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Chapter VIIL

GRASSMANN'S SPACE ANALYSIS.

By Edward W. Hyde,
Professor of Mathematics in the University of Cincinnati.

Art. 1. Explanations and Definitions.

The algebra with which the student is already familiar deals

directly with only one quality of the various geometric and

mechanical entities, such as lines, forces, etc., namely, with

their magnitude. Such questions as How much? How far?

How long? are answered by an algebraic operation or series of

operations. Questions of direction and position are dealt with

indirectly by means of systems of coordinates of various kinds.

In this chapter an algebra* will be developed which deals

directly with the three qualities of geometric and mechanical

quantities, viz., magnitude, position, and direction. A geomet-

ric quantity may possess one, two, or all three of these prop-

erties simultaneously ; thus a straight line of given length has

all three, while a point has only one.

The geometric quantities with which we are to be concerned

are the point, the straight line, the plane, the vector, and the

plane-vector.

When the word "line" is used by itself, a "straight line"

will be always intended. A portion of a given straight line of

definite length will be called a " sect " ; though when the length

* The algebra of this chapter is a particular case of the very general and

comprehensive theory developed by Hermann Grassmann, and published by

him in 1844 under the title "Die lineale Ausdehnungslehre, ein neuer Zweig

der Mathematik." He published also a second treatise on the subject in 1862.
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of the sect is a matter of indifference, the word line will fre-

quently be used instead. Similarly, a definite area of a given

plane will be called a " plane-sect."

If a point recede to infinity, it has no longer any significance

as regards position, but still indicates a direction, since all lines

passing through finite points, and also through this point at

infinity, are parallel. Similarly, a line wholly at infinity fixes

a plane direction, that is, all planes passing through finite

points, and also through this line at infinity, are parallel. Thus
a point and line at infinity are respectively equivalent to a line

direction and a plane direction.

A quantity possessing magnitude only will be termed a

"scalar " quantity. Such are the ordinary subjects of algebraic

analysis, a, x, sin 0, log z, etc., and they may evidently be in-

trinsically either positive or negative.

The letter T prefixed to a letter denoting some geometric

quantity will be used to designate its absolute or numerical

magnitude, always positive. Thus, if L be a sect, and Pa. plane-

sect, then TL is the length of L, and TP is the area of P. That

portion of a geometric quantity whose magnitude is unity will

be called its " unit," and will be indicated by prefixing the

letter U; thus UL = unit of L = sect one unit long on line L*
Hence we have TL . UL = L.

Art. 2. Sum and Difference of Two Points.

In geometric addition and subtraction we shall use the or.

dinary symbols -(-, — , =, but with modified significance, as will

appear in the development of the subject.

Every mathematical, or other, theory rests on certain fun-

damental assumptions, the justification for these assumptions

* The word "scalar ''and the use of the letters T and U, as above, were

introduced by Hamilton in his Quaternions, ^stands for tensor, i.e., stretcher,

and TL is the factor that stretches UL into L. The notation
\
L

\
for absolute

magnitude is not used, because the sign
|
has been appropriated by Grassmann

to another use.
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lying in the harmony and reasonableness of the resulting

theory, and its accordance with the ascertained facts of nature.

Our first assumption, then, will be that the associative and

commutative laws hold for geometric addition and subtrac-

tion, that is, whatever A, B, C may represent, we have

A + B + C = (A + £) + C = A + (B + C)

= A + C-{-B = (A + C)+£.

We shall also assume that we always have A — A = o, and

that the same quantity may be added to or subtracted from

both sides of an equation without affecting the equality.

Now let/;
, /, be two points, and consider the equation

A+A-A=A + (A~A)=A- (i)

In this form we have an identity. Write it, however, in the

form

A-A+A = (A-A)+A=A- (2)

and it appears that/, — /, is an operator that changes/, into

/,by being added to it. Conceive this change of/, into/, to

take place along the straight line through /, and />, ; then the

operation is that of moving a point through a definite length

or distance in a definite direction, namely, from/, to/,. This

operator has been called by Hamilton " a vector," * that is, a

carrier, because it carries/, rectilinearly to/,. Grassmann gives

to it the name Strecke, and some writers now use the word

" stroke " in the same sense.

Again,/,—/, is the difference of two points, and the only

difference that can exist between them is that of position, i.e.

a certain distance in a certain direction.

Hence we may regard /, — /, as a directed length, and also

as the operator which moves /, over this length in this direc-

tion. Writing/, — /, = e, equation (2) becomes

A + e = A- (3)

* See the first of Hamilton's Lectures on Quaternions, where a very full

discussion of equation (2) will be found. Also Grassmann (1862), Art. 227.



Art. 2.] sum and difference of two points. 377

Thus the sum of a point and a vector is a point distant from

the first by the length of the vector and in its direction.

Since A —A — — (p t
— A)> it appears that the negative

of a vector is a vector of the same length in the opposite

direction.

If A —A = o, or A =A>A must coincide with A because

there is now no difference between the two points.

The question arises as to what, if any, effect the operator

A—A should have on any other point/,, that is, what is the

value of the expression p, —A+A ?

We will assume that it is some pointA > so that we have

A—A+A=A>
or A-A=A-A (4)

This implies that the transference fromA toA *s the same

in amount and direction as that from A
to A> that is» that A> A' A> A are the

four corners of a parallelogram taken in

order. Thus equal vectors have the same

length and direction, and, conversely,

vectors having the same length and direction are equal.

Note that parallel vectors of equal length are not neces-

sarily equal, for their directions may be opposite.

Equation (4) may also be written

A+A=A+A, (5)

so that, whatever meaning may be assigned to the sum of two

points, if we are to be consistent with assumptions already

made, we must have the sum of either pair of opposite corner-

points of a parallelogram equal to the sum of the other pair.

The sum cannot therefore depend on the actual distances

apart of the points forming the pairs, for the ratio of these two

distances may be made as large or as small as we please.

If n be a scalar quantity, ne will denote that the operation

€ is to be performed n times on a point to which ne is added,

that is, the point will be moved n times the length of e ; hence



378 grassmann's space analysis. [Chap. VIII.

ne is a vector n times as long as e, and having the same or the

opposite direction according to the sign of n.

In the figure above, let

A—A = e
i> A—A = e.> A-A = e

i» A—A = e
4
.

Then

e. + e, =A —A +A —A =A —A +A —A =A—A = e„ (5)

since, by Art. 4,A —A =A — A-

Also, e
3
- e, =A —A = <v (6)

Hence, if two vectors are drawn outwards from a point, and

the parallelogram of which these are two adjacent sides is com-

pleted, then the two diagonals of this parallelogram will repre-

sent respectively the sum and difference of the two vectors,

the sum being that diagonal which passes through the origin

of the two vectors, and the difference that which passes through

their extremities.*

Again,/, —A+A -A+A —A = =€, + €,+ (- e
2);

hence the sum of three vectors represented by the sides of a

triangle taken around in order is zero.

Similarly, if A. A> • • -A De any n points whatever taken as

corners of a closed polygon, we shall have

(A-A)+(A-A)+(A-A)+---+(A-A- 1)+(A-A)= o;

that is, the sum of vectors represented by the sides taken in

order about the polygon is zero. By " taken in order " is not

meant that any particular order of the points must be observed

in forming the polygon, which is evidently unnecessary, but

simply that, when the polygon is formed, the vectors will be

the operators that will move a point from the starting position

along the successive sides back to this position again, so that

the final distance from the starting-point will be nothing.

Art. 3. Sum of Two Weighted Points,f

Consider the sum w,A+^ aA> in which m
{
and m, arescalars,

that is, numbers, positive or negative, and A> A are P°ints-

* Grassmann (1844), § 15.

t Grassmann (1844), § 95, and (1862), Art. 227.
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The scalars m
x
and »z

a
will be regarded as values or weights

assigned to the points/, and/,. When any weight is of unit

value the figure i will be omitted, so that p means ip, and is

called a unit point. Occasionally, however, a letter may be

used to denote a point whose weight is not unity.

To assist his thinking, the reader may consider the weights

initially as like or unlike parallel forces acting at the points.

In order to arrive at a meaning for the above expression

we shall make two reasonable assumptions, which will prove to

be consistent with those already made, viz., first, that the sum is

a point, and second, that its weight is the sum of the weights

of the two given points. Denoting this sum-point by p, we

write

»*.A + *»SA = C'«i + *«.)A (7)

Transposing, we have *«,(/, — p) = m,(p — /,), or

P^zIJ^rJi,
(8)

Both members of (8) are vectors, and, being equal, they must,

by Art. 4, be parallel. This requires that/ shall be collinear

with /, and pv Also, since /,—p and p — p, are vectors whose

lengths are respectively the distances from/, to p and (romp

to pv it follows that these distances are in the ratio of m, to in,.

Hence, p is a point on the line p,p, whose distances from/,

and/, are inversely proportional to the weights of these points.

We shall call p the mean point of the two weighted points.

If ;/z, and #z
2
are both positive, (8) shows that p must lie be-

tween /, and/,; but if one, say m
t , is negative, let m

t
——m^.

Thus

«,(A - /) = <(A — P\ (9)

and / is on the same side of each point, that is, its direction

from each point is the same. Also, since its distances from the

two points are inversely as their weights, p must be nearest

the point whose weight is greatest.
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Case when «, -|- m^ = o, or m
t
= —m .*—With this con-

dition equations (7) and (8) become

**.A + mJ* = mXA — A) = o
. J, (10)

and /-A=/-A- (11)

Thus ^> is in the same direction from each point, that is, not

between them, and yet is equidistant from them. This re-

quires either that the two points shall coincide, that is, pt
=pv

which evidently satisfies (10) and (11); or else, p1
and/,, being

different points, that p shall be at an infinite distance. Thus

the sum is in this case a point of zero weight at infinity.!

Eq. (10) shows that a zero point at infinity is equivalent to a

vector, or directed quantity, as stated in Art. 1. It has been

shown in Art. 2 that p^ =p s
is the condition that p^ and p,

coincide ; let us consider the equality of weighted points in

general, say m
1p 1

=m,p
2

. Hence, by (7), there is found

m
lp 1
— w*,A = (^, — w,)/ = o; hence, since p cannot be zero,

m
3
— m^ = O, or «, = m

2 ; and therefore m
l(p 1 —p,) = 0, or,

since «k,^0, /, — p^ =0, that is, p^ =pv Therefore, if any

two points are equal, their weights must be the same and their

positions identical, that is, they are the same point.

