing through

the Q points.

372. It is a well known theorem that every cubic which

passes through eight of the nine points of intersection of two

given cubics passes through the remaining one ; and we shall now

prove a more general theorem.

If I be any integer not less than n — 2, any curve of degree I

which passes through

ln-^{n-l){n-2)

of the points of intersection of two given curves Ci and Cn passes

through all the rest.

Let the points of intersection of the curves Gi and (7„ be

divided into two groups p and In—p; then since the coordinates

of the points of the group In — p satisfy the equation C^ = 0, and

consequently satisfy In—p equations of condition, the number of

available constants, which any curve of degree I passing through

this group contains, is

^l(l + S)-ln+p (9).

The equation of any curve of degree I which passes through

the points of intersection of Ci and Gn is

Gi + GnSi^n = 0,

provided I = n, and it therefore contains

l{l-n + l){l-n + 2) (10)

available constants; and if the curve through the group In—p
passes through p, the expressions (9) and (10) must be equal

;

whence

^l (I + 3) - In +p = ^(l -n+l){l-n + 2),

giving p = ^{n — 1) {n — 2).

When l = n — l or n — 2 the theorem is also true ; since in this

case ln — p = ^l{l + S).

373. Let ^ = 5, ?i = 4 ; then p = 3 ; hence every quintic which

passes through 17 of the points of intersection of a quartic and
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a given quintic passes through all the rest. Accordingly every

quintic which passes through the 18 points of inflexion of a

uninodal quartic passes through the Q points.

374. The theorem of § 372 is due to Cayley* ; but

Bacharachf has pointed out an important exception to it. Let

n>S; then the value ofp may be written in the form

p = ^n (n — 3) + 1.

Now it is not in general possible to describe a curve of degree

n — 3 through the group of points p ; but whenever this can

be done, Cayley 's theorem is not true. This may be proved as

follows.

Through the group p describe a curve Gns, which cuts the

curve Cn in a group of s ordinary points, where s = ^n (n — S) — 1

;

and through the group s describe another curve 0'„_3, which cuts

On in a group of q points, where q=p. Then s + q = n(n — d).

Now the curve

wC^ n-3 + Gn^i-s —

is one of degree l + 7i — S which passes through the group In and

also through the group q + s; hence

[ln + q + s] = 0.

But since the group ^ + s is the complete intersection of Cn and

Gn-3, it follows that

[p + s] = 0,

whence [In — p + q] = 0,

which shows that q is a, residual of the group In— p.

375. Every curve of degree m, ivhich passes through

In — ^{l + n — m—l){l + n — m — 2)

of the points of intersection of two curves Gi and G^ passes through

all the rest, provided m~l and 7n ~ I + n — 2.

Any curve of degree m which passes through In—p of the

points of intersection of Gi and Cn contains

^m {m + S) — In +p (11)

* C. M. p. vol. I. p. 25.

t Math. Ann. vol. xxvr. p. 275.
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constants ; but the equation of a curve of degree m which passes

through the complete intersection of Ci and Cn is

Sm-l^l + Gn^mr-n = 0,

and the number of available constants which it contains is

|(7?i -l+l)(m-l+2) + i(m -n + 1) {m - ?i + 2) - l...(12),

and if the curve which passes through the group In—p also passes

through p, the expressions (11) and (12) must be equal, which

gives

'p = \{l + n —m — 1) {I -\- n — m — 2).

In this theorem various exceptional cases arise, which have

been discussed by Bacharach in the paper referred to.

A corresponding theory exists with respect to the intersections

of surfaces, a brief account of which together with references to the

original authorities will be found in Pascal's Repertorio di Mate-

7natiche Superiori, vol. ii. pp. 297—303.

Theory of Residuation of Surfaces.

376. When we attempt to apply this theory to surfaces, we

are at once confronted with a difficulty. Let the primitive surface

Cn be intersected by another surface Ci in a multipartite curve of

degree In, which does not pass through any singular points or

curves on either surface. This curve may be divided into two

groups of curves p and r ; but if the curve of intersection of the

two surfaces is a proper curve, it will be impossible to describe an

algebraic surface through the group r which does not pass through

the group p. It is of course possible to perform the mechanical

operation of describing a surface, such as a cone, whose vertex is

any arbitrary point and whose generators pass through the group

of curves r ; but if such a surface could be represented by an

equation, the latter would be a transcendental and not an algebraic

one, and the ordinary theory of algebraic surfaces would not apply.

It is therefore necessary to suppose that the curve of intersection

of the two surfaces is a compound one, consisting of two complete

curves of degrees p and r, in which case it will be possible to

describe an algebraic surface through r which does not pass

through p.

We may therefore extend the theory of the residuation of

plane curves to surfaces in the following manner. Let the curve
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of intersection of two algebraic surfaces be a compound curve

consisting of two complete curves of degrees p and r; then the

curve p will be called a residual of r and vice versa. Hence two

curves p and r on the primitive surface are said to be residual

to one another, whenever it is possible to draw another surface

through them which does not intersect the primitive surface else-

where. Also the compound curve ^ + r is said to have a zero

residual, which is expressed by the symbolic equation

[p+r] = (1).

Through the curve r draw a surface G^ which intersects the

primitive surface in another curve of degree q, where mn = q + r;

then the curves p and q have a common residual r, and are called

coresidual curves, and this is expressed by the symbolic equation

[p-q] = ...(2).

377. The theory of residuation of surfaces, like that of plane

curves, depends on three subsidiary theorems, which may be

respectively called the addition theorem, the multiplication theorem

and the suhtraction theorem.

The Addition Theorem. Ifp and q he two curves on a surface,

each of which has a zero residual, then the compound curve p + q

has also a zero residual.

Since [p] = 0, this curve must be the complete intersection of

a surface Gi with the primitive surface (7„ ; and for the same reason

the curve q must be the complete intersection of a surface (7,„ with

Gn. Let I -l-m^n; then the surface

GnSi+m-7i + Gi Gjtn =0 (3)

obviously passes through the compound curve p-\-q\ also since

the degree of the surface is I + m, whilst that of the curve p + q\B

n{l + m), the surface (3) cannot intersect G^ elsewhere.

When l + m< n, the only surface of degree I + m which can be

drawn through the two curves is the improper surface GiG^.

The Multiplication Theorem. Ifp has a zero residual, then np,

where n is any positive integer, has also a zero residual.

This follows at once as a corollary of the addition theorem.

The Subtraction Theorem. If p + q and p be two curves on a

surface, each of which has a zero residual, then q has a zero residual.
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Let the curves p + q and p be the complete intersections of Gn

with two surfaces C;+^ and Gi ; and let l + m = n. Then the

surface (7;+^ must be of the form

Gi+m^o + GnSi^m-n + Gi8m = 0,

for this surface is of degree l + m and passes through the curve p,

whose degree is In, which lies in the three surfaces C;+^, Gn and

Gi. Now the curve q lies in the surfaces Gi^^i and (7„, and there-

fore it must be possible to determine a surface 8m which intersects

Gn in the curve q and nowhere else ; hence q has a zero residual.

When l + m<n, the only surface of degree l + m which can be

drawn through the curve p + q is the improper surface GiSm
',

hence in this case also, q has a zero residual.

The Theorem of Residuation. If two curves p and q on a

surface Gn have a common residual r, then any residual of p is a

residual of q.

Let s be some other curve which is a residual of p ; then by

hypothesis

[p+r] = 0, [g + r] = 0, [p + 5] = (4).

By means of the addition theorem, we obtain from the last two

of (4)

{p + q + r + s'\ = (5),

whence by the subtraction theorem, (5) and the first of (4) give

[3 + 5] = 0,

which shows that s is a residual of q.

This theory is subject to certain exceptions, similar to those

discussed by Bacharach in the case of plane curves.

378. We shall now illustrate this theory by some examples.

The tangent cone to an anautotomic surface intersects it in a

curve of degree n{n — l){n—'2?), which is the complete intersection

of the primitive surface and another surface of degree

{n-l){n-2).

Let P be the curve of contact of the tangent cone, and Q the

curve in which the latter intersects the surface ; then [2P + Q] = 0.

But since P is the complete intersection of the primitive surface

.with its first polar with respect to the vertex of the cone, [P] and

therefore [2P] = ; hence by the subtraction theorem [Q] = 0,
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which shows that another surface can be drawn through Q which

intersects the primitive surface nowhere else.

Since the degree of the tangent cone is n{n — l), it follows

that the degree of its complete curve of intersection is n"(n — l);

also the degree of the curve P is 'n(n — 1), hence that of Q is

n^ (n — 1) — 2n (n — 1) = n {n — 1) (n — 2).

379. In § 102 we discussed the classification of curves ; and

we shall now apply the theory of residuation to show that :

—

If
two cubic surfaces have a common quartic curve of the first species,

their residual intersection is a quintic curve of the first species.

Take one of the cubic surfaces as the primitive one, and denote

the quartic and quintic curves by 4 and 5. Through 4 draw a

quadric surface, which must cut the cubic surface in a conic 2

;

and let the plane of the conic intersect the cubic surface in the

straight line 1. Then since 4 is a residual of 2 and 5, the latter

are coresidual curves ; and since 1 is a residual of 2, 5 and 1 have

a zero residual and therefore lie on a quadric surface.

In the same way it can be shown that :

—

If a quadric and a

quartic intersect in a twisted cubic and a quintic, the latter is of the

first species.

380, There is another branch of the theory of considerable

importance. Cremona showed that a twisted quartic curve of the

second species is the partial intersection of a cubic surface, which

possesses a nodal line, and a quadric surface which contains the

line ; and Cayley showed that a quintic curve of the fourth species

is the partial intersection of a quartic surface, which has a triple

line, and a quadric surface which contains the line. These results

have already been obtained by writing down the equations of the

curve from the usual definitions ; but what is required is a general

method which will give the result without going through the

labour of proving it in each particular case. Moreover the equa-

tions furnished by this method are usually the simplest ones for

expressing the curve, since the residual intersection is concentrated

in a single straight line. Similar observations apply to twisted

curves which can be expressed as the partial intersections of two

surfaces, the residual intersection being a multiple curve on one

or both surfaces.

