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Introduction.

The translator of this little volume has done me the
honour to ask me to write a few lines of introduction. And
1 do this willingly, not only that I may render homage to the
memory of a friend, prematurely torn from life and from
science, but also because I am convinced that the work of
RoeerTOo Bonora deserves all the interest of the studious.
Init, in fact, the young mathematician will find not only
a clear exposition of the principles of a theory now classical,
but also a critical account of the developments which
led to the foundation of the theory in question.

It seems to me that this account, although concerned
with a particular field only, might well serve as a model
for a histary of science, in respect of its accuracy and
its breadth of information, and, above all, the sound philo-
sophic spirit that permeates it. The various attempts of
successive writers are all duly rated according to their
relative importance, and are presented in such a way
as to bring out the continuity of the progress of science,
and the mode in which the human mind is led through
the tangle of partial error to a broader and broader view
of truth. This progress does not consist only in the ac-
quisition of fresh knowledge, the prominent place is taken
by the clearing up of ideas which it has involved; and it
is remarkable with what skill the author of this treatise has
elucidated the obscure concepts which have at particular
periods of time presented themselves to the eyes of the
investigator as obstacles, or causes of confusion. 1 will
cite as an example his lucid analysis of the idea of there
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being in the case of Non-Euclidean Geometry, in contrast
to Euclidean Geometry, an absolute or natural measure of
geometrical magnitude.

The admirable simplicity of the author’s treatment,
the elementary character of the constructions he employs,
the sense of harmony which dominates every part of this
little work, are in accordance, not only with the artistic
temperament and broad education of the author, but also
with the lasting devotion which he bestowed on the Theory
of Non-Euclidean Geometry from the very beginning of
his scientific career. May his devotion stimulate others to
pursue with ideals equally lofty the path of historical and
philosophical criticism of the principles of science! Such
efforts may be regarded as the most fitting introduction
to the study of the high problems of philosophy in general,
and subsequently of the theory of the understanding, in
the most genuine and profound signification of the term,
following the great tradition which was interrupted by the
romantic movement of the nineteenth century.

Bologna, October 1st, 1g911.

Federigo Enriques.




Translator’s Preface.

Bozora's Non-Euclidean Geometry is an elementary
historical and critical study of the development of that subject.
Based upon his article in ENRIQUES' collection of Monographs
on Questions of Elementary Geometry’, in its final form it still
retains its elementary character, and only in the last chapter
is a knowledge of more advanced mathematics required.

Recent changes in the teaching of Elementary Geometry
in England and America have made it more then ever ne-
cessary that those who are engaged in the training of the
teachers should be able to tell them something of the
growth of that science; of the hypothesis on which it
is built; more especially of that hypotheses on which rests
Eucrip’s theory of parallels; of the long discussion to which
that theory was subjected; and of the final discovery of the
logical possibility of the different Non-Euclidean Geometries.

These questions, and others associated with them, are
treated in an elementary way in the pages of this book.

In the English translation, which Professor BonoLa
kindly permitted me to undertake, I have introduced some
changes made in the German translation.? For permission
to do so I desire to express my sincere thanks to the firm of
B. G. TeEusNER and to Professor Liesmann. Considerable
new material has also been placed in my hands by Professor
BowoLa, including a slightly altered discussion of part of

1 ENRIQUES, F., Questioni riguardanti la geomeiria elementare,
(Bologna, Zanichelli, 1900).

2 Wissenschaft und Hypothese, IV. Band: Die mickteukiidische
Geometrie.  Historisch-kritische Darstellung ihrer Entwicklung. Von
R. Bonola. Deutsch v. H. Liek (Teubner, Leipzig, 1908)
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SaccHerr's work, an Appendix on the Independence of Pro-
jective Geometry from the Parallel Postulate, and some further
Non-Euclidean Parallel Constructions.

In dealing with Gauss's contribution to Non-Euclidean
Geometry I have made some changes in the original on the
authority of the most recent discoveries among Gauss's
papers. A reference to THiBAUT's ‘proof’, and some addit-
ional footnotes have been inserted. Those for which I am
responsible have been placed within square brackets. I have
also added another Appendix, containing an elementary
proof of the impossibility of proving the Parallel Postulate,
based upon the properties of a system of circles orthogonal
to a fixed circle. This method offers fewer difficulties than
the others, and the discussion also establishes some of the
striking theorems of the hyperbolic Geometry.

It only remains for me to thank Professor GissoN of
Glasgow for some valuable suggestions, to acknowledge the
interest, which both the author and Professor TieBMaNN have
taken in the progress of the translation, and to express my
satisfaction that it finds a place in the same collection as
Hiusert's classical Grundlagen der Geometyie.

P. S. As the book is passing through the press I have
received the sad news of the death of Professor BoNorA.
With him the Italian School of Mathematics has lost one of
its most devoted workers on the Principles of Geometry,
Professor ENRIQUES, his intimate friend, from whom I heard
of BonoLa’s death, has kindly consented to write a short
introduction to the present volume. I have to thank him,
and also Professor W. H. Young, in whose hands, to avoid
delay, I am leaving the matter of the translation of this
introduction and its passage through the press.

The University, Sydney, August 19r11.
H. S. Carslaw.



Author’s Preface.

The material now available on the origin and develop-
ment of Non-Euclidean Geometry, and the interest felt in
the critical and historical exposition of the principles of the
various sciences, have led me to expand the first part of my
article—Sulla teoria delle parallele e sulle geometrie non-
euclidee—which appeared six years ago in the Questioni ri-
guardanti la geometria elementare, collected and arranged
by Professor F. ENRIQUES,

That article, which has been completely rewritten for the
German translation® of the work, was chiefly concerned with
the systematic part of the subject. This book is devoted, on
the other hand, to a fuller treatment of the history of parallels,
and to the historical development of the geometries of Lo-
BATSCHEWKY-BoLval and RiEMANN.

In Chapter 1., which goes back to the work of EucLip
and the earliest commentators on the Fifth Postulate, I have
given the most important arguments, by means of which
the Greeks, the Arabs and the geometers of the Renaissance
attempted to place the theory of parallels on a firmer
foundation. In Chapter IL, relying chiefly upon the work of
SaccHerl, LamBerT and LEGENDRE, I have tried to throw
some light on the transition from the old to the new
ideas, which became prevalent in the beginning of the 19th
Century. In Chapters III. and IV, by the aid of the in-

t ENRIQUES, F., Fragen der Elementargeometrie. I Teil: Die
Grundlagen der Geometrie. Deutsch von H. THIEME. (1910.)
IL. Teil: Die geometrischen Aufgaben, ihre Losung und Losbarkeit.
Deutsch von H. FLEISCHER. (1907.) Teubner, Leipzig.
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vestigations of Gauss, SCHWEKART, TAURINUS, and the con-
structive work of LosarscHEwsky and Bowrvar, I have ex-
plained the principles of the first of the geometrical systems,
founded upon the denial of Eucun’s Fifth Hypothesis. In
Chapter V., I have described synthetically the further deve-
lopment of Non-Euclidean Geometry, due to the work of
Riemany and HermHOLTZ on the structure of space, and
to CAVLEY's projective interpretation of the metrical proper-
ties of geometry.

In the whole of the book I have endeavoured to pre-
sent, the various arguments in their historical order. How-
ever when such an order would have made it impossible to
treat the subject simply, I have not hesitated to sacrifice it,
so that I might preserve the strictly elementary character of
the book.

Among the numerous postulates equivalent to Euctip's
Fifth Postulate, the most remarkable of which are brought
together at the end of Chapter IV., there is one of a sfatical
nature, whose experimental verification would furnish an
empirical foundation of the theory of parallels. In this we
have an important link between Geometry and Statics
(GenoccHI); and as it was impossible to find a suitable place
for it in the preceding Chapters, the first of the two Nofes*
in the Appendix is devoted to it.

The second ANVote refers to a theory no less interesting.
The investigations of Gauss, LoBATSCHEWSKY and BOLYAL on
the theory of parallels depend upon an extension of one of
the fundamental conceptions of classical geometry. But a
conception can generally be extended in various directions.
In this case, the ordinary idea of parallelism, founded on
the hypothesis of non-intersecting straight lines, coplanar and

* In the English translation these Motes are called Appendix I,
and Appendix II
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equidistant, was extended by the above-mentioned geometers,
who gave up EucLip’s Fifth Postulate (equidistance), and
later, by CrirForD, who abandoned the hypothesis ZZaf tke
lines should be in the same plane.

No elementary treatment of CLIFFORD’s parallels is avail-
able, as they have been studied first by the projective
method (CrirForD-KLEIN) and later, by the aid of Different-
ial-Geometry (Biancur-Fueini). For this reason the second
Note is chiefly devoted to the exposition of their simplest
and neatest properties in an elementary and synthetical
manner. This Note concludes with a rapid sketch of CLir-
FORD-KLEIN'S problem, which is allied historically to the
parallelism of CuiFrorp. In this problem an attempt is made
to characterize the geometrical structure of space, by assum-
ing as a foundation the smallest possible number of postul-
ates, consistent with the experimental data, and with the
principle of the homogeneity of space.

This is, briefly, the nature of the book. Before sub-
mitting the little work to the favourable judgment of its
readers, I wish most heartily to thank my respected teacher,
Professor FEDERIGO ENRIQUES, for the valuable advice with
which he has assisted me in the disposition of the material
and in the critical part of the work; Professor CORRADO SEGRE,
for kindly placing at my disposal the manuscript of a course
of lectures on Non-Euclidean geometry, given by him, three
years ago, in the University of Turin; and my friend, Professor
Grovanni VAILATI, for the valuable references which he has
given me on Greek geometry, and for his help in the cor-
rection of the proofs.

Finally my grateful thanks are due to my publisher
Cesare ZanicHeLLL, who has so readily placed my book in
his collection of scientific works.

Pavia, March, 1906.

Roberto Bonola.
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Chapter L

The Attempts to prove Euclid’s Parallel
Postulate

The Greek Geometers and the Parallel Postulate.

§ r. Evcuip (circa 330—275, B. C.) calls two straight
lines parallel, when they are in the same plane and being
produced indefinitely in both directions, do not meet one
another in either direction (Def. XXIIL).* He proves that
two straight lines are parallel, when they form with one of
their transversals equal interior alternate angles, or equal
corresponding angles, or interior angles on the same side
which are supplementary. To prove the converse of these
propositions he makes use of the following Postulate (V.):

If a straight line falling on two straight lines make the
interior angles on the same side less than two right angles,
the two straight lines, if produced indefinilely, meet on that
side on whick are the angles less than the two right angles.

The Euclidean Theory of Parallels is then completed
by the following theorems:

Straight lines which are parallel to the same straight
line are parallel to each other (Bk. L, Prop. 30).

T With regard to EucLID’s text, references are made to the
critical edition of J. L. HEIBERG (Leipzig, Teubner, 1883). [The
wording of this definition (XXIII), and of Postulate V below, are
taken from Heath’s translation of HEIBERG’s text. (Camb. Univ. Press,
1908).]



2 1. The Attempts to prove Euclid’s Parallel Postulate.

Through a given point one and only one straight line
can be drawn which will be parallel to a given straight line-
(Bk. I. Prop. 31).

The straight lines joining the extremities of two equal
and parallel straight lines are equal and parallel (Bk. L
Prop. 33).

From the last theorem it can be shown that two parallel
straight lines are equidistant from each other. Among the
most noteworthy consequences of the Euclidean theory are
the well-known theorem on the sum of the angles of a tri-
angle, and the properties of similar figures.

§ 2. Even the earliest commentators on EUCLID’s text
held that Postulate V. was not sufficiently evident to be
accepted without proof, and they attempted to deduce it as
a consequence of other propositions. To carry out their pur-
pose, they frequently substituted other definitions of parallels
for the Euclidean definition, given wverdally in a negative
form. These alternative definitions do not appear in this
form, which was believed to be a defect.

ProcLus (410—485) — in his Commentary on the First
Book of Euclid* — hands down to us valuable informa-
tion upon the first attempts made in this direction. He states,
for example, that Posmonius (1%t Century, B. C.) had pro-
posed to call two equidistant and coplanar straight lines par-
allels. However, this definition and the Euclidean one
correspond to two facts, which can appear separately, and

* When the text of PROCLUS is quoted, we refer to the edi-
tion of G. FRIEDLEIN: Procki Diadocki in primum Euclidis element-
orum librum commentarii, [Leipzig, Teubner, 1873). [Compare also
‘W. B. FRANKLAND, The First Book of Euclhid’s Elements with a
Commentary based principally upon that of Prochus Diadochus, (Camb.
Univ. Press, 1905). Also HEATH’s Euclid, Vol. L, Introduction,
Chapter IV., to which most important work reference has been
made on p. 1.
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Procrus (p. 177), referring to a work by Geminus (1%t Cen-
tury, B. C.), brings forward in this connection the examples
of the hyperbola and the conchoid, and their behaviour with
respect to their asymptotes, to show that there might be
parallel lines in the Euclidean sense, (that is, lines which
produced indefinitely do not meet), which would not be
parallel in the sense of Posmonius, (that is, equidistant).

Such a fact is regarded by GEmMINUS, quoting still from
ProcLus, as the most paradoxical [mapadoZoTarov] in the
whole of Georetry.

Before we can bring EucLip’s definition into line
with that of PosIDONIUS, it is necessary to prove that if two
coplanar straight lines do not meet, they are equidistant; or,
that the locus of points, which are equidistant from a straight
line, is a straight line. And for the proof of this proposition
EucLip requires his Parallel Postulate.

However PROCLUS (p. 364) refuses to count it among
the postulates. In justification of his opinion he remarks
that its converse (Z%e sum of two angles of a triangle is less
than two right angles), is one of the theorems proved by
EvcLio (Bk. 1. Prop. 17);
and he thinks it impossible
that a theorem whose con- A F
verse can be proved, is not ajla
itself capable of proof. Also
he utters a warning against ¢ /¢ D
mistaken appeals to self- G
evidence, and insists upon /
the (hypothetical) possibi-
lity of straight lines which Fig. 1.
are asymptotic (p. 191—2).

ProLemy (2°¢ Century, A. D.)—we quote again from
ProcLus (p. 362—s5)—attempted to settle the question by
means of the following curious piece of reasoning.
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Let 4B, CD, be two parallel straight lines and G a
transversal (Fig. 1).

Let «, B be the two interior angles to the left of FG,
and o, B’ the two interior angles to the right.

Then o + B will be either greater than, equal to, or less
than a’ + B,

It s assumed that if any one of these cases holds for
one pair of parallels (e. g. & + B >> 2 right angles) this case
will also hold for every other pair.

Now FB, GD, are parallels; as are also 74 and GC.

Since o + B >> 2 right angles,

it follows that o’ + B'>> 2 right angles.

Thus o+ B+ o'+ B >> 4 right angles,

which is obviously absurd.
Hence o + B cannot be greater than 2 right angles.

In the same way it can be shown that

a + P cannot be less than 2 right angles.

Therefore we must have

o + B = 2 right angles (ProcLUS, p. 365).

From this result EucLip’s Postulate can be easily obtained.

§ 3. Procrus (p. 371), after a criticism of Ptolemy’s
reasoning, attempts to reach the same goal by another path.
His demonstration rests upon the following proposition,
which he assumes as evident:— 7%e distance between two
points upon two intersecting straight lines can be made as great
as we please, by prolonging the two lines sufficiently.*

From this he deduces the lemma: A straight line whick
meels one of two parallels must also meet the other.

¥ For the truth of this proposition, which he assumes as self-
evident, ProcLUs relies upon the authority of ArisTOTLE. Cf.
De Coelo I, 5. A rigorous demonstration of this very theorem
was given by SACCHERI in the work quoted on p. 22.
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His proof of this lemma is as follows:
Let AB, CD, be two parallels and £G a transversal,
cutting the former in & (Fig. 2).

=— ,,
\G

C D
Fig. 2.

The distance of a variable point on the ray #G from
the line 4B increases without limit, when the distance of that
point from F is increased indefinitely. But since the distance
between the two parallels is finite, the straight line £G must
necessarily meet CD.

Procrus, however, introduced the hypothesis that the
distance between two parallels remains finite; and from this
hypothesis EucLID’s Parallel Postulate can be logically de-
duced.

§ 4. Further evidence of the discussion and research
among the Greeks regarding Euclid’s Postulate is given by
the following paradoxical argument. Relying upon it, accord-
ing to ProcLUs, some held that it had been shown that two
straight lines, which are cut by a third, do not meet one
another, even when the sum of the interior angles on the
same side is less than two right angles.

Let AC be a transversal of the two straight lines 4.5,
CD and let £ be the middle point of 4C (Fig. 3).

On the side of 4C on which the sum of the two internal
angles is less than two right angles, take the segments 4%
and CG upon 4B and CD each equal to 4&. The two
lines A8 and CD cannot meet between the points 47 and
CG, since in any triangle each side is less than the sum of
the other two.
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The points # and G are then joined, and the same
process is repeated, starting from the line #G. The segments
FK and GLZ are now taken on 45 and CD, each equal to
half of #G. The two lines 4B, CD are not able to meet
between the points 7, X and G, L.

Since this operation

can be repeated indefini-
A F x tely, it is inferred that the
B twolines 48, CD will never

E H meet.
D The fallacy in this ar-
¢ G L gument is contained in the
use of infinity, since the

segments AF, FK could
tend to zero, while their
sum might remain finite. The author of this paradox has
made use of the principle by means of which Zeno (495—
435 B. C.) maintained that it could be proved that Achilles
would never overtake the tortoise, though he were to travel
with double its velocity.

This is pointed out, under another form, by ProcLus
(p. 369—70), where he says that this argument proves that
the point of intersection of the lines could not be reached
(to determine, 6piZetv) by this process. It does not prove
that such a point does not exist.*

Proclus remarks further that ‘since the sum of two
angles of a triangle is less than two right angles (Eucrip Bk. L
Prop. 17), there exist some lines, intersected by a third,
which meet on that side on which the sum of the interior

Fig. 3.

1 [Suppose we start with a triangle 48C and bisect the base
BC in D. Then on BA take the segment BE equal to 5D, and
on CA4 the segment CF equal to CD, and join ££. Then repeat
this process iudefinitely. The vertex 4 can never be reached by
this means, although it is at a finite distance.]
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angles is less than two right angles. Thus if it is asserted
that for every difference between this sum and two right
angles the lines do not meet, it can be replied that for
greater differences the lines intersect.’

‘But if there exists a point of section, for cerfain pairs
of lines, forming with a third interior angles on the same
side whose sum is less than two right angles, it remains to be
shown that this is the case for a/ the pairs of lines. Since
it might be urged that there could be a certain deficiency (from
two right angles) for whick they (the lines) would not inter-
sect, while on the other hand all the other lines, for whick the
deficiency was greater, would intersect” (PROCLUS, p. 371.)

From the sequel it will appear that the question, which
Proclus here suggests, can be answered in the affirmative
only in the case when the segment 4C of the transversal
remains unaltered, while the lines rotate about the points 4
and C and cause the difference from two right angles to vary.

$ 5. Another very old proof of the Fifth Postulate,
reproduced in the Arabian Commentary of AL-Nirizi* (gth
Century), has come down to us through the Latin translation
of GHERARDO DA CREMONA? (12th Century), and is attributed
to AGaNIs.3

The part of this commentary relating to the definitions,
postulates and axioms, contains frequent references to the

1 Cf. R. O. BESTHORN u. J. L. HEIBERG, ‘Codex Leidensis,’
399, 1. Euclidis Elementa ex interpretatione Al-Hadschdschadsch cum
commentariis Al-Narizi, (Copenhagen, F. Hegel, 1893—g7).

2 Cf. M. CURTZE, ‘Anaritii in decem libros priores elementorum
Euclidis Commentarii” Ex interpretatione Gherardi Cremonensis in
Codice Cracoviensi 569 servata, (Leipzig, Teubner, 1899).

3 With regard to AGANIs it is right to mention that he is
identified by CurTZE and HEIBERG with GEMINUS. On the other
hand P. TANNERY does not accept this identification. Cf. TANNERY,
“Le philosophe Aganis est-il identique & Geminus? Bibliotheca Math.
{3) Bd. II. p. 9—11 [1901%
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the name of Sambelichius, easily identified with Simplicius,
the celebrated commentator on Aristotle, who lived in the
6th Century. It would thus appear that Simplicius had written
an Introduction to the First Book of Euclid, in which he ex-
pressed ideas similar to those of Geminus and Posidonius,
affirming that the Fifth Postulate is not self evident, and
bringing forward the demonstration of /4is friend AGANIs.

This demonstration is founded upon the hypothesis that
equidistant straight lines exist. AcaNis calls these parallels,
as had already been done by Posidonius. From this hypo-
thesis he deduces that the shortest distance between two
parallels is the common perpendicular to both the lines:
that two straight lines perpendicular to a third are parallel
to each other: that two parallels, cut by a third line, form
interior angles on the same side, which are supplementary,
and conversely.

These propositions can be proved so easily that it is
unnecessary for us to reproduce the reasoning of AGAnIs.
Having remarked that Propositions 30 and 33 of the First
Book of EucLip follow from them, we proceed to show how
AcANIS constructs the point of intersection of two straight
lines which are not equidistant.

Let 4B, GD be two straight lines cut by the trans-
versal £Z, and such that the sum of the interior angles 4£Z,
EZD is less than two right angles (Fig. 4).

Without making our figure any less general we may sup-
pose that the angle 4£Z is a right angle.

Upon ZD take an arbitrary point 7.

From 7 draw 7L perpendicular to ZZ.

Bisect the segment £Z at P: then bisect the segment
PZ at M: and then bisect the segments M/Z, etc. . . . until
one of the middle points P, . . . falls on the segment LZ.

Let this point, for example, be the point A7,

Draw MXN perpendicular to £Z, meeting ZD in V.
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Finally from ZD cut off the segment ZC, the same
multiple of ZV as ZE is of ZM.

In the case taken in the figure ZC = 4 ZNV.

The point C thus obtained is the point of intersection of
the two straight lines AB and GD.

c F
A
R n
ST
I
E
| P L M 7
B G
Fig. 4.

To prove this it would be necessary to show that the
equal segments ZV, VS, ..., which have been cut off one
after the other from the line ZD, have equal projections on
ZE. We do not discuss this point, as we must return to it
later (p. 11). In any case the reasoning is suggested directly
by Acanis’ figure.

The distinctive feature of the preceding construction is
to be noticed. It rests upon the (implicit) use of the so-called
Postulate of Archimedes, which is necessary for the deter-
mination of the segment MZ, less than ZZ and a submult-
iple of £Z.

The Arabs and the Parallel Postulate.

§ 6. The Arabs, succeeding the Greeks as leaders in
mathematical discovery, like them also investigated the Fifth
Postulate.

Some, however, accepted without hesitation the ideas
and demonstrations of their teachers. Among this number is
AL-Niriz1 (g9th Century), whose commentary on the definitions,
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postulates and axioms of the First Book is modelled on the
Introduction to the ‘Elements’ of SmmpLICIUS, while his demon-
stration of the Fifth Euclidean Hypothesis is that of Acanis, to
which we have above referred.

Others brought their own personal contribution to the
argument. Nasir-EpDIN [1201—1274], for example, although
in his proof of the Fifth Postulate he employs the criterion
used by Aganis, deserves to be mentioned for his original idea
of explicitly putting in the forefront the theorem on the sum
of the angles of a triangle, and for the exhaustive nature of
his reasoning.*

The essential part of his hypothesis is as follows: Zf fwo
straight lines r and s are the one perpendicular and the other
obligue to the segment AB, the perpendiculars drawn from s
upon r are less than AB on the side on whick s makes an acute
angle with AB, and greater on the side on which s makes an
obtuse angle with AB.

It follows immediately that if 48 and 4B are two equal
perpendiculars to the line B3’ from the same side, the line
Ad is itself perpendicular to both 45 and 4'B. Further
we have 44’ = BE'; and therefore the figure 44’ BBisa
quadrilateral with its angles right angles and its opposite sides
equal, i. e, a rectangle.

From this result Nasir-EppiN easily deduced that the sum
of the angles of a triangle is equal to two right angles. For
the right-angled triangle the theorem is obvious, as it is half
of a rectangle; for any triangle we obtain it by breaking up
the triangle into two right-angled triangles.

With this introduction, we can now explain shortly how
the Arabian geometer proves the Zuclidean Postulate [ef.
Acanis].

t Cf.: Euclidis elementorum libvi XII studii Nassiredini, (Rome,

1594). This work, written in Arabic, was republished in 1657 and
1801. It has not been translated into any other language.
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Let 4B, CD be two rays, the one oblique and the other
perpendicular to the straight line 4C (Fig. 5). From 42 cut
off the part 4/, and from A draw the perpendicular ZH"
to AC. If the point & falls on C, or on the opposite side
of C from A, the two rays 45 and
CD must intersect. If, however, &’ BN
falls between A and C, draw the line M
AL perpendicular to 4C and equal D
to AH'. Then, from what we have K
said above, L — AH". In AH pro- L "
duced take HK equal to AH. From
K draw KK perpendicular to 4C.
Since KK'>>HH', we can take .
K'L = H'H, and join Z'H. The Fig: 5.
quadrilaterals X" A" HL', H' ALH are bothrectangles. There-
fore the three points Z', A, Z are in one straight line. It fol-
lows that <C ZZHK = {AHL and that the triangles 47Z,
HI'K are equal. Thus Z'H — HZ, and from the properties
of rectangles, X' H = H'A.

In HK produced, take XM equal to XH. From M
draw MM’ perpendicular to 4C. By reasoning similar to
what has just been given, it follows that

MK =KH =H'A

This result obtained, we take a multiple of A& greater
than AC [Z%e Postulate of Archimedes). For example, let
A0, equal to 4 AH’, be greater than AC. Then from 4B
cut off 40 =4 AH, and draw the perpendicular from O
to 4C.

This perpendicular will evidently be OO’. Then, in the
right-angled triangle 40’0, the line CD, which is perpendicu-
lar to the side 40’, cannot meet the other side OO, and it
must therefore meet the hypotenuse O4.

By this means it has been proved that two straight lines
AB, CD, must intersect, when one is perpendicular to the

O'CM' Ka HIA
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transversal 4C and the other oblique to it. In other words
the Zuclidean Postulate has been proved for the ¢ase in which
one of the internal angles is a right angle.

Nastr-Eppin now makes use of the theorem on the sum
of the angles of a triangle, and by its means reduces the
general case to this particular one. We do not give his reas-
oning, as we shall have to describe what is equivalent to
it in a later article. [cf. p. 37.]°

The Parallel Postulate during the Renaissance and
the 17th Century.

§ 7. The first versions of the Zlements made in the
12th and 13th Centuries on the Arabian texts, and the later
ones, made at the end of the 15th and the beginning of the
16th, based on the Greek texts, contain hardly any critical
notes on the Fifth Postulate. Such criticism appears after the
year 1550, chiefly under the influence of the Commentary of
Proclus? To follow this more easily we give a short sketch
of the views taken by the most noteworthy commentators of
the 16th and 17th centuries.

F. Commanpino [1509—1575] adds to the Euclidean
definition of parallels, without giving any justification for this

1 Nasir-EpDin’s demonstration of the Fifth Postulate is given
in full by the English Geometer J. WaLLIS, in Vol. IL of his works
(cf. Note on p. 15), and by G. CASTILLON, in a paper published in
the Mém. de I’Acad. roy. de Sciences et Belles-Lettres of Berlin,
T. XVIIL p. 175—183, (1788—1789). In addition, several other
writers refer to it, among whom we would mention chiefly, G. S.
KLUGEL, (cf. note, (3), p. 44), J. HOFFMAN, A7itik der Parallelentheorie,
(Jena, 1807); V.FLAUTI, Nuova dimostrazione del postulato quinto, (Na-
ples, 1818).

2 The Commentary of Proclus was first printed at Basle (1533)
in the original text; and next at Padua (1560) in Barozzi's Latin
translation.
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step, the idea of equidistance. With regard to the Fifth Postul-
ate he gives the views and the demonstration of PrRoCLUS.

C. S. Cravio [1537—1612), in his Latin translation of
Euclid’s text?, reproduces and criticises the demonstration of
Procrus. Then he brings forward a new demonstration of the
Euclidean hypothesis, based on the theorem: Z%e dine equi-
distant from a straight line is a straight line; which he at-
tempts to justify by similar reasoning. His demonstration
has many points in common with that of Nasir-Eddin.

P. A. CaTaLpI [?—1626] is the first modern mathema-
tician to publish a work devoted exclusively to the theory of
parallels.3 CATALDI starts from the conception of equidistant
and non-equidistant straight lines; but to prove the effective
existence of equidistant straight lines, he adopts the hypothesis
that straight lines whick are not equidistant converge in one
direction and diverge in the other. [cf. Nasir-EDDiN.]4.

G. A. BORELLI [1608—1679] takes the following Axiom
[XIV], and attempts to justify his assumption:

If a straight line whick remains always in the same plane
as a second straight line, moves so that the one end always touches
this line, and during the whole displacement the first remains
continually perpendicular to the second, then the other end, as it
moves, will describe a straight line.

Then he shows that two straight lines which are perpen-

“dicular to a third are equidistant, and he defines parallels as
equidistant straight lines.

The theory of parallels follows. s

* Elementorum Libri XV, (Pesaro, 1572).

2 Euclidis elementorum litri XV, (Rome, 1574).

3 Operetta delle linee rette equidistants et non equidistants, (Bologna,
1603).

4 CATALDI made some further additions to his argument in the
work, dggiunta alf operetta delle kinee rette equidistanti et non equi-
distanti. (Bologna, 1604).

5 BORELLI: Euclides restetutus, (Pisa, 1658),
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§ 8. GIORDANO VITALE [1633—1711] again returns to
the idea of equidistance put forward by Posiponius, and re-
cognizes, with PRocLUS, that it is necessary to exclude the pos-
sibility of the Euclidean parallels being asymptotic lines. To
this end he defines two equidistant straight lines as parallels,
and attempts to prove that the locus of the points equidistant
from one straight line is another straight line.

His demonstration practically depends upon the follow-
ing lemma:

If two points, A, C upon a curve, whose concavity is to-
wards X, are joined by the straight line AC, and perpendiculars
are drawn from the infinite number of points of the arc AC
upon any straight line, then these perpendiculars cannot be equal
to eack other.

The words ‘any straight line’, in this enunciation, do not
refer to a straight line taken at random in the plane, but to

G F a straight line constructed in
the following way (Fig. 6).
From the point B of the arc

B
T — AC draw B.D perpendicular to
~ A D C the chord 4C. Then at A draw
Fig. 6. AG also perpendicular to 4C.

Finally, having cut off equal segments 4G and DF upon
these two perpendiculars, join the ends G and 7. GFis the
straight line which GIORDANO considers in his demonstration,
a straight line with respect to which the arc 425 is certainly
not an equidistant line.

But when the author wishes to prove that the locus of
points equidistant from a straight line is also a straight line,
he applies the preceding lemma to a figure in which the re-
lations existing between the arc 4BC and the straight line

1 GIORDANO VITALE: Euclide restituto overo gli antichi elementi
geometyici vistaurati, ¢ facilitati. Libri XV. (Rome, 1680).
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GF do not hold. Thus the consequences which he deduces
from the existence of equidistant straight lines are not really
legitimate.

From this point of view GIORDANO's proof makes no ad-
vance upon those which preceded it. However it includes a
most remarkable theorem, containing an idea which will be
further developed in the articles which follow.

Let 4BCD be a quadrilateral of which the angles 4, B
are right angles and the sides 4D, BC b H c
equal (Fig. 7). Further, let X be the per-
pendicular drawn from a point 4, upon the
side DC, to the base 4B of the quadri-
lateral. GIORDANO proves: (i) that the ang-
les D, Care equal; (ii) that, when the seg- & K B
ment ZK is equal to the segment 4.0, the Fig. 7.
two angles /), C are right angles, and CD is equidistant
from AB.

By means of this theorem G1orDANO reduces the question
of equidistant straight lines to the proof of.the existence of
one point H upon DC, whose distance from 425 is equal to
the segments 40 and BC. We regard this as one of the
most noteworthy results in the theory of parallels obtained
up to that date.”

$ 9. J. WaLLis [1616—1703] abandoned the idea of
equidistance, employed without success by the preceding
mathematicians, and gave a new demonstration of the Fifth
Postulate. He based his proof on the Axiom: 7v every figure
there exists a similar figure of arbitrary magnitude. We now

1 Cf.: BoNOLA: Un teorema di Giordano Vitale da Bitonto sulle
retle equidistanti, Bollettino di Bibliografia e Storia delle Scienze
Mat. (1903).

2 Cf.: WALLIS: De Postulato Quinto,; et Definssione Quinta; Lib, 6.
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Let a, & be two straight lines intersected at 4, B by the
transversal ¢ (Fig. 8). Let a, B be the interior angles on the

¥ babbb same side of ¢, such that o+ is
less than two right angles. Through
C A draw the straight line &’ so that

5 and & form with ¢ equal corre-

sponding angles. It is clear that

& will lie in the angle adjacent to

BVo PA\FIAP . o. Let the line 5 be now moved

A B, B continuously along the segment

- Fig8 AB, so that the angle which it

makes with ¢ remains always equal to B. Before it reaches

its final position & it must necessarily intersect . In this way

a triangle 425,C; is determined, with the angles at 4 and B;
respectively equal to o and B.

But, by WaLLis's hypothesis of the existence of similar
figures, upon 425, the side homologous to 43;, we must be
able to construct a triangle 4B C similar to the triangle 45, C..
This is equivalent to saying that the straight lines @, 5 must
meet in a point, namely, the third angular point of the triangle
ABC. Therefore, etc.

Wallis then seeks to justify the new position he hastaken
up. He points out that Euclid, in postulating the existence
of a circle of given centre and given radius, [Post. IIL], practi-
cally admits the principle of similarity for circles. But even
although intuition would support this view, the idea of form,
independent of the dimensions of the figure, constitutes a

Euclidis; disceptatio geometrica. Opera Math. t. 1T, p. 669—78 (Oxford,
1693). This work by WALLIS contains two lectures given by him in
the University of Oxford; the first in 1651, the second in 1663. It
also contains the demonstration of NasiR-EDDIN. The part containing
WALLIS’s proof was translated into German by ENGEL and STACKEL in
their Theorie der Parallellinien wvon Euclid bis auf Gauss, p. 21—36,
(Leipzig, Teubner, 1895). We shall quote this work in future as
Th. der P.
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hypothesis, which is certainly not more evident than the Postu-
late of EucLip.

We remark, further, that WaLL1s could more simply have
assumed the existence of triangles with equal angles, or, as
we shall see below, of only two unequal triangles whose
angles are correspondingly equal.

[cf. p. 29 Note 1.]

§ 10. The critical work of the preceding geometers is
sufficient to show the historical development of our subject in
the 16th and 17th Centuries, so that it would be superfluous
to speak of other able writers, such as, e. g, OLIVER of
Bury [1604], Luca VALErIO [1613], H. SaviLe [1621],
A.TAcQUET [1654], A. ARNAULD [1667].* However, it seems
necessary to say a few words on the question of the position
which the different commentators on the ‘Elements’ allot to
the Euclidean hypothesis in the system of geometry.

In the Latin edition of the ‘Elements’ [1482], based upon
the Arabian texts, by CaMPaNUSs [13th Century], this hypothesis
finds a place among the postulates. The same may be said
of the Latin translation of the Greek version by B. ZAMBERTI
[1505], of the editions of Luca PactuoLo [1509], of N. Tar-
TAGLIA [1543], of F. CoMMANDINO [1572], and of G. A. Bor-
ELLI [1658].

On the other hand the first printed copy of the ‘El-
ments’ in Greek, [Basle, 1533], contains the hypothesis among
the axioms [Axiom XI]. In succession it is placed among the
Axioms by F. Canparra [1556], C.S. CLavio [1574], Gior-
paNO VITALE [1680], and also by GREGORY [1703], in his
well-known Latin version of EucLip’s works.

To attempt to form a correct judgment upon these dis-

t For fuller information on this subject cf. RICCARDI: Saggso
di una bibliografia euclidea. Mem. di Bologna, (5) T.L p. 27—34,

(1890).
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crepancies, due more to the manuscripts handed down from
the Greeks than to the aforesaid authors, it will be an advan-
tage to know what meaning the former gave to the words
‘postulates’ [oiripata) and ‘exioms’ [dEwbpora).r First of all
we note that the word ‘axioms’ is used here to denote what
EucLip in his text calls ‘common notions’ [kowai &vvoiu].

ProcLus gives three different ways of explaining the differ-
ence between the axioms and postulates.

The first method takes us back to the difference between
a problem and a theorem. A postulate differs from an axiom,
as a problem differs from a #keorem, says PRocLUS. By this we
must understand that @ postulate affirms the possibility of a
construction.

The second method consists in saying that a postulate is
a proposition with a geometrical meaning, while an axiom isa
proposition common both to geomelry and to arithmeiic.

Finally the third method of explaining the difference
between the two words, given by PROCLUS, is supported by the
authority of ARiSTOTLE [384—322 B. C.]. The words axiom
and postulate do not appear to be used by ARISTOTLE exclusive-
ly in the mathematical sense. An axiom is that whick is true
in itself, that is, owing to the meaning of the words which it
contains; @ postulate is that which, although it is not an axtom,
in the aforesaid sense, is admitted without demonstration.

Thus the word axiom, as is more evident from an ex-
ample due to ARISTOTLE, [w/hen equal things are subtracted from
equal things the remainders are equall, is used in a sense which

1 For the following, cf. PROCLUS, in the chapter entitled Fe-
tita ¢! axiomata, In a Paper read at the Third Mathematical Congress
(Heidelberg, 1904) G. VAILATI has called the attention of students
anew to the meaning of these words among the Greeks. Cf.: /n-
torno al significato della distinzione tra gli assiomi ed i postulati nella
geometria greca, Verh, des dritten Math. Kongresses, p. 575—581,
(Leipzig, Teubner, 1905).
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corresponds, at any rate very closely, to that of the common
notions of EucLip, whilst the word postulate in ARISTOTLE has
a different meaning from each of the two to which reference
has just been made.*

Hence according as one or other of these distinctions be-
tween the words is adopted, a particular proposition would be
placed among the postulates or among the axioms. If we
adopt the first, only the first three of the five postulates of
EvucLip, according to PRocLus, have aright to this name, since
only in these are we asked to carry out a construction [to
join two points, to produce a straight line, to describe a circle
whose centre and radius are arbitrary]. On the other hand,
Postulate IV. [all right angles ate equal], and Postulate V., ought
to be placed among the axioms.?

* Cf. ARISTOTLE: Analytica Posteriora. 1. 10. §8. We quote in
full this slightly obscure passage, where the philosopher speaks of
the postulate: §oa pév olv dewtd vra Aappdver adbtog pn delfac,
Tadta édv pév doxodvra AapBdvn Tk pavedvovrt UmotiBetar. Kai
&otiv oY dmAdg Um6Beois GANG mpdg éxelvov pévov. ’Edv d¢ §
undemds évolang dokne A xal evavriag évotiong Aappdvy, 1o adrod
aiteitar.  Kai TobTw dagéper UméGeoic xai alrnua, Eom yap
aitua 70 Umevavrtiov ToD MavBdvovrog TH doEn.

2 It is right to remark that the Fifth Postulate can be enun-
ciated thus: Zhe common point of two straight lines can be found, when
these two lines, cut by a transversal, form two interior angles on the
same side whose sum is less than two right angles. Thus it follows
that this postulate affirms, like the first three, the possibility of a
construction. However this character disappears altogether, if it
is enunciated, for example, thus: Througk a point there passes only
one parallel fo a straight kne; or, thus: Two straight Enes which are
parallel 2o a third kne are parallel 1o each other. It would therefore
appear that the distinction noted above is purely formal. However
we must not let ourselves be deceived by appearances. The Fifth
Postulate, in whatever way it is enunciated, practically allows the
construction of the point of intersection of all the straight lines of
a pencil with a given straight line in the plane of the pencil, one
of these lines alone being excepted. It is true that there is a certain
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Again, if we accept the second or the third distinction,
the five Euclidean postulates should all be included among
the postulates.

In this way the origin of the divergence between the var-
jous manuscripts is easily explained. To give greater weight
to this explanation we might add the uncertainty which histor-
ians feel in attributing to EucLip the postulates, common no-
tions and definitions of the First Book. So far as regards the
postulates, the gravest doubts are directed against the last
two. The presence of the first three is sufficiently in accord
with the whole plan of the work.* Admitting the hypothesis
that the Fourth and Fifth Postulates are not Euclid’s, even if
it is against the authority of Geminus and Proclus, the ex-
treme rigour of the ‘Elements would naturally lead the later
geometers to seek in the body of the work all those pro-
positions which are admitted without demonstration. Now
the one which concerns us is found stated very concisely in
the demonstration of Bk. L Prop. z9. From this, the sub-
stance of the Fifth Postulate could then be taken, and added
to the postulates of construction, or to the axioms, according
to the views held by the transcriber of EvcLip’s work.

Further, its natural place would be, and this is GREGORY's
view, after Prop. 27, of which it enunciates the converse.

Finally, we remark that, whatever be the manner of de-
ciding the verbal question here raised, the modern philo-
sophy of mathematics is inclined generally to suppress the

difference between this postulate and the three postulates of con-
struction. In the latter the data are completely independent. In
the former the data (the two straight lines cut by a transversal) are
subject to a condition. So that the Euclidean Hypothesis belongs
to a class intermediate between the postulates and axiom, rather
than to the one or the other.

1 Cf. P. TANNERY: Sur lauthenticité des axiomes & Euclide. Bull.
d. Sc. Math. {2), T. VIIL p. 162—175, (1884).
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distinction between postulate and axiom, which is adopted in
the second and third of the above methods. The generally
accepted view is to regard the fundamental propositions of
geometry as hypotheses resting upon an empirical basis,
while it is considered superfluous to place statements, which
are simple consequences of the given definitions, among the
propositions.



Chapter II.

The Forerunners of Non-Euclidean
Geometry.

Gerolamo Saccheri [1667—1733].

§ 11. The greater part of the work of GEROLAMO SAc-
CHERIL: KBuclides ab omni naevo vindicatus: sive conatus geo-
metricus quo stabiliuntur prima ipsa universae Geometriae
Principia, [Milan, 1733), is devoted to the proof of the Fifth
Postulate. The distinctive feature of SACCHERI's geometrical
writings is to be found in his ‘Zogica demonstrativa’, [Turin,
1697]. It is simply a particular method of reasoning, already
used by EucLip [Bk. IX. Prop. 12], according to which &y
assuming as kypothesis that the proposition wkick is to be proved
is _false, one 1s brought to the conclusion that it is truet

Adopting this idea, the author takes as data the first
twenty-six propositions of EucLID, and he assumes as a hypo-
thesis that the Fifth Postulate is false. Among the consequences
of this hypothesis he seeks for some proposition, which would
entitle him to affirm the truth of the postulate itself.

Before entering upon an exposition of SACCHERI’S work,
we note that EucLip assumes implicitly that the straight line
is infinite in the demonstration of Bk. I. 16 [the exterior angle
of a triangle is greater than either of the interior and opposite

1 Cf. G, VAILATI: Di un’ opera dimenticala del P. Geyolamo Sac-
cheri, Rivista Filosofica (1903).
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angles], since his argument is practically based upon the
existence of a segment which is double a given segment.

We shall deal later with the possibility of abandoning
this hypothesis. At present we note that SACCHERI tacitly as-
sumes it, since in the course of his work he uses the groposition
of the exterior angle.

Finally, we note that he also employs the Postulate of
Archimedes® and the Aypothesis of the continuity of the straight
Zine,® to extend, to all the figures of a given type, certain pro-
positions admitted to be true only for a single figure of that
type.

§ 12. The fundamental figure of SACCHERI is the #woo
right-angled isosceles quadrilateral; that is, the quadrilateral of
which two opposite sides are equal to each other and perpen-
dicular to the base. The properties of such a figure are de-
duced from the following Lemma I., which can easily be
proved:

If a quadrilateral ABCD has the consecutive angles A
and B right angles, and the sides AD and BC equal, then the
angle C is equal to the angle D [This is a special case of Sac-
CHERI's Prop. L); dut if the sides AD and BC are unequal, of
the two angles C, D, that one is greater whick is adjacent fo
the shorter side, and vice versa.,

1 [The Postulate of Archimedes is stated by Hilbert thus: Let
A be any point upon a straight line between the arbitrarily chosen
points 4 and B. Take the points A, A3, . .. so that A; lies
between A4 and 4, 4, between Ar and A;, etc.; moreover let the
segments AA;, A1A4z, AzA3 ... be all equal. Then among this
series of points, there always exists a certain point An, such that
B lies between 4 and 4n.]

2 This hypothesis is used by SACCHERI in its intuitive form,
viz.: a segment, which passes continuously from the length a to
the length 5, different from o, takes, during its variation, every
length intermediate between 2 and é.
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Let ABCD be a quadrilateral with two right angles 4
and B, and two equal sides 40 and BC (Fig. 9). On the
Euclidean hypotkesis the angles C and D are also right angles.
Thus, if we assume that they are able to be both odfuse, or
both acute, we implicitly deny the Fifth Postulate. SACCHERI
discusses these three hypotheses regarding the angles C, D.
He named them:

The Hypothesis of the Right Angle

[<C C= <9 D =1 right angle]:

The Hypothesis of the Obtuse Angle

[ €= <D > 1 right angle]:
The Hypothesis of the Acute Angle
[<c €= <D <1 right angle].

One of his first important results is the following:

According as the Hypothesis of the Right Angle, of the
Obtuse Angle, or of the Acute Angle is true in the two right-
angled isosceles gquadrilateral, we must have AB = CD,
AB> CD, or AB< CD, respectively. [Prop. 11L]

In fact, on the Hypothesis of the Right Angle, by the
preceding Lemma, we have immediately

AB = CD.

On the Hypothesis of the Obtuse Angle, the perpendicular

OO’ at the middle point of the segment 45

D O C divides the fundamental quadrilateral into

two equal quadrilaterals, with right angles at

O and O'. Since the angle D> angle 4,

then we must have 40 > DO, by this
Lemma. Thus A8 > CD.

A o B Onthes; [ypothesis of the Acute Angle these
Fig 9. inequalities have their sense changed and
we have

AB < CD.
Using the reductio ad absurdum argument, we obtain
the converse of this theorem. [Prop. IV.]
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If the Hypothesis of the Right Angle is true in only one
<ase, then it is true in every other case. [Prop. V.]

Suppose that in the two right-angled isosceles quadrilat-
eral ABCD the Hypothesis of the Right Angle is verified.

In 4D and BC (Fig. 10) take the points A and X equi-
distant from 425; join K and form the
quadrilateral 4BKH. ; g

If ZX is perpendicular to 44 and
BK, the Hypothesis of the Right Angleis D c
also verified in the new quadrilateral. H K

If it is not, suppose that the angle
AHK is acute. Then the adjacent angle & B
DHK is obtuse. Thus in the quadrilateral Fig. xo.
ABKH, from the Hypothesis of the Acute Angle, it follows
that 48 < HK: while in the quadrilateral ZXCD, from the
Hypothesis of the Obtuse Angle, it follows that HX < CD.

But these two inequalities are contradictory, since by
he Hypothesis of the Right Angle in the quadrilateral ABCD,
AB = CD.

Thus the angle 4AK cannot be acute: and since by the
same reasoning we could prove that the angle 44K cannot
be obtuse, it follows that the Hypothesis of the Right Angle is
also true in the quadrilateral 48K H.

On 4D and BC produced, take the points M, &V equi-
distant from the base 458. Then the Hypotkesis of the Right
Angle is also true for the quadrilateral 4BNVM. In fact if
AM is a multiple of 4D, the proposition is obvious. If 4
is not a multiple of 4D, we take a multiple of 4D greater
than AM [the Postulate of Archimedes), and from AD and
BC produced cut off 4P and BQ equal to this multiple.
Since, as we have just seen, the Hypothesis of the Right Angle
is true in the quadrilateral 4B Q/2, the same hypothesis must
also hold in the quadrilateral 4BNM.

Finally the said hypothesis must hold for a quadrilateral
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on any base, since, in Fig. 10, we can take as the base one
of the sides perpendicular to 45.

WNote. This theorem of SACCHERI is practically contained
in that of GIORDANO VITALE, stated on p. 15. In fact, refer-
ring to Fig. 7, the hypothesis

DA=HK=CB
is equivalent to the other
X D= X H=< C==1 right angle.

But from the former, there follows the equidistance of the
two straight lines DC, 48%; and thus the validity of the Ajpo-
thesis of the Right Angle in all the two right-angled isosceles
quadrilaterals, whose altitude is 'equal to the line D4, is
established. The same hypothesis is also true in a quadri-
lateral of any height, since the line called at one time the
base may later be regarded as the height.

If the Hypothesis of the Obtuse Angle is true in only one
case, then it is true in every other case. [Prop. VL]
Referring to the standard quadrilateral 48CD (Fig. 11),
D o c  suppose that the angles C and D are ob-
H K’ tuse. Upon 42D and BC take the points
" H and X equidistant from AB5.

In the first place we note that the
segment A K cannot be perpendicular to
the two sides 40D and BC, since in that
A 0 B case the Hypothesis of the Right Angle

Fig. 11, would be verified in the quadrilateral
ABKH, and consequently in the fundamental quadrilateral.
Let us suppose that the angle 4HK is acute. Then

H

1 It is true that GIORDANO in his argument refers to the points
of the segment DC, which he shows are equidistant from the base
AB of the quadrilateral. However the same argument is applicable
to all the points which lie upon DC, or upon DC produced. Cf.
BoNoLA’s Note referred to on p. 15,
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by the Hypotkesis of the Acute Angle, HK > AB. But as the
Hypothesis of the Obtuse Angle holds in ABDC, we have
AB> CD.
Therefore HK>AB> CD.
If we now move the straight line AKX continuously, so that it
remains perpendicular to the median OO’ of the fundamental
quadrilateral, the segment AKX, contained between the oppo-
site sides 40, BC, which in its initial position is greater than
AB, will become less than 423 in its final position DC. From
the postulate of continuity we may then conclude that,
between the initial position ZX and the final position DC,
there must exist an intermediate position A’ K’, for which
H'K = AB.

Consequently in the quadrilateral 48K H’ the Hypo-
thesis of the Right Angle would hold [Prop. I1L.], and therefore,
by the preceding theorem, the Hypothesis of the Obtuse Angle
could not be true in ABCD.

The argument is also valid if the segments A4, BK are
greater than 42, since it is impossible that the angle AHX
could be acute. Thus the Hypotiesis of the Obtuse Angle holds
in ABKH as well as in ABCD.

Having proved the theorem for a quadrilateral whose
sides are of any size, we proceed to prove it for one whose
base is of any size: for example the base BX [cf. Fig. 12].

Since the angles X, A, are obtuse, the
perpendicular at X to KB will meet the H N
segment A/ in the point A/, making the M
angle AMK obtuse [theorem of the ex-
terior angle].

Then in ABKM we have AB > KM,
by Lemma I Cut off from 423 the segment & N ] B
BN equal to K. Then we can construct Fig. 12.
the two right-angled isosceles quadrilateral BXM .V, with the
angle M V2B obtuse, since it is an exterior angle of the triangle
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ANM. Tt follows that the Hypothesis of the Obtuse Angle
holds in the new quadrilateral.
Thus the theorem is completely demonstrated.

If the Hypothesis of the Acute Angle is true in only one
case, then it is true in every other case. [Prop. VIL]

This theorem can be easily proved by using the method
of reductio ad absurdum.

§ 13. From the theorems of the last article SACCHER:
easily obtains the following important result with regard to
triangles:

According as the Hypothesis of the Right Angle, the Hy-
pothests of the Obtuse Angle, or the Hypothesis of the Acute
Angle, is found to be true, the sum of the angles of a triangle
will be respectively equal to, greater than, or less than two right
angles. [Prop. 1X.]

Let ABC [Fig. 13] be a triangle of which B is a right
c angle. Complete the quadrilateral by draw-

T ing 4D perpendicular to 45 and equal to
BC; and jon CD.
On the Hypothesis of the Right Angle,
the two triangles ABC and 4DC are equal.
by Therefore ST BAC = 9C DCA.

It follows immediately that in the tri-
angle 4ABC,

X A4+ X B + << C= 2 right angles.
On the Hypothesis of the Obtuse Angle,
since 48> DC,
we have SCACB > < DAC.*

Fig. 13.

* This inequality is proved by SACCHERI in his Prop. VIIL,
and serves as Lemma to Prop. IX. It is, of course, Prop. 25 of
EvucLip’s First Book,
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Therefore, in this triangle we shall have
L 4+ L B+ <L C> 2 right angles.
On the Hypothesis of the Acute Angle,
since 48 < DC,
we have <C ACB < <C DAC,
and therefore, in the same triangle,

<X A+ LB+ I C< 2 right angles.
The theorem just proved can be easily extended to the
case of any triangle, by breaking the figure up into two right
angled triangles. In Prop.XV. SACCHERI proves the converse,
by a reductio ad absurdum.

The following theorem is a'simple deduction from these
results:

If the sum of the angles of a triangle is equal to, greater
than, or less than two right angles in only one triangle, this
sum will be respectively equal to, greater than, or less than two
right angles in every other triangle}

This theorem, which SaccHer1 does not enunciate ex-
plicitly, Legendre discovered anew and published, for the
first and third hypotheses, about a century later.

§ 14. The preceding theorems on the two right-
angled isosceles quadrilaterals were proved by SAccHER, and

t Another of SACCHERI’s propositions, which does not concern
us directly, states that if the sum of the angles of only one guadri-
lateral is equal to, greater than, or less than four right angles, the
Hypothesis of the Right Angle, the Hypothesis of the Obtuse Angle, or
the Hypothesis of the Acute Angle would respectively be true. A note
of SACCHERI’s on the Postulate of WALLIS (cf. § 9) makes use of
this proposition. He points out that WALLIS needed only to assume
the existence of two triangles, whose angles were equal each to
each and sides unequal, to deduce the existence of a quadrilateral
in which the sum of the angles is equal to four right angles. From
this the validity of the Hypothesis of the Right Angle would follow,
and in its turn the Fifth Postulate.
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later by other geometers, with the help of the Postulate of
Archimedes and the principle of continuity [cf. Prop. V., VI].
However DEHN' has shown that they are independent of
these hypotheses. This can also be proved in an elementary
way as follows.?

On the straight line » (Fig. 14) let two points & and D
be chosen, and equal perpendiculars Z4 and DC be drawn
to these lines. Let 4 and C be joined by the straight line s.
The figure so obtained, in which evidently ST B4C= <. DCA,
is fundamental in our argument and we shall refer to it con-
stantly.

Two points Z, £ are now taken on s, of which the
first is situated between 4 and C, and the second not.

Further let the perpendiculars from £, £’ to the line
» meet it at Fand F'.

. The following theorems now hold:
(1f EF= AB,}
the angles B4C, DCA areright angles.
£ F AB i

l
If EF > AB)
1I. ! , the angles BAC, DCA are obtuse.
| EF <AB
If £EF < AB,
, the angles BAC, DCA are acute.
E F > AB
We now prove Theorem I. [cf. Fig. 14.]
From the hypothesis Z7 = A5, the following equalities

are deduced:

x Cf. Die Legendreschen Séitze tiber die Winkelsumme im Dreieck.
Math. Ann. Bd. 53, p. 405—439 (1900).

2 Cf. BONOLA, / feoremi del Padye Gerolamo Saccheri sulla
somma degli angoli di un lriangolo e le vicerche di M. Dehn. Rend.
Istituto Lombardo (2), Vol. XXXVIIL (1905).
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X BAE = <. FEA, and SC FEC = X DCE.
‘These, together with the fundamental equality
K BAC= L DCA,

are sufficient to establish the equality of the two angles F£4
and FEC.

E A E ¢

F* B F D
Fig. 14.

Since these are adjacent angles, they are both right
angles, and consequently the angles BAC and DCA are
right angles.

The same argument is applicable in the hypothesis

EF = AB.
We proceed to Theorem II [cf. Fig. 15].

F B F D

Fig. 1s.
Suppose, in the first place, £ > 4B. From FE cut
off FI = A4B, and join / to 4 and C.
Then the following equalities hold:
X BAI= L FIA and <L DC/ = X FIC.

Further, by the theorem of the exterior angle [Bk. I. 16],
we have
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XL FIA + L FIC> < FEA + 9T FEC = 2 right angles.
But
X BAC + <L DCA> X BAI + X DCI.
Therefore
X BAC + <X DCA> I FIA + <L FIC> 2 right angles.
But, since <C BAC = < DCA,
it follows that <C BAC > 1 right angle.... Q. E. D.

In the second place, suppose that £'F < AB. Then from
F'E produced cut off #'/' = BA, and join /" to C and 4.
The following relations, as usual, hold:
X FI'd4d=<BAl, L FIC =X DCI;
X I'AE > ICE, X FIA<XFIC.
Combining these results, we deduce, first of all, that
X BAI'C L DCr.
From this, if we subtract the terms of the inequality
X I'AE > I'CE,
we obtain
<X BAE'< ¢ DCE" = . BAC.
But the two angles BAZ and BAC are adjacent. Thus we
have proved that <C BAC is obtuse.—Q. E. D.

Theorem IIL. can be proved in exactly the same way.
The converses of these theorems can now be easily
shown to be true by the reductio ad absurdum method. In
particular, if 47 and AV are the middle points ot the two seg-
ments AC and BD, we have the following results for the
segment MV which is perpendicular to both the lines AC

and BD (Fig. 16).
If XL BAC =< DCA = 1 right angle, then MN — AB.
If XL BAC= < DCA>> 1 right angle, then MN > AB.
If 3C BAC= X DCAL 1 right angle, then MN < AB.
Further it is easy to see that
(i) If << BAC = L DCA = 1 right angle,
then XL FEM and <C I'"E'M are eack I right angle.
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(i) Zf < BAC— L DCA > 1 right angle,
then <. FEM and S F E'M are cackh obtuse.

(i) Zf X BAC = << DCA < 1 right angle,
then L FEM and < F'E' M are eack acute.

E A E M C

FF B F IN D

Fig. 16.

In fact, in Case (i), since the lines » and s are equi-
distant, the following equalities hold:

X NMA=LFEM= < BAC= Y F"E M=rrightangle,

To prove Cases (ii) and (iil), it is sufficient to use the
reductio ad absurdum method, and to take account of the
results obtained above.

Now let 2 be a point on the line //V, not contained
between A/ and /V (Fig. 17). Let RP be the perpendicular to
MN and RK the perpendicular to BD. This last perpend-
icular will meet 4C in a point Z. On this understanding
the preceding theorems immediately establish the truth of
the following results:

If L BAM = 1 right angle, then S KHM and <C KRP
are eack equal to 1 right angle.

If SCBAM > 1 right angle, then <L KHM and <C KRP
are eack greater than 1 right angle.

If L BAM < 1 right angle, then <. KHM and IC KRP
are eack less than r right angle.

These results are also true, as can easily be seen, if the
point 2 falls between M and V.

In conclusion, the last three theorems, which clearly
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coincide with Saccheri’s theorems upon the two right-angled
isosceles quadrilateral, are equivalent to the following result,
proved without using Archimedes’ Postulate: —

R P

H| A M C

K B N D
Fig. 17.

If the truth of the Hypothesis of the Right Angle, of the
Obtuse Angle, or of the Acute Angle, respectively, is known in
only one case, its truth is also known in every other case.

If we wish now to pass from the theorems on quad-
rilaterals to the corresponding theorems on triangles, we need
only refer to SaccHErr’s demonstration [cf. p. 28], since this
part of his argument does not in any way depend upon
the postulate in question.

We have thus obtained the result which was to be
proved.

§ 15. To make our exposition of SACCHERI's work
more concise, we take from Prop. XI. and XII. the contents
of the following Lemma II:

Let ABC be a triangle of whick C is a right angle: let
H be the middle point of AB, and K the foot of the perpen-
dicular from H upon AC. Then we shall have

AK = KC, on the Hypoikesis of the Right Angle;

AK < KC, on the Hypothesis of the Obtuse Angle;

AK > KC, on the Hypothesis of the Acute Angle.

On the Hypothesis of the Right Angle the result is
obvious,
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On the Hypothesis of the Obtuse Angle, since the sum of
the angles of a quadrilateral is greater than four right angles,
it follows that T AHK < T HBC. Let HL be the perpendi-
cular from A to BC (Fig. 18). Then the result just obtained,
and the fact that the two triangles 47X, HBL have equal
hypotenuses, give rise to the following inequality: 4X< HL.
But the quadrilateral ZKCLZ has three right angles and there-
fore the angle A is obtuse [Hypothesis of the Obtuse Angle).

It follows that
HL < KC,
and thus
AK < KC.
The third part of this Lemma can be proved in the
same way.
It is easy to extend this Lemma as follows (Fig. 19):
B

A K C A A A, A.'i
Fig. 18. Fig. 19.

Lemma I71. If on the one arm of an angle A equal seg-
ments AA,, A A,, A, 4,, . .. are taken, and AA,, A4,
A Ay .. are their projections upon the other arm of the angle,
then the following resulls are true:

Ad = A A4 = 4,'4) —=. . .
on the Hypothesis of the Right Angle;
A4 << 4 A << A4y =<. ..
on the Hypothesis of the Obtuse Angle;
AA > 44> 4,47 > ...
on the Hypothesis of the Acute Angle.
To save space the simple demonstration is omitted.
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We can now proceed to the proof of Prop. XL and XII.
of Saccheri’s work, combining them in the following theorem:
On the Hypothesis of the Right Angle and on the Hypo-
thesis of the Obtuse Angle, a line perpendicular to a given
straight line and a line cutting it at an acute angle infersect
eack other.
E

n

A<= M, ¢ h
Fig. a0.

Let (Fig. 20) ZP and 4D be two straight lines of which
the one is perpendicular to 42, and the other is inclined to
AP at an acute angle DAP.

After cutting off in succession equal segments 40, DF;,
upon 4D, draw the perpendiculars DB and F;M; upon the
line 4P,

From Lemma III. above, we have

BM,S 4B,
or AM,S 2 AB,
on the two hypotheses.

Now cut off F} F, equal to A%, from 4F; produced,
and let A7, be the foot of the perpendicular from £, upon A2.

Then we have o
AM, S 2 AM;,
and thus N
AM, = 2 AB.
This process can be repeated as often as we please.
In this way we would obtain a point %, upon the line
AD such that its projection upon the line 42 would deter-
mine a segment A4, satisfying the relation
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AM*S 2* 4B.
But if ~ is taken sufficiently great, [by the Postulate of
Archimedes*] we would have
M AB> AP,

and therefore
AM, > AP.

Therefore the point P lies upon the side 447, of the right-
angled triangle 4M, F,. The perpendicular PZL cannot
intersect the other side of this triangle; therefore it cuts the
hypotenuse.? Q. Z. D.

It is now possible to prove the following theorem:

Trhe Fifth Postulate is true on the Hypothesis of the
Right Angle and on the Hypothesis of the Obtuse Angle [Prop.
XIIL].

Let (Fig. 21) 4B, CD be two straight lines cut by the
line 4C.

Let us suppose that

X BAC + L ACD < 2 right angles.

Then one of the angles
BAC, ACD, for example the
first, will be acute.

From C draw the perpen-
dicular CH upon 4B. In the
triangle ACH, from the hypo-
theses which have been made, A H B
we shall have Fig. 21,

X A4+ << C+ << HS 2 right angles.

t The Postulate of Archimedes, of which use is here made,
includes implicitly the infinity of the straight line.

2 The method followed by SACCHERI in proving this theorem
is practically the same as that of Nasir-EppiN. However Nasir.
EpDiN only deals with the Hypothesis of the Right Angle, as he had
formerly shown that the sum of the angles of a triangle is equal
to two right angles. It is right to remember that SACCHERI was
familiar with and had ecriticised the work of the Arabian Geometer.

C
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But we have assumed that
X BAC + X ACD < 2 right angles.
These two results show that
X AHC > <C HCD.

Thus the angle ZCD must be acute, as A is a right angle.
It follows from Prop. XL, XIL that the lines 48 and CD
intersect.*

This result allows SACCHERI to conclude that #ze Hypo-
thesis of the Obtuse Angle is false [Prop. XIV.]. In fact, on
this hypothesis EucLip’s Postulate holds [Prop. XIIL], and
consequently, the usual theorems which are deduced from
this postulate also hold. Thus the sum of the angles of the
fundamental quadrilateral is equal to four right angles, so
that the Hypothesis of the Right Angle is true?

§ 16. But SACCHERI wishes to prove that the Fifth
Postulate is true in every case. He thus sets himself to
destroy #se Hypothesis of the Acute Angle.

To begin with he shows that oz #kis Aypothesis, a straight
line being given, there can be drawn a perpendicular to it and
a line cutting it at an acute angle, whick do not intersect eack
other [Prop. XVIL].

To construct these lines, let ABC (Fig. 22) be a triangle
of which the angle C is a right angle. At B draw B0 mak-
ing the angle 4BD equal to the angle B4C. Then, on the

1 This proof is also found in the work of Nasir-EpbiN, which
evidently inspired the investigations of SACCHERL

2 It should be noted that in this demonstration SACCHERI
makes use of the special type of argument of which we spoke in
§ 11, In fact, from the assumption that the Hypotkesis of the 0b-
tuse Angle is true, we arrive at the conclusion that the Hypothesis
of the Right Angle is true. This is a characteristic form taken in
such cases by the ordinary reductio ad absurdum argument.
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Hypothesis of the Acute Angle, the angle CBD is acute, and
of the two lines C4, BD, which do not meet [Bk. L 27],
one makes a right angle with BC.

In what follows we consider only ke Hypothesis of the
Acute Angle.

Let (Fig. 23) @, 6 be two straight lines in the same plane
which do not meet.

A
B Aa A 2 a
D
§
Fig. 22, Fig. 23.

From the points 4,, 4,, on @ draw perpendiculars
A.B,, A,B, to .

The angles 4,, 4, of the quadrilateral thus obtained
can be

(i) one right, and one acute:

(ii) both acute:

(ili) one acute and one obtuse.

In the first case, there exists already a common per-
pendicular to the two lines a, &.

In the second case, we can prove the existence of such
a common perpendicular by using the idea of continuity
[SaccrEry, Prop. XXIL]. In fact, if the straight line 4, B, is
moved continuously, while kept perpendicular to 4, until it
reaches the position 4,5,, the angle B, 4,4, starts as an
acute angle and increases until it becomes an obtuse angle.
There must be an intermediate position 48 in which the
angle BA4, is a right angle. Then 47 is the common
perpendicular to the two lines a; 4.

In the third case, the lines @, & do not have a common
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perpendicular, or, if such exists, it does not fall between B,
and B,.

Evidently there will be no such perpendicular if, for all
the points 45 situated upon @, and on the same side of 4,,
the quadrilateral B; 4,4, 5B, has always an obtuse angle at 4,.

With this Aypothesis of the existence of two coplanar
straight lines which do not intersect, and have no common
perpendicular, SACCHERI proves that such lines always ap-
proach nearer and nearer to each other[Prop. XXIIL], and that
their distance apart finally becomes smaller than any segment,
taken as small as we please [Prop. XXV.]. In other words,
if there are two coplanar straight lines, which do not cut
each other, and have no common perpendicular, then these
lines must be asympiotic to each other.*

To prove that such asymptotic lines effectively exist,
SAccHERI proceeds as follows:—?2

A A

N

Fig. 24.

Among the lines of the pencil through 4, coplanar with
the line &, there exist lines which cut 4, as, e. g., the line
AB perpendicular to 4; and lines which have a common

1 With this result the question raised by the Greeks, as to
the possibility of asymptotic lines in the same plane, is answered
in the affirmative. Cf. p. 3.

2 The statement of SACCHERI’s argument upon the asymptotic
lines differs in this edition from that given in the Italian and
German editions. The changes introduced were suggested to me
by some remarks of Professor CARSLAW.
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perpendicular with 4, as, e. g, the line 44  perpendicular
to A58 [cf. Fig. 24].

If AP cuts &, every other line of the pencil, which
makes a smaller angle with 4.3 than the acute angle B42,
also cuts 4. On the other hand, if the line 4Q, different from
AA, has a common perpendicular with 4, every other line,
which makes with 428 a larger acute angle than the angle
BAQ, has a common perpendicular with & [cf. § 39,
case (ii).]

Also it is clear that, if we take the lines of the pencil
through 4, from the ray 4B towards the ray 44", we shall
not find, among those which cut 4, any line which is the last
line of that set. In other words, the angles 42, which the
lines A2, cutting 4, make with 4B, have an upper limit, the
angle BAX, such that the line 4X does not cut 4.