Exercise 1.—To find the sum and difference of the two

weighted points 3/, and p^

:

3A+A = 4A 3A -A = 2p',

and the mean points are as shown in

*| the figure. The reciprocals of the
L_ 1 i _ '

Sp ' 3p
'

ip ft distances of p, pv and/ from/,,

viz., \, \, \, are in arithmetical progression, hence the points

form a harmonic range.

Exercise 2.—Given a circular disk with a circular disk of

*Grassmann (1862), Art. 222.

t Compare the case of the resultant of unlike parallel forces of equal

magnitude.

2—^_i_^ JL-.-
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half its radius removed, as in the figure ; to find the centroid

of the remaining portion.

Take /j at center of large circle, /, at center /^ />M\
of small circle, and /, at the point of contact ; f p,( p \
then p3

= £( />, -+- A)- The areas of the two cir- xX\^£/
cles are as i 14; call them 1 and 4. Then it is as

if there were a weight 4 at p x , and a weight — 1 at/, ; hence

P = [4A - KA +A)] + 3 = (7A - A) - 6 -

Prob. 1. Show that p s ,p„ «,/, + »*,A> and wiA ~~ wjA are

four points forming a harmonic range.

Prob. 2. An inscribed right-angled triangle is cut from a circular

disk ; show that the centroid of the remainder of the disk is at the

point
(37T — 2 sin 2«) /, — /, sin 2a

3(7? — sin 2a)

\lp
x
is the center of the circle, p, the opposite vertex of the triangle,

and a one of its angles.

Art. 4.. Sum of any Number of Points.

As in the last article we assume the sum to be a point

whose weight is equal to the sum of the weights of the given

points ; thus,
n — n

2mp=p2m. (12)
1 1

M

Let e be some fixed point, and subtract e2m from both
1

sides of (12) ; thus we have

2m{p — e)={p — e)Sm, (13)

an equation which gives a simple construction for/.

If 2m = o, then m
l
= — 2m, and

1 2

/ 2mp\
2mp = m^pt+ 2mp = m\ p1

— —„— , (14)
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so that the sum becomes the difference of two unit points, or

a vector whose direction is parallel to the line joining p1
with

the mean of all the other points of the system, and whose

length is m
i
times the distance between these points. Since

any point of the system may be designated as A> it follows

that the line joining any point of the system to the mean of

«

all the others is parallel to any other such line. If 2mp — o,
i

equation (14) shows that/, is the mean of all the other points

of the system, and, since any one of the points may be

taken as />,, any point of the system is the mean of all the

others.

Let n — 3 in (12) and (13); then

»',A + »*,A + '«,A = (>»! + »*.+ tn,jp, (15)

«,(/, — ')+ mlP*—e) + nh{p 3
—e)={m

1
-\-m<r\-m3

)(p-e), (16)

and/ is on the line joining the point «,/, -f- m^p3
with/

a , and

therefore inside the triangle p x p^p 3
if the m's are all positive.

If m
3
be negative and numerically less than m

1
-\- mv then/

will have passed across the line AA *° t 'le outside of the tri-

angle. If 7/z, and m^ are negative and their sum numerically

less than ;;/
3 , then p will have passed outside the triangle

through p3 , i.e., it will have crossed AA and AA- The point

e must evidently always be in the plane AAA-
As a numerical example let ^ = 3, m2

= 4, m3
= — 5, so

that (16) becomes

p-e = f(A -e)+ 2(A - e) - f(A - e).

Now, since e may be any point whatever, put e=p
3 \ then

p — p 3
= f(A —A) + 2(A — A) • an d the construction is shown

in the figure. A ~A = f(A "A). and P~—p l
= 2(A ~A)-

As another example take p = 4A -f- 5A — 2p 3
— 6pt , or, by

(13), making-? =/
4 >

/ ~A = 4(A -A) + 5(A -A) - 2(A -A)

= A -A+A -A +7- A-
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When any number of geometric quantities can be connected

with each other by an equation of the form 2mp = o, in which

the m's are finite and different from zero, then they are said to

be mutually dependent, that is, any one can be expressed in

terms of the others. If no such relation can exist between the

=:5P,

/
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That three vectors shall be parallel to one plane,

«, 6 , + «,e.+ «
s
e

3 = o. (2r>

These conditions follow from the results of Art. 2, or from

equations (17) and (18) by regarding the e's as points at infinity.

If in addition to (21) we have

»i + »»+ n
> = °> (22)

the extremities of the three vectors, if radiating from a point,

will be collinear : for, let e„ . . . e
%
be four points so taken that

if, — ea = e, , e, — e, = e, , e, — e
a
= e

a ; then (21) becomes

«,(> - '0) + «.(*> - O + »s(^s - *.) = o,

or by (22) n
1
e

1 + «/,+ »
s
*

s
= o,

which by (18) requires e,, e,, e, to be collinear.

It may be shown similarly that

2ne = 2n = o (23)

are the conditions that four vectors radiating from a point shall

have their extremities coplanar.

Exercise 3.—Given a triangle e
a
e,e

t and a point p in its

plane; pe, cuts e/, in qt ,

pe
1
cuts e^e

t
in q,,pe

a
cuts

e ejn q„ q,q, cuts<v?, in /„

&& cuts Vo in /, , and ?„?,

cuts e
t
e

t
in /, : to show that

p„, pl7 and pt
are collinear.

Let/= ra/o+«/,+V.

;

then q , q t , q, coincide re-

spectively with »!*, + »,*,,

/z
2
f

2
-(- w/ , and n

t
e, -f- «/, because / lies on the line joining e

t

with ^ , etc. Hence, if x , x,, y„, y1
are scalars,

hence (x, - /,«„>„ -f (x, - yjifo - n,(fa
-\-y,)e, = o.

Now the e's are not collinear, and yet are connected by a
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relation of the form of equation (18); hence, as was there

shown, each coefficient must be zero ; accordingly

*. — .?i». = *—y**i =y* +7. = o,

whence we find x : x
1
= n

a
: — nv

hence (ra — «,)/, = n,e — n
l
e

l , and similarly

(*i—» a)A = «A — n,e
t , («„ -»„)/>, = n,e

2
-n e

a
.

Adding, we have

(«. - ».)A.+ («. - «»)A + (», - »,)A = o

;

therefore, by (18), A> A> A are collinear.

2 2

Exercise 4.—Let / = 2ne -f- 2n be any point in the plane

of the triangle *„*,-?,: show that lines through the middle

points of the sides e
t
e
t , e

t
e
t , and e

t
e

1
of the triangle parallel

to ej>, e
xp, and ^

3/> meet in a point

A - [(», + «>o+ (». + ».)', + (», + «,k] -*- 2^».

By the conditions the vector from the middle point of e^
to p' is a multiple of the vector e — p ; hence

A - £0i + '.) = •*(<?„ - P) or

A = K<. + '.) + *{'. -A = «'. + ',) +^,-A
or, substituting value of p,

A = i(', +',)+*('.-2»*-i-.2») = *(*„+,,)+.?('. --2»*-S-2«).

hence [(jp — £)2« 4- »
o
(j/ — x)~\e

t
4- «,(> — *)*,

+ [(4 -^» + njj — x)]e, = o

;

therefore, as in the previous exercise, each coefficient must be

zero, whence x =y = f, and substituting we find p' as above.

It follows also that the distances of p' from the middle points

of the sides are the halves of the distances ofp from the oppo-

site vertices.

2

Prob. 3. Show that e = \2e is collinear with p and p' of Exer-
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cise 4. Also that, by properly choosing/, it follows that e is col-

linear with the common point of the perpendiculars from the vertices

on the opposite sides, and the common point of the perpendiculars

to the sides at their middle points.

Prob. 4. Given two circles and an ellipse, as in the figure, with

centers at <?„,/,, and p Y
. Radii of circles 4 and

1, axes of ellipse 2 and 4, small circle and ellipse

touching large circle at e, and <?, respectively,

e
a
e

L
e, an equilateral triangle: show that the cen-

troid of the remainder of the large circle, after

the small areas are removed, will be at

P = tV(iK - A - 2A)=A(S9^ - 4*i ~ 3'.)-

Prob. 5. If a sheet of tin in the shape

of an isosceles triangle be folded over as in

the figure, show that its centroid is given by

3P = iM35(*„ + .?
1 ) + "',]•

Prob. 6. If a tetrahedron *„*,*,*, have a

tetrahedron of ^ of its volume cut off by a

plane parallel to e
t
e

l
e
1 , and one of -^ of its

volume cut off by a plane parallel to «,«,*,

,

show that the centroid of the remaining solid is at

P = ^b>(22 7e , + 175*3 + 239^, + *,) ).

Art. 5. Reference Systems.

Let p be any unit point, e
a , i?, , e

t
three fixed unit points,

and w, x, y scalars ; then, writing

p = we, + xe
x + ye

t , (24)

we must have also, because p is a unit point,

w-\-x-\-y=i, (25)

and p is the mean of the weighted points we , xe^, ye
t
. The

point p may occupy any position whatever in the plane e
l
e

l
e
i ;

for it is on the line joining we, -\- xe
1
with e

t
, and by varying

IS)

y and w-\-x, — remaining constant, / may be moved along
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W
this line from — °o to -\- <x> ; while by varying the ratio — the

point we„ -\- xe^ may be moved from — oo to -f- °° along <?/,,

and thus the first line will be rotated through 180 degrees, and

p may thus be given any position whatever in the plane.

A system of unit points to which the positions of other

points may be referred is called a reference system, and the

triangle *„*/, is a reference triangle. For reasons that will ap.

pear later, the double area of this triangle will be taken as the

unit of measurement of area for a point system in two-dimen-

sional space.

Similarly, in solid space, taking a fourth point e
% , we write

p = we,-\- xe,-\-ye
%
^- ze„ (26)

which implies also w-\-x-\-y-\-z=i\ (27)

and p may be shown as above to be capable of occupying any

position whatever in space by properly assigning the values of

w, x, y, z; so that e„ . . . e, form a reference system for points

in three-dimensional space. The tetrahedron e„e
t
e^, is called

the reference tetrahedron, and six times its volume will be

taken as the unit of volume for a point system in three-dimen-

sional space.

Eliminating w between (24) and (25), we have

P = '. + *('. - '.) +.K'. - '.)» (
28

)

from which it may also be easily seen that p may be any point

in the plane e
t
e

t
e,. Writing/ — e = p, e

1
— e = e,, e, — e — e

2 ,

(28) becomes p = xe
t -f- ye^, (29)

and c,, e
2
form a plane reference system for vectors.