The extension of the theory, which I shall proceed to explain,

furnishes an answer to the following t\Vo questions. Let a given
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line Z be a multiple line on a surface S and an ordinary line on

two other surfaces S, S' ; let the residual intersection of X and S
;

of X and S' ; and of S and 8' be three curves P, Q and R respec-

tively. Required the conditions that (i) when S is the primitive

surface, P and Q should be ordinary coresidual curves, (ii) when S
is the primitive surface, P and R should be ordinary coresidual

curves,

381. We shall first prove the following theorem.

Let two surfaces Ci, On intersect in a line AB, which is an

ordinary line on Ci and a multiple line of order p on On; and let

the residual curve of intersection he P. Draw any other surface

ivhich has p-tactic contact with Gi at every point on AB, and which

intersects Gi in a residual curve P + Q. Then Q has a zero

residual.

Let

Gi = al'-H, + a^-2 {^w^ + w.) + a^-^ (/3Vi + /So-^ + 0-3) + (6),

Gn = a''-vvp + a''-P-^{^Wp + w.p^,)-\- (7),

then AB is an ordinary line on Gi and a multiple line of order p
on Gn- Change the tetrahedron of reference to A'BGD by writing

\a — ^ for /S, where X,a = /3 is the equation of the plane A'GD
referred to ABGD ; then the equation of the tangent plane to Gi

at A' is

V1 + XW1 + Wi-l- =0 (8).

Let Sr = (fUo + a'~^Mi + Ur^ .Qv

Sr = a%o' + a'-hij,' + Ur)

and consider the surface

Sz+m = GnS l+m-n + GiSm =0 (10)»

where I + m = n.

The highest power of a occurs in the last term of (10) and is

a^+^"—^ViiiQ, which shows that Gi and S have the same tangent

plane at A ; and if the tetrahedron be changed to A'BGD, it will

be found that the coefficient of a^+»«-i becomes the expression (8)

multiplied by a constant. Hence the two surfaces have a common
tangent plane at every point on AB.

Take Gi as the primitive surface. Then from (10) it follows

that the surfaces S and Gi intersect in a curve of degree

I (I + ni — n) = Q,
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which is the complete curve of intersection of Gi and S'l+m-n ; and

in another curve which is the complete curve of intersection of Gi

and C,j. The latter consists of the line AB repeated p times and

a residual curve of degree ln—p = P; and since AB is an ordinary

line on the two surfaces S and Gi, and both surfaces have been

shown to have a common tangent plane at every point on AB, it

follows that 2 and Gi must have ^-tactic contact with one another

at every point on AB. Denoting therefore by A the cluster of p
lines AB which are common to the three surfaces ^i+m> Gn and Gi,

it follows that the intersection of G^ and Gi gives

[^+P] = (11).

The intersection of S;+m and Gi gives

[^ + P + Q] = (12),

and the intersection of S'l+m-n and Gi gives

[Q] = (13),

which proves the theorem.

382. Let AB be an oy^dinary line on the primitive surface S,

and a midtiple line of order p on another surface S'; and let S and

S' intersect in a residual cm've P. Draw a second surface S" which

has p-tactic contact with 8 at every point on AB, and intersects S in

a residual curve Q. Then P and Q are coresidual curves on S.

The three surfaces intersect one another along AB in a cluster

A of lines, which consist of AB repeated p times. Hence

[A + P]=0, [A + Q] = (14).

Through the curves P and Q draw any other surface which

has ^-tactic contact with 8 at every point on AB, and intersects 8-

in a residual curve R ; then

[A + P + Q+R] = 0,

whence by the last article

[P + R] = 0, [Q + R] = 0,

which shows that P and Q have an ordinary residual R, and are

therefore coresidual curves.

383. The theory is of a similar character when G^i is taken as

the primitive surface. The form of (10) shows that the surfaces S
and Gn intersect in a curve of degree nm=Q', which is the com-

plete curve of intersection of Gn and 8m ; and in another curve
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which is the complete curve of intersection of Gi and 0^. Hence

as before we obtain

[J.+P] = 0.

Also the intersection of S;+m and Gn gives

[^+P+Q'] = 0,

and that of G^ and Sm gives

.
[Q'] = o.

By means of these equations we can prove, as in § 882, the

theorem :

—

Let AB he a multiple line of order p on the primitive surface S,

and an ordinary line on another surface S' ; and let S and S'

intersect in a residual curve P. Draw a second surface S" which

has p-tactic contact with S' at every point on AB, and intersects S
in a residual curve Q. Then P and Q are coresidual curves on S.

384. If a twisted curve is the partial intersection of two

surfaces Gi and Gn, where I = n, which are such that AB is a

midtiple line of order p on Gi and an ordinary line on Gn ; then the

curve is the partial intersection Gn with another surface Si, which

has p-tactic contact with Gn at every point on AB.

Consider the surface

GiSo + GnSi-n =Si=0.

Since Si-n is a general quaternary quantic of degree I — n, the

highest powers of a and /3 in Si are the (l — l)th powers ; hence

AB is an ordinary line on Si; also the form of Si shows that it

intersects Gn in the complete curve of intersection of Gi and Gn

and nowhere else. The curve of intersection of Si and (7„ must

therefore consist of the above mentioned curve and the line AD
repeated p times ; and since AB is an ordinary line on both

surfaces, they must have jj-tactic contact at every point on AB.

This result is of importance in the classification of twisted

curves. Also it can be proved in the same manner that :

—

If a twisted curve is the partial intersection of two surfaces Gi

and Gn, where l^n, which are such that (i) AB is a multiple line

of order p -^ 1 on Gi, and (ii) the tangent plane to Gn along AB is

one of the tangent jjlanes to Gi along the same line ; then the curve is

the 2iartial intersection of Gn with another surface Si luJiich has

p-tactic contact with Gn at every point on AB.
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385. A twisted curve which is the partial intersection of a

quadric surface and a surface C^, where the residual intersection

consists of p distinct lines lying in different planes, is the partial

intersection of the quadric with another surface Sn, which intersect

in a common line, which is an ordinary line on the quadric and a

multiple line of 07'der p on Sn-

Let the surfaces be

(Pa + Q^)ry = (Ra + Si3)B (15),

ay = ^S (16),

where P, Q, R, S are quaternary quantics of degree n — 2 ;
whence

eliminating (7, 8) it follows that (15) may be replaced by

Ra' + (S-P)a0-Q^' = O (17),

on which CD is a nodal line. Let another generator (u, v) of the

same system be common to (15) and (16); then (16) must be

expressible in the form

au = j3v (18),

and P, Q, R, S must be linear functions of (u, v); whence

eliminating (u, v) between (15) and (18) we obtain an equation

of the form

on which CD is a triple line. Proceeding in this way, we obtain

the theorem.

Twisted Sextic Curves'^.

386. There are five primary species of twisted sextic curves,

I. The complete intersection of a quadric and a cubic surface.

II. The partial intersection of two cubic surfaces, when the

residual intersection consists of a twisted cubic curve. Their

equations may be expressed by means of the system of deter-

minants
A, A', u, u'

B, B', V, v'

C, G\ w, w

where all the quantities represent planes.

* Clebsch, Crelle, vol. lxiii. ; Nother, Crelle, vol. xciii. ; Pascal, Lincei, 1893,

p. 120. Septimic curves have been discussed by Weyr, Wiener Berichte, vol. lxix.

= (1),
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III. The partial intersection of two cubic surfaces, when the

residual curve consists of a conic and a straight line lying in a

different plane. Let AB he the straight line ; and let the conic

be the intersection of the plane a and the quadric 8; then the

equations of the sextic are

{py+ qB)S = (uy + vS)0L (2),

(Py+QS)S = (ii'ry + v'8)a (3),

where P, p, Q, q are constants, and lo, v, u', v' are planes.

Eliminating 8 and a, we obtain

(^7 + qh) {u'y + v'6) = (uy + vh) (Py + QS) (4).

Equation (4) represents a cubic surface on which AB is a nodal

line, and it also contains another line EF which is the residual

intersection of the plane py + qB = and the quadric uy + v8 = 0.

Also since AB and EF lie in the same plane, they are generators

of opposite systems on the quadric. The sextic may therefore be

regarded as the partial intersection of the cubics (2) and (4),

which contain two straight lines lying in the same plane, one of

which is a nodal line on the second cubic.

IV. The partial intersection of two cubics, when the residual

intersection consists of three straight lines lying in different

planes.

Let AB and CD be two of the lines, then the equations of the

third line may be taken to be

\a + B = 0, fxjB + y = 0,

and the equation of the quadric having these three straight lines

for generators is

A-a7 = fM^S,

and the equations of the two cubics which contain the sextic may

be written

(Xa7 - fi^B) u = (m + /3wi ) [P (ka + B) + Q (fjL^ + 7)}. . .(5),

(Xa7 - fji^B) u = (av/ + ^w^) [P' (Xa + B) + Q' (fi^ + y)}.. .(6),

where u, u' are arbitrary planes; Vi,w-^ ... are linear functions of

(7, B\ and P, Q, P', Q' arbitrary constants.

V. The partial intersection of a (juadric and a quartic surface,

when the residual intersection consists of two straight lines lying

in different planes.
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The equations of the surfaces containing the curve may be

written

ay + ^B = (I),

(Pa + Q^)y + {Ra + S^)S = , (8),

where P, Q, R, S are quadric surfaces.

387. In considering the possible intersections of two cubic

surfaces, we have the following additional cases to consider.

(i) When the two cubics osculate one another along a line

AB. By virtue of § 384, this curve is the same as the partial

intersection of two cubic surfaces which possess a common straight

line, which is a triple line on one of them ; but since the only

cubic of this species consists of three planes intersecting in the

line, the sextic is an improper one consisting of three conies lying

in different planes which intersect in a line.

(ii) When one of the cubics has a nodal line, and the other

cubic contains the line and is touched along it by one of the nodal

tangent planes to the first cubic. By the corollary to | 384, this is

of the same species as (i).

(iii) When one of the cubics touches the other along a line,

and intersects it along a third line lying in a different plane.

(iv) When the two cubics intersect in two straight lines lying

in different planes, one of which is a nodal line on one of the

cubics.

