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Preface

This textbook has evolved from a set of lecture notes which I pre-
pared for a semester course in Hilbert space at the State University
of Towa. In both the course and the book, I have in mind first- or
second-year graduate students in Mathematics and related fields such
as Physics.

It is necessary for the reader to have a foundation in advanced
calculus which includes familiarity with: least upper bound (LUB)
and greatest lower bound (GLB), the concept of function, ¢'s and
their companion é’s, and basic properties of sequences of real and
complex numbers (convergence, Cauchy’s criterion, the Weierstrass-
Bolzano theorem). It is not presupposed that the reader is acquainted
with vector spaces (which are discussed in Chapter I), matrices
(which are mentioned only in a few exercises), or determinants (which
are mentioned nowhere else in the book). In keeping with these pre-
requisites, I have refrained from using set-theoretic notation in the
first two chapters; some of the notations and terminology of set theory
are gradually introduced thereafter. Occasionally I have inserted re-
marks and exercises, not essential to the exposition, which call for con-
siderably more background than the general level of the text. Such
statements can be recognized by the phrase “it can be shown’'; they
are likely to be out of reach of the reader’s technique, but not out of
reach of his curiosity.

There are over four hundred exercises, most of them easy. Some of
these describe generalizations of material in the text. Others provide
examples and counter-examples for the definitions and theorems of
the text. Any of them may be used for practice in the construction
of proofs. Hints for solution, and references to other sources, will be
found in the Appendix. Exercises in the “it can be shown” category
are marked with a * The reader who prefers to vault over the exer-
cises may do so without breaking the continuity of the exposition.
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viii  Preface

The “spectral theorem™ presented here is confined to completely
continuous normal operators, the most elementary infinite case. This
is not enough for many applications, but it is about as far as one can
get without sophisticated techniques. Many beautiful expositions of
advanced spectral theory are available to the interested and prepared
reader (a few of these are listed in the Appendix).

It is my hope that this book, aside from being an exposition of
certain basic material on Hilbert space, may also serve as an intro-
duction to other areas of functional analysis. It seems to me that
Hilbert space, fortified with the experience and geometrical intuition
developed in two- and three-dimensional cases, is an excellent vehicle
for introducing topics such as vector spaces, metric spaces, Banach
spaces, Banach algebras, and so on. Such opportunities are exploited
frequently in the text and in the exercises.

The system of bookkeeping I have used is as follows. Each chapter
is organized into sections (§). Within each §, Definitions, Ezamples,
Theorems, and Ezercises are numbered starting at 1. For example:
Theorem VI.8.1 is the first theorem in § 8 of Chapter VI; within a
chapter, Theorem 3.2 refers to the second theorem in § 3 of that chap-
ter; within a §, Theorem 3 refers to the third theorem in that §. The
end of a proof is indicated by the Halmos finality symbol JJ; I have
also used this symbol in a few other places to indicate a pause before
a new train of ideas begins. ||

I am grateful to my colleagues Lloyd A. Knowler and William T,
Reid, and to the staff of the Oxford University Press, for encouraging
me to bring forth this book.

S.K.B.

September 1961
Iowa City

Contents

Chapter I. VECTOR SPACES

. Complex vector spaces

. First properties of vector spaces

. Finite sums of vectors

. Linear combinations of vectors

. Linear subspaces, linear dependence
. Linear independence

. Basis, dimension

. Coda

Chapter Il. HILBERT SPACES

. Pre-Hilbert spaces

. First properties of pre-Hilbert spaces

. The norm of a vector

. Metrie spaces

. Metric notions in pre-Hilbert space; Hilbert spaces

. Orthogonal vectors, orthonormal vectors

. Infinite sums in Hilbert space

. Total sets, separable Hilbert spaces, orthonormal bases
. Isomorphic Hilbert spaces; classical Hilbert space

Chapter lll. CLOSED LINEAR SUBSPACES

. Some notations from set theory
. Annihilators

. Closed linear subspaces

. Complete linear subspaces

. Convex sets, minimizing vector
. Orthogonal complement

. Mappings
. Projection

ix

o B g R

E88BYN

49
51

57
59
62
65
67
70
73
74



§1.
§2.
§3.

§ 4.
§ 5.
§ 6.
§7.

§8.
- §0.
§ 10.

§ 1.
§ 2.
§3.
§4.
§5.
§ 6.
§7.
§8.
§9.

Contents
Chapter IV. CONTINUOUS LINEAR MAPPINGS

Linear mappings 77
Isomorphic vector spaces 82
The vector space £(0,W) 84
Composition of mappings 86
The algebra £(0) 88
Continuous mappings 91
Normed spaces, Banach spaces, continuous linear

mappings 92
The normed space £,(8,5) 100
The normed algebra £.(8), Banach algebras 103
The dual space &’ 104

Chapter V. CONTINUOUS LINEAR FORMS IN HILBERT SPACE

. Riesz-Frechet theorem 109
. Completion 111
. Bilinear mappings 116
. Bounded bilinear mappings 120
. Sesquilinear mappings 123
. Bounded sesquilinear mappings 128
. Bounded sesquilinear forms in Hilbert space 130
. Adjoints 131

Chapter VI. OPERATORS IN HILBERT SPACE

Manifesto 139
Preliminaries 140
An example 141
Isometric operators 143
Unitary operators 145
Self-adjoint operators 147
Projection operators 151
Normal operators 154
Invariant and reducing subspaces 156

Chapter VIl. PROPER VALUES

. Proper vectors, proper values 163
. Proper subspaces 166
. Approximate proper values 168

Contents
Chapter ViIl. COMPLETELY CONTINUOUS OPERATORS

. Completely continuous operators

. An example

. Proper values of CC-operators

. Spectral theorem for a normal CC-operator

Appendix
Index

xi

172
177
178
181

189
203



Introduction to
Hilbert Space




Chapter

|
' Vector Spaces |

§ 1. Complex vector spaces

§ 2. First properties of vector spaces

§ 3. Finite sums of vectors

§ 4. Linear combinations of vectors

§ 5. Linear subspaces, linear dependence
§ 6. Linear independence

§7. Basis, dimension

§ 8. Coda

§1. COMPLEX VECTOR SPACES

Underlying every Hilbert space, there is a vector space; the present
chapter contains preparatory material on vector spaces. The reader
'I. who is already acquainted with the basic theory of vector spaces can
: pass directly to Chapter II, for there is nothing in the present chap-
' ter which is particularly oriented toward Hilbert space.

' In the sequel, complex numbers will also be referred to as scalars.

Definition 1. A vector space U is a sel of objects z,y,z,- - - called vec-
: tors. One veclor is distinguished, called the zero vector, and denoted 0.
. For each vector z, there is distinguished a vector —z, called the negative
i ‘ of x. The following axioms are assumed to hold.

(A) For each pair of vectors z,y, there is determined a vector called

; the sum of z and y, denoted x + y (read “z plus y”’). The “addi-
“ tion” of vectors is subject to these rules:

}' Al) z+y=y+= (commaulative law)
i (A2) z+4 (y+2) = (& +y) + 2 (associative law)
(A3) z+0==2

(Ad) z+ (—2z2)=0.




4 Introduction to Hilbert Space 1 §1

(M) For each scalar \, and each vector z, there is determined a vector
called the multiple of x by \ (or the product of \ and z), denoted
Az. The “multiplication” of veclors by scalars is subject to these
rules:
M1) Mz +9) =M +Ny
(M2) N+ pz =+ px
(M3) (Ap)z = A(uz) (associative law)
(M4) 1z ==

The reader will observe that in (M2), the symbol + is used in two

senses: for the sum of scalars, and the sum of vectors. In (M3), the

juxtaposition of letters has two meanings: the product of two scalars,
or the product of a scalar and a vector.

(distributive laws)

Examples

1. Given a fixed positive integer n. Let U be the set of all symbols
z = (A, *,\n), called n-ples, where \;,---,\, are scalars. If z =
(A1,- -+ ,An) and ¥ = (u1, - *,ua), Write * = y in case Ap = u for
k = 1, -+,n;\is called the k’th component of z. Define § = (0,- - -,0),
=z = (=M, 5=M), 24+Y =M+ p, M+ 0a), and Az =
(A\, **,A\n). The axioms (A) and (M) are verified by using the
given criterion for equality, and the analogous properties of sums and
products of scalars. For instance, if =z = (A, --\;) and y =
(u1,** - ,itn), the relations Mg 4+ pr = pe + M (k= 1,---n) yield
z + y = y -+ x. In the sequel, this example will be referred to as the
vector space of n-ples.

2. Let U be the set of all functions 2 defined on a set 3, having
scalar values. Write z = y in case x(f) = y(f) for all ¢ in 3. Define the
functions 0, —=, = + ¥y, and Az by the formulas

0() = 0
(=2)(t) = —=(})
(@+y@® =z@ +y@®
(A2) () = Az(?).

This example will be referred to as the vector space of scalar-valued
Sunctions on 3.
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One can obtain Example 1 as a special case: take for 3 the set of
integers 1,- - -,n, and interpret £ = (Ay,- - -,\s) as the function on 3
such that z(k) = A\g. If 3 is the set of all positive integers 1,2,3,-- -,
then U can be interpreted as the set of all sequences z = (\x) with
scalar terms \x (k = 1,2,3,---); in this context, two sequences are
considered to be equal if they are equal term by term.

3. Let 0 be the set of all scalar-valued functions z defined, and con-
tinuous, on the closed interval [a,b]. Write z = y in case z(f) = y(f)
for all ¢, a <t < b. Define 6, —z,  + y, and Az as in Ezample 2;
these functions are continuous by elementary calculus. This example
will be referred to as the vector space of continuous functions on [a,b].

4. Let U be the set of all polynomial functions, with complex co-
efficients, defined on the closed interval [a,b]. Equality, zero, nega~
tives, sums, and scalar multiples are defined as in Ezample 3. The
sum of two polynomial functions, and a scalar multiple of a poly-
nomial function, are themselves polynomial functions. This example
will be referred to as the veclor space of polynomaial functions on [a,b].

5. Given a fixed positive integer n. Let U be the set of all poly-
nomial funections, with complex coefficients, of degree <n, defined
on the interval [a,b]. Sums and scalar multiples are defined as in
Example 4.

6. Let U be the set of all sequences x = (A\x) of scalars, all of whose
terms, from some index onward, are 0 (the particular index may vary
from sequence to sequence). Write (\x) = (ux) in case A\ = w; for
all k= 123,---. Define 0 = (0), —(\) = (=M), &) + () =
Mk + ux), and A(QAx) = (AAg). See the discussion in Ezample 2. This
example will be referred to as the veclor space of finitely non-zero se-
quences.

7. Let U be the set of all scalar-valued functions z defined on a set
3, such that z(f) = 0 except for at most a finite number of points 2.
Define 0, —z, * + y, and Az as in Ezample 2. One obtains Example 6
by taking, in the place of 3, the set of all positive integers. If 3 con-
tains only finitely many points, say » of them, one obtains Example 1
(see the discussion in Ezample 2). This example will be referred to
as the vector space of finitely non-zero functions on 3.

8. The set @ of all complex numbers p is a vector space, with g + »
and Au defined as usual. This is essentially Ezample I withn = 1.
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Exercises

1. Fill in the details in the above examples.

2. Given a vector space W, let ‘U be the set of all functions z de-
fined on a set 3, taking values in ‘W. With suitable definitions, U is a
vector space.

3. Same as Ezercise 2, except that z has values 60 for at most
finitely many points {.

§2. FIRST PROPERTIES OF VECTOR SPACES

Several immediate consequences of the axioms for a vector space
are developed in this section.

Theorem 1. In any veclor space:

(1) The vector equation x + y = z has one and only one solution z,
the vectors y and z being given in advance.

(2) If z+4 z = 2z, necessarily z = 6.

(3) A0 = 6, for every scalar \.

(4) Oz = 9, for every vector x.

(5) If Az = 0, then either A = 0 or 2 = 4.
Proof.

(1): Given vectors y and z. Set # = z 4+ (—y); one has z + y =
[+ (=) +y =24 [(—9y) +y] =2+ 0 =z This proves that a
solution exists. Suppose z; and x, are solutions: z; + y = 2z = 2o + y.
Then, @+ + (=) =@+ +(-y), nn+l+(-pl=
o + [y + (=), ;1 + 0 = 22 + 0, 2; = 2. Thus, only one solution
exists.

(2): Suppose z + z = 2. Since also # + z = 2, z = 0 follows from
the uniqueness of solutions.

(3): M0 = A(6 + 6) = A0 + A9, hence A\ = 6 by part (2).
(4): 0z = (0 4 0)z = 0z + Oz, hence Oz = 6.

(5): Suppose Az = 6, and X # 0. If u is the reciprocal of A, § =
uo = puQA\z) = W)z = lz =2z |

1 §3 Vector Spaces "4

It follows that in axiom (A3), no other vector can play the role of
0; that is, the distinguished vector 8 is unique. Furthermore, given
any vector z, the equation = 4 y = 6 has exactly one solution y,
namely y = —z; thus, the only vector that can fulfill axiom (A4) is
—z. Briefly: the zero vector is unique, and each vector has a unique
negative.

Definition 1. Given two vectors x and y, the vector = + (—y) s called
the difference of x and y, and is denoted x — y (read “x minus y”).

Thus, in part (1) of Theorem 1, the unique solution z of z 4+ y = 2
isz=z—1y.
Corollary. In any veclor space,

6 (—Nz =A-2) = —(\2)

7 Mz—y) =r—Ny

B A —mpz=>r—p.
Proof.

(6): One has 6 = 0z = [\ + (—=N)]z = Az + (—\)z, hence (—=\)z
= —(\z) by the uniqueness of negatives. Similarly, 6 = \ =
Mz 4+ (—2)] = M 4+ A(—=), hence A\(—x) = — (Az). The reader can
easily supply the proofs of (7) and (8). |

In particular, (—1)z = —z.

Exercises

1. In any vector space, —(—z) =2z, —0=0, —(z+7y) =
—z—y, s—-@W+)=@-y) -2 —@—-y =y—=z

§3. FINITE SUMS OF VECTORS

Throughout this section, all vectors are taken from an arbitrary
vector space V.

If z,20,03 are vectors, one has z, + (22 + 23) = (z; + 22) + 23
by the associative law; one writes simply z; + z3 + z3. Strictly ac-
cording to the axioms, vector sums are performed with two vectors
at a time; the symbol z, 4 z; 4 3 is nevertheless unambiguous,
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since the result is the same whichever + sign is given priority. An-
other commonly used symbol for this vector is E:_ , Z- In general:

Definition 1. If z,,---,x, are vectors (n > 1), the symbol 2:_1 Tk
denotes the vector defined inductively as follows:

T =%+ 2
E:-: . fa (Z::: -"’k) + 25, (n>2).
Other notations: xy 4+« 4 z,, E': 25, Zx Tk,

More generally, if m < n, and vectors Zy,- - -,z, are given, Z:' z
denotes the vector defined inductively by the formulas

m1
E,,, Tk = Tm + Tmpa

Dy - (Z‘,,':,_l xa) + 2., >m+1).

It is also convenient to define E: Tr = Z,, and E:; Zr = 6 when
m > n. For example, Ez Tr = 23, and Z: T = 0.

Given vectors z;,2,23,74, consider the vector y = z; + 25 + 23+ 24.
Officially this is [(z1 + %) + 23] + 24, the + signs being given
priority from left to right. It follows from the associative law that all
other ways of assigning priority produce the same vector y:

(@1 + 22) + (23 + 24) = [ + 22) + ) +xy =y
(21 + (@2 + 23)] + 24 = [(z1 + 22) + 23] + 24 =
o+ (@ +2) +as] = [2+ (@24 23)] + 24 =y
2+ [22 + (@5 + 2] = 21 + [(22 + 23) +24] = ».

This principle holds for a sum of n vectors:

1 §3 Vecfor Spaces 9

Theorem 1. (Generalized associative law) Given vectors xy,- -« * ,Zn. Sup-
pose 0 =mg <my <mg <+ <My <Ny =1 Define

n
1= 2uy Tk

na
Ys ™= En1+l Tk

ny
v = Z‘n’_1+l Tk

n

yl’ — Z"f—l+l xk'

Then, E: yi= E: Lk

Proof.

The proof is by complete induction on n. If n = 2, either (i) r = 2,
in which case n; = 1 and ng = 2, or (ii) r 2= l,inwt;ichca.senl = 2.
In case (i), y1 = 21 and yp = @3, thus 27 y; = 2 @ In case (ii),

1 2
Y1 = 21 + %, thus Z] ¥i= E] L.

Assume inductively that the conclusion holds whenever the number
of given vectors z; is <n. Suppose @;,-**,Z, given, n > 3. Let us
consider three cases.

Casel.r =1 : A ! A

Necessarily ny = n, thus 20 yj = 20 y5 =1 = 20, @ = 2 .

Assume, for the remainder of the proof, that 7 > 1. Then 3 y; =

E:" Yi+Yr= 2. %k + Yr, by the inductive assumption.

Case 2. ey =n—1 1
nr T
Then,y, = 2. %k = n, thus Tovi=2 atye= 2n O
+ Ty = E:‘ L.
Case 8. np—y <mn—1
In this case, the sum y, = Z:H 41 % has at least two terms,

—1 r nr—
hence y, = X7, @ + Za Then, X/ y; = L™ = + 3, =

T at (S mtn) = (S e+ D7, o) 4o
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the latter is equal, by the inductive assumption, to (2;-—1 z;) + 2
=Xz |

The sum of n vectors is also independent of the order in which the
terms are written. For example, z; 4+ 23 + 2; = (22 + 23) + 21 =
Z + (22 + 23) = (z1 + 23) + 23 = 2 + 22 + 23. In general:

Theorem 2. (Generalized commutative law) Given vectors zy,- - -,%,.
Let 1',- - - 0’ be any rearrangement of the indices 1,- - -,n, and set y =

(k= 1,--+,n). Then, 2\ yo = 2 k.

Proof.
For n = 1, the assertion is trivial. Assume the conclusion holds
when the number of given vectors is <n.

Case1. If n' = n,then y, = 2. Also, 1',++,(n — 1) isarearrange-
ment of 1,---,n — 1. Then, > yi = Z:_! Yk + Yn = Er"l Ty +
z, by the inductive assumption.

Case 2. If n’ < n, then n = m’ for some index m < n. Consider
the rearrangement 1*,--.n* of 1,---,n defined as follows: m* =
n', n* = m' = n, and k* = k’ for all remaining k; in other words,
in the arrangement 1’,---n’, interchange m’ and n'. Set z; = zye
(k= 1,---n); since n* =n, one has 3 2z = X zx by case 1.

Using Theorem 1 and axiom (A1) at the appropriate steps, E: T =

2tk = (Z:'_'l 2+ zm) + (E::l 2+ zn)

S+ zn) + (Z::l 2 + zm)

]

(Z',:'_I g + xm') -+ ():::l T + x.«)

> e+ ym) + (E:;Il ve + yn) =2 1

1 §4 Vector Spaces 11

Exercises

1. Show directly that zy, 4+ o + 23 = 27 + 22 + 23 for every
rearrangement 1’2’3’ of 1,2,3. [There are six arrangements, also
called permutations.]

2. If z; = 6 for all k, then ET:& = 0.
3. - (E: a:g) = ET (—2x).
4 Xlae+ 2 vk = 2, @+ w).

5. If 2 = z for all k, then 3. 2 = na.

6. Given vectors zjx(j = 1,--+,m; k = 1,--+,n). For each j, define
yj = Zi zj, and for each k, define 2; = 25 Zjk. Then E,- yi= E; 2k
That is,

Z,- (Zx “:‘k) = E,, (E, I,'a-,).

§4. LINEAR COMBINATIONS OF VECTORS

In the vector space of n-ples (Fzample 1.1), consider a vector
z = (A1, - *,An). Let ¢; denote the vector whose k’th component is 1, all
others 0. Then! e (Alsos e ,0) o= (OAESOr' = '10) o Bl (O: et :Oyhn)
= Me; + Agéz + -+ ++ Aqen. This is an instance of the following:

Definition 1. In any veclor space, a vector x s said to be a linear com-
bination of the vectors xy,- « + &n, with scalar coefficients A\,,-- -\, in

case x = E’: Ak

For example, in the vector space of 2-ples, let z = (2,3), z; =
(1,0), z3 = (0,1), 23 = (1,1). Then, z = 2z; + 322 + 0z3 = 0z; +
1x3+2z3 = (-l)&?l +0$2+333 = 1z; 4 2z + lzg,et,c. o ..

A number of useful facts about linear combinations are collected in
the following theorem. These are easily deduced from the results of
the preceding section; the proofs are left to the reader:
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Theorem 1. I'n any vector space:
1) TN+ 2w = ) O + m)ae

@ A (Z:’,‘ m) =Y M

®) (E’;‘ x;) 2=\

o (=) (Zia) = S (S
- oo (Znom)

(5) 0 s a linear combination of zy,* * - ,Tn.
(6) =z 1s a linear combination of .

(7) Given veclors x,2y, * - Zn. If m < n, and z is a linear combina-
tion of Ty," * * \Tm, then x 1s also a linear combination of 1, - - ,Zn.

(8) Suppose z is a linear combination of 2y, -+, @n; tf 1,-- 0" s
any rearrangement of 1,---,n, and yr = xi, then x s a linear
combination of y1,* * *,Yn.

(9) If x is a linear combination of yy,- * *,Ym, and each y; is a linear
combination of xy, **,&n, then x is a linear combination of
O PR

Exercises

1. In the space of 4-ples, express = = (A;,A9,A3,\4) a8 a linear com-
bination of z; = (1,0,0,0), z: = (1,1,0,0), 25 = (1,1,1,0), z4 =
(1,1,1,1).

2. In the space of 3-ples, can z = (1,0,1) be expressed as a linear
combination of z; = (1,1,0), zo = (0,1,1), =z = (1,2,1)?

3. If 2 and y are linear combinations of 2y, - - -,2., S0 are  + y and
Az.

4. In the space of m-ples, given vectors z,z;,- « +,Z,. The problem
of expressing z as a linear combination of z;,- - -,2, is equivalent to

1 §5 Vector Spaces 13

the problem of solving a certain system of m linear equations in n
unknowns. This system is homogeneous if and only if z = 6.

§5. LINEAR SUBSPACES, LINEAR DEPENDENCE

Consider, in the vector space of n-ples, the totality of all vectors =
whose first component is 0, that is, z = (0,A2,- - - \n). If z and y are
two such vectors, so are z + y and Az. Evidently, this set of vectors is
a vector space in its own right. This is a special case of the follow-
ing:

Definition 1. Let U be a vector space. A linear subspace of U is a set
9% of veclors belonging to U, such that: (i) N contains the vector 6, (i) if
and y are vectors in 9, the veclor x + y s in N, and (iii) if z is a vector
in N, and \ 78 any scalar, the vector Az is in .

Briefly, a linear subspace contains sums and scalar multiples of its
vectors. If 91 is a linear subspace of U, and z is a vector in 91, the rela-
tion —z = (—1)z shows that —z is in 9T; since the vectors in 9T
satisfy all the identities in the axioms for U, clearly 9 is itself a
vector space.

The purpose of condition (i) is to ensure that 9 is not the empty
set of vectors, that is, contains at least one vector z; 9 will then
contain 0 = 0z by condition (iii).

1. In any vector space, the set 91 containing just the vector 6 is a
linear subspace; this is shown by the relations # + 6 = 6 and A0 = 6.

2. U is itself a linear subspace of the vector space V.

3. If U is a vector space, and z is a fixed vector in U, the set 9T of all
scalar multiples uz of z is a linear subspace. This results from the rela-
tions 0 = 0z, uz + vz = (u + »)z, and A(uz) = (Aw)z.

4. Let U be the vector space of scalar-valued functions defined on a
set 3 (Ezample 1.2). If 1y is a fixed point of 3, the set 9 of all functions
z such that z(f,) = 0 is a linear subspace of V.

5. Let U be the vector space of all scalar-valued functions = defined
on the interval [a,b]. The following is a series of linear subspaces
(getting smaller):
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(i) 97, the set of functions x which are continuous at a fixed point
to of [a,b].

(ii) 91, the set of functions z which are continuous at every point
of [a,b] (this is Exzample 1.3).

(iii) 913 the set of all polynomial functions z with complex co-
efficients (this is Exzample 1.4).

(iv) 914 the set of all polynomial functions, with complex co-
efficients, of degree <n, where n is a fixed positive integer (this is
Ezample 1.5).

6. Let U be the vector space of continuous functions z on [a,b]
(Ezample 1.3). The set 9 of all z which are differentiable on [a,b] is a
linear subspace.

7. Let U be the set of all twice-differentiable functions z defined on
[a,b], and 9 the set of those functions z which satisfy the differential
equation 2" 4+ z = 0. Then, U is a vector space, and 9 is a linear
subspace of V.

Theorem 1. If 91t and N are linear subspaces of U, the set of all vectors
of the form y + z, with y in M and z in N, s a linear subspace of V.

Proof.
0=0406, (s +21) + Wa+2) = () +y2) + (&1 + 22), and
Ay +2) =M + Az

Definition 2. The linear subspace described in Theorem 1 is called the
sum of M and N, and s denoted N + N.

Examples of such sums will be found in the exercises.

Lemma. If 9 is a linear subspace of U, and xy,- - -, =, are veclors in I,
then every linear combinalion of x,- - - ,x, belongs to 9.

Proof.
Z: Aizx is the same vector, whether formed in the vector space U
or in the vector space 9. ||

Theorem 2. Let S be any set of vectors in a space 0, and let 3 be the set
of all vectors in U which can be expressed as a linear combination of
vectors in 8. Then,

(1) 91 4s a linear subspace of U;
(2) every vector of $ belongs to 9.
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Moreover, 9 is the smallest such linear subspace, in the following sense:

(3) of M s a linear subspace which contains every vector of 8, neces-
sarily MM contains every vector of .

Proof.

(1): If 8 is the empty set of vectors (i.e. contains no vectors at all),
the convention is that 9T consists of just the vector 6.

Otherwise, if the vector z belongs to 8, 9 contains # via the relation
0 = 0z. Suppose = and y are vectors in 9, say z = E: M2 and
y = 2y Mjyj, where the z; and y; are in 8. Then,  + y is a linear
combination of the vectors zy, -« ,&a,¥1,* * *,Um Of § (see Theorem 3.1),

hence  + y belongs to 9. Also, Az = 2.\ (\\i)ax shows that Az
belongs to 9. Thus, 9T is a linear subspace.

(2): If zisin 8, z = 1z shows that z belongs to 9.

(3): Suppose 9N is a linear subspace which contains every vector of
8. Then, 91 contains every vector of 9 by the Lemma. |

Definition 3. If S 7s a set of veclors in the space U, the linear subspace
described in Theorem 2 is denoted [S], and s called the linear subspace
generated by 8.

Evidently, [U] coincides with 0. If U is the vector space of n-ples,
and § is the set of vectors ey, - -,e, described in § 4, then [8] coincides
with U since every vector in U can be expressed as a linear combina-
tion of the ex. Thus, different sets of vectors may generate the same
linear subspace.

Definition 4. Let 91 be a linear subspace of V. A sel $ of vectors is called
a system of generators for 9 in case the linear subspace (8] coincides
with 9. Briefly, $ generates 91.

Another way of expressing what is going on in Theorem 2 is as fol-
lows:

Definition 5. Let 8 be a set of veclors in a space V. A veclor x is said to
be linearly dependent on $ in case there exist vectors xy,- - - Ty in 8 such
that z is a linear combination of the xy. Briefly: x depends on .

The convention is that only the vector 8 depends on the empty set
of vectors. Comparing Definitions 3 and 5:
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Theorem 3. If S is any set of veclors in the space U, then the linear sub-
space (8] generated by $ is precisely the set of all vectors which are linearly
dependent on 8.

If z depends on 8, evidently z depends on any set of vectors which
includes 8. If 9 is a linear subspace, every vector dependent on 3
actually belongs to 9t.

Exercises

1. Let U be the vector space of n-ples, and let ay,- - ,an be fixed

sealars. The set 91 of all vectors z = (Ay,- * -, A) such that E: ap\p =
0 is a linear subspace of V.

2. Let U be the vector space of n-ples, and let (a;x) be a system of
fixed scalars (j = 1,---,;m; k = 1,---n). The set 9 of all vectors
# = (A, *,\») such that E:_l ajirg =0 for j=1,---m, is a
linear subspace of V. [It is the set of all “solutions of a system of
m homogeneous linear equations in » unknowns.”]

3. Let U be the vector space of scalar-valued functions z defined
on a set 3 (Example 1.2). The following are linear subspaces of U:

(i) 9t the set of all finitely non-zero functions z, described in Ez-
ample 1.7.

(ii) Fix a set § of points of 3, and let 9 be the set of all functions z
which are 0 at every point of 8.

4. If o and 9T are linear subspaces of U, the set of vectors common
to 9% and 9T is a linear subspace of V. [This subspace is called the
intersection of 9 and 9.

5. Let U be the vector space of 3-ples.

(i) If 91 is the set of all vectors y = (1,0,0), and 9 is the set of all
vectors z = (u,p,0), describe 9T 4 9.

(ii) If 9 is the set of all vectors y = (a,8,0), and 9 is the set of all
vectors z = (0,\,p), describe 91 + 9.

6. Let U be the vector space of scalar-valued functions z defined
on the symmetric interval [—a,a]. Call z even if z(—1) = z(f) for all
t, and odd if z(—t) = —=z(¢) for all ¢&. The set 9N of all even functions
is a linear subspace of V; so is the set 9 of all odd functions. Deseribe
oM + 9.
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7. Let 91, 91 be linear subspaces of U, and suppose 6 is the only vee-
tor common to 9 and 9. Then, the representation of a vector z of
9N -+ Nin the form z = y + 2, where y is in 9 and z is in 97, is unique.
That is, if ¥ 4 21 = ys + 22, necessarily 3 =y, and z; = 2,.
Apply this result to Ezercise 6.

8. Let 9 and 9T be linear subspaces of U, and let 8 be the set of all
vectors z which belong either to 9 or to 9T (or to both). Then, [8] is
the linear subspace 9 + 9t.

9. Let U be the vector space of n-ples, 8 the set of vectors z; =
(110:' ® ':0): &g = (1;1)0:' * ':0)1' T - W (1911' 3 "1)- Describe [S}'

10. Let U be the vector space of polynomial functions on [a,b]
(Ezample 1.4), and let 8 be the set of polynomials 1,4, - - - t*. De-
scribe [8].

11. Let U be the vector space of twice-differentiable functions on
[a,b], and let S be the set consisting of the two functions sin ¢, cos £.
Then [$] is the vector space of solutions of the differential equation
2+ 2=0.

12. If 9t is a linear subspace of U, then [97] is precisely 91.

13. 8 and J generate the same linear subspace 9 if and only if:

every vector of 8 is a linear combination of veectors in 3, and vice
versa.

14. In the vector space U of n-ples, the following sets $ are systems
of generators for V:
(i) § consists of the n vectorse; = (1,0, ++,0),- -, €x = (0, -,0,1).
(ii) 8 consists of the n vectors z; = (1,0,---,0), z5 = (1,1,0,- - -,0),
ooy Bpmmi(11000,1),
(iii) 8 consists of zy,---,2,, as in (i), together with z =
(1:2:310; s 10) and e (-150:5,01 w0

§6. LINEAR INDEPENDENCE

In !;he space of 3-ples, the vector e3 = (0,0,1) cannot be expressed
as a lmea.r combination of the vectors ¢; = (1,0,0) and e, = (0,1,0);
for, any linear combination \ye; + As¢z necessarily has 0 for its third
component. One expresses this inexpressibility by saying that e; is
linearly independent of e;,e. In general: y
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Definition 1. Let 8 be a set of veclors in the space V. A vector x is said
to be linearly independent of S if i cannot be expressed as a linear com~
bination of vectors in 8. Briefly: x is independent of S.

Thus, z is independent of § precisely when it does not depend on §
in the sense of Definition 5.5. Clearly z is independent of $ precisely
when it does not belong to the linear subspace [S] generated by §;
in particular, z # 6. The convention is that every non-zero vector is
independent of the empty set of vectors. If z is independent of §,
it is also independent of every set of vectors which is included in 8.
If 9 is a linear subspace of U, the vectors independent of 9t are pre-
cisely those which are excluded by 9.

Consider, in the space of 3-ples, the vectors e;,e0,e3 discussed earlier.
It was noted that ez is independent of e;,es. It is equally clear that e;
is independent of e,,e3, and e, is independent of es,e;. Briefly, one says
that e;,es,es are independent. In general:

Definition 2. A set $ of veclors is said to be linearly independent in case:
each vector in S s independent of the remaining veclors of 8; that is, no
vector of § can be expressed as a linear combination of other vectors of 8.
Briefly: 8 is an independent sel of vectors.

The convention is that the empty set of vectors is independent;
otherwise, independent sets contain only non-zero vectors. The set §
consisting of a single non-zero vector z is independent.

It is clear from Definition 2 that a set 8 is independent, if and only
if every finite set of vectors zy,- - -,%, in 8 is independent. In practice,
it is useful to have several reformulations of the condition for the in-
dependence of z;,- « -, 25!

Theorem 1. The following conditions on the set of vectors xy,« - - ,n tmply
one another:

(@) @, +,xn are independent.
(b) i is independent of ®y,- -+ Tk—y, for k = 1,-+-n.
(¢) If Z’; Mz = 0, necessarily M. = 0 for all k.

) If 27 Mexk = 21w, necessarily Ne = pi for all k.

Proof.
The equivalence of these four conditions will be established by prov-
ing the following propositions: (a) implies (b), (b) implies (c), (¢) im~

|
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plies (d), and (d) implies (a). The assertion in (b) for k¥ = 1 means
simply that z; > 6, in view of the conventions about the empty set
of vectors.

(a) ¥mplies (b): This is clear from Definition 2.

(b) implies (c): Assume to the contrary that a relation 2: A = 0
exists in which not all the A are 0. If r is the largest subscript for
which A, # 0, then 2: AT = Z'l' Mz = 0. Since z; # 6 by the
hypothesis (b), necessarily r > 1 (see part (5) of Theorem 2.1). Then,
z, = 21-1 (—M""\)zx; but this contradicts (b).

(¢) implies (d): If E;‘ AT = E“ urzr, then E: A\ — pr)zr = 6,
hence A\x — ur = O for all k, by the hypothesis (c).

(d) implies (a): Assume to the contrary that for some index j, z;
can be expressed as a linear combination of the remaining z, say
zj = 2.;.; Max. Defining A; = —1, one has 21 Mz = 6. Since also
6 = Y., Oz, the hypothesis (d) yields Ax = 0 for all k; this is absurd
fork=j3 |
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Condition (d) can be interpreted as follows: when a vector is ex-
pressible as a linear combination of independent vectors zy,- - *,&n,
the coefficients are unique.

Suppose now that 9 is the linear subspace generated by a set 8
of vectors. This means that 9T is the set of all vectors which can be
expressed as a linear combination of vectors in 8. At times, unique
expressibility may be desirable; this requires not merely a system of
generators for 91, but an independent system of generators. It can be
proved that every system of generators § includes an independent
system of generators 3; so to speak, one obtains 3 by suppressing cer-
tain vectors of 8, each suppressed vector being one which is still ex-
pressible as a linear combination of the vectors of 8 which remain.
The translation of this idea into a formal proof requires some form of
“transfinite induction”; however, for our purposes, the following
special case will suffice:

Theorem 2. Suppose the linear subspace 9 of U is generaled by a
sequence (finile or infinite) of veclors T,,09,7g," " "+ Then, there exisis a
subsequence X, TiyThy -+~ which (i) generates N, and (i) 28 linearly
independent.
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Proof. (after a fashion)

If all the 2 are 6, one takes the “empty subsequence’ having no
terms. Otherwise, let i, be the first non-zero z;; then, for k < k;,
= 0 = Oxy,.

If all the zx for k > k; are scalar multiples of zz,, the proof halts.
Otherwise, let x, be the first x; which is not a multiple of a,; then,
for k < kg, x1 is a multiple of ay,.

If all the @ for k > ky are expressible as linear combinations of
Tk, Tk,, the proof halts. Otherwise, let zx, be the first z; which is in-
dependent of zy,,zt,; then, for k < ks, i is a linear combination of
Loy Thy-

The proof continues (or halts) inductively. Since ky < ke < ks <
+ -, the z;; are a subsequence of the z;. Given any vector z in 91, say
z = Z: Mizp. Since each of zy,-:-,z, is a linear combination of
Tk, * *, Tk, provided m is taken large enough, z is itself a linear com-
bination of a,,- -, _; thus, the subsequence x; generates 9. By
construction, each zj, is independent of @y,,- - -,a¢,_,, hence the sub-
sequence zy; is independent by Theorem 1.

1. In the vector space of n-ples, the following vectors are inde-
Peﬂdeﬂt: SR (er;' 3 ':0): Tg = (111;0,' " ':0)1' vy Ty = (lalr' = '11)0

2. In the vector space of finitely non-zero sequences (Ezample
1.6), let 23 be the sequence whose first & terms are =1, all other terms
=0. Every vector is uniquely expressible as a linear combination of

the zy.

3. In the vector space of continuous functions on [a,b], a < b:

(i) The functions sini, cos{ are independent.

(ii) The functions sin ¢, sin ¢l are independent, provided ¢? 5 1.

(iii) If = is any polynomial function, the functions z(¢),e’, sin t are
independent.

4. In the vector space of polynomial functions on [a,h], where
a < b, the functions 14, ---,t* are independent.

5. In the vector space of 2-ples:
(i) Vectors z = (a,8), ¥ = (v,8) are independent if and only if
ad — By #= 0.
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(ii) If x,y are independent, every vector z can be expressed as a
linear combination of x,y.
(iii) It is not possible to have three independent vectors.

§ 7. BASIS, DIMENSION

The problem of finding an independent generating system is easily
solved for the following class of vector spaces:

Definition 1. A vector space U s said to be finitely generated if there
exists a finile set of vectors xy,- - - ,x, which generate V in the sense of

Definilion 6.4.

Definition 2. A set 3 of vectors is said to be a basis for a vector space U
in case (i) 3 generates U, and (ii) 3 s independent.

Theorem 1. Every finitely generated vector space has a basis.

Proof.

By assumption, U has a finite system of generators 2y, - -,&»; sup-
pressing z’s as necessary, we may suppose by Theorem 6.2 that the
zy are also independent. Then, the x; are a basis. ||

Examples

1. In the vector space of n-ples, the vectors e; = (1,0,---,0),
es = (0,1,0,---,0),- - -, ea = (0, - -,0,1) are a basis. In the sequel, this
will be referred to as the canonical basis for the space of n-ples.

2. In the vector space of finitely non-zero sequences (Hzample
1.6), the vectors ¢; = (1,0,---), e2 = (0,1,0,- - ), e3 = (0,0,1,0,---),

- are a basis, called the canonical basis. This vector space is not
finitely generated. For, if 21,- - -, is any finite set of vectors, there is
a fixed index N such that the k’th component of any linear combina-
tion of z,-+-,x, is 0 for all k > N.

3. In the vector space of polynomial functions on [a,b] (Ezample
1.4), where a < b, the functions 1,4, -+ are a basis (see Ezercise
6.4). This space is not finitely generated, since the linear combina~
tions of a fixed finite set of polynomials are of bounded degree. |

If U is a finitely generated vector space, the number of vectors in
any basis is the same; this is a consequence of the following theorem,
known as Steinitz’s exchange theorem:
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Theorem 2. Suppose zi,- - -,x, is a sysiem of generaiors for the vector
space V. Let yy,* -+, ym be linearly independent vectors, with m < n.
Then, there exists a rearrangement 1,---n' of 1,-+-n, such that the
vectors Y1, * * Ymy Tim1)r,* * *Tne generale V. In other words, after a
suitable rearrangement, the first m 2’s may be replaced by the y’s, in such
a way that the resulting sel of vectors generates V.

Proof. (by induction on m)

If m = 1, one is simply assuming y, # 6. Suppose y; = Z’; ALT.
Since y1 # 0, not every Ar can be 0. Rearranging the «’s, let us sup-
pose Ay # 0; then, one can solve for 2, as a linear combination of
Y1,%2, " * *,Tn, BAY

* T = my + Z: HETE.

It will be shown that the vectors yy,s,- + -, 2, generate V. Let z be
any vector of U, and suppose z = Z: very. Replacing @; by the
formula (*), z is expressed as a linear combination of y;,2s,- - - ,zp.

Assume the theorem true for m — 1, and let independent vectors
Y1,"**,Ym be given. The vectors y;,-- -, ym—1 are also independent;
rearranging the z’s, we may suppose, by the inductive assumption,
that the vectors y1,- « - \ym—1,8m, - - - ¥, generate V. In particular, y,, =

-1 n . . . AT
ZT Ay + Zm urtk, for suitable coefficients. Since y,, is inde-
pendent of y1, - *,Ym_1, N0t every pi can be 0. Rearranging 2, - -, 2n,
we may suppose p, # 0. Then, z,, can be solved for as a linear com-

bination of y1,- -, Ym—1,YmTm+1," * *,@n; the concluding details are
left to the reader. ||

Corollary 1. If U is generaled by x, - - ,&n, n0 independent set can con-
tain more than n vectors.

Proof.

Assume to the contrary that yy,- - -, ¥», Y41 are independent vectors.
Applying Theorem 2 to 21, - -2, and ¥y, -*,yn, We conclude that
Y1, " *,Yn generate V. In particular, ¥, depends on yy,- -y, a
contradiction. |

Corollary 2. If zy, -+, and yy," - ,ym are bases for U, necessarily
m = n.

Proof.
Since @1, « 2, generate U, and yy,* + -, yn are independent, m < n
by Corollary 1; reversing the role of z’s and y's, n < m. |
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Definition 3. If U is a finitely generaled vector space, the (unique) num-
ber of vectors in any basis is called the dimension of U; in this case, U
is said to be finite-dimensional. If U is not finitely generated, it is said
to be infinite-dimensional.

As remarked in § 6, it can be shown that every vector space has a
basis (what is needed, of course, is a proof for the infinite-dimensional
case). I'or our purposes, the following aspect of infinite-dimensionality
will suffice:

Theorem 3. In any infinite-dimensional vector space U, there exists an
infinile sequence of linearly independent vectors xy,2q,%3,* « -.

Proof.

Let #; be any non-zero vector; let 2, be any vector independent of
a;; let 23 be any vector independent of x;,z5. Inductively, let 2,44
be any vector independent of y,---,2,; such a vector must exist,
otherwise z,-:+,x, would generate V. The =z are independent by
criterion (b) in Theorem 6.1. |

1. In the vector space of n-ples, the veetors z; = (1,0,-:-,0),
2 = (1,1,0,---,0),-++, 2, = (1,1,--+,1) are a basis.

2. In the vector space of finitely non-zero sequences, the vectors
z = (1,0,0,--+), z2 = (1,1,0,- - ')s zz = (1,1,1,0,-- ')a' -+ are a basis.

3. Let U be a vector space of finite dimension n. Then:

(i) Every independent set of n vectors is generating.

(ii) Every generating set of n vectors is independent.

(iii) If 97 is a linear subspace of U, then 9T has finite dimension m,
with m < n; any basis for 91 can be augmented to a basis of U;
m = n if and only if 9 is all of V.

4. Let 0 be the vector space of finitely non-zero functions = defined
on a set, 3 (Ezample 1.7). For each point s of 3, let , denote that fune-
tion whose value at s is 1, and which vanishes at every other point of 3.
Then, the vectors z, form a basis for .

5. If U is generated by a sequence of vectors z;,29,73, - - -, show that
U has a basis.

*6. Ivery vector space has a basis.
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§8. CODA

On looking over the foregoing definitions and theorems, it will be
apparent to the reader that no use has been made of any particularly
characteristic property of the system of complex scalars (such as the
“fundamental theorem of algebra,” real and imaginary parts, complex
conjugation). The definitions and theorems make sense, and are
valid, for other systems of scalars; for example, real scalars, or rational
scalars, or Gaussian-rational scalars (complex numbers of the form
a -+ 1B, where « and 8 are rational). More generally, the scalars may
be drawn from an algebraic system known as a field (see any book on
abstract algebra). Thus, one speaks of complex vector spaces, real
vector spaces, and so on, in conformity with the system of scalars which
is employed.

In the sequel, only complex vector spaces will be considered, and the
terms vector space and complex vector space will be wused inter-
changeably.

Exercises

1. (i) Every complex vector space can be regarded also as a real
vector space.

(i) The complex numbers form a one-dimensional complex vector
space (Example 1.8), and a two-dimensional real vector space.

(iii) If U is an n-dimensional complex vector space, it is a 2n-di-
mensional real vector space.

*2. View the real numbers as a rational vector space in the obvious

way. Then 1, 4/2 are independent. So are 1, x. So are 1, /2, .
What is the dimension?

Chapter
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§ 1. PRE-HILBERT SPACES

The conjugate of a complex number A will be denoted A*. Thus, if
A = a + 18, where « and B are real numbers, then \* = a — 8.
The familiar properties of conjugation are as follows: (A*)* = A,
N\ 4 w)* = N* 4 p*, Q) * = Mu*, [N = VA*\, and A* = A if and
only if X is real.

Definition 1. A pre-Hilbert space s a complex vector space @. For each
pair of vectors x,y of @, there is determined a complex number called the
scalar product of = and y, denoled (x|y). Scalar products are assumed
to obey these rules:

P1) (yl2) = (=|n*
P2) (z+yl2) = (z|2) + W]2)
®3)  (zly) = NMz|y)
(P4) (z|2) >0 when z#=0.

A convenient verbalization of (z|y) is “z scalar y.” The reason
for the term pre-Hilbert space is that one can pass, by the procedure
25
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of “completion,” from a pre-Hilbert space to a Hilbert space (see
Theorem V.2.1).
Examples

1. Let @ be the vector space of n-ples (Example 1.1.1). If © =
(A1,°*+An) and ¥ = (ug,- * -,up), define

(@|y) = 207 M.

The axioms (P1)-(P4) are easily verified. This example is known as
n~dimensional unitary space, and will be denoted €".

2. Let @ be the vector space of continuous functions on [a,b]
(Bxample 1.1.8), where @ < b. Define

b
@lo) = [ sy a
This example will be referred to as the pre-Hilbert space of continuous
functions on [a,b].

3. Let ® be the vector space of finitely non-zero sequences (Ez-
ample 1.1.6). If x = (\x) and y = (uz.), define

(@ly) = 27 M.

Since this is essentially a finite sum, convergence is not an issue here.
This example will be referred to as the pre-Hilbert space of finitely non-
2ero sequences,

4. If @ is any pre-Hilbert space, and 9T is a linear subspace of @,
obviously 9 is itself a pre-Hilbert space.
Exercises

L. Fill in the details in the above examples (especially Example 2,
for which the verification of (P4) is non-trivial).

2. The vector space € of complex numbers (Ezample 1.1.8) is a
pre-Hilbert space, via (A[x) = Au*. [This is essentially the unitary
space €' of Ezample 1.]
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3. Let @ be the vector space of finitely non-zero functions defined
on a set J (Bzample 1.1.7). Define

(zly) = 22, z@y(@®)*,
the sum being extended over all ¢ in 3. Then, @ is a pre-Hilbert space.

4. Let @ be any vector space of finite dimension #, and z,,- - -z,
any basis of ®@. If z = Z: Me%x and y = Z: by, define (z|y) =
Z;‘ Akur*. Then, @ is a pre-Hilbert space.

§2. FIRST PROPERTIES OF PRE-HILBERT SPACES

Axioms (P2) and (P3) for a pre-Hilbert space can be expressed as
follows: the scalar product (z|y) is “additive” and “homogencous”
in the first factor. The first two statements of Theorem 1 assert that
(z|y) is “additive” and “conjugate-homogeneous” in the second fac-
tor:

Theorem 1. In any pre-Hilbert space:

1) @ly+2) = (|y) + (|2

@) (@MW) =N (=]y)

@) Oly) = () =0

@ (@ -yld = (]2 — ]2

(@ly — 2) = (z]y) — (z]2)

(5) If (z|2) = (ylz) for all z, necessarily x = y.

Proof.

(1): Using axioms (P1) and (P2), (z|y +2) = (y + z|2)* =
[¥]2) + E|2)]* = @l2)* + @l2)* = (z]y) + (z]2).

(2): Using axioms (P1) and (P3), (z|\y) = (\y|2)* = \(y|2)]* =
A (yla)* = N\ (z]y).

(3): @ly) = @+ 06ly) = 6ly) + ©@ly), hence (0|y) = 0. Simi-
larly, (z|6) = 0.

