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PREFACE

IT is the purpose of this work to present a new analysis of Plane

Geometry. We know that any geometrical theorem may be

expressed as a relation in points. We may however look upon

Plane Co-ordinate Geometry as having points and lines for its

fundamental elements; in relations of which geometrical theorems

are going to be expressed. Thus the equation y = mtc + c may be

looked upon as a line of co-ordinates {m, c). It is this view that

we shall adopt. Now let us denote points by small Latin letters

and lines by small Greek letters. Let a,h,c...l be a set of

points; a, ^,y ...\ a set of lines. Let us denote the joins and

intersections of two points and two lines respectively by drawing

a bar over them, thus ab, a/3. Also let us denote the distance of

two points a, b by (ah) ; the perpendicular distance from a on /3

by {a^y, the angle between o, ^ by (oj8). Let us use the term

' measure ' to include the three cases. Let us use the notation

{""a) Va) to denote the co-ordinates of a and (f., i7«) to denote the

co-ordinates of a.

Then what Co-ordinate Geometry effects is the reduction of

expressions such as

(a67S ... efXhfi...) (A)

to a function of (xa, j/a), i^^b, Vb) •• (?a, »?o) • • •

Now let p, a be the Cartesian axes, then

a;a = (ap), ya = {atr),

and we may put

fa=(ap), Va = (P'ra),

i.e. the perpendicular from the origin on o.
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Hence such an expression as (A) is reduced to a function of

measures of the elements occurring taken singly with the

reference axes.

This idea I have generalized and have reduced the expression

to measures of the elements taken in pairs. On p. 109 is an

important result which I regret does not appear with Chapter I

(it should be read between ^ 20, 21), which states that the square

of distances, that perpendicular distances and the sine and cosine

of angles are reducible to the quotient of two polynomials in

(1) moduli of measures of two points, Ex.
|

(ab)\,

(2) measures of a point and line, Ex. (a^S),

(3) sines of measures of two lines, Ex. sin (a/3),

(4) cosines of measures of two lines, Ex. cos (o/3),

(5) measures of the join of two points and a point, Ex. (a6c),

(6) measures of the intersection of two lines and a line,

Ex. (aiSy).

(7) cosines of the join of two points and a line, Ex. cos (aby).

Cases (5) and (7) are reduced in surd form and (6) by means

of a point to measures of two elements. Thus we do away with

the idea of reference elements.

But this brings us to another matter. We know that taking

four arbitrary points, there is a relation between the six pairs of

measures of two elements. We have also such relations in the

case of three points and a line, two points and two lines and in

the case of three lines. We have called such relations eliminants,

being eliminants of relative position. Suppose we have reduced
all our complex measures and noted all our eliminants. The
matter of proving a relation between the complex measures
reduces to proving the relation between their reductions with the
help of the eliminants.

Again, a point may be got from another point by a vectorial

construction. We have denoted by a„,p the point distant p from

a and measured in the direction of a>. We include such derived

points in our consideration. To do this formally we take the

point of general form a„„^^.^^^...^„^ denoting the point derived

by a succession of such constructions. For the corresponding
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line we take a»,,p,;»,,p,...»H,p,;„ denoting the line parallel to q> and
passing through a„„^;^.p,....^,p,.

Now take any complex measure containing such vectorially

derived elements. Thus

This as we have seen is reducible to a function of measures of

pairs of fundamental elements and vectorially derived elements.

.In Chapter II we have reduced

ia'h)\(a'P), where «' = «„„„;..,,,,...„..,„

(o'6), (a'^), where «' = a„„pj,^,^...^,^,„,

to functions of- measures of pairs of fundamental elements and

PitPi-.-Pn] including a>i, a)2...(u„ in the fundamental elements.

Hence we can reduce any complex measure as above to a

function of measures of pairs of fundamental elements and the

magnitudes occurring in the vectors.

We shall consider yet another class of derived elements.

These are elements derived from the fundamental elements by

an equation. Thus from the lines Oi, a2...a„ we have the

derived line ^ar(xar)+a = 0.

Again from the points Oi, aa...a„ and lines /3i, /Sa... /3m we

have the derived point

SAr (|a,) + XBr cos (1/8,) = 0.

where A^, A^ ...An, Bi, B^... Bm are algebraic magnitudes.

In Chapter III it is shewn that these can be treated in a

similar way to that indicated for vectorially derived elements.

Thus if our Geometry comprise only elements derived from

fundamental elements by (i) intersections and joins, (ii) by

vectorial constructions, (iii) by equational relations, we can reduce

any measure of such elements to a function of measures of two

elements and algebraic magnitudes. We note the eliminants.

We may also have imposed relations stated in the particular

problem. With these conditions we must prove relations between

certain measures. This is a complete statement of our problem.

We have thus stated our problem as a matter of reductional

computation.
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The method devised for Differential Geometry is of a similar

character.

Let a; be a moving point and let a! be its consecutive position.

This displacement ofx we shall define by its direction of displace-

ment and the amount of its displacement : or in our notation xx
and |(xa;')|. We denote asa! by the operative notation rx and

\{xa>)\ by &c.

Similarly let f be a moving line and ^ a consecutive position.

The point of intersection ff we shall denote by the operative

notation j)f and the amount of angular displacement (f^') by Sf.

We shall first consider Differential Geometry of one displace-

ment. Any problem dealing with such Geometry may be reduced

to the consideration of such a measure as

{•pabcT^ar (aw,) = ...'px^,„4Jc tx^...),

and the differential of any complex measure or element.

The method of reducing such an expression is developed in

Chapters IV—VIII. By means of the principle thus set forth

we are enabled to reduce such a measure to measures of the

fundamental elements and elements of displacement ra, rb...,

pa,p^... and the amount of their displacement. We may look

upon ra, rb..., pa,pfi... as fundamental elements. We take

note of the eliminants of all our fundamental elements and these

elements of displacement. The magnitude of the displacement

of each element we must look upon simply as small algebraic

quantities. Should there be any imposed conditions we have
these and also their first derivatives. Our problem is then com-
pletely stated and set forth as a matter of reductional compu-
tation.

We next come to the matter of elements of displacement of

elements of displacement, such as pvx when vx is the line through
X perpendicular to rx. We suppose all the fundamental elements
that are variable to trace continuous curves and in Chapter VIII
we have shewn how to reduce such to elements and differentials

of first displacements and the curvature of the curve at the
elements.

We next consider elements of displacement of elements of
displacement of elements of displacement and so on. All



PREFACE ix

quantities which depend only on the curve traced by a variable

point we shall call intrinsic functions of the point. In Chapter
VIII it is shewn that such are reducible to elements of a single

displacement and intrinsic functions of the curve.

Thus any such measure as

(pp'^abyd . . . j/"2 a, (xor) = . . . a;^)

is reducible to measures of fundamental elements and elements of

displacement of these elements and intrinsic functions of these

elements. We also need the differentials of such measures and
such derived elements as

pv^ ahyd ...v"Sar {xa^ = 0.

These problems are the most general problems of Differential

Geometry. The last chapter is a chapter on Integration adopting

these ideas.

In the Miscellaneous Examples I have endeavoured to illus-

trate the method. As the present work is intended as a

presentation of method, I have not tried to make the examples

exhaustive of well-known properties. The large modern theory

of singularities of curves I have not considered at all.

I must apologise for the rather amateurish manner of the state-

ment of the axioms, which are ticketed with large Roman numerals.

These are the axioms which form the basis of the symbolic

procedure of the text. This method must not be worked out

by using a figure. The result is generally a hopeless quandary

of sign. It must be worked directly from the axioms and deduc-

tions after having translated the conditions of the figure into a

statement in symbols. As will be seen, no more than these

axioms are required so far as the domain defined is concerned.

The axioms may be divided into two main classes from a natural

standpoint, axioms of actual properties and axioms of convention.

The latter have firom time to time been given by successive

writers for the purpose of comprehending many cases in one

though I believe they appear in a connected form for the first

time here. There are two main points in regard to a system of

axioms. The first is that they should be sufficient, the second
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that they should be consistent. The proof that they are con-

sistent I have not attempted. The fact that they have not yet

yielded a contradiction is a powerful argument of their consist-

ence.

Axioms (XV), (XVIII) have been proved visually. But no

doubt with a few more fundamental axioms of superposition and

orientation, these could be deduced.

There are two main ways of considering Geometry. One is by

sight or figure. The other is by a symbolic representation of the

figure. The former method I shall call the Visual method: the

latter the Symbolic method.

Visual Geometry, as it is known, is of a synthetic or transfor-

mational character but there is no reason why it should not be

analytic or reductional. A few cases can be cited in which a

theorem in Visual Geometry is worked out by a reductional

process. The conditions of the problem may be represented by

certain magnitudes determined by the problems, such as areas,

distances: and what is to be proved is also a relation between

the same magnitudes. The working after this is a matter of

reductional computation.

As an alternative method to the Visual method we have the

Symbolic method. As a rule the method of Symbolic Geometry

is of a reductional character.

The method of the text belongs to the Symbolic method.

In some cases, however, the process is easily visualised and

coincides with the treatment of Visual Geometry.

As regards its accomplishments, the method of Visual

Geometry manifests unexpected power, a power which, however,

is not sustained. An illustration of this power is afforded by

Hart's proof of Steiner's construction of Malfatti's problem.

The Symbolic method is characterized by its complete grasp

of the problem : compared with the method of Visual Geometry

it lacks the power of its transformations.

The method of the text has an advantage over Co-ordinate

Geometry in the matter of sign. The method of the text gives a

more automatic account of sign than does Co-ordinate Geometry,
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as the text will I think shew. In a Cartesian system, a line is

represented by an equation. Now an equation gives no 'sense' to a

line which I think explains this deficiency. Casey has given a

convention which applies to Co-oidinate Geometry which states

that the perpendicular from a point on a line is positive or

negative according as it is on the same or opposite side of the

ongin, but it does not seem to have been developed in conjunction

with others.

I have been engaged on the present work for the last three

years. I claim the method as original. There are some theorems

which are original, and most of the general results in the

examples I believe are new. The new treatment of the trigono-

metric functions is original and necessary for the purpose.

We notice here the almost identity in symbol between the

method of Grassmann and that of the text, in the case of

Geometry of Position. The theorems and proofs on cubic curves

in the Miscellaneous Examples have been adapted directly from

Grassmann's theorems and proofs as given in Whitehead's Universal

Algebra. I was not aware of the method of Grassmann before

I discovered the method of the text, though I was aware of a

similar method which the Algebra ofInvariants afiFords.

Not many cases of a general transformation have occurred.

One of the best is Example 12, § 28. Most of the Examples

given on parallique and orthologique pairs of triangles are

readily proved from this.

I have laboured to eliminate errors of detail, but no doubt in

a new work like this there are some still remaining.

The notation I hope will meet with approval. My aim h»s

been to make it unambiguous, easily written and as short as

possible. The notation of putting r before x for the direction of

displacement of a; is ambiguous unless we agree to reserve r

for this special purpose.

In the Appendix I have given four cases of reduction of pro-

ducts of measures. Each is such that, though a component

measure is reducible only by radicals, owing to the eliminants

the product can be expressed without radicals.
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It is a great pleasure to me to acknowledge my obligations to

Mr S. Chapman, Fellow of Trinity College, Cambridge, for reading

part of the proofs with me and for suggestions. The terms

'measure' and 'determinate' are due to him.

In conclusion I wish to express my gratitude to the readers

and officials of the University Press for their close attention

and unfailing courtesy.

A. W. H. THOMPSON.

AprU, 1914.
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INTRODUCTION

§ 1. Definitions : (1) The elementary concepts of plane

Geometry are points and lines. We shall refer to them as

elements.

(2) That a line passes through a point we shall also express

by saying that the line is incident* in the point, or the point is

incident in the line.

(3) The determinate of two elements of like kind is the element

which is incident in both these elements. Thus the determinate

of two points is the line joining them, and the determinate of two

lines is their point of intersection.

(4) The measure of two elements is a certain quantity deter-

mined by these elements, expressing the relation of one in regard

to the other. The measure of two points is the distance between

them. The measure of a point and a line is the perpendicular

distance between the point and line. The measure of two lines

is the angle between them.

The question of the sign of measures is fundamental.

§ 2. Notation. Points will be denoted exclusively by small

Latin letters a, h, c ... x, y, z: lines by small Greek letters

a, ^,7 ... a.

The determinate of two elements will be denoted by writing

them side by side and drawing a bar oyer the two. Thus the

determinate of a point a, and a point h will be denoted by ah.

The determinate of a line a and a line yS by a^.

The measure of two elements will be denoted by writing them

side by side and enclosing them in small brackets. Thus the

measure of a point a and a line h is written (a6). The measure

of a point a and a line /8 is written {a^), and of two lines (a/3).

* See Whitehead's Axiom of Geometry.

1—2
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Vector will be used in the ordinary sense. A vector will be

denoted by a small Greek letter with an acute accent. Thus p

will denote a vector. The direction of the vector will be denoted

by p and the magnitude by p with a circumflex accent, thus p.

The letters p, v, t will be used for certain special purposes.

§ 3. A point may be derived from given elements in the

following three ways:

(i) by a scheme of determinates only. This is the way

points are obtained from other elements in Descriptive Geometry.

Thus 067 gives a new point, namely the intersection of the line

ah with the line 7.

(ii) by a scheme of vectors. Thus

if
l>
denote a vector and a a point, we

get another point a,. This denotes the ^-''^^

point distant p from a, measured in

the direction of p.

(iii) by an equation, as is done in co-ordinate Geometry.

Thus if a,, a2...tt„ be n points, and | a variable line, and

Ai, A2... An algebraic magnitudes, the equation '^Ar{^ar) =
denotes a point; meaning that any line which satisfies the

equation passes through a fixed point.

There are other ways of getting new points, as by the rolling

of one curve upon another; but the above three are the only

ones we shall consider.

Again, a new line may be derived from a set of points and

lines in three corresponding ways

:

(i) by a scheme of determinates.

(ii) by a scheme of vectors and direction. Thus if a is

a point and p a direction, a, is the straight line through a, with

direction p.

(iii) by an equation. If a,, a^.-.a^ be n lines and x a

variable point, and Oj, o^ ... an algebraic quantities, the equation

Sor {xdi) = denotes a line.

§ 4. In the present theory a geometrical property depends

on an equation in measures. Now the proof that one measure

equals one or more other measures, may be effected by reducing



5] SKETCH OF METHOD 5

all the measures to measures of two elements. Also we have,

with one exception, for any four unrelated elements, a relation

between the measures of the six possible pairs. The proof after

this is a matter of algebra. However it is not necessary

always to reduce the measures. It would suffice if we could

so transform, the measures, without actual reduction, so as to

shew their equality. The former method of reduction corresponds

to Analytical Geometry ; the latter method of transformation

corresponds to Synthetic Geometry.

In the text the method of reduction is used uniformly. Our

object will be then to classify measures and give a calculus for

their reduction. It will be seen that the formulae of Co-ordinate

Geometry depend for their use on the fact that they enable one

to reduce measures. Instead of these formulae, we have given

the actual reduction of such measures as are necessary, and give

a definite method for the reduction of more complex ones from

these.

§ 5. Sketch of Method.

The measures of two elements are fundamental. They are

three in number.

The measures containing three elements, we shall call measures

of the third order. These are, with one exception, reducible, that

is to say, they can be reduced to algebraic or trigonometric

functions of the measures of two elements.

The measures of two elements are (xy), (xrf), (^ij) where x, y
are points and ^, if lines.

The order of a function of several measures we define as equal

to the greatest number of elements occurring in any component

measure of the function: thus \{aiy)\{s^z) is a measure of the

third order ; here
|

(ary)
j

denotes as usual the modulus of (xy).

It is to be remarked that the order of a measure so defined

only applies in the case where no two of the elements are identical.

A measure of three lines is not reducible. However with the

introduction of an arbitrary point, it can be reduced.

All measures of the fourth order are reducible. Hence all

measures containing three or more elements are reducible.
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So far we have only dealt with simple points and lines. We

have next to consider the two other classes of elements stated in

§ 3. These we shall call

(i) the general vectorial point and line,

(ii) the general equational point and line.

We shall consider first the general vectorial elements.

The general vectorial point is

«»(»...»• This denotes the point

derived from a by a series of vec-

tors /{, o- ... <u, as figured. ^

The general vectorial line is denoted by Op*...^ where a^.., *»

means the line parallel to lo and passing through the point a^...^.

As regards the reduction of measures of these vectorial

elements, we need only find the values of the measures of two

elements, which are

{afi...tf>y, (o^...*^),

(ap*...*ot), (a^...4^0).

Having found the reduction of these we can, by the formulae

for the reduction of measures of simple elements, reduce the

measures of simple and vectorial elements.

We proceed in an exactly similar manner in regard to the

reduction of measures of equational elements. In other words

we have a calculus for the reduction of measures.

We have so far considered the geometry of finite concepts

only.

§ 6. We next indicate the ideas upon which differential

geometry is built.

We proceed as follows :

Let a; be a point, of another point near x. We write dx for

the small quantity \{xx')\ and rx for omc'.

Again, if f be a line, and f another line near f, we write 3f
for the small angle (f^'), and p^ for the point of intersection ff

.

With these definitions we proceed to the differentiation of

measures.
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Thus we consider the values of

d|(a;a)
|

d(xa) d(^a) d(|o)

dx • "dUT' "df' '~djf'

r iD8tan(

with X, of the expression

We define, for instance, , =Limit when a;' tends to identity
dx

{a/a) — (xa)

\{xx')\

It will be found that having differentiated the measures con-

taining two elements, all the measures of more elements may be

differentiated by a definite method, independent of the method of

limits.

We next require the differentiation of determinates. It will

be found that the differentiation of determinates may be reduced

to the differentiation of measures.

The definition of the differential of a determinate, say xd, is

—;— = Limit when x' tends to identity with x of -77

—

jrf .

ax •' \{^x)\

We consider next vectorial elements. First, we require the

differentials of a^....^ and a^^,.,^. Having found these we may

find the values of the differentials of measures and determinates of

vectorial elements. The same holds for equational elements.

These are all the formulae we require, and knowing these we

may differentiate the most general measure and determinate.

At the same time we may reduce measures containing the differ-

ential signs p; v, t.



CHAPTER I

FUNDAMENTALS OF THE GEOMETRY OF TWO, THREE
AND FOUR ELEMENTS

§ 7. The measures containing two elements are

(ab), (<i;8), (o^).

We suppose a line has " sense " as well as position. If a be a

line, a will be used to denote the line with same position, but with

reversed sense.

We give a set of axioms, which we state as we require them.

As regards the interchange of elements we have

{ba) = -{ab) (I),

(/3a) = (a/8) (II),

(^«) = -(a^) (III).

We have also the following axioms.

If a, b, c are three points incident in a line,

(6c)+(ca)+(a6) = (IV).

The measure (aa) is independent of a and equal to a constant

po.sitive quantity -rr (V).

a, yS, 7 being three lines

(/37) + (7«) + (a/8) = 2,r (VI).

Corollary. (a/8) = (o/9) + ir.

For (o^) + (^/3) + (/3o) = 2w,

.-. (ay8) = 7r+ (a/9).

We have the following axiom for point and line,

(a^) = -(o/3) (VII).

Further we shall suppose (ay3) is positive when the sense of /3

in regard to a is counter-clockwise ; and negative when clockwise.

As regards determinates we have the following

:

te = ^ (VIII),

^=^ (IX),

a/8=^ (X).
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If (ac) = 0, then aBc=a ot a (XI).

If(a7) = 0, then ahf=a (XII).

If a, b, c, d be four points incident in a line, and such that

ab= cd, then y-J-
is positive (XIII).

{ca)

§ 8. Geometry of two points and a line, a, b, y. Definition of

the sine function.

We shall assume that the expression

jay) -{by)

\(ah)\ _
depends only on the line y and the determinate ab (XIV).

We may therefore write it as a function of (aby). This

function is the sine function. We have accordingly

sin
-T (ay)~iby)

Corollary. sin (ba,y) = ^ V. ,"^' = - sin ( aby).
\(ao}i

Hence if o, /3 be two lines

sin (fij8) = - sin (a^S),

also sm(a67)
^^^ !(a6)!

= — sin (aby).

.: sin (o^) = - sin (o^),

.-. sin {{a^) + •«) = - sin (a/8).

Again, let a, yS be two lines. Let o = ayS, and let a, b be two

points incident in a, ^ respec-

tively, such that

|(oa)| = |(o6)|.

and oa = a, ob=^.

Then sin (o/S) = sin (oa/3)

_\{oa)y

and sin (Ba) = sin ( o6 o)

\{ob)\-
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Now from symmetry it is clear that a bears the same relation

to /3 as 6 does to a; with the exception that the sense of a in

regard to b is opposite to the sense of /8 in regard to a. Hence

(a/3) = -(ta).

Hence sin (/3a) = — sin (o/8),

or sin{-(a/3))=-sin(ay3) (XV).

We now proceed to the Geometry of three and four elements.

We shall first consider such geometry as involves only algebraic

and sine functions; considering afterwards properties involving

the cosine function as well.

§ 9. Geometry of three points a, b, c.

We write (aJ)c)* for \{ah)\{abc).

Hence (bac) = \{ba)\ (bac) = — \{ab)\ (abc) = — (abc).

To find the value of (cab) we have

• /-L—\ (a3c)-(65c), „„
sm(abac) = -

iV-rr;

—

- by S 8

_ (bad) _ (acb)

\{ab)\
~ ~

\{ab)\

{acb)

\(ab)(ac)\

'

similarly sin (acab) = —
,

>-
, , . ,

,

.
•^

^ ^ :(a6)(cK!)|

Now sin(oca6) = — sin(o6ac),

.-. (acb) = - (abc),

.: (cab) = (abc).

Hence (abc) = (bca) = (cab)

= - (bac) = — (cba) = — (acb),

also (abc)=\ (ca) (ab)\ sin (cac3))

= \(ab) (bc)\ sin (ah be)

=
I (be) (ca) 1 sin (bccd).

Gorollarv
«" (ca a^) _ sin ( ab 6^) sin (fee eg) 1

y-
\(bc)\ - \(ca)\ -~ \(ab)\ -2R-

* (abc) as thus defined is equal to twice the area of the triangle formed by the
points.
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We shall call (aic) the standard measure of three points.

R ia called the circum-radius of the triangle.

§ 10. Oeometry of three lines a, /8, 7.

We write (0/87) for sin (a/9) . (0^7),

.-. iffary) = sin (/So) (^7) = - sin (a/3) (^7) = - (afiy).

Now if we put a = fiy, b = ya, c = oyS; we get

bc=a, m — p, ab = y,

or bc=a, ca = /8, ai = y,

or bc=a, ca = 0, ab = y,

or bc=ct, cd = l3, ab=y,

or one other set tff relations.

We shall consider only the first alternative ; the same result

follows from any one of them.

We have sin (a/3) (a/37) = ^^^ (bcca) (cab)

(abcy

-\{bc){ca)(al>)\-

Hence (0^87) = (/87a) = (70/8) = - (^ay) = - (7^*) = - (ayfi),

and (0/87) = (0/87) sin (0^8) = two similar expressions.

We shall call (a/87) t^® standard measure of three lines.

It is easy to shew that

I

(a/87)
I

= 1(7* «/8) sin (7a) sin (a/3)
|

= two similar expressions.

§ 11. Geometry of two points and two lines, a, b, y, S.

To reduce the measure (abyS).

Let 067 = 0.

Then dd = ob or oa = ob.

Suppose oa = ob, then

also ,in(UaB)J-^^l^: siui^bB)J-^^l:^

,

\(oa)\ \{ob)\

(ay)_ (oS)-(aS)

•{by) (oS)-(66)'
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, . , . ., (a^){bS)-(aS)(by)
from which (oS) =

[ay) -{by) '

Now {abyS) = am{aby)(abyS)

(ay){b?,)-{aB){by)

\{ab)\

It is easy to see that when od = ob the same result follows.

Writing (afryS) for
|
(ab)

|
sin ( oi7) ( aft 78),

we have (0678) = (07) (68) - (aS) (by).

We shall call (0678) the standard measure of two points and

two lines.

§ 12. Geometry of three lines and a point, a, /3, 7, d.

Let a, b, c be three points and d a point in-

cident in be.

Then

(abd) + (adc) = \{bd)\(aFd) + \(dc)\ {adS).

Suppose hd = dc = be,

then {abd) = {adc) = {abc),

and |(6d)|+l(dc)|=|(6c)l,

.-. {abd) + {adc) = \{bc)\ {abc) = (aic).

The same result follows from the other alternatives to

bd = dc = be.

Now letd be any point, not necessarily

incident in be.

Let
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Then (dbc) = |(6c)| (da), etc.

.-. |(6c)| (da) + |(co)| (dy3) + \(ab)\ (*y) = (abc),

.: sin (0y) (da) + sin (7a) (d^) + sin («/8) (dy) = (0/87) by § 9.

The same result follows from any of the other alternatives of

§ 10 ; and is therefore true for any three lines.

§ 13. With regard to any line a we shall assume that one

and only one line yS, passing through a fixed point, can be found,

so that (a/9) has any given value, say 6. Further that all such lines

through different points are parallel, i.e. the measure of any pair

is zero (XVI).

Notatiim. We shall write «« for such a direction ; so that

(««.) = e.

Corollary. o„ „ is parallel to o.

22

Aosiom. We shall assume that

i(«i8)| = |(a,„/3a)| (XVII).

2

TT
To find the value of sin ^

Let 00,= and let a be a point incident

2

in a, such that oa = a„.

2 2

Then

sin (aa,r) = sin (aoa) = — sin (odd)

'

_ (««)

\(oa)\

^_J^^^(aa)^
~|(aa.^«)l IMl

2

= + 1 since the orientation of a in regard to a is

counter-clockwise (XVIII).