Then SAccrERI proves [Prop. XXX.] that, if we start with
AA’ and proceed in the pencil through 4 in the direction
opposite to that just taken, we shall not find any last line in
the set of lines which have a common perpendicular with 4:
that is to say, the angles B4Q, where AQ has a common
perpendicular with &, have a lower Zimit, the angle BAY,
such that the line 4Y does not cut 4 and has not a com-
mon perpendicular with &,

It follows that 4Y is a line asymptotic to &,

Further SACCHERI proves that the two lines AX and 4V
coincide [Prop. XXXIL]. His argument depends upon the
consideration of points at infinity; and it is better to sub-
stitute for it another, founded on his Prop. XXL., viz., On tke
Hypothesis of the Right Angle, and on that of the Acute Angle,
the distance of a point on one of the lines containing an angle
Jrom the other bounding line increases indefinitely as this point
moves further and further along the line.
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The suggested argument is as follows:

P
A y
Pl\ x
B Q
Fig. 25.

If AX [Fig. 25] does not coincide with 4¥; we can take
a point P on AY, such that the perpendicular £7” from P
to AX satisfies the inequality
¢3) PF > AB. [Prop. XXI1.]
On the other hand, if 2Q is the perpendicular from 2 to 4,
the property of asymptotic lines [Prop. XXIII] shows that
AB > PQ.
But 2 is on the opposite side of AX from 2.
Therefore PQ > PP
Combining this inequality with the preceding, we find that
AB> PP,
which contradicts (1).
Hence AX coincides with 4Y.
We may sum up the preceding results in the following

theorem:—
A
q_/[\ ,

b B ®
Fig. 26.

On the Hypothesis of the Acute Angle, there exist in the
pencil of lines through A two lines p and g, asymplotic to &,
one towards the right, and the other lowards the left, which
divide the pencil into two parts. The first of these consists of
the lines whick intersect b, and the second of those whick have a
common perpendicular with it

1 In SACCHERI's work there wiil be found many other inter-
esting theorems before he reaches this result. Of these the
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§ 17. At this point SACCHERI attempts to come to a
decision, trusting to intuition and to faith in the validity of
the Fifth Postulate rather than to logic. To prove that #e
Hypothesis of the Acute Angle is absolutely false, because it is
repugnant to the nature of the straight line [Prop. XXXIIL] he
relies upon five Lemmas, spread over sixteen pages. In sub-
stance, however, his argument amounts to the stafement
that if the Hypothesis of the Acute Angle were true, the
lines p (Fig. 26) and b would have a common pervendicular
at their common point at infinity, whick is contrary to the
nature of the straight line, The so-called demonstration of
Saccherr is thus founded upon the extension to infinity of
certain properties which are valid for figures at a finite
distance.

However, SACCHERI is not satisfied with his reasoning
and attempts to reach the wished-for proof by adopting
anew the old idea of equidistance. It is not worth while to
reproduce this second treatment as it does not contain any-
thing of greater value than the discussions of his prede-
cessors.

Still, though it failed in its aim, SACCHERI's work is of
great importance. In it the most determined effort had been
made on behalf of the Fifth Postulate; and the fact that he
did not succeed in discovering any contradictions among
the consequences of the Hypothesis of the Acute Angle, could
not help suggesting the question, whether a consistent log-
ical geometrical system could not be built upon this hypo-

following is noteworthy: Jf fwo straight lines continually approack
cack other and their distance apart remains always grealer than a
given segment, then the Hypothesis of the Acute Angle s impossible.
Thus it follows that, if we postulate the absence of asymptotic
straight lines, we must accept the truth of the Euclidean hypo-
thesis.
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thesis, and the Euclidean Postulate be impossible of demon-
stration.?

Johann Heinrich Lambert [1728—1777]

§ 18. It is difficult to say what influence SACCHERI'S
work exercised upon the geometers of the 18th century.
However, it is probable that the Swiss mathematician
LaAMBERT was familiar with it, since in his Z%eorie der Par-
allellinien [1766) he quotes a dissertation by G. S. KLUGEL
[1739—1812]3, where the work of the Italian geometer
is carefully analysed. LAMBERT's Theorie der Parallellinien
was published after the author’s death, being edited by
J. BernourLr and C. F. HINDENBURG. It is divided into
three parts. The first part is of a critical and philosophical
nature. It deals with the two-fold question arising out of the
Fifth Postulate: whether it can be proved with the aid of
the preceding propositions only, or whether the help of some
other hypothesis is required. The second part is devoted to

1 The publication of SACCHERI's work attracted considerable
attention. Mention is made of it in two Histories of Mathematics:
that of J. C. HEILBRONNER (Leipzig, 1742) and that of MONTUCLA
(Paris, 1758). Further it is carefully examined by G. S. KLUGEL
in his dissertation noted below (Note (3)). Nevertheless it was
soon forgotten, Not till 1889 did E. BELTRAMI direct the attention
of geometers to it again in his Note: Un precursore italiono
di Legendre ¢ di Lobatschewsky. Rend. Acc. Lincei (4), T.V. p. 441
—448. Thereafter SACCHERI'S work was translated into English by
G. B. HALSTED (Amer. Math. Monthly, Vol. I. 1894 et seq.); into
German, by ENGEL and STACKEL (7%. der P. 1895); into Italiam,
by G. Boccardini (Milan, Hoepli, 1904).

2 Cf. SEGRE: Conmgetture intorno alla influensa di Girolamo
Saccheri sulla formazione della geometria non euclidea. Atti Acc.
Scienze di Torino, T. XXXVIIL (1903).

3 Conatuum praecipuorum theoriam parallelarum demonstrandi
recensio, quam publico examini submittent A. G. Kaestner et auclor
respondens G. S. Klhigel, (Gottingen, 1763).
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the discussion of different attempts in which the Euclidean
Postulate is reduced to very simple propositions, which
however, in their turn, require to be proved. The third, and
most important, part contains an investigation resembling
that of SAccuERrl, of which we now give a short summary.*

§ 19. Lampert’s fundamental figure is a guadrilateral
with three right angles, and three hypotheses are made as to
the nature of the fourth angle. The first is the Hypothesis
of the Right Angle; the second, the Hypothesis of the Obtuse
Angle; and the third, the Hypothesis of the Acute Angle. Also
in his treatment of these hypotheses the author does not
depart far from SACCHERI's method.

The first hypothesis leads easily to the Euclidean system.

In rejecting the second /ypothesis, LAMBERT relies upon
a figure formed by two straight lines &, &, perpendicular to
a third line 48 (Fig. 27). From points B, By, B,,.. B,
taken in succession upon B B, B, By

the line &, the perpen- &
diculars, BA, B.A,, B,A,,
.. BrA, are drawn to the
line @. He proves, in the @
first place, that these per- 4 Ay A, Aq

Fig. 27.

pendiculars  continually
diminish, starting from the perpendicular B4. Next, that
the difference between each and the one which succeeds it
continually increases.
Therefore we have
BA—B,Ax > n(BA—B:4,).
But, if 7 is taken sufficiently large, the second member

1 Cf. Magazin fir reine und angewandte Math., 2. Stiick,
p- 137—164. 3. Stiick, p. 325—358, (1786). LAMBERT’s work was
again published by ENGEL and STACKEL (7%. der P.} p. 135—208,
preceded by historical notes on the author.



46 1I. The Forerunners of Non-Euclidean Geometry.

of this inequality becomes as great as we please [Postulate
of Archimedes]®, whilst the first member is always less than
BA. This contradiction allows LAMBERT to declare that the
second hypothesis is false.

In examining the #%érd Aypothesis, LAMBERT again avails
himself of the preceding figure. He proves that the perpen-
diculars B4, B4, .. B.A4, continually increase, and that
at the same time the difference between each and the one
which precedes it continually increases. As this result does
not lead to contradictions, like SACCHERI he is compelled to
carry his argument further. Then he finds, that, on the #ird
hypothesis the sum of the angles of a triangle is less than
two right angles; and going a step further than SACCHER],
he discovers that the defect of a polygon, that is, the differ-
ence between 2 (z—2) right angles and the sum of its angles,
is proportional to the area of the polygon. This result can
be obtained more easily by observing that both the area and
the defect of a polygon, which is the sum of several others,
are, respectively, the sum of the areas and of the defects of
the polygons of which it is composed.?

§ 20. Another remarkable discovery made by LAMBERT
has reference to the measurement of geometrical magnitudes.
It consists precisely in this, that, whilst in the ordinary geo-
metry only a relative meaning attaches to the choice of a

t The Postulate of Archimedes is again used here in a form
which assumes the infinity of the straight line (cf. SAccrERI, Note
p- 37

2 It is right to point out that in the Aypothesis af the Acute
Angle SACCHERT had already met the defect here referred to, and
also noted implicitly that a quadrilateral, made up of several
others, has for its defecz the sum of the defects of its parts (Prop.
XXV). However he did not draw any conclusion from this as to
the area being proportional to the defect.
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particular unit in the measurement of lines, in the geometry
founded upon the tkird Aypothesis, we can attach to it an
absolute meaning,

First of all we must explain the distinction, which is
here introduced, between absolute and relative. In many
questions it happens that the elements, supposed given, can
be divided into two groups, so that those of the first group
remain fixed, right through the argument, while those of the
second group may vary in a number of possible cases. When
this happens, the explicit reference to the data of the first
groupA is often omitted. All that depends upon the varying
data is considered relative; all that depends upon the fixed
data is absolute.

~For example, in the theory of the Domain of Ration-
ality, the data of the second group [the variable data] are
taken as certain simple irrationalities [constituting a dase],
and the jfirst group consists simply of unity [1], which is
often passed over in silence as it is common to all domains.
In speaking of a number, we say that it is rational relatively
to a given base, if it belongs to the domain of rationality
defined by that base. We say that it is rational absolutely,
if it is proved to be rational with respect to the base 1,
which is common to all domains.

Passing to Geometry, we observe that in every actual
problem, we generally take certain figures as given and
therefore the magnitudes of their parts. In addition to these
variable data [of the second group], which can be chosen in
an arbitrary manner, there is always implicitly assumed the
presence of the fundamental figures, straight lines, planes,
pencils, etc. [fixed data or of the first group]. Thus, every
construction, every measurement, every property of any
figure ought to be held as relative, if it is essentially relative
to the variable data. It ought, on the other hand, to be
spoken of as absolute, if it is relative only to the fixed data



48 II. The Forerunners of Non-Euclidean Geometry.

[the fundamental figures], or, if, being enunciated in terms
of the variable data, it only appears to depend upon them,
so that it remains fixed when these vary.

In this sense it is clear that in ordinary geometry the
measurement of lines has necessarily a relative meaning.
Indeed the existence of similar figures does not allow us in
any way to individualize the size of a line in terms of funda-
mental figures [straight line, pencil, etc.].

For an angle on the other hand, we can choose a method
of measurement which expresses one of its absolute pro-
perties. It is sufficient to take its ratio to the angle of a
complete revolution, that is, to the entire pencil, this being
one of the fundamental figures.

We return now to LAMBERT and his geometry corre-
sponding to the third Aypothesis. He observed that with
every segment we can associate a definite angle, which can
easily be constructed. From this it follows that every seg-
ment is brought into correspondence with the fundamental
figure [the pencil]. Therefore, in the new [hypothetical]
geometry, we are entitled to ascribe an absolute meaning
also to the measurement of segments.

To show in the simplest way how to every segment we
can find a corresponding angle, and thus obtain an ab-
solute numerical measurement of lines, let us imagine an
equilateral triangle constructed upon every segment. We
are able to associate with every segment the angle of the
triangle corresponding to it and then the measure of this
angle. Thus there exists a one-one correspondence between
segments and the angles comprised between certain limits.

But the numerical representation of segments thus ob-
tained does not enjoy the distributive property which belongs
to lengths. On taking the sum of two segments, we do not
obtain the sum of the corresponding angles. However, a
function of the angle, possessing this property, can be ob-
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tained, and we can associate with the segment, not the said
angle, but this function of the angle. For every value of the
angle between certain limits, such a function gives an adsolute
measure of segments. The absolute unit of length is that
segment for which this function takes the value 1.

Now if a certain function of the angle is distributive in
the sense just indicated, the product of this function and an
arbitrary constant also possesses that property. It is there-
fore clear that we can always choose this constant so that
the absolute unit segment shall be that segment which corre-
sponds to any assigned angle: e. g, 45° The possibility of
constructing the absolute unit segment, gi{'en the angle, de-
pends upon the solution of the following problem:

To construct, on the Hypothesis of the Acute Angle, an
equilateral triangle with a given defect.

So far as regards the absolute measure of the areas of
polygons, we remark that it is given at once by the defect
of the polygons. We can also assign an absolute measure
for polyhedrons.

But with our intuition of space the absolute measure
of all these geometrical magnitudes seems to us impossible.
Hence if we deny the existence of an absolute unit for segments,
we can, with Lambert, reject the third hypothesis.

§ 21. As LaMBerr realized the arbitrary nature of this
statement, let it not be supposed that he believed that he
had in this way proved the Fifth Postulate.

To obtain the wished-for proof, he proceeds with his
investigation of the consequences of the #4ird Aypettesis, but
he only succeeds in transforming his question into others
equally difficult to answer.

Other very interesting points are contained in the
Theorie der Parallellinien, for example, the close resemblance
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to spherical geometry® of the plane geometry which would
hold, if the second hypothesis were valid, and the remark that
spherical geometry is independent of the Parallel Postulate.
Further, referring to the t4ird Zypothesis, he made the follow-
ing acute and original observation: From this 1 should al-
most conclude that the third hypothesis would occur in the case
of an imaginary sphere.

He was perhaps brought to this way of looking at the
question by the formula (4 + B+ C—m) 7%, which expresses
the area of a spherical triangle. If in this we write for the
radius 7, the imaginary radius V-1 » we obtain

7?[t—A—B—C];
that is, the formula for the area of a plane triangle on
LAMBERT’s #hird hypothesis.?

§ 22. LaMBERT thus left the question in suspense. In-
deed the fact that he did not publish his investigation allows
us to conjecture that he may have discovered another way
of regarding the subject.

Further, it should be remarked that, from the general
want of success of these attempts, the conviction began to
be formed in the second half of the 18th Century that it
would be necessary to admit the Euclidean Postulate, or
some other equivalent postulate, without proof.

In Germany, where the writings upon the question
followed closely upon each other, this conviction had al-
ready assumed a fairly definite form. We recognize it in
A. G. KisTNER,? a well-known student of the theory of
parallels, and in his pupil, G. S. KLUGEL, author of the

1 In fact, in Spherical Geometry the sum of the angles of a
quadrilateral is greater than four right angles, etc.

2 Cf. ENGEL u. STACKEL; 7%. der P. p. 146.

3 For some information about KASTNER, cf. ENGEL u. STACKEL;
Tk, der P. p. 139—141.
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valuable criticism of the most celebrated attempts to de-
monstrate the Fifth Postulate, referred to on p. 44 [note 3].
In this work KLUGEL finds each of the proposed proofs
insufficient and suggests the possibility of non-intersecting
straight lines being divergent [Mdglick wire es freilich, dafi
Gerade, die sich nikct schneiden, voncinander abweichen]. He
adds that the apparent contradiction which this presents is
not the result of a rigorous proof, nor a consequence of the
definitions of straight lines and curves, but rather something
derived from experience and the judgment of our senses.
[Daff so etwas widersinnig ist, wissen wir nickt infolge strenger
Schliisse oder vermige deutlicher Begriffe von der geraden und
der Erummen Linie, vielmehr durch die Erfakrung und durch
das Urteil unserer Augen).

The investigations of SAccHERI and LAMBERT tend to
confirm KLUGEL’s opinion, but they cannot be held to be
a proof of the impossibility of demonstrating the Euclidean
hypothesis. Neither would a proof be reached if we proceed-
ed along the way opened by these two geometers, and de-
duced any number of other propositions, not contradicting
the fundamendal theorems of geometry.

Nevertheless that one should go forward on this path,
without SACCHERPs presupposition that contradictions would
be found there, constitutes historically the decisive step in the
discovery that Euctip’s Postulate could not be proved, and
in the creation of the Non-Euclidean geometries.

But from the work of SaccHer! and LAMBERT to that of
LosaTscHEWSKY and Boryai, which is based upon the above
idea, more than half a century had still to pass!

The French Geometers towards the End of the
18th Century.
§ 23. The critical study of the theory of parallels,
which had already led to results of great interest in Italy and
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Germany, also made a remarkable advance in France to-
wards the end of the 18th Century and the beginning of
the 1gth,

D’ALEMBERT [1717—1783], in one of his articles on
geometry, states that ‘La definition et les propriétés de la
ligne droite, ainsi que des lignes paralléles sont I'écueil et
pour ainsi dire le scandale des éléments de Géométrie.’*
He holds that with a good definition of the straight line
both difficulties ought to be avoided. He proposes to define
a parallel to a given straight line as any other coplanar
straight line, which joins two points which are on the same
side of and equally distant from the given line. This definition
allows parallel lines to be constructed immediately. However
it would still be necessary to show that these parallels are
equidistant. This theorem was offered, almost as a challenge,
by D’ALEMBERT to his contemporaries.

§ 24. DE MoRcAN, in his Budget of Paradoxes?, relates
that LAGRANGE [1736—1813], towards the end of his life,
wrote a memoir on parallels. Having presented it to the
French Academy, he broke off his reading of it with the ex-
clamation: ‘Il faut que j'y songe encore! and he withdrew
the MSS.

Further HoUEL states that LAGRANGE, in conversation
with BioT, affirmed the independence of Spherical Trigon-
ometry from EucLip’s Postulate.3 In confirmation of this
statement it should be added that LAGRANGE had made a spe-
cial study of Spherical Trigonometry,* and that he inspired,

1 Cf. D’ALEMBERT: Meélanges de Litterature, & Histoive, et
de Philosophie, T, V. § 11 (1759). Also: Encyclopédie Méthodigue
Mathématique; T. 1L p. 519, Article: Paralléles (1785).

2 A. DE MORGAN: A Budget of Paradoxes, p.173. (London, 1872).

3 Cf. J. HoUEL: Essai critique sur les principes fondamentaux
de la géométrie élémentaire, p. 84, Note (Paris, G. VILLARs, 1883\

4 Cf. Miscellanea Taurinensia, T. II. p. 299—322 (1760—61).
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if he did not write, a memoir ‘Swr les principes fondamentaux
de la Mécanigue [1760—1]*, in which FoncENEX discussed
a question of independence, analogous to that above noted
for Spherical Trigonometry. In fact, FONCENEX shows that
the analytical law of the Composition of Forces acting at a
point does not depend on the Fifth Postulate, nor upon any
other which is equivalent to it.?

§ 25. The principle of similarity, as a fundamental
notion, had been already employed by WALLIS in 1663 [cf.
§ 9]. It reappears at the beginning of the 1gth Century, sup-
ported by the authority of two famous geometers: L. N. M.
CARNOT [1753—1823] and LAPLACE [1749—1827].

In a Note [p. 481] to his Gdométrie de Position [1803]
Carnor affirms that the theory of parallels is allied to the
principle of similarity, the evidence for which is almost on
the same plane as that for eguwality, and that, if this idea is
once admitted, itis easy to establish the said theory rigorously.

LAPLACE [1824] observes that NEwToN’s Law [the Law
of Gravitation], by its simplicity, by its generality and by the
confirmation which it finds in the phenomena of nature, must
be regarded as rigorous. He then points out that one of its
most remarkable properties is that, if the dimensions of all
the bodies of the universe, their distances from each other,
and their velocities, were to decrease proportionally, the
heavenly bodies would describe curves exactly similar to
those which they now describe, so that the universe, reduced
step by step to the smallest imaginable space, would always
present the same phenomena to its observers. These pheno-
mena, he continues, are independent of the dimensions of the
universe, so that the simplicity of the laws of nature only allows
the observer to recognise their ratios. Referring again to this

1 Cf. LAGRANGE: Oeuvres, T, VIL p. 331—363.
2 Cf. Chapter VI.
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astronomical conception of space, he adds in a Note: ‘The
attempts of geometers to prove EUCLID’s Postulate on Parallels
have been up till now futile. However no one ¢an doubt this
postulateand the theorems which Eucripdeduced from it. Thus
the notion of space includes a special property, self-evident,
without which the properties of parallels cannot be rigorously
established. The idea of a bounded region, e. g., the circle,
contains nothing which depends on its absolute magnitude.
But if we imagine its radius to diminish, we are brought
without fail to the diminution in the same ratio of its circum-
ference and the sides of all the inscribed figures. This pro-
portionality appears to me a more natural postulate than
that of EucLip, and it is worthy of note that it is discovered
afresh in the results of the theory of universal gravitation.’*

§ 26. Along with the preceding geometers, it is right
also to mention J. B. FOURIER [1768—1830], for a discussion
on the straight line which he carried on with Monge.? To
bring this discussion into line with the investigations on
parallels, we need only go back to D’ALEMBERT’s idea that
the demonstration of the postulate can be connected with
the definition of the straight line [cf. § 23].

Fourier, who regarded the distance between two points
as a prime notion, proposed to define first the sphere; then
the plane, as the locus of points equidistant from two
given points;3 then the straight line, as the locus of the
points equidistant from three given points. This method

1 Cf. LAPLACE. Oeuvres, T. V1. Livre, V. Ch. V. p. 472.

2 Cf. Séances de PEcole normale: Débats, T. L p. 28—33
(x795). This discussion was reprinted in Mathésis. T. IX. p. 139
—141 (1883).

3 This definition of the plane was given by LEIBNITZ about
a century before. Cf. Opuscules el fragments inédits, edited by
L. COUTURAT, p. 554—5. (Paris, Alcan, 1903).
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of presenting the problem of the foundations of geometry
agrees with the opinions adopted at a later date by other
geometers, who made a special study of the question of
parallels {W. Borvar, N. LoBATSCHEWSKY, DE TiLy]. In
this sense the discussion between Fourier and MoNGE finds
a place among the earliest documents which refer to Noz-
Euclidean geometry.*

Adrien Marie Legendre [1752—1833).

§ 27. The preceding geometers confined themselves to
pointing out difficulties and to stating their opinions upon
the Postulate. Legendre, on the other hand, attempted to
transform it into a theorem. His investigations, scattered
among the different editions of his Eléments de Géométrie
[1794—1823], are brought together in his Refidxions sur
difffyentes manitres de démontrer la théorie des paralléles ou
le théoréme sur la somme des trois angles du triangle. [Mém.
Ac. Sc., Paris, T. XIIIL 1833.]

In the most interesting of his attempts, LEGENDRE, like
SAcCHERI, approaches the question from the side of the sum
of the angles of a triangle, which sum he wishes to prove
equal to two right angles.

With this end in view, at the commencement of his work
he succeeds in rejecting SACCHERI's Hypothesis of the Obtuse
Angle, since he establishes #hat the sum of the angles of any
triangle is either less than [Hypothesis of the Acute Angle] or
equal to [Hypothesis of the Right Angle] two right angles.

We reproduce a neat and simple proof which he gives
of this theorem:

Let 7 equal segments 4, 4,, A.A4,, ... Ay Anrt, be taken

1 To this we add that later memoirs and investigations
showed that Fourier’s definition also fails to build up the Eucli-
dean theory of parallels, without the help of the Fifth Postulate,
or some other equivalent to it
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one after the other on a straight line [Fig. 28]. On the same
side of the line let ~ equal triangles be constructed, having
for their third angular points 5;B,...B,. The segments
B, B,, B, B,,... By, B,, which join these vertices, are equal
and can be taken as the bases of 7 equal triangles, B, 4, 5.,

8’ BZ HS B’ B‘ .BgAJ.Bs, ces .Bn.—x
AxB,. The figure
P A R F is completed by
a 2 e @ addingthe triangle
B, 4 B
- A " -1 n+1y
Ay A, ‘:’ . X s which is equal to
ig: 28.

the others.

Let the angle B, of the triangle A4,5,4, be denoted by
B, and the angle 4, of the consecutive triangle by a.

Then B < a.

In fact, if B > @, by comparing the two triangles 4,5, 4,
and B, 4,5B,, which have two equal sides, we would deduce
A4, > B.B,.

Further, since the broken line A4,8.8, ... Byi; Auis
is greater than the segment 4,4, ,,

A B A1 BB, + Ayty Buya >n A4,
i e, 2 4B, >n(d.d,—B.B,).

But if ~ is taken sufficiently great, this inequality con-
tradicts the Postulate of Archimedes.

Therefore A4, A, is not greater than 5,5,,
and it follows that it is impossible that > a.

Thus we have g <oa.

From this it readily follows that the sum of the angles ot
the triangle 4,5, 4, is less than or equal to two right angles.

This theorem is usually, but mistakenly, called Legendre's
First Theorem. We say mistakenly, because SaccHERI had
already established this theorem almost a century earlier [cf
p. 38] when he proved that the AHypothesis of the Obtuse
Angle was false.
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The theorem usually called Zegendre's Second Theorem
was also given by SaccHery, and in a more general form
[cf. p. 29]. Itis as follows:

If the sum of the angles of a triangle is less than or
equal to two right angles in only one triangle, it is respectively
less than or equal to two right angles in every other triangle.

We do not repeat the demonstration of this theorem, as
it does not differ materially from that of SACCHERL

We shall rather show how LEGENDRE proves #iaf the
sum of the three angles of a triangle is equal to two right
angles.

Suppose that in the triangle 4B8C [cf. Fig. 29]

X A+ LB+ <L C< 2 right angles.

A point D being taken on 4B, the transversal D is
drawn, making the angle 4ADFE
equal to the angle B. In the quadri-
lateral DBCE the sum of the angles E
is less than 4 right angles.

Therefore ICAED > I ACB.
The angle £ of the triangle 4DE
is then a perfectly definite [decreas-
ing] function of the side 40D: or, & _ b B
what amountsto the same thing, the Fig. 2o
length of the side 4.0 is fully determined when we know the
size (in right angles) of the angle Z, and of the two fixed
angles 4, B.

But this result Legendre holds to be absurd, since the
length of a line has not a meaning, unless one knows the unit
of length to which it is referred, and the nature of the question
does not indicate this unit in any way.

In this way the hypothesis

X A4+ LB+ I C< 2 right angles
is rejected, and consequently we have
K4 + LB + < C= 2 right angles.

C
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Also from this equality the proof of Euclid’s Postulate
follows easily.

LEGENDRE's method is thus based upon LAMBERT’s postu-
late, which denies the existence of an adsolute unit segment.

§ 28. In another demonstration LEGENDRE makes use of
the hypothesis:

From any point whatever, taken within an angle, we can
always draw a straight line whick will cut the two arms of
the angle

He proceeds as follows:

Let ABC be a triangle, in which, if possible, the sum of
the angles is less than two right angles.

Let 2 right angles— <C A— <C B— < C=a [the defect].

Find the point 4, symmetrical to 4, with respect to the
side BC. [cf. Fig. 30.]

The defect of the new tri-
angle BCA’ is also a. In virtue
of the hypothesis enunciated
above, draw through 4 a
transversal meeting the arms
of the angle 4 in B, and C,.
It can easily be shown that the
B, defect of the triangle 45, C; is

the sum of the defects of the

four triangles of which it is
composed. [cf. also LAMBERT p. 46.]

Thus this defect is greater than 2 a.

Starting now with the triangle 458, and repeating the
same construction, we get a new triangle whose defect is
greater than 4 o.

1 J. F. Lorenz had already used this hypothesis for the same
purpose. Cf. Grundriff der reinen und angewandien Mathematik,
(Helmstedt, 1791).

A B

Fig. 30.
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After n operations of this kind a triangle will have been
constructed whose defect is greater than 2" a.

But for # sufficiently great, this defect, 2" a, must be
greater than 2 right angles [Postulate of Archimedes], which
is absurd.

It follows that d=y¢, and LA + LB+ L C=2
right-angles.

This demonstration is founded upon the Postulate of
Archimedes. We shall now show how we could avoid using
this postulate [cf. Fig. 31].

Let 4B and HK be two straight lines, of which 48
makes an acute angle, and AKX a right angle, with 44.

Fig. 31.

Draw the straight line 48" symmetrical to A8 with re-
gard to AH. Through the point / there passes, in virtue of
LEGENDRE’s hypothesis, a line » which cuts the two arms of
the angle B4B". If this line is different from AKX, then also
the line », symmetrical to it with respect to 44, enjoys the
same property of intersecting the arms of the angle. It fol-
lows that the line A& also meets them.

Thus the line perpendicular to 44 and a line making
an acute angle with 4/ always meet.

From this result the ordinary theory of parallels follows,
and 90 4 + <C.B + 9 C= 2 right angles.

In other demonstrations LEGENDRE adopts the methods
of analysis and also makes an erroneous use of infinity.
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By these very varied investigations LEGENDRE believed
that he had finally removed the serious difficulties surrounding
the foundations of geometry. In substance, however, he
added nothing new to the material and to the results ob-
tained by his predecessors. His greatest merit lies in the
elegant and simple form which he was able to give to all his
writings. For this reason they gained a wide circle of readers
and helped greatly to increase the number of disciples of the
new ideas, which at that time were beginning to be formed.

Wolfgang Bolyai [1775—1856].

§ 29. In this article we come to the work of the Hungarian
geometer W, BoLvar. His interest in the theory of parallels
dates back to the time when he was a student at Gottingen
[1796—99], and is probably due to the advice of KASTNER
and of his friend, the young Professor of Astronomy, K. F.
SEVFFER [1762—1822].

In 1804 he sent Gauss, formerly one of his student
friends at Gttingen, a ZVeoria Parallelarum, which contained
an attempt at a proof of the existence of equidistant straight
lines.® Gauss showed that this proof was fallacious. BoLvAl
however, did not on this account give up his study of Axiom
XI, though he only succeeded in substituting for it others,
more or less evident. In this way he came to doubt the possib-
ility of a demonstration and to conceive the impossibility
of doing away with the Euclidean hypothesis. He asserted
that the results derived from the denial of Axiom XI
could not contradict the principles of geometry, since the
law of the intersection of two straight lines, in its usual

t The 7heoria Parallelarum was written in Latin. A German
translation by ENGEL and STACKEL appears in Math. Ann. Bd.
XLIX. p. 168—205 (1897
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form, represents a new datum, independent of those which
precede it.”

WoLFGANG brought together his writings on the principles
of mathematics in the work: Zenfamen juventutem studiosam
in elementa Matheseos [1832—33]; and in particular his in-
vestigations on Axiom X7, while in each attempt he pointed
out the new hypothesis necessary to render the demon-
stration rigorous.

A remarkable postulate to which WoOLFGANG reduces
EucLp’s is the following:

LFour points, not on a plane, always lic upon a sphere;
or, what amounts to the same thing: A circle can always be
drawn through three points ot on a straight line?

The Euclidean Postulate can be deduced from this as
follows [cf. Fig. 32]:

Let A4, BB be two straight lines, one of them being
perpendicular to 4.3, and the other inclined to it at an acute
angle.

If we take a point A on the seg- ‘
ment A5 between 4 and B, and A M
the points M’ A" symmetrical to A/
with respect to the lines BB and

AA', we obtain two points M, M [\ A
not in the same straight line with A7, N
These three points M, M, M lie |[§ B‘;-"---':*

on the circumference of a circle. Also
the lines 44, BB must intersect, 'pg
since they both pass through the cen- Fig. 32.
tre of this circle.

But from the fact that a line which is perpendicular to

"

1 Cf. STACKEL: Die Entdeckung der nichteuklidischen Geometrie
durch ¥. Bolyai, Math, u. Naturw. Ber. aus Ungarn, Bd. XVIL (1901).

2 Cf. W. BOLYAL: Aurzer Grundriss eines Versucks eic., p. 46.
{Maros Visérhely, 1851).
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another straight line and a line which cuts it at an acute angle
intersect, it follows immediately that there can be only one
parallel.

Friedrich Ludwig Wachter [1792—1817].

§ 30. When it had been seen that the EuclideanPostulate
depends on the possibility of a circle being drawn through
any three points not on a straight line, the idea at once sug-
gested itself that the existence of such a circle should be
established as a preliminary to any investigation of parallels.

An attempt in this direction was made by F. L. WACHTER.

WACHTER, a student under Gauss in Géttingen [1809],
and Professor of Mathematics in the Gymnasium of Dantzig,
had made several attempts at the demonstration of the Postu-
late. He believed that he had been successful, first in a letter
to Gauss [Dec., 1816), and later, in a tract, printed at Dantzig
in 1817.*

In this pamphlet he seeks to establish that given any four
points in space, (not on a plane), a sphere will pass through
them. He makes use of the following postulate :

Any four points of space fully determine a surface [the
surface of four points), and two of these surfaces intersect in a
single line, completely determined by three points.

There is no advantage in following the argument by
means of which WACHTER seeks to prove that the suz/face of
Jfour points is a sphere, since he fails to give a precise defini-
tion of that surface in his tract. His deductions have thus
only an intuitive character.

On the other hand a passage in his letter of 1816 de-
serves special notice. It was written after a conversation with
Gauss, when they had spoken of an Anti- Euclidean Geometry.
In this letter he speaks of the surface to which a sphere tends

t Demonstratio axiomatis geometyici in Euclideis undecims.
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as its radius approaches infinity, a surface on the Euclidean
hypothesis identical with a plane. He affirms that even in the
case of the Fifth Postulate being false, there would be a geo-
metry on this surface identical with that of the ordinary plane.

This statement is of the greatest importance as it con-
tains one of the most remarkable results which hold in the
system of geometry, corresponding to SaccHErr's Hypo-
thesis of the Acute Angle [cf. LOBATSCHEWSKY, § 40].F

Bernhard Friedrich Thibaut [1775—1832].

§ 30 (bis). One other erroneous proof of the theorem that the
sum of the angles of a triangle is equal to two right angles should
be mentioned, since it has recently been revived in English textbooks,
and to some extent received official sanction. It depends upon
the idea of direction, and assumes that translation and rotation are
independent operations. It is due to THIBAUT (Grundriff der reinen
Mathematik, 2. Aufl., Gottingen, 1809). GaUss refers to this “proof”
in his correspondence with SCHUMACHER, and shows that it involves
a proposition which not only needs proof, but is, in essence, the
very proposition to be proved. THIBAUT argued as follows:2—

“Let ABC be any triangle whose sides are traversed in order
from A along 4B, BC, CA. While going from 4 to 5 we always
gaze in the direction 485 (4B being produced to &), but do not
turn round., On arriving at B we turn from the direction 55 by a
rotation through the angle 45C, until we gaze in the direction BCc.
Then we proceed in the direction BCc as far as C, where again
we turn from Cr to CAz through the angle <CA4; and at last arriving
at 4, we turn from the direction 4a to the first direction 45
through the external angle a4B. This done, we have made a
complete revolution,— just as if, standing at some point, we had
turned completely round; and the measure of this rotation is 2 .
Hence the external angles of the triangle add up to 2w, and the
internal angles 4+ B4 C=mw. Q.E.D.”

1 With regard to WACHTER, cf. P. STACKEL: Ffriedrich Ludwig
Wachter, ein Beitrag zur Geschichte der nichteuklidischen Geometrie.
Math. Ann. Bd. LIV. p. 49— 85. (1901). In this article are reprinted
WACHTER’s letters upon the subject and the tract of 1817 referred
to above.

2 [For further discussion of this “proof”’ see W. B. FRANK-
LAND's Theories of Parallelism, (Camb.Univ. Press, 1910), from which
this version is taken, and HEATH's Euclid, Vol. L, p. 321.]
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The Founders of Non-Euclidean Geometry.

Carl Friederich Gauss [1777—1855].

§ 31. Twenty centuries of useless effort, and in particular
the last unsuccessful investigations on the Fifth Postulate, con-
vinced many of the geometers, who flourished about the be-
ginning of last century, that the final settlement of the theory
of parallels involved a problem whose solution was impossible,
The Géttingen school had officially declared the necessity
of admitting the Euclidean hypothesis. This view, expressed
by KLUGEL in his Conatuum [cf. p. 44] was accepted and sup-
ported by his teacher, A. G. KAsTNER, then Professor in the
University of Gottingen.®

Nevertheless keen interest was always taken in the
subject; an interest which still continued to provide those
who sought for a proof of the postulate with fruitless labour,
and led finally to the discovery of new systems of geometry.
These, founded like ordinary geometry on intuition, extend
into a far wider field, freed from the principle embodied in
the Euclidean Postulate.

How difficult was this advance towards the new order
of ideas will be clear to any one who carries himself back to
that period, and remembers the trend of the Kantian Philo-
sophy, then predominant.

§ 32. Gauss was the first to have a clear view of a
‘geometry independent of the Fifth Postulate, but this re-

1 Cf. ENGEL u. STACKEL: 7%. der P. p. 139—142,
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mained for quite fifty* years concealed in the mind of the
great geometer, and was only revealed after the works of
LoBATSCHEWSKY [1829-—30] and J. BoLvar [1832] appeared.

The documents which allow an approximate reconstruct-
ion of the lines of research followed by Gauss in his work
on parallels, are his correspondence with W. BoLyar, OLBERS,
SCHUMACHER, GERLING, TAURINUS and BESSEL [1799—1844];
two short articles in the Gdtt. gelehrten Anzeigen [1816, 1822];
and some notes found among his papers, [1831].?

Comparing the various passages in Gauss’s letters, we
can fix the year 1792 as the date at which he began his ‘Med-
itations’,

The following portion of a letter to W. Borvar [Dec. 17,
1799] proves that Gauss, like SaccHERT and LAMBERT before
him, had attempted to prove the truth of Postulate V. by as-
suming it to be false.

‘As for me, I have already made some progress in my
work. However the path I have chosen does not lead at
all to the goal which we seek, and which you assure me you
have reached.3 It seems rather to compel me to doubt the
truth of geometry itself.

‘It is true that I have come upon much which by most
people would be held to constitute a proof: but in my eyes
it proves as good as notking. For example, if one could
show that a rectilinear triangle is possible, whose area would
be greater than any given area, then I would be ready to
prove the whole of geometry absolutely rigorously.

‘Most people would certainly let this stand as an Axiom;
but I, no! It would, indeed, be possible that the area might

1 [It would be more correct to say over thirty.]

2 Cf, Gauss, Werke, Bd. VIII. p. 157—268.

3 It is to be remembered that W. BoLvAl was working at
this subject in Gottingen and thought he had overcome his diffi-
culties, Cf. § 29.
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always remain below a certain limit, however far apart the
three angular points of the triangle were taken.

In 1804, replying to W. BoLval on his Z%eoria parall-
elarum, he expresses the hope that the obstacles by which
their investigations had been brought to a standstill would
finally leave a way of advance open.”

From all this, STACKEL and ENGEL, who collected and
verified Gauss’s correspondence on this subject, come to the
conclusion that the great geometer did not recognize the
existence of a logically sound Non-Euclidean geometry by
intuition or by a flash of genius: that, on the contrary, he
had spent upon this subject many laborious hours before he
had overcome the inherited prejudice against it.

Did Gauss, when he began his investigations, know the
writings of SaccHer! and LaMBerT? What influence did they
exert upon his work? Segre, in his Congetture, already re-
ferred to [p. 44 note 2], remarks that both Gauss and W.
Borval, while students at Gottingen, the former from 1795
—98, the later from 1796—99, were interested in the theory
of parallels. It is therefore possible that, through KASTNER
and SEVFFER, who were both deeply versed in this subject
they had obtained knowledge both of the Euclides ab omni
naevo vindicatus and of the Theorie der Parallellinien. But
the dates of which we are certain, although they do not con-
tradict this view, fail to confirm it absolutely.

§ 33. To this first period of Gauss’s work, after 1813
there follows a second. Of it we obtain some knowledge
chiefly from a few letters, one written by WACHTER to Gauss
[1816]; others sent by Gauss to GERLING [1819], TAURINUS
[1824] and ScuumacHER [1831]; and also from some notes
found among Gauss’s papers.

1 [It should be noticed that these efforts were still directcd
towards proving the truth of Euclid’s postulate.]
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These documents show us that Gauss, in this second
period, had overcome his doubts, and proceeded with his de-
velopment of the fundamental theorems of a new geometry,
which he first calls Anti-Fuclidean [cf. WACHTER’s letter quoted
on p. 62]; then Astral Geometry [following SCHWEIKART, cf.
p. 761; and finally, Non-Zuclidean [cf. letter to SCHUMACHER].
Thus he became convinced that the Non-Euclidean Geometry
did not in itself involve any contradiction, though at first
sight some of its results had the appearance of paradoxes
[letter to SCHUMACHER, July 12, 1831].

However Gauss did not let any rumour of his opinions
get abroad, being certain that he would be misunderstood.
[He was afraid of the clamour of the Boeotians; letter to BESSEL,
Jan. 27, 1829). - Only to a few trusted friends did he reveal
something of his work. When circumstances compel him to
write to TAurNUS [1824] on the subject, he begs him to
keep silence as to the information which he imparted to him.

The notes found among Gauss’s papers contain two
brief synopses of the new theory of parallels, and probably
belong to the projected exposition of the Non-Euclidean Geo-
metry, with regard to which he wrote to SCHUMACHER [on
May 17, 1831]: ‘In the last few weeks I have begun to put
down a few of my own Meditations, which are already to
some extent nearly 40 years old. These I had never put in
writing, so that I have been compelled three or four times
to go over the whole matter afresh in my head. Also I wished
that it should not perish with me.’

§ 34. Gauss defines parallels as follows:*
If the coplanar straight lines AM, BN, do not intersect
eack other, while, on the other hand, every straight line through

1 [In this section upon GAUss’s work on Parallels fuller use
has been made of the material in his Collected Works (Gauss,
Werke, Bd. VIII, p. 202—9)].
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A between AM and AB cuts BN, then AM is said to be paral-

lel to BNV [fig. 33).

He supposes a straight

B line passing through 4, to
\N start from the position A5,

and then to rotate continu-

ously on the side towards

A M which BN is drawn, till it
reaches the position AC, in
C¥ B4 produced. This line be-

gins by cutting BV and in the
end it does not cut it. Thus
there can be one and only
one position, separating the lines which intersect BN from
those which do not intersect it. This must be the fizs# of the
lines, which do not cut B/V: and thus from our definition it
is the parallel 4/; since there can obviously be no Zasz line
of the set of lines which intersect BV.

It will be seen in what way this definition differs from
Evcuip’s. If EvcLip’s Postulate is rejected, there could be dif-
ferent lines through A4, on the side towards which BN is
drawn, which would not cut BV. These lines would all be
parallels to BV according to EucLip’s Definition. In GAuss’s
definition only the first of these is said to be parallel
to BNV,

Proceeding with his argument Gauss now points out
that in his definition the starting points of the lines 44/ and
BN are assumed, though the lines are supposed to be pro-
duced indefinitely in the directions of 44 and BN.

L He proceeds to show that #ie parallelism of the line
AM to the line BN is independent of the points A and B, pro-
vided the sense in which the lines are to be produced indefinitely
remain the same.

It is obvious that we would obtain the same parallel 447

Fig. 33.
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if we kept 4 fixed and took instead of B another point 5’
on the line B, or on that line produced backwards.

It remains to prove that if 44/ is parallel to BV for the
point 4, it is also the parallel to BV for any point upon 4,
or upon AM produced backwards.

Instead of 4 [Fig. 34] take another starting point 4" upon
AM. Through 4', between
A'B and A'M, draw the line

A P in any direction. B

Through Q, any point on \)N
AP, between 4 and P, draw P
the line 4Q. S

Then, from the definition, A A' >M
AQ must cut BN, so that it
is clear Q2 must also cut
BN.

Thus A4’ M is the first of
the lines which do not cut BV, and 4 M is parallel to BN,

Again take the point 4" upon AN produced backwards

[Fig. 35].
// \N
~ | P

/1’& ~M
Q

Fig. 34e

Fig. 3s.

Draw through 4', between 4’8 and A'M, the line 4P
in any direction.

Produce 4P backwards and upon it take any point Q.

Then, by the definition, Q4 must cut 54, for example,
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in R. Therefore 4P lies within the closed figure 4 AR5,
and must cut one of the four sides 4’4, AR, RB, and BA.

Obviously this must be the third side R, and therefore
A M is parallel to BNV.

II. The Reciprocity of the Parallelism can also be estab-
lished.

In other words, if AM is parallel to BNV, then BN is
also parallel to AM.

Gauss proves this result as follows:

From any point 2 upon BNV draw BA perpendicular to
AM. Through B draw any line BV’ between BA4 and BN.

At B, on the same side of 48 as BV, make

<X ABC ="*|, LN BN.
There are two possible cases:
Case (i), when BC cuts AM [cf. Fig. 36].
Case (ii), when BC does not cut 4M [cf. Fig. 37].

B

Fig. 36.

Case (i). Let BC cut AM in D, Take AE = AD, and
join BE. Make <CBDF = X BED.

Since AM is parallel to BN, DF must cut B, for
example, in G.

From EM cut off £H equal to DG.

Then, in the triangles BEZH and BDG, it follows that
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X EBH — ¥ DBG.
Therefore < ZBD = <C HBG.
But X EBD — <L N'BN.
Therefore BN’ and BH coincide, and BN’ must cut
AM.

But BN is any line through B, between BA and BNV.
Therefore BN is parallel to 4.

B

E A D H
Fig. 37.

Case (ii). In this case let 2 be any arbitrary point upon

AM. Then with the same argument as above,
< EBD — < GBH.

But < ABD < << ABC.

Therefore < £ZBD < <L N BN.

Therefore <C GBH < JC N'BN.

Therefore BN’ must cut AM.

But BN’ is any line through 5, between B4 and BNV.

Therefore BNV is parallel to 4AM.

Thus in both cases we have proved that if 4/ is parallel
to BX, then BN is parallel to 4M.*

The next theorem proved by Gauss in this synopsis is
as follows:

[r Gauss’s second proof of this theorem is given in the German
translation. However it will be found that in it he assumes that BC
cuts A}, and to prove this the argument used above is necessary.]
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Il Zf the line (1) is parallel to the line (2) and to the
line (3), then (2) and (3) are parallel to ecach otker.

Case (i). Let the line (1) lie between (2) and (3) [cf.
Fig. 38].

Let 4 and B be two points on (2) and (3), and let 453
cut (1) in C.

Through A4 let an arbitrary line 40 be drawn between
APB and (2). Then it must
cut (1), and on being pro-
duced must also cut (3).

Sincethis holds forevery
line such as 4D, (2) is
3 parallel to (3).

B Case (ii). Let the line
(1) be outside both (2) and
(3), and let (2) lie between
(1) and (3) [cf. Fig. 39].

If (2) is not parallel to (3), through any point chosen at
random upon (3), a line different from (3) can be drawn
which is parallel to (2).

This, by Case (i), is also par-
\ allel to (1), which is absurd.
2 This short Note on Parall-
—> els closes with the theorem
that ¢ two lines AM and BN
are parallel, these lines produced
backwards cannot meet.

From all this it is evident that the parallelism of Gauss
means parallelism in a given sense. Indeed his definition of
parallels deals with a line drawn from 4 on a definite side of
the transversal 4.3: e. g., the »ay drawn to the right, so that
we might speak of 4/ as the parallel to BV towards the right.
The parallel from 4 to BNV towards the left is not necessari-
ly AM. If it were, we would obtain the Euclidean hypothesis.

Fig. 38.
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The two lines, in the third theorem, which are each pa-
rallel to a third line, are thus both parallels in the same sense
(both left-hand, or both right-hand parallels).

In a second memorandum on parallels, Gauss goes over
the same ground, but adds the idea of Corresponding Points
on two parallels 44, BB'. Two points A, B are said to corre-
spond, when AB makes equal internal angles with the parallels
on the same side [cf. Fig. g40].

Fig. j0. Fig. 41.

With regard to these Corresponding Points he states the
following theorems:

() Zf 4, B are two corresponding points upon two paral-
lels, and M is the middle point of AB, the line M, perpen-
dicular to AB, is paralled to the two given lines, and every
point on the same side of MV as A is nearer A than B.

(i) ZFf 4, B are two corresponding points upon the
parallels (x) and (2), and A', B two other corresponding points
on the same lines, then A4 = BB', and conversely.

(i) Zf 4, B, C are three points on the parallels (1), (2)

and (3), such that A and B, B and C, correspond, then A and
C also correspond.,
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The idea of Corresponding Points, when taken in con-
nection with three lines of a pencil (that is, three concurrent
lines [cf. Fig. 41] allows us to define the circle as #%e Jocus of
the points on the lines of a pencil whick correspond to a given
point. But this locus can also be constructed when the lines
of the pencil are parallel. In the Euclidean case the locus
is a straight line: but putting aside the Euclidean hypothesis,
the locus in question is a line, having many properties in
common with the circle, but yet not itself a circle. Indeed #f
any three points are laken wupon it, @ circle cannot be drawn
through them. This line can be regarded as the limiting case
of a circle, when its radius becomes infinite. In the Non-
Euclidean geometry of LoBaTscHEWsKY and BoLvar, this locus
plays a most important part, and we shall meet it there under
the name of the Horocycle.*

This work Gauss did not need to complete, for in 1832
he received from WoOLFGANG BoLvarl a copy of the work of
his son JoHANN on Absolute Geometry.

From letters before and after the date at which he
interrupted his work, we know that Gauss had discovered in
his geometry an Absolute Unit of Length [cf. LAMBERT and
LEGENDRE], and that a constant Z appeared in his formulae,
by means of which all the problems of the Non-Euclidean
Geometry could be solved [letter to Taurinus, Nov. 8,
1824].

Speaking more fully of these matters in 1831 [letter to

1 [LOBATSCHEWSKY : Grenzkreis, Courbe-limite or Horicycle. BOL-
YAL; Parazykl, L-linie.

It is interesting to notice that Gauss, even at this date,
seems to have anticipated the importance of the Horocycle. The
definition of Corresponding Points and the statement of their
properties is evidently meant to form an introduction to the dis-
cussion of the properties of this curve, to which he seems to have
given the name Z7ope.]
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ScHUMACHER], he gave the length of the circumference of a
circle of radius 7 in the form

r _r
mk (eé —e )

With regard to &, he says that, if we wish to make the new
geometry agree with the facts of experience, we must suppose
% infinitely great in comparison with all known measurements.

For #= 00, Gauss's expression takes the usual form
for the perimeter of a circle.* The same remark holds for the
whole of Gauss’s system of geometry. It contains EucLip’s
system, as the limiting case, when £=00.2

Ferdinand Karl Schweikart [1780—1859].

§ 35. The investigations of the Professor of Jurispru-
dence, F. K. SCHWEIKART,3 date from the same period as
those of Gauss, but are independent of them. In 1807 he
published Die Theorie der Parallellinien nebst dem Vorschlage
ihrer Verbannung aus der Geometrie. Contrary to what one
might expect from its title, this work does not contain a
treatment of parallels independent of the Fifth Postulate,
but one based on the idea of the parallelogram.

But.at a later date, ScHWEIKART, having discovered a
new order of ideas, developed a geometry independent of
Euclid’s hypothesis. When in Marburg in December, 1818,
he handed the following memorandum to his colleague GER-
LING, asking him to communicate it to Gauss and obtain his
opinion upon it:

1 To show this we need only use the exponential series.

2 For other investigations by Gauss, cf. Note on p. go.

3 He studied law at Marburg and from 1796—98 attended the
lectures on Mathematics given in that University by Professor J. K.
F. HAUFF, the author of various memoirs on parallels, cf. 7%. der
£, p. 243.
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MEMORANDUM.

“There are two kinds of geometry—a geometry in the
strict sense—the Euclidean; and an astral geometry [astra-
lische Grofenlehre].

‘Triangles in the latter have the property that the sum
of their three angles is not equal to two right angles.’

“This being assumed, we can prove rigorously:

a) That the sum of the three angles of a triangle is less
than two right angles;

b) that the sum becomes ever less, the greater the area
of the triangle;

c) that the altitude of an isosceles right-angled triangle
continually grows, as the sides increase, but it can
never become greater than a certain length, which
I call the Constant.

Squares have, therefore, the following form [Fig. 42].

If this Constant were fo7 ws the Radius of the Earth,

_ (so that every line drawn in the
//] universe from one fixed star
to another, distant go° from the
first, would be a tangent to the
surface of the earth), it would be
infinitely greatin comparison with
the spaces which occur in daily
life.

‘TheEuclidean geometry holds
only on the assumption that the
Constant is infinite. Only in this
case is it true that the three angles of every triangle are equal
to two right angles: and this can easily be proved, as soon
as we admit that the Constant is infinite.’*

Fig. 42.

SCHWEIKART's Astral Geometry and Gauss’s Non-Euclid-
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ean Geometry exactly correspond to the systems of Sac-
cHERI and LaMBERT for the Hypothesis of the Acute Angle.
Indeed the contents of the above memorandum can be ob-
tained directly from the theorems of SaccHERI, stated in
KLtGEL's Conatuum, and from LaMBerTs Theorem on the
area of a triangle. Also since SCHWEIKART in his Z%eorie of
1807 mentions the works of the two latter authors, the direct
influence of LAMBERT, and, at least, the indirect influence of
SaccHERI upon his investigations are established.?

In March, 1819 Gauss replied to GERLING with regard
to the Astral Geometry. He compliments SCHWEIKART, and
declares his agreement with all that the sheet of paper sent
to him contained. He adds that he had extended the Astral
Geometry so far that he could completely solve all its pro-
blems, if only ScHWEIKART’s Constant were given. In con-
clusion, he gives the upper limit for the area of a triangle
in the form3

w CC
[log byp (1 + V2)J2 -
ScuweIkART did not publish his investigations.

Franz Adolf Taurinus [1794—1874].

§ 36. In addition to carrying on his own investigations
on parallels, SCHWEIKART had persuaded [1820] his nephew
TAURINUS to devote himself to the subject, calling his atten-

1 Cf. Gauss, Werke, Bd. VIII, p. 180—18I.

2 Cf. SEGRE’s Congetture, cited above on p. 44.

3 The constant which appears in this formula is SCHWEIKART's
Constant C, not GAUss’s constant 4, in terms of which he expressed
the length of the circumference of a circle. (cf. p. 75). The two
constants are connected by the following equation:

C

g Ve
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tion to the Astral Geometry, and to Gauss’s favourable ver-
dict upon it.

TAURINUS appears to have taken up the subject seriously
for the first time in 1824, but with views very different from
his uncle’s. He was then convinced of the absolute truth of
the Fifth Postulate, and always remained so, and he cherish-
ed the hope of being able to prove it. Failing in his first at-
tempts, under the influence of Gauss and SCHWEIKART, he
again began the study of the question. In 1825 he publish-
ed a Theorie der Parallellinien, containing a treatment of the
subject on Non-Euclidean lines, the rejection of #ze Hypothesis
of the Obtuse Angle, and some investigations resembling those
of SaccHERI and LAMBERT on the Hjypothesis of the Acute
Angle. He found in this way SCHWEIKART’s Constant, which
he called a Parameter. He thought an absolute unit of
length impossible, and concluded that all the systems, corre-
sponding to the infinite number of values of the parameter,
ought to hold simultaneously. But this, in its turn, led to con-
siderations incompatible with his conception of space, and
thus TauriNUs was led to reject the Hypothesis of the Acute
Angle while recognising the logical compatibility of the propo-
sitions which followed from it.

In the next year TauriNus published his Geometriae Pri-
ma Elementa [Cologne, 1826], in which he gave an improved
version of his researches of 1825. This work concludes with
a most important appendix, in which the author shows how
a system of analytical geometry could be actually constructed
on the Hypothesis of the Acute Angle.*

With this aim TAURInUS starts from the fundamental for-
mula of Spherical Trigonometry—

1 For the final influence of SACCHERI and LAMBERT upon TAu-
RINUS, cf, SEGRE’s Congetture, quoted above on p. 44.
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a I c+ .6 . ¢ 4
cOSs Z —-COS'é COSZ sm;smk Ccos 4,

In it he transforms the real radius £ into the imaginary radius
4. Using the notation of the hyperbolic functions, we thus
have

a b ¢ . 6 . ¢
(1) cosh — = cosh —- cosh — — sinh — sinh 5 cos 4.

This is the fundamental formula of the Zogaritimic-
Spherical Geometry |logarithmisch-sphirischen Geometrie] of
-TAURINUS.

It is easy to show that in this geometry the sum of the
angles of a triangle is less than 180° For simplicity we take
the case of an equilateral triangle, putting @==4="¢ in (1).

Solving, for cos A4, we obtain

cosh —E—

(1% cos 4 = —_—Y "
cosh7 + 1

But sech %< I.

Therefore cos 4> ¥/,.
Thus A is less than 60° and the sum of the angles of
the triangle is less than 180°.
It is instructive to note, that, from (1*).
Lt (cos 4) =/,.
So that in the limit when @ becomes zero, A is equal to 60°.
Therefore, in the log.-spherical geometry, the sum of the angles
of a triangle tends to 180° when the sides tend to zero.
We may also note that from (1*)
Lt (cos 4) =7/,

E==w
so that in the limit when £ is infinite, A is equal to 60°. There-
fore, when the constant £ tends to infinity, the angles of the
equilateral triangle are each equal to 60° as in the ordinary
geometry.
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More generally, using the exponential forms for the hy-
perbolic functions, it will be seen that in the limit when £ is
infinite (1) becomes

a*=b*+ ¢*—2bc cos 4,

the fundamental formula of Euclidean Plane Trigonometry.

§ 37. The second fundamental formula of Spherical
Trigonometry,

cos A= —cos B cos C + sin B sin Ccos-a~,
by simply interchanging the cosine with the hyperbolic cosine,
gives rise to the second fundamental formula of the Jog.-splker-
ical geometry:
(2) cos A= —cos B cos C + sin B sin C cosh %.
For A= o0 and C==90° we have

1

a
(3) cosh 3= 1 5’

The triangle corresponding to this formula has one angle
zero and the two sides containing it are infinite and parallel
[asymptotic). [Fig. 43.] The angle B, between the side which

B\

a ' }A
20

C

Fig. 43.

is parallel and the side which is perpendicular to C4, is seen
from (3) to be a function of @. From this onward we can
call it the Angle of Parallelism for the distance a [cf. LoBAT-
SCHEWSKY, p. 87].

For B = 45°, the segment BC, which is given by (3), is
ScuweikarT’s Constant [cf. p. 76]. Thus, denoting it by 2,
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P —
cosh 7= Ve,

from which, solving for £, we have
P
é i
log (1 4+ V2)

This relation connecting the two constants 2 and 4 was
given by TauriNnus, The constant Z is the same as that em-
ployed by Gauss [cf. p. 75] in finding the length of the cir-
cumference of a circle.

§ 38. TauriNus deduced other important theorems in
the Jog.-spherical geometry by further transformations of the
formule of Spherical Trigonometry, replacing the real radius
by an imaginary one.

For example, that the area of a triangle is proportional
to its defect [LAMBERT, p. 46]:

that the superior limit of that area is

w P2
[log (1+V2))2
that the length of the circumference of a circle of radius » is

[Gauss, p. 77];

24 sinh % [Gauss, p. 75];
that the area of a circle of radius 7 is
at 4% (cosh %— 1);

that the area of the surface of a sphere and its volume, are

respectively
4T 42 sinh? -g,
and 2143 (sinh cosh 7 — ).

We shall not devote more space to the different analyt-
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ical developments, since a fuller discussion would cast no
fresh light upon the method. However we note that the
results of TAURINUS confirm the prophecy of LAMBERT on
the Z%ird Hypothesis [cf. p. 50], since the formule of the
log-spherical geomelry, interpreted analytically, give the fun-
damental relations between the elements of a triangle traced
upon a sphere of imaginary radius.*

To this we add that TAURINUS in common with LAMBERT
recognized that Spherical Geometry corresponds exactly to
the system valid in the case of the Aypothesis of the Obtuse
Angle: further that the ordinary geometry forms a link be-
tween spherical geometry and the Jog.-spherical geometry.

Indeed, if the radius £ passes continuously from the real
domain to the purely imaginary one, through infinity, we pro-
ceed from the spherical system to the /og.-spherical system,
through the Euclidean.

Although TauriNus, as we have already remarked, ex-
cluded the possibility that a Jog.-spkerical geometry could be
valid on the plane, the theoretical interest, which it offers,
did not escape his notice. Calling the attention of geo-
meters to his formule, he seemed to prophecy the existence

1 At this stage it should be remarked that LAMBERT, simul-
taneously with his researches on parallels, was working at the tri-
gonometrical functions with an imaginary argument, whose connection
with Non-Euclidean Geometry was brought to light by TAURINUS.
Perhaps LAMBERT recognised that the formulae of Spherical Trig-
onometry were still real, even when the real radius was changed
in a purely imaginary one. In this case his prophecy with regard
to the KHypothesis of the Acute Angle (cf. p. 50) would have a firm
foundation in his own work. However we have no authority for
the view that he had ever actually compared his investigations on
the trigonometrical functions with those on the theory of parallels.
Cf. P. STACKEL: Bemerkungen zu Lamberts Theorie der Parallellinien.
Biblioteca Math. p. 107—110. (1899).
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« of some concrete case in which they would find an inter-
pretation.*

t The important service rendered by SCHWEIKART and TAU-
RINUS towards the discovery of the Non-Euclidean Geometry was
recognised and made known by ENGEL and STACKEL. In their
Th. der P., they devote a whole chapter to those authors, and
quote the most important passages in TAURINUS’ writings, besides
some letters which passed between him, GAuss and SCHWEIKART.
Cf. STACKEL: JFranz Adolf Tawurinus, Abhandl, zur Geschichte der

Math,, IX, p. 397—427 (1899).




Chapter IV.

The Founders of Non-Euclidean Geometry
(Contd.).

Nicolai Ivanovitsch Lobatschewsky [1793-—1856].

§ 39. LosaTscHEwWsKY studied mathematics at the Uni-
versity of Kasan under a German J. M. C. BARTELS [1769—
1836], who was a friend and fellow countryman of Gauss.
He took his degree in 1813 and remained in the University,
first as Assistant, and then as Professor. In the latter position
he lectured upon mathematics in all its branches and also
upon physics and astronomy.

As early as 1815 LOBATSCHEWSKY was working at paral-
lels, and in a copy of his notes for his lectures [1815—17]
several attempts at the proof of the Fifth Postulate, and
some investigations resembling those of LEGENDRE have been
found. ’

However it was only after 1823 that he had thought of
the Imaginary Geometry. This may be inferred from the
manuscript for his book on Elementary Geometry, where he
says that we do not possess any proof of the Fifth Postulate,
but that such a proof may be possible.?

* For historical and critical notes upon LOBATSCHEWSKY we
refer once and for all to F. ENGEL’s book: N. 1. LOBATSCHEFSKI] :
Zwei geometrische Abhandlungen oaus dem Russischen dibersetat mit
Anmerkungen und mit ciner Biographie des Verfassers. (Leipzig,
Teubner, 1899).

2 [This manuscript had been sent to St. Petersburg in 1823
to be published. However it was not printed, and it was dis-
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Between 1823 and 1825 LoBaTscHEwSKY had turned
his attention to a geometry independent of Euclid’s hypothe-
sis. The first fruit of his new studies is the Exposition suc-
cincte des principes de la gbombitrie avec une démonstration ri-
goureuse du théorime des paralléles, read on 12 [24] Feb., 1826,
to the Physical Mathematical Section of the University of
Kasan. In this “Lecture”, the manuscript of which has
not been discovered, LoBATSCHEWSKY explains the prin-
ciples of a geometry, more general than the ordinary geo-
metry, where two parallels to a given line can be drawn
through a point, and where the sum of the angles of a tri-
angle is less than two right angles [ 7%¢ Hypothesis of the Acute
Angle of SaccHERI and LAMBERT].

Later, in 1829—30, he published a memoir Or #4e Prin-
ciples of Geometry,” containing the essential parts of the
preceding “Lecture”, and further applications of the new
theory in analysis. In succession appeared the Jmaginary
Geometry [1835],2 New Principles of Geometry, with a Com-

covered in the archives of the University of Kasan in 1898. It
is clear from some other remarks in this work that he had made
further advance in the subject since 1815—17. He was now con-
vinced that all the first attempts at a proof of the Parallel Postulate
were unsuccessful, and that the assumption that the angles of a
triangle could depend only on the ratio of the sides and not upon
their absolute lengths was unjustifiable (cf. ENGEL, loc. cit. p. 369—70).]

t Kasan Bulletin, (1829—1830). Geometrical Works of Lobat-
schewsky (Kasan 1883—1886), Vol. I p. 1—67. German translation
by F. ENGEL p. 1—66 of the work referred to on the previous page.

Where the titles are given in English we refer to works pub-
lished in Russian. The Geometrical Works of Lobalschewsky contain
two parts; the first, the memoirs originally published in Russianj
the second, those published in French or German. It will be seen
below that of the works in Vol. 1. several translations are now
to be had.

2 The Scientific Publications of the University of Kasan (1835).
Geometrical Works, Vol. 1, p. 71—120. German translation by
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plete Theory of Parallels [1835—38)%, the Applications of the
Imaginary Geometry to Some Integrals [1836]% then the
Glomébtrie Imaginaire [1837]3, and in 1840, a small book
containing a summary of his work, Geometrische Unier-
suckungen zur Theorie der Parallellinien,* written in German
and intended by LoBATSCHEWsSKY to call the attention of
mathemiaticans to his researches. Finally, in 1855, a year
before his death, when he was already blind, he dictated and
published in Russian and French a complete exposition of his
system of geometry under the title: Pangdomdtrie ou précis
de glomdlrie fondée sur une théorie générale et rigoureuse des
paralliles.s

§ 40. Non-Euclidean Geometry, just as it was conceived
by Gauss and SCHWEIKART in 1816, and studied as an ab-

H. LIEBMANN, with Notes. Abhandlungen zur Geschichte der Mathe-
matik, Bd. XIX, p. 3—50 (Leipzig, Teubner, 1904).

1 Scientific Publications of the University of Kasan (1835—38).
Geom. Works. Vol. I: p.219—486. German translation by F. ENGEL,
p- 67—235 of his work referred to on p. 84. English translation
of the Introduction by G. B. HALSTED, (Austin, Texas, 1897).

2 Scientific Publications of the University of Kasan. (1836).
Geom. Works, Vol. 1, p. 121—218. German translation by H. LiEp-
MANN; loc. cit: p. §I—130.

3 CrELLE’s Journal, Bd. XVII, p. 295—320. (1837). Geom.
Works, Vol. 11, p. 581—613.

4 Berlin (1840). Geom. Works, Vol. 11, p. 553—578. French
translation by J. HOUEL in Mém. de Bourdeaux, T.IV. (1866), and
also in Recherches géométrigues sur la théorie des paralltles (Paris, Her-
mann, 1900). English translation by G. B. HaALSTED, (Austin,
Texas, 1891). Facsimile reprint (Berlin, Mayer and Miller, 1887).

S5 Collection of Memoirs by Professors. of the Royal University of
Kasan on the 50tk versary of ils Joundation. Vol. I, p. 279—340.
(1856). Also in Geom. Works, Vol. 11, p. 617—680. In Russian, in
Scientific Publications of the Universily of Kasan, (1855). Italian
translation, by G. BATTAGLINI, in Giornale di Mat. T. V. p. 273—336,
(1867). German translation, by H. LIEBMANN, Ostwald’s Klassiker
der exakten Wissenschaften, Nr, 130 (Leipzig, 1902).
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stract system by TAURINUS in 1826, became in 1829—30
a recognized part of the general scientific inheritance.

To describe, as shortly as possible, the method followed
by LOBATSCHEWSKY in the construction of the /maginary Geo-
metry or Pangeometry, let us glance at his Geometrische Unter-
suchungen zur Theorie der Parallellinien of 1840,

In this work LOBATSCHEWSKY states, first of all, a group
of theorems independent of the theory of parallels. Then he
considers a pencil with vertex
A, and a straight line BC, in A é k
the plane of the pencil, but ; ;]
not belonging to it. Let 4D
be the line of the pencil which
is perpendicular to BC, and D C
AE that perpendicular to
AD. In the Euclidean system
this latter line is the oz/y line which does not intersect BC.
In the geometry of LOBATSCHEWSKY tAere are other lines of the
pencil through A whick do not intersect BC. The non-inter-
secting lines are separated from the #nfersecting lines by the
two lines %, % (see Fig. 44), which in their turn do not meet
BC. [cf. SACCHERI, p. 42.] These lines, which the author calls
parallels, have each a definite direction of parallelism. The
line 4, of the figure, is the parallel to the right: £, to the left.
The angle which the perpendicular 40 makes with one of
the parallels is the angle of parallelism for the length AD.
LoBATSCHEWSKY uses the symbol TT (@) to denote the angle
of parallelism corresponding to the length @. In the ordinary
geometry, we have TT (2)==90° always. In the geometry of
LOBATSCHEWSKY, it is a definite function of 4, tending to
90°® as a tends to zero, and to zero as « increases without
limit.

From the definition of parallels the author then deduces
their principal properties:

Fig. 44.
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That if 4D is the parallel to BC for the point 4, it is
the parallel to BC in that direction for every point on 4D
[permanency];

That if 4D is parallel to BC, then BC is parallel to
AD [reciprocity] :

That if the lines (2) and (3) are parallel to (1), then (2)
and (3) are parallel to each other [transitivity] [cf. Gauss,
p. 72]; and that

If AD and BC are parallel, AD is asymplotic to BC.