The equations of the two cubics in (iii) are

a'7 + 2a^Vi + /328 + ava +^w^ =0 (9),

a27 + 2a;8vi + /S-a + av/ + /3w2' = (10),

whence by subtraction

a (^2 —O + /S (Ws - w.') = (11),

which shows that the curves (iii) and (iv) are identical. Write (11)

in the form
aco, + ^co,' = (12),

by virtue of which (9) may be written

(ary + /3vi + Va) ft)/ = (/SS + avi + Wg) &>2 (13).

Let the capital letters denote what these quantities become

when S = k, 7 = 1; then the sections of (12) and (13) by the plane

8 = ky are

aUg + /sn^' =

B. 17

I ...(14),
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which are the equations of two planes. The equation B = ky

combined with (14) determines the six points in which the plane

intersects the sextic curve ; and since only one of them lies outside

AB, it follows that five of them lie on this line, which is therefore

a quinquesecant. To determine these points put 7 = in the second

of (14), and eliminate (a, /3) and we obtain

which is a quintic equation for determining k, and shows that the

five points are distinct. Also since a curve cannot in general have

a quinquesecant, this species is a special kind of a more general

one.

By means of § 384 or directly, it can be shown that when (i) a

quadric surface passes through a nodal line on a quartic surface, or

(ii) a quadric and a quartic surface touch one another along a line,

the residual sextic belongs to species V.



CHAPTER IX

SINGULAR TANGENT PLANES TO SURFACES

388. The theory of the singularities of plane curves is com-

paratively easy, owing to the fact (i) that such curves possess only

four simple singularities, viz. the node and the cusp which are

point singularities, and the double and the stationary tangent

which are line singularities
;

(ii) that the two simple point singu-

larities are the reciprocal polars of the two simple line singularities.

But the theory of the singularities of surfaces is much more

difficult, (i) because surfaces possess two simple point singularities,

viz. the conic node and the binode, and six simple plane singulari-

ties, the nature of which has been explained in § 11
;

(ii) because

the reciprocal polar of a conic node or a binode is a compound

plane singularity of a special kind, and no theory of reciprocation

exists between the simple point and plane singularities of surfaces

analogous to the corresponding one for plane curves. When
the surface is anautotomic, the values of OTj, -sto and -575 were

first obtained by Salmon* ; those of -574 and Wg by Schubertf ; but

the value of -OTa appears to have been first given by myself^ in

1908. In a subsequent paper§ I obtained the values of the six

singular planes, when a surface possesses G conic nodes and B
binodes which are isolated ; but certain portions of this investiga-

tion are subject to the limitation, that the double points must not

be so numerous as to cause the tangent cone from any one of them

to degrade into an improper cone. These portions do not therefore

apply to quartic surfaces possessing more than 11 conic nodes,

since the tangent cone from a conic node being a sextic one would

degrade. Cayley in his paper on reciprocal surfaces]
|

has attempted

" Trans. Roy. Irish Acad. vol. xxiii. p. 461.

t Math. Annalen, vol. x. p. 102 ; vol. xi. p. 348.

X Quart. Jour. vol. xl. p. 210.

§ Ibid, vol. xLii. p. 21.

II
Phil. Trans, vol. clix. p. 210 ; C. M. P. vol. vi. p. 329, see p. 347.

17—2
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to find the value of -33-5, which he calls j3' , for a surface possessing

a nodal and a cuspidal curve of degrees h and c respectively and

also C conic nodes and B binodes ; but the investigation is not

very intelligible. Amongst special results, we may notice that

Berzolari* found that a quartic surface having a nodal conic

possesses 40 triple tangent planes, see § 274; while Pascalf states

that for such a surface tn-g = 52, see § 275. The same author also

states that when a quartic surface possesses 12 conic nodes,

cj-g = 0, BTg = 32 ; and the last result agrees with that given by my
own formula.

In §§ 10 and 11 the various curves and developab'les connected

with this branch of the subject, as well as the notation employed,

have been defined and explained ; and we shall commence with a

discussion of the spinodal, the flecnodal and the bitangential

curves and the surfaces associated with them. I shall denote the

spinodal, the flecnodal and the bitangential developables by the

symbols Dg, Df, Bi,, and their edges of regression by Eg, E/, E^.

The Spinodal Curve.

389. The surface

a^'-^h + a"-2 [h'^Vo + S (^yS + ^7) + ^7^] + a^'-^u^ + . . . w^ = 0. . .(1

)

is one on which J. is a point on the spinodal curve, ABC is the

tangent plane at A, and AB is the cuspidal tangent to the section

of the surface by the plane ABC.

The first step is to examine the intersection of (1) and its

Hessian at A. The Hessian will be found to be of the form

-8r(w-l)j(?^-l)^'-3(7^-2)J}2S a^'^-»+... = 0...(2).

Let W3 = P/33 + 3(Q7 + i^S)y82+...,

then the equation of the tangent plane to the Hessian at A is

2(n-l)(Py8 + Q7 + E8)-(n-2)^^a = (3),

and the tangent line AE io the spinodal curve is the intersection

of (3) with the plane h, and therefore does not coincide with AB.

When P = 0, the section of (2) by the plane S is the curve

ra'^-2 7^ + (/3, 7)^ a»^-'7 + (/3, 7)' aJ"-' + . . . = (4),

* Annali di Matematica, Serie II. vol. xiv. p. 31.

t Repertorio di Moteynatiche Superiori, vol. ii. p. 424.
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SO that the point of contact is a tacnode on the section. In this

case the tangent at the tacnode is the tangent to the spinodal

curve.

The spinodal curve does not possess any stationary tangents,

for such a tangent must have tritactic contact with (1) and also

with the Hessian at the point of contact. Now the tangent cannot

have tritactic contact with (1) except at the tacnodal points,

where the contact is quadritactic ; but at such points it appears,

from (2) and (3), that the contact with the Hessian is bitactic.

Hence t = 0.

We have shown in § 55 that when a straight line lies in the

surface it touches but does not intersect the spinodal curve ; from

which it follows that t is, in general, zero.

The spinodal curve cannot have any double points ; for at such

points it is necessary that the Hessian should touch the surface,

which requires that P=Q = 0. The section of the surface by the

tangent plane is now of the form

^^n-sy + (/3, 7) a»-^72 + (^^^ ^y ^n-4 + . .
. =

(5),

and consequently the singularity at A on the section is the

particular kind of tacnode formed by making the two tangents

at a hiflecnode coincide. Now four conditions must be satisfied

in order that the point of contact of the tangent plane should be

a singularity of this character, which is in general impossible since

the equation of a plane contains only three constants. Hence

Let us now denote the degree of the original surface by N
;

then the characteristics of the spinodal curve and the developable

enveloped by its osculating planes are obtained from equations (10)

to (15) of § 107 by writing

M = 4>(N-2), S = K = T=i = (6),

accordingly n = 4<N (iV— 2)

h = 2N'{N-l){N-2){4!N-d)

v = 20N{N-2f [ (7).

m = dN(N-2)(5N-ll)
a = 8N(N- 2) {UN -S4>) I

These formulae are the most important. The values of x and y
can be obtained from (14) and (15) and that of ^ + ot from (13) of
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§107. Further investigation is required before the values of ^ and

ZT can be determined. With this exception we have obtained the

characteristics of the spinodal curve and the developable enveloped

by its osculating planes.

The Spinodal Developable Dg and its Edge of Regression Eg.

390. This developable may be regarded indifferently as the

envelope of the tangent planes to the surface at points on the

spinodal curve ; or as the developable generated by the cuspidal

tangents to the section of the surface by the tangent planes at

these points.

391. The degree v of the spinodal developable is given by the

equation

v = 2N(N-2)(SN-4>) (8).

Let L be any fixed line, any point on it ; then N(N — 1) (iV—2)

stationary tangents can be drawn from to the surface ; hence as

moves along L these tangents will generate a scroll on which L
is a multiple generator of order JSf (JSf- 1) (N— 2). Let OP be any

generator of this scroll, (/, g, h, k) the coordinates of the point P
where it touches the surface ; then since OP lies in the tangent

plane and the polar quadric of P, it follows that if we eliminate

(a, /3, 7, S) between the equations of the two planes which deter-

mine L and also those of the tangent plane and polar quadric of

P, we shall obtain a relation between (/ g, h, k) which is the

equation of a surface X intersecting the original surface in the

locus of P. Let U be the original surface ; let U (f g, h, k)= U'

;

and let the equations of L be

Pa + Q^ + Ry + SS=^0]

pa+ q^ + ry + sB = OJ

also let A' denote the operator

A' = cxdldf+ I3d/dg + yd/dh -f Bd/dk (10),

then the equations of the tangent plane and polar quadric at

P are

^'U' = 0, A''U' = (11),

and since the result of eliminating (a, ^, 7, B) between (9) and (11)

furnishes an equation of degree 2(iV— l) + iV— 2 = 3iV— 4 in

(/, g, h, k) this is the degree of the surface S.
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Now if P be one of the points where 2 cuts the spinodal curve,

the generator of the spinodal developable which passes through P
is also a generator of the scroll and therefore passes through the

line L; hence the number of such generators is apparently equal

to 4!N{N— 2) (3iV— 4) ; but since the tangent plane to thesurface

at P touches the polar quadric of P (which is a cone) along a

generator, this number must be halved, which gives (8),

392. The class m of the spinodal developable is given by the

equation

m = ^N{N-l){N-2) ..(12).

Let be any arbitrary point ; then every tangent plane to the

surface through 0, which touches it at a point P on the spinodal

curve, is a tangent plane to the developable. Hence its class is

equal to the number of points in which the first polar of inter-

sects the spinodal curve.

393. Equation (12) determines the class of the edge of re-

gression Es of Ds, and we must now consider this curve. If Eg

had any double or stationary tangents, these would give rise to

nodal and cuspidal generators on Dg, and therefore to nodes and

cusps on the spinodal curve ; and since we have shown that this

curve has no double points when the surface is anautotomic, it

follows that T = t = 0. If, however, the surface were autotomic, t

and I need not be zero.

At a tacnodal point, the tacnodal taagent on the section is the

tangent to the spinodal curve, and is therefore equivalent to the

cuspidal tangent at two points P and P' which ultimately coincide.

Hence at such a point two osculating planes to Eg coincide, and

therefore the tangent plane to the surface at a tacnodal point

osculates Dg along the tacnodal tangent, and is therefore a

stationary plane a to Eg. Now a tacnode is a compound singu-

larity which has several penultimate forms. In particular, it may
be regarded as a cusp whose cuspidal tangent has quadritactic

contact at the cusp, or as a flecnode whose two tangents coincide.