§14. Definition of cosine function.

We define the cosine of the measure (oy3) as follows :

cos (a;8) = sin (ay3„).

Now (a^„) + ()8./8) + (^«)=27r,

2 2

.-. (ayS,)=27r+ (a)S) + J.
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Now

sin (a^) = - sin {(o/3) + tt) = sin {- tt - («/3)l = sin {ir - (afi)],

• sin {(a^) +
f}
= sing- (a^)|.

Again, (o„ /3) + (M + (««;:) = 2t,

2 2

2
^

.: sin (a,j8) = sin
|| + (a/8)| = - sin

||
- (a^)|

= -siu|| + (a^ = -cos(a/3),

.-. cos (o|8) = sin (a/3,) = - sin {a^^)

2 2

= sin|j+(«)8)j=sin|^-(a/3)|.

Again,

cos (|8a) = sin || + (/Sa)l = sin
|j

- (a/8)j = cos (a^).

cos {a,^) = cos ||
- (a/9)| = sin (o^),

3 (ayS.) = cos
|| + (o^)| = - sin (a/3),

^ cos {it- (a/3)} = - cos (o/3),

cos {it + («/8)} = - cos (a^),

cos (o;8) = cos (o/8) = — cos (o/3).

cos(

§ 15. Addition formulae for sine

and cosine functions.

The three lines ab, ac, 7 where

(07) = 0, denote three arbitrary direc-

tions.

Now {aby) — (acy) = 2Tr + (abac).
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Now sin (aby) cos (007) — sin (0C7) cos (067)

= sin (aby) sin ( 007^,) — sin (acy) sin (ahy„)
2 2

(by) 2 (07) i / \ n

(&C77^)

= i"7~iw—Ti I'y formula on p. 12
|(a6)(ac)| -^ ^ ^

|(6c)jsin(77^)(6ca)

_ 2

\(ab)(ac)\

_ (abc) = sin(caa6)
\{ab){ca)\-

= sin (abac) = sin {(aby) — (acy)}.

If we put (067) = 6, (007) = </), this becomes

sin (0 — <!>) = sin cos — sin <^ cos 6,

and we have the other trigonometric formulae.

§ 16. FurtJier geometry of the triangle „

.

In this notation a = bc, ^=cd, y = ab.

We have (^87) + (7a) + (afi) = 27r,

.-. - sin (a/S) = sin {(ffy) + (70)]

= sin (^y) cos (7a) + sin (7a) cos (3y).

Hence -
1

(ah)
|

=
j
(6c)

|
cos (7a) +

|

(ca)
\

cos (0y),

similarly - \(ca)\ = |(a6)| cos (0y) + \(bc)\ cos (o^)

- \(bc)\ = \(ca)\ cos (a0) + \(ab)\ cos (7a).

From which

(60)" = (caf + (aby + 2
1

(ca) (ah)
|
cos ( ca 06 ),

and two similar formulae.

We may now reduce the standard measure of three points.

It may be shewn that

4 (obey = 2 (ca)^ (ahf + 2 (aby (bey + 2 (6c)'' (cay

-(bey-(cay -(aby.
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§ 17. Geometry of two lines and a point, a, /S, c.

To reduce (a^cy.

Let J3
= «c«„, q = Pc^,-

2 2

Now in the triangle pq, y3, a

sin (aj99) sm(pq^) sin (/9a) '

sin (pgo) sin (a/8)

"

Again, we have

sin {cp pq) _ sin (^ op) _ sin (/8d) _ sin (a/8)

!(c9)r~ !(P9)[
~

i(P9)l
~

\(pq)\

COS (apq') _ sin (^pqoC)

"
l(c«/)l_" l(ir/S9)|

•

.-. tan (pg «) = ^'^^^ = tan (cgc"^),

Hence

.". sin {pqa) = ± sin (cqcafi).

{pqf _ (^qY
«i°'(«^)

sin= (cgc^)
= (a/8cf.

Firstly, suppose the sense of a, yS to be counter-clockwise in

regard to c,

.: (a0cysin={a^) = (pqy
= (pcY + (qcf - 2 \(pc) (go) I cos (pcqc)

= (pcy + (qcy - 2 \(pc) (qc) \ cos {«^/3,)

= (ca)2 + (cySy - 2 (ca) (c/3) cos (ayS),

since (ca), (c/8) are both positive.

Secondly, suppose the sense of o to be counter-clockwise in

regard to c, while that of yS is clockwise.

Then the senses of b, yS are both counter-clockwise in regard
to c.

Hence _(a;8c)' sin= (a^) = (cay + (c^y- 2 (ca) (c^) cos (a^),

.
. (a^cy sin» (afi) = (cay + {c^f - 2 {ca) (c0) cos (a/8).

Similarly in the case when both a, yS have senses which are

clockwise in regard to c, we obtain the same result.

Hence in all cases

sin» (ayS) (^c^ = (cay + (c^y- 2 (ca) (cy3) cos (a/S).



17, 18] FORMULAE OF REDUCTION 17

Hence sin (a/8) |(0)8c)| = v'(co)» + {c^y - 2 (ca) (c/S) cos (o/3),

where the square root has the sign of (a/3).

Thequantity (aj8c) = sin(a/8)l(a)8c)( we shall call the standard

measure of two lines and a point.

§ 18. Geometry of three points and a line, a, b, y, d.

To find the value of (ahydf. ''^

Let aby = o.

In the triangle who.se vertices

are a, o, d we have

{ady= (aoy + (odf /y

+ 2 \(ao) (od)\ cos (adod).

Similarly {bdf = (bof + (odf + 2
|

(bo) (od) \co8 (Food).

We shall consider only the case in which ad = bo=ab; in the

other cases, the theorem can be proved in a similar manner.

Multiplying the first equation by \{bo)\ and the second by \(ao)\

and subtracting, we have

{ady\{bo)\ - {bdy \{ao)\ = (aoy \(bo)\ - (boy \(ao)\

+ (ody{\(bo)\-\(ao)i},

(ady\(bo)\-(bdy\(ao)\

- \{ab)\

Now sin (007) = sin ( 067),

. («7) _ (h) .

" \(oa)\-\(ob)\'

\(oa)\-\(ob)\ = \(ah)\,

(ay) _ (by) ^ (arf)-(h)
\(oa)\ \(ob)\ \(ab)\ '

(ody=' l+|(ao)(6o)|.

\(ob)\=,
(h)

.IWI."(ay)-(byy

_ ^ (bdy(arf)-(ady(by) (07X67) (^.,

T. G.
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The quantity (aiyd) = |(a6)| sin (aby) (ahyd) we shall call the

standard measure of the elements a, b, 7, d

{ahydf = [{bdy (07) - {adf (67)} {(07) - (67)} + («7) (^7) («&)'

= (6d)» {a^y + (ad)' (67)' + (07) (h) {{aby - (adf - (bd)%

§ 19. Further geometry of two lines and two points, a, fi, c, d.

To find the value of {a^cd).

(cda/S)

|(«/8c)|sin(«^)

(ca)(d;8)-(c^)(da)

V(ca)» + (ciS)"- 2 (ca) (c/3) cos (a/3)

'

where the square root has the sign of (a/3).

If (oyScd) = (a)8c) (a^cd),

it is clear that (o/3cd) = (cda^S).

§ 20. Geometry of three lines and a paint, a, y8, c, S.

To find the value of sin(a^cS).

• /=^*^ (^8)-(c8)
sm (o^c8) = -^

_ (a/38)-(c8)sin(tt/3)

(aySc)

Now (aySS) = (ca) sin (/88) + (c/S) sin (Sa) + (cS) sin {afi).

/"=^s^ (ca)sin(/88) + (c/3)sin(Sa)
.-. sm (a/8c8) = i—^^

/ a \
^^

—

^ (ac) sin {I3S)- (fie) sin (g8)

(a/8c)

We shall call (o/ScS) = (a/3c) sin (a^c8)

the standard measure of a, /3, c, 8, so that

(a/Sc8) = (ac) sin (/SS) - (/3c) sin (a8).

§ 21. Eliminants,

Let iS be an arbitrary set of elements. Then a relation between

the measure of pairs of elements selected from this set we shall

call an eliminant of the set.
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Now (bOy) = (boy) — (aay) = (baOy) = \(ba)
\
sin ( baoy)

= \(ba)\ sin (bay) = (bay),

.: 8in» (78) (abf = {(67) - (ay)]' + {(bS) - (a«)p

- 2 {(by) - (ay)} {(bS) - (ah)\ cos (yS).

(iv) For three lines and a point, a, 0, y, d.

We have no eliminant in this case.

§ 22. Examples.

1. Shew that if a, j3, y, 6 be four lines

sin (j3y) sin (a6)+ sin (ya) sin (|38)+ sin (aj3) sin (y8) = 0.

To prove this, we have

(^8) + (Sa)+ (a|3)= 2«-, .-. 08)= 2«- + (aa)-(a/3),

(yS)+ (8a)+ (ny)= 2n-, (yd)

=

Stt + (a8)+ (ya),

.
•

. sin (j38)= sin (a8) cos (a/3)- cos (a8) sin (a|3),

sin (y8)= sin (a8) cos (ya)+ C08 (a8) sin (ya),

and hence we have the above formula.

2. Shew also that

sin (/3y) sin (86) sin (y8)+sin (yo) sin (y8) sin (08)

+ sin (a/3) sin (ad) sin (08) +8in (/3y) sin (ya) sin (a/3)= 0.

This may be proved in a similar manner.

3. Shew that (^fa)»=<y")'-^«"°)'y):.7("^)'H^(^«)\

where

and that when k is small.

k=
W)'

\{xj/ia)\ = \{ya)\-^k\{xy)\co6(yxya).

The first is derivable from the formula

=vT ,_ (a8)(6c)'-(&8)(ac)' (08) (68) (a6)i
^"'^*'^

(a8)-(68) + {(a8)-(6d)}2
'

If ^ be small,
j ( xy(a) \

=

=l(ya)l+
^(jy)'+(ya)''-(a»)''

4. Shew that

2|(.y«)|_
=

i

(ya)
I

- A
I

(jcy)
I

COS (ayya).

(^,„)=^Z^). where .=M
=(y«)+*{(y«)- (•a^a)}, when k is small.
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These are derivable from the formula

^ ^ ' («y)-(fry) •

5. Shew that (|^)=-p=M^iM=,
\'l + 2*cos(|i,)+ /E;2

where ^=7Tr\

and where the square root has the sign of (|i;),

= ±{(7^)-*(6|)},

when k is small and where the sign is that of (fij) and b is the foot of the

perpendicular from a on i;.

We have the formula

(Ted)- {ac){m-(.»d)m

s'iacf+ (/3c)i! - 2 {ac) (|3c) cos (a(3)

'

where the square root has the sign of (a/3).

(|^)(,a)-(,z)(ga)
•• (l'72o)=

^'(f2)'+W-2(«^)Wcos(f,)

(i;o)-^(ga)

Vl-2/fccos(|i,)+*2"

First, suppose (fij) ts positive

:

l>/l-2*cos(^)+*2|

= {(ija)— jt(|a)} {l + Acosdv)}, * small,

= (•?«)+* {(fa) cos (^i;) - (fa)}.

Secondly, suppose (^) ts negative

:

(va)-k(ia)
(f<?za)=

-IVl- 2*008 (^)+ ii:2!

- (ijo) - i {(f,a) cos (I,) - (5a)',.

6. Shew that

,=" . cos (no)-* cos (|a) . ,7=~ . sin (170) - i sin (5a)
rm(fii-ii)

.
sm(gnza)= , =,

^
^'l-2*cos(|7)+ /i;2 v'l - 2* cos (5,) + -fc«

where the square root has the sign of (fi;).

If A be small, shew that
(
fij « o)= ± {(i;a) - i sin (fij)}, according to the sign

of (5,).

The first two formulae are obtained from the formulae on p. 18.
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When k is small, firstly (|ij)+ ,

sin ( ^ij za)= {sin (ija)- i sin (|a)} {\+Jk cos (^ij)}

= sin (ija)- i {sin (^a) - sin (i;a) cos (fij)}

= sin (ija) — it cos (ija) sin (|ij),

. •
. (|ij ^ a)= sin ~ 1 {sin (i;a) - jt cos (ija) sin (|ij)}

= (ija) - i cos (i,a) sin (^ij) , ,, ,

= (i,a)-isin(f/).

Secondly (|i;)-,

7. Shew that

I

(oo') (66') (cfl')
I

(W66'^' )= (a66') (aW) - {a'hV) {acd).

Let bb'=fi, <x!=y;

then ^ (ag)Ky)-(a-3)(ay)^

___ _l («")!_ _ _
.-. |(ao')|(a<i'66'cc')= (a66')(o'c(!')-(acc')(o'66').

Hence the required result

Similarly,

sin (,ac!) sin (/S/S-) sin (yy') (^•'^^')={aPff) (a'yy')-{aW') ("w')-

8. If }•, ,~ ,! denote two triangles, shew that

l(aa') (66') (cOI (aa'bb'cc')= 4RR' sin (ua') sin 0/3') sin (yy') {aa'^ffy^),

where A, ^ are the circum-radii of the triangles.

I

{aa') (66') {cc')
I

(^'Wc^)

= (o66') (a'cc*) - (ace') (o'66')

=(|^^y^') (^V^^)-(^V>y?) (ji^i^^)

_ Oy°) (yyV) (/3'a^) (yVg") - (/yyV) (y'y°) Qq'jy) (ygg)

sin Oy) sin (ya) sin (o^) sin {8!-/) sin (y'a') sin {alff)

=
nsinff)n£Vy') t^-'^'^ (<^^-(->>') ('•'^)]

=47JA' sin (oa') sin (/3j30 sin (yy') (oo'jS/S'yy').

9. Shew that

(aX)(m5c)+ (6X) (mca)+(cX) (OTa5)=(mX) (o6c),

(ma) (X/3y)+ (m/3)(Xya)+ (my)(X<i^)=(mX) (o^y).

{ma) (X/3y)+ (»n^) (Xyo)+ (my) (Xa^)

= (»na) {(mX) sin (j3y)+ (m/3) sin (yX) - (my) sin (/3X)}+ ... + .. .

=(nj<i)(mA)sin Oy)+ ...+ ...

= (mX)(a^y).

The first relation is virtually the same as the second.
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10. Shew that (a/3c8X)= -(X8c/3a).

Now (a^c8X)= (^caA)sin(a^)

= (Xdcii3)8in(a/3)

= (X8c^)(X8c)sin(a/3)

= (xIca/3)(X8(!)

= (X«co^)=-(X8c|3a).

11. Shew that (abydXn)=(it\dyba).

(abydXit)=(3kydXii)\{ab)\

= -(ji\dy^)\{ab)\

={liKdyba).

12. Similarly, shew that in the case of seventh order measures

{ahydKmn)= — {nmkdyba),

{a^cUfiv)= - {vidScfia).

13. If raj3c8/)=sin {a^)(^cif), shew that

(a^8fy=^acy 038/)«+03c)'i (o8/)2

+2 (ac) 03c) (O/) (8/) cos (ad)+ («/) (8/) cos (08) - (a/) (/3/) - (8/)' cos (aH)}.



CHAPTEE II

REDUCTION OF MEASURES CONTAINING VECTORIAL
ELEMENTS

§ 23. The general vectorial point is denoted by a^...,i, where a

is a point, and p, a- ...w vectors.

The direction of p is p, and the magnitude is denoted by p. It

may seem convenient to regard p as always positive, and measure

it in the direction of p. There is however an alternative conven-

tion, which proves to be more comprehensive. This is to regard

p as positive or negative and to measure it in the direction of p
when positive, and to measure it in the direction of p when
negative. We shall also use an alternative notation to a^, namely

Op,P) 80 that with the convention stated

We may see the use of the convention when expressing the

foot of the perpendicular from a on /8 by means of a vector.

I* '8 a^,_ _,^, or ap_j., (op).

2 a

With the restricted convention we are not able to represent

it by means of one formula.

§ 24. To express (a^ ...^by in terms of measures of two elements
and vectorial mugnitvdes.

Let fljj = c.

First, suppose p positive, then

\{ac)\=p, ac = p.

Now (6c)»= (afc)' + (oc)''-l-2 |(a6)(ac)|cos(cS^)

= {ahf + ^ - 2p |(a6)| cos (^p).

Secondly, suppose p negative, then

\{ac)\ = -p, ac=p.
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In this case also

(bcf = (ahy + ^- 2p\(ab)\ cos (^p).

Hence (a^y = (at)" - 2
|

(ab) \pcos(^p) + p^,

••
. (a^tbf= (atiby - 2

|

(a^b)\»cos(^a) + a'

= (aby

-

2 \(ab)\ pcos{^p) + ^+^'
-2*[(a,-<r,)-(60]

!i 2

= (aby - 2 |(a6)| ^cos (^p) + ^ + ^«

- 2* [(a<r„) - p cos (p<r) - (ft^,)], by § 25,
2 2

= (aby - 2/3
j

(ab)\ cos (^p) - 2* |(a6)| cos (^<r)

+ ^ + ^2+ 2^^ cos (po-).

And it is easy to see that

ia^..,iby = (aby - 2 \(ab)\ Ip cos (^p) + Ip^ + 2lpS- cos (pa).

§ 25. yo express (a^...,4/8) i/i ferm« o/ measures of two elements

and vectorial magnitudes.

Let a^= c, and consider firstly p positive, then
|

(ac) \=p,ac = p.

TVT • /—OX (a^)-(c3)Now sin (ac/8) = ^
|^. \—^

,

.-. (c/3) = (a^)-^sin(p/S).

If p be negative,
|
(ac)| = — p, ac = p,

and again (c;8) = (a/9) - ^ sin (pfi).

Hence in both cases

(0.^0) = (a0)-p sin (p0),

.: (a^/3) = (a^/3)-d8in(o-y3)

= (a/3) - p sin (p/3) - a sin (<7/3).

It is easy to see that

(a<i*...-i8) = (a/3) - 2^ sin (p0).

§ 26. The general vectorial line is a^...^, where p, <f ... <^ are

vectors and o) a direction. On reaching the point given by the

series of vectors p,<f...<l> we take a line through this point parallel

to the given direction.



26 MEASURES CONTAINING VECTORIAL ELEMENTS [H

To find the reduction of the measure {a^...4Ji).

Let the point a^...# be c; we need (cj)).

(c„6) = (6c„) = (6c„) - (cc„)_

= (6c c„) = \(bc)\ sin (6cc„)

= |(6c)|sin(6ca))

= (6c«a)

= (few) — (co))

= (6a)) -(a^ ...&>)

= (6(u) — {(aa) — 1p sin (pa>)}

= {bato) + 2^ sin (pa>),

-• («(!*... *o6) = (6aa)) + Sj9 sin (/>«»).

§ 27. To reduce the measure (a^...*«/8).

Evidently (a^ ...„ /8) = {tofi).

§ 28. Examfiet.

1. Shew that (xj3y) = - (^,8) sin (ay)+ (J?y) sin (a/3).

We have (i'jSy)= {xxa) sin (/3y)+ (a;/3) sin (y.r.) + (jcy ) sin {xa^).

2. Prove that the jperpendiculars of a triangle intersect.

Let a y be the points and sides of the triangle.

Denote the perpendiculars by Xfiv.

(^iu>)={aa^liv)= (flii) cos (av) — (ai<)co8 (aji)

2

= - {abe,) sin (<ry)+ (ocy,) sin (a/3)

2 2

= (a6(3,) sin (ya) + (acy.) sin (a/3)

2 2

=
;
(a5)

I
cos (y^) sin (ya) —

|

(ac)
|
cos (/3y) sin (a/3)

=0.

3. Let \, ,-, fl- be two triangles: lines are drawn through a, b, c
<V*yJ "PyJ

perpendicular to a, /3', y', forming the triangle whose sides are Xj, in, vi-

similarly through a', V, d are drawn lines perpendicular to a, ^, y, forming

the triangle Xg, //:, vg-

Shew that '
. — ~^i where R, R are the circum-radii of the triangles

ahc, a'b'd.

(Xi;i,i/i)= (a,',/i,i/,)= (a/i,) cos (aVi) - {avi) cos (a'/i,)

2

=
I
(a6)

I

cos (^/S*) sin (^0')+ |(ac)j cos (ac-^) sin (a'/S*)

= 2fi {sin (a/3) cos (|3'y) sin (yV) - sin (ya) cos (/SyO sin (a'/S*)}.
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The expression withiu the brackets is symiuetrical iu a, a'; P, ? ; y, y' hut

for sie

Hence the result.

Corollary. If the perpendiculars from ahc on to a'/SJ'y' be concurrent, the

perpendiculars from a'6V on a/3y are also concurrent.

4. Reduce the measure (a^y).

(«(ifry)=(«(iy)-(6y)

= (fly)-pBinipy)-{by)

= (a6y)-^sin(py).

5. Keduce the measure (ofibty).

(op6*y)=(ap-y)-(6*y)

= (ay) - (fty) - ^ sin (py)+ fr sin (iry)

= (aby) - ^ sill (py) + 5- sin (cry).

6. Reduce (a^bc).

(afibc)= (abc)+ ^ {bcp).

7. Reduce (atb&e).

(afb&e)=(abic)+p (fiicp)

= {btca)+ p [(6p) - V sin (<rp) - {ep)]

= (o6c)+^ (6cp)+a (ca<r)+ pfr sin (po-).

8. Reduce (aib^Cf).

(axbiiCf)= (abci)+\ (bcf\)+fi (c^a/i)+X/i sin (X/i)

= (osfcc)+ 2X (6cX)+ S/i^ sin (/ii>).

9. Reduce
("*i*2...*»*''i»'2">»''»i''8— 'ii)'

+X»
(6(4,»'2...<«n_ ,<'''i'2- 'n-l^")

+/««K*j. ..*,_!«*, *j,..*,_,/V)+ >'»(<»*i*2...\-l^'»2.->«-l''>')

+/l„y« sin (/In »») + WnXn sin {v„K)+k,f^ sin (X„,*„)

=(«*,*8-*»-i*V2-->-lS'2-»--l)

+ i. (6cX,)

+

(in (ca^i,)+ if, (a5i.

J

+jinK sin(m»0+ ^«^» sin (i',X,)+X„pi« sin (X«f»,)

+X,S /l,sin(X,/i,)+X, 2 ^,sin(i.,X„)
1 1

n—

1

»—1

A

+fi^ S (/, sin (/%!',)+/*, S Xr8in(X,/i,)
1 1

n—1 A «—

1

+»„ 2 X,sin(i',X,)+i>, 2 ;ir sin (;*,»„),
1 1

•• («*i*2-*«K''2">«'"l'2-'n)

=(a6c)+ S 2 (6cX,)
k.ii.,vr=l

+ 2 2 2 8inO»,i.,)Ar»..
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10. Shew that (o^y)=(o^/3y)+psm(/3y)8m(po-).

We have (op<r/3y) = - (a^) sin {(ry)+ {ofy) sin (<r^)

= - {{a^) -p sin (p/3)} sin (<ry)

+ Vfly) - P sin (py)} sin (<r^)

= - (ajS) sin (07)+ (ay) sin (<r/3)

+ ^ sin (p/3) sin (<ry) - ^ sin (py) sin (o-^)

= (a,rt3y)

+

P sin Oy) sin (po-).

11. Shew that (x.'xy4fiZYf)= (^A.y^Zi.)+2asin (/ii')sin(aX).

(:rixy?p2yi.)= (^xy?^«»v)+asin(^i.) sin (aX)

=(y^z^i,j;;i)+a sin (^k) sin (aX)

+j8sin(i'X)sinO/i)

= (,z,XKy,^) + a sin (pv) sin (aX)

+ 13 sin (yX) sin (|3/»)+y sin (X/i) sin (y*).

12. Shew that {xi^i^___a^ky^^^^„J^n^^i^...-y^v)

n n A .

= (arAy^2,)+sin(/ii/) 2 a,sin(a,X)+8in(i'X) 2 3,8inOrM)
1 1

n
+ sin (X/i) 2 y, sin (yrv).

I

13. If a, ft y, 8 be four lines, shew that

S(j3y8)sin(a8)=0.

2 (/3y8) sin (08)=2 {(ojS) sin (y8)+ (py) sin (8^)+ (08) sin (/3y)} sin (ad) =0.

14. Let „ i be a triangle and X any line : p, q, r are the feet of the
apyi

perpendiculars from a, 6, c on X : shew that the perpendiculars from p, q, r

on a, /3, y are concurrent.

The perpendicular from p on a is represented by ax^_ -(oX); a,-

And we have

(aA», -(o*.), a„ ftv. -(Wi P, Ca,, _(A), y,)
5 5 5 5 5 ^

= (o^ 6p,Cy») - 2 ("'^) ^i"* 09y) «'° (o^)

5 5 ?
=0-2(/3yX)8in(aX)=0.

The point of intersection of the perpendiculars has been called the

orthopole of X in regard to the triangle.

15. If along the perpendiculars from a, b, c on any hne X, we measure oif

distances equal to the perpendiculars from the angular points of the medial

triangle on this line, determining the points p, q, r, shew that the perpen-

diculars from^, q, r on a, j3, y are concurrent.

16. Let y, I be two triangles. Let p, q, r he the feet of the

perpendiculars firom a, 6, c on any line 8 ; p', gf,
r' those from a', V, d on 8.
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Let the perpendiculars from p, q, r on a', (3', y' be Xj, /i„ i/,, and the perpen-

diculars from p', q', / on a, )3, y be Xj, ^o, v.. Shew that (-^li^)= _ §

.

(Xu^tsi/j) Ji

Now (Vl''l)=(«^r, -(«Jl)i «V 6a„-(6A),3v «V,-(M),y'J

= (aa'„ 6^v Cyv) + 2(aX)sin(/3V)sin(a'X)
5 ^ ^

=^ . R+ ^p; S (aX) (6'c'X), 4 being symmetrical in regard

to the triangles, but for sign, from Ex. 3

=iix function symmetrical in the elements of the two

triangles, but for sign. Hence the result.