Finally, the discussion of these questions is preceded by
the theorems on the sum of the angles of a triangle, the
same theorems as those already given by LEGENDRE, and
still earlier by SaccHERL There can be little doubt that Lo-
BATSCHEWSKY was familiar with the work of LEGENDRE.”

But the most important part of the /maginary Geometry
is the construction of the formulz of trigonometry.

To obtain these, the author introduces two new figures:
the Horocycle [circle of infinite radius, cf. GAuUSS, p. 74], and
the Horosphere ? [the sphere of infinite radius], which in the
ordinary geometry are the straight line and plane, respect-
ively. Now on the Horosphere, which is made up of 0o ?
Horocycles, there exists a geometry analogous to the
ordinary geometry, in which Horocycles take the place of
straight lines. Thus LOBATSCHEWSKY obtains this first re-
markable result:

The Euclidean Geometry [cfyWACHTER, p. 63], and, in
Ddarticular, the ordinary plane trigonometry, hold upon the Hor-
osphere.

1 Cf. LOBATSCHEWSKY’s criticism of LEGENDRE’s attempt to
obtain a prdof of Euclid’s Postulate in his New Principles of Geometry
(ENGEL’s translation, p. 68).

2 [LOBATSCHEWSKY uses the terms Grenmzkreis, Grenskugel in
his German work: courde-limite, horicycle, horisphére, surface-limite in
his French work.]
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This remarkable property and another relating to Co-
axal Horocycles [concentric circles with infinite radius] are
employed by LoBarscHEwsKY in deducing the formulz of
the new Plane and Spherical Trigonometries®. The formule
of spherical trigonometry in the new system are found to be
exactly the same as those of ordinary spherical trigonometry,
when the elements of the triangle are measured in right-angles.

§ 41. Itis well to note the form in which LOBATSCHEWSKY
expresses these results. In the plane triangle 4BC, let the
sides be denoted by a, 4, ¢, the angles by 4, B, C; and let
TT (@), TT (), TT (c) be the angles of parallelism corresponding
to the sides @, 4, . Then LoBATSCHEWSKY’s fundamental
formula is

sin TT(8) sin TT (¢
(4) cos A cosTT (&) cos TT (¢) + ——;% =1.

It is easy to see that this formula and that of TaurINUS
[(x), p. 79] can be transformed into each other.

To pass from that of TAURINUS to that of LoBaTSCHEW-
sky, we make use of (3) of p. 80, observing that the angle 5,
which appears in it, is TT (a).

For the converse step, it is sufficient to use one of Lo-
BATSCHEWSKY's results, namely:

(5) tang—z(i)=a._"

This is the same as the equation (3) of TAURINUS, under
another form,

The constant @ which appears in (5) is indeterminate.
It represents the constant ratio of the arcs cut off two Coaxal

t It can be proved that the formulae of Non-Euclidean Plane
Trigonometry can be obtained without the introduction of the
Horosphere. The only result required is the relation between the
arcs cut off two Zorocycles by two of their axes (cf. p. 90). Cf.
H. LIEBMANN, Elementare Ableitung der nichteuklidischen Trigonometrie.
Ber. d. kén. Sach. Ges. d. Wiss., Math. Phys. Klasse, (1907).
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Horocycles by a pair of axes, when the distance between
these arcs is the unit of length.

[Fig. 45.]
If we choose, with LOBATSCHEW-
SKY, a convenient unit, we are able
to take @ equal to ¢, the base of
1 Natural Logarithms. If we wish,
on the other hand, to bring Lo-
BATSCHEWSKY's results into accord
with the log.-spherical geometry of Tavrivus, or the Non-Eu-

clidean geometry of Gauss, we take
I

Fig. 4s.

a=c#,
Then (5) becomes =
(5" tan "_2(1) =¢ #
H
which is the same as
x b .
(6) cosh 7= ST

This result at once transforms LOBATSCHEWSKY's equa-
tion (4) into the equation (1) of TAURINUS.

It follows that:

The log-spherical geometry of Taurinus is identical with
the imaginary geometry [ pangeometry) of Lobatschewsky.

§ 42. We add the most remarkable of the results which
Losatscuewsky deduces from his formulz:

(a) In the case of triangles whose sides are very small
[infinitesimal] we can use the ordinary trigonometrical for-
mule as the formule of /maginary Trigonometry, infiitesi-
mals of a higher order being neglected®.

t Conversely, the assumption that the Euclidean Geometry
holds for the infinitesimally small can be taken as the starting
point for the development of Non-Euclidean Geometry. It is one
of the most interesting discoveries from the recent examination of
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(b) If for a, b, ¢ are substituted 7a, 75, é¢, the formule
of Imaginary Trigonometry are transformed into those of or-
dinary Spherical Trigonometry.*

(c) If we introduce a system of coordinates in two and
three dimensions similar to the ordinary Cartesian coordinates,
we can find the lengths of curves, the areas of surfaces, and
the volumes of solids by the methods of analytical geometry.

§ 43. How was LoBarscHEwskY led to investigate the
theory of parallels and to discover the Imaginary Geometry?

We have already remarked that BARTELS, LOBATSCHEW-
skY'’s teacher at Kasan, was a friend of Gauss [p. 84]. If we
now add that he and Gauss were at Brunswick together dur-
ing the two years which preceded his call to Kasan [1807],
and that later he kept up a correspondence with Gauss, the
hypothesis at once presents itself that they were not without
their influence upon LOBATSCHEWSKY’s work.

We have also seen that before 1807 Gauss had attempted
to solve the problem of parallels, and that his efforts up till
that date had not borne other fruit than the hope of overcom-
ing the obstacles to which his researches had led him. Thus
anything that BARTELS could have learned from Gauss before
1807 would be of a negative character. As regards GAuss’s

Gavuss’s MSS. that the Princeps mathematicorum had already fol-
lowed this path. Cf. Gauss, Werke, Bd. VIII, p. 255—264.

Both the works of FLYE St. MARIE, [Théorie analytique sur la
théovie des paralléles, (Paris, 1871)], and of KILLING [Die nichteukhd-
ischen Raumformen in analytischer Behandlung, (Leipzig, 1881)], are
founded upon this principle. In addition, the formulae of trigono-
metry have been obtained in a simple manner by the application
of the same principle, and the use of a few fundamental ideas, by
M. S1MON, [Cf. M. SIMON, Die Trigonometrie in der absoluten Geometrie,
CRELLE’s Journal, Bd. 109, p. 187198 (1892)]

1 This result justifies the method followed by TAURINUS in
the construction of his Ag.-spherical geometry.
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later views, it appears quite certain that BARTELS had no news
of them, so that we can be sure that LOBATSCHEWSKY created
his geometry quite independently of any influence from Gauss.?
Other influences might be mentioned: e. g., besides LEGENDRE,
the works of SaccuERT and LaMBERT, which the Russian geo-
meter might have known, either directly or through KriGsL
and MonTucLA. But we can come to no definite decision
upon this question In any case, the failure of the demon-
strations of his predecessors, or the uselessness of his own
earlier researches [1815—17], induced LOBATSCHEWSKY, as
formerly Gauss, to believe that the difficulties which had
to be overcome were due to other causes than those to
which until then they had been attributed. LOBATSCHEWSKY
expresses this thought clearly in the New Principles of
Geometry of 1825, where he says:

‘The fruitlessness of the attempts made, since Euclid’s
time, for the space of zooo years, aroused in me the suspicion
that the truth, which it was desired to prove, was not contained
in the data themselves; that to establish it the aid of experi-
ment would be needed, for example, of astronomical obser-
vations, as in the case of other laws of nature. When I had
finally convinced myself of the justice of my conjecture and
believed that I had completely solved this difficult question,
I wrote, in 1826, a memoir on this subject [Exposition suc-
cincte des principes de la Glomdtrie]’3

The words of LoBaTscHEWsKY afford evidence of a phil-
osophical conception of space, opposed to that of KanT,
which was then generally accepted. The Kantian doctrine
considered space as a subjective intuition, a necessary presup-
position of every experience. LoBATSCHEWsKY’s doctrine was

t Cf. the work of F. ENGEL, quoted on p. 84. Zweiter Teily
Lobatschefskijs Leben und Schriften. Cap, VI, p. 373—383.

2 Cf. SEGRE’s work, quoted on p. 44.

3 Cf. p. 67 of ENGEL’s work named above.
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rather allied to sensualism and the current empiricism, and
compelled geometry to take its place again among the ex-
perimental sciences.®

§ 44. It now remains to describe the relation of LoBAT-
SCHEWSKY's Pangeometry to the debated question of the Eu-
clidean Postulate. This discussion, as we have seen, aimed
at constructing the Theory of Parallels with the help of the
first 28 propositions of Euclid.

So far as regards this problem, LoBATSCHEWSKY, having
defined parallelism, assigns to it the distinguishing features
of reciprocity and transitivity. The property of equidistance
then presents itself to LOBATSCHEWSKY in its true light. Far
from being indissolubly bound up with the first 28 proposit-
ions of Euclid, it contains an element entirely new.

The truth of this statement follows directly from the ex-
istence of the Pangeometry [alogical deductive science founded
upon the said 28 propositions and on the negation of the
Fifth Postulate], in which parallels are not equidistant, but are
asymptotic. Further, we can be sure that the Pangeometry
is a science in which the results follow logically one from the
other, i. e, are free from internal contradictions. To prove
this we need only consider, with LOBATSCHEWSKY, the analyt-
ical form in which it can be expressed.

This point is put by LoBaTscHEwsKy toward the end of
his work in the following way:

‘Now that we have shown, in what precedes, the way in
which the lengths of curves, and the surfaces and volumes of
solids can be calculated, we are able to assert that the Pan-
geometry is a complete system of geometry. A single glance

1 Cf. The discourse on LOBATSCHEWSKY by A. VASILIEV,
(Kasan, 1893). German translation by ENGEL in SCHLOMILCH's Zeit-
schrift, Bd. XI, p. 205—244 (1895). English translation by HALSTED,
(Austin, Texas, 1895).
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at the equations which express the relations existing between
the sides and angles of plane triangles, is sufficient to show
that, setting out from them, Pangeometry becomes a branch of
analysis, including and extending the analytical methods of
ordinary geometry. We could begin the exposition of Pan-
geometry with these equations, We could then attempt to
substitute for these equations others which would express the
relations between the sides and angles of every plane triangle.
However, in this last case, it would be necessary to show
that these new equations were in accord with the fundamental
notions of geometry. The standard equations, having been
deduced from these fundamental notions, must necessarily be
in accord with them, and all the equations which we would
substitute for them, if they cannot be deduced from the equa-
tions, would lead to results contradicting these notions. Our
equations are, therefore, the foundation of the most general
geometry, since they do not depend on the assumption that
the sum of the angles of a plane triangle is equal to two right
angles.’*

§ 45. To obtain fuller knowledge of
the nature of the constant £ contained im-
plicity in LoBaTscHEwWsKY’s formule, and
explicitly in those of TAURINUS, we must
apply the new trigonometry to some actual’
case. To this end LoBATSCHEWSKY used a
triangle ABC, in which the side BC () is
equal to the radius of the earth’s orbit,
and 4 is a fixed star, whose direction is
perpendicular to BC (Fig. 46). Denote
C e B by 2p the maximum parallax of the star

Fig. 46. A. Then we have

t Cf. the Italian translation of the Pamgéométrie, Giornale di
Mat.,, T. V. p. 334; or p. 75 of the German translation referred to
on p. 86.
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T (a) > X BAC="— 25.

Therefore
1 L 1 —tan I1—tanp
tan 5 TT(2) > tan (“4— —-ﬁ) T¥tanp’
@
But tan — TT (a) =¢ % [cf. p. 90].
Therefore < i i :::ﬁ

But on the hypothesis p <C :, we have

t
< log :j’_t:%=z(tanp+ 1tandp + ftanSp+...).

Also, tan 2 p = _2tanp
I—tan2p

=2 (tanp +tandp + tansp +...).
Therefore we have
a
- <<tan 2.
Take now, with LOBATSCHEWSKY, the parallax of Sirius
as 17,24.
From the value of tan 2z g, we have
%- << 0,000006012.

This result does not allow us to assign a value to 2,
but it tells us that it is very great compared with the diam-
eter of the earth’s orbit. We could repeat the calculation
for much smaller parallaxes, for example o”,1, and we
would find £ to be greater than a million times the diameter
of the earth’s orbit.

Thus, if the Euclidean Geometry and the Fifth Postul-
ate are to hold in actual space, £ must be infinitely great,
That is to say, there must be stars whose parallaxes are in-
definitely small.

However it is evident that we can never state whether
this is the case or not, since astronomical observations will
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always be true only within certain limits. Yet, knowing the
enormous size of Z in comparison with measurable lengths,
we must, with LoBATSCHEWSKY, admit that the Euclidean
hypothesis is valid for all practical purposes.

We would reach the same conclusion if we regarded
the question from the standpoint of the sum of the angles of
a triangle. The results of astronomical observations show that
the defect of a triangle, whose sides approach the distance
of the earth from the sun, cannot be more than o”,0003.
Let us now consider, instead of an astronomical triangle, one
drawn on the Earth’s surface, the angles of which can be
directly measured. In consequence of the fundamentaltheorem
that the area of a triangle is proportional to its defect, the
possible defect would fall within the limits of experimental
error. Thus we can regard the defect as zero in experimental
work, and Euclid’s Postulate will hold in the domain of ex-
perience.*

Johann Bolyai [1802—1860].

§ 46. J. Bouvar a Hungarian officer in the Austrian
army, and son of WoLFGANG BoLval, shares with LoBAT-
SCHEWSKY the honour of the discovery of Non-Euclidean geo-
metry. From boyhood he showed a remarkable aptitude for
mathematics, in which his father himself instructed him. The
teaching of WoLrGaNG quickly drew JomaNN’s attention to
Axiom XI. To its demonstration he set himself, in spite of
the advice of his father, who sought to dissuade him from
the attempt. In this way the theory of parallels formed the
favourite occupation of the young mathematician, during his
course [1817—=22] in the Royal College for Engineers at
Vienna.

* For the contents of this section, cf. LOBATSCHEWSKY, O
the Principles of Geometry, See p. 22—24 of ENGEL's work named
on p. 84. Also ENGEL's remarks on p. 248—252 of the same work.
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At this time JOHANN was an intimate friend of CarL
SzAsz [1798—1853] and the seeds of some of the ideas, which
led BoLvAl to create the 4bsolute Science of Space, were sown
in the conversations of the two eager students.

It appears that to SzAsz is due the distinct idea of con-
sidering the parallel through B to the line AM as the limit-
ing position of a secant BC turning in a definite direction

about B; that is, the idea of consid- c M
ering BC as parallel to 44, when

BC, in the language of Szdsz, de- c
Zackes itself (springs away) from AM /

(Fig. 47). To this parallel Borval
gave the name of asymptotic parallel

or asymptote. [cf. Saccueri]l. From /C
the conversations of the two friends

were also derived the conception of
the Zne equidistant from a straight line,
and the other most important idea of -

the Paracycle (limiting curve or horo- B Fix 47A

¢ycle of LoBaTSCHEWSKY). Further they o
recognised that the proof of Axiom XI would be obtained
if it could be shown that the Paracycle is a straight line.

When SzAsz left Vienna in the beginning of 1821 to
undertake the teaching of Law at the College of Nagy-Enyed
(Hungary), JoHANN remained to carry on his speculations
alone. Up till 1820 he was filled with the idea of finding
a proof of Axiom XI, following a path similar to that of
SaccuHerl and LamBerT. Indeed his correspondence with
his father shows that he thought he had been successful in
his aim.

The recognition of the mistakes he had made was the
cause of JOHANN's decisive step towards his future discoveries,
since he realised ‘that one must do no violence to nature,
nor model it in conformity to any blindly formed chimera;
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that, on the other hand, one must reguard nature reasonably
and naturally, as one would the truth, and be contented only
with a representation of it which errs to the smallest possible
extent.’

JouanN BoLval, then, set himself to construct an aéso-
lute theory of space, following the classical methods of the
Greeks: that is, keeping the deductive method, but without
deciding @ priori on the truth or error of the FifthPostulate.

§ 47. As early as 1823 Boryvar had grasped the real
nature of his problem. His later additions only concerned
the material and its formal expression. At that date he had
discovered the formula:

a
e # = tan E-z(—a—),

connecting the angle of parallelism with the line to which it
corresponds [cf. LOBATSCHEWSKY, p. 89]. This equation is
the key to all Non-Euclidean Trigonometry. To illustrate the
discoveries which JoHANN made in this period, we quote the
following extract from a letter which he wrote from Temesvar
to his father, on Nov. 3, 1823: ‘I have now resolved to pub-
lish a work on the theory of parallels, as soon as I shall have
put the material in order, and my circumstances allow it. I
have not yet completed this work, but the road which I have
followed has made it almost certain that the goal will be
attained, if that is at all possible: the goal is not yet reached,
but I have made such wonderful discoveries that I have been
almost overwhelmed by them, and it would be the cause of
continual regret if they were lost. When you will see them,
you too will recognize it. In the meantime I can say only
this: J fave created a new universe from nothing. All that I
have sent{you till now is but a house of cards compared to
the tower. Iam as fully persuaded that it will bring me
honour, as if I had already completed the discovery.’
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WOLFGANG expressed the wish at once to add his son’s
theory to the Zenfamen since ‘if you have really succeeded
in the question, it is right that no time be lost in making it
public, for two reasons: first, because ideas pass easily from
one to another, who can anticipate its publication; and se-
condly, there is some truth in this, that many things have an
epoch, in which they are found at the same time in several
places, just as the violets appear on every side in spring.
Also every scientific struggle is just a serious war, in which
I cannot say when peace will arrive. Thus we ought to
conquer when we are able, since the advantage is always to
the first comer.’

Little did WoLFcaNG BoLvar think that his presentiment
would correspond to an actual fact (that is, to the simulta-
neous discovery of Non-Euclidean Geometry by the work of
Gauss, TauriNus, and LOBATSCHEWSKY).

In 1825 JOHANN sent an abstract-of his work, among
others, to his father and to J. WALTER voN ECKWEHR [1789-—
1857], his old Professor at the Military School. Also in 1829
he sent his manuscript to his father. WOLFGANG was not
completely satisfied with it, chiefly because he could not see
why an indeterminate constant should enter into JoHANN’s
formule. None the less father and son were agreed in
publishing the new theory of space as an appendix to the
first volume of the Zentamen:—

The title of JoHANN BoLyar's work is as follows.

Appendix scientiam spatii absolute veram exhibens: a
veritate aut falsitale Axiomatis XI. Euclidei, a priori haud
unquam decidenda, independentem: adjecta ad casum falsitatis
quadyatura circuli geometrica*

t A reprint—~Zdition de Luxe—was issued by the Hungarian
Academy of Sciences, on the occasion of the first centenary of
the birth of the author (Budapest, 1902). See also the English
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The Appendix was sent for the first time [June, 1831]
to Gauss, but did not reach its destination; and a second
time, in January, 1832. Seven weeks later (March 6, 1832),
Gauss replied to WOLFGANG thus:

“If I commenced by saying that I am wunable to praise
this work (by JoHANN), you would certainly be surprised
for a moment. But I cannot say otherwise. To praise it,
would be to praise myself. Indeed the whole contents of
the work, the path taken by your son, the results to which he
is led, coincide almost entirely with my meditations, which
have occupied my mind partly for the last thirty or thirty-
five years. So I remained quite stupefied. So far as my
own work is concerned, of which up till now 1 have put little
on paper, my intention was not to let it be published during
my lifetime. Indeed the majority of people have not clear
ideas upon the questions of which we are speaking, and I
have found very few people who could regard with any special
interest what I communicated to them on this subject. To
be able to take such an interest it is first of all necessary
to have devoted careful thought to the real nature of what is
wanted and upon this matter almost all are most uncertain.
On the other hand it was my idea to write down all this later
so that at least it should not perish with me. It is therefore a
pleasant surprise for me that I am spared this trouble, and I
am very glad that it is just the son of my old friend, who
takes the precedence of me in such a remarkable manner.”

WoLFGANG communicated this letter to his son, adding:
“Gauss’'s answer with regard to your work is very satis-

translation by HALSTED, 7le Saience Absolute of Space, (Austin, Texas,
1896). An Italian translation by G. B. BATTAGLINI appeared in the
Giornale di Mat.,, T. VI, p. 97—115 (1868). Also a French trans-
lation by HOUEL, in Mém. de la Soc. des Sc. de Bordeaux, T. V.
p. 189—248 (1867). Cf. also FRISCHAUF, Absolute Geometrie nack
Fohann Bolyai, (Leipzig, Teubner, 1872).
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factory and redounds to the honour of our country and of
our nation.”

Altogether different was the effect Gauss’s letter pro-
duced on JonanN. He was both unable and unwilling to
convince himself that others, earlier than and independent of
him, had arrived at the Non-Zuclidean Geometry. Further he
suspected that his father had communicated his discoveries
to Gauss before sending him the 4ppendix and that the latter
wished to claim for himself the priority of the discovery.
And although later he had to let himself be convinced that
such a suspicion was unfounded, JOHANN always regarded
the “Prince of Geometers” with an unjustifiable aversion,*

§ 48. We now give a short description of the most
important results contained in JomanN BoLvar's work:

a) The definition of parallels and their properties in-
dependent of the Euclidean postulate.

b) The circle and sphere of infinite radius. The geo-
metry on the sphere of infinite radius is identical with ordi-
nary plane geometry.

c) Spherical Trigonometry is independent of Euclid’s
Postulate. Direct demonstration of the formulze,

d)-Plane Trigonometry in Non-Euclidean Geometry.
Applications to the calculation of areas and volumes.

e) Problems which can be solved by elementary me-
thods. Squaring the circle, on the hypothesis that the Fifth
Postulate is false.

While LoBATSCHEWSKY has given the Imaginary Geo-
metry a fuller development especially on its analytical side,

* For the contents of this and the preceding article see STACKEL,
Die Entdeckung der nickteuklidischen G trie durch Fok Bolyai.
Math. u. Naturw. Berichte aus Ungarn. Bd. XVII, [1901].

Also STACKEL u. ENGEL. Gauss, die beiden Bolyai und die
nickteuklidische Geometrie. Math. Ann. Bd. XLIX, p. 149—167 [1897].
Bull. Sc. Math. (2) T. XXI, pp. 206—228 [1897].
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BoLyar entered more fully into the question of the depen-
dence or independence of the theorems of geometry upon
Euclid’s Postulate. Also while LoBATSCHEWKY chiefly sought
to construct a system of geometry on the negation of the
said postulate, JoHann BoLvar brought to light the pro-
positions and constructions in ordinary geometry which are
independent of it. Such propositions, which he calls a?-
solutely true, pertain to the absolute science of space. We
could find the propositions of this science by comparing
Euclid’s Geometry with that of LoBaTscHEwsky. Whatever
they have in common, e. g. the formul® of Spherical Trigon-
ometry, pertains to the Absolute Geometry. JoHANN BoLval,
however, does not follow this path. He shows directly, that
is independently of the Euclidean Postulate, that his propos-
itions are absolutely true.

§ 49. One of BoLvAr's absolute theorems, remarkable
for its simplicity and neatness, is the following:

The sines of the angles of a rectilinear triangle are to one
another as the circumferences of the circles whose radii are
equal to the opposite sides.

’ A e
A .
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B M

Fig. 48.

Let ABC be a triangle in which C is a right angle, and
BB the perpendicular through B to the plane of the triangle.

Draw the parallels through 4 and C to BB’ in the
same sense.

Then let the Horosphere be drawn through 4 (eventually
the plane) cutting the lines 44', BB  and CC, respectively,
in the points 4, M, and M
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If we denote by &', &, ¢ the sides of the rectangular
triangle AMV on the Horosphere, it follows from what has
been said above [cf. § 48 (b)] that

sin AMN =

But two arcs of Horocycles on the Horosphere are pro-
portional to the circumferences of the circles which have
these arcs for their (horocyclic) radii.

If we denote by circumf. x* the circumference of the
circle whose (horocyclic) radius is 4", we can write:
sin AMN =

circumf. &
circumf. ¢
On the other hand, the circle traced on the Horosphere
with horocyclic radius of length #', can be regarded as the
circumference of an odinary circle whose radius (rectilinear)
is half of the chord of the arc 2 #” of the Horocycle.
Denoting by O » the circumference of the circle whose
(rectilinear) radius is x, and observing that the angles 4B8C
and AMN are equal, the preceding equation taken from

sin ABC = 8 b

From the property of the right angled triangle 48C
expressed by this equation, we can deduce BoLvar's theorem
enunciated above, just as from the Euclidean equation

sin 4BC = 2.

we can deduce that the sines of the angles of a triangle are
proportional to the opposite sides. [dppendix § 25.]

Bovrvar's Theorem may be put shortly thus:
(1) Qa:Ob: ¢ = sin 4:sin B:sin C

If we wish to discuss the geometrical systems separately
we will have

(i) In the case of the Fuclidean Hypothe51s

Ox = 2ma.
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Thus, substituting in (1), we have
1) a:b:c: = sin 4:sin B:sin C.
(i) In the case of the Non-Euclidean Hypothesis,

Qx=mk|\, k — k)— 2Tk smh—-
Then substituting in (1) we have
(1”) sinh %:sinh%:sinh% = sin 4 :sin B:sin C.

This last relation may be called the Sine Theorem of the
Bolyai-Lobatschewsky Geometry.

From the formula (1) Borvar deduces, in much the
same way as the usual relations are obtained from (1°), #i¢
proportionality of the sines of the angles and the gpposite sides
in @ spherical triangle. From this it follows that Spherical
Trigonometry is independent of the Euclidean Postulate
[Agpendix § 26].

This fact makes the importance of BoLvar's Theorem
still clearer.

§ 50. The following construction for a parallel through
the point D to the straight line 4V belongs also to the Ab-
solute Geometry [Appendix § 34).

Draw the perpendiculars DB and 4Z to AN [Fig. 49].

E D
u\
M
d
o
A B N
Fig. 49.

Also the perpendicular DZ to the line 4Z. The angle
£DB of the quadrilateral 4BDE, in which three angles
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are right angles, is a right angle or an acute angle, according
as £.D is equal to or greater than 425,

With centre 4 describe a circle whose radius is equal
to £ZD.

It will intersect DB at a point O, coincident with B or
situated between B and ..

Tr%e angle whick the line AO makes with DB is the
angle of parallelism corresponding to the segment BD.*
[Appendix § 27.]

Therefore a parallel to 4V through D can be con-
structed by drawing the line DM so that <C BDM is
equal to T 4082

* We give a sketch of BoLYAI's proof of this theorem: The
circumferences of the circles with radii 4B and ED, traced out
by the points B and 2 in their rotation about the line 4%, can
be considered as belonging, the first to the plane through 4 per-
pendicular to the axis AZ, the second to an Equidistant Surface
for this plane. The constant distance between the surface and
the plane is the segment D=4, The ratio between these two
circumferences is thus a function of 4 only. Using BoLYAr's
Theorem, § 49, and applying it to the two rightangled triangles
ADE and ADB, this ratio can be expressed as

Q4B: QED=sinu:sinu,
From this it is clear that the ratio sin #:sin » does not vary if
the line 4Z changes its position, remaining always perpendicular
to AB, while Z remains fixed. In particular, if the foot of AE
tends to infinity along 4N, # tends to TT () and # to a right angle.
Consequently,

Q4B: O ED=sin TT(d): 1.
On the other hand in the right-angled triangle 408, we have
the equation

QA48: QA0 =sin 405 : 1.
This, with the preceding equation, is sufficient to establish the
equality of the angles TT () und 405,

2 Cf. Appendix I/I to this volume.
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§ 51. The most interesting of the Non-Euclidean con-
structions given by Borvar is that for the sguwaring of the
circle. Without keeping strictly to BoLvar's method, we shall
explain the principal features of his construction.

But we first insert the converse of the construction of
$ 50, which is necessary for our purpose.

On the Non-Euclidean Hypothesis to draw the segment
whick corresponds to a given (acule) angle of parallelism.

Assuming that the theorem, that the three perpendiculars
from the angular points of a triangle on the opposite sides
intersect eventually, is also true in the Geometry of BoLval-
LoBATSCHEWSKY, on the line 45 bounding the acute angle
BAA take a point B, such that the parallel BB to 44
through B makes an acute angle (4825’) with 4B. [Fig. 50.]

A K .
\Al 7
L |-
O— tC..
l/ﬁ'
B4

Fig. 50.

The two rays 44, BB, and the line 4B may be
regarded as the three sides of a triangle of which one angular
point is Cog, common to the two parallels 44', BB, Then
the perpendiculars from 4, B, to the opposite sides, meet in
he point O inside the triangle, and the perpendicular from
Coo to AB also passes through O.

Thus, if the perpendicular OZ is drawn from O to 425,
the segment 4Z will have been found which corresponds to
the angle of parallelism BA4A4".
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As a particular case the angle B44 could be 45°
Then AL would be Schweikart’s Constant [cf. p. 76].

We note that the problem which we have just solved
could be enunciated thus:

To draw a line whick skall be parallel to one of the lines
bounding an acute angle and perpendicular to the other.*

§ 52. We now show how the preceding result is used
o construct a square equal in area to the maximum triangle.

The area of a triangle being

Bm—L4—LB—X0),
the maximum triangle, i. e. that for which the three angular
points are at infinity, will have for area
A=z
To find the angle w of a square whose area is 42T, we need
only remember (LAMBERT, p. 46) that the area of a polygon,
as well as of a triangle, is proportional to its defect. Thus
we have the equation
Arn=45%4EGn—4uw),

from which it follows that

I o A
W == 'I T == 45" m 4
Assuming this, let us consider the %5
right-angled triangle O4M (Fig. 51), 0145°  Iyq
which is the eighth part of the required a
square. Putting OM = a, and ap-
plying the formula (2) of p. 8o we
obtain Fig. st.
cos 22° 30
cosh T e g0
) a _ sin 67° 30
or cosh T T enas

* BoLYAI's solution [4ppendix., § 35] is, however, more compli-
cated.



108 IV. The Founders of Non-Euclidean Geometry (Contd.).

If we now draw, as in § 51, the two segments &, ¢,
which correspond to the angles 67° 30" and 45° and if we

remember that [cf. p. 90 (6)]
I
sinTT (x)’
the following relation must hold between &, " and ¢,

X
cosh 5 =

cosh % cosh —Z— == cosh %
Finally if we take & as side, and ¢ as hypotenuse of a right-
angled triangle, the other side of this triangle, by formula (1)
of p. 79, is determmed by the equation

4
cosh cosh = cosh—

Then comparing these two questions, we obtain
a = a.
Constructing ¢ in this way, we can immediately find the
square whose area is equal to that of the maximum triangle.

§ 53. To construct a circle whose area shall be equal
to that of this square, that is, to the area of the maximum
triangle, we must transform the expression for the area of
a circle of radius »

2T A? (cosh %—-1),
given on p. 81, by the introduction of the angle of parallelism
TT(—;—), corresponding to half the radius.

Then we have* for the area of this circle
4T &2

tanz TT (%)
On the other hand if the two parallels 44" and BB’

are drawn from the ends of the segment 45, making equal
angles with 4B, we have

1 Using the result tan ——— Tl'(x) T~k
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X AAB = L BBA =TI (L)
where 4B = r [Fig. 52].
Now draw 4C, perpendicular to B5’, and 4D perpen-
dicular to AC; also put

X CAB = &, <C DAL = =.

Then we have
cotTT (-;_) cot o+ 1

tan 7 = cot (Tl' (-:_) - a) =,COt — (_:—) .

It is easy to eliminate  from this last result by means
of the trigonometrical formulae for the triangle 43C and so

obtain
N 2
tan TT (_r_)
2
Substituting this in the expression found for the area of
the circle, we obtain for that area

tan z =

T 2* tan® z.

This formula, proved inan- D A B’
other way by BoLval [Appendix
$ 43], allows us to associate a
definite angle z withevery circle.

If z were equal to 45° then we z

would have C
TA? -

for the area of the correspond- A B

ing circle. Fig. s2.

1 Indeed, in the rightangled triangle 4BC, we have cot TT (':—)

cot a = cosh 2. From this, since cosh = = 2 sinhz 7_ + 1=
3 V1 24

»
2 cotz TT (;) -+ 1, we deduce, first, that



110 IV. The Founders of Non-Euclidean Geometry (Contd.).

That is: 2ke area of the circle, for whick the angle z is
45° is equal to the area of the maximum triangle, and thus
to that of the square of § 52.

Ifz = CAAD (Fig. 51) is given, we can find » by
the following construction:

(i) Draw the line 4C perpendicular to AD.

(ii) Draw BB parallel to A4 and perpendicular to
AC (8§ 51).

(i) Draw the bisector of the strip between 44" and
BB

[By the theorem on the concurrency of the bisectors of
the angles of a triangle with an sznfinite vertex.]

(iv) Draw the perpendicular 43 to this bisector. The
segment 4B bounded by 44 and BB is the required
radius 7.

§ 54. The problem of constructing a polygon equal to
a circle of area T4? tan? z is, as BoLval remarked, closely
allied with the numerical value of tan z. It is resolvable
for every integral value of tan? z, and for every fractional
value, provided that the denominator of the fraction, re-
duced to its lowest terms, is included in the form assigned by
Gauss for the construction of regular polygons [Agpendix
$ 43]-

The possibility of constructing a square equal to a
circle leads JOHANN to the conclusion “Zabeturgue aut Axi-
oma X1 Euclidis verum, aut quadratura circuli geometrica;

r I d
cot TT (?) cot a = 2 cotz TT (?) +1,

and next that

e an(5) = (s (D) i 2)

These equations allow the expression for tan z to be written down
in the required form.
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etsi hucusque indecisum manserit, quodnam ex his duobus
revera locum habeat.”

This dilemma seemed to him at that time [1831] im-
possible of solution, since he closed his work with these
words: “Superesset denique (ut res omni numero absolvatur),
impossibilitatem (absque suppositione aliqua) decidenda,
num 2 (the Euclidean system) aut aliquod (et quodam) .S (the
Non-Euclidean system) sit, demonstrare: quod tamen occasi-
oni magis idoneae reservatur.”

JoHANN, however, never published any demonstration
of this kind.

§ 55. After 1831 BoLvar continued his labours at his
geometry, and in particular at the following problems:

1. The connection between Spherical Trigonometry and
Non-Euclidean Trigonometry.

2. Can one prove rigorously that EucLip’s Axiom is
not a consequence of what precedes it?

3. The volume of a tetrahedron in Non-Euclidean geo-
metry.

As regards the first of these problems, beyond estab-
lishing the analytical relation connecting the two trigono-
metries [cf. LOBATSCHEWSKY, P. 9o], BoLval recognized that
in the Non-Euclidean hypothesis there exist three classes of
Uniform Surfaces® on which the Non-Euclidean trigono-
metry, the ordinary trigonometry, and spherical trigonometry
respectively hold. To the first class belong planes and Zyper-
spheres [surfaces equidistant from a plane]; to the second,
the paraspheres [LoparscuewskY's Horospheres]; to the
third, spheres. The paraspheres are the limiting case
when we pass from the hyperspherical surfaces to the
spherical. This passage is shown analytically by making a

T BoLYAI seems to indicate by this name the surfaces which
behave as planes, with respect to displacement upon themselves.
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certain parameter, which appears in the formule, vary con-
tinuously from the real domain to the purely imaginary
through infinity [cf. TAUrINUS, p. 82].

As to the second problem, that regarding the impos-
sibility of demonstrating 4xiom X7, BoLyAl neither succeeded
in solving it, nor in forming any definite opinion upon it.
For some time he believed that we could not, in any way,
decide which was true, the Euclidean hypothesis or the
Non-Euclidean. Like LoBATSCHEWSKY, he relied upon the
analytical possibility of the new trigonometry. Then we find
JomanN returning again to the old ideas, and attempting a
new demonstration of Axiom X7. In this attempt he applies
the Non-Euclidean formule to a system of five coplanar
points. There must necessarily be some relation between
the distance of these points. Owing to a mistake in his
calculations JouanNN did not find this relation, and for some
time he believed that he had proved, in this way, the false-
hood of the Non-Euclidean hypothesis and the absolute truth
of Axiom XI.*

However he discovered his mistake later, but he did
not carry out further investigations in this direction, as the
method, when applied to six or more points, would have in-
volved too complicated calculations.

The third of the problems mentioned above, that re-
garding the tetrahedron, is of a purely geometrical nature.
Bovrvar’s solutions have been recently discovered and pub-

* The title of the paper which contains JoHANN’s demon-
stration is as follows: “Beweis des bis nun auf der Erde immer
noch zweifelhaft gewesenen, weltberiikmten und, als der gesammiten
Raum- wund Bewegungslehve zu Grunae dienend, auch in der That
allerhichstwichtigsten 11. Euclid’schen Axioms von ¥. Bolyai won Bolya,
k. k. Genie-Stabshauptmann in Pension. Cf. STACKEL's paper: Unter-
suckungen aus der Absoluten Geometrie aus Fokann Bolyais Nacklaf.
Math. u. Naturw. Berichte aus Ungarn. Bd. XVIII, p. 280—307 (1902).
\We are indebted to this paper for this section § 55.
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lished by STACKEL [cf. p. 112 note 1]. LOBATSCHEWSKY
had been often occupied with the same problem from 18297,
and Gauss proposed it to JOHANN in his letter quoted on
p. 100.

Finally we add that J. BoLvar heard of LOBATSCHEWSKY’s
Geometrische Untersuchungen in 1848: that he made them
the object of critical study?: and that he set himself to com-
pose an important work on the reform of the Principles of
Mathematics with the hope of prevailing over the Russian.
He had planned this work at the time of the publication of
the Appendixz, but he never succeeded in bringing it to a
conclusion.

The Absolute Trigonometry.

§ 56. Although the formule of Non-Euclidean trigono-
metry contain the ordinary relations between the sides and
angles of a triangle as a limiting case [cf. p. 80], yet they do
not form a part of what JoHANN Bovvar called Absolute Geo-
metry. Indeed the formule do not apply at once to the two
classes of geometry, and they were deduced on the suppos-
ition of the validity of the Hypothesis of the Acute Angle.
Equations directly applicable both to the Euclidean case and
to the Non-Euclidean case were met by us in § 49 and they
make up BoLvar's Theorem. They are three in number, only
two of them being independent. Thus they furnish a first
set of formule of Absolute Trigonometry.

1 Cf. p. 53 et seq, of the work quoted on p. 84. Also
LIEBMANN’S translation, referred to in Note 2, p. 85.

2 Cf. P. STACKEL und J. KURSCHAK: Fokann DBolyais Be-
merkungen diber N. Lobatschefskijs Geometrische Untersuchungen zur
Theorie der Parallellinien, Math. u. Naturw. Berichte aus Ungarn,
Bd. XVIII, p. 250—279 (1902).

3 Cf. P. STACKEL: Fokann Bolyais Raumlekre, Math. u. Naturw.
Berichte aus Ungarn, Bd. XIX (1903).
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Other formule of Absolute Trigonometry were given in
1870 by the Belgian geometer, DE TiLLy, in his Etudes de
Mbcanique Abstraite.*

The formule given by DE TiLLY refer to rectilinear tri-
angles, and were deduced by means of kinematical con-
siderations, requiring only those properties of a bounded
region of a plane area, which are independent of the value
of the sum of the angles of a triangle.

In addition to the function (Qx, which we have already
met in BoLvAr's formule, those of DE TiLLY contain another
function Zx defined in the following way:

Let » be a straight line and / the eguidistant curve,
distant x from 7. Since the arcs of / are proportional to their
projections on 7, it is clear that the ratio between a (recti-
fied) arc of / and its projection does not depend on the
length of the arc, but only on its distance x from . DE
TwLy’s function £x is the function which expresses this ratio.

On this understanding, the Formule of Absolute Trigon-
ometry for the right-angled triangle 45C are as follows:

B (1) {Oa = QOcsin 4
N Oé=Qcsin B
(2) {cos A = Ea.sin B
cos B = Eb. sin A
2| N (3) Ec = Ea. Eb,
The set (1) is equivalent to BoLvar’s
90 Theorem for the Right-Angled Triangle.
C b A All the formulze of Absolute Trigono-

Fig. 53 metry could be derived by suitable com-

bination of these three sets. In particular, for the right-angled
triangle, we obtain the following equation:—

1 Mémoires couronnés et autres Mémoires, Acad. royale de
Belgique. T. XXI (1870). Cf. also the work by the same author:
Essai sur les principes jfondamentaux de la géométrie et de la Mécanique,
Mém. de la Soc. des Sc. de Bordeaux. T. III (cah. I) (1878).
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O2a (Ea + Eb. Ec) + (O%. (Eb + Eec. Ea)
= Q% (Ec + Ea. Eb).
This can be regarded as equivalent to the Theorem of
Pythagoras in the Absolute Geometry.*

§ 57. Let us now see how we can deduce the results
of the Euclidean and Non-Euclidean geometries from the
equations of the preceding article.

Euclidean Case.

The Eguidistant Curve (J) is a straight line [that is, Zx
= 1], and the perimeters of circles are proportional to
their radii.

Thus the equations (1) become
(1) @ = ¢sin A

{b = ¢sin B,

The equations (2) give
(2) cos 4 = sin B, cos B = sin 4.

Therefore A+ B = go°

Finally the equation (3) reduces to an identity.

The equations (1°) and (2°) include the whole of ordin-
ary trigonometry.

Non-Euclidean Case.

Combining the equations (1) and (z) we obtain

(5) O O%
E2a—1 Ezp—1

If we now apply the first of equations (2) to a right-
angled triangle whose vertex 4 goes off to infinity, so that
the angle A tends to zero, we shall have

Lt cos A = Lt (Ea. sin B).

But Zz is independent of 4; also the angle B, in the

limit, becomes the angle of parallelism corresponding to ,

i. e. TT (a).

3 Cf. R. BoNoLA, La trigomometria assolule secondo Giovanni
Bolyai. Rend, Istituto Lombardo (2). T. XXXVIII (1905).
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Therefore we have
Bg = -
¢ = sin M@
A similar result holds for £5.
Substituting these in equation (5) we obtain

Oz a Oz b
cotz TT () = otz T ®)?
from which
Qe _ _ O¢
cotm(a)  cotm(s) °

This result, with the expression for Zx, allows us at
once to obtain from the equations (1), (2), (3), the formule
of the Trigonometry of BoLYAI-LOBATSCHEWSKY :

() {cot TT (@) = cot TT{¢) sin 4
cot TT (&) = cot TT (¢) sin B,
" sin 4 = cos B sin TI (3)
") {sin B = cos A4 sin Tl (a),
(3" sin TT (¢) = sin T (@) sin TT (3).

These relations between the elements of every right-
angled triangle were given in this form by LOBATSCHEWSKY.
If we wish to introduce direct functions of the sides, instead
of the angles of parallelism TT(2), TT(4) and T (¢), it is
sufficient to remember [p. go] that

tan TT(x) = ¢ ¥k,

We can thus express the circular functions of 1T (x) in
terms of the hyperbolic functions of x. In this way the pre-
ceding equations are replaced by the following relations:

(1”) sinh —Z— == sinh % sin 4

. &
sinh - = smh sin B,

1 Cf.e. g., The Geometrische Untersuckungen of LOBATSCHEWSKY
referred to on p. 86.
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rrr . a
(2") cos 4 = sin B cosh v

. b
cos B = sin A cosh 7
and '

7y ¢ a ]
3" cosh —- = cosh = C0s % cosh —

§ 58. The following remark upon Absolute Trigono-
metry is most important: [f we regard the dements in its
Jormulae as elements of a spherical triangle, we obtain a system
of equations whkick hold also for Spherical Triangles.

This property of Absolute Trigonometry is due to the
fact, already noticed on p. 114, that it was obtained by the
aid of equations which hold only for a limited region of the
plane. Further these do not depend on the hypothesis of the
angles of a triangle, so that they are valid also on the sphere.

If it is desired to obtain the result directly, it is only
necessary to note the following facts:—

(1) In Spherical Trigonometry the circumferences of
circles are proportional to the sines of their (spherical) radii,
so that the first formula for right-angled spherical triangles

. sin ¢ = sin ¢ sin 4
is transformed at once into the first of the equations (1).
(i) A circle of (spherical) radius %—b can be con-
sidered as a curve equidistant from the concentric great
circle, and the ratio £% for these two circles is given by

. fw
sin (—5— — b)

sin T
2

= cos &.

Thus the formulz for right-angled spherical triangles

cos 4 = sin B cos a,
COs ¢ == COS @ €Os b,
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are transformed immediately into the equations (2) and (3)
by means of this result.

Thus tke formulae of Absolute Trigonometry also hold
on the sphere.

Hypotheses equivalent to Euclid’s Postulate.

§ 59. Before leaving the elementary part of the sub-
ject, it seems right to call the attention of the reader to the
position occupied in the general system of geometry by certain
propositions, which are in a certain sense Zypotheses equivalent
to the Fifth Postulate.

That our argument may be properly understood, we
begin by explaining the meaning of this equivalence.

Two hypotheses are absolutely equivalent when each of
them can be deduced from the other without the help of any
new hypothesis. In this sense the two following hypotheses
are absolutely equivalent:

a) Two straight lines parallel to a third are parallel to
each other;

b) Through a point outside a straight line one and only
one parallel to it can be drawn.

This kind of equivalence has not much interest, since
the two hypotheses are simply two different forms of the
same proposition. However we must consider in what way
the idea of equivalence can be generalised.

Let us suppose that a deductive science is founded
upon a certain set of hypotheses, which we will denote by
{4,8,¢...H }. Let M and IV be two new hypotheses such
that V' can be deduced from the set {4, B, C... &, My,
and M from the set {4, B, C... H, N}

We indicate this by writing

{48,C...H,M).). N,
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and
{4,B,C...H N} .). .

We shall now extend the idea of equivalence and say that
the two hypotheses M, NV are equivalent relatively to the
Sundamental st {4, B, C. .. HY.

It has to be noted that the fundamental set {4, B, C
«.. H} has an important place in this definition. Indeed it
might happen that by diminishing this fundamental set, leav-
ing aside, for example, the hypothesis 4, the two deductions

{8C...H8,M} )N
and

{BC...H,Ny, )M
could not hold simultaneously.

In this case the hypotheses M, NV are not equivalent
with respect to the new fundamental set {B, c... H }

After these explanations of a logical kind, let us see
what follows from the discussion in the preceding chapters
as to the equivalence between such hypotheses and the
Euclidean hypothesis.

We assume in the first place as fundamental set of
hypotheses that formed by the postulates of Association (4),
and of Distribution (B), which characterise in the ordinary
way the conceptions of the straight line and the plane: also
by the postulates of Congruence (C), and the Postulate of
Archimedes (D).

Relative to this fundamental set, which we shall denote
by {4, B, C D}, the following hypotheses are mutually
equivalent, and equivalent also to that stated by EucLip in
his Fifth Postulate:

a) The internal angles, which two parallels make with a
transversal on the same side, are supplementary [Ptolemy].

b) Two parallel straight lines are equidistant.

c) If a straight line intersects one of two parallels, it
also intersects the other (Proclus);
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or,

Two straight lines, which are parallel to a third, are
parallel to each other;
or again,

Through a point outside a straight line there can be
drawn one and only one parallel to that line.

d) A triangle being given, another triangle can be con-
structed similar to the given one and of any size whatever.
[WaLLs.]

e) Through three points, not lying on a straight line, a
sphere can always be drawn. [W. Borvar]

f) Through a point between the lines bounding an angle
a straight line can always be drawn which will intersect these
two lines. [LoRENz.]

@) If the straight line » is perpendicular to the trans-
versal AB and the straight line s cuts it at an acute angle,
the perpendiculars from the points of s upon » are less than
AB, on the side in which 47 makes an acute angle with s.
[Nasir-Eppin.]

8) The locus of the points which are equidistant from
a straight line is a straight line.

¥) The sum of the angles of a triangle is equal to two
right angles. [SACCHERL]

Now let us suppose that we diminish the fundamental
set of hypotheses, cutting out the Archimedean Hypothesis.
Then the propositions (a), (b), (c), (d), (e) and (f) are
mutually equivalent, and also equivalent to the Fi/#% Postu-
late of Euclid, with respect to the fundamental set {A, B,C }
With regard to the propositions (a), (B), (T), while they are
mutually equivalent with respect to the set {A, B, C} no one
of them is equivalent to the Luclidean Postulate. This result
brings out clearly the importance of the Postwlate of Archi-
medes. It is given in the memoir of DEHN® [1g00] to which

1 Cf. Note on p. 30.
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reference has already been made. In that memoir it is shown

that the hypothesis (Y) on the sum of the angles of a triangle .

is compatible not only with the ordinary elementary geo-
metry, but also with a new geometry—necessarily Non-Archi-
medean—where the Fifth Postulate does not hold, and in
which an infinite number of lines pass through a point and
do not intersect a given straight line. To this geometry the
author gave the name of Sewmi-Euclidean Geometry.

The Spread of Non-Euclidean Geometry.

§ 60. The works of LoaTscHEwsky and Borvar did
not receive on their publication the welcome which so many
centuries of slow and continual preparation seemed to
promise. However this ought not to surprise us. The
history of scientific discovery teaches that every radical change
in its separate departments does not suddenly alter the con-
victions and the presuppositions upon which investigators
and teachers have for a considerable time based the present-
ation of their subjects.

In our case the acceptance of the Non-Euclidean Geo-
metry was delayed by special reasons, such as the difficulty
of mastering LOBATSCHEWSKY’s works, written as they were in
Russian, the fact that the names of the two discoverers were
new to the scientific world, and the Kantian conception of
space which was then in the ascendant.

LoBatscuewsky’s French and German writings helped
to drive away the darkness in which the new theories were
hidden in the first years; more than all availed the constant
and indefatigable labors of certain geometers, whose names
are now associated with the spread and triumph of Non-
Euclidean Geometry. We would mention particularly: C. L.
GERLING [1788—1864], R. BALTzER [1818—1887] and Fr.
ScumipT [1827—1901], in Germany; J. HoUEL [1823—
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1886], G. BaTTAGLINI [1826—1894], E. BELTRAMI [1835—
1900], and A. ForTy, in France and Italy.

§ 61. From 1816 GERLING kept up a correspondence
upon parallels with Gauss’, and in 1819 he sent him
SCHWEIKART'S memorandum on Astralgeometrie [cf. p. 75].
Also he had heard from Gauss himself [1832], and in terms
which could not help exciting his natural curiosity, of a
kleine Schrift on Non-Euclidean Geometry written by a
young Austrian officer, son of W. BoLvar? The bibliograph-
ical notes he received later from Gauss [1844] on the works
of LoBaTscHEWsKY and BoLva13 induced GERLING to procure
for himself the Geometrischen Untersuchungen and the Appen-
dix, and thus to rescue them from the oblivion into which
they seemed plunged.

§ 62. The correspondence between Gauss and ScHU-
MACHER, published between 1860 and 1863,4 the numerous
references to the works of LoBaTscHEWsKy and BoLvai, and
the attempts of LEGENDRE to introduce even into the elemen-
tary text books a rigorous treatment of the theory of pa-
rallels, led BALTZER, in the second edition of his Elemente der

t Cf. Gauss, Werke, Bd. VIII, p. 167—169.

2 Cf. Gauss's letter to GERLING (Gauss, Werke, Bd. VIII,
p. 220). In this note GAUss says with reference to the contents
of the Appendiz: “worin ick alle meine eigenen Ideen und Resultate
wiederfinde mit grofer Eleganz entwickelt”” And of the author of
the work: ,,/ck kalte diesen jungen Geometer v. Bolyai fiir ein Genie
erster Grifiess.

3 Cf. Gauss, Werke, Bd. VIII, p. 234—238.

4 Briefwechsel zwischen C. F. Gauss und H. C. Schumacher,
Bd. II, p."268—431 Bd. V, p. 246 (Altona, 1860—1863). As to
GAvss’s opinions at this time, see also, SARTORIUS VON WALTERS™
HAUSEN, Gauff zum Gedichinis, p. 80—81 (Leipzig, 1856). Cf. GAuss,
Werke, Bd. VIII, p. 267—268.
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Mathematik (1867), to substitute, for the Euclidean definition
of parallels one derived from the new conception of space.
Following LoBaTscHEWSKY he placed the equation 4+ 5
+ C = 180% which characterises the Euclidean triangle,
among the experimental results. To justify this innovation,
Bartzer did not fail to insert a brief reference to the possi-
bility of a more general geometry than the ordinary one,
founded on the hypothesis of two parallels. He also gave
suitable prominence to the names of its founders.® At the
same time he called the attention of HoUkL, whose interest
in the question of elementary geometry was well known to
scientific men,? to the Non-Euclidean geometry, and re-
quested him to translate the Geometrischen Untersuchungen
and the Appendix into French.

§ 63. The French translation of this little book by
LoBaTscHEWSKY appeared in 1866 and was accompanied
by some extracts from the correspondence between Gauss
and ScHUMACHER.3 That the views of LOBATSCHEWSKY,
Bovryar, and Gauss were thus brought together was extremely
fortunate, since the name of Gauss and his approval of the
discoveries of the two geometers, then obscure and unknown,

1 Cf BALTZER, Elemente der Mathematik, Bd. 1I (5. Auflage)
p. 12—14 (Leipzig, 1878). Also T. 4, p. 5—7%, of CREMONA’s trans-
lation of that work (Genoa, 1867).

2 In 1863 HOUEL had published his wellknown Essai d’usne
exposition rationelle des principes fondamentaux de la Glométrie élé-
mentaire. Archiv d. Math. u. Physik, Bd. XL (1863).

3 Mém. de la Soc. des Sci. de Bordeaux, T. IV, p. 88—120
(1866). This short work was also published separately under the
title Etudes géométrigues sur la théorie des paralléles par N.1 LOBAT-
sCHEWsKY, Conseiller d’ftat de "Empire de Russie et Professeur
3 P'Université de Kasan: traduit de I'allemand par J. HoUEL, swivie
dun Extrail de la correspondance de Gauss et de Schumacher, (Paris,
G. VILLARS, 1866).
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helped to bring credit and consideration to the new doctrines
in the most efficacious and certain manner.

The French translation of the Appendix appeared in
1867.% It was preceded by a Notice sur la vie et les travaux
des deux mathématiciens hongrois W. et J. Bolyai de Bolya,
written by the architect Fr. SCHMIDT at the invitation of
HotEL,? and was supplemented by some remarks by W. Bot-
val, taken from Vol. I of the Zentamen and from a short
analysis, also by WoLFGANG, of the Principles of Arithmetic
and Geometry.3

In the same year [1867] ScumipT’s discoveries regard-
ing the BoLvars were published in the Archiv d. Matk. u.
Prys. Also in the following year A. ForTi, who had already
written a critical and historical memoir on LOBATSCHEWSKY,*

1 Mém. de la Soc. des Sc. de Bordeaux, T. V, p. 189—
248. This short work was also published separately unter the
title: La Science absolute de Clespace, indépendante de la vérité ou
Sausseté de PAxiome XI & Euclide (que lon ne pourra jamais établir o
priori); suivie de la gquadraiure géometyigue du cercle, dans le cas de
la fausseté de PAxiome XI, par Jean Bolyai, Capitaine au Corps
du génie dans I'armée autrichienne; A»écédé d'une notice sur la vie
et les travaux de W. et de J. Bolyai, par M. Fr. Scamipt, (Paris,
G. ViLLARs, 1868).

2 Cf. P. STACKEL, Franz Schmidi, Jahresber. d. Deutschen
Math. Ver., Bd. XI, p. 141—146 (1902).

3 This litile book of W. BoLvar's is usually referred to
shortly by the first words of the title Awrzer Grundriss, 1t was pub-
lished at Maros-Vé4s4rhely in 1851.

4 Intorno alla geometria immaginaria o non euclidiana. Consid-
erazioni storico-critiche. Rivista Bolognese di scienze, lettere, arti
e scuole, T. II, p. 171—184 (1867). It was published separately
as a pamphlet of 16 pages (Bologna, Fava e Garagnani, 1867).
The same article, with some additions and the title, Studii geo-
metyici sulla teorica delle parallele di N. J, Lobatschewky, appeared
in the political journal Lae Provincia di Pisa, Anno III, Nr. 235, 27,
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made the name and the works of the two now celebrated
Hungarian geometers known to the Italians.”

To the credit of HoUEL there should also be mentioned
his interest in the manuscripts of JoHANN Borval, then [1867]
preserved, in terms of WOLFGANG's will, in the library of
the Reformed College of Maros-Visirhely. By the help of
Prince B. BoncampaGNI [1821—1894], who in his turn in-
terested the Hungarian Minister of Education, Baron ES1v0s,
he succeeded in having them placed [186¢] in the Hungarian
Academy of Science at Budapest.* In this way they became
more accessible and were the subject of painstaking and
careful research, first by ScuMIDT and recently by STACKEL.

In addition HoUerL did not fail in his efforts, on every
available opportunity, to secure a lasting triumph for the Non-
Euclidean Geometry. If we simply mention his Zssai cri-
tigue sur les principes fondamenteaux de la glométrie:? his ar-
ticle, Sur Pimpossibilité de démontrer par une construction
Pplane le postulatum & Euclide; % the Notices sur la vie et les
travaux de N. J. Lobatschewsky,5 and finally his translations
of various writings upon Non-Euclidean Geometry into French,$

29, 30 (1867); and part of it was reprinted under the original title
(Pisa, Nistri, 1867).

1 Cf, Intorno alla vita ed agli scritti di Wolfgang ¢ Giovanni
Bolyai di Bolya, matematici ungheresi. Boll. di Bibliografia e di
Storia delle Scienze Mat. e Fisiche. T. I, p. 277—299 (1869).
Many historical and bibliographical notes were added to this article
of Forti’s by B, BONCOMPAGNI.

2 Cf. STACKEL’s article on Franz Schmid! veferred to above.

3 1. Ed., G. ViLLaRs, Paris, 1867; 2 Ed., 1883 (cf. Note 3
P 52)

4 Giornale di Mat. T. VII p. 84—89; Nouvelles Annales (2)
T. IX, p. 93—96.

5 Bull. des. Sc. Math, T. I, p. 66—71, 324—328, 384—388
(1870).

6 In addition to the translations mentioned in the text, HOUEL
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it will e understood how fervent an apostle this science had
found in the famous French mathematician.

HoteL’s labours must have urged J. FRISCHAUF to per-
form the service for Germany which the former had rendered
to France. His book-—dAbsolute Geometrie nack J. Bolyai —
(1872)* is simply a free translation of JOHANN's Appendix, to
which were added the opinions of W. BoLvar on the Found-
ations of Geometry. A new and revised edition of Friscu-
AUF's work was brought out in 18762, In that work reference
is made to the writings of LoBATSCHEWSKY and the memoirs
of other authors who about that time had taken up this study
from a more advanced point of view. This volume remained
for many years the only book in which these new doctrines
upon space were brought together and compared.

§ 64. With equal conviction and earnestness GIUSEPPE
BATTAGLINI introduced the new geometrical speculations into
Italy and there spread them abroad. ¥rom 1867 the Gior-
nale di Maltematica, of which he was both founder and editor,
became the recognized organ of Non-Euclidean Geometry.

BATTAGLINT's first memoir—Swlla geometria immaginaria
di Lobatschewsky’*—was written to establish directly the prin-
ciple which forms the foundation of the general theory of
parallels and the trigonometry of LoBaTSCHEWsKY. It was

translated a paper by BATTAGLINI (cf. note 3), two by BELTRAMI
(cf. note 2 p. 127 and p. 147); one, by RiEMaNN (cf. note p. 138),
and one by HELMHOLTZ (cf. note p. 152).

T (xii 4 96 pages) (Teubner, Leipzig).

2 Elemente der Absoluten Geometrie, (vi -+ 142 pages) (Teubner,
Leipzig).

3 Giornale di Mat. T. V, p. 217—231 (1867). Rend. Acc.
Science Fis. e Matem. Napoli, T. VI, p. 157—173 (1867). French
translation, by HolEeL, Nouvelles Annales (2) T. VII, p. 209—21,
265—277 (1868).
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followed, a few pages later, by the Italian translation of the
Pangéoméirie*; and this, in its turn, in 1868, by the translation
of the Appendix.

At the same time, in the sixth volume of the Giornale di
Matematica, appeared E. BELTRAMI's famous paper, Saggio i
interpretazione della geometria non euclidea.* This threw an
unexpected light on the question then being debated regard-
ing the fundamental principles of geometry, and the concep-
tions of Gauss and LOBATSCHEWSKY.3

Glancing through the subsequent volumes of the Giorz-
ale di Matematica we frequently come upon papers upon
Non-Euclidean Geometry. There are two by BELTRAMI [1872]
connected with the above—named Sagg7o; several by BATT-
AGLINI [1874—78] and by d’Ovio [1875—77], which treat
some questions in the new geometry by the projective me-
thods discovered by CavLEv; HoUEL’s paper [1870] on the
impossibility of demonstrating Euclid’s Postulate; and others
by Cassani [1873—81], GUntHER [1876], DE Zort [1877],
Frarrini [1878], Ricorpr [1880], etc.

§ 65. The work of spreading abroad the knowledge of
the new geometry, begun and energetically carried forward
by the aforesaid geometers, received a powerful impulse from
another set of publications, which appeared about this time
[1868—72]. These regarded the problem of the foundations
of geometry in a more general and less elementary way than
that which had been adopted in the investigations of Gauss,

1 This was also published separately as a small book, entitled,
Pangeometria o sunto di geometria fondata sopra una leoria generaie
e rigorosa delle parallele (Naples, 1867; 2a Ed. 1874).

2 It was translated into French by HoUEL in the Ann. Sc. de
I’Ecole Normale Sup., T. VI, p. 251—288 (1869).

3 Cf, Commemorasione di E. Beltrami by L. CREMONA: Giornale
di Mat. T. XXXVII, p. 362 (1900). Also the Nackru/ by E.
PascAL, Math. Ann. Bd. LVII, p. 65—107 (1903)-
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LoBaTsCHEWsKY, and BoLval. In Chapter V. we shall shortly
describe these new methods and developments, which are asso-
ciated with the names of some of the most eminent mathe-
maticians and philosophers of the present time. Here it is
sufficient to remark that the old question of parallels, from
which all interest seemed to have been taken by the in-
vestigations of LEGENDRE forty years earlier, once again and
under a completely new aspect attracted the attention of geo-
meters and philosophers, and became the centre of an
extremely wide field of labour. Some of these efforts were
simply directed toward rendering the works of the founders
of Non-Euclidean geometry more accessible to the general
mathematical public. Others were prompted by the hope of
extending the results, the content, and the meaning of the
new doctrines, and at the same time contributing to the pro-
gress of certain special branches of Higher Mathematics.!

1 Cf. e. g, E. PicaRD, La Science Moderne et son état
actuel, p. 75 (Paris, FLAMMARION, 1903).




Chapter V.

The Later Development of Non-Euclidean
Geometry.

§ 66. To describe the further progress of Non-Euclidean
Geometry in the direction of Differential Geometry and Pro-
Jective Geometry, we must leave the field of Elementary Mathe-
matics and speak of some of the branches of Higher Mathe-
matics, such as the Differential Geometry of Manifolds, the
Theory of Continuous Transformation Groups, Pure Projec-
tive Geometry (the system of STaupT) and the Metrical
Geometries which are subordinate to it. As it is not consistent
with the plan of this work to refer, even shortly, to these
more advanced questions, we shall confine ourselves to those
matters without which the reader could not understand the
motive spirit of the new researches, nor be led to that other
geometrical system, due to RiEMANN, which has been alto-
gether excluded from the previous investigations, as they
assume that the straight line is of infinite length.

This system is known by the name of its discoverer and
corresponds to the Hypothesis of the Obtuse Angle of Sac-
CHERI and LAMBERT.!

* The reader, who wishes a complete discussion of the sub-
ject of this chapter, should consult KLEIN's Porlesungen iiber die
nichteuklidische Geometrie, (Gottingen, 1903); and BIANCHUs Lezion:
sulla Geometria differensiale, 2 Ed. T. 1, Cap. XI—XIV (Pisa, Spoerri,
1903). German translation by Lukar, 1st Ed. (Leipzig, 1899). Also
The Elements of Non-Euckdean Geometry by T. L. COOLIDGE which
has recently (1909) been published by the Oxford University Press.
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Differential Geometry and Non-Euclidean Geometry.

The Geometry upon a Surface.

§ 67. What follows will be more easily understood if
we start with a few observations:

A surface being given, let us see how far we can establish
a geometry upon it analogous to that on the plane.

Through two points 4 and B on the surface there will
generally pass one definite line belonging to the surface,
namely, the shortest distance on the surface between the two
points. This line is called the gevdeséc joining the two points.
In the case of the sphere, the geodesic joining two points, not
the extremities of a diameter, is an arc of the great circle
through the two points.

Now if we wish to compare the geometry upon a surface
with the geometry on a plane, it seems natural to make the
geodesics, which measure the distances on the one surface,
correspond to the straight lines of the other. It is also natural
to consider two figures traced upon the surface as (geodetical-
ly) equal, when there is a point to point correspondence be-
tween them, such that the geodesic distances between corre-
sponding points are equal.

We obtain a representation of this conception of equality,
if we assume that the surface is made of a flexidle and inex-,
tensible sheet. Then by a movement of the surface, which does
not remain rigid, but is bent as described above, those figures
upon it, which we have called equal, are to be superposed
the one upon the other.

Let us take, for example, a piece of a cylindrical surface.
By simple bending, without stretching, folding, or tearing, this
can be agplied to a plane area. Itis clear that in this case
two figures ought to be called equal oz #ke surface, which
coincide with equal areas on the plane, though of course two
such figures are not in general equal in space.
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Returning now to any surface whatsoever, the system of
conventions, suggested above, leads to a geometry on the sur-
JSace, which we propose to consider always for suitably bounded
regions [Normal Regions]. Two surfaces which are applicable
the one to the other, by bending without stretching, will have
the same geometry. Thus, for example, upon any cylindrical
surface whatsoever, we will have a geometry similar to that on
any plane surface, and, in general, upon any developable surface.

The geometry on the sphere affords an example of a
geometry on a surface essentially different from that on the
plane, since it is impossible to apply a portion of the sphere
to the plane. However there is an important analogy be-
tween the geometry on the plane and the geometry on the
sphere. This analogy has its foundation in the fact that the
sphere can be freely moved upon itself, so that propositions
in every way analogous to the postulates of congruence on
the plane hold for equal figures on the sphere.

Let us try to generalize this example. In order that a
suitably bounded surface, by bending but without stretching,
can be moved upon itself in the same way as a plane, a cer-
tain number [ K], invariant with respect to this bending, must
have a constant value at all points of the surface. This number
was introduced by Gauss and called the Cwrvature® [In
English books it is usually called Gawss’s Curvature or the
Measure of Curvature.)

1 Remembering that the curvature at any poirt of a plane
curve is the reciprocal of the radius of the osculating circle for
that point, we shall now show that the curvature at a point /7 of the
surface can be defined. Having drawn the normal » to the surface
at M, we consider the pencil of planes through 7, and the corre-
sponding pencil of curves formed by their intersections with the
surface. In this pencil of (plane) curves, there are two, orthogonal
to each other, whose curvatures, as defined above, are maximum
and minimum. The product of their curvatures is Gauss’s Curva-
ture of the Surface at M. This Curvature has one most marked



132 V. The Later Development of Non-Euclidean Geometry.

Surfaces of Constant Curvature can be actually con-

structed. The three cases
K=0, K>0, KO0,
have to be distinguished.

For K = O, we have the developable surfaces [applic-
able to the plane].

For K> O, we have the surfaces applicable to a sphere
of radius 1: /' 4%, and the sphere can be taken as a mode/
for these surfaces.

For K< O, we have the surfaces applicable to the
Pseudosphere, which can be taken as a model for the surfaces
of constant negative curvature.

Pseudosphere. Tractrix.
Fig. 54. Fig. ss.

The Pseudosphere is a surface of revolution. The equat-
ion of its meridian curve (the tractrix ¥) referred to the axis

characteristic. It is unchanged for every bending of the surface
which does not involve stretching. Thus, if two surfaces are
applicable to each other in the sense of the text, they ought to
have the same Gaussian Curvature at corresponding points [GAuss].

This result, the converse of which was proved by MinpING
to hold for Surfaces of Constant Curvature, shows that surfaces,
freely movable upon themselves, are characterised by constancy of
curvature,

t The tractrix is the curve in which the distance from the
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of rotation z, and to a suitably chosen axis of x perpendicular
to z, is

(1) z =% log ‘—{.j_—i:Jj-‘_x-‘ —V k—x?,
where /4 is connected with the Curvature X by the equation
1
K == ——ey

To the pseudosphere generated by (1) can be applied

. 1
any portion of the surface of constant curvature =

Surface of Constant Negative Curvature.:

Fig. 56.
point of contact of a tangent to the point where it cuts its
asymptote is constant.
t Fig. 56 is reproduced from a photograph ef a surface con-
structed by BELTRAMI.  The actual model belongs to the collection
of models in the Mathematical Institute of the University of Pavia.
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§ 68. There is an analogy between the geometry on a
surface of constant curvature and that of a portion of a plane,
both taken within suitable boundaries. We can make this
analogy clear by #anslating the fundamental definitions and
properties of the one into those of the other. This is indicat-
ed shortly by the positions which the corresponding terms

occupy in the following table:

(a) Surface.