Similarly, from (26) and (27) we find

p = xe,-}-ye, + ze„ (30)

and e,, e,, e
s
are a reference system for vectors in solid space,

any vector whatever being expressible in terms of these

three.

If, in equations (25) and (26), the reference vectors are of
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unit length and mutually perpendicular, we have unit, normal

reference systems, and in this case i. , iv i, will generally be used

instead of e„ e
a , e

3
.

Exercise 5.—To change from one reference system to an-

other, say from e
t , elt e, to <?„', e/, ej.

The new reference points must be connected with the old

ones by equations such as

'. = he* + h'1 + 4^'. '. = «,«.' + «<!' + m
t
e,',

e, = "0^0' + »A' + *,','

Then any point / = .#„*„ + *A + x
t
e* will be expressed in

terms of the new reference points by substituting the values of

e , etc., as given. If e/, e,', e,' are given in terms of the old

points, e , e
x

, e^ may be found by elimination. Thus, if e^=2le
t

e/ = 2me, ej = ~2ne, we have at once

K
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that is, k
t
2le -\- k'S^me -j- k~2ne = o,

whence (kj + k,m, + £,«„>„ + (£,/, + k.m, + *,»,)*,

+ (A>4 + £,>«, + &,«,)<?, = o,

and, as <?„, *„ *, are not collinear, the coefficients must be zero,

by Art. 4; hence

MJ, + k
l
m, + £/z„= kj, -4- k.m, + k

%
n

x
= kj, + k

l
m

l + kji, = o,

and, by elimination of the /£'s,

4 *«„ «0

/, «, «, =0, (31)

which is the required condition of collinearity.

Prob. 7. If p = 3 <f - *, - «, , 4*/ = 3^ + e,
, 4*/ = 3e, + e

a ,W - 3e o + e
i , show that 7/ = - i 9ej - 3*/ + 29^'.3333

Prob. 8. Find the condition that four points 22ke, ~2le, ~2me, 2ne
'

shall be coplanar. Ans. [k„ ,/,,»',,«,] = o.

Prob. 9. Up — we + xe
x
-\-yei: and there exist between the

scalars w, x, y a linear relation such as Aw + Bx -\- Cy = o, A, B,
C being scalar constants, show that/ will always lie on a straight

line which cuts the reference lines in Ae
x
— Be , Ae, — Ce , and

Ce
x
— Be,. Consider the special cases when A = B, B = C, C= A,

A — B = C, A = o, B = o, and C — o.

Prob. 10. lip = we
a + xe

x
-\-ye, + ze

3 , and there exist also an

equation Aw -\- Bx -\- Cy -\- Dz = o, show that/ will lie on a plane

€ €
which cuts the edges of the reference tetrahedron in -= -?,B A'
e e
~h 7-, etc. Also, if a second relation between the variables,
C A
such as A'w -\- B'x -\- Cy -\- D'z = o, be given, then / lies on a

line which pierces the faces of the reference tetrahedron in

'0
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Art. 6. Nature of Geometric Multiplication*

The fundamental idea of geometric multiplication is, that a

product of two or more factors is that which is determined by

those factors.

Thus, two points determine a line passing through them,

and also a length, viz., the shortest distance between them;

hence p^p, = L is the sectf drawn from />, to p„ or generated

by a point moving rectilinearly from^ to/
a

.

The student should note carefully the difference between

p^pi and/
a
— p, ; they have the same length and direction, but

the sect p^p, is confined to the line through these two points,

while the vector p,— p i
is not. The sect has position in addi-

tion to the direction and length possessed by the vector.

Again, in plane space, two sects determine a point, the

intersection of the lines in which they lie, and also an area, as

will appear later, so that AA = A m which p is not in general

a unit point. In solid space, however, two lines do not, in

general, meet, and hence cannot fix a point ; but two sects, in

this case, determine a tetrahedron of which they are opposite

edges.

It appears, therefore, that a product may have different

interpretations in spaces of different dimensions. Hence we

will consider separately products in plane space, or planimetric

products, and those in solid space, or stereometric products.

Products of the kind here considered are termed " com-

binatory," because two or more factors combine to form a

new quantity different from any one of them. This is the

fundamental difference between this algebra and the linear

associative algebras of Peirce, of which quaternions are a

special case.

Before discussing in detail the various products that may

arise, we will give a table which will serve as a sort of bird's-eye

view of the subject.

* Grassmann (1844), Chap. 2
; (1862), Chap. 2.

f See Art. 1.
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In this table and generally throughout the chapter we shall

use/, p lt p„ etc., for points; e, e,, e
2 , etc., for vectors; L, L

lt

etc., for sects, or lines ; rj, rfit etc,, for plane-vectors ; and P, Plt

etc., for plane-sects, or planes. Also/,/,, etc., as used in this

table will not generally be unit points.

The products are arranged in two columns, so as to bring

out the geometric principle of duality.

Planimetric Products.

AA = L.
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Laws of Combinatory Multiplication.— All combinatory

products are assumed to be subject to the distributive law ex-

pressed by the equation

A{B+ C) = AB -f- AC.

The planimetric product of three points or of three lines

and the stereometric product of three points or planes, or of

four points or planes, are subject to the associative law. That is,

In Plane Space :

AAA =AA •A =A •AA ; AAA = AA • A = A • AA-
In Solid Space :

AAA =A AA = AA A ; AAA = A • AA = AA • A
AAAA=A-AAA =AA-AA;

P P P P = P . P PP = PP pp

The commutative law of scalar algebra does not, in general,

hold. Instead of this, in the products just given as being asso-

ciative, a law prevails which may be expressed by the equation

AB=- BA,

from which it follows that the interchange of any two single

factors of those products changes the sign of the product.*

Since vectors are equivalent to points at oo , the associative

law holds for e^e, and Tf^fj,.

Art. 7. Planimetric Products.

Product of Two Points.f—This has been fully defined in

Art. 6, and it is evident from its nature as there given that

AA=-AA- (3 2 )

If p^ =p lt
this becomes p ip 1

= o, which must evidently be

true, since the sect is now of no length.

Also, A(A -A) =AA -AA = AA- (33)

* Grassmann (1862), Chap. 3. f Grassmann (1862). Arts. 245, 246, 247.
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But/, — p v
is a vector, say, e ; hence

Ae = AA : (34)

or the product of a point and a vector is a sect having the di-

rection and magnitude of the vector ; or, again, multiplying a

vector by a point fixes its position by making it pass through

the point.

To find under what conditions pp' will be equal to /,/,.

Take any other point p%
in the plane space under consideration,

and write p - x,p, + xj>, -\-xJ>„ p' =y,p 1 +AA, +J>/
aA> with

the conditions for unit points 2x = ~2y = o.

The„ //=|,;,: >*+ ,:; '>•+
,.,.

**

If this is to reduce to AA> we must have the third condition

x,?, — *>y* — x*y* ~ x^= — °' which requires that x
3 = y, = O,

unless the coefficient of /,/., is to vanish also. Thus //' must

be in the same straight line with /,/,. If, moreover, in addition

x
ty2

— x
ty t
— i, we shall have pp' = pp,. Hence pp' is equal

to p,p., when, and only when, the four points are collinear, and

p' is distant from/ by the same amount and in the same direc-

tion that/, is from/,.

Product of Three Points.—By Art. 6 the product is what

is determined by the three points. In solid space they would

fix a plane, but, as we are now confined to plane space, this is

not the case. The points evidently fix either a triangle or a

parallelogram of twice its area, and the product p,pj>, will be

taken as the area of this, or an equivalent, parallelogram.

This area is taken rather than that of the triangle, because

it is what is generated by/,/, as it is moved parallel to its

initial position till it passes through /,.

We have pj>J>%
— px .pj>, = -A -AA = -AAA- so that

if we go around the triangle in the opposite sense the sign is

changed. As this product possesses only the properties of mag-

nitude and sign it is scalar.

Write/ = 2xp,p' = 2yp,p" = 2zp; then
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X'j x^ x
%

PP'P" - i\ y* y* AAA; (35>

•^i
z

i
z

*

that is, any triple point product in plane space differs from any

other only by a scalar factor.*

Finally, AAA =A(A - A)(A - A) =Aee', (36)

if e =A —A and e' =/, — A-

Product of Two Vectors.—-Using the values of e and e'

just given, we see that e and e' determine the same paral-

lelogram that A> A> and A do; hence the meaning of

the product is the same in all respects in two-dimensional

space.

We shall have ee' = — e'e, for

ee' = (A - A)(A - A) = - (A - A)(A ~A) = -e'e;

since we have shown that inverting the order changes the sign:

in a product of points. The result may be obtained also by

regarding e and e' as points at infinity, or by consideration of

a figure.

As we have seen that ee' has, in plane space, precisely the

same meaning asAAA we mav write

AAA =A ee' = ee
'

= (A -A)(A -A) =AA +AA+AA- (37)

Thus the sum of three sects which form the sides of a triangle,

all taken in the same sense as looked at from outside the

triangle, is equal to the area of the triangle.

Product of Two Sects.—Any two sects in plane space,.

p Lv Lv determine a point, the intersec-

/' tion of the lines in which they lie, and

y an area, that of a parallelogram as in.

the figure. Let A be the intersection,

and take A andA so that L
x ^p^p, and Z

a =AA- The area.

* Grassmann (1862), Art. 255.

/i 2
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determined by Z, and Z
2

is then the same that we have

given as the value ofAAA- We write therefore

44 = Pop, -P.P. =AAA • A- (38)

The third member of (38) is not to be regarded as derived

from the second by ordinary transposition and reassociation of

the points, for the associative law does not hold for the four

points taken together, sinceAAA -A — °- The third member

simply results from the definition of L^L^* It may be taken

as a model form which will be found to apply to several other

cases, for instance to (38) when points and lines are inter-

changed throughout. Thus, if />, = L L, andA = L L^ we have

AA = 44 • 44 = 444 • 4- (39)

For take p/ and A' so that/,// = Z, and/,^'= Z„; AA is.

evidently some multiple of Z , say «Z ; hence

AA = «Z„ = Jr(AA •AA') • (AA • AA')

= ^(AAA'-A)-(AAA' -A), by (38),

= -* PJ>*Px-PiP*P* AA» because AAA' and

AAA' are scalar,

= ^ (/.A • AA' -AA') • 4- by (38),

= L^L.L^ . Z , which was to be proved.