@: (@ —ylo) = (& + (-9)]2 = @|2) + (=yl2) = (z]2) +
((=Dyl2) = (|2) + (~=1)(y|2) = (z|2) — (y|2). Similarly for the
second relation.
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(5): Suppose (z|2) = (y|2) for all z. Then, (z — y|2) = (z|2) —
(y|2) = Oforall z;in particular, (z — y|z — y) = 0, hencez — y = @
by axiom (P4). ||

Exercises

1. In any pre-Hilbert space,
(i Memely) = 27 Melze| )
(| 27 wy) = 207 wi*@lys)
(27 Ml 227 mays) = 20, M * (i 9).-

§3. THE NORM OF A VECTOR

Definition 1. I'n a pre-Hilbert space, the norm (or “length”) of a vector
x, denoled || x ||, s the non-negative real number defined by the formula

|l = v/(z[2).

Suggested verbalization of || z ||: “norm z.”
Theorem 1. In a pre-Hilbert space:

@ Il =Ix =]

@2 |lz|| > O0whenz=0;| x| = 0if and only if z = 6.
Proof.

M: |2z ? = (z[h2) = Wz|z) = [A]? | « |2

(2): This is immediate from axiom (P4), and the relation (8|6) =
0 1 :

In particular, | —z || = ||z|| and ||z || = || z|. If = 6, the
vector || # ||~  has norm 1.

Examples

1. In the unitary space @" (Example 1.1), if z = (\g),

21 = (Zor)

b
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2. In the pre-Hilbert space of continuous functions on [a,b] (Ez-

ample 1.2),
lzll = (Lblx(t)lzdg)%.

3. In the pre-Hilbert space of finitely non-zero sequences (Ezample
1.3),if z = (\g),

%
=0 = (Zonee) - 0
The additivity of the scalar product yields an identity expressible
simply in terms of norms:
Theorem 2. (Parallelogram law) In a pre-Hilbert space,

le+yl®+lz—yl*=2[2]>+2]yl>

Proof.

Onehas [z 4y |? = (= + ylz + 3) = (z|2) + (|y) + @l2) +
wly) = llzI® + lly® + (=ly) + (y|z). Replacing y by —y,
lz—ylP=1zl*+ly]? - @ly) — @l2). |

The norm of a vector is expressed, by definition, in terms of the
scalar product. There is a useful formula which expresses the scalar
product in terms of norms:

Theorem 3. (Polarization identity) In a pre-Hilbert space, (z|y) =
Hle+ylF=lle—yP+illz+alP—illz—dyl?.

Proof.
In the identity

@ lz+ylP=lzIP+y]*+ &l + @),
replace y by —y, iy, and —iy:
lz=ylP=lzl?P+1yl®— ) — @2
let+ayl?=l1z1*+1yl*—ily) + iy
Iz =yl =1+ 1yl?+i=ly) — iyl
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It follows that
® —lle—ylP=—lzl?=1yl*+ =ly) + @l2)
@ illet+iylP=:ilzP+ilyl®+ @ly) - @l2)
@ —illz=—wyl?=—illzl®-illyl®+ =ly) - @l2).
Adding (a)-(d), the right hand side reduces to 4(z|y). |

From the definition of norm, (z|2) = ||z ||z ||. In general,
| (z]y)| is dominated by the product of || z || and || ¥ ||:

Theorem 4. (Cauchy-Schwarz inequality) In a pre-Hilbert space,
[InI<l=lllyl

Proof.
If = 6 ory = 6, then (z|y) = 0, and the conclusion is clear.
Suppose, for instance, that y # 6. Dividing through the desired
inequality by || ¥ ||, the problem is to show that |(z|2z)| < || z [| when
||z || = 1. For every complex number A,

Iz =2z = ||z [|* — A (z|2) — Mz|2) + || 2 ])?
= [z ]? = @|A* — Mz|2)* + N
= ||z |? - (@]2)(z|2)*
+ (z|2)(z]|2)* — (z|2)A* — A(z|2)* + AA*
=z |? = [(=|2) | + [(z]2) — N(z]2) — N*
=z |? = [@|) + |(=]2) — A]%
In particular, for Ao = (22),0 < [z = Az |2 = |2 | = |(z|2) |2 |}
Applying Theorem 4 in the unitary space €™ (see Ezample 1),
Corollary. If Ay, -« « ) An and py,- « *,pn are complex numbers,

| | < (E?P\Hz)% (Z?l#k [2)%-

The Cauchy-Schwarz inequality leads to an inequality involving
only norms:

Theorem 5. (Triangle inequality) In a pre-Hilbert space, one has
lz+yll<lzl+Iyl
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Proof.

Denote by p{A} the real part of the complex number \; obviously
lefA}| < [X|. Applying the Cauchy-Schwarz inequality at the ap-
propriate step, [z + y [ = [z [> + [y |* + =|y) + |y)* =
Izl +1yl?+ 20 {9} <[z + [y ]* + 2|@l»I< =2
+lylP+2lzllyl=d=l+Mg2 8

Consider, for example, the unitary space €% A vector = (ay,0)
with real components may be interpreted, in the Cartesian plane, as
the “‘arrow” from the origin (0,0) to the point (ay,@s). Then, || z || is
the familiar formula for the distance from (0,0) to (a;,as). If alsoy =
(81,82), with real components, = -+ y represents the resolvent of the
arrows z and y:

(81,82)

(ey+8y, az+Bz)
(_813-82}

(1_81: az_'ﬁz)

The triangle inequality and parallelogram law can now be given the
obvious geometrical interpretations from which their name is drawn.

It is customary to carry over this geometrical language to pre-
Hilbert spaces of arbitrary dimension:

Definition 2. In a pre-Hilbert space, ||z — y || 4s called the distance
Jrom z to y.

Certain properties of the norm have natural formulations in terms
of distance:
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Theorem 6. In a pre-Hilbert space,

M 2=yl 20;[lz—yl =04f and only if z = y.

@ lz=yl=ly—=l

@ lz—zll<llz—yl+ly—=zl.

Proof.

(1) and (2) are clear from Theorem 1, and the relation y — z =
-z -y

(3) results from the relation # —z= (z — y) + (y — 2), and
Theorem 6. |}

Exercises
L. If z and y are continuous complex-valued functions on [a,b],

then

b b b
[ eovora| < [ =0 a [wvora,

and

( ) |20 + ¥ ds)”s ( / 'l dt)x+ ( ) o2 d;)",

2. Let z and y be vectors in a pre-Hilbert space. If z = 6 or y = 6,
the Cauchy-Schwarz inequality reduces to 0 = 0. Assuming z 5 ¢
and y 7 0, show that |(z|y)| = ||z || || ¥ || if and only if = and y are
“proportional” (i.e. y = Az for suitable A).

3. In a pre-Hilbert space, | |z ]| = ||yl [Slz—y].

4. Let  and y be non-zero vectors in a pre-Hilbert space. The rela-
tion |z 4+ y| = |« | + || y || holds if and only if ¥ = az for some
real number a > 0.

5. Let 2,5,z be vectors in a pre-Hilbert space. The relation || 2 — z ||
= ||z — y || + || y — z | holds if and only if there exists a real num-
ber @, 0 < a < 1, such that ¥y = ez + (1 — a)z.

6. Let z and y be non-zero vectors in a pre-Hilbert space. The rela-
tion ||z —y|| = |||z]| = |yl | holds if and only if y = az for
some real number a > 0.
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7. In view of Exercises 4 and 6, one has I]:c_-l-.y | = "-"{" +||-y||
ifandonlyif ||z —y || = | ||z — || # || |. This is also an immediate

consequence of the parallelogram law.

8. Deduce another proof of the Cauchy-Schwarz inequality, using
the polarization identity and the parallelogram law.

§4. METRIC SPACES

At the close of the preceding section, a notion of distance between

vectors in a pre-Hilbert space was introduced. The role of this concept
is clarified by abstracting certain essentials:
Definition 1. A metric space is a sel X, composed of objects called the
points of the space. It is assumed that & is non-empty (that is, contains
at least one point). For each pair of points x and y of the space, there is
determined a non-negative real number d(z,y), called the distance from
z to y, subject to the following axioms:

(M1) d(zy) >0 when z#y,;
d(zy) =0 fandonlydf z=y
M2) d(zy) = d(y,2)
M3) d(z2) < d(zy) + d(y,2).
In words, distance is strictly positive, symmelric, and satisfies the
triangle inequality.

Examples

1. Every pre-Hilbert space @ is a metric space, with d(zy) =
|z — y || (see Theorem 3.6).

2. A non-empty set & of complex numbers is a metric space, with
d\p) = |X — pl.

3. Let % be any non-empty set. Define d(z,y) = 1 when z # y, and
d(z,z) = 0 for all z. It is easy to see that X is a metric space; such
metric spaces are called discrete.

4. If « is a metric space, and 8 is a non-empty set of points of &,
then § is itself a metric space (distances in § being measured as they
already are in ).
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5. Let % be the vector space of continuous functions defined on [a,b]
(Example 1.1.8), where a < b. Define d(z,y) = LUB {|2(t) — (@) ]|:
a < t < b}; that is, d(z,y) is the least upper bound of the numbers
|2(@) — y(t)|, as t varies over the interval [a,b]. Then, & is a metric
space. [Note: a continuous function on a closed interval is bounded.] ||

Certain standard notions from the caleculus of real numbers have
natural generalizations to metric spaces:

1. A sequence of points z,, in a metric space is said to converge to the
point « in case d(z,,z) — 0 asn — . This means: given any number
€ > 0, there is an index N such that d(z.,z) < e whenever n > N.
The point « is then unique; for, if also d(z,,y) — 0, then z = y re-
sults from 0 < d(z,y) < d(x,2p) + d(zn,y) — 0+ 0. The point z
is called the limit of the sequence @,. Notations: x, — =z, orz, — «
asn — , or ¢ = lim z,, ete. . . .

2. A sequence z, is said to be convergent if there exists a point z
such that z, — z. Otherwise, the sequence is said to be divergent.

3. A sequence x, is said to be Cauchy in case d(z,,r,) — 0 as
m,n — . This means: given any number ¢ > 0, there is an index N
such that d(z,,z,) < ¢ whenever m,n > N. Every convergent se-
quence is Cauchy; for, if z, — =, then d(z,,z,). < d(@m,z) + d(z,2,)
— 04 0 as mn — «. Not every Cauchy sequence is convergent,
as is shown in the following example (more sophisticated examples
are given in Examples 7 and 8):

Example 6. Let & be the open interval (0,1) with d(a,8) =|a — B|.
Let ap = 1/n (n = 1,2,3,---). Then, «, is Cauchy (since it is con-
vergent in the metric space of all real numbers), but the only pos-
sible limit (namely 0) lies outside of &. ||

In the metric space of all real numbers, with d(e,8) = |a — B|,
every Cauchy sequence is convergent (this is the well-known Cauchy
criterion for convergence). This is an example of an important type
of metric space:

Definition 2. A metric space X is said to be complete in case every
Cauchy sequence is convergent. Otherwise, X s said to be incomplete,

Examples of complete metric spaces are given in the exercises, and
elsewhere in the sequel. The property of completeness owes its im-
portance, to a certain extent, to the existence of prominent metric
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spaces which do not possess it; two examples of such spaces, both
pre-Hilbert spaces, will now be given.

Example 7. Let @ be the pre-Hilbert space of finitely non-zero se-
quences (Fxample 1.3), with d(z,y) = ||z — y||. It will be shown that
@ is an incomplete metric space, by exhibiting a Cauchy sequence that
has no limit in ®. The proposed sequence z, is

z = (1,0,0,-+)
Tz = (1&1/210:' i °)
g = (1}1/291/3301' ++)

z, = (1,1/2,1/8,---,1/0,0,- - ')°
For all np = 1!213} =iy

. 1 1 1 2
” Tngp — Tn ” = 0,"',0, ¥ Ny ’0)"')
n+1 242 n+p
n+1 E ’
since the series ZT 1/k? is convergent, d(ZTn4p,%n) = || Tngp — Zn ||

— 0asn — . It follows that x, is a Cauchy sequence of vectors.
Suppose (to the contrary) that @ contained a vector = (A\;,\g,A3,
+++Ax,0,0, - +) such that z,, — z. If n > N,

nll 5
l2n —2l? = X5 |2 — M| + 20,00
nll =
=2, 7~ &l +0;

<1 3
letting n — oo, Zl [E — M| =0, hence A\ = 1/ for all k. This

contradicts the assumption that z is finitely non-zero. |

Example 8. Let @ be the pre-Hilbert space of continuous funetions on
a closed interval, say [—1,1] for simplicity. Distances are defined as
in Example 1:

1 4
e ==yl =(J 1s0 - vora).
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It will be shown that @ is an incomplete metric space. The proposed
Cauchy sequence without a limit is the sequence whose n’th term z,
has the following graph:

14

e

-1 Ya.,

That is,
0 for —1<tL0
z,(t) = {nt for 0<i<l1/n
1 for 1/n<i<l1.
By elementary calculus, || zn — Za || — 0 as m;n — «; specifically,
if m > n,
1 (m il ﬂ-)2
|Zm(@) — Za(®) |? @t = ———
= 3m n

Assume to the contrary that ® contains a (continuous) function z
such that z, — =, that is,

1
|za(t) — 2(®)[*dt — 0.
-1

Since the integrands are >0,
b 1
[ 120 = s0ra < je - 2P @
a -1
for any sub-interval [a,b] of [—1,1], hence

b
f |2a() — 2(&) 2 dt — 0.

In particular, .

|za() — z(t)|* dt — O;
-1
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sinee 2,(f) = 0 on [—1,0], this reduces to
0
[ 1sora o,
in other words, _:
|z(®) |* d¢ = 0.
-1

Since z is continuous, it follows that z(f) = 0 on [—1,0].
Suppose 0 < e < 1. One has

flxn(t) — = dt — 0.
But, 2,(f) = 1 on [¢,1], provided n > 1/¢, hence
[ 10 - s = [ 11 = 2P
for n > 1/¢; letting n — o, it follows that

1
f |1 — (@) |?dt =0,

hence z(f) = 1 on [¢,1]. Since ¢ > 0 is arbitrary, z(f) = 1 on the semi-
open interval (0,1]. Thus,
0 for —1<t<0

a:(t)=[1 for =ik
This contradicts the assumption that z is continuous. ||
Returning to general metric spaces,
Theorem 1. In any meiric space:
(1) |d(=z2) — d(,2)| < d(zy)
(2) Ifzn — zand y, — y, then d(zs,yn) — d(z,y).

(8) If z, and yn are Cauchy sequences, then d(xn,yn) s a convergent
sequence of real numbers.

Proof.
b (1): By the triangle inequality, d(z,z) < d(z,y) + d(y,z); transpos-

Ing, d(z,2) — d(y,2) < d(z,y). Interchanging the role of z and y,
Ay,2) — d(z,2) < d(y,x), that is, —d(z,y) < d(z,2) — d(y2).
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(2): Using part (1), and the triangle inequality for real numbers,
|d(:c,y) £ d(zmyn) | < |d(:.r:,y) S d(-?m!f” o ld(xn.-y) Ll d(xﬂ,yﬂ) | —<-
d(z:x!l) + d(yryn) — 0 + Dasn — oo,

(3): Similarly, |d(@m,Ym) — d@n,¥n)| < A(@m,Tn) + dYmiYn) — 0
-+ 0 as myn — . Since the real numbers are complete, the Cauchy

sequence d(z,,y,) converges. ||

The concept of a bounded set of real numbers can be generalized
as follows: a set 8 of points in a metric space is said to be bounded in
case the distances d(z,y) remain bounded as x and y vary over 8; that
is, there is a constant M > 0 such that d(z,y) < M whenever = and
y are points of 8.

Examples

9. Let 2, be a fixed point of the metric space %, and let € be a fixed
real number >0. The set 8, of all points  in & such that d(z,zy) < ¢,
is bounded; for, if  and ¥ are two such points, d(z,y) < d(z,7o) +
d(zo,y) < 2e. 8 is called the open ball with cenler xy and radius e. In
particular, when X is the metric space of real numbers, § is the open
interval (zo — €%o + ).

10. Similarly, the set 3 of all points z such that d(z,z)) < € is
bounded; it is called the closed ball with center xy and radius e. In
particular, when & is the metric space of real numbers, 3 is the closed
interval [zp — €29 + €].

11. Suppose o is a fixed point of the metric space &, and 8 is a
set of points of %. Then, § is bounded if and only if the numbers
d(z,xo) are bounded as z varies over 8. For, suppose d(z,29) < K for
all z in 8; if z and y are points of 8, d(z,y) < d(x,29) + d(zo,y) < 2K,
thus 8 is bounded. Conversely, suppose § is bounded, say d(z,y) < M
for all z and y in §; fix any point o of 8; then d(z,20) < d(z,y0) +
d(yo,z0) < M + d(yo,%) for all z in 8.

Exercises

1. In a discrete metric space (Example 3), z, — « if and only if
there is an index N such that z, = z foralln > N.

2. In the metric space X of Example 5, x, — = means that z,(f) —
z(t) uniformly for ¢ in [a,b].
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3. In the metric space €™ (see Example 1), x, — = if and only if:
for each k = 1, - -,m, the k’th component of z, converges to the k’th
component of z.

4. In the metric space @™, a sequence z, is Cauchy if and only if:
for each k& = 1,---,m, the sequence of k’th components is a Cauchy
sequence of complex numbers. Deduce that €™ is complete.

5. BEvery discrete metric space is complete.
6. The metric space & of Ezample 5 is complete.

7. If 8 is a non-empty set of points in a metrie space &, the follow-
ing conditions on § are equivalent:

(a) 8 is bounded;

(b) given any point z of &, there is a ball centered at = (i.e. there
exists a suitable radius € > 0) which includes all the points of §;

(¢) there exists a ball containing all the points of 8.

8. In a metric space, the following statements are equivalent:

(8) zn — =;

(b) each ball centered at z contains all but finitely many of the
terms z,;

(¢) each open ball containing z contains all but finitely many of
the terms x,.

In part (c), can one replace “open ball” by “closed ball”?

§5. METRIC NOTIONS IN PRE-HILBERT SPACE; HILBERT SPACES

Let us translate the general metric space concepts of the preceding
section into pre-Hilbert space terms; the dictionary is Ezample }.1:

1. A sequence of vectors x, converges to the limit vector 2 in case
|z, — z|| — 0 as n — o; that is, given any ¢ > 0, there is an
index N such that || z, — 2 || £ ¢ whenever n > N. The vector z is
then uniquely determined by the sequence z,. Notations: z, — =z,
orz, — wasn — «©, orx = limz,, ete. . . .

2. A sequence of vectors z, is convergent if there exists a vector z
such that x, — =z. Otherwise, the sequence is divergent.

3. A sequence of vectors z, is Cauchy in case || 2 — z, | — 0 as
mm — oo; that is, given any e > 0, there is an index N such that
[l £ — z, || < ¢ whenever m;n > N. Every convergent sequence is
Cauchy; the converse fails (see Ezamples 4.7 and 4.8).
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4. A set 8 of vectors is bounded if there is a constant M > 0 such
that ||z | < M for all « in S (see Example 4.11). In particular, a se-
quence of vectors @, is bounded if there is a constant M > 0 such
that || z, || £ M for all n. If 2, is a fixed vector, and e > 0, the set
of all vectors = such that || z — @ || < eis the open ball with center g
and radius €; the closed ball, with center xy and radius ¢, is the set of
all vectors = such that || z — 2 || < ¢; the set of all vectors z such
that || # — 2 || = € is called the sphere with center zp and radius e.
In particular, the open unit ball, closed unit ball, and unit sphere are
defined, respectively, by the conditions ||z || <1, [[z] £ 1, and
Izl =1

5. A pre-Hilbert space is complete in case every Cauchy sequence
converges. That is, if || , — 2. || — 0, there exists a vector z such
that || 2, — z || — 0.

Definition 1. A complele pre-Hilbert space is called a Hilbert space.

In the sequel, the letters 3¢ and & will invariably denote Hilbert
spaces. The most important example is the following:

Example 1. The Hilbert space I*. Denote by 3¢ the set of all sequences
z = (\x) of complex numbers which are absolutely square-summable,

that is, 2 7| M|? < » (equivalently, the finite sums D |A¢|? have a

%
bound independent of n). For such an z, define N(z) = (E?] Nk |2) .
If 2 = (\) and y = (uz), write £ = y in case A\x = w for all k.

Lemma 1. If z = (\x) and y = (ux) are sequences belonging to 3cC,
then so is the sequence (\z + pz), which is denoted 2 + v.

Proof:
By the parallelogram law for complex numbers, |Ax + wux|? +
[Ar — px|? = 2| Me|® + 2| uz|? hence
ot w2 <2 DT NP+ 2 >l

for all n. Clearly ZTD\;, + px|? < », by the “comparison test.” |

If z = (M) belongs to 3¢, and X is a complex number, Z:I M [? =

A2 E:| M| shows that the sequence (\\;) is absolutely square-sum-
mable; it is denoted Az.
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It is easy to see that 3¢ is a vector space, with respect to the opera-
tions = + y and Az. Incidentally, N(Az) = |\|N(z), and the proof of
Lemma 1 shows that N(z + )% + N(z — y)? = 2N(2)? + 2N(y)>.

Lemma 2. If x = (\x) and y = () belong to 3¢, the series Er Apuz*
converges absolutely.

Proof:

If a and b are real numbers, (@ — b)? > 0 leads to ab < 3(a® + b%);
in particular, |Meue*| = [ Me [ie] < FOMP® + e[, thus 207 e
converges by the comparison test. ||

Lemma 2 justifies the definition

(x|y) = ET Auer ™.

The axioms for a pre-Iilbert space are easily verified. Incidentally,
lz| = N@.

To show that 3C is a Hilbert space, it remains only to prove com-
pleteness. Suppose x',2%,23,- - - is a Cauchy sequence in 3¢, that is,
| z2» — z" || — Oasmn — «.Sayz" = (\}). Foreach k, AP — AZ|?
< j.: AT =2F [ = || 2™ — 2™ ||? shows that the sequence ) ¥ -5 V-
of k’'th components is Cauchy. Since the complex numbers are com-
plete, A} — A; as n — o, for suitable Az, It will be shown that
2.1 1Mk [* < », and that & converges to & = (Ag).

Given ¢ > 0. Let  be an index such that || 2™ — 2™ ||> < ¢ when-
ever m,n > p. Fix any positive integer 7; one has

SR - MR < am - |2 < g
provided m,n > p; letting m — oo,
S -ME<e
provided n > p; since r is arbitrary,
™ Eri)\k — M2 < ¢, whenever n 2> p.
In particular, Y |\ — M2|? < ¢ hence the sequence (\x — Af) be-
longs to se; adding to it the sequence (\) of 3C, one obtains (Ax),

thus z = (A;) belongs to 3. It follows from (*) that ||z — 2™ |2 < e
Whenever n > p. Thus, z* — z.
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The Hilbert space 3¢ of absolutely square-summable sequences is
denoted 7. |

We resume the discussion of general pre-Hilbert spaces by noting
some properties of Cauchy and convergent sequences of vectors:

Lemma. Every Cauchy sequence is bounded.

Proof.

Given a Cauchy sequence z,, let N be an index such that || z, — 2, ||
< 1whenevermm > N.Ifn > N, | z. || = || (@a — 28) + 28 || £
| 2o —2zx || + |25 || € 1 4 || zx ||l. Thus, if M is the largest of
the numbers 1 + || zx ||,]| z1 [, z2 I, - -]l #¥—1 ||, one has || 2 || <
M foralln. |

Theorem 1. In any pre-Hilbert space:
(1) Ifz, — z and yn — y, then (xa|yn) — (z|y).

(2) If z, and y, are Cauchy sequences of vectors, then (z,|y,) is a
Cauchy (hence convergent) sequence of scalars.

(1): For all n, (za|yn) — (x|y) = (@ — Z|ya — 9) + (@|yn — ¥)

+ (z» — z|y). Using the triangle inequality for complex numbers,
and the Cauchy-Schwarz inequality, one has |(zx|y.) — (z|y)| <

lZn =2l lgn =yl +lzll gn—wll+ |l za =z [ ¥]; clearly
the right hand side — 0 asn — o0,

(2): Similarly, |(@alyn) — @n|ym) | < |20 — 2z || || yn_— Ym || +
| Zm || | ¥n — ym || + l| #n — Zm || [| ym || for all m and n; since || zm ||
and ||y || are bounded by the Lemma, the right side — 0 as

mn — @,
Corollary. In any pre-Hilbert space:
(1) Ifzn — z, then ||z || — [z .
(2) If z, is Cauchy, then || z, || converges.

Exercises

1. Fill in the details in Example 1.

2. If 9 is a linear subspace of a pre-Hilbert space @, and 9T con-
tains a ball or a sphere, then 91 contains every vector of @.
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3. In a metric space, every Cauchy sequence is bounded.
4. If z, — 0 and y, is bounded, then (z,|y,) — 0.

5. Another proof of the Corollary to Theorem I results from the
inequality | [z || = [ [S [z —#].

6. If |z, || — || z||, and (zn|2) — (z|2), then z, — 2.

7. The argument in Example 4.7 can be concluded as follows.
Assume to the contrary that there is a vector z = (\;) such that
Ip, — T, Let € = (1:0101' 0 ')J eg = (0:1101° ;’ ')J . (0!0’1!01' e ')J' ~ 1%
For each k, (z,|ex) — (x|ex) = \e. But (z,|ex) = 1/k for n > k.

§ 6. ORTHOGONAL VECTORS, ORTHONORMAL VECTORS

Definition 1. If = and y are vectors in a pre-Hilbert space, one says that
z is orthogonal (or “perpendicular’) to y in case (z|y) = 0. Notation:
zly

Suggested verbalization of # L ¥: “z perp ».” The relation of ortho-
gonality is symmetric: if # L y, then y L z; this results from (y|z) =
(z|y)*. If z L z, necessarily z = 6. Every vector z is orthogonal to 8.

Theorem 1. If x is orthogonal lo each of yy,- - « Yn, then & is orthogonal
to every linear combination of the yy.

Proof.
Iiz 1 yeforallk,andy = X7 Mgk, then (z]y) = 27 Ne*(z|wa) =

>oN0=0 1

Definition 2. A set 8 of vectors is said to be orthogonal in case z 1 y
whenever x and y are distinct vectors in S. A sequence (finite or infinite)
of veclors z, is called an orthogonal sequence if z; L x; whenever
Jj#k.

Examples

1. Let A, \2,A3,+ -+ be any sequence of scalars. In the pre-Hilbert
space of finitely non-zero sequences, define z; = (1,,0,0,+-+), 25 =
(022,0,- - -), z3 = (0,0,A3,0,--),* - -. Then, z, is an orthogonal se-
quence of vectors.

2. In the unitary space €%, the vectors z; = (1,2,2), 2, = (2,1,—2),
T3 = (2,—2,1) are orthogonal. Incidentally, || zx || = 3 for all k.
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3. In the pre-Hilbert space of continuous functions on [—m,], let
the sequence of functions z, be defined by the formulas z,(f) = sin (nt)
(n = 1,2,3,- - +). The sequence z, is orthogonal, that is,

fsin(mz)sin(nz)ds=o, whon | st

Similarly the sequence y,(f) = cos (nf) (n = 0,1,2,3,+++) is orthogo-
nal. Moreover, 2, L ¥, for all m and n.

Theorem 2. (Pythagorean relation) If = L y, then
lz+yl?=lzl*+ Nyl
More generally, if 2y, - - ,a are orthogonal,
[P EDIY EY

Proof.
Iz Lylz+yl?= @2+ @+ @)+ el =zI+
0+ 0+ || ¥ |[> This is the case n = 2. Assume inductively that

I E:_l o || = E:-l || 2 ||2. Setting z = ETI z; and y = Zn, One

has z L y by Theorem Z; then, || Z; z | = |z + y P = 2|2+

lyl2 =0 Nzl + Nlzali® 0

Corollary. If 21,220,753, - + is an orthogonal sequence (finite or infinite)
of mon-zero vectors, the x;. are linearly independent.

Proof.
Suppose Z:‘ Mz = 0. The vectors ATy« +, AnZn are clearly or-

thogonal. By Theorem 2,0 = || [[> = 307 || Ma |2 = 27 [hel? ll 2 [[%;
since || zi. || > 0 for all k, necessarily A, = 0 for all k. i

Definition 3. A sel S of veclors in a pre-Hilbert space is said to be ortho-
normal in case (i) § is orthogonal in the sense of Definition 2, and
(i) ||z || = 1 for every vector x in S. A sequence (finile or infinite) of
veclors x, s called an orthonormal sequence if (i) z; L = whenever
j#E kyand (i) || 2 || = 1 for all k.

The condition for the orthonormality of a sequence can be ex-
pressed as follows: (z;|zx) = 6. In general, the “Kronecker delta”
symbol 8,; can be defined for s and ¢ varying over a set 3; it has the
value 0 when s # ¢, and 1 when s = ¢. For example, in the notation
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of Exercise 1.7.4, zs(t) = 8. A set 8 of vectors is orthonormal if and
only if (z|y) = 6, for all z and y in 8.

Examples

4. If y, is any orthogonal sequence of non-zero vectors, the se~
quence 2, = || ¥ || "'¥n is orthonormal. For example:

5. In the unitary space €% the vectors (1/3,2/3,2/3),
(2/3,1/3,—2/3), (2/3,—2/3,1/3) are orthonormal (see Example 2).

6. Notation as in Ezample 3. One has ||y, || = 2x, and || z, ||?
=[ya | = = for n = 1,2,3,- - -. Define

- %sin ) (n=123-)

1
() = Vo
va(t) = %cos (nt) (n=123,---).

Then, the vectors um,,v, are orthonormal.

7. In the pre-Hilbert space of finitely non-zero sequences, let e;
g (130303' g ')J € = (0:1101' . ')J 6g = (0:0:1:01° i '):' -+. The sequence
of vectors e, is orthonormal.

8. In the Hilbert space [* (Example 5.1), let e, be the orthonormal
sequence described in Ezample 7. If x = (\y), evidently (z|e;) = A.
In particular, for every vector z, fo (z|ex) |* < =; this result holds
_f:r any orthonormal sequence, as a consequence of “Bessel’s inequal-
1 yl?:

Theorem 3. (Bessel’s equality and inequality) Let x,- - - ,x, be ortho-
normal veclors in a pre-Hilbert space. For every veclor x,

M) lz— X @l l? =z 2 — X7 @]z %
hence

@ XVl <z ]>
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Proof. %

If Ay,---)\a are arbitrary complex numbers, || 207 Nk ||® =
E’: [l Az [|2 = E:IMP by Theorem 2; calculating as in the proof of
Theorem 3.4,

lz— Xinal®=lz|? - (] M| 2)
— (@ Ty M) + 2 Ml

= [z |* = X} Melz|n)*
- X7 @|zne* + 2 Mt

=zl = Xrl@lz? + X1 @lee) — Nl

In particular, setting A = (|z), this reduces to the relation (1); the
inequality (2) follows at once. |

Corollary. If 2,80,23, -+ 18 an orthonormal sequence, then for any
veclor «,

IR IEIENT L E
In particular, (z|zx) — 0ask — .

Proof.
Bessel’s inequality holds for each n. |l

Remarks

1. From the proof of Theorem 38, it is clear that the choice A
= (x|zx) minimizes ||z — 2 Meax ||, and thus provides a “best
approximation” of z by a linear combination of zy,- - -,2,. Moreover,
only one set of coefficients gives best approximation, namely A\
= (2|zx). Note that if n > m, then in the best approximation by
1, * T, the first m coefficients are precisely those required for best
approximation by 1,- - *,Zm.

2. Notation as in Theorem 3. Let y = Z: (z|zx)zeand z = = — Y.
Clearly (z|zi) = 0 for all k, hence (z|y) = 0. Thus, one has a decom-
position z = y + 2z, where y is a linear combination of zy, - *,&,, and
z 1 a3 for all k. Such a decomposition is easily seen to be unique.
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3. Bessel’s inequality for n = 1 is essentially the Cauchy-Schwarz
inequality; see the proof of Theorem 3.4.

4. If y. — 6, then (z|yx) — (2|6) = 0 for each vector z, by Theorem
5.1. The converse of this proposition fails; for, with notation as in the
above Corollary, (z|zx) — 0 for each z, although || z; | = 1 precludes

2;—*9.

Example 9. Notation as in Ezample 6. The scalars \x = (z|uz)
(k =1,2,3,--+) and p = (z|w) (k = 0,1,2,3,- - -) are called the Four-
ier coefficients of the function z. By the above Corollary,

2 I 4 20 ? Sf |z(t) | dt.

[It can be shown that the sum is actually equal to the integral.] |

Every orthonormal sequence of vectors is linearly independent, by
the Corollary of Theorem 2. On the other hand, there is a systematic
procedure for “orthonormalizing” any linearly independent sequence:

Theorem 4. (Gram-Schmidt orthonormalization procedure) If y,y2,
Ya,* ++ 18 a sequence of linearly independent vectors in a pre-Hilbert
space, there exists an orthonormal sequence y,%3,x3,-- such that
(@1, *,xn] = [y1, * - yn] Jor all n (that @s, z,,- - - zn generate the same
linear subspace as yy,- *Yn)-

Proof.

The vectors z, will be defined inductively. Let z; = || y; || 'ys.
Assume inductively that orthonormal vectors z,,- - - ,z,—; are already
defined, in such a way that [z, - -, 2] = [y1,- - -yl fork=1,.- - n —1.
The desired vector z, must be a linear combination of yy,- - +,y., or
equivalently of zy,- - -,2n—1,yn; moreover, it must be orthogonal to
each of z,,---,2,—1. Guided by Remark 2 following Theorem 3, set
2=y, — E:"l (yn|xr)ze; then, 2z is orthogonal to zy,+-:,Zn_;.
Define z, = || z||~"2; this is permissible, since z = 6 would imply
that y, is a linear combination of zi,- - -,@n—1, hence of ¥y, - *,Yn—1,
contrary to the independence of the y’s. The reader can easily verify
that every linear combination of zy,- - -,2, is also a linear combination
of yy,- - ,yn, and vice versa. ||

The Gram-Schmidt procedure applies equally well to a finite
sequence yy,- * +,¥» of independent vectors, and leads to orthonormal
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vectors oy, - -, 2 such that [y, -+, ze] = [y1, - - ye] for k = 1,--,n.
In particular:

Corollary. If @ is a pre-Hilbert space of finite dimension n, ® has a
basis xy,- + -y, 0f orthonormal vectors.

Theorem 5. Every finile-dimensional pre-Hilbert space is complete, hence
28 a Hilbert space.

Proof.

By the above Corollary, there is a basis 2y, - - ,@n of orthonormal vee-
tors. If » = E‘: Ak, then ||z % = E:lhﬂz by Theorem 2; com-
pleteness can now be proved using a simplification of the argument
given for I? (see Exzample 5.1). |

Exercises

1. The relation || z + y [|* = || = [* + || ¥ ||* is equivalent to (2|y)
+ (y|z) = 0; denote this relation by z Py. Thenz 1 yif and only if
z P Ay for all complex A.

2. Let @ be the pre-Hilbert space of finitely non-zero functions on

a set 3 (Exercise 1.8). For each point 8 of 3, let . be defined as in.

Ezercise 1.7.4. Then, the z, are an orthonormal set of vectors. That
is, (xs|z;) = 85 for all sand ¢ in 3.

3. In the pre-Hilbert space of continuous functions on a symmetric
interval [—a,a], every odd function z is orthogonal to every even
function y (see Exercise 1.5.6).

4. Starting with the vector z; = (1,2,2,4) in the unitary space €,
construet an orthogonal set of vectors ,25,73,44 such that | zi || = 5
for all k& (integer components, preferably).

5. In the pre-Hilbérl; space of finitely non-zero sequences, ortho-
normalize the sequence of vectors y; = (1,0,0,-+ ), ¥2 = (1,1,0,--+),
Y& = (111!1!01' A °)J' sl

6. In the pre-Hilbert space of continuous functions on [0,1], ortho-

normalize the first three terms of the sequence ya(f) ="
(ﬂ' s 112,33"')'
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§7. INFINITE SUMS IN HILBERT SPACE
In the Hilbert space I?, consider the orthonormal sequence e,
described in Ezample 6.8. If z = (Ay,**+ A0, - +) is a finitely non-
zero sequence, clearly z = 37" Mxex; one could formally write z =
):,T Axex, with the understanding that Az = 0 for all &k > m.

Consider now an arbitrary vector = (A1) in 2. What sense can be
made of the expression z = Z“: Arer? It is natural to define E"; Arer

to be the limit of the sequence of “partial sums” y, = Z;‘ Meex; this
limit exists, in fact y» — =, since ||z — g [|> = || (0,---,0\
wWyin41
i) [P = 2o NP > 0asn — w. ’ i
These considerations will now be generalized for arbitrary ortho-
normal sequences in Hilbert space.

Lemma. Lel x,,7,73,- - - be an orthonormal sequence of vectors in a pre-
Hilbert space, and M \g\s, - - @ sequence of scalars such that 3 [\ |
< . Define yn = E: Mexx. Then, the sequence y, is Cauchy.

Proof.
+p n
" y"ﬂ = Un "2 = ” E:-H kbxk ”2 o E“j—:: " 153; ”B

nt
- n+f]h|2—b0 as n— o |

Throwing in completeness, we have
::;orem 1.Ifz,18an orﬂmwmulssqump: of vectors in a Hilbert space,
A 18 a sequence of scalars such that M2 <
Yn = E:‘ AkTk conve:;ves to a limit z, de%o:eld ::r =<Z:;::::M L
More generally:

Definition 1. If 21,25,73, - - - is a sequence of vectors in a pre-Hilbert space,
Such that the sequence y, = E: xx converges to a limit x, one writes

2= E‘: Tk.

Thus, || X7 2z — X @ || = 0, by definition. The basic prop-
erties of the infinite sums described in Theorem I are as follows:
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Theorem 2. Let z, be an orthonormal sequence of vectors in a Hilbert

space. Suppose z = 37 Nexx and y = D7 prZk, in the sense of The-
orem 1. Then:

(1) (z|y) = 27 Neus*, the series converging absolutely.

(2 (z|zr) =M

@) lzl? = Z7IMP = X7 Glzn) [
Proof.

(1): Lot sy = E: Mezg and &, = 2: pr¥x. By definition, s, — =
and {, — ¥, hence (8,/tx) — (z|y) by Theorem 6.1. Since (sa|tn) =
Z:I;_l Nue*(zj|2) = 27 Meme®, one has (z|y) = 27 Aum*. Re-

placing (\x) by (|Ae]), and (ux) by (| px|), it is clear that the conver-
gence is absolute (see also Example 5.1).

(2): This is a special case of (1), with u; = 1and p; = Oforallj # k.
(8): Takey = zin (1). |

Exercises
1. If z, is an orthogonal sequence of vectors in a pre-Hilbert space,
such that ZT || zx |* < c, then the sequence ¥, = E: 2, is Cauchy.
What if 37 || 2 || < ?

2. Let z, be a sequence of (not necessarily orthogonal) vectors
in a pre-Hilbert space, such that 3.7 || zx || < . Then the sequence

Yn = E: zx is Cauchy. Hence, in Hilbert space, E': . exists.

3. If 2, is an orthonormal sequence, and 3" Mgz exists in the sense
of Definition 1, necessarily Efl A f? < oo,

4. Give an example of a sequence z, such that E‘: | z || < oo,
but for which the sequence y, = Z;‘ z;. is not Cauchy.

5. Ify = ET Yk, and z L y; for all k, then z L .

6. (Generalized Pythagorean relation) Let z, be an orthogonal se-
quence in Hilbert space, such that 2 7 || z ||* < «, and form the

vectorz = Y, @ according to Ezercise 1. Then || z |> = 27 || o ||%
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7. Suppose z, is an orthonormal sequence in a pre-Hilbert space,
and z is a vector such that ||z |® = 2 7|(z|2:)[°. Then z =
ET (x|:r.;)9:;¢.

8. If y1,¥2,¥3," - is a sequence of vectors in a Hilbert space 3¢, such
that every vector z is a linear combination of finitely many y, then
3¢ is necessarily finite-dimensional.

§8. TOTAL SETS, SEPARABLE HILBERT SPACES,
ORTHONORMAL BASES

Suppose z,, is an orthonormal sequence of vectors in a Hilbert space.
Given any vector z, the scalars \x = (z|zx) satisfy 27| M| < oo,
by the Corollary of Theorem 6.3. According to Theorem 7.1, one can
form the vector y = 37 Mzx, and by Theorem 7.2, (y|z) = M =
(z|az) for all k. When can one conclude that y = z? In any case,
(y — z|zx) = (y|xx) — (z|2x) = 0 for all k. Thus, one could conclude
y = z if the vectors z; had the following property: the only vector z
which is orthogonal to every z; is the vector z = 6. This leads to the
following definitions:

Definition 1. A set § of vectors in a pre-Hilbert space ® is said fo be
total in case the only vector z of @ which s orthogonal to every vector of
8 18 the vector z = 0. A sequence (finile or infinile) of vectors x, is called
a total sequence in case: if z | zy for all k, necessarily z = 0.

Examples

1. In any pre-Hilbert space @, ® is itself a total set of vectors. For,
if z | « for every vector , in particular z L 2.

2. If § is any system of generators (Definition I.5.4) for the pre-
Hilbert space @, § is total. For, if 2 is orthogonal to every vector in 8,
it is orthogonal to every linear combination of vectors in 8; in partic~
ular, z | 2.

3. In the Hilbert space 12 (or in the pre-Hilbert space of finitely
non-zero sequences), the sequence of vectors e; = (1,0,0,---), ex =
0,1,0,--+), e3 = (0,0,1,0,-- -}, --- is total. So is the sequence r; =
(1’0’0!' F '): I3 = (1,1,0,' > ')s T3 = (1,1,1,0,' F ')! e
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*4, In the pre-Hilbert space of continuous functions on [—m,7], it
can be shown that the functions 1,t,£,- - - form a total sequence. So do
the functions w;,us, g, - * *,o,V1,V2,03, - + deseribed in Example 6.6.

Definition 2. A sequence (finite or infinite) of veclors x, is called an .

orthonormal basis for a Hilbert space 3¢, if it is (i) orthonormal, and
(ii) ltotal.

Not every Hilbert space possesses such a sequence; those which do
are characterized in Theorem 3 below.

Example 5. The sequence ¢, described in Ezample 3 is an orthonormal
basis for the Hilbert space I2. This will be referred to as the canonical
orthonormal basis of . ||

If a Hilbert space 3¢ has an orthonormal basis z, consisting of
infinitely many vectors, 3¢ is an infinite-dimensional vector space, by
the Corollary of Theorem 6.2. It follows that the z, cannot form a
basis, in the sense of Definition 1.7.2, for the vector space 3C; that is,
not every vector z can be expressed as a linear combination of the z
(see Exercise 7.8).

On the other hand, suppose @ is a pre-Hilbert space possessing a
finite sequence zy,- - *,, which is orthonormal and total. If z is any
vector in @, the vector  — 2, (z|2x)zx is orthogonal to every
hence is 0. Thus, z = )| (z|z)zx, @ is finite-dimensional, and
Zy,+ -+, &, is & basis for @ in the sense of Definition 1.7.2. Clearly, in a
finite-dimensional space, the concepts “orthonormal basis” and “basis
consisting of orthonormal vectors” coincide.

By the remarks at the beginning of the section,

Theorem 1. If z, is an orthonormal basis for the infinite-dimensional
Hilbert space 3C, then for each veclor x one has z = Z:' (z| xp) k.

Alternative descriptions of an orthonormal basis are contained in
the following:

Theorem 2. If z, is an orthonormal infinite sequence in a Hilbert space
3¢, the following conditions are equivalent:

(a) The z, are an orthonormal basis.
®) X712 * = ||z ||?, for each vector z.

() X (@|za)zs = g, for each vector z.
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Proof.

(a) tmplies (c¢) by Theorem 1.

(c) implies (b) by Theorem 7.2.

(b) implies (a): For, if (z|2x) = 0 for all k, clearly z = 8 by (b). I

The obvious finite-dimensional analogs of Theorems I and 2 are
true; the proofs are elementary.

Which Hilbert spaces possess an orthonormal basis? Such a space
necessarily contains a total sequence; it will be shown in Theorem 3
that this condition is also sufficient for the existence of an orthonormal
basis.

Definition 3. A Hilbert space s said to be separable if it possesses a
total sequence (finite or infinile).

Examples

6. If 3¢ is a finite-dimensional Hilbert space, every basis yy,- -,y
is total, hence 3C is separable.

7. The Hilbert space I? is separable (see Ezample 5).
Theorem 3. The following conditions on a Hilbert space 3C are equivalent:
(a) 3C s separable;
(b) 3C has an orthonormal basis z,.
Proof.
(b) #mplies (a): This is clear from Definitions 2 and 3.

(a) implies (b): Suppose z;,22,23,- - - is a total sequence in 3¢. By
Theorem 1.6.2, there is a linearly independent subsequence 7y,y2,¥3, - « *
of the z;, generating the same linear subspace as the z;. The y; are also
total; for, if a vector z is orthogonal to every ¥, it is orthogonal to
every linear combination of the yx, hence to every z; (hence z = 0).
By Theorem 6.4, there is an orthonormal sequence z;,z5,%3,- - - gen-
erating the same linear subspace as the yi. The x;. are total, by the
above reasoning; thus, the z; are an orthonormal basis.

Incidentally, if 3¢ is finite-dimensional, the independent sequence
Yr must be finite, say y,,- * +,¥»; then 2,,- - -z, is an orthonormal basis.
Both the y; and the z; are bases in the sense of Chapter I (see the
remarks preceding Theorem 1). ||
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There is another frequently used definition of ‘“‘separable” Hilbert
space, equivalent to the one given in Definilion 3; this material is
sketched in Ezercises 3-5.

1. In the pre-Hilbert space of finitely non-zero sequences z = (Ag),
let 8 be the set of all veetors z such that 2.7 (1/k)A\x = 0. Then 8 is
a total set (actually a linear subspace).

2. If a pre-Hilbert space @ possesses a finite total set zy,*,%m,
then @ is finite-dimensional (hence is a Hilbert space). An independ-
ent set 91, - ,¥» is a basis if and only if it is total.

3. A metric space is said to be separable if it contains a sequence z,
with the following property: given any point z in the space, there is a
subsequence z,, converging to z. Such a sequence z, is called a dense
sequence. Show that if z, is a dense sequence in a Hilbert space 3iC,
then z, is a total sequence, hence 3¢ is a separable Hilbert space in the
sense of Definition 3.

*4. If 3¢ is a Hilbert space of finite dimension =, and zy,- - +,z, i8

an orthonormal basis, then the vectors of the form z = Z': YEZE,

where the 7 are Gaussian-rational (see Chapter I, §8), can be
enumerated in a sequence, and this sequence is dense. Thus, iC is a
separable metric space in the sense of Ezercise 3. [The sophisticated
point is the enumeration.]

*5. Suppose 3¢ is an infinite-dimensional Hilbert space, separable in
the sense of Definilion 3. Then JC is a separable metric space in the
sense of Ezercise 3.

*6. Verify Exzample 4.

#7. It can be shown that every Hilbert space contains a total ortho-
normal set 3; such a set is called an orthonormal basis for the space.
[However, it may not be possible to enumerate 3 in a sequence.]
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§9. ISOMORPHIC HILBERT SPACES; CLASSICAL
HILBERT SPACE

Definition 1. A Hilbert space 3C is said lo be isomorphic with a Hilbert
space X if there exists a function T which assigns, to each veclor x in 3C,
one and only one vector Tz in X, in such a way thal the following con~
ditions hold:

(i) If = and y are veclors of 3C such that x # y, then Tx #~ Ty.
(ii) If z is any veclor in X, there is a vector x in 3C such that Tz = 2.
(i) T(z+ y) = Tz + Ty, for all x and y in .

(iv) T(\z) = N(T'z), for all z in 3¢, and all scalars X.

(v) (Tz|Ty) = (z|y), for all x and y in 3C.

Such a function T' is called a Hilbert space isomorphism of 3¢ onfo X.

Isomorphic Hilbert spaces are in a sense “equal,” for an isomor-
phism 7' distinguishes between distinet points, and “preserves” sums,
scalar multiples, and scalar produects. One can think of X as being
essentially the space 3¢ with a “tag” 7' attached to each vector .

Two types of separable Hilbert spaces were noted in Examples 8.6
and 8.7: (1) for each n, the unitary space €" is a separable Hilbert
space, and (2) the Hilbert space * is separable. Up to isomorphism,
these are the only separable Hilbert spaces:

Theorem 1. Let 3C be a separable Hilbert space:

(1) If 3¢ has finite dimension n, it is isomorphic with C".