17. The circum-centre of a triangle is represented by s. Find the area,

i.e. half of the standard measure, of the pedal triangle of the point Sf.

The circum-centre is the point where

(»a.)=R COS (fiy), (l^)=R cos (ya), (»y)= iJcos(a|3).

Then if p, y, r be the feet of the perpendiculars from a point m on a, j3, y,

= 2 (m0) (my) sin (3y).

Then if m=sfi,

(pjr)= (»^/3) (»py) sin Oy)-f ... -f ...

={(»3)-^sin (p;3)} {(«y)-psin (py)} sin {fiy) + ... + ...

= {R cos (ya) - p sin (pj3)} {R cos (aj3) - p sin (py)} sin (j3y) -I- . . . -f- . .

.

=rR^S cos (ya) COS (off) sin (/3y) + ftp2 sin {pa) sin (/3y)

-f^ 2 sin (pi8) sin (py) sin (/3y)

= (iJ*- ^2) sin Oy) sin (ya) sin (a/3).

18. Shew that

2 (ofiay (p6c)=2 (oo)* (;>6c)-f(a6c) p2-^2 (a5c) ^ |(po)| cos (^p).
a,b, c

2 (o^a)2 (jsftc)= 2 {{oaf- 2p \

{oa)
\
cos {dap)+ f^} {pbc)

= 2 {oa)'^ {pbo)+^ {ahe)- 2^ {{op„)- (ap„)} (;)6c)

= 2 {oaf {pbc)+^ {ahc) - 2^ {op„) {abc)+ 2^ (pp,) {abc)

= 2 {oaf {pbc)+^ {abc)

+

2^ {abc) \{po)\ cos (pop).

19. Hence shew that

2 {oaf{pbc)^{R^+{pof-{pif}{abc),
OtbtC

where « is the circum-centre of a, b, c and R the circum-radius.

2 {oa)^{pbc)=2{Su,paf{pbc), where a>=so, p=\{to)\

=2 (»»)' (jb6c) -^p* {abc)

+

2p (a6c)
| (p») |

cos (pia)

= {^-fp*-h2p |(p»)| co8(JD«io)}(a6(!)

= {R^+{pof-{pi)''}{aic).



CHAPTEK III

REDUCTION OF MEASURES CONTAINING EQUATIONAL
ELEMENTS

§ 29. It is evident that an equation

f{{xa,), (xa,)... \{xa,)\, \(xa,)\ ...) = 0,

where ai, o^ ... a,, a, ... are fixed, is a locus of a;.

We shall consider the following locus a linear function of

(a;2,), (aJOs) . . . namely,

So, {wor) + a = 0.

Let y, zhe two points on the locus, then

Sor (yttf) + a = 0,

So, {zOr) + a = 0.

Hence by subtracting

2a, (yzttr) = 0,

i.e. Sa, sin (yzur) = 0,

which equation determines the direction of yz.

Hence the locus must be a straight line.

Conversely, it may be shewn that any line can be expressed in

the form of a linear equation. For let ^ be the line, and let a, /3

be any two lines, concurrent with f.

Let X be any point on ^, then

(xfi) sin (fo) + (aro) sin (/3f) = 0,

and by taking any two lines y, B concurrent with a, we have

(xa) sin (yS) + (xy) sin (8a) + (xS) sin (07) = 0.

Hence fi, y, S being any three arbitrary lines the equation of

f may be expressed as a linear function of (a?/3), (a^y), (xS).
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It is important to notice that the locus given by a linear

equation is according to our stipulation two lines ; namely, a line

and the line with same position but reversed direction. The

signs of the square roots occurring in the following are therefore

necessarily indeterminate.

§ 30. To reduce the measure (Sa, {scBr) + a = 0j8).

If y, z be two points on f = 2ar(*«r) + <*= we have seen

that
Sa, sin (j^5a,) = 0,

i.e. So, sin (fa,) =0.

.-. 2a,sin{(?^)-(o,/3)}=0.

.-. sin (f/8) Sa, coa (a,)8) = cos (f/8) Sorsin (or/S),

. to^/'fcm
Sa,sin(a,/3)

rr • /f=o\
2arSin(a,^)

Hence sin (f/3) = ,^ „^. ==^

,

V2o,« + 210,0, cos («,.«,)

fta\
Sa,cos(a,/3)

COS (f/9)
=

VSo,' + 22ara« cos (Or^,)

Let us give f a certain sense. With this sense we have

. ,to\ Sa, sin (a,;9)
sin(g;8)= (i),

w|v2a," + 22.a,a, cos(a,ag)|

where m is either + 1 or — 1.

Tu /fcfl\
Sa,cos(a,;3) ,..,

Then cos (f/3) = ,
.

^
(u),

m
I

V ia,' + 2Sa,a, cos (a,a,)|

since the sign of the tangent is independent of the sense of f

.

Suppose 7 any other line.

Then

sin (^) = sin {(f/3) + i0y)} = sin (f/S) cos (^87) + cos (I7) sin (,97)

Sa, sin (0,7)

m
I

VSa/ + 22re,a8 cos (0,0,)
|

substituting from (i) and (ii).

Hence the sign of the square root depends only on the

particular sense of ^ chosen.

§ 31. To reduce the measure (2a, (««,) + a = 6).

Let y be any point on the line, and let a denote its direction.
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Then

( lur {xur) + a = 06) = (y„6)

= \(yb)\ sin{a>yb)

•Jza/ + zzarUf cos (Oraj)

lUr (bt/Or)

VSOr' + 220,0, COS (ardg)

_ S Or {bOr)— So, (yOr)

VSa," + 2^0,0, COS (a,o,)

SOr (6«r) + a
•. (Sor (war) + a = Ob)-

VSOr^H- 2X0,0, COS (a,(»,)

Supposing the line 2ar(a;or) + = to have a specified sense,

it is important to notice that the square roots occurring in this

and the former section have the same sign.

§ 32. Next we shall shew that

where o,, Oj ..., 0i, /Sa... are fixed, is the equation of a point.

A given line may be represented by c„,r.^ where c is ao

arbitrary point. Let this satisfy the equation, then

lAr (C„,,.. «Or) + 25, COS (c^^r-.^-^r) = 0,

.-. 2Ar {(arC(f)) + r sin (»^)] + XBr cos (^/8,) = 0,

.•. r sin (««/>) tAr = - 2.4, (a^<^) — 25, cos (^^8,).

We may change ^ to (^^ and we have

r cos (o)^) 2.4, = - 2.4, (a,c^») - 25, sin (<^/8,).

Squaring and adding

r=(22l,)»= 2^,»(a,c)' + 2 2 ^,4,|(o,c)(a,c)|cos(a;co^)

+ 22il,5, |(o,c)| sin (^/3,)

+ 25,' + 225,5, cos ()8,/3,).

Since the right-hand side is independent of w, ff> all the lines

must pass through the same point. In other words, the equation

is that of a point.
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Conversely, any point can be represeDted by an equation of

the form considered. For let o be the point, take two points a, h

collinear with o. Let ^ be any line incident in o.

Then (af) (60) = (6?) (ao).

Then taking any two lines /3, 7 we have from b, f, /8, 7

m sin (/37) - (6|8) sin (fy) + (67) sin (?/3) = (^^y).

Hence

(a?) sin (^7) (bo)= (ao) [- (6/8) cos(^^ + (M cos (?^,) + (?/37)].

a, /3, 7 are any three elements, and the equation is of the form

considered, proving the theorem.

§ 33, To reduce the measure

(lA, (fa,) + IBr cos (f/Q,) = Oc)^

We have seen that

(S^, (fa,) + 25, cos (f/5,) = Oc)» (2^,)»

= %Ar''(a,cy + 2 2 .4,.4, |(a,c) (o,c)| cos (a,*a,c)

+ 22^,5, ia/:^.) + 2fi,»+ 225,B, cos (;8,)3.),

which is the required reduction.

§ 34. To reduce (2^, (fa,) + 25, cos (f/S,) = 7).

Let c, d be two points on 7, and let a be the point

24, (fa,) + 25, cos (f)8,) = 0.

Then ac, ad will satisfy the equation.

.•. 2il,(ac«,) + 25,cos(oc/8,) = 0,

.-. 2.4, (acur) + 25, (ac/8,„)= 0.

Similarly 24,(ada,) + 25, (ad/3„) = 0.

.-. subtracting 2.4, |(a,a)| (cda:^) — 25, (cd^^^) = 0,

.-. 24, |(a,a)| sin (7^) - 25, cos (7/8,) = 0,

i.e. 24,(aa,7)-25,cos(7/S,) = 0,

.-. (07) 24, = 24, (0,7) + 25, cos (7/8,).

Hence (24, (fa,) + 25, cos (f/8,) = 7) 24,

= 24, (7a,) + 25, cos (7/8,).

T. 6. 3
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§35. In the case in which 24,= the foregoing results

break down. We shall consider this case.

From the equation

24, (?«,) + 25, cos (f)3,) = 0,

subtract 24, (fc), where c is an arbitrary point. We get

24, |(o,c)| sin (a;c?) + 25, cos (fi^) = 0.

Let 7 be any line, and let (I7) = 6.

Then 24, |(o,c)
j
sin {{a,cy) -0\ + 25, cos {(/3,7) - ^} = 0.

Hence 24, {(0,07) cos - sin ^ (0,07,)}

+ 25, {cos (/3,7) cos d + sin (^8,7) sin 6} = 0.

Hence {24, (0,7) + 25, cos (^3,7)} cos

= {24, («,7,) - 25, sin 0,7)} sin 0,

giving independent of the particular line chosen. Hence the

equation represents a direction.

§36. To reduce (24,(|a,)+25,cos(f/8,)=07>, when 24,= 0.

We have from § 35

tan (24, (fo,) + 25, cos (f5,) = 07)

24,(a,7)+25,cos(/3,7)

24, (a,7,)- 25, sin 0,7)-

g 37. Examplet.

1. Shew that
SSar&,siii(a,^,)

tan(Sa,(^a,)+a=0 s6,(^^,)+6=0)=
J|^-^^^^^^^-^

.

r 8

Now am(lar{xar)+a=Off)=-r=M^^^^=^,
vSa,*+ 2Sa,o, cos (ora,)

.-. sin,(2a,(a.-a,)+a=0 26,(.r/S,) + 6=0)

_ Sa, sin (2&, (jrj3,)+ 6= n,)

</2«,'+22o,a, cos (orCi,)

2 a, {26, sin (a,A)/v'26,*+226,6, cos 03,/3,)}

^ r »

v'2a,'+22a,a, cos (0,0,)

= 22a,i.8in(a,/3,)/0.0»,
r t

where Q„*= 2a,'+ 2201,0. cos (a, a,),

with a similar expression for the cosine.
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2. Shew that

(2a,(^Or)+a=0 ibrix^r)+b=0 2Cr(a?y,)+ c=0) OaOi,Q,

=S2 2ar6,c,(ar3.7,)
rat

+ a2 2 brC, sin OrT.) +6 2 2 c,.a, sin (y^a,)
r 8 y s

+ c2 2 o,6,sin (a, ft).

Let o be any point, then we have

(2a,.(a?Qr)+o=0 26,(a;i3r)+6=0 2c,.(afy,)+ c=0)

= 2 (2a,(a;a,)+a=0 o)sin (26,(^|8r)+6=0 2c,(a7,.)+c=0)
a, b,c

= 2 {2a,(oar)+o}2 2 6,C,sinO,y,)/Q„06aj
a, 6, c Jt <

= 2 {2 2 2 Or6.C( (oor) sin (i3,yj)+o 2 2 6,Ct sin 0,-y,)}/aaa60e
a,b,c r s t s t

= {2 22a,6,c,(a,/3,y,)+ 2 a22 6,c,sin (a,y,)}/OaOjQ5.
r s ( o,6, c »• 8

3. Shew that

2grSi"(Y3r)
sin (25, cos (^/3,)= y)= -p

x'2/f,2+22fi,£, cos {Hrfi,)

§ 38. We may now explain fully the general method of pro-

cedure. Let there be n elements, whose relative properties are

our consideration ; also m algebraic quantities occurring in a system

of vectors; the directions of the vectors, we shall include in the n

elements. Also p algebraic quantities occurring in the coefficients

of equational elements. The elements in the equation we shall

include in the n elements. The fact that the standard measure of

three lines is in itself irreducible complicates matters.

If all the n elements be lines, introduce an arbitrary point.

This enables us to reduce the measure of three lines. So we shall

suppose among the n elements there is at least one point.

Then any measure of these elements and elements derived

from them in any of the three ways stated in § 3, can be reduced

to an algebraic-trigonometric function of the % measures of the

n elements, taken two by two together, and the m and p algebraic

quantities. We shall only consider such geometry in which elements

are derived in one of the three ways stated in § 3 and no more.

Then a property amongst the elements is the vanishing of a

function among measures of the n elements and derived elements.

By reducing the measures to algebraic-trigonometric functions of

the "Ca measures of the n elements taken two by two, we have to

3—2
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prove the vanishing of a function of these "Cj measures, and the m
and p algebraic quantities.

Again, let the n elements be composed of n^, points and Ui lines.

When «p=l, there are ni—2 relations between the measures

two by two of the ni lines and there are no other relations. When

Tip > 1 , there are ^^ ^ relations between the measures

two by two of the n elements. See § 21.

Our task is then to prove the vanishing of the function of the

"Co measures and m and p quantities by means of these and only

these relations between the measures.
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CHAPTER IV

DIFFERENTIATION OF MEASURES OF SIMPLE ELEMENTS

§ 39. Let X be any point, and ai a consecutive point. Then

Kaac')! we denote by &e, xx' by tx.

Again let f be any line, and |' a consecutive position, (f|') we

denote by 9f, f^' by jof

.

§ 40. From the preceding it may be shewn that

. sind

e
= k, & constant.

The precise value of k is still at our disposal. We shall

suppose then that

L ?^=1 (XIX).

With this stipulation it may be shewn that the sine and cosine

functions may now be expressed as the usual infinite series'.

§ 41. To differentiate \(xa)\.

The point a is supposed fixed. We define the differential

coefficient or derivative of \{xa)\ as

\(xa)\-\(xa)\

, . , dl(a!a)| '

We represent this by —'^V^ •

d\(xa)\ _ \(x'a)\-\(a!a)
\

Then -d^-J:^ \ixx')\ _
_ ^ \(x'a)\ + \(xa)\ cos (xdax')

_ , —\(xx')\coa(ax'x'x)
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by formula on p. 15,

= L — cos (x'a axe'

)

= — COS (rxxd).

Hence —^— ' = — cos (yxxa).
ax

The line a;^*, we shall call the normal line at x, and represent

It by vx, so that

{rxvx) = -^.

TT d K'j'ffl)! / \ • / \
Hence —^—- = — cos{xaTx)= — smyxavx)

_ (xavx) _ {vxa)

\{xa)\ ~\(xa)\'

§ 42. To differentiate (xa).

{a/xa)

We have ^^= L
(^''')-(^")

,h,.\{xx')\_

= — L sin {xx'a)

= — sin (rara).

§ 43. To differentiate (|a).

The line p^^ we shall call the normal line of f, and represent

it by rf

.

We have from definition

dm.- T (r«)-(g«>

-(pgar)-(fa)

=.i' (IT)

"fif (If)

_ X - (fg) sin (,>gr) + {v^a) sin (gf) - (?«)

by formula on p. 18.

. d(ga) . t ,
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§ 44. To differentiate (fa).

We have ^J^^l.^^

• d? - '

§ 45. Let x,y,e ...,^, Tf, ^ ... he B. number of points and lines.

Let /(x, y, z ..., ^,ij, ^ ...) denote a measure depending on the

same points and lines.

Then the differential oi f{a>, y,z..., f, i), f...) denoted by

df{x, y, z ..., ^,T),^ ...)\a defined as the expression

f{x\ y, z'..., r, v', r ••) -/(^. y. z .... ?, f), ? ...).

where x' y', z ..., f, if, f ... are near x, y, z ..,, f, 17, %..., small

quautities of 9a;, 9f ... being only retained.

Then f{a!,y\z!..., f, V. ?'•••)-/(«'. y. ^ -. 1. 'J. ? -)
=f{x', y'. z' ..., r, V, ?'...)-/(«', y'. ^' ... r. v, r •••)

+/(aj, y', / .... r, V, r -o-zc^'. y, z'..., r, v, r •••)+ -
+/(^. y, / .... r, V. r ••) -/(a^. 2^. ^ - f. v, f •••) +-

Hence df{x, y, z .... |, j;, f ...)

^ a/(a;. y, ^.•, f. ^?, ?•••)
^^

^

df(x,y,z...,l7},^...)

dx dy ^

df{x,y,z...,l7,,^...)

§ 46. We have then the following differentiations

:

d
I

{xy)
I

= — cos (rxxy) dx— cos (ryyx) dy

-i(ary)r + |(a^)|'^2''

d (xTi) = — sin (txtj) dx + (jcwj) di],

di^) = dv-d^.

§ 47. Examples.

1. Shew that d{jxyz)={yzTx)dx-r{zxTy)dy+{3yTz)dz.

For ^>=|(y^)|^-^)=-|(y^)|8in(ra,-yi)=(y^r^).

2. Shewthat ^(^^0= -8in(Ta:f)rfir+sin(T3rf)rf5>+(a:yi'0<'f-

a(^.yC). a{(.rf)-(.yf)}
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3. Shew that (Jiji) -^^— standard measure of the feet of the perpen-

diculars from z on ^, i/f, 1/ respectively.

We have \ d {iv^y= id {(^)='+W - 2 ^z)M cos (I,)}

= (|2) (v^) - ("f^) (.vz) cos (I,) - (|«) (t,z) sin (f,)

= measure of the feet of the perpendiculars fro m
on g, kI, I) respectively.

4. Shew that rf(fi;f) = (i'f>?f)rf|+(S>")f)<i>) + «')''f)<if-

5. Shew that ^^^ = -
|

(ao)
1
cos (xaa&)|^^

.

d{xab) d (xah) {abrx)
\
(xa)

\
+ (xab) cos {txxS)

^^ehave -^r=^|(^-"~^ (S^P

=[| {xa) (ab) lain (oftrx) + (xab) cos (T^i5)]/(a.-o)*

= [ I

(A-a) (06)
I

sin {{06 ia)+ (iS ra;)}+ (.ra6) cos (Tario)]/(axi)2

= [\{xa){ab)\{aiu{cAxa)coa{xaTx)+ain{!caTx)cos{ab^)i

+ (a»5) cos (ra;^)]/(jra)*

=
1
{xa) (06)

I

sin {xdrx) cos (xaab )/{xay

{rxa)

.

—-T," ~ (x^» ' ^^^
'

coa(a»o6).

e. Shew that
rfi|3)^_(M?)|iEM.

rf(gff)^d (^gg) ^ (Kgaja)8in(|a)+ (gai3)cos(^a)

li^ rf| sin (^a) sinii (fa)

= [(vf^) sin (|o)+(|<^) cos (fa)]^^^
(pga) sin (off)

8ini'(fa)

- ov 4.1, * <^ /=t; ^
(ra;a)(aj3)sinOy)

7. Shew that ^(^a,iy)=
(^,g)2

We have ^ (^o/3y)= (y^or^),

d —-5 . d (xaj3y)
•• 5i^^PT^=5i'(^)'-

_ (y^ttTj;) (xa/S)+ (xaj3y) sin («;j8)~
(^a,i)^

{(yg) sin (grx) - 03a) sin (yrx)} {(x^)- (a/3)}+ { (xg) (ay) - {xy) (a^)} sin (tXjS)

{xajif

(yg) (j3a) sin (i-.ri3) - (j-y) (ag) sin (rxg) + (a)3) sin (rxy) {(xj3) - (ajS)}

(xag)a

_ (txo) (off) sin (j9y)""
(Jrai3)«



CHAPTER V

DIFFERENTIATION OF DETERMINATES OF SIMPLE ELEMENTS

§ 48. Suppose E{x, y, z ..., ^, i), 2^...) denote a determinate of

X, y, z ..., f, V, ?." Then E{a;', y', z' ..., f, V. ?' •••) denotes a

determinate near to E{a;, y, z .... f, t), ?...).

We define, as for simple elements,

dE{a;.y,z...,lv, K-) = E{x.y, z...,^,r,.K-)E {x','i^...,^',r,' ...).

In general the results are quadratic in the differentials of the

several elements.

The method of procedure adopted is as follows

:

Suppose, for instance, E{x, y, z ..., ^,ij, ^...) is a. point. Call

it a.

Then we shall have two measures vanishing, viz.,

'fiia;,y,z...,lv, S"...a)=0,

f^(x,y,z..., ^,v, ?...«) = 0.

Then we have

|&+ |v,....+|.f4|v,....^|.».0.

From these two equations and (ora) = we eliminate ra, and

so find da.

A direct method of procedure will be indicated later.

§ 49. To differentiate xy.

Let xy = ?, then (.r?) = 0, (y?) = 0,

.-. -8m(TX^d.x + (xv^d^=0,
- sin (ry?) dy + (yv^ d?= 0.
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Subtracting,

- sin {tx^) dx + sin (ryf) dy + (ajyyf) df= 0.

Hence \{xy)\ cos (^?) d?= sin (jxi) dx — sin (ry?) dy,

.•. |(a;y)|d^=sin(Ta;^)da; — sin(Ty«y)dy,

.. {xyf dxy = (yrx) dx + {xry) dy.

Note. It will be seen that dxy = — d (xya), where o is a fixed

line, i.e. the differential of a measure, which explains the linearity

of the result.

§ 50. To differentiate ^

.

Let'^ = z, then (^z) = 0, (i;«) = 0,

.•. — sin (t«|) dz + {zv^) df = 0,

— sin {rzi}) dz + (zvri) drj = 0.

Now since (t^^) + (^) + i'Tz) = 27r,

.. sin" (r^f) + sin' {tzt)) — 2 sin {rz^) sin (tztj) cos (fi;) = sin" (^).

Hence sin" (f,,) {dzy= {zp^y (d^f + {zvTJy {drjf

— 2 {zv^) (zpT)) cos (^) d^df),

.: sin* (^,) (d^)«= (^ v^y (d^y + i^wy (d^y

_ - 2 (^v?) (fi?""?) cos (fJ7) df di;,

.-. ^in* {^){d^y=(p^vy{d^y+ipv^y{dvy

+ 2 (p^)ipvS) cos (tn)d^dv.

§ 51. Examples.

1. Shew that

_(^2)2d^2= (p|,)(,z)d|+ (^,|) (|0)rf,+8m(|,) (f.p-2)<fe.

Let |^2=X, then (fi;X)=0, (A)=0,

- sin (rtX ) dz+ (sv\) dX = 0.

Multiplying the second equation by sin (^) and subtracting we have

(v$Ti\) rf|+(|i>i;X) rfij+sin («X) sin (fij) <fe+sin (|i,) (^«»X) rfX=0,

.-. (|ij«) rf^2= -(i-f i;X)d|- (IkijX) di;-sin («X) sin (fij) rfz

(^«)'rfS« =(pl>)) W'^fi+Cp'jf) (l«) rf>;+ (fF«) 8in(g,)rfz.

2. Shew that

(^0* (d^f)*=M)(yrJ7) Ai;+ (3:f) (awy)dy}«+(ary)«(^pf)«df«

+ 2 {(yO (yr^a;) rf.r+ (arf) (arry) dy} (agrpf) (ayvf) df

.
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Let xy(l= a, then {xya)=0, (fa)=0,

.-. {yaTx)dx+{axTy)dy-'r{xyTa)da=0,

{avO rff- sin (xaf) da = 0.

Now since (raf)+ (faji) + (^ra)= 2w,

.-. sin^ (raf) + sin2 {rax^)

-

2 sin (raf) sin (ra^) cos {xiiC)=am^ {x^i).

• (^^0"= (^)' sin* (raf)+ (a^yTo)«+ 2 {xyra) \(xy)\ sin (rof) cos (^f),

.-. (a;yO''(*»)''=(^y)''(a>'0'W''+{(yaTa:)(jte+((urT3^)rfy}2

- 2 {(j^ora!) <ia;

+

[axry) dy)
|

(a^y)
|
cos [xyO {avO di,

.-. {xyCY{,daf=={xnf {xyC„OH<i(^+{-(.^Cvrx)dx + (xyCxTy)dy}^

- 2 {- {xy(yTx) dx+ {xyjxry) dy} \(xy)
\
cos (^f) (^f i/f) df.

Hence (^f)*(d^f)»=(^)«(*yK)' W+{(2«-^)(i»)d^+(^y)(f^)d^P

+2 {(yr.r) (ijr) <ir+(a^ry) (f^) dy} (a^^K) (^"f) ''f-

3. Shew that

{xyiiof dxyCw = (wf) (^^f) (yra;) <*!,•+ (wf) (a;f) (otj^) dy

+ (ayw) {xypi) df+ {xyC-no) dw.

4. Shew that

(^«<»)* (dfi,«a.)2=(|,2)*(|,2pa,)2 (do,)''

+ 2 {(a«!) (,z) (i>f7)rff+ ('»2) (|2) (f»!f) dr,



CHAPTER VI

DIFFERENTIATION OF VECTORIAL ELEMENTS

§ 52. In this Chapter we shall find the differentials of the

vectorial elements, a;^...,i, x^...4„. Having found these we may
find the differentials of any measures or determinates containing

vectorial elements.

§53. To find the value of dx^..,^.