Product of Three Sects.—The method has just been indi-

cated, but we may also proceed thus : Let the lines be

Z„, L„ Z
2 , and let A- A- A be their common points. Take

scalars n„ «, n
s
so that Z = «,/,/„ etc., then

Z Z,Z, = »,»,», .AA .AA •AA = - *.».». •AAAA-AA
= - «,»,», .AAA •AAA = ».*.».(AAA)'. (4°)

* Grassmann applies the terms "eingewandt" and "regressiv " to a prod-

uct of this kind, the first term being used in the Ausdehnungslehre of 1844.

and the second in that of 1862. See Chapter 3 of the first, and Chapter 3,

Art. 94, of the second.
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Product of a Point and Two Sects.—Let/ be any point and

let L
x
and Z, be as in (38) ; then

pL,L
t =p.pj> % .pj* =P-Pop ip,-Po =P<,P>P,-PPo- (40

It has been here assumed that pL
x
L^ —p . L

x
Lr The prod-

uct is not associative, for pL
x

. Z
2

is the line Z
2
times the

scalar pL
x

, a different meaning from that assigned in (41). As

a rule, to avoid ambiguity, the grouping of such products will

be indicated by dots.

Product of Two Parallel Sects.—Let them be/,e and np
t
e;

then, as in (38),

p,e . np^e = n.p
1
e .p,e = n . ep,. ep, = n . ep,p

t
. e, (42)

that is, a scalar times the common point at 00

.

Addition and Subtraction of Sects.—Let Z, and Z, be two

sects, p their common point, and px
and pa

so taken that

A = AA >
L

2 = P„P* ;
then

Z, + Z
3 =ptp l +p p, =p,(pt +A) = 2p p, (43)

p being the mean of p x
and/

2 ; hence the sum is that diagonal

of the parallelogram which passes through pQ
. Also

Z.-Z, = A(A~A)> (44)

so that the difference of the two passes also through/,, and is

parallel to the other diagonal of the parallelogram determined

by Z, and Z
a
.

If the two sects are parallel let them be «,/,e and n,p,e\

then

«,A e + nj,e = {nj>, + n,p,)e = (ft, + n,)pe,
, (45)

so that the sum is a sect parallel to each of them, having a

length equal to the sum of their lengths, and at distances from

them inversely proportional to their lengths.

If «, = — «, the two sects are oppositely directed and of

equal length, and the sum is

«.(/.« -A<0 = »,(A -AH (46)

which, being the product of two vectors, is a scalar area.
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Consider next n sects pi
e

l , p e , .

arbitrarily chosen point ; then
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p„en , and let e„ be some

2pe = e,Se - e 2e + 2pe = e 2e+ 2{p - e
a
)e. (47)

The second term of the third member of this equation, being a
sum of double vector products, that is, a sum of areas, is itself

an area, and is equal to the product of any two non-parallel vec-

tors of suitable lengths. Therefore, a and yS being such vec-

tors, write 2e = a and 2(J> — <?,) = a/3. Hence (47) become

2pe = e a + a/3 = (e, - /3)a.

Let q be some point on the line 2pe ; then

q2pe —0 = qe a + qa/3 = qe
a
a -f a/J,

by (37). hence qe
a
a = — a/3 = fia.

The figure presents the geometrical mean-

ing of the equation, and hence it appears that

qa(=2pe) is at a perpendicular distance from

e
a of

a/3 2(p - e )e

Ta ~ T2e
'

(48)

Spa

(49)

It is easily seen that a sect possesses the exact geometrical

properties of a force, namely, magnitude, direction, and position,

and the discussion of the summation of sects which has just

been given corresponds completely to the discussion of the re-

sultant of a system of forces in a plane. In this algebra, then,

the resultant of any system of forces is simply their sum, and

this will be found hereafter to be equally true in three-dimen-

sional space. The expression in (46) corresponds to a couple,

as does also the 2(p — e„)e of (47); and this equation proves

the proposition that any system of forces in a plane is equiva-

lent to a single force acting at an arbitrary point, e
a

, and a

couple. Equation (49) gives the distance of the resultant from

this arbitrary point.

Exercise 7.—To find x, y, z from the scalar equations
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Multiply the equations by plt plt and p, respectively, and

add ; hence
3 3 3 3

x2ap -\- y~2,bp -f- z~2,cp = 2dp.
i ii i

Now 2ap, 2bp, etc., are points : multiply the equation just

written by 2ap.2bp ; thus

z2ap . 2bp2cp = 2ap . 2bp . 2dp,

because 2ap . 2ap — O, etc.; therefore

z — 2ap .~2bp. 2dp -f- 2ap . 2bp^cp = [a, , b
t , da]

~ [a, , b, , c,]

,

a very simple proof of the determinant solution. Of course

x and y will be found by multiplying by the other pairs of

points.

Exercise 8.—Forces are represented

by given multiples of the sides of a par-

allelogram ; determine their resultant.

Let the parallelogram be double the

triangle e
a
e

l
e„ and the forces

k,e,e
x + k.efa — <?„) + k,e,(e, — e,) + k,e,e = 2pe

= {.K+ k&A + (K + £>>.*.+ {K+ £.k'„-

Multiply by e e
1
to find where the resultant cuts this line

;

then

(£,+&,>„*, . <?A+(^+£><A . ej>,=eje
x
e
% . [(£,+£,>,—(kt

-\-k,)e
t],

or e
t
e

t
cuts the resultant at the point

[(*, + *>,-(*.+ *.)'.]-(*,-*.)•

Similarly the resultant cuts the other sides of the reference

triangle at [(*, + £,>, - (k,+ i,)e,] -»- (k
t + k

%
-k

a
- k) and

at [(£. + k
t
)e, - (k

x + £,)*,] - (k
a
- k,).

Suppose k = k, = k, = k,; then each of the three points

just found recedes to infinity ; but in this case 2pe reduces to

2£oO.*\ + <?A+ Vo) = 2£„(A - '„)('» - '.)> and the system is

equivalent to a couple.

Prob. n. Construct the resultant of Exercise 8 when k — i,

*.= 2
> K~ 3- K= 4! when k = i, ^= - 2, k = 3, £,= - 4: when

i„ = 3, -4, = k, = 2, k^ = 1 ; and when £, = &, = 1, /£„ = &, = — 2-



Art. 8.] the complement. ' 399

Prob. 12. There are given n points p, . . .p„; to find a point e

such that forces represented by the sects ep
l

, ep
t , etc., shall be in

equilibrium. (The equation of equilibrium is 2ep~e2p = —ep = o.
n

Hence e coincides with the mean point of the/'s.)

Prob. 13. If a harmonic range e it p, eit p' be given, together with

some point <?„ not collinear with these points, show that

<Vi/ • "V»/ = - e
a
pe, . <?„/«?,.

(Let p = wz,*?, + m^e^ and p' = m
1
e

x
— m^e

t , as in Exercise 2 of

Art. 3.)

Prob. 14. Show that the relation of Prob. 13 holds for any four

points whatever taken respectively on the four lines e e,, e
a p, e

a
e^,

e^p'- If the four points are all at the same distance from ,? , show

that the areas e e,p, etc., become proportional to the sines of the

angles between e„e
l
and e p, etc.

Art. 8. The Complement.*

Taking point reference systems, or unit normal vector ref-

erence systems, as in Art. 5, the product of the reference units

taken in order being in any case unity, the complement of any

reference unit is the product of all the others so taken that

the unit times its complement is unity.

To find the complements of quantities other than reference

units the following properties are assumed :

(a) The complement of a product is equal to the product

of the complements of its factors.

(b) The complement of a sum is equal to the sum of the

complements of the terms added together.

(c) The complement of a scalar quantity is the scalar itself.

Considering now the point system in plane space e
a , e ]t e^

with the constant condition e
a
e

l
e
l
= 1, the sides of the refer-

ence triangle taken in order are the complements of the oppo-

site vertices, and vice versa.

The complement of a quantity is indicated by a vertical

line, as \p, read, complement of/.

* See Ausdehnungslehre of 1862, Art. 89.
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Thus \e
t
= e

i
eu I'A =!(k) = '.»

k = 'A» kA=Kk,) = ^i»

k = v.. I<v. =KkO = 'i-

For e
t
\e

t
= */,*, = i, which agrees with the definition

;

I 'A = k, • k. = 'A • e>
e

x
= — e

»
e
>

e
»
e

x
= — W, • e, = *„ by (a)

and (38)

;

IVA= ko • ki • k, = 'A • *A • V> = ('.-V.)' = 1 =VA> which

agrees with {c) ; *„ | *, = e
Q
e1e = o = <?„ 1 e

t
— <?, | *,.

1

Next take any pointy = ^V^, and we have, by (b),

\pi= 2/\e=W,+l>V.+Wl=W,(j
i

~
j)(l

~
j)
= A- (50)

Thus the complement of a point is a line,* which may be

easily constructed by the fourth member of (50); which ex-

presses this line as the product of the points in which it cuts

the sides e/^ and e
a
e
t

of the reference triangle. Comparing

this equation with Ex. 3 in Art. 4, it appears that |/, above is

2 e
related to the point 2-,as the line/ /a

of Ex. 3 is to the point

2ne. Hence \pt
may be found by constructing this line cor-

responding to 2 -. as shown in the figure of Ex. 3, Art. 4.

Again, the line \p t
may be shown to be the anti-polar of p

With respect to an ellipse of such dimensions, and so placed

upon *//, that, with reference to it, each side of the reference

triangle is the anti-polar of the opposite vertex.* From this

it appears that complementary relations are polar reciprocal

relations. Take any point p, — ~2me, and we have

A lA = (4a + IA + l
*
e*)(m/A + **A*. +*W0

= 2lm = 2me.2l\e=p,\plt (51}

*See Hyde's Directional Calculus, Arts. 41-43 and 121-123.
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so that this product is commutative about the complement
sign, and scalar. This is true of all such products when the

quantities on each side of the complement sign are of the same
order in the reference units. Take for instance the product

AAlAA- This is scalar because \papt
is a point, so that the

whole quantity is equivalent to a triple-point product ; and we

have/A \pjk
= \pjl .pjt

=
| (pjA \pj\ -Ap t \pjv by (

fl) and

(c). If, however, such a quantity be taken aspj>t
. \p, it is neither

scalar nor commutative about the sign
|

; for, \p %
being a line,

the product is that of two lines, that is, a point, and

AA •
I A = - 1 A •AA = -

I (A • IAA)- (52)

Such products as we have just been considering are called

by Grassmann " inner products," * and he regards the sign
|

as a multiplication sign for this sort of product. Inasmuch,

however, as these products do not differ in nature from those

heretofore considered, it appears to the author to conduce to

simplicity not to introduce a nomenclature which implies a new
species of multiplication. For instance,/^ will be treated as

the combinatory product of p into the complement of q, and

not as a different kind of product of/ into q.