(2) If 3¢ is infinite-dimensional, it is isomorphic with I%.
Proof.

Let us show (2); the proof of (1) is much simpler, and is left to the
reader.

Suppose ¢ is infinite-dimensional and separable. An isomorphism 7'
of 3¢ onto I* will be constructed. By Theorem 8.3, 3¢ has an orthonormal
basis z,,.

Given any vector z in 3¢; the problem is to define 7z in I°. By the
Corollary of Theorem 6.8, 27| (z|zx) |* < , hence we may define
Tz = ((x|xx)); that is, T'z is the sequence whose k'th term is (z|zy).
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Incidentally, z = 3.7 (x|xi)zx, by Theorem 8.1. Let us verify the

properties (i)—(v) of Definition 1:
():If z 5 y, then = — y = 6; since the z;, are total, (z — y|z;) = 0

for some index j, thus (x|z;) # (y|=;). It follows that Tz = Ty, by

the definition of equality in I* (see Ezample 5.1).

(i): Given any vector (A) in I%. Define = 37 Aewy, as in The-
orem 7.1. Since (z|xx) = M\ by Theorem 7.2, one has Tz = (\z).

(ii): If z and y are vectors in 3¢, (z + y|zx) = (x|z) + (y|zx) for
all k; this shows that 7(z + y) = Tz + Ty.

(iv): Similarly, T(Az) = X\(7Tz) results from (\z|zz) = A(z|zz).
(v): If z and y are vectors in 3¢, then z = 37 (z|¢)x and y =

21 @z, hence (z|y) = 27 (z]2x) (y|2)* by Theorem 7.2. In
other words, (z|y) = (Tz|Ty). 1|

Thus, up to isomorphism, there is just one infinite-dimensional
separable Hilbert space:

Definition 2. Any infinite-dimensional separable Hilbert space will be
referred to as classical Hilbert space.
Exercises

1. If 3¢ and X are classical Hilbert spaces, there exists an isomor-
phism of 3¢ onto X.

2. If T is an isomorphism of a classical Hilbert space 3¢ onto a
Hilbert space &, then & is also classical.

3. If 3¢ is isomorphic with X, then X is isomorphic with 3¢.

Chapter

Closed Linear Subspaces 1|

§ 1. Some notations from set theory
§ 2. Annihilators

§ 3. Closed linear subspaces

§ 4. Complete linear subspaces

§ 5. Convex sefs, minimizing vector
§ 6. Orthogonal complement

§ 7. Mappings

§ 8. Projection

§1. SOME NOTATIONS FROM SET THEORY

A set X is composed of objects z,, - - - called the elements or members
of the set X. As in the first two chapters, I assume that these terms
are meaningful to the reader, without further elaboration.

The statement ‘“z is a member of the set X"’ is symbolized “z € ,”
which may be read “z belongs to &.” For example: if U is a vector
space, the symbol z € U means that z is a vector in the space U; if
& is a metric space, z € % means that z is a point of the space X;
A € @ means that )\ is a complex number.

If € X and y € X, the statement “z = y”’ means that zand y are
symbols representing the same element of . One assumes the follow-
ing properties of equality: (1) z = z for every z € X; (2) if z = y,
then y = z;and (3) if z = y and y = 2, then = 2. These are known
as the reflexive, symmetric, and lransitive properties of equality.

In addition, the following set-theoretic concepts and notations will
be employed in the sequel:

1. Let % and Y be sets. If every element of & is also an element of

Y (that is, if # € & implies € YY), one says that & is a subset of Y.

Other terms for this: X is contained in Y, X is tncluded in Y, Y includes
57
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«x, Y contains X, Y is a supersel of L. Notations: X C Y, or Y D X.
For example, if ® is the set of all real numbers, and § is the set of real
numbers in the interval [a,b], then 8 C ®.

2. If both & C Y and Y C %, the sets & and Y are said to be equal.
This means: z € % if and only if z € Y. Notation: = Y. For ex-
ample, if & is the set of all real numbers >0, and Y is the set of all
real numbers which can be expressed as the square of a real number,
then ¢ = Y.

3. Let & be a set, and suppose that for each z € X there is given
a statement involving = (denoted, say, by s(z)), which may or may
not be true. The symbol

[z € xX: s(z)}

stands for the set of all z € & for which s(z) is true. For example, if
® is the set of all real numbers, and § is the interval [a,b], then

s=f{z€R:a<Lz< b

4. A set % is empty if it has no members (that is, the relation
z € % does not hold for any ). Otherwise, & is said to be non-empty.
The symbol & denotes an empty set. For example,

fr€ER:xr>2andz <1} = I,
fr€®:2? <0} = .

5. The set whose only element is z is denoted {z}. The set whose
only elements are j,---,z, (not necessarily distinet) is denoted
{#1,* - ,a}. Thus, € {2y, - -,2a} if and only if z = z; for some k.

Exercises

1. If &, Y, Z are sets,

R A el

() if xcYandy C Z, then X C Z;

(i) o = 9 if and only if both & C Y and Y C .
2. If ¢, Y, Z are sets,

(@) x=x;

@) if ¢ = 9y, then Y = X;

(iii) f X =9Yand Y = Z, then X = Z.
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3. If & and Y are both empty sets, then & = Y. Thus one can
speak of the empty set.

§2. ANNIHILATORS

Definition 1. Let 8 be a subsel of a pre-Hilbert space ®. A vector x € @
is satd to be orthogonal {0 S in case x 1 s for all s € §; notation:
x L 8. The set of all such vectors z is called the annihilator of S, and s
denoted $*. Thus:

st={z€C@:(x|s) =0 forall s€8).

Examples

1. Recall that {6} is the set whose only element is the vector 6.
Then, ®* = {6}. In fact, a subset $ is total if and only if $* = {6}.

2. Clearly {0}* = ¢.

3. The convention is that & = @, where & is the empty subset of
@. The rationalization for this is as follows: given any vector z € @,
one has (z|s) = 0 whenever s € & (which is never).

Theorem 1. If S 4s any subsel of a pre-Hilbert space @, then $* is a
linear subspace of ®. Moreover, if x, € $* for all n, z € @, and z, — =,
then z € 8.

Proof.

Clearly 6 € 8*, and $* is a linear subspace by Theorem I1.6.1.
Suppose z, L 8 for all n, and z, — z. For any s € 8, (z|s) = lim
(xn|s) by Theorem 11.5.1; since (z,|s) = 0 for all n, (z|s) = 0. |

Definition 2. Let S be a subsel of a melric space X. A point x € X s
said to be adherent o 8 in case there exisis a sequence s, € $ such that

8y — .

, In particular, if 8 is a subset of a pre-Hilbert space @, a vector z € @
13 adherent to 8 if and only if there is a sequence s, € § such that
[[8n — 2| > 0asn— .

Definition 3. Let X be a metric space, $ C . $ 1s said lo be a closed
subset of & #f il conlains every point adherent to it. That is, the relations
8,z E€X, s, — z,imply x € 8.
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Examples

4. According to Theorem 1, if § is any subset of a pre-Hilbert space
®, 8* is a closed linear subspace of ®.

5. Let ® be the metric space of all real numbers (Ezample 11.4.2),
§ the “closed interval” [a,b], where a < b. Then 8 is a closed subset of
®. For, suppose @ < s, < b, and s, — &, that is, |sa — z| — 0. The
assertion is that a < z < b. Assume to the contrary, say, that z > b.
Then e = z — b > 0, hence for sufficiently large n,z — s < |2 — $a|
< e=x—b, —sp < — b, 8, > b, a contradiction. A contradiction
is reached similarly if z < a.

6. Let & be a metric space, y € X, ¢ > 0, and 8 = {x € X: d(z,y)
< ¢}. Then, § is a closed set. For, suppose z, € 8 and z, — z. By
Theorem I1.4.1, d(zny) — d(z,y); since 0 < d(xny) < e for all n,
one has 0 < d(zx,y) < e by Ezample 5.

7. The convention is that the empty subset of any metric space is
closed. For, if z is adherent to @& (which is never, since a sequence
cannot be extracted from &), then z € J.

8. Every sphere {z: d(z,y) = €} is a closed subset.

9. In a pre-Hilbert space, every closed ball {z:| 2z — ¥ || < €}, and
every sphere {z: || z — y || = €}, is a closed subset. In particular, the
closed unit ball {z: || z || < 1}, and the unit sphere {z: || z || = 1}, are
closed subsets.

10. In a metric space X, & itself is a closed subset.

11. Every finite subset 8§ = {y1,**,ym} of 2 metric space & is
closed. For, suppose z, € § and z, — z; for some y; € §, Tn = Y;
for infinitely many n, hence z = y; € 8. In particular, every one-point
subset {y} is closed. ||

If § is & subset of the pre-Hilbert space ®, one writes $** for the
annihilator of §%; thus, $** = (s*)*. It is not necessary to define
further “higher order perps,” in view of part (3) of the following

Theorem 2. If § and 3 are subsels of a pre-Hilbert space @,
M st
(2) $C 3implies 3* C 8*;
@ @E*H*r =st.
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Proof.

(1): Letz € 8. Forany y € 8, onehasy | z, hencez L S"',that
is, z € (81)*. Thus, z € Simpliesz € $*+.

(2): Suppose 8 © 3. If z L 3, then all the more z | §; thus, z € 3+
implies z € 8*.

(3): Clearly (8*)** = (s**)*, since in each case one starts with
$ and perps three times. Applying part (2) to the relation $ < s*+,
one has $* D (s**)*. Also, $* < (8*)** by part (1). The last two
inclusions combine to give the desired equality (3). ||

Definition 4. If 8 and 3 are subsets of a pre-Hilbert space ®, one says
that § is orthogonal to J in case x | y whenever x € $ and y € 3.
Notation: § L 3.

Evidently $ L $*, and {6} L 8, for every subset 8. The convention
is that @ L 8, for every subset .

Theorem 3. If 9T and 9 are linear subspaces of a pre-Hilbert space @,
stwhtfmtm.Lﬂl,ﬂwnevef'yuectorz€ml+ﬂlkasauntquerepm-
sentation © = y -+ z with y € M and z € N.

Proof.

See Definition 1.5.2 for the notation. Suppose z = y; + 2, = ¥, +
2o, where yx € 91 and 2z € 9. The problem is to show that y; = ¥,
and z; = 2. Define w =y, — yo = 2, — z;. Clearly w € 9 and
w € 9; since M L 9N, one hasw L w, hence w = 0. |

Definition 5. Notation as in Theorem 3. One writes M @ N for the
linear subspace SN + 9. Thus, the use of the symbol @ entails ortho-
gonality of the summands.

Exercises

1. Let 8 be a non-empty subset of a metric space &, and z € <.
Then, z is adherent to $ if and only if: given any ¢ > 0, there is at
least one point s € 8 such that d(s,z) < e

2. If @ is the metric space of all complex numbers (Ezample 11.4.2),
and @ is the set of all real numbers, then ® is a closed subset of €.
Also, the set § of all complex numbers A such that |A| > eis a closed
subset of @.
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3. Let 3¢ be classical Hilbert space (Definition I11.9.2), and z, an
orthonormal basis for 3¢. Let 9t be the linear subspace generated by
the az, that is, the set of all finite linear combinations of the x;. Then:

(i) Every vector z € 3¢ is adherent to 9.
(i) 9T is not a closed subset of 3C.

4, If 8 and 5 are subsets of a pre-Hilbert space @, the following
statements are equivalent:

(a) $L3
b) scat
) sk

5. If 8 is an orthogonal set (Definition 11.6.2) of non-zero vectors,
and §;, Sy are subsets of 8, then 8; L §; if and only if 8; and 8; have
no vectors in common.

6. If o1 and 9T are linear subspaces of a pre-Hilbert space @, then
on 1L gtifandonlyif |z +y | = || 2 ||> + || ¥ ||* whenever z € o1
and y € 9.

7. If 9 and 9 are linear subspaces of a pre-Hilbert space @, such
that 9 @ N = @, then M* = 9%, N* = 9N, hence M** = M and
gttt = 9t In particular, 91 and 9t are closed linear subspaces.

8. In the pre-Hilbert space @ of continuous functions on [—a,a], let
91 be the subspace of even functions, and 9 the subspace of odd
functions (see Ezercise 1.5.6). Then, ® = M D IN.

§3. CLOSED LINEAR SUBSPACES

A linear subspace 9 of a pre-Hilbert space @ can be enlarged to a
closed linear subspace by forming %** (see Theorems 2.1, 2.2).
Another procedure for enlarging a linear subspace to a closed linear
subspace is given in Theorem 2 below. It will be shown in § 6 that these
two procedures yield the same closed linear subspace when @ is a
Hilbert space.

Definition 1. If 8 is a subset of a melric space X, the closure (or “ad-

herence’’) of S in X is defined to be the set of all points x € X which are
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adherent to 8 in the sense of Definition 2.2; it is denoted 8. Thus,
8 = {x € X: z is adherent to $}.
If § = %, 8 is called a dense subset of X.
Remarks
1. z €3 if and only if there exists a sequence s, € $ such that

Sp — T.

2. The convention is that & = &. For, there are no points z ad-
herent to &.

3. 8 is a closed subset of X if and only if § C § (see Definition 2.3).

4. 8 C 8, for every subset $. That is, every point s € § is adherent
to 8 (take s, = s for all n).

5. 8 = § if and only if § is closed.

6. If $ C 3, then § C 3. For, suppose z € 8. Say s, — z, where
8, € 8. Since also s, € 3, = is adherent to 3.

7. % is a dense subset of . If $ is a dense subset of &, and 3 D 8,
then J is also a dense subset of .

Theorem 1. Let 8 be a subset of a metric space X. Then:

(1) S 1is a closed subset of .

@ gci

(3) If 31is a closed subset of & such that 3 D 8, necessarily 3 D 8.
In other words, $ is the smallest closed subset of X which contains §.
Proof.

(1): Suppose y is adherent to S. It must be shown that y € 8.
Choose any sequence z, € 8 such that z, — y. For each n, choose a
point s, € S such that d(ss,zn) < 1/n. Then, d(s,,y) < d(sn,2s) +
d(@n,y) < 1/n + d(zny) — 0 + 0. Thus, s, — y, y € 8.

(2): See Remark 4 above.

(3): If s © 3, and J is closed, then § C J = 3 results from Remarks
6and 5. |
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Lemma. In a pre-Hilbert space:

(1) Ifzs > zandyn — ¥y, then tn +yn — 2+ 9.

(2) If zn, — zand Ay — A, then Mpa — A2.
Proof.

O @otvm) — @+ | =1 @—2)+ @ =) <
lzn— 2]+l ga— g1l — 0 +o0.

@): | Man = Az || = || An = N (@ — 2) + M@0 — 2) + Oa — Nz ||
SPa=Allza =2 || + N[l 2o —2z|| +]2a = A - [[2]] — 0-0 +
A[-0+0-[z][=0 1

Theorem 2. If 91 is a linear subspace of a pre-Hilbert space ®, then T is
a closed linear subspace of ®. Moreover, 3 is the smallest closed linear
subspace which contains 9.

Proof.

Suppose z,y € 9T, and A is a scalar. Choose sequences =, € M,
Yn € I such thatz, — zand y, — y. Then, 2, + y» — 2 + yand
Az, — Az, by the Lemma. Since 2, + y» € M and Az, € N, z + y
and Az are adherent to 91, that is, they belong to 91. This proves that
9 is a linear subspace; it is closed by Theorem 1. |

Corollary. If 91 is a linear subspace of a pre-Hilbert space @, then
SECat ;
Proof.

9+ is a closed linear subspace containing 9, by Theorems 2.1 and
22. 1

Exercises
1. In a pre-Hilbert space: if z, and y, are Cauchy sequences of

vectors, and A, is a Cauchy sequence of scalars, then z, + ¥, and
AaZ, are Cauchy sequences of vectors.

2. If 8is a subset of a pre-Hilbert space, then 8 and S have the same
annihilator, that is, $* = (§)*.

3. If z, is an orthonormal basis for the classical Hilbert space 3¢,
and 91 is the linear subspace generated by the zx, then 91 is dense in 5C.

4. Notation as in Exercise 3. Let $ be the set of all vectors x which
can be expressed as a linear combination of the z; with Gaussian-

“
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rational coefficients. Then, § is not a linear subspace, but it is a dense
subset of 3¢,

5. Let 8 and J be subsets of & metric space . If every z € X is
adherent to 3, and every ¢ € J is adherent to 8, then $ is a dense subset
of 9.

6. In a pre-Hilbert space ®, the closure of {z: ]|z —y| < ¢} is
{z:]| z — ¥ || < €}. In a metric space, the closure of {z:d(z,y) < ¢} is
contained in {z:d(z,y) < €}.

7. If § is any subset of a pre-Hilbert space ®, then § < $**.

§4. COMPLETE LINEAR SUBSPACES

The principal result of this chapter is the following theorem: if 9t
is a closed linear subspace of a Hilbert space 3¢, every vector z € 3¢
can be written in the form z = y + 2z with y € 9% and z € 3tL. This
result is proved in § 6, with the decisive lemma coming in § 5. The
purpose of the present section is to introduce and illustrate a concept
which plays an important role in these results: the concept of a
“complete subset.”

If § is a non-empty subset of a metric space X, § is itself a metrie
space (Fxample I11.4.4), it being understood that distances in § are
measured as they already are in .

Definition 1. Let X be a metric space, S C X. If S is a complete metric
space, § 1s called a complete subset of X. This means: if s, € 8 and
A(8ymy8n) — 0, there is a point s in § such that d(sn,s) — 0.

Remarks
1. The convention is that ¢ is a complete subset of .

2. Every closed subset $ of a complete metric space X is a complete
subset. For, suppose s, € 8, d(sm,sn) — 0. Since X is complete, there
is a point z € « such that s, — . Since § is closed, z € 8.

3. Every complete subset $ of a metric space % is a closed subset of
. For, suppose s, € 8,2 € X, and s, — . Since d(sp,sn) — 0, and
8 is complete, there is a point s € § such that s, — s. By the unique-
ness of limits, # = s € 8. Thus, § contains every point x which is
adherent to .

Combining Remarks 2 and 3,
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Theorem 1. In a compleie metric space (in particular, in a Hilbert space),
a subset is closed if and only if il s complete.

Corollary. If 9 is a closed linear subspace of a Hilbert space, I 1s ilself
a Hilbert space.

The role of completeness is emphasized by the existence of theorems
concerning closed subsets of Hilbert space which are valid for complete
subsets of pre-Hilbert space. Important examples of this will be given
in the next two sections; another is the following:

Theorem 2. If 9 and I are complete linear subspaces of a pre-Hil-
bert space ®, and M 1 I, then M @ N is also a complele linear sub-
space of @.

Proof.

See Definitions 2.4 and 2.5 for the notations. Let z, be a Cauchy
sequence in I + ;88 Tn = Yn + 2n, With ¢, € M and 2, € N. By the
Pythagorean relation, || #m — ¥a 1> + | 2m — 2 |2 = || Um — ¥a) +
(zm — 2n) |2 = || @m + 2m) — @n + 2a) [I> = || Zn — 2a ||> — 0, hence
yn is a Cauchy sequence in 91, and z, is a Cauchy sequence in 9. Since
91 and 9 are complete, ¥, — v and 2, — z for suitable y € 9 and
z € 9. Then, Zn, = Yn + 2» — ¥ + 2, by the Lemma to Theorem
32 § \

Corollary. If 91 and N are closed linear subspaces of a Hilbert space 3¢,
and 9 L 9T, then MM @ N s a closed linear subspace of 3.

Tt will be shown in § 6 that if 97 is a closed linear subspace of a
Hilbert space 3¢, then 3¢ = 9t @ M. For finite-dimensional 91, this
is easy:

Theorem 3. Let 9 be a finile-dimensional linear subspace of a pre-Hilbert
space ®@. Then:

(1) 9T 4s complete (hence closed).
2 e=aexn.
3 9n=att
Proof.
(1): 9t is complete by Theorem I1.6.5.

(2): Let y1,- * -,yn be an orthonormal basis for 9. Given any vector
z € @, definey = Z;‘ (x| yx)ys and 2 = & — y. Clearly z L yz for all
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k, hence z 1 9. Thus, = y + 2, with ¥y € 9% and z € N". See
Definition 2.5.

(3): By Theorem 2.2, . < 9t**. Conversely, assuming z € 9t*+,
let us show that z € 91. By (2), we may writexz = y + z, with y € 9N
and z € 9*. Since both z € %'t and y € N1, one has z =
z —y € N*+*; that is, z L 9%+, and in particular z 1 z. Thus,z = 6,
andz=yca |

Exercises

1. Let 9% be a complete linear subspace of the pre-Hilbert space @,
and suppose 9T is separable (Definition 11.8.3). Generalize Theorem 3.
[One can even get along without separability; see Theorem 6.1].

2. If @ is any pre-Hilbert space, ®** = @ even if @ is incomplete.
In the pre-Hilbert space of finitely non-zero sequences z = (\z), let
9 be the set of all vectors = such that A; = 0. Then 9t = %1+, but
9 is not complete.

§5. CONVEX SETS, MINIMIZING VECTOR

If z,y,2 are any three points in a metric space, d(z,9) < d(zz2) +
d(z,y). If d(z,y) = d(z,2) + d(z,y) for three particular points z,y,z, it
is natural to say that “z lies on the segment joining x and 3"’ (see, how-
ever, Ezercise 9). In pre-Hilbert space, this condition reads || z — y ||
= ||z —z|| + ||z — y || ; one can show that this condition is in turn
equivalent to the existence of a real number o, 0 < a < 1, such that
z = ax + (1 — a)y (see Exercise I1.3.5). The latter condition makes
sense in any vector space:

Definition 1. Let U be any vector space. If x and y are any two veclors,
the segment joining x and y is the set of all vectors z of the form z =
ax + (1 — a)y, where 0 < a < 1. A non-empty subset 8 of U is said
lo be convex if S contains the segment joining any two of ils vectors;
that is, the relations x € 8,y € 8,0 < a < limplyax + (1 — )y € 8.

Examples

1. Every linear subspace of U is convex.

2. In a pre-Hilbert space, the closed unit ball § = {z: ||z || < 1} is
convex. For,if s € 8,y € $,and0 < a < 1, then|az + (1 — @)y || <
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ez | + A -yl =alz|+A—-a)lySat+(l—-a)=1
shows that ez + (1 — &)y € 8.

Theorem 1. (Minimizing vector) Let 8 be a complete and convex subsel
of a pre-Hilbert space ®. Given any vector x € ®; there exists one and
only one vector y, € 8 such that ||z — y, | < || — y || for all y € 8.

Proof.

Let s = GLB { || — y || : ¥ € 8}, and choose any sequence y» € §
such that || z — ya || — 8. It will be shown that (1) y» is a Cauchy
sequence, hence converges to a vector y, € § such that || 2z — 3, || =
5, and (2) this equality determines y, € S uniquely.

By the parallelogram law, || (ym — 2) + (@ — yn) > + || Um — 2)
—@—y) P=2ym —z[?+ 2] 2 — ya ||* hence
lgm=valP=2ltm—2zF+ 22— all® = || @m+ ¥a) — 22 |?

=2 gm—zP+2(z—ynl®— 41 3@m+ ) — 2%

Since § is convex, it contains the vector 3(Um + ¥n) = 3¥m + 3¥n,
hence || (¥ + y») — z || = & by the definition of 5. It follows that

"ym_ynllzszuym_3"2"'2"3-3},‘"2-—452;

as m,n — , the right member of the inequality — 28% + 25° —
45% = 0, thus y, is a Cauchy sequence in §. Since 8 is complete,
Yn — Y, for suitable y, € 8. Since yp — z — ¥y, — = by the Lemma
of Theorem 8.2, 0onehas ||y — z || = [ yo — 2 ||. Thus, |y, — 2z || =
é.

Suppose also z, € $ satisfies || z, — x || = 8. Since $ contains the
vector 3 (Yo + 20), Yo = 2, results from the calculation

lvo— 22 =219 —zP+2[2z—2|*—| @ +2) — 22|
=26+ 28 — 4| 3o+ 2) — z |
<28 4+28°—452=0. |
Quoting Theorem 4.1,

Corollary 1. Let § be a closed and convex subset of a Hilbert space 3C.
Given any x € 3C; there exists a unique vector y, € 8 such that || x — y, ||
Slle—yllforally €s.

Corollary 2. If § is a complete and convex subset of a pre-Hilbert space
@, § contains a unique vector Y, of minimum norm.
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Proof.
Take = 0 in Theorem 1. |

Exercises

1. In a pre-Hilbert space:

(i) The balls {z: || z || < €} and {z: ||z || < €} are convex.

(ii) If 8 is convex, so is y + 8 (= the set of all vectors y + 2 with
2 € 8).

(iii) The open and closed balls with center ¥ and radius e are
convex.

2. If 8 and 3 are convex subsets of a vector space, and Au are
scalars, then 8§ - 3, A8, and hence AS 4 uJ are convex.

3. In the pre-Hilbert space of finitely non-zero sequences, the set
8 of all vectors z = (A\x) such that Az is real and >0 is convex. Sim-
ilarly in the Hilbert space I°.

4. If 8 is a non-empty subset of a metric space &, and z is a point
of &, the distance from z to $ is defined to be the non-negative real
number GLB {d(z,y): ¥ € 8}; it is denoted d(z,S). Prove: z is ad-
herent to 8 if and only if d(z,8) = 0; that is,

S = {z € x:d(z,8) = 0}.

5. The conclusion of Theorem 1 may hold for certain non-complete
convex sets. For example, let @ be any pre-Hilbert space, and § =
{z: ]| 2| <1}

(i) In the notation of Theorem 1, y, =  when ||z || < 1, and y, =
| |~z when || z || > 1.

(i) @ is complete if and only if 8 is a complete subset.

(iii) Incidentally, @ is complete if and only if {z: |z | = 1} is a
complete subset.

6. Here is an example of Corollary 2. In the unitary space @",

let $ be the set of all y = (Ay,- - -,\,) such that > N = 1. It is easy

to see that 8 is a closed (hence complete) convex subset of €". The
veetor y, € 8 of smallest norm is y, = (1/n,--+,1/n).

7. If 8 is not complete, the conclusion of Theorem I may not hold.
For example, let ® be the pre-Hilbert space of finitely non-zero

Sequences @ = (\i), and § the set of all z such that Z‘f M= 1.1t
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is easy to see that 8 is convex. However, 8 does not contain a vector
Yo of minimum norm. Incidentally, $ is not closed. An example with
S closed is given in Exercise 4 of the next section.

8. If § is a convex subset of a pre-Hilbert space, then § is also
convex.

9. Let U be the vector space of continuous functions on [0,1]
(Bzample 1.1.3), regarded as a metric space via d(z,y) = LUB
{lz@®) — y(@®)|:0 <t < 1} (see Ezample I1.4.5). Let z,y,2 be the
functions defined by the formulas z(f) = ¢, y({) = —1, and 2(t) = 0.
Then, (i) d(z,y) = d(z,2) + d(z,y), but (ii) there does not exist a real
number « such that z = az + (1 — a)y.

§ 6. ORTHOGONAL COMPLEMENT
Theorem 1. If 9T s a complete linear subspace of a pre-Hilbert space @,
then ® = NP N*, and N+ = AN.

Proof.
Given any vector 2 € @, let us show that there is a decomposition
% =y, + 2z withy, € Sand z € N*.

Since 91 is complete and convex, there exists, by Theorem 5.1, &

vector 7, € 9 such that |z — y, || < ||z — y || for all y € 9. De-
fine z = & — 7,; it will suffice to prove that z L 9.

Given any y € N, let us show that (y|2) = 0; there is no loss of
generality in assuming || y || = 1. By the calculation made in the
proof of Theorem I1.3.4,

lz=2 [ =1zI? = |GInI*+ [Ely) =A%
for every scalar A. In particular, for A, = (z|),
* lz=2gy =22 — |Gl

Now,z — Ay = (& — %) — Moy = = — (Yo + Aoy); since y, +
Ay E N, one has ||z — % || < |2 — (Yo + Aey) ||, by the choice of
¥o. That is, || z || < || 2 — Aoy ||; combining this with (¥),

lzlP<lle=agl? =1zl = |ClDI*< =]

Clearly (z|y) = 0.
The proof of 9t**+ = 9 is the same as in Theorem 4.3. |

Quoting Theorem 4.1,
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Theorem 2. If 90 is a closed linear subspace of a Hilbert space 3C, then
3 = NP N, and N = 9t

Definition 1. If 9L is a closed linear subspace of a Hilbert space 3¢,
9t is called the orthogonal complement of 9.

Remarks

1. If 9t is a closed linear subspace of a Hilbert space 3¢, the relation
() = 9t shows that the orthogonal complement, of 9t* is 9t.

2. If @ is a pre-Hilbert space such that every closed linear subspace
9t of @ satisfies the condition 9t** = 91, then @ is necessarily com-
plete (hence is a Hilbert space). See Ezercise V.1.3. This remark will
not be used in the sequel.

Theorem 3. If S is any subsel of a Hilbert space 3¢, then S** is the
smallest closed linear subspace of 3¢ which conlains 8. That s,

(1) 8** is a closed linear subspace of 3C;
@ st

(3) if 9N s a closed linear subspace of 3C such thalt 8§ C M, neces-
sarily $**+ C 9.

Proof.
(1): see Theorem 2.1.
(2): see Theorem 2.2.

(3): Suppose 8 C 91, where 91 is a closed linear subspace of 3C.
Then, $* D ant, $*+ < ont+; quote Theorem 2. |

Corollary 1. If 91 is any linear subspace of a Hilbert space 3¢, = 9+,

Proof.
Compare Theorem 3 with Theorem 3.2. |}

Corollary 2. Let 3. be a sequence of closed linear subspaces of a Hilbert
space 3. There exists a smallest closed linear subspace 9 such that
N N for all k. One has z L N if and only if x L N for all k.

Proof.

Let 8 be the set of all veetors z € 3C such that € 91; for some k.
Clearly 91 8 for all k, and 8 is the smallest subset of 3¢ with this
Property. Set 9 = $**. Evidently 91 € 8 € 9t for all k. If 9 is a
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closed linear subspace such that 9 < 9% for all k, then § C 91, hence
9 C 9 by Theorem 3. The last assertion follows from 9t* = §*++ =
$* (see Theorem 2.2). |

Exercises

1. If 9 is a finite-dimensional linear subspace of a pre-Hilbert
space @, another proof of ® = 9@ " (this is Theorem 4.3) can be
deduced from Theorem 1 and Theorem 11.6.5. Both proofs, at some
point, make use of an orthonormal basis of 91.

2. Let 91 be a linear subspace of a Hilbert space 3¢. Then 9 is a
dense subset of 3¢ if and only if it is a total subset of 3C.

3. In the pre-Hilbert space of finitely non-zero sequences z = (Ax),
let 9t be the set of all  such that ZT (1/k)\. = 0 Then 9 is a
closed linear subspace, but 9 = ot*+.

4. Completeness is essential for Theorem 5.1 (theorem on min-
imizing vector). For example, let S be a linear subspace of a pre-

Hilbert space, such that 8 » §** (for instance, $ may be the closed
linear subspace described in Ezercise 3). Then, Theorem 5.1 fails for

the convex set S. Indeed, if z is any vector which belongs to $** but

not to 8, no minimizing vector y, exists.

5. Let @ be a pre-Hilbert space possessing a total sequence z,
(Definition I11.8.1). If 9T is a complete linear subspace of @, then 93U
also possesses a total sequence y,, hence is a separable Hilbert space.

*G, (i) If o is a separable metric space (Ezercise 11.8.3), and 8 is a
non-empty subset of &, then § is a separable metric space.

(i) In particular, if 3C is a separable Hilbert space, and 9 is a
closed linear subspace of 3¢, then 91 is a separable Hilbert space (see
Ezercises 11.8.3,4, and 4). Using an orthonormal basis for 91, deduce
another proof of 3¢ = U@ N*.

*7. In Exercise I1.8.5, it is proved that a classical Hilbert space 3¢
is a separable metric space; in the proof sketched there, use is made of
an orthonormal basis, and hence of the Gram-Schmidt procedure.
Another proof runs as follows. Let z, be any total sequence in 3¢, and
let 8 be the set of all finite linear combinations of the z, with Gaussian-
rational coefficients. Then, § is a closed linear subspace, having orthog-
onal complement {8}, so 8 = 3C results from Theorem 2. Since $ can be
enumerated in a sequence, $ is a dense sequence in JC.
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§7. MAPPINGS

Suppose 9 is a closed linear subspace of a Hilbert space 3¢. Given
any vector z € 3¢, there is a decomposition z = y + 2z with y € 9
and z € N (Theorem 6.2) ; moreover, the vectors y and z are uniquely
determined by z (see Theorem 2.3). Thus, one passes from the vector
2 € 3 to the vector y € 9T in a perfectly definite way. One may say:
“y depends on z,” “given any z there is determined a corresponding
y,” and so on. This is the familiar language of functional dependence.
The terminology and notation of functions, to be used in the sequel,
will now be described.

1. Let & and Y be sets, both non-empty. One says that “7T is a
mapping of X into Y” in case: for each x € &, there is determined
one and only one element y € Y, denoted y = Tz [or y = T(2)],
called the value of T at . The symbol 7': X — Y means that 7'
is a mapping of % into Y. One also speaks of “the mapping 2 — Tz
(z € %).” Synonyms for “mapping”: function, transformation.

2. If T: ¢ — 7 is a mapping, & is called the snitial set, or domain
of definition of T'; Yy is called the final set of 7.

3. Mappings S: € — Yand 7: X — Y are said to be equal in case
Sz = Tz for all z € X; that is, S and T are “pointwise equal.”
Notation: S = T.

4, Tf T: o — Y, and S is a subset of &, T'(S) denotes the set of all
Tz € 9 as z varies over 8. Thus,

T(8) = {y € Y:y = Tz for some z € 8}
= {Tz: % € 8}.
In particular, T() is called the range of T.

5. A mapping 7': & — 9 is said to be injective if it takes distinct
values at distinet elements of %. That is, the relations z; € %,
Ty € X, 3y # xp imply Ty # Txo. Equivalently: Tz, = Tz, implies
Z; = x,. An injective mapping is said to be one-to-one.

~ 6. A mapping 7: X — 9 is said to be surjective if T(X) = <. That
18, given any y € 7, there exists at least one z € % such that Tz = y.
A surjective mapping T': € — % is said to be a mapping of X onto Y.
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7. A mapping T': ¢ — Y is said to be bijective if it is both injective
and surjective. This means: given any y € VY, there is exactly one
z € & such that Tz = y. Thus, a bijective mapping is a one-to-one
mapping of X onto Y; such a mapping is also called a one-to-one
correspondence.

Examples

1. Let ® be the set of all real numbers, & = {z € G&: 2 > —1},
and Y = {2 € ®: 2 > 0}. The mapping 7: X — Y defined by
Tz = z + 2 is injective, but not surjective.

2. & and %Y as in Ezample 1. The mapping S: X — %Y defined by
Sz = 2? is surjective, but not injective.

3. & and Y as in Ezample 1. The mapping U: £ — Y defined by
Uz = z + 1 is bijective.

§8. PROJECTION

Definition 1. Let 9 be a closed linear subspace of a Hilbert space 3C.
Given a veclor x € 3C, suppose x = y + z s the unique decomposilion
with y € 9N and z € N* (see Theorem 6.2); the vector y is called the
orthogonal projection of = on 9.

Theorem 1. Let N be a closed linear subspace of a Hilbert space 3C. For
each = € 3C, denote by Px the orthogonal projection of = on M. Then,
the mapping P: 3¢ — 3C has the following properties:

(1) (Pzy|zg) = (21| Pxy) for all 2,23 € 3.
(2) Py=yforally € N
(8) Pz=0forallz € N .
Moreover:
4) P(z; + 23) = Px; + Px,
(3) P(z) = A(Pz)
6) P(Pm)=Pr
(1) (Pzlz)=||Pz|? <L || z|?
(8) 9t is the range of P.
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9 N ={zeci:Pr=uz}
(10) 9t = {z € 3: Pz = 6}.
Proof.

(1): Let 2y = y; + 2, and 2, = y» + 2, be the orthogonal decom-
positions of z; and =, relative to 9t; that is, yx € 9 and 2, € N*.
Then, Pzy = y1, P2y = y3, and (Pz:1|22) = (a|yz + 22) = W1ly2)
+ (1l22) = ly), while (21|Pz2) = (Y1 + 21|y2) = (n1lwa) +
(z1]y2) = (1| y2)- a

(2): If y € N, the unique orthogonal decomposition of y is y =
y+e.

(3): If z € g+, its orthogonal decomposition is z = 6 + z.

(4): With notation as in (1), z; + 22 = (Y1 + yo) + (&1 + 25);
since ¥1+ 9 €N and 2z +2 € RN, Pley +25) =41 + 92 =
Pzy + Pz,.

(5): If z = y + 2 is the orthogonal decomposition of z, then Az =
Ay + Az is the orthogonal decomposition of Az, hence P(\z) = \y =
A(Pz).

(6): For any = € 3¢, Pz € 9 by Definition 1, hence P(Pz) = Pz
by (2).

(7): With notation as in (5), [z |* = |y [P+ [ 2] > ||y |* =

H;'xllll:; also, (Pz|z) = (y|ly+2) = Wly + Wl =|y|®=
Z ||”.

(8): If z € P(3¢), then z € 9T by the definition of P. Conversely if
x & 9N, then z = Pz € P(3¢) by (2).

(9), (10): obvious from the definition of P. ||

Definition 2. The mapping P described in Theorem 1 is called the pro-
iection of 3¢ on 9. The notation Py, is used to indicale the relationship
of P {o the closed linear subspace 9.

Exercises

1. Let 9 be a closed linear subspace of a Hilbert space 3¢, and sup-
Pose T': 3¢ — 3¢ is a mapping satisfying the following conditions:
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(1) (T |29) = (21| Tzo) for all zy,2, € 3¢; (2) Ty = y wheny € 9;
and (3') Tz = 6 when z € 9u*. Then T = Py

2. Notation as in Theorem 1. Show:

(i) P(x —y) = Pz — Py;

(i) if z, — =z, then Pz, — Pz.

3. Notation as in Theorem 1. If z = y + 2 is the orthogonal decom-
position of z with respect to 91, define Qv = 2. Then:

(i) Px+ Qz=czforallz € K;

(i) P(Qz) = Q(Pz) = 6 for all z € IC;

(iii) Q is the projection of 3¢ on 9*.

4. Tf 9 and 9t are closed linear subspaces of a Hilbert space iC,
P = Py, Q = Py, and 90 L 9, then P(Qx) = Q(Pz) = 6 for all
2 E 4t

5. If o and 9t are closed linear subspaces of a Hilbert space iC,
P = Pgy, and Q = Py, then 9N C N if and only if Q(Pz) = Pz for all
# € 3¢. In this case, Pw = 6 for all w € 9", and P(Qz) = Pz for all
z € 3.

Chapter

Continuous Linear Mappings |V

§ 1. Linear mappings

§ 2. Isomorphic vector spaces

§ 3. The vector space £(0,W)

§ 4. Composition of mappings

§ 5. The algebra £()

§ 6. Continuous mappings

§ 7. Normed spaces, Banach spaces, continuous linear mappings
§ 8. The normed space £.(8,5)

§ 9. The normed algebra £(€), Banach algebras

§ 10. The dual space &'

§ 1. LINEAR MAPPINGS

If 9 is a closed linear subspace of a Hilbert space 3¢, and P is the
projection of 3¢ on 9 (described in Theorem II1.8.1), the mapping
P: 3¢ — 3¢ satisfies the conditions P(z + y) = Pz + Py and P(\z)
= MPz). So to speak, P respects vector addition and multiplication
by scalars. These conditions make sense for a mapping between any
two vector spaces, and the mappings which satisfy them are of the
greatest importance:

Definition 1. If U and W are vector spaces, a mapping T: UV — W is
said to be linear in case

(i) T is additive: T'(z + y) = Tz + Ty, for all z,y € V;

(ii) 7' is homogeneous: T'(A\z) = A\(T'z) for all z € U and scalar \.

Examples

1. U and W any two vector spaces, T: 0 — W defined by Tz = @
for all z € . 7 is called the zero mapping (or null mapping), and is
denoted T = 0.

77
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2. U any vector space, T: 0 — U defined by Tz = zfor allz € V.
T is called the identity mapping of U, and is denoted T’ = I.

3. U any vector space, u a fixed scalar, T: U — U defined by
Tz = uz for all 2 € V. The additivity and homogeneity of T' come
out of the axioms for a vector space: u(z + ) = px + py, and
p(Az) = (N)z = )z = AMuz). Such a linear mapping is called a
scalar mapping in V. Clearly 0 and I are scalar mappings.

4. U the vector space of n-ples (Ezample I.1.1), T: 0 — U defined
by T(hl:' s a}n) = (Olkﬂr' = lM)‘

5. U the space of n-ples, ‘W the space of m-ples, n > m, and
T:0 — W defined by T(A\,* * *,Aa) = A1,* * ).

6. 0 and W as in Ezample 5,and S: W — U defined by S(A1, - * * \m)
- Ql:"':hm:OJ"'so)-

7. U the vector space of polynomial functions on [a,b] (Ezample
1.1.}), with @ < b, and T: 0 — U defined by Tz = 2/ (= derivative
of z).

8. U as in Ezample 7. Define S: 0 — U as follows. If z € U, let

Sz be the unique polynomial y such that ' = z on [a,b] and y(a) = 0.
Thus,

t
)0 = [(stydu @<t
a
9. U the vector space of finitely non-zero sequences (Ezample I.1.6),
T:v—7° defined by’ T(hl,kg,ka,' * ') = (k2:h81' . ')'

10. O as in Ezample 9, 8: U — U defined by S(A\1A203,-+°) =
(‘LM;M:M;' : ')‘ .

11. Let O be the vector space of n-ples, and suppose 1’,- - -,n’ is any
rearrangement of 1,+++,n. Let T: U — U be defined by T'(A1," * *;An)
= (\rrye M)

12. Let U be the vector space of n-ples, W the vector space of
m-ples, and suppose aji are fixed scalars (F=1,--ym; k=1,---m).
Define

T(\1y* - hn) = (E:_l Q1NEs ** ) :_1 amine )
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_ By ‘-'!Bﬁﬂiﬁon: a linear mapping “preserves” sums and scalar mul-
tiples; it also preserves 0, negatives, differences, and linear combina~
tions:

Theorem 1. If 7': U — W is any linear mapping,
(1) Toe=¢6
@) T(—2) = —(T2)
@) T@—y) =Tz—Ty

@ & (E: lkxk) = 20 M(T).

Proof.
(4): The proof is by induction on n. The case n = 1 is simply the
assertion that T is homogeneous. Assuming 7' (E’:-l )\k:c;,) =

E:_I Me(Tzy), one has T (Z: maﬁ) Sk (ET—I Mz + lnxn) =

T (E:_l Rm) + TOwz) = 2o M(T2) + M(Tz,) =

2o Me(Tz).

(1), (2), and (3) are special cases of (4), since 0 = Oz, —z = (=1)z
andz—y =1z 4+ (-1y. |} 3

A linear mapping is uniquely determined by its effect on any system
of generators:

Thaom-n 2. Suppose S: 0 — W and T': U — W are linear mappings,
EMSTwasystemofgmmtorsforU. If Sz = Tz for all x € 8, then

Proof.

; Let 91 = {z € V:8z = Tz} ; by assumption, $§ C 9. Clearly 0 € 9t;
ifz € 91,y € 9, and Nisscalar,S(z +y) =Sz + Sy = Tz + Ty =
T(z 4 y) and S(A\z) = A(Sz) = A(T'z) = T(A\z), hence 9 is a linear
subspace. Since U is the smallest linear subspace containing $ (see
Theorem 1.5.2), 0 = 9. Thatis, Sz = Tz forallz € V. |

A useful source of linear mappings is the following:
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Theorem 3. Lel U be a veclor space of finite dimension n, and W any
vector space. If @1,- - ,&n 18 a basis for UV, and yy,* - ,Yyn are arbilrary
given vectors in W, there exisls one and only one linear mapping
T: 0 — W such that Tz = yx for all k.
Proof.

Given any vector z € U, the problem is to define Tz € W. Suppose
z = 2 Netx; since the coefficients M are uniquely determined by
(Theorem I1.6.1), one can unambiguously define Tz = E: Niyk. The
linearity of 7T is immediate from Theorem I.4.1, and clearly Tz = y.

If 8: U — W is another linear mapping such that Sz = yx for all
k, 8 = T by Theorem 2. |

If T: x — < is any mapping, and 3 is a subset of Y, the set of all
2 € X such that Tz € 3 is called the inverse image of 3 under T,
and is denoted T—(5). Similarly, if § C &, the set 7'(S) described in
§7 of Chapter 111 is called the direct image of 8§ under T.

Definition 2. If T: U — W is a linear mapping, the set N of all
vectors & € U such that Tx = 6 is called the null space of T'. Thus,

N = {z€V: Tz =0} = T'({6}).
Under a linear mapping, the direct and inverse images of linear
subspaces are themselves linear subspaces:
Theorem 4. Let T: U — W be a linear mapping:

(1) If 0, is a linear subspace of U, T(V,) s a linear subspace of W.
In particular, the range T (V) of T is a linear subspace of W.

(2) If W, is a linear subspace of W, T (W,) s a linear subspace of
Q. In particular, the null space % = T~ ({6}) of T is a linear
subspace of V.

3) Tz, = Txzif and only if 1 — %2 € qN.

(4) T is injective if and only if N = {6}.

Proof.

(1): Since 8 € U, § = T0 € T(V,). Suppose yy,y2 € T(V,), and A
is scalar. Say yx = Tz, where zx € V. Since z; + 22 € UV, and
Azy € U, one has y; + yo = T2y + T2z = T(2 + 25) € T(v,) and
Ay = MTzy) = TQzy) € T(0,).
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(2): Since T0 = 6 € W,, 6 € T~*(W,). Suppose 21,75 € T7(W,)
and A is scalar. Since W, contains Tz; and 7T'z,, it contains Tz, -I:
Tzo = T'(2y + z2) and AM(Tz;) = T(Az;), hence z; + 25 and Az; be-
long to T71(W,).

(3): The following relations imply one another: Tz, = Tx,, Tz, —
Tzy =0, T(z1 — 22) =0, 3 — 2 € N.

(4): Suppose T is injective; if € 9, then Tx = 6 = T4, hence
z = 0. Suppose, conversely, that % = {0}; if T'z; = T'z,, then z; —
o € 9, hence 7y — z2 = 0. ||

Suppose @ is any pre-Hilbert space, and y is a fixed vector in ®.
Defining 7'z = (z|y), one obtains a linear mapping 7': ® — €. On
the other hand, the mapping S: ® — € defined by Sz = (y|z) satis-
fiea the conditions S(z; + z2) = Sz; + Sz, and S(Az) = A\*(Sz). This
is an example of another important type of mapping between vector
spaces:

Definition 3. If U and "W are vector spaces, a mapping S: U — W is
said to be conjugate-linear (or ‘“‘semilinear”) in case

(i) S s additive: S(z + y) = Sz + Sy
(ii) S 7s conjugate-homogeneous: S(\z) = \*(Sz).

_ Several important examples of conjugate-linear mappings will occur
in the sequel, notably in § 10.

Exercises

1L If T: U — W is merely additive (and not necessarily homo-
geneous), formulas (1), (2), (3) of Theorem 1 still hold.

2 T e_" — €™ is any linear mapping, there exist scalars ajz in
terms of which 7' can be expressed as in Example 12.

3. In E::am?)!es 1 through 12, discuss null space and range. Which
of these mappings is injective (resp. surjective, resp. bijective)?

4. Let T: U — W be a linear mapping, $ a system of generators
for v, and 5 an independent subset of V. Then:

(%) If T is surjective, 7'(S) is a system of generators for W.

(ﬁ? If T is injective, 7'(3) is an independent subset of W.
If 8 is an arbitrary subset of U, [T'(S)] = T'([S]) (see Definition I1.5.3).
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5. Let T: U — W be a linear mapping.

(i) If 7T is surjective, and U is finite-dimensional, then W is finite-
dimensional.

@ii) If T is injective, and U is infinite-dimensional, then W is
infinite-dimensional.

(i") If T is surjective, and W is infinite-dime: nsional, then U is
infinite-dimensional.

(ii") If T is injective, and W is finite-dimensional, then U is finite-
dimensional.