Hence the tacnodal points are points where the cuspidal and

flecnodal curves intersect. We shall hereafter prove that the

flecnodal curve is the complete intersection of the surface and one

of degree lli\^— 24; hence the spinodal and flecnodal curves

apparently intersect in 4iV(iV— 2)(lliV— 24) points. We shall

also show that these two curves touch one another, but do not
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intersect ; accordingly the number of tacnodal points is half this

number, and a direct proof may be given by means of the theory

of united points, which has been explained in Chapter III.

394. The number of singular tangent planes whose point of

contact is a tacnode on the section is

^, = 2N(N-2)(nN-24<) (13),

also each of these planes is a stationary plane a- to the curve Eg,

Let L be any fixed line ; through L draw a plane oc cutting

the spinodal curve in a series of points P; then the tangent to

the cusp at P on the section of the surface by the tangent plane

at P will cut the surface in JV — 3 points Q', through L and Q
draw a series of planes y; and take x and y as corresponding

planes.

Since there are n points P lying in the plane x, it follows that

there are n{N — 3) planes y corresponding to a single plane x;

hence

fi = n{N-S).

The spinodal developable intersects the surface in the spinodal

curve three times repeated and in a residual curve of degree n',

where

n' + Sn = Nv,

and since n' planes x correspond to each plane y, it follows that

\ = n' = Nv- 3w.

United planes will occur :

—

(i) When P is the point of contact of one of the planes ta-g.

(ii) When the line PQ passes through the line L; but since

each line FQ contains iV^— 3 points Q, and v is the degree of the

spinodal developable, the number of united planes due to this

cause is {N— 3) v. We thus obtain

\^-fi = Nv + n{N-Q) = vT,^-{N-^)v.

Substituting the value of v from (8) and recollecting that

n = 4<N{N -2), we obtain

OT, = 2N{N-2) (lliV^- 24).
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395. Equations (8), (12), and (13) accordingly furnish the

following formulae for the characteristics of Dg and Eg, viz.

v = 2N(N-2){SN-4>) \

7ri = 4^N'(N-l){N-2)
^^^^^

o- = 2i\r(i\r-2)(lliV-24)|

and by means of (4) and (5) of § 104 the following additional

formulae can be obtained, viz.

n= 4!N(N-2){7N-15)

K = 10N'{N'-2){7N'-W)

g+is= 2N'{N-2)(4!N'-1QN' + 20N'-21N'+ S9)

h + 8= 2N(N-2){196N'-12S2N^ + 2580N^-18Q1N+U5)j
(15).

The formulae (14) and (15) agree with those obtained by

Salmon* by a different method with this exception. The co-

efficient of the last term in the last of equations (15) is, according

to Salmon, 274 instead of 270 ; and he has also assumed, without

proof, that zr and 8 are zero.

The Flecnodal Curve, its Developable Df and the Edge of

Regression Ef of the Latter.

396. The flecnodal curve has been defined in | 10; and there

are three species of singular points lying on it. In the first place

the points, where the curve touches the spinodal curve, are the

tacnodal points which have already been considered. In the

second place the hiflecnodal points, where the planes •074 touch the

surface, are nodes on the flecnodal curve, for at such points two

generators of the flecnodal developable intersect on the curve. The
latter cannot, however, have any cusps, for such a singularity could

only occur if the point of contact of the section by the tangent

plane were the particular kind of tacnode which is formed by the

coincidence of the two tangents at a biflecnode ; and we have

shown that such points cannot in general exist. In the third

place the points, where the planes tn-g touch the surface, lie on this

curve.

* Geometry of Three Dimensions, p. 580.
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397. The degree of the flecnodal developable is determined by

the equation

v = '2N{N-S){^N-2) (16).

Let ^ be a point on the flecnodal curve ; ABG the tangent

plane at A ; AB, AG the tangents at A to the section by the

plane ABG, of which AB is the flecnodal tangent. Then the

equation of the surface TJ is

+ a'*-%4 + ...w,i = (17).

Writing down the polar quadric and cubic oi A, it follows that

both the tangents at A to the section lie in the polar quadric, and

that the flecnodal tangent AB lies in the polar cubic.

Let P be any point (/, g, h, k) on the flecnodal curve ; PO the

flecnodal tangent to the section by the tangent plane at P. Then

the equations of the tangent plane, the polar quadric and cubic of

P, are

A'U' = 0, A''U' = 0, A"U' = (18),

where A' is given by (10); also, since (/, g, h, k) lies on the

surface,

U' = (19).

The point P lies on the four surfaces (18) and (19), whilst

(a, /8, 7, 8) are the coordinates of any point on the line PO, which

is common to the three surfaces (18); if, therefore, we eliminate

(/> 9> ^y ^) between (18) and (19), we shall obtain a relation

between (a, /3, 7, S) which connects the coordinates of any point

on the flecnodal tangent PO, and is therefore the equation of the

flecnodal developable. By the usual rule, the degree of the

eliminant in (a, /S, 7, S) is apparently equal to

n {11 - 2) {n - 3) + %i (n - 1) (n - 3) + Sn (n - 1) (w - 2)

= 6n' - 22n' 4- I8n (20),

but we shall now show that this result must be reduced by 6n.

Equations (18) and (19) may be regarded in another light; for

if (a, /8, 7, 8) were a fixed point on the flecnodal tangent at a

point P on the surface, and (/, g, h, k) a variable point, equations

(18) would be the first, second, and third polars of the surface

with respect to 0. Hence the result of eliminating (/, g, h, k)

between (18) and (19) gives the locus of points, such as 0, whose

first, second, and third polars intersect on the surface U, and the
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degree of this locus is given by (20). But if we write down the

first, second, and third polars of (17) with respect to A, it can

easily be shown that they intersect in six coincident points at A
;

hence the original surface U six times repeated forms part of the

locus. Accordingly the degree of the residual surface, which is the

developable in question, is

Qn^ - 22^,2 + 18?? - 6w = 2n {n - 3) (3?i - 2).

Changing n into N, we obtain (16).

398. The flecnodal curve is the complete intersection of the

surface U and one of degree lliV— 24, and the degree of the

flecnodal curve is*

n = N'(llN-24>) (21).

Let (a, /3, 7, B) be any point on Df. Then the result of

eliminating these quantities between (18) and the equation

Df («, /8, 7, 8) = gives a relation between (/, g, h, k) of degree

Qv (iV - 1) + 3z/ (i\^- 2) + 2z/ (iV - 3) = 1/ {UN- 18),

hence lliV— 18 is the degree of a surface which contains the

flecnodal curve. But if be regarded as a fixed point on Df, and

(/, gy h, k) or P a variable point, (18) may, as in the last section,

be regarded as the first, second, and third polars of U with respect

to ; and since these surfaces intersect U in six coincident points,

which lie on the flecnodal curve, the eliminant will furnish a locus

which includes Df six times repeated. Hence if F be the residual

surface, we must have

v{llN-l^) = vF-^Qv,

giving i'^=lliV-24,

so that the degree of the flecnodal curve is given by (21).

399. The class of the flecnodal developable is

m = i\r(i\r-l)(lli\r-24) (22),

for this is equal to the number of points in which the first polar

* Otherwise thus. The point (a, /3, 7, 5) is common to the four surfaces

77 (a, /3, 7, S) = and (18) ; and if we ehminate (a, j3, 7, 5), we obtain a quantic of

(/> S'l h, k) of degree lln - 18, which, when equated to zero, gives a surface which

contains the flecnodal curve. But the point (a, /3, 7, 5) six times repeated is

common to these four surfaces, hence U^ forms part of the locus ; accordingly the

degree of the residual surface is lln -24. The form of this result shows that the

locus consists of the original and residual surfaces, and the intersection of these

two surfaces determines the flecnodal curve.
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of U, with respect to any arbitrary point, intersects the flecnodal

curve.

400. The flecnodal and spinodal curves touch one another but

do not intersect.

Since a tacnode may be regarded either as a particular kind of

flecnode or cusp, and therefore partakes of the character of both

singularities, the points of contact of the tangent planes -as-g must

be the points where the spinodal and flecnodal curves intersect

one another. The total number of these points is

but since the number of planes 575 is half this number, the two

curves must touch one another at the points of contact of tn-g.

401. The 27 lines lying in an anautotomic cubic surface

constitute the flecnodal curve ; also any line lying in a surface of

higher degree forms part of this curve, and the theorem of § 55 is

a particular case of the preceding one. If the flecnodal curve

consists entirely of straight lines lying in the surface, their number

is iV(lliV"— 24), hence :

—

A surface of the Nth degree cannot possess

more than iV^(lli\^— 24) straight lines lying in it.

402. Before explaining Schubert's method for finding the

number of planes -33-4 and sTg, some preliminary theorems will

be necessary.

The flecnodal developable intersects the surface in a residual

curve of degree

nf=2N(N-4<)(SN' + N-12) (23).

Let n, Vf denote the degrees of the flecnodal curve and

developable respectively ; then since the developable intersects

the surface in the flecnodal curve four times repeated, the degree

nf of the residual curve is given by the equation

Nvf=4,n + nf (24).

Substituting the values of ly and n from (16) and (21) we

obtain (23).

403. If P be any point on the flecnodal curve, the ordinary

tangent at P to the section of the surface by the tangent plane at P,

generates a developable whose degree vq is

v, = N{nN^-d^N+M) .: (25).
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Let P be any point on the flecnodal curve, then the flecnodal

and ordinary tangents at P will generate two developable surfaces

Vf and Vi^ ; but if P be one of the points where the flecnodal curve

intersects the surface S, which has been discussed in § 391, one of

these two tangents must intersect the fixed line L. Accordingly

the degree of the compound surface generated by both tangents is

vf+Vo = N{llN-^^) (SN - 4).

Substituting the value of v/ from (16) we obtain (25).

404. The surface vq intersects the original surface in a residual

curve of degree Uq, where

no = Nvo-nn (26).

For every generator of Vo intersects the surface in the flecnodal

curve three times repeated and in a residual curve Wq.

405. The number of singular tangent planes, whose point of

contact is a biflecnode on the section, is

^, = 5N{7N'^-28li+S0) (27).