The term co-product may be applied to such expressions,

regarded as an abbreviation merely, after the analogy of cosine

for complement of the sine.

Consider next a unit normal vector system,

tion we have

I
»,='.. I*i= 1(10= -

because i
1
\i

1
= i^i, = I,

Also, z,
|
z
2
=

Next iet

e, = m^ + mj, and e
2
= n

l
i
l -f- n^ ;

* Grassmann (1862), Chapter 4.

By the defini-
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then, by (b) and (c),

I

e, = *»,
|
*,+ **,

|
*, = »*,*„ — **,*!• (S3)

By the figure it is evident that
|
e, is a vector of the same

length as e, and perpendicular to it, or, in other words, taking

the complement of a vector in plane space rotates it positively

through 90°.

The co-product e,
|
e„ is the area of the parallelogram, two

of whose sides are e, and
|
e, drawn outwards from a point ; if

e, is parallel to
|
e
2 , this area vanishes, or e,

|
e
2
= o ; but, since

|
e
2

is perpendicular to e„ , e, must in this case be perpendicular

to e
a

; hence the equation

e,
|

e
2
= O (54)

is the condition that two vectors e, and e
2
shall be perpendicu.

lar to each other.

The co-product e,
|

e
1

, which will usually be written e,-, and

called the co-square of e, , is the area of a square each of

whose sides has the length 7e, ; hence

Te
1 =V^W1 =V^?. (SS)

Let a
x
and a

t
be the angles between i, and e, and between

i
l
and e

2
respectively, as in the figure. Then

e,e
2
= ;«,«, - mji, = 7e, 7e

2
sin (a, - a,), (56)

the third member being the ordinary expression for the area of

the parallelogram 6,6,. Also

= ;«,», -f- mji^ = Te
x
Te, cos (a, — a,), (57)

the last member being found as before, remembering that

sin (90 -[- a, - «,) = cos (a, - a
x).

If in (57) we let e
2
= e,, whence «, = »«, and n^ = m

% , we
have

7c, = e* = ^/< 4 «,'. (58)

^ 7\ = TV, = 1, then w, = cos a,, m
t
= sin a,,n

x
= cos «„

«, = sin a,
,
and equations (56) and (57) give the ordinary trigo-

nometrical formulas sin(o-
2
- a,) = sin a, cos a, — cos a, sin «„
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and cos (or, — a,) = cos «, cos a, + sin a, sin a, . Squaring and

adding (56) and (57), there results

T\ .T% = e*e* = (e.e,)
3+ (e,

|

e
2)\ (59)

Attention is called to the fact, which the student may have

already noticed, that such an equation as AB = AC, in which

AB and A Care combinatory products, does not, in general,

imply that B=C, for the reason that the equation A(B—C)=o
can usually be satisfied without either factor being itself zero.

Thus pL
r
= pL, means simply that the two quantities which

are equated have the same magnitude and sign, which permits

Z„ to have an infinity of lengths and positions, when p and L,

are given. The equation p,p2 —p,p,, orp^p2
— pt )

= o,p, and

/, being unit points, implies, however, that/
2 =p„ unless p l

is

at 00 , that is, a vector.

Exercise 9.—A triangle whose sides are of constant length

moves so that two of its vertices remain on two fixed lines

:

find the locus of the other vertex.

Let * e, and £ e2 be the two fixed lines,

and //'/" the triangle. Let pe be per-

pendicular to p'p", p' — e„ = xe, and

P" — e„= ye* ;
then /' — p' = ye, — xe

x ,

7\ye
a
— xe, ) = c = constant, by the con-

ditions. Also, Tp'e = constant = mc,

say, and Tep = constant = nc, say. Hence

VB ~—~ X6
e -p' = Tp'e . U{e - p') = mc .^ _

' = m(ye
2
- #e,),

and similarly p — e = n
\

(ys, — xe
t
). Therefore

p-e, = p = xe
l + m(ye, - xe,) + n

\

(ye, - xej,

an equation which, with the condition T(ye
2
— xe,) = c, or

y'e* — 2xye
x

|

e

3 + x'e^ = c\

determines the locus to be a second-degree curve, which must

in fact be an ellipse, since it can have no points at infinity.

Let us rearrange the equation in p thus :

p = x[( 1 — m)e
l
— n

| e, J + y[me, + n
\
eJ = xe+ ye', say,
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so that e = (i — m)e
l
— « | e, and e' = «e, -\-n\e^; then multi-

ply successively into e and e'; therefore pe = ye'e and

pe' = xee'. Substituting these values of x andjj/ in the equa-

tion of condition, we have

el . (pey + 2e,
|
e
2

. pe . pe' + e^pej = c\ee')\

a scalar equation of the second degree in p.

Exercise io.—There is given an irregular polygon of n

sides : show that if forces act at the middle points of these

sides, proportional to them in magnitude, and directed all out-

ward or else all inward, these forces will be in equilibrium.

Let e
a
be a vertex of the polygon, and let 2e„ 2e2) . .. 2en

represent its sides in magnitude and direction. Then the mid-

dle points will be ^-f-e,, e
a
-4- 2e, -4- e

2 , etc., and, using the

complement in a vector system, we have

2pe = 0,+eO |

e
1+(^ +26I

+e.)
|
6
2+(^ +2e1

+2e
2
+e

3) |
e

3+ . . .

.

+ ('„ + 2e, + . . . + 2e„_ a + e„)|es .

= <?„ 26+2d+ 2e, -5e -(- 2e
2
2,

6+... + 26„_1
|

6„

-S'e-]- 2er= o, which was to be proved.

Exercise II.—A line passes through a fixed point and cuts

two fixed lines ; at the points of inter-

section perpendiculars to the fixed lines

are erected ; find the locus of the inter-

section of these perpendiculars.

Let the fixed lines be ^e, and e
t
etl .

and the fixed point e
a
-\-e,; the moving

line cuts the fixed lines in /' and /"

at which points perpendiculars are

erected meeting in/.

Let p — e„ = p, p' — e„ = xe,
,
p"- <?„ = ye, , 7e, = 7e, =i;

then p=zxe
l
-\-x'\e, = ye

2
-\-y'

|
e, , whence p|e,= x and p\e,= y-
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Also, since e -(- e
3 ,

p'
',
p" are collinear points,

Oe, - e
3
)(je

3
— e

3 )
= o = jy/e.e, + j/e„e, + #e3e,;

or, substituting values of x and y,

P|e,.p|63
. €,€„ + p

I

e
2

. e„e
3
-{- />

|

c, . e
s
e, = O,

an equation of the second degree in p, and hence representing

a conic.

Prob. 15. If a, b, c are the lengths of the sides of a triangle, prove

the formula a* = f1

-f- c* — zbc cos A, by taking vectors e,, e
a , and

ea — ei equal to the respective sides.

Prob. 16. If e„e
1
and e e* are two unit lines, show that the vec-

tor perpendicular from e
a
on the line (e + # ei)(*o + &O is

(bet — aej, of which the length is —r: —r-. From
(be

%
-aey-'" "' b

T(be* - ae
x )

this derive the Cartesian expression for the perpendicular from the

origin upon a straight line in oblique coordinates,

ab sin w -4- (a
1 + b* — 2tzb cos w)^, 00 being angle between the axes.

Prob. 17. If three points, me
a + «*,, wz*?, + w 2 , ot<? 2 + w , be

taken on the sides of the reference triangle, then the sides of the

complementary triangle,
|

(me
a

-\- ne
x ), etc., will be respectively paral-

lel to the corresponding sides of the triangle formed by the assumed

points (me, + tie,), (me, + ne ), etc.

Art. 9. Equations of Condition, and Formulas.

Several equations of condition are placed here together for

convenient reference : some have been already given ; others

follow from the results of Arts. 7 and 8. When we have

(60)

(61)

AA = °>

or ».A H""»A = °>

the two points coincide ;

AAA = o,|

or 2np = o,
j

the three points are collinear

;

6,6, = o, or n.e, + n,e, — o, (62)

the two vectors are parallel (points at infinity coincide);

(63)

AA = o,

or n,L
t + «

3A = o,

the two lines coincide;

AAA = o,

a

or ~2nL = o,
J

the three lines are confluent.
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the two vectors are perpendicular

;

either point lies on the com-

plementary line of the other.

Z
a |
L, = o, (64)

either line passes through the

complementary point of the

other.

If we write the equation

P = *A + *,e„

j?
1
e

1
is the projection of p on ei parallel to e,, and x^e, is the

projection of p on e
a
parallel to e,. Multiply both sides of the

equation into e
3 ; therefore pe, = x^fi*, or x

1
= pe, ^- 6,6,.

Similarly, multiplying into e,, we have pe, = x,e,elt or

x, = pe, -~ e
2
e,, whence

p = + . (65}
e,e

2
e

2
e,

v »

The two terms of the second member of (65) are therefore

the projections of p on e, parallel to e
a , and on e

2
parallel to e„

respectively.*

Let e, and e
2
be unit normal vectors, say, 1 and |z; then (65)

becomes
p = 1. p\i —

1

1 . pi = 1. p\i-\- ip .
1

1

;

(66)

or, if z, and z
2
be used instead of z and

|

z,

P= VPK + h-P\h- (
67)

Again, in (65) let p = e
3 , clear of fractions, and transpose;

therefore

e,e
2

• e
3 + e

2
e

s
. e, + 6,6, . e, = O, (68)

a symmetrical relation between any three directions in plane

space. Let 7e, = 7e
2
= Te

3
=.- 1, and multiply (68) into |e„

thus 6
1
e
3 + €,e,.e

I
|e, + 6,e

I
.e

a |6, = 0, (69)

which is equivalent to

sin (or ± /J) = sin a cos /? ± cos a sin /?,

the upper or lower sign corresponding to the case when e
s

is

* Grassmann (1844), Chapter 5 (1862), Art. 129. Hyde's Directional Calcu-

lus, Arts. 46 and 47.
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between e
J
and e„ or outside, respectively. Writing in (69)

instead of e
2 , we have

6,|e
2
— e,|e,.e,|e

1
+es

6
1
.e

a
e, = 0, (70)

which gives the cos (a ± /J). These formulas being for any

three directions in plane space, are independent of the magni-

tude of the angles involved.