6. Suppose U has dimension n, W has dimension m, and 7: 0 — W
is a linear mapping. Given a basis y,- - - @, for U, and a basis 41, * * ¥m
for W, one has T = Z;"_l a;y; for suitable scalars aj(j = 1,- - ,m;
k = 1,---,n). The coefficients (a;:) can be arranged in a rectangular
array, of m rows and n columns, with aj; occurring as the inter-
section of the j’th row and k’th column. This array is called the
malriz of T with respect to the given bases. If 8: U — W is another
linear mapping, with matrix (8;:) relative to the same given bases,
then S = T if and only if Bjx = a; for all j and k.

*7. Tt can be shown that every vector space U has a basis 3, in the

sense of Definition 1.7.2. Granted this result, if ‘W is another vector .

space and T': 3 — W is any mapping, show that there exists one and
only one linear mapping S: U — W such that Sz = Tz for all z € 3.

8. The obvious analogs of Theorems 1 through 4 hold for conjugate-
linear mappings.

§ 2. ISOMORPHIC VECTOR SPACES

Definition 1. A veclor space U is said o be isomorphic with a veclor
space W in case there exists a bijective linear mapping T: VU — W.
Such a mapping T is called a vector space isomorphism of U onlo ‘W.
The symbol V = W denotes that U is tsomorphic with “W.

Examples

1. If U and W have the same finite dimension n, then ‘U is isomor-
phic with W. For, suppose z,- - -2, is a basis for U, and y3, * - ;yn is 8
basis for W. By Theorem 1.3 there exists a linear mapping 7': 0 — W
such that T = yx for all k. It is easy to see that 7' is bijective
(see also Exercise 1.1).
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:.Z. If p 5 0, the scalar mapping Tz = uz is a vector space isomor-
phlSI."ﬂ ?f U onto V. For, T'(u~"y) = y shows that T is surjective, and
T is injective by Theorem I.2.1.

3. ‘The mapping T'(Ay,- - -, A) = Ay, * * ,An) described in Ezample
1.11 is a vector space isomorphism. |

If T: & — 9 is any bijective mapping, one can produce, in a
natural way, a mapping S: Y — & in the “reverse direction.” The
mapping S, called the inverse of T, is defined as follows: given y € V;
since T' is bijective, there is exactly one z € & such that Tz = y,
hence one can unambiguously define Sy = z. Thus, Sy is the unique
element of & such that T'(Sy) = y. If € X, S(T'z) = x; for, setting
y = Tz, Tz = y shows that Sy = z.

Definition 2, If T': & — Y is a bijective mapping, the inverse of T is
denoted T™. Thus:

@ T:y - .
(i) T~(Txz) = z for all z € .
(iii) T(T™'y) = y for all y € Y.

It is easy to see that if 7': ¢ — < is bijective, then 7! is also bi-
jective, and (T~ = T.

Theorem 1. If T: U — W is a veclor space isomorphism, then
T~ W — U s also a vector space isomorphism.
Proof.

Since S = T is bijective, the problem is to show that S is additive
and homogeneous. Given ¥,y € W, and A scalar. One has
T8 + yo)l = y1 + y2 = T(Sy1) + T(Sy2) = T(Syx + Sya); since
T is injective, S(y + y2) = Sy1 + Syz. Also, T[S(\y)] = \y =
NT(Sy)] = T(\(Sy)], hence SQAy) = A(Sy). |

Example 4. Let U be the vector space of polynomial functions on [a,b],
i’i the linear mapping 7'z = 2’ (Ezample 1.7), and S the linear map-
ping described in Ezample 1.8. If y is any polynomial, T(Sy) = y
shows that 7' is surjective. However, T' is not injective, for its null
Space 9 is the set of all constant polynomials. The mapping S is
Injective; for, if Sy = 0, then y = T'(Sy) = T0O = 0. However, S is
not surjective, since its range is the set of all polynomials which are
divisible by ¢ — a (recall that (Sy)(a) = 0).




84 Introduction to Hilbert Space Iv §3

Exercises

1. Let T: U — W be a linear mapping, 3 a basis for V. Then, T is
an isomorphism if and only if 7(5) is a basis for ‘W.

2. If U has finite dimension n, then U =2 W if and only if W has
finite dimension n.
3. If U is the vector space of n-ples, and W is the vector space of

polynomial functions of degree <n — 1 defined on the interval [a,b],
a < b, then U = W.

4. The vector space of finitely non-zero sequences is isomorphic
with the vector space of all polynomial functions on [a,b], a < b.

5. If U is a finite-dimensional vector space, and T': U — V is a
linear mapping, the following conditions are equivalent:

(a) T isbijective

(b) T is injective

(e) T is surjective.

6. Suppose 7: X — Yand S: Y — X.

(i) If S(Tz) = =z for all z € &, then T is injective.

(i) If T(Sy) = y for all y € Y, then T is surjective.

7. i T:x — %Yisbijective, and § C Y, the two possible interpreta~
tions of the symbol 77(8) are consistent; that is, the inverse image
of 8 under 7' coincides with the direct image of § under 7",

8. Notation as in Ezamples 1.9 and 1.10. Discuss T'(Sz), S(T'z)
injectivity, surjectivity, bijectivity.
9. Let T: & — %, and suppose there exist mappings B: Yy — &

and S: Y — & such-that S(Tz) = z for all z € &, and T(Ry) = y
for all y € 9. Then, T is bijective,and R = 8 = T,

10. Suppose T': & — 9 is bijective.
(@) IfS:y — o, and S(Tz) = zforall z € &, then S = T,
() IfR:Yy — &, and T(Ry) = yforally € Y, then R = T,

§3. THE VECTOR SPACE £(0,W)

Definition 1. If U and ‘W are vector spaces, £(0V, W) denotes the set of all
linear mappings T: VU — W.
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Thus, the statement “T € £(0,W)”” means that T' is a linear map-
ping of V into W. If 8, T € £(V,W), S = T means that Sz = Tz for
allz € V.

It will be shown in this section that £(,wW) is itself a vector space,
with appropriate definitions of S 4 7' and AT. The necessary defini-
tions are as follows:

1. The zero mapping belongs to £(V,W); that is, 0 € £(0, W),
where 0z = 6 for all z € V.

2. If §,T € &(0,W), define S+ 7': U — W by the formula
S+ T)x = Sz + Tz. If 2,y € UV and M is scalar, (S + T)(z + y) =
S+ +T@+y) =8S2+8Sy+Tz+ Ty = Sz + Tz) +
Sy +Ty) = S+ Tz + S + Ty, and (S + T)(\2) = S(\z) +
T(\z) = MSz) + MTz) = MSz + Tz) = MN(S + T)z]; thus,
84T € £(v,W).

3. If T € £(0,W), and ]\ is scalar, define AT: U — W by the for-
mula A7)z = X\(T'z). If zy €V and p is secalar, \T)(z + 7) =
NT(z + y)] = MTz + Ty) = MTz) + MTy) = A\T)z + (A\T)y, and
(T)(pz) = NT(u2)] = Mu(T2)] = (w)(Tz) = (WN)(T2) = p\(T2)]
= p[(AT)z]; thus, \T € £(0,W).

4. If T € £(0,W), define —T7: U — W by the formula (—T)z =
= (Tz) = (=1)(Tz). Thus, =T = (—1)T € £(V,W).
Theorem 1. If U and ‘W are veclor spaces, the set £(0,W) of all linear

mappings T: 0 — W is a veclor space, with respect lo the following
definitions:

Oz =0
(=T)z = —(Tz)
S+TDr=8+ Tz
AT)z = N\ (Tz).

Proof.

The problem is to verify the axioms for a vector space, listed in § 1
of Chapter I. For example, the proof of (A1) for £(0,W) depends, in
& perfectly direct way, on its validity in W. Thus, suppose
8,T € £(V,W); given any 2 €V, S+ Tz =8z + Tz = Tz +
Sz = (T + S)z, hence S + T = T + 8. The verification of the re-
maining axioms is left to the reader. |

Example 1. If u is a scalar, and T: U — 7 is the scalar mapping
Tz = px, then T = pl, where I is the identity mapping,
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Exercises

1. Let 3 be any non-empty set, W any vector space, and let 9(3,%)
be the set of all mappings z: 5 — W. If 2,y € %(3, W), and \ is scalar,

define @+ y)®) = =) + ¥
(Az) () = Ma(t)

for all ¢ € 3. Then, %(3,%) is a vector space relative to the operations
z + y, Az (obvious definitions of 0 and —=z).

2. A linear subspace of the vector space %(3,%) described in Ezer-
ctse 1 is obtained by considering the set of all mappings z: 5 — W
such that z() = 6 for all but finitely many ¢.

3. Suppose U has finite dimension n, and W has finite dimension
m. Then £(0,W) has finite dimension mn.

4. Notation as in Exercise 3. Let S,T € £(0,W), A scalar. Given
bases for U and W, describe the matrices of S + 7' and AT in terms
of the matrices of S and T (see Exercise 1.6).

5. If U, W are finite-dimensional, show that £(0,W) is isomorphie _

with £(W,0).

6. Notation as in Ewxercise 1, and assume W  {8}. Suppose
%(3,W) has finite dimension N. Then, J has a finite number n of
points, W has finite dimension m, and N = mn.

§4. COMPOSITION OF MAPPINGS

Given mappings T: € — Y and S: Y — Z, there is a natural way
of defining a mapping of X into Z: if z € &, then Tz € %, hence
S(T'z) € Z. The mapping z — S(T'z) is called the composite of S and
T, and is denoted ST. Thus,

ST:x — Z

STz = S(Tx) (z € %).
Schematically,
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To define the composite ST, it is required that the initial set of S
coincide with the final set of 7'. It follows that if one is given mappings
T:€— Y, S:Y — Z,and B: Z — 3, all of the following composites
are definable: RS, ST, (RS)T, and R(ST). Such composites obey the
“associative law’’:

Theorem L. IfT: X — ¥, 8:Y — Z,and R: Z — 3, then R(ST) =
(RS)T.

Proof.
For all z € %, [R(ST)]z = R[(ST)z] = R[S(Tx)] and [(RS)Tz =
(RS)(T=z) = RIS(Tx)]. |

Example 1. If T: & —  is bijective, and S = T, the identities
S(Tz) = z and T(Sy) = y can be written ST = I and T'S = I.

Theorem 2. If U,V,"W are vector spaces, and T: U — UV, S: VD —» W
are linear mappings, the composite ST: U — W 13 also linear.

Proof.
If zy €U and A is sealar, (ST)(z + y) = S[T(z + y)] =
S(Tz + Ty) = S(Tz) + 8(Ty) = (ST)z + (ST)y, and (ST)(\2) =

S[T(Az)] = SIMT2)] = NS(Tz)] = N(ST)z]. |

Exercises

1. Given T: X — Y, S: Yy — Z.

(i) If S and T are hoth injective, then ST is injective.

(i) If ST is injective, then T is injective.

(i) If ST is injective, and 7' is surjective, then S is injective.

(iv) Give an example where ST is injective, but S is not injective.

2. GivenT: % — Y, 8: Y —» Z.

(1) If S and T are both surjective, then ST is surjective.

(i) If ST is surjective, then S is surjective.

(i) If ST is surjective, and S is injective, then T is surjective.
(iv) Give an example where ST is surjective, but 7' is not surjective.

3. Given T: X — Y, 8:Y — Z.

(i) If S and T are both bijective, then ST is bijective.

(i1) If ST is bijective, then S is surjective and 7' is injective.

(iii) If ST is bijective, and either S is injective, or 7' is surjective,
then both S and T are bijective.
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(iv) Give an example where ST is bijective, but one of S,T' (hence
both) fails to be bijective.

4. Let T: & — Y. One says that T is left~invertible if there exists a
mapping S: Y — & such that ST = I (= identity mapping of X); S
is then called a left-inverse for T. One says that 7' is right-invertible if
there exists a mapping R: Y — & such that TR = I (= identity
mapping of Y); R is then called a righi-inverse for T. Prove:

(1) T is injective if and only if 7 has a left-inverse S.

*(ii) T is surjective if and only if 7' has a right-inverse E.

(iii) 7 is bijective if and only if 7" has both a left-inverse S and a
right inverse R. In this case, R = S = 7™, and in particular all
left-inverses and right-inverses for 7' coincide with the mapping 7.

5. Given T: £ — %Y, S: Y — Z, let R=S8T. If 3C Z, then
B\ = T7H8(®).

6. Notation as in Theorem 2, with U,0,W finite-dimensional.
Choose bases for U,V,W, and describe the matrix of ST in terms of
the matrix of S and the matrix of 7. [See Ezercise 1.6.]

7. Let 4,0, W be vector spaces. Prove:

(i) uwu=a.

(i) If w=7,then U=

(iii) If 4 = U and UV =W, then U = W. [See Definition 2.1 for
the notation.]

§5. THE ALGEBRA £(0)

Definition 1. If U 4s a vector space, £(V) denoles the sei of all linear
mappings T: 0V — V.

By Theorem 8.1, £(0) = £(71,V) is a vector space. Thus, if
8,7 € £(V) and A is scalar, £(V) contains the linear mappings S + T
and AT'; it also contains the composite ST, by Theorem 4.2.

Theorem 1. If R,S8,1' € £(V), and X s scalar,
(1) R(ST) = (RS)T
(2 R(S+T)=RS+RT
3 S+TR=8SR+TR
@) MST) = AS)T = SQD).
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Proof.

(1): See Theorem 4.1.

2): [R(S + T)]z = R[(S + T)z] = R(Sx + Tz) = R(Sz) + R(Tx)
= (RS)z + (RT)x = (RS + RT)x.

3): [S + TNR]z = (8§ + T)(Rz) = S(Rx) + T(Rz) = (SR)z +
(TR)z = (SR + TR)z. :

4): IMST)]z = N(ST)z] = NS(T=)]
[AS) Tz = (AS)(Tz) = ANS(Tx)]
SOz = S[(AT)z] = SA(T)] = NS(T=)]. |
Thus, £(V) provides an example of the following type of abstract
mathematical system:

Definition 2. An algebra is a vector space @ such that for each pair of
elements a,b € @, there is determined an element of @ called the product
of a and b, denoted ab, subject to the following axioms:

(A1) a(d+¢) =ab+ac

A2) b+ca=ba+tca

(A3) A(a@b) = (Aa)b = a(Ab).
If moreover

(Ad) a(be) = (ab)e
holds for all elements a,b,c, then @ s called an associative algebra.

Examples

1. If U is any vector space, £(V) is an associative algebra (see
Theorem 3.1 and Theorem 1).

2. Let @ be the vector space of all sealar-valued functions defined
on a non-empty set 3 (Bzample 1.1.2). If 2,y € @, define a2y by the
formula (xy)(f) = z(@)y(t). With this “pointwise’ definition of prod-
ucts, it is easy to see that @ is an associative algebra. Also, zy = yz
for all z,y € @ (such algebras are called commautative).

3. The vector space @ of continuous functions on [a,b] (Ezample
1.1.3), with products defined pointwise as in Ezample 2, is an associa-
tive and commutative algebra. [Note: The product of continuous
functions 4s continuous.]
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4. The vector space @ of polynomial functions on [a,b] (Ezample
I1.1.4), with products defined pointwise, is an associative and com-
mutative algebra.

5. Notation as in Ezample 2. Suppose moreover that 3 = €, the
set of all scalars . Then, if z: @ — @ and y: € — @ are any two
elements of @, there is also available a “composite product” of z and
7y, defined as in § 4; let us denote this zoy, as distinguished from the
pointwise product zy defined in Ezample 2. Specifically, (zoy)(f) =
z(y(#)). With respect to the products zoy, the vector space G does not
form an algebra, since the identities (A1) and (A3) are not valid for
composite products; the identities (A2) and (A4) do hold, and A(zoy)
= (Az)oy.

Exercises

1. Let 2y, + - ,z, be a basis for the vector space V. For each pair of
indices 5,k (j =1, -+n; k = 1,---,n), let E; be the linear mapping
such that Ejpax = z; and Ejz; = 0 when 7 # k (see Theorem 1.3).
Then:

@ Eix = Ea.

(i) E;jE, = 0whenj#r.

(i) 25 B = I

2. Suppose U is a vector space of finite dimension n. A “set of
n X n matrix units” in £(V) is a set of linear mappings E;r € £(V)
G=1,--+m; k= 1,---n), satisfying the relations (i), (i), (iii) of
Ezercise 1. Given such a set, prove there exists a basis z;,- - -,z, of V
such that Ejzr = z; and Ejr; = 6 when ¢ # k.

3. If @ is an algebra, and J is a non-empty set, the set of all map-
pings #: 3 — @ is an algebra (with operations defined pointwise, as
in Ezxample 2).

4, Let @& be any algebra, with products denoted ab. Introduce a
new product [a,b] between elements a,b € @, via the formula [a,b] =
ab — ba; together with the vector space operations already given, G
is an algebra (generally non-associative) relative to the products [a,b].

5. Let @ be any algebra, with products denoted ab. Define a new
product {a,b} via the formula {ab} = 3(ab + ba). Then @ is an
algebra (generally non-associative) relative to the products {a,b}.
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6. Starting with an algebra @, with products ab, let @, be the
algebra constructed in Ezercise 4. If the construction in Ezercise 5 is
applied to the algebra @, describe the resulting algebra. Similarly,
start with @, apply Exercise 5 to get an algebra @,, then apply Exercise
4 to @s.

§ 6. CONTINUOUS MAPPINGS

Suppose N is a closed linear subspace of a Hilbert space 3¢, and
P:3¢ — 3Cis the projection of 3¢ on 9 (Definition I11.8.2). I z, — z,
then Pz, — Pz; for, by Theorem I11.8.1, | Pz, — Px | =
| P@n — 2) || < || 2a — z || — 0. So to speak, P “preserves” con-
vergent sequences. This type of condition makes sense for metric
spaces:

Deflnition 1. Let X and Y be melric spaces, T: X — . Let x € &; the
mapping T is said to be continuous at = in case z, — z implies
Tay — Tx. If T is continuous at every € X, it is called @ continuous
mapping.

Examples

1. If 9 is a closed linear subspace of a Hilbert space 3¢, the projec-
tion P: 3¢ — 3C of 4C on 9 is a continuous mapping.

2. If the metric spaces & and Y in Definition 1 are sets of complex
numbers, with d(\,u) = |\ — u|, the notions of continuity are the
classical ones.

3. Let & be a metric space, y a fixed point of %. The mapping
T: % — @® defined by Tz = d(z,3) is continuous by Theorem I1.4.1.
For example, if y is a fixed vector in a pre-Hilbert space ®, then
z— || z — y || is a continuous mapping of @ into the metric space ® of
real numbers; in particular, + — || z || is continuous (see also the
Corollary of Theorem I1.5.1).

4. If y is a fixed vector in a pre-Hilbert space @, then z — (z|y)
1s & continuous mapping of @ into the metric space € of complex num-
bers (see Theorem I1.5.1).

Theorem 1. If & and %Y are metric spaces, the Jollowing conditions on a
mapping T: L — Y are equivalent:

(@) T s a continuous mapping.
(b) If 8 is any closed subset of %, T(8) is a closed subset of <.
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Proof.

(a) implies (b): Let 8 be a closed subset of %Y, and suppose = € X is
adherent to 77'(8). Choose any sequence x, € T1(8) such that
2, — . Then Tz, € 8, and since T'z, — T2 by the continuity of T',
Tz is adherent to $; since 8 is closed, Tz € 8, thus x € T7(8).

(b) tmplies (a): Given z, — =z, the problem is to show that
Tz, — Tx. Assume to the contrary that for some e > 0, d(T'z,,T'z) >
¢ for infinitely many n. Passing to a subsequence, we may suppose
d(Tz,,Tx) > eforalln. Let $ = {y € Y:d(y,Tz) > €}. It is easy to
see that § is a closed subset of Y (see Ezample II1.2.6). Now,
d(Tz,,Tx) > eshows that Tz, € 8, 2, € T7(8), hence z is adherent
to 771(8); since T1(8) is a closed subset of & by the assumption (b),
z € T7(8). Thus, Tz € 8, d(T'z,Tz) > ¢, a contradiction. ||

Corollary. If & and Y are metric spaces, T: %€ — Y is a continuous
mapping, and y € Y, then {x € X: Tz = y} s a closed subset of X.

Proof.
{y} is a closed subset of Y. |

Exercises

1. Let & and Y be metric spaces, 8: € — Y and T: X — Y
continuous mappings. Prove:

(i) {z € %: 8z = Tz} is a closed subset of .

(ii) If 8 is a dense subset of X, and Sz = Tz for all z € §, then
S=T.

2. If %,%Y,Z are metric spaces, and T: X — %, S: Y — Z are con=
tinuous mappings, then ST: £ — Z is a continuous mapping.

§ 7. NORMED SPACES, BANACH SPACES, CONTINUOUS
LINEAR MAPPINGS

From Chapter VI onward, we will be concerned primarily with con-
tinuous linear mappings T': 3¢ — 3C of a Hilbert space 3C into itself.
Much of what can be said about such mappings can be expressed
directly in terms of the norm, and properties of the norm, without
having to refer explicitly to the scalar product from which the norm

is derived. A convenient vehicle for discussions of this sort is the

concept of a normed space:
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Definition 1. A normed space is a veclor space & such that for each
veclor x € &, there is defined a non-negative real number called the norm
of , denoted || z ||, subject to the following axioms:

(N1) ||| > 0 whenever x 5 0; || 0] = 0.
WN2) [[z+yll<lzl+]yl
N3) [[az] = |a]- [ =].

In words, the real-valued function z — | z|| (z € 8) is strictly
posttive, subadditive, and absolutely homogeneous. It is clear from (N3)
that | —z || = [z | = [ z].

Examples

1. Every pre-Hilbert space is a normed space, with norms defined
by the formula || z || = (z|2)* (see Theorems I1.3.1 and I1.3.5).

2. Let & be the vector space of continuous functions on [a,b] (see
Ezample I1.4.5), and define the norm of z to be the number
LUB {|z(t)|: @ < t < b}. This norm is denoted || z ||, to distinguish
it from the pre-Hilbert space norm described in Ezample I1.3.2.

3. If & is a normed space, and 9 is a linear subspace of &, then 9t
is itself a normed space. |

Every normed space & is a metric space, with distances defined by
the formula d(z,y) = ||z — y || (see the proof of Theorem II.3.6).
Thus (see § 5 of Chapter II), a sequence x, is (i) convergent to a
vector z in case || 2, — z || — 0, (i) Cauchy in case || z,, — 2, || — 0,
(iii) bounded if there is a constant M such that || z, || < M for all n.
If ¢>0, the sets {z: [z —y| <¢}, {z: [z—y| < ¢}, and
{z: ||z — y | = €} are called, respectively, the open ball, closed ball,
and sphere, of center y and radius e. Spheres and closed balls are closed
subsets of & (see Fxzample I11.2.9).

Theorem 1. I'n any normed space:
(1) Ifzn — zandyn — y,thenzn + yo — z + y.
) If z, — z and A, — ), then Az, — Az,

(3) If zn and yn are Cauchy sequences of vectors, and \, is a Cauchy
sequence of scalars, then Tn + Yn and Nan are Cauchy sequences.
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@ llzl—=lyll<lz—yl.
(5) If &n — =, then ||z, || — || = ||. If 2 s Cauchy, then || z, || is
Cauchy (hence convergent).

Proof.

(1), (2), (3): See the proof of the Lemma to Theorem 111.3.2.
(4): See Theorem 11.4.1.
(5): Tmmediate from (4). 1}

In conformity with Definilion 6.1, a mapping T': § — F between
normed spaces is continuous at x € & in case || 2, — z || — 0 implies
|| Tan — Tz || — 0. It is a continuous mapping if it is continuous at
every « € &.

Theorem 2. If & and F are normed spaces, and T': & — F is a confinu~
ous linear mapping, the null space 9 of T is a closed linear subspace of &.

Proof.
9N is a linear subspace of & by Theorem 1.4. Suppose z, € 9 and
2, — . Since T is continuous, Tz, — Tz. Thus, Tz = lim Tz, =

lim 6 = 6, hence z € 9. Thus, 9T is a closed subset of & (one could

also quote the Corollary of Theorem 6.1). |

For a linear mapping between normed spaces, continuity has sev-
eral useful reformulations:

Theorem 3. Let & and F be normed spaces, T: & — §F a linear mapping.
The following conditions on T are equivalent:

(a) T is a conlinuous mapping.

(b) T 1s continuous at some point x, € 8.

(c) T is continuous at 6 € &,

(dy {I| Tz : || 2| <1} is a bounded set of real numbers.

(e) There exists a constant M > 0 such that | Tz | < M || z || for
allz € &.

Proof.

(a) tmplies (b): trivial.
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(b) implies (c): S.uppose Zn — 0. By Theorem 1, z, +z, — 0 + 2,
= %,. By assumption (b), T(zs + 2,) — T4, thus Tz, + Tz, —
T2, Ty = (Txp + Tx,) — T2, — 0,

(c) émplies (d): Assume to the contrary that {|| Tz || : || | < 1} is
unbounded. For each n = 1,23, -, choose a vector 2, € & such that
lza|l £1 and || Tz, || > n. Define y, = (1/n)z,. Since lynl =
(1/n) | zn || < 1/n, y» — 6. By assumption (c), Ty, — 6. But,
| Tya || = (1/n) || Tzn || > 1, a contradiction.

(d) implies (e): Assume to the contrary that no such constant M
exists. In particular, the constants 1,2,3,- - - fail; for each n, choose
Zn € & s0 that || Tz, || > n| 2, ||. Clearly x,  60; defining y, =
| Za [I™*2n, one has || yn || = 1, but || 7'y, || > n, contrary to (d).

(e) smplies (a): If @, — , then || Tay — Tz || = || T(@n —2) || <
M| zp — 2| — 0, hence Tz, — Ta.

In view of condition (d), continuous linear mappings between
normed spaces are also called bounded linear mappings.

Definition 2. If & and § are normed spaces, and T: & — & is a con-
tinuous linear mapping, the non-negative real mnumber

LUB {|| Tz |: [z || < 1}
18 called the norm of T, and is denoted || T'|.

Theorem 4. Let & and § be normed spaces, T: & — F a continuous
linear mapping. Then:

O [T]|=LUB{Tz|:[=] <1}
@ Ife#{0}, | T| =LUB{| Tz | :| z|l = 1}.
@ NPz <[T]-lzllforallz € e.

@) IfM20and |Tz|| < M| x| for all =€ &, necessarily
17T <M.

Proof.

(1): Let K = LUB {|| Tz || : || || < 1}; clearly K < || T ||. Sup-
Pose | z || < 1; given any e > 0, the vector y = (|| 2 || + ¢ 'z has
Rorm <1, hence || Ty || < K; that is, || Tz | < K(||  [| + ). Letting
¢ =0, Tz|| < K| z|| < K. Taking LUBover |z || < 1,|| T | < K.
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(2): Since & # {6}, there exist vectors z € & such that ||z || = 1.
Define N = LUB {|| Tz | : || z || = 1}; clearly N < || T ||. Suppose
lz|]| <1.Ifz2=0,then Tz =6, hence | Tz || =0 < N. If z %0,
the vector y = || z || ™ = has norm 1, hence || Ty || < N; that is,
| Tz || < N || || = N. Thus, || Tz | < N whenever || z || < 1; it fol-
lows that || 7' || < N.

(3): Givenanyz € 8. fx =0, clearly || Tz | < || T |l - ||z |. If
z#0, let y=|z[7'z; since [yl =1, | Tyl <| T, that is,
I Tz| < T]-llz].

(4): Suppose M > 0 and | Tz || < M ||z || for all z € &.
lzll <1, [Tz < M| z| < M; taking LUB over | z | <
ITl<Mm. 1

If
1

y

Examples

4. Let y be a fixed vector in a pre-Hilbert space @, and define
T:® — ¢ by the formula Tz = (z|y). Then, T is a linear mapping
of @ into the one-dimensional Hilbert space €, and | Tz| = |(z]y)| <
|z ||y shows that T is continuous, and || 7' || < [ ¥ |. In fact,
IT =1yl Thisis clearif y = 6;ify =0, | T[ ||yl = [Ty| =
[@lw)| = Iy |I* shows that || 7'[| > || ¥ |.

5. If @ and Q are pre-Hilbert spaces, and 7': ® — @ is a continuous
linear mapping, then || 7 | = LUB {|(Zz[y)|: | = || < 1, [ y || < 1}.
For, let K denote the indicated LUB. f 2 € @, y € @, ||z || £ 1,
gl <1,then |[(Tz|p)| < | Tzl ly|l STzl Nyl <] T;
hence K is a finite real number, and K < || 7 |. If |z || < land || y ||
<1, |(y|Tz)| = |(Tz|y)| < K; fixing = and taking LUB over y,
| Tz | < K by Ezample 4. Taking LUB over z, || T || < K.

6. If 3¢ is a Hilbert sﬁace of finite dvmension n, and & is any normed
space, then every linear mapping 7': 3¢ — & is continuous. For, let

1, - -, be an orthonormal basis for g¢. If x = E'l' Mk 1s any veetor
in 3¢,

I Tz = || 7%z || < 7Nl Il Tzl

< (E}'IMI“)% (Zi17a ||2)”
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by the Corollary of Theorem I1.8.4. Thus, || Tz || < M || z ||, where
M = (Z: | Tz "2)% is independent of z. This shows that 7' is con-
tinuous, and || T'|| < M. |

The most obviously continuous mappings are those which preserve
distance:
Definition 3. If & and Y are metric spaces, a mapping T: X — Y s
said to be isometric in case d(Tzy,Txs) = d(xy,20) for all z,,2, € X.

Theorem 5. If & and § are normed spaces, a inear mapping T: & — &
is tsometric if and only if || Tz || = || z || for all x € &.

Proof.
This is immediate from the relations || Tz — Ty || = | T(x — y) ||
and || Tz || = || Te — To . 1

Metric spaces in which every Cauchy sequence is convergent are
said to be complete. Pre-Hilbert spaces with this property are called
Hilbert spaces. A normed space with this property is called a Banach

space:
Definition 4. A Banach space is a complete normed space.

Thus, a Banach space is a normed space @ with the following prop-
erty:if 2, € ® and || ,, — 2, || — 0, there exists an z € ® such that
| 2n — 2| — O.

Examples

7. Every Hilbert space is a Banach space. In particular, € is a one-
dimensional Banach space.

8. If ® is a Banach space, every closed linear subspace 9 of ® is
also a Banach space (see Theorem I111./.1). |

Further examples of Banach spaces will be found in the exerciges.
The following theorem is a simple and useful application of complete-
ness:

Theorem 6. Let S: 91 — ® be a continuous linear mapping, where @ is
a Banach space, and 9 s a dense linear subspace of a normed space 6.
Then, there exists one and only one continuous linear mapping T: & — ®.
such that Tx = Sz whenever ¢ € 9. One has | T || = || S ||
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Proof.
Given z € &, the problem is to define Tz € ®. Choose any sequence
Yn € 90 such that y, — z. Since || Sym — Syn || = || SWm — ya) | £

IS Il #m — yn | = 0, Sya is a Cauchy sequence in ®. Since ® is
complete, Sy, is convergent. If also 2z, € 9 and z, — x, Sz, is
also convergent, and since || Sy, — Sz, || = [|S(a — 2za) | < | S|
lyn—2a | SIS (| ya — z || + || = — 2a [[) — O, one haslim Sy, =
lim Sz,. Thus, one can unambiguously define 7'z = lim Sy,. Since
I Syn |l 181l | ya ll, letting n — o one has || Tz || < | S || .

The linearity of T: & — ® is easily deduced from the linearity of
8, using Theorem 1. The above calculation then shows that 7' is con-
tinuous, and || T || < || S |l. Since Ty = Sy when y € 9, it is clear
that [| T[] = || 8.

The proof of uniqueness is left to the reader. See for instance
Exercise 6.1. ||

Exercises

1. If 92 is a linear subspace of a normed space &, 3 is a closed linear
subspace of &.

2. If & and & are normed spaces, T: 8 — & is a continuous linear
mapping, and z, is a Cauchy sequence in &, then Tz, is a Cauchy
sequence in &. Does the analogous result hold for a continuous map-
ping between metric spaces?

3. If & is a normed space, ® is a Banach space, and 7': & — ®isa
vector space isomorphism such that both 7 and 7" are continuous,
then & is a Banach space.

4. If & and & are normed spaces, T: & — & is linear, K > 0, and
either {|| Tz ||: ||z || < K} or {|| Tz || :|| 2 || = K} is bounded, then T
is continuous.

5. If & is a normed space, and @ is a pre-Hilbert space, a linear
mapping 7': § — Q is continuous if and only if the set

{HTz|y)|: 2zl <L |yl <1}
is bounded; the LUB of this set is then = || T ||.

6. Let & be the vector space of n-ples z = (Ay,- - +,\s), and define
Il s = 227 |M|. The result is a Banach space.

v §7 Continvous Linear Mappings 99

7. Let & be the vector space of continuous functions = on [a,b],
where a < b, and define

Izl = [ s a

Then, & is a normed space, but is not a Banach space.

8. Let 3 be a non-empty set. A scalar-valued function z defined on
3 is said to be bounded if there exists a constant K such that |z(f)| <
K for all t € 3. Denote by & the set of all such z, and define

@+ 9 =20 + y®
(Ax)(?) = Mz(?)
|| %[l = LUB {|2@®)]:t € 3}.
Then, & is a Banach space.

9. Let & be the vector space of continuous functions on [a,b],
normed as in Fzxample 2. Then, & is a Banach space.

10. (i) If & is any normed space, the identity linear mapping
I: & — 8&iscontinuous. If &€ = {8}, | I | = 1.

(ii) If & and & are normed spaces, and T': & — & is a vector space
isomorphism such that both 7' and 7~ are continuous, then || 77! ||
2T

11. Why does the argument in Fzample 6 fail for infinite-dimen-
sional 3¢? Why does it fail if 3¢ is replaced by a finite-dimensional
normed space & (even though 7' is nevertheless continuous by Kzer-
cise 9.1 below)?

*12. If 5 is a normed space of finite dimension n, €" is the n-dimen-
sional unitary space, and T': @" — & is any vector space isomorphism,
then both 7" and 7! are continuous.

*13. Every finite-dimensional normed space & is a Banach space.

*14. Every finite-dimensional linear subspace of a normed space is
closed.

15. Let & be the set of all sequences z = (A\) of scalars which are
absolutely summable, that is, ET [Me| < . With equality, sums, and
scalar multiples defined as in Ezample I.1.6, and with |z |[; =
2?])\;,], & is a Banach space.
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16. Let &;,85,83,++ be a sequence of normed spaces, & the set of
all “sequences” z = (), with z; € &, such that > 7 || zx || < .
With the obvious definitions (see Ezercise 15), & is a normed space. &
is a Banach space if and only if every &; is a Banach space.

17. Let &;,82,83,-++ be a sequence of normed spaces, & the set of
all “sequences” = (i), with 2 € &, such that 27 || 2 [[* < =.

Define 3%
felse (Z‘: Iz ||2) :

and define z + , Az in the obvious way. Then, & is a normed space.
& is a Banach space if and only if every & is a Banach space.

*18. Let & be the vector space of n-ples z = (A, **,An), P & fixed
l/p

real number >1, and define ||z [, = (E:l}sk l’) . Then, & is a

Banach space.

*19. Let & be the vector space of continuous functions z on [a,b],
where ¢ < b, and let p be a fixed real number > 1. Define

oty = ([ o0 pa) "

Then, & is a normed space, but is not a Banach space.

20. Let & be the vector space of n-ples z = (Ay,---\x); with
|| z l. = max {|\!,-+,|Aa]}, & is a Banach space (see Ezercise 8).
If || = ||, is defined as in Ezercise 18,

Il 2l =li33n[!wflp-

*21. Suppose & is a normed space such that |z + y [+ ||z — ¥ |?
=2 z|*+2]|y]|?forall z,y € & Then, there exists a scalar prod-
uct (z|y) on &, satisfying the axioms for a pre-Hilbert space, such that
|| z || = (x]2)*. Thus, a Hilbert space can be described as a Banach
space whose norm satisfies the “parallelogram law.”

§8. THE NORMED SPACE £.(§,5)

Definition 1. If & and & are normed spaces, £.(6,F) denoles the set of
all continuous linear mappings T: & — &,
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Theorem 1. If & and § are normed spaces, £.(8,5) is a linear subspace
of £(8,5), and is a normed spacewith || T || = LUB {|| Tz |: || z || < 1}.

Proof.

See Theorem 3.1 for the definition of the vector space £(8,5).

Clearly 0 € £.(8,5), and || 0| = 0. If 8,7 € £.(&,5), and \ is
scalar, then for any ||z || <1, | (S+ Tz = || Sz + Tz | < || Sz ||
+ Tz < [SI+ T, and || AD)z || = [ MT2) || = [A|- || Tz ||
< M- || T]|; thus 8 4+ T and AT are continuous, and taking LUB
over ||| <1, one has [[S+ T | <||S||+!IT| and [|AT] =
[A\[« | T|. Clearly || T| > Ounless 7 = 0. |

Theorem 2. If & is a normed space and ® is a Banach space, then
£:(8,8) ts a Banach space.

Proof.

Given a sequence of continuous linear mappings 7,: & — ® such
that || Ty, — T || — O, the problem is to construct a continuous
linear mapping 7': 8§ — @ such that | 7 — T, | — 0.

Foreachz € &, || Tt — Taz || = || (T — To)z || < || Tn — T |l
[z — 0 shows that T,z is a Cauchy sequence in ®. Since ® is
complete, 7',z converges to a unique limit, which we denote 7'z. Thus,
the mapping 7': & — @® is defined by the formula Tz = lim 7,z. It
will be shown that (i) 7' is linear, (ii) 7 is continuous, and (iii)
| 2 =Tl ~ 0

By Theorem 7.1, T(x + y) = lim Th(z + y) = lim (Tpx + Thy) =
lim 7z + lim Ty = Tz + Ty, and T(\z) = lim T, (Az) = lim A(T'x2)
= Alim T,z = A(T'z). Thus, T is linear.

Since every Cauchy sequence is bounded (see the Lemma of
Theorem I1.5.1), there is a constant K > 0 such that || 7, || < K for
all n. Given any z € §; since Tha — Tz, | Twz | — || Tz || by
Theorem 7.1. Passing to the limit in the inequality || T,z | < K | z ||,
onehas || 7z || < K || z ||. Thus, 7' is continuous, and || T | < K. It is
now meaningful to write | 7' — 7, ||.

Given € > 0, let N be an index such that || 7\, — T || < ¢ when-
evermmn > N.Givenz € &, ||z || < 1. Ifmn >N, | Tz — Toz ||
= | (Tn =Tz || <[ Tw—Tall 2] < ¢l 2] < ¢ fixingn > N
and letting m — «, one has || Tz — Thz || < e Thus, | Tz — T,z ||
< eprovided n > N and || z || < 1; fixing n > N and taking LUB
over [z || £ 1,[| T — T, || £ e. Summarizing: given any ¢ > 0, there
1s an index N such that || 7' — 7', | < € whenevern > N. |
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Exercises

1. (i) If & and § are normed spaces such that £.(8,5) is complete,
& is not necessarily complete.
(ii) If @ is a pre-Hilbert space, @ # {0}, and £.(®,5) is com-
plete, then & is necessarily complete.
*(iii) If & {6} and £.(8,5) is complete, it can be shown that &
is necessarily complete.

2. Let & and § be normed spaces, and T, T € £.(&,5). One says
that “T, — T uniformly” incase || T — T || — O, thatis, T, — T
in the normed space £.(8,5). One says that “T, — T strongly” in case
Tn.x — Tz for each z € 8, that is, | The — Tz || — 0 for each
z € &. Prove:

(i) If T, — T uniformly, then T, — T strongly.

(ii) T, — T uniformly, if and only if: given any e > 0, there is an
index N such that || 7oz — Tz || < e whenevern > Nand || z| <1
(so to speak, Twx — Tz uniformly for z in the closed unit ball of &).

3. Let & and & be normed spaces, T,: &§ — F a sequence of con-
tinuous linear mappings, and assume there is a constant K such that
| T» || £ K for all n.

(i) Let 9t = {z € &: Tpz is Cauchy}. Then, 9 is a closed linear
subspace of &.

(ii) If & is a Banach space, there is a continuous linear mapping
T:9 — & such that T,z — Tz for all 2 € 9.

(ili) Suppose & is a Banach space, and 91 is a dense linear subspace
of & such that T,z is convergent for each 2 € 9. Then, there exists
one and only one continuous linear mapping 7': & — & such that
T, — T strongly in the sense of Exercise 2. This result is known as
the “Banach-Steinhaus theorem.”

*4, Let ® be a Banach space, & a normed space, and 3 a set of
continuous linear mappings 7': @ — §&; in other words, 5 C £.(®,8).
Suppose 3 is “pointwise bounded,” in the sense that for each » € &
there exists a constant M, such that || Tz || £ M. forall T € 3. Then,
it can be shown that there exists a constant M such that || 7' || < M
for all 7 € 5. This result is known as the “principle of uniform
boundedness.”

*5. If ® is a Banach space, & is a normed space, T,,T € £.(®,8),
and T, — T strongly, in the sense of Ezercise 2, there exists a con~
stant M such that || T, || £ M foralln = 1,2,3,---.
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*6. Let & and & be Banach spaces, 91 a dense linear subspace of &,
and T,: & — & a sequence of continuous linear mappings. Suppose
T,z is convergent, for each € 9T. In order that T, converge strongly,
in the sense of Ewercise 2, to a continuous linear mapping 7: § — &,
it is necessary and sufficient that there exist a constant M such that
| Tall £ Mforalln = 1,23,---.

§9. THE NORMED ALGEBRA £.(8), BANACH ALGEBRAS

Definition 1. If & is a normed space, £,(8) denotes the set of all continu-
ous linear mappings T: & — &.

Thus, £.(8) is the normed space £.(&,8) described in Theorem 8.1.
In addition, £.(8) contains the composite ST' of any two of its
members:

Theorem 1. Suppose T': & — § and S: § — G are continuous linear
mappings, where &, F, and G are normed spaces. Then ST: & — G is
a continuous linear mapping, and | ST | < || S| | T'|.

Proof.

ST is linear by Theorem 4.2. For any = € 8, || (ST)z || = || S(T%) ||
SIS Tzl <||S[ [ 7| |« |; this shows that ST is continuous,
and | ST || < || 8| || T || by Theorem 7.4. See also Ezercise 6.2. |

One already knows that £(€) is an associative algebra (Ezample
5.1). Since £.(&) contains the composite ST of any two of its elements,
and since the identities of Theorem 6.1 hold in particular for the
elements of £.(8), it is clear that £,(8) is itself an associative algebra.
Moreover, it is a normed space, and || ST || < || 8] || T || for every
pair of elements. This is an example of the following:

Definition 2. A normed algebra s an associalive algebra G which s
also a normed space, such that || ab || < | a|| || b | for all ap € @. If
moreover @ is complete (hence is a Banach space), G 1s called a Banach
algebra.

In the above definition, it is assumed that a 4+ b and Aa have the
same meaning for the algebra structure and the normed space struc-
ture. Summarizing,

Theorem 2. If & is a normed space, £,(8) is a normed algebra. If ® is a
Banach space, £.(®) is a Banach algebra.
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Proof.
If ® is a Banach space, £,(®) is complete by Theorem 8.2. ||

In particular,

Theorem 3. If 3C is a Hilbert space, the set £.(3C) of all continuous
linear mappings T': 3¢ — 3C s a Banach algebra, relative to the defini-
tions

S+ Tz =82+ Tz

ATz = MTw)
STz = S(Tx)
Tl =LUB{|| Tz | :[ =] <1}.

Exercises
1. If &5 are normed spaces, and & is finite-dimensional, then every
linear mapping T: & — & is continuous.

2. Let 3 be a non-empty set, @ the Banach space of all bounded
scalar-valued functions z defined on 3, with

l2lle=LUB {|z@)]|:t €3}

(see Exercise 7.8). With products zy defined by (2y)(f) = z(t)y(1), @ is '

a commutative Banach algebra.

3. Let @ be the Banach space of continuous scalar-valued funetions
z defined on the closed interval [a,b], with
| [lo = LUB {|2(t)| : a < t < b}
(see Exercise 7.9). With products defined by (zy)(t) = z(f)y(), @ is a
commutative Banach algebra,

*4, If & is a normed space such that £.(8) is a Banach algebra, &
is necessarily a Banach space.

§ 10. THE DUAL SPACE &

Definition 1. A linear form on the veclor space U is a linear mapping
f: 0 — @; that 1s, f € £(0,@),

Thus, a linear form on U is a scalar-valued function f defined on ,
such that the relations f(z + y) = f(z) + f(y) and f(Az) = \f(z) hold

identically. In the context of normed vector spaces, one may speak of
continuous linear forms:
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Definition 2. If & is a normed space, the normed space dual of & is the
set £(8,@) of all continuous linear forms f: & — €. Notalion: & =
£.(8,8).

Theorem 1. If & 7s any normed space, & is a Banach space relative to
the definitions

(F+ 9)@) = f(z) + g(2)
W) (@) = NM(x)
[ £l = LUB {|f@)]: || = || < 1}.

Proof.
Since € is a Banach space, Theorem 8.2 applies. ||

Examples

1. Each vector y in a pre-Hilbert space @ determines a continuous
linear form y': ® — €, namely ¥'(2) = (2|y), and one has | ¥’ | =
| v | (see Exzample 7.4). The abundance of continuous linear forms
on @ is expressed in the following result: given any non-zero vector
z € @, there exists an f € ¢ such that ||f]| = 1 and f(z) = | 2|
For, setting f = || z | 7'2, one has f(2) = || 2 || 7%2'(2) = || z || 7' (z[2) =
|| 2 ||. This illustrates the following:

*2. If & is any normed space, and z is a non-zero vector of &, it can
be shown, using the “IHahn-Banach theorem,” that there exists at
least one continuous linear form f on & such that || f || = 1 and f(z) =
| z|l. In particular, & # {0} implies & 5 {0}. In the sequel, this
example will be referred to only in the exercises.

Theorem 2. Let @ be a pre-Hilbert space. For each y € @, definey’ € ¢
as in Example 1. Then, the mapping y — y' of ® inlo ¢ is

(1) econgugate-linear: (y + 2)’ = y' + 2’

()" =24/,

and

@) dsometric: || y' || = |l |l.
If this mapping is surjective, ® is necessarily a Hilbert space.
Proof.

Forallz € @, (y +2)'(x) = (z|y +2) = (z|y) + (]2) = y'(z) +
Z(z) = (¥ +2)(), and (\)'(z) = (z| M) = N (z|y) = A/ (z) =
A*y)(2).
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It follows that (y — 2)’ = ¥’ — 2’; as shown in Ezample I,
l@—2'll=|ly—=zl, thus |y —2' || = ||y — 2 ||, so that the
mapping y — ¥’ is isometric in the sense of Definilion 7.3.

Suppose the mapping y — ¥’ is surjective. Given a sequence
Y € @ such that || ym — ya [| = 0; since || ym’ — yn' || = ||y — ¥a |
— 0, y,’ is a Cauchy sequence in . By Theorem 1, there exists
an f € ¢ such that || y." — f|| — 0. By assumption, f = 3’ for suit-
able y € @ thus [ya —yll=llga' =¥ | =|lza’—F] = 0. In
other words, y, — y, and it has been shown that every Cauchy
sequence in @ has a limit in @. See also Kzercise 7.3. |

Conversely, it will be shown in Theorem V.1.1 that if 3¢ is a Hilbert
space, the mapping y — ¥’ described in Theorem 2 is a surjective map-
ping of 3¢ onto 3¢’

Suppose & is a normed space, & its dual space. Since &' is itself a
normed space, one can in turn form its dual space (&")’. This is called
the bidual of &, and is denoted &”; it is, of course, a Banach space
(Theorem 1). There exists a natural mapping of & into &”, defined as
follows. Given any = € &, define a mapping «’': 8 — € by the for-
mula 2"(f) = f(z) (f € &'). Then, 2" is a continuous linear form on
&, as is shown by the calculations 2"'(f + ¢) = (f + ¢)(z) = f(z) +
9@ = 2"(f) + (), 2" ) = W) (@) = M) = Na”(f), and |z(f)]|
= |f@|< | flI ]| z]. Thus,2” € &, and || 2" || < [[z] (see Ez-
ercise 5). Moreover, the mapping + — 2’ is a linear mapping of &
into &7, that is, (z + »)"” = 2 + y” and (A\z)” = Az'’; for,
@+9)" () =flz+y) =f@) +1@) =2"() +y"() = @' +y) (),
and (\2)"(f) = fO\) = M(z) = M"(f) = (\")(f). In the next
chapter we shall be concerned with the following special case:

Theorem 3. If @ is a pre-Hilberl space, the natural mapping x — z'*
of @ inlo @, described above, is

(1) Hmr: (x + i) "= 3" + yﬂ

(M " = Mﬂ"
and
(2) dsometric: ||z || = [ = .
Moreover,

@) 2'W) =¥ (@) = (2|y), for all z,y € ©@.
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Proof.
(1) is proved in the preliminary remarks, and (3) is immediate from
the definitions of 2"’ and y/'.