(b) Point.

(c) Geodesic.

(d) Arc of Geodesic.

(e) Linear properties of the
Geodesic.

(f) A Geodesic is determined
by two points.

(g) Fundamental properties
of the equality of Geode-
sic Arcs and Angles.

(h) If two Geodesic triangles

(a) Portion of the plane.

(b) Point.

(c) Straight line.

(d) Rectilinear Segment.

(e) Postulates of Order for
points on a Straight Line.

(f) A Straight Line is deter-
mined by two points.

(g) Postulates of Congruence
for Rectilinear Segments
and Angles.

(h) If two Rectilinear triang-

les have their two sides
and the contained angles

have their two sides and
the contained angles e-
qual, then the remaining equal, then the remaining
sides and angles are equal. sides and angles are equal.
It follows that we can retain as common to the geome-
try of the said surfaces all those properties concerning bound-
ed regions on a plane, which in the Euclidean system are
independent of the Parallel Postulate, when no use is made
of the complete plane [e. g., of the infinity of the straight
line] in their demonstration.
We must now proceed to compare the propositions for
a bounded region of the plane, depending on the Euclidean
hypothesis, with those which correspond to them in the geo-
metry on the surface of constant curvature. We have, e. g,
the proposition that the sum of the angles of a triangle is
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equal to two right angles. The corresponding property does
not generally hold for the surface.

Indeed Gauss showed that upon a surface whose curva-
ture K is constant or varies from point to point, the surface

integral
f K4S,

over the whole surface of a geodesic triangle 4BC, is egual
20 the excess of its three angles over two right angles.
ie JJKJS=A+B+ c—m.
ABC

Let us apply this formula to the surfaces of constant

curvature, distinguishing the three possible cases—
Case L K=0.
In this case we have

ffKa’S= O;thatis 4 + B+ C=m.
ABC

Thus tke sum of the angles of a geodesic triangle on sur-
Jaces of sero curvature is equal to two right angles.

Case IL. K=2>0.
In this case we have

fdeS=%ffa’S.

asc ABC
But f dS = area of the triangle ABC = D.

%——A + B+ C—m.

From this equation it follows that
A+ B+ C>m,
and that A=F A4+ B+ C—m).

1 Cf. BIANCHI’s work referred to above; Chapter VI.
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That is:

a) The sum of the angles of a geodesic triangle on sur-
Jaces of constant positive curvalure is greater than two right
angles.

b) Tke area of a geodesic triangle is proportional to the
excess of the sum of its angles over two right angles.

Case IIL K=—_<O0

In this case we have

A
des=—{—,ffd -0

ABC ABC

where we again denote the area of the triangle 4BC by A.

Then we have

S—nm—(4+B+0)

From this it follows that
A+ B+C<m,

and that A=F (n—A- B—C).

That is:

a) ke sum of the angles of a geodesic triangle on sur-
JSaces of constant negative curvature is less than two right angles.

b) Tke area of a geodesic triangle is proportional to the
difference between the sum of its angles and two right angles.

We bring these results together in the following table:

Surfaces of Constant Curvature.

Value of the Curvature of thL:OS::face Character of the Triangle
K=0 Plane KA+LB+LC=m
K=ki2 Sphere KXA+<LB+LC>T

K=— Pseudosphere | ICA +<C B+ C<n
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With the geometry of surfaces of zero curvature and of
surfaces of constant positive curvature we are already ac-
quainted, since they correspond to Euclidean plane geometry
and to spherical geometry.

The study of the surfaces of constant negative curvature
was begun by F. MINDING [1806—1885] with the investiga-
tion of the surfaces of revolution to which they could be ap-
plied* The following remark of MINDING's, fully proved
by D. Copazz [1824—1873), establishes the trigonometry
of such surfaces. Jz the formulae of spherical trigonometyy let
the angles be kept fixed and the sides multiplied by i — |/ 1.
Then we obtain the equations whick are satisfied by the clements
of the geodesic triangles on the surfaces of constant negative cur-
vature® These equations [the psexdospherical trigonometry)
evidently coincide with those found by TAURINUS; in other
words, with the formule of the geometry of LOBATSCHEWSKY-
Borvan

§ 69. From the preceding paragraphs it will be seen that
the theorems regarding the sum of the angles of a triangle in
the geometry on surfaces of constant curvature, are related to
those of plane geometry as follows:—

For XK'= O they correspond to those which hold on the
plane in the case of the Hypothesis of the Right Angle.

For K£> O they correspond to those which hold on the
plane in the case of the Hypothesis of the Obtuse Angle.

Y Wie sick entscheider: lisst, 0b zwei gegebene krumme Flicken
ayfeinander abwickelbar sind oder nicht; nebst Bemerkungen tiber die
Flichen von unverinderlichem Kriimmungsmasse, CRELLE’s Journal,
Bd. XIX, p. 370—387 (1839).

2 MINDING: Beitrige zur Theorie der kiirzesten Linien auf krummen
Flicken. CRELLE's Journal, Bd. XX, p. 323—327 (1840). D. CopazzI:
Intorno alle superficie, le quali hanno costante il prodotto de’ due raggi
di curvatura. Ann. di Scienze Mat. e Fis. T. VII, p. 346—355
(1857).
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For K < O they correspond to those which hold on the
plane in the case of the Hypothesis of the Acute Angle.

The first of the results is evident a priori, since we are
concerned with developable surfaces.

The analogy between the geometry of the surfaces of con-
stant negative curvature, for example, and the geometry of
LOBATSCHEWSKY-BoLYAIL could be made still more evident by
arranging in tabular form the relations between the elements
of the geodesic triangles traced upon those surfaces, and the
formule of Non-Euclidean Trigonometry. Such a comparison
was made by E. BELtraMI in his Saggio di interpretasione della
geometria non-euclidea.’

In this way it will be seen that the geometry upon a sur-
face of constant positive or negative curvature can be con-
sidered as a concrete interpretation of the Non-Euclidean Geo-
metry, obtained in a bounded plane area, with the aid of the
Hypothesis of the Obtuse Angle or that of the Acute Angle.

The possibility of interpreting the geometry of a two-
dimensional manifold by means of ordinary surfaces was ob-
served by B. RIEMANN [1826—1866] in 1854, the year in
which he wrote his celebrated memoir: ber die Hypothesen
welche der Geometrie zugrunde liegen.? The developments of

1 Giorn. di Mat.,, T. VI, p. 284—312 (1868). Opere Mat.,
T. 1, p. 374—405 (Hoepli, Milan, 1902).

2 Riemanns Werke, 1. Aufl. (1876), p. 254—312: 2. Aufl.
(1892), p. 272—287. It was read by RIEMANN to the Philosophical
Faculty at Géttingen as his Habilitationsschrift, before an audience
not composed solely of mathematicans. For this reason it does
not contain analytical developments, and the conceptions intro-
duced are mostly of an intuitive character. Some analytical ex-
planations are to be found in the notes on the Memoir sent by Rie-
MANN as a solution of a problem proposed by the Paris Academy
(Riemanns Werke, 1. Aufl, p. 384—391). The philosophical basis
of the Habilitationsschrift is the study of the properties of things
from their behaviour as infinitesimals. Cf. KLEIN’s discourse:
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Non-Euclidean Geometry in the direction of Differential Ge-
ometry are directly due to this memoir.

BeLTRAMI's interpretation appears as a particular case of
RiemManN’s. It shows clearly, from the properties of surfaces
of constant curvature, that the chain of deductions from the
three hypotheses regarding the sum of the angles of a triangle
must lead to logically consistent systems of geometry.

This conclusion, so far as regards the Hypothesis of the
Obtuse Angle, seems to contradict the theorems of SACCHERI,
LameerT, and LEGENDRE, which altogether exclude the possi-
bility of a geometry founded on that hypothesis. However
the contradiction is only apparent. It disappears if we remem-
ber that in the demonstration of these theorems, not only
the fundamental properties of the bounded plane are used, but
also those of the complete plane, e. g., the property that the
straight line is infinite.

Principles of Plane Geometry on the Ideas of
Riemann.

§ 70. The preceding observations lead us to the foun-
dation of a metrical geometry, which excludes Euclid’s Postul-

Riemann und seine Bedeutung in der Entwickelungy der modernen
Mathematik. Jahresb. d. Deutschen Math. Ver., Bd. IV, p. 72—82
(1894), and the Italian translation by E. PAscAL in Ann. di Mat., (2),
T. XXIII, p. 222. The Habilitationsschrift was first published in 1867
after the death of the author [Goitt. Abh. XIII] under the editor-
ship of DEDEKIND. It was then translated into French by J. HoUEL
[Ann. di Mat. (2). T.III (1870), Oeuvres de Riemann, (1876)]; into
English, by W. K. CLiFFORD [Nature, Vol. VIII, (1873)], and again
by G. B. HALSTED [Tokyo sagaku butsurigaku kwai kiji, Vol. VII,
(1895); into Polish, by DIcKsTEIN (Comm. Acad. Litt. Cracov.
Vol. IX, 1877); into Russian, by D. SINTSOFF [Mem. of the Phy-
sical Mathematical Society of the University of Kasan, (2), Vol. I,
App- (1893)}
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ate, and adopts a more general point of view than that for-
merly held:

(@) We assume that we start from a bounded plane area
(normal region), and not from the whole plane.

(8) We regard as postulates those elementary propositions,
whick are revealed to us by the senses for the region originally
taken; the propositions relative to the straight line being determ-
ined by two points, to congruence, ekc.

(¢c) We assume that the properties of the initial region can
be extended 1o the neighbourhood of any point on ke plane (we
do not say to the complete plane, viewed as a whole].

The geometry, built upon these foundations, will be the
most general plane geometry, consistent with the data which
rigorously express the result of our experience. These results
are, however, limited to an accessible region.

From the remarks in § 69, it is clear that the said geo-
metry will find a concrete interpretation in that of the sur-
faces of constant curvature.

This correspondence, however, exists only from the
point of view (differential) according to which only bounded
regions are compared. If, on the other hand, we place our-
selves at the (énfeg7al) point of view, according to which the
geometry of the whole plane and the geometry on the sur-
face are compared, the correspondence no longer exists. In-
deed, from this standpoint, we cannot even say that the same
geometry will hold on two surfaces with the same constant
curvature. For example, a circular cylinder has a constant
curvature, zero, and a portion of it can be applied to a region
of a plane, but the entire cylinder cannot be applied in this
way to the entire plane. The geometry of the complete cy-
linder thus differs from that of the complete Euclidean plane.
Upon the cylinder there are closed geodesics (its circular
sections), and, in general, two of its geodesics (helices) meet
in an infinite number of points, instead of in just two.
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Similar differences will in general appear between a me-
trical Non-Euclidean geometry, founded on the postulates
enunciated above, and the geometry on a corresponding sur-
face of constant curvature.

When we attempt to consider the geometry on a surface
of constant curvature (e. g., on the sphere or pseudosphere)
as a whole, we see, in general, that the fundamental property
of a normal region that a geodesic is fully determined by two
points ceases to hold. This fact, however, is not a necessary
consequence of the hypotheses on which, in the sense above
explained, a general metrical Non-Euclidean geometry of the
plane is based. Indeed, when we examine whether a system
of plane geometry is logically possible, which will satisfy the
conditions (a), (b), and (c), and in which the postulates of con-
gruence and that a straight line is fully determined by two
points are valid on the complete plane, we obtain, in addition
to the ordinary Euclidean system, the two following systems
of geometry:

1. The system of Lobatschewsky-Bolyai, already explain-
ed, in which two parallels to a straight line pass through a
point.

2. A new system (called Riemann’s system) which cor-
responds to SACCHERU's Hypothesis of the Obtuse Angle, and
in which no parallel lines exist.

In the latter system the straight line is a c/osed line of
finite length. We thus avoid the contradiction to which we
would be led if we assumed that the straightline were ggen
(infinite). This hypothesis is required in proving Euclid’s The-
orem of the Exterior Angle [I. 16] and some of SACCHER'S
results.

§ 71. RIEMANN was the first to recognize the existence
of a system of geometry compatible with the Hypotiesis of
the Obtuse Angle, since he was the first to substitute for the
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hypothesis that the straight line is Znfinite, the more general
one that it is wnbounded. The difference, which presents it-
self here, between énfinite and wnbounded is most important.
We quote in regard to this RIEMANN’s own words:*

‘In the extension of space construction to the infinitely
great, we must distinguish between wnboundedness and infinite
extent; the former belongs to the extent relations; the latter to
the measure relations. That space is an unbounded three-fold
manifoldness is an assumption which is developed by every
conception of the outer world; according to which every in-
stant the region of real perception is completed and the pos-
sible positions of a sought object are constructed, and which
by these applications is for ever confirming itself. The un-
boundedness of space possesses in this way a greater empiri-
cal certainty than any external experience, but its infinite ex-
tent by no means follows from this; on the other hand, if we
assume independence of bodies from position, and therefore
ascribe to space constant curvature, it must necessarily be
finite, provided this curvature has ever so small a positive
value.

Finally, the postulate which gives the straight line an in-
finite length, implicitly contained in the work of preceding
geometers, is to RIEMANN as fit a subject of discussion as that
of parallels, What RieMANN holds as beyond discussion is
the wnboundedness of space. This property is compatible with
the hypothesis that the straight line is infinite (open), as well
as with the hypothesis that it is finite (closed).

The logical possibility of RIEMANN’s system can be de-
duced from its concrete interpretation in #ke geometry of the
sheaf of lines. The properties of the sheaf of lines are trans-

1 [This quotation is taken from CLIFFORD’s translation in
Nature, referred to above. (Teil III, § 2 of RIEMANN’s Memoir.)].
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lated readily into those of RIEMANN’s plane, and vice versa,
with the aid of the following dictionary .

Sheaf

Line

Plane [Pencil]

Angle between two Lines
Dihedral Angle
Trihedron

Plane

Point
Straight line
Segment
Angle
Triangle

.....

We now give, as an example, the ‘translation’ of some
of the best known propositions for the sheaf:

a) The sum of the three
dihedral angles of a trihedron
is greater than two right
dihedral angles.

b) All the planes which are
perpendicular to another
plane pass through a straight
line.

c) With every plane of
the sheaf let us associate the
straight line in which the
planes perpendicular to the
given plane all intersect. In
this way we obtain a corres-
pondence between planes and
straight lines which enjoys
the following property: The
straight lines corresponding
to the planes of a pencil
[Ebenenbiischel, set of planes
through one line, the axis of
the pencil] lie on a plane,

a) The sum of the three
angles of a triangle is greater
than two right angles.

b) All the straight lines
perpendicular to another
straight line pass through a
point.

c) With every straight line
in the plane let us associate
the point in which the lines
perpendicular to the given
line intersect. In this way we
obtain a correspondence be-
tween lines ar(d points, which
enjoys the following pro-
perty:

The points corresponding
to the lines of a pencil lie on
a straight line, which in its turn
has for corresponding point
the vertex of the pencil.
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which in its turn has for cor- The correspondence thus
responding line the axis of defined is called absolute po-
the pencil. The correspond- /arity of the plane.

ence thus defined is called

absolute [orthogonal] polarity

of the sheaf.

§ 72. A remarkable discovery with regard to the Apo-
thesis of the Obtuse Angle was made recently by DEnN.

If we refer to the arguments of SAccheri [p. 37],
LAMBERT [p. 45], LEGENDRE [p. 56], we see at once that
these authors, in their proof of the falsehood of the Aypo-
thesis of the Obtuse Angle, avail themselves, not only of the
hypothesis that the straight line is infinite, but also of the
Archimedean Hypothesis. Now we might ask ourselves if this
second hypothesis is required in the proof of this result. In
other words, we might ask ourselves if the two hypotheses,
one of which attributes to the straight line the character of
open lines, while the other attributes to the sum of the angles
of a triangle a value greater than two right angles, are com-
patible with each other, when the Postulate of Archimedes is
excluded. DEHN gave an answer to this question in his
memoir quoted above (p. 30), by the construction of a Non-
Aprchimedean geometry, in which the straight line is open,
and the sum of the angles of a triangle is greater than two
right angles. Thus the second of SACCHERTY’s three hypotheses
is compatible with the hypothesis of the open straight line
in the sense of a Nom-Archimedean system. This new
geometry was called by DEEN Non-Legendrean Geometry [cf.

$ 59, p. 121).

§ 73. We have seen above that the geometry of a
surface of constant curvature (positive or negative) does not
represent, in general, the whole of the Non-Euclidean geo-
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metry on the plane of LoBATSCHEWKY and of RiEMANN. The
question remains whether such a correspondence could not
be effected with the help of some particular surface of this
nature.

The answer to this question is as follows:

1) There does not exist any regular® analytic surface
on whick the geometry of Lobatschewsky-Bolyai is altogether
valid [HiLBERT's Theorem].?

t In other words, free from singularities.

2 Uber Flicken won konstanter Gaussscher Kriimmung. Trans.
Amer. Math. Soc. Vol. II, p. 86—99 (1901); Grundlagen der Geo-
metrie, 2. Aufl. p. 162—175. (Leipzig, Teubner, 1903).

This question, which HILBERT’s Theorem answers, was first
suggested to mathematicians by BELTRAMI’s interpretation of the
LoBaTSCHEWKY-BOLYAI Geometry. In 1870 HELMHOLTZ—in his
lecture, Uber Ursprung und Bedeutung der geometrischen Axiome,
(Vortriage und Reden, Bd. II. Brunswick, 1844)—had denied the
possibility of constructing a pseudospherical surface, extending
indefinitely in every direction. Also A. GENNOCCHI—in his Zestre
a M. Quetelet sur diverses questions mathématiques, [Belgique Bull. (2).
T. XXXVI, p. 181—198 (1873)], and more fully in his Memoir,
Sur une mémoire de D. Foncenex et sur les géométries non-euclidiennes,
[Torino Memorie (3), T. XXIX, p. 365—404 (1877)], showed the
insufficiency of some intuitive demonstrations, intended to prove
the concrete existence of a surface suitable for the representation
of the entire Non-Euclidean plane. Also he insisted upon the
probable existence of singular points—(as for example, those on
the line of regression of Fig. 54)—in every concrete model of a
surface of constant negative curvature.

So far as regards HILBERT'S Theorem, we add that the
analytic character of the surface, assumed by the author, has been
shown to be unnecessary. Cf. the dissertation of G. LITKEMEYER:
Uber den analytischen Charakter der Integrale von partiellen Differen-
tialgleickungen, (Gottingen, 1902). Also the Note by E. HOLMGREN:
Sur les surfaces & courbure constante négative, [Comptes Rendus, I Sem.,
p- 840—843 (1902)].

[In a recent paper Sur les surfaces & courbure constante négative,
(Bull. Soc. Math. de France. t. XXXVII p. 51—58, 1909) E. GOURSAT
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2) A surface on which the geometry of the plane of
Riemann would be altogether valid must be a closed surface.

The only recular analytic closed surface of constant posi-
tive curvature is the sphere [LIEBMANN's Theorem].*

But on the sphere, in normal regions of which RIEMANN’s
geometry is valid, two lines always meet in two (opposite)
points.

We therefore conclude that:

In ordinary space there are no surfaces whick satisfy in
their complete extent all the properties of the Non-Buclidean
Planes.

§ 74. At this place it is right to observe that the sphere,
among all the surfaces whose curvature is constant and different
from zero, has a characteristic that brings it nearer to the
plane than all the others. Indeed the sphere can be moved
upon itself just as the plane, so that the properties of con-
gruence are valid not only for normal regions, but, as in the
plane, for the surface of the sphere taken as a whole.

This fact suggests to us a method of enunciating the
postulates of geometry, which does not exclude, a priori, the
possible existence of a plane with all the characteristics of
the sphere, including that of opposite points. We would

has discussed a problem slightly less general than that enunciated
by HiLBERT, and has succeeded in proving—in a fairly simple
manner—the impossibility of constructing an analytical surface of
constant curvature, which has no singular points at a finite distance.]

t Eine neue Eigenschaft der Kugel, Gott. Nachr. p. 44—354
(1899). This property is also proved by HILBERT on p. 172—175
of his Grundlagen der Geomelrie. We notice that the surfaces of
constant positive curvature are necessarily analytic. Cf. LUTKE-
MEYER’s Dissertation referred to above (p. 163), and the memoir
by HOLMGREN: Uber eine Klasse von partiellen Differentialgleichungen
der zwesten Ordnung, Math. Ann. Bd. LVII, p. 407—420 (1903).
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need to assume that the following relations were true for
the plane:

1) The postulates (5), (¢) [cf. § 70] in every normal
region.

2) The postulates of congruence in the whole of the
plane.

Thus we would have the geometrical systems of EucLip,
of LoBATSCHEWSKY-BOLYAL and of RIEMANN (tke elliptic type),
which we have met above, where two straight lines have
only one common point: and a second RIEMANN’s system
(the spherical type), where two straight lines have always two
common points.

§ 75- We cannot be quite certain what idea RIEMANN
had formed of his complete plane, whether he had thought
of it as the eliptic plane, or the spherical plane, or had
recognized the possibility of both. This uncertainty is due
to the fact that in his memoir he deals with Differential
Geometry and devotes only a few words to the complete
forms. Further, those who continued his labours in this direc-
tion, among them BeLTRAMI, always considered RIEMANN’s
geometry in connection with the sphere. They were thus led
to hold that on the complete RiEMaNN’s plane, as on the
sphere (owing to the existence of the opposite ends of a
diameter), the postulate that a straight line is determined by
two points had exceptions,® and that the only form of the
plane compatible with the Hjpotkesis of the Obtuse Angle
would be the spierical plane.

* Cf. for example, the short reference to the geometry of
space of constant positive curvature with which BELTRAuI concludes
his memoir: Zeoria fondamentale degli spazii di curvatura Costante,
Ann. di Mat. (2). T. II, p. 354—355 (1868); or the French trans-
lation of this memoir by J. HoUEL, Ann. Sc. d. 'Ecole Norm. Sup.

T. VI, p. 347—377.
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The fundamental characteristics of the eliptic plane
were given by A. CAvLEY [1821—1895] in 1859, but the
connection between these properties and Non-Euclidean
geometry was first pointed out by KreIN in 1871. To KLEIN
is also due the clear distinction between the two geometries
of RIEMANN, and the representation of the elliptic geometry
by the geometry of the sheaf [cf. § 71].

To make the difference between the spherical and
elliptic geometries clearer, let us fix our attention on two
classes of surfaces presented to us in ordinary space: the
surface with two faces (fwo-sided) and the surface with one
face (one-sided).

Examples of two-sided surfaces are afforded by the
ordinary plane, the surfaces of the second order (conicoidal,
cylindrical, and spherical), and in general all the surfaces
enclosing solids. On these it is possible to distinguish two
faces.

An example of a one-sided surface is given by the
Leaf of MéBius [Mosrussche Blatt], which can be easily
constructed as follows: Cut a rectangular strip ABCD. In-
stead of joining the opposite sides A8 and CD and thus
obtaining a cylindrical surface, let these sides be joined
after one of them, e. g, C2, has been rotated through two
right angles about its middle point. Then what was the
upper face of the rectangle, in the neighbourhood of CD,
is now succeeded by the lower face of the original rectangle.

Thus on Mébins’ Leaf the distinction between the two
Jaces becomes impossible.

If we wish to distinguish the one-sided surface from the
wo-sided by a characteristic, depending only on the intrinsic
properties of the surface, we may proceed thus:—We fix a
point on the surface, and a direction of rotation about it.
Then we let the point describe a closed path upon the sur-
face, which does not leave the surface; for a two-sided sur-
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face the point returns to its initial position and the final
direction of rotation coincides with the initial one; for a one-
sided surface, [as can be easily verified on the Leaf of MéBus,
when the path coincides with the diametral line] there exist
closed paths for which the final direction of rotation is oppos-
ite to the initial direction.

Coming back to the two RIEMANN’s
planes, we can now easily state in what
their essential difference consists: #%e spher-
ical plane has the character of the two-sided
surface, and the elliptic plane that of the one-
sided surface. »

The property of the elliptic plane here The Leaf of Mobius.
enunciated, as well as all its other propert- Fg. 7.
ies, finds a concrete interpretation in the sheaf of lines. In
fact, if one of the lines of the sheaf is turned about the vertex
through half a revolution, the two rotations which have this
line for axis are interchanged.

Another property of the elliptic plane, allied to the
preceding, is this: Z%e dliptic plane, unlike the Euclidean
plane and the other Non-Euclidean planes, is no# divided by
its lines into fwo parts. We can state this property other-
wise: If two points 4 and 4’ are given upon the plane, and
an arbitrary straight line, we can pass from 4 to 4" by a
path which does not leave the plane and does not cut the
line.” This fact is ‘translated’ by an obvious property of the
sheaf, which it would be superfluous to mention.

§ 76. The interpretation of the spherical plane by the
skeaf of rays (straight lines starting from the vertex) is ana-
logous to that given above for the elliptic plane. The trans-

T A surface which completely possesses the properties of the
elliptic plane was constructed by W. Bov. [Gétt. Berichte, p. 20
—23 (1900); Math. Ann. Bd. LVII, p. 151—184 (1903)}.
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lation of the properties of this plane into the properties of
the sheaf of rays is effected by the use of a.‘dictionary’
similar to that of § 71, in which the word péins is found
opposite the word ray.

The comparison of the sheaf of rays with the sheaf of
lines affords a useful means of making clear the connections,
and revealing the differences, which are to be found in the
two geometries of RIEMANN.

We can consider two sheaves, with the same vertex, the
one of lines, the other of rays. It is clear that to every line
of the first correspond two rays of the second; that every
figure of the first is formed by two symmetrical figures of the
second; and that, with certain restrictions, the metrical pro-
perties of the two forms are the same. Thus if we agree to
regard the two opposite rays of the sheaf of rays as forming
one element only, the sheaf of rays and the sheaf of lines
are identical.

The same considerations apply to the two RIEMANN’s
planes. To every point of the elliptic plane correspond
two distinct and opposite points of the spherical plane; to
two lines of the first, which pass through that point, corres-
pond two lines of the second, which have two points in
common; etc.

The elliptic plane, when compared with the spherical
plane, ought to be regarded as a dowble plane.

With regard to the elliptic plane and the spherical
plane, it is right to remark that the formule of absolute tri-
gonometry, given in § 56, can be applied to them in every

- suitably bounded region. This follows from the fact, al-

ready noted in § 58, that the formule of absolute trigonom-
etry hold on the sphere, and the geometry of the sphere, so
far as regards normal regions, coincides with that of these
two planes.
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Principles of Riemann’s Solid Geometry.

§ 77. Returning now to solid geometry, we start from
the philosophical foundation that the postulates, although
we grant them, by hypothesis, an actual meaning, express
truths of experience, which can be verified only in a bounded
region. We also assume, that on the foundation of these postul-
ates points in space are represented by three coordinates.

On such an (analytical) representation, every line is
given by three equations in a single variable:

X =ﬁ (t)’ X =f; (t), X3 =f:3 (t)r
and we must now proceed to determine a function s, of
the parameter #, which shall express the /eng#% of an arc of
the curve.

On the strength of the distributive property, by which
the length of an arc is equal to the sum of the lengths of
the parts into which we imagine it to be divided, such a
function will be fully determined when we know the element
of distance (ds) between two infinitely near points, whose
coordinates are

X1y Xay X3,
X+ dx1, %, + dx,, 23+ dx;.

RiEMaNN starts with very general hypotheses, which
are satisfied most simply by assuming that Zs? the square
of the element of distance, is a quadratic expression in-
volving the differentials of the variables, which always re-
mains positive:

ds* = Zaj dx; dx;,
where the coefficients «;, are functions of x;, x,, x,.

Then, admitting the principle of superposition of figures,
it can be shown that the function @; must be such that, with
the choice of a suitable system of coordinates,

ds® — dxx2 4 dxz2"+ dxq?

1 +1§ (@2 + 222 +32)
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In this formula the constant X is what RIEMANN, by an ex-
tension of GAuss’s conception, calls the Curvature of Space.
According as X is greater than, equal to, or less than
zero, we have space of constant positive curvature, space
of zero curvature, or space of constant negative curvature,

We make another forward step when we assume that the
principle of superposition [the principle of movement] can be
extended to the whole of space, as also the postulate that a
straight line is always determined by two points. In this way
we obtain three forms of space; that is, three geometries
which are logically possible, consistent with the data from
which we set out.

The first of these geometries, corresponding to positive
curvature, is characterised by the fact that RIEMANN’s system
iIs valid in every plane. For this reason space of positive
curvature will be unbounded and finite in all directions.
The second, corresponding to zero curvature, is the ordinary
Euclidean geometry. And the third, which corresponds to
negative curvature, gives rise in every plane to the geometry
of LOBATSCHEWSKY-BOLYAL

The Work of Helmholtz and the Investigations
of Lie.

§ 78. In some of his philosophical and mathematical
writings,* HELMHOLTZ [1821—1894] has also dealt with the

t Uber die thatsichlichen Grundlagen der Geometrie, Heidelberg,
Verh. d. naturw.-med. Vereins, Bd. IV, p. 197—202 (1868); Bd. V,
P. 31—32 (1869). Wiss. Abhandlungen von H. HELMHoOLTZ, Bd. II,
p. 610—617 (Leipzig, 1883). French translation by J. HofEL in
Mém. de la Soc. des Sc. Phys. et Nat. de Bordeaux, T.V, (1868),
and also, in book form, along with the Etudes Géométriques of
LOBATSCHEWSKY and the Correspondance de Gauss et de Schumacher,
(Paris, Hermann, 1895).

Uber die Thatsacken, die der Geometrie zum Grunde lLegen, Gott.
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question of the foundations of geometry. Instead of assum-
ing a priori the form
ds®* = 2ay dx; dx;,

as the expression for the element of distance, he showed
that this expression, in the form given to it by Riemann for
space of constant curvature, is the only one possible, when,
in addition to RIEMANN’s hypotheses, we accept, from the
beginning, that of the mobility of figures, as it would be given
by the movement of Rigid Bodies.

The problem of RieManNN-HELMHOLTZ was carefully
examined by S. Lie [1842—1899]. He started from the
fundamental idea, recognized by KrLeiN in HELMHOLTZs
work, tkat the congruence of two figures signifies that they are
able to be transformed the one into the other, by means of a
certain point transformation in space: and that the properties,
in virtue of whick congruence takes the logical character of
equality, depend upon the fact that displacements are given by
a group of transformations.*

In this way the problem of RieMaNN-HELMHOLTZ was
reduced by LiE to the following form:

Nachr. Bd. XV, p. 193—221 (1868). Wiss. Abhandl.,, Bd.II, p. 618
—639.

The Axioms of Geometry. The Academy, Vol. I, p. 123—181
(1870); Revue des cours scient., T. VII, p. 498—501 (1870).

Uber die Axiome dev Geometrie. Populire wissenschaftliche Vor-
trige, Heft 3, p. 21—54. (Brunswick, 1876). English translation;
Mind, Vol. ], p. 301—321. French translation; Revue scientifique
de la France et de IKtranger (2). T. XII, p. 1197—1207 (1877)

Uber den Ursprung, Sinn, und Bedeutung der geometrischen
Sitze, Wiss. Abh. Bd. II, p. 640—660, English translation; Mind,
Vol. II, p. 212—224 (1878).

x Cf.Klein: Vergleichende Betrachtungen tiber neuere geometrische
Forschungen, (Erlangen, 1872); reprinted in Math. Ann. Bd. XLIII,
p. 63—100 (1893). Italian translation by G. FANO, Ann. di Mat. (2),
T. XVII, p. 301—343 (1899).
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To determine all the continuous groups in space which,
in a bounded region, have the property of displacements.

When these properties, which depend upon the free
mobility of line and surface elements through a point, are
put in a suitable form, there arise #iree fypes of groups,
which characterise the three geometries of EucLip, of
LoBATsCHEWSKY-BoLvAI and of RIEMANN, *

Projective Geometry and Non-Euclidean Geometry.
Subordination of Metrical Geometry to Projective
Geometry.

§ 79. In conclusion, there is an interesting connection
between Projective Geometry and the three geometrical
systems of EucrLiD, LOBATSCHEWSKY-BoLYAI and RIEMANN.

To give an idea of this last method of treating the
question, we must remember that Projective Geometry, in
the system of G. C. STAUDT [1798—1867], rests simply upon
grapkical notions on the relations between points, lines
and planes. Every conception of congruence and movement
[and thus of measurement etc.,] is systematically banished.
For this reason Projective Geometry, excluding a certain
group of postulates, will contain a more restricted number of
general properties, which for plane figures are the [projective]
properties, remaining invariant by projection and section.

However, when we have laid the foundations of Pro-
jective Geometry in space, we can introduce into this system

1 Cf. Lik: Theorie der Transformationsgruppen, Bd.III, p. 437
—543 (Leipzig, 1893). In connection with the same subject, H.
POINCARE, in his memoir: Swur les hypothéses fondamentanx de la
Géométyie [i%ull. de La Soc. Math. de France. T. XV, p. 203—216
(1877)], solved the problem of finding all the hypotheses, which
distinguish the fundamental group of plane Euclidean Geometry
from the other transformation groups.
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the metrical conceptions, as relations between its figures and
certain definite (metrical) entities.

Keeping to the case of the Euclidean plane, let us see
what grapkical interpretation can be given to ke fundamental
metrical conceptions of parallelism and of perpendicularity.

To this end we must specially consider #%e Zne at infin-
ity of the plane, and the absolute involution which the set of
orthogonal lines of a pencil determine upon it. The double
points of such an involution, conjugate imaginaries, are
called the circular points (at infinity), since they are common
to all circles in the plane [PONCELET, 18227].

On this understanding, 24e parallelism of two lines is
expressed graphically 8y the property whick they possess of
meeting in a point on the line at infinity: the perpendicularity
of two lines is expressed graphically &y the property that
their points at infinity are confugale in the absolute involution,
that is, form a harmonic range with the circular points.
[CrasLES, 1850.2]

Other metrical properties, which can be expressed
graphically, are those relative to the size of angles, since
every equation

F(4,B,C...)= 0,
between the angles 4, B, C, .. ., can be replaced by

F (log.a log 4 log log « ) -0,

277 277 21
in which a, 4, c... are the ankarmonic ratios of the pencils
formed by the lines bounding the angles and the (imaginary)
ines joining the angular points to the circular points. [La-
GUERRE, 1853.3]

t Traité des propriétés projectives des figures. 2. Ed., T. L Nr. o4,
p- 48 (Paris, G. Villars, 1865).

2 Tyaité de Géométrie supérieure. 2.Ed., Nr. 660, p. 425 (Paris,
G. Villars, 1880).

3 Sir la théorie des foyers. Nouv. Ann. T.XII, p.57. Oeuvres
de Laguerre. T. II, p. 12—13 (Paris, G. Villars, 1902).
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More generally it can be shown that the congruence
of any two plane figures can be expressed by a graphical
relation between them, the line at infinity, and the absolute
involution. Also, since congruence is the foundation of all
metrical properties, it follows that the line at infinity and the
absolute involution allow all the properties of Euclidean
metrical geometry to be subordinated to Projective Geo-
metry. Z7us the metrical properties appear in projective geometry,
not as graphical properties of the figures considered in them-
selves, but as graphical properties with regard to the funda-
mental metrical entities, made up of the line at infinity and /e
absolute involution,

The complete set of fundamental metrical entities is
called #ke absolute of the plane (CAYLEY).

All that has been said with regard to the plane can
naturally be extended to space. The fundamental metrical
entities in space, which allow the metrical properties to be
subordinated to the graphical, are the plane at infinity and
certain polarity (absolute polarity) on this plane. This polar-
ity is given by the polarity of the sheaf, in which every line
corresponds to a plane to which it is perpendicular [cf. § 71].
The fundamental conic of this polarity is imaginary, since
there are no real lines in the sheaf, which lie on the corre-
sponding perpendicular plane. It can easily be shown that
it contains all the pairs of circular points, which belong to
the different planes in space, and that it appears as the com-
mon section of all spheres. From this property the name
of circle at infinity is given to this fundamental metrical
entity in space.

1 Cf., e.g. F. ENRIQUES, Lezioni di Geometyia proiettiva, 2a. Ed.
p- 177—188 (Bologna, Zanichelli, 1904). There is a German
translation of the first edition of this work by H. FLEISCHER
(Leipzig, 1903).
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§ 80. The two following questions naturally arise at
this stage:

() Can projective geometry be founded upon the Non-
Luciidean hypothesis?

(i) Zf suck a foundation is possible, can the metrical
properties, as in the Euclidean case, be subordinated to the
projective?

To both these questions the reply is in the affirmative.
If RIEMANN's system is valid in space, the foundation of
projective geometry does not offer any difficulty, since those
graphical properties are immediately verified, which give rise
to the ordinary projective geometry, after the improper entities
are introduced. If the system of LOBATSCHEWSKY-BOLYAI is
valid in space, we can also again lay the foundation of the
projective geometry, by introducing, with suitable conventions,
improper or ideal points, lines and planes. This extension will
follow the same lines as were taken in the Euclidean case, in
completing space with the elements at infinity. It would be
sufficient, for this, to consider along with the proper sheaf
(the set of lines passing through a point), two improper
sheaves, one formed by all the lines which are parallel to a
given line in one direction, the other by all the lines perpen-
dicular to a given plane; also to introduce improper points,
to be regarded as the verfices of these sheaves.

Even if the improper points of a plane cannot in this
case, as in the Euclidean, be assigned to a straight line [#2¢
line at infinity], yet they form a complete region, separated
from the region of ordinary points (gr9ger points) by a conic
[limiting conie, or conic at infinity]. This conic is the locus
of the improper points determined by the pencils of parallel
lines.

In space the émproper points are separated from the
proper points by a non-ruled guadric [limiting guadric or
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guadric at infinity], which is the locus of the improper points
determined by sets of parallel lines.

The validity of projective geometry having been estab-
lished on the Non-Euclidean hypotheses [KLEIN ], to obtain
the subordination of the metrical geometry to the projective
it is sufficient to consider, as in the Euclidean case, the
Jundamental metrical entities (the absolute), and to interpret the
metrical properties of figures as graphical relations between
them and these entities. On the plane of LOBATSCHEWSKY-
Bovrvar the fundamental metrical entity is the limiting conic,
which separates the region of proper points from that of
improper points, on the plane of RIEMANN it is an émaginary
conic, defined by the abdsolute polarity of the plane [cf. p. 144).

In the one case as well as in the other, #k¢ metrical
properties of figures are all the graphical properties whick
remain unaltered in the projective transformations® leaving the
absolute fixed.

These projective transformations constitute the co3 dis-
placements of the Non-Euclidean plane.

In the Euclidean case the said transformations, (which
leave the absolute unaltered), are the 0o+ transformations of
similarity, among which, as a special case, are to be found
the 003 displacements.

In space the subordination of the metrical to the pro-

t The question of the independence of Projective Geometry
from the theory of parallels is touched upon lightly by KLEIN in
his first memoir: Uber diz sogenannte Nicht-Euklidische Geometyie,
Math. Ann. Bd. IV, p. 573—625 (1871). He gives a fuller treatment
of the question in Math. Ann. Bd. VI, p. 112—145 (1873). This
question is discussed at length in our Appendix IV p. 227.

2 By the term projective transformation is understood such a
transformation as causes a point to correspond to a point, a line to
a line, and a point and a line through it, to a point and a line
through it.
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jective geometry is carried out by means of the limiting
quadric (%2 absolute of space). If this is real, we obtain the
geometry of LOBATSCHEWSKY-BOLYAI; if it is imaginary, we
obtain RIEMANN’s elliptic type.

TVe metrical properties of figures are therefore the graph-
ical properties of space in relation to its absolute; that is, the
graphical properties whick remain unaltered in all the project-
tve transformations whick leave the absolute of space fixed.

§ 81. How will the ideas of distance and of angle be
expressed with reference to the absolute?

Take a system of homogeneous coordinates (x;, x,, ;)
on the projective plane. By their means the straight line is
represented by a linear equation, and the equation of the
absolute takes the form:

Q. = za,_',' X: x5 = O,

Then the distance between two points X (=, x,, &),
Y (91, y2, ;) is expressed, omitting a constant factor, 4y #4e
logarithm of the ankarmonic ratio of the range consisting of
X, Y, and the points M, N, in whick the line X Y metts the
absolute,

If we then put

Q. = Za;; % 55,
and remember, from analytical geometry, that the anharm-
onic ratio of the four points X, ¥, M, V is given by

sz -+ l Qz; - sz Q;yy
Q;y -_ VQ:;: b Qxx ny
the expression for the distance 0., will be:—
Qxy + VQ:_V - sz ny
sz - VQ:}' - Qxx Qn
Introducing the inverse circular and hyperbolic functions,

(1) Dy =2 l0g
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Q
D, — ik - 0%
, == ik CO0S Voo
(2) o
D,, = & cosh—* -2
" cos Voo
VQ. 9. Q2
D.y= iksin—* —sﬁ’f—g—i—:gﬂ
VQ..Q,
© Ve, Ta.0,
Lny e= £sinh —! 2y T xx Ny
VQ..Q,,

The constant 2, which appears in these formule, is

connected with RiIEMANN’s Curvature X by the equation

1
K=—_.

Similar considerations lead to the projective interpret-
ation of the conception of angle. Z7%e angle between two
lines is proportional to the logarithm of the ankarmonic ratio
of the pencil whick they form with the tangents from their
point of intersection to the absolute.

If we wish the measure of the complete pencil to be
2T, as in the ordinary measurement, we must take the
fraction 1:27 as the constant multiplier. Then to express
analytically the angle between two lines # (%, u,, u3),
v (vy, 22, 73), we put

q’uu = Zby Ui Us.

If 4; is the cofactor of the element g; in the dis-
criminant of Q.., the tangential equation of the absolute is.
given by

Yiu = O,
and the angle between the two lines by the following
formule:—

Vo +Vy: _y ¢y
’ y V= = lo = v v ’
() Fhv=g7log g—— Vvl —w. v,
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~ YV
L #w,v=cos™T ——- "
. VL,
(27)

—l:l{ji'fllll ll’?}ﬂ __—ﬁ
V_lljﬂu \I,W

V¥ — Y Vo
Vq,uu WW

Similar expressions hold for the distance between two
points and the angle between two planes, in the geometry
of space. We need only suppose that

Q. =0, Y =0,

represent the equations (in point and tangential coordinates)
of the absolute of space, instead of the absolute of the plane.

According as Q.. = O is the equation of a real quadric,
without generating lines, or of an imaginary quadric, the
formulz will refer to the geometry of LOBATSCHEWKY-BoLval,
or that of RIEMANN.?

<X #, v = sin

1.
< #,v = — sinh

§ 82. The preceding formule, concerning the angles
between two lines or planes, contain those of ordinary
geometry as a special case. Indeed if, for simplicity, we take
the case of the plane, and the system of orthogonal axes,
the tangential equation of the Euclidean absolute (#%e circular

points, § 79) is
u.* + u,> = O.

The formula (2°), when we insert
\"uu = u,* + u,“, “pm, = 7,2 + Wgz, \puy =y + UV,
becomes

t For a full discussion of the subject of this and the pre-

ceding sections, see CLEBSCH-LINDEMANN, Forlesunger siber Geometrie,
Bd. II. Th. I, p. 461—et seq. (Leipzig, 1891).



162 V. The Later Development of Non-Euclidean Geometry.

u!vl + u202
3
Vouir+tu. Vo.l+0,°

<X %, v = cos *

from which we have
%+ 4,0,

cos (4, v) = Verias Vorror

But the direction cosines of the line # (;, #,,%;) are
Uy U,
Ccos (u x) == [o{e]] (ﬂy) R —
’ Viud+u,? Vur+u®’
so that this equation can be written

cos (%,7) = 0 J, + mym,
the ordinary expression for the angle between the two lines
(lx ml) and (lz m,).

For the distance between two points the argument does
not proceed so simply, when the absolute degenerates into
the circular points. Indeed the points A, &V, where the line
XY intersects the absolute, coincide in the point at infinity on
this line, and the formula (1) gives in every case:

Doy = % log (M N, XV) = % log 1 — 0.

However, by a simple artifice we can obtain the
ordinary formula for the distance as the limiting case of
formula (3).

To do this more easily, let us suppose the equations
of the absolute (not degenerate), in point and line coor-
dinates, reduced to the form:

Q.. = €x:® + €x,° + x,° = O,
VY = u® + 2,2 + €uy® = o,

Then, putting

A— '!/6 (xx 32 ~— y1%,)% + (% v, _J’Ix;;_?z + (-’iz.?';"‘x:,yz)z"

Vexzvex+a2 Veytep+y°
equation (3) of the preceding section gives
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D, — iksn—VeA.

Let € be infinitesimal. Omitting terms of a higher
order, we can substitute V€A for sin—* VeA in this formula
If we now choose 42 infinitely large, so that the product
i% V'€ remains finite and equal to unity for every value of €,
the said formula becomes '

- Ve(xx}'z_.yxxz)z + (xx}'g, — Y x3)2 + (sz's —}'zx_;_)_;_
Vexl?+ex®+x2 Vey+ e +y7

D.y

Let € now tend to the limit zero. The tangential
equation of the absolute becomes
u* 4+ u,* = 0y
and the conic degenerates into two imaginary conjugate
points on the line #; = 0. The formula for the distance,
on putting

X=X =2

X3 3 !

takes the form
-ny = V(Xx - Yx)z + (Xz - K)z;

which is the ordinary Euclidean formula. We have thus ob-
tained the required result.

We note that to obtain the special Euclidean case from
the general formula for the distance, we must let 2* tend to
I .
= this
affords a confirmation of the fact that RIEMANN’s curvature
is zero in Euclidean space.

infinity. Since RIEMANN's curvature is given by —

§ 83. The properties of plane figures with respect to a
conic, and those of space with respect to a quadric, together
constitute projective metrical geometry. This was first studied
by CAYLEY,® apart from its connection with the Non-Euclid-

1 Sixth Memoiyr upon Quantics. Phil. Trans. Vol. CXLIX, p. 61
—90 (1859). Also Collected Works, Vol. 1I, p. 561—592.
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ean geometries. These last relations were discovered and
explained some years later by F. KLEIN, *

To KLEIN is also due a widely used nomenclature for
the projective metrical geometries. He gives the name /Zyper-
bolic geometry to CAYLEY's geometry, when the absolute is
real and not degenerate: e/liptic geometry, to that in which
the absolute is imaginary and not degenerate: parabolic
geomelry, to the limiting case of these two. Thus, in the
remaining articles, we can use this nomenclature to describe
the three geometrical systems of LOBATSCHEWSKY-BOLYAIL of
RieMann (elliptic type), and of EucLip.

Representation of the Geometry of Lobatschewsky-
Bolyai on the Euclidean Plane.

§ 84. To the projective interpretation of the Non-
Euclidean measurements, of which we have just spoken, may
be added an interesting representation which can be given
of the Hyperbolic Geometry on the Euclidean plane. To ob-
tain it, we take on the plane a real, not degenerate, conic:
e.g.a circle. Then we make the following definitions, relative
to this circle :

Plane = region of points within the circle.

Point = point inside the circle.

Straight line = chord of the circle.

We can now easily verify that the postulate that a
straight line is determined by two points, and the postulates
regarding the properties of straight lines and angles, can be
expressed as relations, which are always valid, when the above
interpretations are given to these terms.

But in the further development of this geometry we add

1 Cf. Uber die sogemannte Nicht-Euklidische Geometrie. Math,
Ann. Bd. IV, p. 575—625 (1871).



Representation on the Euclidean Plane. 165

to these the postulates of congruence, contained in the
following principle of displacement.

If we are given two points A, A on the plane, and the
straight lines a, &, respectively passing through them, there
are four methods of superposing the plane on itself, so that
A and a coincide respectively with A" and a'. More precisely:
one method of superposition is defined by taking as corre-
sponding to each other, one ray of 2 and one ray of @', one
section of the plane bounded by & and one section bounded
by &. Two of these displacements are direct congruénces
and two conveérsé congruences.

With the preceding interpretations of the entities, poiz?,
line and plane, the principle here expressed is translated
into the following proposition:

If a conic (¢. g., a circle) is given in a plane, and two
internal points A, A" are takem, as also two chords a, @, re-
spectively passing through them, there aré four projective trans-
Jormations of the plane, whick change into stself the space
within the conic, and whick make A and a correspond respéct-
tvely to A" and a'.

To fix one of them, it is sufficient to make sure that a
given extremity of @ corresponds to a given extremity of a’,
and that to one section of the plane bounded by @, cor-
responds a definite section of the plane bounded by &’, Of
these four transformations, two determine on the conic @
projective correspondence in the same sense, and two a pro-
jective correspondence in the opposite sense.

§ 85. We shall prove this proposition, taking for sim-
plicity two distinct conics T, T, in the same plane or other-
wise.

Let M, NV be the extremities of the chord « [cf. Fig. 58],

Also M’, NV’ those of 2’ [cf. Fig. 59].
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Let P, P be the poles of a, & with respect to the two
conics.

On this understanding, the line P4 intersects the
conic T in two real and distinct points &, .S: also the line
P’ A4 intersects the conic T in two real and distinct points
R, S.

A projective transformation which changes T into T/, the
line e into &', and the point A into 4, will make the point P
correspond to 7', and the line P4 to the line 7° 4.

P
M @
N
T
S
Fig. 8. Fig. s0.

Thus this transformation determines a projective cor-
respondence between the points of the two conics, in which
the pair of points M’, V' corresponds to the pair of points
M, N: and the pair of points &', .S" to R, S.

Vice versa, a projective transformation between the two
conics, which enjoys this property, is associated with a pro-
jective transformation of the two planes, such as is here de-
scribed.”

But if we consider the two conics T, T, we see that to

r For this proof, and the theorems of Projective Geometry
upon which it is founded, see Chapter X, p. 251—253 of the work
of ENRIQUES referred to on p. 156.
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the points of the range MNVRS on T may be made to cor-
respond the points of any one of the following ranges on 1';
M'N'ERS
N'MSEK
MNSE
NMERS.

In this way we prove the existence of the four project-
ive transformations of which we have spoken in the propos-
ition just enunciated.

If we suppose that the two conics coincide, we do not
need to change the
preceding argument in
any way. We add, how- p
ever, that of the four
transformations. only
one makes the segment
AM correspond to the
segment 4' M’ if at the
same time the shaded
parts of the figure cor-
respond to each other.

Further the two transformations defined by the ranges

( MNRS ) ( MNRS
M'NRS 7, N MSK
determine profections in the same sense, while the other two,
defined by the ranges:
( MNRS ) ( MNRS
MNSK N MRS
determine projections in the opposite sense.

§ 86. With these remarks, we now return to complete
the definitions of § 84, relative to a circle given on the
plane.

Plane = region of points within the circle.
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Point = point within the circle.

Straight Line = chord of the circle.

Displacements = projective transformations of the plane
which change the space within the circle into itself.

Semi-Revolutions =— homographic transformations of the
circle.

Congruent Figures — figures which can be transformed
the one into the other by means of the projective trans-
formations named above.

The preceding arguments permit us to affirm at once
that all the propositions of elementary plane geometry, asso-
ciated with the concepts straight line, angle and congruence,
can be readily translated into properties relative to the
system of points inside the circle, which we denote by (.S).
In particular let us see what corresponds in (S) to two per-
pendicular lines in the ordinary plane.

To this end we note that if 7, s are two perpendicular
lines, a semirevolution of the plane about s will superpose
7 upon itself, exchanging, however, the two rays in which it
is divided by s.

According to the above definitions, a semi-revolution in
(S) is a homographic transformation, which has for axss a
chord s of the circle and for centre the pole of the chord.
The lines which are unchanged in this transformation, in ad-
dition to s, are the lines passing through its centre. Zhus
in the system (S) we must call two lines perpendicular, when
they are conjugate with respect to the fundamental circle.

We could easily verify in (.S) all the propositions on
perpendicular lines. In particular, that if we draw the (imag-
inary) tangents to the fundamental circle from the common
point of two conjugate chords in (.S), these tangents form
a harmonic pencil with the perpendicular lines [cf. p. 155].F

* This representation of the Non-Euclidean plane has been
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§ 87. Let us now see how the distance between two
points can be expressed in this conventional measurement,
which is being taken for the interior of the circle.

To this end we introduce a system of orthogonal coord-
inates (x, »), with origin at the centre of the circle.

The distance between two points 4 (x, y), B (¥, ¥)
in the plane with which we are dealing cannot be represen-
ted by the usual formula

Vx—)+(—),
since it is 7ot invariant for the projective transformations
which we have called displacements. The d7stance must be a
function of the coordinates, invariant for the said transforma-
tions, which for points on the straight line possesses the dis-
tributive property given by the formula

dist. (4B) = dist. (AC) + dist. (CB).

Now the anharmonic ratio of the four points 4, B, M,
&, where M, IV are the extremities of the chord 4B, is a
relation between the coordinates (x, y), (x, ') of 4B,
remaining invariant for all projective transformations which
leave the fundamental circle fixed. The most general ex-
pression, possessing this invariant property, will be an arbi-
trary function of this anharmonic ratio.

If we remember that the said function must be distrib-
utive in the sense above indicated, we must assume that,
except for a multiplier, it is equal to the logarithm of the
anharmonic ratio,

AM AN

We shall thus have

distance (4B) = & log (ABMN).

employed by GROSSMANN in carrying out a number of the con-
structions of Non-Euclidean Geometry. Cf. Appendix, III, p. 225.
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In a similar way we proceed to find the proper ex-
pression for the angle between two straight lines. In this case
we must notice that if we wish the right angle to be ex-
pressed by %, we must take as constant multiplier of the
logarithm the factor 1 : 27

Then we shall have for the angle between « and 4,

Xa,b= 2% log (abmn),

where =, n are the conjugate imaginary tangents from the
vertex of the angle to the circle, and (¢ & m #) is the an-
harmonic ratio of the four lines @, 4, » and 7, expressed
analytically by

sin (em) sin (an)

sin (bm) sin (67)

§ 88. A glance at what was said above on the sub-
ordination of the metrical to the projective geometry (§ 81)
will show clearly that the preceding formule, regarding the
distance and angle, agree with those which we would have in
the Non-Euclidean plane, if the absolute were a circle. This
would be sufficient to suggest that the geometry of the system
(S) gives a concrete representation of the geometry of
LoBaTscHEWSKY-BoLval. However, as we wish to discuss
this point more fully, let us see how the definition and pro-
perty of parallels are translated in (S).

Let 7 (#:, ., #;) and # (v, 2,, v;) be two different
chords of the fundamental circle.

Let the circle be referred to an orthogonal Cartesian
set of axes, with the centre for origin, and let us take the
radius as unit of length.

Then we have

x*4+y?—1 =0,
Wt vE—1=0,

for the point and line equation of the circle.
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Making these equations homogeneous, we obtain
22+ x,? — x2 = 0,
Ut u — u? = 0,
The angle <C 7, # between the two straight lines » and
7 can be calculated by means of the formula (3") of § 81,
if we put
Wi = w1, — u?,
VYo = 024 2,2 — v3%,
VYo = wts + 2,0, — 130,
We thus obtain

V(uxvz_z/xuz)z—‘ (uzv3:{{3uz)2_(”3?{5»]“"‘7/1”3)2'
V(uxz'i‘”z’ _ usz) ('1/12 +2,7 — 7}32)

sin < 7,7 =

But the lines 7, 7 are given by

Xylty+ Xty + %36y = O,
XUy + XU, + X303 = O;

and they meet in the point,

Thus the preceding expression for this angle takes
the form

(4) sin { rr =

14 (205 — x> — x,7)
l/(ul2 +ut — u?) (0P v — 1/3’)'

From this it is evident that the necessary and sufficient
condition that the angle be zero is that the numerator of
this fraction should vanish.

Now if this numerator is zero, the point (xy, x,, x;), in
which the chords intersect, must lie on the circumference of
the fundamental circle, and vice versa (Fig. 61).

Therefore in our interpretation of the geometrical pro-
positions by means of the system (S), we must call two chords
parallel, when they meet in a point on the circumference of the
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Jundamental circle, since the angle between those two chords
is zero.

Since there are two chords through any point within a
circle which join this point to the ends of any given chord,
the fundamental proposition of hyperbolic geometry will be
verified for the system (.5).

§ 89. We proceed to find for the system (S) the
formula regarding the angle of parallelism. To do this we
first calculate the angle OMV, between the axis of y and
the line A4V, joining a point A on the axis of y to the ex-
tremity of the axis of x (Fig. 62).

7 207 // 7
a /.

Fig. 61. Fig. 62.

Denoting by « the ordinary distance of the two points
M and O, the homogeneous coordinates of the line #ZV and
the line OM are, respectively (a, 1, — a), (1, 0, 0) and the
coordinates of their common point are (0, @, 1).

Then from (4) of the preceding article,

sin L OMN = V1—az

On the other hand, the distance, according to our con-
vention, between the two points O and M is given by (2) cf
§ 81 as

OM = % cosh =% — 1
14

1—az’

Thus

oM 1
cosh —;—

T
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Comparing these two results, we have
oM 1
cosh 7~ = S oo
a relation which agrees with that given by Taurinus, Lo-
BATSCHEWSKY and Borvar for the angle of parallelism [cf.
p- 90]-

§ 90. We proceed, finally, to see how the distance be-
tween two neighbouring points (#2¢ element of distance) is
expressed in the system (S), so that we may be able to
compare this representation of the hyperbolic geometry with
that given by BELTRAMI [cf. § 69].

Let (x,»), (x+dx, y+dp») be two neighbouring points.
Their distance 4s is calculated by means of (2) of § 81 if we
substitute:

Q.. = x°+y* — 1,
Q) = (x+dx)*+(y+ady)* — 1,
Q. = x(x+adx)+y(y+dy) — 1.

Since the angle is small, we may substitute the sine for

the angle, and we have
dst == 22 (dx2 + dyt) (1 — 22 —y2) + (v dx 4 y dy)?
@432 —1) (= +axp + y +dyp—1))

Thus, omitting terms higher than the second order,

we have

(@x* 4 dy?) 1 — 22 —y?) + (xdx +ydy)

as? = k? (I e __J/Z)z

or

(5) ds? — &2 (I —}/3) dx2 4 2xydxdy -|-(I ——.f)d!f_

([ —_—x2 — yz)z

Now we recall that BELTRAMI, in 1868, interpreted the
geometry of LOBATSCHEWSKY-BOLYAI by that on the surfaces
of constant negative curvature. The study of the geometry
on such surfaces depends upon the use of a system of coord-
inates on the surface, and the law according to which the
element of distance (ds) is measured. The choice of a suitable
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system (%, z) enabled BELTRAMI to put the square of 2s in
this form:
(1—22) duz 4 2uvdudv - (1 —u2) do?

(1 — 22 — 22)2

éz

where the constant 4% is the reciprocal, with its sign changed,
of the curvature of the surface.t

In studying the properties of these surfaces and in mak-
ing a comparison between them and the metrical results of
the geometry of LOBATSCHEWSKY-BoLvai, BELTRAMI in his
classical memoir, quoted on p. 138, employed the following
artifice:

He represented the points of the surface on an aux-
iliary plane, such that the point («, #) of the surface corre-
sponded to the point on the plane whose Cartesian coord-
inates (x, y) were (%, ). The points on the surface were
then represented by points inside the circle

x4 y?—1 = 0;

the points at infinity on the surface by points on the cir-
cumference of the circle: its geodesics by chords: parallel
geodesics by chords meeting in a point on the circumference
of the said circle. Then the expression for (2s)? took the
same form as that given in (5), which states the form to be
used for the element of distance in the system (.5).

It follows that, by his representation of the surfaces of
constant negative curvature on a plane, BELTRAMI was
led to one of the projective metrical geometries of CAYLEY,
and precisely to the metrical geometry relative to a funda-
mental circle, given above in §§ 8o, 81.

v Risoluzione del problema di riporiare i punti di una superficie
sopra un piano tn modo che le linee geodetiche vengano rappresentate
da Znee reffe. Ann. di Mat. T. VII, p. 185—204 (1866). Also
Opere Matematicke. T. 1, p. 262—280 (Milan, 1902).
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§ or. The representation of plane hyperbolical geo-
metry on the Euclidean plane is capable of being extended to
the case of solid geometry. To represent the solid geometry
of LOBATSCHEWSKY-BOLYAI in ordinary space we need only
adopt the following definitions for the latter:

Space = Region of points inside a sphere.
Point = Point inside the sphere.
Straight Line = Chord of the sphere.

Plans = Points of a plane of section which are inside
the sphere.

Displacements = Projective transformations of space,
which change the region of the points inside the
sphere into itself, etc.

With this ‘Dictionary’ the propositions of hyperbolic
solid geometry can be translated into corresponding proper-
ties of the Euclidean space, relative to the system of points
inside the sphere.!

Representation of Riemann'’s Elliptic Geometry in
Euclidean Space.

§ 92. So far as regards plane geometry, we have already
remarked [pp. 142-—3] that the geometry of the ordinary
sheaf of lines gives a concrete interpretation of the elliptical
system of RIEMANN. Therefore, if we cut the sheaf by an
ordinary plane, completed by the line at infinity, we obtain
a representation on the Euclidean plane of the said Rie-
MANN’s plane.

* BELTRAMI considers the interpretation of Non-Euclidean Solid
Geometry, and, in general, of the geometries of manifolds of
higher order in space of constant curvature, in his memoir: Zzoriz
Jondamentale degli spazii di curvatura costante. Ann. di Mat. (2),
T. I, p. 232—255 (1868). Opere Mat. T. 1, p. 406—429 (Milan,
1902).
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If we wish a representation of the elliptic space in the
Euclidean space, we need only assume in this a single-valued
polarity, fo whick corresponds an imaginary gquadric, not
degenerate. We must then take, with respect to this quadric,
a system of definitions analogous to those indicated above
in the hyperbolic case. We do not pursue this point further,
as it offers no fresh difficulty.

However we remark that in this representation a// te
points of the Euclidean space, including the points on the plane
at infinity, would have a one-one correspondence with the points
of Riemann’s space.

Foundation of Geometry upon Descriptive
Properties.

§ 93. The principles explained in the preceding sections
lead to a new order of ideas in which the descriptive propert-
ies appear as the first foundations of geometry, instead of
congruence and displacement, of which RieMANN and HEeLM-
HoLTZ availed themselves. We note that, if we do not wish
to introduce at the beginning any hypothesis on the inter-
section of coplanar straight lines, we must start from a
suitable system of postulates, valid in a dounded region of
space, and that we must complete the initial region later by
means of improper points, lines and planes [cf. p. 157].

When projective geometry has been developed, the
metrical properties can be introduced into space, by adding
to the initial postulates those referring to displacement or

1 For such developments, cf. KLEIN, loc. cit. p. 158: PaAscH,
Vorlesungen diber neuere Geometrie, (Leipzig, 1882); SCHUR, Uber die
Einfiikrung der sogenannten idealen Elemente in die projective Geometrie,
Math. Ann. Bd. XXXIX, p. 113—124 (1891): BoNOLA, Sulla intro-
dugione deglh elementi improprii in geometyia protettiva, Giornale di
Mat. T. XXXVIII, p. 105—116 (1900).
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congruence. By so doing we find that a certain polarity of
space, allied to the metrical conceptions, becomes trans-
formed into itself by all displacements. Then it is shown
that the fundamental quadric of this polarity can only be:

@) A real, non-ruled guadyic;

) An imaginary quadric (with real equation);

¢) A degenérate quadric.

Thus the #2ree geometrical systems, which RIEMANN and
HermuOLTZ reached from the conception of the element of
distance, are to be found also in this way.*

The Impossibility of proving Euclid’s Postulate.

§ 04. Before we bring to a close this historical treat-
ment of our subject it seems advisable to say a few words
on the impossibility of demonstrating Euclid’s Postulate.

The very fact that the innumerable attempts made to
obtain a proof did not lead to the wished-for result, would
suggest the thought that its demonstration is impossible. In-
deed our geometrical instinct seems to afford us evidence
that a proposition, seemingly so simple, if it is provable,
ought to be proved by an argument of equal simplicity. But
such considerations cannot be held to afford a groof of the
impossibility in question.

If we put EucLip’s Postulate aside, following the devel-
opments of Gauss, LoBaTscHEwsky and BoLval, we can
construct a geometrical system in which no contradictions
are met. This seems to prove the logical possibility of the
Non-Euclidean hypothesis, and that EucLm’s Postulate is
independent of the first principles of geometry and therefore
cannot be demonstrated. However the fact that contradictions

t For the proof of this result see BONOLA, Determinazione
per via geomelyica dei lre Uipi de spazio; iperbolico, parabolico, ellittico.
Rend. Circ. Mat. Palermo, T. XV, p. 56—65 (1901).
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have not been met is not sufficient to prove this; we must
be certain that, proceeding on the same lines, such con-
tradictions could never be met. This conviction can be
gained with absolute certainty from the consideration of the
formulz of Non-Euclidean geometry. If we take the system
of all the sets of three numbers (x, y, z), and agree to con-
sider each set as an analytical poinf, we can define the
distance between two such analytical points by the formulae
of the said Non-Euclidean Trigonometry. In this way we
construct an analytical system, which offers a conventional
interpretation of the Non-Euclidean geometry, and thus
demonstrates its logical possibility.

In this sense the formulae of the Non-FEuclidean Trigon-
ometry of Lobatschewsky-Bolyai give the proof of the independ-
ence of Euclid’'s Postulate from the first principles of geometry
(regarding the straight line, the plane and congruence).

We can seek a geometrical proof of the said independ-
ence, on the lines of the later developments of which we
have given an account. For this it is necessary to start from
the principle that the conceptions, derived from our intu-
ition, independently of the correspondence which they find
in the external world, are a priori Jgically possible; and that
thus the Euclidean geometry is logically possible and every
set of deductions founded upon it.

But the interpretation which the Non-Euclidean plane
hyperbolic geometry finds in the geometry on the surfaces
of constant negative curvature, offers, up 7o a certain point,
a first proof of the impossibility of demonstrating the Eu-
clidean postulate. To put the matter in more exact terms:
by this means it is established that the said postulate cannot
be demonstrated on the foundation of the first principles of
geomelry, held valid in a bounded region of the plane. In
fact, every contradiction, which would arise from the
other postulate, would be translated into a contradiction
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in the geometry on the surfaces of constant negative curv-
ature.

However, since the comparison between the hyperbolic
plane and the surfaces of constant negative curvature, exists,
as we have seen, only for dounded regions, we have not thus
excluded the possibility that the Euclidean postulate might
be proved for the complete plane.

To remove this uncertainty, it would be necessary to
refer to the abstract manifold of constant curvature, since no
concrete surface exists in ordinary space, in which the com-
Plete hyperbolic geometry holds [cf. § 73].

But, even so, the impossibility of proving Euclid’s Pos-
tulate would have been shown only for plane geometry. There
would still remain the question of the possibility of proving
it by means of the considerations of solid geometry.

The foundation of geometry, on RIEMANN’S principles,
whereby the ideas of the geometry on a surface are extended
to a three-dimensional region, gives the complete proof of the
impossibility of this demonstration. This proof depends on
the existence of @ Non-Euclidearn anal tical system. Thus we
are brought to another analytical proof. The same remark
applies also to the investigations of HeLmHOLTz and Lig,
though it might be argued that the latter also offer a geomet-
rical proof, from the existence of zransformation groups of
the Euclidean space, similar to the groups of displacements of
the Non-FEuclidean geometry. Of course, it must be under-
stood that we here consider geometry in its fullest sense.

But the proof of the impossibility of demonstrating Eu-
clid’s Postulate, whick is based upon the projective measure-
ments of Cayley, is simpler and easier to follow geometrically.

This proof depends upon the representation of the
Non-Euclidean geometry by the conventional measurement
relative to a circle or to a sphere, an interpretation which we
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have developed at length in the case of the plane [§$ 84
—9z].

Further the proof of the logical possibility of RIEMANN’s
elliptic hypothesis can be just as easily derived from these
projective measurements. For the plane, the interpretation
which we have given of it as the geometry of the sheat
will be sufficient [§ 71].7

t Another neat and simple proof of the independence of the
Fifth Postulate is to be found in the representation of the Non-
Euclidean plane, employed by KLEIN and PoINCARE. In this the
points of the Non-Euclidean plane appear as points of the upper
portion of the Euclidean plane, and the straight lines of the Non-
Euclidean plane as semicircles, perpendicular to the straight bound-
ary of this halfplane; etc. The Elliptic Geometry can be repres-
ented in a similar way; and the Hyperbolic and Elliptic Solid
Geometries can also be brought into correspondence with the
Euclidean Space. An account of these representations is to be
found in WEBER und WELLSTEIN’S Encyklopidic der Elementar-
Mathematik, Bd. II § 9—11, p. 390—81 (Leipzig, 1905) and in
Chapter II of the WNickt-Euklidische Geometrie by H. LIEBMANN
(Sammlung SCHUBERT, 49, Leipzig, 1905).