A plane x through a fixed line L intersects the flecnodal curve

in n points, where n is given by (21). Let P be one of them, then

the ordinary tangent to the surface at P intersects it in N—S
points Q, all of which lie on the curve oi^. Let the planes through

L and the points Q be the planes y, and take cc and y as corre-

sponding planes.

To every point P correspond iV — 3 planes y ; and since there

are n points P, there are (iV— 3)n planes y corresponding to a

single plane x ; hence

fx = (N-S)n.

A plane y intersects the curve Uq in Wq points, to each of which

corresponds a plane x ; hence

\ = nQ.

United planes will occur :

—

(i) When one of the points Q coincides with P, in which case

P is a point of contact of a tangent plane 3x4. But since both the

tangents at P are flecnodal ones, and Q may be supposed to

coincide with either of them, this plane must be counted twice

;

hence the number of united planes due to this cause is 2'sr4.

(ii) When P is a tacnodal point, one of the points Q will
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coincide with P ; hence the number of united planes due to this

cause is -zn-g.

(iii) Let P be a point where the ordinary tangent intersects

the line L ; then since iV— 8 points Q lie on this tangent, the

number of united planes due to this cause is {N—^)vq.

We thus obtain

\-\-ti = n, + {N-'^)n = 2-374 + ^3-5 + (iV- 3) v,.

Substituting the values of 72o) v^, n and 075 from (27), (26), (21)

and (13) we obtain (27).

406. The number of tangent planes, whose point of contact is

a hyperfiecnode on the surface, one of whose tangents has ordinary

contact and the other quadritactic contact with their respective

branches, is

-5r6=5iV(i\^-4)(7iV-12) (28).

The planes oc are the same as before ; but the points Q are

those where the flecnodal tangent at P intersects the surface

;

hence

fi = {N-4<)n.

A plane y intersects the curve nf in ny points, to each of which

corresponds one plane oc ; hence

X = nf.

United planes will occur :

—

(i) When a point Q coincides with P, in which case P is the

point of contact of a plane OTr ; hence the number of united planes

due to this cause is arg.

(ii) Let P be a point where the flecnodal tangent intersects

the line L; then since iV— 4 points Q lie on this tangent, the

number of united planes due to this cause is (N — 4) Vf.

We thus obtain

X + /i = w/ + (i\r - 4) w = OTfi + (iV - 4) Vf.

Substituting the values of n./ and Vf from (24) and (23) we

obtain (28).

407. The Flecnodal Curve. The characteristics of this curve

and the developable enveloped by its osculating planes can now be

partially found by means of equations (10) to (15) of § 107 ; for we

have shown in | 398 that

ilf=lli\'^-24 (29),
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Whence, by (9) of § 107,

2/i = i\^(i\^-l)(lliV'-24)(lli^-25) (30).

The points of contact of the planes W4 are nodes on the curve,

whence, by (27), we obtain

B = 5N(7N'-28N+'S0) (31).

Substituting these values and recollecting that k = 0, we

obtain

V = 2N (N - S) (SIN - 54)

TO = 3i\^(62i\^^-305i\r+348)-t I (32),

(T = 4>N (93i\^2 _ 4(j3jyr + 534) _ 2t

and the value of ?/ + r can be found from (15) of § 107. The first

of (32) gives the degree of the developable enveloped by the

osculating planes to the flecnodal curve ; but whether or not the

curve possesses any points of inflexion cannot be ascertained

without further investigation. It appears to me possible that the

points of contact of tn-g might be points of this character.

408. The Flecnodal Developable and its Edge of Regression.

Our knowledge of this surface and curve is confined to the

equations
z/=2J\^(i\r-3)(3iV-2) \

7n = N {N -1) {l\N -^^Yr (33),

^ = 5N {IN' - 28N + 30)

j

r = t=0 (34).

The third of (33) arises from the fact that the planes 374 are

double tangent planes to Df, and therefore doubly osculating

planes to Ef. The planes tn-g also, in all probability, give rise to

some singularity.

The Bitangential Curve, its Developable D^ and the

Edge of Regression Ej^ of the Latter.

409. The class of the bitangential developable is

m = ^N{N-l)(N-2){N'-N' + N-12) (35).

Let be the vertex of the tangent cone to the surface from an

arbitrary point ; then every double tangent plane to the cone is a

tangent plane to D^ ; hence m is equal to the number of double

tangent planes to the cone. Let u, fi be the degree and class of
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the cone ; B, k the number of its nodal and cuspidal generators

;

then, by Chapter I,

v = n{n—l), fi = n (n — ly,

8 = ^n{n-l){n-2){n-S), K = n(n-l){n-2),

whence, by Pliicker's equations, we obtain

2T = n (n - 1) (n - 2) (n^ -ii' + n- 12).

Changing r into m and n into N, we obtain (35).

410. The degree of the hitangential curve is

n = N(N-2){N'-N'' + N-12) (36).

Let T be the degree of the hitangential surface, that is the

surface which intersects the original one in the hitangential curve

;

let OPQ be a double tangent plane to the tangent cone from 0,

which touches the cone along the generators OP, OQ ; and let P
and Q be the points where these generators touch the surface U.

Then the number of points such as P and Q is obviously equal to

2m; but these points are the intersections of the hitangential

surface, the original surface and its first polar with respect to ;

hence their number is equal to TN{N— 1). Accordingly

TN(]S'-l) = 2m.

" Substituting the value of m from (35), we obtain

T= (N-2)(N'-N' + N-12) (37).

Equation (37) gives the degree of the hitangential surface,

and the degree of the hitangential curve is this quantity multi-

plied by N.

411. The spinodal and hitangential curves touch one another at

the tacnodal points. They intersect one another at the points which

are the cuspidal 'points on the tangent planes tn-j; and the number of

such planes is

^, = 4>N(N'- 2) (N-S) {N' + SN-16) (38),

also the planes CTi are stationary planes to the edge of regression of

the hitangential developahle.

Let P and Q be the points of contact of any double tangent

plane to the surface ; then P and Q are nodes on the section by

the plane. But a tacnode may be formed by the union of two

nodes, hence if P and Q coincide, P becomes a tacnodal point on

the surface, and the tacnodal tangent PQ becomes a tangent to
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the bitangential curve. Hence the bitangential curve touches the

spinodal and also the flecnodal curve at the tacnodal points.

The tangent plane bti touches the surface at a point p, which

is a cusp on the section, and at another point q which is a node.

Hence p must be a point where the spinodal and bitangential

curves intersect one another. Accordingly the number of such

points plus twice the number of tacnodal points is equal to the

number of points in which the spinodal and bitangential curves

intersect; whence

'ST, + 4>N{N'-2) (UN -U) = 4^N(]Sr-2y(N'-N' +N -12),

giving ^, = 4>JV{N-2)(N-S){N^ + SN-16).

To prove the last part of the theorem, let ABG be the plane

-571 ; B the node, A the cusp, and AG the cuspidal tangent in the

section. Then if we write down the equation of the surface and

its first polar with respect to any point T on AB, and then put

8 = 0, we shall obtain exactly the same equations as if we had first

put 8 = 0. Hence these equations represent the section by the

plane 8 of the surface and of its first polar with respect to T ; and

we know from the theory of plane curves that these two sections

have tritactic contact with one another at A, and that AG is the

common tangent. Hence AG is the tangent to the bitangential

curve at A, and the generator AB of Dj is equivalent to three

coincident generators through three coincident points at A. From
this it follows that the plane 8 or m-^ osculates D^ along AB, and

is therefore a stationary plane to Ef). We thus obtain the

equation

(T = ^, (39).

We have also proved that :

—

The tangent to the bitangential

curve at a point, where it intersects (hut does not touch) the spinodal

curve, is the tangent at the cusp on the section of the surface hy the

tangent plane OTi.

412. The points, where the bitangential and flecnodal curves

intersect one another, are the flecnodal points on the tangent planes

•zB-g ; and the number of such planes is

^, = N{N-2) (UN -24'){N'-N' + N-16).. .(40).

The tangent plane •ur^ touches the surface at a point P, which

is a flecnode on the section, and at another point Q, which is a

B. 18
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node. Hence P is a point where the bitangential and flecnodal

curves intersect one another. Accordingly

^. + 4i\^(i^-2)(lli^-24)

= N (N-2)(11N -24^){N'' - N' +N -12),

giving ^, = N(N-2){nN-24<){N'-N' + N-16).

Reciprocal Surfaces.

413. Let 8 be an anautotomic surface of degree n, S' the

reciprocal surface; and let the unaccented and accented letters

refer to the original and the reciprocal surface respectively. Let

T be any plane section of >S' ; then, since the characteristics of an

anautotomic plane curve are

m = n{n-l), t = |n (n - 2) (n^ - 9)| .

t = nn(n-2), 8 = 0, k = J

the reciprocal of a plane section of ^ is a tangent cone to S',

whose characteristics are

n =n{n—l), m' = n, S' = ^n {n — 2) (n^ — 9)| ,

K' = Sn{n-2), t' = 0, l=0 ]'"

(i) Let the plane T have ordinary contact with >S' at a point

0. Then is a node on T, and therefore S = 1, t = 1 ; also the

vertex 0' of the cone lies. on 8', and the double tangent plane to

the cone is the tangent plane to 8' at 0'. The two generators

along which this plane touches the cone are the nodal tangents at

0' to the section of 8' by the tangent plane, and they are the

reciprocals of the nodal tangents to T at 0.

(ii) Let be a cusp on T. Then k = 1, and if = 1; hence the

tangent plane at 0' to 8' osculates the cone along a generator.

Through 0' draw an arbitrary plane P', then the reciprocal of P'

is a point P lying in the plane T ; and the reciprocal of the section

of 8' by P' is the tangent cone to 8 from P. Now the plane T
can easily be shown to osculate this cone along a generator PO*

;

* For the purpose of proving this result, it is sufficient to employ the cubic

surface

a^8 + a (d^vo +Svi+ py^) + !/3= 0.