@2): ||2” || £ || z || was established in the preliminary remarks.
Moreover, ||z ||> = (z|z) = 2”@) < |27 |2'|| = ||=” ] | =],
hence ||z || < || 2” || (evenifz =6). |

Exercises

1. If 9L is a dense linear subspace of the normed space &, and ¢ is a
continuous linear form on 9, there exists one and only one continuous
linear form § on & such that § (z) = g(z) for all # € 9. The mapping
g — {7 is an isometric vector space isomorphism of 9" onto &'.

2. If & is a normed space of finite dimension n, then every linear
form on § is continuous, thus & = £(&,@). The dimension of &' is
also n.

3. If 3¢ is a Hilbert space of finite dimension n, the mappingy — 3’
described in Theorem 2 is surjective; that is, given any f € 3¢, there
exists a (unique) vector y € 3C such that 3’ = f. This result is gen-
eralized to arbitrary Hilbert spaces in the next chapter (see Theorem
V.1.1).

*4, If z and y are distinct vectors of a normed spaced &, there
exists an f € &' such that f(z) # f(y).

*5. If & is any normed space, the mapping * — 2 of & into &”,
described above, is isometrie: || 2" || = || = |.

6. A normed space 8, for which the mapping  — 2’ of & into &”
is surjective, is said to be reflezive. It will be shown in the next chapter
that every Hilbert space is reflexive (see Exercise V.2.2). Prove:

(i) Every finite-dimensional Hilbert space is reflexive.

(i) Every finite-dimensional normed space is reflexive.

*(iii) Every reflexive normed space is a Banach space.

7. Let & and § be normed spaces, T: & — & a continuous linear
mapping. Prove:

(i) For each g € §’, the mapping z — g(T'z) is a continuous linear
form on &, hence defines an element of &'.
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(ii) For each g € ¥, denote by T’g the continuous linear form
deseribed in part (i). Then, 7”: § — &’ is a continuous linear map-
ping, and || 77 || < || T |l.

(iii) If also S € £.(8,5) and A is scalar, (S + T)" =S8 + T’ and
(\T)" = AT’. Thus, T — T" is a (continuous) linear mapping of
£.(8,5) into £,(5,8’).

(iv) By (ii), one can in turn form (77)": & — §. Write T = (T")".
Then, T"'2" = (Tx)"” for all z € &.

*WITl=1TI

8. If &,5,G are normed spaces, and T: &€ — &, S: § — G are con-
tinuous linear mappings, then (ST)’ = T8’ (see Exercise 7 for the
notation).

9. Let & be a normed space, and z,,z € &. One says that “z, — @
weakly” in case f(z,) — f(x) for each f € &'. Prove: if x, — =z, then
z, — « weakly. [However, weak convergence does not imply con-
vergence; see Exercise V.1.7.]

10. Let & and & be normed spaces, T: § — & a continuous linear
mapping. Prove: if 2.,z € &, and z, — 2z weakly, then Tz, — Tz
weakly [See Exercise 9 for the terminology.]

11. Let &,5 be normed spaces, and T,,T € £.(&,5). One says that

“r. — T weakly” in case T'wz — Tz weakly, for each 2 € &, in the
sense of Fzercise 9. Consider the statements

(i) T, — T uniformly (see Ezercise 8.2)

(ii)) T, — T strongly

(iii) T, — T weakly.

Then: (i) implies (ii), and (ii) implies (iii).

Observe that in the normed space £.(8,5), “T, — T weakly” has
another possible meaning, namely f(7,) — f(T) for each f&
[£.(6,5)) (see Exercise 9). The distinction between this, and the
concept in (iii), has to be determined from the context.

*12. If & and 5 are normed spaces, & # {0}, and £.(§,5) is complete,
then & is necessarily complete.
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Continuous Linear Forms V
in Hilbert Space

§ 1. Riesz-Frechet theorem

§ 2. Completion

§ 3. Bilinear mappings

§ 4. Bounded bilinear mappings

§ 5. Sesquilinear mappings

§ 6. Bounded sesquilinear mappings

§ 7. Bounded sesquilinear forms in Hilbert space
§ 8. Adjoints

§ 1. RIESZ-FRECHET THEOREM

: Chapters VI onward are concerned with the study of continuous
!mea.r mappings T': 3¢ — 3¢ of a Hilbert space into itself. This study
is flavored, so to speak, by the circumstance that the dual space 3¢’
can in a natural way be identified with 3¢ (see Theorem 2 below); it is
this “self-duality” of Hilbert space which distinguishes the theory of
continuous linear mappings in Hilbert space from the theory of such
mappings in Banach space.

If ® is any pre-Hilbert space, each vector y € @ determines a
continuous linear form y’ on @, namely y'(z) = (z|y). This gives rise
i‘{) a mapping y — ¥/, of @ into its dual space ¢, which is conjugate-
Iz_near and isomeiric (see Theorem IV.10.2). If this mapping is surjec-
tive, @ is necessarily complete; we are concerned here with the con-
verse, which is the heart of the whole chapter (see Theorem 7.2):

Theorem 1. (Riesz-Frechet theorem) If f 4s a continuous linear form
on a Hilbert space 3¢, there exists one and only one vector y € 3¢ such
that f(z) = (z|y) for all z € 3¢.
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Proof.

That is, given f € 3¢/, the problem is to find a vector y € 3C such
that oy’ = f.

Let 9 be the null space of f; it is a closed linear subspace of iC, by
Theorem IV.7.2. If 9L = 3¢, then f = 0, and one takes y = 0. Assuming
f# 0, ¢ # 3¢; since N+ = 9 by Theorem I11.6.2, it follows that
Nt = {6). Let z € 9", z # 0. Since 3N and 9+ have only the vector
0 in common, necessarily f(z) # 0; replacing z by [f(2)] "'z, we may
suppose f(z) = 1.

Given any z € 3¢; one has z — f(z)z € N, since flz — f(z)z] =
f@) — f@)f(2) = f(@) — f(x) = 0.8incez L N, 0 = (z — f(2)z]2) =
(z|2) — f(2)(z]2). Thus, f(z) = (z|2)7*(z|2) = (z|y), where y =
(2|2) 'z is independent of z. That is, f = y'.

If also f = w’, (z|y) = (z|w) for all z; y = w results from Theorem

I121. |
Combining Theorem 1 and Theorem IV.10.2,

Theorem 2. Let @ be a pre-Hilbert space, y — ¥y’ the mapping of @
into @ described in Theorem IV .10.2. This mapping is surjective if and
only if ® is a Hilberl space.

1. Let f be a linear form on the vector space U, f # 0, and 9 the
null space of f. Show that there exists a vector y with the following
property: every x € ‘U has a unique representation £ = \y + 2, where
z € 9 and X\ is a suitable scalar.

2. Let 0,191 be as in Exercise 1. Suppose 9 is a linear subspace of
0 such that (1) 9 # {8}, and (2) 9 and N have only the vector 0 in
common. Prove that 91 is one-dimensional, and every z € U has a
unique representation x = y + z with y € M and 2z € N.

3. If @ is a pre-Hilbert space such that 91+ = 91 for every closed
linear subspace 91 of @, then @ is a Hilbert space.

4. Let f be a linear form on the Hilbert space 3C, 9% the null space
of f. If f is not continuous, show that 91 is a dense linear subspace of 3C.

5. If f is a linear form on a Hilbert space 3¢, and 9 is the null space
of £, then f is continuous if and only if 91 is a closed linear subspace.
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6. If 9t is a complete linear subspace of a pre-Hilbert space ®, then
® = 9N @D N* (this is Theorem 111.6.1). Another (admittedly circular)
proof of this can be based on Theorem 1.

7. Terminology as in Exercise I'V.10.9. Prove:
(i) In a pre-Hilbert space @, if z, — z weakly, then (z.|y) — (z|y)
for each y € @.
(ii) In a Hilbert space 3¢, z, — =z weakly, if and only if (zn]y) —
(z|y) for each y € 3C.
(iii) If z,isan orthonormal sequencein a Hilbert space, then z, — 8
weakly, but one does not have z, — 0.

8. Let & be a normed space, 3¢ a Hilbert space, and T,,T €
£:(8,3¢). Then, T, — T weakly, in the sense of Exercise IV.10.11, if
and only if (T»z|y) — (Tz|y) for each pair 2 € 8, y € 3¢.

9. If 4C is a Hilbert space, the mapping z — z”” of 3¢ into J¢” is
surjective, hence 3¢ is reflexive.

§2. COMPLETION

This section is presented as an application of the Riesz-Frechet
theorem. It may be considered “optional” and highly omissible.

One knows that the pre-Hilbert space of finitely non-zero sequences
(Fxample 11.1.3) can be enlarged to a Hilbert space, namely I2
(Ezample 11.5.1). In what sense does this hold for an arbitrary pre-
Hilbert space ®? In any case, there is a mapping z — 2", of @ into its
bidual @', which preserves sums, scalar multiples, and norms (see The-
orem IV.10.3). Let us denote this mapping by U; thus, U: ® — ¢”,
Uz = 2. The linear subspace U(®) of @ is a normed space which
is in a sense “‘equal” to the normed space ®; more precisely, U defines
an isometric vector space isomorphism of @ with U(®). Since ¢ is a
Banach space, the closure U(®) is also a Banach space (see Ezample
1V.7.8 and Ezercise IV.7.1). Thus, after “identifying” ® with U(@),
We may think of the normed space @ as having been enlarged to the
Banach space U (®). There remains the problem of providing every
pair of vectors in U(®) with a scalar product satisfying the axioms in
Definition I1.1.1, in such a way that the norm deduced from the scalar
Product is the same as the given Banach space norm on U(®). This is
__d{_}t}tl_l_e_ in the following theorem, in which, incidentally, it is shown that

®) = ¢,
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Theorem 1. (Completion) If @ is any pre-Hilbert space, there exists a
Hilbert space 3¢, and a mapping U: ® — 3¢, such that:

(1) U is linear.
(2) (Uz|Uy) = (x|y) forall zy € ©.
(8) U(®) is a dense linear subspace of 3.

Infact,Hwnmninﬂwbidmld’”mbedaducedfromasuﬁablemw
product, and one can take 3¢ = ¢, Uz = "',

Proof.

One knows that @ is a Banach space (Theorem IV.10.1), and that
the mapping U: ® — ¢ defined by Uz = «” is linear and isometric
(Theorem IV.10.3). Moreover, 2 (y') = y'(z) = (z|y) forallz,y € @,
where y — ¥ is the isometric conjugate linear mapping of @ into ¢,
deseribed in Theorem IV .10.2. 9 8118

Let 3¢ be the closure of U(®) in @”; that is, 3¢ = U(®). i€ is a
closed linear subspace of ¢’ (see the proof of Theorem I11.3.2), and is
a Banach space (Ezample IV.7.8). Later in the proof, it will be seen
that 3¢ = @”.

We now have a linear isometric mapping U: ® — 3¢, where 3Cis a
Banach space and U(®) is dense in 3C.

A sealar product is introduced in 3¢ as follows. Given u,» € i€, the
problem is to define (u|v). Choose sequences z, € @, yn € @, such
that Uz, — u and Uy, — v. Since || #m — @a || = || Ul@n — zn) |l
= || Uzm — Uzn || = 0, 2 is a Cauchy sequence in @; similarly for
the sequence . It follows from Theorem I1.5.1 that (x| yn) is &
convergent sequence of scalars. We wish to define

* (u|v) = lim (za|yn),

hence must check that this limit is independent of the particular
sequences approximating u and v. Suppose also &, € @, 7 € @, with
Uz, — u and U, — v. Then, [|Zn — Za |l = || UZs — Uz || £
|U&n — u|| + || u— Uzy || — 0, and similarly || gn —ya [ — O.
The desired equality lim (z|ya) = lim (Zn|§») results from the iden-
tity (Zn|Fn) — @alyn) = @ — Znl|Gn — Yn) + @nl|Tn — yn) +
(%2 — @n|yn) (see the proof of Theorem 11.5.1). Thus, (u|v) is unambig=
wously defined by the formula (*). Since Uz, — u, onehas || Uz, I
— || % ||, hence (u|u) = lim (za|2a) = lim || @ |[> = lim || Uz, || =
| ||?; from this it is clear that
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() (u|w) >0, (u|w) = 0if and only if u = 6.
Moreover,

(i) @lw* = (u|v)
(i) (u + v]w) = (u|w) + (v]w)
(iv) (ulv) = Mu|v);

the proofs are left to the reader.

Thus, the scalar products (u|v) satisfy the axioms for a pre-Hilbert
space, and the relation (uz|u) = || u ||? shows that the given notion of
| %]l (caleulated as in Theorem IV.10.1) coincides with the norm
(u|u)* deduced from the scalar product (via Definition I1.3.1); these
two (equal) norms will not be distinguished notationally. Since 3¢ was
already a Banach space, the scalar product (u|v) makes 3¢ into a
Hilbert space.

One has (Uz| Uy) = (z|y) for all 2,y € @; for, with the notation of
formula (*), one can take z, = z and y, = y for all n. Thus, the
Hilbert space 3¢ and the mapping U: ® — 3¢ fulfill the desired con-
ditions (1),(2),(3).

_ It remains only to show that 3¢ = @". The proof will be broken up
into a series of remarks:

1. If u € 3¢, then (u|2”") = u(z’) for all x € ®.

For, let Zn € @ with z,” — w. Since 2,”(2) = (2a|x), one has
(u|2") = lim (z,"|2") = lim (za|2) = lim z,"(2') = u(z’) (for the
last equality, see Exercise IV.8.2).

2. If f € @, there is a unique vector u € 3C such that f(z) = (z"|u)
Jor all x € @.

_For, let ¢ be the linear form on U(®) defined by g(z”) = f(z).
Since |g(z")| = [f@)| < f]| |z = f]l =" |, ¢ is continuous.
S.mce U(®) is dense in 3¢, by Theorem IV.7.6 there is a continuous
linear form k on 3¢ such that h(z”’) = g(z”) for all z € ®@. By Theorem
1.1, there exists a vector » € 3C such that h(v) = (v|u) for all v € 3e.
In particular, (2" |u) = h(z") = g(z") = f(=) for all 2 € @.

?uppose also w € JC satisfies f(z) = (2"’|w) for all z € ®. Then,
(@"|u — w) = f(x) — f(z) = 0 for all z € ®. Choose a sequence
Tn € @ such that z,” — u — w; then, (u — w|u — w) =
lim (z,"”|u — w) = lim 0 = 0, hence u — w = 0.

3. N = {y': y € @} is a dense linear subspace of ¢'.
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91 is the range of the conjugate-linear mapping y — ¥’ of @ into ¢’;
it is elearly a linear subspace of ®’. Suppose f € ¢, and € > 0 s given;
the problem is to find a vector y € @ such that || f — ¢ || < e (see
Ezercise 111.2.1). By Remark 2, there is a vector » € 3C such that
f(z) = (2”|u) for all z € @. Choose any y € @ such that || u — y" ||
< ¢; this is possible because U(®) is dense in 3C. For any z € @,
|(f = ¥)@)| = [f@ — y@)| = |@'|w) — @] = |@"|w -

@y =@ lu—y)| <N Ilu=y" [ =lzllu—y"l|<

¢| z |, hence || f — ¥ || < e by Theorem IV.7.4. Finally,

4.90-= @,

Given F € @”, let us show that F € 3¢. For all y € @, one has
IF@)| <IFIly'l=0FIlyll=1F|ly" | DefiningGy”) =
[F()]*, G is a continuous linear form on U(®). Repeating the argu-
ment in Remark 2, there is a vector u € 3¢ such that G(y") =
(y"| ) for all y € @, hence (u|y”) = [Gy")]* = F(y'). Quoting Re-
mark 1, u(y’) = F(y) for all y € ®. That is, u(f) = F(f) for all
f € 9, where 9 is the dense linear subspace of ¢ described in Remark
3;u = F results from Theorem IV.7.6 (see also Exercise IV .6.1). Thus,
F=ucw |

Exercises

1. If z, is an orthonormal sequence in a pre-Hilbert space @, then
z, — 0 weakly (see also Ezercise 1.7).

2. If & is a Hilbert space, the mapping z — 2" of X into X" is
surjective, hence X is reflexive.

3. If & is a normed space, call a linear subspace 9 quadratic in case
there exists a scalar product (z|y) defined for z,y € 9, such that (1)
9 is a pre-Hilbert space, and (2) (z|2)”* coincides with the given norm
|| z || for z € 9. Then:

*(i) A linear subspace 91 of & is quadratic if and only if || z +  ||* +
lz—=yl?=2]z|*+2]yl?forall z,y € . 1)

(i) If 9 is & quadratic linear subspace of &, its closure 91 is also

quadratic.

4. Notation as in the proof of Theorem 1; in particular 9 is the
dense linear subspace of @' deseribed in Remark 3 of the proof. Prove:

(i) 9t is quadratic in the sense of Exercise 3.

(i) The Banach space @' is a Hilbert space.

(iii) Hence, in turn, @ isa Hilbert space. Let X = ¢ be the Hilbert
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space described in (ii). There is a mapping f — §* of & onto X' = ¢
by Theorem 1.2. Show: if € @, then (')’ = 2.

5. Let & be a normed space. A completion for & i i

(1) ® is a Banach spilu:e, A % s

(2) U: & — @® is a linear mapping,

(3) U is isometric,

(4) U(&) is dense in ®.

Then:

*(i) It can be shown that every normed space & has a completion.
Specifically, the mapping Uz = 2’ of & into &” can be shown to be
isometric, and one can take for ® the closure in & of the linear sub-
space U(8).

(ii) Suppose (®,U) is a completion for &. If F is a Banach space,
and S: & — § is a continuous linear mapping, there is one and only
one continuous linear mapping 7: ® — & such that 7U = 8. More-
over, [ T'[| = || S|

(m') If (®,U,) and (®,,Us) are two completions for &, there exists
a umque_mapping T: @ — ®, such that: (1) 7 is a vector space
isomorphism, (2) T is isometric, and (3) U, = TU,. In this sense, a
completion for & is unique. :

1?. If @ is a pre-Hilbert space, a completion for @ is a pair (3c,0),
where
(1) 3¢ is a Hilbert space,
(2) U: ® — 3¢ is a linear mapping,
(3) (Uz|Uy) = (z|y) forall z,y € @,
(4) U(®) is dense in 3e.
Then:
" (1) According to Theorem 1, every pre-Hilbert space has a comple-
on.
(n) Discuss‘ the analogs of parts (i) and (iii) of Erercise 5.
(iii) Regarding @ as a normed space, any completion for @, in the
sense of Kzercise 5, leads to a completion of the pre-Hilbert space @.
*7. Let & be a metric space. A completion for & is a pair (y,U)
where :
(1) Y is a complete metric space,
@) U:x - v,

(3) d(Ux,Uy) = d(z,y) for all z,y € « (i.e. U is isometric),
(4) U() is dense in Y.

It can be shown that every metric space X has a completion (y,U).
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8. Let ® = 9N @ N in the sense of Definition I11.2.5. Viei'wing @
as a linear subspace of its completion 3¢, one has 3¢ = 9 @ .

§ 3. BILINEAR MAPPINGS

If &¢ and Y are non-empty sets, the Cartesian product of X and Y is
the set of all symbols (z,y), called ordered pairs, where x € % and
y € Y. If (z1,51) and (z9,y2) are ordered pairs, the relation (z1,1) =
(22,52) means that both z; = z and y; = y». The Cartesian product
of & and Y is denoted & X Y. If u = (z,y) € X X Y, z is the first
coordinate of u, y is the second coordinate of u. Observe that Y X & is
conceptually distinct from & X Y.

Examples

1. If & is the set of all real numbers, ® X @ is the “Cartesian
plane.” Any mapping 7: ® X ® — & is called a “real-valued func-
tion of two independent real variables”; for example, T'(z,y) =
% — 2

2. If @ is any pre-Hilbert space, the scalar product in @ can be
thought of as a mapping 7': ® X ® — €, namely T'(z,y) = (z|y).
Definition 1. If U, 0, W are vector spaces, a mapping ¢: U XV — W
1s said to be bilinear in case the relations

o(z1 + z2,y) = e(21,Y) + @(22,9)
¢(\z,y) = Ne(z,y)
ey + y2) = e@y) + e(,ys)
?(I,)y) == h¢($,y)
hold identically. If moreover W = @, ¢ is called a bilinear form on
U X 0. :

Thus, ¢ is a bilinear mapping of U X U into W, if and only if: (1) for
each fixed y € U, # — o(z,y) is a linear mapping of U into W, and
(2) for each fixed z € U, y — ¢(z,y) is a linear mapping of U into
. Briefly, ¢ is linear in each coordinate. Clearly ¢(z,6) = ¢(8,y) = 0.

Examples

3. Let U be the vectorspace of n-plesz = (Ap,- * *,\n), ¥ = (u1,* * *,kn)y
.-+, and define p(z,y) = E’; M. Then, ¢is a bilinear form onu X U.
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4. Let U and ‘W be vector spaces, 7: U — W a linear mapping.
Let U = £(W,€) be the vector space of all linear forms on W, and
define ¢: U X U — € by the formula ¢(z,f) = f(Tz). Then, ¢ is a
bilinear form on U X U.

?. Let U,0,W be vector spaces, f a linear form on U, and 7: UV — W
a linear mapping. Define ¢: U X UV — W by the formula o(z,5) =
f(@)(Ty). Then, ¢ is a bilinear mapping of U X U into W,

6. If @ is an algebra, the mapping ¢: @ X @ — @ defined by
¢(a,b). = ab is bilinear. In particular, if U is any vector space, the
mapping (S,7) — 8T of £(V) X £(V) into £(V) is bilinear (see
Theorem IV .5.1).

Exercises

i I‘f & and Y are non-empty sets, there exists a natural bijective
mapping 7: X X Y — Y X X.

2. I!f &,Y,Z are non-empty sets, there exists a natural bijective
mapping 7': X X (Y X Z) — (X X Y) X Z.

3. Any mapping 7': & — 9 determines a subset of X X 9, namely
1:'.;10 set of ordered pairs Gr = {(2,7'z): z € X}, called the graph of T'.
rove:
() IfS: % — Yand I': ¢ — Y, thenS = T'if and onlyif G5 = Gp.
(ii) Given ¢ C & X . There exists a mapping T: & — Y whose
graph is G, if and only if: (1) G # &, and (2) given (z,5;) € g and
(z,52) € G, necessarily y; = y,.

4 If u,0,W are vector spaces, denote by ®(U,V; W) the set of all
bll%near mappings ¢: U X U — W. For two such mappings ¢,
write ¢ = ¥ in case o(z,y) = ¥(z,y) for all 2 € U and y € V. Then,
®B(U,V; W) is a vector space, relative to the operations

(¢ +¥) (@) = e(zy) + ¥(z,y)
0‘0)(::9!0 = Aﬂp(:"::y)'

5. Nf)tat.ion as in Exercise 4. Suppose ¢ € ®B(U,V; W). BEachz € U
determines a linear mapping ¢,: U — W, defined by ¢.(y) = ¢(z,y).
Each y € U determines a linear mapping ¢’: 4 — W, defined by
¢'(z) = o(z,y). Prove:

(i) For each fixed ¢ € ®B(U,V; W), * — ¢ is a linear mapping of
U into £(V,W). L T
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(ii) For each fixed ¢ € ®(U,V; W),y — ¢'is a linear mapping of
QU into £(U,W). _

(i) For each fixed z € U, ¢ — ¢, is a linear mapping of
®(U,V; W) into £(V,W). !

(iv) For each fixed y €V, ¢ — ¢’ is a linear mapping of
®(U,V; W) into £(U,W). :

(v) For each fixed pair (z,y) € U X V, ¢ — ¢(2,y) is a linear map-
ping of ®(1L,V; W) into W.

6. Notation as in Ezercise 5. Suppose ¢ € ®(U,V; W). The map-
ping z — ¢, is a linear mapping of U into £(0V,W); denof:e it by &,
that is, ¢(z) = ¢.. Thus, ¢ € £[U,L(V,W)]. Prove: ¢ — $isa vector
space isomorphism of B(W,V; W) with £[,£(0V,W)].

7. Notation as in Ezercise 5. Using the techniques of Ezercise 6,
obtain a vector space isomorphism ¢ — @ of ®(W,V; W) with
L[U,e(u,W)].

8. Let U, W be vector spaces, U = £(U,€) the vector space of
linear forms f on U. Prove:

(i) For each fixed z € W, (z,f) — f(z)z is a bilinear mapping of
U X U into W.

(ii) For each fixed f € U, (z,2) — f(2)z is a bilinear mapping of
QU X W into W.

(iii) For each fixed z € U, (f,2) — f(z)z is a bilinear mapping of
UV X W into W.

9. Given a fixed bilinear mapping ¢ of U X U into W. For subsets
$ C U and 3 C 7, define

st = {y € V: o(z,y) =0 forallz €8}

1y = {z € U: o(2,y) = 0 for all y € 3}.
Prove:

(i) 8* and *3 are linear subspaces of U and U, respectively.

(i) s < *(8*),and 3 c (*3)*.

(iii) If §; C 8o, then Sl'l' = Sz‘l'; if 3; C 3y, then 'L31 F 'Lﬂz.

@(v) (**)* = s, and H((*9)*h) = 5.

10. Let U and W be vector spaces. Prove:

(i) U X W becomes a vector space, on defining (z1,71) + (%2,92) =
(@) + %o,y1 + 2) and N(z,y) = (\z,\y), with zero element (9,6), and
—(2,y) = (— z, —y). U X W is called the vector space direct product
of U and W.
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(i) A mapping T:V — W is linear if and only if its graph Gy is a
linear subspace of V X W (see Erercise 3).

(iii) # — (z,0) is an injective linear mapping of V into V X W;
denote its range by U,. Similarly y — (6,) is an injective linear map-
ping of ‘W into U X W; denote its range by W,. Then: U, and W, are
linear subspaces of U X W, and every vector in U X W has a unique
representation in the form v, + w,, with v, € U, and w, € W,.

(iv) Suppose 9 and 9 are linear subspaces of a vector space U,
such that (1) 9 4 91 = U, and (2) the only vector common to 91
and 9 is 0. Then, there is a natural vector space isomorphism of U with
the direct product vector space 9 X 9.

11. Let ®@,Q be pre-Hilbert spaces, and let @ X @ be their vector
space direct product, as defined in Exercise 10. Prove:

(i) @ X Q becomes a pre-Hilbert space, on defining ((z1,41) | (€2,¥2))
= (z1|22) + (1|y2). ® X Qis called the pre-Hilbert space direct prod-
uct of @ and Q.

(i) One has || (z) |I> = ||z |* + || v |1

(iii) Let @, be the range of the isometric linear mapping z — (z,0)
of @ into @ X @, and @, the range of y — (6,5). Then @, = @,*,
Q@ = ®*, and ® X @ = @, @ Q, in the sense of Definition I11.2.5.

(iv) One has (za,yn) — (z,y9) if and only if both z, — z and
Un —* Y.

(v) @ X @ is a Hilbert space if and only if both ® and g are Hilbert
spaces.

12. Let & and Y be metric spaces. Prove:

(i) & X Y becomes a metric space, on defining d((z1,,),(22,72)) =
d(21,29) + d(y1,y2). X X Y is called @ metric space direct product of &
and Y (there are other natural ways of defining distances in % X V).

(i) One has (zn,ya) — (z,y) if and only if both z, — z and
Un — Y.

(iii) If 7: ¢ — Y is & continuous mapping, its graph Gr is a closed
subset of & X .

(iv) For each fixed y, € Y, 2 — (,y,) is an isometric mapping of
X onto a closed subset %, of & X <. Similarly for the mapping
Y — (%o,y), where z, €  is fixed.

(v) & X Y is complete if and only if both & and %y are complete.

(vi) Given completions for & and 9, in the sense of Ezercise 2.7,
there is a natural way of obtaining a completion for & X V.
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13. Let & and & be normed spaces, and let & X & be their vector
space direct product, as defined in Ezercise 10. Prove:

(i) & X & becomes a normed space, on defining || (z,») || = ||z || +
lyll.

(i) = — (z,0) and y — (8,y) are isometric linear mappings.

(iii) If distances in &,F, and & X & are defined as in § 7 of Chapter
1V, & X & is the metric space direct product of & and &, in the sense
of Ezercise 12.

(iv) If T': & — & is a continuous linear mapping, its graph Gp is
a closed linear subspace of & X &.

(v) & X & is a Banach space if and only if both & and ¥ are Banach
spaces.

(vi) If & and § happen to be pre-Hilbert spaces, (z,yn) — (z,)
in the above sense if and only if (z.,9.) — (2,y) in the sense of
Ezercise 11.

14. If % and Y are metric spaces, T': € — 9 is a bijective mapping,
S = T and Gpis a closed subset of X X Y (see Ezercise 12), then
Gg is also closed.

15. (i) If & is a Banach space, ¥ is a normed space, and T: § — &
is a continuous linear mapping, then the normed space Gr (see Exercise
13) is a Banach space.

*(ii) If & and ¥ are Banach spaces, and T': § — & is a continuous
vector space isomorphism, it can be shown that 7~ is also continuous.

*(iii) If & and & are Banach spaces, and 7': § — & is a linear map-
ping such that Gr is closed, it can be shown that 7' is continuous.

§4. BOUNDED BILINEAR MAPPINGS

Definition 1. If &,5,G are normed spaces, a bilinear mapping
©:8 X F — G 1s said lo be bounded in case there exists a constant M
such that || e(z) || < M ||z |||y || for all = € & and y € . If more-
over G = @, o 1s called a bounded bilinear form on & X .

Examples

1. Let & and G be normed spaces, T: & — G a continuous linear
mapping, and F = §’ the dual space of G. Define ¢: § X § — € by
the formula ¢(z,f) = f(T'z). Then, ¢ is a bilinear form on & X F (see
also Ezample 38.4), and |e(zf)| = |f(Tz)] < || fII Tz | <
[ 71 (I [|71]) shows that ¢ is bounded.
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2. If @ is any normed algebra, then the bilinear mapping
¢:@ X @—@ defined by ¢(a,b) = ab is bounded: | o(a,b) || < || a || b .
In particular, if & is a normed space, (S,7) — ST defines a bounded
bilinear mapping of £,(8) X £.(8) into £.(8) (see Theorem IV.9.1). |}

Using arguments similar to those in Theorems IV.7.3 and IV.7.4,
the condition for boundedness of a bilinear mapping can be refor-
mulated as follows:

Theorem 1. If 8,5,G are normed spaces, and ¢: 8 X § — G is a bi-
linear mapping, the following conditions on ¢ are equivalent:

(a) ¢ is bounded.

() My =LUB{|e@=y) [:[z]| 1, |yl £1} is finite.

(€ M,=LUB {[e@y) l:z]|l <1,y <1} s finite.

(d) Ms=LUB{|e@)l: |zl =1,y = 1} s finite.
If ¢ is bounded, My = My = Mj; denoting the common value by || ¢ ||,
one has

M le@ | <llellzlllyl for sl z€ &, y 5.

Moreover, || ¢ || ¥s minimal in this property:

@ If M20and || o@y) | <M z| |y for all z € & and
y € F, necessarily || ¢ || < M

Definition 2. Notation as in Theorem 1. The number || ¢ || is called the
norm of the bounded bilinear mapping ¢: & X § — G. Thus,

lell=LUB{[e@y) : |zl <1, [yl <1}

Clearly || ¢ || = 0 if and only if ¢(z,y) = 0 for all z € §, y € 5;
otherwise, || ¢ || > 0. In condition (d) of Theorem 1, one assumes
& 5 {0}, F #= {0}, so as to have a supply of unit vectors.

Exercises

1. If &5, are normed spaces, and ¢: 8 X § — G is a bilinear
mapping, the following conditions on ¢ are equivalent:

(a) ¢ is bounded.

(b) If z, — z and ya — y, then o(zn,ys) — o(2,y).

(¢) If 2, — 6 and y, — 0, then ¢(za,yn) — 6.

2. There is a normed space analog for Exzercise 3.8.
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3. There is a normed space analog for Ezercise 3.9: assuming ¢
bounded, $* and *3 are closed linear subspaces.

4. If &,5,G are normed spaces, denote by ®.(8,5; G) the 'set (_Jf all
bounded bilinear mappings ¢: & X & — G. Then, ®.(,5; ) is a linear
subspace of B(8,5; G) (see Exercise 3.4), and becomes a normed space
when || ¢ || is defined as in Definition 2.

5. Let &,5,G be normed spaces, ¢: E§ XF — G a bounded bilinear
mapping. Show: : , ,
(i) For each fixedz € 8,y — ¢:(¥) = ¢(z,y) is a continuous linear
mapping of ¥ into G, and || ¢z || < || ¢ || || 2 [l. Thus, ¢, € £:(5.9)-
(ii) For each fixed y € F, * — ¢'(z) = ¢(z,y) is a continuous
linear mapping of & into G, and || ¢’ || < || ¢l ¥ Thus, ¢ €
£:(8,9). ) I _
c(iii) The mapping z — &(z) = ¢: is a continuous linear mapping
of & into £.(5,9), and [| 8| < [l ¢ [|. Thus, ¢ € L[8:L(FG).
(iv) The mapping y — (y) = ¢" is a continuous linear mapping
of & into £,(8,9), and || 2 || < || ¢ . Thus, § € £[5,£(&,9)]-
(v) Infact, | @[ = el =l 2]-

6. Notation as in Ezercise 5. Prove: X

(i) The mapping ¢ — ¢ is an isometric vector space isomorphism
of ®.(8,5; G) with £.[8,£:(5,9))- 3 p

(ii) The mapping ¢ — @ is an isometric vector space isomorphism
of B.(8,5; Q) with £.[F,£.(8,9)].

7. Let & and & be normed spaces, & a Banach space. If I is a
dense linear subspace of & 9 is a dense linear subspace of &, and
@: 9 X 9 — ® is a bounded bilinear mapping, there exists one and
only one bounded bilinear mapping : & X § — ® such that ¥(z,y) =
o(z,y) for all z € M and y € N

*8. Let £,5,G be normed spaces, and ¢: 8 X § — G a bilinear map-
ping. Suppose that foreach z € &,y — ¢(z,y) is contim_.lous, and th!?t
for each y € §,  — ¢(x,y) is continuous. Assuming either & or ¥ is
a Banach space, it can be shown that ¢ is bounded.

*9. Let & and G be normed spaces, § = G’ the normed space dual
of G. Each T € £,(8G) determines a bounded bilinear form

: & X § — €, namely ¢,(z,f) = f(T'z) ‘see Ezample 1), and one has.

Pp
lerll N TI.
(i) It can be shown that || ¢, || = || T |l
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(i) T — ¢, is an isometric linear mapping of £.(8,5) into
®:(8,5; €).

(i) If moreover G is reflexive, the mapping 7' — ¢, is surjective,
hence is an isometric vector space isomorphism.

10. The following is a specialization of Ewercise 9 which can be
worked out using material in the text.

Let 3C be a Hilbert space. Each 7' € £.(3¢) determines a bounded
bilinear form ¢,.: 3¢ X 3¢’ — @, namely ¢, (z,f) = f(7'z). In view of
Theorem 1.1, this means ¢, (z,y") = y'(Tz) = (Tz|y) for all z,y € 3c.
The relation || ¢, || = || 7' || is elementary (see Example IV .?.5). More-
over, 3C is reflexive, that is, the mapping z — 2 of 3¢ into 3¢” is
surjective (Bxercise 1.9). It follows that 7' — @p 18 an isometric vector
space isomorphism of £.(3¢) with ®.(3¢,5¢’; @).

11. If & is a normed space, and 3C is a Hilbert space, there exists
an isometric vector space isomorphism T — ¢, of £.(8,3¢) with
®.(8,3¢'; @).

12. If & and § are normed spaces, and G is a Banach space, then
®:(&,5; G) is a Banach space. In particular, ®.(8,5; €) is a Banach
space.

§5. SESQUILINEAR MAPPINGS

Definition 1. If U,0,W are veclor spaces, a mapping ¢: U X V — W
18 said o be sesquilinear in case the relations

e(@1 + 22,y) = o(1,y) + o(22,9)
e(Az,y) = Ne(z,y)

o(@,y1 + v2) = o(z,)) + o(z,y2)
e(@\y) = No(z,y)

hold identically. If moreover W = @, ¢ is called a sesquilinear form
on U X V.

Thus, ¢ is a sesquilinear mapping of U X U into W, if and only if :
(1) for each fixed y € U, 2 — ¢(a,y) is a linear mapping of U into W,
and (2) for each fixed z € U, y — ¢(,y) is a semilinear mapping of
U into W (see Definition I1V.1.3). Briefly, ¢ is linear in the first
coordinate, semilinear in the second coordinate. Clearly o(6,y) =
e(z,0) = 0.
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Examples

1. If ® is any pre-Hilbert space, the mapping ¢: @ X ® — €
defined by o(z,5) = (z|y) is a sesquilinear form on @ X @.

2. If  is a vector space, @ is a pre-Hilbert space, and 7': U4 — @
is a linear mapping, then o(z,y) = (Tx|y) defines a sesquilinear form
on U X @.

3. If o: U X UV — € is a sesquilinear form, then the mapping
¥: U X U — € defined by ¥(y,2) = [e(z,y)]* is sesquilinear. |

Obviously, one could paraphrase the results of the preceding two
sections for sesquilinear mappings. However, there is a simple way of
deducing the theory of sesquilinear mappings from the theory of
bilinear mappings, via the concept of the complex-conjugate of a
vector space:

Definition 2. Let U be a veclor space, with sums denoted z + y, and
scalar multiples denoted \x. The complex-conjugate of U s the vector
space V* obtained as follows:

(1) The set V* is the same as the set V.

(2) If z,y € V*, the sum of = and y s defined to be = + y (as cal-
culated in ).

(3) If \ is a scalar, and x € V*, the multiple of = by \ is defined to
be \*z (as caleulaled in V); this will be denoled \oz.

It is easy to check that U* satisfies the axioms for a vector space
listed in Definition I.1.1. For example: (An)oz = (Ap)*z = A\*u¥)z =
A*(u*z) = AN*(uoz) = No(uoz). It is clear that U* is the only vector
space structure which can be defined on the set U in such a way that
the identity mapping I:U — U* is conjugate-linear.

Examples

4, If @ is any pre-Hilbert space, the mappingy — ¥’ of @ into (@")*
is lnear; for, (y +2) =y + 2, and QAy)’ = A*y' = loy’ (see
Theorem IV .10.2).

5. If U and W are vector spaces, a mapping 7': U — W is con-
jugate-linear if and only if 7' : V* — W is linear (if and only if
T:0 — W*is linear).
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6. If & is a normed space, then &* is also a normed space with || z ||
defined the same as in 8. The point is that || Moz || = || A*z || =
[N - 1z || = |A|+ || # ||. The identity mapping I: § — &* is then
isometric and conjugate-linear; & is a Banach space if and only if &* is
a Banach space.

7. Combining Ezamples 4 and 6, y — 7' is an isometric linear
mapping of @ into the normed space (¢)*.

8. If @ is a pre-Hilbert space with scalar products denoted (z|y),
the vector space ®* becomes a pre-Hilbert space on defining scalar
products [z|y] by the formula [z|y] = (z|y)* = (y|z). For instance,
oz|y] = A\*z]y] = (y|A*z) = Ny|z) = Mz|y]. Thus, ®* acquires a
norm from its scalar product, as well as the norm inherited from @
via Exzample 6; these norms coincide: [z|2]* = (z|2)*%. @ is a Hilbert
space if and only if @* is a Hilbert space. |

The reason for introducing the space V* is the following theorem,
whose proof is immediate from Ezample 5:

Theorem 1. Lel U, 0, W be vector spaces, and ¢: U X UV — W. Then,
¢ 18 a sesquilinear mapping of W X U into W if and only if it is a
bilinear mapping of U X V* into W,

The “polarization identity” (see Theorem I1.3.3) has a generaliza-
tion for sesquilinear mappings:
Theorem 2. If U and W are vector spaces, and ¢: 0 X UV — W 18 ses-
quilinear, then
e(@y) = el + y2 +9) — oz — yz —y)

+ io(z + dy,x + y) — ip(z — Y,z — i)}
fOf all x,Yy C .

Onehas o(z + y,z + y) = ¢(z,2) + o(¥,y) + ¢(z,y) + ¢(y,2). The
proof proceeds as in Theorem 11.3.3. |

An immediate consequence of Theorem 2 is the following:

Theorem 3. If 0: U XV — Wand ¢: U X U — W are sesquilinear
mappings such that ¢(z,x) = Y(z,x) for all x € U, then ¢ = y, that s,
o(z,y) = ¥(z,y) for all z,y € V.
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Definition 3. Let U be a veclor space, ¢: VU X VU — € a sesquilinear
form. ¢ is said to be Hermitian in case o(y,x) = [e(z,y)]* for all
Ty €.

Theorem 4. A sesquilinear form ¢: U X U — @ is Hermitian if and
only if ¢(z,x) 1s real, for all x € 0.

Proof.
If ¢ is Hermitian, ¢(z,x) = [¢(2,2)]*, hence ¢(z,z) is real.
Suppose, conversely, that ¢(z,z) is real for all z. Define ¢(z,y) =
[e(y,2)]*; as noted in Ezample 3, ¢ is a sesquilinear form on UV X .
By assumption, ¢(z,2) = ¢(z,x) for all z, hence ¢ = ¢ by Theorem 3.
In other words, ¢ is Hermitian. J

Definition 4. Let U be a vector space, ¢: 0 X U — € a sesquilinear
form. ¢ is said to be positive in case ¢(z,x) > 0 for all x € .

In particular, a positive sesquilinear form is Hermitian, by Theorem
4. There is a “Cauchy-Schwarz inequality” for positive sesquilinear
forms:

Theorem 5. If ¢ is a positive sesquilinear form on UV X 0, then
l ?(&’C,y) | 5 S Qo(mlx)@(y!y) fO‘l" all T,y e,

Proof.

By analogy with scalar products, write || z | = V/¢(z,2), only for
convenience in the present proof.

If o(z,2) > 0 or ¢(y,y) > 0, the proof proceeds as in Theorem
I1.8.4.

Suppose ¢(z,z) = ¢(y,y) = 0. For all scalar A\, one has 0 <
e(x + M,z + W) = e(@,2) + No@y) + Ao(@,2) + M* o(yy) =
7\*'!’(3,?) +R§°(yr$)' In pa.rt.icular, forh = _‘o(z!y): 0< _2|‘P(3,y) |2‘
Thus, ¢(z,y) = 0, and the desired inequality is obvious. |

Exercises

1. Let ®,Q be pre-Hilbert spaces, and suppose the pre-Hilbert
spaces ®* and Q* are constructed as in Ezample 8. The following
conditions are equivalent:

(a) J: ® — Q is conjugate-linear, and (Jz|Jy) = (y|z) for all
x,y € @.

(b) J: ® — Q*is linear, and [Jz|Jy]

(c) J: @* — Qs linear, and (Jz|Jy)

(z|y) for all z,y € @.
[z|¥] for all z,y € @*.
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If ® = @, a surjective mapping J satisfying condition (a) is called
a conjugation of the pre-Hilbert space ®@. For example, J(\r) = (\:*)
is a conjugation in the Hilbert space .

2. Let 3¢ be a Hilbert space. Show:

(i) The mapping U: 3¢ — (3¢')* defined by Uz = 2’ is a vector
space isomorphism,

(i) The Banach space 3¢" becomes a Hilbert space, on defining
@'y) = (y|=).

(iii) If 3¢’ is the Hilbert space described in (ii), (3¢')* becomes a
Hilbert space on setting [2'|y'] = (¥’|2’). The mapping J: 3¢ — 3/,
defined by Jz = 2/, satisfies condition (a) of Exercise 1.

(iv) With the Hilbert space structure of (3¢')* defined as in (iii),
the mapping U of part (i) is a Hilbert space isomorphism.

3. If U is a vector space, the vector space (V*)* is entitled to be
called equal to the vector space V. Analogously for normed spaces
and pre-Hilbert spaces (see Ezamples 6 and 8).

4. If ¢: U X U — W is bilinear or sesquilinear, the “parallelogram
law”” holds:

o+ ¥z +y) + olx — y,z — y) = 20(2,2) + 20(y,y).
5. If : U X U — W is bilinear, then
e@+yz+y) —el@—yz—1y +
io(z + ty,x + 1Y) — to(z — ty,xz — 2y) = 0.

6. If U,0,W are vector spaces, the set $(U,V; W) of all sesquilinear
mappings ¢: U X VU — W is a vector space relative to the operations

(¢ + ¥ (@) = e(zy) + ¥(zy)
(A‘P)(xiy) - A@(;’C,y).

The identity mapping ¢ — ¢ is a vector space isomorphism of
8(U,V; W) with ®(U,V*; W). [See Exercise 3.4.]

7. Let U be the vector space of 2-ples z = (\;,\2), ¥ = (u1,pa)," - -.
Define ¢(2,y) = Aps, ¥(2,5) = Aopy. Then, ¢ and ¢ are bilinear forms,
o(z,2) = Y(z,z) for all z, but ¢ = .

8. Let U,V be vector spaces. If ¢: U X U — € is a sesquilinear
form, define ¢f: U X U — € by the formula ¢#(y,2) = [o(z,y)]*.
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Then:

(i) ¢f is a sesquilinear form on U X U.

(ii) ¢ — of is a bijective conjugate-linear mapping of $(U,V; €)
onto $(V,U; @).

(iii) If © = U, ¢f = ¢ if and only if ¢ is Hermitian.

9. Let ® and @ be pre-Hilbert spaces, J: ® — @ a mapping such that
Wz|Jy) = (y|z) for all z,y € ®@. Prove:

(i) If J(®) is a linear subspace of @, then J is conjugate-linear.

(ii) In particular, if ® = @ and J is surjective, then J is a conjuga-~
tion of ® in the sense of Ezereise 1.

(iii) If ® = 3¢ is a Hilbert space, and J(3C) is a total subset of ,
then J is surjective.

10. Let ¢ be a positive sesquilinear form on U X U, and let 9T =
{x € V: o(z,2) = 0}. Then, N = {z € V: ¢(z,y) = 0forall y € V},
hence 91 is a linear subspace of .

11. If ¢ is a positive sesquilinear form, under what conditions on
2 and y does |e(z,y) |2 = ¢(@,2)¢(yy) hold?

§ 6. BOUNDED SESQUILINEAR MAPPINGS

Definition 1. If &,5,G are normed spaces, a sesquilinear mapping
¢: 8 X § — G 1is said lo be bounded in case there exists a constant M
such that || e(zy) || < M ||z || || y || for all z € 8, y € §. If moreover
G = @, ¢ 18 called a bounded sesquilinear form.

In other words, ¢ is a bounded sesquilinear mapping of & X & into
g, if and only if it is a bounded bilinear mapping of & X * into G (see
Definition 4.1, Example 5.6, and Theorem 5.1). The number

LUB {[ ey l: |zl <L, |yl <1}
is denoted || ¢ ||, and is called the norm of ¢. By Theorem 4.1,
Theorem 1. If ¢: 8 X § — G s a bounded sesquilinear mapping,
(M) llell=LUB{|le@yl:lzll<1,lyl <1}
= LUB {{ (=) lI: 2]l = L [yl = 1};
@ le@nll<lelllzllyllforalzcsycs;

@) fM>0and ||oy) | <M z| |yl for all z € & and
y € F, necessarily || ¢ | < M.
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Examples

1. If @ is a pre-Hilbert space, the sesquilinear form ¢: ® X ® — @
defined by ¢(z,y) = (z|y) is bounded, by the Cauchy-Schwarz inequal-
ity. Assuming @ # {0}, || ¢ || = 1.

2. If & is a normed space, @ is a pre-Hilbert space, and 7': § — @
is a continuous linear mapping, then ¢(z,y) = (Tz|y) is a bounded
sesquilinear form, with || ¢ || = || T || (see Ezample IV.7.5 or Exer-
cise IV.7.5).