Take any fixed line \, then

(«p*...c6X) = (a;X) — 2p sin {p\),

.'. differentiating

sin {Ta;^,„^\) dx^,,,^ = sin {jxX) dx

+ 1dp sin (p\) — S ^ cos (pX) dp

;

changing \ to \, we have

sin (rxfi ... .jX,) dx^_^ = sin (tjbX^) dx

+ 'Zdp sin (pX,) - 2^ cos (pX,) dp,

i.e. cos (ra;^... JX) <ir^...^ = cos(Ta;X)da;

+ '%dp cos (pX) + 2 p sin (pX) dp.

Squaring and adding

(dx^.Jf = {dxf + 2da;2dp cos {rxp) - 2dx1pdp sin (Ta;p)

+ t{dpy + l.p^{dpy - 2l{dp»da - d^pdp) sin (pa)

+ 22 {dpdv + padpda) cos (p«r).

§54. To find the value of dx^_^.

Evidently da;^ ...»= do>.
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§ 55. Examples.

1. Find the value of d
\
{pc^...j,y')

\

.

(^(t... ,iyf={xyf - 2 1
(.ry)

I

2^ cos {xyp)+S^+ 22^o- cos (per),

.-
.

I (^p*...^y) 1
d

i
(ar^...ii2^)

|
=

|
(a^r) |

d
|

(a^^)
I

-d
|

(a^^) 1 2 ^ cos (^ p)

- I(*y)| 2 {<i^ cos(;^p)+^sin (^p) {dxy-dp)\

+ ^pdp+2coa(p<r){pd<T+ vdp)+iPaam(pir)(dp-d<r)

-|(^)|2[cos(^p)rf^+^si„(:^p)|(l^^^^§p!^^-<fp}]

+2^rf^+2 (^rf^+*rf^)cos(pir)+Spd^8in (p<r) (dp-dir)

^dx^vxy) +
i^j

S^ cos (xyp) +^^ 2 ^ sin (^p)[

+2rf^{- Ka'y)! cos(^p)+^+ 2 a- cos (pir)}

+2^dp
{|
(Ay)| sin (j^p)+2d- sin (pa))

p <r

=dx{(vxy) + 2pcoa(rxp)}+ehf{(vyx)+Spooa(Tt/p)}
p p

+2rf^{-(;i^i'p)+^+2ffC0s(pir)}
p »•

+2prfp{(^p) + 2 5-sin (po-)}.

p "

2. Find the value of dx^ . . . u^ •

Let x^...iy =f so that (a!^...,iif)=0, (yf)=0.

.-. (a;f)-^8in(pf)-*sin(<rf)-...=0,

.-. - sin {txO dx+ {xv() d^- Sdp sin (pf)+2 ^ cos (pf)
(rfp - df)= 0,

and -sai{Tyi;)dy+(iivOdi=0,

.-. subtracting

-sin {rxOdx+am {TyC)dy+(xy{;^)dC-^ dp sin (pf)

+ 2 ^cfp cos (pf) - df 2 ^ cos (po-) = 0,

.-. dC [(ayf») - 2 ^ cos (per)]=sin (ra-f) dj-- sin (ryC) dy

+ 2 rfp sin (pf) -2^dp cos (pf),

rff [ I i^ff) I

«os ( xfii...^y^) - 2 p cos ( a;p,r...iayp)]

= -sin (Xp*...u^Ta;)da;+sin(j:^...,4yTy)rfy

— Sdp sin {Xf»...j,yp) - 2 ^afp cos {Xfit...ayp),

• «^f[i(^y)l (•»(i*....4y#J-2^(*p*...ii^i'p)]

= -(arjiif ...i4.yTx)rfa:+ {XfA...^yTy)dy

-idpix^ ...wyp) —Spdp(x^ ...^yvp).
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dC[\{xi/)\ {{xyx^J - 2 p sin (pxyj) - 2

^

{(xi/ i-p) - 2 5- sin (avp)}]

= {(yrx) + 2p sin {prx)} dx+{{xTif) - 2p sin (pry)} dy

-2dp {{xyp)+ 2 a- sin {ptr)} -2pdp {{xi/vp) -p-So- cos (p(r)}.

.". {Xfi...ayYdx(i...,iy

= {{yTx) + '2psm(j)Tx)}dx+\(^XTy)-'S^sai{prry))dy

— ^(xyp) dp—7.{xyvp) pdp+7,^ dp+7, pa- (dp+da-) cos (p(r)

+ 2 {pda- — adp) sin (po-).

Corollary. {2^+ 22pr cos (pa)) dxxff ... oi

'=Sp'dp+ Spr(dp + d(r) cos (p(r)+ 2 (prfo- - vdp) sin (p(r).

3. Find the value of dx^„_^ij.

Let x^_^^Tf=z.

Then (^p*..,*«i2)=0, (i;2)= 0,

.•. (zr»)+2psin(p<»)= 0,

.•. —sin (tzb) dz+sm. (t^m) <ir+ (jsxva) da

+ 2<2^8in (po))-2^co8 (pa) (rfp— <i<»)=0,

.•. sin {tzo^ dz=am (rxai) dx+{(zxva)+2p cos (pa)} da

+Sdpain (pa) — ipdp cos {pa)

and sin (tzij) dz=(vriz) rfij.

Now we have

sin^ (t2<b)+ sin^ (rzi;) - 2 sin (tzo) sin («ij) cos (uij)= sin* (<aij),

.
•

. (dz)^ sin' (o>ij)= [sin (rxui) dx+ {{zxva)+ 'Sp cos (pa)} da

+ 2 rfp sin (pa) -Spdp cos (po>)]*+ (vijz)* dr/^

— 2 (i*!;?) rfij [sin (rxa) dx+ {(zxva)+ 2 p cos (pa)} da

+ tdp sin (pa) - Spdp cos (pa)] cos (iju)

= [sin (txw) (ij:+{(a;(i*...«B,i;a;i/ii>) +2p cos (pa>)} c{u+2c{^ sin (pa)

- 2 prfp cos (piB)P+ (i„,z)2 rfiji!

- 2 (vijz) rfi; cos (ijo)) [sin (ra:<B) «£r+ {(a;,* ... 0,ui;xk»)+ 2^ cos (pa)} dm

+ %dp sin (pa) - Spdp cos (pia)]

sin*(ati)(dx^...4„ri)^=[aiti(TXa)Bin(afi)dx+{-(xri)+ %p8iix(pTi)}da

+ 2dpsin (pa)-'S,pdp cos (p<ii))P+(i»ij«)2 rf,,2

+ 2 (kij?) di/ cos (ija) sin (ijai) [sin (rxa) sin (uij) rfju

+ { -(as;)+ 2psin (pi;)} o&»+ 2rfp8in (pi»)-2^rfpcos (pa)].

4. Reduce x^z.

Let aiii^z =:X,

then (x„Ti\)=Q, (i;2)=0.

rf (aiuijX) = sin (i;X) d (^„ ijA ),. A const. + (jFbi-ijX) rfi;+ (a-„ i;wX) rfX

= sin (ijX) rf(i7Xa;i»),,Acon9t.+(^..i^X) rfi;+(ii;„i;i'X)dX,
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.
•
. sin (i;X) ain (rarw) dx+ (ijXj^ca^) dm+ (.r„w>X) dij+ (a;o,iji/X) rfX= 0,

and sin (raX) rfz — (zi>X) dX= 0,

multiplying second by sin (cm)) and adding

sin (i;X) ain {jxa) das+ (^Xarm^) dm+ (jTmi/ijX) rfij

+sin (tzX) sin (<bij) rfz+ (^u7ZvX) (fX=0.

.
•

. — (^Vuij^i) sin i^xist) dx— (^«i i;zi;j;a>^) dia

+ (aJuTjaa.'ui'i;) di\ — (xainrz) ain (<»ij) d2+{Xai]zy dxi^z=0.

.' (Xmri!>ydXai)Z = —ain (ra;o)) (v^) sin (ai;) rf.r

+ (tjz) (iix) da+ {pJiXa) (zxa) dr)+ (.Tuijtz) rfa.

T. G.
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DIFFERENTIATION OF EQUATIONAL ELEMENTS

§ 56. As ne discussed the differentials of vectorial elements,

so we shall in a similar manner discuss the differentials of equa-

tional elements.

§ 57. To find the value of d {2a, (xa^) + a = 0}.

We have from formula of § 30

sin (f/3) 2o,. cos (o^/S) = cos (fyS) Sa, sin (o,/S),

where f stands for tarixor) + a = 0.

Differentiating, with y8 fixed,

— df cos (fyS) lar cos (Or/3)

+ sin (f/3) (Zdar cos (Or/S) + Sa, sin (a,/8) rfor}

= df sin (fyS) Sa^ sin (OriS)

+ cos (f/8) {2 da, sin (o,/3) — 2a, cos (of,jS) dot,}

.'. d^ {sin (f/8) 2ar sin (oryS) + cos (f/S) 2 a, cos (a,/8)}

= 2 da, {sin (f)8) cos (a,/8) — cos (f/8) sin (a,/3)}

+ 2a,do, {sin (f/3) sin («,/8) + cos (f/3) cos (a,/3)]

df 2a, cos (!«,) = 2da, sin (fa,) + 2a,dar cos (fa,),

2 da, 2 a, sin (a,a,) + 2 a,da, 2 a, cos (a,a,)

, j^ r a r g

2 a, 2 a, cos («,«,)
r *

2 (a,da, — a,da^ sin (o,a,) + 2 a,.'' da, + 2a,a, cos (a, a,) (da, + da,)

_ r+£

2 a," + 2 2 arttg cos (a,o,)

.-. d {2 a, (pcttr) + a = 0}

2 (a,da4—a,da,) sin (a,a,) + 2a,^da, + 2 ara, cos (a,a,)(da, + da,)
r+£

2 a,* + 22 a, a, cos (a,a,)
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§ 58. To find the value of d {%A , (|o,) + 25, cos {^^r) = 0}.

We have from formula of | 34

Dififerentiating, with 7 constant, we have writing a for the

equational point

2il,.sin(Ta7)da
r

= 2 |(aa,)| sin (00^7) dA^ + 2^, sin (Tar7) da,
r r

- 2djB, cos (7/8,) + 2B, sin (7/3,) d/S,.
r r

Changing 7 to 7^,

XAr . cos (Tti7) da~%\ (aor) \ cos (aai-y) dAr H- S -4^ cos {ra^y) da,.

- 2d5, sin (7/8^) - 25^ cos (7^8,) d^,.
r r

Squaring and adding,

{ddf-ilA^)^
r

= 2 {aarf (dil,)» + 2^,» {da^f + 2 (d^^)" + 2fi,» (d/S,)''

r r r r

+ 2 2 |(aa,) (oa,) I dJ^dil* cos (oo^oa^)

+ 22 .4^j1« cos (Ta,Ta,) da^da^

+ 22 d5,d5, cos (/3,A)

+ 22 JB,5,d/3,d/8, cos (;8,/8,)

+ 2 2 dArA,da,(aarvat)

- 2 2 di4,d£, (aa,/8,)
r,

»

-2 2 dArB,d^,{aarvP,)
r,»

-2 2 J.,da,dfi, sin (ra^/S,)

- 22 ^,da,5,d^, cos (Ta,y8,)

-2 2 dfi,5,d/3,8in(/S,/S.).
,,*

4—2
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Hence (day.(lArY
r

= 'S.{dA;f{l.Ak''(arahy + 2 S A^Ail (orah) (arO*)! cos (ara^arat)
r h M=ft

+ 2 2 AHBt(anar^t) + ^B^'' + 2 S 5*^4 cos (/Sft/Sfc)}

A, t h A+*

+ 2 dArdA,{-(ara,y(lAky + l,An'{araky
r+» A A

+ 2 -4 A^ i |(ar aft) (a, at) I COS (a^aA a,«i)
A4*

+ 2 2 ^ABi(aAa,/3t) + 2 25A»+4 2 BtBtCOs{0„^t)
A, A; A A+i:

+ 2 Aft" (0,01)"+ 2 AHAt\{a,ah)ia,at)\coa(aMa^
A A^:!-

+ 2 2 AHBt(aHa,fit)]

+ 2 2 j4a . 2 d4,J,da, {2 A^ (ahOyvas)-tB^ sin (/Sfcva.)}

- 2 2 ^ft . 2 d^,dB. {2 A^ (anaS.) + I.Bh cos 0^/8.)}

- 2 2 ^A . S dArB.dfi, [IAh (,aHa,vp.) - 2 B* sin (/Sa/S,)}
k TfS h h

+ CZA^y[l(dBry + tBr'{d^ry + 2 2 ArA,cos(rarTa,)darda,
A r r r4=»

+ 2 2 dBrdB, COS (0r^,) + 2 2 B,£,d/3,d/8,cos(/3r/3,)

- 22 ^rdard£,8in(Tar/8,)— 2 ArdarB,d^r(ioa(rar$g)

-2ldBrB,d$,sin(0rMl

§ 59. Examples.

1. Reduce rf2a,(a;a,)+a=0 /3.

Let 2o,(jPa,)+a=0 /3 = 2.

Then (2ar(arar)+a=0 z)=0, Oir)=0.

.-. 2a, (za,)+a=0, O)=0,
-• . - sin («/3) rf«+ (zi//3) d/3 = 0.

.-. 2a,sin{(TZ/3)-(a^)}dz=2rfa,(«a,)+2o,(zi«ar)<£(ir+ofot.

.
•

. sin (tzj3) tfe2 a, cos (0,^) - cos («/3) cfo 2 a, sin (o^/S)

= 2 da, {zor)+2 0, (zvo,) da,

+

da.

.
•

. cos (Tzff) dz 2 o, sin (or/S)

= (2I//3) d/3 2 a, cos (o^S) - 2 da, (20,) - 2 a, (zko,) da, - da,

.-. (dz)2 {2 a, sin (a,/3)}«={(zv/3) d0}2 {2a, sin (a,/3)}»

+ {(21-/3) d|3 2 a, cos (a,/3) - 2 da, (zo,) - 2 a, (zwi,) dor-daY
= {zv^fdffi {2 a,2+2 2 a,a, cos (a,a,)}

+ {2 do, (zo,) + 2 a, (zi/Q,) dar+ da}*

- 2 (zKjS) d/3 2 a, cos (a,/3) {2 do, (za,)+ 2 a, {zvor) do,+da}

,

substituting for z= io^O^oiy+a^O^ we get the value of {dzf.
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Reduce d{xa)-k=0 /3.

"We have, putting {xa) -k—0 j3 = z,

(za)=k, («/3)=0,

.
•
. - sin (na) dz+ {zm) da=dk,

- sin («^) dz-\-{zvP) rf/3=0.

Now sin* (rza) + sin' (t2/3) - 2 sin («a) sin (jz^) cos (o^) =sin2 (a/3),

. . sin' (oS) (d«)2= {(zKn) da - rf*} *+ (z..j3)2 d^
— 2 (ai-zS) d0 {{zm) da - dk) cos (o/S)

= (««.)« rfa*

+

{zv^Yd^-2 (zva) {zv?) da dfi cos (a3)

- 2 (zva) dadk+2 (zv/3) <;^<2it cos (a)3) +(e;t2.

.-. sin*(«ij9)(rfz)'=((a?o)-*=0 /3«.)2da2+ ((a!a)-i=0 ^v^fd^
-2((ji;a)-i=0 /Sko) ((a;a)- *= /SvjS) darf|3cos (a/3)

-2rfad*((a;o)-it=0 /3va)+ 2d3d/t ((a;o)-*=0 /3k)3)co8 (a/3)+d*^

.-. 8in«(<n3)(<fe)2={(;»a3)+*C08(<i/3)}«da2+ {(p/3a)-*}2rf/32

- 2 {(pa/S)+* cos (o/S)} {(p3a) - *} rfarf^ cos (a/S)

+ 2 rfad* {(pa^)+* cos (a/3)}+ 2rferf* {(pi8a) - *} cos (a/S)+ rfjF.

3. Reduce rfsJ,.(|a,)+ 2S,coB(J3,)= c.

Let 2^r(|a,.)+ 25,cos(|/3r)=0 c=X,

.-. s4r(Xar)+ 25,cos(X/3r)=0, (cX)=0,

.-. 'SdAr (Xa,) +2il, (i'Xa,)rfX - 2^,. sin (ra^A) rfo,

+2rf5,cos (Xj3r) + 2^,sin (X/3r)(«iX-rf/3r)=0

and — sin (tcX) dc+ (cvX) o?X= 0.

Multiplying the second by 'S.Ar and subtracting

"ZdAr (Xa,)+2il,.rfX (flrCvX) -S^rSin (ro^X) da,

+ SdBr cos (X3,)+rfX2 fl, sin (X/3,) - 2 B,. sin (X/3,.) d^,

+ 2J r sin (tcX) rfc= 0.

Whence

(iAr (|a,) + ^Br cos (f(8,.)= 0)2 d 2J, (fi,.)+ 2B,. cos (Ift.)=0 c

= - 2 (ara,c) (ArdA,— A,dAr)+ ^dAfB, (carv/S,)

r,» r,»

— 2jlr'do,. (Ta,c)+ 2 ^,.J,{da,(o,CTaT)+rfa, (a,.CTa,)}

r r+s

+ 2 jlrB«<^«r0O8(Ta,.j3,)+ 2 dSr-4,(«sCl'^r)
r,

«

r,s

-^{B,dB,-B,dBr)»m{^S.)- 2 Br B,(dfi,+d^,) cos {^rP.)

- 2 B,.2rfA. - 2 4, Brd^r («.Ci3r)
T r,»

-dcSilr {2 -4, (TC0r)+25, COS (rcft.)}.



CHAPTER VIII

REDUCTION OF MEASURES CONTAINING
FUNCTIONAL ELEMENTS

§ 60. We give in this chapter formulae which enable us to

evaluate any measure containing any of the functional elements

defined hy p; v, t.

We require the values of

(rxa), (rxa); (vxa), (vxa); (pfa), (p^a); (v^a), (vfo).

§ 61. Formula for the evalvation of (rxa).

We have from § 49

(Txa) = (auf -J— .

Formula for the evaluation of (rxa).

We have sin (Ta;a) = ^

—

'
.

Formula for the evaiuatian of (vxa).

We have (vxa) = = ^ from § 46.

Formula for the evaluation of (vxa).

We have cos (vxa) = — ^~ .

ax

§ 62. Formula for the evaluation of (p^a).

We have („fa) = ^^.
But (^y+(v^ay = (p^ay,

..iP^ay=(^ay^{^}\



60-63] EXAMPLES 55

Formula for the evaluation of(p^a).

We have (p^a) = (^^a) = (^faf) = sin (of) (r^^).

Now (.fal)=P-fi)" _.

Hence (p^a) = sin (af) -^-^

|(/)fa)| may also be found from the formula

|(p?«)| = sin»(?«)^,

but the sign of (p^a) cannot be determined from this.

We may also evaluate (p^x) from

<^^«> = -S?^4<^«^)- See Ex. 6, p. 42.

Formula for the evaluation of (y^a).

We have seen ("f")= f^. •

Formula for the evaluation of(v^a).

We have ("?«) = (?*) — 5 •

§ 63. Examples.

1. Reduce (rgija).

We have from § 51, Ex. 1,

(|i,a)S dfia = (pti,) (,a) rf|+ (^,1) (|a) di,,

(.ptv) (?«) dj+ (y;!) (^") dy

2. Reduce sin (r|i) a).

sm(rtna)=— \--
^

L rf|ij Jaconst.

^ (p|i)) sin (i)a) rfg + (pi)g) sin (gg) di;

I

V(p|»0''Sj2+(p,|)!rf.;2+ 2 (p|^)Tp^osl|^)(2p^
'

from Ex. 6, p. 42.

3. Reduce (vxya).

, — > d{xya)

|(ya)|cos(yaarj) (rii:y)oij;+i(j;a)| cos(aa!a;i^) {Tyx)dy

{jxy)dx+{Tyx)dy '

from Ex. 5, p. 42
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4. Shew that

_ {ayf (yrx)^d3^+ {axf (j-iy)' (fy'+2
1
(ax) (ay)| cos (axa^) (yrx) {.vnf) dxdy~

{(yrr) dx+ {xry) dyf

5. Reduce (p^a).

_ . ,_ , —
I

Qyo) 1 cos (xyya) (ray) dx+ 1

{xa)
\
cos (yxxa) (ryA) rfy

(aya)

.

(Ta:y)ote+(Tjra;)rfy

a= xya

{xyayxy„){TXy) dx+{xyaxxi/,) {ryx) dy

= -"'"(^"^ • ^
(r^)<ir+(t3r:r)dy''

- {xyayxy,) (jxy) dx - (xyaxxy^) (ryx) dy
_ -j I

(Txy)dx+{Tyx)dy

„„„„„ ,„=, N (Tjy) (yn) cto+ (ryx) (xa) dy
Hence {pxya) = ^_^^-^^--^^-—

.

6. Reduce {p^za).

=- (zg) (t|^) rfl^+Cl^n) (g?r2) &
^P"^"^

(r^z)rff, +(!,«)*

W (fg-?) d^+ (gz) (jO.?g) di)
^

(g?rz)
^^

sin2 (|i,) sin (gi;)

^ (za) {(,z) (pgq ) dg+(gz) Qwjg) d^} - (^g) (I'Fz) dz

W (/"ll) rff + (f^) (P>?f) dl-sin (fij) (gijrt) dz

7. Reduce (Ta;^...i4o).

('".Tpif ...ud) <iFp*...i4=(.T)w ...•so)*da;^.,.ua

= {{rxa)+ S ft sin (prar)} dj - 2 {xap) dp -2. (xy vp)pdp

+S^dp+ 2 ^ (d/) + d<r) cos (po-)+ S(0dff— d-d^) sin (p<r),

f+o-

from Ex. 2, p. 48.

8. Find the value of {TX^,.,ia).

sin (TXft .„,ia) dx(i „.(i= —d{Xfi ...^o)

=d { - (a;a) + 2 ^ sin (pa)}

s sin (r^ro) dx+'S.dp sin (pa) — 'S.pdp cos (pa).

9. Find the value of (v:r|i,^...^a).

{vx(i ,__ittO) da^d (xfi ..,4iO-)

= d {(oxu)+2 sin (pel)}

= sin (r^o)) dx+ (axvu) da + 2 dp sin (pa) —'S.pdp cos (pai) + du 2 p cos (pu).
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10. Find the value of (p:);^...4;ua).

= (,vx^...4K€Sc(&,..ia) sin(aa>)

_ . . .8m(TXm)cb;+{cucva)cla+ldpam(pm)-SpdpcoB(pa)+da>^pcoa{p<a)

dm

= [sin (rXfo) sin (aa>) dx+ {aXpt ... ^iu.v v<o) da + sin (aa>) S dp sin (po>)

- sin (aa) 'Spdp cos (pa) + sin (aa>) daSp cos (p(i>)]/(&)

=8in (raJia) sin fa») -j- + sin (oia) S jH sin (pa) — sin (no)) 2 3 j - cos (pa)
CMu £hu da

+(ax) — (x^ ...^x) coa(am)+axa (am) 2 ^ cos (pu)

Q (aa) S j^ sin (pa) -

+ (a;a) +2^ sin (ap).

= sin (tj;o>) sin (aa) -r-

+

sin (aa) 2 j^ sin (pa) — sin (aa) ^p-fi cos (pa)

11. Shew that

(/»2a,(a?ar)+a=0 ^)= [2ar'«^— So,a,{rfo,(>'arO,/9)+da,(a,i'ag3)}

+ 2 (ara,^)(arda,-a,clar)+a2daram(arff)—daSarSin(ar^)]
r,8 r ' r

-~[Sar^dar+ S ara,(dar + da,) cos(ara,) + S(arda,- a,dar)ain (<V"»)]-
r^s r, s

12. Shew that

(r2 J, (i^ar) + 2 Br COS (|/3,)= c) rf {2 4,(^0,) + 2 B,. cos (^/3,.)= 0}

= - 2 (Or««c) (.4,-rf-4«- A,dA,)+ 2 (2^r^8 (dr^ft)
r, s r, s

-Sjlr^flfa(r(''«rC)+ 24,^1, {rfo, (o,CrO,)+ (fo, (aSrCffl,)}

+ 2 ArB,da,.coB (ra,j3,) + 2 ul,d5, (a,cv^r) - 2 (BydB,- B,dBr) sin 0^)3,)
r, 8 r, s r,s

- SBrB,(d^r+ dP,)C0a(ffr^,)-ZBr^dfir- 2 ^.fl^rfft. (fl.C^,).

13. Find the vahie of sin (T|ijTf<»).

sin (T|i>Tfi») rf|ij = - rf (rfiB|ij)

^ ''8in(«,)^

.-. sin2 (iq) d^. sin (T|ijrfa.)= - [{(Klirrfo)) dl+di-i/rfa) rfij} sin (|ij)

__+(^rfii)cos (ti) (dj-di)-\

^ =8in (Tf<»^[(pf7) rf| -sin (rf<»|) (/?7f) rf,],

.-. sin^ (I7) rf^ sin* ((a) rffa sin (rl^rfa))

= -8in8(f») [d (^r,) (pil)di-d(Cai) (pni) dr,]

=(.Pin) d^ipCa) sin (mij) dC+(paO sin (f^) rfu}

- (Pvl) «''> {(K*>) sin (»f) rff+ (Pfflf) «n (fI) ''»>} •
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14. Find the value of sin {tx^tija).

sin {rx^ryt) dxf= - d {ry&x^= +rf { — {TyijS)-\-p sin {pTy&)}

= sin {rxryi) dx+dp sin {pTy&) — pdpcos{prryir),

. sin {TX^ryt) dx^dy&=dxd {ytrx) - dpd {yip) — pdpd (ytpi,)

=dxd {{yrx) + a- sin (trrx)} —dpd {{yp)+ o- sin (<rp)}

-pdpd {{yp„) + a- cos (pa)}

=dxdy ain {TXry)+d.vd^ sin {TX(T)—dydpa\n (ryp)

+ dxa-diT cos {txo) -ypdp cos (ryp)

+ (pdo- + po-rfprf(r)sin (p<T) + {dpvd<T — pdpda) cos (pa).