The tangent plane 5 touches the surface at A, which is a cusp on the section
;

also C is any point in this plane. Writing the cubic in the binary form (7, 1)''=0,

and equating its discriminant to zero, we obtain the equation of the tangent cone

from C, which shows that the plane ABC osculates the cone along the generator ^C.
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hence 0' is a cusp on the section oi 8' hj P\ and consequently

the locus of 0' is a cuspidal curve on S', which is the reciprocal of

the spinodal developable of 8. The characteristics of the latter

are given by equations (14) and (15); hence, reciprocating,

we obtain the following formulae for the cuspidal curve on 8',

viz.

v = 2N(N-2){2N-4^)

oi = ^N(N-l)(N-2)
K = 2N (N - 2) (UN - 24^)

m = ^N{N-2){1N-\h)
a = 10N {N -2){1N -IQ)

The remaining characteristics can be obtained from the last

three of (15) by writing y, h, B, g and ot for x, g, w, h and 8

respectively. These formulae show that the tacnodal points on 8
correspond to cusps on the cuspidal curve on 8'.

The reciprocal of the spinodal curve is the developable en-

veloped by the tangent planes to 8' at points on the cuspidal

curve. The characteristics of this developable and of its edge of

regression are obtained by reciprocating (7) and the last four

of (6).

(iii) Let T be a double tangent plane, and let P and Q be its

points of contact. Then 3 = 2, and t' = 2 ; hence the cone has a

pair of double tangent planes, both of which are tangent planes to

8' at 0'. Accordingly the locus of 0' is a nodal curve on 8',

which is the reciprocal of the bitangential developable. The

characteristics of the latter have only been partially obtained

;

but by reciprocating (35) and (38), and recollecting that OTj is a

stationary plane to Ej,, and therefore gives rise to a cusp on the

nodal curve, we obtain the following formulae for the nodal curve

on^'.
n = ^N{N-l)(N-2)(N''-N'' + N-12))

The reciprocal of the bitangential curve on 8 is the developable

enveloped by the tangent planes to 8' at points on the nodal

curve.

(iv) Let be a flecnode on T. Then S = 1, t = 1 ; so that

t'' = 1, k=1. Hence the cone has a cuspidal generator, whose

18—2
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cuspidal tangent plane touches the cone along another generator,

and is therefore a double tangent plane. This plane is the tangent

plane to S' at 0', and the locus of 0' is a curve on S', which is

the reciprocal of the flecnodal developable. Its character may be

investigated by means of the quartic surface

+ 3a (S%o + ^^w, + Sw, + y F2) + W4 = 0. . .(45)

or a^S + Sa^u^ + Sau^ + W4 = 0,

in which the plane S touches the surface at a point A, which is

a flecnode on the section, and AB is the flecnodal tangent. The

tangent cone at A is

from which it follows that the plane S is a double tangent plane,

which has ordinary contact along the generator AG, but AB is a

cuspidal generator whose cuspidal tangent plane is S. This shows

that 0' is a point on the flecnodal curve on 8', accordingly :

—

The

reciprocals of the flecnodal curve and developable on 8 are the

flecnodal developable and curve on 8'. Reciprocating (33), the

degrees of the flecnodal curve and developable on 8' are

n = N(N-l){UN-2^)^
v = 2N{N-S){d]S[-2)

J

^ ^"

To avoid circumlocution, I shall denote the degrees of the

nodal, cuspidal, and flecnodal curves on 8' by the letters b, c, and/j

and shall frequently refer to them as the curves b, c, and/"; whilst

the degree of the bitangential curve on 8 will be denoted by p.

By (44), (43), (46), and (36) their values are

b = ^N{N-l)(N-2)(N'-N"^ +N -12\

c = 4>N{N-l){N-2) I

^4^^_

/= N{N-l){llN-24>)
[

p= N(N-2){N'-N^ + N-12) f

Moreover, it is possible for the nodal curve, considered as a

curved line drawn on the surface, to possess nodes, cusps, and other

singularities ; and these must be carefully distinguished from

singular points, such as pinch points, which are singular points on

the surface, but not necessarily such on the curved line, which

constitutes the nodal curve.
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(v) Let be a point where the bitangential and spinodal

curves intersect ; then the plane T has ordinary contact with 8 at

some point Q on the former curve and is the double tangent plane

tsT^, one of whose points of contact is a cusp on the section, and its

cuspidal tangent is some line OP, whilst Q is a node. Hence

S = 1, /c = 1 ; and therefore r = 1, l =1. Accordingly the cone has

a double and a stationary tangent plane, both of which touch S'

at 0'. The latter plane is the cuspidal tangent plane at 0' to S'

along the curve c, and is one of the nodal tangent planes to the

curve h ; whilst the former plane is the other nodal tangent plane

at 0' to the curve h. From this it follows that 0' is a cubic node

of the fifth species on S'.

We have also shown in (iii) that 0' is a cusp on the curve h
;

but since the generators OP and OQ of the spinodal and bitangen-

tial developables to >Si at do not, in general, coincide, the curves

h and c on 8' intersect, but do not touch at 0'.

Furthermore, if P'
,
Q' be two points on the curve b near 0',

the curve c cuts the plane O'P'Q' at a finite angle ; but if O'R is

the cuspidal tangent at 0' to the curve h, the three tangent planes

to the surface at 0' all pass through O'R'.

(vi) Let be a tacnode ; then is a point where the spinodal

and bitangential curves touch, and T is the singular tangent plane

•sTg. Also S = 2, T = 2 ; so that 8' = 2, t' = 2 ; accordingly the cone

has a tacnodal tangent plane, which is the tangent plane to 8' at

0'. In this case the curves h and c touch one another at 0', and

0' is a pinch, point on the former. Moreover, from (ii), 0' is a

cusp on the curve c, and the two coincident nodal tangent planes

to h coincide with the cuspidal tangent plane to c at 0'. These

three coincident planes pass through the cuspidal tangent to c at

0'
; and 0' is a cubic node of the sixth species on 8'.

Any plane section through a cubic node of the sixth species

has a triple point of the third kind thereat ; and we can verify

this by the method explained in (i) by means of the quartic

surface

,y4 + 4y (^avo + v^) + 672 (aX + olw^ + ^2) + ^7 {o^h Fo + aF^ + F3)

+ a='SFo + a^STf"i + aSF2+Tr4 = (48),

where the suffixed letters denote binary quantics of (/3, S). The

plane ABC is the tangent plane at A ; also this point is a tacnode

on the section, and AB is the tacnodal tangent. The equation of
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the tangent cone from C, which is any arbitrary point on the

section, is obtained in the usual manner by equating to zero the

discriminant of (7, iy = 0, viz. 7^ = 27/^ from which it will be

found that the plane B has quadritactic contact with the cone

along AG. This shows that A is a, point of undulation on the

section of the cone by the plane ABD, and that AB is the tangent

at this point ; and since the reciprocal of the tangent at a point

of undulation on a plane curve is a triple point of the third kind,

0' is such a point on the plane section of 8'.

(vii) Let be a point where the bitangential and flecnodal

curves intersect ; then the plane T has ordinary contact with S at

some other point Q on the bitangential curve, and T is the double

tangent plane -sr^, one of whose points of contact is a flecnode on

T. Hence S = 2, t = 1 ; and therefore t' = 2, k =1. Accordingly

the cone has one ordinary double tangent plane corresponding to

Q, and a singular tangent plane corresponding to 0, which has

ordinary contact with the cone along one generator and is the

cuspidal tangent plane to the cone along another generator. These

two planes are the nodal tangent planes at 0', but the one

corresponding to touches the flecnodal curve and the latter

intersects the nodal curve at 0'. The value of OTa is given by (40).

(viii) Let T be a triple tangent plane to S ; and let P, Q, R
be its points of contact. Then these points are nodes on the

section, and are also points on the bitangential curve. Hence

S = S and t = 3. The tangent cone from 0' has therefore three

double tangent planes which are tangent planes to S', at 0'

;

hence 0' is a cubic node of the third kind on S', and a triple point

of the first kind on the nodal curve. The number of these points

will be considered later on.

We have now completed the discussion of the spinodal and

bitangential curves, but the flecnodal curve remains to be con-

sidered.

(ix) Let 0' be a biflecnode on T. Then S = l, l = 2; so that

t' = 1, K =2; and by employing a similar method to that of (iii) it

can be shown that the cone possesses two cuspidal generators

having a common cuspidal tangent plane, and that 0' is a

biflecnode on the section of the tangent plane at 0' to 8'.

(x) Let be a hyperflecnode on T, one of whose tangents

has quadritactic contact with its own branch, and consequently
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quinquetactic contact with S at 0. Then B = l, t=1, t=2;
hence t =1, 8' = 1, /c' = 2 ; and the tangent plane at 0' touches the

cone along two generators, one of which is a triple generator of

the third kind, whilst the contact along the other is ordinary

bitactic contact. To ascertain the character of the singularity at

0', let us consider the quintic surface

a^S + 4a3 {8% + Svi +pl3y) + Ga^ (8u^ + ryt^)

+ 4a (Sw3 + 7^3) + u, = 0,

where the us are ternary quantics of (^, 7, B), and the other

letters are binary quantics of (/3, S). The section of this surface by

the tangent plane S is the singularity in question, AB being the

tangent which has quinquetactic contact with the surface ; and if

the equation to the tangent cone from A be written down, it will

be found that ABC is a double tangent plane to the cone along

the generators AB and AG, and that AB is a triple generator of

the third kind, whilst the contact is bitactic along AG. This

shows that the singularity at 0' on the reciprocal surface is of the

same character as that on the original one.

414. Equations (46) and (47) furnish a verification of

Cayley's theorem of § 59 ; for the degree n of the flecnodal curve

on the reciprocal surface is given by the equation

n = M{llM-24!)-22b-27c,

where M=N{N—iy. Substituting the values of b and c from

(47), it will be found that this equation reduces to the first

of (46).

The corresponding equation, which gives the degree of the

spinodal curve on S', is by § 58

7i = 4if(ilf-2)-86-llc (48 a).

Now the spinodal curve on 8' gives rise to a spinodal developable,

the reciprocal polar of which is a cuspidal curve on S. But since

8 is anautotomic, it possesses no cuspidal curve and therefore 8'

possesses no proper spinodal curve, and the degree of the latter

is therefore zero ; hence the curve of intersection of 8' and its

Hessian must consist of the nodal and cuspidal curves on 8'

repeated a certain number of times. And if the values of M,
b and c be substituted in (48 a), it will be found that ?i = as ought

to be the case.
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I have not succeeded in ascertaining the reduction in the

degree of the bitangential curve which is produced by a nodal

and a cuspidal curve ; but if the reduction is denoted by xh + yc,

the method of the preceding paragraph indicates that x and y
are functions of the degree N of the surface. This is confirmed

by the fact that a double point on the original surface gives rise

to a multiple point of order N{N—Vf — Q on the bitangential

surface*; and we should therefore anticipate that a nodal or a

cuspidal curve on the original surface gives rise to a multiple

curve on the bitangential surface, whose multiplicity is a function

of the degree of the original surface.