In Appendix V of this volume a similar argument is given,
based upon the discussion in WEBER-WELLSTEIN’s volume. Points
upon the Non-Euclidean plane are represented by pairs of points
inverse to a fixed circle on the Euclidean plane; and straight
lines upon the one, are circles orthogonal to the fixed circle on
the other.




Appendix L

The Fundamental Principles of Statics and
Euclid’s Postulate.

On the Principle of the Lever.

§ &. To demonstrate the Principle of the Lever, Arcar-
MEDES [287—212] avails himself of several hypotheses, some
expressed and others implied. Among the hypotheses
passed over in silence, in addition to that which we would
now call #ke hypothesis of increased constraint®, there is one
which definitely concerns the equilibrium of the lever, and
can be expressed as follows:

When a lever is suspended from its middle point, it is in
equilibrium, if @ weight 2 P is applied at one end, and of the
other anpther lever is hung by its middle point, eack of its ends
supporting a weight P2

We shall not discuss the various criticisms upon ARCHI-
MEDES’ use of this hypothesis, nor the different attempts made
to prove it.3 In this connection we shall refer only to the

t This hypothesis can be enunciated as follows: 7/ several bodies,
stbjected 1o constraints, are in equilibrium under the action of given
Jorces, they will still be in equilibrium, if new constraints ave added
0 those already in existence. Cf., for example, J. ANDRADE, Legons
de Mécanique Fhysigue, p. §9 (Paris, 1898).

2 Cf. Archimedis opera omnia: critical edition by J. L. HEIBERG;
Bd. II, p. 142 et seq. (Leipzig, 1881).

3 Cf,, for example, E. MacH, Die Mechanit in ikrer Ent-
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arguments of LAGRANGE, since these will show, clearly and
simply, the important link between this hypothesis and the
Parallel Postulate.

§ 2. Let ABD be an isosceles triangle (4D = BD),
from whose angular points 4 and B are suspended two
(cf. Fig. 63) equal weights 2, while a weight equal to 2P is
suspended from D.

D This triangle will be in equilibrium
about the straight line #/V, joining
the middle points of the equal sides,
since each of these sides may be
regarded as a lever from whose ex-
N T \M tremities egual weights are hung.

But the equilibrium of the figure
will also be secured, if the triangle
rests upon a line passing through
B A the vertex D and the middle point

.C C of the side AB. Therefore, if E

Fig. 6. is the common point of CD and MWV,
the triangle will be in equilibrium, when suspended from Z.

‘Or’, continues LAGRANGE, ‘comme Paxe [MNV] passe
par le milieu des deux cétés du triangle, il passera aussi
nécessairement par le milieu de la droite menée du sommet
du triangle au milieu [C] de sa base; donc le levier trans-
versal [CD] aura le point d’appui [£] dans le milieu et
devra, par conséquent, étre chargé également aux bouts
[C, D]: donc la charge que supporte le point d’appui du
levier, qui fait la base du triangle, et qui est chargé, i ses

wickelung, (3. Aufl,, Leipzig, 1897); English translation by T. J. Mc-
CorMACK (Open Court Publishing Co. Chicago, 1902). Also, for
the different hypotheses from which the proof of the principle of
the lever, can be obtained, see P. DUHEM, Les origines de la stati-
gue, (Paris, 1905), especially Appendix C, Swr les divers axiomes
dose se peut déduive la théorie du levier.
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deux extrémités de poids égaux, sera égale au poids double
du sommet et, par conséquent, égale A la somme des deux
poids.’*

§ 3. LAGRANGE's argument contains implicitly some
hypotheses of a statical nature, regarding symmetry, addition
of constraints,? etc.; and, in addition, it involves a geometrical
property of the Euclidean triangle. But if we wish to omit
the latter, a course which for certain reasons seems natural,
the preceding conclusions will be modified.

Indeed, though we may still assume that the triangle
ABD is in equilibrium about the point Z, where the lines
MN and CD intersect, we cannot assert that Z is the middle
point of CD, as this would be equivalent to assuming
EvucLip’s Postulate. Consequently, we cannot assert that the
single weight 2 P, applied at C, can be substituted for the two
weights at A and B, since, if such a change could take place,
a lever would be in equilibrium, with equal weights at its ends,
about a point which canno? be its middle point.

Vice versa, if we assume, with ARCHIMEDES, that two
equal weights at the end can be replaced by a double
weight at the middle point of the lever, then we can easily
deduce that £ is the middle point of C2, and from this it
will follow that 482 is a Euclidean triangle.

Hence we have established the equivalence of Euclid's
Fifth Postulate and the said lhypothesis of Archimedes. Such
equivalence is, of course, re/ative to the system of hypotheses
which comprises, on the one hand, the above-named statical
hypotheses, and, on the other, the ordinary geometrical
hypotheses.

1 Qeuvres de Lagrange, T. XI, p. 4—35.

2 For an analysis of the physical principles on which ordinary
statics is founded, cf. F. ENRIQUEs, "Problemi della Scienza. Cap. V.
(Bologna, 1906). German translation, (Leipzig, 1910).
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With the modern notation, we can speak of forces,
of the composition of forces, of resultants, instead of weights,
levers, etc.

Then the hypothesis referred to takes the following
form:

T%e resultant of two equal forces in the same plane, applied
ai right angles to the extremities of a straight line and towards
the same side of it, is a single force at the middle point of the
line, of double the intensity of the given forces.

From what we have said above, if this law for the com-
position of forces were true, it would follow that the ord-
inary theory of parallels holds in space.

On the Composition of Forces Acting at a Point.

§ 4. The other fundamental principle of statics, #%e
law of the Parallelogram of Forces, from the usual geom-
etrical interpretation which it receives, is closely connected
with the Euclidean nature of space. However, if we examine
the essential part of this principle, namely, the analytical
expression for the resultant R of two equal forces 2, acting
at a point, it is easy to show that it exists independently of any
hypothesis on parallels.

This can be made clear by deducing the formula

R = 2Pcos a,
where 2a is the angle formed by the two concurrent forces
from the following principles:

1) Two or more forces, acting at the same point, have
a definite resultant.

2) The resultant of two equal and opposite forces
is zero.

3) The resultant of two or more forces, acting at a
point, along the same straight line, is a force through the
same point, equal to the sum of the given forces, and along
the same line.
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4) The resultant of two equal forces, acting at the same
point, is directed along the line bisecting the angle between
the two forces.

5) The magnitude of the resultant is a continuous funct-
ion of the magnitude of the components,

Let us see briefly how we establish our theorem. The
value 2 of the resultant of two forces of equal magnitude 2,
enclosing the angle 24, is a function of 2 and a only.

Thus we can write

R = 2f(F o).

A first application of the principles named above shows
that R is proportional to 7, and this result is independent
of any hypothesis on parallels [cf. note 1, p. 195]. Thus the
preceding equation can be written more simply as

R = 2 PFf(a).
We now proceed to find the form of /().

§ 5. Let us calculate f(a) for some particular value
of the angle.

(03) Let o = 45°
At the point O at which act 1 R 0
the two forces 7;, 2,, of equal 2
magnitude 2, let us imagine two 5°
equal and opposite forces applied,
perpendicular to & and of magni- p P
tude X (cf. Fig. 64).
At the same time let us imag-
ine R decomposed into two others, Fig (E‘

directed along R and of magni-
tude %

We can then regard each force 2 as the resultant of
two forces at right angles, of magnitude —J;E.
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We thus have
P—=z. 5. fas)
On the other hand, & being the resultant of 2, and 7},
we have
R = 2 Pf(45°).
From these two equations we obtain
Slas) =5 V7
an Again let @ = 60°.
In this case apply at O a force & equal and opposite
to R (cf. Fig. 65). The system of the two forces 2 and of
R’ is in equilibrium.

P5
R’
Pl / P4
0 A6
4 \
e P
R E, E 8 |

R R

Fig. 6. Fig. €6.

Thus by symmetry, &' = P.
Therefore, R = P.
But, on the other hand,

R = 2 Pf(60°). |
Therefore £ (60°) = %

(1) Again let o = 36°.
At O let the five forces 7;, P,.. P, of magnitude 7, be
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applied, such that each of them forms with the next an angle
of 72° (cf. Fig. 66).
This system is in equilibrium.
For the resultant R of 2, and P,, we have
R = 2 Pf(36°).
For the resultant & of 7, and 2, we have
R = 2 Pf(72°.
On the other hand, & has the same direction as 5;;
that is, a direction opposite to that of R.
Therefore z Pf (36°) = 2 Pf(72°) + P.
(1) Therefore 2/ (36°) = 2/ (72° + 1.
If, instead, we take the resultants of 7, and A, and of

£, and F,, we obtain two forces of magnitude 2z 2 £ (36°),
containing an angle of 144°.

Taking the resultant of these two, we obtain a new
force R” of magnitude

4 Pf (36°) f (72°).
Now R”, by the symmetry of the figure, has the same
line of action as 2, but acts in the opposite direction.
Thys, since equilibrium must exist,
P = 4 P f(36° f(72°).
(2) Therefore 1 = 4/ (36°) f (72°).
From the two equations (1) and (2) we obtain

756y = 2V, £ (qa) - TIHLS

on solving for £ (36°) and £ (72°).

?

§ 6. By arguments similar to those used in the pre-
ceding section we could deduce other values for £ (a).
However, if we restrict ourselves only to those just found,
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and compare them with the corresponding values of cos a,
we obtain the following table:

cos 0° = 1 J(©°) =

cos 360 = TEVS pgen — 1HVS
oS 45° = @ f(45°) = V_

cos 60° = % F(60°) = %

cos 72° = +V5 S (72°) = I-:E
€0s 90° = O J(90®) = o.

This table suggests the
identity of the two functions
S (o) and cos a. For fuller
P, confirmation of this fact, we
* determine the functional
equation which f (a) satis-
P; R, fies (cf. Fig. 67).
To this end let us con-
sider four forces 7, 7,
_R P;, P, of magnitude 27,
Fig. &. acting at one point, forming
with each other the following angles
%:-PxPz=%:P3})4= 2B
g: £, 2l)3 =2z ((!-—- B)
%CPIP“': z (@ + B).
We shall determine the resultant 2 of these four forces
in two different ways.
Taking 2; with 7, and £; with P, we obtain two forces
R; and R,, of magnitude

2 Pf(B),
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inclined at an angle 2 B. Taking the resultant of &; and R,,
we have a force R, such that

R =4 Pf () fB).

On the other hand, taking Z; with 7,, and 7, with 7,
we obtain two resultants, both along the direction of &, and
of magnitudes

2 Pf(a+8), 2 Pf(a—B),
respectively.

These two forces have a resultant equal to their sum,
and thus

R=2Pf(a+B)+2Pf(a—B)
Comparing the two values of R, we find that

(1) 2 /(@) /(B) =f(a+B) +f(a—B)
is the functional equation required.
If we now remember that
cos (& + B) + cos (@ —B) == 2 cos & cos B,

and take account of the identity between f (@) and cos a in
the preceding table for certain values of @, and the hy-
pothesis that (o) is continuous, without further argument
we can write
S () = cos a.
1t follows that
R = 2 Pcosa.

The validity of this formula of the Euclidean space is
thus also established for the Non-Euclidean spaces.

§ 7. The law of composition of two equal concurrent
forces leads to the solution of the general problem of the
resultant, since we can assign, without any further hypothesis,
the components of a force & along two rectangular axes
through its point of application O.
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Let the two perpendicular lines be taken as the axes
of x and y, and let £ make the angles a, B with them
(cf. Fig. 68).

Y R Through O draw the line
which makes an angle a with
Ox and an angle B with Oy.
Imagine two equal and oppos-
ite forces B and P, to act
along this line at O, their mag-

nitude being —§ Also imagine
the force R replaced by the
two equal forces #, of magni-

Py

Fig. 68.

tude é, acting in the same
direction as R.

Then the system 7, £,, P, Phas R for resultant. But
£ and £, taken together, have a resultant

X=ZRcosa
along Ox: and 2, and 7, taken together, have a resultant
Y=LRcosB

along Oy.

These two forces are the components of & along the
two perpendicular lines. As to their magnitudes, they are
identical with what we would obtain in the ordinary theory
founded upon the principle of the Parallelogram of Forces.
However, the lines OX and OV, which represent the com-
ponents upon the axes, are not necessarily the projections of R,
as in the Euclidean case. Indeed we can easily see that, if
these lines were the orthogonal projections of & upon the
axes, the Euclidean Hypothesis would hold in the plane.

§ 8. The functional method applied in § 6 to the
composition of two equal forces acting at a point, is derived
from D. pE FoNCENEx [1734—1799]. By a method ana-
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logous to that which led us to the equation for £ (o) (= »),
FoNcENEX arrived at the differential equation®

From this, on integrating and taking account of the initial
conditions of the problem, he obtained the known expression
for 7 (o).

However the application of the principles of the In-
finitesimal Calculus, requires the continuity and differentiabil-
ity of / (a), conditions, which, as FONCENEX remarks, involve
the (physical) nature of the problem. But as he wishes to
go ‘jusqu’aux difficultés les moins fondées’, he avails himself
of the Calculus of Finite Differences, and of a Difference
Equation, which allows him to obtain £ (o) for all values of
o which are commensurable with m. The case o incom-
mensurable is treated ‘par une méthode familiere aux Géo-
metres et frequente surtout le écrits des Anciens’; that is, by
the Method of Exhaustion.?

All FONCENEX’ argument, and therefore that given in

* We could obtain this equation from (1) p. 189 as follows:
Put B=Jo and suppose that f(a) can be expanded by TAYLOR’s
Series for every value of a.

Then we have

2/(a) (f(o)+ct'af’ (o) + d’T“z 77 () . - )

=zf(a)+2?f” @+..

Equating the coefficients of Zaz and putting y = f(a) and 42
= — f" (0), we have

a2

2—% + 42y = o.

2 Cf. FONCENEX: Swur les principes fondamentaux de la Mécan-
igue. Misc. Taurinensia. T. II, p. 305—315 (1760—1761). His
argument is repeated and explained by A. GENOCCHI in his paper:
Sur un Mémoire de Daviet de Foncenex ef sur les géométries non-

euclidiennes. Torino, Memorie (2), T. XXIX, p. 366—371 (1877).
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§ 6, is independent of EucLip’s Postulate. However, it
should be remarked that FONCENEX' aim was not to make
the law of composition of concurrent forces independent of
the theory of parallels, but rather to prove the law itself.
Probably he held, as other geometers [D. BERNOUILLI,
D’ALemBerT], that it was a truth independent of any ex-
perimental foundation,

Non-Euclidean Statics.

§ 9. Having thus shown that the analytical law for
the composition of concurrent forces does not depend on
EucLip’s Fifth Postulate, we proceed to deduce the law accord-
ing to which forces perpendicular to a line will be composed.

Let 4, A" be the points of application of two torces
P,, F, of equal magnitude 2 (cf. Fig. 69).

/

Fig, 69.

Let C be the middle point of 44, and B a point on
the perpendicular BC to 44"
Joining 42 and 4B, and putting
<X BAC = o, <C ABC =B,
it is clear that the force 2, can be regarded as a component
of a force 7y, acting at 4 and along BA4.
The magnitude of this force is given by
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The other component Q,, at right angles to 7, is

given by
Q = Tcosa = Pcota.

Repeating this process with the force 7,, we obtain the
following system of coplanar forces:

(1) System 2,, 7,.

(2) System R, £, @, Qs

(3) System 7%, T..

If we assume that we can move the point of application
of a force along its line of action, it is clear that the first two
systems are equivalent, and because (2) is equivalent to (3),
we can substitute for the two forces 2,, £, the two forces
7; and 7.

The latter, being moved along their lines of action to 5,
can be composed into one force

R=2Tcosf = ch.oﬂ-
sin &

This, in its turn, can be moved to C, its direction per-
pendicular to 44’ remaining unchanged.
This result, which is obviously independent of EucLin’s
Postulate, can be applied to the three systems of geometry:
Euclid’s Geometry.
In the triangle 4BC we have
cos B = sin o.
Therefore
R=:z2PF.
Geometry of Lobatschewsky-Bolyai.
In the triangle 4BC, if we denote the side 44" by 2 4,
we have
b
Frrwr cosh — (p. 117).
Thus
R = 2 Pcosh —i—-
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Riemann’s Geometry.
In the same triangle we have

cos B I
——— == COS - -
sin o 3
Therefore
b
R = 2 Pcos z°
Conclusion.

It is only in Euclidean space that the resultant of two
equal forces, perpendicular to the same line, is equal to the
sum of the two given forces. In the Non-Euclidean spaces
the resultant depends, in the manner indicated above, on
the distance between the points at which the two forces are
applied.”

§ 10. The case of two unequal forces P, Q, per-
pendicular to the same straight line, is treated in a similar
manner.

In the Euclidean Geometry we obtain the known results;

R=P+ Q,

In the Geometry of LoBATSCHEWSKY-BoLyal the problem
of the resultant leads to the following equations:

R=Pcosh€-+ Q cosh Z,

R P 0

2+e
%

Then, by the usual substitution of the circular functions
for the hyperbolic, we obtain the corresponding result for
RiEMANN's Geometry:

. g )
sinh Z sinh -

sinh

1 For a fuller treatment of Non-Euclidean Statics, the reader
is referred to the following authors: J. M. pE TILLY, Ftudes de
Mécanique abstraite, Mém. couronnés et autres mém., T. XXI (1870).
J. ANDRADE, La Statigue et les Géométries de Lobatschewsky, d’Euclide,
et de Riemann. Appendix (II) of the work quoted on p. 181i.
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R=Pcos%+Qcos%,

R__ 2 _ @
. pte g D
sin“——=  sin > sin %

In these formule p, ¢, denote the distances of the
points of application of £ and Q from that of &.
These results can be summed up in a single formula,
valid for Absolute Geometry;
R = P Ep+ Q Eyg,
R P 0
Ok+o O OO
To obtain these results directly, it is sufficient to use the
formule of Absolute Trigonometry, instead of the Euclidean
or Non-Euclidean, in the argument of which a sketch has
just been given.

Deduction of Plane Trigonometry from Statics.

§ rr. Let us see, in conclusion, how it is possible to
treat the converse question: given the law of composition of
Jorces, to deduce the fundamental equations of trigonometry.

To this end we note that the magnitude of the resultant
R of two equal forces P, perpendicular to a line 44 of
length 2 &, will in general be a function of 2 and 4.

Denoting this function by

9 (&5 2),
we have
R =09 (A b):
or more simply®
R = Po ().

1 The proportionality of £ and P follows from the Jzw of
association on which the composition of forces depends. In fact,
let us imagine each of the forces 7, acting at 4 and 4', to be

r3¥
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On the other hand in § 9 (p. 193), we were brought to
the following expression for &:
R=2P

cos B
sin o

Eliminating & and 2, between these, we have

Q@) =

Thus if the analytical expression for @ (&) is known,
this formula will supply a relation between the sides and
angles of a right-angled triangle.

To determine @ (4), it is necessary to establish the
corresponding functional equation.

With this view, let us apply perpendicularly to the line
A4, the four equal forces 7, P,, P,, P,, in such a way that
the points of application of 7, and 2,, 7, and P, are
distant 2 (¢+4) and 2 (5 — @), respectively (cf. Fig. 70).

We can determine the resultant & of these four forces
in two different ways:

(1) Taking 7; with 7,, and 7; with Z,, we obtain two
forces R,, R, of magnitude:

Po(a);

cos B
sin a

replaced by 7 equal forces, applied at 4 and 4. Combining
these, we would have for ® the expression

R=ngo (f, &).
»n

Comparing this result with the equation given in the text, we have
P 1
2 (2.5) = Lo@o.
n ”n

P (L=t (5 08),
for every rational value of #; and the formula may be extended
to irrational values.
Then putting Z==1 and 42 = P we obtain

Q (Pl =Po(3). Q. E. D.

Similarly we have
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and taking R;, R, together, we obtain
R=Po(ae®).
(i) Taking 2, with P,, we obtain a force of magnitude:
P+ a)
and taking £, with /7, we obtain another of magnitude:
Po(@b—a)
Taking these two together we have, finally,
R=Pop(+a)+ P (b—a)

A 1
a1 0 A
( b-a
Pl P2 P 3 P4
R, R,
R
Fig. 70.

From the two expressions for £ we obtain the functional
equation which @ (5) satisfies, namely,

(2) P0) @@ =9 (@+a)+o (6—a)

This equation, if we put @ (8) = 2 (&), is identical
with that met in § 6 (p. 189), in treating the composition of
concurrent forces.

The method followed in finding (2) is due to D’ALEM-
BERT.* However, if we suppose @ and & equal to each other,
and if we note that @ (0) == 2, the equation reduces to

(3 [P))]) =@ (x) + 2
This last equation was obtained previously by FONCENEX,
in connection with the equilibrium of the lever.?

r Opuscules mathématiques, T. VI, p. 371 (1779).
2 Cf. p. 319—322 of the work by FONCENEX, referred to
above.
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§ 12. The statical problem of the composition of
forces is thus reduced to the integration of a functional
equation,

FoncCeENex, who was the first to treat it in this way?,
thought that the only solution of (3), was @ (x) = const. If
this were so, the constant would be 2, as is easily verified.

Later LApLACE and D’ALEMBERT integrated (3), obtaining

x X
P@E) =¢cc +e <,
where ¢ is a constant, or any function which takes the same
value when x is changed to 2 x.?

The solution of LAPLACE and D’ALEMBERT, applied to
the statical problem of the preceding section, leads to the
case in which ¢ is a function of x. Further, since we cannot
admit values of ¢ such as @ +¢ 4, where a, 4 are both different
from zero, we have three possible cases, according as ¢ is
real, a pure imaginary, or infinite.3 Corresponding to these

* We have stated above (p. 53), when speaking of FONCENEX’
memoir, that, if it was not the work of Lagrange, it was certainly
inspired by him. This opinion, accepted by GENoccHI and other
geometers, dates from DELAMBRE. The distinguished biographer
of LAGRANGE puis the matter in the following words: “Z/ (La-
grange) fournissait @ Foncenex la gartie analytigue de ses mémoires en
lui laissant le soin de développer les raisonnements sur lesquels portaient
ses formules. En effel, on remargue déja dans ces mémoires (of
FONCENEX) cetle marche purement analitique, gqui depuis a fait le
caractére des grandes productions de Lagrange. Il avait trouvé une
nouvelle théorie du levier”. Notices sur la wvoie et les ouvrages de M.,
le Comte Lagrange. Mém. Inst. de France, classe Math. et Physique,
T. XIIL, p. XXXV (1812).

2 Cf. D’ALEMBERT: Sur les principes de la Mécanigue : Mém. de
PAc. des Sciences de Paris (1769). — LAPLACE: Recherches sur
Dintégration des équations différentielles: Mém. Ac. sciences de Paris
(savants étrangers) T. VII (1733). Oewwvres de Laplace, T. VIII,
p. 106—7.

3 We can obtain this result directly by integrating the equa-
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three cases, we have three possible laws for the composition
of forces, and consequently three distinct types of equations
connecting the sides and angles of a triangle. These results
are brought together in the following table, where 2 denotes
a real positive number.

Trigonometri- | Nature of
Value of ¢ Form of @ () cal equations plane
. T __cos .
c=/ ekte £_, cosh% cosh;—ém hyperbolic
, ix ix = 6  cosB L.
c=1ik o #te &,____20057 cos =0 elliptic
|
=00 =z _* 1= cos B parabolic
ePte R=2 sin a

Conclusion: The law for the composition of forces per-
pendicular to a straight line, leads, in a certain sense, to the
relations which hold between the sides and angles of a
triangle, and thus to the geometrical properties of the plane
and of space.

This fact was completely established by A. GENoccH1
[1817—1889] in two most important papers’, to which the
reader is referred for full historical and bibliographical
notes upon this question.

tion (2), or, what amounts to the same thing, equation (1) of
§ 6. Cf., for this, the elementary method employed by CAucHy
for finding the function satisfying (1). Oeuvres de Cauchy, (sér. 2).
T. III, p. 106—113.

T One of them is the Memoir referred to on p. 191. The
other, which dates from 1869, is entitled: Dei primi principii della
meccanica e della geometria in relazione al postulato d’Euclide. Annali
della Societd italiana delle Scienze (3). T. II, p. 153—189.
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Clifford’s Parallels and Surface.
Sketch of Clifford-Klein’s Problem.

Clifford’s Parallels.

§ 1. Eucrip’s Parallels are straight lines possessing the
following properties:

a) They are coplanar.

b) They have no common points.

c) They are equidistant.

If we give up the condition (c) and adopt the views of
Gavuss, LoBaTscHEWSKY and BoLval, we obtain a first ex-
tension of the notion of parallelism. But the parallels which
correspond to it have very few properties in common with
the ordinary parallels. This is due to the fact that the most
beautiful properties we meet in studying the latter depend
principally on the condition (c). For this reason we are led
to seek such an extension of the notion of parallelism, that,
so far as possible, the new parallels shall still possess the
characteristics, which, in Euclidean geometry, depend on
their equidistance. Thus, following W. X. CLIFFORD [1845—
1879], we give up the property of coplanarity, in the definition
of parallels, and retain the other two. The new definition of
parallels will be as follows:

Two straight lines, in the same or in different planes, are
called parallel, when the points of the one are equidistant from
the points of the other.



Clifford’s Parallels. 201

§ 2. Two cases, then, present themselves, according as
these parallels lie, or,do not lie, in the same plane.

The case in which the equidistant straight lines are
coplanar is quickly exhausted, since the discussion in the
earlier part of this book [§ 8] allows us to state that the
corresponding space is the ordinary Euclidean. We shall,
therefore, suppose that the two

equidistant straight lines » and s A B
are not in the same plane, and

that the perpendiculars drawn

from r to s are equal. Obvi- ¢ 57 n
ously these lines will also be per- Fig. o1 B

pendicular to ». Let 44, BF
be two such perpendiculars (Fig. 71). The skew quad-
rilateral 485’4/, which is thus obtained, has its four angles
and two opposite sides equal. It is easy to see that the
other two opposite sides 4B, 4’5 are equal, and that the
interior alternate angles, which each diagonal—e. g. 43—
makes with the two parallels, are equal. This follows from
the congruence of the two right-angled triangles 44'B and
ABPB.

If now we examine the solid angle at 4, from a theorem
valid in all the three geometrical systems, we can write

KL AAB + L BAB> < A AB = 1 right angle.

This inequality, taken along with the fact that the angles
AB'A’ and B'AB are equal, can be written thus:

X AAB + <L AB' 4 > 1 right angle.

Stated in this way, we see that the sum of the acute
angles in the right-angled triangle 44°3 is greater than a
right angle. Thus in the said triangle the Hypothesis of the
Obtuse Angle is verified, and consequently parallels not in the
same plane can exist only in the space of Riemann.
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§ 3. Now to prove that in the e/Zptic space of RIEMANN
there actually do exist pairs of straight lines, not in the same
plane and equidistant, let us consider an arbitrary straight
line » and the infinite number of planes perpendicular to it.
These planes all pass through another line #, the polar
of » in the absolute polarity of the elliptic space. Any line
whatever, joining a point of » with a point of #, is perpend-
icular both to #» and to #, and has a constant length, equal
to half the length of a straight line. From this it follows
that », # are two equidistant straight lines, not in the same
plane.

But two such equidistants represent a very particular
case, since all the points of » have the same distance not
only from #, but from al/ the points of 7.

’

7 7

-

B’ K B

Fig. 72.

To establish the existence of straight lines in which the
last peculiarity does not exist, we consider again two lines
7 and 7, one of which is the polar of the other (Fig. 72).
Upon these let the equal segments A58, 4'B’ be taken, each
less than half the length of a straight line. Joining 4 with
A, and B with B, we obtain two straight lines «, 4, not
polar the one to the other, and both perpendicular to the
lines 7, 7.

It can easily be proved that ¢, 4 are equidistant. To
show this, take a segment 4'A upon AA’; then on the
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supplementary line * to 4’ A4, take the segment AM equal to
A'H. If the poinfs A and M are joined respectively with
B and B, we obtain two right-angled triangles 4’8’ H, ABM,
which, in consequence of our construction, are congruent.
We thus have the equality
HB = BM.

Now if Z and B are joined, and the two triangles
HBB and HBM are compared, we see immediately that they
are equal. They have the side A8 common, the sides A5’
and MB equal, by the preceding result, and finally B3 and
HM are also equal, each being half of a straight line.

This means, in other words, that the various points of
the straight line @ are equidistant from the line 5. Now since
the argument can be repeated, starting from the line 4 and
dropping the perpendiculars to @, we conclude that the line
HK, in addition to being perpendicular to 5, is also perpend-
icular to a.

We remark, further, that from the equality of the
various segments 4B, HK, A B,... the equality of the re-
spective supplementary segments is deduced, so that the two
ines a, 4, can be regarded as equidistant the one from the
other, ip two different ways. If then it happened that the
line 47 were equal to its supplement, we would have the ex
ceptional case, which we noted previously, where @, 4 are
the polars of each other, and consequently all the points of
@ are equidistant from the different points of 4.

§ 4. The non-planar parallels of elliptic space were
discovered by CLIFFORD in 1873.2 Their most remarkable
properties are as follows:

* The two different segments, determined by two points on
a straight line, are called supplementary.

2 Preliminary Sketck of Biguaternions. Proc. Lond. Math. Soc.
Vol.IV. p. 381—395(1873). Clifford's Mathematical Pagers, p. 181—200.
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() If a straight line meels two parallels, it makes with
them equal corvesponding angles, equal interior alternate
angles, elc.

(i) If in a skew gquadrilateral the opposite sides are
equal and the adjacent angles supplementary, then the opposite
sides are parallel.

Such a quadrilateral can therefore be called a skew
parallelogram.

The first of these two theorems can be immediately
verified; the second can be proved by a similar argument
to that employed in § 3.

(ili) Zf two straight lines are equal and parallel, and
their extremities are suitably joined, we obtain a skew paral-
lelogram.

This result, which can be looked upon, in a certain
sense, as the converse of (ii), can also be readily established.

(iv) Through any point (M) in space, whici does not
lie on the polar of a straight line (r), two parallels can be
drawn to that line.

Indeed, let the perpendicular &V be drawn from 4"
to », and let V' be the point in which the polar of #A
meets » (Fig. 73). From
this polar cut off the two
segments N'M', N'M’,
equal to VM, and join the
points M', M” to M. The
two lines #/, #”, thus ob-
tained, are the required par-
allels,

If M lay on the polar of 7, then MV would be
equal to half the straight line; the two points A/°, M~
would coincide: and the two parallels », * would also
coincide.

Fig. 73.
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The angle between the two parallels #, »’ can be
measured by the segment 4/'4/”, which the two arms of the
angle intercept on the polar of its vertex. In this way we
can say that half of the angle between 7' and 7, that is,
the angle of parallelism, is equal to the distance of parallelism.

To distinguish the two parallels 7, #*, let us consider a
helicoidal movement of space, with MV for axis, in which
the pencil of planes perpendicular to AV, and the axis /" M"
of that pencil, obviously remain fixed. Such a movement
can be considered as the resultant of a translation along MV,
accompanied by a rotation about the same axis: or by two
translations, one along M4V, the other along A" M”. If the
two translations are of equal amount, we obtain a space
vector.

Vectors can be 7ight-handed or lefi-handed. Thus, referr-
ing to the two parallels #, 77, it is clear that one of them
will be superposed upon 7 by a right-handed vector of
magnitude A/, while the other will be superposed on 7 by
a left-handed vector of the same magnitude. Of the two
lines #, #’, one could be called the right-handed parallel
and the other the left-handed parallel to r.

(v) Two right-handed (or lft-handed) parallels to a
straight line are right-handed (or left-handed) parallels to
eack other.

Let 4, ¢ be two right-hand- C ¢’
ed parallels to @. From the ¢
two points 4, 4’ of g, distant
from each other half the length g B % b

of a straight line, draw the
perpendiculars 45, 4B on 5,
and the perpendiculars A4C,
AC on ¢ (cf. Fig. 74).
The lines A8, A'C’ are the polars of 48 and AC.
Therefore <C BAC = LB AC".

A A’

Fig. 74.
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Further, by the properties of parallels
AB = AP, AC=4C.
Therefore the triangles ABC, A'B'C’ are equal
Thus it follows that
BC = BC.
Again, since
BB = A4 = CC,
the skew quadrilateral B2B'C’C has its opposite sides equal.

But to establish the parallelism of 4, ¢, we must also
prove that the adjacent angles of the said quadrilateral are
supplementary (cf. ii). For this we compare the two solid
angles B (4B'C) and B (4B"C’). In these the following
relations hold:

XABB = <L A B'B” = 1 right angle
X ABC = <. ABC".

Further, the two dihedral angles, which have 54 and
B'A’ for their edges, are each equal to a right angle, dimin-
ished (or increased) by the dihedral angle whose normal
section is the angle 4"B5".

Therefore the said two solid angles are equal. From
this the equality of the two angles B'BC, B"B'C’ follows.
Hence we can prove that the angles B, B’ of the quadri-
lateral BB'C’'C are supplementary, and then (on drawing
the diagonals of the quadrilateral, etc.) that the angle B is
supplementary to C, and C supplementary to C’, etc.

Thus & and ¢ are parallel. From the figure it is clear
that the parallelism between & and ¢ is right-handed, if that
is the nature of the parallelism between the said lines and
the line a.

Clifford’s Surface.

§ 5. From the preceding argument it follows #%az all
the lines which meet three right-handed parallels are left-handed
parallels to eack otker.
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Indeed, if 4BC is a transversal cutting the three lines
@, 4, ¢, and if three equal segments A4', BB, CC’ are taken
on these lines in the same direction,* the points 4'5'C lie
on a line parallel to 4BC. The parallelism between 45C
and 4'B'C’ is thus left-handed.

From this we deduce that three parallels g, &, ¢, define
a ruled surface of the second order (CLirrorp’s Surface).
On this surface the lines cutting &, 4, ¢ form one system of
generators (g:): the second system of generators (g,) is
formed by the infinite number of lines, which, like 4, 3, ¢,
meet (g5).

CLIFFORD’s Surface possesses the following charact-
eristic properties:

a) Two generators of the same system are parallel to
eack otter.

b) Two generators of opposite systems cut eack other at a
constant angle.

§ 6. We proceed to show that Clfford’s Surface has
two distinct axes of revolution.
To prove this, from
any point M draw the s L
parallels & (right-hand-
ed), s (lefthanded), toa | > M

line 7, and denote by 8
the distance MV of p

each parallel from » N
(cf. Fig. 73). I

Keeping 4 fixed, let & 75
s rotate about 7, and let s, s”, s’ ... be the successive

positions which s takes in this rotation.

* It is clear that if a direction is fixed for one line, it is
then fixed for every line parallel to the first.
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It is clear that s, 5, s” . .. are all left-handed parallels
to » and that all intersect the line 4.

Thus s in its rotation about » generates a CLIFFORD’s
Surface.

Vice versa, if 4 and s are two generators of a CLIFFORD’s
Surface, which pass through a point 4/ of the surface, and 29
the angle between them, we can raise the perpendicular
to the plane sZ at A and upon it cut off the lines
ML= MN = d.

Let D and S be the points where the polar of Z/V meets
the lines 4 and s, respectively, and let Z be the middle point
of DS = 20.

Then the lines ZZ and AN are parallel, both to s
and 4.

Of the two lines ZZ and AN choose that which is
a right-handed parallel to 2 and a left-handed parallel to s,
say the line AV.

Then the given CLIFFORD’s Surface can be generated by
the revolution of s or & about AV.

In this way it is proved that every CLIFFORD’s Surface
possesses one axis of rofation and that every point on the
surface is equidistant from it.

The existence of another axis of rotation follows im-
mediately, if we remember that all the points of space, equi-
distant from AN, are also equidistant from the line which is
the polar of AV

This line will, therefore, be the second axis of rotation
of the CLIFFORD’s Surface.

§ 7. The equidistance of the points of CLIFFORD’s
Surface from each axis of rotation leads to another most
remarkable property of the surfaces. In fact, every plane
_ passing through an axis » intersects it in a line equidistant
from the axis. The points of this line, being also equally
distant from the point (O) in which the plane of section meets
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the other axis of the surface, lie on a circle, whose centre (0)
is the pole of 7 with respect to the said line. Therefore the
meridians and the parallels of the surface are circles,

The surface can thus be generated by making a circle
rofate about the polar of its centre, or by making a circle move
So that its centre describes a straight line, while its plane is
maintained constantly perpendicular to it (BlaNCHI).!

This last method of generating the surface, common
also to the Euclidean cylinder, brings out the analogy be-
tween CLIFFORD's Surface and the ordinary circular cylinder
This analogy could be carried further, by considering the
properties of the helicoidal paths of the points of the surface,
when the space is submitted to a screwing motion about
either of the axes of the surface.

§ 8. Finally, we shall show that the geometry on Crir-
FORD’s Surface, understood in the sense explained in $§ 67,
68, is identical with Euclidean geometry.

To prove this, let us determine the law according to
which the element of distance between two points on the
surface is measured.

Let #, v, be respectively a parallel and a meridian
through a point O on the surface, and A/ any arbitrary point
upon it.

Let the meridian and parallel |y
through A cut off the arcs OP, OQ Ml
from # and ». The lengths %, v of
these arcs will be the coordinates of Q
M. The analogy between the system
of coordinates here adopted and the
Cartesian orthogonal system is evident O pld
(cf. Fig. 76). Fig. 76.

M IN

r Sulla superficie a curvatura nulle in geometria ellittica. Ann.
di Mat. (2) XXIV, p. 107 (1896). Also Lezioni di Geometria Differ-
enziale. 2a Ed., Vol. I, p. 454 (Pisa, 1902).
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Let M’ be a point whose distance from M is infini-
tesimal, If (%, ») are the coordinates of M, we can take
(# + du, v + dv) for those of M.

Now consider the infinitesimal triangle M3V, whose
third vertex AV is the point in which the parallel through 47
intersects the meridian through A7". It is clear that the angle
MNM is a right angle, and that the sides MN, NM' are
equal to %, dv.

On the other hand, this triangle can be regarded as
rectilinear (as it lies on the tangent plane at 47). So that,
from the properties of infinitesimal plane triangles, its hypo-
tenuse and its sides, by the Theorem of Pythagoras, are con-
nected by the relation

ds? = du® + dv.

But this expression for 4s?is characteristic of ordinary
geometry, so that we can immediately deduce #2at tke pro-
perties of the Euclidean plane hold in every normal region on
a Clifford’s Surface.

An important application of this result leads to the
evaluation of the arez of this surface. Indeed, if we break
it up into such congruent infinitesimal parallelograms by
means of its generators, the area of one of these will be
given by the ordinary expression

dx dy sin 9,
where dx, dy are the lengths of the sides and 0 is the con-
stant angle between them (the angle between two generators).

The area of the surface is therefore

2dxdysin@=sin0 Xdx - Ldy.

But both the sums X Zx, % dy represent the length 7 of
a straight line.

Therefore the area A of CLiFFORD’s Surface takes the
very simple form,
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A = [*sin 6,
which is identical with the expression for the area of a
Euclidean parallelogram (CLIFFORD).*

Sketch of Clifford-Klein's Problem.

§ 9. Currorp’s ideas, explained in the preceding
sections, led KLEIN to a new statement of the fundamental
problem of geometry.

In giving a short sketch of KiLEIN's views, let us refer
to the results of § 68 regarding the possibility of interpret-
ing plane geometry by that on the surfaces of constant
curvature. The contrast between the properties of the Eu-
clidean and Non-Euclidean planes and those of the said
surfaces was there restricted to suitably bounded regions.
In extending the comparison to the wnmbounded regions, we
are met, in general, by differences; in some cases due to
the presence of singwlar points on the surfaces (e. g., vertex
of a cone); in others, to the different connectivities of the
surfaces.

Leaving aside the singular points, let us take the cir-
cular cylinder as an example of a surface of constant curv-
ature, everywhere regular, but possessed of a connectivity
different from that of the Euclidean plane.

The difference between the geometry of the plane and
that of the cylinder, both understood in the complete sense,
has been already noticed on p. 140, where it was observed
that the postulate of congruence between two arbitrary
straight lines ceases to be true on the cylinder. Nevertheless
there are numerous properties common to the two geometries,

1 Preliminary Sketch, cf. p. 203 above. The properties of
this surface were referred to only very briefly by CLIFFORD in 1873.
They are developed more fully by KLEIN in his memoir: Zur nickt-
euklidischen Geometrie, Math. Ann. Bd. XXXVII, p. 544—572 (1890).
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which have their origin in the double characteristic, that
both the plane and the cylinder have the same curvature,
and that they are both regular.

These properties can be summarized thus:

1) The geometry of any normal region of the cylinder
is identical with that of azy normal region of the plane.

2) The geometry of any normal region w/atsoever of
the cylinder, fixed with respect to an arbitrary point upon it,
is identical with the geometry of any normal region w/az-
soever of the plane.

The importance of the comparison between the ge-
ometry of the plane and that of a surface, founded on the
properties (1) and (2), arises from the following consid-
erations:

A geometry of the plane, based upon experimental
criteria, depends on two distinct groups of hypotheses. The
first group expresses the validity of certain facts, directly
observed in a region accessible to experiment (postulates of
the normal region); the second group extends to inaccessible
regions some properties of the initial region (postulates of
extension).

The postulates of extension could demand, e. g., that
the properties of the accessible region should be valid in the
entire plane. We would then be brought to the two forms,
the parabolic and the hyperbolic plane. If, on the other hand,
the said postulates demanded the extension of these pro-
perties, with the exception of that which attributes to the
straight line the character of an open line, we ought to take
account of the elliptic plane aswell asthe two planes mentioned.

But the preceding discussion on the regular surfaces of
constant curvature suggests a more general method of enun-
ciating the postulates of extension. We might, indeed, simply
demand that the properties of the initial region should hold
in the neighbourhood of every point of the plane. In this
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case, the class of possible forms of planes receives con-
siderable additions, We could, e. g., conceive a form with
zero curvature, of double connectivity, and able to be com-
pletely represented on the cylinder of Euclidean space.

Thie object of Clifford-Kiein's problem is the determination
of all the two dimensional manifolds of constant curvature,
whick are everywhere regular.

§ 1o. Is it possible to realise, with suitable regular
surfaces of constant curvature, in the Euclidean space, all
the forms of CLIFFORD-KLEIN?

The answer is in the negative, as the following example
clearly shows. The only regular developable surface of the
Euclidean space, whose geometry is not identical with that
of the plane, is the cylinder with closed cross-section. On
the other hand, CrirForD’s Surface in the elliptic space is a
regular surface of zero curvature, which is essentially different
from the plane and cylinder.

However with suitable conventions we can represent
CLIFFORD’s Surface even in ordinary space.

Let us return again to the cylinder. If we wish to un-
Jold the. cylinder, we must first render it simply connected
by a cut along a generator (g); then, by bending without
stretching, it can be spread out on the plane, covering a
strip between two parallels (g;, ).

There is a one-one correspondence between the points
of the cylinder and those of the strip. The only exception is
afforded by the points of the generator (g), to each of which
correspond two points, situated the one on g;, the other on
&- However, if it is agreed to regard these two points as
identical, that is, as a single point, then the correspondence
becomes one-one without exception, and #ke geometry of the
strip is completely identical with that of the cylinder.
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A representation analogous to the above can also be
adopted for CLIFFORD’s Surface. First the surfice is made
simply connected by two cuts along the intersecting gener-
ators (g, &). In this way a skew parallelogram is obtained
in the elliptic space. Its sides have each the length of a
straight line, and its angles 8 and " [0+ 6"= 2 right angles]
are the angles between g and ¢".

This being done, we take a rhombus in the Eu-
clidean plane, whose sides are the length of the straight line
in the elliptic plane, and whose angles are 6, 6". On this
rhombus CLiFForD’s Surface can be represented congruently
(developed). The correspondence between the points of the
surface and those of the rhombus is a one-one correspond-
ence, with the exception of the points of ¢ and £, to each
of which correspond two points, situated on the opposite
sides of the rhombus. However, if we agree to regard these
points as identical, two by two, then the correspondence
becomes one-one without exception, and #ke geometry of
the rhombus is completely identical with that of Clifford’s
Surface®

§ 1. These representations of the cylinder and of
CLIFFORD’s Surface show us how, for the case of zero curva-
ture, the investigation of CLIFFORD-KLEIN's forms can be
reduced to the determination of suitable Euclidean polygons,
eventually degenerating into strips, whose sides are two by

two transformable, one into the other, by suitable movements

of the plane, their angles being together equal to four right-
angles (KieN).? Then it is only necessary to regard the
points of these ‘sides as identical, two by two, to have a
representation of the required forms on the ordinary plane.

1 Cf. CLIFFORD loc. cit. Also KLEIN's memoir referred to
on p. 21I.
* Cf. the memoir just named.
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It is possible to present, in a similar way, the investi-
gation of CrirFORD-KLEIN's forms for positive or negative
values of the curvature, and the extension of this problem
to space.*

T A systematic treatment of CLIFFORD-KLEIN’s problem is to
be found in KILLING's Einfiihrung in die Grundlagen der Geomelrie.
Bd. I, p. 271—349 (Paderborn, 1893).
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The Non-Euclidean Parallel Construction
and other Allied Constructions.

§ 1. The Non-Euclidean Parallel Construction depends
upon the correspondence between the right-angled triangle
and the quadrilateral with three right angles. Indeed, when
this correspondence is known, a number of different con-
structions are immediately at our disposal. *

To express this correspondence we introduce the
following notation:

In the right-angled triangle, as usual, @, 4 are the sides:
¢ is the hypotenuse: M\ is the angle opposite ¢ and p
that opposite 4. Further the angles of parallelism for &, &
are denoted by a and B: and the lines which have \, p for
angles of parallelism are denoted by /7, m. Also two lines,
for which the corresponding angles of parallelism are com-
plementary, are distinguished by accents, e. g.:

M@) =2 —Te), T) =3 —TT(Q.

Then with this notation: 70 every right-angled triangle
(@, 8, ¢, N\, W) there corresponds a gquadrilateral with three
right-angles, whose fourth angle (acute) is B, and whose sides
are ¢, ', a,l, taken in order from the corner at whick the
angle is B>

The converse of this theorem is also true.

* Cf. p. 256 of ENGEL’s work referred to on p. 84.
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The following is one of the constructions, which can be
derived from this theorem, for drawing the parallel through
4 to the line BC (cf. Fig. 77).

Let A5 be the perpendicular from 4 to BC. At 4 draw
the line perpendicular to 4B, and from any point C in BC

draw the perpendicular CD A a

to this line.
With centre 4 and rad- c E

ius BC (equal to ¢) describe

a circle cutting CD in Z. _
Now we have B © c -

i EAD =,
and therefore

X BAE = S —p =TI (n).

But the sides of the quadrilateral are ¢, #2, a, /, taken in
order from C.

Therefore AF is parallel to BC.

If a proof of this construction is required without using
the trigonometrical forms, one might attempt to show direct-
ly that the line A% produced, (simply owing to the equality
of BC and AE), does not cut BC produced, and that the
two have not a common perpendicular. If this were the
case, they would be parallel. Such a proof has not yet been
found.

Again, we might prove the truth of the construction
using the theorem, that in a prism of triangular section the
sum of the three dihedral angles is equal to two right angles®:
so that for a prism with 7 angles the sum is (z7—4) right
angles. This proof is given in § 2 below.

* Cf. LoBATSCHEWSKY (ENGEL's translation) p. 172.



218 Appendix III. The Non-Euclidean Parallel Construction.

Finally, the correspondence stated in the above theorem
—only part of which is required for the Parallel Construction
of Fig. 78 — can be verified without the use of the geo-
metry of the Non-Euclidean space. This proofis givenin § 3.

§ 2. Direct proof of the Parallel Construction by means
of a Prism.

A

Fig. 78.

Let ABCD be a plane quadrilateral in which the angles
at D,”4, B are right angles. Let the angle at C be denoted
by B, 4D by a, DCby /, CB by ¢, and BA by '

At A draw the perpendicular 4Q to the plane of the
quadrilateral. Through B, C, and D draw BQ, CQ and DR
parallel to 49Q.

Also through 4 draw 40 parallel to BC, cutting CD
in £ (ED = b;), and let the plane through 4AQ and 4%
cut CDRQ in £Q. From the definition, we have

, ™
X EAD = - —T (m) = —2——(—’21—-“) =
Further the plane 242 is at right angles to @, and the

plane QD4 at right angles to /, since Q4 and 4B are per-
pendicular to @, while 2.0 and e are perpendicular to /Z
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Also X ABQ = X O04B =T

In the prism Q (4BCD) the faces which meet in Q4,
QB, QD are perpendicular. Also the four dihedral angles
make up four right angles. It follows that the faces of the
prism C (DBQ), which meet along CQ, are perpendicular.
Also it is clear that in £ (DQ4) the faces which meet in Z4
are perpendicular, while the dihedral angle for the edge CD
is the same as for £ (thus equal to a).

We shall now prove the equality of the other dihedral
angles in these prisms C (D5Q) and £ (DQA)—those con-
tained by the faces which meet in CB and AZ.

In the first prism this angle is equal to the angle be-
tween the planes 48CO and CBQ. It is thus equal to

—;i— M, L e. it is equal to < 4BQ.

In the second prism, the angle between the planes
meeting in £Q belongs also to the prism Q (4DE). In this
the angle at Q0 is a right-angle, and that at Q4 is equal

to p. Thus the third angle is equal to —:— — W
Therefore the prisms C (DBQ) and £ (DRA) are
congruent,

Therefore K BCOQ = <L QEA,
and the lines which have these angles of parallelism are
also equal.

Thus ¢ = BCand ¢; = 4E
are equal, which was to be proved.

Further it follows that
X DEA = <L DCQ;
1. e.the angle X,, opposite the side  of the triangle, is given by
MA=T(@¢@=A\
Finally <L DCB = <C DEQ;
i e B =TI (5,), or 4, = 4.
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Thus the correspondence between the triangle and the
quadrilateral is proved.*

§ 3. Proof of the Correspondence by Plane Geometry..

In the right-angled triangle ABC produce the hypo-
tenuse 4B to D, where the perpendicular at D is parallel to
CB (cf. Fig. 79).

D .
Fig. 79.
Then with the above notation
BD = m.
Draw through 4 the parallel to 20 and C50.

Then
L CAO = B =TI (3),

and it is also equal to
AN+ XL DAO = M + TT (¢ + m).
We thus obtain the first of the six following equations.?
The third and fifth can be obtained in the same way. The
second, fourth, and sixth, come each from the preceding, if
we interchange the two sides ¢ and 4, and, correspondingly
the angles A and p.

1 BoNorA: Ist. Lombardo, Rend. (2). T. XXXVII, p. 255—
258 (1904). The theorem had already been proved by pure
geometrical methods by F. ENGEL: Bull. de la Soc. Phys. Math.
de Kasan (2). T. VI (1896); and Bericht d. Koén. Sichs. Ges. d.
Wiss., Math.-Phys. Klasse, Bd. L, p. 181—187 (Leipzig, 1898).

2 Cf. LoBATSCHEWSKY (Engel’s translation), p. 15—16, and
LIEBMANN, Math. Ann. Bd. LXI, p. 185, (1905).



Second Proof of the Parallel Construction. 221

The table for this case is as follows:
AtTMe+m =8, n+T(+)=a:
AN+ B=T—m), p+a=T(c—02;
TE+)+ T (m—a)=—_m, Tm+a)+ M—8)=—_m.

Similar equations can also be obtained for the quad-
rilateral with three right angles. Some of the sides have to
be produced, and the perpendiculars drawn, which are
parallel to certain other sides, etc.

If we denote the acute angle of the quadrilateral by B,,
and the sides, counting from it, by ¢, ., @;, and /,, we ob-
tain the following table:

A+ TT (e + m) =8, Tu+Mlh+a')= Br;

M+ Be=Tl(—m), T+B=T—a);
T +8) + T (m—a) =57, T, +8,)+TT (@ —m, )=

The second, fourth, and sixth formule come from inter-
changing ¢; and m,, with /, and a,, as in the right-angled
triangle.

Let us now imagine a right-angled triangle constructed
with the hypotenuse ¢ and the adjacent angle u: and let the
remaining elements be denoted by g, 5, A as ahove.

In the same way, let a quadrilateral with three right-
angles be constructed, in which ¢ is next the acute angle, '
follows ¢, the remaining elements being a,, /, and B,.

Then a comparison of the first and third formulee for
the triangle, with the first and third for the quadrilateral,
shows that

B:=B, i =\
The fifth formula of both tables then gives
ay = a.

Hence the theorem is proved.
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From the two tables it also follows that to a right-
angled triangle with the elements

a! b’ "’ )\7 “’)
there corresponds a second triangle with the elements
™ ,
a, = a, 5x'=[1 Cy = M, )‘x="2_—"B’ M =1,

a result which is of considerable importance in further con-
structions. But we shall not enter into fuller details.

The possibility of the Non-Euclidean Parallel Construc-
tion, with the aid of the ruler and compass, allows us to
draw, with the same instruments, the common perpendicular
to two lines which are not parallel and do not meet each
other (the non-intersecting lines); the common parallel to the
two lines which bound an angle; and the line which is per-
pendicular to one of the bounding lines of an acute angle
and parallel to the other. We shall now describe, in a few
words, how these constructions can be carried out, following
the lines laid down by HILBERT.®

§ 4. Construction of the common perpendicular to two
non-intersecting straight lines.

a :4, A MJ__"___—“;V - — a
LR 7 SEr A T
4 ;} ‘v [ N
. 1 . ‘
H . ' '
: : \pt '

3 s
Fig. 8o.

Let @ = 4,4, & = BB, be two non-intersecting lines;
that is, lines which do not meet each other, and are not
parallel (cf. Fig. 8o).

1 Newe Begriindung der Bolyai- Lobalschefskyschen Geometyie.
Math. Ann. Bd. 57, p. 137—150 (1903). HILBERT's Grundlagen der
Geometrie, 2. Aufl,, p. 107 et seq.
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Let 4,58,, AB be the perpendiculars drawn from the
points 4;, A upon & to the line &, constructed as in ordinary
geometry.

If the segments 4;.8,, 45, are equal, the perpendicular
to & from the middle point of the segment 5,5 is also per-
pendicular to ; so that, in this case, the construction of
the common perpendicular is already effected.

If, on the other hand, the two segments 4,5,, 4B are
unequal, let us suppose, e. g., that 4,5, is greater than 425.

Then cut off from 4,5, the segment 4'B; equal to 45;
and through the point 4, in the part of the plane in which
the segment 427 lies, let the ray 4’7" be drawn, such that
the angle B:4'M’ is equal to the angle which the line «
makes with 4.8 (cf. Fig. 80).

The ray 4'M’ must cut the line @ in a point M’ (cf.
HiLBerT, loc. cit.). From M’ drop the perpendicular A7
to 4, and from the line @, in the direction 4,4, cut off the
segment AM equal to 4" M.

If the perpendicular M2 is now drawn to 4, we have a
quadrilateral 4B2PM which is congruent with the quad-
rilateral 4'B, F'AM".

It follows that AP is equal to M'P'.

It remains only to draw the perpendicular to 4 from
the middle point of 2’2 to obtain the common perpendicular
to the two lines @ and 4,

§ 5. Construction of the common parallel to two straight
lines whick bound any angle.

Let @ = 40, and 5= B0, be the two lines which con-
tain the angle 408 (cf. Fig. 81). From @ and 4 cut off the
equal segments O4 and OB; and draw through 4 the ray
& parallel to the line 4, and through B the ray &’ parallel to
the line a.
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Let @, and 4, be the bisectors of the angles contained
by the lines &, and a’é.

The two lines e,6; are non-intersecting lines, and their
common perpendicular 4,5, the construction for which was
given in the preceding paragraph, is the common parallel to
the lines which bound the angle 405.

ES
&

Fig. 81.

Reference should be made to HILBERT’s memoir, quot-
ed above, for the proof of this construction.

§ 6. Construction of the straight line whick is perpendi-
cular to one of the lines bounding an acute angle and paralle!
to the other.

\B, \B Let @ = AO and 6 = BO, be
the two lines which contain the acute
& angle AOB; and let the ray & = B0
be drawn, the image of the line 4 in
A4 £ 0 g (cf. Fig. 82).

Then, using the preceding con-
struction, let the line Z,5," be drawn
parallel to the two lines which con-
tain the angle 505.

This line, from the symmetry of
the figure with respect to &, is perpendicular to OA4.

It follows that B; ', is parallel to one of the lines which
contain the angle 405 and perpendicular to the other.

B, | B
Fig. 8a.

§ 7. The constructions given above depend upon
metrical considerations. However it is also possible to make
use of the fact that to the metrical definitions of perpend-
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icularity and parallelism a projective meaning can be given
(§$ 79), and that projective geometry is independent of the
parallel postulate (§ 8o).

Working on these lines, what will be the construction
for the parallels through a point 4 to a given line?

Let the points 72, £, P; and A, P/, P, be given
on g so that the points B, 7,’, £, are all on the same
side of 7, 7, P, and

PP = PP — PP,

Join 47, AF,, AP, and denote these lines by s,, s,
and s;. Similarly let 4P, AF,’, AP, be denoted by s,
s, and s;. Then the three pairs of rays through 4, determ-
ine a projective transformation of the pencil (s) into itself,
the double elements of which are obviously the two parallels
which we require. These double elements can be constructed
by the methods of projective geometry.*

The absolute is then determined by five points: i e., by
five pairs of parallels; and so all further problems of metrical
geometry are reduced to those of projective geometry.

If we represent (cf. § 84) the LOBATSCHEWSKY-BOLvAI
Geometry (e. g., for the Euclidean plane) so that the image
of the absolute is a given conic (not reaching infinity), then
it has been shown by GrossMANN 2 that most of the problems
for the Non-Euclidean plane can be very beautifully and
easily solved by this ‘translation’. However we must not
forget that this simplicity disappears, if we would pass from
the ‘translation’ back to the ‘original text’.

t Cf. for example, ENRIQUES, Geometria proicttiva, (referred to
on p. 156) § 73.

2 GROSSMANN, Die fundamentalen Konstruktionen der nicht-
euklidischer: Geometrie, Programm der Thurgauischen Kantonschule,
{Frauenfeld, 1904).
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In the Non-Euclidean plane the absolute is inaccessible,
and its points are only given by the intersection of pencils
of parallels. The points outside of the absolute, while they
are accessible in the ‘translation’, cannot be reached in the
‘text’ itself. In this case they are pencils of straight lines,
which do not meet in a point, but go through the (ideal)
pole of a certain line with respect to the absolute.

If, then, we would actually carry out the constructions,
difficulties will often arise, such as those we meet in the
translation of a foreign language, when we must often sub-
stitute for a single adjective a phrase of some length.
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The Indepehdence of Projective Geometry
from Euclid’s Postulate.

§ 1. Statement of the Problem. In the following pages
we shall examine more carefully a question to which only
passing reference was made in the text (cf. § 80), namely, the
validity of Projective Geometry in Non-Euclidean Space, since
this question is closely related to the demonstration of the
independence of that geometry from the Fifth Postulate,

In elliptic space (cf. § 80) we may assume that the
usual projective properties of figures are true, since the
postulates of projective geometry are fully verified. Indeed
the absence of parallels, or, what amounts to the same thing,
the fact that two coplanar lines always intersect, makes the
foundation of projectivity in elliptic space simpler than in Eu-
clidean space, which, as is well known, must be first com-
pleted by the points at infinity.

However in hyperbolic space the matter is more com-
plicated. Here it is not sufficient to account for the absence
of the point common to two parallel lines, an exception
which destroys the validity of the projective postulate:—#wo
coplanar lines have a common point. We must also remove
the other exception—the existence of coplanar lines which
do not cut each other, and are not parallel (the non-inter-
secting lines). The method, which we shall employ, is the
same as that used in dealing with the Euclidean case. We
introduce fictitious points, regarded as belonging to two co-
planar lines which do not meet.
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In the following paragraphs, keeping for simplicity to
two dimensions only, we show how these fictitious points
can be introduced on the hyperbolic plane, and how they
enable us t6 establish the postulates of projective geometry
without exception. Naturally no distinction is now made be-
tween the proper points, that is, the ordinary points, and the
Jictitious points, thus introduced.

§ 2. Improper Points and the Complete Projective Plane.
We start with the pencil of lines, that is, the aggregate of
the lines of a plane passing through a point. We note that
through any point of the plane, whick is not the vertex of
the pencil, there passes one, and only one, line of the pencil.

On the hyperbolic plane, in addition to the pencil, there
exist two other systems of lines which enjoy this property,
namely; —

(i) 27e set of parallels to a line in one direction ;

(i) #%e set of perpendiculars to a line.

If we extend the meaning of the term, pencil of lines,
we shall be able to include under it the two systems of lines
above mentioned. In that case it is clear #4at fwo arbi-
trary lines of a plane will determine a pencil, to whickh they
belong.

If the two lines are concurrent, the pencil is formed by
the set of lines passing through their common point; if they
are paralle/, by the set of parallels to both, in the same
direction; finally, if they are non-intersecting, by all the lines
which are orthogonal to their common perpendicular. In
the first type of pencil (the groper pencil), there exists a point
‘common to all its lines, the vertex of the pencil; in the two
other types (the improper pencils), this point is lacking. We
skall now introduce, by convention, a fictitious entity, called an
improper point, and regard it as pertaining to all the lines of
the pencil. With this convention, every pencil has a vertex,
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which will be a proper point, or an improper point, accord-
ing to the different cases. The hyperbolic plane, regarded
as the aggregate of all its points, proper and improper, will
be called the complete projective plane.

§ 3. The Complete Projective Line. The improper
points are of two kinds. They may be the vertices of pen-
cils of parallels, or the vertices of pencils of non-intersecting
lines. The points of the first species are obtained in the
same way, and have the same use, as the points at infinity
common to two Euclidean parallels. For this reason we shall
call them points at infinity on the hyperbolic plane, when it
is necessary to distinguish them from the others. The points
of the second species will be called idea/ points.

It will be noticed that, while every line has ondy one
point at infinity on the Euclidean plane, it has #wo points at
infinity on the hyperbolic plane, there being two distinct
directions of parallelism for each line. Also that, while the
line on the Euclidean plane, with its point at infinity, is
closed, the hyperbolic line, regarded as the aggregate of
its proper points, and of its two points at infinity, is gpen.
The hyperbolic line is closed by associating with it all the
ideal points, which are common to it and to all the lines on
the plane which do not intersect it.

From this point of view we regard the line as made
up of two segments, whose common extremities are the two
points at infinity of the line. Of these segiments, one contains,
in addition to its ends, all the proper points of the line; the
other all its improper points. The line, regarded as the
aggregate of its points, proper and improper, will be called
the complete projective line.

§ 4. Combination of Elements. We assume for the
concrete representation of a point of the complete projective
plane:—
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(1) its physical image, if it is a proper point;

(i) a line which passes through it, and the relative
direction of the line, if it is a point at infinity;

(iii) the common perpendicular to all the lines passing
through it, if it is an ideal point.

We shall denote a proper point by an ordinary capital
letter; an improper point by a Greek capital; and to this
we shall add, for an ideal point, the letter which will
stand for the representative line of that point. Thus a point
at infinity will be denoted, e. g., by Q, while the ideal point,
through which all lines perpendicular to the line ¢ pass, will
be denoted by Qo.

On this understanding, if we make no distinction be-
tween proper points and improper points, not only can we
affirm the unconditional validity of the projective postulate:
two arbitrary lines have a common point: but we can also
construct this point, understanding by this construction the
process of obtaining its concrete representation. In fact, if the
lines meet, in the ordinary sense of the term, or are parallel,
the point can be at once obtained. If they are non-inter-
secting, it is sufficient to draw their common perpendicular,
according to the rule obtained in Appendix III § 4.

On the other hand, we are not able to say that the
second postulate of projective geometry—fwo points determine
@ line—and the corresponding constructions, are valid un-
conditionally. In fact no line passes through the ideal point
Q, and through the point at infinity Q on the line o, since
there is no line which is at the same time parallel and per-
pendicular to a line o.

Before indicating how we can remove this and other
exceptions to the principle that a line can be determined by
a pair of points, we shall enumerate all the cases in which
two points fix a line, and the corresponding constructions:—

a) Two proper points. The line is constructed as usual.
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b) A proper point [O] and a point at infinity [Q]. The
line OQ is constructed by drawing the parallel through O to
the line which contains Q, in the direction corresponding
to Q. (Appendix III).

(c) 4 proper point [O) and an ideal point [T.]. The line
Or; is constructed by dropping the perpendicular from O to
the line ¢,

(d) Two points at infinity [Q, Q']. The line Q" is the
common parallel to the two lines bounding an angle, the
construction for which is given in Appendix III § 5.

(e) An ideal point [T;] and a point at infinity [Q], not
ying on the representative line ¢ of the ideal point. ‘The line
Qr. is the line which is parallel to the direction given by Q
and perpendicular to ¢. The construction is given in Append-
ixIII§ 6.

() Two ideal points [[,, ), whose representative lines
¢, ¢ do not intersect. The line [T/, is constructed by drawing
the common perpendicular to ¢ and ¢ (Appendix IIT § 4).

The pairs of points which do not determine a line are
as follows:—

(i) an ideal point and a point at infinity, lying on the
representative line of the ideal point;

(ii) two ideal points, whose representative lines are
parallel, or meet in a proper point.

§ 5. Improper Lines. To remove the exceptions men-
tioned above in (i) and (i), new entities must be introduced.
These we shall call smproper lines, to distinguish them from
the ordinary or groper lines.

These improper lines are of two types:—

(i) If Q is a point at infinity, every line of the pencil Q
is the representative entity of an ideal point. The locus of
these ideal points, together with the point @, is an im-
proper line of the first type, or Zne at infinity. It will be
denoted by w.
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(i) If 4 is a proper point, every line passing through 4
is the representative entity of an ideal point. The locus of
these ideal points is an improper line of the second type, or
ideal line, It will be denoted by ap, The proper point 4
can be taken as representative of the ideal line a4,

These definitions of the terms Zne af infinity and ideal
/ine allow us to state that two points, which do not belong
to a proper line, determine either a line at infinity, or an
ideal line. Hence, dropping the distinction between proper
and improper elements, the projective postulate—#wo points
determine @ line—is universally true.

We must now show that, with the addition of the im-
proper lines, any two lines have a common point. The
various cases in which the two lines are proper have been
already discussed (§ 4). There remain to be examined the
cases in which at least one of the lines is improper.

() Let » be a proper line and w an improper line,
passing through the point Q at infinity. The point wr is the
ideal point, which has the line passing through Q and per-
pendicular to » for representative line.

(ii) Let » be a proper line and a4 an ideal line. The
point ra4 is the ideal point, which has the line passing
through 4 and perpendicular to 7 for its representative line.

(i) Let w and w’ be two lines at infinity, to which
belong the points Q and Q' respectively. The point ww’ is
the ideal point, whose representative line is the line joining
the points Q and Q.

(iv) Let a4, Bs be two ideal lines. The point 4B is
the ideal point, whose representative line is the line joining
A and B.

(v) Let w and a4 be a line at infinity and an ideal line.
The poin't way is the ideal point, whose representative line
is the line joining 4 to Q.

Thus we have demonstrated that the two fundamental
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postulates of projective plane geometry hold on the hyper-
bolic plane.

§ 6. Complete Projective Space and the Validity of Pro-
Jective Geometry in the Hyperbolic Space. We can introduce
improper points, lines and planes, into the Hyperbolic Space
by the same method which has been followed in the preced-
ing paragraphs. We can then extend the fundamental pro-
positions of projective geometry to the complete projective
s$pace. Thereafter, following the lines laid down by StauprT,
all the important projective properties of figures can be de-
monstrated. Thus the validity of projective geometry in the
LosaTscHEwsky-BoLyar Space is established.

§ 7. Independence of Projective Geometry from the Fifth
Postulate. Let us suppose that in a connected argument,
founded on the group of postulates 4, &...... , M, the only
hypotheses which can be used are /;, Z;...... » £ Also that
from the fundamental postulates and any one whatever of
the 7’5, a certain proposition M can be derived. Then we
may say that A7 is independent of the /’s.

It is precisely in this way that the independence of pro-
jective geometry from the Fifth Postulate is proved, since
we have shown that it can be built up, starting from the
group of postulates common to the three systems of geo-
metry, and then adding to them any one of the hypotheses
on parallels.