3. If &7 are normed spaces, and ¢: 8§ X § — @ is a bounded
sesquilinear form, the sesquilinear form ¢: § X &§ — € defined by
¥(y,2) = [e(x,y))* is also bounded, and [ ¢ || = [l ¢[|. 1

The following result plays an important role in the exposition of
spectral theory given in Chapter VIII:

Theorem 2. If @ is a pre-Hilbert space, the norm of a Hermitian bounded
sesquilinear form ¢: ® X ® — @ is given by the formula

lll = LUB {|e(z)|: || z || < 1}.
Proof.

By assumption, ¢(z,2) is real, for all z (see Theorem 5.4).

If [z ]| <1, |e(z,2)| < | ] by the definition of || ¢ ||; hence the
indicated LUB is a finite real number M, and M < || ¢ ||. Clearly
le(@z)| S M| z| | z]| forall z € @.

Fixz,y € @, with ||z || < 1, || y || £ 1. It will suffice to show that
le(zy)| < M.

Case 1. Suppose (z,y) is a real number. By Theorem 5.2, ¢(z,y) =
Helz + 2+ 9) — oz — yz — y) + de(@ + iyx + iy) — iolz —
iy,x — 7y) }. Since ¢(z,2) is real for all z, and since ¢(z,y) is by assump-
tion real, 113093331'113’ @(x:y) - i’lﬂo(x + y,z + y) i P(x =¥ = y)}
Quoting the parallelogram law at the appropriate step, |o(z,y)| <
Hle@ + g2 + )| + lo@ —yz — )|} <M || 2 + ylI® +

M=yt =Felzi+20ym <242 =m0

Case 2. In general, one can write |¢(z,y)| = Ae(z,y), where \ is a
suitable complex number of absolute value 1. Then, o(Az,y) =
Ap(z,y) = |o(x,y)| is real; since |[Az | = [A|-[z| =|=z[ <1,
le(Az,y)| < M by case 1, thus |¢(z,y)| < M.
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1. If §5,G are normed spaces, the set 8.(8,5; G) of all bounded
sesquilinear mappings ¢: & X § — G is a linear subspace of 8(&,5; G),
and becomes a normed space on defining || ¢ || as above. The identity
mapping ¢ — ¢ is an isometric vector space isomorphism of 8:(§,5;G)
with ®.(8,5*; Q). (See Exercises 5.6 and 4.4)

2. Let & be a normed space, @ a pre-Hilbert space. Each continuous
linear mapping 7': § — @ determines a bounded sesquilinear form
op:& X ® — € namely p,(2,y) = (Tz|y), and onehas | o || = || 7 |
(see Ezample 2). Then, T — ¢, is an isometric linear mapping of
£.(8,®) into 8,(8,®; ©) (see Exercise I).

3. If ®is a pre-Hilbert space, G is a normed space, and : ® X @ — G
is a bounded bilinear mapping such that ¢(y,z) = ¢(z,y), then
llell = LUB {] e@@a): |z ]| <1}.

4. Let ®@ be a pre-Hilbert space, and define ¢(z,y) = i(z|y). Then,
¢ is a bounded sesquilinear form, || ¢ || = LUB {|e(z,2)|: || z || < 1},
but ¢ is not Hermitian.

5. Let ® be a pre-Hilbert space, and suppose U: ® — @ is a
continuous linear mapping such that || U || = 1 and Uz = z for some
2% 0. Define ¢,(@y) = (Uz|y). Then, |leyll =] Ull=1=
LUB {|ey(z2)|: ||z || < 1}, but ¢ need not be Hermitian.

§7. BOUNDED SESQUILINEAR FORMS IN HILBERT SPACE
As a special case of Example 6.2,

Theorem 1. If 3¢ and & are Hilbert spaces, and T: 3¢ — X is a con~
tinwous linear mapping, the formula ¢n(zy) = (Tx|y) defines a
bounded sesquilinear form ¢, on 3¢ X X, such that || oz || = || T ||.

The point of stating Theorem 1 is that its converse is true:

Theorem 2. If 3¢ and X are Hilberl spaces, and ¢: 3 X X — Cisa

bounded sesquilinear form, there exists one and only one continuous

linear mapping T: 3¢ — X such that o(z,y) = (Tz|y) for all z € XK,

?l'ellm:' In the notation of Theorem 1, ¢ = ¢, and || ¢ || = ”‘Pq-“ =
1.
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Proof.

Giv:en x € X, the problem is to define Tz € X. Now, y — [o(z,9)]*
is a linear form f; on X, and |fz:()| = |[e(zy)]*| = |e(z,y)| <
el Izl Il ¥ || shows that f, is continuous, and || fz || < [l ¢ || || z ||
By Theorem 1.1, there is a unique vector z € X such that f-(y) = (y|2)
for all y € X. Defining Tz = z, one has (y| Tz) = f:(y) = [p(z,9)]*,
thus ¢(z,y) = (Tx|y). Incidentally, | Tz || = || f || by Ezample
IV.7.4,thus || Tz || < | ¢|| || # ||. It will now be shown that the map-
ping 7': 3¢ — X is linear.

T is additive: given any z;,2, € 3¢, T'(z; + 23) = T2y + Tx,. For,

given any y € &, (T(x1 + 2)|9) = o(@1 + z2,9) = o(1,9) +
e(@a,y) = (Tz1|y) + (Tzaly) = (Tzy + Tx2|y); see Theorem 11.2.1.

T' is homogeneous: If = € 3¢, X is scalar, and y € X, (T(\x) |y) =
e(zy) = Mp(z,y) = MTz|y) = (A\(T2)|y), hence T(Az) = NM(Tz).
T is unique: Suppose S: 3¢ — X is any mapping such that (Sz|y) =

¢(z,y) for all z € 3¢, y € K. Then, (Tz — Sz|y) = 0 for all z € 3¢,
y € X; hence Tz — Sz = 60 for all z € 3¢, that is, T = 8.

Since [Tz || < |l ¢l |||, the linear mapping T is continuous.
Since ¢ = o7, | @ || = || T'|| by Theorem 1. |l

Exercises

1. X x and X are Hilbert spaces, the correspondence 7' — ¢,
described in Theorem 1 is an isometric vector space isomorphism of
£.(3¢,%) with 8.(3C,X; €). [See Ezercise 6.2.]

2. If & is a normed space, and X is a Hilbert space, generalize
Theorem 2and Exercise I for bounded sesquilinear forms ¢: & X X — €.

§ 8. ADJOINTS
Throughout this section, 3C,%,£ denote Hilbert spaces.

Theorem 1. If T': 3¢ — X s a continuous linear mapping, there exists
one and only one conlinuous linear mapping T*: 3% — 3C such that
(Tzly) = @|T*y) forallz € 3, y € K. One has | T* || = || T |.
Proof.

Define ¢(y,2) = (y| T'z). Clearly y is a sesquilinear form on & X 3¢,
and [Y(y,2)| = [(W|T2)| = [(y|T2)*| = |(Tz|y)| shows that ¥ is
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bounded and || ¢ || = || T || (see Theorem 7.1). By Theorem 7.2, there Theorem 3. If T': 3¢ — XK and S: & — £ are continuous linear map-
exists a continuous linear mapping 7*: & — 3¢, with || 7% || = || ¢ ||, pings, then (ST)* = T*S*.

such that ¢(y,2) = (T*y|2) for all y € K, = € 3. Thus, (y|Tz) =
(T*y|z), (Tz|y) = (| T*).
If S: & — 3¢ is any mapping such that (Tz|y) = (z|Sy) for all

Proof.
If z € £ and 2 € K, (87)*2|2) = (2|(ST)2) = (2|8(T2)) =

z € 3¢, y € X, then (z|Sy — T*y) = 0 for all z and y, hence Sy — (8*2z| Tz) = (T*(S*2)|2) = (T*8%)z[2). 1
T*y = 6 for all y; thatis, S = T*. || Theorem 4. Let 7': 3¢ — Rbeaiom-inuiuslimrmapping.lfs c e,
Definition 1. Notation as in Theorem 1; T* is called the adjoint of T' 3C X, and T(S) C 3, then T*(37) C 8™
The rest of the section is devoted to ing properties of adjoints Proof.
which with bo uad oftn i:the sequel. e L ) Given z € & with z L 3, the problem is to show that 7*z 1 8. If
A z € 8, then Tz € 3, hence 0 = (2| T2) = (T*z|z). |
Theorem 2. If S: 3¢ — X and T: 3¢ — X are conlinuous linear .
mappings, and \ is scalar, In particular,
(1) S+ T)*=8*+T* Theorem 5. Suppose T': 3¢ — K is a continuous linear mapping, N s
a closed linear subspace of 3C, and 9 s a closed linear subspace of K.
(2) QT)* = \*T* Then, T(9M) < N if and only if T*O*) < mt.
() (T*ylz) = (y|T2) forally € X, z € 3 Proof.
B (=T If T*@*) < ont, then (T%)*(n'+) c %t by Theorem 4; quote

Theorem I11.6.2 and part (4) of Theorem 2. |
Theorem 6. If T: 3¢ — X is a conlinuous linear mapping,
(1) fz: Tz =6} = [T*x)]*

@ IT*TI=1TT*| =TI
6) T*T = 04if and only if T = 0.

Proof. @ f{2:Tz =6}t =T*x)
3): (T*y|2) = @|T*Y* = (Tz|y)* = (| T2). (3) {y: T*y = 0} = [T@)]*
(1: (8 & T)*y|z) = (y| (S +S{')z) =T(yISz + T;Z = ggISz) + @) {y:T*y =06}* = T(50).
| T2) = (S*y|2) + (T*y|2) = (S*y + T*y|2) = (8* + T*)y|2). R R o i i ol it S 0 s
©2): (AT *y|2) = (y| AT)2) = (¥|M(T2)) = N*(y| Tz) = N (T*y|2) the range of T*.
= (A*(T*y)lx) - (()L‘T*)y]z). Proof.
@): (TH*z|y) = | T*) = (Tz|y). Let oM = {2: Tz = 6}; M is a closed linear subspace of 3C. Similarly,

N = {y: T*y = 0} is a closed linear subspace of X.

. 1 *7. *.
(5): Observe that the composites T*T: 3¢ — 3 and TT*: X — X Since T(9M) < {0}, one has T*({8}*) C 9n* by T s wie,

are defined. If 2 € 3¢, ||z]| <1, one has || Tz ||* = (Tz|Tx) =

(T*Tz|z) < | T*Tz || ||z || < || 7*Tz || < || T*T ||; taking LUB () T*(x) c m*.
over |z|| <1, | T||? < || T*T ||. By Theorem IV.9.1, | T*T || < Let $ = 3¢, 5 = T(3¢); the relation T'(3¢) C T(3¢) can be written
I7*| I 7|l = || T | Thus, | T*T ||* = || T Eg- Replacing T' by T, T(s) 3, hence T*(3L) C $*. Since $* = 3¢+ = {0}, one has T*(5%)
| (T*)*T* || = | T* || thus | TT* || = || T |° = {6}, 3* C %, thus

(6): follows at once from (5). | (i) [T@0)]* < o
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Applying these results to 7'* in place of T, one has

(i*) T(x) c ot

(ii*) [T*(3)]* < .
From (i), o € m*+ < [T*(%)]*; combining this with (ii*),

(1) om = [T*(3)] "

(Incidentally, 9% = 9n** results formally from these calculations; see
also Theorem I111.6.2.]

From (1), om* = [T*(%)]**; quoting Corollary 1 of Theorem
111.6.3,

@) mt = T*(x).

The relations (3) and (4) result on replacing T by T* in the relations
(1) and (2). 1|

1. Let @ and @ be pre-Hilbert spaces, and suppose 7': ® — @ and
S:@ — @ are mappings such that (Tz|y) = (z|Sy) for all z € @ and
y € Q. Then, S and T are linear.

2. If 3¢ is a Hilbert space, (S,7) — ST'* is a bounded sesquilinear
mapping of £.,(3¢) X £.(3¢) into £.(3¢). So is (S,T) — T*S.

3. Let 3¢ be classical Hilbert space, T: 3¢ — JC a continuous linear
mapping. Given an orthonormal basis e, for 3. Let Te; = E’ ajie;
be the expansion of 7'e; in terms of the given orthonormal basis (see
Theorem I1.8.1). The array (ey:) is called the matriz of T relative to
the given orthonormal basis (see also Exercise IV.1.6). Prove:

(i) (Texle;) = ajn

(i) If T* has matrix (8;;) relative to the same orthonormal basis,
then B = au;*. So to speak, the matrix (8;i) is the “conjugate trans-
pose” of the matrix (ej).

4. Let 3¢ and & be Hilbert spaces, T': 3¢ — X a continuous linear
mapping. Prove:

() Ty = (T*y)’ for all y € X (see Exercise IV.10.7 for the defini-
tion of 7).

(i) If U:3¢ — 3¢’ is the conjugate linear isometric mapping Uz =
2’ desecribed in Theorem IV.10.2, and similarly V: & — X’ is the
mapping Vy = ¥/, then T* = U'T'V.
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(iii) Identifying 3¢ with (3¢')* via the Hilbert space isomorphism
z — 2’ (see Exercise 5.2), and similarly identifying & with (&’) *, one
has T* = T/,

5. Let 3¢ and X be Hilbert spaces. Form the direct product Hilbert
spaces JC X & and X X 3C (see Exercise 3.11). Define W: 3¢ X &% —
X X 3¢ by the formula W(z,y) = (y,—z). Prove:

(i) W is a Hilbert space isomorphism.

(ii) If T: 3¢ — X is a continuous linear mapping, the graphs of 7'
and T* satisfy the following relation: Gre = [W(Gr)]* (see Exercises
3.10 and 3.13).

What is the formula for W*(y,z)?

*6. Let 3C be a Hilbert space, ® a pre-Hilbert space, and suppose
T:3¢ — @ and S: ® — 3¢ are mappings such that (Tz|y) = (z|Sy)
for all € 3¢ and y € @. One knows that S and T are linear by
Ezercise 1. It can be shown that S and 7' are continuous. If moreover
@ = X is a Hilbert space, then S = T*,

7. Let @ be the pre-Hilbert space of finitely non-zero sequences, and
let e, be the canonical basis for ® (see Ezample 1.7.2). There is a
unique linear mapping 7': ® — @ such that Te; = ke for all k.

Prove: (T'z|y) = (x| Ty) for all z,y € @, but T is not continuous,
Compare this result with Ezercise 6.

8. This exercise is preliminary to Ezercise 9. A doubly indexed
family of real numbers aj, > 0 (7 = 1,2,3,---; k = 1,2,3,- - -) is said
to be summable in case there is a constant M > 0 such that

E::‘--1 z:-1 aji < M
for all indices m and n (equivalently, the sum of any finite number of
the ey, is <M). One then writes 3~ , a;i for the LUB of all such

finite sums. If a;. > 0 is a doubly indexed family, the symbol
p 72 ;.1 @ik < o signifies that the family is summable.

Show that for a family a;x > 0, the following conditions are equiv-
alent:

@ X,k <
(b) For each j, Ek aji; < o, and 2,- (Ek aj'k) < o,

(¢) For each k, E,- ajr < », and Ek (Z a,-;,) < ®,

£l
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If either (hence all) of these conditions is fulfilled, one has

E,- (Zk “:'k) = E,, (Z,- a:'k) = Z,-_k Qjk

0. This exercise is preliminary to Exercise 11. Denote by 3¢ the set
of all doubly indexed families z = (\;i) of complex numbers such that
3,4 INik? < = in the sense of Ezercise 8.1f y = (uj) is another such
family, define z = y in case ;i = u; for all j,k. With operations
suitably defined, 3¢ is a Hilbert space.

10. Let 3¢ and % be classical Hilbert spaces, e, an orthonormal
basis for 3¢, and f, an orthonormal basis for X. If 7: 3¢ — X is a
continuous linear mapping, one has >, || Te; ||* < « if and only if
3, 1| 7% |[* < o, and in this case one has

¥ 0 Te |t = ;1 7% 12 = X, | Talf) P

11. Let 3¢ and X be classical Hilbert spaces, ¢, a fixed orthonormal
basis for 3¢, f, a fixed orthonormal basis for 3. A continuous linear
mapping T': 3¢ — & is said to be of Hilbert-Schmidt class if there exists
an orthonormal basis g, of 3¢ such that >, || Tg [|* < . Briefly,
T is of HS-class. Prove:

() If T: 3¢ — & is of HS-class, then X_, || Tgi [|* < o for every
orthonormal basis g, of 3¢, and the value of this sum is independent
of the particular orthonormal basis.

(i) If S:3¢ — X and T': 3¢ — % are of HS-class, so are S 4+ T'
and MT. The continuous linear mappings 7': 3¢ — X of HS-class form
a linear subspace £,(3¢,X%) of £.(3C,X).

(iii) A continuous linear mapping 7': 3¢ — X is of HS-class if and
only if T*: X — 3¢ is of HS-class.

(iv) If T:3¢ — X is of HS-class, and B: 3¢ — 3¢, S: & — X are
continuous linear mappings, then TR: 3¢ — & and ST': ¢ — X are
of HS-class.

*(v) If T: 3¢ — X is of HS-class, define ajr = (Tex|f;). The cor-
respondence T — (aji) is & vector space isomorphism of L5s(3C, %)
with the Hilbert space described in Ezercise 9.

*(vi) f S and T are of HS-class, define (S|T) = Zt (Sex.| Tex).
Then, £3,(3¢,%) becomes a pre-Hilbert space, and the scalar product
(S|T) is independent of the particular orthonormal basis employed
in its definition. The mapping T — (ajx) described in (v) is an
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isgmetric vector space isomorphism; it follows that £,(3C,%) is a
Hilbert space, and the mapping T — (a;i) is a Hilbert space
isomorphism.

12. If @ is an algebra, a mapping a — a* of @ into @ is called an
involution in case: (1) a** = a, (2) (a + b)* = a* + b*, (3) (ab)* =
b*a*, and (\a)* = A*a*, for all a,b € @ and scalar \. An algebra with
involution is also called a *-algebra. A normed algebra with involution
is called a normed *-algebra. Prove: if @ is a normed *-algebra such that
la*a] = [[a2foralla € @, then [ a*|| = || a .

13. This exercige is preliminary to Exercise 14. If @ is an algebra, a
subalgebra of @ is a linear subspace § such that: if ¢ € S and b € 8,
then ab € 8. Prove:

(i) In a normed algebra, the relations @, — a and b, — b imply
apby, — ab.

(i) If 8 is a subalgebra of the normed algebra @, its closure § is a
closed subalgebra of G.

(iii) If @ is a Banach algebra, every closed subalgebra of @ is itself
a Banach algebra.

14. If @ is a *-algebra, a *-subalgebra of @ is a subalgebra $ such
that ¢ € 8 implies a* € 8.
(i) Suppose @ is a normed *-algebra such that || a* || = || a || for all
a C @. Then, a, — a implies a,* — a*.
(ii) If @ is as in part (i), and 8 is a *-subalgebra of @, its closure §
is also a *-subalgebra of @.

15. A B*-algebra is a Banach *-algebra @ such that || a*a || = | a ||°
for all @ € @. Prove:
(1) If 8 is a *-subalgebra of a B*-algebra @, then § is a B*-algebra.
(ii) If 3¢ is a Hilbert space, and 8 is a closed *-subalgebra of £.(3¢),
then § is a B*-algebra.

*16. There exists a converse for part (ii) of Exercise 15, known as
the “theorem of Gelfand-Neumark”: if @ is any B*-algebra, there
exists a Hilbert space 3C, and a mapping ¢: @ — £.(3¢), such that

(1) (@ +b) = ¢(a) + ¢(b)

(2) ¢(ra) = rp(a)

(3) elab) = p(a)e(b)

@ le@l=lal

(5) ¢(@*) = [¢(a)]* (= the adjoint of ¢(a)).
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It follows that 8 = ¢(@) is a B*-algebra of the kind described in part
(ii) of Ezercise 15; hence, @ is essentially “‘equal” to a B*-algebra of
this kind.

17. Notation as in Fzercise 11, with 3¢ = K. Then, £;,(3¢,3C) is a
*_subalgebra of £.(3¢).

18. An #nvolution in a vector space U is a mapping # — 2f of U into
U such that: (1) ¥ = z, (2) (z + »)? = 2f + y#, and (3) (\2)f =
Azf, Prove:

(i) If U is a vector space, and ¢: U X VU — @ is a sesquilinear
form, define ¢¥(x,y) = [¢(y,2)]*. Then, ¢ — ¢* is an involution in the
vector space $(0,0; @) (see Exercise 5.8).

(ii) Let 5 be a Hilbert space. If ¢, is defined as in Theorem 7.1,
then (¢,)f = gpe.

Cha pter

Operators in Hilbert Space VI

§ 1. Manifesto

§ 2. Preliminaries

§ 3. An example

§ 4. Isomeftric operators

§ 5. Unitary operators

§ 6. Self-adjoint operators

§ 7. Projection operators

§ 8. Normal operators

§ 9. Invariant and reducing subspaces

§ 1. MANIFESTO

For the rest of the book, we settle down to the study of various
types of continuous linear mappings of a Hilbert space into itself.
Generalities are henceforth banished to the exercises, and the reader
is invited to assess each definition and proof for its possible level of
generality. For example, some statements about Hilbert space will
make sense for normed spaces, or vector spaces, and so on; observa-
tions of this sort will be found in the exercises. Henceforth:

1. 3¢ denotes a Hilbert space #= {6}.

2. Any continuous linear mapping 7': 3¢ — 3C will be called an
operator. In particular, 7 is the identity operator, 0 is the zero operator,
Al is a scalar operator.

3. T* denotes the adjoint of the operator 7. Thus,
(i) T* is an operator
(i) (Tz|y) = (|T*y) for all 2,y € 3¢
(iii) I =T
@iv) S+ T)*=8*+T*
139
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) Q)= ane
(v, @I)*=T"S*
(vi) | T*[|=(T]|
(vild) | T*T || = || T |I*
(ix) T*T = 0if and only if 7 = 0.

These facts about adjoints are assumed to be known to the reader
(see § 8 of Chapter V); they will be used in the sequel without explicit
reference.

The special types of operators T which will be discussed in this
chapter are defined as follows:

isomelric operator: T*T = 1

unitary operator: T*T =TT*=1

self-adjoint operator: T* = T

projection operator: TT = Tand T* =T

normal operator: T*T = TT*.
Other types of operators (positive, invertible, ete....) are diseussed
in the exercises.

§ 2. PRELIMINARIES

The theorems of this section will be used often, and without explicit
reference, in the sequel.

Theorem 1. The null space N of an operator T is a closed linear sub-
space of 3C.

Proof.
See Theorem IV.7.2. |

Theorem 2. If 8 is a total subset of 3¢, and S,T are operalors such that
Sz =Txforallz €8, then S = T.

Proof.

Let 9t be the null space of S — T. By assumption, $ C 9t. Since § is
total, so is 91, hence 9" = {68} (see Ezample II1.2.1). By Theorem
II16.2, N = n** = {}* = 5¢; thatis, S — T =0. ||

Theorem 3. If S and T are operalors such that (Sz|z) = (Tz|z) for all
x &€ 3, thenS = T.
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Proof.

Consider the sesquilinear forms ¢ and ¢ defined by the formulas
o(@y) = (Sz|y), ¥(z,y) = (Tz|y) (see Example V.5.2). By assump-
tion ¢(z,2) = ¢¥(z,z) for all z, hence ¢ = ¢ by Theorem V.5.3. Thus,
(Sz|y) = (T'z|y) for all 2 and y; Sz = Tz results from Theorem
I12.1. |

Exercises

1. If ¢ is a set, @ is a pre-Hilbert space, and S,T' are mappings of
o into @ such that (Sz|y) = (Tz|y) for all z € X and y € @, then
S=T.

2. If T is an operator such that Tz is orthogonal to x, for every
vector z, then 7' = 0.

3 IfS*S 4+ T*I'=0,then S =T = 0.

4. Let S and T be operators, 8 a total subset of 3¢. Show:

(i) If (Sz|y) = (Tz|y) forall 2,y € 8, then 8 = T.

(ii) It can happen that (Sz|x) = (Tz|z) for all € §, and yet
S=T.

5. Theorem 3 holds for (not necessarily continuous) linear mappings
in pre-Hilbert space.

6. In a normed space &, call a subset § folal in case: the only
continuous linear form f on & such that f(z) = Oforallz € §,isf = 0.
Then:

*(i) It can be shown that if $ is a total subset of &, then & is the
smallest closed linear subspace of & which contains 8. Theorem 2 then
generalizes to normed spaces.

(ii) In Hilbert space, a subset 8 is total in the above sense, if and
only if it is total in the sense of Definition I1.8.1.

7. Let S be a subset of a pre-Hilbert space ®.

(i) If S is total in the sense of Ezercise 6, then it is total in the
sense of Definition I11.8.1.

(i) The converse of (i) fails.

§3. AN EXAMPLE

The theorem of this section is a useful source of examples of op-
erators. Suppose 3C is classical Hilbert space, and z,, is an orthonormal
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basis for 3¢. Thus, every z € 3C has a unique representation z =
2o Mizy, where 207 |Mi|? < o, namely N = (z|ax) (see Theorem
118.1).

Theorem 1. Let u, be a bounded sequence of complex numbers, M =

LUB {|uk|: k = 1,2,3,-- - }. There exists one and only one operator T
such that

(1) Tz = mae for all k.

Moreover,
@ 7(Zonm) = Zowan
@ ITI=M

(4) T*zx = m*ze forall k
5) T* (Z‘:’ nm) T

(6) T*T =TT*
me.

(1),(2),(3): Given z € ¢, say o = 2 Mai; the problem is to de-

fine T. Since 2 |Mesk|? < M? 7 Nef? = M? || 2 ||* (see Theorem
11.7.2), one can define Tz = 3, Nuuar (see Theorem I1.7.1). The
linearity of 7' results from the Lemma to Theorem I11.3.2. Since
| Tz |* < M? || ||, T is continuous, and || T || < M.

Clearly Txx = wivr; since || 2 || = 1, || T'[| 2 || Tze || = || po || =
| ux| for all k, hence || T{| > M.

(4),(5): Suppose z = ZT Mz and T*x = Ef vir; the problem is
to show v = Aeuz*. For all &k, v = (T*z|2) = (| Tax) = (x| mers) =
we*(@|ar) = e

(6): Clearly T*Txy = |pk|®xr = TT*z; since the z; are total,
T*T = TT*.

Uniqueness: If S is any operator such that Sz = w2 for all k, then
Sz = Tay for all k; since the z; are total, S = 7. ||
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Exercises

1. Notation as in Theorem 1. For each n = 1,2,3,-- -, let T', be the
unique operator such that Thzx = mixe for k < n, and T2 = 0 for
k > n (the existence of T, is a special case of Theorem 1). Then,
T, — T strongly, in the sense of Exercise IV.8.2.

9. If & and § are normed spaces, S: & — & is a continuous linear
mapping, z € &, and z = 2. z; in the sense of Definition I11.7.1
(generalized to normed spaces), then Sz = ET Szp.

§ 4. ISOMETRIC OPERATORS

According to Definition IV.7.3, an operator T is isometric in case
| Tz — Ty || = || =z — y || for all z,y € 3¢; by Theorem IV.7.5, this is
equivalent to the condition || Tz || = || || for all z. In Hilbert space,

Theorem 1. The following conditions on an operalor T are equivalent:
(a) T 1s isometric

by T'r=1
(e) (Tz|Ty) = (z|y) for all z,y € 3C.
Proof.

(a) implies (b): By Theorem IV.7.5, || Tz || = || « || for all z, hence
(T*Tz|z) = (Tz|T2) = | Tz |? = | z ||* = (z]2) = (I=z|2).

(b) implies (c): (Tz|Ty) = (T*Tz|y) = (Iz|y) = (z|y).

(c) implies (a): || Tz || = (Tz|Tz) = (z]2) = ||z |% |

If T is isometric, it is clear from the relation || Tz — Ty || =
| 2 — y || that T is injective.
Theorem 2. The range T(3C) of an isomelric operator T is a closed
linear subspace of 3C.

Proof.

T'(3¢) is a linear subspace, by Theorem IV .1.4. Suppose y is adherent
to 7(3¢) ; the problem is to show that y € T'(3C). Choose any sequence
yn € T(3C) such that y, — y. Say ya = Tz, Since || 2n — 2, || =
| T2m — T2a || = || ym — ¥a | = O, 2a is a Cauchy sequence. Since
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3¢ is complete, 2, — z for suitable z. By the continuity of T, Tz, —
Tz, thatis, Tz = limy, = y. |

Example 1. Let 3¢ be classical Hilbert space, and 225,23, -+ an
orthonormal basis for 3¢. There is a unique operator T such that
Txr = w141 for all k. Specifically, every vector z has a unique repre-
gentation z = 2: \iZk, and one defines Tz = E:' Mk 41. Clearly T
is linear, and || Tz ||* = 27 I\e® = || z || shows that 7 is isometric.
T will be referred to as a one-sided shift operator.

The effect of T* is as follows: T*z; = 0, and T*z; = x3_; for k =
2,3,4,---. For, (T*z1|7;) = (21| T7;) = (21]%41) = 0 = (8]z;) for
j=123,---. I k> 1, (T*x|z;) = (xx|zj41) =1 when j=Fk — 1,
and = 0 for all other j; thus, (T*z|x;) = (xx—1|2;) forj = 1,2,3,- - -,

Exercises

1. If S and T are isometric operators, so is ST'.

2. Operators S and T are said to be metrically equivalent in case
|| Sz || = || Tz || for all z € 3C. Then, S and T are metrically equiv-
alent if and only if S*S = T*T.

3. In Example 1, if 3¢ = I?, and z, = e, is the canonical ortho-

normal basis, describe the effect of 7" and T* on the vector z =
01:*21*8:' . ')-

4. Let Tz = x4, be the one-sided shift operator (Ezample 1). The
x;. are total, and for each k, T is orthogonal to z;. Compare with
Exercises 2.2, 2.4.

5. Conditions (a) and (c) of Theorem 1 are equivalent, for a linear
mapping in pre-Hilbert space.

6. Theorem 2 holds for an isometric linear mapping of a Banach
space.

7. If 9 and 9T are closed linear subspaces of 3¢, 7' is an isometric
operator, and T(9) = 9, then T'(oM*) < gt

8. Suppose S and 7' are metrically equivalent operators, in the
sense of Exercise 2. Prove:

(i) There exists an isometric vector space isomorphism V: T(3¢) —
8(3¢) such that VTz = Sz for all 2 € 3C.

(ii) If T(3¢) is a closed linear subspace, then S(3C) is also closed.
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9. Let S: 3¢ — 3C be a mapping such that (Sz|Sy) = (z|y) for all
2,y € 3JC. Suppose, moreover, that S(3¢) is a linear subspace of JC.
Then S is an isometric operator,

10. Let T': 3¢ — 3C be a mapping such that (Tz|Ty) = (y|z) for
all z,y € 3C. Suppose, moreover, that 7'(3C) is a linear subspace of 3C.
Then T'T is an isometric operator.

11. Let 3¢ be classical Hilbert space, =, an orthonormal basis for
3C. An operator T is isometric if and only if 7'z, is an orthonormal
sequence.

§5. UNITARY OPERATORS

Definition 1. An operator T is said lo be unitary in case T*T = TT*
=1L

Theorem 1. The following condilions on an operator T are equivalent:
(a) T is unitary
(b) T* 4s unitary
(¢) T and T* are tsometric
(d) T is isomelric and T* is injective
(e) T 1is isomelric and surjective
() T is bijective, and T™ = T*,

Proof.
The equivalence of (a),(b),(c) is clear from the definitions, and the
relation T** = T,

(¢) implies (d): Isometric operators are injective.

(d) emplies (e): By Theorem 4.2, T'(3C) is a closed linear subspace
of 5¢. Also, T* is injective; quoting Theorem V.8.6, 3¢ = {9}+ =
{y: T*y = 6}*+ = T(3C) = T(30).

(e) implies (f): By assumption, 7 is bijective. Let S = 7*; accord-
ing to Definition IV.2.2, ST = TS = I. Then, T* = T*I = T*(TS)
= (T*P)S =18 =8.

(f) émplies (a): Clear from the definitions. ||
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Examples

1. Notation as in Theorem 3.1. Thus, 3¢ is classical Hilbert space,
e, is an orthonormal basis for 3¢, u, is a bounded sequence of complex
numbers, and 7' is the unique operator such that T2 = pgg for all k.
One has T*T'z;. = |ux|*xx = TT*y. Clearly, T is unitary if and only
if | uk|®2r = Iz for all k, in other words, || = 1 for all k.

2. Let 3¢, z, be as in Ezample 1. Define yi = xoryq for k =
0,1,23,---, and y_p = zox for k = 1,2,3,- - -, Thus, y, is an ortho-
normal basis indexed by the set of all integers. Every vector = has a
unique representation z = 2.~ M (the sum can be interpreted as
the unique vector y such that (y|yx) = M for all k). There is a unique
operator U such that Uy = yx.q for all k; specifically, one defines

U (Z; M;y,g) = z:u AiYk+41. It follows that U*y, = y._; (see the

calculation made in Ezample 4.1). Since U*Uy, = UU*yp = yp =
Iyk, U is unitary; it will be referred to as a two-sided shift operator.

Exercises
1. If 3¢ is finite-dimensional, every isometric operator is unitary.

2. An operator T is unitary if and only if 7* is isometric and T is
injective.

3. If S and T are unitary operators, so is ST.

4. If T is a unitary operator, 91 and 9 are closed linear subspaces,
and T(9) = 91, then T(M*) = o t.

5. An operator T is unitary if and only if 7: 3¢ — 3¢ is a Hilbert
space isomorphism. More generally, if 3¢ and X are Hilbert spaces, &
mapping 7': 3¢ — X is'a Hilbert space isomorphism if and only if:
T is a continuous linear mapping such that 7*7 = I (= identity
operator in 3C) and T'T* = I (= identity operator in X).

6. If T': 3¢ — 3Cis a surjective mapping such that (Tz| Ty) = (z|y)
for all z,y € 3¢, then T is a unitary operator.

7. If J and K are conjugations of 3¢, in the sense of Exercise V.5.1,
then JK is a unitary operator; in particular, .JJ is unitary. If J is &
conjugation, and U,V are unitary operators, t1en UJV is a conjuga=
tion.
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8. Let 3¢ be classical Hilbert space, z, an orthonormal basis for 3,
and 1/,2,3',- - - any rearrangement of the indices 1,2,3, - - -. The unique
operator T such that Tz, = 23’ for all %, is unitary.

9.-(i) If 8 is a total subset of 3¢, and 7T is an isometric operator,
then T is unitary if and only if 7'(8) is a total subset of IC.

(ii) If 3¢ is classical Hilbert space, and z, is an orthonormal basis
for 3¢, an operator T is unitary if and only if Tz, is an orthonormal
basis for 3C.

10. An operator S is said to be unitarily equivalent to the operator
T in case there exists a unitary operator U such that 7 = U*SU.
Notation: S == 7'. Prove:

(i) T =T, for every operator 7.

(i) ST, then T==8S.

(iti) If R=~ S and S= T, then R = T. Moreover,
(iv) if S= T, then S* == T*.

§6. SELF-ADJOINT OPERATORS

Definition 1. An operator T is said to be self-adjoint (or “Hermitian”)
in case T* = T.

Theorem 1. The following conditions on an operator T are equivalent:
(a) T is self-adjoint
(®) (Tz|y) = (| Ty) for all z,y € G
(¢) (Tz|z) = (x| Tz) for all x € 3¢
(d) (Tz|z) is real, for all z € 3C.
Proof.
(a) implies (b): (T'z|y) = (x| T*y) = (z|Ty).
(c) implies (d): (Tz|2)* = (x| Tz) = (Tz|z).
(d) implies (a): (Tz|z) = (Tz|2)* = (z|Tz) = (T*z|z). |}
The next theorem follows easily from the properties of adjoints
listed in § 1:
Theorem 2.
(1) If S and T are s ™adjoint, so is S + T.
(2) If T is self-adjoint, and a is real, T is self-adjoint.
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(3) If T is any operator, T*T and T + T* are self-adjoint.

(4) If 8 and T are self-adjoint, then ST is self-adjoint if and only if
ST = TS.

Example 1. Notation as in Theorem 3.1. Thug, Tz, = pexx and
T*zy = px*zi. Clearly T is self-adjoint if and only if peze = pe*2k for
all k, in other words, u is real for all k. ||

The decomposition of a complex number A in the form A = « + 18,
where « and g are real, has a generalization for operators:

Theorem 3. (Cartesian form) If T ¢s any operatlor, ﬂwre_emist self-ad-
joint operators A and B such that T = A + iB. Necessarily

1
= §(T+ T

1
B= E(T - T%).

Proof.

Define A and B by the above formulas; clearly A anq B are self-
adjoint, and A + 1B = T. Suppose also T = C + iD, with C and D
gelf-adjoint. Then, T* = C* + :*D* = C — iD, hence T + T* = 2C
and T — T* = 2(D. Thus, C = Aand D = B. |

The following result is important for the discussion of spectral
theory in Chapter VIII:

Theorem 4. If T 18 a self-adjoint operalor,
| 7| = LUB {|(Tz]2)|: ||z || < 1}.

Proof. : .
Define ¢(z,y) = (Tz|y); ¢ is a bounded sesquilinear form (see Theo-
rem V.7.1), and || ¢ || = || T ||. Since ¢(y,2) = (Ty|z) = (y|Tz) =

(Tz|y)* = [o(z,)]*, ¢ is Hermitian, hence || ¢ || = LUB {|¢(z,2)|:
Il z|| <1} by Theorem V.6.2. |

Exercises
1. An operator T is said to be skew-adjoint in case T* = —T. Show:

(i) T is skew-adjoint if and only if ¢7 is self—a..cljoint.
(ii) For any operator T, T — T'* is skew-adjoint.
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2. If T is a self-adjoint operator, § and 3 are subsets of 3¢, and
T(s) C 3, then T(34) < s*.

3. If T is self-adjoint, Tz = 6 if and only if 7Tz = 6. Give an
example of an operator 7' such that T' ¢ 0 but 77 = 0.

4. If T is self-adjoint, and S is any operator, then S*TS is self-
adjoint,

5. If T is self-adjoint, and S is unitarily equivalent to T, then S is
self-adjoint.

6. (i) If ¢ is a bounded sesquilinear form on 3¢ X 3¢, there exist
unique bounded Hermitian sesquilinear forms ¢; and ¢, such that
¢ = ¢1 + tga.

(i) If U is a vector space, and ¢ is a sesquilinear form on U X,
there exist Hermitian sesquilinear forms ¢,,p, such that ¢ = ¢ +
103,

(iii) Generalize (i) to bounded sesquilinear forms ¢ on & X &, where
& is a normed space.

7. An operator T is said to be positive in case (Tz|z) > 0 for all
z € 3. Notation: ' > 0. Prove:
(i) If T > 0, then T is self-adjoint.
(i) IfS>0and7 >0,thenS+ 7> 0.
(iii) If T > 0 and @ > 0, then o7 > 0.
(iv) If T > 0 and 8 is any operator, then S*7'S > 0.
(v) For any operator 7', T*T > 0.
(vi) IfS>0,7>0,andS+ T = 0,thenS = T = (.
(vii) If T >0, then |(Tz|y)|? < (Tz|2)(Ty|y) for all z,y € 3.
(viii) If 7 > 0, then Tz = 0if and only if (Tz|z) = 0.
It can also be shown that:
*(ix) If T > 0, there exists a unique operator S > 0, such that
T = SS; 8 is called the positive square root of T. Notation: S = VT,
*(x) Let T > 0, 8 = +/T. For an operator B, RT = TR if and
only if RS = SR.
*(xi) IfS > 0, T > 0, then ST > 0if and only if ST = TS. In this
case, VST = v/S V/T.
*(xii) If 7 is self-adjoint, there exist positive operators A and B
such that T = A — Band AB = 0.

8. If S and T are self-adjoint operators, one writes S <T (or
T > 8)in case T — S > 0 in the sense of Ezercise 7. Prove:
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(i) - T £ T for every self-adjoint operator 7.

() FS<Tand T <S8, thenS =T.

Gii) TR<SandS< T, then RS T. -

(iv) If S and T are self-adjoint, then 8 < T if and only if (Sz|z) <
(Tz|z) for all z € IC.

(v) 1If Tisself-adjoint, T < || T || 7, and T > — || T || I. Briefly,
-|T|ILTL|TIL

(vij fA <BandC <D, then 4 +C < B+D.

(vii) If S < T and a > 0, then oS < oT.

(viii) If S < 7, then —S > —T.

(ix) If 8 < T,and R is any operator, then R*SE < R*TR.

9. An operator T is called a contraction in case || Tz || < || z || for
all z € 5¢. For an operator 7, the following conditions are equivalent:

(a) T is a contraction

®I7T)<1

(¢) T*T < I in the sense of Ezercise 8

(d) Tr*<T

(e) T*is a contraction

(f) T*T is a contraction.

10. Tf T is a self-adjoint operator, there is a smallest number M, and

a largest number m, such that mI < T < M1 in the sense of Ezercise
8. One has || T || = max {|m|, [M]}.

11. If T is an operator such that 7*T > I, then T'(3¢) is a closed
linear subspace of 3¢. Such an operator is injective; it is not necessarily
surjective.

12. Let T be a self-adjoint operator, and set B = T + iI. Prove:

@ [Rz|®=|Tz|?+ =z

(i) R is injective, || Rz || 2> ||z [|.

(iii) R(c) is a closed linear subspace of 3C.

(iv) R(3c) = 3c.

(v) R is bijective, R~ is continuous, and || R~ || < 1.

(vi) The operator U = (T' — 4I)(T + 4I)™" is unitary; it is called
the Cayley transform of T.

13. (i) If T is any operator, then the operator R = T*T + I i8
bijective, R~ is continuous, and || ™! || < 1.

(ii) If T > 0, then the operator S = T + I is bijective, S™" i8
continuous, and | S~ || < 1.
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14. Let Uyi = yr41 be the two-sided shift operator, and P the
projection whose range is the closed linear subspace generated by
Yo,¥1,Y2," " *- Then’ P 2 0: UPU* S P, but UPU* = P,

§7. PROJECTION OPERATORS
Definition 1. An operator T is called a projection in case T* = T = TT.

Thus, a projection operator is a self-adjoint operator which equals
its “square.”

Example 1. Let 91 be a closed linear subspace of 3¢, and 7' = Py
the projection of 3¢ on 9. As shown in Theorem I11.8.1, T is linear
and || Tz || < || z ||, hence T' is an operator; also T'(Tz) = Tx and
(Tz|y) = (z|Ty), thus T is a projection operator in the sense of
Definition 1. In fact, every projection operator can be obtained in this
way from a suitable closed linear subspace:

Theorem 1. If T is any projection operalor, there is one and only one
closed linear subspace M such that T = Py Specifically, N is the range
of T, and 9* is the null space of T.

Proof.

Let 9t = {y € 3¢: Ty = y};since 9 is the null space of the operator
T — I, it is a closed linear subspace of iC.

The range of T is 9. For, if y €9, then y = Ty € T(30); if
conversely y € T'(3¢), say y = Tz, then Ty = T(Tz) = Tz = y shows
that y € 9. Thus, 9t = T'(3C).

Py Theorem V.8.6, the null space of T is [T*(3¢)]* = [T'(30)]* =
o=

One has T = Py For, given any z € 3¢, write z = y + z with
y € 9 and z € N*; quoting Theorem I11.8.1, Pqz =y =y + 0 =
Ty+Tz=T@y+z2) = Tz

Uniqueness: if Py = Pgy, then 91 = Pg(3¢) = Pon(3¢) = on. ||

Example 2. Let y be a fixed vector of 3¢, ||y || = 1, and let 9 =
{Ay: A scalar} be the one-dimensional linear subspace generated by y.
The operator T' defined by 7'z = (z|y)y is the projection of 3¢ on 9.
For, if € 3¢, one can write £ = Ay + z with z | 91 and X a suitable
scalar, and one has Tz = Qy + z[y)y = A\w|y) + GlYy =
A + Oly = My = Py
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Example 3. Notation as in Theorem 3.1. Let Py be the projection whose
range is the one-dimensional linear subspace generated by zx; by
Ezample 2, Pyx = (z|z)xi. Define T, = E: wiPy, forn = 1,23, - -.
If z € 3¢, one has z = X7 (z|ze)xx, hence Tz = 3. (z|ze)pszi =
2% m(Pix) = lim, 27 me(Pyz) = lim, Tyz. Thus, Taz — Tz, for
each z; that is, T, — T strongly, in the sense of Exercise IV.8.2.

Theorem 2. Let 9N and N be closed linear subspaces of 3¢, P the projec-
tion with range M, and Q the projection with range N. Then, M L 9N if
and only if PQ = 0.

Proof.

If: Suppose PQ = 0. If z € 91 and y € €, then (z|y) = (Pz|Qy)
= (z| P*Qy) = (z| PQy) = (z|6) = 0.

Only if: Suppose 9 L 9. If z € 3¢, then Qz € 9, hence Qz € M+,
hence P(Qz) = 0. ||

Example 4. If Py,---,P, are projections, and P;P; = 0 whenever
j # k,then P = 3" Py is a projection. For, P* = 3" Py* = 3" Py

= P, and PP = Ej.ngPk = E"ngg = Ek Pg = P. See also
Exercise 6.

Exercises
1. An operator T is a projection if and only if T = T'*7.

2. If P is a projection, and @ is unitarily equivalent to P, then Q is
a projection.

3. If P is a projection, then P > 0 in the sense of Exercise 6.7. If
P is a non-zero projection, || P || = 1.

4. If P, Q are projections, and PQ = QP, then PQ is a projection.
In this case, if 9 is the range of P and 9 is the range of @, then the
range of PQ is the intersection of 9 and 9N (see Exercise 1.5.4).

5. If P is a projection, with range 9%, then I — P is a projection,
with range 9.

6. Let P and @ be projections, with ranges 91 and 9, respectively.
If 9w L 91, then P + Q is the projection with range M@ I (see
Definition I111.2.5).
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7. If P, Q are projections, and PQ = QP, then P+ Q — PQ is a
projection. What is its range?

8. If P, Q, and P + Q are projections, necessarily PQ = 0.

9. Let P and Q be projections, with ranges 91 and 91, respectively.
The following conditions are equivalent:

(a) P — Q is a projection.

(b) P = @ in the sense of Ezxercise 6.8.

(e) || Pz | = || Qz || for all z € 3C.

(d) am O ;.
In this case, the range of P — @ is the set of all vectors common to 91
and 9Ut.

10. If P, Q are non-zero projections, and PQ = 0, then || P + Q ||
<[P+l

11. If T is an isometric operator, then 77* is a projection.

12. An operator T is said to be partially isometric in case T*T is a
projection. Suppose T is partially isometrie, say T*T' = P. Prove:

QTP =1,

(i1) Set Q@ = TT*. Then Q is a projection, and QT = T. Thus, T*
is partially isometric.

(iii) T maps P(3¢) isometrically onto Q(3¢), [P(3¢)]* is the null
space of T, and [Q(3¢)]* is the null space of T*.

(iv) For an operator S, T'S = 0 if and only if PS = 0. Similarly,
ST = 0if and only if SQ = 0.

(v) If U is unitary, and R is any projection, then UR and RU are
partially isometric. If S is isometric and 7' is partially isometric, then
ST is partially isometric. If S and 7' are partially isometric, ST is not
necessarily partially isometric.

13. Suppose 3¢ is finite-dimensional.

(i) If 7 is partially isometric, and T'T* < T*T, necessarily T7T* =
o b

(i) If U is unitary, P is a projection, and UPU* < P, necessarily
UP = PU. Compare with Ezercise 6.14.

14. If T is an operator with one-dimensional range, there exist
vectors y,2 € 3C such that Tz = (z|2)y for all 2 € 3. Moreover,

(i) T*zx = (z|y)zforall xz € 3C

(ii) 7T = uT, p a suitable scalar

@ [ Th=1MNzllzl
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(iv) T* = T if and only if ¥ = az for some real number a. Equiv-

alently, (y|2) = %= ||y | || 2 ||

(v) What are necessary and sufficient conditions on y and z, in
order that 7' be a projection?

§8. NORMAL OPERATORS

Definition 1. An operator T s said to be normal in case T*T = TT*,

Every unitary operator is normal; so is every self-adjoint operator.
An isometric operator is normal if and only if it is unitary.

Theorem 1. The following condilions on an operator T are equivalent:
(a) T is normal

(b) T* 4s normal
(€ || T*z| = || Tz || for all = € 3e.
Proof.