There is given below a set of formulas for points and lines,

arranged in complementary pairs, and all placed together for

convenient reference, the derivation of them following after.

/=(AAA)"'[A AAA + A AAA + A -PPJX \

L^L^LytL, . LL
X
L, + Z, . LL,L, + A • LLJL&

A=(AAA)"'[IAA-/IA +1 AA-AA + I AA-A A].

Z^AA^-'HAA-AA+IAA-AA+IAA-^IA]
AA-AA = — A -AAA +A -AAA

= A -AAA — A -AAA.

(71)

(72)

(73)

AA- l?.=
-

Al?i& =

AA I ?i?.
=

A Aki
A Aki

ki Al?.

l& Al&

Ak Alf.

Ak. A I?.

AA|^,=

LX\MM,
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tion of these values gives the first of (71), and the second is

similarly obtained or may be found by simply putting Z's for

p's in the first.

Equation (72). Write/ = x \p x p% + *,
|

/

2/ -f x,
\ ptpv and

multiply into |/ ;
thus/|/ = -*\,AAA- Find in the same way

values of x
x
and x„ and substitute.

Equation (73). Write /,/, .p3p t
— xp, + ypv and multiply

by PA :
therefore//, -AA • AA = xpp

tpv or . by Art. 23,

A/A -AAA = xPPiP, =~xp,pp:, or, * =—AAA- Multiply-

ing by//, we find _y = AAA- an^ on substituting obtain the

first of (73). For the second put /,/, .pspt
— xp

a + ypt , and

proceed in a similar way.

Equation (74). In the first of (73) put pspt =\gt
.

Equation (75). In the fourth of (73) put

AA, =A> A = k.> A = !&•

Equation (76). Multiply (75) by/,.

Equation (77). In the first of (72) put q.t for/, and multiply

by AAA, •?»<?; then

AAA ?.?.?» = ?„? lAA • ?» IA+ ?.? lAA • & IA+ ?„?, IAA • ft I

A

= Alft-
A I?. A Ift

Alft Alft
+A|?.

Alft Alft

Aift, Alft
+ A I ft

Alft Alft

Alft All?,

by (76), which is equivalent to the third order determinant of

equation (jf)*

Exercise 12.—To show the product of two determinants as

a determinant of the same order.

2

l.&t p a
= 2le, p l

= Sme, p^=2ne, q=~2\e, q = ~2fxe, q,=2ve;

then /„/,/, = [/„, m„ «J, qaq& = [!„, /xv v,] ; also

A Ift = ^„+ 'A + ^A> A ko = m
o
X

o + WA + '».*« etc. Sub-

stituting these values in (yy), we have the required result. A
solution may also be obtained directly without the use of (yj).

2

Let the ^'s be as above, but write/, = 2/q,p l
~ 2mq,p^ = ~2nq.

Then

AAA=2^-^^-^=[y„, «*,» «J?n?,&= (7„> mv <P„. /*i>
v*\-

* Grassmann (1862), Art. 173.
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Also /„ = l 2\e+ l^jxe
-f- l

t
2ve

with similar values for p 2
and/

2 , which on being substituted in

AAA §'ve ^e result - Equation (77), however, exhibits the

product in a very compact, symmetrical, and easily remembered

form.*

Exercise 13.—Show that the sides AA> AA> AA of the tri-

angle /,/>,/,, cut the corresponding sides \ps , \p lt \pt
of the com-

plementary triangle in three collinear points.

The three points of intersection are, using (74),

AA •
IA =-A -A IA+A •A IA.AA •

IA =~A -A IA +A -A IA.

AA-lA = -A-AlA+A-AlA> of which the sum is zer°>

showing that the points are collinear. It may be shown in

the same way that the lines joining corresponding vertices are

confluent.

Exercise 14.—If the sides of a triangle pass through three

fixed points, and two of the vertices

slide on fixed lines, find the locus of

the other vertex.

Let the fixed points and lines be

pv A, A, A. A, and /, p', p" the

vertices of the triangle, as in the '
' \ p

figure. Then p'ps
p" = o

;
p' coin-

cides with //, . L
l
and p" with pp, . Z, ; hence substituting

{pp x
. L^p

%
{L

t . p,p) = O, the equation of the locus, which, being

of the second degree in p, is that of a conic.

Prob. 18. Show that if the three fixed points of the last exercise

are collinear, then the locus of / breaks up into two straight lines.

Use equation (73).

Prob. 19. If the vertices of a triangle slide on three fixed lines,

and two of the sides pass through fixed points, find the envelope of

the other side. (This statement is reciprocally related to that of

Exercise 14, that is, lines and points are replaced by points and

* These methods may be applied to determinants of any order by using a

space of corresponding order.
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lines respectively, and the resulting equation will be an equation of

the second order in L, a variable line.)

Prob. 20. Show that if the three fixed lines of Exercise 5 are

confluent, then the envelope of L reduces to two points and the line

joining them.

Art. 10. Stereometric Products.

The product of two points in solid space is the same as in

plane space. See Art. 7.

Product of Three Points.—Any three points determine a

plane, and also, as in Art. 7, an area ; hencep,p,p, is a plane-sect

or a portion of the plane fixed by the three points whose

area is double that of the triangle pj>^ps . It may be shown, in

the manner used in Art. 7 for the sect, that no plane-sect, not

in this plane, can be equal to AAA> and that any plane-sect in

this plane having the same area and sign will be equal topjji,*

Of courseAAA is not now scalar.

Product of Four Points.—Any four non-coplanar points

determine a tetrahedron, say

AAAA> and six times the vol-

ume of this tetrahedron is

taken for the value of the

product, because this is the

volume of the parallelepiped

generated by the productAAA»—i-e. the parallelogram/,,^,—

when it moves parallel to its initial position from/, to /,. Let

A -A = £.A ~ A = e'.A - A = e". then

AAAA = AAAe" = AP^'e" = p.ee'e". (78)333 3

If p, =2ke,ps = ~2le, p, = 2me,p
t
= 2ne, then00

AAAA = 2ke2le2me2ne = [k„, /,, m„ n
s] . ea

e,e,e
s ; (79)

from which it appears that any two quadruple products of

points differ from each other only by a scalar factor, that is, they

differ only in magnitude, or sign, or both ; hence such products

are themselves scalar.f If AAAA = °> the volume of the

tetrahedron vanishes, so that the four points are coplanar.

* Grassmann (1862), Art. 255. f Grassmann (1862), Art. 263.

*>4
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Product of Two Vectors.—The two vectors determine an
area as in Art. 7, but they also determine now a plane direc-

tion, so that the product e,e, is a plane-vector, and is not scalar

as in plane space. Also, 6,6, differs from />,e,e, now just as e

differs from pe ; namely, 6,6, has a definite area and plane

direction, that is, toward a certain line at infinity, while ^,6,6, is

fixed in position by passing through /,. Equation (37) there-

fore does not hold in solid space.

Product of Three Vectors.—Three vectors determine a

parallelepiped as in the figure above, and ee'e" is therefore

the volume of this parallelepiped. Any other triple vector

product can differ from this only in magnitude and sign. For
let 6,6,6, be such a product, and write

8 3 3

e = x^e
x -f- x,et

-\- x
s
e
3
= 2xe, e' — 2ye, e" = 2ze ; then

•*'l
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Product of a Sect and a Plane-Sect.—Let them be L and

P, and let A be their common point; take A.A.A so that

Z=AA and f=AAA- L and p evidently determine the

point A> and also the parallelepiped of which one edge is L

and one face is P, so that the product should be made up of

these two factors. Hence we write

LP =AA AAA = AAAA • P.;

PL =AAA • A/, =AAAA -A = LP. j
(8s)

If L is parallel to P,A is at infinity, and, replacing it by e,

(83) becomes
PL = LP= ep

x . ej>J, = e^AA * (84)

Product of Two Plane-Sects.—Let them be P
1
and Pv and

let L be their intersection, while/, and/, are such points that

P, = Lp
l
and Pt

= Lp^, then P
1
and P, determine the line L

and also a parallelepiped of which they are two adjacent faces,

and
PA, = Lp

x
. Lp

%
= LpiP> . L = - />,/>,. (85)

If Z3, and P2
are parallel, L is at infinity, and is equivalent

to a plane-vector, say to r/ ; hence, substituting in (84),

PA = nPi nP* = vpJ>* -v=- PA- (86)

Product of Three Plane-Sects.—By (85) and (83) this must

be the square of a volume times the common point of the

three planes ; or, if A>A> A»A De taken in such manner that

P, =AAA. P> =AAA> P, =AAA. then

PAA* = 023 . 031 . 012 = 023 . 0123 . 01 = (AAAA)
1

-A ; (87)

the suffixes being used instead of the corresponding points.

IfA be at infinity, the three planes are parallel to a single line,

and may be written P
i
= n

l
ep^p„ etc., and then treated as

above.

Product of Four Plane-Sects.*—Let the planes be P
t

. . . P,,

and letA • • • A De the four common points of the planes taken

three by three. n . . . w
3
may be so taken that P„ = n epj>,pv

etc. ; then

PAAA, = ».»,«,,«» 123. 230. 301. 012

= «."i« a
ra

a(AAAA)'- (
88

)

* Grassmann (1862), Art. 300.
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Product of Two Plane-Vectors.—Let ^ and % be two plane-

vectors or lines at infinity ; let e be parallel to each of them,

and e, and e
a
so taken that r/

1
= ee

i; tj, — ee
s

, then

VST, = ee
. • £e

a
= ee

s
e
>
.e— — r)^, (89)

because ^, and % determine a common direction e, and a paral-

lelepiped of which three conterminous edges are equal to

e, e,, e„ respectively.

Product of Three Plane-Vectors.—Take e,, e
s , e

3
so that

ViV*V, = n . e
2
e
3

. e
3
e, . e,e2

= ra(e,e
a
e
3)

s
. (90).

The directions e, . . . e
3

are common to the plane-vectors

?j
1

. . . r/
s
taken two by two.

Several conditions are given here together which follow

from the results of this article.

AA = o, AA = o, (91)

Two points coincide. Two planes coincide.

AAA = o, AAA = o, (92)

Three points collinear. Three planes collinear.

AAAA =AA •AA AAAA = P.P. P.P.