§ 64. We may now differentiate determinates in a straight-

forward manner.

The formulae used are those of examples 1 and 5 of § 63,

which are of a reciprocal character, viz.,

sin' (?7,) dfv (rl^a) = (p^v) (va) d^ + (pvB (?«) dv- -(A),

(xyY dxy (pxya) = (rocy) {yd) dx + {ryx) {xa) dy . . .(B).

We consider determinates of six letters ; this will be found to

be quite general.

First, consider the line

xy^a^c.

Now (xy^a^cy d xy ^ a ^ c

= (xy^a^y [{Txy^a^ c)dxy^a^ + {xy fa /3 tc) dc]

= {xy^a0y (rxy ^a^c)dxy^a0 + (xy^afi) (xy^affrc) dc

= (xy^ay [(pxy ^a^) (/3c) dxy ?a + (p0xy ?a) {xy^ac) dff]

+ (xy^a0){xy^a0Tc)dc by (A),

= i^c) {xy^ay^pxy fa /3) dxy fa + (xy^ap^) (xy^ac) d/S

+ (xy^a0) (xy^a^Tc) dc

= {xyty (^c) [(r^a) (a/3)d^+ (^ra)(^^) da]

+ {xyKO'P^) (.iny^ac) dfi + {xy^a^) {xy^a^rc) dc by (B),

= {xy^ (cp) (So)(T^a)dm+ (c/8) (ySfya;) (rafya;) da

+ (pffa^x) (ca^yx) d/8 + {xy^aff) (asyfo/Src) dc

= (a;y)» (c^) ()8a) [(p^f) (?a)d^ + (^p?) (2^a) dj]

+ (c)8) {0^yx) (ra^yx) da 4- (pfia^yx) (ca^yx) d^
+ {xy^a^)(xy^a^Tc)dc by (A),
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= (c0) (/3a) (aO (ayy (pxy^ dry + (c/S) {^a) (ayx) {p^yx) cZ?

+ (c/8) {S^yx) (ra^yx) da + (p^a^yx) (ca^yx) d/3

+ (xy^a^) (xy^a^Tc) dc

= (c/3) (^a) (a?) [(rxy) (j/?) da; + (ryx) {xO dy]

+ (c/3) (/3a) (aj/a;) (pfya;) df+ (cy8) (^^yx) (ra^yx) da

+ (pfia^yx) (ca^yx) d/3 + (xy^a^) {xy^afirc) dc by (B),

= (c/3) i^a) (a?) (?y) (yra;) da; + (c/3) (/3a) (a?) (5«) (xry) dy

+ (c/3) (/3a) (ayx) (p^yx) d^+ (c/3) (/Srya;) (ra^yx) da

+ (p^a^yx) (ca^yx) d/3 + (xy^a^) (xy^a^rc) dc.

A rule is clearly discernible : take the letters in the reverse

order of that in the determinate : viz. c, 0, a, f, y, x.

To write down the coefficient of dx, replace x by rx, and we

have c, 0, a, f, y, rx.

Then the coefficient is the product of pairs in the same order.

The coefficient of dy is got by interchanging x and y.

The coefficient of df is got by writing p^ for ^, the letters

becoming
c, 0, a, p^, y, X.

We form pairs in order of all the letters before pt,\ and

afterwards with the letter before pt, form the measure of all the

letters succeeding pl^. The last component in the coefficient is

the measure of pf with the letters following pf. And similarly

for the others ; with the exception of the coefficient of dc which is

easily written down.

It is easy to shew that the coefficients in a line determinate of

odd number of letters as

(^zcAydy d fi;zabyd

follow a similar rule.

Next, we consider a point determinate, namely,

^zaby.

(^7}zabyy{d^zabyy

= i^zaby [(p^zabyy(d^zaby+ (fij zabp 7)' {dyy

+ (P ?*/ ^ " ^yK^ ^ " ^Py) oos(^ z aby)d^ z abdy].
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This we can rednce if we reduce

i^zabf {pfrjzaby)d^rigab.

This is equal to

(?'?««)' [("rfn « « ^) (^7) dfii za + {fi 2 ttTb){^ zay)db]

= (^7) (h^f [(,p^za)(ab)d'^z + (^zp<^)(^vzb) da]

+ {^rfzarb) i^v^ay) db

= (7^) (ba) 8in» (fij) [(rfiz) (za)d^ + {JtjTz) (^a) dz]

+ (76) {bzTi^) (pazTj^) da + (yazTi^) (rbtxzT)^) db

= (76) (6a) (az) {zr,) (vp^) d^ + (76) (6a) (az)(z^) {^pr,) dv

+ (76) (6a) (OTjf) (tztiS) dz + (76) (bzr)^) (pazri^) da

+ (yazri^) {rbttzfj^) db.

It is easy to see that the same rule holds good, as in the case

of line determinates. Hence the differentials of determinates of

simple elements may be written down.

§ 65. Examples.

1. Shew that

d^
(a:a,a,a5j ... a„_ia„)2 (ySaIn,a2 ... a„_, a„ On)^^ ni Cz ... a„-l «n

= (<»»««) ("nOn-i) ("n-iaB-i) ••• {a^ai) (oiai) {citx).

2. Shew that

(^atUia, ... Un-ian-lf (.PioiOltii ... u„-ia„.ia^) -ri. Ja, aia2... a„_ia„_,

= (an-i<'n-i)(''n-ian-2) •• ("la,) (ajai) {aip$).

.3. Shew that

.

(|a,fl!ia2 ... an_ia„)2 (r fa, o, 112 ... a„_iana„) -=- fniOi ao... a„_i a„

= (a»a„) {ajtOn^i) ... (ojOi) (a, a,) (a,pf).

4. Shew that

(j!aiaia2 ... a„_,o„_,)*(Ta;tt, 0x02 ... OB-ian-i^n) j^aiai aia2 ••• «M-i "ii-i

= (anOn) (a„«!„-i) ... ("201) (a,Oi) (o,T»).
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5. Hence reduce

(li fe-i'ifeJ'a •• li.a!«-i)2 (?fil2*il3^2 — 1.1^;,. if„ + 1) ^#1^2^;, fo ... |„«„_,

(5lf2i«'l&^2— •^n-1 f« + l)''(T|i|2«l Is — •»ll-l ln + 1 a;„) d|l|2-«l fa — *n-l l« + I

6. Shew that

(^aiai ...a„_ia„)2^^aia2... €iB_ia„= (o„a„_i)(ii„_ia„_i)... (aiai)(«iTi),

and (|a,a,...a„a„)2— |aia,a2...u„«„=(a„.i;,)(a„a„_,) ... (a,a,) (a,p^).

7. Reduce -j- (^aj oi ... a„_i a„ 6).

= (6/>55Jai ... an-i<'nXai aj ...au_] a„ir) rf.j:ai ai ... a„_ia„

= {(6xOia, ... a„_ia„ir) — (paroi O] ... a„_, a„.rai Oj ... a„_iO„ir)}

X d xai O] ... a,i-i a^

,-. (a.a,a, ... a„_i a„)2^ (Soioi ... a„_i o„ 5)

= (6j;a,ai ...o„_ia„»)(o,,a„-i)(a,i-l«B-l)---(''l<»l)("l''^)

- (Sola, ... a„_,a„wa„) (a„a„_i)(iin-iaB-i) •• (aiai)(aiT-ir)

= (a„ a„ _ 1) (a„ _ , a„ _ 1) . . . (ni ai) («! tJe)
I

(6a„)
I

cos (6o„ 3SI a, . . . a„ _ 1 aj.

8. Reduce T- l(;roia,a2...ana» 6)1-

(xajoi ...ana«)*rf|(iFOia,a2-"«n<'ii6)i

= — (araioi ...a„a„)''cos(r^Oiaia2...o„a„ ajaioiota ... o„a„fe)

X (2 XCI] ai 02 .
.

<tn "n

3(;raiaia2 — a«"«6«n) (o»«n) K"™-]) — (<h>'i) (<«i«i) ("i'''^) f*^-
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9. Reduce -=- {xa-i aj 02 . . . a„ a„ /3).

d ^
{xaj^aio.^ ... a^OnY ^{xaiaiUi ... «nO«/3)

= —{xa^ai ... a„a„)^ sin (rXOiaiOi... a„u„ j3) d.vaioi ... a„a„/ote

=sin Oa„) (a^an) (a„a„_i) ... (ajoi) (aiUi) (o,tx).

<;
10. Reduce 37 (|ai ai 02 . . . «« _ 1 a„ |8),

(|ai ai 02 ... otn-i Oa)^ rf (^ai Ui a2 ... fl!„_i a„^)

=sin(/3a„)(anan-i)(an-iai.-j) ••• (a2«i) (<liT|ai)rf^ai sin^da,)

= 8in (/3a„) (a„a„_,) (a„_ia„_i) ... (0201) (flini) (a,y^) d^.

11. Reduce -rr
I

(|a,aia2...a„_,a„6)
I

(?ai«ia2 •• a,i-ia„)*«'| (|ni«ia2... a„_io„6)|

= -C0s(|aiaiO2...a„_i<i„6a„)(a„a„_i)(a„_,a„_i) ...(aiflSi)

(ai'-^ai)rf|u,sin2(|ai)

= -C08(^aiaia2...a„_ia„6a„)(a„a„_l)(a.„_iaa_l) ... (ojaj) (ai jof) <i|.

12. Reduce -yj (|ai fZi 02 . . . a„ a„ 6).

(^aiaia2 ... a„a„)' d (fa, a, oj ... a„a„6)

= (<»„an) (onOn-i) ••• («2ai) (oiOi) |(6a»)l COS (6a„ ^a, a, ... a„o„)

= (OnOn) (o-an-i) ••• (oaoi) Kai) |(6«n)| cos(6a„|ai o, ... onOn) (aipf);rff



CHAPTEK IX

GENERALIZED DISPLACEMENT OF A POINT

§ 66. In the foregoing we have supposed that the consecutive

position sd of a point x is given by

We shall now consider the most general case, viz.

§ 67. To find dx.

\pX) ^ (XXr^x,i\X\TiX,StX ...TnX,Bnx) I

.• . {tLcf = S (drXf + 22 drX dg X cos {rrXTgX).

§68. Tofinddrx.

OiTX ^ dXX^^x,SiXiTaX,S3X...T^X,Bn<"

.-. drX (dxy = 'S,(drXydTrX + li drXd,X (dTrX + dTgX) COS (TrXTgX)

+ 2 {dfXd^x — dgxd^x) sin {tj-xtsx),
r,»

from corollary, Ex. 2, § 55.

This gives drx.

Defining px as -j— we have

px = {2 (drXfdTrX + 2 drXd,X (drrX + dTgX) cos (TrXTgX)

+ 2 (drxdg'x — dgxdr'x) sin (rrXTgx)}
r,s

-^ {2 (drxf +22 drxd,x cos (ryarTga;)}*

»*»

§69. To find (vxa).

_ 1 T (^Ti8,8ia!; Tax,ta»...T„a!,f„aiffl)' — (xay
" 2 x-x- \{a!x')\

= — 2 drX \{xa)\ cos {xdrrx}/dx,

.'. (yxa)dx= — Xdrx(xavrx)

(vxa) dx = X (xy^a) drX.
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§ 70. To find (too).

{rxa)dx = (acafdxa = {xaf(xax.r^x,itx...rnx,t„xa)

= \{xa)\ (a;a;r,«,«,«...T,»,«.«a)

= (a;T,x,8,x...T„i,«»«a«) Ka'a)!.

.•
. (rxa) doo=

|

{ax)
|
2 d,a; sin (dxTrX)

= 2 dr^; {axTfX),

." . (Ta;a) da; = 2 drX (x^^a).

Whence it is easy to see that any complex measure involving

the generalized displacement can be reduced.



PLANE CUBVES

CHAPTER X

REDUCTION OF COMPLEX FUNCTIONAL ELEMENTS

§ 71. We have the simple functional elements

TX, vx\ p^, v^,

where x, f have successive positions.

Complex functional elements are as such,

prx, rp^, VTX, vvx or i^x, pv^.

For the reduction of these we have to make some initial

assumptions.

Assuming prx = x,

we may find the values of the others.

These define the geometry of plane curves.

For if X, a!, x" be three consecutive points on a curve

TX^xaf, (tx)' =x'x",

.•
. prx = TX {tx)' = X.

Similarly for curves defined by a line variable.

We proceed next with the reduction of other complex elements.

We make the following definitions,

drx _ dvx _
dx dx '^'

so that px . prx= 1.

pfc — is called the radius of curvature of the curve at its line
"^^ px

f or point x.

T. G. 5
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It is essential that the order along the curve in which its

points take up successive positions, should be definite: this

ensures a sense for rx.

§ 72. (i) We have vtx = {pTx)„ = x„ = vx.

_ d (axvx) sin (txpx) dx + (axv^x) dvx

dvx dvx

= i(ew)l sin (cuctx)

= (axrx),
px '
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(vi) (p„f«) = (i/f!;•?«) = (v^^^) sin (avf)

= {p^ - (|al^)} sin (ai/f)

= p^oo3(^a) + (^v^a)

(pv^a) = (p^a) + cos (fa) /s|.

§ 73. Examples.

1. Shew that

(v»-|a)=p(*-2)f-p(2»-«)|+...+ (-)»-ip|+ (_)..(^a),

(l'2»-l^)=p(2»-3)^-p(i!»-6>|+...+(_)»p'|+(_)«-l(„|(,).

We have (•'"^)=p5 -(!«),

differentiating (>''|o)=-(i/|a)+ p'|,

and (i.»|a)= -(„i^a)+p"$

= -p«+p"l+ (|a),

Hence the general formula.

Again («^fa)=-(i''fa)+p"'l

= -p'i+p"'i+(„ia),

giving the other general formula.

2. Reduce (pv^ia).

( pv^$a)= (Z)!/ . via)

=

(,pv$a) + COS (vga) pv^

= (^|a)+ COS (|a) /)|+ sin (fi) p'|.

3. Shew that pi'"|=p(»)|,

(^"l«)=(l«.)-^.

4. Shew that

Hence shew that

(piz-la) -(p.."-'|a)=p(— 1)| cos |(« - 1) I
- (|a)| .

that

(pp»|a)= (p|a)+p(»-»)|oos |(» -l)|_(|a;|

+p(-==)|cosj(«-2)|-(|a)}

+eto. etc.

We have

(pi;»|a)'=(pi'. i'""l|n)=pl»-')|cos (i'""*|a) + (^i/''->|a)

= (?>,'»-l|a) +p(»-»| cos |(« - 1) I
- (|a)l

.

5—2
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5. Find the values of (»*•- 'aso), {v*^xa).

(v«»i-a)=(i'*»-'.»xa)

~\pxdxj \px/ \pxdxj V/MT/

~\pxdxj \px) \pxdx) \px)

6. Find the vahie of ( pv'^xa).

(pv''xa)= {pv'^"^ vxa)={pvxa) + {-j—\ p»a; COS
]
(n — 2) ^ - (x^a)^

+(si)""U)'»'{<"-"i+<'"')*-*-



CHAPTER XI

SUCCESSIVE DIFFERENTIATION OF MEASURES

§ 74. We propose to find the successive differentiations of the

measures of two elements containing one variable element.

§ 75. (i) Siuxxssive differentiation of J {xdy.

= 1 — (rxa) px,

= — {pxf (vxa) - p'x {jxa),

\[^ ^'"'^"^~k {("^X/^)' + {rxa)p'x\

= — {pxf (v'xa) — ^pxp'x {vxa) — {rxa) p'x

= — (pxy + {{pxy — p"x} (rxa) — Zpxp'x {vxa),

i
(
j-)° ('»»)' = - 2/Mf/o'« + px {{pxy- p'x] {vxa)

+ {3{pxYp'x- p"'x} {rxa)+3pxp'x{l+px{Txa)]

- 3 \{p'xy + pxp'x] {vxa)

=— opxp'x + \{px)* - ipxp'x — 3 {pxy} {vxa)

+ {6 {pxy p'x - p"'x} {rxa).

And generally,
|
^^Y' {xay = -4„ {rxa) + B„ {vxa) + C„ ,

where A, B,C are polynomials of par, p'x, p"x ..., and

C7»+i = Cn + -On-
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(ii) Sttcceasive differentiation o/|(a;o)|.

d {vxa)

_l—px (txo) (yxa)'

f—Xu \i_ p'miTxa) (pa:)' {vxa) 3 {vxa)W '^*"^'
\(^\ \{xa)\ \{xa)\*

Spx {rxa) {vxa) 3 {vxa)'

+
K^^)p + \{xa)]'

'

W !^*"^!-|(^a)I i(a;a)|»+^^''"q \{xa)r \{xa)\ \{xa)\'>l

, .Zpxp'x . , , , 4/3'a;
— (i/a;a) .\ \, + (raia) (i»a;a) ..

"^
-..

^ -^ (a;a) ^
"^^

(^")

— {rxa
^|(^a)|' + ^''*''Ml(^a)P |(:ra)K

- (TxayvxaYi^ - lii?^)*

(iii) Successive differentiation of {xa).

d{xa)

dx
= — sin {rxa),

(;

= p'a; cos (wa) + (pa;)" sin (Ta;a),

^j
(a;a) = /»"a; cos {rxa) + Sp'xpx sin (raw) - (|Ba;)» cos (raxt)

= {p"x — {pxY} cos (raja) + Spxp'x sin (raw),

^) («w) = -^ {(/»«')*- /»"«} cos (raw) - {(/ja;)''- pa;p"a;} sin {rxa)

+ 3 T- {pxp'x) sin (raia) - 3 (pa;)' p'a; cos {rxa)

= {6 (par)= p'x - p"'x] cos (raw)

+ sin (Ta;a) {4^a!p"a;+ 3 (par^ - (pa;)'}.

And generally,
(^J*

(aw) = il„ sin (rara) + £„ cos (raia),

where ^, 5 are polynomials in px, p'x, p"x... and
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(iv) Successive differentiation o/(^a).

d(^a) .

and generally,

(0'(l«) = ("»?«).

(A \^

J \2n—

1

^j (?a) = P"^'» ? - p'^« f+ . . . + (-)» p'r+ (-)»-' (r?a).

(v) Successive differentiation of{^a).

Jt) (?««)= 0, »i> 1.

Thus we see that we have general expressions for the nth

differentiations of the measures of two elements in which the

variable element is a line. In some cases this renders the line

more useful as a variable than the point.

It will be seen in the next chapter that both (^a) and F {(^a)}

can also be integrated in known quantities.

§ 76. Example*.

1. Find (jy{xa^),n=\,2,3.

d ,_ ., {rata)

px {vxa) 2 (rxa) {vxa)(f)\xa^)=-fp^^=.-e^) +
\dxj ^ dx {xaf (xaY

/dy. ._ p'x(vxa)
,

px{l-px{Txa)}
,
2px{vxt

\dk)^'"''^>~ \xaf ^ J^^ +~(^

{xa)*

yxa)^

2px {vxaY 2 (rxa) {1 — p* (rxa)} 8 {rxa) {vxa)*

(xa)* (xa)* (xaf

(xa)* ^ ' \(xd^ (•«o) J (xa)*

4px (uxa)* _ 2px (rxa)* 8 (rxa) (vxa)*
'*

(xa)* (xa)*
"•"

^c(^
•
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2. Find ^^^^(1^3), „= 1,2,3.

We have -=x ((afi) = - ,,t\^ .

af^* sin' (fa)

-i....(.8).''°''^'-.":g.;'°"'^°'^
sin' (|a)

-«i„/„m sin' (!«)- 2 (p|a) cos (gg)

(^y (1^/3) =sin (a/S) . {4 sin (f.) cos (fa) - 2 (pia) sin (fa)} sin (fa)

{sin' (f«)
- 2 (pfa) COS (fg)} . 3 cos (fa )

sin«(fa)

=^^ f^ ^'"' (^') '^**^ (^°)
-
^ (P*") ^^ +^ *=°^' (^"^J^-



CHAPTER XII

INTEGRATION OF MEASURES

§ 77. We define integratioa as the inverae process of differ-

entiation. Thus, for example,

^ (?a) = ("?«)•

We have with the usual symbol of integration,

/("?«) df = (fa).

If (7 be a constant

/'

§ 78. Integration may as usual be defined as the limit of the

sum of a series. For the integrand being an algebraic quantity

we must have, if/(f) be a function of absolutes containing f, that

f.

where h = (oa,) = (a,ajj) = . . . = (o,^,a„) = ^-^ ; a, )8 are the limits

between which f takes all values.

§ 79. In the foregoing it is generally necessary to suppose

that f envelopes a curve, and so also when we consider the

integration of measures of a variable point, we have in general

to suppose that x traces a curve.

We have as before

and f/iic) dx= L {/{a) + f{a,) + ... +f{a„ or b)} k,
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where /i= |(aa,)i = \i<h(h)\ == Kon-iOn)!

length of curve from a to i

n

§ 80. Integrals of measures of elements containing a point

variable :

(1) j
dx = length of curve from m to n.

J m

For the indefinite integral we shall write

j dx=\in X.

(2) I (jxa) dx = (amn) + the area of space between wm and
J m

the curve from m to n.

For the indefinite integral we shall write

I {rxa) dx = seg x.

(3) j(vxa)dx = i(xay.

From which we have

(4) j(vxa)<l)\(xa)\dx=jy^{y)dy, where y=\(xa)\.

(5) j sin (txu) ^ (xa) dx = - j if>(y) dy, where y = (aw).

^^^ j (^ "^ ^^'^^ dx = -j^{y) dy, where y = (m/S).

(7) / (^a) cos (raja) da;= trapezium (mna) + seg a;.
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This we prove by the summation process. Let m, n be two

points on a curve. From points

on the curve draw ordinates to a.

Let a; be a point on the curve, x' a

consecutive position. Let p, p' be

the feet of the ordinates.

Then it is easy to see that, since

dx cos (raw) = \{pp')\

,

J m
(aw) cos (rara) dx = trapezium (mna)
n

+ area between (mn) and the curve.

Hence the indefinite integral is

I (xa) cos (rxtt) dx = seg x.

(8) From (6) we have

I
^—^ sin (Sa/S) dx = ~ I sin ydy= cos y = cos (m/8),

(rxa)

I \(xa)f
{(ayS) — («;8)} dx = cos (ira/S).

If (a^) = 0, we may put ff — ai, and we have

w Xi, rfa;= - (aft) ! cos ixaah\
J l(a:a)l»

(9) Again from (6) we have

I
7—s • / a\ dx=—\ (sin «)-' d«

J (a;a)?' sin (aa/3) ./
^ ^'^ "^

= -logtani2',

= — logtan^(Sa/8).
/i

(rxa) dx

\(xa)\{(a^)-(x^)}

From which we have

(Ta;a) da; 1

fl
log tan ^ (aiaa6).

\{xa)\ (xah) \(ah)\

(10) We have also from (6)

I V / . „ , -. = — / cosec" « dy = cot w = cot (a>d8),
J (xay sin^(^/8) j ^ ^ ^ "- '^'''

L- 1
/" (rxa)dx ,— .

from which
j ,(^^)_(^^)}.

= cot (a;a^),

and therefore
(rxa) dx _ 1

"(«a6)^ ~(aA)iJ (*.
cot(««a6).
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(11) ({{Txa)-{rxb)}^(mb)dx = j<f>(y)di/,yiheTey = (xa h

For ^ji> (y) dy = "^^ ^f<l>iy)dy= {(rxa) - (ra^)} <l>(xab).

§ 81. Integrals of measures of elements containing a line

variable

:

(1)
I
d? = - (|a), where a is a fixed line.

(2) J4>i^a)d^=-j<f>{y) dy, where y = (?«).

(3) |(?a)d? = linp|-(i'?a).

For dififerentiating R.H.S. we have

(4) j (i/fa) <l> (fa) df =
J"

<^ (y) dy, where y = (fa).

where y = (f*/8).

(6) In(5)put <^(y) = ^,.then

f (p^a) sinMfa) ,«,__ 1 f^= _i_ sin (fa)

j sin* (fa) (fa/8)^
"^ sin(a^)J f sm{a^) (fa,8)

••j(fa/3)*"^ sin(a)8)(fa;3)

(7) In (5) put
<l> (y) = y, then

f (ff")(fa/3) rf>:^
1 (f^/3)'

J sin' (fa) ^ 2 sin (a/3)"

(8) In (5) put ^(y) = ^, then

/•_(£fa)d^ 1_
loB(fafl)

j sin (fa) (fa/8) sin (a/3) '^^B U«/5^

(9)
/• (Pg^)cos(fa) ^ _(p^^i. g

^ ' j sin' (fa) * sin (fa)
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For differentiating r.h.s. we have

.. p|sin(ga) (pgg) cos (g«) ^ (jjga) cos (fo)
'^^ sin (fa)

"^ 8in»(|a) sin''(?a) "

(10) fi^^ ' J sin" (?«)
df = - 2 seg pf - (p^y cot (?a).

§ 82. Integrals of point elements may be converted into

integrals of line elements by the substitution x=p^, and

integrals of line elements into integrals of point elements by the

substitution f = tx.

§ 83. A function ofmeasures of a variable point is differentiated

along the normal and integrated along the tangent of a curve.

If the integral be such that it is independent of the path of

integration, the function satisfies Laplace's equation. For let

the function of measures be reduced to a function of measures of

the variable point x and two fixed lines a, ^ at right angles, thus

F{{xa), {x^)].

Then the integral iis •

i,3-p

—r sin {vxa) + _ j-^ sin (yx^)

Since this is to be independent of the path of integration it must

be equal to a function of (aro), (x^), say ^ {(aw), (a;/8)},

••
s(ijr)^^°^''*"> + a(^)''''^''*^>

sin (tx^) + aT-pT sin (Tj;a)

-/I.
dx.

a(a«)^'"^'"'^^"a(a;/S)-

= 5-7^ sin (raja)+57^ sin (rxfi).

dF



MISCELLANEOUS EXAMPLES.