The equivalence of (a) and (b) results from 7** = T,

(a) implies (c): || T*z ||> = (T*z|T*z) = (TT*z|z) = (T*Tz|z)
= (Tz|Tz) = || Tz |

(c) implies (a): (T*Tz|z) = || Tz ||® = || T*z ||> = (TT*z|z) for
all z.
Theorem 2. Let T' = A + iB be the Carlesian form of the operator T.
Then, T is normal if and only if AB = BA.

Proof.

Only if: Assuming T normal, it is clear from the formulas in Theorem
6.3 that AB = BA. :

If: Suppose AB = BAj;since T* = A — iB, clearly T*T = TT* =
AA + BB. |}

Exercises

1. If T is normal, and S is unitarily equivalent to 7, then S is
normal.
2. T is normal if and only if 7' and 7* are metrically equivalent.

3. (i) If T is normal, and TT = 0, then T = 0.
(i) Give an example of an operator 7' £ 0 such that 77T = 0.
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4. If T is normal, and u is a scalar, then || T*z — u*z || =
| Tz — pz || for all z € 3e. :

5. If T is normal, then 7' and T* have the same null space, and
T(3€) = T*(3¢). If 9 is the null space of T, then t* = T(50).

6. If T' is normal, there exists a unitary operator U such that T* =
UT.

7. More generally, if S and 7' are metrically equivalent normal
operators, there exists a unitary operator U such that S = UT.

8. Let T be a normal operator. Prove:

(i) T is surjective if and only if 7'* is surjective.
(ii) 7' is injective if and only if 7* is injective.
(i) 7 is bijective if and only if T* is bijective.
(iv) If T is bijective, then 7*T~! is unitary.

9. An operator T is said to be snveriible if there exists an operator
8 such that 8T = TS = I; in this case, it is clear that T is bijective,
and 77! = 8. Prove:

(i) If S and T are invertible operators, then ST is invertible, and
ST = T84,

(ii) If 7 is an invertible operator, then so is 7%, and (T*)~! =
b i)

(iii) If 7 is an invertible normal (resp. self-adjoint) operator, then
T~ is normal (resp. self-adjoint).

(iv) If T is an invertible operator, then 7*7T is invertible. The
converse fails.

(v) If Tis normal, then T is invertible if and only if 7*T is invert-
ible.

*(vi) It can be shown that every bijective operator 7' is invertible

(that is, 7" is necessarily continuous). A proof of this is sketched in
Ezercises 11 through 13.

*10. If T is a bijective normal operator, then 7! is continuous
(see also Ezercise 13). A brief proof results from Ezercise 8 and
Ezxercise V.8.6.

11. An operator T is said to be bounded below in case there exists
a constant N > 0 such that || Tz || > N || z || for all z € 5¢. Equiv-
alently, there exists a constant M > 0 such that 7*T > MT in the
sense of Ezercise 6.8. Prove:
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(i) Every invertible operator is bounded below.

(ii) If an operator T' is bounded below, then T is injective, and
T'(3¢) is a closed linear subspace of 3¢. Hence, the mapping 7': 3¢ —
T'(3¢) has a continuous inverse.

(iii) An operator T is invertible if and only if, T is bounded below
and 7'(3¢) is dense in 3C.

(iv) An operator T is invertible if and only if, 7' is bounded below
and T* is injective.

(v) An operator T is invertible if and only if, T is injective and T*
is bounded below.

(vi) An operator T is invertible if and only if both T and T* are
bounded below.

*12. If T is a surjective operator, then T* is bounded below.
*13. If T is a bijective operator, then T~ is continuous.

14. Let T be an operator.
(i) If T*T > I in the sense of Ezercise 6.8, T is not necessarily
invertible.
(ii) If 7*T > I and TT* > I, then T is invertible.
(iii) If 7" is normal and 7*T > I, then T is invertible.
(iv) If T is normal and bounded below, then T is invertible.

15. An operator S is said to be similar to the operator T' in case
there exists an invertible operator A such that T = A~'S4. Notation:

S ~ T. Then:
(i) T ~ T, for every operator T.
(ii)) S~T, then T~ 8.
(iii) If R ~ 8 and S ~ T, then R ~ T'. Moreover,
(iv) If S~ T, then S* ~ T*,
(v) If 8= T in the sense of Ezercise 5.10, then S ~ T.

*(vi) If S and T are normal operators, it can be shown that S = T

ifandonlyif S ~ T

§9. INVARIANT AND REDUCING SUBSPACES

Definition 1. A closed linear subspace 9 is said to be invariant under

the operalor T in case T(N) C €.
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Examples
1. {6} and 3C are invariant under every operator 7.

2. The null space of an operator T is invariant under 7'; for, Tz =
0 implies T'(T'z) = #.

3. More generally, if S and T are operators such that ST = T8,
the null space of T is invariant under 8. For, if T2z = 6, then T'(Sz) =
(ITS)z = (ST)x = S(Tx) = S6 = 6.

Theorem 1. Let 8 and 3 be subsets of 3¢, 9 = $*+, 9 = 3L, If T is
an operator such that T'(8) C 3, then T(9M) C 9.

Proof.

Incidentally, 91 (resp. 97) is the smallest closed linear subspace of
3¢ which contains § (resp. 3). By Theorem V.8.4, T*(3*) < $*, hence
ety catr )

Examples

4. Let S be a subset of 3¢, 9 the smallest closed linear subspace
containing 8. If T is an operator such that 7'(S) C 8, then N is invar-
iant under T'; this follows at once from Theorem 1.

5. In particular, if § is a linear subspace of 3¢, 9 = §, and T is an
operator such that T(8) C 8, then 9 is invariant under 7. See also

Ezercise 1.

6. For any operator T', T'(3C) is invariant under T'; this follows from
the relation T[7T'(3¢)] < T'(3¢), and Ezample 5.

Theorem 2. Let T' be an operalor, 9 and 9 closed linear subspaces of
3. The following conditions are equivalent:

(8 T cxn
b) T*@*) <ot
(¢) PgTPgy = TPy
Proof.
(a) and (b) are equivalent by Theorem V.8.5.
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(a) implies (c): Given any 2 € 3¢, one has Pypz € I (see Example
7.1); by condition (a), TPgpz € 9, hence Py TPopz = TPyyz.

(c) implies (a): If y € I, then Ty = TPy = PuTPypy = Py Ty,
hence Ty € 9. |}

In particular, 9 is invariant under 7' if and only if 9%* is invariant
under T'*.

Corollary. A closed linear subspace 9 is invariant under the operator T'
‘if and only t:f PgnTPm = TPg[.

Definition 2. Let 9 be a closed linear subspace invariant under the
operator T. The restriction of T' lo 9 is the mapping T/9: 9 — N
defined by (T/N)y = Ty.

Thus, 7'/91 is the mapping y — Ty, restricted to 9T. The following
is elementary:

Theorem 3. Let 9 be a closed linear subspace of 3C.

(1) If 9N is invariant under the operator T, then T /3T is an operator in
the Hilbert space M, and | T/ || < || T ||

(2) If ;N is invariant under the operators S and T, then it is invariant
under S + T, ST, and \T'; moreover,

(8 + 1)/ = (8/30) + (T/%)
(ST)/; = (8/3)(T/30)
(AT)/o = MT/3).

Definition 3. A closed linear subspace 91 is said to reduce the operator
T in case both 9 and N+ are invariant under T'.

TheoremtIfTwanoperatar,andﬁtwaclosed!mearsubspm the
Jollowing conditions are equivalent:

(a) 9 reduces T

(b) N* reduces T

() 9T reduces T*

(d) 9t s snvariant under both T and T*
(e) TPy = PyT.
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Proof.
The equivalence of (a)—(d) is immediate from Theorem 2 and the
definitions, Let P = Py,

(d) smplies (e): By the Corollary of Theorem 2, PTP = TP and
PT*P = T*P, Then, PT = P*T = (T*P)* = (PT*P)* = PTP =
TP,

(e) smplies (d): Assuming PT = TP, one has PTP = TPP = TP,
hence 9 is invariant under 7' by the cited corollary. Also, PT* =
(TP)* = (PT)* = T*P, hence 9 is invariant under T*. ||

Examples

7. If T is a normal operator, 9 = 7'(3¢) = 7'*(3C) reduces T'; for,
9t is the null space of both T' and T*, hence is invariant under them
both.

8. If Tay = x4y is the one-sided shift operator (Ezample 4.1), the
only closed linear subspaces which reduce T are {0} and 3. For, sup-
pose 9N % {6} is a closed linear subspace which reduces 7. For a non-
zero vector y = D Mk, define the index of y to be the smallest
subscript k such that \; > 0. Let m be the smallest index of any non-
zero vector in 9%, and choose any non-zero y € 91 with index m: ; clearly

y = Zm Mz Necessarily m = 1; otherwise, 9T would contain the
non-zero vector T*y = E: Nlp—1 = Em_l k412, contrary to the
minimality of m. We may suppose Ay = 1, thus y = z; + 2. Ny
One has T*y = T*z; + 37 x,,T*z., =0+ 37 Mk, hence TT*y
=Y o uTn, = 2 Mt = y — ;. Since z; = y — TT*y, clearly
z; € 9. Then, AN also conta.ms Tzy = xy, Tz, = 23, and so on.
Evidently 9t is total, t* = {6}, 9t = 5¢. |

Theorem 5. If N reduces T, then (T/M)* = T*/9N.

Proof.

Let R = T/9 and 8 = T*/9; these are both defined, by condition
(d) of Theorem 4. For all z,y € 9, (R*z|y) = (z|Ry) = (z|Ty) =
(T*z|y) = (Sz|y); since R* and S are operators in N, R* = 8. ||

Corollary 1. If 9 reduces T, and T is normal (resp. unitary), then T /3
s normal (resp. unitary).




160 Introduction to Hilbert Space vi §¢9

Proof.
By Theorems 3 and &, (T*T)/N = (T*/2)(T/n) = (T/70)*(T /),
and I/91 is the identity operator of 9T.

Corollary 2. If T is self-adjoint, and N is itnvariant under T, then T /3
1s self-adjoint.
Proof.

Since T* = T, 9 reduces T by Theorem 4. Then, (T/)* = T*/3 =
T/ |

Example 9. Suppose T is normal, and 91 is invariant under 7'. Then,
7'/9t is normal if and only if 9 reduces 7'.

For, if 91 reduces 7', T'/91 is normal by Corollary 1 above.

Conversely, suppose B = T'/91 is normal, that is, R*R = RR*,
where R* is an operator in 9I. Given z € 91, the problem is to show
that T*z € 9. For any y € N, (T*z|y) = (z|Ty) = (z|Ry) =
(R*z|y); thus, (T*z — R*z|y) = Oforally € 9N, T*z — R*z € N+,
Since R*z € 91, one has

I T*z [ = | (T*z — B*2) + R*z |* = || T*z — R*z |* + || R*z |*

by Theorem I1.6.2. Since T and R are normal, | T*z || = || Tz ||
and | R*z || = || Rz || = || T2 ||, hence the above equation reduces to
| Tz |* = | T*2 — R*z ||* + || Tz ||>. Thus, T*z — R*z = 6, T*z =
R*z € 9.

Exercises

1. Let 8 and 3 be subsets of the metric spaces & and Y, respectively,
and let 7': ¢ — <Y be a continuous mapping such that 7'(S) < 3. Then,
7@ 5

2. If T is isometric, and 9 is invariant under T, then 7/9 is
isometric.

3. If T has Cartesian form T' = A + ¢B, and 9 reduces T, then
T /9t has Cartesian form (4/91) + #(B/9).

4. If 9 is invariant under T, and P is the projection with range 9,
then (7'/90)* = (PT*P) /9.

5. Let Uyr = yr41 be the two-sided shift operator (Ezample 5.2),
9 the smallest closed linear subspace containing y;,ys,¥3, - -. Then 9T
is invariant under U, but does not reduce U.
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6. If T is unitary, and 9 is invariant under 7', then 7'/91 is unitary
if and only if 9 reduces 7.

7. If T is normal, 9 is invariant under T, and T/9 is a scalar
operator, then 9T reduces 7'.

8. Suppose T is isometric, and 9T is invariant under 7. Then:
() If TV = 9N, N reduces 7.
(ii) If 7'/9t is normal, then 9T reduces T' and T'/91 is unitary.

9. Call an operator T hyponormal in case | T*z || < || Tz || for all
z € JC. Prove:

(i) Tishyponormal if and only if 7'7* < T"*T in the sense of Ezer-
cise 6.8.

(ii) If T is isometric, then T is hyponormal.

(iii) If 7' is hyponormal, 9T is invariant under 7', and 7'/91 is normal,
then 9T reduces 7'.

10. Let 9T be a closed linear subspace invariant under the operator
T. Prove:
G R=T/%, | R*z || £ || T*z || for all z € 9t.
(ii) If T is hyponormal, so is 7'/91.

11. An operator 7' is hyponormal if and only if there exists an
operator V, || V || £ 1, such that 7* = V7.

12. If T is an invertible hyponormal operator, then 7~ is hypo-
normal.

13. Let Uyr = yx41 be the two-sided shift operator. Given a
bounded sequence of complex numbers g, (n = 0,2:1,22,--), let
R be the unique operator such that Ryy = uxyx for all k. Define 7' =
RU. Then, T is hyponormal if and only if |me| < |pr4s| for all k.
T is normal if and only if all the w lie on the circle in the complex
plane with center 0 and radius || ; equivalently, T is a scalar multi-
ple of a unitary operator.

14. *(i) It can be shown that every hyponormal operator on a
finite-dimensional Hilbert space is normal.
(i) If 7" is hyponormal, and 9 is a finite-dimensional subspace
invariant under 7', then 9 reduces 7'.

15. Let T = A < ¢B be the Cartesian form of the operator 7'. Let
AB = C + iD be the Cartesian form of AB. Then, T is hyponormal
if and only if D < 0.
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16. Let Tzp = xp4, be the one-sided shift operator. The only
finite-dimensional subspace 91 invariant under 7 is 9T = {6}.

17. If Tz = x4 is the one-sided shift operator, there exists a
linear subspace 8, distinct from {8} and 3¢, such that 7'(S)  § and
T*(8) C 8. Such a linear subspace is necessarily dense in 3¢. Among
all such 8, there is a smallest, that is, one which is contained in every
other.

18. Suppose 9 reduces the operator 7. Then, T' is an isometric
operator if and only if both T'/9t and T/9t* are isometric. The word
“isometric” can be replaced by “unitary,” “normal,” “self-adjoint,”
“projection,” “hyponormal,” “positive,” “invertible.”

**19. Given an arbitrary operator 7. It is not known whether there
exists a closed linear subspace 91 invariant under T, other than {6}
and 3C.

Proper Values VII

§ 1. Proper vectors, proper values

§ 2. Proper subspaces
§ 3. Approximate proper values

§1. PROPER VECTORS, PROPER VALUES

Definition 1. A vector z € 3C is said to be a proper vector for the opera-
tor T in case: (1) « # 0, and (2) Tx = px for a suilable scalar p.

If also Tz = vz, then (u — v)z = 6, hence p = v. Thus, a proper
vector z determines uniquely the associated scalar pu.

Definition 2. A scalar p is said to be a proper value for the operator T
in case there exists a vector x # 0 such that Tz = pzx.

Thus, p is a proper value for 7' if and only if the null space of
T — pl is # {6}.

Examples

1. If ' = pl, every non-zero vector of 3C is a proper vector for T';
the only proper value is p.

2. Let P be the projection with range 91. Assume 9T > {0}, 9 5 3C.
If y is any non-zero vector of 9, Py = y = 1y shows that y is a proper
veector, with associated proper value 1. Similarly, every non-zero
z € 9" is a proper vector, with associated proper value 0. The only
proper values of P are 0 and 1. Every proper vector of P belongs either
to 9 or to ;M.

3. Let = be a proper vector for 7, say Tz = pzx. If 91 is the null
space of T — ulI, every non-zero vector of 9 is also a proper vector.
In particular, || z | 'z is a proper vector of norm 1.

163
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4. Given a Hilbert space 3C of finite dimension n, and scalars
K1,"* *,un (DOt necessarily distinet). If zy,---,z, is any basis of 3¢,
there is a unique linear mapping T': 3¢ — 3C such that Tz = upze
for all k (see Theorem IV .1.3). See Ezercise 1.

Theorem 1. Let p be a proper value for T. Then:
@ el =TI
(2) If T s self-adjoint, p is real.
(3) If T is isomelric, |u| = 1.

Proof.
Let z be a non-zero vector such that Tz = uzr; we may suppose
Izl =1

M: |ul =llpell =Tz < T|.
(2): u = p(z|z) = (uz|2) = (T'z|2) is real by Theorem VI6.1.
@:lul =Tzl =[=z]|=1 1

Example 5. Let 3C be classical Hilbert space, z, an orthonormal basis
for 3¢, u, a bounded sequence of scalars, and 7' the unique operator
such that 7'z = ey for all k (see Theorem VI.3.1). Thus, the u; are
proper values for 7. In fact, these are the only proper values. For,
suppose T'z = pz, v # 0. Say ¢ = Z‘: Mzi; then Tz = Z‘: AeBETE,
hence Mg = (Tz|2x) = (uz|2i) = p(x|2a) = phe, Me(p — ) = 0 for
all k. Since z # 0, there is an index m such that X\,, # 0; necessarily
u— pm = 0, thus p = p,. Similarly, the p* are the proper values for
T*; this is a symptom of normality:

Thooumﬂ.IfTisanormhIoperawr,xisavector, and p is a scalar,
then Tz = pz if and only if T*z = p*z. In particular:

(1) zis a proper vector for T if and only if il is a proper vector for T*.
(2) s a proper value for T if and only if u* is a proper value for T'*.

Proof.

By assumption, T*T' = T'T*. Since (T — pl)* = T* — p*I, clearly
T — plisnormal, hence || (T — pl)z || = || (T — pI)*z || by Theorem
vis.i. |
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Examples

6. The one-sided shift operator Tzy = zr4, (see Ezample VI.4.1)
has no proper values. For, assuming 7'z = pz, let us show that neces-
sarily x = 0. If p = 0, Tz = pz = Oz = 0; since T is injective, z = 0.
Supposep # 0. lf 2 = E‘r Mg, then Tz = ET ATl = Z: Ak —1Zk,
hence 0 = (Tz|z,) = (uz|z;) = p);; thus A\; = 0. Also, for k> 1,
Me—1 = (Tz|zx) = (uz|2x) = phi, hence Mg = u™"\x_y; since A, = 0,
this implies Ax = 0 for all k.

7. If u is a proper value for the operator S, it does not follow that
u* is a proper value for S*. For instance, let S = T'*, where 7' is the
one-sided shift operator. As shown in Ezample 6, S* has no proper
values, but Sz; = T*z; = 6 = 0z; shows that 0 is a proper value for
S.

8. There exist normal operators having no proper values. For ex-
ample, let Uyr = yr41 be the two-sided shift operator (see Ezample
V1.56.2). Suppose Uz = pzx, and assume to the contrary that z = 6.
Since U is isometric, |u|=1.1f z = 2°° M, then

Uz = Z:, MNelk41 = E:, Ne—1¥k-

For all k, )\;_1 = (Uzlyg) = n(::|yg) = J.l.k;, hence |)\;_1! =IR;[. It
follows that |Ae| = || for all k; since = # 6, No # 0. But 2.° [N
< o, a contradiction.

Exercises

1. Notation as in Ezample 4. T is an operator, and a complex
number u is a proper value for 7' if and only if p = p; for some k.

2. Notation as in Ezample 5. If the u; are distinct, a non-zero vector
2 is a proper vector for 7' if and only if z is a scalar multiple of some z3.

3. Let T'zx = x4, be the one-sided shift operator, and R the unique
operator such that Rxx = (1/k)z forallk (k = 1,2,3,--). Then S =
TR has no proper values.

4. If Tz = 34, is the one-sided shift operator, then 4 is a proper
value for 7* if and only if || < 1.

5. There exists a self-adjoint operator 7' which has no proper values.
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6. If T is a hyponormal operator, and Tz = uzx, then T*z = p*z.

7. Let T be an operator. Then:

(i) A non-zero vector z is a proper vector for 7T if and only if
[(Tz]2)| = || Tz || || = .

(i) In order that T have a proper value u such that |u| = || T'|,
it is necessary and sufficient that there exist a vector z such that
Izl =1and [(Tz|z)| = || T|.

(iii) If a, is a sequence of scalars such that i > 0 for all k, and
E:’ a;,n = 1, then E:ﬂ Qo) < :

8. Proper vectors and values are definable for a linear mapping of
a vector space into itself. If 7' is a continuous linear mapping in a
normed space, and x is a proper value for T, then |u| < || T ||.

§2. PROPER SUBSPACES

Definition 1. If T 4s an operator and p is a scalar, the null space of the
operator T — pl is called the p-th proper subspace of T, and is de-
noted Nr(p). Thus,

Nr(p) = {z € 5: Tz = px}.
Briefly, %r(i) is the p-space of T'.

Thus, 97 (u) is a closed linear subspace of 3¢; it is different from {6}
if and only if u is a proper value for 7. A non-zero vector z is a proper
vector for 7' if and only if z belongs to some u-space of 7'

Theorem 1. If S and T are operalors such that ST = TS, then the
u-spaces of T are invariant under S; that is,

SOy (w)) C g (p) for all p.
Proof. ;

If « € 9Nr(u), then T(Sz) = (TS)z = (ST)z = S(Tz) = S(uz) =
4(Sz) shows that Sz € 9r(u). |l

Corollary. The p-spaces of T are invariant under T,
Theorem 2. If T' is a normal operator,

(1) the u-spaces of T reduce T;

(2) Nr(u) = Nre(u*);

(3) 9r(w) L Np(v) whenever p % ».
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Proof.

(1): Since T*T = TT*, 9r(u) is invariant under T* by Theorem 1.
By the Corollary, 9r(u) is also invariant under 7', hence 9l (i) reduces
T by Theorem VI1.9.4.

(2): See Theorem 1.2.

(3): Given = € 9r(p), y € Nr(»), and p — » # 0, the problem is
to show that z L 3. By (2), T*y = v*y. Then, (Tz|y) = (x| T*y),
(uz|y) = (x|v*y), u(z|y) = »(z|y), (@ — »)(z|y) = 0, hence (z|y) =
o 1

Theorem 1 has a converse, provided T has “sufficiently many”
proper vectors:

Theorem 3. Suppose T' is an operalor such that the only vector x which
is orthogonal to every p-space of T is z = 0. Then, the following con-
ditions on an operalor S are equivalent:

(a) ST =18
(b) Every p-space of T is invariant under S.
Proof.

(b) ¥mplies (a): Let 9T be the null space of T'S — ST'; the problem
is to show that 91 = 3¢, or, equivalently, that :t* = {6}.

One has 97 () C %; for, if z € Nr(k), by assumption Sz € (),
hence T'(Sz) = u(Sz) = S(uz) = 8(Tz), (T'S — ST)z = 6. It follows
that if z 1 9%, then z L 9p(u) for all g, hence z = 6 by the hypothesis
on 7.

(a) implies (b) by Theorem 1. ||

The hypothesis on the p-spaces of T in Theorem 3 is conveniently
expressed in terms of the following:

Definition 2. A family of closed linear subspaces s said lo be total in
case the only vector x which s orthogonal to every subspace 9 belonging
to the family is x = 0.

Thus, the condition on T' in Theorem 3 is that the p-spaces are a
total family. It will be shown in § 4 of Chapter VIII that the p-spaces
of any “completely continuous” normal operator are a total family;
this is the essence of the ‘“spectral theorem” for such operators.




168 Introduction to Hilbert Space vii §3

Exercises

1. If T is any operator, and P, is the projection whose range is
9r(p), then P,TP, = TP, = pP,.

2. Let Tz = pxy, with notation as in Ezample 1.5.

(i) Describe the u-spaces of T'.

(i) If S is an operator, ST = 78 if and only if every u-space of T
is invariant under S.

(iii) If S is an operator such that ST' = TS, then S*T = T'S*,

(iv) If S is an operator, ST = TS if and only if the u-spaces of T
reduce S.

3. Suppose T is a normal operator whose u-spaces are a total family.
If S is an operator such that ST = T'S, then ST* = T*S.

4. If the u-spaces of an operator T are a total family, and 9p(x)
Nr*(u*) for all g, then T is normal.

5. Let T be a hyponormal operator.

(i) For every scalar p, 9p(u) C Np*(u*).

(ii) For a fixed scalar p, let 9 = 9%7(u). Then, 9 reduces 7', and
T/ is normal.

(iii) 9r(x) L 9r(v) whenever u = ».

(iv) If the u-spaces of 7' are a total family, then 7' is normal.

*6. If 5C is finite-dimensional, every hyponormal operator T is
normal.

7. Definition 1 makes sense, and Theorem 1 is true, for linear map-
pings in a vector space. For a continuous linear mapping in a normed
space, the p-spaces are closed linear subspaces.

8. Suppose z,,---,z, are proper vectors for T, Tz = pze. If
B1," * - ,4n are distinet, then zy,- - -,z, are linearly independent.

9. If the u-spaces of T' reduce T, and are a total family, then T is
normal.

§3. APPROXIMATE PROPER VALUES

A scalar p is a proper value for the operator 7' if and only if there
exists a vector z such that || z || = 1and || T2 — uz || = 0. An operator
may not have any proper values at all, even if it is normal (see
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Ezample 1.8). A less stringent condition on p would be the following:
given any € > 0, there exists a vector z such that || z| = 1 and
|| Tz — pz | < ¢; equivalently,

Definition 1. A scalar p 1s said to be an approximate proper value for
the operator T in case there exists a sequence of veclors x, such that
|z || = 1 and || Tz — pzs || — 0. Briefly, u is an AP-valve jor T.

Examples

1. Every proper value for T ié obviously also an AP-value.

2. Let Tz = ppxi, with notation as in Example 1.5. Assume more-
over that the sequence pp converges to a limit g, distinet from every
pk. As shown in Ezample 1.5, p is not a proper value for T'; however,
| Tox — paie || = || pae — w2 || = || (e — Wi || = [pe — 6| — 0,
hence g is an AP-value for 7.

3. Let p be an AP-value for T, and suppose || Tz, — pz, || — 0,
where || z, || = 1. Then, | (Tza|2a) — p| = |(Tzna|2s) — p(za|2a)| =
|(Tzn — un|2n)| < || Ton — u2a || — 0, hence (Tza|za) — 4,
[I[(TTrlzn)l — |u|. Clearly |p| SLUB {|(Tz|2)|: ||z]| <1} <

T|.

Theorem 1. The following conditions on an operator T are equivalent:
(a) T has an AP-value p such that |p| = || T ||
(b) LUB {|(Tz|2)|: l|z[| <1} =TI

Proof.

(a) émplies (b): Suppose |u| = || T' ||, | za || = 1, and || Tzs — p. |
— 0. As shown in Ezample 8, |(Tzn|zn)| — |pu| = || T|. I
M denotes the indicated LUB, one has || T || > M > |(Tz.|z2)| —
| T| asn — o, hence M = || T'||.

(b) emplies (a): Choose a sequence of vectors z, such that || z, || = 1
and |(Tzn|z,)| — || T |. Passing to a subsequence, we may assume
(Tzn|2,) — p for a suitable scalar u, hence |u| = || T'||. Then, 0 <
| Tza — p2a |2 = || Tza [P — (T2a|pza) — (uzn| Tza) + |6 =
| Tn [I> = (T2n|pzn) = (T2n|pzn)* + |p]? < || T | = (T2n|nzn) —
(Tzn|uza)* + |82 = [8]* = u*(Tza|20) — p(T2n|za)* + |* —
[ul* — u*s — pu* + |p* = 0asn — . Thus, || Tzs — p2a || = 0,
and u is an AP-value for 7. ||
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There exist self-adjoint operators having no proper values at all
(see Ezercise 1.5). However, it can be shown that every operator has
at least one AP-value. For our purposes, the following result will
suffice:

Theorem 2. If T is a self-adjoint operalor, either | T || or —|| T'|| s an
AP-value for T.

Proof.

Condition (b) of Theorem 1 holds for T, by Theorem VI.6.4. Let
(Tzn|xs) — p, with notation as in the proof of Theorem 1. Since
(T'xn| ) is real for all n, u is real. Since |u| = || T ||, one has u? =
FFe 1

Exercises

1. AP-values are definable for a linear mapping in a normed space.
If T is a continuous linear mapping, and x is an AP-value for 7, then
el T

2. If pis an AP-value for T, then p + A is an AP-value for 7' 4 AI,
and Ap is an AP-value for AT\

3. If T is isometric, and p is an AP-value for 7', then |u| = 1.
4. If T is self-adjoint, every AP-value for T is real.

5. If Tisnormal, and p is an AP-value for 7, then p* is an AP-value
for 1T'*,

6. Let T be a hyponormal operator.

(i) If pis an AP-value for T, then p* is an AP-value for T*,

(ii) Let pand v be AP-values for T, x # v. If 2, and y, are sequences
of unit vectors such that | Tz, — pzs | — Oand || Tys — vya | — 0,
then (za|yn) — 0.

7. If pis an AP-value for the operator S, it does not follow that u*
is an AP-value for S*.

8. (i) u is an AP-value for 7' if and only if T — uf fails to be
bounded below in the sense of Ezercise VI1.8.11.

(ii) If p is an AP-value for T, T — ul cannot be invertible.

(i) If 7Tz = ap4y is the one-sided shift operator, then
T = T — 0I is not invertible, but 0 is not an AP-value for 7'
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*9. It can be shown that every normal operator T' has an AP-value
psuch that [u| = || T ||, hence || 7' || = LUB {|(Tz|2)|:| = || < 1}.
It would be nice to have a proof in the reverse order.

10. Let T be an operator, u a scalar. The following conditions are
equivalent:
(a) wis an AP-value for T'.
(b) There exists a sequence of operators S, such that || S, || = 1
and || (' — pD)S, || — 0.

*11. Exercise 10 can be generalized to normed spaces.

12. The spectrum of an operator T is defined to be the set of all
scalars p such that 7' — uf fails to be invertible in the sense of Exer-
cise V1.8.9; it will be denoted s(7"). Then:

(i) If pis an AP-value for T, u € s(T).

(i) p € s(7) if and only if u* € s(T*).

(i) s(T+ M) = {p+2r:p&s(D}.

(v) sQAT) = {u:p € s(T)}.

(v) T isinvertible if and only if 0 is not in s(7).

(vi) If T is invertible, s(T™") = {u™: u € s(T)}.

(vii) If T is self-adjoint, every u € s(T) is real.

(viii) If 7 is positive, every p € s(T) is > 0.

*(ix) It can be shown that for every operator 7', s(T) is a non-emply
and closed set of complex numbers, and x| < || 7' || for all u € s(7).

(x) If Tis normal, p € s(T) if and only if u is an AP-value for
T

(xi) If T is unitary, then |u| = 1 for every u € s(T).
*(xii) If Tar = @p4q is the one-sided shift operator, s(7') is the
entire disc 1] < 1.

*13. If A is any non-empty closed and bounded set of complex
numbers, and 3¢ is classical Hilbert space, there exists a normal oper-
ator 7' such that (1) A is the spectrum of 7', and (2) ¢ € A if and only
if p is an AP-value for T.
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§ 1. COMPLETELY CONTINUOUS OPERATORS

If the p-spaces of an operator T are a total family, and S is any
operator, ST = TS if and only if the p-spaces of T' are invariant under
S; this shows the power of proper values. However, the u-spaces of
an operator, even a self-adjoint one, may all be {#}; this shows their
weakness.

Every self-adjoint operator T' does have an AP-value g, in fact, one
for which |u| = || T’ ||. Happily, there is an important class of oper-
ators for which AP-values are nearly always proper (see Theorem 3.2);
these are the completely continuous operators:

Definition 1. An operator T is said to be completely continuous in case:
given any sequence of vectors Z, such that || z, || is bounded, Tz, has a
convergent subsequence. Briefly, T is a CC-operator.

Clearly, an operator T is CC if and only if: || 2, || £ 1 implies T4
has a convergent subsequence.

Examples

1. The zero operator is CC.

2. If y and z are fixed vectors, the operator T defined by the formula

Tz = (z|y)z is CC. For, suppose || z, || < 1. Since |(z.|y)| < [ ¥,
172
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(za|y) has a convergent subsequence, say (zn,|y) — A; then T'z,, =
(@n,|9)z = A2,

3. If 3¢ is infinite-dimensional, the identity operator is not CC. For,
if @y,%s,23,- - - is any orthonormal sequence (see Theorems I1.7.3 and
116.4), || Izm — Iza ||* = || #m — @ ||* = 2 whenever m 7 n, hence
Iz, cannot have a convergent subsequence. ||

The results of this section and the next show that CC-operators
exist abundantly; § 3 is preliminary to § 4, in which normal CC-oper-
ators are analyzed in detail.

Theorem 1. If T is a CC-operalor, and \ is a scalar, AT is a CC-operator.

Proof.
If Tz,, — y, then AT)z,, — My. |

Theorem 2. If S and T are CC-operalors, S + T is a CC-operator.

Proof.

Given || z, || < 1, the problem is to find a convergent subsequence
of Sz, + T'z,. Passing to a subsequence, we may suppose Sz, — wu.
For a further subsequence, 7Tz,, — v; since also Sy, — u,

S+ Dzw, > u+0. |

Definition 2. An operalor T is said to be finite-dimensional if iis range
T(3¢) is a finite-dimensional linear subspace.

Theorem 3. Every finite-dimensional operator T is CC,

Proof.

Let zy,- - ,zn be an orthonormal basis for T(3¢). For each z € 3¢,
Tz = 3, [u(x)z, where fi(z),- - -,fa(z) are scalars uniquely deter-
mined by z; clearly fi(z) = (Tz|z) = (z|T*2z). Define Tz =
Je(@)zi = (x| T*2i)z; T is a CC-operator by Example 2, hence T =
2.1 Tiis CC by Theorem 2. |}

Theorem 4. If T is a CC-operator, and S is any operator, then ST and
TS are CC-operators.

Proof.

Given | @, || < 1. For a suitable subsequence, T%,, — u, hence
STzn, — Su; thus, ST is CC. Also, || Sz, || < || S ||, hence T'(Sz,) has
a convergent subsequence; thus, 'S is CC. ||
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Theorem 5. If T, is a sequence of CC-operators, T is an operator, and
| 7= Tyl — O, then T is a CC-operator.

Proof. (“diagonal procedure’”)

Given || z, | < 1, the problem is to find a convergent subsequence
of Txz,.

Let «} be a subsequence of z, for which Tz} is convergent. Say,
Tlx.: — U.

Let 22 be a subsequence of z, for which T'z3 is convergent. Say,
Tgxi — Usg.

Continuing inductively, one obtains, for each k, a subsequence zr
of ¥~ such that Thaf — u.

The z* may be arranged in a rectangular array, with z§,25,a5,- - - as
the &’th row. Then, the k’th row is by construction a subsequence of
the (k — 1)’th row. Consider the “diagonal sequence” zj,23,a3,- - .
For each k, the sequence zf,zf 11,2513, - - is clearly a subsequence of
the k'th row, hence

lim Tia® = up fork = 1,2,3,---.
n—+o

We assert that Tzl is a Cauchy sequence. For, given any e > 0,
fix any index k such that |7 — Tk || < & For all m and n,
| Tz — T2 || < || (T — T || + || Taam — Taaz | + || (Tr — D)z |
< 2¢+ || Tha — Thal || Since Tizh — wur as n — «, there is an
index N such that || Ty — Txah | < € whenever m,n > N. Then,
|| T2 — T2} || < 3e whenever m,n > N. This shows that the sequence
T2 is Cauchy; since 3¢ is complete, it is convergent. ||

Corollary. If T, is a sequence of finile-dimensional operators, T is an
operator, and || Tn — T' || — 0, then T is a CC-operalor.
Proof. :

Each T, is a CC-operator by Theorem 3, hence T is CC by Theo-
rem 5. |

Exercises

1. Let T be an operator, 9 a closed linear subspace of 3C.

(i) If 9 is invariant under 7, and T is CC, then 7'/ is CC.

(ii) If 9% reduces T, T is CC if and only if both 7/9C and T/9* are
CC.

2. If 3¢ is finite-dimensional, every linear mapping 7': 3¢ — K isa
CC-operator.
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3. (i) If S and T are metrically equivalent operators, and T is CC,
then S is CC. i

(ii) In particular, if 7' is normal and CC, then T* is CC. See also
Ezxercise 6.

4. If T is a CC-operator, and 8*S < T*T, then S is a CC-operator.
In particular, if 7' is a hyponormal CC-operator, T* is CC. See also
Ezercise 6.

5. If 3¢ is infinite-dimensional, a CC-operator cannot be invertible.

6. (i) An operator T is CC if and only if 7*T is CC.
(ii) If T is a CC-operator, then T* is CC.

7. (i) If 3¢ is infinite-dimensional, and the operator T is bounded
below, then 7' cannot be CC.
*(ii) If 3¢isinfinite-dimensional, a CC-operator cannot be surjective.

8. (i) If y and z are fixed vectors, and y # 8, there exists a CC-
operator T' such that 7'y = z.

(it) More generally, the set of CC-operators is n-fold {ransitive in
the following sense: if 3, - - -,y are linearly independent, and z;,- - - 2,
are arbitrary, there exists a CC-operator T such that Ty, = z; for all
k.

9. If @ is an algebra, an 7deal of @ is a linear subspace g such that:
if z € 4,and a € @ is arbitrary, both az € g and za € 4. Evidently,
an ideal of @ is a subalgebra. The results of this section can be sum-
marized as follows:

(i) The CC-operators form a closed ideal £..(3¢) of the Banach
algebra £.(3¢), and this ideal contains every finite-dimensional oper-
ator.

(i) £..(3¢) is itself a Banach algebra.

(iii) One has I € £..(3¢) if and only if 3¢ is finite-dimensional, and
in this case £.,(3¢) = £.(3¢).

(iv) In view of Ezercise 6, £..(3C) is a *-subalgebra of £.(3¢), hence
is a B*-algebra.

10. Notation as in Ezercise V.8.11, with & = 3C a classical Hilbert
space. Prove:
(i) The *-algebra £5,(3¢,3¢) of operators of Hilbert-Schmidt class is
an ideal of £.(3C).
(ii) Every finite-dimensional operator is of Hilbert-Schmidt class.
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*11. If 4 is an ideal of £.(3¢), different from {0}, then g contains
every finite-dimensional operator.

12. If & and & are normed spaces, complete continuity is definable
for a linear mapping T': &8 — &. If T is CC, it is necessarily contin-
uous.

13. Let & and § be normed spaces, and denote by £..(8,5) the set
of all CC linear mappings 7': & — . Then:
(i) £cc(8,5) is a linear subspace of £.(8,5).
(i) £cc(8,8) is an ideal in the algebra £.(8), hence is a normed
algebra.
(iii) If  is a Banach space, £..(8,5) is a closed linear subspace of
the Banach space £.(8,5), hence is itself a Banach space.
(iv) If ¥ is a Banach space, £..(F,5) is a closed ideal of the Banach
algebra £.(5), hence is itself a Banach algebra.
*(v) If T: & — § is a continuous linear mapping such that 7'(8) is
finite-dimensional, then 7' is CC,
*(vi) It can be shown that the identity mapping I: § — & is CC
if and only if & is finite~dimensional. In this case, every linear mapping
T:8 — 8is CC.

14. If & and § are normed spaces, and & is finite-dimensional, then
every linear mapping 7: § — & is CC.

15. Let & be a normed space, and 9 a dense linear subspace of §.
Prove:

(i) If z € &, there exists a sequence y, € 9 such that y, — z, and
l#all = |l z | for all n.

(i) Let ® be a Banach space, S: 91 — ® a continuous linear map-
ping. If 7: § — ® is the unique continuous linear mapping such that
Ty = Sy for all y € 9N (see Theorem I'V.7.6), then T'is CC if and only
if 8 is CC.

*16. If & is a normed space, ® is a Banach space, and T: & — ®is
a continuous linear mapping, it can be shown that 7' is CC if and only
if 7"is CC.

17. If & and & are normed spaces, consider the set of all linear map-
pings T': § — & satisfying the following condition:if z, € &, ||z, || < 1,
Tz, has a Cauchy subsequence. Examine the theorems of this sec~
tion, with complete continuity replaced by this condition.
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§2. AN EXAMPLE

Let 3C be classical Hilbert space, z, an orthonormal basis for 3¢, x,
a bounded sequence of scalars, and 7' the unique operator such that
Tz = ppay for all k (see Theorem VI.8.1). If Py is the projection
whose range is the one-dimensional subspace generated by z;, and
Tn = Z: uiPy, one has Tyx — Tz for each 2 € 3¢ (see Example
V1.7.8). It will be shown in § 4 that if T is CC, necessarily u, — 0;
we are concerned here with the converse:

Theorem 1. If uy — 0, then || T — Ty || — 0 and T is completely
conlinuous.
Proof.

The range of T, is contained in the n-dimensional subspace gen-
erated by zy,- - -,@,, hence T', is a finite-dimensional operator. In view
of the Corollary of Theorem 1.5, it will suffice to show that
" i Tn " — 0.

Given € > 0, let N be an index such that | ux| < e wheneverk > N.
Fix an index n > N; it will be shown that | ' — T, || < e. For any
vector z = 2‘: \iZi, one has Tz = Z;' Meuity, hence || Tz — Tz ||

= ” Z‘: N — E: AkHETE ”2 = ]I Z:.H Ak ”2 o E:_thkﬂkla
SEéXLNE S @ TV INS = €| 2|2 Thus, |(T - Tz || <
¢ ||  ||; since z is arbitrary, || T — Ta || < e. |1

Exercises

1. Let 3¢ be classical Hilbert space, z, an orthonormal basis for 3¢,
and (jx) an “infinite matrix” of scalars (j = 1,2,3,--+;k = 1,2,3,--)
such that E;.klajkfz < ». Then, there exists one and only one op-
erator T such that Tz, = 2,- ajiz; for all k; this operatoris CC. Every
operator of Hilbert-Schmidt class is completely continuous.

2. If 3¢ is classical Hilbert space, z, is an orthonormal basis for 3¢,
and B;: are scalars such that Ei |Bik| < =, there exists a unique

operator 7' whose matrix is (8;i) relative to the given basis. This op-
erator is of Hilbert-Schmidt class, hence is CC.

ne



178 Introduction to Hilbert Space Vi

§3. PROPER VALUES OF CC-OPERATORS

Recall that if 7 is an operator and g is a scalar, 9p(x) denotes the
u-space of T'; it is the closed linear subspace {z € 3¢: Tz = px}, that
is, the null space of the operator T' — ul.

Theorem 1. If T is a CC-operator, and p # 0, then Np(p) is finite-
dimensional.
Proof.

Assume to the contrary; by Theorem 1.7.3, 9Ur(i) contains a linearly
independent sequence z,,. By Theorem I1.6.};, we may suppose the z,
are orthonormal. If m %= n, || T2m — Ta ||® = || 12m — p2a [|® =
(2 || Zm — za [|* = 2 |#|*> > 0, hence T'z, cannot have a convergent
subsequence; since || 2, || = 1, this is contrary to the complete con-
tinuity of 7. ||

Definition 1. Suppose u is a proper value for the operator T. If Tr(u)
has finite dimension n, p is said to be a proper value of finite multi-
plicity n. If 9Up(s) is infinite-dimensional, u is said to have infinite
multiplicity. If u is not a proper value for T, that s, if 9r(u) = {6},
il is convenient lo say that u is a “proper value of multiplicity zero.”

In this terminology, Theorem 1 asserts that every non-zero proper
value of a CC-operator has finite multiplicity. This result is not always
helpful, for there exist CC-operators having no proper values at all:

Example 1. Let 7'z = )4, be the one-sided shift operator, R the
unique operator such that Rz = (1/k)a for all k, and let S = TR.
Since R is CC by Theorem 2.1, S is CC by Theorem 1./; however, S has
no proper values (see Exercise VII1.1.3). |

Every normal CC-operator does have at least one proper value, as
is shown in Theorem 3 below. This result is expedited by the following

Theorem 2. If T is a CC-operator, and p 18 a non-zero approrimate
proper value for T, then p is a proper value.

Proof.

By assumption, there exists a sequence of vectors z, such that
| z. | = 1 and || Tzn — pzs | — 0. Since T is CC, we may suppose,
after passing to a subsequence, that 7'z, is convergent, say Tz, — .
Since || u — pza || < || u — Tan || + || T2a — p2a || — 0, one has
uxn — u. Then, T(uzn) — Tu, thus Tu = lim T'(uz,) = lim u(Tzs)
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= plim Tz, = pu. Since || u || = lim || pzn || = lim |p| = |u| >0,
u is a proper vector. ]

Lemma 1. If S is any self-adjoint CC-operator, S has a proper value u
such that [] = || § . '

Proof.

If S =0, p = 0 is a proper value (we are assuming 3¢ {0}). It
S # 0, then by Theorem VI1.3.2, S has an approximate proper value
usuch that |u| = || S| > 0; quote Theorem 2. |

Lemma 2. If 3C is finite-dimensional, every normal operator T has at
least one proper value.

Proof.

Every operator in 3¢ is CC, by Theorem 1.3. Let T = A + iB be the
Cartesian form of 7' (see Theorem V1.6.3). By Lemma 1, there is a
(real) scalar « such that the proper subspace 9 = 914(a) is = {6}.
Since T' is normal, AB = BA (see Theorem VI.8.2), hence N is in-
variant under B (see Theorem VII.2.1). Let R = B/9U be the restric-
tion of B to 9U; R is a self-adjoint operator in 9 (see Corollary 2 of
Theorem V1.9.5). By Lemma 1, there exists a scalar 8, and a non-zero
vector z € I such that Rz = Bz, that is, Bz = Bz. By the definition
of 9%, Az = ax, hence Tz = Az + iBz = (a + i8)z. [ ]

Theorem 3. Every normal CC-operator T has at least one :
. . pr mzue’
in fact, there exists a proper value p such that |u|= || T |. i

Proof.

Let S = T*T'; S is self-adjoint, and is CC by Theorem 1.4. We may
suppose T' > 0, hence || S || > 0.

By the definition of || T ||, there is a sequence of vectors z, such
that || @, | = 1and || Tan | = || T ||. Then, | S || = || 7*T | =
I 71? = lim || Tz, || = lim (T*Tza| ) = lim (Sza| ).

; Passing to a subsequence, we may suppose, by the complete con-
tinuity of 7, that Tz, — y for a suitable vector y.

Let « = || S|. We assert that « is a proper value for S. For
1820 — aa||? =|| S2a | = 2(Sza | 7a) + 0 < 0 — 26(Sn | 20) + o —
o® — 2a® + o? = 0, thus Sz, — az, — 0. Since Tz, — ¥, one has
Szn = T*(Tz,) — T*y, hence oz, = (azn — Szn) + Sz, — 6 +
T*y. Thus, z, — a~'(T™*y). Setting z = a™(T*y), one has z, — z
||_z|| =lim|z,| =lim1l=1and Sz = lim Sz, = T*y = az.Thus,
2 1s & proper vector for S, with associated proper value a. [One coul&
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also have quoted Lemma 1, since S > 0; see the remarks following
this theorem.]

Let 9t = 9g(); it has just been shown that 9 % {6}. Since a > 0,
9 is finite-dimensional by Theorem 1. Since T is normal, clearly TS =
ST and T*S = ST*, hence 9 reduces T' (see Theorems VII.2.1 and
V1.9.4). Let R = T/%; R is a normal operator in 9 (see Corollary 1
of Theorem V1.9.5). By Lemma 2, there exists a scalar p, and a vector
& € 9, such that || z || = 1 and Rz = ux, that is, Tz = pz. By Theo-
rem VII.1.2, T*z = u*z, hence Sz = T*Tz = |u|*z; since Sz = ax
by the definition of 9, ||* = & Thus, |p[* = || 8| =T % B

Remarks on Theorem 3

Suppose T is a normal CC-operator. Since | T*zm — T*2a || =
|| T*(@m — ) || = | T@m — @a) || = || T2m — T2 [, it is clear that
T*is also CC. Let T = A + iB be the Cartesian form; it is clear from
the formulas in Theorem VI.6.3 that A and B are CC-operators (see
Theorems 1.1 and 1.2). It follows that the proof of Lemma 2 is valid
for T without the assumption of finite-dimensionality: T' has at least
one proper value.

Why mention Lemma 2 at all? The point is that the existence of
proper values for a linear mapping in finite-dimensional space is an
essentially algebraic fact (see Ezercise 5) which may be known to the
reader from other contexts. Granted Lemma 2, one way or another,
the proof of Theorem 8 derives directly from Lemma 2, and one need
not quote Theorem 2 and Lemma 1; in this way, the concept of AP-
value is circumvented, thus emphasizing the algebraic aspects of
Theorem 3 and the spectral theorem to follow.