= AA = 0, = AA = o, (93)

Four points coplanar; two Four planes confluent; two

lines intersect. lines intersect.

e.e
a = o, w, - o, (94)

Vectors parallel. Plane-vectors parallel.

e.e.e, = o, tjms), = o, (95)

Three vectors parallel to Three plane-vectors parallel to

one plane. one line.

Sum of Two Planes.—Let them be A and P„ let Z be a

sect in their common line, and take p 1
and/, so that P

x
= Z/,,

P, = Lp, ; then

f
1+ JP, = Z(/

1 +A) = 2Zj, (96>

p being the mean of/, and />,,. Also

^_p
3
= z(a-a); (97)

whence the sum and difference are the diagonal plane through

Z, and a plane through Z parallel to the diagonal plane which

is itself parallel to Z, of the parallelepiped determined by P
x
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and P, If TP
X
= TP„ P

1 ± P, will evidently be the two

bisecting planes of the angle between them. The bisecting

planes may also be written

-^P±Y^ or P,Tp±prp.
(9g)

If the two planes are parallel, let tf be a plane-vector

parallel to each of them, that is, their common line at infinity,

and let/, and pt
be points in the respective planes; then we

may write P, = «,/",??, Pi = niP*V> whence

P* + P* = (».A + n*P*)v = K + nSpv- (99)

If n
i
-\- n

t
= o, this becomes

P, + P, = «.(A -/.)?. (100)

the product of a vector into a plane-vector and therefore a

scalar, by (80).

Two plane-vectors may be added similarly, since they will

have a common direction, namely, that of the vector parallel

to both of them.

Exercise 15.—If two tetrahedra e^e^e^e, and e/e/e/ej are so

situated that the right lines through the pairs of corresponding

vertices all meet in one point, then will the corresponding faces

cut each other in four coplanar lines.

The given conditions are equivalent to e
t
e

t

'
. e

t
e^' =

= '„'„' • e,e
t
' = <v/ . e

a
e,' = <?,«•/ . e,e,' = e,e,' .e,e,' = <?/s' . */,'.

Two of the intersecting lines of faces are £/,*, . f/^'e,' and

e
i
e
%
e

%
. e'e^ef, and, if these intersect, we must accordingly have,

by (92), 012 . o'i'2' . 123 . T'2'3' = o = 012 . 123 . 0V2' . 1V3

= 0123. o'i'2'i' . I2i'2', the last factor of which is equivalent

to the fourth condition above, since quadruple-point products

in solid space are associative. Similarly all the other pairs

of intersections may be treated.

Exercise 16.—The twelve bisecting planes of the diedral

angles of a tetrahedron fix eight points, the centers of the

inscribed and escribed spheres, through which they pass six

by six.

The sum and difference of two unit planes are their two
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bisecting planes, by (97). Let the tetrahedron be e^e^e^e^, and

let the double areas of its faces be A = Te^^e^, etc. ; then a

€ € € € € €
pair of bisecting planes will be -^— ± —— or e^e^A^e, ± A

%
e
s).

The pair through the opposite edge will be e^e
s
{A

ll
e ± A

t
e^.

If there be a point through which the six internal bisecting

planes pass, it must be on the intersection of these two planes

taken with the upper signs, and we infer by symmetry that it

3

must be the point ^Ae. Another internal bisecting plane is

e^J^A^e^ -f- A,e^), which gives zero when multiplied into 2Ae,

as do also the other three.

To obtain all the points we have only to use the double

signs, so that they are ± A e ± A
1
e

1 ± A,e, ± A
s
e
s

. This

gives eight cases, namely,

+ + + + - + + +
+ + +- ++
+ +-+ H +

The eight apparent cases that would arise by changing all the

signs are included in these because the points must be essen-

tially positive. Moreover, no positive point could have three

negative signs, because the sum of any three faces of the tetra-

hedron must be greater than the fourth face. It will be found

on trial that six of the bisecting planes will pass through

2( ± Ae) with any one of the above arrangements of sign.

Prob. 21. The twelve points in which the edges of a tetrahedron

are cut by the bisecting planes of the opposite diedral angles fix

eight planes, each of which passes through six of them.

Prob. 22. The centroid of the faces of a tetrahedron coincides

with the center of the sphere inscribed within the tetrahedron

whose vertices are the centroids of the respective faces of the first

tetrahedron.

Prob. 23. If any plane be passed through the middle points of

two opposite edges of a tetrahedron, it will divide the volume of the

tetrahedron into two equal parts.
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Art. 11. The Complement in Solid Space.

According to the definitions of Art. 8 the complementary

relations in a unit normal vector system are as follows

:

k = hh> \hh = 1(10 = h
|k = v,> Im, = 1(10 = h r- (ioi)

U. = m„ k*,= 1(10 = Z
3 )

3

Let e = .27z ; then

-~-^j,,-' Wa

I

e = 4v, + Av, + 4v. = j(4*. - '.Oft 1
.
- £0. (102)

so that
|
e is a plane-vector. The figure, which is drawn in

isometric projection, shows

that the two vectors /^ — /
2
z,

and /jZ
3
— /

3
z,, whose prod-

uct is /, .
|
e, are both perpen-

dicular to e
; for the first is

perpendicular to /,i,
-f- Z^,

which is the orthogonal pro-

jection of eupon ZjZ^andto

z
s

, and therefore is also per-

pendicular to e, while the

second is perpendicular to /,z, + /
3
z
3
and to t

t , and therefore

to e. Hence
|
e is a plane-vector perpendicular to e ; and, since

| (
| e) = e, the converse is also true, i.e. the complement of a

plane-vector is a line-vector normal to it.

The figure shows that e is equal to the vector diagonal of

the rectangular parallelepiped whose edges have the lengths

l
s , 4 A i

hence

Te = VIS + i: + /,". (103)

Multiply equation (102) by e; therefore

e
I « = (A*. + /,«, + '.0(4v. + A1,*! + foO
= /,'+/,'+ /,•= T'e =e»-, (104)

so that the co-square of a vector is equal to the square of its

tensor. The product e|e is that of a vector e into a plane-

vector perpendicular to it, as has just been shown ; it is there-
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fore a volume which is equivalent to Te. T\e; hence, by (104),

e|e= Te . T\e= T*e, or Te = T\e. Hence, the complement

of a vector in solid space is a plane-vector perpendicular to it

and having the same tensor, or numerical measure of magni-

tude.*
s

Let a second vector be e' =2mi ; then
1

e
I

e' = /
1
m

l
-+- /

2
w

a + z>z
3
= e'

|
e. (105)

Now e|e', being the product of e into the plane-vector
|
e',

is the volume of the parallelepiped in the fig-

ure, that is, TeTe' sin (angle between e and |e')

= TeTe' cos
l'.

Hence

e\e'= e'
|

e—l,m
1
+l

i
m

2
+l

3
m

3
= TeTe' cos *'. (106)

If Te = Te' = 1, /, . . . l
% , m x

. . . m
3
are di-

rection cosines, and (105) gives a proof of the

formula for the cosine of the angle between

two lines in terms of the direction cosines of the lines. We
have also in this case

ee' = (l,m
x
- l,m,)

\
z
3 + (l

2
m

a
- l,m,)

|

z, + (/,»*, - /,«,) |

z„ and,

taking the co-square,

(ee'y= (sin f)'= (/,«,- /1* 1 )

,+ (/,*«.-/,«,)'+(A« l
-'.'«,)'- ( io7)

If e|e'=o, (108)

e is parallel to the plane-vector perpendicular to e', that is, e

is perpendicular to e', as is also shown by (106).

Let r) = \e,rf= \

e' ; then

v \ v
' =

I

e . e' = e>
\
e = e\ e' = 7e7V cos f = TVTV' cos ^', (109)

and v \r}' =
is the condition of perpendicularity of two plane-vectors,

either

e\r)' = 0, or rf\e = o,

is the condition that a vector shall be perpendicular to a plane-

vector, for the first means that e is parallel to a vector which is

(no)

Also

(in)

* Grassmann (1862), Art. 335.
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perpendicular to r/', and the second that rf is parallel to a plane-

vector which is perpendicular to e.

Equations (71)—(77) of Art. 9 become stereometric vector

formulae if e,, e,, etc., be substituted for /,,/,, etc., and 77,, 77,,

etc., for Z„ L
2 , etc. For instance, (76) gives the vector formulas

"l
w

2 I 1 3

e.
I

e, e,
I

e,

e.k,' e.le.'
>7i% I 7.V = (112)

For lack of space no treatment of the complement in a

point system in solid space is given.

Exercise 17.—To prove the formulas of spherical trigo-

nometry cos a = cos b cos c -j- sin b sin c cos A, and

sin a sin b sin c

sin A sin 5 sin C
Take three unit vectorsCe, , e„, e

3
parallel to the radii to the

vertices of the spherical triangle, then «=(angle bet. e, and e,),

^=(angle bet. e,e, and e,e
s), etc. In eq. (112) put 6,6, for e/e,';

hence e,e
a |

e,e
3
= sin (5 sin <r cos ^4 = e-. e, 1 e

3
— e,

|
e, . e,

|
e

3

= cos a — cos b cos c.

Again,

Tfae, . 6,63) = ^e.e.e, . e,) = 7e,e,e
3
= 7T(e,e

3
. 6,6,)= 71^ . e

3
e

a);

or sin b sin c sin vi = sin a sin <: sin .5 = sin a sin 3 sin C,

whence we have the second result by dividing by sin a sin b sin c.

Exercise 18.—Show that in a spherical triangle taken as

in Exercise 17, cos - =—±^j±—^—-4^

—

%-^-> whence derive
2 7(C/e,e, + c7e,e

3)

t , ,. . /sin .$ sin (s — a)
the ordinary value * / -.

y sin b sin c

Expanding, the numerator becomes 1 -\- Ue^lUe^, and

the denominator 4/2(1 -\- £/e,e
2 |

£/e,e
3 ). Also there is obtained

£/e,eJ £76,6,, = '
'

,=M-. The remainder is left to the stu-

76,6,76,6,

dent.

Prob. 24. If el( e
2 , e

3 , drawn outward from a point, are taken

as three edges of a tetrahedron, show that the six planes perpen-



ART. 12.] ADDITION OF SECTS IN SOLID SPACE. 419

dicular to the edges at their middle points all pass through the end

of the vector p = ——-( | e,e, . e^+
1

^e, . e/ + 1 e,e
3

. e
3

s
). (Sug-

ze
i
e
a
e

s

gestion. We must have (p — ^e
t ) |

e, = o, with two other similar

expressions.)