The demonstration of the independence of M from any
one of the /’s, founded on the deduction (cf. § 59)

{‘4: B,.. H;Jr} Dj M(r=l,2,...n)
may be called indirect, reserving the term direct demonsiration
Jor that whick shows that it is possible to obtain M without
introducing any of the I's at all. Such a possibility, from the
theoretical point of view, is to be expected, since the
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preceding relations show that neither any single 7, nor any
group of them, is necessary to obtain A7. If we wish to give
a demonstration of the type
{4,B,... H} D M,

in which the 7’s do not appear at all, we may meet difficult-
ies not always easily overcome, difficulties depending on the
nature of the question, and on the methods we may adopt
to solve it. So far as regards the independence of projective
geometry from the Fifth Postulate, we possess two interesting
types of direct proofs, founded on two different orders of
ideas. One employs the method of analysis: the other that
of synthesis. We shall now briefly describe the views on
which they are founded.

§ 8. Beltrami’s Direct Demonstration of the Independ-
ence of Projective Geometry from the Fifth Postulate. The
demonstration implicitly contained in BELTRAMI's ‘Saggio’ of
1868 must be placed first in chronological order. Referring
to the ‘Saggio’, let us suppose that between the points of a
surface F, (or of a suitably limited region of the surface), and
the points of an ordinary plane area, there can be established
a one-one correspondence, suck that the geodesics of the former
are represented by the straight lines of the latter. Then, to the
projective properties of plane figures, which express the
collinearity of certain points, the concurrence of certain
lines, etc., correspond similar properties of the correspond-
ing figures on the surface, which are deduced from the first,
by simply changing the words plane and line into surface
and gevdesic. If all this is possible, we should naturally say
that the projective properties of the corresponding plane
area are valid on the surface #; or, more simply, that the
ordinary projectivity of the plane holds upon the surface.
We shall now put this result in an analytical form.

Let z and » be the (curvilinear) coordinates of a point
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on %, and x and y those of the representative point on the
plane. The correspondence between the points (%, 7) and
(=, y) will be expressed analytically by putting

= f(, y)} (1)
v =0 (x, ) ,
where / and @ are suitable functions.
To the equation
y (u’ '1)) =0
of a geodesic on £, let us now apply the transformation (1).

We must obtain a Znear equation in x, y, since, by our
hypothesis, the geodesics of # are represented by straight
lines on the plane.

But the equations (1) can also be interpreted as formule
giving a transformation of coordinates on F. We can there-
fore conclude that:—7f, by a suitable choice of a system of
curvilinear coordinates on the surface F, the geodesics of that
surface can be represented by linear equations, the ordinary
projective geometry is valid on the surface.

Now BELTRAMI has shown in his ‘Saggio’ that on surfaces
of constant curvature it is always possible to choose a system
of coordinates (z, »), for which the general integral of the
differential equation of the geodesics takes the form

ax + by + ¢ =o.

Hence, from what has been said above, it follows that:—

FPlane projective geometry is valid on the surfaces of con-
stant curvature with respect to their geodesics.

But, according to the value of the curvature, the geo-
metry of these surfaces coincides with that of the Euclidean
plane, or of the Non-Euclidean planes.

It follows that:—

The method of Beltrami, applied to a plane on whick are
valid the metrical concepts common to the three geometries, leads
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to the jfoundation of plane projective geomelry without the
assumption of any kypothesis on parallels.

This result and the argument we have emrioyed in ob-
taining it are easily extended to space. BELTRAMI'S memoir
referring to this is the Zeria fondamentale degli spazii di
curvatura costante, quoted in the note to § 75.

§ 9. Klein’s Direct Demonstration of the Independence
of Projective Geometry from the Fifth Fostulate. The method
indicated above is not the only one which will serve our
purpose. In fact, we might be asked if we could not construct
projective geometry independently of any metrical consider-
ation; that is, starting from the notions of point, line, plane,
and from the axioms of connection and order, and the prin-
ciple of continuity.* In 1871 KLEIN was convinced of the
possibility of such a foundation, from the consideration of
the method followed by STAUDT in the construction of his
geometrical system. There remained one difficulty, relative
to the improper points. STAUDT, following PONCELET, makes
them to depend on the ordinary theory of parallels. To
escape the various exceptions to the statement that two
coplanar lines have a common point, due to the omission of
the Euclidean hypothesis, KLEIN proposed fo construct projective
geometry in @ limited (and convex) region of space, such, e. g.,
as that of the points inside a tetrahedron. With reference to
such a region, for the end he has in view, every point on
the faces of, or external to, the tetrahedron must be con-
sidered as non-existent. Also we must give the name of line
and plane only to the portions of the line and plane belonging
Zo the region considered. Then the graphical postulates of
connection, order, etc., which are supposed true in the whole

1 For this nomenclature for the Axioms, cf. TOWNSEND’S
translation of HILBERT's Foundations of Geometry, p. 1 (Open Court
Publishing Co. 1902).
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of space, are verified in the interior of the tetrahedron. Thus
to construct projective geometry in this region, it is neces-
sary, with suitable conventions, that the propositions on the
concurrence of lines, etc. should hold without exception.
These are not always true, when the word point means
simply point inside the tetrahedron.

KLEIN showed briefly, while various later writers dis-
cussed the question more fully, how the space inside the
tetrahedron can be completed by fictitious entities, called
ideal points, lines and planes, so that when no distinction
is made between the proper entities (inside the tetrahedron)
and the ideal entities, the graphical properties of space, on
which all projective geometry is constructed, are completely
verified.

From this there readily follows the independence of
projective geometry from EucLm’s Fifth Postulate.



Appendix V.

The Impossibility of Proving Euclid’s
Parallel Postulate.®

An Elementary Demonstration of this Impossibility founded
upon the Properties of the System of Circles orthogonal to a
Fixed Circle.

§ 1. In the concluding article (§ 94) various arguments
are mentioned, any one of which establishes the independence
of EucLip’s Parallel Postulate from the other assumptions on
which Euclidean Geometry is based. One of these has been
discussed in greater detail in Appendix IV. In the articles
which follow there will be found another and a more ele-
mentary proof that the BoLvAI-LOBATSCHEWSKY system of
Non-Euclidean Geometry cannot lead to any contradictory
results, and that it is therefore impossible to prove EucLip’s
Postulate or any of its equivalents. This proof depends, for
solid geometry, upon the properties of the system of spheres all
orthogonal to a fixed sphere, while for plane geometry the
system of circles all orthogonal to a fixed circle is taken.
In the course of the discussion many of the results of Hyper-
bolic Geometry are deduced from the properties of this
system of circles.

* This Appendix, added to the English translation, is based
upon WELLSTEIN’s work, referred to on p. 180, and the following
paper by CARSLAW; ‘The Bolyai-Lobatschewsky Non-Euclidean Geo-
metry: an Elementary Interpretation of this Geometry and some Results
which follow from this Interpretation, Proc. Edin. Math. Soc. Vol.
XXVIII, p. 95 (1910).

Cf. also: J. WELLSTEIN, Zusammenkang zwischen zwei euklid-
ischen Bildern der nichteuklidischen Geometrie. Archiv der Math. u.
Physik (3). XVII, p. 195 (1910).
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The System of Circles passing through a fixed Point.

§ 2. We shall examine first of all the representation of
ordinary Euclidean Geometry by the geometry of the system
of spheres all passing through a fixed point. In plane geo-
metry this reduces to the system of circles through a fixed
point, and we shall begin with that case.

Since the system of circles through a point O is the
inverse of the system of straight lines lying in the plane, to
every circle there corresponds a straight line, and the circles
intersect at the same angle as the corresponding lines. The
properties of the set of circles could be established from the
knowledge of the geometry of the straight lines, and every
proposition concerning points and straight lines in the one
geometry could at once be interpreted as a proposition con-
cerning points and circles in the other.

There is another way in which the geometry of these
circles can be established independently. We shall first de-
scribe this method, and weshall then see that from this inter-
pretation of the Euclidean Geometry we can easily pass to a
corresponding representation of theNon-Euclidean Geometry.

§ 3. Jdeal Lines.

It will be convenient to speak ot the plane of the
straight lines and the plane of the circles, as two separate
planes. We have seen that to every straight line in the plane
of the straight lines, there corresponds a circle in the plane
of the circles. We shall call these circles Jdeal Lines. The
Ideal Points will be the same as ordinary points, except that
the point O will be excluded from the domain of the Ideal
Points.

On this understanding we can say that Any fwo different
ldeal Points, A, B, determine the Ideal Line AB; just as, in
Euclidean Geometry, any two different points 4, 5 deter-
mine the straight line 45.
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As the angle between the circles in the one plane is
equal to the angle between the corresponding straight lines
in the other, we define #ze angle between two Ideal Lines as
the angle between the corvesponding straight lines. Thus we
can speak of Ideal Lines being perpendicular to each other,
or cutting at any angle.

8§ 4. Ideal Parallel Lines.
Let BC (cf. Fig. 83) be any straight line and 4 a point
not lying upon it.

A

/

B M M M M M, c

Fig: 83.

Let AM be the perpendicular to BC, and 4M,, AM,,
ANM;,, . .. different positions of the line AM, as it revolves
from the perpendicular position through two right angles.

The lines begin by cutting BC on the one side of /7
and there is one line separating the lines which intersect
BC on the one side, from those which intersect it on the
other. This line is the parallel through 4 to BC.

In the corresponding figure for the Ideal Lines (cf.
Fig. 84), we have the Ideal Line through 4 perpendicular to
the Ideal Line AC; and the circle which passes through 4,
and touches the circle OBC at O, separates the circles
through 4, which cut BC on the one side of M, from those
which cut it on the other.
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We are thus led to define Paralle! Ideal Lines as follows:

The ldeal Line through any point parallel to a given
ldeal Line is the circle of the system which touckes at O the
circle coinciding with the given line and also passes through the
given point.

le M; M
Fig. 84.

Thus any two circles of the system which touch each
other at O will be Ideal Parallel Lines. Two Ideal Lines,
which are each parallel to a third Ideal Line, are parallel to
each other, etc.

§ 5. Zdeal Lengths.

Since EucLip’s Parallel Postulate is equivalent to the
assumption that one, and only one, straight line can be
drawn through a point parallel to another straight line, and
since this postulate is obviously satisfied by the Ideal Line,
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in the geometry of these lines, Eucrin’s Theory of Parallels
will be true.

But such a geomeury will require a measurement of
length. We must now define what is meant by the /dea/
Length of an ldeal Segment. In other words we must define
the Jdeal Distance between two points. It is clear that if the
two geometries are to be identical two Ideal Segments must
be regarded as of equal length, when the corresponding
rectilinear segments are equal. We thus define the Jdea/
Length of an Ideal Segment as the length of the rectilinear
segment to which it corresponds.

It will be seen that the Ideal Distance between two
points 4, B is such that, if C is any other point on the
segment,

‘distance’ 48 = ‘distance’ AC + ‘distance’ C5.

The other requisite for ‘distance’ is that it is unaltered
by displacement, and when we come to define Jdea/ Dis-
placement we shall have to make sure that this condition is
also satisfied.

It is clear that on this understanding the Ideal Length
of an Ideal Line is infinite. If we take ‘equal’ steps along
the Ideal Line BC from the foot of the perpendicular (cf.
Fig. 84) the actual lengths of the arcs MM, M, M,, etc... .,
the Ideal Lengths of which are equal, become gradually
smaller and smaller, as we proceed along the line towards O.
It will take an infinite number of such steps to reach O, just
as it will take an infinite number of steps along BC from M
(cf. Fig. 83) to reach the point at which BC is met by the
parallel through A. We have already seen that the domain
of Ideal Points contains all the points of the plane except
O. This was required so that the Ideal Line might always
be determined by two different points. It is also needed for
the idea of ‘between-ness’. On the straight line 4B we can
say that C lies between line 4 and B if, as we proceed along
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AB from A4 to B, we pass through C. On the Ideal Line 458
(cf. Fig. 85) the points C; and C, would both lie between
4 and B, unless the point O were excluded. In other words
this convention must be made so that the Axioms of Order?
may appear in the geometry of the Ideal Points and Lines.

Fig 8s.

On this understanding, and still speaking of plane geo-
metry, we can say that fwo Jdeal Lines are parallel when they
do not meet, however far they are produced.

To obtain an expression for the Ideal Length of an
Ideal Segment we may take the radius of inversion—Z—to
be unity.

Consider the segment 458 and the rectilinear segment
0B to which it corresponds. Then we have (Fig. 86)

o _ 0B _ 0B.OB &
AB 04 04.08 04. 0B

x See Note on p. 236.
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Hence we define the Jdeal Length of the segment AB as
AB
04.0B
We shall now show that tie Jdeal Length of an Ildeal
Segment is unaltered by inversion with regard to any circle of
the system.

<

o

Fig. 6.

Let OO be any circle of the system and let C be its
centre (Fig. 87).

Then inversion changes an Ideal Line into an Ideal
Line.

Let the Ideal Segment 48 invert into the Ideal Segment
A'B'. These two Ideal Lines intersect at the point 2, where
the circle of inversion meets 4.5.

Then
the Ideal Length of 4D 4D AD
the Ideal Length of £D  0A4. 0D/ 04". 0D
AD 04
= 4D ox

But from the triangles C4D, CA'D and OAC, 04'C,
we find
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4D €4 (4 A0
4D DT coT 40
Thus the Ideal Length of 4.0 = the Ideal Length of 4'D.
Similarly we find B0 and B'D have the same Ideal Length,

and therefore 48 and 4’8 have the same Ideal Length.

§ 6. Jdeal Displacements.

The length of a segment must be unzltered by dis-
placement. This leads us to consider the definition of /dea/
Displacement. Any displacement may be produced by re-
peated applications of reflection; that is, by taking the image
of the figure in a line (or in a plane, in the case of solid
geometry). For example, to translate the segment 45 (cf.
Fig. 88) into another position on the same straight line, we
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may reflect the figure, first about a line perpendicular to and
bisecting BB’, and then another reflection about the middle
.point of 4’3" would bring the ends into their former positions
relative to each other. Also to move the segment 45 into

A B BI AI
Fig. 88.
the position 4°B’ (cf. Fig. 89) we can first take the image ot
AP in the line bisecting the angle between 4B and 4’5,
and then translate the segment along 4'B° to its final
position.

We proceed to show
that inversion about any
A circle of the system is
equivalent to reflection of
the [deal Points and Lines
B in the ldeal Line whick

coincides with the circle
of inversion.
B’ Let C (Fig. 90) be
the centre of any circle
of the system, and let 4’
be the inverse of any
/ point A4 with regard to
this circle. Then the
circleOAA' is orthogonal
' to the circle of inversion.
In other words, such inversion changes any point 4 into a
point A" on the Ideal Line perpendicular to the circle of in-
version. Also the Ideal Line 44’ is ‘bisected’ by that circle
at M, since the Ideal Segment A/ inverts into the segment
A'M, and Ideal Lengths are unaltered by such inversion.
Again let 48 be any Ideal Segment, and by inversion

Fig. 8.
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with regard to any circle of the system let it take up the
position 4’8 (Fig. 87). We have seen that the Ideal Length
of the segment is unaltered: and it is clear that the two
segments, when produced, meet on the circle of inversion,
and make equal angles with it. Also the Ideal Lines 4.4

M

Fig. go.

and BB’ are perpendicular to, and ‘bisected’ by, the Ideal
Line with which the circle of inversion coincides.

Such an inversion is, therefore, the same as reflection,
and translation will occur as a special case of the above,
when the circle of inversion is orthogonal to the given
Ideal Line.

We thus define Ideal Reflection in an Ideal Line as in-
version with this line as the circle of inversion.

It is unnecessary to say more about /Jdeal Displace-
ments than that they will be the result of Ideal Reflection.

With these definitions it is now possible to ‘translate’
every proposition in the ordinary plane geometry into a
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corresponding proposition in this Ideal Geometry. We have
only to use the words Ideal Points, Lines, Parallels, etc,
instead of the ordinary points, lines, parallels, etc. The
argument employed in proving a theorem, or the con-
struction used in solving a problem, will be applicable,
word for word, in the one geometry as well as in the other,
for the elements involved satisfy the same laws. This is the
‘dictionary’ method so frequently adopted in the previous
pages of this book.

§ 7. Extension to Solid Geometry. The System of
Spheres passing through a fixed point.

These methods may be extended to solid geometry. In
this case the inversion of the system of points, lines, and
planes gives rise to the system of points, circles intersecting
in the centre of inversion, and spheres also intersecting in
that point. The geometry of this system of spheres could be
derived from that of the system of points, lines and planes,
by interpreting each proposition in terms of the inverse
figures. For our purpose it is better to regard it as derived
from the former by the invention of the terms: Ideal
Point, Ideal Line, Ideal Plane, Ideal Length and Ideal Dis-
placement.

The Jdea/ Point is the same as the ordinary point, but
the point O is excluded from the domain of Ideal Points.

The Jdeal Line through two Ideal Points is the circle of
the system which passes through these two points.

The Jdeal Plane through three Ideal Points, not on an
Ideal Line, is the sphere of the system which passes through
these three points,

Thus the plane geometry, discussed in the preceding
articles, is a special case of this plane geometry.

ldeal Parallel Lines are defined as before. The line
through 4 parallel to BC is the circle of the system, lying
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on the sphere through O, 4, B, and C, which touches the
circle given by the Ideal Line BC at O and passes through 4.

It is clear that an Ideal Line is determined by two
points, as a straight line is determined by two points. An
Ideal Plane is determined by three points, not on an Ideal
Line, as an ordinary plane is determined by three points,
not on a straight line. If two points of an Ideal Line lie on
an Ideal Plane, all the points of the line do so: just as if two
points of a straight line lie on a plane, all its points do so.
The intersection of two Ideal Planes is an Ideal Line; just as
the intersection of two ordinary planes is a straight line.

The measurement of angles in the two spaces is the same.

For the measurement of length we adopt the same de-
finition of /Jdeal Lengtk as in the case of two dimensions.
The Ideal Length of an Ideal Segment is the length of the
rectilinear segment to which it corresponds. To these defi-
nitions it only remains to add that of Jdea! Displacement.
As in the two dimensional case, this is reached by means of
Ldeal Reflection : and it can easily be shown that if #ke system
of Ideal Points, Lines and Planes is inverted with regard to
one of its spheres, the result is equivalent to a reflection of the
system in this Idea! Plane.

This Ideal Geometry is identical with the ordinary
Euclidean Geometry. Its elements satisfy the same laws:
every proposition valid in the one is also valid in the other:
and from the results of Euclidean Geometry those of the
Ideal Geometry can be inferred.

In the articles that follow we shall establish an Ideal
Geometry whose elements satisfy the axioms upon which the
Non-Euclidean Geometry of BoLvyAr-LOBATSCHEWSKY is based.
The points, lines and planes of this geometry will be figures
of the Euclidean Geometry, and from the known properties
of these figures, we could state what the corresponding the-
orems of this Non-Euclidean Geometry would be. Also from
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some of its constructions, the Non-Euclidean constructions
could be obtained. This process would be the converse of
that referred to in dealing with the Ideal Geometry of the
preceding articles: since, in that case, we obtained the the-
orems of the Ideal Geometry from the corresponding Eu-
clidean theorems.

The Geometry of the System of Circles Orthogonal
to a Fixed Circle.

§ 8. Zdeal Points, ldeal Lines and Ideal Parallels.

In the Ideal Geometry discussed in the previous articles,
the Ideal Point was the same as the ordinary point, and the
Ideal Lines and Planes had so far the characteristics of
straight lines and planes that they were lines and surfaces
respectively. Geometries can be constructed in which the
Ideal Points, Lines and Planes are quite removed from
ordinary points, lines, and planes: so that the Ideal Points
no longer have the characteristic of having no parts: and
the Ideal Lines no longer boast only length, etc. What is
required in each geometry is that the entities concerned
satisfy the axioms which form the foundations of geometry.
If they satisfy the axioms of Euclidean Geometry, the argu-
ments, which lead to the theorems of that geometry, will
give corresponding theorems in the Ideal Geometry: and if
they satisfy the axioms of any of the Non-Euclidean Geom-
etries, the arguments, which lead to theorems in that Non-
Euclidean Geometry, will lead equally to theorems in the
corresponding Ideal Geometry.

We proceed to discuss the geometry of the system of
circles orthogonal to a fixed circle.

Let the fundamental circle be of radius £ and centre O.

Let 4, A" be any two inverse points, 4 being inside
the circle. Zvery suck pair of points (A, A”), is an Ideal
Point (A) of the Ideal Geométry with whick we shall now deal.
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If two such pairs of points are given—that is, two Ideal
Points (4, B), (Fig. 92)—these determine a circle which is
orthogonal to the fundamental circle. Bwvery suck circle is
an Ideal Line of this Ideal Geometry.

Fig. o1.

Hence any two different Ideal Points determine an Ideal
Line. In the case of the system of circles passing through a
fixed point O, this point O was excluded from the domain
of the Ideal Points. In this system of circles all orthogonal
to the fundamental circle, the coincident pairs of points lying
on the circumference of that circle are excluded from the
domain of the Ideal Points,

We define the angle between two Ideal Lines as the angle
between the circles whick coincide with these lines.

We have now to consider in what way it will be proper
to define Parallel Ideal Lines.

Let AM be the Ideal Line through 4, perpendicular to
the Ideal Line BC; in other words, the circle of the system
passing through 4, 4”, and orthogonal to the circle through
B, B’, C" and C” (cf. Fig. 92).
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Imagine AM to rotate about 4 so that those Ideal
Lines through A4 cut the Ideal Line BC at a gradually
decreasing angle. The circles through A which touch the given

Fig. g92.

circle BC at the points U, V, where it meets the fundamental
circle, are Ideal Lines of the system. They separate the
lines of the pencil of Ideal Lines through 4, which cut the
Ideal Line BC, from those which do not cut that line. All
the lines in the angle @, shaded in the figure, do not eut
the line BC; all those in the angle y, not shaded, do cut
this line. This property is exactly what is assumed in the
Parallel Postulate upon which the Non-Euclidean Geometry
of BoLyAI-LoBATSCHEWSKY is based. We therefore are led to
define Parallel Ideal Lines in this Plane Ideal Geometry as
follows:

The Ideal Lines througlh an Ideal Point parallel to a
given Ideal Line are the two circles of the system passing
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through the given point, whick touck the circle with whick the
given line coincides at the points where it meets the fundam-
ental circle.

Thus we have in this Ideal Geometry two parallels
through a point to a given line: a right-handed parallel, and
a left-handed parallel: and these separate the lines of the
pencil which intersect the given line from those which do
not intersect it.

Some Theorems of this Non-Euclidean Geometry.

§ 9. At this stage we can say that any of the theorems
of the BoLvar-LoBaTscHEwsky Non-Euclidean Geometry, in-
volving angle properties only, will hold in this Ideal Geo-
metry and vice versa. Those involving lengths we cannot yet
discuss, as we have not yet defined /Jdeal/ ZLengths. For
example, it is obvious that there are triangles in which all
the angles are zero (cf. Fig. 93). The sides of such triangles
are parallel in pairs. Thus the sum of the angles of an Ideal
Triangle is certainly not always equal to two right angles.
We can prove that this sum is always less than two right
angles by a simple application of inversion, as follows:

Let G, C,, C; be three circles of the system, forming
an Ideal Triangle. Invert these circles from the point of
intersection /7 of C; and C,, which lies inside the fundament-
al circle. Then C; and C, become two straight lines C,’
and C,’ through 7 Also the fundamental circle C inverts
into a circle €’ cutting C;” and C,’ at right-angles, so that
its centre is /. Again, the circle C, inverts into a circle Cj,
cutting C” at right-angles. Hence its centre lies outside C".
We thus obtain a ‘triangle’, in which the sum of the angles
is less than two right-angles, and since these angles are equal
to the angles of the Ideal Triangle, this result holds also for
the Ideal Triangle.



254 Appendix V. Impossibility of proving Euclid’s Postulate.

Finally, it can be shown that there is always one, and
only one, circle of the system cutting two non-intersecting
circles of the system at right-angles. In other words, two

/

L

Fig. o3.

non-intersecting Ideal Lines have a common perpendicular.
All these results must be true in the Hyperbolic Geometry.

§ 10. Zdeal Lengths and Ideal Displacements.

Before we can proceed to the discussion of the metrical
properties of this geometry, we must define the /deal Length
of an Ideal Segment. 1t is clear that this must be such that
it will be unaltered, if we take the points 4", B”, as defining
the segment 45, instead of the points 4", B. It must make
the complete line infinite in length. It must satisfy the distri-
butive law ‘distance’ 4B = ‘distance’ AC + ‘distance’ CB,
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if C is any other point on the segment 45, and it must
also remain unaltered by Jdeal Displacement.
We define the Ideal Length of any segment AB as

g (22 22)
AU | BU
where U, V are the points where the ldeal Line AB meels the
Jundamental circle (cf. Fig. 91).

Fig. 94.

This expression obviously involves the Anharmonic
Ratio of the points UABV. It will be seen that this de-
finition satisfies the first three of the conditions named above.
It remains for us to examine what must represent dis-
placement in this Ideal Geometry.

Let us consider what is the effect of inversion with
regard to a circle of the system upon the system of Ideal
Points and Lines.

Let 4£'A” be any Ideal Point 4 (cf. Fig. 94). Let the
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circle of inversion meet the fundamental circle in C, and let
D be its centre. Let A4, 4" invert into B, B”. Since the
circle A’A” C touches the circle of inversion at C, its inverse
also touches that circle at C. But a circle passes through
A', A", B and B, and the radical axes of the three circles
AAd°C,BB'C,AA" BB’

are concurrent.

Hence B'B” passes through O, and OB . OB"= OC-

Therefore inversion with regard to any circle of the
system changes an Ideal Point into an Ideal Point.

But it is clear that the circle 4’45’ B” is orthogonal to
the fundamental circle, and also to the circle of inversion.

Thus the Ideal Line joining the Ideal Point A and the
Ideal Point B, into whick it is changed by this inversion, is
perpendicular to the Ideal Line coinciding with the circle of
inversion.

We shall now prove that it is ‘bisected’ by that Ideal
Line.

Let the circle through 43 meet the circle of inversion
at M, and the fundamental circle in U and V. Itis clear
that &/ and ¥ are inverse points with regard to the circle of
inversion [cf. Fig. 95].

Then we have:

BV v
AT ¢a?
A4V v
and FU=CF"
Thus
AV BV Ccre vz MV 2
AU BU~ C4.CF = tmw: ~ 2711//')

Therefore
AV | MV Mmv

. /B’V
AjU/ MU T MUl BT
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Hence the Ideal Length of 43 is equal to the Ideal
Length of M5B,

Thus we have the following result:

Inversion with regard to a circle of the system changes
any ldeal Point A into an ldeal Point B, suckh that the Ideal
Line AB is perpendicular fo, and ‘bisected’ by, the Ideal Line
cotnciding with the circle of inversion.

BN

AN

c

Fig. o5

In other words, inversion with regard to suck a circle
causes any ldeal Point A to take the position of its image in
the corresponding Ideal Line.

We proceed to examine what effect such inversion has
upon an Ideal Line.

Since a circle, orthogonal to the fundamental circle,
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inverts into a circle also orthogonal to the fundamental circle,
any Ideal Line 45 inverts into another Ideal Line a4, pass-
ing through the point 47, where 45 meets the circle of in-
version (cf. Fig. 96). Also the points U, V invert into the

Fig. ¢6.

points # and z on the fundamental circle; and the lines 48
and ab are equally inclined to the circle of inversion.

It is easy to show that the Ideal Lengths of A} and
BM are equal to those of aMf and 4M respectively, and it
follows that the Ideal Length of the segment 4.5 is unaltered
by this inversion. Also we have seen that 4z and B are
perpendicular to, and ‘bisected’ by, the Ideal Line coinciding
with this circle.

It follows from these results that inversion with regard
2o any circle of the system has the same effect upon an Ideal
Segment as reflection in the corresponding Ideal Line.

We are thus again able to define Ideal Reflection in any
ldeal Line as the inversion of the system of Ideal Points and
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Lines with regard to the circle whick coincides with this
Jdeal Line.

It is unnecessary to define /dea/ Displacements, as any
displacement can be obtained by a series of reflections and
any Ideal Displacement by a series of Ideal Reflections.

We notice that the definition of the Ideal Length of
any Segment fixes the Jdea! Unit of Length. We may take
this on one of the diameters of the fundamental circle, since
these lines are also Ideal Lines of the system. Let it be the
segment OP (Fig. 97).

Fig. o7.

Then we must have
e (35 27) = 5
ouU| PU ’
i e log AN
Va4
PU
w= b
and the point 2 divides the diameter in the ratio ¢: 1.
The Unit Segment is thus fixed for any position in the

Therefore
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domain of the Ideal Points, since the segment OP can be
‘moved’ so that one of its ends coincides with any given
Ideal Point.
A different expression for the Ideal Length
AV | BV
# log (zv/ B0

would simply mean an alteration in the unit, and taking
logarithms to any other base than ¢ would have the same
effect.

§ 11. Some further Theovems in this Non-Euclidean
Geomelry.

We are now in a position to establish some further
theorems of the Hyperbolic Geometry using the metrical
properties of this Ideal Geometry.

In the first place we can state that Similar Triangles
are impossible in this geometry.

We also see that Parallel Ideal Lines are asymptotic;
that is, these lines continually approach each other and the
distance between them tends to zero.

Further, it is obvious that as the point 4 moves away
along the perpendicular /4 to the line BC (cf. Fig. 92), the

angle of parallelism diminishes from — to zero in the limit.

Again, we can prove from the Ideal Geometry that the
Angle of Parallelism TT (#), corresponding to a segment 2, is
given by

' tan T __ 7
2

Consider an Ideal Line and the Ideal Parallel to it
through a point 4.

Let AM (Fig. 98) be the perpendicular to the given line
MU, and AU the parallel.

Let the figure be inverted from the point 47~ the radius of
inversion being the tangent from M to the fundamental circle.
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Then we obtain a new figure (cf. Fig. 99) in which the
corresponding Ideal Lengths are the same, since the circle
of inversion is a circle of the system. The lines AM and
MU become straight lines through the centre of the fund-

4

C M
Fig. 98.
amental circle, which is the inverse of the point A7’
Also the circle 4T becomes the circle 2%, touching the
radius m'% at #, and cutting »'a’ at an angle TT(#). These
radii, ', m'b, are also Ideal Lines of the system.
The Ideal Length of the Segment A is taken as 2.

AB | M'B

Then 2 = log (2,-& /W)
a'b m'b

= log (:z'; _m'f)

a’'b
~10g (%2)-
m (2

But @’'c = 2 — £ tan (T—Wﬂ), ‘

2

and @6 = % + Atan (% —_ E,Z(Z’)),
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where £ is the radius of the fundamental circle.

Thus » = log cot U_i););
and 6’1’ = tan Hép) .
u
b A \ .
m’ a’
Fig. 99.

Finally, in this geometry there will be three kinds of
circles. There will be the circle, with its centre at a finite
distance; the Limiting Curve or Horocycle, with its centre at
infinity, (at a point where two parallels meet); and the Egui-
distant Curve, with its centre at the imaginary point of inter-
section of two lines with a common perpendicular.

The first of these curves would be traced out in the
Ideal Geometry by one end of an Ideal Segment, when it is
reflected in the lines passing through the other end; that is,
by the rotation of this Ideal Segment about that end. The
second occurs when the Ideal Segment is reflected in the
successive lines of the pencil of Ideal Lines all parallel to it
in the same direction; and the third, when the reflection
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takes place in the system of Ideal Lines which all have a
perpendicular with this segment. That these correspond to
the common Circle, the Horocycle and the Eguidistant Curve
of the Hyperbolic Geometry is easily proved.

S 12, The Impossibility of Proving Euclids Paralled
Postulate.

We could obtain other results of the Hyperbolic Geo-
metry, and find some of its constructions, by further examin-
ation of the properties of this set of circles; but this is not
our object. Our argument was directed to proving, by reas-
oning involving only elementary geometry, that it is impossible
for any inconsistency or contradiction to arise in this Non-
Euclidean Geometry. If such contradiction entered into this
Plane Geometry, it would also occur in the interpretation of
the result in the Ideal Geometry. Thus the contradiction
would also be found in the Euclidean Geometry. We can,
therefore, state that it is impossible that any logical incon-
sistency could be traced in the Plane Hyperbolic Geometry. It
could still be argued that such contradiction might be found
in the Solid Hyperbolic Geometry. An answer to this ob-
jection is at once forthcoming. The geometry of the system
of circles, all orthogonal to a fixed circle, can be at once
extended into a three dimensional system. The Jdeal Points
are taken as the pairs of points inverse to a fixed sphere,
excluding the points on the surface of the sphere from their
domain. The Zdea/ Lines are the circles through two Ideal
Points. The Jdeal Planes are the spheres through three Ideal
Points, not lying on anIdeal Line. The ordinary plane enters
as a particular case of these Ideal Planes, and so the Plane
Geometry just discussed is a special case of a plane geo-
metry on this system. With suitable definitions of Ideal
Lengths, Ideal Parallels and Ideal Displacements, we have
a Solid Geometry exactly analogous to the Hyperbolic Solid
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Geometry. It follows that no logical inconsistency can exist
in the Hyperbolic Solid Geometry, since if there were such
a contradiction, it would also be found in the interpretation
of the result in this Ideal Geometry; and therefore it would
enter into the Euclidean Geometry.

By this result our argument is complete. However far
the Hyperbolic Geometry were developed, no contradictory
results could be obtained. This system is thus logically
possible; and the axioms upon which it is founded are not
contradictory. Hence it is impossible to prove Euclid’s
Parallel Postulate, since its proof would involve the denial
of the Paralle] Postulate of BoLYAI-LOBATSCHEWSKY.
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TRANSLATOR'S INTRODUCTION.

The immortal £lements of Euclid was al-
ready in dim antiquity a classic, regarded as
absolutely perfect, valid without restriction.

Elementary geometry was for two thousand
years as stationary, as fixed, as peculiarly
Greek, as the Parthenon. On this foundation
pure science rose in Archimedes, in Apollon-
ius, in Pappus; struggled in Theon, in Hypa-
tia; declined in Proclus; fell into the long
decadence of the Dark Ages.

The book that monkish Europe could no
longer understand was then taught in Arabic
by Saracen and Moor in the Universities of
Bagdad and Cordova.

To bring the light, after weary, stupid cen-
turies, to western Christendom, an Fnglish-
man, Adelhard of Bath, journeys, to learn
Arabic, through Asia Minor, through Egypt,
back to Spain. Disguised as a Mohammedan
student, he got into Cordova about 1120, ob-
tained a Moorish copy of Kuclid's Elements,
and made a translation from the Arabic into
Latin.
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The first printed edition of Kuclid, pub-
lished in Venice in 1482, was a Latin version
from the Arabic. The translation into Latin
from the Greek, made by Zamberti from a
MS. of Theon’s revision, was first published
at Venice in 1505.

Twenty-eight years later appeared the
editio princeps in Greek, published at Basle
in 1533 by John Hervagius, edited by Simon
Grynaeus. This was for a century and three-
quarters the only printed Greek text of all the
books, and from it the first English transla-
tion (1570) was made by ‘‘Henricus Billings-
ley,”” afterward Sir Henry Billingsley, Lord
Mayor of London in 1591.

And even to-day, 1895, in the vast system of
examinations carried out by the British Gov-
ernment, by Oxford, and by Cambridge, no
proof of a theorem in geometry will be ac-
cepted which infringes Fuclid’s sequence of
propositions.

Nor is the work unworthy of this extraor-
dinary immortality.

Says Clifford: ¢This book has been for
nearly twenty-two centuries the encourage-
ment and guide of that scientific thought
which is one thing with the progress of man
from a worse to a better state.
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‘““The encouragement; for it contained a
body of knowledge that was really known and
could be relied on.

‘“The guide; for the aim of every student
of every subject was to bring his knowledge
of that subject into a form as perfect as that
which geometry had attained.”

But Euclid stated his assumptions with the
most painstaking candor, and would have
smiled at the suggestion that he claimed for
his conclusions any other truth than perfect
deduction from assumed hypotheses. In favor
of the external reality or truth of those as-
sumptions he said no word.

Among Kuclid’s assumptions is one differing
from the others in prolixity, whose place fluc-
tuates in the manuscripts.

Peyrard, on the authority of the Vatican MS.,
puts it among the postulates, and it is often
called the parallel-postulate. Heiberg, whose
edition of the text is the latest and best (Leip-
zig, 1883-1888), gives it as the fifth postulate.

James Williamson, who published the closest
translation of Kuclid we have in English, in-
dicating, by the use of italics, the words not
in the original, gives this assumption as elev-
enth among the Common Notions.
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Bolyai speaks of it as Fuclid's Axjom XI.
Todhunter has it as twelfth of the Axioms.

Clavius (1574) gives it as Axiom 13.

The Harpur Fuclid separates it by forty-
eight pages from the other axioms.

It is not used in the first twenty-eight pro-
positions of Euclid. Moreover, when at length
used, it appears as the inverse of a proposition
already demonstrated, the seventeenth, and is
only needed to prove the inverse of another
proposition already demonstrated, the twenty-
seventh.

Now the great Lambert expressly says that
Proklus demanded a proof of this assumption
because when inverted it is demonstrable.

All this suggested, at Hurope’s renaissance,
not a doubt of the necessary external reality
and exact applicability of the assumption, but
the possibility of deducing it from the other
assumptions and the twenty-eight prepositions
already proved by Euclid without it.

Fuclid demonstrated things more axiomatic
by far. He proves what every dog knows,
that any two sides of a triangle are together
greater than the third.

Yet after he has finished his demonstration,
that straight lines making with a transversal
equal alternate angles are parallel, in order to
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prove the inverse, that parallels cut by a trans-
versal make equal alternate angles, he brings
in the unwieldy assumption thus translated by
Williamson (Oxford, 1781):

“11. And if a straight line meeting two
straight lines make those angles which are in-
ward and upon the same side of it less than
two right angles, the two straight lines being
produced indefinitely will meet each other on
the side where the angles are less than two
right angles.”

As Staeckel says, ‘‘it requires a certain
courage to declare such a requirement, along-
side the other exceedingly simple assumptions
and postulates.” But was courage likely to
fail the man who, asked by King Ptolemy if
there were no shorter road in things geometric
than through his FElements? answered, ‘‘To
geometry there is no special way for kings!”

In the brilliant new light given by Bolyai
and Lobachevski we now see that Kuclid un-
derstood the crucial character of the question
of parallels. _

There are now for us no better proofs of the
depth and systematic coherence of Fuclid’s
masterpiece than the very things which, their
cause unappreciated, seemed the most notice-
able blots on his work.



viii TRANSLATOR’S INTRODUCUION.

Sir Henry Savile, in his Praelectiones on
Fuclid, Oxford, 1621, p. 140, says: ‘‘In pul-
cherrimo Geometriae corpore duo sunt naevi,
duae labes . . .”’ etc., and these two blemishes
are the theory of parallels and the doctrine of
proportion; the very points in the Klements
which now arouse our wondering admiration.
But down to our very nineteenth century an
ever renewing stream of mathematicians tried
to wash away the first of these supposed stains
from the most beauteous body of Geometry.

The year 1799 finds two extraordinary young
men striving thus

“'To gild refined gold, to paint the lily,
To cast a perfume o’er the violet.”

At the end of that year Gauss from Braun-
schweig writes to Bolyai Farkas in Klausen-
burg (Kolozsvér) as follows: [Abhandlungen
der Koeniglichen Gesellschaft der Wissen-
schaften zu Goettingen, Bd. 22, 1877.

““I very much regret, that I did not make use
of our former proximity, to find out smore
about your investigations in regard to the first
grounds of geometry; I should certainly thereby
have spared myself much vain labor, and would
have become more restful than any one, such
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as I, can be, so long as on such a subject there
yet remains so much to be wished for.

In my own work thereon I myself have ad-
vanced far (though my other wholly hetero-
geneous employments leave me little time
therefor) but #4e way, which I have hit upon,
leads not so much to the goal, which one
wishes, as much more to making doubtful the
truth of geometry.

Indeed I have come upon much, which with
most no doubt would pass for a proof, but
which in my eyes proves as good as wnothing.

For example, if one could prove, that a rec-
tilineal triangle is possible, whose content may
be greater, than any given surface, then I am
in condition, to prove with perfect rigor all
geometry.

Most would indeed let that pass as an axiom,
I not; it might well be possible, that, how far
apart soever one took the three vertices of the
triangle in space, yet the content was always
under a given limit.

I have more such theorems, but in none do I
find anything satisfying.”

From this letter we clearly see that in 1799
Gauss was still trying to prove that Fuclid's
is the only non-contradictory system of geome-
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try, and that it is the system regnant in the
external space of our physical experience.

The first is false; the second can never be
proven.

Before another quarter of a century, Bolyai
Jéanos, then unborn, had created another pos-
sible universe; and, strangely enough, though
nothing renders it impossible that the space of
our physical experience may, this very year,
be satisfactorily shown to belong to Bolyai
Janos, yet the same is not true for Fuclid.

To decide our space is Bolyai’s, one need
only show a single rectilineal triangle whose
angle-sum measures less than a straight angle.
And this could be shown to exist by imperfect
measurements, such as human measurements
must always be. For example, if our instru-
ments for angular measurement could be
brought to measure an angle to within one
millionth of a second, then if the lack were as
great as two millionths of a second, we could
make certain its existence.

But to prove Fuclid’s system, we must show
thata triangle’s angle-sum is exactly a straight
angle, which nothing human can ever do.

However this is anticipating, for in 1799 it
seems thrat the mind of the elder Bolyai, Bolyai
Farkas, was in precisely the same state as
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that of his friend Gauss. Both were intensely
trying to prove what now we know is inde-
monstrable. And perhaps Bolyai got nearer
than Gauss to the unattainable. In his “‘ Kurzer
Grundriss eines Versuchs,’’ etc., p. 46, we read:
‘““ Koennten jede 3 Punkte, die nicht in einer
Geraden sind, in eine Sphaere fallen, so waere
das Fucl. Ax. XI. bewiesen.”” Frischauf calls
this ‘‘das anschaulichste Axiom.”” But in his
Autobiography written in Magyar, of which
my Life of Bolyai contains the first transla-
tion ever made, Bolyai Farkas says: ‘YetI
could not become satisfied with my different
treatments of the question of parallels, which
was ascribable to the long discontinuance of
my studies, or more probably it was due to
myself that I drove this problem to the point
which robbed my rest, deprived me of tran-
quillity.”

It is wellnigh certain that Fuclid tried his
own calm, immortal genius, and the genius of
his race for perfection, against this self-same
question. If so, the benign intellectual pride
of the founder of the mathematical school of
the greatest of universities, Alexandria, would
not let the question cloak itself in the obscuri-
ties of the infinitely great or the infinitely
small. He would say to himself: ‘‘Can I prove
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this plain, straightforward, simple theorem:
‘““those straights which are produced indefin-
itely from less than two right angles meet.”
[This is the form which occurs in the Greek
of Fu.I. 29.]

Let us not underestimate the subtle power
of that old Greek mind. We can produce no
Venus of Milo. Euclid’s own treatment of
proportion is found as flawless in the chapter
which Stolz devotes to it in 1885 as when
through Newton it first gave us our present
continuous number-system.

But what fortune had this genius in the fight
with its self-chosen simple theorem? Was it
found to be deducible from all the definitions,
and the nine ‘‘ Common Notions,” and the five
other Postulates of the immortal Flements?
Not so. But meantime Kuclid went ahead
without it through twenty-eight propositions,
more than half his first book. But at last
came the practical pinch, then as now the tri-
angle’s angle-sum. |

He gets it by his twenty-ninth theorem: ‘A
straight falling upon two parallel straights
makes the alternate angles equal.”’

But for the proof of this he needs that re-
calcitrant proposition which has how long
been keeping him awake nights and waking
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him up mornings? Now at last, true man of
science, he acknowledges it indemonstrable by
spreading it in all its ugly length among his
postulates.

Since Schiaparelli has restored the astron-
omical system of Fudoxus, and Hultsch has
‘published the writings of Autolycus, we see
that Fuclid knew surface-spherics, was famil-
iar with triangles whose angle-sum is more
than a straight angle. Did he ever think to
carry out for himself the beautiful system of
geometry which comes from the contradiction
of his indemonstrable postulate; which exists
if there be straights produced indefinitely from
less than two right angles yet nowhere meet-
ing; which is real if the triangle’s angle-sum
is less than a straight angle?

Of how naturally the three systems of geom-
etry flow from just exactly the attempt we
suppose Huclid to have made, the attempt to
demonstrate his postulate fifth, we have a most
romantic example in the work of the Italian
priest, Saccheri, who died the twenty-fifth of
October, 1733. He studied Fuclid in the edi-
tion of Clavius, where the fifth postulate is
given as Axiom 13. Saccheri says it should
not be called an axiom, but ought to be dem-
onstrated. He tries this seemingly simple
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task; but his work swells to a quarto book of
101 pages.

Had he not been overawed by a conviction
of the absolute necessity of Fuclid's system,
he might have anticipated Bolyai Janos, who
ninety years later not only discovered the new
world of mathematics but appreciated the
transcendent import of his discovery.

Hitherto what was known of the Bolyais
came wholly from the published works of the
father Bolyai Farkas, and from a brief article
by Architect F'r. Schmidt of Budapest ‘‘Aus
dem Leben zweier ungarischer Mathematiker,
Johann und Wolfgang Bolyai von Bolya.”
Grunert’s Archiv, Bd. 48, 1868, p. 217.

In two communications sent me in Septem-
ber and October 1895, Herr Schmidt has very
kindly and graciously put at my disposal the
results of his subsequent researches, which I
will here reproduce. But meantime I have
from entirely another source come most unex-
pectedly into possession of original documents
so extensive, so preciqus that I have determined
to issue them in a separate volume devoted
wholly to the life of the Bolyais; but these are
not used in the sketch here given.

Bolyai Farkas was born Febrnary 9th, 1775,
at Bolya, in that part of Transylvania (Er-
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dély) called Székelyfsld. He studied first at
Enyed, afterward at Klausenburg (Kolozsvir),
then went with Baron Simon Kemény to Jena
and afterward to Goettingen. Here he met
Gauss, then in his 19th year, and the two
formed a friendship which lasted for life.

The letters of Gauss to his friend were sent
by Bolyai in 1855 to Professor Sartorius von.
Walterhausen, then working on his biography
of Gauss. KEveryone who met Bolyai felt that
he was a profound thinker and a beautiful
character.

Benzenberg said in a letter written in 1801
that Bolyai was one of the most extraordinary
men he had ever known.

He returned home in 1802, and in January,
1804, was made professor of mathematics in
the Reformed College of Maros-Viasarhely.
Here for 47 years of active teaching he had
for scholars nearly all the professors and no-
bility of the next generation in Erdély.

Sylvester has said that mathematics is poesy.

Bolyai's first published works were dramas.

His first published book on mathematics was
an arithmetic:

Az arithmetica eleje. 8vo. i—=xvi, 1-162 pp.
The copy in the library of the Reformed Col-
lege is enriched with notes by Bolyai Jénos.
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Next followed his chief work, to which he
constantly refers in his later writings. Itis
in Latin, two volumes, 8vo, with title as fol-
lows:

TENTAMEN | JUVENTUTEM STUDIOSAM |
IN ELEMENTA MATHESEOS PURAE, ELEMEN-
TARIS AC | SUBLIMIORIS, METHODO INTUI-
TIVA, EVIDENTIA— | QUE HUIC PROPRIA, IN-
TRODUCENDI. |

CUM APPENDICE TRIPLICL | Auctore Pro-
fessore Matheseos et Physices Chemiaeque |
Publ. Ordinario. | Tomus Primus. | Maros
Vasarhelyini. 1832. | Typis Collegii Re-
formatorum per JOSEPHUM, et | SIMEONEM
KALI de felss Vist. | At the back of the title:
Imprimatur. | M. Vésérhelyini Die | 12 Octo-
bris, 1829. | Paulus Horviath m. p. | Abbas,
Parochus et Censor | Librorum.

Tomus Secundus. | Maros Vasarhelyini.
1833. |

The first volume contains:

Preface of two pages: Lectori salutem.

A folio table: ZExplicatio signorum.

Index revum (1 —XXXI1I1). Errata
(XXXIIT—XXXVII).

Pro tyrowidbus prima vice legentibus no-
tanda sequentia (XXXVIII—LII).

Errores (LIII—LXVI).
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Scholion (LXVII—LXXIV).

Plurium errorum haud animadversorum
numerus minuitur (LXXV—LXXVI).

Recensio per awuctorem ipsum facla
(LXXVII—LXXVIII).

Ervorves recentius detecti (LXXV-—
XCVIII).

Now comes the body of the text (pages
1—502).

Then, with special paging, and a new title
page, comes the immortal Appendix, here
given in English.

Professors Staeckel and Engel make a mis-
take in their ‘‘Parallellinien” in supposing
that this Appendix is referred to in the title
of “Tentamen.” On page 241 they quote this
title, including the words ¢ Cum appendice
triplici,” and say: ‘‘In dem dritten Anhange,
der nur 28 Seiten umfasst, hat Johann Bolyai
seine neue Geometrie entwickelt.”

It is not a third Appendix, nor is it refer-
red to at all in the words ‘‘Cum appendice
triplici.”

These words, as explained in a prospectus
in the Magyar language, issued by Bolyai
Farkas, asking for subscribers, referred to a
real triple Appendix, which appears, as it
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should, at the end of the book Tomus Secun-
dus, pp. 265-322.

The now world renowned Appendix by
Bolyai Janos was an afterthought of the
father, who prompted the son not ‘‘to occupy
himself with the theory of parallels,” as
Staeckel says, but to translate from the Ger-
man into Latin a condensation of his treatise,
of which the principles were discovered and
properly appreciated in 1823, and which was
given in writing to Johann Walter von FEck-
wehr in 1825.

The father, without waiting for Vol. II,
inserted this Latin translation, with separate
paging (1-26), as an Appendix to his Vol. I,
where, counting a page for the title and a
page ‘ Explicatio signorum,” it has twenty-
six numbered pages, followed by two unnum-
bered pages of Frrata.

The treatise itself, therefore, contains only
twenty-four pages—the most extraordinary
two dozen pages in the whole history of
thought!

Milton received but a paltry £5 for his
Paradise Lost; but it was at least plus £5.

Bolyai Jdnos, as we learn from Vol. II, p.
384, of ‘“TZentamen,” contributed for the
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printing of his eternal twenty-six pages, 104
florins 50 kreuzers.

That this Appendix was finished consider-
ably before the Vol. I, which it follows, is
seen from the references in the text, breath-
ing a just admiration for the Appendix and
the genius of its author.

Thus the father says, p. 452: Elegans est
 conceptus similium, quem J. B. Appendicis
Auctor dedit. Again, p. 489: Appendicis
Awuctor, rem acumine singulari aggressus, Ge-
ometriam pro omni casu absolute veram posuit;
quamvis e magna mole, tantum summe neces-
saria, in Appendice hujus tomi exhibuerit,
multis (ut tetraedri resolutione generali, plu-
ribusque aliis disquisitionibus elegantibus)
brevitatis studio omissis.

And the volume ends as follows, p. 502: Nec
operae pretium est plura referre; quum res
tota exaltiori contemplationis puncto, in ima
penetranti oculo, tractetur in Appendice se-
quente, a quovis fideli veritatis purae alumno
diagna legi.

The father gives a brief resumé of the re-
sults of his own determined, life-long; desper-
ate efforts to do that at which Saccheri, J. H.
Lambert, Gauss also had failed, to establish
Fuclid’s theory of parallels @ priori.
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He says, p. 490: ‘‘Tentamina idcirco quae
olim feceram, breviter exponenda veniunt; ne
saltem alius quis operam eandem perdat.” He
anticipates J. Delboeuf’s ‘‘ Prolégoménes phil-
osophiques de la géométrie et solution des
postulats,”” with the full consciousness in
addition that it is #o# the solution,—that the
final solution has crowned not his own intense
efforts, but the genius of his son.

This son’s Appendix which makes all pre-
ceding space only a special case, only a species
under a genus, and so requiring a descriptive
adjective, Euclidean, this wonderful produc-
tion of pure genius, this strange Hungarian
flower, was saved for the world after more
than thirty-five years of oblivion, by the rare
erudition of Professor Richard Baltzer of
Dresden, afterward professor in the Univer-
sity of Giessen. He it was who first did jus-
tice publicly to the works of Lobachevski
and Bolyai.

Incited by Baltzer, in 1866 J. Hoiiel issued
a French translation of Lobachevski’s Theory
of Parallels, and in a note to his Preface says:
““M. Richard Baltzer, dans la seconde édition
de ses excellents £lements de Geomelrie, a, le
premier, introduit ces notioms exactes a la
place qu’elles doivent occuper.”” Honor to
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Baltzer! But alas! father and son were al-
ready in their graves!

F'r. Schmidt in the article cited (1868) says:
‘“It was nearly forty years before these pro-
found views were rescued from oblivion, and
Dr. R. Baltzer, of Dresden, has acquired im-
perishable titles to the gratitude of all friends
of science as the first to draw attention to the
works of Bolyai, in the second edition of his
excellent Klemente der Mathematik (1866—67).
Following the steps of Baltzer, Professor
Hoiel, of Bordeaux, in a brochure entitled,
Essai critique sur les principes fondamentaux
de la Géométrie élémentaire, has given ex-
tracts from Bolyai’s book, which will help in
securing for these new ideas the justice they
merit.”

The father refers to the son’s Appendix
again in a subsequent book, Urtan elemei kez-
doknek | Elements of the science of space for
beginners| (1850-51 , pp. 48. In the College
are preserved three sets of figures for this
book, two by the author and one by his grand-
son, a son of Janos.

The last work of Bolyai Farkas, the only
one composed in German, is entitled,

Kurzer Grundriss eines Versuchs

I. Die Arithmetik, durch zvekmissig kons-
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truirte Begriffe, von eingebildeten und unend-
lich-kleinen Grossen gereinigt, anschaulich
und logisch-streng darzustellen.

II. In der Geometrie, die Begriffe der ger-
aden Linie, der Ebene, des Winkels allgemein,
der winkellosen Formen, und der Krummen,
der verschiedenen Arten der Gleichheit u. d.
gl. nicht nur scharf zu bestimmen; sondern
auch ihr Seyn im Raume zu beweisen: und da
die Frage, 0b zwey von der dritten geschnit-
tene Geraden, wenn die summe der inneren
Winkel wnicht — 2R, sich schneiden oder
nicht? neimand auf der Erde ohne ein Axiom
(wie Fuklid das XTI) aufzustellen, beantworten
wird; die davon unabhingige Geometrie ab-
zusondern; und eine auf die J/e—Antwort,
andere auf das ANeiw so zu bauen, das die
Formeln der letzten, auf ein Wink auch in der
ersten giiltig seyen.

Nach ein lateinischen Werke von 1829, M.
Vésarhely, und eben daselbst gedruckten un-
grischen.

Maros Viasédrhely 1851. 8vo. pp. 88.

In this book he says, referring to his son’s
Appendix: ‘‘Some copies of the work pub-
lished here were sent at that time to Vienna,
to Berlin, to Goettingen. . . . From Goet-
tingen the giant of mathematics, who from
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his pinnacle embraces in the same view the
stars and the abysses, wrote that he was sur-
prised to see accomplished what he had be-
gun, only to leave it behind in his papers.”’
This refers to 1832. 'The only other record
that Gauss ever mentioned the book is a letter
from Gerling, written October 31st, 1851, to
Wolfgang Boylai, on receipt of a copy of
“Kurzer Grundriss.” Gerling, a scholar of
Gauss, had been from 1817 Professor of As-
tronomy at Marburg. He writes: ‘I do not
mention my earlier occupation with the theory
of parallels, for already in the year 1810-1812
with Gauss, as earlier 1809 with J. F'. Pfaff 1
had learned to perceive how all previous at-
tempts to prove the Euclidean axiom had mis-
carried. I had then also obtained preliminary
knowledge of your works, and so, when I first
[1820] had to print something of my view
thereon, I wrote it exactly as it yet stands
to read on page 187 of the latest edition.
“We had about this time [1819] here a law
professor, Schweikart, who was formerly in
Charkov, and had attained to similar ideas,
since without help of the Euclidean axiom he
developed in its beginnings a geometry which
he called Astralgeometry. What he commun-
icated to me thereon I sent to Gauss, who
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then informed me how much farther already
had been attained on this way, and later also
expressed himself about the great acquisition,
which is offered to the few expert judges in
the Appendix to your book.”

The ‘‘latest edition’’ mentioned appeared
in 1851, and the passage referred tois: ‘‘This
proof [of the parallel-axiom] has been sought
in manifold ways by acute mathematicians,
but yet until now not found with complete
sufficiency. So long as it fails, the theorem,
as all founded on it, remains a hypothesis,
whose validity for our life indeed is suffici-
ently proven by experience, whose gemeral,
necessary exactness, however, could be
doubted without absurdity.”

Alas! that this feeble utterance should have
seemed sufficient for more than thirty years
to the associate of Gauss and Schweikart, the
latter certainly one of the independent discov-
erers of the non-Kuclidean geometry. But
then, since neither of these sufficiently real-
ized the transcendent importance of the mat-
ter to publish any of their thoughts on the
subject, a more adequate conception of the
issues at stake could scarcely be expected of
the scholar and colleague. How different with
Bolyai Janos and Lobachévski, who claimed
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at once, unflinchingly, that their discovery
marked an epoch in human thought so momen-
tous as to be unsurpassed by anything re-
corded in the history of philosophy or of
science, demonstrating as had never been
proven before the supremacy of pure reason
at the very moment of overthrowing what
had forever seemed its surest possession, the
axioms of geometry.

On the 9th of March, 1832, Bolyai Farkas
was made corresponding member in the math-
ematics section of the Magyar Academy.

As professor he exercised a powerful in-
fluence in his country.

In his private life he was a type of true
originality. He wore roomy black Hungarian
pants, a white flannel jacket, high boots, and
a broad hat like an old-time planter’s. The
smoke-stained wall of his antique domicile
was adorned by pictures of his friend Gauss,
of Schiller, and of Shakespeare, whom he
loved to call the child of nature. His violin
was his constant solace.

He died November 20th, 1856. It was his
wish that his grave should bear no mark.

The mother of Bolyai Jdnos, née Arkosi
Benks Zsuzsanna, was beautiful, fascinating,
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of extraordinary mental capacity, but always
nervous.

Jénos, a lively, spirited boy, was taught
mathematics by his father. His progress was
marvelous. He required no explanation of
theorems propounded, and made his own dem-
onstrations for them, always wishing his
father to go on. ‘‘Like a demon, he always
pushed me on to tell him more.”

At 12, having passed the six classes of the
Latin school, he entered the philosophic-cur-
riculum, which he passed in two years with
great distinction.

When about 13, his father, prevented from
meeting his classes, sent his son in his stead.
The students said they liked the lectures of
the son better than those of the father. He
already played exceedingly well on the violin.

In his fifteenth year he went to Vienna to
K. K. Ingenieur-Akademie.

In August, 1823, he was appointed ‘‘sous-
lieutenant’’ and sent to Temesvar, where he
was to present himself on the 2nd of Sep-
tember.

From Temesvar, on November 3rd, 1823,
Janos wrote to his father a letter in Magyar,
of which a French translation was sent me by
Professor Koncz Jézsef on February 14th,
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1895. This will be given in full in my life of
Bolyai; but here an extract will suffice:

“My Dear and Good Father:

““I have so much to write about my new
inventions that it is impossible for the mo-
ment to enter into great details, so I write
you only on one-fourth of a sheet. I await
your answer to my letter of two sheets; and
perhaps I would not have written you before
receiving it, if 1 had not wished to address to
you the letter I am writing to the Baroness,
which letter I pray you to send her.

‘““First of all I reply to you in regard to the
binominal.

* * * * * * * * *

““Now to something else, so far as space
permits. I intend to write, as soon as I have
put it into order, and when possible to pub-
lish, a work on parallels.

‘At this moment it is not yet finished,
but the way which I have followed promises
me with certainty the attainment of the goal,
if it in general is attainable. It is not yet
attained, but I have discovered such magnifi-
cent things that I am myself astonished at
them.

‘It would be damage eternal if they were
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lost. When you see them, my father, you
yourself will acknowledge it. Now I can not
say more, only so much: 2Aat from nothing 7
have created another wholly new world. All
that I have hitherto sent you compares to this
only as a house of cards to a castle.

“P. S.—I dare to judge absolutely and with
conviction of these works of my spirit before
you, my father; I do not fear from you any
false interpretation (that certainly I would
not merit), which signifies that, in certain
regards, I consider you as a second self.”

From the Bolyai MSS,, now the property of
~the College at Maros-Viésarhely, Fr. Schmidt
has extracted the following statement by
Jénos:

“First in the year 1823 have I pierced
through the problem in its essence, though
also afterwards completions yet were added.

“I communicated in the year 1825 to my
former teacher, Herr Johann Walter von Fick-
wehr (later k. k. General) [in the Austrian
Army], a written treatise, which is still in
his hands.

““On the prompting of my father I trans-
lated my treatise into the Latin language, and
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it appeared as Appendix to the Tentamen,
1832.”

The profound mathematical ability of Bol-
yai Janos showed itself physically not only in
his handling of the violin, where he was a
master, but also of arms, where he was unap-
proachable.

It was this skill, combined with his haughty
temper, which caused his being retired as Cap-
tain on June 16th, 1833, though it saved him
from the fate of a kindred spirit, the lamented
Galois, killed in a duel when only 19. Bolyai,
when in garrison with cavalry officers, was
provoked by thirteen of them and accepted all
their challenges on condition that he be per-
mitted after each duel to play a bit on his
violin. He came out victor from his thirteen
duels, leaving his thirteen adversaries on the
square.

He projected a universal language for
speech as we have it for music and for mathe-
matics.

He left parts of a book entitled: Principia
doctrinae novae quantitatum imaginariarum
perfectae uniceque satisfacientis, aliaeque dis-
quisitiones analyticae et analytico- geome-
tricae cardinales gravissimaeque; auctore
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Johan. Bolyai de eadem, C. R. austriaco cas-
trensium captaneo pensionato.

Vindobonae vel Maros Vasarhelyini, 1853.

Bolyai Farkas was a student at Goettingen
from 1796 to 1799.

In 1799 he returned to Kolozsvar, where
Bolyai Jénos was born December 18th, 1802.

He died January 27th, 1860, four years
after his father.

In 1894 a monumental stone was erected on
his long-neglected grave in Maros-Viasarhely
by the Hungarian Mathematico-Physical So-
ciety.



APPENDIX.

SCIENTIAM SPATII absolute veram exhibens:

a veritate aut falsitate Axiomatis X1 Ewuclidei
(@ priori haud wunquam decidenda) in-
dependentem. adjecta ad casum fal-
sitatis, quadratura circuli

geometrica.

Auctore JOHANNE BOLYAI de eadem, Geometrarum
in Exercitu Caesareo Regio Austriaco

Castrensium Capitaneo.



EXPLANATION OF SIGNS.

The straight AB means the aggregate of all points situated
in the same straight line with A and B.

The sect AB means that piece of the straight AB between
the points A and B.

The ray AB means that half of the straight AB which com-
mences at the point A and contains the point B.

The plane ABC means the aggregate of all points situated
in the same plane as the three points (not in a
straight) A, B, C.

The hemi-plane ABC means that half of the plane ABC
which starts from the straight AB and contains the
point C.

ABC means the smaller of the pieces into which the plane
ABC is parted by the rays BA, BC, or the non-reflex
angle of which the sides are the rays BA, BC.

ABCD (the point D being situated within / ABC, and the
straights BA, CD not intersecting) means the portion
of / ABC comprised between ray BA, sect BC, ray
CD; while BACD designates the portion of the plane
ABC comprised between the straights AB and CD.

_| is the sign of perpendicularity.

|| is the sign of parallelism.

/ means angle.

rt. £ is right angle.

st. / is straight angle.

= is the sign of congruence, indicating that two magni-
tudes are superposable.

AB-CD means / CAB= / ACD.

x-—a means 2 converges toward the limit a.

A is triangle.

©r means the [circumference of the] circle of radius 7.

area Or means the area of the surface of the circle of radius 7.



THE SCIENCE ABSOLUTE OF SPACE.

§1. If the ray AM is not cut by the ray m
M p N BN, situated in the same plane, but
is cut by every ray BP comprised
D in the angle ABN, we will call ray
BN parallel to ray AM; this is
designated by BN Il AM.

It is evident that Zkere is one
such ray BN, and only one, pass-
ing through any point B (taken out-
B side of the straight AM), and that

Fie.1.  the sum of the angles BAM, ABN
can not exceed a st.Z; for in moving BC
“around B until BAM+ABC=st. Z, somewhere
ray BC first does not cut ray AM, and it is
then BCIIAM. It is clear that BN I EM,
wherever the point E be taken on the straight
AM (supposing in all such cases AM>AE).

If while the point C goes away to infinity
on ray AM, always CD=CB, we will have con-
stantly CDB=(CBD<NBC); but NBC==0; and
so also ADB=0.
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§2. If BNl AM, we will have also CN Il AM.
M y For take D anywhere in MACN.
RS If Cis on ray BN, ray BD cuts
ray AM, since BN I AM, and so
also ray CD cuts ray AM. But
¢ if C is on ray BP, take BQ ! CD;
BQ falls within the £ ABN ($1),
Band cuts ray AM; and so also
o T3y CD cutsray AM. Therefore
every ray CD (in ACN) cuts, in
Fie. 2. Leach case, the ray AM, without
CN itself cutting ray AM. Therefore always
CN I AM.

§3. (Fig.2.) If BRand CS and each Il AM,
and C is not on the ray BR, then ray BR and
ray CS do not intersect. For if ray BR and
ray CS had a common point D, then (§ 2) DR
and DS would be each | AM, and ray DS (§1)
would fall on ray DR, and C on the ray BR
(contrary to the hypothesis).

§ 4 If MAN>MAB, we will have for every
point B of ray AB, a point

/

D p C of ray AM, such that
BCM=NAM.

c B For (by §1) is granted

A y BDM>NAM, and so that

/ F16. 3. ] MDP=MAN, and B falls in
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NADP. If therefore NAM is carried along
AM until ray AN arrives on ray DP, ray
AN will somewhere have necessarily passed
through B, and some BCM=NAM.

§ 6. If BNl AM, there is on the straight

x AM a point F' such that FM=BN.

For by §1 is granted BCM>CBN;
and if CE=CB, and so EC=BC;
evidently BEM<KEBN. The point
P is moved on KC, the angle BPM
p always being called #, and the an-
gle PBN always v, evidently # is
at first less than the corresponding

v, but afterwards greater. Indeed
A G # increases continuwously from

Fic.4. BEM to BCM; since (by §4) there
exists #o angle >BEM and <BCM, to which
% does not at some time become equal. Like-
wise v decreases continuously from EBN to
CBN. 'There is therefore on EC a point F
such that BEM=FBN.

§6. If BNIIAM and E anywhere in the
straight AM, and G in the straight BN; then
GN I EMand EMIIGN. For (by §1) BN I EM,
whence (by §2) GNIIEM. If moreover FM=
BN (§5); then MFBN=NBFM, and conse-
quently (since BN I FM) also FM I BN, and
(by what precedes) EM Il GN.
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§ 7. If BN and CP are each IIAM, and C
N M P notonthe straight BN; also BN I CP.
For the rays BN and CP do not in-
tersect (§3); but AM, BN and CP
either are or are not in the same
plane; and in the first case, AM either
| lisoris not within BNCP.
® Fre. 5. If AM, BN, CP are complanar, and
AM falls within BNCP; then every ray BQ
(in NBC) cuts the ray AM in some point D
(since BN Il AM); moreover, since DM I CP
(§ 6), the ray DQ will cut the ray CP, and so
BN I CP.
But if BN and CP are on the same side of
N M AM; then one of them, for example
CP, falls between the two other
9 straights BN, AM: but every ray BQ
(in NBA) cuts the ray AM, and so
also the straight CP. 'Therefore
g ¢ A BNICP.

Fie. 6. If the planes MAB, MAC make
an angle; then CBN and ABN have in com-
mon nothing but the ray BN, while the ray
AM (in ABN) and the ray BN, and so also
NBC and the ray AM have nothing in com-
mon. ‘

But hemi-plane BCD, drawn through any
ray BD (in NBA), cuts the ray AM, since ray
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Ryup BQ cuts ray AM (as BNIAM.
Therefore in revolving the hemi-plane ®
BCD around BC until it begins to
leave the ray AM, the hemi-plane
BCD at last will fall upon the hemi-
plane BCN. For the same reason this
¢ same will fall upon hemi-plane BCP.

Fi6. 7. herefore BN falls in BCP. More-
over, if BRI CP; then (because also AM Il CP)
by like reasoning, BR falls in BAM, and also
(since BRIICP) in BCP. 'Therefore the
straight BR, being common to the two planes
MAB, PCB, of course is the straight BN, and
hence BN 1| CP.*

If therefore CP Il AM, and B exterior to the
plane CAM; then the intersection BN of the
planes BAM, BCP is Il as well to AM as to CP.
§8. If BN lland = CP (or more briefly BN

NoMop Il =CP), and AM (in NBCP) bisects

[
I
1
!
|
|
1
'
i
1
i
B

o 1 the sect BC; then BN Il AM.
For if ray BN cut ray AM, also
ray CP would cut ray AM at the
same point (because MABN=

a——e MACP), and this would be common
Fic.8.  to the rays BN, CP themselves, al-

* The third case being put before the other two, these can be
demonstrated together with more brevity and elegance, like case
2 of §10. [Author’s note.]