1. (i) If 7 is a normal CC-operator, there exists a vector z, || 2 || =
1, such that |(Tz|2)| = || T ||. Compare this with Ezercise VII.1.7.

*(ii) It can be shown that for every normal operator TIT|=
LUB {|(Tz|2)|: ||z || = 1}.

9. Notation as in the proof of Theorem 3. Then, 9 contains all
vectors = such that Tz = Az for some scalar A with [A| = || 7'[|. One
has || Tz || = || T || || = || for every z € 3.

3. Let Rzx = (1/k)x, asin Ezample . Risa self-adjoint CC-oper-
ator, 0 is an AP-value for R, but 0 is not a proper value.

i . S

Vil §4 Completely Continuous Operators 181

*4, Tt can be sho.wn that every operator T has at least one AP-value
p. If moreover 7' is CC and p # 0, T has a proper value.

*5. It can be shown that if 3C is finite-dimensional
T has at least one proper value. nsional, every operator

*6. Theorem 1 holds for a CC linear mapping 7': § — 8, where & is
a normed space. ;

*7. In the wake of a result such as Theorem 2, the reader should be
warned of the existence of a stubborn class of operators whose only
AP-values are 0. Such an operator is called a generalized nilpotent. Tt
can be shown that the following conditions on an operator 7' are
equivalent:

(a) T is a generalized nilpotent.
(b) The spectrum of T is {0}.
[Tl(::;) lim || 7" [|'/* = 0.
operators 7™ are defined inductively by the form 1 =
g”;"" = T"T.]I;lfidentl;a;ly, T is called a nﬂ}',;atgm cvpera.t,o:1 il:?:ai‘e ™ E
or some n.] It can be shown that th i i
bralsy st iy the only normal generalized nil-

8. The operator S of Ezample 1 is a generalized nilpotent.

§4. SPECTRAL THEOREM FOR A NORMAL CC-OPERATOR
Throughout this section, 7' is a fixed normal CC-operator.

Tho?nm 1 1 (spectral Theorem) The proper subspaces of T are a total
Jamily. That is, if x L Np(u) for every scalar p, necessarily z = 0.

Proof.
lLeIt 88 be ?hecmnalleat subset of 3¢ such that 97(sz) C § for all y;
clearly 8 = {z € 3C:x € 9Up(u) for some u}. Let 91 = 8*; th
is to show that 9L = {0}, ; e
Since each 917(u) reduces T' (Theorem VI1.2.2), T(S) C $ and T*
.2.2), 8)
C 8; by Theorem V.8.4, T*(9) < 9L and T(9) < N, th :
T (see Theorem VI.9.5). Comkdn b
Assume to t.he_ contrary that 9 > {0}, and let R = T/9; R is a
normal operator in 9 (see Corollary 1 of Theorem V1.9.5). We assert
that R is a CC-operator in the Hilbert space 9t. For, if z, € 9t
and ||z, || <1, Rz, = Tz, has a convergent subsequence, say
Rz,, — u € 3C; since N is closed, » € IN.
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Thus, R is a normal CC-operator in the Hilbert space 9 # {6}. By
Theorem 3.3, there exists a non-zero vector ¢ € 91, and a scalar u, such
that Rz = uz, that is, T2 = pz. Then, z € p(s) € §; butz € 9N =
$*, hence z L z, z = 0, a contradiction. ||

Let P(x) denote the projection with range 9z(u). [More precisely,
P(p) = Pp(p); thus, Pre(u) = Pr(u*).] The following result is essen-
tially an application of the spectral theorem:

Theorem 2. The following conditions on an operator S are equivalent:
(a) ST =18
(b) The u-spaces of T are invariant under S.
(c) ST*=T*S
(d) The u-spaces of T reduce S,
(e) SP(u) = P(w)S for all p.
Proof.
(a) implies (b): See Theorem VII.2.1.

(b) smplies (c): Since MNpe(r) = Np(u*), the p-spaces of T* are in-
variant under S; since they are a total family by the spectral theorem,
8T* = T*S by Theorem VII1.2.3.

(c) implies (d) : The u-spaces of T* are invariant under S by Theorem
VII.2.1; in other words, the u-spaces of T are invariant under S. Since
S*T = T8*, the u-spaces of T' are also invariant under S*.

(d) and (e) are equivalent by Theorem V1.9.4.
(d) implies (a) by Theorem VII.2.3 and the spectral theorem. ||

The next results will show that the proper values of 7' can be
enumerated in a (finite or infinite) sequence.

Theorem 3. For each ¢ > 0, the annulus ¢ < |\| < || T || contains at
most finitely many proper values of T. Every proper value of T lies in
the disc |\| < || T ||; that is, Str(A) = {6} whenever [N| > || T ||.

Proof.

If u is a proper value of T, |u| < || T'|| was shown in Theorem
VII.1.1; this does not require any special hypotheses on 7'

Given e > 0, assume to the contrary that there exists an infinite
sequence ., of distinet proper values of 7' such that € < |ua| < || T |l
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Passing to a subsequence, we may assume u, — p, where ¢ < |u| <
| T||. Let T2 = pnn, || 2a | = 1. Again passing to a subsequence;
we may assume Tz, — y for a suitable vector . Thus, gz, —y;
since up,~' — p~, one has 2, = pa " (uaza) — u'y, hence
|| #m — x| — Oasmn — . But 2, is an orthonormal sequence by
Theorem VII.2.2, hence || 2, — 2y ||> = 2 whenever m # n, a con-
tradiction. |

Let us first dispose of a special case:
Theorem 4. The following conditions on T are equivalent:

(a) T 1s finite-dimensional.

(b) T has only finitely many distinct proper values py,- * -« ,pin.
In this case, T = 2.7 P ().

Proof.

(a) implies (b): Assume to the contrary there is an infinite sequence
K1,42,13, - - - of distinet proper values. Let Tay = pgay, || 2x || = 1; the
sequence of vectors , is orthonormal, hence linearly independent.
Since at most one of the puy is 0, zx = T'(ux"'ax) € T'(5¢) for the re-
maining k, hence 7'(3C) is infinite-dimensional.

(b) implies (a): Let 91 be the smallest linear subspace containing
TNr(p1), - - -, r(es). Evidently, O is the set of all vectors z of the form
z= Z: Yk, With yi € 9p(ux) (see Theorem 1.5.1). Since the 9p(uz)
are mutually orthogonal, it is appropriate to write 9 = 9r(u;) ®- - - @
r(un), in analogy with Definition 111.2.5. We assert that on = 3¢;
since 9N is closed (see the Corollary of T'heorem I11.4.2), it will suffice to
show that 9+ = {0}. Indeed, let

§ = {z € 3¢: z € Np(u) for some p};

clearly sn* = $*. But $* = {6} was shown in the proof of Theorem 1.

Thus, given any vector z € 3¢, one can write 2 = E: Yk, with
Y € I (ue). I j 5 k, then yi € [Ir(u;)]*, hence P(u;)yx = 6; it fol-
lows that P(u)z = 2, P(u)yx = 9j, thus == 3" P(u)z. This
shows that 2" P(u) = I. Also,

Tz = 3 Ty = 2 me = 2, meP(u)z,

hence T' = E;‘ peP(ue).
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Incidentally, if T is also injective, 3C is necessarily finite-dimen-
sional. |

Assume henceforth that T is not finite-dimensional; that is, 7' has
infinitely many proper values.

Theorem 5. Assuming T is not a finile-dimensional operator,

(1) the distinct non-zero proper values of T can be enumerated in
an infinile sequence py,po,uz,* ** ;

(2) mecessarily pn — 0;
(3) ome can arrange to have |py| > |pg| = |ua| 2.

(1): Foreachn = 12,3, -, let A, denote the set (possibly empty)
of all proper values u such that 1/n < |u| < || T |. By Theorem 3,
each A, contains at most finitely many scalars, and every non-zero
proper value belongs to some A,. Since Ay C A C - -+, the non-zero
proper values can be enumerated in a sequence by first writing down
those in A;, those in Ay not in A, and so on.

(2): Suppose \, is any sequence of distinet proper values of T.
Given any € > 0. By Theorem 3, |\a| > ¢ for at most finitely many
n, hence there is an index N such that |\,| < e whenever n > N.
Thus, A, — 0.

(3): This is clear from the proof of (1); incidentally, |u| =
i 1

Henceforth, py,po,us,* ++ denotes the sequence of distinet non-zero
proper values of 7', enumerated as in Theorem 5. Then, P(ux) denotes
the projection whose range is the proper subspace 9 (ux) ; P(0) is the
projection whose range is the null space of 7. The next results will
show that T = Er preP (i) in a suitable sense.

Lemma. If 91;,915,9g, - - 18 a sequence of closed linear subspaces of 3C
such that M; 1 9 whenever j # k, the following conditions are equiv-
alent:

(a) The 9 are a total family.

(b) The smallest closed linear subspace of 3¢ which contains every
18 3C atself.
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(e) Emry z € 3¢ s uniq::e!y expressible in the form z = Z:z,,,
with 2 € 9 and 37 || 2 ||? < <.

Proof.

Let 8 = {z € 3¢: =z € 9 for some k}; as shown in Corol
Theorem I111.6.3, M = $** is the smallest closed linear subng fo::f
taining every 9. Since M* = s+ = 5L clearly 9% = % if and
only if $* = {6}. This proves the equivalence of (a) and (b).

Let Py be the projection with range 9.

(a) smplies (c): Suppose first that zr € 9. and Z‘:’ | 2 < oo.

It is clear from the Lemma of Theorem I1.7.1 that one can form the
vector z = E:’ 2 = lim, Z: Zx. Since Pjxp =0 when k 7

By (Z: :c;,) = & whenever n > j, hence Pz =1lim, P; (E;‘ 3;‘) =g

Now, given any & € 3¢, define z; = Puz. For each 7 Qn =3P
isa projt'e‘ction (see Example V1.7.4); since the ;. are mutually orthog-
onal, 2 o | = | Zim [ = | 23 Paz [ = [ Que |2 < [ = 2,
hence 377 ||z ||* < . Form the vector y = 2., #x. For each j,
Pjy = z; = Py, Pi(y — z) = 0,y — 3€915'L;sincetheﬂt;aretotal,
y—z=6,z=y= 3"z Since z; = P, (2:’ xk), the uniqueness
of such a representation is clear.

(c) ¥mplies (a): Suppose z 1 9 for all J- By (¢), write 2 = ET Tk
with z; € 9. Since:cCE!‘L,-"‘, 0 = Pz = x; for all j, thus z = 6. i

Definition 1. If the conditions of the Lemma are fulfilled, one writes
g = %’fm =N QNN @---.

More generally, let 9,915,913, - - be any sequence of closed linear
subspaces, and 9 the smallest closed linear subspace containing every
. If z L 9 for all k, then & L 9; for, writing § = {z}, one has
N < 8* for all &, hence 9% < $*. It follows that 9% is a toi:al family
of subspaces in the Hilbert space 9t. If moreover 9; L 9 whenever

j # k, one has 9t = %T . in the sense of Definition 1. Tt is easy to
see that };,‘1" W = Ny @ );: N
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Theorem 6. If u, is the sequence of distinct non-zero proper values of T,
then

(1) 3¢ =9(0)® %:‘;’srcw(ua)
= 9r+(0) ® %:‘f I+ ()3

@) 9(0) = Tr+(0) is the null space of T and T*, and
T(3e) = T*(3€) = );: MNr(ur) = §T Nr*(ue®);

@ T — 27 mPG) | =0,
| 7% — 27 m*Pe) || = 0.

Proof.

(1) results from Theorem 1, the Lemma, and the fact that Npe(p*)
= Ny (p).

(2): Leto = );"; S (us). It is clear from (1) that 9 = [z (0)]* =
[9tr+(0)]*; thus, 9t = T*(3C) = T(5¢) by Theorem V.8.6.

(3): Given z € 3¢, one has z = P(0)z 4+ 2_; P(m)z by the proof
of the Lemma. Then, Tz = 6 + E‘: P (up)x = lim, [E':H,P(m,)]z.

Since up, — 0, || T — E: wiP(ux) || — 0 by essentially the same ar-
gument as in Theorem 2.1. The remaining assertion follows from
Is*I=1si 1

Corollary 1. If T is a normal CC-operalor, there exists a sequence of
finite-dimensional operators Ty such that | T — T || — 0.

Corollary 2. Notation as in the theorem. Given any vector y € T'(30),
there exists an expansion y = 2, yr, where the yx are mutually orthog-
onal, 227 [ yk |I* < , and Ty = peye-
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Exercises

1. Let Tzx = prxx, with notation as in Ezample VII.1.5. Then, T
is CC if and only if u, — 0.

2. An operator T is CC if and only if there exists a sequence of
finite-dimensional operators T, such that | 7, — T || — 0.

3. Let T and S be operators.

*(i) It can be shown that if 7 is normal, and ST = TS, then ST* =
T*S. Granted this result; if S and 7 are normal, and ST = TS, then
S + T and ST are normal.

(i) If 7 and S are hyponormal, and ST* = T*S, then T — S is
hyponormal.

(iii) If 7' is normal, S is hyponormal, and ST = T'S, then T — 8 is
hyponormal.

4. If S and T are normal operators, ST = TS, and T is CC, then
S + T and ST are normal.

5. Let S and T be normal CC-operators, and assume, for the sake of
simplicity, that both S and T are injective. Then, S and T are unitar-
ily equivalent if and only if: for each scalar 4, the multiplicity of x for
T equals the multiplicity of u for S.

6. (i) If S and T are similar operators, and Ng(x) has finite dimen-
sion n, then 9p(u) also has finite dimension n.

(ii) Suppose S and 7 are normal CC-operators. Assume for the sake
of simplicity that S and 7" are injective. If S and 7T are similar, there
exists a unitary operator U such that U*SU = T'; that is, S and 7 are
unitarily equivalent.

*(iii) One can prove (ii) without the hypotheses of complete con-
tinuity and injectivity.

7. The most general normal CC-operator in 3¢ can be obtained as
follows. Let 9%,91,,9, - - - be a total sequence of mutually orthogonal
closed linear subspaces, with 9% finite-dimensional for k > 1; let
1,49, - - be a sequence of scalars such that u, — 0;let o = 0. There
is a unique operator 7' such that Tz = uz when =z € 9, (k =
0,1,2,---).
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8. Let T, be a sequence of normal CC-operators such that 7,7 =
T.T; for all j and k. Then, there exists a vector z which is proper for
every T'k.

*9. Theorem 3 holds for a CC linear mapping in a normed space.

**10. The analog of Exzercise 2 for Banach space is an open ques-
tion.

11. Does there exist a hyponormal CC-operator which is not
normal?

Appendix
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the Exercises
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[10] };55;1.011, A. E., Introduction to functional analysis, New York,

CHAPTER |

§1. 2. See Ezample 2.

3. See Example 7.
§5. 6. ¢ = cosh ¢ + sinh ¢,

8. Show that each vector in 9 + 9T is in [8], and vice versa.
§ 6. 4. Factor theorem.

5. (ii) See Exercise 4.4.
§7. 6. See Section 1.72 of [10] for the existence of a basis, also

called a Hamel basis.
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CHAPTER I

. See Theorem 388 of [5].
z=(x—y +v
. Suppose the relation holds. Then, in the proof of Theorem 5,

all < signs can be replaced by =; cite Exercise 2.

. See Ezxercise /.
. Exercise 4, and the relation z = (z — y) + .
. Assuming || z || < 1 and || y || < 1, it suffices to show that

[|y)] € 1. I (z]y) is real, (z|y) = d{llz+y|*—
| z — ¥ ||*}. In general, one can write | (z|y)| = NMz|y) =
(Az|y) for suitable |A| = 1.

Trye= 3%

. For each t, |Zn(l) — 2a(®)| < d(Zmn).

See Theorem 4.1 or Exzercise 3.3.

. If |A| €1, then [A]2 < |A].
N Zemll S 2o =l
Bessel

A Assum.ing to the contrary, produce an infinite orthonormal

sequence T, such that [31332138:' o] = [y1,y2,u8,° * '] = iC,
and look at the vector z = 2.7 (1/k)zx.

$ contains the vectors z, = (1,0, ++,0,—n,0,0,---), where
—n oceurs as the n’th coordinate.

Gram-Schmidt.

3, 4, 5. See Theorems 1.4 and 1.14 of [9].

6.
5

NN NS

See Theorems 155 and 479 of [5]. See also Section 3.22 of
[10]. Another approach is via Theorem 4E of [6].
See §14 of [3].

CHAPTER HlI

. (i) See Theorem 11.8.1.

(ii) Look at z = 2.7 (1/k)zs.

. See Exercise 11.6.1.
. See the proof of part (3) of Theorem 4.3.

See the proof of the Lemma to Theorem 2.
See Theorems 2.1 and 2.2.
See Exercise 2.3.

. Calculate 9t*.

§5.

§ 6.

§8.

§1.

§2.

§3.

§4.

=
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. (iii) If y, is a Cauchy sequence of vectors, and || y, || —
a > 0, consider the sequence z, = || ya || yn; see Exercise
3.1.

Iy = (W) €8, thenl =| T N|< TT Nl = 71+ N

141
< \/;(EIIMF’) Va1V,

Clearly o € 8 and ||y || = 1/ Vn. Quote uniqueness.

. Look at the vectors y, = (1,0,0,++), ¥2 = (3,3,0,--+),

Y = (i’%’%sos' aR)E,

. See Exercise I1.8.1.
. Assuming to the contrary that such a vector y, € $ exists,

one has z — yo € $* by the argument used in the proof
of Theorem 1. But, z and y, belong to $**, hence z — yo
€ s**; in particular, z —yo Lz —yo, 2 =y € 8§, a
contradiction.

. Write z, = yn + 2. according to Theorem 1.
. (i) See Theorem 1.18 of [9].

(ii) See also Exercise 4.1.

. Use condition (1’) to show that T'(u 4+ v) = Tu + Tv forall

up € 3.
CHAPTER IV

. Let €, -,ex be the canonical basis for €" (see Ezample

1.7.1), f1,- - - ,Jm the canonical basis for €™, and express Te;
as a linear combination of the f;.

. See Section 1.72 of [10] for the existence of a basis (also

called Hamel basis).

. See Exercise 1.4.

. See Ezercise 1.6.4.

. See Exzample 1.7.3.

. Let 2y,- - -z, be a basis for U, and y;,- * -,y & basis for W.

For each pair of indicesjand k (7 = 1,-+-;m; k = 1,- - - n),
there is a unique linear mapping E;;: U — W such that
Ejar = yj and Ejx; = 0 when ¢ # k. The Ej are a basis
for £(V,W).

. There is no essential difference between this and the situa-

tion in Exercise 3. See also Theorem 1.3 and Ezercise 1.7.

. (ii) Suppose T is surjective. For each y € ¥, let F(y) denote

the non-empty set {# € X: Tz = y}. The problem is to
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© NN

12.

13.
14.
15.

17
18,

21.

define a mapping R: Y — & such that T'(Ry) = y for all
y € Y, that is, Ry € F(y) for all y € Y. This is possible
via the axiom of choice; see Theorem 1D of [6].

(iii) See Ezercises 2.9 and 2.10.

. Show there exists a non-zero vector z; in the range of Ey;,

and define 2 = Eyx;.

. %({asb] b [bsa]) = 9; {arb} e {b,a} = 0.

. For example, see Ezercise 4.5 and Theorem 1.
See the proof of Theorem I111.3.2.
See Exercise 2.

. See Example I1.4.8.

The uniform limit of a sequence of continuous functions is
continuous. See Theorem 229 of [5].

T is continuous by Ezample 6. Consider the real-valued
mappingz — || Tz ||, where || z || = 1. Thisis a continuous
mapping defined on a closed and bounded subset of €". By
the Weierstrass-Bolzano theorem, suitably generalized to
@", thereisa vectorz, € @", || 2, || = 1,suchthat| Tz || >
| Tz, || > 0 whenever || 2 || = 1. This implies that 7" is
continuous. See also Section 3.12 of [10].

See Fzercises 12 and 3.

See Exercise 13 and Remark 3 following Definition I11.4.1.
For the proof of completeness, see the argument used for 2
in Example 11.5.1.

See the discussion of 2 in Example I1.5.1.

19. The inequality which exhibits subadditivity is known as
Minkowsk:’s inequality. See Section 21 of [8], or Section 14
of [6].

. Without loss of generality, one can suppose |[\]| = -+ =

[Am| =1 and [Ae| <1 for m < k < n. Then (|| z|,)? =
m + E:HD;‘[’, thus || z ||, = (m + ap)"?, where a, — 0
as p — o, It follows that ||z |, — 1 = || z |.. See also
Theorem 24A of [6).

See Section 10A of [6]; the relevant paper of J. von Neumann
and P. Jordan is cited in the bibliography of [3].

. (ii) Suppose yn € F, || Yym — ¥n || — 0. Choose any z € @

with || z || = 1. Define T',: ® — & by the formula Tpz =
(@|2)yn. Clearly || T — Tu |l = || ym — #n ||
(iii) See Exercise 10.12.

i
|
j
|

= Lt
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. (@) If 2 €9 and 2 — 2, look at || Tz — Thz || <

| Tm — Tk || + || Tonzie — T || + || Tnze — Tz || <
Klz—a| + || Twte — Toze || + K || 22 — 2 | See
Theorem 2.11.4 of [4].

. See Theorem 2.5.5 of [4].

. See Fzercise 4.

. See FEzercises 3 and 5.

. If & has dimension =, let S: @€" — & be any vector space

isomorphism. By Ezercise 7.12, S and 8™ are continuous.
Since T'S: €" — & is continuous by Example 7.6, T =
(TS)S™! is continuous by Theorem 1.

. See Example 5.2.
. See Exercise 10.12.

See Theorem 7.6.

. See Exercises 9.1 and 3.3.
. See Exercise 2.

This is immediate from Ezample 2; see Theorem 2.7.4 of [4].
This follows from Ezample 2; see also Theorem 8D of [6].

. (i) See Ezercise 2 and Theorem 3.

(ii) Part (i), and Exercise 7.12.
(iii) See Exercise 5.

W) | 7| = || T || results from Ezample 2; see Section 4.5

of [10].

Let o € &, || zp | = 1. By Theorem 2.7.4 of [4], there exists
an f € & such that || f| = 1 and f(zy) = 1. Define
Tp: 8 = § by the formula T,z = f(z)ys. Clearly
"TM_T!I" = "ym_yn"'

CHAPTER V

Choose y € U with f(y) = 1, and look at z = f(z)y +
[z — f(@)y].

. In view of Theorem IV.10.2, it suffices to show that given

any f € ¢, there is a vector y € @ such that f = y’. See
the proof of Theorem 1.

. Assume to the contrary that 3 s 3¢, and choose a vector

z € (90)* such that f(z) = 1. See the proof of Theorem 1.
Incidentally, two linear forms having the same null space
are necessarily scalar multiples of each other.
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See Ezercise 4. This result can be generalized to normed
spaces; see Theorem 3.5-E of [10], or the Corollary to
Theorem 2.6.2 of [4].

. Given x € @, the mapping ¥ — (y|z) is a continuous linear

form on the Hilbert space 9t.
(iii) See the Corollary of Theorem I1.6.3.

. Given FF € 3¢”, z — [F(z')]* is a continuous linear form on

3¢. By Theorem 1, there is a vector y € 3C such that
[F(z)]* = (z|y) for all z € 3. Thus, F(z') = (y|2) =
y"'(z'). Then, F = y" by Theorem 1.

See Remark 2 in the proof of Theorem 1, and the Corollary
of Theorem 11.6.3.

. Take ® = X in Theorem 1; since U is isometric, and X is

complete, U(X) is complete.

. (i) See Exercise IV.7.21.

(ii) See the proof of Theorem 1; alternate proof via part (i).

. () If 2’y € 9, define (z'[y') = (y]2).

(ii) See Ezercise 3.

. (i) See Exercise IV.10.5.
. (iii) See Ezxercise 3.
. See Subsection 13 of § 2 in Chapter I of [7], or Theorem

2.41-A of [10].

In view of Ezample 1.1.2, it suffices to show that ¢ + ¢ and
Ae are bilinear.

(ii) See Theorem 4.2-H of [10], or the Corollary to Theorem
2.12.1 of [4].

(iii) This result is known as the closed graph theorem. It
can be deduced from (ii) by considering the mapping
(x,Tz) — z, which is a continuous vector space isomorphism
of the Banach space Gr onto the Banach space &. See
Theorem 4.2-1 of [10], or Theorem 2.12.3 of [4].

@(Tn,Yn) — 0(T,Y) = @(Tn — TYn — Y) + o(@Yn — y) +
o(z, — x,y). For the proof that (¢) implies (a), see the proof
of Theorem IV.7.3.

.If 2, € M and y, € 9N are Cauchy sequences, then

@(Tn,yn) € ® is a Cauchy sequence, by an obvious modifica~
tion of the identity given in the hint to Ezercise 1. See also
Theorem IV.7.6.

. Say & is a Banach space. Consider the family of mappings

$={¢:y€ESF |yl <1}. Foreach € &, || (@) || =

§5.

§2.

2.

13.
14,
15.

16.
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| e@a) I| = | es@) | < Il ez Il 19| < I ¢ || whenever
||| < 1. Thus, 8 is a “pointwise bounded” family of con-
tinuous linear mappings of the Banach space & into the
normed space G. By the principle of uniform boundedness
(see Exercise 1V.8.4), there is a constant M such that
Il ¢ || < M whenever || y || < 1. It follows that || ¢(z,y) || <
M whenever ||z || < 1and ||y || < 1; thus, ¢ is bounded,
and || ¢ || < M.

. (i) See Ezample IV.10.2, and Section 8C of [6].
11
12,

See Ezercise 10.

See the proof of Theorem IV .8.2; alternate proof via Ezer-
cise 6.

(1) See Ezample 4 and Theorem 1.2.

(ii) See Exercise 2.4.

(iii) See Ezxample 8.

. (i) Show that J(z + y) — (Jz + Jy) and J(A\z) — A\*(Jz)

are orthogonal to J(®); by assumption, they belong to J(®).
(iii) Show first that J is conjugate-linear and isometric.

co@+yz +y) — ol — yz — y) = do(z,y).

See Theorem 3.5 of [9].

See Exercise }.8.

See the discussion of 12 in Example 11.5.1.

(i) See Exercise 10.

(v) The surjectivity of the correspondence is discussed in
Ezxercise VIII.2.1.

(vi) Apply the polarization identity to the sesquilinear map-
ping (S,T7) — T'*S.

(iti) See Theorem II1.4.1.

(i) See Exercise 13.

(i) See Exercise 14.

(ii) See Theorem IV.9.3.

See Theorem 5 in § 24 of [7].

CHAPTER VI
(ii) See Exercise V.8.3.

. (i) One can show that if 9 is a closed linear subspace of a

normed space &, ¥ € &, and y is not in 9, then there exists
a continuous linear form f on & such that f(z) = 0 for all
x € N but f(y) = 0. See Theorem 2.7.5 of [4].
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10.
12.

13.

(ii) See Theorem V.1.1.

. (i) See Ezample IV.10.1.

(ii) See Ezercise I1.8.1.

. (i) Tz = Ty if and only if Sz = Sy.

(i) See Theorem 2.
See Ezercise V.5.9.
See Fzercise V.5.9.
See Theorem V.8.1.
See Exercise 4.9.

(i) See Theorem 4.2.
(ii) See Ezercise 4.11.

. See Ezercise 7.12.
. (1) See Theorem V.7.2 and Theorem 3.

(ii) See the proof of Theorem 3. See also Exercises V.5.8 and
V.8.18.

(vii) See Theorem V.5.5.

(ix), (x), (xi) See Section 104 of [8].

(xii) See Section 108 of [8].

See Section 104 of [8].

See Example 4.1.

(iv) By (iii), it suffices to show that [R(3¢)]* = {6}. Indeed,
since (Tz|z) is real, (Rz|z) = 0 implies z = 6.

The details are similar to those in Ezercise 12. See also
Exercise 11.

. See Theorem I111.8.1.

. See Theorem 2 and Example 4.

. (i) Caleulate (TP — T)*(TP — T).
. (i) Dimension.

. (i) Look at (T*T)*(T*T).

(ii) See Ezercise 7.12.
T — ul is normal.

. See Theorem V.8.6.

See Ezercises & and 4.8.
See Exercise 4.8,

. (i) See Exercise 6.
. T and T'* are both bijective. Let R = T~ 8 = (T*)~. For

all z and y, (Rz|y) = (Rz|T*Sy) = (TRz|Sy) = (x|Sy).

. (iv) Part (iii) and Theorem V.8.6.

(v) Apply (iv) to 7'*, and quote Exercise 9 part (ii).

. T*is injective by Theorem V.8.6. Let 8§ = {a € 3¢: | T*z ||

o e e s e
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< 1}. Given any y € 3¢, the numbers (z|y) are bounded as
x varies over 8; for, supposing y = T'z, for all + € $ one has
@Y = [@|T)] = [(T*[2)| < || T*z| |z <[ z].
It follows from the principle of uniform boundedness (see
Ezereise 1V.8.4) that there is a constant K > 0 such that
lz| < Kforallz € 8. It followsthat || 7%y || > K~ || y ||
for all y € 3¢; this is clear if ¥ = @, and if y # 6, then
T*y # 0, and the vector « = || T*y || ™'y belongs to S.

T'* is bounded below by Exercise 12. See part (v) of Exercise
e i

(ii) See part (vi) of Exercise 11,

(vi) This is a theorem of C. R. Putnam; see the American
Journal of Mathematics, Vol. 73 (1951), pp. 357-62.

(i) See Exercise 4.7.

(ii) See the calculation in Example 9.

(ii) See Lxercise 6.9.

(iii) See the caleulation in Ezample 9.

(O Hze€x || R*| = LUB {|(R*z|y)|:y €N, [y | <1}
Alternate proof via Ezercise 4.

. See Exercises 4.8 and 6.9.
12.
14.

See Exercise 11.

(i) See Exercise VII.2.6. There is also a simple argument
using “4race.”

(ii) 7'/9tis hyponormal by Exercise 10, hence T'/9t is normal
by part (i). Quote Ezercise 9.

Calculate T*T — T'T*,

See Ezercise 8 and Example 8; see also Exercise 1/.

See Ezxample 8.

CHAPTER ViI

. See Example IV.7.6.
. For example, let T = U + U*, where U is any operator

such that U* is isometric and U has no proper values; for
instance, U can be the two-sided shift operator (see Ezample
8). Suppose Tz = ax. Then, Uz 4 U*z = az; applying U,
one has UUz + z = aUz, (UU — aU + I)z = 6. Suppose
f—al+1=(@¢—N(t—u. Then (U—N)U — ul)z
= 6. It follows that z = 6.

. It is easy to see that 7' — uI is hyponormal, for every scalar

T ———
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11.

. Or, apply part (iii) of Ezercise VI.9.9 to the linear sub-
space generated by z.

. (i) See Exercise 11.3.2.

(iti) Let Tz = @g4q be the one-sided shift operator, and set
T = Z‘: ayxy. By Ezample 6, T has no proper values, hence
|(Tz|2)| < || T || by part (ii).

. See the Corollary of Theorem V1.9.2.
. See Theorems 2 and 3. Tt can be shown that if T is any

normal operator, then ST = 7S implies ST* = T*S; see
Theorem 41.2 of [3].

. Clearly 97(u) reduces T'; let S = T* in Theorem 3.
. (i) See Exercise 1.6.

(ii) 7/9t and T*/ are scalar operators; see also part (iii)
of Exercise VI1.9.9.

(iii) See part (i) and the proof of Theorem 2.

(iv) See Exercise 4.

. There is a simple argument using “trace.” Another proof,

by induection on the dimension n of 3¢, runs as follows. For
n = 1, every operator is normal. Assume the theorem holds
for dimensions <n. It can be shown that every linear map-
ping in a finite-dimensional space has at least one proper
value (see § 55 of [2]). Let u be a proper value for 7', and let
N = Nyr(p). By Exercise 5, 9 reduces T, and T'/9T is normal.
But, 9t* also reduces T, and 7'/3t* is hyponormal by Ezer-
cise VI.9.10, hence T/MN* is normal by the inductive
assumption. See Exercise VI1.9.18.

. Induction on n.
A N Tzall = ezl | < || Tzn — p2a ||
. (i) T — plI is hyponormal.

(ii) (u = ») (@n|yn) = (I = T)2n|yn) + @a| (T* = v*Dyn).

. Let 8 = T*, where T'zy = %34, is the one-sided shift oper-

ator, and consider p = 0.

. See the hint for Exercise VII1.3.1.
. If || 2a || = 1and || Tz, — pza || — 0, define S,z = (2| 2n)Zn,

as in Ezample V1.7.2. Conversely, if the operators S, satisfy
condition (b), choose vectors y, with || y.| =1 and
| Saym || > 3, and set zn = || Suyn |~ Su¥n-

Suppose || 2, || = 1and || Tz, — pz, | — 0. By Section 8C
of [6], there exist continuous linear forms f, such that
([ fa |l = 1 and fa(zs) = 1. Set Spz = fu(2)2n.

§ 1.
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12. (i) See Ezercise 8.
(ii) See Ezercise VI1.8.9.
Vi) T — ™ =pu(ul - T)TL
(vii) See Exercise V1.6.12.
(viii) See Ezercise V1.6.13.
(ix) See Subsection 3 in § 9 of (7], or Theorem 4.7.4 of [4].
(x) Suppose u is not an AP-value. By Ezercise 8, T — ul is
bounded below, hence T — uI is invertible by part (iv) of
Ezercise V1.8.14.
(xi) If u € s(T), p is an AP-value by part (x), hence |u| =
1 by Ezercise 3.
(xii) Exercise 1.4 and parts (ii), (ix).

13. Let 2, be an orthonormal basis for 3¢, and choose a sequence
un € A such that every p€ A is the limit of a subse-
quence of u, (see Exercises I1.8.3 and I11.6.6). Define Tz, =
BnZn. Every p € A is an AP-value for T by the argument
in Ezample 2. If X is not in A, there is an € > 0 such that
|un =X| = € for all n. Clearly (T — A)*(T — ) > &I,
hence A is not an AP-value for T, by Ezercise 8. Indeed,
T' — M is invertible by part (iv) of Ezercise V1.8.14, hence
Ais not in s(7).

CHAPTER VIl

. T is an operator by Ezample IV.7.6.

. See Theorem 4 and Example 3.

. () If [|z. || =1 and T*T'z, is convergent, then Tz, is
Cauchy by the caleulation

| T@m = Za) [I> = (T*T'(@m —2n)| Tm — )
< 2| T*Tzy — T*Tz, |.
See Subsection 10 of § 5 of [7].
(ii) (T*)*T* = TT* is CC by Theorem 4.

7. (i) See Example 3.

(ii) See Ezercise V1.8.12, Exercise 6, and part (i).

8. (ii) Let 9 be the n-dimensional linear subspace generated by
the yz, and define a linear mapping 7': 9T — 3¢ such that
Tyr = 2z (see Theorem IV.1.3). T is continuous. Define
T =0 on %", and extend 7' to 3¢ via the relation 3¢ =
9@ 9t. Then, T is a finite-dimensional operator.

o O b
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9.

10.

11.

12.

13.

14,

15.

16.

(i) See Theorem IV .9.3.

(ii) See Exercise V.8.13.

(1ii) See Ezxample 3 and Exercise 2.

(iv) See Ezercise V.8.15.

(ii) It suffices to consider an operator with one-dimensional
range, say Tx = (z|2;)z; one can assume || z; || = 1. Let 9T
be the null space of T'; 91 is a separable Hilbert space (see
Ezercise I11.6.5), hence has an orthonormal basis xs,z3,- - -.
Then, @;,25,23,--+ is an orthonormal basis for 3¢, and
20 | Tae |2 = || T |

Let R € 4, R # 0. If z is a vector such that Rz # 0, and A
is the operator Az = (z|2)z, clearly T = RA is an operator
with one-dimensional range, and 7' € 4. One has Tz =
(x| 2)y, where y = Rz. Suppose S is any other operator with
one-dimensional range; by Exercise VI1.7.14, Sx = (z|z1)m
for suitable vectors y,,2;. By Exercise 8, there exist operators
B and C such that Bz = z; and Cy = y;. Then S8 = CTB¥,
hence S € 4. Thus, g contains every operator with one-
dimensional range. See the proof of Theorem 3.

If || T2, || 2 n, Tz, cannot have a convergent subse-
quence.

(i) See Theorems 1 and 2.

(ii) See Theorem 4.

(iii) See the proof of Theorem 5.

(v) See Exercise IV.7.12.

(vi) If & is infinite-dimensional, one can construct an infinite

sequence z, such that |2, =1 and ||z, — 2. || > %
whenever m # n; see item V in Subsection 1 of §4
of [7].

If & has dimension =, let S: @ — & be any vector space
isomorphism; S and S™! are continuous by Ezercise IV.7.12,
and 7S: €" — & is continuous by Ezample IV.7.6. If
z, € &and | z, || £ 1,872, has a convergent subsequence
(by the complete continuity of I: @ — €"), hence so does

(TS)(Sxy).
@ If||z| =1,2, €9, and 2z, — z, then [| 2, || = 1;set
Yn = || 22 || 7 zn.

(ii) If z, € and || z, || < 1, choose yn € N with || ys || =
| zn || and || yn — @ || < 1/n.
See Theorem 2.13.5 of [4].

§2. 1. Let 7' be the unique operator such that T\z; = "

§3.

2.
1
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-1 Xk
forall k. Then, T, is finite-dimensional and || 7,, — -Tj'n [|—o.
Observe that 3., |aj|* < «, and quote Ezercise 1.

(i) See Theorem 3.

(ii) By Theorem 26A of [6], there exists a scalar u in
the spectrum of T such that |u| = || T ||. By part (x) of
Exercise VII.3.12, p is an AP-value. Quote Theorem
VI13.1.

Let u be a scalar in the spectrum of T' with || as large as
possible (see part (ix) of Exercise VI1.3.12). Let \, be any
sequence of scalars such that |X\,| > || and A, — u. De-
fining R, = T — M Jand R = T — pl,onehas || R, — R ||
— 0; the R, are invertible, and R isn’t. We assert that u is
an AP-value for T. Assume to the contrary; by Ezercise
VI1.3.10 there exists an e > 0 such that || RS || > ¢ when-
ever || S || = 1. Then, || RS || > ¢|| 8 || for every operator S.
Fix any index m such that || R, — R || < ¢/2. For every
operator S, ¢||S|| < || RS| = || (R — Rp)S + RS | <
IR —Ru)S || + | RaS|| < [ R — R || |S] + || RuS| <
¢/2|| S || + || R»S ||. In particular, for S = R,,™), one has
¢[|Bn™" || < ¢/2 || Ra™" || + 1, hence ¢/2 < || R, | L.
Then ||R, —R|| <e¢/2<| R, | It follows that
R is invertible (see the proof of Theorem 4.3.2 of [4]), a
contradiction. See also the Corollary of Theorem 4.11.1
of [4].

. See § 55 of [2].
. See Theorem 5.5-C of [10].
. For any operator T, lim || 7" ||'/* = LUB {|u|: u € s(T)},

where s(T) is the spectrum of 7' (see Theorem 4.7.3 of [4D),
hence the equivalence of (b) and (c¢) is clear.

(b) implies (a) by part (i) of Ezercise VI1.3.12, and Exver-
cise 4.

(a) implies (b) is implicit in the hint given for Ezercise 4.
It should be mentioned that the usual definition of “gen-
eralized nilpotent” is condition (¢). If 7' is normal, it can be
Fh]())wn that lim || 7" [*/» = || T'|| (see Theorem 4.12.1 of
4]).

. Since S has no proper values, by Theorem 2 it cannot have a

non-zero AP-value. Incidentally, || Szx | = 1/k — 0 shows
that 0 is an AP-value.
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§4. 2. See the Corollary of Theorem 1.5 for the “if”” part. Con-

versely if T is CC, then T* is CC by Ezercise 1.6; consider
the Cartesian form 7' = A + iB.

. (i) See the hint to Ezercise VI11.2.3.

(i) Show that (7' — S)(T — 8)* < (T — 8)*(T — 8).
(iii) Parts (i) and (ii).

. See Theorem 2.
. (iii) The reference for this is given in the hint to Ezercise

V1.8.15.

. This s clear if T = 0 for all k. Assume otherwise, say 7'y #

0. Let u be a non-zero proper value for 7y, and consider 9 =
9Up,(u). N is invariant under each T’k Since moreover
Ty*T, = T, T:* N reduces each T}.

Among the finite-dimensional linear subspaces, different
from {0}, which reduce every T, let 9 be one of smallest
possible dimension. Let R = T'&/91. It suffices to show that
every Ry is a scalar operator. Assume to the contrary, say,
that R; is not scalar. Let A be a proper value of E;. By
assumption, z;(A) # 9. But, the earlier argument shows
that 9Tz;(\) reduces each Ry, hence each T (because already
91 reduces each T);: this contradicts the minimality of the
dimension of 9.

9. See Theorem 5.5-G of [10].
10. See the Remark preceding Theorem 2.13.4 of [4].

Index

absolutely homogeneous, 93
additive mapping, 77
adherence, 62

adherent point, 59

adjoint of an operator, 132, 139
algebra, 89

*-algebra, 137

annihilator, 59

approximate proper value, 169
AP-value, 169

associative algebra, 89
associative law, 3, 4, 87, 89
axioms for a pre-Hilbert space, 25
axioms for a vector space, 3

B*-algebra, 137, 138, 175

Banach algebra, 103

Banach space, 97

Banach-Steinhaus theorem, 102

basis, of a vector space, 21
orthonormal, 52, 54

belonging, 57

Bessel’s inequality, 45

best approximation, 46

bidual of a normed space, 106

bijective mapping, 74

bilinear form, 116

bilinear mapping, 116

bounded below, 155

bounded bilinear form, 120

bounded bilinear mapping, 120, 122

bounded funetion, 99

bounded linear mapping, 95

bounded sequence, 40, 42, 93

bounded sesquilinear form, 128, 130
bounded sesquilinear mapping, 128
bounded set, 38, 40

e, 26

canonical basis, 21

canonical orthonormal basis, 52

Cartesian form of an operator, 148

Cartesian product, 116

Cauchy-Schwarz inequality, 30, 126

Cauchy sequence, 34, 39, 93

Cayley transform, 150

CC-operator, 172

center, 38

classical Hilbert space, 56

closed ball, 38, 40, 93

closed graph theorem, 194

closed linear subspace, 60, 62, 64, 66,
71, 94, 140

closed subset, 59, 63, 66, 91

closure, 62, 63, 64, 71

coefficient, 11

commutative algebra, 89

commutative law, 3

complete linear subspace, 66

complete metric space, 34, 65, 66,
97

complete subset, 65, 66

completely continuous operator, 172

completion, 112, 115

complex conjugate, 25

complex-conjugate of a vector space,
124

complex vector space, 3, 24
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component, 4

composite of mappings, 86, 88, 103

conjugate, 25

conjugate-homogeneous, 81

conjugate-linear, 81

conjugation, 127, 128, 146

continuous linear form, 105, 109, 110

continuous linear mapping, 94, 96, 98,
99, 120, 139

continuous mapping, 91, 94

contraction, 150

convergent sequence, 34, 39, 91, 93

convex set, 67

coordinates, 116

correspondence, one-to-one, 74

diagonal procedure, 174

difference of vectors, 7

dimension, 23, 178

direct image, 80

discrete metric space, 33, 38, 39

distance, 31, 33, 93

distributive laws, 4, 89

dual space of a normed space, 105,
109

element, 57

empty set, 58

equal mappings, 73, 117, 140
equal sets, 58

final set, 73

finite-dimensional operator, 173, 174,
175, 176, 183

finite-dimensional vector space, 23,
48, 51, 96, 99, 161, 175, 176, 179,
181

finite multiplicity, 178

finitely generated vector space, 21

finitely non-zero sequences, 5, 26, 35,
69, 111

Fourier coefficients, 47

funetion, 73

Gaussian rationals, 24

generalized nilpotent operator, 181,
201

generated linear subspace, 15, 16

generators, system of, 15

Gram-Schmidt procedure, 47, 72,
178

graph, 117, 119, 120, 194

Hahn-Banach theorem, 105

Hermitian operator, 147

Hermitian sesquilinear form, 126,
129

Hilbert-Schmidt class, operator of,
136, 177

Hilbert space, 40, 56

homogeneous mapping, 77

hyponormal operator, 161, 162, 166,
168, 170, 175, 187, 188

ideal, 175, 176

identity mapping, 78, 87

identity operator, 139, 173, 175,
176

inclusion, 57, 58

infinite-dimensional vector space, 23

infinite multiplicity, 178

infinite sums, 49, 50, 52, 135, 136,
143, 184, 185

initial set, 73

injective mapping, 73, 80

invariant subspace, 156, 162, 166,
182

inverse image, 80, 84, 91

inverse mapping, 83, 84, 87, 88, 98,
99, 120, 155, 156, 161

invertible operator, 155, 156, 161,
162, 170, 171, 175

involution, 137, 138

isometric linear mapping, 97, 144

isometric mapping, 97

isometric operator, 140, 143, 146, 153,
160, 161, 162

isomorphic Hilbert spaces, 55, 56, 146
isomorphic vector spaces, 82, 83, 88
isomorphism, 55, 82, 88

2, 40

left-inverse, 88

left-invertible, 88

limit, 34, 39

linear combination, 11

linear dependence, 15, 16

linear form, 104, 109, 110

linear independence, 18, 19, 44, 47,
168

linear mapping, 77

linear subspace, 13

u-space, 166

mapping, 73

matrix, 82, 134, 177

member, 57

metric space, 33, 93

metrically equivalent operators, 144,
154, 155, 175

minimizing vector, 68, 69, 72

Minkowski’s inequality, 192

multiplicity, 178, 187

n~fold transitive, 1756

n-ples, 4, 26

non-empty set, 58

norm, 28, 93, 95, 121, 128

normal operator, 154, 181

normed algebra, 103

normed *-algebra, 137

normed space, 93

null mapping, 77

null space of a linear mapping, 80, 94,
140

one-sided shift operator, 144, 159,
162, 165, 170, 171, 178, 198

one-to-one correspondence, 74, 83

one-to-one mapping, 73, 80

onto mapping, 73, 88

open ball, 38, 40, 93
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operator, 139

ordered pair, 116

orthogonal complement, 71
orthogonal linear subspaces, 61, 66
orthogonal projection, 74
orthogonal set, 43

orthogonal subsets, 61

orthogonal vectors, 43
orthonormal basis, 52, 54
orthonormal set, 44

parallelogram law, 29, 100, 114, 127
partially isometric operator, 153
point, 33
polarization identity, 29, 125
positive operator, 149
positive sesquilinear form, 126
pre-Hilbert space, 25

of continuous functions, 26

of finitely non-zero sequences, 26
projection, 74, 75, 151

operator, 140, 151
proper subspace, 166
proper value, 163
proper vector, 163
Pythagorean relation, 44, 48, 50,

62

radius, 38, 40, 93

range, 73, 80

reducing subspace, 158

reflexive space, 107, 111, 114, 123
restriction, 158

Riesz-Frechet theorem, 109
right-inverse, 88

right-invertible, 88

scalar, 3, 24
mapping, 78
multiple, 4
multiple of a linear mapping, 85
operator, 139
product, 25
self-adjoint operator, 147, 170, 179
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semilinear mapping, 81

separable Hilbert space, 53, 54, 55

separable metric space, 54

sesquilinear form, 123

sesquilinear mapping, 123

set, 57

similar operators, 156, 187

skew-adjoint operator, 148

spectral theorem, 181

spectrum of an operator, 171

sphere, 40

square root of a positive operator,
149

Steinitz’s exchange theorem, 21

strong convergence, 102, 108

subalgebra, 137

*_gubalgebra, 137, 175

subset, 57

sum of linear mappings, 85

sum of linear subspaces, 14

sum of vectors, 3, 31

superset, 58

surjective mapping, 73, 175

system of generators, 15

total family of subspaces, 167, 181

total sequence, 51

total set, 51

transformation, 73

triangle inequality, 30, 33

two-sided shift operator, 146, 151,
160, 161, 165, 197

uniform boundedness principle, 102,
195, 197

uniform convergence, 38, 102

unitarily equivalent operators, 147,
149, 156, 187

unitary operator, 145

unitary space, 26

value, 73

vector, 3
space, 3
sum, 3, 31

weak convergence, 108, 111, 114
Weierstrass-Bolzano theorem, 192

zero mapping, 77
zero operator, 139
zero vector, 3
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