Prob. 25. Show that e,
\
ee' and ee'.

|
e are three mutually per-

pendicular vectors, no matter what the directions of e and e'

may be.

Prob. 26. Let e,, e
a , e

3
be taken as in Prob. 24 ; let A be the

area of the face of the tetrahedron formed by joining the ends of

these vectors, and 2A, — Te^e
% , etc.; also 61

,
= Angle between e^

and e^j, etc.: then show that we have the relation, analogous to

that of Prob. 15, Art. 8,

A*= A'+A^+A^— 2A^A
S
cos 0,— 2A<

t
A

1
cos 6,— 2A

1
A

i
cos 6

t
.

It 0, ... 6, are right angles, this becomes the space-analog of the

proposition regarding the hypotenuse and sides of a right-angled

triangle. (Suggestion. 2A
a
= T(e, - e

1
)(e

i
- e,).)

Prob. 27. There are given three non-coplanar lines e
a
e

l , e e^,

i? e
3 ;

planes cut these lines at right angles, the sum of the squares of

their distances from e being constant. Show that the locus of the

common point of these three planes is (p\ e
1 )

2

+(p| e
a)"+(p| e

3)

2
=<r

a

,

if Te
l

= Te
t
= Te, = 1.

Art. 12. Addition of Sects in Solid Space.

Two lines in solid space will not in general intersect, so that

their sum will not be, as in eq. (43), a definite line. For let

p 1
e

l
and/,6, be any two sects: then

A e
. + P*e* = Pi e i +P*e

* + ^oOi + e,) — ^(e, + e,)

= ^(e, + e,) + (/, - * )e, + (p, ~ '.)e.;

that is, the sum is a sect passing through an arbitrary point e„

and a plane-vector, the sum of the two in the equation. The

sum cannot be a single sect unless the two are coplanar ; for let

p, =/,-(-«, -\-ye* + #£,, 6
3
being a vector not parallel to 6,6,

;

hence /,€, + p%et
= A^, + (A + *e, +J^, + *e,)e.

= A (e, + e
,) + *e

. 0. + O + ^e
3
e
,

= (A + *e.) (e. + e„) + ^e
3
e
2 ;

and this cannot reduce to a single sect unless ^ = o, that is, un-

lessp^ and pt
e, are coplanar. Since a plane-vector is a line at
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oo , the sum of two lines may always be presented as the sun*

of a finite line and a line at oo

.

If the sum of any two sects is equal to the sum of any

other two, their products will also be equal, that is, the two

pairs will determine tetrahedra of equal volumes. For let

L
1 -f- L, = L

% + Z
4

; then squaring we have Z,Z
2
= L,L

t
, since

L^L^ = o, etc.

An infinite number of pairs of sects can be found such that

the sum of each pair is equal to the sum of any given pair; for

let a given pair be p l
e

l +/2
e
2

, and take a new pair

(*J>, + *J>*)("x £ x + u^) -I- O^, + JsAM^e, + V.)
= C*i«i +J>W)Ae> + (*.«> +y,v^P^ +

(x.tt, + y,v,)p
1
e
% -f {Xiu, +y,v i )pt

t
1
.

This will be equal to the given pair if we have

#,«,+ y,v, = x
t
u*-\-y

l
v

l
—i, and x,u, +y1

v
1
= *,?*, +_y,w

1
= o).

Since there are eight arbitrary quantities with only four

equations of condition, the desired result can evidently be ac-

complished in an infinite number of ways.

Let p l
e

1 , /2
e
2
.... pne„ be ii sects, and let 5 be their sum,,

and e any point, then

S=2pe = e 2e - e,2e + 2pe = e,2e + 2{j> - e
a
)e (i 13)

1

the sum of a sect and a plane-vector as before.

If 2(p — e )e is parallel to 2e it may be written as the prod-

uct of some vector e' into 2e, that is, e'2e, when the sum be-

comes 5 = e 2e -j- e'2e = (/ -+- e')2e, a sect, because e
a -f- e' is

a point. In no other case does 5 reduce to a single sect. If

2e = o S becomes a plane-vector. Of the two parts compos-

ing 5, the sect will be unchanged in magnitude and direction if

e
c
be moved to a new position, while the plane-vector will in

general be altered. It is proposed to show that a point q may

be substituted for e
a
such that the plane-vector will be perpen-

dicular to ^e. Writing

S = 92e-(g-et
)2e+ 2(p - e,)e,

and, for brevity, putting q — e = p, 2e — a, 2(p — e^e — \fir

so that

S = qa — pa + |/S, ("4>
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we must have for perpendicularity, by (in),

( | ft
— pa)

|
a = o =

| fta — pa .
\
a,

or pa .\a = a.p\a — p. a- = \fta. ("S)

The second member is obtained from the first by substitut-

ing in eq. (74) p for^, and a for/, and g lt in accordance with the

statement at the end of Art. 1 1. If in (i 1 5) we make p |
a = o,

p will be the vector from e to ^ taken perpendicularly to a,

say

p, — \aft-^o?-=q^ — e„. (116)

Since a and /? are known, the required point has been

found. Multiply (115) by or; then, using (75),

— ap . a- = pa . a2
- = a

\
fta — \ft.a-— |

a . a
\ ft,

whence, substituting in (1 14),

c \

a \P \ v- ,
^e2(p — e\e

S=g<*+-±T-\« = qZe + . ^-iL.ie. („;)

This may be called the normal form of S*

The sects of this article represent completely the geometric

properties of forces, hence all that has been shown applies

immediately to a system of forces in solid space. We have

only to substitute the words force and couple for sect and plane-

vector. The resultant action of any system of forces is 5",

called by Ball in his Theory of Screws " a wrench." The con-

dition for equilibrium is S = 0, which gives at once

2e = o and 2(p — e )e = o; (118)

since otherwise we must have e 2e = — 2(J> — e )e, which is

an impossibility. The line g2e is the central axis of the sys-

tem of forces 6".

Lack of space forbids a further development of the subject,

but what has been given in this article will indicate the perfect

adaptability of this method to the requirements of mechanics.

Exercise 19.—Reduce p^e^ -\- /2
e
3
= 5 to its normal form.

•S - ele i + e.) + (A - O 6
. + (A - <H- For convenience

suppose/, and/
a
to be taken at the ends of the common per-

*Grassmann (1862), Art. 346.

1
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pendicular on A^, and A^. and moreover let e
a
= %(j? i

-\-p\

A — <?„ = i = — (A — O !
tnen M e

.
— i| e

, = O- Accordingly

5 ee ,.(*,+ 6J +z(e, - e.) = ?(e,+e
2)+ ^g^fe^) . I e^j

= ^, + +
(1
^ji-l(e 1

+e
1 ).

^(e -e)|(6 + eJ
)by(74)!=!;

e* — e„
4

z.

(e. + ej* '
'"*"'

(e.+ e,)*

Hence the normal form of 5 is

Exercise 20.—Forces are represented by the six edges of a

tetrahedron e
a
elt e

a
e%} e,e,, *,<?,, e,e, , e,e

2 ; find the S, reduce to

normal form, and consider the special case when three diedral

angles are right angles. 5 = *„(«?, + e^ + <?,) + e,e, + </, -f *,*,

= '.(e.+e,+e,)+(',-',X<?.-',)= '.(6,+e,+c,)+(€,-e
1
)(e,-6

1)

= ^o( e . + e„ + e.) + e
2
e
3 + ^e, + e.e,, in which e, = e

t
- e

t ,

etc. Hence

For the rectangular tetrahedron let e, = ai
t

, e, = ii,,

e
s
= ci

3 ,
t lt i

t , i, being unit normal vectors. Then we find

I Sa&C 1/ 17 1 \

+ +̂V+?- |K + ^ +^
Exercise 21.—A pole 50 feet high stands on the ground and

is held erect by three guy-ropes symmetrically arranged about

it, attached to its top and to pegs in the ground 50 feet from

the pole. The wind blows against the pole with a pressure of

50 pounds in the direction e„ — p, when e„ is at the bottom of
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the pole, and / divides the distance between two of the pegs

m
in the ratio — : find the tension on the guys and the pressure

on the ground.

Evidently only two of the guys will be in tension ; let their

pegs be at e, and e„ and let e
%
be at the top of the pole, and w

fJlf —I— fig
the weight of the pole. Then/ = —'-±

-, and the equationm -j- n ^

of equilibrium is

,_ ('.+',)('.- P)
|

2S^(p-e ) ,
{x-\-w)ej yete x «,<?.

Te e, = 50, 7V,*, = Te
t
e, = 50 V~2, T(p - ,,) = 7/?^+^ _ e \

' \ m-\-n J

J,m{e.— e\-\-n(e
%
—

e

)\ 50 m

and e„ = U(e^ — e
a);

then Z(/ — e ) =—-j— Vm* -\- n° — ;««,

because e,- = e
3
4 = 1, and e,|e

3
= cos 120° = — £. Hence the

equation of equilibrium becomes

2$e
1
{(m + «)<?„ — *»*, — »*,) j s

f« -j- « — w« y 2 V2

Multiply successively by e,eit e
a
e„ and ^<f

i;
and we obtain

x -\-w _ y 2 25

;«-(-« tn V2 n V2 Vm* -\- n* — mn

y and 2 being the tensions, and x -f- w the upward pressure.

Prob. 28. Three equal poles are set up so as to form a tripod,

and are mutually perpendicular; a weight w hangs upon a rope

which passes over a pulley at the top of the tripod, and thence
a

down under a pulley at the ground at a point p = 2/e, in which

e, .

.

. e
3
are at the feet of the poles, and 2,1 = 1 ; if the rope is pulled
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so as to raise w, show that the pressures on the poles, supposing the

pulleys frictionless, are

Prob. 29. Six equal forces act along six successive edges of a

cube which do not meet a given diagonal; show that if the edges of

the cube be parallel to i„ z
3 ,

z
3 , and F be the magnitude of each

force, then S— — 2F\ (i
1 + z

a + z
s),

if the diagonal taken be parallel

to z, + z, + z
s

.

Prob. 30. Three forces whose magnitudes are 1, 2, and 3 act

along three successive non-coplanar edges of a cube; show that the

normal form of S is

s = («. + «*, + K - *«,)(' + «»+ 30+ Al (», + «. + 3«,)-

Prob. 31. Forces act at the centroids of the faces of a tetrahedron,

perpendicular and proportional to the faces on which they act, and

all directed inwards, or else all outwards; show that they are in

equilibrium.