1. A curve is given by the general equation

f{\{xa)\, 1(^6)1 ... (xa), (a:/3)...}=0,

to find the radius of curvature at the point x.

Difierentiating once

, 3/ d\{xa)\ ^ df djxa)
Q_

8
I

{xa)
I

dx 3 (xa) dx

df (yxa) _ 3/ . , X „ r\

3|(a,Yi)||(ara)| (l{xa)

Again, differentiating

df i X _px {rxa) _ (vxa)\

'd[{xa}\\\^\ ~\(M)r WFI
3'/ (vxaf df j_l px (rxa) (vxa)^

^d\{xa)\^ (xa)^

+ 2 -,, ,, sin* (rxa)+ S ../ , cos (rXa) px=0,
o {xay (Xa)

.-. -ax{S -,' . cos(T^a) + 2 -|/ , ,77—CTf

3y (v:ra)* 3/
f

1 _ (y^.^ .IL sin* Irxa) (ii)

^3|(^)|M^«)'' ^3Ka:a)ll|(a«)| (aw)s/+^3(a!a)2"°
^'^^°^-^^'

Eliminating tx, vx from (i) and (ii) we get px.

2. Find the radius of curvature at a point of a curve given by bi-radial

co-ordinates.

Let a, & be the points of reference.

Let :t; be a point of the curve.

Let r=\{xa)\, s—\{xh)\.

Let \{ab)\<=c.

To find px in terms of r, s.

dr _ (yxa) di _ (^vxh)

dx r dx 8

rdr_{vxa)
sdt'l^) W'

1 0^ _ 1 rfs ofo ^Pr_ _ Uv^a) _ {y^xV) \

' ' r dx i dx drdsdx~ \(vxa) (vxb)) ^
_ f 1 - irxa) px _ 1 — {rxh) px\
~
\ {vxa) {vxb) J

_ (vxb)- (vxa) ((rxb) _ (rxa))

(vxa) (vxb) \(vxb) (vxa)j ^
(vxb) — (vxa) (rxvxah)

(vxa) (vxb) (vxa)(vxb)^ '

, ,. , IS , . (I dr 1 ds ds d^ ) , > , ,,
.-. (xab)px=(vxb)-(vxa)-}^- _--_ +_^ („^) (.^6).
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From a, h, x, vx we have the eliminant

{dbxf= {avxf {hxf+{hvxf {ax^ - {{axY+ (hxf- (flhf) iflvx) {hvx).

From (i) we have ,

{yxa)=rdrldx, {vxVj-tdsjdx.

Let {hxxS)=0.

Then {dxf (,ahx)^=i^s^dr^+d^+2drd» cos 0),

.
. {dxf= -^^2 ^^^+ tfo" +^rdi cos 6),

1 dr 1 d> a? dr d» (dr ds ds dt dVl

'^~ s da- r da- t^^dada\rda sda drda-d^j'

where 4A''=2r»<2+ 2c2(r«+»»)-r*-»«-c*,

da^=dr^+d^+ 2drdscoae,

ei—jS — gi

C08fl= TT .

2r«

3. Rectify the curve, whose tangential equation is

We have by integration

SArPin pS - {"iar)] 25r/'(l/3r), where ?^?^=/(y),

which gives the value of linpf

.

4. Rectify the parabola ($g) sin (|8)

=

a.

We have from this

J (l«) rff=o J cosec (^8) d$,

.-. lin^|-(i'f»)=-alogtani(|8),

.-. lin pi= (|«) cot (f8) - a log tan i (f8).

5. Find the conic of closest contact of a curve.

The equation of a conic touching the tangent tx at :r of a curve and also

having the same curvature is

px (i/vxy+2h(^vx) i^Tx)+ 6 {yrxf

=

2 (yrar).

Differentiating three times and putting y=x, we have by means of the

formulae on p. 70

2h{-Spx)=2{-p'x},.:h=^.

Hence the family of conies having foiu- point contact is

px {yvxf+-^ {yvx) (j)Tx) + h {yrxf= 2 (t/rx).
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Again, differentiating four times and puttingyx,
px {- 8pa.'»}+2A {- V-f}+ * {«P^}= 2 (p.r3 - p"x).

Hence 6=_p^.+_ P_ _ . £_.

Hence the conic of closest contact is

6. Similarly, in tangentials, shew that the conic of closest contact at £ is

- 9 (p£)* sin« (,f)+dpp (,^£) {3p| cos (,f) +p'| sin (,|)}

+ (9p^-3pfp"|+4p'^2) (,p«)2=0.

7. From the equation
|

(xs)
| + 1

(x^)
|
= constant of a point of an ellipse,

deduce directly that (f«) (£«')= constant of a line of an ellipse.

From
I

(,r»)
I+ 1

(xs')
\
= constant we have

(yxii) (vx£)

\{x»)r \xx>^)\
"'

from which )
—

( + \—/, =0,
(txi) (txs)

.•. integrating log (^»)+ log (|«')= const.

8. Shew that the join of the intersection of the normals at the extremities

of a focal chord of an ellipse with the middle point of the chord is parallel to

the major axis.

Let the ellipse be \(xs)\=Me(xS), » the focus, d the directrix. Instead of

differentiating we may obtain the equation of the tangent at y in the form of

an equation.

For we have from Exs. 3, 4, p. 20,

|(^»)| = |(y»)|-*|(ay)|co8(^y»)) ^ g^^^j,
(.xy(i)= (y!t)+i{(y»)-(xi)] )

If the point xy{ is a point on the curve, then ^ will be the tangent at x

if r^= 't is ultimately zero.
{xO ^

Employing this method

I (y») I

- i
I

(a^)| cos (iyy»)= e (y«)+eifc{(ya) - (xi)}.

Hence the equation of the tangent is

i'^iiw) - « (^8)+e (yd)=0.

This equation may also be obtained by differentiating |(y«)| = e(y8) and
putting ry= xy.
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If 2 be a point on the normal zj is perpendicular to this.

Hence the equation of the normal is

cos (^^) -e cos (^a)=0,

i.e. («y«)-e(sa)+e(ya)=0 wherea the major axis=«j „.

Similarly ify be the other extremity of the curve and z now the intersec-
tion of the two normals

(zy's) -e(ia) + e (y'a)=0,

.-. adding (ya)+ (y'a)=2(za).

9. MacCvllagh's Theorem. If a chord pp' of a conic pass through a fixed
point o, then

tan ^.(^«o) tan ^ (/>'»ld)= constant.

Let Ou be the chord pp', and sk be ip.

Then o^^=p, so that

|(o««a«)! = «(o<»«a8).

Reducing (o„ s)= e {(o*a) sin (<»8) — (oS) sin (<aX)},

supposing, as we may, (pp's) to be positive.

.-. -(«oo))= (o«X)sin (o)fl)+ (o8){8in(o«>)cos(»o<»)-sin(l6<»)cos(o«X)}.

Put l(>o)\= i:{o8),

.'. -=y sin ((>«X)-oos (S«X),

where y depends only on u.

Writing x=Un^{pssb), sin(o»X)= -
^, cos(o«X)= r-t_

Hence ii^ (e - it) - 2.i;^+ (e+ ifc)= 0,

an equation defining X in terms of a>.

' ' e-k

The theorem is true when o traces a conic with the same focus .and dii-ee-

trix as those of the given conic.

10. o and o' are two fixed points, x any point on the curve

_1 1 1

\{xo)\ X^o')\~e'

Prove that the distance between x and the consecutive curve obtained by

changing c to e+hc is ultimately

he

7 3e' a'c*

'

where r=\{xo)\, r'= \{xo')\, a = \(oo')\. [Smith's Prize.]

T. 6. 6
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Difl'ereutiatiug the equation

1 1 1

\{xo)\ |(W)! c

along the normal we have

1 1 , — V J ofc

—J cos (vxxo) dp -^2 cos (vxxo )dp=^,

where dp is an element along the normal.

And we have also diflferentiating along the tangent

These two equations give the required value for dp.

To eliminate to;, vx put {txxo)=6, {rxxo')= ff, and we have the following

equations
sin 6 siu ff _1 dc
"? ^ ~'^dp'

cos6 oosd'_-
"72 -^ -"

also 6-ff=
<l>,

where
<l>
= {xo'xd)

EUminating 0, 6' we have

Ji* + r'« - 2r'r''' cos _ 1 rfc

7J!/2 ~ c^dp'

_dc rV2

''~"c2Vj-<+ r'4-jy(r2+/>'-a2)

-. , by means ot »• — r =
3c2 a^c* c

v/
11. In a system of curves defined by an equation containing a variable

parameter investigate at any point the normal distance between two curves.

[Cayley.J

Take the general equation

f{\{xa)\, 1(^6)1, ... {xa\ (x») ...}= c,

where c is a variable parameter.

Differentiating along the normal

dp is ,, .. sin (rxxa)

-

S - . . cos Orxa) \=dc,

and along the tangent

2 -,
I

, .

,

cos (txxo)+ 2 - / sin (rxa)

=

0,
3|(xa)| ^ ' d{xa) ^

which two equations enable us to eliminate tx.

12. From the theorem that the circumcircle of a triangle circumscribing

a parabola passes through the focus shew by differentiation that if an isosceles

triangle circumscribe a parabola, the join of the vertex with the point of

contact of the base is incident in the focus.
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Let a, /3, y be the sides of any triangle circumscribing a parabola of which

the focus is *. Then we have, since the circumcircle passes through «,

(«j3) (ly) sin (/3y)+ (»y) (»a) sin (ya)+ («a) («|3) sin (a^)= 0.

Differentiate with regard to one of the lines, say y, keeping the other

elements fixed.

We have

W {(«t) sin (/Sy)+ (»y) cos (/3y)} + (»a) {(JI17) sin (ya) - (»y) cos (ya)} = 0. . .(A).

The condition that s, the vertex a/3, and the point of contact py oi y
should be coUinear is

(a/3» y5y)=0,

.-. (a^y)(«»y)-(a3.T-)(.T,)=0,

.-
. (»i7) {(»a) sin Oy)+ (»/3) sin (ya)+ (»y ) sin (o^)}

- (»y) {(*a) sin (j3i7) +(»/3) sin (17a)+ {svy) sin (a/3)} =0.

Hence the condition is

{(»a) sin Oy)+ (<l3) sin (ya)} {siry) - (jry) {(»a) COS (/3y) - (»/3) cos (ya)} =0. ..(B).

(A) and (B) agree when Oy)=(ya).

13. [Bertrand.] If through each point of a curve a line of given length

be drawn, making a constant angle with the normal of the curve, the normal

to the locus of the extremity of this line passes through the corresponding

centre of curvature of the proposed ciwe.

Consider the point x^.e, where ^ is a point of the curve, c a constant and

a makes a constant angle with r.r. We need the value of (i>Xw, ^a).

Prom Ex. 1, § 55,

(va^u.ca) = {(i/a:a)+c cos (raroi)} dx+c {xaa) da,

when c is constant.

-•. (yXa.eX lJ=c[cos(TXa)dx+dTx{xx^ l^a)],

'px 'px

since (i»r,r) = constant,
= 0.

14. If li, fj, ... $n be a set of parallel lines fixed in regard to the

tangent and normal at a variable point j? of a curve, shew that fj, Is, ... fn

envelope a set of parallel curves.

15. To find the polars of a point in regard to an algebraic curve.

Let P {(xa)2, {xbf ... (xa), (xfi) ...} =0

be the curve, where P is a polynomial.

Let If be the point.

Let yi meet the curve in the point yi|.

We have /'{(p?o)« ... i^a) ...}=0,

. „ f
(za)'-^ {(ya)'+(^a)«-(y0)«}+it'(ya)' (ifa)-i(za) \

\ (!-*)« 1-* •••/-">

where g|=*.

6—2
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Hence by putting the successive coefficients of *=:0, we get equations in

y, z. Looking upon zaaa, variable, these are the equations of the successive

{>oIars of y.

16. Find the poles of a line in regard to an algebraic curve.

yotatioH. We shall use the noUtion a . bkjk, to denote the jwint aby,

where (-^)=-'

17. Shew that (a . bic,ik,^)= - - .-- ir^- •

18. Shew that

(aX)+2(a»

l+k, 1+S*r 1+2 ir
1

Put the J..H.S. = Pn-

Pn-i{l+"skr) +K{aM
Then P^ =

1+2*,
I

. . i',(l+2ii;,)-/'„_,(l + "i'i,)=X:„(a,X).
1 1

n.—

1

n—

2

Similarly /'„.,(1+ 2 *,)- i'„.2 (1+ 2 *,)= *..-! K-i^),
1 1

Pj (1 +2 *r) -A (1 +il) ='f-2 («sX),

. adding Pn{l+^k,)-P,{l + i:,)=it,{ar\),
1 2

which gives P„.

Notation. We shall use the notation a . ^kjk, to denote the line a/3c, where

,-^^ = ^'. It is evident that this does not completely define the line, as it

does not specify any sense.

19. Shew that (a
. |3t./^, c)= ,

-

M-^ ~A^^^L . ,

*/V+V-2*,*2COs(a/3)

where the sign of the square root is arbitrary.

20. 1{ d he the isotomic conjugate of e in regaid to a, 6 ; a,b,c being

coincident : find (<fA).

If 8 be the isogonal conjugate of y in regard to a, ; a, 0, y being co-

incident : find (dl).
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PoitU Reciprocation. Let o be a fixed point..

Let a; be any point. The reciprocal of x in regard to o is defined as |,

where
1=0 ]i _ where iT is a constant

;

from which it is easy to shew that a;=o t „ k

21. Shew that, if f, i; be the reciprocals of x, y in regard to o,

sin (fi;) =sin (oSoy)

__(o«^_ {oxy) _
-\{ilo){px)\-\^''y'\'\{xo){3io)V

22. Shew that

'^ '^" (o|)(<»!)

We have !(^)l = l(Ot » A'^)!

=(3^) |{(o|)^+W)''-2(o|)(o,)co8(^,)j* I.

23. Shew that {mi)=K -^
l(o3')l(of)"

l(<>y)l(o|)'

g(yl)

~t(oy)l(o«r

For point reciprocation, we shall denote by R„ the reciprocal of any

element in regard to o.
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The preceding formulae become

24. Similarly shew that

(^°-^'^°^^'"'^= '*^'-|(o^-)S')WI'

25. Shew generally that

... ._f^ (Ho^i RqXj Rpji R„X3 Bo^2 ••• Ro^n^o'gM + l)

(^V''2€l^3g2 ... ^,x,,,)- A .

^^^^^^^ ^^^^^^^ \(oR„i,)\ ... {oRo^n^,) '

. , . t \-k' (ft.^1 RcXj Roil RqXj ... .g„j;,i^„g«_i o)

(^i^-2€i^3g.....^»§»-i;-A .

^^^^_^^j ^^^^^^^ \(.oR„ti)\ ... (oR^x^^i)
•

It t ^ t ,. t t \—k' (R'il RoiiRpXi ... fipg, RoSn+l)
(€.f=^,f3^2 ... €„f„.,)-A .

|^^^__^^^ (o7i.«2)l(o/f<.:^,) ... l(oAol»+.)l
'

-*>„>„ .„ s_rr (flpgi Rpji RqXi RoiiRpXj... R„inRo'^ti-\0)

26. Roulette*.

One curve rolls on another fixed curve, to find the displacement of the

point of contact and the tangent at the point of contact ou the rolling curve.

Suppose the curve to roll counter clockwise. Let the senses of description of

the curves be counter clockwise.

Let X, y, y be three contiguous points on one curve, i/, y', y" three points

on the moving curve which take up positions x, a/, if' in its rolling.

Let x=y, 3d=i/,

cd X
r"

\s

In the rolling jf remains at x', but yy becomes x'li'

.

I.e. if y be the point of contact on the rolling ourve^ then

dy=0, dTy=—drjy+dTX, drx>dTiy,

where dr-^y is the displacement of ry when the curve is .fixed.
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Knowing these two displacements, we may find the displacement of any
element derived vectorially or equationally from them, by the method of the
text.

The case of a point on a rolling curve does not come under the classes of

derived points considered. The above investigation from first principles is

therefore necessary.

27. Find the displacement of a point fixed in regard to the rolling curve.

Let z be a point fixed in regard to the rolling curve and y the point of

contact on the rolling curve.

Let ^=y„,jj'

.•. di=Rdio= Rdiry=R(^dTX-dTiy),

and TZ=yi^.

28. Find the displacement of a carried line.

Let f be the line.

Then d^=dTy=dTX-dTiy,

29. Find the radius of curvature of a carried point.

We may now no longer concern ourselves with the fixed curve.

Let z be the point.

Then dTZ=d^ by Ex. 27

I(y2)l "
I(.y2)l

Here the displacement of y has a different significance from what it has

in Ex. 26. In Ex. 26 the considerations of its displacement were due to

the rolling. The displacement now is due to the point taking^ up, as we
suppose, successive positions on the curve.

_ sin (rya) dy d/rx — dr^y

_ sin (rya) dy 1

~/e(drx-dTty)'*'R

iPi^x-py^R'
By similarly differentiating

P'
{j,if{px-py)^\i2,z)V

find -r- : and so on.
az
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30. Find the radius of curvatxire of a carried line.

Let f be the line.

Then ^^^^i,'

d(^. a) d{ayC)
divja)

. % I

Consider the case of a curve rolling on another curve which is rolhng on

another curve.

31. Shew that the pedal triangles of a triangle of points inverse in regai-d

to the circuracircle are similar.

Let the points be »^ ,
» nt.

p

Now if X, y, z be the summits of the pedal triangle of s ,

(y2)2=(oa)2sin20y)

= {^+ p2- iRp cos (Ja a)) sin» Oy).

If y, y\ z are the siunmits for s b«,

p

-j + «2 - 2— cos (iS »)Uin« (/3y)

32. If we represent by I^x the inverse point of x in i«gard to a circle

centre o, shew that

'^^^1 \{ohx){oI,y)\-

I„x=^o_ j{i , where R is the radius of the circle.

"'
|(<w)| '*•

|(0J,)|

(oxf{oyr

33. Shew that

^^'^-(o/„x)««v)»(o/.«)«'

where R^ is the circumradius of I„x, I„y, I^z and p the distance of o from the

circumcentre of I„x, I„y, I„z.
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We have {I„x I^y I„z)={fi_ ^ o_ _^ o_ jb'_)
«. \(ox)] «>• |(0i))| ""> Kos)|

Ri
= 2 r;—r-T—r, sin (ovoz)

2 2 (oa7)« (oyz)
{oxf{oyf{ozy

R*

by theorem on p. 29 which proves the result.

Anharmonie or Cross-ratio.

Let a, b,c,dhe four points incident in a line X. Then the ratio

{ad}/ (bd)

is called the anharmonie ratio or cross-ratio of the range of points, and

is represented by {ab, cd). If a, j3, y, 8 be four lines incident in a point I,

then the ratio ?!5 i'^y} I ^!° ^^y} is called the anhai-monic ratio or cross-ratio
sm {ab) I sm (/38)

of the pencil of lines and is represented by {o^, yb}.

In projective geometry, of the trigonometric functions the sine function

only occurs ; hence, for brevity, we shall represent sin (a)3) by (ajS).

Thus the cross-ratio of four lines incident in a point is

(aS)/ OS)-

The cross-ratio of a pair of points a, b and a pair of lines y, 8 we shall

define as

(«8)/ (68) '

and this is written [ab, yb}

.

34. Reduce {aoW, yy88^}-

{aa'bb', ri «« )=/-=^ / 1WW\(aabo) I (Ob So)

(ay)(a'y)-(ay')(ffl'y)
/
(by)(b'y')-{byr)(b-y)

~
{ab) {a'y) - {ab') {a'b) / (68) (6'd') - (68') (6'8)

'

Particular cases.

When (oy')=0. («'«)-0; (6y')=0, (6'8)=0.

Then {W66', ^'W)= {ab, yb} . [a'b', y'8'i.

Similarly if (oy')=0, (a'8)=0 ; (6y)=0, (6'8')=0,

then {i^^'b^, W^} ={»*'. y8) • («'*> >'*')•

* This ratio and its usage are new, as far as I know
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35 If
" *

'^l
, ", t "!! be two triangles ; and W, 66', c? be represented

037) a p y )

by X, ^, r and ra', 30', yV by I, m, n ;
shew that

{/*!/, aa'}. {»i», oa'} = l.

{^i.,, aa'}= {66' w', 3^, 3V}

-(6y)(6'|3) / _WWyl
~ mi<^y) I -(«y')(cW

= !6'c,3v'};16o',/3'y}.

Sirailariy {»m, aa'} = {/3'y, 6c'}/{3y', Vc).

36. Shew that

^^=^, (gY)(6a)-(aa)(6y) / (a'Y')(6'8)-(a'8)(6'y)
( afty a 6 y ,

88-)-
(„.y) (jg-) _ (aS-) (6y) / (a'y') (6'8')- (a'a-) {Vy')

'

37. In Ex. 35 shew that

{mn, aa'} . l='^v, an'} . X,

where {ah, cd\.o denotes {oaob, ocod).

{mn, aa']. l = {mn, lala'}-={^ff yy', la I'a}

W(i3'a) (yg') {y'l)

(/3a')(/3'i) (yO(y'«)

= {/3y,te'}/{/3'y',H

Now (3i)=(e,„„.)=_i_2i_J_,

(3'0=(?^W)=i'S?l^„
l(co)l(oo)

(y0=(a6aa) =
|^^^yy^^,

/ •i\ i-:?T'—\
("'°')(fr'° )

Hence ;«.«, ««'} . ^=^.^lM)f_f^«).mm,
' {da) (y'a) . (6a') (/8<i')

|
(a'6') (ca) I

which proves the result.

38. In the two triangles a\ , 'er '( investigate the measure

{hc'h'c ea'c'a ab' a'b).

We have {bc'b'c ca' da ab' a'b) {be' b'c) {at' da) {ah' a'b)

= {bd ca' da) {b'cab'a'b) — { bd ab' a'b) { b'c ca' da

)

= {{hda) {cc'a') {b'a'b) {cab')

- {bab') {da'b) {b'ca') {cda))l\{bd) {ca') {a'b){b'c){c'a) {a'b)

\

= :(c'y) {o {by') {b',) - {b'y) {b,) {^')m ^m^^';^^^^^

.
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Cwdllary 1. If ( 6c' Vc ca' da ab' a'6 )=0 then

(Cy) (c/y) {by-) (6'/3)=(6'y)W (cy') ((/fi),

i-e. {be, ^y'}= {b'&, /3y}.

Similarly {ea, y'a'}={c'a', ya},

{ab, a'?}= {a'b', a^}.

Corollary 2. Or if {be, ^y')= {b'c!, ^y) then

{ca, y'a'}= {c'a', ya},

and {ab, a'ff]=^{a'b', aS).

Also {bcfb'c ca' da ab'a'b)=0.

39. Investigate {bdb'c cada! aba'b').

Expression ={bdb'c j3/3'yy')

1 (6j3)(c'/3')-(6j3')(e'ff) (fe'y) (oy') - (fey) (gy)

\{bd){Vc)\ {by){di)-{by'){dy) (6^ («|3') - (6'^-) (c/8)

1 (6/3')(c'/3) (ft'y) (gy')

|(fc')(6'c)|(6yKc'y)"(6'/3)(c3')

\{bd){b-c)\{Vd,^Y

Corollary. From Exs. 38 and 39 if

( bd b'c ca' da ah' a'b ) =0,

then {bd b'c cada' aba'b')=0.

40. If ab, cd be two pairs of points and x a variable point, such that

{a&, cd} . X is const.,

shew that the locus of a; is a conic.

{xae) I {xad), , J, {xac) I {xad)

41. If ab, yd be a pair of points and a pair of lines ; and a^, cd their

reciprocals in regard to a conic, shew that

{aft cd}= {ab, y8}.

42. If „ }• , ,„ 1 be two triangles, self-conjugate in regard to a conic,
apy) apy)

shew that the vertices lie on a conic, also that the sides touch a conic.

We have to shew that
a . {be, b'd} =o'. {6c, 6'c'},

or {^y. b'd} = {be, 0y'},

which follows since the triangles are self-conjugate : similarly the sides touch a

conic.
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43. Shew that if the vertices of two triangles toucli a conic, then the

triangles are self-conjugate for a conic.

Let r be a conic, for which „ r is self-conjugate and a, a pole and
afly)

jxilai'. Then the polar of b' fiasses through a' ; let it meet a in c".

Then
i , ,c^ , i

arc self-conjugate for r, .•. ahc, a'b'c" are on a conic.

Hence c' =('.

44. If two triangles of, 'ft
( ** i'ecii)rocal one for the other, in

i-egard to a conic, shew that the triangles are honiological.

[be, ya'\ = {ca, 0y'l,

{by) l{cy)^{cff) /{a£)

(6n')/ (ca) {cy')/lay')'

. (6y) (ca')(a^')= (cj3') (ay') ('"<')

4.'). Shew that {xaficd('.i-)=0 is the equation of a conic : deduce Pascal's

theorem.

By i-educing (.fa|8c8e.i) = we can prove the fii-st pai-t.

It is evident that a, e are jwints of the conic.

Next to find where ff meets the curve.

Let (9= joy, and p be on the curve.

Then {papqc&ep)=(i.

.-. {pchep) = 0, since (a/3)=t=0.

.-. (pcc)(Sjo)=0,

• p=^ or al^.

Hence", e; 38; cefi, acS are points on the conic.

Let ~0~8=l, ^ = m, Udh=n.