415. To find the number of triple tangent planes to an

anautotomic surface.

We shall prove the formula

6(7i'-2) = p + 2t!rg + 8c7i + 3OT3 (49),

where n' = N'{N—Vf is the degree of the reciprocal surface;

573 is the number of triple tangent planes to 8, and p is the

degree of the bitangential curve. The values of h and p are

given by the first and last of (47).

Let A be any point in space ; let a surface of degree n

possess a nodal curve of degree h, and a cuspidal one of degree

c ; also let a be the number of ordinary tangents which can be

drawn from A to any plane section of >Si' through A. Then,

by Pliicker's equations,

a = n'{n' -l)-^h-2,c (50).

The complete tangent cone from A to ;S" is of degree

n{n' — V)\ and (50) shows that it consists of the cone twice

repeated, which stands on the nodal curve h, the cone three

times repeated, which stands on the cuspidal curve c, and a

proper cone whose degree a is given by (50).

Equation (49) is proved by examining the character of the

points of intersection of the second polar of A with the nodal

curve h. These points are ordinary and singular.

At every ordinary point B, in which the curve of contact

of the cone a intersects the curve h, one of the nodal tangent

planes must pass through A, and we shall first show that these

points lie on the second polar of A.

* "Singular tangent planes to aiitotomic surfaces," Quart. Jour. vol. xui. p. 37.
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Consider the surface*

a"Wo + OL^'^U^ + . .. a%„_2 + CL£lslln-s-\ + ^s"Un-'ZS = 0- • .(51),

where fls = yS*-lWl + )S«~^^f;2+ ... Wj

Equation (51) represents a surface having a plane nodal curve

(a, Hg), which passes through B. The nodal tangent planes at

B are obtained by equating the coefficient of /3"~^ to zero, and are

of the form

a?Va + FottWi + WqW-^ = 0,

and if one of them passes through A, Vo = 0. The second polar

of A is obtained by differentiating (51) twice with respect to a,

and Vq = () is the condition that it should pass through B.

Let us now reciprocate this result. The point A becomes

an arbitrary plane P ; the tangent cone a becomes the section

of S by this plane ; the points, where the curve of contact of a

intersects the nodal curve h, become the tangent planes at the

points where the section of >S by P intersects the bitangential

curve, and the number of these points is equal to p.

It follows from (vi) that the points on 8' corresponding to

tiTg are cubic nodes of the sixth kind, and such points are ordinary

points on the second polarf, and the latter has ordinary contact

with the surface at such points. Also the points in question are

ordinary points on h, hence the second polar and this curve have

bitactic contact with one another at these points. Accordingly

the number of points of intersection arising from this cause

is 2-575.

It follows from (v) that points on /S" corresponding to Wi are

cubic nodes of the fifth species on the surface ; and such points

are ordinary points on the second polar, but the latter does not

touch the surface. The tangent plane, however, passes through

* Although the method of proof only applies to surfaces having a plane nodal

curve, there can be no doubt that the theorem is true when the nodal curve is

twisted.

t The equations of a surface having a cubic node of the sixth species at A, and

of its second polar with respect to D are

and 6a'»-3 S + a™-*M4" + . . . «„"= 0,

where u^" — dujdd.
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the line of intersection of the tangent planes at the cubic node*

on S'; and this line is the line O'R' considered at the end of (v),

which is the cuspidal tangent to the curve b at 0\ Hence the

second polar intersects the nodal curve b at 0' in three coincident

points ; accordingly the number of points of intersection arising

from this cause is Sot^.

Since every multiple point of order A; on a surface gives rise

to a multiple point of order k — 2 on the second polar, it follows

that the second polar passes through every cubic node on the

surface. Now we have shown in (viii) that every triple tangent

plane gives rise to a cubic node of the third kind on S', and to a

triple point of the first kind on the curve b. Accordingly the

number of points of intersection arising from this cause is S^s.

We have therefore proved the formula (49), and we have to

substitute the values of b, p, OTg and -OTi from (47), (13) and (38);

also n =N{N—Vf\ we thus obtain

org = ii\r (i\r _ 2) {N-' - 4i\^« + IN' - 45iV^

+ lUN' - llli\^2 4. 548i\r- 960). ..(53),

which determines the number of triple tangent planes.

416. Ilie degree of the bitangential developable is

v = N(N-2){N-S){N' + 2N-4!) (54).

By (13) and the fourth of (47) equation (54) is equivalent to

^ = P-¥^5 (55),

and we shall prove the last equation by the Theory of Corre-

spondence.

Through any fixed line L draw a plane a) cutting the bi-

tangential curve in p points P ; and let the generator of the

bitangential developable through P intersect the curve in Q;
through L and Q draw a plane y, and take a; and y as corresponding

planes. Then to every point P one point Q corresponds and vice

versa ; hence

\ = /ji = p.

* This may be proved by considering such a surface as

a>''-3(py + qS) 5- + a"'-itti+...u^-0,

for its second polar with respect to D is

2a''-3 {py + Sqd) + a"-4 H4" + . . . M„"= 0.
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United planes will occur :

—

(i) When P and Q coincide, in which case P will be the

point of contact of a tangent plane Wg; hence the number of

united planes due to this cause is OTg.

(ii) When the line PQ intersects L. There are obviously v

of such lines, but since the plane LPQ may be regarded as a

plane x or y, this plane is equivalent to two united planes ; hence

the number due to this cause is 2z/.

We thus obtain

A, + yu- = 2p = tsTg + 2z/,

which is the required result.

417. We have therefore proved the following formuljB for the

bitangential developable and its edge of regression, viz.

a = 4'N{N-2)(N-S)(Ii-' + SN-16) -

(.56),

v= N(N-2)(N-S){N' + 2N'-4^)

aud from (4) and (5) of § 104 we easily obtain

n = ^N{N- 2) (5N' - lli\^^ + 12i\^2 - 221i\^+ 420) |

which determine the degree of the edge of regression, and also

the number of its cusps.

The arguments that we have already used show that r and

I are zero ; also, since the curve b does not possess any isolated

nodes, there are no isolated planes sr, for these are included in

the triple tangent planes tn-g, each of which osculates Ej, at three

distinct points. The remaining quantities x, y, and g can be

obtained from (4) and (5) of § 104.

418. To find the number k' of apparent double planes of the

bitangential developable.

The value of k' is equal to the number of apparent nodes of

the nodal curve on the reciprocal surface. Now we have already

shown that the tangent planes Wi and OTs to S respectively give

rise to cusps and triple points of the first kind on the nodal

curve b on S' . Also every triple point is equivalent to three

actual nodes, but the curve has no other actual nodes except
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those included in the triple point ; we must therefore write in (5)

of § 104

and we obtain

j; = h(h-l)- 2k' - 61:73 - 3t3-i,

in which all the quantities except k' are known. We thus obtain

- 288N' + 547i\^^ - 1058N' + 1068iV^- - 1214i\^ + 1464). . .(58).

419. The following equations give the numbers of the six

singular tangent planes to an anautotomic surface of degree

N; and the number attached to each equation indicates where

it is to be found in the text

:

UT, = 4!N(N-2)(N-S)(N' + SN-16) (38),

^, = N{N-2){nN-24!)(N'-m + N-l(5) (40),

^3 =i]\[(]}{-
2) {N^ - 4i\^« + 7N' - 4^bN'

+ 114iV'«_ llliyr2 + 548i\r_ 960)...(53),

^, = bF{7N''-28N + S0) (27)

^5 = 2i\^(iV^-2)(lli\r-24) (13),

^,= 5JSf(N-4>)(1N-12) (28).

The preceding analysis gives a fairly complete investigation

of the six curves and developables mentioned in §§ 10 and 11,

with the exception of the developable and curve Df and Ef, with

respect to which further investigation is required to complete the

theory.

Autotomic Surfaces.

420. I shall not give any detailed account of the theory of

singular tangent planes to autotomic surfaces, which possess G
conic and B binodes, since the investigation is lengthy, and for

the reasons stated in my paper* the results must be regarded as

provisional until verified by some independent method, such as

the Theory of Correspondence.

Let J. be a conic node ; draw the tangent cone from A, and

let the curve of contact cut the spinodal curve at P. Then since

the tangent plane along the generator AP intersects the surface

* f 'Singular tangent planes to autotomic surfaces," Quart. Jour, vol. xlii. p. 21.
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in a curve which has a node at A and a cusp at P, the plane is a

singular tangent plane of the species OTj ; but it is an im'proper

plane, because the contact at A is not ordinary contact, but is of

a special character due to the fact that ^ is a conic node. The
true tangent planes tiJi are those which touch the surface at two

points P and Q, one of which is an ordinary point of intersection

of the spinodal and bitangential curves, whilst the other is an

ordinary point on the latter curve. In like manner, when a

surface possesses G conic nodes, the improper triple tangent planes

are (i) every double tangent plane to the tangent cone from a

conic node, (ii) every tangent plane to the surface through a

pair of conic nodes. Similar observations apply to surfaces which

possess binodes as well as conic nodes ; from which it follows that

every double point on a surface must produce a diminution in the

number of singular tangent planes to the surface, similar to that

produced by a double point on a plane curve in the number of

double and stationary tangents. Accordingly a set of formulae

exists for surfaces similar to Pliicker's equations for plane curves.

421. One of Pliicker's equations for a plane curve is

3w (w - 2) = t + 68 + 8/c,

in which the left hand side is equal to the number of stationary

tangents possessed by an anautotomic plane curve, whilst the

right hand side shows that, when the curve is autotomic, each

nodal tangent is equivalent to three and each cuspidal tangent to

eight stationary tangents. And by considering the surface formed,

by the revolution about the axis of x, of a plane curve symmetrical

about this axis which has a node upon the latter, it follows that

the tangent cone from the node three times repeated forms part

of the spinodal developable. Hence every conic node reduces the

degree of the spinodal developable by 6 ; and in a similar manner

it can be shown that a binode reduces it by 8 ; accordingly the

degree v of the true spinodal developable is

1/ = 2i\r(ZV- 2)(3i\r-4)- 6C- 85.