[6

=

10 SCIENCE ABSOLUTE OF SPACE.

though BN | CP. But every ray BQ (in CBN)
cuts ray CP; and so ray BQ cuts also ray AM.
Consequently BN il AN.

§9. If BNl AM, and MAP ] MAB, and the
Z, which NBD makes with
NBA (on that side of MABN,

=
o

- =\ where MAP is) is <rt.Z; then
= \Nc¢ MAP and NBD intersect.

\g For let ZBAM=rt.Z, and
AC] BN (whether or not C
N falls on B), and CE ! BN (in
Fie. 9. NBD); by hypothesis ZACE
<rt.Z, and AF (1 CE) will fall in ACE.

Let ray AP be the intersection of the hemi-
planes ABF, AMP (which have the point A
common); since BAM | MAP, ZBAP=4/BAM
=rt.Z£.

If finally the hemi-plane ABF is placed upon
the hemi-plane ABM (A and B remaining), ray
AP will fall on ray AM; and since AC | BN,
and sect AF' <sect AC, evidently sect AF will
terminate within ray BN, and so BF falls in
ABN. But in #/44s position, ray BF cuts ray AP
(because BN Il AM); and so ray AP and ray BF
intersect also in ZAe original position; and the
point of section is common to the hemi-planes
MAP and NBD. Therefore the hemi-planes
MAP and NBD intersect. Hence follows eas-
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ily that the hemi-planes MAP and NBD inter-
sect if the sum of the interior angles which
they make with MABN is <st.Z.

§10. If both BN and CPIl =AM; also is

7 BN Il =CP.

For either MAB
and MAC make an
angle, or they are in
a plane.

If the first; let the
hemi-plane QDEF' bi-
e sect | sect AB; then

Fi6. 10. DQ 1 AB, and so DQ
Il AM (§8); likewise if hemi-plane RS bisects
1 sect AC, is ER Il AM; whence (§7) DQ IER.

Hence follows easily (by §9), the hemi-
planes QDF and ERS intersect, and have (§7)
their intersection F'S I DQ, and (on account of
BN IDQ) also F'SIBN. Moreover (for any
point of F'S) FB=FA=FC, and the straight
F'Sfalls in the plane T'GF, bisecting | sect BC.
But (by §7) (since FSIBN) also GT IIBN.
In the same way is proved GT IICP. Mean-
while GT bisects | sect BC; and so TGBN=
TGCP (§1), and BN il =CP.

If BN, AM and CP are in a plane, let (fall-
ing without this plane) F'S Il = AM; then (from
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what precedes) F'S Il = both to BN and to CP,
and so also BN Il =CP.

§ 11. Consider the aggregate of the point
A, and a// points of which any one B is such,
that if BN Il AM, also BN=AM; call it F'; but
the intersection of F' with any plane contain-
ing the sect AM call L.

F has a point, and one only, on any straight
lAM; and evidently L is divided by ray AM
into two congruent parts.

Call the ray AM #4e axis of L. FEvidently
also, in any plane containing the sect AM, there
is for the axss ray AM a single L. Call any
L of this sort the L, of this ray AM (in the
plane considered, being understood). KEvi-
dently by revolving I, around AM we describe
the F' of which ray AM is called the axis, and in
turn F' may be ascribed to the axis ray AM.

§12. If B is anywhere on the LL of ray AM,
and BNl =AM (§11); then the L of ray AM
and the L of ray BN coincide. For suppose,
in distinction, L’ the L of ray BN. Let C be
anywhere in L', and CP Il =BN (§11). Since
BNII=AM, so CPIl =AM (§10), and so C also
will fall on L. And if Cisanywhere onL, and
CP Il =AM; then CP Il =BN (§10); and C also
falls on L" (§11). Thus L and L’ are the
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- same; and every ray BN is also axis of L, and
between all axes of this I, is =.

The same is evident in the same way of F.

§13. If BNIIAM, and CPIIDQ, andZBAM
+ZABN=st.Z; then also ZDCP+«£CDQ=
st. £.

Mosy L SO p o For let FEA=
EB, and EFM=
DCP (§4). Since
£ZBAM+ZABN
=st. L=ZABN+
F><,B ZABG, we have
ER\N\ | ZEBG=ZEAF;
TR © T and so if also BG
Fie. 11. =AF, thenaAEBG
=AFAF, £LZBEG=ZAEF and G will fall on
the ray FE. Moreover ZGFM+Z£FGN=st.Z
(since LEGB=ZEF'A).

Also GNIIFM (§6).

Therefore if MERS=~PCDQ, then RS1IGN
(§7), and R falls within or without the sect
F'G (unless sect CD=sect F'G, where the thing
now is evident).

L. In the first case ZFRS is not >(st. £L—Z
RFM=_//FGN), since RSIFM. But as RSI
GN, also £ZFRS is not < £ZFGN; and so £FRS
=£ZFGN, and ZRFM+ZFRS=4GFM+«
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FGN=st.£. 'Therefore also ZDCP+Z£CDQ
=st. Z.

II. If R falls without the sect F'G; then
ZNGR=ZMFR, and let MFGN=NGHIL >
LHEKO, and so on, until FK=FR or begins to
be >FR. Then KO IHLIIFM (§7).

If K falls on R, then KO falls on RS (§1);
and so ZRFM+ZFRS=4ZKFM+£ZFKO=«
KFM+ZFGN=st.Z; but if R falls within the
sect HK, then (by I) ZRHL+ZKRS=st.£Z=
ZRFM+Z£FRS=«2DCP+~£CDQ.

§14. If BNIIAM, and CP1IIDQ, and Z£BAM
+ZABN<st.Z; then also £ZDCP+ZCDQ<
st. Z.

For if ZDCP+ZCDQ were not <st.Z, and
so (by §1) were =st.£, then (by §13) also £
BAM+ZABN=st. £ (contra hyp.).

§15. Weighing §§13 and 14, the System of
Geometry resting on the hypothesis of the
truth of Fuclid’s Axiom X1 is called 3; and
the system founded on the contrary hypoth-
ests s S.

All things which are not expressly said to
be in ¥ or in S, it is understood are enunci-
ated absolutely, that is arve asserted true
whether * or S is reality.
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§16. If AM is the axis of any L; then L,
in 2 is a straight | AM.

n m ¢  For suppose BN an axis from any
point B of Li; in 3, ZBAM+ZABN
=st.£, and so ZBAM=rt.~Z.

And if C is any point of the
straight AB, and CPIlAM; then
5 a c¢(by §13) CP=AM, and so C on L

Fic. 12, (§ 11)'

But in S, no three points A, B, C on L or
on F are in a straight. For some one of the
axes AM, BN, CP (e. g. AM) falls between
the two others; and then (by §14) £BAM and
ZCAM are each <rt.Z.

§17. L in S also is a line, and F a sur-
Jace. For (by §11) any plane ; to the axis
ray AM (through any point of F') cuts F in
[the circumference of] a circle, of which the
plane (by §14) is | to no other axis ray BN.
If we revolve F' about BN, any point of F (by
§12) will remain on F, and the section of F
with a plane not | ray BN will describe a sur-
face; and whatever be the points A, B taken
on it, F' can so be congruent to itse!f that A
falls upon B (by § 12); therefore F' is @ wuni-
Jorm surface.



16 SCIENCE ABSOLUTE OF SPACE.

Hence evidently (by §§11 and 12) L is a uni-
form line.*

§18. 7he intersection with ¥ of any plane,
drawn through a point A of F obliquely to the
axis AM, is, in S, @ circle.

For take A, B, C, three points of this sec-
tion, and BN, CP, axes; AMBN and AMCP
make an angle, for otherwise the plane deter-
mined by A, B, C (from §16) would contain
AM, (contra hyp.). 'Therefore the planes bi-
secting | the sects AB, AC intersect (§10) in
some axis ray FS (of F'), and FB=FA=FC.

Make AH | F'S, and re-
volve FAH about F'S; A
will describe a circle of
radius HA, passing
through B and C, and sit-
I uated both in F and inm

the plane ABC; nor have

Fic. 13. F and the plane ABC any-
thing in common but © HA (§16).

It is also evident that in revolving the por-
tion FA of the line L, (as radius) in F* around
F, its extremity will describe © HA.

P

* It is not necessary to restrict the demonstration to the system
S; since it may easily be so set forth, that it holds absolutely for
S and for J.
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§19. The perpendicular BT to the axis

BN of L (falling in the plane of L) is, in S,

N tangent to L. For L has in ray

BT no point except B (§14),

but if BQ falls in TBN, then

the center of the section of the

@ plane through BQ perpendicular

. to TBN with the F of ray BN

Fic. 14. (§ 18) is ev1dent1y located on ray

BQ; and if sect BQ is a diameter, evidently
ray BQ cuts in Q the line I, of ray BN.

§ 20. Any two points of F determine a line
L (§§ 11 and 18); and since (from §§ 16 and 19)
L is | to all its axes, every Z of lines Ly in F'is
equal to the £ of the planes drawn through its
sides perpendicular to F.

§21. Two L form lines, ray AP and ray
N BD, in the same F', making with
i athird L form AB, a sum of inte-
! rior angles <st.Z, intersect.

(By line AP in F, is to be
Bunderstood the line L drawn

F1¢. 15 through A and P, but by ray AP
that half of this line beginning at A, in which
P falls.)

For if AM, BN are axes of ¥, then the hemi-
planes AMP, BND intersect (§9); and F cuts

w

P‘M D
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their intersection (by §§7 and 11); and so also
ray AP and ray BD intersect.

From this it is evident that Fuclid’s Axiom
X[/ and all things which are claimed in geome-
try and plane trigonometry hold good abso-
lutely in F, L, lines being substituted in place
of straights: therefore the trigonometric
functions are taken here in the same sense as
in 2; and the circle of which the I, form ra-
dius =7 in F, 1s =277, and likewise area of
Or (in F') = =#® (by = understanding % O1in F,
or the known 3.1415926...)

§22. If ray AB were the L of ray AM, and
C on ray AM; and the £CAB (formed by the

M~ p straight ray AM and the I, form
H L line ray AB), carried first along o
G the ray AB, then along the ray

K

BA, always forward to infinity:
£ the path CD of C will be the
ya 1 Eline L of CM.

Fia. 16. For let D be any point in line
CD (called later L'), let DN be | CM, and B
the point of L falling on the straight DN. We
shall have BN=AM, and sect AC=sect BD, and
so DN=CM, consequently DinL’. Butif Din
L’ and DN IICM, and B the point of I, on the
straight DN; we shall have AM=BN and CM
=DN, whence manifestly sect BD=sect AC,
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and D will fall on the path of the point C, and
L’ and the line CD are the same. SuchanL’1s
designated by L’ L.

§23. If the L, form line CDF' || ABE (§22),
~and AB=BE, and the rays AM, BN, EP are
axes; manifestly CD=DF; and if any three
points A, B, E are of line AB, and AB=n.CD,
we shall also have AE=n.CF; and so (mani-
festly even for AB, AE, DC incommensurable),
AB:CD=AEK:CF, and AB:CD is independent
of AB, and completely determined by AC.

This ratio AB:CD is designated by the cap-
ital letter (as X) corresponding to the small let-
ter (as x) by which we represent the sect AC.

y

§24. Whatever be x and », (§23), Y=X*.

For, one of the quantities x, ¥ is a multiple
of the the other (e. g. y of x), or it is not.

If y=n.z, take x=AC=CG=GH=&ec., until
we get AH=y.

Moreover, take CD | GK ) HL.

We have ((§ 23) X=AB:CD=CD:GK=GK:
HL; and so AB_ I(é]i]l"

y HL [(CD]J
or Y=X"=X*,

If x, y are multiples of 74, suppose x=mi,
and y=#ni; (by the preceding) X=I" Y=I,
consequently n 3
Y=X2=X*
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The same is easily extended to the case of
the incommensurability of x and y.

But if q=y—x, manifestly Q=Y:X.

It is also manifest that in =, for any z, we
have X=1, but in Sis X>1, and for any ABuy

~ and ABE there is such a CDF'|| AB, that CDF

=AB, whence AMBN=AMEP, though the
first be any multiple of the second; which in-
deed 1s singular, but evidently does not prove
the absurdity of S.

§$26. [n any rectilineal triangle, the cir-
cles with radii equal to its sides are as the
sines of the opposite angles.

o For take ZABC=rt.Z,
M '\ and AM | BAC, and BN and

\

¢ CPIlAM; we shall have CAB

|
1 AMBN, and so (since CB |
4 BA), CB] AMBN, conse-
' quently CPBN ; AMBN.
£ . Suppose the F of ray CP
F16.17. cuts the straights BN, AM
respectively in D and K, and the bands CPBN,
CPAM, BNAM along the I, form lines CD,
CE, DE. Then (§20) ZCDE=the angle of
NDC, NDE, and so =rt.£; and by like reason-
ing ZCED=ZCAB. But (by §21) in the L line
A CDE {supposing always here the radius =1),
EC:DC=1:sin DEC=1:sin CAB.
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Also (by § 21)
EC:DC=0EC:0DC (in F)=0AC:0BC (§18);
and so is also
OAC:0BC=1:sin CAB;
whence the theorem is evident for any triangle.
§ 28. 7n any sphericol triangle, the sines
of the sides are as the sines of the angles

oppostte.
9 For take ZABC=rt.Z, and
e c CED ] to the radius OA of the
» sphere. We shall have CED |
AOB, and (since also BOC I
e BOA), CD ] OB. But in the
Fie. 18. triangles CEO, CDO (by §25)
OEC:00C:0DC=sin COE:1:sin COD=sin
AC:1:sin BC; meanwhile also (§25) OEC:
ODC=sin CDE :sin CED. Therefore, sin
AC :sin BC=sin CDE :sin CED; but CDE=
rt.£Z=CBA, and CED=CAB. Consequently

sin AC : sin BC=1:sin A.
Spherical trigonometry, flowing from this,
is thus established independently of Axiom
X/.

§27. If AC and BD are | AB, and CAB is
carried along the straight AB; we shall have,

designating by CD the path of the point C,
CD : AB=sin #:sin v.

A
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c ——»p For take DE | CA;
El —& ad in the triangles ADE,
e ADB (by § 25)
e 1T T S OED :0AD:CAB=
3 - B N sin 2 :1 :sin v.
Fic. 19. In revolving BACD

about AC, B describes ©AB, and D describes
OED; and designate here by sOCD the path
of the said CD. Moreover, let there be any uz
polygon BF'G. .. inscribed in ©AB.

Passing through all the sides BF, FG, &c.,
planes | to ©AB we form also a polygonal fig-
ure of the same number of sides in sOCD, and
we may demonstrate, as in § 23, that CD : AB
=DH : BFF=HK : F'G, &c., and so

DH+HK &c. : BF+FG &ec.: =CD : AB.

If each of the sides BF, F'G... approaches
the limit zero, manifestly

BF+FG+...==0AB and

DH+HK+...==0OED.
Therefore also OED: ©AB=CD:AB. But
we had OKED: ©AB=sin #:sin z. Conse-
quently

CD : AB=sin # : sin v.

If AC goes away from BD to infinity, CD:
AB, and so also sin # : sin ¥ remains constant,
but #==rt. £ (§1), and if DMI BN, wv=z,
whence CD : AB=1:sin 2.
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The path called CD will be denoted by CD
i AB.

§28. If BNIl=AM, and C in ray AM, and
AC=x: we shall have (§ 23)

X=sin # : sin 2.

For if CD and AE are . BN,
and BF | AM; we shall have (as
A in § 27)

OBF : ©ODC=sin # : sin 2.
But evidently B =AE: therefore

4 X! OFA : OCD=sin # : sin v.

F1G. 20. But in the F' form surfaces of
AM and CM (cutting AMBN in AB and CG)
(by §21)

OEA :©DC=AB : CG=X.
Therefore also
X=sin #:sin v.
§29. If ZBAM=rt.<£, and sect AB=y, and
BN Il AM, we shall
have in S
Y=cotan % .
For, if sect AB=
sect AC, and CPI
¢ % AM (and so BN =
Fre. 21. CP), and 4£PCD=
ZQCD; there is given (§19) DS | ray CD, so
that DSIICP, and so (§1) DT Il CQ. Moreover,
if BE | ray DS, then (§ 7) DS I BN, and so (§ 6)

PR CwH



24 SCIENCE ABSOLUTE OF SPACE.

BN | ES, and (since DT IICG) BQIET; con-
sequently (§1) LZEBN=ZEBQ. Let BCF be
an L-line of BN, and F'G, DH, CK, E1,, I form
lines of F'T, DT, CQ and E'T; evidently (§22)
HG=DF=DK=HC,; therefore,

CG=2CH=2v.

Likewise it is evident BG=2BL=22.

But BC=BG—-CG; wherefore y=z—v, and
so (§24) Y=Z:V.

Finally (§ 28)

Z=1:sin Y u,
and V=1 :sin (rt.£—1% #),
consequently Y =cotan % .

§30. However, it is easy to see (by §25) us
that the solution of the problem of Plane
Trigonometry, in S, requires
the expression of the circle
in terms of the radius; but
. this can by obtained by the
, rectification of L.

Let AB, CM, C'M’ be L
ray AC, and B anywhere in
ray AB; we shall have (§ 25)

sin % : sin v=0p : Oy,
Fic. 22. and sin % :sin ' =Ep : @y';
sinw o, _sin oo
sin v sin

M MY N

and so
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But (by §27) sin v :sin v =cos # :cos #';
sin u.o/v:sin ul,-@)”;

cos % cos %

or @y:Qy =tan #':tan #=tan w:tanw’.

Moreover, take CN and C'N’ Il AB, and CD,
C'D’ L-form lines | straight AB; we shall
have also (§21)

Oy :Qy =r:7, and so
7.7 =tan w:tan w'.

Now let p beginning from A increase to in-
finity; then w==z, and w'==2z', whence also
7.7 =tan z :tan 2.

Designate by ¢ the constant

# : tan z (independent of »);

consequently

whilst  y==0,

r_t tan Zil, and so

y Y

Y i From §29, tan z2=% (Y—Y);
tan z
therefore Y——_z){{——:léi,
v
or (§24) It
. 2_3’__ 1 =

But we know the limit of this expression
(where y-0) is

7
m—l. Therefore



26 SCIENCE ABSOLUTE OF SPACE.

3
nat. log I
I=e=2.7182818. . .,
which noted quantity shines forth here also.
If obviously henceforth ¢ denote that sect of
which the I=¢, we shall have
r=¢ tan z.
But (§ 21) ©y=2x7, therefore

Oy=2ni tan z=xi (Y=Y ') =xs [ g __;;]
(Y=Y (by §24).

= i', and

" nat. log Y
§ 31. For the trigonometric solution of all
right-angled rectilineal #74angles (whence the
resolution of all #riangles is easy., in S, three g
equations suffice: indeed (@, & denoting the
sides, ¢ the hypothenuse, and «, g the angles
opposite the sides) an equation expressing the
relation
1st, between @, ¢, a;

2

2d, between @, «, 8; o »
3d, between a, b, c;
of course from these equations pk M
emerge three others by elim- £7» t N
ination. Fi6. 23.

From §§ 25 and 30
1:sin a=(C—C™): (A—A)=

= [ o eTJ : [e%—g'ﬂ (equation for ¢, @ and a).
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II. From § 27 follows (if sM Il 7N)
cos «:sin g=1:sin %, but from § 29
1:sin #=%(A+A™);
therefore coseasin =% (A+A")=1 ( e{i—!- e_'?]
(equation for 4, 5 and a).
III. If aa' | ey, and p3 and yy'i| aar (§ 27),
and g'a’y’ | aa'; manifestly fas in §27)

1y A+AY;

m smu
. 4(B+B ;

and g}:% (C-I-C—‘); consequently
%(C+C—‘)—/(A+A“) / B+B™), or

[ei-l—el} / Lel-{—elj {el—i-el]
(equation for @, & and c¢).
If yuo=rt. £, and 54} «s;
Oc:0a=1:sin «, and
Oc: O(d=prt=1:cos q,
and so (denoting by ©#? for any x, the product
Ox.0x) manifestly
OF+0d*=0c".
But (by § 27 and II)
Od=056.% (A+A™"), consequently

(48]t (4] () (o)

another equation for a, b and ¢ (the second
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member of which may be easily reduced to a
form symmetric or invariable). [15]
Finally, from
COS a - cos f =
——=}(A+A™"), and =="=3(B+B™), t
sin g K ), an sin « i ) we ge
(by III)

cot a cot =} [e%-}-e_Tc]
(equation for , 8, and c.

§32. It still remains to show briefly the
mode of resolving problems in S, which being
accomplished (through the more obvious exam-
ples), finally will be candidly said what this
theory shows.

I. Take AB a line in a plane, and y=/(x)
its equation in rectangular co-

N P ordinates, call dz any increment
. of z, and respectively dx, dy, du

the increments of x, of y, and of

. » the area %, corresponding to
FiG. 24, this dz,; take BH||CF, and ex-

press (from § 31) ]—‘Z,I_}I by means of y, and seek

the Zimit of 2’% when dx tends towards the
limit zero (which is understood where a limit

of this sort is sought): then will become known

also the limit of g—{{, and so tan HBG; and
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(since HBC manifestly is neither > nor <, and
so =rt.Z), the fangent at B of BG will be de-
termined by y.

II. It can be demonstrated

_dZ "y
&P +BH™
Hence is found the Zimis# of d_z’ and thence,

dx
by integration, z (expressed in terms of .
And of any line given in the concrete, the
equation in S can be found; e. g., of L. For
if ray AM be the axis of L; then any ray CB
from ray AM cuts L [since (by § 19) any
straight from A except the straight AM will
cut L ]; but (if BN is axis)
X=1:sin CBN (§28),
and Y=cotan 5 CBN (§29), whence

Y=X+VX>—1.
x 2% [16)
or ei—ei-i- e—1,
the equation sought.
Hence we get
Zy X (x—1)
and BE.1 . in CBN=X; and so
dx
d}’ (X*— 1)

BH
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d)’ 2, W2 1\—1
1+BH2_X (X*—1)",
az*
BH?
andg—fl__X(Xz—l)%, and
dz

d__X"(X2—1) , whence, by inte-

gration, we get (as in § 30)
z=i(X*—1)¥=4 cot CBN.
III. Manfestly
du , HFCBH
dx  dx
which (unless given in ¥) now first is to be ex-
pressed in terms of y,; whence we get # by

27 Xy xX—1)-,

integrating.
c ___.p If AB=p, AC=¢9, CD=7, and
F CABDC=s, we might show (as
in II) that
a’s q
Fi16. 25. dg [el_el)

_q)

and, integrating, s= /pt Lel—elj
This can also be deduced apart from inte-
gration.
For example, the equation of the circle (from
§ 31, III), of the straight (from § 31, II), of a
conic (by what precedes), being expressed, the
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areas bounded by these lines could also be ex-
pressed.

We know, that a surface 4, || to a plane fig-
ure p (at the distance ¢), is to p in the ratio of

the second powers of homologous lines, or as
a —=)?
y (d-at)

It is easy to see, moreover, that the calcula-
tion of volume, treated in the same manner,
requires two integrations (since the differen-
tial itself here is determined only by integra-

tion); and before all must be investigated the un

volume contained between p and #, and the ag-
gregate of all the straights L p and joining
the boundaries of p and ¢

We find for the volume of this solid (whether
by integration or without it)

2¢ —2q
Vpi [eT—@TJ +%2q.

The surfaces of bodies may also be deter-
mined in S, as well as the cwrvatures, the
involutes, and evolutes of any lines, etc.

As to curvature; this in S either is the curv-
ature of L, or is determined either by the
radius of a circle, or by the distance to a
straight from the curve ||| to this straight; since
from what precedes, it may easily be shown,
that in a plane there are no uniform lines other
than I,-lines, circles and curves||to a straight.
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IV. For the circle (as in III) dar;;_@_n_:i

®x, whence (by §29), integrating,
area Qx=x2* [5_2_’_;] '
V. For the area CABDC=w# (inclosed by an
M v I, form line AB=v#, the || to this,
CD=y, and the sects AC=BD=x)

. ] %Z_;y; and (§ 24) y:re__f, and so

(integrating) w=7: [ 1_ e_—fJ .

A s If x increases to infinity, then, in

FiG. 26. _= .. .
S, ei==0, and so #=#4. By the size

of MABN, in future this limit is understood.
In like manner is found, if p is a figure on

F, the space included by p and the aggregate

of axes drawn from the boundaries of p is

equal to }p7.

c VI. If the angle at the cen-

/\\e ter of a segment z of a sphere

ok - - - A% is 2u#, and a great circle is p,
and x the arc F'C (of the angle
u); (§25)
FiG. 27, 1:sin %:ﬁ@BC,
and hence ©BC=p sin . (18]
Meanwhile x:p % and a’x:fj du,

2x 2=
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Moreover, d_zi(DBC, and hence
dx
dz , p° . . .
T, Sin whence (integrating)
_ver 2sm Uy
The F' may be conceived on which P falls
(passing through the middle F' of the seg-
ment); through AF and AC the planes FEM,
CEM are placed, perpendicular to F' and cut-
ting F' along FEG and CE; and consider the
L form CD (from C L to FEG), and the L form
CF; (§20) CEF'=#, and (§21)
FpDzverzsln % and so z=FD.p.
But (§ 21) p==.FGD; therefore
z==FD.FDG. But (§21)
M FD.FDG=FC.FC; consequently
z==.FC.FC=area @FC, in F.
. Now let BJ=CJ=7», (§30)
PR 1. c : 1
B 2r=2(Y—Y), and so (§21)
\s'/ area @27 (in F) ==¢*(Y-Y)%
Fia. 28. Also ([V)
area O2y=*(Y*—2+Y™?);
therefore, area ©27 (in F') =area ®2y, and so
the surface 1 of a segment of a sphere is
equal to the surface of the circle described
with the chord ¥'C as a radius.
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Hence the whole surface of the sphere
=area QFG= FDG;&—p

and the surfaces of spheres are to each other
as the second powers of their great circles.
VII. In like manner, in S, the volume of

the sphere of radius x is found

c r D :%ﬂ¢3(X2—X—2)—2ni2xj
Ef”77 | the surface generated by the rev-
o olution of the line CD about AB

— Ynip(Q—Q),
x ¢ B and the body described by CABDC

Fie. 29, =1 ﬂizp(g_g—l)z.

But in what monner all things treated
JSrom ([V) even to here, also may be reached
apart from integration, for the sake of brev-
ity 1S suppressed.

It can be demonstrated that tke Zimit of
every expression containing the letter i (and
so resting upon the hypothesis that 7 is given), ue
when i increases to infinity, expresses the
guam‘u‘y simply for & (and so for the hypoth-
esis of no 7), if indeed the equations do not be-
come identical.

But beware lest you understand to be sup-
posed, that the system itself may be varied
(for it is entirely determined in itself and by
itself); but only 2Ae hypothesis, which may be
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done successively, as long as we are not con-
ducted to an absurdity. Swpposing therefore
that, in swc/ an expression, the letter 4, in
case S is reality, designates that unique quan-
tity whose I=e, but if ¥ is actual, the said
limit is supposed to be taken in place of the
expression: manifestly all the expressions or-
iginating from the hypothesis of the reality
of S (im this sense) will be true absolutely,
although it be completely unknown whether
or not 3 is reality

So e. g. from the expression obtained in § 30
easily (and as well by aid of differentiation as
apart from it) emerges the known value in %,

Ox=2-x s
from I (§ 31) suitably treated, follows
1:sinae=c:a,

but from 11
oS « =1, and so
sin g
a+tf= rt./ ;

the first equation in III becomes identical, and
so is true in ¥, although it there determines
nothing; but from the second follows
F=a’+ 0%
These are the known fundamental equa-
tions of plane trigonometry in 3.
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Moreover, we find (from § 32) in %, the area
and the volume in III each =p¢,; from IV
area Qx=r2%;
(from VII) the globe of radius-x
=4=2°, etc.

The theorems enunciated at the end of VI
are manifestly frue unconditionally.

§33. It still remains to set forth (as prom-
ised in § 32) what this theory means.

I. Whether ¥ or some one S is reality, re-
mains undecided.

II. All things deduced from the hypothesis
of the falsity of Axiom X/ (always to be un-
derstood in the sense of § 32) are absolutely
true, and so in this seunse, depend wpon no
hypothesis.

There is therefore @ plane trigonometry a
priori, in which the system alone really re-
mains unknown,; and so where remain un-
known solely the absolute magnitudes in the
expressions, but where a simgle known case
would manifestly fix the whole system. But
spherical trigonometry is established abso-
lutely in § 26.

(And we have, on F', a geometry wholly an-
alogous to the plane geometry of r.)

III. If it were agreed that * exists, nothing
more would be unknown in this respect; but
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if it were established that r does mot exist,
then (§ 31), (e.g.) from the sides x, ¥, and the
rectilineal angle they include being given in a
special case, manifestly it would be impossible
in itself and by itself to solve absolutely the
triangle, that is, to determine @ priors the
other angles and tAe ratio of the third side to
the two given; unless X, Y were determined,
for which it would be necessary to have in
concrete form a certain sect @ whose A was
known; and then ¢ would be Z4e natural unt
Sor length (just as e is the base of natural
logarithms).

If the existence of this 7 is determined, it
will be evident how it could be constructed,
at least very exactly, for practical use.

IV. In the sense explained (I and II), it is
evident that all things in space can be solved
by the modern analytic method (within just
limits strongly to be praised).

V. Finally, to friendly readers will not be
unacceptable; that for that case wherein not *
but S is reality, a rectilineal figure is con-
structed equivalent to a circle.

§ 34. Through D we may draw DMl AN in
the following manner. From D drop DB.LAN;
from any point A of the straight AB erect AC
L AN (in DBA), and let fall DCLAC. We
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will have (§27) ©OCD:OAB=1:sin 2z, pro-

c b 4 Vided that DM I BN. But sin
z z 1s not >1; and so AB is

o not >DC. Therefore a quad-

= — 5 rant described from the cen-
F16. 30. ter A in BAC, with a radius

=DC, will have a point B or O in common with
ray BD. In the first case, manifestly z=rt.Z;
but in the second case (§ 25)

(OAO=0CD) : ©OAB=1:sin AOB,
and so z=AOB.

If therefore we take z=AOB, then DM will
be | BN

§35. If S were reality; we may, as follows,
draw a straight | to one arm of an acute angle, =1
which is Il to the other

T Take AM 1 BC, and
// suppose AB=BC so
/ small (by §19), that

kcif we draw BNIIAM

(§ 34), ABN > the

given angle.

Moreover draw CPIIAM (§34); and take
NBG and PCD each equal to the given angle;
rays BG and CD will cut; for if ray BG (fal-
ing by comnstruction within NBC) cuts ray CP
in E; we'shall have (since BN=CP), ZEBC<
ZECB, and so EC<EB. Take EF=EC, EFR

Fie. 31.
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=ECD, and FS I EP; then F'S will fall within
BFR. For since BNIICP, and so BN I EP,
and BN I F'S; we shall have (§14)
ZFBN+4£BFS<(st.£Z=FBN+BFR);
therefore, BFS<BFR. Consequently, ray FR
cuts ray EP, and so ray CD also cuts ray EG
in some point D. Take now DG=DC and
DGT=DCP=GBN; we shall have (since CD=
GD) BN=GT=CP. LetK (§19) be the point
of the L-form line of BN falling in the ray BG,
and KI, the axis; we shall have BN=KI,,
and so BKL=BGT=DCP; but also KL,=CP:
therefore manifestly K fall on G, and GT IIBN.
But if HO bisects | BG, we shall have con-
structed HO Il BN.
§36. Having given the ray CP and the
plane MAB, take CB 1l the

s8 A
Mo N £ plane MAB, BN (in plane
BCP) L BC, and CQI BN
(§34); theintersection of ray
CP (if this ray falls within
. X BCQ) with ray BN (in the

Fia. 32. plane CBN), and so with the
plane MAB is found. And if we are given
the two planes PCQ, MAB, and we have CB
L to plane MAB, CR . plane PCQ; and (in
plane BCR) BNLBC, CS.LCR, BN will fall
in plane MAB, and CS in plane PCQ; and the
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intersection of the straight BN with the
straight CS (if there is one) having been found,
the perpendicular drawn through this inter-
section, in PCQ, to the straight CS will mani-
festly be the intersection of plane MAB and

plane PCQ.
§ 37. Onthestraight AMII BN, is found such
p anA, that AM=BN. If (by g
7' § 34) we construct outside

QTM

/ / of the plane NBM, GT |
G < BN, and make BG.LGT,
=~ |~ GC=GB, and CPIGT;
A and so place the hemi-
. 33 plane TGD that it makes
with hemi-plane TGB an angle equal to that
which hemi-plane PCA makes with hemi-plane
PCB; and is sought (by § 36) the intersection
straight DQ of hemi-plane T'GD with hemi-

plane NBD; and BA is made L DQ.

‘We shall have indeed, on account of the sim-
ilitude of the triangles of L lines produced on
the F of BN (§ 21), manifestly DB=DA, and
AM=BN.

Hence easily appears (L-lines being given by
their extremities alone) we may also find a
fourth proportional, or a mean proportional,
and execute in this way in F, apart from Ax-
iom XI, all the geometric constructions made
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on the plane in 2. Thuse. g. a perigon can
be geometrically divided into any special num-
ber of equal parts, if it is permitted to make
this special partition in 2.

§38. If we construct (by § 37) for example,
M NBQ=1!4 rt.£, and make (by
. §35), in S, AM L ray BQ and |
B BN, and determine (by §37)
IM=BN; we shall have, if IA
Fre. 34, =x;(§28), X=1:sin ¥ rt. £=2,

and x will be constructed geometrically.

And NBQ may be so computed, that IA dif-
fers from 4 less than by anything given, which
happens for sin NBQ="/e.

§39. If (in a plane) PQ and ST arel|ito the
straight MN (§27), and AB, CD are equal
perpendiculars to MN; manifestly ADEC=

n_ k¥ ¢ ABEA; and so the angles
® (perhaps mixtilinear) ECP,
L—n EAT will fit, and E,C=EA.

; If, moreover, CF'=AG, then

A8 AACF=ACAG, and each
fie. 3. is half of the guadrilateral
FAGC.

If FAGC, HAGK are two quadrilaterals of
this sort on AQG, between PQ and ST; their
equivalence (as in Fuclid) is evident, as also
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the equivalence of the triangles AGC, AGH,
standing on the same AG, and having their
vertices on the line PQ. Moreover, ACF=
CAG, GCQ=CGA, and ACF+ACG+GCQ=
st.£ (§32); and so also CAGH+ACGH+CGA= =
st. £; therefore, in any triangle ACG of this
sort, the sum of the three angles =st.Z. But
whether the straight AG may have fallen upon
AG (which Il MN), or not; the equivalence of
the rectilineal triangles AGC, AGH, as well
of themselves, as of the sums of their angles,
is evident.

§40. Eguivalent triangles ABC, ABD,
g g (henceforth rectilineal), Aav-

F
-4' ing one side equal, have the

Ly/ N sums of their angles equal.

/'f‘\v For let MN bisect AC and
BC, and take (through C)
* Fre. 3. PQIIMN; the point D will
fall on line PQ.

For, if ray BD cuts the straight MN in the
point K, and so (§ 39) the line PQ at the dis-
tance EF'=EB; we shall have AABC=2ABF,
and so also AABD=aAABF, whence D falls
at F.

But if ray BD has not cut the straight MN,
let C be the point, where the perpendicular bi-
secting the straight AB cuts the line PQ, and

Rr
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let GS=HT, so, that the line ST meets the
ray BD prolonged in a certain K (which it is
evident can be made in a way like as in § 4);
moreover take SR=SA, RO|IST, and O the
intersection of ray BK with RO; then AABR
=nABO (§39), and so AABC>AABD (con-
tra hyp.).

§ 41. Egquivalent triangles ABC, DEF
have the sums of their triangles equal.

, For let MN bisect

AC and BC, and PQ
E 2 pisect DF and FE;

and take RS || MN,

o and TO|| PQ; the per-

pendicular AG to RS

will equal the perpendicular DH to T'O, or one
for example DH will be the greater.

In each case, the ©DF', from center A, has
with line-ray GS some point K in common,
and (§39) AABK=2ABC=2ADEF. But the
AAKB (by §40) has the same angle-sum as
ADFE, and (by §39) as AABC. Therefore
also the triangles ABC, DEF have each the
same angle-sum.

In S the inverse of this theorem is true.

For take ABC, DEF two triangles having
equal angle-sums, and ABAL=ADEF; these
will have (by what precedes) equal angle-sums,

FiG. 37.
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and so also will AABC and AABI,, and hence
manifestly
BCL+BLC+CBL=st. Z.

However (by § 31), the angle-sum of any tri-
angle, in S, is <st.Z.

Therefore L falls on C.

§42. Let # be the supplement of the angle-
sum of the AABC, but v of ADEF; then is
AABC:oaDEF=%:v.

For if p be the area of each

F
c of the triangles ACG, GCH,
HCB, DFK, KFE; and
Aﬂ AABC=m.p, and ADEF=
D X A G H B np, and s the angle-sum of
Fie. 38. any triangle equivalent to p,
manifestly
st. L—u=m.s—(m—1)st. L=st. L—m(st. £ —5);
and #=m(st.£—s); and in like manner v=
n(st.£—s).

Therefore AABC : ADEF =m : n=wu:v.

It is evidently also easily extended to the
case of the incommensurability of the triangles
ABC, DEF.

In the same way is demonstrated that tri-
angles on a sphere are as the excesses of the
sums of their angles above a st.<.

If two angles of the spherical A are right,
the third z will be the said excess. But
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(a great circle being called p) this & is mani-
festly

_z2 7t .
=5 on (§ 32, VI);

consequently, any triangle of whose angles the
excess is 2z, is
_z

4,
§ 43. Now, in S, the area of a rectilineal A
is expressed by means of the sum of its angles.
M M N If AB increases to infinity;
(§ 42) s ABC: (rt.£—wu—v)
® will be constant. But 4 ABC
i ==BACN (§ 32, V), and rt.£
—w—v=z (§ 1); and so
.t BACN: z=20ABC: (rt. Z—
37l w—v)=BAC'N’ : z".
' o’ Moreover, manifestly (§ 30)
F1¢. 39. BDCN : BD'C'N'=7: »'=
tan z:tan z’.
But for y'==0, we have

R

%%%——':1, and also tan,z ==1;
consequently,
BDCN : BACN=tan z: z.
But (§32)

: BDCN=r.s=4% tan z,
therefore, BACN=2.7%
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Designating henceforth, for brevity, any tri-
angle the supplement of whose angle-sum is 2
by a, we will therefore have s =z.5%

R M s Hence it readily flows

/ \ that, if ORIAM and

o T RO| AB, the area com-
prehended between the

’ Fn: 40. ¢ straights OR, ST, BCe»

(which 1s manifestly the
absolute limit of the area of rectilineal tri-
angles increasing without bound, or of a for
z=st. /), is ==#"= area ®7, in F.

This limit being denoted by o, moreover
(by § 30) =r*=tan’z.0= area ©# in F' (§ 21)=
area ©s (by §32, VI) if the chord CD is called s.

If now, bisecting at right angles the given
radius s of the circle in a plane (or the I, form
radius of the circle in F'), we construct (by
§ 34) DB|=CN; by dropping CA 1 DB, and
M N erecting CM L CA, we shall
B get z,; whence (by § 37), assum-

ing at pleasure an I, form

radius for unity, tan’z can be
determined geometrically by
means of two wuniform lines
| A_of the same curvature (which,
© =~—1, their extremities alone being
given and their axes con-
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structed, manifestly may be compared like
straights, and in this respect considered equiv-
alent to straights).

Moreover, a quadrilateral, ex. gr. regular
=np is constructed as follows:

Take ABC=rt.Z, BAC=3 rt.
* £, ACB=1rt. £, and BC=ux.
By mere square roots, X (from
§ 31, II) can be expressed and (by
§ 37) constructed; and having X
(by § 38 or also §§ 29 and 35), x itself can be
determined. And octuple 4 ABC is manifestly
=n, and by this @ plane circle of radius s is
geometrically squared by means of a rects-
lLinear figure and uniform lines of the same
species (equivalent to straights as to compari-
son infer se); but an F form circle is plani-
Jfied in the same manner.: and we have either
the Axiom X1 of Euclid true or the geomet-
ric quadrature of the circle, although thus
far it has remained undecided, which of these
two has place in reality.

Whenever tan®z is either a whole number,
or a rational fraction, whose denominator (re-
duced to the simplest form) is either a prime
number of the form 241 (of which is also
2=2"41), or a product of however many prime
numbers of this form, of which each (with the

IA

FIG. 42.
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exception of 2, which alone may occur any
number of times) occurs only once as factor,
we can, by the theory of polygons of the illus-
trious Gauss (remarkable invention of our,
nay of every age) (and only for such values 6
of z), construct a rectilineal figure =tan®zg=
area ©s. For the division of o (the theorem
of § 42 extending easily to any polygons) mani-
festly requires the partition of a st. £, which
(as can be shown) can be achieved geomet-
rically only under the said condition.

But in all such cases, what precedes con-
ducts easily to the desired end. And any rec-
tilineal figure can be converted geometrically
into a regular polygon of # sides, if # falls
under the Gaussian form.

It remains, finally (that the thing may be
completed in every respect), to demonstrate
the impossibility (apart from any supposition),
of deciding @ priors, whether 2, or some S
(and which one) exists. This, however, is re-
served for a more suitable occasion.



APPENDIX L

REMARKS ON THE PRECEDING TREATISE,
BY BOLYAI FARKAS.

(From Vol. IT of Tentamen, pp. 380-383.]

Finally it may be permitted to add something
appertaining to the author of the Appendix in
the first volume, who, however, may pardon me
if something I have not touched with his acute-
ness.

The thing consists briefly in this: Zke form-
ulas of spherical trigonometry (demonstrated
in the said Appendizx independently of Fuclid’s
Axiom X1)cosncidewith the formulas of plane
trigonometry, if (in a way provisionally speak-
ing) the sides of a spherical triangle are ac-
cepted as reals, but of a rectilineal triangle
as imaginaries; so that, as to trigonometric
formulas, the plane may be considered as an
imaginary sphere, if for real, that is accepted
in which sin rt. £=1.

Doubtless, of the Fuclidean axiom has been
said in volume first enough and to spare: for
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the case if it were not true, is demonstrated
(Tom. I. App., p. 13), that there is given a cer-
tain 7, for which the I there mentioned is =e
(the base of natural logarithms), and for this
case are established also (ébidem, p. 14) the
formulas of plane trigonometry, and indeed so,
that (by the side of p. 19, ibidem) the formulas
are still valid for the case of the verity of the
said axiom; indeed if the limits of the values
are taken, supposing that 7==oo; truly the
Euclidean system is as if the limit of the anti-
Euclidean (for /== ).

Assume for the case of ¢ existing, the unit
=7, and extend the concepts sine and cosine
also to imaginary arcs, so that, p designating

an arc whether real or imaginary,
Y
SV v

+Ze is called the

cosine of p, and
/=i —Py=i

e —€

21
the sizne of p (as Tom. L., p. 177).

Hence for ¢ real
a —aq —ayT1AT WG NT
e—e _e —e —sin(—gv=1)
23 W—1

=—sin(gy—1).

is called
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A e—%’:i.v’_—x WTNT

So +2 = p =cos(—g¥—1)
=cos(gv_1);

if of course also in the imaginary circle, the
sine of a negative arc is the same as the sine
of a positive arc otherwise equal to the first,
except that it is negative, and the cosine of a
positive arc and of a negative (if otherwise
they be equal) the same.

In the said Appendiz, § 25, is demonstrated
absolutely, that is, independently of the said
axiom; that, in any rectilineal triangle Z4e
sines of the circles are as the circles of radi
equal to the sides opposite.

Moreover is demonstrated for the case of 2
existing, that the circle of radius y is

=ng {e*f__e;iy} , which, for 7=1, becomes

7(e¥— —Y)_
Therefore (§ 31 dbidem), for a right-angled
rectilineal triangle of which the sides are a
and 8, the hypothenuse ¢, and the angles oppo-
site to the sides @, 8, c are q, 8, rt. £, (for 7=1),
in I,
1:sin a=r(e°—e7):n(e*~€*);
and so
e—e*et—e”

1:sine = Whence 1 :sin «
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=—sin (e¥_1):—sin (e¥_1). And hence
1 :sin a=sin (¢¥_71) : sin (a¥_1).
In II becomes
Ccos a :sin p=cos (@V_1):1;
in IIT becomes
cos (c¥—=1)=cos (@/=7).cos (BW=7).
These, as all the formulas of plane trigonom-
etry deducible from them, coincide completely
with the formulas of spherical trigonometry;
except that if, ex. gr., also the sides and the
angles opposite them of a right-angled spheri-
cal triangle and the hypothenuse bear the same
names, the sides of the rectilineal triangle are
to be divided by ¥v—1 to obtain the formulas for
the spherical triangle.
Obviously we get (clearly as Tom.,II., p. 252),

from I, 1:sin «=sin ¢ :sin @,
from II, 1:cos @=sing :cos a,
from III, COSs ¢=cos @ cos b.

Though it be allowable to pass over other
things; yet I have learned that the reader
may be offended and impeded by the deduc-
tion omitted, (T'om. I, App., p. 19) [in § 32 at
end]: it will not be irrelevant to show how, ex.
gr., from

c —c a —a b b
e—i_'_e—i:% [eT_'_é_i) [e—i_i_e_iJ
follows
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C=a*+ 8.
(the theorem of Pythagoras for the Euclidean
system); probably thus also the author de-
duced it, and the others also follow in the
same manner.
Obviously we have, the powers of ¢ being ex-
pressed by series (like Tom. I., p. 168),

X k Y i i
1= + e
¢ Tt 23 53,440
b 7
e =1- +2z2 23 z3+2 345 . ., and so
e Ti=2 £k .
erteTI=24 L, 2+3 17734564 ’
:2+/c2+u (designating by

u Yl
p the sum of all the terms aftert—,z JI ; and we

have #=0, while /==o. For all the terms

which follow E are divided by #%; the first

22

term will be

Bflz"“'; and any ratio <f—,z; and

though the ratio everywhere should remain
this, the sum would be Tom. I, p. 131),
LN S I
3.4.4%2 | %) 3.4.(2°=F&%)
which manifestly =0, while 7== oo,
And from




54 SCIENCE ABSOLUTE OF SPACE.

e = . 6ty —@tpn ab —@b
eite =2 (g1 4e 1 4e1 4e 1

follows (for w, v, 1 taken like )

2
2+c +w _ [ (a+b +v+2+(a+b) +z] .
And hence
62:a2+2ab+62+a2—2a6+62+v+1—w

2
which =a®+8°.



APPENDIX II.

SOME POINTS IN JOHN BOLYAI'S APPENDIX
COMPARED WITH LOBACHEVSKI,
BY WOLFGANG BOLYAI

[From Kurzer Grundriss,p. 82.]

Lobachevski and the author of the Appendix
each consider two points A, B, of the sphere-

M p, limit, and the corresponding axes
[—JL ray AM, ray BN (§ 23).
" They demonstrate that, if 4, 5,
y designate the arcs of the circle
limit AB, CD, HL, separated by
& segments of the axis AC=1, AH
Fié. 43. =%, we have

=3

Lobachevski represents the value of gby

¢, e having some value >1, dependent on the
unit for length that we have chosen, and able
to be supposed equal to the Naperian base.
The author of the Appendix is led directly
to introduce the base of natural logarithms.
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If we put %:a, and , y’ are arcs situated at
the distances y, 7 from «, we shall have
;=6y:Y, ;, =6i=I, whence Y:Iii,.

He demonstrates afterward (§29) that, if #
is the angle which a straight makes with the
perpendicular y to its parallel, we have

Y =cot ju.
Therefore, if we put zzg—u, we have
tan z4-tan ju
1—tan z tan jz
whence we get, having regard to the value of
tan %%:Y_l,

Y=tan (Z—}—%%):

y =
tan z=4 (Y—-Y")=4 {I 1 iJ (§30).
If now yp is the semi-chord of the arc of
7

ircle-limit 27, 30) th =
circle-limit 27, we prove (§30) that fan 5

constant.
Representing this constant by 4, and making
¥ tend toward zero, we have

27,

=~ .1, whence

2y

It

2y=2 4 tan z==i —
Ii

b
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or putting %Z:k, I=el,

¥y
Fli2=ed _1==%7 (1+4),
1 being infinitesimal at the same time as £.
Therefore, for the limit, 1=/ and consequently
I=e.

The circle traced on the sphere-limit with
the arc # of the curve-limit for radius, has for
length 2z7. Therefore,

Oy =2r7=2x3 tan z=x5 (Y=Y ).

In the rectilineal A where «, 8 designate the
angles opposite the sides @, 6, we have (§ 25)
sin a:sin p=0@:0b0=4(A—A7"): z4(B—B™)
=sin (@¥=7) :sin (¥—7).

Thus in plane trigonometry as in spherical
trigonometry, the sines of the angles are to
each other as the sines of the opposite sides,
only that on the sphere the sides are reals,
and in the plane we must consider them as
imaginaries, just as if the plane were an
imaginary sphere.

We may arrive at this proposition without a
preceding determination of the value of 1.

7
nz

If we designate the constant : by ¢, we
a

shall have, as before
O}/:n’g (Y—Y—l),
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whence we deduce the same proportion as
above, taking for ¢ the distance for which the
ratio I is equal to e.

If axiom X/ is not true, there exists a de-
terminate #, which must be substituted in the
formulas.

If, on the contrary, this axiom is true, we
must make in the formulas 7= w. Because, in

this case, the quantity ~—Y 1s always =1, the

sphere-limit being a plane, and the axes being
parallel in Euclid’s sense.

The exponent ¥ must therefore be zero, and
consequently 7= oo

It is easy to see that Bolyai's formulas of
plane trigonometry are in accord with those of
Lobachevski.

Take for example the formula of § 37,

tan 1 (@) =sin B tan v (p),

@ being the hypothenuse of a right-angled tri-
angle, p one side of the right angle, and B the
angle opposite to this side.

Bolyai’s formula of § 31, I, gives

1:sin B=(A—A7"):(P—P7).

Now, putting for brevity, 1 (k)=£", we
have tan 2p":tan 2@’ =(cot@'—tana’) : (cot p’
—tan p')=(A—A™") : (P—P")=1:sin B.



APPENDIX III

LIGHT FROM NON-EUCLIDEAN SPACES ON THE
TEACHING OF ELEMENTARY GEOMETRY.

By G. B. HaLsTED.

As foreshadowed by Bolyai and Riemann,
founded by Cayley, extended and interpreted
for hyperbolic, parabolic, elliptic spaces by
Klein, recast and applied to mechanics by Sir
Robert Ball, projective metrics may be looked
upon as characteristic of what is highest and
most peculiarly modern in all the bewildering
range of mathematical achievement.

Mathematicians hold that number is wholly
a creation of the human intellect, while on the
contrary our space has an empirical element.
Of possible geometries we can not say @ priori
which shall be that of our actual space, the
space in which we move. Of course an ad-
vance so important, not only for mathemat-
ics but for philosophy, has had some metaphy-
sical opponents, and as long ago as 1878 I
mentioned in my Bibliography of Hyper-
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Space and Non-Euclidean Geometry (American
Journal of Mathematics, Vol. I, 1878, Vol. II,
1879) one of these, Schmitz-Dumont, as a sad
paradoxer, and another, J. C. Becker, both of
whom would ere this have shared the oblivion
of still more antiquated fighters against the
light, but that Dr. Schotten, praiseworthy for
the very attempt at a comparative planimetry,
happens to be himself a believer in the a priors
founding of geometry, while his American re-
viewer, Mr. Ziwet, was then also an anti-non-
Fuclidean, though since converted.

He says, ‘“we find that some of the best Ger-
man text books do not try at all to define what
is space, or what is a point, or even what is a
straight line.” Do any German geometries de-
fine space? I never remember to have met one
that does. »

In experience, what comes first is a bounded
surface, with its boundaries, lines, and their
boundaries, points. Are the points whose
definitions are omitted anything different or
better?

Dr. Schotten regards the two ideas ‘‘ direc-
tion” and ‘‘distance’ as intuitively given in
the mind and as so simple as to not require
definition.

When we read of two jockeys speeding
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around a track in opposite directions, and
also on page 87 of Richardson’s Euclid, 1891,
read, ¢ The sides of the figure must be pro-
duced in the same direction of rotation; . . .
going round the figure always in the same
direction,” we do not wonder that when Mr.
Ziwet had written: ‘‘he therefore bases the
definition of the straight line on these two
ideas,” he stops, modifies, and rubs that out
as follows, ‘‘or rather recommends to eluci-
date the intuitive idea of the straight line
possessed by any well-balanced mind by means
of the still simpler ideas of direction” [in a
circle] ‘‘and distance” [on a curve].

But when we come to geometry as a science,
as foundation for work like that of Cayley and
Ball, I think with Professor Chrystal: ‘It is
essential to be careful with our definition of a
straight line, for it will be found that vir-
tually the properties of the straight line de-
termine the nature of space.

““Our definition shall be that two points 7%
general determine a straight line.”

We presume that Mr. Ziwet glories in that
unfortunate expression ‘‘a straight line is the
shortest distance between two points,”’ still
occurring in Wentworth (New Plane Geom-
etry, page 33), even after he has said, page 5,
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‘““the length of the straight line is called the
distance between two points.”” If the length
of the one straight line between two points is
the distance between those points, how can the
straight line itself be the skorfest distance?
If there is only one distance, it is the longest
as much as the shortest distance, and if it is
the Zlemgth of this shorto-longest distance
which is the distamce then it is not the
straight line itself which is the longo-shortest
distance. But Wentworth also says: ¢ Of all
lines joining two points the skorfest is the
straight line.”’

This general comparison involves the meas-
urement of curves, which involves the theory
of limits, to say nothing of ratio. The very
ascription of length to a curve involves the
idea of a limit. And then to introduce this
general axiom, as does Wentworth, only to
prove a very special case of itself, that two
sides of a triangle are together greater than
the third, is surely bad logic, bad pedagogy,
bad mathematics.

This latter theorem, according to the first
of Pascal’s rules for demonstrations, should
not be proved at all, since every dog knows it.
But to this objection, as old as the sophists,
Simson long ago answered for the science of



SCIENCE ABSOLUTE OF SPACE. 63

geometry, that the number of assumptions
ought not to be increased without necessity ;
or as Dedekind has it: *‘ Was beweisbar ist,
soll in der Wissenschaft nicht ohne Beweis
geglaubt werden.”

Professor W. B. Smith (Ph. D., Goettingen),
has written: ‘¢ Nothing could be more unfor-
tunate than the attempt to lay the notion of
Direction at the bottom of Geometry.”’

Was it not this notion which led so good a
mathematician as John Casey to give as a
demonstration of a triangle’s angle-sum the
procedure called ‘‘a practical demonstration”
on page 87 of Richardson’s Fuclid, and there
described as ‘‘laying a ‘straight edge’ along
one of the sides of the figure, and then turn-
ing it round so as to coincide with each side in
turn.”

This assumes that a segment of a straight
line, a sect, may be translated without rota-
tion, which assumption readily comes to view
when you try the procedure in two-dimensional
spherics. Though this fallacy was exposed by
so eminent a geometer as Olaus Henrici in so
public a place as the pages of ‘Nature,’ yet it
has just been solemnly reproduced by Pro-
fessor G. C. Edwards, of the University of
California, in his Klements of Geometry: Mac-
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Millan, 1895. It is of the greatest importance
for every teacher to know and connect the
commonest forms of assumption equivalent to
Fuclid’s Axiom XI. If in a plane two straight
lines perpendicular to a third nowhere meet,
are there others, not both perpendicular to
any third, which nowhere meet? Euclid’'s
Axiom XI is the assumption No. Playfair’s
answers 7o more simply. But the very same
answer is given by the common assumption of
our geometries, usually unnoticed, that a circle
may be passed through any three points not
costraight.

This equivalence was pointed out by Bolyai
Farkas, who looks upon this as the simplest
form of the assumption. Other equivalents
are, the existence of any finite triangle whose
angle-sum is a straight angle; or the existence
of a plane rectangle; or that, in triangles, the
angle-sum is constant.

One of Legendre’s forms was that through
every point within an angle a straight line
may be drawn which cuts both arms.

But Legendre never saw through this mat-
ter because he had not, as we have, the eyes
of Bolyai and Lobachevski to see with. The
same lack of their eyes has caused the author
of the charming book * Euclid and His Modern
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Rivals,”’ to give us one more equivalent form:
““In any circle, the inscribed equilateral tetra-
gon is greater than any one of the segments
which lie outside it.” (A New Theory of
Parallels by C. L. Dodgson, 3d. Ed., 1890.)

Any attempt to define a straight line by
means of ‘‘direction” is simply a case of ‘‘ar-
gumentum in circulo.” In all such attempts
the loose word ‘‘direction’’ is used in a sense
which presupposes the straight line. The
directions from a point in Fuclidean space are
only the oo® rays from that point.

Rays not costraight can be said to have the
same direction only after a theory of parallels
is presupposed, assumed.

Three of the exposures of Professor G. C.
Edwards’ fallacy are here reproduced. The
first, already referred to, is from Nature, Vol.
XXIX, p. 453, March 13, 1884.

““I select for discussion the ‘quaternion
proof” given by Sir William Hamilton.
Hamilton’s proof consists in the following:

““One side AB of the triangle ABC is turned
about the point B till it lies in the continuation
of BC; next, the line BC is made to slide along
BC till B comes to C, and is then turned about
C till it comes to lie in the continuation of AC.
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‘It is now again made to slide along CA till
the point B comes to A, and is turned about A
till it lies in the line AB. Hence it follows,
since rotation is independent of translation,
that the line has performed a whole revolution,
that is, it has been turned through four right
angles. But it has also described in succession
the three exterior angles of the triangle, hence
these atre together equal to four right angles,
and from this follows at once that the interior
angles are equal to two right angles.

““’To show how erroneous this reasoning is—
in spite of Sir William Hamilton and in spite
of quaternions—I need only point out that it
holds exactly in the same manner for a triangle
‘on the surface of the sphere, from which it
would follow that the sum of the angles in a
spherical triangle equals two right angles,
whilst this sum is known to be always greater
than two right angles. The proof depends
only on the fact, that any line can be made to
coincide with any other line, that two lines do
so coincide when they have two points in com-
mon, and further, that a line may be turned
about any point in it without leaving the sur-
face. But if instead of the plane we take a
spherical surface, and instead of a line a great
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circle on the sphere, all these conditions are
again satisfied.

““The reasoning employed must therefore
be fallacious, and the error lies in the words
printed in italics; for these words contain an
assumption which has not been proved.

““0. HENRICL”

Perronet Thompson, of Queen’s College,
Cambridge, in a book of which the third edi-
tion is dated 1830, says:

“Professor Playfair, in the Notes to his
‘Elements of Geometry’ [1813], has proposed
another demonstration, founded on a remark-
able non causa pro causa.

““It purports to collect the fact [Eu. L., 32,
Cor., 2] that (on the sides being successively
prolonged to the same hand) the exterior
angles of a rectilinear triangle are together
equal to four right angles, from the circum-
stance that a straight line carried round the
perimeter of a triangle by being applied to all
the sides in succession, is brought into its old
situation again; the argument being, that be-
cause this line has made the sort of somerset
it would do by being turned through four
right angles about a fixed point, the exterior
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angles of the triangle have necessarily been
equal to four right angles.

““The answer to which is, that there is no
connexion between the things at all, and that
the result will just as much take place where
the exterior angles are avowedly not equal to
four right angles.

‘“T'ake,for example, the plane triangle formed
by three small arcs of the same or equal circles,
as in the margin;
and it is manifest
that an arc of this
circle may be car-
ried round pre-
cisely in the way
described and re-
turn to its old sit-
uation, and yet
~ there be no pre-
tense for infer-
ring that the exterior angles were equal to
four right angles.

“And if it is urged that these are curved
lines and the statement made was of straight;
then the answer is by demanding to know,
what property of straight lines has been laid
down or established, which determines that
what is not true in the case of other lines is
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true in theirs. It has been shown that, as a
general proposition, the connexion between a
line returning to its place and the exterior
angles having been equal to four right angles,
is a non sequitur, that it is a thing that may
be or may not be; that the notion that it re-
turns to its place decause the exterior angles
have been equal to four right angles, is a mis-
take. From which it is a legitimate conclu-
sion, that if it had pleased nature to make the
exterior angles of a triangle greater or less
than four right angles, this would not have
created the smallest impediment to the line’s
returning to its old situation after being car-
ried round the sides; and consequently the
line’s returning is no evidence of the angles
not being greater or less than four right
angles.”

Charles L. Dodgson, of Christ Church, Ox-
ford, in his ‘‘Curiosa Mathematica,’’ Part I,
pp. 70-71, 3d Ed., 1890, says:

‘““Yet another process has been invented—
quite fascinating in its brevity and its ele-
gance—which, though involving the same fal-
lacy as the Direction-Theory, proves Euc. I,
32, without even mentioning the dangerous
word ‘ Direction.’
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° “We are told to take

any triangle ABC; to

¢ %6 » produce CA to D; to
make part of CD, viz,

c o AD, revolve, about A,

into the position ABE;

then to make part of this

¢ line, viz., BE, revolve,

about B, into the p0s1t10n BCF'; and lastly to

make part of this line, viz., CF, revolve, about

C, till it lies along CD, of which it originally

formed a part. We are then assured that it

must have revolved through four right angles:

from which it easily follows that the interior

angles of the triangle are together equal to
two right angles.

“’The disproof of this fallacy is almost as
brief and elegant as the fallacy itself. We
first quote the general principle that we can
not reasonably be told to make a line fulfill
two conditions, either of which is enough by
itself to fix its position: e. g., given three
points X, Y, Z, we can not reasonably be told
to draw a line from X which shall pass
through Y and Z: we can make it pass
through Y, but it must then take its chance
of passing through Z; and vice versa.

““Now let us suppose that, while one part of
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AE, viz., BE, revolves into the position BF,
another little bit of it, viz., AG, revolves,
through an equal angle, into the position AH;
and that, while CF revolves into the position
of lying along CD, AH revolves—and here
comes the fallacy.

“You must not say ‘revolves, through an
equal angle, into the position of lying along
AD,’ for this would be to make AH fulfill two
conditions at once.

“If you say that the one condition involves
the other, you are virtually asserting that the
lines CF, AH are equally inclined to CD—and
this in comsequence of AH having been so
drawn that these same lines are equally in-
clined to AE.

““T'hat is, you are asserting, ‘A pair of lines
which are equally inclined to a certain trans-
versal, are so to any transversal.” [Deducible

from Euc. I, 27, 28, 29.]”
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TRANSLATOR’S PREFACE.

Lobachevski was the first man ever to publish a non-Euclidean geom-
etry.

Of the immortal essay now first appearing in English Gauss said, “The
author has treated the matter with a master-hand and in the true geom-
eter’s spirit. I think I ought to call your attention to this book, whose
perusal can not fail to give you the most vivid pleasure.”

Clifford says, “It is quite simple, merely Euclid without the vicioué
assumption, but the way things come out of one another is quite lovely.”
* * * “What Vesalius was to Galen, what Copernicus was to Ptolemy,
that was Lobachevski to Euclid.”

Says Sylvester, “In Quaternions the example has been given of Al-
gebra released from the yoke of the commutative principle of multipli-
cation—an emancipation somewhat akin to Lobachevski’s of Geometry
from Euclid’s noted empirical axiom.”

Cayley says, “It is well known that Euclid’s twelfth axiom, even in

Playfair’s form of it, has been considered as needing demonstration; *

and that Lobachevski constructed a perfectly consistent theory, where-
in this axiom was assumed not to hold good, or say a system of non-
BEuclidean plane geometry. There is a like system of non-Euclidean solid
geometry.”

GEORGE BRUCE HALSTED.
2407 San Marcos Street,

Austin, Texas.
May 1, 1801,
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TRANSLATOR'S INTRODUCTION.

«Prove all things, hold fast that which is good,” does not mean dem-
onstrate everything. From nothing assumed, nothing can be proved.
“Geometry without axioms,” was a book which went through several
editions, and still has historical value. But now a volume with such a
title would, without opening it, be set down as simply the work of a
paradoxer.

The set of axioms far the most influential in the intellectual history
of the world was put together in Egypt; but really it owed nothing to
the Egyptian race, drew nothing from the boasted lore of Egypt's
priests.

The Papyrus of the Rhind, belonging to the British Museum, but
given to the world by the erudition of a German Egyptologist, Eisen-
lohr, and a German historian of mathematics, Cantor, gives us more
knowledge of the state of mathematics in ancient Egypt than all else
previously accessible to the modern world. Its whole testimony con-
firms with overwhelming force the position that Geometry as a science,
strict and self-conscious deductive reasoning, was created by the subtle
intellect of the same race whose bloom in art still overawes us in the
Venus of Milo, the Apollo Belvidere, the Laocoon.

In a geometry occur the most noted set of axioms, the geometry of
Buclid, a pure Greek, professor at the University of Alexandria.

Not only at its very birth did this typical product of the Greek genius
assume sway as ruler in the pure sciences, not only does its first efflor-
escence carry us through the splendid days of Theon and Hypatia, but
unlike the latter, fanatics can not murder it; that dismal flood, the dark
ages, can not drown it. Like the phceenix of its native Egypt, it rises
with the new birth of culture. An Anglo.Saxon, Adelard of Bath,
finds it clothed in Arabic vestments in the land of the Alhambra. Then
clothed 1n Latin, it and the new-born printing press confer honor on
each other. Finally back again in its original Greek, it is published
first in queenly Basel, then in stately Oxford. The latest edition in
Greek is from ILeipsic’s learned presses.

151
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How the first translation into our cut-and-thrust, survival-of-the-fittest
English was made from the Greek and Latin by Henricus Billingsly,
Lord Mayor of London, and published with a preface by John Dee the
Magician, may be studied in the Library of our own Princeton, where
they have, by some strange chance, Billingsly’s own copy of the Arabic-
Latin version of Campanus bound with the Editio Princeps in Greek
and enriched with his autograph emendations. Even to-day in the vast
system of examinations set by Cambridge, Oxford, and the British gov-
ernment, no proof will be accepted which infringes Euclid's order, a
sequence founded upon his set of axioms.

The American ideal is success. In twenty years the American maker
expects to be improved upon, superseded. The Greek ideal was per-
fection. The Greek Epic and Lyric poets, the Greek sculptors, remain
unmatched. The axioms of the Greek geometer remained unquestioned
for twenty centuries.

How and where doubt came to look toward them is of no ordinary
interest, for this doubt was epoch-making in the history of mind.

Among Euclid’s axioms was one differing from the others in pro-
lixity, whose place fluctuates in the manuscripts, and which is not used
in Euclid’s first twenty-seven propositions. Moreover it is only then
brought in to prove the inverse of one of these already demonstrated.

All this suggested, at Europe’s renaissance, not a doubt of the axiom,
but the possibility of getting along without it, of deducing it from the
other axioms and the twenty-seven propositions already proved. Euclid
demonstrates things more axiomatic by far. He proves what every dog
knows, that any two sides of a triangle are together greater than the
third. Yet when he has perfectly proved that lines making with a
transversal equal alternate angles are parallel, in order to prove the in-
verse, that parallels cut by a transversal make equal alternate angles, he
brings in the unwieldly postulate or axiom:

“If a straight line meet two straight lines, so as to make the two in-
terior angles on the same side of it taken together less than two right
angles, these straight lines, being continually produced, shall at length
meet on that side on which are the angles which are less than two right
angles.”

Do you wonder that succeeding geometers wished by demonstration
to push this unwieldly thing from the set of fundamental axioms.
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Numerous and desperate were the attempts to deduce it from reason-
ings about the nature of the straight line and plane angle. In the
«Encyclopedie der Wissenschaften und Kunste; Von Ersch und Gru-
ber;” Leipzig, 1838; under ‘Parallel,” Sohncke says that in mathe-
matics there is nothing over which so much has been spoken, written,
and striven, as over the theory of parallels, and all, so far (up to his
time), without reaching a definite result and decision.

Some acknowledged defeat by taking a new definition of parallels, as
for example the stupid one, “Parallel lines are everywhere equally dis-
tant,” still given on page 33 of Schuyler's Geometry, which that author,
like many of his unfortunate prototypes, then attempts to identify with
Euclid’s definition by pseudo-reasoning which tacitly assumes Kuclid’s
postulate, e. g. he says p. 35: «For, if not parallel, they are not every-
where equally distant; and since they lie in the same plane; must ap-
proach when produced one way or the other; and since straight lines
continue in the same direction, must continue to approach if produced
farther, and if sufficiently produced, must meet.” This is nothing but
Euclid’s assumption, diseased and contaminated by the introduction of
the indefinite term ¢direction.”