Then ^=lm, 8= 7», c=mm.
Hence if gr be a jwint on the conic through a, e, I, m, u

(jjalm email lneg)= 0,

.'. (galm eman lneg)=0,

which is ftacal's theorem*.

46. Shew that

{xaaaj xb^iybj .vc)=0,

where {afiy) = 0, (aa,36,i)=0 denotes a general cubic curve, i.e. that it can be
made to pass through nine arbitrary points +.

The curve obviously pa.s.se8 through a, b, c.

See Whitehead's Universal Algebra, p. 232. t Ibid. pp. 234, 237.
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Consider the point fiy=ya= afi. It lies on the curve, for substituting this

point for ,r we have

(a/3 aaOi afibpkybi afic)

= (a/3aj aykybi a^e)

= (a/S aj afibi afic)= 0.

Again, consider the point a^a.

{OiCaaaOi aioabfitybi aiCac)

= (aiC OiCabfiiybi ajc)=0.

Again, consider the point oo^jS.

{aa,liaaai aa^fib^kyby aoy^c)

= {hai aaiPJkybi aa^ffc)

= (uai/3 aai li k y bi) X ain (aui umi^c)

= (//*y*i)^ {••}> where f=aaifi

=0, since (/6i*)=0.

Hence the six points a, 5, c ; d, e,/lie on the curve, where

d=a'^a, e=a/3=/3y='ya, f=7m{^.

Hence a= de, ^=ef.

Also rf=UiCa = tticefe,

.•. (a,ec?)=0.

and f=ayafi — aiaef,

•• (aio/)=0,

.•. aj = afcd-

Hence the cubic

(xade afed xbefkyby xc)=0

passes through a, b, c ; d, e, f.

As regards k, y, by , we have

(ye)=0, (/6,X)=0

Take three other points g, h, i.
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Now let gi=gaaai gc=gade af cd gc.

hi= haaai he = hade af cd he.

ii—iaaai ic =iade af cd ic.

gi=ghft =gb ef.

ht=hb^ =hb ef,

i^=ibfi =ib ef.

Thus the six points gi, A,, t]
; gt, Ag, i^ cau be obtained by linear con-

struction from the nine points

a,b,c; d, e,f; g, h, i.

We proceed to choose t, y, 6^ so that the following equations hold

:

(giiy^i9i)= 0, {hatybihi)=0, (is^6iii)=0,

which are the conditions that g, h, i should lie on the curve.

If possible, determine y and i from

(iibiykii)=0,

without conditioning bj.

For this we must suppose t'l^iy ^t'l, and (ijii^)=0.

Hence (yj,)=0.

Hence since ('ye)= as well

_ y= M-
7= i,e and (Hj^) — account for the first equation.

The remaining two equations can be written

(%27^i6i)=0. (*AayA,6,)=0.

Hence k is such that

{.tgiygi kh^yhi */)=0, also (/•Mij)= 0.

Hence k is one of the points in which

tit'a intersects the curve {xf xg^yg^ xh^yhi)—0.

We consider this curve

{xf xg^ ygi jtAjj y A,)= 0.

Put x=y^, where $ is any line.

Then (y|/ y| S's y fir, y^ Aj y A,)=(y|/ yfy, yf Ai) =0.

Again, put x= /3f . Now g^, Aj, /lie on /3,

.-. xf=fi, xgiygi=^ygi, JFAjyAi=/3yA,.

Hence /3, y are parts of the curve.

Hence the remainder of the locus is another line.
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To find this line we have

{xf xg^ygi xkiyhi)=0,

.-. {_xf xgt ygihiy liix)=0.

This is satisfied if

i.e. {xfki)=0, {xgiygihi)=0,

i.e. (iP/A,)=0 and {higiygix)=0.

i.e. x=fhi higiyg^.

Similarly another value is given by

therefore the third line is

Denote this, for brevity, by X.

Then k is incident in iii^ and in /3 or y, or X.

If we assume that k lies in /3, the equation of the cubic becomes

(xaaUi Pybi xe)=0,

i.e. a conic and a line.

Similarly if k lies in y, the cubic becomes

(xaaUi khi xc)=0,

i.e. a couic and a line.

The only possibility then is k lies in X. It will be shown that this assump-

tion allows the cubic to be of the genei-al type. We shall prove this by

showing that the cubic passes through the nine arbitrarily assumed points.

Hence let it be assumed that

k=iiii\.

Accordingly with these assumptions the equations

{g\hyl'9i)=^y {hh^ykhi)=(i, {iibycki2)=

are satisfied and therefore g, h, i lie on the curve.

&i is the point of intersection of

*/ *^2 7S'i. kh2yhu

••• l>t=kgiyg,kf.

Finally therefore it has been proved that the cubic curve

{xaaai xbfikybi xe)=0
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passes through the nine arbitrarily chosen points a, b, c d, e, / g, h, i pro-

vided that a, A y, a,, 6i, i are determined by the linear constructions

a=de, j3=e/, y=eii,

a,=af cd, ji;=i,ijX, bi= kg2ygi if.

where gi = ffade afcd gc, ki= hade afcd he,

g.i=gbef, lii=libef.

ii=iade afcd ic.

This gives «s the analogue of Pascal's theorem for a cubic. This theorem

and analysis are due to Grassmann.

47. In bi-i-adial co-ordinates, shew that Laplace's equation is

\oi^ o^ aros r or i oij

where r=\{xa)\, s-\{xb)\, 6={xa,xb),

a, b being the points of reference.

Use the theorem on p. 77.

48. Find the condition that y is a double point of the curve

f{\{xa)\, \ixb)\, Xxc)\...{xa),(a;?),(^)...}=0,

and that i; is a double tangent of the curve

/{(?«), (fi), (ic) ... (ga), m, (^) ...}=o.

49. Let ' „' \ ;
' ' ,] he two triangles and s any point. Shew that

a,P,yi o,p, yj

(saa ibff iCy) {loa') (»6/3') (»cy') _ R (a, b, e)

(«^ W^ Idy) {X^a) (»6' j3) {»<!y) ^ ("'' *'' ''')
'

and prove the reciprocal theorem.

On account of the comparative simplicity of the properties of the circle,

and the testimony of Pure Geometry, we are warranted to try to include

the circle as an element. This is what is done in Euclid. There are three

elements, points, lines, circles. The inclusion of the circle is theoretically

quite simple and would be analogous to what we have done in regard to the

point and line. Let us denote circles by Capital Greek letters, r, A, etc.

As the radius of a circle is intrinsic to it, we shall express it in the

notation. Thus r, F are circles with radius o, h.

a h

JJow the position of a point in regard to a circle is completely given if we
know, say, the distance of the point from its centre or the length of the

tangent from the \to\vA to the circle. Experience shews that this latter is
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the most convenient to work with. We shall denote therefore the length of

the tangent by
(ar) or (ro).

r r

In regard to the measure of a line and circle we choose the measure

of the centre of circle and line, divided by the radius. When the line cuts

the circle this becomes the cosine of the angle between the line and circle.

It is essential that the circle be given a sense, as in the case of a line. We
shall suppose that the radius of a circle is positive when the sense is counter-

clockwise and negative when clockwise.

Our notation would be (a r) or (r a).
r r

We have (fi r)=(a r)= -(aT).
r r r

<
When the line and circle intersect we shall use (a r) to denote the angle

r

between the line and circle.

In r^ard to the measure of two circles of given radius, their mutual

position is given by the distance of their centres. We shall however define

the measure of two circles r, A by
a h

2a6 (r A)= (c' r c" A)«- o«- i",

a b a b

where e* r denotes the centre of r.
a a

The quantity on the right-hand side is usually called the power of the two

circles.

When the circles cut (r A) is the cosine of the angle between the circles.

a b

The analogue of determinates of points and lines is a much more detailed

matter.

For a point and circle we have ar, the pairs of tangents firom a to r.

r r

The determinate of a line and circle ro is the pair of points of inter-

section.

When we come to the consideration of two circles we find we have more

than one determinate which leads to considerable detail. We shall not go

into this any further. The inclusion of the circle as a third element wovdd

mean a table of formulae over ten times as large as the table given. We give

a few examples of this theory.

60. The circle whose centre is o and radius r we shall write cir o,r: if a

be a point on the circle, shew that the intercept on a^ is

2r cos (aou).

Let i, X be a point and line ; the locus of x such that {xiy=2i{a!\) is

a circle. The circle we shall write cir i, X ; it. If a be a point on the cir ^ X ; i,

shew that the intercept on the line a^ is

2 \{al)
I
cos ({dia) — ik sin (uX).

T. o. ^
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61. irCmft Theorem. If a, 6 be two points oil cir I, X; k, cir I, X; V

respectively, and such that {laU)=-^, shew that the intercepts on oS made

by the two circles are aak:h'.

We have (<df=ik{a\) (i),

(60*= 2f (6X) (ii),

(Mm^l (iij).

These are the conditions of the problem.

Using the result of Ex. 50 we are required to shew that

2|(o^)|cos(a?a6)-2ifcsin(a6X) _ife

2|(60|oos(W6a)-2*'sin(6SX) *"

i.e. -if
I
(to) {ab)\ cos (to^) - ikk {ah\)+ k\ (lb) {ba)\ cos («66a)= 0...(A).

Here X only occurs as a direction. Hence from (i) and (ii) we get

if (aO*- k (60*= S**" (»6X).

This reduces the l.h.s. of (A) to

jf {(«o)2+ (o6)8 - (blYl - 2if (ai)2+ 2ifc (6i)«+A {(ai)'- (Ibf -{baf} which is= 0,

since (o^)«+(&«)'= («*)«

52. If a, 6, r be two points and a circle, shew that

_< (or)«+(6r)«+(o6)«- 2 (6r)2 (ab)" - 2 (abf (or)»- 2 (ar)* (brf
sin^ (abV) = -^ = r_^^^ 1 r_^

53. If a be a point on the circle cir {, £; r , that is, the circle (xlf= k^ (x T)^,
r r

shew that the intercept on a. is

54. Hence prove M'Cay's theorem of Ex. 51.

55. Shew that

8ini!(a/3)(i3r)«=r« {1 -co8i!(a/5)-C08» (a r) - cos' (/3r)
T T r

+2 COS (flfi) cos (or) cos Or)}.
r r

66. Shew that 2 OyJ) sin (at)= (o/Sy) sin (8f).

«,ftr

57. Let ' ' [ , / „,' , f be two triangles : if Xi, ui, v. be lines through

a, b, c making angle with a, /S', y' aud X2, ^, •'2 lines through a', 6', c'

making angle — 6 with a, 0, y, then

(XiMiyQ ^-fi Ca, fr. c)

(Xg/ijwj) R{a',b',dy
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If the lines Xj, /*,, i/, and therefore Xj, /ig, v^ are concurrent for the values

*nd — of 0, shew that they are concurrent for any value of 0.

58. Directly similar figra-et: Definition. Directly similar figures are such
that coTTesponding angles are equaL

If o, a' be two corresponding points, shew that a' may be expressed in the
form

«'=<»=,. tlMI-

o is called the pole, k the scale of similarity and 6 the angle of displacement.

59. Invenely nmilar figures: Definition. Inversely similar figures are

such that corresponding angles are equal in magnitude but opposite in sign.

If a, d are two corresponding points, shew that a! may be ezpiressed as

"'=»•_
(..55), *1 Ml-

o is called the pole, Ou the axis and h the scale of transformation.

60. Shew that

(oiB, 65*^W sin* (»- 0)= («o)« sin* fl+ (ft)* sin* <^

- 2 |(te) (ft)
I

sin tf sin cos {(ia ft)+ fl - (^}.

61. If two triangles be inversely similar, shew that they are such that

lines through the vertices of one making a constant angle with the sides of

the other, ai-e concurrent : and conversely.

62. If two figures are directly similar ; and the angle of displacement be

a right angle : shew that lines through the vertices of one parallel to the

sides of the other are concurrent.

63. If two pairs of triangles"' *•"'}, "***'^|
;
"^^"'j

, "'^'X be
oiPiyiJ attiiyi) osPsYs^ '^P\yO

inversely similar and have a common axis of similitude, shew that if the

triangles, suffix 1 and 4, are such that lines through one making an angle 6

with the sides of the other are concurrent, then the triangles, suffix 2 and 3,

are such that the lines through the vertices of one making an angle with the

sides of the other are also concurrent.

64. A circle touches three consecutive positions of a moving circle : find

its centre and radius.

If the moving circle be cir o, r and the touching circle cir a, p then

|(oa)|=±(r-p),

and this can be differentiated twice with a fixed and p constant.

7—2
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66. Find (^) log(|a), r=l, 2, 3, 4.(D'logda),

(^5|jlog(«a)
^1^

,

/dV, ,, , p'g (|ay-3pg (gg) (>ga)+2 (»|a) (pga)'

{£f
log (|a)=[(p"f + 5p?) (^i)'-Vf (^.)» (-fa)

+ 12p5(v«a)»(f»)-3 0.|)»(fo)».

-2 (/>««)* {(f»)*+3(vfa)»}]/(fa)«.

66. Two points a, b move on two lines c., c^ in such a manner that \{ah)\

is constant. Shew that, if j he the intersection of ab with its consecutive

position, q and the foot of the perpendicular from c on ab are isotomic con-

jugates in regard to a, b. [The Frincipia.']

We have to shew that

(v o6o)= (to t6 634,),

when
I

{ab)
\
=constant.

^ ,-^ . \(ah)\(Tah)da

|(a6)|(ra6)(i>6a)

'{rah){»ba)-{Tba)(vab)'

(raft) sin (r6a6»)
a

sin (rorft)

=(TaT665ii„).

67. Shew that the conic which has three-point contact with a curve at

the point a and has a focus at « has the equation

2 |(^*) (a,)\-(as)*-(sxy+{''^f=2pa^^(xTa).

68. By means of £z. 67 or otherwise find an equation of the locus of the

foci of conies having four-point contact at a point of a curve.

69. Shew that

i(ia){&>) dS=i (of) {(^) (|5)-Kvfa) (.|6)}

-i{(^)(''ib)+(ib)(,^)}

+ {(ia)+ {&>)} {-i(ai) (pf -p"£ + plTf _...)

+ (l+i)p'|-(2+i)p"'f-l-(34-i)p»f-...}

+ {(•'^»)+(»f6)} { - i (of) (/.'f -p"'|+p'| - ...)

-Jpl+ (1 +l)p"|-(2-H)p"|-l-...},
where a is an arbitrary line.

since (pob) da+(vba) db = 0,
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The infinite series occurring are supposed conveigent and differentiable.

Assume J(^) (ff,) dS=I^+Ii (|o) (|6)+/jj (via) (..f6)

+^3{(f»)(»f6)+«6)(^fa)}

+^4 {(f»)+ (^)}+/6 {(•'|a)+(-|6)}.

where the Fb are intrinsic functions of the curve and differentiate.

70. Prove generally

;/• {(£«), (m ... (-I"), wft) ... sin (fa), sin (m ... r, n). Mi) ...> di

=^{(?«), (ib)...(via), (vi6)...sin(fa), sin«/3) ... Atf), /j (©...},

where P denotes a polynomial, and the Pa denote intrinsic functions.

71. In the cubic

{sca^bxii Ci^1 Oi j;)=0,

find where 8, hi ; ca, CiOj cut the curve and shew that cuts the curve in

the points where it cuts the conic {xciiC\fiiaix)=0.

To find where S cuts the curve, put x= iC, then {(da^S(diiCiffiai6{)=0.

Hence f8 a/3c8=f8...(i) or (d8,c,j3iaf8)=0...{ii).

From(i) ({8a^CS)=0,

.: {i=M or ^.

From (ii) f8= d8iO,3,a8.

Hence the three points of intersection are

/38, ca8, 88,c,^ia8.

To find where ca cuts the curve, put x=ca(. And we find in a similar

manner that the points of intersection are

a, cad, oa8jCj/3i<i, ca.

72. In the cubic {xa^cbeB aAfi. xra)=0,

shew that o, I, r, JSj, a6 lie on the curve. And find the third points in

which cd, Tr, 'jmr, Jiva cut the curve.

73. Notation. We shall denote by a^ the line parallel to u and such

that the measure of any point on a^ and aia k.

It is easy to shew that (at6) (a6) -h

and evidently (ai^)=(a^) )'
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74. Let o, 6, c; u, ft y be three points and three lines. If ^' ^' H be a

triangle such that the points are incident in u, ft y and the lines in a,h,Ci:

shew how to find (*X) where X is any lin&

We have (:iw)= (y/3)=(»)')=0,

(yza)= (zir6)

=

{xye)

=

0,

we are required to find (j:X).

We may put jr= X^i, if we suppose (xK)=lc.

Hence y=^3=Xiacft

Z-=xhy= \f,a by.

Hence (XiocjS \i,aby o) = 0.

From which it is easy to shew that

(yaXi) (cftoXt) {afi)+(aea\t) (fiybaXt) =0,

.-. {(yaX)-i8in(ya)}{(c6aX)-A(«*o)}(a^)

+ {(ocoX) - k (aea)} {(/3y6aX) - k (|8y6a)}= 0,

.
•

. (ynX) (c6aX) (/3a)+ (ocaX) OyftoX)

- 1 [{yaX) (c6a) (o/3)+ sin (ya) (cbaX) (a/3)

+ (acaX) {Pyba)+(aca) (/SyftoX)]

+ t>[8in (ya) (c6a)(a3)+(aea)(/8y6a)]=0.

75. If in Ex. 74
(/3y6c)= (yaco)=(a^a6)=0,

shew that one solution for ^, y, z is bca, ca^, ahy and find the other

solution.

Also consider the case in which

(a6c)=(a^y)-0.

76. If a{Agi,hi)=h(figfih()=c(Jtgnhy)= {f(g^hi),

shew that {/(grihg) satisfies a cubic in measures off, g, h, a, p,y and a, b, c.

77. Shew that for a cubic curve if ' '
\ ,

,' ' , j- be two triangles
o. ftyJ a,pr,y)

such that their vertices and the intersections of corresponding sides lie on

the cubic, then

(,a'^y')=l {affy')=m {a'^)=n(a'ffy),

and hence shew that the cubic is not restricted by such a condition.

Hence shew that the cubic

(xaa xbfi xSy)=0
is a general cubic*.

* Dae to OraBsmann.
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78. Find the equation of a circle, the mea8ures of which in regard to the

three points a, b, c are *„, ti,, *».

Let x,yhe points on the circle. Let ry be the tangent at y.

Then (,xy)'=2p(xri/), where p is the radius.

It is easy to shew that

ta^={ayY-ip{aTy),

t,?={hyY-iplJtny),

t,^Ho}ff-ip{cTy).

If we eliminate ry we find the equation of the circle.

Now from o, b, c, y, ry we have

2 (rya) (bey)=0, -
.-. i{t.*-{ayy]{bcy)=0,

.-. (o6c)<«+S(6cy)«„s=0,

where t is the measure oty in r^ard to the circunicircle of a, b, c.

If we denote by cir a, b, c the circumcircle of a, b, e the equation of a circle

r may be written in the form

(arcrr a, b, c)« (abe)+ S (aTy(bav)=0.
a, o,c

79. Find the radius of a circle r when (Fa), (r/S), (Ty) are giyen.

We have (oa)= r cos (Fa),

and two other equations.

.
• . J-2 sin (j3y) cos (Fa)= (ajSy).

80. Transform oir l,\;k io the form cir o, r.

cir l,\;k'\a equivalent to cir h„ _»> s'lfi-^3Je{tK).

81. If we denote by ra TiTj the radical asis'of the circles Tj, Tj, shew

that

Kracir o,, r, cir Oj, rj a?)|=
|

^—i^

—

^^^^^^^^ ^|

.

82. If a circle touch two circles, shew that the perpendicular from its

centre on the radical axis of the two circles is proportional to its radius.

Let the touching circle be cir o, r and the other circles be cir oi, r^ and

cir 02, ra.

We have

I

(ra cir o, , n cir oj, r^ o)i/r=
2(piOi)r

I
2(Oi02)»-

since (»--ri)i' = (oo,)«, (r-rj)«=(ooj)«,

'~ ,^ a constant.
(0,02)
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83. Find the condition for a double point at the point h of the curve

/{|(awi)l, \{xai)\...{a;ai), (aroj) ...}=0.

84. Find the condition for a double tangent at the line X of the curve

/{(^•i), (!«.)- (««i), (fis) ..}=o.

85. Find the tangent and radius of curvature of the cun-e given by

0{|(«ai)l. K^KOs)! — (a^ai), (jjoj) ... <} =0,

V'{|(^i)l. \{xa^)\ ... {xai), {xai)...t)=0,

where < is a variable parameter.

86. Defining (ai Oja, 0302 . . . a„ _ i on) as

I(«i«2)|8in(ai0,a)((0i02aia3)|sin(a,ajaia3a2)...(n(ia2aia3a2...a„_,n„),

shew that

(aioi) (0,02) (a|n3)...(aia„_i) (aio„)

(0201) (a202) (ajoa)... (a2an_i) (ojon)

(0302) (0303) — («30«-l) («3»n)(fli<Ha\a%ai ... n„_, ii„) =

...(a„o„.i) (OnOn)

87. Shew that

("1 "2 "i <»sa2'»« • • • "^ - 1 <'>l - 2<»h)

("l«l) (ai«2) faiOs)... (a,a„_2) sin (a,a„)

(aeffli) (0202) (0JO3) ... (a2an-2) sin (020,,)

(os«2) (os^s) ... (asan-2) 8in(a3a„)

...(a,_ia„_2)sin(a„_,a,)

88. Let ' V be a triangle. A circle cuts the sides a, /3, y in the points

«>. <H; bi, 61; c,, Cj respectively, such that b^, ^oj are parallel to given
directions. Shew that the locus of the centre of such circles is a straight

line.

(pXma)=(xa) — sin (aa) sin (rxa) -^ .

89. Find px^.

We have

Hence differentiating

-Sin (fflo) px„= -sin (Ta;a)^+cos (coo) sin (rxa) 3-

... , ^dx I

,

clx\-sm (mo) cos (Ta;ia)^ ( 1 -par-j- I

- sin (ooa) sin (t:c») 3-5
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, . . , .dx . , , , ^dx (- dx\= —cos (rjn») sin (aa) -5— sin (ma) cos (r:s<») 3- [l—px-j-i

—sin (««) sin (nrm) t-j .

Hence pa;.=cos (r^«) {2J -p^(J)*}
+8m (rx«,)g

.

90. When x has the general displacement, shew that

/ X d^ „ /d.x\^ , . . „ . , > dJx
pXu=22 cos (t,Jr») -p-—^PrX\ -J- ] cos (TrXa)+2 sin (TrXa)—s .

y. ao> r \ wo J r Ota

91. pq is the chord of a continuous curve cutting off an arc of constant

length ; the tangents at p, q meet in t, the bisector of the lines pt, qt meets pq
in r; if / be the isotomic conjugate of r in regard to p, q, prove that / is the

intersection of pq with its consecutive position.

92. If X and y be points such that xy=TX, then

^
I
(*^) \

=dx— cos {tXt}/) dy.

lixi, X2 be the points of contact of two tangents from ^ to a curve, then

d<r=dxx-dXi— {cos {rXiTy)— cxM {rXiTy)} dy,

where a is the sum of the lengths of the two tangents from y to the curve.

Let us consider an ellipse.

If we suppose dir—dx^ — dxi, then

cos (rt;iTy)=cos (jx^ry),

•• {rXyry)-\-{TXiTy)=0.

Now if we use the theorem that the tangents from a point to an ellipse are

isogonal conjugates in regard to the joins of the point with the foci, we have

(Tyy«i)+(Tyy«i)=0.

Hence by integrating, the locus of y is a confocal ellipse.

The integration of dir=dxi — dxt is that the sum of the lengths of the

tangents exceeds the length of the intercepted arc by a constant quantity.

This is Orave'g Theorem, viz., that the sum of the lengths of the tangents

from a point on an ellipse to a confocal ellipse exceeds the length of the

intercepted arc by a constant quantity.

d^k
93. Shew that pXt=pX - A-^j

.

94. Shew that

drXfi ... w (,dx(t ... u)'

= (dx)^drx+drxdx S {p cos (rxp) - pdp sin (jxp)}

p
— d^xl {pdp cos (rxp)+ dp sin (rxp)}

+dx S {cos (rxp) (2dpdp+p(Pp) +8in(ra;p) (.cPp-P {dpY}

+ S {

-

d'ppdp

+

2 (dpf dp+poPpdp+p^dp {dpf}

+ 2 cos (pa) {-(d*pvd(r+a'apdp)+ {dp+do-) (ZdpdS'+pa-dpdir)

+ {pdPpda+ o'tPo-d/))}

+ S {{dp^&-d'pdS-)+2dpda^{pdd^-»dp)+pS^{dpd'a--cPpd<r)
"''

+ ipdS- {dpf -^dp (daf)}.
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95. Shew that

. . - , , N /« drx\ dx
pxpt tm=^?Bm{pa)+oos(TXu)\2--^J^

+8m(rar»)^+2«n(p»)|^,-p(^l-£j
I

96. Shew that (O;s,o)=(-^j^.

97. Shew that

2Ar(xar)*+ SSBr(x$r)+G=0
r r

is a line, when iAr=0,
r

and find (s ^, (jfo,)"+ 2 S £,. («3,)+C= rf)

r r

when 1 Ar=Q.
r

Subtract (axf S Ar from the equation, where c is an arbitrary point, and
r

we have
2 Ar {(arar)'-(aw)'}+22 fi,(*A.) + C=0,
r r

.-. -22il,|(a,c)|(^i— JF) + 2 2 5,(a!/3r)+ (?=0,
r **w r

from Ex. 96 which is a line.