422. In the paper referred to I have worked out the degrees

and classes of most of these developables ; and the method

employed in calculating the singular tangent planes is to find

the number of improper tangent planes of each species, and to

subtract their number from the value of -sr for an anautotomic
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surface, which is denoted by vr'. The value of OTb is unaltered

b}' ordinary double points, and the change produced when the

singularity is a compound one has not been considered. The
final results are as follows :

—

^1 =<- 2 {iV(iV- 1) (7iV^- 11) - 6C- 54] C
- 4 [N{N- 1) (5i\r- 8) - 65 - 36} B + 325(7,

t!72 =< - 2 {i\^ (i^- 1 ) (1 7i\^- 30) - 1 2(7 - 84} C
- 3 {iy^(iV- l)(17i^- 30) - 185- 96} 5 + 6650,

t:73 = ^3'- 2(7^1 - 35^2 - 125- 2 (ilf- 8) (7(C- 1)

-f(M-6)5(5-l)-6(if-7)5C,

ti3-4 = <-30C-455,

t:7g = <-240-365.

The value ofM is

ti is the number of double tangent planes to the tangent cone

from a conic node, and t^ the number when the vertex is a binode.

Their values are

2^1 = (ilf- 9)^ - iV(i\^- 1) (3i\^ - 14) - 35 - 1,

2^3 = (ilf-8)2-i\^(iY-l)(3iy^-14)-85-10.



APPENDIX

I. On Plane Trinodal Quartics.

Let the tangents at the node of a uninodal quartic cut the

curve at B and C ; and let the line BG cut the curve in Q, Q'.

Then these points, which are called the Q points, possess various

important properties which have been discussed by Roberts*. He
employs the parametric method, but all his results can be obtained

much more simply by the ordinary methods of trilinear coordinates.

A trinodal quartic possesses three pairs of Q points, of which one

pair corresponds to each node ; hence Roberts' results are capable

of extension to these curves.

The three conies mentioned in § 194 of my treatise on Cubic and

Quartic Curves pass through two points, which I call the 8 points

;

and the line 8S' intersects the quartic in two other points, which

I call the T points; and both pairs of points possess various

important properties. Let the equation of the quartic be

/Sy + 7V + a^yS^ + 2a/37 {la + to/3 + ^7) = (1)

;

also let a = Ift'y + TO7a + na^,

T = /37/Z + ^ajm + a^jn,

u = ha + A^a/S + hy,

ki = 7n/n + njm — 21, &c.,

then (1) can be written in the form

<TT-a0yu = O (2).

The conic a passes through the nodes and intersects (1) in the

S points. The conic r intersects it in the T points ; and the S and

T points lie on the line u.

Writing 21, 2m, 2n for I, to, w in § 194 of Cubic and Quartic

Curves, the equation of the conic which passes through the six

* Proc. Land, Math. Soc. vol, xxv. p. 151.
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points in which the nodal tangents intersect the curve can be put

into the form
Ao- + u (a/l + 13/m + y/n) = (3),

h
. _ . 1 1 1 4(^^ + ?n^ + n^)-l

p. ^^2 ^2 2lvin

The equation of the conic which passes through the six points

of contact of the tangents drawn from the nodes is

Aio- + u {{l-^ -l)a + (m-i -m)^ + (n-^ -n)y] = .. .(4),

, . l + l'+ m' + n^ ^ 1 1 1
where Ai = = 1— ^

-„ -„.

Lmn r nv' w
And the equation of the conic which passes through the six

points of inflexion is

Aao- + %mn {(Z-i - a + {m~^ -m)^ + {rr^ - n) 7} w = 0. . .(5),

where Ag = 3 + Z^ + m^ + ti^ - 2 (m^/i^ + nH"" + PrnP^jlmn.

The forms of (3), (4) and (5) show that the three conies pass

through the S points.

The equation of the conic which passes through the six Q
points and the two T points is

A3T - M (a/Z + yg/w + 7/w) = (6),

where

A3 = 1 + 4 (Z- + m^ + if - 2lmn) - 2 (l^on^ + nH" + Pm?)llmn.

All these theorems, together with several others of a similar

character, have been proved by myself in a paper published in the

American Journal of Mathematics, vol. xxvi. p. 169.

II. If three surfaces of degrees L, M, N have a common
anautotomic a rve of degree n, which is a multiple curve of orders

p, q, r on these 6 rfaces respectively ; and if v is the degree of the

developable enveloped by the osculating planes to the curve, the

number of points of intersection which are absorbed by the curve

is

n (Lqr + Mrp + Npq — 2pqr) — vpqr (1).

Let us first suppose that the curve is a multiple one of order p
on the surface L and an ordinary one on the two surfaces M and

N, Then the surfaces M and N intersect in the curve n and in a

residual curve of degree n' =MN — n; and the latter curve inter-

sects the surface L in Ln' points. But the curves n and 7i' intersect

in 8' points, where S' is given by writing n = Wj, n' = ?Z2, y = t-i in the
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first of (21) of § 109 ; hence since n is a multiple curve of order p
on L, the total number of points of intersection of the three sur-

faces, which do not lie on the curve, is

Ln'-pS' = L(MN'-n)-pB'

= LMN-7i{L+pM + pN'-2p) + pv,

which shows that the number of points absorbed is

n(L+pM + pN-2p)-pv ..(2).

The formula (1) may now be established by induction ; for if

we successively put q = r = l, r=p = l,p = q = l, it will be found

in each case to reduce to one which is equivalent to (2).

When a surface of degree N has a nodal curve of degree n, the

reduction of class is obtained by putting L = N, M = N—N—\,
p = 2, which gives

n(5N-8)-2v+j (3),

where
J*

is the number of pinch points. In the case of a quartic

scroll, which possesses a nodal twisted cubic, n = 3, iV = 4, v = ^,

j = 4, and therefore the reduction of class is equal to 32.

Equation (3) enables us to prove the following theorem due to

Salmon*.

When the nodal curve is the complete intersection of two surfaces

of degrees k and I, the reduction of class is

M{1N-4.{k + l + l)},

and the number ofpinch points is

2kl{N-k-l).

The equation of the surface is

P,^U+2P,QiV + QfW =
,,, ..(4),

and the pinch points are the intersections of ihe nodal curve

(P, Q) and the surface V^= UW, which is of degree 2{N—k — l)',

hence their number is j = 2kl (N — k — I). By § 107, equation (10),

v = M{k + l-2).

Substituting these values of j and v in (3) and recollecting that

n = kl, we obtain the required result.

The formula (1) presupposes that if P be any arbitrary point

on the curve n, the sections of all three surfaces by any arbitrary

plane through P has a multiple point thereat, the tangents at

* Carab. and Dublin Math. Jour. vol. ii. p. 65.

B. 19
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which are distinct. The result would therefore require modifica-

tion if the multiple point on the section were of a different

character ; or if the multiple curve possessed any singular points

such as pinch points, multiple points of a higher order and

the like.

The corresponding results for curves of higher singularity

await investigation ; but when the curve is cuspidal, every point

must be a pinch point, which requires that

V^ - UW = P^ + Q"^ (5).

Let N be even and equal to 2?? ; then (5) is satisfied by

W=a\.i + Pp+Qa,

whence substituting in (4) and omitting suffixes, we obtain

{Pa + Qny+(A, B, c, D^p, Qf=o (6),

which is the equation of a surface having a cuspidal curve, which

is the complete intersection of the surfaces (P, Q).

The surface Pfl + Q^' = intersects the surface (6) in the

cuspidal curve three times repeated and in a residual curve; and

it can be shown that the tacnodal points on the former one are the

points of intersection of the two curves. The case in which iV is

an odd integer may be left to the reader.

III. Every multiple point of order p on a surface in general

gives rise to a multiple point of order 4p — 6 on the Hessian. Also

the nodal cone at the latter is a compound one, which consists of the

nodal cone at the multiple point on the surface and a second cone of

degree 3^-6.

Let the equation of the surface be

a^-nt^ + a'^-P-iM^+i + it„ = 0,

then if the values of a, h, &c. be calculated in the same manner as

was done in § 51, it can easily be shown that the highest power of

a in the Hessian is the (4w — 4jj — 2)th ; and since the degree of

the Hessian is 4?i — 8, it follows that the latter surface has a

multiple point of order 4^ — 6 at -4. *
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Let AB he any generator of the cone Up ; then

Up = (fiy + vS) ^p-^ + (Lry' + 2%S + M'') l^-^' + ,

and to find the number of coincident points in which AB cuts the

nodal cone to the Hessian at A, we must put 7 = 8 = in the

values of a, h, &c. We thus obtain a = b = h = 0, which reduces the

first term of the Hessian to (fl — gmy = 0; and if the values of

/, g, I, m when ^ = 8 = be substituted, the left-hand side will

vanish. This shows that the line AB, and consequently every

generator of the nodal cone at the multiple point on the surface,

is a generator of the nodal cone at the multiple point on the

Hessian, and therefore the former cone forms part of the latter

one.

The corresponding theorem for a plane curve is given in §§ 45

and 46 of my Cubic and Quartic Curves. It can also be shown that,

when all the tangents at the multiple point on the curve coincide,

the order of the multiple point on the Hessian is 3p — 3 ; of which

I have given a proof in the case of a cusp. We should therefore

anticipate that the preceding theorem is subject to various excep-

tions, when the nodal cone at the multiple point on the surface is

an autotomic or an improper one. See also §§ 53 and 54,

IV. Quartic Scrolls, ISth species. In the enumeration of

these scrolls I have followed Cayley and Cremona ; but whilst this

treatise has been going through the press I have discovered a 13th

species, which occurs when the triple line is of the 5th species.

By § 215, these lines possess two coincident fixed tangent planes

and one distinct torsal tangent plane ; and the equation of a quartic

surface possessing such a line is

(/SS - a7)V + ^4 = 0,

and by § 359, the generating curve is

which has a triple point of the second kind where the line AB
intersects the curve. The surface therefore belongs to the species

^(171,4).

THE END.
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