How much better to have followed the third class of his predecessors
who honestly assume a new axiom differing from Euclid’s in form if
not in essence. Of these the best is that called Playfair's; “Two lines
which intersect can not both be parallel to the same line.”

The German article mentioned is followed by a carefully prepared
list of ninety-two authors on the subject. In English an account of
like attempts was given by Perronet Thompson, Cambridge, 1833, and
is brought up to date in the charming volume, “Euclid and his Modern
Rivals,” by C. L. Dodgson, late Mathematical Lecturer of Christ Church,
Oxford, the Lewis Carroll, author of Alice in Wonderland. V

All this shows how ready the world was for the extraordinary flaming-
forth of genius from different parts of the world which was at once to
overturn, explain, and remake not only all this subject but as conse
quence all philosophy, all ken-lore. As was the case with the dis-
covery of the Conservation of Energy, the independent irruptions
of genius, whether in Russia, Hungary, Germany, or even in Canada
gave everywhere the same results.

At first these results were not fully understood even by the brightest
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intellects. Thirty years after the publication of the book he mentions,
we see the brilliant Clifford writing from Trinity College, Cambridge,
April 2, 1870, “Several new ideas have come to me lately: First I
have procured Lobachevski, ‘Btudes Géométriques sur la Théorie
des Parallels’ - - - a small tract of which Gauss, therein quoted,
says: L’auteur a traité la matiére en main de maitre et avec le véritable
esprit géométrique. Je crois devoir appeler votre attention sur ce livre,
dont la lecture ne peut manquer de vous causer le plus vif plaisir.’ ”’
Then says Clifford: “It is quite simple, merely Euclid without the
vicious assumption, but the way the things come out of one another is
quite lovely.”

The first axiom doubted is called a “vicious assumption,” soon no
man sees more clearly than Clifford that all are assumptions and none
vicious. He had been reading the French translation by Hoiiel, pub-
lished in 1866, of a little book of 61 pages published in 1840 in Berlin
under the title Geometrische Untersuchungen zur Theorie der Parallel-
linjen by Nicolas Lobachevski (1793-1856), the first public expression
of whose discoveries, however, dates back to a discourse at Kasan on
February 12, 1826.

Under this commonplace title who would have suspected the dis-
covery of a new space in which to hold our universe and ourselves.

A new kind of universal space; the idea is a hard one. To name it,
all the space in which we think the world and stars live and move and
have their being was ceded to Euclid as his by right of pre-emption,
description, and occupancy; then the new space and its quick-following
fellows could be called Non-Euclidean.

Gauss in a letter to Schumacher, dated Nov. 28, 1846, mentions that
as far back as 1792 he had started on this path to a new universe.
Again he says: “La géométrie non-euclidienne ne renferme en elle
rien de contradictoire, quoique, & prémiere vue, beaucoup de ses résul-
tats afen1'air de paradoxes. Ces contradictions apparents doivent étre
regardées comme l'effet d'une illusion, due A I'habitude que nous avons
prise de bonne heure de considérer la géométrie euclidienne comme
rigoureuse.”

But here we see in the last word the same imperfection of view as in
Clifford’s letter. The perception has not yet come that though the non-
Euclidean geometry is rigorous, Euclid is not one whit less so.
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A former friend of Gauss at Geettingen was the Hungarian Wolfgang
Bolyai. His principal work, published by subscription, has the follow-
ing title:

Tentamen Juventutem studiosam in elementa Matheseos purae, ele-
mentaris ac sublimioris, methodo intuitiva, evidentiaque huie propria, in-
troducendi. Tomus Primus, 1832; Secundus, 1833. 8vo. Maros-Vi-
sfirhelyini.

In the first volume with special numbering, appeared the celebrated
Appendix of his son John Bolyai with the following title:

APPENDIX.

SCIENTIAM SPATII absolule veram exhibens: a veritate aut falsitate
Aziomatis XI Buclidei (a priori haud unquam decidenda) independen-
tem. Auctore JoHANNE BorLyaAl de eadem, Geometrarum in Exercitu
Caesareo Regio Austriaco Castrensium Capitaneo. (26 pages of text).

This marvellous Appendix has been translated into French, Italian,
English and German.

In the title of Wolfgang Bolyai’s last work, the only one he com-
posed in German (88 pages of text, 1851), occurs the following:

“und da die Frage, ob zwey von der dritten geschnittene Geraden,
wenn die summe der immeren Winkel nicht=—2R, sich schneiden oder
nicht? niemand auf der Erde ohne ein Axiom (wie Euclid das XI)
aufzustellen, beantworten wird; die davon unabhsengige Geometrie
abzusondern; und eine auf die Ja-Antwort, andere auf das Nein so zu
bauen, dass die Formeln der letzen, auf ein Wink auch in der ersten
gliltig seyen.”

The author mentions Lobachevski’s Geometrische Untersuchungen,
Berlin, 1840, and compares it with the work of his son John Bolyai,
“gqu sujet duquel il dit: ‘Quelques exemplaires de 'ouvrage publié ici
ont été envoyés A cette époque A Vienne, & Berlin, & Geettingue. . . De
Goettingue le géant mathématique, [Gauss] qui du sommet des hauteurs
embrasse du méme regard les astres et la profondeur des abimes, a écrit
qu’il était ravi de voir exécuté le travail qu’il avait commencé pour le
laisser aprés lui dans ses papiers.’’”

In fact this first of the Non-E_u_clidean geometries accepts all of Eu-
clid’s axioms but the last, which it flatly denies and replaces by its con-
tradictory, that the sum of the interior angles made on the same side of
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a transversal by two straight lines may be less than a straight angle
without the lines meeting. A perfectly consistent and elegant geometry
then follows, in which the sum of the angles of a triangle is always less
than a straight angle, and not every triangle has its vertices concyclic,
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In geometry I find certain imperfections which I hold to be the rea-
son why this science, apart from transition into analytics, can as yet
make no advance from that state in which it has come to us from Euclid.

As belonging to these imperfections, I consider the obscurity in the
fundamental concepts of the geometrical magnitudes and in the manner
and method of representing the measuring of these magnitudes, and
finally the momentous gap in the theory of parallels, to fill which all ef-
forts of mathematicians have been so far in vain.

For this theory Legendre's endeavors have done nothing, since he
was forced to leave the only rigid way to tura into a side path and take
refuge in auxiliary theorems which he illogically strove to exhibit as
necessary axioms. My first essay on the foundations of geometry I pub-
lished in the Kasan Messenger for the year 1829. In the hope of having
satisfied all requirements, I undertook hereupon a treatment of the whole
of this science, and published my work in separate parts in the “Ge.
lehrten Schriften der Universiiet Kasan” for the years 1836, 1837, 1838,
under the title ¢“New Elements of Geometry, with a complete Theory
of Parallels.” The extent of this work perhaps hindered my country-
meh from following such a subject, which since Legendre had lost its
interest. Yet I am of the opinion that the Theory of Parallels should
not lose its claim to the attention of geometers, and therefore I aim to
give here the substance of my investigations, remarking beforehand that
contrary to the opinion of Legendre, all other imperfections— for ex-
ample, the definition of a straight line—show themselves foreign here
and without any real influence on the theory of parallels.

In order not to fatigue my reader with the multitude of those theo-
rems whose proofs present no difficulties, I prefix here only those of
which a knowledge is necessary for what follows.

1. A straight line fits upon itself in all its positions. By this I mean
that during the revolution of the surface containing it the straight line
does not change its place if it goes through two unmoving points in the
surface: (4. e., if we turn the surface containing it about two points of

the line, the line does not move.)
(11}
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2. Two straight lines can not intersect in two points.

3. A straight line sufficiently produced both ways must go out
beyond all bounds, and in such way cuts a bounded plain into two parts.

4. Two straight lines perpendicular to a third never intersect, how
far soever they be produced.

6. A straight line always cuts another in going from one side of it
over to the other side: (7. e.,, one straight line must cut another if it
bas points on both sides of it.)

6. Vertical angles, where the sides of one are productions of the
sides of the other, are equal. This holds of plane rectilineal angles
among themselves, as also of plane surface angles: (2. e., dihedral angles.)

7. Two straight lines can not intersect, if a third cuts them at the
same angle.

8. In a rectilineal triangle equal sides lie opposite equal angles, and
inversely.

9. In a rectilineal triangle, a greater side lies opposite a greater
angle. In aright-angled triangle the hypothenuse is greater than either
of the other sides, and the two angles adjacent to it are acute.

10. Rectilineal triangles are congruent if they have a side and two
angles equal, or two sides and the included angle equal, or two sides and
the angle opposite the greater equal, or three sides equal.

11. A straight line which stands at right angles upon two other
straight lines not in one plane with it is perpendicular to all straight
lines drawn through the common intersection point in the plane of those
two.

12. The intersection of a sphere with a plane is a circle.

13. A straight line at right angles to the intersection of two per-
pendicular planes, and in one, is perpendicular to the other.

14. In a spherical triangle equal sides lie opposite equal angles, and
inversely. ‘

15. Spherical triangles are congruent (or symmetrical) if they have
two sides and the included angle equal, or a side and the adjacent angles
equal. '

From here follow the other theorems with their explanations and
proofs.
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16. All straight lines which in a plane go out from a point can,
with reference to & given straight line in the same plane, be divided
into two classes—into cutting and not-cutting.

The boundary lines of the one and the other class of those lines will
be called parallel to the given line. c

From the point A (Fig.1) let fall upon the '
line BC the perpendicular AD, to which again
draw the perpendicular AE.

In the right angle EAD either will all straight
lines which go out from the point A meet t.hen,
line DC, as for example AF, or some of them,
like the perpendicular AE, will not meet the
line DC. In the uncertainty whether the per-
pendicular AE is the only line which does not
meet DC, we will assume it may be possible that tn
there are still other lines, for example AG, Fia. 1.
which do not cut DC, how far soever they may be prolonged. In pass.
ing over from the cutting lines, as AF, to the not-cutting lines, as AG,
we must come upon a line AH, parallel to DC, a boundary line, upon
one side of which all lines AG are such as do not meet the line DC,
while upon the other side every straight line AF cuts the line DC.

The angle HAD between the parallel HA and the perpendicular AD
is called the parallel angle (angle of parallelism), which we will here
designate by /1 (p) for AD = p.

It J7 (p) is a right angle, so will the prolongation AE’ of the perpen-
dicular AE likewise be parallel to the prolongation DB of the line DC,
in addition to which we remark that in regard to the four right angles,
which are made at the point A by the perpendiculars AE and AD,
and their prolongations AE’ and AD’, every straight line which goes
out from the point A, either itseif or at least its prolongation, lies in one
of the two right angles which are turned toward BC, so that except the
parallel EE’ all others, if they are sufficiently produced both ways, must
intersect the line BC.

If /T (p) < % m, then upon the other side of AD, making the same
angle DAK = [ (p) will lie also a line AK, parallel to the prolongas
tion DB of the line DC, so that under this assumption we must also
make a distinction of sides in parallelism.
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All remaining lines or their prolongations within the two right angles
turned toward BC pertain to those that intersect, if they }e within the
angle HAK = 2 T (p) between the parallels; they pertain on the other
hand to the non-intersecting AG, if they lie upon the other sides of the
parallels AH and AK, in the opening of the two angles EAH = }
— II(p), E’AK =} = — II (p), between the parallels and EE’ the per-
pendicular to AD. Upon the other side of the perpendicular EE’ will
in like manner the prolongations AH’” and AK’ of the parallels AH and
AK likewise be parallel to BC; the remaining lines pertain, if in the
angle K’AH’, to the intersecting, but if in the angles K’AE, H’AE’
to the non-intersecting.

In accordance with this, for the assumption /7 (p) = % . the lines can
be only intersecting or parallel; but if we assume that /7(p) < 4 7, then
we must allow two parallels, one on the one and one on the other side;
in addition we must distinguish the remaining lines into non-intersect-
ing and intersecting,

For both assumptions it serves as the mark of parallelism that the
line becomes intersecting for the smallest deviation toward the side
where lies the parallel, so that if AH is parallel to DC, every line AF
cuts DC, how small soever the angle HAF may be.
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17. A straight line maintains the characteristic of parallelism at all its

poinis.
Given AB (Fig. 2) parallel to CD, to which latter AC is perpendic
) A g
—B
¥
Fie. 2.

ular. "We will consider two points taken at random on the line AB and
its production beyond the perpendicular.

Let the point E lie on that side of the perpendicular on which AB is
looked upon as parallel to CD. )
Let fall from the point E a perpendicular EK on CD and so draw EF

that it falls within the angle BEK.

Connect the points A and F' by a straight line, whose production then
(by Theorem 16) must cut CD somewhere in G. Thus we get a triangle
ACG, into which the line EF goes; now since this latter, from the con.
struction, can not cut AC, and can not cut AG or EK a second time
(Theorem 2), therefore it must meet CD somewhere at H (Theorem 3).

Now let E’ be a point on the production of AB and E’K’ perpendic-
ular to the production of the line CD; draw the line E’F’ making so
small an angle AE’F’ that it cuts AC somewhere in F’; making the
same angle with AB, draw also from A the line AF, whose production
will cut CD in G (Theorem 16.)

Thus we get a triangle AGC, into which goes the production of the
line E'F’; since now this line can not cut AC a second time, and also
can not cut AG, since the angle BAG = BE’®, (Theorem 7), therefore
must it meet CD somewhere in G. :

Therefore from whatever points B and E’ the lines EF and E’F’ go
out, and however little they may diverge from the line AB, yet will
they always cut CD, to which AB is parallel.
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18.  Two lines are always mutually parallel,

Let AC be a perpendicular on CD, to which AB is parallel
if we draw from C the line ,
CE making any acute angle
ECD with CD, and let fall
from A the perpendicular AF
upon CE, we obtain a right-
angled triangle ACF, inwhich
AC, being the hypothenuse,
is greater than the side AF @
{(Theorem 9.) ¢ K

Make AG = AF, and slide Fra. 3.
the figure EFAB until AF coincides with AG, when AB and FE wil
take the position AK and GH, such that the angle BAK = FAC, con
sequently AK must cut the line DC somewhere in K (Theorem 16), thus
forming a triangle AKC, on one side of which the perpendicular GH
intersects the line AK in L (Theorem 3), and thus determines the dis.
tance AL of the intersection point of the lines AB and CE on the line
AB from the point A.

Hence it follows that CE will always intersect AB, how small soever
may be the angle ECD, consequently CD is parallel to AB (Theorem 16.}

19. In a rectilineal triangle the sum of the three angles can not be greater

than two right angles.

Suppose in the triangle ABC (Fig. 4) the sum of the three angles it
equal to v 4 a; then choose in case
of the inequality of the sides the
smallest BC, halve it in D, draw >
from A through D the line AD
and make the prolongation of it,

DE, equal to AD, then join the 4 c

point E to the point C by the Fia. 4.

straight line EC. In the congruent triangles ADB and CDE, the angle
ABD = DCE, and BAD = DEC (Theorems 6 and 10); whence follows
that also in the triangle ACE the sum of the three angles must be equal
to 7 4 a,; but also the smallest angle BAC (Theorem 9) of the triangle
ABC in passing over into the new triangle ACE has been cut up into
the two parts EAC and AEC. Continuing this process, continually

B E
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halving the side opposite the smallest angle, we must finally attain to a
triangle in which the sum of the three angles is 7 -- a, but wherein are
two angles, each of which in absolute magnitude is less than a; since
now, however, the third angle can not be greater than 7, so must a be
either null or negative.

20, If in any rectilineal triangle the sum of the three angles is equal to
two right angles, so is this also the case for every other triangle.

If in the rectilineal triangle ABC (Fig. 5) the sum of the three angles
= 77, then must at least two of its angles, A R
and C, be acute. Let fall from the vertex of
the third angle B upon the opposite side AC
the perpendicular p. This will cut the tri- 4
angle into two right-angled triangles, in each
of which the sum of the three angles must also be 7, since it cap not in
either be greater than 7, and in their combination not less than ;.

So we obtain a right-angled triangle with the perpendicular sides p
and q, and from this a quadrilateral whose opposite sides are equal and
whose adjacent sides p and q are at right angles (Fig. 6.)

By repetition of this quadrilateral we can make another with sides
np and q, and finally a quadrilateral ABCD with sides at right angles
to each other, such that AB = np, AD == mgq, DC = np, BC = mgq, where

A D
q q Rt q

P P

F1e. 5.

W

F1c. 6.

m and n are any whole numbers. Such a quadrilateral is divided by
the diagonal DB into two congruent right-angled triangles, BAD and
BCD, in each of which the sum of the three angles = 7.

The numbers n and m can be taken sufficiently great for the right-
angled triangle ABC (Fig. 7) whose perpendicular sides AB = np, BC
= mg, to enclose within itself another given (right-angled) triangle BDE

as soon as the right-angles fit each other.
2 —par.
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Drawing the line DC, we obtain right-angled triangles of which every
successive two have a side in commeon.

The triangle ABC is formed by the union of the two triangles ACD
and DCB, in neither of which can the sum of the angles be greater than
«; consequently it must be equal to 7z, in order that the sum in the
compound triangle may be equal to .

A % B
Fia. 7.

In the same way the triangle BDC consists of the two triangles DEC
and DBE, consequently must in DBE the sum of the three angles be
equal to 7, and in general this must be true for every triangle, since
each can be cut into two right-angled triangles.

From this it follows that only two hypotheses are allowable: Either
is the sum of the three angles in all rectilineal triangles equal to 7, or
this sum is in all less than 7. '

21. From a given point we can always draw a streight line that shall
make with a given straight line an angle as small as we choose.

Let fall from the given point A (Fig. 8) upon the given line BC the

A

R D E €

. Fia. 8.

perpendicular AB; take upon BC at random the point D; draw the line
AD; make DE = AD, and draw AE.
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In the right-angled triangle ABD let the angle ADB = a; then must
in the isosceles triangle ADE the angle AED be either {a or less (Theo-
rems 8 and 20). Continuing thus we finally attain to such an angle,
AEB, as is less than any given angle.

22. If two perpendiculars to the same straight line are parallel to each
other, then the sum of the three angles in a rectilineal triangle is equal to two

right angles.
Let the lines AB and CD (Fig. 9) be parallel to each other and per-
pendicular to AC. »

Draw from A the lines AE
and AF to the points E and F,
which are taken on the line CD
at any distances F'C > EC from
the point C. © ¥

Suppose in the right-angled tri- Fie. 9.
angle ACE the sum of the three angles is equal to 7 — g in the tri-
angle AEF equal to 7 — 3, then must it in triangle ACF equal 7 — «
— B, where g and 8 can not be negative.

Further, let theangle BAF = a, AFC = b, sois 2+ = a — b; now
by revolving the line AF away from the perpendicular AC we can make
the angle a between AF and the parallel AB as small as we choose; so
also can we lessen the angle b, consequently the two angles « and 3
can have no other magnitude than g = 0 and §=0.

It follows that in all rectilineal triangles the sum of the three angles
is either 7 and at the same time also the parallel angle /7 (p) = 4 = for
every line p, or for all triangles this sum is < ; and at the same time
also 1(p) < } 7.

The first assumption serves as foundation for the ordinary geometry and
plane trigonometry.

The second assumption can likewise be admitted without leading to
any contradiction in the results, and founds a new geometric science,
to which I have given the name Jmaginary Geometry, and which I in-
tend here to expound as far as the development of the equations be-
tween the sides and angles of the rectilineal and spherical triangle.

23. For every given angle o there {8 a line p such that IT (p) = a.

Let AB and AC (Fig. 10) be two straight lines which at the inter.
section point A make the acute angle z; take at random on AB a point

—l
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B’; from this point drop B’A” at right angles to AC; make A’A” =
AA’; erect at A” the perpendicular A”B”; and so continue until a per-

?/ G D

* ! Fie. 10. : e
pendicular CD is attained, which no longer intersects AB. This must
of necessity happen, for if in the triangle AA’B’ the sum of all three
angles is equal to = — a, then in the triangle AB’ A’ it equals 7 — 2a,
m triangle AA”B” less than ; — 2a (Theorem 20), and so forth, until
it finally becomes negative and thereby shows the impossibility of con.
structing the triangle.

The perpendicular CD may be the very one nearer than which to the
point A all others cut AB; at least in the passing over from those that
cut to.those not cutting such a perpendicular FG must exist.

Draw now from the point F the line FH, which makes with FG the
acute angle HFG, on that side where lies the point A. From any point
H of theline FH let fall upon AC the perpendicular HK, whose pro-
longation consequently must cut AB somewhere in B, and so makes a
triangle AKB, into which the prolongation of the line FH enters, and
therefore must meet the hypothenuse AB somewhere in M. Since the
angle GFH is arbitrary and can be taken as small as we wish, therefore
FG is parallelto AB and AF=p. (Theorems 16 and 18.)

One easily sees that with the lessening of p the angle zincreases, while,
for p = 0, it approaches the value 47; with the growth of p the angle
a decreases, while it continually approaches zero for p —« .

Since we are wholly at liberty to choose what angle we will under



THEORY OF PARALLELS, 21

stand by the symbol /7 (p) when the line p is expressed by a negative
number, g0 we will assume
IH(p)+1I(—p)=r,

an equation which shall hold for all values of p, positive as well as neg-
ative, and for p=0,

24. The farther parallel lines are prolonged on the side of their paral
lelism, the more they approach one another. i

If to the line AB (Fig. 11) two perpendiculars AC — BD are erected
and their end-points C and D joined by c F o
a straight line, then will the quadrilat- — ]
eral CABD have two right angles at (¢]
A and B, but two acute angles at C
and D (Theorem 22) which are equal

to one another, as we can easily see

A 3 B
by thinking fhe quadrilateral super- Fra. 11.

imposed upon itself so that the line BD falls upon AC and AC upon
BD.

Halve AB and erect at the mid-point E the line EF perpendicular to
AB. This line must also be perpendicular to CE, since the quadrilat-
erals CAEF and FDBE fit one another if we so place one on the other
‘bat the line EF remains in the same position. Hence the line CD can
not be parallel to AB, but the parallel to AB for the point C, namely
CG, must incline toward AB (Theorem 16) and cut from the perpendic-
ular BD a part BG < CA. ,

Since C is a random point in the line CG, it follows that CG itself
nears AB the more the farther it is prolonged.
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25. Two straight lines which are parallel to a third are also parallel to
each other.

Fia. 12.

We will first assume that the three lines AB, CD, EF (Fig. 12) liein
one plane. If two of them in order, AB and CD, are parallel to the
outmost one, EF, so are AB and CD parallel to each other. In order
to prove this, let fall from any point A of the outer line AB upon the
other outer line FE, the perpendicular AE, which will cut the middle
line CD in some point C (Theorem 3), at an angle DCE < {7 on the
side toward EF, the parallel to CD (Theorem 22).

A perpendicular AG let fall upon CD from the same point, A, must
fall within the opening of the acute angle ACG (Theorem 9); every
other line AH from A drawn within the angle BAC must cut EF, the
parallel to AB, somewhere in H, how small scever the angle BAH may
be; consequently will CD in the triangle AEH cut the line AH some-
where in K, since it is impossible that it should meet EF. If AH from
the point A went out within the angle CAG, then must it cut the pro-
longation of CD between the points C and G in the triangle CAG.
Hence follows that AB and CD are parallel (Theorems 16 and 18).

‘Were both the outer lines AB and EF assumed parallel to the middle
line CD, so would every line AK from the point A, drawn within the
angle BAE, cut theline CD somewhere in the point K, how small soever
the angle BAK might be.

Upon the prolongation of AK take at random a point L and join it
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with C by the line CL, which must cut EF somewhere in M, thus mak-
ing a triangle MCE.

The prolongation of the line AL within the triangle MCE can cut
neither AC nor CM a second time, consequently it must meet EF some-
where in H; therefore AB and EF are mutually parallel.

A G H

c
F1e. 13.

Now let the parallels AB and CD (Fig. 13) lie in two planes whose
intersection line is EF. From a random point E of this latter let
fall a perpendicular EA upon one of the two parallels, e. g., upon AB,
then from A, the foot of the perpendicular EA, let fall a new perpen.
dicular AC upon the other parallel CD and join the end-points E and C
of the two perpendiculars by the line EC. The angle BAC must be
acute (Theorem 22), consequently a perpendicular CG from C let fall
upon AB meets it in the point G upon that side of CA on which the
lines AB and CD are considered as parallel.

Every line EH [in the plane FEAB], however little it diverges from
EF, pertains with the line EC to a plane which must cut the plane of
the two parallels AB and CD along some line CH. This latter line cuts
AB somewhere, and in fact in the very point H which is common to all
three planes, through which necessarily also the line EH goes; conse-
quently EF is parallel to AB.

In the same way we may show the parallelism of EF and CD.

Therefore the hypothesis that a line EF is parallel to one of two other
parallels, AB and CD, is the same as considering EF as the intersection
of two planes in which two parallels, AB, CD, lie.

Consequently two lines are parallel to one anotherif they are parallel
to a third line, though the three be not co-planar.

The last theorem can be thus expressed:

Three planes tntersect in lines which are all parallel to each other if the
parallelism of two is pre.supposed.
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28. [Triangles standing opposite to one another on the sphere are equiva-
lent in surface.

By opposite triangles we here understand such as are made on both
sides of the center by the intersections of the sphere with planes; in such
triangles, therefore, the sides and angles are in contrary order.

In the opposite triangles ABC and A'B’C’ (Fig. 14, where one of
© them must be looked upon as represented turned about), we have the
sides AB == A’B’, BC =B’C’, CA = C’A’, and the corresponding angles

B

Cé

Iy S
Fre. 14.
at the points A, B, C are likewise equal to those in the other triangle at
th points A’, B/, C’.

Through the three points A, B, C, suppose a plane passed, and upon
it from the center of the sphere a perpendicular dropped whose pro-
longations both ways cut both opposite triangles in the points D and D’
of the sphere. The distances of the first D from the points ABC, in
arcs of great circles on the sphere, must be equal (Theorem 12) as well
to each other as also to the distances D’A’, D’B’, D’C’, on the other
triangle (Theorem 6), consequently the isosceles triangles about the points
D and D’ in the two spherical triangles ABC and A’B’C’ are congruent.

In order to judge of the equivalence of any two surfaces in general,
1 take the following theorem as fundamental:

Two surfaces are equivalent when they arise from the mating or separating

of equal parts.

27. A three-sided solid angle equals the half sum of the surface angles
less a right-angle.

In the spherical triangle ABC (Fig. 15), where each side < 7, desig-
nate the angles by A, B, C; prolong the side AB so that a whole circle
ABA'B’A is produced; thisdivides the sphere into two equal parta.
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In that half in which is the triangle ABC, prolong now the other two
sides through their common intersection point C until they meet the
circlein A’ and B’.

In this way the hemisphere is divided into four triangles, ABC, ACB’,
B’CA’, A’CB, whose size may be designated by P, X, Y,Z. 1t is evi.
dent that here P4-X =B, P4 Z=A.

The size of the spherical triangle Y equals that of the opposite triangle
ABC’, having a side AB in common with the triangle P, and whose
third angle C” lies at the end-point of the diameter of the sphere which
goes from C through the center D of the sphere (Theorem 26). Hence
it follows that

P4 Y =0C, andsince P + X + Y 4 Z =7, therefore we have also

P=3}(A+B+4C—n)

We may attain to the same conclusion in another way, based solely

upon the theorem about the equivalence of surfaces given above. (Theo-

rem 26.) :
In the spherical triangle ABC (Fig. 16), halve the sides AB and BC,
and through the mid-points D and B

E draw a great circle; upon this let
fall from A, B, C the perpendiculars
AF, BH, and CG. If the perpendic- »
ular from B falls at H between D and
E, then will of the triangles so made
BDH = AFD, and BHE —= EGC (The. 4
orems 6 and 15), whence follows that Fie. 16.

the surface of the triangle ABC equals that of the quadrilateral AFGC
(Theorem 26).
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If the point H coincides with the middle point E of the side BC (Fig.
B 17), only two equal right.angled triangles, ADF
and BDE, are made, by whose interchange the

r D equivalence of the surfaces of the triangle ABC
and the quadrilateral AFEC is established.

If, finally, the point H falls outside the triangle

A ¢ ABC (Fig. 18), the perpendicular CG goes, in

Fie. 17. consequence, through the triangle, and so we go

over from the triangle ABC to the quadrilateral AFGC by adding the

B

A 0
Fre. 18.
triangle FAD = DBH, and then taking away the triangle CGE — EBH.
Supposing in the spherical quadrilateral AFGC a great circle passed
through the points A and G, as also through F and C, then will their
arcs between AG and FC equal one another (Theorem 15), consequently
also the triangles FAC and ACG be congruent (Theorem 15), and the
angle FAC equal the angle ACG. '
Hence follows, that in all the preceding cases, the sum of all three
angles of the spherical triangle equals the sum of the two equal angles
in the quadrilateral which are not the right angles.
"~ Therefore we can, for every spherical triangle, in which the sum of
the three angles is S, find a quadrilateral with equivalent surface, in
which are two right angles and two equal perpendicular sides, and
where the two other angles are each 4S.
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Let now. ABCD (Fig. 19) be the spherical quadrilateral, where the
sides AB==DC are perpendicular to BC, and the angles A and D
each 4S.

>

A D G
Fia. 19.

Prolong the sides AD and BC until they cut one another in E, and
further beyond E, make DE = EF and let fall upon the prolongation
of BC the perpendicular FG. Bisect the whole arc BG and join the
mid-point H by great-circle-arcs with A and F.

The triangles EFG and DCE are congruent (Theorem 15), so FG =
DC = AB.

The triangles ABH and HGF are likewise congruent, since they are
right angled and have equal perpendicular sides, consequently AH and
AT pertain to one circle, the arc AHF — 1, ADEF likewise = x, the
angle HAD — HFE =48 — BAH = }S — HFG = 4S — HFE—EFG
=3S—HAD-744S; consequently, angle HFE = §(S—=); or what
is the same, this equals the size of the lune AHFDA, which again is
equal to the quadrilateral ABCD, as we easily see if we pass over from
the one to the other by first adding the triangle EFG and then BAH
and thereupon taking away the triangles equal to them DCE and HFG.

Therefore § (S—r) is the size of the quadrilateral ABCD and at the
same time also that of the spherical triangle in which the sum of the
three angles is equal to S.

AT



28 THEORY OF PARALLELS.

28. If three planes cut each other in parallel lines, then the sum of the
three surface angles equals two right angles.
Let AA’, BB’ CC’ (Fig. 20) be three parallels made by the inter-
section of planes (Theorem 25). Take upon them at random three
A

A’
T,

ol
]
=

G
Fie. 20.

points A, B, C, and suppose through these a plane passed, which con-
sequently will cut the planes of the parallels along the straight lines
AB, AC, and BC. Further, pass through the line AC and any point
D on the BB/, another plane, whose intersection with the two planes of
the parallels AA’ and BB’, CC’ and BB’ produces the two lines AD
and DC, and whose inclination to the third plane of the parallels AA’
and CC’ we will designate by w.

The angles between the three planes in which the parallels lie will
be designated by X, Y, Z, respectively at the lines AA’, BB/, CC’;
finally call the linear angles BDC =a, ADC =b, ADB=c.

About A as center suppose a sphere described, upon which the inter-
sections of the straight lines AC, AD AA’ with it determine a spherical
triangle, with the sides p, q, and r. Call its size . Opposite the side
q lies the angle w, opposite r lies X, and consequently opposite p lies
the angle 7-}-24—w—X, (Theorem 27).

In like manner CA, CD, CC’ cut a sphere about the center C, and
determine a triangle of size 3, with the sides p’, ¢/, 1/, and the angles, w
opposite q’, Z opposite 1/, and consequently 7w+-23—w—Z opposite p’.

Finally is determined by the intersection of a sphere about D with
the lines DA, DB, DC, a spherical triangle, whose sides are 1, m, n, and
the angles opposite them w-}-Z—28, w+4X—24, and Y. Consequently
its size 0 = § (X4 Y +Z—rn)—a—p+w.

Decreasing w lessens also the size of the triangles  and j3, so that
a-f3—w can be made smaller than any given number.
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In the triangle ¢ can likewise the sides 1 and m be lessened even to
vanishing (Theorem 21), consequently the triangle ¢ can be placed with
one of its sides 1 or m upon a great circle of the sphere as often as you
choose without thereby filling up the half of the sphere, hence § van-
ishes together with w; whence follows that necessarily we must have

X4+Y4-Z =z

29. In a rectilineal triangle, the perpendiculars erected at the mid-points
of the sides either do mot meet, or they all three cut each other in one point.

Having pre-supposed in the triangle ABC (Fig. 21), that the two per-
pendiculars ED and DF, which are erected upon the sides AB and BC
at their mid points E and F, intersect in the point D, then draw within
the angles of the triangle the lines DA, DB, DC.

In the congruent triangles ADE and BDE (Theorem 10), we have
AD = BD, thus follows also that BD = CD; the B
triangle ADC is hence isosceles, consequently the
perpendicular dropped from the vertex D upon the
base AC falls upon G the mid point of the base. & F

The proof remains unchanged also in the case
when the intersection point D of the two perpen-
diculars ED and FD falls in the line AC itself, or 7 ¢
falls without the triangle. Fa. 21

In case we therefore pre-suppose that two of those perpendiculars do
not intersect, then also the third can not meet with them.

80. The perpendiculars which are erected upon the sides of a rectilineal

triangle at their mid-points, must all three be parallal to each other, so soon
as the parallelism of two of them is pre-supposed.

In the triangle ABC (Fig. 22) let the lines DE, FG, HK, be erected
perpendicular upon the sides at their mid-
points D, F, H. We will in the first place
assume that the two perpendiculars DE and
FG are parallel, cutting the line AB in L
and M, and that the perpendicular HK lies
between them. Within theangle BLE draw
from the point L, at random, a straight line
LG, which must cut FG somewhere in G,
how small soever the angle of deviation GLE may be. (Theorem 16).
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Since in the triangle LGM the perpendicular HK can not meet with
MG (Theorem 29), therefore it must cut LG somewhere in P, whence
follows, that HK is parallel to DE (Theorem 16), and to MG (Theorems
18 and 25).

Put the side BC= 2a, AC=2b, AB=2¢, and designate the an.
gles opposite these sides by A, B, C, then we have in the case just
considered

A= TI(0)—11(c),

B=II(a)—1II(c),

C=IT()+11 (),
as one may easily show with help of the lines AA’, BB/, CC’, which
are drawn from the points A, B, C, parallel to the perpendicular HK
and consequently to both the other perpendicula.rs DE and FG (Theo-
rems 23 and 25).

Let now the two perpendiculars HK and FG be parallel, then can
the third DE not cut them (Theorem 29), hence is it either parallel to
them, or it cuts AA’,

The last assumption is not other than that the angle

C> 11 (a)+1I(b.)

If we lessen this angle, so that it becomes equal to /7 (a) - Z/(b),
while we in that way give the line AC the new position CQ, (Fig. 23),
and designate the size of the third side BQ by 2¢’, then must the angle
CBQ at the point B, which is increased, in accordance with what is
proved above, be equal to

1(a)—11(¢")> I1(a)—11(c),
whence follows ¢’ >c¢ (Theorem 23).
A

B
Fic. 23.

In the triangle ACQ are, however, the angles at A and Q equal,
hence in the triangle ABQ must the angle at Q be greater than that at
the point A, consequently is AB>BQ, (Theorem 9); that is ¢>c’.

81. We call boundary line (oricycle) that curve lying in a plane for
which all perpendiculars erected at the mid-points of chords are parallel to
each other.
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In conformity with this definition we can represent the generation of
a boundary line, if we draw to a given line AB (Fig. 24) from a given

Fra. 24.
point A in it, making different angles CAB = [](a), chords AC ==2a;
the end C of such a chord will lie on the boundary line, whose points
we can thus gradually determine.

The perpendicular DE erected upon the chord AC at its mid-point D
will be parallel to the line AB, which we will call the Axis of the bound-
ary line. In like manner will also each perpendicular F'G erected at the
mid.-point of any chord AH, be parallel to AB, consequently must this
peculiarity also pertain to every perpendicular KL in general which is
erected at the mid-point K of any chord CH, between whatever points
C and H of the boundary line this may be drawn (Theorem 30). Such
perpendiculars must therefore likewise, without distinction from AB,
be called Axes of the boundary line.

32. A circle with continually increasing radius merges into the boundary
line.

Given AB (Fig. 25) a chord of the boundary line; draw from tha
end-points A and B of the chord two axes
AC and BF, which consequently will
make with the chord two equal angles

BAC == ABF = g (Theorem 31). X
Upon one of these axes AC, take any- PN/ b
where the point E as center of a circle,
and draw thearc AF from the initial point £ s ¢
A of the axis AC to its intersection point Fia. 25.

T with the other axis BF.
The radius of the circle, FE, corresponding to the point ¥ will make
on the one side with the chord AF an angle AFE =4, and on the
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other side with the axis BF, the angle EFD=/1. It follows that the
angle between the two chords BAF == a—pB<pB+r—a (Theorem 22);
whence follows, a—_3<37-.

Since now however the angle y approaches the limit zero, as well in
consequence of a moving of the center E in the direction AC, when F
remains unchanged, (Theorem 21), as also in consequence of an ap-
proach of F to B on the axis BF, when the center E remains in its
position (Theorem 22), so it follows, that with such a lessening of the
angle y, also the angle a—3, or the mutual inclination of the two chords
AB and AT, and hence also the distance of the point B on the bound-
ary line from the point F on the circle, tends to vanish.

Consequently one may also call the boundary-line o circle with in-
Jindtely great radius,

33. Let AA’=BB’==u« (Figure 26), be two lines parallel toward

the side from A to A’, which parallels serve ’Nn‘
as axes for the two boundary arcs (ares on o ,
two boundary lines) AB=s, A’B'==¢, thenis

s == g0 —=x A «
where © is independent of the arcs s, s’ and of F1a. 26.

- the straight hne , the distance of the arc s’ from s.

In order to prove this, assume that the ratio of the arc s to s’ is
equal to the ratio of the two whole numbers » and m.

Between the two axes AA’, BB’ draw yet a third axis CC’, which
so cuts off from the arc AB a part AC==¢and from the arc A’B’ on
the same side, a part A’C’=1¢. Assume the ratio of ¢ to s equal to
that of the whole numbers p and ¢, so that

n p
s=—3y¢', t==—as.
m q

Divide now s by axes into ng equal parts, then will there be mg such
parts on s/ and np on ¢,

However there correspond to these equal parts on s and ¢ likewise
equal parts on s’ and ¢/, consequently we have

s

14 s
Hence also wherever the two arcs ¢ and ¢/ may be taken between the
two axes AA’ and BB/, the ratio of ¢ to #/ remains always the same, as
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long as the distance z between them remains the same. If we there-
fore for =1, put s— es’, then we must have for every x
sl—=se" =

Since e is an unknown number only subjected to the condition e>1,
and further the linear unit for = may be taken at will, therefore we may,
for the simplification of reckoning, so choose it that by e is to be un.
derstood the base of Napierian logarithms.

‘We may here remark, that s’— 0 for #= o, hence not only does
the distance between two parallels decrease (Theorem 24), but with the
prolongation of the parallels toward the side of the parallelism this at
last wholly vanishes. Parallel lines have therefore the character of
asymptotes.

34. Boundary surface (orisphere) we call that surface which arises
from the revolution of the boundary line about one of its axes, which,
together with all other axes of the boundary-line, will be also an axis
of the boundary-surface.

A chord is inclined at equal angles to such axes drawn through its end-
points, wheresoever these two end-points may be taken on the boundary-surface.

Let A, B, C, (Fig. 27), be three points on the boundary-surface;:

’
' ’ s B

rn"(f?

<
Kl

Fra. 27.
AA/, the axis of revolution, BB/ and CC’ two other axes, hence AB
and AC chords to which the axes are inclined at equal angles A’AB
=B/BA, A’AC =(C’CA (Theorem 31.)
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Two axes BB/, CC/, drawn through the end-points of the third chord
BC, are likewise parallel and lie in one plane, (Theorem 25).

A perpendicular DD’ erected at the mid-point D of the chord AB
and in the plane of the two parallels AA’, BB/, must be parallel to the
three axes AA/, BB/, CC’, (Theorems 23 and 25); just Such a perpen-
dicular EE’ upon the chord AC in the plane of the parallels AA’, CC’
will be parallel to the three axes AA’, BB/, CC’, and the perpendicular
DD’. Let now the angle between the plane in which the parallels AA’
and BB/ lie, and the plane of the triangle ABC be designated by 7 (a),
where a may be positive, negative or null. If « is positive, then erect
FD == a within the triangle ABC, and in its plane, perpendicular upon
the chord AB at its mid-point D.

‘Were a a negative number, then must FD — a be drawn outside the
triangle on the other side of the chord AB; when a =0, the point I
coincides with D.

In all cases arise two congruent right-angled triangles AFD and DFB,
consequently we have FA — FB.

Erect now at F' the line FF/ perpendicular to the plane of the tri-
angle ABC.

Since the angle D’DF = [[(a), and DF =a, so FF/ is parallel to
DD’ and the line EE’, with which also it lies in one plane perpendicu.
lar to the plane of the triangle ABC.

Suppose now in the plane of the parallels EE’, FF upon EF the per-
pendicular EX erected, then will this be also at right angles to the plane
of the triangle ABC, (Theorem 13), and to the line AE lying in this
plane, (Theorem 11); and consequently must AE, which is perpendicu-
lar to EK and EE’, be also at the same time perpendicular to F'E,
(Theorem 11). The triangles AEF and FEC are congruent, since they
are right-angled and have the sides about the right angles equal, hence is

AF=FC=TFB.

A perpendicular from the vertex F' of the isosceles triangle BFC let
fall upon the base BC, goes through its mid-point G; a plane passed
through this perpendicular FG and the line FF' must be perpendicular
to the plane of the triangle ABC, and cuts the plane of the parallels
BB’, CC’, along the line GG’, which is likewise parallel to BB’ and
CC/, (Theorem 25); since now CG is at right angles to F'G, and hence
at the same time also to GG’, so consequently is the angle C’CG
=B’BG, (Theorem 23).
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Hence follows, that for the boundary-surface each of the axes may
be considered as axis of revolution.

Principal-plane we will call each plane passed through an axis of the
boundary surface.

Accordingly every Principat-plane cuts the boundary-surface in the
boundary line, while for another position of the cutting plane this in.
tersection is a circle.

Three principal planes which mutually cut each other, make with
each other angles whose sum is 7, (Theorem 28).

These angles we will consider as angles in the boundary-triangle
whose sides are arcs of the boundary-line, which are made on the bound-
ary surface by the intersections with the three principal planes. Con-
sequently the same interdependence of the angles and sides pertains to
the boundary-triangles, that is proved in the ordinary geometry for the
rectilineal triangle.

85. In what follows, we will designate the size of a line by a letter
with an accent added, e. g. «/, in order to indicate that this has a rela,
tion to that of another line, which is represented by the same letter
without accent z, which relation is given by the equation

1@+ 1@E) =i

Let now ABC (Fig. 28) be a rectilineal right-angled triangle, where
the hypothenuse AB—c, the other sides AC==b, BC =a, and the

angles opposite them are
BAC = [I(a), ABC=IT(B).
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At the point A erect the line AA’ at right angles to the plane of the
triangle ABC, and from the points B and C draw BB’ and CC’ parallel
to AA’.

The planes in which these three parallels lie make with each other
the angles: [](a) at AA’, a right angle at CC’ (Theorems 11 and 13),
consequently //(a") at BB’ (Theorem 28).

The intersections of the lines BA, BC, BB’ with a sphere described
about the point B as center, determine a spherical triangle mn%, in which
the sides are mn= [J(c), kn=II(8), mk= I](a)and the opposite angles
are [I(b), 11('), } .

Therefore we must, with the existence of a rectilineal triangle whose
sides are a, b, ¢ and the opposite angles /7 (a), /1(8) 4, also admit the
existence of a spherical triangle (Fig. 29) with the sides /7 (c), 1(B),
II(s) and the opposite angles 71(b), [I(a’), .

Fia. 29.

Of these two triangles, however, also inversely ihe existence of the
spherical triangle necessitates anew that of a rectilineal, which in con.
sequence, also can have the sides a, a’, 8, and the oppsite angles /7 (v,
H(c)r i’” .

Hence we may pass over from a, b, ¢, g, By tob, a, ¢, B, 2, and also to a,
a, /v, e

Suppose through the point A (Fig. 28) with AA’ as axis, a bound.
ary-surface passed, which cuts the two other axes BB/, CC’, in B” and
C’, and whose intersections with the planes the parallels form & bound-
ary-triangle, whose sides are B’C" =p, C’A—g, B"A =1, and the
angles opposite them J[/(a), /I(2’), 4x, and where consequently (Theo-
rem 34):

p=rsin [I(a), ¢ = rcos Il(a).

Now break the connection of the three principal-planes along the line
BB’, and turn them out from each other so that they with all the lines
lying in them come to lie in one plane, where consequently the arcs D
¢, 7 will unite to a single arc of a boundary-line, which zoes through the
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point A and has A A/ for axis, in such a manner that (Fig. 30) on the
~ one side will lie, the arcs ¢ and p, the side b of the triangle, which is

Fia. 30.
perpendicular to AA’ at A, the axis CC’ going from the end of b par-
allel to AA’ and through C” the union point of p and g, the side a per-
pendicular to CC’ at the point C, and from the end-point of a the axis
BB’ parallel to AA’ which goes through the end-point B” of the arc p.

On the other side of AA’ will lie, the side ¢ perpendicular to AA’ at
the point A, and the axis BB’ parallel to AA’, and going through the
end-point B? of the arc r remote from the end point of b.

The size of the line CC” depends upon b, which dependence we will
express by CC” = f (b).

In like manner we will have BB” = £ (¢).

If we describe, taking CC’ as axis, a new boundary line from the
point C to its intersection D with the axis BB’ and designate the arc
CD by ¢, then is BD= £ (a).

BB’ = BD-DB” = BD+-CC’, consequently
1(©)=r(@)+7(b)-

Moreover, we perceive, that (Theorem 33)

t=pef®) =r gin [I(x) €/®,

If the perpendicular to the plane of the triangle ABC (Fig. 28) were
erected at B instead of at the point A, then would the lines ¢ and » remain
the same, the arcs ¢ and ¢ would change to ¢ and g, the straight lines a
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and binto b and a, and the angle /1(z) into I7(g), consequently we
would have
g=rsin [1(f) e/®,
whence follows by substituting the value of ¢,
cos [l (x) =sin JT(B) e/®,
and if we change g and 3 into b’ and ¢,
sin [J (b)==sin [] (c) e ")
further, by multiplication with e/®
sin [T (b) €/® =sin [] (c) e/
Hence follows also
sin /] (a) e/® = sin JT(b) €/®,

Since now, however, the straight lines a and b are independent of
one another, and moreover, for b=0, f(b)=0, [I(b)=4%z, so we have
~ for every straight line a

€ ~/® =sin [] (a).

Therefore,

sin /7 (c) =sin /] (a) sin 17 (b),
sin [T (B) =cos I (2) sin [1 (a).
Hence we obtain besides by mutation of the letters
sin [] (a) = cos IT(f) sin [T (b),
cos 1 (b)= cos [1 (c) cos [I (a),
cos [I (a) = cos [ (c) cos [T (P).

If we designate in the right-angled spherical triangle (Fig. 29) the
gides [1(c), 11 (B), 11 (a), with the opposite angles /I(b), II (a’), by the
letters a, b, ¢, A, B, then the obtained equations take on the form of
those which we know as proved in spherical trigonometry for the right-
angled triangle, namely,

sin a=sin ¢ sin A,

sin b=sin ¢ sin B,

cos A=cos asin B,

cos B==cos b, sin A,

cos ¢c=cos a, cos b;
from which equations we can pass over to those for all spherical tri-
- angles in general. ,
Hence spherical trigonometry is not dependent upon whether in a
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rectilineal triangle the sum of the three angles is equal to two right
angles or not.

88. We will now consider anew the right-angled rectilineal triangle
ABC (Fig. 31), in which the sides are a, b, ¢, and the opposite angles
(a), 11(B), 3=

Prolong the hypothenuse ¢ through .
the point B, and make BD=g; at the
point D erect upon BD the perpendicu-
lar DD/, which consequently will be
parallel to BB', the prolongation of the
side a beyond the point B. Parallel to
DD’ from the point A draw AA’, which
is at the same time also parallel to CB’,
{Theorem 25), therefore is the angle

A’AD=IT(c+f)
A’AC=]] (b), consequently
AE)=H@+Tc+p & . ©

If from B we lay off 3 on the hypoth-
enuse ¢, then at the end point D, (Fig.
32), within the triangle erect upon AB
the perpendicular DD’, and-from the
point A parallel to DD’ draw AA’, so
will BC with its prolongation CC’ be the
third parallel; then is, angle CAA’=]]
(b), DAA’= [T (c—}f3), consequently [I(c—
B)=1I1I(a)+11 (b). The last equation is
then also still valid, when c= ﬂ, orc< ‘B
D If c=p (Fig. 33), then the perpendicu-
Fia. 32. ular A A’ erected upon AB at the point A

NSO c
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is parallel to the sidle BC=a, with its prolongation, CC’, consequently
A

Fia. 33.

we have /] (a)4-71(b)=4n, whilst also /T (c—p)=4%n, (Theorem 23).

If c<}j, then the end of § falls beyond the point A at D (Fig. 34)
upon the prolongation of the hypothenuse AB. Here the perpendicu-
lar DD’ erected upon AD, and the line AA’ parallel to it from A, will

#  likewise be parallel to the side BC—=a,

with its prolongation CC’.
mp) Here we have the angle DAA’ = [
s (f—c), consequently
IH(a)+11(6) =n—IT(3—c)=IT(c—p),
(Theorem 23).

The combination of the two equations
found gives,

21I(b)y=Il(c—f)+11(c+p)
21(a)y=II(c—p)—1I(c+p),

whence follows
cos T1(b) _cos [$1(c—p)+4 I(c+p)]
cos [1(z) cos [ $11(c—F)—4 I+ )]

Substituting here the value, (Theo-
ly rem 35)

cos 11 (b)

[+

Fia. 34.

=cos/](c),
cos [ ()
we have [tan 4 [T (c)JP=tan 4 /T (c—}f) tan /T (c+-f3)-
Since here 3 is an arbitrary number, as the angle /7(f3) at the one
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side of ¢ may be chosen at will between the limits 0 and }x, conse-
quently 3 between the limits 0 and o, so we may deduce by taking
consecutively f=c, 2¢, 3¢, &c., that for every positive number n, [tan}
1I(c)]=tan} [I(nc).

If we consider n as the ratio of two lines x and c, and assume that
cot} [1(c)—=e,
then we find for every line x in general, whether it be positive or nega-
tive,  tan}/l(x)—e—*
where € may be any arbitrary number, which is greater than unity,
since - [I(x)=0 for x—w.

Since the unit by which the lines are measured is arbitrary, so we
may also understand by e the base of the Napierian Logarithms.

37. Of the equations found above in Theorem 35 it is sufficient to
know the two following,

sin JI(c)=sin J1(a} sin /] (b)
sin/] (a)=sin JI(b) cos I1(),

applying the latter to both the sides a and b about the right angle, in
order from the combination to deduce the remaining two of Theorem
35, without ambiguity of the algebraic sign, since here all angles are
acute.

In a similar manner we attain the two equations

(1.) tan [I(c)=sin [I(a) tan [I(a),
(2.) cos [l(a)=cos [(c) cos I (B).

‘We will now consider a rectilineal triangle whose sides are a, b, ¢,
(Fig. 35) and the opposite angles A, B, C.

If A and B are acute angles, then the

perpendicular p from the vertex of the

Y N angle C falls within the triangle and cuts

. . the side ¢ into two parts, x on the side of
D e the angle A and c—x on the side of the

Fia. 35. angle B. Thus arise two right-angled

triangles, for which we obtain, by, application of equation (1),
tan [/(a)=sin B tan /I(p),
tan [/(b)=sin A tan/] (p),
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. Which equations remain unchanged also when one of the angles, e.g. B,
is a right angle (Fig. 36) or and obtuse angle (Fig. 37).
c [+]

A 3 B A © B v
Fie. 386. Fia. 37,
Therefore we have universally for every triangle
(3.) sin A tan JI(a)=sin B tan [](b).

For a triangle with acute angles A, B, (Fig. 35) we have also (Equa-

tion 2),

cos [(x)=cos A cos [I(b),

co8 [](c—x)=cos B cos /I(a)
which equations also relate to triangles, in which one of the angles A
or B is a right angle or an obtuse angle.

As example, for B=4r (Fig. 36) we must take x=c, the first oqua-
tion then goes over into that which we have found above as Equation 2,
the other, however, is self-sufficing.

For B>}r (Fig. 37) the first equation remains unchanged, instead
of the second, however, we must write correspondingly

cos [I(x—c)=cos (x—B) cos [1(a);
but we have cos [JI(x—c)=—cos [/(c—x)
(Theorem 23), and also cos (7—B)=—cos B.

If A is a right or an obtuse angle, then must c—x and x be put for
x and ¢—x, in order to carry back this case upon the preceding.

In order to eliminate x from both equations, we notice that (Theo-
rem 36)

1—[tan} [l(c—x) ]2
T {ten } (=) F
1—e2x—20
T
1—[tan 3 [1(c)]2[cot 4 [I(x)]®
14 [ten 3 IO [cot HIE)]
cos I1(c)—coslI(x)
~1cos 1I(c)cosll(x)

cos [I(c—x)=
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It we substitute here the expression for cos /I(x), cos/J(c—x), weob-
tain

__cos /(a) cos B-4-cos/I(b) cos A

cosll(c)= 1+4-cos/l(a) cos/I(b) cosA. cosB

whence follows

__ cos JI(c)—cosA cos/I(b
co8 [1(s) cosB= :os—cosA cos/I(b) cos ﬁ]()c)

and finally
[sin 77(c) ]*=[1—cos Beos IT(c) cos IT (a) ][1 -cos A cos JT (b) cos 1T (c)]
In the same way we must also have
(4)
[sin 77(a) ]# =[1—cos C cos /(&) cos /T (b) ][1—cos B cos /7 (c) cos /1(s) ]
[sin /7 (b) ]2 =[1—cos A cos JI (b) cos /1 (c) ] [1—cos C cos J1(a) cos 1I(b)]

From these three equations we find

Lot Iﬁtig]]g[[(ii;]i]@)] : =[1—cosA cos /I (b) cos(c)]s.
Hence follows without ambiguity of sign,
in 77 in IT
(5.) cos A cos J7 (b) cos I1(c) +sm sirgb])lsz:) (c)_ .

If we substitute here the value of sin J7(c) corresponding to equa-
tion (3.)
. sin A
sin 11 (¢)= pr tan 7 (a) cos J7 (c)

then we obtain

cos I1(a)sinC
sin A sin /] (b)-cos A sin C cos /] (a) cos 11 (b);
but by substituting this expression for cos /T (c) in equation (4),

cos I1 (c) =

s __cos II(b)
6. cot A gin C sin /7 (b)--cos C_cos 6
By elimination of sin /7(b) with help of the equation (3) comes
cos 17 (a) cosA | .
C‘(-)B-II%F)OOB C=1— msmc sin /1 (8:).

In the meantime the equation (6).gives by changing the letters,
cos 11 (a)

oo_s—ﬁ—(l};:c"t B sin C sin /1 (8)4-cosC.
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From the last two equations follows,

(7) cos A--cos B cos 02%137;1(1%)_(_}

All four equations for the interdependence of the sides a, b, ¢, and
the opposite angles A, B, C, in the rectilineal triangle will therefore be,
[Equations (3), (5), (6), (7).

sin A tan 7 (a) = sin B tan /7 (b),

sin [T (b) sin [T
cos A cos /] (b) cos H(c)+_s_i(n_)1%£)_ =1,
8) . . __cos 11 (b)
cot A sin Csin /7 (b) 4 cosC = IT(3)
sin BsinC
cos A -}- cos Beos C Ty IIOR

If the sides a, b, ¢, of the triangle are very small, we may content our-
selves with the approximate determinations. (Theorem 36.)

cot [T(a) = a,
sin //(a) = 1 — }a?
cos /1 (a) = a,

and in like manner also for the other sides b and c.
The equations 8 pass over for such triangles into the following:
bsin A = asin B,
a? =Db? 4 c2 — 2bccos A,
asin (A 4 C) = bsin A,
cos A -}-cos(BC)=0.

Of these equations the first two are assumed in the ordinary geom-

etry; the last two lead, with the help of the first, to the conclusion
A4+B+4+C=n

Therefore the imaginary geometry passes over into the ordinary, when
we suppose that the sides of a rectilineal triangle are very small.

I have,in the scientific bulletins of the University of Kasan, pub-
lished certain researches in regard to the measurement of curved lines,
of plane figures, of the surfaces and the volumes of solids, as well as in
relation to the application of imaginary geometry to analysis.

The equations (8) attain for themselves already a sufficient foundation
for considering the assumption of imaginary geometry as possible.
Hence there is no means, other than astronomical observations, to use
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for judging of the exactitude which pertains to the calculations of the
ordinary geometry.

This exactitude is very far-reaching, as I have shown in one of my
investigations, so that, for example, in triangles whose sides are attain.
able for our measurement, the sum of the three angles is not indeed dif-
ferent from two right-angles by the hundredth part of a second.

In addition, it is worthy of notice that the four equations (8) of
plane geometry pass over into the equations for spherical triangles, if
we put a4/— 1,b 4/— 1, ¢ 4/— 1, instead of the sides a, b, ¢; with thie -
change, however, we must also put

sin 77 (a) =ﬁ

cos [T (a) = (4/— 1) tan s,
1

tan /7 () =sina(.\/—-1),

and similarly also for the sides b and c.
In this manner we pass over from equations (8) to the following:
sin A sinb = sin Bsin a,
cosa = cosb cosc--sinb sinccos A,
cot A sin C -} cos C cosb =sinb cota,
cos A == cosa sin B sin C — cos B cosC.



TRANSLATOR'S APPENDIX.

ELLIPTIC GEOMETRY.

Gauss himself never published aught upon this fascinating subject,
Geometry Non-Euclidean; but when the most extraordinary pupil of
his long teaching life came to read his inaugural dissertation before the
Philosophical Faculty of the University of Goettingen, from the three
themes submitted it was the choice of Gauss which fixed upon the one
«Ueber die Hypothesen welche der Geometrie zu Grunde liegen.”

Gauss was then recognized as the most powerful mathematician in the
world. I wonder if he saw that here his pupil was already beyond him,
when in his sixth sentence Riemann says, «therefore space is only a
special case of a three-fold extensive magnitude,” and continues:
«From this, however, it follows of necessity, that the propositions of
geometry can not be deduced from general magnitude-ideas, but that
those peculiarities through which space distinguishes itself from other
thinkable threefold extended magnitudes can only be gotten from ex-
perience. Hence arises the problem, to find the simplest facts from
which the metrical relations of space are determinable —a problem
which from the nature of the thing is not fully determinate; for there
may be obtained several systems of simple facts which suffice to deter-
mine the metrics of space; that of Buclid as weightiest is for the pres-
ent aim made fundamental. These facts are, as all facts, not necessary,
but only of empirical certainty; they are hypotheses. Therefore one
can investigate their probability, which, within the limits of observation,
of course is very great, and after this judge of the allowability of their
extension beyond the bounds of observation, as well on the side of the
immeasurably great as on the side of the immeasurably small.”

Riemann extends the idea of curvature to spaces of three and more
dimensions, The curvature of the sphere is constant and positive, and
on it figures can freely move without deformation. The curvature of
the plane is constant and zero, and on it figures slide without stretching.
The curvature of the two-dimentional space of Lobachevski and

[47]
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Bolyai completes the group, being constant and negative, and in it fig-
ures can move without stretching or squeezing. As thus corresponding
to the sphere it is called the pseudo-sphere.

In the space in which we live, we suppose we can move without de-
formation. It would then, according to Riemann, be a special case of
& space of constant curvature. We presume its curvature null. At
once the supposed fact that our space does not interfere to squeeze us
or stretch us when we move, is envisaged as a peculiar property of our
space. Butis it not absurd to speak of space as interfering with any-
thing? If you think so, take a knife and a raw potato, and try to cut
it into a seven-edged solid.

Further on in this astonishing discourse comes the epoch-making idea,
that though space be unhounded, it is not therefore infinitely great.
Riemann says: “In the extension of space-constructions to the im-
measurably great, the unbounded is to be distinguished from the in-
finite; the first pertains to the relations of extension, the latter to the
size-relations.

“That our space is an unbounded three-fold extensive manifoldness, is
a hypothesis, which is applied in each apprehension of the outer world,

according to which, in each moment, the domain of actual perception is

filled out, and the possible places of a sought object constructed, and

_ which in these applications is continually confirmed. The unbounded-

ness of space possesses therefore a greater empirical certainty than any
outer experience. From this however the Infinity in no way follows,
Rather would space, if one presumes bodies independent of place, that
is ascribes to it & constant curvature, necessarily be finite so soon as this
curvature had ever so small a positive value. One would, by extend.
ing the beginnings of the geodesics lying in a surface-element, obtain
an unbounded surface with constant positive curvature, therefore a sur-
face which in a homaloidal three-fold extensive manifoldness would
take the form of a sphere, and so is finite.”

Here we have for the first time in human thought the marvelous per-
ception that universal space may yet be only finite.

Assume that a straight line is uniquely determined by two points, but
take the contradictory of the axiom tlrat a straight line is of infinite
size; then the straight line returns into itself, and two having inter-
sected get back to that intersection point.
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A Dbibliography of non-Euclidean literature down to the year 1878
was given by Halsted, “American Journael of Mathematics,” vols. i, ii,
containing 81 authors and 174 titles, and reprinted in the collected
works of Lobachevski (Kazan, 1886) giving 124 authors and 272 titles.
This was incorporated in Bonola’s Bibliography of the Foundations of
Geometry (1899) reprinted (1902) at Kolozsvar in the Bolyai Memorial
Volume. In 1911 appeared the volume: Bibliography of Non-Euclidean
Geometry by Duncan M. Y. Sommerville; London, Harrison and Sons.

The Introduction says: “The present work was begun about nine
years ago. It was intended as a continuation of Halsted’s bibliography,
but it soon became evident that the growth of the subject rendered such
diffuse treatment practically impossible, and short abstracts of the
works would have to be dispensed with. The object is to produce as
far as possible a complete repository of the titles of all works from
the earliest times up to the present which deal with the extended
conception of space, and to form a guide to the literature in an easily
accessible form. It includes the theory of parallels, non-euclidean ge-
ometry, the foundations of geometry, and space of » dimensions.”

In 1913 Teubner issued in two parts Paul Stickel’s important book:
Wolfgang und Johann Bolyai. Geometrische Untersuchungen; John com-
pares Lobachevski’s researches with his own. The profound philosophic
import of non-euclidean geometry forms an integrant part of “The
Foundations of Science,” by H. Poincaré; Vol. I of the series Science
and;Education, The Science Press, New York City, 1914, The Transac- '
tions of the Royal Society of Canada, Vol. XII, Section III, contains
a striking Presidential Address by Alfred Baker on The Foundations
of Geometry. Of the cognate works issued by The Open Court Pub.
Co., we mention only Euclid’s Parallel Postulate by Withers. Scores
of errors are pointed out in “Non-Euclidean Geometry in the Encyclo-
p&dia Britannica,” Science, May 10, 1912,

And now at last the theory of relativity has made non-euclidean
geometry a powerful machine for advance in physies.

Says Vladimir Varicak in a remarkable lecture, “Ueber die nicht-

[49]
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euklidische Interpretation der Relativtheorie,” (Jahresber. D. Math,
Ver., 21, 103-127), !

I postulated that the phenomena happened in a Lobachevski space,
and reached by very simple geometric deduction the formulas of the
relativity theory. Assuming non-euclidean terminology, the formulas
of the relativity theory become not only essentially simplified, but
capable of a geometric interpretation wholly analogous to the inter-
pretation of the classic theory in the euclidean geometry. And this
analogy often goes so far, that the very wording of the theorems of
the classic theory may be left unchanged.
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leigh’s original contributions. Covers harmonic vibrations, vibrating systems, vibra-
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edge of college algebra is sufficient background. ‘'Exceptionally well written,”
School Science and Mathematics. Translated by Frederick Bagemihl. vii 4+ 144pp.

60141-2 Paperbound $1.7§



CATALOGUE OF DOVER BOOKS

FUNDAMENTAL FORMULAS OF PHYsICS, edited by Donald H. Menzel. Most use-
ful reference and study work, ranges from simplest to most highly sophisticated
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properties and applications of Bessel functions. Covers Bessel functions of zero
order, of any order; definite integrals; asymptotic expansions; Bessel’s solution to
Kepler’s problem; circular membranes; etc. Math above calculus and fundamentals
of differential equations developed within text. 636 problems. 28 figures. x -+
135pp. 60462-4 Paperbound $1.75

DIFFERENTIAL AND INTEGRAL CALcULUS, Philip Franklin, A full and basic intro-
duction, textbook for a two- or three-semester course, or self-study. Covers para-
metric functions, force components in polar coordinates, Duhamel’s theorem,
methods and applications of integration, infinite series, Taylor’s series, vectors and
surfaces in space, etc. Exercises follow each chapter with full solutions at back
of the book. Index. xi 4+ 679pp. 62520-6 Paperbound $4.00

THE ExXAcT SCIENCES IN ANTIQUITY, O. Neugebauer. Modetn overview chiefly
- of mathematics and astronomy as developed by the Egyptians and Babylonians.
Reveals startling advancement of Babylonian mathematics (tables for numerical
computations, quadratic equations with two unknowns, implications that Pytha-
gorean theorem was known 1000 years before Pythagoras), and sophisticated
astronomy based on competent mathematics. Also covers transmission of this
knowledge to Hellenistic world. 14 plates, 52 figures. xvii 4 240pp.
22332-9 Paperbound $2.50

THE THIRTEEN Books oF EucLiD’s ELEMENTS, translated with introduction and
commentary by Sir Thomas Heath. Unabridged republication of definitive edition
based on the text of Heiberg. Translator's notes discuss textual and linguistic
matters, mathematical analysis, 2500 years of critical commentary on the Elements.
Do not confuse with abridged school editions. Total of xvii 4 1414pp.
60088-2, 60089-0, 60090-4 Three volumes, Paperbound $8.50

AN INTRODUCTION TO SyMBoLIC Logic, Susanne K. Langer. Well-known intro-
duction, popular among readers with elementary mathematical background. Starts
with simple symbols and conventions and teaches Boole-Schroeder and Russell-
Whitehead systems. 367pp. 60164-1 Paperbound $2.25

Prices subject to change without notice.

Available at your book dealer or write for free catalogue to Dept. Sci, Dover
Publications, Inc., 180 Varick St, N.Y., N.Y. 10014. Dover publishes more
than 150 books each year on science, elementary and advanced mathematics, biology,
music, art, literary history, social sciences and other areas.
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NON-EUCLIDEAN
GEOMETRY
ROBERTO BONOLA

This is an excellent historical and mathematical view by a re-
nowned Italian geometer of the geometries that have arisen from
a rejection of Euclid’s parallel postulate. Students, teachers and
mathematicians will find here a ready reference source and guide
to a field that has now become overwhelmingly important.

Non-Euclidean Geometry first examines the various attempts to
prove Euclid’s parallel postulate—by the Greeks, Arabs, and mathe-
maticians of the Renaissance. Then, ranging through the 17th, 18th
and 19th centuries, it considers the forerunners and founders of
non-Euclidean geometry, such as Saccheri, Lambert, Legendre, W.
Bolyai, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachevski. In
a discussion of later developments, the author treats the work of
Riemann, Helmholtz and Lie; the impossibility of proving Euclid's
postulate, and similar topics. The complete text of two of the
founding monographs is appended to Bonola’s study: “The Science
of Absolute Space” by John Bolyai and “Geometrical Researches on
the Theory of Parallels” by Nicholas Lobachevski.

“Firmly recommended to any scientific reader with some mathe-
matical inclination” Jouwrnal of the Royal Naval Scientific Service.
“Classic on the subject,” Scientific American.

Translation with additional appendices by H. §. Carslaw. 256 bib-

liographic references in footnotes. Introduction by Federigo En-

riques. Index. 181 diagrams. Total of xlii - 389pp. 53§ x 8.
60027-0 Paperbound

A DOVER EDITION DESIGNED FOR YEARS OF USE!

We have made every effort to make this the best book possible! Our
paper is opaque, with minimal show-through; it will not discolor
or become brittle with age. Pages are sewn in signatures, in
the method traditionally used for the best books, and will not drop
out, as often happens with paperbacks held together with glue.
Books open flat for easy reference. The binding will not crack or
split. This is a permanent book.
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