Hence (2 4, {xOrY

+

22 B^ {xfir)+ <?= «0
r r

-224,|Kc)|(^r^^^d)+2S5,(dP,) + e

2Q

2 4, (<fa,)>+ 2 2 5, (a!^,)+C
__J r

2Q '

where Q2=2 4,» (a,cf+2 £,»+ 2 2 4,il,
|
(o,«) (o.c)

|
cos (^^

)

r r*=«

+2 2 BrB.eOB(firff,)

+2 2 .4,5,
1
(a,c)

I

sin (/Sjojic)

= 2il,«(a,c)2+S5,»+2 2 ArA.KflrC) {a^)\ cos (a^a^)

+2 2 BrB.eosifirfi.)

-2 2 J,5,(o,cfl,)

=-2 4,il,(a,a.)*+25,«+2 2 iB,5.co8(/3,/3,)
«+• r r*f

-224,£.(o,A).
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Hence (2 J, (jw,)»+225, («/3,) + 0=0 (t)

r V

2 Ar (rfOr)»+ 2 2 B, (d^,)+ C
r r

~2V- 2 J,iil,(o,a,)>+25,''+2 2 B,B,co8 (/3,/9,)-2 2 J,5.(o,/3,)

'

98. Shew that, when 2 ^,=0
r

sin (^Ar {xOrY+ 2 2 B, {xfir)+C=0 «)
r r

- 2 il , (o,«,)+ 2 S, Bin (8j3,)

_ g T

^-2^ril,(a,o,)i'+2Br»+2 2 5,B,oo8((3,/3,)-2 2 J,B,(oWS.)'
r, a r r^s r, g

99. Shew that the nonnal at .a point of a Cartesian oval passes through

the synuuedian point of the triangle whose vertices are the point and the focL

100. Find the area of a segment of the curve whose curvature varies as

the cube of the sine of the gradient of the tangent.

We have p^=a cosec' (|a),

.•.pfO'5«)«sin(^)=a4^^.

Integrating a I • a?t <^^=
/

(jco)' sin (ra;a; da;, ar=p|,

.-. - 2 seg pf- (p{a)» cot iia) ^ (*a)'= - ^ (j>$af.

.: aegpi=^(piaf-^(piaycot(ia).

101. Shew that

/ (xa) dx=]iQX (xa)+ il sin {rxa)+ fi cos {rxa),

where A, B are intrinsic functions.

102. Shew that

J (jca)' di!=UTix(xdf+A (rxa)+B (yxa)+ C,

where A, B, C are intrinsic functions.

103. Shew that

/(ara) (jr/3)diF=lina; {xa) {x0)+ (xa) {A sin (ra;;3)+ Bcos (rx/S)}

+ {xfi) {(7 sin (rxa)+Dcoa (rXa)]

+.F8in (rxa) sin (tx$)+Fsin (rxa) cos {rxfi)

+ Ocoa (rxa) sin (rxff)+5^cos (rxa) cos (tx$),

where A ... S are intrinsic functions.

104. Indicate the general form of the integral of a polynomial function of

(xaf, {xb)K.. {xa), (x^)....

105. Indicate the general form of the nth differential of a polynomial

function of
(i) (xay, ixby...(xa), {xff)...,

(ii) (f«), («6)...8in(|a), 8in(«/3)....

106. Shew how to find the family of rhumb lines of the family of curves

(i) f{\{xa)\, |(j«*)|,...(»a), (a;^)...}=variable parameter,

(ii) /{(fi), (|6), ... (|a), (l/S), ...}=variable parameter.
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To reduce cos {bead).

We have

|(6c) (cmOI cos(6c^)= |(ad)|(5c^w)

= |(ad)|{(6^)-(c53,)}

= \{ad)\ {(6a^)- (caoS,)}

= |(6o) (orf)| cos {baad)-\(.ea) (orf)! cos (eaad).

Hence 2|(5c)(arf)|cos(6^a5)=(o<!)s + (6rf)«-(a5)»-(orf)«.

7*0 reduce sin (6ca<I).

|(6c) (a«0 1 sin (6carf)= (ftod) - (cad)= (d6c) - (ate).

Tb reduce (u^yj)'.

8inii(a/3)Bin»(y8)(^^)«

-(ay«)»+Oy8)'-2 (ay8) (/3y8) COS (o^)

"(yoffi'+Cao^)' - 2 (yo^) (8a3) cos (y8).

We shall make another classification of measures.

Measures belong to one of the following three classes :

(i) measures of two points,

(ii) measures of a point and a line,

(iii) measures of two lines.

We shall refer to them as the first, second and third classes respectively.

We have seen that the square of any measure of the first class formed

from four elements, any measure of the second class formed from four

elements, the sine and cosine of any measure of the third class formed itovi.

four elements is reducible to the quotient of two polynomials in the moduli of

measures of two points, in the measures of a point and a line, in measures of

three points, in measures of three lines, in sines and cosines of measures

of two lines, in cosines of measures of two points and a line.

Hence the same is true for measures of five elements : and so on.
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We have then that the square of any measure of the first class, any

measure of the second dass, the sine and cosine of any measure of the third

class is reducible to the quotient of two polynomials in

(1) moduli of measures of two points, Ex.
|

(ah)
|,

(2) measures of a point and a Une, Ex. (a/3),

(3) sines of measures of two lines, Ex. sin (u/S),

(4) cosines of measures of two lines, Ex. cos (a/3),

(5) measures of three points, Ex. (<ibc),

(6) measures of three lines, Ex. (a/3y),

(7) cosines of measures of two points and a line, Ex. cos (aby)*.

It is often advisable so to reduce any measure, and afterwards reduce

cfi^^ (5)) (7) in surd form, and (6) by the use of a point.

An alternative manner of reducing cases (6), (7) without radicals by
multiplying by the sine of two simple Unes is given in the Appendix.

* When 7 IB a direction, both sin(a67) and cos(ai>Y) may be taken as

irredncible.



APPENDIX

REDUC3TION OF PRODUCTS OF MEASURES

We give four exampleB of reductions of products of measures

which possess the property of being reducible without radicals,

notwithstanding that the reduction of one or more of the com-

ponent measures contains a radical. This is due to the elimin-

ants existing between the elements.

The examples are

(1) (a6c) sin (ay8).

(2) (a6c)cos(^r)l(a^)|.

(3) |(a;y)|co8(^5)sin(\M),

(4) {abc)(a^y).

(1) Though the reduction of (aic) contains the radical, the

product (abc) sin (ayS) is expressible without radicals.

The reduction may be effected as follows

:

We have

(a0bc) = (aa) sin (;86c) + {aa) sin (bed) + (aic) sin (a/3),

.-. (o6c)6in (a;8) = (a^bc) + (aa) (bc^) - (afi) (bca)

(aa) (a^) 1

(6a) (6;8) 1

(c«) (c^) 1

(2) Here the reductions of both the component measures

contain radicals. The product may be reduced as follows

:

(a6c) cos (^?)i(*y)l

= (abc)8m(^ayy^)\(xy)\
5

(bK)

(axy^)

(bxy,)

(cxy,)

\(^y)\ by (I;
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= 2 (af) \(bc) (xy)\ cob {bcs^)

= i2 (a?) {(6y)'+ {cxy- {hyf - {cxf}

(a?) (ay)>-(aa;)» 1

(6?) (byy-(bxy 1

(c?) (cyy-(cxy 1

(3) Though the redaction of coa(^5') involves radicals,

cos (^ f) sin (\/t) may be reduced without radicals.

From the four lines \, ft, xy, f we have

sin (fixy) cos (\f) + sin (xyX) cos (/uf) + cos (xy^ sin (\/*) = 0,

•••
j(«y)l cos (iy?) sin (V)= {(a;/t) - (y/it)} cos (\?)

-{(a!\)-(y\)}cos(/tf).

(4) The product (abc)(a^y) may be reduced without radicals

as follows

:

(a6c)(a^7)= S sin(a/8)(a;87)(a6c)

= 2 sin (a/3) 2 -(cL$bc){ay)

= 2 {ai){afibc)
a,b,e

= 2 (a7){(a6)(/8c)-(ac)(yS6)}.

Hence {(dtc)(a^y)= (cm) (afi) (ay)

(6a) (6y8) (67)

(ca) (c;8) (cy)

Referring to the result on p. 109 and using (1) and (3), it is

easy to see that the square of any measure of the Hrst class, any

measure of the second class, the sine and cosine of any measure of

the third class is reducible to the quotient of two polynomials in

(1) the moduli of measures of two points,

(2) measures of a point and a line,

(3) sines of measures of two lines,

(4) cosines of measures of two lines.
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Examplet:

1. Shew that sin (head) is reducible rationally by multiplying by sin (Xfi).

% Reduce {Obyd)^ by means of the reduction of (i^Se)'.

We have {ahyd)*={ahf (ahyd)*

= {ahf {(^oO»+ (>d)«-2 (y<i)(a6d)oo8 (aSy)}

= (o6c0'+ (o*)*(>rf)'-2 (y«0 l(«6)l (<ifr<^)cos (oiy)

= {aMf+{abf{ydf
-(yd) (ay) {ah)' 1

(6y) -(a6)» 1

{dy) {db)»-{da)i 1

from (2).

By using the eliminant of three points and a line we get our former

reduction.
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FINITE GEOMETRY

CHAPTER I.

(ba)=-{ab) (1).

(^a)= (a0) (2).

Oa)=-(a^) (3).

(aW)=-{a^) (4).

(a/3)= (a(3)+,r (5).

6o = a6 (6).

^ = afi (7).

fi^=^ (8).

|(a3)|= |(^a)| (9).

(ag|3)= (a/3)-fl (10).

sin(/3a)=-sin(a^) (11).

sin(a/3)=-sintiii3) (12).

co8(a/3)=sin(a^J (13).

cos(j3a)=cos(a/9) (14).

cos(a/3)=-cos(aj3) (15).

.8in|= l (16).

o&y=a if (ay)=0 (17).

^c=a or a if (ac) = (18).

(a6c)= |(ai)| (^c) (19).

4 (o6c)i'=2 (co)2 (a6)2+2 (a6)« (6c)2 +2 (6c)» (ca)2- (ftc)^ - (c«)^ - (abf...{20).

(abe)= (bca)= {eab)= -{acb)=-(cba.)= -(acb) (21).

(«ifry)= l(a6)|8in(^y) (22).

(afry)= (ay)-(6y) (23).

T. 6. 8
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(<i^c)= 8m(a/3)|(^c)| (24).

(a/3c)^= (^c)2 8m«(a)3)= (ac)2+(/3c)2-2(ac) (|3c) cos (a/3) (25).

(a^y)= sin(a^)(^y) (26).

(a/3y)= 8in (/3y) (rfa)+sin (ya) (d/3)+ sin (a0) (rfy) (27).

(a/3y)= Oya)= (yafS)= - (/Say)= - (y/3a)= - (ay^) (28).

2|(afe)(crf)|cos(o6crf)=(arf)2+ (6c)2-(ac)2-(6d)'-' (29).

|(o6) (crf)| sin (^ti<)=(acrf)-(6crf) = (cfet6)- (ca6) (30).

(o6yrf)= |(a6)|sin(^y)|(a6yd)| (31).

{abydf={bd)^ayf+ {ad)^{byf+{ay){by){(ai)^-{adf-{bdf} ...(32).

(o6y8)= |(a6)|sin(y8)(^^) (33).

(aby8) = (ay)(b6)-(aS){by) (34).

(o|3crf) = (a/3c)(^crf) • (35).

{aficd) = {cdaP) (36).

(a^c)sin (^c8)= (ac)sin 038) -(/3c) sin (aS) (37).

(a/3c) cos (^c8)= (ac) cos (/38)- (/3c) cos (a8) (38).

8in2 (a/3) siu2 (yS) ( ^^)2=(o/3y)2+(a/3d)2 - 2 (a^) {a^S) cos (y8)

= (y8a)2+ (y8/3)2-2 (y8a) (y8/3) COS (a/3) ...(39).

If a, 6, c be three points on a line, then

(6c) + (ca)+ (a6)=0 (40).

If a, b, c, dhc four points on a line, and ab = cd, then {ab)/(cd) is positive

(41).

(/9y) + (y'») + («/3)=2m7r, m an integer (42).

sin (fl + 0)=8in flcos<^+sin<^co8 5 "l

cos(fl4-<;l>)= costf cosflb — sin 5 sin <j))1111
1 ' (a6)2 (acf (ad)"

'

.(43).

(bcY

(rfc)''

(6(^)2 =0 (44).

(cd)'

!

1 (6a)2

1 (ca)2 (c6)2

1 (dci)2 (rf6)2

(aSf (6c)2+(68)2 (ca)2+(c8)2 (06)^

- 2
1
(ca) (06)

I

cos (ca^) (68) (c6) - 2
|
(a6) (6c)

|
cos (^fc) (c8) (aS)

-2 |(6c)(ca)| cos (6ccS) (aS) {bS)= {abcf (45).

{abf 8in2 (y8)= {(6y) - (ay)}2+{(6S) - (a8)}2

-2 {(6y)-(ay)} {(68)-(ad)} cos (y8) (46).

CHAPTER II.

(ap*. ,.di6)2=(a6)2- 2 |(a6)| 2 ^co8(a6p) + 2 ^'' + 2 2 pd- COB (per). ..(47).

(a(i*...»/3)= (a/3)-2p8in(p/3) (48).

(<!(>*... 1.6)= -(o6<») + 2 psin(/j<o) (49).

(ap*...*./3)= ((»/3) (SO).
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CHAPTER III.

sin(Sa,.(..n,) + «= Offl-
_2a,8in(a.g)

^^j^

co«(Sa,.(..<^)+a=O0)=—^-4^^|1^£===- (52).
•m [VS o/ + 2 2 a,a, cos (a,a,)

|

(2a..(xa,)+a=0 6)= ,,
S«,(6a^+« ^^3^

m V2 0,2+ 22 a, a, cos (a, n,) I

We suppose 2a,. (.r(ir) + a= to have a specified sense, and m is + 1 or — 1.

(2 A , (!«,) + 2 Br cos (?0r)=O c)2 (2 Ar)^

= S Ay^ (OrC)2+ 2 2 ArA,\ (a,.c)(a,c)l cos (a^a^)

+ 22ilr'B.(ca.A)+S5/+2 2^,.5,C08(/3,3,) (54).

(2 yl,.(K) + 2 Br cos (|/3r)=0 y)(SA,.)= SA,.{y»r) + ^ B,.cos(y/3,)...(55).

When 2^v=0.
tan (2 i4 ,. (|rt ,.) + 2 iBr cos (^0,)= y)

_ 2 ilr (OrV) +S jgr COS (g,y) .^g,

2''lr(«,-yJ-25rSin(/3,y)

DIFFERENTIAL GEOMETRY

CHAPTER IV.

rf|(.i^)|= — cos {Txxy)dx- COS {Tyyx)dy (57).

Jl^d.+ p^.dy (58).

d{ivri)= —ain(TXti)dx+(3!vri)di) (59).

rf{^,)=d,-rf| (60).

CHAPTER V.

{xi/fdxy=(yTx)da;+{xTy)dy (61).

sin* (^) (di^f={p$vf{d$y+(Pn$)' (dif+'2 iptl) (Pl^) os (I,) rff rf,...(62).

From Chapter VIII

{xyf-(jpxya)dxy= {TXy) {ya)dx+{Tyx){xa) dy (63).

sin2(f,)(T|^a)d^=(p^i,)(va)rf| + (p,|)(^a)rf, W-

CHAPTER VI.

{d.v^...6y={dxy+^ {dfif+s'pi'dp^

+ 2 dxSd^ cos (jxp) - 2dx 2 p dp aia {rxp)

+ Sdf^+S^dp^-22 (dpa-dir-da-pdp) sin (p<r)

+ 22 (dp da-i-pa-dpdir)cos{pa) (65).

dv^ ...4a=da (66).
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CHAPTER VII.

d {Sar{xar) + a=0}= {S (arda,-a,<iar)a\n{a,a,) + 2ar^ dor

+ 2 o,a,cos (a,a,) ((Air+rfaJl-^-ISOr'+ a 2 a,o, cos (o,a,)} (67).

Hence {da)^ . (2 Ar)*
r

= 1{dArY {2^»* (a,Ok)2+2 2 J^^t |(a,a») (a,at)| cos (arOia^at)

+ 2 2 4*5i(a^a,^^) + 2^^2+ 2 2 B^BiCos{PM]
h.k h A*&

+ 2 d4,d.l. { - {ara,f {SA if+ 2 A^^ {ara^Y
r+» h h

+ 2 J»Ji
I

(o,Ofc)(Orai) I COS (a,a»arai)
tet*

+ 2 2 ^»5i(a»a,/30 + 2 2iBAi'+4 2 B^BtCoaifi^^t)
h.k h ft=t=*

+ 2^A*(araO'+ 2 .4».4v |

(a,a») (a,a^! cos (a,a»a,aj)

A *=M-

+ 2 2J»Bi(a»a,|3i)}
h.k

+ i'2 A,, .S dArA,da,{S A^ (a^Orva,) - 2 £» sin 0» i/a,)}

A r,

»

* *

- 2 2 ^4 . 2 dA^dB, {2 Ji (o^a^^,)+2 B^ cos (/S^^,)}

A r,* A h

-2 2 A^. 2 dArB.d^, {2 ^» (ata.i/A) - 2 fi» sin 0»(3,)}
ft »•,« h h

+ {2Aif\7,{dBrY+ 2Br^{dfirf+2 2 ^,il,cos(ra,Ta,)£forrfa,
ft r r r4^

+ 22 rffi,rf5, cos (/3,ft) + 22 BrB.d^rd^, cos (/3,/3,)

-2 2 ArdardB,s,\T\(Tar^^- 2 Arda,.B,d^r<'OS {ra^^,)

r.a r.s

-2 2rf5,B,d/3.sin(/3,/3,)] (68).

CHAPTER VIII.

, , 1 d{xay
(''^")= 2 T_
(r^a)= (.m)2-^

sin («.-n)= -
d{xa)

dx

cos(^^a)=--^

(-!«) =

(.'^a)= (|a)-

.(70).

.(71).

.(72).

(j»|a)»=(|a)2+[^)J :(73).

(.l«)=sin(^)[^-f)L^^|
.(74).

..(75).

..(76).
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CHAPTER IX.

If the displacement of :i; be

ri^p, iix; TiX, igx; ... t^, 8„a;,

then {dxY=^dra^+2'SdrXd,x COS {TrXT,x) (77).

drx (dxY= 2dri^drrX+SdrXd,x {dvrX+ dr,x) oos{tj.xt,x)

+S {drXd,^x—d,xdrX^) sin (TrXT,x) (78).

(yxa) dx=SdrX (jcv^xd) (79).

(rxa) dx=SdrX {XrrxO) (80).

PLANE CURVES

CHAPTER X.

pTX—x (81).

vTX=vx (82).

(v^xa)=— -(Txa) (83).
px

\ / N .
COS (neo) ,„ .,

{pvxa)=={xa)^ ^ (84).

T?>l=5 (85)-

vp^—v^ (86).

(v^l«)=P«-(l«) (87).

(p,.^)= (/>|a)+C08(|a)p| (88).

CHAPTER XI.

\^{xafH^xa) .(89).

1(0^'"'^'"^"^'''"^'"' ^^^'

\{j^{xaf=-{pxf{vxa)-p'x{rxa) (91).

\ (S'^"^^'"
-(p^)»+{(pa:)3-p":r}(r^a)-3pV^ (-*•«) (92)-

9 (rf~ )
(*")*= ~ bpxp'x-\-{(j>xf - ipxp"x- 3 (p'a.-)*} (vxa)

+ {6 (j,xfp'x-p"'x} (Txa) (93).

And generally, s I t- )
(*«)^= -^« (^in*)+ Sn {vxa)+ C„

,

where 4, B, C are polynomials of px, p'x, p"x ..., and

^<i+l= ^n'-BnP^,

•Bn+I= ^n' + ^nP^,

d ,, .. (vxa) • ,-.,
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{d^J
1^-''"^ -

\{xa)\ \{sca)r^

\,<b-)
l^'™-^'-

|(xa)| l(xa)| \{x-a)\^

9px {jxa) (yxa) ^ 3 (yxaf

>\ \{xa)

.(95).

(d\*, ,. {fixf 3

.(96).

+ (T.ra
,)| \{xa)\^

|(^a)I+(^^)(''^")r(Sayp

(p.r)3 6px

)C\{xa)\ |(:ra)P}
. . Zpxp'x , . . , 4p'.r

- ('''^") TZ;^ + ('^) (''^«)
^^

d(xa)

dx

("™)
|(.ra)P + (''^"^

||(^a)|3 |(.ra)|4

(r.m)(-.ra)
|^^^^|^ |^^^^|^

(9,).

= — sin(T.j;a). .(98).

I J- )
(.rn)= p.r C(1N (r.rn) (99).

J- I (j;a)=^'.rcos(Ta;«) + (p.r)2sin(T.i;ii) (100).

^ j
{xa)= {p".r - (px)'} cos {rxa)+ Spxp'.r sin (rXa) (101 ).

(^
J^^ ixn)= {6 (pa;)2 p'a: - p"'x} cos (r^a)

+ siii(T:ra){4pa;p"a:+3 (p'.37)2-(p.i;)<} (102).

And generally, irr) (*'«) = An sin ('"^'a)+ B„ cos (r.ra),

where A, B are polynomials in px, p'x, p"x ... and

Ani.i = A„'+ B„px, Bn + i
= Bn'-A„px.

(df)
(^)=P""""f-P"""')l+-+(-)""'pl+(-)"(^0 -(103).

(^)""''(f>f) = P<'^-"|-P<''-'>l+ ... + (-)"p'f+ (-)"-'(«|«)...(104).

APPENDIX.
(a6c)sin(a/3)= .(105).(aa) (ad) 1

(6a) (J/3) 1

(ca) (c/3) 1

I

(a*)
I
cos

(
aby) sin (X,i) = {(ap.) - (bp)} cos (Xy) - {(aX) - (6X)} cos (/ly). .

.
(106).

(af) {ayf-{axf 1 I (107).

(if) {byf-{bxf 1
I

(cf) (cyf-{,cxf 1
I

2(a6c)cos(33(f)|(j^)| =

(a6c)(a^y)= (fla) (afi) (ay)

(6a) (60) (6y)

(ca) (c/3) (cy)

.(108). .
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Area oi a triangle 10

Axioms 8, 9, 10, 13, 39

Bertrand 83

Cartesian oval 107

Casey 19

Cayley 82

Circle, as a third element 96, 97, 98, 103

Circles, radical axis of two 103

Conic of closest contact 79, 80

Cosine function 11, addition formula for 12

Determinate 3, general method of differentiation of 43, notation of 3, quadratic

form of differentiation of 43, rule for differentiation of determinates of

simple elements 59

Differentiation of |(xo)| 39, {xa) 40, (Ja) 40, (fa) 41, (xyz) 41, (xi/f) 41, (f,2) 42,

of xji 43, {)) 44, Jt/z 44, xi/f 44

of Sa,(a;o,) + o=0 50, S.J,(fttr) + Si(,cos (|/3r)=0 51

Sa, (a;oj +a=0^ 52, SJ, (l»r) + 2iJr cos (|j3,.)=0c 53

Directly similar figures 99

Displacement of a line 39

Displacement of a point 39, generalized — 63

Elements 3, derived — 4

Eliminants 18, 19, 20

Evaluation of {rxa), (vxa) 54; (raa), {vxa) 55; (2>f«)"> ("I") 54; (pfa), {via) 55

otprx, VTX, v^x, pvx 65, 66 ; rpf , vp^, v^, pv^, 66, 67 ; i'"f , pi>"^ 67 ; v'^x, pv^'x, 68

Foot of perpendicular from a point on a line 24

Geometry of three points 10, of two points and a line 9, of two lines and a point

16, of three lines 11, of four points 19, of three points and a line 17, 19; of

two points and two lines 11, 18, 19; of three lines and a point 13, 18 ; of four

lines 108

Grassmann 92, 102

Grave 105
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Incident 3

Integration 73, general results in 101, 107

Inversely similar figures 99

Laplace's equation 77

Length of a curve 74, 79

Line, notation of 3, veotoriaUy derived — 1, equationally derived — 4

MacCullagh 81

M'Cay 98

Measure 3, notation of 3, differentiation 39, linearity of differential 41, suocessive

differentiation of— 69

Pascal 92

Point, notation of 3, vectorially derived — 4, equationally derived — 4

Principia, The 100

Kadius of curvature 63, 65 ; in bi-radial co-ordinates 78

Beciprocation 8S, 91

Beduction of (afcc) 15,
^'°

{^y) 9, {a^f 16, (0JS7) 13,
'*'"

(6^5d)108, {abyd)' 17,

{ahyd) 11, (ydab) 18, ^'"(^cJ) 18, (0^7* (^ 108

(V ...-''>' ^*' (V...-^^^^' <V ...*«** ^^' <v...«-^)2«

""
(2a,. (xo,) + o=0/S) 29, (Sa,. (xo,) +a=0 b) 30

(SJ,.(fOr)-rSB,.cos({/S,)=0c)«31, (2;.4,(e<i,) + 2JB,coB(fj8,) = 07) 31

"^° (24, iia^) + SB, COB (l/S,)=0 y) when 24,= 32

(S4,(io,)2+ 22B,(x^,) + C=0d) when 24,=0 107

"°
(24,(a;a,)2 + 22B, (at/S,) + C=0«) when S4,=0 106

of products of measures 110

Boolettes 86

Segment of a curve 74, 75, 77, 107

Sine function, definition of 7, addition formala for 12

Smith's Prize 81

Standard measure, of three points 10, of two points and a line 9, of two lines and
a point 16, of three lines 11, of three points and a line 16, of two points and
two lines 10, 18, of three lines and a point 18, general standud measures 104

Triangles, homological pair of— 22, 92 ; self-conjugate pair for a conic 91

Vectors 4, notation of 4

Whitehead 3, 92
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